diff --git "a/113309/metadata.json" "b/113309/metadata.json" new file mode 100644--- /dev/null +++ "b/113309/metadata.json" @@ -0,0 +1,78287 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "113309", + "quality_score": 0.8247, + "per_segment_quality_scores": [ + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.0, + "end": 182.0, + "probability": 0.0 + }, + { + "start": 182.32, + "end": 186.34, + "probability": 0.0165 + }, + { + "start": 186.34, + "end": 188.36, + "probability": 0.1175 + }, + { + "start": 188.36, + "end": 188.46, + "probability": 0.122 + }, + { + "start": 189.34, + "end": 191.0, + "probability": 0.0307 + }, + { + "start": 191.94, + "end": 191.94, + "probability": 0.029 + }, + { + "start": 191.94, + "end": 191.94, + "probability": 0.022 + }, + { + "start": 191.94, + "end": 191.94, + "probability": 0.0824 + }, + { + "start": 191.94, + "end": 191.94, + "probability": 0.2024 + }, + { + "start": 191.94, + "end": 194.46, + "probability": 0.8363 + }, + { + "start": 195.12, + "end": 195.92, + "probability": 0.9962 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.0, + "end": 308.0, + "probability": 0.0 + }, + { + "start": 308.16, + "end": 308.92, + "probability": 0.4524 + }, + { + "start": 309.96, + "end": 313.04, + "probability": 0.9958 + }, + { + "start": 313.04, + "end": 318.32, + "probability": 0.9664 + }, + { + "start": 319.0, + "end": 321.24, + "probability": 0.9918 + }, + { + "start": 322.86, + "end": 325.34, + "probability": 0.7819 + }, + { + "start": 326.26, + "end": 326.7, + "probability": 0.76 + }, + { + "start": 327.52, + "end": 329.12, + "probability": 0.9978 + }, + { + "start": 329.68, + "end": 331.02, + "probability": 0.8835 + }, + { + "start": 331.92, + "end": 332.98, + "probability": 0.9917 + }, + { + "start": 333.58, + "end": 335.38, + "probability": 0.8993 + }, + { + "start": 336.52, + "end": 338.16, + "probability": 0.7606 + }, + { + "start": 338.72, + "end": 339.52, + "probability": 0.8484 + }, + { + "start": 340.22, + "end": 341.96, + "probability": 0.9899 + }, + { + "start": 342.5, + "end": 347.68, + "probability": 0.9739 + }, + { + "start": 348.94, + "end": 352.86, + "probability": 0.9666 + }, + { + "start": 353.36, + "end": 354.32, + "probability": 0.7532 + }, + { + "start": 354.84, + "end": 355.82, + "probability": 0.8207 + }, + { + "start": 356.6, + "end": 359.54, + "probability": 0.952 + }, + { + "start": 360.14, + "end": 361.16, + "probability": 0.8473 + }, + { + "start": 361.76, + "end": 363.48, + "probability": 0.9987 + }, + { + "start": 364.54, + "end": 369.24, + "probability": 0.9886 + }, + { + "start": 370.48, + "end": 373.4, + "probability": 0.9711 + }, + { + "start": 374.14, + "end": 374.92, + "probability": 0.6051 + }, + { + "start": 375.62, + "end": 378.18, + "probability": 0.9951 + }, + { + "start": 379.68, + "end": 382.12, + "probability": 0.9771 + }, + { + "start": 382.94, + "end": 384.72, + "probability": 0.6954 + }, + { + "start": 385.9, + "end": 388.9, + "probability": 0.922 + }, + { + "start": 391.18, + "end": 393.36, + "probability": 0.9989 + }, + { + "start": 394.28, + "end": 395.36, + "probability": 0.9 + }, + { + "start": 395.68, + "end": 397.02, + "probability": 0.8149 + }, + { + "start": 397.5, + "end": 399.8, + "probability": 0.9644 + }, + { + "start": 399.84, + "end": 404.56, + "probability": 0.9767 + }, + { + "start": 405.44, + "end": 412.04, + "probability": 0.9928 + }, + { + "start": 412.64, + "end": 414.6, + "probability": 0.9911 + }, + { + "start": 415.84, + "end": 421.68, + "probability": 0.9976 + }, + { + "start": 422.32, + "end": 423.96, + "probability": 0.9992 + }, + { + "start": 424.56, + "end": 427.18, + "probability": 0.9999 + }, + { + "start": 427.7, + "end": 429.36, + "probability": 0.9999 + }, + { + "start": 430.94, + "end": 433.1, + "probability": 0.7133 + }, + { + "start": 434.14, + "end": 435.88, + "probability": 0.9631 + }, + { + "start": 436.52, + "end": 438.74, + "probability": 0.9822 + }, + { + "start": 439.64, + "end": 440.74, + "probability": 0.931 + }, + { + "start": 441.36, + "end": 444.22, + "probability": 0.6776 + }, + { + "start": 445.4, + "end": 451.9, + "probability": 0.7266 + }, + { + "start": 452.74, + "end": 455.62, + "probability": 0.9163 + }, + { + "start": 456.4, + "end": 457.12, + "probability": 0.6927 + }, + { + "start": 457.8, + "end": 460.26, + "probability": 0.9865 + }, + { + "start": 460.94, + "end": 463.36, + "probability": 0.5263 + }, + { + "start": 464.0, + "end": 465.42, + "probability": 0.9819 + }, + { + "start": 466.82, + "end": 467.76, + "probability": 0.9814 + }, + { + "start": 468.3, + "end": 469.2, + "probability": 0.9414 + }, + { + "start": 470.08, + "end": 471.96, + "probability": 0.9832 + }, + { + "start": 472.42, + "end": 473.6, + "probability": 0.9872 + }, + { + "start": 474.0, + "end": 479.42, + "probability": 0.9693 + }, + { + "start": 479.94, + "end": 481.34, + "probability": 0.7955 + }, + { + "start": 482.36, + "end": 487.12, + "probability": 0.6886 + }, + { + "start": 487.9, + "end": 489.79, + "probability": 0.9277 + }, + { + "start": 490.48, + "end": 494.48, + "probability": 0.9878 + }, + { + "start": 495.5, + "end": 499.04, + "probability": 0.9642 + }, + { + "start": 499.76, + "end": 501.98, + "probability": 0.7424 + }, + { + "start": 502.68, + "end": 506.18, + "probability": 0.9721 + }, + { + "start": 506.8, + "end": 513.04, + "probability": 0.9541 + }, + { + "start": 514.24, + "end": 514.88, + "probability": 0.9203 + }, + { + "start": 515.76, + "end": 516.38, + "probability": 0.8913 + }, + { + "start": 517.24, + "end": 520.88, + "probability": 0.9933 + }, + { + "start": 521.44, + "end": 523.54, + "probability": 0.9588 + }, + { + "start": 524.16, + "end": 527.62, + "probability": 0.9919 + }, + { + "start": 529.22, + "end": 531.84, + "probability": 0.9973 + }, + { + "start": 532.28, + "end": 533.06, + "probability": 0.9981 + }, + { + "start": 533.46, + "end": 535.28, + "probability": 0.9854 + }, + { + "start": 536.56, + "end": 538.22, + "probability": 0.9862 + }, + { + "start": 539.04, + "end": 539.8, + "probability": 0.4793 + }, + { + "start": 540.4, + "end": 541.04, + "probability": 0.7424 + }, + { + "start": 541.7, + "end": 544.92, + "probability": 0.9619 + }, + { + "start": 545.72, + "end": 547.88, + "probability": 0.8728 + }, + { + "start": 548.08, + "end": 548.48, + "probability": 0.2117 + }, + { + "start": 548.66, + "end": 548.74, + "probability": 0.369 + }, + { + "start": 548.74, + "end": 549.4, + "probability": 0.8215 + }, + { + "start": 550.2, + "end": 556.16, + "probability": 0.9966 + }, + { + "start": 556.72, + "end": 559.26, + "probability": 0.9976 + }, + { + "start": 560.12, + "end": 563.98, + "probability": 0.9928 + }, + { + "start": 564.8, + "end": 570.2, + "probability": 0.9955 + }, + { + "start": 570.88, + "end": 571.12, + "probability": 0.8216 + }, + { + "start": 572.2, + "end": 573.46, + "probability": 0.9635 + }, + { + "start": 574.78, + "end": 577.0, + "probability": 0.7619 + }, + { + "start": 577.76, + "end": 582.6, + "probability": 0.9926 + }, + { + "start": 583.16, + "end": 583.9, + "probability": 0.9659 + }, + { + "start": 584.7, + "end": 590.54, + "probability": 0.9895 + }, + { + "start": 591.72, + "end": 592.89, + "probability": 0.7437 + }, + { + "start": 593.74, + "end": 596.88, + "probability": 0.9852 + }, + { + "start": 597.66, + "end": 600.64, + "probability": 0.9965 + }, + { + "start": 600.64, + "end": 604.08, + "probability": 0.9946 + }, + { + "start": 604.84, + "end": 606.16, + "probability": 0.9951 + }, + { + "start": 607.4, + "end": 608.7, + "probability": 0.9165 + }, + { + "start": 609.3, + "end": 612.18, + "probability": 0.8135 + }, + { + "start": 612.78, + "end": 616.2, + "probability": 0.984 + }, + { + "start": 616.76, + "end": 619.3, + "probability": 0.998 + }, + { + "start": 619.88, + "end": 621.22, + "probability": 0.932 + }, + { + "start": 621.88, + "end": 625.08, + "probability": 0.9735 + }, + { + "start": 625.62, + "end": 626.34, + "probability": 0.9868 + }, + { + "start": 627.32, + "end": 632.5, + "probability": 0.991 + }, + { + "start": 633.26, + "end": 635.7, + "probability": 0.9861 + }, + { + "start": 636.44, + "end": 640.62, + "probability": 0.9792 + }, + { + "start": 641.16, + "end": 646.94, + "probability": 0.9712 + }, + { + "start": 647.84, + "end": 649.66, + "probability": 0.8864 + }, + { + "start": 650.6, + "end": 657.5, + "probability": 0.9942 + }, + { + "start": 658.18, + "end": 662.54, + "probability": 0.9888 + }, + { + "start": 663.52, + "end": 666.12, + "probability": 0.6931 + }, + { + "start": 666.62, + "end": 669.82, + "probability": 0.9502 + }, + { + "start": 670.7, + "end": 675.18, + "probability": 0.9902 + }, + { + "start": 675.18, + "end": 679.86, + "probability": 0.9423 + }, + { + "start": 680.68, + "end": 684.5, + "probability": 0.9915 + }, + { + "start": 685.28, + "end": 688.04, + "probability": 0.9919 + }, + { + "start": 688.82, + "end": 690.12, + "probability": 0.7051 + }, + { + "start": 691.78, + "end": 695.68, + "probability": 0.9976 + }, + { + "start": 708.3, + "end": 710.36, + "probability": 0.8224 + }, + { + "start": 710.86, + "end": 711.24, + "probability": 0.8246 + }, + { + "start": 714.28, + "end": 715.4, + "probability": 0.9365 + }, + { + "start": 716.2, + "end": 716.94, + "probability": 0.938 + }, + { + "start": 717.66, + "end": 720.0, + "probability": 0.9971 + }, + { + "start": 721.32, + "end": 722.78, + "probability": 0.9729 + }, + { + "start": 723.76, + "end": 724.72, + "probability": 0.8993 + }, + { + "start": 725.36, + "end": 727.86, + "probability": 0.9046 + }, + { + "start": 728.64, + "end": 730.62, + "probability": 0.9783 + }, + { + "start": 731.2, + "end": 732.1, + "probability": 0.9067 + }, + { + "start": 732.92, + "end": 733.64, + "probability": 0.6974 + }, + { + "start": 735.38, + "end": 736.38, + "probability": 0.9839 + }, + { + "start": 737.38, + "end": 739.14, + "probability": 0.9875 + }, + { + "start": 739.94, + "end": 742.0, + "probability": 0.9941 + }, + { + "start": 743.1, + "end": 745.18, + "probability": 0.999 + }, + { + "start": 746.38, + "end": 747.14, + "probability": 0.8149 + }, + { + "start": 748.48, + "end": 749.34, + "probability": 0.6967 + }, + { + "start": 751.84, + "end": 753.08, + "probability": 0.4219 + }, + { + "start": 753.98, + "end": 755.04, + "probability": 0.8154 + }, + { + "start": 755.86, + "end": 758.18, + "probability": 0.963 + }, + { + "start": 758.82, + "end": 759.82, + "probability": 0.8009 + }, + { + "start": 760.64, + "end": 761.68, + "probability": 0.8483 + }, + { + "start": 762.98, + "end": 765.04, + "probability": 0.9678 + }, + { + "start": 766.06, + "end": 767.4, + "probability": 0.9971 + }, + { + "start": 768.22, + "end": 769.5, + "probability": 0.8952 + }, + { + "start": 770.78, + "end": 774.94, + "probability": 0.9799 + }, + { + "start": 775.66, + "end": 777.52, + "probability": 0.6558 + }, + { + "start": 779.0, + "end": 783.04, + "probability": 0.9678 + }, + { + "start": 783.64, + "end": 784.07, + "probability": 0.2611 + }, + { + "start": 785.2, + "end": 789.4, + "probability": 0.9788 + }, + { + "start": 790.32, + "end": 790.88, + "probability": 0.994 + }, + { + "start": 791.94, + "end": 793.88, + "probability": 0.9983 + }, + { + "start": 796.38, + "end": 798.42, + "probability": 0.9951 + }, + { + "start": 799.46, + "end": 800.2, + "probability": 0.9662 + }, + { + "start": 801.88, + "end": 802.46, + "probability": 0.7313 + }, + { + "start": 803.28, + "end": 805.64, + "probability": 0.7863 + }, + { + "start": 806.2, + "end": 809.1, + "probability": 0.9612 + }, + { + "start": 810.28, + "end": 811.5, + "probability": 0.8927 + }, + { + "start": 812.44, + "end": 813.28, + "probability": 0.9741 + }, + { + "start": 814.34, + "end": 814.8, + "probability": 0.9807 + }, + { + "start": 816.42, + "end": 821.0, + "probability": 0.9879 + }, + { + "start": 821.98, + "end": 824.3, + "probability": 0.9926 + }, + { + "start": 824.3, + "end": 828.46, + "probability": 0.9407 + }, + { + "start": 829.38, + "end": 831.54, + "probability": 0.9886 + }, + { + "start": 832.2, + "end": 836.22, + "probability": 0.9919 + }, + { + "start": 837.46, + "end": 841.7, + "probability": 0.9372 + }, + { + "start": 842.72, + "end": 846.78, + "probability": 0.999 + }, + { + "start": 847.54, + "end": 850.4, + "probability": 0.9748 + }, + { + "start": 851.52, + "end": 854.92, + "probability": 0.9886 + }, + { + "start": 855.56, + "end": 858.4, + "probability": 0.813 + }, + { + "start": 859.64, + "end": 862.04, + "probability": 0.9647 + }, + { + "start": 864.0, + "end": 864.62, + "probability": 0.9513 + }, + { + "start": 865.24, + "end": 867.22, + "probability": 0.9756 + }, + { + "start": 868.94, + "end": 872.36, + "probability": 0.9979 + }, + { + "start": 873.84, + "end": 874.82, + "probability": 0.7434 + }, + { + "start": 875.7, + "end": 876.34, + "probability": 0.8013 + }, + { + "start": 876.88, + "end": 880.06, + "probability": 0.9969 + }, + { + "start": 881.24, + "end": 883.34, + "probability": 0.998 + }, + { + "start": 883.9, + "end": 884.8, + "probability": 0.7298 + }, + { + "start": 885.46, + "end": 886.42, + "probability": 0.9873 + }, + { + "start": 887.6, + "end": 889.5, + "probability": 0.9955 + }, + { + "start": 890.62, + "end": 893.98, + "probability": 0.9928 + }, + { + "start": 894.24, + "end": 897.32, + "probability": 0.9653 + }, + { + "start": 898.1, + "end": 899.98, + "probability": 0.9847 + }, + { + "start": 903.45, + "end": 904.7, + "probability": 0.6992 + }, + { + "start": 905.32, + "end": 909.1, + "probability": 0.7237 + }, + { + "start": 910.07, + "end": 914.64, + "probability": 0.9849 + }, + { + "start": 915.68, + "end": 917.18, + "probability": 0.8376 + }, + { + "start": 917.62, + "end": 917.92, + "probability": 0.8781 + }, + { + "start": 919.22, + "end": 921.06, + "probability": 0.9469 + }, + { + "start": 922.46, + "end": 926.46, + "probability": 0.989 + }, + { + "start": 928.1, + "end": 928.6, + "probability": 0.8813 + }, + { + "start": 930.24, + "end": 933.52, + "probability": 0.9973 + }, + { + "start": 934.32, + "end": 935.3, + "probability": 0.9884 + }, + { + "start": 936.08, + "end": 937.92, + "probability": 0.9536 + }, + { + "start": 938.92, + "end": 941.44, + "probability": 0.9128 + }, + { + "start": 942.36, + "end": 944.34, + "probability": 0.9159 + }, + { + "start": 945.38, + "end": 947.7, + "probability": 0.9958 + }, + { + "start": 948.46, + "end": 949.62, + "probability": 0.9304 + }, + { + "start": 950.2, + "end": 950.72, + "probability": 0.9656 + }, + { + "start": 951.26, + "end": 953.34, + "probability": 0.9472 + }, + { + "start": 954.68, + "end": 957.56, + "probability": 0.8081 + }, + { + "start": 958.44, + "end": 961.36, + "probability": 0.9932 + }, + { + "start": 961.98, + "end": 963.02, + "probability": 0.9972 + }, + { + "start": 963.64, + "end": 964.58, + "probability": 0.9949 + }, + { + "start": 965.72, + "end": 969.4, + "probability": 0.7748 + }, + { + "start": 971.18, + "end": 975.14, + "probability": 0.9651 + }, + { + "start": 975.78, + "end": 976.78, + "probability": 0.8943 + }, + { + "start": 977.76, + "end": 978.96, + "probability": 0.9438 + }, + { + "start": 979.74, + "end": 985.42, + "probability": 0.9965 + }, + { + "start": 986.2, + "end": 989.5, + "probability": 0.9972 + }, + { + "start": 990.58, + "end": 990.98, + "probability": 0.8451 + }, + { + "start": 992.32, + "end": 993.88, + "probability": 0.9517 + }, + { + "start": 995.06, + "end": 996.0, + "probability": 0.9912 + }, + { + "start": 996.76, + "end": 1000.1, + "probability": 0.9553 + }, + { + "start": 1000.84, + "end": 1004.08, + "probability": 0.9597 + }, + { + "start": 1004.74, + "end": 1006.32, + "probability": 0.947 + }, + { + "start": 1007.22, + "end": 1008.86, + "probability": 0.9369 + }, + { + "start": 1009.54, + "end": 1010.58, + "probability": 0.747 + }, + { + "start": 1011.42, + "end": 1015.14, + "probability": 0.9803 + }, + { + "start": 1015.62, + "end": 1016.02, + "probability": 0.9515 + }, + { + "start": 1017.38, + "end": 1018.16, + "probability": 0.784 + }, + { + "start": 1019.28, + "end": 1020.48, + "probability": 0.7316 + }, + { + "start": 1021.14, + "end": 1023.98, + "probability": 0.9644 + }, + { + "start": 1024.86, + "end": 1026.98, + "probability": 0.8889 + }, + { + "start": 1027.66, + "end": 1028.36, + "probability": 0.9483 + }, + { + "start": 1028.5, + "end": 1029.27, + "probability": 0.9341 + }, + { + "start": 1029.68, + "end": 1032.0, + "probability": 0.9178 + }, + { + "start": 1032.1, + "end": 1032.74, + "probability": 0.9712 + }, + { + "start": 1033.3, + "end": 1033.86, + "probability": 0.7273 + }, + { + "start": 1035.12, + "end": 1038.62, + "probability": 0.9751 + }, + { + "start": 1040.0, + "end": 1041.58, + "probability": 0.9979 + }, + { + "start": 1043.2, + "end": 1047.54, + "probability": 0.9941 + }, + { + "start": 1048.16, + "end": 1051.04, + "probability": 0.9243 + }, + { + "start": 1052.3, + "end": 1052.32, + "probability": 0.4532 + }, + { + "start": 1052.32, + "end": 1052.32, + "probability": 0.7739 + }, + { + "start": 1052.32, + "end": 1054.88, + "probability": 0.8169 + }, + { + "start": 1055.86, + "end": 1063.36, + "probability": 0.9534 + }, + { + "start": 1063.8, + "end": 1064.24, + "probability": 0.1707 + }, + { + "start": 1064.78, + "end": 1065.06, + "probability": 0.8275 + }, + { + "start": 1065.16, + "end": 1068.05, + "probability": 0.9584 + }, + { + "start": 1068.68, + "end": 1069.84, + "probability": 0.9655 + }, + { + "start": 1071.04, + "end": 1074.5, + "probability": 0.9801 + }, + { + "start": 1074.5, + "end": 1076.92, + "probability": 0.9904 + }, + { + "start": 1078.08, + "end": 1080.5, + "probability": 0.9889 + }, + { + "start": 1081.36, + "end": 1082.86, + "probability": 0.9919 + }, + { + "start": 1083.86, + "end": 1084.44, + "probability": 0.8921 + }, + { + "start": 1085.04, + "end": 1086.37, + "probability": 0.9741 + }, + { + "start": 1087.0, + "end": 1088.42, + "probability": 0.9618 + }, + { + "start": 1089.78, + "end": 1090.5, + "probability": 0.9314 + }, + { + "start": 1091.68, + "end": 1092.22, + "probability": 0.1012 + }, + { + "start": 1092.22, + "end": 1096.92, + "probability": 0.7563 + }, + { + "start": 1097.54, + "end": 1101.52, + "probability": 0.957 + }, + { + "start": 1102.6, + "end": 1103.9, + "probability": 0.6519 + }, + { + "start": 1104.6, + "end": 1107.48, + "probability": 0.9725 + }, + { + "start": 1108.46, + "end": 1110.0, + "probability": 0.9967 + }, + { + "start": 1111.38, + "end": 1113.64, + "probability": 0.9661 + }, + { + "start": 1114.88, + "end": 1115.46, + "probability": 0.5465 + }, + { + "start": 1116.38, + "end": 1117.46, + "probability": 0.8951 + }, + { + "start": 1118.58, + "end": 1120.14, + "probability": 0.9198 + }, + { + "start": 1120.9, + "end": 1121.6, + "probability": 0.902 + }, + { + "start": 1122.52, + "end": 1123.96, + "probability": 0.9977 + }, + { + "start": 1124.56, + "end": 1129.08, + "probability": 0.9858 + }, + { + "start": 1130.88, + "end": 1131.44, + "probability": 0.5122 + }, + { + "start": 1132.72, + "end": 1133.7, + "probability": 0.9822 + }, + { + "start": 1135.04, + "end": 1138.38, + "probability": 0.9973 + }, + { + "start": 1139.98, + "end": 1141.66, + "probability": 0.996 + }, + { + "start": 1142.42, + "end": 1149.1, + "probability": 0.9756 + }, + { + "start": 1150.56, + "end": 1155.06, + "probability": 0.998 + }, + { + "start": 1155.9, + "end": 1158.04, + "probability": 0.7605 + }, + { + "start": 1159.44, + "end": 1160.86, + "probability": 0.9677 + }, + { + "start": 1162.84, + "end": 1166.08, + "probability": 0.9431 + }, + { + "start": 1167.0, + "end": 1168.36, + "probability": 0.6701 + }, + { + "start": 1169.12, + "end": 1171.44, + "probability": 0.9145 + }, + { + "start": 1172.92, + "end": 1178.4, + "probability": 0.9976 + }, + { + "start": 1179.1, + "end": 1180.86, + "probability": 0.8325 + }, + { + "start": 1181.78, + "end": 1183.32, + "probability": 0.8855 + }, + { + "start": 1184.86, + "end": 1187.28, + "probability": 0.7739 + }, + { + "start": 1188.98, + "end": 1190.94, + "probability": 0.9865 + }, + { + "start": 1192.16, + "end": 1193.86, + "probability": 0.9548 + }, + { + "start": 1194.7, + "end": 1195.46, + "probability": 0.8456 + }, + { + "start": 1196.28, + "end": 1198.82, + "probability": 0.999 + }, + { + "start": 1200.06, + "end": 1201.4, + "probability": 0.9939 + }, + { + "start": 1204.26, + "end": 1208.38, + "probability": 0.9189 + }, + { + "start": 1209.18, + "end": 1210.34, + "probability": 0.9811 + }, + { + "start": 1211.06, + "end": 1214.1, + "probability": 0.9842 + }, + { + "start": 1215.26, + "end": 1216.86, + "probability": 0.9684 + }, + { + "start": 1217.76, + "end": 1220.8, + "probability": 0.9594 + }, + { + "start": 1221.62, + "end": 1224.4, + "probability": 0.9963 + }, + { + "start": 1225.14, + "end": 1225.9, + "probability": 0.5941 + }, + { + "start": 1226.68, + "end": 1227.14, + "probability": 0.8454 + }, + { + "start": 1228.06, + "end": 1230.14, + "probability": 0.9822 + }, + { + "start": 1230.86, + "end": 1231.5, + "probability": 0.9803 + }, + { + "start": 1231.84, + "end": 1233.02, + "probability": 0.9849 + }, + { + "start": 1233.44, + "end": 1235.7, + "probability": 0.9873 + }, + { + "start": 1236.74, + "end": 1237.9, + "probability": 0.9561 + }, + { + "start": 1238.6, + "end": 1240.52, + "probability": 0.997 + }, + { + "start": 1241.63, + "end": 1243.04, + "probability": 0.9583 + }, + { + "start": 1243.04, + "end": 1245.92, + "probability": 0.6997 + }, + { + "start": 1246.04, + "end": 1250.2, + "probability": 0.9962 + }, + { + "start": 1251.18, + "end": 1252.04, + "probability": 0.944 + }, + { + "start": 1261.56, + "end": 1263.16, + "probability": 0.9456 + }, + { + "start": 1263.82, + "end": 1265.18, + "probability": 0.9909 + }, + { + "start": 1265.24, + "end": 1267.74, + "probability": 0.9783 + }, + { + "start": 1268.66, + "end": 1271.52, + "probability": 0.662 + }, + { + "start": 1273.48, + "end": 1274.2, + "probability": 0.951 + }, + { + "start": 1275.9, + "end": 1277.24, + "probability": 0.9807 + }, + { + "start": 1279.22, + "end": 1281.48, + "probability": 0.9985 + }, + { + "start": 1282.88, + "end": 1286.33, + "probability": 0.9971 + }, + { + "start": 1287.6, + "end": 1290.92, + "probability": 0.9973 + }, + { + "start": 1292.78, + "end": 1297.16, + "probability": 0.9893 + }, + { + "start": 1297.3, + "end": 1297.32, + "probability": 0.8247 + }, + { + "start": 1298.14, + "end": 1300.26, + "probability": 0.9968 + }, + { + "start": 1300.78, + "end": 1305.14, + "probability": 0.9966 + }, + { + "start": 1306.18, + "end": 