diff --git "a/104596/metadata.json" "b/104596/metadata.json" new file mode 100644--- /dev/null +++ "b/104596/metadata.json" @@ -0,0 +1,55902 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "104596", + "quality_score": 0.8931, + "per_segment_quality_scores": [ + { + "start": 106.06, + "end": 106.06, + "probability": 0.0278 + }, + { + "start": 106.06, + "end": 107.42, + "probability": 0.6095 + }, + { + "start": 108.16, + "end": 108.82, + "probability": 0.7294 + }, + { + "start": 110.0, + "end": 113.06, + "probability": 0.9589 + }, + { + "start": 113.16, + "end": 116.58, + "probability": 0.9806 + }, + { + "start": 117.64, + "end": 120.12, + "probability": 0.9937 + }, + { + "start": 120.74, + "end": 126.2, + "probability": 0.9764 + }, + { + "start": 127.8, + "end": 128.1, + "probability": 0.0145 + }, + { + "start": 129.55, + "end": 131.01, + "probability": 0.2717 + }, + { + "start": 131.8, + "end": 137.52, + "probability": 0.9924 + }, + { + "start": 137.62, + "end": 139.58, + "probability": 0.8252 + }, + { + "start": 140.16, + "end": 140.5, + "probability": 0.8903 + }, + { + "start": 142.28, + "end": 144.14, + "probability": 0.9541 + }, + { + "start": 145.83, + "end": 150.54, + "probability": 0.9637 + }, + { + "start": 150.96, + "end": 151.35, + "probability": 0.9438 + }, + { + "start": 152.16, + "end": 153.2, + "probability": 0.9136 + }, + { + "start": 157.58, + "end": 159.34, + "probability": 0.8634 + }, + { + "start": 160.3, + "end": 164.94, + "probability": 0.9973 + }, + { + "start": 165.84, + "end": 166.14, + "probability": 0.5186 + }, + { + "start": 166.24, + "end": 170.24, + "probability": 0.9902 + }, + { + "start": 170.28, + "end": 172.02, + "probability": 0.9806 + }, + { + "start": 172.1, + "end": 173.6, + "probability": 0.9626 + }, + { + "start": 174.52, + "end": 175.48, + "probability": 0.2989 + }, + { + "start": 175.52, + "end": 177.08, + "probability": 0.5274 + }, + { + "start": 177.14, + "end": 177.88, + "probability": 0.7953 + }, + { + "start": 178.84, + "end": 180.08, + "probability": 0.9807 + }, + { + "start": 180.28, + "end": 185.56, + "probability": 0.9939 + }, + { + "start": 186.42, + "end": 189.5, + "probability": 0.9006 + }, + { + "start": 190.72, + "end": 196.02, + "probability": 0.9393 + }, + { + "start": 196.3, + "end": 197.52, + "probability": 0.9152 + }, + { + "start": 197.82, + "end": 204.24, + "probability": 0.9001 + }, + { + "start": 204.74, + "end": 207.74, + "probability": 0.9465 + }, + { + "start": 208.4, + "end": 210.56, + "probability": 0.8513 + }, + { + "start": 211.24, + "end": 212.76, + "probability": 0.9609 + }, + { + "start": 213.16, + "end": 215.34, + "probability": 0.7241 + }, + { + "start": 216.18, + "end": 216.7, + "probability": 0.5659 + }, + { + "start": 216.76, + "end": 218.6, + "probability": 0.9788 + }, + { + "start": 218.64, + "end": 220.26, + "probability": 0.9878 + }, + { + "start": 220.92, + "end": 221.88, + "probability": 0.8271 + }, + { + "start": 223.18, + "end": 223.78, + "probability": 0.1727 + }, + { + "start": 224.42, + "end": 228.86, + "probability": 0.9739 + }, + { + "start": 229.44, + "end": 230.46, + "probability": 0.8644 + }, + { + "start": 230.76, + "end": 233.84, + "probability": 0.9842 + }, + { + "start": 234.96, + "end": 239.98, + "probability": 0.9583 + }, + { + "start": 240.64, + "end": 246.72, + "probability": 0.9855 + }, + { + "start": 247.28, + "end": 252.78, + "probability": 0.9613 + }, + { + "start": 255.2, + "end": 261.82, + "probability": 0.663 + }, + { + "start": 262.58, + "end": 265.72, + "probability": 0.9911 + }, + { + "start": 265.84, + "end": 267.34, + "probability": 0.9622 + }, + { + "start": 268.08, + "end": 268.68, + "probability": 0.8951 + }, + { + "start": 269.26, + "end": 271.7, + "probability": 0.987 + }, + { + "start": 272.08, + "end": 273.19, + "probability": 0.9749 + }, + { + "start": 274.0, + "end": 275.0, + "probability": 0.9922 + }, + { + "start": 275.52, + "end": 276.68, + "probability": 0.9917 + }, + { + "start": 277.26, + "end": 278.82, + "probability": 0.9591 + }, + { + "start": 278.98, + "end": 280.6, + "probability": 0.9303 + }, + { + "start": 280.68, + "end": 282.29, + "probability": 0.9956 + }, + { + "start": 282.72, + "end": 286.58, + "probability": 0.9875 + }, + { + "start": 287.56, + "end": 292.62, + "probability": 0.9984 + }, + { + "start": 293.22, + "end": 295.14, + "probability": 0.9899 + }, + { + "start": 295.88, + "end": 300.38, + "probability": 0.8408 + }, + { + "start": 301.48, + "end": 307.68, + "probability": 0.9441 + }, + { + "start": 307.78, + "end": 308.12, + "probability": 0.8 + }, + { + "start": 308.26, + "end": 312.18, + "probability": 0.9393 + }, + { + "start": 312.36, + "end": 317.42, + "probability": 0.9525 + }, + { + "start": 317.6, + "end": 320.24, + "probability": 0.9617 + }, + { + "start": 328.24, + "end": 328.72, + "probability": 0.6216 + }, + { + "start": 334.58, + "end": 339.88, + "probability": 0.9028 + }, + { + "start": 340.02, + "end": 342.1, + "probability": 0.9785 + }, + { + "start": 342.18, + "end": 342.76, + "probability": 0.9359 + }, + { + "start": 343.08, + "end": 343.54, + "probability": 0.7071 + }, + { + "start": 343.72, + "end": 344.46, + "probability": 0.9069 + }, + { + "start": 344.5, + "end": 346.26, + "probability": 0.9652 + }, + { + "start": 346.82, + "end": 348.42, + "probability": 0.8697 + }, + { + "start": 348.44, + "end": 349.9, + "probability": 0.9792 + }, + { + "start": 350.28, + "end": 351.72, + "probability": 0.6908 + }, + { + "start": 352.72, + "end": 355.8, + "probability": 0.8879 + }, + { + "start": 356.6, + "end": 358.48, + "probability": 0.6764 + }, + { + "start": 359.16, + "end": 361.06, + "probability": 0.7083 + }, + { + "start": 361.7, + "end": 363.18, + "probability": 0.9504 + }, + { + "start": 364.12, + "end": 365.8, + "probability": 0.9512 + }, + { + "start": 366.02, + "end": 369.24, + "probability": 0.9065 + }, + { + "start": 369.34, + "end": 370.15, + "probability": 0.5835 + }, + { + "start": 371.14, + "end": 375.06, + "probability": 0.9195 + }, + { + "start": 375.16, + "end": 378.26, + "probability": 0.977 + }, + { + "start": 379.06, + "end": 381.22, + "probability": 0.9555 + }, + { + "start": 381.82, + "end": 382.86, + "probability": 0.9593 + }, + { + "start": 383.5, + "end": 386.16, + "probability": 0.9911 + }, + { + "start": 386.72, + "end": 387.44, + "probability": 0.8322 + }, + { + "start": 388.07, + "end": 390.76, + "probability": 0.8951 + }, + { + "start": 390.86, + "end": 391.98, + "probability": 0.7247 + }, + { + "start": 392.2, + "end": 393.76, + "probability": 0.9709 + }, + { + "start": 393.94, + "end": 394.46, + "probability": 0.7151 + }, + { + "start": 394.56, + "end": 398.72, + "probability": 0.937 + }, + { + "start": 398.72, + "end": 401.44, + "probability": 0.7908 + }, + { + "start": 401.48, + "end": 402.86, + "probability": 0.9976 + }, + { + "start": 403.18, + "end": 404.22, + "probability": 0.946 + }, + { + "start": 404.4, + "end": 407.1, + "probability": 0.9321 + }, + { + "start": 407.14, + "end": 408.46, + "probability": 0.6334 + }, + { + "start": 408.56, + "end": 414.28, + "probability": 0.9888 + }, + { + "start": 414.34, + "end": 415.34, + "probability": 0.8286 + }, + { + "start": 415.94, + "end": 417.38, + "probability": 0.7794 + }, + { + "start": 418.26, + "end": 422.56, + "probability": 0.9898 + }, + { + "start": 424.48, + "end": 429.42, + "probability": 0.9964 + }, + { + "start": 430.14, + "end": 433.04, + "probability": 0.998 + }, + { + "start": 433.84, + "end": 435.64, + "probability": 0.9733 + }, + { + "start": 436.2, + "end": 436.66, + "probability": 0.3594 + }, + { + "start": 436.68, + "end": 439.78, + "probability": 0.9514 + }, + { + "start": 439.82, + "end": 441.66, + "probability": 0.9261 + }, + { + "start": 442.24, + "end": 444.62, + "probability": 0.9924 + }, + { + "start": 445.18, + "end": 445.58, + "probability": 0.7669 + }, + { + "start": 446.84, + "end": 447.54, + "probability": 0.7323 + }, + { + "start": 448.34, + "end": 449.92, + "probability": 0.8489 + }, + { + "start": 450.08, + "end": 452.6, + "probability": 0.995 + }, + { + "start": 452.7, + "end": 455.74, + "probability": 0.9762 + }, + { + "start": 455.74, + "end": 459.28, + "probability": 0.6273 + }, + { + "start": 459.42, + "end": 460.14, + "probability": 0.8654 + }, + { + "start": 460.78, + "end": 462.9, + "probability": 0.9526 + }, + { + "start": 463.48, + "end": 464.04, + "probability": 0.8259 + }, + { + "start": 464.08, + "end": 469.64, + "probability": 0.9753 + }, + { + "start": 470.02, + "end": 473.52, + "probability": 0.9541 + }, + { + "start": 474.14, + "end": 479.98, + "probability": 0.7747 + }, + { + "start": 480.18, + "end": 481.94, + "probability": 0.9917 + }, + { + "start": 483.16, + "end": 485.2, + "probability": 0.9911 + }, + { + "start": 485.38, + "end": 487.58, + "probability": 0.9921 + }, + { + "start": 487.94, + "end": 489.5, + "probability": 0.984 + }, + { + "start": 489.68, + "end": 492.39, + "probability": 0.9814 + }, + { + "start": 493.2, + "end": 496.2, + "probability": 0.8962 + }, + { + "start": 496.68, + "end": 499.16, + "probability": 0.6774 + }, + { + "start": 499.42, + "end": 501.36, + "probability": 0.9891 + }, + { + "start": 502.12, + "end": 503.56, + "probability": 0.998 + }, + { + "start": 503.72, + "end": 504.1, + "probability": 0.748 + }, + { + "start": 504.14, + "end": 509.35, + "probability": 0.9976 + }, + { + "start": 510.38, + "end": 512.64, + "probability": 0.9564 + }, + { + "start": 512.86, + "end": 515.18, + "probability": 0.988 + }, + { + "start": 516.6, + "end": 516.78, + "probability": 0.8761 + }, + { + "start": 517.22, + "end": 517.82, + "probability": 0.6539 + }, + { + "start": 517.9, + "end": 522.16, + "probability": 0.5875 + }, + { + "start": 523.34, + "end": 524.0, + "probability": 0.151 + }, + { + "start": 524.9, + "end": 525.0, + "probability": 0.1312 + }, + { + "start": 527.03, + "end": 530.86, + "probability": 0.6919 + }, + { + "start": 533.56, + "end": 535.86, + "probability": 0.9854 + }, + { + "start": 541.04, + "end": 543.88, + "probability": 0.7259 + }, + { + "start": 544.12, + "end": 545.08, + "probability": 0.9506 + }, + { + "start": 545.96, + "end": 549.8, + "probability": 0.9948 + }, + { + "start": 551.02, + "end": 553.32, + "probability": 0.9018 + }, + { + "start": 554.06, + "end": 557.06, + "probability": 0.9966 + }, + { + "start": 557.88, + "end": 559.36, + "probability": 0.8689 + }, + { + "start": 560.58, + "end": 568.3, + "probability": 0.8963 + }, + { + "start": 569.22, + "end": 572.08, + "probability": 0.991 + }, + { + "start": 572.78, + "end": 575.32, + "probability": 0.9989 + }, + { + "start": 575.72, + "end": 577.88, + "probability": 0.98 + }, + { + "start": 577.92, + "end": 580.12, + "probability": 0.9468 + }, + { + "start": 581.06, + "end": 582.22, + "probability": 0.782 + }, + { + "start": 582.42, + "end": 583.72, + "probability": 0.9684 + }, + { + "start": 583.86, + "end": 584.08, + "probability": 0.0249 + }, + { + "start": 584.3, + "end": 586.15, + "probability": 0.7953 + }, + { + "start": 587.48, + "end": 592.5, + "probability": 0.894 + }, + { + "start": 592.66, + "end": 592.82, + "probability": 0.2463 + }, + { + "start": 592.82, + "end": 592.94, + "probability": 0.1415 + }, + { + "start": 593.14, + "end": 594.5, + "probability": 0.5937 + }, + { + "start": 594.58, + "end": 595.56, + "probability": 0.4887 + }, + { + "start": 595.96, + "end": 598.48, + "probability": 0.8776 + }, + { + "start": 598.68, + "end": 601.92, + "probability": 0.9475 + }, + { + "start": 602.54, + "end": 605.0, + "probability": 0.8135 + }, + { + "start": 606.06, + "end": 607.9, + "probability": 0.7931 + }, + { + "start": 608.12, + "end": 609.84, + "probability": 0.9432 + }, + { + "start": 609.9, + "end": 616.59, + "probability": 0.8305 + }, + { + "start": 617.56, + "end": 619.08, + "probability": 0.9292 + }, + { + "start": 619.68, + "end": 623.8, + "probability": 0.9723 + }, + { + "start": 624.42, + "end": 627.38, + "probability": 0.9976 + }, + { + "start": 628.06, + "end": 633.54, + "probability": 0.9508 + }, + { + "start": 634.3, + "end": 635.48, + "probability": 0.5934 + }, + { + "start": 635.6, + "end": 637.5, + "probability": 0.9918 + }, + { + "start": 637.6, + "end": 639.24, + "probability": 0.9833 + }, + { + "start": 639.74, + "end": 644.62, + "probability": 0.1088 + }, + { + "start": 645.98, + "end": 646.14, + "probability": 0.0242 + }, + { + "start": 646.14, + "end": 646.14, + "probability": 0.0627 + }, + { + "start": 646.14, + "end": 646.14, + "probability": 0.0817 + }, + { + "start": 646.14, + "end": 646.62, + "probability": 0.5892 + }, + { + "start": 646.72, + "end": 651.02, + "probability": 0.8478 + }, + { + "start": 652.72, + "end": 653.38, + "probability": 0.1833 + }, + { + "start": 653.44, + "end": 655.64, + "probability": 0.1766 + }, + { + "start": 656.12, + "end": 656.12, + "probability": 0.1796 + }, + { + "start": 656.12, + "end": 656.14, + "probability": 0.2225 + }, + { + "start": 657.69, + "end": 661.24, + "probability": 0.2203 + }, + { + "start": 661.7, + "end": 665.68, + "probability": 0.9751 + }, + { + "start": 666.32, + "end": 669.68, + "probability": 0.8092 + }, + { + "start": 669.82, + "end": 671.36, + "probability": 0.4882 + }, + { + "start": 671.86, + "end": 675.76, + "probability": 0.9617 + }, + { + "start": 675.84, + "end": 678.24, + "probability": 0.9943 + }, + { + "start": 678.84, + "end": 680.27, + "probability": 0.9727 + }, + { + "start": 681.38, + "end": 686.64, + "probability": 0.9621 + }, + { + "start": 686.74, + "end": 688.22, + "probability": 0.9937 + }, + { + "start": 688.44, + "end": 690.72, + "probability": 0.9739 + }, + { + "start": 690.82, + "end": 693.2, + "probability": 0.9235 + }, + { + "start": 693.36, + "end": 695.14, + "probability": 0.9207 + }, + { + "start": 695.36, + "end": 696.88, + "probability": 0.9938 + }, + { + "start": 697.42, + "end": 701.14, + "probability": 0.9443 + }, + { + "start": 701.36, + "end": 703.18, + "probability": 0.9369 + }, + { + "start": 704.08, + "end": 706.34, + "probability": 0.762 + }, + { + "start": 706.48, + "end": 707.9, + "probability": 0.9686 + }, + { + "start": 708.42, + "end": 712.04, + "probability": 0.9802 + }, + { + "start": 712.74, + "end": 713.04, + "probability": 0.763 + }, + { + "start": 713.14, + "end": 713.96, + "probability": 0.9738 + }, + { + "start": 714.06, + "end": 714.9, + "probability": 0.9781 + }, + { + "start": 715.24, + "end": 717.54, + "probability": 0.9864 + }, + { + "start": 717.7, + "end": 719.22, + "probability": 0.9724 + }, + { + "start": 719.3, + "end": 719.82, + "probability": 0.8313 + }, + { + "start": 719.96, + "end": 720.54, + "probability": 0.8687 + }, + { + "start": 721.1, + "end": 726.18, + "probability": 0.9604 + }, + { + "start": 726.62, + "end": 727.4, + "probability": 0.734 + }, + { + "start": 727.5, + "end": 729.22, + "probability": 0.9775 + }, + { + "start": 729.62, + "end": 730.7, + "probability": 0.9737 + }, + { + "start": 732.32, + "end": 734.76, + "probability": 0.9573 + }, + { + "start": 735.4, + "end": 738.38, + "probability": 0.9114 + }, + { + "start": 738.92, + "end": 742.46, + "probability": 0.9938 + }, + { + "start": 742.5, + "end": 745.58, + "probability": 0.9988 + }, + { + "start": 745.68, + "end": 747.32, + "probability": 0.9957 + }, + { + "start": 748.28, + "end": 750.38, + "probability": 0.8509 + }, + { + "start": 750.76, + "end": 756.16, + "probability": 0.9962 + }, + { + "start": 757.48, + "end": 759.8, + "probability": 0.9515 + }, + { + "start": 760.0, + "end": 765.58, + "probability": 0.8972 + }, + { + "start": 765.92, + "end": 767.76, + "probability": 0.998 + }, + { + "start": 768.12, + "end": 771.62, + "probability": 0.9961 + }, + { + "start": 771.76, + "end": 774.02, + "probability": 0.9888 + }, + { + "start": 774.72, + "end": 776.06, + "probability": 0.5575 + }, + { + "start": 776.32, + "end": 777.38, + "probability": 0.4184 + }, + { + "start": 777.46, + "end": 778.32, + "probability": 0.771 + }, + { + "start": 778.74, + "end": 780.74, + "probability": 0.9936 + }, + { + "start": 780.74, + "end": 783.8, + "probability": 0.9702 + }, + { + "start": 783.92, + "end": 786.96, + "probability": 0.9734 + }, + { + "start": 787.04, + "end": 789.7, + "probability": 0.5073 + }, + { + "start": 790.19, + "end": 792.9, + "probability": 0.9856 + }, + { + "start": 793.58, + "end": 798.26, + "probability": 0.9531 + }, + { + "start": 799.02, + "end": 803.84, + "probability": 0.9822 + }, + { + "start": 804.18, + "end": 808.28, + "probability": 0.9956 + }, + { + "start": 808.84, + "end": 811.38, + "probability": 0.9985 + }, + { + "start": 811.38, + "end": 816.48, + "probability": 0.9678 + }, + { + "start": 816.62, + "end": 817.34, + "probability": 0.9554 + }, + { + "start": 817.42, + "end": 818.74, + "probability": 0.9977 + }, + { + "start": 819.1, + "end": 820.41, + "probability": 0.9658 + }, + { + "start": 820.68, + "end": 822.7, + "probability": 0.9874 + }, + { + "start": 823.48, + "end": 830.44, + "probability": 0.8982 + }, + { + "start": 830.44, + "end": 835.88, + "probability": 0.9978 + }, + { + "start": 836.18, + "end": 839.48, + "probability": 0.994 + }, + { + "start": 839.94, + "end": 842.8, + "probability": 0.9712 + }, + { + "start": 842.92, + "end": 843.9, + "probability": 0.7212 + }, + { + "start": 844.12, + "end": 844.88, + "probability": 0.8092 + }, + { + "start": 845.02, + "end": 845.36, + "probability": 0.8145 + }, + { + "start": 845.38, + "end": 849.98, + "probability": 0.8664 + }, + { + "start": 850.02, + "end": 852.46, + "probability": 0.858 + }, + { + "start": 852.9, + "end": 853.5, + "probability": 0.4977 + }, + { + "start": 854.1, + "end": 857.64, + "probability": 0.9942 + }, + { + "start": 858.42, + "end": 858.42, + "probability": 0.1141 + }, + { + "start": 858.62, + "end": 862.6, + "probability": 0.9683 + }, + { + "start": 863.06, + "end": 866.4, + "probability": 0.9089 + }, + { + "start": 866.4, + "end": 870.52, + "probability": 0.993 + }, + { + "start": 871.12, + "end": 871.98, + "probability": 0.9473 + }, + { + "start": 873.28, + "end": 874.94, + "probability": 0.7634 + }, + { + "start": 875.42, + "end": 877.86, + "probability": 0.9977 + }, + { + "start": 879.94, + "end": 880.42, + "probability": 0.5837 + }, + { + "start": 880.46, + "end": 883.52, + "probability": 0.6266 + }, + { + "start": 885.82, + "end": 889.56, + "probability": 0.9094 + }, + { + "start": 889.66, + "end": 889.76, + "probability": 0.8453 + }, + { + "start": 890.68, + "end": 892.24, + "probability": 0.8411 + }, + { + "start": 892.72, + "end": 896.3, + "probability": 0.9557 + }, + { + "start": 896.3, + "end": 899.48, + "probability": 0.9855 + }, + { + "start": 900.12, + "end": 901.12, + "probability": 0.7405 + }, + { + "start": 901.68, + "end": 905.63, + "probability": 0.9919 + }, + { + "start": 906.58, + "end": 908.56, + "probability": 0.9778 + }, + { + "start": 908.98, + "end": 914.1, + "probability": 0.9254 + }, + { + "start": 914.34, + "end": 915.24, + "probability": 0.8095 + }, + { + "start": 916.74, + "end": 917.56, + "probability": 0.3713 + }, + { + "start": 917.7, + "end": 919.8, + "probability": 0.9536 + }, + { + "start": 920.79, + "end": 927.38, + "probability": 0.9072 + }, + { + "start": 928.24, + "end": 935.52, + "probability": 0.9969 + }, + { + "start": 936.56, + "end": 941.04, + "probability": 0.9961 + }, + { + "start": 942.28, + "end": 948.52, + "probability": 0.9785 + }, + { + "start": 949.42, + "end": 951.14, + "probability": 0.9092 + }, + { + "start": 951.28, + "end": 952.52, + "probability": 0.7862 + }, + { + "start": 952.64, + "end": 957.06, + "probability": 0.9941 + }, + { + "start": 957.42, + "end": 963.24, + "probability": 0.9025 + }, + { + "start": 963.34, + "end": 964.76, + "probability": 0.9893 + }, + { + "start": 965.24, + "end": 966.16, + "probability": 0.4688 + }, + { + "start": 966.22, + "end": 968.12, + "probability": 0.9775 + }, + { + "start": 968.62, + "end": 969.6, + "probability": 0.989 + }, + { + "start": 970.2, + "end": 973.04, + "probability": 0.9242 + }, + { + "start": 974.62, + "end": 977.08, + "probability": 0.9961 + }, + { + "start": 977.68, + "end": 979.7, + "probability": 0.7506 + }, + { + "start": 980.3, + "end": 988.42, + "probability": 0.9956 + }, + { + "start": 988.94, + "end": 992.18, + "probability": 0.9911 + }, + { + "start": 992.78, + "end": 995.12, + "probability": 0.7418 + }, + { + "start": 997.04, + "end": 999.06, + "probability": 0.8521 + }, + { + "start": 999.16, + "end": 1003.8, + "probability": 0.9918 + }, + { + "start": 1003.8, + "end": 1008.02, + "probability": 0.9982 + }, + { + "start": 1008.24, + "end": 1009.26, + "probability": 0.8888 + }, + { + "start": 1009.34, + "end": 1009.64, + "probability": 0.8264 + }, + { + "start": 1010.04, + "end": 1011.79, + "probability": 0.9971 + }, + { + "start": 1012.62, + "end": 1018.7, + "probability": 0.9442 + }, + { + "start": 1019.46, + "end": 1023.18, + "probability": 0.9294 + }, + { + "start": 1023.7, + "end": 1024.86, + "probability": 0.9899 + }, + { + "start": 1024.92, + "end": 1029.14, + "probability": 0.9758 + }, + { + "start": 1029.76, + "end": 1032.12, + "probability": 0.8984 + }, + { + "start": 1032.18, + "end": 1033.36, + "probability": 0.9016 + }, + { + "start": 1034.06, + "end": 1040.36, + "probability": 0.9485 + }, + { + "start": 1040.36, + "end": 1043.18, + "probability": 0.9702 + }, + { + "start": 1044.12, + "end": 1045.66, + "probability": 0.8393 + }, + { + "start": 1046.99, + "end": 1051.06, + "probability": 0.9672 + }, + { + "start": 1051.6, + "end": 1054.74, + "probability": 0.9856 + }, + { + "start": 1054.82, + "end": 1057.06, + "probability": 0.9915 + }, + { + "start": 1057.5, + "end": 1058.9, + "probability": 0.7816 + }, + { + "start": 1059.0, + "end": 1066.46, + "probability": 0.9639 + }, + { + "start": 1066.46, + "end": 1070.56, + "probability": 0.9173 + }, + { + "start": 1071.42, + "end": 1072.12, + "probability": 0.6711 + }, + { + "start": 1072.2, + "end": 1075.14, + "probability": 0.8811 + }, + { + "start": 1075.32, + "end": 1076.4, + "probability": 0.9043 + }, + { + "start": 1077.1, + "end": 1077.26, + "probability": 0.5666 + }, + { + "start": 1077.78, + "end": 1079.66, + "probability": 0.9649 + }, + { + "start": 1080.34, + "end": 1082.58, + "probability": 0.9921 + }, + { + "start": 1083.1, + "end": 1085.14, + "probability": 0.9948 + }, + { + "start": 1085.2, + "end": 1087.26, + "probability": 0.9872 + }, + { + "start": 1087.32, + "end": 1090.48, + "probability": 0.9922 + }, + { + "start": 1091.2, + "end": 1092.08, + "probability": 0.9753 + }, + { + "start": 1093.56, + "end": 1096.82, + "probability": 0.7443 + }, + { + "start": 1097.48, + "end": 1099.18, + "probability": 0.8888 + }, + { + "start": 1099.82, + "end": 1102.66, + "probability": 0.8141 + }, + { + "start": 1103.53, + "end": 1109.6, + "probability": 0.9893 + }, + { + "start": 1110.26, + "end": 1111.58, + "probability": 0.92 + }, + { + "start": 1112.0, + "end": 1116.08, + "probability": 0.9793 + }, + { + "start": 1118.38, + "end": 1121.0, + "probability": 0.7084 + }, + { + "start": 1121.12, + "end": 1121.36, + "probability": 0.7505 + }, + { + "start": 1121.66, + "end": 1122.44, + "probability": 0.9149 + }, + { + "start": 1122.72, + "end": 1124.74, + "probability": 0.8335 + }, + { + "start": 1125.28, + "end": 1126.66, + "probability": 0.9896 + }, + { + "start": 1126.72, + "end": 1127.4, + "probability": 0.9378 + }, + { + "start": 1127.5, + "end": 1128.4, + "probability": 0.5058 + }, + { + "start": 1128.48, + "end": 1131.98, + "probability": 0.8965 + }, + { + "start": 1132.96, + "end": 1135.38, + "probability": 0.9063 + }, + { + "start": 1135.98, + "end": 1139.94, + "probability": 0.8996 + }, + { + "start": 1140.06, + "end": 1141.22, + "probability": 0.7777 + }, + { + "start": 1141.68, + "end": 1143.12, + "probability": 0.8008 + }, + { + "start": 1143.66, + "end": 1144.44, + "probability": 0.9515 + }, + { + "start": 1144.78, + "end": 1146.76, + "probability": 0.9956 + }, + { + "start": 1147.38, + "end": 1149.8, + "probability": 0.9775 + }, + { + "start": 1149.82, + "end": 1151.06, + "probability": 0.9788 + }, + { + "start": 1151.18, + "end": 1153.07, + "probability": 0.9941 + }, + { + "start": 1153.58, + "end": 1154.15, + "probability": 0.9697 + }, + { + "start": 1155.12, + "end": 1160.62, + "probability": 0.9219 + }, + { + "start": 1161.56, + "end": 1162.28, + "probability": 0.9005 + }, + { + "start": 1162.44, + "end": 1165.12, + "probability": 0.9056 + }, + { + "start": 1165.54, + "end": 1167.08, + "probability": 0.9674 + }, + { + "start": 1167.26, + "end": 1171.24, + "probability": 0.7029 + }, + { + "start": 1171.98, + "end": 1174.04, + "probability": 0.9399 + }, + { + "start": 1175.46, + "end": 1180.8, + "probability": 0.9246 + }, + { + "start": 1181.44, + "end": 1184.32, + "probability": 0.9993 + }, + { + "start": 1184.46, + "end": 1185.44, + "probability": 0.9559 + }, + { + "start": 1185.52, + "end": 1186.58, + "probability": 0.8787 + }, + { + "start": 1186.98, + "end": 1190.0, + "probability": 0.9903 + }, + { + "start": 1191.02, + "end": 1191.94, + "probability": 0.6203 + }, + { + "start": 1192.02, + "end": 1193.8, + "probability": 0.9956 + }, + { + "start": 1194.24, + "end": 1197.66, + "probability": 0.9608 + }, + { + "start": 1198.26, + "end": 1207.14, + "probability": 0.9932 + }, + { + "start": 1207.22, + "end": 1209.72, + "probability": 0.9984 + }, + { + "start": 1209.72, + "end": 1212.96, + "probability": 0.9915 + }, + { + "start": 1214.51, + "end": 1215.22, + "probability": 0.296 + }, + { + "start": 1215.22, + "end": 1215.54, + "probability": 0.2367 + }, + { + "start": 1216.12, + "end": 1218.44, + "probability": 0.8203 + }, + { + "start": 1219.06, + "end": 1219.46, + "probability": 0.974 + }, + { + "start": 1219.56, + "end": 1227.15, + "probability": 0.9795 + }, + { + "start": 1228.42, + "end": 1229.22, + "probability": 0.9907 + }, + { + "start": 1231.3, + "end": 1239.24, + "probability": 0.9977 + }, + { + "start": 1239.92, + "end": 1242.4, + "probability": 0.9397 + }, + { + "start": 1243.22, + "end": 1244.3, + "probability": 0.6662 + }, + { + "start": 1244.44, + "end": 1247.62, + "probability": 0.984 + }, + { + "start": 1249.16, + "end": 1250.66, + "probability": 0.6935 + }, + { + "start": 1251.22, + "end": 1253.78, + "probability": 0.9839 + }, + { + "start": 1254.4, + "end": 1258.12, + "probability": 0.9836 + }, + { + "start": 1258.12, + "end": 1258.5, + "probability": 0.6479 + }, + { + "start": 1259.12, + "end": 1260.08, + "probability": 0.9723 + }, + { + "start": 1260.24, + "end": 1262.64, + "probability": 0.9985 + }, + { + "start": 1262.64, + "end": 1266.04, + "probability": 0.9846 + }, + { + "start": 1266.52, + "end": 1267.64, + "probability": 0.9941 + }, + { + "start": 1268.92, + "end": 1273.6, + "probability": 0.4636 + }, + { + "start": 1274.24, + "end": 1281.68, + "probability": 0.9661 + }, + { + "start": 1281.8, + "end": 1283.18, + "probability": 0.5103 + }, + { + "start": 1285.96, + "end": 1287.42, + "probability": 0.5715 + }, + { + "start": 1287.48, + "end": 1290.26, + "probability": 0.9648 + }, + { + "start": 1290.6, + "end": 1291.09, + "probability": 0.9836 + }, + { + "start": 1291.42, + "end": 1292.13, + "probability": 0.9739 + }, + { + "start": 1292.92, + "end": 1294.64, + "probability": 0.8652 + }, + { + "start": 1294.68, + "end": 1295.14, + "probability": 0.5195 + }, + { + "start": 1295.48, + "end": 1299.62, + "probability": 0.9939 + }, + { + "start": 1300.16, + "end": 1302.36, + "probability": 0.9982 + }, + { + "start": 1302.44, + "end": 1305.36, + "probability": 0.998 + }, + { + "start": 1306.22, + "end": 1309.98, + "probability": 0.9984 + }, + { + "start": 1310.84, + "end": 1316.22, + "probability": 0.9893 + }, + { + "start": 1316.64, + "end": 1317.12, + "probability": 0.8591 + }, + { + "start": 1317.16, + "end": 1317.56, + "probability": 0.8754 + }, + { + "start": 1317.72, + "end": 1318.52, + "probability": 0.6691 + }, + { + "start": 1318.9, + "end": 1321.08, + "probability": 0.9106 + }, + { + "start": 1321.56, + "end": 1322.7, + "probability": 0.779 + }, + { + "start": 1323.26, + "end": 1326.06, + "probability": 0.9688 + }, + { + "start": 1326.16, + "end": 1327.7, + "probability": 0.9803 + }, + { + "start": 1328.66, + "end": 1331.64, + "probability": 0.9819 + }, + { + "start": 1331.82, + "end": 1335.4, + "probability": 0.9989 + }, + { + "start": 1335.4, + "end": 1338.4, + "probability": 0.999 + }, + { + "start": 1338.84, + "end": 1345.74, + "probability": 0.9989 + }, + { + "start": 1346.32, + "end": 1348.06, + "probability": 0.998 + }, + { + "start": 1349.5, + "end": 1354.6, + "probability": 0.9978 + }, + { + "start": 1355.13, + "end": 1359.9, + "probability": 1.0 + }, + { + "start": 1360.7, + "end": 1360.82, + "probability": 0.4927 + }, + { + "start": 1362.3, + "end": 1362.96, + "probability": 0.6828 + }, + { + "start": 1363.2, + "end": 1365.56, + "probability": 0.8438 + }, + { + "start": 1367.1, + "end": 1368.1, + "probability": 0.4459 + }, + { + "start": 1372.36, + "end": 1375.79, + "probability": 0.668 + }, + { + "start": 1376.42, + "end": 1378.96, + "probability": 0.7587 + }, + { + "start": 1379.0, + "end": 1379.34, + "probability": 0.921 + }, + { + "start": 1380.9, + "end": 1383.26, + "probability": 0.8432 + }, + { + "start": 1384.46, + "end": 1386.82, + "probability": 0.9102 + }, + { + "start": 1387.12, + "end": 1390.24, + "probability": 0.9983 + }, + { + "start": 1390.24, + "end": 1393.5, + "probability": 0.9983 + }, + { + "start": 1394.68, + "end": 1395.46, + "probability": 0.6376 + }, + { + "start": 1396.22, + "end": 1398.72, + "probability": 0.9062 + }, + { + "start": 1399.5, + "end": 1402.48, + "probability": 0.9891 + }, + { + "start": 1403.2, + "end": 1406.42, + "probability": 0.9124 + }, + { + "start": 1409.22, + "end": 1411.7, + "probability": 0.7413 + }, + { + "start": 1412.56, + "end": 1413.94, + "probability": 0.875 + }, + { + "start": 1414.82, + "end": 1417.34, + "probability": 0.9851 + }, + { + "start": 1417.36, + "end": 1421.74, + "probability": 0.9965 + }, + { + "start": 1422.48, + "end": 1423.84, + "probability": 0.9945 + }, + { + "start": 1424.54, + "end": 1428.32, + "probability": 0.9994 + }, + { + "start": 1428.6, + "end": 1434.18, + "probability": 0.9904 + }, + { + "start": 1434.18, + "end": 1440.46, + "probability": 0.9554 + }, + { + "start": 1441.54, + "end": 1446.16, + "probability": 0.9746 + }, + { + "start": 1446.42, + "end": 1451.38, + "probability": 0.9419 + }, + { + "start": 1452.14, + "end": 1452.6, + "probability": 0.8289 + }, + { + "start": 1452.76, + "end": 1453.54, + "probability": 0.8319 + }, + { + "start": 1453.6, + "end": 1457.62, + "probability": 0.9973 + }, + { + "start": 1457.62, + "end": 1461.78, + "probability": 0.9888 + }, + { + "start": 1462.18, + "end": 1463.3, + "probability": 0.9731 + }, + { + "start": 1463.98, + "end": 1465.64, + "probability": 0.9649 + }, + { + "start": 1466.52, + "end": 1471.78, + "probability": 0.9758 + }, + { + "start": 1471.82, + "end": 1474.36, + "probability": 0.869 + }, + { + "start": 1475.19, + "end": 1478.0, + "probability": 0.9909 + }, + { + "start": 1478.6, + "end": 1481.6, + "probability": 0.6025 + }, + { + "start": 1481.72, + "end": 1485.13, + "probability": 0.647 + }, + { + "start": 1486.58, + "end": 1488.14, + "probability": 0.9627 + }, + { + "start": 1488.32, + "end": 1492.0, + "probability": 0.9269 + }, + { + "start": 1493.56, + "end": 1498.32, + "probability": 0.9752 + }, + { + "start": 1499.14, + "end": 1501.74, + "probability": 0.868 + }, + { + "start": 1502.0, + "end": 1504.08, + "probability": 0.8829 + }, + { + "start": 1505.18, + "end": 1509.74, + "probability": 0.9925 + }, + { + "start": 1511.02, + "end": 1514.72, + "probability": 0.9586 + }, + { + "start": 1515.88, + "end": 1520.36, + "probability": 0.8832 + }, + { + "start": 1521.22, + "end": 1528.7, + "probability": 0.9821 + }, + { + "start": 1530.22, + "end": 1532.06, + "probability": 0.9561 + }, + { + "start": 1533.02, + "end": 1537.04, + "probability": 0.9952 + }, + { + "start": 1537.76, + "end": 1539.24, + "probability": 0.9958 + }, + { + "start": 1539.26, + "end": 1542.48, + "probability": 0.989 + }, + { + "start": 1543.02, + "end": 1545.22, + "probability": 0.9941 + }, + { + "start": 1545.3, + "end": 1545.4, + "probability": 0.1628 + }, + { + "start": 1545.4, + "end": 1547.68, + "probability": 0.8632 + }, + { + "start": 1548.4, + "end": 1550.36, + "probability": 0.9714 + }, + { + "start": 1552.06, + "end": 1555.18, + "probability": 0.9658 + }, + { + "start": 1556.56, + "end": 1556.58, + "probability": 0.0661 + }, + { + "start": 1556.58, + "end": 1558.6, + "probability": 0.7836 + }, + { + "start": 1559.1, + "end": 1564.28, + "probability": 0.9673 + }, + { + "start": 1565.26, + "end": 1568.44, + "probability": 0.9988 + }, + { + "start": 1569.22, + "end": 1571.3, + "probability": 0.9769 + }, + { + "start": 1573.32, + "end": 1575.14, + "probability": 0.0262 + }, + { + "start": 1581.22, + "end": 1581.32, + "probability": 0.1504 + }, + { + "start": 1582.6, + "end": 1583.12, + "probability": 0.0415 + }, + { + "start": 1583.32, + "end": 1584.06, + "probability": 0.6239 + }, + { + "start": 1585.06, + "end": 1586.7, + "probability": 0.6753 + }, + { + "start": 1586.8, + "end": 1587.34, + "probability": 0.7881 + }, + { + "start": 1587.62, + "end": 1588.46, + "probability": 0.9125 + }, + { + "start": 1588.58, + "end": 1590.38, + "probability": 0.8711 + }, + { + "start": 1591.08, + "end": 1591.72, + "probability": 0.8922 + }, + { + "start": 1592.49, + "end": 1596.26, + "probability": 0.9602 + }, + { + "start": 1599.74, + "end": 1599.74, + "probability": 0.2492 + }, + { + "start": 1599.74, + "end": 1599.74, + "probability": 0.0027 + }, + { + "start": 1599.74, + "end": 1600.08, + "probability": 0.3229 + }, + { + "start": 1600.86, + "end": 1604.7, + "probability": 0.9883 + }, + { + "start": 1605.4, + "end": 1609.86, + "probability": 0.9927 + }, + { + "start": 1609.86, + "end": 1614.64, + "probability": 0.9831 + }, + { + "start": 1614.74, + "end": 1615.08, + "probability": 0.8713 + }, + { + "start": 1615.52, + "end": 1619.76, + "probability": 0.8665 + }, + { + "start": 1620.42, + "end": 1621.72, + "probability": 0.9201 + }, + { + "start": 1623.1, + "end": 1625.84, + "probability": 0.8594 + }, + { + "start": 1626.56, + "end": 1627.7, + "probability": 0.9226 + }, + { + "start": 1628.32, + "end": 1629.38, + "probability": 0.9988 + }, + { + "start": 1630.18, + "end": 1634.72, + "probability": 0.9984 + }, + { + "start": 1635.84, + "end": 1636.24, + "probability": 0.6934 + }, + { + "start": 1636.76, + "end": 1638.22, + "probability": 0.9919 + }, + { + "start": 1638.28, + "end": 1640.36, + "probability": 0.9776 + }, + { + "start": 1640.74, + "end": 1641.38, + "probability": 0.8976 + }, + { + "start": 1641.42, + "end": 1642.14, + "probability": 0.948 + }, + { + "start": 1642.42, + "end": 1644.74, + "probability": 0.9412 + }, + { + "start": 1644.86, + "end": 1644.98, + "probability": 0.3133 + }, + { + "start": 1645.12, + "end": 1645.74, + "probability": 0.7368 + }, + { + "start": 1646.22, + "end": 1647.72, + "probability": 0.7593 + }, + { + "start": 1647.76, + "end": 1650.48, + "probability": 0.7114 + }, + { + "start": 1651.48, + "end": 1652.16, + "probability": 0.1459 + }, + { + "start": 1652.24, + "end": 1655.36, + "probability": 0.9449 + }, + { + "start": 1655.62, + "end": 1659.26, + "probability": 0.9841 + }, + { + "start": 1660.02, + "end": 1661.34, + "probability": 0.9951 + }, + { + "start": 1662.3, + "end": 1664.42, + "probability": 0.0003 + }, + { + "start": 1664.94, + "end": 1668.08, + "probability": 0.9289 + }, + { + "start": 1668.86, + "end": 1671.66, + "probability": 0.9829 + }, + { + "start": 1672.44, + "end": 1674.64, + "probability": 0.9976 + }, + { + "start": 1675.26, + "end": 1678.86, + "probability": 0.9912 + }, + { + "start": 1679.66, + "end": 1682.22, + "probability": 0.9973 + }, + { + "start": 1682.78, + "end": 1686.88, + "probability": 0.8655 + }, + { + "start": 1687.52, + "end": 1687.78, + "probability": 0.5119 + }, + { + "start": 1687.86, + "end": 1692.34, + "probability": 0.9858 + }, + { + "start": 1692.56, + "end": 1695.06, + "probability": 0.9699 + }, + { + "start": 1695.56, + "end": 1697.14, + "probability": 0.8433 + }, + { + "start": 1697.7, + "end": 1699.88, + "probability": 0.9744 + }, + { + "start": 1700.58, + "end": 1702.78, + "probability": 0.9899 + }, + { + "start": 1703.42, + "end": 1705.92, + "probability": 0.9375 + }, + { + "start": 1707.52, + "end": 1709.56, + "probability": 0.6411 + }, + { + "start": 1709.91, + "end": 1712.58, + "probability": 0.6515 + }, + { + "start": 1713.3, + "end": 1718.08, + "probability": 0.7994 + }, + { + "start": 1718.14, + "end": 1721.28, + "probability": 0.8535 + }, + { + "start": 1721.76, + "end": 1722.08, + "probability": 0.3804 + }, + { + "start": 1722.1, + "end": 1722.48, + "probability": 0.5764 + }, + { + "start": 1722.6, + "end": 1725.56, + "probability": 0.9859 + }, + { + "start": 1725.68, + "end": 1726.38, + "probability": 0.9443 + }, + { + "start": 1726.98, + "end": 1732.26, + "probability": 0.9803 + }, + { + "start": 1732.82, + "end": 1734.74, + "probability": 0.5968 + }, + { + "start": 1735.02, + "end": 1740.32, + "probability": 0.8735 + }, + { + "start": 1740.48, + "end": 1745.72, + "probability": 0.9226 + }, + { + "start": 1745.86, + "end": 1747.22, + "probability": 0.7139 + }, + { + "start": 1747.3, + "end": 1751.2, + "probability": 0.9501 + }, + { + "start": 1751.4, + "end": 1751.68, + "probability": 0.7885 + }, + { + "start": 1753.06, + "end": 1754.54, + "probability": 0.0366 + }, + { + "start": 1757.2, + "end": 1758.18, + "probability": 0.1399 + }, + { + "start": 1758.22, + "end": 1758.22, + "probability": 0.3385 + }, + { + "start": 1758.22, + "end": 1758.5, + "probability": 0.1054 + }, + { + "start": 1759.98, + "end": 1760.28, + "probability": 0.0834 + }, + { + "start": 1760.28, + "end": 1760.28, + "probability": 0.0453 + }, + { + "start": 1760.28, + "end": 1762.18, + "probability": 0.111 + }, + { + "start": 1762.26, + "end": 1766.98, + "probability": 0.9901 + }, + { + "start": 1767.62, + "end": 1768.56, + "probability": 0.731 + }, + { + "start": 1779.84, + "end": 1782.07, + "probability": 0.6565 + }, + { + "start": 1785.22, + "end": 1785.22, + "probability": 0.0007 + }, + { + "start": 1786.04, + "end": 1786.48, + "probability": 0.0413 + }, + { + "start": 1797.94, + "end": 1799.18, + "probability": 0.1684 + }, + { + "start": 1799.18, + "end": 1802.66, + "probability": 0.1104 + }, + { + "start": 1802.66, + "end": 1803.8, + "probability": 0.059 + }, + { + "start": 1803.84, + "end": 1804.52, + "probability": 0.1697 + }, + { + "start": 1806.86, + "end": 1808.64, + "probability": 0.1307 + }, + { + "start": 1818.42, + "end": 1821.2, + "probability": 0.1154 + }, + { + "start": 1821.32, + "end": 1821.88, + "probability": 0.3126 + }, + { + "start": 1827.64, + "end": 1827.9, + "probability": 0.496 + }, + { + "start": 1828.14, + "end": 1828.3, + "probability": 0.6414 + }, + { + "start": 1828.32, + "end": 1829.82, + "probability": 0.1463 + }, + { + "start": 1830.06, + "end": 1831.58, + "probability": 0.0281 + }, + { + "start": 1833.75, + "end": 1837.56, + "probability": 0.0356 + }, + { + "start": 1837.74, + "end": 1838.46, + "probability": 0.0378 + }, + { + "start": 1838.46, + "end": 1839.1, + "probability": 0.2547 + }, + { + "start": 1886.0, + "end": 1886.0, + "probability": 0.0 + }, + { + "start": 1886.0, + "end": 1886.0, + "probability": 0.0 + }, + { + "start": 1886.0, + "end": 1886.0, + "probability": 0.0 + }, + { + "start": 1886.0, + "end": 1886.0, + "probability": 0.0 + }, + { + "start": 1886.0, + "end": 1886.0, + "probability": 0.0 + }, + { + "start": 1886.0, + "end": 1886.0, + "probability": 0.0 + }, + { + "start": 1886.0, + "end": 1886.0, + "probability": 0.0 + }, + { + "start": 1886.34, + "end": 1886.34, + "probability": 0.1167 + }, + { + "start": 1886.34, + "end": 1886.34, + "probability": 0.1145 + }, + { + "start": 1886.34, + "end": 1891.32, + "probability": 0.9012 + }, + { + "start": 1891.44, + "end": 1892.52, + "probability": 0.8222 + }, + { + "start": 1892.82, + "end": 1893.98, + "probability": 0.7258 + }, + { + "start": 1894.72, + "end": 1899.46, + "probability": 0.9856 + }, + { + "start": 1899.96, + "end": 1900.2, + "probability": 0.4566 + }, + { + "start": 1900.36, + "end": 1901.81, + "probability": 0.8877 + }, + { + "start": 1902.7, + "end": 1906.52, + "probability": 0.9304 + }, + { + "start": 1909.38, + "end": 1910.9, + "probability": 0.9439 + }, + { + "start": 1911.7, + "end": 1913.06, + "probability": 0.3427 + }, + { + "start": 1914.64, + "end": 1921.02, + "probability": 0.9377 + }, + { + "start": 1921.86, + "end": 1925.98, + "probability": 0.9939 + }, + { + "start": 1928.75, + "end": 1932.48, + "probability": 0.9969 + }, + { + "start": 1933.5, + "end": 1934.82, + "probability": 0.6844 + }, + { + "start": 1935.02, + "end": 1937.88, + "probability": 0.9639 + }, + { + "start": 1938.7, + "end": 1943.52, + "probability": 0.7494 + }, + { + "start": 1944.44, + "end": 1950.36, + "probability": 0.9616 + }, + { + "start": 1950.52, + "end": 1951.02, + "probability": 0.5978 + }, + { + "start": 1951.28, + "end": 1953.8, + "probability": 0.9463 + }, + { + "start": 1954.52, + "end": 1958.04, + "probability": 0.9759 + }, + { + "start": 1958.04, + "end": 1961.18, + "probability": 0.9997 + }, + { + "start": 1962.36, + "end": 1965.14, + "probability": 0.9888 + }, + { + "start": 1965.32, + "end": 1968.32, + "probability": 0.9351 + }, + { + "start": 1969.0, + "end": 1974.58, + "probability": 0.3777 + }, + { + "start": 1975.44, + "end": 1980.94, + "probability": 0.9121 + }, + { + "start": 1981.12, + "end": 1983.91, + "probability": 0.8376 + }, + { + "start": 1984.38, + "end": 1988.0, + "probability": 0.9689 + }, + { + "start": 1989.74, + "end": 1993.32, + "probability": 0.9922 + }, + { + "start": 1994.68, + "end": 1997.18, + "probability": 0.9937 + }, + { + "start": 1997.2, + "end": 1999.88, + "probability": 0.8652 + }, + { + "start": 2000.76, + "end": 2005.82, + "probability": 0.9908 + }, + { + "start": 2006.58, + "end": 2008.74, + "probability": 0.993 + }, + { + "start": 2010.9, + "end": 2014.5, + "probability": 0.9653 + }, + { + "start": 2015.96, + "end": 2023.63, + "probability": 0.6187 + }, + { + "start": 2025.8, + "end": 2026.92, + "probability": 0.5999 + }, + { + "start": 2026.94, + "end": 2029.74, + "probability": 0.9945 + }, + { + "start": 2029.9, + "end": 2030.85, + "probability": 0.9116 + }, + { + "start": 2031.04, + "end": 2031.85, + "probability": 0.7764 + }, + { + "start": 2032.98, + "end": 2037.2, + "probability": 0.9854 + }, + { + "start": 2037.84, + "end": 2043.74, + "probability": 0.9591 + }, + { + "start": 2044.38, + "end": 2045.46, + "probability": 0.9027 + }, + { + "start": 2046.0, + "end": 2052.38, + "probability": 0.9951 + }, + { + "start": 2052.54, + "end": 2057.08, + "probability": 0.9646 + }, + { + "start": 2057.48, + "end": 2059.48, + "probability": 0.8706 + }, + { + "start": 2060.14, + "end": 2065.24, + "probability": 0.9922 + }, + { + "start": 2065.82, + "end": 2066.7, + "probability": 0.9424 + }, + { + "start": 2067.38, + "end": 2070.04, + "probability": 0.998 + }, + { + "start": 2070.92, + "end": 2072.18, + "probability": 0.9495 + }, + { + "start": 2072.96, + "end": 2074.44, + "probability": 0.8734 + }, + { + "start": 2075.58, + "end": 2078.06, + "probability": 0.5417 + }, + { + "start": 2078.64, + "end": 2080.48, + "probability": 0.9594 + }, + { + "start": 2080.62, + "end": 2081.42, + "probability": 0.9689 + }, + { + "start": 2081.48, + "end": 2082.36, + "probability": 0.9791 + }, + { + "start": 2082.56, + "end": 2083.2, + "probability": 0.9578 + }, + { + "start": 2083.28, + "end": 2085.48, + "probability": 0.9623 + }, + { + "start": 2086.22, + "end": 2087.68, + "probability": 0.8442 + }, + { + "start": 2088.5, + "end": 2096.86, + "probability": 0.9857 + }, + { + "start": 2097.18, + "end": 2099.84, + "probability": 0.9788 + }, + { + "start": 2100.54, + "end": 2104.56, + "probability": 0.717 + }, + { + "start": 2105.38, + "end": 2106.98, + "probability": 0.4185 + }, + { + "start": 2107.62, + "end": 2114.48, + "probability": 0.7795 + }, + { + "start": 2114.72, + "end": 2120.6, + "probability": 0.9346 + }, + { + "start": 2121.14, + "end": 2124.74, + "probability": 0.9951 + }, + { + "start": 2125.54, + "end": 2129.52, + "probability": 0.9941 + }, + { + "start": 2130.52, + "end": 2134.52, + "probability": 0.9927 + }, + { + "start": 2135.44, + "end": 2139.58, + "probability": 0.997 + }, + { + "start": 2139.58, + "end": 2145.32, + "probability": 0.794 + }, + { + "start": 2145.38, + "end": 2149.02, + "probability": 0.9448 + }, + { + "start": 2149.08, + "end": 2151.44, + "probability": 0.9124 + }, + { + "start": 2151.6, + "end": 2152.36, + "probability": 0.97 + }, + { + "start": 2152.4, + "end": 2153.52, + "probability": 0.5418 + }, + { + "start": 2153.98, + "end": 2155.12, + "probability": 0.8854 + }, + { + "start": 2155.24, + "end": 2158.84, + "probability": 0.9556 + }, + { + "start": 2158.92, + "end": 2159.94, + "probability": 0.9456 + }, + { + "start": 2160.58, + "end": 2165.38, + "probability": 0.9147 + }, + { + "start": 2165.94, + "end": 2167.22, + "probability": 0.8385 + }, + { + "start": 2168.7, + "end": 2178.08, + "probability": 0.9495 + }, + { + "start": 2179.06, + "end": 2184.42, + "probability": 0.8887 + }, + { + "start": 2184.94, + "end": 2185.9, + "probability": 0.4191 + }, + { + "start": 2185.98, + "end": 2188.3, + "probability": 0.9631 + }, + { + "start": 2188.42, + "end": 2192.96, + "probability": 0.992 + }, + { + "start": 2193.5, + "end": 2197.66, + "probability": 0.9979 + }, + { + "start": 2198.66, + "end": 2203.56, + "probability": 0.9914 + }, + { + "start": 2203.56, + "end": 2208.26, + "probability": 0.7242 + }, + { + "start": 2209.16, + "end": 2212.66, + "probability": 0.951 + }, + { + "start": 2213.26, + "end": 2217.0, + "probability": 0.9964 + }, + { + "start": 2217.64, + "end": 2218.74, + "probability": 0.9607 + }, + { + "start": 2218.9, + "end": 2219.24, + "probability": 0.7784 + }, + { + "start": 2219.32, + "end": 2221.98, + "probability": 0.9817 + }, + { + "start": 2222.06, + "end": 2226.44, + "probability": 0.8535 + }, + { + "start": 2227.48, + "end": 2228.22, + "probability": 0.9818 + }, + { + "start": 2228.9, + "end": 2230.48, + "probability": 0.8595 + }, + { + "start": 2230.68, + "end": 2232.58, + "probability": 0.9842 + }, + { + "start": 2233.18, + "end": 2235.92, + "probability": 0.9785 + }, + { + "start": 2236.64, + "end": 2239.32, + "probability": 0.9819 + }, + { + "start": 2240.0, + "end": 2240.98, + "probability": 0.8266 + }, + { + "start": 2241.38, + "end": 2242.1, + "probability": 0.6752 + }, + { + "start": 2242.32, + "end": 2243.76, + "probability": 0.526 + }, + { + "start": 2243.86, + "end": 2244.58, + "probability": 0.8652 + }, + { + "start": 2245.36, + "end": 2247.62, + "probability": 0.2112 + }, + { + "start": 2255.76, + "end": 2257.04, + "probability": 0.1583 + }, + { + "start": 2257.3, + "end": 2257.54, + "probability": 0.1157 + }, + { + "start": 2257.54, + "end": 2257.58, + "probability": 0.3187 + }, + { + "start": 2275.92, + "end": 2280.36, + "probability": 0.9781 + }, + { + "start": 2281.28, + "end": 2283.3, + "probability": 0.7018 + }, + { + "start": 2285.28, + "end": 2286.84, + "probability": 0.9534 + }, + { + "start": 2287.04, + "end": 2290.34, + "probability": 0.9808 + }, + { + "start": 2290.68, + "end": 2294.26, + "probability": 0.9954 + }, + { + "start": 2294.84, + "end": 2295.36, + "probability": 0.8975 + }, + { + "start": 2295.44, + "end": 2296.2, + "probability": 0.4586 + }, + { + "start": 2296.24, + "end": 2301.24, + "probability": 0.9766 + }, + { + "start": 2301.8, + "end": 2305.84, + "probability": 0.9922 + }, + { + "start": 2306.76, + "end": 2307.66, + "probability": 0.8105 + }, + { + "start": 2307.74, + "end": 2308.08, + "probability": 0.9221 + }, + { + "start": 2308.1, + "end": 2311.48, + "probability": 0.998 + }, + { + "start": 2311.62, + "end": 2313.98, + "probability": 0.91 + }, + { + "start": 2315.22, + "end": 2317.22, + "probability": 0.9824 + }, + { + "start": 2318.56, + "end": 2320.72, + "probability": 0.6075 + }, + { + "start": 2320.8, + "end": 2322.38, + "probability": 0.7351 + }, + { + "start": 2322.56, + "end": 2324.42, + "probability": 0.701 + }, + { + "start": 2324.72, + "end": 2325.56, + "probability": 0.8139 + }, + { + "start": 2325.9, + "end": 2330.84, + "probability": 0.8882 + }, + { + "start": 2331.26, + "end": 2335.54, + "probability": 0.8953 + }, + { + "start": 2335.7, + "end": 2339.38, + "probability": 0.9789 + }, + { + "start": 2339.38, + "end": 2343.0, + "probability": 0.9868 + }, + { + "start": 2343.56, + "end": 2347.6, + "probability": 0.8092 + }, + { + "start": 2347.76, + "end": 2349.0, + "probability": 0.4352 + }, + { + "start": 2349.46, + "end": 2353.16, + "probability": 0.963 + }, + { + "start": 2353.78, + "end": 2358.12, + "probability": 0.9639 + }, + { + "start": 2359.04, + "end": 2359.8, + "probability": 0.9148 + }, + { + "start": 2359.96, + "end": 2362.16, + "probability": 0.7523 + }, + { + "start": 2362.34, + "end": 2362.76, + "probability": 0.6098 + }, + { + "start": 2362.9, + "end": 2363.54, + "probability": 0.8071 + }, + { + "start": 2364.06, + "end": 2364.44, + "probability": 0.701 + }, + { + "start": 2364.52, + "end": 2365.28, + "probability": 0.6889 + }, + { + "start": 2365.36, + "end": 2366.66, + "probability": 0.9062 + }, + { + "start": 2367.02, + "end": 2368.68, + "probability": 0.9194 + }, + { + "start": 2368.88, + "end": 2370.76, + "probability": 0.8523 + }, + { + "start": 2371.22, + "end": 2373.04, + "probability": 0.8725 + }, + { + "start": 2373.28, + "end": 2374.04, + "probability": 0.9399 + }, + { + "start": 2374.2, + "end": 2375.2, + "probability": 0.957 + }, + { + "start": 2375.26, + "end": 2375.82, + "probability": 0.8607 + }, + { + "start": 2376.22, + "end": 2380.98, + "probability": 0.9934 + }, + { + "start": 2381.44, + "end": 2384.26, + "probability": 0.9446 + }, + { + "start": 2384.26, + "end": 2385.66, + "probability": 0.9693 + }, + { + "start": 2387.76, + "end": 2390.48, + "probability": 0.9846 + }, + { + "start": 2391.24, + "end": 2395.4, + "probability": 0.9687 + }, + { + "start": 2395.48, + "end": 2396.66, + "probability": 0.615 + }, + { + "start": 2397.06, + "end": 2400.1, + "probability": 0.9827 + }, + { + "start": 2400.22, + "end": 2401.14, + "probability": 0.9479 + }, + { + "start": 2401.64, + "end": 2403.66, + "probability": 0.9783 + }, + { + "start": 2405.04, + "end": 2406.66, + "probability": 0.964 + }, + { + "start": 2406.88, + "end": 2408.74, + "probability": 0.9746 + }, + { + "start": 2408.74, + "end": 2412.22, + "probability": 0.966 + }, + { + "start": 2412.46, + "end": 2412.68, + "probability": 0.2599 + }, + { + "start": 2412.74, + "end": 2413.9, + "probability": 0.967 + }, + { + "start": 2414.62, + "end": 2416.34, + "probability": 0.7814 + }, + { + "start": 2416.48, + "end": 2422.04, + "probability": 0.9907 + }, + { + "start": 2422.56, + "end": 2427.28, + "probability": 0.9966 + }, + { + "start": 2427.78, + "end": 2430.36, + "probability": 0.7643 + }, + { + "start": 2430.78, + "end": 2436.44, + "probability": 0.9973 + }, + { + "start": 2437.46, + "end": 2437.7, + "probability": 0.5288 + }, + { + "start": 2437.88, + "end": 2438.5, + "probability": 0.8667 + }, + { + "start": 2438.66, + "end": 2441.0, + "probability": 0.9802 + }, + { + "start": 2441.14, + "end": 2443.02, + "probability": 0.8379 + }, + { + "start": 2443.42, + "end": 2447.3, + "probability": 0.9907 + }, + { + "start": 2447.86, + "end": 2450.02, + "probability": 0.6999 + }, + { + "start": 2450.6, + "end": 2453.72, + "probability": 0.9792 + }, + { + "start": 2453.8, + "end": 2455.04, + "probability": 0.7892 + }, + { + "start": 2455.56, + "end": 2457.82, + "probability": 0.9658 + }, + { + "start": 2458.18, + "end": 2459.58, + "probability": 0.7484 + }, + { + "start": 2460.32, + "end": 2463.5, + "probability": 0.9077 + }, + { + "start": 2463.58, + "end": 2465.02, + "probability": 0.8489 + }, + { + "start": 2465.36, + "end": 2470.76, + "probability": 0.862 + }, + { + "start": 2471.24, + "end": 2472.56, + "probability": 0.6779 + }, + { + "start": 2473.22, + "end": 2473.84, + "probability": 0.8801 + }, + { + "start": 2473.92, + "end": 2480.34, + "probability": 0.8577 + }, + { + "start": 2480.34, + "end": 2485.16, + "probability": 0.9902 + }, + { + "start": 2486.78, + "end": 2491.3, + "probability": 0.8438 + }, + { + "start": 2491.74, + "end": 2493.56, + "probability": 0.9966 + }, + { + "start": 2494.64, + "end": 2497.76, + "probability": 0.9968 + }, + { + "start": 2498.2, + "end": 2500.6, + "probability": 0.9532 + }, + { + "start": 2500.66, + "end": 2502.82, + "probability": 0.966 + }, + { + "start": 2503.38, + "end": 2507.1, + "probability": 0.9933 + }, + { + "start": 2507.46, + "end": 2507.94, + "probability": 0.3148 + }, + { + "start": 2508.18, + "end": 2512.62, + "probability": 0.682 + }, + { + "start": 2512.9, + "end": 2513.9, + "probability": 0.0942 + }, + { + "start": 2514.66, + "end": 2515.38, + "probability": 0.7296 + }, + { + "start": 2515.52, + "end": 2519.18, + "probability": 0.9644 + }, + { + "start": 2519.57, + "end": 2524.16, + "probability": 0.9727 + }, + { + "start": 2524.28, + "end": 2524.76, + "probability": 0.6469 + }, + { + "start": 2524.88, + "end": 2528.84, + "probability": 0.6284 + }, + { + "start": 2528.98, + "end": 2529.86, + "probability": 0.5887 + }, + { + "start": 2531.0, + "end": 2535.98, + "probability": 0.9053 + }, + { + "start": 2536.18, + "end": 2540.24, + "probability": 0.8703 + }, + { + "start": 2540.7, + "end": 2542.12, + "probability": 0.4131 + }, + { + "start": 2542.42, + "end": 2542.96, + "probability": 0.9033 + }, + { + "start": 2543.14, + "end": 2544.08, + "probability": 0.8933 + }, + { + "start": 2544.24, + "end": 2547.74, + "probability": 0.99 + }, + { + "start": 2547.76, + "end": 2551.8, + "probability": 0.9531 + }, + { + "start": 2552.2, + "end": 2553.44, + "probability": 0.8899 + }, + { + "start": 2553.56, + "end": 2553.8, + "probability": 0.916 + }, + { + "start": 2554.34, + "end": 2554.92, + "probability": 0.8123 + }, + { + "start": 2555.0, + "end": 2560.25, + "probability": 0.9967 + }, + { + "start": 2560.84, + "end": 2562.22, + "probability": 0.9771 + }, + { + "start": 2562.42, + "end": 2565.12, + "probability": 0.67 + }, + { + "start": 2565.82, + "end": 2568.4, + "probability": 0.9737 + }, + { + "start": 2568.66, + "end": 2571.52, + "probability": 0.9929 + }, + { + "start": 2572.02, + "end": 2572.04, + "probability": 0.5757 + }, + { + "start": 2572.6, + "end": 2573.16, + "probability": 0.8943 + }, + { + "start": 2573.58, + "end": 2580.56, + "probability": 0.9592 + }, + { + "start": 2582.34, + "end": 2583.32, + "probability": 0.5332 + }, + { + "start": 2584.2, + "end": 2584.58, + "probability": 0.1248 + }, + { + "start": 2584.58, + "end": 2587.9, + "probability": 0.738 + }, + { + "start": 2588.78, + "end": 2589.82, + "probability": 0.5424 + }, + { + "start": 2589.94, + "end": 2591.08, + "probability": 0.9425 + }, + { + "start": 2591.48, + "end": 2592.24, + "probability": 0.6902 + }, + { + "start": 2592.42, + "end": 2592.84, + "probability": 0.8414 + }, + { + "start": 2592.94, + "end": 2594.3, + "probability": 0.9781 + }, + { + "start": 2594.98, + "end": 2599.18, + "probability": 0.9487 + }, + { + "start": 2599.18, + "end": 2604.92, + "probability": 0.9683 + }, + { + "start": 2605.04, + "end": 2608.3, + "probability": 0.8066 + }, + { + "start": 2608.42, + "end": 2608.94, + "probability": 0.8724 + }, + { + "start": 2609.18, + "end": 2609.4, + "probability": 0.7548 + }, + { + "start": 2609.92, + "end": 2614.98, + "probability": 0.9371 + }, + { + "start": 2614.98, + "end": 2619.04, + "probability": 0.9971 + }, + { + "start": 2619.7, + "end": 2620.22, + "probability": 0.7935 + }, + { + "start": 2620.84, + "end": 2625.58, + "probability": 0.9867 + }, + { + "start": 2625.86, + "end": 2630.54, + "probability": 0.9974 + }, + { + "start": 2630.66, + "end": 2631.38, + "probability": 0.8645 + }, + { + "start": 2631.86, + "end": 2637.42, + "probability": 0.9865 + }, + { + "start": 2637.96, + "end": 2642.28, + "probability": 0.9645 + }, + { + "start": 2642.7, + "end": 2643.84, + "probability": 0.561 + }, + { + "start": 2644.24, + "end": 2645.46, + "probability": 0.9905 + }, + { + "start": 2646.34, + "end": 2647.06, + "probability": 0.5679 + }, + { + "start": 2647.14, + "end": 2647.5, + "probability": 0.5037 + }, + { + "start": 2647.56, + "end": 2649.8, + "probability": 0.9788 + }, + { + "start": 2650.12, + "end": 2653.17, + "probability": 0.9906 + }, + { + "start": 2654.1, + "end": 2654.3, + "probability": 0.4495 + }, + { + "start": 2654.46, + "end": 2657.96, + "probability": 0.8911 + }, + { + "start": 2658.2, + "end": 2658.58, + "probability": 0.4019 + }, + { + "start": 2659.28, + "end": 2660.22, + "probability": 0.1613 + }, + { + "start": 2660.58, + "end": 2662.26, + "probability": 0.7842 + }, + { + "start": 2662.34, + "end": 2662.86, + "probability": 0.1359 + }, + { + "start": 2663.66, + "end": 2668.52, + "probability": 0.1312 + }, + { + "start": 2668.68, + "end": 2669.12, + "probability": 0.7905 + }, + { + "start": 2669.22, + "end": 2672.68, + "probability": 0.9656 + }, + { + "start": 2673.1, + "end": 2673.74, + "probability": 0.8573 + }, + { + "start": 2673.86, + "end": 2675.32, + "probability": 0.855 + }, + { + "start": 2675.42, + "end": 2676.32, + "probability": 0.8239 + }, + { + "start": 2676.5, + "end": 2678.98, + "probability": 0.8802 + }, + { + "start": 2679.46, + "end": 2681.84, + "probability": 0.9863 + }, + { + "start": 2682.0, + "end": 2684.38, + "probability": 0.5435 + }, + { + "start": 2684.5, + "end": 2685.04, + "probability": 0.9438 + }, + { + "start": 2685.7, + "end": 2688.62, + "probability": 0.8629 + }, + { + "start": 2688.76, + "end": 2689.24, + "probability": 0.7449 + }, + { + "start": 2689.5, + "end": 2689.98, + "probability": 0.4989 + }, + { + "start": 2690.0, + "end": 2692.92, + "probability": 0.8943 + }, + { + "start": 2710.06, + "end": 2712.12, + "probability": 0.6448 + }, + { + "start": 2713.0, + "end": 2713.22, + "probability": 0.7032 + }, + { + "start": 2726.46, + "end": 2731.42, + "probability": 0.7139 + }, + { + "start": 2732.64, + "end": 2736.44, + "probability": 0.863 + }, + { + "start": 2737.82, + "end": 2740.28, + "probability": 0.9962 + }, + { + "start": 2740.61, + "end": 2744.46, + "probability": 0.9971 + }, + { + "start": 2746.0, + "end": 2749.49, + "probability": 0.9785 + }, + { + "start": 2750.64, + "end": 2753.04, + "probability": 0.938 + }, + { + "start": 2754.78, + "end": 2756.28, + "probability": 0.9233 + }, + { + "start": 2757.28, + "end": 2759.48, + "probability": 0.8999 + }, + { + "start": 2760.32, + "end": 2762.74, + "probability": 0.9927 + }, + { + "start": 2763.72, + "end": 2769.0, + "probability": 0.9781 + }, + { + "start": 2769.0, + "end": 2772.82, + "probability": 0.8532 + }, + { + "start": 2773.62, + "end": 2776.12, + "probability": 0.9837 + }, + { + "start": 2776.18, + "end": 2777.2, + "probability": 0.729 + }, + { + "start": 2777.58, + "end": 2778.56, + "probability": 0.9614 + }, + { + "start": 2778.66, + "end": 2779.84, + "probability": 0.9854 + }, + { + "start": 2780.62, + "end": 2782.07, + "probability": 0.7201 + }, + { + "start": 2784.31, + "end": 2787.02, + "probability": 0.9967 + }, + { + "start": 2787.56, + "end": 2789.1, + "probability": 0.9812 + }, + { + "start": 2789.4, + "end": 2789.52, + "probability": 0.3988 + }, + { + "start": 2790.48, + "end": 2793.66, + "probability": 0.9971 + }, + { + "start": 2795.06, + "end": 2799.7, + "probability": 0.8759 + }, + { + "start": 2800.92, + "end": 2801.82, + "probability": 0.9943 + }, + { + "start": 2802.52, + "end": 2803.44, + "probability": 0.7545 + }, + { + "start": 2806.44, + "end": 2808.92, + "probability": 0.9941 + }, + { + "start": 2810.12, + "end": 2811.12, + "probability": 0.9066 + }, + { + "start": 2812.64, + "end": 2817.06, + "probability": 0.9946 + }, + { + "start": 2817.32, + "end": 2818.37, + "probability": 0.8867 + }, + { + "start": 2819.44, + "end": 2824.42, + "probability": 0.9917 + }, + { + "start": 2824.96, + "end": 2827.88, + "probability": 0.9204 + }, + { + "start": 2829.32, + "end": 2832.08, + "probability": 0.9976 + }, + { + "start": 2832.14, + "end": 2833.3, + "probability": 0.946 + }, + { + "start": 2833.86, + "end": 2837.2, + "probability": 0.8849 + }, + { + "start": 2837.62, + "end": 2838.76, + "probability": 0.9912 + }, + { + "start": 2839.38, + "end": 2848.8, + "probability": 0.9854 + }, + { + "start": 2849.18, + "end": 2850.44, + "probability": 0.9988 + }, + { + "start": 2851.1, + "end": 2855.32, + "probability": 0.9989 + }, + { + "start": 2855.32, + "end": 2859.08, + "probability": 0.9533 + }, + { + "start": 2859.64, + "end": 2863.88, + "probability": 0.9606 + }, + { + "start": 2865.36, + "end": 2866.84, + "probability": 0.9969 + }, + { + "start": 2867.14, + "end": 2868.64, + "probability": 0.7793 + }, + { + "start": 2868.98, + "end": 2870.68, + "probability": 0.9573 + }, + { + "start": 2870.84, + "end": 2874.24, + "probability": 0.9762 + }, + { + "start": 2874.78, + "end": 2881.22, + "probability": 0.8375 + }, + { + "start": 2881.78, + "end": 2882.84, + "probability": 0.5481 + }, + { + "start": 2883.22, + "end": 2887.46, + "probability": 0.9968 + }, + { + "start": 2888.06, + "end": 2888.92, + "probability": 0.7381 + }, + { + "start": 2889.4, + "end": 2893.1, + "probability": 0.9885 + }, + { + "start": 2893.76, + "end": 2895.98, + "probability": 0.7725 + }, + { + "start": 2897.0, + "end": 2898.36, + "probability": 0.9656 + }, + { + "start": 2899.56, + "end": 2902.76, + "probability": 0.9946 + }, + { + "start": 2903.46, + "end": 2904.64, + "probability": 0.986 + }, + { + "start": 2904.86, + "end": 2906.28, + "probability": 0.9619 + }, + { + "start": 2907.22, + "end": 2908.16, + "probability": 0.9757 + }, + { + "start": 2909.52, + "end": 2910.68, + "probability": 0.9814 + }, + { + "start": 2910.74, + "end": 2912.88, + "probability": 0.8026 + }, + { + "start": 2913.26, + "end": 2914.6, + "probability": 0.7048 + }, + { + "start": 2914.6, + "end": 2916.74, + "probability": 0.4605 + }, + { + "start": 2916.9, + "end": 2918.84, + "probability": 0.9479 + }, + { + "start": 2919.68, + "end": 2921.42, + "probability": 0.9795 + }, + { + "start": 2921.56, + "end": 2921.98, + "probability": 0.9736 + }, + { + "start": 2922.12, + "end": 2924.96, + "probability": 0.9908 + }, + { + "start": 2925.46, + "end": 2933.08, + "probability": 0.9965 + }, + { + "start": 2933.68, + "end": 2934.32, + "probability": 0.9513 + }, + { + "start": 2934.72, + "end": 2937.62, + "probability": 0.9192 + }, + { + "start": 2938.0, + "end": 2942.42, + "probability": 0.998 + }, + { + "start": 2942.43, + "end": 2947.1, + "probability": 0.9832 + }, + { + "start": 2948.94, + "end": 2949.89, + "probability": 0.9153 + }, + { + "start": 2950.4, + "end": 2952.06, + "probability": 0.991 + }, + { + "start": 2952.58, + "end": 2953.83, + "probability": 0.9517 + }, + { + "start": 2954.02, + "end": 2956.06, + "probability": 0.951 + }, + { + "start": 2956.66, + "end": 2957.8, + "probability": 0.7593 + }, + { + "start": 2958.14, + "end": 2960.06, + "probability": 0.8314 + }, + { + "start": 2960.14, + "end": 2960.62, + "probability": 0.6813 + }, + { + "start": 2960.96, + "end": 2962.7, + "probability": 0.9076 + }, + { + "start": 2962.94, + "end": 2965.76, + "probability": 0.9917 + }, + { + "start": 2966.28, + "end": 2969.36, + "probability": 0.9913 + }, + { + "start": 2971.56, + "end": 2972.36, + "probability": 0.6476 + }, + { + "start": 2972.8, + "end": 2974.82, + "probability": 0.7397 + }, + { + "start": 2975.44, + "end": 2978.22, + "probability": 0.9304 + }, + { + "start": 2981.78, + "end": 2982.98, + "probability": 0.7556 + }, + { + "start": 2984.5, + "end": 2985.04, + "probability": 0.7644 + }, + { + "start": 3011.57, + "end": 3013.58, + "probability": 0.1955 + }, + { + "start": 3014.0, + "end": 3017.42, + "probability": 0.917 + }, + { + "start": 3024.44, + "end": 3027.24, + "probability": 0.0707 + }, + { + "start": 3030.46, + "end": 3032.06, + "probability": 0.1012 + }, + { + "start": 3037.46, + "end": 3041.48, + "probability": 0.0827 + }, + { + "start": 3044.76, + "end": 3045.58, + "probability": 0.033 + }, + { + "start": 3045.6, + "end": 3046.5, + "probability": 0.026 + }, + { + "start": 3046.72, + "end": 3048.66, + "probability": 0.0107 + }, + { + "start": 3050.03, + "end": 3052.69, + "probability": 0.0565 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.0, + "end": 3091.0, + "probability": 0.0 + }, + { + "start": 3091.16, + "end": 3091.16, + "probability": 0.0119 + }, + { + "start": 3091.16, + "end": 3091.16, + "probability": 0.0341 + }, + { + "start": 3091.16, + "end": 3091.4, + "probability": 0.0575 + }, + { + "start": 3091.4, + "end": 3091.4, + "probability": 0.0348 + }, + { + "start": 3091.4, + "end": 3091.98, + "probability": 0.3217 + }, + { + "start": 3093.18, + "end": 3095.74, + "probability": 0.7534 + }, + { + "start": 3096.76, + "end": 3099.1, + "probability": 0.9935 + }, + { + "start": 3099.76, + "end": 3100.62, + "probability": 0.9614 + }, + { + "start": 3101.44, + "end": 3106.62, + "probability": 0.9979 + }, + { + "start": 3107.46, + "end": 3109.68, + "probability": 0.8997 + }, + { + "start": 3110.72, + "end": 3116.04, + "probability": 0.9902 + }, + { + "start": 3116.56, + "end": 3117.78, + "probability": 0.9691 + }, + { + "start": 3118.94, + "end": 3118.94, + "probability": 0.5071 + }, + { + "start": 3118.94, + "end": 3119.64, + "probability": 0.782 + }, + { + "start": 3120.08, + "end": 3121.2, + "probability": 0.9849 + }, + { + "start": 3121.3, + "end": 3122.04, + "probability": 0.8891 + }, + { + "start": 3122.58, + "end": 3127.16, + "probability": 0.995 + }, + { + "start": 3127.62, + "end": 3131.94, + "probability": 0.9048 + }, + { + "start": 3133.08, + "end": 3134.2, + "probability": 0.922 + }, + { + "start": 3134.72, + "end": 3137.22, + "probability": 0.9958 + }, + { + "start": 3138.54, + "end": 3140.5, + "probability": 0.6461 + }, + { + "start": 3140.6, + "end": 3143.42, + "probability": 0.9215 + }, + { + "start": 3143.96, + "end": 3146.08, + "probability": 0.7437 + }, + { + "start": 3146.78, + "end": 3147.42, + "probability": 0.5803 + }, + { + "start": 3147.66, + "end": 3152.12, + "probability": 0.9834 + }, + { + "start": 3152.72, + "end": 3153.62, + "probability": 0.8833 + }, + { + "start": 3153.66, + "end": 3154.48, + "probability": 0.7652 + }, + { + "start": 3154.94, + "end": 3156.28, + "probability": 0.9423 + }, + { + "start": 3156.92, + "end": 3161.22, + "probability": 0.9641 + }, + { + "start": 3161.96, + "end": 3163.66, + "probability": 0.9752 + }, + { + "start": 3163.82, + "end": 3164.24, + "probability": 0.6033 + }, + { + "start": 3164.3, + "end": 3165.02, + "probability": 0.9881 + }, + { + "start": 3165.48, + "end": 3166.7, + "probability": 0.9907 + }, + { + "start": 3167.46, + "end": 3169.36, + "probability": 0.7019 + }, + { + "start": 3169.96, + "end": 3173.34, + "probability": 0.5093 + }, + { + "start": 3174.04, + "end": 3175.26, + "probability": 0.6355 + }, + { + "start": 3176.48, + "end": 3179.14, + "probability": 0.9812 + }, + { + "start": 3180.0, + "end": 3181.7, + "probability": 0.8743 + }, + { + "start": 3182.18, + "end": 3183.4, + "probability": 0.9375 + }, + { + "start": 3183.72, + "end": 3187.52, + "probability": 0.9435 + }, + { + "start": 3187.62, + "end": 3191.3, + "probability": 0.9972 + }, + { + "start": 3192.24, + "end": 3197.75, + "probability": 0.9976 + }, + { + "start": 3199.22, + "end": 3201.26, + "probability": 0.8422 + }, + { + "start": 3202.38, + "end": 3205.7, + "probability": 0.9738 + }, + { + "start": 3206.42, + "end": 3207.2, + "probability": 0.9945 + }, + { + "start": 3208.08, + "end": 3209.2, + "probability": 0.8037 + }, + { + "start": 3210.0, + "end": 3210.34, + "probability": 0.4036 + }, + { + "start": 3210.56, + "end": 3216.14, + "probability": 0.9863 + }, + { + "start": 3216.28, + "end": 3217.32, + "probability": 0.9953 + }, + { + "start": 3218.44, + "end": 3219.32, + "probability": 0.9722 + }, + { + "start": 3219.66, + "end": 3222.22, + "probability": 0.969 + }, + { + "start": 3222.38, + "end": 3223.4, + "probability": 0.9875 + }, + { + "start": 3223.76, + "end": 3226.62, + "probability": 0.9768 + }, + { + "start": 3227.4, + "end": 3227.56, + "probability": 0.2534 + }, + { + "start": 3227.64, + "end": 3229.46, + "probability": 0.875 + }, + { + "start": 3229.7, + "end": 3231.3, + "probability": 0.9774 + }, + { + "start": 3231.36, + "end": 3232.88, + "probability": 0.894 + }, + { + "start": 3233.38, + "end": 3234.9, + "probability": 0.9832 + }, + { + "start": 3235.42, + "end": 3237.8, + "probability": 0.9736 + }, + { + "start": 3238.6, + "end": 3239.62, + "probability": 0.7787 + }, + { + "start": 3240.14, + "end": 3243.6, + "probability": 0.999 + }, + { + "start": 3243.7, + "end": 3245.74, + "probability": 0.9926 + }, + { + "start": 3246.88, + "end": 3248.28, + "probability": 0.9235 + }, + { + "start": 3249.08, + "end": 3254.2, + "probability": 0.9897 + }, + { + "start": 3255.36, + "end": 3257.58, + "probability": 0.9762 + }, + { + "start": 3259.04, + "end": 3260.08, + "probability": 0.6944 + }, + { + "start": 3261.04, + "end": 3262.3, + "probability": 0.9979 + }, + { + "start": 3262.82, + "end": 3266.04, + "probability": 0.9911 + }, + { + "start": 3266.98, + "end": 3270.02, + "probability": 0.985 + }, + { + "start": 3270.22, + "end": 3272.44, + "probability": 0.9512 + }, + { + "start": 3273.36, + "end": 3276.34, + "probability": 0.9863 + }, + { + "start": 3276.94, + "end": 3278.58, + "probability": 0.9966 + }, + { + "start": 3279.08, + "end": 3283.42, + "probability": 0.9941 + }, + { + "start": 3284.52, + "end": 3287.08, + "probability": 0.9876 + }, + { + "start": 3287.82, + "end": 3288.26, + "probability": 0.7528 + }, + { + "start": 3288.34, + "end": 3292.1, + "probability": 0.9868 + }, + { + "start": 3292.1, + "end": 3297.06, + "probability": 0.9988 + }, + { + "start": 3297.64, + "end": 3305.24, + "probability": 0.967 + }, + { + "start": 3305.94, + "end": 3306.86, + "probability": 0.8881 + }, + { + "start": 3308.14, + "end": 3308.8, + "probability": 0.4883 + }, + { + "start": 3309.5, + "end": 3311.46, + "probability": 0.9517 + }, + { + "start": 3312.36, + "end": 3315.84, + "probability": 0.9951 + }, + { + "start": 3316.38, + "end": 3317.92, + "probability": 0.9922 + }, + { + "start": 3318.36, + "end": 3320.82, + "probability": 0.9937 + }, + { + "start": 3321.64, + "end": 3322.96, + "probability": 0.9956 + }, + { + "start": 3323.7, + "end": 3324.56, + "probability": 0.298 + }, + { + "start": 3325.52, + "end": 3329.2, + "probability": 0.9954 + }, + { + "start": 3329.82, + "end": 3332.36, + "probability": 0.9963 + }, + { + "start": 3332.36, + "end": 3335.12, + "probability": 0.996 + }, + { + "start": 3335.78, + "end": 3340.7, + "probability": 0.9919 + }, + { + "start": 3341.36, + "end": 3346.06, + "probability": 0.9916 + }, + { + "start": 3346.5, + "end": 3348.3, + "probability": 0.7574 + }, + { + "start": 3348.88, + "end": 3351.7, + "probability": 0.9883 + }, + { + "start": 3351.8, + "end": 3352.18, + "probability": 0.85 + }, + { + "start": 3352.58, + "end": 3352.78, + "probability": 0.6951 + }, + { + "start": 3353.94, + "end": 3353.96, + "probability": 0.2652 + }, + { + "start": 3353.96, + "end": 3355.4, + "probability": 0.6835 + }, + { + "start": 3356.32, + "end": 3356.64, + "probability": 0.4025 + }, + { + "start": 3357.54, + "end": 3357.84, + "probability": 0.5992 + }, + { + "start": 3357.84, + "end": 3360.12, + "probability": 0.8675 + }, + { + "start": 3360.32, + "end": 3364.58, + "probability": 0.8013 + }, + { + "start": 3364.6, + "end": 3366.18, + "probability": 0.9081 + }, + { + "start": 3366.86, + "end": 3369.32, + "probability": 0.0794 + }, + { + "start": 3393.58, + "end": 3395.96, + "probability": 0.7325 + }, + { + "start": 3396.78, + "end": 3398.4, + "probability": 0.8638 + }, + { + "start": 3398.54, + "end": 3401.28, + "probability": 0.8854 + }, + { + "start": 3401.38, + "end": 3402.22, + "probability": 0.911 + }, + { + "start": 3402.56, + "end": 3404.84, + "probability": 0.9634 + }, + { + "start": 3405.12, + "end": 3406.42, + "probability": 0.8438 + }, + { + "start": 3406.48, + "end": 3409.14, + "probability": 0.844 + }, + { + "start": 3409.92, + "end": 3412.76, + "probability": 0.8724 + }, + { + "start": 3413.14, + "end": 3415.88, + "probability": 0.7178 + }, + { + "start": 3416.34, + "end": 3417.16, + "probability": 0.9097 + }, + { + "start": 3417.24, + "end": 3419.46, + "probability": 0.8364 + }, + { + "start": 3419.76, + "end": 3423.94, + "probability": 0.7453 + }, + { + "start": 3424.34, + "end": 3427.14, + "probability": 0.9358 + }, + { + "start": 3430.32, + "end": 3434.72, + "probability": 0.8818 + }, + { + "start": 3434.84, + "end": 3437.72, + "probability": 0.8253 + }, + { + "start": 3438.64, + "end": 3439.44, + "probability": 0.7572 + }, + { + "start": 3440.16, + "end": 3444.78, + "probability": 0.9205 + }, + { + "start": 3445.32, + "end": 3447.4, + "probability": 0.9331 + }, + { + "start": 3447.78, + "end": 3451.04, + "probability": 0.973 + }, + { + "start": 3451.18, + "end": 3452.54, + "probability": 0.9176 + }, + { + "start": 3452.96, + "end": 3455.1, + "probability": 0.8559 + }, + { + "start": 3455.14, + "end": 3457.48, + "probability": 0.9678 + }, + { + "start": 3457.64, + "end": 3459.3, + "probability": 0.986 + }, + { + "start": 3459.46, + "end": 3465.84, + "probability": 0.7507 + }, + { + "start": 3466.02, + "end": 3467.62, + "probability": 0.9695 + }, + { + "start": 3468.04, + "end": 3470.58, + "probability": 0.9822 + }, + { + "start": 3471.1, + "end": 3474.1, + "probability": 0.9539 + }, + { + "start": 3474.54, + "end": 3479.72, + "probability": 0.9846 + }, + { + "start": 3479.76, + "end": 3482.48, + "probability": 0.9875 + }, + { + "start": 3482.92, + "end": 3487.72, + "probability": 0.7333 + }, + { + "start": 3487.78, + "end": 3491.14, + "probability": 0.9464 + }, + { + "start": 3491.48, + "end": 3498.52, + "probability": 0.9971 + }, + { + "start": 3498.96, + "end": 3503.84, + "probability": 0.7602 + }, + { + "start": 3503.9, + "end": 3508.28, + "probability": 0.9852 + }, + { + "start": 3508.64, + "end": 3509.04, + "probability": 0.6112 + }, + { + "start": 3509.1, + "end": 3509.62, + "probability": 0.9468 + }, + { + "start": 3509.92, + "end": 3513.92, + "probability": 0.9929 + }, + { + "start": 3514.02, + "end": 3515.86, + "probability": 0.7203 + }, + { + "start": 3516.08, + "end": 3518.08, + "probability": 0.9432 + }, + { + "start": 3518.26, + "end": 3519.54, + "probability": 0.8258 + }, + { + "start": 3519.94, + "end": 3520.74, + "probability": 0.8695 + }, + { + "start": 3520.98, + "end": 3523.7, + "probability": 0.9947 + }, + { + "start": 3523.82, + "end": 3524.44, + "probability": 0.8406 + }, + { + "start": 3524.78, + "end": 3527.22, + "probability": 0.9923 + }, + { + "start": 3527.3, + "end": 3527.54, + "probability": 0.9495 + }, + { + "start": 3528.18, + "end": 3529.76, + "probability": 0.7093 + }, + { + "start": 3530.46, + "end": 3531.24, + "probability": 0.3502 + }, + { + "start": 3531.32, + "end": 3533.52, + "probability": 0.9751 + }, + { + "start": 3533.8, + "end": 3537.06, + "probability": 0.9744 + }, + { + "start": 3537.4, + "end": 3538.06, + "probability": 0.8858 + }, + { + "start": 3538.26, + "end": 3541.34, + "probability": 0.7891 + }, + { + "start": 3541.72, + "end": 3541.92, + "probability": 0.2623 + }, + { + "start": 3541.92, + "end": 3543.14, + "probability": 0.8431 + }, + { + "start": 3543.22, + "end": 3545.02, + "probability": 0.7427 + }, + { + "start": 3545.76, + "end": 3549.16, + "probability": 0.9849 + }, + { + "start": 3549.66, + "end": 3553.0, + "probability": 0.8032 + }, + { + "start": 3553.1, + "end": 3554.12, + "probability": 0.704 + }, + { + "start": 3554.14, + "end": 3555.04, + "probability": 0.9823 + }, + { + "start": 3555.32, + "end": 3555.82, + "probability": 0.7248 + }, + { + "start": 3555.88, + "end": 3558.96, + "probability": 0.8504 + }, + { + "start": 3559.48, + "end": 3562.2, + "probability": 0.9884 + }, + { + "start": 3562.58, + "end": 3564.46, + "probability": 0.9421 + }, + { + "start": 3564.54, + "end": 3568.16, + "probability": 0.9584 + }, + { + "start": 3568.16, + "end": 3571.06, + "probability": 0.987 + }, + { + "start": 3571.28, + "end": 3571.74, + "probability": 0.7982 + }, + { + "start": 3572.14, + "end": 3574.16, + "probability": 0.8607 + }, + { + "start": 3574.64, + "end": 3575.64, + "probability": 0.5105 + }, + { + "start": 3576.56, + "end": 3579.54, + "probability": 0.9813 + }, + { + "start": 3579.92, + "end": 3580.2, + "probability": 0.4676 + }, + { + "start": 3598.14, + "end": 3598.26, + "probability": 0.2306 + }, + { + "start": 3598.26, + "end": 3599.03, + "probability": 0.526 + }, + { + "start": 3601.06, + "end": 3603.38, + "probability": 0.7565 + }, + { + "start": 3604.58, + "end": 3607.73, + "probability": 0.9884 + }, + { + "start": 3609.52, + "end": 3616.89, + "probability": 0.8747 + }, + { + "start": 3618.44, + "end": 3621.04, + "probability": 0.9942 + }, + { + "start": 3621.04, + "end": 3623.38, + "probability": 0.9938 + }, + { + "start": 3624.7, + "end": 3627.7, + "probability": 0.6246 + }, + { + "start": 3628.28, + "end": 3630.72, + "probability": 0.9124 + }, + { + "start": 3631.26, + "end": 3631.42, + "probability": 0.359 + }, + { + "start": 3631.74, + "end": 3633.82, + "probability": 0.1629 + }, + { + "start": 3633.88, + "end": 3635.04, + "probability": 0.6649 + }, + { + "start": 3636.04, + "end": 3637.38, + "probability": 0.0109 + }, + { + "start": 3638.18, + "end": 3638.62, + "probability": 0.848 + }, + { + "start": 3639.52, + "end": 3642.96, + "probability": 0.1345 + }, + { + "start": 3645.14, + "end": 3646.02, + "probability": 0.9917 + }, + { + "start": 3646.26, + "end": 3648.5, + "probability": 0.7859 + }, + { + "start": 3648.5, + "end": 3649.1, + "probability": 0.864 + }, + { + "start": 3649.36, + "end": 3652.3, + "probability": 0.0208 + }, + { + "start": 3653.07, + "end": 3662.28, + "probability": 0.9915 + }, + { + "start": 3663.76, + "end": 3666.4, + "probability": 0.9968 + }, + { + "start": 3667.0, + "end": 3668.26, + "probability": 0.9971 + }, + { + "start": 3669.36, + "end": 3670.98, + "probability": 0.7294 + }, + { + "start": 3671.24, + "end": 3673.12, + "probability": 0.9553 + }, + { + "start": 3674.63, + "end": 3677.65, + "probability": 0.9326 + }, + { + "start": 3678.62, + "end": 3681.38, + "probability": 0.9915 + }, + { + "start": 3681.38, + "end": 3683.34, + "probability": 0.9987 + }, + { + "start": 3683.34, + "end": 3683.88, + "probability": 0.8356 + }, + { + "start": 3684.16, + "end": 3685.12, + "probability": 0.9816 + }, + { + "start": 3686.28, + "end": 3693.02, + "probability": 0.8743 + }, + { + "start": 3693.18, + "end": 3699.44, + "probability": 0.8927 + }, + { + "start": 3700.2, + "end": 3702.15, + "probability": 0.9856 + }, + { + "start": 3702.94, + "end": 3706.0, + "probability": 0.6262 + }, + { + "start": 3706.08, + "end": 3709.56, + "probability": 0.9873 + }, + { + "start": 3710.56, + "end": 3712.82, + "probability": 0.8418 + }, + { + "start": 3713.4, + "end": 3719.28, + "probability": 0.9633 + }, + { + "start": 3721.9, + "end": 3725.64, + "probability": 0.9871 + }, + { + "start": 3725.78, + "end": 3729.06, + "probability": 0.8958 + }, + { + "start": 3730.0, + "end": 3735.4, + "probability": 0.9951 + }, + { + "start": 3735.6, + "end": 3741.78, + "probability": 0.9966 + }, + { + "start": 3742.38, + "end": 3745.32, + "probability": 0.9901 + }, + { + "start": 3745.4, + "end": 3747.22, + "probability": 0.999 + }, + { + "start": 3747.66, + "end": 3750.8, + "probability": 0.9923 + }, + { + "start": 3752.78, + "end": 3754.56, + "probability": 0.6746 + }, + { + "start": 3755.44, + "end": 3757.74, + "probability": 0.9601 + }, + { + "start": 3758.3, + "end": 3761.74, + "probability": 0.9919 + }, + { + "start": 3761.78, + "end": 3762.36, + "probability": 0.8076 + }, + { + "start": 3776.08, + "end": 3776.75, + "probability": 0.6253 + }, + { + "start": 3778.22, + "end": 3780.72, + "probability": 0.5459 + }, + { + "start": 3781.34, + "end": 3782.94, + "probability": 0.9881 + }, + { + "start": 3783.84, + "end": 3784.64, + "probability": 0.8211 + }, + { + "start": 3785.0, + "end": 3786.72, + "probability": 0.9825 + }, + { + "start": 3786.84, + "end": 3791.04, + "probability": 0.9922 + }, + { + "start": 3791.8, + "end": 3793.36, + "probability": 0.9175 + }, + { + "start": 3793.42, + "end": 3798.64, + "probability": 0.9969 + }, + { + "start": 3799.1, + "end": 3802.72, + "probability": 0.9674 + }, + { + "start": 3802.81, + "end": 3808.12, + "probability": 0.9993 + }, + { + "start": 3809.38, + "end": 3811.08, + "probability": 0.9982 + }, + { + "start": 3811.2, + "end": 3814.44, + "probability": 0.8601 + }, + { + "start": 3814.54, + "end": 3815.92, + "probability": 0.8931 + }, + { + "start": 3816.08, + "end": 3817.02, + "probability": 0.9622 + }, + { + "start": 3817.32, + "end": 3824.96, + "probability": 0.9882 + }, + { + "start": 3825.14, + "end": 3828.64, + "probability": 0.9948 + }, + { + "start": 3829.26, + "end": 3831.0, + "probability": 0.9312 + }, + { + "start": 3832.14, + "end": 3834.44, + "probability": 0.9971 + }, + { + "start": 3835.46, + "end": 3838.91, + "probability": 0.9377 + }, + { + "start": 3839.86, + "end": 3844.2, + "probability": 0.9317 + }, + { + "start": 3844.46, + "end": 3846.96, + "probability": 0.9434 + }, + { + "start": 3847.72, + "end": 3850.38, + "probability": 0.9863 + }, + { + "start": 3851.18, + "end": 3852.9, + "probability": 0.9732 + }, + { + "start": 3853.34, + "end": 3855.26, + "probability": 0.9868 + }, + { + "start": 3855.3, + "end": 3861.42, + "probability": 0.9961 + }, + { + "start": 3862.14, + "end": 3863.56, + "probability": 0.9979 + }, + { + "start": 3863.94, + "end": 3864.84, + "probability": 0.8647 + }, + { + "start": 3865.44, + "end": 3867.97, + "probability": 0.9876 + }, + { + "start": 3869.06, + "end": 3872.22, + "probability": 0.9593 + }, + { + "start": 3872.9, + "end": 3875.08, + "probability": 0.9916 + }, + { + "start": 3875.82, + "end": 3878.32, + "probability": 0.9912 + }, + { + "start": 3879.08, + "end": 3881.1, + "probability": 0.9674 + }, + { + "start": 3881.26, + "end": 3881.7, + "probability": 0.5157 + }, + { + "start": 3881.8, + "end": 3886.28, + "probability": 0.9072 + }, + { + "start": 3887.02, + "end": 3890.12, + "probability": 0.9775 + }, + { + "start": 3891.6, + "end": 3895.76, + "probability": 0.9985 + }, + { + "start": 3896.4, + "end": 3901.2, + "probability": 0.9891 + }, + { + "start": 3901.92, + "end": 3906.4, + "probability": 0.999 + }, + { + "start": 3906.96, + "end": 3907.54, + "probability": 0.9279 + }, + { + "start": 3908.3, + "end": 3911.92, + "probability": 0.9951 + }, + { + "start": 3912.54, + "end": 3917.36, + "probability": 0.9772 + }, + { + "start": 3918.06, + "end": 3923.12, + "probability": 0.7737 + }, + { + "start": 3924.98, + "end": 3927.42, + "probability": 0.8938 + }, + { + "start": 3927.56, + "end": 3929.34, + "probability": 0.9771 + }, + { + "start": 3929.44, + "end": 3930.86, + "probability": 0.9585 + }, + { + "start": 3931.44, + "end": 3933.94, + "probability": 0.9731 + }, + { + "start": 3934.0, + "end": 3937.2, + "probability": 0.8366 + }, + { + "start": 3937.78, + "end": 3940.44, + "probability": 0.9954 + }, + { + "start": 3940.79, + "end": 3943.32, + "probability": 0.7555 + }, + { + "start": 3943.82, + "end": 3948.32, + "probability": 0.7167 + }, + { + "start": 3948.82, + "end": 3949.95, + "probability": 0.9774 + }, + { + "start": 3950.66, + "end": 3951.98, + "probability": 0.9845 + }, + { + "start": 3952.16, + "end": 3956.22, + "probability": 0.9693 + }, + { + "start": 3956.3, + "end": 3956.52, + "probability": 0.8405 + }, + { + "start": 3958.94, + "end": 3960.34, + "probability": 0.5262 + }, + { + "start": 3960.97, + "end": 3964.02, + "probability": 0.9211 + }, + { + "start": 3964.1, + "end": 3965.64, + "probability": 0.8755 + }, + { + "start": 3966.52, + "end": 3969.42, + "probability": 0.8226 + }, + { + "start": 3970.46, + "end": 3973.06, + "probability": 0.9807 + }, + { + "start": 3974.76, + "end": 3977.52, + "probability": 0.6624 + }, + { + "start": 3977.52, + "end": 3978.4, + "probability": 0.68 + }, + { + "start": 3992.8, + "end": 3995.26, + "probability": 0.2383 + }, + { + "start": 3999.44, + "end": 3999.94, + "probability": 0.037 + }, + { + "start": 4000.58, + "end": 4001.78, + "probability": 0.0164 + }, + { + "start": 4002.9, + "end": 4003.02, + "probability": 0.2224 + }, + { + "start": 4003.02, + "end": 4005.82, + "probability": 0.4999 + }, + { + "start": 4005.9, + "end": 4008.76, + "probability": 0.9226 + }, + { + "start": 4009.66, + "end": 4010.72, + "probability": 0.5095 + }, + { + "start": 4011.0, + "end": 4011.94, + "probability": 0.2063 + }, + { + "start": 4018.3, + "end": 4018.98, + "probability": 0.2521 + }, + { + "start": 4019.16, + "end": 4025.0, + "probability": 0.9115 + }, + { + "start": 4025.74, + "end": 4026.6, + "probability": 0.6623 + }, + { + "start": 4028.25, + "end": 4030.34, + "probability": 0.2328 + }, + { + "start": 4034.38, + "end": 4039.63, + "probability": 0.3031 + }, + { + "start": 4041.12, + "end": 4043.28, + "probability": 0.4117 + }, + { + "start": 4043.32, + "end": 4045.08, + "probability": 0.2884 + }, + { + "start": 4045.24, + "end": 4046.86, + "probability": 0.1993 + }, + { + "start": 4047.5, + "end": 4051.78, + "probability": 0.1669 + }, + { + "start": 4052.04, + "end": 4052.84, + "probability": 0.609 + }, + { + "start": 4058.16, + "end": 4059.06, + "probability": 0.2644 + }, + { + "start": 4059.12, + "end": 4059.78, + "probability": 0.2008 + }, + { + "start": 4061.12, + "end": 4062.2, + "probability": 0.4004 + }, + { + "start": 4064.53, + "end": 4069.96, + "probability": 0.1473 + }, + { + "start": 4069.96, + "end": 4070.42, + "probability": 0.1238 + }, + { + "start": 4070.42, + "end": 4074.42, + "probability": 0.497 + }, + { + "start": 4074.52, + "end": 4075.78, + "probability": 0.4073 + }, + { + "start": 4075.8, + "end": 4076.64, + "probability": 0.6646 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4210.0, + "probability": 0.0 + }, + { + "start": 4210.0, + "end": 4211.0, + "probability": 0.1848 + }, + { + "start": 4211.96, + "end": 4213.78, + "probability": 0.9811 + }, + { + "start": 4216.8, + "end": 4219.32, + "probability": 0.9824 + }, + { + "start": 4220.52, + "end": 4225.58, + "probability": 0.9995 + }, + { + "start": 4227.38, + "end": 4228.76, + "probability": 0.7159 + }, + { + "start": 4230.24, + "end": 4231.76, + "probability": 0.9866 + }, + { + "start": 4233.96, + "end": 4234.84, + "probability": 0.8496 + }, + { + "start": 4236.54, + "end": 4237.7, + "probability": 0.7651 + }, + { + "start": 4239.0, + "end": 4240.72, + "probability": 0.9984 + }, + { + "start": 4242.7, + "end": 4243.88, + "probability": 0.9412 + }, + { + "start": 4245.42, + "end": 4247.04, + "probability": 0.632 + }, + { + "start": 4247.46, + "end": 4250.18, + "probability": 0.9095 + }, + { + "start": 4252.28, + "end": 4253.7, + "probability": 0.8082 + }, + { + "start": 4256.14, + "end": 4258.84, + "probability": 0.9379 + }, + { + "start": 4261.44, + "end": 4263.26, + "probability": 0.981 + }, + { + "start": 4264.26, + "end": 4268.14, + "probability": 0.9834 + }, + { + "start": 4268.8, + "end": 4271.98, + "probability": 0.9419 + }, + { + "start": 4272.72, + "end": 4274.38, + "probability": 0.8123 + }, + { + "start": 4275.56, + "end": 4276.82, + "probability": 0.9967 + }, + { + "start": 4278.4, + "end": 4282.56, + "probability": 0.9965 + }, + { + "start": 4284.16, + "end": 4289.06, + "probability": 0.9988 + }, + { + "start": 4289.98, + "end": 4292.78, + "probability": 0.6405 + }, + { + "start": 4296.68, + "end": 4300.76, + "probability": 0.7889 + }, + { + "start": 4301.06, + "end": 4302.82, + "probability": 0.9116 + }, + { + "start": 4303.66, + "end": 4304.84, + "probability": 0.6387 + }, + { + "start": 4306.24, + "end": 4308.62, + "probability": 0.9806 + }, + { + "start": 4308.72, + "end": 4310.08, + "probability": 0.904 + }, + { + "start": 4310.72, + "end": 4312.06, + "probability": 0.9604 + }, + { + "start": 4313.78, + "end": 4316.02, + "probability": 0.9585 + }, + { + "start": 4317.1, + "end": 4320.1, + "probability": 0.774 + }, + { + "start": 4321.22, + "end": 4323.26, + "probability": 0.7768 + }, + { + "start": 4324.78, + "end": 4326.12, + "probability": 0.8617 + }, + { + "start": 4327.36, + "end": 4330.69, + "probability": 0.9961 + }, + { + "start": 4331.38, + "end": 4332.36, + "probability": 0.8735 + }, + { + "start": 4333.34, + "end": 4334.7, + "probability": 0.9776 + }, + { + "start": 4335.84, + "end": 4339.06, + "probability": 0.9958 + }, + { + "start": 4341.58, + "end": 4345.12, + "probability": 0.9955 + }, + { + "start": 4346.32, + "end": 4348.34, + "probability": 0.9956 + }, + { + "start": 4350.56, + "end": 4351.84, + "probability": 0.8161 + }, + { + "start": 4353.98, + "end": 4356.46, + "probability": 0.999 + }, + { + "start": 4358.4, + "end": 4359.78, + "probability": 0.7529 + }, + { + "start": 4361.22, + "end": 4362.96, + "probability": 0.9969 + }, + { + "start": 4366.2, + "end": 4367.06, + "probability": 0.9724 + }, + { + "start": 4368.18, + "end": 4369.72, + "probability": 0.9998 + }, + { + "start": 4370.9, + "end": 4371.8, + "probability": 0.9975 + }, + { + "start": 4372.58, + "end": 4376.28, + "probability": 0.9985 + }, + { + "start": 4379.52, + "end": 4381.58, + "probability": 0.999 + }, + { + "start": 4382.74, + "end": 4386.82, + "probability": 0.9985 + }, + { + "start": 4387.32, + "end": 4392.36, + "probability": 0.9932 + }, + { + "start": 4394.1, + "end": 4398.5, + "probability": 0.958 + }, + { + "start": 4399.64, + "end": 4402.72, + "probability": 0.9698 + }, + { + "start": 4402.72, + "end": 4406.72, + "probability": 0.9751 + }, + { + "start": 4407.6, + "end": 4413.02, + "probability": 0.9924 + }, + { + "start": 4416.08, + "end": 4417.7, + "probability": 0.9858 + }, + { + "start": 4418.46, + "end": 4419.48, + "probability": 0.684 + }, + { + "start": 4420.76, + "end": 4428.58, + "probability": 0.9052 + }, + { + "start": 4430.7, + "end": 4431.88, + "probability": 0.9987 + }, + { + "start": 4433.1, + "end": 4437.5, + "probability": 0.8708 + }, + { + "start": 4439.32, + "end": 4441.4, + "probability": 0.9946 + }, + { + "start": 4442.82, + "end": 4447.02, + "probability": 0.8555 + }, + { + "start": 4451.86, + "end": 4453.2, + "probability": 0.8774 + }, + { + "start": 4454.38, + "end": 4455.81, + "probability": 0.8741 + }, + { + "start": 4457.38, + "end": 4457.98, + "probability": 0.4957 + }, + { + "start": 4459.12, + "end": 4460.12, + "probability": 0.9968 + }, + { + "start": 4461.04, + "end": 4463.64, + "probability": 0.654 + }, + { + "start": 4464.06, + "end": 4464.68, + "probability": 0.8848 + }, + { + "start": 4465.06, + "end": 4465.84, + "probability": 0.8362 + }, + { + "start": 4466.38, + "end": 4467.36, + "probability": 0.8438 + }, + { + "start": 4468.18, + "end": 4468.32, + "probability": 0.6136 + }, + { + "start": 4468.76, + "end": 4473.7, + "probability": 0.9834 + }, + { + "start": 4473.82, + "end": 4474.36, + "probability": 0.2452 + }, + { + "start": 4474.52, + "end": 4478.28, + "probability": 0.8872 + }, + { + "start": 4479.62, + "end": 4480.88, + "probability": 0.8059 + }, + { + "start": 4481.76, + "end": 4483.75, + "probability": 0.9398 + }, + { + "start": 4485.12, + "end": 4485.96, + "probability": 0.8676 + }, + { + "start": 4486.02, + "end": 4488.58, + "probability": 0.9928 + }, + { + "start": 4488.58, + "end": 4493.02, + "probability": 0.9711 + }, + { + "start": 4493.64, + "end": 4494.96, + "probability": 0.9508 + }, + { + "start": 4495.54, + "end": 4498.36, + "probability": 0.9876 + }, + { + "start": 4498.72, + "end": 4502.58, + "probability": 0.8864 + }, + { + "start": 4502.66, + "end": 4502.98, + "probability": 0.6732 + }, + { + "start": 4503.3, + "end": 4504.49, + "probability": 0.9469 + }, + { + "start": 4504.9, + "end": 4508.12, + "probability": 0.9699 + }, + { + "start": 4508.38, + "end": 4508.72, + "probability": 0.7545 + }, + { + "start": 4508.84, + "end": 4509.62, + "probability": 0.9797 + }, + { + "start": 4509.7, + "end": 4510.7, + "probability": 0.9733 + }, + { + "start": 4510.82, + "end": 4512.66, + "probability": 0.993 + }, + { + "start": 4513.22, + "end": 4515.06, + "probability": 0.936 + }, + { + "start": 4516.48, + "end": 4519.9, + "probability": 0.8956 + }, + { + "start": 4521.26, + "end": 4522.28, + "probability": 0.8866 + }, + { + "start": 4523.78, + "end": 4525.78, + "probability": 0.9228 + }, + { + "start": 4526.56, + "end": 4532.18, + "probability": 0.9922 + }, + { + "start": 4533.24, + "end": 4534.96, + "probability": 0.9987 + }, + { + "start": 4535.84, + "end": 4537.84, + "probability": 0.999 + }, + { + "start": 4538.36, + "end": 4540.32, + "probability": 0.9116 + }, + { + "start": 4541.2, + "end": 4544.58, + "probability": 0.9347 + }, + { + "start": 4545.36, + "end": 4547.52, + "probability": 0.8986 + }, + { + "start": 4548.26, + "end": 4552.76, + "probability": 0.9338 + }, + { + "start": 4553.72, + "end": 4557.19, + "probability": 0.9753 + }, + { + "start": 4557.86, + "end": 4561.0, + "probability": 0.9932 + }, + { + "start": 4562.12, + "end": 4567.22, + "probability": 0.7937 + }, + { + "start": 4567.98, + "end": 4569.26, + "probability": 0.9993 + }, + { + "start": 4569.88, + "end": 4575.08, + "probability": 0.9365 + }, + { + "start": 4576.04, + "end": 4581.22, + "probability": 0.9855 + }, + { + "start": 4581.94, + "end": 4584.56, + "probability": 0.9875 + }, + { + "start": 4585.4, + "end": 4591.44, + "probability": 0.9811 + }, + { + "start": 4592.88, + "end": 4594.28, + "probability": 0.9703 + }, + { + "start": 4596.1, + "end": 4597.38, + "probability": 0.7448 + }, + { + "start": 4598.52, + "end": 4601.34, + "probability": 0.917 + }, + { + "start": 4602.7, + "end": 4604.84, + "probability": 0.8625 + }, + { + "start": 4606.04, + "end": 4608.88, + "probability": 0.9687 + }, + { + "start": 4610.04, + "end": 4613.88, + "probability": 0.9824 + }, + { + "start": 4616.4, + "end": 4622.91, + "probability": 0.8801 + }, + { + "start": 4625.4, + "end": 4629.66, + "probability": 0.9068 + }, + { + "start": 4630.92, + "end": 4632.78, + "probability": 0.8773 + }, + { + "start": 4633.98, + "end": 4638.2, + "probability": 0.9908 + }, + { + "start": 4639.36, + "end": 4642.84, + "probability": 0.9961 + }, + { + "start": 4643.26, + "end": 4645.46, + "probability": 0.9943 + }, + { + "start": 4645.94, + "end": 4649.58, + "probability": 0.8592 + }, + { + "start": 4650.18, + "end": 4651.44, + "probability": 0.8079 + }, + { + "start": 4652.96, + "end": 4655.94, + "probability": 0.9772 + }, + { + "start": 4657.44, + "end": 4662.02, + "probability": 0.9921 + }, + { + "start": 4664.64, + "end": 4668.28, + "probability": 0.8932 + }, + { + "start": 4669.02, + "end": 4672.42, + "probability": 0.9722 + }, + { + "start": 4672.92, + "end": 4674.56, + "probability": 0.8029 + }, + { + "start": 4675.32, + "end": 