diff --git "a/111889/metadata.json" "b/111889/metadata.json" new file mode 100644--- /dev/null +++ "b/111889/metadata.json" @@ -0,0 +1,31472 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "111889", + "quality_score": 0.9302, + "per_segment_quality_scores": [ + { + "start": 875.36, + "end": 875.36, + "probability": 0.0668 + }, + { + "start": 875.36, + "end": 876.48, + "probability": 0.599 + }, + { + "start": 885.74, + "end": 885.9, + "probability": 0.0589 + }, + { + "start": 885.9, + "end": 885.96, + "probability": 0.0377 + }, + { + "start": 885.96, + "end": 885.96, + "probability": 0.0481 + }, + { + "start": 906.88, + "end": 911.26, + "probability": 0.9383 + }, + { + "start": 913.68, + "end": 915.56, + "probability": 0.8873 + }, + { + "start": 916.1, + "end": 916.52, + "probability": 0.9112 + }, + { + "start": 923.28, + "end": 925.9, + "probability": 0.9234 + }, + { + "start": 926.62, + "end": 929.7, + "probability": 0.9816 + }, + { + "start": 930.14, + "end": 930.52, + "probability": 0.5036 + }, + { + "start": 932.2, + "end": 934.88, + "probability": 0.9988 + }, + { + "start": 935.12, + "end": 936.7, + "probability": 0.9625 + }, + { + "start": 937.12, + "end": 939.74, + "probability": 0.9955 + }, + { + "start": 940.58, + "end": 943.38, + "probability": 0.9703 + }, + { + "start": 944.7, + "end": 946.04, + "probability": 0.8643 + }, + { + "start": 972.5, + "end": 973.7, + "probability": 0.7532 + }, + { + "start": 975.14, + "end": 975.86, + "probability": 0.9554 + }, + { + "start": 977.32, + "end": 978.14, + "probability": 0.7632 + }, + { + "start": 980.3, + "end": 983.8, + "probability": 0.896 + }, + { + "start": 987.22, + "end": 988.44, + "probability": 0.9792 + }, + { + "start": 989.32, + "end": 991.48, + "probability": 0.9888 + }, + { + "start": 992.58, + "end": 996.02, + "probability": 0.9732 + }, + { + "start": 1001.54, + "end": 1001.74, + "probability": 0.6705 + }, + { + "start": 1002.34, + "end": 1003.3, + "probability": 0.9122 + }, + { + "start": 1007.06, + "end": 1009.08, + "probability": 0.8302 + }, + { + "start": 1010.04, + "end": 1013.66, + "probability": 0.9839 + }, + { + "start": 1014.72, + "end": 1016.2, + "probability": 0.9865 + }, + { + "start": 1017.16, + "end": 1019.06, + "probability": 0.9775 + }, + { + "start": 1020.22, + "end": 1021.06, + "probability": 0.7472 + }, + { + "start": 1022.46, + "end": 1024.98, + "probability": 0.9964 + }, + { + "start": 1025.94, + "end": 1028.6, + "probability": 0.9357 + }, + { + "start": 1030.18, + "end": 1032.26, + "probability": 0.6795 + }, + { + "start": 1032.36, + "end": 1032.36, + "probability": 0.2387 + }, + { + "start": 1032.36, + "end": 1034.24, + "probability": 0.7872 + }, + { + "start": 1034.6, + "end": 1036.12, + "probability": 0.5809 + }, + { + "start": 1036.44, + "end": 1037.98, + "probability": 0.9714 + }, + { + "start": 1038.02, + "end": 1038.72, + "probability": 0.6783 + }, + { + "start": 1039.5, + "end": 1044.48, + "probability": 0.2257 + }, + { + "start": 1044.48, + "end": 1045.3, + "probability": 0.1807 + }, + { + "start": 1046.08, + "end": 1046.36, + "probability": 0.1359 + }, + { + "start": 1046.36, + "end": 1046.36, + "probability": 0.5387 + }, + { + "start": 1046.46, + "end": 1047.94, + "probability": 0.5163 + }, + { + "start": 1048.04, + "end": 1049.86, + "probability": 0.3957 + }, + { + "start": 1050.02, + "end": 1051.88, + "probability": 0.5223 + }, + { + "start": 1051.88, + "end": 1053.52, + "probability": 0.0846 + }, + { + "start": 1053.52, + "end": 1056.12, + "probability": 0.4291 + }, + { + "start": 1056.12, + "end": 1057.24, + "probability": 0.0812 + }, + { + "start": 1058.34, + "end": 1060.36, + "probability": 0.7172 + }, + { + "start": 1060.9, + "end": 1061.53, + "probability": 0.0406 + }, + { + "start": 1062.9, + "end": 1064.57, + "probability": 0.1456 + }, + { + "start": 1064.6, + "end": 1066.75, + "probability": 0.4467 + }, + { + "start": 1069.6, + "end": 1069.96, + "probability": 0.0216 + }, + { + "start": 1070.68, + "end": 1071.8, + "probability": 0.2778 + }, + { + "start": 1073.26, + "end": 1075.12, + "probability": 0.2339 + }, + { + "start": 1075.9, + "end": 1077.16, + "probability": 0.0358 + }, + { + "start": 1077.3, + "end": 1078.12, + "probability": 0.3582 + }, + { + "start": 1079.86, + "end": 1084.7, + "probability": 0.2685 + }, + { + "start": 1084.84, + "end": 1092.12, + "probability": 0.9847 + }, + { + "start": 1092.9, + "end": 1099.0, + "probability": 0.9993 + }, + { + "start": 1099.56, + "end": 1100.86, + "probability": 0.9788 + }, + { + "start": 1101.74, + "end": 1105.44, + "probability": 0.9535 + }, + { + "start": 1105.78, + "end": 1108.24, + "probability": 0.4343 + }, + { + "start": 1109.08, + "end": 1112.0, + "probability": 0.9985 + }, + { + "start": 1112.8, + "end": 1116.0, + "probability": 0.991 + }, + { + "start": 1117.81, + "end": 1118.76, + "probability": 0.5424 + }, + { + "start": 1118.82, + "end": 1119.0, + "probability": 0.0197 + }, + { + "start": 1119.0, + "end": 1121.46, + "probability": 0.8004 + }, + { + "start": 1122.84, + "end": 1124.78, + "probability": 0.9173 + }, + { + "start": 1125.4, + "end": 1127.78, + "probability": 0.999 + }, + { + "start": 1128.54, + "end": 1133.22, + "probability": 0.9991 + }, + { + "start": 1134.02, + "end": 1137.08, + "probability": 0.9991 + }, + { + "start": 1137.76, + "end": 1142.28, + "probability": 0.9892 + }, + { + "start": 1142.3, + "end": 1142.62, + "probability": 0.018 + }, + { + "start": 1144.84, + "end": 1145.0, + "probability": 0.0385 + }, + { + "start": 1145.0, + "end": 1148.24, + "probability": 0.2158 + }, + { + "start": 1148.44, + "end": 1153.16, + "probability": 0.9035 + }, + { + "start": 1154.14, + "end": 1155.22, + "probability": 0.8307 + }, + { + "start": 1155.74, + "end": 1158.22, + "probability": 0.9961 + }, + { + "start": 1159.22, + "end": 1160.32, + "probability": 0.9993 + }, + { + "start": 1160.94, + "end": 1163.82, + "probability": 0.7992 + }, + { + "start": 1164.68, + "end": 1166.5, + "probability": 0.9822 + }, + { + "start": 1167.14, + "end": 1168.66, + "probability": 0.9518 + }, + { + "start": 1169.46, + "end": 1171.54, + "probability": 0.9759 + }, + { + "start": 1172.62, + "end": 1173.14, + "probability": 0.8478 + }, + { + "start": 1173.74, + "end": 1176.28, + "probability": 0.9902 + }, + { + "start": 1177.0, + "end": 1178.0, + "probability": 0.9009 + }, + { + "start": 1178.82, + "end": 1183.16, + "probability": 0.9761 + }, + { + "start": 1183.88, + "end": 1186.52, + "probability": 0.9961 + }, + { + "start": 1186.72, + "end": 1187.96, + "probability": 0.3686 + }, + { + "start": 1189.12, + "end": 1191.3, + "probability": 0.0374 + }, + { + "start": 1192.04, + "end": 1192.98, + "probability": 0.5969 + }, + { + "start": 1193.32, + "end": 1197.72, + "probability": 0.1752 + }, + { + "start": 1198.64, + "end": 1198.86, + "probability": 0.4921 + }, + { + "start": 1198.86, + "end": 1199.8, + "probability": 0.0053 + }, + { + "start": 1199.92, + "end": 1202.06, + "probability": 0.1714 + }, + { + "start": 1202.32, + "end": 1204.6, + "probability": 0.1201 + }, + { + "start": 1206.64, + "end": 1208.64, + "probability": 0.3383 + }, + { + "start": 1208.64, + "end": 1209.58, + "probability": 0.1279 + }, + { + "start": 1214.24, + "end": 1215.78, + "probability": 0.021 + }, + { + "start": 1218.46, + "end": 1219.68, + "probability": 0.0784 + }, + { + "start": 1220.6, + "end": 1223.96, + "probability": 0.031 + }, + { + "start": 1223.96, + "end": 1226.68, + "probability": 0.4294 + }, + { + "start": 1226.76, + "end": 1226.82, + "probability": 0.0481 + }, + { + "start": 1226.82, + "end": 1226.82, + "probability": 0.3911 + }, + { + "start": 1226.82, + "end": 1226.82, + "probability": 0.4298 + }, + { + "start": 1226.82, + "end": 1226.82, + "probability": 0.4736 + }, + { + "start": 1226.82, + "end": 1226.82, + "probability": 0.476 + }, + { + "start": 1226.92, + "end": 1227.18, + "probability": 0.5235 + }, + { + "start": 1227.86, + "end": 1227.94, + "probability": 0.5156 + }, + { + "start": 1227.94, + "end": 1228.2, + "probability": 0.533 + }, + { + "start": 1228.84, + "end": 1229.98, + "probability": 0.0372 + }, + { + "start": 1230.36, + "end": 1230.36, + "probability": 0.3647 + }, + { + "start": 1230.36, + "end": 1230.38, + "probability": 0.4683 + }, + { + "start": 1230.38, + "end": 1230.38, + "probability": 0.0943 + }, + { + "start": 1230.38, + "end": 1230.38, + "probability": 0.1664 + }, + { + "start": 1230.38, + "end": 1230.38, + "probability": 0.2161 + }, + { + "start": 1230.38, + "end": 1234.12, + "probability": 0.47 + }, + { + "start": 1235.88, + "end": 1236.6, + "probability": 0.0403 + }, + { + "start": 1236.6, + "end": 1236.74, + "probability": 0.0266 + }, + { + "start": 1236.74, + "end": 1238.4, + "probability": 0.3281 + }, + { + "start": 1238.4, + "end": 1241.26, + "probability": 0.587 + }, + { + "start": 1241.42, + "end": 1242.58, + "probability": 0.7452 + }, + { + "start": 1243.02, + "end": 1244.32, + "probability": 0.974 + }, + { + "start": 1244.48, + "end": 1245.06, + "probability": 0.2607 + }, + { + "start": 1245.1, + "end": 1245.56, + "probability": 0.9206 + }, + { + "start": 1246.02, + "end": 1249.54, + "probability": 0.9694 + }, + { + "start": 1250.55, + "end": 1253.26, + "probability": 0.8331 + }, + { + "start": 1253.48, + "end": 1254.92, + "probability": 0.8472 + }, + { + "start": 1255.96, + "end": 1257.42, + "probability": 0.7179 + }, + { + "start": 1257.8, + "end": 1260.74, + "probability": 0.4579 + }, + { + "start": 1260.86, + "end": 1261.76, + "probability": 0.8254 + }, + { + "start": 1261.8, + "end": 1263.48, + "probability": 0.939 + }, + { + "start": 1263.74, + "end": 1264.8, + "probability": 0.9448 + }, + { + "start": 1265.04, + "end": 1267.4, + "probability": 0.9565 + }, + { + "start": 1267.78, + "end": 1269.1, + "probability": 0.8951 + }, + { + "start": 1269.62, + "end": 1270.98, + "probability": 0.7246 + }, + { + "start": 1271.34, + "end": 1272.58, + "probability": 0.999 + }, + { + "start": 1273.2, + "end": 1275.06, + "probability": 0.1344 + }, + { + "start": 1275.3, + "end": 1276.46, + "probability": 0.8735 + }, + { + "start": 1276.71, + "end": 1280.34, + "probability": 0.6581 + }, + { + "start": 1280.78, + "end": 1281.32, + "probability": 0.7066 + }, + { + "start": 1281.76, + "end": 1282.72, + "probability": 0.956 + }, + { + "start": 1283.46, + "end": 1286.4, + "probability": 0.9888 + }, + { + "start": 1286.78, + "end": 1288.56, + "probability": 0.6923 + }, + { + "start": 1289.12, + "end": 1291.76, + "probability": 0.9681 + }, + { + "start": 1292.42, + "end": 1297.26, + "probability": 0.943 + }, + { + "start": 1297.5, + "end": 1301.98, + "probability": 0.9669 + }, + { + "start": 1302.98, + "end": 1303.26, + "probability": 0.0232 + }, + { + "start": 1303.26, + "end": 1303.26, + "probability": 0.356 + }, + { + "start": 1303.26, + "end": 1303.26, + "probability": 0.099 + }, + { + "start": 1303.26, + "end": 1304.22, + "probability": 0.137 + }, + { + "start": 1304.22, + "end": 1306.29, + "probability": 0.7132 + }, + { + "start": 1306.8, + "end": 1311.5, + "probability": 0.9928 + }, + { + "start": 1313.34, + "end": 1314.44, + "probability": 0.1374 + }, + { + "start": 1319.08, + "end": 1319.92, + "probability": 0.3302 + }, + { + "start": 1319.92, + "end": 1319.92, + "probability": 0.5225 + }, + { + "start": 1320.0, + "end": 1320.84, + "probability": 0.1855 + }, + { + "start": 1320.96, + "end": 1323.1, + "probability": 0.882 + }, + { + "start": 1324.84, + "end": 1325.8, + "probability": 0.2978 + }, + { + "start": 1326.48, + "end": 1329.46, + "probability": 0.9863 + }, + { + "start": 1330.36, + "end": 1333.34, + "probability": 0.9929 + }, + { + "start": 1334.42, + "end": 1335.06, + "probability": 0.0632 + }, + { + "start": 1335.18, + "end": 1335.18, + "probability": 0.3297 + }, + { + "start": 1335.46, + "end": 1338.76, + "probability": 0.6053 + }, + { + "start": 1339.7, + "end": 1340.88, + "probability": 0.9847 + }, + { + "start": 1342.68, + "end": 1342.68, + "probability": 0.7616 + }, + { + "start": 1342.68, + "end": 1343.08, + "probability": 0.3472 + }, + { + "start": 1343.36, + "end": 1348.3, + "probability": 0.6419 + }, + { + "start": 1348.82, + "end": 1349.8, + "probability": 0.9502 + }, + { + "start": 1350.14, + "end": 1353.4, + "probability": 0.9503 + }, + { + "start": 1356.18, + "end": 1357.56, + "probability": 0.1682 + }, + { + "start": 1357.94, + "end": 1360.42, + "probability": 0.1834 + }, + { + "start": 1360.54, + "end": 1362.44, + "probability": 0.6471 + }, + { + "start": 1362.44, + "end": 1362.92, + "probability": 0.3002 + }, + { + "start": 1363.04, + "end": 1364.92, + "probability": 0.9097 + }, + { + "start": 1364.92, + "end": 1366.12, + "probability": 0.7958 + }, + { + "start": 1366.74, + "end": 1369.28, + "probability": 0.0629 + }, + { + "start": 1369.28, + "end": 1370.12, + "probability": 0.0327 + }, + { + "start": 1370.44, + "end": 1370.98, + "probability": 0.251 + }, + { + "start": 1371.0, + "end": 1371.0, + "probability": 0.0 + }, + { + "start": 1371.0, + "end": 1371.0, + "probability": 0.0 + }, + { + "start": 1371.0, + "end": 1371.0, + "probability": 0.0 + }, + { + "start": 1371.1, + "end": 1372.46, + "probability": 0.2299 + }, + { + "start": 1372.7, + "end": 1375.48, + "probability": 0.103 + }, + { + "start": 1375.48, + "end": 1375.69, + "probability": 0.3788 + }, + { + "start": 1376.62, + "end": 1378.28, + "probability": 0.4599 + }, + { + "start": 1378.81, + "end": 1380.29, + "probability": 0.7823 + }, + { + "start": 1380.68, + "end": 1380.75, + "probability": 0.0156 + }, + { + "start": 1381.38, + "end": 1382.74, + "probability": 0.7903 + }, + { + "start": 1382.88, + "end": 1384.36, + "probability": 0.98 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.0, + "end": 1493.0, + "probability": 0.0 + }, + { + "start": 1493.5, + "end": 1493.56, + "probability": 0.0679 + }, + { + "start": 1493.56, + "end": 1497.26, + "probability": 0.9145 + }, + { + "start": 1497.74, + "end": 1499.96, + "probability": 0.9113 + }, + { + "start": 1500.5, + "end": 1501.84, + "probability": 0.8698 + }, + { + "start": 1502.22, + "end": 1504.06, + "probability": 0.9853 + }, + { + "start": 1504.26, + "end": 1504.82, + "probability": 0.7593 + }, + { + "start": 1505.24, + "end": 1506.5, + "probability": 0.9937 + }, + { + "start": 1507.62, + "end": 1512.28, + "probability": 0.9724 + }, + { + "start": 1512.58, + "end": 1512.82, + "probability": 0.8572 + }, + { + "start": 1513.12, + "end": 1514.92, + "probability": 0.9576 + }, + { + "start": 1515.3, + "end": 1518.44, + "probability": 0.9702 + }, + { + "start": 1518.44, + "end": 1522.84, + "probability": 0.9929 + }, + { + "start": 1526.08, + "end": 1528.0, + "probability": 0.6843 + }, + { + "start": 1528.98, + "end": 1531.96, + "probability": 0.9929 + }, + { + "start": 1531.96, + "end": 1535.14, + "probability": 0.9958 + }, + { + "start": 1538.54, + "end": 1538.54, + "probability": 0.3317 + }, + { + "start": 1538.54, + "end": 1539.58, + "probability": 0.553 + }, + { + "start": 1539.6, + "end": 1541.04, + "probability": 0.8378 + }, + { + "start": 1541.88, + "end": 1543.94, + "probability": 0.7857 + }, + { + "start": 1543.94, + "end": 1543.94, + "probability": 0.2451 + }, + { + "start": 1543.94, + "end": 1544.22, + "probability": 0.5049 + }, + { + "start": 1544.34, + "end": 1545.56, + "probability": 0.4761 + }, + { + "start": 1545.96, + "end": 1547.5, + "probability": 0.4693 + }, + { + "start": 1547.88, + "end": 1551.18, + "probability": 0.5458 + }, + { + "start": 1551.46, + "end": 1552.52, + "probability": 0.6065 + }, + { + "start": 1552.84, + "end": 1556.6, + "probability": 0.0422 + }, + { + "start": 1556.74, + "end": 1557.84, + "probability": 0.8112 + }, + { + "start": 1557.98, + "end": 1561.5, + "probability": 0.6887 + }, + { + "start": 1561.88, + "end": 1563.5, + "probability": 0.9609 + }, + { + "start": 1564.0, + "end": 1564.6, + "probability": 0.748 + }, + { + "start": 1564.72, + "end": 1568.12, + "probability": 0.9199 + }, + { + "start": 1568.5, + "end": 1570.06, + "probability": 0.9682 + }, + { + "start": 1570.56, + "end": 1575.88, + "probability": 0.96 + }, + { + "start": 1576.46, + "end": 1580.64, + "probability": 0.9935 + }, + { + "start": 1581.1, + "end": 1584.12, + "probability": 0.9865 + }, + { + "start": 1584.12, + "end": 1588.12, + "probability": 0.9972 + }, + { + "start": 1588.78, + "end": 1593.96, + "probability": 0.9816 + }, + { + "start": 1594.38, + "end": 1598.19, + "probability": 0.9966 + }, + { + "start": 1598.48, + "end": 1601.24, + "probability": 0.9295 + }, + { + "start": 1601.26, + "end": 1601.26, + "probability": 0.4473 + }, + { + "start": 1601.26, + "end": 1601.26, + "probability": 0.4962 + }, + { + "start": 1601.26, + "end": 1601.3, + "probability": 0.5797 + }, + { + "start": 1601.44, + "end": 1602.84, + "probability": 0.9525 + }, + { + "start": 1604.94, + "end": 1606.21, + "probability": 0.6014 + }, + { + "start": 1608.3, + "end": 1608.72, + "probability": 0.1375 + }, + { + "start": 1608.72, + "end": 1608.72, + "probability": 0.3286 + }, + { + "start": 1608.72, + "end": 1609.8, + "probability": 0.9014 + }, + { + "start": 1610.66, + "end": 1612.5, + "probability": 0.8336 + }, + { + "start": 1612.8, + "end": 1613.74, + "probability": 0.4078 + }, + { + "start": 1613.78, + "end": 1614.3, + "probability": 0.9609 + }, + { + "start": 1614.4, + "end": 1615.42, + "probability": 0.1818 + }, + { + "start": 1615.6, + "end": 1618.36, + "probability": 0.5019 + }, + { + "start": 1625.62, + "end": 1626.44, + "probability": 0.2241 + }, + { + "start": 1626.58, + "end": 1629.9, + "probability": 0.9631 + }, + { + "start": 1630.14, + "end": 1631.31, + "probability": 0.9463 + }, + { + "start": 1636.08, + "end": 1636.86, + "probability": 0.3423 + }, + { + "start": 1637.96, + "end": 1639.36, + "probability": 0.004 + }, + { + "start": 1640.06, + "end": 1642.6, + "probability": 0.9277 + }, + { + "start": 1643.7, + "end": 1643.7, + "probability": 0.219 + }, + { + "start": 1643.7, + "end": 1644.16, + "probability": 0.2566 + }, + { + "start": 1644.62, + "end": 1645.1, + "probability": 0.4435 + }, + { + "start": 1645.1, + "end": 1645.86, + "probability": 0.2859 + }, + { + "start": 1647.44, + "end": 1650.12, + "probability": 0.5045 + }, + { + "start": 1650.9, + "end": 1651.62, + "probability": 0.2959 + }, + { + "start": 1651.86, + "end": 1654.18, + "probability": 0.0158 + }, + { + "start": 1654.32, + "end": 1655.72, + "probability": 0.046 + }, + { + "start": 1655.96, + "end": 1656.8, + "probability": 0.0669 + }, + { + "start": 1656.92, + "end": 1658.44, + "probability": 0.824 + }, + { + "start": 1658.58, + "end": 1660.22, + "probability": 0.0471 + }, + { + "start": 1660.98, + "end": 1661.52, + "probability": 0.0243 + }, + { + "start": 1661.54, + "end": 1663.53, + "probability": 0.3453 + }, + { + "start": 1664.98, + "end": 1666.1, + "probability": 0.058 + }, + { + "start": 1667.54, + "end": 1667.78, + "probability": 0.0115 + }, + { + "start": 1667.78, + "end": 1670.18, + "probability": 0.1388 + }, + { + "start": 1671.74, + "end": 1672.78, + "probability": 0.5432 + }, + { + "start": 1674.48, + "end": 1674.72, + "probability": 0.8789 + }, + { + "start": 1675.92, + "end": 1679.42, + "probability": 0.9673 + }, + { + "start": 1680.24, + "end": 1681.7, + "probability": 0.9215 + }, + { + "start": 1683.0, + "end": 1684.1, + "probability": 0.8175 + }, + { + "start": 1685.42, + "end": 1686.42, + "probability": 0.7962 + }, + { + "start": 1688.24, + "end": 1689.3, + "probability": 0.9893 + }, + { + "start": 1690.24, + "end": 1693.9, + "probability": 0.9958 + }, + { + "start": 1694.92, + "end": 1696.66, + "probability": 0.8974 + }, + { + "start": 1697.64, + "end": 1699.34, + "probability": 0.8916 + }, + { + "start": 1700.7, + "end": 1701.22, + "probability": 0.7636 + }, + { + "start": 1702.2, + "end": 1703.14, + "probability": 0.8427 + }, + { + "start": 1704.08, + "end": 1706.06, + "probability": 0.8473 + }, + { + "start": 1707.98, + "end": 1708.82, + "probability": 0.7309 + }, + { + "start": 1709.84, + "end": 1711.78, + "probability": 0.9305 + }, + { + "start": 1713.9, + "end": 1715.52, + "probability": 0.7932 + }, + { + "start": 1716.48, + "end": 1718.78, + "probability": 0.9624 + }, + { + "start": 1719.54, + "end": 1721.14, + "probability": 0.8321 + }, + { + "start": 1722.28, + "end": 1726.18, + "probability": 0.8264 + }, + { + "start": 1727.08, + "end": 1728.18, + "probability": 0.6893 + }, + { + "start": 1728.9, + "end": 1731.96, + "probability": 0.9753 + }, + { + "start": 1732.64, + "end": 1734.56, + "probability": 0.7955 + }, + { + "start": 1735.36, + "end": 1736.84, + "probability": 0.9318 + }, + { + "start": 1737.82, + "end": 1739.18, + "probability": 0.7467 + }, + { + "start": 1740.7, + "end": 1743.3, + "probability": 0.884 + }, + { + "start": 1744.46, + "end": 1748.98, + "probability": 0.9692 + }, + { + "start": 1750.2, + "end": 1751.12, + "probability": 0.6541 + }, + { + "start": 1752.86, + "end": 1762.62, + "probability": 0.9845 + }, + { + "start": 1763.0, + "end": 1763.54, + "probability": 0.4761 + }, + { + "start": 1768.42, + "end": 1770.08, + "probability": 0.748 + }, + { + "start": 1771.42, + "end": 1772.0, + "probability": 0.0142 + }, + { + "start": 1773.96, + "end": 1776.12, + "probability": 0.5095 + }, + { + "start": 1777.56, + "end": 1782.48, + "probability": 0.6322 + }, + { + "start": 1783.26, + "end": 1784.66, + "probability": 0.2309 + }, + { + "start": 1785.04, + "end": 1789.88, + "probability": 0.1364 + }, + { + "start": 1843.24, + "end": 1844.5, + "probability": 0.5919 + }, + { + "start": 1846.72, + "end": 1847.96, + "probability": 0.781 + }, + { + "start": 1849.08, + "end": 1851.12, + "probability": 0.5633 + }, + { + "start": 1852.46, + "end": 1855.94, + "probability": 0.9766 + }, + { + "start": 1856.5, + "end": 1857.74, + "probability": 0.9646 + }, + { + "start": 1858.36, + "end": 1860.1, + "probability": 0.9156 + }, + { + "start": 1861.1, + "end": 1863.32, + "probability": 0.9219 + }, + { + "start": 1863.84, + "end": 1865.22, + "probability": 0.9176 + }, + { + "start": 1866.08, + "end": 1867.18, + "probability": 0.9949 + }, + { + "start": 1867.86, + "end": 1869.04, + "probability": 0.9885 + }, + { + "start": 1870.02, + "end": 1871.24, + "probability": 0.968 + }, + { + "start": 1871.34, + "end": 1873.46, + "probability": 0.9885 + }, + { + "start": 1873.86, + "end": 1875.5, + "probability": 0.9353 + }, + { + "start": 1875.68, + "end": 1876.73, + "probability": 0.8173 + }, + { + "start": 1878.44, + "end": 1880.78, + "probability": 0.9124 + }, + { + "start": 1881.38, + "end": 1883.54, + "probability": 0.9913 + }, + { + "start": 1884.2, + "end": 1885.86, + "probability": 0.8311 + }, + { + "start": 1887.16, + "end": 1888.52, + "probability": 0.7578 + }, + { + "start": 1888.56, + "end": 1889.36, + "probability": 0.8403 + }, + { + "start": 1889.48, + "end": 1892.0, + "probability": 0.9035 + }, + { + "start": 1892.42, + "end": 1892.68, + "probability": 0.2914 + }, + { + "start": 1892.92, + "end": 1894.51, + "probability": 0.2305 + }, + { + "start": 1894.9, + "end": 1896.5, + "probability": 0.5584 + }, + { + "start": 1899.13, + "end": 1903.9, + "probability": 0.1892 + }, + { + "start": 1906.3, + "end": 1912.88, + "probability": 0.0144 + }, + { + "start": 1912.88, + "end": 1914.82, + "probability": 0.2034 + }, + { + "start": 1915.92, + "end": 1916.58, + "probability": 0.3056 + }, + { + "start": 1916.64, + "end": 1916.74, + "probability": 0.345 + }, + { + "start": 1916.74, + "end": 1918.17, + "probability": 0.076 + }, + { + "start": 1918.62, + "end": 1922.1, + "probability": 0.9362 + }, + { + "start": 1922.72, + "end": 1924.26, + "probability": 0.9575 + }, + { + "start": 1924.84, + "end": 1926.54, + "probability": 0.9326 + }, + { + "start": 1927.08, + "end": 1928.64, + "probability": 0.935 + }, + { + "start": 1929.6, + "end": 1932.8, + "probability": 0.9912 + }, + { + "start": 1933.12, + "end": 1935.2, + "probability": 0.9487 + }, + { + "start": 1935.86, + "end": 1938.68, + "probability": 0.9945 + }, + { + "start": 1939.44, + "end": 1943.18, + "probability": 0.9912 + }, + { + "start": 1944.08, + "end": 1945.7, + "probability": 0.869 + }, + { + "start": 1946.26, + "end": 1948.84, + "probability": 0.8818 + }, + { + "start": 1949.82, + "end": 1954.36, + "probability": 0.9772 + }, + { + "start": 1955.0, + "end": 1957.02, + "probability": 0.7817 + }, + { + "start": 1958.16, + "end": 1959.5, + "probability": 0.8647 + }, + { + "start": 1960.06, + "end": 1963.58, + "probability": 0.9423 + }, + { + "start": 1964.5, + "end": 1966.26, + "probability": 0.8464 + }, + { + "start": 1966.76, + "end": 1967.58, + "probability": 0.7253 + }, + { + "start": 1967.66, + "end": 1967.68, + "probability": 0.524 + }, + { + "start": 1967.72, + "end": 1968.42, + "probability": 0.7383 + }, + { + "start": 1969.06, + "end": 1971.24, + "probability": 0.5423 + }, + { + "start": 1971.44, + "end": 1973.48, + "probability": 0.7209 + }, + { + "start": 1974.18, + "end": 1975.74, + "probability": 0.7278 + }, + { + "start": 1976.68, + "end": 1979.76, + "probability": 0.9742 + }, + { + "start": 1980.38, + "end": 1981.14, + "probability": 0.968 + }, + { + "start": 1981.22, + "end": 1983.0, + "probability": 0.9955 + }, + { + "start": 1983.02, + "end": 1983.9, + "probability": 0.9872 + }, + { + "start": 1983.96, + "end": 1985.14, + "probability": 0.9946 + }, + { + "start": 1985.86, + "end": 1988.04, + "probability": 0.8012 + }, + { + "start": 1988.84, + "end": 1989.83, + "probability": 0.9883 + }, + { + "start": 1990.44, + "end": 1992.78, + "probability": 0.9893 + }, + { + "start": 1993.12, + "end": 1994.54, + "probability": 0.9416 + }, + { + "start": 1995.26, + "end": 1997.58, + "probability": 0.6218 + }, + { + "start": 1997.68, + "end": 1998.84, + "probability": 0.9778 + }, + { + "start": 1999.04, + "end": 2000.9, + "probability": 0.991 + }, + { + "start": 2001.4, + "end": 2003.4, + "probability": 0.9654 + }, + { + "start": 2003.84, + "end": 2005.46, + "probability": 0.9838 + }, + { + "start": 2006.02, + "end": 2009.4, + "probability": 0.9717 + }, + { + "start": 2010.02, + "end": 2010.9, + "probability": 0.8078 + }, + { + "start": 2011.04, + "end": 2013.34, + "probability": 0.9834 + }, + { + "start": 2014.26, + "end": 2015.24, + "probability": 0.8787 + }, + { + "start": 2016.04, + "end": 2017.48, + "probability": 0.7922 + }, + { + "start": 2018.08, + "end": 2019.42, + "probability": 0.948 + }, + { + "start": 2020.28, + "end": 2022.5, + "probability": 0.9724 + }, + { + "start": 2022.68, + "end": 2025.34, + "probability": 0.925 + }, + { + "start": 2025.9, + "end": 2029.92, + "probability": 0.9362 + }, + { + "start": 2030.36, + "end": 2033.62, + "probability": 0.8818 + }, + { + "start": 2034.68, + "end": 2037.88, + "probability": 0.9326 + }, + { + "start": 2038.76, + "end": 2039.6, + "probability": 0.9463 + }, + { + "start": 2039.98, + "end": 2041.44, + "probability": 0.996 + }, + { + "start": 2041.94, + "end": 2044.46, + "probability": 0.9094 + }, + { + "start": 2044.82, + "end": 2046.2, + "probability": 0.979 + }, + { + "start": 2046.7, + "end": 2049.4, + "probability": 0.966 + }, + { + "start": 2049.88, + "end": 2052.34, + "probability": 0.9685 + }, + { + "start": 2052.68, + "end": 2053.18, + "probability": 0.9745 + }, + { + "start": 2053.9, + "end": 2054.76, + "probability": 0.8821 + }, + { + "start": 2055.22, + "end": 2058.74, + "probability": 0.9772 + }, + { + "start": 2058.82, + "end": 2061.22, + "probability": 0.9753 + }, + { + "start": 2061.78, + "end": 2062.88, + "probability": 0.6203 + }, + { + "start": 2063.8, + "end": 2064.74, + "probability": 0.9476 + }, + { + "start": 2065.28, + "end": 2065.68, + "probability": 0.7233 + }, + { + "start": 2066.04, + "end": 2066.46, + "probability": 0.9628 + }, + { + "start": 2067.14, + "end": 2067.38, + "probability": 0.6704 + }, + { + "start": 2071.56, + "end": 2074.0, + "probability": 0.923 + }, + { + "start": 2074.32, + "end": 2077.16, + "probability": 0.9907 + }, + { + "start": 2077.26, + "end": 2080.94, + "probability": 0.9646 + }, + { + "start": 2081.02, + "end": 2081.76, + "probability": 0.7026 + }, + { + "start": 2082.18, + "end": 2082.94, + "probability": 0.8906 + }, + { + "start": 2103.62, + "end": 2104.88, + "probability": 0.6735 + }, + { + "start": 2107.19, + "end": 2109.78, + "probability": 0.744 + }, + { + "start": 2110.44, + "end": 2111.32, + "probability": 0.976 + }, + { + "start": 2111.84, + "end": 2113.08, + "probability": 0.9595 + }, + { + "start": 2115.16, + "end": 2117.62, + "probability": 0.8282 + }, + { + "start": 2120.94, + "end": 2121.94, + "probability": 0.9921 + }, + { + "start": 2122.64, + "end": 2125.12, + "probability": 0.8279 + }, + { + "start": 2127.12, + "end": 2128.7, + "probability": 0.7447 + }, + { + "start": 2128.78, + "end": 2130.62, + "probability": 0.711 + }, + { + "start": 2133.1, + "end": 2135.44, + "probability": 0.9869 + }, + { + "start": 2136.6, + "end": 2137.28, + "probability": 0.7689 + }, + { + "start": 2137.46, + "end": 2140.64, + "probability": 0.9985 + }, + { + "start": 2142.64, + "end": 2148.14, + "probability": 0.9896 + }, + { + "start": 2149.2, + "end": 2150.26, + "probability": 0.9937 + }, + { + "start": 2152.76, + "end": 2154.3, + "probability": 0.8665 + }, + { + "start": 2155.58, + "end": 2159.64, + "probability": 0.997 + }, + { + "start": 2160.46, + "end": 2162.02, + "probability": 0.9648 + }, + { + "start": 2162.08, + "end": 2165.1, + "probability": 0.9731 + }, + { + "start": 2166.1, + "end": 2167.23, + "probability": 0.6091 + }, + { + "start": 2167.78, + "end": 2170.88, + "probability": 0.9461 + }, + { + "start": 2172.1, + "end": 2176.14, + "probability": 0.9801 + }, + { + "start": 2178.06, + "end": 2182.16, + "probability": 0.8134 + }, + { + "start": 2182.56, + "end": 2185.12, + "probability": 0.9676 + }, + { + "start": 2185.32, + "end": 2186.22, + "probability": 0.7515 + }, + { + "start": 2187.18, + "end": 2188.86, + "probability": 0.9948 + }, + { + "start": 2188.96, + "end": 2190.98, + "probability": 0.9929 + }, + { + "start": 2192.34, + "end": 2196.34, + "probability": 0.991 + }, + { + "start": 2197.4, + "end": 2203.66, + "probability": 0.989 + }, + { + "start": 2204.58, + "end": 2206.94, + "probability": 0.9736 + }, + { + "start": 2207.02, + "end": 2208.7, + "probability": 0.9036 + }, + { + "start": 2209.52, + "end": 2211.5, + "probability": 0.9927 + }, + { + "start": 2212.02, + "end": 2213.4, + "probability": 0.7685 + }, + { + "start": 2214.76, + "end": 2215.76, + "probability": 0.9863 + }, + { + "start": 2217.18, + "end": 2219.86, + "probability": 0.9878 + }, + { + "start": 2220.96, + "end": 2227.94, + "probability": 0.9974 + }, + { + "start": 2228.2, + "end": 2231.28, + "probability": 0.9966 + }, + { + "start": 2232.02, + "end": 2232.9, + "probability": 0.6416 + }, + { + "start": 2233.96, + "end": 2236.3, + "probability": 0.9979 + }, + { + "start": 2236.3, + "end": 2239.0, + "probability": 0.9976 + }, + { + "start": 2239.98, + "end": 2243.9, + "probability": 0.9922 + }, + { + "start": 2244.2, + "end": 2248.34, + "probability": 0.9932 + }, + { + "start": 2249.48, + "end": 2252.58, + "probability": 0.9868 + }, + { + "start": 2252.58, + "end": 2256.08, + "probability": 0.9956 + }, + { + "start": 2258.8, + "end": 2265.12, + "probability": 0.9961 + }, + { + "start": 2265.94, + "end": 2267.9, + "probability": 0.9835 + }, + { + "start": 2268.52, + "end": 2272.52, + "probability": 0.9976 + }, + { + "start": 2272.68, + "end": 2277.22, + "probability": 0.9878 + }, + { + "start": 2278.3, + "end": 2282.0, + "probability": 0.9959 + }, + { + "start": 2282.14, + "end": 2283.1, + "probability": 0.7239 + }, + { + "start": 2284.0, + "end": 2288.1, + "probability": 0.9611 + }, + { + "start": 2288.74, + "end": 2289.02, + "probability": 0.6746 + }, + { + "start": 2289.08, + "end": 2290.94, + "probability": 0.9641 + }, + { + "start": 2291.26, + "end": 2292.36, + "probability": 0.9861 + }, + { + "start": 2293.06, + "end": 2296.62, + "probability": 0.9446 + }, + { + "start": 2296.74, + "end": 2298.24, + "probability": 0.4184 + }, + { + "start": 2299.38, + "end": 2302.9, + "probability": 0.979 + }, + { + "start": 2303.02, + "end": 2304.84, + "probability": 0.9233 + }, + { + "start": 2305.58, + "end": 2310.08, + "probability": 0.9896 + }, + { + "start": 2310.18, + "end": 2310.74, + "probability": 0.7562 + }, + { + "start": 2316.36, + "end": 2319.74, + "probability": 0.8552 + }, + { + "start": 2321.0, + "end": 2324.34, + "probability": 0.9956 + }, + { + "start": 2324.52, + "end": 2325.14, + "probability": 0.8324 + }, + { + "start": 2325.24, + "end": 2325.88, + "probability": 0.9913 + }, + { + "start": 2326.64, + "end": 2329.6, + "probability": 0.9807 + }, + { + "start": 2331.04, + "end": 2331.16, + "probability": 0.0329 + }, + { + "start": 2331.16, + "end": 2332.6, + "probability": 0.7293 + }, + { + "start": 2332.6, + "end": 2333.26, + "probability": 0.9061 + }, + { + "start": 2333.54, + "end": 2334.28, + "probability": 0.1242 + }, + { + "start": 2334.28, + "end": 2335.62, + "probability": 0.6564 + }, + { + "start": 2335.68, + "end": 2336.56, + "probability": 0.9377 + }, + { + "start": 2336.6, + "end": 2337.56, + "probability": 0.9849 + }, + { + "start": 2340.09, + "end": 2340.6, + "probability": 0.0518 + }, + { + "start": 2340.6, + "end": 2341.68, + "probability": 0.3508 + }, + { + "start": 2342.72, + "end": 2345.76, + "probability": 0.7295 + }, + { + "start": 2345.88, + "end": 2347.02, + "probability": 0.8135 + }, + { + "start": 2348.0, + "end": 2353.18, + "probability": 0.9904 + }, + { + "start": 2353.18, + "end": 2358.72, + "probability": 0.9983 + }, + { + "start": 2360.22, + "end": 2361.22, + "probability": 0.9825 + }, + { + "start": 2361.3, + "end": 2365.74, + "probability": 0.9135 + }, + { + "start": 2365.94, + "end": 2370.16, + "probability": 0.9768 + }, + { + "start": 2371.02, + "end": 2374.22, + "probability": 0.9968 + }, + { + "start": 2375.38, + "end": 2379.4, + "probability": 0.9978 + }, + { + "start": 2385.8, + "end": 2387.5, + "probability": 0.9865 + }, + { + "start": 2388.08, + "end": 2390.12, + "probability": 0.9241 + }, + { + "start": 2390.12, + "end": 2390.74, + "probability": 0.7524 + }, + { + "start": 2390.8, + "end": 2392.9, + "probability": 0.8786 + }, + { + "start": 2393.56, + "end": 2395.42, + "probability": 0.9943 + }, + { + "start": 2395.5, + "end": 2400.08, + "probability": 0.9708 + }, + { + "start": 2401.12, + "end": 2403.64, + "probability": 0.9912 + }, + { + "start": 2403.76, + "end": 2405.46, + "probability": 0.6828 + }, + { + "start": 2405.62, + "end": 2409.2, + "probability": 0.9978 + }, + { + "start": 2410.14, + "end": 2413.78, + "probability": 0.9978 + }, + { + "start": 2414.92, + "end": 2416.7, + "probability": 0.9991 + }, + { + "start": 2417.54, + "end": 2418.9, + "probability": 0.8691 + }, + { + "start": 2419.56, + "end": 2421.78, + "probability": 0.9904 + }, + { + "start": 2421.78, + "end": 2424.02, + "probability": 0.9843 + }, + { + "start": 2426.26, + "end": 2429.46, + "probability": 0.9958 + }, + { + "start": 2429.52, + "end": 2431.82, + "probability": 0.6306 + }, + { + "start": 2431.9, + "end": 2434.34, + "probability": 0.9943 + }, + { + "start": 2434.94, + "end": 2436.38, + "probability": 0.9043 + }, + { + "start": 2437.1, + "end": 2440.48, + "probability": 0.9725 + }, + { + "start": 2441.44, + "end": 2443.36, + "probability": 0.8604 + }, + { + "start": 2443.38, + "end": 2444.76, + "probability": 0.8759 + }, + { + "start": 2444.88, + "end": 2445.7, + "probability": 0.52 + }, + { + "start": 2446.36, + "end": 2449.0, + "probability": 0.9925 + }, + { + "start": 2449.54, + "end": 2450.64, + "probability": 0.9831 + }, + { + "start": 2452.76, + "end": 2454.98, + "probability": 0.9427 + }, + { + "start": 2455.53, + "end": 2458.76, + "probability": 0.9827 + }, + { + "start": 2459.54, + "end": 2463.16, + "probability": 0.9983 + }, + { + "start": 2463.22, + "end": 2464.26, + "probability": 0.9819 + }, + { + "start": 2465.16, + "end": 2467.2, + "probability": 0.9971 + }, + { + "start": 2468.48, + "end": 2473.94, + "probability": 0.9931 + }, + { + "start": 2477.98, + "end": 2481.18, + "probability": 0.9985 + }, + { + "start": 2481.78, + "end": 2483.04, + "probability": 0.9958 + }, + { + "start": 2483.66, + "end": 2487.34, + "probability": 0.9978 + }, + { + "start": 2487.92, + "end": 2490.34, + "probability": 0.9891 + }, + { + "start": 2490.34, + "end": 2493.28, + "probability": 0.8468 + }, + { + "start": 2496.06, + "end": 2497.08, + "probability": 0.788 + }, + { + "start": 2497.7, + "end": 2502.6, + "probability": 0.9673 + }, + { + "start": 2506.88, + "end": 2507.76, + "probability": 0.7506 + }, + { + "start": 2508.08, + "end": 2512.62, + "probability": 0.9836 + }, + { + "start": 2513.14, + "end": 2514.7, + "probability": 0.9698 + }, + { + "start": 2514.86, + "end": 2516.78, + "probability": 0.9983 + }, + { + "start": 2517.74, + "end": 2520.86, + "probability": 0.9887 + }, + { + "start": 2520.94, + "end": 2522.4, + "probability": 0.9558 + }, + { + "start": 2523.62, + "end": 2526.08, + "probability": 0.7869 + }, + { + "start": 2526.7, + "end": 2528.86, + "probability": 0.8123 + }, + { + "start": 2529.02, + "end": 2529.97, + "probability": 0.8291 + }, + { + "start": 2530.26, + "end": 2532.28, + "probability": 0.4566 + }, + { + "start": 2532.36, + "end": 2533.92, + "probability": 0.6969 + }, + { + "start": 2534.36, + "end": 2538.86, + "probability": 0.1467 + }, + { + "start": 2539.24, + "end": 2539.24, + "probability": 0.0562 + }, + { + "start": 2539.24, + "end": 2539.24, + "probability": 0.3593 + }, + { + "start": 2539.24, + "end": 2543.98, + "probability": 0.8872 + }, + { + "start": 2543.98, + "end": 2546.72, + "probability": 0.9969 + }, + { + "start": 2546.76, + "end": 2548.4, + "probability": 0.9305 + }, + { + "start": 2548.98, + "end": 2553.82, + "probability": 0.977 + }, + { + "start": 2553.82, + "end": 2559.5, + "probability": 0.9974 + }, + { + "start": 2560.98, + "end": 2563.38, + "probability": 0.9987 + }, + { + "start": 2563.98, + "end": 2569.2, + "probability": 0.9988 + }, + { + "start": 2569.8, + "end": 2570.08, + "probability": 0.7393 + }, + { + "start": 2570.14, + "end": 2574.25, + "probability": 0.8883 + }, + { + "start": 2574.58, + "end": 2576.3, + "probability": 0.9238 + }, + { + "start": 2576.82, + "end": 2580.82, + "probability": 0.9976 + }, + { + "start": 2581.88, + "end": 2585.18, + "probability": 0.9976 + }, + { + "start": 2585.18, + "end": 2588.02, + "probability": 0.9995 + }, + { + "start": 2591.74, + "end": 2592.94, + "probability": 0.9493 + }, + { + "start": 2593.04, + "end": 2596.52, + "probability": 0.9902 + }, + { + "start": 2597.58, + "end": 2601.58, + "probability": 0.995 + }, + { + "start": 2602.12, + "end": 2603.94, + "probability": 0.9722 + }, + { + "start": 2605.06, + "end": 2605.68, + "probability": 0.774 + }, + { + "start": 2607.46, + "end": 2613.0, + "probability": 0.9967 + }, + { + "start": 2613.0, + "end": 2615.64, + "probability": 0.9978 + }, + { + "start": 2616.8, + "end": 2619.3, + "probability": 0.9946 + }, + { + "start": 2619.42, + "end": 2621.24, + "probability": 0.9312 + }, + { + "start": 2621.38, + "end": 2625.9, + "probability": 0.9985 + }, + { + "start": 2626.6, + "end": 2628.98, + "probability": 0.9565 + }, + { + "start": 2630.62, + "end": 2633.36, + "probability": 0.9653 + }, + { + "start": 2634.16, + "end": 2637.42, + "probability": 0.9743 + }, + { + "start": 2637.99, + "end": 2641.5, + "probability": 0.978 + }, + { + "start": 2642.54, + "end": 2643.08, + "probability": 0.4815 + }, + { + "start": 2643.94, + "end": 2648.06, + "probability": 0.9966 + }, + { + "start": 2649.34, + "end": 2652.78, + "probability": 0.9494 + }, + { + "start": 2652.9, + "end": 2658.16, + "probability": 0.999 + }, + { + "start": 2659.34, + "end": 2662.46, + "probability": 0.9614 + }, + { + "start": 2662.58, + "end": 2666.24, + "probability": 0.9917 + }, + { + "start": 2666.36, + "end": 2670.06, + "probability": 0.9865 + }, + { + "start": 2673.1, + "end": 2677.54, + "probability": 0.9917 + }, + { + "start": 2678.2, + "end": 2680.68, + "probability": 0.9817 + }, + { + "start": 2680.74, + "end": 2685.02, + "probability": 0.9658 + }, + { + "start": 2685.1, + "end": 2687.02, + "probability": 0.9829 + }, + { + "start": 2687.02, + "end": 2689.52, + "probability": 0.9962 + }, + { + "start": 2690.28, + "end": 2691.24, + "probability": 0.9404 + }, + { + "start": 2693.48, + "end": 2694.34, + "probability": 0.8445 + }, + { + "start": 2695.26, + "end": 2695.88, + "probability": 0.8642 + }, + { + "start": 2695.94, + "end": 2697.48, + "probability": 0.9828 + }, + { + "start": 2697.54, + "end": 2700.4, + "probability": 0.957 + }, + { + "start": 2701.2, + "end": 2703.78, + "probability": 0.9787 + }, + { + "start": 2704.52, + "end": 2705.76, + "probability": 0.9854 + }, + { + "start": 2706.84, + "end": 2708.56, + "probability": 0.9808 + }, + { + "start": 2708.64, + "end": 2711.02, + "probability": 0.9973 + }, + { + "start": 2711.02, + "end": 2716.62, + "probability": 0.9779 + }, + { + "start": 2717.58, + "end": 2720.6, + "probability": 0.9893 + }, + { + "start": 2721.2, + "end": 2724.68, + "probability": 0.9973 + }, + { + "start": 2724.78, + "end": 2725.24, + "probability": 0.8735 + }, + { + "start": 2725.3, + "end": 2726.1, + "probability": 0.8184 + }, + { + "start": 2726.72, + "end": 2728.18, + "probability": 0.9243 + }, + { + "start": 2728.22, + "end": 2730.8, + "probability": 0.968 + }, + { + "start": 2732.24, + "end": 2734.36, + "probability": 0.9969 + }, + { + "start": 2734.56, + "end": 2736.76, + "probability": 0.5128 + }, + { + "start": 2737.36, + "end": 2738.96, + "probability": 0.9702 + }, + { + "start": 2739.48, + "end": 2740.48, + "probability": 0.8807 + }, + { + "start": 2741.6, + "end": 2744.78, + "probability": 0.983 + }, + { + "start": 2745.26, + "end": 2747.6, + "probability": 0.9844 + }, + { + "start": 2748.74, + "end": 2751.16, + "probability": 0.8517 + }, + { + "start": 2752.22, + "end": 2756.1, + "probability": 0.9882 + }, + { + "start": 2757.52, + "end": 2759.16, + "probability": 0.3256 + }, + { + "start": 2759.3, + "end": 2762.92, + "probability": 0.8598 + }, + { + "start": 2763.48, + "end": 2766.04, + "probability": 0.9451 + }, + { + "start": 2766.14, + "end": 2769.28, + "probability": 0.9233 + }, + { + "start": 2769.34, + "end": 2773.62, + "probability": 0.9307 + }, + { + "start": 2775.36, + "end": 2776.2, + "probability": 0.8007 + }, + { + "start": 2776.32, + "end": 2779.04, + "probability": 0.9984 + }, + { + "start": 2785.98, + "end": 2788.48, + "probability": 0.1883 + }, + { + "start": 2788.54, + "end": 2789.84, + "probability": 0.4517 + }, + { + "start": 2791.12, + "end": 2791.54, + "probability": 0.2379 + }, + { + "start": 2792.1, + "end": 2792.34, + "probability": 0.6375 + }, + { + "start": 2792.42, + "end": 2794.26, + "probability": 0.3701 + }, + { + "start": 2794.74, + "end": 2795.26, + "probability": 0.3484 + }, + { + "start": 2795.48, + "end": 2796.56, + "probability": 0.8288 + }, + { + "start": 2796.64, + "end": 2798.94, + "probability": 0.9471 + }, + { + "start": 2799.1, + "end": 2802.76, + "probability": 0.8696 + }, + { + "start": 2803.02, + "end": 2805.84, + "probability": 0.8451 + }, + { + "start": 2806.08, + "end": 2806.74, + "probability": 0.2921 + }, + { + "start": 2806.9, + "end": 2807.92, + "probability": 0.9557 + }, + { + "start": 2808.0, + "end": 2809.0, + "probability": 0.8338 + }, + { + "start": 2809.94, + "end": 2812.66, + "probability": 0.9917 + }, + { + "start": 2812.66, + "end": 2815.52, + "probability": 0.7244 + }, + { + "start": 2816.36, + "end": 2819.2, + "probability": 0.9917 + }, + { + "start": 2819.24, + "end": 2822.28, + "probability": 0.9518 + }, + { + "start": 2823.5, + "end": 2824.14, + "probability": 0.7792 + }, + { + "start": 2824.6, + "end": 2828.26, + "probability": 0.8215 + }, + { + "start": 2828.68, + "end": 2829.9, + "probability": 0.9634 + }, + { + "start": 2830.38, + "end": 2831.92, + "probability": 0.9796 + }, + { + "start": 2832.06, + "end": 2833.0, + "probability": 0.9559 + }, + { + "start": 2833.74, + "end": 2837.1, + "probability": 0.9595 + }, + { + "start": 2837.4, + "end": 2841.34, + "probability": 0.9974 + }, + { + "start": 2842.22, + "end": 2843.78, + "probability": 0.7853 + }, + { + "start": 2844.2, + "end": 2848.74, + "probability": 0.9893 + }, + { + "start": 2849.26, + "end": 2850.46, + "probability": 0.9738 + }, + { + "start": 2850.98, + "end": 2852.92, + "probability": 0.9943 + }, + { + "start": 2853.52, + "end": 2855.56, + "probability": 0.998 + }, + { + "start": 2857.44, + "end": 2862.58, + "probability": 0.9978 + }, + { + "start": 2863.16, + "end": 2867.32, + "probability": 0.9871 + }, + { + "start": 2868.46, + "end": 2872.7, + "probability": 0.9607 + }, + { + "start": 2873.42, + "end": 2878.3, + "probability": 0.9607 + }, + { + "start": 2878.4, + "end": 2880.9, + "probability": 0.876 + }, + { + "start": 2882.1, + "end": 2887.22, + "probability": 0.9933 + }, + { + "start": 2891.88, + "end": 2895.82, + "probability": 0.9902 + }, + { + "start": 2895.92, + "end": 2898.78, + "probability": 0.9983 + }, + { + "start": 2900.28, + "end": 2903.78, + "probability": 0.9955 + }, + { + "start": 2903.78, + "end": 2907.36, + "probability": 0.995 + }, + { + "start": 2907.64, + "end": 2911.6, + "probability": 0.008 + }, + { + "start": 2911.6, + "end": 2911.6, + "probability": 0.0258 + }, + { + "start": 2911.6, + "end": 2914.92, + "probability": 0.5874 + }, + { + "start": 2914.92, + "end": 2914.92, + "probability": 0.0188 + }, + { + "start": 2914.92, + "end": 2915.72, + "probability": 0.8206 + }, + { + "start": 2918.16, + "end": 2920.32, + "probability": 0.6498 + }, + { + "start": 2922.64, + "end": 2923.06, + "probability": 0.0777 + }, + { + "start": 2926.42, + "end": 2928.92, + "probability": 0.7365 + }, + { + "start": 2929.1, + "end": 2930.54, + "probability": 0.0603 + }, + { + "start": 2931.22, + "end": 2933.78, + "probability": 0.0911 + }, + { + "start": 2933.82, + "end": 2941.06, + "probability": 0.2348 + }, + { + "start": 2941.82, + "end": 2946.52, + "probability": 0.1153 + }, + { + "start": 2947.84, + "end": 2949.7, + "probability": 0.4149 + }, + { + "start": 2949.7, + "end": 2951.54, + "probability": 0.084 + }, + { + "start": 2957.44, + "end": 2958.04, + "probability": 0.0182 + }, + { + "start": 2958.04, + "end": 2959.54, + "probability": 0.0385 + }, + { + "start": 2959.54, + "end": 2959.54, + "probability": 0.0271 + }, + { + "start": 2960.84, + "end": 2961.5, + "probability": 0.048 + }, + { + "start": 2961.5, + "end": 2965.42, + "probability": 0.0114 + }, + { + "start": 2965.42, + "end": 2966.06, + "probability": 0.1358 + }, + { + "start": 2967.55, + "end": 2969.73, + "probability": 0.0299 + }, + { + "start": 2971.58, + "end": 2972.98, + "probability": 0.0844 + }, + { + "start": 2974.34, + "end": 2974.44, + "probability": 0.002 + }, + { + "start": 2976.16, + "end": 2979.26, + "probability": 0.1988 + }, + { + "start": 2979.26, + "end": 2980.12, + "probability": 0.2374 + }, + { + "start": 2980.4, + "end": 2980.82, + "probability": 0.0304 + }, + { + "start": 2981.24, + "end": 2984.18, + "probability": 0.0383 + }, + { + "start": 2985.02, + "end": 2986.02, + "probability": 0.0219 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.0, + "end": 2996.0, + "probability": 0.0 + }, + { + "start": 2996.12, + "end": 2996.28, + "probability": 0.1104 + }, + { + "start": 2996.28, + "end": 2996.28, + "probability": 0.0408 + }, + { + "start": 2996.28, + "end": 2996.28, + "probability": 0.0077 + }, + { + "start": 2996.28, + "end": 2996.28, + "probability": 0.0551 + }, + { + "start": 2996.28, + "end": 2997.91, + "probability": 0.4661 + }, + { + "start": 2998.38, + "end": 3000.62, + "probability": 0.9673 + }, + { + "start": 3001.62, + "end": 3002.26, + "probability": 0.9548 + }, + { + "start": 3002.94, + "end": 3003.7, + "probability": 0.8343 + }, + { + "start": 3023.22, + "end": 3024.2, + "probability": 0.6265 + }, + { + "start": 3030.0, + "end": 3034.48, + "probability": 0.9984 + }, + { + "start": 3035.66, + "end": 3036.12, + "probability": 0.6724 + }, + { + "start": 3050.6, + "end": 3050.78, + "probability": 0.0257 + }, + { + "start": 3061.58, + "end": 3061.68, + "probability": 0.0067 + }, + { + "start": 3061.68, + "end": 3062.3, + "probability": 0.4618 + }, + { + "start": 3064.04, + "end": 3066.24, + "probability": 0.9955 + }, + { + "start": 3066.34, + "end": 3068.88, + "probability": 0.9041 + }, + { + "start": 3069.26, + "end": 3070.36, + "probability": 0.7112 + }, + { + "start": 3070.46, + "end": 3073.56, + "probability": 0.9645 + }, + { + "start": 3073.56, + "end": 3074.84, + "probability": 0.7834 + }, + { + "start": 3075.26, + "end": 3077.34, + "probability": 0.1614 + }, + { + "start": 3079.14, + "end": 3079.4, + "probability": 0.1613 + }, + { + "start": 3079.5, + "end": 3079.9, + "probability": 0.4783 + }, + { + "start": 3080.02, + "end": 3080.36, + "probability": 0.587 + }, + { + "start": 3080.82, + "end": 3082.68, + "probability": 0.0344 + }, + { + "start": 3084.46, + "end": 3086.3, + "probability": 0.9641 + }, + { + "start": 3086.5, + "end": 3086.98, + "probability": 0.1576 + }, + { + "start": 3087.42, + "end": 3089.78, + "probability": 0.2103 + }, + { + "start": 3090.1, + "end": 3091.06, + "probability": 0.2442 + }, + { + "start": 3091.06, + "end": 3092.6, + "probability": 0.4041 + }, + { + "start": 3096.18, + "end": 3098.8, + "probability": 0.0934 + }, + { + "start": 3099.56, + "end": 3100.26, + "probability": 0.026 + }, + { + "start": 3100.3, + "end": 3100.5, + "probability": 0.2206 + }, + { + "start": 3100.6, + "end": 3101.02, + "probability": 0.6159 + }, + { + "start": 3101.12, + "end": 3102.24, + "probability": 0.416 + }, + { + "start": 3102.34, + "end": 3104.54, + "probability": 0.5786 + }, + { + "start": 3104.9, + "end": 3106.4, + "probability": 0.9317 + }, + { + "start": 3107.88, + "end": 3108.3, + "probability": 0.0501 + }, + { + "start": 3110.98, + "end": 3113.66, + "probability": 0.1036 + }, + { + "start": 3113.76, + "end": 3113.76, + "probability": 0.1308 + }, + { + "start": 3113.76, + "end": 3115.3, + "probability": 0.7111 + }, + { + "start": 3115.42, + "end": 3118.26, + "probability": 0.9881 + }, + { + "start": 3118.96, + "end": 3121.84, + "probability": 0.9681 + }, + { + "start": 3126.32, + "end": 3129.86, + "probability": 0.9336 + }, + { + "start": 3129.86, + "end": 3133.54, + "probability": 0.9873 + }, + { + "start": 3134.48, + "end": 3137.06, + "probability": 0.9211 + }, + { + "start": 3137.16, + "end": 3138.88, + "probability": 0.8047 + }, + { + "start": 3138.9, + "end": 3139.64, + "probability": 0.7122 + }, + { + "start": 3146.66, + "end": 3148.68, + "probability": 0.6619 + }, + { + "start": 3149.82, + "end": 3154.52, + "probability": 0.9756 + }, + { + "start": 3155.2, + "end": 3160.32, + "probability": 0.9489 + }, + { + "start": 3161.28, + "end": 3164.1, + "probability": 0.8717 + }, + { + "start": 3164.4, + "end": 3166.5, + "probability": 0.9956 + }, + { + "start": 3166.5, + "end": 3169.58, + "probability": 0.9987 + }, + { + "start": 3170.16, + "end": 3173.52, + "probability": 0.4371 + }, + { + "start": 3174.82, + "end": 3175.18, + "probability": 0.3523 + }, + { + "start": 3175.3, + "end": 3179.94, + "probability": 0.9858 + }, + { + "start": 3180.58, + "end": 3184.1, + "probability": 0.8359 + }, + { + "start": 3184.16, + "end": 3185.1, + "probability": 0.6548 + }, + { + "start": 3217.46, + "end": 3219.66, + "probability": 0.9339 + }, + { + "start": 3223.2, + "end": 3225.38, + "probability": 0.9827 + }, + { + "start": 3225.4, + "end": 3226.18, + "probability": 0.9238 + }, + { + "start": 3226.26, + "end": 3227.0, + "probability": 0.7167 + }, + { + "start": 3227.06, + "end": 3227.42, + "probability": 0.6287 + }, + { + "start": 3228.34, + "end": 3230.63, + "probability": 0.9888 + }, + { + "start": 3231.0, + "end": 3231.08, + "probability": 0.4259 + }, + { + "start": 3242.7, + "end": 3245.14, + "probability": 0.6458 + }, + { + "start": 3246.64, + "end": 3247.72, + "probability": 0.5195 + }, + { + "start": 3248.14, + "end": 3252.16, + "probability": 0.8783 + }, + { + "start": 3252.54, + "end": 3253.48, + "probability": 0.8785 + }, + { + "start": 3253.54, + "end": 3254.58, + "probability": 0.9564 + }, + { + "start": 3254.84, + "end": 3255.79, + "probability": 0.9361 + }, + { + "start": 3256.62, + "end": 3258.86, + "probability": 0.9937 + }, + { + "start": 3260.0, + "end": 3262.98, + "probability": 0.7815 + }, + { + "start": 3263.24, + "end": 3263.66, + "probability": 0.9721 + }, + { + "start": 3263.98, + "end": 3264.42, + "probability": 0.8779 + }, + { + "start": 3265.46, + "end": 3269.96, + "probability": 0.9958 + }, + { + "start": 3270.48, + "end": 3272.94, + "probability": 0.9693 + }, + { + "start": 3273.62, + "end": 3277.02, + "probability": 0.9459 + }, + { + "start": 3277.66, + "end": 3279.9, + "probability": 0.9839 + }, + { + "start": 3280.44, + "end": 