1307.62, + "probability": 0.9873 + }, + { + "start": 1308.4, + "end": 1309.98, + "probability": 0.973 + }, + { + "start": 1311.72, + "end": 1316.28, + "probability": 0.9788 + }, + { + "start": 1317.46, + "end": 1322.12, + "probability": 0.999 + }, + { + "start": 1323.64, + "end": 1326.6, + "probability": 0.9948 + }, + { + "start": 1329.92, + "end": 1330.72, + "probability": 0.1131 + }, + { + "start": 1330.72, + "end": 1331.15, + "probability": 0.5782 + }, + { + "start": 1332.08, + "end": 1336.62, + "probability": 0.9976 + }, + { + "start": 1337.84, + "end": 1339.32, + "probability": 0.9743 + }, + { + "start": 1339.76, + "end": 1339.76, + "probability": 0.0743 + }, + { + "start": 1339.76, + "end": 1340.5, + "probability": 0.0288 + }, + { + "start": 1340.56, + "end": 1340.58, + "probability": 0.4659 + }, + { + "start": 1340.78, + "end": 1342.08, + "probability": 0.8687 + }, + { + "start": 1342.28, + "end": 1342.74, + "probability": 0.0649 + }, + { + "start": 1342.78, + "end": 1342.84, + "probability": 0.5849 + }, + { + "start": 1342.84, + "end": 1345.45, + "probability": 0.6887 + }, + { + "start": 1346.16, + "end": 1347.16, + "probability": 0.5184 + }, + { + "start": 1348.12, + "end": 1350.3, + "probability": 0.1499 + }, + { + "start": 1351.98, + "end": 1352.22, + "probability": 0.012 + }, + { + "start": 1352.22, + "end": 1352.22, + "probability": 0.0442 + }, + { + "start": 1353.34, + "end": 1354.3, + "probability": 0.6514 + }, + { + "start": 1356.55, + "end": 1357.12, + "probability": 0.2533 + }, + { + "start": 1357.12, + "end": 1357.12, + "probability": 0.2617 + }, + { + "start": 1357.12, + "end": 1357.12, + "probability": 0.1735 + }, + { + "start": 1357.12, + "end": 1357.12, + "probability": 0.3967 + }, + { + "start": 1357.12, + "end": 1357.12, + "probability": 0.0825 + }, + { + "start": 1357.12, + "end": 1357.56, + "probability": 0.0372 + }, + { + "start": 1357.68, + "end": 1357.98, + "probability": 0.6608 + }, + { + "start": 1359.04, + "end": 1363.7, + "probability": 0.9678 + }, + { + "start": 1364.76, + "end": 1365.7, + "probability": 0.7672 + }, + { + "start": 1367.06, + "end": 1368.34, + "probability": 0.9559 + }, + { + "start": 1369.16, + "end": 1370.32, + "probability": 0.915 + }, + { + "start": 1371.74, + "end": 1373.44, + "probability": 0.7915 + }, + { + "start": 1375.44, + "end": 1378.3, + "probability": 0.992 + }, + { + "start": 1379.82, + "end": 1381.24, + "probability": 0.9381 + }, + { + "start": 1381.26, + "end": 1384.22, + "probability": 0.9982 + }, + { + "start": 1384.56, + "end": 1385.74, + "probability": 0.9272 + }, + { + "start": 1387.06, + "end": 1391.88, + "probability": 0.9937 + }, + { + "start": 1392.42, + "end": 1394.7, + "probability": 0.9969 + }, + { + "start": 1395.44, + "end": 1396.92, + "probability": 0.7697 + }, + { + "start": 1397.44, + "end": 1397.98, + "probability": 0.9261 + }, + { + "start": 1398.8, + "end": 1400.66, + "probability": 0.9707 + }, + { + "start": 1401.22, + "end": 1403.02, + "probability": 0.9987 + }, + { + "start": 1403.88, + "end": 1405.32, + "probability": 0.9791 + }, + { + "start": 1406.1, + "end": 1407.36, + "probability": 0.9892 + }, + { + "start": 1408.48, + "end": 1409.12, + "probability": 0.7625 + }, + { + "start": 1410.54, + "end": 1413.45, + "probability": 0.998 + }, + { + "start": 1414.72, + "end": 1416.62, + "probability": 0.9971 + }, + { + "start": 1416.76, + "end": 1418.32, + "probability": 0.9966 + }, + { + "start": 1419.44, + "end": 1421.04, + "probability": 0.9831 + }, + { + "start": 1421.18, + "end": 1422.9, + "probability": 0.9597 + }, + { + "start": 1423.0, + "end": 1426.72, + "probability": 0.9962 + }, + { + "start": 1428.48, + "end": 1432.32, + "probability": 0.9918 + }, + { + "start": 1433.28, + "end": 1437.66, + "probability": 0.9928 + }, + { + "start": 1438.66, + "end": 1440.34, + "probability": 0.9987 + }, + { + "start": 1441.3, + "end": 1443.28, + "probability": 0.9936 + }, + { + "start": 1444.9, + "end": 1447.04, + "probability": 0.9941 + }, + { + "start": 1447.94, + "end": 1451.26, + "probability": 0.9952 + }, + { + "start": 1452.85, + "end": 1456.22, + "probability": 0.9973 + }, + { + "start": 1457.72, + "end": 1458.74, + "probability": 0.9946 + }, + { + "start": 1460.18, + "end": 1463.7, + "probability": 0.9959 + }, + { + "start": 1464.4, + "end": 1465.88, + "probability": 0.9485 + }, + { + "start": 1466.82, + "end": 1469.34, + "probability": 0.9819 + }, + { + "start": 1469.64, + "end": 1472.2, + "probability": 0.9571 + }, + { + "start": 1473.82, + "end": 1476.26, + "probability": 0.9976 + }, + { + "start": 1477.48, + "end": 1479.5, + "probability": 0.9969 + }, + { + "start": 1480.32, + "end": 1481.84, + "probability": 0.8575 + }, + { + "start": 1482.84, + "end": 1485.68, + "probability": 0.9668 + }, + { + "start": 1485.68, + "end": 1489.24, + "probability": 0.9863 + }, + { + "start": 1489.68, + "end": 1491.48, + "probability": 0.979 + }, + { + "start": 1492.5, + "end": 1494.62, + "probability": 0.9863 + }, + { + "start": 1495.52, + "end": 1496.64, + "probability": 0.9919 + }, + { + "start": 1498.52, + "end": 1498.92, + "probability": 0.7591 + }, + { + "start": 1500.04, + "end": 1502.26, + "probability": 0.9866 + }, + { + "start": 1503.88, + "end": 1504.6, + "probability": 0.9133 + }, + { + "start": 1505.66, + "end": 1505.98, + "probability": 0.5124 + }, + { + "start": 1506.7, + "end": 1507.24, + "probability": 0.9807 + }, + { + "start": 1508.58, + "end": 1511.68, + "probability": 0.9943 + }, + { + "start": 1512.68, + "end": 1514.5, + "probability": 0.9988 + }, + { + "start": 1516.28, + "end": 1517.62, + "probability": 0.5143 + }, + { + "start": 1518.56, + "end": 1519.68, + "probability": 0.0222 + }, + { + "start": 1519.68, + "end": 1519.68, + "probability": 0.0997 + }, + { + "start": 1519.68, + "end": 1519.75, + "probability": 0.2366 + }, + { + "start": 1520.04, + "end": 1520.04, + "probability": 0.445 + }, + { + "start": 1520.04, + "end": 1520.04, + "probability": 0.5655 + }, + { + "start": 1520.04, + "end": 1521.42, + "probability": 0.7677 + }, + { + "start": 1522.06, + "end": 1522.42, + "probability": 0.0009 + }, + { + "start": 1522.42, + "end": 1523.94, + "probability": 0.8379 + }, + { + "start": 1524.5, + "end": 1526.62, + "probability": 0.7542 + }, + { + "start": 1526.66, + "end": 1528.28, + "probability": 0.007 + }, + { + "start": 1528.86, + "end": 1529.98, + "probability": 0.0017 + }, + { + "start": 1530.42, + "end": 1532.66, + "probability": 0.0328 + }, + { + "start": 1532.66, + "end": 1532.66, + "probability": 0.0049 + }, + { + "start": 1533.22, + "end": 1533.28, + "probability": 0.27 + }, + { + "start": 1533.96, + "end": 1534.18, + "probability": 0.0578 + }, + { + "start": 1534.44, + "end": 1534.5, + "probability": 0.0663 + }, + { + "start": 1534.62, + "end": 1537.29, + "probability": 0.4619 + }, + { + "start": 1537.54, + "end": 1538.36, + "probability": 0.739 + }, + { + "start": 1538.58, + "end": 1541.16, + "probability": 0.9259 + }, + { + "start": 1541.36, + "end": 1542.12, + "probability": 0.8976 + }, + { + "start": 1542.24, + "end": 1542.36, + "probability": 0.0679 + }, + { + "start": 1542.56, + "end": 1544.04, + "probability": 0.9495 + }, + { + "start": 1545.14, + "end": 1549.06, + "probability": 0.9675 + }, + { + "start": 1549.22, + "end": 1552.6, + "probability": 0.9757 + }, + { + "start": 1553.86, + "end": 1554.92, + "probability": 0.9842 + }, + { + "start": 1555.98, + "end": 1559.5, + "probability": 0.9946 + }, + { + "start": 1560.18, + "end": 1561.24, + "probability": 0.9958 + }, + { + "start": 1562.02, + "end": 1562.54, + "probability": 0.7433 + }, + { + "start": 1562.58, + "end": 1566.28, + "probability": 0.9856 + }, + { + "start": 1566.78, + "end": 1568.28, + "probability": 0.9976 + }, + { + "start": 1569.04, + "end": 1572.46, + "probability": 0.9842 + }, + { + "start": 1572.72, + "end": 1574.02, + "probability": 0.8352 + }, + { + "start": 1574.96, + "end": 1577.66, + "probability": 0.5031 + }, + { + "start": 1577.68, + "end": 1579.38, + "probability": 0.5776 + }, + { + "start": 1579.54, + "end": 1580.74, + "probability": 0.0504 + }, + { + "start": 1581.34, + "end": 1583.62, + "probability": 0.7628 + }, + { + "start": 1584.5, + "end": 1586.78, + "probability": 0.9978 + }, + { + "start": 1587.04, + "end": 1590.14, + "probability": 0.9613 + }, + { + "start": 1591.61, + "end": 1592.8, + "probability": 0.2083 + }, + { + "start": 1592.82, + "end": 1597.46, + "probability": 0.9972 + }, + { + "start": 1598.78, + "end": 1601.58, + "probability": 0.9868 + }, + { + "start": 1602.54, + "end": 1605.14, + "probability": 0.8821 + }, + { + "start": 1606.94, + "end": 1609.94, + "probability": 0.9839 + }, + { + "start": 1610.82, + "end": 1612.76, + "probability": 0.9968 + }, + { + "start": 1614.06, + "end": 1617.28, + "probability": 0.9976 + }, + { + "start": 1619.1, + "end": 1622.04, + "probability": 0.9755 + }, + { + "start": 1623.26, + "end": 1624.26, + "probability": 0.9933 + }, + { + "start": 1624.78, + "end": 1625.58, + "probability": 0.9927 + }, + { + "start": 1626.42, + "end": 1627.66, + "probability": 0.9985 + }, + { + "start": 1628.12, + "end": 1629.6, + "probability": 0.0495 + }, + { + "start": 1630.32, + "end": 1632.44, + "probability": 0.695 + }, + { + "start": 1632.8, + "end": 1632.8, + "probability": 0.4985 + }, + { + "start": 1632.8, + "end": 1633.56, + "probability": 0.2646 + }, + { + "start": 1634.14, + "end": 1635.08, + "probability": 0.7787 + }, + { + "start": 1635.1, + "end": 1636.76, + "probability": 0.9995 + }, + { + "start": 1636.96, + "end": 1638.81, + "probability": 0.9973 + }, + { + "start": 1639.06, + "end": 1643.78, + "probability": 0.9566 + }, + { + "start": 1644.48, + "end": 1646.84, + "probability": 0.9953 + }, + { + "start": 1647.7, + "end": 1649.3, + "probability": 0.9092 + }, + { + "start": 1650.0, + "end": 1651.28, + "probability": 0.9773 + }, + { + "start": 1651.88, + "end": 1654.98, + "probability": 0.9987 + }, + { + "start": 1655.8, + "end": 1660.7, + "probability": 0.9937 + }, + { + "start": 1662.3, + "end": 1662.95, + "probability": 0.9816 + }, + { + "start": 1664.56, + "end": 1666.66, + "probability": 0.1609 + }, + { + "start": 1668.14, + "end": 1669.48, + "probability": 0.3477 + }, + { + "start": 1670.24, + "end": 1672.5, + "probability": 0.149 + }, + { + "start": 1672.82, + "end": 1677.6, + "probability": 0.5503 + }, + { + "start": 1677.82, + "end": 1677.94, + "probability": 0.0201 + }, + { + "start": 1678.68, + "end": 1680.78, + "probability": 0.3215 + }, + { + "start": 1681.0, + "end": 1684.76, + "probability": 0.9517 + }, + { + "start": 1686.8, + "end": 1689.58, + "probability": 0.9333 + }, + { + "start": 1691.18, + "end": 1691.92, + "probability": 0.7971 + }, + { + "start": 1692.16, + "end": 1693.94, + "probability": 0.5105 + }, + { + "start": 1694.42, + "end": 1697.06, + "probability": 0.2907 + }, + { + "start": 1697.76, + "end": 1698.64, + "probability": 0.7845 + }, + { + "start": 1698.7, + "end": 1701.86, + "probability": 0.9753 + }, + { + "start": 1701.98, + "end": 1702.9, + "probability": 0.803 + }, + { + "start": 1703.97, + "end": 1707.3, + "probability": 0.6542 + }, + { + "start": 1707.42, + "end": 1708.28, + "probability": 0.2764 + }, + { + "start": 1708.96, + "end": 1709.89, + "probability": 0.2888 + }, + { + "start": 