4676.82, + "probability": 0.8582 + }, + { + "start": 4677.4, + "end": 4679.88, + "probability": 0.9956 + }, + { + "start": 4680.64, + "end": 4683.12, + "probability": 0.7122 + }, + { + "start": 4683.76, + "end": 4686.64, + "probability": 0.8627 + }, + { + "start": 4687.0, + "end": 4689.14, + "probability": 0.8196 + }, + { + "start": 4690.4, + "end": 4693.84, + "probability": 0.8628 + }, + { + "start": 4693.9, + "end": 4696.62, + "probability": 0.8241 + }, + { + "start": 4696.98, + "end": 4697.96, + "probability": 0.0015 + }, + { + "start": 4698.8, + "end": 4702.16, + "probability": 0.5296 + }, + { + "start": 4702.46, + "end": 4703.9, + "probability": 0.3748 + }, + { + "start": 4704.66, + "end": 4707.56, + "probability": 0.9567 + }, + { + "start": 4708.36, + "end": 4711.12, + "probability": 0.9663 + }, + { + "start": 4712.64, + "end": 4715.18, + "probability": 0.9252 + }, + { + "start": 4715.86, + "end": 4718.8, + "probability": 0.6809 + }, + { + "start": 4719.62, + "end": 4720.46, + "probability": 0.225 + }, + { + "start": 4720.52, + "end": 4724.1, + "probability": 0.8455 + }, + { + "start": 4724.22, + "end": 4726.96, + "probability": 0.6423 + }, + { + "start": 4727.58, + "end": 4730.78, + "probability": 0.9924 + }, + { + "start": 4731.4, + "end": 4732.38, + "probability": 0.9733 + }, + { + "start": 4732.72, + "end": 4736.12, + "probability": 0.9688 + }, + { + "start": 4736.6, + "end": 4738.84, + "probability": 0.9829 + }, + { + "start": 4740.06, + "end": 4742.58, + "probability": 0.5752 + }, + { + "start": 4743.24, + "end": 4745.88, + "probability": 0.9641 + }, + { + "start": 4746.94, + "end": 4752.02, + "probability": 0.9823 + }, + { + "start": 4753.1, + "end": 4759.22, + "probability": 0.9671 + }, + { + "start": 4760.62, + "end": 4763.48, + "probability": 0.9387 + }, + { + "start": 4764.34, + "end": 4765.42, + "probability": 0.9384 + }, + { + "start": 4765.92, + "end": 4769.74, + "probability": 0.9717 + }, + { + "start": 4770.08, + "end": 4770.6, + "probability": 0.8857 + }, + { + "start": 4771.76, + "end": 4774.51, + "probability": 0.7339 + }, + { + "start": 4775.7, + "end": 4777.62, + "probability": 0.8621 + }, + { + "start": 4777.74, + "end": 4779.22, + "probability": 0.001 + }, + { + "start": 4779.44, + "end": 4780.38, + "probability": 0.644 + }, + { + "start": 4780.4, + "end": 4780.72, + "probability": 0.7688 + }, + { + "start": 4800.26, + "end": 4800.96, + "probability": 0.4753 + }, + { + "start": 4801.06, + "end": 4801.84, + "probability": 0.694 + }, + { + "start": 4802.0, + "end": 4805.24, + "probability": 0.989 + }, + { + "start": 4805.24, + "end": 4810.9, + "probability": 0.9722 + }, + { + "start": 4811.14, + "end": 4813.87, + "probability": 0.9924 + }, + { + "start": 4815.04, + "end": 4817.08, + "probability": 0.9451 + }, + { + "start": 4817.36, + "end": 4819.46, + "probability": 0.997 + }, + { + "start": 4820.36, + "end": 4823.48, + "probability": 0.9938 + }, + { + "start": 4825.7, + "end": 4826.42, + "probability": 0.771 + }, + { + "start": 4827.12, + "end": 4829.04, + "probability": 0.9932 + }, + { + "start": 4829.68, + "end": 4831.06, + "probability": 0.9874 + }, + { + "start": 4832.48, + "end": 4835.08, + "probability": 0.9775 + }, + { + "start": 4835.16, + "end": 4836.22, + "probability": 0.5534 + }, + { + "start": 4837.02, + "end": 4837.58, + "probability": 0.3874 + }, + { + "start": 4838.2, + "end": 4838.22, + "probability": 0.6084 + }, + { + "start": 4838.22, + "end": 4839.86, + "probability": 0.7452 + }, + { + "start": 4840.34, + "end": 4841.82, + "probability": 0.7139 + }, + { + "start": 4844.52, + "end": 4848.02, + "probability": 0.979 + }, + { + "start": 4848.02, + "end": 4850.68, + "probability": 0.9958 + }, + { + "start": 4851.92, + "end": 4854.76, + "probability": 0.9224 + }, + { + "start": 4854.88, + "end": 4858.8, + "probability": 0.9535 + }, + { + "start": 4859.98, + "end": 4860.75, + "probability": 0.6647 + }, + { + "start": 4861.32, + "end": 4862.15, + "probability": 0.9819 + }, + { + "start": 4862.4, + "end": 4866.67, + "probability": 0.9849 + }, + { + "start": 4869.56, + "end": 4871.26, + "probability": 0.6703 + }, + { + "start": 4871.88, + "end": 4874.32, + "probability": 0.9968 + }, + { + "start": 4874.32, + "end": 4876.96, + "probability": 0.9948 + }, + { + "start": 4878.06, + "end": 4881.4, + "probability": 0.9846 + }, + { + "start": 4882.08, + "end": 4884.96, + "probability": 0.9934 + }, + { + "start": 4885.76, + "end": 4887.64, + "probability": 0.9702 + }, + { + "start": 4888.36, + "end": 4891.12, + "probability": 0.9834 + }, + { + "start": 4891.44, + "end": 4892.04, + "probability": 0.8688 + }, + { + "start": 4892.84, + "end": 4894.66, + "probability": 0.9865 + }, + { + "start": 4895.38, + "end": 4899.88, + "probability": 0.9934 + }, + { + "start": 4900.4, + "end": 4904.3, + "probability": 0.9908 + }, + { + "start": 4905.32, + "end": 4905.98, + "probability": 0.678 + }, + { + "start": 4906.12, + "end": 4908.58, + "probability": 0.753 + }, + { + "start": 4908.7, + "end": 4911.66, + "probability": 0.9781 + }, + { + "start": 4911.92, + "end": 4912.22, + "probability": 0.594 + }, + { + "start": 4913.0, + "end": 4914.4, + "probability": 0.6743 + }, + { + "start": 4915.06, + "end": 4917.36, + "probability": 0.9315 + }, + { + "start": 4923.7, + "end": 4923.84, + "probability": 0.7235 + }, + { + "start": 4941.64, + "end": 4944.2, + "probability": 0.764 + }, + { + "start": 4945.18, + "end": 4947.42, + "probability": 0.9897 + }, + { + "start": 4947.48, + "end": 4948.73, + "probability": 0.8811 + }, + { + "start": 4950.06, + "end": 4951.86, + "probability": 0.9215 + }, + { + "start": 4953.1, + "end": 4956.12, + "probability": 0.4632 + }, + { + "start": 4957.32, + "end": 4958.48, + "probability": 0.4376 + }, + { + "start": 4959.1, + "end": 4959.8, + "probability": 0.6376 + }, + { + "start": 4961.79, + "end": 4966.82, + "probability": 0.8606 + }, + { + "start": 4967.8, + "end": 4971.58, + "probability": 0.9773 + }, + { + "start": 4971.62, + "end": 4973.16, + "probability": 0.8751 + }, + { + "start": 4973.74, + "end": 4975.1, + "probability": 0.9814 + }, + { + "start": 4975.68, + "end": 4977.7, + "probability": 0.9517 + }, + { + "start": 4979.91, + "end": 4982.86, + "probability": 0.8708 + }, + { + "start": 4983.9, + "end": 4984.68, + "probability": 0.4858 + }, + { + "start": 4985.36, + "end": 4987.46, + "probability": 0.9619 + }, + { + "start": 4988.28, + "end": 4992.12, + "probability": 0.6373 + }, + { + "start": 4992.2, + "end": 4994.18, + "probability": 0.7037 + }, + { + "start": 4994.18, + "end": 4994.94, + "probability": 0.1637 + }, + { + "start": 4994.94, + "end": 4994.94, + "probability": 0.07 + }, + { + "start": 4994.94, + "end": 4996.99, + "probability": 0.6244 + }, + { + "start": 4997.14, + "end": 4998.36, + "probability": 0.4166 + }, + { + "start": 4998.46, + "end": 5000.68, + "probability": 0.1913 + }, + { + "start": 5000.74, + "end": 5001.26, + "probability": 0.313 + }, + { + "start": 5001.32, + "end": 5002.6, + "probability": 0.647 + }, + { + "start": 5002.7, + "end": 5003.14, + "probability": 0.2347 + }, + { + "start": 5003.42, + "end": 5003.42, + "probability": 0.1686 + }, + { + "start": 5003.42, + "end": 5005.52, + "probability": 0.8253 + }, + { + "start": 5005.52, + "end": 5006.7, + "probability": 0.4117 + }, + { + "start": 5006.96, + "end": 5010.38, + "probability": 0.9292 + }, + { + "start": 5011.2, + "end": 5012.48, + "probability": 0.0422 + }, + { + "start": 5012.48, + "end": 5012.56, + "probability": 0.1878 + }, + { + "start": 5012.6, + "end": 5013.78, + "probability": 0.8074 + }, + { + "start": 5013.88, + "end": 5015.78, + "probability": 0.9586 + }, + { + "start": 5016.6, + "end": 5020.04, + "probability": 0.9533 + }, + { + "start": 5020.74, + "end": 5024.1, + "probability": 0.9474 + }, + { + "start": 5024.5, + "end": 5025.08, + "probability": 0.6704 + }, + { + "start": 5025.2, + "end": 5030.68, + "probability": 0.9856 + }, + { + "start": 5031.1, + "end": 5035.32, + "probability": 0.6687 + }, + { + "start": 5035.86, + "end": 5038.58, + "probability": 0.0897 + }, + { + "start": 5038.58, + "end": 5039.28, + "probability": 0.0401 + }, + { + "start": 5040.08, + "end": 5040.08, + "probability": 0.1173 + }, + { + "start": 5040.08, + "end": 5040.08, + "probability": 0.212 + }, + { + "start": 5040.08, + "end": 5040.08, + "probability": 0.5601 + }, + { + "start": 5040.08, + "end": 5040.08, + "probability": 0.1965 + }, + { + "start": 5040.08, + "end": 5040.08, + "probability": 0.1625 + }, + { + "start": 5040.08, + "end": 5041.08, + "probability": 0.4729 + }, + { + "start": 5041.72, + "end": 5048.28, + "probability": 0.8017 + }, + { + "start": 5048.6, + "end": 5051.12, + "probability": 0.9351 + }, + { + "start": 5051.7, + "end": 5054.0, + "probability": 0.9212 + }, + { + "start": 5054.76, + "end": 5057.15, + "probability": 0.2952 + }, + { + "start": 5058.88, + "end": 5062.1, + "probability": 0.3567 + }, + { + "start": 5065.66, + "end": 5065.76, + "probability": 0.0536 + }, + { + "start": 5067.92, + "end": 5069.04, + "probability": 0.3262 + }, + { + "start": 5069.04, + "end": 5069.04, + "probability": 0.1671 + }, + { + "start": 5069.15, + "end": 5069.3, + "probability": 0.2841 + }, + { + "start": 5069.3, + "end": 5069.68, + "probability": 0.0551 + }, + { + "start": 5069.96, + "end": 5071.14, + "probability": 0.6609 + }, + { + "start": 5073.26, + "end": 5073.54, + "probability": 0.1895 + }, + { + "start": 5073.54, + "end": 5075.8, + "probability": 0.0456 + }, + { + "start": 5076.78, + "end": 5078.7, + "probability": 0.0363 + }, + { + "start": 5080.52, + "end": 5082.58, + "probability": 0.0891 + }, + { + "start": 5082.66, + "end": 5084.56, + "probability": 0.3426 + }, + { + "start": 5086.4, + "end": 5087.32, + "probability": 0.0274 + }, + { + "start": 5087.32, + "end": 5088.16, + "probability": 0.0702 + }, + { + "start": 5088.52, + "end": 5089.04, + "probability": 0.0495 + }, + { + "start": 5095.17, + "end": 5098.26, + "probability": 0.0275 + }, + { + "start": 5099.3, + "end": 5100.6, + "probability": 0.0527 + }, + { + "start": 5101.54, + "end": 5102.14, + "probability": 0.0346 + }, + { + "start": 5102.14, + "end": 5104.64, + "probability": 0.0206 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.0, + "end": 5132.0, + "probability": 0.0 + }, + { + "start": 5132.22, + "end": 5134.4, + "probability": 0.0307 + }, + { + "start": 5134.48, + "end": 5137.32, + "probability": 0.1972 + }, + { + "start": 5137.78, + "end": 5140.04, + "probability": 0.1328 + }, + { + "start": 5140.12, + "end": 5141.74, + "probability": 0.0208 + }, + { + "start": 5153.0, + "end": 5153.68, + "probability": 0.1507 + }, + { + "start": 5153.68, + "end": 5154.16, + "probability": 0.1759 + }, + { + "start": 5154.16, + "end": 5154.28, + "probability": 0.0379 + }, + { + "start": 5154.28, + "end": 5154.28, + "probability": 0.0032 + }, + { + "start": 5154.28, + "end": 5155.02, + "probability": 0.0904 + }, + { + "start": 5156.81, + "end": 5159.2, + "probability": 0.0931 + }, + { + "start": 5159.2, + "end": 5159.56, + "probability": 0.074 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.0, + "end": 5253.0, + "probability": 0.0 + }, + { + "start": 5253.28, + "end": 5253.42, + "probability": 0.2883 + }, + { + "start": 5253.98, + "end": 5257.22, + "probability": 0.0158 + }, + { + "start": 5257.3, + "end": 5259.04, + "probability": 0.385 + }, + { + "start": 5259.32, + "end": 5262.04, + "probability": 0.3988 + }, + { + "start": 5262.2, + "end": 5263.34, + "probability": 0.5152 + }, + { + "start": 5263.42, + "end": 5265.17, + "probability": 0.8204 + }, + { + "start": 5266.04, + "end": 5267.28, + "probability": 0.9132 + }, + { + "start": 5267.54, + "end": 5268.24, + "probability": 0.9106 + }, + { + "start": 5269.14, + "end": 5271.14, + "probability": 0.6825 + }, + { + "start": 5274.74, + "end": 5277.06, + "probability": 0.7258 + }, + { + "start": 5277.38, + "end": 5279.22, + "probability": 0.9779 + }, + { + "start": 5279.94, + "end": 5282.6, + "probability": 0.9976 + }, + { + "start": 5283.14, + "end": 5287.16, + "probability": 0.9978 + }, + { + "start": 5287.64, + "end": 5288.48, + "probability": 0.9482 + }, + { + "start": 5289.08, + "end": 5291.84, + "probability": 0.958 + }, + { + "start": 5292.46, + "end": 5293.08, + "probability": 0.7811 + }, + { + "start": 5293.14, + "end": 5293.66, + "probability": 0.9319 + }, + { + "start": 5293.76, + "end": 5296.04, + "probability": 0.9888 + }, + { + "start": 5296.74, + "end": 5298.12, + "probability": 0.7412 + }, + { + "start": 5299.0, + "end": 5300.61, + "probability": 0.8859 + }, + { + "start": 5301.18, + "end": 5305.38, + "probability": 0.9891 + }, + { + "start": 5305.68, + "end": 5309.64, + "probability": 0.9971 + }, + { + "start": 5310.2, + "end": 5312.1, + "probability": 0.9976 + }, + { + "start": 5312.6, + "end": 5312.86, + "probability": 0.608 + }, + { + "start": 5312.94, + "end": 5313.58, + "probability": 0.8223 + }, + { + "start": 5313.7, + "end": 5318.06, + "probability": 0.8869 + }, + { + "start": 5318.16, + "end": 5319.11, + "probability": 0.9338 + }, + { + "start": 5319.86, + "end": 5322.04, + "probability": 0.9597 + }, + { + "start": 5322.72, + "end": 5323.98, + "probability": 0.8033 + }, + { + "start": 5324.2, + "end": 5326.52, + "probability": 0.9034 + }, + { + "start": 5326.84, + "end": 5327.67, + "probability": 0.9628 + }, + { + "start": 5327.96, + "end": 5329.2, + "probability": 0.9818 + }, + { + "start": 5329.54, + "end": 5334.12, + "probability": 0.9916 + }, + { + "start": 5334.56, + "end": 5334.66, + "probability": 0.8423 + }, + { + "start": 5334.76, + "end": 5336.0, + "probability": 0.9833 + }, + { + "start": 5336.12, + "end": 5338.72, + "probability": 0.798 + }, + { + "start": 5338.98, + "end": 5342.52, + "probability": 0.9308 + }, + { + "start": 5342.92, + "end": 5343.44, + "probability": 0.4785 + }, + { + "start": 5343.92, + "end": 5345.88, + "probability": 0.9955 + }, + { + "start": 5346.18, + "end": 5349.9, + "probability": 0.9771 + }, + { + "start": 5349.9, + "end": 5353.12, + "probability": 0.9439 + }, + { + "start": 5353.42, + "end": 5354.64, + "probability": 0.8027 + }, + { + "start": 5355.04, + "end": 5356.52, + "probability": 0.9958 + }, + { + "start": 5357.04, + "end": 5358.48, + "probability": 0.9582 + }, + { + "start": 5358.8, + "end": 5361.96, + "probability": 0.9833 + }, + { + "start": 5362.0, + "end": 5362.64, + "probability": 0.9184 + }, + { + "start": 5363.71, + "end": 5367.39, + "probability": 0.8824 + }, + { + "start": 5369.66, + "end": 5374.72, + "probability": 0.9944 + }, + { + "start": 5374.94, + "end": 5376.66, + "probability": 0.8496 + }, + { + "start": 5376.74, + "end": 5378.22, + "probability": 0.5881 + }, + { + "start": 5386.04, + "end": 5387.76, + "probability": 0.3535 + }, + { + "start": 5389.94, + "end": 5390.68, + "probability": 0.0318 + }, + { + "start": 5392.2, + "end": 5393.28, + "probability": 0.1038 + }, + { + "start": 5394.12, + "end": 5396.66, + "probability": 0.3606 + }, + { + "start": 5396.68, + "end": 5401.48, + "probability": 0.6247 + }, + { + "start": 5402.56, + "end": 5406.28, + "probability": 0.8582 + }, + { + "start": 5407.38, + "end": 5407.96, + "probability": 0.3212 + }, + { + "start": 5407.96, + "end": 5408.22, + "probability": 0.4733 + }, + { + "start": 5408.34, + "end": 5409.7, + "probability": 0.647 + }, + { + "start": 5410.5, + "end": 5411.18, + "probability": 0.3761 + }, + { + "start": 5412.26, + "end": 5412.94, + "probability": 0.1521 + }, + { + "start": 5413.32, + "end": 5416.26, + "probability": 0.9907 + }, + { + "start": 5417.98, + "end": 5420.3, + "probability": 0.7825 + }, + { + "start": 5420.36, + "end": 5420.7, + "probability": 0.942 + }, + { + "start": 5420.74, + "end": 5421.68, + "probability": 0.7728 + }, + { + "start": 5423.58, + "end": 5423.82, + "probability": 0.9639 + }, + { + "start": 5424.9, + "end": 5425.88, + "probability": 0.2712 + }, + { + "start": 5426.22, + "end": 5427.46, + "probability": 0.8146 + }, + { + "start": 5428.26, + "end": 5428.96, + "probability": 0.39 + }, + { + "start": 5429.1, + "end": 5429.74, + "probability": 0.5376 + }, + { + "start": 5429.96, + "end": 5430.26, + "probability": 0.342 + }, + { + "start": 5430.36, + "end": 5433.86, + "probability": 0.6707 + }, + { + "start": 5433.86, + "end": 5435.22, + "probability": 0.3656 + }, + { + "start": 5435.76, + "end": 5436.4, + "probability": 0.6207 + }, + { + "start": 5436.98, + "end": 5439.28, + "probability": 0.9126 + }, + { + "start": 5439.32, + "end": 5441.88, + "probability": 0.7366 + }, + { + "start": 5442.42, + "end": 5443.62, + "probability": 0.4395 + }, + { + "start": 5443.88, + "end": 5444.06, + "probability": 0.2103 + }, + { + "start": 5444.06, + "end": 5445.36, + "probability": 0.614 + }, + { + "start": 5445.98, + "end": 5447.34, + "probability": 0.7455 + }, + { + "start": 5448.2, + "end": 5448.88, + "probability": 0.6191 + }, + { + "start": 5448.94, + "end": 5449.72, + "probability": 0.5858 + }, + { + "start": 5449.72, + "end": 5451.08, + "probability": 0.9202 + }, + { + "start": 5451.86, + "end": 5451.92, + "probability": 0.2228 + }, + { + "start": 5451.92, + "end": 5453.24, + "probability": 0.447 + }, + { + "start": 5453.28, + "end": 5454.78, + "probability": 0.6734 + }, + { + "start": 5455.54, + "end": 5457.9, + "probability": 0.9223 + }, + { + "start": 5458.74, + "end": 5459.77, + "probability": 0.979 + }, + { + "start": 5459.96, + "end": 5460.32, + "probability": 0.6125 + }, + { + "start": 5460.6, + "end": 5462.26, + "probability": 0.9934 + }, + { + "start": 5464.98, + "end": 5465.32, + "probability": 0.424 + }, + { + "start": 5465.52, + "end": 5468.56, + "probability": 0.8665 + }, + { + "start": 5469.72, + "end": 5474.64, + "probability": 0.9299 + }, + { + "start": 5475.2, + "end": 5475.95, + "probability": 0.8403 + }, + { + "start": 5477.12, + "end": 5481.46, + "probability": 0.9542 + }, + { + "start": 5481.88, + "end": 5482.88, + "probability": 0.0884 + }, + { + "start": 5483.16, + "end": 5484.32, + "probability": 0.0618 + }, + { + "start": 5484.32, + "end": 5485.18, + "probability": 0.3529 + }, + { + "start": 5485.28, + "end": 5487.62, + "probability": 0.7861 + }, + { + "start": 5487.64, + "end": 5488.86, + "probability": 0.1333 + }, + { + "start": 5488.86, + "end": 5491.26, + "probability": 0.7443 + }, + { + "start": 5491.9, + "end": 5491.92, + "probability": 0.029 + }, + { + "start": 5492.24, + "end": 5493.0, + "probability": 0.9447 + }, + { + "start": 5493.54, + "end": 5496.82, + "probability": 0.979 + }, + { + "start": 5496.98, + "end": 5499.85, + "probability": 0.5304 + }, + { + "start": 5500.0, + "end": 5500.77, + "probability": 0.0508 + }, + { + "start": 5501.2, + "end": 5505.0, + "probability": 0.8944 + }, + { + "start": 5505.42, + "end": 5507.96, + "probability": 0.9371 + }, + { + "start": 5508.22, + "end": 5510.92, + "probability": 0.9968 + }, + { + "start": 5511.36, + "end": 5512.64, + "probability": 0.9299 + }, + { + "start": 5513.18, + "end": 5514.16, + "probability": 0.8674 + }, + { + "start": 5514.34, + "end": 5516.02, + "probability": 0.7267 + }, + { + "start": 5516.92, + "end": 5518.14, + "probability": 0.9988 + }, + { + "start": 5518.94, + "end": 5522.72, + "probability": 0.904 + }, + { + "start": 5525.32, + "end": 5526.92, + "probability": 0.9347 + }, + { + "start": 5527.9, + "end": 5528.44, + "probability": 0.0464 + }, + { + "start": 5529.6, + "end": 5529.6, + "probability": 0.3721 + }, + { + "start": 5529.6, + "end": 5530.7, + "probability": 0.9184 + }, + { + "start": 5532.42, + "end": 5536.14, + "probability": 0.0303 + }, + { + "start": 5536.14, + "end": 5536.14, + "probability": 0.2096 + }, + { + "start": 5536.14, + "end": 5536.14, + "probability": 0.1705 + }, + { + "start": 5536.14, + "end": 5536.14, + "probability": 0.0444 + }, + { + "start": 5536.14, + "end": 5537.14, + "probability": 0.5043 + }, + { + "start": 5537.2, + "end": 5541.42, + "probability": 0.1905 + }, + { + "start": 5542.34, + "end": 5543.63, + "probability": 0.0538 + }, + { + "start": 5545.2, + "end": 5545.48, + "probability": 0.0316 + }, + { + "start": 5545.66, + "end": 5546.86, + "probability": 0.1462 + }, + { + "start": 5547.08, + "end": 5550.3, + "probability": 0.0607 + }, + { + "start": 5552.52, + "end": 5553.16, + "probability": 0.0145 + }, + { + "start": 5553.74, + "end": 5555.26, + "probability": 0.0009 + }, + { + "start": 5558.94, + "end": 5559.76, + "probability": 0.2205 + }, + { + "start": 5561.67, + "end": 5564.28, + "probability": 0.0415 + }, + { + "start": 5564.4, + "end": 5565.77, + "probability": 0.0396 + }, + { + "start": 5566.16, + "end": 5566.16, + "probability": 0.0274 + }, + { + "start": 5566.16, + "end": 5567.18, + "probability": 0.1954 + }, + { + "start": 5568.34, + "end": 5570.7, + "probability": 0.0216 + }, + { + "start": 5570.7, + "end": 5572.14, + "probability": 0.0285 + }, + { + "start": 5572.16, + "end": 5573.25, + "probability": 0.0777 + }, + { + "start": 5574.92, + "end": 5577.02, + "probability": 0.0278 + }, + { + "start": 5578.96, + "end": 5578.96, + "probability": 0.1561 + }, + { + "start": 5579.68, + "end": 5580.3, + "probability": 0.108 + }, + { + "start": 5580.3, + "end": 5581.8, + "probability": 0.0291 + }, + { + "start": 5582.0, + "end": 5582.16, + "probability": 0.281 + }, + { + "start": 5582.16, + "end": 5582.18, + "probability": 0.2147 + }, + { + "start": 5582.47, + "end": 5582.63, + "probability": 0.033 + }, + { + "start": 5582.7, + "end": 5582.94, + "probability": 0.119 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.32, + "end": 5584.54, + "probability": 0.0355 + }, + { + "start": 5584.54, + "end": 5584.54, + "probability": 0.0255 + }, + { + "start": 5584.54, + "end": 5586.78, + "probability": 0.0866 + }, + { + "start": 5589.22, + "end": 5590.18, + "probability": 0.42 + }, + { + "start": 5595.36, + "end": 5596.48, + "probability": 0.7839 + }, + { + "start": 5608.88, + "end": 5611.24, + "probability": 0.4613 + }, + { + "start": 5611.46, + "end": 5612.0, + "probability": 0.0678 + }, + { + "start": 5615.46, + "end": 5619.74, + "probability": 0.8208 + }, + { + "start": 5620.96, + "end": 5624.12, + "probability": 0.7433 + }, + { + "start": 5624.9, + "end": 5625.34, + "probability": 0.5458 + }, + { + "start": 5630.54, + "end": 5633.92, + "probability": 0.7461 + }, + { + "start": 5633.92, + "end": 5637.52, + "probability": 0.989 + }, + { + "start": 5638.18, + "end": 5641.24, + "probability": 0.9753 + }, + { + "start": 5641.8, + "end": 5646.7, + "probability": 0.8447 + }, + { + "start": 5647.58, + "end": 5649.82, + "probability": 0.8611 + }, + { + "start": 5650.1, + "end": 5650.5, + "probability": 0.8984 + }, + { + "start": 5650.86, + "end": 5651.04, + "probability": 0.5801 + }, + { + "start": 5652.58, + "end": 5654.66, + "probability": 0.7906 + }, + { + "start": 5654.72, + "end": 5655.86, + "probability": 0.9035 + }, + { + "start": 5657.76, + "end": 5660.94, + "probability": 0.9933 + }, + { + "start": 5660.94, + "end": 5664.24, + "probability": 0.9985 + }, + { + "start": 5664.82, + "end": 5667.68, + "probability": 0.9229 + }, + { + "start": 5668.32, + "end": 5671.7, + "probability": 0.848 + }, + { + "start": 5672.5, + "end": 5675.86, + "probability": 0.995 + }, + { + "start": 5675.86, + "end": 5679.52, + "probability": 0.9966 + }, + { + "start": 5680.72, + "end": 5686.4, + "probability": 0.999 + }, + { + "start": 5686.4, + "end": 5693.06, + "probability": 0.9993 + }, + { + "start": 5693.54, + "end": 5693.7, + "probability": 0.4441 + }, + { + "start": 5693.76, + "end": 5694.2, + "probability": 0.8494 + }, + { + "start": 5694.28, + "end": 5698.34, + "probability": 0.9854 + }, + { + "start": 5698.96, + "end": 5701.3, + "probability": 0.9496 + }, + { + "start": 5702.58, + "end": 5706.78, + "probability": 0.8735 + }, + { + "start": 5707.28, + "end": 5710.08, + "probability": 0.9937 + }, + { + "start": 5710.46, + "end": 5711.91, + "probability": 0.5832 + }, + { + "start": 5712.38, + "end": 5716.09, + "probability": 0.9887 + }, + { + "start": 5716.54, + "end": 5718.16, + "probability": 0.608 + }, + { + "start": 5718.2, + "end": 5720.66, + "probability": 0.9912 + }, + { + "start": 5720.84, + "end": 5721.2, + "probability": 0.4618 + }, + { + "start": 5722.16, + "end": 5725.1, + "probability": 0.9086 + }, + { + "start": 5725.58, + "end": 5730.6, + "probability": 0.9923 + }, + { + "start": 5730.66, + "end": 5732.86, + "probability": 0.9886 + }, + { + "start": 5733.92, + "end": 5738.6, + "probability": 0.9797 + }, + { + "start": 5738.76, + "end": 5743.94, + "probability": 0.9861 + }, + { + "start": 5744.42, + "end": 5745.78, + "probability": 0.8693 + }, + { + "start": 5746.28, + "end": 5751.76, + "probability": 0.9985 + }, + { + "start": 5752.9, + "end": 5753.76, + "probability": 0.6693 + }, + { + "start": 5753.92, + "end": 5754.34, + "probability": 0.4858 + }, + { + "start": 5754.36, + "end": 5757.14, + "probability": 0.9058 + }, + { + "start": 5757.14, + "end": 5760.98, + "probability": 0.9956 + }, + { + "start": 5761.42, + "end": 5763.06, + "probability": 0.9354 + }, + { + "start": 5763.26, + "end": 5763.9, + "probability": 0.442 + }, + { + "start": 5764.36, + "end": 5767.88, + "probability": 0.6864 + }, + { + "start": 5768.54, + "end": 5772.26, + "probability": 0.9889 + }, + { + "start": 5772.56, + "end": 5775.6, + "probability": 0.9406 + }, + { + "start": 5775.78, + "end": 5779.82, + "probability": 0.9927 + }, + { + "start": 5780.48, + "end": 5783.26, + "probability": 0.9888 + }, + { + "start": 5783.46, + "end": 5788.16, + "probability": 0.8821 + }, + { + "start": 5789.24, + "end": 5792.8, + "probability": 0.9958 + }, + { + "start": 5792.94, + "end": 5797.04, + "probability": 0.9787 + }, + { + "start": 5798.18, + "end": 5800.44, + "probability": 0.9583 + }, + { + "start": 5800.66, + "end": 5805.26, + "probability": 0.9951 + }, + { + "start": 5806.0, + "end": 5807.4, + "probability": 0.911 + }, + { + "start": 5807.56, + "end": 5809.75, + "probability": 0.9951 + }, + { + "start": 5810.12, + "end": 5814.14, + "probability": 0.979 + }, + { + "start": 5814.6, + "end": 5815.72, + "probability": 0.7 + }, + { + "start": 5816.2, + "end": 5821.04, + "probability": 0.9966 + }, + { + "start": 5821.88, + "end": 5825.76, + "probability": 0.9973 + }, + { + "start": 5827.88, + "end": 5830.82, + "probability": 0.9156 + }, + { + "start": 5830.84, + "end": 5834.02, + "probability": 0.9924 + }, + { + "start": 5834.44, + "end": 5836.98, + "probability": 0.8234 + }, + { + "start": 5837.32, + "end": 5840.1, + "probability": 0.9958 + }, + { + "start": 5840.16, + "end": 5841.56, + "probability": 0.9083 + }, + { + "start": 5841.78, + "end": 5846.96, + "probability": 0.938 + }, + { + "start": 5847.16, + "end": 5847.76, + "probability": 0.7608 + }, + { + "start": 5849.12, + "end": 5850.94, + "probability": 0.7026 + }, + { + "start": 5851.26, + "end": 5854.0, + "probability": 0.816 + }, + { + "start": 5854.66, + "end": 5855.86, + "probability": 0.8783 + }, + { + "start": 5875.04, + "end": 5875.78, + "probability": 0.5803 + }, + { + "start": 5875.86, + "end": 5876.88, + "probability": 0.8814 + }, + { + "start": 5877.16, + "end": 5877.96, + "probability": 0.4488 + }, + { + "start": 5878.06, + "end": 5883.58, + "probability": 0.8672 + }, + { + "start": 5883.66, + "end": 5887.74, + "probability": 0.9687 + }, + { + "start": 5888.36, + "end": 5890.12, + "probability": 0.6171 + }, + { + "start": 5890.84, + "end": 5895.8, + "probability": 0.981 + }, + { + "start": 5895.96, + "end": 5896.16, + "probability": 0.7745 + }, + { + "start": 5896.74, + "end": 5899.08, + "probability": 0.9932 + }, + { + "start": 5899.72, + "end": 5902.5, + "probability": 0.9674 + }, + { + "start": 5902.84, + "end": 5905.96, + "probability": 0.9866 + }, + { + "start": 5906.66, + "end": 5909.96, + "probability": 0.9784 + }, + { + "start": 5910.7, + "end": 5914.36, + "probability": 0.963 + }, + { + "start": 5914.9, + "end": 5916.18, + "probability": 0.8963 + }, + { + "start": 5916.78, + "end": 5919.84, + "probability": 0.9974 + }, + { + "start": 5919.84, + "end": 5923.96, + "probability": 0.9928 + }, + { + "start": 5924.3, + "end": 5926.52, + "probability": 0.9995 + }, + { + "start": 5926.52, + "end": 5930.0, + "probability": 0.9956 + }, + { + "start": 5930.86, + "end": 5932.96, + "probability": 0.039 + }, + { + "start": 5932.96, + "end": 5933.42, + "probability": 0.4723 + }, + { + "start": 5933.52, + "end": 5934.6, + "probability": 0.28 + }, + { + "start": 5935.3, + "end": 5937.88, + "probability": 0.8882 + }, + { + "start": 5937.88, + "end": 5940.82, + "probability": 0.9985 + }, + { + "start": 5941.26, + "end": 5943.42, + "probability": 0.9895 + }, + { + "start": 5944.08, + "end": 5947.12, + "probability": 0.9849 + }, + { + "start": 5947.55, + "end": 5949.46, + "probability": 0.8174 + }, + { + "start": 5949.9, + "end": 5953.54, + "probability": 0.9785 + }, + { + "start": 5953.72, + "end": 5954.12, + "probability": 0.4349 + }, + { + "start": 5954.42, + "end": 5955.2, + "probability": 0.9113 + }, + { + "start": 5955.54, + "end": 5956.94, + "probability": 0.7834 + }, + { + "start": 5957.04, + "end": 5959.84, + "probability": 0.9709 + }, + { + "start": 5959.92, + "end": 5960.12, + "probability": 0.5686 + }, + { + "start": 5963.56, + "end": 5965.9, + "probability": 0.7357 + }, + { + "start": 5965.96, + "end": 5966.42, + "probability": 0.9501 + }, + { + "start": 5967.42, + "end": 5968.76, + "probability": 0.1088 + }, + { + "start": 5974.26, + "end": 5974.54, + "probability": 0.2083 + }, + { + "start": 5975.36, + "end": 5976.8, + "probability": 0.0692 + }, + { + "start": 5976.8, + "end": 5976.84, + "probability": 0.1815 + }, + { + "start": 5984.0, + "end": 5985.0, + "probability": 0.1223 + }, + { + "start": 6009.46, + "end": 6013.04, + "probability": 0.7203 + }, + { + "start": 6016.94, + "end": 6020.66, + "probability": 0.3176 + }, + { + "start": 6021.48, + "end": 6024.04, + "probability": 0.331 + }, + { + "start": 6024.74, + "end": 6028.58, + "probability": 0.6237 + }, + { + "start": 6029.1, + "end": 6031.4, + "probability": 0.0633 + }, + { + "start": 6034.52, + "end": 6039.02, + "probability": 0.0827 + }, + { + "start": 6040.74, + "end": 6042.7, + "probability": 0.0134 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.0, + "end": 6070.0, + "probability": 0.0 + }, + { + "start": 6070.12, + "end": 6072.7, + "probability": 0.1196 + }, + { + "start": 6073.6, + "end": 6073.7, + "probability": 0.1494 + }, + { + "start": 6073.7, + "end": 6073.7, + "probability": 0.2058 + }, + { + "start": 6073.7, + "end": 6074.26, + "probability": 0.0245 + }, + { + "start": 6074.26, + "end": 6077.18, + "probability": 0.2804 + }, + { + "start": 6081.26, + "end": 6082.92, + "probability": 0.0531 + }, + { + "start": 6083.08, + "end": 6083.76, + "probability": 0.0849 + }, + { + "start": 6085.2, + "end": 6089.16, + "probability": 0.0252 + }, + { + "start": 6089.9, + "end": 6090.1, + "probability": 0.0342 + }, + { + "start": 6090.1, + "end": 6090.42, + "probability": 0.1705 + }, + { + "start": 6091.1, + "end": 6092.96, + "probability": 0.0574 + }, + { + "start": 6093.14, + "end": 6094.22, + "probability": 0.2007 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6195.0, + "end": 6195.0, + "probability": 0.0 + }, + { + "start": 6198.15, + "end": 6201.42, + "probability": 0.0862 + }, + { + "start": 6201.42, + "end": 6202.72, + "probability": 0.0493 + }, + { + "start": 6203.24, + "end": 6207.1, + "probability": 0.0849 + }, + { + "start": 6207.1, + "end": 6210.1, + "probability": 0.35 + }, + { + "start": 6210.36, + "end": 6213.42, + "probability": 0.5219 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.0, + "end": 6333.0, + "probability": 0.0 + }, + { + "start": 6333.36, + "end": 6335.14, + "probability": 0.041 + }, + { + "start": 6335.5, + "end": 6336.46, + "probability": 0.3612 + }, + { + "start": 6337.25, + "end": 6337.69, + "probability": 0.0501 + }, + { + "start": 6338.14, + "end": 6341.12, + "probability": 0.0397 + }, + { + "start": 6342.04, + "end": 6342.7, + "probability": 0.0901 + }, + { + "start": 6342.7, + "end": 6343.88, + "probability": 0.1112 + }, + { + "start": 6343.88, + "end": 6344.0, + "probability": 0.0021 + }, + { + "start": 6344.62, + "end": 6346.88, + "probability": 0.1353 + }, + { + "start": 6346.88, + "end": 6346.88, + "probability": 0.2427 + }, + { + "start": 6347.16, + "end": 6348.44, + "probability": 0.1383 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.0, + "end": 6496.0, + "probability": 0.0 + }, + { + "start": 6496.14, + "end": 6496.34, + "probability": 0.484 + }, + { + "start": 6496.34, + "end": 6496.34, + "probability": 0.1001 + }, + { + "start": 6496.34, + "end": 6496.34, + "probability": 0.0388 + }, + { + "start": 6496.34, + "end": 6496.34, + "probability": 0.027 + }, + { + "start": 6496.34, + "end": 6496.98, + "probability": 0.0107 + }, + { + "start": 6497.52, + "end": 6498.36, + "probability": 0.6182 + }, + { + "start": 6499.04, + "end": 6501.0, + "probability": 0.5279 + }, + { + "start": 6501.94, + "end": 6503.96, + "probability": 0.9053 + }, + { + "start": 6505.04, + "end": 6505.64, + "probability": 0.3527 + }, + { + "start": 6506.46, + "end": 6507.8, + "probability": 0.9374 + }, + { + "start": 6508.5, + "end": 6512.22, + "probability": 0.9894 + }, + { + "start": 6512.82, + "end": 6513.7, + "probability": 0.7875 + }, + { + "start": 6514.16, + "end": 6515.64, + "probability": 0.9554 + }, + { + "start": 6515.72, + "end": 6521.06, + "probability": 0.9918 + }, + { + "start": 6521.06, + "end": 6524.94, + "probability": 0.9913 + }, + { + "start": 6525.84, + "end": 6527.04, + "probability": 0.7778 + }, + { + "start": 6527.08, + "end": 6527.8, + "probability": 0.8354 + }, + { + "start": 6527.92, + "end": 6531.56, + "probability": 0.8959 + }, + { + "start": 6532.06, + "end": 6535.96, + "probability": 0.9982 + }, + { + "start": 6536.82, + "end": 6538.36, + "probability": 0.9441 + }, + { + "start": 6538.46, + "end": 6543.26, + "probability": 0.9256 + }, + { + "start": 6543.96, + "end": 6545.18, + "probability": 0.3496 + }, + { + "start": 6545.8, + "end": 6547.12, + "probability": 0.9819 + }, + { + "start": 6548.22, + "end": 6549.7, + "probability": 0.8357 + }, + { + "start": 6549.78, + "end": 6551.56, + "probability": 0.9619 + }, + { + "start": 6552.04, + "end": 6557.48, + "probability": 0.7411 + }, + { + "start": 6558.06, + "end": 6565.22, + "probability": 0.9788 + }, + { + "start": 6566.26, + "end": 6572.82, + "probability": 0.8621 + }, + { + "start": 6573.38, + "end": 6575.8, + "probability": 0.9979 + }, + { + "start": 6575.8, + "end": 6579.44, + "probability": 0.9533 + }, + { + "start": 6580.74, + "end": 6583.82, + "probability": 0.9917 + }, + { + "start": 6584.42, + "end": 6585.82, + "probability": 0.8495 + }, + { + "start": 6585.96, + "end": 6586.58, + "probability": 0.8784 + }, + { + "start": 6587.04, + "end": 6591.6, + "probability": 0.9902 + }, + { + "start": 6592.34, + "end": 6594.62, + "probability": 0.9831 + }, + { + "start": 6595.16, + "end": 6596.58, + "probability": 0.9868 + }, + { + "start": 6597.12, + "end": 6598.46, + "probability": 0.9728 + }, + { + "start": 6599.84, + "end": 6605.68, + "probability": 0.9988 + }, + { + "start": 6606.36, + "end": 6613.8, + "probability": 0.9913 + }, + { + "start": 6614.54, + "end": 6615.18, + "probability": 0.705 + }, + { + "start": 6615.78, + "end": 6620.24, + "probability": 0.9767 + }, + { + "start": 6620.86, + "end": 6624.08, + "probability": 0.7965 + }, + { + "start": 6624.3, + "end": 6626.12, + "probability": 0.9231 + }, + { + "start": 6626.64, + "end": 6630.46, + "probability": 0.9448 + }, + { + "start": 6630.46, + "end": 6635.38, + "probability": 0.9986 + }, + { + "start": 6636.54, + "end": 6638.22, + "probability": 0.9278 + }, + { + "start": 6638.84, + "end": 6640.56, + "probability": 0.9969 + }, + { + "start": 6641.36, + "end": 6645.26, + "probability": 0.9979 + }, + { + "start": 6646.16, + "end": 6647.22, + "probability": 0.8201 + }, + { + "start": 6647.78, + "end": 6652.32, + "probability": 0.9624 + }, + { + "start": 6652.8, + "end": 6653.68, + "probability": 0.9682 + }, + { + "start": 6653.8, + "end": 6656.5, + "probability": 0.7993 + }, + { + "start": 6656.5, + "end": 6659.86, + "probability": 0.9993 + }, + { + "start": 6660.4, + "end": 6664.82, + "probability": 0.9965 + }, + { + "start": 6666.28, + "end": 6667.08, + "probability": 0.7915 + }, + { + "start": 6667.16, + "end": 6671.24, + "probability": 0.9983 + }, + { + "start": 6671.8, + "end": 6677.02, + "probability": 0.9847 + }, + { + "start": 6678.04, + "end": 6678.94, + "probability": 0.6658 + }, + { + "start": 6679.04, + "end": 6684.74, + "probability": 0.9742 + }, + { + "start": 6684.74, + "end": 6690.62, + "probability": 0.9948 + }, + { + "start": 6691.3, + "end": 6693.62, + "probability": 0.9835 + }, + { + "start": 6694.68, + "end": 6695.74, + "probability": 0.9053 + }, + { + "start": 6696.36, + "end": 6703.3, + "probability": 0.956 + }, + { + "start": 6703.78, + "end": 6709.76, + "probability": 0.9881 + }, + { + "start": 6710.46, + "end": 6712.92, + "probability": 0.9952 + }, + { + "start": 6714.32, + "end": 6716.8, + "probability": 0.9211 + }, + { + "start": 6717.16, + "end": 6721.92, + "probability": 0.9976 + }, + { + "start": 6722.54, + "end": 6728.52, + "probability": 0.9945 + }, + { + "start": 6728.52, + "end": 6733.18, + "probability": 0.9976 + }, + { + "start": 6734.52, + "end": 6735.32, + "probability": 0.3882 + }, + { + "start": 6735.34, + "end": 6736.14, + "probability": 0.9034 + }, + { + "start": 6736.3, + "end": 6740.9, + "probability": 0.6257 + }, + { + "start": 6741.84, + "end": 6746.94, + "probability": 0.9698 + }, + { + "start": 6747.5, + "end": 6749.38, + "probability": 0.7773 + }, + { + "start": 6750.1, + "end": 6750.86, + "probability": 0.4195 + }, + { + "start": 6751.2, + "end": 6756.46, + "probability": 0.9946 + }, + { + "start": 6756.46, + "end": 6761.4, + "probability": 0.9933 + }, + { + "start": 6761.94, + "end": 6766.48, + "probability": 0.9978 + }, + { + "start": 6766.48, + "end": 6771.46, + "probability": 0.999 + }, + { + "start": 6771.82, + "end": 6775.84, + "probability": 0.8997 + }, + { + "start": 6775.84, + "end": 6780.1, + "probability": 0.9985 + }, + { + "start": 6780.74, + "end": 6785.34, + "probability": 0.9877 + }, + { + "start": 6786.02, + "end": 6791.38, + "probability": 0.9888 + }, + { + "start": 6791.98, + "end": 6792.72, + "probability": 0.7856 + }, + { + "start": 6792.9, + "end": 6797.64, + "probability": 0.9528 + }, + { + "start": 6797.64, + "end": 6801.7, + "probability": 0.9971 + }, + { + "start": 6801.7, + "end": 6807.4, + "probability": 0.9949 + }, + { + "start": 6809.0, + "end": 6814.42, + "probability": 0.9983 + }, + { + "start": 6814.54, + "end": 6820.1, + "probability": 0.9972 + }, + { + "start": 6820.1, + "end": 6825.64, + "probability": 0.9994 + }, + { + "start": 6826.32, + "end": 6828.4, + "probability": 0.696 + }, + { + "start": 6829.0, + "end": 6829.62, + "probability": 0.6666 + }, + { + "start": 6830.24, + "end": 6834.8, + "probability": 0.9944 + }, + { + "start": 6835.44, + "end": 6835.72, + "probability": 0.7328 + }, + { + "start": 6836.32, + "end": 6842.2, + "probability": 0.9921 + }, + { + "start": 6842.88, + "end": 6850.28, + "probability": 0.9805 + }, + { + "start": 6850.28, + "end": 6856.44, + "probability": 0.9985 + }, + { + "start": 6857.64, + "end": 6860.26, + "probability": 0.899 + }, + { + "start": 6860.42, + "end": 6862.64, + "probability": 0.998 + }, + { + "start": 6863.24, + "end": 6870.94, + "probability": 0.9876 + }, + { + "start": 6871.84, + "end": 6874.84, + "probability": 0.9964 + }, + { + "start": 6875.56, + "end": 6879.7, + "probability": 0.9976 + }, + { + "start": 6879.7, + "end": 6884.68, + "probability": 0.9897 + }, + { + "start": 6885.62, + "end": 6888.18, + "probability": 0.7007 + }, + { + "start": 6888.76, + "end": 6891.3, + "probability": 0.6692 + }, + { + "start": 6892.16, + "end": 6894.44, + "probability": 0.9827 + }, + { + "start": 6894.56, + "end": 6896.46, + "probability": 0.6856 + }, + { + "start": 6897.46, + "end": 6900.72, + "probability": 0.9727 + }, + { + "start": 6901.14, + "end": 6902.42, + "probability": 0.7521 + }, + { + "start": 6902.8, + "end": 6907.66, + "probability": 0.9873 + }, + { + "start": 6907.74, + "end": 6910.32, + "probability": 0.9847 + }, + { + "start": 6910.4, + "end": 6914.36, + "probability": 0.9755 + }, + { + "start": 6915.4, + "end": 6922.78, + "probability": 0.9823 + }, + { + "start": 6923.56, + "end": 6924.72, + "probability": 0.8324 + }, + { + "start": 6924.86, + "end": 6925.66, + "probability": 0.8386 + }, + { + "start": 6925.72, + "end": 6929.32, + "probability": 0.9994 + }, + { + "start": 6929.96, + "end": 6931.18, + "probability": 0.9309 + }, + { + "start": 6931.7, + "end": 6932.92, + "probability": 0.6736 + }, + { + "start": 6933.44, + "end": 6935.38, + "probability": 0.7899 + }, + { + "start": 6935.88, + "end": 6937.08, + "probability": 0.9013 + }, + { + "start": 6937.16, + "end": 6939.38, + "probability": 0.9895 + }, + { + "start": 6939.82, + "end": 6941.86, + "probability": 0.9919 + }, + { + "start": 6942.38, + "end": 6944.14, + "probability": 0.99 + }, + { + "start": 6944.22, + "end": 6949.84, + "probability": 0.9803 + }, + { + "start": 6949.92, + "end": 6950.34, + "probability": 0.7262 + }, + { + "start": 6950.42, + "end": 6953.84, + "probability": 0.7827 + }, + { + "start": 6954.32, + "end": 6954.62, + "probability": 0.8645 + }, + { + "start": 6956.0, + "end": 6958.94, + "probability": 0.8548 + }, + { + "start": 6961.14, + "end": 6961.82, + "probability": 0.7509 + }, + { + "start": 6962.68, + "end": 6964.3, + "probability": 0.6339 + }, + { + "start": 6964.84, + "end": 6966.36, + "probability": 0.3015 + }, + { + "start": 6971.64, + "end": 6976.28, + "probability": 0.1432 + }, + { + "start": 7004.52, + "end": 7009.16, + "probability": 0.6077 + }, + { + "start": 7011.52, + "end": 7020.34, + "probability": 0.9933 + }, + { + "start": 7021.82, + "end": 7028.48, + "probability": 0.8896 + }, + { + "start": 7029.54, + "end": 7038.7, + "probability": 0.9958 + }, + { + "start": 7040.12, + "end": 7043.8, + "probability": 0.9933 + }, + { + "start": 7044.68, + "end": 7053.18, + "probability": 0.9931 + }, + { + "start": 7054.58, + "end": 7058.78, + "probability": 0.8347 + }, + { + "start": 7060.24, + "end": 7067.74, + "probability": 0.995 + }, + { + "start": 7069.48, + "end": 7074.8, + "probability": 0.8289 + }, + { + "start": 7076.18, + "end": 7080.02, + "probability": 0.8248 + }, + { + "start": 7081.88, + "end": 7087.72, + "probability": 0.8201 + }, + { + "start": 7087.72, + "end": 7095.62, + "probability": 0.9449 + }, + { + "start": 7096.34, + "end": 7098.3, + "probability": 0.8552 + }, + { + "start": 7099.26, + "end": 7101.54, + "probability": 0.9181 + }, + { + "start": 7102.38, + "end": 7106.44, + "probability": 0.9897 + }, + { + "start": 7108.42, + "end": 7112.42, + "probability": 0.9951 + }, + { + "start": 7113.6, + "end": 7115.36, + "probability": 0.8843 + }, + { + "start": 7116.4, + "end": 7125.94, + "probability": 0.988 + }, + { + "start": 7125.94, + "end": 7134.24, + "probability": 0.9996 + }, + { + "start": 7135.68, + "end": 7142.56, + "probability": 0.9932 + }, + { + "start": 7143.92, + "end": 7153.9, + "probability": 0.9935 + }, + { + "start": 7154.4, + "end": 7157.5, + "probability": 0.8103 + }, + { + "start": 7158.78, + "end": 7161.34, + "probability": 0.9275 + }, + { + "start": 7164.68, + "end": 7167.38, + "probability": 0.8952 + }, + { + "start": 7169.12, + "end": 7171.54, + "probability": 0.9997 + }, + { + "start": 7172.2, + "end": 7172.88, + "probability": 0.9978 + }, + { + "start": 7173.86, + "end": 7177.64, + "probability": 0.7085 + }, + { + "start": 7178.64, + "end": 7186.6, + "probability": 0.969 + }, + { + "start": 7187.5, + "end": 7189.2, + "probability": 0.8736 + }, + { + "start": 7190.4, + "end": 7193.58, + "probability": 0.8836 + }, + { + "start": 7194.58, + "end": 7199.06, + "probability": 0.9275 + }, + { + "start": 7199.82, + "end": 7205.56, + "probability": 0.9907 + }, + { + "start": 7205.56, + "end": 7212.36, + "probability": 0.9626 + }, + { + "start": 7213.68, + "end": 7217.44, + "probability": 0.9689 + }, + { + "start": 7218.62, + "end": 7224.34, + "probability": 0.971 + }, + { + "start": 7225.14, + "end": 7231.76, + "probability": 0.8619 + }, + { + "start": 7231.76, + "end": 7238.24, + "probability": 0.9862 + }, + { + "start": 7240.56, + "end": 7244.08, + "probability": 0.7608 + }, + { + "start": 7244.16, + "end": 7245.4, + "probability": 0.7488 + }, + { + "start": 7247.32, + "end": 7254.8, + "probability": 0.9963 + }, + { + "start": 7255.5, + "end": 7256.7, + "probability": 0.6544 + }, + { + "start": 7257.26, + "end": 7262.68, + "probability": 0.967 + }, + { + "start": 7263.7, + "end": 7264.74, + "probability": 0.5261 + }, + { + "start": 7265.48, + "end": 7266.34, + "probability": 0.8552 + }, + { + "start": 7268.08, + "end": 7270.94, + "probability": 0.9981 + }, + { + "start": 7271.94, + "end": 7279.56, + "probability": 0.9814 + }, + { + "start": 7279.56, + "end": 7286.5, + "probability": 0.9512 + }, + { + "start": 7286.6, + "end": 7289.52, + "probability": 0.2268 + }, + { + "start": 7289.66, + "end": 7290.34, + "probability": 0.7441 + }, + { + "start": 7290.36, + "end": 7294.02, + "probability": 0.8471 + }, + { + "start": 7294.74, + "end": 7296.66, + "probability": 0.0976 + }, + { + "start": 7296.82, + "end": 7297.12, + "probability": 0.1984 + }, + { + "start": 7297.22, + "end": 7297.8, + "probability": 0.1293 + }, + { + "start": 7297.8, + "end": 7298.22, + "probability": 0.2205 + }, + { + "start": 7298.22, + "end": 7300.2, + "probability": 0.5515 + }, + { + "start": 7300.36, + "end": 7300.44, + "probability": 0.1604 + }, + { + "start": 7300.52, + "end": 7301.9, + "probability": 0.8052 + }, + { + "start": 7302.1, + "end": 7303.78, + "probability": 0.8077 + }, + { + "start": 7303.98, + "end": 7304.38, + "probability": 0.6912 + }, + { + "start": 7304.76, + "end": 7305.18, + "probability": 0.4253 + }, + { + "start": 7307.88, + "end": 7308.72, + "probability": 0.4996 + }, + { + "start": 7308.86, + "end": 7309.7, + "probability": 0.8273 + }, + { + "start": 7309.82, + "end": 7310.85, + "probability": 0.4956 + }, + { + "start": 7311.94, + "end": 7312.52, + "probability": 0.0084 + }, + { + "start": 7312.52, + "end": 7312.52, + "probability": 0.0208 + }, + { + "start": 7312.52, + "end": 7313.82, + "probability": 0.2632 + }, + { + "start": 7313.82, + "end": 7314.28, + "probability": 0.1598 + }, + { + "start": 7314.86, + "end": 7315.36, + "probability": 0.2433 + }, + { + "start": 7316.4, + "end": 7321.16, + "probability": 0.2942 + }, + { + "start": 7321.22, + "end": 7321.42, + "probability": 0.044 + }, + { + "start": 7321.74, + "end": 7323.2, + "probability": 0.3831 + }, + { + "start": 7323.22, + "end": 7323.54, + "probability": 0.4471 + }, + { + "start": 7324.4, + "end": 7327.24, + "probability": 0.8486 + }, + { + "start": 7334.8, + "end": 7336.72, + "probability": 0.111 + }, + { + "start": 7338.19, + "end": 7342.96, + "probability": 0.8708 + }, + { + "start": 7343.56, + "end": 7344.24, + "probability": 0.8657 + }, + { + "start": 7344.3, + "end": 7345.08, + "probability": 0.7976 + }, + { + "start": 7345.16, + "end": 7348.56, + "probability": 0.9834 + }, + { + "start": 7349.46, + "end": 7350.66, + "probability": 0.9896 + }, + { + "start": 7351.3, + "end": 7354.32, + "probability": 0.9823 + }, + { + "start": 7356.28, + "end": 7364.46, + "probability": 0.9703 + }, + { + "start": 7365.58, + "end": 7369.98, + "probability": 0.9972 + }, + { + "start": 7370.66, + "end": 7372.32, + "probability": 0.7808 + }, + { + "start": 7373.36, + "end": 7375.16, + "probability": 0.9971 + }, + { + "start": 7375.22, + "end": 7379.69, + "probability": 0.9594 + }, + { + "start": 7380.02, + "end": 7380.5, + "probability": 0.6935 + }, + { + "start": 7380.6, + "end": 7381.1, + "probability": 0.885 + }, + { + "start": 7382.76, + "end": 7384.28, + "probability": 0.8764 + }, + { + "start": 7385.32, + "end": 7388.1, + "probability": 0.9827 + }, + { + "start": 7389.28, + "end": 7394.5, + "probability": 0.9487 + }, + { + "start": 7394.94, + "end": 7396.62, + "probability": 0.9341 + }, + { + "start": 7396.84, + "end": 7397.81, + "probability": 0.9349 + }, + { + "start": 7398.98, + "end": 7400.84, + "probability": 0.998 + }, + { + "start": 7401.64, + "end": 7402.68, + "probability": 0.7469 + }, + { + "start": 7403.36, + "end": 7404.54, + "probability": 0.5827 + }, + { + "start": 7405.38, + "end": 7409.38, + "probability": 0.9785 + }, + { + "start": 7410.4, + "end": 7416.22, + "probability": 0.7524 + }, + { + "start": 7416.64, + "end": 7419.12, + "probability": 0.9878 + }, + { + "start": 7419.64, + "end": 7422.0, + "probability": 0.8375 + }, + { + "start": 7422.68, + "end": 7425.32, + "probability": 0.9048 + }, + { + "start": 7426.9, + "end": 7431.66, + "probability": 0.8392 + }, + { + "start": 7431.84, + "end": 7432.28, + "probability": 0.0906 + }, + { + "start": 7432.32, + "end": 7432.42, + "probability": 0.2909 + }, + { + "start": 7432.6, + "end": 7432.6, + "probability": 0.1233 + }, + { + "start": 7432.6, + "end": 7436.62, + "probability": 0.7442 + }, + { + "start": 7436.66, + "end": 7437.28, + "probability": 0.1491 + }, + { + "start": 7437.52, + "end": 7437.52, + "probability": 0.6744 + }, + { + "start": 7438.18, + "end": 7439.78, + "probability": 0.6496 + }, + { + "start": 7440.04, + "end": 7440.98, + "probability": 0.7524 + }, + { + "start": 7441.12, + "end": 7443.26, + "probability": 0.7047 + }, + { + "start": 7443.54, + "end": 7446.3, + "probability": 0.7071 + }, + { + "start": 7447.0, + "end": 7451.42, + "probability": 0.7319 + }, + { + "start": 7451.8, + "end": 7462.48, + "probability": 0.9372 + }, + { + "start": 7463.1, + "end": 7464.94, + "probability": 0.9762 + }, + { + "start": 7465.38, + "end": 7467.08, + "probability": 0.9897 + }, + { + "start": 7467.22, + "end": 7469.08, + "probability": 0.9746 + }, + { + "start": 7469.64, + "end": 7472.48, + "probability": 0.999 + }, + { + "start": 7473.24, + "end": 7479.28, + "probability": 0.9877 + }, + { + "start": 7479.92, + "end": 7479.92, + "probability": 0.0896 + }, + { + "start": 7479.92, + "end": 7479.92, + "probability": 0.2555 + }, + { + "start": 7479.92, + "end": 7488.52, + "probability": 0.9863 + }, + { + "start": 7488.9, + "end": 7491.1, + "probability": 0.7826 + }, + { + "start": 7491.18, + "end": 7495.94, + "probability": 0.8423 + }, + { + "start": 7496.56, + "end": 7497.94, + "probability": 0.1111 + }, + { + "start": 7497.98, + "end": 7498.84, + "probability": 0.1024 + }, + { + "start": 7499.78, + "end": 7500.16, + "probability": 0.1315 + }, + { + "start": 7501.1, + "end": 7501.42, + "probability": 0.107 + }, + { + "start": 7501.66, + "end": 7502.04, + "probability": 0.1551 + }, + { + "start": 7502.04, + "end": 7502.04, + "probability": 0.0275 + }, + { + "start": 7502.04, + "end": 7502.04, + "probability": 0.0765 + }, + { + "start": 7502.04, + "end": 7503.16, + "probability": 0.2461 + }, + { + "start": 7505.08, + "end": 7508.18, + "probability": 0.4169 + }, + { + "start": 7508.48, + "end": 7510.64, + "probability": 0.5194 + }, + { + "start": 7511.3, + "end": 7511.48, + "probability": 0.6169 + }, + { + "start": 7512.18, + "end": 7513.55, + "probability": 0.0495 + }, + { + "start": 7513.64, + "end": 7513.78, + "probability": 0.0463 + }, + { + "start": 7514.66, + "end": 7514.66, + "probability": 0.048 + }, + { + "start": 7514.94, + "end": 7517.54, + "probability": 0.7988 + }, + { + "start": 7517.64, + "end": 7518.2, + "probability": 0.427 + }, + { + "start": 7518.26, + "end": 7519.26, + "probability": 0.4767 + }, + { + "start": 7520.02, + "end": 7524.62, + "probability": 0.218 + }, + { + "start": 7524.72, + "end": 7529.18, + "probability": 0.2163 + }, + { + "start": 7529.42, + "end": 7530.12, + "probability": 0.1515 + }, + { + "start": 7530.58, + "end": 7530.68, + "probability": 0.0687 + }, + { + "start": 7530.68, + "end": 7531.88, + "probability": 0.8726 + }, + { + "start": 7532.1, + "end": 7533.04, + "probability": 0.4732 + }, + { + "start": 7533.12, + "end": 7534.44, + "probability": 0.859 + }, + { + "start": 7534.76, + "end": 7535.64, + "probability": 0.6938 + }, + { + "start": 7535.82, + "end": 7537.44, + "probability": 0.1221 + }, + { + "start": 7537.6, + "end": 7537.68, + "probability": 0.2181 + }, + { + "start": 7537.7, + "end": 7537.98, + "probability": 0.2969 + }, + { + "start": 7538.24, + "end": 7540.0, + "probability": 0.8721 + }, + { + "start": 7540.28, + "end": 7540.4, + "probability": 0.5202 + }, + { + "start": 7540.52, + "end": 7542.46, + "probability": 0.2567 + }, + { + "start": 7542.82, + "end": 7543.46, + "probability": 0.1592 + }, + { + "start": 7543.54, + "end": 7544.94, + "probability": 0.5748 + }, + { + "start": 7545.32, + "end": 7549.76, + "probability": 0.8942 + }, + { + "start": 7549.76, + "end": 7551.74, + "probability": 0.5223 + }, + { + "start": 7551.96, + "end": 7556.24, + "probability": 0.9912 + }, + { + "start": 7556.62, + "end": 7558.54, + "probability": 0.6776 + }, + { + "start": 7558.62, + "end": 7561.74, + "probability": 0.5706 + }, + { + "start": 7562.48, + "end": 7565.88, + "probability": 0.97 + }, + { + "start": 7566.34, + "end": 7567.9, + "probability": 0.8436 + }, + { + "start": 7569.44, + "end": 7572.82, + "probability": 0.7935 + }, + { + "start": 7573.2, + "end": 7575.94, + "probability": 0.8117 + }, + { + "start": 7576.34, + "end": 7580.34, + "probability": 0.9964 + }, + { + "start": 7580.66, + "end": 7582.2, + "probability": 0.9976 + }, + { + "start": 7582.42, + "end": 7584.26, + "probability": 0.9714 + }, + { + "start": 7584.74, + "end": 7586.06, + "probability": 0.8605 + }, + { + "start": 7586.9, + "end": 7588.96, + "probability": 0.9319 + }, + { + "start": 7589.26, + "end": 7593.16, + "probability": 0.9859 + }, + { + "start": 7593.3, + "end": 7594.44, + "probability": 0.6642 + }, + { + "start": 7594.8, + "end": 7595.92, + "probability": 0.3577 + }, + { + "start": 7595.94, + "end": 7597.46, + "probability": 0.8207 + }, + { + "start": 7597.6, + "end": 7598.44, + "probability": 0.8257 + }, + { + "start": 7598.54, + "end": 7602.1, + "probability": 0.9954 + }, + { + "start": 7602.1, + "end": 7605.46, + "probability": 0.9437 + }, + { + "start": 7607.04, + "end": 7609.12, + "probability": 0.7296 + }, + { + "start": 7609.12, + "end": 7610.7, + "probability": 0.6047 + }, + { + "start": 7612.9, + "end": 7616.64, + "probability": 0.044 + }, + { + "start": 7630.36, + "end": 7631.74, + "probability": 0.027 + }, + { + "start": 7631.74, + "end": 7631.86, + "probability": 0.0231 + }, + { + "start": 7631.86, + "end": 7631.86, + "probability": 0.2664 + }, + { + "start": 7631.86, + "end": 7636.16, + "probability": 0.8178 + }, + { + "start": 7636.34, + "end": 7642.2, + "probability": 0.6628 + }, + { + "start": 7642.32, + "end": 7643.58, + "probability": 0.8613 + }, + { + "start": 7647.92, + "end": 7648.78, + "probability": 0.7995 + }, + { + "start": 7648.88, + "end": 7649.2, + "probability": 0.5729 + }, + { + "start": 7649.4, + "end": 7651.12, + "probability": 0.7307 + }, + { + "start": 7651.8, + "end": 7652.34, + "probability": 0.2502 + }, + { + "start": 7655.48, + "end": 7658.46, + "probability": 0.9221 + }, + { + "start": 7658.58, + "end": 7659.74, + "probability": 0.8366 + }, + { + "start": 7660.14, + "end": 7660.42, + "probability": 0.4093 + }, + { + "start": 7661.29, + "end": 7663.22, + "probability": 0.6805 + }, + { + "start": 7663.3, + "end": 7664.62, + "probability": 0.5523 + }, + { + "start": 7665.06, + "end": 7668.56, + "probability": 0.639 + }, + { + "start": 7668.84, + "end": 7668.84, + "probability": 0.719 + }, + { + "start": 7669.08, + "end": 7669.82, + "probability": 0.5592 + }, + { + "start": 7670.26, + "end": 7671.9, + "probability": 0.6273 + }, + { + "start": 7672.14, + "end": 7673.82, + "probability": 0.9696 + }, + { + "start": 7674.72, + "end": 7675.68, + "probability": 0.9253 + }, + { + "start": 7676.5, + "end": 7678.73, + "probability": 0.8385 + }, + { + "start": 7679.46, + "end": 7685.56, + "probability": 0.9875 + }, + { + "start": 7685.56, + "end": 7690.7, + "probability": 0.8871 + }, + { + "start": 7691.86, + "end": 7693.08, + "probability": 0.6132 + }, + { + "start": 7693.74, + "end": 7695.12, + "probability": 0.9819 + }, + { + "start": 7695.2, + "end": 7695.58, + "probability": 0.87 + }, + { + "start": 7697.14, + "end": 7697.5, + "probability": 0.2678 + }, + { + "start": 7719.32, + "end": 7720.66, + "probability": 0.6992 + }, + { + "start": 7721.68, + "end": 7723.42, + "probability": 0.93 + }, + { + "start": 7727.4, + "end": 7728.88, + "probability": 0.5611 + }, + { + "start": 7730.26, + "end": 7733.79, + "probability": 0.9966 + }, + { + "start": 7734.06, + "end": 7738.72, + "probability": 0.8333 + }, + { + "start": 7738.92, + "end": 7740.14, + "probability": 0.8755 + }, + { + "start": 7741.3, + "end": 7750.76, + "probability": 0.9964 + }, + { + "start": 7751.32, + "end": 7753.44, + "probability": 0.9569 + }, + { + "start": 7762.66, + "end": 7763.64, + "probability": 0.5273 + }, + { + "start": 7764.82, + "end": 7767.32, + "probability": 0.6477 + }, + { + "start": 7768.86, + "end": 7773.4, + "probability": 0.9835 + }, + { + "start": 7774.18, + "end": 7776.38, + "probability": 0.894 + }, + { + "start": 7776.66, + "end": 7778.1, + "probability": 0.8581 + }, + { + "start": 7778.24, + "end": 7779.02, + "probability": 0.8596 + }, + { + "start": 7779.08, + "end": 7780.24, + "probability": 0.9612 + }, + { + "start": 7781.04, + "end": 7782.62, + "probability": 0.601 + }, + { + "start": 7783.78, + "end": 7786.67, + "probability": 0.7321 + }, + { + "start": 7787.25, + "end": 7790.74, + "probability": 0.9438 + }, + { + "start": 7790.96, + "end": 7793.16, + "probability": 0.516 + }, + { + "start": 7793.16, + "end": 7793.16, + "probability": 0.3142 + }, + { + "start": 7793.16, + "end": 7794.62, + "probability": 0.545 + }, + { + "start": 7797.26, + "end": 7797.82, + "probability": 0.8781 + }, + { + "start": 7797.96, + "end": 7801.82, + "probability": 0.9945 + }, + { + "start": 7802.52, + "end": 7805.12, + "probability": 0.9182 + }, + { + "start": 7807.88, + "end": 7810.98, + "probability": 0.9956 + }, + { + "start": 7812.04, + "end": 7819.58, + "probability": 0.9992 + }, + { + "start": 7821.18, + "end": 7823.32, + "probability": 0.8704 + }, + { + "start": 7824.82, + "end": 7827.74, + "probability": 0.9861 + }, + { + "start": 7828.28, + "end": 7836.12, + "probability": 0.9326 + }, + { + "start": 7836.98, + "end": 7841.7, + "probability": 0.9708 + }, + { + "start": 7843.46, + "end": 7844.74, + "probability": 0.9276 + }, + { + "start": 7845.88, + "end": 7849.94, + "probability": 0.9578 + }, + { + "start": 7850.66, + "end": 7856.26, + "probability": 0.9807 + }, + { + "start": 7857.56, + "end": 7861.96, + "probability": 0.9004 + }, + { + "start": 7863.72, + "end": 7866.82, + "probability": 0.9689 + }, + { + "start": 7867.68, + "end": 7875.3, + "probability": 0.9927 + }, + { + "start": 7875.68, + "end": 7876.86, + "probability": 0.6786 + }, + { + "start": 7877.7, + "end": 7881.66, + "probability": 0.9235 + }, + { + "start": 7883.6, + "end": 7889.08, + "probability": 0.9937 + }, + { + "start": 7889.2, + "end": 7889.58, + "probability": 0.7247 + }, + { + "start": 7891.24, + "end": 7896.96, + "probability": 0.9941 + }, + { + "start": 7897.74, + "end": 7899.3, + "probability": 0.9185 + }, + { + "start": 7900.34, + "end": 7901.42, + "probability": 0.7602 + }, + { + "start": 7902.46, + "end": 7906.96, + "probability": 0.9958 + }, + { + "start": 7908.02, + "end": 7912.9, + "probability": 0.9744 + }, + { + "start": 7913.62, + "end": 7914.72, + "probability": 0.9091 + }, + { + "start": 7915.62, + "end": 7918.56, + "probability": 0.9897 + }, + { + "start": 7919.56, + "end": 7924.0, + "probability": 0.6214 + }, + { + "start": 7924.08, + "end": 7925.48, + "probability": 0.6139 + }, + { + "start": 7925.84, + "end": 7927.38, + "probability": 0.6377 + }, + { + "start": 7927.64, + "end": 7928.32, + "probability": 0.4912 + }, + { + "start": 7928.66, + "end": 7930.02, + "probability": 0.8 + }, + { + "start": 7930.2, + "end": 7931.74, + "probability": 0.9866 + }, + { + "start": 7932.12, + "end": 7932.94, + "probability": 0.6467 + }, + { + "start": 7933.32, + "end": 7934.24, + "probability": 0.6906 + }, + { + "start": 7934.28, + "end": 7935.08, + "probability": 0.3813 + }, + { + "start": 7935.3, + "end": 7936.2, + "probability": 0.4593 + }, + { + "start": 7936.3, + "end": 7937.08, + "probability": 0.219 + }, + { + "start": 7937.08, + "end": 7938.24, + "probability": 0.6948 + }, + { + "start": 7938.46, + "end": 7939.12, + "probability": 0.9406 + }, + { + "start": 7939.44, + "end": 7940.22, + "probability": 0.8839 + }, + { + "start": 7940.3, + "end": 7941.42, + "probability": 0.9671 + }, + { + "start": 7941.58, + "end": 7942.34, + "probability": 0.967 + }, + { + "start": 7942.66, + "end": 7943.54, + "probability": 0.8902 + }, + { + "start": 7943.62, + "end": 7945.14, + "probability": 0.8722 + }, + { + "start": 7945.28, + "end": 7945.96, + "probability": 0.9709 + }, + { + "start": 7946.3, + "end": 7947.22, + "probability": 0.9803 + }, + { + "start": 7947.3, + "end": 7948.14, + "probability": 0.7141 + }, + { + "start": 7948.66, + "end": 7950.4, + "probability": 0.7599 + }, + { + "start": 7950.92, + "end": 7951.9, + "probability": 0.7463 + }, + { + "start": 7952.02, + "end": 7953.02, + "probability": 0.8436 + }, + { + "start": 7953.36, + "end": 7953.84, + "probability": 0.5902 + }, + { + "start": 7954.3, + "end": 7955.26, + "probability": 0.8365 + }, + { + "start": 7955.42, + "end": 7956.1, + "probability": 0.9819 + }, + { + "start": 7956.12, + "end": 7957.28, + "probability": 0.921 + }, + { + "start": 7957.4, + "end": 7957.9, + "probability": 0.9938 + }, + { + "start": 7957.96, + "end": 7958.72, + "probability": 0.9393 + }, + { + "start": 7958.82, + "end": 7959.18, + "probability": 0.9423 + }, + { + "start": 7959.26, + "end": 7960.34, + "probability": 0.7493 + }, + { + "start": 7960.64, + "end": 7961.04, + "probability": 0.9302 + }, + { + "start": 7961.08, + "end": 7961.92, + "probability": 0.8252 + }, + { + "start": 7962.72, + "end": 7965.08, + "probability": 0.9277 + }, + { + "start": 7965.8, + "end": 7968.74, + "probability": 0.8425 + }, + { + "start": 7969.34, + "end": 7972.12, + "probability": 0.9506 + }, + { + "start": 7972.8, + "end": 7977.26, + "probability": 0.7593 + }, + { + "start": 7978.08, + "end": 7981.96, + "probability": 0.994 + }, + { + "start": 7983.38, + "end": 7985.66, + "probability": 0.765 + }, + { + "start": 7986.42, + "end": 7992.1, + "probability": 0.9884 + }, + { + "start": 7992.78, + "end": 7993.4, + "probability": 0.7835 + }, + { + "start": 7993.68, + "end": 7996.36, + "probability": 0.9902 + }, + { + "start": 7996.82, + "end": 7997.26, + "probability": 0.878 + }, + { + "start": 7997.42, + "end": 8002.36, + "probability": 0.9939 + }, + { + "start": 8003.18, + "end": 8006.76, + "probability": 0.845 + }, + { + "start": 8006.88, + "end": 8007.14, + "probability": 0.8989 + }, + { + "start": 8007.2, + "end": 8008.34, + "probability": 0.9318 + }, + { + "start": 8008.88, + "end": 8009.14, + "probability": 0.8118 + }, + { + "start": 8009.24, + "end": 8015.88, + "probability": 0.923 + }, + { + "start": 8016.48, + "end": 8019.02, + "probability": 0.7535 + }, + { + "start": 8019.64, + "end": 8025.6, + "probability": 0.9907 + }, + { + "start": 8026.9, + "end": 8027.08, + "probability": 0.3233 + }, + { + "start": 8027.08, + "end": 8032.16, + "probability": 0.9845 + }, + { + "start": 8032.88, + "end": 8036.22, + "probability": 0.9645 + }, + { + "start": 8036.44, + "end": 8038.98, + "probability": 0.8322 + }, + { + "start": 8039.56, + "end": 8041.92, + "probability": 0.9212 + }, + { + "start": 8042.9, + "end": 8043.84, + "probability": 0.5125 + }, + { + "start": 8043.96, + "end": 8044.72, + "probability": 0.8319 + }, + { + "start": 8044.9, + "end": 8045.92, + "probability": 0.9405 + }, + { + "start": 8046.08, + "end": 8048.12, + "probability": 0.9833 + }, + { + "start": 8049.24, + "end": 8057.92, + "probability": 0.9951 + }, + { + "start": 8058.86, + "end": 8063.16, + "probability": 0.9989 + }, + { + "start": 8063.16, + "end": 8067.76, + "probability": 0.9989 + }, + { + "start": 8068.7, + "end": 8071.8, + "probability": 0.9714 + }, + { + "start": 8072.38, + "end": 8072.92, + "probability": 0.6522 + }, + { + "start": 8073.18, + "end": 8076.66, + "probability": 0.9653 + }, + { + "start": 8077.4, + "end": 8078.13, + "probability": 0.5675 + }, + { + "start": 8079.66, + "end": 8080.12, + "probability": 0.8953 + }, + { + "start": 8081.1, + "end": 8082.12, + "probability": 0.9476 + }, + { + "start": 8083.6, + "end": 8085.84, + "probability": 0.9656 + }, + { + "start": 8086.82, + "end": 8087.76, + "probability": 0.9773 + }, + { + "start": 8088.6, + "end": 8089.82, + "probability": 0.9866 + }, + { + "start": 8090.7, + "end": 8095.2, + "probability": 0.9989 + }, + { + "start": 8095.8, + "end": 8099.32, + "probability": 0.9934 + }, + { + "start": 8100.1, + "end": 8100.46, + "probability": 0.7398 + }, + { + "start": 8100.6, + "end": 8101.2, + "probability": 0.7138 + }, + { + "start": 8101.36, + "end": 8106.68, + "probability": 0.9912 + }, + { + "start": 8106.68, + "end": 8108.98, + "probability": 0.9723 + }, + { + "start": 8109.84, + "end": 8113.14, + "probability": 0.9937 + }, + { + "start": 8113.64, + "end": 8115.2, + "probability": 0.9438 + }, + { + "start": 8115.32, + "end": 8116.46, + "probability": 0.917 + }, + { + "start": 8117.24, + "end": 8120.22, + "probability": 0.9631 + }, + { + "start": 8120.8, + "end": 8124.36, + "probability": 0.9546 + }, + { + "start": 8124.84, + "end": 8125.26, + "probability": 0.8816 + }, + { + "start": 8125.64, + "end": 8126.04, + "probability": 0.8923 + }, + { + "start": 8127.86, + "end": 8132.08, + "probability": 0.9774 + }, + { + "start": 8133.04, + "end": 8135.2, + "probability": 0.7304 + }, + { + "start": 8136.4, + "end": 8141.22, + "probability": 0.8916 + }, + { + "start": 8142.16, + "end": 8149.36, + "probability": 0.9757 + }, + { + "start": 8149.78, + "end": 8154.68, + "probability": 0.9883 + }, + { + "start": 8155.18, + "end": 8158.28, + "probability": 0.9722 + }, + { + "start": 8159.0, + "end": 8162.26, + "probability": 0.8494 + }, + { + "start": 8163.34, + "end": 8163.68, + "probability": 0.8239 + }, + { + "start": 8163.84, + "end": 8164.49, + "probability": 0.9347 + }, + { + "start": 8164.74, + "end": 8166.74, + "probability": 0.9922 + }, + { + "start": 8167.4, + "end": 8168.76, + "probability": 0.8834 + }, + { + "start": 8169.48, + "end": 8173.06, + "probability": 0.9956 + }, + { + "start": 8173.7, + "end": 8175.78, + "probability": 0.9764 + }, + { + "start": 8176.28, + "end": 8178.46, + "probability": 0.9973 + }, + { + "start": 8178.78, + "end": 8179.46, + "probability": 0.739 + }, + { + "start": 8179.96, + "end": 8185.42, + "probability": 0.979 + }, + { + "start": 8185.52, + "end": 8186.5, + "probability": 0.8975 + }, + { + "start": 8187.06, + "end": 8188.14, + "probability": 0.7352 + }, + { + "start": 8188.66, + "end": 8190.7, + "probability": 0.9441 + }, + { + "start": 8191.1, + "end": 8191.66, + "probability": 0.5865 + }, + { + "start": 8192.38, + "end": 8192.54, + "probability": 0.5752 + }, + { + "start": 8193.18, + "end": 8193.84, + "probability": 0.7383 + }, + { + "start": 8194.44, + "end": 8196.8, + "probability": 0.9265 + }, + { + "start": 8197.6, + "end": 8200.46, + "probability": 0.9976 + }, + { + "start": 8200.58, + "end": 8200.96, + "probability": 0.1899 + }, + { + "start": 8201.14, + "end": 8205.08, + "probability": 0.958 + }, + { + "start": 8205.9, + "end": 8205.92, + "probability": 0.2511 + }, + { + "start": 8206.2, + "end": 8210.02, + "probability": 0.9176 + }, + { + "start": 8210.5, + "end": 8212.68, + "probability": 0.9857 + }, + { + "start": 8213.66, + "end": 8215.15, + "probability": 0.9817 + }, + { + "start": 8215.46, + "end": 8217.08, + "probability": 0.9438 + }, + { + "start": 8217.22, + "end": 8217.92, + "probability": 0.7966 + }, + { + "start": 8219.16, + "end": 8219.74, + "probability": 0.9401 + }, + { + "start": 8220.66, + "end": 8224.96, + "probability": 0.9961 + }, + { + "start": 8226.36, + "end": 8228.04, + "probability": 0.9246 + }, + { + "start": 8228.26, + "end": 8234.26, + "probability": 0.9949 + }, + { + "start": 8234.76, + "end": 8235.22, + "probability": 0.9402 + }, + { + "start": 8235.24, + "end": 8236.84, + "probability": 0.9359 + }, + { + "start": 8236.96, + "end": 8238.98, + "probability": 0.992 + }, + { + "start": 8238.98, + "end": 8242.18, + "probability": 0.9987 + }, + { + "start": 8243.08, + "end": 8245.01, + "probability": 0.9508 + }, + { + "start": 8245.82, + "end": 8246.18, + "probability": 0.7091 + }, + { + "start": 8246.36, + "end": 8247.99, + "probability": 0.9404 + }, + { + "start": 8248.5, + "end": 8249.71, + "probability": 0.9136 + }, + { + "start": 8250.06, + "end": 8253.5, + "probability": 0.9961 + }, + { + "start": 8254.34, + "end": 8256.02, + "probability": 0.9871 + }, + { + "start": 8256.54, + "end": 8257.28, + "probability": 0.5868 + }, + { + "start": 8257.78, + "end": 8264.52, + "probability": 0.9696 + }, + { + "start": 8264.68, + "end": 8266.38, + "probability": 0.8926 + }, + { + "start": 8266.94, + "end": 8267.0, + "probability": 0.0845 + }, + { + "start": 8267.08, + "end": 8270.52, + "probability": 0.9376 + }, + { + "start": 8270.9, + "end": 8272.02, + "probability": 0.9313 + }, + { + "start": 8272.4, + "end": 8274.88, + "probability": 0.748 + }, + { + "start": 8275.18, + "end": 8277.46, + "probability": 0.9349 + }, + { + "start": 8278.54, + "end": 8282.36, + "probability": 0.6986 + }, + { + "start": 8283.04, + "end": 8289.8, + "probability": 0.9941 + }, + { + "start": 8290.34, + "end": 8293.92, + "probability": 0.9664 + }, + { + "start": 8294.46, + "end": 8295.5, + "probability": 0.9644 + }, + { + "start": 8295.6, + "end": 8296.24, + "probability": 0.9818 + }, + { + "start": 8296.34, + "end": 8300.54, + "probability": 0.6952 + }, + { + "start": 8301.26, + "end": 8305.94, + "probability": 0.9951 + }, + { + "start": 8306.02, + "end": 8307.18, + "probability": 0.9729 + }, + { + "start": 8307.76, + "end": 8309.72, + "probability": 0.9021 + }, + { + "start": 8309.98, + "end": 8310.38, + "probability": 0.8017 + }, + { + "start": 8310.5, + "end": 8311.78, + "probability": 0.9562 + }, + { + "start": 8312.2, + "end": 8313.38, + "probability": 0.7943 + }, + { + "start": 8313.56, + "end": 8313.56, + "probability": 0.0117 + }, + { + "start": 8313.56, + "end": 8315.36, + "probability": 0.8914 + }, + { + "start": 8315.42, + "end": 8316.42, + "probability": 0.8675 + }, + { + "start": 8316.7, + "end": 8317.4, + "probability": 0.9724 + }, + { + "start": 8317.86, + "end": 8322.22, + "probability": 0.9995 + }, + { + "start": 8322.36, + "end": 8325.6, + "probability": 0.8919 + }, + { + "start": 8326.38, + "end": 8328.6, + "probability": 0.9646 + }, + { + "start": 8329.1, + "end": 8330.78, + "probability": 0.9662 + }, + { + "start": 8331.26, + "end": 8335.98, + "probability": 0.9854 + }, + { + "start": 8336.56, + "end": 8339.9, + "probability": 0.9086 + }, + { + "start": 8340.66, + "end": 8342.34, + "probability": 0.979 + }, + { + "start": 8342.94, + "end": 8345.36, + "probability": 0.9453 + }, + { + "start": 8346.0, + "end": 8346.86, + "probability": 0.9434 + }, + { + "start": 8347.4, + "end": 8348.48, + "probability": 0.9897 + }, + { + "start": 8348.9, + "end": 8355.64, + "probability": 0.9714 + }, + { + "start": 8356.22, + "end": 8358.18, + "probability": 0.7598 + }, + { + "start": 8358.52, + "end": 8361.34, + "probability": 0.9824 + }, + { + "start": 8361.88, + "end": 8364.9, + "probability": 0.9812 + }, + { + "start": 8364.98, + "end": 8365.56, + "probability": 0.9173 + }, + { + "start": 8365.62, + "end": 8367.14, + "probability": 0.5151 + }, + { + "start": 8368.48, + "end": 8368.78, + "probability": 0.3668 + }, + { + "start": 8371.22, + "end": 8371.78, + "probability": 0.6385 + }, + { + "start": 8373.14, + "end": 8374.4, + "probability": 0.6322 + }, + { + "start": 8374.74, + "end": 8377.2, + "probability": 0.981 + }, + { + "start": 8377.76, + "end": 8378.68, + "probability": 0.9573 + }, + { + "start": 8379.34, + "end": 8381.14, + "probability": 0.9376 + }, + { + "start": 8381.44, + "end": 8381.74, + "probability": 0.936 + }, + { + "start": 8387.22, + "end": 8389.5, + "probability": 0.3573 + }, + { + "start": 8390.26, + "end": 8390.76, + "probability": 0.0864 + }, + { + "start": 8392.26, + "end": 8393.48, + "probability": 0.1343 + }, + { + "start": 8394.94, + "end": 8397.04, + "probability": 0.332 + }, + { + "start": 8397.98, + "end": 8399.4, + "probability": 0.0783 + }, + { + "start": 8400.86, + "end": 8403.36, + "probability": 0.0723 + }, + { + "start": 8409.56, + "end": 8409.56, + "probability": 0.2383 + }, + { + "start": 8415.22, + "end": 8418.18, + "probability": 0.2548 + }, + { + "start": 8429.36, + "end": 8430.72, + "probability": 0.3313 + }, + { + "start": 8431.0, + "end": 8431.7, + "probability": 0.1968 + }, + { + "start": 8431.7, + "end": 8432.04, + "probability": 0.1276 + }, + { + "start": 8432.38, + "end": 8433.48, + "probability": 0.1531 + }, + { + "start": 8458.58, + "end": 8462.76, + "probability": 0.887 + }, + { + "start": 8462.94, + "end": 8465.92, + "probability": 0.8499 + }, + { + "start": 8466.08, + "end": 8468.26, + "probability": 0.7195 + }, + { + "start": 8468.54, + "end": 8469.54, + "probability": 0.8439 + }, + { + "start": 8469.64, + "end": 8472.26, + "probability": 0.9775 + }, + { + "start": 8473.0, + "end": 8475.74, + "probability": 0.9669 + }, + { + "start": 8476.0, + "end": 8478.12, + "probability": 0.9538 + }, + { + "start": 8478.6, + "end": 8479.54, + "probability": 0.7527 + }, + { + "start": 8480.17, + "end": 8483.58, + "probability": 0.8904 + }, + { + "start": 8484.2, + "end": 8485.16, + "probability": 0.8396 + }, + { + "start": 8485.94, + "end": 8487.14, + "probability": 0.9956 + }, + { + "start": 8487.24, + "end": 8490.48, + "probability": 0.9974 + }, + { + "start": 8491.52, + "end": 8496.02, + "probability": 0.9737 + }, + { + "start": 8496.68, + "end": 8498.8, + "probability": 0.8546 + }, + { + "start": 8499.46, + "end": 8500.02, + "probability": 0.2966 + }, + { + "start": 8500.72, + "end": 8502.06, + "probability": 0.844 + }, + { + "start": 8503.02, + "end": 8505.32, + "probability": 0.9347 + }, + { + "start": 8506.04, + "end": 8506.94, + "probability": 0.8989 + }, + { + "start": 8507.76, + "end": 8513.44, + "probability": 0.9595 + }, + { + "start": 8514.2, + "end": 8521.68, + "probability": 0.6726 + }, + { + "start": 8521.68, + "end": 8524.36, + "probability": 0.9976 + }, + { + "start": 8524.4, + "end": 8525.38, + "probability": 0.7559 + }, + { + "start": 8525.94, + "end": 8531.42, + "probability": 0.9922 + }, + { + "start": 8532.94, + "end": 8533.38, + "probability": 0.3505 + }, + { + "start": 8533.52, + "end": 8536.6, + "probability": 0.9354 + }, + { + "start": 8537.04, + "end": 8540.1, + "probability": 0.9466 + }, + { + "start": 8540.4, + "end": 8542.86, + "probability": 0.9946 + }, + { + "start": 8545.08, + "end": 8547.64, + "probability": 0.9985 + }, + { + "start": 8548.46, + "end": 8551.28, + "probability": 0.958 + }, + { + "start": 8552.34, + "end": 8553.14, + "probability": 0.944 + }, + { + "start": 8553.18, + "end": 8553.38, + "probability": 0.746 + }, + { + "start": 8553.48, + "end": 8554.24, + "probability": 0.7341 + }, + { + "start": 8554.28, + "end": 8554.91, + "probability": 0.958 + }, + { + "start": 8556.2, + "end": 8562.6, + "probability": 0.9989 + }, + { + "start": 8563.7, + "end": 8567.58, + "probability": 0.9523 + }, + { + "start": 8568.76, + "end": 8572.64, + "probability": 0.9909 + }, + { + "start": 8572.64, + "end": 8578.3, + "probability": 0.9902 + }, + { + "start": 8578.36, + "end": 8578.54, + "probability": 0.4099 + }, + { + "start": 8578.56, + "end": 8578.82, + "probability": 0.6264 + }, + { + "start": 8578.94, + "end": 8579.48, + "probability": 0.9414 + }, + { + "start": 8580.32, + "end": 8583.25, + "probability": 0.9821 + }, + { + "start": 8583.96, + "end": 8590.92, + "probability": 0.9323 + }, + { + "start": 8590.92, + "end": 8595.18, + "probability": 0.9947 + }, + { + "start": 8595.84, + "end": 8596.66, + "probability": 0.4983 + }, + { + "start": 8598.66, + "end": 8605.08, + "probability": 0.2939 + }, + { + "start": 8606.97, + "end": 8612.54, + "probability": 0.9152 + }, + { + "start": 8613.08, + "end": 8615.1, + "probability": 0.7856 + }, + { + "start": 8615.26, + "end": 8616.06, + "probability": 0.8332 + }, + { + "start": 8616.78, + "end": 8618.12, + "probability": 0.7762 + }, + { + "start": 8618.2, + "end": 8619.6, + "probability": 0.6963 + }, + { + "start": 8619.92, + "end": 8625.6, + "probability": 0.8569 + }, + { + "start": 8625.66, + "end": 8626.28, + "probability": 0.4973 + }, + { + "start": 8626.32, + "end": 8626.64, + "probability": 0.6032 + }, + { + "start": 8627.0, + "end": 8627.72, + "probability": 0.7983 + }, + { + "start": 8628.12, + "end": 8629.74, + "probability": 0.9722 + }, + { + "start": 8630.12, + "end": 8630.78, + "probability": 0.8761 + }, + { + "start": 8631.14, + "end": 8633.1, + "probability": 0.9697 + }, + { + "start": 8633.2, + "end": 8634.1, + "probability": 0.7805 + }, + { + "start": 8634.4, + "end": 8638.38, + "probability": 0.7757 + }, + { + "start": 8638.4, + "end": 8642.54, + "probability": 0.9922 + }, + { + "start": 8642.88, + "end": 8646.8, + "probability": 0.9976 + }, + { + "start": 8648.28, + "end": 8649.16, + "probability": 0.7234 + }, + { + "start": 8649.86, + "end": 8650.74, + "probability": 0.633 + }, + { + "start": 8650.8, + "end": 8658.28, + "probability": 0.9807 + }, + { + "start": 8658.28, + "end": 8662.9, + "probability": 0.9818 + }, + { + "start": 8663.28, + "end": 8664.02, + "probability": 0.7681 + }, + { + "start": 8664.74, + "end": 8666.76, + "probability": 0.8593 + }, + { + "start": 8667.18, + "end": 8667.42, + "probability": 0.4437 + }, + { + "start": 8667.52, + "end": 8668.1, + "probability": 0.4304 + }, + { + "start": 8668.22, + "end": 8669.22, + "probability": 0.9528 + }, + { + "start": 8669.72, + "end": 8670.18, + "probability": 0.5802 + }, + { + "start": 8670.5, + "end": 8673.66, + "probability": 0.7605 + }, + { + "start": 8673.66, + "end": 8674.64, + "probability": 0.8453 + }, + { + "start": 8675.84, + "end": 8677.54, + "probability": 0.9802 + }, + { + "start": 8677.6, + "end": 8678.96, + "probability": 0.8977 + }, + { + "start": 8679.06, + "end": 8680.84, + "probability": 0.9507 + }, + { + "start": 8681.28, + "end": 8685.7, + "probability": 0.8546 + }, + { + "start": 8685.88, + "end": 8686.34, + "probability": 0.837 + }, + { + "start": 8686.46, + "end": 8687.24, + "probability": 0.636 + }, + { + "start": 8687.4, + "end": 8688.08, + "probability": 0.7134 + }, + { + "start": 8688.16, + "end": 8688.64, + "probability": 0.5388 + }, + { + "start": 8688.68, + "end": 8690.28, + "probability": 0.8789 + }, + { + "start": 8690.56, + "end": 8691.0, + "probability": 0.9074 + }, + { + "start": 8691.28, + "end": 8694.02, + "probability": 0.6678 + }, + { + "start": 8694.78, + "end": 8696.36, + "probability": 0.7145 + }, + { + "start": 8696.36, + "end": 8696.36, + "probability": 0.0015 + }, + { + "start": 8696.36, + "end": 8696.5, + "probability": 0.8273 + }, + { + "start": 8696.6, + "end": 8702.96, + "probability": 0.9886 + }, + { + "start": 8703.14, + "end": 8704.6, + "probability": 0.6754 + }, + { + "start": 8705.36, + "end": 8707.38, + "probability": 0.9539 + }, + { + "start": 8708.22, + "end": 8711.58, + "probability": 0.7295 + }, + { + "start": 8711.96, + "end": 8712.7, + "probability": 0.5387 + }, + { + "start": 8713.04, + "end": 8713.84, + "probability": 0.8644 + }, + { + "start": 8713.96, + "end": 8719.2, + "probability": 0.9567 + }, + { + "start": 8719.5, + "end": 8721.2, + "probability": 0.8264 + }, + { + "start": 8721.62, + "end": 8723.48, + "probability": 0.9203 + }, + { + "start": 8724.02, + "end": 8727.68, + "probability": 0.9336 + }, + { + "start": 8728.28, + "end": 8729.72, + "probability": 0.6553 + }, + { + "start": 8729.8, + "end": 8731.82, + "probability": 0.8309 + }, + { + "start": 8732.68, + "end": 8733.14, + "probability": 0.9527 + }, + { + "start": 8740.12, + "end": 8742.14, + "probability": 0.6244 + }, + { + "start": 8742.58, + "end": 8749.86, + "probability": 0.6137 + }, + { + "start": 8750.54, + "end": 8752.46, + "probability": 0.9371 + }, + { + "start": 8753.34, + "end": 8754.88, + "probability": 0.4075 + }, + { + "start": 8757.58, + "end": 8764.74, + "probability": 0.3193 + }, + { + "start": 8767.3, + "end": 8771.96, + "probability": 0.0986 + }, + { + "start": 8773.0, + "end": 8775.78, + "probability": 0.8958 + }, + { + "start": 8775.78, + "end": 8781.06, + "probability": 0.6346 + }, + { + "start": 8787.52, + "end": 8788.26, + "probability": 0.4991 + }, + { + "start": 8788.62, + "end": 8790.22, + "probability": 0.5434 + }, + { + "start": 8791.76, + "end": 8792.18, + "probability": 0.0404 + }, + { + "start": 8792.72, + "end": 8794.7, + "probability": 0.4078 + }, + { + "start": 8794.82, + "end": 8796.34, + "probability": 0.657 + }, + { + "start": 8796.98, + "end": 8798.42, + "probability": 0.0086 + }, + { + "start": 8801.44, + "end": 8803.87, + "probability": 0.1528 + }, + { + "start": 8804.76, + "end": 8806.24, + "probability": 0.0203 + }, + { + "start": 8806.84, + "end": 8808.18, + "probability": 0.0408 + }, + { + "start": 8808.18, + "end": 8812.68, + "probability": 0.1084 + }, + { + "start": 8813.92, + "end": 8818.18, + "probability": 0.2285 + }, + { + "start": 8821.32, + "end": 8822.68, + "probability": 0.4882 + }, + { + "start": 8822.68, + "end": 8824.46, + "probability": 0.3768 + }, + { + "start": 8824.46, + "end": 8828.54, + "probability": 0.542 + }, + { + "start": 8828.86, + "end": 8830.36, + "probability": 0.7212 + }, + { + "start": 8832.5, + "end": 8835.36, + "probability": 0.6377 + }, + { + "start": 8836.78, + "end": 8838.36, + "probability": 0.7656 + }, + { + "start": 8838.56, + "end": 8843.52, + "probability": 0.9531 + }, + { + "start": 8844.02, + "end": 8845.76, + "probability": 0.7429 + }, + { + "start": 8846.34, + "end": 8850.64, + "probability": 0.783 + }, + { + "start": 8850.64, + "end": 8853.2, + "probability": 0.8785 + }, + { + "start": 8853.4, + "end": 8854.7, + "probability": 0.9138 + }, + { + "start": 8854.9, + "end": 8856.26, + "probability": 0.7455 + }, + { + "start": 8856.52, + "end": 8860.28, + "probability": 0.9572 + }, + { + "start": 8860.46, + "end": 8861.94, + "probability": 0.8459 + }, + { + "start": 8862.26, + "end": 8864.9, + "probability": 0.865 + }, + { + "start": 8865.12, + "end": 8867.74, + "probability": 0.1205 + }, + { + "start": 8870.43, + "end": 8870.64, + "probability": 0.0437 + }, + { + "start": 8870.86, + "end": 8870.86, + "probability": 0.0862 + }, + { + "start": 8870.86, + "end": 8874.46, + "probability": 0.8412 + }, + { + "start": 8876.26, + "end": 8879.34, + "probability": 0.6001 + }, + { + "start": 8879.62, + "end": 8880.9, + "probability": 0.1798 + }, + { + "start": 8881.04, + "end": 8883.94, + "probability": 0.965 + }, + { + "start": 8884.24, + "end": 8888.16, + "probability": 0.8843 + }, + { + "start": 8889.06, + "end": 8894.68, + "probability": 0.9971 + }, + { + "start": 8894.9, + "end": 8898.5, + "probability": 0.9524 + }, + { + "start": 8899.12, + "end": 8900.0, + "probability": 0.5195 + }, + { + "start": 8900.46, + "end": 8901.0, + "probability": 0.7299 + }, + { + "start": 8902.54, + "end": 8903.92, + "probability": 0.998 + }, + { + "start": 8905.32, + "end": 8908.24, + "probability": 0.92 + }, + { + "start": 8908.94, + "end": 8911.4, + "probability": 0.8623 + }, + { + "start": 8911.92, + "end": 8914.38, + "probability": 0.736 + }, + { + "start": 8914.54, + "end": 8915.3, + "probability": 0.869 + }, + { + "start": 8916.16, + "end": 8917.2, + "probability": 0.9265 + }, + { + "start": 8917.2, + "end": 8917.72, + "probability": 0.1189 + }, + { + "start": 8917.72, + "end": 8918.77, + "probability": 0.5586 + }, + { + "start": 8919.0, + "end": 8922.56, + "probability": 0.4761 + }, + { + "start": 8923.22, + "end": 8926.82, + "probability": 0.8605 + }, + { + "start": 8926.82, + "end": 8930.56, + "probability": 0.8915 + }, + { + "start": 8930.92, + "end": 8932.26, + "probability": 0.7874 + }, + { + "start": 8932.98, + "end": 8936.52, + "probability": 0.9226 + }, + { + "start": 8936.96, + "end": 8938.26, + "probability": 0.9433 + }, + { + "start": 8938.94, + "end": 8940.58, + "probability": 0.9971 + }, + { + "start": 8942.48, + "end": 8944.48, + "probability": 0.5046 + }, + { + "start": 8946.2, + "end": 8947.26, + "probability": 0.585 + }, + { + "start": 8947.42, + "end": 8948.9, + "probability": 0.992 + }, + { + "start": 8949.96, + "end": 8951.2, + "probability": 0.9021 + }, + { + "start": 8953.38, + "end": 8954.24, + "probability": 0.1066 + }, + { + "start": 8954.86, + "end": 8955.52, + "probability": 0.4678 + }, + { + "start": 8956.74, + "end": 8958.61, + "probability": 0.1791 + }, + { + "start": 8959.04, + "end": 8959.82, + "probability": 0.3973 + }, + { + "start": 8959.82, + "end": 8961.66, + "probability": 0.561 + }, + { + "start": 8962.95, + "end": 8964.68, + "probability": 0.1837 + }, + { + "start": 8964.68, + "end": 8966.7, + "probability": 0.7275 + }, + { + "start": 8966.98, + "end": 8968.18, + "probability": 0.6342 + }, + { + "start": 8968.62, + "end": 8970.5, + "probability": 0.4893 + }, + { + "start": 8970.58, + "end": 8970.98, + "probability": 0.6349 + }, + { + "start": 8970.98, + "end": 8974.2, + "probability": 0.814 + }, + { + "start": 8976.0, + "end": 8976.0, + "probability": 0.1759 + }, + { + "start": 8976.0, + "end": 8976.0, + "probability": 0.0662 + }, + { + "start": 8976.0, + "end": 8977.24, + "probability": 0.3802 + }, + { + "start": 8977.24, + "end": 8977.24, + "probability": 0.3337 + }, + { + "start": 8977.24, + "end": 8978.68, + "probability": 0.5948 + }, + { + "start": 8979.56, + "end": 8982.7, + "probability": 0.9329 + }, + { + "start": 8982.7, + "end": 8986.14, + "probability": 0.996 + }, + { + "start": 8986.98, + "end": 8993.46, + "probability": 0.9817 + }, + { + "start": 8994.16, + "end": 8998.97, + "probability": 0.7476 + }, + { + "start": 8999.76, + "end": 9000.38, + "probability": 0.1366 + }, + { + "start": 9000.84, + "end": 9000.96, + "probability": 0.2025 + }, + { + "start": 9000.96, + "end": 9001.7, + "probability": 0.676 + }, + { + "start": 9002.5, + "end": 9003.88, + "probability": 0.8743 + }, + { + "start": 9003.94, + "end": 9015.4, + "probability": 0.9145 + }, + { + "start": 9016.42, + "end": 9017.14, + "probability": 0.2659 + }, + { + "start": 9018.28, + "end": 9018.28, + "probability": 0.8584 + }, + { + "start": 9018.28, + "end": 9019.14, + "probability": 0.1476 + }, + { + "start": 9019.3, + "end": 9019.3, + "probability": 0.3884 + }, + { + "start": 9019.3, + "end": 9022.66, + "probability": 0.9371 + }, + { + "start": 9023.38, + "end": 9034.26, + "probability": 0.9733 + }, + { + "start": 9034.68, + "end": 9040.52, + "probability": 0.9972 + }, + { + "start": 9041.58, + "end": 9046.48, + "probability": 0.576 + }, + { + "start": 9047.08, + "end": 9048.24, + "probability": 0.8905 + }, + { + "start": 9048.82, + "end": 9049.36, + "probability": 0.3462 + }, + { + "start": 9049.36, + "end": 9051.18, + "probability": 0.6661 + }, + { + "start": 9051.98, + "end": 9054.98, + "probability": 0.9546 + }, + { + "start": 9055.5, + "end": 9062.16, + "probability": 0.9873 + }, + { + "start": 9062.42, + "end": 9062.8, + "probability": 0.2388 + }, + { + "start": 9062.8, + "end": 9066.16, + "probability": 0.9407 + }, + { + "start": 9066.44, + "end": 9068.98, + "probability": 0.8999 + }, + { + "start": 9069.46, + "end": 9069.6, + "probability": 0.427 + }, + { + "start": 9070.54, + "end": 9071.72, + "probability": 0.8955 + }, + { + "start": 9072.62, + "end": 9073.8, + "probability": 0.7083 + }, + { + "start": 9074.62, + "end": 9078.3, + "probability": 0.912 + }, + { + "start": 9079.08, + "end": 9080.6, + "probability": 0.6859 + }, + { + "start": 9082.16, + "end": 9088.74, + "probability": 0.909 + }, + { + "start": 9089.24, + "end": 9089.32, + "probability": 0.1954 + }, + { + "start": 9089.32, + "end": 9097.38, + "probability": 0.6309 + }, + { + "start": 9098.1, + "end": 9101.14, + "probability": 0.9153 + }, + { + "start": 9101.96, + "end": 9103.54, + "probability": 0.9016 + }, + { + "start": 9104.62, + "end": 9108.0, + "probability": 0.8828 + }, + { + "start": 9109.04, + "end": 9109.1, + "probability": 0.0163 + }, + { + "start": 9109.1, + "end": 9110.54, + "probability": 0.1709 + }, + { + "start": 9111.06, + "end": 9111.8, + "probability": 0.062 + }, + { + "start": 9112.86, + "end": 9113.08, + "probability": 0.4573 + }, + { + "start": 9113.08, + "end": 9113.12, + "probability": 0.1509 + }, + { + "start": 9113.12, + "end": 9114.72, + "probability": 0.1661 + }, + { + "start": 9115.32, + "end": 9117.12, + "probability": 0.7574 + }, + { + "start": 9117.74, + "end": 9120.36, + "probability": 0.6482 + }, + { + "start": 9120.88, + "end": 9126.16, + "probability": 0.9829 + }, + { + "start": 9126.78, + "end": 9132.01, + "probability": 0.9292 + }, + { + "start": 9132.32, + "end": 9134.12, + "probability": 0.8692 + }, + { + "start": 9134.9, + "end": 9137.0, + "probability": 0.7711 + }, + { + "start": 9137.12, + "end": 9141.18, + "probability": 0.9872 + }, + { + "start": 9141.5, + "end": 9142.24, + "probability": 0.6327 + }, + { + "start": 9143.12, + "end": 9147.5, + "probability": 0.9028 + }, + { + "start": 9147.9, + "end": 9149.5, + "probability": 0.9749 + }, + { + "start": 9150.5, + "end": 9152.1, + "probability": 0.95 + }, + { + "start": 9152.9, + "end": 9155.0, + "probability": 0.982 + }, + { + "start": 9155.66, + "end": 9157.26, + "probability": 0.4106 + }, + { + "start": 9157.84, + "end": 9161.76, + "probability": 0.906 + }, + { + "start": 9162.22, + "end": 9165.9, + "probability": 0.7862 + }, + { + "start": 9166.16, + "end": 9170.86, + "probability": 0.6009 + }, + { + "start": 9172.76, + "end": 9173.7, + "probability": 0.0246 + }, + { + "start": 9173.92, + "end": 9174.0, + "probability": 0.0921 + }, + { + "start": 9174.0, + "end": 9174.0, + "probability": 0.3547 + }, + { + "start": 9174.0, + "end": 9174.24, + "probability": 0.4524 + }, + { + "start": 9174.24, + "end": 9174.38, + "probability": 0.4891 + }, + { + "start": 9174.62, + "end": 9177.14, + "probability": 0.388 + }, + { + "start": 9179.4, + "end": 9181.26, + "probability": 0.1027 + }, + { + "start": 9181.56, + "end": 9184.44, + "probability": 0.9885 + }, + { + "start": 9184.74, + "end": 9184.9, + "probability": 0.2179 + }, + { + "start": 9184.9, + "end": 9184.9, + "probability": 0.4001 + }, + { + "start": 9184.9, + "end": 9186.14, + "probability": 0.18 + }, + { + "start": 9186.4, + "end": 9186.94, + "probability": 0.6075 + }, + { + "start": 9187.64, + "end": 9192.82, + "probability": 0.848 + }, + { + "start": 9192.92, + "end": 9196.55, + "probability": 0.011 + }, + { + "start": 9197.58, + "end": 9198.8, + "probability": 0.0977 + }, + { + "start": 9198.8, + "end": 9198.8, + "probability": 0.058 + }, + { + "start": 9198.8, + "end": 9200.5, + "probability": 0.3846 + }, + { + "start": 9200.52, + "end": 9203.7, + "probability": 0.47 + }, + { + "start": 9203.7, + "end": 9203.7, + "probability": 0.1205 + }, + { + "start": 9203.7, + "end": 9208.44, + "probability": 0.5285 + }, + { + "start": 9208.84, + "end": 9208.84, + "probability": 0.1245 + }, + { + "start": 9208.84, + "end": 9210.6, + "probability": 0.5055 + }, + { + "start": 9211.0, + "end": 9214.78, + "probability": 0.4998 + }, + { + "start": 9215.02, + "end": 9215.02, + "probability": 0.0183 + }, + { + "start": 9215.02, + "end": 9215.02, + "probability": 0.0561 + }, + { + "start": 9215.02, + "end": 9215.02, + "probability": 0.1939 + }, + { + "start": 9215.02, + "end": 9215.68, + "probability": 0.5609 + }, + { + "start": 9217.64, + "end": 9219.68, + "probability": 0.8202 + }, + { + "start": 9221.44, + "end": 9224.26, + "probability": 0.3562 + }, + { + "start": 9224.32, + "end": 9226.08, + "probability": 0.8473 + }, + { + "start": 9226.24, + "end": 9228.59, + "probability": 0.0061 + }, + { + "start": 9228.9, + "end": 9228.96, + "probability": 0.0329 + }, + { + "start": 9228.96, + "end": 9234.0, + "probability": 0.5768 + }, + { + "start": 9235.32, + "end": 9237.34, + "probability": 0.8846 + }, + { + "start": 9237.62, + "end": 9239.86, + "probability": 0.7092 + }, + { + "start": 9240.18, + "end": 9242.52, + "probability": 0.579 + }, + { + "start": 9242.62, + "end": 9244.0, + "probability": 0.928 + }, + { + "start": 9244.22, + "end": 9245.28, + "probability": 0.693 + }, + { + "start": 9245.38, + "end": 9246.44, + "probability": 0.8879 + }, + { + "start": 9246.6, + "end": 9248.14, + "probability": 0.0912 + }, + { + "start": 9248.42, + "end": 9249.58, + "probability": 0.6583 + }, + { + "start": 9249.78, + "end": 9251.5, + "probability": 0.4592 + }, + { + "start": 9251.72, + "end": 9253.26, + "probability": 0.8354 + }, + { + "start": 9254.58, + "end": 9257.8, + "probability": 0.8147 + }, + { + "start": 9258.2, + "end": 9258.6, + "probability": 0.0585 + }, + { + "start": 9258.6, + "end": 9258.6, + "probability": 0.2433 + }, + { + "start": 9258.6, + "end": 9260.82, + "probability": 0.3765 + }, + { + "start": 9261.38, + "end": 9264.32, + "probability": 0.8654 + }, + { + "start": 9264.7, + "end": 9265.04, + "probability": 0.2169 + }, + { + "start": 9265.04, + "end": 9265.68, + "probability": 0.4478 + }, + { + "start": 9266.44, + "end": 9268.66, + "probability": 0.8921 + }, + { + "start": 9269.9, + "end": 9271.26, + "probability": 0.8788 + }, + { + "start": 9271.54, + "end": 9273.82, + "probability": 0.9124 + }, + { + "start": 9274.16, + "end": 9274.16, + "probability": 0.0307 + }, + { + "start": 9274.16, + "end": 9276.94, + "probability": 0.5776 + }, + { + "start": 9277.14, + "end": 9279.46, + "probability": 0.7893 + }, + { + "start": 9280.02, + "end": 9281.34, + "probability": 0.7727 + }, + { + "start": 9281.86, + "end": 9284.46, + "probability": 0.8312 + }, + { + "start": 9285.1, + "end": 9287.26, + "probability": 0.9563 + }, + { + "start": 9287.78, + "end": 9290.88, + "probability": 0.981 + }, + { + "start": 9291.34, + "end": 9292.9, + "probability": 0.7351 + }, + { + "start": 9293.3, + "end": 9294.0, + "probability": 0.5619 + }, + { + "start": 9294.28, + "end": 9299.9, + "probability": 0.9865 + }, + { + "start": 9300.44, + "end": 9302.72, + "probability": 0.5747 + }, + { + "start": 9303.18, + "end": 9304.48, + "probability": 0.0331 + }, + { + "start": 9304.48, + "end": 9304.48, + "probability": 0.0981 + }, + { + "start": 9304.62, + "end": 9304.9, + "probability": 0.3979 + }, + { + "start": 9305.38, + "end": 9307.78, + "probability": 0.5458 + }, + { + "start": 9307.86, + "end": 9307.86, + "probability": 0.0134 + }, + { + "start": 9307.86, + "end": 9313.08, + "probability": 0.7949 + }, + { + "start": 9313.56, + "end": 9313.84, + "probability": 0.0363 + }, + { + "start": 9314.4, + "end": 9318.7, + "probability": 0.1358 + }, + { + "start": 9319.56, + "end": 9320.46, + "probability": 0.0864 + }, + { + "start": 9321.16, + "end": 