3282.58, + "probability": 0.9991 + }, + { + "start": 3283.3, + "end": 3284.66, + "probability": 0.9803 + }, + { + "start": 3285.04, + "end": 3287.58, + "probability": 0.9957 + }, + { + "start": 3290.14, + "end": 3294.24, + "probability": 0.9888 + }, + { + "start": 3295.14, + "end": 3300.74, + "probability": 0.9941 + }, + { + "start": 3301.76, + "end": 3303.83, + "probability": 0.995 + }, + { + "start": 3304.76, + "end": 3308.38, + "probability": 0.9664 + }, + { + "start": 3309.32, + "end": 3310.74, + "probability": 0.8719 + }, + { + "start": 3311.1, + "end": 3314.76, + "probability": 0.9753 + }, + { + "start": 3315.44, + "end": 3316.7, + "probability": 0.531 + }, + { + "start": 3316.86, + "end": 3319.68, + "probability": 0.9792 + }, + { + "start": 3320.32, + "end": 3324.06, + "probability": 0.928 + }, + { + "start": 3324.92, + "end": 3329.58, + "probability": 0.9927 + }, + { + "start": 3330.26, + "end": 3333.02, + "probability": 0.605 + }, + { + "start": 3333.02, + "end": 3333.02, + "probability": 0.3923 + }, + { + "start": 3333.02, + "end": 3333.02, + "probability": 0.1351 + }, + { + "start": 3333.02, + "end": 3336.07, + "probability": 0.7914 + }, + { + "start": 3336.84, + "end": 3338.58, + "probability": 0.9164 + }, + { + "start": 3338.9, + "end": 3339.72, + "probability": 0.5094 + }, + { + "start": 3341.36, + "end": 3342.92, + "probability": 0.6375 + }, + { + "start": 3342.92, + "end": 3342.92, + "probability": 0.0854 + }, + { + "start": 3342.92, + "end": 3345.4, + "probability": 0.9759 + }, + { + "start": 3345.56, + "end": 3346.16, + "probability": 0.6932 + }, + { + "start": 3346.5, + "end": 3350.02, + "probability": 0.9573 + }, + { + "start": 3351.12, + "end": 3351.22, + "probability": 0.0656 + }, + { + "start": 3351.32, + "end": 3351.32, + "probability": 0.2275 + }, + { + "start": 3351.32, + "end": 3352.76, + "probability": 0.5329 + }, + { + "start": 3353.42, + "end": 3355.82, + "probability": 0.958 + }, + { + "start": 3356.1, + "end": 3356.92, + "probability": 0.979 + }, + { + "start": 3356.98, + "end": 3357.88, + "probability": 0.899 + }, + { + "start": 3358.28, + "end": 3361.22, + "probability": 0.9966 + }, + { + "start": 3361.56, + "end": 3366.3, + "probability": 0.9979 + }, + { + "start": 3366.98, + "end": 3367.2, + "probability": 0.4112 + }, + { + "start": 3367.2, + "end": 3367.2, + "probability": 0.0664 + }, + { + "start": 3367.2, + "end": 3368.4, + "probability": 0.3625 + }, + { + "start": 3368.4, + "end": 3369.38, + "probability": 0.265 + }, + { + "start": 3369.62, + "end": 3371.9, + "probability": 0.6848 + }, + { + "start": 3372.7, + "end": 3372.98, + "probability": 0.0025 + }, + { + "start": 3372.98, + "end": 3374.3, + "probability": 0.7205 + }, + { + "start": 3374.84, + "end": 3375.86, + "probability": 0.9585 + }, + { + "start": 3376.56, + "end": 3376.56, + "probability": 0.1575 + }, + { + "start": 3376.56, + "end": 3379.06, + "probability": 0.8098 + }, + { + "start": 3379.5, + "end": 3381.1, + "probability": 0.9461 + }, + { + "start": 3381.22, + "end": 3383.18, + "probability": 0.9841 + }, + { + "start": 3383.56, + "end": 3385.7, + "probability": 0.9974 + }, + { + "start": 3386.46, + "end": 3387.98, + "probability": 0.8391 + }, + { + "start": 3388.04, + "end": 3389.65, + "probability": 0.8857 + }, + { + "start": 3390.52, + "end": 3393.2, + "probability": 0.9757 + }, + { + "start": 3393.58, + "end": 3393.92, + "probability": 0.7591 + }, + { + "start": 3394.06, + "end": 3394.46, + "probability": 0.8075 + }, + { + "start": 3394.74, + "end": 3396.16, + "probability": 0.9885 + }, + { + "start": 3396.84, + "end": 3397.48, + "probability": 0.9571 + }, + { + "start": 3398.14, + "end": 3399.62, + "probability": 0.9756 + }, + { + "start": 3399.7, + "end": 3400.33, + "probability": 0.9766 + }, + { + "start": 3400.9, + "end": 3403.74, + "probability": 0.8416 + }, + { + "start": 3403.84, + "end": 3405.42, + "probability": 0.9575 + }, + { + "start": 3405.48, + "end": 3408.15, + "probability": 0.9907 + }, + { + "start": 3409.24, + "end": 3410.52, + "probability": 0.9912 + }, + { + "start": 3410.58, + "end": 3411.39, + "probability": 0.834 + }, + { + "start": 3411.58, + "end": 3412.72, + "probability": 0.9797 + }, + { + "start": 3412.82, + "end": 3415.8, + "probability": 0.996 + }, + { + "start": 3416.12, + "end": 3421.28, + "probability": 0.9721 + }, + { + "start": 3421.6, + "end": 3423.1, + "probability": 0.9709 + }, + { + "start": 3423.38, + "end": 3425.38, + "probability": 0.7959 + }, + { + "start": 3425.44, + "end": 3428.74, + "probability": 0.9236 + }, + { + "start": 3428.76, + "end": 3431.74, + "probability": 0.8626 + }, + { + "start": 3432.26, + "end": 3433.16, + "probability": 0.7561 + }, + { + "start": 3433.5, + "end": 3437.58, + "probability": 0.9753 + }, + { + "start": 3437.58, + "end": 3438.1, + "probability": 0.753 + }, + { + "start": 3438.2, + "end": 3438.92, + "probability": 0.6707 + }, + { + "start": 3439.96, + "end": 3440.66, + "probability": 0.0932 + }, + { + "start": 3440.88, + "end": 3441.5, + "probability": 0.9565 + }, + { + "start": 3442.1, + "end": 3443.08, + "probability": 0.8566 + }, + { + "start": 3457.36, + "end": 3457.36, + "probability": 0.0753 + }, + { + "start": 3458.6, + "end": 3460.06, + "probability": 0.6465 + }, + { + "start": 3460.22, + "end": 3462.02, + "probability": 0.7621 + }, + { + "start": 3462.76, + "end": 3464.62, + "probability": 0.8628 + }, + { + "start": 3465.84, + "end": 3468.5, + "probability": 0.5085 + }, + { + "start": 3468.58, + "end": 3469.56, + "probability": 0.8543 + }, + { + "start": 3469.66, + "end": 3471.78, + "probability": 0.9906 + }, + { + "start": 3473.06, + "end": 3474.8, + "probability": 0.8465 + }, + { + "start": 3476.12, + "end": 3477.2, + "probability": 0.998 + }, + { + "start": 3478.6, + "end": 3480.78, + "probability": 0.9952 + }, + { + "start": 3481.24, + "end": 3483.86, + "probability": 0.9653 + }, + { + "start": 3485.3, + "end": 3489.68, + "probability": 0.982 + }, + { + "start": 3490.22, + "end": 3491.24, + "probability": 0.9712 + }, + { + "start": 3492.46, + "end": 3494.22, + "probability": 0.998 + }, + { + "start": 3494.78, + "end": 3496.96, + "probability": 0.924 + }, + { + "start": 3498.58, + "end": 3499.58, + "probability": 0.9692 + }, + { + "start": 3500.3, + "end": 3503.4, + "probability": 0.9897 + }, + { + "start": 3504.02, + "end": 3507.28, + "probability": 0.7055 + }, + { + "start": 3508.2, + "end": 3509.78, + "probability": 0.9762 + }, + { + "start": 3509.94, + "end": 3511.48, + "probability": 0.2553 + }, + { + "start": 3512.54, + "end": 3516.72, + "probability": 0.9501 + }, + { + "start": 3517.68, + "end": 3522.0, + "probability": 0.9318 + }, + { + "start": 3522.18, + "end": 3522.84, + "probability": 0.7071 + }, + { + "start": 3523.08, + "end": 3523.9, + "probability": 0.9612 + }, + { + "start": 3525.94, + "end": 3526.64, + "probability": 0.9777 + }, + { + "start": 3527.7, + "end": 3528.76, + "probability": 0.9945 + }, + { + "start": 3529.4, + "end": 3531.34, + "probability": 0.9764 + }, + { + "start": 3531.42, + "end": 3532.02, + "probability": 0.9671 + }, + { + "start": 3534.46, + "end": 3534.6, + "probability": 0.1681 + }, + { + "start": 3535.04, + "end": 3536.23, + "probability": 0.0526 + }, + { + "start": 3536.8, + "end": 3536.88, + "probability": 0.4925 + }, + { + "start": 3536.98, + "end": 3537.0, + "probability": 0.5284 + }, + { + "start": 3537.0, + "end": 3540.24, + "probability": 0.3892 + }, + { + "start": 3540.52, + "end": 3541.28, + "probability": 0.5862 + }, + { + "start": 3541.38, + "end": 3541.58, + "probability": 0.2813 + }, + { + "start": 3541.58, + "end": 3545.46, + "probability": 0.7484 + }, + { + "start": 3545.64, + "end": 3547.49, + "probability": 0.3567 + }, + { + "start": 3548.0, + "end": 3549.06, + "probability": 0.5532 + }, + { + "start": 3549.1, + "end": 3550.52, + "probability": 0.3699 + }, + { + "start": 3550.98, + "end": 3552.53, + "probability": 0.8459 + }, + { + "start": 3552.82, + "end": 3553.34, + "probability": 0.4201 + }, + { + "start": 3554.86, + "end": 3555.56, + "probability": 0.1558 + }, + { + "start": 3555.72, + "end": 3555.92, + "probability": 0.8264 + }, + { + "start": 3556.16, + "end": 3556.8, + "probability": 0.3641 + }, + { + "start": 3556.8, + "end": 3559.46, + "probability": 0.86 + }, + { + "start": 3559.46, + "end": 3562.4, + "probability": 0.9611 + }, + { + "start": 3562.5, + "end": 3562.66, + "probability": 0.2185 + }, + { + "start": 3562.84, + "end": 3563.36, + "probability": 0.1701 + }, + { + "start": 3563.58, + "end": 3563.58, + "probability": 0.252 + }, + { + "start": 3563.58, + "end": 3565.58, + "probability": 0.9866 + }, + { + "start": 3565.96, + "end": 3567.68, + "probability": 0.873 + }, + { + "start": 3567.74, + "end": 3570.44, + "probability": 0.9862 + }, + { + "start": 3570.7, + "end": 3571.28, + "probability": 0.0065 + }, + { + "start": 3571.28, + "end": 3572.04, + "probability": 0.0083 + }, + { + "start": 3572.18, + "end": 3573.34, + "probability": 0.8436 + }, + { + "start": 3573.34, + "end": 3576.34, + "probability": 0.9846 + }, + { + "start": 3576.34, + "end": 3579.08, + "probability": 0.9912 + }, + { + "start": 3583.3, + "end": 3585.14, + "probability": 0.7417 + }, + { + "start": 3585.74, + "end": 3587.88, + "probability": 0.9962 + }, + { + "start": 3587.98, + "end": 3589.0, + "probability": 0.9954 + }, + { + "start": 3589.08, + "end": 3590.24, + "probability": 0.9737 + }, + { + "start": 3590.4, + "end": 3595.22, + "probability": 0.9844 + }, + { + "start": 3595.48, + "end": 3597.3, + "probability": 0.9183 + }, + { + "start": 3597.46, + "end": 3598.8, + "probability": 0.9104 + }, + { + "start": 3600.04, + "end": 3600.34, + "probability": 0.3173 + }, + { + "start": 3600.5, + "end": 3601.94, + "probability": 0.3646 + }, + { + "start": 3602.44, + "end": 3603.18, + "probability": 0.4658 + }, + { + "start": 3603.3, + "end": 3603.52, + "probability": 0.0848 + }, + { + "start": 3604.32, + "end": 3605.46, + "probability": 0.0339 + }, + { + "start": 3605.56, + "end": 3607.14, + "probability": 0.4788 + }, + { + "start": 3607.4, + "end": 3608.62, + "probability": 0.7501 + }, + { + "start": 3608.7, + "end": 3614.94, + "probability": 0.7509 + }, + { + "start": 3615.12, + "end": 3617.58, + "probability": 0.9945 + }, + { + "start": 3617.68, + "end": 3619.62, + "probability": 0.9895 + }, + { + "start": 3619.62, + "end": 3621.78, + "probability": 0.6269 + }, + { + "start": 3622.28, + "end": 3624.12, + "probability": 0.1065 + }, + { + "start": 3624.94, + "end": 3625.24, + "probability": 0.069 + }, + { + "start": 3625.24, + "end": 3625.24, + "probability": 0.0572 + }, + { + "start": 3625.24, + "end": 3625.24, + "probability": 0.054 + }, + { + "start": 3625.24, + "end": 3625.24, + "probability": 0.1883 + }, + { + "start": 3625.24, + "end": 3625.24, + "probability": 0.1442 + }, + { + "start": 3625.24, + "end": 3626.8, + "probability": 0.5769 + }, + { + "start": 3627.46, + "end": 3632.28, + "probability": 0.7413 + }, + { + "start": 3633.74, + "end": 3636.2, + "probability": 0.991 + }, + { + "start": 3637.22, + "end": 3638.8, + "probability": 0.9371 + }, + { + "start": 3639.7, + "end": 3642.0, + "probability": 0.9631 + }, + { + "start": 3643.16, + "end": 3645.02, + "probability": 0.8823 + }, + { + "start": 3646.18, + "end": 3650.24, + "probability": 0.9969 + }, + { + "start": 3652.44, + "end": 3653.44, + "probability": 0.9609 + }, + { + "start": 3653.56, + "end": 3653.78, + "probability": 0.6389 + }, + { + "start": 3653.92, + "end": 3656.4, + "probability": 0.9794 + }, + { + "start": 3656.44, + "end": 3658.64, + "probability": 0.8177 + }, + { + "start": 3658.76, + "end": 3659.86, + "probability": 0.6059 + }, + { + "start": 3660.2, + "end": 3662.44, + "probability": 0.9968 + }, + { + "start": 3662.48, + "end": 3662.62, + "probability": 0.8829 + }, + { + "start": 3662.82, + "end": 3663.64, + "probability": 0.9591 + }, + { + "start": 3664.44, + "end": 3665.5, + "probability": 0.8121 + }, + { + "start": 3667.6, + "end": 3668.53, + "probability": 0.7684 + }, + { + "start": 3669.76, + "end": 3670.1, + "probability": 0.18 + }, + { + "start": 3670.1, + "end": 3670.1, + "probability": 0.4187 + }, + { + "start": 3670.1, + "end": 3671.3, + "probability": 0.7651 + }, + { + "start": 3671.64, + "end": 3674.43, + "probability": 0.9767 + }, + { + "start": 3674.82, + "end": 3676.03, + "probability": 0.7939 + }, + { + "start": 3677.88, + "end": 3679.5, + "probability": 0.0798 + }, + { + "start": 3681.82, + "end": 3682.94, + "probability": 0.7077 + }, + { + "start": 3683.66, + "end": 3684.18, + "probability": 0.3232 + }, + { + "start": 3684.4, + "end": 3685.38, + "probability": 0.9324 + }, + { + "start": 3685.92, + "end": 3687.34, + "probability": 0.9917 + }, + { + "start": 3688.36, + "end": 3689.36, + "probability": 0.8093 + }, + { + "start": 3690.06, + "end": 3691.52, + "probability": 0.6882 + }, + { + "start": 3693.76, + "end": 3696.12, + "probability": 0.7534 + }, + { + "start": 3696.2, + "end": 3698.32, + "probability": 0.7211 + }, + { + "start": 3698.78, + "end": 3699.41, + "probability": 0.7792 + }, + { + "start": 3700.22, + "end": 3701.26, + "probability": 0.5775 + }, + { + "start": 3701.42, + "end": 3702.36, + "probability": 0.5615 + }, + { + "start": 3702.52, + "end": 3703.66, + "probability": 0.5087 + }, + { + "start": 3703.72, + "end": 3707.26, + "probability": 0.9573 + }, + { + "start": 3707.38, + "end": 3707.82, + "probability": 0.6076 + }, + { + "start": 3707.92, + "end": 3708.7, + "probability": 0.7205 + }, + { + "start": 3708.9, + "end": 3711.22, + "probability": 0.6552 + }, + { + "start": 3711.32, + "end": 3712.26, + "probability": 0.6774 + }, + { + "start": 3712.32, + "end": 3712.58, + "probability": 0.6227 + }, + { + "start": 3712.62, + "end": 3713.88, + "probability": 0.7789 + }, + { + "start": 3714.16, + "end": 3717.78, + "probability": 0.7071 + }, + { + "start": 3719.44, + "end": 3721.6, + "probability": 0.8216 + }, + { + "start": 3721.6, + "end": 3723.42, + "probability": 0.8979 + }, + { + "start": 3723.5, + "end": 3724.72, + "probability": 0.8299 + }, + { + "start": 3725.44, + "end": 3727.28, + "probability": 0.2791 + }, + { + "start": 3727.42, + "end": 3728.4, + "probability": 0.0478 + }, + { + "start": 3728.4, + "end": 3728.5, + "probability": 0.6219 + }, + { + "start": 3729.26, + "end": 3731.56, + "probability": 0.9001 + }, + { + "start": 3732.22, + "end": 3735.54, + "probability": 0.8516 + }, + { + "start": 3735.72, + "end": 3738.6, + "probability": 0.7193 + }, + { + "start": 3738.8, + "end": 3740.22, + "probability": 0.7498 + }, + { + "start": 3740.52, + "end": 3742.84, + "probability": 0.7806 + }, + { + "start": 3743.7, + "end": 3745.94, + "probability": 0.8583 + }, + { + "start": 3749.72, + "end": 3750.4, + "probability": 0.7639 + }, + { + "start": 3750.76, + "end": 3751.96, + "probability": 0.2892 + }, + { + "start": 3751.96, + "end": 3752.5, + "probability": 0.3394 + }, + { + "start": 3752.72, + "end": 3753.0, + "probability": 0.6475 + }, + { + "start": 3757.78, + "end": 3758.88, + "probability": 0.7621 + }, + { + "start": 3759.94, + "end": 3760.42, + "probability": 0.7134 + }, + { + "start": 3760.98, + "end": 3761.62, + "probability": 0.766 + }, + { + "start": 3762.66, + "end": 3765.02, + "probability": 0.9628 + }, + { + "start": 3765.9, + "end": 3766.24, + "probability": 0.9628 + }, + { + "start": 3767.78, + "end": 3769.1, + "probability": 0.9386 + }, + { + "start": 3769.68, + "end": 3770.57, + "probability": 0.8792 + }, + { + "start": 3771.52, + "end": 3772.1, + "probability": 0.9033 + }, + { + "start": 3772.98, + "end": 3776.08, + "probability": 0.9933 + }, + { + "start": 3776.92, + "end": 3778.39, + "probability": 0.998 + }, + { + "start": 3779.06, + "end": 3781.54, + "probability": 0.9965 + }, + { + "start": 3782.12, + "end": 3783.28, + "probability": 0.9925 + }, + { + "start": 3783.72, + "end": 3786.96, + "probability": 0.9972 + }, + { + "start": 3787.62, + "end": 3792.26, + "probability": 0.9861 + }, + { + "start": 3793.42, + "end": 3796.92, + "probability": 0.9527 + }, + { + "start": 3797.12, + "end": 3799.1, + "probability": 0.9577 + }, + { + "start": 3800.24, + "end": 3804.76, + "probability": 0.9217 + }, + { + "start": 3805.76, + "end": 3806.9, + "probability": 0.9658 + }, + { + "start": 3807.44, + "end": 3809.72, + "probability": 0.9856 + }, + { + "start": 3810.24, + "end": 3814.2, + "probability": 0.9978 + }, + { + "start": 3814.82, + "end": 3815.34, + "probability": 0.8268 + }, + { + "start": 3816.02, + "end": 3818.62, + "probability": 0.9578 + }, + { + "start": 3819.24, + "end": 3820.88, + "probability": 0.8662 + }, + { + "start": 3821.58, + "end": 3824.25, + "probability": 0.9483 + }, + { + "start": 3824.9, + "end": 3825.34, + "probability": 0.8723 + }, + { + "start": 3826.12, + "end": 3826.86, + "probability": 0.9642 + }, + { + "start": 3827.7, + "end": 3828.74, + "probability": 0.9583 + }, + { + "start": 3829.44, + "end": 3830.58, + "probability": 0.9802 + }, + { + "start": 3831.32, + "end": 3835.3, + "probability": 0.988 + }, + { + "start": 3835.9, + "end": 3839.04, + "probability": 0.9985 + }, + { + "start": 3839.76, + "end": 3841.26, + "probability": 0.8679 + }, + { + "start": 3841.8, + "end": 3847.18, + "probability": 0.9951 + }, + { + "start": 3847.88, + "end": 3849.0, + "probability": 0.9568 + }, + { + "start": 3849.54, + "end": 3852.02, + "probability": 0.9707 + }, + { + "start": 3853.06, + "end": 3855.16, + "probability": 0.9944 + }, + { + "start": 3855.74, + "end": 3856.76, + "probability": 0.7501 + }, + { + "start": 3857.32, + "end": 3860.4, + "probability": 0.9908 + }, + { + "start": 3861.2, + "end": 3862.2, + "probability": 0.8328 + }, + { + "start": 3863.12, + "end": 3865.18, + "probability": 0.9201 + }, + { + "start": 3866.04, + "end": 3870.2, + "probability": 0.9907 + }, + { + "start": 3870.74, + "end": 3873.24, + "probability": 0.9137 + }, + { + "start": 3874.66, + "end": 3877.64, + "probability": 0.9407 + }, + { + "start": 3878.22, + "end": 3883.84, + "probability": 0.9089 + }, + { + "start": 3884.32, + "end": 3888.14, + "probability": 0.9956 + }, + { + "start": 3888.92, + "end": 3892.52, + "probability": 0.9933 + }, + { + "start": 3893.22, + "end": 3894.0, + "probability": 0.6891 + }, + { + "start": 3894.56, + "end": 3900.04, + "probability": 0.9983 + }, + { + "start": 3900.9, + "end": 3901.88, + "probability": 0.9941 + }, + { + "start": 3902.5, + "end": 3904.08, + "probability": 0.995 + }, + { + "start": 3904.82, + "end": 3909.06, + "probability": 0.9359 + }, + { + "start": 3909.78, + "end": 3911.86, + "probability": 0.9937 + }, + { + "start": 3913.12, + "end": 3914.78, + "probability": 0.8075 + }, + { + "start": 3915.46, + "end": 3918.68, + "probability": 0.996 + }, + { + "start": 3919.42, + "end": 3919.92, + "probability": 0.8648 + }, + { + "start": 3920.46, + "end": 3924.24, + "probability": 0.9849 + }, + { + "start": 3925.16, + "end": 3926.94, + "probability": 0.9936 + }, + { + "start": 3927.58, + "end": 3930.5, + "probability": 0.9744 + }, + { + "start": 3931.56, + "end": 3931.9, + "probability": 0.6221 + }, + { + "start": 3931.96, + "end": 3934.76, + "probability": 0.9573 + }, + { + "start": 3935.0, + "end": 3938.62, + "probability": 0.9732 + }, + { + "start": 3939.26, + "end": 3943.08, + "probability": 0.9975 + }, + { + "start": 3943.72, + "end": 3946.42, + "probability": 0.9975 + }, + { + "start": 3947.2, + "end": 3949.64, + "probability": 0.9658 + }, + { + "start": 3950.38, + "end": 3954.02, + "probability": 0.9517 + }, + { + "start": 3954.1, + "end": 3954.82, + "probability": 0.8716 + }, + { + "start": 3954.92, + "end": 3957.16, + "probability": 0.9778 + }, + { + "start": 3959.12, + "end": 3960.34, + "probability": 0.752 + }, + { + "start": 3960.96, + "end": 3962.94, + "probability": 0.624 + }, + { + "start": 3963.56, + "end": 3966.72, + "probability": 0.9787 + }, + { + "start": 3967.52, + "end": 3968.5, + "probability": 0.5925 + }, + { + "start": 3969.14, + "end": 3970.32, + "probability": 0.8571 + }, + { + "start": 3971.42, + "end": 3976.28, + "probability": 0.9831 + }, + { + "start": 3977.02, + "end": 3977.52, + "probability": 0.8368 + }, + { + "start": 3977.92, + "end": 3982.32, + "probability": 0.9669 + }, + { + "start": 3982.46, + "end": 3982.76, + "probability": 0.3584 + }, + { + "start": 3982.96, + "end": 3983.54, + "probability": 0.8606 + }, + { + "start": 3984.7, + "end": 3988.3, + "probability": 0.99 + }, + { + "start": 3988.3, + "end": 3993.14, + "probability": 0.9966 + }, + { + "start": 3993.7, + "end": 3997.58, + "probability": 0.854 + }, + { + "start": 3998.06, + "end": 3999.56, + "probability": 0.7572 + }, + { + "start": 4000.4, + "end": 4002.48, + "probability": 0.9911 + }, + { + "start": 4002.6, + "end": 4003.66, + "probability": 0.9003 + }, + { + "start": 4004.44, + "end": 4006.26, + "probability": 0.9946 + }, + { + "start": 4006.98, + "end": 4010.08, + "probability": 0.804 + }, + { + "start": 4010.74, + "end": 4013.8, + "probability": 0.9939 + }, + { + "start": 4013.8, + "end": 4017.56, + "probability": 0.9971 + }, + { + "start": 4018.22, + "end": 4020.19, + "probability": 0.9048 + }, + { + "start": 4020.92, + "end": 4022.5, + "probability": 0.9928 + }, + { + "start": 4023.5, + "end": 4023.98, + "probability": 0.9813 + }, + { + "start": 4025.46, + "end": 4031.68, + "probability": 0.9648 + }, + { + "start": 4032.34, + "end": 4036.76, + "probability": 0.9933 + }, + { + "start": 4037.22, + "end": 4037.38, + "probability": 0.3983 + }, + { + "start": 4037.62, + "end": 4038.4, + "probability": 0.3166 + }, + { + "start": 4039.1, + "end": 4039.86, + "probability": 0.4727 + }, + { + "start": 4040.28, + "end": 4041.12, + "probability": 0.9255 + }, + { + "start": 4041.66, + "end": 4045.16, + "probability": 0.9723 + }, + { + "start": 4045.86, + "end": 4046.72, + "probability": 0.6629 + }, + { + "start": 4046.76, + "end": 4051.5, + "probability": 0.9631 + }, + { + "start": 4052.34, + "end": 4052.56, + "probability": 0.649 + }, + { + "start": 4053.44, + "end": 4057.16, + "probability": 0.9979 + }, + { + "start": 4057.9, + "end": 4060.92, + "probability": 0.9976 + }, + { + "start": 4061.62, + "end": 4066.24, + "probability": 0.9846 + }, + { + "start": 4066.7, + "end": 4068.96, + "probability": 0.9665 + }, + { + "start": 4069.44, + "end": 4072.56, + "probability": 0.9499 + }, + { + "start": 4073.46, + "end": 4074.24, + "probability": 0.5108 + }, + { + "start": 4075.02, + "end": 4076.62, + "probability": 0.7024 + }, + { + "start": 4078.49, + "end": 4080.56, + "probability": 0.589 + }, + { + "start": 4080.64, + "end": 4080.74, + "probability": 0.4643 + }, + { + "start": 4080.8, + "end": 4081.9, + "probability": 0.755 + }, + { + "start": 4081.9, + "end": 4082.16, + "probability": 0.4208 + }, + { + "start": 4082.82, + "end": 4086.2, + "probability": 0.9038 + }, + { + "start": 4086.6, + "end": 4087.46, + "probability": 0.8042 + }, + { + "start": 4088.16, + "end": 4090.78, + "probability": 0.9917 + }, + { + "start": 4091.4, + "end": 4093.96, + "probability": 0.8673 + }, + { + "start": 4094.4, + "end": 4095.3, + "probability": 0.7144 + }, + { + "start": 4095.34, + "end": 4096.5, + "probability": 0.8885 + }, + { + "start": 4096.76, + "end": 4097.02, + "probability": 0.9034 + }, + { + "start": 4097.34, + "end": 4097.92, + "probability": 0.8487 + }, + { + "start": 4097.98, + "end": 4098.26, + "probability": 0.863 + }, + { + "start": 4098.28, + "end": 4100.72, + "probability": 0.8779 + }, + { + "start": 4102.3, + "end": 4103.24, + "probability": 0.7785 + }, + { + "start": 4103.88, + "end": 4104.88, + "probability": 0.6668 + }, + { + "start": 4105.8, + "end": 4106.72, + "probability": 0.6951 + }, + { + "start": 4126.36, + "end": 4126.62, + "probability": 0.3589 + }, + { + "start": 4126.68, + "end": 4127.3, + "probability": 0.6012 + }, + { + "start": 4128.6, + "end": 4129.62, + "probability": 0.7997 + }, + { + "start": 4130.88, + "end": 4133.66, + "probability": 0.9736 + }, + { + "start": 4133.76, + "end": 4134.08, + "probability": 0.7883 + }, + { + "start": 4134.42, + "end": 4135.29, + "probability": 0.9258 + }, + { + "start": 4136.9, + "end": 4140.0, + "probability": 0.4073 + }, + { + "start": 4140.92, + "end": 4145.02, + "probability": 0.9113 + }, + { + "start": 4146.66, + "end": 4147.96, + "probability": 0.9897 + }, + { + "start": 4149.32, + "end": 4151.18, + "probability": 0.9992 + }, + { + "start": 4152.62, + "end": 4153.1, + "probability": 0.5164 + }, + { + "start": 4153.9, + "end": 4158.58, + "probability": 0.8345 + }, + { + "start": 4159.84, + "end": 4163.68, + "probability": 0.9754 + }, + { + "start": 4163.76, + "end": 4166.74, + "probability": 0.9984 + }, + { + "start": 4166.82, + "end": 4167.19, + "probability": 0.6077 + }, + { + "start": 4167.9, + "end": 4168.68, + "probability": 0.9751 + }, + { + "start": 4169.52, + "end": 4171.1, + "probability": 0.9217 + }, + { + "start": 4172.24, + "end": 4175.28, + "probability": 0.9544 + }, + { + "start": 4175.4, + "end": 4177.18, + "probability": 0.9972 + }, + { + "start": 4177.9, + "end": 4178.96, + "probability": 0.9323 + }, + { + "start": 4180.3, + "end": 4181.2, + "probability": 0.9554 + }, + { + "start": 4182.26, + "end": 4185.86, + "probability": 0.9519 + }, + { + "start": 4187.18, + "end": 4188.38, + "probability": 0.8619 + }, + { + "start": 4188.46, + "end": 4188.68, + "probability": 0.6761 + }, + { + "start": 4189.08, + "end": 4191.7, + "probability": 0.8641 + }, + { + "start": 4192.84, + "end": 4195.99, + "probability": 0.9876 + }, + { + "start": 4196.38, + "end": 4197.54, + "probability": 0.9146 + }, + { + "start": 4198.02, + "end": 4199.92, + "probability": 0.8013 + }, + { + "start": 4200.6, + "end": 4202.48, + "probability": 0.9592 + }, + { + "start": 4203.0, + "end": 4204.34, + "probability": 0.8906 + }, + { + "start": 4204.44, + "end": 4204.72, + "probability": 0.2583 + }, + { + "start": 4204.8, + "end": 4208.76, + "probability": 0.9621 + }, + { + "start": 4209.92, + "end": 4210.54, + "probability": 0.9659 + }, + { + "start": 4211.44, + "end": 4212.84, + "probability": 0.9977 + }, + { + "start": 4213.66, + "end": 4214.92, + "probability": 0.8056 + }, + { + "start": 4215.58, + "end": 4220.1, + "probability": 0.9646 + }, + { + "start": 4221.52, + "end": 4223.18, + "probability": 0.9176 + }, + { + "start": 4223.52, + "end": 4224.46, + "probability": 0.6392 + }, + { + "start": 4224.84, + "end": 4230.12, + "probability": 0.8641 + }, + { + "start": 4231.14, + "end": 4233.54, + "probability": 0.8774 + }, + { + "start": 4233.68, + "end": 4237.2, + "probability": 0.8435 + }, + { + "start": 4237.88, + "end": 4239.34, + "probability": 0.8311 + }, + { + "start": 4240.08, + "end": 4244.96, + "probability": 0.9166 + }, + { + "start": 4246.14, + "end": 4249.48, + "probability": 0.9989 + }, + { + "start": 4250.52, + "end": 4250.8, + "probability": 0.3761 + }, + { + "start": 4250.98, + "end": 4251.68, + "probability": 0.9098 + }, + { + "start": 4251.82, + "end": 4258.26, + "probability": 0.7687 + }, + { + "start": 4258.8, + "end": 4264.68, + "probability": 0.9792 + }, + { + "start": 4264.68, + "end": 4268.46, + "probability": 0.9906 + }, + { + "start": 4270.2, + "end": 4276.16, + "probability": 0.9771 + }, + { + "start": 4276.22, + "end": 4280.24, + "probability": 0.9844 + }, + { + "start": 4280.88, + "end": 4282.2, + "probability": 0.9126 + }, + { + "start": 4282.78, + "end": 4287.72, + "probability": 0.996 + }, + { + "start": 4288.04, + "end": 4289.3, + "probability": 0.932 + }, + { + "start": 4289.86, + "end": 4292.48, + "probability": 0.8136 + }, + { + "start": 4293.02, + "end": 4294.08, + "probability": 0.9423 + }, + { + "start": 4294.26, + "end": 4301.26, + "probability": 0.9224 + }, + { + "start": 4301.72, + "end": 4305.06, + "probability": 0.9285 + }, + { + "start": 4305.32, + "end": 4305.9, + "probability": 0.5096 + }, + { + "start": 4306.26, + "end": 4307.82, + "probability": 0.9927 + }, + { + "start": 4310.14, + "end": 4311.7, + "probability": 0.917 + }, + { + "start": 4311.88, + "end": 4312.56, + "probability": 0.451 + }, + { + "start": 4313.38, + "end": 4315.02, + "probability": 0.9479 + }, + { + "start": 4315.44, + "end": 4316.8, + "probability": 0.9272 + }, + { + "start": 4316.9, + "end": 4318.26, + "probability": 0.775 + }, + { + "start": 4319.02, + "end": 4320.28, + "probability": 0.9467 + }, + { + "start": 4320.6, + "end": 4323.22, + "probability": 0.8864 + }, + { + "start": 4323.8, + "end": 4326.1, + "probability": 0.9736 + }, + { + "start": 4327.18, + "end": 4329.28, + "probability": 0.9521 + }, + { + "start": 4329.56, + "end": 4330.56, + "probability": 0.9924 + }, + { + "start": 4332.56, + "end": 4333.58, + "probability": 0.9792 + }, + { + "start": 4335.0, + "end": 4338.84, + "probability": 0.9804 + }, + { + "start": 4338.96, + "end": 4339.62, + "probability": 0.8077 + }, + { + "start": 4340.42, + "end": 4341.48, + "probability": 0.774 + }, + { + "start": 4341.66, + "end": 4342.84, + "probability": 0.998 + }, + { + "start": 4344.04, + "end": 4345.66, + "probability": 0.9663 + }, + { + "start": 4346.42, + "end": 4347.78, + "probability": 0.9957 + }, + { + "start": 4349.14, + "end": 4351.04, + "probability": 0.9673 + }, + { + "start": 4352.88, + "end": 4356.06, + "probability": 0.9976 + }, + { + "start": 4356.66, + "end": 4358.42, + "probability": 0.9974 + }, + { + "start": 4359.94, + "end": 4361.04, + "probability": 0.8481 + }, + { + "start": 4361.26, + "end": 4363.06, + "probability": 0.9954 + }, + { + "start": 4363.98, + "end": 4367.28, + "probability": 0.9779 + }, + { + "start": 4368.1, + "end": 4369.14, + "probability": 0.6492 + }, + { + "start": 4370.44, + "end": 4371.66, + "probability": 0.5326 + }, + { + "start": 4372.4, + "end": 4373.56, + "probability": 0.9612 + }, + { + "start": 4374.42, + "end": 4375.72, + "probability": 0.7749 + }, + { + "start": 4376.88, + "end": 4378.84, + "probability": 0.9307 + }, + { + "start": 4379.56, + "end": 4381.86, + "probability": 0.9113 + }, + { + "start": 4381.98, + "end": 4382.94, + "probability": 0.8197 + }, + { + "start": 4383.42, + "end": 4384.46, + "probability": 0.9705 + }, + { + "start": 4384.6, + "end": 4386.98, + "probability": 0.8568 + }, + { + "start": 4387.66, + "end": 4388.6, + "probability": 0.7208 + }, + { + "start": 4388.68, + "end": 4391.06, + "probability": 0.9606 + }, + { + "start": 4391.06, + "end": 4394.16, + "probability": 0.9971 + }, + { + "start": 4395.04, + "end": 4395.52, + "probability": 0.5968 + }, + { + "start": 4396.14, + "end": 4397.13, + "probability": 0.9331 + }, + { + "start": 4398.84, + "end": 4403.64, + "probability": 0.9894 + }, + { + "start": 4404.18, + "end": 4406.66, + "probability": 0.999 + }, + { + "start": 4407.48, + "end": 4409.58, + "probability": 0.7654 + }, + { + "start": 4410.72, + "end": 4411.62, + "probability": 0.9059 + }, + { + "start": 4412.18, + "end": 4414.54, + "probability": 0.9974 + }, + { + "start": 4415.34, + "end": 4418.18, + "probability": 0.9675 + }, + { + "start": 4418.48, + "end": 4421.4, + "probability": 0.9847 + }, + { + "start": 4421.4, + "end": 4424.56, + "probability": 0.9968 + }, + { + "start": 4425.86, + "end": 4428.16, + "probability": 0.8594 + }, + { + "start": 4428.32, + "end": 4433.68, + "probability": 0.985 + }, + { + "start": 4434.28, + "end": 4437.42, + "probability": 0.9889 + }, + { + "start": 4437.54, + "end": 4437.9, + "probability": 0.7273 + }, + { + "start": 4438.48, + "end": 4439.48, + "probability": 0.7673 + }, + { + "start": 4439.82, + "end": 4440.82, + "probability": 0.9301 + }, + { + "start": 4441.46, + "end": 4442.96, + "probability": 0.9724 + }, + { + "start": 4444.2, + "end": 4445.66, + "probability": 0.9958 + }, + { + "start": 4447.04, + "end": 4447.9, + "probability": 0.5006 + }, + { + "start": 4448.74, + "end": 4449.8, + "probability": 0.6093 + }, + { + "start": 4450.68, + "end": 4453.24, + "probability": 0.9175 + }, + { + "start": 4453.88, + "end": 4457.1, + "probability": 0.9792 + }, + { + "start": 4457.58, + "end": 4462.4, + "probability": 0.9766 + }, + { + "start": 4463.06, + "end": 4467.3, + "probability": 0.9913 + }, + { + "start": 4467.7, + "end": 4469.84, + "probability": 0.9458 + }, + { + "start": 4470.38, + "end": 4473.74, + "probability": 0.9552 + }, + { + "start": 4474.28, + "end": 4475.05, + "probability": 0.9023 + }, + { + "start": 4475.78, + "end": 4479.4, + "probability": 0.9975 + }, + { + "start": 4479.9, + "end": 4481.94, + "probability": 0.76 + }, + { + "start": 4483.02, + "end": 4483.68, + "probability": 0.7307 + }, + { + "start": 4484.69, + "end": 4487.18, + "probability": 0.932 + }, + { + "start": 4489.29, + "end": 4492.27, + "probability": 0.6002 + }, + { + "start": 4492.98, + "end": 4493.82, + "probability": 0.9599 + }, + { + "start": 4493.96, + "end": 4494.5, + "probability": 0.1784 + }, + { + "start": 4494.62, + "end": 4496.68, + "probability": 0.8033 + }, + { + "start": 4496.84, + "end": 4499.54, + "probability": 0.8127 + }, + { + "start": 4500.2, + "end": 4501.76, + "probability": 0.8217 + }, + { + "start": 4502.62, + "end": 4503.26, + "probability": 0.0695 + }, + { + "start": 4503.26, + "end": 4504.86, + "probability": 0.0796 + }, + { + "start": 4506.18, + "end": 4506.78, + "probability": 0.373 + }, + { + "start": 4508.64, + "end": 4509.58, + "probability": 0.7365 + }, + { + "start": 4510.02, + "end": 4513.1, + "probability": 0.9407 + }, + { + "start": 4514.1, + "end": 4515.26, + "probability": 0.958 + }, + { + "start": 4522.2, + "end": 4524.96, + "probability": 0.7945 + }, + { + "start": 4526.04, + "end": 4530.94, + "probability": 0.8846 + }, + { + "start": 4532.62, + "end": 4533.36, + "probability": 0.5625 + }, + { + "start": 4533.5, + "end": 4539.04, + "probability": 0.925 + }, + { + "start": 4539.64, + "end": 4541.06, + "probability": 0.8486 + }, + { + "start": 4542.48, + "end": 4543.22, + "probability": 0.8765 + }, + { + "start": 4544.84, + "end": 4545.1, + "probability": 0.9927 + }, + { + "start": 4547.2, + "end": 4550.74, + "probability": 0.7904 + }, + { + "start": 4551.48, + "end": 4552.7, + "probability": 0.9778 + }, + { + "start": 4553.76, + "end": 4556.72, + "probability": 0.9935 + }, + { + "start": 4556.8, + "end": 4558.8, + "probability": 0.9835 + }, + { + "start": 4560.14, + "end": 4561.7, + "probability": 0.7234 + }, + { + "start": 4562.0, + "end": 4563.44, + "probability": 0.8914 + }, + { + "start": 4564.1, + "end": 4565.24, + "probability": 0.9922 + }, + { + "start": 4566.06, + "end": 4566.76, + "probability": 0.7982 + }, + { + "start": 4568.04, + "end": 4569.38, + "probability": 0.8851 + }, + { + "start": 4569.42, + "end": 4569.86, + "probability": 0.3919 + }, + { + "start": 4569.88, + "end": 4570.22, + "probability": 0.3382 + }, + { + "start": 4571.04, + "end": 4573.24, + "probability": 0.8305 + }, + { + "start": 4573.28, + "end": 4574.61, + "probability": 0.999 + }, + { + "start": 4575.9, + "end": 4579.66, + "probability": 0.9961 + }, + { + "start": 4580.0, + "end": 4580.62, + "probability": 0.6582 + }, + { + "start": 4580.8, + "end": 4582.2, + "probability": 0.7987 + }, + { + "start": 4584.02, + "end": 4585.64, + "probability": 0.9832 + }, + { + "start": 4586.72, + "end": 4588.96, + "probability": 0.9536 + }, + { + "start": 4589.86, + "end": 4591.88, + "probability": 0.8022 + }, + { + "start": 4593.62, + "end": 4600.68, + "probability": 0.9822 + }, + { + "start": 4600.86, + "end": 4601.68, + "probability": 0.7708 + }, + { + "start": 4601.84, + "end": 4603.4, + "probability": 0.9928 + }, + { + "start": 4605.66, + "end": 4605.9, + "probability": 0.5383 + }, + { + "start": 4605.96, + "end": 4611.06, + "probability": 0.9152 + }, + { + "start": 4611.36, + "end": 4612.72, + "probability": 0.7424 + }, + { + "start": 4614.3, + "end": 4615.1, + "probability": 0.9624 + }, + { + "start": 4616.26, + "end": 4618.96, + "probability": 0.9866 + }, + { + "start": 4619.52, + "end": 4620.82, + "probability": 0.8157 + }, + { + "start": 4621.44, + "end": 4624.56, + "probability": 0.9983 + }, + { + "start": 4625.6, + "end": 4627.26, + "probability": 0.998 + }, + { + "start": 4627.44, + "end": 4628.58, + "probability": 0.863 + }, + { + "start": 4629.28, + "end": 4630.6, + "probability": 0.9946 + }, + { + "start": 4631.28, + "end": 4632.22, + "probability": 0.7787 + }, + { + "start": 4636.5, + "end": 4639.46, + "probability": 0.9985 + }, + { + "start": 4639.98, + "end": 4641.59, + "probability": 0.9907 + }, + { + "start": 4642.44, + "end": 4644.56, + "probability": 0.9421 + }, + { + "start": 4645.58, + "end": 4646.54, + "probability": 0.4982 + }, + { + "start": 4649.36, + "end": 4651.68, + "probability": 0.9797 + }, + { + "start": 4655.28, + "end": 4656.98, + "probability": 0.6398 + }, + { + "start": 4657.62, + "end": 4658.74, + "probability": 0.9974 + }, + { + "start": 4660.44, + "end": 4661.22, + "probability": 0.9419 + }, + { + "start": 4661.64, + "end": 4662.72, + "probability": 0.936 + }, + { + "start": 4663.1, + "end": 4663.66, + "probability": 0.9861 + }, + { + "start": 4663.82, + "end": 4664.8, + "probability": 0.9705 + }, + { + "start": 4664.96, + "end": 4665.54, + "probability": 0.8122 + }, + { + "start": 4665.58, + "end": 4666.22, + "probability": 0.9775 + }, + { + "start": 4667.0, + "end": 4669.87, + "probability": 0.966 + }, + { + "start": 4670.46, + "end": 4672.45, + "probability": 0.9785 + }, + { + "start": 4673.34, + "end": 4674.7, + "probability": 0.9968 + }, + { + "start": 4675.76, + "end": 4676.42, + "probability": 0.9356 + }, + { + "start": 4678.52, + "end": 4680.8, + "probability": 0.9977 + }, + { + "start": 4681.36, + "end": 4682.02, + "probability": 0.9724 + }, + { + "start": 4682.72, + "end": 4683.46, + "probability": 0.9862 + }, + { + "start": 4685.26, + "end": 4688.86, + "probability": 0.9967 + }, + { + "start": 4689.88, + "end": 4693.66, + "probability": 0.9995 + }, + { + "start": 4694.54, + "end": 4696.74, + "probability": 0.9881 + }, + { + "start": 4697.6, + "end": 4698.92, + "probability": 0.9783 + }, + { + "start": 4699.1, + "end": 4701.4, + "probability": 0.9866 + }, + { + "start": 4702.92, + "end": 4704.04, + "probability": 0.766 + }, + { + "start": 4704.56, + "end": 4706.9, + "probability": 0.869 + }, + { + "start": 4707.68, + "end": 4710.54, + "probability": 0.868 + }, + { + "start": 4711.7, + "end": 4713.96, + "probability": 0.9725 + }, + { + "start": 4715.8, + "end": 4717.92, + "probability": 0.9836 + }, + { + "start": 4718.48, + "end": 4720.34, + "probability": 0.9718 + }, + { + "start": 4721.02, + "end": 4724.68, + "probability": 0.9972 + }, + { + "start": 4726.06, + "end": 4727.02, + "probability": 0.9531 + }, + { + "start": 4727.92, + "end": 4731.06, + "probability": 0.9844 + }, + { + "start": 4731.22, + "end": 4731.78, + "probability": 0.9966 + }, + { + "start": 4732.52, + "end": 4735.04, + "probability": 0.9956 + }, + { + "start": 4735.1, + "end": 4736.3, + "probability": 0.8566 + }, + { + "start": 4736.98, + "end": 4738.04, + "probability": 0.9581 + }, + { + "start": 4739.66, + "end": 4742.96, + "probability": 0.9102 + }, + { + "start": 4743.64, + "end": 4747.28, + "probability": 0.9973 + }, + { + "start": 4748.04, + "end": 4750.22, + "probability": 0.8502 + }, + { + "start": 4750.8, + "end": 4752.34, + "probability": 0.934 + }, + { + "start": 4752.48, + "end": 4754.9, + "probability": 0.6825 + }, + { + "start": 4755.6, + "end": 4757.14, + "probability": 0.9877 + }, + { + "start": 4757.7, + "end": 4759.66, + "probability": 0.9921 + }, + { + "start": 4760.32, + "end": 4761.04, + "probability": 0.9807 + }, + { + "start": 4761.32, + "end": 4763.52, + "probability": 0.9897 + }, + { + "start": 4764.48, + "end": 4765.1, + "probability": 0.9703 + }, + { + "start": 4766.76, + "end": 4769.52, + "probability": 0.982 + }, + { + "start": 4769.58, + "end": 4770.64, + "probability": 0.8906 + }, + { + "start": 4771.04, + "end": 4772.8, + "probability": 0.9976 + }, + { + "start": 4773.32, + "end": 4773.88, + "probability": 0.7518 + }, + { + "start": 4775.58, + "end": 4779.82, + "probability": 0.9839 + }, + { + "start": 4779.92, + "end": 4780.7, + "probability": 0.781 + }, + { + "start": 4781.3, + "end": 4781.9, + "probability": 0.7389 + }, + { + "start": 4782.04, + "end": 4782.48, + "probability": 0.858 + }, + { + "start": 4782.58, + "end": 4783.36, + "probability": 0.9401 + }, + { + "start": 4783.76, + "end": 4787.38, + "probability": 0.976 + }, + { + "start": 4789.16, + "end": 4789.72, + "probability": 0.731 + }, + { + "start": 4789.72, + "end": 4790.3, + "probability": 0.9866 + }, + { + "start": 4790.38, + "end": 4791.14, + "probability": 0.8465 + }, + { + "start": 4791.24, + "end": 4792.4, + "probability": 0.8683 + }, + { + "start": 4793.16, + "end": 4796.76, + "probability": 0.9558 + }, + { + "start": 4797.64, + "end": 4801.4, + "probability": 0.9824 + }, + { + "start": 4802.44, + "end": 4804.82, + "probability": 0.9478 + }, + { + "start": 4805.68, + "end": 4807.66, + "probability": 0.8792 + }, + { + "start": 4808.7, + "end": 4811.42, + "probability": 0.9548 + }, + { + "start": 4812.14, + "end": 4814.14, + "probability": 0.9966 + }, + { + "start": 4814.14, + "end": 4816.48, + "probability": 0.9921 + }, + { + "start": 4817.28, + "end": 4818.2, + "probability": 0.9895 + }, + { + "start": 4819.22, + "end": 4821.0, + "probability": 0.9856 + }, + { + "start": 4821.38, + "end": 4823.6, + "probability": 0.9972 + }, + { + "start": 4823.6, + "end": 4826.16, + "probability": 0.999 + }, + { + "start": 4827.34, + "end": 4829.44, + "probability": 0.9966 + }, + { + "start": 4829.44, + "end": 4832.14, + "probability": 0.9974 + }, + { + "start": 4834.1, + "end": 4836.58, + "probability": 0.9937 + }, + { + "start": 4836.7, + "end": 4837.32, + "probability": 0.8363 + }, + { + "start": 4837.34, + "end": 4838.15, + "probability": 0.82 + }, + { + "start": 4838.98, + "end": 4842.29, + "probability": 0.7731 + }, + { + "start": 4843.26, + "end": 4845.6, + "probability": 0.9948 + }, + { + "start": 4845.6, + "end": 4848.8, + "probability": 0.9914 + }, + { + "start": 4849.28, + "end": 4852.12, + "probability": 0.8255 + }, + { + "start": 4852.28, + "end": 4853.28, + "probability": 0.7109 + }, + { + "start": 4854.34, + "end": 4856.38, + "probability": 0.943 + }, + { + "start": 4857.04, + "end": 4859.36, + "probability": 0.9943 + }, + { + "start": 4859.36, + "end": 4862.68, + "probability": 0.996 + }, + { + "start": 4863.36, + "end": 4865.66, + "probability": 0.9939 + }, + { + "start": 4865.82, + "end": 4867.16, + "probability": 0.9961 + }, + { + "start": 4869.12, + "end": 4872.18, + "probability": 0.6202 + }, + { + "start": 4872.8, + "end": 4875.82, + "probability": 0.9907 + }, + { + "start": 4876.86, + "end": 4878.46, + "probability": 0.9941 + }, + { + "start": 4879.2, + "end": 4880.64, + "probability": 0.4509 + }, + { + "start": 4881.6, + "end": 4882.38, + "probability": 0.8593 + }, + { + "start": 4882.5, + "end": 4882.82, + "probability": 0.9533 + }, + { + "start": 4883.24, + "end": 4884.42, + "probability": 0.959 + }, + { + "start": 4884.68, + "end": 4885.44, + "probability": 0.9662 + }, + { + "start": 4885.82, + "end": 4889.04, + "probability": 0.9839 + }, + { + "start": 4890.0, + "end": 4892.1, + "probability": 0.9974 + }, + { + "start": 4893.16, + "end": 4895.76, + "probability": 0.9283 + }, + { + "start": 4896.3, + "end": 4899.74, + "probability": 0.9938 + }, + { + "start": 4900.56, + "end": 4901.58, + "probability": 0.9229 + }, + { + "start": 4902.76, + "end": 4905.18, + "probability": 0.9946 + }, + { + "start": 4905.34, + "end": 4906.5, + "probability": 0.8643 + }, + { + "start": 4907.36, + "end": 4912.52, + "probability": 0.9031 + }, + { + "start": 4912.74, + "end": 4913.52, + "probability": 0.6202 + }, + { + "start": 4913.66, + "end": 4913.89, + "probability": 0.9858 + }, + { + "start": 4915.22, + "end": 4916.0, + "probability": 0.707 + }, + { + "start": 4916.22, + "end": 4918.92, + "probability": 0.8731 + }, + { + "start": 4919.16, + "end": 4920.48, + "probability": 0.9648 + }, + { + "start": 4920.62, + "end": 4921.24, + "probability": 0.7891 + }, + { + "start": 4922.04, + "end": 4925.2, + "probability": 0.9735 + }, + { + "start": 4926.14, + "end": 4926.42, + "probability": 0.5055 + }, + { + "start": 4926.74, + "end": 4929.8, + "probability": 0.9919 + }, + { + "start": 4931.18, + "end": 4932.32, + "probability": 0.7176 + }, + { + "start": 4933.98, + "end": 4935.04, + "probability": 0.9832 + }, + { + "start": 4935.28, + "end": 4936.04, + "probability": 0.8668 + }, + { + "start": 4936.12, + "end": 4938.08, + "probability": 0.9746 + }, + { + "start": 4940.12, + "end": 4943.1, + "probability": 0.9897 + }, + { + "start": 4943.45, + "end": 4947.2, + "probability": 0.9985 + }, + { + "start": 4947.76, + "end": 4951.24, + "probability": 0.8647 + }, + { + "start": 4951.84, + "end": 4955.6, + "probability": 0.9832 + }, + { + "start": 4955.6, + "end": 4958.26, + "probability": 0.9817 + }, + { + "start": 4959.46, + "end": 4964.0, + "probability": 0.998 + }, + { + "start": 4964.56, + "end": 4964.72, + "probability": 0.4029 + }, + { + "start": 4964.8, + "end": 4965.56, + "probability": 0.9226 + }, + { + "start": 4965.82, + "end": 4968.28, + "probability": 0.9797 + }, + { + "start": 4969.36, + "end": 4972.76, + "probability": 0.9965 + }, + { + "start": 4973.16, + "end": 4974.94, + "probability": 0.8298 + }, + { + "start": 4975.66, + "end": 4977.38, + "probability": 0.9885 + }, + { + "start": 4977.4, + "end": 4979.84, + "probability": 0.9935 + }, + { + "start": 4981.46, + "end": 4985.2, + "probability": 0.9946 + }, + { + "start": 4985.78, + "end": 4987.12, + "probability": 0.808 + }, + { + "start": 4987.24, + "end": 4987.72, + "probability": 0.8776 + }, + { + "start": 4987.78, + "end": 4990.22, + "probability": 0.9624 + }, + { + "start": 4990.82, + "end": 4991.58, + "probability": 0.951 + }, + { + "start": 4992.58, + "end": 4994.38, + "probability": 0.9895 + }, + { + "start": 4996.1, + "end": 4996.76, + "probability": 0.862 + }, + { + "start": 4997.02, + "end": 4997.52, + "probability": 0.3899 + }, + { + "start": 4997.56, + "end": 4999.48, + "probability": 0.9801 + }, + { + "start": 4999.98, + "end": 5000.62, + "probability": 0.9762 + }, + { + "start": 5001.8, + "end": 5003.84, + "probability": 0.9027 + }, + { + "start": 5003.84, + "end": 5006.44, + "probability": 0.9709 + }, + { + "start": 5006.58, + "end": 5008.36, + "probability": 0.832 + }, + { + "start": 5008.88, + "end": 5009.7, + "probability": 0.9592 + }, + { + "start": 5010.62, + "end": 5013.85, + "probability": 0.9102 + }, + { + "start": 5014.74, + "end": 5017.76, + "probability": 0.981 + }, + { + "start": 5018.02, + "end": 5021.3, + "probability": 0.9767 + }, + { + "start": 5021.34, + "end": 5023.88, + "probability": 0.9794 + }, + { + "start": 5025.22, + "end": 5028.52, + "probability": 0.9834 + }, + { + "start": 5029.3, + "end": 5030.92, + "probability": 0.9689 + }, + { + "start": 5032.42, + "end": 5035.94, + "probability": 0.989 + }, + { + "start": 5036.6, + "end": 5040.46, + "probability": 0.9677 + }, + { + "start": 5040.94, + "end": 5041.5, + "probability": 0.698 + }, + { + "start": 5042.16, + "end": 5043.0, + "probability": 0.7915 + }, + { + "start": 5043.62, + "end": 5046.12, + "probability": 0.7692 + }, + { + "start": 5046.12, + "end": 5048.98, + "probability": 0.9904 + }, + { + "start": 5049.78, + "end": 5050.02, + "probability": 0.7156 + }, + { + "start": 5050.22, + "end": 5050.8, + "probability": 0.9268 + }, + { + "start": 5050.86, + "end": 5053.12, + "probability": 0.9541 + }, + { + "start": 5054.48, + "end": 5057.18, + "probability": 0.9905 + }, + { + "start": 5057.64, + "end": 5059.06, + "probability": 0.8362 + }, + { + "start": 5060.34, + "end": 5063.08, + "probability": 0.957 + }, + { + "start": 5063.56, + "end": 5065.56, + "probability": 0.9711 + }, + { + "start": 5066.18, + "end": 5066.64, + "probability": 0.8651 + }, + { + "start": 5067.32, + "end": 5068.28, + "probability": 0.9317 + }, + { + "start": 5069.84, + "end": 5071.74, + "probability": 0.9407 + }, + { + "start": 5071.82, + "end": 5072.28, + "probability": 0.8879 + }, + { + "start": 5072.5, + "end": 5074.0, + "probability": 0.9937 + }, + { + "start": 5074.0, + "end": 5076.16, + "probability": 0.9872 + }, + { + "start": 5077.46, + "end": 5078.72, + "probability": 0.7494 + }, + { + "start": 5079.78, + "end": 5082.74, + "probability": 0.8311 + }, + { + "start": 5083.76, + "end": 5087.34, + "probability": 0.9941 + }, + { + "start": 5087.92, + "end": 5088.22, + "probability": 0.9938 + }, + { + "start": 5089.0, + "end": 5090.14, + "probability": 0.886 + }, + { + "start": 5091.0, + "end": 5093.2, + "probability": 0.9707 + }, + { + "start": 5093.34, + "end": 5095.18, + "probability": 0.9673 + }, + { + "start": 5095.9, + "end": 5096.88, + "probability": 0.988 + }, + { + "start": 5098.1, + "end": 5100.5, + "probability": 0.8846 + }, + { + "start": 5101.26, + "end": 5102.06, + "probability": 0.9075 + }, + { + "start": 5102.28, + "end": 5102.9, + "probability": 0.9824 + }, + { + "start": 5102.98, + "end": 5103.78, + "probability": 0.9727 + }, + { + "start": 5103.8, + "end": 5104.76, + "probability": 0.9843 + }, + { + "start": 5104.84, + "end": 5105.68, + "probability": 0.7291 + }, + { + "start": 5105.76, + "end": 5106.6, + "probability": 0.9157 + }, + { + "start": 5107.34, + "end": 5108.84, + "probability": 0.9893 + }, + { + "start": 5109.38, + "end": 5112.0, + "probability": 0.9893 + }, + { + "start": 5112.8, + "end": 5113.1, + "probability": 0.9041 + }, + { + "start": 5113.68, + "end": 5114.58, + "probability": 0.9377 + }, + { + "start": 5115.36, + "end": 5117.3, + "probability": 0.9777 + }, + { + "start": 5118.22, + "end": 5120.62, + "probability": 0.9755 + }, + { + "start": 5121.3, + "end": 5121.44, + "probability": 0.5013 + }, + { + "start": 5122.3, + "end": 5124.58, + "probability": 0.9823 + }, + { + "start": 5124.66, + "end": 5125.14, + "probability": 0.6925 + }, + { + "start": 5125.28, + "end": 5125.88, + "probability": 0.6257 + }, + { + "start": 5126.48, + "end": 5127.34, + "probability": 0.9716 + }, + { + "start": 5128.76, + "end": 5131.6, + "probability": 0.9801 + }, + { + "start": 5132.32, + "end": 5135.88, + "probability": 0.7664 + }, + { + "start": 5137.56, + "end": 5140.26, + "probability": 0.8663 + }, + { + "start": 5140.8, + "end": 5141.7, + "probability": 0.9485 + }, + { + "start": 5142.22, + "end": 5143.06, + "probability": 0.5967 + }, + { + "start": 5144.26, + "end": 5146.58, + "probability": 0.9304 + }, + { + "start": 5147.22, + "end": 5148.6, + "probability": 0.9111 + }, + { + "start": 5149.24, + "end": 5151.26, + "probability": 0.9136 + }, + { + "start": 5152.14, + "end": 5152.54, + "probability": 0.8831 + }, + { + "start": 5153.24, + "end": 5154.92, + "probability": 0.9972 + }, + { + "start": 5156.28, + "end": 5157.02, + "probability": 0.9775 + }, + { + "start": 5157.84, + "end": 5163.78, + "probability": 0.9893 + }, + { + "start": 5164.88, + "end": 5166.54, + "probability": 0.9944 + }, + { + "start": 5167.36, + "end": 5167.52, + "probability": 0.3345 + }, + { + "start": 5167.64, + "end": 5168.78, + "probability": 0.9385 + }, + { + "start": 5168.88, + "end": 5170.82, + "probability": 0.9832 + }, + { + "start": 5172.06, + "end": 5174.0, + "probability": 0.9594 + }, + { + "start": 5174.4, + "end": 5180.1, + "probability": 0.87 + }, + { + "start": 5181.6, + "end": 5183.98, + "probability": 0.6428 + }, + { + "start": 5184.54, + "end": 5186.36, + "probability": 0.9661 + }, + { + "start": 5186.36, + "end": 5189.24, + "probability": 0.9964 + }, + { + "start": 5190.2, + "end": 5192.54, + "probability": 0.8784 + }, + { + "start": 5192.92, + "end": 5194.44, + "probability": 0.703 + }, + { + "start": 5194.5, + "end": 5195.6, + "probability": 0.8054 + }, + { + "start": 5195.64, + "end": 5195.74, + "probability": 0.8326 + }, + { + "start": 5196.62, + "end": 5198.32, + "probability": 0.9448 + }, + { + "start": 5198.94, + "end": 5203.0, + "probability": 0.9871 + }, + { + "start": 5203.0, + "end": 5207.88, + "probability": 0.976 + }, + { + "start": 5209.16, + "end": 5210.92, + "probability": 0.9881 + }, + { + "start": 5211.0, + "end": 5212.64, + "probability": 0.991 + }, + { + "start": 5212.78, + "end": 5213.42, + "probability": 0.7013 + }, + { + "start": 5213.68, + "end": 5215.36, + "probability": 0.9874 + }, + { + "start": 5216.22, + "end": 5218.28, + "probability": 0.7195 + }, + { + "start": 5218.6, + "end": 5219.54, + "probability": 0.6808 + }, + { + "start": 5220.84, + "end": 5222.72, + "probability": 0.9893 + }, + { + "start": 5223.24, + "end": 5224.0, + "probability": 0.9415 + }, + { + "start": 5224.14, + "end": 5226.84, + "probability": 0.9625 + }, + { + "start": 5226.94, + "end": 5228.46, + "probability": 0.9565 + }, + { + "start": 5229.92, + "end": 5231.04, + "probability": 0.5195 + }, + { + "start": 5231.14, + "end": 5231.9, + "probability": 0.8935 + }, + { + "start": 5232.84, + "end": 5233.46, + "probability": 0.9004 + }, + { + "start": 5234.44, + "end": 5236.34, + "probability": 