1710.14, + "end": 1710.36, + "probability": 0.3219 + }, + { + "start": 1710.48, + "end": 1712.26, + "probability": 0.1653 + }, + { + "start": 1712.78, + "end": 1713.32, + "probability": 0.6875 + }, + { + "start": 1713.32, + "end": 1713.74, + "probability": 0.0776 + }, + { + "start": 1714.18, + "end": 1715.72, + "probability": 0.4848 + }, + { + "start": 1716.04, + "end": 1717.06, + "probability": 0.7992 + }, + { + "start": 1717.1, + "end": 1717.7, + "probability": 0.0844 + }, + { + "start": 1717.96, + "end": 1719.88, + "probability": 0.6115 + }, + { + "start": 1720.7, + "end": 1724.06, + "probability": 0.7065 + }, + { + "start": 1724.26, + "end": 1724.74, + "probability": 0.0505 + }, + { + "start": 1724.74, + "end": 1724.8, + "probability": 0.0732 + }, + { + "start": 1724.8, + "end": 1724.8, + "probability": 0.3724 + }, + { + "start": 1724.8, + "end": 1726.82, + "probability": 0.6027 + }, + { + "start": 1728.64, + "end": 1730.9, + "probability": 0.9797 + }, + { + "start": 1733.5, + "end": 1738.66, + "probability": 0.9665 + }, + { + "start": 1738.78, + "end": 1739.54, + "probability": 0.8962 + }, + { + "start": 1740.84, + "end": 1745.24, + "probability": 0.9876 + }, + { + "start": 1746.18, + "end": 1746.74, + "probability": 0.968 + }, + { + "start": 1747.5, + "end": 1748.32, + "probability": 0.9789 + }, + { + "start": 1749.84, + "end": 1751.94, + "probability": 0.9032 + }, + { + "start": 1752.1, + "end": 1755.88, + "probability": 0.9827 + }, + { + "start": 1756.76, + "end": 1757.2, + "probability": 0.5036 + }, + { + "start": 1758.08, + "end": 1758.86, + "probability": 0.5769 + }, + { + "start": 1759.84, + "end": 1760.12, + "probability": 0.8797 + }, + { + "start": 1761.68, + "end": 1763.78, + "probability": 0.9181 + }, + { + "start": 1764.12, + "end": 1765.44, + "probability": 0.9648 + }, + { + "start": 1766.58, + "end": 1770.86, + "probability": 0.9979 + }, + { + "start": 1770.86, + "end": 1775.0, + "probability": 0.9968 + }, + { + "start": 1776.38, + "end": 1777.74, + "probability": 0.8025 + }, + { + "start": 1778.56, + "end": 1780.42, + "probability": 0.2355 + }, + { + "start": 1780.94, + "end": 1782.36, + "probability": 0.4244 + }, + { + "start": 1782.8, + "end": 1784.76, + "probability": 0.2241 + }, + { + "start": 1787.48, + "end": 1790.84, + "probability": 0.7678 + }, + { + "start": 1790.84, + "end": 1791.92, + "probability": 0.2313 + }, + { + "start": 1792.52, + "end": 1796.5, + "probability": 0.9951 + }, + { + "start": 1797.7, + "end": 1801.26, + "probability": 0.9801 + }, + { + "start": 1801.26, + "end": 1804.2, + "probability": 0.9987 + }, + { + "start": 1805.46, + "end": 1806.78, + "probability": 0.9951 + }, + { + "start": 1806.96, + "end": 1809.98, + "probability": 0.9951 + }, + { + "start": 1810.9, + "end": 1814.72, + "probability": 0.9684 + }, + { + "start": 1814.72, + "end": 1815.18, + "probability": 0.4258 + }, + { + "start": 1815.54, + "end": 1816.72, + "probability": 0.687 + }, + { + "start": 1817.48, + "end": 1820.5, + "probability": 0.9716 + }, + { + "start": 1822.76, + "end": 1824.34, + "probability": 0.9227 + }, + { + "start": 1826.12, + "end": 1828.8, + "probability": 0.9974 + }, + { + "start": 1829.78, + "end": 1833.8, + "probability": 0.999 + }, + { + "start": 1834.2, + "end": 1835.2, + "probability": 0.8194 + }, + { + "start": 1836.0, + "end": 1839.68, + "probability": 0.9826 + }, + { + "start": 1840.84, + "end": 1843.18, + "probability": 0.9932 + }, + { + "start": 1843.86, + "end": 1846.24, + "probability": 0.9942 + }, + { + "start": 1847.2, + "end": 1850.2, + "probability": 0.9977 + }, + { + "start": 1850.64, + "end": 1851.46, + "probability": 0.9897 + }, + { + "start": 1851.68, + "end": 1855.8, + "probability": 0.9839 + }, + { + "start": 1857.1, + "end": 1857.94, + "probability": 0.8372 + }, + { + "start": 1859.84, + "end": 1864.02, + "probability": 0.9829 + }, + { + "start": 1865.22, + "end": 1865.95, + "probability": 0.9619 + }, + { + "start": 1867.6, + "end": 1870.58, + "probability": 0.9958 + }, + { + "start": 1871.64, + "end": 1872.7, + "probability": 0.9899 + }, + { + "start": 1873.52, + "end": 1873.86, + "probability": 0.6775 + }, + { + "start": 1874.84, + "end": 1875.56, + "probability": 0.5142 + }, + { + "start": 1875.56, + "end": 1875.88, + "probability": 0.254 + }, + { + "start": 1875.9, + "end": 1876.92, + "probability": 0.9218 + }, + { + "start": 1876.96, + "end": 1878.74, + "probability": 0.9421 + }, + { + "start": 1880.07, + "end": 1883.08, + "probability": 0.7764 + }, + { + "start": 1883.2, + "end": 1889.06, + "probability": 0.994 + }, + { + "start": 1889.7, + "end": 1893.98, + "probability": 0.9935 + }, + { + "start": 1894.44, + "end": 1896.96, + "probability": 0.8711 + }, + { + "start": 1897.06, + "end": 1899.16, + "probability": 0.8815 + }, + { + "start": 1899.26, + "end": 1900.2, + "probability": 0.8925 + }, + { + "start": 1900.26, + "end": 1900.62, + "probability": 0.4385 + }, + { + "start": 1901.1, + "end": 1903.0, + "probability": 0.9761 + }, + { + "start": 1903.38, + "end": 1904.42, + "probability": 0.9622 + }, + { + "start": 1904.88, + "end": 1909.38, + "probability": 0.9945 + }, + { + "start": 1910.54, + "end": 1911.8, + "probability": 0.5908 + }, + { + "start": 1913.08, + "end": 1915.64, + "probability": 0.0353 + }, + { + "start": 1926.62, + "end": 1927.22, + "probability": 0.169 + }, + { + "start": 1928.34, + "end": 1929.18, + "probability": 0.7607 + }, + { + "start": 1929.2, + "end": 1931.66, + "probability": 0.9383 + }, + { + "start": 1932.02, + "end": 1935.68, + "probability": 0.9905 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.0, + "end": 2669.0, + "probability": 0.0 + }, + { + "start": 2669.56, + "end": 2669.56, + "probability": 0.0743 + }, + { + "start": 2669.56, + "end": 2669.56, + "probability": 0.1205 + }, + { + "start": 2669.56, + "end": 2671.28, + "probability": 0.642 + }, + { + "start": 2671.64, + "end": 2672.9, + "probability": 0.7822 + }, + { + "start": 2673.0, + "end": 2674.1, + "probability": 0.7709 + }, + { + "start": 2674.14, + "end": 2675.56, + "probability": 0.9542 + }, + { + "start": 2675.74, + "end": 2676.92, + "probability": 0.5776 + }, + { + "start": 2677.52, + "end": 2682.06, + "probability": 0.7209 + }, + { + "start": 2703.1, + "end": 2706.29, + "probability": 0.1646 + }, + { + "start": 2706.76, + "end": 2709.9, + "probability": 0.0288 + }, + { + "start": 2710.08, + "end": 2711.72, + "probability": 0.1339 + }, + { + "start": 2712.08, + "end": 2714.94, + "probability": 0.3977 + }, + { + "start": 2716.16, + "end": 2718.02, + "probability": 0.0299 + }, + { + "start": 2718.84, + "end": 2720.18, + "probability": 0.2035 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2791.0, + "end": 2791.0, + "probability": 0.0 + }, + { + "start": 2793.5, + "end": 2794.24, + "probability": 0.076 + }, + { + "start": 2795.6, + "end": 2798.02, + "probability": 0.0684 + }, + { + "start": 2800.2, + "end": 2801.08, + "probability": 0.1834 + }, + { + "start": 2803.44, + "end": 2804.0, + "probability": 0.0341 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.0, + "end": 2915.0, + "probability": 0.0 + }, + { + "start": 2915.18, + "end": 2915.64, + "probability": 0.0983 + }, + { + "start": 2916.98, + "end": 2917.22, + "probability": 0.67 + }, + { + "start": 2918.26, + "end": 2919.02, + "probability": 0.9448 + }, + { + "start": 2919.92, + "end": 2920.74, + "probability": 0.9437 + }, + { + "start": 2922.52, + "end": 2923.34, + "probability": 0.9864 + }, + { + "start": 2924.46, + "end": 2928.12, + "probability": 0.9591 + }, + { + "start": 2929.56, + "end": 2930.04, + "probability": 0.3327 + }, + { + "start": 2931.18, + "end": 2932.66, + "probability": 0.9373 + }, + { + "start": 2933.28, + "end": 2935.1, + "probability": 0.805 + }, + { + "start": 2936.56, + "end": 2938.68, + "probability": 0.9261 + }, + { + "start": 2939.5, + "end": 2940.04, + "probability": 0.9768 + }, + { + "start": 2940.56, + "end": 2941.42, + "probability": 0.935 + }, + { + "start": 2942.06, + "end": 2942.8, + "probability": 0.9659 + }, + { + "start": 2943.36, + "end": 2944.7, + "probability": 0.9916 + }, + { + "start": 2946.68, + "end": 2947.46, + "probability": 0.885 + }, + { + "start": 2948.46, + "end": 2949.1, + "probability": 0.6548 + }, + { + "start": 2950.82, + "end": 2952.54, + "probability": 0.9706 + }, + { + "start": 2953.18, + "end": 2955.92, + "probability": 0.9895 + }, + { + "start": 2956.78, + "end": 2959.68, + "probability": 0.951 + }, + { + "start": 2962.64, + "end": 2966.16, + "probability": 0.9987 + }, + { + "start": 2968.7, + "end": 2971.24, + "probability": 0.9949 + }, + { + "start": 2971.84, + "end": 2975.14, + "probability": 0.7713 + }, + { + "start": 2976.1, + "end": 2981.22, + "probability": 0.9038 + }, + { + "start": 2982.58, + "end": 2985.0, + "probability": 0.9164 + }, + { + "start": 2986.52, + "end": 2988.28, + "probability": 0.8353 + }, + { + "start": 2989.18, + "end": 2991.44, + "probability": 0.8948 + }, + { + "start": 2992.28, + "end": 2993.26, + "probability": 0.9472 + }, + { + "start": 2994.02, + "end": 2995.08, + "probability": 0.9731 + }, + { + "start": 2995.9, + "end": 2997.58, + "probability": 0.8695 + }, + { + "start": 2998.2, + "end": 3000.54, + "probability": 0.9278 + }, + { + "start": 3001.36, + "end": 3003.72, + "probability": 0.8314 + }, + { + "start": 3005.72, + "end": 3007.58, + "probability": 0.9817 + }, + { + "start": 3008.58, + "end": 3011.12, + "probability": 0.9618 + }, + { + "start": 3011.76, + "end": 3012.26, + "probability": 0.8159 + }, + { + "start": 3014.16, + "end": 3016.32, + "probability": 0.9985 + }, + { + "start": 3019.36, + "end": 3020.12, + "probability": 0.8995 + }, + { + "start": 3021.24, + "end": 3022.38, + "probability": 0.9639 + }, + { + "start": 3023.0, + "end": 3026.52, + "probability": 0.9917 + }, + { + "start": 3027.46, + "end": 3029.7, + "probability": 0.9652 + }, + { + "start": 3030.86, + "end": 3032.24, + "probability": 0.9943 + }, + { + "start": 3033.9, + "end": 3036.92, + "probability": 0.8263 + }, + { + "start": 3037.7, + "end": 3042.68, + "probability": 0.9961 + }, + { + "start": 3043.62, + "end": 3044.86, + "probability": 0.8905 + }, + { + "start": 3045.86, + "end": 3048.54, + "probability": 0.7875 + }, + { + "start": 3049.2, + "end": 3049.9, + "probability": 0.0885 + }, + { + "start": 3051.14, + "end": 3054.14, + "probability": 0.9644 + }, + { + "start": 3055.08, + "end": 3057.66, + "probability": 0.8286 + }, + { + "start": 3059.5, + "end": 3062.08, + "probability": 0.7613 + }, + { + "start": 3062.52, + "end": 3064.42, + "probability": 0.9845 + }, + { + "start": 3065.14, + "end": 3066.4, + "probability": 0.9979 + }, + { + "start": 3066.98, + "end": 3069.16, + "probability": 0.8252 + }, + { + "start": 3070.16, + "end": 3071.4, + "probability": 0.9983 + }, + { + "start": 3072.08, + "end": 3073.26, + "probability": 0.9082 + }, + { + "start": 3073.78, + "end": 3076.66, + "probability": 0.9792 + }, + { + "start": 3078.66, + "end": 3079.68, + "probability": 0.9506 + }, + { + "start": 3080.62, + "end": 3083.0, + "probability": 0.8448 + }, + { + "start": 3084.62, + "end": 3087.24, + "probability": 0.9437 + }, + { + "start": 3087.86, + "end": 3092.28, + "probability": 0.9991 + }, + { + "start": 3092.8, + "end": 3095.96, + "probability": 0.9937 + }, + { + "start": 