9322.74, + "probability": 0.0428 + }, + { + "start": 9324.4, + "end": 9326.92, + "probability": 0.0929 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.0134 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.1073 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.0998 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.0261 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.075 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.1107 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.3212 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.0526 + }, + { + "start": 9326.92, + "end": 9326.92, + "probability": 0.2076 + }, + { + "start": 9326.92, + "end": 9333.5, + "probability": 0.713 + }, + { + "start": 9333.5, + "end": 9339.64, + "probability": 0.9973 + }, + { + "start": 9340.24, + "end": 9340.24, + "probability": 0.168 + }, + { + "start": 9340.24, + "end": 9341.52, + "probability": 0.3516 + }, + { + "start": 9342.0, + "end": 9345.18, + "probability": 0.9828 + }, + { + "start": 9345.4, + "end": 9346.6, + "probability": 0.7272 + }, + { + "start": 9346.6, + "end": 9347.1, + "probability": 0.7639 + }, + { + "start": 9347.36, + "end": 9349.68, + "probability": 0.9325 + }, + { + "start": 9349.88, + "end": 9352.08, + "probability": 0.8682 + }, + { + "start": 9352.24, + "end": 9359.46, + "probability": 0.9135 + }, + { + "start": 9359.64, + "end": 9364.22, + "probability": 0.9937 + }, + { + "start": 9364.28, + "end": 9364.88, + "probability": 0.1453 + }, + { + "start": 9365.02, + "end": 9365.22, + "probability": 0.4841 + }, + { + "start": 9365.22, + "end": 9365.22, + "probability": 0.1104 + }, + { + "start": 9365.22, + "end": 9368.06, + "probability": 0.7521 + }, + { + "start": 9368.18, + "end": 9371.04, + "probability": 0.5239 + }, + { + "start": 9371.56, + "end": 9373.06, + "probability": 0.2232 + }, + { + "start": 9373.06, + "end": 9373.06, + "probability": 0.424 + }, + { + "start": 9373.06, + "end": 9373.06, + "probability": 0.0744 + }, + { + "start": 9373.06, + "end": 9374.93, + "probability": 0.5825 + }, + { + "start": 9375.1, + "end": 9376.72, + "probability": 0.8903 + }, + { + "start": 9379.06, + "end": 9379.2, + "probability": 0.1019 + }, + { + "start": 9381.36, + "end": 9382.22, + "probability": 0.4485 + }, + { + "start": 9383.0, + "end": 9383.02, + "probability": 0.04 + }, + { + "start": 9383.02, + "end": 9384.06, + "probability": 0.4034 + }, + { + "start": 9384.56, + "end": 9388.58, + "probability": 0.436 + }, + { + "start": 9388.72, + "end": 9390.0, + "probability": 0.3593 + }, + { + "start": 9390.12, + "end": 9390.86, + "probability": 0.0672 + }, + { + "start": 9391.1, + "end": 9394.22, + "probability": 0.5908 + }, + { + "start": 9394.48, + "end": 9394.5, + "probability": 0.1805 + }, + { + "start": 9394.5, + "end": 9395.32, + "probability": 0.1101 + }, + { + "start": 9395.6, + "end": 9397.64, + "probability": 0.8388 + }, + { + "start": 9398.28, + "end": 9400.24, + "probability": 0.3468 + }, + { + "start": 9400.74, + "end": 9410.84, + "probability": 0.9906 + }, + { + "start": 9410.98, + "end": 9411.62, + "probability": 0.9013 + }, + { + "start": 9411.86, + "end": 9414.58, + "probability": 0.6616 + }, + { + "start": 9415.4, + "end": 9416.92, + "probability": 0.087 + }, + { + "start": 9417.1, + "end": 9418.0, + "probability": 0.0597 + }, + { + "start": 9418.0, + "end": 9418.0, + "probability": 0.051 + }, + { + "start": 9418.0, + "end": 9419.22, + "probability": 0.2039 + }, + { + "start": 9426.4, + "end": 9428.68, + "probability": 0.5591 + }, + { + "start": 9428.68, + "end": 9429.56, + "probability": 0.733 + }, + { + "start": 9432.44, + "end": 9432.94, + "probability": 0.4 + }, + { + "start": 9443.38, + "end": 9443.48, + "probability": 0.4312 + }, + { + "start": 9445.48, + "end": 9446.74, + "probability": 0.8276 + }, + { + "start": 9448.24, + "end": 9452.05, + "probability": 0.774 + }, + { + "start": 9452.32, + "end": 9453.48, + "probability": 0.1396 + }, + { + "start": 9455.68, + "end": 9458.26, + "probability": 0.165 + }, + { + "start": 9458.98, + "end": 9460.91, + "probability": 0.6037 + }, + { + "start": 9462.44, + "end": 9464.78, + "probability": 0.9977 + }, + { + "start": 9465.58, + "end": 9468.32, + "probability": 0.9604 + }, + { + "start": 9469.36, + "end": 9472.82, + "probability": 0.9945 + }, + { + "start": 9473.54, + "end": 9474.92, + "probability": 0.9728 + }, + { + "start": 9475.06, + "end": 9476.94, + "probability": 0.9404 + }, + { + "start": 9477.7, + "end": 9480.44, + "probability": 0.9797 + }, + { + "start": 9480.9, + "end": 9481.42, + "probability": 0.6215 + }, + { + "start": 9481.42, + "end": 9481.96, + "probability": 0.6538 + }, + { + "start": 9482.02, + "end": 9483.56, + "probability": 0.5337 + }, + { + "start": 9484.1, + "end": 9486.36, + "probability": 0.4343 + }, + { + "start": 9486.42, + "end": 9488.52, + "probability": 0.2891 + }, + { + "start": 9488.74, + "end": 9491.08, + "probability": 0.4317 + }, + { + "start": 9492.1, + "end": 9494.75, + "probability": 0.4538 + }, + { + "start": 9497.34, + "end": 9497.42, + "probability": 0.0529 + }, + { + "start": 9497.42, + "end": 9503.84, + "probability": 0.6701 + }, + { + "start": 9504.1, + "end": 9505.12, + "probability": 0.7964 + }, + { + "start": 9505.32, + "end": 9505.66, + "probability": 0.6978 + }, + { + "start": 9505.74, + "end": 9508.14, + "probability": 0.9946 + }, + { + "start": 9508.18, + "end": 9508.72, + "probability": 0.7187 + }, + { + "start": 9508.8, + "end": 9509.76, + "probability": 0.8042 + }, + { + "start": 9510.04, + "end": 9513.12, + "probability": 0.6149 + }, + { + "start": 9513.78, + "end": 9514.38, + "probability": 0.3325 + }, + { + "start": 9514.52, + "end": 9518.08, + "probability": 0.5041 + }, + { + "start": 9518.94, + "end": 9521.74, + "probability": 0.5731 + }, + { + "start": 9522.72, + "end": 9525.0, + "probability": 0.629 + }, + { + "start": 9525.38, + "end": 9526.82, + "probability": 0.4533 + }, + { + "start": 9527.56, + "end": 9529.61, + "probability": 0.9678 + }, + { + "start": 9530.04, + "end": 9532.38, + "probability": 0.9364 + }, + { + "start": 9533.24, + "end": 9533.96, + "probability": 0.6165 + }, + { + "start": 9534.14, + "end": 9535.59, + "probability": 0.5553 + }, + { + "start": 9535.7, + "end": 9536.2, + "probability": 0.1949 + }, + { + "start": 9536.9, + "end": 9538.66, + "probability": 0.9971 + }, + { + "start": 9539.34, + "end": 9541.24, + "probability": 0.8859 + }, + { + "start": 9541.34, + "end": 9541.68, + "probability": 0.44 + }, + { + "start": 9541.78, + "end": 9543.33, + "probability": 0.1936 + }, + { + "start": 9544.46, + "end": 9546.82, + "probability": 0.8765 + }, + { + "start": 9547.9, + "end": 9550.2, + "probability": 0.8729 + }, + { + "start": 9551.38, + "end": 9552.46, + "probability": 0.2451 + }, + { + "start": 9552.84, + "end": 9555.6, + "probability": 0.6479 + }, + { + "start": 9555.68, + "end": 9556.14, + "probability": 0.4727 + }, + { + "start": 9556.48, + "end": 9559.88, + "probability": 0.2385 + }, + { + "start": 9560.66, + "end": 9562.74, + "probability": 0.8069 + }, + { + "start": 9564.66, + "end": 9564.78, + "probability": 0.0306 + }, + { + "start": 9564.78, + "end": 9564.78, + "probability": 0.3805 + }, + { + "start": 9564.78, + "end": 9565.46, + "probability": 0.01 + }, + { + "start": 9566.38, + "end": 9569.48, + "probability": 0.8576 + }, + { + "start": 9570.04, + "end": 9570.82, + "probability": 0.7565 + }, + { + "start": 9570.9, + "end": 9571.78, + "probability": 0.8933 + }, + { + "start": 9571.9, + "end": 9573.94, + "probability": 0.8864 + }, + { + "start": 9574.28, + "end": 9575.22, + "probability": 0.9377 + }, + { + "start": 9576.18, + "end": 9577.56, + "probability": 0.7516 + }, + { + "start": 9577.74, + "end": 9579.54, + "probability": 0.251 + }, + { + "start": 9579.54, + "end": 9579.82, + "probability": 0.6518 + }, + { + "start": 9581.24, + "end": 9582.08, + "probability": 0.4717 + }, + { + "start": 9585.54, + "end": 9591.68, + "probability": 0.8535 + }, + { + "start": 9592.03, + "end": 9594.36, + "probability": 0.9284 + }, + { + "start": 9594.96, + "end": 9597.28, + "probability": 0.9966 + }, + { + "start": 9598.06, + "end": 9604.06, + "probability": 0.8984 + }, + { + "start": 9604.44, + "end": 9605.2, + "probability": 0.847 + }, + { + "start": 9605.62, + "end": 9610.12, + "probability": 0.9907 + }, + { + "start": 9610.18, + "end": 9612.8, + "probability": 0.9835 + }, + { + "start": 9613.12, + "end": 9614.14, + "probability": 0.9214 + }, + { + "start": 9614.32, + "end": 9615.24, + "probability": 0.9248 + }, + { + "start": 9615.4, + "end": 9616.32, + "probability": 0.3717 + }, + { + "start": 9616.82, + "end": 9619.7, + "probability": 0.9445 + }, + { + "start": 9619.86, + "end": 9621.54, + "probability": 0.9617 + }, + { + "start": 9621.6, + "end": 9622.32, + "probability": 0.9589 + }, + { + "start": 9622.5, + "end": 9623.6, + "probability": 0.7026 + }, + { + "start": 9624.28, + "end": 9626.28, + "probability": 0.4644 + }, + { + "start": 9626.36, + "end": 9626.36, + "probability": 0.1616 + }, + { + "start": 9626.36, + "end": 9626.36, + "probability": 0.249 + }, + { + "start": 9626.36, + "end": 9627.02, + "probability": 0.611 + }, + { + "start": 9627.38, + "end": 9627.72, + "probability": 0.7246 + }, + { + "start": 9627.72, + "end": 9628.4, + "probability": 0.83 + }, + { + "start": 9628.86, + "end": 9629.24, + "probability": 0.7051 + }, + { + "start": 9629.3, + "end": 9632.0, + "probability": 0.8276 + }, + { + "start": 9633.57, + "end": 9636.18, + "probability": 0.8037 + }, + { + "start": 9636.2, + "end": 9636.72, + "probability": 0.6778 + }, + { + "start": 9636.78, + "end": 9637.28, + "probability": 0.8947 + }, + { + "start": 9637.52, + "end": 9639.16, + "probability": 0.8034 + }, + { + "start": 9639.92, + "end": 9639.96, + "probability": 0.1735 + }, + { + "start": 9639.96, + "end": 9640.73, + "probability": 0.9753 + }, + { + "start": 9641.52, + "end": 9644.24, + "probability": 0.8858 + }, + { + "start": 9644.38, + "end": 9646.36, + "probability": 0.9507 + }, + { + "start": 9646.72, + "end": 9652.38, + "probability": 0.908 + }, + { + "start": 9652.58, + "end": 9652.58, + "probability": 0.3511 + }, + { + "start": 9652.82, + "end": 9655.06, + "probability": 0.9801 + }, + { + "start": 9655.3, + "end": 9655.5, + "probability": 0.5621 + }, + { + "start": 9655.56, + "end": 9657.0, + "probability": 0.5559 + }, + { + "start": 9657.12, + "end": 9658.98, + "probability": 0.5216 + }, + { + "start": 9659.62, + "end": 9661.14, + "probability": 0.0038 + }, + { + "start": 9663.24, + "end": 9664.22, + "probability": 0.0563 + }, + { + "start": 9667.64, + "end": 9670.64, + "probability": 0.2168 + }, + { + "start": 9671.16, + "end": 9672.72, + "probability": 0.004 + }, + { + "start": 9675.42, + "end": 9680.58, + "probability": 0.6374 + }, + { + "start": 9680.6, + "end": 9681.44, + "probability": 0.7722 + }, + { + "start": 9682.36, + "end": 9682.58, + "probability": 0.9405 + }, + { + "start": 9682.66, + "end": 9684.76, + "probability": 0.5003 + }, + { + "start": 9684.89, + "end": 9688.12, + "probability": 0.889 + }, + { + "start": 9689.76, + "end": 9694.98, + "probability": 0.9763 + }, + { + "start": 9695.78, + "end": 9702.68, + "probability": 0.9976 + }, + { + "start": 9702.78, + "end": 9706.42, + "probability": 0.9985 + }, + { + "start": 9707.04, + "end": 9708.78, + "probability": 0.9513 + }, + { + "start": 9709.18, + "end": 9711.56, + "probability": 0.9775 + }, + { + "start": 9711.6, + "end": 9712.78, + "probability": 0.555 + }, + { + "start": 9713.36, + "end": 9715.08, + "probability": 0.5993 + }, + { + "start": 9715.22, + "end": 9717.2, + "probability": 0.9927 + }, + { + "start": 9717.88, + "end": 9719.82, + "probability": 0.8952 + }, + { + "start": 9720.66, + "end": 9723.98, + "probability": 0.8914 + }, + { + "start": 9724.72, + "end": 9736.84, + "probability": 0.9893 + }, + { + "start": 9736.84, + "end": 9749.28, + "probability": 0.9951 + }, + { + "start": 9750.26, + "end": 9752.24, + "probability": 0.968 + }, + { + "start": 9752.94, + "end": 9757.36, + "probability": 0.971 + }, + { + "start": 9758.0, + "end": 9759.86, + "probability": 0.8746 + }, + { + "start": 9760.34, + "end": 9766.86, + "probability": 0.9975 + }, + { + "start": 9767.06, + "end": 9768.76, + "probability": 0.9968 + }, + { + "start": 9769.52, + "end": 9775.66, + "probability": 0.9995 + }, + { + "start": 9776.18, + "end": 9777.36, + "probability": 0.4915 + }, + { + "start": 9777.36, + "end": 9777.92, + "probability": 0.43 + }, + { + "start": 9778.0, + "end": 9778.47, + "probability": 0.8618 + }, + { + "start": 9779.44, + "end": 9780.2, + "probability": 0.9161 + }, + { + "start": 9780.44, + "end": 9780.88, + "probability": 0.3067 + }, + { + "start": 9781.6, + "end": 9783.98, + "probability": 0.9699 + }, + { + "start": 9784.2, + "end": 9785.08, + "probability": 0.8395 + }, + { + "start": 9785.18, + "end": 9786.18, + "probability": 0.7219 + }, + { + "start": 9786.58, + "end": 9788.14, + "probability": 0.7276 + }, + { + "start": 9788.4, + "end": 9790.38, + "probability": 0.8595 + }, + { + "start": 9791.58, + "end": 9793.9, + "probability": 0.9988 + }, + { + "start": 9794.74, + "end": 9798.22, + "probability": 0.9979 + }, + { + "start": 9798.88, + "end": 9802.92, + "probability": 0.9474 + }, + { + "start": 9803.5, + "end": 9807.46, + "probability": 0.856 + }, + { + "start": 9808.62, + "end": 9810.0, + "probability": 0.9116 + }, + { + "start": 9810.52, + "end": 9813.78, + "probability": 0.8979 + }, + { + "start": 9814.08, + "end": 9815.96, + "probability": 0.9834 + }, + { + "start": 9816.54, + "end": 9820.4, + "probability": 0.996 + }, + { + "start": 9820.88, + "end": 9825.46, + "probability": 0.9976 + }, + { + "start": 9826.12, + "end": 9830.76, + "probability": 0.9861 + }, + { + "start": 9831.2, + "end": 9833.38, + "probability": 0.9884 + }, + { + "start": 9833.6, + "end": 9835.12, + "probability": 0.7982 + }, + { + "start": 9835.74, + "end": 9841.84, + "probability": 0.9866 + }, + { + "start": 9841.84, + "end": 9846.9, + "probability": 0.8793 + }, + { + "start": 9847.26, + "end": 9850.6, + "probability": 0.7743 + }, + { + "start": 9851.2, + "end": 9852.74, + "probability": 0.3949 + }, + { + "start": 9852.74, + "end": 9852.81, + "probability": 0.8154 + }, + { + "start": 9853.38, + "end": 9854.26, + "probability": 0.7706 + }, + { + "start": 9854.36, + "end": 9855.42, + "probability": 0.4882 + }, + { + "start": 9855.42, + "end": 9856.48, + "probability": 0.8928 + }, + { + "start": 9856.54, + "end": 9856.6, + "probability": 0.439 + }, + { + "start": 9856.6, + "end": 9856.88, + "probability": 0.7109 + }, + { + "start": 9857.38, + "end": 9858.76, + "probability": 0.9634 + }, + { + "start": 9858.98, + "end": 9859.64, + "probability": 0.9227 + }, + { + "start": 9859.82, + "end": 9860.84, + "probability": 0.9933 + }, + { + "start": 9862.02, + "end": 9863.3, + "probability": 0.6092 + }, + { + "start": 9864.12, + "end": 9864.82, + "probability": 0.7291 + }, + { + "start": 9864.9, + "end": 9865.24, + "probability": 0.6652 + }, + { + "start": 9865.42, + "end": 9866.24, + "probability": 0.6845 + }, + { + "start": 9868.22, + "end": 9868.5, + "probability": 0.2592 + }, + { + "start": 9868.5, + "end": 9870.58, + "probability": 0.6608 + }, + { + "start": 9870.72, + "end": 9871.83, + "probability": 0.9475 + }, + { + "start": 9872.4, + "end": 9875.64, + "probability": 0.9559 + }, + { + "start": 9876.32, + "end": 9879.12, + "probability": 0.9491 + }, + { + "start": 9879.26, + "end": 9883.92, + "probability": 0.9143 + }, + { + "start": 9883.92, + "end": 9887.36, + "probability": 0.8794 + }, + { + "start": 9888.22, + "end": 9889.58, + "probability": 0.4139 + }, + { + "start": 9903.42, + "end": 9908.64, + "probability": 0.0465 + }, + { + "start": 9909.94, + "end": 9912.88, + "probability": 0.0866 + }, + { + "start": 9912.88, + "end": 9915.18, + "probability": 0.0365 + }, + { + "start": 9915.18, + "end": 9915.76, + "probability": 0.0062 + }, + { + "start": 9916.68, + "end": 9917.5, + "probability": 0.057 + }, + { + "start": 9917.5, + "end": 9917.5, + "probability": 0.403 + }, + { + "start": 9917.5, + "end": 9917.5, + "probability": 0.2 + }, + { + "start": 9917.5, + "end": 9920.79, + "probability": 0.4135 + }, + { + "start": 9920.84, + "end": 9924.04, + "probability": 0.7626 + }, + { + "start": 9924.04, + "end": 9925.74, + "probability": 0.4058 + }, + { + "start": 9933.72, + "end": 9939.08, + "probability": 0.1482 + }, + { + "start": 9942.08, + "end": 9943.43, + "probability": 0.1567 + }, + { + "start": 9944.06, + "end": 9944.92, + "probability": 0.0266 + }, + { + "start": 9945.38, + "end": 9945.7, + "probability": 0.0269 + }, + { + "start": 9945.7, + "end": 9945.7, + "probability": 0.1861 + }, + { + "start": 9945.7, + "end": 9950.12, + "probability": 0.7627 + }, + { + "start": 9950.3, + "end": 9951.66, + "probability": 0.5163 + }, + { + "start": 9952.86, + "end": 9955.04, + "probability": 0.847 + }, + { + "start": 9955.2, + "end": 9956.28, + "probability": 0.7229 + }, + { + "start": 9957.44, + "end": 9959.12, + "probability": 0.9307 + }, + { + "start": 9959.32, + "end": 9960.56, + "probability": 0.7676 + }, + { + "start": 9961.06, + "end": 9961.26, + "probability": 0.0044 + }, + { + "start": 9961.34, + "end": 9962.1, + "probability": 0.7526 + }, + { + "start": 9962.3, + "end": 9964.88, + "probability": 0.9749 + }, + { + "start": 9966.54, + "end": 9966.7, + "probability": 0.008 + }, + { + "start": 9966.7, + "end": 9967.88, + "probability": 0.5387 + }, + { + "start": 9967.96, + "end": 9968.66, + "probability": 0.6949 + }, + { + "start": 9968.78, + "end": 9970.36, + "probability": 0.9402 + }, + { + "start": 9970.56, + "end": 9974.38, + "probability": 0.7759 + }, + { + "start": 9975.22, + "end": 9979.8, + "probability": 0.7193 + }, + { + "start": 9982.72, + "end": 9984.3, + "probability": 0.4554 + }, + { + "start": 9984.3, + "end": 9987.16, + "probability": 0.9802 + }, + { + "start": 9987.25, + "end": 9988.33, + "probability": 0.0335 + }, + { + "start": 9989.18, + "end": 9989.46, + "probability": 0.4187 + }, + { + "start": 9989.52, + "end": 9989.92, + "probability": 0.9832 + }, + { + "start": 9991.82, + "end": 9992.68, + "probability": 0.4676 + }, + { + "start": 9994.23, + "end": 9996.82, + "probability": 0.5863 + }, + { + "start": 10014.32, + "end": 10016.7, + "probability": 0.7074 + }, + { + "start": 10017.42, + "end": 10021.8, + "probability": 0.9932 + }, + { + "start": 10021.8, + "end": 10026.26, + "probability": 0.9967 + }, + { + "start": 10026.46, + "end": 10026.66, + "probability": 0.0198 + }, + { + "start": 10028.92, + "end": 10035.16, + "probability": 0.9977 + }, + { + "start": 10035.16, + "end": 10041.04, + "probability": 0.9854 + }, + { + "start": 10042.1, + "end": 10043.96, + "probability": 0.8018 + }, + { + "start": 10044.74, + "end": 10046.62, + "probability": 0.9946 + }, + { + "start": 10047.4, + "end": 10051.56, + "probability": 0.9957 + }, + { + "start": 10052.06, + "end": 10053.56, + "probability": 0.7894 + }, + { + "start": 10054.08, + "end": 10055.16, + "probability": 0.8442 + }, + { + "start": 10055.82, + "end": 10062.48, + "probability": 0.9746 + }, + { + "start": 10064.38, + "end": 10064.58, + "probability": 0.7454 + }, + { + "start": 10065.34, + "end": 10067.24, + "probability": 0.9327 + }, + { + "start": 10067.86, + "end": 10070.68, + "probability": 0.9666 + }, + { + "start": 10071.98, + "end": 10077.22, + "probability": 0.9964 + }, + { + "start": 10077.78, + "end": 10078.34, + "probability": 0.7202 + }, + { + "start": 10078.44, + "end": 10078.78, + "probability": 0.9093 + }, + { + "start": 10079.2, + "end": 10079.24, + "probability": 0.5638 + }, + { + "start": 10079.26, + "end": 10079.32, + "probability": 0.4613 + }, + { + "start": 10079.52, + "end": 10081.8, + "probability": 0.6609 + }, + { + "start": 10081.82, + "end": 10082.5, + "probability": 0.826 + }, + { + "start": 10082.52, + "end": 10086.5, + "probability": 0.8529 + }, + { + "start": 10088.5, + "end": 10091.42, + "probability": 0.6109 + }, + { + "start": 10094.56, + "end": 10095.72, + "probability": 0.6921 + }, + { + "start": 10096.52, + "end": 10097.24, + "probability": 0.7636 + }, + { + "start": 10098.24, + "end": 10099.2, + "probability": 0.0066 + }, + { + "start": 10099.2, + "end": 10100.46, + "probability": 0.524 + }, + { + "start": 10100.5, + "end": 10101.2, + "probability": 0.7592 + }, + { + "start": 10101.84, + "end": 10103.62, + "probability": 0.8904 + }, + { + "start": 10104.9, + "end": 10107.2, + "probability": 0.752 + }, + { + "start": 10115.2, + "end": 10116.3, + "probability": 0.8714 + }, + { + "start": 10116.4, + "end": 10116.86, + "probability": 0.6455 + }, + { + "start": 10117.08, + "end": 10117.53, + "probability": 0.9875 + }, + { + "start": 10118.48, + "end": 10119.02, + "probability": 0.8781 + }, + { + "start": 10120.64, + "end": 10121.34, + "probability": 0.9 + }, + { + "start": 10121.4, + "end": 10124.78, + "probability": 0.953 + }, + { + "start": 10124.92, + "end": 10125.94, + "probability": 0.9473 + }, + { + "start": 10126.88, + "end": 10131.76, + "probability": 0.9964 + }, + { + "start": 10131.76, + "end": 10135.66, + "probability": 0.9997 + }, + { + "start": 10136.24, + "end": 10139.38, + "probability": 0.9693 + }, + { + "start": 10140.38, + "end": 10143.48, + "probability": 0.7954 + }, + { + "start": 10144.12, + "end": 10145.66, + "probability": 0.7976 + }, + { + "start": 10146.28, + "end": 10152.32, + "probability": 0.9009 + }, + { + "start": 10152.86, + "end": 10158.57, + "probability": 0.993 + }, + { + "start": 10159.26, + "end": 10160.38, + "probability": 0.9718 + }, + { + "start": 10161.08, + "end": 10164.28, + "probability": 0.992 + }, + { + "start": 10164.28, + "end": 10168.38, + "probability": 0.9973 + }, + { + "start": 10168.98, + "end": 10174.09, + "probability": 0.9957 + }, + { + "start": 10174.12, + "end": 10179.1, + "probability": 0.9978 + }, + { + "start": 10181.12, + "end": 10182.16, + "probability": 0.8554 + }, + { + "start": 10182.3, + "end": 10182.82, + "probability": 0.9644 + }, + { + "start": 10183.1, + "end": 10188.68, + "probability": 0.9717 + }, + { + "start": 10188.68, + "end": 10193.56, + "probability": 0.9256 + }, + { + "start": 10194.28, + "end": 10198.78, + "probability": 0.9864 + }, + { + "start": 10199.5, + "end": 10203.92, + "probability": 0.8314 + }, + { + "start": 10204.22, + "end": 10205.64, + "probability": 0.9777 + }, + { + "start": 10206.36, + "end": 10210.02, + "probability": 0.9053 + }, + { + "start": 10210.02, + "end": 10215.26, + "probability": 0.9716 + }, + { + "start": 10216.18, + "end": 10217.82, + "probability": 0.9964 + }, + { + "start": 10218.36, + "end": 10224.46, + "probability": 0.9956 + }, + { + "start": 10225.3, + "end": 10229.3, + "probability": 0.9956 + }, + { + "start": 10229.6, + "end": 10233.62, + "probability": 0.7539 + }, + { + "start": 10234.06, + "end": 10235.92, + "probability": 0.5793 + }, + { + "start": 10236.5, + "end": 10237.64, + "probability": 0.8801 + }, + { + "start": 10238.88, + "end": 10243.12, + "probability": 0.9824 + }, + { + "start": 10244.1, + "end": 10245.9, + "probability": 0.7729 + }, + { + "start": 10247.08, + "end": 10252.78, + "probability": 0.9186 + }, + { + "start": 10253.36, + "end": 10258.82, + "probability": 0.98 + }, + { + "start": 10259.62, + "end": 10261.38, + "probability": 0.8806 + }, + { + "start": 10261.94, + "end": 10266.08, + "probability": 0.9553 + }, + { + "start": 10267.52, + "end": 10271.18, + "probability": 0.9924 + }, + { + "start": 10272.38, + "end": 10278.06, + "probability": 0.9782 + }, + { + "start": 10278.06, + "end": 10285.46, + "probability": 0.9862 + }, + { + "start": 10286.44, + "end": 10286.56, + "probability": 0.474 + }, + { + "start": 10286.64, + "end": 10289.5, + "probability": 0.8488 + }, + { + "start": 10289.5, + "end": 10292.42, + "probability": 0.9731 + }, + { + "start": 10292.8, + "end": 10293.36, + "probability": 0.8804 + }, + { + "start": 10294.44, + "end": 10298.42, + "probability": 0.9555 + }, + { + "start": 10298.42, + "end": 10302.32, + "probability": 0.9977 + }, + { + "start": 10302.84, + "end": 10304.6, + "probability": 0.9696 + }, + { + "start": 10305.42, + "end": 10306.0, + "probability": 0.7273 + }, + { + "start": 10306.08, + "end": 10306.78, + "probability": 0.8865 + }, + { + "start": 10307.26, + "end": 10312.02, + "probability": 0.9855 + }, + { + "start": 10312.7, + "end": 10319.64, + "probability": 0.9974 + }, + { + "start": 10320.44, + "end": 10321.8, + "probability": 0.4331 + }, + { + "start": 10322.4, + "end": 10325.92, + "probability": 0.873 + }, + { + "start": 10326.06, + "end": 10327.02, + "probability": 0.8982 + }, + { + "start": 10327.7, + "end": 10332.46, + "probability": 0.9718 + }, + { + "start": 10333.2, + "end": 10336.72, + "probability": 0.9923 + }, + { + "start": 10337.36, + "end": 10338.74, + "probability": 0.8692 + }, + { + "start": 10339.26, + "end": 10340.3, + "probability": 0.7587 + }, + { + "start": 10340.88, + "end": 10346.8, + "probability": 0.9972 + }, + { + "start": 10347.4, + "end": 10351.04, + "probability": 0.9921 + }, + { + "start": 10351.3, + "end": 10355.18, + "probability": 0.9987 + }, + { + "start": 10355.9, + "end": 10359.28, + "probability": 0.9809 + }, + { + "start": 10359.94, + "end": 10361.88, + "probability": 0.9969 + }, + { + "start": 10362.48, + "end": 10365.84, + "probability": 0.9622 + }, + { + "start": 10366.22, + "end": 10369.3, + "probability": 0.999 + }, + { + "start": 10370.12, + "end": 10374.36, + "probability": 0.7706 + }, + { + "start": 10374.42, + "end": 10376.86, + "probability": 0.9934 + }, + { + "start": 10378.38, + "end": 10379.16, + "probability": 0.7204 + }, + { + "start": 10379.32, + "end": 10384.26, + "probability": 0.9812 + }, + { + "start": 10384.26, + "end": 10388.32, + "probability": 0.9978 + }, + { + "start": 10388.9, + "end": 10390.62, + "probability": 0.9048 + }, + { + "start": 10391.32, + "end": 10393.76, + "probability": 0.9987 + }, + { + "start": 10393.76, + "end": 10397.4, + "probability": 0.9956 + }, + { + "start": 10397.98, + "end": 10402.52, + "probability": 0.9976 + }, + { + "start": 10402.62, + "end": 10403.8, + "probability": 0.797 + }, + { + "start": 10404.32, + "end": 10405.8, + "probability": 0.9929 + }, + { + "start": 10406.56, + "end": 10411.12, + "probability": 0.9865 + }, + { + "start": 10411.12, + "end": 10414.78, + "probability": 0.9993 + }, + { + "start": 10415.38, + "end": 10418.26, + "probability": 0.9956 + }, + { + "start": 10418.8, + "end": 10422.78, + "probability": 0.9481 + }, + { + "start": 10422.78, + "end": 10426.68, + "probability": 0.9989 + }, + { + "start": 10427.22, + "end": 10430.22, + "probability": 0.9872 + }, + { + "start": 10430.58, + "end": 10437.64, + "probability": 0.9222 + }, + { + "start": 10437.8, + "end": 10440.62, + "probability": 0.9753 + }, + { + "start": 10441.24, + "end": 10441.62, + "probability": 0.9264 + }, + { + "start": 10442.0, + "end": 10443.82, + "probability": 0.9924 + }, + { + "start": 10443.88, + "end": 10444.48, + "probability": 0.544 + }, + { + "start": 10444.54, + "end": 10448.08, + "probability": 0.9656 + }, + { + "start": 10448.66, + "end": 10453.56, + "probability": 0.9326 + }, + { + "start": 10454.0, + "end": 10454.38, + "probability": 0.4499 + }, + { + "start": 10454.46, + "end": 10454.8, + "probability": 0.955 + }, + { + "start": 10454.86, + "end": 10456.78, + "probability": 0.9697 + }, + { + "start": 10457.14, + "end": 10458.84, + "probability": 0.9673 + }, + { + "start": 10459.46, + "end": 10463.16, + "probability": 0.9899 + }, + { + "start": 10463.9, + "end": 10466.06, + "probability": 0.9287 + }, + { + "start": 10466.72, + "end": 10467.52, + "probability": 0.3919 + }, + { + "start": 10468.1, + "end": 10473.04, + "probability": 0.9971 + }, + { + "start": 10473.48, + "end": 10479.36, + "probability": 0.9565 + }, + { + "start": 10479.82, + "end": 10481.26, + "probability": 0.7758 + }, + { + "start": 10481.4, + "end": 10484.38, + "probability": 0.9275 + }, + { + "start": 10484.84, + "end": 10489.06, + "probability": 0.993 + }, + { + "start": 10489.58, + "end": 10493.66, + "probability": 0.9714 + }, + { + "start": 10494.68, + "end": 10498.9, + "probability": 0.9922 + }, + { + "start": 10498.94, + "end": 10502.84, + "probability": 0.9995 + }, + { + "start": 10503.36, + "end": 10507.46, + "probability": 0.9978 + }, + { + "start": 10508.34, + "end": 10509.68, + "probability": 0.9535 + }, + { + "start": 10510.28, + "end": 10510.48, + "probability": 0.4034 + }, + { + "start": 10510.6, + "end": 10511.9, + "probability": 0.9725 + }, + { + "start": 10512.32, + "end": 10518.48, + "probability": 0.9987 + }, + { + "start": 10518.9, + "end": 10519.94, + "probability": 0.7969 + }, + { + "start": 10520.64, + "end": 10522.28, + "probability": 0.9767 + }, + { + "start": 10522.7, + "end": 10523.9, + "probability": 0.9708 + }, + { + "start": 10524.4, + "end": 10524.54, + "probability": 0.3462 + }, + { + "start": 10524.66, + "end": 10528.92, + "probability": 0.9973 + }, + { + "start": 10528.92, + "end": 10532.8, + "probability": 0.9959 + }, + { + "start": 10533.68, + "end": 10536.46, + "probability": 0.9971 + }, + { + "start": 10536.8, + "end": 10537.62, + "probability": 0.6214 + }, + { + "start": 10537.76, + "end": 10538.64, + "probability": 0.8698 + }, + { + "start": 10538.76, + "end": 10540.24, + "probability": 0.9393 + }, + { + "start": 10541.12, + "end": 10543.84, + "probability": 0.9987 + }, + { + "start": 10544.36, + "end": 10546.16, + "probability": 0.9945 + }, + { + "start": 10546.8, + "end": 10547.6, + "probability": 0.3233 + }, + { + "start": 10547.64, + "end": 10548.74, + "probability": 0.8387 + }, + { + "start": 10549.2, + "end": 10552.38, + "probability": 0.9175 + }, + { + "start": 10553.1, + "end": 10557.2, + "probability": 0.991 + }, + { + "start": 10558.66, + "end": 10559.72, + "probability": 0.8757 + }, + { + "start": 10559.92, + "end": 10562.78, + "probability": 0.995 + }, + { + "start": 10562.94, + "end": 10563.56, + "probability": 0.5225 + }, + { + "start": 10564.74, + "end": 10570.94, + "probability": 0.9736 + }, + { + "start": 10571.42, + "end": 10573.82, + "probability": 0.4991 + }, + { + "start": 10573.96, + "end": 10574.7, + "probability": 0.3055 + }, + { + "start": 10575.26, + "end": 10579.44, + "probability": 0.9435 + }, + { + "start": 10579.82, + "end": 10582.88, + "probability": 0.9823 + }, + { + "start": 10583.62, + "end": 10588.48, + "probability": 0.9587 + }, + { + "start": 10589.26, + "end": 10593.12, + "probability": 0.9469 + }, + { + "start": 10593.42, + "end": 10594.64, + "probability": 0.8299 + }, + { + "start": 10595.16, + "end": 10595.64, + "probability": 0.7448 + }, + { + "start": 10596.18, + "end": 10600.56, + "probability": 0.9824 + }, + { + "start": 10600.74, + "end": 10601.6, + "probability": 0.5897 + }, + { + "start": 10602.12, + "end": 10602.52, + "probability": 0.755 + }, + { + "start": 10602.62, + "end": 10604.24, + "probability": 0.9945 + }, + { + "start": 10604.24, + "end": 10604.88, + "probability": 0.5248 + }, + { + "start": 10604.92, + "end": 10605.84, + "probability": 0.4957 + }, + { + "start": 10606.36, + "end": 10606.84, + "probability": 0.8416 + }, + { + "start": 10607.5, + "end": 10609.74, + "probability": 0.781 + }, + { + "start": 10610.36, + "end": 10611.7, + "probability": 0.9535 + }, + { + "start": 10612.54, + "end": 10613.08, + "probability": 0.6851 + }, + { + "start": 10613.52, + "end": 10616.44, + "probability": 0.8682 + }, + { + "start": 10616.88, + "end": 10619.22, + "probability": 0.5102 + }, + { + "start": 10621.6, + "end": 10624.98, + "probability": 0.9592 + }, + { + "start": 10625.62, + "end": 10626.8, + "probability": 0.6763 + }, + { + "start": 10627.16, + "end": 10631.24, + "probability": 0.6528 + }, + { + "start": 10631.38, + "end": 10632.08, + "probability": 0.3889 + }, + { + "start": 10632.66, + "end": 10634.36, + "probability": 0.8706 + }, + { + "start": 10634.84, + "end": 10635.98, + "probability": 0.6575 + }, + { + "start": 10636.14, + "end": 10639.46, + "probability": 0.8526 + }, + { + "start": 10639.94, + "end": 10643.14, + "probability": 0.9189 + }, + { + "start": 10643.14, + "end": 10645.78, + "probability": 0.9966 + }, + { + "start": 10646.38, + "end": 10648.02, + "probability": 0.5877 + }, + { + "start": 10649.48, + "end": 10651.82, + "probability": 0.7944 + }, + { + "start": 10652.06, + "end": 10653.24, + "probability": 0.9239 + }, + { + "start": 10653.76, + "end": 10655.74, + "probability": 0.9768 + }, + { + "start": 10656.14, + "end": 10658.44, + "probability": 0.9528 + }, + { + "start": 10658.98, + "end": 10660.38, + "probability": 0.9915 + }, + { + "start": 10661.96, + "end": 10665.66, + "probability": 0.7842 + }, + { + "start": 10666.0, + "end": 10669.38, + "probability": 0.5455 + }, + { + "start": 10669.44, + "end": 10669.78, + "probability": 0.8588 + }, + { + "start": 10671.1, + "end": 10672.86, + "probability": 0.0912 + }, + { + "start": 10684.34, + "end": 10685.1, + "probability": 0.1151 + }, + { + "start": 10685.56, + "end": 10686.6, + "probability": 0.0678 + }, + { + "start": 10690.04, + "end": 10690.36, + "probability": 0.1596 + }, + { + "start": 10692.1, + "end": 10694.36, + "probability": 0.3241 + }, + { + "start": 10696.52, + "end": 10699.22, + "probability": 0.1154 + }, + { + "start": 10699.22, + "end": 10699.72, + "probability": 0.0351 + }, + { + "start": 10701.92, + "end": 10702.04, + "probability": 0.0624 + }, + { + "start": 10712.4, + "end": 10713.0, + "probability": 0.0 + }, + { + "start": 10715.9, + "end": 10718.92, + "probability": 0.4098 + }, + { + "start": 10719.18, + "end": 10720.08, + "probability": 0.6103 + }, + { + "start": 10720.7, + "end": 10722.8, + "probability": 0.4883 + }, + { + "start": 10723.2, + "end": 10724.08, + "probability": 0.5756 + }, + { + "start": 10724.2, + "end": 10726.1, + "probability": 0.6323 + }, + { + "start": 10726.46, + "end": 10728.16, + "probability": 0.0569 + }, + { + "start": 10729.68, + "end": 10730.38, + "probability": 0.0114 + }, + { + "start": 10730.98, + "end": 10731.16, + "probability": 0.0659 + }, + { + "start": 10731.48, + "end": 10735.42, + "probability": 0.3029 + }, + { + "start": 10735.74, + "end": 10736.14, + "probability": 0.6383 + }, + { + "start": 10736.32, + "end": 10740.06, + "probability": 0.3928 + }, + { + "start": 10740.42, + "end": 10744.36, + "probability": 0.723 + }, + { + "start": 10744.68, + "end": 10747.46, + "probability": 0.7299 + }, + { + "start": 10747.88, + "end": 10748.88, + "probability": 0.1148 + }, + { + "start": 10749.24, + "end": 10749.24, + "probability": 0.1693 + }, + { + "start": 10749.82, + "end": 10751.22, + "probability": 0.0444 + }, + { + "start": 10751.44, + "end": 10753.89, + "probability": 0.0533 + }, + { + "start": 10754.36, + "end": 10754.98, + "probability": 0.5405 + }, + { + "start": 10755.5, + "end": 10761.5, + "probability": 0.042 + }, + { + "start": 10761.88, + "end": 10762.02, + "probability": 0.0022 + }, + { + "start": 10777.34, + "end": 10779.0, + "probability": 0.2692 + }, + { + "start": 10779.24, + "end": 10779.24, + "probability": 0.6424 + }, + { + "start": 10779.26, + "end": 10781.96, + "probability": 0.0454 + }, + { + "start": 10781.96, + "end": 10782.32, + "probability": 0.0622 + }, + { + "start": 10783.64, + "end": 10783.96, + "probability": 0.1541 + }, + { + "start": 10785.5, + "end": 10788.5, + "probability": 0.185 + }, + { + "start": 10791.9, + "end": 10792.74, + "probability": 0.0875 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.0, + "end": 10897.0, + "probability": 0.0 + }, + { + "start": 10897.34, + "end": 10897.46, + "probability": 0.0172 + }, + { + "start": 10897.46, + "end": 10897.46, + "probability": 0.0607 + }, + { + "start": 10897.46, + "end": 10898.97, + "probability": 0.7076 + }, + { + "start": 10899.44, + "end": 10900.02, + "probability": 0.6948 + }, + { + "start": 10900.1, + "end": 10903.28, + "probability": 0.8073 + }, + { + "start": 10903.28, + "end": 10904.2, + "probability": 0.8804 + }, + { + "start": 10904.42, + "end": 10907.8, + "probability": 0.7874 + }, + { + "start": 10911.63, + "end": 10914.7, + "probability": 0.6927 + }, + { + "start": 10915.92, + "end": 10919.76, + "probability": 0.9915 + }, + { + "start": 10920.4, + "end": 10922.88, + "probability": 0.9893 + }, + { + "start": 10924.02, + "end": 10924.76, + "probability": 0.7129 + }, + { + "start": 10926.28, + "end": 10929.18, + "probability": 0.7609 + }, + { + "start": 10929.28, + "end": 10930.91, + "probability": 0.9651 + }, + { + "start": 10931.76, + "end": 10934.14, + "probability": 0.7444 + }, + { + "start": 10935.08, + "end": 10936.4, + "probability": 0.8774 + }, + { + "start": 10938.06, + "end": 10940.08, + "probability": 0.992 + }, + { + "start": 10940.64, + "end": 10941.9, + "probability": 0.9506 + }, + { + "start": 10942.26, + "end": 10944.52, + "probability": 0.9921 + }, + { + "start": 10944.8, + "end": 10946.68, + "probability": 0.9939 + }, + { + "start": 10947.4, + "end": 10948.5, + "probability": 0.9604 + }, + { + "start": 10948.68, + "end": 10949.98, + "probability": 0.9982 + }, + { + "start": 10951.98, + "end": 10957.1, + "probability": 0.9727 + }, + { + "start": 10958.5, + "end": 10959.72, + "probability": 0.5889 + }, + { + "start": 10962.26, + "end": 10964.04, + "probability": 0.9608 + }, + { + "start": 10964.34, + "end": 10966.44, + "probability": 0.4682 + }, + { + "start": 10966.56, + "end": 10967.96, + "probability": 0.951 + }, + { + "start": 10968.92, + "end": 10972.12, + "probability": 0.7546 + }, + { + "start": 10972.88, + "end": 10977.26, + "probability": 0.7984 + }, + { + "start": 10978.92, + "end": 10982.62, + "probability": 0.9451 + }, + { + "start": 10982.76, + "end": 10983.68, + "probability": 0.8798 + }, + { + "start": 10984.04, + "end": 10985.28, + "probability": 0.6649 + }, + { + "start": 10985.28, + "end": 10986.86, + "probability": 0.716 + }, + { + "start": 10987.64, + "end": 10988.32, + "probability": 0.0022 + }, + { + "start": 10989.38, + "end": 10992.4, + "probability": 0.7847 + }, + { + "start": 10992.68, + "end": 10994.6, + "probability": 0.121 + }, + { + "start": 10995.1, + "end": 10996.7, + "probability": 0.2599 + }, + { + "start": 10996.7, + "end": 10997.04, + "probability": 0.2892 + }, + { + "start": 10997.04, + "end": 10997.04, + "probability": 0.4719 + }, + { + "start": 10997.04, + "end": 10998.13, + "probability": 0.9023 + }, + { + "start": 10999.55, + "end": 11000.51, + "probability": 0.4978 + }, + { + "start": 11001.09, + "end": 11002.35, + "probability": 0.9071 + }, + { + "start": 11003.13, + "end": 11005.27, + "probability": 0.8921 + }, + { + "start": 11005.69, + "end": 11007.89, + "probability": 0.6666 + }, + { + "start": 11008.89, + "end": 11010.67, + "probability": 0.9706 + }, + { + "start": 11010.75, + "end": 11012.71, + "probability": 0.9923 + }, + { + "start": 11013.29, + "end": 11014.53, + "probability": 0.9319 + }, + { + "start": 11015.09, + "end": 11016.37, + "probability": 0.9011 + }, + { + "start": 11017.05, + "end": 11019.93, + "probability": 0.8453 + }, + { + "start": 11019.93, + "end": 11023.37, + "probability": 0.7732 + }, + { + "start": 11023.55, + "end": 11029.51, + "probability": 0.9843 + }, + { + "start": 11029.51, + "end": 11035.87, + "probability": 0.9951 + }, + { + "start": 11036.07, + "end": 11039.87, + "probability": 0.9785 + }, + { + "start": 11040.17, + "end": 11040.96, + "probability": 0.681 + }, + { + "start": 11041.41, + "end": 11042.49, + "probability": 0.8989 + }, + { + "start": 11043.13, + "end": 11043.77, + "probability": 0.6959 + }, + { + "start": 11044.63, + "end": 11046.73, + "probability": 0.3712 + }, + { + "start": 11046.87, + "end": 11049.62, + "probability": 0.6455 + }, + { + "start": 11049.85, + "end": 11051.87, + "probability": 0.084 + }, + { + "start": 11058.97, + "end": 11059.79, + "probability": 0.0738 + }, + { + "start": 11060.65, + "end": 11061.57, + "probability": 0.2612 + }, + { + "start": 11070.81, + "end": 11076.21, + "probability": 0.3234 + }, + { + "start": 11077.01, + "end": 11077.59, + "probability": 0.0513 + }, + { + "start": 11077.71, + "end": 11079.25, + "probability": 0.284 + }, + { + "start": 11079.39, + "end": 11080.45, + "probability": 0.1167 + }, + { + "start": 11081.59, + "end": 11083.49, + "probability": 0.5898 + }, + { + "start": 11104.05, + "end": 11105.23, + "probability": 0.0671 + }, + { + "start": 11107.41, + "end": 11109.95, + "probability": 0.0566 + }, + { + "start": 11109.95, + "end": 11111.77, + "probability": 0.0237 + }, + { + "start": 11111.79, + "end": 11115.59, + "probability": 0.0329 + }, + { + "start": 11116.61, + "end": 11117.13, + "probability": 0.026 + }, + { + "start": 11117.13, + "end": 11119.87, + "probability": 0.0432 + }, + { + "start": 11119.87, + "end": 11124.31, + "probability": 0.0251 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11131.0, + "end": 11131.0, + "probability": 0.0 + }, + { + "start": 11139.98, + "end": 11142.12, + "probability": 0.1228 + }, + { + "start": 11142.12, + "end": 11142.56, + "probability": 0.0279 + }, + { + "start": 11142.56, + "end": 11143.98, + "probability": 0.1026 + }, + { + "start": 11144.8, + "end": 11144.96, + "probability": 0.0196 + }, + { + "start": 11146.24, + "end": 11147.08, + "probability": 0.1063 + }, + { + "start": 11147.08, + "end": 11147.9, + "probability": 0.0672 + }, + { + "start": 11148.4, + "end": 11148.46, + "probability": 0.0127 + }, + { + "start": 11148.46, + "end": 11148.46, + "probability": 0.0184 + }, + { + "start": 11148.46, + "end": 11148.46, + "probability": 0.1534 + }, + { + "start": 11148.46, + "end": 11148.46, + "probability": 0.045 + }, + { + "start": 11148.46, + "end": 11148.46, + "probability": 0.0978 + }, + { + "start": 11148.46, + "end": 11148.46, + "probability": 0.0146 + }, + { + "start": 11148.46, + "end": 11148.46, + "probability": 0.0304 + }, + { + "start": 11148.46, + "end": 11148.46, + "probability": 0.0405 + }, + { + "start": 11148.46, + "end": 11150.1, + "probability": 0.8142 + }, + { + "start": 11150.76, + "end": 11153.18, + "probability": 0.2683 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.0, + "end": 11254.0, + "probability": 0.0 + }, + { + "start": 11254.2, + "end": 11254.42, + "probability": 0.0506 + }, + { + "start": 11254.42, + "end": 11255.54, + "probability": 0.1238 + }, + { + "start": 11255.8, + "end": 11256.04, + "probability": 0.1322 + }, + { + "start": 11256.04, + "end": 11257.92, + "probability": 0.7792 + }, + { + "start": 11257.98, + "end": 11259.58, + "probability": 0.8676 + }, + { + "start": 11259.76, + "end": 11259.76, + "probability": 0.0372 + }, + { + "start": 11259.76, + "end": 11260.92, + "probability": 0.4067 + }, + { + "start": 11260.92, + "end": 11263.32, + "probability": 0.7861 + }, + { + "start": 11263.32, + "end": 11263.48, + "probability": 0.2187 + }, + { + "start": 11263.48, + "end": 11264.66, + "probability": 0.3265 + }, + { + "start": 11265.02, + "end": 11265.02, + "probability": 0.4785 + }, + { + "start": 11265.04, + "end": 11266.52, + "probability": 0.7546 + }, + { + "start": 11266.52, + "end": 11266.72, + "probability": 0.0076 + }, + { + "start": 11266.82, + "end": 11269.1, + "probability": 0.6887 + }, + { + "start": 11269.22, + "end": 11271.5, + "probability": 0.9956 + }, + { + "start": 11271.52, + "end": 11272.72, + "probability": 0.9431 + }, + { + "start": 11272.84, + "end": 11274.94, + "probability": 0.9978 + }, + { + "start": 11275.2, + "end": 11275.22, + "probability": 0.1598 + }, + { + "start": 11275.22, + "end": 11277.58, + "probability": 0.9872 + }, + { + "start": 11277.88, + "end": 11280.8, + "probability": 0.8434 + }, + { + "start": 11280.88, + "end": 11281.18, + "probability": 0.5677 + }, + { + "start": 11281.28, + "end": 11283.56, + "probability": 0.5293 + }, + { + "start": 11283.74, + "end": 11285.8, + "probability": 0.9597 + }, + { + "start": 11286.12, + "end": 11288.8, + "probability": 0.7124 + }, + { + "start": 11289.02, + "end": 11290.02, + "probability": 0.4084 + }, + { + "start": 11292.42, + "end": 11293.44, + "probability": 0.223 + }, + { + "start": 11299.32, + "end": 11299.94, + "probability": 0.2289 + }, + { + "start": 11300.46, + "end": 11303.2, + "probability": 0.0766 + }, + { + "start": 11304.22, + "end": 11308.18, + "probability": 0.0492 + }, + { + "start": 11308.48, + "end": 11310.1, + "probability": 0.5679 + }, + { + "start": 11310.1, + "end": 11311.8, + "probability": 0.8307 + }, + { + "start": 11311.84, + "end": 11312.76, + "probability": 0.417 + }, + { + "start": 11312.94, + "end": 11312.94, + "probability": 0.0222 + }, + { + "start": 11312.94, + "end": 11315.8, + "probability": 0.9604 + }, + { + "start": 11317.14, + "end": 11320.78, + "probability": 0.0134 + }, + { + "start": 11321.34, + "end": 11321.42, + "probability": 0.0522 + }, + { + "start": 11321.94, + "end": 11322.32, + "probability": 0.0091 + }, + { + "start": 11322.32, + "end": 11323.56, + "probability": 0.0752 + }, + { + "start": 11323.62, + "end": 11327.58, + "probability": 0.6874 + }, + { + "start": 11329.36, + "end": 11330.76, + "probability": 0.0223 + }, + { + "start": 11333.48, + "end": 11335.02, + "probability": 0.4657 + }, + { + "start": 11335.9, + "end": 11336.56, + "probability": 0.1982 + }, + { + "start": 11336.56, + "end": 11337.72, + "probability": 0.5898 + }, + { + "start": 11337.78, + "end": 11339.37, + "probability": 0.4499 + }, + { + "start": 11352.03, + "end": 11354.56, + "probability": 0.232 + }, + { + "start": 11355.06, + "end": 11355.58, + "probability": 0.124 + }, + { + "start": 11356.9, + "end": 11361.16, + "probability": 0.1041 + }, + { + "start": 11366.5, + "end": 11366.64, + "probability": 0.2498 + }, + { + "start": 11367.46, + "end": 11368.0, + "probability": 0.7486 + }, + { + "start": 11368.58, + "end": 11371.8, + "probability": 0.6528 + }, + { + "start": 11372.74, + "end": 11375.98, + "probability": 0.7071 + }, + { + "start": 11376.8, + "end": 11382.28, + "probability": 0.993 + }, + { + "start": 11382.28, + "end": 11387.48, + "probability": 0.9892 + }, + { + "start": 11388.46, + "end": 11394.24, + "probability": 0.9912 + }, + { + "start": 11394.92, + "end": 11396.48, + "probability": 0.7558 + }, + { + "start": 11397.48, + "end": 11398.98, + "probability": 0.9567 + }, + { + "start": 11399.6, + "end": 11400.68, + "probability": 0.8254 + }, + { + "start": 11401.2, + "end": 11402.98, + "probability": 0.9907 + }, + { + "start": 11403.66, + "end": 11409.1, + "probability": 0.9961 + }, + { + "start": 11409.22, + "end": 11410.94, + "probability": 0.9733 + }, + { + "start": 11411.86, + "end": 11414.72, + "probability": 0.9961 + }, + { + "start": 11416.02, + "end": 11420.92, + "probability": 0.9696 + }, + { + "start": 11422.3, + "end": 11424.14, + "probability": 0.865 + }, + { + "start": 11425.2, + "end": 11427.0, + "probability": 0.967 + }, + { + "start": 11427.92, + "end": 11429.24, + "probability": 0.9744 + }, + { + "start": 11430.28, + "end": 11432.32, + "probability": 0.8492 + }, + { + "start": 11433.74, + "end": 11437.68, + "probability": 0.9884 + }, + { + "start": 11438.7, + "end": 11442.25, + "probability": 0.9266 + }, + { + "start": 11443.74, + "end": 11445.78, + "probability": 0.6149 + }, + { + "start": 11447.1, + "end": 11448.9, + "probability": 0.9075 + }, + { + "start": 11450.32, + "end": 11452.18, + "probability": 0.8914 + }, + { + "start": 11452.24, + "end": 11455.24, + "probability": 0.9891 + }, + { + "start": 11455.52, + "end": 11459.84, + "probability": 0.9639 + }, + { + "start": 11460.0, + "end": 11461.88, + "probability": 0.9409 + }, + { + "start": 11462.62, + "end": 11463.18, + "probability": 0.8955 + }, + { + "start": 11463.84, + "end": 11464.44, + "probability": 0.6356 + }, + { + "start": 11465.24, + "end": 11466.5, + "probability": 0.8459 + }, + { + "start": 11467.04, + "end": 11469.34, + "probability": 0.7499 + }, + { + "start": 11469.76, + "end": 11472.12, + "probability": 0.9407 + }, + { + "start": 11472.22, + "end": 11473.12, + "probability": 0.7361 + }, + { + "start": 11473.16, + "end": 11477.74, + "probability": 0.9551 + }, + { + "start": 11477.84, + "end": 11479.85, + "probability": 0.9976 + }, + { + "start": 11480.72, + "end": 11481.94, + "probability": 0.9595 + }, + { + "start": 11482.26, + "end": 11483.54, + "probability": 0.6004 + }, + { + "start": 11483.58, + "end": 11492.88, + "probability": 0.9932 + }, + { + "start": 11493.48, + "end": 11498.62, + "probability": 0.9985 + }, + { + "start": 11498.62, + "end": 11505.94, + "probability": 0.9974 + }, + { + "start": 11506.5, + "end": 11507.58, + "probability": 0.7115 + }, + { + "start": 11508.16, + "end": 11509.82, + "probability": 0.6949 + }, + { + "start": 11511.02, + "end": 11513.18, + "probability": 0.9899 + }, + { + "start": 11513.22, + "end": 11518.74, + "probability": 0.9973 + }, + { + "start": 11518.74, + "end": 11526.64, + "probability": 0.9607 + }, + { + "start": 11527.12, + "end": 11530.64, + "probability": 0.9939 + }, + { + "start": 11531.82, + "end": 11535.44, + "probability": 0.9702 + }, + { + "start": 11535.58, + "end": 11536.62, + "probability": 0.9574 + }, + { + "start": 11536.72, + "end": 11537.86, + "probability": 0.6794 + }, + { + "start": 11538.42, + "end": 11539.94, + "probability": 0.9596 + }, + { + "start": 11540.56, + "end": 11544.08, + "probability": 0.9922 + }, + { + "start": 11544.38, + "end": 11548.88, + "probability": 0.9978 + }, + { + "start": 11549.56, + "end": 11552.14, + "probability": 0.8236 + }, + { + "start": 11552.88, + "end": 11554.68, + "probability": 0.9731 + }, + { + "start": 11554.96, + "end": 11556.64, + "probability": 0.9901 + }, + { + "start": 11556.9, + "end": 11558.8, + "probability": 0.9835 + }, + { + "start": 11559.04, + "end": 11563.44, + "probability": 0.9741 + }, + { + "start": 11563.86, + "end": 11565.14, + "probability": 0.9946 + }, + { + "start": 11565.32, + "end": 11566.68, + "probability": 0.9619 + }, + { + "start": 11567.16, + "end": 11568.88, + "probability": 0.8619 + }, + { + "start": 11569.16, + "end": 11570.92, + "probability": 0.925 + }, + { + "start": 11571.6, + "end": 11572.8, + "probability": 0.9602 + }, + { + "start": 11573.04, + "end": 11574.12, + "probability": 0.9602 + }, + { + "start": 11574.22, + "end": 11577.68, + "probability": 0.8622 + }, + { + "start": 11578.12, + "end": 11578.54, + "probability": 0.4967 + }, + { + "start": 11579.82, + "end": 11581.26, + "probability": 0.9922 + }, + { + "start": 11581.92, + "end": 11582.42, + "probability": 0.7788 + }, + { + "start": 11582.6, + "end": 11584.32, + "probability": 0.7021 + }, + { + "start": 11584.38, + "end": 11588.0, + "probability": 0.9876 + }, + { + "start": 11590.1, + "end": 11595.4, + "probability": 0.9971 + }, + { + "start": 11595.4, + "end": 11601.14, + "probability": 0.9981 + }, + { + "start": 11601.74, + "end": 11602.94, + "probability": 0.8481 + }, + { + "start": 11603.82, + "end": 11605.1, + "probability": 0.8484 + }, + { + "start": 11605.36, + "end": 11609.88, + "probability": 0.9932 + }, + { + "start": 11610.44, + "end": 11612.02, + "probability": 0.9017 + }, + { + "start": 11613.1, + "end": 11616.52, + "probability": 0.9113 + }, + { + "start": 11617.28, + "end": 11621.88, + "probability": 0.987 + }, + { + "start": 11622.1, + "end": 11623.02, + "probability": 0.9322 + }, + { + "start": 11623.32, + "end": 11625.13, + "probability": 0.9972 + }, + { + "start": 11625.4, + "end": 11627.78, + "probability": 0.9009 + }, + { + "start": 11627.88, + "end": 11630.22, + "probability": 0.8638 + }, + { + "start": 11630.34, + "end": 11633.34, + "probability": 0.8105 + }, + { + "start": 11633.5, + "end": 11634.24, + "probability": 0.7477 + }, + { + "start": 11634.42, + "end": 11635.74, + "probability": 0.8803 + }, + { + "start": 11636.46, + "end": 11641.04, + "probability": 0.9962 + }, + { + "start": 11642.7, + "end": 11645.98, + "probability": 0.9651 + }, + { + "start": 11647.64, + "end": 11649.42, + "probability": 0.818 + }, + { + "start": 11649.54, + "end": 11649.99, + "probability": 0.9741 + }, + { + "start": 11652.42, + "end": 11653.26, + "probability": 0.7125 + }, + { + "start": 11653.76, + "end": 11654.36, + "probability": 0.8224 + }, + { + "start": 11654.72, + "end": 11661.56, + "probability": 0.8789 + }, + { + "start": 11661.78, + "end": 11662.46, + "probability": 0.6838 + }, + { + "start": 11662.6, + "end": 11663.24, + "probability": 0.6906 + }, + { + "start": 11663.34, + "end": 11665.96, + "probability": 0.9258 + }, + { + "start": 11666.42, + "end": 11667.42, + "probability": 0.9705 + }, + { + "start": 11667.54, + "end": 11668.14, + "probability": 0.4531 + }, + { + "start": 11668.22, + "end": 11668.94, + "probability": 0.7033 + }, + { + "start": 11669.42, + "end": 11671.38, + "probability": 0.9417 + }, + { + "start": 11671.98, + "end": 11673.14, + "probability": 0.7705 + }, + { + "start": 11673.88, + "end": 11676.6, + "probability": 0.9747 + }, + { + "start": 11676.6, + "end": 11680.36, + "probability": 0.9863 + }, + { + "start": 11681.2, + "end": 11682.18, + "probability": 0.9619 + }, + { + "start": 11682.7, + "end": 11687.14, + "probability": 0.9844 + }, + { + "start": 11687.8, + "end": 11688.64, + "probability": 0.5708 + }, + { + "start": 11689.16, + "end": 11693.0, + "probability": 0.9703 + }, + { + "start": 11694.2, + "end": 11695.02, + "probability": 0.9739 + }, + { + "start": 11695.08, + "end": 11695.8, + "probability": 0.7905 + }, + { + "start": 11695.86, + "end": 11700.98, + "probability": 0.981 + }, + { + "start": 11702.1, + "end": 11703.5, + "probability": 0.9956 + }, + { + "start": 11704.14, + "end": 11705.26, + "probability": 0.8542 + }, + { + "start": 11705.42, + "end": 11709.44, + "probability": 0.9594 + }, + { + "start": 11709.6, + "end": 11709.78, + "probability": 0.6307 + }, + { + "start": 11711.0, + "end": 11713.08, + "probability": 0.9165 + }, + { + "start": 11713.68, + "end": 11714.7, + "probability": 0.8017 + }, + { + "start": 11714.82, + "end": 11715.96, + "probability": 0.9175 + }, + { + "start": 11716.18, + "end": 11717.58, + "probability": 0.8376 + }, + { + "start": 11718.06, + "end": 11718.63, + "probability": 0.8564 + }, + { + "start": 11718.96, + "end": 11719.68, + "probability": 0.9768 + }, + { + "start": 11719.76, + "end": 11720.72, + "probability": 0.8628 + }, + { + "start": 11721.1, + "end": 11721.63, + "probability": 0.9321 + }, + { + "start": 11722.16, + "end": 11722.52, + "probability": 0.5481 + }, + { + "start": 11723.24, + "end": 11723.82, + "probability": 0.2629 + }, + { + "start": 11724.6, + "end": 11725.7, + "probability": 0.9502 + }, + { + "start": 11725.76, + "end": 11730.82, + "probability": 0.9888 + }, + { + "start": 11730.82, + "end": 11735.86, + "probability": 0.9954 + }, + { + "start": 11737.22, + "end": 11745.22, + "probability": 0.9717 + }, + { + "start": 11745.4, + "end": 11746.32, + "probability": 0.4212 + }, + { + "start": 11746.36, + "end": 11748.94, + "probability": 0.9808 + }, + { + "start": 11749.56, + "end": 11753.74, + "probability": 0.9861 + }, + { + "start": 11754.58, + "end": 11755.14, + "probability": 0.7438 + }, + { + "start": 11755.22, + "end": 11759.0, + "probability": 0.9961 + }, + { + "start": 11759.0, + "end": 11761.96, + "probability": 0.967 + }, + { + "start": 11762.4, + "end": 11764.0, + "probability": 0.944 + }, + { + "start": 11764.4, + "end": 11767.28, + "probability": 0.9722 + }, + { + "start": 11767.92, + "end": 11769.38, + "probability": 0.8294 + }, + { + "start": 11770.7, + "end": 11775.2, + "probability": 0.9536 + }, + { + "start": 11775.56, + "end": 11779.14, + "probability": 0.832 + }, + { + "start": 11780.04, + "end": 11785.22, + "probability": 0.9761 + }, + { + "start": 11785.94, + "end": 11793.76, + "probability": 0.9263 + }, + { + "start": 11794.32, + "end": 11798.86, + "probability": 0.9306 + }, + { + "start": 11799.74, + "end": 11802.54, + "probability": 0.8933 + }, + { + "start": 11803.1, + "end": 11805.8, + "probability": 0.6198 + }, + { + "start": 11806.46, + "end": 11812.16, + "probability": 0.8891 + }, + { + "start": 11812.74, + "end": 11813.76, + "probability": 0.5787 + }, + { + "start": 11814.78, + "end": 11816.71, + "probability": 0.7703 + }, + { + "start": 11817.44, + "end": 11820.08, + "probability": 0.8218 + }, + { + "start": 11820.9, + "end": 11823.5, + "probability": 0.9615 + }, + { + "start": 11823.7, + "end": 11824.0, + "probability": 0.9508 + }, + { + "start": 11824.02, + "end": 11826.19, + "probability": 0.9421 + }, + { + "start": 11827.42, + "end": 11830.58, + "probability": 0.7901 + }, + { + "start": 11830.96, + "end": 11832.24, + "probability": 0.9688 + }, + { + "start": 11832.4, + "end": 11833.64, + "probability": 0.9877 + }, + { + "start": 11833.72, + "end": 11834.46, + "probability": 0.9637 + }, + { + "start": 11835.06, + "end": 11836.22, + "probability": 0.9622 + }, + { + "start": 11836.44, + "end": 11838.92, + "probability": 0.9928 + }, + { + "start": 11838.98, + "end": 11839.68, + "probability": 0.6229 + }, + { + "start": 11840.4, + "end": 11843.12, + "probability": 0.8802 + }, + { + "start": 11843.74, + "end": 11844.58, + "probability": 0.8973 + }, + { + "start": 11844.7, + "end": 11845.3, + "probability": 0.686 + }, + { + "start": 11845.42, + "end": 11848.84, + "probability": 0.995 + }, + { + "start": 11850.58, + "end": 11852.4, + "probability": 0.8123 + }, + { + "start": 11853.2, + "end": 11855.64, + "probability": 0.947 + }, + { + "start": 11856.34, + "end": 11859.1, + "probability": 0.9989 + }, + { + "start": 11859.16, + "end": 11860.68, + "probability": 0.6539 + }, + { + "start": 11861.36, + "end": 11864.92, + "probability": 0.4356 + }, + { + "start": 11865.22, + "end": 11869.9, + "probability": 0.9747 + }, + { + "start": 11869.9, + "end": 11874.22, + "probability": 0.9973 + }, + { + "start": 11875.12, + "end": 11877.06, + "probability": 0.757 + }, + { + "start": 11877.52, + "end": 11878.6, + "probability": 0.8517 + }, + { + "start": 11880.58, + "end": 11882.02, + "probability": 0.0173 + }, + { + "start": 11882.54, + "end": 11883.98, + "probability": 0.0673 + }, + { + "start": 11883.98, + "end": 11885.36, + "probability": 0.6083 + }, + { + "start": 11885.46, + "end": 11888.72, + "probability": 0.8257 + }, + { + "start": 11891.05, + "end": 11892.88, + "probability": 0.0218 + }, + { + "start": 11893.36, + "end": 11893.36, + "probability": 0.3824 + }, + { + "start": 11893.56, + "end": 11894.73, + "probability": 0.6553 + }, + { + "start": 11895.12, + "end": 11895.86, + "probability": 0.3697 + }, + { + "start": 11897.42, + "end": 11899.5, + "probability": 0.991 + }, + { + "start": 11899.58, + "end": 11899.8, + "probability": 0.4373 + }, + { + "start": 11899.88, + "end": 11902.27, + "probability": 0.9917 + }, + { + "start": 11903.54, + "end": 11905.96, + "probability": 0.9529 + }, + { + "start": 11906.54, + "end": 11908.42, + "probability": 0.9683 + }, + { + "start": 11912.24, + "end": 11918.28, + "probability": 0.4005 + }, + { + "start": 11919.56, + "end": 11919.66, + "probability": 0.1884 + }, + { + "start": 11920.66, + "end": 11925.2, + "probability": 0.8563 + }, + { + "start": 11925.94, + "end": 11928.82, + "probability": 0.8188 + }, + { + "start": 11929.4, + "end": 11930.56, + "probability": 0.4217 + }, + { + "start": 11930.6, + "end": 11932.18, + "probability": 0.1641 + }, + { + "start": 11932.18, + "end": 11932.52, + "probability": 0.0077 + }, + { + "start": 11932.76, + "end": 11934.92, + "probability": 0.4176 + }, + { + "start": 11936.63, + "end": 11940.63, + "probability": 0.7512 + }, + { + "start": 11940.96, + "end": 11945.38, + "probability": 0.985 + }, + { + "start": 11945.64, + "end": 11950.34, + "probability": 0.9223 + }, + { + "start": 11951.0, + "end": 11953.18, + "probability": 0.7129 + }, + { + "start": 11953.36, + "end": 11955.6, + "probability": 0.879 + }, + { + "start": 11956.14, + "end": 11957.5, + "probability": 0.6353 + }, + { + "start": 11958.06, + "end": 11963.3, + "probability": 0.972 + }, + { + "start": 11963.32, + "end": 11964.0, + "probability": 0.152 + }, + { + "start": 11964.0, + "end": 11966.78, + "probability": 0.8736 + }, + { + "start": 11967.28, + "end": 11970.28, + "probability": 0.9222 + }, + { + "start": 11970.62, + "end": 11973.42, + "probability": 0.9104 + }, + { + "start": 11974.42, + "end": 11978.58, + "probability": 0.8289 + }, + { + "start": 11979.14, + "end": 11980.52, + "probability": 0.6843 + }, + { + "start": 11980.68, + "end": 11982.0, + "probability": 0.5467 + }, + { + "start": 11982.04, + "end": 11985.1, + "probability": 0.9619 + }, + { + "start": 11985.12, + "end": 11986.64, + "probability": 0.7279 + }, + { + "start": 11986.74, + "end": 11988.66, + "probability": 0.8391 + }, + { + "start": 11989.42, + "end": 11989.96, + "probability": 0.8612 + }, + { + "start": 11990.48, + "end": 11990.58, + "probability": 0.2765 + }, + { + "start": 11990.58, + "end": 11991.72, + "probability": 0.9671 + }, + { + "start": 11992.46, + "end": 11996.2, + "probability": 0.6047 + }, + { + "start": 12014.68, + "end": 12015.38, + "probability": 0.8227 + }, + { + "start": 12019.82, + "end": 12021.44, + "probability": 0.5335 + }, + { + "start": 12021.54, + "end": 12022.58, + "probability": 0.6497 + }, + { + "start": 12024.14, + "end": 12024.98, + "probability": 0.6937 + }, + { + "start": 12026.44, + "end": 12027.08, + "probability": 0.4349 + }, + { + "start": 12027.16, + "end": 12029.84, + "probability": 0.8546 + }, + { + "start": 12030.18, + "end": 12032.02, + "probability": 0.9844 + }, + { + "start": 12032.08, + "end": 12034.53, + "probability": 0.9984 + }, + { + "start": 12036.26, + "end": 12037.92, + "probability": 0.667 + }, + { + "start": 12038.56, + "end": 12041.02, + "probability": 0.8049 + }, + { + "start": 12041.74, + "end": 12047.06, + "probability": 0.9962 + }, + { + "start": 12048.22, + "end": 12054.4, + "probability": 0.9977 + }, + { + "start": 12056.56, + "end": 12058.94, + "probability": 0.8477 + }, + { + "start": 12059.66, + "end": 12063.5, + "probability": 0.5399 + }, + { + "start": 12063.56, + "end": 12064.44, + "probability": 0.7021 + }, + { + "start": 12065.2, + "end": 12067.18, + "probability": 0.978 + }, + { + "start": 12067.72, + "end": 12069.62, + "probability": 0.9681 + }, + { + "start": 12070.47, + "end": 12075.46, + "probability": 0.9285 + }, + { + "start": 12077.86, + "end": 12079.32, + "probability": 0.6013 + }, + { + "start": 12079.32, + "end": 12079.82, + "probability": 0.6672 + }, + { + "start": 12079.82, + "end": 12080.62, + "probability": 0.9591 + }, + { + "start": 12080.62, + "end": 12082.13, + "probability": 0.698 + }, + { + "start": 12082.56, + "end": 12085.36, + "probability": 0.9498 + }, + { + "start": 12087.18, + "end": 12087.8, + "probability": 0.9386 + }, + { + "start": 12089.66, + "end": 12091.92, + "probability": 0.8629 + }, + { + "start": 12093.14, + "end": 12095.48, + "probability": 0.6871 + }, + { + "start": 12097.92, + "end": 12107.38, + "probability": 0.9951 + }, + { + "start": 12108.86, + "end": 12110.08, + "probability": 0.9286 + }, + { + "start": 12111.74, + "end": 12113.44, + "probability": 0.9941 + }, + { + "start": 12114.28, + "end": 12116.48, + "probability": 0.9949 + }, + { + "start": 12117.9, + "end": 12119.9, + "probability": 0.987 + }, + { + "start": 12121.38, + "end": 12122.84, + "probability": 0.914 + }, + { + "start": 12125.22, + "end": 12128.36, + "probability": 0.9718 + }, + { + "start": 12128.94, + "end": 12129.34, + "probability": 0.9209 + }, + { + "start": 12130.86, + "end": 12133.52, + "probability": 0.9774 + }, + { + "start": 12135.88, + "end": 12137.32, + "probability": 0.8246 + }, + { + "start": 12138.84, + "end": 12139.77, + "probability": 0.9365 + }, + { + "start": 12141.14, + "end": 12144.18, + "probability": 0.9251 + }, + { + "start": 12145.62, + "end": 12146.9, + "probability": 0.9172 + }, + { + "start": 12146.96, + "end": 12148.0, + "probability": 0.9755 + }, + { + "start": 12148.08, + "end": 12149.44, + "probability": 0.9946 + }, + { + "start": 12151.04, + "end": 12152.8, + "probability": 0.9626 + }, + { + "start": 12153.94, + "end": 12155.84, + "probability": 0.9818 + }, + { + "start": 12161.04, + "end": 12165.5, + "probability": 0.17 + }, + { + "start": 12165.68, + "end": 12167.0, + "probability": 0.5074 + }, + { + "start": 12167.54, + "end": 12172.56, + "probability": 0.9807 + }, + { + "start": 12174.02, + "end": 12175.0, + "probability": 0.8301 + }, + { + "start": 12175.78, + "end": 12178.02, + "probability": 0.9427 + }, + { + "start": 12179.14, + "end": 12183.04, + "probability": 0.9899 + }, + { + "start": 12184.38, + "end": 12190.98, + "probability": 0.993 + }, + { + "start": 12192.28, + "end": 12194.58, + "probability": 0.6291 + }, + { + "start": 12195.4, + "end": 12197.8, + "probability": 0.9733 + }, + { + "start": 12199.58, + "end": 12201.2, + "probability": 0.9946 + }, + { + "start": 12202.28, + "end": 12203.78, + "probability": 0.9971 + }, + { + "start": 12205.04, + "end": 12206.6, + "probability": 0.9976 + }, + { + "start": 12207.86, + "end": 12211.04, + "probability": 0.9756 + }, + { + "start": 12211.5, + "end": 12213.12, + "probability": 0.9102 + }, + { + "start": 12213.56, + "end": 12214.1, + "probability": 0.6063 + }, + { + "start": 12214.42, + "end": 12214.98, + "probability": 0.8307 + }, + { + "start": 12215.14, + "end": 12215.62, + "probability": 0.8975 + }, + { + "start": 12216.58, + "end": 12217.23, + "probability": 0.94 + }, + { + "start": 12217.6, + "end": 12218.12, + "probability": 0.9286 + }, + { + "start": 12219.8, + "end": 12220.95, + "probability": 0.9863 + }, + { + "start": 12222.52, + "end": 12225.38, + "probability": 0.9416 + }, + { + "start": 12225.52, + "end": 12226.34, + "probability": 0.6807 + }, + { + "start": 12226.5, + "end": 12227.2, + "probability": 0.8358 + }, + { + "start": 12227.52, + "end": 12230.9, + "probability": 0.7119 + }, + { + "start": 12232.4, + "end": 12234.1, + "probability": 0.8872 + }, + { + "start": 12234.38, + "end": 12236.62, + "probability": 0.9781 + }, + { + "start": 12236.82, + "end": 12237.48, + "probability": 0.4963 + }, + { + "start": 12237.52, + "end": 12240.44, + "probability": 0.9683 + }, + { + "start": 12241.36, + "end": 12242.26, + "probability": 0.6913 + }, + { + "start": 12244.14, + "end": 12245.02, + "probability": 0.6853 + }, + { + "start": 12245.68, + "end": 12249.88, + "probability": 0.9312 + }, + { + "start": 12251.36, + "end": 12253.8, + "probability": 0.9391 + }, + { + "start": 12254.5, + "end": 12257.18, + "probability": 0.9768 + }, + { + "start": 12258.86, + "end": 12260.38, + "probability": 0.9072 + }, + { + "start": 12262.22, + "end": 12264.48, + "probability": 0.9956 + }, + { + "start": 12266.38, + "end": 12267.63, + "probability": 0.9985 + }, + { + "start": 12269.18, + "end": 12272.28, + "probability": 0.96 + }, + { + "start": 12275.14, + "end": 12280.2, + "probability": 0.9976 + }, + { + "start": 12283.08, + "end": 12288.22, + "probability": 0.9969 + }, + { + "start": 12290.48, + "end": 12293.0, + "probability": 0.979 + }, + { + "start": 12294.34, + "end": 12297.04, + "probability": 0.9449 + }, + { + "start": 12298.22, + "end": 12301.02, + "probability": 0.9985 + }, + { + "start": 12302.46, + "end": 12304.64, + "probability": 0.7385 + }, + { + "start": 12306.34, + "end": 12310.28, + "probability": 0.9609 + }, + { + "start": 12310.56, + "end": 12311.6, + "probability": 0.6218 + }, + { + "start": 12311.76, + "end": 12312.66, + "probability": 0.7101 + }, + { + "start": 12313.46, + "end": 12315.42, + "probability": 0.871 + }, + { + "start": 12316.38, + "end": 12318.36, + "probability": 0.8058 + }, + { + "start": 12320.42, + "end": 12322.3, + "probability": 0.9565 + }, + { + "start": 12322.44, + "end": 12327.48, + "probability": 0.9899 + }, + { + "start": 12327.88, + "end": 12328.68, + "probability": 0.6349 + }, + { + "start": 12329.6, + "end": 12329.72, + "probability": 0.197 + }, + { + "start": 12331.92, + "end": 12335.74, + "probability": 0.9917 + }, + { + "start": 12336.84, + "end": 12339.72, + "probability": 0.9798 + }, + { + "start": 12341.38, + "end": 12342.52, + "probability": 0.9832 + }, + { + "start": 12344.04, + "end": 12345.64, + "probability": 0.9673 + }, + { + "start": 12347.26, + "end": 12350.16, + "probability": 0.9863 + }, + { + "start": 12351.66, + "end": 12353.7, + "probability": 0.9987 + }, + { + "start": 12354.76, + "end": 12356.16, + "probability": 0.6664 + }, + { + "start": 12358.3, + "end": 12364.12, + "probability": 0.998 + }, + { + "start": 12365.18, + "end": 12365.88, + "probability": 0.7129 + }, + { + "start": 12365.94, + "end": 12367.33, + "probability": 0.876 + }, + { + "start": 12367.82, + "end": 12368.48, + "probability": 0.9266 + }, + { + "start": 12370.58, + "end": 12371.72, + "probability": 0.9971 + }, + { + "start": 12372.14, + "end": 12373.48, + "probability": 0.9614 + }, + { + "start": 12374.28, + "end": 12374.62, + "probability": 0.3517 + }, + { + "start": 12375.9, + "end": 12377.94, + "probability": 0.9973 + }, + { + "start": 12379.28, + "end": 12381.28, + "probability": 0.9902 + }, + { + "start": 12382.14, + "end": 12383.56, + "probability": 0.9688 + }, + { + "start": 12383.8, + "end": 12384.9, + "probability": 0.8784 + }, + { + "start": 12385.0, + "end": 12386.26, + "probability": 0.9595 + }, + { + "start": 12387.54, + "end": 12389.0, + "probability": 0.879 + }, + { + "start": 12390.56, + "end": 12394.46, + "probability": 0.9934 + }, + { + "start": 12396.8, + "end": 12398.9, + "probability": 0.9785 + }, + { + "start": 12399.0, + "end": 12399.76, + "probability": 0.9646 + }, + { + "start": 12399.86, + "end": 12403.88, + "probability": 0.7209 + }, + { + "start": 12403.88, + "end": 12407.22, + "probability": 0.9893 + }, + { + "start": 12407.34, + "end": 12411.34, + "probability": 0.9714 + }, + { + "start": 12411.56, + "end": 12412.14, + "probability": 0.8837 + }, + { + "start": 12412.18, + "end": 12414.76, + "probability": 0.9666 + }, + { + "start": 12415.22, + "end": 12416.2, + "probability": 0.9932 + }, + { + "start": 12417.5, + "end": 12419.78, + "probability": 0.9922 + }, + { + "start": 12421.98, + "end": 12423.26, + "probability": 0.8916 + }, + { + "start": 12424.24, + "end": 12425.41, + "probability": 0.4416 + }, + { + "start": 12425.78, + "end": 12428.34, + "probability": 0.96 + }, + { + "start": 12429.58, + "end": 12431.78, + "probability": 0.9783 + }, + { + "start": 12431.9, + "end": 12434.3, + "probability": 0.9957 + }, + { + "start": 12435.12, + "end": 12438.16, + "probability": 0.8849 + }, + { + "start": 12439.54, + "end": 12440.86, + "probability": 0.8787 + }, + { + "start": 12442.06, + "end": 12444.3, + "probability": 0.9985 + }, + { + "start": 12445.5, + "end": 12446.14, + "probability": 0.9526 + }, + { + "start": 12447.06, + "end": 12453.9, + "probability": 0.9575 + }, + { + "start": 12454.38, + "end": 12455.74, + "probability": 0.9248 + }, + { + "start": 12456.74, + "end": 12460.42, + "probability": 0.9224 + }, + { + "start": 12461.28, + "end": 12464.62, + "probability": 0.9792 + }, + { + "start": 12465.58, + "end": 12466.54, + "probability": 0.9985 + }, + { + "start": 12466.6, + "end": 12468.96, + "probability": 0.9202 + }, + { + "start": 12470.1, + "end": 12471.26, + "probability": 0.9484 + }, + { + "start": 12471.76, + "end": 12473.86, + "probability": 0.9445 + }, + { + "start": 12473.96, + "end": 12475.8, + "probability": 0.7475 + }, + { + "start": 12477.78, + "end": 12480.8, + "probability": 0.9771 + }, + { + "start": 12482.04, + "end": 12485.98, + "probability": 0.9791 + }, + { + "start": 12486.88, + "end": 12488.64, + "probability": 0.9114 + }, + { + "start": 12489.58, + "end": 12490.54, + "probability": 0.9922 + }, + { + "start": 12493.0, + "end": 12495.42, + "probability": 0.9554 + }, + { + "start": 12496.52, + "end": 12500.4, + "probability": 0.9977 + }, + { + "start": 12501.24, + "end": 12504.06, + "probability": 0.9988 + }, + { + "start": 12504.62, + "end": 12507.98, + "probability": 0.9473 + }, + { + "start": 12508.46, + "end": 12510.92, + "probability": 0.7348 + }, + { + "start": 12512.14, + "end": 12514.4, + "probability": 0.9424 + }, + { + "start": 12514.54, + "end": 12515.58, + "probability": 0.8975 + }, + { + "start": 12515.7, + "end": 12516.82, + "probability": 0.6892 + }, + { + "start": 12516.88, + "end": 12518.88, + "probability": 0.983 + }, + { + "start": 12519.98, + "end": 12524.72, + "probability": 0.993 + }, + { + "start": 12525.96, + "end": 12528.14, + "probability": 0.9375 + }, + { + "start": 12529.96, + "end": 12534.5, + "probability": 0.9343 + }, + { + "start": 12535.4, + "end": 12537.82, + "probability": 0.8724 + }, + { + "start": 12539.28, + "end": 12540.2, + "probability": 0.6858 + }, + { + "start": 12540.92, + "end": 12541.7, + "probability": 0.8277 + }, + { + "start": 12542.88, + "end": 12544.21, + "probability": 0.9603 + }, + { + "start": 12546.02, + "end": 12548.44, + "probability": 0.9694 + }, + { + "start": 12549.58, + "end": 12552.36, + "probability": 0.9653 + }, + { + "start": 12553.56, + "end": 12556.26, + "probability": 0.7277 + }, + { + "start": 12557.3, + "end": 12559.5, + "probability": 0.9399 + }, + { + "start": 12560.72, + "end": 12565.54, + "probability": 0.9928 + }, + { + "start": 12565.54, + "end": 12572.14, + "probability": 0.9955 + }, + { + "start": 12573.74, + "end": 12580.38, + "probability": 0.9995 + }, + { + "start": 12581.4, + "end": 12583.46, + "probability": 0.8467 + }, + { + "start": 12583.98, + "end": 12585.18, + "probability": 0.7646 + }, + { + "start": 12585.88, + "end": 12588.74, + "probability": 0.9151 + }, + { + "start": 12589.64, + "end": 12591.38, + "probability": 0.6481 + }, + { + "start": 12592.82, + "end": 12597.64, + "probability": 0.9685 + }, + { + "start": 12598.48, + "end": 12600.38, + "probability": 0.9346 + }, + { + "start": 12602.14, + "end": 12602.56, + "probability": 0.7055 + }, + { + "start": 12603.98, + "end": 12604.44, + "probability": 0.9644 + }, + { + "start": 12604.68, + "end": 12608.54, + "probability": 0.9441 + }, + { + "start": 12609.08, + "end": 12609.88, + "probability": 0.9675 + }, + { + "start": 12611.1, + "end": 12612.58, + "probability": 0.9333 + }, + { + "start": 12614.72, + "end": 12617.1, + "probability": 0.97 + }, + { + "start": 12617.22, + "end": 12618.92, + "probability": 0.7992 + }, + { + "start": 12619.1, + "end": 12619.74, + "probability": 0.4231 + }, + { + "start": 12621.22, + "end": 12625.42, + "probability": 0.9873 + }, + { + "start": 12625.42, + "end": 12630.1, + "probability": 0.835 + }, + { + "start": 12631.36, + "end": 12633.6, + "probability": 0.5183 + }, + { + "start": 12634.14, + "end": 12635.86, + "probability": 0.2848 + }, + { + "start": 12636.14, + "end": 12639.68, + "probability": 0.0584 + }, + { + "start": 12640.06, + "end": 12640.08, + "probability": 0.1909 + }, + { + "start": 12640.08, + "end": 12641.76, + "probability": 0.1544 + }, + { + "start": 12641.76, + "end": 12645.44, + "probability": 0.9802 + }, + { + "start": 12646.12, + "end": 12648.14, + "probability": 0.9951 + }, + { + "start": 12648.72, + "end": 12651.44, + "probability": 0.9755 + }, + { + "start": 12651.96, + "end": 12653.86, + "probability": 0.9966 + }, + { + "start": 12654.04, + "end": 12654.7, + "probability": 0.7558 + }, + { + "start": 12654.86, + "end": 12657.02, + "probability": 0.7278 + }, + { + "start": 12660.1, + "end": 12661.9, + "probability": 0.8314 + }, + { + "start": 12680.76, + "end": 12681.78, + "probability": 0.6335 + }, + { + "start": 12682.72, + "end": 12683.24, + "probability": 0.7022 + }, + { + "start": 12684.02, + "end": 12688.38, + "probability": 0.9792 + }, + { + "start": 12689.02, + "end": 12691.26, + "probability": 0.9254 + }, + { + "start": 12691.34, + "end": 12693.62, + "probability": 0.8853 + }, + { + "start": 12695.1, + "end": 12697.74, + "probability": 0.7059 + }, + { + "start": 12698.7, + "end": 12703.52, + "probability": 0.9308 + }, + { + "start": 12703.74, + "end": 12704.2, + "probability": 0.3157 + }, + { + "start": 12704.26, + "end": 12705.18, + "probability": 0.8026 + }, + { + "start": 12706.36, + "end": 12712.1, + "probability": 0.9912 + }, + { + "start": 12712.1, + "end": 12722.06, + "probability": 0.9631 + }, + { + "start": 12722.82, + "end": 12727.04, + "probability": 0.854 + }, + { + "start": 12727.38, + "end": 12731.9, + "probability": 0.8801 + }, + { + "start": 12732.36, + "end": 12734.22, + "probability": 0.6329 + }, + { + "start": 12735.08, + "end": 12737.5, + "probability": 0.9482 + }, + { + "start": 12738.32, + "end": 12742.04, + "probability": 0.9488 + }, + { + "start": 12742.68, + "end": 12746.4, + "probability": 0.9614 + }, + { + "start": 12746.72, + "end": 12747.42, + "probability": 0.9907 + }, + { + "start": 12748.18, + "end": 12748.9, + "probability": 0.4035 + }, + { + "start": 12749.5, + "end": 12752.58, + "probability": 0.7828 + }, + { + "start": 12753.48, + "end": 12755.41, + "probability": 0.9861 + }, + { + "start": 12756.02, + "end": 12759.84, + "probability": 0.5598 + }, + { + "start": 12760.32, + "end": 12764.9, + "probability": 0.9666 + }, + { + "start": 12764.96, + "end": 12767.76, + "probability": 0.9492 + }, + { + "start": 12768.6, + "end": 12770.74, + "probability": 0.8687 + }, + { + "start": 12771.0, + "end": 12772.5, + "probability": 0.7672 + }, + { + "start": 12772.72, + "end": 12774.68, + "probability": 0.7587 + }, + { + "start": 12775.72, + "end": 12783.42, + "probability": 0.9373 + }, + { + "start": 12783.64, + "end": 12784.9, + "probability": 0.8884 + }, + { + "start": 12785.58, + "end": 12786.44, + "probability": 0.894 + }, + { + "start": 12787.18, + "end": 12790.28, + "probability": 0.9526 + }, + { + "start": 12790.34, + "end": 12792.44, + "probability": 0.829 + }, + { + "start": 12792.48, + "end": 12794.02, + "probability": 0.9932 + }, + { + "start": 12795.04, + "end": 12796.3, + "probability": 0.9304 + }, + { + "start": 12797.1, + "end": 12800.08, + "probability": 0.9626 + }, + { + "start": 12800.98, + "end": 12804.66, + "probability": 0.8776 + }, + { + "start": 12807.16, + "end": 12807.44, + "probability": 0.9972 + }, + { + "start": 12810.64, + "end": 12815.86, + "probability": 0.9985 + }, + { + "start": 12817.12, + "end": 12820.46, + "probability": 0.8328 + }, + { + "start": 12821.46, + "end": 12824.46, + "probability": 0.8806 + }, + { + "start": 12826.0, + "end": 12828.36, + "probability": 0.9727 + }, + { + "start": 12829.3, + "end": 12833.2, + "probability": 0.9448 + }, + { + "start": 12834.08, + "end": 12834.98, + "probability": 0.613 + }, + { + "start": 12836.16, + "end": 12837.65, + "probability": 0.6591 + }, + { + "start": 12839.04, + "end": 12841.2, + "probability": 0.9963 + }, + { + "start": 12842.44, + "end": 12843.82, + "probability": 0.937 + }, + { + "start": 12844.98, + "end": 12845.94, + "probability": 0.8521 + }, + { + "start": 12846.2, + "end": 12846.84, + "probability": 0.9717 + }, + { + "start": 12846.92, + "end": 12848.01, + "probability": 0.9578 + }, + { + "start": 12848.52, + "end": 12849.7, + "probability": 0.9854 + }, + { + "start": 12849.82, + "end": 12852.18, + "probability": 0.9578 + }, + { + "start": 12852.66, + "end": 12855.44, + "probability": 0.995 + }, + { + "start": 12855.88, + "end": 12859.78, + "probability": 0.9815 + }, + { + "start": 12861.06, + "end": 12861.46, + "probability": 0.8079 + }, + { + "start": 12861.88, + "end": 12863.44, + "probability": 0.6993 + }, + { + "start": 12863.86, + "end": 12869.84, + "probability": 0.9882 + }, + { + "start": 12869.84, + "end": 12875.42, + "probability": 0.9993 + }, + { + "start": 12876.44, + "end": 12877.92, + "probability": 0.8281 + }, + { + "start": 12878.46, + "end": 12881.3, + "probability": 0.7576 + }, + { + "start": 12881.44, + "end": 12884.2, + "probability": 0.9797 + }, + { + "start": 12884.2, + "end": 12888.26, + "probability": 0.9939 + }, + { + "start": 12888.68, + "end": 12890.89, + "probability": 0.9777 + }, + { + "start": 12891.92, + "end": 12893.68, + "probability": 0.5978 + }, + { + "start": 12893.74, + "end": 12895.08, + "probability": 0.8066 + }, + { + "start": 12895.82, + "end": 12897.19, + "probability": 0.9965 + }, + { + "start": 12898.76, + "end": 12901.38, + "probability": 0.9836 + }, + { + "start": 12902.14, + "end": 12903.84, + "probability": 0.9977 + }, + { + "start": 12904.04, + "end": 12904.92, + "probability": 0.579 + }, + { + "start": 12917.7, + "end": 12919.9, + "probability": 0.3607 + }, + { + "start": 12921.36, + "end": 12922.44, + "probability": 0.7032 + }, + { + "start": 12924.35, + "end": 12925.34, + "probability": 0.1004 + }, + { + "start": 12925.34, + "end": 12925.34, + "probability": 0.0421 + }, + { + "start": 12925.34, + "end": 12925.34, + "probability": 0.0743 + }, + { + "start": 12926.38, + "end": 12927.6, + "probability": 0.5504 + }, + { + "start": 12928.2, + "end": 12929.16, + "probability": 0.312 + }, + { + "start": 12930.72, + "end": 12932.08, + "probability": 0.1901 + }, + { + "start": 12934.48, + "end": 12935.82, + "probability": 0.5973 + }, + { + "start": 12936.48, + "end": 12937.98, + "probability": 0.8647 + }, + { + "start": 12938.88, + "end": 12939.26, + "probability": 0.2444 + }, + { + "start": 12940.88, + "end": 12940.98, + "probability": 0.5543 + }, + { + "start": 12947.84, + "end": 12948.34, + "probability": 0.1848 + }, + { + "start": 12962.82, + "end": 12963.72, + "probability": 0.4875 + }, + { + "start": 12963.9, + "end": 12964.44, + "probability": 0.7712 + }, + { + "start": 12965.28, + "end": 12967.54, + "probability": 0.8502 + }, + { + "start": 12967.6, + "end": 12969.02, + "probability": 0.5924 + }, + { + "start": 12969.08, + "end": 12970.44, + "probability": 0.7876 + }, + { + "start": 12970.66, + "end": 12971.24, + "probability": 0.7377 + }, + { + "start": 12971.38, + "end": 12972.3, + "probability": 0.7626 + }, + { + "start": 12972.84, + "end": 12974.78, + "probability": 0.8786 + }, + { + "start": 12975.72, + "end": 12976.26, + "probability": 0.3436 + }, + { + "start": 12976.84, + "end": 12977.94, + "probability": 0.5797 + }, + { + "start": 12978.38, + "end": 12980.12, + "probability": 0.2382 + }, + { + "start": 12980.18, + "end": 12983.3, + "probability": 0.9337 + }, + { + "start": 12984.22, + "end": 12987.8, + "probability": 0.95 + }, + { + "start": 12987.8, + "end": 12990.26, + "probability": 0.9084 + }, + { + "start": 12990.26, + "end": 12994.26, + "probability": 0.9932 + }, + { + "start": 12994.38, + "end": 12995.6, + "probability": 0.7538 + }, + { + "start": 12995.78, + "end": 12997.3, + "probability": 0.2651 + }, + { + "start": 12997.48, + "end": 12999.96, + "probability": 0.6306 + }, + { + "start": 13000.4, + "end": 13000.72, + "probability": 0.5901 + }, + { + "start": 13001.26, + "end": 13003.08, + "probability": 0.6856 + }, + { + "start": 13003.4, + "end": 13003.86, + "probability": 0.0518 + }, + { + "start": 13003.86, + "end": 13003.86, + "probability": 0.2143 + }, + { + "start": 13003.86, + "end": 13003.86, + "probability": 0.1496 + }, + { + "start": 13003.86, + "end": 13004.84, + "probability": 0.3592 + }, + { + "start": 13006.78, + "end": 13008.8, + "probability": 0.2366 + }, + { + "start": 13014.62, + "end": 13021.74, + "probability": 0.5382 + }, + { + "start": 13023.5, + "end": 13023.68, + "probability": 0.1812 + }, + { + "start": 13023.68, + "end": 13025.12, + "probability": 0.1637 + }, + { + "start": 13027.08, + "end": 13034.22, + "probability": 0.8926 + }, + { + "start": 13038.94, + "end": 13042.04, + "probability": 0.9671 + }, + { + "start": 13042.14, + "end": 13043.14, + "probability": 0.8253 + }, + { + "start": 13045.28, + "end": 13049.14, + "probability": 0.9814 + }, + { + "start": 13049.14, + "end": 13055.18, + "probability": 0.9868 + }, + { + "start": 13055.36, + "end": 13056.68, + "probability": 0.9976 + }, + { + "start": 13057.68, + "end": 13061.04, + "probability": 0.8883 + }, + { + "start": 13061.18, + "end": 13063.42, + "probability": 0.9816 + }, + { + "start": 13064.68, + "end": 13067.28, + "probability": 0.9965 + }, + { + "start": 13067.28, + "end": 13073.44, + "probability": 0.9988 + }, + { + "start": 13073.44, + "end": 13077.04, + "probability": 0.9985 + }, + { + "start": 13077.88, + "end": 13080.46, + "probability": 0.9971 + }, + { + "start": 13081.5, + "end": 13084.56, + "probability": 0.9276 + }, + { + "start": 13085.8, + "end": 13088.24, + "probability": 0.9939 + }, + { + "start": 13090.0, + "end": 13092.4, + "probability": 0.967 + }, + { + "start": 13092.4, + "end": 13095.86, + "probability": 0.9958 + }, + { + "start": 13095.98, + "end": 13099.82, + "probability": 0.9977 + }, + { + "start": 13100.42, + "end": 13103.44, + "probability": 0.8757 + }, + { + "start": 13104.04, + "end": 13106.62, + "probability": 0.9946 + }, + { + "start": 13107.62, + "end": 13111.22, + "probability": 0.9897 + }, + { + "start": 13111.94, + "end": 13116.38, + "probability": 0.9975 + }, + { + "start": 13116.92, + "end": 13119.08, + "probability": 0.9389 + }, + { + "start": 13119.84, + "end": 13120.68, + "probability": 0.6997 + }, + { + "start": 13120.86, + "end": 13124.14, + "probability": 0.9941 + }, + { + "start": 13124.74, + "end": 13126.98, + "probability": 0.4702 + }, + { + "start": 13128.06, + "end": 13130.98, + "probability": 0.99 + }, + { + "start": 13132.18, + "end": 13135.24, + "probability": 0.9489 + }, + { + "start": 13136.88, + "end": 13141.68, + "probability": 0.9982 + }, + { + "start": 13142.7, + "end": 13143.56, + "probability": 0.959 + }, + { + "start": 13144.3, + "end": 13151.1, + "probability": 0.9462 + }, + { + "start": 13151.18, + "end": 13151.66, + "probability": 0.5148 + }, + { + "start": 13151.9, + "end": 13154.66, + "probability": 0.9968 + }, + { + "start": 13156.12, + "end": 13156.76, + "probability": 0.7878 + }, + { + "start": 13156.9, + "end": 13162.36, + "probability": 0.9663 + }, + { + "start": 13162.36, + "end": 13168.82, + "probability": 0.9847 + }, + { + "start": 13169.48, + "end": 13174.18, + "probability": 0.9987 + }, + { + "start": 13175.58, + "end": 13179.76, + "probability": 0.9943 + }, + { + "start": 13180.58, + "end": 13183.36, + "probability": 0.9967 + }, + { + "start": 13186.04, + "end": 13189.08, + "probability": 0.9976 + }, + { + "start": 13189.64, + "end": 13191.32, + "probability": 0.9756 + }, + { + "start": 13192.12, + "end": 13195.94, + "probability": 0.975 + }, + { + "start": 13195.94, + "end": 13200.74, + "probability": 0.9987 + }, + { + "start": 13202.22, + "end": 13203.58, + "probability": 0.7439 + }, + { + "start": 13206.84, + "end": 13210.08, + "probability": 0.7714 + }, + { + "start": 13214.49, + "end": 13218.06, + "probability": 0.3342 + }, + { + "start": 13219.26, + "end": 13220.88, + "probability": 0.6271 + }, + { + "start": 13221.06, + "end": 13223.76, + "probability": 0.6714 + }, + { + "start": 13223.82, + "end": 13224.32, + "probability": 0.7423 + }, + { + "start": 13224.82, + "end": 13226.12, + "probability": 0.9302 + }, + { + "start": 13226.22, + "end": 13230.98, + "probability": 0.9628 + }, + { + "start": 13232.06, + "end": 13238.2, + "probability": 0.9913 + }, + { + "start": 13238.82, + "end": 13241.38, + "probability": 0.9561 + }, + { + "start": 13242.0, + "end": 13248.86, + "probability": 0.8251 + }, + { + "start": 13250.7, + "end": 13251.52, + "probability": 0.8699 + }, + { + "start": 13251.56, + "end": 13253.64, + "probability": 0.8671 + }, + { + "start": 13253.8, + "end": 13254.36, + "probability": 0.5882 + }, + { + "start": 13254.52, + "end": 13255.14, + "probability": 0.7476 + }, + { + "start": 13255.28, + "end": 13258.14, + "probability": 0.9958 + }, + { + "start": 13258.8, + "end": 13261.34, + "probability": 0.9981 + }, + { + "start": 13261.34, + "end": 13264.6, + "probability": 0.9987 + }, + { + "start": 13265.4, + "end": 13268.8, + "probability": 0.9791 + }, + { + "start": 13268.8, + "end": 13272.22, + "probability": 0.9434 + }, + { + "start": 13273.72, + "end": 13278.86, + "probability": 0.9889 + }, + { + "start": 13278.92, + "end": 13279.98, + "probability": 0.8142 + }, + { + "start": 13280.58, + "end": 13286.36, + "probability": 0.9775 + }, + { + "start": 13286.96, + "end": 13289.7, + "probability": 0.9033 + }, + { + "start": 13290.49, + "end": 13293.6, + "probability": 0.9944 + }, + { + "start": 13293.62, + "end": 13297.12, + "probability": 0.9992 + }, + { + "start": 13298.28, + "end": 13302.8, + "probability": 0.9958 + }, + { + "start": 13304.64, + "end": 13306.02, + "probability": 0.7738 + }, + { + "start": 13309.1, + "end": 13312.26, + "probability": 0.9705 + }, + { + "start": 13313.44, + "end": 13314.02, + "probability": 0.5154 + }, + { + "start": 13314.68, + "end": 13319.2, + "probability": 0.9971 + }, + { + "start": 13323.8, + "end": 13325.16, + "probability": 0.7472 + }, + { + "start": 13325.98, + "end": 13328.38, + "probability": 0.8348 + }, + { + "start": 13329.52, + "end": 13335.44, + "probability": 0.9211 + }, + { + "start": 13336.3, + "end": 13337.35, + "probability": 0.6301 + }, + { + "start": 13338.62, + "end": 13345.16, + "probability": 0.9585 + }, + { + "start": 13345.94, + "end": 13352.44, + "probability": 0.8636 + }, + { + "start": 13352.88, + "end": 13353.48, + "probability": 0.7222 + }, + { + "start": 13353.52, + "end": 13354.24, + "probability": 0.7514 + }, + { + "start": 13356.28, + "end": 13365.36, + "probability": 0.9978 + }, + { + "start": 13365.6, + "end": 13367.36, + "probability": 0.9064 + }, + { + "start": 13370.17, + "end": 13374.32, + "probability": 0.979 + }, + { + "start": 13374.8, + "end": 13380.92, + "probability": 0.9966 + }, + { + "start": 13382.36, + "end": 13384.44, + "probability": 0.9885 + }, + { + "start": 13385.2, + "end": 13387.36, + "probability": 0.9963 + }, + { + "start": 13388.22, + "end": 13393.1, + "probability": 0.995 + }, + { + "start": 13393.12, + "end": 13397.8, + "probability": 0.9983 + }, + { + "start": 13398.8, + "end": 13401.42, + "probability": 0.9938 + }, + { + "start": 13402.74, + "end": 13405.18, + "probability": 0.9653 + }, + { + "start": 13406.18, + "end": 13408.8, + "probability": 0.9871 + }, + { + "start": 13409.84, + "end": 13412.7, + "probability": 0.9413 + }, + { + "start": 13413.22, + "end": 13418.3, + "probability": 0.9342 + }, + { + "start": 13419.22, + "end": 13422.76, + "probability": 0.9939 + }, + { + "start": 13423.64, + "end": 13427.82, + "probability": 0.9982 + }, + { + "start": 13428.52, + "end": 13435.1, + "probability": 0.9985 + }, + { + "start": 13435.8, + "end": 13440.94, + "probability": 0.9995 + }, + { + "start": 13441.36, + "end": 13441.94, + "probability": 0.8024 + }, + { + "start": 13442.74, + "end": 13443.54, + "probability": 0.9729 + }, + { + "start": 13444.26, + "end": 13446.16, + "probability": 0.8996 + }, + { + "start": 13446.96, + "end": 13448.4, + "probability": 0.8284 + }, + { + "start": 13449.2, + "end": 13451.98, + "probability": 0.9675 + }, + { + "start": 13452.58, + "end": 13453.38, + "probability": 0.8787 + }, + { + "start": 13454.44, + "end": 13457.08, + "probability": 0.9724 + }, + { + "start": 13457.96, + "end": 13460.48, + "probability": 0.9618 + }, + { + "start": 13462.28, + "end": 13463.44, + "probability": 0.5234 + }, + { + "start": 13464.66, + "end": 13466.02, + "probability": 0.9048 + }, + { + "start": 13467.14, + "end": 13469.8, + "probability": 0.821 + }, + { + "start": 13471.18, + "end": 13476.66, + "probability": 0.9779 + }, + { + "start": 13477.54, + "end": 13481.42, + "probability": 0.9883 + }, + { + "start": 13482.86, + "end": 13485.36, + "probability": 0.9414 + }, + { + "start": 13486.66, + "end": 13490.24, + "probability": 0.9489 + }, + { + "start": 13490.76, + "end": 13494.02, + "probability": 0.9885 + }, + { + "start": 13494.76, + "end": 13499.2, + "probability": 0.9844 + }, + { + "start": 13499.32, + "end": 13501.58, + "probability": 0.9745 + }, + { + "start": 13502.24, + "end": 13504.1, + "probability": 0.9961 + }, + { + "start": 13504.38, + "end": 13512.4, + "probability": 0.9961 + }, + { + "start": 13513.14, + "end": 13515.04, + "probability": 0.9954 + }, + { + "start": 13515.2, + "end": 13517.22, + "probability": 0.9867 + }, + { + "start": 13518.02, + "end": 13520.5, + "probability": 0.9977 + }, + { + "start": 13520.66, + "end": 13522.66, + "probability": 0.9906 + }, + { + "start": 13522.78, + "end": 13523.32, + "probability": 0.798 + }, + { + "start": 13524.18, + "end": 13526.34, + "probability": 0.7932 + }, + { + "start": 13526.4, + "end": 13528.12, + "probability": 0.98 + }, + { + "start": 13528.94, + "end": 13532.86, + "probability": 0.9922 + }, + { + "start": 13533.24, + "end": 13534.28, + "probability": 0.9468 + }, + { + "start": 13534.98, + "end": 13536.06, + "probability": 0.6501 + }, + { + "start": 13536.42, + "end": 13539.16, + "probability": 0.9016 + }, + { + "start": 13539.24, + "end": 13542.23, + "probability": 0.906 + }, + { + "start": 13542.82, + "end": 13545.32, + "probability": 0.9925 + }, + { + "start": 13546.08, + "end": 13549.02, + "probability": 0.9861 + }, + { + "start": 13549.58, + "end": 13551.89, + "probability": 0.9868 + }, + { + "start": 13552.36, + "end": 13554.28, + "probability": 0.5 + }, + { + "start": 13554.8, + "end": 13556.62, + "probability": 0.6801 + }, + { + "start": 13556.72, + "end": 13560.56, + "probability": 0.9863 + }, + { + "start": 13561.3, + "end": 13561.76, + "probability": 0.4021 + }, + { + "start": 13562.56, + "end": 13564.92, + "probability": 0.9856 + }, + { + "start": 13565.36, + "end": 13568.02, + "probability": 0.9913 + }, + { + "start": 13568.68, + "end": 13571.46, + "probability": 0.9967 + }, + { + "start": 13572.06, + "end": 13573.68, + "probability": 0.8769 + }, + { + "start": 13573.9, + "end": 13575.14, + "probability": 0.7829 + }, + { + "start": 13575.64, + "end": 13579.5, + "probability": 0.9949 + }, + { + "start": 13579.66, + "end": 13580.5, + "probability": 0.7905 + }, + { + "start": 13582.58, + "end": 13584.58, + "probability": 0.9933 + }, + { + "start": 13585.3, + "end": 13586.84, + "probability": 0.9261 + }, + { + "start": 13586.94, + "end": 13590.78, + "probability": 0.9969 + }, + { + "start": 13590.78, + "end": 13596.78, + "probability": 0.9778 + }, + { + "start": 13597.38, + "end": 13601.52, + "probability": 0.9977 + }, + { + "start": 13601.76, + "end": 13602.3, + "probability": 0.8227 + }, + { + "start": 13602.88, + "end": 13604.48, + "probability": 0.7277 + }, + { + "start": 13604.68, + "end": 13607.34, + "probability": 0.716 + }, + { + "start": 13625.42, + "end": 13627.64, + "probability": 0.5105 + }, + { + "start": 13628.34, + "end": 13630.68, + "probability": 0.8268 + }, + { + "start": 13631.98, + "end": 13640.0, + "probability": 0.8977 + }, + { + "start": 13641.98, + "end": 13644.3, + "probability": 0.9673 + }, + { + "start": 13644.42, + "end": 13646.3, + "probability": 0.7492 + }, + { + "start": 13647.66, + "end": 13652.08, + "probability": 0.8961 + }, + { + "start": 13652.64, + "end": 13654.08, + "probability": 0.9587 + }, + { + "start": 13655.04, + "end": 13657.72, + "probability": 0.7241 + }, + { + "start": 13658.42, + "end": 13661.02, + "probability": 0.9014 + }, + { + "start": 13661.24, + "end": 13662.84, + "probability": 0.9565 + }, + { + "start": 13663.24, + "end": 13668.1, + "probability": 0.9958 + }, + { + "start": 13668.94, + "end": 13671.08, + "probability": 0.722 + }, + { + "start": 13671.62, + "end": 13676.18, + "probability": 0.9912 + }, + { + "start": 13677.92, + "end": 13680.28, + "probability": 0.9391 + }, + { + "start": 13680.92, + "end": 13684.06, + "probability": 