0.9091 + }, + { + "start": 5237.1, + "end": 5237.3, + "probability": 0.8201 + }, + { + "start": 5238.46, + "end": 5240.32, + "probability": 0.9865 + }, + { + "start": 5241.14, + "end": 5243.98, + "probability": 0.9847 + }, + { + "start": 5244.13, + "end": 5247.22, + "probability": 0.9902 + }, + { + "start": 5248.62, + "end": 5252.84, + "probability": 0.9714 + }, + { + "start": 5254.02, + "end": 5255.6, + "probability": 0.9916 + }, + { + "start": 5256.26, + "end": 5256.94, + "probability": 0.7808 + }, + { + "start": 5257.86, + "end": 5259.54, + "probability": 0.998 + }, + { + "start": 5261.12, + "end": 5263.02, + "probability": 0.9946 + }, + { + "start": 5263.86, + "end": 5267.88, + "probability": 0.9959 + }, + { + "start": 5269.0, + "end": 5271.1, + "probability": 0.9277 + }, + { + "start": 5271.82, + "end": 5275.28, + "probability": 0.7698 + }, + { + "start": 5276.06, + "end": 5278.68, + "probability": 0.8719 + }, + { + "start": 5279.32, + "end": 5282.58, + "probability": 0.9515 + }, + { + "start": 5284.26, + "end": 5285.82, + "probability": 0.7719 + }, + { + "start": 5286.54, + "end": 5289.54, + "probability": 0.9921 + }, + { + "start": 5290.12, + "end": 5292.1, + "probability": 0.9225 + }, + { + "start": 5293.04, + "end": 5294.12, + "probability": 0.9332 + }, + { + "start": 5294.96, + "end": 5297.6, + "probability": 0.9922 + }, + { + "start": 5298.34, + "end": 5299.48, + "probability": 0.8189 + }, + { + "start": 5300.56, + "end": 5300.76, + "probability": 0.8046 + }, + { + "start": 5301.38, + "end": 5302.92, + "probability": 0.9031 + }, + { + "start": 5303.7, + "end": 5304.28, + "probability": 0.5603 + }, + { + "start": 5304.94, + "end": 5306.62, + "probability": 0.8404 + }, + { + "start": 5308.58, + "end": 5310.6, + "probability": 0.9924 + }, + { + "start": 5310.62, + "end": 5311.56, + "probability": 0.9626 + }, + { + "start": 5311.7, + "end": 5313.0, + "probability": 0.7818 + }, + { + "start": 5313.18, + "end": 5313.36, + "probability": 0.5845 + }, + { + "start": 5313.46, + "end": 5313.58, + "probability": 0.7532 + }, + { + "start": 5313.62, + "end": 5314.18, + "probability": 0.7711 + }, + { + "start": 5314.26, + "end": 5314.44, + "probability": 0.8416 + }, + { + "start": 5325.7, + "end": 5328.63, + "probability": 0.682 + }, + { + "start": 5330.38, + "end": 5334.66, + "probability": 0.9308 + }, + { + "start": 5336.66, + "end": 5337.86, + "probability": 0.8336 + }, + { + "start": 5339.74, + "end": 5340.74, + "probability": 0.8026 + }, + { + "start": 5341.88, + "end": 5342.72, + "probability": 0.8351 + }, + { + "start": 5343.7, + "end": 5348.46, + "probability": 0.964 + }, + { + "start": 5348.74, + "end": 5349.08, + "probability": 0.8083 + }, + { + "start": 5350.6, + "end": 5350.78, + "probability": 0.9004 + }, + { + "start": 5351.74, + "end": 5352.78, + "probability": 0.9722 + }, + { + "start": 5353.76, + "end": 5354.68, + "probability": 0.9707 + }, + { + "start": 5355.94, + "end": 5357.7, + "probability": 0.7804 + }, + { + "start": 5358.84, + "end": 5359.6, + "probability": 0.8842 + }, + { + "start": 5360.4, + "end": 5361.26, + "probability": 0.7974 + }, + { + "start": 5362.14, + "end": 5362.92, + "probability": 0.9729 + }, + { + "start": 5364.38, + "end": 5366.08, + "probability": 0.5519 + }, + { + "start": 5367.1, + "end": 5368.06, + "probability": 0.7514 + }, + { + "start": 5369.36, + "end": 5370.44, + "probability": 0.5172 + }, + { + "start": 5371.42, + "end": 5374.02, + "probability": 0.9425 + }, + { + "start": 5375.04, + "end": 5376.18, + "probability": 0.9556 + }, + { + "start": 5377.56, + "end": 5379.0, + "probability": 0.9705 + }, + { + "start": 5381.72, + "end": 5382.49, + "probability": 0.1961 + }, + { + "start": 5383.88, + "end": 5385.18, + "probability": 0.9144 + }, + { + "start": 5386.12, + "end": 5386.64, + "probability": 0.6711 + }, + { + "start": 5387.72, + "end": 5389.22, + "probability": 0.9167 + }, + { + "start": 5390.34, + "end": 5395.08, + "probability": 0.9453 + }, + { + "start": 5395.5, + "end": 5397.92, + "probability": 0.9437 + }, + { + "start": 5398.74, + "end": 5399.3, + "probability": 0.9325 + }, + { + "start": 5400.1, + "end": 5402.6, + "probability": 0.8467 + }, + { + "start": 5403.72, + "end": 5404.28, + "probability": 0.8615 + }, + { + "start": 5405.4, + "end": 5407.08, + "probability": 0.9983 + }, + { + "start": 5407.98, + "end": 5408.94, + "probability": 0.901 + }, + { + "start": 5409.84, + "end": 5410.9, + "probability": 0.9425 + }, + { + "start": 5411.92, + "end": 5412.7, + "probability": 0.9868 + }, + { + "start": 5414.36, + "end": 5415.84, + "probability": 0.9683 + }, + { + "start": 5416.36, + "end": 5420.07, + "probability": 0.8862 + }, + { + "start": 5420.64, + "end": 5425.08, + "probability": 0.9985 + }, + { + "start": 5425.86, + "end": 5428.86, + "probability": 0.99 + }, + { + "start": 5429.5, + "end": 5431.86, + "probability": 0.9592 + }, + { + "start": 5432.46, + "end": 5433.7, + "probability": 0.8632 + }, + { + "start": 5434.28, + "end": 5435.08, + "probability": 0.8243 + }, + { + "start": 5436.28, + "end": 5438.62, + "probability": 0.8979 + }, + { + "start": 5439.62, + "end": 5444.0, + "probability": 0.9974 + }, + { + "start": 5444.08, + "end": 5445.36, + "probability": 0.998 + }, + { + "start": 5446.12, + "end": 5448.26, + "probability": 0.9951 + }, + { + "start": 5449.32, + "end": 5451.5, + "probability": 0.8089 + }, + { + "start": 5452.46, + "end": 5453.58, + "probability": 0.8062 + }, + { + "start": 5454.78, + "end": 5455.78, + "probability": 0.9965 + }, + { + "start": 5456.52, + "end": 5457.04, + "probability": 0.9961 + }, + { + "start": 5458.2, + "end": 5460.18, + "probability": 0.9796 + }, + { + "start": 5461.4, + "end": 5462.86, + "probability": 0.9488 + }, + { + "start": 5464.4, + "end": 5467.7, + "probability": 0.9919 + }, + { + "start": 5468.4, + "end": 5469.06, + "probability": 0.8842 + }, + { + "start": 5470.88, + "end": 5472.84, + "probability": 0.9945 + }, + { + "start": 5474.66, + "end": 5476.26, + "probability": 0.9863 + }, + { + "start": 5477.24, + "end": 5479.4, + "probability": 0.932 + }, + { + "start": 5480.62, + "end": 5481.78, + "probability": 0.9942 + }, + { + "start": 5483.12, + "end": 5484.7, + "probability": 0.7483 + }, + { + "start": 5485.46, + "end": 5486.58, + "probability": 0.8302 + }, + { + "start": 5487.44, + "end": 5488.16, + "probability": 0.8072 + }, + { + "start": 5488.96, + "end": 5493.18, + "probability": 0.984 + }, + { + "start": 5494.58, + "end": 5496.52, + "probability": 0.948 + }, + { + "start": 5497.86, + "end": 5498.78, + "probability": 0.8513 + }, + { + "start": 5499.4, + "end": 5500.02, + "probability": 0.7922 + }, + { + "start": 5501.04, + "end": 5501.98, + "probability": 0.9839 + }, + { + "start": 5502.82, + "end": 5503.52, + "probability": 0.7545 + }, + { + "start": 5504.26, + "end": 5505.02, + "probability": 0.8964 + }, + { + "start": 5505.84, + "end": 5506.62, + "probability": 0.9502 + }, + { + "start": 5507.68, + "end": 5508.74, + "probability": 0.929 + }, + { + "start": 5509.34, + "end": 5512.36, + "probability": 0.9858 + }, + { + "start": 5513.4, + "end": 5515.98, + "probability": 0.9938 + }, + { + "start": 5517.2, + "end": 5518.58, + "probability": 0.8429 + }, + { + "start": 5519.5, + "end": 5519.5, + "probability": 0.9326 + }, + { + "start": 5520.62, + "end": 5521.52, + "probability": 0.9988 + }, + { + "start": 5523.54, + "end": 5526.22, + "probability": 0.9706 + }, + { + "start": 5526.22, + "end": 5528.82, + "probability": 0.8502 + }, + { + "start": 5529.08, + "end": 5529.62, + "probability": 0.7487 + }, + { + "start": 5530.18, + "end": 5533.48, + "probability": 0.9868 + }, + { + "start": 5534.08, + "end": 5535.5, + "probability": 0.9518 + }, + { + "start": 5536.24, + "end": 5539.1, + "probability": 0.8895 + }, + { + "start": 5540.46, + "end": 5545.86, + "probability": 0.9534 + }, + { + "start": 5546.76, + "end": 5551.48, + "probability": 0.9968 + }, + { + "start": 5552.2, + "end": 5553.56, + "probability": 0.94 + }, + { + "start": 5554.38, + "end": 5557.36, + "probability": 0.9956 + }, + { + "start": 5557.92, + "end": 5558.34, + "probability": 0.936 + }, + { + "start": 5560.0, + "end": 5560.63, + "probability": 0.8547 + }, + { + "start": 5562.04, + "end": 5565.06, + "probability": 0.9792 + }, + { + "start": 5565.88, + "end": 5566.94, + "probability": 0.8809 + }, + { + "start": 5567.5, + "end": 5568.84, + "probability": 0.797 + }, + { + "start": 5570.28, + "end": 5573.94, + "probability": 0.9882 + }, + { + "start": 5574.5, + "end": 5577.66, + "probability": 0.8135 + }, + { + "start": 5578.57, + "end": 5580.36, + "probability": 0.6796 + }, + { + "start": 5581.84, + "end": 5585.82, + "probability": 0.9219 + }, + { + "start": 5586.54, + "end": 5587.66, + "probability": 0.0816 + }, + { + "start": 5588.32, + "end": 5588.96, + "probability": 0.9714 + }, + { + "start": 5590.95, + "end": 5592.66, + "probability": 0.7349 + }, + { + "start": 5592.66, + "end": 5593.2, + "probability": 0.6623 + }, + { + "start": 5593.3, + "end": 5595.9, + "probability": 0.7378 + }, + { + "start": 5596.62, + "end": 5598.34, + "probability": 0.9683 + }, + { + "start": 5598.56, + "end": 5602.92, + "probability": 0.9385 + }, + { + "start": 5603.96, + "end": 5605.58, + "probability": 0.9723 + }, + { + "start": 5606.84, + "end": 5609.14, + "probability": 0.9767 + }, + { + "start": 5610.16, + "end": 5613.5, + "probability": 0.9972 + }, + { + "start": 5614.54, + "end": 5617.7, + "probability": 0.9806 + }, + { + "start": 5618.8, + "end": 5621.72, + "probability": 0.9675 + }, + { + "start": 5623.22, + "end": 5624.54, + "probability": 0.9658 + }, + { + "start": 5625.82, + "end": 5626.98, + "probability": 0.9417 + }, + { + "start": 5627.36, + "end": 5632.25, + "probability": 0.9957 + }, + { + "start": 5633.34, + "end": 5634.02, + "probability": 0.7371 + }, + { + "start": 5635.34, + "end": 5638.28, + "probability": 0.999 + }, + { + "start": 5638.38, + "end": 5638.7, + "probability": 0.5063 + }, + { + "start": 5639.94, + "end": 5641.1, + "probability": 0.817 + }, + { + "start": 5642.22, + "end": 5644.96, + "probability": 0.988 + }, + { + "start": 5645.86, + "end": 5647.22, + "probability": 0.9967 + }, + { + "start": 5647.42, + "end": 5648.32, + "probability": 0.9875 + }, + { + "start": 5648.4, + "end": 5651.78, + "probability": 0.9969 + }, + { + "start": 5652.76, + "end": 5654.96, + "probability": 0.7646 + }, + { + "start": 5656.32, + "end": 5659.94, + "probability": 0.9761 + }, + { + "start": 5661.26, + "end": 5662.16, + "probability": 0.9895 + }, + { + "start": 5663.02, + "end": 5663.68, + "probability": 0.5861 + }, + { + "start": 5664.46, + "end": 5664.98, + "probability": 0.8768 + }, + { + "start": 5665.98, + "end": 5666.56, + "probability": 0.8597 + }, + { + "start": 5667.46, + "end": 5668.78, + "probability": 0.974 + }, + { + "start": 5669.62, + "end": 5670.24, + "probability": 0.9154 + }, + { + "start": 5671.54, + "end": 5671.88, + "probability": 0.6829 + }, + { + "start": 5672.7, + "end": 5673.56, + "probability": 0.9123 + }, + { + "start": 5674.48, + "end": 5676.12, + "probability": 0.8027 + }, + { + "start": 5677.24, + "end": 5678.6, + "probability": 0.9212 + }, + { + "start": 5679.0, + "end": 5681.42, + "probability": 0.9836 + }, + { + "start": 5681.58, + "end": 5682.4, + "probability": 0.7885 + }, + { + "start": 5682.86, + "end": 5683.96, + "probability": 0.9833 + }, + { + "start": 5683.96, + "end": 5684.8, + "probability": 0.9119 + }, + { + "start": 5685.28, + "end": 5686.12, + "probability": 0.9473 + }, + { + "start": 5687.06, + "end": 5687.7, + "probability": 0.7887 + }, + { + "start": 5688.58, + "end": 5690.84, + "probability": 0.8354 + }, + { + "start": 5692.04, + "end": 5693.82, + "probability": 0.9993 + }, + { + "start": 5694.66, + "end": 5697.2, + "probability": 0.9955 + }, + { + "start": 5698.0, + "end": 5698.42, + "probability": 0.6829 + }, + { + "start": 5699.34, + "end": 5705.42, + "probability": 0.9043 + }, + { + "start": 5705.58, + "end": 5707.22, + "probability": 0.9583 + }, + { + "start": 5708.12, + "end": 5708.98, + "probability": 0.9482 + }, + { + "start": 5709.58, + "end": 5711.96, + "probability": 0.9237 + }, + { + "start": 5713.0, + "end": 5715.74, + "probability": 0.7605 + }, + { + "start": 5716.9, + "end": 5717.36, + "probability": 0.7469 + }, + { + "start": 5718.34, + "end": 5720.36, + "probability": 0.8466 + }, + { + "start": 5721.06, + "end": 5724.44, + "probability": 0.9071 + }, + { + "start": 5726.54, + "end": 5728.28, + "probability": 0.7769 + }, + { + "start": 5728.94, + "end": 5729.26, + "probability": 0.9658 + }, + { + "start": 5730.02, + "end": 5732.16, + "probability": 0.9722 + }, + { + "start": 5732.92, + "end": 5735.4, + "probability": 0.9772 + }, + { + "start": 5736.76, + "end": 5738.24, + "probability": 0.9681 + }, + { + "start": 5739.0, + "end": 5739.28, + "probability": 0.9733 + }, + { + "start": 5740.44, + "end": 5744.7, + "probability": 0.9748 + }, + { + "start": 5745.64, + "end": 5748.12, + "probability": 0.989 + }, + { + "start": 5748.3, + "end": 5751.4, + "probability": 0.1305 + }, + { + "start": 5751.4, + "end": 5754.18, + "probability": 0.8045 + }, + { + "start": 5754.38, + "end": 5755.24, + "probability": 0.9595 + }, + { + "start": 5756.3, + "end": 5758.46, + "probability": 0.9769 + }, + { + "start": 5759.2, + "end": 5761.59, + "probability": 0.9641 + }, + { + "start": 5762.4, + "end": 5762.86, + "probability": 0.8306 + }, + { + "start": 5763.82, + "end": 5766.54, + "probability": 0.8566 + }, + { + "start": 5767.28, + "end": 5768.74, + "probability": 0.9224 + }, + { + "start": 5768.84, + "end": 5770.08, + "probability": 0.814 + }, + { + "start": 5770.2, + "end": 5772.37, + "probability": 0.8599 + }, + { + "start": 5773.62, + "end": 5774.18, + "probability": 0.7148 + }, + { + "start": 5774.92, + "end": 5779.22, + "probability": 0.9866 + }, + { + "start": 5780.6, + "end": 5781.48, + "probability": 0.7281 + }, + { + "start": 5781.48, + "end": 5782.24, + "probability": 0.7945 + }, + { + "start": 5783.2, + "end": 5786.16, + "probability": 0.9425 + }, + { + "start": 5787.22, + "end": 5792.58, + "probability": 0.697 + }, + { + "start": 5793.32, + "end": 5796.86, + "probability": 0.9983 + }, + { + "start": 5797.76, + "end": 5802.36, + "probability": 0.9993 + }, + { + "start": 5803.44, + "end": 5803.88, + "probability": 0.4217 + }, + { + "start": 5803.9, + "end": 5804.18, + "probability": 0.8046 + }, + { + "start": 5804.36, + "end": 5808.22, + "probability": 0.9985 + }, + { + "start": 5808.34, + "end": 5812.72, + "probability": 0.9467 + }, + { + "start": 5813.3, + "end": 5816.52, + "probability": 0.9432 + }, + { + "start": 5817.06, + "end": 5817.46, + "probability": 0.9404 + }, + { + "start": 5818.42, + "end": 5820.38, + "probability": 0.9154 + }, + { + "start": 5820.48, + "end": 5822.08, + "probability": 0.6876 + }, + { + "start": 5822.64, + "end": 5823.52, + "probability": 0.9661 + }, + { + "start": 5824.1, + "end": 5825.04, + "probability": 0.9753 + }, + { + "start": 5825.12, + "end": 5826.64, + "probability": 0.7999 + }, + { + "start": 5826.84, + "end": 5828.08, + "probability": 0.8159 + }, + { + "start": 5828.98, + "end": 5833.21, + "probability": 0.8293 + }, + { + "start": 5833.94, + "end": 5834.84, + "probability": 0.5818 + }, + { + "start": 5835.88, + "end": 5839.58, + "probability": 0.8248 + }, + { + "start": 5839.9, + "end": 5840.36, + "probability": 0.7362 + }, + { + "start": 5841.22, + "end": 5844.58, + "probability": 0.9767 + }, + { + "start": 5845.04, + "end": 5846.08, + "probability": 0.8774 + }, + { + "start": 5847.1, + "end": 5847.56, + "probability": 0.9478 + }, + { + "start": 5848.72, + "end": 5850.52, + "probability": 0.9614 + }, + { + "start": 5850.66, + "end": 5853.7, + "probability": 0.991 + }, + { + "start": 5854.26, + "end": 5856.7, + "probability": 0.9615 + }, + { + "start": 5857.2, + "end": 5859.88, + "probability": 0.6583 + }, + { + "start": 5860.14, + "end": 5863.54, + "probability": 0.8882 + }, + { + "start": 5864.42, + "end": 5868.82, + "probability": 0.992 + }, + { + "start": 5869.5, + "end": 5870.44, + "probability": 0.9163 + }, + { + "start": 5871.24, + "end": 5871.52, + "probability": 0.8207 + }, + { + "start": 5872.88, + "end": 5875.74, + "probability": 0.9624 + }, + { + "start": 5876.76, + "end": 5878.76, + "probability": 0.9492 + }, + { + "start": 5879.36, + "end": 5879.98, + "probability": 0.9537 + }, + { + "start": 5880.72, + "end": 5882.0, + "probability": 0.9624 + }, + { + "start": 5882.9, + "end": 5883.96, + "probability": 0.9932 + }, + { + "start": 5884.8, + "end": 5885.68, + "probability": 0.9951 + }, + { + "start": 5886.86, + "end": 5888.16, + "probability": 0.9414 + }, + { + "start": 5888.68, + "end": 5889.98, + "probability": 0.8596 + }, + { + "start": 5890.62, + "end": 5893.54, + "probability": 0.9252 + }, + { + "start": 5894.1, + "end": 5894.96, + "probability": 0.6254 + }, + { + "start": 5895.48, + "end": 5896.1, + "probability": 0.7885 + }, + { + "start": 5896.86, + "end": 5898.74, + "probability": 0.812 + }, + { + "start": 5899.28, + "end": 5900.02, + "probability": 0.3979 + }, + { + "start": 5901.18, + "end": 5904.1, + "probability": 0.8456 + }, + { + "start": 5905.58, + "end": 5909.58, + "probability": 0.9985 + }, + { + "start": 5910.46, + "end": 5911.2, + "probability": 0.7837 + }, + { + "start": 5911.88, + "end": 5912.36, + "probability": 0.6168 + }, + { + "start": 5913.14, + "end": 5914.4, + "probability": 0.9081 + }, + { + "start": 5914.62, + "end": 5915.08, + "probability": 0.9147 + }, + { + "start": 5915.84, + "end": 5921.56, + "probability": 0.9814 + }, + { + "start": 5921.94, + "end": 5921.94, + "probability": 0.0991 + }, + { + "start": 5922.0, + "end": 5922.92, + "probability": 0.3905 + }, + { + "start": 5923.12, + "end": 5925.04, + "probability": 0.7974 + }, + { + "start": 5926.06, + "end": 5926.73, + "probability": 0.5882 + }, + { + "start": 5928.5, + "end": 5929.28, + "probability": 0.9793 + }, + { + "start": 5930.06, + "end": 5932.02, + "probability": 0.8901 + }, + { + "start": 5933.28, + "end": 5934.42, + "probability": 0.9023 + }, + { + "start": 5935.38, + "end": 5936.86, + "probability": 0.9599 + }, + { + "start": 5937.98, + "end": 5941.84, + "probability": 0.9642 + }, + { + "start": 5943.06, + "end": 5946.36, + "probability": 0.9995 + }, + { + "start": 5946.78, + "end": 5948.24, + "probability": 0.4082 + }, + { + "start": 5949.0, + "end": 5952.45, + "probability": 0.9888 + }, + { + "start": 5953.3, + "end": 5953.93, + "probability": 0.7328 + }, + { + "start": 5954.24, + "end": 5954.98, + "probability": 0.7617 + }, + { + "start": 5956.02, + "end": 5959.16, + "probability": 0.6354 + }, + { + "start": 5959.16, + "end": 5962.96, + "probability": 0.8065 + }, + { + "start": 5963.38, + "end": 5965.92, + "probability": 0.7111 + }, + { + "start": 5966.44, + "end": 5967.66, + "probability": 0.4362 + }, + { + "start": 5968.22, + "end": 5971.44, + "probability": 0.6751 + }, + { + "start": 5971.8, + "end": 5972.44, + "probability": 0.9507 + }, + { + "start": 5973.78, + "end": 5974.46, + "probability": 0.937 + }, + { + "start": 5975.74, + "end": 5976.9, + "probability": 0.9939 + }, + { + "start": 5977.52, + "end": 5978.62, + "probability": 0.9391 + }, + { + "start": 5979.2, + "end": 5980.48, + "probability": 0.7323 + }, + { + "start": 5980.48, + "end": 5980.48, + "probability": 0.4578 + }, + { + "start": 5980.6, + "end": 5981.74, + "probability": 0.8778 + }, + { + "start": 5981.9, + "end": 5982.44, + "probability": 0.8961 + }, + { + "start": 5983.0, + "end": 5986.04, + "probability": 0.9205 + }, + { + "start": 5986.4, + "end": 5988.24, + "probability": 0.9932 + }, + { + "start": 5988.88, + "end": 5989.24, + "probability": 0.6981 + }, + { + "start": 5989.32, + "end": 5990.34, + "probability": 0.7449 + }, + { + "start": 5990.46, + "end": 5992.78, + "probability": 0.933 + }, + { + "start": 5992.94, + "end": 5994.04, + "probability": 0.6982 + }, + { + "start": 5995.24, + "end": 5998.04, + "probability": 0.8503 + }, + { + "start": 5999.52, + "end": 6001.34, + "probability": 0.8859 + }, + { + "start": 6003.5, + "end": 6008.24, + "probability": 0.3156 + }, + { + "start": 6010.14, + "end": 6010.14, + "probability": 0.1716 + }, + { + "start": 6010.14, + "end": 6010.14, + "probability": 0.1102 + }, + { + "start": 6010.14, + "end": 6010.14, + "probability": 0.134 + }, + { + "start": 6010.14, + "end": 6010.22, + "probability": 0.2982 + }, + { + "start": 6026.0, + "end": 6026.12, + "probability": 0.29 + }, + { + "start": 6056.82, + "end": 6059.12, + "probability": 0.7428 + }, + { + "start": 6060.26, + "end": 6061.82, + "probability": 0.9975 + }, + { + "start": 6062.56, + "end": 6064.1, + "probability": 0.9924 + }, + { + "start": 6065.98, + "end": 6067.92, + "probability": 0.9912 + }, + { + "start": 6069.02, + "end": 6069.74, + "probability": 0.9188 + }, + { + "start": 6070.72, + "end": 6073.76, + "probability": 0.9691 + }, + { + "start": 6075.9, + "end": 6079.26, + "probability": 0.9419 + }, + { + "start": 6080.26, + "end": 6082.66, + "probability": 0.997 + }, + { + "start": 6083.9, + "end": 6086.6, + "probability": 0.9819 + }, + { + "start": 6088.16, + "end": 6091.12, + "probability": 0.6808 + }, + { + "start": 6092.82, + "end": 6096.66, + "probability": 0.9981 + }, + { + "start": 6097.56, + "end": 6098.92, + "probability": 0.9937 + }, + { + "start": 6099.74, + "end": 6105.22, + "probability": 0.9991 + }, + { + "start": 6106.12, + "end": 6106.68, + "probability": 0.556 + }, + { + "start": 6107.32, + "end": 6108.98, + "probability": 0.9945 + }, + { + "start": 6109.84, + "end": 6110.62, + "probability": 0.2788 + }, + { + "start": 6111.24, + "end": 6112.18, + "probability": 0.9284 + }, + { + "start": 6112.86, + "end": 6115.26, + "probability": 0.9972 + }, + { + "start": 6116.12, + "end": 6118.5, + "probability": 0.9955 + }, + { + "start": 6120.76, + "end": 6122.38, + "probability": 0.8245 + }, + { + "start": 6123.54, + "end": 6124.88, + "probability": 0.8207 + }, + { + "start": 6126.1, + "end": 6127.44, + "probability": 0.9814 + }, + { + "start": 6128.2, + "end": 6130.34, + "probability": 0.9718 + }, + { + "start": 6132.26, + "end": 6140.78, + "probability": 0.9361 + }, + { + "start": 6142.02, + "end": 6146.76, + "probability": 0.9888 + }, + { + "start": 6148.2, + "end": 6150.44, + "probability": 0.9977 + }, + { + "start": 6152.56, + "end": 6153.62, + "probability": 0.6357 + }, + { + "start": 6155.6, + "end": 6156.8, + "probability": 0.925 + }, + { + "start": 6157.48, + "end": 6158.18, + "probability": 0.9192 + }, + { + "start": 6159.1, + "end": 6159.7, + "probability": 0.9619 + }, + { + "start": 6161.7, + "end": 6162.96, + "probability": 0.9946 + }, + { + "start": 6164.82, + "end": 6166.72, + "probability": 0.9974 + }, + { + "start": 6167.6, + "end": 6169.38, + "probability": 0.9952 + }, + { + "start": 6170.66, + "end": 6172.67, + "probability": 0.8436 + }, + { + "start": 6173.5, + "end": 6176.9, + "probability": 0.9971 + }, + { + "start": 6176.9, + "end": 6179.88, + "probability": 0.9991 + }, + { + "start": 6180.86, + "end": 6185.12, + "probability": 0.9763 + }, + { + "start": 6185.54, + "end": 6189.34, + "probability": 0.9822 + }, + { + "start": 6190.2, + "end": 6191.12, + "probability": 0.9871 + }, + { + "start": 6191.78, + "end": 6193.08, + "probability": 0.9983 + }, + { + "start": 6194.18, + "end": 6196.94, + "probability": 0.9827 + }, + { + "start": 6197.78, + "end": 6199.12, + "probability": 0.9985 + }, + { + "start": 6200.74, + "end": 6204.0, + "probability": 0.9889 + }, + { + "start": 6204.72, + "end": 6210.06, + "probability": 0.9968 + }, + { + "start": 6210.68, + "end": 6214.34, + "probability": 0.9889 + }, + { + "start": 6214.49, + "end": 6216.8, + "probability": 0.9954 + }, + { + "start": 6218.18, + "end": 6222.22, + "probability": 0.9445 + }, + { + "start": 6223.32, + "end": 6223.88, + "probability": 0.926 + }, + { + "start": 6225.1, + "end": 6231.5, + "probability": 0.985 + }, + { + "start": 6232.1, + "end": 6232.74, + "probability": 0.5493 + }, + { + "start": 6233.82, + "end": 6235.0, + "probability": 0.8357 + }, + { + "start": 6235.18, + "end": 6239.3, + "probability": 0.9505 + }, + { + "start": 6239.3, + "end": 6243.04, + "probability": 0.9962 + }, + { + "start": 6243.74, + "end": 6244.64, + "probability": 0.9929 + }, + { + "start": 6245.18, + "end": 6246.88, + "probability": 0.999 + }, + { + "start": 6247.52, + "end": 6249.5, + "probability": 0.9114 + }, + { + "start": 6251.02, + "end": 6251.98, + "probability": 0.7418 + }, + { + "start": 6252.42, + "end": 6253.34, + "probability": 0.964 + }, + { + "start": 6253.8, + "end": 6254.89, + "probability": 0.9995 + }, + { + "start": 6256.0, + "end": 6259.21, + "probability": 0.9255 + }, + { + "start": 6260.32, + "end": 6260.56, + "probability": 0.9832 + }, + { + "start": 6261.5, + "end": 6264.82, + "probability": 0.998 + }, + { + "start": 6264.82, + "end": 6268.98, + "probability": 0.9892 + }, + { + "start": 6268.98, + "end": 6272.32, + "probability": 0.9993 + }, + { + "start": 6273.92, + "end": 6274.46, + "probability": 0.7691 + }, + { + "start": 6275.18, + "end": 6276.46, + "probability": 0.9977 + }, + { + "start": 6278.04, + "end": 6282.96, + "probability": 0.9968 + }, + { + "start": 6283.78, + "end": 6285.34, + "probability": 0.8942 + }, + { + "start": 6286.54, + "end": 6290.24, + "probability": 0.9879 + }, + { + "start": 6290.76, + "end": 6292.88, + "probability": 0.9711 + }, + { + "start": 6294.16, + "end": 6295.27, + "probability": 0.9961 + }, + { + "start": 6296.68, + "end": 6299.06, + "probability": 0.9675 + }, + { + "start": 6300.08, + "end": 6302.28, + "probability": 0.9819 + }, + { + "start": 6303.78, + "end": 6305.78, + "probability": 0.8779 + }, + { + "start": 6306.72, + "end": 6308.68, + "probability": 0.9906 + }, + { + "start": 6310.74, + "end": 6312.82, + "probability": 0.998 + }, + { + "start": 6313.02, + "end": 6314.4, + "probability": 0.9125 + }, + { + "start": 6314.5, + "end": 6315.3, + "probability": 0.8695 + }, + { + "start": 6316.28, + "end": 6319.14, + "probability": 0.9484 + }, + { + "start": 6319.76, + "end": 6320.72, + "probability": 0.9745 + }, + { + "start": 6321.36, + "end": 6322.16, + "probability": 0.9169 + }, + { + "start": 6323.64, + "end": 6324.81, + "probability": 0.9886 + }, + { + "start": 6325.44, + "end": 6325.76, + "probability": 0.8972 + }, + { + "start": 6325.76, + "end": 6329.86, + "probability": 0.9869 + }, + { + "start": 6330.22, + "end": 6331.9, + "probability": 0.9966 + }, + { + "start": 6333.42, + "end": 6334.86, + "probability": 0.9932 + }, + { + "start": 6337.64, + "end": 6338.56, + "probability": 0.9978 + }, + { + "start": 6340.68, + "end": 6341.6, + "probability": 0.6152 + }, + { + "start": 6341.68, + "end": 6343.6, + "probability": 0.9445 + }, + { + "start": 6345.1, + "end": 6347.44, + "probability": 0.9417 + }, + { + "start": 6348.36, + "end": 6350.06, + "probability": 0.9709 + }, + { + "start": 6351.42, + "end": 6351.78, + "probability": 0.9076 + }, + { + "start": 6353.86, + "end": 6357.1, + "probability": 0.9985 + }, + { + "start": 6359.26, + "end": 6360.8, + "probability": 0.9954 + }, + { + "start": 6362.28, + "end": 6363.68, + "probability": 0.9947 + }, + { + "start": 6364.3, + "end": 6366.38, + "probability": 0.9976 + }, + { + "start": 6367.68, + "end": 6372.0, + "probability": 0.9985 + }, + { + "start": 6373.44, + "end": 6374.06, + "probability": 0.9224 + }, + { + "start": 6375.28, + "end": 6376.7, + "probability": 0.9739 + }, + { + "start": 6377.36, + "end": 6379.8, + "probability": 0.957 + }, + { + "start": 6380.46, + "end": 6384.0, + "probability": 0.9981 + }, + { + "start": 6384.58, + "end": 6385.7, + "probability": 0.9924 + }, + { + "start": 6386.28, + "end": 6387.72, + "probability": 0.9974 + }, + { + "start": 6388.72, + "end": 6391.54, + "probability": 0.7712 + }, + { + "start": 6392.12, + "end": 6393.6, + "probability": 0.5777 + }, + { + "start": 6394.1, + "end": 6396.8, + "probability": 0.9761 + }, + { + "start": 6397.68, + "end": 6398.46, + "probability": 0.7961 + }, + { + "start": 6399.78, + "end": 6400.7, + "probability": 0.9978 + }, + { + "start": 6401.36, + "end": 6402.02, + "probability": 0.9946 + }, + { + "start": 6404.08, + "end": 6407.04, + "probability": 0.9957 + }, + { + "start": 6407.1, + "end": 6408.26, + "probability": 0.8914 + }, + { + "start": 6408.86, + "end": 6410.22, + "probability": 0.9945 + }, + { + "start": 6411.52, + "end": 6413.7, + "probability": 0.9977 + }, + { + "start": 6414.6, + "end": 6420.1, + "probability": 0.7365 + }, + { + "start": 6420.7, + "end": 6422.94, + "probability": 0.9968 + }, + { + "start": 6423.38, + "end": 6424.14, + "probability": 0.7311 + }, + { + "start": 6424.62, + "end": 6426.7, + "probability": 0.971 + }, + { + "start": 6427.04, + "end": 6427.72, + "probability": 0.9834 + }, + { + "start": 6427.78, + "end": 6428.98, + "probability": 0.9863 + }, + { + "start": 6429.66, + "end": 6430.88, + "probability": 0.7523 + }, + { + "start": 6431.42, + "end": 6433.18, + "probability": 0.8458 + }, + { + "start": 6433.8, + "end": 6436.74, + "probability": 0.852 + }, + { + "start": 6437.52, + "end": 6438.5, + "probability": 0.8473 + }, + { + "start": 6439.04, + "end": 6439.32, + "probability": 0.1278 + }, + { + "start": 6439.32, + "end": 6440.32, + "probability": 0.6102 + }, + { + "start": 6440.9, + "end": 6445.3, + "probability": 0.9862 + }, + { + "start": 6446.44, + "end": 6448.9, + "probability": 0.9796 + }, + { + "start": 6449.94, + "end": 6450.2, + "probability": 0.3534 + }, + { + "start": 6450.26, + "end": 6450.88, + "probability": 0.9548 + }, + { + "start": 6451.38, + "end": 6454.2, + "probability": 0.9929 + }, + { + "start": 6455.02, + "end": 6457.0, + "probability": 0.9351 + }, + { + "start": 6458.4, + "end": 6461.48, + "probability": 0.7524 + }, + { + "start": 6462.24, + "end": 6463.38, + "probability": 0.9972 + }, + { + "start": 6464.0, + "end": 6467.5, + "probability": 0.9773 + }, + { + "start": 6468.36, + "end": 6469.86, + "probability": 0.79 + }, + { + "start": 6470.84, + "end": 6471.38, + "probability": 0.967 + }, + { + "start": 6471.98, + "end": 6474.48, + "probability": 0.9888 + }, + { + "start": 6476.12, + "end": 6477.7, + "probability": 0.9943 + }, + { + "start": 6478.68, + "end": 6481.94, + "probability": 0.9197 + }, + { + "start": 6483.04, + "end": 6484.84, + "probability": 0.7067 + }, + { + "start": 6484.92, + "end": 6485.7, + "probability": 0.6435 + }, + { + "start": 6486.01, + "end": 6488.16, + "probability": 0.7846 + }, + { + "start": 6488.28, + "end": 6489.56, + "probability": 0.8477 + }, + { + "start": 6491.22, + "end": 6493.64, + "probability": 0.9602 + }, + { + "start": 6494.4, + "end": 6495.74, + "probability": 0.9909 + }, + { + "start": 6497.7, + "end": 6498.28, + "probability": 0.885 + }, + { + "start": 6499.44, + "end": 6501.84, + "probability": 0.998 + }, + { + "start": 6502.72, + "end": 6506.04, + "probability": 0.9774 + }, + { + "start": 6506.64, + "end": 6508.4, + "probability": 0.9648 + }, + { + "start": 6508.96, + "end": 6512.06, + "probability": 0.978 + }, + { + "start": 6513.2, + "end": 6516.12, + "probability": 0.9307 + }, + { + "start": 6516.64, + "end": 6518.5, + "probability": 0.9995 + }, + { + "start": 6519.36, + "end": 6522.42, + "probability": 0.9935 + }, + { + "start": 6522.88, + "end": 6524.66, + "probability": 0.9963 + }, + { + "start": 6525.18, + "end": 6525.78, + "probability": 0.9369 + }, + { + "start": 6526.98, + "end": 6529.28, + "probability": 0.9814 + }, + { + "start": 6529.28, + "end": 6532.0, + "probability": 0.9945 + }, + { + "start": 6532.98, + "end": 6535.4, + "probability": 0.9982 + }, + { + "start": 6536.04, + "end": 6537.9, + "probability": 0.9856 + }, + { + "start": 6538.9, + "end": 6539.6, + "probability": 0.8111 + }, + { + "start": 6541.16, + "end": 6546.32, + "probability": 0.9772 + }, + { + "start": 6547.0, + "end": 6548.2, + "probability": 0.7536 + }, + { + "start": 6548.68, + "end": 6550.5, + "probability": 0.9515 + }, + { + "start": 6550.62, + "end": 6552.66, + "probability": 0.7903 + }, + { + "start": 6553.36, + "end": 6556.08, + "probability": 0.9861 + }, + { + "start": 6556.78, + "end": 6556.82, + "probability": 0.2952 + }, + { + "start": 6556.82, + "end": 6557.38, + "probability": 0.8067 + }, + { + "start": 6558.3, + "end": 6560.76, + "probability": 0.9983 + }, + { + "start": 6561.36, + "end": 6564.22, + "probability": 0.9901 + }, + { + "start": 6564.82, + "end": 6565.02, + "probability": 0.7225 + }, + { + "start": 6565.36, + "end": 6567.76, + "probability": 0.8115 + }, + { + "start": 6568.66, + "end": 6569.9, + "probability": 0.7922 + }, + { + "start": 6570.88, + "end": 6571.14, + "probability": 0.7374 + }, + { + "start": 6592.26, + "end": 6592.54, + "probability": 0.3365 + }, + { + "start": 6592.62, + "end": 6595.1, + "probability": 0.6335 + }, + { + "start": 6596.52, + "end": 6600.96, + "probability": 0.9902 + }, + { + "start": 6602.26, + "end": 6606.74, + "probability": 0.9916 + }, + { + "start": 6607.7, + "end": 6610.44, + "probability": 0.9007 + }, + { + "start": 6610.44, + "end": 6613.66, + "probability": 0.7979 + }, + { + "start": 6614.04, + "end": 6614.14, + "probability": 0.5423 + }, + { + "start": 6615.06, + "end": 6615.58, + "probability": 0.786 + }, + { + "start": 6615.7, + "end": 6621.04, + "probability": 0.9266 + }, + { + "start": 6621.64, + "end": 6626.88, + "probability": 0.5952 + }, + { + "start": 6627.46, + "end": 6628.18, + "probability": 0.9678 + }, + { + "start": 6629.22, + "end": 6629.38, + "probability": 0.2729 + }, + { + "start": 6630.14, + "end": 6630.5, + "probability": 0.8188 + }, + { + "start": 6634.8, + "end": 6639.1, + "probability": 0.0246 + }, + { + "start": 6640.89, + "end": 6643.08, + "probability": 0.175 + }, + { + "start": 6645.62, + "end": 6648.14, + "probability": 0.1207 + }, + { + "start": 6648.72, + "end": 6649.66, + "probability": 0.027 + }, + { + "start": 6650.22, + "end": 6652.96, + "probability": 0.1617 + }, + { + "start": 6653.9, + "end": 6659.44, + "probability": 0.1023 + }, + { + "start": 6661.22, + "end": 6661.9, + "probability": 0.1417 + }, + { + "start": 6662.56, + "end": 6667.94, + "probability": 0.0565 + }, + { + "start": 6668.58, + "end": 6669.24, + "probability": 0.0641 + }, + { + "start": 6672.46, + "end": 6674.62, + "probability": 0.0259 + }, + { + "start": 6674.78, + "end": 6674.78, + "probability": 0.0326 + }, + { + "start": 6674.78, + "end": 6676.34, + "probability": 0.1243 + }, + { + "start": 6676.44, + "end": 6678.72, + "probability": 0.1702 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7108.0, + "end": 7108.0, + "probability": 0.0 + }, + { + "start": 7112.58, + "end": 7113.16, + "probability": 0.6333 + }, + { + "start": 7113.8, + "end": 7115.96, + "probability": 0.808 + }, + { + "start": 7116.62, + "end": 7119.78, + "probability": 0.9993 + }, + { + "start": 7119.9, + "end": 7121.28, + "probability": 0.9268 + }, + { + "start": 7122.9, + "end": 7126.1, + "probability": 0.9989 + }, + { + "start": 7126.46, + "end": 7127.24, + "probability": 0.9694 + }, + { + "start": 7127.46, + "end": 7127.96, + "probability": 0.9625 + }, + { + "start": 7129.24, + "end": 7131.96, + "probability": 0.5127 + }, + { + "start": 7132.38, + "end": 7134.18, + "probability": 0.9753 + }, + { + "start": 7135.32, + "end": 7141.04, + "probability": 0.7711 + }, + { + "start": 7141.88, + "end": 7143.8, + "probability": 0.9971 + }, + { + "start": 7145.2, + "end": 7145.2, + "probability": 0.7827 + }, + { + "start": 7145.84, + "end": 7148.74, + "probability": 0.9834 + }, + { + "start": 7148.74, + "end": 7149.96, + "probability": 0.8346 + }, + { + "start": 7150.64, + "end": 7152.12, + "probability": 0.7736 + }, + { + "start": 7153.1, + "end": 7153.7, + "probability": 0.9044 + }, + { + "start": 7154.48, + "end": 7160.72, + "probability": 0.9818 + }, + { + "start": 7161.36, + "end": 7162.76, + "probability": 0.9779 + }, + { + "start": 7164.14, + "end": 7166.52, + "probability": 0.9857 + }, + { + "start": 7168.02, + "end": 7169.5, + "probability": 0.9615 + }, + { + "start": 7170.24, + "end": 7172.42, + "probability": 0.9985 + }, + { + "start": 7174.91, + "end": 7178.74, + "probability": 0.9842 + }, + { + "start": 7178.98, + "end": 7179.0, + "probability": 0.6105 + }, + { + "start": 7179.44, + "end": 7179.74, + "probability": 0.6904 + }, + { + "start": 7180.22, + "end": 7182.02, + "probability": 0.9727 + }, + { + "start": 7182.1, + "end": 7182.88, + "probability": 0.376 + }, + { + "start": 7183.18, + "end": 7185.12, + "probability": 0.9932 + }, + { + "start": 7185.2, + "end": 7186.26, + "probability": 0.9965 + }, + { + "start": 7186.98, + "end": 7188.18, + "probability": 0.9861 + }, + { + "start": 7188.2, + "end": 7189.38, + "probability": 0.4939 + }, + { + "start": 7189.44, + "end": 7189.66, + "probability": 0.5026 + }, + { + "start": 7191.56, + "end": 7193.6, + "probability": 0.9929 + }, + { + "start": 7193.9, + "end": 7194.86, + "probability": 0.8741 + }, + { + "start": 7195.66, + "end": 7197.24, + "probability": 0.5543 + }, + { + "start": 7198.3, + "end": 7200.26, + "probability": 0.7983 + }, + { + "start": 7200.52, + "end": 7202.66, + "probability": 0.9965 + }, + { + "start": 7203.48, + "end": 7206.56, + "probability": 0.9713 + }, + { + "start": 7207.64, + "end": 7208.72, + "probability": 0.6561 + }, + { + "start": 7209.12, + "end": 7210.24, + "probability": 0.9961 + }, + { + "start": 7210.28, + "end": 7211.34, + "probability": 0.5087 + }, + { + "start": 7212.04, + "end": 7214.08, + "probability": 0.9993 + }, + { + "start": 7215.02, + "end": 7215.98, + "probability": 0.7291 + }, + { + "start": 7217.56, + "end": 7218.6, + "probability": 0.5976 + }, + { + "start": 7219.32, + "end": 7225.36, + "probability": 0.9395 + }, + { + "start": 7226.6, + "end": 7226.6, + "probability": 0.6325 + }, + { + "start": 7227.02, + "end": 7229.14, + "probability": 0.8889 + }, + { + "start": 7229.2, + "end": 7231.28, + "probability": 0.9854 + }, + { + "start": 7231.36, + "end": 7233.04, + "probability": 0.6939 + }, + { + "start": 7233.82, + "end": 7234.76, + "probability": 0.7881 + }, + { + "start": 7235.56, + "end": 7236.98, + "probability": 0.7577 + }, + { + "start": 7237.76, + "end": 7238.64, + "probability": 0.9544 + }, + { + "start": 7239.2, + "end": 7243.56, + "probability": 0.9814 + }, + { + "start": 7244.1, + "end": 7245.46, + "probability": 0.9442 + }, + { + "start": 7245.92, + "end": 7247.15, + "probability": 0.7617 + }, + { + "start": 7247.88, + "end": 7252.08, + "probability": 0.9891 + }, + { + "start": 7252.9, + "end": 7256.8, + "probability": 0.978 + }, + { + "start": 7256.86, + "end": 7258.08, + "probability": 0.8861 + }, + { + "start": 7259.04, + "end": 7259.86, + "probability": 0.9465 + }, + { + "start": 7260.42, + "end": 7261.36, + "probability": 0.7384 + }, + { + "start": 7261.64, + "end": 7262.96, + "probability": 0.9831 + }, + { + "start": 7263.54, + "end": 7266.34, + "probability": 0.8175 + }, + { + "start": 7266.42, + "end": 7268.14, + "probability": 0.2884 + }, + { + "start": 7268.14, + "end": 7268.48, + "probability": 0.5915 + }, + { + "start": 7268.48, + "end": 7269.06, + "probability": 0.9004 + }, + { + "start": 7269.72, + "end": 7273.74, + "probability": 0.9717 + }, + { + "start": 7273.74, + "end": 7278.38, + "probability": 0.7316 + }, + { + "start": 7279.14, + "end": 7279.14, + "probability": 0.1037 + }, + { + "start": 7279.14, + "end": 7279.14, + "probability": 0.2415 + }, + { + "start": 7279.14, + "end": 7279.42, + "probability": 0.3933 + }, + { + "start": 7279.82, + "end": 7280.83, + "probability": 0.8872 + }, + { + "start": 7281.48, + "end": 7281.72, + "probability": 0.3529 + }, + { + "start": 7281.92, + "end": 7282.44, + "probability": 0.5399 + }, + { + "start": 7282.44, + "end": 7282.68, + "probability": 0.6616 + }, + { + "start": 7283.12, + "end": 7284.41, + "probability": 0.3509 + }, + { + "start": 7284.94, + "end": 7285.26, + "probability": 0.9387 + }, + { + "start": 7285.98, + "end": 7287.02, + "probability": 0.9697 + }, + { + "start": 7288.24, + "end": 7289.02, + "probability": 0.556 + }, + { + "start": 7289.26, + "end": 7290.02, + "probability": 0.644 + }, + { + "start": 7298.82, + "end": 7302.78, + "probability": 0.0354 + }, + { + "start": 7303.74, + "end": 7305.48, + "probability": 0.0218 + }, + { + "start": 7309.54, + "end": 7312.78, + "probability": 0.6171 + }, + { + "start": 7314.14, + "end": 7316.8, + "probability": 0.8997 + }, + { + "start": 7317.98, + "end": 7320.18, + "probability": 0.9941 + }, + { + "start": 7320.8, + "end": 7323.08, + "probability": 0.9126 + }, + { + "start": 7323.76, + "end": 7324.32, + "probability": 0.7647 + }, + { + "start": 7325.6, + "end": 7327.52, + "probability": 0.8789 + }, + { + "start": 7328.16, + "end": 7329.32, + "probability": 0.8373 + }, + { + "start": 7330.6, + "end": 7333.62, + "probability": 0.9684 + }, + { + "start": 7334.32, + "end": 7335.02, + "probability": 0.9964 + }, + { + "start": 7336.98, + "end": 7339.32, + "probability": 0.9351 + }, + { + "start": 7340.08, + "end": 7344.1, + "probability": 0.9932 + }, + { + "start": 7344.1, + "end": 7348.84, + "probability": 0.9966 + }, + { + "start": 7350.04, + "end": 7356.38, + "probability": 0.9543 + }, + { + "start": 7357.38, + "end": 7360.12, + "probability": 0.9844 + }, + { + "start": 7361.44, + "end": 7364.58, + "probability": 0.9365 + }, + { + "start": 7365.6, + "end": 7369.1, + "probability": 0.9593 + }, + { + "start": 7369.62, + "end": 7372.58, + "probability": 0.9813 + }, + { + "start": 7373.92, + "end": 7375.62, + "probability": 0.9923 + }, + { + "start": 7376.16, + "end": 7379.28, + "probability": 0.9832 + }, + { + "start": 7379.92, + "end": 7381.66, + "probability": 0.9822 + }, + { + "start": 7382.22, + "end": 7383.56, + "probability": 0.9902 + }, + { + "start": 7383.82, + "end": 7389.78, + "probability": 0.9903 + }, + { + "start": 7390.82, + "end": 7392.76, + "probability": 0.9858 + }, + { + "start": 7393.38, + "end": 7398.78, + "probability": 0.9993 + }, + { + "start": 7398.78, + "end": 7403.88, + "probability": 0.8927 + }, + { + "start": 7404.68, + "end": 7408.16, + "probability": 0.9944 + }, + { + "start": 7409.66, + "end": 7411.44, + "probability": 0.9971 + }, + { + "start": 7412.04, + "end": 7414.68, + "probability": 0.8581 + }, + { + "start": 7415.06, + "end": 7418.16, + "probability": 0.9778 + }, + { + "start": 7418.9, + "end": 7420.32, + "probability": 0.9324 + }, + { + "start": 7421.52, + "end": 7426.68, + "probability": 0.9817 + }, + { + "start": 7427.76, + "end": 7432.26, + "probability": 0.9859 + }, + { + "start": 7432.74, + "end": 7436.98, + "probability": 0.9654 + }, + { + "start": 7436.98, + "end": 7440.42, + "probability": 0.9993 + }, + { + "start": 7442.62, + "end": 7443.04, + "probability": 0.9274 + }, + { + "start": 7443.72, + "end": 7445.32, + "probability": 0.9635 + }, + { + "start": 7445.96, + "end": 7446.32, + "probability": 0.9938 + }, + { + "start": 7446.84, + "end": 7452.08, + "probability": 0.9959 + }, + { + "start": 7452.08, + "end": 7458.54, + "probability": 0.9937 + }, + { + "start": 7459.6, + "end": 7460.14, + "probability": 0.5579 + }, + { + "start": 7460.72, + "end": 7462.0, + "probability": 0.9705 + }, + { + "start": 7462.68, + "end": 7465.74, + "probability": 0.9925 + }, + { + "start": 7466.58, + "end": 7470.1, + "probability": 0.9906 + }, + { + "start": 7470.1, + "end": 7475.44, + "probability": 0.9886 + }, + { + "start": 7475.7, + "end": 7477.06, + "probability": 0.8945 + }, + { + "start": 7477.42, + "end": 7478.76, + "probability": 0.9561 + }, + { + "start": 7480.14, + "end": 7481.62, + "probability": 0.999 + }, + { + "start": 7482.6, + "end": 7484.04, + "probability": 0.9412 + }, + { + "start": 7484.72, + "end": 7491.32, + "probability": 0.9879 + }, + { + "start": 7492.7, + "end": 7493.92, + "probability": 0.9644 + }, + { + "start": 7494.68, + "end": 7499.06, + "probability": 0.9875 + }, + { + "start": 7499.86, + "end": 7505.92, + "probability": 0.9753 + }, + { + "start": 7506.72, + "end": 7508.58, + "probability": 0.8273 + }, + { + "start": 7509.3, + "end": 7513.48, + "probability": 0.9958 + }, + { + "start": 7513.92, + "end": 7518.34, + "probability": 0.9978 + }, + { + "start": 7519.46, + "end": 7521.44, + "probability": 0.8872 + }, + { + "start": 7522.08, + "end": 7525.7, + "probability": 0.8497 + }, + { + "start": 7526.34, + "end": 7530.92, + "probability": 0.9941 + }, + { + "start": 7531.42, + "end": 7534.62, + "probability": 0.9883 + }, + { + "start": 7534.98, + "end": 7539.4, + "probability": 0.9828 + }, + { + "start": 7540.24, + "end": 7544.84, + "probability": 0.9998 + }, + { + "start": 7545.2, + "end": 7548.46, + "probability": 0.9996 + }, + { + "start": 7549.62, + "end": 7551.14, + "probability": 0.9956 + }, + { + "start": 7551.66, + "end": 7552.44, + "probability": 0.7773 + }, + { + "start": 7553.02, + "end": 7555.98, + "probability": 0.9666 + }, + { + "start": 7556.72, + "end": 7558.42, + "probability": 0.998 + }, + { + "start": 7558.94, + "end": 7563.86, + "probability": 0.9943 + }, + { + "start": 7564.42, + "end": 7566.14, + "probability": 0.9855 + }, + { + "start": 7566.8, + "end": 7570.28, + "probability": 0.9512 + }, + { + "start": 7570.82, + "end": 7572.74, + "probability": 0.9756 + }, + { + "start": 7573.76, + "end": 7576.12, + "probability": 0.9978 + }, + { + "start": 7576.66, + "end": 7578.6, + "probability": 0.9785 + }, + { + "start": 7579.46, + "end": 7583.5, + "probability": 0.9699 + }, + { + "start": 7584.02, + "end": 7584.44, + "probability": 0.7111 + }, + { + "start": 7585.1, + "end": 7588.3, + "probability": 0.7594 + }, + { + "start": 7588.84, + "end": 7590.6, + "probability": 0.9284 + }, + { + "start": 7591.0, + "end": 7592.22, + "probability": 0.9501 + }, + { + "start": 7592.56, + "end": 7594.14, + "probability": 0.9264 + }, + { + "start": 7594.46, + "end": 7595.74, + "probability": 0.8671 + }, + { + "start": 7596.48, + "end": 7599.62, + "probability": 0.905 + }, + { + "start": 7600.68, + "end": 7602.94, + "probability": 0.9392 + }, + { + "start": 7603.44, + "end": 7607.38, + "probability": 0.9325 + }, + { + "start": 7607.86, + "end": 7608.64, + "probability": 0.8958 + }, + { + "start": 7608.82, + "end": 7609.5, + "probability": 0.9847 + }, + { + "start": 7609.6, + "end": 7610.2, + "probability": 0.9056 + }, + { + "start": 7610.36, + "end": 7611.14, + "probability": 0.9661 + }, + { + "start": 7611.5, + "end": 7612.7, + "probability": 0.9577 + }, + { + "start": 7613.22, + "end": 7617.78, + "probability": 0.9068 + }, + { + "start": 7618.22, + "end": 7622.94, + "probability": 0.9888 + }, + { + "start": 7623.38, + "end": 7625.4, + "probability": 0.8458 + }, + { + "start": 7626.14, + "end": 7628.52, + "probability": 0.8818 + }, + { + "start": 7629.28, + "end": 7631.94, + "probability": 0.9681 + }, + { + "start": 7631.94, + "end": 7632.28, + "probability": 0.5144 + }, + { + "start": 7633.64, + "end": 7635.68, + "probability": 0.7788 + }, + { + "start": 7636.78, + "end": 7639.3, + "probability": 0.9992 + }, + { + "start": 7640.96, + "end": 7642.28, + "probability": 0.6828 + }, + { + "start": 7643.04, + "end": 7645.52, + "probability": 0.9678 + }, + { + "start": 7645.68, + "end": 7646.28, + "probability": 0.8227 + }, + { + "start": 7646.6, + "end": 7647.33, + "probability": 0.9248 + }, + { + "start": 7648.0, + "end": 7648.62, + "probability": 0.8658 + }, + { + "start": 7649.0, + "end": 7650.56, + "probability": 0.7836 + }, + { + "start": 7651.2, + "end": 7652.74, + "probability": 0.7729 + }, + { + "start": 7653.6, + "end": 7658.06, + "probability": 0.9912 + }, + { + "start": 7659.0, + "end": 7663.64, + "probability": 0.7109 + }, + { + "start": 7664.24, + "end": 7670.3, + "probability": 0.9635 + }, + { + "start": 7670.68, + "end": 7671.08, + "probability": 0.7327 + }, + { + "start": 7672.38, + "end": 7673.49, + "probability": 0.8413 + }, + { + "start": 7674.92, + "end": 7677.12, + "probability": 0.7374 + }, + { + "start": 7677.82, + "end": 7679.9, + "probability": 0.0654 + }, + { + "start": 7681.26, + "end": 7682.42, + "probability": 0.2051 + }, + { + "start": 7707.2, + "end": 7710.4, + "probability": 0.5263 + }, + { + "start": 7710.4, + "end": 7712.4, + "probability": 0.7563 + }, + { + "start": 7712.44, + "end": 7713.32, + "probability": 0.957 + }, + { + "start": 7713.66, + "end": 7715.48, + "probability": 0.7411 + }, + { + "start": 7716.84, + "end": 7723.98, + "probability": 0.8361 + }, + { + "start": 7724.48, + "end": 7725.52, + "probability": 0.6622 + }, + { + "start": 7727.14, + "end": 7728.28, + "probability": 0.0403 + }, + { + "start": 7728.28, + "end": 7729.04, + "probability": 0.639 + }, + { + "start": 7732.76, + "end": 7738.94, + "probability": 0.8787 + }, + { + "start": 7739.9, + "end": 7741.8, + "probability": 0.5386 + }, + { + "start": 7742.76, + "end": 7743.38, + "probability": 0.706 + }, + { + "start": 7744.84, + "end": 7749.4, + "probability": 0.9937 + }, + { + "start": 7751.02, + "end": 7753.54, + "probability": 0.9772 + }, + { + "start": 7754.36, + "end": 7754.76, + "probability": 0.7369 + }, + { + "start": 7754.86, + "end": 7755.14, + "probability": 0.6374 + }, + { + "start": 7755.64, + "end": 7756.48, + "probability": 0.0345 + }, + { + "start": 7757.0, + "end": 7758.58, + "probability": 0.8575 + }, + { + "start": 7758.66, + "end": 7760.56, + "probability": 0.9265 + }, + { + "start": 7761.92, + "end": 7763.0, + "probability": 0.5013 + }, + { + "start": 7765.04, + "end": 7767.86, + "probability": 0.9865 + }, + { + "start": 7768.86, + "end": 7778.14, + "probability": 0.8933 + }, + { + "start": 7779.18, + "end": 7786.44, + "probability": 0.9777 + }, + { + "start": 7787.4, + "end": 7790.68, + "probability": 0.9515 + }, + { + "start": 7790.78, + "end": 7792.72, + "probability": 0.8362 + }, + { + "start": 7794.78, + "end": 7795.96, + "probability": 0.9149 + }, + { + "start": 7797.48, + "end": 7798.48, + "probability": 0.7321 + }, + { + "start": 7801.02, + "end": 7802.02, + "probability": 0.8367 + }, + { + "start": 7803.94, + "end": 7807.42, + "probability": 0.9944 + }, + { + "start": 7809.14, + "end": 7810.42, + "probability": 0.7704 + }, + { + "start": 7811.04, + "end": 7815.82, + "probability": 0.9934 + }, + { + "start": 7816.02, + "end": 7816.76, + "probability": 0.4196 + }, + { + "start": 7817.16, + "end": 7818.04, + "probability": 0.8549 + }, + { + "start": 7818.12, + "end": 7822.58, + "probability": 0.9525 + }, + { + "start": 7822.58, + "end": 7826.54, + "probability": 0.9871 + }, + { + "start": 7827.92, + "end": 7828.38, + "probability": 0.4768 + }, + { + "start": 7829.48, + "end": 7832.8, + "probability": 0.9775 + }, + { + "start": 7833.64, + "end": 7835.18, + "probability": 0.9878 + }, + { + "start": 7837.76, + "end": 7839.34, + "probability": 0.8277 + }, + { + "start": 7839.46, + "end": 7840.56, + "probability": 0.884 + }, + { + "start": 7840.56, + "end": 7843.57, + "probability": 0.9413 + }, + { + "start": 7846.36, + "end": 7851.16, + "probability": 0.9513 + }, + { + "start": 7851.16, + "end": 7855.68, + "probability": 0.9937 + }, + { + "start": 7855.68, + "end": 7859.08, + "probability": 0.9937 + }, + { + "start": 7859.18, + "end": 7860.26, + "probability": 0.7607 + }, + { + "start": 7860.36, + "end": 7860.9, + "probability": 0.6021 + }, + { + "start": 7861.22, + "end": 7861.88, + "probability": 0.9558 + }, + { + "start": 7862.06, + "end": 7864.38, + "probability": 0.9857 + }, + { + "start": 7866.2, + "end": 7869.34, + "probability": 0.8799 + }, + { + "start": 7869.8, + "end": 7870.14, + "probability": 0.928 + }, + { + "start": 7870.18, + "end": 7871.04, + "probability": 0.9236 + }, + { + "start": 7871.1, + "end": 7871.66, + "probability": 0.9113 + }, + { + "start": 7871.84, + "end": 7873.36, + "probability": 0.9714 + }, + { + "start": 7873.48, + "end": 7873.88, + "probability": 0.8523 + }, + { + "start": 7876.66, + "end": 7881.32, + "probability": 0.9713 + }, + { + "start": 7883.48, + "end": 7886.72, + "probability": 0.8545 + }, + { + "start": 7887.0, + "end": 7889.59, + "probability": 0.8652 + }, + { + "start": 7890.62, + "end": 7895.33, + "probability": 0.9922 + }, + { + "start": 7895.4, + "end": 7897.4, + "probability": 0.9937 + }, + { + "start": 7898.18, + "end": 7901.68, + "probability": 0.9928 + }, + { + "start": 7901.8, + "end": 7903.6, + "probability": 0.9646 + }, + { + "start": 7904.42, + "end": 7908.14, + "probability": 0.9827 + }, + { + "start": 7908.28, + "end": 7911.62, + "probability": 0.69 + }, + { + "start": 7912.62, + "end": 7913.86, + "probability": 0.9313 + }, + { + "start": 7914.92, + "end": 7916.22, + "probability": 0.7015 + }, + { + "start": 7916.26, + "end": 7920.16, + "probability": 0.904 + }, + { + "start": 7920.9, + "end": 7921.26, + "probability": 0.8635 + }, + { + "start": 7921.78, + "end": 7923.72, + "probability": 0.967 + }, + { + "start": 7925.62, + "end": 7926.42, + "probability": 0.502 + }, + { + "start": 7928.46, + "end": 7931.02, + "probability": 0.9863 + }, + { + "start": 7931.28, + "end": 7934.64, + "probability": 0.835 + }, + { + "start": 7934.78, + "end": 7937.58, + "probability": 0.519 + }, + { + "start": 7938.2, + "end": 7942.98, + "probability": 0.9751 + }, + { + "start": 7942.98, + "end": 7946.14, + "probability": 0.9832 + }, + { + "start": 7947.1, + "end": 7948.24, + "probability": 0.6721 + }, + { + "start": 7948.34, + "end": 7949.76, + "probability": 0.9929 + }, + { + "start": 7950.14, + "end": 7953.06, + "probability": 0.981 + }, + { + "start": 7954.14, + "end": 7957.02, + "probability": 0.9177 + }, + { + "start": 7957.72, + "end": 7959.88, + "probability": 0.9955 + }, + { + "start": 7960.72, + "end": 7961.64, + "probability": 0.947 + }, + { + "start": 7963.04, + "end": 7963.64, + "probability": 0.5289 + }, + { + "start": 7964.52, + "end": 7966.46, + "probability": 0.9836 + }, + { + "start": 7967.64, + "end": 7968.66, + "probability": 0.74 + }, + { + "start": 7969.84, + "end": 7971.6, + "probability": 0.8896 + }, + { + "start": 7972.44, + "end": 7972.54, + "probability": 0.5064 + }, + { + "start": 7972.64, + "end": 7973.82, + "probability": 0.9666 + }, + { + "start": 7973.86, + "end": 7975.66, + "probability": 0.9914 + }, + { + "start": 7976.46, + "end": 7978.16, + "probability": 0.9102 + }, + { + "start": 7979.3, + "end": 7985.5, + "probability": 0.9331 + }, + { + "start": 7986.16, + "end": 7988.12, + "probability": 0.7454 + }, + { + "start": 7988.44, + "end": 7989.56, + "probability": 0.9883 + }, + { + "start": 7989.92, + "end": 7995.3, + "probability": 0.9912 + }, + { + "start": 7996.68, + "end": 7997.8, + "probability": 0.5627 + }, + { + "start": 7997.92, + "end": 7998.7, + "probability": 0.795 + }, + { + "start": 7998.72, + "end": 8000.5, + "probability": 0.8026 + }, + { + "start": 8000.76, + "end": 8001.28, + "probability": 0.8822 + }, + { + "start": 8001.32, + "end": 8004.6, + "probability": 0.9854 + }, + { + "start": 8004.62, + "end": 8005.2, + "probability": 0.9536 + }, + { + "start": 8005.26, + "end": 8005.86, + "probability": 0.7688 + }, + { + "start": 8006.06, + "end": 8007.86, + "probability": 0.9955 + }, + { + "start": 8008.6, + "end": 8012.54, + "probability": 0.9331 + }, + { + "start": 8012.68, + "end": 8014.59, + "probability": 0.9543 + }, + { + "start": 8015.44, + "end": 8020.58, + "probability": 0.9622 + }, + { + "start": 8021.32, + "end": 8021.94, + "probability": 0.9014 + }, + { + "start": 8022.26, + "end": 8023.63, + "probability": 0.9962 + }, + { + "start": 8024.38, + "end": 8028.37, + "probability": 0.9993 + }, + { + "start": 8028.54, + "end": 8032.48, + "probability": 0.9973 + }, + { + "start": 8033.1, + "end": 8035.7, + "probability": 0.9954 + }, + { + "start": 8035.7, + "end": 8040.4, + "probability": 0.9808 + }, + { + "start": 8040.6, + "end": 8042.32, + "probability": 0.9984 + }, + { + "start": 8043.04, + "end": 8044.5, + "probability": 0.9155 + }, + { + "start": 8044.76, + "end": 8050.42, + "probability": 0.8915 + }, + { + "start": 8050.74, + "end": 8054.22, + "probability": 0.9756 + }, + { + "start": 8054.82, + "end": 8056.3, + "probability": 0.9921 + }, + { + "start": 8056.96, + "end": 8058.74, + "probability": 0.474 + }, + { + "start": 8059.28, + "end": 8060.78, + "probability": 0.8765 + }, + { + "start": 8061.88, + "end": 8062.46, + "probability": 0.9353 + }, + { + "start": 8062.86, + "end": 8063.88, + "probability": 0.8328 + }, + { + "start": 8063.98, + "end": 8064.24, + "probability": 0.5353 + }, + { + "start": 8064.44, + "end": 8065.76, + "probability": 0.8286 + }, + { + "start": 8066.5, + "end": 8069.84, + "probability": 0.9822 + }, + { + "start": 8069.84, + "end": 8070.76, + "probability": 0.5366 + }, + { + "start": 8070.82, + "end": 8072.68, + "probability": 0.9939 + }, + { + "start": 8072.82, + "end": 8072.92, + "probability": 0.6362 + }, + { + "start": 8072.92, + "end": 8074.44, + "probability": 0.7818 + }, + { + "start": 8074.46, + "end": 8077.06, + "probability": 0.7808 + }, + { + "start": 8077.22, + "end": 8077.44, + "probability": 0.8483 + }, + { + "start": 8077.52, + "end": 8077.66, + "probability": 0.9486 + }, + { + "start": 8077.82, + "end": 8078.58, + "probability": 0.918 + }, + { + "start": 8078.66, + "end": 8080.66, + "probability": 0.9899 + }, + { + "start": 8080.72, + "end": 8084.06, + "probability": 0.9973 + }, + { + "start": 8084.18, + "end": 8085.56, + "probability": 0.5971 + }, + { + "start": 8085.98, + "end": 8087.3, + "probability": 0.0597 + }, + { + "start": 8087.42, + "end": 8087.84, + "probability": 0.6538 + }, + { + "start": 8087.98, + "end": 8089.18, + "probability": 0.9189 + }, + { + "start": 8089.38, + "end": 8092.46, + "probability": 0.9802 + }, + { + "start": 8092.64, + "end": 8094.4, + "probability": 0.978 + }, + { + "start": 8094.48, + "end": 8096.24, + "probability": 0.9832 + }, + { + "start": 8096.5, + "end": 8098.76, + "probability": 0.7286 + }, + { + "start": 8099.5, + "end": 8101.41, + "probability": 0.9313 + }, + { + "start": 8102.3, + "end": 8106.16, + "probability": 0.9788 + }, + { + "start": 8106.36, + "end": 8107.7, + "probability": 0.9913 + }, + { + "start": 8107.78, + "end": 8112.18, + "probability": 0.9984 + }, + { + "start": 8112.72, + "end": 8116.78, + "probability": 0.9256 + }, + { + "start": 8117.6, + "end": 8118.44, + "probability": 0.998 + }, + { + "start": 8120.84, + "end": 8123.28, + "probability": 0.7745 + }, + { + "start": 8123.4, + "end": 8126.58, + "probability": 0.9855 + }, + { + "start": 8126.7, + "end": 8129.3, + "probability": 0.9957 + }, + { + "start": 8130.46, + "end": 8132.1, + "probability": 0.9883 + }, + { + "start": 8132.76, + "end": 8133.66, + "probability": 0.9961 + }, + { + "start": 8134.32, + "end": 8135.54, + "probability": 0.7401 + }, + { + "start": 8135.68, + "end": 8139.0, + "probability": 0.9897 + }, + { + "start": 8139.0, + "end": 8143.7, + "probability": 0.9144 + }, + { + "start": 8144.34, + "end": 8146.98, + "probability": 0.9818 + }, + { + "start": 8147.04, + "end": 8148.54, + "probability": 0.9924 + }, + { + "start": 8149.12, + "end": 8150.7, + "probability": 0.7677 + }, + { + "start": 8150.76, + "end": 8152.86, + "probability": 0.9857 + }, + { + "start": 8153.22, + "end": 8154.36, + "probability": 0.9009 + }, + { + "start": 8154.46, + "end": 8155.48, + "probability": 0.9944 + }, + { + "start": 8155.66, + "end": 8157.54, + "probability": 0.7831 + }, + { + "start": 8157.54, + "end": 8159.72, + "probability": 0.981 + }, + { + "start": 8159.88, + "end": 8160.84, + "probability": 0.9668 + }, + { + "start": 8161.58, + "end": 8166.02, + "probability": 0.9259 + }, + { + "start": 8167.16, + "end": 8173.06, + "probability": 0.9586 + }, + { + "start": 8174.2, + "end": 8175.34, + "probability": 0.9688 + }, + { + "start": 8176.2, + "end": 8176.92, + "probability": 0.9339 + }, + { + "start": 8177.92, + "end": 8178.88, + "probability": 0.8835 + }, + { + "start": 8179.26, + "end": 8179.98, + "probability": 0.9263 + }, + { + "start": 8180.3, + "end": 8181.04, + "probability": 0.9254 + }, + { + "start": 8181.36, + "end": 8182.12, + "probability": 0.9702 + }, + { + "start": 8182.24, + "end": 8183.0, + "probability": 0.9866 + }, + { + "start": 8183.04, + "end": 8183.6, + "probability": 0.9008 + }, + { + "start": 8183.66, + "end": 8184.24, + "probability": 0.9834 + }, + { + "start": 8184.4, + "end": 8184.98, + "probability": 0.5692 + }, + { + "start": 8185.72, + "end": 8189.52, + "probability": 0.9718 + }, + { + "start": 8189.66, + "end": 8190.1, + "probability": 0.9342 + }, + { + "start": 8190.3, + "end": 8192.16, + "probability": 0.3224 + }, + { + "start": 8192.16, + "end": 8195.52, + "probability": 0.7454 + }, + { + "start": 8196.4, + "end": 8198.26, + "probability": 0.8628 + }, + { + "start": 8199.68, + "end": 8204.64, + "probability": 0.9663 + }, + { + "start": 8205.4, + "end": 8208.56, + "probability": 0.9676 + }, + { + "start": 8209.42, + "end": 8211.22, + "probability": 0.9893 + }, + { + "start": 8211.6, + "end": 8215.31, + "probability": 0.9875 + }, + { + "start": 8216.08, + "end": 8218.74, + "probability": 0.8587 + }, + { + "start": 8219.6, + "end": 8223.74, + "probability": 0.9962 + }, + { + "start": 8224.24, + "end": 8227.74, + "probability": 0.9982 + }, + { + "start": 8228.76, + "end": 8230.34, + "probability": 0.4095 + }, + { + "start": 8231.1, + "end": 8235.08, + "probability": 0.9693 + }, + { + "start": 8235.5, + "end": 8239.22, + "probability": 0.9745 + }, + { + "start": 8239.66, + "end": 8241.96, + "probability": 0.9835 + }, + { + "start": 8242.32, + "end": 8247.46, + "probability": 0.9865 + }, + { + "start": 8248.62, + "end": 8249.64, + "probability": 0.5381 + }, + { + "start": 8250.5, + "end": 8251.8, + "probability": 0.9824 + }, + { + "start": 8252.48, + "end": 8253.36, + "probability": 0.8452 + }, + { + "start": 8283.0, + "end": 8285.24, + "probability": 0.7751 + }, + { + "start": 8285.48, + "end": 8285.74, + "probability": 0.803 + }, + { + "start": 8287.14, + "end": 8288.16, + "probability": 0.9927 + }, + { + "start": 8288.54, + "end": 8289.18, + "probability": 0.917 + }, + { + "start": 8289.6, + "end": 8291.34, + "probability": 0.9015 + }, + { + "start": 8292.28, + "end": 8293.02, + "probability": 0.8612 + }, + { + "start": 8294.14, + "end": 8296.76, + "probability": 0.9923 + }, + { + "start": 8297.04, + "end": 8300.02, + "probability": 0.9587 + }, + { + "start": 8300.06, + "end": 8301.2, + "probability": 0.8475 + }, + { + "start": 8302.54, + "end": 8304.38, + "probability": 0.979 + }, + { + "start": 8305.28, + "end": 8307.48, + "probability": 0.9278 + }, + { + "start": 8308.04, + "end": 8309.9, + "probability": 0.5206 + }, + { + "start": 8311.08, + "end": 8313.82, + "probability": 0.9056 + }, + { + "start": 8314.48, + "end": 8315.68, + "probability": 0.8117 + }, + { + "start": 8316.7, + "end": 8317.98, + "probability": 0.9787 + }, + { + "start": 8318.68, + "end": 8320.52, + "probability": 0.9881 + }, + { + "start": 8321.94, + "end": 8326.06, + "probability": 0.8856 + }, + { + "start": 8326.6, + "end": 8330.06, + "probability": 0.7791 + }, + { + "start": 8330.74, + "end": 8334.24, + "probability": 0.9883 + }, + { + "start": 8335.26, + "end": 8338.36, + "probability": 0.9971 + }, + { + "start": 8338.58, + "end": 8339.96, + "probability": 0.9708 + }, + { + "start": 8341.76, + "end": 8344.36, + "probability": 0.9985 + }, + { + "start": 8344.36, + "end": 8347.76, + "probability": 0.9988 + }, + { + "start": 8348.72, + "end": 8351.3, + "probability": 0.9873 + }, + { + "start": 8351.94, + "end": 8352.6, + "probability": 0.9547 + }, + { + "start": 8353.42, + "end": 8357.44, + "probability": 0.9097 + }, + { + "start": 8358.1, + "end": 8363.88, + "probability": 0.933 + }, + { + "start": 8365.3, + "end": 8366.24, + "probability": 0.6278 + }, + { + "start": 8367.32, + "end": 8372.36, + "probability": 0.9703 + }, + { + "start": 8373.4, + "end": 8376.42, + "probability": 0.9783 + }, + { + "start": 8377.2, + "end": 8381.6, + "probability": 0.991 + }, + { + "start": 8383.74, + "end": 8387.94, + "probability": 0.9939 + }, + { + "start": 8387.94, + "end": 8392.04, + "probability": 0.9939 + }, + { + "start": 8393.12, + "end": 8398.48, + "probability": 0.9772 + }, + { + "start": 8399.02, + "end": 8403.4, + "probability": 0.9994 + }, + { + "start": 8403.58, + "end": 8404.78, + "probability": 0.9782 + }, + { + "start": 8405.68, + "end": 8406.88, + "probability": 0.6895 + }, + { + "start": 8407.24, + "end": 8407.64, + "probability": 0.9688 + }, + { + "start": 8407.76, + "end": 8410.48, + "probability": 0.9938 + }, + { + "start": 8411.46, + "end": 8416.36, + "probability": 0.9937 + }, + { + "start": 8417.52, + "end": 8421.36, + "probability": 0.9974 + }, + { + "start": 8422.46, + "end": 8425.12, + "probability": 0.9238 + }, + { + "start": 8426.04, + "end": 8428.38, + "probability": 0.9289 + }, + { + "start": 8428.74, + "end": 8429.9, + "probability": 0.2644 + }, + { + "start": 8430.34, + "end": 8432.76, + "probability": 0.7155 + }, + { + "start": 8433.2, + "end": 8435.62, + "probability": 0.4618 + }, + { + "start": 8436.44, + "end": 8437.28, + "probability": 0.0567 + }, + { + "start": 8437.82, + "end": 8437.84, + "probability": 0.6261 + }, + { + "start": 8437.84, + "end": 8440.42, + "probability": 0.8504 + }, + { + "start": 8440.44, + "end": 8445.96, + "probability": 0.9698 + }, + { + "start": 8447.12, + "end": 8447.96, + "probability": 0.7359 + }, + { + "start": 8448.76, + "end": 8451.46, + "probability": 0.9933 + }, + { + "start": 8452.24, + "end": 8453.7, + "probability": 0.9841 + }, + { + "start": 8454.94, + "end": 8458.78, + "probability": 0.9956 + }, + { + "start": 8459.52, + "end": 8460.86, + "probability": 0.6694 + }, + { + "start": 8461.54, + "end": 8463.02, + "probability": 0.9941 + }, + { + "start": 8463.7, + "end": 8466.52, + "probability": 0.9952 + }, + { + "start": 8467.14, + "end": 8472.16, + "probability": 0.986 + }, + { + "start": 8473.08, + "end": 8476.44, + "probability": 0.2731 + }, + { + "start": 8477.88, + "end": 8480.9, + "probability": 0.9503 + }, + { + "start": 8481.72, + "end": 8485.96, + "probability": 0.9875 + }, + { + "start": 8486.08, + "end": 8486.68, + "probability": 0.7886 + }, + { + "start": 8487.6, + "end": 8492.66, + "probability": 0.9964 + }, + { + "start": 8493.32, + "end": 8495.14, + "probability": 0.9576 + }, + { + "start": 8495.32, + "end": 8498.12, + "probability": 0.9915 + }, + { + "start": 8500.54, + "end": 8506.92, + "probability": 0.9909 + }, + { + "start": 8508.02, + "end": 8510.79, + "probability": 0.9738 + }, + { + "start": 8511.12, + "end": 8511.92, + "probability": 0.5891 + }, + { + "start": 8513.16, + "end": 8514.6, + "probability": 0.9958 + }, + { + "start": 8515.62, + "end": 8518.52, + "probability": 0.9971 + }, + { + "start": 8519.22, + "end": 8521.12, + "probability": 0.9985 + }, + { + "start": 8522.32, + "end": 8524.88, + "probability": 0.9695 + }, + { + "start": 8524.9, + "end": 8528.62, + "probability": 0.9618 + }, + { + "start": 8528.86, + "end": 8529.56, + "probability": 0.8603 + }, + { + "start": 8529.62, + "end": 8533.0, + "probability": 0.7838 + }, + { + "start": 8533.72, + "end": 8536.98, + "probability": 0.9234 + }, + { + "start": 8537.12, + "end": 8537.72, + "probability": 0.4586 + }, + { + "start": 8538.52, + "end": 8540.58, + "probability": 0.9237 + }, + { + "start": 8542.04, + "end": 8545.48, + "probability": 0.9961 + }, + { + "start": 8546.02, + "end": 8548.44, + "probability": 0.9843 + }, + { + "start": 8549.34, + "end": 8551.3, + "probability": 0.922 + }, + { + "start": 8552.1, + "end": 8556.24, + "probability": 0.8873 + }, + { + "start": 8556.36, + "end": 8560.46, + "probability": 0.9816 + }, + { + "start": 8561.14, + "end": 8566.0, + "probability": 0.9901 + }, + { + "start": 8566.92, + "end": 8571.48, + "probability": 0.9604 + }, + { + "start": 8571.48, + "end": 8575.1, + "probability": 0.9978 + }, + { + "start": 8575.42, + "end": 8576.02, + "probability": 0.7515 + }, + { + "start": 8576.94, + "end": 8580.58, + "probability": 0.772 + }, + { + "start": 8581.84, + "end": 8584.88, + "probability": 0.6506 + }, + { + "start": 8585.08, + "end": 8586.78, + "probability": 0.5656 + }, + { + "start": 8587.7, + "end": 8592.7, + "probability": 0.9681 + }, + { + "start": 8593.48, + "end": 8597.1, + "probability": 0.3175 + }, + { + "start": 8597.96, + "end": 8602.58, + "probability": 0.9838 + }, + { + "start": 8603.26, + "end": 8605.8, + "probability": 0.998 + }, + { + "start": 8606.54, + "end": 8610.54, + "probability": 0.9976 + }, + { + "start": 8612.3, + "end": 8615.44, + "probability": 0.9906 + }, + { + "start": 8615.44, + "end": 8618.14, + "probability": 0.9583 + }, + { + "start": 8619.34, + "end": 8622.52, + "probability": 0.981 + }, + { + "start": 8623.22, + "end": 8626.82, + "probability": 0.9906 + }, + { + "start": 8626.82, + "end": 8629.72, + "probability": 0.9852 + }, + { + "start": 8630.56, + "end": 8632.0, + "probability": 0.9995 + }, + { + "start": 8632.7, + "end": 8636.34, + "probability": 0.9945 + }, + { + "start": 8636.34, + "end": 8641.12, + "probability": 0.9897 + }, + { + "start": 8642.64, + "end": 8642.64, + "probability": 0.044 + }, + { + "start": 8642.64, + "end": 8648.28, + "probability": 0.9931 + }, + { + "start": 8649.26, + "end": 8651.14, + "probability": 0.998 + }, + { + "start": 8652.02, + "end": 8657.3, + "probability": 0.9978 + }, + { + "start": 8658.74, + "end": 8660.76, + "probability": 0.9083 + }, + { + "start": 8661.68, + "end": 8664.48, + "probability": 0.9975 + }, + { + "start": 8664.58, + "end": 8666.82, + "probability": 0.8113 + }, + { + "start": 8668.14, + "end": 8674.9, + "probability": 0.8475 + }, + { + "start": 8676.6, + "end": 8679.98, + "probability": 0.9932 + }, + { + "start": 8680.68, + "end": 8681.28, + "probability": 0.5554 + }, + { + "start": 8682.18, + "end": 8685.96, + "probability": 0.9872 + }, + { + "start": 8686.5, + "end": 8688.24, + "probability": 0.9587 + }, + { + "start": 8689.96, + "end": 8692.76, + "probability": 0.98 + }, + { + "start": 8693.42, + "end": 8698.14, + "probability": 0.7137 + }, + { + "start": 8698.14, + "end": 8702.36, + "probability": 0.996 + }, + { + "start": 8702.94, + "end": 8704.14, + "probability": 0.9644 + }, + { + "start": 8705.12, + "end": 8705.66, + "probability": 0.7771 + }, + { + "start": 8706.44, + "end": 8708.6, + "probability": 0.9473 + }, + { + "start": 8710.38, + "end": 8714.28, + "probability": 0.9213 + }, + { + "start": 8715.1, + "end": 8717.5, + "probability": 0.9854 + }, + { + "start": 8717.52, + "end": 8719.84, + "probability": 0.7831 + }, + { + "start": 8720.54, + "end": 8724.0, + "probability": 0.9556 + }, + { + "start": 8724.0, + "end": 8727.44, + "probability": 0.9948 + }, + { + "start": 8728.9, + "end": 8730.14, + "probability": 0.9304 + }, + { + "start": 8731.38, + "end": 8733.82, + "probability": 0.9823 + }, + { + "start": 8734.64, + "end": 8735.86, + "probability": 0.7982 + }, + { + "start": 8736.78, + "end": 8739.56, + "probability": 0.9907 + }, + { + "start": 8739.56, + "end": 8743.8, + "probability": 0.9922 + }, + { + "start": 8743.86, + "end": 8744.56, + "probability": 0.7579 + }, + { + "start": 8744.68, + "end": 8746.04, + "probability": 0.9432 + }, + { + "start": 8746.86, + "end": 8749.12, + "probability": 0.9636 + }, + { + "start": 8750.34, + "end": 8755.04, + "probability": 0.9648 + }, + { + "start": 8755.28, + "end": 8755.62, + "probability": 0.8155 + }, + { + "start": 8755.7, + "end": 8756.24, + "probability": 0.6903 + }, + { + "start": 8756.3, + "end": 8759.82, + "probability": 0.9733 + }, + { + "start": 8761.82, + "end": 8765.6, + "probability": 0.9888 + }, + { + "start": 8766.26, + "end": 8768.64, + "probability": 0.8994 + }, + { + "start": 8768.82, + "end": 8770.98, + "probability": 0.7965 + }, + { + "start": 8770.98, + "end": 8773.94, + "probability": 0.9979 + }, + { + "start": 8774.62, + "end": 8776.16, + "probability": 0.7849 + }, + { + "start": 8777.58, + "end": 8781.36, + "probability": 0.8586 + }, + { + "start": 8782.12, + "end": 8785.04, + "probability": 0.9972 + }, + { + "start": 8785.04, + "end": 8788.02, + "probability": 0.9965 + }, + { + "start": 8788.84, + "end": 8791.76, + "probability": 0.9928 + }, + { + "start": 8792.36, + "end": 8794.26, + "probability": 0.911 + }, + { + "start": 8795.76, + "end": 8798.92, + "probability": 0.9922 + }, + { + "start": 8799.56, + "end": 8801.38, + "probability": 0.9967 + }, + { + "start": 8801.52, + "end": 8801.78, + "probability": 0.855 + }, + { + "start": 8801.96, + "end": 8803.58, + "probability": 0.7454 + }, + { + "start": 8804.02, + "end": 8805.24, + "probability": 0.9089 + }, + { + "start": 8806.02, + "end": 8807.68, + "probability": 0.8236 + }, + { + "start": 8808.72, + "end": 8811.36, + "probability": 0.9686 + }, + { + "start": 8812.22, + "end": 8816.16, + "probability": 0.8193 + }, + { + "start": 8817.58, + "end": 8818.7, + "probability": 0.9777 + }, + { + "start": 8818.82, + "end": 8821.16, + "probability": 0.8937 + }, + { + "start": 8821.26, + "end": 8824.7, + "probability": 0.7724 + }, + { + "start": 8825.3, + "end": 8827.6, + "probability": 0.9685 + }, + { + "start": 8827.88, + "end": 8831.28, + "probability": 0.9983 + }, + { + "start": 8832.16, + "end": 8833.84, + "probability": 0.8658 + }, + { + "start": 8835.24, + "end": 8837.58, + "probability": 0.6454 + }, + { + "start": 8837.58, + "end": 8837.58, + "probability": 0.4021 + }, + { + "start": 8837.58, + "end": 8837.58, + "probability": 0.0163 + }, + { + "start": 8837.58, + "end": 8840.24, + "probability": 0.5598 + }, + { + "start": 8840.94, + "end": 8847.04, + "probability": 0.6936 + }, + { + "start": 8847.04, + "end": 8850.44, + "probability": 0.9849 + }, + { + "start": 8850.62, + "end": 8851.08, + "probability": 0.7224 + }, + { + "start": 8851.28, + "end": 8854.14, + "probability": 0.9962 + }, + { + "start": 8854.14, + "end": 8857.5, + "probability": 0.9821 + }, + { + "start": 8858.06, + "end": 8860.32, + "probability": 0.7947 + }, + { + "start": 8861.34, + "end": 8865.22, + "probability": 0.8857 + }, + { + "start": 8865.74, + "end": 8868.84, + "probability": 0.499 + }, + { + "start": 8868.84, + "end": 8872.46, + "probability": 0.8607 + }, + { + "start": 8872.56, + "end": 8874.5, + "probability": 0.8309 + }, + { + "start": 8875.14, + "end": 8877.14, + "probability": 0.7805 + }, + { + "start": 8882.76, + "end": 8884.52, + "probability": 0.3929 + }, + { + "start": 8894.38, + "end": 8898.22, + "probability": 0.8624 + }, + { + "start": 8898.98, + "end": 8899.86, + "probability": 0.9907 + }, + { + "start": 8901.52, + "end": 8904.78, + "probability": 0.9982 + }, + { + "start": 8908.38, + "end": 8908.84, + "probability": 0.473 + }, + { + "start": 8909.48, + "end": 8910.03, + "probability": 0.687 + }, + { + "start": 8912.46, + "end": 8912.84, + "probability": 0.5034 + }, + { + "start": 8915.18, + "end": 8918.6, + "probability": 0.9135 + }, + { + "start": 8919.96, + "end": 8925.3, + "probability": 0.9941 + }, + { + "start": 8926.28, + "end": 8929.82, + "probability": 0.8254 + }, + { + "start": 8930.58, + "end": 8931.56, + "probability": 0.8661 + }, + { + "start": 8932.58, + "end": 8935.04, + "probability": 0.7539 + }, + { + "start": 8935.22, + "end": 8938.64, + "probability": 0.9696 + }, + { + "start": 8939.34, + "end": 8942.52, + "probability": 0.9425 + }, + { + "start": 8943.3, + "end": 8948.62, + "probability": 0.9905 + }, + { + "start": 8950.48, + "end": 8951.58, + "probability": 0.6422 + }, + { + "start": 8952.18, + "end": 8953.08, + "probability": 0.8362 + }, + { + "start": 8954.0, + "end": 8954.36, + "probability": 0.6738 + }, + { + "start": 8955.72, + "end": 8957.42, + "probability": 0.9216 + }, + { + "start": 8958.68, + "end": 8959.02, + "probability": 0.7803 + }, + { + "start": 8960.22, + "end": 8962.86, + "probability": 0.9894 + }, + { + "start": 8964.36, + "end": 8968.98, + "probability": 0.9972 + }, + { + "start": 8969.24, + "end": 8971.7, + "probability": 0.9765 + }, + { + "start": 8972.96, + "end": 8974.16, + "probability": 0.9595 + }, + { + "start": 8975.28, + "end": 8976.12, + "probability": 0.9328 + }, + { + "start": 8976.22, + "end": 8978.58, + "probability": 0.9907 + }, + { + "start": 8981.02, + "end": 8984.48, + "probability": 0.995 + }, + { + "start": 8985.92, + "end": 8987.0, + "probability": 0.982 + }, + { + "start": 8987.26, + "end": 8988.55, + "probability": 0.9967 + }, + { + "start": 8989.08, + "end": 8990.86, + "probability": 0.9891 + }, + { + "start": 8991.32, + "end": 8992.2, + "probability": 0.9918 + }, + { + "start": 8993.08, + "end": 8995.06, + "probability": 0.9832 + }, + { + "start": 8996.7, + "end": 9001.08, + "probability": 0.9937 + }, + { + "start": 9001.6, + "end": 9008.18, + "probability": 0.9984 + }, + { + "start": 9009.28, + "end": 9013.32, + "probability": 0.8063 + }, + { + "start": 9014.02, + "end": 9018.8, + "probability": 0.9983 + }, + { + "start": 9019.64, + "end": 9022.12, + "probability": 0.825 + }, + { + "start": 9022.68, + "end": 9022.88, + "probability": 0.8269 + }, + { + "start": 9024.12, + "end": 9025.22, + "probability": 0.9974 + }, + { + "start": 9025.74, + "end": 9029.34, + "probability": 0.7936 + }, + { + "start": 9030.58, + "end": 9032.1, + "probability": 0.8122 + }, + { + "start": 9032.94, + "end": 9034.76, + "probability": 0.9551 + }, + { + "start": 9036.56, + "end": 9038.08, + "probability": 0.9841 + }, + { + "start": 9039.26, + "end": 9042.14, + "probability": 0.9876 + }, + { + "start": 9042.64, + "end": 9043.92, + "probability": 0.8841 + }, + { + "start": 9045.92, + "end": 9051.84, + "probability": 0.9829 + }, + { + "start": 9052.88, + "end": 9053.46, + "probability": 0.2927 + }, + { + "start": 9053.46, + "end": 9053.74, + "probability": 0.3147 + }, + { + "start": 9055.66, + "end": 9056.66, + "probability": 0.2447 + }, + { + "start": 9056.66, + "end": 9057.0, + "probability": 0.75 + }, + { + "start": 9057.12, + "end": 9059.86, + "probability": 0.8785 + }, + { + "start": 9061.3, + "end": 9062.48, + "probability": 0.9583 + }, + { + "start": 9063.62, + "end": 9064.58, + "probability": 0.9048 + }, + { + "start": 9065.9, + "end": 9068.32, + "probability": 0.7515 + }, + { + "start": 9069.12, + "end": 9069.24, + "probability": 0.9865 + }, + { + "start": 9070.0, + "end": 9075.26, + "probability": 0.9487 + }, + { + "start": 9076.38, + "end": 9078.91, + "probability": 0.9252 + }, + { + "start": 9079.52, + "end": 9079.62, + "probability": 0.9193 + }, + { + "start": 9080.76, + "end": 9081.58, + "probability": 0.9014 + }, + { + "start": 9082.18, + "end": 9083.92, + "probability": 0.9861 + }, + { + "start": 9085.32, + "end": 9086.2, + "probability": 0.4276 + }, + { + "start": 9087.02, + "end": 9088.98, + "probability": 0.4857 + }, + { + "start": 9089.22, + "end": 9091.43, + "probability": 0.6461 + }, + { + "start": 9092.3, + "end": 9093.6, + "probability": 0.4857 + }, + { + "start": 9094.12, + "end": 9095.66, + "probability": 0.6706 + }, + { + "start": 9096.1, + "end": 9098.56, + "probability": 0.3908 + }, + { + "start": 9098.74, + "end": 9099.92, + "probability": 0.79 + }, + { + "start": 9099.92, + "end": 9100.66, + "probability": 0.1786 + }, + { + "start": 9100.96, + "end": 9102.74, + "probability": 0.786 + }, + { + "start": 9103.78, + "end": 9104.55, + "probability": 0.7758 + }, + { + "start": 9105.14, + "end": 9110.8, + "probability": 0.939 + }, + { + "start": 9111.62, + "end": 9113.42, + "probability": 0.9924 + }, + { + "start": 9113.48, + "end": 9114.96, + "probability": 0.9771 + }, + { + "start": 9115.0, + "end": 9115.52, + "probability": 0.9809 + }, + { + "start": 9117.16, + "end": 9119.68, + "probability": 0.9363 + }, + { + "start": 9121.36, + "end": 9123.0, + "probability": 0.8371 + }, + { + "start": 9124.02, + "end": 9124.68, + "probability": 0.6877 + }, + { + "start": 9126.26, + "end": 9128.62, + "probability": 0.7968 + }, + { + "start": 9128.78, + "end": 9129.32, + "probability": 0.8345 + }, + { + "start": 9133.44, + "end": 9135.6, + "probability": 0.7982 + }, + { + "start": 9137.2, + "end": 9137.52, + "probability": 0.4531 + }, + { + "start": 9149.56, + "end": 9149.8, + "probability": 0.8997 + }, + { + "start": 9160.58, + "end": 9163.32, + "probability": 0.6759 + }, + { + "start": 9164.18, + "end": 9165.14, + "probability": 0.9642 + }, + { + "start": 9165.76, + "end": 9166.68, + "probability": 0.9255 + }, + { + "start": 9167.08, + "end": 9167.22, + "probability": 0.418 + }, + { + "start": 9167.28, + "end": 9168.02, + "probability": 0.9329 + }, + { + "start": 9168.26, + "end": 9171.82, + "probability": 0.9971 + }, + { + "start": 9173.7, + "end": 9174.36, + "probability": 0.9542 + }, + { + "start": 9174.5, + "end": 9175.42, + "probability": 0.7595 + }, + { + "start": 9175.44, + "end": 9177.86, + "probability": 0.9875 + }, + { + "start": 9178.94, + "end": 9182.52, + "probability": 0.9943 + }, + { + "start": 9184.12, + "end": 9187.58, + "probability": 0.9181 + }, + { + "start": 9188.36, + "end": 9191.19, + "probability": 0.9987 + }, + { + "start": 9192.48, + "end": 9195.6, + "probability": 0.9953 + }, + { + "start": 9195.6, + "end": 9199.14, + "probability": 0.9934 + }, + { + "start": 9199.98, + "end": 9200.82, + "probability": 0.4891 + }, + { + "start": 9201.54, + "end": 9203.72, + "probability": 0.9946 + }, + { + "start": 9204.84, + "end": 9208.44, + "probability": 0.9971 + }, + { + "start": 9208.66, + "end": 9209.68, + "probability": 0.9622 + }, + { + "start": 9210.36, + "end": 9214.52, + "probability": 0.9364 + }, + { + "start": 9215.32, + "end": 9215.52, + "probability": 0.2164 + }, + { + "start": 9215.68, + "end": 9220.12, + "probability": 0.9758 + }, + { + "start": 9221.26, + "end": 9224.3, + "probability": 0.9557 + }, + { + "start": 9225.78, + "end": 9230.4, + "probability": 0.9954 + }, + { + "start": 9230.98, + "end": 9232.36, + "probability": 0.781 + }, + { + "start": 9233.18, + "end": 9234.6, + "probability": 0.9749 + }, + { + "start": 9235.26, + "end": 9237.36, + "probability": 0.9594 + }, + { + "start": 9238.56, + "end": 9243.5, + "probability": 0.9795 + }, + { + "start": 9244.16, + "end": 9247.56, + "probability": 0.9943 + }, + { + "start": 9247.92, + "end": 9251.28, + "probability": 0.9687 + }, + { + "start": 9252.18, + "end": 9253.18, + "probability": 0.6929 + }, + { + "start": 9254.16, + "end": 9258.78, + "probability": 0.9263 + }, + { + "start": 9260.42, + "end": 9261.6, + "probability": 0.952 + }, + { + "start": 9261.76, + "end": 9264.54, + "probability": 0.9742 + }, + { + "start": 9265.76, + "end": 9267.16, + "probability": 0.978 + }, + { + "start": 9268.22, + "end": 9270.26, + "probability": 0.9816 + }, + { + "start": 9270.64, + "end": 9271.44, + "probability": 0.9626 + }, + { + "start": 9272.1, + "end": 9276.84, + "probability": 0.9695 + }, + { + "start": 9277.7, + "end": 9281.14, + "probability": 0.9976 + }, + { + "start": 9281.14, + "end": 9285.38, + "probability": 0.9904 + }, + { + "start": 9285.52, + "end": 9286.22, + "probability": 0.9576 + }, + { + "start": 9286.3, + "end": 9287.56, + "probability": 0.9819 + }, + { + "start": 9288.76, + "end": 9291.5, + "probability": 0.594 + }, + { + "start": 9292.34, + "end": 9296.48, + "probability": 0.991 + }, + { + "start": 9297.12, + "end": 9298.78, + "probability": 0.9792 + }, + { + "start": 9299.08, + "end": 9299.74, + "probability": 0.8683 + }, + { + "start": 9299.78, + "end": 9303.28, + "probability": 0.9938 + }, + { + "start": 9306.78, + "end": 9309.56, + "probability": 0.9983 + }, + { + "start": 9309.56, + "end": 9312.02, + "probability": 0.9727 + }, + { + "start": 9313.16, + "end": 9315.3, + "probability": 0.6128 + }, + { + "start": 9316.16, + "end": 9318.02, + "probability": 0.8884 + }, + { + "start": 9318.24, + "end": 9323.68, + "probability": 0.9977 + }, + { + "start": 9324.32, + "end": 9325.32, + "probability": 0.9594 + }, + { + "start": 9326.78, + "end": 9330.01, + "probability": 0.9734 + }, + { + "start": 9330.68, + "end": 9332.88, + "probability": 0.7768 + }, + { + "start": 9333.42, + "end": 9338.0, + "probability": 0.9935 + }, + { + "start": 9338.08, + "end": 9339.7, + "probability": 0.9973 + }, + { + "start": 9340.6, + "end": 9341.48, + "probability": 0.5406 + }, + { + "start": 9341.64, + "end": 9344.94, + "probability": 0.9693 + }, + { + "start": 9345.28, + "end": 9346.88, + "probability": 0.9946 + }, + { + "start": 9347.84, + "end": 9352.88, + "probability": 0.8108 + }, + { + "start": 9354.0, + "end": 9354.1, + "probability": 0.0163 + }, + { + "start": 9354.1, + "end": 9355.42, + "probability": 0.8593 + }, + { + "start": 9355.54, + "end": 9357.24, + "probability": 0.9885 + }, + { + "start": 9357.32, + "end": 9358.76, + "probability": 0.8596 + }, + { + "start": 9359.52, + "end": 9362.28, + "probability": 0.9946 + }, + { + "start": 9362.9, + "end": 9365.78, + "probability": 0.9732 + }, + { + "start": 9366.54, + "end": 9367.24, + "probability": 0.8605 + }, + { + "start": 9367.78, + "end": 9368.64, + "probability": 0.7509 + }, + { + "start": 9369.12, + "end": 9372.24, + "probability": 0.9625 + }, + { + "start": 9372.78, + "end": 9374.56, + "probability": 0.9968 + }, + { + "start": 9375.0, + "end": 9375.56, + "probability": 0.9589 + }, + { + "start": 9376.06, + "end": 9379.54, + "probability": 0.9938 + }, + { + "start": 9379.92, + "end": 9381.1, + "probability": 0.9969 + }, + { + "start": 9382.24, + "end": 9384.54, + "probability": 0.9869 + }, + { + "start": 9385.08, + "end": 9386.5, + "probability": 0.9404 + }, + { + "start": 9387.16, + "end": 9394.32, + "probability": 0.9633 + }, + { + "start": 9394.56, + "end": 9399.9, + "probability": 0.7187 + }, + { + "start": 9400.26, + "end": 9400.48, + "probability": 0.7384 + }, + { + "start": 9400.96, + "end": 9401.62, + "probability": 0.965 + }, + { + "start": 9401.74, + "end": 9402.7, + "probability": 0.4978 + }, + { + "start": 9403.28, + "end": 9404.4, + "probability": 0.9665 + }, + { + "start": 9405.76, + "end": 9407.12, + "probability": 0.8665 + }, + { + "start": 9434.1, + "end": 9435.5, + "probability": 0.6549 + }, + { + "start": 9436.8, + "end": 9438.54, + "probability": 0.8066 + }, + { + "start": 9441.82, + "end": 9443.0, + "probability": 0.7422 + }, + { + "start": 9444.38, + "end": 9445.7, + "probability": 0.9489 + }, + { + "start": 9447.02, + "end": 9448.94, + "probability": 0.9719 + }, + { + "start": 9449.84, + "end": 9450.72, + "probability": 0.716 + }, + { + "start": 9451.82, + "end": 9456.86, + "probability": 0.9632 + }, + { + "start": 9457.38, + "end": 9457.76, + "probability": 0.3907 + }, + { + "start": 9458.52, + "end": 9459.58, + "probability": 0.9905 + }, + { + "start": 9460.68, + "end": 9462.84, + "probability": 0.8645 + }, + { + "start": 9465.52, + "end": 9470.54, + "probability": 0.9952 + }, + { + "start": 9473.3, + "end": 9476.2, + "probability": 0.9514 + }, + { + "start": 9477.66, + "end": 9480.0, + "probability": 0.9637 + }, + { + "start": 9481.18, + "end": 9485.32, + "probability": 0.9884 + }, + { + "start": 9487.52, + "end": 9489.28, + "probability": 0.95 + }, + { + "start": 9490.22, + "end": 9492.3, + "probability": 0.9691 + }, + { + "start": 9494.64, + "end": 9500.2, + "probability": 0.9935 + }, + { + "start": 9500.98, + "end": 9501.9, + "probability": 0.667 + }, + { + "start": 9502.18, + "end": 9504.68, + "probability": 0.9556 + }, + { + "start": 9505.68, + "end": 9508.8, + "probability": 0.8708 + }, + { + "start": 9509.42, + "end": 9510.34, + "probability": 0.974 + }, + { + "start": 9514.28, + "end": 9518.22, + "probability": 0.9956 + }, + { + "start": 9518.84, + "end": 9521.6, + "probability": 0.8789 + }, + { + "start": 9524.62, + "end": 9527.22, + "probability": 0.979 + }, + { + "start": 9527.84, + "end": 9528.92, + "probability": 0.8586 + }, + { + "start": 9530.04, + "end": 9530.98, + "probability": 0.9719 + }, + { + "start": 9531.52, + "end": 9532.52, + "probability": 0.9905 + }, + { + "start": 9533.52, + "end": 9535.74, + "probability": 0.9733 + }, + { + "start": 9536.68, + "end": 9540.28, + "probability": 0.8739 + }, + { + "start": 9542.1, + "end": 9543.28, + "probability": 0.9674 + }, + { + "start": 9544.44, + "end": 9544.5, + "probability": 0.0121 + }, + { + "start": 9544.5, + "end": 9546.64, + "probability": 0.8669 + }, + { + "start": 9547.62, + "end": 9548.78, + "probability": 0.7674 + }, + { + "start": 9548.94, + "end": 9552.16, + "probability": 0.9704 + }, + { + "start": 9553.18, + "end": 9556.1, + "probability": 0.9824 + }, + { + "start": 9556.88, + "end": 9557.7, + "probability": 0.7061 + }, + { + "start": 9558.44, + "end": 9561.52, + "probability": 0.879 + }, + { + "start": 9563.3, + "end": 9569.04, + "probability": 0.8688 + }, + { + "start": 9569.96, + "end": 9571.1, + "probability": 0.9141 + }, + { + "start": 9571.26, + "end": 9576.48, + "probability": 0.9591 + }, + { + "start": 9577.04, + "end": 9581.52, + "probability": 0.9479 + }, + { + "start": 9581.88, + "end": 9583.24, + "probability": 0.9557 + }, + { + "start": 9584.38, + "end": 9584.68, + "probability": 0.9389 + }, + { + "start": 9584.76, + "end": 9587.18, + "probability": 0.9936 + }, + { + "start": 9587.18, + "end": 9589.04, + "probability": 0.9591 + }, + { + "start": 9589.94, + "end": 9590.52, + "probability": 0.6037 + }, + { + "start": 9591.14, + "end": 9592.02, + "probability": 0.8462 + }, + { + "start": 9592.06, + "end": 9592.52, + "probability": 0.915 + }, + { + "start": 9592.6, + "end": 9593.22, + "probability": 0.9576 + }, + { + "start": 9593.6, + "end": 9594.58, + "probability": 0.9922 + }, + { + "start": 9594.7, + "end": 9597.74, + "probability": 0.9666 + }, + { + "start": 9600.52, + "end": 9601.26, + "probability": 0.9233 + }, + { + "start": 9601.36, + "end": 9601.96, + "probability": 0.9728 + }, + { + "start": 9602.1, + "end": 9602.48, + "probability": 0.9467 + }, + { + "start": 9602.6, + "end": 9603.1, + "probability": 0.905 + }, + { + "start": 9603.44, + "end": 9607.34, + "probability": 0.9761 + }, + { + "start": 9608.98, + "end": 9610.68, + "probability": 0.9789 + }, + { + "start": 9610.9, + "end": 9614.32, + "probability": 0.9964 + }, + { + "start": 9616.18, + "end": 9616.98, + "probability": 0.6681 + }, + { + "start": 9617.76, + "end": 9619.84, + "probability": 0.8244 + }, + { + "start": 9620.38, + "end": 9622.16, + "probability": 0.9535 + }, + { + "start": 9623.94, + "end": 9626.0, + "probability": 0.94 + }, + { + "start": 9627.1, + "end": 9629.51, + "probability": 0.9513 + }, + { + "start": 9630.36, + "end": 9633.42, + "probability": 0.8069 + }, + { + "start": 9633.62, + "end": 9633.78, + "probability": 0.5923 + }, + { + "start": 9633.96, + "end": 9636.72, + "probability": 0.9719 + }, + { + "start": 9637.06, + "end": 9637.6, + "probability": 0.6339 + }, + { + "start": 9637.72, + "end": 9638.26, + "probability": 0.9795 + }, + { + "start": 9638.42, + "end": 9638.8, + "probability": 0.9826 + }, + { + "start": 9639.12, + "end": 9641.46, + "probability": 0.979 + }, + { + "start": 9643.22, + "end": 9647.62, + "probability": 0.9908 + }, + { + "start": 9649.0, + "end": 9651.06, + "probability": 0.9944 + }, + { + "start": 9651.78, + "end": 9653.98, + "probability": 0.8851 + }, + { + "start": 9654.46, + "end": 9655.4, + "probability": 0.5071 + }, + { + "start": 9655.5, + "end": 9656.3, + "probability": 0.5884 + }, + { + "start": 9657.18, + "end": 9661.46, + "probability": 0.9944 + }, + { + "start": 9662.42, + "end": 9663.12, + "probability": 0.5571 + }, + { + "start": 9664.16, + "end": 9667.24, + "probability": 0.9939 + }, + { + "start": 9667.44, + "end": 9669.82, + "probability": 0.7798 + }, + { + "start": 9670.72, + "end": 9671.5, + "probability": 0.7576 + }, + { + "start": 9672.24, + "end": 9673.22, + "probability": 0.976 + }, + { + "start": 9673.86, + "end": 9674.72, + "probability": 0.459 + }, + { + "start": 9677.44, + "end": 9678.34, + "probability": 0.9955 + }, + { + "start": 9679.16, + "end": 9680.78, + "probability": 0.8328 + }, + { + "start": 9681.3, + "end": 9683.1, + "probability": 0.9619 + }, + { + "start": 9684.04, + "end": 9685.04, + "probability": 0.7016 + }, + { + "start": 9685.26, + "end": 9688.12, + "probability": 0.906 + }, + { + "start": 9688.24, + "end": 9689.8, + "probability": 0.4986 + }, + { + "start": 9689.88, + "end": 9690.68, + "probability": 0.7972 + }, + { + "start": 9691.76, + "end": 9698.58, + "probability": 0.672 + }, + { + "start": 9698.64, + "end": 9699.48, + "probability": 0.6619 + }, + { + "start": 9699.7, + "end": 9702.26, + "probability": 0.8918 + }, + { + "start": 9702.5, + "end": 9703.64, + "probability": 0.9438 + }, + { + "start": 9704.24, + "end": 9706.98, + "probability": 0.5038 + }, + { + "start": 9707.34, + "end": 9709.18, + "probability": 0.9826 + }, + { + "start": 9711.22, + "end": 9712.4, + "probability": 0.9009 + }, + { + "start": 9713.08, + "end": 9715.82, + "probability": 0.877 + }, + { + "start": 9716.3, + "end": 9717.06, + "probability": 0.9953 + }, + { + "start": 9717.82, + "end": 9718.74, + "probability": 0.8112 + }, + { + "start": 9719.88, + "end": 9720.24, + "probability": 0.523 + }, + { + "start": 9720.4, + "end": 9721.56, + "probability": 0.7343 + }, + { + "start": 9721.72, + "end": 9723.5, + "probability": 0.7097 + }, + { + "start": 9724.08, + "end": 9725.04, + "probability": 0.9884 + }, + { + "start": 9725.4, + "end": 9726.3, + "probability": 0.9666 + }, + { + "start": 9726.72, + "end": 9727.7, + "probability": 0.9585 + }, + { + "start": 9727.76, + "end": 9730.14, + "probability": 0.8399 + }, + { + "start": 9730.2, + "end": 9733.5, + "probability": 0.8724 + }, + { + "start": 9733.9, + "end": 9735.32, + "probability": 0.8602 + }, + { + "start": 9735.42, + "end": 9736.14, + "probability": 0.7922 + }, + { + "start": 9736.66, + "end": 9736.68, + "probability": 0.6772 + }, + { + "start": 9737.14, + "end": 9738.96, + "probability": 0.9786 + }, + { + "start": 9739.56, + "end": 9740.3, + "probability": 0.7755 + }, + { + "start": 9741.16, + "end": 9741.94, + "probability": 0.5788 + }, + { + "start": 9743.2, + "end": 9744.82, + "probability": 0.9688 + }, + { + "start": 9767.62, + "end": 9767.62, + "probability": 0.2952 + }, + { + "start": 9768.22, + "end": 9769.24, + "probability": 0.4128 + }, + { + "start": 9770.44, + "end": 9770.82, + "probability": 0.5295 + }, + { + "start": 9771.42, + "end": 9771.62, + "probability": 0.596 + }, + { + "start": 9773.58, + "end": 9775.7, + "probability": 0.937 + }, + { + "start": 9777.16, + "end": 9780.0, + "probability": 0.6858 + }, + { + "start": 9780.0, + "end": 9780.74, + "probability": 0.7153 + }, + { + "start": 9781.66, + "end": 9782.62, + "probability": 0.8672 + }, + { + "start": 9783.58, + "end": 9784.73, + "probability": 0.8605 + }, + { + "start": 9785.62, + "end": 9787.64, + "probability": 0.9364 + }, + { + "start": 9788.66, + "end": 9790.42, + "probability": 0.7268 + }, + { + "start": 9790.96, + "end": 9792.32, + "probability": 0.8696 + }, + { + "start": 9793.36, + "end": 9795.62, + "probability": 0.9783 + }, + { + "start": 9796.9, + "end": 9801.28, + "probability": 0.958 + }, + { + "start": 9802.86, + "end": 9805.0, + "probability": 0.9923 + }, + { + "start": 9805.98, + "end": 9809.98, + "probability": 0.9338 + }, + { + "start": 9811.06, + "end": 9811.56, + "probability": 0.59 + }, + { + "start": 9812.36, + "end": 9813.72, + "probability": 0.6279 + }, + { + "start": 9814.46, + "end": 9816.92, + "probability": 0.9944 + }, + { + "start": 9818.08, + "end": 9819.4, + "probability": 0.6501 + }, + { + "start": 9820.22, + "end": 9825.14, + "probability": 0.9929 + }, + { + "start": 9825.88, + "end": 9827.24, + "probability": 0.9649 + }, + { + "start": 9827.9, + "end": 9829.04, + "probability": 0.9883 + }, + { + "start": 9829.88, + "end": 9830.52, + "probability": 0.9771 + }, + { + "start": 9831.4, + "end": 9832.64, + "probability": 0.9967 + }, + { + "start": 9834.18, + "end": 9836.52, + "probability": 0.8319 + }, + { + "start": 9837.22, + "end": 9839.16, + "probability": 0.9937 + }, + { + "start": 9840.86, + "end": 9844.74, + "probability": 0.9836 + }, + { + "start": 9844.74, + "end": 9848.56, + "probability": 0.997 + }, + { + "start": 9849.44, + "end": 9851.74, + "probability": 0.9865 + }, + { + "start": 9853.2, + "end": 9854.16, + "probability": 0.8341 + }, + { + "start": 9854.68, + "end": 9857.44, + "probability": 0.9899 + }, + { + "start": 9858.3, + "end": 9861.7, + "probability": 0.9837 + }, + { + "start": 9862.32, + "end": 9865.86, + "probability": 0.9692 + }, + { + "start": 9866.86, + "end": 9870.18, + "probability": 0.9858 + }, + { + "start": 9870.96, + "end": 9873.88, + "probability": 0.932 + }, + { + "start": 9875.18, + "end": 9879.24, + "probability": 0.9916 + }, + { + "start": 9880.14, + "end": 9883.58, + "probability": 0.9951 + }, + { + "start": 9884.18, + "end": 9885.64, + "probability": 0.9918 + }, + { + "start": 9886.8, + "end": 9887.78, + "probability": 0.9944 + }, + { + "start": 9888.36, + "end": 9889.94, + "probability": 0.9985 + }, + { + "start": 9890.98, + "end": 9892.1, + "probability": 0.9893 + }, + { + "start": 9892.84, + "end": 9898.08, + "probability": 0.9791 + }, + { + "start": 9898.66, + "end": 9899.74, + "probability": 0.7848 + }, + { + "start": 9900.82, + "end": 9902.44, + "probability": 0.9833 + }, + { + "start": 9903.3, + "end": 9905.08, + "probability": 0.998 + }, + { + "start": 9905.94, + "end": 9909.24, + "probability": 0.9967 + }, + { + "start": 9910.14, + "end": 9914.24, + "probability": 0.9342 + }, + { + "start": 9915.04, + "end": 9915.8, + "probability": 0.6683 + }, + { + "start": 9916.52, + "end": 9918.2, + "probability": 0.9937 + }, + { + "start": 9919.24, + "end": 9924.86, + "probability": 0.9795 + }, + { + "start": 9925.7, + "end": 9928.14, + "probability": 0.9973 + }, + { + "start": 9928.74, + "end": 9930.56, + "probability": 0.7689 + }, + { + "start": 9931.08, + "end": 9935.52, + "probability": 0.9376 + }, + { + "start": 9936.32, + "end": 9937.1, + "probability": 0.9872 + }, + { + "start": 9939.12, + "end": 9939.88, + "probability": 0.6355 + }, + { + "start": 9941.18, + "end": 9941.7, + "probability": 0.9828 + }, + { + "start": 9944.1, + "end": 9945.66, + "probability": 0.9279 + }, + { + "start": 9960.34, + "end": 9960.94, + "probability": 0.7941 + }, + { + "start": 9967.76, + "end": 9968.54, + "probability": 0.6912 + }, + { + "start": 9969.44, + "end": 9970.4, + "probability": 0.8725 + }, + { + "start": 9971.64, + "end": 9977.6, + "probability": 0.9936 + }, + { + "start": 9979.18, + "end": 9980.16, + "probability": 0.9725 + }, + { + "start": 9980.92, + "end": 9982.18, + "probability": 0.9903 + }, + { + "start": 9983.12, + "end": 9986.72, + "probability": 0.9981 + }, + { + "start": 9987.94, + "end": 9990.25, + "probability": 0.9233 + }, + { + "start": 9991.06, + "end": 9993.74, + "probability": 0.8807 + }, + { + "start": 9995.26, + "end": 9996.4, + "probability": 0.4819 + }, + { + "start": 9997.84, + "end": 10000.6, + "probability": 0.7512 + }, + { + "start": 10001.32, + "end": 10003.46, + "probability": 0.9651 + }, + { + "start": 10004.86, + "end": 10007.78, + "probability": 0.7924 + }, + { + "start": 10008.88, + "end": 10011.2, + "probability": 0.7032 + }, + { + "start": 10012.3, + "end": 10013.36, + "probability": 0.9743 + }, + { + "start": 10014.48, + "end": 10018.88, + "probability": 0.9623 + }, + { + "start": 10018.88, + "end": 10023.14, + "probability": 0.9902 + }, + { + "start": 10024.6, + "end": 10025.1, + "probability": 0.915 + }, + { + "start": 10025.24, + "end": 10026.0, + "probability": 0.6277 + }, + { + "start": 10026.4, + "end": 10029.94, + "probability": 0.98 + }, + { + "start": 10031.66, + "end": 10032.4, + "probability": 0.7523 + }, + { + "start": 10033.9, + "end": 10035.7, + "probability": 0.9875 + }, + { + "start": 10036.3, + "end": 10039.5, + "probability": 0.7848 + }, + { + "start": 10041.06, + "end": 10042.02, + "probability": 0.9512 + }, + { + "start": 10042.56, + "end": 10043.12, + "probability": 0.772 + }, + { + "start": 10044.52, + "end": 10046.92, + "probability": 0.9948 + }, + { + "start": 10056.38, + "end": 10058.5, + "probability": 0.9386 + }, + { + "start": 10059.1, + "end": 10060.48, + "probability": 0.8383 + }, + { + "start": 10060.86, + "end": 10061.36, + "probability": 0.6301 + }, + { + "start": 10061.42, + "end": 10061.94, + "probability": 0.3145 + }, + { + "start": 10061.94, + "end": 10064.56, + "probability": 0.9717 + }, + { + "start": 10065.48, + "end": 10065.72, + "probability": 0.7478 + }, + { + "start": 10066.48, + "end": 10067.08, + "probability": 0.7634 + }, + { + "start": 10067.22, + "end": 10067.88, + "probability": 0.7588 + }, + { + "start": 10067.96, + "end": 10069.88, + "probability": 0.8763 + }, + { + "start": 10072.06, + "end": 10073.0, + "probability": 0.6135 + }, + { + "start": 10074.54, + "end": 10075.46, + "probability": 0.6996 + }, + { + "start": 10075.52, + "end": 10076.68, + "probability": 0.7857 + }, + { + "start": 10077.06, + "end": 10080.18, + "probability": 0.8988 + }, + { + "start": 10081.1, + "end": 10084.38, + "probability": 0.8403 + }, + { + "start": 10084.38, + "end": 10087.62, + "probability": 0.9614 + }, + { + "start": 10088.22, + "end": 10091.0, + "probability": 0.9201 + }, + { + "start": 10092.6, + "end": 10093.96, + "probability": 0.9598 + }, + { + "start": 10094.54, + "end": 10095.48, + "probability": 0.9092 + }, + { + "start": 10096.72, + "end": 10097.41, + "probability": 0.9827 + }, + { + "start": 10098.62, + "end": 10101.8, + "probability": 0.9615 + }, + { + "start": 10102.38, + "end": 10103.8, + "probability": 0.3927 + }, + { + "start": 10103.92, + "end": 10105.9, + "probability": 0.0503 + }, + { + "start": 10110.48, + "end": 10115.76, + "probability": 0.7824 + }, + { + "start": 10117.4, + "end": 10118.7, + "probability": 0.6817 + }, + { + "start": 10118.82, + "end": 10119.88, + "probability": 0.9057 + }, + { + "start": 10121.7, + "end": 10123.0, + "probability": 0.7308 + }, + { + "start": 10123.6, + "end": 10125.34, + "probability": 0.7985 + }, + { + "start": 10127.1, + "end": 10131.94, + "probability": 0.8678 + }, + { + "start": 10132.7, + "end": 10134.12, + "probability": 0.8302 + }, + { + "start": 10135.72, + "end": 10137.98, + "probability": 0.9681 + }, + { + "start": 10138.76, + "end": 10143.64, + "probability": 0.9531 + }, + { + "start": 10144.0, + "end": 10146.24, + "probability": 0.9921 + }, + { + "start": 10146.9, + "end": 10149.44, + "probability": 0.8414 + }, + { + "start": 10149.66, + "end": 10149.96, + "probability": 0.0138 + }, + { + "start": 10150.0, + "end": 10150.02, + "probability": 0.0138 + }, + { + "start": 10150.02, + "end": 10150.92, + "probability": 0.7509 + }, + { + "start": 10151.5, + "end": 10156.8, + "probability": 0.7108 + }, + { + "start": 10157.22, + "end": 10158.4, + "probability": 0.7444 + }, + { + "start": 10161.44, + "end": 10164.64, + "probability": 0.0353 + }, + { + "start": 10187.02, + "end": 10187.26, + "probability": 0.1042 + }, + { + "start": 10187.26, + "end": 10187.36, + "probability": 0.4297 + }, + { + "start": 10188.56, + "end": 10188.56, + "probability": 0.3981 + }, + { + "start": 10188.62, + "end": 10190.54, + "probability": 0.6944 + }, + { + "start": 10191.64, + "end": 10197.46, + "probability": 0.9759 + }, + { + "start": 10198.96, + "end": 10201.46, + "probability": 0.9984 + }, + { + "start": 10202.54, + "end": 10204.7, + "probability": 0.9995 + }, + { + "start": 10205.92, + "end": 10207.2, + "probability": 0.9146 + }, + { + "start": 10208.1, + "end": 10211.0, + "probability": 0.9967 + }, + { + "start": 10212.84, + "end": 10218.3, + "probability": 0.9932 + }, + { + "start": 10218.7, + "end": 10219.42, + "probability": 0.4855 + }, + { + "start": 10220.2, + "end": 10222.62, + "probability": 0.9604 + }, + { + "start": 10223.82, + "end": 10227.22, + "probability": 0.995 + }, + { + "start": 10228.34, + "end": 10229.38, + "probability": 0.8798 + }, + { + "start": 10230.18, + "end": 10232.1, + "probability": 0.9399 + }, + { + "start": 10232.96, + "end": 10235.44, + "probability": 0.9388 + }, + { + "start": 10236.44, + "end": 10237.34, + "probability": 0.8719 + }, + { + "start": 10238.0, + "end": 10240.68, + "probability": 0.7619 + }, + { + "start": 10241.62, + "end": 10243.82, + "probability": 0.8857 + }, + { + "start": 10245.94, + "end": 10248.72, + "probability": 0.9195 + }, + { + "start": 10249.76, + "end": 10250.56, + "probability": 0.7921 + }, + { + "start": 10251.52, + "end": 10252.54, + "probability": 0.7876 + }, + { + "start": 10253.48, + "end": 10255.72, + "probability": 0.947 + }, + { + "start": 10256.42, + "end": 10257.46, + "probability": 0.9306 + }, + { + "start": 10258.28, + "end": 10258.86, + "probability": 0.5743 + }, + { + "start": 10259.58, + "end": 10260.2, + "probability": 0.6249 + }, + { + "start": 10261.1, + "end": 10261.94, + "probability": 0.3193 + }, + { + "start": 10262.54, + "end": 10263.38, + "probability": 0.6715 + }, + { + "start": 10263.94, + "end": 10264.72, + "probability": 0.5124 + }, + { + "start": 10265.66, + "end": 10269.4, + "probability": 0.652 + }, + { + "start": 10270.34, + "end": 10271.78, + "probability": 0.9697 + }, + { + "start": 10272.74, + "end": 10276.44, + "probability": 0.9828 + }, + { + "start": 10277.36, + "end": 10278.74, + "probability": 0.8935 + }, + { + "start": 10280.2, + "end": 10281.14, + "probability": 0.8759 + }, + { + "start": 10281.84, + "end": 10282.9, + "probability": 0.8646 + }, + { + "start": 10283.58, + "end": 10285.42, + "probability": 0.9733 + }, + { + "start": 10286.22, + "end": 10286.56, + "probability": 0.8141 + }, + { + "start": 10287.6, + "end": 10289.82, + "probability": 0.9812 + }, + { + "start": 10290.6, + "end": 10293.52, + "probability": 0.9846 + }, + { + "start": 10295.48, + "end": 10300.72, + "probability": 0.9693 + }, + { + "start": 10301.82, + "end": 10302.52, + "probability": 0.6085 + }, + { + "start": 10303.18, + "end": 10305.06, + "probability": 0.8572 + }, + { + "start": 10305.9, + "end": 10309.5, + "probability": 0.9798 + }, + { + "start": 10310.5, + "end": 10314.0, + "probability": 0.9647 + }, + { + "start": 10314.28, + "end": 10314.8, + "probability": 0.8278 + }, + { + "start": 10315.72, + "end": 10317.44, + "probability": 0.8832 + }, + { + "start": 10318.2, + "end": 10321.6, + "probability": 0.9926 + }, + { + "start": 10322.3, + "end": 10324.52, + "probability": 0.9907 + }, + { + "start": 10325.44, + "end": 10327.26, + "probability": 0.9863 + }, + { + "start": 10328.28, + "end": 10330.38, + "probability": 0.933 + }, + { + "start": 10330.5, + "end": 10331.88, + "probability": 0.6479 + }, + { + "start": 10332.74, + "end": 10334.56, + "probability": 0.9967 + }, + { + "start": 10335.4, + "end": 10336.32, + "probability": 0.5953 + }, + { + "start": 10338.48, + "end": 10339.52, + "probability": 0.9733 + }, + { + "start": 10340.18, + "end": 10341.5, + "probability": 0.8161 + }, + { + "start": 10342.06, + "end": 10344.92, + "probability": 0.869 + }, + { + "start": 10346.84, + "end": 10348.56, + "probability": 0.8967 + }, + { + "start": 10349.22, + "end": 10351.0, + "probability": 0.8414 + }, + { + "start": 10351.52, + "end": 10353.2, + "probability": 0.6753 + }, + { + "start": 10353.9, + "end": 10355.2, + "probability": 0.9047 + }, + { + "start": 10355.78, + "end": 10358.42, + "probability": 0.9613 + }, + { + "start": 10359.12, + "end": 10360.8, + "probability": 0.9591 + }, + { + "start": 10361.46, + "end": 10368.1, + "probability": 0.7875 + }, + { + "start": 10368.12, + "end": 10372.22, + "probability": 0.9945 + }, + { + "start": 10373.28, + "end": 10374.9, + "probability": 0.9938 + }, + { + "start": 10375.98, + "end": 10378.18, + "probability": 0.9987 + }, + { + "start": 10379.02, + "end": 10382.46, + "probability": 0.6987 + }, + { + "start": 10383.32, + "end": 10384.0, + "probability": 0.9161 + }, + { + "start": 10384.56, + "end": 10387.9, + "probability": 0.9949 + }, + { + "start": 10388.68, + "end": 10390.62, + "probability": 0.9137 + }, + { + "start": 10391.26, + "end": 10393.02, + "probability": 0.9767 + }, + { + "start": 10393.94, + "end": 10396.74, + "probability": 0.9863 + }, + { + "start": 10398.06, + "end": 10399.96, + "probability": 0.6703 + }, + { + "start": 10401.34, + "end": 10403.26, + "probability": 0.1319 + }, + { + "start": 10404.58, + "end": 10411.5, + "probability": 0.2043 + }, + { + "start": 10411.5, + "end": 10411.5, + "probability": 0.3549 + }, + { + "start": 10411.5, + "end": 10413.06, + "probability": 0.5904 + }, + { + "start": 10414.42, + "end": 10418.34, + "probability": 0.1632 + }, + { + "start": 10418.42, + "end": 10421.3, + "probability": 0.0719 + }, + { + "start": 10424.42, + "end": 10425.48, + "probability": 0.3942 + }, + { + "start": 10429.2, + "end": 10431.07, + "probability": 0.0789 + }, + { + "start": 10432.58, + "end": 10433.32, + "probability": 0.0852 + }, + { + "start": 10435.38, + "end": 10437.28, + "probability": 0.6565 + }, + { + "start": 10438.32, + "end": 10439.82, + "probability": 0.4826 + }, + { + "start": 10440.28, + "end": 10440.48, + "probability": 0.0513 + }, + { + "start": 10440.48, + "end": 10445.72, + "probability": 0.1378 + }, + { + "start": 10447.16, + "end": 10448.72, + "probability": 0.0663 + }, + { + "start": 10452.62, + "end": 10453.08, + "probability": 0.1133 + }, + { + "start": 10453.08, + "end": 10453.14, + "probability": 0.2311 + }, + { + "start": 10453.14, + "end": 10453.14, + "probability": 0.0307 + }, + { + "start": 10453.14, + "end": 10455.22, + "probability": 0.0671 + }, + { + "start": 10455.74, + "end": 10460.38, + "probability": 0.1209 + }, + { + "start": 10460.42, + "end": 10461.36, + "probability": 0.1441 + }, + { + "start": 10461.86, + "end": 10466.72, + "probability": 0.5029 + }, + { + "start": 10468.24, + "end": 10470.34, + "probability": 0.1558 + }, + { + "start": 10470.34, + "end": 10470.34, + "probability": 0.0401 + }, + { + "start": 10470.34, + "end": 10470.36, + "probability": 0.1384 + }, + { + "start": 10470.36, + "end": 10470.36, + "probability": 0.0404 + }, + { + "start": 10470.36, + "end": 10470.5, + "probability": 0.1238 + }, + { + "start": 10471.0, + "end": 10471.0, + "probability": 0.0 + }, + { + "start": 10471.0, + "end": 10471.0, + "probability": 0.0 + }, + { + "start": 10471.0, + "end": 10471.0, + "probability": 0.0 + }, + { + "start": 10471.0, + "end": 10471.0, + "probability": 0.0 + }, + { + "start": 10471.0, + "end": 10471.0, + "probability": 0.0 + }, + { + "start": 10471.24, + "end": 10471.7, + "probability": 0.0214 + }, + { + "start": 10471.7, + "end": 10471.7, + "probability": 0.1031 + }, + { + "start": 10471.7, + "end": 10473.98, + "probability": 0.7201 + }, + { + "start": 10474.16, + "end": 10477.56, + "probability": 0.5099 + }, + { + "start": 10480.36, + "end": 10480.52, + "probability": 0.606 + }, + { + "start": 10480.7, + "end": 10481.89, + "probability": 0.0856 + }, + { + "start": 10482.66, + "end": 10484.78, + "probability": 0.022 + }, + { + "start": 10485.5, + "end": 10487.52, + "probability": 0.1175 + }, + { + "start": 10487.66, + "end": 10491.3, + "probability": 0.0748 + }, + { + "start": 10491.84, + "end": 10492.85, + "probability": 0.1551 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10594.0, + "end": 10594.0, + "probability": 0.0 + }, + { + "start": 10601.94, + "end": 10602.12, + "probability": 0.0064 + }, + { + "start": 10602.12, + "end": 10602.12, + "probability": 0.2534 + }, + { + "start": 10602.12, + "end": 10602.12, + "probability": 0.0255 + }, + { + "start": 10602.12, + "end": 10602.14, + "probability": 0.1501 + }, + { + "start": 10602.14, + "end": 10603.0, + "probability": 0.0594 + }, + { + "start": 10603.0, + "end": 10603.22, + "probability": 0.1549 + }, + { + "start": 10603.22, + "end": 10603.22, + "probability": 0.177 + }, + { + "start": 10623.44, + "end": 10623.44, + "probability": 0.5125 + }, + { + "start": 10623.44, + "end": 10624.37, + "probability": 0.9542 + }, + { + "start": 10624.46, + "end": 10626.18, + "probability": 0.2233 + }, + { + "start": 10626.22, + "end": 10626.98, + "probability": 0.8792 + }, + { + "start": 10627.22, + "end": 10627.22, + "probability": 0.7578 + }, + { + "start": 10627.22, + "end": 10629.9, + "probability": 0.5624 + }, + { + "start": 10630.02, + "end": 10631.28, + "probability": 0.4826 + }, + { + "start": 10631.3, + "end": 10635.56, + "probability": 0.909 + }, + { + "start": 10635.68, + "end": 10636.58, + "probability": 0.7248 + }, + { + "start": 10636.58, + "end": 10636.84, + "probability": 0.825 + }, + { + "start": 10636.84, + "end": 10638.16, + "probability": 0.6868 + }, + { + "start": 10638.4, + "end": 10641.58, + "probability": 0.8843 + }, + { + "start": 10642.0, + "end": 10642.38, + "probability": 0.8578 + }, + { + "start": 10642.66, + "end": 10644.82, + "probability": 0.9763 + }, + { + "start": 10645.0, + "end": 10647.3, + "probability": 0.4981 + }, + { + "start": 10647.52, + "end": 10648.49, + "probability": 0.4822 + }, + { + "start": 10648.6, + "end": 10651.28, + "probability": 0.9321 + }, + { + "start": 10651.52, + "end": 10652.36, + "probability": 0.4421 + }, + { + "start": 10652.46, + "end": 10653.98, + "probability": 0.9941 + }, + { + "start": 10654.26, + "end": 10657.74, + "probability": 0.61 + }, + { + "start": 10657.74, + "end": 10659.64, + "probability": 0.018 + }, + { + "start": 10660.68, + "end": 10661.9, + "probability": 0.0665 + }, + { + "start": 10661.9, + "end": 10662.36, + "probability": 0.1552 + }, + { + "start": 10662.36, + "end": 10662.36, + "probability": 0.0482 + }, + { + "start": 10662.36, + "end": 10662.98, + "probability": 0.4155 + }, + { + "start": 10662.98, + "end": 10663.06, + "probability": 0.6534 + }, + { + "start": 10663.06, + "end": 10663.74, + "probability": 0.4126 + }, + { + "start": 10663.96, + "end": 10667.38, + "probability": 0.6439 + }, + { + "start": 10667.52, + "end": 10668.26, + "probability": 0.3911 + }, + { + "start": 10668.32, + "end": 10668.56, + "probability": 0.4028 + }, + { + "start": 10668.64, + "end": 10670.93, + "probability": 0.6643 + }, + { + "start": 10671.9, + "end": 10674.98, + "probability": 0.5748 + }, + { + "start": 10675.1, + "end": 10676.5, + "probability": 0.7082 + }, + { + "start": 10677.12, + "end": 10680.44, + "probability": 0.7913 + }, + { + "start": 10680.94, + "end": 10682.12, + "probability": 0.5862 + }, + { + "start": 10682.4, + "end": 10682.42, + "probability": 0.1199 + }, + { + "start": 10682.42, + "end": 10682.7, + "probability": 0.7482 + }, + { + "start": 10682.82, + "end": 10683.44, + "probability": 0.5961 + }, + { + "start": 10683.6, + "end": 10684.78, + "probability": 0.7412 + }, + { + "start": 10685.14, + "end": 10687.32, + "probability": 0.9829 + }, + { + "start": 10687.34, + "end": 10687.96, + "probability": 0.2018 + }, + { + "start": 10688.28, + "end": 10689.96, + "probability": 0.5336 + }, + { + "start": 10690.18, + "end": 10693.3, + "probability": 0.8769 + }, + { + "start": 10693.58, + "end": 10696.63, + "probability": 0.314 + }, + { + "start": 10698.74, + "end": 10704.5, + "probability": 0.3001 + }, + { + "start": 10704.92, + "end": 10709.84, + "probability": 0.0411 + }, + { + "start": 10712.74, + "end": 10714.0, + "probability": 0.6157 + }, + { + "start": 10715.84, + "end": 10720.42, + "probability": 0.9585 + }, + { + "start": 10721.12, + "end": 10725.64, + "probability": 0.9819 + }, + { + "start": 10726.36, + "end": 10730.98, + "probability": 0.9483 + }, + { + "start": 10731.42, + "end": 10732.34, + "probability": 0.9662 + }, + { + "start": 10732.84, + "end": 10736.5, + "probability": 0.9857 + }, + { + "start": 10737.1, + "end": 10740.48, + "probability": 0.9802 + }, + { + "start": 10741.3, + "end": 10749.52, + "probability": 0.9675 + }, + { + "start": 10750.08, + "end": 10751.56, + "probability": 0.9611 + }, + { + "start": 10751.68, + "end": 10754.36, + "probability": 0.9923 + }, + { + "start": 10754.94, + "end": 10757.28, + "probability": 0.9917 + }, + { + "start": 10757.68, + "end": 10762.86, + "probability": 0.991 + }, + { + "start": 10764.08, + "end": 10767.1, + "probability": 0.9963 + }, + { + "start": 10767.68, + "end": 10771.16, + "probability": 0.9619 + }, + { + "start": 10772.48, + "end": 10777.24, + "probability": 0.9945 + }, + { + "start": 10777.74, + "end": 10782.62, + "probability": 0.9337 + }, + { + "start": 10783.32, + "end": 10785.22, + "probability": 0.9261 + }, + { + "start": 10786.1, + "end": 10792.68, + "probability": 0.9918 + }, + { + "start": 10793.32, + "end": 10798.98, + "probability": 0.9478 + }, + { + "start": 10799.5, + "end": 10800.66, + "probability": 0.7305 + }, + { + "start": 10801.24, + "end": 10805.2, + "probability": 0.8971 + }, + { + "start": 10806.2, + "end": 10809.88, + "probability": 0.9531 + }, + { + "start": 10809.88, + "end": 10814.56, + "probability": 0.9814 + }, + { + "start": 10815.3, + "end": 10819.24, + "probability": 0.9976 + }, + { + "start": 10819.24, + "end": 10823.8, + "probability": 0.9946 + }, + { + "start": 10824.86, + "end": 10829.82, + "probability": 0.9975 + }, + { + "start": 10830.34, + "end": 10832.7, + "probability": 0.9809 + }, + { + "start": 10833.82, + "end": 10839.16, + "probability": 0.9922 + }, + { + "start": 10840.18, + "end": 10845.26, + "probability": 0.9718 + }, + { + "start": 10846.2, + "end": 10847.2, + "probability": 0.7873 + }, + { + "start": 10847.84, + "end": 10851.24, + "probability": 0.99 + }, + { + "start": 10851.82, + "end": 10854.58, + "probability": 0.9735 + }, + { + "start": 10855.4, + "end": 10857.92, + "probability": 0.9866 + }, + { + "start": 10858.48, + "end": 10863.46, + "probability": 0.9911 + }, + { + "start": 10863.72, + "end": 10866.44, + "probability": 0.9905 + }, + { + "start": 10867.38, + "end": 10871.6, + "probability": 0.9453 + }, + { + "start": 10872.58, + "end": 10874.36, + "probability": 0.9038 + }, + { + "start": 10874.74, + "end": 10879.74, + "probability": 0.9141 + }, + { + "start": 10880.38, + "end": 10883.12, + "probability": 0.9978 + }, + { + "start": 10883.74, + "end": 10888.82, + "probability": 0.9941 + }, + { + "start": 10889.4, + "end": 10895.7, + "probability": 0.9727 + }, + { + "start": 10897.38, + "end": 10902.56, + "probability": 0.9937 + }, + { + "start": 10903.46, + "end": 10906.86, + "probability": 0.5342 + }, + { + "start": 10907.42, + "end": 10912.34, + "probability": 0.7397 + }, + { + "start": 10913.0, + "end": 10917.52, + "probability": 0.9873 + }, + { + "start": 10917.72, + "end": 10920.82, + "probability": 0.9718 + }, + { + "start": 10922.38, + "end": 10927.7, + "probability": 0.9971 + }, + { + "start": 10928.38, + "end": 10928.92, + "probability": 0.956 + }, + { + "start": 10929.6, + "end": 10930.58, + "probability": 0.9254 + }, + { + "start": 10931.62, + "end": 10936.6, + "probability": 0.9457 + }, + { + "start": 10936.6, + "end": 10940.7, + "probability": 0.9853 + }, + { + "start": 10941.58, + "end": 10947.62, + "probability": 0.9908 + }, + { + "start": 10948.34, + "end": 10949.77, + "probability": 0.8068 + }, + { + "start": 10950.46, + "end": 10955.98, + "probability": 0.9858 + }, + { + "start": 10956.5, + "end": 10957.72, + "probability": 0.967 + }, + { + "start": 10957.8, + "end": 10959.04, + "probability": 0.994 + }, + { + "start": 10959.14, + "end": 10960.34, + "probability": 0.9824 + }, + { + "start": 10961.12, + "end": 10967.92, + "probability": 0.9889 + }, + { + "start": 10968.54, + "end": 10971.48, + "probability": 0.9873 + }, + { + "start": 10972.14, + "end": 10972.74, + "probability": 0.4613 + }, + { + "start": 10974.54, + "end": 10976.62, + "probability": 0.0596 + }, + { + "start": 10978.28, + "end": 10980.69, + "probability": 0.2188 + }, + { + "start": 10982.41, + "end": 10988.04, + "probability": 0.029 + }, + { + "start": 10988.2, + "end": 10990.84, + "probability": 0.0679 + }, + { + "start": 10990.84, + "end": 10994.41, + "probability": 0.063 + }, + { + "start": 10997.2, + "end": 11001.86, + "probability": 0.1025 + }, + { + "start": 11002.2, + "end": 11003.48, + "probability": 0.1411 + }, + { + "start": 11004.18, + "end": 11009.72, + "probability": 0.3082 + }, + { + "start": 11010.92, + "end": 11014.04, + "probability": 0.1914 + }, + { + "start": 11014.82, + "end": 11021.72, + "probability": 0.2219 + }, + { + "start": 11022.4, + "end": 11025.14, + "probability": 0.394 + }, + { + "start": 11025.26, + "end": 11026.46, + "probability": 0.2503 + }, + { + "start": 11027.28, + "end": 11030.9, + "probability": 0.2264 + }, + { + "start": 11031.0, + "end": 11036.1, + "probability": 0.0135 + }, + { + "start": 11036.1, + "end": 11039.82, + "probability": 0.1717 + }, + { + "start": 11040.02, + "end": 11044.24, + "probability": 0.1086 + }, + { + "start": 11051.62, + "end": 11052.14, + "probability": 0.1127 + }, + { + "start": 11052.78, + "end": 11055.2, + "probability": 0.0244 + }, + { + "start": 11055.2, + "end": 11056.38, + "probability": 0.0916 + }, + { + "start": 11056.98, + "end": 11060.7, + "probability": 0.159 + }, + { + "start": 11060.7, + "end": 11060.82, + "probability": 0.3021 + }, + { + "start": 11060.82, + "end": 11063.72, + "probability": 0.1836 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.0, + "end": 11176.0, + "probability": 0.0 + }, + { + "start": 11176.36, + "end": 11176.48, + "probability": 0.0475 + }, + { + "start": 11176.48, + "end": 11176.48, + "probability": 0.0471 + }, + { + "start": 11176.48, + "end": 11176.48, + "probability": 0.1636 + }, + { + "start": 11176.48, + "end": 11179.98, + "probability": 0.9229 + }, + { + "start": 11181.68, + "end": 11184.78, + "probability": 0.7939 + }, + { + "start": 11186.12, + "end": 11190.44, + "probability": 0.9871 + }, + { + "start": 11190.76, + "end": 11192.28, + "probability": 0.8657 + }, + { + "start": 11193.06, + "end": 11196.76, + "probability": 0.9979 + }, + { + "start": 11198.14, + "end": 11203.98, + "probability": 0.9714 + }, + { + "start": 11206.78, + "end": 11211.28, + "probability": 0.9565 + }, + { + "start": 11212.56, + "end": 11213.58, + "probability": 0.5352 + }, + { + "start": 11213.88, + "end": 11215.56, + "probability": 0.991 + }, + { + "start": 11216.04, + "end": 11217.54, + "probability": 0.9797 + }, + { + "start": 11218.12, + "end": 11218.84, + "probability": 0.8682 + }, + { + "start": 11219.98, + "end": 11223.06, + "probability": 0.9841 + }, + { + "start": 11224.52, + "end": 11227.35, + "probability": 0.9978 + }, + { + "start": 11227.78, + "end": 11230.12, + "probability": 0.9333 + }, + { + "start": 11231.0, + "end": 11232.9, + "probability": 0.9917 + }, + { + "start": 11233.5, + "end": 11234.26, + "probability": 0.9086 + }, + { + "start": 11235.14, + "end": 11237.3, + "probability": 0.9489 + }, + { + "start": 11238.52, + "end": 11241.08, + "probability": 0.9889 + }, + { + "start": 11242.44, + "end": 11244.48, + "probability": 0.9912 + }, + { + "start": 11246.5, + "end": 11250.0, + "probability": 0.9987 + }, + { + "start": 11251.24, + "end": 11253.9, + "probability": 0.9458 + }, + { + "start": 11255.3, + "end": 11257.56, + "probability": 0.7557 + }, + { + "start": 11258.12, + "end": 11260.3, + "probability": 0.9938 + }, + { + "start": 11261.22, + "end": 11263.18, + "probability": 0.9863 + }, + { + "start": 11264.42, + "end": 11264.92, + "probability": 0.9539 + }, + { + "start": 11265.68, + "end": 11266.88, + "probability": 0.9841 + }, + { + "start": 11267.88, + "end": 11270.72, + "probability": 0.9832 + }, + { + "start": 11271.58, + "end": 11274.58, + "probability": 0.9867 + }, + { + "start": 11275.66, + "end": 11276.96, + "probability": 0.9926 + }, + { + "start": 11277.84, + "end": 11279.12, + "probability": 0.9966 + }, + { + "start": 11280.22, + "end": 11282.28, + "probability": 0.9769 + }, + { + "start": 11284.9, + "end": 11287.23, + "probability": 0.8495 + }, + { + "start": 11288.3, + "end": 11290.06, + "probability": 0.9756 + }, + { + "start": 11291.18, + "end": 11293.26, + "probability": 0.9937 + }, + { + "start": 11294.26, + "end": 11296.98, + "probability": 0.5949 + }, + { + "start": 11297.9, + "end": 11301.5, + "probability": 0.986 + }, + { + "start": 11301.96, + "end": 11305.34, + "probability": 0.9958 + }, + { + "start": 11306.2, + "end": 11308.2, + "probability": 0.8901 + }, + { + "start": 11309.07, + "end": 11312.96, + "probability": 0.6635 + }, + { + "start": 11313.86, + "end": 11316.52, + "probability": 0.9491 + }, + { + "start": 11317.48, + "end": 11320.44, + "probability": 0.983 + }, + { + "start": 11321.3, + "end": 11322.46, + "probability": 0.7922 + }, + { + "start": 11322.76, + "end": 11323.55, + "probability": 0.9873 + }, + { + "start": 11324.3, + "end": 11326.26, + "probability": 0.7941 + }, + { + "start": 11327.0, + "end": 11329.24, + "probability": 0.9559 + }, + { + "start": 11330.44, + "end": 11333.0, + "probability": 0.9303 + }, + { + "start": 11333.84, + "end": 11338.26, + "probability": 0.9776 + }, + { + "start": 11338.98, + "end": 11339.62, + "probability": 0.8425 + }, + { + "start": 11340.5, + "end": 11343.34, + "probability": 0.9886 + }, + { + "start": 11343.98, + "end": 11347.58, + "probability": 0.9982 + }, + { + "start": 11348.58, + "end": 11351.46, + "probability": 0.9927 + }, + { + "start": 11352.22, + "end": 11354.16, + "probability": 0.901 + }, + { + "start": 11355.08, + "end": 11356.88, + "probability": 0.9369 + }, + { + "start": 11358.12, + "end": 11361.7, + "probability": 0.9957 + }, + { + "start": 11361.7, + "end": 11365.62, + "probability": 0.9955 + }, + { + "start": 11366.2, + "end": 11368.52, + "probability": 0.9832 + }, + { + "start": 11370.98, + "end": 11372.98, + "probability": 0.8589 + }, + { + "start": 11373.72, + "end": 11376.64, + "probability": 0.9465 + }, + { + "start": 11377.56, + "end": 11383.16, + "probability": 0.9956 + }, + { + "start": 11383.84, + "end": 11385.16, + "probability": 0.9932 + }, + { + "start": 11385.5, + "end": 11386.06, + "probability": 0.9803 + }, + { + "start": 11386.32, + "end": 11390.0, + "probability": 0.9596 + }, + { + "start": 11390.56, + "end": 11392.31, + "probability": 0.8967 + }, + { + "start": 11392.9, + "end": 11396.76, + "probability": 0.9954 + }, + { + "start": 11397.54, + "end": 11399.98, + "probability": 0.7377 + }, + { + "start": 11400.98, + "end": 11403.92, + "probability": 0.7967 + }, + { + "start": 11404.78, + "end": 11406.98, + "probability": 0.9984 + }, + { + "start": 11408.56, + "end": 11409.78, + "probability": 0.9897 + }, + { + "start": 11410.72, + "end": 11414.32, + "probability": 0.9502 + }, + { + "start": 11415.86, + "end": 11419.22, + "probability": 0.9933 + }, + { + "start": 11420.48, + "end": 11425.36, + "probability": 0.9495 + }, + { + "start": 11426.84, + "end": 11429.72, + "probability": 0.9572 + }, + { + "start": 11430.7, + "end": 11431.26, + "probability": 0.418 + }, + { + "start": 11432.34, + "end": 11432.76, + "probability": 0.7098 + }, + { + "start": 11433.48, + "end": 11435.1, + "probability": 0.9941 + }, + { + "start": 11435.9, + "end": 11437.12, + "probability": 0.9717 + }, + { + "start": 11437.16, + "end": 11438.1, + "probability": 0.8763 + }, + { + "start": 11438.22, + "end": 11440.12, + "probability": 0.9876 + }, + { + "start": 11440.4, + "end": 11441.12, + "probability": 0.9781 + }, + { + "start": 11441.18, + "end": 11441.9, + "probability": 0.9835 + }, + { + "start": 11441.94, + "end": 11442.66, + "probability": 0.8792 + }, + { + "start": 11443.54, + "end": 11445.76, + "probability": 0.9414 + }, + { + "start": 11446.38, + "end": 11449.0, + "probability": 0.9507 + }, + { + "start": 11449.54, + "end": 11452.28, + "probability": 0.9946 + }, + { + "start": 11453.2, + "end": 11456.86, + "probability": 0.99 + }, + { + "start": 11457.94, + "end": 11461.06, + "probability": 0.9977 + }, + { + "start": 11461.06, + "end": 11463.5, + "probability": 0.9991 + }, + { + "start": 11464.4, + "end": 11465.12, + "probability": 0.8475 + }, + { + "start": 11465.86, + "end": 11467.22, + "probability": 0.4856 + }, + { + "start": 11467.54, + "end": 11469.72, + "probability": 0.957 + }, + { + "start": 11470.38, + "end": 11473.32, + "probability": 0.9738 + }, + { + "start": 11473.9, + "end": 11474.42, + "probability": 0.5471 + }, + { + "start": 11475.06, + "end": 11476.22, + "probability": 0.8722 + }, + { + "start": 11476.82, + "end": 11480.68, + "probability": 0.9951 + }, + { + "start": 11481.06, + "end": 11481.56, + "probability": 0.8602 + }, + { + "start": 11482.04, + "end": 11482.78, + "probability": 0.9564 + }, + { + "start": 11482.94, + "end": 11484.32, + "probability": 0.9834 + }, + { + "start": 11484.46, + "end": 11484.74, + "probability": 0.7759 + }, + { + "start": 11484.98, + "end": 11485.74, + "probability": 0.8314 + }, + { + "start": 11486.28, + "end": 11487.18, + "probability": 0.6194 + }, + { + "start": 11505.14, + "end": 11506.1, + "probability": 0.5876 + }, + { + "start": 11506.46, + "end": 11509.14, + "probability": 0.7216 + }, + { + "start": 11511.24, + "end": 11515.0, + "probability": 0.9858 + }, + { + "start": 11515.0, + "end": 11519.9, + "probability": 0.9981 + }, + { + "start": 11520.42, + "end": 11522.6, + "probability": 0.9985 + }, + { + "start": 11523.58, + "end": 11523.86, + "probability": 0.8135 + }, + { + "start": 11524.56, + "end": 11530.4, + "probability": 0.9983 + }, + { + "start": 11530.9, + "end": 11532.94, + "probability": 0.9359 + }, + { + "start": 11533.76, + "end": 11537.06, + "probability": 0.9883 + }, + { + "start": 11538.86, + "end": 11541.3, + "probability": 0.9982 + }, + { + "start": 11542.16, + "end": 11542.56, + "probability": 0.715 + }, + { + "start": 11543.1, + "end": 11546.76, + "probability": 0.9792 + }, + { + "start": 11546.76, + "end": 11550.38, + "probability": 0.9969 + }, + { + "start": 11551.48, + "end": 11555.06, + "probability": 0.7697 + }, + { + "start": 11555.78, + "end": 11556.38, + "probability": 0.08 + }, + { + "start": 11557.02, + "end": 11558.48, + "probability": 0.0986 + }, + { + "start": 11558.48, + "end": 11558.48, + "probability": 0.0227 + }, + { + "start": 11558.48, + "end": 11558.48, + "probability": 0.6065 + }, + { + "start": 11558.48, + "end": 11558.48, + "probability": 0.0246 + }, + { + "start": 11558.48, + "end": 11558.58, + "probability": 0.0508 + }, + { + "start": 11558.58, + "end": 11560.18, + "probability": 0.7525 + }, + { + "start": 11560.62, + "end": 11561.93, + "probability": 0.9614 + }, + { + "start": 11562.48, + "end": 11563.52, + "probability": 0.7723 + }, + { + "start": 11563.56, + "end": 11563.62, + "probability": 0.0027 + }, + { + "start": 11563.62, + "end": 11564.04, + "probability": 0.2375 + }, + { + "start": 11564.18, + "end": 11567.0, + "probability": 0.608 + }, + { + "start": 11567.02, + "end": 11568.08, + "probability": 0.7693 + }, + { + "start": 11568.22, + "end": 11569.7, + "probability": 0.877 + }, + { + "start": 11569.72, + "end": 11570.94, + "probability": 0.0711 + }, + { + "start": 11571.2, + "end": 11575.72, + "probability": 0.0209 + }, + { + "start": 11575.72, + "end": 11575.76, + "probability": 0.0442 + }, + { + "start": 11575.76, + "end": 11575.76, + "probability": 0.1567 + }, + { + "start": 11575.76, + "end": 11577.42, + "probability": 0.9075 + }, + { + "start": 11577.42, + "end": 11581.08, + "probability": 0.8517 + }, + { + "start": 11581.08, + "end": 11581.26, + "probability": 0.1517 + }, + { + "start": 11581.34, + "end": 11583.16, + "probability": 0.3467 + }, + { + "start": 11583.16, + "end": 11584.66, + "probability": 0.3182 + }, + { + "start": 11584.92, + "end": 11584.96, + "probability": 0.0889 + }, + { + "start": 11584.96, + "end": 11584.96, + "probability": 0.0662 + }, + { + "start": 11584.96, + "end": 11584.96, + "probability": 0.2015 + }, + { + "start": 11584.96, + "end": 11584.96, + "probability": 0.1345 + }, + { + "start": 11584.96, + "end": 11587.52, + "probability": 0.9423 + }, + { + "start": 11587.52, + "end": 11590.96, + "probability": 0.9935 + }, + { + "start": 11591.14, + "end": 11593.8, + "probability": 0.9105 + }, + { + "start": 11594.44, + "end": 11595.78, + "probability": 0.863 + }, + { + "start": 11596.0, + "end": 11599.08, + "probability": 0.992 + }, + { + "start": 11599.2, + "end": 11601.54, + "probability": 0.9549 + }, + { + "start": 11602.74, + "end": 11603.5, + "probability": 0.9574 + }, + { + "start": 11604.5, + "end": 11607.32, + "probability": 0.9039 + }, + { + "start": 11607.4, + "end": 11609.74, + "probability": 0.9662 + }, + { + "start": 11610.44, + "end": 11615.5, + "probability": 0.9925 + }, + { + "start": 11616.74, + "end": 11620.06, + "probability": 0.9876 + }, + { + "start": 11620.06, + "end": 11622.8, + "probability": 0.9982 + }, + { + "start": 11623.28, + "end": 11623.82, + "probability": 0.5051 + }, + { + "start": 11625.2, + "end": 11629.06, + "probability": 0.9107 + }, + { + "start": 11629.72, + "end": 11632.66, + "probability": 0.9993 + }, + { + "start": 11633.12, + "end": 11633.74, + "probability": 0.8881 + }, + { + "start": 11633.86, + "end": 11635.88, + "probability": 0.9778 + }, + { + "start": 11638.68, + "end": 11641.4, + "probability": 0.9956 + }, + { + "start": 11641.62, + "end": 11643.72, + "probability": 0.9849 + }, + { + "start": 11644.4, + "end": 11647.34, + "probability": 0.9927 + }, + { + "start": 11647.38, + "end": 11648.62, + "probability": 0.9236 + }, + { + "start": 11648.74, + "end": 11649.24, + "probability": 0.9899 + }, + { + "start": 11649.9, + "end": 11652.42, + "probability": 0.9948 + }, + { + "start": 11652.88, + "end": 11654.92, + "probability": 0.9377 + }, + { + "start": 11655.04, + "end": 11658.84, + "probability": 0.9965 + }, + { + "start": 11659.52, + "end": 11661.68, + "probability": 0.9858 + }, + { + "start": 11661.78, + "end": 11665.86, + "probability": 0.9716 + }, + { + "start": 11665.98, + "end": 11666.58, + "probability": 0.941 + }, + { + "start": 11667.62, + "end": 11669.82, + "probability": 0.9976 + }, + { + "start": 11670.54, + "end": 11672.72, + "probability": 0.9685 + }, + { + "start": 11673.28, + "end": 11673.54, + "probability": 0.8506 + }, + { + "start": 11674.58, + "end": 11676.04, + "probability": 0.7973 + }, + { + "start": 11677.0, + "end": 11680.72, + "probability": 0.8525 + }, + { + "start": 11696.92, + "end": 11697.0, + "probability": 0.0739 + }, + { + "start": 11707.94, + "end": 11709.76, + "probability": 0.776 + }, + { + "start": 11710.74, + "end": 11711.74, + "probability": 0.5372 + }, + { + "start": 11714.5, + "end": 11716.54, + "probability": 0.0477 + }, + { + "start": 11716.54, + "end": 11716.54, + "probability": 0.0063 + }, + { + "start": 11716.54, + "end": 11720.12, + "probability": 0.0608 + }, + { + "start": 11720.12, + "end": 11725.88, + "probability": 0.0388 + }, + { + "start": 11728.16, + "end": 11739.3, + "probability": 0.0554 + }, + { + "start": 11739.3, + "end": 11740.74, + "probability": 0.0925 + }, + { + "start": 11740.74, + "end": 11742.5, + "probability": 0.2211 + }, + { + "start": 11744.08, + "end": 11748.24, + "probability": 0.0532 + }, + { + "start": 11750.25, + "end": 11754.32, + "probability": 0.1254 + }, + { + "start": 11755.7, + "end": 11756.86, + "probability": 0.0931 + }, + { + "start": 11757.0, + "end": 11757.0, + "probability": 0.0 + }, + { + "start": 11757.71, + "end": 11759.2, + "probability": 0.0077 + }, + { + "start": 11759.96, + "end": 11759.98, + "probability": 0.0081 + }, + { + "start": 11766.32, + "end": 11767.04, + "probability": 0.1829 + }, + { + "start": 11768.08, + "end": 11768.58, + "probability": 0.0077 + }, + { + "start": 11772.1, + "end": 11772.52, + "probability": 0.0263 + }, + { + "start": 11774.8, + "end": 11775.64, + "probability": 0.033 + }, + { + "start": 11776.29, + "end": 11782.6, + "probability": 0.07 + }, + { + "start": 11784.0, + "end": 11785.85, + "probability": 0.0991 + }, + { + "start": 11787.32, + "end": 11787.64, + "probability": 0.0927 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.0, + "end": 11882.0, + "probability": 0.0 + }, + { + "start": 11882.66, + "end": 11882.96, + "probability": 0.0015 + }, + { + "start": 11882.96, + "end": 11882.96, + "probability": 0.0323 + }, + { + "start": 11882.96, + "end": 11882.96, + "probability": 0.097 + }, + { + "start": 11882.96, + "end": 11885.54, + "probability": 0.91 + }, + { + "start": 11885.6, + "end": 11886.66, + "probability": 0.9489 + }, + { + "start": 11887.48, + "end": 11888.44, + "probability": 0.5014 + }, + { + "start": 11888.56, + "end": 11891.14, + "probability": 0.699 + }, + { + "start": 11891.24, + "end": 11892.3, + "probability": 0.5619 + }, + { + "start": 11892.68, + "end": 11895.32, + "probability": 0.449 + }, + { + "start": 11895.38, + "end": 11898.46, + "probability": 0.6611 + }, + { + "start": 11898.8, + "end": 11899.04, + "probability": 0.2783 + }, + { + "start": 11899.16, + "end": 11899.5, + "probability": 0.7812 + }, + { + "start": 11900.64, + "end": 11901.54, + "probability": 0.0381 + }, + { + "start": 11901.54, + "end": 11901.6, + "probability": 0.071 + }, + { + "start": 11901.6, + "end": 11902.18, + "probability": 0.0184 + }, + { + "start": 11902.8, + "end": 11903.4, + "probability": 0.5179 + }, + { + "start": 11904.38, + "end": 11905.14, + "probability": 0.2751 + }, + { + "start": 11906.38, + "end": 11907.48, + "probability": 0.1229 + }, + { + "start": 11908.22, + "end": 11909.22, + "probability": 0.1165 + }, + { + "start": 11913.02, + "end": 11913.58, + "probability": 0.1742 + }, + { + "start": 11916.03, + "end": 11916.4, + "probability": 0.0394 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.0, + "end": 12003.0, + "probability": 0.0 + }, + { + "start": 12003.18, + "end": 12003.48, + "probability": 0.5104 + }, + { + "start": 12005.58, + "end": 12009.16, + "probability": 0.3737 + }, + { + "start": 12010.52, + "end": 12013.58, + "probability": 0.547 + }, + { + "start": 12016.68, + "end": 12018.1, + "probability": 0.8594 + }, + { + "start": 12019.34, + "end": 12021.06, + "probability": 0.9352 + }, + { + "start": 12022.6, + "end": 12023.34, + "probability": 0.73 + }, + { + "start": 12024.28, + "end": 12024.48, + "probability": 0.1294 + }, + { + "start": 12024.6, + "end": 12025.54, + "probability": 0.8625 + }, + { + "start": 12025.82, + "end": 12026.2, + "probability": 0.9276 + }, + { + "start": 12026.3, + "end": 12026.88, + "probability": 0.8676 + }, + { + "start": 12026.96, + "end": 12027.14, + "probability": 0.334 + }, + { + "start": 12027.24, + "end": 12027.94, + "probability": 0.9234 + }, + { + "start": 12029.44, + "end": 12034.78, + "probability": 0.9857 + }, + { + "start": 12034.86, + "end": 12036.94, + "probability": 0.9878 + }, + { + "start": 12037.68, + "end": 12038.64, + "probability": 0.9581 + }, + { + "start": 12039.74, + "end": 12045.8, + "probability": 0.9929 + }, + { + "start": 12046.94, + "end": 12047.62, + "probability": 0.8025 + }, + { + "start": 12048.84, + "end": 12050.08, + "probability": 0.8226 + }, + { + "start": 12051.2, + "end": 12053.4, + "probability": 0.8657 + }, + { + "start": 12054.42, + "end": 12055.86, + "probability": 0.9832 + }, + { + "start": 12056.6, + "end": 12067.06, + "probability": 0.9946 + }, + { + "start": 12067.6, + "end": 12070.54, + "probability": 0.9985 + }, + { + "start": 12072.0, + "end": 12073.66, + "probability": 0.7542 + }, + { + "start": 12074.72, + "end": 12077.24, + "probability": 0.8918 + }, + { + "start": 12077.42, + "end": 12078.82, + "probability": 0.9927 + }, + { + "start": 12080.1, + "end": 12084.16, + "probability": 0.8622 + }, + { + "start": 12084.24, + "end": 12085.54, + "probability": 0.738 + }, + { + "start": 12085.6, + "end": 12088.3, + "probability": 0.9214 + }, + { + "start": 12088.5, + "end": 12088.5, + "probability": 0.5074 + }, + { + "start": 12088.9, + "end": 12092.8, + "probability": 0.9873 + }, + { + "start": 12093.54, + "end": 12095.24, + "probability": 0.984 + }, + { + "start": 12095.94, + "end": 12098.32, + "probability": 0.5518 + }, + { + "start": 12098.78, + "end": 12101.1, + "probability": 0.8815 + }, + { + "start": 12101.6, + "end": 12102.08, + "probability": 0.8231 + }, + { + "start": 12102.1, + "end": 12102.16, + "probability": 0.5625 + }, + { + "start": 12102.16, + "end": 12108.94, + "probability": 0.9112 + }, + { + "start": 12109.34, + "end": 12109.9, + "probability": 0.5041 + }, + { + "start": 12110.14, + "end": 12110.5, + "probability": 0.6009 + }, + { + "start": 12111.92, + "end": 12113.88, + "probability": 0.973 + }, + { + "start": 12113.88, + "end": 12116.28, + "probability": 0.9977 + }, + { + "start": 12116.4, + "end": 12118.46, + "probability": 0.9761 + }, + { + "start": 12119.84, + "end": 12121.62, + "probability": 0.9512 + }, + { + "start": 12139.0, + "end": 12139.62, + "probability": 0.5673 + }, + { + "start": 12139.84, + "end": 12140.64, + "probability": 0.7716 + }, + { + "start": 12140.86, + "end": 12142.92, + "probability": 0.682 + }, + { + "start": 12144.48, + "end": 12149.26, + "probability": 0.9303 + }, + { + "start": 12150.38, + "end": 12151.66, + "probability": 0.9301 + }, + { + "start": 12152.18, + "end": 12153.1, + "probability": 0.7275 + }, + { + "start": 12155.8, + "end": 12158.38, + "probability": 0.9795 + }, + { + "start": 12158.92, + "end": 12159.22, + "probability": 0.0002 + }, + { + "start": 12161.0, + "end": 12162.58, + "probability": 0.737 + }, + { + "start": 12163.82, + "end": 12165.0, + "probability": 0.9169 + }, + { + "start": 12166.14, + "end": 12166.74, + "probability": 0.7128 + }, + { + "start": 12166.86, + "end": 12173.64, + "probability": 0.979 + }, + { + "start": 12174.14, + "end": 12174.64, + "probability": 0.4911 + }, + { + "start": 12176.04, + "end": 12176.5, + "probability": 0.5579 + }, + { + "start": 12176.6, + "end": 12177.34, + "probability": 0.8229 + }, + { + "start": 12177.48, + "end": 12181.24, + "probability": 0.9758 + }, + { + "start": 12181.6, + "end": 12181.9, + "probability": 0.6838 + }, + { + "start": 12183.54, + "end": 12184.3, + "probability": 0.4913 + }, + { + "start": 12185.68, + "end": 12188.72, + "probability": 0.9504 + }, + { + "start": 12189.72, + "end": 12192.12, + "probability": 0.9966 + }, + { + "start": 12194.26, + "end": 12194.74, + "probability": 0.9175 + }, + { + "start": 12194.74, + "end": 12198.32, + "probability": 0.9647 + }, + { + "start": 12198.34, + "end": 12199.88, + "probability": 0.9025 + }, + { + "start": 12202.38, + "end": 12211.06, + "probability": 0.9936 + }, + { + "start": 12212.48, + "end": 12214.78, + "probability": 0.8254 + }, + { + "start": 12214.82, + "end": 12219.2, + "probability": 0.9603 + }, + { + "start": 12219.9, + "end": 12222.8, + "probability": 0.9941 + }, + { + "start": 12223.74, + "end": 12224.98, + "probability": 0.9981 + }, + { + "start": 12225.4, + "end": 12229.88, + "probability": 0.9951 + }, + { + "start": 12230.14, + "end": 12232.62, + "probability": 0.9121 + }, + { + "start": 12232.64, + "end": 12232.84, + "probability": 0.7983 + }, + { + "start": 12236.4, + "end": 12237.28, + "probability": 0.8012 + }, + { + "start": 12240.26, + "end": 12240.66, + "probability": 0.6022 + }, + { + "start": 12240.88, + "end": 12241.4, + "probability": 0.8715 + }, + { + "start": 12241.8, + "end": 12250.3, + "probability": 0.9832 + }, + { + "start": 12251.58, + "end": 12254.88, + "probability": 0.9783 + }, + { + "start": 12256.02, + "end": 12256.84, + "probability": 0.8135 + }, + { + "start": 12259.76, + "end": 12262.28, + "probability": 0.9878 + }, + { + "start": 12264.5, + "end": 12267.34, + "probability": 0.9973 + }, + { + "start": 12269.14, + "end": 12270.68, + "probability": 0.9995 + }, + { + "start": 12271.0, + "end": 12273.14, + "probability": 0.9767 + }, + { + "start": 12273.26, + "end": 12277.76, + "probability": 0.9987 + }, + { + "start": 12278.1, + "end": 12278.59, + "probability": 0.7251 + }, + { + "start": 12278.88, + "end": 12280.16, + "probability": 0.9043 + }, + { + "start": 12281.16, + "end": 12282.56, + "probability": 0.91 + }, + { + "start": 12286.92, + "end": 12291.96, + "probability": 0.9301 + }, + { + "start": 12292.18, + "end": 12295.44, + "probability": 0.9751 + }, + { + "start": 12296.72, + "end": 12297.36, + "probability": 0.9903 + }, + { + "start": 12298.56, + "end": 12300.66, + "probability": 0.8546 + }, + { + "start": 12301.1, + "end": 12301.56, + "probability": 0.522 + }, + { + "start": 12301.96, + "end": 12302.48, + "probability": 0.6805 + }, + { + "start": 12304.54, + "end": 12309.92, + "probability": 0.8555 + }, + { + "start": 12311.36, + "end": 12312.8, + "probability": 0.6536 + }, + { + "start": 12315.04, + "end": 12318.93, + "probability": 0.8912 + }, + { + "start": 12319.64, + "end": 12320.04, + "probability": 0.6248 + }, + { + "start": 12320.92, + "end": 12321.2, + "probability": 0.862 + }, + { + "start": 12322.86, + "end": 12325.88, + "probability": 0.9604 + }, + { + "start": 12326.62, + "end": 12327.54, + "probability": 0.9026 + }, + { + "start": 12328.26, + "end": 12329.28, + "probability": 0.9948 + }, + { + "start": 12330.1, + "end": 12330.54, + "probability": 0.9974 + }, + { + "start": 12331.72, + "end": 12333.8, + "probability": 0.8159 + }, + { + "start": 12334.04, + "end": 12337.0, + "probability": 0.8755 + }, + { + "start": 12337.22, + "end": 12338.76, + "probability": 0.9738 + }, + { + "start": 12339.56, + "end": 12339.86, + "probability": 0.8735 + }, + { + "start": 12339.98, + "end": 12341.92, + "probability": 0.9625 + }, + { + "start": 12342.38, + "end": 12345.26, + "probability": 0.8906 + }, + { + "start": 12345.38, + "end": 12349.36, + "probability": 0.7603 + }, + { + "start": 12350.66, + "end": 12351.51, + "probability": 0.2589 + }, + { + "start": 12352.6, + "end": 12355.18, + "probability": 0.973 + }, + { + "start": 12356.56, + "end": 12359.48, + "probability": 0.9912 + }, + { + "start": 12359.86, + "end": 12360.44, + "probability": 0.5719 + }, + { + "start": 12364.24, + "end": 12365.7, + "probability": 0.0097 + }, + { + "start": 12366.62, + "end": 12367.98, + "probability": 0.1133 + }, + { + "start": 12368.7, + "end": 12370.7, + "probability": 0.0045 + }, + { + "start": 12371.36, + "end": 12371.38, + "probability": 0.0426 + }, + { + "start": 12371.72, + "end": 12374.88, + "probability": 0.1558 + }, + { + "start": 12374.88, + "end": 12378.06, + "probability": 0.0866 + }, + { + "start": 12379.42, + "end": 12382.26, + "probability": 0.1976 + }, + { + "start": 12389.38, + "end": 12392.36, + "probability": 0.0974 + }, + { + "start": 12393.76, + "end": 12397.56, + "probability": 0.1355 + }, + { + "start": 12397.64, + "end": 12397.92, + "probability": 0.3157 + }, + { + "start": 12398.78, + "end": 12402.48, + "probability": 0.5887 + }, + { + "start": 12403.34, + "end": 12407.38, + "probability": 0.1068 + }, + { + "start": 12413.52, + "end": 12419.8, + "probability": 0.1075 + }, + { + "start": 12421.16, + "end": 12423.22, + "probability": 0.1235 + }, + { + "start": 12423.84, + "end": 12429.38, + "probability": 0.0813 + }, + { + "start": 12430.58, + "end": 12431.24, + "probability": 0.205 + }, + { + "start": 12431.86, + "end": 12434.04, + "probability": 0.3148 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12499.0, + "end": 12499.0, + "probability": 0.0 + }, + { + "start": 12500.25, + "end": 12502.9, + "probability": 0.1881 + }, + { + "start": 12504.91, + "end": 12505.98, + "probability": 0.0214 + }, + { + "start": 12507.74, + "end": 12509.96, + "probability": 0.0587 + }, + { + "start": 12510.64, + "end": 12514.16, + "probability": 0.0441 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.0, + "end": 12623.0, + "probability": 0.0 + }, + { + "start": 12623.56, + "end": 12623.56, + "probability": 0.0135 + }, + { + "start": 12623.56, + "end": 12625.34, + "probability": 0.8721 + }, + { + "start": 12625.42, + "end": 12627.68, + "probability": 0.9596 + }, + { + "start": 12628.12, + "end": 12630.98, + "probability": 0.9938 + }, + { + "start": 12632.22, + "end": 12635.4, + "probability": 0.9857 + }, + { + "start": 12635.4, + "end": 12638.54, + "probability": 0.9955 + }, + { + "start": 12639.46, + "end": 12643.72, + "probability": 0.9922 + }, + { + "start": 12644.96, + "end": 12647.18, + "probability": 0.9488 + }, + { + "start": 12647.74, + "end": 12650.5, + "probability": 0.9946 + }, + { + "start": 12651.84, + "end": 12654.68, + "probability": 0.7947 + }, + { + "start": 12655.4, + "end": 12658.98, + "probability": 0.9529 + }, + { + "start": 12659.62, + "end": 12660.12, + "probability": 0.857 + }, + { + "start": 12660.36, + "end": 12661.1, + "probability": 0.8067 + }, + { + "start": 12661.6, + "end": 12666.6, + "probability": 0.9927 + }, + { + "start": 12667.2, + "end": 12669.24, + "probability": 0.8527 + }, + { + "start": 12670.18, + "end": 12672.38, + "probability": 0.9786 + }, + { + "start": 12672.98, + "end": 12677.12, + "probability": 0.8469 + }, + { + "start": 12677.64, + "end": 12684.0, + "probability": 0.9351 + }, + { + "start": 12684.8, + "end": 12687.12, + "probability": 0.9952 + }, + { + "start": 12687.64, + "end": 12692.3, + "probability": 0.9907 + }, + { + "start": 12692.8, + "end": 12695.72, + "probability": 0.989 + }, + { + "start": 12696.34, + "end": 12697.54, + "probability": 0.9341 + }, + { + "start": 12697.96, + "end": 12698.96, + "probability": 0.877 + }, + { + "start": 12699.06, + "end": 12700.08, + "probability": 0.9887 + }, + { + "start": 12700.88, + "end": 12702.82, + "probability": 0.9694 + }, + { + "start": 12703.28, + "end": 12706.06, + "probability": 0.9928 + }, + { + "start": 12706.74, + "end": 12710.94, + "probability": 0.9917 + }, + { + "start": 12710.94, + "end": 12716.72, + "probability": 0.9989 + }, + { + "start": 12717.16, + "end": 12723.62, + "probability": 0.9948 + }, + { + "start": 12724.28, + "end": 12728.54, + "probability": 0.9661 + }, + { + "start": 12729.14, + "end": 12731.98, + "probability": 0.9937 + }, + { + "start": 12731.98, + "end": 12735.6, + "probability": 0.9974 + }, + { + "start": 12736.12, + "end": 12736.76, + "probability": 0.8836 + }, + { + "start": 12736.78, + "end": 12737.58, + "probability": 0.81 + }, + { + "start": 12738.08, + "end": 12743.94, + "probability": 0.9876 + }, + { + "start": 12744.52, + "end": 12744.92, + "probability": 0.9227 + }, + { + "start": 12745.46, + "end": 12747.82, + "probability": 0.9893 + }, + { + "start": 12748.22, + "end": 12750.0, + "probability": 0.9564 + }, + { + "start": 12750.7, + "end": 12755.38, + "probability": 0.9966 + }, + { + "start": 12756.0, + "end": 12758.52, + "probability": 0.5616 + }, + { + "start": 12759.1, + "end": 12759.22, + "probability": 0.6575 + }, + { + "start": 12759.44, + "end": 12760.86, + "probability": 0.4001 + }, + { + "start": 12761.32, + "end": 12766.08, + "probability": 0.9858 + }, + { + "start": 12766.44, + "end": 12770.94, + "probability": 0.9188 + }, + { + "start": 12770.94, + "end": 12776.18, + "probability": 0.9948 + }, + { + "start": 12777.1, + "end": 12779.74, + "probability": 0.9409 + }, + { + "start": 12779.82, + "end": 12780.68, + "probability": 0.5084 + }, + { + "start": 12780.76, + "end": 12784.28, + "probability": 0.9963 + }, + { + "start": 12784.28, + "end": 12789.14, + "probability": 0.9965 + }, + { + "start": 12790.68, + "end": 12794.86, + "probability": 0.959 + }, + { + "start": 12795.42, + "end": 12801.2, + "probability": 0.9931 + }, + { + "start": 12801.86, + "end": 12806.38, + "probability": 0.9992 + }, + { + "start": 12807.32, + "end": 12807.48, + "probability": 0.3802 + }, + { + "start": 12807.52, + "end": 12809.44, + "probability": 0.9232 + }, + { + "start": 12809.56, + "end": 12814.16, + "probability": 0.9609 + }, + { + "start": 12814.98, + "end": 12815.18, + "probability": 0.8228 + }, + { + "start": 12815.62, + "end": 12816.98, + "probability": 0.9687 + }, + { + "start": 12817.48, + "end": 12821.12, + "probability": 0.9905 + }, + { + "start": 12821.84, + "end": 12825.94, + "probability": 0.9969 + }, + { + "start": 12826.0, + "end": 12830.7, + "probability": 0.9828 + }, + { + "start": 12830.82, + "end": 12831.46, + "probability": 0.012 + }, + { + "start": 12831.46, + "end": 12834.12, + "probability": 0.9773 + }, + { + "start": 12834.32, + "end": 12835.22, + "probability": 0.7752 + }, + { + "start": 12835.36, + "end": 12836.78, + "probability": 0.9503 + }, + { + "start": 12837.36, + "end": 12840.54, + "probability": 0.9917 + }, + { + "start": 12840.54, + "end": 12844.7, + "probability": 0.9992 + }, + { + "start": 12845.74, + "end": 12849.52, + "probability": 0.9716 + }, + { + "start": 12850.04, + "end": 12850.92, + "probability": 0.9015 + }, + { + "start": 12851.5, + "end": 12853.26, + "probability": 0.8889 + }, + { + "start": 12853.86, + "end": 12856.82, + "probability": 0.9885 + }, + { + "start": 12856.82, + "end": 12860.92, + "probability": 0.9979 + }, + { + "start": 12861.42, + "end": 12862.92, + "probability": 0.8062 + }, + { + "start": 12863.32, + "end": 12865.36, + "probability": 0.9603 + }, + { + "start": 12865.86, + "end": 12868.92, + "probability": 0.998 + }, + { + "start": 12869.44, + "end": 12871.73, + "probability": 0.9926 + }, + { + "start": 12872.46, + "end": 12873.3, + "probability": 0.6503 + }, + { + "start": 12873.88, + "end": 12874.98, + "probability": 0.4777 + }, + { + "start": 12892.72, + "end": 12893.22, + "probability": 0.6994 + }, + { + "start": 12893.6, + "end": 12894.56, + "probability": 0.7078 + }, + { + "start": 12895.98, + "end": 12896.5, + "probability": 0.7271 + }, + { + "start": 12897.7, + "end": 12901.3, + "probability": 0.9761 + }, + { + "start": 12902.3, + "end": 12906.7, + "probability": 0.9919 + }, + { + "start": 12907.92, + "end": 12913.74, + "probability": 0.9952 + }, + { + "start": 12914.96, + "end": 12915.24, + "probability": 0.4579 + }, + { + "start": 12916.52, + "end": 12918.52, + "probability": 0.85 + }, + { + "start": 12920.94, + "end": 12922.7, + "probability": 0.9985 + }, + { + "start": 12924.56, + "end": 12927.52, + "probability": 0.9287 + }, + { + "start": 12928.92, + "end": 12935.46, + "probability": 0.9758 + }, + { + "start": 12937.0, + "end": 12937.38, + "probability": 0.5035 + }, + { + "start": 12940.54, + "end": 12944.7, + "probability": 0.9869 + }, + { + "start": 12945.72, + "end": 12948.5, + "probability": 0.9963 + }, + { + "start": 12948.5, + "end": 12951.24, + "probability": 0.7692 + }, + { + "start": 12952.48, + "end": 12953.02, + "probability": 0.7633 + }, + { + "start": 12953.54, + "end": 12955.24, + "probability": 0.9971 + }, + { + "start": 12956.48, + "end": 12957.88, + "probability": 0.5278 + }, + { + "start": 12959.08, + "end": 12960.96, + "probability": 0.5893 + }, + { + "start": 12961.06, + "end": 12965.74, + "probability": 0.9856 + }, + { + "start": 12967.3, + "end": 12969.84, + "probability": 0.9636 + }, + { + "start": 12970.48, + "end": 12972.72, + "probability": 0.9762 + }, + { + "start": 12973.96, + "end": 12978.08, + "probability": 0.6936 + }, + { + "start": 12978.08, + "end": 12982.72, + "probability": 0.9937 + }, + { + "start": 12983.52, + "end": 12985.84, + "probability": 0.7923 + }, + { + "start": 12986.56, + "end": 12987.32, + "probability": 0.9884 + }, + { + "start": 12987.86, + "end": 12990.0, + "probability": 0.9565 + }, + { + "start": 12991.08, + "end": 12992.64, + "probability": 0.626 + }, + { + "start": 12994.24, + "end": 12996.86, + "probability": 0.9939 + }, + { + "start": 12998.92, + "end": 13001.66, + "probability": 0.9995 + }, + { + "start": 13001.66, + "end": 13004.3, + "probability": 0.999 + }, + { + "start": 13005.14, + "end": 13008.7, + "probability": 0.9907 + }, + { + "start": 13010.26, + "end": 13013.18, + "probability": 0.9969 + }, + { + "start": 13013.84, + "end": 13015.42, + "probability": 0.5877 + }, + { + "start": 13016.46, + "end": 13017.23, + "probability": 0.9438 + }, + { + "start": 13018.3, + "end": 13019.68, + "probability": 0.4844 + }, + { + "start": 13019.78, + "end": 13021.36, + "probability": 0.9485 + }, + { + "start": 13021.52, + "end": 13023.02, + "probability": 0.8965 + }, + { + "start": 13023.28, + "end": 13024.78, + "probability": 0.9607 + }, + { + "start": 13025.36, + "end": 13029.22, + "probability": 0.9125 + }, + { + "start": 13029.88, + "end": 13033.38, + "probability": 0.9797 + }, + { + "start": 13033.8, + "end": 13036.8, + "probability": 0.9942 + }, + { + "start": 13037.34, + "end": 13038.62, + "probability": 0.9884 + }, + { + "start": 13040.62, + "end": 13041.86, + "probability": 0.9983 + }, + { + "start": 13043.98, + "end": 13047.92, + "probability": 0.9996 + }, + { + "start": 13048.04, + "end": 13053.66, + "probability": 0.9961 + }, + { + "start": 13054.4, + "end": 13056.7, + "probability": 0.9893 + }, + { + "start": 13057.06, + "end": 13060.2, + "probability": 0.9882 + }, + { + "start": 13060.26, + "end": 13060.88, + "probability": 0.6445 + }, + { + "start": 13061.0, + "end": 13062.0, + "probability": 0.9703 + }, + { + "start": 13062.4, + "end": 13063.0, + "probability": 0.7038 + }, + { + "start": 13063.22, + "end": 13064.34, + "probability": 0.4798 + }, + { + "start": 13065.14, + "end": 13068.46, + "probability": 0.9879 + }, + { + "start": 13069.36, + "end": 13071.38, + "probability": 0.9985 + }, + { + "start": 13072.08, + "end": 13073.28, + "probability": 0.8335 + }, + { + "start": 13074.66, + "end": 13076.1, + "probability": 0.9092 + }, + { + "start": 13077.24, + "end": 13078.18, + "probability": 0.9095 + }, + { + "start": 13078.3, + "end": 13079.76, + "probability": 0.924 + }, + { + "start": 13080.08, + "end": 13082.44, + "probability": 0.9874 + }, + { + "start": 13083.2, + "end": 13084.52, + "probability": 0.7042 + }, + { + "start": 13085.76, + "end": 13086.56, + "probability": 0.9988 + }, + { + "start": 13087.1, + "end": 13088.01, + "probability": 0.9814 + }, + { + "start": 13089.56, + "end": 13096.28, + "probability": 0.936 + }, + { + "start": 13098.14, + "end": 13099.26, + "probability": 0.9983 + }, + { + "start": 13100.16, + "end": 13105.14, + "probability": 0.991 + }, + { + "start": 13106.7, + "end": 13107.31, + "probability": 0.7831 + }, + { + "start": 13110.08, + "end": 13113.06, + "probability": 0.9706 + }, + { + "start": 13114.7, + "end": 13115.92, + "probability": 0.6928 + }, + { + "start": 13116.98, + "end": 13117.56, + "probability": 0.8693 + }, + { + "start": 13118.44, + "end": 13119.1, + "probability": 0.8283 + }, + { + "start": 13120.62, + "end": 13121.3, + "probability": 0.8971 + }, + { + "start": 13121.98, + "end": 13122.08, + "probability": 0.9964 + }, + { + "start": 13124.1, + "end": 13124.62, + "probability": 0.7678 + }, + { + "start": 13125.5, + "end": 13126.66, + "probability": 0.8625 + }, + { + "start": 13127.36, + "end": 13127.98, + "probability": 0.9128 + }, + { + "start": 13129.78, + "end": 13131.5, + "probability": 0.9937 + }, + { + "start": 13132.04, + "end": 13132.58, + "probability": 0.4 + }, + { + "start": 13132.76, + "end": 13134.64, + "probability": 0.9968 + }, + { + "start": 13135.94, + "end": 13137.4, + "probability": 0.7433 + }, + { + "start": 13138.86, + "end": 13142.73, + "probability": 0.9967 + }, + { + "start": 13143.3, + "end": 13145.2, + "probability": 0.9394 + }, + { + "start": 13146.28, + "end": 13147.78, + "probability": 0.6408 + }, + { + "start": 13147.86, + "end": 13148.22, + "probability": 0.4389 + }, + { + "start": 13148.22, + "end": 13148.22, + "probability": 0.4273 + }, + { + "start": 13148.22, + "end": 13149.98, + "probability": 0.9877 + }, + { + "start": 13150.84, + "end": 13151.31, + "probability": 