3097.4, + "end": 3101.38, + "probability": 0.9759 + }, + { + "start": 3102.2, + "end": 3103.2, + "probability": 0.8654 + }, + { + "start": 3103.84, + "end": 3104.82, + "probability": 0.9717 + }, + { + "start": 3105.36, + "end": 3105.64, + "probability": 0.9655 + }, + { + "start": 3106.34, + "end": 3108.72, + "probability": 0.9895 + }, + { + "start": 3109.52, + "end": 3111.54, + "probability": 0.8225 + }, + { + "start": 3112.24, + "end": 3114.92, + "probability": 0.9874 + }, + { + "start": 3116.34, + "end": 3116.72, + "probability": 0.9264 + }, + { + "start": 3117.46, + "end": 3120.38, + "probability": 0.9908 + }, + { + "start": 3121.22, + "end": 3121.98, + "probability": 0.8595 + }, + { + "start": 3124.46, + "end": 3125.08, + "probability": 0.998 + }, + { + "start": 3126.04, + "end": 3127.3, + "probability": 0.5732 + }, + { + "start": 3128.54, + "end": 3129.98, + "probability": 0.9814 + }, + { + "start": 3131.48, + "end": 3131.58, + "probability": 0.6283 + }, + { + "start": 3132.56, + "end": 3133.94, + "probability": 0.991 + }, + { + "start": 3134.88, + "end": 3136.98, + "probability": 0.946 + }, + { + "start": 3137.84, + "end": 3138.76, + "probability": 0.9892 + }, + { + "start": 3139.4, + "end": 3141.8, + "probability": 0.9563 + }, + { + "start": 3143.02, + "end": 3143.56, + "probability": 0.9531 + }, + { + "start": 3144.68, + "end": 3146.26, + "probability": 0.9994 + }, + { + "start": 3146.82, + "end": 3148.92, + "probability": 0.9786 + }, + { + "start": 3149.48, + "end": 3150.04, + "probability": 0.8083 + }, + { + "start": 3151.68, + "end": 3152.9, + "probability": 0.9915 + }, + { + "start": 3154.04, + "end": 3154.72, + "probability": 0.9897 + }, + { + "start": 3155.78, + "end": 3157.86, + "probability": 0.9925 + }, + { + "start": 3159.32, + "end": 3159.42, + "probability": 0.7752 + }, + { + "start": 3160.84, + "end": 3162.26, + "probability": 0.8845 + }, + { + "start": 3163.24, + "end": 3164.54, + "probability": 0.9823 + }, + { + "start": 3165.58, + "end": 3168.34, + "probability": 0.9875 + }, + { + "start": 3169.74, + "end": 3172.54, + "probability": 0.999 + }, + { + "start": 3173.84, + "end": 3174.98, + "probability": 0.8856 + }, + { + "start": 3175.4, + "end": 3176.64, + "probability": 0.987 + }, + { + "start": 3177.1, + "end": 3177.92, + "probability": 0.9129 + }, + { + "start": 3179.52, + "end": 3182.16, + "probability": 0.9931 + }, + { + "start": 3182.8, + "end": 3186.3, + "probability": 0.9846 + }, + { + "start": 3187.38, + "end": 3188.54, + "probability": 0.9988 + }, + { + "start": 3189.68, + "end": 3192.3, + "probability": 0.9175 + }, + { + "start": 3192.84, + "end": 3195.72, + "probability": 0.9987 + }, + { + "start": 3197.02, + "end": 3200.34, + "probability": 0.9628 + }, + { + "start": 3201.6, + "end": 3203.16, + "probability": 0.9939 + }, + { + "start": 3203.92, + "end": 3205.64, + "probability": 0.9961 + }, + { + "start": 3206.78, + "end": 3209.12, + "probability": 0.9936 + }, + { + "start": 3209.7, + "end": 3210.8, + "probability": 0.9661 + }, + { + "start": 3212.42, + "end": 3214.7, + "probability": 0.9343 + }, + { + "start": 3216.14, + "end": 3217.12, + "probability": 0.892 + }, + { + "start": 3218.7, + "end": 3220.78, + "probability": 0.9032 + }, + { + "start": 3221.78, + "end": 3222.64, + "probability": 0.9341 + }, + { + "start": 3224.56, + "end": 3225.88, + "probability": 0.9936 + }, + { + "start": 3226.56, + "end": 3228.14, + "probability": 0.9951 + }, + { + "start": 3228.74, + "end": 3230.13, + "probability": 0.9946 + }, + { + "start": 3230.98, + "end": 3233.44, + "probability": 0.9987 + }, + { + "start": 3234.0, + "end": 3234.94, + "probability": 0.7129 + }, + { + "start": 3236.36, + "end": 3238.58, + "probability": 0.9738 + }, + { + "start": 3239.6, + "end": 3241.58, + "probability": 0.9643 + }, + { + "start": 3242.38, + "end": 3243.1, + "probability": 0.9799 + }, + { + "start": 3243.98, + "end": 3245.88, + "probability": 0.9821 + }, + { + "start": 3247.48, + "end": 3249.22, + "probability": 0.9968 + }, + { + "start": 3250.32, + "end": 3251.16, + "probability": 0.8393 + }, + { + "start": 3251.82, + "end": 3254.8, + "probability": 0.9986 + }, + { + "start": 3256.04, + "end": 3257.28, + "probability": 0.9069 + }, + { + "start": 3258.6, + "end": 3259.26, + "probability": 0.8839 + }, + { + "start": 3260.14, + "end": 3260.8, + "probability": 0.9774 + }, + { + "start": 3262.08, + "end": 3263.16, + "probability": 0.9975 + }, + { + "start": 3264.24, + "end": 3267.02, + "probability": 0.98 + }, + { + "start": 3267.72, + "end": 3269.08, + "probability": 0.954 + }, + { + "start": 3269.96, + "end": 3271.64, + "probability": 0.9463 + }, + { + "start": 3272.04, + "end": 3274.04, + "probability": 0.9715 + }, + { + "start": 3274.44, + "end": 3277.19, + "probability": 0.981 + }, + { + "start": 3277.4, + "end": 3279.88, + "probability": 0.794 + }, + { + "start": 3281.98, + "end": 3283.72, + "probability": 0.9327 + }, + { + "start": 3283.86, + "end": 3286.54, + "probability": 0.9347 + }, + { + "start": 3288.72, + "end": 3293.92, + "probability": 0.9963 + }, + { + "start": 3293.92, + "end": 3297.28, + "probability": 0.9965 + }, + { + "start": 3297.88, + "end": 3298.72, + "probability": 0.6106 + }, + { + "start": 3299.48, + "end": 3303.12, + "probability": 0.999 + }, + { + "start": 3303.48, + "end": 3304.94, + "probability": 0.9873 + }, + { + "start": 3305.5, + "end": 3307.34, + "probability": 0.8336 + }, + { + "start": 3308.0, + "end": 3308.44, + "probability": 0.9466 + }, + { + "start": 3309.32, + "end": 3311.12, + "probability": 0.8852 + }, + { + "start": 3311.72, + "end": 3314.68, + "probability": 0.9945 + }, + { + "start": 3315.08, + "end": 3318.4, + "probability": 0.9847 + }, + { + "start": 3319.1, + "end": 3321.46, + "probability": 0.9929 + }, + { + "start": 3321.98, + "end": 3326.6, + "probability": 0.9728 + }, + { + "start": 3327.34, + "end": 3327.56, + "probability": 0.9724 + }, + { + "start": 3328.82, + "end": 3330.36, + "probability": 0.7663 + }, + { + "start": 3331.52, + "end": 3334.32, + "probability": 0.9233 + }, + { + "start": 3334.56, + "end": 3335.78, + "probability": 0.9102 + }, + { + "start": 3335.92, + "end": 3338.84, + "probability": 0.8922 + }, + { + "start": 3339.2, + "end": 3339.96, + "probability": 0.9468 + }, + { + "start": 3340.3, + "end": 3341.54, + "probability": 0.9752 + }, + { + "start": 3342.38, + "end": 3343.61, + "probability": 0.8638 + }, + { + "start": 3343.82, + "end": 3345.2, + "probability": 0.989 + }, + { + "start": 3345.46, + "end": 3346.66, + "probability": 0.825 + }, + { + "start": 3347.84, + "end": 3348.2, + "probability": 0.9448 + }, + { + "start": 3349.26, + "end": 3351.26, + "probability": 0.998 + }, + { + "start": 3351.7, + "end": 3352.26, + "probability": 0.7195 + }, + { + "start": 3353.06, + "end": 3354.46, + "probability": 0.7597 + }, + { + "start": 3354.68, + "end": 3357.54, + "probability": 0.7234 + }, + { + "start": 3357.54, + "end": 3360.38, + "probability": 0.9221 + }, + { + "start": 3360.56, + "end": 3361.38, + "probability": 0.8039 + }, + { + "start": 3362.38, + "end": 3362.9, + "probability": 0.9037 + }, + { + "start": 3384.06, + "end": 3384.46, + "probability": 0.3036 + }, + { + "start": 3384.56, + "end": 3385.48, + "probability": 0.7967 + }, + { + "start": 3385.54, + "end": 3390.2, + "probability": 0.8406 + }, + { + "start": 3390.26, + "end": 3390.72, + "probability": 0.7044 + }, + { + "start": 3391.44, + "end": 3392.0, + "probability": 0.3866 + }, + { + "start": 3392.36, + "end": 3395.29, + "probability": 0.9911 + }, + { + "start": 3395.58, + "end": 3396.28, + "probability": 0.5027 + }, + { + "start": 3397.23, + "end": 3397.52, + "probability": 0.0701 + }, + { + "start": 3397.72, + "end": 3397.72, + "probability": 0.2178 + }, + { + "start": 3397.72, + "end": 3398.6, + "probability": 0.4865 + }, + { + "start": 3398.6, + "end": 3403.96, + "probability": 0.9304 + }, + { + "start": 3404.04, + "end": 3406.96, + "probability": 0.9722 + }, + { + "start": 3407.04, + "end": 3410.42, + "probability": 0.8328 + }, + { + "start": 3410.84, + "end": 3410.84, + "probability": 0.1055 + }, + { + "start": 3410.84, + "end": 3414.54, + "probability": 0.9771 + }, + { + "start": 3414.58, + "end": 3415.26, + "probability": 0.8685 + }, + { + "start": 3415.7, + "end": 3416.63, + "probability": 0.831 + }, + { + "start": 3416.7, + "end": 3418.56, + "probability": 0.8758 + }, + { + "start": 3418.96, + "end": 3420.42, + "probability": 0.7474 + }, + { + "start": 3420.56, + "end": 3421.24, + "probability": 0.9556 + }, + { + "start": 3421.82, + "end": 3422.52, + "probability": 0.9347 + }, + { + "start": 3423.32, + "end": 3424.26, + "probability": 0.9126 + }, + { + "start": 3424.4, + "end": 3430.96, + "probability": 0.9851 + }, + { + "start": 3431.34, + "end": 3434.22, + "probability": 0.0056 + }, + { + "start": 3434.22, + "end": 3434.22, + "probability": 0.006 + }, + { + "start": 3434.22, + "end": 3435.44, + "probability": 0.8522 + }, + { + "start": 3436.69, + "end": 3438.23, + "probability": 0.8928 + }, + { + "start": 3439.4, + "end": 3443.22, + "probability": 0.877 + }, + { + "start": 3444.1, + "end": 3450.66, + "probability": 0.7387 + }, + { + "start": 3450.8, + "end": 3452.2, + "probability": 0.6571 + }, + { + "start": 3452.36, + "end": 3456.32, + "probability": 0.4626 + }, + { + "start": 3456.32, + "end": 3457.02, + "probability": 0.9242 + }, + { + "start": 3457.3, + "end": 3460.56, + "probability": 0.99 + }, + { + "start": 3460.98, + "end": 3462.1, + "probability": 0.9861 + }, + { + "start": 3463.92, + "end": 3465.88, + "probability": 0.0447 + }, + { + "start": 3465.88, + "end": 3466.62, + "probability": 0.2509 + }, + { + "start": 3466.62, + "end": 3466.62, + "probability": 0.0273 + }, + { + "start": 3466.62, + "end": 3466.62, + "probability": 0.2 + }, + { + "start": 3466.62, + "end": 3466.62, + "probability": 0.5264 + }, + { + "start": 3466.62, + "end": 3467.06, + "probability": 0.4797 + }, + { + "start": 3467.82, + "end": 3468.92, + "probability": 0.8422 + }, + { + "start": 3469.52, + "end": 3471.64, + "probability": 0.5468 + }, + { + "start": 3472.28, + "end": 3472.96, + "probability": 0.8425 + }, + { + "start": 3473.08, + "end": 3475.88, + "probability": 0.9715 + }, + { + "start": 3475.9, + "end": 3480.4, + "probability": 0.9657 + }, + { + "start": 3498.18, + "end": 3498.26, + "probability": 0.6958 + }, + { + "start": 3498.26, + "end": 3499.46, + "probability": 0.5803 + }, + { + "start": 3499.48, + "end": 3500.2, + "probability": 0.8982 + }, + { + "start": 3500.54, + "end": 3504.06, + "probability": 0.8726 + }, + { + "start": 3505.16, + "end": 3509.38, + "probability": 0.9801 + }, + { + "start": 3510.32, + "end": 3510.76, + "probability": 0.9652 + }, + { + "start": 3512.06, + "end": 3513.03, + "probability": 0.9403 + }, + { + "start": 3513.78, + "end": 3516.78, + "probability": 0.9846 + }, + { + "start": 3517.58, + "end": 3519.58, + "probability": 0.9467 + }, + { + "start": 3520.68, + "end": 3524.3, + "probability": 0.9901 + }, + { + "start": 3526.24, + "end": 3528.04, + "probability": 0.9694 + }, + { + "start": 3528.88, + "end": 3529.76, + "probability": 0.87 + }, + { + "start": 3531.1, + "end": 3533.54, + "probability": 0.9927 + }, + { + "start": 3534.22, + "end": 3535.5, + "probability": 0.9723 + }, + { + "start": 3537.38, + "end": 3538.18, + "probability": 0.5663 + }, + { + "start": 3539.06, + "end": 3543.88, + "probability": 0.973 + }, + { + "start": 3544.96, + "end": 3545.9, + "probability": 0.978 + }, + { + "start": 3547.36, + "end": 3550.88, + "probability": 0.9734 + }, + { + "start": 3552.08, + "end": 3555.42, + "probability": 0.9977 + }, + { + "start": 3556.42, + "end": 3558.32, + "probability": 0.8843 + }, + { + "start": 3559.44, + "end": 3567.86, + "probability": 0.9803 + }, + { + "start": 3569.74, + "end": 3573.4, + "probability": 0.9934 + }, + { + "start": 3575.0, + "end": 3576.3, + "probability": 0.8753 + }, + { + "start": 3578.1, + "end": 3580.48, + "probability": 0.9187 + }, + { + "start": 3581.6, + "end": 3583.9, + "probability": 0.8977 + }, + { + "start": 3585.0, + "end": 3587.16, + "probability": 0.9902 + }, + { + "start": 3587.24, + "end": 3589.36, + "probability": 0.9671 + }, + { + "start": 3589.9, + "end": 3592.68, + "probability": 0.8002 + }, + { + "start": 3593.52, + "end": 3594.9, + "probability": 0.9989 + }, + { + "start": 3595.44, + "end": 3598.16, + "probability": 0.706 + }, + { + "start": 3599.14, + "end": 3604.24, + "probability": 0.9954 + }, + { + "start": 3604.8, + "end": 3605.08, + "probability": 0.3036 + }, + { + "start": 3605.18, + "end": 3605.48, + "probability": 0.8767 + }, + { + "start": 3605.58, + "end": 3608.86, + "probability": 0.9542 + }, + { + "start": 3609.5, + "end": 3610.88, + "probability": 0.8909 + }, + { + "start": 3612.08, + "end": 3613.66, + "probability": 0.9849 + }, + { + "start": 3614.9, + "end": 3616.44, + "probability": 0.7552 + }, + { + "start": 3617.22, + "end": 3622.44, + "probability": 0.9951 + }, + { + "start": 3624.5, + "end": 3628.76, + "probability": 0.9836 + }, + { + "start": 3629.28, + "end": 3629.88, + "probability": 0.7759 + }, + { + "start": 3630.74, + "end": 3633.44, + "probability": 0.8439 + }, + { + "start": 3634.0, + "end": 3634.72, + "probability": 0.763 + }, + { + "start": 3635.38, + "end": 3636.3, + "probability": 0.7381 + }, + { + "start": 3637.34, + "end": 3639.82, + "probability": 0.9805 + }, + { + "start": 3642.26, + "end": 3646.98, + "probability": 0.9856 + }, + { + "start": 3647.65, + "end": 3653.68, + "probability": 0.9959 + }, + { + "start": 3654.32, + "end": 3656.28, + "probability": 0.9971 + }, + { + "start": 3657.32, + "end": 3658.14, + "probability": 0.8894 + }, + { + "start": 3658.68, + "end": 3659.5, + "probability": 0.9808 + }, + { + "start": 3660.2, + "end": 3661.2, + "probability": 0.7722 + }, + { + "start": 3662.7, + "end": 3663.84, + "probability": 0.9526 + }, + { + "start": 3664.44, + "end": 3665.0, + "probability": 0.9693 + }, + { + "start": 3666.46, + "end": 3669.26, + "probability": 0.9907 + }, + { + "start": 3669.88, + "end": 3672.78, + "probability": 0.877 + }, + { + "start": 3673.82, + "end": 3675.08, + "probability": 0.9286 + }, + { + "start": 3676.22, + "end": 3677.86, + "probability": 0.9905 + }, + { + "start": 3678.8, + "end": 3680.82, + "probability": 0.9793 + }, + { + "start": 3681.88, + "end": 3685.76, + "probability": 0.8055 + }, + { + "start": 3685.76, + "end": 3689.84, + "probability": 0.9972 + }, + { + "start": 3690.66, + "end": 3692.94, + "probability": 0.7623 + }, + { + "start": 3693.6, + "end": 3694.58, + "probability": 0.8433 + }, + { + "start": 3695.1, + "end": 3697.58, + "probability": 0.9859 + }, + { + "start": 3699.44, + "end": 3702.04, + "probability": 0.9785 + }, + { + "start": 3702.12, + "end": 3706.12, + "probability": 0.9756 + }, + { + "start": 3706.7, + "end": 3709.28, + "probability": 0.999 + }, + { + "start": 3709.9, + "end": 3711.86, + "probability": 0.7996 + }, + { + "start": 3713.56, + "end": 3717.54, + "probability": 0.9846 + }, + { + "start": 3718.32, + "end": 3721.22, + "probability": 0.9919 + }, + { + "start": 3721.94, + "end": 3724.68, + "probability": 0.9116 + }, + { + "start": 3725.52, + "end": 3728.66, + "probability": 0.9858 + }, + { + "start": 3729.56, + "end": 3734.08, + "probability": 0.973 + }, + { + "start": 3734.18, + "end": 3737.52, + "probability": 0.963 + }, + { + "start": 3738.06, + "end": 3739.48, + "probability": 0.9607 + }, + { + "start": 3740.64, + "end": 3742.16, + "probability": 0.9682 + }, + { + "start": 3742.94, + "end": 3745.26, + "probability": 0.9761 + }, + { + "start": 3746.08, + "end": 3747.06, + "probability": 0.9694 + }, + { + "start": 3747.8, + "end": 3748.82, + "probability": 0.9475 + }, + { + "start": 3749.76, + "end": 3751.23, + "probability": 0.9754 + }, + { + "start": 3751.88, + "end": 3755.26, + "probability": 0.9962 + }, + { + "start": 3755.88, + "end": 3758.84, + "probability": 0.9855 + }, + { + "start": 3759.66, + "end": 3761.54, + "probability": 0.7374 + }, + { + "start": 3762.06, + "end": 3764.64, + "probability": 0.9945 + }, + { + "start": 3765.24, + "end": 3767.42, + "probability": 0.9932 + }, + { + "start": 3767.54, + "end": 3769.06, + "probability": 0.9845 + }, + { + "start": 3771.26, + "end": 3772.03, + "probability": 0.0537 + }, + { + "start": 3772.14, + "end": 3772.94, + "probability": 0.7693 + }, + { + "start": 3773.14, + "end": 3774.08, + "probability": 0.2017 + }, + { + "start": 3774.74, + "end": 3775.47, + "probability": 0.8416 + }, + { + "start": 3776.54, + "end": 3776.7, + "probability": 0.0412 + }, + { + "start": 3777.36, + "end": 3779.3, + "probability": 0.8779 + }, + { + "start": 3779.72, + "end": 3780.18, + "probability": 0.1527 + }, + { + "start": 3780.38, + "end": 3780.58, + "probability": 0.397 + }, + { + "start": 3780.8, + "end": 3781.54, + "probability": 0.835 + }, + { + "start": 3782.24, + "end": 3784.94, + "probability": 0.9978 + }, + { + "start": 3788.6, + "end": 3791.22, + "probability": 0.7456 + }, + { + "start": 3791.44, + "end": 3793.02, + "probability": 0.7037 + }, + { + "start": 3793.26, + "end": 3795.1, + "probability": 0.9688 + }, + { + "start": 3795.74, + "end": 3796.84, + "probability": 0.7666 + }, + { + "start": 3798.3, + "end": 3799.42, + "probability": 0.6579 + }, + { + "start": 3799.62, + "end": 3803.42, + "probability": 0.9614 + }, + { + "start": 3804.26, + "end": 3804.64, + "probability": 0.8444 + }, + { + "start": 3804.68, + "end": 3809.5, + "probability": 0.9935 + }, + { + "start": 3809.54, + "end": 3810.18, + "probability": 0.6539 + }, + { + "start": 3810.7, + "end": 3811.5, + "probability": 0.7883 + }, + { + "start": 3812.04, + "end": 3813.94, + "probability": 0.9964 + }, + { + "start": 3814.76, + "end": 3817.62, + "probability": 0.9968 + }, + { + "start": 3818.26, + "end": 3820.44, + "probability": 0.8217 + }, + { + "start": 3821.46, + "end": 3822.4, + "probability": 0.8789 + }, + { + "start": 3823.74, + "end": 3825.38, + "probability": 0.6903 + }, + { + "start": 3826.18, + "end": 3828.04, + "probability": 0.8243 + }, + { + "start": 3828.32, + "end": 3828.68, + "probability": 0.4458 + }, + { + "start": 3828.68, + "end": 3829.82, + "probability": 0.4659 + }, + { + "start": 3829.86, + "end": 3830.22, + "probability": 0.4541 + }, + { + "start": 3830.24, + "end": 3832.74, + "probability": 0.8904 + }, + { + "start": 3833.42, + "end": 3839.12, + "probability": 0.2043 + }, + { + "start": 3839.52, + "end": 3840.82, + "probability": 0.0617 + }, + { + "start": 3842.16, + "end": 3844.68, + "probability": 0.1863 + }, + { + "start": 3844.8, + "end": 3848.16, + "probability": 0.4212 + }, + { + "start": 3851.94, + "end": 3852.98, + "probability": 0.208 + }, + { + "start": 3853.06, + "end": 3855.26, + "probability": 0.1403 + }, + { + "start": 3856.58, + "end": 3859.18, + "probability": 0.1449 + }, + { + "start": 3859.94, + "end": 3860.28, + "probability": 0.0796 + }, + { + "start": 3860.28, + "end": 3860.88, + "probability": 0.0905 + }, + { + "start": 3861.04, + "end": 3861.04, + "probability": 0.1622 + }, + { + "start": 3861.14, + "end": 3862.0, + "probability": 0.818 + }, + { + "start": 3862.18, + "end": 3865.96, + "probability": 0.0315 + }, + { + "start": 3865.96, + "end": 3866.78, + "probability": 0.0534 + }, + { + "start": 3870.46, + "end": 3872.1, + "probability": 0.0225 + }, + { + "start": 3885.06, + "end": 3885.06, + "probability": 0.0163 + }, + { + "start": 3885.21, + "end": 3885.68, + "probability": 0.0971 + }, + { + "start": 3886.52, + "end": 3887.52, + "probability": 0.19 + }, + { + "start": 3887.58, + "end": 3889.52, + "probability": 0.0355 + }, + { + "start": 3889.96, + "end": 3892.06, + "probability": 0.0491 + }, + { + "start": 3900.98, + "end": 3904.76, + "probability": 0.0463 + }, + { + "start": 3904.76, + "end": 3908.02, + "probability": 0.1214 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3933.0, + "end": 3933.0, + "probability": 0.0 + }, + { + "start": 3940.68, + "end": 3941.08, + "probability": 0.6657 + }, + { + "start": 3947.9, + "end": 3949.08, + "probability": 0.4862 + }, + { + "start": 3951.6, + "end": 3952.3, + "probability": 0.0321 + }, + { + "start": 3962.64, + "end": 3963.28, + "probability": 0.1663 + }, + { + "start": 3966.19, + "end": 3968.62, + "probability": 0.136 + }, + { + "start": 3970.57, + "end": 3972.07, + "probability": 0.0484 + }, + { + "start": 3972.08, + "end": 3978.24, + "probability": 0.0436 + }, + { + "start": 3979.52, + "end": 3984.56, + "probability": 0.0272 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.0, + "end": 4053.0, + "probability": 0.0 + }, + { + "start": 4053.32, + "end": 4054.38, + "probability": 0.0989 + }, + { + "start": 4054.38, + "end": 4054.38, + "probability": 0.0365 + }, + { + "start": 4054.38, + "end": 4055.0, + "probability": 0.4523 + }, + { + "start": 4055.52, + "end": 4057.91, + "probability": 0.5432 + }, + { + "start": 4058.86, + "end": 4061.8, + "probability": 0.7154 + }, + { + "start": 4062.28, + "end": 4065.74, + "probability": 0.9908 + }, + { + "start": 4066.04, + "end": 4067.4, + "probability": 0.7571 + }, + { + "start": 4067.44, + "end": 4069.34, + "probability": 0.5298 + }, + { + "start": 4070.44, + "end": 4070.56, + "probability": 0.0659 + }, + { + "start": 4070.56, + "end": 4070.56, + "probability": 0.0205 + }, + { + "start": 4070.56, + "end": 4073.18, + "probability": 0.7881 + }, + { + "start": 4073.52, + "end": 4075.2, + "probability": 0.939 + }, + { + "start": 4075.6, + "end": 4075.72, + "probability": 0.1103 + }, + { + "start": 4075.76, + "end": 4076.06, + "probability": 0.025 + }, + { + "start": 4076.06, + "end": 4077.2, + "probability": 0.5028 + }, + { + "start": 4077.44, + "end": 4079.64, + "probability": 0.993 + }, + { + "start": 4081.06, + "end": 4085.3, + "probability": 0.9937 + }, + { + "start": 4086.36, + "end": 4089.36, + "probability": 0.9864 + }, + { + "start": 4090.1, + "end": 4092.5, + "probability": 0.932 + }, + { + "start": 4092.5, + "end": 4095.24, + "probability": 0.997 + }, + { + "start": 4095.78, + "end": 4099.42, + "probability": 0.8745 + }, + { + "start": 4100.02, + "end": 4102.04, + "probability": 0.8587 + }, + { + "start": 4102.84, + "end": 4103.9, + "probability": 0.804 + }, + { + "start": 4104.58, + "end": 4106.26, + "probability": 0.7231 + }, + { + "start": 4106.82, + "end": 4110.52, + "probability": 0.9419 + }, + { + "start": 4111.08, + "end": 4112.54, + "probability": 0.9362 + }, + { + "start": 4113.14, + "end": 4115.0, + "probability": 0.9133 + }, + { + "start": 4115.66, + "end": 4121.02, + "probability": 0.9982 + }, + { + "start": 