0.9928 + }, + { + "start": 13684.6, + "end": 13689.56, + "probability": 0.9974 + }, + { + "start": 13690.18, + "end": 13696.56, + "probability": 0.8963 + }, + { + "start": 13696.8, + "end": 13697.42, + "probability": 0.6854 + }, + { + "start": 13697.88, + "end": 13701.84, + "probability": 0.9945 + }, + { + "start": 13702.96, + "end": 13706.82, + "probability": 0.9816 + }, + { + "start": 13707.78, + "end": 13711.44, + "probability": 0.9384 + }, + { + "start": 13711.66, + "end": 13718.28, + "probability": 0.8837 + }, + { + "start": 13718.5, + "end": 13720.52, + "probability": 0.2808 + }, + { + "start": 13722.02, + "end": 13725.44, + "probability": 0.9773 + }, + { + "start": 13725.96, + "end": 13731.28, + "probability": 0.9939 + }, + { + "start": 13731.8, + "end": 13738.2, + "probability": 0.9941 + }, + { + "start": 13738.8, + "end": 13739.3, + "probability": 0.8276 + }, + { + "start": 13740.3, + "end": 13743.38, + "probability": 0.9819 + }, + { + "start": 13743.38, + "end": 13747.3, + "probability": 0.981 + }, + { + "start": 13747.3, + "end": 13750.94, + "probability": 0.9771 + }, + { + "start": 13751.06, + "end": 13751.4, + "probability": 0.7587 + }, + { + "start": 13752.64, + "end": 13753.04, + "probability": 0.0354 + }, + { + "start": 13755.1, + "end": 13755.24, + "probability": 0.4678 + }, + { + "start": 13755.44, + "end": 13755.78, + "probability": 0.8379 + }, + { + "start": 13755.88, + "end": 13761.7, + "probability": 0.6928 + }, + { + "start": 13762.4, + "end": 13767.68, + "probability": 0.9563 + }, + { + "start": 13767.7, + "end": 13767.94, + "probability": 0.0008 + }, + { + "start": 13769.22, + "end": 13769.84, + "probability": 0.0744 + }, + { + "start": 13769.84, + "end": 13770.62, + "probability": 0.214 + }, + { + "start": 13770.62, + "end": 13772.22, + "probability": 0.7466 + }, + { + "start": 13772.22, + "end": 13772.5, + "probability": 0.0111 + }, + { + "start": 13779.3, + "end": 13781.89, + "probability": 0.5537 + }, + { + "start": 13782.5, + "end": 13785.18, + "probability": 0.9906 + }, + { + "start": 13785.18, + "end": 13790.16, + "probability": 0.8843 + }, + { + "start": 13790.3, + "end": 13791.3, + "probability": 0.5881 + }, + { + "start": 13791.64, + "end": 13795.1, + "probability": 0.8732 + }, + { + "start": 13795.38, + "end": 13797.36, + "probability": 0.9958 + }, + { + "start": 13797.9, + "end": 13804.46, + "probability": 0.9767 + }, + { + "start": 13804.9, + "end": 13805.06, + "probability": 0.9194 + }, + { + "start": 13805.6, + "end": 13806.7, + "probability": 0.7608 + }, + { + "start": 13807.28, + "end": 13810.7, + "probability": 0.6674 + }, + { + "start": 13811.9, + "end": 13813.74, + "probability": 0.9985 + }, + { + "start": 13814.14, + "end": 13815.36, + "probability": 0.9528 + }, + { + "start": 13816.1, + "end": 13819.26, + "probability": 0.8602 + }, + { + "start": 13819.4, + "end": 13822.26, + "probability": 0.9688 + }, + { + "start": 13822.62, + "end": 13829.34, + "probability": 0.9802 + }, + { + "start": 13829.36, + "end": 13831.22, + "probability": 0.8168 + }, + { + "start": 13831.44, + "end": 13834.46, + "probability": 0.9183 + }, + { + "start": 13835.04, + "end": 13837.1, + "probability": 0.9849 + }, + { + "start": 13837.58, + "end": 13838.3, + "probability": 0.0095 + }, + { + "start": 13839.72, + "end": 13840.98, + "probability": 0.6186 + }, + { + "start": 13841.18, + "end": 13844.08, + "probability": 0.9205 + }, + { + "start": 13844.66, + "end": 13845.32, + "probability": 0.4115 + }, + { + "start": 13845.54, + "end": 13849.92, + "probability": 0.9791 + }, + { + "start": 13850.0, + "end": 13855.52, + "probability": 0.9902 + }, + { + "start": 13857.16, + "end": 13857.68, + "probability": 0.522 + }, + { + "start": 13858.34, + "end": 13858.5, + "probability": 0.082 + }, + { + "start": 13859.28, + "end": 13863.96, + "probability": 0.394 + }, + { + "start": 13863.96, + "end": 13864.84, + "probability": 0.5365 + }, + { + "start": 13865.38, + "end": 13866.48, + "probability": 0.3426 + }, + { + "start": 13867.06, + "end": 13868.66, + "probability": 0.9756 + }, + { + "start": 13869.22, + "end": 13871.9, + "probability": 0.9886 + }, + { + "start": 13872.42, + "end": 13874.86, + "probability": 0.9961 + }, + { + "start": 13875.3, + "end": 13875.76, + "probability": 0.6099 + }, + { + "start": 13877.1, + "end": 13878.84, + "probability": 0.8017 + }, + { + "start": 13878.94, + "end": 13880.9, + "probability": 0.7009 + }, + { + "start": 13881.34, + "end": 13884.82, + "probability": 0.8522 + }, + { + "start": 13884.94, + "end": 13887.86, + "probability": 0.9656 + }, + { + "start": 13888.26, + "end": 13891.98, + "probability": 0.9886 + }, + { + "start": 13892.12, + "end": 13892.74, + "probability": 0.371 + }, + { + "start": 13893.3, + "end": 13894.32, + "probability": 0.9492 + }, + { + "start": 13895.88, + "end": 13902.72, + "probability": 0.9477 + }, + { + "start": 13902.72, + "end": 13907.77, + "probability": 0.9982 + }, + { + "start": 13908.7, + "end": 13912.66, + "probability": 0.9414 + }, + { + "start": 13915.14, + "end": 13916.64, + "probability": 0.5293 + }, + { + "start": 13919.7, + "end": 13921.9, + "probability": 0.9499 + }, + { + "start": 13921.98, + "end": 13923.18, + "probability": 0.9752 + }, + { + "start": 13923.78, + "end": 13924.98, + "probability": 0.9675 + }, + { + "start": 13925.1, + "end": 13925.92, + "probability": 0.998 + }, + { + "start": 13926.3, + "end": 13929.24, + "probability": 0.8553 + }, + { + "start": 13929.86, + "end": 13930.79, + "probability": 0.2319 + }, + { + "start": 13931.7, + "end": 13932.02, + "probability": 0.5883 + }, + { + "start": 13932.18, + "end": 13932.96, + "probability": 0.5795 + }, + { + "start": 13933.0, + "end": 13934.1, + "probability": 0.9679 + }, + { + "start": 13934.18, + "end": 13935.22, + "probability": 0.8644 + }, + { + "start": 13935.32, + "end": 13938.36, + "probability": 0.9903 + }, + { + "start": 13939.44, + "end": 13940.82, + "probability": 0.9215 + }, + { + "start": 13945.3, + "end": 13945.3, + "probability": 0.1098 + }, + { + "start": 13945.52, + "end": 13947.59, + "probability": 0.9829 + }, + { + "start": 13947.84, + "end": 13951.66, + "probability": 0.7393 + }, + { + "start": 13952.38, + "end": 13956.18, + "probability": 0.715 + }, + { + "start": 13956.96, + "end": 13958.7, + "probability": 0.8187 + }, + { + "start": 13959.58, + "end": 13961.64, + "probability": 0.8358 + }, + { + "start": 13962.4, + "end": 13963.96, + "probability": 0.8915 + }, + { + "start": 13964.88, + "end": 13967.9, + "probability": 0.7493 + }, + { + "start": 13968.52, + "end": 13973.58, + "probability": 0.9739 + }, + { + "start": 13973.58, + "end": 13978.42, + "probability": 0.9969 + }, + { + "start": 13979.1, + "end": 13980.18, + "probability": 0.7462 + }, + { + "start": 13981.08, + "end": 13984.14, + "probability": 0.9873 + }, + { + "start": 13984.74, + "end": 13987.62, + "probability": 0.9961 + }, + { + "start": 13988.2, + "end": 13989.14, + "probability": 0.7761 + }, + { + "start": 13990.1, + "end": 13990.7, + "probability": 0.1351 + }, + { + "start": 13992.9, + "end": 13993.16, + "probability": 0.2781 + }, + { + "start": 13993.56, + "end": 13995.82, + "probability": 0.9943 + }, + { + "start": 13996.28, + "end": 13997.58, + "probability": 0.9885 + }, + { + "start": 13999.38, + "end": 13999.74, + "probability": 0.4564 + }, + { + "start": 14000.2, + "end": 14000.2, + "probability": 0.4478 + }, + { + "start": 14000.24, + "end": 14000.76, + "probability": 0.4805 + }, + { + "start": 14001.1, + "end": 14002.8, + "probability": 0.812 + }, + { + "start": 14003.22, + "end": 14007.4, + "probability": 0.9904 + }, + { + "start": 14007.54, + "end": 14010.52, + "probability": 0.8325 + }, + { + "start": 14011.22, + "end": 14011.32, + "probability": 0.3484 + }, + { + "start": 14011.82, + "end": 14013.2, + "probability": 0.8496 + }, + { + "start": 14014.04, + "end": 14014.1, + "probability": 0.0722 + }, + { + "start": 14014.38, + "end": 14014.48, + "probability": 0.0616 + }, + { + "start": 14014.48, + "end": 14014.82, + "probability": 0.0312 + }, + { + "start": 14015.9, + "end": 14016.34, + "probability": 0.4812 + }, + { + "start": 14017.75, + "end": 14019.61, + "probability": 0.7322 + }, + { + "start": 14020.44, + "end": 14022.7, + "probability": 0.9509 + }, + { + "start": 14023.3, + "end": 14026.0, + "probability": 0.9263 + }, + { + "start": 14026.52, + "end": 14028.1, + "probability": 0.9614 + }, + { + "start": 14028.52, + "end": 14029.82, + "probability": 0.8213 + }, + { + "start": 14030.34, + "end": 14031.96, + "probability": 0.9976 + }, + { + "start": 14038.22, + "end": 14038.64, + "probability": 0.2348 + }, + { + "start": 14038.64, + "end": 14041.76, + "probability": 0.6763 + }, + { + "start": 14042.26, + "end": 14043.2, + "probability": 0.6262 + }, + { + "start": 14043.72, + "end": 14048.77, + "probability": 0.9661 + }, + { + "start": 14052.65, + "end": 14054.2, + "probability": 0.087 + }, + { + "start": 14054.22, + "end": 14054.68, + "probability": 0.012 + }, + { + "start": 14054.68, + "end": 14056.26, + "probability": 0.1354 + }, + { + "start": 14056.6, + "end": 14057.02, + "probability": 0.3235 + }, + { + "start": 14057.1, + "end": 14059.68, + "probability": 0.7348 + }, + { + "start": 14059.7, + "end": 14062.32, + "probability": 0.5224 + }, + { + "start": 14062.66, + "end": 14064.55, + "probability": 0.6762 + }, + { + "start": 14065.0, + "end": 14066.96, + "probability": 0.9892 + }, + { + "start": 14067.06, + "end": 14067.84, + "probability": 0.9424 + }, + { + "start": 14068.38, + "end": 14070.28, + "probability": 0.9926 + }, + { + "start": 14070.68, + "end": 14073.24, + "probability": 0.8382 + }, + { + "start": 14073.3, + "end": 14075.76, + "probability": 0.8698 + }, + { + "start": 14076.1, + "end": 14079.24, + "probability": 0.995 + }, + { + "start": 14079.46, + "end": 14082.66, + "probability": 0.9771 + }, + { + "start": 14082.76, + "end": 14083.92, + "probability": 0.9819 + }, + { + "start": 14084.58, + "end": 14087.36, + "probability": 0.9822 + }, + { + "start": 14087.4, + "end": 14089.72, + "probability": 0.994 + }, + { + "start": 14090.72, + "end": 14095.0, + "probability": 0.9888 + }, + { + "start": 14095.04, + "end": 14095.44, + "probability": 0.5192 + }, + { + "start": 14095.64, + "end": 14100.32, + "probability": 0.9362 + }, + { + "start": 14100.76, + "end": 14103.16, + "probability": 0.4733 + }, + { + "start": 14103.82, + "end": 14106.32, + "probability": 0.9982 + }, + { + "start": 14107.02, + "end": 14108.06, + "probability": 0.8868 + }, + { + "start": 14108.14, + "end": 14113.82, + "probability": 0.9956 + }, + { + "start": 14113.96, + "end": 14115.58, + "probability": 0.9941 + }, + { + "start": 14116.1, + "end": 14118.76, + "probability": 0.8738 + }, + { + "start": 14119.28, + "end": 14120.3, + "probability": 0.6542 + }, + { + "start": 14121.3, + "end": 14124.4, + "probability": 0.8984 + }, + { + "start": 14125.74, + "end": 14129.06, + "probability": 0.7461 + }, + { + "start": 14129.12, + "end": 14130.18, + "probability": 0.8411 + }, + { + "start": 14130.66, + "end": 14132.4, + "probability": 0.9687 + }, + { + "start": 14132.64, + "end": 14135.04, + "probability": 0.8711 + }, + { + "start": 14135.72, + "end": 14136.06, + "probability": 0.6179 + }, + { + "start": 14136.28, + "end": 14137.38, + "probability": 0.8623 + }, + { + "start": 14137.7, + "end": 14141.42, + "probability": 0.8012 + }, + { + "start": 14142.24, + "end": 14145.64, + "probability": 0.9089 + }, + { + "start": 14145.76, + "end": 14147.42, + "probability": 0.9679 + }, + { + "start": 14147.82, + "end": 14148.88, + "probability": 0.9436 + }, + { + "start": 14148.94, + "end": 14151.87, + "probability": 0.9297 + }, + { + "start": 14152.44, + "end": 14156.38, + "probability": 0.9498 + }, + { + "start": 14157.06, + "end": 14161.4, + "probability": 0.9883 + }, + { + "start": 14162.2, + "end": 14164.64, + "probability": 0.8563 + }, + { + "start": 14165.88, + "end": 14170.34, + "probability": 0.9966 + }, + { + "start": 14171.04, + "end": 14174.1, + "probability": 0.8044 + }, + { + "start": 14174.18, + "end": 14177.46, + "probability": 0.861 + }, + { + "start": 14178.24, + "end": 14180.54, + "probability": 0.9828 + }, + { + "start": 14181.2, + "end": 14185.66, + "probability": 0.9339 + }, + { + "start": 14186.26, + "end": 14188.88, + "probability": 0.8867 + }, + { + "start": 14189.96, + "end": 14191.94, + "probability": 0.9448 + }, + { + "start": 14192.52, + "end": 14194.22, + "probability": 0.9838 + }, + { + "start": 14194.56, + "end": 14197.4, + "probability": 0.9576 + }, + { + "start": 14198.02, + "end": 14202.38, + "probability": 0.9595 + }, + { + "start": 14202.86, + "end": 14206.16, + "probability": 0.5082 + }, + { + "start": 14211.56, + "end": 14213.78, + "probability": 0.1336 + }, + { + "start": 14214.32, + "end": 14215.44, + "probability": 0.5074 + }, + { + "start": 14216.56, + "end": 14218.7, + "probability": 0.894 + }, + { + "start": 14219.28, + "end": 14224.42, + "probability": 0.9084 + }, + { + "start": 14225.04, + "end": 14226.08, + "probability": 0.8583 + }, + { + "start": 14226.4, + "end": 14228.04, + "probability": 0.7832 + }, + { + "start": 14228.56, + "end": 14231.88, + "probability": 0.9624 + }, + { + "start": 14232.44, + "end": 14235.34, + "probability": 0.9453 + }, + { + "start": 14235.88, + "end": 14236.53, + "probability": 0.9741 + }, + { + "start": 14237.32, + "end": 14242.8, + "probability": 0.9933 + }, + { + "start": 14242.8, + "end": 14246.84, + "probability": 0.9902 + }, + { + "start": 14247.24, + "end": 14251.64, + "probability": 0.8839 + }, + { + "start": 14252.06, + "end": 14255.62, + "probability": 0.9209 + }, + { + "start": 14255.94, + "end": 14257.88, + "probability": 0.749 + }, + { + "start": 14258.2, + "end": 14258.4, + "probability": 0.6937 + }, + { + "start": 14258.94, + "end": 14260.06, + "probability": 0.9224 + }, + { + "start": 14260.5, + "end": 14264.52, + "probability": 0.9925 + }, + { + "start": 14265.06, + "end": 14270.32, + "probability": 0.7751 + }, + { + "start": 14270.72, + "end": 14271.8, + "probability": 0.8581 + }, + { + "start": 14271.8, + "end": 14272.58, + "probability": 0.5094 + }, + { + "start": 14272.62, + "end": 14273.32, + "probability": 0.9067 + }, + { + "start": 14273.8, + "end": 14275.12, + "probability": 0.9792 + }, + { + "start": 14275.22, + "end": 14275.34, + "probability": 0.2123 + }, + { + "start": 14275.86, + "end": 14277.62, + "probability": 0.3394 + }, + { + "start": 14277.68, + "end": 14278.0, + "probability": 0.3217 + }, + { + "start": 14279.54, + "end": 14280.37, + "probability": 0.6027 + }, + { + "start": 14280.78, + "end": 14285.74, + "probability": 0.6938 + }, + { + "start": 14286.08, + "end": 14286.12, + "probability": 0.2324 + }, + { + "start": 14286.12, + "end": 14286.12, + "probability": 0.4217 + }, + { + "start": 14286.12, + "end": 14286.12, + "probability": 0.2666 + }, + { + "start": 14286.12, + "end": 14286.9, + "probability": 0.2995 + }, + { + "start": 14287.06, + "end": 14287.44, + "probability": 0.4212 + }, + { + "start": 14287.46, + "end": 14287.58, + "probability": 0.0983 + }, + { + "start": 14288.68, + "end": 14290.07, + "probability": 0.6552 + }, + { + "start": 14290.42, + "end": 14290.58, + "probability": 0.8125 + }, + { + "start": 14290.98, + "end": 14292.25, + "probability": 0.5624 + }, + { + "start": 14292.76, + "end": 14294.26, + "probability": 0.2715 + }, + { + "start": 14294.74, + "end": 14295.4, + "probability": 0.6944 + }, + { + "start": 14295.84, + "end": 14296.94, + "probability": 0.6285 + }, + { + "start": 14297.48, + "end": 14300.82, + "probability": 0.7125 + }, + { + "start": 14301.24, + "end": 14302.48, + "probability": 0.7605 + }, + { + "start": 14302.54, + "end": 14303.43, + "probability": 0.259 + }, + { + "start": 14304.36, + "end": 14304.9, + "probability": 0.4511 + }, + { + "start": 14304.98, + "end": 14305.56, + "probability": 0.5513 + }, + { + "start": 14314.28, + "end": 14314.74, + "probability": 0.1964 + }, + { + "start": 14315.2, + "end": 14322.38, + "probability": 0.0832 + }, + { + "start": 14322.92, + "end": 14323.78, + "probability": 0.0946 + }, + { + "start": 14324.96, + "end": 14325.02, + "probability": 0.0444 + }, + { + "start": 14325.02, + "end": 14327.32, + "probability": 0.5326 + }, + { + "start": 14327.44, + "end": 14329.16, + "probability": 0.9787 + }, + { + "start": 14330.1, + "end": 14331.5, + "probability": 0.7363 + }, + { + "start": 14331.64, + "end": 14332.76, + "probability": 0.8463 + }, + { + "start": 14332.78, + "end": 14333.98, + "probability": 0.559 + }, + { + "start": 14334.02, + "end": 14335.54, + "probability": 0.9477 + }, + { + "start": 14336.22, + "end": 14339.94, + "probability": 0.9967 + }, + { + "start": 14340.74, + "end": 14341.18, + "probability": 0.8469 + }, + { + "start": 14342.78, + "end": 14345.94, + "probability": 0.1668 + }, + { + "start": 14358.62, + "end": 14358.62, + "probability": 0.1625 + }, + { + "start": 14358.62, + "end": 14358.62, + "probability": 0.0255 + }, + { + "start": 14358.62, + "end": 14358.62, + "probability": 0.0869 + }, + { + "start": 14358.62, + "end": 14358.62, + "probability": 0.3141 + }, + { + "start": 14358.62, + "end": 14358.62, + "probability": 0.11 + }, + { + "start": 14358.62, + "end": 14358.62, + "probability": 0.059 + }, + { + "start": 14358.62, + "end": 14358.66, + "probability": 0.1653 + }, + { + "start": 14358.66, + "end": 14358.7, + "probability": 0.1468 + }, + { + "start": 14384.27, + "end": 14385.98, + "probability": 0.6637 + }, + { + "start": 14386.96, + "end": 14387.5, + "probability": 0.5133 + }, + { + "start": 14387.6, + "end": 14388.28, + "probability": 0.6077 + }, + { + "start": 14389.3, + "end": 14391.54, + "probability": 0.8083 + }, + { + "start": 14393.04, + "end": 14396.0, + "probability": 0.9895 + }, + { + "start": 14397.62, + "end": 14401.96, + "probability": 0.8224 + }, + { + "start": 14403.6, + "end": 14408.92, + "probability": 0.995 + }, + { + "start": 14409.66, + "end": 14413.72, + "probability": 0.9979 + }, + { + "start": 14415.08, + "end": 14416.36, + "probability": 0.6604 + }, + { + "start": 14416.84, + "end": 14418.92, + "probability": 0.9033 + }, + { + "start": 14419.06, + "end": 14421.73, + "probability": 0.998 + }, + { + "start": 14423.46, + "end": 14426.9, + "probability": 0.9813 + }, + { + "start": 14427.94, + "end": 14431.04, + "probability": 0.9671 + }, + { + "start": 14431.12, + "end": 14432.3, + "probability": 0.9788 + }, + { + "start": 14432.4, + "end": 14433.26, + "probability": 0.8187 + }, + { + "start": 14433.92, + "end": 14435.06, + "probability": 0.9321 + }, + { + "start": 14440.52, + "end": 14442.92, + "probability": 0.6169 + }, + { + "start": 14443.94, + "end": 14445.92, + "probability": 0.7996 + }, + { + "start": 14447.12, + "end": 14449.5, + "probability": 0.67 + }, + { + "start": 14450.4, + "end": 14452.18, + "probability": 0.5817 + }, + { + "start": 14452.86, + "end": 14455.12, + "probability": 0.6633 + }, + { + "start": 14456.3, + "end": 14457.34, + "probability": 0.7157 + }, + { + "start": 14457.66, + "end": 14460.6, + "probability": 0.8698 + }, + { + "start": 14460.8, + "end": 14466.02, + "probability": 0.9946 + }, + { + "start": 14466.24, + "end": 14467.24, + "probability": 0.9321 + }, + { + "start": 14467.46, + "end": 14469.44, + "probability": 0.973 + }, + { + "start": 14470.12, + "end": 14473.16, + "probability": 0.9793 + }, + { + "start": 14474.1, + "end": 14476.38, + "probability": 0.999 + }, + { + "start": 14476.44, + "end": 14482.02, + "probability": 0.9665 + }, + { + "start": 14484.6, + "end": 14492.26, + "probability": 0.9971 + }, + { + "start": 14493.14, + "end": 14494.72, + "probability": 0.9946 + }, + { + "start": 14494.78, + "end": 14496.88, + "probability": 0.9962 + }, + { + "start": 14497.7, + "end": 14499.4, + "probability": 0.9948 + }, + { + "start": 14499.88, + "end": 14501.52, + "probability": 0.9963 + }, + { + "start": 14502.16, + "end": 14505.68, + "probability": 0.9991 + }, + { + "start": 14506.22, + "end": 14511.36, + "probability": 0.9946 + }, + { + "start": 14511.48, + "end": 14512.28, + "probability": 0.7147 + }, + { + "start": 14512.46, + "end": 14513.4, + "probability": 0.9661 + }, + { + "start": 14514.38, + "end": 14516.88, + "probability": 0.9993 + }, + { + "start": 14517.76, + "end": 14519.98, + "probability": 0.8639 + }, + { + "start": 14520.22, + "end": 14522.44, + "probability": 0.9229 + }, + { + "start": 14523.2, + "end": 14526.2, + "probability": 0.9769 + }, + { + "start": 14526.52, + "end": 14527.7, + "probability": 0.9492 + }, + { + "start": 14528.46, + "end": 14531.4, + "probability": 0.8333 + }, + { + "start": 14531.56, + "end": 14533.22, + "probability": 0.9966 + }, + { + "start": 14534.04, + "end": 14537.64, + "probability": 0.9938 + }, + { + "start": 14538.56, + "end": 14542.73, + "probability": 0.9937 + }, + { + "start": 14543.52, + "end": 14546.44, + "probability": 0.9998 + }, + { + "start": 14547.54, + "end": 14548.94, + "probability": 0.9388 + }, + { + "start": 14549.54, + "end": 14550.92, + "probability": 0.9154 + }, + { + "start": 14551.76, + "end": 14557.08, + "probability": 0.9961 + }, + { + "start": 14557.22, + "end": 14562.3, + "probability": 0.9932 + }, + { + "start": 14562.72, + "end": 14563.84, + "probability": 0.9956 + }, + { + "start": 14563.88, + "end": 14567.52, + "probability": 0.9254 + }, + { + "start": 14570.76, + "end": 14573.28, + "probability": 0.8495 + }, + { + "start": 14573.34, + "end": 14573.78, + "probability": 0.8945 + }, + { + "start": 14574.24, + "end": 14576.82, + "probability": 0.9563 + }, + { + "start": 14577.84, + "end": 14584.72, + "probability": 0.9907 + }, + { + "start": 14584.82, + "end": 14585.84, + "probability": 0.9303 + }, + { + "start": 14585.9, + "end": 14586.36, + "probability": 0.9518 + }, + { + "start": 14586.42, + "end": 14586.96, + "probability": 0.7558 + }, + { + "start": 14588.08, + "end": 14589.04, + "probability": 0.9579 + }, + { + "start": 14589.98, + "end": 14590.72, + "probability": 0.6003 + }, + { + "start": 14592.57, + "end": 14595.46, + "probability": 0.7832 + }, + { + "start": 14595.84, + "end": 14598.9, + "probability": 0.9613 + }, + { + "start": 14599.84, + "end": 14602.2, + "probability": 0.9741 + }, + { + "start": 14602.32, + "end": 14603.96, + "probability": 0.998 + }, + { + "start": 14604.0, + "end": 14605.36, + "probability": 0.9773 + }, + { + "start": 14609.74, + "end": 14612.46, + "probability": 0.8096 + }, + { + "start": 14612.56, + "end": 14615.94, + "probability": 0.9988 + }, + { + "start": 14616.16, + "end": 14619.94, + "probability": 0.9967 + }, + { + "start": 14620.86, + "end": 14624.16, + "probability": 0.9954 + }, + { + "start": 14624.78, + "end": 14626.28, + "probability": 0.9834 + }, + { + "start": 14626.4, + "end": 14626.62, + "probability": 0.709 + }, + { + "start": 14626.78, + "end": 14627.16, + "probability": 0.777 + }, + { + "start": 14629.03, + "end": 14629.54, + "probability": 0.2564 + }, + { + "start": 14629.54, + "end": 14630.06, + "probability": 0.4172 + }, + { + "start": 14630.56, + "end": 14633.44, + "probability": 0.9382 + }, + { + "start": 14634.04, + "end": 14635.26, + "probability": 0.9409 + }, + { + "start": 14635.38, + "end": 14636.18, + "probability": 0.619 + }, + { + "start": 14636.2, + "end": 14636.74, + "probability": 0.9108 + }, + { + "start": 14636.9, + "end": 14639.12, + "probability": 0.9936 + }, + { + "start": 14639.54, + "end": 14641.64, + "probability": 0.9238 + }, + { + "start": 14642.56, + "end": 14645.0, + "probability": 0.9957 + }, + { + "start": 14645.0, + "end": 14647.22, + "probability": 0.9961 + }, + { + "start": 14648.1, + "end": 14649.88, + "probability": 0.9342 + }, + { + "start": 14650.14, + "end": 14653.78, + "probability": 0.9823 + }, + { + "start": 14654.1, + "end": 14655.7, + "probability": 0.9985 + }, + { + "start": 14656.6, + "end": 14659.06, + "probability": 0.8916 + }, + { + "start": 14659.66, + "end": 14660.56, + "probability": 0.9573 + }, + { + "start": 14661.78, + "end": 14664.46, + "probability": 0.9573 + }, + { + "start": 14664.8, + "end": 14667.38, + "probability": 0.9343 + }, + { + "start": 14667.42, + "end": 14668.64, + "probability": 0.9792 + }, + { + "start": 14669.06, + "end": 14670.3, + "probability": 0.9659 + }, + { + "start": 14671.46, + "end": 14675.34, + "probability": 0.8266 + }, + { + "start": 14676.32, + "end": 14678.76, + "probability": 0.7771 + }, + { + "start": 14678.88, + "end": 14680.94, + "probability": 0.9949 + }, + { + "start": 14681.44, + "end": 14682.68, + "probability": 0.911 + }, + { + "start": 14682.8, + "end": 14683.58, + "probability": 0.7302 + }, + { + "start": 14684.22, + "end": 14687.5, + "probability": 0.9277 + }, + { + "start": 14688.62, + "end": 14691.3, + "probability": 0.7554 + }, + { + "start": 14692.44, + "end": 14694.95, + "probability": 0.9048 + }, + { + "start": 14695.58, + "end": 14696.72, + "probability": 0.9859 + }, + { + "start": 14697.16, + "end": 14698.26, + "probability": 0.9961 + }, + { + "start": 14698.44, + "end": 14701.9, + "probability": 0.9673 + }, + { + "start": 14702.34, + "end": 14703.91, + "probability": 0.9937 + }, + { + "start": 14704.48, + "end": 14705.62, + "probability": 0.9961 + }, + { + "start": 14706.52, + "end": 14709.72, + "probability": 0.8623 + }, + { + "start": 14709.9, + "end": 14711.56, + "probability": 0.9885 + }, + { + "start": 14712.8, + "end": 14715.2, + "probability": 0.9883 + }, + { + "start": 14715.36, + "end": 14715.86, + "probability": 0.5775 + }, + { + "start": 14717.0, + "end": 14720.4, + "probability": 0.9657 + }, + { + "start": 14721.2, + "end": 14722.14, + "probability": 0.6689 + }, + { + "start": 14722.2, + "end": 14724.4, + "probability": 0.9854 + }, + { + "start": 14725.98, + "end": 14728.3, + "probability": 0.9878 + }, + { + "start": 14731.02, + "end": 14734.24, + "probability": 0.9932 + }, + { + "start": 14734.36, + "end": 14738.88, + "probability": 0.9734 + }, + { + "start": 14739.8, + "end": 14743.27, + "probability": 0.9863 + }, + { + "start": 14743.48, + "end": 14747.5, + "probability": 0.981 + }, + { + "start": 14748.96, + "end": 14751.56, + "probability": 0.938 + }, + { + "start": 14753.5, + "end": 14756.56, + "probability": 0.9919 + }, + { + "start": 14756.76, + "end": 14758.92, + "probability": 0.7605 + }, + { + "start": 14759.1, + "end": 14762.28, + "probability": 0.9467 + }, + { + "start": 14762.34, + "end": 14762.7, + "probability": 0.7764 + }, + { + "start": 14764.1, + "end": 14768.06, + "probability": 0.937 + }, + { + "start": 14768.54, + "end": 14769.32, + "probability": 0.8046 + }, + { + "start": 14770.68, + "end": 14774.78, + "probability": 0.986 + }, + { + "start": 14775.76, + "end": 14778.0, + "probability": 0.9769 + }, + { + "start": 14779.06, + "end": 14784.18, + "probability": 0.9992 + }, + { + "start": 14784.2, + "end": 14785.3, + "probability": 0.9062 + }, + { + "start": 14785.92, + "end": 14790.42, + "probability": 0.9983 + }, + { + "start": 14790.98, + "end": 14792.84, + "probability": 0.7564 + }, + { + "start": 14793.8, + "end": 14794.8, + "probability": 0.9521 + }, + { + "start": 14795.42, + "end": 14797.42, + "probability": 0.4371 + }, + { + "start": 14797.54, + "end": 14800.7, + "probability": 0.9985 + }, + { + "start": 14801.06, + "end": 14801.72, + "probability": 0.8549 + }, + { + "start": 14802.42, + "end": 14804.98, + "probability": 0.994 + }, + { + "start": 14805.82, + "end": 14808.7, + "probability": 0.9887 + }, + { + "start": 14808.96, + "end": 14809.86, + "probability": 0.9658 + }, + { + "start": 14810.78, + "end": 14812.24, + "probability": 0.9795 + }, + { + "start": 14813.84, + "end": 14816.78, + "probability": 0.9757 + }, + { + "start": 14816.78, + "end": 14820.9, + "probability": 0.9951 + }, + { + "start": 14821.56, + "end": 14824.4, + "probability": 0.8199 + }, + { + "start": 14825.1, + "end": 14828.86, + "probability": 0.9576 + }, + { + "start": 14829.06, + "end": 14832.72, + "probability": 0.9448 + }, + { + "start": 14833.58, + "end": 14834.9, + "probability": 0.9861 + }, + { + "start": 14836.02, + "end": 14836.4, + "probability": 0.8298 + }, + { + "start": 14837.28, + "end": 14841.02, + "probability": 0.9933 + }, + { + "start": 14841.02, + "end": 14843.86, + "probability": 0.9811 + }, + { + "start": 14844.0, + "end": 14844.7, + "probability": 0.8785 + }, + { + "start": 14844.94, + "end": 14845.84, + "probability": 0.9803 + }, + { + "start": 14845.88, + "end": 14846.78, + "probability": 0.9847 + }, + { + "start": 14846.9, + "end": 14848.82, + "probability": 0.9732 + }, + { + "start": 14849.7, + "end": 14851.84, + "probability": 0.9757 + }, + { + "start": 14852.72, + "end": 14856.02, + "probability": 0.9552 + }, + { + "start": 14856.02, + "end": 14859.68, + "probability": 0.9886 + }, + { + "start": 14860.32, + "end": 14865.3, + "probability": 0.9948 + }, + { + "start": 14865.64, + "end": 14870.38, + "probability": 0.9851 + }, + { + "start": 14870.48, + "end": 14873.28, + "probability": 0.9932 + }, + { + "start": 14873.82, + "end": 14875.64, + "probability": 0.5024 + }, + { + "start": 14876.18, + "end": 14877.04, + "probability": 0.8636 + }, + { + "start": 14877.64, + "end": 14879.04, + "probability": 0.9517 + }, + { + "start": 14879.48, + "end": 14884.2, + "probability": 0.9985 + }, + { + "start": 14885.04, + "end": 14887.08, + "probability": 0.8223 + }, + { + "start": 14887.5, + "end": 14890.14, + "probability": 0.6353 + }, + { + "start": 14890.94, + "end": 14892.18, + "probability": 0.9589 + }, + { + "start": 14893.1, + "end": 14896.38, + "probability": 0.8332 + }, + { + "start": 14897.2, + "end": 14901.02, + "probability": 0.8981 + }, + { + "start": 14901.02, + "end": 14905.2, + "probability": 0.9034 + }, + { + "start": 14906.02, + "end": 14907.02, + "probability": 0.9268 + }, + { + "start": 14907.14, + "end": 14910.52, + "probability": 0.9793 + }, + { + "start": 14910.82, + "end": 14911.62, + "probability": 0.8744 + }, + { + "start": 14911.8, + "end": 14912.56, + "probability": 0.7347 + }, + { + "start": 14913.5, + "end": 14917.04, + "probability": 0.9988 + }, + { + "start": 14917.06, + "end": 14919.92, + "probability": 0.9988 + }, + { + "start": 14920.44, + "end": 14927.28, + "probability": 0.9976 + }, + { + "start": 14928.0, + "end": 14929.14, + "probability": 0.6706 + }, + { + "start": 14933.74, + "end": 14934.48, + "probability": 0.8084 + }, + { + "start": 14935.06, + "end": 14938.2, + "probability": 0.8606 + }, + { + "start": 14938.54, + "end": 14939.02, + "probability": 0.6612 + }, + { + "start": 14940.68, + "end": 14945.72, + "probability": 0.8159 + }, + { + "start": 14955.02, + "end": 14955.3, + "probability": 0.1947 + }, + { + "start": 14955.52, + "end": 14956.62, + "probability": 0.2254 + }, + { + "start": 14956.76, + "end": 14957.92, + "probability": 0.5742 + }, + { + "start": 14959.36, + "end": 14960.82, + "probability": 0.9143 + }, + { + "start": 14961.82, + "end": 14963.96, + "probability": 0.9531 + }, + { + "start": 14964.66, + "end": 14966.0, + "probability": 0.8027 + }, + { + "start": 14967.1, + "end": 14968.96, + "probability": 0.5144 + }, + { + "start": 14969.22, + "end": 14970.08, + "probability": 0.8457 + }, + { + "start": 14992.58, + "end": 14995.66, + "probability": 0.1916 + }, + { + "start": 14995.95, + "end": 14998.44, + "probability": 0.6118 + }, + { + "start": 14998.56, + "end": 14998.99, + "probability": 0.4462 + }, + { + "start": 14999.48, + "end": 14999.68, + "probability": 0.4569 + }, + { + "start": 14999.72, + "end": 15000.34, + "probability": 0.8306 + }, + { + "start": 15000.46, + "end": 15001.07, + "probability": 0.8976 + }, + { + "start": 15001.28, + "end": 15003.92, + "probability": 0.6991 + }, + { + "start": 15003.98, + "end": 15004.3, + "probability": 0.7002 + }, + { + "start": 15004.84, + "end": 15007.16, + "probability": 0.2855 + }, + { + "start": 15008.26, + "end": 15008.86, + "probability": 0.0193 + }, + { + "start": 15008.86, + "end": 15009.4, + "probability": 0.3981 + }, + { + "start": 15010.16, + "end": 15013.76, + "probability": 0.7704 + }, + { + "start": 15015.16, + "end": 15016.18, + "probability": 0.9927 + }, + { + "start": 15018.6, + "end": 15019.2, + "probability": 0.9397 + }, + { + "start": 15019.72, + "end": 15020.41, + "probability": 0.8833 + }, + { + "start": 15021.9, + "end": 15023.44, + "probability": 0.8561 + }, + { + "start": 15024.46, + "end": 15024.96, + "probability": 0.8133 + }, + { + "start": 15026.28, + "end": 15029.4, + "probability": 0.9525 + }, + { + "start": 15031.4, + "end": 15033.45, + "probability": 0.9204 + }, + { + "start": 15034.64, + "end": 15035.36, + "probability": 0.9961 + }, + { + "start": 15036.14, + "end": 15038.3, + "probability": 0.4615 + }, + { + "start": 15040.0, + "end": 15040.94, + "probability": 0.6861 + }, + { + "start": 15041.56, + "end": 15043.62, + "probability": 0.6158 + }, + { + "start": 15045.86, + "end": 15050.36, + "probability": 0.8376 + }, + { + "start": 15050.78, + "end": 15052.6, + "probability": 0.8657 + }, + { + "start": 15053.92, + "end": 15054.28, + "probability": 0.9159 + }, + { + "start": 15054.94, + "end": 15055.58, + "probability": 0.8187 + }, + { + "start": 15057.06, + "end": 15058.78, + "probability": 0.9709 + }, + { + "start": 15059.88, + "end": 15060.78, + "probability": 0.5193 + }, + { + "start": 15061.76, + "end": 15062.14, + "probability": 0.6767 + }, + { + "start": 15062.76, + "end": 15063.34, + "probability": 0.6841 + }, + { + "start": 15064.42, + "end": 15066.5, + "probability": 0.981 + }, + { + "start": 15068.44, + "end": 15069.24, + "probability": 0.6986 + }, + { + "start": 15069.92, + "end": 15071.76, + "probability": 0.7762 + }, + { + "start": 15072.6, + "end": 15075.76, + "probability": 0.6127 + }, + { + "start": 15076.3, + "end": 15077.16, + "probability": 0.6732 + }, + { + "start": 15077.3, + "end": 15079.68, + "probability": 0.3841 + }, + { + "start": 15080.08, + "end": 15083.06, + "probability": 0.9455 + }, + { + "start": 15084.8, + "end": 15086.44, + "probability": 0.2847 + }, + { + "start": 15086.6, + "end": 15087.46, + "probability": 0.4548 + }, + { + "start": 15088.04, + "end": 15088.9, + "probability": 0.5844 + }, + { + "start": 15090.08, + "end": 15090.08, + "probability": 0.3103 + }, + { + "start": 15090.08, + "end": 15093.36, + "probability": 0.7754 + }, + { + "start": 15093.72, + "end": 15097.1, + "probability": 0.7117 + }, + { + "start": 15098.46, + "end": 15101.42, + "probability": 0.9099 + }, + { + "start": 15102.52, + "end": 15103.64, + "probability": 0.9893 + }, + { + "start": 15104.34, + "end": 15105.22, + "probability": 0.7748 + }, + { + "start": 15105.92, + "end": 15107.08, + "probability": 0.3673 + }, + { + "start": 15108.52, + "end": 15109.74, + "probability": 0.5496 + }, + { + "start": 15109.82, + "end": 15111.88, + "probability": 0.9718 + }, + { + "start": 15112.18, + "end": 15112.28, + "probability": 0.0934 + }, + { + "start": 15112.28, + "end": 15113.56, + "probability": 0.1442 + }, + { + "start": 15113.72, + "end": 15116.66, + "probability": 0.3422 + }, + { + "start": 15116.68, + "end": 15117.4, + "probability": 0.5909 + }, + { + "start": 15117.46, + "end": 15118.23, + "probability": 0.5112 + }, + { + "start": 15119.2, + "end": 15119.88, + "probability": 0.172 + }, + { + "start": 15120.04, + "end": 15122.06, + "probability": 0.2116 + }, + { + "start": 15122.76, + "end": 15123.52, + "probability": 0.2674 + }, + { + "start": 15123.6, + "end": 15125.88, + "probability": 0.5006 + }, + { + "start": 15125.9, + "end": 15128.4, + "probability": 0.2562 + }, + { + "start": 15128.4, + "end": 15129.5, + "probability": 0.6424 + }, + { + "start": 15130.22, + "end": 15132.58, + "probability": 0.8564 + }, + { + "start": 15133.34, + "end": 15135.56, + "probability": 0.9447 + }, + { + "start": 15136.8, + "end": 15138.15, + "probability": 0.7646 + }, + { + "start": 15139.64, + "end": 15141.84, + "probability": 0.9192 + }, + { + "start": 15142.44, + "end": 15143.86, + "probability": 0.4895 + }, + { + "start": 15143.86, + "end": 15145.16, + "probability": 0.8138 + }, + { + "start": 15146.1, + "end": 15149.34, + "probability": 0.9351 + }, + { + "start": 15149.74, + "end": 15151.0, + "probability": 0.9556 + }, + { + "start": 15151.84, + "end": 15153.1, + "probability": 0.6598 + }, + { + "start": 15154.94, + "end": 15156.1, + "probability": 0.8428 + }, + { + "start": 15158.7, + "end": 15163.34, + "probability": 0.86 + }, + { + "start": 15164.86, + "end": 15166.44, + "probability": 0.6295 + }, + { + "start": 15166.54, + "end": 15166.7, + "probability": 0.7773 + }, + { + "start": 15166.78, + "end": 15168.95, + "probability": 0.9742 + }, + { + "start": 15169.42, + "end": 15170.24, + "probability": 0.9844 + }, + { + "start": 15170.64, + "end": 15174.32, + "probability": 0.969 + }, + { + "start": 15175.46, + "end": 15176.44, + "probability": 0.7982 + }, + { + "start": 15176.98, + "end": 15177.12, + "probability": 0.5568 + }, + { + "start": 15177.32, + "end": 15178.33, + "probability": 0.9744 + }, + { + "start": 15179.18, + "end": 15180.28, + "probability": 0.3334 + }, + { + "start": 15180.68, + "end": 15181.86, + "probability": 0.3556 + }, + { + "start": 15182.38, + "end": 15184.08, + "probability": 0.627 + }, + { + "start": 15184.2, + "end": 15188.78, + "probability": 0.4868 + }, + { + "start": 15189.4, + "end": 15189.64, + "probability": 0.1709 + }, + { + "start": 15189.64, + "end": 15189.64, + "probability": 0.3436 + }, + { + "start": 15189.64, + "end": 15190.58, + "probability": 0.6034 + }, + { + "start": 15191.12, + "end": 15191.84, + "probability": 0.616 + }, + { + "start": 15192.08, + "end": 15192.85, + "probability": 0.9348 + }, + { + "start": 15193.78, + "end": 15196.28, + "probability": 0.8833 + }, + { + "start": 15196.8, + "end": 15199.08, + "probability": 0.9214 + }, + { + "start": 15201.38, + "end": 15201.96, + "probability": 0.7194 + }, + { + "start": 15202.96, + "end": 15205.18, + "probability": 0.7564 + }, + { + "start": 15205.86, + "end": 15208.3, + "probability": 0.8149 + }, + { + "start": 15208.9, + "end": 15212.7, + "probability": 0.9514 + }, + { + "start": 15213.79, + "end": 15215.88, + "probability": 0.827 + }, + { + "start": 15216.38, + "end": 15216.6, + "probability": 0.8603 + }, + { + "start": 15217.04, + "end": 15219.58, + "probability": 0.5104 + }, + { + "start": 15219.8, + "end": 15222.18, + "probability": 0.6643 + }, + { + "start": 15222.28, + "end": 15222.72, + "probability": 0.8533 + }, + { + "start": 15223.96, + "end": 15225.94, + "probability": 0.1555 + }, + { + "start": 15229.38, + "end": 15231.18, + "probability": 0.348 + }, + { + "start": 15232.02, + "end": 15232.02, + "probability": 0.009 + }, + { + "start": 15259.62, + "end": 15262.78, + "probability": 0.2098 + }, + { + "start": 15263.56, + "end": 15267.8, + "probability": 0.6235 + }, + { + "start": 15267.8, + "end": 15268.76, + "probability": 0.4122 + }, + { + "start": 15268.98, + "end": 15269.82, + "probability": 0.6465 + }, + { + "start": 15269.88, + "end": 15270.36, + "probability": 0.4678 + }, + { + "start": 15270.52, + "end": 15270.9, + "probability": 0.5601 + }, + { + "start": 15271.46, + "end": 15271.48, + "probability": 0.0161 + }, + { + "start": 15272.76, + "end": 15272.98, + "probability": 0.1109 + }, + { + "start": 15274.0, + "end": 15274.76, + "probability": 0.0236 + }, + { + "start": 15274.76, + "end": 15274.76, + "probability": 0.0745 + }, + { + "start": 15274.76, + "end": 15274.76, + "probability": 0.3757 + }, + { + "start": 15274.76, + "end": 15275.96, + "probability": 0.5638 + }, + { + "start": 15276.02, + "end": 15276.54, + "probability": 0.7115 + }, + { + "start": 15276.54, + "end": 15276.64, + "probability": 0.5922 + }, + { + "start": 15276.84, + "end": 15278.56, + "probability": 0.827 + }, + { + "start": 15279.42, + "end": 15282.58, + "probability": 0.7405 + }, + { + "start": 15282.98, + "end": 15285.26, + "probability": 0.7756 + }, + { + "start": 15285.42, + "end": 15287.22, + "probability": 0.4368 + }, + { + "start": 15287.66, + "end": 15289.58, + "probability": 0.9784 + }, + { + "start": 15290.48, + "end": 15291.44, + "probability": 0.3759 + }, + { + "start": 15293.4, + "end": 15293.64, + "probability": 0.1468 + }, + { + "start": 15293.64, + "end": 15293.64, + "probability": 0.2779 + }, + { + "start": 15293.64, + "end": 15293.64, + "probability": 0.4684 + }, + { + "start": 15293.64, + "end": 15298.14, + "probability": 0.6882 + }, + { + "start": 15303.08, + "end": 15310.06, + "probability": 0.9661 + }, + { + "start": 15313.7, + "end": 15316.34, + "probability": 0.7364 + }, + { + "start": 15317.28, + "end": 15320.48, + "probability": 0.9174 + }, + { + "start": 15323.44, + "end": 15324.5, + "probability": 0.955 + }, + { + "start": 15325.82, + "end": 15327.08, + "probability": 0.7734 + }, + { + "start": 15329.0, + "end": 15331.62, + "probability": 0.8722 + }, + { + "start": 15331.62, + "end": 15332.54, + "probability": 0.3593 + }, + { + "start": 15334.32, + "end": 15334.4, + "probability": 0.8264 + }, + { + "start": 15334.4, + "end": 15341.12, + "probability": 0.9807 + }, + { + "start": 15341.74, + "end": 15342.46, + "probability": 0.8165 + }, + { + "start": 15343.3, + "end": 15344.22, + "probability": 0.9147 + }, + { + "start": 15350.38, + "end": 15351.04, + "probability": 0.8848 + }, + { + "start": 15354.54, + "end": 15355.98, + "probability": 0.9397 + }, + { + "start": 15356.52, + "end": 15357.62, + "probability": 0.9928 + }, + { + "start": 15358.34, + "end": 15360.74, + "probability": 0.9941 + }, + { + "start": 15365.36, + "end": 15368.76, + "probability": 0.9902 + }, + { + "start": 15371.58, + "end": 15373.04, + "probability": 0.9958 + }, + { + "start": 15374.68, + "end": 15377.78, + "probability": 0.9815 + }, + { + "start": 15380.1, + "end": 15380.84, + "probability": 0.6583 + }, + { + "start": 15382.0, + "end": 15385.46, + "probability": 0.995 + }, + { + "start": 15385.6, + "end": 15386.2, + "probability": 0.582 + }, + { + "start": 15386.34, + "end": 15387.66, + "probability": 0.9946 + }, + { + "start": 15387.76, + "end": 15388.78, + "probability": 0.9151 + }, + { + "start": 15390.46, + "end": 15392.94, + "probability": 0.5053 + }, + { + "start": 15394.34, + "end": 15397.08, + "probability": 0.9989 + }, + { + "start": 15397.1, + "end": 15400.96, + "probability": 0.9946 + }, + { + "start": 15403.68, + "end": 15408.1, + "probability": 0.926 + }, + { + "start": 15410.58, + "end": 15411.2, + "probability": 0.8867 + }, + { + "start": 15411.38, + "end": 15416.34, + "probability": 0.9644 + }, + { + "start": 15416.68, + "end": 15417.2, + "probability": 0.4485 + }, + { + "start": 15417.48, + "end": 15418.84, + "probability": 0.0384 + }, + { + "start": 15419.32, + "end": 15419.62, + "probability": 0.3555 + }, + { + "start": 15419.76, + "end": 15422.16, + "probability": 0.9971 + }, + { + "start": 15422.16, + "end": 15426.04, + "probability": 0.2499 + }, + { + "start": 15426.9, + "end": 15430.52, + "probability": 0.6734 + }, + { + "start": 15430.9, + "end": 15433.46, + "probability": 0.3172 + }, + { + "start": 15433.54, + "end": 15436.86, + "probability": 0.6626 + }, + { + "start": 15437.0, + "end": 15438.38, + "probability": 0.6223 + }, + { + "start": 15438.98, + "end": 15441.06, + "probability": 0.995 + }, + { + "start": 15441.7, + "end": 15444.1, + "probability": 0.9303 + }, + { + "start": 15445.06, + "end": 15446.62, + "probability": 0.9844 + }, + { + "start": 15448.58, + "end": 15451.36, + "probability": 0.9963 + }, + { + "start": 15452.4, + "end": 15454.86, + "probability": 0.8566 + }, + { + "start": 15458.42, + "end": 15461.6, + "probability": 0.9386 + }, + { + "start": 15462.42, + "end": 15466.26, + "probability": 0.8761 + }, + { + "start": 15467.66, + "end": 15471.3, + "probability": 0.993 + }, + { + "start": 15474.18, + "end": 15474.76, + "probability": 0.7155 + }, + { + "start": 15477.18, + "end": 15481.56, + "probability": 0.9966 + }, + { + "start": 15482.98, + "end": 15486.54, + "probability": 0.9934 + }, + { + "start": 15486.58, + "end": 15492.6, + "probability": 0.999 + }, + { + "start": 15493.64, + "end": 15494.25, + "probability": 0.6703 + }, + { + "start": 15499.22, + "end": 15504.6, + "probability": 0.9403 + }, + { + "start": 15504.78, + "end": 15507.92, + "probability": 0.9989 + }, + { + "start": 15512.72, + "end": 15514.14, + "probability": 0.7494 + }, + { + "start": 15516.36, + "end": 15520.82, + "probability": 0.8558 + }, + { + "start": 15522.5, + "end": 15523.1, + "probability": 0.92 + }, + { + "start": 15526.16, + "end": 15529.08, + "probability": 0.9959 + }, + { + "start": 15529.9, + "end": 15531.02, + "probability": 0.9995 + }, + { + "start": 15537.9, + "end": 15538.66, + "probability": 0.5139 + }, + { + "start": 15540.66, + "end": 15542.0, + "probability": 0.9941 + }, + { + "start": 15543.64, + "end": 15551.56, + "probability": 0.9939 + }, + { + "start": 15552.86, + "end": 15556.04, + "probability": 0.9742 + }, + { + "start": 15559.12, + "end": 15561.72, + "probability": 0.5076 + }, + { + "start": 15561.9, + "end": 15561.9, + "probability": 0.5015 + }, + { + "start": 15561.9, + "end": 15562.7, + "probability": 0.7821 + }, + { + "start": 15562.7, + "end": 15565.38, + "probability": 0.4312 + }, + { + "start": 15565.64, + "end": 15566.78, + "probability": 0.4429 + }, + { + "start": 15566.92, + "end": 15567.41, + "probability": 0.0054 + }, + { + "start": 15568.28, + "end": 15568.28, + "probability": 0.4838 + }, + { + "start": 15568.28, + "end": 15568.66, + "probability": 0.2752 + }, + { + "start": 15568.76, + "end": 15569.34, + "probability": 0.1524 + }, + { + "start": 15569.56, + "end": 15569.76, + "probability": 0.5442 + }, + { + "start": 15569.94, + "end": 15571.3, + "probability": 0.933 + }, + { + "start": 15571.4, + "end": 15571.56, + "probability": 0.3417 + }, + { + "start": 15571.7, + "end": 15574.38, + "probability": 0.8459 + }, + { + "start": 15574.38, + "end": 15576.53, + "probability": 0.8696 + }, + { + "start": 15579.06, + "end": 15579.06, + "probability": 0.0634 + }, + { + "start": 15579.82, + "end": 15580.0, + "probability": 0.0291 + }, + { + "start": 15580.0, + "end": 15580.0, + "probability": 0.075 + }, + { + "start": 15580.0, + "end": 15580.38, + "probability": 0.3498 + }, + { + "start": 15580.38, + "end": 15580.4, + "probability": 0.1515 + }, + { + "start": 15580.4, + "end": 15581.18, + "probability": 0.4346 + }, + { + "start": 15581.18, + "end": 15581.86, + "probability": 0.2545 + }, + { + "start": 15582.26, + "end": 15582.26, + "probability": 0.4137 + }, + { + "start": 15582.26, + "end": 15583.42, + "probability": 0.6592 + }, + { + "start": 15585.16, + "end": 15588.16, + "probability": 0.9876 + }, + { + "start": 15588.28, + "end": 15588.32, + "probability": 0.1624 + }, + { + "start": 15588.32, + "end": 15588.32, + "probability": 0.325 + }, + { + "start": 15588.32, + "end": 15588.54, + "probability": 0.1197 + }, + { + "start": 15588.54, + "end": 15589.02, + "probability": 0.2251 + }, + { + "start": 15589.12, + "end": 15596.42, + "probability": 0.9967 + }, + { + "start": 15597.56, + "end": 15598.74, + "probability": 0.9648 + }, + { + "start": 15598.84, + "end": 15603.32, + "probability": 0.9888 + }, + { + "start": 15603.44, + "end": 15604.06, + "probability": 0.5756 + }, + { + "start": 15604.4, + "end": 15606.36, + "probability": 0.4595 + }, + { + "start": 15606.36, + "end": 15608.74, + "probability": 0.8114 + }, + { + "start": 15608.82, + "end": 15609.18, + "probability": 0.0335 + }, + { + "start": 15609.24, + "end": 15613.12, + "probability": 0.7657 + }, + { + "start": 15613.28, + "end": 15613.86, + "probability": 0.0046 + }, + { + "start": 15613.9, + "end": 15616.92, + "probability": 0.5542 + }, + { + "start": 15617.02, + "end": 15617.51, + "probability": 0.855 + }, + { + "start": 15619.44, + "end": 15619.62, + "probability": 0.0118 + }, + { + "start": 15621.06, + "end": 15621.55, + "probability": 0.0143 + }, + { + "start": 15622.4, + "end": 15625.1, + "probability": 0.0565 + }, + { + "start": 15625.38, + "end": 15626.2, + "probability": 0.4256 + }, + { + "start": 15627.18, + "end": 15629.18, + "probability": 0.3044 + }, + { + "start": 15629.28, + "end": 15631.32, + "probability": 0.5542 + }, + { + "start": 15632.16, + "end": 15634.54, + "probability": 0.9207 + }, + { + "start": 15635.74, + "end": 15638.38, + "probability": 0.9818 + }, + { + "start": 15638.66, + "end": 15639.9, + "probability": 0.9259 + }, + { + "start": 15641.4, + "end": 15643.06, + "probability": 0.8855 + }, + { + "start": 15643.88, + "end": 15645.78, + "probability": 0.7282 + }, + { + "start": 15646.42, + "end": 15648.72, + "probability": 0.9983 + }, + { + "start": 15649.84, + "end": 15650.66, + "probability": 0.9366 + }, + { + "start": 15651.9, + "end": 15652.46, + "probability": 0.876 + }, + { + "start": 15653.14, + "end": 15654.38, + "probability": 0.9692 + }, + { + "start": 15656.96, + "end": 15660.96, + "probability": 0.6853 + }, + { + "start": 15662.38, + "end": 15664.42, + "probability": 0.9416 + }, + { + "start": 15665.36, + "end": 15669.54, + "probability": 0.9634 + }, + { + "start": 15669.62, + "end": 15671.95, + "probability": 0.9808 + }, + { + "start": 15672.82, + "end": 15675.22, + "probability": 0.0867 + }, + { + "start": 15675.22, + "end": 15678.84, + "probability": 0.6115 + }, + { + "start": 15680.16, + "end": 15685.08, + "probability": 0.7026 + }, + { + "start": 15687.8, + "end": 15690.6, + "probability": 0.5749 + }, + { + "start": 15691.1, + "end": 15693.76, + "probability": 0.5723 + }, + { + "start": 15693.76, + "end": 15694.48, + "probability": 0.7572 + }, + { + "start": 15694.66, + "end": 15695.0, + "probability": 0.0215 + }, + { + "start": 15695.0, + "end": 15695.0, + "probability": 0.1596 + }, + { + "start": 15695.0, + "end": 15695.0, + "probability": 0.0442 + }, + { + "start": 15695.0, + "end": 15696.62, + "probability": 0.1742 + }, + { + "start": 15698.7, + "end": 15701.68, + "probability": 0.5954 + }, + { + "start": 15708.42, + "end": 15710.36, + "probability": 0.6142 + }, + { + "start": 15710.5, + "end": 15710.7, + "probability": 0.3838 + }, + { + "start": 15710.88, + "end": 15712.2, + "probability": 0.8674 + }, + { + "start": 15712.6, + "end": 15712.94, + "probability": 0.3047 + }, + { + "start": 15713.1, + "end": 15714.22, + "probability": 0.6574 + }, + { + "start": 15714.22, + "end": 15715.26, + "probability": 0.3973 + }, + { + "start": 15715.44, + "end": 15715.54, + "probability": 0.4216 + }, + { + "start": 15715.9, + "end": 15717.8, + "probability": 0.8639 + }, + { + "start": 15717.92, + "end": 15719.4, + "probability": 0.9291 + }, + { + "start": 15719.5, + "end": 15720.74, + "probability": 0.8022 + }, + { + "start": 15721.04, + "end": 15721.66, + "probability": 0.3321 + }, + { + "start": 15721.76, + "end": 15723.5, + "probability": 0.2663 + }, + { + "start": 15723.98, + "end": 15724.22, + "probability": 0.7026 + }, + { + "start": 15724.22, + "end": 15727.04, + "probability": 0.979 + }, + { + "start": 15727.15, + "end": 15731.56, + "probability": 0.7979 + }, + { + "start": 15732.06, + "end": 15732.06, + "probability": 0.1034 + }, + { + "start": 15732.06, + "end": 15732.06, + "probability": 0.0026 + }, + { + "start": 15732.06, + "end": 15732.06, + "probability": 0.2055 + }, + { + "start": 15732.06, + "end": 15732.06, + "probability": 0.4431 + }, + { + "start": 15732.06, + "end": 15733.4, + "probability": 0.6252 + }, + { + "start": 15733.54, + "end": 15735.18, + "probability": 0.5625 + }, + { + "start": 15735.28, + "end": 15738.32, + "probability": 0.7751 + }, + { + "start": 15738.58, + "end": 15738.8, + "probability": 0.5131 + }, + { + "start": 15738.8, + "end": 15739.54, + "probability": 0.4823 + }, + { + "start": 15739.58, + "end": 15739.94, + "probability": 0.152 + }, + { + "start": 15740.54, + "end": 15740.9, + "probability": 0.5586 + }, + { + "start": 15741.06, + "end": 15743.45, + "probability": 0.006 + }, + { + "start": 15743.84, + "end": 15744.57, + "probability": 0.3868 + }, + { + "start": 15744.84, + "end": 15745.0, + "probability": 0.3748 + }, + { + "start": 15745.04, + "end": 15745.98, + "probability": 0.4157 + }, + { + "start": 15746.26, + "end": 15748.5, + "probability": 0.9036 + }, + { + "start": 15748.62, + "end": 15749.98, + "probability": 0.929 + }, + { + "start": 15750.44, + "end": 15751.52, + "probability": 0.3509 + }, + { + "start": 15751.54, + "end": 15752.64, + "probability": 0.6546 + }, + { + "start": 15752.66, + "end": 15754.76, + "probability": 0.9617 + }, + { + "start": 15755.92, + "end": 15756.34, + "probability": 0.6199 + }, + { + "start": 15756.34, + "end": 15757.0, + "probability": 0.0347 + }, + { + "start": 15757.76, + "end": 15758.76, + "probability": 0.4623 + }, + { + "start": 15758.76, + "end": 15760.74, + "probability": 0.7811 + }, + { + "start": 15761.34, + "end": 15764.1, + "probability": 0.8227 + }, + { + "start": 15764.18, + "end": 15764.88, + "probability": 0.7089 + }, + { + "start": 15764.88, + "end": 15765.42, + "probability": 0.6264 + }, + { + "start": 15765.78, + "end": 15766.84, + "probability": 0.7827 + }, + { + "start": 15767.24, + "end": 15769.92, + "probability": 0.6499 + }, + { + "start": 15770.26, + "end": 15775.42, + "probability": 0.6191 + }, + { + "start": 15776.08, + "end": 15779.82, + "probability": 0.9201 + }, + { + "start": 15780.18, + "end": 15781.44, + "probability": 0.5447 + }, + { + "start": 15781.86, + "end": 15784.04, + "probability": 0.923 + }, + { + "start": 15784.84, + "end": 15785.32, + "probability": 0.6302 + }, + { + "start": 15785.4, + "end": 15789.84, + "probability": 0.7703 + }, + { + "start": 15790.18, + "end": 15790.8, + "probability": 0.3285 + }, + { + "start": 15791.72, + "end": 15791.82, + "probability": 0.0187 + }, + { + "start": 15793.38, + "end": 15794.24, + "probability": 0.0074 + }, + { + "start": 15795.56, + "end": 15798.6, + "probability": 0.122 + }, + { + "start": 15798.62, + "end": 15801.18, + "probability": 0.206 + }, + { + "start": 15801.3, + "end": 15801.81, + "probability": 0.3789 + }, + { + "start": 15804.52, + "end": 15806.76, + "probability": 0.995 + }, + { + "start": 15806.96, + "end": 15810.94, + "probability": 0.9834 + }, + { + "start": 15811.82, + "end": 15816.36, + "probability": 0.8649 + }, + { + "start": 15816.58, + "end": 15817.66, + "probability": 0.9374 + }, + { + "start": 15820.84, + "end": 15824.26, + "probability": 0.3194 + }, + { + "start": 15827.0, + "end": 15829.14, + "probability": 0.9211 + }, + { + "start": 15829.82, + "end": 15833.46, + "probability": 0.9416 + }, + { + "start": 15833.86, + "end": 15835.56, + "probability": 0.7297 + }, + { + "start": 15836.02, + "end": 15836.24, + "probability": 0.5796 + }, + { + "start": 15837.34, + "end": 15839.18, + "probability": 0.7021 + }, + { + "start": 15841.2, + "end": 15841.74, + "probability": 0.3499 + }, + { + "start": 15842.88, + "end": 15843.82, + "probability": 0.7677 + }, + { + "start": 15850.38, + "end": 15854.78, + "probability": 0.6932 + }, + { + "start": 15855.18, + "end": 15860.06, + "probability": 0.9657 + }, + { + "start": 15860.76, + "end": 15863.72, + "probability": 0.9867 + }, + { + "start": 15865.16, + "end": 15867.64, + "probability": 0.5127 + }, + { + "start": 15868.38, + "end": 15869.26, + "probability": 0.673 + }, + { + "start": 15869.6, + "end": 15870.64, + "probability": 0.7796 + }, + { + "start": 15871.74, + "end": 15872.24, + "probability": 0.7198 + }, + { + "start": 15873.8, + "end": 15878.1, + "probability": 0.1462 + }, + { + "start": 15881.02, + "end": 15883.48, + "probability": 0.5379 + }, + { + "start": 15884.49, + "end": 15884.99, + "probability": 0.1178 + }, + { + "start": 15886.3, + "end": 15888.16, + "probability": 0.0013 + }, + { + "start": 15892.86, + "end": 15893.46, + "probability": 0.4916 + }, + { + "start": 15893.46, + "end": 15900.06, + "probability": 0.6312 + }, + { + "start": 15900.64, + "end": 15903.56, + "probability": 0.4434 + }, + { + "start": 15903.66, + "end": 15907.26, + "probability": 0.9023 + }, + { + "start": 15907.38, + "end": 15911.2, + "probability": 0.9341 + }, + { + "start": 15912.08, + "end": 15912.78, + "probability": 0.5113 + }, + { + "start": 15914.32, + "end": 15918.98, + "probability": 0.9846 + }, + { + "start": 15919.12, + "end": 15923.36, + "probability": 0.8559 + }, + { + "start": 15924.08, + "end": 15930.06, + "probability": 0.9715 + }, + { + "start": 15930.14, + "end": 15933.36, + "probability": 0.9554 + }, + { + "start": 15933.94, + "end": 15934.36, + "probability": 0.9349 + }, + { + "start": 15934.98, + "end": 15935.46, + "probability": 0.8784 + }, + { + "start": 15956.57, + "end": 15959.28, + "probability": 0.7048 + }, + { + "start": 15960.54, + "end": 15962.04, + "probability": 0.9378 + }, + { + "start": 15962.7, + "end": 15965.1, + "probability": 0.7296 + }, + { + "start": 15965.84, + "end": 15966.18, + "probability": 0.7724 + }, + { + "start": 15966.22, + "end": 15971.14, + "probability": 0.9938 + }, + { + "start": 15971.14, + "end": 15977.34, + "probability": 0.9914 + }, + { + "start": 15978.46, + "end": 15983.9, + "probability": 0.809 + }, + { + "start": 15984.9, + "end": 15991.26, + "probability": 0.9944 + }, + { + "start": 15992.24, + "end": 15993.77, + "probability": 0.981 + }, + { + "start": 15994.34, + "end": 15997.76, + "probability": 0.9898 + }, + { + "start": 15998.68, + "end": 16001.54, + "probability": 0.9866 + }, + { + "start": 16002.22, + "end": 16004.44, + "probability": 0.9981 + }, + { + "start": 16005.34, + "end": 16009.3, + "probability": 0.9891 + }, + { + "start": 16010.22, + "end": 16012.5, + "probability": 0.9598 + }, + { + "start": 16013.22, + "end": 16015.24, + "probability": 0.9828 + }, + { + "start": 16016.32, + "end": 16017.3, + "probability": 0.8382 + }, + { + "start": 16018.0, + "end": 16020.59, + "probability": 0.9956 + }, + { + "start": 16021.62, + "end": 16027.2, + "probability": 0.999 + }, + { + "start": 16027.2, + "end": 16029.94, + "probability": 0.991 + }, + { + "start": 16030.84, + "end": 16031.95, + "probability": 0.9969 + }, + { + "start": 16032.56, + "end": 16038.04, + "probability": 0.9988 + }, + { + "start": 16038.88, + "end": 16043.0, + "probability": 0.8493 + }, + { + "start": 16043.68, + "end": 16049.94, + "probability": 0.9756 + }, + { + "start": 16050.84, + "end": 16056.44, + "probability": 0.9937 + }, + { + "start": 16057.16, + "end": 16059.34, + "probability": 0.9446 + }, + { + "start": 16060.32, + "end": 16066.54, + "probability": 0.978 + }, + { + "start": 16066.54, + "end": 16074.78, + "probability": 0.9915 + }, + { + "start": 16075.76, + "end": 16081.34, + "probability": 0.9968 + }, + { + "start": 16081.9, + "end": 16082.56, + "probability": 0.7974 + }, + { + "start": 16083.18, + "end": 16086.4, + "probability": 0.9293 + }, + { + "start": 16086.94, + "end": 16088.58, + "probability": 0.9499 + }, + { + "start": 16089.26, + "end": 16092.52, + "probability": 0.9959 + }, + { + "start": 16094.2, + "end": 16098.24, + "probability": 0.8447 + }, + { + "start": 16100.02, + "end": 16100.58, + "probability": 0.0312 + }, + { + "start": 16101.02, + "end": 16101.28, + "probability": 0.4589 + }, + { + "start": 16101.8, + "end": 16105.8, + "probability": 0.996 + }, + { + "start": 16105.82, + "end": 16106.36, + "probability": 0.7867 + }, + { + "start": 16107.9, + "end": 16112.0, + "probability": 0.9739 + }, + { + "start": 16112.58, + "end": 16116.58, + "probability": 0.9404 + }, + { + "start": 16117.32, + "end": 16118.46, + "probability": 0.8778 + }, + { + "start": 16119.02, + "end": 16119.86, + "probability": 0.9689 + }, + { + "start": 16120.56, + "end": 16121.06, + "probability": 0.48 + }, + { + "start": 16121.64, + "end": 16125.64, + "probability": 0.9915 + }, + { + "start": 16125.86, + "end": 16127.06, + "probability": 0.9889 + }, + { + "start": 16127.72, + "end": 16128.76, + "probability": 0.8696 + }, + { + "start": 16129.66, + "end": 16130.18, + "probability": 0.4443 + }, + { + "start": 16130.22, + "end": 16132.2, + "probability": 0.9901 + }, + { + "start": 16132.7, + "end": 16136.94, + "probability": 0.9473 + }, + { + "start": 16137.78, + "end": 16139.4, + "probability": 0.8903 + }, + { + "start": 16140.3, + "end": 16142.5, + "probability": 0.9938 + }, + { + "start": 16142.94, + "end": 16148.72, + "probability": 0.9907 + }, + { + "start": 16149.26, + "end": 16152.06, + "probability": 0.9621 + }, + { + "start": 16152.66, + "end": 16154.18, + "probability": 0.7902 + }, + { + "start": 16155.18, + "end": 16156.84, + "probability": 0.7499 + }, + { + "start": 16157.54, + "end": 16161.46, + "probability": 0.7432 + }, + { + "start": 16162.2, + "end": 16164.96, + "probability": 0.9388 + }, + { + "start": 16165.04, + "end": 16167.74, + "probability": 0.9775 + }, + { + "start": 16168.2, + "end": 16170.58, + "probability": 0.6095 + }, + { + "start": 16171.18, + "end": 16174.72, + "probability": 0.824 + }, + { + "start": 16176.12, + "end": 16177.46, + "probability": 0.9709 + }, + { + "start": 16178.02, + "end": 16181.12, + "probability": 0.9108 + }, + { + "start": 16182.52, + "end": 16182.9, + "probability": 0.7903 + }, + { + "start": 16184.48, + "end": 16190.12, + "probability": 0.9911 + }, + { + "start": 16190.44, + "end": 16191.58, + "probability": 0.5389 + }, + { + "start": 16192.2, + "end": 16195.98, + "probability": 0.9877 + }, + { + "start": 16196.74, + "end": 16197.08, + "probability": 0.9683 + }, + { + "start": 16197.58, + "end": 16201.0, + "probability": 0.9914 + }, + { + "start": 16201.78, + "end": 16202.7, + "probability": 0.941 + }, + { + "start": 16203.34, + "end": 16204.96, + "probability": 0.9849 + }, + { + "start": 16206.54, + "end": 16209.22, + "probability": 0.7345 + }, + { + "start": 16210.12, + "end": 16211.58, + "probability": 0.7791 + }, + { + "start": 16212.24, + "end": 16214.32, + "probability": 0.9438 + }, + { + "start": 16214.8, + "end": 16215.36, + "probability": 0.7645 + }, + { + "start": 16216.12, + "end": 16217.12, + "probability": 0.8994 + }, + { + "start": 16217.74, + "end": 16220.56, + "probability": 0.9939 + }, + { + "start": 16221.14, + "end": 16226.06, + "probability": 0.96 + }, + { + "start": 16228.16, + "end": 16229.02, + "probability": 0.6349 + }, + { + "start": 16229.56, + "end": 16234.06, + "probability": 0.9347 + }, + { + "start": 16235.02, + "end": 16235.48, + "probability": 0.9517 + }, + { + "start": 16235.78, + "end": 16240.12, + "probability": 0.9966 + }, + { + "start": 16240.9, + "end": 16243.92, + "probability": 0.9961 + }, + { + "start": 16244.8, + "end": 16246.68, + "probability": 0.8552 + }, + { + "start": 16247.48, + "end": 16248.94, + "probability": 0.9485 + }, + { + "start": 16249.52, + "end": 16251.9, + "probability": 0.8997 + }, + { + "start": 16252.5, + "end": 16252.62, + "probability": 0.8628 + }, + { + "start": 16253.44, + "end": 16255.45, + "probability": 0.9937 + }, + { + "start": 16256.46, + "end": 16258.65, + "probability": 0.9843 + }, + { + "start": 16259.54, + "end": 16261.64, + "probability": 0.682 + }, + { + "start": 16262.18, + "end": 16264.77, + "probability": 0.475 + }, + { + "start": 16266.56, + "end": 16272.7, + "probability": 0.9893 + }, + { + "start": 16273.66, + "end": 16274.1, + "probability": 0.9715 + }, + { + "start": 16275.12, + "end": 16277.54, + "probability": 0.9774 + }, + { + "start": 16278.38, + "end": 16282.84, + "probability": 0.993 + }, + { + "start": 16282.84, + "end": 16288.8, + "probability": 1.0 + }, + { + "start": 16289.8, + "end": 16293.48, + "probability": 0.978 + }, + { + "start": 16294.38, + "end": 16297.58, + "probability": 0.9625 + }, + { + "start": 16298.52, + "end": 16300.68, + "probability": 0.9436 + }, + { + "start": 16301.64, + "end": 16304.92, + "probability": 0.9645 + }, + { + "start": 16306.28, + "end": 16308.1, + "probability": 0.8143 + }, + { + "start": 16309.22, + "end": 16310.42, + "probability": 0.9961 + }, + { + "start": 16311.28, + "end": 16313.46, + "probability": 0.9974 + }, + { + "start": 16314.36, + "end": 16317.78, + "probability": 0.9971 + }, + { + "start": 16318.5, + "end": 16323.94, + "probability": 0.9932 + }, + { + "start": 16323.94, + "end": 16328.54, + "probability": 0.973 + }, + { + "start": 16329.32, + "end": 16332.94, + "probability": 0.775 + }, + { + "start": 16334.26, + "end": 16335.56, + "probability": 0.9946 + }, + { + "start": 16336.18, + "end": 16339.98, + "probability": 0.9801 + }, + { + "start": 16340.16, + "end": 16340.36, + "probability": 0.8259 + }, + { + "start": 16342.28, + "end": 16343.32, + "probability": 0.5933 + }, + { + "start": 16344.78, + "end": 16350.22, + "probability": 0.9154 + }, + { + "start": 16366.22, + "end": 16368.44, + "probability": 0.7193 + }, + { + "start": 16371.4, + "end": 16373.32, + "probability": 0.97 + }, + { + "start": 16374.96, + "end": 16377.44, + "probability": 0.8488 + }, + { + "start": 16380.5, + "end": 16382.42, + "probability": 0.9954 + }, + { + "start": 16385.18, + "end": 16387.28, + "probability": 0.9963 + }, + { + "start": 16388.6, + "end": 16390.28, + "probability": 0.9974 + }, + { + "start": 16391.4, + "end": 16392.34, + "probability": 0.7542 + }, + { + "start": 16393.68, + "end": 16397.32, + "probability": 0.999 + }, + { + "start": 16398.54, + "end": 16399.76, + "probability": 0.9078 + }, + { + "start": 16401.88, + "end": 16405.7, + "probability": 0.9427 + }, + { + "start": 16405.86, + "end": 16406.69, + "probability": 0.9932 + }, + { + "start": 16407.0, + "end": 16414.3, + "probability": 0.9972 + }, + { + "start": 16417.14, + "end": 16420.0, + "probability": 0.9987 + }, + { + "start": 16420.0, + "end": 16423.0, + "probability": 0.9963 + }, + { + "start": 16423.2, + "end": 16424.66, + "probability": 0.646 + }, + { + "start": 16425.58, + "end": 16430.84, + "probability": 0.9979 + }, + { + "start": 16433.02, + "end": 16437.22, + "probability": 0.7823 + }, + { + "start": 16437.92, + "end": 16440.22, + "probability": 0.7692 + }, + { + "start": 16441.44, + "end": 16445.24, + "probability": 0.9847 + }, + { + "start": 16445.42, + "end": 16450.66, + "probability": 0.9902 + }, + { + "start": 16450.94, + "end": 16451.9, + "probability": 0.3607 + }, + { + "start": 16452.2, + "end": 16456.0, + "probability": 0.991 + }, + { + "start": 16458.32, + "end": 16459.82, + "probability": 0.667 + }, + { + "start": 16460.06, + "end": 16462.44, + "probability": 0.9688 + }, + { + "start": 16462.44, + "end": 16465.42, + "probability": 0.9926 + }, + { + "start": 16467.7, + "end": 16467.84, + "probability": 0.1 + }, + { + "start": 16467.84, + "end": 16468.92, + "probability": 0.9604 + }, + { + "start": 16470.16, + "end": 16470.8, + "probability": 0.8067 + }, + { + "start": 16470.94, + "end": 16472.2, + "probability": 0.9031 + }, + { + "start": 16472.32, + "end": 16473.52, + "probability": 0.9726 + }, + { + "start": 16473.66, + "end": 16479.06, + "probability": 0.9913 + }, + { + "start": 16479.2, + "end": 16484.48, + "probability": 0.9902 + }, + { + "start": 16485.46, + "end": 16486.38, + "probability": 0.9134 + }, + { + "start": 16487.84, + "end": 16489.16, + "probability": 0.8286 + }, + { + "start": 16490.1, + "end": 16492.48, + "probability": 0.966 + }, + { + "start": 16495.28, + "end": 16496.74, + "probability": 0.9893 + }, + { + "start": 16497.52, + "end": 16500.46, + "probability": 0.9995 + }, + { + "start": 16500.52, + "end": 16504.14, + "probability": 0.9976 + }, + { + "start": 16507.24, + "end": 16509.82, + "probability": 0.9384 + }, + { + "start": 16510.38, + "end": 16517.32, + "probability": 0.992 + }, + { + "start": 16518.62, + "end": 16522.0, + "probability": 0.752 + }, + { + "start": 16523.36, + "end": 16529.64, + "probability": 0.9639 + }, + { + "start": 16529.78, + "end": 16531.72, + "probability": 0.9949 + }, + { + "start": 16538.54, + "end": 16541.04, + "probability": 0.8673 + }, + { + "start": 16541.04, + "end": 16544.48, + "probability": 0.9938 + }, + { + "start": 16545.78, + "end": 16548.74, + "probability": 0.9971 + }, + { + "start": 16548.74, + "end": 16551.66, + "probability": 0.9983 + }, + { + "start": 16552.32, + "end": 16554.4, + "probability": 0.8309 + }, + { + "start": 16554.68, + "end": 16556.46, + "probability": 0.816 + }, + { + "start": 16557.14, + "end": 16560.44, + "probability": 0.9955 + }, + { + "start": 16560.44, + "end": 16563.8, + "probability": 0.9907 + }, + { + "start": 16567.12, + "end": 16567.62, + "probability": 0.9007 + }, + { + "start": 16567.94, + "end": 16568.5, + "probability": 0.7926 + }, + { + "start": 16568.76, + "end": 16573.29, + "probability": 0.9913 + }, + { + "start": 16573.58, + "end": 16576.14, + "probability": 0.9928 + }, + { + "start": 16576.82, + "end": 16579.22, + "probability": 0.9252 + }, + { + "start": 16579.32, + "end": 16579.94, + "probability": 0.7083 + }, + { + "start": 16580.06, + "end": 16581.58, + "probability": 0.8723 + }, + { + "start": 16582.4, + "end": 16586.92, + "probability": 0.9951 + }, + { + "start": 16586.92, + "end": 16591.28, + "probability": 0.9919 + }, + { + "start": 16593.24, + "end": 16597.06, + "probability": 0.9965 + }, + { + "start": 16602.14, + "end": 16606.98, + "probability": 0.9836 + }, + { + "start": 16607.88, + "end": 16608.04, + "probability": 0.9659 + }, + { + "start": 16608.04, + "end": 16612.78, + "probability": 0.9686 + }, + { + "start": 16612.96, + "end": 16613.4, + "probability": 0.3972 + }, + { + "start": 16613.88, + "end": 16614.62, + "probability": 0.9316 + }, + { + "start": 16615.26, + "end": 16617.26, + "probability": 0.9788 + }, + { + "start": 16619.86, + "end": 16621.2, + "probability": 0.9601 + }, + { + "start": 16622.28, + "end": 16625.44, + "probability": 0.9208 + }, + { + "start": 16627.0, + "end": 16627.36, + "probability": 0.8753 + }, + { + "start": 16628.4, + "end": 16629.9, + "probability": 0.5161 + }, + { + "start": 16630.58, + "end": 16632.34, + "probability": 0.9482 + }, + { + "start": 16633.22, + "end": 16635.3, + "probability": 0.6931 + }, + { + "start": 16636.12, + "end": 16638.66, + "probability": 0.9786 + }, + { + "start": 16639.22, + "end": 16642.16, + "probability": 0.969 + }, + { + "start": 16642.3, + "end": 16643.0, + "probability": 0.9867 + }, + { + "start": 16643.54, + "end": 16647.0, + "probability": 0.9969 + }, + { + "start": 16648.36, + "end": 16650.18, + "probability": 0.6304 + }, + { + "start": 16650.72, + "end": 16651.4, + "probability": 0.5746 + }, + { + "start": 16651.66, + "end": 16653.18, + "probability": 0.9718 + }, + { + "start": 16654.2, + "end": 16658.48, + "probability": 0.8528 + }, + { + "start": 16658.9, + "end": 16659.56, + "probability": 0.75 + }, + { + "start": 16660.26, + "end": 16663.3, + "probability": 0.8229 + }, + { + "start": 16663.84, + "end": 16666.42, + "probability": 0.7484 + }, + { + "start": 16668.46, + "end": 16671.1, + "probability": 0.9627 + }, + { + "start": 16671.62, + "end": 16672.78, + "probability": 0.9819 + }, + { + "start": 16673.72, + "end": 16678.72, + "probability": 0.9767 + }, + { + "start": 16678.78, + "end": 16680.14, + "probability": 0.9644 + }, + { + "start": 16680.6, + "end": 16682.56, + "probability": 0.9937 + }, + { + "start": 16683.62, + "end": 16684.4, + "probability": 0.9252 + }, + { + "start": 16686.05, + "end": 16693.48, + "probability": 0.9205 + }, + { + "start": 16694.6, + "end": 16695.72, + "probability": 0.6968 + }, + { + "start": 16696.62, + "end": 16700.6, + "probability": 0.9969 + }, + { + "start": 16701.62, + "end": 16704.14, + "probability": 0.9872 + }, + { + "start": 16706.36, + "end": 16712.4, + "probability": 0.9962 + }, + { + "start": 16715.4, + "end": 16720.22, + "probability": 0.9962 + }, + { + "start": 16722.86, + "end": 16724.4, + "probability": 0.7428 + }, + { + "start": 16726.54, + "end": 16727.28, + "probability": 0.486 + }, + { + "start": 16727.28, + "end": 16730.22, + "probability": 0.6722 + }, + { + "start": 16733.66, + "end": 16733.66, + "probability": 0.0441 + }, + { + "start": 16733.66, + "end": 16735.54, + "probability": 0.9844 + }, + { + "start": 16737.2, + "end": 16738.28, + "probability": 0.9575 + }, + { + "start": 16739.04, + "end": 16741.96, + "probability": 0.927 + }, + { + "start": 16742.76, + "end": 16745.54, + "probability": 0.981 + }, + { + "start": 16746.28, + "end": 16748.32, + "probability": 0.9428 + }, + { + "start": 16748.94, + "end": 16750.3, + "probability": 0.9014 + }, + { + "start": 16750.98, + "end": 16754.24, + "probability": 0.998 + }, + { + "start": 16755.4, + "end": 16759.4, + "probability": 0.9724 + }, + { + "start": 16761.42, + "end": 16763.08, + "probability": 0.9868 + }, + { + "start": 16763.32, + "end": 16764.54, + "probability": 0.9645 + }, + { + "start": 16765.24, + "end": 16767.44, + "probability": 0.9937 + }, + { + "start": 16768.16, + "end": 16772.44, + "probability": 0.7742 + }, + { + "start": 16772.96, + "end": 16774.58, + "probability": 0.9014 + }, + { + "start": 16775.36, + "end": 16777.06, + "probability": 0.9351 + }, + { + "start": 16777.18, + "end": 16780.36, + "probability": 0.9466 + }, + { + "start": 16781.1, + "end": 16782.12, + "probability": 0.9759 + }, + { + "start": 16783.68, + "end": 16788.74, + "probability": 0.8664 + }, + { + "start": 16789.96, + "end": 16791.68, + "probability": 0.7476 + }, + { + "start": 16792.42, + "end": 16795.88, + "probability": 0.9343 + }, + { + "start": 16796.04, + "end": 16798.7, + "probability": 0.9263 + }, + { + "start": 16799.32, + "end": 16801.02, + "probability": 0.9317 + }, + { + "start": 16801.88, + "end": 16803.64, + "probability": 0.7912 + }, + { + "start": 16803.72, + "end": 16804.32, + "probability": 0.9448 + }, + { + "start": 16804.58, + "end": 16807.96, + "probability": 0.9427 + }, + { + "start": 16808.14, + "end": 16813.34, + "probability": 0.9684 + }, + { + "start": 16813.48, + "end": 16818.02, + "probability": 0.9946 + }, + { + "start": 16819.48, + "end": 16823.3, + "probability": 0.9839 + }, + { + "start": 16823.42, + "end": 16824.32, + "probability": 0.6904 + }, + { + "start": 16824.54, + "end": 16825.06, + "probability": 0.2867 + }, + { + "start": 16825.56, + "end": 16827.88, + "probability": 0.7921 + }, + { + "start": 16828.44, + "end": 16830.74, + "probability": 0.8357 + }, + { + "start": 16831.18, + "end": 16831.74, + "probability": 0.671 + }, + { + "start": 16832.08, + "end": 16836.12, + "probability": 0.9788 + }, + { + "start": 16836.62, + "end": 16837.74, + "probability": 0.9604 + }, + { + "start": 16838.52, + "end": 16841.66, + "probability": 0.8748 + }, + { + "start": 16842.26, + "end": 16845.46, + "probability": 0.9956 + }, + { + "start": 16845.58, + "end": 16847.44, + "probability": 0.954 + }, + { + "start": 16847.86, + "end": 16854.0, + "probability": 0.9666 + }, + { + "start": 16854.1, + "end": 16855.05, + "probability": 0.9557 + }, + { + "start": 16855.32, + "end": 16855.34, + "probability": 0.6948 + }, + { + "start": 16856.02, + "end": 16858.0, + "probability": 0.668 + }, + { + "start": 16858.28, + "end": 16859.12, + "probability": 0.7666 + }, + { + "start": 16859.12, + "end": 16861.08, + "probability": 0.9729 + }, + { + "start": 16861.18, + "end": 16863.34, + "probability": 0.9884 + }, + { + "start": 16863.9, + "end": 16866.16, + "probability": 0.9831 + }, + { + "start": 16866.2, + "end": 16866.98, + "probability": 0.782 + }, + { + "start": 16867.36, + "end": 16869.32, + "probability": 0.9946 + }, + { + "start": 16869.78, + "end": 16872.18, + "probability": 0.5668 + }, + { + "start": 16872.7, + "end": 16873.94, + "probability": 0.9171 + }, + { + "start": 16874.84, + "end": 16877.02, + "probability": 0.9326 + }, + { + "start": 16877.1, + "end": 16877.6, + "probability": 0.6362 + }, + { + "start": 16877.86, + "end": 16879.5, + "probability": 0.8887 + }, + { + "start": 16879.64, + "end": 16881.22, + "probability": 0.9572 + }, + { + "start": 16881.32, + "end": 16885.2, + "probability": 0.8648 + }, + { + "start": 16885.2, + "end": 16885.56, + "probability": 0.4196 + }, + { + "start": 16885.96, + "end": 16887.22, + "probability": 0.282 + }, + { + "start": 16904.9, + "end": 16905.9, + "probability": 0.7997 + }, + { + "start": 16911.78, + "end": 16912.82, + "probability": 0.7274 + }, + { + "start": 16914.04, + "end": 16914.82, + "probability": 0.8585 + }, + { + "start": 16915.94, + "end": 16916.88, + "probability": 0.7966 + }, + { + "start": 16918.62, + "end": 16919.24, + "probability": 0.749 + }, + { + "start": 16920.2, + "end": 16922.26, + "probability": 0.9285 + }, + { + "start": 16922.88, + "end": 16924.98, + "probability": 0.9927 + }, + { + "start": 16925.76, + "end": 16929.18, + "probability": 0.9956 + }, + { + "start": 16930.24, + "end": 16932.12, + "probability": 0.8849 + }, + { + "start": 16932.84, + "end": 16933.48, + "probability": 0.5717 + }, + { + "start": 16933.58, + "end": 16938.14, + "probability": 0.9868 + }, + { + "start": 16939.12, + "end": 16941.38, + "probability": 0.8606 + }, + { + "start": 16942.28, + "end": 16947.9, + "probability": 0.8475 + }, + { + "start": 16948.44, + "end": 16952.94, + "probability": 0.9817 + }, + { + "start": 16953.94, + "end": 16955.16, + "probability": 0.752 + }, + { + "start": 16955.6, + "end": 16960.08, + "probability": 0.9976 + }, + { + "start": 16960.08, + "end": 16963.82, + "probability": 0.8987 + }, + { + "start": 16964.5, + "end": 16965.0, + "probability": 0.9462 + }, + { + "start": 16965.82, + "end": 16968.46, + "probability": 0.9961 + }, + { + "start": 16969.26, + "end": 16975.86, + "probability": 0.7684 + }, + { + "start": 16976.48, + "end": 16977.22, + "probability": 0.9976 + }, + { + "start": 16978.32, + "end": 16981.42, + "probability": 0.9764 + }, + { + "start": 16982.6, + "end": 16988.58, + "probability": 0.766 + }, + { + "start": 16989.34, + "end": 16989.34, + "probability": 0.017 + }, + { + "start": 16989.34, + "end": 16990.94, + "probability": 0.4489 + }, + { + "start": 16991.62, + "end": 16991.84, + "probability": 0.1406 + }, + { + "start": 16992.22, + "end": 16993.32, + "probability": 0.5242 + }, + { + "start": 16993.5, + "end": 16993.74, + "probability": 0.3962 + }, + { + "start": 16994.42, + "end": 16996.08, + "probability": 0.4563 + }, + { + "start": 16996.16, + "end": 16996.97, + "probability": 0.796 + }, + { + "start": 16997.08, + "end": 16997.79, + "probability": 0.2563 + }, + { + "start": 16998.02, + "end": 17002.12, + "probability": 0.3982 + }, + { + "start": 17002.12, + "end": 17006.4, + "probability": 0.842 + }, + { + "start": 17006.76, + "end": 17007.92, + "probability": 0.5792 + }, + { + "start": 17008.56, + "end": 17008.56, + "probability": 0.2755 + }, + { + "start": 17009.1, + "end": 17012.16, + "probability": 0.1564 + }, + { + "start": 17012.88, + "end": 17013.42, + "probability": 0.6451 + }, + { + "start": 17014.04, + "end": 17014.38, + "probability": 0.8334 + }, + { + "start": 17015.04, + "end": 17017.94, + "probability": 0.9879 + }, + { + "start": 17019.24, + "end": 17023.78, + "probability": 0.9806 + }, + { + "start": 17024.84, + "end": 17026.08, + "probability": 0.9915 + }, + { + "start": 17027.6, + "end": 17028.4, + "probability": 0.9901 + }, + { + "start": 17029.58, + "end": 17031.36, + "probability": 0.9884 + }, + { + "start": 17032.56, + "end": 17035.88, + "probability": 0.7517 + }, + { + "start": 17037.12, + "end": 17040.9, + "probability": 0.8445 + }, + { + "start": 17041.64, + "end": 17043.74, + "probability": 0.9922 + }, + { + "start": 17044.78, + "end": 17046.22, + "probability": 0.873 + }, + { + "start": 17047.48, + "end": 17051.82, + "probability": 0.9499 + }, + { + "start": 17052.62, + "end": 17054.02, + "probability": 0.9779 + }, + { + "start": 17054.52, + "end": 17055.74, + "probability": 0.9259 + }, + { + "start": 17056.6, + "end": 17057.14, + "probability": 0.9274 + }, + { + "start": 17057.38, + "end": 17060.36, + "probability": 0.9875 + }, + { + "start": 17060.42, + "end": 17065.18, + "probability": 0.9958 + }, + { + "start": 17065.64, + "end": 17067.02, + "probability": 0.9669 + }, + { + "start": 17067.62, + "end": 17068.32, + "probability": 0.6586 + }, + { + "start": 17069.22, + "end": 17071.46, + "probability": 0.9941 + }, + { + "start": 17071.96, + "end": 17074.38, + "probability": 0.9453 + }, + { + "start": 17075.14, + "end": 17076.48, + "probability": 0.8537 + }, + { + "start": 17077.54, + "end": 17080.14, + "probability": 0.9381 + }, + { + "start": 17080.66, + "end": 17082.2, + "probability": 0.8596 + }, + { + "start": 17082.62, + "end": 17088.48, + "probability": 0.9962 + }, + { + "start": 17089.12, + "end": 17090.56, + "probability": 0.529 + }, + { + "start": 17090.56, + "end": 17092.22, + "probability": 0.9069 + }, + { + "start": 17092.34, + "end": 17093.22, + "probability": 0.9743 + }, + { + "start": 17093.6, + "end": 17094.44, + "probability": 0.8059 + }, + { + "start": 17095.04, + "end": 17097.68, + "probability": 0.8942 + }, + { + "start": 17098.08, + "end": 17101.9, + "probability": 0.9563 + }, + { + "start": 17102.32, + "end": 17102.6, + "probability": 0.238 + }, + { + "start": 17102.6, + "end": 17102.92, + "probability": 0.4924 + }, + { + "start": 17103.48, + "end": 17106.08, + "probability": 0.9893 + }, + { + "start": 17106.16, + "end": 17109.06, + "probability": 0.9921 + }, + { + "start": 17109.5, + "end": 17112.0, + "probability": 0.9902 + }, + { + "start": 17112.6, + "end": 17115.12, + "probability": 0.9803 + }, + { + "start": 17115.44, + "end": 17115.54, + "probability": 0.533 + }, + { + "start": 17115.58, + "end": 17115.76, + "probability": 0.9738 + }, + { + "start": 17115.8, + "end": 17118.22, + "probability": 0.8309 + }, + { + "start": 17118.22, + "end": 17120.46, + "probability": 0.8887 + }, + { + "start": 17120.82, + "end": 17122.24, + "probability": 0.9976 + }, + { + "start": 17122.26, + "end": 17125.68, + "probability": 0.9875 + }, + { + "start": 17125.74, + "end": 17125.86, + "probability": 0.4366 + }, + { + "start": 17125.9, + "end": 17126.4, + "probability": 0.7601 + }, + { + "start": 17126.86, + "end": 17128.65, + "probability": 0.9688 + }, + { + "start": 17129.48, + "end": 17130.94, + "probability": 0.9662 + }, + { + "start": 17131.08, + "end": 17132.44, + "probability": 0.8131 + }, + { + "start": 17132.66, + "end": 17134.74, + "probability": 0.8956 + }, + { + "start": 17135.64, + "end": 17135.86, + "probability": 0.0136 + }, + { + "start": 17138.84, + "end": 17140.54, + "probability": 0.0068 + }, + { + "start": 17141.72, + "end": 17142.46, + "probability": 0.5252 + }, + { + "start": 17143.36, + "end": 17143.68, + "probability": 0.7988 + }, + { + "start": 17144.54, + "end": 17145.24, + "probability": 0.8882 + }, + { + "start": 17146.2, + "end": 17146.56, + "probability": 0.9365 + }, + { + "start": 17147.32, + "end": 17148.26, + "probability": 0.7444 + }, + { + "start": 17149.28, + "end": 17149.92, + "probability": 0.6081 + }, + { + "start": 17150.64, + "end": 17151.42, + "probability": 0.8194 + }, + { + "start": 17152.65, + "end": 17154.64, + "probability": 0.9551 + }, + { + "start": 17155.84, + "end": 17156.52, + "probability": 0.955 + }, + { + "start": 17159.42, + "end": 17159.76, + "probability": 0.3413 + }, + { + "start": 17162.28, + "end": 17163.46, + "probability": 0.433 + }, + { + "start": 17164.8, + "end": 17165.46, + "probability": 0.8832 + }, + { + "start": 17167.3, + "end": 17168.22, + "probability": 0.6675 + }, + { + "start": 17169.62, + "end": 17170.26, + "probability": 0.953 + }, + { + "start": 17171.52, + "end": 17173.26, + "probability": 0.8909 + }, + { + "start": 17174.08, + "end": 17174.88, + "probability": 0.95 + }, + { + "start": 17175.88, + "end": 17176.6, + "probability": 0.9878 + }, + { + "start": 17177.4, + "end": 17178.22, + "probability": 0.9591 + }, + { + "start": 17179.54, + "end": 17180.26, + "probability": 0.9877 + }, + { + "start": 17181.2, + "end": 17182.06, + "probability": 0.9557 + }, + { + "start": 17183.0, + "end": 17183.36, + "probability": 0.9661 + }, + { + "start": 17184.64, + "end": 17185.64, + "probability": 0.7861 + }, + { + "start": 17187.5, + "end": 17187.94, + "probability": 0.9606 + }, + { + "start": 17189.18, + "end": 17190.04, + "probability": 0.6842 + }, + { + "start": 17191.62, + "end": 17193.46, + "probability": 0.6518 + }, + { + "start": 17194.26, + "end": 17195.24, + "probability": 0.759 + }, + { + "start": 17196.34, + "end": 17196.62, + "probability": 0.9289 + }, + { + "start": 17198.12, + "end": 17198.82, + "probability": 0.8272 + }, + { + "start": 17201.1, + "end": 17205.96, + "probability": 0.8304 + }, + { + "start": 17207.0, + "end": 17208.96, + "probability": 0.87 + }, + { + "start": 17209.96, + "end": 17210.36, + "probability": 0.9849 + }, + { + "start": 17212.6, + "end": 17213.4, + "probability": 0.9269 + }, + { + "start": 17214.3, + "end": 17216.35, + "probability": 0.9189 + }, + { + "start": 17217.34, + "end": 17219.58, + "probability": 0.9502 + }, + { + "start": 17220.46, + "end": 17220.84, + "probability": 0.7485 + }, + { + "start": 17222.48, + "end": 17223.36, + "probability": 0.9866 + }, + { + "start": 17225.02, + "end": 17228.04, + "probability": 0.9719 + }, + { + "start": 17228.58, + "end": 17229.66, + "probability": 0.6667 + }, + { + "start": 17231.0, + "end": 17232.9, + "probability": 0.9907 + }, + { + "start": 17233.7, + "end": 17234.54, + "probability": 0.9831 + }, + { + "start": 17235.42, + "end": 17236.12, + "probability": 0.9532 + }, + { + "start": 17237.04, + "end": 17238.78, + "probability": 0.9411 + }, + { + "start": 17239.86, + "end": 17241.18, + "probability": 0.6812 + }, + { + "start": 17242.18, + "end": 17242.94, + "probability": 0.533 + }, + { + "start": 17245.54, + "end": 17246.78, + "probability": 0.8148 + }, + { + "start": 17247.54, + "end": 17251.88, + "probability": 0.8136 + }, + { + "start": 17252.56, + "end": 17255.78, + "probability": 0.7848 + }, + { + "start": 17256.76, + "end": 17257.14, + "probability": 0.9749 + }, + { + "start": 17258.28, + "end": 17259.06, + "probability": 0.9601 + }, + { + "start": 17259.76, + "end": 17260.42, + "probability": 0.9209 + }, + { + "start": 17261.08, + "end": 17261.74, + "probability": 0.9531 + }, + { + "start": 17264.34, + "end": 17265.04, + "probability": 0.8548 + }, + { + "start": 17265.96, + "end": 17266.74, + "probability": 0.803 + }, + { + "start": 17267.64, + "end": 17267.9, + "probability": 0.7487 + }, + { + "start": 17268.7, + "end": 17269.42, + "probability": 0.8152 + }, + { + "start": 17270.18, + "end": 17272.56, + "probability": 0.7075 + }, + { + "start": 17273.2, + "end": 17275.36, + "probability": 0.9727 + }, + { + "start": 17276.2, + "end": 17277.86, + "probability": 0.9787 + }, + { + "start": 17278.88, + "end": 17279.54, + "probability": 0.993 + }, + { + "start": 17280.12, + "end": 17280.96, + "probability": 0.8367 + }, + { + "start": 17281.6, + "end": 17282.24, + "probability": 0.9852 + }, + { + "start": 17282.8, + "end": 17283.46, + "probability": 0.1294 + }, + { + "start": 17284.64, + "end": 17286.38, + "probability": 0.6945 + }, + { + "start": 17287.54, + "end": 17288.32, + "probability": 0.9764 + }, + { + "start": 17288.88, + "end": 17290.04, + "probability": 0.8489 + }, + { + "start": 17291.16, + "end": 17293.3, + "probability": 0.8988 + }, + { + "start": 17293.48, + "end": 17295.48, + "probability": 0.723 + }, + { + "start": 17296.62, + "end": 17297.34, + "probability": 0.9891 + }, + { + "start": 17297.98, + "end": 17298.76, + "probability": 0.3547 + }, + { + "start": 17300.64, + "end": 17302.36, + "probability": 0.9574 + }, + { + "start": 17303.12, + "end": 17304.96, + "probability": 0.6486 + }, + { + "start": 17306.48, + "end": 17307.12, + "probability": 0.7642 + }, + { + "start": 17308.24, + "end": 17308.94, + "probability": 0.7191 + }, + { + "start": 17309.48, + "end": 17310.16, + "probability": 0.9714 + }, + { + "start": 17310.72, + "end": 17311.44, + "probability": 0.8178 + }, + { + "start": 17312.94, + "end": 17313.98, + "probability": 0.549 + }, + { + "start": 17314.64, + "end": 17315.24, + "probability": 0.8371 + }, + { + "start": 17316.86, + "end": 17317.28, + "probability": 0.9657 + }, + { + "start": 17318.44, + "end": 17319.62, + "probability": 0.809 + }, + { + "start": 17320.36, + "end": 17321.12, + "probability": 0.9729 + }, + { + "start": 17321.9, + "end": 17322.98, + "probability": 0.9841 + }, + { + "start": 17324.14, + "end": 17326.6, + "probability": 0.9786 + }, + { + "start": 17327.72, + "end": 17328.12, + "probability": 0.9775 + }, + { + "start": 17328.74, + "end": 17329.44, + "probability": 0.9248 + }, + { + "start": 17333.2, + "end": 17335.46, + "probability": 0.2759 + }, + { + "start": 17337.14, + "end": 17338.18, + "probability": 0.7122 + }, + { + "start": 17338.8, + "end": 17339.34, + "probability": 0.7612 + }, + { + "start": 17340.42, + "end": 17341.18, + "probability": 0.8133 + }, + { + "start": 17341.78, + "end": 17342.38, + "probability": 0.9461 + }, + { + "start": 17343.54, + "end": 17344.28, + "probability": 0.9626 + }, + { + "start": 17344.88, + "end": 17345.46, + "probability": 0.8959 + }, + { + "start": 17346.34, + "end": 17348.08, + "probability": 0.8751 + }, + { + "start": 17349.1, + "end": 17349.84, + "probability": 0.9701 + }, + { + "start": 17350.74, + "end": 17351.94, + "probability": 0.7343 + }, + { + "start": 17352.74, + "end": 17354.76, + "probability": 0.9408 + }, + { + "start": 17355.6, + "end": 17357.68, + "probability": 0.8284 + }, + { + "start": 17358.42, + "end": 17360.04, + "probability": 0.7342 + }, + { + "start": 17360.92, + "end": 17361.9, + "probability": 0.5371 + }, + { + "start": 17362.7, + "end": 17365.64, + "probability": 0.9049 + }, + { + "start": 17366.32, + "end": 17366.74, + "probability": 0.9656 + }, + { + "start": 17367.96, + "end": 17368.74, + "probability": 0.9222 + }, + { + "start": 17369.8, + "end": 17370.76, + "probability": 0.9953 + }, + { + "start": 17371.64, + "end": 17372.28, + "probability": 0.92 + }, + { + "start": 17373.84, + "end": 17374.9, + "probability": 0.925 + }, + { + "start": 17376.16, + "end": 17377.32, + "probability": 0.9053 + }, + { + "start": 17378.68, + "end": 17379.56, + "probability": 0.994 + }, + { + "start": 17380.5, + "end": 17381.4, + "probability": 0.4001 + }, + { + "start": 17382.48, + "end": 17383.3, + "probability": 0.8522 + }, + { + "start": 17383.96, + "end": 17384.66, + "probability": 0.6785 + }, + { + "start": 17385.78, + "end": 17386.38, + "probability": 0.891 + }, + { + "start": 17387.2, + "end": 17388.26, + "probability": 0.7633 + }, + { + "start": 17389.96, + "end": 17391.04, + "probability": 0.5508 + }, + { + "start": 17391.58, + "end": 17392.5, + "probability": 0.7173 + }, + { + "start": 17393.72, + "end": 17396.04, + "probability": 0.9432 + }, + { + "start": 17396.14, + "end": 17397.86, + "probability": 0.9279 + }, + { + "start": 17398.0, + "end": 17398.54, + "probability": 0.6489 + }, + { + "start": 17399.08, + "end": 17399.84, + "probability": 0.7216 + }, + { + "start": 17400.88, + "end": 17401.62, + "probability": 0.9489 + }, + { + "start": 17402.38, + "end": 17403.1, + "probability": 0.8056 + }, + { + "start": 17404.46, + "end": 17405.38, + "probability": 0.508 + }, + { + "start": 17406.8, + "end": 17407.9, + "probability": 0.4906 + }, + { + "start": 17408.8, + "end": 17410.82, + "probability": 0.9674 + }, + { + "start": 17411.92, + "end": 17412.6, + "probability": 0.9192 + }, + { + "start": 17413.14, + "end": 17414.02, + "probability": 0.9321 + }, + { + "start": 17414.86, + "end": 17416.72, + "probability": 0.9878 + }, + { + "start": 17417.8, + "end": 17419.86, + "probability": 0.9653 + }, + { + "start": 17420.76, + "end": 17421.56, + "probability": 0.8985 + }, + { + "start": 17422.34, + "end": 17423.3, + "probability": 0.5107 + }, + { + "start": 17424.68, + "end": 17426.64, + "probability": 0.9284 + }, + { + "start": 17427.94, + "end": 17429.54, + "probability": 0.7913 + }, + { + "start": 17431.22, + "end": 17431.9, + "probability": 0.6054 + }, + { + "start": 17434.36, + "end": 17434.72, + "probability": 0.5889 + }, + { + "start": 17435.4, + "end": 17435.78, + "probability": 0.7716 + }, + { + "start": 17437.32, + "end": 17437.76, + "probability": 0.9372 + }, + { + "start": 17439.26, + "end": 17440.16, + "probability": 0.3993 + }, + { + "start": 17441.04, + "end": 17441.48, + "probability": 0.9419 + }, + { + "start": 17442.3, + "end": 17444.24, + "probability": 0.9651 + }, + { + "start": 17444.86, + "end": 17445.6, + "probability": 0.6835 + }, + { + "start": 17446.66, + "end": 17447.02, + "probability": 0.6473 + }, + { + "start": 17448.72, + "end": 17449.4, + "probability": 0.7961 + }, + { + "start": 17451.52, + "end": 17452.22, + "probability": 0.9325 + }, + { + "start": 17453.58, + "end": 17454.28, + "probability": 0.9007 + }, + { + "start": 17455.52, + "end": 17457.68, + "probability": 0.5384 + }, + { + "start": 17458.24, + "end": 17461.6, + "probability": 0.8534 + }, + { + "start": 17462.72, + "end": 17463.06, + "probability": 0.9453 + }, + { + "start": 17464.02, + "end": 17464.9, + "probability": 0.9399 + }, + { + "start": 17465.8, + "end": 17467.66, + "probability": 0.8315 + }, + { + "start": 17468.92, + "end": 17469.9, + "probability": 0.8198 + }, + { + "start": 17470.44, + "end": 17471.3, + "probability": 0.6456 + }, + { + "start": 17472.34, + "end": 17474.62, + "probability": 0.6938 + }, + { + "start": 17475.94, + "end": 17476.7, + "probability": 0.9094 + }, + { + "start": 17477.5, + "end": 17478.34, + "probability": 0.8291 + }, + { + "start": 17479.06, + "end": 17480.58, + "probability": 0.9028 + }, + { + "start": 17482.26, + "end": 17482.58, + "probability": 0.5171 + }, + { + "start": 17483.32, + "end": 17484.06, + "probability": 0.8723 + }, + { + "start": 17487.08, + "end": 17491.2, + "probability": 0.2694 + }, + { + "start": 17492.42, + "end": 17494.6, + "probability": 0.5615 + }, + { + "start": 17495.22, + "end": 17496.86, + "probability": 0.8682 + }, + { + "start": 17498.12, + "end": 17498.96, + "probability": 0.7445 + }, + { + "start": 17499.56, + "end": 17500.34, + "probability": 0.9323 + }, + { + "start": 17501.52, + "end": 17502.22, + "probability": 0.8597 + }, + { + "start": 17502.8, + "end": 17504.08, + "probability": 0.8533 + }, + { + "start": 17504.78, + "end": 17507.02, + "probability": 0.9194 + }, + { + "start": 17508.06, + "end": 17509.82, + "probability": 0.9485 + }, + { + "start": 17511.0, + "end": 17513.3, + "probability": 0.5414 + }, + { + "start": 17514.16, + "end": 17515.0, + "probability": 0.9406 + }, + { + "start": 17516.28, + "end": 17517.6, + "probability": 0.8331 + }, + { + "start": 17518.5, + "end": 17520.76, + "probability": 0.8613 + }, + { + "start": 17521.1, + "end": 17522.72, + "probability": 0.9245 + }, + { + "start": 17523.28, + "end": 17525.06, + "probability": 0.9631 + }, + { + "start": 17526.04, + "end": 17526.82, + "probability": 0.9848 + }, + { + "start": 17527.84, + "end": 17530.8, + "probability": 0.283 + }, + { + "start": 17531.56, + "end": 17532.54, + "probability": 0.7086 + }, + { + "start": 17533.84, + "end": 17535.38, + "probability": 0.8752 + }, + { + "start": 17536.5, + "end": 17537.3, + "probability": 0.968 + }, + { + "start": 17538.24, + "end": 17539.02, + "probability": 0.8911 + }, + { + "start": 17540.74, + "end": 17541.14, + "probability": 0.6013 + }, + { + "start": 17541.8, + "end": 17542.86, + "probability": 0.8845 + }, + { + "start": 17543.84, + "end": 17544.7, + "probability": 0.863 + }, + { + "start": 17545.42, + "end": 17546.1, + "probability": 0.8409 + }, + { + "start": 17547.22, + "end": 17548.98, + "probability": 0.8075 + }, + { + "start": 17550.18, + "end": 17550.96, + "probability": 0.8285 + }, + { + "start": 17552.1, + "end": 17554.7, + "probability": 0.452 + }, + { + "start": 17554.82, + "end": 17555.66, + "probability": 0.4656 + }, + { + "start": 17555.66, + "end": 17556.32, + "probability": 0.5267 + }, + { + "start": 17557.42, + "end": 17557.7, + "probability": 0.3801 + }, + { + "start": 17560.56, + "end": 17561.84, + "probability": 0.3295 + }, + { + "start": 17563.34, + "end": 17564.96, + "probability": 0.0011 + }, + { + "start": 17565.56, + "end": 17567.2, + "probability": 0.7632 + }, + { + "start": 17568.22, + "end": 17569.44, + "probability": 0.0076 + }, + { + "start": 17571.68, + "end": 17574.42, + "probability": 0.63 + }, + { + "start": 17575.34, + "end": 17575.98, + "probability": 0.8196 + }, + { + "start": 17576.52, + "end": 17577.1, + "probability": 0.7315 + }, + { + "start": 17578.06, + "end": 17578.8, + "probability": 0.9655 + }, + { + "start": 17579.36, + "end": 17580.2, + "probability": 0.6395 + }, + { + "start": 17581.2, + "end": 17583.22, + "probability": 0.9724 + }, + { + "start": 17584.14, + "end": 17587.62, + "probability": 0.9025 + }, + { + "start": 17588.44, + "end": 17589.88, + "probability": 0.5131 + }, + { + "start": 17591.06, + "end": 17591.76, + "probability": 0.994 + }, + { + "start": 17592.52, + "end": 17593.28, + "probability": 0.9146 + }, + { + "start": 17594.34, + "end": 17595.94, + "probability": 0.9651 + }, + { + "start": 17597.26, + "end": 17598.02, + "probability": 0.9955 + }, + { + "start": 17598.84, + "end": 17599.7, + "probability": 0.8029 + }, + { + "start": 17600.24, + "end": 17601.84, + "probability": 0.825 + }, + { + "start": 17602.66, + "end": 17604.72, + "probability": 0.9689 + }, + { + "start": 17605.64, + "end": 17608.44, + "probability": 0.9641 + }, + { + "start": 17609.56, + "end": 17612.34, + "probability": 0.7407 + }, + { + "start": 17613.32, + "end": 17614.96, + "probability": 0.96 + }, + { + "start": 17615.64, + "end": 17617.32, + "probability": 0.938 + }, + { + "start": 17618.16, + "end": 17618.86, + "probability": 0.9836 + }, + { + "start": 17620.96, + "end": 17621.44, + "probability": 0.3242 + }, + { + "start": 17632.56, + "end": 17633.38, + "probability": 0.7643 + }, + { + "start": 17636.8, + "end": 17637.46, + "probability": 0.5816 + }, + { + "start": 17639.1, + "end": 17641.96, + "probability": 0.8081 + }, + { + "start": 17642.52, + "end": 17643.26, + "probability": 0.9791 + }, + { + "start": 17644.26, + "end": 17645.82, + "probability": 0.9264 + }, + { + "start": 17646.96, + "end": 17649.68, + "probability": 0.8465 + }, + { + "start": 17650.32, + "end": 17653.06, + "probability": 0.8601 + }, + { + "start": 17653.74, + "end": 17654.42, + "probability": 0.7863 + }, + { + "start": 17655.7, + "end": 17657.54, + "probability": 0.8773 + }, + { + "start": 17659.44, + "end": 17659.88, + "probability": 0.8171 + }, + { + "start": 17660.66, + "end": 17661.54, + "probability": 0.889 + }, + { + "start": 17662.36, + "end": 17663.84, + "probability": 0.8462 + }, + { + "start": 17665.24, + "end": 17665.66, + "probability": 0.9155 + }, + { + "start": 17666.74, + "end": 17667.82, + "probability": 0.9072 + }, + { + "start": 17668.52, + "end": 17669.3, + "probability": 0.9819 + }, + { + "start": 17669.82, + "end": 17670.88, + "probability": 0.5445 + }, + { + "start": 17671.82, + "end": 17674.16, + "probability": 0.8767 + }, + { + "start": 17674.22, + "end": 17675.96, + "probability": 0.6994 + }, + { + "start": 17676.86, + "end": 17678.02, + "probability": 0.8796 + }, + { + "start": 17679.9, + "end": 17683.16, + "probability": 0.8087 + }, + { + "start": 17686.44, + "end": 17688.48, + "probability": 0.957 + }, + { + "start": 17689.24, + "end": 17690.64, + "probability": 0.9479 + }, + { + "start": 17692.38, + "end": 17693.2, + "probability": 0.9849 + }, + { + "start": 17693.94, + "end": 17695.74, + "probability": 0.9107 + }, + { + "start": 17697.1, + "end": 17697.54, + "probability": 0.938 + }, + { + "start": 17698.76, + "end": 17700.42, + "probability": 0.9064 + }, + { + "start": 17701.54, + "end": 17702.44, + "probability": 0.4978 + }, + { + "start": 17704.14, + "end": 17704.7, + "probability": 0.797 + }, + { + "start": 17706.14, + "end": 17707.56, + "probability": 0.0031 + }, + { + "start": 17714.16, + "end": 17715.54, + "probability": 0.0179 + }, + { + "start": 17718.16, + "end": 17722.6, + "probability": 0.0732 + }, + { + "start": 17723.18, + "end": 17726.09, + "probability": 0.0201 + }, + { + "start": 17726.14, + "end": 17726.54, + "probability": 0.1466 + }, + { + "start": 17727.4, + "end": 17727.68, + "probability": 0.5948 + }, + { + "start": 17729.0, + "end": 17729.7, + "probability": 0.3278 + }, + { + "start": 17731.18, + "end": 17731.82, + "probability": 0.3404 + }, + { + "start": 17731.82, + "end": 17732.56, + "probability": 0.4073 + }, + { + "start": 17734.92, + "end": 17735.64, + "probability": 0.4039 + }, + { + "start": 17738.28, + "end": 17738.28, + "probability": 0.0112 + }, + { + "start": 17738.28, + "end": 17738.28, + "probability": 0.0494 + }, + { + "start": 17738.28, + "end": 17738.28, + "probability": 0.1621 + }, + { + "start": 17738.28, + "end": 17738.44, + "probability": 0.192 + }, + { + "start": 17739.32, + "end": 17740.12, + "probability": 0.8587 + }, + { + "start": 17740.88, + "end": 17743.58, + "probability": 0.679 + }, + { + "start": 17753.15, + "end": 17754.58, + "probability": 0.1332 + }, + { + "start": 17754.58, + "end": 17754.58, + "probability": 0.0291 + }, + { + "start": 17754.58, + "end": 17755.98, + "probability": 0.5417 + }, + { + "start": 17758.4, + "end": 17759.1, + "probability": 0.6747 + }, + { + "start": 17759.72, + "end": 17760.92, + "probability": 0.4003 + }, + { + "start": 17761.62, + "end": 17762.36, + "probability": 0.8397 + }, + { + "start": 17762.96, + "end": 17763.96, + "probability": 0.4217 + }, + { + "start": 17764.04, + "end": 17765.64, + "probability": 0.7661 + }, + { + "start": 17765.68, + "end": 17766.96, + "probability": 0.7157 + }, + { + "start": 17768.3, + "end": 17769.72, + "probability": 0.838 + }, + { + "start": 17770.84, + "end": 17773.78, + "probability": 0.1472 + }, + { + "start": 17774.32, + "end": 17776.52, + "probability": 0.8008 + }, + { + "start": 17777.26, + "end": 17779.42, + "probability": 0.8952 + }, + { + "start": 17779.86, + "end": 17781.76, + "probability": 0.9615 + }, + { + "start": 17782.18, + "end": 17787.06, + "probability": 0.9132 + }, + { + "start": 17787.34, + "end": 17789.8, + "probability": 0.9612 + }, + { + "start": 17791.14, + "end": 17791.82, + "probability": 0.8772 + }, + { + "start": 17792.42, + "end": 17795.3, + "probability": 0.5794 + }, + { + "start": 17796.96, + "end": 17798.14, + "probability": 0.7186 + }, + { + "start": 17799.84, + "end": 17800.56, + "probability": 0.8625 + }, + { + "start": 17803.04, + "end": 17805.02, + "probability": 0.3844 + }, + { + "start": 17805.98, + "end": 17806.94, + "probability": 0.983 + }, + { + "start": 17807.6, + "end": 17809.54, + "probability": 0.1983 + }, + { + "start": 17810.2, + "end": 17811.16, + "probability": 0.9154 + }, + { + "start": 17812.06, + "end": 17812.84, + "probability": 0.2988 + }, + { + "start": 17814.32, + "end": 17819.0, + "probability": 0.6775 + }, + { + "start": 17820.02, + "end": 17822.96, + "probability": 0.7069 + }, + { + "start": 17823.88, + "end": 17825.58, + "probability": 0.9435 + }, + { + "start": 17827.7, + "end": 17831.14, + "probability": 0.9382 + }, + { + "start": 17832.9, + "end": 17839.48, + "probability": 0.8184 + }, + { + "start": 17840.18, + "end": 17841.1, + "probability": 0.9028 + }, + { + "start": 17841.94, + "end": 17843.46, + "probability": 0.7585 + }, + { + "start": 17844.16, + "end": 17846.0, + "probability": 0.9003 + }, + { + "start": 17847.16, + "end": 17849.28, + "probability": 0.4927 + }, + { + "start": 17850.12, + "end": 17850.98, + "probability": 0.9877 + }, + { + "start": 17851.7, + "end": 17853.06, + "probability": 0.6263 + }, + { + "start": 17853.78, + "end": 17856.08, + "probability": 0.9128 + }, + { + "start": 17856.6, + "end": 17857.44, + "probability": 0.9922 + }, + { + "start": 17857.96, + "end": 17859.9, + "probability": 0.6365 + }, + { + "start": 17861.22, + "end": 17866.02, + "probability": 0.811 + }, + { + "start": 17866.94, + "end": 17867.64, + "probability": 0.9815 + }, + { + "start": 17869.66, + "end": 17871.92, + "probability": 0.4473 + }, + { + "start": 17874.28, + "end": 17875.94, + "probability": 0.6861 + }, + { + "start": 17877.04, + "end": 17877.92, + "probability": 0.3584 + }, + { + "start": 17880.42, + "end": 17881.08, + "probability": 0.9637 + }, + { + "start": 17881.68, + "end": 17882.52, + "probability": 0.3513 + }, + { + "start": 17884.38, + "end": 17885.26, + "probability": 0.9931 + }, + { + "start": 17886.24, + "end": 17889.94, + "probability": 0.8501 + }, + { + "start": 17891.16, + "end": 17892.04, + "probability": 0.9889 + }, + { + "start": 17894.98, + "end": 17897.1, + "probability": 0.6288 + }, + { + "start": 17898.58, + "end": 17899.48, + "probability": 0.9784 + }, + { + "start": 17899.48, + "end": 17900.22, + "probability": 0.2094 + }, + { + "start": 17900.6, + "end": 17903.1, + "probability": 0.7076 + }, + { + "start": 17903.68, + "end": 17906.1, + "probability": 0.5556 + }, + { + "start": 17906.26, + "end": 17906.84, + "probability": 0.6595 + }, + { + "start": 17907.52, + "end": 17908.64, + "probability": 0.4855 + }, + { + "start": 17908.64, + "end": 17910.0, + "probability": 0.5945 + }, + { + "start": 17912.82, + "end": 17914.88, + "probability": 0.3396 + }, + { + "start": 17916.42, + "end": 17916.88, + "probability": 0.3071 + }, + { + "start": 17917.82, + "end": 17918.68, + "probability": 0.13 + }, + { + "start": 17919.16, + "end": 17920.4, + "probability": 0.4062 + }, + { + "start": 17920.88, + "end": 17922.94, + "probability": 0.4643 + }, + { + "start": 17923.06, + "end": 17923.76, + "probability": 0.8652 + }, + { + "start": 17924.02, + "end": 17924.99, + "probability": 0.845 + }, + { + "start": 17925.62, + "end": 17925.62, + "probability": 0.2932 + }, + { + "start": 17925.62, + "end": 17925.62, + "probability": 0.3501 + }, + { + "start": 17925.62, + "end": 17926.38, + "probability": 0.5754 + }, + { + "start": 17926.8, + "end": 17927.5, + "probability": 0.8634 + }, + { + "start": 17929.04, + "end": 17932.12, + "probability": 0.5087 + }, + { + "start": 17932.26, + "end": 17933.8, + "probability": 0.9693 + }, + { + "start": 17934.34, + "end": 17937.88, + "probability": 0.0947 + }, + { + "start": 17938.5, + "end": 17939.0, + "probability": 0.1715 + }, + { + "start": 17940.04, + "end": 17941.74, + "probability": 0.0229 + }, + { + "start": 17945.0, + "end": 17945.18, + "probability": 0.0499 + }, + { + "start": 17951.9, + "end": 17954.78, + "probability": 0.0806 + }, + { + "start": 17955.44, + "end": 17958.16, + "probability": 0.0095 + }, + { + "start": 17988.32, + "end": 17988.74, + "probability": 0.0002 + }, + { + "start": 17999.4, + "end": 18004.36, + "probability": 0.7507 + }, + { + "start": 18004.52, + "end": 18006.48, + "probability": 0.9665 + }, + { + "start": 18007.86, + "end": 18011.08, + "probability": 0.6143 + }, + { + "start": 18012.64, + "end": 18014.24, + "probability": 0.8281 + }, + { + "start": 18014.38, + "end": 18015.5, + "probability": 0.8347 + }, + { + "start": 18016.3, + "end": 18017.78, + "probability": 0.8941 + }, + { + "start": 18017.84, + "end": 18019.78, + "probability": 0.6179 + }, + { + "start": 18020.42, + "end": 18021.42, + "probability": 0.9092 + }, + { + "start": 18021.5, + "end": 18023.58, + "probability": 0.6445 + }, + { + "start": 18026.95, + "end": 18031.14, + "probability": 0.7276 + }, + { + "start": 18032.88, + "end": 18035.52, + "probability": 0.7907 + }, + { + "start": 18037.94, + "end": 18039.34, + "probability": 0.8988 + }, + { + "start": 18039.94, + "end": 18041.18, + "probability": 0.9287 + }, + { + "start": 18042.22, + "end": 18042.74, + "probability": 0.8439 + }, + { + "start": 18042.84, + "end": 18044.46, + "probability": 0.9827 + }, + { + "start": 18044.54, + "end": 18048.06, + "probability": 0.9337 + }, + { + "start": 18051.12, + "end": 18054.04, + "probability": 0.7463 + }, + { + "start": 18054.94, + "end": 18064.48, + "probability": 0.9363 + }, + { + "start": 18066.06, + "end": 18070.78, + "probability": 0.926 + }, + { + "start": 18071.8, + "end": 18075.74, + "probability": 0.926 + }, + { + "start": 18076.32, + "end": 18078.91, + "probability": 0.7728 + }, + { + "start": 18080.4, + "end": 18083.3, + "probability": 0.8928 + }, + { + "start": 18083.38, + "end": 18085.38, + "probability": 0.7554 + }, + { + "start": 18085.5, + "end": 18086.66, + "probability": 0.9265 + }, + { + "start": 18087.42, + "end": 18091.48, + "probability": 0.9806 + }, + { + "start": 18092.18, + "end": 18093.02, + "probability": 0.5918 + }, + { + "start": 18094.62, + "end": 18095.5, + "probability": 0.756 + }, + { + "start": 18096.64, + "end": 18098.64, + "probability": 0.9722 + }, + { + "start": 18100.08, + "end": 18101.5, + "probability": 0.9928 + }, + { + "start": 18102.5, + "end": 18103.12, + "probability": 0.8137 + }, + { + "start": 18103.42, + "end": 18106.22, + "probability": 0.8479 + }, + { + "start": 18106.84, + "end": 18108.62, + "probability": 0.9971 + }, + { + "start": 18109.48, + "end": 18112.78, + "probability": 0.9858 + }, + { + "start": 18114.0, + "end": 18115.22, + "probability": 0.979 + }, + { + "start": 18116.75, + "end": 18122.4, + "probability": 0.9004 + }, + { + "start": 18125.96, + "end": 18126.78, + "probability": 0.8293 + }, + { + "start": 18127.6, + "end": 18128.65, + "probability": 0.6045 + }, + { + "start": 18128.82, + "end": 18129.56, + "probability": 0.8831 + }, + { + "start": 18131.02, + "end": 18135.36, + "probability": 0.8924 + }, + { + "start": 18136.92, + "end": 18141.08, + "probability": 0.8875 + }, + { + "start": 18141.62, + "end": 18142.92, + "probability": 0.8162 + }, + { + "start": 18144.1, + "end": 18145.94, + "probability": 0.9796 + }, + { + "start": 18146.48, + "end": 18148.54, + "probability": 0.7688 + }, + { + "start": 18149.76, + "end": 18152.92, + "probability": 0.9692 + }, + { + "start": 18153.42, + "end": 18155.04, + "probability": 0.9551 + }, + { + "start": 18155.62, + "end": 18157.67, + "probability": 0.9622 + }, + { + "start": 18159.66, + "end": 18162.82, + "probability": 0.9683 + }, + { + "start": 18163.34, + "end": 18165.69, + "probability": 0.9966 + }, + { + "start": 18167.28, + "end": 18168.68, + "probability": 0.5407 + }, + { + "start": 18168.74, + "end": 18169.54, + "probability": 0.5833 + }, + { + "start": 18169.84, + "end": 18171.24, + "probability": 0.9684 + }, + { + "start": 18173.44, + "end": 18175.99, + "probability": 0.9919 + }, + { + "start": 18177.18, + "end": 18177.84, + "probability": 0.8159 + }, + { + "start": 18178.54, + "end": 18179.28, + "probability": 0.8419 + }, + { + "start": 18180.02, + "end": 18182.28, + "probability": 0.9048 + }, + { + "start": 18183.14, + "end": 18185.92, + "probability": 0.9385 + }, + { + "start": 18186.0, + "end": 18188.6, + "probability": 0.993 + }, + { + "start": 18189.7, + "end": 18195.78, + "probability": 0.9958 + }, + { + "start": 18195.86, + "end": 18198.8, + "probability": 0.9273 + }, + { + "start": 18200.26, + "end": 18205.96, + "probability": 0.9523 + }, + { + "start": 18207.54, + "end": 18209.34, + "probability": 0.8837 + }, + { + "start": 18210.6, + "end": 18212.84, + "probability": 0.9849 + }, + { + "start": 18212.92, + "end": 18216.72, + "probability": 0.7964 + }, + { + "start": 18217.06, + "end": 18218.8, + "probability": 0.8485 + }, + { + "start": 18218.86, + "end": 18220.58, + "probability": 0.9305 + }, + { + "start": 18220.66, + "end": 18223.22, + "probability": 0.8877 + }, + { + "start": 18223.88, + "end": 18225.7, + "probability": 0.9945 + }, + { + "start": 18227.52, + "end": 18228.72, + "probability": 0.9893 + }, + { + "start": 18228.98, + "end": 18231.14, + "probability": 0.9294 + }, + { + "start": 18231.78, + "end": 18234.82, + "probability": 0.9294 + }, + { + "start": 18236.32, + "end": 18237.45, + "probability": 0.8588 + }, + { + "start": 18238.5, + "end": 18239.62, + "probability": 0.9912 + }, + { + "start": 18239.76, + "end": 18239.9, + "probability": 0.9087 + }, + { + "start": 18240.0, + "end": 18244.68, + "probability": 0.9607 + }, + { + "start": 18244.72, + "end": 18246.02, + "probability": 0.9653 + }, + { + "start": 18246.7, + "end": 18248.22, + "probability": 0.946 + }, + { + "start": 18248.32, + "end": 18249.66, + "probability": 0.9424 + }, + { + "start": 18251.26, + "end": 18253.72, + "probability": 0.9628 + }, + { + "start": 18254.54, + "end": 18255.64, + "probability": 0.939 + }, + { + "start": 18255.7, + "end": 18257.46, + "probability": 0.9867 + }, + { + "start": 18258.18, + "end": 18260.96, + "probability": 0.9965 + }, + { + "start": 18260.96, + "end": 18265.24, + "probability": 0.992 + }, + { + "start": 18265.98, + "end": 18271.88, + "probability": 0.9949 + }, + { + "start": 18273.1, + "end": 18274.16, + "probability": 0.832 + }, + { + "start": 18275.26, + "end": 18277.72, + "probability": 0.9747 + }, + { + "start": 18278.38, + "end": 18279.16, + "probability": 0.7748 + }, + { + "start": 18280.06, + "end": 18283.02, + "probability": 0.9927 + }, + { + "start": 18284.0, + "end": 18284.96, + "probability": 0.9985 + }, + { + "start": 18285.9, + "end": 18288.04, + "probability": 0.3307 + }, + { + "start": 18288.68, + "end": 18291.28, + "probability": 0.9558 + }, + { + "start": 18291.4, + "end": 18292.74, + "probability": 0.8243 + }, + { + "start": 18294.38, + "end": 18296.3, + "probability": 0.9973 + }, + { + "start": 18297.3, + "end": 18300.28, + "probability": 0.9578 + }, + { + "start": 18302.74, + "end": 18306.88, + "probability": 0.9771 + }, + { + "start": 18307.52, + "end": 18310.5, + "probability": 0.9844 + }, + { + "start": 18311.08, + "end": 18312.83, + "probability": 0.1696 + }, + { + "start": 18313.78, + "end": 18314.24, + "probability": 0.8524 + }, + { + "start": 18314.4, + "end": 18315.48, + "probability": 0.7211 + }, + { + "start": 18315.48, + "end": 18317.34, + "probability": 0.5921 + }, + { + "start": 18317.4, + "end": 18318.38, + "probability": 0.0701 + }, + { + "start": 18318.38, + "end": 18319.56, + "probability": 0.0686 + }, + { + "start": 18320.06, + "end": 18320.68, + "probability": 0.3437 + }, + { + "start": 18321.0, + "end": 18322.73, + "probability": 0.0655 + }, + { + "start": 18324.4, + "end": 18326.42, + "probability": 0.1255 + }, + { + "start": 18326.44, + "end": 18326.82, + "probability": 0.1366 + }, + { + "start": 18327.38, + "end": 18327.58, + "probability": 0.0349 + }, + { + "start": 18327.58, + "end": 18327.73, + "probability": 0.1728 + }, + { + "start": 18329.2, + "end": 18332.51, + "probability": 0.3519 + }, + { + "start": 18333.1, + "end": 18334.18, + "probability": 0.0714 + }, + { + "start": 18334.34, + "end": 18334.34, + "probability": 0.1245 + }, + { + "start": 18334.34, + "end": 18337.8, + "probability": 0.6935 + }, + { + "start": 18338.2, + "end": 18339.46, + "probability": 0.3368 + }, + { + "start": 18340.04, + "end": 18340.72, + "probability": 0.1716 + }, + { + "start": 18340.72, + "end": 18342.01, + "probability": 0.6807 + }, + { + "start": 18342.42, + "end": 18343.52, + "probability": 0.9514 + }, + { + "start": 18343.96, + "end": 18344.0, + "probability": 0.0393 + }, + { + "start": 18344.0, + "end": 18344.0, + "probability": 0.2517 + }, + { + "start": 18344.0, + "end": 18345.74, + "probability": 0.5802 + }, + { + "start": 18346.08, + "end": 18347.12, + "probability": 0.234 + }, + { + "start": 18348.08, + "end": 18348.94, + "probability": 0.183 + }, + { + "start": 18349.5, + "end": 18353.64, + "probability": 0.3646 + }, + { + "start": 18353.66, + "end": 18356.08, + "probability": 0.2554 + }, + { + "start": 18356.48, + "end": 18360.72, + "probability": 0.4113 + }, + { + "start": 18361.6, + "end": 18361.6, + "probability": 0.0216 + }, + { + "start": 18361.6, + "end": 18361.6, + "probability": 0.3461 + }, + { + "start": 18361.6, + "end": 18361.6, + "probability": 0.1173 + }, + { + "start": 18361.6, + "end": 18361.6, + "probability": 0.5687 + }, + { + "start": 18361.6, + "end": 18362.3, + "probability": 0.4626 + }, + { + "start": 18362.62, + "end": 18363.32, + "probability": 0.5405 + }, + { + "start": 18363.32, + "end": 18364.8, + "probability": 0.4578 + }, + { + "start": 18365.04, + "end": 18365.54, + "probability": 0.4083 + }, + { + "start": 18367.68, + "end": 18369.98, + "probability": 0.9917 + }, + { + "start": 18370.94, + "end": 18374.52, + "probability": 0.9961 + }, + { + "start": 18376.54, + "end": 18379.68, + "probability": 0.9688 + }, + { + "start": 18379.72, + "end": 18381.24, + "probability": 0.9744 + }, + { + "start": 18381.78, + "end": 18382.66, + "probability": 0.8619 + }, + { + "start": 18383.34, + "end": 18386.86, + "probability": 0.9924 + }, + { + "start": 18387.0, + "end": 18388.22, + "probability": 0.9928 + }, + { + "start": 18389.18, + "end": 18392.3, + "probability": 0.9803 + }, + { + "start": 18392.96, + "end": 18393.68, + "probability": 0.982 + }, + { + "start": 18394.48, + "end": 18397.78, + "probability": 0.9629 + }, + { + "start": 18398.36, + "end": 18400.04, + "probability": 0.7705 + }, + { + "start": 18400.82, + "end": 18405.34, + "probability": 0.907 + }, + { + "start": 18406.5, + "end": 18408.08, + "probability": 0.8281 + }, + { + "start": 18408.6, + "end": 18412.08, + "probability": 0.9805 + }, + { + "start": 18412.22, + "end": 18416.7, + "probability": 0.999 + }, + { + "start": 18417.82, + "end": 18420.44, + "probability": 0.9882 + }, + { + "start": 18421.22, + "end": 18422.86, + "probability": 0.9929 + }, + { + "start": 18423.76, + "end": 18425.62, + "probability": 0.9368 + }, + { + "start": 18426.16, + "end": 18430.8, + "probability": 0.979 + }, + { + "start": 18431.23, + "end": 18431.3, + "probability": 0.0206 + }, + { + "start": 18431.3, + "end": 18435.64, + "probability": 0.725 + }, + { + "start": 18437.16, + "end": 18438.78, + "probability": 0.6475 + }, + { + "start": 18438.86, + "end": 18439.2, + "probability": 0.5518 + }, + { + "start": 18439.78, + "end": 18443.0, + "probability": 0.9757 + }, + { + "start": 18443.36, + "end": 18443.36, + "probability": 0.0101 + }, + { + "start": 18443.54, + "end": 18443.64, + "probability": 0.0976 + }, + { + "start": 18443.64, + "end": 18443.64, + "probability": 0.2122 + }, + { + "start": 18443.74, + "end": 18451.08, + "probability": 0.9734 + }, + { + "start": 18451.3, + "end": 18453.14, + "probability": 0.9842 + }, + { + "start": 18453.22, + "end": 18454.0, + "probability": 0.993 + }, + { + "start": 18454.8, + "end": 18456.92, + "probability": 0.9897 + }, + { + "start": 18457.4, + "end": 18458.8, + "probability": 0.9958 + }, + { + "start": 18459.6, + "end": 18461.1, + "probability": 0.9359 + }, + { + "start": 18461.22, + "end": 18461.3, + "probability": 0.5229 + }, + { + "start": 18461.34, + "end": 18463.18, + "probability": 0.9873 + }, + { + "start": 18463.58, + "end": 18464.56, + "probability": 0.9695 + }, + { + "start": 18465.72, + "end": 18467.98, + "probability": 0.9514 + }, + { + "start": 18468.34, + "end": 18469.78, + "probability": 0.9639 + }, + { + "start": 18470.7, + "end": 18473.86, + "probability": 0.9739 + }, + { + "start": 18474.84, + "end": 18477.04, + "probability": 0.9907 + }, + { + "start": 18477.56, + "end": 18482.0, + "probability": 0.9916 + }, + { + "start": 18482.76, + "end": 18483.38, + "probability": 0.7664 + }, + { + "start": 18483.48, + "end": 18488.34, + "probability": 0.9917 + }, + { + "start": 18488.56, + "end": 18491.76, + "probability": 0.9667 + }, + { + "start": 18492.86, + "end": 18493.78, + "probability": 0.811 + }, + { + "start": 18494.38, + "end": 18498.58, + "probability": 0.9873 + }, + { + "start": 18498.74, + "end": 18499.08, + "probability": 0.5455 + }, + { + "start": 18499.14, + "end": 18501.36, + "probability": 0.9938 + }, + { + "start": 18501.38, + "end": 18502.5, + "probability": 0.9917 + }, + { + "start": 18503.16, + "end": 18505.06, + "probability": 0.825 + }, + { + "start": 18505.74, + "end": 18508.26, + "probability": 0.9756 + }, + { + "start": 18509.48, + "end": 18511.68, + "probability": 0.9407 + }, + { + "start": 18513.5, + "end": 18513.8, + "probability": 0.9523 + }, + { + "start": 18514.22, + "end": 18515.46, + "probability": 0.9894 + }, + { + "start": 18515.74, + "end": 18517.04, + "probability": 0.99 + }, + { + "start": 18517.42, + "end": 18517.98, + "probability": 0.8813 + }, + { + "start": 18518.64, + "end": 18519.64, + "probability": 0.7802 + }, + { + "start": 18520.42, + "end": 18524.48, + "probability": 0.9857 + }, + { + "start": 18525.58, + "end": 18526.92, + "probability": 0.8641 + }, + { + "start": 18528.04, + "end": 18529.0, + "probability": 0.9992 + }, + { + "start": 18529.96, + "end": 18533.8, + "probability": 0.9946 + }, + { + "start": 18534.14, + "end": 18537.58, + "probability": 0.7459 + }, + { + "start": 18537.74, + "end": 18539.0, + "probability": 0.8053 + }, + { + "start": 18539.08, + "end": 18542.08, + "probability": 0.9455 + }, + { + "start": 18542.84, + "end": 18544.64, + "probability": 0.8819 + }, + { + "start": 18545.38, + "end": 18546.64, + "probability": 0.9709 + }, + { + "start": 18546.68, + "end": 18548.82, + "probability": 0.9941 + }, + { + "start": 18549.86, + "end": 18552.52, + "probability": 0.999 + }, + { + "start": 18553.14, + "end": 18555.98, + "probability": 0.976 + }, + { + "start": 18556.54, + "end": 18558.85, + "probability": 0.9976 + }, + { + "start": 18559.36, + "end": 18563.56, + "probability": 0.9839 + }, + { + "start": 18564.06, + "end": 18566.56, + "probability": 0.9712 + }, + { + "start": 18566.9, + "end": 18567.18, + "probability": 0.7534 + }, + { + "start": 18568.84, + "end": 18570.42, + "probability": 0.6808 + }, + { + "start": 18571.14, + "end": 18573.4, + "probability": 0.7515 + }, + { + "start": 18573.5, + "end": 18573.64, + "probability": 0.9026 + }, + { + "start": 18575.8, + "end": 18576.3, + "probability": 0.7719 + }, + { + "start": 18576.3, + "end": 18576.3, + "probability": 0.2873 + }, + { + "start": 18576.3, + "end": 18576.88, + "probability": 0.0393 + }, + { + "start": 18608.68, + "end": 18609.56, + "probability": 0.1561 + }, + { + "start": 18610.76, + "end": 18611.86, + "probability": 0.5787 + }, + { + "start": 18613.4, + "end": 18615.96, + "probability": 0.6723 + }, + { + "start": 18616.04, + "end": 18619.74, + "probability": 0.8799 + }, + { + "start": 18619.88, + "end": 18621.22, + "probability": 0.7585 + }, + { + "start": 18622.18, + "end": 18623.5, + "probability": 0.0173 + }, + { + "start": 18624.44, + "end": 18624.64, + "probability": 0.074 + }, + { + "start": 18624.64, + "end": 18624.64, + "probability": 0.0359 + }, + { + "start": 18624.64, + "end": 18626.42, + "probability": 0.9043 + }, + { + "start": 18626.88, + "end": 18629.72, + "probability": 0.7479 + }, + { + "start": 18630.64, + "end": 18632.48, + "probability": 0.3119 + }, + { + "start": 18632.54, + "end": 18634.84, + "probability": 0.8717 + }, + { + "start": 18634.98, + "end": 18641.3, + "probability": 0.8318 + }, + { + "start": 18641.88, + "end": 18645.88, + "probability": 0.8956 + }, + { + "start": 18646.2, + "end": 18650.84, + "probability": 0.947 + }, + { + "start": 18651.06, + "end": 18652.04, + "probability": 0.8813 + }, + { + "start": 18652.86, + "end": 18653.58, + "probability": 0.9786 + }, + { + "start": 18655.62, + "end": 18660.98, + "probability": 0.8535 + }, + { + "start": 18661.66, + "end": 18662.94, + "probability": 0.9904 + }, + { + "start": 18663.58, + "end": 18664.74, + "probability": 0.995 + }, + { + "start": 18665.14, + "end": 18668.8, + "probability": 0.8715 + }, + { + "start": 18669.32, + "end": 18676.66, + "probability": 0.9692 + }, + { + "start": 18676.98, + "end": 18682.92, + "probability": 0.9967 + }, + { + "start": 18683.38, + "end": 18685.96, + "probability": 0.7515 + }, + { + "start": 18686.16, + "end": 18692.82, + "probability": 0.9681 + }, + { + "start": 18695.78, + "end": 18696.22, + "probability": 0.6305 + }, + { + "start": 18696.76, + "end": 18701.16, + "probability": 0.9957 + }, + { + "start": 18701.16, + "end": 18706.38, + "probability": 0.8768 + }, + { + "start": 18707.5, + "end": 18709.94, + "probability": 0.9868 + }, + { + "start": 18710.46, + "end": 18712.68, + "probability": 0.3204 + }, + { + "start": 18713.94, + "end": 18715.64, + "probability": 0.9992 + }, + { + "start": 18716.18, + "end": 18718.98, + "probability": 0.745 + }, + { + "start": 18720.32, + "end": 18724.0, + "probability": 0.9915 + }, + { + "start": 18724.58, + "end": 18725.0, + "probability": 0.5235 + }, + { + "start": 18725.22, + "end": 18730.8, + "probability": 0.8294 + }, + { + "start": 18731.9, + "end": 18733.28, + "probability": 0.4239 + }, + { + "start": 18733.88, + "end": 18735.2, + "probability": 0.9561 + }, + { + "start": 18735.96, + "end": 18742.02, + "probability": 0.9535 + }, + { + "start": 18742.52, + "end": 18743.0, + "probability": 0.8734 + }, + { + "start": 18743.84, + "end": 18744.5, + "probability": 0.7561 + }, + { + "start": 18745.56, + "end": 18746.78, + "probability": 0.7347 + }, + { + "start": 18747.34, + "end": 18748.38, + "probability": 0.5206 + }, + { + "start": 18749.06, + "end": 18751.34, + "probability": 0.9609 + }, + { + "start": 18752.1, + "end": 18752.98, + "probability": 0.6645 + }, + { + "start": 18754.2, + "end": 18758.2, + "probability": 0.8697 + }, + { + "start": 18761.28, + "end": 18763.48, + "probability": 0.8352 + }, + { + "start": 18766.08, + "end": 18767.98, + "probability": 0.4646 + }, + { + "start": 18769.46, + "end": 18769.64, + "probability": 0.8594 + }, + { + "start": 18770.28, + "end": 18771.63, + "probability": 0.853 + }, + { + "start": 18771.88, + "end": 18772.82, + "probability": 0.8222 + }, + { + "start": 18773.6, + "end": 18774.6, + "probability": 0.717 + }, + { + "start": 18775.4, + "end": 18776.28, + "probability": 0.8461 + }, + { + "start": 18777.4, + "end": 18780.7, + "probability": 0.9654 + }, + { + "start": 18781.12, + "end": 18783.52, + "probability": 0.3025 + }, + { + "start": 18794.86, + "end": 18795.58, + "probability": 0.4696 + }, + { + "start": 18797.2, + "end": 18797.66, + "probability": 0.8386 + }, + { + "start": 18798.76, + "end": 18799.66, + "probability": 0.7717 + }, + { + "start": 18800.86, + "end": 18801.34, + "probability": 0.9814 + }, + { + "start": 18802.92, + "end": 18803.88, + "probability": 0.7342 + }, + { + "start": 18804.62, + "end": 18806.56, + "probability": 0.8618 + }, + { + "start": 18807.24, + "end": 18807.72, + "probability": 0.9778 + }, + { + "start": 18809.0, + "end": 18809.62, + "probability": 0.9385 + }, + { + "start": 18813.56, + "end": 18814.34, + "probability": 0.647 + }, + { + "start": 18815.88, + "end": 18816.74, + "probability": 0.7132 + }, + { + "start": 18817.32, + "end": 18819.34, + "probability": 0.8578 + }, + { + "start": 18820.14, + "end": 18823.22, + "probability": 0.827 + }, + { + "start": 18823.98, + "end": 18824.74, + "probability": 0.9709 + }, + { + "start": 18825.62, + "end": 18827.36, + "probability": 0.9645 + }, + { + "start": 18828.08, + "end": 18829.94, + "probability": 0.9606 + }, + { + "start": 18831.74, + "end": 18832.62, + "probability": 0.9545 + }, + { + "start": 18836.0, + "end": 18837.02, + "probability": 0.5737 + }, + { + "start": 18837.74, + "end": 18838.34, + "probability": 0.7974 + }, + { + "start": 18840.14, + "end": 18841.06, + "probability": 0.8776 + }, + { + "start": 18842.12, + "end": 18843.66, + "probability": 0.8479 + }, + { + "start": 18844.56, + "end": 18845.2, + "probability": 0.9904 + }, + { + "start": 18846.46, + "end": 18847.24, + "probability": 0.9434 + }, + { + "start": 18848.2, + "end": 18848.94, + "probability": 0.8839 + }, + { + "start": 18849.88, + "end": 18850.8, + "probability": 0.8709 + }, + { + "start": 18851.6, + "end": 18853.36, + "probability": 0.8678 + }, + { + "start": 18853.92, + "end": 18855.62, + "probability": 0.8844 + }, + { + "start": 18856.72, + "end": 18857.42, + "probability": 0.689 + }, + { + "start": 18858.68, + "end": 18859.58, + "probability": 0.7361 + }, + { + "start": 18860.04, + "end": 18861.86, + "probability": 0.9299 + }, + { + "start": 18862.06, + "end": 18864.4, + "probability": 0.7494 + }, + { + "start": 18865.12, + "end": 18867.42, + "probability": 0.8583 + }, + { + "start": 18868.52, + "end": 18875.0, + "probability": 0.7635 + }, + { + "start": 18875.54, + "end": 18876.62, + "probability": 0.973 + }, + { + "start": 18877.16, + "end": 18877.98, + "probability": 0.983 + }, + { + "start": 18878.81, + "end": 18882.22, + "probability": 0.3566 + }, + { + "start": 18882.22, + "end": 18882.57, + "probability": 0.5631 + }, + { + "start": 18883.82, + "end": 18887.52, + "probability": 0.7951 + }, + { + "start": 18888.14, + "end": 18889.12, + "probability": 0.9583 + }, + { + "start": 18890.44, + "end": 18891.26, + "probability": 0.8038 + }, + { + "start": 18892.02, + "end": 18892.64, + "probability": 0.9637 + }, + { + "start": 18893.54, + "end": 18894.32, + "probability": 0.8904 + }, + { + "start": 18894.9, + "end": 18896.88, + "probability": 0.9156 + }, + { + "start": 18897.42, + "end": 18899.14, + "probability": 0.8425 + }, + { + "start": 18899.88, + "end": 18900.46, + "probability": 0.9857 + }, + { + "start": 18901.66, + "end": 18905.36, + "probability": 0.8362 + }, + { + "start": 18906.0, + "end": 18908.0, + "probability": 0.9129 + }, + { + "start": 18909.42, + "end": 18911.82, + "probability": 0.9752 + }, + { + "start": 18912.64, + "end": 18914.86, + "probability": 0.9558 + }, + { + "start": 18915.38, + "end": 18916.38, + "probability": 0.9886 + }, + { + "start": 18917.42, + "end": 18920.98, + "probability": 0.9526 + }, + { + "start": 18921.54, + "end": 18922.22, + "probability": 0.7117 + }, + { + "start": 18923.8, + "end": 18924.68, + "probability": 0.8191 + }, + { + "start": 18925.48, + "end": 18927.98, + "probability": 0.5563 + }, + { + "start": 18932.06, + "end": 18933.0, + "probability": 0.876 + }, + { + "start": 18933.66, + "end": 18934.74, + "probability": 0.9175 + }, + { + "start": 18936.06, + "end": 18938.44, + "probability": 0.8914 + }, + { + "start": 18939.0, + "end": 18939.96, + "probability": 0.9351 + }, + { + "start": 18940.54, + "end": 18942.92, + "probability": 0.9607 + }, + { + "start": 18943.52, + "end": 18944.7, + "probability": 0.6453 + }, + { + "start": 18945.8, + "end": 18947.52, + "probability": 0.4809 + }, + { + "start": 18948.52, + "end": 18949.06, + "probability": 0.9611 + }, + { + "start": 18950.82, + "end": 18951.86, + "probability": 0.6158 + }, + { + "start": 18952.44, + "end": 18957.22, + "probability": 0.9443 + }, + { + "start": 18958.62, + "end": 18960.08, + "probability": 0.9686 + }, + { + "start": 18960.92, + "end": 18961.58, + "probability": 0.991 + }, + { + "start": 18962.82, + "end": 18963.97, + "probability": 0.7829 + }, + { + "start": 18964.9, + "end": 18969.1, + "probability": 0.8589 + }, + { + "start": 18971.06, + "end": 18973.2, + "probability": 0.9531 + }, + { + "start": 18974.66, + "end": 18974.88, + "probability": 0.9204 + }, + { + "start": 18975.64, + "end": 18979.24, + "probability": 0.9797 + }, + { + "start": 18980.42, + "end": 18981.1, + "probability": 0.9818 + }, + { + "start": 18982.42, + "end": 18984.26, + "probability": 0.8683 + }, + { + "start": 18985.22, + "end": 18985.78, + "probability": 0.9842 + }, + { + "start": 18986.44, + "end": 18987.4, + "probability": 0.9938 + }, + { + "start": 18987.92, + "end": 18990.4, + "probability": 0.9354 + }, + { + "start": 18991.5, + "end": 18992.38, + "probability": 0.7731 + }, + { + "start": 18993.66, + "end": 18997.02, + "probability": 0.7724 + }, + { + "start": 18998.22, + "end": 18998.86, + "probability": 0.9504 + }, + { + "start": 19000.0, + "end": 19003.5, + "probability": 0.9399 + }, + { + "start": 19004.62, + "end": 19005.22, + "probability": 0.8872 + }, + { + "start": 19006.38, + "end": 19009.9, + "probability": 0.9816 + }, + { + "start": 19010.46, + "end": 19011.02, + "probability": 0.9373 + }, + { + "start": 19012.26, + "end": 19013.12, + "probability": 0.9623 + }, + { + "start": 19014.84, + "end": 19016.82, + "probability": 0.6018 + }, + { + "start": 19018.34, + "end": 19020.5, + "probability": 0.8737 + }, + { + "start": 19021.58, + "end": 19024.08, + "probability": 0.9127 + }, + { + "start": 19024.2, + "end": 19026.32, + "probability": 0.7878 + }, + { + "start": 19027.14, + "end": 19029.0, + "probability": 0.8269 + }, + { + "start": 19029.74, + "end": 19030.44, + "probability": 0.9938 + }, + { + "start": 19031.5, + "end": 19034.79, + "probability": 0.8647 + }, + { + "start": 19036.1, + "end": 19036.1, + "probability": 0.0458 + }, + { + "start": 19036.1, + "end": 19036.59, + "probability": 0.5581 + }, + { + "start": 19036.88, + "end": 19038.86, + "probability": 0.7734 + }, + { + "start": 19039.5, + "end": 19040.46, + "probability": 0.9598 + }, + { + "start": 19041.22, + "end": 19041.9, + "probability": 0.6844 + }, + { + "start": 19043.22, + "end": 19043.7, + "probability": 0.8987 + }, + { + "start": 19045.18, + "end": 19046.38, + "probability": 0.4704 + }, + { + "start": 19047.02, + "end": 19051.72, + "probability": 0.9377 + }, + { + "start": 19053.06, + "end": 19057.0, + "probability": 0.9376 + }, + { + "start": 19057.56, + "end": 19060.22, + "probability": 0.8442 + }, + { + "start": 19060.92, + "end": 19062.78, + "probability": 0.9467 + }, + { + "start": 19063.3, + "end": 19065.08, + "probability": 0.9722 + }, + { + "start": 19067.18, + "end": 19070.86, + "probability": 0.6136 + }, + { + "start": 19073.16, + "end": 19078.0, + "probability": 0.2567 + }, + { + "start": 19078.6, + "end": 19079.22, + "probability": 0.7753 + }, + { + "start": 19080.0, + "end": 19083.22, + "probability": 0.6519 + }, + { + "start": 19084.7, + "end": 19087.14, + "probability": 0.9697 + }, + { + "start": 19088.14, + "end": 19088.76, + "probability": 0.9805 + }, + { + "start": 19090.24, + "end": 19090.94, + "probability": 0.8724 + }, + { + "start": 19091.94, + "end": 19095.18, + "probability": 0.979 + }, + { + "start": 19097.04, + "end": 19097.78, + "probability": 0.9503 + }, + { + "start": 19099.42, + "end": 19103.78, + "probability": 0.6764 + }, + { + "start": 19105.76, + "end": 19108.14, + "probability": 0.8987 + }, + { + "start": 19111.2, + "end": 19111.82, + "probability": 0.8499 + }, + { + "start": 19113.26, + "end": 19114.18, + "probability": 0.9038 + }, + { + "start": 19114.78, + "end": 19115.68, + "probability": 0.9926 + }, + { + "start": 19116.8, + "end": 19120.14, + "probability": 0.9652 + }, + { + "start": 19121.38, + "end": 19121.88, + "probability": 0.9204 + }, + { + "start": 19122.7, + "end": 19123.4, + "probability": 0.871 + }, + { + "start": 19124.86, + "end": 19127.0, + "probability": 0.9655 + }, + { + "start": 19127.82, + "end": 19131.94, + "probability": 0.7146 + }, + { + "start": 19133.1, + "end": 19135.34, + "probability": 0.8814 + }, + { + "start": 19136.82, + "end": 19138.54, + "probability": 0.871 + }, + { + "start": 19138.8, + "end": 19140.84, + "probability": 0.9781 + }, + { + "start": 19141.6, + "end": 19143.08, + "probability": 0.9684 + }, + { + "start": 19144.46, + "end": 19146.44, + "probability": 0.9551 + }, + { + "start": 19146.68, + "end": 19148.5, + "probability": 0.5961 + }, + { + "start": 19150.06, + "end": 19150.72, + "probability": 0.8888 + }, + { + "start": 19152.16, + "end": 19153.42, + "probability": 0.9035 + }, + { + "start": 19153.68, + "end": 19156.02, + "probability": 0.9433 + }, + { + "start": 19156.5, + "end": 19158.0, + "probability": 0.9005 + }, + { + "start": 19159.38, + "end": 19161.26, + "probability": 0.8011 + }, + { + "start": 19161.94, + "end": 19163.24, + "probability": 0.9528 + }, + { + "start": 19165.4, + "end": 19166.04, + "probability": 0.4152 + }, + { + "start": 19166.6, + "end": 19168.2, + "probability": 0.2462 + }, + { + "start": 19169.1, + "end": 19169.94, + "probability": 0.3469 + }, + { + "start": 19170.24, + "end": 19172.54, + "probability": 0.8135 + }, + { + "start": 19172.6, + "end": 19174.82, + "probability": 0.8636 + }, + { + "start": 19175.04, + "end": 19176.5, + "probability": 0.7823 + }, + { + "start": 19177.72, + "end": 19179.32, + "probability": 0.895 + }, + { + "start": 19181.0, + "end": 19183.12, + "probability": 0.8192 + }, + { + "start": 19184.68, + "end": 19185.18, + "probability": 0.6773 + }, + { + "start": 19187.46, + "end": 19188.78, + "probability": 0.3375 + }, + { + "start": 19188.78, + "end": 19189.16, + "probability": 0.3556 + }, + { + "start": 19190.26, + "end": 19192.88, + "probability": 0.6901 + }, + { + "start": 19194.0, + "end": 19196.04, + "probability": 0.8767 + }, + { + "start": 19196.82, + "end": 19197.92, + "probability": 0.543 + }, + { + "start": 19199.3, + "end": 19200.34, + "probability": 0.7386 + }, + { + "start": 19201.38, + "end": 19203.12, + "probability": 0.6543 + }, + { + "start": 19203.28, + "end": 19204.82, + "probability": 0.852 + }, + { + "start": 19204.96, + "end": 19205.64, + "probability": 0.9149 + }, + { + "start": 19206.56, + "end": 19206.96, + "probability": 0.5064 + }, + { + "start": 19207.08, + "end": 19208.6, + "probability": 0.8473 + }, + { + "start": 19208.92, + "end": 19211.24, + "probability": 0.9455 + }, + { + "start": 19211.46, + "end": 19212.34, + "probability": 0.9731 + }, + { + "start": 19213.24, + "end": 19213.88, + "probability": 0.9692 + }, + { + "start": 19213.92, + "end": 19215.6, + "probability": 0.8374 + }, + { + "start": 19215.8, + "end": 19217.42, + "probability": 0.9313 + }, + { + "start": 19218.0, + "end": 19219.56, + "probability": 0.9686 + }, + { + "start": 19219.66, + "end": 19221.4, + "probability": 0.8948 + }, + { + "start": 19221.5, + "end": 19222.92, + "probability": 0.8718 + }, + { + "start": 19223.0, + "end": 19224.72, + "probability": 0.7171 + }, + { + "start": 19225.5, + "end": 19227.54, + "probability": 0.9794 + }, + { + "start": 19228.24, + "end": 19232.48, + "probability": 0.9692 + }, + { + "start": 19233.0, + "end": 19233.9, + "probability": 0.8376 + }, + { + "start": 19235.66, + "end": 19236.54, + "probability": 0.9761 + }, + { + "start": 19238.76, + "end": 19242.28, + "probability": 0.9352 + }, + { + "start": 19242.92, + "end": 19247.22, + "probability": 0.951 + }, + { + "start": 19248.14, + "end": 19249.28, + "probability": 0.9685 + }, + { + "start": 19249.84, + "end": 19252.88, + "probability": 0.9163 + }, + { + "start": 19253.5, + "end": 19255.5, + "probability": 0.9546 + }, + { + "start": 19256.32, + "end": 19258.72, + "probability": 0.8145 + }, + { + "start": 19259.48, + "end": 19261.16, + "probability": 0.6195 + }, + { + "start": 19263.52, + "end": 19267.26, + "probability": 0.5785 + }, + { + "start": 19267.8, + "end": 19269.9, + "probability": 0.7791 + }, + { + "start": 19270.78, + "end": 19272.7, + "probability": 0.9121 + }, + { + "start": 19272.86, + "end": 19274.82, + "probability": 0.5575 + }, + { + "start": 19275.66, + "end": 19276.8, + "probability": 0.7232 + }, + { + "start": 19277.36, + "end": 19282.5, + "probability": 0.8655 + }, + { + "start": 19283.42, + "end": 19286.94, + "probability": 0.9813 + }, + { + "start": 19287.56, + "end": 19289.34, + "probability": 0.9773 + }, + { + "start": 19290.3, + "end": 19292.06, + "probability": 0.7015 + }, + { + "start": 19293.24, + "end": 19294.14, + "probability": 0.8019 + }, + { + "start": 19294.66, + "end": 19295.56, + "probability": 0.7752 + }, + { + "start": 19296.6, + "end": 19299.7, + "probability": 0.9429 + }, + { + "start": 19300.28, + "end": 19300.84, + "probability": 0.9257 + }, + { + "start": 19301.36, + "end": 19303.06, + "probability": 0.929 + }, + { + "start": 19303.2, + "end": 19304.82, + "probability": 0.9326 + }, + { + "start": 19304.88, + "end": 19306.06, + "probability": 0.9541 + }, + { + "start": 19306.88, + "end": 19307.86, + "probability": 0.9772 + }, + { + "start": 19310.1, + "end": 19311.26, + "probability": 0.8831 + }, + { + "start": 19311.6, + "end": 19314.66, + "probability": 0.6992 + }, + { + "start": 19314.84, + "end": 19315.76, + "probability": 0.851 + }, + { + "start": 19316.56, + "end": 19319.96, + "probability": 0.9576 + }, + { + "start": 19320.58, + "end": 19322.46, + "probability": 0.9349 + }, + { + "start": 19323.36, + "end": 19324.02, + "probability": 0.966 + }, + { + "start": 19326.42, + "end": 19327.3, + "probability": 0.9279 + }, + { + "start": 19327.42, + "end": 19329.06, + "probability": 0.9166 + }, + { + "start": 19329.44, + "end": 19330.34, + "probability": 0.7581 + }, + { + "start": 19331.12, + "end": 19334.34, + "probability": 0.7606 + }, + { + "start": 19335.28, + "end": 19336.18, + "probability": 0.9228 + }, + { + "start": 19336.24, + "end": 19337.58, + "probability": 0.939 + }, + { + "start": 19337.7, + "end": 19338.96, + "probability": 0.9175 + }, + { + "start": 19340.12, + "end": 19342.6, + "probability": 0.805 + }, + { + "start": 19343.4, + "end": 19346.16, + "probability": 0.7963 + }, + { + "start": 19347.54, + "end": 19349.68, + "probability": 0.9097 + }, + { + "start": 19350.54, + "end": 19352.48, + "probability": 0.9316 + }, + { + "start": 19353.18, + "end": 19355.98, + "probability": 0.7701 + }, + { + "start": 19356.1, + "end": 19357.62, + "probability": 0.9402 + }, + { + "start": 19357.84, + "end": 19358.72, + "probability": 0.9783 + }, + { + "start": 19360.2, + "end": 19362.68, + "probability": 0.4466 + }, + { + "start": 19363.34, + "end": 19364.78, + "probability": 0.906 + }, + { + "start": 19364.9, + "end": 19366.1, + "probability": 0.473 + }, + { + "start": 19366.12, + "end": 19366.92, + "probability": 0.8768 + }, + { + "start": 19368.84, + "end": 19372.04, + "probability": 0.8661 + }, + { + "start": 19372.68, + "end": 19373.9, + "probability": 0.9761 + }, + { + "start": 19374.86, + "end": 19375.58, + "probability": 0.9119 + }, + { + "start": 19375.72, + "end": 19377.76, + "probability": 0.7676 + }, + { + "start": 19377.88, + "end": 19379.34, + "probability": 0.9434 + }, + { + "start": 19380.56, + "end": 19381.44, + "probability": 0.9802 + }, + { + "start": 19382.14, + "end": 19383.04, + "probability": 0.9154 + }, + { + "start": 19383.44, + "end": 19385.12, + "probability": 0.9558 + }, + { + "start": 19385.28, + "end": 19387.34, + "probability": 0.8759 + }, + { + "start": 19387.86, + "end": 19389.42, + "probability": 0.9036 + }, + { + "start": 19390.86, + "end": 19393.36, + "probability": 0.5068 + }, + { + "start": 19394.18, + "end": 19396.8, + "probability": 0.9526 + }, + { + "start": 19397.58, + "end": 19400.4, + "probability": 0.55 + }, + { + "start": 19400.54, + "end": 19402.64, + "probability": 0.8613 + }, + { + "start": 19402.7, + "end": 19404.08, + "probability": 0.8872 + }, + { + "start": 19404.74, + "end": 19406.28, + "probability": 0.934 + }, + { + "start": 19406.7, + "end": 19408.7, + "probability": 0.8479 + }, + { + "start": 19408.7, + "end": 19410.22, + "probability": 0.8497 + }, + { + "start": 19411.3, + "end": 19415.2, + "probability": 0.8062 + }, + { + "start": 19415.72, + "end": 19417.34, + "probability": 0.7588 + }, + { + "start": 19418.5, + "end": 19421.34, + "probability": 0.877 + }, + { + "start": 19422.24, + "end": 19423.82, + "probability": 0.6963 + }, + { + "start": 19426.38, + "end": 19426.82, + "probability": 0.8282 + }, + { + "start": 19427.52, + "end": 19428.3, + "probability": 0.5225 + }, + { + "start": 19428.4, + "end": 19429.36, + "probability": 0.6853 + }, + { + "start": 19430.66, + "end": 19436.12, + "probability": 0.074 + }, + { + "start": 19436.88, + "end": 19437.28, + "probability": 0.098 + }, + { + "start": 19438.42, + "end": 19438.42, + "probability": 0.1606 + }, + { + "start": 19439.32, + "end": 19439.43, + "probability": 0.0735 + }, + { + "start": 19445.82, + "end": 19448.34, + "probability": 0.0114 + }, + { + "start": 19451.82, + "end": 19452.82, + "probability": 0.1735 + }, + { + "start": 19486.62, + "end": 19491.52, + "probability": 0.0335 + }, + { + "start": 19492.18, + "end": 19492.2, + "probability": 0.0292 + }, + { + "start": 19492.2, + "end": 19492.2, + "probability": 0.0283 + }, + { + "start": 19492.2, + "end": 19493.2, + "probability": 0.0507 + }, + { + "start": 19515.36, + "end": 19517.84, + "probability": 0.6752 + }, + { + "start": 19519.04, + "end": 19519.18, + "probability": 0.0001 + }, + { + "start": 19519.18, + "end": 19519.66, + "probability": 0.2984 + }, + { + "start": 19527.64, + "end": 19531.2, + "probability": 0.6722 + }, + { + "start": 19532.08, + "end": 19532.92, + "probability": 0.7496 + }, + { + "start": 19535.64, + "end": 19536.48, + "probability": 0.9747 + }, + { + "start": 19537.6, + "end": 19538.36, + "probability": 0.7406 + }, + { + "start": 19540.18, + "end": 19542.6, + "probability": 0.9691 + }, + { + "start": 19543.54, + "end": 19549.32, + "probability": 0.9782 + }, + { + "start": 19550.76, + "end": 19553.94, + "probability": 0.9785 + }, + { + "start": 19555.44, + "end": 19559.66, + "probability": 0.9961 + }, + { + "start": 19560.0, + "end": 19560.82, + "probability": 0.8179 + }, + { + "start": 19561.38, + "end": 19562.22, + "probability": 0.4991 + }, + { + "start": 19562.82, + "end": 19564.74, + "probability": 0.6397 + }, + { + "start": 19565.24, + "end": 19565.98, + "probability": 0.5809 + }, + { + "start": 19566.1, + "end": 19566.26, + "probability": 0.7504 + }, + { + "start": 19566.72, + "end": 19567.76, + "probability": 0.9235 + }, + { + "start": 19567.9, + "end": 19568.44, + "probability": 0.5619 + }, + { + "start": 19569.44, + "end": 19570.68, + "probability": 0.3419 + }, + { + "start": 19571.16, + "end": 19572.04, + "probability": 0.6433 + }, + { + "start": 19573.88, + "end": 19576.54, + "probability": 0.9746 + }, + { + "start": 19577.44, + "end": 19583.36, + "probability": 0.9927 + }, + { + "start": 19584.14, + "end": 19586.24, + "probability": 0.9992 + }, + { + "start": 19587.08, + "end": 19589.08, + "probability": 0.9595 + }, + { + "start": 19592.44, + "end": 19593.58, + "probability": 0.5491 + }, + { + "start": 19594.06, + "end": 19596.4, + "probability": 0.8237 + }, + { + "start": 19596.44, + "end": 19599.92, + "probability": 0.9178 + }, + { + "start": 19600.46, + "end": 19601.76, + "probability": 0.9898 + }, + { + "start": 19602.48, + "end": 19608.54, + "probability": 0.9918 + }, + { + "start": 19609.56, + "end": 19614.84, + "probability": 0.9952 + }, + { + "start": 19615.32, + "end": 19620.8, + "probability": 0.9778 + }, + { + "start": 19620.8, + "end": 19625.48, + "probability": 0.9948 + }, + { + "start": 19626.3, + "end": 19626.82, + "probability": 0.8886 + }, + { + "start": 19630.16, + "end": 19632.48, + "probability": 0.9577 + }, + { + "start": 19633.12, + "end": 19634.32, + "probability": 0.9666 + }, + { + "start": 19634.82, + "end": 19636.66, + "probability": 0.8538 + }, + { + "start": 19636.7, + "end": 19639.0, + "probability": 0.9897 + }, + { + "start": 19639.8, + "end": 19640.74, + "probability": 0.9135 + }, + { + "start": 19641.4, + "end": 19642.74, + "probability": 0.8208 + }, + { + "start": 19643.48, + "end": 19649.16, + "probability": 0.9499 + }, + { + "start": 19649.84, + "end": 19652.26, + "probability": 0.9957 + }, + { + "start": 19653.04, + "end": 19655.88, + "probability": 0.941 + }, + { + "start": 19655.88, + "end": 19658.78, + "probability": 0.9993 + }, + { + "start": 19659.4, + "end": 19663.26, + "probability": 0.9851 + }, + { + "start": 19663.26, + "end": 19667.34, + "probability": 0.9973 + }, + { + "start": 19668.02, + "end": 19668.44, + "probability": 0.7781 + }, + { + "start": 19669.22, + "end": 19673.1, + "probability": 0.9887 + }, + { + "start": 19673.5, + "end": 19676.2, + "probability": 0.8983 + }, + { + "start": 19676.6, + "end": 19680.06, + "probability": 0.9812 + }, + { + "start": 19681.02, + "end": 19682.5, + "probability": 0.8163 + }, + { + "start": 19683.04, + "end": 19687.78, + "probability": 0.9613 + }, + { + "start": 19688.3, + "end": 19694.34, + "probability": 0.9919 + }, + { + "start": 19694.92, + "end": 19696.12, + "probability": 0.9075 + }, + { + "start": 19696.94, + "end": 19702.22, + "probability": 0.9948 + }, + { + "start": 19702.36, + "end": 19705.26, + "probability": 0.9969 + }, + { + "start": 19705.9, + "end": 19708.76, + "probability": 0.9456 + }, + { + "start": 19709.12, + "end": 19711.6, + "probability": 0.9744 + }, + { + "start": 19712.6, + "end": 19715.58, + "probability": 0.889 + }, + { + "start": 19716.26, + "end": 19717.18, + "probability": 0.978 + }, + { + "start": 19717.82, + "end": 19721.5, + "probability": 0.9939 + }, + { + "start": 19721.5, + "end": 19726.12, + "probability": 0.9973 + }, + { + "start": 19726.66, + "end": 19728.36, + "probability": 0.9616 + }, + { + "start": 19728.48, + "end": 19730.7, + "probability": 0.9553 + }, + { + "start": 19731.34, + "end": 19734.28, + "probability": 0.8925 + }, + { + "start": 19735.14, + "end": 19736.25, + "probability": 0.9951 + }, + { + "start": 19737.48, + "end": 19740.0, + "probability": 0.9943 + }, + { + "start": 19740.52, + "end": 19743.94, + "probability": 0.995 + }, + { + "start": 19744.8, + "end": 19745.44, + "probability": 0.4709 + }, + { + "start": 19745.48, + "end": 19747.42, + "probability": 0.9819 + }, + { + "start": 19747.9, + "end": 19750.92, + "probability": 0.952 + }, + { + "start": 19751.68, + "end": 19753.44, + "probability": 0.9496 + }, + { + "start": 19754.14, + "end": 19760.31, + "probability": 0.9959 + }, + { + "start": 19761.06, + "end": 19762.88, + "probability": 0.9061 + }, + { + "start": 19763.46, + "end": 19766.08, + "probability": 0.9729 + }, + { + "start": 19766.6, + "end": 19767.76, + "probability": 0.8647 + }, + { + "start": 19768.52, + "end": 19774.36, + "probability": 0.9989 + }, + { + "start": 19774.84, + "end": 19776.0, + "probability": 0.9833 + }, + { + "start": 19776.44, + "end": 19776.9, + "probability": 0.733 + }, + { + "start": 19778.04, + "end": 19779.24, + "probability": 0.9797 + }, + { + "start": 19779.88, + "end": 19781.16, + "probability": 0.9187 + }, + { + "start": 19781.96, + "end": 19783.68, + "probability": 0.9819 + }, + { + "start": 19784.48, + "end": 19786.16, + "probability": 0.9977 + }, + { + "start": 19786.8, + "end": 19790.14, + "probability": 0.9969 + }, + { + "start": 19790.84, + "end": 19794.44, + "probability": 0.7933 + }, + { + "start": 19795.38, + "end": 19796.94, + "probability": 0.9727 + }, + { + "start": 19797.5, + "end": 19800.5, + "probability": 0.9684 + }, + { + "start": 19801.14, + "end": 19801.92, + "probability": 0.979 + }, + { + "start": 19802.66, + "end": 19804.92, + "probability": 0.9692 + }, + { + "start": 19805.86, + "end": 19810.69, + "probability": 0.9927 + }, + { + "start": 19812.46, + "end": 19814.24, + "probability": 0.8442 + }, + { + "start": 19815.06, + "end": 19817.39, + "probability": 0.9263 + }, + { + "start": 19818.3, + "end": 19819.0, + "probability": 0.8492 + }, + { + "start": 19819.82, + "end": 19821.1, + "probability": 0.9871 + }, + { + "start": 19821.88, + "end": 19822.74, + "probability": 0.9838 + }, + { + "start": 19823.74, + "end": 19825.94, + "probability": 0.9928 + }, + { + "start": 19826.6, + "end": 19829.28, + "probability": 0.979 + }, + { + "start": 19830.18, + "end": 19836.04, + "probability": 0.9842 + }, + { + "start": 19836.82, + "end": 19843.08, + "probability": 0.7934 + }, + { + "start": 19843.62, + "end": 19844.0, + "probability": 0.9415 + }, + { + "start": 19844.78, + "end": 19847.8, + "probability": 0.9841 + }, + { + "start": 19848.36, + "end": 19852.14, + "probability": 0.9822 + }, + { + "start": 19852.14, + "end": 19857.26, + "probability": 0.92 + }, + { + "start": 19857.66, + "end": 19862.14, + "probability": 0.9962 + }, + { + "start": 19863.32, + "end": 19866.38, + "probability": 0.9883 + }, + { + "start": 19867.02, + "end": 19869.04, + "probability": 0.969 + }, + { + "start": 19869.92, + "end": 19874.28, + "probability": 0.9621 + }, + { + "start": 19874.28, + "end": 19879.96, + "probability": 0.9918 + }, + { + "start": 19880.7, + "end": 19882.64, + "probability": 0.7205 + }, + { + "start": 19883.2, + "end": 19885.42, + "probability": 0.8151 + }, + { + "start": 19886.16, + "end": 19887.28, + "probability": 0.8839 + }, + { + "start": 19888.28, + "end": 19890.84, + "probability": 0.8047 + }, + { + "start": 19891.42, + "end": 19892.46, + "probability": 0.7669 + }, + { + "start": 19893.08, + "end": 19894.84, + "probability": 0.9684 + }, + { + "start": 19895.68, + "end": 19899.64, + "probability": 0.9627 + }, + { + "start": 19899.64, + "end": 19903.96, + "probability": 0.9116 + }, + { + "start": 19904.96, + "end": 19907.24, + "probability": 0.9915 + }, + { + "start": 19907.34, + "end": 19909.3, + "probability": 0.9929 + }, + { + "start": 19911.24, + "end": 19912.02, + "probability": 0.7315 + }, + { + "start": 19912.74, + "end": 19916.4, + "probability": 0.9807 + }, + { + "start": 19917.04, + "end": 19917.24, + "probability": 0.8743 + }, + { + "start": 19917.88, + "end": 19918.46, + "probability": 0.9882 + }, + { + "start": 19919.92, + "end": 19920.58, + "probability": 0.8744 + }, + { + "start": 19921.6, + "end": 19922.16, + "probability": 0.9744 + }, + { + "start": 19923.28, + "end": 19925.68, + "probability": 0.9983 + }, + { + "start": 19927.1, + "end": 19929.38, + "probability": 0.8843 + }, + { + "start": 19930.84, + "end": 19936.58, + "probability": 0.9967 + }, + { + "start": 19937.52, + "end": 19938.84, + "probability": 0.9419 + }, + { + "start": 19939.82, + "end": 19945.32, + "probability": 0.9983 + }, + { + "start": 19945.62, + "end": 19945.86, + "probability": 0.7571 + }, + { + "start": 19947.28, + "end": 19949.76, + "probability": 0.7776 + }, + { + "start": 19950.22, + "end": 19953.12, + "probability": 0.9183 + }, + { + "start": 19955.76, + "end": 19957.1, + "probability": 0.6654 + }, + { + "start": 19957.62, + "end": 19959.52, + "probability": 0.6266 + }, + { + "start": 19960.12, + "end": 19961.82, + "probability": 0.7291 + }, + { + "start": 19961.86, + "end": 19966.88, + "probability": 0.9258 + }, + { + "start": 19967.04, + "end": 19970.1, + "probability": 0.8604 + }, + { + "start": 19970.7, + "end": 19973.9, + "probability": 0.965 + }, + { + "start": 19976.94, + "end": 19979.97, + "probability": 0.7212 + }, + { + "start": 19980.6, + "end": 19981.58, + "probability": 0.7128 + }, + { + "start": 19983.48, + "end": 19984.6, + "probability": 0.9398 + }, + { + "start": 19985.6, + "end": 19986.07, + "probability": 0.8721 + }, + { + "start": 19988.56, + "end": 19989.24, + "probability": 0.4808 + }, + { + "start": 19995.58, + "end": 19998.52, + "probability": 0.6844 + }, + { + "start": 19998.6, + "end": 20001.84, + "probability": 0.457 + }, + { + "start": 20002.02, + "end": 20002.36, + "probability": 0.6399 + }, + { + "start": 20003.89, + "end": 20006.26, + "probability": 0.9114 + }, + { + "start": 20006.6, + "end": 20008.84, + "probability": 0.6436 + }, + { + "start": 20009.22, + "end": 20010.88, + "probability": 0.783 + }, + { + "start": 20011.14, + "end": 20011.92, + "probability": 0.6235 + }, + { + "start": 20012.24, + "end": 20014.6, + "probability": 0.8472 + }, + { + "start": 20014.82, + "end": 20015.6, + "probability": 0.5292 + }, + { + "start": 20016.02, + "end": 20017.76, + "probability": 0.907 + }, + { + "start": 20017.86, + "end": 20019.48, + "probability": 0.393 + }, + { + "start": 20019.52, + "end": 20021.02, + "probability": 0.719 + }, + { + "start": 20021.08, + "end": 20021.82, + "probability": 0.3085 + }, + { + "start": 20022.45, + "end": 20024.95, + "probability": 0.5267 + }, + { + "start": 20025.32, + "end": 20025.76, + "probability": 0.4051 + }, + { + "start": 20026.36, + "end": 20026.94, + "probability": 0.0297 + }, + { + "start": 20026.94, + "end": 20027.86, + "probability": 0.528 + }, + { + "start": 20028.06, + "end": 20030.06, + "probability": 0.6718 + }, + { + "start": 20030.44, + "end": 20032.36, + "probability": 0.8638 + }, + { + "start": 20034.16, + "end": 20039.26, + "probability": 0.7385 + }, + { + "start": 20039.8, + "end": 20041.44, + "probability": 0.339 + }, + { + "start": 20041.48, + "end": 20042.14, + "probability": 0.8322 + }, + { + "start": 20042.28, + "end": 20042.56, + "probability": 0.4238 + }, + { + "start": 20042.66, + "end": 20044.06, + "probability": 0.9587 + }, + { + "start": 20044.72, + "end": 20049.48, + "probability": 0.8726 + }, + { + "start": 20049.74, + "end": 20050.82, + "probability": 0.5627 + }, + { + "start": 20050.96, + "end": 20054.64, + "probability": 0.3469 + }, + { + "start": 20054.64, + "end": 20055.34, + "probability": 0.8527 + }, + { + "start": 20055.46, + "end": 20058.68, + "probability": 0.9749 + }, + { + "start": 20059.58, + "end": 20061.54, + "probability": 0.3604 + }, + { + "start": 20061.56, + "end": 20062.14, + "probability": 0.8678 + }, + { + "start": 20062.18, + "end": 20064.88, + "probability": 0.9871 + }, + { + "start": 20064.88, + "end": 20067.76, + "probability": 0.8875 + }, + { + "start": 20067.86, + "end": 20070.14, + "probability": 0.9333 + }, + { + "start": 20070.56, + "end": 20071.38, + "probability": 0.9335 + }, + { + "start": 20071.46, + "end": 20072.02, + "probability": 0.4557 + }, + { + "start": 20072.14, + "end": 20072.71, + "probability": 0.8743 + }, + { + "start": 20073.04, + "end": 20073.66, + "probability": 0.9465 + }, + { + "start": 20074.36, + "end": 20075.5, + "probability": 0.6172 + }, + { + "start": 20075.78, + "end": 20076.56, + "probability": 0.7333 + }, + { + "start": 20076.62, + "end": 20078.2, + "probability": 0.6665 + }, + { + "start": 20078.2, + "end": 20082.92, + "probability": 0.8443 + }, + { + "start": 20083.3, + "end": 20084.04, + "probability": 0.8537 + }, + { + "start": 20084.12, + "end": 20084.86, + "probability": 0.9215 + }, + { + "start": 20085.18, + "end": 20086.0, + "probability": 0.9334 + }, + { + "start": 20086.12, + "end": 20086.86, + "probability": 0.8511 + }, + { + "start": 20086.86, + "end": 20087.78, + "probability": 0.8492 + }, + { + "start": 20088.28, + "end": 20089.22, + "probability": 0.9444 + }, + { + "start": 20089.46, + "end": 20091.64, + "probability": 0.9239 + }, + { + "start": 20091.74, + "end": 20092.46, + "probability": 0.8289 + }, + { + "start": 20092.68, + "end": 20094.48, + "probability": 0.7983 + }, + { + "start": 20094.86, + "end": 20097.32, + "probability": 0.9446 + }, + { + "start": 20097.84, + "end": 20098.35, + "probability": 0.7944 + }, + { + "start": 20099.26, + "end": 20102.3, + "probability": 0.9274 + }, + { + "start": 20102.44, + "end": 20106.4, + "probability": 0.9337 + }, + { + "start": 20106.6, + "end": 20107.6, + "probability": 0.4053 + }, + { + "start": 20107.84, + "end": 20108.5, + "probability": 0.4991 + }, + { + "start": 20108.58, + "end": 20109.6, + "probability": 0.955 + }, + { + "start": 20109.96, + "end": 20111.32, + "probability": 0.9583 + }, + { + "start": 20112.64, + "end": 20113.82, + "probability": 0.877 + }, + { + "start": 20114.58, + "end": 20117.6, + "probability": 0.9622 + }, + { + "start": 20117.7, + "end": 20119.12, + "probability": 0.9718 + }, + { + "start": 20119.92, + "end": 20120.81, + "probability": 0.923 + }, + { + "start": 20121.54, + "end": 20121.72, + "probability": 0.6635 + }, + { + "start": 20121.84, + "end": 20122.45, + "probability": 0.9118 + }, + { + "start": 20122.88, + "end": 20124.4, + "probability": 0.763 + }, + { + "start": 20124.48, + "end": 20128.72, + "probability": 0.8183 + }, + { + "start": 20128.9, + "end": 20129.74, + "probability": 0.8794 + }, + { + "start": 20131.66, + "end": 20133.42, + "probability": 0.7127 + }, + { + "start": 20133.52, + "end": 20138.1, + "probability": 0.9617 + }, + { + "start": 20139.76, + "end": 20140.66, + "probability": 0.5978 + }, + { + "start": 20140.88, + "end": 20141.42, + "probability": 0.5947 + }, + { + "start": 20142.24, + "end": 20144.44, + "probability": 0.9467 + }, + { + "start": 20145.6, + "end": 20148.5, + "probability": 0.9932 + }, + { + "start": 20148.54, + "end": 20151.06, + "probability": 0.9954 + }, + { + "start": 20151.54, + "end": 20155.12, + "probability": 0.9307 + }, + { + "start": 20155.18, + "end": 20155.36, + "probability": 0.4542 + }, + { + "start": 20155.5, + "end": 20160.94, + "probability": 0.7965 + }, + { + "start": 20161.06, + "end": 20161.48, + "probability": 0.9131 + }, + { + "start": 20161.94, + "end": 20162.7, + "probability": 0.9546 + }, + { + "start": 20163.58, + "end": 20164.3, + "probability": 0.9587 + }, + { + "start": 20164.96, + "end": 20166.9, + "probability": 0.9296 + }, + { + "start": 20166.98, + "end": 20168.48, + "probability": 0.9665 + }, + { + "start": 20169.34, + "end": 20172.68, + "probability": 0.9771 + }, + { + "start": 20172.68, + "end": 20177.64, + "probability": 0.9945 + }, + { + "start": 20177.86, + "end": 20182.2, + "probability": 0.8202 + }, + { + "start": 20182.38, + "end": 20182.76, + "probability": 0.8121 + }, + { + "start": 20183.38, + "end": 20187.34, + "probability": 0.8557 + }, + { + "start": 20187.72, + "end": 20191.06, + "probability": 0.8892 + }, + { + "start": 20191.12, + "end": 20191.9, + "probability": 0.3619 + }, + { + "start": 20191.92, + "end": 20192.68, + "probability": 0.7467 + }, + { + "start": 20192.8, + "end": 20193.56, + "probability": 0.7429 + }, + { + "start": 20193.68, + "end": 20194.52, + "probability": 0.932 + }, + { + "start": 20195.14, + "end": 20198.08, + "probability": 0.7806 + }, + { + "start": 20198.1, + "end": 20199.18, + "probability": 0.6483 + }, + { + "start": 20199.58, + "end": 20202.58, + "probability": 0.9778 + }, + { + "start": 20203.3, + "end": 20207.11, + "probability": 0.7505 + }, + { + "start": 20207.92, + "end": 20211.0, + "probability": 0.8742 + }, + { + "start": 20212.38, + "end": 20217.24, + "probability": 0.9917 + }, + { + "start": 20217.3, + "end": 20217.82, + "probability": 0.7263 + }, + { + "start": 20218.0, + "end": 20219.0, + "probability": 0.7731 + }, + { + "start": 20219.18, + "end": 20221.74, + "probability": 0.9453 + }, + { + "start": 20222.42, + "end": 20223.06, + "probability": 0.6223 + }, + { + "start": 20223.26, + "end": 20224.08, + "probability": 0.7726 + }, + { + "start": 20224.16, + "end": 20226.18, + "probability": 0.6826 + }, + { + "start": 20226.26, + "end": 20227.0, + "probability": 0.8412 + }, + { + "start": 20227.1, + "end": 20227.82, + "probability": 0.8554 + }, + { + "start": 20228.24, + "end": 20228.96, + "probability": 0.5037 + }, + { + "start": 20229.16, + "end": 20229.94, + "probability": 0.6718 + }, + { + "start": 20229.98, + "end": 20230.62, + "probability": 0.9827 + }, + { + "start": 20230.64, + "end": 20231.24, + "probability": 0.7336 + }, + { + "start": 20231.3, + "end": 20234.44, + "probability": 0.626 + }, + { + "start": 20234.92, + "end": 20235.3, + "probability": 0.778 + }, + { + "start": 20235.38, + "end": 20235.96, + "probability": 0.8748 + }, + { + "start": 20236.06, + "end": 20237.44, + "probability": 0.9541 + }, + { + "start": 20237.78, + "end": 20238.22, + "probability": 0.5369 + }, + { + "start": 20238.34, + "end": 20240.68, + "probability": 0.6545 + }, + { + "start": 20241.18, + "end": 20242.32, + "probability": 0.7973 + }, + { + "start": 20242.66, + "end": 20244.36, + "probability": 0.9861 + }, + { + "start": 20244.5, + "end": 20245.32, + "probability": 0.9642 + }, + { + "start": 20245.56, + "end": 20246.84, + "probability": 0.7642 + }, + { + "start": 20247.7, + "end": 20250.24, + "probability": 0.9714 + }, + { + "start": 20250.46, + "end": 20257.16, + "probability": 0.9638 + }, + { + "start": 20257.86, + "end": 20261.6, + "probability": 0.6191 + }, + { + "start": 20261.66, + "end": 20263.98, + "probability": 0.4423 + }, + { + "start": 20264.22, + "end": 20267.24, + "probability": 0.7297 + }, + { + "start": 20267.56, + "end": 20270.08, + "probability": 0.7397 + }, + { + "start": 20270.82, + "end": 20271.38, + "probability": 0.4586 + }, + { + "start": 20272.2, + "end": 20272.92, + "probability": 0.5191 + }, + { + "start": 20273.62, + "end": 20275.26, + "probability": 0.4663 + }, + { + "start": 20275.26, + "end": 20277.28, + "probability": 0.9307 + }, + { + "start": 20278.14, + "end": 20280.62, + "probability": 0.6844 + }, + { + "start": 20280.72, + "end": 20281.7, + "probability": 0.5015 + }, + { + "start": 20281.98, + "end": 20283.82, + "probability": 0.8131 + }, + { + "start": 20284.3, + "end": 20288.4, + "probability": 0.996 + }, + { + "start": 20288.4, + "end": 20293.08, + "probability": 0.9883 + }, + { + "start": 20293.9, + "end": 20299.4, + "probability": 0.9833 + }, + { + "start": 20300.62, + "end": 20304.88, + "probability": 0.9888 + }, + { + "start": 20304.88, + "end": 20309.12, + "probability": 0.9963 + }, + { + "start": 20309.12, + "end": 20313.58, + "probability": 0.9702 + }, + { + "start": 20313.98, + "end": 20316.34, + "probability": 0.8358 + }, + { + "start": 20316.86, + "end": 20318.86, + "probability": 0.936 + }, + { + "start": 20319.06, + "end": 20324.84, + "probability": 0.8995 + }, + { + "start": 20324.92, + "end": 20326.06, + "probability": 0.889 + }, + { + "start": 20326.44, + "end": 20329.52, + "probability": 0.9971 + }, + { + "start": 20329.78, + "end": 20330.44, + "probability": 0.5508 + }, + { + "start": 20330.92, + "end": 20332.6, + "probability": 0.957 + }, + { + "start": 20333.34, + "end": 20339.42, + "probability": 0.9673 + }, + { + "start": 20340.02, + "end": 20344.14, + "probability": 0.9678 + }, + { + "start": 20345.12, + "end": 20349.3, + "probability": 0.9729 + }, + { + "start": 20349.78, + "end": 20352.4, + "probability": 0.8148 + }, + { + "start": 20352.8, + "end": 20356.9, + "probability": 0.9339 + }, + { + "start": 20357.34, + "end": 20361.64, + "probability": 0.9867 + }, + { + "start": 20362.3, + "end": 20364.92, + "probability": 0.8144 + }, + { + "start": 20365.46, + "end": 20369.52, + "probability": 0.9756 + }, + { + "start": 20369.52, + "end": 20374.62, + "probability": 0.9736 + }, + { + "start": 20375.32, + "end": 20379.06, + "probability": 0.9363 + }, + { + "start": 20379.08, + "end": 20382.26, + "probability": 0.6645 + }, + { + "start": 20382.26, + "end": 20382.4, + "probability": 0.2826 + }, + { + "start": 20382.52, + "end": 20383.46, + "probability": 0.7667 + }, + { + "start": 20383.58, + "end": 20385.32, + "probability": 0.9304 + }, + { + "start": 20385.88, + "end": 20387.1, + "probability": 0.945 + }, + { + "start": 20387.34, + "end": 20390.1, + "probability": 0.8575 + }, + { + "start": 20390.76, + "end": 20390.98, + "probability": 0.3649 + }, + { + "start": 20391.06, + "end": 20391.3, + "probability": 0.6257 + }, + { + "start": 20391.36, + "end": 20396.06, + "probability": 0.7806 + }, + { + "start": 20397.14, + "end": 20399.96, + "probability": 0.6491 + }, + { + "start": 20400.56, + "end": 20401.46, + "probability": 0.515 + }, + { + "start": 20402.46, + "end": 20407.0, + "probability": 0.9658 + }, + { + "start": 20408.08, + "end": 20412.2, + "probability": 0.964 + }, + { + "start": 20412.98, + "end": 20416.04, + "probability": 0.9576 + }, + { + "start": 20416.74, + "end": 20421.66, + "probability": 0.9257 + }, + { + "start": 20422.42, + "end": 20423.68, + "probability": 0.6655 + }, + { + "start": 20425.5, + "end": 20426.82, + "probability": 0.8962 + }, + { + "start": 20427.12, + "end": 20428.1, + "probability": 0.7727 + }, + { + "start": 20428.38, + "end": 20432.3, + "probability": 0.8883 + }, + { + "start": 20432.94, + "end": 20434.18, + "probability": 0.8301 + }, + { + "start": 20434.3, + "end": 20435.79, + "probability": 0.9193 + }, + { + "start": 20436.6, + "end": 20439.74, + "probability": 0.9132 + }, + { + "start": 20441.0, + "end": 20444.78, + "probability": 0.9037 + }, + { + "start": 20445.24, + "end": 20449.12, + "probability": 0.9961 + }, + { + "start": 20449.12, + "end": 20453.34, + "probability": 0.9945 + }, + { + "start": 20453.94, + "end": 20455.06, + "probability": 0.7026 + }, + { + "start": 20455.92, + "end": 20457.64, + "probability": 0.98 + }, + { + "start": 20457.68, + "end": 20461.22, + "probability": 0.993 + }, + { + "start": 20461.52, + "end": 20463.56, + "probability": 0.998 + }, + { + "start": 20463.84, + "end": 20464.82, + "probability": 0.6744 + }, + { + "start": 20464.92, + "end": 20465.86, + "probability": 0.9254 + }, + { + "start": 20465.94, + "end": 20467.66, + "probability": 0.9719 + }, + { + "start": 20468.6, + "end": 20471.16, + "probability": 0.6902 + }, + { + "start": 20471.72, + "end": 20472.5, + "probability": 0.7389 + }, + { + "start": 20472.88, + "end": 20475.0, + "probability": 0.9605 + }, + { + "start": 20475.22, + "end": 20476.79, + "probability": 0.7183 + }, + { + "start": 20477.78, + "end": 20481.04, + "probability": 0.943 + }, + { + "start": 20481.78, + "end": 20484.44, + "probability": 0.9624 + }, + { + "start": 20484.7, + "end": 20486.72, + "probability": 0.9644 + }, + { + "start": 20487.46, + "end": 20492.62, + "probability": 0.9746 + }, + { + "start": 20493.62, + "end": 20495.26, + "probability": 0.9966 + }, + { + "start": 20495.84, + "end": 20501.44, + "probability": 0.8757 + }, + { + "start": 20502.28, + "end": 20504.3, + "probability": 0.9689 + }, + { + "start": 20504.32, + "end": 20506.09, + "probability": 0.8522 + }, + { + "start": 20506.58, + "end": 20508.24, + "probability": 0.8012 + }, + { + "start": 20509.04, + "end": 20511.44, + "probability": 0.7475 + }, + { + "start": 20512.36, + "end": 20513.22, + "probability": 0.7673 + }, + { + "start": 20514.78, + "end": 20517.6, + "probability": 0.9219 + }, + { + "start": 20517.8, + "end": 20519.0, + "probability": 0.8988 + }, + { + "start": 20519.02, + "end": 20520.62, + "probability": 0.9849 + }, + { + "start": 20520.98, + "end": 20528.64, + "probability": 0.8148 + }, + { + "start": 20528.94, + "end": 20533.06, + "probability": 0.929 + }, + { + "start": 20533.62, + "end": 20534.96, + "probability": 0.8135 + }, + { + "start": 20535.62, + "end": 20536.54, + "probability": 0.636 + }, + { + "start": 20537.22, + "end": 20538.08, + "probability": 0.5928 + }, + { + "start": 20538.2, + "end": 20538.71, + "probability": 0.6173 + }, + { + "start": 20538.88, + "end": 20540.7, + "probability": 0.987 + }, + { + "start": 20541.58, + "end": 20544.64, + "probability": 0.9932 + }, + { + "start": 20544.72, + "end": 20545.28, + "probability": 0.865 + }, + { + "start": 20546.12, + "end": 20546.58, + "probability": 0.9143 + }, + { + "start": 20546.76, + "end": 20548.12, + "probability": 0.9868 + }, + { + "start": 20548.22, + "end": 20549.78, + "probability": 0.9946 + }, + { + "start": 20549.88, + "end": 20551.16, + "probability": 0.9958 + }, + { + "start": 20551.76, + "end": 20552.76, + "probability": 0.9912 + }, + { + "start": 20552.82, + "end": 20554.06, + "probability": 0.7783 + }, + { + "start": 20554.26, + "end": 20554.84, + "probability": 0.7625 + }, + { + "start": 20555.06, + "end": 20558.48, + "probability": 0.8913 + }, + { + "start": 20558.7, + "end": 20559.56, + "probability": 0.5156 + }, + { + "start": 20559.68, + "end": 20560.94, + "probability": 0.7435 + }, + { + "start": 20561.42, + "end": 20562.47, + "probability": 0.847 + }, + { + "start": 20563.28, + "end": 20566.62, + "probability": 0.8264 + }, + { + "start": 20569.12, + "end": 20570.66, + "probability": 0.9905 + }, + { + "start": 20571.14, + "end": 20573.06, + "probability": 0.9961 + }, + { + "start": 20573.56, + "end": 20575.35, + "probability": 0.991 + }, + { + "start": 20575.52, + "end": 20576.32, + "probability": 0.7135 + }, + { + "start": 20576.36, + "end": 20578.0, + "probability": 0.7747 + }, + { + "start": 20578.1, + "end": 20580.58, + "probability": 0.9918 + }, + { + "start": 20581.2, + "end": 20584.62, + "probability": 0.7662 + }, + { + "start": 20585.08, + "end": 20586.06, + "probability": 0.9186 + }, + { + "start": 20586.44, + "end": 20589.54, + "probability": 0.9749 + }, + { + "start": 20590.88, + "end": 20591.42, + "probability": 0.8975 + }, + { + "start": 20592.62, + "end": 20594.44, + "probability": 0.9514 + }, + { + "start": 20594.8, + "end": 20595.6, + "probability": 0.9691 + }, + { + "start": 20595.76, + "end": 20596.24, + "probability": 0.8706 + }, + { + "start": 20596.26, + "end": 20596.64, + "probability": 0.9024 + }, + { + "start": 20596.72, + "end": 20599.58, + "probability": 0.7025 + }, + { + "start": 20600.24, + "end": 20601.54, + "probability": 0.6797 + }, + { + "start": 20602.34, + "end": 20604.54, + "probability": 0.9547 + }, + { + "start": 20605.12, + "end": 20607.02, + "probability": 0.6924 + }, + { + "start": 20607.44, + "end": 20613.1, + "probability": 0.9863 + }, + { + "start": 20613.2, + "end": 20616.78, + "probability": 0.967 + }, + { + "start": 20617.4, + "end": 20618.8, + "probability": 0.9976 + }, + { + "start": 20618.86, + "end": 20622.36, + "probability": 0.9966 + }, + { + "start": 20622.8, + "end": 20624.31, + "probability": 0.9868 + }, + { + "start": 20624.82, + "end": 20626.58, + "probability": 0.9501 + }, + { + "start": 20627.22, + "end": 20630.26, + "probability": 0.986 + }, + { + "start": 20631.24, + "end": 20633.48, + "probability": 0.9977 + }, + { + "start": 20634.18, + "end": 20635.5, + "probability": 0.9644 + }, + { + "start": 20635.66, + "end": 20636.58, + "probability": 0.7289 + }, + { + "start": 20637.08, + "end": 20637.96, + "probability": 0.9463 + }, + { + "start": 20638.04, + "end": 20638.72, + "probability": 0.7421 + }, + { + "start": 20639.2, + "end": 20642.4, + "probability": 0.9937 + }, + { + "start": 20642.5, + "end": 20643.08, + "probability": 0.666 + }, + { + "start": 20643.08, + "end": 20643.14, + "probability": 0.3365 + }, + { + "start": 20643.2, + "end": 20645.52, + "probability": 0.9635 + }, + { + "start": 20645.64, + "end": 20646.98, + "probability": 0.9128 + }, + { + "start": 20647.08, + "end": 20647.38, + "probability": 0.6633 + }, + { + "start": 20647.98, + "end": 20649.38, + "probability": 0.8772 + }, + { + "start": 20649.72, + "end": 20651.56, + "probability": 0.9213 + }, + { + "start": 20653.04, + "end": 20653.42, + "probability": 0.6883 + }, + { + "start": 20655.74, + "end": 20656.18, + "probability": 0.7512 + }, + { + "start": 20656.8, + "end": 20659.56, + "probability": 0.7764 + }, + { + "start": 20662.34, + "end": 20662.72, + "probability": 0.0326 + }, + { + "start": 20662.72, + "end": 20664.23, + "probability": 0.253 + }, + { + "start": 20667.12, + "end": 20668.15, + "probability": 0.0257 + }, + { + "start": 20678.94, + "end": 20681.18, + "probability": 0.5654 + }, + { + "start": 20684.82, + "end": 20685.52, + "probability": 0.4752 + }, + { + "start": 20686.34, + "end": 20687.92, + "probability": 0.9565 + }, + { + "start": 20688.0, + "end": 20689.4, + "probability": 0.9161 + }, + { + "start": 20689.84, + "end": 20690.68, + "probability": 0.8873 + }, + { + "start": 20692.5, + "end": 20695.12, + "probability": 0.9371 + }, + { + "start": 20695.72, + "end": 20697.74, + "probability": 0.9674 + }, + { + "start": 20699.08, + "end": 20699.1, + "probability": 0.0035 + }, + { + "start": 20699.1, + "end": 20702.42, + "probability": 0.9753 + }, + { + "start": 20702.92, + "end": 20704.36, + "probability": 0.9307 + }, + { + "start": 20704.62, + "end": 20705.4, + "probability": 0.8842 + }, + { + "start": 20705.44, + "end": 20706.62, + "probability": 0.8326 + }, + { + "start": 20707.32, + "end": 20711.42, + "probability": 0.9693 + }, + { + "start": 20711.42, + "end": 20714.74, + "probability": 0.9956 + }, + { + "start": 20714.84, + "end": 20717.7, + "probability": 0.8374 + }, + { + "start": 20718.22, + "end": 20722.48, + "probability": 0.9937 + }, + { + "start": 20722.92, + "end": 20724.3, + "probability": 0.9573 + }, + { + "start": 20724.68, + "end": 20727.48, + "probability": 0.9954 + }, + { + "start": 20727.82, + "end": 20728.6, + "probability": 0.7944 + }, + { + "start": 20731.48, + "end": 20733.2, + "probability": 0.5487 + }, + { + "start": 20734.14, + "end": 20734.14, + "probability": 0.1235 + }, + { + "start": 20734.14, + "end": 20737.76, + "probability": 0.9714 + }, + { + "start": 20738.5, + "end": 20741.39, + "probability": 0.9531 + }, + { + "start": 20742.58, + "end": 20745.22, + "probability": 0.1362 + }, + { + "start": 20745.22, + "end": 20745.48, + "probability": 0.678 + }, + { + "start": 20745.6, + "end": 20746.22, + "probability": 0.023 + }, + { + "start": 20746.22, + "end": 20746.22, + "probability": 0.0997 + }, + { + "start": 20746.22, + "end": 20747.26, + "probability": 0.3972 + }, + { + "start": 20747.42, + "end": 20750.4, + "probability": 0.2521 + }, + { + "start": 20750.5, + "end": 20751.18, + "probability": 0.4084 + }, + { + "start": 20751.26, + "end": 20751.58, + "probability": 0.061 + }, + { + "start": 20753.94, + "end": 20754.3, + "probability": 0.2145 + }, + { + "start": 20754.3, + "end": 20754.3, + "probability": 0.0359 + }, + { + "start": 20754.3, + "end": 20754.3, + "probability": 0.0214 + }, + { + "start": 20754.3, + "end": 20757.04, + "probability": 0.822 + }, + { + "start": 20758.36, + "end": 20760.14, + "probability": 0.0007 + }, + { + "start": 20761.28, + "end": 20761.44, + "probability": 0.1239 + }, + { + "start": 20761.44, + "end": 20761.44, + "probability": 0.0647 + }, + { + "start": 20761.44, + "end": 20761.54, + "probability": 0.1206 + }, + { + "start": 20761.54, + "end": 20762.43, + "probability": 0.8435 + }, + { + "start": 20763.0, + "end": 20763.89, + "probability": 0.1945 + }, + { + "start": 20764.5, + "end": 20765.35, + "probability": 0.3216 + }, + { + "start": 20765.9, + "end": 20766.36, + "probability": 0.5489 + }, + { + "start": 20766.84, + "end": 20766.84, + "probability": 0.3798 + }, + { + "start": 20766.84, + "end": 20767.24, + "probability": 0.7176 + }, + { + "start": 20767.24, + "end": 20770.64, + "probability": 0.9613 + }, + { + "start": 20770.74, + "end": 20773.7, + "probability": 0.9941 + }, + { + "start": 20774.42, + "end": 20778.16, + "probability": 0.9834 + }, + { + "start": 20778.76, + "end": 20782.24, + "probability": 0.971 + }, + { + "start": 20782.88, + "end": 20784.62, + "probability": 0.4607 + }, + { + "start": 20784.64, + "end": 20786.96, + "probability": 0.9956 + }, + { + "start": 20787.42, + "end": 20792.22, + "probability": 0.9933 + }, + { + "start": 20792.64, + "end": 20793.88, + "probability": 0.971 + }, + { + "start": 20794.32, + "end": 20795.4, + "probability": 0.9702 + }, + { + "start": 20795.54, + "end": 20796.54, + "probability": 0.7632 + }, + { + "start": 20796.92, + "end": 20799.44, + "probability": 0.5847 + }, + { + "start": 20799.52, + "end": 20803.42, + "probability": 0.8925 + }, + { + "start": 20803.84, + "end": 20804.84, + "probability": 0.9175 + }, + { + "start": 20805.6, + "end": 20807.82, + "probability": 0.8369 + }, + { + "start": 20808.16, + "end": 20812.7, + "probability": 0.9941 + }, + { + "start": 20813.42, + "end": 20817.5, + "probability": 0.9809 + }, + { + "start": 20819.3, + "end": 20820.42, + "probability": 0.9438 + }, + { + "start": 20820.78, + "end": 20822.62, + "probability": 0.8062 + }, + { + "start": 20822.78, + "end": 20823.86, + "probability": 0.8997 + }, + { + "start": 20824.0, + "end": 20825.34, + "probability": 0.96 + }, + { + "start": 20825.34, + "end": 20825.42, + "probability": 0.0167 + }, + { + "start": 20825.42, + "end": 20826.34, + "probability": 0.9946 + }, + { + "start": 20827.62, + "end": 20830.1, + "probability": 0.4964 + }, + { + "start": 20830.36, + "end": 20831.96, + "probability": 0.8213 + }, + { + "start": 20832.58, + "end": 20834.46, + "probability": 0.8981 + }, + { + "start": 20834.46, + "end": 20834.53, + "probability": 0.2592 + }, + { + "start": 20834.84, + "end": 20835.22, + "probability": 0.2892 + }, + { + "start": 20835.28, + "end": 20835.3, + "probability": 0.6935 + }, + { + "start": 20835.3, + "end": 20838.44, + "probability": 0.9462 + }, + { + "start": 20839.64, + "end": 20839.92, + "probability": 0.0661 + }, + { + "start": 20839.92, + "end": 20842.42, + "probability": 0.7808 + }, + { + "start": 20842.72, + "end": 20842.94, + "probability": 0.8442 + }, + { + "start": 20843.02, + "end": 20843.22, + "probability": 0.8536 + }, + { + "start": 20843.24, + "end": 20845.9, + "probability": 0.9856 + }, + { + "start": 20846.06, + "end": 20848.92, + "probability": 0.978 + }, + { + "start": 20849.0, + "end": 20849.75, + "probability": 0.5527 + }, + { + "start": 20850.08, + "end": 20850.16, + "probability": 0.1845 + }, + { + "start": 20850.16, + "end": 20851.64, + "probability": 0.9367 + }, + { + "start": 20852.3, + "end": 20855.46, + "probability": 0.9912 + }, + { + "start": 20855.76, + "end": 20858.06, + "probability": 0.9761 + }, + { + "start": 20858.76, + "end": 20859.25, + "probability": 0.9146 + }, + { + "start": 20859.84, + "end": 20860.91, + "probability": 0.9181 + }, + { + "start": 20861.52, + "end": 20866.6, + "probability": 0.9922 + }, + { + "start": 20867.2, + "end": 20870.22, + "probability": 0.9978 + }, + { + "start": 20870.22, + "end": 20874.74, + "probability": 0.9979 + }, + { + "start": 20875.58, + "end": 20876.66, + "probability": 0.974 + }, + { + "start": 20876.86, + "end": 20877.18, + "probability": 0.6182 + }, + { + "start": 20877.24, + "end": 20878.98, + "probability": 0.9444 + }, + { + "start": 20879.38, + "end": 20881.54, + "probability": 0.9717 + }, + { + "start": 20882.64, + "end": 20887.24, + "probability": 0.9971 + }, + { + "start": 20887.24, + "end": 20890.3, + "probability": 0.9984 + }, + { + "start": 20891.26, + "end": 20895.4, + "probability": 0.9945 + }, + { + "start": 20896.16, + "end": 20898.14, + "probability": 0.9917 + }, + { + "start": 20899.5, + "end": 20902.26, + "probability": 0.9893 + }, + { + "start": 20903.02, + "end": 20905.5, + "probability": 0.8691 + }, + { + "start": 20906.46, + "end": 20908.26, + "probability": 0.9489 + }, + { + "start": 20908.42, + "end": 20910.54, + "probability": 0.9959 + }, + { + "start": 20910.54, + "end": 20913.88, + "probability": 0.9985 + }, + { + "start": 20914.32, + "end": 20915.24, + "probability": 0.8154 + }, + { + "start": 20915.28, + "end": 20915.58, + "probability": 0.8244 + }, + { + "start": 20915.72, + "end": 20917.24, + "probability": 0.8994 + }, + { + "start": 20917.68, + "end": 20924.04, + "probability": 0.9582 + }, + { + "start": 20925.04, + "end": 20925.38, + "probability": 0.3828 + }, + { + "start": 20925.56, + "end": 20926.56, + "probability": 0.8838 + }, + { + "start": 20926.78, + "end": 20928.66, + "probability": 0.9933 + }, + { + "start": 20929.2, + "end": 20931.72, + "probability": 0.9745 + }, + { + "start": 20932.24, + "end": 20933.48, + "probability": 0.9744 + }, + { + "start": 20933.92, + "end": 20940.06, + "probability": 0.9939 + }, + { + "start": 20940.06, + "end": 20945.56, + "probability": 0.9982 + }, + { + "start": 20945.7, + "end": 20946.26, + "probability": 0.7573 + }, + { + "start": 20948.24, + "end": 20948.54, + "probability": 0.6848 + }, + { + "start": 20949.42, + "end": 20950.24, + "probability": 0.9842 + }, + { + "start": 20951.0, + "end": 20951.76, + "probability": 0.7044 + }, + { + "start": 20952.6, + "end": 20955.0, + "probability": 0.3289 + }, + { + "start": 20956.36, + "end": 20957.06, + "probability": 0.3825 + }, + { + "start": 20959.04, + "end": 20960.84, + "probability": 0.5528 + }, + { + "start": 20961.3, + "end": 20963.28, + "probability": 0.8422 + }, + { + "start": 20964.32, + "end": 20967.3, + "probability": 0.8438 + }, + { + "start": 20967.34, + "end": 20968.99, + "probability": 0.9822 + }, + { + "start": 20969.96, + "end": 20971.52, + "probability": 0.9459 + }, + { + "start": 20971.56, + "end": 20972.16, + "probability": 0.823 + }, + { + "start": 20972.36, + "end": 20973.12, + "probability": 0.9558 + }, + { + "start": 20973.3, + "end": 20975.04, + "probability": 0.8123 + }, + { + "start": 20975.62, + "end": 20977.28, + "probability": 0.8553 + }, + { + "start": 20978.42, + "end": 20983.14, + "probability": 0.8849 + }, + { + "start": 20984.92, + "end": 20985.58, + "probability": 0.7474 + }, + { + "start": 20985.62, + "end": 20986.46, + "probability": 0.8417 + }, + { + "start": 20986.88, + "end": 20988.64, + "probability": 0.4655 + }, + { + "start": 20988.96, + "end": 20989.38, + "probability": 0.8148 + }, + { + "start": 20989.4, + "end": 20990.08, + "probability": 0.7474 + }, + { + "start": 20990.76, + "end": 20992.36, + "probability": 0.9888 + }, + { + "start": 20992.88, + "end": 20994.44, + "probability": 0.9764 + }, + { + "start": 20994.84, + "end": 20996.62, + "probability": 0.9924 + }, + { + "start": 20997.82, + "end": 21000.44, + "probability": 0.9495 + }, + { + "start": 21000.54, + "end": 21001.02, + "probability": 0.7346 + }, + { + "start": 21001.18, + "end": 21002.92, + "probability": 0.9274 + }, + { + "start": 21003.4, + "end": 21004.74, + "probability": 0.6577 + }, + { + "start": 21005.18, + "end": 21006.34, + "probability": 0.8163 + }, + { + "start": 21006.96, + "end": 21008.16, + "probability": 0.8097 + }, + { + "start": 21008.52, + "end": 21008.9, + "probability": 0.9856 + }, + { + "start": 21009.28, + "end": 21010.94, + "probability": 0.9824 + }, + { + "start": 21011.08, + "end": 21011.84, + "probability": 0.9652 + }, + { + "start": 21012.28, + "end": 21014.16, + "probability": 0.7902 + }, + { + "start": 21014.24, + "end": 21014.92, + "probability": 0.808 + }, + { + "start": 21015.08, + "end": 21016.52, + "probability": 0.8638 + }, + { + "start": 21016.98, + "end": 21020.26, + "probability": 0.8701 + }, + { + "start": 21020.44, + "end": 21024.08, + "probability": 0.9546 + }, + { + "start": 21024.16, + "end": 21026.02, + "probability": 0.9141 + }, + { + "start": 21026.04, + "end": 21026.18, + "probability": 0.4282 + }, + { + "start": 21026.36, + "end": 21028.36, + "probability": 0.9919 + }, + { + "start": 21029.04, + "end": 21029.54, + "probability": 0.8357 + }, + { + "start": 21029.9, + "end": 21031.96, + "probability": 0.7235 + }, + { + "start": 21032.98, + "end": 21034.28, + "probability": 0.9314 + }, + { + "start": 21034.36, + "end": 21035.4, + "probability": 0.6992 + }, + { + "start": 21035.44, + "end": 21036.28, + "probability": 0.8718 + }, + { + "start": 21036.38, + "end": 21037.76, + "probability": 0.9937 + }, + { + "start": 21037.88, + "end": 21040.36, + "probability": 0.9263 + }, + { + "start": 21040.94, + "end": 21042.06, + "probability": 0.9927 + }, + { + "start": 21042.38, + "end": 21045.42, + "probability": 0.9426 + }, + { + "start": 21045.8, + "end": 21046.52, + "probability": 0.7618 + }, + { + "start": 21046.64, + "end": 21048.58, + "probability": 0.7458 + }, + { + "start": 21049.18, + "end": 21051.82, + "probability": 0.7887 + }, + { + "start": 21051.92, + "end": 21054.38, + "probability": 0.5047 + }, + { + "start": 21054.42, + "end": 21057.98, + "probability": 0.6889 + }, + { + "start": 21058.08, + "end": 21060.56, + "probability": 0.9924 + }, + { + "start": 21061.0, + "end": 21062.68, + "probability": 0.8317 + }, + { + "start": 21063.08, + "end": 21065.78, + "probability": 0.9333 + }, + { + "start": 21066.06, + "end": 21067.12, + "probability": 0.9263 + }, + { + "start": 21067.76, + "end": 21072.9, + "probability": 0.4005 + }, + { + "start": 21073.42, + "end": 21074.44, + "probability": 0.7565 + }, + { + "start": 21074.94, + "end": 21075.58, + "probability": 0.3991 + }, + { + "start": 21075.62, + "end": 21076.28, + "probability": 0.7837 + }, + { + "start": 21076.68, + "end": 21077.38, + "probability": 0.4759 + }, + { + "start": 21077.44, + "end": 21078.63, + "probability": 0.7069 + }, + { + "start": 21078.84, + "end": 21079.78, + "probability": 0.5901 + }, + { + "start": 21080.0, + "end": 21080.38, + "probability": 0.3573 + }, + { + "start": 21080.5, + "end": 21081.2, + "probability": 0.6785 + }, + { + "start": 21081.44, + "end": 21082.54, + "probability": 0.8171 + }, + { + "start": 21082.68, + "end": 21084.68, + "probability": 0.1077 + }, + { + "start": 21084.68, + "end": 21087.98, + "probability": 0.2724 + }, + { + "start": 21088.18, + "end": 21088.82, + "probability": 0.0435 + }, + { + "start": 21089.22, + "end": 21089.22, + "probability": 0.3557 + }, + { + "start": 21089.28, + "end": 21090.82, + "probability": 0.0971 + }, + { + "start": 21091.2, + "end": 21096.58, + "probability": 0.9919 + }, + { + "start": 21096.68, + "end": 21097.58, + "probability": 0.9813 + }, + { + "start": 21097.9, + "end": 21101.18, + "probability": 0.9448 + }, + { + "start": 21101.32, + "end": 21102.78, + "probability": 0.9928 + }, + { + "start": 21102.88, + "end": 21104.22, + "probability": 0.9889 + }, + { + "start": 21104.7, + "end": 21106.86, + "probability": 0.854 + }, + { + "start": 21107.12, + "end": 21108.56, + "probability": 0.9554 + }, + { + "start": 21108.72, + "end": 21109.8, + "probability": 0.6943 + }, + { + "start": 21109.9, + "end": 21110.44, + "probability": 0.7683 + }, + { + "start": 21110.72, + "end": 21114.24, + "probability": 0.4661 + }, + { + "start": 21114.52, + "end": 21118.72, + "probability": 0.978 + }, + { + "start": 21118.82, + "end": 21120.0, + "probability": 0.2951 + }, + { + "start": 21120.32, + "end": 21122.36, + "probability": 0.3904 + }, + { + "start": 21122.46, + "end": 21123.36, + "probability": 0.8956 + }, + { + "start": 21124.16, + "end": 21126.7, + "probability": 0.7006 + }, + { + "start": 21129.62, + "end": 21130.74, + "probability": 0.5844 + }, + { + "start": 21131.14, + "end": 21133.28, + "probability": 0.9973 + }, + { + "start": 21133.46, + "end": 21134.64, + "probability": 0.8305 + }, + { + "start": 21135.02, + "end": 21138.24, + "probability": 0.9733 + }, + { + "start": 21138.36, + "end": 21140.48, + "probability": 0.8467 + }, + { + "start": 21140.64, + "end": 21142.66, + "probability": 0.9927 + }, + { + "start": 21142.96, + "end": 21145.34, + "probability": 0.995 + }, + { + "start": 21145.86, + "end": 21149.08, + "probability": 0.9969 + }, + { + "start": 21149.14, + "end": 21150.62, + "probability": 0.5394 + }, + { + "start": 21150.7, + "end": 21151.93, + "probability": 0.9966 + }, + { + "start": 21153.82, + "end": 21159.68, + "probability": 0.8638 + }, + { + "start": 21159.82, + "end": 21160.58, + "probability": 0.7573 + }, + { + "start": 21161.38, + "end": 21162.1, + "probability": 0.2213 + }, + { + "start": 21162.1, + "end": 21162.36, + "probability": 0.1228 + }, + { + "start": 21162.8, + "end": 21165.56, + "probability": 0.076 + }, + { + "start": 21165.56, + "end": 21167.36, + "probability": 0.2 + }, + { + "start": 21167.46, + "end": 21168.59, + "probability": 0.1405 + }, + { + "start": 21169.04, + "end": 21170.26, + "probability": 0.2836 + }, + { + "start": 21172.48, + "end": 21172.88, + "probability": 0.0804 + }, + { + "start": 21173.3, + "end": 21175.52, + "probability": 0.0696 + }, + { + "start": 21175.92, + "end": 21178.0, + "probability": 0.4916 + }, + { + "start": 21178.24, + "end": 21179.18, + "probability": 0.5109 + }, + { + "start": 21179.42, + "end": 21179.86, + "probability": 0.6647 + }, + { + "start": 21179.88, + "end": 21180.3, + "probability": 0.577 + }, + { + "start": 21181.02, + "end": 21181.42, + "probability": 0.3017 + }, + { + "start": 21182.88, + "end": 21185.88, + "probability": 0.0124 + }, + { + "start": 21185.96, + "end": 21189.95, + "probability": 0.0309 + }, + { + "start": 21193.08, + "end": 21193.26, + "probability": 0.0449 + }, + { + "start": 21193.26, + "end": 21193.26, + "probability": 0.2106 + }, + { + "start": 21193.26, + "end": 21193.26, + "probability": 0.0623 + }, + { + "start": 21193.26, + "end": 21193.26, + "probability": 0.2883 + }, + { + "start": 21193.26, + "end": 21193.26, + "probability": 0.0196 + }, + { + "start": 21193.26, + "end": 