0.689 + }, + { + "start": 13151.84, + "end": 13153.22, + "probability": 0.8887 + }, + { + "start": 13153.3, + "end": 13153.44, + "probability": 0.9299 + }, + { + "start": 13153.54, + "end": 13155.66, + "probability": 0.7516 + }, + { + "start": 13155.66, + "end": 13155.8, + "probability": 0.0902 + }, + { + "start": 13155.88, + "end": 13156.78, + "probability": 0.815 + }, + { + "start": 13156.96, + "end": 13158.98, + "probability": 0.9692 + }, + { + "start": 13159.12, + "end": 13159.52, + "probability": 0.3335 + }, + { + "start": 13159.52, + "end": 13160.38, + "probability": 0.5129 + }, + { + "start": 13160.52, + "end": 13161.66, + "probability": 0.9878 + }, + { + "start": 13161.84, + "end": 13163.24, + "probability": 0.8442 + }, + { + "start": 13163.32, + "end": 13164.68, + "probability": 0.9673 + }, + { + "start": 13165.64, + "end": 13166.93, + "probability": 0.9971 + }, + { + "start": 13167.08, + "end": 13170.74, + "probability": 0.9884 + }, + { + "start": 13171.22, + "end": 13172.83, + "probability": 0.9393 + }, + { + "start": 13174.02, + "end": 13175.14, + "probability": 0.8692 + }, + { + "start": 13175.24, + "end": 13179.52, + "probability": 0.9928 + }, + { + "start": 13180.52, + "end": 13182.32, + "probability": 0.9985 + }, + { + "start": 13183.36, + "end": 13183.42, + "probability": 0.0307 + }, + { + "start": 13183.42, + "end": 13185.64, + "probability": 0.9966 + }, + { + "start": 13185.9, + "end": 13187.0, + "probability": 0.8204 + }, + { + "start": 13187.18, + "end": 13187.64, + "probability": 0.7524 + }, + { + "start": 13188.0, + "end": 13188.87, + "probability": 0.9543 + }, + { + "start": 13189.12, + "end": 13189.85, + "probability": 0.9944 + }, + { + "start": 13190.44, + "end": 13193.14, + "probability": 0.9878 + }, + { + "start": 13193.58, + "end": 13194.14, + "probability": 0.6667 + }, + { + "start": 13194.66, + "end": 13195.72, + "probability": 0.9894 + }, + { + "start": 13196.58, + "end": 13198.66, + "probability": 0.9131 + }, + { + "start": 13198.78, + "end": 13200.66, + "probability": 0.9592 + }, + { + "start": 13200.66, + "end": 13202.8, + "probability": 0.7359 + }, + { + "start": 13202.9, + "end": 13203.08, + "probability": 0.3406 + }, + { + "start": 13203.08, + "end": 13205.4, + "probability": 0.992 + }, + { + "start": 13205.4, + "end": 13207.38, + "probability": 0.9968 + }, + { + "start": 13207.5, + "end": 13209.06, + "probability": 0.5628 + }, + { + "start": 13209.2, + "end": 13210.96, + "probability": 0.9207 + }, + { + "start": 13211.46, + "end": 13212.8, + "probability": 0.6824 + }, + { + "start": 13212.8, + "end": 13215.98, + "probability": 0.9424 + }, + { + "start": 13217.36, + "end": 13217.88, + "probability": 0.9027 + }, + { + "start": 13219.89, + "end": 13222.16, + "probability": 0.9924 + }, + { + "start": 13223.38, + "end": 13228.22, + "probability": 0.999 + }, + { + "start": 13228.48, + "end": 13231.98, + "probability": 0.9946 + }, + { + "start": 13232.88, + "end": 13239.04, + "probability": 0.9934 + }, + { + "start": 13240.3, + "end": 13241.64, + "probability": 0.8268 + }, + { + "start": 13241.96, + "end": 13243.94, + "probability": 0.9549 + }, + { + "start": 13244.16, + "end": 13247.78, + "probability": 0.9917 + }, + { + "start": 13248.68, + "end": 13250.24, + "probability": 0.9808 + }, + { + "start": 13250.76, + "end": 13251.56, + "probability": 0.9941 + }, + { + "start": 13252.28, + "end": 13254.36, + "probability": 0.9995 + }, + { + "start": 13255.04, + "end": 13257.1, + "probability": 0.9695 + }, + { + "start": 13257.38, + "end": 13259.78, + "probability": 0.993 + }, + { + "start": 13260.46, + "end": 13261.88, + "probability": 0.7418 + }, + { + "start": 13262.78, + "end": 13263.46, + "probability": 0.8092 + }, + { + "start": 13263.88, + "end": 13264.12, + "probability": 0.7795 + }, + { + "start": 13264.24, + "end": 13264.54, + "probability": 0.7467 + }, + { + "start": 13265.4, + "end": 13266.29, + "probability": 0.7058 + }, + { + "start": 13272.66, + "end": 13272.66, + "probability": 0.6787 + }, + { + "start": 13272.66, + "end": 13274.14, + "probability": 0.0341 + }, + { + "start": 13277.2, + "end": 13279.62, + "probability": 0.0544 + }, + { + "start": 13292.58, + "end": 13299.54, + "probability": 0.9446 + }, + { + "start": 13300.14, + "end": 13301.28, + "probability": 0.8826 + }, + { + "start": 13302.5, + "end": 13305.56, + "probability": 0.9826 + }, + { + "start": 13306.52, + "end": 13308.56, + "probability": 0.7308 + }, + { + "start": 13309.76, + "end": 13310.96, + "probability": 0.8061 + }, + { + "start": 13311.88, + "end": 13314.54, + "probability": 0.9547 + }, + { + "start": 13314.6, + "end": 13315.06, + "probability": 0.7714 + }, + { + "start": 13315.4, + "end": 13321.38, + "probability": 0.7422 + }, + { + "start": 13322.46, + "end": 13326.24, + "probability": 0.4194 + }, + { + "start": 13326.94, + "end": 13330.87, + "probability": 0.9925 + }, + { + "start": 13332.28, + "end": 13336.44, + "probability": 0.7734 + }, + { + "start": 13337.6, + "end": 13341.6, + "probability": 0.9963 + }, + { + "start": 13342.24, + "end": 13344.22, + "probability": 0.8075 + }, + { + "start": 13345.28, + "end": 13347.28, + "probability": 0.7019 + }, + { + "start": 13348.14, + "end": 13353.4, + "probability": 0.9959 + }, + { + "start": 13354.32, + "end": 13356.53, + "probability": 0.9899 + }, + { + "start": 13358.06, + "end": 13360.48, + "probability": 0.8583 + }, + { + "start": 13361.26, + "end": 13365.68, + "probability": 0.8772 + }, + { + "start": 13366.8, + "end": 13367.52, + "probability": 0.9512 + }, + { + "start": 13368.22, + "end": 13369.7, + "probability": 0.8547 + }, + { + "start": 13370.0, + "end": 13373.64, + "probability": 0.9779 + }, + { + "start": 13374.42, + "end": 13379.52, + "probability": 0.9617 + }, + { + "start": 13379.98, + "end": 13380.48, + "probability": 0.7 + }, + { + "start": 13382.14, + "end": 13383.96, + "probability": 0.678 + }, + { + "start": 13384.52, + "end": 13385.7, + "probability": 0.8752 + }, + { + "start": 13386.26, + "end": 13387.92, + "probability": 0.7931 + }, + { + "start": 13388.76, + "end": 13394.44, + "probability": 0.9702 + }, + { + "start": 13394.94, + "end": 13395.48, + "probability": 0.9468 + }, + { + "start": 13395.86, + "end": 13396.56, + "probability": 0.9604 + }, + { + "start": 13397.06, + "end": 13399.0, + "probability": 0.9663 + }, + { + "start": 13399.58, + "end": 13401.02, + "probability": 0.9856 + }, + { + "start": 13401.62, + "end": 13402.58, + "probability": 0.7404 + }, + { + "start": 13403.58, + "end": 13405.08, + "probability": 0.9242 + }, + { + "start": 13405.82, + "end": 13409.36, + "probability": 0.9965 + }, + { + "start": 13410.1, + "end": 13413.44, + "probability": 0.9977 + }, + { + "start": 13413.5, + "end": 13414.72, + "probability": 0.8958 + }, + { + "start": 13415.16, + "end": 13416.44, + "probability": 0.9725 + }, + { + "start": 13416.54, + "end": 13419.2, + "probability": 0.9667 + }, + { + "start": 13419.82, + "end": 13421.44, + "probability": 0.6613 + }, + { + "start": 13422.4, + "end": 13424.2, + "probability": 0.6514 + }, + { + "start": 13425.04, + "end": 13426.54, + "probability": 0.9482 + }, + { + "start": 13427.78, + "end": 13430.1, + "probability": 0.8775 + }, + { + "start": 13431.62, + "end": 13434.68, + "probability": 0.9193 + }, + { + "start": 13434.8, + "end": 13436.06, + "probability": 0.8792 + }, + { + "start": 13436.84, + "end": 13438.26, + "probability": 0.8997 + }, + { + "start": 13438.9, + "end": 13441.04, + "probability": 0.8804 + }, + { + "start": 13441.92, + "end": 13444.46, + "probability": 0.9289 + }, + { + "start": 13444.74, + "end": 13448.6, + "probability": 0.9891 + }, + { + "start": 13449.2, + "end": 13451.5, + "probability": 0.947 + }, + { + "start": 13453.2, + "end": 13454.46, + "probability": 0.0047 + }, + { + "start": 13455.04, + "end": 13456.54, + "probability": 0.0465 + }, + { + "start": 13456.72, + "end": 13456.9, + "probability": 0.2876 + }, + { + "start": 13456.9, + "end": 13457.76, + "probability": 0.1066 + }, + { + "start": 13459.0, + "end": 13459.98, + "probability": 0.7127 + }, + { + "start": 13460.64, + "end": 13463.76, + "probability": 0.9933 + }, + { + "start": 13463.76, + "end": 13467.34, + "probability": 0.985 + }, + { + "start": 13467.9, + "end": 13469.87, + "probability": 0.74 + }, + { + "start": 13470.5, + "end": 13472.84, + "probability": 0.9363 + }, + { + "start": 13473.5, + "end": 13475.3, + "probability": 0.6012 + }, + { + "start": 13475.88, + "end": 13478.3, + "probability": 0.9835 + }, + { + "start": 13478.94, + "end": 13479.74, + "probability": 0.9507 + }, + { + "start": 13480.4, + "end": 13481.66, + "probability": 0.9521 + }, + { + "start": 13482.24, + "end": 13484.66, + "probability": 0.9893 + }, + { + "start": 13484.82, + "end": 13485.52, + "probability": 0.5622 + }, + { + "start": 13486.8, + "end": 13489.3, + "probability": 0.9689 + }, + { + "start": 13490.26, + "end": 13491.94, + "probability": 0.9697 + }, + { + "start": 13492.02, + "end": 13493.1, + "probability": 0.9434 + }, + { + "start": 13493.52, + "end": 13497.34, + "probability": 0.9879 + }, + { + "start": 13498.14, + "end": 13502.32, + "probability": 0.985 + }, + { + "start": 13503.26, + "end": 13508.2, + "probability": 0.9988 + }, + { + "start": 13509.22, + "end": 13511.86, + "probability": 0.9976 + }, + { + "start": 13512.42, + "end": 13517.28, + "probability": 0.9907 + }, + { + "start": 13517.74, + "end": 13521.54, + "probability": 0.7761 + }, + { + "start": 13522.1, + "end": 13524.68, + "probability": 0.9946 + }, + { + "start": 13525.04, + "end": 13528.42, + "probability": 0.9304 + }, + { + "start": 13528.98, + "end": 13533.88, + "probability": 0.9942 + }, + { + "start": 13533.88, + "end": 13538.82, + "probability": 0.9866 + }, + { + "start": 13539.5, + "end": 13542.08, + "probability": 0.9999 + }, + { + "start": 13542.9, + "end": 13546.45, + "probability": 0.9789 + }, + { + "start": 13546.82, + "end": 13548.38, + "probability": 0.7559 + }, + { + "start": 13548.8, + "end": 13549.96, + "probability": 0.9895 + }, + { + "start": 13550.3, + "end": 13551.68, + "probability": 0.9609 + }, + { + "start": 13552.18, + "end": 13552.69, + "probability": 0.9543 + }, + { + "start": 13552.96, + "end": 13556.0, + "probability": 0.9892 + }, + { + "start": 13556.1, + "end": 13556.44, + "probability": 0.6804 + }, + { + "start": 13556.98, + "end": 13557.94, + "probability": 0.5756 + }, + { + "start": 13558.88, + "end": 13560.58, + "probability": 0.898 + }, + { + "start": 13561.3, + "end": 13562.24, + "probability": 0.9157 + }, + { + "start": 13595.9, + "end": 13597.74, + "probability": 0.4371 + }, + { + "start": 13598.68, + "end": 13601.18, + "probability": 0.7395 + }, + { + "start": 13602.52, + "end": 13603.34, + "probability": 0.6021 + }, + { + "start": 13603.76, + "end": 13607.14, + "probability": 0.9668 + }, + { + "start": 13607.14, + "end": 13608.42, + "probability": 0.5025 + }, + { + "start": 13608.46, + "end": 13610.28, + "probability": 0.8786 + }, + { + "start": 13610.44, + "end": 13611.4, + "probability": 0.67 + }, + { + "start": 13612.3, + "end": 13613.64, + "probability": 0.8193 + }, + { + "start": 13614.46, + "end": 13616.68, + "probability": 0.8174 + }, + { + "start": 13617.38, + "end": 13618.9, + "probability": 0.9904 + }, + { + "start": 13619.02, + "end": 13619.58, + "probability": 0.8915 + }, + { + "start": 13620.08, + "end": 13622.48, + "probability": 0.9308 + }, + { + "start": 13624.48, + "end": 13626.09, + "probability": 0.5198 + }, + { + "start": 13626.56, + "end": 13629.62, + "probability": 0.0596 + }, + { + "start": 13629.62, + "end": 13632.22, + "probability": 0.3353 + }, + { + "start": 13632.76, + "end": 13636.18, + "probability": 0.161 + }, + { + "start": 13637.2, + "end": 13638.78, + "probability": 0.8431 + }, + { + "start": 13639.44, + "end": 13642.52, + "probability": 0.9855 + }, + { + "start": 13644.3, + "end": 13647.26, + "probability": 0.8035 + }, + { + "start": 13647.54, + "end": 13647.96, + "probability": 0.6678 + }, + { + "start": 13648.04, + "end": 13648.38, + "probability": 0.9596 + }, + { + "start": 13649.64, + "end": 13652.84, + "probability": 0.9845 + }, + { + "start": 13654.52, + "end": 13654.58, + "probability": 0.0522 + }, + { + "start": 13655.34, + "end": 13657.56, + "probability": 0.7585 + }, + { + "start": 13658.12, + "end": 13662.46, + "probability": 0.9893 + }, + { + "start": 13663.74, + "end": 13663.84, + "probability": 0.793 + }, + { + "start": 13664.56, + "end": 13666.04, + "probability": 0.9978 + }, + { + "start": 13667.16, + "end": 13667.5, + "probability": 0.9058 + }, + { + "start": 13667.74, + "end": 13670.26, + "probability": 0.9706 + }, + { + "start": 13671.22, + "end": 13671.42, + "probability": 0.3068 + }, + { + "start": 13671.94, + "end": 13673.22, + "probability": 0.7421 + }, + { + "start": 13674.94, + "end": 13675.14, + "probability": 0.9041 + }, + { + "start": 13675.9, + "end": 13680.44, + "probability": 0.9845 + }, + { + "start": 13681.7, + "end": 13681.88, + "probability": 0.9661 + }, + { + "start": 13682.04, + "end": 13686.9, + "probability": 0.986 + }, + { + "start": 13688.08, + "end": 13688.3, + "probability": 0.117 + }, + { + "start": 13688.38, + "end": 13692.08, + "probability": 0.8767 + }, + { + "start": 13694.92, + "end": 13695.02, + "probability": 0.8843 + }, + { + "start": 13695.58, + "end": 13698.88, + "probability": 0.9863 + }, + { + "start": 13700.14, + "end": 13701.66, + "probability": 0.9726 + }, + { + "start": 13702.44, + "end": 13703.16, + "probability": 0.5824 + }, + { + "start": 13704.12, + "end": 13707.84, + "probability": 0.969 + }, + { + "start": 13708.18, + "end": 13708.52, + "probability": 0.243 + }, + { + "start": 13710.0, + "end": 13710.68, + "probability": 0.9639 + }, + { + "start": 13711.64, + "end": 13712.64, + "probability": 0.9934 + }, + { + "start": 13713.54, + "end": 13716.61, + "probability": 0.6823 + }, + { + "start": 13717.98, + "end": 13721.52, + "probability": 0.9793 + }, + { + "start": 13721.62, + "end": 13722.23, + "probability": 0.2199 + }, + { + "start": 13722.72, + "end": 13722.82, + "probability": 0.2897 + }, + { + "start": 13722.82, + "end": 13724.94, + "probability": 0.9399 + }, + { + "start": 13725.64, + "end": 13731.9, + "probability": 0.8679 + }, + { + "start": 13732.14, + "end": 13733.28, + "probability": 0.7643 + }, + { + "start": 13733.92, + "end": 13737.0, + "probability": 0.7178 + }, + { + "start": 13737.82, + "end": 13741.74, + "probability": 0.8243 + }, + { + "start": 13745.32, + "end": 13745.96, + "probability": 0.8122 + }, + { + "start": 13746.14, + "end": 13749.28, + "probability": 0.8462 + }, + { + "start": 13751.26, + "end": 13751.48, + "probability": 0.6783 + }, + { + "start": 13752.54, + "end": 13756.1, + "probability": 0.975 + }, + { + "start": 13756.34, + "end": 13758.06, + "probability": 0.7532 + }, + { + "start": 13758.62, + "end": 13759.0, + "probability": 0.9917 + }, + { + "start": 13759.78, + "end": 13762.08, + "probability": 0.988 + }, + { + "start": 13762.5, + "end": 13765.1, + "probability": 0.6795 + }, + { + "start": 13766.26, + "end": 13770.06, + "probability": 0.2619 + }, + { + "start": 13770.66, + "end": 13772.66, + "probability": 0.3337 + }, + { + "start": 13774.14, + "end": 13775.86, + "probability": 0.369 + }, + { + "start": 13776.38, + "end": 13776.86, + "probability": 0.2602 + }, + { + "start": 13777.06, + "end": 13778.0, + "probability": 0.0677 + }, + { + "start": 13779.14, + "end": 13780.62, + "probability": 0.376 + }, + { + "start": 13781.3, + "end": 13782.88, + "probability": 0.5558 + }, + { + "start": 13782.88, + "end": 13783.31, + "probability": 0.9968 + }, + { + "start": 13784.1, + "end": 13785.0, + "probability": 0.5456 + }, + { + "start": 13785.02, + "end": 13786.5, + "probability": 0.761 + }, + { + "start": 13788.56, + "end": 13790.32, + "probability": 0.8911 + }, + { + "start": 13822.84, + "end": 13824.48, + "probability": 0.6097 + }, + { + "start": 13825.64, + "end": 13828.89, + "probability": 0.9709 + }, + { + "start": 13831.1, + "end": 13836.86, + "probability": 0.9902 + }, + { + "start": 13837.78, + "end": 13839.12, + "probability": 0.9979 + }, + { + "start": 13840.56, + "end": 13842.54, + "probability": 0.9985 + }, + { + "start": 13844.06, + "end": 13848.62, + "probability": 0.9978 + }, + { + "start": 13849.6, + "end": 13852.74, + "probability": 0.9989 + }, + { + "start": 13854.02, + "end": 13855.42, + "probability": 0.9735 + }, + { + "start": 13855.58, + "end": 13857.08, + "probability": 0.9202 + }, + { + "start": 13857.5, + "end": 13858.12, + "probability": 0.2378 + }, + { + "start": 13859.06, + "end": 13860.7, + "probability": 0.9732 + }, + { + "start": 13861.66, + "end": 13862.84, + "probability": 0.8919 + }, + { + "start": 13863.62, + "end": 13864.66, + "probability": 0.9482 + }, + { + "start": 13865.24, + "end": 13867.34, + "probability": 0.9756 + }, + { + "start": 13868.04, + "end": 13871.32, + "probability": 0.9953 + }, + { + "start": 13871.86, + "end": 13872.9, + "probability": 0.7657 + }, + { + "start": 13873.72, + "end": 13875.46, + "probability": 0.9052 + }, + { + "start": 13876.0, + "end": 13876.58, + "probability": 0.915 + }, + { + "start": 13876.84, + "end": 13878.48, + "probability": 0.9915 + }, + { + "start": 13879.4, + "end": 13880.68, + "probability": 0.9956 + }, + { + "start": 13880.82, + "end": 13882.72, + "probability": 0.9973 + }, + { + "start": 13884.16, + "end": 13886.88, + "probability": 0.9893 + }, + { + "start": 13887.74, + "end": 13890.16, + "probability": 0.9869 + }, + { + "start": 13890.92, + "end": 13894.28, + "probability": 0.973 + }, + { + "start": 13894.76, + "end": 13896.03, + "probability": 0.9971 + }, + { + "start": 13898.1, + "end": 13899.82, + "probability": 0.956 + }, + { + "start": 13901.22, + "end": 13903.56, + "probability": 0.9792 + }, + { + "start": 13904.54, + "end": 13909.44, + "probability": 0.9883 + }, + { + "start": 13910.28, + "end": 13911.72, + "probability": 0.7127 + }, + { + "start": 13912.38, + "end": 13914.22, + "probability": 0.9978 + }, + { + "start": 13915.46, + "end": 13920.86, + "probability": 0.9876 + }, + { + "start": 13921.5, + "end": 13922.28, + "probability": 0.912 + }, + { + "start": 13923.36, + "end": 13924.0, + "probability": 0.9663 + }, + { + "start": 13925.68, + "end": 13926.92, + "probability": 0.9482 + }, + { + "start": 13928.08, + "end": 13932.5, + "probability": 0.803 + }, + { + "start": 13933.32, + "end": 13935.7, + "probability": 0.8894 + }, + { + "start": 13936.68, + "end": 13940.54, + "probability": 0.9891 + }, + { + "start": 13940.74, + "end": 13941.76, + "probability": 0.751 + }, + { + "start": 13943.04, + "end": 13946.16, + "probability": 0.9917 + }, + { + "start": 13947.16, + "end": 13950.22, + "probability": 0.9857 + }, + { + "start": 13951.24, + "end": 13954.08, + "probability": 0.8752 + }, + { + "start": 13955.02, + "end": 13957.78, + "probability": 0.9802 + }, + { + "start": 13958.76, + "end": 13962.94, + "probability": 0.9816 + }, + { + "start": 13962.94, + "end": 13967.14, + "probability": 0.8234 + }, + { + "start": 13968.08, + "end": 13969.82, + "probability": 0.7756 + }, + { + "start": 13969.9, + "end": 13974.98, + "probability": 0.9667 + }, + { + "start": 13975.6, + "end": 13976.62, + "probability": 0.8835 + }, + { + "start": 13977.14, + "end": 13982.56, + "probability": 0.9956 + }, + { + "start": 13983.34, + "end": 13986.92, + "probability": 0.8836 + }, + { + "start": 13987.98, + "end": 13991.62, + "probability": 0.9802 + }, + { + "start": 13992.02, + "end": 13992.68, + "probability": 0.7142 + }, + { + "start": 13994.1, + "end": 13996.44, + "probability": 0.9832 + }, + { + "start": 13997.4, + "end": 13998.46, + "probability": 0.9748 + }, + { + "start": 13999.04, + "end": 14000.4, + "probability": 0.8789 + }, + { + "start": 14000.86, + "end": 14005.62, + "probability": 0.9902 + }, + { + "start": 14006.18, + "end": 14008.22, + "probability": 0.9581 + }, + { + "start": 14008.92, + "end": 14012.18, + "probability": 0.9932 + }, + { + "start": 14013.26, + "end": 14014.6, + "probability": 0.5794 + }, + { + "start": 14015.36, + "end": 14017.98, + "probability": 0.9941 + }, + { + "start": 14017.98, + "end": 14022.12, + "probability": 0.9341 + }, + { + "start": 14022.88, + "end": 14028.0, + "probability": 0.8453 + }, + { + "start": 14028.38, + "end": 14029.24, + "probability": 0.7667 + }, + { + "start": 14029.38, + "end": 14031.18, + "probability": 0.9968 + }, + { + "start": 14032.06, + "end": 14035.26, + "probability": 0.7959 + }, + { + "start": 14035.36, + "end": 14038.04, + "probability": 0.9326 + }, + { + "start": 14039.26, + "end": 14040.5, + "probability": 0.3266 + }, + { + "start": 14041.52, + "end": 14046.68, + "probability": 0.994 + }, + { + "start": 14046.68, + "end": 14052.28, + "probability": 0.9987 + }, + { + "start": 14053.54, + "end": 14058.08, + "probability": 0.9962 + }, + { + "start": 14059.0, + "end": 14061.92, + "probability": 0.98 + }, + { + "start": 14061.92, + "end": 14064.68, + "probability": 0.9956 + }, + { + "start": 14065.58, + "end": 14069.56, + "probability": 0.9958 + }, + { + "start": 14070.58, + "end": 14072.84, + "probability": 0.9989 + }, + { + "start": 14073.62, + "end": 14075.14, + "probability": 0.8841 + }, + { + "start": 14075.74, + "end": 14078.0, + "probability": 0.9082 + }, + { + "start": 14078.52, + "end": 14081.02, + "probability": 0.899 + }, + { + "start": 14081.5, + "end": 14087.77, + "probability": 0.9913 + }, + { + "start": 14088.44, + "end": 14090.72, + "probability": 0.995 + }, + { + "start": 14091.56, + "end": 14094.7, + "probability": 0.9646 + }, + { + "start": 14095.3, + "end": 14096.86, + "probability": 0.9125 + }, + { + "start": 14097.84, + "end": 14101.75, + "probability": 0.9809 + }, + { + "start": 14102.74, + "end": 14108.62, + "probability": 0.9205 + }, + { + "start": 14109.26, + "end": 14112.6, + "probability": 0.9992 + }, + { + "start": 14112.6, + "end": 14116.66, + "probability": 0.9907 + }, + { + "start": 14117.38, + "end": 14118.52, + "probability": 0.9652 + }, + { + "start": 14119.26, + "end": 14123.62, + "probability": 0.9824 + }, + { + "start": 14123.62, + "end": 14126.18, + "probability": 0.9972 + }, + { + "start": 14126.88, + "end": 14128.36, + "probability": 0.8143 + }, + { + "start": 14128.68, + "end": 14133.66, + "probability": 0.8812 + }, + { + "start": 14134.4, + "end": 14137.1, + "probability": 0.998 + }, + { + "start": 14137.6, + "end": 14139.87, + "probability": 0.9962 + }, + { + "start": 14140.34, + "end": 14142.47, + "probability": 0.998 + }, + { + "start": 14143.04, + "end": 14144.44, + "probability": 0.5586 + }, + { + "start": 14145.18, + "end": 14145.67, + "probability": 0.0287 + }, + { + "start": 14145.88, + "end": 14146.22, + "probability": 0.1006 + }, + { + "start": 14146.86, + "end": 14148.14, + "probability": 0.1978 + }, + { + "start": 14148.48, + "end": 14149.48, + "probability": 0.6404 + }, + { + "start": 14149.86, + "end": 14150.42, + "probability": 0.5662 + }, + { + "start": 14151.0, + "end": 14152.7, + "probability": 0.515 + }, + { + "start": 14153.1, + "end": 14154.24, + "probability": 0.1675 + }, + { + "start": 14155.2, + "end": 14155.34, + "probability": 0.0074 + }, + { + "start": 14155.34, + "end": 14155.34, + "probability": 0.1079 + }, + { + "start": 14155.34, + "end": 14155.34, + "probability": 0.0851 + }, + { + "start": 14155.34, + "end": 14155.34, + "probability": 0.0785 + }, + { + "start": 14155.34, + "end": 14155.34, + "probability": 0.0923 + }, + { + "start": 14155.34, + "end": 14155.34, + "probability": 0.0927 + }, + { + "start": 14155.34, + "end": 14156.56, + "probability": 0.5698 + }, + { + "start": 14156.74, + "end": 14157.75, + "probability": 0.1164 + }, + { + "start": 14159.08, + "end": 14161.28, + "probability": 0.4364 + }, + { + "start": 14161.92, + "end": 14164.3, + "probability": 0.9897 + }, + { + "start": 14164.82, + "end": 14166.92, + "probability": 0.9938 + }, + { + "start": 14167.32, + "end": 14169.2, + "probability": 0.9973 + }, + { + "start": 14169.68, + "end": 14174.52, + "probability": 0.9577 + }, + { + "start": 14174.52, + "end": 14179.56, + "probability": 0.9127 + }, + { + "start": 14180.12, + "end": 14183.26, + "probability": 0.9956 + }, + { + "start": 14183.48, + "end": 14183.88, + "probability": 0.926 + }, + { + "start": 14184.4, + "end": 14184.94, + "probability": 0.6758 + }, + { + "start": 14189.86, + "end": 14191.48, + "probability": 0.9211 + }, + { + "start": 14192.52, + "end": 14192.9, + "probability": 0.5354 + }, + { + "start": 14197.18, + "end": 14197.78, + "probability": 0.609 + }, + { + "start": 14207.68, + "end": 14212.36, + "probability": 0.9065 + }, + { + "start": 14213.48, + "end": 14215.58, + "probability": 0.9741 + }, + { + "start": 14215.66, + "end": 14216.8, + "probability": 0.9567 + }, + { + "start": 14217.3, + "end": 14217.96, + "probability": 0.7128 + }, + { + "start": 14218.22, + "end": 14219.7, + "probability": 0.0954 + }, + { + "start": 14220.42, + "end": 14221.14, + "probability": 0.3873 + }, + { + "start": 14221.88, + "end": 14224.58, + "probability": 0.9028 + }, + { + "start": 14225.14, + "end": 14226.88, + "probability": 0.9488 + }, + { + "start": 14227.34, + "end": 14230.04, + "probability": 0.911 + }, + { + "start": 14230.3, + "end": 14230.54, + "probability": 0.031 + }, + { + "start": 14230.62, + "end": 14230.9, + "probability": 0.2177 + }, + { + "start": 14230.9, + "end": 14231.32, + "probability": 0.3309 + }, + { + "start": 14231.4, + "end": 14231.4, + "probability": 0.3606 + }, + { + "start": 14231.76, + "end": 14232.78, + "probability": 0.7542 + }, + { + "start": 14233.92, + "end": 14235.62, + "probability": 0.7525 + }, + { + "start": 14236.4, + "end": 14239.24, + "probability": 0.671 + }, + { + "start": 14240.66, + "end": 14243.8, + "probability": 0.9951 + }, + { + "start": 14244.5, + "end": 14247.52, + "probability": 0.9896 + }, + { + "start": 14248.84, + "end": 14250.5, + "probability": 0.9979 + }, + { + "start": 14251.6, + "end": 14253.12, + "probability": 0.8789 + }, + { + "start": 14253.88, + "end": 14255.28, + "probability": 0.9365 + }, + { + "start": 14256.48, + "end": 14258.88, + "probability": 0.9765 + }, + { + "start": 14259.48, + "end": 14260.7, + "probability": 0.9612 + }, + { + "start": 14261.58, + "end": 14265.52, + "probability": 0.8003 + }, + { + "start": 14265.58, + "end": 14266.1, + "probability": 0.898 + }, + { + "start": 14266.4, + "end": 14267.52, + "probability": 0.8251 + }, + { + "start": 14268.26, + "end": 14269.0, + "probability": 0.6194 + }, + { + "start": 14269.54, + "end": 14270.86, + "probability": 0.9317 + }, + { + "start": 14271.4, + "end": 14276.88, + "probability": 0.9713 + }, + { + "start": 14277.34, + "end": 14282.84, + "probability": 0.9155 + }, + { + "start": 14283.76, + "end": 14284.7, + "probability": 0.4172 + }, + { + "start": 14284.96, + "end": 14291.94, + "probability": 0.9754 + }, + { + "start": 14292.52, + "end": 14293.36, + "probability": 0.8823 + }, + { + "start": 14293.66, + "end": 14297.36, + "probability": 0.9784 + }, + { + "start": 14297.4, + "end": 14300.28, + "probability": 0.99 + }, + { + "start": 14300.82, + "end": 14302.94, + "probability": 0.6338 + }, + { + "start": 14303.7, + "end": 14303.7, + "probability": 0.4006 + }, + { + "start": 14304.36, + "end": 14304.46, + "probability": 0.1104 + }, + { + "start": 14305.98, + "end": 14306.54, + "probability": 0.024 + }, + { + "start": 14308.67, + "end": 14311.27, + "probability": 0.0858 + }, + { + "start": 14311.32, + "end": 14311.42, + "probability": 0.0913 + }, + { + "start": 14313.03, + "end": 14315.04, + "probability": 0.0186 + }, + { + "start": 14315.04, + "end": 14315.04, + "probability": 0.0447 + }, + { + "start": 14315.04, + "end": 14315.04, + "probability": 0.1546 + }, + { + "start": 14315.04, + "end": 14315.94, + "probability": 0.1623 + }, + { + "start": 14317.32, + "end": 14319.18, + "probability": 0.903 + }, + { + "start": 14319.72, + "end": 14322.26, + "probability": 0.9855 + }, + { + "start": 14322.8, + "end": 14324.88, + "probability": 0.9946 + }, + { + "start": 14325.16, + "end": 14327.9, + "probability": 0.9926 + }, + { + "start": 14328.16, + "end": 14332.76, + "probability": 0.9921 + }, + { + "start": 14333.3, + "end": 14336.9, + "probability": 0.897 + }, + { + "start": 14336.98, + "end": 14337.4, + "probability": 0.1253 + }, + { + "start": 14337.72, + "end": 14339.62, + "probability": 0.8583 + }, + { + "start": 14339.78, + "end": 14340.42, + "probability": 0.6459 + }, + { + "start": 14340.9, + "end": 14346.64, + "probability": 0.9706 + }, + { + "start": 14347.78, + "end": 14348.96, + "probability": 0.9771 + }, + { + "start": 14349.18, + "end": 14350.86, + "probability": 0.9947 + }, + { + "start": 14351.32, + "end": 14355.7, + "probability": 0.9955 + }, + { + "start": 14355.88, + "end": 14356.82, + "probability": 0.9332 + }, + { + "start": 14357.66, + "end": 14360.7, + "probability": 0.9706 + }, + { + "start": 14360.7, + "end": 14365.16, + "probability": 0.9663 + }, + { + "start": 14365.94, + "end": 14369.6, + "probability": 0.9973 + }, + { + "start": 14370.2, + "end": 14371.9, + "probability": 0.9387 + }, + { + "start": 14372.52, + "end": 14377.61, + "probability": 0.9841 + }, + { + "start": 14377.92, + "end": 14378.88, + "probability": 0.8896 + }, + { + "start": 14379.58, + "end": 14381.44, + "probability": 0.9945 + }, + { + "start": 14381.84, + "end": 14382.96, + "probability": 0.9142 + }, + { + "start": 14383.34, + "end": 14385.61, + "probability": 0.9728 + }, + { + "start": 14386.18, + "end": 14389.02, + "probability": 0.9896 + }, + { + "start": 14389.68, + "end": 14394.92, + "probability": 0.993 + }, + { + "start": 14395.36, + "end": 14398.4, + "probability": 0.9897 + }, + { + "start": 14399.06, + "end": 14401.06, + "probability": 0.9953 + }, + { + "start": 14401.66, + "end": 14402.78, + "probability": 0.9405 + }, + { + "start": 14403.08, + "end": 14406.48, + "probability": 0.9832 + }, + { + "start": 14407.42, + "end": 14408.1, + "probability": 0.7618 + }, + { + "start": 14408.72, + "end": 14409.44, + "probability": 0.9363 + }, + { + "start": 14409.98, + "end": 14411.54, + "probability": 0.8605 + }, + { + "start": 14412.94, + "end": 14413.74, + "probability": 0.9501 + }, + { + "start": 14413.92, + "end": 14415.78, + "probability": 0.892 + }, + { + "start": 14416.18, + "end": 14417.68, + "probability": 0.9973 + }, + { + "start": 14418.5, + "end": 14420.66, + "probability": 0.946 + }, + { + "start": 14421.16, + "end": 14423.12, + "probability": 0.7308 + }, + { + "start": 14423.54, + "end": 14425.46, + "probability": 0.9917 + }, + { + "start": 14425.92, + "end": 14429.3, + "probability": 0.9491 + }, + { + "start": 14429.3, + "end": 14432.38, + "probability": 0.9738 + }, + { + "start": 14433.04, + "end": 14435.78, + "probability": 0.9956 + }, + { + "start": 14436.38, + "end": 14438.8, + "probability": 0.9545 + }, + { + "start": 14439.34, + "end": 14439.74, + "probability": 0.8245 + }, + { + "start": 14440.18, + "end": 14443.84, + "probability": 0.9917 + }, + { + "start": 14444.5, + "end": 14445.48, + "probability": 0.9034 + }, + { + "start": 14445.7, + "end": 14448.96, + "probability": 0.9971 + }, + { + "start": 14449.68, + "end": 14450.24, + "probability": 0.479 + }, + { + "start": 14451.06, + "end": 14454.54, + "probability": 0.8606 + }, + { + "start": 14455.02, + "end": 14455.61, + "probability": 0.9219 + }, + { + "start": 14455.78, + "end": 14456.34, + "probability": 0.4387 + }, + { + "start": 14456.48, + "end": 14457.2, + "probability": 0.6595 + }, + { + "start": 14457.66, + "end": 14460.8, + "probability": 0.9749 + }, + { + "start": 14461.38, + "end": 14464.46, + "probability": 0.9922 + }, + { + "start": 14465.64, + "end": 14468.22, + "probability": 0.934 + }, + { + "start": 14469.52, + "end": 14470.26, + "probability": 0.7959 + }, + { + "start": 14472.24, + "end": 14477.28, + "probability": 0.9987 + }, + { + "start": 14478.0, + "end": 14481.68, + "probability": 0.9995 + }, + { + "start": 14482.74, + "end": 14484.1, + "probability": 0.8536 + }, + { + "start": 14485.38, + "end": 14488.62, + "probability": 0.9374 + }, + { + "start": 14489.84, + "end": 14492.16, + "probability": 0.9976 + }, + { + "start": 14492.78, + "end": 14493.94, + "probability": 0.9402 + }, + { + "start": 14494.66, + "end": 14498.06, + "probability": 0.9748 + }, + { + "start": 14499.24, + "end": 14501.56, + "probability": 0.9999 + }, + { + "start": 14502.38, + "end": 14506.06, + "probability": 0.9937 + }, + { + "start": 14506.58, + "end": 14506.86, + "probability": 0.8865 + }, + { + "start": 14508.04, + "end": 14509.14, + "probability": 0.7443 + }, + { + "start": 14509.28, + "end": 14511.04, + "probability": 0.8538 + }, + { + "start": 14511.82, + "end": 14513.04, + "probability": 0.8677 + }, + { + "start": 14515.36, + "end": 14517.14, + "probability": 0.4373 + }, + { + "start": 14531.76, + "end": 14532.86, + "probability": 0.6248 + }, + { + "start": 14533.38, + "end": 14534.2, + "probability": 0.6471 + }, + { + "start": 14536.56, + "end": 14540.34, + "probability": 0.9872 + }, + { + "start": 14540.64, + "end": 14541.63, + "probability": 0.9806 + }, + { + "start": 14542.94, + "end": 14544.92, + "probability": 0.9882 + }, + { + "start": 14545.72, + "end": 14548.88, + "probability": 0.9947 + }, + { + "start": 14550.0, + "end": 14551.5, + "probability": 0.9114 + }, + { + "start": 14552.7, + "end": 14554.08, + "probability": 0.7567 + }, + { + "start": 14555.02, + "end": 14557.22, + "probability": 0.7292 + }, + { + "start": 14558.5, + "end": 14561.98, + "probability": 0.951 + }, + { + "start": 14564.38, + "end": 14566.64, + "probability": 0.6968 + }, + { + "start": 14567.94, + "end": 14569.86, + "probability": 0.9008 + }, + { + "start": 14571.08, + "end": 14573.94, + "probability": 0.9806 + }, + { + "start": 14575.66, + "end": 14577.86, + "probability": 0.9829 + }, + { + "start": 14578.68, + "end": 14581.46, + "probability": 0.9944 + }, + { + "start": 14581.46, + "end": 14583.7, + "probability": 0.9991 + }, + { + "start": 14584.68, + "end": 14588.14, + "probability": 0.9976 + }, + { + "start": 14589.02, + "end": 14592.86, + "probability": 0.9475 + }, + { + "start": 14593.82, + "end": 14597.22, + "probability": 0.98 + }, + { + "start": 14598.36, + "end": 14600.7, + "probability": 0.998 + }, + { + "start": 14601.52, + "end": 14602.84, + "probability": 0.9749 + }, + { + "start": 14604.62, + "end": 14608.26, + "probability": 0.9697 + }, + { + "start": 14609.24, + "end": 14610.98, + "probability": 0.978 + }, + { + "start": 14611.66, + "end": 14612.72, + "probability": 0.9425 + }, + { + "start": 14613.5, + "end": 14615.32, + "probability": 0.9895 + }, + { + "start": 14615.96, + "end": 14616.94, + "probability": 0.9835 + }, + { + "start": 14617.9, + "end": 14620.58, + "probability": 0.998 + }, + { + "start": 14620.58, + "end": 14624.3, + "probability": 0.9958 + }, + { + "start": 14624.46, + "end": 14628.06, + "probability": 0.997 + }, + { + "start": 14628.68, + "end": 14628.8, + "probability": 0.5353 + }, + { + "start": 14628.86, + "end": 14633.02, + "probability": 0.9945 + }, + { + "start": 14633.6, + "end": 14637.18, + "probability": 0.8375 + }, + { + "start": 14637.86, + "end": 14638.7, + "probability": 0.946 + }, + { + "start": 14639.64, + "end": 14640.64, + "probability": 0.7708 + }, + { + "start": 14640.74, + "end": 14641.98, + "probability": 0.998 + }, + { + "start": 14642.56, + "end": 14643.58, + "probability": 0.9646 + }, + { + "start": 14644.22, + "end": 14645.82, + "probability": 0.9893 + }, + { + "start": 14645.86, + "end": 14646.68, + "probability": 0.5169 + }, + { + "start": 14647.18, + "end": 14647.46, + "probability": 0.5181 + }, + { + "start": 14647.46, + "end": 14648.76, + "probability": 0.9869 + }, + { + "start": 14649.8, + "end": 14650.88, + "probability": 0.9827 + }, + { + "start": 14652.06, + "end": 14654.42, + "probability": 0.9125 + }, + { + "start": 14655.58, + "end": 14656.56, + "probability": 0.7659 + }, + { + "start": 14657.54, + "end": 14658.7, + "probability": 0.9092 + }, + { + "start": 14659.5, + "end": 14660.88, + "probability": 0.6512 + }, + { + "start": 14661.5, + "end": 14662.76, + "probability": 0.9379 + }, + { + "start": 14663.44, + "end": 14665.06, + "probability": 0.9653 + }, + { + "start": 14665.84, + "end": 14667.64, + "probability": 0.8192 + }, + { + "start": 14668.14, + "end": 14672.16, + "probability": 0.9766 + }, + { + "start": 14672.23, + "end": 14675.26, + "probability": 0.9897 + }, + { + "start": 14676.64, + "end": 14678.26, + "probability": 0.8737 + }, + { + "start": 14678.96, + "end": 14679.84, + "probability": 0.8283 + }, + { + "start": 14680.62, + "end": 14683.84, + "probability": 0.9526 + }, + { + "start": 14683.92, + "end": 14684.54, + "probability": 0.7115 + }, + { + "start": 14684.98, + "end": 14686.66, + "probability": 0.9912 + }, + { + "start": 14687.26, + "end": 14688.96, + "probability": 0.9969 + }, + { + "start": 14689.56, + "end": 14690.97, + "probability": 0.9995 + }, + { + "start": 14691.44, + "end": 14695.36, + "probability": 0.9912 + }, + { + "start": 14695.76, + "end": 14696.2, + "probability": 0.4768 + }, + { + "start": 14696.54, + "end": 14697.44, + "probability": 0.7371 + }, + { + "start": 14697.78, + "end": 14698.82, + "probability": 0.859 + }, + { + "start": 14699.34, + "end": 14699.5, + "probability": 0.5598 + }, + { + "start": 14699.6, + "end": 14700.02, + "probability": 0.7166 + }, + { + "start": 14700.28, + "end": 14701.2, + "probability": 0.7566 + }, + { + "start": 14701.62, + "end": 14704.52, + "probability": 0.9732 + }, + { + "start": 14707.48, + "end": 14708.5, + "probability": 0.6508 + }, + { + "start": 14709.38, + "end": 14710.76, + "probability": 0.8668 + }, + { + "start": 14712.12, + "end": 14712.42, + "probability": 0.6205 + }, + { + "start": 14735.68, + "end": 14736.56, + "probability": 0.6781 + }, + { + "start": 14738.46, + "end": 14739.42, + "probability": 0.6985 + }, + { + "start": 14741.54, + "end": 14742.28, + "probability": 0.7011 + }, + { + "start": 14744.38, + "end": 14745.68, + "probability": 0.978 + }, + { + "start": 14747.34, + "end": 14747.84, + "probability": 0.8147 + }, + { + "start": 14748.8, + "end": 14750.34, + "probability": 0.7004 + }, + { + "start": 14751.4, + "end": 14752.74, + "probability": 0.9516 + }, + { + "start": 14754.88, + "end": 14758.14, + "probability": 0.9771 + }, + { + "start": 14759.58, + "end": 14763.26, + "probability": 0.9968 + }, + { + "start": 14764.34, + "end": 14767.5, + "probability": 0.8256 + }, + { + "start": 14768.62, + "end": 14769.62, + "probability": 0.7797 + }, + { + "start": 14770.32, + "end": 14771.94, + "probability": 0.7422 + }, + { + "start": 14772.92, + "end": 14774.97, + "probability": 0.9136 + }, + { + "start": 14776.16, + "end": 14777.78, + "probability": 0.9839 + }, + { + "start": 14779.0, + "end": 14779.86, + "probability": 0.948 + }, + { + "start": 14780.04, + "end": 14789.06, + "probability": 0.9663 + }, + { + "start": 14790.26, + "end": 14794.24, + "probability": 0.9987 + }, + { + "start": 14794.24, + "end": 14799.52, + "probability": 0.9337 + }, + { + "start": 14799.76, + "end": 14802.5, + "probability": 0.9164 + }, + { + "start": 14803.56, + "end": 14808.5, + "probability": 0.9512 + }, + { + "start": 14809.14, + "end": 14810.26, + "probability": 0.8815 + }, + { + "start": 14810.88, + "end": 14811.24, + "probability": 0.6945 + }, + { + "start": 14811.94, + "end": 14818.34, + "probability": 0.957 + }, + { + "start": 14819.24, + "end": 14820.43, + "probability": 0.9395 + }, + { + "start": 14821.14, + "end": 14829.08, + "probability": 0.9799 + }, + { + "start": 14830.06, + "end": 14830.84, + "probability": 0.5516 + }, + { + "start": 14831.76, + "end": 14837.98, + "probability": 0.8171 + }, + { + "start": 14838.44, + "end": 14839.16, + "probability": 0.4676 + }, + { + "start": 14840.28, + "end": 14842.52, + "probability": 0.9899 + }, + { + "start": 14843.42, + "end": 14848.52, + "probability": 0.9279 + }, + { + "start": 14849.56, + "end": 14854.44, + "probability": 0.9982 + }, + { + "start": 14854.86, + "end": 14858.84, + "probability": 0.7521 + }, + { + "start": 14860.22, + "end": 14864.44, + "probability": 0.9515 + }, + { + "start": 14866.1, + "end": 14870.82, + "probability": 0.9229 + }, + { + "start": 14871.78, + "end": 14876.94, + "probability": 0.9932 + }, + { + "start": 14877.92, + "end": 14879.2, + "probability": 0.9995 + }, + { + "start": 14879.92, + "end": 14881.44, + "probability": 0.9826 + }, + { + "start": 14881.98, + "end": 14885.48, + "probability": 0.8802 + }, + { + "start": 14886.66, + "end": 14889.84, + "probability": 0.9943 + }, + { + "start": 14890.64, + "end": 14891.84, + "probability": 0.833 + }, + { + "start": 14892.56, + "end": 14893.34, + "probability": 0.8475 + }, + { + "start": 14894.6, + "end": 14898.54, + "probability": 0.9824 + }, + { + "start": 14899.74, + "end": 14903.84, + "probability": 0.9872 + }, + { + "start": 14904.36, + "end": 14909.52, + "probability": 0.8587 + }, + { + "start": 14909.66, + "end": 14916.26, + "probability": 0.7842 + }, + { + "start": 14917.0, + "end": 14919.88, + "probability": 0.5838 + }, + { + "start": 14921.02, + "end": 14923.9, + "probability": 0.9844 + }, + { + "start": 14924.52, + "end": 14927.26, + "probability": 0.8962 + }, + { + "start": 14927.84, + "end": 14933.38, + "probability": 0.892 + }, + { + "start": 14934.34, + "end": 14936.18, + "probability": 0.8188 + }, + { + "start": 14937.06, + "end": 14939.14, + "probability": 0.5123 + }, + { + "start": 14940.42, + "end": 14943.64, + "probability": 0.8392 + }, + { + "start": 14944.04, + "end": 14945.78, + "probability": 0.8259 + }, + { + "start": 14946.12, + "end": 14950.58, + "probability": 0.832 + }, + { + "start": 14951.08, + "end": 14951.74, + "probability": 0.804 + }, + { + "start": 14952.1, + "end": 14957.9, + "probability": 0.881 + }, + { + "start": 14958.5, + "end": 14962.54, + "probability": 0.9982 + }, + { + "start": 14963.08, + "end": 14970.7, + "probability": 0.9915 + }, + { + "start": 14971.14, + "end": 14973.44, + "probability": 0.9109 + }, + { + "start": 14973.86, + "end": 14975.5, + "probability": 0.7477 + }, + { + "start": 14975.82, + "end": 14976.34, + "probability": 0.954 + }, + { + "start": 14976.78, + "end": 14977.34, + "probability": 0.9339 + }, + { + "start": 14977.86, + "end": 14983.12, + "probability": 0.953 + }, + { + "start": 14984.54, + "end": 14986.8, + "probability": 0.9941 + }, + { + "start": 14987.38, + "end": 14990.42, + "probability": 0.8912 + }, + { + "start": 14991.0, + "end": 14991.68, + "probability": 0.7087 + }, + { + "start": 14991.94, + "end": 14993.14, + "probability": 0.9177 + }, + { + "start": 14993.54, + "end": 14998.66, + "probability": 0.9591 + }, + { + "start": 14999.2, + "end": 15005.0, + "probability": 0.9774 + }, + { + "start": 15005.02, + "end": 15013.6, + "probability": 0.9768 + }, + { + "start": 15014.12, + "end": 15015.12, + "probability": 0.398 + }, + { + "start": 15015.62, + "end": 15021.26, + "probability": 0.9963 + }, + { + "start": 15021.86, + "end": 15024.48, + "probability": 0.9977 + }, + { + "start": 15025.0, + "end": 15030.12, + "probability": 0.7062 + }, + { + "start": 15030.74, + "end": 15031.86, + "probability": 0.7169 + }, + { + "start": 15032.42, + "end": 15041.4, + "probability": 0.9597 + }, + { + "start": 15042.4, + "end": 15048.14, + "probability": 0.9771 + }, + { + "start": 15048.18, + "end": 15048.6, + "probability": 0.5246 + }, + { + "start": 15048.66, + "end": 15054.34, + "probability": 0.9532 + }, + { + "start": 15055.26, + "end": 15058.04, + "probability": 0.9049 + }, + { + "start": 15058.64, + "end": 15062.88, + "probability": 0.9767 + }, + { + "start": 15063.14, + "end": 15064.02, + "probability": 0.8228 + }, + { + "start": 15064.56, + "end": 15066.94, + "probability": 0.5261 + }, + { + "start": 15067.46, + "end": 15069.7, + "probability": 0.9919 + }, + { + "start": 15070.44, + "end": 15070.6, + "probability": 0.8694 + }, + { + "start": 15071.42, + "end": 15072.18, + "probability": 0.6086 + }, + { + "start": 15073.66, + "end": 15075.0, + "probability": 0.9197 + }, + { + "start": 15075.54, + "end": 15075.98, + "probability": 0.8279 + }, + { + "start": 15088.58, + "end": 15089.1, + "probability": 0.5369 + }, + { + "start": 15090.12, + "end": 15091.12, + "probability": 0.5319 + }, + { + "start": 15091.96, + "end": 15092.32, + "probability": 0.5153 + }, + { + "start": 15092.68, + "end": 15093.38, + "probability": 0.842 + }, + { + "start": 15093.52, + "end": 15095.52, + "probability": 0.9871 + }, + { + "start": 15095.6, + "end": 15096.38, + "probability": 0.8641 + }, + { + "start": 15096.64, + "end": 15099.3, + "probability": 0.9956 + }, + { + "start": 15099.38, + "end": 15100.24, + "probability": 0.9382 + }, + { + "start": 15100.36, + "end": 15101.47, + "probability": 0.9946 + }, + { + "start": 15102.96, + "end": 15103.08, + "probability": 0.0923 + }, + { + "start": 15103.08, + "end": 15104.28, + "probability": 0.9122 + }, + { + "start": 15104.34, + "end": 15106.08, + "probability": 0.9548 + }, + { + "start": 15108.4, + "end": 15109.56, + "probability": 0.5976 + }, + { + "start": 15110.1, + "end": 15111.1, + "probability": 0.6864 + }, + { + "start": 15111.18, + "end": 15111.52, + "probability": 0.0445 + }, + { + "start": 15113.46, + "end": 15114.24, + "probability": 0.6354 + }, + { + "start": 15115.28, + "end": 15121.16, + "probability": 0.9867 + }, + { + "start": 15122.24, + "end": 15127.44, + "probability": 0.9733 + }, + { + "start": 15128.54, + "end": 15131.3, + "probability": 0.9966 + }, + { + "start": 15131.8, + "end": 15132.86, + "probability": 0.9873 + }, + { + "start": 15133.52, + "end": 15136.06, + "probability": 0.962 + }, + { + "start": 15137.18, + "end": 15139.02, + "probability": 0.8782 + }, + { + "start": 15139.62, + "end": 15141.52, + "probability": 0.9529 + }, + { + "start": 15142.32, + "end": 15143.29, + "probability": 0.8955 + }, + { + "start": 15144.12, + "end": 15144.4, + "probability": 0.64 + }, + { + "start": 15144.48, + "end": 15147.64, + "probability": 0.9736 + }, + { + "start": 15147.88, + "end": 15149.16, + "probability": 0.9989 + }, + { + "start": 15149.3, + "end": 15150.44, + "probability": 0.9938 + }, + { + "start": 15151.52, + "end": 15154.7, + "probability": 0.9342 + }, + { + "start": 15155.42, + "end": 15158.14, + "probability": 0.7084 + }, + { + "start": 15158.62, + "end": 15162.42, + "probability": 0.9951 + }, + { + "start": 15162.42, + "end": 15165.9, + "probability": 0.9982 + }, + { + "start": 15166.44, + "end": 15167.58, + "probability": 0.9459 + }, + { + "start": 15169.48, + "end": 15174.48, + "probability": 0.9983 + }, + { + "start": 15175.24, + "end": 15178.94, + "probability": 0.9963 + }, + { + "start": 15179.74, + "end": 15181.24, + "probability": 0.998 + }, + { + "start": 15181.32, + "end": 15182.34, + "probability": 0.9313 + }, + { + "start": 15183.24, + "end": 15184.94, + "probability": 0.9798 + }, + { + "start": 15185.92, + "end": 15186.72, + "probability": 0.8452 + }, + { + "start": 15187.98, + "end": 15191.86, + "probability": 0.7913 + }, + { + "start": 15193.4, + "end": 15197.32, + "probability": 0.9649 + }, + { + "start": 15199.5, + "end": 15204.0, + "probability": 0.7716 + }, + { + "start": 15205.1, + "end": 15207.7, + "probability": 0.9937 + }, + { + "start": 15208.5, + "end": 15210.42, + "probability": 0.9963 + }, + { + "start": 15211.3, + "end": 15212.54, + "probability": 0.975 + }, + { + "start": 15213.5, + "end": 15215.03, + "probability": 0.9946 + }, + { + "start": 15215.56, + "end": 15216.82, + "probability": 0.9852 + }, + { + "start": 15217.74, + "end": 15220.6, + "probability": 0.9901 + }, + { + "start": 15221.2, + "end": 15223.67, + "probability": 0.9972 + }, + { + "start": 15224.36, + "end": 15227.22, + "probability": 0.8301 + }, + { + "start": 15228.36, + "end": 15231.78, + "probability": 0.9933 + }, + { + "start": 15232.58, + "end": 15233.3, + "probability": 0.9017 + }, + { + "start": 15234.66, + "end": 15235.62, + "probability": 0.989 + }, + { + "start": 15236.32, + "end": 15240.5, + "probability": 0.9956 + }, + { + "start": 15241.12, + "end": 15242.22, + "probability": 0.9971 + }, + { + "start": 15244.02, + "end": 15244.62, + "probability": 0.5863 + }, + { + "start": 15245.26, + "end": 15246.46, + "probability": 0.9771 + }, + { + "start": 15247.22, + "end": 15248.46, + "probability": 0.9514 + }, + { + "start": 15249.16, + "end": 15250.32, + "probability": 0.999 + }, + { + "start": 15251.74, + "end": 15259.74, + "probability": 0.9885 + }, + { + "start": 15260.68, + "end": 15265.52, + "probability": 0.9905 + }, + { + "start": 15266.98, + "end": 15269.76, + "probability": 0.9584 + }, + { + "start": 15271.68, + "end": 15276.1, + "probability": 0.999 + }, + { + "start": 15277.22, + "end": 15280.28, + "probability": 0.9975 + }, + { + "start": 15281.26, + "end": 15284.32, + "probability": 0.9538 + }, + { + "start": 15285.42, + "end": 15286.76, + "probability": 0.9197 + }, + { + "start": 15287.34, + "end": 15288.02, + "probability": 0.8608 + }, + { + "start": 15288.86, + "end": 15290.96, + "probability": 0.9979 + }, + { + "start": 15291.8, + "end": 15292.94, + "probability": 0.9961 + }, + { + "start": 15293.6, + "end": 15294.3, + "probability": 0.9873 + }, + { + "start": 15295.76, + "end": 15296.92, + "probability": 0.9767 + }, + { + "start": 15297.02, + "end": 15297.22, + "probability": 0.8712 + }, + { + "start": 15297.42, + "end": 15298.9, + "probability": 0.9648 + }, + { + "start": 15298.96, + "end": 15299.8, + "probability": 0.9963 + }, + { + "start": 15300.62, + "end": 15302.94, + "probability": 0.9756 + }, + { + "start": 15304.24, + "end": 15305.46, + "probability": 0.9632 + }, + { + "start": 15306.78, + "end": 15308.78, + "probability": 0.9519 + }, + { + "start": 15309.58, + "end": 15311.15, + "probability": 0.9964 + }, + { + "start": 15312.14, + "end": 15313.22, + "probability": 0.7618 + }, + { + "start": 15314.24, + "end": 15317.74, + "probability": 0.9848 + }, + { + "start": 15318.68, + "end": 15321.52, + "probability": 0.941 + }, + { + "start": 15321.72, + "end": 15322.6, + "probability": 0.8833 + }, + { + "start": 15322.68, + "end": 15323.2, + "probability": 0.9056 + }, + { + "start": 15323.92, + "end": 15325.04, + "probability": 0.9619 + }, + { + "start": 15325.62, + "end": 15326.96, + "probability": 0.9983 + }, + { + "start": 15328.56, + "end": 15329.4, + "probability": 0.8665 + }, + { + "start": 15329.5, + "end": 15333.24, + "probability": 0.9967 + }, + { + "start": 15333.66, + "end": 15335.52, + "probability": 0.8878 + }, + { + "start": 15336.02, + "end": 15336.47, + "probability": 0.8593 + }, + { + "start": 15336.74, + "end": 15337.46, + "probability": 0.9586 + }, + { + "start": 15337.54, + "end": 15338.36, + "probability": 0.9929 + }, + { + "start": 15339.64, + "end": 15341.52, + "probability": 0.8655 + }, + { + "start": 15342.28, + "end": 15344.2, + "probability": 0.6928 + }, + { + "start": 15344.98, + "end": 15346.18, + "probability": 0.8618 + }, + { + "start": 15346.82, + "end": 15348.74, + "probability": 0.9971 + }, + { + "start": 15349.48, + "end": 15352.92, + "probability": 0.9702 + }, + { + "start": 15353.74, + "end": 15356.82, + "probability": 0.9889 + }, + { + "start": 15369.0, + "end": 15369.26, + "probability": 0.1153 + }, + { + "start": 15369.26, + "end": 15369.26, + "probability": 0.0452 + }, + { + "start": 15369.26, + "end": 15370.12, + "probability": 0.1041 + }, + { + "start": 15370.66, + "end": 15371.56, + "probability": 0.8177 + }, + { + "start": 15372.18, + "end": 15373.46, + "probability": 0.7015 + }, + { + "start": 15373.9, + "end": 15374.7, + "probability": 0.9344 + }, + { + "start": 15374.82, + "end": 15375.34, + "probability": 0.5878 + }, + { + "start": 15376.26, + "end": 15378.1, + "probability": 0.983 + }, + { + "start": 15378.68, + "end": 15380.88, + "probability": 0.924 + }, + { + "start": 15381.44, + "end": 15383.18, + "probability": 0.7935 + }, + { + "start": 15398.4, + "end": 15400.16, + "probability": 0.7078 + }, + { + "start": 15401.62, + "end": 15404.92, + "probability": 0.9844 + }, + { + "start": 15404.92, + "end": 15408.44, + "probability": 0.998 + }, + { + "start": 15408.96, + "end": 15411.1, + "probability": 0.9966 + }, + { + "start": 15412.42, + "end": 15414.62, + "probability": 0.981 + }, + { + "start": 15414.76, + "end": 15419.46, + "probability": 0.9612 + }, + { + "start": 15420.0, + "end": 15420.98, + "probability": 0.7384 + }, + { + "start": 15421.78, + "end": 15426.48, + "probability": 0.9063 + }, + { + "start": 15428.42, + "end": 15431.36, + "probability": 0.9167 + }, + { + "start": 15432.2, + "end": 15433.82, + "probability": 0.9961 + }, + { + "start": 15434.82, + "end": 15436.32, + "probability": 0.9402 + }, + { + "start": 15437.38, + "end": 15439.48, + "probability": 0.8599 + }, + { + "start": 15440.72, + "end": 15446.72, + "probability": 0.9976 + }, + { + "start": 15447.52, + "end": 15449.38, + "probability": 