21193.68, + "probability": 0.3919 + }, + { + "start": 21193.86, + "end": 21194.38, + "probability": 0.4296 + }, + { + "start": 21194.94, + "end": 21197.22, + "probability": 0.8271 + }, + { + "start": 21197.82, + "end": 21199.06, + "probability": 0.9136 + }, + { + "start": 21199.06, + "end": 21201.1, + "probability": 0.4176 + }, + { + "start": 21201.16, + "end": 21203.34, + "probability": 0.6694 + }, + { + "start": 21203.34, + "end": 21203.36, + "probability": 0.618 + }, + { + "start": 21203.42, + "end": 21205.4, + "probability": 0.8649 + }, + { + "start": 21207.54, + "end": 21209.88, + "probability": 0.6537 + }, + { + "start": 21210.16, + "end": 21213.11, + "probability": 0.3288 + }, + { + "start": 21215.2, + "end": 21217.38, + "probability": 0.6205 + }, + { + "start": 21219.08, + "end": 21220.93, + "probability": 0.6675 + }, + { + "start": 21221.86, + "end": 21222.5, + "probability": 0.728 + }, + { + "start": 21222.7, + "end": 21225.24, + "probability": 0.1415 + }, + { + "start": 21226.78, + "end": 21226.94, + "probability": 0.0018 + }, + { + "start": 21230.78, + "end": 21232.14, + "probability": 0.2332 + }, + { + "start": 21233.36, + "end": 21234.9, + "probability": 0.5496 + }, + { + "start": 21235.44, + "end": 21237.9, + "probability": 0.6302 + }, + { + "start": 21237.94, + "end": 21239.28, + "probability": 0.5522 + }, + { + "start": 21239.4, + "end": 21240.82, + "probability": 0.9822 + }, + { + "start": 21241.46, + "end": 21245.66, + "probability": 0.9983 + }, + { + "start": 21245.66, + "end": 21250.42, + "probability": 0.993 + }, + { + "start": 21250.7, + "end": 21251.18, + "probability": 0.704 + }, + { + "start": 21251.82, + "end": 21253.34, + "probability": 0.6251 + }, + { + "start": 21253.46, + "end": 21255.36, + "probability": 0.9237 + }, + { + "start": 21256.14, + "end": 21257.87, + "probability": 0.9305 + }, + { + "start": 21259.64, + "end": 21261.5, + "probability": 0.8914 + }, + { + "start": 21262.06, + "end": 21266.2, + "probability": 0.8392 + }, + { + "start": 21266.2, + "end": 21270.66, + "probability": 0.8424 + }, + { + "start": 21271.1, + "end": 21271.26, + "probability": 0.0186 + }, + { + "start": 21271.26, + "end": 21272.78, + "probability": 0.6292 + }, + { + "start": 21272.9, + "end": 21273.82, + "probability": 0.8049 + }, + { + "start": 21275.16, + "end": 21276.82, + "probability": 0.8688 + }, + { + "start": 21278.24, + "end": 21278.58, + "probability": 0.7294 + }, + { + "start": 21291.94, + "end": 21294.7, + "probability": 0.2613 + }, + { + "start": 21294.86, + "end": 21295.34, + "probability": 0.5145 + }, + { + "start": 21295.44, + "end": 21296.18, + "probability": 0.5622 + }, + { + "start": 21299.16, + "end": 21301.36, + "probability": 0.8712 + }, + { + "start": 21302.44, + "end": 21304.52, + "probability": 0.7626 + }, + { + "start": 21305.86, + "end": 21310.9, + "probability": 0.9927 + }, + { + "start": 21311.78, + "end": 21313.8, + "probability": 0.7581 + }, + { + "start": 21314.8, + "end": 21319.58, + "probability": 0.7457 + }, + { + "start": 21319.72, + "end": 21322.78, + "probability": 0.9841 + }, + { + "start": 21322.78, + "end": 21327.86, + "probability": 0.9311 + }, + { + "start": 21328.24, + "end": 21329.62, + "probability": 0.9806 + }, + { + "start": 21329.7, + "end": 21330.76, + "probability": 0.9312 + }, + { + "start": 21331.12, + "end": 21332.76, + "probability": 0.9321 + }, + { + "start": 21332.84, + "end": 21333.76, + "probability": 0.8301 + }, + { + "start": 21333.84, + "end": 21336.42, + "probability": 0.9394 + }, + { + "start": 21336.5, + "end": 21337.56, + "probability": 0.9642 + }, + { + "start": 21337.72, + "end": 21339.14, + "probability": 0.8977 + }, + { + "start": 21341.32, + "end": 21344.46, + "probability": 0.573 + }, + { + "start": 21344.97, + "end": 21346.86, + "probability": 0.9214 + }, + { + "start": 21346.92, + "end": 21349.32, + "probability": 0.9241 + }, + { + "start": 21349.58, + "end": 21350.64, + "probability": 0.6994 + }, + { + "start": 21350.92, + "end": 21351.32, + "probability": 0.4401 + }, + { + "start": 21351.74, + "end": 21352.46, + "probability": 0.5922 + }, + { + "start": 21352.52, + "end": 21353.1, + "probability": 0.892 + }, + { + "start": 21353.54, + "end": 21355.68, + "probability": 0.9801 + }, + { + "start": 21355.78, + "end": 21358.62, + "probability": 0.9707 + }, + { + "start": 21358.68, + "end": 21361.46, + "probability": 0.7609 + }, + { + "start": 21361.56, + "end": 21364.78, + "probability": 0.9648 + }, + { + "start": 21364.94, + "end": 21366.7, + "probability": 0.8273 + }, + { + "start": 21367.1, + "end": 21368.68, + "probability": 0.8476 + }, + { + "start": 21368.9, + "end": 21370.84, + "probability": 0.9932 + }, + { + "start": 21371.02, + "end": 21371.76, + "probability": 0.9668 + }, + { + "start": 21371.94, + "end": 21373.62, + "probability": 0.9512 + }, + { + "start": 21374.0, + "end": 21376.0, + "probability": 0.9927 + }, + { + "start": 21376.84, + "end": 21379.46, + "probability": 0.9429 + }, + { + "start": 21379.58, + "end": 21381.28, + "probability": 0.9886 + }, + { + "start": 21381.82, + "end": 21382.74, + "probability": 0.9111 + }, + { + "start": 21382.92, + "end": 21383.9, + "probability": 0.7493 + }, + { + "start": 21384.12, + "end": 21385.22, + "probability": 0.9395 + }, + { + "start": 21385.24, + "end": 21386.0, + "probability": 0.7321 + }, + { + "start": 21386.0, + "end": 21386.56, + "probability": 0.9145 + }, + { + "start": 21387.32, + "end": 21390.44, + "probability": 0.6655 + }, + { + "start": 21390.54, + "end": 21392.52, + "probability": 0.4017 + }, + { + "start": 21393.04, + "end": 21394.1, + "probability": 0.958 + }, + { + "start": 21394.36, + "end": 21395.14, + "probability": 0.9106 + }, + { + "start": 21395.4, + "end": 21396.55, + "probability": 0.9121 + }, + { + "start": 21397.02, + "end": 21397.92, + "probability": 0.8998 + }, + { + "start": 21398.24, + "end": 21399.36, + "probability": 0.6426 + }, + { + "start": 21399.64, + "end": 21400.6, + "probability": 0.812 + }, + { + "start": 21401.14, + "end": 21401.86, + "probability": 0.9387 + }, + { + "start": 21402.0, + "end": 21402.78, + "probability": 0.6626 + }, + { + "start": 21402.82, + "end": 21406.6, + "probability": 0.8423 + }, + { + "start": 21407.08, + "end": 21407.57, + "probability": 0.9772 + }, + { + "start": 21408.3, + "end": 21409.12, + "probability": 0.8896 + }, + { + "start": 21409.52, + "end": 21410.84, + "probability": 0.9722 + }, + { + "start": 21410.94, + "end": 21411.76, + "probability": 0.9149 + }, + { + "start": 21412.34, + "end": 21413.82, + "probability": 0.8287 + }, + { + "start": 21414.0, + "end": 21414.66, + "probability": 0.9461 + }, + { + "start": 21414.76, + "end": 21415.54, + "probability": 0.94 + }, + { + "start": 21416.36, + "end": 21420.16, + "probability": 0.842 + }, + { + "start": 21420.3, + "end": 21420.74, + "probability": 0.6785 + }, + { + "start": 21421.12, + "end": 21423.84, + "probability": 0.7 + }, + { + "start": 21423.98, + "end": 21425.38, + "probability": 0.9817 + }, + { + "start": 21426.03, + "end": 21427.44, + "probability": 0.7051 + }, + { + "start": 21427.64, + "end": 21429.18, + "probability": 0.8113 + }, + { + "start": 21429.26, + "end": 21430.3, + "probability": 0.8852 + }, + { + "start": 21430.6, + "end": 21433.3, + "probability": 0.8913 + }, + { + "start": 21434.54, + "end": 21434.88, + "probability": 0.7332 + }, + { + "start": 21435.12, + "end": 21435.6, + "probability": 0.6445 + }, + { + "start": 21435.84, + "end": 21437.42, + "probability": 0.4686 + }, + { + "start": 21437.42, + "end": 21440.02, + "probability": 0.7151 + }, + { + "start": 21440.8, + "end": 21441.87, + "probability": 0.4924 + }, + { + "start": 21442.0, + "end": 21445.78, + "probability": 0.9697 + }, + { + "start": 21445.96, + "end": 21449.04, + "probability": 0.9866 + }, + { + "start": 21449.36, + "end": 21450.8, + "probability": 0.6932 + }, + { + "start": 21450.8, + "end": 21452.52, + "probability": 0.6096 + }, + { + "start": 21453.46, + "end": 21454.48, + "probability": 0.9678 + }, + { + "start": 21455.1, + "end": 21457.18, + "probability": 0.9263 + }, + { + "start": 21457.22, + "end": 21460.5, + "probability": 0.9668 + }, + { + "start": 21460.82, + "end": 21461.32, + "probability": 0.6642 + }, + { + "start": 21461.46, + "end": 21462.2, + "probability": 0.5493 + }, + { + "start": 21462.3, + "end": 21464.76, + "probability": 0.9028 + }, + { + "start": 21465.22, + "end": 21466.3, + "probability": 0.9152 + }, + { + "start": 21466.3, + "end": 21467.28, + "probability": 0.9473 + }, + { + "start": 21467.3, + "end": 21467.9, + "probability": 0.452 + }, + { + "start": 21468.54, + "end": 21471.18, + "probability": 0.9094 + }, + { + "start": 21471.6, + "end": 21472.36, + "probability": 0.7 + }, + { + "start": 21472.7, + "end": 21473.66, + "probability": 0.8399 + }, + { + "start": 21474.24, + "end": 21475.26, + "probability": 0.855 + }, + { + "start": 21475.46, + "end": 21477.42, + "probability": 0.9536 + }, + { + "start": 21477.94, + "end": 21479.34, + "probability": 0.7903 + }, + { + "start": 21479.78, + "end": 21483.94, + "probability": 0.9924 + }, + { + "start": 21484.1, + "end": 21486.12, + "probability": 0.9978 + }, + { + "start": 21486.76, + "end": 21488.06, + "probability": 0.9961 + }, + { + "start": 21488.34, + "end": 21490.8, + "probability": 0.9258 + }, + { + "start": 21491.2, + "end": 21491.54, + "probability": 0.738 + }, + { + "start": 21491.64, + "end": 21492.32, + "probability": 0.9946 + }, + { + "start": 21493.02, + "end": 21494.54, + "probability": 0.9316 + }, + { + "start": 21494.7, + "end": 21498.8, + "probability": 0.9891 + }, + { + "start": 21498.8, + "end": 21503.4, + "probability": 0.5867 + }, + { + "start": 21503.84, + "end": 21505.42, + "probability": 0.8574 + }, + { + "start": 21506.08, + "end": 21509.48, + "probability": 0.5253 + }, + { + "start": 21509.56, + "end": 21509.77, + "probability": 0.3793 + }, + { + "start": 21510.76, + "end": 21512.77, + "probability": 0.7966 + }, + { + "start": 21513.44, + "end": 21517.64, + "probability": 0.6791 + }, + { + "start": 21517.68, + "end": 21518.76, + "probability": 0.902 + }, + { + "start": 21518.88, + "end": 21520.06, + "probability": 0.8607 + }, + { + "start": 21521.12, + "end": 21522.76, + "probability": 0.5396 + }, + { + "start": 21523.06, + "end": 21528.79, + "probability": 0.6662 + }, + { + "start": 21528.94, + "end": 21530.94, + "probability": 0.873 + }, + { + "start": 21531.42, + "end": 21533.46, + "probability": 0.837 + }, + { + "start": 21533.86, + "end": 21535.86, + "probability": 0.8715 + }, + { + "start": 21536.06, + "end": 21537.2, + "probability": 0.7326 + }, + { + "start": 21537.28, + "end": 21538.4, + "probability": 0.9766 + }, + { + "start": 21539.14, + "end": 21543.27, + "probability": 0.5376 + }, + { + "start": 21544.04, + "end": 21545.62, + "probability": 0.9819 + }, + { + "start": 21545.86, + "end": 21546.78, + "probability": 0.5786 + }, + { + "start": 21546.94, + "end": 21547.45, + "probability": 0.8785 + }, + { + "start": 21548.68, + "end": 21550.8, + "probability": 0.6955 + }, + { + "start": 21551.26, + "end": 21552.04, + "probability": 0.8374 + }, + { + "start": 21552.12, + "end": 21553.16, + "probability": 0.8837 + }, + { + "start": 21554.08, + "end": 21554.6, + "probability": 0.9014 + }, + { + "start": 21554.66, + "end": 21557.12, + "probability": 0.9683 + }, + { + "start": 21557.22, + "end": 21557.82, + "probability": 0.9427 + }, + { + "start": 21558.94, + "end": 21562.04, + "probability": 0.8926 + }, + { + "start": 21562.14, + "end": 21566.0, + "probability": 0.8622 + }, + { + "start": 21566.14, + "end": 21567.0, + "probability": 0.935 + }, + { + "start": 21567.18, + "end": 21568.36, + "probability": 0.9013 + }, + { + "start": 21568.64, + "end": 21570.52, + "probability": 0.7922 + }, + { + "start": 21571.44, + "end": 21573.18, + "probability": 0.7254 + }, + { + "start": 21573.32, + "end": 21574.52, + "probability": 0.7156 + }, + { + "start": 21574.72, + "end": 21575.34, + "probability": 0.7938 + }, + { + "start": 21575.42, + "end": 21576.44, + "probability": 0.7668 + }, + { + "start": 21577.38, + "end": 21578.46, + "probability": 0.8992 + }, + { + "start": 21579.08, + "end": 21579.86, + "probability": 0.8421 + }, + { + "start": 21580.28, + "end": 21582.42, + "probability": 0.9809 + }, + { + "start": 21582.42, + "end": 21586.5, + "probability": 0.7836 + }, + { + "start": 21587.94, + "end": 21589.74, + "probability": 0.6786 + }, + { + "start": 21590.04, + "end": 21590.6, + "probability": 0.1969 + }, + { + "start": 21591.58, + "end": 21595.36, + "probability": 0.66 + }, + { + "start": 21595.72, + "end": 21596.86, + "probability": 0.9668 + }, + { + "start": 21596.94, + "end": 21598.08, + "probability": 0.7993 + }, + { + "start": 21598.36, + "end": 21599.25, + "probability": 0.9216 + }, + { + "start": 21599.64, + "end": 21601.08, + "probability": 0.6481 + }, + { + "start": 21601.52, + "end": 21602.28, + "probability": 0.8138 + }, + { + "start": 21602.4, + "end": 21605.64, + "probability": 0.9676 + }, + { + "start": 21606.26, + "end": 21609.34, + "probability": 0.9141 + }, + { + "start": 21609.58, + "end": 21610.08, + "probability": 0.3689 + }, + { + "start": 21610.16, + "end": 21611.96, + "probability": 0.9049 + }, + { + "start": 21612.46, + "end": 21614.88, + "probability": 0.9518 + }, + { + "start": 21615.56, + "end": 21618.65, + "probability": 0.9863 + }, + { + "start": 21618.96, + "end": 21620.86, + "probability": 0.7335 + }, + { + "start": 21620.92, + "end": 21621.96, + "probability": 0.9729 + }, + { + "start": 21622.16, + "end": 21624.06, + "probability": 0.976 + }, + { + "start": 21624.68, + "end": 21625.7, + "probability": 0.7544 + }, + { + "start": 21625.82, + "end": 21631.2, + "probability": 0.7488 + }, + { + "start": 21631.58, + "end": 21633.08, + "probability": 0.7864 + }, + { + "start": 21633.24, + "end": 21634.82, + "probability": 0.8044 + }, + { + "start": 21634.82, + "end": 21636.17, + "probability": 0.7983 + }, + { + "start": 21637.34, + "end": 21640.44, + "probability": 0.9299 + }, + { + "start": 21641.04, + "end": 21645.84, + "probability": 0.9391 + }, + { + "start": 21646.56, + "end": 21647.8, + "probability": 0.9697 + }, + { + "start": 21647.88, + "end": 21652.54, + "probability": 0.6511 + }, + { + "start": 21652.62, + "end": 21655.32, + "probability": 0.7375 + }, + { + "start": 21655.36, + "end": 21656.28, + "probability": 0.9698 + }, + { + "start": 21657.88, + "end": 21658.22, + "probability": 0.6758 + }, + { + "start": 21658.38, + "end": 21663.48, + "probability": 0.8604 + }, + { + "start": 21664.0, + "end": 21667.2, + "probability": 0.9858 + }, + { + "start": 21667.62, + "end": 21668.29, + "probability": 0.8896 + }, + { + "start": 21668.84, + "end": 21669.35, + "probability": 0.9639 + }, + { + "start": 21669.78, + "end": 21670.55, + "probability": 0.9431 + }, + { + "start": 21671.16, + "end": 21673.52, + "probability": 0.8379 + }, + { + "start": 21673.68, + "end": 21675.12, + "probability": 0.7534 + }, + { + "start": 21675.44, + "end": 21676.5, + "probability": 0.8308 + }, + { + "start": 21676.8, + "end": 21678.1, + "probability": 0.989 + }, + { + "start": 21678.14, + "end": 21679.32, + "probability": 0.973 + }, + { + "start": 21679.38, + "end": 21682.02, + "probability": 0.8307 + }, + { + "start": 21683.74, + "end": 21684.66, + "probability": 0.8131 + }, + { + "start": 21684.82, + "end": 21685.94, + "probability": 0.8683 + }, + { + "start": 21686.39, + "end": 21694.32, + "probability": 0.9844 + }, + { + "start": 21694.52, + "end": 21696.62, + "probability": 0.8773 + }, + { + "start": 21696.78, + "end": 21697.67, + "probability": 0.8172 + }, + { + "start": 21697.96, + "end": 21698.44, + "probability": 0.7702 + }, + { + "start": 21698.58, + "end": 21703.74, + "probability": 0.7304 + }, + { + "start": 21703.86, + "end": 21705.93, + "probability": 0.6848 + }, + { + "start": 21706.66, + "end": 21708.84, + "probability": 0.875 + }, + { + "start": 21709.64, + "end": 21710.06, + "probability": 0.5984 + }, + { + "start": 21710.14, + "end": 21710.63, + "probability": 0.8629 + }, + { + "start": 21710.7, + "end": 21712.0, + "probability": 0.3298 + }, + { + "start": 21712.28, + "end": 21713.42, + "probability": 0.9561 + }, + { + "start": 21713.48, + "end": 21715.07, + "probability": 0.8336 + }, + { + "start": 21715.84, + "end": 21718.44, + "probability": 0.8763 + }, + { + "start": 21718.88, + "end": 21720.48, + "probability": 0.8977 + }, + { + "start": 21720.92, + "end": 21722.14, + "probability": 0.8485 + }, + { + "start": 21722.52, + "end": 21723.76, + "probability": 0.9148 + }, + { + "start": 21724.1, + "end": 21724.94, + "probability": 0.9188 + }, + { + "start": 21725.12, + "end": 21727.12, + "probability": 0.5734 + }, + { + "start": 21727.18, + "end": 21728.54, + "probability": 0.902 + }, + { + "start": 21729.14, + "end": 21731.16, + "probability": 0.7609 + }, + { + "start": 21731.86, + "end": 21732.92, + "probability": 0.7668 + }, + { + "start": 21733.88, + "end": 21740.28, + "probability": 0.8692 + }, + { + "start": 21740.96, + "end": 21743.9, + "probability": 0.7626 + }, + { + "start": 21744.0, + "end": 21746.18, + "probability": 0.948 + }, + { + "start": 21746.32, + "end": 21747.58, + "probability": 0.9135 + }, + { + "start": 21747.98, + "end": 21748.74, + "probability": 0.98 + }, + { + "start": 21749.3, + "end": 21749.78, + "probability": 0.0028 + }, + { + "start": 21750.66, + "end": 21753.86, + "probability": 0.8681 + }, + { + "start": 21754.72, + "end": 21755.94, + "probability": 0.8652 + }, + { + "start": 21756.18, + "end": 21759.54, + "probability": 0.9373 + }, + { + "start": 21760.02, + "end": 21762.2, + "probability": 0.7983 + }, + { + "start": 21762.88, + "end": 21766.34, + "probability": 0.8965 + }, + { + "start": 21767.1, + "end": 21767.88, + "probability": 0.7514 + }, + { + "start": 21768.12, + "end": 21769.34, + "probability": 0.992 + }, + { + "start": 21769.86, + "end": 21771.7, + "probability": 0.9951 + }, + { + "start": 21772.08, + "end": 21775.22, + "probability": 0.6765 + }, + { + "start": 21775.44, + "end": 21778.58, + "probability": 0.9884 + }, + { + "start": 21778.64, + "end": 21779.48, + "probability": 0.621 + }, + { + "start": 21779.82, + "end": 21780.62, + "probability": 0.9136 + }, + { + "start": 21780.94, + "end": 21785.8, + "probability": 0.8202 + }, + { + "start": 21785.9, + "end": 21787.48, + "probability": 0.9393 + }, + { + "start": 21787.98, + "end": 21790.96, + "probability": 0.9487 + }, + { + "start": 21791.52, + "end": 21792.22, + "probability": 0.7613 + }, + { + "start": 21792.3, + "end": 21794.42, + "probability": 0.9866 + }, + { + "start": 21794.52, + "end": 21795.56, + "probability": 0.7532 + }, + { + "start": 21795.74, + "end": 21796.78, + "probability": 0.5504 + }, + { + "start": 21796.96, + "end": 21797.62, + "probability": 0.7674 + }, + { + "start": 21797.92, + "end": 21800.48, + "probability": 0.9536 + }, + { + "start": 21801.02, + "end": 21804.0, + "probability": 0.7814 + }, + { + "start": 21804.48, + "end": 21805.42, + "probability": 0.9583 + }, + { + "start": 21805.5, + "end": 21808.08, + "probability": 0.935 + }, + { + "start": 21808.4, + "end": 21810.88, + "probability": 0.8705 + }, + { + "start": 21811.66, + "end": 21815.5, + "probability": 0.9683 + }, + { + "start": 21815.58, + "end": 21818.22, + "probability": 0.9258 + }, + { + "start": 21818.54, + "end": 21820.9, + "probability": 0.981 + }, + { + "start": 21821.04, + "end": 21823.5, + "probability": 0.7837 + }, + { + "start": 21823.58, + "end": 21823.76, + "probability": 0.7082 + }, + { + "start": 21824.8, + "end": 21826.34, + "probability": 0.7498 + }, + { + "start": 21826.66, + "end": 21828.46, + "probability": 0.9395 + }, + { + "start": 21828.84, + "end": 21829.94, + "probability": 0.7957 + }, + { + "start": 21830.02, + "end": 21830.68, + "probability": 0.98 + }, + { + "start": 21830.76, + "end": 21831.35, + "probability": 0.966 + }, + { + "start": 21831.52, + "end": 21832.42, + "probability": 0.965 + }, + { + "start": 21832.48, + "end": 21832.86, + "probability": 0.5415 + }, + { + "start": 21833.14, + "end": 21836.04, + "probability": 0.8019 + }, + { + "start": 21836.48, + "end": 21838.1, + "probability": 0.8963 + }, + { + "start": 21838.18, + "end": 21839.4, + "probability": 0.7433 + }, + { + "start": 21839.76, + "end": 21841.54, + "probability": 0.9604 + }, + { + "start": 21842.11, + "end": 21844.6, + "probability": 0.7453 + }, + { + "start": 21845.02, + "end": 21846.18, + "probability": 0.9443 + }, + { + "start": 21846.3, + "end": 21846.86, + "probability": 0.9166 + }, + { + "start": 21847.26, + "end": 21847.9, + "probability": 0.8246 + }, + { + "start": 21848.0, + "end": 21851.6, + "probability": 0.9544 + }, + { + "start": 21851.76, + "end": 21854.26, + "probability": 0.5744 + }, + { + "start": 21854.36, + "end": 21855.8, + "probability": 0.957 + }, + { + "start": 21856.14, + "end": 21856.78, + "probability": 0.7108 + }, + { + "start": 21856.9, + "end": 21857.48, + "probability": 0.9759 + }, + { + "start": 21857.58, + "end": 21858.3, + "probability": 0.9197 + }, + { + "start": 21858.36, + "end": 21859.86, + "probability": 0.9232 + }, + { + "start": 21860.26, + "end": 21862.48, + "probability": 0.4424 + }, + { + "start": 21863.06, + "end": 21864.84, + "probability": 0.9738 + }, + { + "start": 21865.0, + "end": 21865.62, + "probability": 0.1839 + }, + { + "start": 21866.14, + "end": 21867.1, + "probability": 0.8049 + }, + { + "start": 21867.18, + "end": 21868.08, + "probability": 0.974 + }, + { + "start": 21868.12, + "end": 21869.74, + "probability": 0.9714 + }, + { + "start": 21870.44, + "end": 21871.02, + "probability": 0.4953 + }, + { + "start": 21873.2, + "end": 21873.3, + "probability": 0.0955 + }, + { + "start": 21873.3, + "end": 21874.59, + "probability": 0.5233 + }, + { + "start": 21874.8, + "end": 21875.44, + "probability": 0.7034 + }, + { + "start": 21875.94, + "end": 21876.42, + "probability": 0.499 + }, + { + "start": 21876.5, + "end": 21877.1, + "probability": 0.7104 + }, + { + "start": 21877.16, + "end": 21878.68, + "probability": 0.9451 + }, + { + "start": 21879.02, + "end": 21880.0, + "probability": 0.3009 + }, + { + "start": 21880.08, + "end": 21882.81, + "probability": 0.9357 + }, + { + "start": 21883.08, + "end": 21883.85, + "probability": 0.9419 + }, + { + "start": 21884.34, + "end": 21885.02, + "probability": 0.6586 + }, + { + "start": 21885.12, + "end": 21887.96, + "probability": 0.6362 + }, + { + "start": 21888.06, + "end": 21889.84, + "probability": 0.8371 + }, + { + "start": 21890.0, + "end": 21891.52, + "probability": 0.8379 + }, + { + "start": 21891.66, + "end": 21893.84, + "probability": 0.9189 + }, + { + "start": 21894.3, + "end": 21895.88, + "probability": 0.6181 + }, + { + "start": 21896.31, + "end": 21899.38, + "probability": 0.8245 + }, + { + "start": 21899.96, + "end": 21901.58, + "probability": 0.3731 + }, + { + "start": 21901.58, + "end": 21903.16, + "probability": 0.8345 + }, + { + "start": 21903.16, + "end": 21903.16, + "probability": 0.4379 + }, + { + "start": 21903.16, + "end": 21903.52, + "probability": 0.4707 + }, + { + "start": 21903.9, + "end": 21904.14, + "probability": 0.5925 + }, + { + "start": 21905.8, + "end": 21907.84, + "probability": 0.4177 + }, + { + "start": 21908.12, + "end": 21909.44, + "probability": 0.5824 + }, + { + "start": 21909.54, + "end": 21914.39, + "probability": 0.9885 + }, + { + "start": 21915.54, + "end": 21919.02, + "probability": 0.9989 + }, + { + "start": 21919.1, + "end": 21921.74, + "probability": 0.9449 + }, + { + "start": 21921.8, + "end": 21921.8, + "probability": 0.3804 + }, + { + "start": 21921.8, + "end": 21923.66, + "probability": 0.9988 + }, + { + "start": 21923.86, + "end": 21925.18, + "probability": 0.6968 + }, + { + "start": 21925.78, + "end": 21926.76, + "probability": 0.6434 + }, + { + "start": 21927.56, + "end": 21930.0, + "probability": 0.7108 + }, + { + "start": 21930.52, + "end": 21932.68, + "probability": 0.8334 + }, + { + "start": 21932.92, + "end": 21933.34, + "probability": 0.6206 + }, + { + "start": 21933.7, + "end": 21935.78, + "probability": 0.8931 + }, + { + "start": 21935.92, + "end": 21937.58, + "probability": 0.4269 + }, + { + "start": 21937.64, + "end": 21939.74, + "probability": 0.4627 + }, + { + "start": 21940.68, + "end": 21941.0, + "probability": 0.3388 + }, + { + "start": 21941.2, + "end": 21941.68, + "probability": 0.7374 + }, + { + "start": 21947.93, + "end": 21948.86, + "probability": 0.8156 + }, + { + "start": 21955.14, + "end": 21955.34, + "probability": 0.295 + }, + { + "start": 21955.42, + "end": 21957.62, + "probability": 0.6718 + }, + { + "start": 21962.66, + "end": 21967.3, + "probability": 0.9972 + }, + { + "start": 21967.52, + "end": 21969.24, + "probability": 0.8942 + }, + { + "start": 21969.94, + "end": 21973.24, + "probability": 0.9513 + }, + { + "start": 21974.7, + "end": 21978.34, + "probability": 0.875 + }, + { + "start": 21979.24, + "end": 21981.62, + "probability": 0.778 + }, + { + "start": 21982.24, + "end": 21985.76, + "probability": 0.8272 + }, + { + "start": 21987.3, + "end": 21988.5, + "probability": 0.7146 + }, + { + "start": 21990.1, + "end": 21991.28, + "probability": 0.7236 + }, + { + "start": 22000.8, + "end": 22002.1, + "probability": 0.658 + }, + { + "start": 22002.72, + "end": 22005.82, + "probability": 0.9925 + }, + { + "start": 22007.28, + "end": 22009.38, + "probability": 0.8191 + }, + { + "start": 22010.68, + "end": 22013.92, + "probability": 0.94 + }, + { + "start": 22015.98, + "end": 22015.98, + "probability": 0.0905 + }, + { + "start": 22015.98, + "end": 22019.58, + "probability": 0.9602 + }, + { + "start": 22020.3, + "end": 22022.94, + "probability": 0.95 + }, + { + "start": 22024.08, + "end": 22025.4, + "probability": 0.9933 + }, + { + "start": 22026.86, + "end": 22028.02, + "probability": 0.7571 + }, + { + "start": 22029.44, + "end": 22029.9, + "probability": 0.5025 + }, + { + "start": 22031.08, + "end": 22035.12, + "probability": 0.8927 + }, + { + "start": 22035.34, + "end": 22037.3, + "probability": 0.0283 + }, + { + "start": 22037.3, + "end": 22038.74, + "probability": 0.7033 + }, + { + "start": 22039.38, + "end": 22043.98, + "probability": 0.9104 + }, + { + "start": 22044.54, + "end": 22045.58, + "probability": 0.8116 + }, + { + "start": 22046.66, + "end": 22047.0, + "probability": 0.3088 + }, + { + "start": 22047.1, + "end": 22047.22, + "probability": 0.6379 + }, + { + "start": 22047.44, + "end": 22049.18, + "probability": 0.7461 + }, + { + "start": 22050.28, + "end": 22054.22, + "probability": 0.6812 + }, + { + "start": 22054.74, + "end": 22056.72, + "probability": 0.8846 + }, + { + "start": 22057.7, + "end": 22058.72, + "probability": 0.9137 + }, + { + "start": 22059.7, + "end": 22061.8, + "probability": 0.927 + }, + { + "start": 22063.02, + "end": 22065.89, + "probability": 0.6666 + }, + { + "start": 22066.18, + "end": 22066.44, + "probability": 0.599 + }, + { + "start": 22066.88, + "end": 22067.98, + "probability": 0.9381 + }, + { + "start": 22067.98, + "end": 22068.12, + "probability": 0.7029 + }, + { + "start": 22068.52, + "end": 22070.8, + "probability": 0.9592 + }, + { + "start": 22071.0, + "end": 22073.22, + "probability": 0.8265 + }, + { + "start": 22074.1, + "end": 22078.22, + "probability": 0.9875 + }, + { + "start": 22079.2, + "end": 22081.4, + "probability": 0.9837 + }, + { + "start": 22081.72, + "end": 22085.8, + "probability": 0.3943 + }, + { + "start": 22085.8, + "end": 22087.08, + "probability": 0.0844 + }, + { + "start": 22087.3, + "end": 22089.0, + "probability": 0.2226 + }, + { + "start": 22089.32, + "end": 22090.22, + "probability": 0.031 + }, + { + "start": 22090.54, + "end": 22091.52, + "probability": 0.8041 + }, + { + "start": 22091.7, + "end": 22093.38, + "probability": 0.724 + }, + { + "start": 22093.56, + "end": 22096.06, + "probability": 0.9556 + }, + { + "start": 22096.42, + "end": 22098.94, + "probability": 0.8295 + }, + { + "start": 22099.28, + "end": 22100.8, + "probability": 0.4671 + }, + { + "start": 22101.2, + "end": 22103.66, + "probability": 0.9271 + }, + { + "start": 22103.96, + "end": 22105.27, + "probability": 0.9305 + }, + { + "start": 22105.9, + "end": 22108.36, + "probability": 0.8722 + }, + { + "start": 22108.96, + "end": 22111.62, + "probability": 0.8377 + }, + { + "start": 22111.68, + "end": 22114.62, + "probability": 0.5317 + }, + { + "start": 22114.94, + "end": 22115.2, + "probability": 0.0557 + }, + { + "start": 22115.2, + "end": 22115.24, + "probability": 0.067 + }, + { + "start": 22115.24, + "end": 22115.34, + "probability": 0.0873 + }, + { + "start": 22115.34, + "end": 22116.93, + "probability": 0.2272 + }, + { + "start": 22117.46, + "end": 22119.5, + "probability": 0.4637 + }, + { + "start": 22120.02, + "end": 22125.54, + "probability": 0.6125 + }, + { + "start": 22125.8, + "end": 22127.28, + "probability": 0.2683 + }, + { + "start": 22127.92, + "end": 22129.06, + "probability": 0.2978 + }, + { + "start": 22130.06, + "end": 22132.3, + "probability": 0.8194 + }, + { + "start": 22132.62, + "end": 22133.72, + "probability": 0.0227 + }, + { + "start": 22133.72, + "end": 22135.84, + "probability": 0.8899 + }, + { + "start": 22136.54, + "end": 22139.02, + "probability": 0.9843 + }, + { + "start": 22139.58, + "end": 22141.14, + "probability": 0.8932 + }, + { + "start": 22141.22, + "end": 22142.62, + "probability": 0.8704 + }, + { + "start": 22142.9, + "end": 22146.98, + "probability": 0.1093 + }, + { + "start": 22149.14, + "end": 22157.3, + "probability": 0.6684 + }, + { + "start": 22157.5, + "end": 22160.6, + "probability": 0.7503 + }, + { + "start": 22161.82, + "end": 22163.26, + "probability": 0.9284 + }, + { + "start": 22163.68, + "end": 22166.42, + "probability": 0.9743 + }, + { + "start": 22167.12, + "end": 22168.66, + "probability": 0.9476 + }, + { + "start": 22170.54, + "end": 22172.86, + "probability": 0.9943 + }, + { + "start": 22173.54, + "end": 22175.72, + "probability": 0.9077 + }, + { + "start": 22176.76, + "end": 22179.36, + "probability": 0.7361 + }, + { + "start": 22181.34, + "end": 22182.66, + "probability": 0.6605 + }, + { + "start": 22182.98, + "end": 22185.6, + "probability": 0.1548 + }, + { + "start": 22185.92, + "end": 22187.02, + "probability": 0.5313 + }, + { + "start": 22187.06, + "end": 22187.6, + "probability": 0.5238 + }, + { + "start": 22187.68, + "end": 22188.86, + "probability": 0.3459 + }, + { + "start": 22188.9, + "end": 22190.0, + "probability": 0.7934 + }, + { + "start": 22190.1, + "end": 22191.6, + "probability": 0.7856 + }, + { + "start": 22191.88, + "end": 22193.44, + "probability": 0.9682 + }, + { + "start": 22193.56, + "end": 22194.14, + "probability": 0.4748 + }, + { + "start": 22198.14, + "end": 22200.86, + "probability": 0.9957 + }, + { + "start": 22201.72, + "end": 22202.76, + "probability": 0.0023 + }, + { + "start": 22203.46, + "end": 22204.12, + "probability": 0.2644 + }, + { + "start": 22204.6, + "end": 22209.02, + "probability": 0.9164 + }, + { + "start": 22209.02, + "end": 22212.96, + "probability": 0.7914 + }, + { + "start": 22213.56, + "end": 22216.02, + "probability": 0.9971 + }, + { + "start": 22220.5, + "end": 22220.6, + "probability": 0.0307 + }, + { + "start": 22220.6, + "end": 22220.72, + "probability": 0.2937 + }, + { + "start": 22220.76, + "end": 22220.88, + "probability": 0.2629 + }, + { + "start": 22220.98, + "end": 22222.42, + "probability": 0.8221 + }, + { + "start": 22223.12, + "end": 22223.82, + "probability": 0.9397 + }, + { + "start": 22225.54, + "end": 22226.32, + "probability": 0.4285 + }, + { + "start": 22226.84, + "end": 22228.62, + "probability": 0.9699 + }, + { + "start": 22229.46, + "end": 22233.64, + "probability": 0.9568 + }, + { + "start": 22234.26, + "end": 22237.44, + "probability": 0.9772 + }, + { + "start": 22237.92, + "end": 22239.52, + "probability": 0.9723 + }, + { + "start": 22239.78, + "end": 22241.68, + "probability": 0.9244 + }, + { + "start": 22241.76, + "end": 22242.92, + "probability": 0.7872 + }, + { + "start": 22243.16, + "end": 22243.7, + "probability": 0.1673 + }, + { + "start": 22243.7, + "end": 22243.72, + "probability": 0.1176 + }, + { + "start": 22243.72, + "end": 22245.9, + "probability": 0.6786 + }, + { + "start": 22246.26, + "end": 22248.82, + "probability": 0.8602 + }, + { + "start": 22248.82, + "end": 22250.02, + "probability": 0.881 + }, + { + "start": 22250.1, + "end": 22250.42, + "probability": 0.827 + }, + { + "start": 22251.02, + "end": 22251.6, + "probability": 0.3017 + }, + { + "start": 22252.6, + "end": 22254.4, + "probability": 0.3535 + }, + { + "start": 22255.1, + "end": 22255.1, + "probability": 0.1792 + }, + { + "start": 22255.1, + "end": 22255.1, + "probability": 0.0408 + }, + { + "start": 22255.1, + "end": 22256.66, + "probability": 0.7491 + }, + { + "start": 22257.94, + "end": 22263.0, + "probability": 0.9844 + }, + { + "start": 22266.7, + "end": 22270.72, + "probability": 0.8359 + }, + { + "start": 22271.24, + "end": 22273.86, + "probability": 0.7715 + }, + { + "start": 22273.86, + "end": 22276.94, + "probability": 0.8277 + }, + { + "start": 22277.0, + "end": 22277.42, + "probability": 0.5906 + }, + { + "start": 22277.5, + "end": 22277.86, + "probability": 0.6993 + }, + { + "start": 22278.0, + "end": 22278.56, + "probability": 0.7236 + }, + { + "start": 22288.84, + "end": 22289.18, + "probability": 0.5058 + }, + { + "start": 22296.12, + "end": 22296.54, + "probability": 0.0853 + }, + { + "start": 22296.54, + "end": 22299.08, + "probability": 0.4288 + }, + { + "start": 22299.22, + "end": 22301.42, + "probability": 0.8816 + }, + { + "start": 22302.54, + "end": 22303.94, + "probability": 0.7609 + }, + { + "start": 22304.64, + "end": 22308.2, + "probability": 0.7358 + }, + { + "start": 22308.2, + "end": 22310.52, + "probability": 0.9347 + }, + { + "start": 22311.18, + "end": 22311.26, + "probability": 0.002 + }, + { + "start": 22311.26, + "end": 22313.62, + "probability": 0.6444 + }, + { + "start": 22314.08, + "end": 22315.3, + "probability": 0.8138 + }, + { + "start": 22316.22, + "end": 22316.8, + "probability": 0.8607 + }, + { + "start": 22317.34, + "end": 22318.12, + "probability": 0.7098 + }, + { + "start": 22319.68, + "end": 22320.5, + "probability": 0.4205 + }, + { + "start": 22342.9, + "end": 22343.16, + "probability": 0.0411 + }, + { + "start": 22344.62, + "end": 22345.92, + "probability": 0.5379 + }, + { + "start": 22346.7, + "end": 22347.14, + "probability": 0.4523 + }, + { + "start": 22347.18, + "end": 22348.88, + "probability": 0.6627 + }, + { + "start": 22349.84, + "end": 22354.02, + "probability": 0.8883 + }, + { + "start": 22354.98, + "end": 22355.82, + "probability": 0.9403 + }, + { + "start": 22356.66, + "end": 22359.4, + "probability": 0.8555 + }, + { + "start": 22360.44, + "end": 22364.52, + "probability": 0.7352 + }, + { + "start": 22365.56, + "end": 22366.66, + "probability": 0.9917 + }, + { + "start": 22367.46, + "end": 22371.64, + "probability": 0.9034 + }, + { + "start": 22372.12, + "end": 22372.74, + "probability": 0.9594 + }, + { + "start": 22373.2, + "end": 22375.66, + "probability": 0.988 + }, + { + "start": 22376.52, + "end": 22378.88, + "probability": 0.9806 + }, + { + "start": 22379.84, + "end": 22382.28, + "probability": 0.8599 + }, + { + "start": 22382.74, + "end": 22383.76, + "probability": 0.826 + }, + { + "start": 22384.38, + "end": 22388.18, + "probability": 0.9799 + }, + { + "start": 22388.82, + "end": 22391.92, + "probability": 0.9976 + }, + { + "start": 22393.0, + "end": 22394.08, + "probability": 0.9361 + }, + { + "start": 22394.84, + "end": 22396.18, + "probability": 0.9106 + }, + { + "start": 22396.76, + "end": 22399.24, + "probability": 0.9928 + }, + { + "start": 22399.96, + "end": 22400.86, + "probability": 0.8887 + }, + { + "start": 22401.48, + "end": 22402.52, + "probability": 0.9756 + }, + { + "start": 22403.04, + "end": 22406.94, + "probability": 0.9426 + }, + { + "start": 22408.14, + "end": 22409.52, + "probability": 0.9912 + }, + { + "start": 22409.72, + "end": 22411.22, + "probability": 0.9984 + }, + { + "start": 22411.9, + "end": 22412.76, + "probability": 0.9736 + }, + { + "start": 22414.14, + "end": 22415.98, + "probability": 0.8826 + }, + { + "start": 22416.4, + "end": 22417.03, + "probability": 0.987 + }, + { + "start": 22417.52, + "end": 22418.74, + "probability": 0.924 + }, + { + "start": 22419.46, + "end": 22426.96, + "probability": 0.9609 + }, + { + "start": 22428.02, + "end": 22430.2, + "probability": 0.9174 + }, + { + "start": 22430.92, + "end": 22431.82, + "probability": 0.9103 + }, + { + "start": 22432.62, + "end": 22434.14, + "probability": 0.9899 + }, + { + "start": 22434.72, + "end": 22439.28, + "probability": 0.8714 + }, + { + "start": 22440.14, + "end": 22442.36, + "probability": 0.9895 + }, + { + "start": 22442.96, + "end": 22448.84, + "probability": 0.9959 + }, + { + "start": 22449.94, + "end": 22453.46, + "probability": 0.9989 + }, + { + "start": 22454.14, + "end": 22458.68, + "probability": 0.994 + }, + { + "start": 22458.68, + "end": 22462.6, + "probability": 0.5652 + }, + { + "start": 22463.32, + "end": 22466.26, + "probability": 0.848 + }, + { + "start": 22466.36, + "end": 22470.74, + "probability": 0.9829 + }, + { + "start": 22472.0, + "end": 22476.64, + "probability": 0.9978 + }, + { + "start": 22476.64, + "end": 22479.76, + "probability": 0.9992 + }, + { + "start": 22480.94, + "end": 22483.84, + "probability": 0.9985 + }, + { + "start": 22484.38, + "end": 22487.4, + "probability": 0.999 + }, + { + "start": 22488.64, + "end": 22492.72, + "probability": 0.9956 + }, + { + "start": 22493.34, + "end": 22494.14, + "probability": 0.787 + }, + { + "start": 22494.84, + "end": 22497.46, + "probability": 0.9862 + }, + { + "start": 22498.52, + "end": 22500.52, + "probability": 0.719 + }, + { + "start": 22501.2, + "end": 22503.5, + "probability": 0.9902 + }, + { + "start": 22504.56, + "end": 22509.68, + "probability": 0.9969 + }, + { + "start": 22510.42, + "end": 22510.8, + "probability": 0.8857 + }, + { + "start": 22511.42, + "end": 22511.94, + "probability": 0.587 + }, + { + "start": 22512.48, + "end": 22513.96, + "probability": 0.8745 + }, + { + "start": 22514.4, + "end": 22515.22, + "probability": 0.9183 + }, + { + "start": 22515.56, + "end": 22517.82, + "probability": 0.9725 + }, + { + "start": 22518.58, + "end": 22521.18, + "probability": 0.9569 + }, + { + "start": 22521.74, + "end": 22523.7, + "probability": 0.7747 + }, + { + "start": 22523.9, + "end": 22524.42, + "probability": 0.43 + }, + { + "start": 22524.46, + "end": 22527.82, + "probability": 0.9806 + }, + { + "start": 22528.62, + "end": 22530.18, + "probability": 0.9774 + }, + { + "start": 22530.54, + "end": 22533.9, + "probability": 0.9403 + }, + { + "start": 22534.22, + "end": 22534.22, + "probability": 0.1498 + }, + { + "start": 22534.4, + "end": 22536.72, + "probability": 0.9193 + }, + { + "start": 22537.5, + "end": 22540.53, + "probability": 0.9932 + }, + { + "start": 22541.3, + "end": 22544.18, + "probability": 0.9899 + }, + { + "start": 22545.1, + "end": 22547.62, + "probability": 0.9646 + }, + { + "start": 22548.16, + "end": 22548.3, + "probability": 0.0503 + }, + { + "start": 22548.3, + "end": 22550.74, + "probability": 0.7399 + }, + { + "start": 22551.0, + "end": 22551.64, + "probability": 0.8929 + }, + { + "start": 22551.8, + "end": 22552.06, + "probability": 0.444 + }, + { + "start": 22553.13, + "end": 22553.62, + "probability": 0.4134 + }, + { + "start": 22553.72, + "end": 22553.84, + "probability": 0.5777 + }, + { + "start": 22553.84, + "end": 22557.54, + "probability": 0.9964 + }, + { + "start": 22558.48, + "end": 22560.5, + "probability": 0.8356 + }, + { + "start": 22561.4, + "end": 22564.42, + "probability": 0.9821 + }, + { + "start": 22565.0, + "end": 22566.28, + "probability": 0.577 + }, + { + "start": 22566.52, + "end": 22569.62, + "probability": 0.859 + }, + { + "start": 22569.64, + "end": 22571.98, + "probability": 0.7865 + }, + { + "start": 22572.6, + "end": 22572.6, + "probability": 0.4738 + }, + { + "start": 22572.6, + "end": 22574.15, + "probability": 0.7249 + }, + { + "start": 22576.4, + "end": 22579.26, + "probability": 0.7883 + }, + { + "start": 22595.76, + "end": 22596.3, + "probability": 0.5563 + }, + { + "start": 22596.5, + "end": 22597.37, + "probability": 0.7131 + }, + { + "start": 22598.96, + "end": 22602.0, + "probability": 0.7817 + }, + { + "start": 22603.1, + "end": 22605.32, + "probability": 0.745 + }, + { + "start": 22606.82, + "end": 22609.58, + "probability": 0.9629 + }, + { + "start": 22612.2, + "end": 22614.52, + "probability": 0.9941 + }, + { + "start": 22615.54, + "end": 22620.18, + "probability": 0.9808 + }, + { + "start": 22621.22, + "end": 22628.16, + "probability": 0.9823 + }, + { + "start": 22629.14, + "end": 22629.74, + "probability": 0.9302 + }, + { + "start": 22630.4, + "end": 22634.42, + "probability": 0.962 + }, + { + "start": 22635.94, + "end": 22640.92, + "probability": 0.8771 + }, + { + "start": 22642.28, + "end": 22643.5, + "probability": 0.8997 + }, + { + "start": 22645.9, + "end": 22649.12, + "probability": 0.6974 + }, + { + "start": 22649.18, + "end": 22651.5, + "probability": 0.9035 + }, + { + "start": 22652.92, + "end": 22658.18, + "probability": 0.9834 + }, + { + "start": 22659.16, + "end": 22661.06, + "probability": 0.9979 + }, + { + "start": 22662.08, + "end": 22665.56, + "probability": 0.5374 + }, + { + "start": 22667.56, + "end": 22672.14, + "probability": 0.8784 + }, + { + "start": 22672.14, + "end": 22677.02, + "probability": 0.9919 + }, + { + "start": 22678.46, + "end": 22683.1, + "probability": 0.9886 + }, + { + "start": 22683.62, + "end": 22685.24, + "probability": 0.706 + }, + { + "start": 22686.28, + "end": 22689.86, + "probability": 0.9937 + }, + { + "start": 22690.86, + "end": 22692.38, + "probability": 0.995 + }, + { + "start": 22693.24, + "end": 22694.24, + "probability": 0.7084 + }, + { + "start": 22694.4, + "end": 22696.26, + "probability": 0.9955 + }, + { + "start": 22697.12, + "end": 22701.26, + "probability": 0.9753 + }, + { + "start": 22702.1, + "end": 22703.88, + "probability": 0.9174 + }, + { + "start": 22704.92, + "end": 22709.8, + "probability": 0.991 + }, + { + "start": 22709.9, + "end": 22713.74, + "probability": 0.9883 + }, + { + "start": 22714.46, + "end": 22718.22, + "probability": 0.9776 + }, + { + "start": 22719.52, + "end": 22722.26, + "probability": 0.9746 + }, + { + "start": 22722.94, + "end": 22724.62, + "probability": 0.895 + }, + { + "start": 22725.54, + "end": 22727.56, + "probability": 0.8774 + }, + { + "start": 22728.34, + "end": 22732.24, + "probability": 0.9789 + }, + { + "start": 22733.44, + "end": 22737.96, + "probability": 0.9541 + }, + { + "start": 22739.54, + "end": 22741.18, + "probability": 0.9971 + }, + { + "start": 22741.78, + "end": 22743.51, + "probability": 0.9973 + }, + { + "start": 22744.14, + "end": 22747.92, + "probability": 0.9992 + }, + { + "start": 22748.44, + "end": 22753.92, + "probability": 0.9995 + }, + { + "start": 22754.46, + "end": 22755.56, + "probability": 0.9616 + }, + { + "start": 22756.58, + "end": 22756.84, + "probability": 0.5167 + }, + { + "start": 22756.98, + "end": 22757.86, + "probability": 0.7581 + }, + { + "start": 22758.02, + "end": 22759.74, + "probability": 0.9772 + }, + { + "start": 22759.94, + "end": 22762.04, + "probability": 0.8508 + }, + { + "start": 22763.4, + "end": 22770.04, + "probability": 0.9968 + }, + { + "start": 22770.08, + "end": 22772.48, + "probability": 0.9787 + }, + { + "start": 22774.92, + "end": 22776.58, + "probability": 0.9961 + }, + { + "start": 22776.72, + "end": 22778.02, + "probability": 0.9905 + }, + { + "start": 22778.4, + "end": 22779.1, + "probability": 0.9941 + }, + { + "start": 22779.72, + "end": 22779.96, + "probability": 0.39 + }, + { + "start": 22780.74, + "end": 22782.54, + "probability": 0.8429 + }, + { + "start": 22783.66, + "end": 22789.08, + "probability": 0.9887 + }, + { + "start": 22789.34, + "end": 22792.1, + "probability": 0.9875 + }, + { + "start": 22792.84, + "end": 22794.4, + "probability": 0.9893 + }, + { + "start": 22794.8, + "end": 22796.3, + "probability": 0.9717 + }, + { + "start": 22798.06, + "end": 22799.34, + "probability": 0.9877 + }, + { + "start": 22799.5, + "end": 22801.02, + "probability": 0.994 + }, + { + "start": 22801.6, + "end": 22802.7, + "probability": 0.9988 + }, + { + "start": 22803.48, + "end": 22805.16, + "probability": 0.9731 + }, + { + "start": 22805.72, + "end": 22807.46, + "probability": 0.9976 + }, + { + "start": 22807.84, + "end": 22811.16, + "probability": 0.6731 + }, + { + "start": 22811.22, + "end": 22813.14, + "probability": 0.9886 + }, + { + "start": 22813.4, + "end": 22813.94, + "probability": 0.4566 + }, + { + "start": 22814.04, + "end": 22816.26, + "probability": 0.7837 + }, + { + "start": 22817.06, + "end": 22819.54, + "probability": 0.543 + }, + { + "start": 22819.94, + "end": 22820.9, + "probability": 0.8472 + }, + { + "start": 22827.68, + "end": 22827.96, + "probability": 0.1609 + }, + { + "start": 22827.96, + "end": 22827.96, + "probability": 0.1125 + }, + { + "start": 22827.96, + "end": 22827.96, + "probability": 0.0588 + }, + { + "start": 22842.04, + "end": 22842.78, + "probability": 0.0946 + }, + { + "start": 22845.8, + "end": 22849.02, + "probability": 0.9827 + }, + { + "start": 22850.6, + "end": 22851.38, + "probability": 0.6488 + }, + { + "start": 22851.6, + "end": 22854.5, + "probability": 0.9674 + }, + { + "start": 22854.88, + "end": 22855.5, + "probability": 0.727 + }, + { + "start": 22855.6, + "end": 22856.04, + "probability": 0.2513 + }, + { + "start": 22856.22, + "end": 22856.74, + "probability": 0.8443 + }, + { + "start": 22857.24, + "end": 22863.22, + "probability": 0.9617 + }, + { + "start": 22863.96, + "end": 22869.94, + "probability": 0.9971 + }, + { + "start": 22870.62, + "end": 22877.12, + "probability": 0.9959 + }, + { + "start": 22878.6, + "end": 22879.66, + "probability": 0.5858 + }, + { + "start": 22880.76, + "end": 22884.16, + "probability": 0.9785 + }, + { + "start": 22884.26, + "end": 22885.28, + "probability": 0.8234 + }, + { + "start": 22885.32, + "end": 22886.14, + "probability": 0.9893 + }, + { + "start": 22886.18, + "end": 22886.8, + "probability": 0.9789 + }, + { + "start": 22887.3, + "end": 22889.32, + "probability": 0.8943 + }, + { + "start": 22889.46, + "end": 22891.38, + "probability": 0.8416 + }, + { + "start": 22892.38, + "end": 22893.48, + "probability": 0.7416 + }, + { + "start": 22893.84, + "end": 22896.1, + "probability": 0.9868 + }, + { + "start": 22897.08, + "end": 22898.0, + "probability": 0.8129 + }, + { + "start": 22898.06, + "end": 22905.0, + "probability": 0.8958 + }, + { + "start": 22905.66, + "end": 22907.84, + "probability": 0.9587 + }, + { + "start": 22908.64, + "end": 22913.1, + "probability": 0.9948 + }, + { + "start": 22913.26, + "end": 22914.18, + "probability": 0.8687 + }, + { + "start": 22915.5, + "end": 22920.66, + "probability": 0.9738 + }, + { + "start": 22920.66, + "end": 22926.54, + "probability": 0.9705 + }, + { + "start": 22926.92, + "end": 22934.62, + "probability": 0.9523 + }, + { + "start": 22935.12, + "end": 22939.74, + "probability": 0.9101 + }, + { + "start": 22940.08, + "end": 22942.18, + "probability": 0.9523 + }, + { + "start": 22942.7, + "end": 22943.26, + "probability": 0.7711 + }, + { + "start": 22943.86, + "end": 22950.32, + "probability": 0.9699 + }, + { + "start": 22950.9, + "end": 22955.54, + "probability": 0.825 + }, + { + "start": 22956.48, + "end": 22957.2, + "probability": 0.6722 + }, + { + "start": 22957.36, + "end": 22960.36, + "probability": 0.9946 + }, + { + "start": 22960.36, + "end": 22963.93, + "probability": 0.9383 + }, + { + "start": 22965.82, + "end": 22968.82, + "probability": 0.989 + }, + { + "start": 22968.82, + "end": 22971.64, + "probability": 0.9416 + }, + { + "start": 22973.26, + "end": 22975.82, + "probability": 0.9136 + }, + { + "start": 22976.3, + "end": 22980.32, + "probability": 0.9972 + }, + { + "start": 22980.32, + "end": 22985.52, + "probability": 0.9151 + }, + { + "start": 22986.04, + "end": 22991.8, + "probability": 0.9847 + }, + { + "start": 22993.08, + "end": 22998.0, + "probability": 0.756 + }, + { + "start": 22998.14, + "end": 22999.74, + "probability": 0.9873 + }, + { + "start": 23000.38, + "end": 23002.34, + "probability": 0.8742 + }, + { + "start": 23003.38, + "end": 23005.0, + "probability": 0.9692 + }, + { + "start": 23005.12, + "end": 23010.64, + "probability": 0.888 + }, + { + "start": 23010.64, + "end": 23015.14, + "probability": 0.9302 + }, + { + "start": 23016.5, + "end": 23018.06, + "probability": 0.721 + }, + { + "start": 23018.94, + "end": 23020.76, + "probability": 0.9338 + }, + { + "start": 23020.88, + "end": 23024.84, + "probability": 0.9788 + }, + { + "start": 23025.42, + "end": 23031.28, + "probability": 0.9934 + }, + { + "start": 23033.58, + "end": 23036.92, + "probability": 0.809 + }, + { + "start": 23037.94, + "end": 23043.0, + "probability": 0.979 + }, + { + "start": 23043.14, + "end": 23046.22, + "probability": 0.9555 + }, + { + "start": 23046.64, + "end": 23047.48, + "probability": 0.8294 + }, + { + "start": 23047.7, + "end": 23048.58, + "probability": 0.6654 + }, + { + "start": 23049.06, + "end": 23051.42, + "probability": 0.7936 + }, + { + "start": 23051.8, + "end": 23053.36, + "probability": 0.9479 + }, + { + "start": 23053.68, + "end": 23056.92, + "probability": 0.9872 + }, + { + "start": 23056.92, + "end": 23059.24, + "probability": 0.9925 + }, + { + "start": 23060.94, + "end": 23064.88, + "probability": 0.9833 + }, + { + "start": 23065.24, + "end": 23071.72, + "probability": 0.8089 + }, + { + "start": 23072.6, + "end": 23073.0, + "probability": 0.7038 + }, + { + "start": 23073.02, + "end": 23074.32, + "probability": 0.6971 + }, + { + "start": 23074.52, + "end": 23077.34, + "probability": 0.7416 + }, + { + "start": 23077.34, + "end": 23079.94, + "probability": 0.9189 + }, + { + "start": 23080.43, + "end": 23082.9, + "probability": 0.9686 + }, + { + "start": 23083.52, + "end": 23084.0, + "probability": 0.0895 + }, + { + "start": 23084.0, + "end": 23084.66, + "probability": 0.4269 + }, + { + "start": 23085.96, + "end": 23088.02, + "probability": 0.2832 + }, + { + "start": 23091.0, + "end": 23094.58, + "probability": 0.7138 + }, + { + "start": 23094.92, + "end": 23095.76, + "probability": 0.6573 + }, + { + "start": 23096.12, + "end": 23098.3, + "probability": 0.5699 + }, + { + "start": 23099.16, + "end": 23099.38, + "probability": 0.1861 + }, + { + "start": 23099.76, + "end": 23104.7, + "probability": 0.4215 + }, + { + "start": 23106.24, + "end": 23109.46, + "probability": 0.2403 + }, + { + "start": 23109.5, + "end": 23110.58, + "probability": 0.4426 + }, + { + "start": 23110.66, + "end": 23111.18, + "probability": 0.241 + }, + { + "start": 23111.3, + "end": 23112.54, + "probability": 0.9854 + }, + { + "start": 23113.42, + "end": 23116.56, + "probability": 0.7812 + }, + { + "start": 23117.2, + "end": 23118.18, + "probability": 0.6495 + }, + { + "start": 23118.6, + "end": 23120.56, + "probability": 0.9504 + }, + { + "start": 23120.64, + "end": 23121.2, + "probability": 0.8969 + }, + { + "start": 23121.34, + "end": 23122.62, + "probability": 0.7985 + }, + { + "start": 23123.22, + "end": 23124.07, + "probability": 0.14 + }, + { + "start": 23124.38, + "end": 23126.04, + "probability": 0.555 + }, + { + "start": 23126.24, + "end": 23127.1, + "probability": 0.5167 + }, + { + "start": 23127.52, + "end": 23129.3, + "probability": 0.6991 + }, + { + "start": 23129.66, + "end": 23133.12, + "probability": 0.9967 + }, + { + "start": 23133.48, + "end": 23135.52, + "probability": 0.7903 + }, + { + "start": 23135.73, + "end": 23137.2, + "probability": 0.0152 + }, + { + "start": 23138.26, + "end": 23139.15, + "probability": 0.444 + }, + { + "start": 23139.68, + "end": 23140.1, + "probability": 0.8695 + }, + { + "start": 23143.26, + "end": 23144.48, + "probability": 0.4727 + }, + { + "start": 23144.52, + "end": 23145.18, + "probability": 0.1992 + }, + { + "start": 23145.5, + "end": 23146.12, + "probability": 0.4286 + }, + { + "start": 23147.3, + "end": 23148.86, + "probability": 0.9169 + }, + { + "start": 23149.71, + "end": 23154.4, + "probability": 0.4673 + }, + { + "start": 23154.4, + "end": 23155.04, + "probability": 0.425 + }, + { + "start": 23155.58, + "end": 23158.08, + "probability": 0.8494 + }, + { + "start": 23158.56, + "end": 23161.59, + "probability": 0.7333 + }, + { + "start": 23161.92, + "end": 23166.66, + "probability": 0.9793 + }, + { + "start": 23166.74, + "end": 23167.26, + "probability": 0.9331 + }, + { + "start": 23186.32, + "end": 23186.38, + "probability": 0.344 + }, + { + "start": 23186.38, + "end": 23188.72, + "probability": 0.6469 + }, + { + "start": 23189.34, + "end": 23190.14, + "probability": 0.8151 + }, + { + "start": 23190.14, + "end": 23195.92, + "probability": 0.9534 + }, + { + "start": 23197.1, + "end": 23198.7, + "probability": 0.7054 + }, + { + "start": 23200.02, + "end": 23202.84, + "probability": 0.5421 + }, + { + "start": 23202.84, + "end": 23207.66, + "probability": 0.8942 + }, + { + "start": 23207.86, + "end": 23209.08, + "probability": 0.0205 + }, + { + "start": 23209.36, + "end": 23209.36, + "probability": 0.0409 + }, + { + "start": 23209.36, + "end": 23210.86, + "probability": 0.402 + }, + { + "start": 23210.86, + "end": 23211.56, + "probability": 0.651 + }, + { + "start": 23212.1, + "end": 23212.66, + "probability": 0.4073 + }, + { + "start": 23212.66, + "end": 23213.26, + "probability": 0.6825 + }, + { + "start": 23215.58, + "end": 23217.44, + "probability": 0.965 + }, + { + "start": 23218.52, + "end": 23222.64, + "probability": 0.9989 + }, + { + "start": 23223.3, + "end": 23225.58, + "probability": 0.9992 + }, + { + "start": 23227.06, + "end": 23228.98, + "probability": 0.8511 + }, + { + "start": 23229.76, + "end": 23231.66, + "probability": 0.8584 + }, + { + "start": 23231.88, + "end": 23232.44, + "probability": 0.8051 + }, + { + "start": 23233.2, + "end": 23235.56, + "probability": 0.8428 + }, + { + "start": 23236.18, + "end": 23239.02, + "probability": 0.9873 + }, + { + "start": 23239.6, + "end": 23242.5, + "probability": 0.9978 + }, + { + "start": 23243.06, + "end": 23246.02, + "probability": 0.9599 + }, + { + "start": 23246.56, + "end": 23248.84, + "probability": 0.7055 + }, + { + "start": 23248.84, + "end": 23251.46, + "probability": 0.9973 + }, + { + "start": 23251.92, + "end": 23252.5, + "probability": 0.8809 + }, + { + "start": 23253.18, + "end": 23255.48, + "probability": 0.9979 + }, + { + "start": 23256.34, + "end": 23258.78, + "probability": 0.9921 + }, + { + "start": 23259.3, + "end": 23262.32, + "probability": 0.9979 + }, + { + "start": 23263.04, + "end": 23264.78, + "probability": 0.8041 + }, + { + "start": 23265.56, + "end": 23269.76, + "probability": 0.9931 + }, + { + "start": 23270.28, + "end": 23272.2, + "probability": 0.9989 + }, + { + "start": 23272.96, + "end": 23275.16, + "probability": 0.9925 + }, + { + "start": 23275.16, + "end": 23278.08, + "probability": 0.9971 + }, + { + "start": 23278.88, + "end": 23281.32, + "probability": 0.9977 + }, + { + "start": 23281.32, + "end": 23283.66, + "probability": 0.8553 + }, + { + "start": 23284.42, + "end": 23285.58, + "probability": 0.9971 + }, + { + "start": 23286.2, + "end": 23288.24, + "probability": 0.9053 + }, + { + "start": 23289.46, + "end": 23291.8, + "probability": 0.6672 + }, + { + "start": 23292.52, + "end": 23294.22, + "probability": 0.9196 + }, + { + "start": 23294.92, + "end": 23297.06, + "probability": 0.7905 + }, + { + "start": 23297.6, + "end": 23302.36, + "probability": 0.9932 + }, + { + "start": 23302.82, + "end": 23304.46, + "probability": 0.8973 + }, + { + "start": 23304.94, + "end": 23308.86, + "probability": 0.9894 + }, + { + "start": 23309.68, + "end": 23310.12, + "probability": 0.6903 + }, + { + "start": 23310.18, + "end": 23312.1, + "probability": 0.8692 + }, + { + "start": 23312.6, + "end": 23314.12, + "probability": 0.9941 + }, + { + "start": 23323.54, + "end": 23326.34, + "probability": 0.9579 + }, + { + "start": 23326.98, + "end": 23329.0, + "probability": 0.9758 + }, + { + "start": 23329.6, + "end": 23332.44, + "probability": 0.8837 + }, + { + "start": 23333.38, + "end": 23337.94, + "probability": 0.9336 + }, + { + "start": 23338.6, + "end": 23340.06, + "probability": 0.8684 + }, + { + "start": 23340.76, + "end": 23343.7, + "probability": 0.9901 + }, + { + "start": 23344.26, + "end": 23347.74, + "probability": 0.9944 + }, + { + "start": 23348.28, + "end": 23350.9, + "probability": 0.9592 + }, + { + "start": 23351.54, + "end": 23356.7, + "probability": 0.9657 + }, + { + "start": 23357.34, + "end": 23358.48, + "probability": 0.542 + }, + { + "start": 23359.02, + "end": 23362.16, + "probability": 0.9933 + }, + { + "start": 23362.7, + "end": 23363.74, + "probability": 0.9089 + }, + { + "start": 23364.38, + "end": 23365.84, + "probability": 0.9814 + }, + { + "start": 23366.84, + "end": 23369.54, + "probability": 0.9055 + }, + { + "start": 23370.38, + "end": 23372.6, + "probability": 0.9216 + }, + { + "start": 23372.77, + "end": 23377.68, + "probability": 0.9868 + }, + { + "start": 23378.28, + "end": 23381.5, + "probability": 0.8208 + }, + { + "start": 23381.92, + "end": 23382.74, + "probability": 0.9731 + }, + { + "start": 23383.32, + "end": 23384.44, + "probability": 0.9985 + }, + { + "start": 23385.0, + "end": 23385.42, + "probability": 0.8719 + }, + { + "start": 23387.18, + "end": 23389.28, + "probability": 0.974 + }, + { + "start": 23390.14, + "end": 23392.34, + "probability": 0.4821 + }, + { + "start": 23393.26, + "end": 23394.54, + "probability": 0.6909 + }, + { + "start": 23394.58, + "end": 23396.98, + "probability": 0.821 + }, + { + "start": 23397.78, + "end": 23400.18, + "probability": 0.73 + }, + { + "start": 23400.94, + "end": 23403.53, + "probability": 0.614 + }, + { + "start": 23403.58, + "end": 23406.48, + "probability": 0.8377 + }, + { + "start": 23407.04, + "end": 23409.62, + "probability": 0.9873 + }, + { + "start": 23409.62, + "end": 23411.89, + "probability": 0.8821 + }, + { + "start": 23412.26, + "end": 23412.76, + "probability": 0.9108 + }, + { + "start": 23413.64, + "end": 23414.87, + "probability": 0.2959 + }, + { + "start": 23415.68, + "end": 23415.84, + "probability": 0.0348 + }, + { + "start": 23415.84, + "end": 23416.2, + "probability": 0.7056 + }, + { + "start": 23416.22, + "end": 23420.02, + "probability": 0.6204 + }, + { + "start": 23420.02, + "end": 23420.15, + "probability": 0.3704 + }, + { + "start": 23421.1, + "end": 23422.3, + "probability": 0.5358 + }, + { + "start": 23422.32, + "end": 23425.44, + "probability": 0.9441 + }, + { + "start": 23425.44, + "end": 23428.82, + "probability": 0.9819 + }, + { + "start": 23429.72, + "end": 23431.32, + "probability": 0.396 + }, + { + "start": 23431.92, + "end": 23434.28, + "probability": 0.2533 + }, + { + "start": 23434.5, + "end": 23435.91, + "probability": 0.8707 + }, + { + "start": 23436.16, + "end": 23438.62, + "probability": 0.9591 + }, + { + "start": 23438.68, + "end": 23439.28, + "probability": 0.2617 + }, + { + "start": 23439.8, + "end": 23440.6, + "probability": 0.2246 + }, + { + "start": 23440.74, + "end": 23444.02, + "probability": 0.3777 + }, + { + "start": 23444.02, + "end": 23446.8, + "probability": 0.3048 + }, + { + "start": 23447.38, + "end": 23449.26, + "probability": 0.4614 + }, + { + "start": 23449.88, + "end": 23452.64, + "probability": 0.9595 + }, + { + "start": 23453.12, + "end": 23454.38, + "probability": 0.6695 + }, + { + "start": 23455.04, + "end": 23456.32, + "probability": 0.6153 + }, + { + "start": 23457.04, + "end": 23458.72, + "probability": 0.9976 + }, + { + "start": 23459.4, + "end": 23460.26, + "probability": 0.854 + }, + { + "start": 23460.42, + "end": 23464.66, + "probability": 0.8782 + }, + { + "start": 23465.22, + "end": 23468.3, + "probability": 0.9741 + }, + { + "start": 23468.42, + "end": 23468.98, + "probability": 0.8271 + }, + { + "start": 23469.84, + "end": 23471.92, + "probability": 0.5598 + }, + { + "start": 23472.0, + "end": 23472.66, + "probability": 0.8576 + }, + { + "start": 23488.02, + "end": 23489.52, + "probability": 0.8279 + }, + { + "start": 23491.52, + "end": 23492.52, + "probability": 0.6491 + }, + { + "start": 23493.78, + "end": 23494.16, + "probability": 0.7675 + }, + { + "start": 23494.24, + "end": 23497.34, + "probability": 0.8725 + }, + { + "start": 23497.98, + "end": 23500.72, + "probability": 0.7291 + }, + { + "start": 23500.72, + "end": 23503.88, + "probability": 0.9816 + }, + { + "start": 23504.54, + "end": 23506.12, + "probability": 0.8582 + }, + { + "start": 23507.64, + "end": 23509.96, + "probability": 0.9934 + }, + { + "start": 23510.1, + "end": 23510.78, + "probability": 0.794 + }, + { + "start": 23510.84, + "end": 23515.48, + "probability": 0.9952 + }, + { + "start": 23516.7, + "end": 23520.3, + "probability": 0.798 + }, + { + "start": 23520.58, + "end": 23522.88, + "probability": 0.9647 + }, + { + "start": 23522.88, + "end": 23525.52, + "probability": 0.9749 + }, + { + "start": 23526.86, + "end": 23529.92, + "probability": 0.9944 + }, + { + "start": 23530.68, + "end": 23530.92, + "probability": 0.63 + }, + { + "start": 23531.08, + "end": 23533.36, + "probability": 0.9934 + }, + { + "start": 23533.62, + "end": 23534.92, + "probability": 0.9911 + }, + { + "start": 23535.06, + "end": 23536.26, + "probability": 0.987 + }, + { + "start": 23536.74, + "end": 23540.94, + "probability": 0.9829 + }, + { + "start": 23541.62, + "end": 23543.3, + "probability": 0.8234 + }, + { + "start": 23543.64, + "end": 23545.85, + "probability": 0.9926 + }, + { + "start": 23546.08, + "end": 23547.6, + "probability": 0.9961 + }, + { + "start": 23548.98, + "end": 23552.7, + "probability": 0.9519 + }, + { + "start": 23552.9, + "end": 23554.28, + "probability": 0.9448 + }, + { + "start": 23556.1, + "end": 23556.5, + "probability": 0.5459 + }, + { + "start": 23556.8, + "end": 23559.06, + "probability": 0.9951 + }, + { + "start": 23559.42, + "end": 23563.84, + "probability": 0.7602 + }, + { + "start": 23564.18, + "end": 23565.44, + "probability": 0.9325 + }, + { + "start": 23566.34, + "end": 23568.78, + "probability": 0.965 + }, + { + "start": 23569.36, + "end": 23570.0, + "probability": 0.9507 + }, + { + "start": 23571.6, + "end": 23572.76, + "probability": 0.9543 + }, + { + "start": 23573.26, + "end": 23576.12, + "probability": 0.9808 + }, + { + "start": 23577.52, + "end": 23579.28, + "probability": 0.7905 + }, + { + "start": 23579.48, + "end": 23583.64, + "probability": 0.9904 + }, + { + "start": 23584.08, + "end": 23586.36, + "probability": 0.9966 + }, + { + "start": 23586.92, + "end": 23590.52, + "probability": 0.9967 + }, + { + "start": 23591.34, + "end": 23593.65, + "probability": 0.9595 + }, + { + "start": 23594.14, + "end": 23594.64, + "probability": 0.6238 + }, + { + "start": 23594.78, + "end": 23595.6, + "probability": 0.9829 + }, + { + "start": 23597.32, + "end": 23600.3, + "probability": 0.7475 + }, + { + "start": 23600.8, + "end": 23603.88, + "probability": 0.9121 + }, + { + "start": 23604.6, + "end": 23606.06, + "probability": 0.8621 + }, + { + "start": 23606.16, + "end": 23607.58, + "probability": 0.9291 + }, + { + "start": 23609.1, + "end": 23612.2, + "probability": 0.9844 + }, + { + "start": 23612.28, + "end": 23612.67, + "probability": 0.9678 + }, + { + "start": 23612.96, + "end": 23613.59, + "probability": 0.9294 + }, + { + "start": 23614.4, + "end": 23615.3, + "probability": 0.6341 + }, + { + "start": 23615.4, + "end": 23618.42, + "probability": 0.9959 + }, + { + "start": 23618.42, + "end": 23621.12, + "probability": 0.9484 + }, + { + "start": 23622.06, + "end": 23624.02, + "probability": 0.9928 + }, + { + "start": 23624.84, + "end": 23625.72, + "probability": 0.9758 + }, + { + "start": 23625.86, + "end": 23626.84, + "probability": 0.8533 + }, + { + "start": 23626.94, + "end": 23627.98, + "probability": 0.9586 + }, + { + "start": 23628.38, + "end": 23629.72, + "probability": 0.9954 + }, + { + "start": 23630.3, + "end": 23634.4, + "probability": 0.9817 + }, + { + "start": 23634.5, + "end": 23635.7, + "probability": 0.8688 + }, + { + "start": 23635.78, + "end": 23637.11, + "probability": 0.9333 + }, + { + "start": 23638.16, + "end": 23640.1, + "probability": 0.999 + }, + { + "start": 23640.52, + "end": 23642.04, + "probability": 0.98 + }, + { + "start": 23642.52, + "end": 23644.02, + "probability": 0.9934 + }, + { + "start": 23644.58, + "end": 23647.2, + "probability": 0.9985 + }, + { + "start": 23647.82, + "end": 23649.2, + "probability": 0.9919 + }, + { + "start": 23649.98, + "end": 23650.7, + "probability": 0.9461 + }, + { + "start": 23651.0, + "end": 23654.88, + "probability": 0.9894 + }, + { + "start": 23656.2, + "end": 23657.04, + "probability": 0.9299 + }, + { + "start": 23657.5, + "end": 23661.0, + "probability": 0.9969 + }, + { + "start": 23661.8, + "end": 23665.14, + "probability": 0.9729 + }, + { + "start": 23665.84, + "end": 23666.3, + "probability": 0.8168 + }, + { + "start": 23666.76, + "end": 23668.88, + "probability": 0.8759 + }, + { + "start": 23670.28, + "end": 23670.78, + "probability": 0.3397 + }, + { + "start": 23671.42, + "end": 23672.3, + "probability": 0.867 + }, + { + "start": 23684.92, + "end": 23686.34, + "probability": 0.7703 + }, + { + "start": 23689.12, + "end": 23689.66, + "probability": 0.2054 + }, + { + "start": 23690.89, + "end": 23691.92, + "probability": 0.8712 + }, + { + "start": 23693.16, + "end": 23694.92, + "probability": 0.9893 + }, + { + "start": 23695.64, + "end": 23696.38, + "probability": 0.8754 + }, + { + "start": 23697.96, + "end": 23699.06, + "probability": 0.6825 + }, + { + "start": 23701.16, + "end": 23702.5, + "probability": 0.8685 + }, + { + "start": 23703.9, + "end": 23703.9, + "probability": 0.3777 + }, + { + "start": 23703.9, + "end": 23706.52, + "probability": 0.6746 + }, + { + "start": 23707.1, + "end": 23708.76, + "probability": 0.9813 + }, + { + "start": 23712.63, + "end": 23715.42, + "probability": 0.576 + }, + { + "start": 23716.52, + "end": 23722.68, + "probability": 0.8347 + }, + { + "start": 23724.08, + "end": 23725.0, + "probability": 0.9498 + }, + { + "start": 23725.76, + "end": 23731.52, + "probability": 0.9403 + }, + { + "start": 23731.72, + "end": 23737.58, + "probability": 0.7399 + }, + { + "start": 23738.52, + "end": 23741.04, + "probability": 0.8096 + }, + { + "start": 23743.82, + "end": 23746.02, + "probability": 0.9213 + }, + { + "start": 23746.22, + "end": 23748.78, + "probability": 0.3111 + }, + { + "start": 23749.04, + "end": 23752.48, + "probability": 0.6021 + }, + { + "start": 23753.18, + "end": 23754.64, + "probability": 0.8495 + }, + { + "start": 23755.2, + "end": 23756.24, + "probability": 0.7485 + }, + { + "start": 23756.78, + "end": 23762.28, + "probability": 0.9688 + }, + { + "start": 23762.86, + "end": 23764.58, + "probability": 0.9507 + }, + { + "start": 23766.76, + "end": 23770.14, + "probability": 0.8446 + }, + { + "start": 23770.88, + "end": 23773.26, + "probability": 0.995 + }, + { + "start": 23773.38, + "end": 23774.04, + "probability": 0.8923 + }, + { + "start": 23775.58, + "end": 23780.68, + "probability": 0.9977 + }, + { + "start": 23781.32, + "end": 23781.9, + "probability": 0.9648 + }, + { + "start": 23783.0, + "end": 23785.48, + "probability": 0.7494 + }, + { + "start": 23786.04, + "end": 23787.04, + "probability": 0.7354 + }, + { + "start": 23789.74, + "end": 23793.26, + "probability": 0.9253 + }, + { + "start": 23796.82, + "end": 23798.92, + "probability": 0.9697 + }, + { + "start": 23800.38, + "end": 23801.08, + "probability": 0.9329 + }, + { + "start": 23801.54, + "end": 23805.3, + "probability": 0.9915 + }, + { + "start": 23806.24, + "end": 23811.94, + "probability": 0.9976 + }, + { + "start": 23812.8, + "end": 23815.12, + "probability": 0.9844 + }, + { + "start": 23815.66, + "end": 23816.48, + "probability": 0.7298 + }, + { + "start": 23817.2, + "end": 23817.96, + "probability": 0.6229 + }, + { + "start": 23818.14, + "end": 23819.76, + "probability": 0.9881 + }, + { + "start": 23821.76, + "end": 23825.46, + "probability": 0.9048 + }, + { + "start": 23826.0, + "end": 23826.82, + "probability": 0.9718 + }, + { + "start": 23827.02, + "end": 23829.52, + "probability": 0.9954 + }, + { + "start": 23832.66, + "end": 23836.62, + "probability": 0.9078 + }, + { + "start": 23838.18, + "end": 23838.56, + "probability": 0.8472 + }, + { + "start": 23839.1, + "end": 23839.4, + "probability": 0.7317 + }, + { + "start": 23841.34, + "end": 23844.82, + "probability": 0.8966 + }, + { + "start": 23844.98, + "end": 23846.84, + "probability": 0.8435 + }, + { + "start": 23846.96, + "end": 23847.2, + "probability": 0.4982 + }, + { + "start": 23848.04, + "end": 23848.62, + "probability": 0.899 + }, + { + "start": 23849.04, + "end": 23850.26, + "probability": 0.7388 + }, + { + "start": 23852.46, + "end": 23852.92, + "probability": 0.0079 + }, + { + "start": 23853.55, + "end": 23854.5, + "probability": 0.2379 + }, + { + "start": 23854.9, + "end": 23854.98, + "probability": 0.0155 + }, + { + "start": 23854.98, + "end": 23859.88, + "probability": 0.85 + }, + { + "start": 23861.02, + "end": 23861.62, + "probability": 0.5632 + }, + { + "start": 23862.42, + "end": 23863.64, + "probability": 0.7423 + }, + { + "start": 23863.82, + "end": 23864.14, + "probability": 0.4482 + }, + { + "start": 23865.72, + "end": 23870.06, + "probability": 0.9897 + }, + { + "start": 23871.12, + "end": 23872.52, + "probability": 0.9275 + }, + { + "start": 23873.56, + "end": 23875.16, + "probability": 0.9961 + }, + { + "start": 23876.14, + "end": 23879.71, + "probability": 0.5998 + }, + { + "start": 23880.83, + "end": 23882.64, + "probability": 0.1872 + }, + { + "start": 23885.78, + "end": 23888.28, + "probability": 0.9197 + }, + { + "start": 23889.51, + "end": 23890.28, + "probability": 0.4542 + }, + { + "start": 23890.28, + "end": 23894.46, + "probability": 0.4207 + }, + { + "start": 23894.88, + "end": 23896.16, + "probability": 0.7489 + }, + { + "start": 23896.22, + "end": 23897.0, + "probability": 0.5523 + }, + { + "start": 23897.22, + "end": 23898.34, + "probability": 0.8034 + }, + { + "start": 23900.88, + "end": 23902.08, + "probability": 0.9495 + }, + { + "start": 23902.44, + "end": 23905.1, + "probability": 0.9798 + }, + { + "start": 23906.78, + "end": 23910.2, + "probability": 0.8243 + }, + { + "start": 23911.34, + "end": 23917.2, + "probability": 0.9242 + }, + { + "start": 23918.14, + "end": 23918.6, + "probability": 0.774 + }, + { + "start": 23919.76, + "end": 23922.52, + "probability": 0.6843 + }, + { + "start": 23928.84, + "end": 23928.94, + "probability": 0.5715 + }, + { + "start": 23930.24, + "end": 23930.6, + "probability": 0.0159 + }, + { + "start": 23938.68, + "end": 23939.92, + "probability": 0.6925 + }, + { + "start": 23940.34, + "end": 23943.58, + "probability": 0.995 + }, + { + "start": 23944.1, + "end": 23945.62, + "probability": 0.5069 + }, + { + "start": 23946.26, + "end": 23948.44, + "probability": 0.9172 + }, + { + "start": 23949.3, + "end": 23952.52, + "probability": 0.994 + }, + { + "start": 23953.02, + "end": 23956.5, + "probability": 0.9959 + }, + { + "start": 23957.78, + "end": 23960.62, + "probability": 0.9721 + }, + { + "start": 23960.7, + "end": 23962.74, + "probability": 0.921 + }, + { + "start": 23963.34, + "end": 23964.98, + "probability": 0.8808 + }, + { + "start": 23965.84, + "end": 23969.12, + "probability": 0.9883 + }, + { + "start": 23969.16, + "end": 23971.44, + "probability": 0.9944 + }, + { + "start": 23972.18, + "end": 23974.16, + "probability": 0.8969 + }, + { + "start": 23974.6, + "end": 23976.64, + "probability": 0.6658 + }, + { + "start": 23977.56, + "end": 23979.9, + "probability": 0.9116 + }, + { + "start": 23979.96, + "end": 23980.28, + "probability": 0.0487 + }, + { + "start": 23980.42, + "end": 23981.82, + "probability": 0.9806 + }, + { + "start": 23982.32, + "end": 23986.44, + "probability": 0.9794 + }, + { + "start": 23987.74, + "end": 23990.12, + "probability": 0.7915 + }, + { + "start": 23990.58, + "end": 23994.92, + "probability": 0.8169 + }, + { + "start": 23995.18, + "end": 23996.36, + "probability": 0.7403 + }, + { + "start": 23996.48, + "end": 23998.6, + "probability": 0.8152 + }, + { + "start": 24000.64, + "end": 24002.28, + "probability": 0.8119 + }, + { + "start": 24002.4, + "end": 24004.74, + "probability": 0.9468 + }, + { + "start": 24004.84, + "end": 24006.42, + "probability": 0.9935 + }, + { + "start": 24006.92, + "end": 24011.52, + "probability": 0.9954 + }, + { + "start": 24011.52, + "end": 24016.08, + "probability": 0.9986 + }, + { + "start": 24018.46, + "end": 24018.62, + "probability": 0.1695 + }, + { + "start": 24018.72, + "end": 24019.1, + "probability": 0.5268 + }, + { + "start": 24020.22, + "end": 24020.46, + "probability": 0.5833 + }, + { + "start": 24020.46, + "end": 24021.64, + "probability": 0.6849 + }, + { + "start": 24022.44, + "end": 24024.18, + "probability": 0.6002 + }, + { + "start": 24024.76, + "end": 24025.44, + "probability": 0.8976 + }, + { + "start": 24027.46, + "end": 24031.66, + "probability": 0.8622 + }, + { + "start": 24032.7, + "end": 24034.78, + "probability": 0.9648 + }, + { + "start": 24034.94, + "end": 24035.9, + "probability": 0.9927 + }, + { + "start": 24036.0, + "end": 24041.12, + "probability": 0.9706 + }, + { + "start": 24041.24, + "end": 24042.54, + "probability": 0.8387 + }, + { + "start": 24043.44, + "end": 24045.38, + "probability": 0.9995 + }, + { + "start": 24045.38, + "end": 24048.28, + "probability": 0.9973 + }, + { + "start": 24048.64, + "end": 24049.9, + "probability": 0.9825 + }, + { + "start": 24050.02, + "end": 24051.4, + "probability": 0.9879 + }, + { + "start": 24052.4, + "end": 24055.5, + "probability": 0.9862 + }, + { + "start": 24055.64, + "end": 24058.44, + "probability": 0.9376 + }, + { + "start": 24058.6, + "end": 24059.02, + "probability": 0.804 + }, + { + "start": 24059.12, + "end": 24059.8, + "probability": 0.713 + }, + { + "start": 24060.5, + "end": 24060.88, + "probability": 0.0398 + }, + { + "start": 24061.96, + "end": 24062.58, + "probability": 0.2961 + }, + { + "start": 24062.96, + "end": 24063.98, + "probability": 0.9564 + }, + { + "start": 24064.6, + "end": 24067.0, + "probability": 0.753 + }, + { + "start": 24067.08, + "end": 24069.14, + "probability": 0.9039 + }, + { + "start": 24069.88, + "end": 24070.26, + "probability": 0.3375 + }, + { + "start": 24073.0, + "end": 24073.25, + "probability": 0.2161 + }, + { + "start": 24073.4, + "end": 24074.16, + "probability": 0.385 + }, + { + "start": 24074.34, + "end": 24074.84, + "probability": 0.4179 + }, + { + "start": 24074.92, + "end": 24077.62, + "probability": 0.5989 + }, + { + "start": 24078.6, + "end": 24079.34, + "probability": 0.3507 + }, + { + "start": 24079.4, + "end": 24080.1, + "probability": 0.9131 + }, + { + "start": 24080.16, + "end": 24081.22, + "probability": 0.934 + }, + { + "start": 24081.52, + "end": 24082.62, + "probability": 0.5724 + }, + { + "start": 24082.66, + "end": 24084.58, + "probability": 0.9184 + }, + { + "start": 24085.1, + "end": 24087.54, + "probability": 0.772 + }, + { + "start": 24087.66, + "end": 24089.74, + "probability": 0.7517 + }, + { + "start": 24089.88, + "end": 24090.36, + "probability": 0.7731 + }, + { + "start": 24090.48, + "end": 24092.36, + "probability": 0.9267 + }, + { + "start": 24092.54, + "end": 24094.8, + "probability": 0.9974 + }, + { + "start": 24095.48, + "end": 24097.42, + "probability": 0.9991 + }, + { + "start": 24098.0, + "end": 24101.68, + "probability": 0.9849 + }, + { + "start": 24102.08, + "end": 24104.82, + "probability": 0.9417 + }, + { + "start": 24105.24, + "end": 24108.36, + "probability": 0.9899 + }, + { + "start": 24108.86, + "end": 24109.84, + "probability": 0.7699 + }, + { + "start": 24109.96, + "end": 24112.86, + "probability": 0.979 + }, + { + "start": 24113.28, + "end": 24116.24, + "probability": 0.9445 + }, + { + "start": 24116.58, + "end": 24117.2, + "probability": 0.8502 + }, + { + "start": 24117.3, + "end": 24118.26, + "probability": 0.9468 + }, + { + "start": 24118.8, + "end": 24121.76, + "probability": 0.9616 + }, + { + "start": 24122.18, + "end": 24125.2, + "probability": 0.9849 + }, + { + "start": 24126.04, + "end": 24129.5, + "probability": 0.6288 + }, + { + "start": 24130.1, + "end": 24132.18, + "probability": 0.9647 + }, + { + "start": 24132.84, + "end": 24135.36, + "probability": 0.9873 + }, + { + "start": 24135.9, + "end": 24139.24, + "probability": 0.9878 + }, + { + "start": 24140.54, + "end": 24142.12, + "probability": 0.9512 + }, + { + "start": 24142.2, + "end": 24144.12, + "probability": 0.8389 + }, + { + "start": 24144.12, + "end": 24144.54, + "probability": 0.9741 + }, + { + "start": 24145.26, + "end": 24145.78, + "probability": 0.7452 + }, + { + "start": 24146.26, + "end": 24146.44, + "probability": 0.2104 + }, + { + "start": 24146.54, + "end": 24147.24, + "probability": 0.8669 + }, + { + "start": 24147.42, + "end": 24148.54, + "probability": 0.7328 + }, + { + "start": 24148.68, + "end": 24149.08, + "probability": 0.4906 + }, + { + "start": 24149.36, + "end": 24149.96, + "probability": 0.592 + }, + { + "start": 24149.96, + "end": 24151.4, + "probability": 0.6038 + }, + { + "start": 24151.56, + "end": 24153.08, + "probability": 0.9754 + }, + { + "start": 24154.12, + "end": 24155.02, + "probability": 0.8316 + }, + { + "start": 24155.08, + "end": 24158.6, + "probability": 0.9482 + }, + { + "start": 24158.6, + "end": 24160.72, + "probability": 0.9885 + }, + { + "start": 24161.28, + "end": 24162.84, + "probability": 0.9775 + }, + { + "start": 24163.0, + "end": 24164.66, + "probability": 0.9812 + }, + { + "start": 24165.96, + "end": 24168.7, + "probability": 0.9902 + }, + { + "start": 24168.8, + "end": 24171.36, + "probability": 0.8335 + }, + { + "start": 24171.7, + "end": 24174.68, + "probability": 0.9822 + }, + { + "start": 24175.88, + "end": 24179.56, + "probability": 0.9889 + }, + { + "start": 24179.58, + "end": 24183.72, + "probability": 0.9702 + }, + { + "start": 24184.06, + "end": 24185.5, + "probability": 0.6923 + }, + { + "start": 24186.36, + "end": 24188.14, + "probability": 0.9321 + }, + { + "start": 24188.32, + "end": 24189.82, + "probability": 0.9645 + }, + { + "start": 24190.46, + "end": 24191.94, + "probability": 0.6687 + }, + { + "start": 24192.04, + "end": 24194.66, + "probability": 0.9472 + }, + { + "start": 24195.58, + "end": 24198.24, + "probability": 0.6667 + }, + { + "start": 24198.32, + "end": 24199.04, + "probability": 0.9179 + }, + { + "start": 24199.16, + "end": 24199.56, + "probability": 0.7635 + }, + { + "start": 24200.92, + "end": 24202.3, + "probability": 0.7373 + }, + { + "start": 24202.34, + "end": 24203.02, + "probability": 0.7361 + }, + { + "start": 24203.16, + "end": 24206.74, + "probability": 0.8215 + }, + { + "start": 24206.74, + "end": 24210.82, + "probability": 0.9932 + }, + { + "start": 24211.3, + "end": 24212.48, + "probability": 0.756 + }, + { + "start": 24212.64, + "end": 24216.74, + "probability": 0.949 + }, + { + "start": 24217.32, + "end": 24218.72, + "probability": 0.9278 + }, + { + "start": 24219.32, + "end": 24222.18, + "probability": 0.9946 + }, + { + "start": 24222.72, + "end": 24225.08, + "probability": 0.9564 + }, + { + "start": 24225.18, + "end": 24227.7, + "probability": 0.6366 + }, + { + "start": 24227.7, + "end": 24227.8, + "probability": 0.479 + }, + { + "start": 24228.89, + "end": 24230.32, + "probability": 0.8508 + }, + { + "start": 24230.52, + "end": 24232.28, + "probability": 0.4974 + }, + { + "start": 24232.36, + "end": 24233.78, + "probability": 0.5915 + }, + { + "start": 24234.24, + "end": 24235.06, + "probability": 0.6235 + }, + { + "start": 24235.16, + "end": 24239.4, + "probability": 0.6994 + }, + { + "start": 24239.52, + "end": 24239.66, + "probability": 0.7224 + }, + { + "start": 24240.3, + "end": 24241.24, + "probability": 0.9878 + }, + { + "start": 24242.24, + "end": 24242.5, + "probability": 0.7502 + }, + { + "start": 24242.98, + "end": 24244.2, + "probability": 0.3375 + }, + { + "start": 24244.54, + "end": 24246.46, + "probability": 0.9271 + }, + { + "start": 24246.56, + "end": 24246.88, + "probability": 0.8271 + }, + { + "start": 24246.96, + "end": 24247.82, + "probability": 0.5846 + }, + { + "start": 24247.98, + "end": 24248.1, + "probability": 0.0438 + }, + { + "start": 24248.14, + "end": 24250.3, + "probability": 0.0125 + }, + { + "start": 24251.14, + "end": 24252.76, + "probability": 0.3316 + }, + { + "start": 24253.64, + "end": 24256.58, + "probability": 0.7475 + }, + { + "start": 24257.64, + "end": 24260.22, + "probability": 0.9148 + }, + { + "start": 24260.86, + "end": 24261.34, + "probability": 0.2808 + }, + { + "start": 24261.92, + "end": 24263.48, + "probability": 0.8737 + }, + { + "start": 24264.5, + "end": 24264.74, + "probability": 0.0567 + }, + { + "start": 24267.16, + "end": 24267.24, + "probability": 0.1226 + }, + { + "start": 24267.24, + "end": 24269.72, + "probability": 0.4822 + }, + { + "start": 24269.74, + "end": 24270.06, + "probability": 0.7966 + }, + { + "start": 24270.82, + "end": 24274.46, + "probability": 0.2466 + }, + { + "start": 24275.6, + "end": 24283.32, + "probability": 0.695 + }, + { + "start": 24284.14, + "end": 24284.68, + "probability": 0.0425 + }, + { + "start": 24285.42, + "end": 24286.54, + "probability": 0.1798 + }, + { + "start": 24288.1, + "end": 24289.78, + "probability": 0.4254 + }, + { + "start": 24290.16, + "end": 24292.79, + "probability": 0.1136 + }, + { + "start": 24293.1, + "end": 24296.32, + "probability": 0.7089 + }, + { + "start": 24296.36, + "end": 24296.8, + "probability": 0.4835 + }, + { + "start": 24297.12, + "end": 24297.26, + "probability": 0.2212 + }, + { + "start": 24297.26, + "end": 24297.26, + "probability": 0.4083 + }, + { + "start": 24297.44, + "end": 24297.62, + "probability": 0.4895 + }, + { + "start": 24298.14, + "end": 24301.36, + "probability": 0.6902 + }, + { + "start": 24302.56, + "end": 24303.52, + "probability": 0.1472 + }, + { + "start": 24304.58, + "end": 24306.5, + "probability": 0.8264 + }, + { + "start": 24306.5, + "end": 24306.82, + "probability": 0.0622 + }, + { + "start": 24307.08, + "end": 24309.56, + "probability": 0.7124 + }, + { + "start": 24309.64, + "end": 24309.64, + "probability": 0.2041 + }, + { + "start": 24309.66, + "end": 24310.3, + "probability": 0.9434 + }, + { + "start": 24310.56, + "end": 24312.62, + "probability": 0.4036 + }, + { + "start": 24312.7, + "end": 24313.28, + "probability": 0.8989 + }, + { + "start": 24313.94, + "end": 24314.36, + "probability": 0.1667 + }, + { + "start": 24316.99, + "end": 24319.98, + "probability": 0.8633 + }, + { + "start": 24320.32, + "end": 24321.44, + "probability": 0.725 + }, + { + "start": 24322.62, + "end": 24324.7, + "probability": 0.7897 + }, + { + "start": 24324.8, + "end": 24324.8, + "probability": 0.2877 + }, + { + "start": 24324.8, + "end": 24325.36, + "probability": 0.9422 + }, + { + "start": 24327.02, + "end": 24327.54, + "probability": 0.7421 + }, + { + "start": 24327.54, + "end": 24332.74, + "probability": 0.7308 + }, + { + "start": 24332.82, + "end": 24333.76, + "probability": 0.7822 + }, + { + "start": 24334.02, + "end": 24334.37, + "probability": 0.2267 + }, + { + "start": 24334.8, + "end": 24335.04, + "probability": 0.7 + }, + { + "start": 24335.58, + "end": 24337.74, + "probability": 0.3813 + }, + { + "start": 24337.8, + "end": 24338.58, + "probability": 0.7579 + }, + { + "start": 24338.72, + "end": 24340.02, + "probability": 0.7425 + }, + { + "start": 24340.16, + "end": 24342.66, + "probability": 0.8926 + }, + { + "start": 24342.66, + "end": 24343.7, + "probability": 0.8097 + }, + { + "start": 24344.06, + "end": 24347.22, + "probability": 0.824 + }, + { + "start": 24347.44, + "end": 24349.42, + "probability": 0.8453 + }, + { + "start": 24350.1, + "end": 24352.54, + "probability": 0.8886 + }, + { + "start": 24353.36, + "end": 24355.6, + "probability": 0.7985 + }, + { + "start": 24355.66, + "end": 24358.84, + "probability": 0.8535 + }, + { + "start": 24358.96, + "end": 24360.88, + "probability": 0.9789 + }, + { + "start": 24360.96, + "end": 24362.08, + "probability": 0.928 + }, + { + "start": 24362.14, + "end": 24362.48, + "probability": 0.7549 + }, + { + "start": 24363.52, + "end": 24364.96, + "probability": 0.3168 + }, + { + "start": 24365.26, + "end": 24365.86, + "probability": 0.5054 + }, + { + "start": 24366.46, + "end": 24367.08, + "probability": 0.0559 + }, + { + "start": 24368.6, + "end": 24372.64, + "probability": 0.9087 + }, + { + "start": 24374.17, + "end": 24376.24, + "probability": 0.7837 + }, + { + "start": 24376.76, + "end": 24380.46, + "probability": 0.8146 + }, + { + "start": 24380.9, + "end": 24385.08, + "probability": 0.9575 + }, + { + "start": 24385.5, + "end": 24387.44, + "probability": 0.2201 + }, + { + "start": 24389.2, + "end": 24389.38, + "probability": 0.0541 + }, + { + "start": 24389.38, + "end": 24391.12, + "probability": 0.8052 + }, + { + "start": 24391.14, + "end": 24391.53, + "probability": 0.9779 + }, + { + "start": 24391.78, + "end": 24393.3, + "probability": 0.8055 + }, + { + "start": 24393.38, + "end": 24395.12, + "probability": 0.9284 + }, + { + "start": 24395.24, + "end": 24396.12, + "probability": 0.9328 + }, + { + "start": 24396.16, + "end": 24396.36, + "probability": 0.9824 + }, + { + "start": 24397.14, + "end": 24397.7, + "probability": 0.5445 + }, + { + "start": 24398.06, + "end": 24399.22, + "probability": 0.9268 + }, + { + "start": 24399.26, + "end": 24399.5, + "probability": 0.8289 + }, + { + "start": 24399.9, + "end": 24400.2, + "probability": 0.3593 + }, + { + "start": 24400.32, + "end": 24402.18, + "probability": 0.8962 + }, + { + "start": 24402.68, + "end": 24403.44, + "probability": 0.3711 + }, + { + "start": 24403.74, + "end": 24404.0, + "probability": 0.2078 + }, + { + "start": 24404.0, + "end": 24404.2, + "probability": 0.4242 + }, + { + "start": 24405.08, + "end": 24405.96, + "probability": 0.683 + }, + { + "start": 24406.82, + "end": 24408.06, + "probability": 0.4774 + }, + { + "start": 24408.66, + "end": 24409.0, + "probability": 0.8889 + }, + { + "start": 24409.2, + "end": 24411.1, + "probability": 0.8154 + }, + { + "start": 24412.18, + "end": 24413.54, + "probability": 0.38 + }, + { + "start": 24415.56, + "end": 24416.58, + "probability": 0.4045 + }, + { + "start": 24416.96, + "end": 24417.44, + "probability": 0.5664 + }, + { + "start": 24417.46, + "end": 24417.84, + "probability": 0.5251 + }, + { + "start": 24417.94, + "end": 24418.12, + "probability": 0.6024 + }, + { + "start": 24423.56, + "end": 24424.92, + "probability": 0.2989 + }, + { + "start": 24435.62, + "end": 24435.86, + "probability": 0.0473 + }, + { + "start": 24435.86, + "end": 24437.66, + "probability": 0.3761 + }, + { + "start": 24438.24, + "end": 24440.61, + "probability": 0.7802 + }, + { + "start": 24441.2, + "end": 24441.8, + "probability": 0.9775 + }, + { + "start": 24442.9, + "end": 24446.68, + "probability": 0.449 + }, + { + "start": 24446.68, + "end": 24449.12, + "probability": 0.9491 + }, + { + "start": 24449.82, + "end": 24451.28, + "probability": 0.6773 + }, + { + "start": 24452.3, + "end": 24453.1, + "probability": 0.8713 + }, + { + "start": 24461.86, + "end": 24463.48, + "probability": 0.9087 + }, + { + "start": 24464.72, + "end": 24465.3, + "probability": 0.8993 + }, + { + "start": 24465.56, + "end": 24467.0, + "probability": 0.8213 + }, + { + "start": 24472.02, + "end": 24473.74, + "probability": 0.7608 + }, + { + "start": 24474.3, + "end": 24475.24, + "probability": 0.692 + }, + { + "start": 24475.28, + "end": 24476.12, + "probability": 0.9379 + }, + { + "start": 24476.86, + "end": 24480.22, + "probability": 0.7472 + }, + { + "start": 24480.54, + "end": 24480.54, + "probability": 0.0102 + }, + { + "start": 24481.28, + "end": 24481.78, + "probability": 0.0314 + }, + { + "start": 24483.4, + "end": 24485.34, + "probability": 0.6535 + }, + { + "start": 24485.9, + "end": 24486.06, + "probability": 0.458 + }, + { + "start": 24486.06, + "end": 24487.06, + "probability": 0.7331 + }, + { + "start": 24487.82, + "end": 24490.88, + "probability": 0.8782 + }, + { + "start": 24492.18, + "end": 24492.96, + "probability": 0.8481 + }, + { + "start": 24493.68, + "end": 24494.58, + "probability": 0.8457 + }, + { + "start": 24495.66, + "end": 24497.42, + "probability": 0.9896 + }, + { + "start": 24498.5, + "end": 24498.6, + "probability": 0.0114 + }, + { + "start": 24498.68, + "end": 24501.38, + "probability": 0.6165 + }, + { + "start": 24501.66, + "end": 24503.0, + "probability": 0.4565 + }, + { + "start": 24505.74, + "end": 24507.8, + "probability": 0.0954 + }, + { + "start": 24507.9, + "end": 24508.64, + "probability": 0.9209 + }, + { + "start": 24509.02, + "end": 24512.96, + "probability": 0.9704 + }, + { + "start": 24513.72, + "end": 24517.16, + "probability": 0.7041 + }, + { + "start": 24518.3, + "end": 24522.72, + "probability": 0.4986 + }, + { + "start": 24523.18, + "end": 24524.08, + "probability": 0.8403 + }, + { + "start": 24524.12, + "end": 24525.04, + "probability": 0.9041 + }, + { + "start": 24526.0, + "end": 24526.74, + "probability": 0.7564 + }, + { + "start": 24526.74, + "end": 24527.17, + "probability": 0.7466 + }, + { + "start": 24527.52, + "end": 24531.44, + "probability": 0.9612 + }, + { + "start": 24531.58, + "end": 24531.78, + "probability": 0.7198 + }, + { + "start": 24531.84, + "end": 24533.92, + "probability": 0.8086 + }, + { + "start": 24534.76, + "end": 24536.8, + "probability": 0.9808 + }, + { + "start": 24536.96, + "end": 24537.75, + "probability": 0.8461 + }, + { + "start": 24538.06, + "end": 24538.4, + "probability": 0.9944 + }, + { + "start": 24538.48, + "end": 24540.2, + "probability": 0.9754 + }, + { + "start": 24541.66, + "end": 24543.82, + "probability": 0.1647 + }, + { + "start": 24544.38, + "end": 24548.14, + "probability": 0.7253 + }, + { + "start": 24549.3, + "end": 24552.22, + "probability": 0.8572 + }, + { + "start": 24553.26, + "end": 24554.74, + "probability": 0.8622 + }, + { + "start": 24555.5, + "end": 24559.08, + "probability": 0.9666 + }, + { + "start": 24561.14, + "end": 24563.3, + "probability": 0.9005 + }, + { + "start": 24564.08, + "end": 24567.52, + "probability": 0.6556 + }, + { + "start": 24568.26, + "end": 24569.8, + "probability": 0.9341 + }, + { + "start": 24570.56, + "end": 24571.62, + "probability": 0.9479 + }, + { + "start": 24573.16, + "end": 24573.8, + "probability": 0.7563 + }, + { + "start": 24574.24, + "end": 24574.7, + "probability": 0.7827 + }, + { + "start": 24574.96, + "end": 24575.4, + "probability": 0.6648 + }, + { + "start": 24575.44, + "end": 24575.98, + "probability": 0.7676 + }, + { + "start": 24575.98, + "end": 24576.4, + "probability": 0.5031 + }, + { + "start": 24576.5, + "end": 24578.69, + "probability": 0.9348 + }, + { + "start": 24581.38, + "end": 24581.8, + "probability": 0.352 + }, + { + "start": 24581.88, + "end": 24582.14, + "probability": 0.842 + }, + { + "start": 24582.26, + "end": 24585.76, + "probability": 0.962 + }, + { + "start": 24586.2, + "end": 24587.23, + "probability": 0.725 + }, + { + "start": 24587.38, + "end": 24589.66, + "probability": 0.9159 + }, + { + "start": 24589.78, + "end": 24590.73, + "probability": 0.9897 + }, + { + "start": 24591.24, + "end": 24593.46, + "probability": 0.636 + }, + { + "start": 24594.52, + "end": 24598.32, + "probability": 0.862 + }, + { + "start": 24599.94, + "end": 24600.04, + "probability": 0.5708 + }, + { + "start": 24600.22, + "end": 24601.28, + "probability": 0.424 + }, + { + "start": 24601.58, + "end": 24601.76, + "probability": 0.3026 + }, + { + "start": 24601.76, + "end": 24602.96, + "probability": 0.4974 + }, + { + "start": 24602.98, + "end": 24603.64, + "probability": 0.2047 + }, + { + "start": 24603.64, + "end": 24603.78, + "probability": 0.2416 + }, + { + "start": 24603.86, + "end": 24604.48, + "probability": 0.6018 + }, + { + "start": 24604.58, + "end": 24605.26, + "probability": 0.7013 + }, + { + "start": 24605.62, + "end": 24607.94, + "probability": 0.8478 + }, + { + "start": 24608.02, + "end": 24608.72, + "probability": 0.033 + }, + { + "start": 24608.86, + "end": 24611.6, + "probability": 0.7776 + }, + { + "start": 24611.96, + "end": 24613.0, + "probability": 0.8094 + }, + { + "start": 24613.02, + "end": 24615.98, + "probability": 0.8775 + }, + { + "start": 24615.98, + "end": 24616.66, + "probability": 0.4049 + }, + { + "start": 24616.74, + "end": 24619.1, + "probability": 0.9754 + }, + { + "start": 24619.18, + "end": 24620.46, + "probability": 0.7305 + }, + { + "start": 24620.7, + "end": 24621.66, + "probability": 0.6798 + }, + { + "start": 24621.92, + "end": 24623.6, + "probability": 0.6448 + }, + { + "start": 24623.7, + "end": 24625.77, + "probability": 0.8302 + }, + { + "start": 24627.32, + "end": 24629.41, + "probability": 0.8307 + }, + { + "start": 24630.46, + "end": 24631.33, + "probability": 0.8771 + }, + { + "start": 24632.72, + "end": 24635.28, + "probability": 0.5291 + }, + { + "start": 24635.38, + "end": 24635.74, + "probability": 0.6964 + }, + { + "start": 24635.84, + "end": 24636.58, + "probability": 0.8812 + }, + { + "start": 24637.0, + "end": 24639.3, + "probability": 0.8888 + }, + { + "start": 24639.72, + "end": 24640.22, + "probability": 0.8154 + }, + { + "start": 24640.76, + "end": 24642.5, + "probability": 0.7972 + }, + { + "start": 24643.3, + "end": 24646.44, + "probability": 0.9183 + }, + { + "start": 24647.44, + "end": 24648.96, + "probability": 0.9917 + }, + { + "start": 24649.54, + "end": 24649.98, + "probability": 0.673 + }, + { + "start": 24650.12, + "end": 24650.88, + "probability": 0.759 + }, + { + "start": 24650.96, + "end": 24651.2, + "probability": 0.8812 + }, + { + "start": 24651.22, + "end": 24653.16, + "probability": 0.9165 + }, + { + "start": 24653.76, + "end": 24653.86, + "probability": 0.0039 + }, + { + "start": 24653.88, + "end": 24654.31, + "probability": 0.6096 + }, + { + "start": 24656.02, + "end": 24658.01, + "probability": 0.8201 + }, + { + "start": 24658.42, + "end": 24658.86, + "probability": 0.7289 + }, + { + "start": 24659.38, + "end": 24660.68, + "probability": 0.8909 + }, + { + "start": 24661.82, + "end": 24662.33, + "probability": 0.9238 + }, + { + "start": 24663.28, + "end": 24665.0, + "probability": 0.9429 + }, + { + "start": 24666.3, + "end": 24667.3, + "probability": 0.993 + }, + { + "start": 24667.8, + "end": 24671.62, + "probability": 0.4783 + }, + { + "start": 24671.62, + "end": 24671.62, + "probability": 0.011 + }, + { + "start": 24671.62, + "end": 24672.5, + "probability": 0.156 + }, + { + "start": 24672.88, + "end": 24673.56, + "probability": 0.9941 + }, + { + "start": 24674.42, + "end": 24676.38, + "probability": 0.7614 + }, + { + "start": 24676.74, + "end": 24677.96, + "probability": 0.9766 + }, + { + "start": 24678.56, + "end": 24678.9, + "probability": 0.4858 + }, + { + "start": 24679.02, + "end": 24679.6, + "probability": 0.8608 + }, + { + "start": 24679.66, + "end": 24680.44, + "probability": 0.8938 + }, + { + "start": 24680.48, + "end": 24681.64, + "probability": 0.9728 + }, + { + "start": 24682.22, + "end": 24682.68, + "probability": 0.6493 + }, + { + "start": 24682.7, + "end": 24684.76, + "probability": 0.8638 + }, + { + "start": 24685.18, + "end": 24685.82, + "probability": 0.7294 + }, + { + "start": 24685.9, + "end": 24687.7, + "probability": 0.682 + }, + { + "start": 24687.92, + "end": 24689.96, + "probability": 0.742 + }, + { + "start": 24689.98, + "end": 24690.32, + "probability": 0.7575 + }, + { + "start": 24690.5, + "end": 24692.02, + "probability": 0.4705 + }, + { + "start": 24692.02, + "end": 24693.86, + "probability": 0.8142 + }, + { + "start": 24695.12, + "end": 24695.74, + "probability": 0.5946 + }, + { + "start": 24696.36, + "end": 24699.04, + "probability": 0.7649 + }, + { + "start": 24699.94, + "end": 24700.08, + "probability": 0.1103 + }, + { + "start": 24707.08, + "end": 24707.18, + "probability": 0.0815 + }, + { + "start": 24712.12, + "end": 24713.18, + "probability": 0.724 + }, + { + "start": 24713.5, + "end": 24713.88, + "probability": 0.7072 + }, + { + "start": 24715.42, + "end": 24719.36, + "probability": 0.351 + }, + { + "start": 24720.64, + "end": 24721.44, + "probability": 0.4821 + }, + { + "start": 24722.64, + "end": 24723.48, + "probability": 0.8503 + }, + { + "start": 24724.3, + "end": 24726.7, + "probability": 0.985 + }, + { + "start": 24727.78, + "end": 24728.86, + "probability": 0.9345 + }, + { + "start": 24729.22, + "end": 24729.86, + "probability": 0.2225 + }, + { + "start": 24730.08, + "end": 24730.84, + "probability": 0.7806 + }, + { + "start": 24731.14, + "end": 24732.74, + "probability": 0.2687 + }, + { + "start": 24732.74, + "end": 24734.58, + "probability": 0.2995 + }, + { + "start": 24734.58, + "end": 24735.16, + "probability": 0.7461 + }, + { + "start": 24735.28, + "end": 24736.46, + "probability": 0.8333 + }, + { + "start": 24736.56, + "end": 24737.97, + "probability": 0.7231 + }, + { + "start": 24738.18, + "end": 24739.24, + "probability": 0.8379 + }, + { + "start": 24740.08, + "end": 24741.84, + "probability": 0.9678 + }, + { + "start": 24741.84, + "end": 24743.19, + "probability": 0.8972 + }, + { + "start": 24744.02, + "end": 24745.88, + "probability": 0.2322 + }, + { + "start": 24746.61, + "end": 24749.22, + "probability": 0.2283 + }, + { + "start": 24749.58, + "end": 24750.28, + "probability": 0.6013 + }, + { + "start": 24750.38, + "end": 24750.74, + "probability": 0.4571 + }, + { + "start": 24751.32, + "end": 24754.7, + "probability": 0.9922 + }, + { + "start": 24754.76, + "end": 24756.1, + "probability": 0.7364 + }, + { + "start": 24756.22, + "end": 24757.5, + "probability": 0.7991 + }, + { + "start": 24758.5, + "end": 24759.8, + "probability": 0.7857 + }, + { + "start": 24760.02, + "end": 24760.74, + "probability": 0.9559 + }, + { + "start": 24760.82, + "end": 24764.22, + "probability": 0.9264 + }, + { + "start": 24764.3, + "end": 24766.34, + "probability": 0.9449 + }, + { + "start": 24766.42, + "end": 24767.78, + "probability": 0.754 + }, + { + "start": 24768.6, + "end": 24769.94, + "probability": 0.8726 + }, + { + "start": 24771.2, + "end": 24772.6, + "probability": 0.9061 + }, + { + "start": 24772.68, + "end": 24775.9, + "probability": 0.8975 + }, + { + "start": 24777.58, + "end": 24780.62, + "probability": 0.9866 + }, + { + "start": 24781.34, + "end": 24782.44, + "probability": 0.8145 + }, + { + "start": 24783.08, + "end": 24785.48, + "probability": 0.8975 + }, + { + "start": 24785.66, + "end": 24788.48, + "probability": 0.9875 + }, + { + "start": 24790.48, + "end": 24792.88, + "probability": 0.9712 + }, + { + "start": 24793.74, + "end": 24795.22, + "probability": 0.7786 + }, + { + "start": 24796.24, + "end": 24800.96, + "probability": 0.7858 + }, + { + "start": 24801.34, + "end": 24801.44, + "probability": 0.4462 + }, + { + "start": 24802.56, + "end": 24807.54, + "probability": 0.9847 + }, + { + "start": 24807.64, + "end": 24810.52, + "probability": 0.9767 + }, + { + "start": 24811.38, + "end": 24813.62, + "probability": 0.9901 + }, + { + "start": 24813.62, + "end": 24816.54, + "probability": 0.9844 + }, + { + "start": 24817.18, + "end": 24820.04, + "probability": 0.9967 + }, + { + "start": 24820.04, + "end": 24822.4, + "probability": 0.9995 + }, + { + "start": 24823.2, + "end": 24825.22, + "probability": 0.9639 + }, + { + "start": 24825.64, + "end": 24828.91, + "probability": 0.9972 + }, + { + "start": 24829.96, + "end": 24830.56, + "probability": 0.9811 + }, + { + "start": 24831.24, + "end": 24832.26, + "probability": 0.9504 + }, + { + "start": 24832.3, + "end": 24837.82, + "probability": 0.9937 + }, + { + "start": 24837.82, + "end": 24841.84, + "probability": 0.9712 + }, + { + "start": 24842.4, + "end": 24844.04, + "probability": 0.9979 + }, + { + "start": 24844.6, + "end": 24847.32, + "probability": 0.7974 + }, + { + "start": 24847.92, + "end": 24848.76, + "probability": 0.9858 + }, + { + "start": 24849.04, + "end": 24849.86, + "probability": 0.8433 + }, + { + "start": 24850.12, + "end": 24850.6, + "probability": 0.7021 + }, + { + "start": 24850.72, + "end": 24851.32, + "probability": 0.7515 + }, + { + "start": 24851.36, + "end": 24852.46, + "probability": 0.9344 + }, + { + "start": 24853.16, + "end": 24853.96, + "probability": 0.7408 + }, + { + "start": 24854.0, + "end": 24856.48, + "probability": 0.8083 + }, + { + "start": 24856.52, + "end": 24857.52, + "probability": 0.773 + }, + { + "start": 24857.54, + "end": 24858.56, + "probability": 0.7864 + }, + { + "start": 24858.58, + "end": 24859.28, + "probability": 0.9461 + }, + { + "start": 24860.36, + "end": 24862.42, + "probability": 0.9491 + }, + { + "start": 24862.56, + "end": 24863.72, + "probability": 0.9926 + }, + { + "start": 24864.34, + "end": 24867.16, + "probability": 0.8669 + }, + { + "start": 24867.82, + "end": 24870.21, + "probability": 0.9316 + }, + { + "start": 24870.32, + "end": 24871.94, + "probability": 0.9919 + }, + { + "start": 24872.88, + "end": 24875.34, + "probability": 0.995 + }, + { + "start": 24876.0, + "end": 24878.8, + "probability": 0.7731 + }, + { + "start": 24879.92, + "end": 24880.84, + "probability": 0.8841 + }, + { + "start": 24881.28, + "end": 24883.82, + "probability": 0.9771 + }, + { + "start": 24884.52, + "end": 24886.36, + "probability": 0.9584 + }, + { + "start": 24887.64, + "end": 24892.77, + "probability": 0.984 + }, + { + "start": 24893.66, + "end": 24897.22, + "probability": 0.9996 + }, + { + "start": 24897.94, + "end": 24899.42, + "probability": 0.9966 + }, + { + "start": 24900.08, + "end": 24902.02, + "probability": 0.9774 + }, + { + "start": 24902.66, + "end": 24904.36, + "probability": 0.8716 + }, + { + "start": 24904.84, + "end": 24907.6, + "probability": 0.9795 + }, + { + "start": 24908.3, + "end": 24910.26, + "probability": 0.8319 + }, + { + "start": 24910.78, + "end": 24914.92, + "probability": 0.9882 + }, + { + "start": 24915.56, + "end": 24921.56, + "probability": 0.496 + }, + { + "start": 24922.22, + "end": 24923.94, + "probability": 0.1688 + }, + { + "start": 24924.18, + "end": 24925.48, + "probability": 0.8436 + }, + { + "start": 24926.12, + "end": 24926.16, + "probability": 0.1601 + }, + { + "start": 24926.16, + "end": 24926.16, + "probability": 0.0393 + }, + { + "start": 24926.16, + "end": 24930.66, + "probability": 0.9332 + }, + { + "start": 24931.74, + "end": 24934.52, + "probability": 0.9993 + }, + { + "start": 24934.52, + "end": 24938.63, + "probability": 0.9993 + }, + { + "start": 24939.42, + "end": 24942.42, + "probability": 0.9984 + }, + { + "start": 24943.16, + "end": 24944.9, + "probability": 0.9984 + }, + { + "start": 24945.28, + "end": 24946.0, + "probability": 0.6619 + }, + { + "start": 24946.16, + "end": 24946.38, + "probability": 0.7934 + }, + { + "start": 24946.88, + "end": 24949.3, + "probability": 0.8974 + }, + { + "start": 24949.4, + "end": 24952.75, + "probability": 0.987 + }, + { + "start": 24953.8, + "end": 24954.3, + "probability": 0.7164 + }, + { + "start": 24954.34, + "end": 24955.06, + "probability": 0.9456 + }, + { + "start": 24955.14, + "end": 24957.88, + "probability": 0.9764 + }, + { + "start": 24957.88, + "end": 24961.58, + "probability": 0.9923 + }, + { + "start": 24962.14, + "end": 24962.8, + "probability": 0.7302 + }, + { + "start": 24963.28, + "end": 24963.76, + "probability": 0.7187 + }, + { + "start": 24963.82, + "end": 24968.46, + "probability": 0.9284 + }, + { + "start": 24968.64, + "end": 24969.82, + "probability": 0.3549 + }, + { + "start": 24970.16, + "end": 24970.66, + "probability": 0.4799 + }, + { + "start": 24971.24, + "end": 24971.98, + "probability": 0.2545 + }, + { + "start": 24972.4, + "end": 24976.98, + "probability": 0.9688 + }, + { + "start": 24976.98, + "end": 24981.6, + "probability": 0.9939 + }, + { + "start": 24982.14, + "end": 24984.1, + "probability": 0.8164 + }, + { + "start": 24984.46, + "end": 24984.89, + "probability": 0.7995 + }, + { + "start": 24985.06, + "end": 24986.34, + "probability": 0.7229 + }, + { + "start": 24987.02, + "end": 24987.34, + "probability": 0.6073 + }, + { + "start": 24987.36, + "end": 24990.64, + "probability": 0.8779 + }, + { + "start": 24990.96, + "end": 24991.1, + "probability": 0.7671 + }, + { + "start": 24991.64, + "end": 24993.06, + "probability": 0.4852 + }, + { + "start": 24993.18, + "end": 24994.22, + "probability": 0.9131 + }, + { + "start": 24994.46, + "end": 24994.6, + "probability": 0.4944 + }, + { + "start": 24994.7, + "end": 25000.2, + "probability": 0.9863 + }, + { + "start": 25000.78, + "end": 25001.79, + "probability": 0.9971 + }, + { + "start": 25001.92, + "end": 25003.26, + "probability": 0.9698 + }, + { + "start": 25003.36, + "end": 25006.04, + "probability": 0.8087 + }, + { + "start": 25007.1, + "end": 25009.7, + "probability": 0.9805 + }, + { + "start": 25010.0, + "end": 25011.84, + "probability": 0.9664 + }, + { + "start": 25012.72, + "end": 25013.21, + "probability": 0.8765 + }, + { + "start": 25013.3, + "end": 25013.62, + "probability": 0.8297 + }, + { + "start": 25013.92, + "end": 25016.42, + "probability": 0.9803 + }, + { + "start": 25016.84, + "end": 25017.94, + "probability": 0.7744 + }, + { + "start": 25018.0, + "end": 25019.66, + "probability": 0.4944 + }, + { + "start": 25019.78, + "end": 25020.52, + "probability": 0.6035 + }, + { + "start": 25020.58, + "end": 25020.8, + "probability": 0.9485 + }, + { + "start": 25020.92, + "end": 25021.7, + "probability": 0.9735 + }, + { + "start": 25021.88, + "end": 25023.88, + "probability": 0.8635 + }, + { + "start": 25023.88, + "end": 25026.9, + "probability": 0.9957 + }, + { + "start": 25027.74, + "end": 25028.62, + "probability": 0.7673 + }, + { + "start": 25029.3, + "end": 25031.16, + "probability": 0.7044 + }, + { + "start": 25031.26, + "end": 25033.52, + "probability": 0.9791 + }, + { + "start": 25033.92, + "end": 25034.9, + "probability": 0.9517 + }, + { + "start": 25034.94, + "end": 25039.11, + "probability": 0.9516 + }, + { + "start": 25039.62, + "end": 25042.92, + "probability": 0.9948 + }, + { + "start": 25042.92, + "end": 25045.3, + "probability": 0.9945 + }, + { + "start": 25045.72, + "end": 25046.96, + "probability": 0.5548 + }, + { + "start": 25047.36, + "end": 25048.84, + "probability": 0.8602 + }, + { + "start": 25049.38, + "end": 25051.42, + "probability": 0.8654 + }, + { + "start": 25051.5, + "end": 25053.26, + "probability": 0.9775 + }, + { + "start": 25053.7, + "end": 25056.22, + "probability": 0.8101 + }, + { + "start": 25056.26, + "end": 25057.74, + "probability": 0.9119 + }, + { + "start": 25058.06, + "end": 25059.16, + "probability": 0.9121 + }, + { + "start": 25059.16, + "end": 25059.4, + "probability": 0.3171 + }, + { + "start": 25059.58, + "end": 25061.98, + "probability": 0.972 + }, + { + "start": 25062.18, + "end": 25063.76, + "probability": 0.6364 + }, + { + "start": 25064.32, + "end": 25066.44, + "probability": 0.7237 + }, + { + "start": 25067.2, + "end": 25070.56, + "probability": 0.9417 + }, + { + "start": 25070.56, + "end": 25073.96, + "probability": 0.9926 + }, + { + "start": 25074.44, + "end": 25077.1, + "probability": 0.9922 + }, + { + "start": 25077.74, + "end": 25079.84, + "probability": 0.9738 + }, + { + "start": 25079.84, + "end": 25082.36, + "probability": 0.8799 + }, + { + "start": 25083.16, + "end": 25083.68, + "probability": 0.6151 + }, + { + "start": 25083.8, + "end": 25086.94, + "probability": 0.9637 + }, + { + "start": 25087.08, + "end": 25090.66, + "probability": 0.9908 + }, + { + "start": 25091.12, + "end": 25091.28, + "probability": 0.7775 + }, + { + "start": 25092.7, + "end": 25094.58, + "probability": 0.6881 + }, + { + "start": 25095.4, + "end": 25096.26, + "probability": 0.9062 + }, + { + "start": 25096.86, + "end": 25097.6, + "probability": 0.9407 + }, + { + "start": 25097.72, + "end": 25098.56, + "probability": 0.9672 + }, + { + "start": 25098.62, + "end": 25103.16, + "probability": 0.9827 + }, + { + "start": 25103.26, + "end": 25105.58, + "probability": 0.7371 + }, + { + "start": 25106.12, + "end": 25107.84, + "probability": 0.988 + }, + { + "start": 25107.9, + "end": 25112.02, + "probability": 0.9951 + }, + { + "start": 25112.62, + "end": 25114.54, + "probability": 0.8746 + }, + { + "start": 25114.62, + "end": 25115.44, + "probability": 0.9558 + }, + { + "start": 25115.52, + "end": 25117.5, + "probability": 0.9312 + }, + { + "start": 25118.32, + "end": 25119.66, + "probability": 0.8704 + }, + { + "start": 25120.48, + "end": 25122.67, + "probability": 0.5631 + }, + { + "start": 25124.82, + "end": 25128.02, + "probability": 0.9468 + }, + { + "start": 25128.62, + "end": 25130.84, + "probability": 0.997 + }, + { + "start": 25131.5, + "end": 25132.74, + "probability": 0.6914 + }, + { + "start": 25133.32, + "end": 25137.22, + "probability": 0.8838 + }, + { + "start": 25137.22, + "end": 25139.44, + "probability": 0.9989 + }, + { + "start": 25140.02, + "end": 25141.98, + "probability": 0.8692 + }, + { + "start": 25142.02, + "end": 25143.76, + "probability": 0.9961 + }, + { + "start": 25144.2, + "end": 25144.9, + "probability": 0.7118 + }, + { + "start": 25145.02, + "end": 25145.34, + "probability": 0.7925 + }, + { + "start": 25145.44, + "end": 25146.1, + "probability": 0.824 + }, + { + "start": 25146.52, + "end": 25148.58, + "probability": 0.9722 + }, + { + "start": 25149.1, + "end": 25149.66, + "probability": 0.7788 + }, + { + "start": 25149.8, + "end": 25153.44, + "probability": 0.9771 + }, + { + "start": 25153.52, + "end": 25155.42, + "probability": 0.9604 + }, + { + "start": 25156.02, + "end": 25156.52, + "probability": 0.7195 + }, + { + "start": 25157.24, + "end": 25159.65, + "probability": 0.6972 + }, + { + "start": 25160.06, + "end": 25162.54, + "probability": 0.9771 + }, + { + "start": 25163.94, + "end": 25164.88, + "probability": 0.1914 + }, + { + "start": 25165.18, + "end": 25165.58, + "probability": 0.667 + }, + { + "start": 25165.66, + "end": 25169.52, + "probability": 0.9219 + }, + { + "start": 25170.0, + "end": 25171.58, + "probability": 0.9682 + }, + { + "start": 25172.4, + "end": 25175.12, + "probability": 0.9962 + }, + { + "start": 25175.48, + "end": 25179.52, + "probability": 0.9981 + }, + { + "start": 25180.06, + "end": 25181.1, + "probability": 0.9908 + }, + { + "start": 25181.3, + "end": 25183.64, + "probability": 0.7712 + }, + { + "start": 25183.82, + "end": 25186.58, + "probability": 0.8111 + }, + { + "start": 25186.94, + "end": 25188.14, + "probability": 0.6284 + }, + { + "start": 25188.22, + "end": 25190.84, + "probability": 0.6396 + }, + { + "start": 25191.58, + "end": 25193.42, + "probability": 0.8465 + }, + { + "start": 25194.0, + "end": 25196.56, + "probability": 0.9066 + }, + { + "start": 25197.16, + "end": 25198.83, + "probability": 0.7761 + }, + { + "start": 25199.72, + "end": 25202.78, + "probability": 0.1243 + }, + { + "start": 25202.78, + "end": 25202.78, + "probability": 0.0566 + }, + { + "start": 25202.78, + "end": 25203.78, + "probability": 0.4622 + }, + { + "start": 25203.92, + "end": 25203.92, + "probability": 0.0806 + }, + { + "start": 25203.92, + "end": 25204.54, + "probability": 0.9539 + }, + { + "start": 25204.58, + "end": 25205.27, + "probability": 0.9045 + }, + { + "start": 25205.96, + "end": 25206.72, + "probability": 0.8948 + }, + { + "start": 25207.42, + "end": 25212.5, + "probability": 0.99 + }, + { + "start": 25213.1, + "end": 25214.32, + "probability": 0.9388 + }, + { + "start": 25215.14, + "end": 25216.76, + "probability": 0.7142 + }, + { + "start": 25217.04, + "end": 25218.24, + "probability": 0.9192 + }, + { + "start": 25218.84, + "end": 25223.3, + "probability": 0.9891 + }, + { + "start": 25223.88, + "end": 25224.68, + "probability": 0.8147 + }, + { + "start": 25225.06, + "end": 25226.54, + "probability": 0.6815 + }, + { + "start": 25227.06, + "end": 25229.56, + "probability": 0.9902 + }, + { + "start": 25229.72, + "end": 25230.88, + "probability": 0.9924 + }, + { + "start": 25231.56, + "end": 25232.86, + "probability": 0.8042 + }, + { + "start": 25233.7, + "end": 25234.34, + "probability": 0.7887 + }, + { + "start": 25235.22, + "end": 25235.9, + "probability": 0.9665 + }, + { + "start": 25236.8, + "end": 25238.24, + "probability": 0.9845 + }, + { + "start": 25238.92, + "end": 25239.29, + "probability": 0.4976 + }, + { + "start": 25240.78, + "end": 25244.34, + "probability": 0.9292 + }, + { + "start": 25245.04, + "end": 25245.62, + "probability": 0.7023 + }, + { + "start": 25246.46, + "end": 25247.54, + "probability": 0.8395 + }, + { + "start": 25247.56, + "end": 25251.48, + "probability": 0.9785 + }, + { + "start": 25252.06, + "end": 25253.08, + "probability": 0.9934 + }, + { + "start": 25253.4, + "end": 25255.46, + "probability": 0.982 + }, + { + "start": 25255.76, + "end": 25258.54, + "probability": 0.9473 + }, + { + "start": 25259.0, + "end": 25259.58, + "probability": 0.4357 + }, + { + "start": 25260.16, + "end": 25261.8, + "probability": 0.6196 + }, + { + "start": 25261.82, + "end": 25262.72, + "probability": 0.0877 + }, + { + "start": 25263.48, + "end": 25265.92, + "probability": 0.3506 + }, + { + "start": 25266.22, + "end": 25266.4, + "probability": 0.2678 + }, + { + "start": 25266.4, + "end": 25267.94, + "probability": 0.4506 + }, + { + "start": 25268.02, + "end": 25269.46, + "probability": 0.9907 + }, + { + "start": 25270.4, + "end": 25273.34, + "probability": 0.6285 + }, + { + "start": 25274.02, + "end": 25277.5, + "probability": 0.83 + }, + { + "start": 25277.9, + "end": 25278.74, + "probability": 0.9956 + }, + { + "start": 25279.32, + "end": 25281.04, + "probability": 0.9907 + }, + { + "start": 25281.64, + "end": 25282.84, + "probability": 0.6543 + }, + { + "start": 25283.34, + "end": 25283.84, + "probability": 0.7198 + }, + { + "start": 25283.96, + "end": 25284.48, + "probability": 0.4528 + }, + { + "start": 25284.58, + "end": 25285.4, + "probability": 0.6686 + }, + { + "start": 25285.72, + "end": 25287.6, + "probability": 0.883 + }, + { + "start": 25288.22, + "end": 25289.86, + "probability": 0.9463 + }, + { + "start": 25290.02, + "end": 25292.86, + "probability": 0.9339 + }, + { + "start": 25293.4, + "end": 25294.8, + "probability": 0.8655 + }, + { + "start": 25295.58, + "end": 25298.38, + "probability": 0.923 + }, + { + "start": 25298.6, + "end": 25298.92, + "probability": 0.1094 + }, + { + "start": 25298.92, + "end": 25298.92, + "probability": 0.0688 + }, + { + "start": 25298.92, + "end": 25305.36, + "probability": 0.604 + }, + { + "start": 25306.06, + "end": 25307.78, + "probability": 0.9961 + }, + { + "start": 25308.38, + "end": 25312.22, + "probability": 0.5913 + }, + { + "start": 25312.96, + "end": 25313.94, + "probability": 0.785 + }, + { + "start": 25314.8, + "end": 25318.42, + "probability": 0.2764 + }, + { + "start": 25319.56, + "end": 25319.62, + "probability": 0.0524 + }, + { + "start": 25319.62, + "end": 25319.64, + "probability": 0.253 + }, + { + "start": 25319.64, + "end": 25322.52, + "probability": 0.8447 + }, + { + "start": 25323.26, + "end": 25324.52, + "probability": 0.0927 + }, + { + "start": 25327.54, + "end": 25327.9, + "probability": 0.6147 + }, + { + "start": 25328.28, + "end": 25335.06, + "probability": 0.0127 + }, + { + "start": 25337.34, + "end": 25338.48, + "probability": 0.0718 + }, + { + "start": 25338.48, + "end": 25338.66, + "probability": 0.2679 + }, + { + "start": 25339.42, + "end": 25340.48, + "probability": 0.0598 + }, + { + "start": 25340.48, + "end": 25342.76, + "probability": 0.472 + }, + { + "start": 25343.42, + "end": 25344.34, + "probability": 0.611 + }, + { + "start": 25344.92, + "end": 25345.68, + "probability": 0.7483 + }, + { + "start": 25346.4, + "end": 25349.12, + "probability": 0.9655 + }, + { + "start": 25350.04, + "end": 25352.36, + "probability": 0.7569 + }, + { + "start": 25353.34, + "end": 25355.3, + "probability": 0.9956 + }, + { + "start": 25355.9, + "end": 25358.4, + "probability": 0.899 + }, + { + "start": 25358.7, + "end": 25359.22, + "probability": 0.7383 + }, + { + "start": 25359.84, + "end": 25360.52, + "probability": 0.8493 + }, + { + "start": 25361.4, + "end": 25363.22, + "probability": 0.8799 + }, + { + "start": 25363.38, + "end": 25364.82, + "probability": 0.8807 + }, + { + "start": 25364.96, + "end": 25367.2, + "probability": 0.9497 + }, + { + "start": 25367.42, + "end": 25369.6, + "probability": 0.521 + }, + { + "start": 25371.26, + "end": 25371.36, + "probability": 0.05 + }, + { + "start": 25371.36, + "end": 25371.84, + "probability": 0.5776 + }, + { + "start": 25371.84, + "end": 25372.94, + "probability": 0.5074 + }, + { + "start": 25373.04, + "end": 25374.92, + "probability": 0.4641 + }, + { + "start": 25375.04, + "end": 25378.52, + "probability": 0.9604 + }, + { + "start": 25378.88, + "end": 25382.2, + "probability": 0.7539 + }, + { + "start": 25383.16, + "end": 25384.96, + "probability": 0.9908 + }, + { + "start": 25385.16, + "end": 25386.51, + "probability": 0.5028 + }, + { + "start": 25394.46, + "end": 25398.44, + "probability": 0.6846 + }, + { + "start": 25398.44, + "end": 25400.84, + "probability": 0.5106 + }, + { + "start": 25401.7, + "end": 25402.86, + "probability": 0.1032 + }, + { + "start": 25403.4, + "end": 25404.04, + "probability": 0.1386 + }, + { + "start": 25404.22, + "end": 25406.74, + "probability": 0.5463 + }, + { + "start": 25409.48, + "end": 25410.64, + "probability": 0.8093 + }, + { + "start": 25411.96, + "end": 25414.6, + "probability": 0.9001 + }, + { + "start": 25414.68, + "end": 25415.34, + "probability": 0.9988 + }, + { + "start": 25416.1, + "end": 25416.91, + "probability": 0.7319 + }, + { + "start": 25417.1, + "end": 25418.18, + "probability": 0.5024 + }, + { + "start": 25418.8, + "end": 25420.12, + "probability": 0.8769 + }, + { + "start": 25421.46, + "end": 25423.88, + "probability": 0.8048 + }, + { + "start": 25425.86, + "end": 25429.4, + "probability": 0.9828 + }, + { + "start": 25430.2, + "end": 25432.28, + "probability": 0.9937 + }, + { + "start": 25433.1, + "end": 25436.86, + "probability": 0.9714 + }, + { + "start": 25436.86, + "end": 25440.14, + "probability": 0.9862 + }, + { + "start": 25440.66, + "end": 25442.54, + "probability": 0.9945 + }, + { + "start": 25442.54, + "end": 25443.44, + "probability": 0.5141 + }, + { + "start": 25444.04, + "end": 25445.96, + "probability": 0.9793 + }, + { + "start": 25446.62, + "end": 25449.28, + "probability": 0.854 + }, + { + "start": 25449.98, + "end": 25455.82, + "probability": 0.9933 + }, + { + "start": 25455.82, + "end": 25459.3, + "probability": 0.9786 + }, + { + "start": 25459.7, + "end": 25460.34, + "probability": 0.4485 + }, + { + "start": 25461.2, + "end": 25464.3, + "probability": 0.753 + }, + { + "start": 25465.08, + "end": 25467.0, + "probability": 0.8888 + }, + { + "start": 25467.68, + "end": 25468.66, + "probability": 0.8014 + }, + { + "start": 25469.74, + "end": 25473.38, + "probability": 0.9276 + }, + { + "start": 25474.18, + "end": 25475.98, + "probability": 0.9922 + }, + { + "start": 25476.52, + "end": 25479.62, + "probability": 0.9669 + }, + { + "start": 25480.44, + "end": 25482.1, + "probability": 0.9968 + }, + { + "start": 25482.46, + "end": 25484.3, + "probability": 0.9398 + }, + { + "start": 25484.66, + "end": 25489.12, + "probability": 0.9167 + }, + { + "start": 25489.44, + "end": 25491.08, + "probability": 0.9835 + }, + { + "start": 25491.6, + "end": 25493.52, + "probability": 0.9025 + }, + { + "start": 25494.1, + "end": 25496.2, + "probability": 0.9163 + }, + { + "start": 25496.28, + "end": 25497.26, + "probability": 0.6598 + }, + { + "start": 25498.08, + "end": 25498.68, + "probability": 0.9659 + }, + { + "start": 25500.12, + "end": 25502.78, + "probability": 0.9248 + }, + { + "start": 25503.34, + "end": 25505.24, + "probability": 0.9976 + }, + { + "start": 25505.78, + "end": 25506.04, + "probability": 0.7159 + }, + { + "start": 25507.82, + "end": 25510.86, + "probability": 0.9117 + }, + { + "start": 25511.68, + "end": 25516.94, + "probability": 0.9938 + }, + { + "start": 25517.7, + "end": 25521.04, + "probability": 0.999 + }, + { + "start": 25521.56, + "end": 25524.88, + "probability": 0.9908 + }, + { + "start": 25525.04, + "end": 25526.26, + "probability": 0.6962 + }, + { + "start": 25526.84, + "end": 25529.32, + "probability": 0.9281 + }, + { + "start": 25529.96, + "end": 25530.6, + "probability": 0.4346 + }, + { + "start": 25531.1, + "end": 25532.92, + "probability": 0.9892 + }, + { + "start": 25533.3, + "end": 25534.28, + "probability": 0.9443 + }, + { + "start": 25534.66, + "end": 25535.58, + "probability": 0.3329 + }, + { + "start": 25536.22, + "end": 25537.24, + "probability": 0.9326 + }, + { + "start": 25537.92, + "end": 25538.3, + "probability": 0.9941 + }, + { + "start": 25538.84, + "end": 25541.0, + "probability": 0.8254 + }, + { + "start": 25541.86, + "end": 25544.4, + "probability": 0.9907 + }, + { + "start": 25546.28, + "end": 25548.58, + "probability": 0.7094 + }, + { + "start": 25548.78, + "end": 25551.36, + "probability": 0.9148 + }, + { + "start": 25551.9, + "end": 25559.62, + "probability": 0.9644 + }, + { + "start": 25560.04, + "end": 25562.34, + "probability": 0.9549 + }, + { + "start": 25562.86, + "end": 25566.02, + "probability": 0.9622 + }, + { + "start": 25566.74, + "end": 25568.1, + "probability": 0.9303 + }, + { + "start": 25568.74, + "end": 25569.7, + "probability": 0.8973 + }, + { + "start": 25570.68, + "end": 25572.28, + "probability": 0.9961 + }, + { + "start": 25572.48, + "end": 25573.12, + "probability": 0.9186 + }, + { + "start": 25573.68, + "end": 25575.98, + "probability": 0.9953 + }, + { + "start": 25576.06, + "end": 25577.2, + "probability": 0.7917 + }, + { + "start": 25577.72, + "end": 25579.46, + "probability": 0.7584 + }, + { + "start": 25580.1, + "end": 25581.59, + "probability": 0.8794 + }, + { + "start": 25582.16, + "end": 25584.96, + "probability": 0.944 + }, + { + "start": 25585.42, + "end": 25587.54, + "probability": 0.978 + }, + { + "start": 25588.62, + "end": 25589.48, + "probability": 0.9814 + }, + { + "start": 25589.68, + "end": 25593.68, + "probability": 0.9921 + }, + { + "start": 25593.78, + "end": 25595.2, + "probability": 0.5996 + }, + { + "start": 25596.22, + "end": 25598.83, + "probability": 0.9571 + }, + { + "start": 25599.06, + "end": 25601.08, + "probability": 0.9828 + }, + { + "start": 25601.28, + "end": 25602.42, + "probability": 0.8387 + }, + { + "start": 25603.34, + "end": 25606.02, + "probability": 0.9139 + }, + { + "start": 25606.12, + "end": 25610.26, + "probability": 0.9074 + }, + { + "start": 25610.26, + "end": 25612.22, + "probability": 0.7567 + }, + { + "start": 25612.78, + "end": 25614.56, + "probability": 0.9321 + }, + { + "start": 25615.0, + "end": 25615.68, + "probability": 0.6631 + }, + { + "start": 25615.94, + "end": 25617.5, + "probability": 0.9788 + }, + { + "start": 25617.84, + "end": 25619.26, + "probability": 0.8672 + }, + { + "start": 25619.54, + "end": 25620.36, + "probability": 0.694 + }, + { + "start": 25620.76, + "end": 25622.66, + "probability": 0.998 + }, + { + "start": 25622.82, + "end": 25624.74, + "probability": 0.7793 + }, + { + "start": 25625.2, + "end": 25625.2, + "probability": 0.5029 + }, + { + "start": 25625.2, + "end": 25626.02, + "probability": 0.9269 + }, + { + "start": 25626.44, + "end": 25628.32, + "probability": 0.5072 + }, + { + "start": 25628.56, + "end": 25629.15, + "probability": 0.9548 + }, + { + "start": 25629.7, + "end": 25631.29, + "probability": 0.6808 + }, + { + "start": 25631.74, + "end": 25635.83, + "probability": 0.753 + }, + { + "start": 25652.66, + "end": 25654.12, + "probability": 0.4328 + }, + { + "start": 25655.6, + "end": 25656.22, + "probability": 0.7744 + }, + { + "start": 25657.22, + "end": 25658.74, + "probability": 0.7702 + }, + { + "start": 25660.36, + "end": 25661.58, + "probability": 0.8623 + }, + { + "start": 25663.56, + "end": 25664.18, + "probability": 0.4277 + }, + { + "start": 25665.88, + "end": 25667.18, + "probability": 0.016 + }, + { + "start": 25671.02, + "end": 25671.88, + "probability": 0.2646 + }, + { + "start": 25675.64, + "end": 25679.28, + "probability": 0.8418 + }, + { + "start": 25683.08, + "end": 25685.18, + "probability": 0.7536 + }, + { + "start": 25685.88, + "end": 25686.66, + "probability": 0.627 + }, + { + "start": 25688.97, + "end": 25697.76, + "probability": 0.9847 + }, + { + "start": 25698.78, + "end": 25700.33, + "probability": 0.9839 + }, + { + "start": 25702.14, + "end": 25704.66, + "probability": 0.9926 + }, + { + "start": 25705.52, + "end": 25707.18, + "probability": 0.5864 + }, + { + "start": 25708.06, + "end": 25709.49, + "probability": 0.9028 + }, + { + "start": 25710.76, + "end": 25711.42, + "probability": 0.8806 + }, + { + "start": 25712.72, + "end": 25713.62, + "probability": 0.9915 + }, + { + "start": 25714.28, + "end": 25716.08, + "probability": 0.9913 + }, + { + "start": 25716.78, + "end": 25719.78, + "probability": 0.9984 + }, + { + "start": 25720.4, + "end": 25722.8, + "probability": 0.9792 + }, + { + "start": 25723.36, + "end": 25727.4, + "probability": 0.9902 + }, + { + "start": 25727.4, + "end": 25730.26, + "probability": 0.9879 + }, + { + "start": 25730.78, + "end": 25732.08, + "probability": 0.7202 + }, + { + "start": 25732.56, + "end": 25739.52, + "probability": 0.9731 + }, + { + "start": 25740.18, + "end": 25741.44, + "probability": 0.8572 + }, + { + "start": 25743.78, + "end": 25746.5, + "probability": 0.99 + }, + { + "start": 25747.76, + "end": 25752.54, + "probability": 0.9757 + }, + { + "start": 25753.08, + "end": 25756.88, + "probability": 0.9237 + }, + { + "start": 25757.92, + "end": 25762.58, + "probability": 0.9922 + }, + { + "start": 25764.2, + "end": 25765.38, + "probability": 0.8468 + }, + { + "start": 25766.16, + "end": 25768.52, + "probability": 0.6534 + }, + { + "start": 25768.6, + "end": 25770.6, + "probability": 0.9207 + }, + { + "start": 25770.76, + "end": 25770.78, + "probability": 0.8236 + }, + { + "start": 25770.78, + "end": 25771.0, + "probability": 0.0813 + }, + { + "start": 25772.16, + "end": 25772.8, + "probability": 0.7135 + }, + { + "start": 25772.96, + "end": 25774.94, + "probability": 0.6808 + }, + { + "start": 25775.52, + "end": 25776.0, + "probability": 0.5971 + }, + { + "start": 25777.68, + "end": 25778.44, + "probability": 0.9385 + }, + { + "start": 25778.5, + "end": 25780.16, + "probability": 0.9892 + }, + { + "start": 25780.9, + "end": 25782.94, + "probability": 0.9971 + }, + { + "start": 25783.46, + "end": 25784.16, + "probability": 0.8823 + }, + { + "start": 25784.22, + "end": 25787.02, + "probability": 0.9038 + }, + { + "start": 25787.5, + "end": 25789.16, + "probability": 0.9591 + }, + { + "start": 25789.9, + "end": 25791.58, + "probability": 0.9928 + }, + { + "start": 25792.96, + "end": 25795.22, + "probability": 0.8408 + }, + { + "start": 25795.32, + "end": 25796.28, + "probability": 0.8322 + }, + { + "start": 25797.02, + "end": 25798.56, + "probability": 0.868 + }, + { + "start": 25799.66, + "end": 25799.76, + "probability": 0.7572 + }, + { + "start": 25801.34, + "end": 25802.34, + "probability": 0.8392 + }, + { + "start": 25803.06, + "end": 25807.96, + "probability": 0.6682 + }, + { + "start": 25808.74, + "end": 25810.2, + "probability": 0.769 + }, + { + "start": 25811.08, + "end": 25814.5, + "probability": 0.9884 + }, + { + "start": 25815.58, + "end": 25817.82, + "probability": 0.939 + }, + { + "start": 25818.14, + "end": 25821.08, + "probability": 0.6857 + }, + { + "start": 25822.8, + "end": 25824.32, + "probability": 0.9633 + }, + { + "start": 25825.12, + "end": 25825.14, + "probability": 0.129 + }, + { + "start": 25825.14, + "end": 25827.44, + "probability": 0.6893 + }, + { + "start": 25828.06, + "end": 25829.06, + "probability": 0.8014 + }, + { + "start": 25829.6, + "end": 25834.02, + "probability": 0.985 + }, + { + "start": 25834.66, + "end": 25837.8, + "probability": 0.9938 + }, + { + "start": 25838.24, + "end": 25839.48, + "probability": 0.863 + }, + { + "start": 25839.98, + "end": 25840.54, + "probability": 0.9375 + }, + { + "start": 25841.14, + "end": 25845.88, + "probability": 0.9753 + }, + { + "start": 25846.52, + "end": 25848.46, + "probability": 0.9257 + }, + { + "start": 25849.1, + "end": 25850.26, + "probability": 0.8871 + }, + { + "start": 25850.76, + "end": 25852.58, + "probability": 0.9919 + }, + { + "start": 25852.96, + "end": 25857.63, + "probability": 0.9983 + }, + { + "start": 25858.09, + "end": 25858.35, + "probability": 0.62 + }, + { + "start": 25858.37, + "end": 25861.61, + "probability": 0.9985 + }, + { + "start": 25862.03, + "end": 25865.75, + "probability": 0.9691 + }, + { + "start": 25865.89, + "end": 25866.53, + "probability": 0.6562 + }, + { + "start": 25866.53, + "end": 25868.07, + "probability": 0.6248 + }, + { + "start": 25868.73, + "end": 25869.31, + "probability": 0.7808 + }, + { + "start": 25871.23, + "end": 25871.81, + "probability": 0.6171 + }, + { + "start": 25872.55, + "end": 25875.73, + "probability": 0.9556 + }, + { + "start": 25876.67, + "end": 25878.93, + "probability": 0.6002 + }, + { + "start": 25900.79, + "end": 25902.49, + "probability": 0.8612 + }, + { + "start": 25903.49, + "end": 25905.05, + "probability": 0.8568 + }, + { + "start": 25906.41, + "end": 25907.65, + "probability": 0.9494 + }, + { + "start": 25909.55, + "end": 25910.47, + "probability": 0.6528 + }, + { + "start": 25911.31, + "end": 25914.05, + "probability": 0.8053 + }, + { + "start": 25916.21, + "end": 25918.45, + "probability": 0.9992 + }, + { + "start": 25919.77, + "end": 25923.23, + "probability": 0.8796 + }, + { + "start": 25924.57, + "end": 25925.37, + "probability": 0.0941 + }, + { + "start": 25925.43, + "end": 25928.55, + "probability": 0.8285 + }, + { + "start": 25928.85, + "end": 25930.19, + "probability": 0.9951 + }, + { + "start": 25931.55, + "end": 25934.21, + "probability": 0.998 + }, + { + "start": 25934.25, + "end": 25935.03, + "probability": 0.3065 + }, + { + "start": 25935.17, + "end": 25936.49, + "probability": 0.9879 + }, + { + "start": 25944.05, + "end": 25948.01, + "probability": 0.0798 + }, + { + "start": 25948.19, + "end": 25950.73, + "probability": 0.0597 + }, + { + "start": 25951.66, + "end": 25953.2, + "probability": 0.1324 + }, + { + "start": 25954.55, + "end": 25954.87, + "probability": 0.434 + }, + { + "start": 25955.59, + "end": 25955.63, + "probability": 0.0304 + }, + { + "start": 25957.13, + "end": 25957.53, + "probability": 0.0679 + }, + { + "start": 25958.53, + "end": 25959.69, + "probability": 0.0138 + }, + { + "start": 25961.37, + "end": 25961.85, + "probability": 0.1964 + }, + { + "start": 25961.85, + "end": 25965.11, + "probability": 0.0286 + }, + { + "start": 25966.93, + "end": 25967.57, + "probability": 0.3139 + }, + { + "start": 25967.83, + "end": 25968.61, + "probability": 0.072 + }, + { + "start": 25970.31, + "end": 25971.67, + "probability": 0.1414 + }, + { + "start": 25972.03, + "end": 25972.13, + "probability": 0.5589 + }, + { + "start": 25972.13, + "end": 25974.31, + "probability": 0.0241 + }, + { + "start": 25974.33, + "end": 25974.55, + "probability": 0.3969 + }, + { + "start": 25975.53, + "end": 25976.09, + "probability": 0.2604 + }, + { + "start": 25976.27, + "end": 25976.85, + "probability": 0.0502 + }, + { + "start": 25977.97, + "end": 25978.13, + "probability": 0.0108 + }, + { + "start": 25979.11, + "end": 25981.21, + "probability": 0.2372 + }, + { + "start": 25982.38, + "end": 25983.19, + "probability": 0.1962 + }, + { + "start": 25984.09, + "end": 25986.47, + "probability": 0.0464 + }, + { + "start": 25986.79, + "end": 25988.15, + "probability": 0.166 + }, + { + "start": 25988.33, + "end": 25989.85, + "probability": 0.0126 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.0, + "end": 25990.0, + "probability": 0.0 + }, + { + "start": 25990.6, + "end": 25992.54, + "probability": 0.0335 + }, + { + "start": 25992.8, + "end": 25993.43, + "probability": 0.2364 + }, + { + "start": 25994.08, + "end": 25995.4, + "probability": 0.0405 + }, + { + "start": 25996.32, + "end": 25996.32, + "probability": 0.2438 + }, + { + "start": 25996.32, + "end": 25996.5, + "probability": 0.0587 + }, + { + "start": 25996.5, + "end": 25999.46, + "probability": 0.6548 + }, + { + "start": 25999.54, + "end": 26000.4, + "probability": 0.7479 + }, + { + "start": 26000.84, + "end": 26002.92, + "probability": 0.9148 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.0, + "end": 26122.0, + "probability": 0.0 + }, + { + "start": 26122.16, + "end": 26122.48, + "probability": 0.1431 + }, + { + "start": 26122.48, + "end": 26122.48, + "probability": 0.0197 + }, + { + "start": 26122.48, + "end": 26122.48, + "probability": 0.0511 + }, + { + "start": 26122.48, + "end": 26124.12, + "probability": 0.5471 + }, + { + "start": 26124.74, + "end": 26125.72, + "probability": 0.4599 + }, + { + "start": 26126.42, + "end": 26127.88, + "probability": 0.0888 + }, + { + "start": 26127.88, + "end": 26128.16, + "probability": 0.454 + }, + { + "start": 26128.18, + "end": 26130.16, + "probability": 0.5059 + }, + { + "start": 26131.02, + "end": 26132.29, + "probability": 0.2861 + }, + { + "start": 26133.1, + "end": 26134.16, + "probability": 0.0691 + }, + { + "start": 26134.3, + "end": 26135.3, + "probability": 0.5634 + }, + { + "start": 26135.44, + "end": 26137.58, + "probability": 0.4041 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.0, + "end": 26243.0, + "probability": 0.0 + }, + { + "start": 26243.18, + "end": 26244.32, + "probability": 0.0655 + }, + { + "start": 26244.53, + "end": 26249.38, + "probability": 0.9904 + }, + { + "start": 26249.38, + "end": 26249.38, + "probability": 0.0113 + }, + { + "start": 26249.38, + "end": 26250.8, + "probability": 0.0389 + }, + { + "start": 26252.42, + "end": 26253.12, + "probability": 0.1779 + }, + { + "start": 26253.4, + "end": 26254.8, + "probability": 0.0843 + }, + { + "start": 26254.8, + "end": 26254.84, + "probability": 0.0055 + }, + { + "start": 26254.96, + "end": 26255.78, + "probability": 0.238 + }, + { + "start": 26255.98, + "end": 26256.06, + "probability": 0.05 + }, + { + "start": 26256.06, + "end": 26256.24, + "probability": 0.1187 + }, + { + "start": 26256.24, + "end": 26256.24, + "probability": 0.0859 + }, + { + "start": 26256.24, + "end": 26256.24, + "probability": 0.2176 + }, + { + "start": 26256.24, + "end": 26257.34, + "probability": 0.3458 + }, + { + "start": 26257.34, + "end": 26257.8, + "probability": 0.2745 + }, + { + "start": 26257.94, + "end": 26258.02, + "probability": 0.0014 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.0, + "end": 26369.0, + "probability": 0.0 + }, + { + "start": 26369.48, + "end": 26369.48, + "probability": 0.0591 + }, + { + "start": 26369.48, + "end": 26369.48, + "probability": 0.0134 + }, + { + "start": 26369.48, + "end": 26371.66, + "probability": 0.6713 + }, + { + "start": 26372.12, + "end": 26373.16, + "probability": 0.7459 + }, + { + "start": 26373.58, + "end": 26377.5, + "probability": 0.9027 + }, + { + "start": 26378.22, + "end": 26378.76, + "probability": 0.3102 + }, + { + "start": 26379.24, + "end": 26379.8, + "probability": 0.0338 + }, + { + "start": 26379.92, + "end": 26380.84, + "probability": 0.5672 + }, + { + "start": 26380.98, + "end": 26383.26, + "probability": 0.9869 + }, + { + "start": 26383.68, + "end": 26386.14, + "probability": 0.9819 + }, + { + "start": 26386.48, + "end": 26388.06, + "probability": 0.7097 + }, + { + "start": 26388.44, + "end": 26389.58, + "probability": 0.0144 + }, + { + "start": 26389.58, + "end": 26389.58, + "probability": 0.1372 + }, + { + "start": 26389.6, + "end": 26392.84, + "probability": 0.621 + }, + { + "start": 26393.32, + "end": 26395.44, + "probability": 0.8242 + }, + { + "start": 26395.44, + "end": 26396.08, + "probability": 0.3585 + }, + { + "start": 26396.42, + "end": 26400.94, + "probability": 0.9696 + }, + { + "start": 26401.2, + "end": 26402.14, + "probability": 0.4827 + }, + { + "start": 26402.28, + "end": 26402.44, + "probability": 0.1081 + }, + { + "start": 26402.5, + "end": 26402.74, + "probability": 0.2312 + }, + { + "start": 26402.74, + "end": 26407.42, + "probability": 0.742 + }, + { + "start": 26407.42, + "end": 26411.96, + "probability": 0.9684 + }, + { + "start": 26412.1, + "end": 26412.94, + "probability": 0.7863 + }, + { + "start": 26413.02, + "end": 26414.68, + "probability": 0.9716 + }, + { + "start": 26415.22, + "end": 26416.26, + "probability": 0.9296 + }, + { + "start": 26416.34, + "end": 26418.24, + "probability": 0.8606 + }, + { + "start": 26421.38, + "end": 26428.58, + "probability": 0.9417 + }, + { + "start": 26429.36, + "end": 26431.12, + "probability": 0.4438 + }, + { + "start": 26431.7, + "end": 26432.72, + "probability": 0.8453 + }, + { + "start": 26433.42, + "end": 26435.08, + "probability": 0.8249 + }, + { + "start": 26436.3, + "end": 26437.38, + "probability": 0.5351 + }, + { + "start": 26437.38, + "end": 26439.25, + "probability": 0.352 + }, + { + "start": 26439.42, + "end": 26440.72, + "probability": 0.9648 + }, + { + "start": 26444.32, + "end": 26445.21, + "probability": 0.5361 + }, + { + "start": 26447.58, + "end": 26448.9, + "probability": 0.9951 + }, + { + "start": 26449.32, + "end": 26450.62, + "probability": 0.826 + }, + { + "start": 26451.12, + "end": 26452.66, + "probability": 0.4518 + }, + { + "start": 26453.28, + "end": 26453.86, + "probability": 0.5305 + }, + { + "start": 26454.42, + "end": 26455.98, + "probability": 0.7465 + }, + { + "start": 26456.74, + "end": 26460.6, + "probability": 0.7445 + }, + { + "start": 26460.7, + "end": 26461.83, + "probability": 0.9893 + }, + { + "start": 26462.78, + "end": 26463.7, + "probability": 0.9988 + }, + { + "start": 26463.84, + "end": 26466.64, + "probability": 0.9572 + }, + { + "start": 26467.4, + "end": 26472.12, + "probability": 0.9875 + }, + { + "start": 26472.26, + "end": 26475.46, + "probability": 0.8671 + }, + { + "start": 26476.18, + "end": 26477.76, + "probability": 0.9719 + }, + { + "start": 26477.94, + "end": 26478.4, + "probability": 0.6439 + }, + { + "start": 26478.84, + "end": 26481.32, + "probability": 0.8977 + }, + { + "start": 26481.4, + "end": 26482.52, + "probability": 0.6706 + }, + { + "start": 26482.52, + "end": 26483.24, + "probability": 0.0452 + }, + { + "start": 26483.26, + "end": 26484.42, + "probability": 0.3049 + }, + { + "start": 26484.54, + "end": 26486.6, + "probability": 0.9312 + }, + { + "start": 26487.06, + "end": 26487.84, + "probability": 0.6423 + }, + { + "start": 26487.9, + "end": 26488.46, + "probability": 0.2625 + }, + { + "start": 26488.8, + "end": 26490.7, + "probability": 0.994 + }, + { + "start": 26490.8, + "end": 26490.96, + "probability": 0.5566 + }, + { + "start": 26490.98, + "end": 26491.54, + "probability": 0.3902 + }, + { + "start": 26491.54, + "end": 26494.43, + "probability": 0.803 + }, + { + "start": 26494.6, + "end": 26496.58, + "probability": 0.651 + }, + { + "start": 26496.6, + "end": 26498.38, + "probability": 0.4856 + }, + { + "start": 26498.38, + "end": 26498.54, + "probability": 0.4729 + }, + { + "start": 26498.6, + "end": 26499.88, + "probability": 0.7029 + }, + { + "start": 26500.1, + "end": 26502.06, + "probability": 0.949 + }, + { + "start": 26502.56, + "end": 26505.96, + "probability": 0.8859 + }, + { + "start": 26506.42, + "end": 26507.56, + "probability": 0.8311 + }, + { + "start": 26507.7, + "end": 26511.12, + "probability": 0.7179 + }, + { + "start": 26511.24, + "end": 26512.16, + "probability": 0.8328 + }, + { + "start": 26512.72, + "end": 26515.76, + "probability": 0.9567 + }, + { + "start": 26515.88, + "end": 26518.78, + "probability": 0.9059 + }, + { + "start": 26519.02, + "end": 26521.74, + "probability": 0.5795 + }, + { + "start": 26521.74, + "end": 26525.5, + "probability": 0.6531 + }, + { + "start": 26526.06, + "end": 26527.24, + "probability": 0.9788 + }, + { + "start": 26527.62, + "end": 26529.82, + "probability": 0.7645 + }, + { + "start": 26530.5, + "end": 26531.14, + "probability": 0.9232 + }, + { + "start": 26531.38, + "end": 26532.38, + "probability": 0.8831 + }, + { + "start": 26532.46, + "end": 26533.14, + "probability": 0.8878 + }, + { + "start": 26533.4, + "end": 26534.58, + "probability": 0.8571 + }, + { + "start": 26537.98, + "end": 26538.66, + "probability": 0.1796 + }, + { + "start": 26538.66, + "end": 26540.0, + "probability": 0.8134 + }, + { + "start": 26540.96, + "end": 26541.8, + "probability": 0.4139 + }, + { + "start": 26544.18, + "end": 26545.26, + "probability": 0.6291 + }, + { + "start": 26549.4, + "end": 26550.24, + "probability": 0.5544 + }, + { + "start": 26551.72, + "end": 26555.7, + "probability": 0.8087 + }, + { + "start": 26557.44, + "end": 26560.5, + "probability": 0.9725 + }, + { + "start": 26562.4, + "end": 26565.56, + "probability": 0.6644 + }, + { + "start": 26565.58, + "end": 26566.52, + "probability": 0.7571 + }, + { + "start": 26566.72, + "end": 26568.3, + "probability": 0.981 + }, + { + "start": 26568.98, + "end": 26572.5, + "probability": 0.9971 + }, + { + "start": 26573.38, + "end": 26574.46, + "probability": 0.9012 + }, + { + "start": 26574.62, + "end": 26575.46, + "probability": 0.7409 + }, + { + "start": 26575.96, + "end": 26577.2, + "probability": 0.7536 + }, + { + "start": 26577.24, + "end": 26577.82, + "probability": 0.782 + }, + { + "start": 26578.3, + "end": 26579.72, + "probability": 0.7943 + }, + { + "start": 26580.86, + "end": 26584.0, + "probability": 0.9985 + }, + { + "start": 26584.18, + "end": 26587.66, + "probability": 0.9901 + }, + { + "start": 26588.58, + "end": 26595.92, + "probability": 0.9893 + }, + { + "start": 26596.14, + "end": 26596.24, + "probability": 0.9553 + }, + { + "start": 26596.76, + "end": 26597.38, + "probability": 0.8886 + }, + { + "start": 26597.48, + "end": 26601.6, + "probability": 0.9735 + }, + { + "start": 26602.5, + "end": 26605.76, + "probability": 0.9971 + }, + { + "start": 26606.52, + "end": 26610.94, + "probability": 0.9917 + }, + { + "start": 26613.28, + "end": 26616.56, + "probability": 0.9982 + }, + { + "start": 26616.94, + "end": 26619.46, + "probability": 0.9863 + }, + { + "start": 26619.46, + "end": 26621.84, + "probability": 0.9813 + }, + { + "start": 26622.02, + "end": 26623.66, + "probability": 0.997 + }, + { + "start": 26624.76, + "end": 26626.24, + "probability": 0.9927 + }, + { + "start": 26626.78, + "end": 26628.16, + "probability": 0.8398 + }, + { + "start": 26628.68, + "end": 26629.02, + "probability": 0.7482 + }, + { + "start": 26629.24, + "end": 26629.98, + "probability": 0.9944 + }, + { + "start": 26630.92, + "end": 26635.52, + "probability": 0.9902 + }, + { + "start": 26635.6, + "end": 26637.66, + "probability": 0.9618 + }, + { + "start": 26638.94, + "end": 26641.3, + "probability": 0.7952 + }, + { + "start": 26641.44, + "end": 26643.74, + "probability": 0.981 + }, + { + "start": 26644.7, + "end": 26645.06, + "probability": 0.5915 + }, + { + "start": 26646.1, + "end": 26647.94, + "probability": 0.8117 + }, + { + "start": 26648.1, + "end": 26651.82, + "probability": 0.9825 + }, + { + "start": 26652.16, + "end": 26653.22, + "probability": 0.8306 + }, + { + "start": 26654.1, + "end": 26656.34, + "probability": 0.9164 + }, + { + "start": 26656.78, + "end": 26658.08, + "probability": 0.9511 + }, + { + "start": 26658.24, + "end": 26658.44, + "probability": 0.2583 + }, + { + "start": 26658.62, + "end": 26659.3, + "probability": 0.9206 + }, + { + "start": 26660.44, + "end": 26666.04, + "probability": 0.9934 + }, + { + "start": 26666.08, + "end": 26667.84, + "probability": 0.9907 + }, + { + "start": 26668.38, + "end": 26669.79, + "probability": 0.8321 + }, + { + "start": 26669.9, + "end": 26670.16, + "probability": 0.9166 + }, + { + "start": 26670.28, + "end": 26671.59, + "probability": 0.9897 + }, + { + "start": 26671.98, + "end": 26673.56, + "probability": 0.8207 + }, + { + "start": 26673.76, + "end": 26675.38, + "probability": 0.9709 + }, + { + "start": 26676.34, + "end": 26677.86, + "probability": 0.8131 + }, + { + "start": 26678.4, + "end": 26680.12, + "probability": 0.8535 + }, + { + "start": 26680.16, + "end": 26681.72, + "probability": 0.9328 + }, + { + "start": 26681.74, + "end": 26683.58, + "probability": 0.9946 + }, + { + "start": 26685.12, + "end": 26686.62, + "probability": 0.9545 + }, + { + "start": 26686.74, + "end": 26687.32, + "probability": 0.8622 + }, + { + "start": 26687.38, + "end": 26688.2, + "probability": 0.8867 + }, + { + "start": 26688.3, + "end": 26690.2, + "probability": 0.9137 + }, + { + "start": 26690.74, + "end": 26693.32, + "probability": 0.9946 + }, + { + "start": 26693.38, + "end": 26698.16, + "probability": 0.9871 + }, + { + "start": 26698.26, + "end": 26700.58, + "probability": 0.9945 + }, + { + "start": 26701.32, + "end": 26703.94, + "probability": 0.9763 + }, + { + "start": 26704.74, + "end": 26705.78, + "probability": 0.89 + }, + { + "start": 26706.52, + "end": 26708.8, + "probability": 0.9193 + }, + { + "start": 26709.62, + "end": 26714.86, + "probability": 0.9979 + }, + { + "start": 26715.2, + "end": 26716.72, + "probability": 0.4655 + }, + { + "start": 26717.28, + "end": 26720.0, + "probability": 0.9729 + }, + { + "start": 26720.4, + "end": 26720.62, + "probability": 0.6834 + }, + { + "start": 26720.7, + "end": 26721.63, + "probability": 0.9701 + }, + { + "start": 26722.36, + "end": 26723.5, + "probability": 0.9394 + }, + { + "start": 26723.62, + "end": 26724.59, + "probability": 0.9624 + }, + { + "start": 26725.94, + "end": 26727.36, + "probability": 0.9704 + }, + { + "start": 26728.12, + "end": 26729.44, + "probability": 0.9927 + }, + { + "start": 26730.96, + "end": 26731.42, + "probability": 0.8197 + }, + { + "start": 26732.22, + "end": 26733.46, + "probability": 0.6943 + }, + { + "start": 26735.5, + "end": 26738.12, + "probability": 0.7078 + }, + { + "start": 26738.46, + "end": 26739.0, + "probability": 0.5854 + }, + { + "start": 26739.3, + "end": 26739.56, + "probability": 0.2984 + }, + { + "start": 26739.62, + "end": 26741.52, + "probability": 0.9971 + }, + { + "start": 26742.22, + "end": 26742.94, + "probability": 0.7683 + }, + { + "start": 26743.56, + "end": 26745.84, + "probability": 0.7461 + }, + { + "start": 26746.84, + "end": 26748.02, + "probability": 0.5879 + }, + { + "start": 26753.64, + "end": 26755.96, + "probability": 0.774 + }, + { + "start": 26756.5, + "end": 26757.16, + "probability": 0.7942 + }, + { + "start": 26757.98, + "end": 26758.52, + "probability": 0.9471 + }, + { + "start": 26759.28, + "end": 26762.42, + "probability": 0.55 + }, + { + "start": 26762.68, + "end": 26765.56, + "probability": 0.8473 + }, + { + "start": 26766.74, + "end": 26769.24, + "probability": 0.9934 + }, + { + "start": 26769.96, + "end": 26771.24, + "probability": 0.9225 + }, + { + "start": 26772.62, + "end": 26772.74, + "probability": 0.293 + }, + { + "start": 26772.8, + "end": 26776.2, + "probability": 0.9697 + }, + { + "start": 26777.04, + "end": 26779.12, + "probability": 0.9478 + }, + { + "start": 26780.4, + "end": 26781.42, + "probability": 0.8714 + }, + { + "start": 26782.04, + "end": 26782.88, + "probability": 0.8604 + }, + { + "start": 26783.68, + "end": 26785.72, + "probability": 0.7705 + }, + { + "start": 26786.48, + "end": 26788.62, + "probability": 0.8603 + }, + { + "start": 26789.92, + "end": 26798.68, + "probability": 0.9623 + }, + { + "start": 26799.28, + "end": 26805.16, + "probability": 0.9864 + }, + { + "start": 26805.86, + "end": 26806.22, + "probability": 0.4576 + }, + { + "start": 26806.24, + "end": 26812.54, + "probability": 0.8105 + }, + { + "start": 26813.32, + "end": 26817.96, + "probability": 0.8738 + }, + { + "start": 26818.22, + "end": 26819.7, + "probability": 0.9951 + }, + { + "start": 26820.18, + "end": 26823.4, + "probability": 0.9934 + }, + { + "start": 26823.42, + "end": 26828.3, + "probability": 0.9968 + }, + { + "start": 26828.3, + "end": 26832.96, + "probability": 0.9893 + }, + { + "start": 26833.96, + "end": 26837.72, + "probability": 0.9697 + }, + { + "start": 26838.3, + "end": 26841.24, + "probability": 0.9475 + }, + { + "start": 26841.88, + "end": 26842.56, + "probability": 0.698 + }, + { + "start": 26842.7, + "end": 26845.36, + "probability": 0.958 + }, + { + "start": 26845.92, + "end": 26849.72, + "probability": 0.9877 + }, + { + "start": 26849.78, + "end": 26852.8, + "probability": 0.7823 + }, + { + "start": 26853.7, + "end": 26857.24, + "probability": 0.9968 + }, + { + "start": 26857.58, + "end": 26863.98, + "probability": 0.9952 + }, + { + "start": 26865.0, + "end": 26865.42, + "probability": 0.8442 + }, + { + "start": 26865.84, + "end": 26866.84, + "probability": 0.9339 + }, + { + "start": 26867.54, + "end": 26867.92, + "probability": 0.6488 + }, + { + "start": 26868.56, + "end": 26871.94, + "probability": 0.9525 + }, + { + "start": 26873.02, + "end": 26874.16, + "probability": 0.8428 + }, + { + "start": 26874.26, + "end": 26875.36, + "probability": 0.7744 + }, + { + "start": 26875.88, + "end": 26881.66, + "probability": 0.9817 + }, + { + "start": 26882.16, + "end": 26883.06, + "probability": 0.8538 + }, + { + "start": 26883.46, + "end": 26887.04, + "probability": 0.9604 + }, + { + "start": 26887.6, + "end": 26888.04, + "probability": 0.8091 + }, + { + "start": 26888.78, + "end": 26892.74, + "probability": 0.6628 + }, + { + "start": 26892.96, + "end": 26895.86, + "probability": 0.9229 + }, + { + "start": 26896.3, + "end": 26898.16, + "probability": 0.912 + }, + { + "start": 26898.2, + "end": 26898.24, + "probability": 0.5639 + }, + { + "start": 26898.44, + "end": 26900.42, + "probability": 0.9526 + }, + { + "start": 26900.96, + "end": 26901.96, + "probability": 0.9635 + }, + { + "start": 26902.18, + "end": 26903.92, + "probability": 0.9692 + }, + { + "start": 26904.08, + "end": 26905.65, + "probability": 0.9934 + }, + { + "start": 26906.2, + "end": 26908.58, + "probability": 0.9928 + }, + { + "start": 26908.88, + "end": 26909.86, + "probability": 0.9666 + }, + { + "start": 26910.56, + "end": 26912.52, + "probability": 0.9137 + }, + { + "start": 26912.86, + "end": 26914.84, + "probability": 0.9961 + }, + { + "start": 26915.08, + "end": 26915.7, + "probability": 0.6128 + }, + { + "start": 26915.82, + "end": 26918.72, + "probability": 0.8774 + }, + { + "start": 26919.06, + "end": 26919.52, + "probability": 0.5101 + }, + { + "start": 26920.04, + "end": 26920.87, + "probability": 0.979 + }, + { + "start": 26921.38, + "end": 26922.48, + "probability": 0.945 + }, + { + "start": 26922.92, + "end": 26925.52, + "probability": 0.9695 + }, + { + "start": 26925.6, + "end": 26928.02, + "probability": 0.5962 + }, + { + "start": 26928.08, + "end": 26929.36, + "probability": 0.6942 + }, + { + "start": 26932.2, + "end": 26933.44, + "probability": 0.5513 + }, + { + "start": 26933.54, + "end": 26935.84, + "probability": 0.6342 + }, + { + "start": 26936.38, + "end": 26937.47, + "probability": 0.9749 + }, + { + "start": 26938.2, + "end": 26940.03, + "probability": 0.6378 + }, + { + "start": 26940.88, + "end": 26942.1, + "probability": 0.5226 + }, + { + "start": 26943.61, + "end": 26945.44, + "probability": 0.1279 + }, + { + "start": 26945.44, + "end": 26945.82, + "probability": 0.1011 + }, + { + "start": 26945.82, + "end": 26949.68, + "probability": 0.8999 + }, + { + "start": 26950.62, + "end": 26951.66, + "probability": 0.8611 + }, + { + "start": 26953.06, + "end": 26956.82, + "probability": 0.8421 + }, + { + "start": 26958.78, + "end": 26959.32, + "probability": 0.5032 + }, + { + "start": 26962.44, + "end": 26964.68, + "probability": 0.9895 + }, + { + "start": 26965.3, + "end": 26965.9, + "probability": 0.966 + }, + { + "start": 26966.68, + "end": 26967.76, + "probability": 0.8167 + }, + { + "start": 26968.52, + "end": 26971.02, + "probability": 0.9506 + }, + { + "start": 26971.94, + "end": 26972.62, + "probability": 0.5872 + }, + { + "start": 26972.7, + "end": 26975.36, + "probability": 0.9782 + }, + { + "start": 26975.84, + "end": 26977.4, + "probability": 0.9338 + }, + { + "start": 26978.28, + "end": 26981.1, + "probability": 0.9243 + }, + { + "start": 26981.9, + "end": 26982.36, + "probability": 0.7496 + }, + { + "start": 26982.52, + "end": 26983.96, + "probability": 0.9951 + }, + { + "start": 26984.0, + "end": 26984.82, + "probability": 0.999 + }, + { + "start": 26985.56, + "end": 26987.2, + "probability": 0.7874 + }, + { + "start": 26988.36, + "end": 26989.92, + "probability": 0.7135 + }, + { + "start": 26990.76, + "end": 26996.12, + "probability": 0.9513 + }, + { + "start": 26996.22, + "end": 26998.64, + "probability": 0.9995 + }, + { + "start": 26999.22, + "end": 27000.76, + "probability": 0.873 + }, + { + "start": 27001.04, + "end": 27002.94, + "probability": 0.9901 + }, + { + "start": 27003.7, + "end": 27005.97, + "probability": 0.965 + }, + { + "start": 27006.92, + "end": 27007.06, + "probability": 0.8828 + }, + { + "start": 27007.6, + "end": 27008.96, + "probability": 0.9369 + }, + { + "start": 27009.44, + "end": 27009.74, + "probability": 0.7724 + }, + { + "start": 27010.0, + "end": 27013.76, + "probability": 0.9217 + }, + { + "start": 27013.96, + "end": 27015.28, + "probability": 0.6884 + }, + { + "start": 27015.78, + "end": 27018.18, + "probability": 0.4731 + }, + { + "start": 27018.72, + "end": 27021.26, + "probability": 0.9541 + }, + { + "start": 27021.4, + "end": 27022.58, + "probability": 0.646 + }, + { + "start": 27022.82, + "end": 27025.38, + "probability": 0.0529 + }, + { + "start": 27027.54, + "end": 27027.56, + "probability": 0.5235 + }, + { + "start": 27027.56, + "end": 27029.84, + "probability": 0.3135 + }, + { + "start": 27029.9, + "end": 27031.02, + "probability": 0.9211 + }, + { + "start": 27031.56, + "end": 27032.38, + "probability": 0.1763 + }, + { + "start": 27032.7, + "end": 27035.48, + "probability": 0.0573 + }, + { + "start": 27035.6, + "end": 27035.6, + "probability": 0.1237 + }, + { + "start": 27035.6, + "end": 27037.5, + "probability": 0.4987 + }, + { + "start": 27037.68, + "end": 27038.5, + "probability": 0.72 + }, + { + "start": 27038.9, + "end": 27040.92, + "probability": 0.929 + }, + { + "start": 27041.26, + "end": 27043.88, + "probability": 0.9027 + }, + { + "start": 27044.48, + "end": 27044.86, + "probability": 0.5692 + }, + { + "start": 27045.0, + "end": 27047.5, + "probability": 0.6202 + }, + { + "start": 27047.78, + "end": 27049.46, + "probability": 0.7979 + }, + { + "start": 27049.56, + "end": 27049.98, + "probability": 0.0399 + }, + { + "start": 27050.5, + "end": 27051.96, + "probability": 0.4536 + }, + { + "start": 27051.98, + "end": 27052.9, + "probability": 0.8019 + }, + { + "start": 27053.14, + "end": 27056.9, + "probability": 0.9631 + }, + { + "start": 27057.18, + "end": 27059.12, + "probability": 0.7388 + }, + { + "start": 27059.22, + "end": 27060.28, + "probability": 0.7897 + }, + { + "start": 27060.3, + "end": 27060.4, + "probability": 0.5904 + }, + { + "start": 27060.64, + "end": 27061.26, + "probability": 0.668 + }, + { + "start": 27061.66, + "end": 27063.84, + "probability": 0.7802 + }, + { + "start": 27064.38, + "end": 27065.02, + "probability": 0.019 + }, + { + "start": 27065.02, + "end": 27067.62, + "probability": 0.0676 + }, + { + "start": 27067.9, + "end": 27067.9, + "probability": 0.1119 + }, + { + "start": 27067.9, + "end": 27068.48, + "probability": 0.1932 + }, + { + "start": 27068.54, + "end": 27069.58, + "probability": 0.063 + }, + { + "start": 27069.58, + "end": 27071.92, + "probability": 0.7761 + }, + { + "start": 27072.4, + "end": 27073.84, + "probability": 0.8996 + }, + { + "start": 27074.02, + "end": 27076.62, + "probability": 0.9672 + }, + { + "start": 27076.62, + "end": 27079.28, + "probability": 0.9985 + }, + { + "start": 27080.36, + "end": 27083.66, + "probability": 0.9773 + }, + { + "start": 27084.26, + "end": 27088.1, + "probability": 0.9601 + }, + { + "start": 27088.72, + "end": 27091.12, + "probability": 0.9476 + }, + { + "start": 27091.38, + "end": 27093.92, + "probability": 0.1642 + }, + { + "start": 27094.58, + "end": 27095.84, + "probability": 0.4048 + }, + { + "start": 27097.28, + "end": 27097.28, + "probability": 0.3121 + }, + { + "start": 27097.28, + "end": 27102.08, + "probability": 0.6068 + }, + { + "start": 27103.16, + "end": 27109.14, + "probability": 0.2626 + }, + { + "start": 27109.24, + "end": 27111.22, + "probability": 0.7057 + }, + { + "start": 27111.28, + "end": 27113.2, + "probability": 0.8969 + }, + { + "start": 27113.94, + "end": 27114.72, + "probability": 0.6499 + }, + { + "start": 27115.74, + "end": 27120.84, + "probability": 0.8322 + }, + { + "start": 27120.96, + "end": 27122.75, + "probability": 0.6856 + }, + { + "start": 27122.94, + "end": 27123.46, + "probability": 0.2575 + }, + { + "start": 27124.4, + "end": 27127.16, + "probability": 0.9583 + }, + { + "start": 27128.56, + "end": 27130.86, + "probability": 0.9723 + }, + { + "start": 27131.52, + "end": 27133.52, + "probability": 0.5158 + }, + { + "start": 27135.1, + "end": 27138.34, + "probability": 0.6909 + }, + { + "start": 27138.9, + "end": 27141.04, + "probability": 0.8202 + }, + { + "start": 27141.18, + "end": 27142.02, + "probability": 0.5151 + }, + { + "start": 27142.04, + "end": 27142.58, + "probability": 0.6314 + }, + { + "start": 27142.72, + "end": 27145.92, + "probability": 0.959 + }, + { + "start": 27146.7, + "end": 27147.9, + "probability": 0.8942 + }, + { + "start": 27148.38, + "end": 27149.2, + "probability": 0.7853 + }, + { + "start": 27149.46, + "end": 27152.92, + "probability": 0.7522 + }, + { + "start": 27152.98, + "end": 27154.4, + "probability": 0.967 + }, + { + "start": 27155.0, + "end": 27159.08, + "probability": 0.657 + }, + { + "start": 27159.08, + "end": 27162.37, + "probability": 0.6968 + }, + { + "start": 27163.6, + "end": 27165.16, + "probability": 0.5544 + }, + { + "start": 27165.18, + "end": 27166.76, + "probability": 0.6191 + }, + { + "start": 27166.8, + "end": 27168.1, + "probability": 0.7582 + }, + { + "start": 27169.72, + "end": 27169.94, + "probability": 0.0306 + }, + { + "start": 27186.34, + "end": 27188.78, + "probability": 0.5713 + }, + { + "start": 27189.42, + "end": 27192.72, + "probability": 0.7747 + }, + { + "start": 27193.84, + "end": 27196.46, + "probability": 0.2443 + }, + { + "start": 27196.94, + "end": 27200.48, + "probability": 0.6684 + }, + { + "start": 27200.88, + "end": 27200.96, + "probability": 0.0277 + }, + { + "start": 27200.96, + "end": 27202.02, + "probability": 0.8221 + }, + { + "start": 27202.54, + "end": 27203.28, + "probability": 0.7905 + }, + { + "start": 27203.46, + "end": 27203.86, + "probability": 0.0866 + }, + { + "start": 27205.38, + "end": 27208.78, + "probability": 0.6161 + }, + { + "start": 27209.56, + "end": 27209.88, + "probability": 0.8375 + }, + { + "start": 27210.96, + "end": 27212.0, + "probability": 0.6958 + }, + { + "start": 27212.2, + "end": 27213.2, + "probability": 0.2874 + }, + { + "start": 27213.28, + "end": 27214.64, + "probability": 0.9102 + }, + { + "start": 27214.68, + "end": 27215.4, + "probability": 0.6962 + }, + { + "start": 27215.4, + "end": 27216.4, + "probability": 0.8021 + }, + { + "start": 27216.6, + "end": 27220.56, + "probability": 0.7549 + }, + { + "start": 27220.7, + "end": 27222.72, + "probability": 0.783 + }, + { + "start": 27223.54, + "end": 27223.88, + "probability": 0.6726 + }, + { + "start": 27224.86, + "end": 27225.5, + "probability": 0.6003 + }, + { + "start": 27225.62, + "end": 27226.18, + "probability": 0.9072 + }, + { + "start": 27231.22, + "end": 27232.04, + "probability": 0.6221 + }, + { + "start": 27232.88, + "end": 27233.46, + "probability": 0.8995 + }, + { + "start": 27233.72, + "end": 27234.42, + "probability": 0.721 + }, + { + "start": 27235.15, + "end": 27239.32, + "probability": 0.9805 + }, + { + "start": 27239.5, + "end": 27242.06, + "probability": 0.999 + }, + { + "start": 27242.96, + "end": 27245.08, + "probability": 0.9491 + }, + { + "start": 27245.38, + "end": 27247.04, + "probability": 0.9985 + }, + { + "start": 27247.96, + "end": 27250.7, + "probability": 0.9938 + }, + { + "start": 27251.26, + "end": 27252.5, + "probability": 0.9058 + }, + { + "start": 27252.98, + "end": 27256.14, + "probability": 0.9505 + }, + { + "start": 27257.3, + "end": 27260.08, + "probability": 0.973 + }, + { + "start": 27260.38, + "end": 27262.14, + "probability": 0.9782 + }, + { + "start": 27263.52, + "end": 27264.92, + "probability": 0.9256 + }, + { + "start": 27265.3, + "end": 27267.6, + "probability": 0.9829 + }, + { + "start": 27268.14, + "end": 27271.8, + "probability": 0.9947 + }, + { + "start": 27272.58, + "end": 27273.6, + "probability": 0.9871 + }, + { + "start": 27274.86, + "end": 27279.36, + "probability": 0.9983 + }, + { + "start": 27280.08, + "end": 27285.44, + "probability": 0.9883 + }, + { + "start": 27285.84, + "end": 27286.52, + "probability": 0.7579 + }, + { + "start": 27287.74, + "end": 27291.24, + "probability": 0.9976 + }, + { + "start": 27291.44, + "end": 27292.0, + "probability": 0.8151 + }, + { + "start": 27292.46, + "end": 27295.3, + "probability": 0.9854 + }, + { + "start": 27297.14, + "end": 27299.32, + "probability": 0.9825 + }, + { + "start": 27299.68, + "end": 27304.34, + "probability": 0.993 + }, + { + "start": 27305.5, + "end": 27308.24, + "probability": 0.9653 + }, + { + "start": 27309.58, + "end": 27314.26, + "probability": 0.9989 + }, + { + "start": 27314.92, + "end": 27318.26, + "probability": 0.9965 + }, + { + "start": 27320.0, + "end": 27323.78, + "probability": 0.9955 + }, + { + "start": 27324.26, + "end": 27327.52, + "probability": 0.9761 + }, + { + "start": 27328.06, + "end": 27329.46, + "probability": 0.9951 + }, + { + "start": 27330.62, + "end": 27332.38, + "probability": 0.9641 + }, + { + "start": 27333.06, + "end": 27335.84, + "probability": 0.9914 + }, + { + "start": 27336.4, + "end": 27337.38, + "probability": 0.747 + }, + { + "start": 27340.22, + "end": 27341.52, + "probability": 0.7944 + }, + { + "start": 27341.92, + "end": 27345.94, + "probability": 0.8641 + }, + { + "start": 27346.56, + "end": 27349.8, + "probability": 0.9938 + }, + { + "start": 27350.82, + "end": 27353.08, + "probability": 0.9923 + }, + { + "start": 27353.72, + "end": 27355.24, + "probability": 0.7547 + }, + { + "start": 27355.64, + "end": 27356.36, + "probability": 0.6837 + }, + { + "start": 27356.84, + "end": 27357.76, + "probability": 0.9057 + }, + { + "start": 27358.54, + "end": 27362.25, + "probability": 0.9411 + }, + { + "start": 27363.62, + "end": 27364.28, + "probability": 0.9433 + }, + { + "start": 27365.04, + "end": 27368.9, + "probability": 0.9914 + }, + { + "start": 27369.86, + "end": 27372.42, + "probability": 0.9987 + }, + { + "start": 27372.42, + "end": 27375.8, + "probability": 0.998 + }, + { + "start": 27376.68, + "end": 27378.62, + "probability": 0.9968 + }, + { + "start": 27379.34, + "end": 27382.96, + "probability": 0.9852 + }, + { + "start": 27383.7, + "end": 27386.82, + "probability": 0.9983 + }, + { + "start": 27387.02, + "end": 27387.94, + "probability": 0.9255 + }, + { + "start": 27389.7, + "end": 27391.22, + "probability": 0.7873 + }, + { + "start": 27391.6, + "end": 27395.0, + "probability": 0.9635 + }, + { + "start": 27395.96, + "end": 27398.28, + "probability": 0.9874 + }, + { + "start": 27399.04, + "end": 27402.24, + "probability": 0.9945 + }, + { + "start": 27402.38, + "end": 27402.82, + "probability": 0.4242 + }, + { + "start": 27402.94, + "end": 27403.5, + "probability": 0.5891 + }, + { + "start": 27403.86, + "end": 27405.82, + "probability": 0.9226 + }, + { + "start": 27406.58, + "end": 27410.2, + "probability": 0.9963 + }, + { + "start": 27411.38, + "end": 27411.5, + "probability": 0.4473 + }, + { + "start": 27411.6, + "end": 27414.54, + "probability": 0.9968 + }, + { + "start": 27414.54, + "end": 27418.04, + "probability": 0.9392 + }, + { + "start": 27418.4, + "end": 27419.38, + "probability": 0.8344 + }, + { + "start": 27419.7, + "end": 27421.34, + "probability": 0.7132 + }, + { + "start": 27421.88, + "end": 27426.04, + "probability": 0.9644 + }, + { + "start": 27426.46, + "end": 27428.26, + "probability": 0.975 + }, + { + "start": 27429.22, + "end": 27431.38, + "probability": 0.9974 + }, + { + "start": 27431.38, + "end": 27434.18, + "probability": 0.9651 + }, + { + "start": 27434.26, + "end": 27436.28, + "probability": 0.9854 + }, + { + "start": 27436.64, + "end": 27438.14, + "probability": 0.9173 + }, + { + "start": 27438.58, + "end": 27441.62, + "probability": 0.9804 + }, + { + "start": 27442.92, + "end": 27444.0, + "probability": 0.7913 + }, + { + "start": 27444.62, + "end": 27447.28, + "probability": 0.7458 + }, + { + "start": 27448.34, + "end": 27450.74, + "probability": 0.958 + }, + { + "start": 27450.74, + "end": 27453.96, + "probability": 0.965 + }, + { + "start": 27454.1, + "end": 27455.24, + "probability": 0.8604 + }, + { + "start": 27458.34, + "end": 27461.22, + "probability": 0.8481 + }, + { + "start": 27461.4, + "end": 27462.29, + "probability": 0.3504 + }, + { + "start": 27462.82, + "end": 27465.84, + "probability": 0.8345 + }, + { + "start": 27465.96, + "end": 27469.12, + "probability": 0.9777 + }, + { + "start": 27469.8, + "end": 27471.3, + "probability": 0.8706 + }, + { + "start": 27472.04, + "end": 27474.98, + "probability": 0.9985 + }, + { + "start": 27475.33, + "end": 27480.48, + "probability": 0.7959 + }, + { + "start": 27480.7, + "end": 27482.34, + "probability": 0.8796 + }, + { + "start": 27482.42, + "end": 27486.02, + "probability": 0.9792 + }, + { + "start": 27486.08, + "end": 27488.14, + "probability": 0.9738 + }, + { + "start": 27488.8, + "end": 27489.8, + "probability": 0.4629 + }, + { + "start": 27490.48, + "end": 27492.98, + "probability": 0.985 + }, + { + "start": 27493.4, + "end": 27495.44, + "probability": 0.9844 + }, + { + "start": 27496.3, + "end": 27498.88, + "probability": 0.9873 + }, + { + "start": 27499.48, + "end": 27500.82, + "probability": 0.8439 + }, + { + "start": 27501.06, + "end": 27503.92, + "probability": 0.9893 + }, + { + "start": 27504.66, + "end": 27508.48, + "probability": 0.9993 + }, + { + "start": 27508.96, + "end": 27510.2, + "probability": 0.9607 + }, + { + "start": 27510.84, + "end": 27513.4, + "probability": 0.9979 + }, + { + "start": 27513.44, + "end": 27514.14, + "probability": 0.8199 + }, + { + "start": 27514.58, + "end": 27515.6, + "probability": 0.844 + }, + { + "start": 27515.68, + "end": 27516.66, + "probability": 0.8832 + }, + { + "start": 27517.6, + "end": 27518.83, + "probability": 0.5989 + }, + { + "start": 27521.25, + "end": 27526.64, + "probability": 0.9926 + }, + { + "start": 27527.08, + "end": 27528.84, + "probability": 0.9745 + }, + { + "start": 27530.76, + "end": 27532.28, + "probability": 0.7913 + }, + { + "start": 27532.64, + "end": 27534.38, + "probability": 0.2697 + }, + { + "start": 27534.38, + "end": 27536.0, + "probability": 0.6084 + }, + { + "start": 27536.6, + "end": 27537.94, + "probability": 0.8081 + }, + { + "start": 27537.96, + "end": 27542.83, + "probability": 0.9233 + }, + { + "start": 27543.8, + "end": 27545.82, + "probability": 0.9057 + }, + { + "start": 27546.18, + "end": 27549.64, + "probability": 0.8889 + }, + { + "start": 27549.7, + "end": 27550.92, + "probability": 0.8387 + }, + { + "start": 27550.98, + "end": 27552.18, + "probability": 0.8848 + }, + { + "start": 27552.28, + "end": 27552.5, + "probability": 0.2959 + }, + { + "start": 27552.5, + "end": 27554.42, + "probability": 0.8939 + }, + { + "start": 27554.98, + "end": 27556.31, + "probability": 0.8533 + }, + { + "start": 27556.52, + "end": 27557.24, + "probability": 0.6772 + }, + { + "start": 27557.32, + "end": 27558.44, + "probability": 0.7354 + }, + { + "start": 27558.46, + "end": 27560.1, + "probability": 0.9514 + }, + { + "start": 27560.63, + "end": 27560.72, + "probability": 0.4968 + }, + { + "start": 27560.72, + "end": 27561.86, + "probability": 0.7012 + }, + { + "start": 27561.98, + "end": 27564.4, + "probability": 0.6696 + }, + { + "start": 27564.5, + "end": 27566.74, + "probability": 0.8243 + }, + { + "start": 27567.08, + "end": 27567.52, + "probability": 0.9032 + }, + { + "start": 27568.18, + "end": 27568.76, + "probability": 0.8665 + }, + { + "start": 27572.04, + "end": 27572.92, + "probability": 0.0754 + }, + { + "start": 27573.86, + "end": 27574.74, + "probability": 0.4716 + }, + { + "start": 27576.0, + "end": 27577.3, + "probability": 0.3772 + }, + { + "start": 27577.42, + "end": 27577.77, + "probability": 0.6969 + }, + { + "start": 27578.8, + "end": 27579.0, + "probability": 0.5236 + }, + { + "start": 27579.18, + "end": 27585.06, + "probability": 0.4395 + }, + { + "start": 27585.88, + "end": 27587.4, + "probability": 0.8302 + }, + { + "start": 27588.64, + "end": 27593.64, + "probability": 0.9983 + }, + { + "start": 27594.66, + "end": 27597.56, + "probability": 0.4984 + }, + { + "start": 27597.72, + "end": 27603.68, + "probability": 0.7233 + }, + { + "start": 27603.9, + "end": 27605.56, + "probability": 0.5803 + }, + { + "start": 27606.38, + "end": 27607.12, + "probability": 0.0247 + }, + { + "start": 27607.26, + "end": 27608.72, + "probability": 0.5825 + }, + { + "start": 27609.98, + "end": 27613.92, + "probability": 0.8461 + }, + { + "start": 27614.7, + "end": 27616.76, + "probability": 0.5295 + }, + { + "start": 27616.76, + "end": 27620.98, + "probability": 0.9723 + }, + { + "start": 27623.96, + "end": 27625.18, + "probability": 0.6212 + }, + { + "start": 27625.34, + "end": 27626.2, + "probability": 0.7118 + }, + { + "start": 27627.22, + "end": 27629.43, + "probability": 0.8045 + }, + { + "start": 27630.92, + "end": 27636.84, + "probability": 0.8659 + }, + { + "start": 27636.92, + "end": 27643.72, + "probability": 0.8322 + }, + { + "start": 27643.8, + "end": 27644.98, + "probability": 0.9301 + }, + { + "start": 27646.26, + "end": 27649.66, + "probability": 0.9971 + }, + { + "start": 27649.66, + "end": 27653.5, + "probability": 0.8888 + }, + { + "start": 27654.42, + "end": 27656.28, + "probability": 0.8305 + }, + { + "start": 27656.94, + "end": 27659.04, + "probability": 0.9962 + }, + { + "start": 27659.32, + "end": 27660.37, + "probability": 0.899 + }, + { + "start": 27660.78, + "end": 27664.06, + "probability": 0.9858 + }, + { + "start": 27664.88, + "end": 27665.76, + "probability": 0.7021 + }, + { + "start": 27666.02, + "end": 27667.74, + "probability": 0.9938 + }, + { + "start": 27667.82, + "end": 27669.4, + "probability": 0.7879 + }, + { + "start": 27669.98, + "end": 27671.76, + "probability": 0.9927 + }, + { + "start": 27672.26, + "end": 27675.02, + "probability": 0.9915 + }, + { + "start": 27675.5, + "end": 27677.64, + "probability": 0.9647 + }, + { + "start": 27678.0, + "end": 27679.16, + "probability": 0.9935 + }, + { + "start": 27679.24, + "end": 27680.98, + "probability": 0.9788 + }, + { + "start": 27681.6, + "end": 27683.1, + "probability": 0.9517 + }, + { + "start": 27683.46, + "end": 27683.98, + "probability": 0.5382 + }, + { + "start": 27684.04, + "end": 27685.9, + "probability": 0.8477 + }, + { + "start": 27686.86, + "end": 27689.66, + "probability": 0.9533 + }, + { + "start": 27690.54, + "end": 27693.5, + "probability": 0.9741 + }, + { + "start": 27694.02, + "end": 27699.84, + "probability": 0.9982 + }, + { + "start": 27700.36, + "end": 27706.68, + "probability": 0.9876 + }, + { + "start": 27707.2, + "end": 27711.18, + "probability": 0.998 + }, + { + "start": 27712.14, + "end": 27716.74, + "probability": 0.9289 + }, + { + "start": 27718.29, + "end": 27721.88, + "probability": 0.9821 + }, + { + "start": 27722.36, + "end": 27724.42, + "probability": 0.9175 + }, + { + "start": 27725.46, + "end": 27727.64, + "probability": 0.5256 + }, + { + "start": 27727.84, + "end": 27729.52, + "probability": 0.5919 + }, + { + "start": 27731.74, + "end": 27732.94, + "probability": 0.738 + }, + { + "start": 27733.31, + "end": 27735.28, + "probability": 0.9577 + }, + { + "start": 27736.2, + "end": 27739.96, + "probability": 0.8236 + }, + { + "start": 27742.46, + "end": 27742.92, + "probability": 0.0415 + }, + { + "start": 27743.26, + "end": 27744.64, + "probability": 0.812 + }, + { + "start": 27744.72, + "end": 27746.14, + "probability": 0.933 + }, + { + "start": 27746.42, + "end": 27751.0, + "probability": 0.9248 + }, + { + "start": 27751.14, + "end": 27752.5, + "probability": 0.9785 + }, + { + "start": 27753.09, + "end": 27755.01, + "probability": 0.0396 + }, + { + "start": 27755.36, + "end": 27757.88, + "probability": 0.6668 + }, + { + "start": 27759.5, + "end": 27760.4, + "probability": 0.2462 + }, + { + "start": 27760.5, + "end": 27762.56, + "probability": 0.809 + }, + { + "start": 27762.56, + "end": 27765.04, + "probability": 0.2785 + }, + { + "start": 27765.04, + "end": 27765.11, + "probability": 0.0301 + }, + { + "start": 27766.14, + "end": 27769.52, + "probability": 0.1969 + }, + { + "start": 27769.68, + "end": 27771.16, + "probability": 0.8107 + }, + { + "start": 27771.44, + "end": 27773.32, + "probability": 0.4033 + }, + { + "start": 27773.44, + "end": 27774.04, + "probability": 0.108 + }, + { + "start": 27775.42, + "end": 27779.32, + "probability": 0.3581 + }, + { + "start": 27781.94, + "end": 27783.23, + "probability": 0.7192 + }, + { + "start": 27792.08, + "end": 27792.18, + "probability": 0.7449 + }, + { + "start": 27794.64, + "end": 27796.3, + "probability": 0.6951 + }, + { + "start": 27796.42, + "end": 27798.54, + "probability": 0.6592 + }, + { + "start": 27798.54, + "end": 27802.82, + "probability": 0.924 + }, + { + "start": 27803.42, + "end": 27804.64, + "probability": 0.7008 + }, + { + "start": 27804.82, + "end": 27806.51, + "probability": 0.95 + }, + { + "start": 27807.8, + "end": 27810.44, + "probability": 0.9902 + }, + { + "start": 27810.56, + "end": 27812.09, + "probability": 0.9893 + }, + { + "start": 27813.26, + "end": 27817.18, + "probability": 0.9919 + }, + { + "start": 27818.34, + "end": 27821.1, + "probability": 0.9072 + }, + { + "start": 27822.16, + "end": 27823.3, + "probability": 0.9563 + }, + { + "start": 27824.46, + "end": 27828.88, + "probability": 0.9739 + }, + { + "start": 27829.86, + "end": 27832.1, + "probability": 0.9575 + }, + { + "start": 27832.68, + "end": 27836.62, + "probability": 0.9946 + }, + { + "start": 27837.16, + "end": 27841.08, + "probability": 0.9124 + }, + { + "start": 27842.14, + "end": 27847.46, + "probability": 0.9729 + }, + { + "start": 27847.94, + "end": 27852.7, + "probability": 0.9889 + }, + { + "start": 27853.88, + "end": 27857.52, + "probability": 0.917 + }, + { + "start": 27859.08, + "end": 27860.76, + "probability": 0.9982 + }, + { + "start": 27861.5, + "end": 27864.34, + "probability": 0.9849 + }, + { + "start": 27865.04, + "end": 27869.6, + "probability": 0.9961 + }, + { + "start": 27869.82, + "end": 27871.62, + "probability": 0.9517 + }, + { + "start": 27871.76, + "end": 27872.6, + "probability": 0.1811 + }, + { + "start": 27872.64, + "end": 27873.36, + "probability": 0.8244 + }, + { + "start": 27873.74, + "end": 27875.76, + "probability": 0.9775 + }, + { + "start": 27875.9, + "end": 27880.42, + "probability": 0.9878 + }, + { + "start": 27881.44, + "end": 27886.64, + "probability": 0.9626 + }, + { + "start": 27888.0, + "end": 27897.16, + "probability": 0.9906 + }, + { + "start": 27897.18, + "end": 27897.48, + "probability": 0.574 + }, + { + "start": 27897.54, + "end": 27898.16, + "probability": 0.6425 + }, + { + "start": 27898.28, + "end": 27899.46, + "probability": 0.7783 + }, + { + "start": 27899.5, + "end": 27900.38, + "probability": 0.8716 + }, + { + "start": 27900.4, + "end": 27901.4, + "probability": 0.5568 + }, + { + "start": 27902.86, + "end": 27906.08, + "probability": 0.9985 + }, + { + "start": 27906.94, + "end": 27907.74, + "probability": 0.9531 + }, + { + "start": 27908.42, + "end": 27910.48, + "probability": 0.9896 + }, + { + "start": 27910.68, + "end": 27916.32, + "probability": 0.9382 + }, + { + "start": 27916.4, + "end": 27918.78, + "probability": 0.7943 + }, + { + "start": 27919.2, + "end": 27919.92, + "probability": 0.7597 + }, + { + "start": 27920.4, + "end": 27923.09, + "probability": 0.9918 + }, + { + "start": 27923.24, + "end": 27923.6, + "probability": 0.6683 + }, + { + "start": 27923.6, + "end": 27924.54, + "probability": 0.8511 + }, + { + "start": 27924.7, + "end": 27925.52, + "probability": 0.6495 + }, + { + "start": 27925.96, + "end": 27932.1, + "probability": 0.9814 + }, + { + "start": 27932.1, + "end": 27939.02, + "probability": 0.9949 + }, + { + "start": 27939.42, + "end": 27941.52, + "probability": 0.5895 + }, + { + "start": 27941.6, + "end": 27941.92, + "probability": 0.5769 + }, + { + "start": 27942.1, + "end": 27944.36, + "probability": 0.9565 + }, + { + "start": 27944.44, + "end": 27946.12, + "probability": 0.945 + }, + { + "start": 27946.24, + "end": 27946.58, + "probability": 0.7204 + }, + { + "start": 27946.82, + "end": 27947.8, + "probability": 0.7695 + }, + { + "start": 27950.78, + "end": 27952.78, + "probability": 0.5275 + }, + { + "start": 27953.53, + "end": 27955.98, + "probability": 0.6506 + }, + { + "start": 27956.36, + "end": 27958.38, + "probability": 0.5187 + }, + { + "start": 27959.18, + "end": 27962.28, + "probability": 0.9452 + }, + { + "start": 27962.28, + "end": 27965.4, + "probability": 0.9702 + }, + { + "start": 27966.22, + "end": 27967.72, + "probability": 0.1759 + }, + { + "start": 27968.7, + "end": 27969.4, + "probability": 0.4536 + }, + { + "start": 27970.3, + "end": 27970.74, + "probability": 0.7331 + }, + { + "start": 27972.52, + "end": 27972.6, + "probability": 0.0318 + }, + { + "start": 27972.6, + "end": 27972.6, + "probability": 0.1137 + }, + { + "start": 27972.6, + "end": 27974.52, + "probability": 0.4337 + }, + { + "start": 27974.94, + "end": 27975.76, + "probability": 0.4475 + }, + { + "start": 27975.8, + "end": 27976.84, + "probability": 0.0302 + }, + { + "start": 27976.84, + "end": 27977.66, + "probability": 0.2005 + }, + { + "start": 27978.28, + "end": 27978.79, + "probability": 0.726 + }, + { + "start": 27979.02, + "end": 27980.13, + "probability": 0.6679 + }, + { + "start": 27980.54, + "end": 27984.36, + "probability": 0.7659 + }, + { + "start": 27985.08, + "end": 27987.86, + "probability": 0.8405 + }, + { + "start": 27988.14, + "end": 27990.62, + "probability": 0.9727 + }, + { + "start": 27990.76, + "end": 27991.64, + "probability": 0.7971 + }, + { + "start": 27991.64, + "end": 27992.02, + "probability": 0.2936 + }, + { + "start": 27993.12, + "end": 27995.36, + "probability": 0.9703 + }, + { + "start": 27995.86, + "end": 27997.76, + "probability": 0.6168 + }, + { + "start": 27997.76, + "end": 27999.44, + "probability": 0.5477 + }, + { + "start": 27999.96, + "end": 28001.62, + "probability": 0.8695 + }, + { + "start": 28001.76, + "end": 28003.8, + "probability": 0.9549 + }, + { + "start": 28003.88, + "end": 28004.6, + "probability": 0.7943 + }, + { + "start": 28004.66, + "end": 28005.54, + "probability": 0.7452 + }, + { + "start": 28005.9, + "end": 28007.92, + "probability": 0.9985 + }, + { + "start": 28008.14, + "end": 28010.92, + "probability": 0.9913 + }, + { + "start": 28011.3, + "end": 28013.38, + "probability": 0.7063 + }, + { + "start": 28013.86, + "end": 28015.14, + "probability": 0.6648 + }, + { + "start": 28015.28, + "end": 28015.7, + "probability": 0.7656 + }, + { + "start": 28016.26, + "end": 28018.76, + "probability": 0.4696 + }, + { + "start": 28018.82, + "end": 28019.34, + "probability": 0.7434 + }, + { + "start": 28019.42, + "end": 28020.1, + "probability": 0.5597 + }, + { + "start": 28021.12, + "end": 28025.42, + "probability": 0.6407 + }, + { + "start": 28026.98, + "end": 28027.26, + "probability": 0.0485 + }, + { + "start": 28027.26, + "end": 28029.88, + "probability": 0.7975 + }, + { + "start": 28030.94, + "end": 28032.76, + "probability": 0.7384 + }, + { + "start": 28032.94, + "end": 28034.74, + "probability": 0.6277 + }, + { + "start": 28034.82, + "end": 28035.82, + "probability": 0.7428 + }, + { + "start": 28036.32, + "end": 28038.32, + "probability": 0.946 + }, + { + "start": 28038.32, + "end": 28038.72, + "probability": 0.7463 + }, + { + "start": 28043.86, + "end": 28044.1, + "probability": 0.4695 + }, + { + "start": 28045.3, + "end": 28048.6, + "probability": 0.761 + }, + { + "start": 28049.46, + "end": 28050.51, + "probability": 0.9461 + }, + { + "start": 28052.76, + "end": 28054.98, + "probability": 0.9971 + }, + { + "start": 28056.34, + "end": 28062.86, + "probability": 0.9919 + }, + { + "start": 28063.12, + "end": 28065.24, + "probability": 0.4888 + }, + { + "start": 28065.28, + "end": 28071.22, + "probability": 0.9458 + }, + { + "start": 28071.32, + "end": 28072.34, + "probability": 0.8689 + }, + { + "start": 28072.44, + "end": 28072.92, + "probability": 0.4071 + }, + { + "start": 28074.2, + "end": 28075.44, + "probability": 0.8772 + }, + { + "start": 28075.52, + "end": 28079.18, + "probability": 0.9839 + }, + { + "start": 28080.28, + "end": 28083.14, + "probability": 0.7823 + }, + { + "start": 28083.42, + "end": 28086.0, + "probability": 0.8668 + }, + { + "start": 28086.68, + "end": 28088.04, + "probability": 0.7398 + }, + { + "start": 28088.58, + "end": 28090.74, + "probability": 0.9945 + }, + { + "start": 28091.62, + "end": 28093.72, + "probability": 0.7041 + }, + { + "start": 28094.28, + "end": 28095.86, + "probability": 0.7566 + }, + { + "start": 28096.54, + "end": 28099.34, + "probability": 0.8262 + }, + { + "start": 28101.13, + "end": 28102.44, + "probability": 0.0299 + }, + { + "start": 28102.44, + "end": 28109.0, + "probability": 0.7913 + }, + { + "start": 28111.32, + "end": 28114.76, + "probability": 0.9845 + }, + { + "start": 28114.86, + "end": 28116.51, + "probability": 0.3069 + }, + { + "start": 28116.74, + "end": 28117.13, + "probability": 0.0712 + }, + { + "start": 28118.92, + "end": 28122.5, + "probability": 0.8376 + }, + { + "start": 28123.28, + "end": 28124.18, + "probability": 0.3969 + }, + { + "start": 28124.55, + "end": 28124.9, + "probability": 0.0798 + }, + { + "start": 28124.9, + "end": 28127.22, + "probability": 0.7162 + }, + { + "start": 28127.3, + "end": 28127.76, + "probability": 0.6061 + }, + { + "start": 28127.78, + "end": 28129.64, + "probability": 0.9055 + }, + { + "start": 28129.74, + "end": 28130.82, + "probability": 0.7816 + }, + { + "start": 28130.84, + "end": 28132.12, + "probability": 0.1604 + }, + { + "start": 28132.16, + "end": 28133.78, + "probability": 0.808 + }, + { + "start": 28133.88, + "end": 28134.66, + "probability": 0.1866 + }, + { + "start": 28134.94, + "end": 28136.44, + "probability": 0.7079 + }, + { + "start": 28136.62, + "end": 28137.6, + "probability": 0.537 + }, + { + "start": 28137.6, + "end": 28138.02, + "probability": 0.9144 + }, + { + "start": 28138.46, + "end": 28139.98, + "probability": 0.9297 + }, + { + "start": 28140.3, + "end": 28141.64, + "probability": 0.6637 + }, + { + "start": 28142.24, + "end": 28143.24, + "probability": 0.714 + }, + { + "start": 28143.38, + "end": 28144.66, + "probability": 0.7393 + }, + { + "start": 28145.02, + "end": 28145.86, + "probability": 0.7072 + }, + { + "start": 28145.94, + "end": 28146.62, + "probability": 0.3184 + }, + { + "start": 28146.62, + "end": 28147.14, + "probability": 0.1918 + }, + { + "start": 28147.6, + "end": 28156.28, + "probability": 0.8547 + }, + { + "start": 28156.28, + "end": 28161.34, + "probability": 0.9863 + }, + { + "start": 28162.38, + "end": 28163.2, + "probability": 0.523 + }, + { + "start": 28163.48, + "end": 28164.68, + "probability": 0.2772 + }, + { + "start": 28172.42, + "end": 28173.22, + "probability": 0.1866 + }, + { + "start": 28174.2, + "end": 28181.02, + "probability": 0.1239 + }, + { + "start": 28181.83, + "end": 28185.96, + "probability": 0.4439 + }, + { + "start": 28186.58, + "end": 28189.36, + "probability": 0.8971 + }, + { + "start": 28190.34, + "end": 28194.4, + "probability": 0.9733 + }, + { + "start": 28195.06, + "end": 28195.9, + "probability": 0.8407 + }, + { + "start": 28201.04, + "end": 28209.52, + "probability": 0.8675 + }, + { + "start": 28209.68, + "end": 28211.76, + "probability": 0.9724 + }, + { + "start": 28211.84, + "end": 28211.86, + "probability": 0.0381 + }, + { + "start": 28211.86, + "end": 28214.48, + "probability": 0.879 + }, + { + "start": 28214.84, + "end": 28215.72, + "probability": 0.5029 + }, + { + "start": 28216.74, + "end": 28216.98, + "probability": 0.6264 + }, + { + "start": 28224.42, + "end": 28225.04, + "probability": 0.043 + }, + { + "start": 28226.6, + "end": 28229.34, + "probability": 0.939 + }, + { + "start": 28229.48, + "end": 28230.78, + "probability": 0.9578 + }, + { + "start": 28232.48, + "end": 28234.84, + "probability": 0.741 + }, + { + "start": 28234.92, + "end": 28238.22, + "probability": 0.9941 + }, + { + "start": 28239.0, + "end": 28239.82, + "probability": 0.6812 + }, + { + "start": 28240.22, + "end": 28241.2, + "probability": 0.9584 + }, + { + "start": 28241.32, + "end": 28243.22, + "probability": 0.7149 + }, + { + "start": 28243.68, + "end": 28244.4, + "probability": 0.5604 + }, + { + "start": 28244.92, + "end": 28245.74, + "probability": 0.563 + }, + { + "start": 28246.2, + "end": 28247.76, + "probability": 0.7617 + }, + { + "start": 28247.94, + "end": 28252.3, + "probability": 0.6599 + }, + { + "start": 28252.88, + "end": 28255.02, + "probability": 0.9878 + }, + { + "start": 28255.02, + "end": 28257.3, + "probability": 0.8715 + }, + { + "start": 28257.92, + "end": 28259.08, + "probability": 0.8063 + }, + { + "start": 28259.54, + "end": 28262.04, + "probability": 0.7495 + }, + { + "start": 28263.18, + "end": 28265.08, + "probability": 0.7279 + }, + { + "start": 28265.96, + "end": 28271.62, + "probability": 0.8078 + }, + { + "start": 28272.9, + "end": 28274.84, + "probability": 0.6511 + }, + { + "start": 28274.92, + "end": 28276.36, + "probability": 0.6085 + }, + { + "start": 28277.04, + "end": 28278.9, + "probability": 0.0117 + }, + { + "start": 28279.24, + "end": 28280.21, + "probability": 0.5274 + }, + { + "start": 28280.64, + "end": 28282.52, + "probability": 0.522 + }, + { + "start": 28284.32, + "end": 28288.54, + "probability": 0.8691 + }, + { + "start": 28288.54, + "end": 28291.19, + "probability": 0.6606 + }, + { + "start": 28291.58, + "end": 28293.24, + "probability": 0.7705 + }, + { + "start": 28294.1, + "end": 28298.38, + "probability": 0.9915 + }, + { + "start": 28299.24, + "end": 28301.92, + "probability": 0.7912 + }, + { + "start": 28302.5, + "end": 28302.58, + "probability": 0.0022 + }, + { + "start": 28303.2, + "end": 28309.64, + "probability": 0.9984 + }, + { + "start": 28310.76, + "end": 28311.46, + "probability": 0.868 + }, + { + "start": 28312.04, + "end": 28312.98, + "probability": 0.8756 + }, + { + "start": 28313.7, + "end": 28314.54, + "probability": 0.839 + }, + { + "start": 28315.68, + "end": 28317.06, + "probability": 0.7744 + }, + { + "start": 28317.2, + "end": 28318.4, + "probability": 0.7751 + }, + { + "start": 28318.5, + "end": 28321.04, + "probability": 0.8422 + }, + { + "start": 28321.24, + "end": 28322.52, + "probability": 0.7818 + }, + { + "start": 28323.52, + "end": 28327.16, + "probability": 0.8483 + }, + { + "start": 28327.24, + "end": 28328.78, + "probability": 0.7763 + }, + { + "start": 28329.06, + "end": 28331.08, + "probability": 0.7357 + }, + { + "start": 28332.84, + "end": 28335.84, + "probability": 0.9709 + }, + { + "start": 28335.84, + "end": 28340.76, + "probability": 0.9749 + }, + { + "start": 28341.9, + "end": 28345.6, + "probability": 0.9891 + }, + { + "start": 28346.96, + "end": 28348.12, + "probability": 0.8596 + }, + { + "start": 28349.16, + "end": 28350.64, + "probability": 0.9976 + }, + { + "start": 28352.66, + "end": 28356.52, + "probability": 0.8898 + }, + { + "start": 28356.8, + "end": 28357.28, + "probability": 0.8859 + }, + { + "start": 28358.64, + "end": 28362.28, + "probability": 0.9959 + }, + { + "start": 28364.32, + "end": 28364.84, + "probability": 0.9021 + }, + { + "start": 28365.14, + "end": 28366.06, + "probability": 0.9841 + }, + { + "start": 28366.2, + "end": 28368.38, + "probability": 0.9977 + }, + { + "start": 28368.38, + "end": 28371.3, + "probability": 0.9872 + }, + { + "start": 28372.72, + "end": 28372.9, + "probability": 0.1167 + }, + { + "start": 28373.04, + "end": 28373.82, + "probability": 0.7588 + }, + { + "start": 28373.96, + "end": 28376.59, + "probability": 0.9793 + }, + { + "start": 28379.1, + "end": 28380.06, + "probability": 0.9563 + }, + { + "start": 28380.28, + "end": 28383.42, + "probability": 0.9723 + }, + { + "start": 28383.7, + "end": 28387.74, + "probability": 0.979 + }, + { + "start": 28388.92, + "end": 28392.12, + "probability": 0.9947 + }, + { + "start": 28392.98, + "end": 28401.18, + "probability": 0.9653 + }, + { + "start": 28401.66, + "end": 28402.92, + "probability": 0.959 + }, + { + "start": 28404.66, + "end": 28406.2, + "probability": 0.9771 + }, + { + "start": 28407.1, + "end": 28409.08, + "probability": 0.981 + }, + { + "start": 28410.98, + "end": 28413.58, + "probability": 0.9907 + }, + { + "start": 28414.84, + "end": 28415.34, + "probability": 0.8394 + }, + { + "start": 28416.1, + "end": 28419.14, + "probability": 0.7985 + }, + { + "start": 28420.18, + "end": 28422.2, + "probability": 0.9991 + }, + { + "start": 28422.76, + "end": 28425.46, + "probability": 0.97 + }, + { + "start": 28427.32, + "end": 28428.16, + "probability": 0.9278 + }, + { + "start": 28428.96, + "end": 28431.48, + "probability": 0.9952 + }, + { + "start": 28432.68, + "end": 28435.72, + "probability": 0.9478 + }, + { + "start": 28435.72, + "end": 28438.1, + "probability": 0.995 + }, + { + "start": 28438.56, + "end": 28439.15, + "probability": 0.9501 + }, + { + "start": 28441.08, + "end": 28445.28, + "probability": 0.9721 + }, + { + "start": 28446.08, + "end": 28449.1, + "probability": 0.9988 + }, + { + "start": 28449.86, + "end": 28453.14, + "probability": 0.9359 + }, + { + "start": 28453.78, + "end": 28454.8, + "probability": 0.9607 + }, + { + "start": 28456.82, + "end": 28458.38, + "probability": 0.9839 + }, + { + "start": 28459.74, + "end": 28461.48, + "probability": 0.9675 + }, + { + "start": 28463.68, + "end": 28464.98, + "probability": 0.9631 + }, + { + "start": 28466.02, + "end": 28471.63, + "probability": 0.9419 + }, + { + "start": 28472.58, + "end": 28473.0, + "probability": 0.9811 + }, + { + "start": 28475.28, + "end": 