0.9995 + }, + { + "start": 15450.6, + "end": 15452.9, + "probability": 0.9924 + }, + { + "start": 15454.42, + "end": 15455.96, + "probability": 0.9982 + }, + { + "start": 15456.54, + "end": 15458.44, + "probability": 0.9938 + }, + { + "start": 15459.54, + "end": 15463.38, + "probability": 0.8757 + }, + { + "start": 15464.4, + "end": 15466.3, + "probability": 0.9982 + }, + { + "start": 15467.06, + "end": 15473.3, + "probability": 0.997 + }, + { + "start": 15474.12, + "end": 15475.28, + "probability": 0.9683 + }, + { + "start": 15477.18, + "end": 15478.7, + "probability": 0.9961 + }, + { + "start": 15479.6, + "end": 15485.34, + "probability": 0.9816 + }, + { + "start": 15486.82, + "end": 15488.02, + "probability": 0.9665 + }, + { + "start": 15489.18, + "end": 15490.72, + "probability": 0.9813 + }, + { + "start": 15491.56, + "end": 15493.02, + "probability": 0.9954 + }, + { + "start": 15493.58, + "end": 15495.46, + "probability": 0.9819 + }, + { + "start": 15496.26, + "end": 15500.06, + "probability": 0.9941 + }, + { + "start": 15501.06, + "end": 15502.18, + "probability": 0.9766 + }, + { + "start": 15502.36, + "end": 15503.54, + "probability": 0.9777 + }, + { + "start": 15503.76, + "end": 15504.7, + "probability": 0.9704 + }, + { + "start": 15505.68, + "end": 15507.28, + "probability": 0.9904 + }, + { + "start": 15507.8, + "end": 15509.64, + "probability": 0.9972 + }, + { + "start": 15509.86, + "end": 15513.98, + "probability": 0.9673 + }, + { + "start": 15514.64, + "end": 15517.36, + "probability": 0.8871 + }, + { + "start": 15518.5, + "end": 15519.48, + "probability": 0.8023 + }, + { + "start": 15520.04, + "end": 15522.92, + "probability": 0.9849 + }, + { + "start": 15523.54, + "end": 15526.48, + "probability": 0.9982 + }, + { + "start": 15526.48, + "end": 15529.56, + "probability": 0.9604 + }, + { + "start": 15530.28, + "end": 15533.24, + "probability": 0.998 + }, + { + "start": 15533.86, + "end": 15536.92, + "probability": 0.9991 + }, + { + "start": 15538.34, + "end": 15540.12, + "probability": 0.8578 + }, + { + "start": 15540.98, + "end": 15545.46, + "probability": 0.8664 + }, + { + "start": 15546.2, + "end": 15549.72, + "probability": 0.9678 + }, + { + "start": 15550.54, + "end": 15556.64, + "probability": 0.999 + }, + { + "start": 15557.78, + "end": 15561.8, + "probability": 0.9956 + }, + { + "start": 15562.54, + "end": 15565.22, + "probability": 0.9943 + }, + { + "start": 15566.34, + "end": 15571.52, + "probability": 0.9834 + }, + { + "start": 15572.46, + "end": 15574.32, + "probability": 0.7629 + }, + { + "start": 15575.08, + "end": 15577.64, + "probability": 0.9568 + }, + { + "start": 15578.66, + "end": 15585.64, + "probability": 0.9541 + }, + { + "start": 15586.36, + "end": 15590.42, + "probability": 0.9849 + }, + { + "start": 15590.84, + "end": 15591.28, + "probability": 0.8623 + }, + { + "start": 15593.84, + "end": 15594.96, + "probability": 0.6392 + }, + { + "start": 15596.38, + "end": 15599.16, + "probability": 0.9077 + }, + { + "start": 15619.18, + "end": 15620.08, + "probability": 0.5739 + }, + { + "start": 15621.2, + "end": 15622.24, + "probability": 0.7878 + }, + { + "start": 15623.6, + "end": 15624.68, + "probability": 0.9979 + }, + { + "start": 15625.6, + "end": 15627.56, + "probability": 0.98 + }, + { + "start": 15628.92, + "end": 15630.66, + "probability": 0.9807 + }, + { + "start": 15631.62, + "end": 15634.94, + "probability": 0.823 + }, + { + "start": 15636.26, + "end": 15638.5, + "probability": 0.9829 + }, + { + "start": 15639.24, + "end": 15643.14, + "probability": 0.9958 + }, + { + "start": 15644.02, + "end": 15646.5, + "probability": 0.9847 + }, + { + "start": 15648.04, + "end": 15648.66, + "probability": 0.9396 + }, + { + "start": 15649.62, + "end": 15652.14, + "probability": 0.9841 + }, + { + "start": 15653.58, + "end": 15655.18, + "probability": 0.999 + }, + { + "start": 15656.92, + "end": 15659.06, + "probability": 0.9868 + }, + { + "start": 15659.6, + "end": 15660.76, + "probability": 0.8348 + }, + { + "start": 15661.82, + "end": 15663.94, + "probability": 0.6499 + }, + { + "start": 15664.58, + "end": 15668.1, + "probability": 0.9849 + }, + { + "start": 15668.9, + "end": 15670.88, + "probability": 0.9229 + }, + { + "start": 15672.1, + "end": 15674.38, + "probability": 0.891 + }, + { + "start": 15675.84, + "end": 15680.38, + "probability": 0.9772 + }, + { + "start": 15681.04, + "end": 15682.12, + "probability": 0.9972 + }, + { + "start": 15683.02, + "end": 15685.48, + "probability": 0.9094 + }, + { + "start": 15686.38, + "end": 15687.28, + "probability": 0.5878 + }, + { + "start": 15688.14, + "end": 15689.06, + "probability": 0.5768 + }, + { + "start": 15689.76, + "end": 15690.64, + "probability": 0.6022 + }, + { + "start": 15691.96, + "end": 15692.8, + "probability": 0.9518 + }, + { + "start": 15693.44, + "end": 15693.54, + "probability": 0.9904 + }, + { + "start": 15694.08, + "end": 15696.13, + "probability": 0.9795 + }, + { + "start": 15697.66, + "end": 15700.78, + "probability": 0.7947 + }, + { + "start": 15701.92, + "end": 15707.02, + "probability": 0.9037 + }, + { + "start": 15708.02, + "end": 15710.42, + "probability": 0.5365 + }, + { + "start": 15711.04, + "end": 15714.86, + "probability": 0.8006 + }, + { + "start": 15715.94, + "end": 15718.92, + "probability": 0.9701 + }, + { + "start": 15719.72, + "end": 15723.84, + "probability": 0.8369 + }, + { + "start": 15724.08, + "end": 15725.8, + "probability": 0.5207 + }, + { + "start": 15726.68, + "end": 15731.68, + "probability": 0.9564 + }, + { + "start": 15733.12, + "end": 15738.64, + "probability": 0.7478 + }, + { + "start": 15740.52, + "end": 15743.58, + "probability": 0.8748 + }, + { + "start": 15745.14, + "end": 15745.52, + "probability": 0.0987 + }, + { + "start": 15745.52, + "end": 15749.44, + "probability": 0.9212 + }, + { + "start": 15750.66, + "end": 15756.28, + "probability": 0.6081 + }, + { + "start": 15756.28, + "end": 15761.92, + "probability": 0.5393 + }, + { + "start": 15763.88, + "end": 15767.68, + "probability": 0.6645 + }, + { + "start": 15769.96, + "end": 15773.08, + "probability": 0.8402 + }, + { + "start": 15773.8, + "end": 15777.02, + "probability": 0.8273 + }, + { + "start": 15777.64, + "end": 15779.96, + "probability": 0.957 + }, + { + "start": 15780.64, + "end": 15782.99, + "probability": 0.9673 + }, + { + "start": 15783.86, + "end": 15785.72, + "probability": 0.4769 + }, + { + "start": 15785.82, + "end": 15788.62, + "probability": 0.5039 + }, + { + "start": 15788.66, + "end": 15789.72, + "probability": 0.6591 + }, + { + "start": 15790.92, + "end": 15799.06, + "probability": 0.9095 + }, + { + "start": 15800.26, + "end": 15801.4, + "probability": 0.8569 + }, + { + "start": 15802.36, + "end": 15809.04, + "probability": 0.9868 + }, + { + "start": 15810.1, + "end": 15814.35, + "probability": 0.382 + }, + { + "start": 15815.14, + "end": 15818.36, + "probability": 0.8149 + }, + { + "start": 15818.9, + "end": 15822.48, + "probability": 0.9618 + }, + { + "start": 15822.48, + "end": 15826.21, + "probability": 0.885 + }, + { + "start": 15828.76, + "end": 15828.76, + "probability": 0.0972 + }, + { + "start": 15828.76, + "end": 15832.16, + "probability": 0.661 + }, + { + "start": 15833.26, + "end": 15836.98, + "probability": 0.9266 + }, + { + "start": 15837.84, + "end": 15845.34, + "probability": 0.5241 + }, + { + "start": 15845.88, + "end": 15848.06, + "probability": 0.8477 + }, + { + "start": 15849.42, + "end": 15853.02, + "probability": 0.9946 + }, + { + "start": 15853.22, + "end": 15854.26, + "probability": 0.7714 + }, + { + "start": 15855.22, + "end": 15856.78, + "probability": 0.2856 + }, + { + "start": 15858.16, + "end": 15862.24, + "probability": 0.9442 + }, + { + "start": 15863.34, + "end": 15864.42, + "probability": 0.9873 + }, + { + "start": 15865.02, + "end": 15870.18, + "probability": 0.6043 + }, + { + "start": 15870.7, + "end": 15876.86, + "probability": 0.8676 + }, + { + "start": 15878.1, + "end": 15884.26, + "probability": 0.9924 + }, + { + "start": 15885.52, + "end": 15889.27, + "probability": 0.9886 + }, + { + "start": 15890.72, + "end": 15893.84, + "probability": 0.8988 + }, + { + "start": 15893.84, + "end": 15897.26, + "probability": 0.9925 + }, + { + "start": 15897.94, + "end": 15901.74, + "probability": 0.9747 + }, + { + "start": 15902.62, + "end": 15902.98, + "probability": 0.9586 + }, + { + "start": 15903.12, + "end": 15906.16, + "probability": 0.9081 + }, + { + "start": 15906.58, + "end": 15911.1, + "probability": 0.5532 + }, + { + "start": 15911.66, + "end": 15918.1, + "probability": 0.9949 + }, + { + "start": 15919.04, + "end": 15920.64, + "probability": 0.9922 + }, + { + "start": 15921.22, + "end": 15923.08, + "probability": 0.7939 + }, + { + "start": 15923.6, + "end": 15924.74, + "probability": 0.7595 + }, + { + "start": 15925.94, + "end": 15932.88, + "probability": 0.9964 + }, + { + "start": 15933.88, + "end": 15936.36, + "probability": 0.7479 + }, + { + "start": 15937.46, + "end": 15944.0, + "probability": 0.6889 + }, + { + "start": 15944.0, + "end": 15950.38, + "probability": 0.9985 + }, + { + "start": 15951.18, + "end": 15957.0, + "probability": 0.9904 + }, + { + "start": 15957.0, + "end": 15964.1, + "probability": 0.9935 + }, + { + "start": 15964.44, + "end": 15969.14, + "probability": 0.7422 + }, + { + "start": 15969.32, + "end": 15970.54, + "probability": 0.9362 + }, + { + "start": 15971.12, + "end": 15973.76, + "probability": 0.7908 + }, + { + "start": 15974.4, + "end": 15978.3, + "probability": 0.9899 + }, + { + "start": 15979.68, + "end": 15981.86, + "probability": 0.7434 + }, + { + "start": 15983.24, + "end": 15985.46, + "probability": 0.9941 + }, + { + "start": 15986.64, + "end": 15988.3, + "probability": 0.9798 + }, + { + "start": 15989.62, + "end": 15993.48, + "probability": 0.9569 + }, + { + "start": 15994.4, + "end": 15994.68, + "probability": 0.9476 + }, + { + "start": 15994.84, + "end": 15998.92, + "probability": 0.6989 + }, + { + "start": 15999.58, + "end": 16002.22, + "probability": 0.9434 + }, + { + "start": 16003.16, + "end": 16008.68, + "probability": 0.9902 + }, + { + "start": 16009.2, + "end": 16013.76, + "probability": 0.9738 + }, + { + "start": 16014.36, + "end": 16016.48, + "probability": 0.7847 + }, + { + "start": 16016.9, + "end": 16020.98, + "probability": 0.9741 + }, + { + "start": 16022.16, + "end": 16025.06, + "probability": 0.7875 + }, + { + "start": 16025.82, + "end": 16030.1, + "probability": 0.9866 + }, + { + "start": 16030.72, + "end": 16034.38, + "probability": 0.9878 + }, + { + "start": 16034.74, + "end": 16035.72, + "probability": 0.9818 + }, + { + "start": 16036.38, + "end": 16038.5, + "probability": 0.823 + }, + { + "start": 16039.08, + "end": 16042.5, + "probability": 0.9725 + }, + { + "start": 16042.7, + "end": 16046.28, + "probability": 0.8542 + }, + { + "start": 16046.9, + "end": 16051.86, + "probability": 0.8112 + }, + { + "start": 16051.86, + "end": 16056.58, + "probability": 0.8741 + }, + { + "start": 16057.26, + "end": 16060.38, + "probability": 0.9886 + }, + { + "start": 16060.48, + "end": 16065.08, + "probability": 0.8354 + }, + { + "start": 16065.68, + "end": 16067.22, + "probability": 0.76 + }, + { + "start": 16067.4, + "end": 16070.58, + "probability": 0.8585 + }, + { + "start": 16071.26, + "end": 16072.82, + "probability": 0.9736 + }, + { + "start": 16073.5, + "end": 16078.48, + "probability": 0.8493 + }, + { + "start": 16079.26, + "end": 16083.8, + "probability": 0.893 + }, + { + "start": 16084.72, + "end": 16086.24, + "probability": 0.8888 + }, + { + "start": 16087.2, + "end": 16090.56, + "probability": 0.9289 + }, + { + "start": 16093.56, + "end": 16098.44, + "probability": 0.9901 + }, + { + "start": 16098.44, + "end": 16103.16, + "probability": 0.9783 + }, + { + "start": 16104.06, + "end": 16108.14, + "probability": 0.929 + }, + { + "start": 16109.3, + "end": 16110.42, + "probability": 0.8694 + }, + { + "start": 16111.08, + "end": 16112.12, + "probability": 0.9007 + }, + { + "start": 16112.98, + "end": 16114.2, + "probability": 0.9569 + }, + { + "start": 16114.9, + "end": 16120.7, + "probability": 0.9889 + }, + { + "start": 16121.58, + "end": 16122.9, + "probability": 0.9199 + }, + { + "start": 16123.92, + "end": 16128.38, + "probability": 0.9826 + }, + { + "start": 16128.38, + "end": 16137.82, + "probability": 0.3825 + }, + { + "start": 16138.64, + "end": 16143.04, + "probability": 0.9529 + }, + { + "start": 16143.6, + "end": 16144.84, + "probability": 0.856 + }, + { + "start": 16145.2, + "end": 16150.42, + "probability": 0.9928 + }, + { + "start": 16151.5, + "end": 16155.35, + "probability": 0.9614 + }, + { + "start": 16156.46, + "end": 16157.7, + "probability": 0.6353 + }, + { + "start": 16158.28, + "end": 16160.24, + "probability": 0.7936 + }, + { + "start": 16161.46, + "end": 16165.18, + "probability": 0.9894 + }, + { + "start": 16165.64, + "end": 16170.5, + "probability": 0.6837 + }, + { + "start": 16171.58, + "end": 16173.32, + "probability": 0.79 + }, + { + "start": 16174.22, + "end": 16179.02, + "probability": 0.9824 + }, + { + "start": 16179.64, + "end": 16181.5, + "probability": 0.9702 + }, + { + "start": 16182.08, + "end": 16183.14, + "probability": 0.7748 + }, + { + "start": 16183.98, + "end": 16187.4, + "probability": 0.9542 + }, + { + "start": 16189.08, + "end": 16192.98, + "probability": 0.8655 + }, + { + "start": 16194.3, + "end": 16196.4, + "probability": 0.5905 + }, + { + "start": 16198.0, + "end": 16203.04, + "probability": 0.9942 + }, + { + "start": 16203.82, + "end": 16205.22, + "probability": 0.5474 + }, + { + "start": 16205.8, + "end": 16207.54, + "probability": 0.7249 + }, + { + "start": 16208.14, + "end": 16209.92, + "probability": 0.7509 + }, + { + "start": 16211.1, + "end": 16213.3, + "probability": 0.9881 + }, + { + "start": 16214.78, + "end": 16218.1, + "probability": 0.9859 + }, + { + "start": 16218.6, + "end": 16220.4, + "probability": 0.9565 + }, + { + "start": 16222.0, + "end": 16226.54, + "probability": 0.9571 + }, + { + "start": 16227.52, + "end": 16231.12, + "probability": 0.6577 + }, + { + "start": 16231.7, + "end": 16233.8, + "probability": 0.8495 + }, + { + "start": 16234.26, + "end": 16236.08, + "probability": 0.9742 + }, + { + "start": 16236.54, + "end": 16237.76, + "probability": 0.9637 + }, + { + "start": 16238.26, + "end": 16242.46, + "probability": 0.9606 + }, + { + "start": 16243.56, + "end": 16248.06, + "probability": 0.9891 + }, + { + "start": 16248.84, + "end": 16250.56, + "probability": 0.953 + }, + { + "start": 16251.46, + "end": 16253.36, + "probability": 0.9995 + }, + { + "start": 16254.26, + "end": 16256.66, + "probability": 0.9987 + }, + { + "start": 16257.38, + "end": 16258.84, + "probability": 0.6071 + }, + { + "start": 16261.44, + "end": 16265.52, + "probability": 0.6306 + }, + { + "start": 16266.96, + "end": 16267.14, + "probability": 0.3331 + }, + { + "start": 16268.94, + "end": 16270.9, + "probability": 0.5915 + }, + { + "start": 16271.0, + "end": 16274.18, + "probability": 0.716 + }, + { + "start": 16274.58, + "end": 16277.12, + "probability": 0.8359 + }, + { + "start": 16278.02, + "end": 16279.76, + "probability": 0.1744 + }, + { + "start": 16280.62, + "end": 16284.48, + "probability": 0.4252 + }, + { + "start": 16285.04, + "end": 16288.2, + "probability": 0.3829 + }, + { + "start": 16288.28, + "end": 16289.62, + "probability": 0.0739 + }, + { + "start": 16289.7, + "end": 16290.64, + "probability": 0.8343 + }, + { + "start": 16290.7, + "end": 16293.18, + "probability": 0.9409 + }, + { + "start": 16293.76, + "end": 16300.52, + "probability": 0.8086 + }, + { + "start": 16300.56, + "end": 16302.52, + "probability": 0.9166 + }, + { + "start": 16303.2, + "end": 16305.34, + "probability": 0.7295 + }, + { + "start": 16305.98, + "end": 16310.66, + "probability": 0.8975 + }, + { + "start": 16310.82, + "end": 16315.25, + "probability": 0.8103 + }, + { + "start": 16315.74, + "end": 16316.92, + "probability": 0.8804 + }, + { + "start": 16317.96, + "end": 16319.95, + "probability": 0.984 + }, + { + "start": 16320.84, + "end": 16322.52, + "probability": 0.4482 + }, + { + "start": 16323.26, + "end": 16331.4, + "probability": 0.9246 + }, + { + "start": 16332.14, + "end": 16337.76, + "probability": 0.9973 + }, + { + "start": 16338.32, + "end": 16338.72, + "probability": 0.7733 + }, + { + "start": 16338.9, + "end": 16340.74, + "probability": 0.9961 + }, + { + "start": 16341.46, + "end": 16342.0, + "probability": 0.9077 + }, + { + "start": 16343.86, + "end": 16346.24, + "probability": 0.9621 + }, + { + "start": 16359.26, + "end": 16361.05, + "probability": 0.5385 + }, + { + "start": 16364.66, + "end": 16365.66, + "probability": 0.6619 + }, + { + "start": 16369.77, + "end": 16374.94, + "probability": 0.998 + }, + { + "start": 16375.7, + "end": 16378.8, + "probability": 0.9844 + }, + { + "start": 16380.04, + "end": 16383.3, + "probability": 0.9061 + }, + { + "start": 16384.9, + "end": 16387.24, + "probability": 0.9744 + }, + { + "start": 16388.52, + "end": 16390.78, + "probability": 0.9842 + }, + { + "start": 16391.58, + "end": 16392.56, + "probability": 0.9054 + }, + { + "start": 16393.12, + "end": 16394.52, + "probability": 0.9254 + }, + { + "start": 16395.34, + "end": 16398.26, + "probability": 0.9805 + }, + { + "start": 16399.0, + "end": 16401.38, + "probability": 0.9205 + }, + { + "start": 16402.38, + "end": 16403.78, + "probability": 0.9729 + }, + { + "start": 16404.38, + "end": 16405.6, + "probability": 0.7807 + }, + { + "start": 16406.4, + "end": 16406.84, + "probability": 0.7839 + }, + { + "start": 16408.2, + "end": 16409.56, + "probability": 0.9982 + }, + { + "start": 16410.42, + "end": 16412.42, + "probability": 0.95 + }, + { + "start": 16413.24, + "end": 16415.18, + "probability": 0.7857 + }, + { + "start": 16416.28, + "end": 16416.77, + "probability": 0.8702 + }, + { + "start": 16417.62, + "end": 16419.08, + "probability": 0.8832 + }, + { + "start": 16419.14, + "end": 16423.56, + "probability": 0.8622 + }, + { + "start": 16424.34, + "end": 16427.0, + "probability": 0.9878 + }, + { + "start": 16428.46, + "end": 16430.48, + "probability": 0.9839 + }, + { + "start": 16431.46, + "end": 16433.8, + "probability": 0.9917 + }, + { + "start": 16434.82, + "end": 16435.24, + "probability": 0.7003 + }, + { + "start": 16436.0, + "end": 16439.18, + "probability": 0.8492 + }, + { + "start": 16440.12, + "end": 16442.06, + "probability": 0.9175 + }, + { + "start": 16443.02, + "end": 16447.7, + "probability": 0.9757 + }, + { + "start": 16448.34, + "end": 16451.46, + "probability": 0.8564 + }, + { + "start": 16452.16, + "end": 16457.32, + "probability": 0.9814 + }, + { + "start": 16458.28, + "end": 16458.77, + "probability": 0.8618 + }, + { + "start": 16459.06, + "end": 16460.9, + "probability": 0.991 + }, + { + "start": 16461.92, + "end": 16463.68, + "probability": 0.9905 + }, + { + "start": 16463.86, + "end": 16464.88, + "probability": 0.9008 + }, + { + "start": 16465.36, + "end": 16466.08, + "probability": 0.9554 + }, + { + "start": 16466.12, + "end": 16466.98, + "probability": 0.8555 + }, + { + "start": 16467.72, + "end": 16469.52, + "probability": 0.6976 + }, + { + "start": 16470.06, + "end": 16471.18, + "probability": 0.9373 + }, + { + "start": 16473.04, + "end": 16477.06, + "probability": 0.9365 + }, + { + "start": 16477.06, + "end": 16480.58, + "probability": 0.9967 + }, + { + "start": 16481.46, + "end": 16483.87, + "probability": 0.8638 + }, + { + "start": 16484.88, + "end": 16485.66, + "probability": 0.9705 + }, + { + "start": 16486.32, + "end": 16487.28, + "probability": 0.7756 + }, + { + "start": 16488.34, + "end": 16491.08, + "probability": 0.9857 + }, + { + "start": 16492.28, + "end": 16493.51, + "probability": 0.9531 + }, + { + "start": 16494.98, + "end": 16495.78, + "probability": 0.7535 + }, + { + "start": 16496.08, + "end": 16498.44, + "probability": 0.9921 + }, + { + "start": 16499.34, + "end": 16501.4, + "probability": 0.9912 + }, + { + "start": 16501.98, + "end": 16503.5, + "probability": 0.9234 + }, + { + "start": 16504.0, + "end": 16506.48, + "probability": 0.98 + }, + { + "start": 16508.2, + "end": 16508.8, + "probability": 0.0307 + }, + { + "start": 16508.8, + "end": 16509.92, + "probability": 0.6834 + }, + { + "start": 16510.38, + "end": 16511.28, + "probability": 0.8217 + }, + { + "start": 16511.36, + "end": 16512.92, + "probability": 0.9824 + }, + { + "start": 16513.7, + "end": 16516.98, + "probability": 0.9111 + }, + { + "start": 16517.84, + "end": 16520.36, + "probability": 0.9165 + }, + { + "start": 16520.94, + "end": 16522.5, + "probability": 0.6672 + }, + { + "start": 16523.2, + "end": 16525.76, + "probability": 0.9952 + }, + { + "start": 16527.94, + "end": 16529.83, + "probability": 0.9979 + }, + { + "start": 16530.52, + "end": 16531.78, + "probability": 0.83 + }, + { + "start": 16532.48, + "end": 16534.06, + "probability": 0.9554 + }, + { + "start": 16534.72, + "end": 16536.9, + "probability": 0.9966 + }, + { + "start": 16537.54, + "end": 16539.54, + "probability": 0.6846 + }, + { + "start": 16540.28, + "end": 16541.8, + "probability": 0.9927 + }, + { + "start": 16542.3, + "end": 16544.08, + "probability": 0.9746 + }, + { + "start": 16544.96, + "end": 16545.37, + "probability": 0.9559 + }, + { + "start": 16546.96, + "end": 16547.9, + "probability": 0.7666 + }, + { + "start": 16548.24, + "end": 16550.76, + "probability": 0.9471 + }, + { + "start": 16551.18, + "end": 16551.82, + "probability": 0.8804 + }, + { + "start": 16552.42, + "end": 16553.7, + "probability": 0.8926 + }, + { + "start": 16554.82, + "end": 16557.32, + "probability": 0.9795 + }, + { + "start": 16558.24, + "end": 16560.04, + "probability": 0.8395 + }, + { + "start": 16560.32, + "end": 16560.94, + "probability": 0.9408 + }, + { + "start": 16561.34, + "end": 16562.24, + "probability": 0.9851 + }, + { + "start": 16562.32, + "end": 16563.08, + "probability": 0.6116 + }, + { + "start": 16563.12, + "end": 16563.62, + "probability": 0.9598 + }, + { + "start": 16563.94, + "end": 16564.62, + "probability": 0.8992 + }, + { + "start": 16565.12, + "end": 16566.3, + "probability": 0.9778 + }, + { + "start": 16567.74, + "end": 16569.13, + "probability": 0.9835 + }, + { + "start": 16570.0, + "end": 16570.72, + "probability": 0.7862 + }, + { + "start": 16570.78, + "end": 16571.54, + "probability": 0.8991 + }, + { + "start": 16571.56, + "end": 16572.36, + "probability": 0.7142 + }, + { + "start": 16572.78, + "end": 16574.09, + "probability": 0.9963 + }, + { + "start": 16574.54, + "end": 16575.34, + "probability": 0.8555 + }, + { + "start": 16576.52, + "end": 16577.48, + "probability": 0.6686 + }, + { + "start": 16577.6, + "end": 16578.32, + "probability": 0.7725 + }, + { + "start": 16578.84, + "end": 16579.68, + "probability": 0.8914 + }, + { + "start": 16579.96, + "end": 16580.64, + "probability": 0.7951 + }, + { + "start": 16581.92, + "end": 16583.0, + "probability": 0.9041 + }, + { + "start": 16583.34, + "end": 16583.88, + "probability": 0.6487 + }, + { + "start": 16584.88, + "end": 16587.16, + "probability": 0.8047 + }, + { + "start": 16587.8, + "end": 16591.24, + "probability": 0.8982 + }, + { + "start": 16592.4, + "end": 16593.76, + "probability": 0.8569 + }, + { + "start": 16594.54, + "end": 16597.3, + "probability": 0.9932 + }, + { + "start": 16598.22, + "end": 16599.16, + "probability": 0.9824 + }, + { + "start": 16599.62, + "end": 16600.28, + "probability": 0.9876 + }, + { + "start": 16601.02, + "end": 16601.75, + "probability": 0.8458 + }, + { + "start": 16602.42, + "end": 16602.76, + "probability": 0.8113 + }, + { + "start": 16604.28, + "end": 16607.32, + "probability": 0.9245 + }, + { + "start": 16607.98, + "end": 16610.66, + "probability": 0.5016 + }, + { + "start": 16610.74, + "end": 16612.68, + "probability": 0.763 + }, + { + "start": 16613.84, + "end": 16616.48, + "probability": 0.9971 + }, + { + "start": 16617.12, + "end": 16617.56, + "probability": 0.6769 + }, + { + "start": 16617.58, + "end": 16622.98, + "probability": 0.9854 + }, + { + "start": 16623.68, + "end": 16624.48, + "probability": 0.6039 + }, + { + "start": 16625.88, + "end": 16627.04, + "probability": 0.6933 + }, + { + "start": 16629.38, + "end": 16632.34, + "probability": 0.8818 + }, + { + "start": 16646.48, + "end": 16646.8, + "probability": 0.2475 + }, + { + "start": 16646.8, + "end": 16647.6, + "probability": 0.5581 + }, + { + "start": 16648.68, + "end": 16649.6, + "probability": 0.7635 + }, + { + "start": 16651.38, + "end": 16653.86, + "probability": 0.9767 + }, + { + "start": 16655.16, + "end": 16658.46, + "probability": 0.8584 + }, + { + "start": 16659.44, + "end": 16660.12, + "probability": 0.5384 + }, + { + "start": 16661.06, + "end": 16663.28, + "probability": 0.9988 + }, + { + "start": 16664.94, + "end": 16665.34, + "probability": 0.7342 + }, + { + "start": 16667.34, + "end": 16669.78, + "probability": 0.668 + }, + { + "start": 16670.1, + "end": 16670.54, + "probability": 0.6981 + }, + { + "start": 16671.16, + "end": 16674.4, + "probability": 0.9052 + }, + { + "start": 16676.22, + "end": 16677.0, + "probability": 0.7363 + }, + { + "start": 16677.42, + "end": 16682.04, + "probability": 0.8144 + }, + { + "start": 16682.48, + "end": 16684.08, + "probability": 0.9467 + }, + { + "start": 16684.86, + "end": 16687.64, + "probability": 0.9925 + }, + { + "start": 16688.34, + "end": 16692.04, + "probability": 0.7491 + }, + { + "start": 16693.0, + "end": 16693.52, + "probability": 0.7964 + }, + { + "start": 16694.34, + "end": 16695.52, + "probability": 0.8442 + }, + { + "start": 16696.12, + "end": 16699.18, + "probability": 0.9646 + }, + { + "start": 16700.2, + "end": 16702.66, + "probability": 0.8561 + }, + { + "start": 16703.22, + "end": 16707.58, + "probability": 0.9948 + }, + { + "start": 16710.36, + "end": 16714.5, + "probability": 0.9982 + }, + { + "start": 16715.68, + "end": 16719.02, + "probability": 0.9925 + }, + { + "start": 16720.88, + "end": 16721.26, + "probability": 0.8634 + }, + { + "start": 16721.98, + "end": 16726.08, + "probability": 0.9529 + }, + { + "start": 16727.56, + "end": 16730.22, + "probability": 0.7563 + }, + { + "start": 16731.4, + "end": 16732.72, + "probability": 0.7161 + }, + { + "start": 16733.4, + "end": 16735.4, + "probability": 0.9529 + }, + { + "start": 16736.18, + "end": 16736.95, + "probability": 0.8662 + }, + { + "start": 16738.12, + "end": 16741.04, + "probability": 0.9979 + }, + { + "start": 16742.26, + "end": 16742.96, + "probability": 0.981 + }, + { + "start": 16743.88, + "end": 16747.48, + "probability": 0.9871 + }, + { + "start": 16747.6, + "end": 16748.08, + "probability": 0.9837 + }, + { + "start": 16748.52, + "end": 16749.16, + "probability": 0.8974 + }, + { + "start": 16749.54, + "end": 16750.3, + "probability": 0.9819 + }, + { + "start": 16750.7, + "end": 16752.08, + "probability": 0.9863 + }, + { + "start": 16755.14, + "end": 16755.78, + "probability": 0.937 + }, + { + "start": 16756.14, + "end": 16757.31, + "probability": 0.9637 + }, + { + "start": 16759.2, + "end": 16760.52, + "probability": 0.967 + }, + { + "start": 16761.3, + "end": 16762.34, + "probability": 0.8668 + }, + { + "start": 16763.56, + "end": 16765.84, + "probability": 0.9346 + }, + { + "start": 16766.34, + "end": 16767.98, + "probability": 0.699 + }, + { + "start": 16768.58, + "end": 16771.32, + "probability": 0.8668 + }, + { + "start": 16771.72, + "end": 16774.54, + "probability": 0.6695 + }, + { + "start": 16775.0, + "end": 16780.76, + "probability": 0.9978 + }, + { + "start": 16781.98, + "end": 16784.38, + "probability": 0.9527 + }, + { + "start": 16786.06, + "end": 16789.64, + "probability": 0.988 + }, + { + "start": 16789.64, + "end": 16793.22, + "probability": 0.9858 + }, + { + "start": 16794.08, + "end": 16794.48, + "probability": 0.6012 + }, + { + "start": 16795.8, + "end": 16797.57, + "probability": 0.9933 + }, + { + "start": 16798.4, + "end": 16800.24, + "probability": 0.9814 + }, + { + "start": 16801.06, + "end": 16802.78, + "probability": 0.9986 + }, + { + "start": 16803.14, + "end": 16803.16, + "probability": 0.5005 + }, + { + "start": 16803.16, + "end": 16805.9, + "probability": 0.9074 + }, + { + "start": 16807.08, + "end": 16808.9, + "probability": 0.9866 + }, + { + "start": 16809.6, + "end": 16811.16, + "probability": 0.8463 + }, + { + "start": 16812.3, + "end": 16816.12, + "probability": 0.9444 + }, + { + "start": 16816.44, + "end": 16816.96, + "probability": 0.7582 + }, + { + "start": 16818.7, + "end": 16819.78, + "probability": 0.999 + }, + { + "start": 16820.56, + "end": 16823.8, + "probability": 0.9607 + }, + { + "start": 16825.8, + "end": 16827.62, + "probability": 0.9967 + }, + { + "start": 16828.24, + "end": 16829.34, + "probability": 0.921 + }, + { + "start": 16830.4, + "end": 16831.0, + "probability": 0.6975 + }, + { + "start": 16832.66, + "end": 16838.72, + "probability": 0.9852 + }, + { + "start": 16840.4, + "end": 16845.62, + "probability": 0.9819 + }, + { + "start": 16846.46, + "end": 16847.52, + "probability": 0.96 + }, + { + "start": 16848.32, + "end": 16850.34, + "probability": 0.8524 + }, + { + "start": 16851.38, + "end": 16852.28, + "probability": 0.9546 + }, + { + "start": 16853.06, + "end": 16857.9, + "probability": 0.7852 + }, + { + "start": 16860.8, + "end": 16862.1, + "probability": 0.0242 + }, + { + "start": 16863.84, + "end": 16863.84, + "probability": 0.0558 + }, + { + "start": 16863.84, + "end": 16863.84, + "probability": 0.0229 + }, + { + "start": 16863.84, + "end": 16863.84, + "probability": 0.1918 + }, + { + "start": 16863.84, + "end": 16865.44, + "probability": 0.9619 + }, + { + "start": 16866.62, + "end": 16868.16, + "probability": 0.9979 + }, + { + "start": 16868.74, + "end": 16869.7, + "probability": 0.7527 + }, + { + "start": 16870.18, + "end": 16871.74, + "probability": 0.8942 + }, + { + "start": 16874.24, + "end": 16875.78, + "probability": 0.9911 + }, + { + "start": 16876.36, + "end": 16877.82, + "probability": 0.9471 + }, + { + "start": 16878.22, + "end": 16879.02, + "probability": 0.8967 + }, + { + "start": 16879.42, + "end": 16880.4, + "probability": 0.9728 + }, + { + "start": 16881.1, + "end": 16882.54, + "probability": 0.9385 + }, + { + "start": 16883.12, + "end": 16885.68, + "probability": 0.9904 + }, + { + "start": 16885.82, + "end": 16887.56, + "probability": 0.9902 + }, + { + "start": 16887.96, + "end": 16888.8, + "probability": 0.7542 + }, + { + "start": 16889.3, + "end": 16891.32, + "probability": 0.8572 + }, + { + "start": 16891.78, + "end": 16892.58, + "probability": 0.5948 + }, + { + "start": 16893.98, + "end": 16898.86, + "probability": 0.98 + }, + { + "start": 16899.8, + "end": 16903.02, + "probability": 0.9559 + }, + { + "start": 16904.26, + "end": 16908.8, + "probability": 0.9957 + }, + { + "start": 16909.44, + "end": 16912.56, + "probability": 0.9921 + }, + { + "start": 16913.32, + "end": 16913.62, + "probability": 0.3502 + }, + { + "start": 16914.96, + "end": 16916.44, + "probability": 0.9381 + }, + { + "start": 16917.8, + "end": 16920.68, + "probability": 0.9343 + }, + { + "start": 16921.3, + "end": 16922.4, + "probability": 0.9893 + }, + { + "start": 16923.0, + "end": 16924.66, + "probability": 0.6388 + }, + { + "start": 16925.52, + "end": 16926.78, + "probability": 0.9886 + }, + { + "start": 16928.14, + "end": 16929.58, + "probability": 0.9907 + }, + { + "start": 16930.5, + "end": 16933.22, + "probability": 0.8353 + }, + { + "start": 16933.74, + "end": 16934.88, + "probability": 0.8258 + }, + { + "start": 16935.84, + "end": 16938.4, + "probability": 0.9907 + }, + { + "start": 16939.18, + "end": 16940.86, + "probability": 0.9479 + }, + { + "start": 16942.64, + "end": 16944.28, + "probability": 0.9609 + }, + { + "start": 16944.84, + "end": 16946.96, + "probability": 0.9987 + }, + { + "start": 16947.62, + "end": 16952.02, + "probability": 0.7362 + }, + { + "start": 16952.7, + "end": 16955.38, + "probability": 0.9696 + }, + { + "start": 16956.56, + "end": 16957.46, + "probability": 0.8335 + }, + { + "start": 16957.64, + "end": 16958.42, + "probability": 0.7629 + }, + { + "start": 16959.4, + "end": 16961.9, + "probability": 0.9762 + }, + { + "start": 16963.32, + "end": 16964.31, + "probability": 0.5259 + }, + { + "start": 16965.94, + "end": 16970.3, + "probability": 0.8601 + }, + { + "start": 16971.64, + "end": 16975.28, + "probability": 0.8726 + }, + { + "start": 16976.16, + "end": 16978.54, + "probability": 0.9973 + }, + { + "start": 16980.72, + "end": 16982.5, + "probability": 0.9338 + }, + { + "start": 16982.64, + "end": 16986.0, + "probability": 0.9924 + }, + { + "start": 16988.34, + "end": 16989.24, + "probability": 0.916 + }, + { + "start": 16989.56, + "end": 16993.96, + "probability": 0.9842 + }, + { + "start": 16996.12, + "end": 16997.32, + "probability": 0.929 + }, + { + "start": 16998.4, + "end": 16999.68, + "probability": 0.8498 + }, + { + "start": 16999.76, + "end": 17002.08, + "probability": 0.9814 + }, + { + "start": 17002.26, + "end": 17002.48, + "probability": 0.5311 + }, + { + "start": 17003.9, + "end": 17008.0, + "probability": 0.9916 + }, + { + "start": 17008.08, + "end": 17008.72, + "probability": 0.8511 + }, + { + "start": 17010.52, + "end": 17011.32, + "probability": 0.9684 + }, + { + "start": 17012.1, + "end": 17015.3, + "probability": 0.8914 + }, + { + "start": 17016.76, + "end": 17020.14, + "probability": 0.8665 + }, + { + "start": 17020.18, + "end": 17022.96, + "probability": 0.9987 + }, + { + "start": 17023.42, + "end": 17025.32, + "probability": 0.9479 + }, + { + "start": 17027.76, + "end": 17033.08, + "probability": 0.972 + }, + { + "start": 17033.6, + "end": 17036.9, + "probability": 0.996 + }, + { + "start": 17037.96, + "end": 17040.4, + "probability": 0.9985 + }, + { + "start": 17040.5, + "end": 17042.58, + "probability": 0.957 + }, + { + "start": 17042.72, + "end": 17043.46, + "probability": 0.7228 + }, + { + "start": 17044.26, + "end": 17046.66, + "probability": 0.9886 + }, + { + "start": 17046.8, + "end": 17047.42, + "probability": 0.8087 + }, + { + "start": 17048.72, + "end": 17052.08, + "probability": 0.8525 + }, + { + "start": 17054.12, + "end": 17055.12, + "probability": 0.7158 + }, + { + "start": 17055.96, + "end": 17058.14, + "probability": 0.9065 + }, + { + "start": 17059.18, + "end": 17061.8, + "probability": 0.9195 + }, + { + "start": 17062.84, + "end": 17066.72, + "probability": 0.9862 + }, + { + "start": 17067.56, + "end": 17070.12, + "probability": 0.7351 + }, + { + "start": 17070.76, + "end": 17071.84, + "probability": 0.9125 + }, + { + "start": 17072.48, + "end": 17074.06, + "probability": 0.9902 + }, + { + "start": 17074.74, + "end": 17076.56, + "probability": 0.9951 + }, + { + "start": 17078.0, + "end": 17083.06, + "probability": 0.9742 + }, + { + "start": 17085.0, + "end": 17086.38, + "probability": 0.9491 + }, + { + "start": 17087.26, + "end": 17091.72, + "probability": 0.9786 + }, + { + "start": 17092.48, + "end": 17094.42, + "probability": 0.912 + }, + { + "start": 17095.46, + "end": 17099.34, + "probability": 0.9565 + }, + { + "start": 17099.96, + "end": 17101.22, + "probability": 0.9707 + }, + { + "start": 17102.92, + "end": 17107.0, + "probability": 0.9959 + }, + { + "start": 17107.68, + "end": 17108.72, + "probability": 0.986 + }, + { + "start": 17109.88, + "end": 17112.32, + "probability": 0.6944 + }, + { + "start": 17113.24, + "end": 17116.2, + "probability": 0.9667 + }, + { + "start": 17117.8, + "end": 17118.98, + "probability": 0.598 + }, + { + "start": 17119.94, + "end": 17120.76, + "probability": 0.588 + }, + { + "start": 17123.98, + "end": 17126.16, + "probability": 0.7724 + }, + { + "start": 17126.84, + "end": 17129.78, + "probability": 0.8427 + }, + { + "start": 17130.8, + "end": 17131.26, + "probability": 0.0001 + }, + { + "start": 17133.14, + "end": 17133.74, + "probability": 0.0156 + }, + { + "start": 17135.18, + "end": 17136.46, + "probability": 0.1627 + }, + { + "start": 17173.6, + "end": 17174.38, + "probability": 0.2283 + }, + { + "start": 17178.58, + "end": 17179.5, + "probability": 0.5897 + }, + { + "start": 17181.2, + "end": 17182.2, + "probability": 0.825 + }, + { + "start": 17183.5, + "end": 17184.42, + "probability": 0.8755 + }, + { + "start": 17184.48, + "end": 17188.22, + "probability": 0.9952 + }, + { + "start": 17188.6, + "end": 17190.98, + "probability": 0.7091 + }, + { + "start": 17191.6, + "end": 17194.64, + "probability": 0.998 + }, + { + "start": 17194.64, + "end": 17200.42, + "probability": 0.9973 + }, + { + "start": 17201.3, + "end": 17203.86, + "probability": 0.9985 + }, + { + "start": 17205.48, + "end": 17206.24, + "probability": 0.8271 + }, + { + "start": 17208.0, + "end": 17209.58, + "probability": 0.9132 + }, + { + "start": 17211.12, + "end": 17212.54, + "probability": 0.9338 + }, + { + "start": 17213.78, + "end": 17216.36, + "probability": 0.9897 + }, + { + "start": 17218.38, + "end": 17224.76, + "probability": 0.999 + }, + { + "start": 17225.7, + "end": 17229.62, + "probability": 0.9094 + }, + { + "start": 17231.18, + "end": 17238.04, + "probability": 0.9982 + }, + { + "start": 17239.86, + "end": 17243.04, + "probability": 0.998 + }, + { + "start": 17244.36, + "end": 17248.3, + "probability": 0.9954 + }, + { + "start": 17249.96, + "end": 17253.8, + "probability": 0.9963 + }, + { + "start": 17254.78, + "end": 17258.82, + "probability": 0.9904 + }, + { + "start": 17260.7, + "end": 17264.58, + "probability": 0.9989 + }, + { + "start": 17265.02, + "end": 17266.34, + "probability": 0.6905 + }, + { + "start": 17267.98, + "end": 17272.56, + "probability": 0.9951 + }, + { + "start": 17273.84, + "end": 17275.22, + "probability": 0.9576 + }, + { + "start": 17276.36, + "end": 17281.72, + "probability": 0.9832 + }, + { + "start": 17284.1, + "end": 17287.28, + "probability": 0.9979 + }, + { + "start": 17287.28, + "end": 17290.2, + "probability": 0.9258 + }, + { + "start": 17291.22, + "end": 17294.9, + "probability": 0.8129 + }, + { + "start": 17295.94, + "end": 17296.92, + "probability": 0.9934 + }, + { + "start": 17297.62, + "end": 17297.98, + "probability": 0.5299 + }, + { + "start": 17298.58, + "end": 17300.06, + "probability": 0.8736 + }, + { + "start": 17301.68, + "end": 17304.14, + "probability": 0.9948 + }, + { + "start": 17305.72, + "end": 17309.12, + "probability": 0.9975 + }, + { + "start": 17310.26, + "end": 17311.44, + "probability": 0.9083 + }, + { + "start": 17313.34, + "end": 17314.28, + "probability": 0.873 + }, + { + "start": 17314.32, + "end": 17315.24, + "probability": 0.979 + }, + { + "start": 17315.32, + "end": 17316.48, + "probability": 0.7379 + }, + { + "start": 17316.48, + "end": 17317.18, + "probability": 0.757 + }, + { + "start": 17318.28, + "end": 17320.98, + "probability": 0.9797 + }, + { + "start": 17321.42, + "end": 17324.4, + "probability": 0.9744 + }, + { + "start": 17330.14, + "end": 17330.46, + "probability": 0.7133 + }, + { + "start": 17334.06, + "end": 17336.06, + "probability": 0.723 + }, + { + "start": 17338.22, + "end": 17339.16, + "probability": 0.8027 + }, + { + "start": 17339.88, + "end": 17342.12, + "probability": 0.9467 + }, + { + "start": 17343.48, + "end": 17345.8, + "probability": 0.7551 + }, + { + "start": 17347.22, + "end": 17349.0, + "probability": 0.9902 + }, + { + "start": 17350.26, + "end": 17356.52, + "probability": 0.9902 + }, + { + "start": 17358.34, + "end": 17358.86, + "probability": 0.4286 + }, + { + "start": 17360.26, + "end": 17362.64, + "probability": 0.9134 + }, + { + "start": 17363.98, + "end": 17366.86, + "probability": 0.9927 + }, + { + "start": 17368.1, + "end": 17369.7, + "probability": 0.9861 + }, + { + "start": 17371.6, + "end": 17372.36, + "probability": 0.8182 + }, + { + "start": 17373.32, + "end": 17378.02, + "probability": 0.9966 + }, + { + "start": 17378.84, + "end": 17380.34, + "probability": 0.9944 + }, + { + "start": 17381.6, + "end": 17383.04, + "probability": 0.9994 + }, + { + "start": 17383.98, + "end": 17391.6, + "probability": 0.9991 + }, + { + "start": 17391.7, + "end": 17393.4, + "probability": 0.763 + }, + { + "start": 17393.98, + "end": 17395.66, + "probability": 0.9845 + }, + { + "start": 17397.58, + "end": 17399.12, + "probability": 0.7893 + }, + { + "start": 17402.98, + "end": 17404.32, + "probability": 0.7925 + }, + { + "start": 17405.92, + "end": 17406.48, + "probability": 0.9604 + }, + { + "start": 17407.58, + "end": 17409.54, + "probability": 0.8831 + }, + { + "start": 17411.37, + "end": 17415.64, + "probability": 0.9978 + }, + { + "start": 17415.64, + "end": 17419.04, + "probability": 0.9979 + }, + { + "start": 17420.4, + "end": 17421.06, + "probability": 0.4999 + }, + { + "start": 17422.18, + "end": 17425.2, + "probability": 0.9943 + }, + { + "start": 17427.1, + "end": 17428.62, + "probability": 0.9761 + }, + { + "start": 17429.34, + "end": 17432.54, + "probability": 0.9907 + }, + { + "start": 17433.5, + "end": 17436.14, + "probability": 0.9972 + }, + { + "start": 17437.54, + "end": 17444.64, + "probability": 0.999 + }, + { + "start": 17445.42, + "end": 17446.3, + "probability": 0.6358 + }, + { + "start": 17448.4, + "end": 17448.9, + "probability": 0.7656 + }, + { + "start": 17450.34, + "end": 17454.44, + "probability": 0.9986 + }, + { + "start": 17455.98, + "end": 17457.17, + "probability": 0.9736 + }, + { + "start": 17457.88, + "end": 17460.14, + "probability": 0.9728 + }, + { + "start": 17461.34, + "end": 17462.9, + "probability": 0.9979 + }, + { + "start": 17464.04, + "end": 17468.92, + "probability": 0.985 + }, + { + "start": 17470.56, + "end": 17476.34, + "probability": 0.998 + }, + { + "start": 17478.04, + "end": 17481.64, + "probability": 0.9678 + }, + { + "start": 17482.46, + "end": 17488.35, + "probability": 0.9917 + }, + { + "start": 17489.86, + "end": 17490.64, + "probability": 0.9688 + }, + { + "start": 17491.72, + "end": 17499.18, + "probability": 0.9971 + }, + { + "start": 17500.34, + "end": 17503.8, + "probability": 0.9977 + }, + { + "start": 17503.8, + "end": 17506.88, + "probability": 0.9935 + }, + { + "start": 17508.32, + "end": 17512.7, + "probability": 0.9902 + }, + { + "start": 17513.98, + "end": 17516.0, + "probability": 0.9229 + }, + { + "start": 17517.12, + "end": 17519.22, + "probability": 0.9033 + }, + { + "start": 17519.94, + "end": 17521.82, + "probability": 0.9932 + }, + { + "start": 17523.58, + "end": 17523.98, + "probability": 0.809 + }, + { + "start": 17525.18, + "end": 17527.18, + "probability": 0.9797 + }, + { + "start": 17528.62, + "end": 17529.28, + "probability": 0.8303 + }, + { + "start": 17530.52, + "end": 17532.44, + "probability": 0.9973 + }, + { + "start": 17533.24, + "end": 17534.6, + "probability": 0.9776 + }, + { + "start": 17536.38, + "end": 17536.88, + "probability": 0.9827 + }, + { + "start": 17537.46, + "end": 17541.14, + "probability": 0.9891 + }, + { + "start": 17541.26, + "end": 17545.8, + "probability": 0.9929 + }, + { + "start": 17547.42, + "end": 17550.12, + "probability": 0.9525 + }, + { + "start": 17551.36, + "end": 17552.34, + "probability": 0.7901 + }, + { + "start": 17552.48, + "end": 17553.48, + "probability": 0.5678 + }, + { + "start": 17553.58, + "end": 17558.48, + "probability": 0.9969 + }, + { + "start": 17559.98, + "end": 17563.78, + "probability": 0.9525 + }, + { + "start": 17564.64, + "end": 17569.94, + "probability": 0.9819 + }, + { + "start": 17571.62, + "end": 17572.1, + "probability": 0.7082 + }, + { + "start": 17573.38, + "end": 17574.08, + "probability": 0.9243 + }, + { + "start": 17575.2, + "end": 17576.54, + "probability": 0.8609 + }, + { + "start": 17578.16, + "end": 17582.6, + "probability": 0.9917 + }, + { + "start": 17584.12, + "end": 17590.04, + "probability": 0.9951 + }, + { + "start": 17592.04, + "end": 17594.18, + "probability": 0.9392 + }, + { + "start": 17595.56, + "end": 17598.68, + "probability": 0.9908 + }, + { + "start": 17599.88, + "end": 17601.58, + "probability": 0.9818 + }, + { + "start": 17603.34, + "end": 17605.36, + "probability": 0.9534 + }, + { + "start": 17606.6, + "end": 17609.72, + "probability": 0.9813 + }, + { + "start": 17610.82, + "end": 17616.08, + "probability": 0.9949 + }, + { + "start": 17616.36, + "end": 17616.76, + "probability": 0.7656 + }, + { + "start": 17617.96, + "end": 17620.86, + "probability": 0.9884 + }, + { + "start": 17622.36, + "end": 17623.76, + "probability": 0.8327 + }, + { + "start": 17624.9, + "end": 17627.14, + "probability": 0.9984 + }, + { + "start": 17628.18, + "end": 17632.32, + "probability": 0.9448 + }, + { + "start": 17633.4, + "end": 17635.54, + "probability": 0.9785 + }, + { + "start": 17636.18, + "end": 17638.08, + "probability": 0.9655 + }, + { + "start": 17639.34, + "end": 17640.46, + "probability": 0.7051 + }, + { + "start": 17641.44, + "end": 17645.36, + "probability": 0.9934 + }, + { + "start": 17646.56, + "end": 17651.22, + "probability": 0.9961 + }, + { + "start": 17652.0, + "end": 17653.18, + "probability": 0.8967 + }, + { + "start": 17654.14, + "end": 17656.68, + "probability": 0.9937 + }, + { + "start": 17658.02, + "end": 17660.72, + "probability": 0.9945 + }, + { + "start": 17661.76, + "end": 17662.24, + "probability": 0.7632 + }, + { + "start": 17663.68, + "end": 17670.0, + "probability": 0.994 + }, + { + "start": 17671.46, + "end": 17674.6, + "probability": 0.9989 + }, + { + "start": 17675.96, + "end": 17677.98, + "probability": 0.9791 + }, + { + "start": 17679.04, + "end": 17681.8, + "probability": 0.998 + }, + { + "start": 17682.42, + "end": 17683.4, + "probability": 0.9971 + }, + { + "start": 17684.8, + "end": 17687.36, + "probability": 0.8444 + }, + { + "start": 17688.74, + "end": 17693.72, + "probability": 0.9973 + }, + { + "start": 17694.68, + "end": 17700.14, + "probability": 0.9915 + }, + { + "start": 17700.56, + "end": 17700.86, + "probability": 0.8033 + }, + { + "start": 17701.36, + "end": 17703.04, + "probability": 0.7515 + }, + { + "start": 17703.64, + "end": 17705.18, + "probability": 0.9382 + }, + { + "start": 17706.0, + "end": 17706.98, + "probability": 0.1444 + }, + { + "start": 17708.98, + "end": 17710.18, + "probability": 0.0202 + }, + { + "start": 17710.96, + "end": 17713.78, + "probability": 0.2442 + }, + { + "start": 17714.46, + "end": 17715.16, + "probability": 0.1253 + }, + { + "start": 17720.26, + "end": 17721.0, + "probability": 0.1126 + }, + { + "start": 17721.0, + "end": 17722.56, + "probability": 0.0209 + }, + { + "start": 17723.1, + "end": 17723.1, + "probability": 0.0031 + }, + { + "start": 17766.4, + "end": 17768.38, + "probability": 0.4838 + }, + { + "start": 17769.2, + "end": 17770.32, + "probability": 0.992 + }, + { + "start": 17771.2, + "end": 17772.5, + "probability": 0.9862 + }, + { + "start": 17773.7, + "end": 17775.28, + "probability": 0.8452 + }, + { + "start": 17776.12, + "end": 17780.34, + "probability": 0.8405 + }, + { + "start": 17781.48, + "end": 17782.66, + "probability": 0.7286 + }, + { + "start": 17784.3, + "end": 17788.1, + "probability": 0.9941 + }, + { + "start": 17789.82, + "end": 17791.26, + "probability": 0.9989 + }, + { + "start": 17792.06, + "end": 17794.28, + "probability": 0.8079 + }, + { + "start": 17795.38, + "end": 17796.18, + "probability": 0.995 + }, + { + "start": 17796.88, + "end": 17798.8, + "probability": 0.9985 + }, + { + "start": 17799.52, + "end": 17803.1, + "probability": 0.9947 + }, + { + "start": 17805.46, + "end": 17805.84, + "probability": 0.8285 + }, + { + "start": 17806.96, + "end": 17809.1, + "probability": 0.9838 + }, + { + "start": 17809.92, + "end": 17815.54, + "probability": 0.9752 + }, + { + "start": 17817.04, + "end": 17817.56, + "probability": 0.9529 + }, + { + "start": 17818.6, + "end": 17819.58, + "probability": 0.8276 + }, + { + "start": 17820.84, + "end": 17823.04, + "probability": 0.9984 + }, + { + "start": 17823.98, + "end": 17828.92, + "probability": 0.9988 + }, + { + "start": 17830.5, + "end": 17833.96, + "probability": 0.9916 + }, + { + "start": 17835.0, + "end": 17835.72, + "probability": 0.8138 + }, + { + "start": 17836.38, + "end": 17839.1, + "probability": 0.9407 + }, + { + "start": 17839.76, + "end": 17840.64, + "probability": 0.8869 + }, + { + "start": 17842.32, + "end": 17843.06, + "probability": 0.8061 + }, + { + "start": 17845.06, + "end": 17846.06, + "probability": 0.8701 + }, + { + "start": 17846.7, + "end": 17850.24, + "probability": 0.9862 + }, + { + "start": 17850.86, + "end": 17852.9, + "probability": 0.999 + }, + { + "start": 17853.74, + "end": 17855.6, + "probability": 0.9876 + }, + { + "start": 17857.66, + "end": 17858.9, + "probability": 0.759 + }, + { + "start": 17859.86, + "end": 17861.82, + "probability": 0.9978 + }, + { + "start": 17862.84, + "end": 17867.36, + "probability": 0.9976 + }, + { + "start": 17868.62, + "end": 17872.02, + "probability": 0.9971 + }, + { + "start": 17872.66, + "end": 17874.22, + "probability": 0.9746 + }, + { + "start": 17876.66, + "end": 17883.64, + "probability": 0.9979 + }, + { + "start": 17884.26, + "end": 17885.16, + "probability": 0.6138 + }, + { + "start": 17886.44, + "end": 17890.12, + "probability": 0.994 + }, + { + "start": 17890.88, + "end": 17895.78, + "probability": 0.9922 + }, + { + "start": 17896.7, + "end": 17899.98, + "probability": 0.9961 + }, + { + "start": 17900.64, + "end": 17901.48, + "probability": 0.9503 + }, + { + "start": 17903.9, + "end": 17909.74, + "probability": 0.9777 + }, + { + "start": 17912.5, + "end": 17915.0, + "probability": 0.9769 + }, + { + "start": 17916.4, + "end": 17923.42, + "probability": 0.9915 + }, + { + "start": 17924.04, + "end": 17929.58, + "probability": 0.9978 + }, + { + "start": 17930.82, + "end": 17933.82, + "probability": 0.9732 + }, + { + "start": 17935.1, + "end": 17941.76, + "probability": 0.9972 + }, + { + "start": 17941.98, + "end": 17948.36, + "probability": 0.9984 + }, + { + "start": 17949.62, + "end": 17951.84, + "probability": 0.9952 + }, + { + "start": 17952.38, + "end": 17954.12, + "probability": 0.993 + }, + { + "start": 17954.96, + "end": 17958.58, + "probability": 0.998 + }, + { + "start": 17960.2, + "end": 17967.12, + "probability": 0.9964 + }, + { + "start": 17967.68, + "end": 17970.38, + "probability": 0.9812 + }, + { + "start": 17972.38, + "end": 17979.52, + "probability": 0.9987 + }, + { + "start": 17980.28, + "end": 17983.94, + "probability": 0.9915 + }, + { + "start": 17984.66, + "end": 17989.08, + "probability": 0.9533 + }, + { + "start": 17990.82, + "end": 17995.18, + "probability": 0.9867 + }, + { + "start": 17996.24, + "end": 17999.84, + "probability": 0.9968 + }, + { + "start": 17999.84, + "end": 18005.46, + "probability": 0.9957 + }, + { + "start": 18007.06, + "end": 18011.42, + "probability": 0.9112 + }, + { + "start": 18012.32, + "end": 18015.94, + "probability": 0.9198 + }, + { + "start": 18017.46, + "end": 18019.46, + "probability": 0.9974 + }, + { + "start": 18020.18, + "end": 18026.16, + "probability": 0.9926 + }, + { + "start": 18026.66, + "end": 18029.12, + "probability": 0.95 + }, + { + "start": 18031.12, + "end": 18035.94, + "probability": 0.9925 + }, + { + "start": 18037.54, + "end": 18041.26, + "probability": 0.9406 + }, + { + "start": 18042.44, + "end": 18043.94, + "probability": 0.7586 + }, + { + "start": 18044.14, + "end": 18050.7, + "probability": 0.9917 + }, + { + "start": 18051.42, + "end": 18054.06, + "probability": 0.9887 + }, + { + "start": 18054.06, + "end": 18056.62, + "probability": 0.9995 + }, + { + "start": 18057.16, + "end": 18058.86, + "probability": 0.9733 + }, + { + "start": 18060.56, + "end": 18064.24, + "probability": 0.99 + }, + { + "start": 18064.86, + "end": 18069.1, + "probability": 0.9773 + }, + { + "start": 18069.1, + "end": 18073.06, + "probability": 0.9925 + }, + { + "start": 18074.34, + "end": 18080.28, + "probability": 0.9895 + }, + { + "start": 18080.28, + "end": 18084.86, + "probability": 0.9987 + }, + { + "start": 18087.0, + "end": 18090.7, + "probability": 0.999 + }, + { + "start": 18091.24, + "end": 18093.14, + "probability": 0.9896 + }, + { + "start": 18094.12, + "end": 18095.24, + "probability": 0.8818 + }, + { + "start": 18095.94, + "end": 18098.46, + "probability": 0.9968 + }, + { + "start": 18098.46, + "end": 18102.76, + "probability": 0.9589 + }, + { + "start": 18103.88, + "end": 18107.32, + "probability": 0.9922 + }, + { + "start": 18107.84, + "end": 18110.04, + "probability": 0.991 + }, + { + "start": 18110.84, + "end": 18115.42, + "probability": 0.9819 + }, + { + "start": 18115.42, + "end": 18119.36, + "probability": 0.9888 + }, + { + "start": 18126.36, + "end": 18126.96, + "probability": 0.6637 + }, + { + "start": 18127.48, + "end": 18128.0, + "probability": 0.662 + }, + { + "start": 18128.12, + "end": 18130.42, + "probability": 0.7445 + }, + { + "start": 18130.42, + "end": 18133.8, + "probability": 0.9939 + }, + { + "start": 18134.32, + "end": 18136.52, + "probability": 0.9666 + }, + { + "start": 18136.94, + "end": 18140.62, + "probability": 0.9768 + }, + { + "start": 18140.62, + "end": 18144.46, + "probability": 0.9865 + }, + { + "start": 18145.64, + "end": 18147.88, + "probability": 0.7143 + }, + { + "start": 18149.5, + "end": 18152.22, + "probability": 0.8665 + }, + { + "start": 18153.48, + "end": 18157.42, + "probability": 0.9814 + }, + { + "start": 18158.18, + "end": 18163.18, + "probability": 0.9995 + }, + { + "start": 18163.76, + "end": 18168.72, + "probability": 0.9979 + }, + { + "start": 18170.06, + "end": 18172.28, + "probability": 0.9514 + }, + { + "start": 18172.88, + "end": 18177.56, + "probability": 0.9875 + }, + { + "start": 18178.9, + "end": 18180.88, + "probability": 0.9745 + }, + { + "start": 18181.42, + "end": 18182.36, + "probability": 0.9407 + }, + { + "start": 18182.4, + "end": 18186.1, + "probability": 0.8082 + }, + { + "start": 18186.1, + "end": 18191.28, + "probability": 0.9951 + }, + { + "start": 18191.66, + "end": 18194.46, + "probability": 0.999 + }, + { + "start": 18195.36, + "end": 18196.4, + "probability": 0.7595 + }, + { + "start": 18196.96, + "end": 18201.9, + "probability": 0.9572 + }, + { + "start": 18202.38, + "end": 18204.2, + "probability": 0.8383 + }, + { + "start": 18204.78, + "end": 18206.44, + "probability": 0.9906 + }, + { + "start": 18206.96, + "end": 18207.52, + "probability": 0.9261 + }, + { + "start": 18208.06, + "end": 18211.46, + "probability": 0.9788 + }, + { + "start": 18211.88, + "end": 18213.78, + "probability": 0.9292 + }, + { + "start": 18214.7, + "end": 18215.22, + "probability": 0.7468 + }, + { + "start": 18216.12, + "end": 18217.56, + "probability": 0.9976 + }, + { + "start": 18219.68, + "end": 18219.98, + "probability": 0.3952 + }, + { + "start": 18221.44, + "end": 18223.04, + "probability": 0.9812 + }, + { + "start": 18223.12, + "end": 18226.14, + "probability": 0.8401 + }, + { + "start": 18226.78, + "end": 18230.9, + "probability": 0.7747 + }, + { + "start": 18231.76, + "end": 18233.8, + "probability": 0.9923 + }, + { + "start": 18234.4, + "end": 18235.58, + "probability": 0.662 + }, + { + "start": 18235.62, + "end": 18238.88, + "probability": 0.9841 + }, + { + "start": 18239.18, + "end": 18241.3, + "probability": 0.9782 + }, + { + "start": 18241.42, + "end": 18244.08, + "probability": 0.9449 + }, + { + "start": 18245.34, + "end": 18247.12, + "probability": 0.8368 + }, + { + "start": 18253.46, + "end": 18255.6, + "probability": 0.5003 + }, + { + "start": 18256.5, + "end": 18257.48, + "probability": 0.6991 + }, + { + "start": 18258.02, + "end": 18258.4, + "probability": 0.6954 + }, + { + "start": 18259.06, + "end": 18259.7, + "probability": 0.6219 + }, + { + "start": 18259.72, + "end": 18261.38, + "probability": 0.8941 + }, + { + "start": 18261.88, + "end": 18263.2, + "probability": 0.9941 + }, + { + "start": 18263.68, + "end": 18265.76, + "probability": 0.9688 + }, + { + "start": 18266.38, + "end": 18268.3, + "probability": 0.9684 + }, + { + "start": 18268.9, + "end": 18270.44, + "probability": 0.9524 + }, + { + "start": 18270.5, + "end": 18271.82, + "probability": 0.748 + }, + { + "start": 18271.88, + "end": 18273.16, + "probability": 0.8045 + }, + { + "start": 18274.6, + "end": 18277.46, + "probability": 0.9337 + }, + { + "start": 18278.0, + "end": 18280.61, + "probability": 0.9738 + }, + { + "start": 18281.24, + "end": 18285.12, + "probability": 0.9985 + }, + { + "start": 18285.26, + "end": 18286.6, + "probability": 0.7169 + }, + { + "start": 18287.2, + "end": 18288.7, + "probability": 0.9539 + }, + { + "start": 18289.02, + "end": 18292.32, + "probability": 0.9913 + }, + { + "start": 18292.62, + "end": 18294.34, + "probability": 0.906 + }, + { + "start": 18294.76, + "end": 18296.94, + "probability": 0.535 + }, + { + "start": 18296.98, + "end": 18297.92, + "probability": 0.9278 + }, + { + "start": 18297.92, + "end": 18299.76, + "probability": 0.9816 + }, + { + "start": 18304.4, + "end": 18307.22, + "probability": 0.6765 + }, + { + "start": 18308.76, + "end": 18311.64, + "probability": 0.9813 + }, + { + "start": 18312.38, + "end": 18313.48, + "probability": 0.8022 + }, + { + "start": 18313.7, + "end": 18319.12, + "probability": 0.9935 + }, + { + "start": 18319.76, + "end": 18321.22, + "probability": 0.8359 + }, + { + "start": 18328.44, + "end": 18329.76, + "probability": 0.8868 + }, + { + "start": 18334.14, + "end": 18337.22, + "probability": 0.8984 + }, + { + "start": 18339.98, + "end": 18341.12, + "probability": 0.7094 + }, + { + "start": 18342.18, + "end": 18343.38, + "probability": 0.6998 + }, + { + "start": 18343.64, + "end": 18344.18, + "probability": 0.6972 + }, + { + "start": 18344.26, + "end": 18346.14, + "probability": 0.9284 + }, + { + "start": 18346.68, + "end": 18348.92, + "probability": 0.9329 + }, + { + "start": 18349.0, + "end": 18353.02, + "probability": 0.999 + }, + { + "start": 18353.6, + "end": 18355.4, + "probability": 0.9255 + }, + { + "start": 18355.96, + "end": 18357.78, + "probability": 0.9302 + }, + { + "start": 18358.18, + "end": 18361.64, + "probability": 0.998 + }, + { + "start": 18362.16, + "end": 18364.7, + "probability": 0.8289 + }, + { + "start": 18365.2, + "end": 18367.06, + "probability": 0.8411 + }, + { + "start": 18367.42, + "end": 18370.56, + "probability": 0.9938 + }, + { + "start": 18371.08, + "end": 18374.24, + "probability": 0.9498 + }, + { + "start": 18374.62, + "end": 18377.08, + "probability": 0.8083 + }, + { + "start": 18378.02, + "end": 18378.86, + "probability": 0.0601 + }, + { + "start": 18380.06, + "end": 18380.48, + "probability": 0.5611 + }, + { + "start": 18380.84, + "end": 18381.18, + "probability": 0.7071 + }, + { + "start": 18381.66, + "end": 18381.8, + "probability": 0.7402 + }, + { + "start": 18382.08, + "end": 18382.34, + "probability": 0.7233 + }, + { + "start": 18382.34, + "end": 18382.34, + "probability": 0.7101 + }, + { + "start": 18382.34, + "end": 18384.22, + "probability": 0.9471 + }, + { + "start": 18384.38, + "end": 18384.74, + "probability": 0.7901 + }, + { + "start": 18385.32, + "end": 18386.2, + "probability": 0.7609 + }, + { + "start": 18386.9, + "end": 18386.9, + "probability": 0.7567 + }, + { + "start": 18387.02, + "end": 18387.26, + "probability": 0.7557 + }, + { + "start": 18387.26, + "end": 18387.26, + "probability": 0.7476 + }, + { + "start": 18387.26, + "end": 18387.26, + "probability": 0.7377 + }, + { + "start": 18387.26, + "end": 18390.95, + "probability": 0.8623 + }, + { + "start": 18391.16, + "end": 18394.68, + "probability": 0.7461 + }, + { + "start": 18398.08, + "end": 18402.68, + "probability": 0.7463 + }, + { + "start": 18403.0, + "end": 18403.24, + "probability": 0.7871 + }, + { + "start": 18406.96, + "end": 18408.76, + "probability": 0.9929 + }, + { + "start": 18409.38, + "end": 18412.38, + "probability": 0.993 + }, + { + "start": 18413.22, + "end": 18415.14, + "probability": 0.9872 + }, + { + "start": 18415.14, + "end": 18417.8, + "probability": 0.9935 + }, + { + "start": 18418.62, + "end": 18424.18, + "probability": 0.9603 + }, + { + "start": 18425.58, + "end": 18426.78, + "probability": 0.882 + }, + { + "start": 18427.16, + "end": 18429.74, + "probability": 0.9956 + }, + { + "start": 18430.44, + "end": 18431.88, + "probability": 0.9709 + }, + { + "start": 18431.92, + "end": 18434.98, + "probability": 0.9966 + }, + { + "start": 18454.04, + "end": 18457.76, + "probability": 0.6674 + }, + { + "start": 18458.08, + "end": 18458.82, + "probability": 0.5416 + }, + { + "start": 18459.16, + "end": 18460.02, + "probability": 0.4152 + }, + { + "start": 18460.58, + "end": 18462.64, + "probability": 0.6181 + }, + { + "start": 18462.82, + "end": 18463.81, + "probability": 0.8511 + }, + { + "start": 18465.01, + "end": 18468.33, + "probability": 0.7164 + }, + { + "start": 18469.26, + "end": 18472.53, + "probability": 0.1061 + }, + { + "start": 18473.09, + "end": 18476.83, + "probability": 0.0402 + }, + { + "start": 18482.49, + "end": 18483.09, + "probability": 0.7061 + }, + { + "start": 18485.03, + "end": 18491.95, + "probability": 0.7906 + }, + { + "start": 18493.33, + "end": 18497.57, + "probability": 0.9805 + }, + { + "start": 18497.67, + "end": 18500.99, + "probability": 0.8293 + }, + { + "start": 18501.63, + "end": 18504.09, + "probability": 0.9937 + }, + { + "start": 18504.77, + "end": 18506.81, + "probability": 0.9811 + }, + { + "start": 18509.07, + "end": 18510.93, + "probability": 0.8002 + }, + { + "start": 18519.75, + "end": 18520.09, + "probability": 0.3828 + }, + { + "start": 18520.77, + "end": 18521.83, + "probability": 0.1441 + }, + { + "start": 18522.79, + "end": 18522.93, + "probability": 0.0661 + }, + { + "start": 18523.03, + "end": 18523.27, + "probability": 0.0796 + }, + { + "start": 18525.89, + "end": 18527.79, + "probability": 0.2176 + }, + { + "start": 18529.99, + "end": 18531.11, + "probability": 0.1475 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.0, + "probability": 0.0 + }, + { + "start": 18628.0, + "end": 18628.1, + "probability": 0.4253 + }, + { + "start": 18630.08, + "end": 18632.32, + "probability": 0.9902 + }, + { + "start": 18633.4, + "end": 18637.48, + "probability": 0.9269 + }, + { + "start": 18637.78, + "end": 18638.84, + "probability": 0.8086 + }, + { + "start": 18640.26, + "end": 18642.8, + "probability": 0.993 + }, + { + "start": 18643.44, + "end": 18644.76, + "probability": 0.9909 + }, + { + "start": 18646.36, + "end": 18648.84, + "probability": 0.9135 + }, + { + "start": 18648.88, + "end": 18649.44, + "probability": 0.7936 + }, + { + "start": 18651.44, + "end": 18652.16, + "probability": 0.9742 + }, + { + "start": 18653.28, + "end": 18654.26, + "probability": 0.9464 + }, + { + "start": 18654.9, + "end": 18657.68, + "probability": 0.9908 + }, + { + "start": 18658.9, + "end": 18662.68, + "probability": 0.9769 + }, + { + "start": 18663.2, + "end": 18666.3, + "probability": 0.981 + }, + { + "start": 18667.64, + "end": 18668.96, + "probability": 0.9623 + }, + { + "start": 18670.34, + "end": 18671.62, + "probability": 0.9889 + }, + { + "start": 18671.96, + "end": 18674.08, + "probability": 0.9216 + }, + { + "start": 18674.62, + "end": 18675.1, + "probability": 0.9366 + }, + { + "start": 18676.28, + "end": 18677.61, + "probability": 0.9847 + }, + { + "start": 18678.66, + "end": 18679.34, + "probability": 0.8779 + }, + { + "start": 18680.22, + "end": 18681.0, + "probability": 0.8458 + }, + { + "start": 18682.72, + "end": 18686.5, + "probability": 0.7399 + }, + { + "start": 18687.54, + "end": 18688.66, + "probability": 0.9756 + }, + { + "start": 18689.48, + "end": 18690.46, + "probability": 0.7848 + }, + { + "start": 18691.38, + "end": 18692.36, + "probability": 0.9638 + }, + { + "start": 18693.48, + "end": 18696.66, + "probability": 0.9927 + }, + { + "start": 18697.52, + "end": 18699.14, + "probability": 0.7752 + }, + { + "start": 18699.96, + "end": 18700.42, + "probability": 0.9836 + }, + { + "start": 18700.64, + "end": 18701.36, + "probability": 0.9854 + }, + { + "start": 18701.54, + "end": 18702.1, + "probability": 0.9534 + }, + { + "start": 18702.12, + "end": 18702.78, + "probability": 0.985 + }, + { + "start": 18703.16, + "end": 18703.8, + "probability": 0.9898 + }, + { + "start": 18704.26, + "end": 18704.98, + "probability": 0.9831 + }, + { + "start": 18705.04, + "end": 18705.78, + "probability": 0.904 + }, + { + "start": 18706.08, + "end": 18706.92, + "probability": 0.9712 + }, + { + "start": 18706.98, + "end": 18707.8, + "probability": 0.7203 + }, + { + "start": 18708.22, + "end": 18708.82, + "probability": 0.8194 + }, + { + "start": 18709.3, + "end": 18711.38, + "probability": 0.9888 + }, + { + "start": 18712.3, + "end": 18713.44, + "probability": 0.9976 + }, + { + "start": 18714.0, + "end": 18714.54, + "probability": 0.8119 + }, + { + "start": 18715.8, + "end": 18717.72, + "probability": 0.9988 + }, + { + "start": 18718.56, + "end": 18721.12, + "probability": 0.981 + }, + { + "start": 18722.56, + "end": 18723.9, + "probability": 0.9631 + }, + { + "start": 18724.56, + "end": 18726.7, + "probability": 0.998 + }, + { + "start": 18728.2, + "end": 18730.22, + "probability": 0.972 + }, + { + "start": 18731.62, + "end": 18735.04, + "probability": 0.9889 + }, + { + "start": 18735.62, + "end": 18736.84, + "probability": 0.9348 + }, + { + "start": 18737.7, + "end": 18738.92, + "probability": 0.89 + }, + { + "start": 18739.7, + "end": 18742.04, + "probability": 0.9621 + }, + { + "start": 18743.96, + "end": 18746.16, + "probability": 0.9934 + }, + { + "start": 18746.58, + "end": 18749.2, + "probability": 0.9849 + }, + { + "start": 18750.76, + "end": 18752.14, + "probability": 0.9548 + }, + { + "start": 18753.16, + "end": 18754.32, + "probability": 0.8839 + }, + { + "start": 18755.6, + "end": 18758.68, + "probability": 0.9959 + }, + { + "start": 18760.32, + "end": 18765.64, + "probability": 0.9983 + }, + { + "start": 18766.4, + "end": 18769.88, + "probability": 0.989 + }, + { + "start": 18770.6, + "end": 18774.11, + "probability": 0.9644 + }, + { + "start": 18774.24, + "end": 18777.08, + "probability": 0.9962 + }, + { + "start": 18778.88, + "end": 18782.78, + "probability": 0.9014 + }, + { + "start": 18783.84, + "end": 18784.52, + "probability": 0.9731 + }, + { + "start": 18785.8, + "end": 18787.66, + "probability": 0.9339 + }, + { + "start": 18788.66, + "end": 18790.06, + "probability": 0.9333 + }, + { + "start": 18791.32, + "end": 18792.42, + "probability": 0.8108 + }, + { + "start": 18792.9, + "end": 18798.96, + "probability": 0.9905 + }, + { + "start": 18799.88, + "end": 18801.04, + "probability": 0.6206 + }, + { + "start": 18802.08, + "end": 18803.72, + "probability": 0.9019 + }, + { + "start": 18804.62, + "end": 18806.72, + "probability": 0.9985 + }, + { + "start": 18808.3, + "end": 18809.52, + "probability": 0.9592 + }, + { + "start": 18810.04, + "end": 18810.48, + "probability": 0.9095 + }, + { + "start": 18811.4, + "end": 18813.16, + "probability": 0.9739 + }, + { + "start": 18814.74, + "end": 18818.0, + "probability": 0.9488 + }, + { + "start": 18818.46, + "end": 18820.86, + "probability": 0.9958 + }, + { + "start": 18821.9, + "end": 18823.58, + "probability": 0.9703 + }, + { + "start": 18824.3, + "end": 18826.16, + "probability": 0.9826 + }, + { + "start": 18827.34, + "end": 18828.92, + "probability": 0.9824 + }, + { + "start": 18830.22, + "end": 18832.68, + "probability": 0.9537 + }, + { + "start": 18833.32, + "end": 18837.28, + "probability": 0.9865 + }, + { + "start": 18838.84, + "end": 18842.42, + "probability": 0.9909 + }, + { + "start": 18843.74, + "end": 18846.3, + "probability": 0.9813 + }, + { + "start": 18847.06, + "end": 18849.08, + "probability": 0.9476 + }, + { + "start": 18850.08, + "end": 18853.32, + "probability": 0.9985 + }, + { + "start": 18854.1, + "end": 18856.02, + "probability": 0.9839 + }, + { + "start": 18856.72, + "end": 18859.16, + "probability": 0.993 + }, + { + "start": 18860.72, + "end": 18862.26, + "probability": 0.9843 + }, + { + "start": 18862.36, + "end": 18863.96, + "probability": 0.9612 + }, + { + "start": 18864.56, + "end": 18865.24, + "probability": 0.7666 + }, + { + "start": 18867.72, + "end": 18872.96, + "probability": 0.9941 + }, + { + "start": 18873.58, + "end": 18874.54, + "probability": 0.807 + }, + { + "start": 18875.16, + "end": 18876.78, + "probability": 0.9005 + }, + { + "start": 18879.14, + "end": 18882.52, + "probability": 0.9959 + }, + { + "start": 18883.12, + "end": 18886.08, + "probability": 0.9976 + }, + { + "start": 18886.9, + "end": 18888.68, + "probability": 0.9425 + }, + { + "start": 18889.26, + "end": 18889.66, + "probability": 0.5984 + }, + { + "start": 18890.62, + "end": 18892.38, + "probability": 0.8529 + }, + { + "start": 18893.3, + "end": 18894.94, + "probability": 0.982 + }, + { + "start": 18895.66, + "end": 18898.04, + "probability": 0.9966 + }, + { + "start": 18899.18, + "end": 18900.24, + "probability": 0.9731 + }, + { + "start": 18901.32, + "end": 18903.36, + "probability": 0.9747 + }, + { + "start": 18904.28, + "end": 18907.16, + "probability": 0.9102 + }, + { + "start": 18908.04, + "end": 18909.52, + "probability": 0.7595 + }, + { + "start": 18911.5, + "end": 18913.08, + "probability": 0.9922 + }, + { + "start": 18914.26, + "end": 18915.78, + "probability": 0.8625 + }, + { + "start": 18916.66, + "end": 18916.9, + "probability": 0.7402 + }, + { + "start": 18917.44, + "end": 18918.0, + "probability": 0.9239 + }, + { + "start": 18919.08, + "end": 18920.5, + "probability": 0.9827 + }, + { + "start": 18921.56, + "end": 18925.22, + "probability": 0.8158 + }, + { + "start": 18926.36, + "end": 18927.98, + "probability": 0.904 + }, + { + "start": 18929.06, + "end": 18930.38, + "probability": 0.6612 + }, + { + "start": 18931.6, + "end": 18932.55, + "probability": 0.9419 + }, + { + "start": 18934.48, + "end": 18936.16, + "probability": 0.9592 + }, + { + "start": 18936.22, + "end": 18940.46, + "probability": 0.9729 + }, + { + "start": 18941.92, + "end": 18945.3, + "probability": 0.9606 + }, + { + "start": 18947.3, + "end": 18948.1, + "probability": 0.635 + }, + { + "start": 18949.14, + "end": 18954.56, + "probability": 0.9797 + }, + { + "start": 18956.22, + "end": 18957.61, + "probability": 0.9951 + }, + { + "start": 18958.52, + "end": 18959.86, + "probability": 0.9954 + }, + { + "start": 18961.2, + "end": 18965.22, + "probability": 0.9826 + }, + { + "start": 18966.94, + "end": 18968.06, + "probability": 0.8677 + }, + { + "start": 18970.94, + "end": 18973.32, + "probability": 0.7581 + }, + { + "start": 18974.16, + "end": 18975.3, + "probability": 0.9749 + }, + { + "start": 18978.46, + "end": 18981.62, + "probability": 0.9353 + }, + { + "start": 18982.14, + "end": 18985.66, + "probability": 0.9259 + }, + { + "start": 18986.66, + "end": 18988.54, + "probability": 0.8606 + }, + { + "start": 18989.62, + "end": 18991.18, + "probability": 0.7351 + }, + { + "start": 18992.56, + "end": 18992.84, + "probability": 0.706 + }, + { + "start": 18993.88, + "end": 18995.36, + "probability": 0.7999 + }, + { + "start": 18996.62, + "end": 18999.02, + "probability": 0.9771 + }, + { + "start": 18999.82, + "end": 19001.5, + "probability": 0.9826 + }, + { + "start": 19002.16, + "end": 19004.64, + "probability": 0.9434 + }, + { + "start": 19006.34, + "end": 19007.48, + "probability": 0.8453 + }, + { + "start": 19008.38, + "end": 19008.88, + "probability": 0.8978 + }, + { + "start": 19009.84, + "end": 19011.33, + "probability": 0.9611 + }, + { + "start": 19012.36, + "end": 19017.4, + "probability": 0.9932 + }, + { + "start": 19018.46, + "end": 19023.71, + "probability": 0.861 + }, + { + "start": 19025.14, + "end": 19029.82, + "probability": 0.9803 + }, + { + "start": 19031.14, + "end": 19031.6, + "probability": 0.8442 + }, + { + "start": 19032.34, + "end": 19032.88, + "probability": 0.9417 + }, + { + "start": 19034.94, + "end": 19037.68, + "probability": 0.9934 + }, + { + "start": 19038.64, + "end": 19039.7, + "probability": 0.9891 + }, + { + "start": 19042.4, + "end": 19043.58, + "probability": 0.9661 + }, + { + "start": 19044.26, + "end": 19046.12, + "probability": 0.991 + }, + { + "start": 19046.68, + "end": 19047.46, + "probability": 0.8623 + }, + { + "start": 19049.14, + "end": 19052.14, + "probability": 0.7511 + }, + { + "start": 19052.82, + "end": 19055.1, + "probability": 0.8984 + }, + { + "start": 19057.3, + "end": 19058.08, + "probability": 0.8398 + }, + { + "start": 19058.94, + "end": 19060.36, + "probability": 0.908 + }, + { + "start": 19061.68, + "end": 19062.58, + "probability": 0.9902 + }, + { + "start": 19063.48, + "end": 19066.38, + "probability": 0.9839 + }, + { + "start": 19067.2, + "end": 19068.52, + "probability": 0.7857 + }, + { + "start": 19077.82, + "end": 19082.94, + "probability": 0.998 + }, + { + "start": 19083.54, + "end": 19085.24, + "probability": 0.9988 + }, + { + "start": 19086.08, + "end": 19087.14, + "probability": 0.9613 + }, + { + "start": 19088.02, + "end": 19090.82, + "probability": 0.9706 + }, + { + "start": 19092.7, + "end": 19093.5, + "probability": 0.9429 + }, + { + "start": 19100.06, + "end": 19100.88, + "probability": 0.7976 + }, + { + "start": 19101.16, + "end": 19102.14, + "probability": 0.7896 + }, + { + "start": 19102.4, + "end": 19103.1, + "probability": 0.9105 + }, + { + "start": 19103.2, + "end": 19107.78, + "probability": 0.9619 + }, + { + "start": 19108.64, + "end": 19110.68, + "probability": 0.9105 + }, + { + "start": 19112.04, + "end": 19112.26, + "probability": 0.6046 + }, + { + "start": 19144.8, + "end": 19145.74, + "probability": 0.341 + }, + { + "start": 19147.26, + "end": 19148.08, + "probability": 0.5893 + }, + { + "start": 19156.22, + "end": 19156.22, + "probability": 0.0197 + }, + { + "start": 19156.22, + "end": 19156.22, + "probability": 0.044 + }, + { + "start": 19156.22, + "end": 19156.22, + "probability": 0.3235 + }, + { + "start": 19156.22, + "end": 19156.22, + "probability": 0.1753 + }, + { + "start": 19156.22, + "end": 19156.22, + "probability": 0.3092 + }, + { + "start": 19173.68, + "end": 19176.54, + "probability": 0.1752 + }, + { + "start": 19188.42, + "end": 19188.58, + "probability": 0.1588 + }, + { + "start": 19193.2, + "end": 19196.18, + "probability": 0.811 + }, + { + "start": 19196.96, + "end": 19198.58, + "probability": 0.8491 + }, + { + "start": 19199.4, + "end": 19201.94, + "probability": 0.9598 + }, + { + "start": 19202.36, + "end": 19203.18, + "probability": 0.9302 + }, + { + "start": 19203.78, + "end": 19205.18, + "probability": 0.7825 + }, + { + "start": 19205.7, + "end": 19206.8, + "probability": 0.7898 + }, + { + "start": 19207.4, + "end": 19209.84, + "probability": 0.9967 + }, + { + "start": 19209.88, + "end": 19210.7, + "probability": 0.933 + }, + { + "start": 19210.94, + "end": 19211.2, + "probability": 0.7123 + }, + { + "start": 19215.66, + "end": 19219.1, + "probability": 0.6391 + }, + { + "start": 19219.16, + "end": 19223.58, + "probability": 0.9798 + }, + { + "start": 19223.96, + "end": 19224.06, + "probability": 0.8508 + }, + { + "start": 19225.5, + "end": 19226.96, + "probability": 0.8162 + }, + { + "start": 19227.06, + "end": 19228.23, + "probability": 0.9966 + }, + { + "start": 19229.22, + "end": 19235.09, + "probability": 0.8382 + }, + { + "start": 19235.18, + "end": 19239.34, + "probability": 0.9098 + }, + { + "start": 19239.34, + "end": 19242.08, + "probability": 0.9966 + }, + { + "start": 19242.48, + "end": 19242.98, + "probability": 0.7227 + }, + { + "start": 19243.4, + "end": 19247.56, + "probability": 0.9951 + }, + { + "start": 19247.96, + "end": 19249.5, + "probability": 0.9395 + }, + { + "start": 19249.66, + "end": 19251.14, + "probability": 0.7502 + }, + { + "start": 19251.38, + "end": 19251.8, + "probability": 0.4779 + }, + { + "start": 19252.22, + "end": 19255.78, + "probability": 0.9929 + }, + { + "start": 19255.94, + "end": 19256.36, + "probability": 0.8054 + }, + { + "start": 19256.98, + "end": 19257.36, + "probability": 0.4636 + }, + { + "start": 19257.48, + "end": 19259.3, + "probability": 0.9591 + }, + { + "start": 19264.54, + "end": 19265.58, + "probability": 0.7407 + }, + { + "start": 19265.7, + "end": 19269.54, + "probability": 0.9557 + }, + { + "start": 19270.06, + "end": 19274.22, + "probability": 0.9633 + }, + { + "start": 19274.22, + "end": 19277.02, + "probability": 0.9954 + }, + { + "start": 19277.92, + "end": 19282.64, + "probability": 0.9972 + }, + { + "start": 19283.12, + "end": 19286.38, + "probability": 0.9851 + }, + { + "start": 19286.56, + "end": 19289.2, + "probability": 0.8944 + }, + { + "start": 19289.7, + "end": 19293.98, + "probability": 0.9933 + }, + { + "start": 19294.54, + "end": 19297.0, + "probability": 0.7519 + }, + { + "start": 19297.62, + "end": 19299.68, + "probability": 0.998 + }, + { + "start": 19299.9, + "end": 19302.16, + "probability": 0.9561 + }, + { + "start": 19302.76, + "end": 19308.52, + "probability": 0.9808 + }, + { + "start": 19309.02, + "end": 19311.96, + "probability": 0.9942 + }, + { + "start": 19312.16, + "end": 19312.42, + "probability": 0.5309 + }, + { + "start": 19313.22, + "end": 19317.16, + "probability": 0.9956 + }, + { + "start": 19317.38, + "end": 19321.66, + "probability": 0.9678 + }, + { + "start": 19322.66, + "end": 19323.06, + "probability": 0.4034 + }, + { + "start": 19323.08, + "end": 19324.78, + "probability": 0.9759 + }, + { + "start": 19325.04, + "end": 19328.26, + "probability": 0.9937 + }, + { + "start": 19328.5, + "end": 19329.0, + "probability": 0.8766 + }, + { + "start": 19332.92, + "end": 19337.38, + "probability": 0.8563 + }, + { + "start": 19339.4, + "end": 19340.34, + "probability": 0.7054 + }, + { + "start": 19342.07, + "end": 19346.82, + "probability": 0.9913 + }, + { + "start": 19346.98, + "end": 19348.76, + "probability": 0.9907 + }, + { + "start": 19349.26, + "end": 19350.6, + "probability": 0.9757 + }, + { + "start": 19350.66, + "end": 19351.29, + "probability": 0.9482 + }, + { + "start": 19352.86, + "end": 19353.0, + "probability": 0.7229 + }, + { + "start": 19354.28, + "end": 19354.8, + "probability": 0.8592 + }, + { + "start": 19355.56, + "end": 19356.92, + "probability": 0.915 + }, + { + "start": 19357.54, + "end": 19358.98, + "probability": 0.9566 + }, + { + "start": 19359.44, + "end": 19360.7, + "probability": 0.831 + }, + { + "start": 19360.74, + "end": 19362.14, + "probability": 0.9939 + }, + { + "start": 19362.16, + "end": 19362.76, + "probability": 0.7966 + }, + { + "start": 19362.82, + "end": 19365.22, + "probability": 0.9924 + }, + { + "start": 19365.28, + "end": 19369.66, + "probability": 0.8638 + }, + { + "start": 19370.32, + "end": 19372.16, + "probability": 0.2784 + }, + { + "start": 19372.16, + "end": 19373.74, + "probability": 0.6664 + }, + { + "start": 19373.74, + "end": 19374.14, + "probability": 0.1967 + }, + { + "start": 19374.28, + "end": 19376.9, + "probability": 0.5065 + }, + { + "start": 19377.6, + "end": 19377.74, + "probability": 0.5268 + }, + { + "start": 19377.76, + "end": 19378.9, + "probability": 0.953 + }, + { + "start": 19379.5, + "end": 19381.48, + "probability": 0.9972 + }, + { + "start": 19382.71, + "end": 19386.94, + "probability": 0.9661 + }, + { + "start": 19387.18, + "end": 19389.09, + "probability": 0.9983 + }, + { + "start": 19389.58, + "end": 19390.36, + "probability": 0.8656 + }, + { + "start": 19391.0, + "end": 19391.38, + "probability": 0.8363 + }, + { + "start": 19391.9, + "end": 19395.04, + "probability": 0.9976 + }, + { + "start": 19395.04, + "end": 19398.02, + "probability": 0.9914 + }, + { + "start": 19398.08, + "end": 19401.96, + "probability": 0.9964 + }, + { + "start": 19402.4, + "end": 19403.12, + "probability": 0.9893 + }, + { + "start": 19403.68, + "end": 19404.42, + "probability": 0.9381 + }, + { + "start": 19405.26, + "end": 19410.34, + "probability": 0.998 + }, + { + "start": 19410.66, + "end": 19411.62, + "probability": 0.7318 + }, + { + "start": 19411.7, + "end": 19412.19, + "probability": 0.8208 + }, + { + "start": 19412.8, + "end": 19415.82, + "probability": 0.6031 + }, + { + "start": 19415.9, + "end": 19416.38, + "probability": 0.5836 + }, + { + "start": 19416.52, + "end": 19417.64, + "probability": 0.9168 + }, + { + "start": 19418.1, + "end": 19422.02, + "probability": 0.9744 + }, + { + "start": 19422.6, + "end": 19425.2, + "probability": 0.9895 + }, + { + "start": 19425.2, + "end": 19429.26, + "probability": 0.9664 + }, + { + "start": 19429.7, + "end": 19431.54, + "probability": 0.8831 + }, + { + "start": 19431.6, + "end": 19432.56, + "probability": 0.9236 + }, + { + "start": 19433.24, + "end": 19436.1, + "probability": 0.96 + }, + { + "start": 19436.1, + "end": 19439.3, + "probability": 0.9915 + }, + { + "start": 19439.8, + "end": 19442.86, + "probability": 0.9723 + }, + { + "start": 19442.96, + "end": 19443.38, + "probability": 0.5151 + }, + { + "start": 19443.44, + "end": 19445.58, + "probability": 0.9897 + }, + { + "start": 19446.04, + "end": 19449.4, + "probability": 0.9262 + }, + { + "start": 19449.82, + "end": 19450.38, + "probability": 0.6587 + }, + { + "start": 19450.82, + "end": 19452.62, + "probability": 0.9939 + }, + { + "start": 19452.82, + "end": 19454.46, + "probability": 0.9668 + }, + { + "start": 19455.82, + "end": 19460.86, + "probability": 0.7213 + }, + { + "start": 19460.96, + "end": 19461.74, + "probability": 0.9655 + }, + { + "start": 19462.06, + "end": 19462.48, + "probability": 0.8538 + }, + { + "start": 19463.26, + "end": 19467.96, + "probability": 0.9126 + }, + { + "start": 19468.36, + "end": 19470.68, + "probability": 0.9819 + }, + { + "start": 19471.66, + "end": 19474.14, + "probability": 0.9939 + }, + { + "start": 19474.7, + "end": 19477.48, + "probability": 0.9544 + }, + { + "start": 19477.54, + "end": 19479.06, + "probability": 0.6643 + }, + { + "start": 19479.64, + "end": 19484.56, + "probability": 0.9848 + }, + { + "start": 19484.92, + "end": 19486.5, + "probability": 0.9338 + }, + { + "start": 19487.7, + "end": 19488.3, + "probability": 0.7028 + }, + { + "start": 19488.46, + "end": 19491.74, + "probability": 0.6445 + }, + { + "start": 19491.8, + "end": 19493.95, + "probability": 0.7469 + }, + { + "start": 19500.64, + "end": 19505.5, + "probability": 0.9843 + }, + { + "start": 19506.96, + "end": 19509.32, + "probability": 0.9544 + }, + { + "start": 19513.09, + "end": 19515.28, + "probability": 0.7808 + }, + { + "start": 19515.96, + "end": 19517.02, + "probability": 0.4448 + }, + { + "start": 19517.42, + "end": 19520.64, + "probability": 0.9808 + }, + { + "start": 19520.8, + "end": 19521.32, + "probability": 0.8298 + }, + { + "start": 19521.98, + "end": 19524.86, + "probability": 0.7715 + }, + { + "start": 19524.9, + "end": 19525.26, + "probability": 0.8729 + }, + { + "start": 19527.04, + "end": 19529.02, + "probability": 0.9744 + }, + { + "start": 19529.54, + "end": 19530.16, + "probability": 0.4984 + }, + { + "start": 19530.4, + "end": 19530.58, + "probability": 0.725 + }, + { + "start": 19531.16, + "end": 19532.88, + "probability": 0.3829 + }, + { + "start": 19533.12, + "end": 19537.52, + "probability": 0.0287 + }, + { + "start": 19546.02, + "end": 19548.16, + "probability": 0.6443 + }, + { + "start": 19548.86, + "end": 19550.88, + "probability": 0.9906 + }, + { + "start": 19551.88, + "end": 19554.56, + "probability": 0.9881 + }, + { + "start": 19554.66, + "end": 19555.88, + "probability": 0.8749 + }, + { + "start": 19556.5, + "end": 19560.28, + "probability": 0.9969 + }, + { + "start": 19561.02, + "end": 19562.2, + "probability": 0.9924 + }, + { + "start": 19562.82, + "end": 19564.44, + "probability": 0.9095 + }, + { + "start": 19565.56, + "end": 19566.8, + "probability": 0.8552 + }, + { + "start": 19567.78, + "end": 19569.22, + "probability": 0.8675 + }, + { + "start": 19570.26, + "end": 19571.64, + "probability": 0.8034 + }, + { + "start": 19578.62, + "end": 19579.92, + "probability": 0.4197 + }, + { + "start": 19583.18, + "end": 19585.52, + "probability": 0.0941 + }, + { + "start": 19586.42, + "end": 19588.84, + "probability": 0.0076 + }, + { + "start": 19589.98, + "end": 19593.86, + "probability": 0.1457 + }, + { + "start": 19596.14, + "end": 19597.9, + "probability": 0.3823 + }, + { + "start": 19599.3, + "end": 19601.48, + "probability": 0.8641 + }, + { + "start": 19603.24, + "end": 19606.4, + "probability": 0.8083 + }, + { + "start": 19611.7, + "end": 19615.82, + "probability": 0.9702 + }, + { + "start": 19616.1, + "end": 19617.52, + "probability": 0.9646 + }, + { + "start": 19620.04, + "end": 19623.48, + "probability": 0.9933 + }, + { + "start": 19624.2, + "end": 19631.58, + "probability": 0.9985 + }, + { + "start": 19633.68, + "end": 19637.5, + "probability": 0.9993 + }, + { + "start": 19660.57, + "end": 19662.145, + "probability": 0.7564 + }, + { + "start": 19683.54, + "end": 19684.12, + "probability": 0.3973 + }, + { + "start": 19685.24, + "end": 19687.88, + "probability": 0.0376 + }, + { + "start": 19689.55, + "end": 19691.92, + "probability": 0.0414 + }, + { + "start": 19695.78, + "end": 19696.8, + "probability": 0.1587 + }, + { + "start": 19697.38, + "end": 19698.8, + "probability": 0.0012 + }, + { + "start": 19838.0, + "end": 19838.0, + "probability": 0.0 + }, + { + "start": 19838.0, + "end": 19838.0, + "probability": 0.0 + }, + { + "start": 19838.0, + "end": 19838.0, + "probability": 0.0 + }, + { + "start": 19838.12, + "end": 19838.3, + "probability": 0.1592 + }, + { + "start": 19838.3, + "end": 19838.3, + "probability": 0.1565 + }, + { + "start": 19838.3, + "end": 19838.3, + "probability": 0.0788 + }, + { + "start": 19838.3, + "end": 19839.54, + "probability": 0.3121 + }, + { + "start": 19843.32, + "end": 19843.52, + "probability": 0.5471 + }, + { + "start": 19844.52, + "end": 19846.58, + "probability": 0.0932 + }, + { + "start": 19873.74, + "end": 19875.96, + "probability": 0.9123 + }, + { + "start": 19876.1, + "end": 19876.5, + "probability": 0.7559 + }, + { + "start": 19883.46, + "end": 19884.36, + "probability": 0.7927 + }, + { + "start": 19884.48, + "end": 19885.34, + "probability": 0.7778 + }, + { + "start": 19885.82, + "end": 19891.62, + "probability": 0.9795 + }, + { + "start": 19891.62, + "end": 19895.56, + "probability": 0.9943 + }, + { + "start": 19896.06, + "end": 19897.7, + "probability": 0.9819 + }, + { + "start": 19897.78, + "end": 19898.0, + "probability": 0.8604 + }, + { + "start": 19898.98, + "end": 19899.62, + "probability": 0.4452 + }, + { + "start": 19901.04, + "end": 19903.44, + "probability": 0.9984 + }, + { + "start": 19904.34, + "end": 19905.84, + "probability": 0.8516 + }, + { + "start": 19906.74, + "end": 19908.96, + "probability": 0.9829 + }, + { + "start": 19909.6, + "end": 19911.48, + "probability": 0.9744 + }, + { + "start": 19912.3, + "end": 19914.94, + "probability": 0.9409 + }, + { + "start": 19917.0, + "end": 19917.48, + "probability": 0.9364 + }, + { + "start": 19917.66, + "end": 19920.76, + "probability": 0.9952 + }, + { + "start": 19921.94, + "end": 19923.32, + "probability": 0.7863 + }, + { + "start": 19923.54, + "end": 19924.8, + "probability": 0.5686 + }, + { + "start": 19925.06, + "end": 19930.34, + "probability": 0.9451 + }, + { + "start": 19931.1, + "end": 19932.06, + "probability": 0.7769 + }, + { + "start": 19932.12, + "end": 19936.76, + "probability": 0.9849 + }, + { + "start": 19937.0, + "end": 19940.8, + "probability": 0.9635 + }, + { + "start": 19941.74, + "end": 19943.86, + "probability": 0.9733 + }, + { + "start": 19947.88, + "end": 19949.34, + "probability": 0.1093 + }, + { + "start": 19966.62, + "end": 19967.46, + "probability": 0.8017 + }, + { + "start": 19968.46, + "end": 19969.34, + "probability": 0.8266 + }, + { + "start": 19970.2, + "end": 19971.64, + "probability": 0.9897 + }, + { + "start": 19972.44, + "end": 19975.22, + "probability": 0.9985 + }, + { + "start": 19975.9, + "end": 19980.56, + "probability": 0.9981 + }, + { + "start": 19983.16, + "end": 19985.56, + "probability": 0.0106 + }, + { + "start": 19996.68, + "end": 19996.94, + "probability": 0.5561 + }, + { + "start": 19997.28, + "end": 19998.6, + "probability": 0.8949 + }, + { + "start": 20014.7, + "end": 20015.26, + "probability": 0.3288 + }, + { + "start": 20016.12, + "end": 20017.8, + "probability": 0.7248 + }, + { + "start": 20018.58, + "end": 20020.28, + "probability": 0.9013 + }, + { + "start": 20020.58, + "end": 20025.74, + "probability": 0.9175 + }, + { + "start": 20026.3, + "end": 20032.3, + "probability": 0.9827 + }, + { + "start": 20037.2, + "end": 20041.74, + "probability": 0.0095 + }, + { + "start": 20043.52, + "end": 20045.14, + "probability": 0.6548 + }, + { + "start": 20063.78, + "end": 20063.92, + "probability": 0.2373 + }, + { + "start": 20064.9, + "end": 20065.64, + "probability": 0.7627 + }, + { + "start": 20066.88, + "end": 20068.58, + "probability": 0.8722 + }, + { + "start": 20069.68, + "end": 20075.6, + "probability": 0.9594 + }, + { + "start": 20076.96, + "end": 20079.36, + "probability": 0.995 + }, + { + "start": 20080.74, + "end": 20083.16, + "probability": 0.9804 + }, + { + "start": 20095.35, + "end": 20098.36, + "probability": 0.5327 + }, + { + "start": 20117.44, + "end": 20117.68, + "probability": 0.3316 + }, + { + "start": 20118.52, + "end": 20121.4, + "probability": 0.5889 + }, + { + "start": 20124.82, + "end": 20125.66, + "probability": 0.7828 + }, + { + "start": 20126.34, + "end": 20130.64, + "probability": 0.953 + }, + { + "start": 20131.1, + "end": 20135.1, + "probability": 0.9902 + }, + { + "start": 20138.0, + "end": 20141.38, + "probability": 0.0133 + }, + { + "start": 20146.84, + "end": 20148.38, + "probability": 0.8936 + }, + { + "start": 20165.56, + "end": 20166.61, + "probability": 0.0885 + }, + { + "start": 20167.38, + "end": 20168.5, + "probability": 0.9266 + }, + { + "start": 20170.08, + "end": 20171.32, + "probability": 0.57 + }, + { + "start": 20175.48, + "end": 20176.8, + "probability": 0.483 + }, + { + "start": 20177.92, + "end": 20179.46, + "probability": 0.9514 + }, + { + "start": 20180.76, + "end": 20183.04, + "probability": 0.9251 + }, + { + "start": 20183.88, + "end": 20184.52, + "probability": 0.9143 + }, + { + "start": 20185.54, + "end": 20191.72, + "probability": 0.9907 + }, + { + "start": 20192.54, + "end": 20199.66, + "probability": 0.9846 + }, + { + "start": 20205.82, + "end": 20205.82, + "probability": 0.0173 + }, + { + "start": 20206.92, + "end": 20207.14, + "probability": 0.0001 + }, + { + "start": 20208.66, + "end": 20208.88, + "probability": 0.0985 + }, + { + "start": 20211.62, + "end": 20212.54, + "probability": 0.9275 + }, + { + "start": 20234.3, + "end": 20235.34, + "probability": 0.7679 + }, + { + "start": 20236.42, + "end": 20240.68, + "probability": 0.7181 + }, + { + "start": 20240.78, + "end": 20242.36, + "probability": 0.9078 + }, + { + "start": 20243.56, + "end": 20245.44, + "probability": 0.9115 + }, + { + "start": 20246.24, + "end": 20247.62, + "probability": 0.5302 + }, + { + "start": 20248.2, + "end": 20248.98, + "probability": 0.7366 + }, + { + "start": 20250.0, + "end": 20251.4, + "probability": 0.9938 + }, + { + "start": 20252.2, + "end": 20254.92, + "probability": 0.9987 + }, + { + "start": 20255.68, + "end": 20261.52, + "probability": 0.9954 + }, + { + "start": 20264.2, + "end": 20265.8, + "probability": 0.0219 + }, + { + "start": 20270.72, + "end": 20271.38, + "probability": 0.0004 + }, + { + "start": 20272.62, + "end": 20274.72, + "probability": 0.1069 + }, + { + "start": 20276.48, + "end": 20277.76, + "probability": 0.909 + }, + { + "start": 20279.18, + "end": 20283.56, + "probability": 0.0984 + }, + { + "start": 20305.98, + "end": 20307.02, + "probability": 0.3208 + }, + { + "start": 20308.12, + "end": 20308.52, + "probability": 0.7587 + }, + { + "start": 20309.3, + "end": 20310.02, + "probability": 0.9831 + }, + { + "start": 20311.06, + "end": 20313.28, + "probability": 0.999 + }, + { + "start": 20314.42, + "end": 20320.62, + "probability": 0.9967 + }, + { + "start": 20322.86, + "end": 20326.0, + "probability": 0.011 + }, + { + "start": 20345.76, + "end": 20346.24, + "probability": 0.5027 + }, + { + "start": 20346.24, + "end": 20346.24, + "probability": 0.0017 + }, + { + "start": 20368.92, + "end": 20370.58, + "probability": 0.6979 + }, + { + "start": 20371.6, + "end": 20374.08, + "probability": 0.8862 + }, + { + "start": 20374.86, + "end": 20376.06, + "probability": 0.7461 + }, + { + "start": 20376.96, + "end": 20381.76, + "probability": 0.9761 + }, + { + "start": 20382.48, + "end": 20387.74, + "probability": 0.9984 + }, + { + "start": 20421.2, + "end": 20424.3, + "probability": 0.0137 + }, + { + "start": 20425.02, + "end": 20426.54, + "probability": 0.8721 + }, + { + "start": 20438.08, + "end": 20440.98, + "probability": 0.0036 + }, + { + "start": 20443.44, + "end": 20444.74, + "probability": 0.2675 + }, + { + "start": 20446.42, + "end": 20447.98, + "probability": 0.0502 + }, + { + "start": 20448.0, + "end": 20448.0, + "probability": 0.0 + }, + { + "start": 20448.54, + "end": 20448.68, + "probability": 0.0019 + }, + { + "start": 20452.07, + "end": 20455.56, + "probability": 0.408 + }, + { + "start": 20455.64, + "end": 20460.72, + "probability": 0.9798 + }, + { + "start": 20461.58, + "end": 20467.14, + "probability": 0.9956 + }, + { + "start": 20468.64, + "end": 20470.94, + "probability": 0.0542 + }, + { + "start": 20500.12, + "end": 20501.44, + "probability": 0.9171 + }, + { + "start": 20520.92, + "end": 20522.7, + "probability": 0.652 + }, + { + "start": 20523.66, + "end": 20526.26, + "probability": 0.8757 + }, + { + "start": 20527.78, + "end": 20532.54, + "probability": 0.9497 + }, + { + "start": 20533.76, + "end": 20539.24, + "probability": 0.9873 + }, + { + "start": 20558.42, + "end": 20560.9, + "probability": 0.5053 + }, + { + "start": 20580.38, + "end": 20580.56, + "probability": 0.4754 + }, + { + "start": 20581.32, + "end": 20582.84, + "probability": 0.7273 + }, + { + "start": 20583.9, + "end": 20585.48, + "probability": 0.9167 + }, + { + "start": 20586.28, + "end": 20593.04, + "probability": 0.991 + }, + { + "start": 20593.9, + "end": 20594.88, + "probability": 0.9216 + }, + { + "start": 20595.48, + "end": 20600.16, + "probability": 0.9985 + }, + { + "start": 20601.86, + "end": 20603.74, + "probability": 0.0028 + }, + { + "start": 20609.2, + "end": 20610.26, + "probability": 0.6443 + }, + { + "start": 20622.28, + "end": 20623.58, + "probability": 0.2625 + }, + { + "start": 20624.72, + "end": 20625.04, + "probability": 0.0548 + }, + { + "start": 20647.02, + "end": 20647.94, + "probability": 0.4999 + }, + { + "start": 20648.52, + "end": 20652.36, + "probability": 0.8707 + }, + { + "start": 20653.06, + "end": 20654.58, + "probability": 0.8248 + }, + { + "start": 20655.72, + "end": 20658.64, + "probability": 0.9984 + }, + { + "start": 20659.24, + "end": 20665.1, + "probability": 0.9908 + }, + { + "start": 20666.86, + "end": 20669.36, + "probability": 0.0136 + }, + { + "start": 20685.96, + "end": 20688.22, + "probability": 0.6153 + }, + { + "start": 20707.3, + "end": 20708.68, + "probability": 0.6708 + }, + { + "start": 20709.8, + "end": 20713.58, + "probability": 0.9165 + }, + { + "start": 20714.4, + "end": 20718.64, + "probability": 0.9862 + }, + { + "start": 20719.0, + "end": 20724.48, + "probability": 0.9723 + }, + { + "start": 20729.86, + "end": 20730.46, + "probability": 0.0131 + }, + { + "start": 20738.26, + "end": 20740.24, + "probability": 0.9231 + }, + { + "start": 20753.8, + "end": 20753.98, + "probability": 0.4681 + }, + { + "start": 20754.5, + "end": 20755.72, + "probability": 0.8854 + }, + { + "start": 20756.7, + "end": 20758.68, + "probability": 0.8851 + }, + { + "start": 20759.54, + "end": 20764.8, + "probability": 0.9567 + }, + { + "start": 20766.14, + "end": 20769.92, + "probability": 0.9984 + }, + { + "start": 20770.58, + "end": 20772.54, + "probability": 0.9911 + }, + { + "start": 20789.28, + "end": 20791.29, + "probability": 0.4812 + }, + { + "start": 20791.88, + "end": 20791.9, + "probability": 0.5658 + }, + { + "start": 20792.96, + "end": 20793.38, + "probability": 0.0168 + }, + { + "start": 20812.04, + "end": 20813.14, + "probability": 0.3749 + }, + { + "start": 20814.16, + "end": 20815.88, + "probability": 0.9513 + }, + { + "start": 20816.68, + "end": 20819.1, + "probability": 0.9993 + }, + { + "start": 20819.9, + "end": 20825.72, + "probability": 0.9938 + }, + { + "start": 20826.64, + "end": 20829.04, + "probability": 0.0176 + }, + { + "start": 20845.16, + "end": 20846.98, + "probability": 0.8783 + }, + { + "start": 20847.3, + "end": 20847.98, + "probability": 0.2251 + }, + { + "start": 20862.72, + "end": 20866.08, + "probability": 0.7826 + }, + { + "start": 20866.84, + "end": 20871.02, + "probability": 0.907 + }, + { + "start": 20878.62, + "end": 20881.12, + "probability": 0.8853 + }, + { + "start": 20881.76, + "end": 20887.42, + "probability": 0.9924 + }, + { + "start": 20894.82, + "end": 20894.89, + "probability": 0.0154 + }, + { + "start": 20900.82, + "end": 20901.22, + "probability": 0.8494 + }, + { + "start": 20901.3, + "end": 20903.72, + "probability": 0.8066 + }, + { + "start": 20903.78, + "end": 20906.88, + "probability": 0.913 + }, + { + "start": 20908.08, + "end": 20909.68, + "probability": 0.8912 + }, + { + "start": 20912.41, + "end": 20913.54, + "probability": 0.3287 + }, + { + "start": 20929.52, + "end": 20932.34, + "probability": 0.7061 + }, + { + "start": 20933.0, + "end": 20937.84, + "probability": 0.9964 + }, + { + "start": 20938.52, + "end": 20943.22, + "probability": 0.9968 + }, + { + "start": 20959.02, + "end": 20959.44, + "probability": 0.0138 + }, + { + "start": 20960.94, + "end": 20962.6, + "probability": 0.7583 + }, + { + "start": 20962.6, + "end": 20962.6, + "probability": 0.0013 + }, + { + "start": 20963.66, + "end": 20964.08, + "probability": 0.2536 + }, + { + "start": 20993.54, + "end": 20996.78, + "probability": 0.7433 + }, + { + "start": 20998.24, + "end": 20999.86, + "probability": 0.9901 + }, + { + "start": 21001.02, + "end": 21003.38, + "probability": 0.9792 + }, + { + "start": 21004.68, + "end": 21011.42, + "probability": 0.9937 + }, + { + "start": 21013.5, + "end": 21014.28, + "probability": 0.0124 + }, + { + "start": 21037.4, + "end": 21038.74, + "probability": 0.9175 + }, + { + "start": 21070.16, + "end": 21073.47, + "probability": 0.7178 + }, + { + "start": 21074.36, + "end": 21076.52, + "probability": 0.8688 + }, + { + "start": 21077.14, + "end": 21082.46, + "probability": 0.9905 + }, + { + "start": 21083.1, + "end": 21088.7, + "probability": 0.9977 + }, + { + "start": 21090.24, + "end": 21099.86, + "probability": 0.0202 + }, + { + "start": 21100.72, + "end": 21101.44, + "probability": 0.2394 + }, + { + "start": 21116.28, + "end": 21117.9, + "probability": 0.7922 + }, + { + "start": 21119.02, + "end": 21120.38, + "probability": 0.002 + }, + { + "start": 21131.9, + "end": 21136.32, + "probability": 0.7954 + }, + { + "start": 21137.2, + "end": 21140.94, + "probability": 0.954 + }, + { + "start": 21141.46, + "end": 21145.72, + "probability": 0.9945 + }, + { + "start": 21148.44, + "end": 21148.51, + "probability": 0.0258 + }, + { + "start": 21173.42, + "end": 21174.94, + "probability": 0.8997 + }, + { + "start": 21188.64, + "end": 21190.06, + "probability": 0.7622 + }, + { + "start": 21191.24, + "end": 21193.3, + "probability": 0.8787 + }, + { + "start": 21193.36, + "end": 21194.48, + "probability": 0.6909 + }, + { + "start": 21194.52, + "end": 21194.94, + "probability": 0.265 + }, + { + "start": 21195.14, + "end": 21196.08, + "probability": 0.8427 + }, + { + "start": 21197.24, + "end": 21201.08, + "probability": 0.9833 + }, + { + "start": 21201.68, + "end": 21206.18, + "probability": 0.992 + }, + { + "start": 21207.38, + "end": 21212.74, + "probability": 0.01 + }, + { + "start": 21214.36, + "end": 21215.76, + "probability": 0.2298 + }, + { + "start": 21225.6, + "end": 21227.16, + "probability": 0.958 + }, + { + "start": 21228.71, + "end": 21229.28, + "probability": 0.0331 + }, + { + "start": 21249.21, + "end": 21251.66, + "probability": 0.6825 + }, + { + "start": 21252.8, + "end": 21257.96, + "probability": 0.9891 + }, + { + "start": 21258.76, + "end": 21261.3, + "probability": 0.9946 + }, + { + "start": 21261.86, + "end": 21265.62, + "probability": 0.9978 + }, + { + "start": 21273.08, + "end": 21274.22, + "probability": 0.0072 + }, + { + "start": 21290.28, + "end": 21292.48, + "probability": 0.8574 + }, + { + "start": 21293.48, + "end": 21294.78, + "probability": 0.0513 + }, + { + "start": 21311.3, + "end": 21313.84, + "probability": 0.4052 + }, + { + "start": 21314.52, + "end": 21315.6, + "probability": 0.8187 + }, + { + "start": 21316.56, + "end": 21322.34, + "probability": 0.9741 + }, + { + "start": 21323.46, + "end": 21331.4, + "probability": 0.9963 + }, + { + "start": 21352.08, + "end": 21353.54, + "probability": 0.4315 + }, + { + "start": 21354.64, + "end": 21355.22, + "probability": 0.0535 + }, + { + "start": 21375.08, + "end": 21376.2, + "probability": 0.0851 + }, + { + "start": 21377.16, + "end": 21378.6, + "probability": 0.9421 + }, + { + "start": 21379.6, + "end": 21380.06, + "probability": 0.5978 + }, + { + "start": 21381.16, + "end": 21382.45, + "probability": 0.9359 + }, + { + "start": 21383.5, + "end": 21385.44, + "probability": 0.9772 + }, + { + "start": 21386.12, + "end": 21389.24, + "probability": 0.999 + }, + { + "start": 21389.98, + "end": 21396.1, + "probability": 0.9966 + }, + { + "start": 21420.57, + "end": 21422.3, + "probability": 0.4706 + }, + { + "start": 21423.39, + "end": 21425.97, + "probability": 0.047 + }, + { + "start": 21441.85, + "end": 21445.69, + "probability": 0.9274 + }, + { + "start": 21446.63, + "end": 21450.61, + "probability": 0.9912 + }, + { + "start": 21451.17, + "end": 21455.37, + "probability": 0.9959 + }, + { + "start": 21456.45, + "end": 21457.91, + "probability": 0.5249 + }, + { + "start": 21458.05, + "end": 21461.73, + "probability": 0.9704 + }, + { + "start": 21461.83, + "end": 21462.21, + "probability": 0.7779 + }, + { + "start": 21462.45, + "end": 21463.05, + "probability": 0.5621 + }, + { + "start": 21463.13, + "end": 21465.31, + "probability": 0.8904 + }, + { + "start": 21472.19, + "end": 21473.99, + "probability": 0.9994 + }, + { + "start": 21474.93, + "end": 21475.29, + "probability": 0.8529 + }, + { + "start": 21475.73, + "end": 21478.83, + "probability": 0.8289 + }, + { + "start": 21478.91, + "end": 21479.49, + "probability": 0.5802 + }, + { + "start": 21480.65, + "end": 21481.93, + "probability": 0.9971 + }, + { + "start": 21482.79, + "end": 21484.09, + "probability": 0.7583 + }, + { + "start": 21484.75, + "end": 21484.99, + "probability": 0.045 + }, + { + "start": 21485.85, + "end": 21487.17, + "probability": 0.1283 + }, + { + "start": 21494.03, + "end": 21494.75, + "probability": 0.0515 + }, + { + "start": 21494.75, + "end": 21495.53, + "probability": 0.3599 + }, + { + "start": 21496.95, + "end": 21498.91, + "probability": 0.0746 + }, + { + "start": 21500.69, + "end": 21500.95, + "probability": 0.1253 + }, + { + "start": 21538.57, + "end": 21539.15, + "probability": 0.7033 + }, + { + "start": 21540.17, + "end": 21541.51, + "probability": 0.9144 + }, + { + "start": 21543.25, + "end": 21545.37, + "probability": 0.9458 + }, + { + "start": 21546.77, + "end": 21550.13, + "probability": 0.9412 + }, + { + "start": 21551.53, + "end": 21559.61, + "probability": 0.9893 + }, + { + "start": 21560.69, + "end": 21561.83, + "probability": 0.0056 + }, + { + "start": 21576.37, + "end": 21578.13, + "probability": 0.0807 + }, + { + "start": 21581.41, + "end": 21582.79, + "probability": 0.7665 + }, + { + "start": 21604.93, + "end": 21605.74, + "probability": 0.513 + }, + { + "start": 21606.71, + "end": 21608.35, + "probability": 0.9217 + }, + { + "start": 21608.91, + "end": 21613.87, + "probability": 0.976 + }, + { + "start": 21614.31, + "end": 21619.37, + "probability": 0.9954 + }, + { + "start": 21642.83, + "end": 21643.83, + "probability": 0.4815 + }, + { + "start": 21643.83, + "end": 21644.65, + "probability": 0.3902 + }, + { + "start": 21645.55, + "end": 21648.53, + "probability": 0.036 + }, + { + "start": 21667.43, + "end": 21669.41, + "probability": 0.6498 + }, + { + "start": 21671.92, + "end": 21674.01, + "probability": 0.9514 + }, + { + "start": 21674.63, + "end": 21676.41, + "probability": 0.9922 + }, + { + "start": 21677.05, + "end": 21678.71, + "probability": 0.6163 + }, + { + "start": 21679.23, + "end": 21684.71, + "probability": 0.801 + }, + { + "start": 21685.25, + "end": 21687.05, + "probability": 0.9468 + }, + { + "start": 21687.85, + "end": 21694.99, + "probability": 0.9548 + }, + { + "start": 21695.63, + "end": 21703.05, + "probability": 0.9921 + }, + { + "start": 21703.15, + "end": 21705.39, + "probability": 0.8629 + }, + { + "start": 21725.89, + "end": 21727.55, + "probability": 0.4786 + }, + { + "start": 21743.61, + "end": 21746.05, + "probability": 0.7161 + }, + { + "start": 21746.61, + "end": 21750.51, + "probability": 0.9666 + }, + { + "start": 21750.95, + "end": 21755.19, + "probability": 0.996 + }, + { + "start": 21757.23, + "end": 21757.53, + "probability": 0.018 + }, + { + "start": 21759.17, + "end": 21762.11, + "probability": 0.0413 + }, + { + "start": 21765.17, + "end": 21769.91, + "probability": 0.9124 + }, + { + "start": 21770.91, + "end": 21772.63, + "probability": 0.9309 + }, + { + "start": 21773.75, + "end": 21777.03, + "probability": 0.9161 + }, + { + "start": 21777.99, + "end": 21780.97, + "probability": 0.9805 + }, + { + "start": 21781.77, + "end": 21785.13, + "probability": 0.8766 + }, + { + "start": 21786.17, + "end": 21788.11, + "probability": 0.7805 + }, + { + "start": 21788.65, + "end": 21789.17, + "probability": 0.4965 + } + ], + "segments_count": 6291, + "words_count": 30725, + "avg_words_per_segment": 4.884, + "avg_segment_duration": 2.0255, + "avg_words_per_minute": 84.4279, + "plenum_id": "111889", + "duration": 21835.2, + "title": null, + "plenum_date": "2022-12-29" +} \ No newline at end of file