28479.58, + "probability": 0.9977 + }, + { + "start": 28479.58, + "end": 28484.22, + "probability": 0.9966 + }, + { + "start": 28484.94, + "end": 28485.26, + "probability": 0.2913 + }, + { + "start": 28485.46, + "end": 28485.9, + "probability": 0.9091 + }, + { + "start": 28485.98, + "end": 28487.4, + "probability": 0.9219 + }, + { + "start": 28487.82, + "end": 28489.92, + "probability": 0.7953 + }, + { + "start": 28491.34, + "end": 28495.46, + "probability": 0.9277 + }, + { + "start": 28495.48, + "end": 28498.88, + "probability": 0.998 + }, + { + "start": 28498.88, + "end": 28503.1, + "probability": 0.9987 + }, + { + "start": 28503.56, + "end": 28505.38, + "probability": 0.7955 + }, + { + "start": 28506.52, + "end": 28509.18, + "probability": 0.9806 + }, + { + "start": 28509.18, + "end": 28512.32, + "probability": 0.9899 + }, + { + "start": 28512.96, + "end": 28516.64, + "probability": 0.9967 + }, + { + "start": 28517.06, + "end": 28519.2, + "probability": 0.9974 + }, + { + "start": 28520.22, + "end": 28522.28, + "probability": 0.8278 + }, + { + "start": 28522.62, + "end": 28525.93, + "probability": 0.9968 + }, + { + "start": 28526.26, + "end": 28528.74, + "probability": 0.9994 + }, + { + "start": 28528.94, + "end": 28532.78, + "probability": 0.9428 + }, + { + "start": 28533.8, + "end": 28534.83, + "probability": 0.9993 + }, + { + "start": 28536.0, + "end": 28539.0, + "probability": 0.9939 + }, + { + "start": 28539.18, + "end": 28541.9, + "probability": 0.9934 + }, + { + "start": 28542.86, + "end": 28547.2, + "probability": 0.7527 + }, + { + "start": 28547.96, + "end": 28551.54, + "probability": 0.9692 + }, + { + "start": 28551.6, + "end": 28553.14, + "probability": 0.9753 + }, + { + "start": 28553.9, + "end": 28554.9, + "probability": 0.9021 + }, + { + "start": 28554.96, + "end": 28557.4, + "probability": 0.9355 + }, + { + "start": 28561.5, + "end": 28566.52, + "probability": 0.972 + }, + { + "start": 28567.18, + "end": 28568.94, + "probability": 0.9791 + }, + { + "start": 28569.14, + "end": 28570.38, + "probability": 0.7881 + }, + { + "start": 28573.44, + "end": 28574.58, + "probability": 0.999 + }, + { + "start": 28576.08, + "end": 28577.56, + "probability": 0.9949 + }, + { + "start": 28578.52, + "end": 28579.22, + "probability": 0.9805 + }, + { + "start": 28580.42, + "end": 28582.6, + "probability": 0.9943 + }, + { + "start": 28582.6, + "end": 28585.38, + "probability": 0.999 + }, + { + "start": 28585.66, + "end": 28587.06, + "probability": 0.9614 + }, + { + "start": 28588.38, + "end": 28589.62, + "probability": 0.8997 + }, + { + "start": 28590.48, + "end": 28594.34, + "probability": 0.9716 + }, + { + "start": 28595.58, + "end": 28597.81, + "probability": 0.9773 + }, + { + "start": 28598.16, + "end": 28598.6, + "probability": 0.5159 + }, + { + "start": 28599.44, + "end": 28601.46, + "probability": 0.9529 + }, + { + "start": 28601.88, + "end": 28606.02, + "probability": 0.927 + }, + { + "start": 28607.34, + "end": 28610.64, + "probability": 0.9957 + }, + { + "start": 28611.86, + "end": 28613.22, + "probability": 0.9961 + }, + { + "start": 28615.54, + "end": 28619.82, + "probability": 0.9959 + }, + { + "start": 28620.88, + "end": 28621.66, + "probability": 0.5814 + }, + { + "start": 28623.36, + "end": 28624.96, + "probability": 0.9364 + }, + { + "start": 28626.0, + "end": 28629.5, + "probability": 0.9917 + }, + { + "start": 28630.34, + "end": 28630.74, + "probability": 0.7764 + }, + { + "start": 28631.86, + "end": 28636.94, + "probability": 0.9943 + }, + { + "start": 28639.2, + "end": 28639.78, + "probability": 0.7765 + }, + { + "start": 28640.68, + "end": 28643.86, + "probability": 0.9053 + }, + { + "start": 28644.58, + "end": 28647.32, + "probability": 0.9064 + }, + { + "start": 28648.44, + "end": 28649.06, + "probability": 0.8432 + }, + { + "start": 28649.18, + "end": 28649.64, + "probability": 0.8411 + }, + { + "start": 28649.76, + "end": 28652.72, + "probability": 0.8704 + }, + { + "start": 28653.36, + "end": 28653.56, + "probability": 0.8891 + }, + { + "start": 28655.08, + "end": 28655.9, + "probability": 0.7473 + }, + { + "start": 28656.2, + "end": 28659.6, + "probability": 0.9751 + }, + { + "start": 28661.38, + "end": 28663.24, + "probability": 0.8006 + }, + { + "start": 28663.82, + "end": 28666.52, + "probability": 0.7359 + }, + { + "start": 28669.36, + "end": 28671.2, + "probability": 0.7108 + }, + { + "start": 28698.5, + "end": 28700.7, + "probability": 0.727 + }, + { + "start": 28701.7, + "end": 28703.64, + "probability": 0.8947 + }, + { + "start": 28704.92, + "end": 28713.26, + "probability": 0.9186 + }, + { + "start": 28717.0, + "end": 28724.5, + "probability": 0.9949 + }, + { + "start": 28724.58, + "end": 28726.5, + "probability": 0.9868 + }, + { + "start": 28726.84, + "end": 28728.32, + "probability": 0.8577 + }, + { + "start": 28729.76, + "end": 28733.12, + "probability": 0.9941 + }, + { + "start": 28734.34, + "end": 28737.68, + "probability": 0.9366 + }, + { + "start": 28739.06, + "end": 28741.98, + "probability": 0.9849 + }, + { + "start": 28742.72, + "end": 28743.82, + "probability": 0.9132 + }, + { + "start": 28745.54, + "end": 28748.06, + "probability": 0.9924 + }, + { + "start": 28749.32, + "end": 28753.26, + "probability": 0.9766 + }, + { + "start": 28754.2, + "end": 28756.08, + "probability": 0.9748 + }, + { + "start": 28757.06, + "end": 28759.74, + "probability": 0.989 + }, + { + "start": 28760.62, + "end": 28762.7, + "probability": 0.8496 + }, + { + "start": 28763.86, + "end": 28765.34, + "probability": 0.8023 + }, + { + "start": 28766.04, + "end": 28767.92, + "probability": 0.9577 + }, + { + "start": 28767.98, + "end": 28768.66, + "probability": 0.3096 + }, + { + "start": 28768.7, + "end": 28770.92, + "probability": 0.971 + }, + { + "start": 28771.14, + "end": 28772.16, + "probability": 0.7083 + }, + { + "start": 28772.26, + "end": 28775.36, + "probability": 0.0886 + }, + { + "start": 28775.64, + "end": 28775.68, + "probability": 0.0481 + }, + { + "start": 28775.68, + "end": 28776.56, + "probability": 0.5818 + }, + { + "start": 28776.56, + "end": 28776.68, + "probability": 0.4334 + }, + { + "start": 28776.84, + "end": 28778.08, + "probability": 0.9528 + }, + { + "start": 28778.38, + "end": 28779.18, + "probability": 0.6756 + }, + { + "start": 28779.2, + "end": 28779.42, + "probability": 0.1133 + }, + { + "start": 28779.42, + "end": 28780.14, + "probability": 0.283 + }, + { + "start": 28783.34, + "end": 28784.78, + "probability": 0.0735 + }, + { + "start": 28784.85, + "end": 28785.15, + "probability": 0.1654 + }, + { + "start": 28785.44, + "end": 28786.1, + "probability": 0.5564 + }, + { + "start": 28786.81, + "end": 28787.02, + "probability": 0.35 + }, + { + "start": 28787.08, + "end": 28789.34, + "probability": 0.8655 + }, + { + "start": 28789.8, + "end": 28791.1, + "probability": 0.8726 + }, + { + "start": 28791.46, + "end": 28793.82, + "probability": 0.9363 + }, + { + "start": 28794.5, + "end": 28796.5, + "probability": 0.9585 + }, + { + "start": 28796.96, + "end": 28800.18, + "probability": 0.8553 + }, + { + "start": 28800.28, + "end": 28801.6, + "probability": 0.9637 + }, + { + "start": 28801.72, + "end": 28803.01, + "probability": 0.7625 + }, + { + "start": 28803.52, + "end": 28804.18, + "probability": 0.4239 + }, + { + "start": 28804.2, + "end": 28805.8, + "probability": 0.8872 + }, + { + "start": 28806.08, + "end": 28808.26, + "probability": 0.8724 + }, + { + "start": 28808.5, + "end": 28809.12, + "probability": 0.165 + }, + { + "start": 28809.24, + "end": 28812.0, + "probability": 0.8038 + }, + { + "start": 28812.0, + "end": 28814.18, + "probability": 0.7528 + }, + { + "start": 28814.46, + "end": 28816.96, + "probability": 0.9326 + }, + { + "start": 28816.96, + "end": 28820.82, + "probability": 0.9915 + }, + { + "start": 28821.58, + "end": 28825.88, + "probability": 0.9956 + }, + { + "start": 28826.12, + "end": 28826.82, + "probability": 0.5817 + }, + { + "start": 28826.86, + "end": 28827.08, + "probability": 0.1776 + }, + { + "start": 28827.08, + "end": 28830.66, + "probability": 0.9663 + }, + { + "start": 28831.18, + "end": 28834.56, + "probability": 0.8589 + }, + { + "start": 28834.88, + "end": 28838.32, + "probability": 0.9858 + }, + { + "start": 28838.96, + "end": 28840.14, + "probability": 0.0084 + }, + { + "start": 28840.14, + "end": 28840.14, + "probability": 0.0314 + }, + { + "start": 28840.14, + "end": 28840.82, + "probability": 0.2942 + }, + { + "start": 28841.0, + "end": 28844.32, + "probability": 0.6777 + }, + { + "start": 28844.32, + "end": 28844.84, + "probability": 0.1443 + }, + { + "start": 28845.24, + "end": 28845.58, + "probability": 0.2178 + }, + { + "start": 28845.92, + "end": 28849.26, + "probability": 0.9688 + }, + { + "start": 28849.66, + "end": 28849.84, + "probability": 0.1513 + }, + { + "start": 28850.44, + "end": 28853.68, + "probability": 0.5548 + }, + { + "start": 28854.86, + "end": 28855.8, + "probability": 0.6089 + }, + { + "start": 28856.86, + "end": 28860.74, + "probability": 0.934 + }, + { + "start": 28861.12, + "end": 28864.16, + "probability": 0.9919 + }, + { + "start": 28864.7, + "end": 28865.82, + "probability": 0.9786 + }, + { + "start": 28866.62, + "end": 28872.04, + "probability": 0.9967 + }, + { + "start": 28872.76, + "end": 28878.54, + "probability": 0.9905 + }, + { + "start": 28879.38, + "end": 28881.72, + "probability": 0.9365 + }, + { + "start": 28882.22, + "end": 28883.76, + "probability": 0.8398 + }, + { + "start": 28883.84, + "end": 28885.68, + "probability": 0.9988 + }, + { + "start": 28887.04, + "end": 28891.66, + "probability": 0.9663 + }, + { + "start": 28891.78, + "end": 28892.48, + "probability": 0.9355 + }, + { + "start": 28893.64, + "end": 28894.44, + "probability": 0.9339 + }, + { + "start": 28894.94, + "end": 28895.62, + "probability": 0.833 + }, + { + "start": 28895.72, + "end": 28896.24, + "probability": 0.9318 + }, + { + "start": 28896.28, + "end": 28897.48, + "probability": 0.8232 + }, + { + "start": 28897.98, + "end": 28902.82, + "probability": 0.8196 + }, + { + "start": 28902.82, + "end": 28902.84, + "probability": 0.5652 + }, + { + "start": 28902.94, + "end": 28903.96, + "probability": 0.9907 + }, + { + "start": 28903.98, + "end": 28908.74, + "probability": 0.8878 + }, + { + "start": 28908.74, + "end": 28913.34, + "probability": 0.9875 + }, + { + "start": 28913.86, + "end": 28921.48, + "probability": 0.9758 + }, + { + "start": 28921.48, + "end": 28928.42, + "probability": 0.9956 + }, + { + "start": 28929.08, + "end": 28934.8, + "probability": 0.9954 + }, + { + "start": 28935.4, + "end": 28936.57, + "probability": 0.8756 + }, + { + "start": 28937.2, + "end": 28939.14, + "probability": 0.0693 + }, + { + "start": 28939.9, + "end": 28941.78, + "probability": 0.321 + }, + { + "start": 28942.96, + "end": 28944.6, + "probability": 0.8101 + }, + { + "start": 28944.7, + "end": 28949.4, + "probability": 0.9548 + }, + { + "start": 28949.4, + "end": 28953.64, + "probability": 0.9893 + }, + { + "start": 28954.34, + "end": 28957.04, + "probability": 0.9939 + }, + { + "start": 28958.2, + "end": 28961.14, + "probability": 0.9891 + }, + { + "start": 28961.14, + "end": 28965.32, + "probability": 0.9904 + }, + { + "start": 28966.46, + "end": 28966.7, + "probability": 0.5479 + }, + { + "start": 28966.76, + "end": 28967.12, + "probability": 0.9577 + }, + { + "start": 28967.28, + "end": 28968.52, + "probability": 0.9287 + }, + { + "start": 28969.0, + "end": 28975.66, + "probability": 0.995 + }, + { + "start": 28975.66, + "end": 28980.94, + "probability": 0.9881 + }, + { + "start": 28981.16, + "end": 28983.84, + "probability": 0.7668 + }, + { + "start": 28984.46, + "end": 28987.72, + "probability": 0.9356 + }, + { + "start": 28988.66, + "end": 28992.06, + "probability": 0.1503 + }, + { + "start": 28996.42, + "end": 28998.44, + "probability": 0.021 + }, + { + "start": 28998.44, + "end": 28998.44, + "probability": 0.2617 + }, + { + "start": 28998.44, + "end": 28998.44, + "probability": 0.0462 + }, + { + "start": 28998.44, + "end": 28998.9, + "probability": 0.1241 + }, + { + "start": 28999.58, + "end": 28999.58, + "probability": 0.0542 + }, + { + "start": 28999.58, + "end": 29001.3, + "probability": 0.346 + }, + { + "start": 29009.38, + "end": 29010.16, + "probability": 0.1471 + }, + { + "start": 29010.16, + "end": 29010.16, + "probability": 0.0727 + }, + { + "start": 29010.16, + "end": 29010.16, + "probability": 0.0703 + }, + { + "start": 29010.16, + "end": 29013.5, + "probability": 0.3873 + }, + { + "start": 29013.92, + "end": 29017.92, + "probability": 0.9932 + }, + { + "start": 29018.4, + "end": 29019.56, + "probability": 0.9574 + }, + { + "start": 29020.08, + "end": 29020.12, + "probability": 0.55 + }, + { + "start": 29020.32, + "end": 29021.84, + "probability": 0.4641 + }, + { + "start": 29022.04, + "end": 29027.08, + "probability": 0.6459 + }, + { + "start": 29027.48, + "end": 29028.96, + "probability": 0.924 + }, + { + "start": 29029.14, + "end": 29030.44, + "probability": 0.9518 + }, + { + "start": 29030.64, + "end": 29031.24, + "probability": 0.8466 + }, + { + "start": 29031.32, + "end": 29032.1, + "probability": 0.9132 + }, + { + "start": 29033.9, + "end": 29034.8, + "probability": 0.5892 + }, + { + "start": 29034.94, + "end": 29036.48, + "probability": 0.98 + }, + { + "start": 29036.7, + "end": 29039.52, + "probability": 0.8589 + }, + { + "start": 29039.94, + "end": 29041.15, + "probability": 0.9912 + }, + { + "start": 29041.48, + "end": 29043.16, + "probability": 0.9229 + }, + { + "start": 29044.34, + "end": 29047.56, + "probability": 0.9984 + }, + { + "start": 29047.56, + "end": 29052.42, + "probability": 0.9581 + }, + { + "start": 29053.38, + "end": 29057.52, + "probability": 0.8229 + }, + { + "start": 29057.98, + "end": 29060.4, + "probability": 0.8214 + }, + { + "start": 29061.24, + "end": 29063.16, + "probability": 0.6767 + }, + { + "start": 29063.7, + "end": 29064.64, + "probability": 0.7905 + }, + { + "start": 29064.8, + "end": 29065.7, + "probability": 0.9131 + }, + { + "start": 29066.84, + "end": 29067.6, + "probability": 0.7525 + }, + { + "start": 29067.64, + "end": 29071.58, + "probability": 0.7759 + }, + { + "start": 29071.9, + "end": 29073.18, + "probability": 0.9883 + }, + { + "start": 29073.64, + "end": 29077.5, + "probability": 0.6255 + }, + { + "start": 29077.82, + "end": 29080.52, + "probability": 0.8989 + }, + { + "start": 29080.86, + "end": 29083.02, + "probability": 0.9797 + }, + { + "start": 29083.18, + "end": 29086.16, + "probability": 0.9207 + }, + { + "start": 29086.28, + "end": 29089.52, + "probability": 0.9163 + }, + { + "start": 29089.76, + "end": 29090.86, + "probability": 0.6989 + }, + { + "start": 29091.12, + "end": 29091.94, + "probability": 0.6615 + }, + { + "start": 29092.38, + "end": 29093.9, + "probability": 0.9971 + }, + { + "start": 29094.18, + "end": 29099.64, + "probability": 0.8577 + }, + { + "start": 29099.92, + "end": 29100.72, + "probability": 0.3383 + }, + { + "start": 29100.8, + "end": 29102.74, + "probability": 0.8896 + }, + { + "start": 29103.06, + "end": 29104.18, + "probability": 0.843 + }, + { + "start": 29104.24, + "end": 29106.48, + "probability": 0.686 + }, + { + "start": 29106.58, + "end": 29107.91, + "probability": 0.9529 + }, + { + "start": 29108.16, + "end": 29110.98, + "probability": 0.9906 + }, + { + "start": 29110.98, + "end": 29111.65, + "probability": 0.9655 + }, + { + "start": 29112.22, + "end": 29112.8, + "probability": 0.2074 + }, + { + "start": 29112.9, + "end": 29113.7, + "probability": 0.8135 + }, + { + "start": 29113.9, + "end": 29115.04, + "probability": 0.9937 + }, + { + "start": 29115.06, + "end": 29116.02, + "probability": 0.7923 + }, + { + "start": 29116.12, + "end": 29117.1, + "probability": 0.8089 + }, + { + "start": 29117.78, + "end": 29119.28, + "probability": 0.7269 + }, + { + "start": 29119.38, + "end": 29119.98, + "probability": 0.7582 + }, + { + "start": 29120.26, + "end": 29121.76, + "probability": 0.8894 + }, + { + "start": 29121.9, + "end": 29125.24, + "probability": 0.7889 + }, + { + "start": 29125.26, + "end": 29126.96, + "probability": 0.8643 + }, + { + "start": 29127.02, + "end": 29127.76, + "probability": 0.7606 + }, + { + "start": 29128.74, + "end": 29129.68, + "probability": 0.7386 + }, + { + "start": 29129.74, + "end": 29131.42, + "probability": 0.9248 + }, + { + "start": 29131.52, + "end": 29131.78, + "probability": 0.7088 + }, + { + "start": 29131.88, + "end": 29134.62, + "probability": 0.8425 + }, + { + "start": 29134.76, + "end": 29135.35, + "probability": 0.6558 + }, + { + "start": 29135.96, + "end": 29136.56, + "probability": 0.5289 + }, + { + "start": 29136.72, + "end": 29137.46, + "probability": 0.8491 + }, + { + "start": 29137.54, + "end": 29138.06, + "probability": 0.4773 + }, + { + "start": 29138.36, + "end": 29139.4, + "probability": 0.8035 + }, + { + "start": 29139.48, + "end": 29139.58, + "probability": 0.3922 + }, + { + "start": 29139.58, + "end": 29140.2, + "probability": 0.5553 + }, + { + "start": 29140.3, + "end": 29141.38, + "probability": 0.9586 + }, + { + "start": 29141.44, + "end": 29142.13, + "probability": 0.3456 + }, + { + "start": 29142.4, + "end": 29147.32, + "probability": 0.6754 + }, + { + "start": 29148.14, + "end": 29148.86, + "probability": 0.6698 + }, + { + "start": 29149.04, + "end": 29149.16, + "probability": 0.7588 + }, + { + "start": 29149.66, + "end": 29151.1, + "probability": 0.9752 + }, + { + "start": 29151.42, + "end": 29152.04, + "probability": 0.6367 + }, + { + "start": 29152.06, + "end": 29154.74, + "probability": 0.8379 + }, + { + "start": 29154.82, + "end": 29155.8, + "probability": 0.7175 + }, + { + "start": 29156.12, + "end": 29158.18, + "probability": 0.9331 + }, + { + "start": 29158.34, + "end": 29161.26, + "probability": 0.6561 + }, + { + "start": 29161.68, + "end": 29162.48, + "probability": 0.9956 + }, + { + "start": 29162.52, + "end": 29163.08, + "probability": 0.8447 + }, + { + "start": 29163.58, + "end": 29165.32, + "probability": 0.6378 + }, + { + "start": 29165.32, + "end": 29165.8, + "probability": 0.7332 + }, + { + "start": 29166.26, + "end": 29168.66, + "probability": 0.8811 + }, + { + "start": 29169.02, + "end": 29170.7, + "probability": 0.3645 + }, + { + "start": 29171.08, + "end": 29174.88, + "probability": 0.9264 + }, + { + "start": 29175.1, + "end": 29177.94, + "probability": 0.9788 + }, + { + "start": 29178.04, + "end": 29179.0, + "probability": 0.6609 + }, + { + "start": 29180.34, + "end": 29184.48, + "probability": 0.5428 + }, + { + "start": 29184.74, + "end": 29184.94, + "probability": 0.663 + }, + { + "start": 29186.28, + "end": 29186.52, + "probability": 0.7142 + }, + { + "start": 29204.46, + "end": 29204.46, + "probability": 0.3324 + }, + { + "start": 29204.46, + "end": 29207.7, + "probability": 0.5946 + }, + { + "start": 29208.22, + "end": 29214.94, + "probability": 0.8271 + }, + { + "start": 29215.18, + "end": 29217.3, + "probability": 0.5075 + }, + { + "start": 29217.4, + "end": 29219.8, + "probability": 0.9749 + }, + { + "start": 29220.3, + "end": 29223.14, + "probability": 0.9915 + }, + { + "start": 29224.5, + "end": 29225.3, + "probability": 0.645 + }, + { + "start": 29225.56, + "end": 29227.5, + "probability": 0.9078 + }, + { + "start": 29230.48, + "end": 29232.92, + "probability": 0.7506 + }, + { + "start": 29235.44, + "end": 29242.9, + "probability": 0.7743 + }, + { + "start": 29244.64, + "end": 29246.98, + "probability": 0.874 + }, + { + "start": 29247.32, + "end": 29250.56, + "probability": 0.9531 + }, + { + "start": 29253.84, + "end": 29256.08, + "probability": 0.7762 + }, + { + "start": 29263.79, + "end": 29264.56, + "probability": 0.1765 + }, + { + "start": 29265.08, + "end": 29267.18, + "probability": 0.7088 + }, + { + "start": 29267.92, + "end": 29268.4, + "probability": 0.644 + }, + { + "start": 29269.16, + "end": 29272.14, + "probability": 0.5614 + }, + { + "start": 29272.22, + "end": 29278.5, + "probability": 0.9069 + }, + { + "start": 29280.08, + "end": 29282.02, + "probability": 0.1958 + }, + { + "start": 29283.12, + "end": 29286.0, + "probability": 0.8958 + }, + { + "start": 29286.72, + "end": 29288.4, + "probability": 0.9439 + }, + { + "start": 29291.3, + "end": 29291.94, + "probability": 0.8571 + }, + { + "start": 29292.72, + "end": 29296.7, + "probability": 0.9879 + }, + { + "start": 29296.84, + "end": 29297.78, + "probability": 0.8787 + }, + { + "start": 29297.9, + "end": 29300.46, + "probability": 0.9756 + }, + { + "start": 29301.32, + "end": 29304.18, + "probability": 0.9937 + }, + { + "start": 29304.3, + "end": 29305.44, + "probability": 0.9257 + }, + { + "start": 29306.28, + "end": 29309.74, + "probability": 0.9865 + }, + { + "start": 29309.74, + "end": 29313.52, + "probability": 0.9952 + }, + { + "start": 29314.28, + "end": 29319.12, + "probability": 0.9902 + }, + { + "start": 29319.46, + "end": 29319.96, + "probability": 0.7572 + }, + { + "start": 29321.64, + "end": 29322.26, + "probability": 0.6629 + }, + { + "start": 29322.28, + "end": 29324.16, + "probability": 0.9331 + }, + { + "start": 29324.92, + "end": 29329.54, + "probability": 0.9943 + }, + { + "start": 29329.7, + "end": 29331.09, + "probability": 0.9963 + }, + { + "start": 29331.68, + "end": 29335.04, + "probability": 0.8255 + }, + { + "start": 29335.58, + "end": 29340.56, + "probability": 0.9268 + }, + { + "start": 29340.64, + "end": 29342.32, + "probability": 0.9839 + }, + { + "start": 29342.94, + "end": 29345.14, + "probability": 0.8959 + }, + { + "start": 29345.8, + "end": 29348.66, + "probability": 0.9884 + }, + { + "start": 29348.76, + "end": 29350.66, + "probability": 0.9728 + }, + { + "start": 29350.74, + "end": 29351.64, + "probability": 0.9478 + }, + { + "start": 29352.98, + "end": 29354.94, + "probability": 0.9658 + }, + { + "start": 29355.12, + "end": 29358.42, + "probability": 0.8703 + }, + { + "start": 29359.22, + "end": 29361.44, + "probability": 0.9951 + }, + { + "start": 29361.52, + "end": 29363.5, + "probability": 0.9436 + }, + { + "start": 29364.28, + "end": 29367.8, + "probability": 0.9838 + }, + { + "start": 29368.88, + "end": 29375.82, + "probability": 0.9957 + }, + { + "start": 29376.21, + "end": 29378.26, + "probability": 0.9205 + }, + { + "start": 29379.04, + "end": 29379.14, + "probability": 0.3052 + }, + { + "start": 29379.88, + "end": 29381.88, + "probability": 0.8001 + }, + { + "start": 29382.36, + "end": 29385.22, + "probability": 0.942 + }, + { + "start": 29385.86, + "end": 29390.08, + "probability": 0.652 + }, + { + "start": 29391.3, + "end": 29398.46, + "probability": 0.759 + }, + { + "start": 29400.2, + "end": 29402.31, + "probability": 0.4102 + }, + { + "start": 29402.62, + "end": 29405.16, + "probability": 0.9845 + }, + { + "start": 29405.16, + "end": 29408.24, + "probability": 0.9901 + }, + { + "start": 29413.7, + "end": 29415.22, + "probability": 0.649 + }, + { + "start": 29415.46, + "end": 29416.48, + "probability": 0.6999 + }, + { + "start": 29417.86, + "end": 29418.04, + "probability": 0.6543 + }, + { + "start": 29420.58, + "end": 29423.28, + "probability": 0.7962 + }, + { + "start": 29430.6, + "end": 29432.46, + "probability": 0.2876 + }, + { + "start": 29432.92, + "end": 29436.02, + "probability": 0.8743 + }, + { + "start": 29436.02, + "end": 29439.36, + "probability": 0.8567 + }, + { + "start": 29441.08, + "end": 29441.67, + "probability": 0.4362 + }, + { + "start": 29445.01, + "end": 29447.56, + "probability": 0.9614 + }, + { + "start": 29448.76, + "end": 29450.44, + "probability": 0.9875 + }, + { + "start": 29450.82, + "end": 29451.18, + "probability": 0.3699 + }, + { + "start": 29453.1, + "end": 29459.52, + "probability": 0.6112 + }, + { + "start": 29459.96, + "end": 29461.1, + "probability": 0.6209 + }, + { + "start": 29461.24, + "end": 29462.64, + "probability": 0.806 + }, + { + "start": 29463.26, + "end": 29465.34, + "probability": 0.9458 + }, + { + "start": 29465.72, + "end": 29469.1, + "probability": 0.5253 + }, + { + "start": 29469.79, + "end": 29471.12, + "probability": 0.3414 + }, + { + "start": 29472.78, + "end": 29476.28, + "probability": 0.2647 + }, + { + "start": 29476.76, + "end": 29478.83, + "probability": 0.9572 + }, + { + "start": 29479.7, + "end": 29482.1, + "probability": 0.5445 + }, + { + "start": 29482.28, + "end": 29484.84, + "probability": 0.7563 + }, + { + "start": 29485.18, + "end": 29490.08, + "probability": 0.8162 + }, + { + "start": 29493.44, + "end": 29498.98, + "probability": 0.7695 + }, + { + "start": 29499.02, + "end": 29500.31, + "probability": 0.5897 + }, + { + "start": 29501.16, + "end": 29504.22, + "probability": 0.7854 + }, + { + "start": 29504.3, + "end": 29505.98, + "probability": 0.6222 + }, + { + "start": 29506.74, + "end": 29511.5, + "probability": 0.9609 + }, + { + "start": 29518.92, + "end": 29519.56, + "probability": 0.4733 + }, + { + "start": 29519.98, + "end": 29521.0, + "probability": 0.7461 + }, + { + "start": 29521.16, + "end": 29522.06, + "probability": 0.9554 + }, + { + "start": 29522.32, + "end": 29524.09, + "probability": 0.9548 + }, + { + "start": 29524.74, + "end": 29529.56, + "probability": 0.9943 + }, + { + "start": 29529.56, + "end": 29534.74, + "probability": 0.995 + }, + { + "start": 29534.74, + "end": 29538.94, + "probability": 0.9985 + }, + { + "start": 29539.54, + "end": 29542.7, + "probability": 0.7911 + }, + { + "start": 29542.88, + "end": 29549.0, + "probability": 0.9902 + }, + { + "start": 29550.02, + "end": 29552.84, + "probability": 0.7542 + }, + { + "start": 29554.66, + "end": 29556.4, + "probability": 0.6451 + }, + { + "start": 29556.6, + "end": 29559.74, + "probability": 0.8673 + }, + { + "start": 29559.96, + "end": 29562.92, + "probability": 0.9919 + }, + { + "start": 29563.62, + "end": 29567.5, + "probability": 0.7157 + }, + { + "start": 29567.5, + "end": 29568.06, + "probability": 0.8795 + }, + { + "start": 29568.38, + "end": 29568.88, + "probability": 0.5004 + }, + { + "start": 29569.7, + "end": 29572.68, + "probability": 0.8883 + }, + { + "start": 29572.86, + "end": 29578.64, + "probability": 0.9878 + }, + { + "start": 29578.64, + "end": 29583.38, + "probability": 0.7673 + }, + { + "start": 29583.58, + "end": 29586.54, + "probability": 0.959 + }, + { + "start": 29587.08, + "end": 29588.12, + "probability": 0.5033 + }, + { + "start": 29588.66, + "end": 29591.88, + "probability": 0.9877 + }, + { + "start": 29592.02, + "end": 29598.44, + "probability": 0.9771 + }, + { + "start": 29598.44, + "end": 29607.94, + "probability": 0.7001 + }, + { + "start": 29608.42, + "end": 29608.84, + "probability": 0.7233 + }, + { + "start": 29609.12, + "end": 29610.48, + "probability": 0.8868 + }, + { + "start": 29611.02, + "end": 29613.9, + "probability": 0.5313 + }, + { + "start": 29614.46, + "end": 29620.9, + "probability": 0.9385 + }, + { + "start": 29621.42, + "end": 29624.4, + "probability": 0.8241 + }, + { + "start": 29624.4, + "end": 29626.98, + "probability": 0.9873 + }, + { + "start": 29627.88, + "end": 29630.46, + "probability": 0.7485 + }, + { + "start": 29631.38, + "end": 29636.7, + "probability": 0.9793 + }, + { + "start": 29637.2, + "end": 29641.82, + "probability": 0.9665 + }, + { + "start": 29641.82, + "end": 29647.92, + "probability": 0.7816 + }, + { + "start": 29648.44, + "end": 29653.2, + "probability": 0.982 + }, + { + "start": 29653.36, + "end": 29654.54, + "probability": 0.7915 + }, + { + "start": 29655.08, + "end": 29656.76, + "probability": 0.8889 + }, + { + "start": 29657.16, + "end": 29659.5, + "probability": 0.9233 + }, + { + "start": 29659.82, + "end": 29661.86, + "probability": 0.9377 + }, + { + "start": 29662.7, + "end": 29666.44, + "probability": 0.9421 + }, + { + "start": 29667.16, + "end": 29668.46, + "probability": 0.9539 + }, + { + "start": 29669.04, + "end": 29670.3, + "probability": 0.8193 + }, + { + "start": 29670.42, + "end": 29674.9, + "probability": 0.9987 + }, + { + "start": 29675.34, + "end": 29680.26, + "probability": 0.9878 + }, + { + "start": 29680.26, + "end": 29684.3, + "probability": 0.994 + }, + { + "start": 29684.96, + "end": 29688.22, + "probability": 0.9058 + }, + { + "start": 29688.64, + "end": 29693.52, + "probability": 0.9013 + }, + { + "start": 29693.52, + "end": 29697.1, + "probability": 0.9893 + }, + { + "start": 29697.88, + "end": 29700.88, + "probability": 0.9233 + }, + { + "start": 29701.48, + "end": 29705.74, + "probability": 0.9822 + }, + { + "start": 29706.24, + "end": 29706.72, + "probability": 0.4032 + }, + { + "start": 29707.23, + "end": 29712.52, + "probability": 0.9718 + }, + { + "start": 29712.52, + "end": 29719.7, + "probability": 0.9847 + }, + { + "start": 29720.26, + "end": 29723.46, + "probability": 0.9739 + }, + { + "start": 29723.48, + "end": 29725.66, + "probability": 0.8795 + }, + { + "start": 29725.8, + "end": 29727.16, + "probability": 0.9297 + }, + { + "start": 29727.44, + "end": 29729.14, + "probability": 0.9966 + }, + { + "start": 29729.6, + "end": 29732.66, + "probability": 0.9821 + }, + { + "start": 29737.6, + "end": 29738.36, + "probability": 0.7224 + }, + { + "start": 29738.42, + "end": 29741.12, + "probability": 0.8367 + }, + { + "start": 29741.36, + "end": 29742.56, + "probability": 0.5034 + }, + { + "start": 29742.64, + "end": 29742.92, + "probability": 0.5442 + }, + { + "start": 29742.92, + "end": 29747.86, + "probability": 0.9628 + }, + { + "start": 29748.02, + "end": 29751.36, + "probability": 0.9888 + }, + { + "start": 29751.56, + "end": 29754.06, + "probability": 0.9793 + }, + { + "start": 29754.16, + "end": 29755.38, + "probability": 0.7498 + }, + { + "start": 29755.48, + "end": 29756.42, + "probability": 0.8385 + }, + { + "start": 29756.86, + "end": 29758.49, + "probability": 0.9656 + }, + { + "start": 29759.02, + "end": 29761.9, + "probability": 0.9398 + }, + { + "start": 29762.4, + "end": 29764.02, + "probability": 0.8634 + }, + { + "start": 29764.18, + "end": 29766.86, + "probability": 0.7051 + }, + { + "start": 29767.26, + "end": 29768.81, + "probability": 0.9973 + }, + { + "start": 29769.1, + "end": 29770.74, + "probability": 0.8176 + }, + { + "start": 29770.82, + "end": 29773.98, + "probability": 0.9355 + }, + { + "start": 29774.32, + "end": 29776.2, + "probability": 0.9684 + }, + { + "start": 29776.8, + "end": 29781.0, + "probability": 0.856 + }, + { + "start": 29781.32, + "end": 29784.72, + "probability": 0.9051 + }, + { + "start": 29785.0, + "end": 29786.76, + "probability": 0.8547 + }, + { + "start": 29786.94, + "end": 29792.44, + "probability": 0.9814 + }, + { + "start": 29792.52, + "end": 29793.06, + "probability": 0.7973 + }, + { + "start": 29793.6, + "end": 29794.76, + "probability": 0.9532 + }, + { + "start": 29794.84, + "end": 29797.68, + "probability": 0.8952 + }, + { + "start": 29797.94, + "end": 29799.92, + "probability": 0.7921 + }, + { + "start": 29800.08, + "end": 29805.7, + "probability": 0.9747 + }, + { + "start": 29805.96, + "end": 29807.44, + "probability": 0.7122 + }, + { + "start": 29807.46, + "end": 29808.4, + "probability": 0.4524 + }, + { + "start": 29808.66, + "end": 29809.42, + "probability": 0.8547 + }, + { + "start": 29809.42, + "end": 29811.04, + "probability": 0.3307 + }, + { + "start": 29811.44, + "end": 29812.48, + "probability": 0.661 + }, + { + "start": 29812.5, + "end": 29815.96, + "probability": 0.7385 + }, + { + "start": 29816.46, + "end": 29819.56, + "probability": 0.9678 + }, + { + "start": 29820.34, + "end": 29825.84, + "probability": 0.6994 + }, + { + "start": 29826.38, + "end": 29831.16, + "probability": 0.9888 + }, + { + "start": 29831.56, + "end": 29834.28, + "probability": 0.8994 + }, + { + "start": 29834.4, + "end": 29836.7, + "probability": 0.9863 + }, + { + "start": 29836.7, + "end": 29839.82, + "probability": 0.9948 + }, + { + "start": 29839.94, + "end": 29840.85, + "probability": 0.8165 + }, + { + "start": 29841.94, + "end": 29843.86, + "probability": 0.9819 + }, + { + "start": 29845.9, + "end": 29850.9, + "probability": 0.9907 + }, + { + "start": 29850.9, + "end": 29854.32, + "probability": 0.9992 + }, + { + "start": 29854.86, + "end": 29856.52, + "probability": 0.9988 + }, + { + "start": 29856.6, + "end": 29857.82, + "probability": 0.842 + }, + { + "start": 29857.98, + "end": 29859.72, + "probability": 0.9806 + }, + { + "start": 29859.84, + "end": 29863.66, + "probability": 0.094 + }, + { + "start": 29863.66, + "end": 29864.52, + "probability": 0.538 + }, + { + "start": 29864.72, + "end": 29869.7, + "probability": 0.4987 + }, + { + "start": 29870.52, + "end": 29871.7, + "probability": 0.9113 + }, + { + "start": 29871.8, + "end": 29873.26, + "probability": 0.9924 + }, + { + "start": 29873.38, + "end": 29875.16, + "probability": 0.7423 + }, + { + "start": 29875.52, + "end": 29878.86, + "probability": 0.8476 + }, + { + "start": 29878.86, + "end": 29882.98, + "probability": 0.9519 + }, + { + "start": 29883.26, + "end": 29884.06, + "probability": 0.9797 + }, + { + "start": 29884.8, + "end": 29885.54, + "probability": 0.8984 + }, + { + "start": 29886.18, + "end": 29890.98, + "probability": 0.9429 + }, + { + "start": 29891.14, + "end": 29895.18, + "probability": 0.9458 + }, + { + "start": 29895.64, + "end": 29900.36, + "probability": 0.9691 + }, + { + "start": 29900.5, + "end": 29904.32, + "probability": 0.9966 + }, + { + "start": 29904.76, + "end": 29907.52, + "probability": 0.9401 + }, + { + "start": 29907.74, + "end": 29908.36, + "probability": 0.3851 + }, + { + "start": 29909.56, + "end": 29909.9, + "probability": 0.0263 + }, + { + "start": 29910.04, + "end": 29911.36, + "probability": 0.4732 + }, + { + "start": 29911.5, + "end": 29914.58, + "probability": 0.9492 + }, + { + "start": 29915.72, + "end": 29919.24, + "probability": 0.985 + }, + { + "start": 29919.42, + "end": 29921.06, + "probability": 0.8999 + }, + { + "start": 29921.32, + "end": 29922.36, + "probability": 0.6978 + }, + { + "start": 29923.0, + "end": 29925.04, + "probability": 0.993 + }, + { + "start": 29925.04, + "end": 29930.04, + "probability": 0.9955 + }, + { + "start": 29930.36, + "end": 29932.1, + "probability": 0.8328 + }, + { + "start": 29932.5, + "end": 29932.54, + "probability": 0.0617 + }, + { + "start": 29932.54, + "end": 29934.82, + "probability": 0.6481 + }, + { + "start": 29937.1, + "end": 29937.92, + "probability": 0.6716 + }, + { + "start": 29938.78, + "end": 29940.18, + "probability": 0.6627 + }, + { + "start": 29940.74, + "end": 29941.2, + "probability": 0.1955 + }, + { + "start": 29941.46, + "end": 29945.8, + "probability": 0.8343 + }, + { + "start": 29945.9, + "end": 29946.62, + "probability": 0.5597 + }, + { + "start": 29946.94, + "end": 29947.36, + "probability": 0.8675 + }, + { + "start": 29947.36, + "end": 29949.61, + "probability": 0.9774 + }, + { + "start": 29950.08, + "end": 29951.34, + "probability": 0.8862 + }, + { + "start": 29951.98, + "end": 29957.02, + "probability": 0.7885 + }, + { + "start": 29957.72, + "end": 29962.62, + "probability": 0.9858 + }, + { + "start": 29962.88, + "end": 29963.34, + "probability": 0.8478 + }, + { + "start": 29964.64, + "end": 29965.42, + "probability": 0.5219 + }, + { + "start": 29965.68, + "end": 29966.56, + "probability": 0.5161 + }, + { + "start": 29967.56, + "end": 29970.74, + "probability": 0.9535 + }, + { + "start": 29970.74, + "end": 29974.24, + "probability": 0.9048 + }, + { + "start": 29974.32, + "end": 29977.88, + "probability": 0.8616 + }, + { + "start": 29978.38, + "end": 29983.22, + "probability": 0.8538 + }, + { + "start": 29983.82, + "end": 29986.8, + "probability": 0.9622 + }, + { + "start": 29987.52, + "end": 29992.18, + "probability": 0.6668 + }, + { + "start": 29992.86, + "end": 29994.34, + "probability": 0.4269 + }, + { + "start": 29995.4, + "end": 29996.0, + "probability": 0.8208 + }, + { + "start": 29996.14, + "end": 29998.02, + "probability": 0.8416 + }, + { + "start": 29998.08, + "end": 30000.02, + "probability": 0.8262 + }, + { + "start": 30000.34, + "end": 30001.38, + "probability": 0.6708 + }, + { + "start": 30001.48, + "end": 30003.8, + "probability": 0.7628 + }, + { + "start": 30003.9, + "end": 30007.72, + "probability": 0.9727 + }, + { + "start": 30008.0, + "end": 30008.76, + "probability": 0.9769 + }, + { + "start": 30009.56, + "end": 30013.64, + "probability": 0.9187 + }, + { + "start": 30014.26, + "end": 30015.98, + "probability": 0.8555 + }, + { + "start": 30016.92, + "end": 30022.48, + "probability": 0.9536 + }, + { + "start": 30023.04, + "end": 30025.86, + "probability": 0.9281 + }, + { + "start": 30025.92, + "end": 30026.84, + "probability": 0.9684 + }, + { + "start": 30026.9, + "end": 30027.44, + "probability": 0.6982 + }, + { + "start": 30027.92, + "end": 30031.12, + "probability": 0.7546 + }, + { + "start": 30031.44, + "end": 30033.66, + "probability": 0.9751 + }, + { + "start": 30034.04, + "end": 30035.8, + "probability": 0.9297 + }, + { + "start": 30036.0, + "end": 30040.76, + "probability": 0.8882 + }, + { + "start": 30043.2, + "end": 30048.32, + "probability": 0.9873 + }, + { + "start": 30048.74, + "end": 30049.78, + "probability": 0.5408 + }, + { + "start": 30049.86, + "end": 30054.12, + "probability": 0.9876 + }, + { + "start": 30055.1, + "end": 30057.24, + "probability": 0.8488 + }, + { + "start": 30058.08, + "end": 30062.06, + "probability": 0.9951 + }, + { + "start": 30062.5, + "end": 30067.0, + "probability": 0.9939 + }, + { + "start": 30067.7, + "end": 30069.8, + "probability": 0.8657 + }, + { + "start": 30069.86, + "end": 30070.34, + "probability": 0.7914 + }, + { + "start": 30070.44, + "end": 30072.0, + "probability": 0.8752 + }, + { + "start": 30073.0, + "end": 30079.04, + "probability": 0.9912 + }, + { + "start": 30079.04, + "end": 30081.38, + "probability": 0.9984 + }, + { + "start": 30081.6, + "end": 30083.88, + "probability": 0.9079 + }, + { + "start": 30084.46, + "end": 30085.12, + "probability": 0.7234 + }, + { + "start": 30085.46, + "end": 30088.98, + "probability": 0.9965 + }, + { + "start": 30089.18, + "end": 30089.66, + "probability": 0.7599 + }, + { + "start": 30090.4, + "end": 30090.72, + "probability": 0.7453 + }, + { + "start": 30090.72, + "end": 30093.42, + "probability": 0.9978 + }, + { + "start": 30093.42, + "end": 30097.3, + "probability": 0.9973 + }, + { + "start": 30098.04, + "end": 30101.0, + "probability": 0.9237 + }, + { + "start": 30101.56, + "end": 30103.22, + "probability": 0.9874 + }, + { + "start": 30103.5, + "end": 30105.1, + "probability": 0.9236 + }, + { + "start": 30105.32, + "end": 30106.66, + "probability": 0.9141 + }, + { + "start": 30106.7, + "end": 30108.68, + "probability": 0.9771 + }, + { + "start": 30110.08, + "end": 30114.6, + "probability": 0.9922 + }, + { + "start": 30114.6, + "end": 30117.48, + "probability": 0.9994 + }, + { + "start": 30117.64, + "end": 30120.74, + "probability": 0.9868 + }, + { + "start": 30121.22, + "end": 30122.59, + "probability": 0.9912 + }, + { + "start": 30122.84, + "end": 30123.64, + "probability": 0.7158 + }, + { + "start": 30124.4, + "end": 30124.92, + "probability": 0.5477 + }, + { + "start": 30125.02, + "end": 30125.56, + "probability": 0.5518 + }, + { + "start": 30125.64, + "end": 30129.82, + "probability": 0.845 + }, + { + "start": 30130.48, + "end": 30131.12, + "probability": 0.5853 + }, + { + "start": 30131.32, + "end": 30132.56, + "probability": 0.7884 + }, + { + "start": 30132.72, + "end": 30134.56, + "probability": 0.9066 + }, + { + "start": 30135.32, + "end": 30140.66, + "probability": 0.9822 + }, + { + "start": 30141.24, + "end": 30143.9, + "probability": 0.9819 + }, + { + "start": 30144.74, + "end": 30150.42, + "probability": 0.998 + }, + { + "start": 30151.0, + "end": 30156.28, + "probability": 0.9969 + }, + { + "start": 30156.28, + "end": 30160.2, + "probability": 0.9958 + }, + { + "start": 30160.86, + "end": 30161.52, + "probability": 0.8065 + }, + { + "start": 30162.54, + "end": 30163.2, + "probability": 0.5153 + }, + { + "start": 30163.32, + "end": 30166.02, + "probability": 0.8201 + }, + { + "start": 30166.16, + "end": 30166.76, + "probability": 0.8353 + }, + { + "start": 30167.24, + "end": 30168.38, + "probability": 0.9927 + }, + { + "start": 30169.06, + "end": 30173.3, + "probability": 0.9984 + }, + { + "start": 30174.0, + "end": 30177.1, + "probability": 0.9962 + }, + { + "start": 30177.32, + "end": 30182.48, + "probability": 0.9251 + }, + { + "start": 30182.54, + "end": 30184.4, + "probability": 0.9634 + }, + { + "start": 30184.98, + "end": 30186.86, + "probability": 0.9951 + }, + { + "start": 30187.04, + "end": 30189.66, + "probability": 0.9889 + }, + { + "start": 30190.32, + "end": 30192.67, + "probability": 0.4209 + }, + { + "start": 30193.16, + "end": 30197.0, + "probability": 0.9938 + }, + { + "start": 30197.04, + "end": 30198.62, + "probability": 0.7258 + }, + { + "start": 30198.98, + "end": 30199.6, + "probability": 0.4273 + }, + { + "start": 30199.7, + "end": 30201.52, + "probability": 0.7883 + }, + { + "start": 30201.64, + "end": 30204.18, + "probability": 0.9602 + }, + { + "start": 30204.86, + "end": 30208.32, + "probability": 0.9661 + }, + { + "start": 30209.0, + "end": 30212.24, + "probability": 0.9683 + }, + { + "start": 30212.72, + "end": 30214.36, + "probability": 0.8879 + }, + { + "start": 30214.4, + "end": 30218.0, + "probability": 0.7266 + }, + { + "start": 30218.4, + "end": 30219.64, + "probability": 0.5686 + }, + { + "start": 30219.74, + "end": 30220.88, + "probability": 0.7859 + }, + { + "start": 30221.21, + "end": 30223.14, + "probability": 0.8376 + }, + { + "start": 30223.16, + "end": 30225.04, + "probability": 0.7292 + }, + { + "start": 30225.42, + "end": 30229.54, + "probability": 0.7056 + }, + { + "start": 30229.62, + "end": 30229.96, + "probability": 0.139 + }, + { + "start": 30229.98, + "end": 30229.98, + "probability": 0.424 + }, + { + "start": 30229.98, + "end": 30229.98, + "probability": 0.5852 + }, + { + "start": 30229.98, + "end": 30230.36, + "probability": 0.3139 + }, + { + "start": 30230.76, + "end": 30231.92, + "probability": 0.7549 + }, + { + "start": 30232.64, + "end": 30235.88, + "probability": 0.9564 + }, + { + "start": 30236.02, + "end": 30239.34, + "probability": 0.9946 + }, + { + "start": 30239.7, + "end": 30240.14, + "probability": 0.5269 + }, + { + "start": 30240.54, + "end": 30242.3, + "probability": 0.7764 + }, + { + "start": 30242.46, + "end": 30242.76, + "probability": 0.814 + }, + { + "start": 30243.33, + "end": 30244.44, + "probability": 0.9141 + }, + { + "start": 30244.48, + "end": 30245.0, + "probability": 0.3304 + }, + { + "start": 30245.64, + "end": 30246.18, + "probability": 0.6287 + }, + { + "start": 30246.32, + "end": 30248.06, + "probability": 0.6879 + }, + { + "start": 30249.84, + "end": 30252.3, + "probability": 0.8196 + }, + { + "start": 30252.58, + "end": 30255.76, + "probability": 0.4227 + }, + { + "start": 30255.8, + "end": 30257.06, + "probability": 0.9534 + }, + { + "start": 30257.5, + "end": 30259.32, + "probability": 0.9872 + }, + { + "start": 30266.16, + "end": 30267.7, + "probability": 0.5101 + }, + { + "start": 30268.88, + "end": 30269.52, + "probability": 0.6698 + }, + { + "start": 30269.62, + "end": 30272.0, + "probability": 0.9389 + }, + { + "start": 30272.7, + "end": 30276.08, + "probability": 0.9592 + }, + { + "start": 30277.28, + "end": 30277.56, + "probability": 0.8982 + }, + { + "start": 30277.68, + "end": 30277.96, + "probability": 0.9097 + }, + { + "start": 30278.02, + "end": 30279.58, + "probability": 0.9561 + }, + { + "start": 30279.78, + "end": 30281.28, + "probability": 0.9283 + }, + { + "start": 30283.03, + "end": 30284.2, + "probability": 0.6899 + }, + { + "start": 30285.54, + "end": 30287.74, + "probability": 0.9083 + }, + { + "start": 30287.82, + "end": 30288.82, + "probability": 0.8711 + }, + { + "start": 30288.92, + "end": 30289.28, + "probability": 0.6396 + }, + { + "start": 30289.36, + "end": 30292.18, + "probability": 0.9839 + }, + { + "start": 30292.3, + "end": 30298.64, + "probability": 0.9832 + }, + { + "start": 30298.82, + "end": 30299.04, + "probability": 0.445 + }, + { + "start": 30299.04, + "end": 30302.0, + "probability": 0.9311 + }, + { + "start": 30302.58, + "end": 30303.58, + "probability": 0.7119 + }, + { + "start": 30303.72, + "end": 30305.04, + "probability": 0.8057 + }, + { + "start": 30305.04, + "end": 30308.04, + "probability": 0.4424 + }, + { + "start": 30308.2, + "end": 30310.92, + "probability": 0.9168 + }, + { + "start": 30311.0, + "end": 30312.56, + "probability": 0.8359 + }, + { + "start": 30312.58, + "end": 30313.18, + "probability": 0.6967 + }, + { + "start": 30313.22, + "end": 30314.06, + "probability": 0.7334 + }, + { + "start": 30314.34, + "end": 30316.86, + "probability": 0.622 + }, + { + "start": 30316.92, + "end": 30319.38, + "probability": 0.8422 + }, + { + "start": 30319.38, + "end": 30319.72, + "probability": 0.7158 + }, + { + "start": 30319.96, + "end": 30320.7, + "probability": 0.5475 + }, + { + "start": 30321.06, + "end": 30322.06, + "probability": 0.6103 + }, + { + "start": 30322.8, + "end": 30323.5, + "probability": 0.9833 + }, + { + "start": 30324.18, + "end": 30327.9, + "probability": 0.9863 + }, + { + "start": 30327.9, + "end": 30328.99, + "probability": 0.8419 + }, + { + "start": 30329.16, + "end": 30331.68, + "probability": 0.987 + }, + { + "start": 30331.68, + "end": 30333.04, + "probability": 0.723 + }, + { + "start": 30333.34, + "end": 30336.7, + "probability": 0.66 + }, + { + "start": 30336.8, + "end": 30337.68, + "probability": 0.4985 + }, + { + "start": 30338.06, + "end": 30338.9, + "probability": 0.4807 + }, + { + "start": 30338.96, + "end": 30340.01, + "probability": 0.7875 + }, + { + "start": 30340.36, + "end": 30340.96, + "probability": 0.5526 + }, + { + "start": 30341.08, + "end": 30341.5, + "probability": 0.6297 + }, + { + "start": 30341.6, + "end": 30342.18, + "probability": 0.6594 + }, + { + "start": 30342.32, + "end": 30344.34, + "probability": 0.8784 + }, + { + "start": 30344.42, + "end": 30346.14, + "probability": 0.8719 + }, + { + "start": 30346.68, + "end": 30347.58, + "probability": 0.4785 + }, + { + "start": 30348.76, + "end": 30350.98, + "probability": 0.5966 + }, + { + "start": 30351.2, + "end": 30351.92, + "probability": 0.424 + }, + { + "start": 30351.96, + "end": 30353.86, + "probability": 0.9893 + }, + { + "start": 30354.2, + "end": 30354.94, + "probability": 0.5946 + }, + { + "start": 30355.84, + "end": 30358.12, + "probability": 0.5103 + }, + { + "start": 30358.88, + "end": 30359.18, + "probability": 0.8608 + }, + { + "start": 30359.26, + "end": 30361.74, + "probability": 0.7308 + }, + { + "start": 30361.84, + "end": 30362.18, + "probability": 0.3644 + }, + { + "start": 30362.18, + "end": 30363.12, + "probability": 0.7219 + }, + { + "start": 30363.24, + "end": 30364.82, + "probability": 0.6316 + }, + { + "start": 30365.02, + "end": 30365.02, + "probability": 0.3336 + }, + { + "start": 30365.02, + "end": 30365.02, + "probability": 0.1861 + }, + { + "start": 30365.02, + "end": 30365.34, + "probability": 0.6786 + }, + { + "start": 30365.46, + "end": 30368.18, + "probability": 0.8005 + }, + { + "start": 30368.18, + "end": 30368.56, + "probability": 0.4952 + }, + { + "start": 30368.56, + "end": 30369.52, + "probability": 0.649 + }, + { + "start": 30369.58, + "end": 30371.0, + "probability": 0.8924 + }, + { + "start": 30371.34, + "end": 30371.8, + "probability": 0.5889 + }, + { + "start": 30374.1, + "end": 30374.3, + "probability": 0.276 + }, + { + "start": 30374.3, + "end": 30374.97, + "probability": 0.2146 + }, + { + "start": 30375.02, + "end": 30375.74, + "probability": 0.7598 + }, + { + "start": 30376.62, + "end": 30378.38, + "probability": 0.9916 + }, + { + "start": 30378.88, + "end": 30381.1, + "probability": 0.7581 + }, + { + "start": 30381.3, + "end": 30381.3, + "probability": 0.2626 + }, + { + "start": 30381.3, + "end": 30382.16, + "probability": 0.7451 + }, + { + "start": 30382.46, + "end": 30384.92, + "probability": 0.9026 + }, + { + "start": 30384.92, + "end": 30385.91, + "probability": 0.825 + }, + { + "start": 30386.5, + "end": 30389.4, + "probability": 0.9444 + }, + { + "start": 30389.4, + "end": 30389.77, + "probability": 0.0817 + }, + { + "start": 30390.16, + "end": 30390.5, + "probability": 0.1519 + }, + { + "start": 30391.5, + "end": 30392.18, + "probability": 0.5191 + }, + { + "start": 30393.72, + "end": 30396.24, + "probability": 0.945 + }, + { + "start": 30396.86, + "end": 30401.88, + "probability": 0.9804 + }, + { + "start": 30401.88, + "end": 30406.98, + "probability": 0.9968 + }, + { + "start": 30408.02, + "end": 30409.66, + "probability": 0.5488 + }, + { + "start": 30409.9, + "end": 30410.0, + "probability": 0.2561 + }, + { + "start": 30410.0, + "end": 30410.32, + "probability": 0.6098 + }, + { + "start": 30410.38, + "end": 30411.28, + "probability": 0.6223 + }, + { + "start": 30412.42, + "end": 30414.04, + "probability": 0.8576 + }, + { + "start": 30414.9, + "end": 30419.56, + "probability": 0.9277 + }, + { + "start": 30419.96, + "end": 30422.96, + "probability": 0.9667 + }, + { + "start": 30423.36, + "end": 30425.22, + "probability": 0.0942 + }, + { + "start": 30425.22, + "end": 30425.62, + "probability": 0.4192 + }, + { + "start": 30425.76, + "end": 30426.32, + "probability": 0.4191 + }, + { + "start": 30426.58, + "end": 30426.68, + "probability": 0.4333 + }, + { + "start": 30426.8, + "end": 30427.3, + "probability": 0.58 + }, + { + "start": 30427.3, + "end": 30429.72, + "probability": 0.9515 + }, + { + "start": 30429.76, + "end": 30431.18, + "probability": 0.8941 + }, + { + "start": 30431.18, + "end": 30431.94, + "probability": 0.743 + }, + { + "start": 30432.04, + "end": 30434.52, + "probability": 0.9404 + }, + { + "start": 30434.64, + "end": 30435.6, + "probability": 0.0134 + }, + { + "start": 30435.64, + "end": 30437.42, + "probability": 0.9727 + }, + { + "start": 30437.52, + "end": 30439.56, + "probability": 0.617 + }, + { + "start": 30439.64, + "end": 30443.7, + "probability": 0.8952 + }, + { + "start": 30443.74, + "end": 30446.26, + "probability": 0.7893 + }, + { + "start": 30446.3, + "end": 30447.02, + "probability": 0.8233 + }, + { + "start": 30447.06, + "end": 30447.94, + "probability": 0.7431 + }, + { + "start": 30449.02, + "end": 30451.66, + "probability": 0.7015 + }, + { + "start": 30452.26, + "end": 30457.06, + "probability": 0.9958 + }, + { + "start": 30457.27, + "end": 30463.14, + "probability": 0.9989 + }, + { + "start": 30463.96, + "end": 30465.28, + "probability": 0.6688 + }, + { + "start": 30465.66, + "end": 30471.94, + "probability": 0.9441 + }, + { + "start": 30473.84, + "end": 30476.02, + "probability": 0.4414 + }, + { + "start": 30476.02, + "end": 30476.14, + "probability": 0.568 + }, + { + "start": 30476.14, + "end": 30476.14, + "probability": 0.6838 + }, + { + "start": 30476.14, + "end": 30479.48, + "probability": 0.8141 + }, + { + "start": 30479.82, + "end": 30482.6, + "probability": 0.7573 + }, + { + "start": 30482.62, + "end": 30486.08, + "probability": 0.9377 + }, + { + "start": 30486.08, + "end": 30488.76, + "probability": 0.5786 + }, + { + "start": 30490.08, + "end": 30490.22, + "probability": 0.5106 + }, + { + "start": 30492.0, + "end": 30493.14, + "probability": 0.1194 + }, + { + "start": 30493.62, + "end": 30494.58, + "probability": 0.0439 + }, + { + "start": 30496.36, + "end": 30498.3, + "probability": 0.0191 + }, + { + "start": 30499.88, + "end": 30502.14, + "probability": 0.0327 + }, + { + "start": 30502.32, + "end": 30503.73, + "probability": 0.2052 + }, + { + "start": 30505.02, + "end": 30505.52, + "probability": 0.4218 + }, + { + "start": 30505.52, + "end": 30505.94, + "probability": 0.5392 + }, + { + "start": 30506.02, + "end": 30509.87, + "probability": 0.3528 + }, + { + "start": 30513.11, + "end": 30514.72, + "probability": 0.789 + }, + { + "start": 30515.76, + "end": 30515.86, + "probability": 0.1553 + }, + { + "start": 30516.46, + "end": 30517.24, + "probability": 0.0213 + }, + { + "start": 30524.4, + "end": 30524.5, + "probability": 0.0257 + }, + { + "start": 30531.58, + "end": 30531.65, + "probability": 0.0765 + }, + { + "start": 30534.0, + "end": 30534.1, + "probability": 0.0164 + }, + { + "start": 30535.78, + "end": 30539.9, + "probability": 0.0951 + }, + { + "start": 30539.9, + "end": 30543.68, + "probability": 0.0201 + }, + { + "start": 30543.68, + "end": 30544.5, + "probability": 0.1464 + }, + { + "start": 30546.64, + "end": 30547.62, + "probability": 0.12 + }, + { + "start": 30550.32, + "end": 30554.26, + "probability": 0.0535 + }, + { + "start": 30554.26, + "end": 30554.5, + "probability": 0.0684 + }, + { + "start": 30555.24, + "end": 30557.76, + "probability": 0.1348 + }, + { + "start": 30558.33, + "end": 30560.26, + "probability": 0.0315 + }, + { + "start": 30560.26, + "end": 30562.06, + "probability": 0.044 + }, + { + "start": 30562.2, + "end": 30562.62, + "probability": 0.3109 + }, + { + "start": 30562.62, + "end": 30562.62, + "probability": 0.0227 + }, + { + "start": 30563.0, + "end": 30563.0, + "probability": 0.0 + }, + { + "start": 30563.0, + "end": 30563.0, + "probability": 0.0 + }, + { + "start": 30563.0, + "end": 30563.0, + "probability": 0.0 + }, + { + "start": 30563.0, + "end": 30563.0, + "probability": 0.0 + }, + { + "start": 30563.0, + "end": 30563.0, + "probability": 0.0 + }, + { + "start": 30563.0, + "end": 30563.0, + "probability": 0.0 + }, + { + "start": 30563.0, + "end": 30563.0, + "probability": 0.0 + }, + { + "start": 30563.18, + "end": 30564.98, + "probability": 0.3429 + }, + { + "start": 30566.36, + "end": 30568.62, + "probability": 0.8156 + }, + { + "start": 30571.7, + "end": 30574.06, + "probability": 0.8296 + }, + { + "start": 30574.36, + "end": 30575.12, + "probability": 0.4554 + }, + { + "start": 30575.64, + "end": 30580.52, + "probability": 0.8563 + }, + { + "start": 30581.22, + "end": 30582.08, + "probability": 0.7401 + }, + { + "start": 30582.72, + "end": 30583.48, + "probability": 0.8869 + }, + { + "start": 30583.72, + "end": 30585.2, + "probability": 0.9243 + }, + { + "start": 30585.38, + "end": 30589.48, + "probability": 0.9513 + }, + { + "start": 30589.56, + "end": 30590.92, + "probability": 0.8505 + }, + { + "start": 30591.56, + "end": 30592.86, + "probability": 0.8989 + }, + { + "start": 30593.02, + "end": 30595.0, + "probability": 0.9917 + }, + { + "start": 30595.56, + "end": 30598.18, + "probability": 0.8145 + }, + { + "start": 30598.4, + "end": 30603.84, + "probability": 0.9872 + }, + { + "start": 30604.7, + "end": 30605.92, + "probability": 0.8166 + }, + { + "start": 30606.34, + "end": 30610.98, + "probability": 0.9509 + }, + { + "start": 30611.42, + "end": 30614.34, + "probability": 0.9688 + }, + { + "start": 30614.8, + "end": 30618.32, + "probability": 0.9831 + }, + { + "start": 30618.98, + "end": 30623.11, + "probability": 0.9772 + }, + { + "start": 30624.09, + "end": 30628.62, + "probability": 0.9745 + }, + { + "start": 30629.26, + "end": 30633.48, + "probability": 0.9852 + }, + { + "start": 30633.92, + "end": 30636.08, + "probability": 0.9925 + }, + { + "start": 30636.08, + "end": 30638.98, + "probability": 0.9888 + }, + { + "start": 30639.88, + "end": 30644.82, + "probability": 0.898 + }, + { + "start": 30645.3, + "end": 30648.58, + "probability": 0.9627 + }, + { + "start": 30648.9, + "end": 30650.26, + "probability": 0.7366 + }, + { + "start": 30651.04, + "end": 30657.9, + "probability": 0.9802 + }, + { + "start": 30658.78, + "end": 30659.74, + "probability": 0.8932 + }, + { + "start": 30659.78, + "end": 30664.1, + "probability": 0.9952 + }, + { + "start": 30664.16, + "end": 30667.88, + "probability": 0.9937 + }, + { + "start": 30668.66, + "end": 30674.34, + "probability": 0.9901 + }, + { + "start": 30675.56, + "end": 30676.78, + "probability": 0.7226 + }, + { + "start": 30677.52, + "end": 30679.56, + "probability": 0.8857 + }, + { + "start": 30679.62, + "end": 30681.4, + "probability": 0.9985 + }, + { + "start": 30681.4, + "end": 30684.64, + "probability": 0.9957 + }, + { + "start": 30684.74, + "end": 30686.06, + "probability": 0.7806 + }, + { + "start": 30686.14, + "end": 30689.56, + "probability": 0.9914 + }, + { + "start": 30689.78, + "end": 30690.06, + "probability": 0.9619 + }, + { + "start": 30690.38, + "end": 30692.9, + "probability": 0.9863 + }, + { + "start": 30693.96, + "end": 30697.06, + "probability": 0.9893 + }, + { + "start": 30697.9, + "end": 30699.62, + "probability": 0.8404 + }, + { + "start": 30703.6, + "end": 30707.82, + "probability": 0.992 + }, + { + "start": 30707.88, + "end": 30710.36, + "probability": 0.9632 + }, + { + "start": 30711.1, + "end": 30715.0, + "probability": 0.9454 + }, + { + "start": 30715.1, + "end": 30720.98, + "probability": 0.9805 + }, + { + "start": 30722.0, + "end": 30722.44, + "probability": 0.8488 + }, + { + "start": 30722.48, + "end": 30726.48, + "probability": 0.9319 + }, + { + "start": 30726.48, + "end": 30730.58, + "probability": 0.9047 + }, + { + "start": 30731.3, + "end": 30733.78, + "probability": 0.9971 + }, + { + "start": 30734.2, + "end": 30736.94, + "probability": 0.939 + }, + { + "start": 30737.34, + "end": 30742.6, + "probability": 0.998 + }, + { + "start": 30743.1, + "end": 30745.22, + "probability": 0.9385 + }, + { + "start": 30745.38, + "end": 30747.76, + "probability": 0.8845 + }, + { + "start": 30748.12, + "end": 30750.86, + "probability": 0.989 + }, + { + "start": 30750.86, + "end": 30753.78, + "probability": 0.9986 + }, + { + "start": 30758.36, + "end": 30759.4, + "probability": 0.5439 + }, + { + "start": 30760.54, + "end": 30761.34, + "probability": 0.3647 + }, + { + "start": 30761.36, + "end": 30761.9, + "probability": 0.7297 + }, + { + "start": 30762.0, + "end": 30763.24, + "probability": 0.9613 + }, + { + "start": 30763.36, + "end": 30765.12, + "probability": 0.9609 + }, + { + "start": 30765.14, + "end": 30765.5, + "probability": 0.6334 + }, + { + "start": 30767.16, + "end": 30773.82, + "probability": 0.9854 + }, + { + "start": 30776.3, + "end": 30778.82, + "probability": 0.6246 + }, + { + "start": 30778.82, + "end": 30778.92, + "probability": 0.3702 + }, + { + "start": 30779.24, + "end": 30779.74, + "probability": 0.6152 + }, + { + "start": 30779.74, + "end": 30781.3, + "probability": 0.7051 + }, + { + "start": 30781.38, + "end": 30782.64, + "probability": 0.9914 + }, + { + "start": 30782.8, + "end": 30784.48, + "probability": 0.9584 + }, + { + "start": 30785.08, + "end": 30788.32, + "probability": 0.748 + }, + { + "start": 30788.44, + "end": 30791.28, + "probability": 0.9878 + }, + { + "start": 30791.28, + "end": 30791.56, + "probability": 0.0716 + }, + { + "start": 30792.64, + "end": 30793.98, + "probability": 0.5325 + }, + { + "start": 30794.86, + "end": 30796.82, + "probability": 0.9933 + }, + { + "start": 30796.88, + "end": 30801.36, + "probability": 0.9617 + }, + { + "start": 30803.66, + "end": 30806.24, + "probability": 0.9927 + }, + { + "start": 30807.2, + "end": 30807.78, + "probability": 0.9644 + }, + { + "start": 30808.1, + "end": 30810.64, + "probability": 0.1136 + }, + { + "start": 30810.64, + "end": 30812.99, + "probability": 0.9226 + }, + { + "start": 30813.36, + "end": 30818.22, + "probability": 0.9756 + }, + { + "start": 30818.36, + "end": 30820.92, + "probability": 0.969 + }, + { + "start": 30822.02, + "end": 30823.88, + "probability": 0.9042 + }, + { + "start": 30824.63, + "end": 30827.09, + "probability": 0.9902 + }, + { + "start": 30827.54, + "end": 30829.01, + "probability": 0.9875 + }, + { + "start": 30830.0, + "end": 30836.12, + "probability": 0.9814 + }, + { + "start": 30836.22, + "end": 30837.24, + "probability": 0.9551 + }, + { + "start": 30837.52, + "end": 30838.5, + "probability": 0.8236 + }, + { + "start": 30839.02, + "end": 30842.46, + "probability": 0.9957 + }, + { + "start": 30842.46, + "end": 30846.7, + "probability": 0.9976 + }, + { + "start": 30847.86, + "end": 30849.36, + "probability": 0.8516 + }, + { + "start": 30850.5, + "end": 30854.4, + "probability": 0.9712 + }, + { + "start": 30855.02, + "end": 30855.26, + "probability": 0.9417 + }, + { + "start": 30855.84, + "end": 30857.1, + "probability": 0.9771 + }, + { + "start": 30857.54, + "end": 30859.36, + "probability": 0.9459 + }, + { + "start": 30859.98, + "end": 30860.92, + "probability": 0.7596 + }, + { + "start": 30861.14, + "end": 30862.72, + "probability": 0.9714 + }, + { + "start": 30863.36, + "end": 30865.48, + "probability": 0.7989 + }, + { + "start": 30865.6, + "end": 30866.16, + "probability": 0.5749 + }, + { + "start": 30866.92, + "end": 30870.04, + "probability": 0.98 + }, + { + "start": 30870.74, + "end": 30874.48, + "probability": 0.9915 + }, + { + "start": 30875.04, + "end": 30876.6, + "probability": 0.8805 + }, + { + "start": 30876.82, + "end": 30878.42, + "probability": 0.7003 + }, + { + "start": 30879.06, + "end": 30880.5, + "probability": 0.9816 + }, + { + "start": 30880.9, + "end": 30882.62, + "probability": 0.9458 + }, + { + "start": 30883.28, + "end": 30885.78, + "probability": 0.9568 + }, + { + "start": 30886.3, + "end": 30889.52, + "probability": 0.808 + }, + { + "start": 30889.62, + "end": 30890.82, + "probability": 0.9344 + }, + { + "start": 30891.58, + "end": 30894.12, + "probability": 0.9586 + }, + { + "start": 30895.0, + "end": 30897.66, + "probability": 0.9964 + }, + { + "start": 30897.74, + "end": 30898.28, + "probability": 0.6246 + }, + { + "start": 30898.36, + "end": 30899.86, + "probability": 0.8132 + }, + { + "start": 30900.72, + "end": 30902.92, + "probability": 0.9149 + }, + { + "start": 30903.6, + "end": 30905.28, + "probability": 0.9231 + }, + { + "start": 30906.02, + "end": 30908.52, + "probability": 0.9736 + }, + { + "start": 30908.68, + "end": 30909.36, + "probability": 0.9504 + }, + { + "start": 30909.48, + "end": 30913.64, + "probability": 0.8521 + }, + { + "start": 30913.68, + "end": 30915.4, + "probability": 0.9262 + }, + { + "start": 30915.56, + "end": 30915.58, + "probability": 0.6923 + }, + { + "start": 30915.58, + "end": 30917.36, + "probability": 0.6606 + }, + { + "start": 30917.42, + "end": 30918.9, + "probability": 0.9156 + }, + { + "start": 30919.18, + "end": 30921.88, + "probability": 0.9559 + }, + { + "start": 30922.54, + "end": 30925.34, + "probability": 0.988 + }, + { + "start": 30925.42, + "end": 30927.6, + "probability": 0.9402 + }, + { + "start": 30927.94, + "end": 30929.9, + "probability": 0.9433 + }, + { + "start": 30930.46, + "end": 30932.24, + "probability": 0.8599 + }, + { + "start": 30932.92, + "end": 30934.06, + "probability": 0.9231 + }, + { + "start": 30934.12, + "end": 30934.54, + "probability": 0.8765 + }, + { + "start": 30934.98, + "end": 30938.18, + "probability": 0.9927 + }, + { + "start": 30938.66, + "end": 30939.0, + "probability": 0.1198 + }, + { + "start": 30939.18, + "end": 30944.78, + "probability": 0.9966 + }, + { + "start": 30945.58, + "end": 30949.0, + "probability": 0.9456 + }, + { + "start": 30949.4, + "end": 30952.18, + "probability": 0.9889 + }, + { + "start": 30952.22, + "end": 30952.4, + "probability": 0.0476 + }, + { + "start": 30953.04, + "end": 30956.34, + "probability": 0.8826 + }, + { + "start": 30957.22, + "end": 30960.24, + "probability": 0.9619 + }, + { + "start": 30960.3, + "end": 30961.68, + "probability": 0.9907 + }, + { + "start": 30961.94, + "end": 30962.3, + "probability": 0.8927 + }, + { + "start": 30963.58, + "end": 30963.9, + "probability": 0.8053 + }, + { + "start": 30965.24, + "end": 30966.26, + "probability": 0.628 + }, + { + "start": 30967.48, + "end": 30970.06, + "probability": 0.9749 + }, + { + "start": 30970.06, + "end": 30971.4, + "probability": 0.8451 + }, + { + "start": 30972.22, + "end": 30976.78, + "probability": 0.9355 + }, + { + "start": 30976.92, + "end": 30981.64, + "probability": 0.7877 + }, + { + "start": 30981.64, + "end": 30985.16, + "probability": 0.9907 + }, + { + "start": 30985.54, + "end": 30989.1, + "probability": 0.9573 + }, + { + "start": 30989.22, + "end": 30995.24, + "probability": 0.9916 + }, + { + "start": 30995.26, + "end": 30995.38, + "probability": 0.0402 + }, + { + "start": 30995.72, + "end": 30996.42, + "probability": 0.8254 + }, + { + "start": 30999.1, + "end": 31003.51, + "probability": 0.8514 + }, + { + "start": 31005.5, + "end": 31007.9, + "probability": 0.4921 + }, + { + "start": 31008.98, + "end": 31010.52, + "probability": 0.7495 + }, + { + "start": 31011.14, + "end": 31013.78, + "probability": 0.8532 + }, + { + "start": 31015.26, + "end": 31016.94, + "probability": 0.8663 + }, + { + "start": 31017.14, + "end": 31017.9, + "probability": 0.749 + }, + { + "start": 31018.44, + "end": 31020.34, + "probability": 0.8375 + }, + { + "start": 31020.44, + "end": 31022.51, + "probability": 0.8266 + }, + { + "start": 31023.6, + "end": 31024.44, + "probability": 0.6134 + }, + { + "start": 31024.46, + "end": 31027.44, + "probability": 0.4823 + }, + { + "start": 31027.48, + "end": 31028.49, + "probability": 0.143 + }, + { + "start": 31028.82, + "end": 31033.06, + "probability": 0.9973 + }, + { + "start": 31034.84, + "end": 31036.12, + "probability": 0.6825 + }, + { + "start": 31036.92, + "end": 31037.94, + "probability": 0.9738 + }, + { + "start": 31038.74, + "end": 31039.88, + "probability": 0.6065 + }, + { + "start": 31042.16, + "end": 31042.16, + "probability": 0.3461 + }, + { + "start": 31042.16, + "end": 31046.4, + "probability": 0.9509 + }, + { + "start": 31047.34, + "end": 31050.14, + "probability": 0.9858 + }, + { + "start": 31051.24, + "end": 31054.94, + "probability": 0.9534 + }, + { + "start": 31055.4, + "end": 31058.98, + "probability": 0.9839 + }, + { + "start": 31059.84, + "end": 31060.16, + "probability": 0.6665 + }, + { + "start": 31065.42, + "end": 31067.94, + "probability": 0.771 + }, + { + "start": 31067.94, + "end": 31071.76, + "probability": 0.9933 + }, + { + "start": 31072.46, + "end": 31073.82, + "probability": 0.7199 + }, + { + "start": 31074.64, + "end": 31076.84, + "probability": 0.9386 + }, + { + "start": 31077.92, + "end": 31080.86, + "probability": 0.921 + }, + { + "start": 31081.68, + "end": 31086.34, + "probability": 0.962 + }, + { + "start": 31088.06, + "end": 31090.2, + "probability": 0.767 + }, + { + "start": 31090.3, + "end": 31091.64, + "probability": 0.9039 + }, + { + "start": 31092.2, + "end": 31092.69, + "probability": 0.554 + }, + { + "start": 31092.86, + "end": 31093.48, + "probability": 0.7012 + }, + { + "start": 31093.96, + "end": 31096.64, + "probability": 0.796 + }, + { + "start": 31096.66, + "end": 31097.16, + "probability": 0.5082 + }, + { + "start": 31097.16, + "end": 31097.42, + "probability": 0.5716 + }, + { + "start": 31097.44, + "end": 31099.1, + "probability": 0.9489 + }, + { + "start": 31099.12, + "end": 31099.66, + "probability": 0.8788 + }, + { + "start": 31101.92, + "end": 31102.22, + "probability": 0.215 + }, + { + "start": 31102.3, + "end": 31104.89, + "probability": 0.9937 + }, + { + "start": 31105.16, + "end": 31107.36, + "probability": 0.7481 + }, + { + "start": 31108.16, + "end": 31108.98, + "probability": 0.8379 + }, + { + "start": 31110.26, + "end": 31112.5, + "probability": 0.7278 + }, + { + "start": 31112.6, + "end": 31113.39, + "probability": 0.6661 + }, + { + "start": 31113.64, + "end": 31113.88, + "probability": 0.8506 + }, + { + "start": 31113.98, + "end": 31118.34, + "probability": 0.9174 + }, + { + "start": 31118.58, + "end": 31124.02, + "probability": 0.9668 + }, + { + "start": 31124.54, + "end": 31127.72, + "probability": 0.9509 + }, + { + "start": 31127.76, + "end": 31132.94, + "probability": 0.9896 + }, + { + "start": 31133.32, + "end": 31136.58, + "probability": 0.9989 + }, + { + "start": 31136.64, + "end": 31141.1, + "probability": 0.9948 + }, + { + "start": 31141.24, + "end": 31141.8, + "probability": 0.9016 + }, + { + "start": 31142.54, + "end": 31144.44, + "probability": 0.9565 + }, + { + "start": 31145.44, + "end": 31148.96, + "probability": 0.9487 + }, + { + "start": 31149.48, + "end": 31150.58, + "probability": 0.8824 + }, + { + "start": 31151.32, + "end": 31154.92, + "probability": 0.9129 + }, + { + "start": 31156.0, + "end": 31159.86, + "probability": 0.9735 + }, + { + "start": 31160.0, + "end": 31161.28, + "probability": 0.8712 + }, + { + "start": 31162.38, + "end": 31166.34, + "probability": 0.9478 + }, + { + "start": 31166.34, + "end": 31171.08, + "probability": 0.9871 + }, + { + "start": 31171.1, + "end": 31176.74, + "probability": 0.9873 + }, + { + "start": 31177.1, + "end": 31181.72, + "probability": 0.9647 + }, + { + "start": 31182.58, + "end": 31184.54, + "probability": 0.8835 + }, + { + "start": 31185.9, + "end": 31191.64, + "probability": 0.9896 + }, + { + "start": 31192.7, + "end": 31195.42, + "probability": 0.9893 + }, + { + "start": 31196.44, + "end": 31197.98, + "probability": 0.7556 + }, + { + "start": 31198.4, + "end": 31201.06, + "probability": 0.9939 + }, + { + "start": 31201.74, + "end": 31206.2, + "probability": 0.9128 + }, + { + "start": 31207.06, + "end": 31209.5, + "probability": 0.9622 + }, + { + "start": 31209.62, + "end": 31211.02, + "probability": 0.9585 + }, + { + "start": 31211.36, + "end": 31212.46, + "probability": 0.932 + }, + { + "start": 31212.82, + "end": 31213.98, + "probability": 0.5178 + }, + { + "start": 31214.2, + "end": 31220.64, + "probability": 0.9738 + }, + { + "start": 31221.38, + "end": 31221.9, + "probability": 0.9142 + }, + { + "start": 31222.32, + "end": 31223.64, + "probability": 0.8632 + }, + { + "start": 31223.72, + "end": 31227.18, + "probability": 0.9611 + }, + { + "start": 31227.8, + "end": 31229.5, + "probability": 0.993 + }, + { + "start": 31230.58, + "end": 31233.4, + "probability": 0.9995 + }, + { + "start": 31233.6, + "end": 31235.38, + "probability": 0.9895 + }, + { + "start": 31236.46, + "end": 31236.94, + "probability": 0.785 + }, + { + "start": 31237.56, + "end": 31238.76, + "probability": 0.6932 + }, + { + "start": 31239.74, + "end": 31241.24, + "probability": 0.9163 + }, + { + "start": 31241.42, + "end": 31244.52, + "probability": 0.9985 + }, + { + "start": 31245.2, + "end": 31247.96, + "probability": 0.9207 + }, + { + "start": 31248.2, + "end": 31251.62, + "probability": 0.863 + }, + { + "start": 31252.22, + "end": 31253.68, + "probability": 0.8898 + }, + { + "start": 31254.12, + "end": 31259.54, + "probability": 0.9766 + }, + { + "start": 31260.2, + "end": 31261.1, + "probability": 0.8742 + }, + { + "start": 31261.68, + "end": 31265.44, + "probability": 0.9956 + }, + { + "start": 31266.18, + "end": 31267.58, + "probability": 0.9215 + }, + { + "start": 31267.84, + "end": 31269.14, + "probability": 0.9437 + }, + { + "start": 31269.6, + "end": 31271.26, + "probability": 0.9934 + }, + { + "start": 31271.68, + "end": 31273.08, + "probability": 0.9864 + }, + { + "start": 31273.68, + "end": 31275.7, + "probability": 0.9714 + }, + { + "start": 31276.42, + "end": 31277.82, + "probability": 0.951 + }, + { + "start": 31278.56, + "end": 31282.34, + "probability": 0.8836 + }, + { + "start": 31282.98, + "end": 31285.96, + "probability": 0.999 + }, + { + "start": 31286.54, + "end": 31289.68, + "probability": 0.9885 + }, + { + "start": 31290.64, + "end": 31295.0, + "probability": 0.9373 + }, + { + "start": 31295.0, + "end": 31299.14, + "probability": 0.9906 + }, + { + "start": 31300.18, + "end": 31301.28, + "probability": 0.9676 + }, + { + "start": 31301.42, + "end": 31302.36, + "probability": 0.8562 + }, + { + "start": 31302.5, + "end": 31304.66, + "probability": 0.9193 + }, + { + "start": 31304.66, + "end": 31308.96, + "probability": 0.9916 + }, + { + "start": 31309.54, + "end": 31312.29, + "probability": 0.8257 + }, + { + "start": 31314.06, + "end": 31317.34, + "probability": 0.8455 + }, + { + "start": 31317.68, + "end": 31320.9, + "probability": 0.9618 + }, + { + "start": 31321.06, + "end": 31322.38, + "probability": 0.8668 + }, + { + "start": 31322.42, + "end": 31323.08, + "probability": 0.8086 + }, + { + "start": 31323.84, + "end": 31324.7, + "probability": 0.9369 + }, + { + "start": 31328.66, + "end": 31329.86, + "probability": 0.8418 + }, + { + "start": 31336.74, + "end": 31337.78, + "probability": 0.8073 + }, + { + "start": 31337.96, + "end": 31342.7, + "probability": 0.984 + }, + { + "start": 31343.44, + "end": 31347.18, + "probability": 0.8152 + }, + { + "start": 31347.6, + "end": 31349.46, + "probability": 0.6652 + }, + { + "start": 31349.58, + "end": 31351.56, + "probability": 0.9939 + }, + { + "start": 31352.4, + "end": 31354.34, + "probability": 0.9036 + }, + { + "start": 31354.44, + "end": 31354.92, + "probability": 0.489 + }, + { + "start": 31355.0, + "end": 31355.8, + "probability": 0.7026 + }, + { + "start": 31355.94, + "end": 31356.9, + "probability": 0.8795 + }, + { + "start": 31357.42, + "end": 31359.12, + "probability": 0.8879 + }, + { + "start": 31359.28, + "end": 31364.04, + "probability": 0.7945 + }, + { + "start": 31364.14, + "end": 31365.46, + "probability": 0.9409 + }, + { + "start": 31365.6, + "end": 31366.38, + "probability": 0.8458 + }, + { + "start": 31366.74, + "end": 31367.24, + "probability": 0.6106 + }, + { + "start": 31367.92, + "end": 31369.1, + "probability": 0.8555 + }, + { + "start": 31369.18, + "end": 31372.23, + "probability": 0.9801 + }, + { + "start": 31372.66, + "end": 31373.54, + "probability": 0.5165 + }, + { + "start": 31373.66, + "end": 31374.62, + "probability": 0.6922 + }, + { + "start": 31375.64, + "end": 31378.44, + "probability": 0.5558 + }, + { + "start": 31378.6, + "end": 31385.8, + "probability": 0.8199 + }, + { + "start": 31386.32, + "end": 31388.36, + "probability": 0.4302 + }, + { + "start": 31389.04, + "end": 31389.56, + "probability": 0.8931 + }, + { + "start": 31389.66, + "end": 31392.54, + "probability": 0.9912 + }, + { + "start": 31392.84, + "end": 31395.0, + "probability": 0.9316 + }, + { + "start": 31395.64, + "end": 31401.21, + "probability": 0.9977 + }, + { + "start": 31402.16, + "end": 31405.96, + "probability": 0.9956 + }, + { + "start": 31406.48, + "end": 31407.46, + "probability": 0.8291 + }, + { + "start": 31407.46, + "end": 31407.76, + "probability": 0.9672 + }, + { + "start": 31408.06, + "end": 31410.54, + "probability": 0.8276 + }, + { + "start": 31410.54, + "end": 31413.32, + "probability": 0.8148 + }, + { + "start": 31413.82, + "end": 31414.72, + "probability": 0.8496 + }, + { + "start": 31415.16, + "end": 31415.84, + "probability": 0.5858 + }, + { + "start": 31415.96, + "end": 31421.64, + "probability": 0.7312 + }, + { + "start": 31422.7, + "end": 31423.7, + "probability": 0.7933 + }, + { + "start": 31423.86, + "end": 31425.13, + "probability": 0.9805 + }, + { + "start": 31425.56, + "end": 31426.88, + "probability": 0.5379 + }, + { + "start": 31427.08, + "end": 31428.0, + "probability": 0.815 + }, + { + "start": 31428.56, + "end": 31432.04, + "probability": 0.989 + }, + { + "start": 31432.46, + "end": 31433.58, + "probability": 0.7311 + }, + { + "start": 31433.7, + "end": 31435.18, + "probability": 0.9087 + }, + { + "start": 31435.32, + "end": 31437.24, + "probability": 0.9781 + }, + { + "start": 31437.88, + "end": 31440.2, + "probability": 0.9673 + }, + { + "start": 31441.49, + "end": 31444.8, + "probability": 0.758 + }, + { + "start": 31444.98, + "end": 31446.04, + "probability": 0.6284 + }, + { + "start": 31447.0, + "end": 31447.32, + "probability": 0.7211 + }, + { + "start": 31447.4, + "end": 31450.32, + "probability": 0.7005 + }, + { + "start": 31451.06, + "end": 31454.04, + "probability": 0.5026 + }, + { + "start": 31454.86, + "end": 31456.64, + "probability": 0.8857 + }, + { + "start": 31457.26, + "end": 31458.62, + "probability": 0.5129 + }, + { + "start": 31458.82, + "end": 31460.7, + "probability": 0.9514 + }, + { + "start": 31462.22, + "end": 31463.74, + "probability": 0.8609 + }, + { + "start": 31463.86, + "end": 31465.1, + "probability": 0.5989 + }, + { + "start": 31465.18, + "end": 31467.06, + "probability": 0.8332 + }, + { + "start": 31468.0, + "end": 31468.92, + "probability": 0.8464 + }, + { + "start": 31470.0, + "end": 31471.66, + "probability": 0.9893 + }, + { + "start": 31471.74, + "end": 31477.44, + "probability": 0.9492 + }, + { + "start": 31478.14, + "end": 31478.68, + "probability": 0.5112 + }, + { + "start": 31479.17, + "end": 31481.42, + "probability": 0.6316 + }, + { + "start": 31481.44, + "end": 31481.78, + "probability": 0.8164 + }, + { + "start": 31481.86, + "end": 31484.88, + "probability": 0.9811 + }, + { + "start": 31486.34, + "end": 31489.94, + "probability": 0.999 + }, + { + "start": 31489.94, + "end": 31495.6, + "probability": 0.9855 + }, + { + "start": 31496.42, + "end": 31502.32, + "probability": 0.9929 + }, + { + "start": 31504.54, + "end": 31505.58, + "probability": 0.7358 + }, + { + "start": 31506.2, + "end": 31507.98, + "probability": 0.583 + }, + { + "start": 31508.5, + "end": 31508.96, + "probability": 0.2647 + }, + { + "start": 31509.38, + "end": 31512.8, + "probability": 0.9369 + }, + { + "start": 31520.04, + "end": 31520.6, + "probability": 0.8117 + }, + { + "start": 31522.42, + "end": 31527.42, + "probability": 0.9945 + }, + { + "start": 31529.22, + "end": 31530.28, + "probability": 0.9885 + }, + { + "start": 31531.16, + "end": 31534.3, + "probability": 0.8854 + }, + { + "start": 31534.3, + "end": 31538.3, + "probability": 0.9915 + }, + { + "start": 31539.3, + "end": 31540.28, + "probability": 0.4675 + }, + { + "start": 31541.96, + "end": 31543.86, + "probability": 0.4656 + }, + { + "start": 31543.86, + "end": 31546.46, + "probability": 0.7897 + }, + { + "start": 31546.66, + "end": 31548.52, + "probability": 0.9174 + }, + { + "start": 31548.62, + "end": 31553.22, + "probability": 0.8991 + }, + { + "start": 31554.1, + "end": 31557.06, + "probability": 0.994 + }, + { + "start": 31558.82, + "end": 31560.66, + "probability": 0.939 + }, + { + "start": 31561.3, + "end": 31562.7, + "probability": 0.8612 + }, + { + "start": 31563.22, + "end": 31567.68, + "probability": 0.7755 + }, + { + "start": 31568.58, + "end": 31569.4, + "probability": 0.7595 + }, + { + "start": 31569.4, + "end": 31570.04, + "probability": 0.4568 + }, + { + "start": 31570.16, + "end": 31570.68, + "probability": 0.603 + }, + { + "start": 31570.72, + "end": 31575.44, + "probability": 0.6919 + }, + { + "start": 31575.76, + "end": 31578.82, + "probability": 0.9777 + }, + { + "start": 31580.32, + "end": 31584.84, + "probability": 0.9984 + }, + { + "start": 31585.24, + "end": 31589.14, + "probability": 0.9575 + }, + { + "start": 31589.14, + "end": 31591.62, + "probability": 0.9919 + }, + { + "start": 31591.98, + "end": 31594.26, + "probability": 0.9814 + }, + { + "start": 31594.88, + "end": 31596.45, + "probability": 0.9806 + }, + { + "start": 31597.94, + "end": 31602.26, + "probability": 0.9779 + }, + { + "start": 31602.8, + "end": 31604.92, + "probability": 0.9941 + }, + { + "start": 31604.92, + "end": 31607.62, + "probability": 0.9988 + }, + { + "start": 31607.68, + "end": 31611.5, + "probability": 0.9866 + }, + { + "start": 31612.2, + "end": 31615.9, + "probability": 0.9918 + }, + { + "start": 31616.04, + "end": 31616.58, + "probability": 0.5946 + }, + { + "start": 31616.64, + "end": 31616.88, + "probability": 0.8914 + }, + { + "start": 31617.02, + "end": 31617.6, + "probability": 0.8173 + }, + { + "start": 31617.66, + "end": 31618.0, + "probability": 0.8691 + }, + { + "start": 31618.16, + "end": 31619.47, + "probability": 0.5644 + }, + { + "start": 31620.04, + "end": 31620.48, + "probability": 0.7636 + }, + { + "start": 31621.4, + "end": 31624.3, + "probability": 0.9417 + }, + { + "start": 31624.42, + "end": 31624.66, + "probability": 0.8977 + }, + { + "start": 31624.74, + "end": 31630.36, + "probability": 0.9934 + }, + { + "start": 31630.9, + "end": 31634.78, + "probability": 0.999 + }, + { + "start": 31635.94, + "end": 31637.8, + "probability": 0.6168 + }, + { + "start": 31638.2, + "end": 31641.06, + "probability": 0.9692 + }, + { + "start": 31641.1, + "end": 31642.32, + "probability": 0.9207 + }, + { + "start": 31643.02, + "end": 31643.68, + "probability": 0.8167 + }, + { + "start": 31644.04, + "end": 31644.98, + "probability": 0.6197 + }, + { + "start": 31645.2, + "end": 31649.12, + "probability": 0.9866 + }, + { + "start": 31649.58, + "end": 31651.08, + "probability": 0.9724 + }, + { + "start": 31651.18, + "end": 31652.7, + "probability": 0.9655 + }, + { + "start": 31653.04, + "end": 31655.68, + "probability": 0.9606 + }, + { + "start": 31656.18, + "end": 31660.02, + "probability": 0.4707 + }, + { + "start": 31660.52, + "end": 31661.08, + "probability": 0.5552 + }, + { + "start": 31661.6, + "end": 31664.68, + "probability": 0.9641 + }, + { + "start": 31665.98, + "end": 31667.4, + "probability": 0.4864 + }, + { + "start": 31668.12, + "end": 31670.12, + "probability": 0.9701 + }, + { + "start": 31670.88, + "end": 31674.42, + "probability": 0.8821 + }, + { + "start": 31676.37, + "end": 31678.36, + "probability": 0.6922 + }, + { + "start": 31678.86, + "end": 31683.95, + "probability": 0.9105 + }, + { + "start": 31685.7, + "end": 31688.22, + "probability": 0.8639 + }, + { + "start": 31688.98, + "end": 31689.94, + "probability": 0.7259 + }, + { + "start": 31689.98, + "end": 31690.08, + "probability": 0.5218 + }, + { + "start": 31692.6, + "end": 31693.46, + "probability": 0.9144 + }, + { + "start": 31694.52, + "end": 31695.3, + "probability": 0.7939 + }, + { + "start": 31695.56, + "end": 31696.2, + "probability": 0.9019 + }, + { + "start": 31697.46, + "end": 31700.38, + "probability": 0.4648 + }, + { + "start": 31700.96, + "end": 31705.18, + "probability": 0.833 + }, + { + "start": 31707.74, + "end": 31708.28, + "probability": 0.567 + }, + { + "start": 31708.48, + "end": 31709.36, + "probability": 0.7743 + }, + { + "start": 31709.52, + "end": 31711.98, + "probability": 0.9007 + }, + { + "start": 31712.38, + "end": 31716.36, + "probability": 0.8929 + }, + { + "start": 31716.36, + "end": 31719.48, + "probability": 0.9932 + }, + { + "start": 31720.08, + "end": 31722.2, + "probability": 0.9358 + }, + { + "start": 31722.8, + "end": 31729.08, + "probability": 0.9663 + }, + { + "start": 31729.24, + "end": 31729.96, + "probability": 0.8234 + }, + { + "start": 31731.18, + "end": 31734.22, + "probability": 0.9807 + }, + { + "start": 31734.86, + "end": 31738.7, + "probability": 0.9304 + }, + { + "start": 31738.86, + "end": 31741.64, + "probability": 0.9478 + }, + { + "start": 31741.98, + "end": 31742.16, + "probability": 0.7773 + }, + { + "start": 31743.4, + "end": 31744.7, + "probability": 0.739 + }, + { + "start": 31746.38, + "end": 31746.9, + "probability": 0.7573 + }, + { + "start": 31747.18, + "end": 31749.38, + "probability": 0.9774 + }, + { + "start": 31750.12, + "end": 31752.12, + "probability": 0.9928 + }, + { + "start": 31752.54, + "end": 31757.42, + "probability": 0.9875 + }, + { + "start": 31758.5, + "end": 31760.46, + "probability": 0.7938 + }, + { + "start": 31760.58, + "end": 31761.69, + "probability": 0.9647 + }, + { + "start": 31762.16, + "end": 31765.42, + "probability": 0.9071 + }, + { + "start": 31765.42, + "end": 31768.02, + "probability": 0.9697 + }, + { + "start": 31768.54, + "end": 31770.54, + "probability": 0.9105 + }, + { + "start": 31770.8, + "end": 31773.7, + "probability": 0.9446 + }, + { + "start": 31774.6, + "end": 31777.03, + "probability": 0.9848 + }, + { + "start": 31777.3, + "end": 31780.16, + "probability": 0.9966 + }, + { + "start": 31780.16, + "end": 31782.42, + "probability": 0.9626 + }, + { + "start": 31783.48, + "end": 31786.76, + "probability": 0.933 + }, + { + "start": 31786.76, + "end": 31791.84, + "probability": 0.9985 + }, + { + "start": 31791.92, + "end": 31796.64, + "probability": 0.9913 + }, + { + "start": 31797.4, + "end": 31800.06, + "probability": 0.8181 + }, + { + "start": 31800.5, + "end": 31803.54, + "probability": 0.9827 + }, + { + "start": 31804.02, + "end": 31806.74, + "probability": 0.9926 + }, + { + "start": 31806.74, + "end": 31809.32, + "probability": 0.9966 + }, + { + "start": 31810.1, + "end": 31813.32, + "probability": 0.9893 + }, + { + "start": 31813.32, + "end": 31817.1, + "probability": 0.9868 + }, + { + "start": 31817.98, + "end": 31821.3, + "probability": 0.981 + }, + { + "start": 31821.3, + "end": 31824.18, + "probability": 0.9971 + }, + { + "start": 31825.78, + "end": 31830.7, + "probability": 0.999 + }, + { + "start": 31831.16, + "end": 31835.88, + "probability": 0.9966 + }, + { + "start": 31835.88, + "end": 31840.0, + "probability": 0.9949 + }, + { + "start": 31841.34, + "end": 31843.62, + "probability": 0.9658 + }, + { + "start": 31843.62, + "end": 31847.92, + "probability": 0.9985 + }, + { + "start": 31848.6, + "end": 31850.34, + "probability": 0.9603 + }, + { + "start": 31850.66, + "end": 31851.6, + "probability": 0.7676 + }, + { + "start": 31851.98, + "end": 31853.66, + "probability": 0.8838 + }, + { + "start": 31854.3, + "end": 31859.92, + "probability": 0.885 + }, + { + "start": 31860.26, + "end": 31861.08, + "probability": 0.4564 + }, + { + "start": 31862.18, + "end": 31864.68, + "probability": 0.8553 + }, + { + "start": 31865.24, + "end": 31868.0, + "probability": 0.9784 + }, + { + "start": 31868.92, + "end": 31872.44, + "probability": 0.9692 + }, + { + "start": 31872.44, + "end": 31875.72, + "probability": 0.9945 + }, + { + "start": 31875.72, + "end": 31879.5, + "probability": 0.9908 + }, + { + "start": 31880.12, + "end": 31884.64, + "probability": 0.9924 + }, + { + "start": 31885.0, + "end": 31887.48, + "probability": 0.9697 + }, + { + "start": 31888.16, + "end": 31891.14, + "probability": 0.9969 + }, + { + "start": 31891.14, + "end": 31896.34, + "probability": 0.9885 + }, + { + "start": 31896.78, + "end": 31896.96, + "probability": 0.223 + }, + { + "start": 31897.0, + "end": 31899.28, + "probability": 0.8771 + }, + { + "start": 31899.28, + "end": 31902.12, + "probability": 0.9992 + }, + { + "start": 31902.72, + "end": 31905.54, + "probability": 0.9264 + }, + { + "start": 31905.88, + "end": 31907.04, + "probability": 0.955 + }, + { + "start": 31909.1, + "end": 31909.56, + "probability": 0.6778 + }, + { + "start": 31909.72, + "end": 31910.58, + "probability": 0.8441 + }, + { + "start": 31912.2, + "end": 31914.62, + "probability": 0.9604 + }, + { + "start": 31915.08, + "end": 31915.48, + "probability": 0.4883 + }, + { + "start": 31915.56, + "end": 31918.7, + "probability": 0.9812 + }, + { + "start": 31918.76, + "end": 31923.84, + "probability": 0.9617 + }, + { + "start": 31924.58, + "end": 31930.12, + "probability": 0.9956 + }, + { + "start": 31930.12, + "end": 31934.48, + "probability": 0.2388 + }, + { + "start": 31934.48, + "end": 31934.48, + "probability": 0.0769 + }, + { + "start": 31934.48, + "end": 31937.06, + "probability": 0.3818 + }, + { + "start": 31938.0, + "end": 31938.58, + "probability": 0.1879 + }, + { + "start": 31938.64, + "end": 31940.3, + "probability": 0.4689 + }, + { + "start": 31940.3, + "end": 31941.64, + "probability": 0.3623 + }, + { + "start": 31942.26, + "end": 31942.92, + "probability": 0.0077 + }, + { + "start": 31943.64, + "end": 31943.64, + "probability": 0.103 + }, + { + "start": 31943.88, + "end": 31943.88, + "probability": 0.3044 + }, + { + "start": 31943.88, + "end": 31943.88, + "probability": 0.2476 + }, + { + "start": 31943.88, + "end": 31944.06, + "probability": 0.02 + }, + { + "start": 31944.7, + "end": 31948.14, + "probability": 0.5371 + }, + { + "start": 31948.14, + "end": 31948.98, + "probability": 0.7954 + }, + { + "start": 31949.62, + "end": 31951.6, + "probability": 0.849 + }, + { + "start": 31951.78, + "end": 31956.68, + "probability": 0.9927 + }, + { + "start": 31957.26, + "end": 31960.6, + "probability": 0.9852 + }, + { + "start": 31961.38, + "end": 31965.38, + "probability": 0.8844 + }, + { + "start": 31965.92, + "end": 31967.92, + "probability": 0.9844 + }, + { + "start": 31968.8, + "end": 31972.42, + "probability": 0.9902 + }, + { + "start": 31972.96, + "end": 31974.22, + "probability": 0.8067 + }, + { + "start": 31974.34, + "end": 31975.2, + "probability": 0.9234 + }, + { + "start": 31975.6, + "end": 31977.76, + "probability": 0.946 + }, + { + "start": 31978.36, + "end": 31979.6, + "probability": 0.8823 + }, + { + "start": 31980.64, + "end": 31982.96, + "probability": 0.9484 + }, + { + "start": 31983.28, + "end": 31984.22, + "probability": 0.9792 + }, + { + "start": 31985.16, + "end": 31988.9, + "probability": 0.9976 + }, + { + "start": 31989.14, + "end": 31989.6, + "probability": 0.9771 + }, + { + "start": 31990.64, + "end": 31990.72, + "probability": 0.0264 + }, + { + "start": 31990.8, + "end": 31991.08, + "probability": 0.638 + }, + { + "start": 31991.08, + "end": 31994.32, + "probability": 0.9207 + }, + { + "start": 31994.4, + "end": 31995.48, + "probability": 0.7236 + }, + { + "start": 31995.64, + "end": 31997.1, + "probability": 0.9821 + }, + { + "start": 31997.32, + "end": 31998.7, + "probability": 0.9983 + }, + { + "start": 31999.28, + "end": 32003.88, + "probability": 0.9928 + }, + { + "start": 32004.56, + "end": 32007.14, + "probability": 0.93 + }, + { + "start": 32008.28, + "end": 32013.92, + "probability": 0.5117 + }, + { + "start": 32015.16, + "end": 32016.02, + "probability": 0.8728 + }, + { + "start": 32016.78, + "end": 32018.88, + "probability": 0.8904 + }, + { + "start": 32019.36, + "end": 32026.44, + "probability": 0.9827 + }, + { + "start": 32027.22, + "end": 32033.04, + "probability": 0.9558 + }, + { + "start": 32034.8, + "end": 32039.18, + "probability": 0.5581 + }, + { + "start": 32039.68, + "end": 32041.32, + "probability": 0.9175 + }, + { + "start": 32041.7, + "end": 32046.58, + "probability": 0.9541 + }, + { + "start": 32046.94, + "end": 32052.4, + "probability": 0.9756 + }, + { + "start": 32053.62, + "end": 32056.26, + "probability": 0.7241 + }, + { + "start": 32056.84, + "end": 32058.93, + "probability": 0.9914 + }, + { + "start": 32060.66, + "end": 32068.44, + "probability": 0.9935 + }, + { + "start": 32068.68, + "end": 32069.36, + "probability": 0.8134 + }, + { + "start": 32070.44, + "end": 32070.86, + "probability": 0.9478 + }, + { + "start": 32071.06, + "end": 32075.08, + "probability": 0.9907 + }, + { + "start": 32075.08, + "end": 32079.4, + "probability": 0.9914 + }, + { + "start": 32079.98, + "end": 32084.16, + "probability": 0.9676 + }, + { + "start": 32085.1, + "end": 32085.38, + "probability": 0.4469 + }, + { + "start": 32087.2, + "end": 32088.64, + "probability": 0.7388 + }, + { + "start": 32089.4, + "end": 32092.36, + "probability": 0.7098 + }, + { + "start": 32092.83, + "end": 32095.56, + "probability": 0.7761 + }, + { + "start": 32096.22, + "end": 32098.56, + "probability": 0.9338 + }, + { + "start": 32105.4, + "end": 32107.5, + "probability": 0.758 + }, + { + "start": 32109.02, + "end": 32111.56, + "probability": 0.8187 + }, + { + "start": 32113.2, + "end": 32114.22, + "probability": 0.7758 + }, + { + "start": 32114.36, + "end": 32115.7, + "probability": 0.4238 + }, + { + "start": 32115.96, + "end": 32119.96, + "probability": 0.962 + }, + { + "start": 32120.16, + "end": 32121.02, + "probability": 0.8073 + }, + { + "start": 32121.1, + "end": 32122.3, + "probability": 0.9029 + }, + { + "start": 32123.28, + "end": 32124.1, + "probability": 0.7842 + }, + { + "start": 32125.32, + "end": 32129.84, + "probability": 0.9288 + }, + { + "start": 32130.66, + "end": 32133.8, + "probability": 0.7539 + }, + { + "start": 32134.0, + "end": 32138.2, + "probability": 0.9446 + }, + { + "start": 32138.92, + "end": 32143.32, + "probability": 0.8108 + }, + { + "start": 32143.32, + "end": 32145.52, + "probability": 0.6475 + }, + { + "start": 32146.2, + "end": 32152.14, + "probability": 0.8639 + }, + { + "start": 32152.7, + "end": 32155.8, + "probability": 0.9761 + }, + { + "start": 32155.92, + "end": 32159.76, + "probability": 0.9761 + }, + { + "start": 32159.9, + "end": 32160.48, + "probability": 0.6993 + }, + { + "start": 32161.08, + "end": 32162.5, + "probability": 0.8442 + }, + { + "start": 32163.22, + "end": 32164.42, + "probability": 0.9995 + }, + { + "start": 32165.44, + "end": 32170.62, + "probability": 0.9644 + }, + { + "start": 32171.44, + "end": 32173.08, + "probability": 0.7898 + }, + { + "start": 32173.5, + "end": 32175.44, + "probability": 0.863 + }, + { + "start": 32175.9, + "end": 32179.84, + "probability": 0.9553 + }, + { + "start": 32180.72, + "end": 32181.88, + "probability": 0.9064 + }, + { + "start": 32183.14, + "end": 32186.48, + "probability": 0.9959 + }, + { + "start": 32187.44, + "end": 32189.38, + "probability": 0.984 + }, + { + "start": 32190.74, + "end": 32196.9, + "probability": 0.9598 + }, + { + "start": 32197.06, + "end": 32201.36, + "probability": 0.9957 + }, + { + "start": 32202.84, + "end": 32204.12, + "probability": 0.8924 + }, + { + "start": 32208.92, + "end": 32209.9, + "probability": 0.6563 + }, + { + "start": 32216.3, + "end": 32218.48, + "probability": 0.6297 + }, + { + "start": 32219.1, + "end": 32220.58, + "probability": 0.9066 + }, + { + "start": 32221.36, + "end": 32224.16, + "probability": 0.9749 + }, + { + "start": 32224.16, + "end": 32227.54, + "probability": 0.99 + }, + { + "start": 32228.86, + "end": 32231.5, + "probability": 0.9983 + }, + { + "start": 32231.5, + "end": 32236.94, + "probability": 0.9949 + }, + { + "start": 32237.64, + "end": 32238.6, + "probability": 0.8242 + }, + { + "start": 32239.58, + "end": 32241.54, + "probability": 0.7396 + }, + { + "start": 32242.26, + "end": 32245.1, + "probability": 0.9175 + }, + { + "start": 32245.96, + "end": 32253.78, + "probability": 0.9865 + }, + { + "start": 32254.44, + "end": 32258.58, + "probability": 0.9683 + }, + { + "start": 32258.62, + "end": 32261.3, + "probability": 0.9294 + }, + { + "start": 32261.92, + "end": 32264.1, + "probability": 0.969 + }, + { + "start": 32264.28, + "end": 32266.8, + "probability": 0.9932 + }, + { + "start": 32267.18, + "end": 32274.48, + "probability": 0.9419 + }, + { + "start": 32276.14, + "end": 32276.4, + "probability": 0.8755 + }, + { + "start": 32276.5, + "end": 32280.21, + "probability": 0.701 + }, + { + "start": 32281.6, + "end": 32283.0, + "probability": 0.7942 + }, + { + "start": 32283.12, + "end": 32285.2, + "probability": 0.9585 + }, + { + "start": 32285.62, + "end": 32288.7, + "probability": 0.91 + }, + { + "start": 32289.92, + "end": 32295.54, + "probability": 0.9321 + }, + { + "start": 32296.42, + "end": 32300.19, + "probability": 0.9883 + }, + { + "start": 32300.7, + "end": 32301.08, + "probability": 0.7236 + }, + { + "start": 32301.66, + "end": 32302.5, + "probability": 0.5961 + }, + { + "start": 32302.66, + "end": 32306.94, + "probability": 0.3901 + }, + { + "start": 32308.02, + "end": 32310.6, + "probability": 0.8023 + }, + { + "start": 32310.68, + "end": 32313.54, + "probability": 0.9514 + }, + { + "start": 32315.56, + "end": 32317.73, + "probability": 0.5847 + }, + { + "start": 32318.0, + "end": 32322.1, + "probability": 0.8884 + }, + { + "start": 32323.84, + "end": 32326.7, + "probability": 0.8908 + }, + { + "start": 32328.9, + "end": 32330.2, + "probability": 0.0968 + } + ], + "segments_count": 11177, + "words_count": 54167, + "avg_words_per_segment": 4.8463, + "avg_segment_duration": 2.0287, + "avg_words_per_minute": 100.1406, + "plenum_id": "104596", + "duration": 32454.56, + "title": null, + "plenum_date": "2022-01-19" +} \ No newline at end of file