4121.94, + "end": 4122.6, + "probability": 0.8596 + }, + { + "start": 4123.24, + "end": 4126.9, + "probability": 0.9258 + }, + { + "start": 4127.48, + "end": 4127.72, + "probability": 0.5754 + }, + { + "start": 4128.58, + "end": 4130.22, + "probability": 0.7698 + }, + { + "start": 4131.34, + "end": 4131.94, + "probability": 0.4879 + }, + { + "start": 4132.66, + "end": 4135.06, + "probability": 0.9829 + }, + { + "start": 4135.4, + "end": 4135.4, + "probability": 0.1788 + }, + { + "start": 4135.56, + "end": 4138.3, + "probability": 0.8959 + }, + { + "start": 4138.96, + "end": 4140.76, + "probability": 0.5563 + }, + { + "start": 4140.8, + "end": 4140.96, + "probability": 0.0427 + }, + { + "start": 4140.96, + "end": 4141.52, + "probability": 0.3545 + }, + { + "start": 4141.62, + "end": 4142.14, + "probability": 0.2902 + }, + { + "start": 4142.46, + "end": 4144.02, + "probability": 0.4432 + }, + { + "start": 4144.02, + "end": 4146.08, + "probability": 0.5906 + }, + { + "start": 4146.29, + "end": 4148.34, + "probability": 0.9273 + }, + { + "start": 4148.64, + "end": 4151.86, + "probability": 0.9609 + }, + { + "start": 4152.24, + "end": 4153.4, + "probability": 0.7753 + }, + { + "start": 4153.48, + "end": 4156.34, + "probability": 0.6225 + }, + { + "start": 4156.34, + "end": 4156.34, + "probability": 0.4017 + }, + { + "start": 4156.34, + "end": 4157.7, + "probability": 0.5353 + }, + { + "start": 4158.02, + "end": 4158.52, + "probability": 0.7899 + }, + { + "start": 4159.26, + "end": 4163.58, + "probability": 0.8866 + }, + { + "start": 4164.48, + "end": 4164.94, + "probability": 0.0235 + }, + { + "start": 4165.06, + "end": 4170.62, + "probability": 0.4724 + }, + { + "start": 4170.62, + "end": 4170.62, + "probability": 0.0869 + }, + { + "start": 4170.62, + "end": 4172.3, + "probability": 0.5223 + }, + { + "start": 4172.62, + "end": 4172.88, + "probability": 0.2588 + }, + { + "start": 4172.88, + "end": 4175.54, + "probability": 0.647 + }, + { + "start": 4175.96, + "end": 4175.96, + "probability": 0.2755 + }, + { + "start": 4175.96, + "end": 4178.86, + "probability": 0.6833 + }, + { + "start": 4179.42, + "end": 4180.02, + "probability": 0.2471 + }, + { + "start": 4180.28, + "end": 4181.68, + "probability": 0.3674 + }, + { + "start": 4181.72, + "end": 4182.12, + "probability": 0.7819 + }, + { + "start": 4182.26, + "end": 4183.64, + "probability": 0.9658 + }, + { + "start": 4183.64, + "end": 4184.68, + "probability": 0.7313 + }, + { + "start": 4184.84, + "end": 4186.24, + "probability": 0.9259 + }, + { + "start": 4186.34, + "end": 4189.08, + "probability": 0.902 + }, + { + "start": 4189.22, + "end": 4191.26, + "probability": 0.5467 + }, + { + "start": 4191.52, + "end": 4193.73, + "probability": 0.2143 + }, + { + "start": 4193.98, + "end": 4196.02, + "probability": 0.6276 + }, + { + "start": 4196.1, + "end": 4196.82, + "probability": 0.8047 + }, + { + "start": 4200.74, + "end": 4203.16, + "probability": 0.0237 + }, + { + "start": 4205.82, + "end": 4206.78, + "probability": 0.1621 + }, + { + "start": 4207.34, + "end": 4209.74, + "probability": 0.1475 + }, + { + "start": 4210.56, + "end": 4212.9, + "probability": 0.5972 + }, + { + "start": 4212.92, + "end": 4215.26, + "probability": 0.9392 + }, + { + "start": 4215.64, + "end": 4216.0, + "probability": 0.5962 + }, + { + "start": 4216.1, + "end": 4217.4, + "probability": 0.9683 + }, + { + "start": 4217.5, + "end": 4220.42, + "probability": 0.7888 + }, + { + "start": 4221.18, + "end": 4221.92, + "probability": 0.0752 + }, + { + "start": 4221.92, + "end": 4222.52, + "probability": 0.8684 + }, + { + "start": 4223.08, + "end": 4225.48, + "probability": 0.8774 + }, + { + "start": 4226.58, + "end": 4226.96, + "probability": 0.881 + }, + { + "start": 4227.73, + "end": 4228.14, + "probability": 0.6663 + }, + { + "start": 4228.5, + "end": 4231.06, + "probability": 0.96 + }, + { + "start": 4231.28, + "end": 4231.56, + "probability": 0.0073 + }, + { + "start": 4231.66, + "end": 4233.56, + "probability": 0.6849 + }, + { + "start": 4233.56, + "end": 4233.56, + "probability": 0.2784 + }, + { + "start": 4233.56, + "end": 4235.9, + "probability": 0.8404 + }, + { + "start": 4236.1, + "end": 4236.94, + "probability": 0.1432 + }, + { + "start": 4237.32, + "end": 4238.72, + "probability": 0.7422 + }, + { + "start": 4239.46, + "end": 4240.26, + "probability": 0.5401 + }, + { + "start": 4240.44, + "end": 4244.03, + "probability": 0.9893 + }, + { + "start": 4244.8, + "end": 4248.2, + "probability": 0.9934 + }, + { + "start": 4248.24, + "end": 4250.58, + "probability": 0.995 + }, + { + "start": 4251.5, + "end": 4251.72, + "probability": 0.3634 + }, + { + "start": 4251.74, + "end": 4252.6, + "probability": 0.9008 + }, + { + "start": 4252.64, + "end": 4255.62, + "probability": 0.934 + }, + { + "start": 4255.98, + "end": 4257.94, + "probability": 0.9958 + }, + { + "start": 4258.92, + "end": 4258.92, + "probability": 0.0125 + }, + { + "start": 4258.92, + "end": 4259.02, + "probability": 0.2422 + }, + { + "start": 4259.5, + "end": 4260.34, + "probability": 0.5378 + }, + { + "start": 4260.34, + "end": 4260.96, + "probability": 0.6268 + }, + { + "start": 4261.38, + "end": 4264.32, + "probability": 0.8162 + }, + { + "start": 4264.34, + "end": 4265.48, + "probability": 0.571 + }, + { + "start": 4266.1, + "end": 4267.98, + "probability": 0.4469 + }, + { + "start": 4267.98, + "end": 4268.62, + "probability": 0.0577 + }, + { + "start": 4268.62, + "end": 4268.66, + "probability": 0.053 + }, + { + "start": 4268.66, + "end": 4269.66, + "probability": 0.5933 + }, + { + "start": 4269.74, + "end": 4269.84, + "probability": 0.6857 + }, + { + "start": 4269.9, + "end": 4270.68, + "probability": 0.7555 + }, + { + "start": 4270.86, + "end": 4274.0, + "probability": 0.808 + }, + { + "start": 4274.08, + "end": 4274.78, + "probability": 0.9653 + }, + { + "start": 4275.4, + "end": 4277.1, + "probability": 0.1227 + }, + { + "start": 4277.38, + "end": 4281.46, + "probability": 0.9827 + }, + { + "start": 4281.54, + "end": 4285.66, + "probability": 0.8892 + }, + { + "start": 4286.04, + "end": 4286.28, + "probability": 0.0152 + }, + { + "start": 4286.28, + "end": 4287.04, + "probability": 0.7101 + }, + { + "start": 4287.12, + "end": 4289.06, + "probability": 0.9781 + }, + { + "start": 4289.38, + "end": 4290.94, + "probability": 0.9963 + }, + { + "start": 4291.18, + "end": 4291.84, + "probability": 0.209 + }, + { + "start": 4291.98, + "end": 4294.96, + "probability": 0.7221 + }, + { + "start": 4295.98, + "end": 4296.72, + "probability": 0.016 + }, + { + "start": 4296.84, + "end": 4296.88, + "probability": 0.297 + }, + { + "start": 4296.88, + "end": 4299.76, + "probability": 0.916 + }, + { + "start": 4299.8, + "end": 4300.66, + "probability": 0.9292 + }, + { + "start": 4300.7, + "end": 4301.78, + "probability": 0.9686 + }, + { + "start": 4301.88, + "end": 4304.27, + "probability": 0.9449 + }, + { + "start": 4306.36, + "end": 4307.34, + "probability": 0.1758 + }, + { + "start": 4307.44, + "end": 4309.7, + "probability": 0.9268 + }, + { + "start": 4309.7, + "end": 4310.54, + "probability": 0.0942 + }, + { + "start": 4310.6, + "end": 4310.78, + "probability": 0.109 + }, + { + "start": 4310.78, + "end": 4312.38, + "probability": 0.6925 + }, + { + "start": 4312.98, + "end": 4314.74, + "probability": 0.7664 + }, + { + "start": 4314.92, + "end": 4319.82, + "probability": 0.968 + }, + { + "start": 4319.94, + "end": 4320.32, + "probability": 0.162 + }, + { + "start": 4320.32, + "end": 4321.52, + "probability": 0.5114 + }, + { + "start": 4321.58, + "end": 4323.82, + "probability": 0.6969 + }, + { + "start": 4324.14, + "end": 4324.26, + "probability": 0.0242 + }, + { + "start": 4324.26, + "end": 4325.12, + "probability": 0.7753 + }, + { + "start": 4325.34, + "end": 4328.97, + "probability": 0.9229 + }, + { + "start": 4329.6, + "end": 4330.94, + "probability": 0.475 + }, + { + "start": 4331.02, + "end": 4332.8, + "probability": 0.7981 + }, + { + "start": 4332.92, + "end": 4336.74, + "probability": 0.9988 + }, + { + "start": 4337.26, + "end": 4339.99, + "probability": 0.931 + }, + { + "start": 4340.96, + "end": 4344.5, + "probability": 0.7615 + }, + { + "start": 4345.23, + "end": 4345.9, + "probability": 0.0794 + }, + { + "start": 4346.12, + "end": 4347.06, + "probability": 0.7443 + }, + { + "start": 4347.08, + "end": 4348.36, + "probability": 0.7368 + }, + { + "start": 4348.42, + "end": 4351.6, + "probability": 0.8883 + }, + { + "start": 4351.6, + "end": 4352.4, + "probability": 0.4373 + }, + { + "start": 4352.4, + "end": 4353.44, + "probability": 0.931 + }, + { + "start": 4354.0, + "end": 4356.16, + "probability": 0.9868 + }, + { + "start": 4356.48, + "end": 4356.94, + "probability": 0.9625 + }, + { + "start": 4357.14, + "end": 4358.68, + "probability": 0.7344 + }, + { + "start": 4359.16, + "end": 4360.36, + "probability": 0.927 + }, + { + "start": 4360.5, + "end": 4361.38, + "probability": 0.2982 + }, + { + "start": 4361.38, + "end": 4362.05, + "probability": 0.3783 + }, + { + "start": 4362.64, + "end": 4364.56, + "probability": 0.9064 + }, + { + "start": 4364.68, + "end": 4365.04, + "probability": 0.9532 + }, + { + "start": 4365.54, + "end": 4370.3, + "probability": 0.9386 + }, + { + "start": 4370.38, + "end": 4373.22, + "probability": 0.9991 + }, + { + "start": 4373.22, + "end": 4375.24, + "probability": 0.6144 + }, + { + "start": 4375.46, + "end": 4376.82, + "probability": 0.2856 + }, + { + "start": 4376.86, + "end": 4377.04, + "probability": 0.2525 + }, + { + "start": 4377.04, + "end": 4378.46, + "probability": 0.0468 + }, + { + "start": 4378.54, + "end": 4380.0, + "probability": 0.2962 + }, + { + "start": 4380.7, + "end": 4381.46, + "probability": 0.4187 + }, + { + "start": 4381.78, + "end": 4385.52, + "probability": 0.8204 + }, + { + "start": 4386.2, + "end": 4389.56, + "probability": 0.8882 + }, + { + "start": 4390.44, + "end": 4390.58, + "probability": 0.6851 + }, + { + "start": 4399.16, + "end": 4399.16, + "probability": 0.5076 + }, + { + "start": 4399.16, + "end": 4400.44, + "probability": 0.6113 + }, + { + "start": 4401.82, + "end": 4403.98, + "probability": 0.8497 + }, + { + "start": 4404.92, + "end": 4407.84, + "probability": 0.832 + }, + { + "start": 4409.68, + "end": 4410.36, + "probability": 0.9406 + }, + { + "start": 4410.64, + "end": 4411.16, + "probability": 0.2353 + }, + { + "start": 4411.48, + "end": 4414.77, + "probability": 0.9952 + }, + { + "start": 4415.54, + "end": 4416.42, + "probability": 0.9427 + }, + { + "start": 4417.6, + "end": 4420.66, + "probability": 0.874 + }, + { + "start": 4422.1, + "end": 4424.08, + "probability": 0.9279 + }, + { + "start": 4425.86, + "end": 4429.34, + "probability": 0.9891 + }, + { + "start": 4430.14, + "end": 4431.26, + "probability": 0.9617 + }, + { + "start": 4431.96, + "end": 4433.18, + "probability": 0.9891 + }, + { + "start": 4434.76, + "end": 4439.94, + "probability": 0.9683 + }, + { + "start": 4441.26, + "end": 4443.78, + "probability": 0.7721 + }, + { + "start": 4445.42, + "end": 4449.54, + "probability": 0.9609 + }, + { + "start": 4450.3, + "end": 4451.04, + "probability": 0.9873 + }, + { + "start": 4451.64, + "end": 4452.2, + "probability": 0.9796 + }, + { + "start": 4453.88, + "end": 4455.84, + "probability": 0.8141 + }, + { + "start": 4456.44, + "end": 4458.38, + "probability": 0.9598 + }, + { + "start": 4458.9, + "end": 4461.8, + "probability": 0.9572 + }, + { + "start": 4462.52, + "end": 4462.92, + "probability": 0.7181 + }, + { + "start": 4463.8, + "end": 4465.0, + "probability": 0.8801 + }, + { + "start": 4465.56, + "end": 4466.6, + "probability": 0.7607 + }, + { + "start": 4466.92, + "end": 4467.44, + "probability": 0.2774 + }, + { + "start": 4467.92, + "end": 4469.52, + "probability": 0.7355 + }, + { + "start": 4470.28, + "end": 4470.72, + "probability": 0.894 + }, + { + "start": 4471.88, + "end": 4472.76, + "probability": 0.9499 + }, + { + "start": 4473.38, + "end": 4477.64, + "probability": 0.8893 + }, + { + "start": 4478.98, + "end": 4481.74, + "probability": 0.7466 + }, + { + "start": 4483.0, + "end": 4487.4, + "probability": 0.854 + }, + { + "start": 4488.0, + "end": 4492.44, + "probability": 0.8687 + }, + { + "start": 4492.56, + "end": 4497.44, + "probability": 0.7952 + }, + { + "start": 4497.5, + "end": 4499.7, + "probability": 0.6828 + }, + { + "start": 4499.8, + "end": 4500.28, + "probability": 0.8055 + }, + { + "start": 4501.3, + "end": 4503.8, + "probability": 0.987 + }, + { + "start": 4505.16, + "end": 4506.2, + "probability": 0.981 + }, + { + "start": 4506.84, + "end": 4509.9, + "probability": 0.6644 + }, + { + "start": 4510.54, + "end": 4510.82, + "probability": 0.7897 + }, + { + "start": 4512.26, + "end": 4514.4, + "probability": 0.9205 + }, + { + "start": 4515.48, + "end": 4517.38, + "probability": 0.9027 + }, + { + "start": 4517.94, + "end": 4519.42, + "probability": 0.9444 + }, + { + "start": 4520.02, + "end": 4520.7, + "probability": 0.592 + }, + { + "start": 4522.0, + "end": 4524.4, + "probability": 0.9478 + }, + { + "start": 4524.8, + "end": 4525.71, + "probability": 0.4265 + }, + { + "start": 4526.56, + "end": 4527.28, + "probability": 0.79 + }, + { + "start": 4528.12, + "end": 4530.62, + "probability": 0.8449 + }, + { + "start": 4531.66, + "end": 4534.5, + "probability": 0.9761 + }, + { + "start": 4534.58, + "end": 4535.6, + "probability": 0.8045 + }, + { + "start": 4536.36, + "end": 4539.52, + "probability": 0.9461 + }, + { + "start": 4540.38, + "end": 4543.54, + "probability": 0.9935 + }, + { + "start": 4544.22, + "end": 4545.6, + "probability": 0.9891 + }, + { + "start": 4546.58, + "end": 4549.24, + "probability": 0.9917 + }, + { + "start": 4549.3, + "end": 4550.54, + "probability": 0.9377 + }, + { + "start": 4550.98, + "end": 4552.46, + "probability": 0.9175 + }, + { + "start": 4553.96, + "end": 4559.98, + "probability": 0.9951 + }, + { + "start": 4560.02, + "end": 4564.3, + "probability": 0.9863 + }, + { + "start": 4565.24, + "end": 4567.92, + "probability": 0.8894 + }, + { + "start": 4567.94, + "end": 4571.52, + "probability": 0.9984 + }, + { + "start": 4571.74, + "end": 4572.36, + "probability": 0.6997 + }, + { + "start": 4574.08, + "end": 4576.64, + "probability": 0.9434 + }, + { + "start": 4576.94, + "end": 4577.8, + "probability": 0.5413 + }, + { + "start": 4579.19, + "end": 4581.12, + "probability": 0.816 + }, + { + "start": 4582.22, + "end": 4582.82, + "probability": 0.7483 + }, + { + "start": 4583.78, + "end": 4584.38, + "probability": 0.8406 + }, + { + "start": 4585.24, + "end": 4585.82, + "probability": 0.8954 + }, + { + "start": 4587.1, + "end": 4587.88, + "probability": 0.6633 + }, + { + "start": 4588.08, + "end": 4588.77, + "probability": 0.8936 + }, + { + "start": 4589.68, + "end": 4594.84, + "probability": 0.9913 + }, + { + "start": 4595.1, + "end": 4596.42, + "probability": 0.8547 + }, + { + "start": 4597.14, + "end": 4599.86, + "probability": 0.8438 + }, + { + "start": 4600.0, + "end": 4601.54, + "probability": 0.9349 + }, + { + "start": 4602.6, + "end": 4604.36, + "probability": 0.6519 + }, + { + "start": 4618.74, + "end": 4618.74, + "probability": 0.291 + }, + { + "start": 4618.74, + "end": 4619.33, + "probability": 0.664 + }, + { + "start": 4620.72, + "end": 4623.78, + "probability": 0.925 + }, + { + "start": 4625.14, + "end": 4628.8, + "probability": 0.7182 + }, + { + "start": 4630.32, + "end": 4635.94, + "probability": 0.9863 + }, + { + "start": 4637.22, + "end": 4640.04, + "probability": 0.9463 + }, + { + "start": 4640.64, + "end": 4644.98, + "probability": 0.8822 + }, + { + "start": 4645.72, + "end": 4650.48, + "probability": 0.9884 + }, + { + "start": 4650.72, + "end": 4651.62, + "probability": 0.9946 + }, + { + "start": 4651.9, + "end": 4652.02, + "probability": 0.5284 + }, + { + "start": 4652.08, + "end": 4652.36, + "probability": 0.7365 + }, + { + "start": 4653.04, + "end": 4655.6, + "probability": 0.9684 + }, + { + "start": 4655.92, + "end": 4657.56, + "probability": 0.8667 + }, + { + "start": 4658.0, + "end": 4660.9, + "probability": 0.9874 + }, + { + "start": 4661.6, + "end": 4670.36, + "probability": 0.9653 + }, + { + "start": 4671.64, + "end": 4675.62, + "probability": 0.8298 + }, + { + "start": 4676.4, + "end": 4678.74, + "probability": 0.8996 + }, + { + "start": 4678.76, + "end": 4681.96, + "probability": 0.9822 + }, + { + "start": 4682.6, + "end": 4685.8, + "probability": 0.9852 + }, + { + "start": 4685.8, + "end": 4690.08, + "probability": 0.9972 + }, + { + "start": 4691.11, + "end": 4696.88, + "probability": 0.9917 + }, + { + "start": 4697.38, + "end": 4700.62, + "probability": 0.8502 + }, + { + "start": 4701.3, + "end": 4706.36, + "probability": 0.9956 + }, + { + "start": 4707.14, + "end": 4707.78, + "probability": 0.6281 + }, + { + "start": 4709.4, + "end": 4714.44, + "probability": 0.8119 + }, + { + "start": 4715.7, + "end": 4721.36, + "probability": 0.8672 + }, + { + "start": 4722.0, + "end": 4722.32, + "probability": 0.4558 + }, + { + "start": 4723.06, + "end": 4724.52, + "probability": 0.9761 + }, + { + "start": 4725.1, + "end": 4728.54, + "probability": 0.907 + }, + { + "start": 4729.18, + "end": 4731.64, + "probability": 0.9229 + }, + { + "start": 4732.18, + "end": 4735.24, + "probability": 0.6976 + }, + { + "start": 4735.52, + "end": 4740.54, + "probability": 0.9882 + }, + { + "start": 4741.0, + "end": 4746.24, + "probability": 0.9875 + }, + { + "start": 4746.44, + "end": 4747.72, + "probability": 0.9458 + }, + { + "start": 4748.16, + "end": 4756.12, + "probability": 0.9893 + }, + { + "start": 4756.96, + "end": 4758.08, + "probability": 0.9489 + }, + { + "start": 4758.24, + "end": 4762.88, + "probability": 0.9935 + }, + { + "start": 4763.52, + "end": 4764.9, + "probability": 0.7422 + }, + { + "start": 4765.62, + "end": 4766.1, + "probability": 0.7968 + }, + { + "start": 4766.84, + "end": 4770.52, + "probability": 0.9045 + }, + { + "start": 4771.04, + "end": 4772.08, + "probability": 0.8301 + }, + { + "start": 4772.7, + "end": 4779.26, + "probability": 0.9907 + }, + { + "start": 4779.94, + "end": 4781.1, + "probability": 0.9673 + }, + { + "start": 4782.16, + "end": 4786.82, + "probability": 0.9749 + }, + { + "start": 4786.94, + "end": 4788.66, + "probability": 0.5387 + }, + { + "start": 4789.34, + "end": 4791.8, + "probability": 0.9788 + }, + { + "start": 4792.98, + "end": 4796.76, + "probability": 0.9063 + }, + { + "start": 4797.4, + "end": 4798.68, + "probability": 0.9696 + }, + { + "start": 4799.18, + "end": 4801.06, + "probability": 0.7324 + }, + { + "start": 4801.58, + "end": 4804.48, + "probability": 0.9648 + }, + { + "start": 4804.72, + "end": 4807.88, + "probability": 0.8148 + }, + { + "start": 4808.44, + "end": 4811.96, + "probability": 0.8252 + }, + { + "start": 4812.44, + "end": 4812.44, + "probability": 0.3699 + }, + { + "start": 4812.44, + "end": 4815.48, + "probability": 0.9861 + }, + { + "start": 4815.62, + "end": 4816.44, + "probability": 0.9122 + }, + { + "start": 4816.92, + "end": 4817.22, + "probability": 0.253 + }, + { + "start": 4817.24, + "end": 4819.0, + "probability": 0.7174 + }, + { + "start": 4819.88, + "end": 4823.04, + "probability": 0.9751 + }, + { + "start": 4823.12, + "end": 4823.3, + "probability": 0.7181 + }, + { + "start": 4823.8, + "end": 4825.5, + "probability": 0.6606 + }, + { + "start": 4825.58, + "end": 4826.24, + "probability": 0.5664 + }, + { + "start": 4826.84, + "end": 4829.44, + "probability": 0.7041 + }, + { + "start": 4830.66, + "end": 4831.18, + "probability": 0.0711 + }, + { + "start": 4856.56, + "end": 4856.66, + "probability": 0.6371 + }, + { + "start": 4861.64, + "end": 4863.74, + "probability": 0.7004 + }, + { + "start": 4864.62, + "end": 4865.54, + "probability": 0.3686 + }, + { + "start": 4866.04, + "end": 4867.14, + "probability": 0.9624 + }, + { + "start": 4868.36, + "end": 4871.44, + "probability": 0.9635 + }, + { + "start": 4872.74, + "end": 4873.68, + "probability": 0.277 + }, + { + "start": 4873.7, + "end": 4875.04, + "probability": 0.5606 + }, + { + "start": 4875.6, + "end": 4877.88, + "probability": 0.8544 + }, + { + "start": 4878.8, + "end": 4880.08, + "probability": 0.7935 + }, + { + "start": 4881.02, + "end": 4881.64, + "probability": 0.6736 + }, + { + "start": 4881.78, + "end": 4882.28, + "probability": 0.7729 + }, + { + "start": 4882.7, + "end": 4885.98, + "probability": 0.9047 + }, + { + "start": 4887.06, + "end": 4889.83, + "probability": 0.9906 + }, + { + "start": 4891.6, + "end": 4893.9, + "probability": 0.9855 + }, + { + "start": 4894.52, + "end": 4895.78, + "probability": 0.8488 + }, + { + "start": 4896.42, + "end": 4897.56, + "probability": 0.994 + }, + { + "start": 4898.46, + "end": 4900.54, + "probability": 0.4661 + }, + { + "start": 4901.84, + "end": 4902.32, + "probability": 0.6985 + }, + { + "start": 4903.08, + "end": 4904.02, + "probability": 0.7981 + }, + { + "start": 4904.84, + "end": 4907.6, + "probability": 0.9279 + }, + { + "start": 4908.62, + "end": 4912.8, + "probability": 0.9622 + }, + { + "start": 4913.16, + "end": 4915.5, + "probability": 0.9917 + }, + { + "start": 4916.14, + "end": 4916.84, + "probability": 0.656 + }, + { + "start": 4918.06, + "end": 4920.5, + "probability": 0.9936 + }, + { + "start": 4921.46, + "end": 4925.86, + "probability": 0.8864 + }, + { + "start": 4926.84, + "end": 4930.28, + "probability": 0.9967 + }, + { + "start": 4930.96, + "end": 4932.32, + "probability": 0.9456 + }, + { + "start": 4933.06, + "end": 4936.98, + "probability": 0.9955 + }, + { + "start": 4936.98, + "end": 4939.82, + "probability": 0.8268 + }, + { + "start": 4941.18, + "end": 4942.76, + "probability": 0.9905 + }, + { + "start": 4943.54, + "end": 4946.98, + "probability": 0.8412 + }, + { + "start": 4947.06, + "end": 4949.86, + "probability": 0.9477 + }, + { + "start": 4950.54, + "end": 4952.84, + "probability": 0.9987 + }, + { + "start": 4954.08, + "end": 4957.96, + "probability": 0.9946 + }, + { + "start": 4958.6, + "end": 4961.26, + "probability": 0.8275 + }, + { + "start": 4962.22, + "end": 4965.38, + "probability": 0.9833 + }, + { + "start": 4966.5, + "end": 4967.3, + "probability": 0.9131 + }, + { + "start": 4967.58, + "end": 4975.36, + "probability": 0.9774 + }, + { + "start": 4976.82, + "end": 4984.3, + "probability": 0.9766 + }, + { + "start": 4984.36, + "end": 4984.86, + "probability": 0.391 + }, + { + "start": 4985.16, + "end": 4986.02, + "probability": 0.6222 + }, + { + "start": 4986.68, + "end": 4989.1, + "probability": 0.8804 + }, + { + "start": 4989.1, + "end": 4994.6, + "probability": 0.9916 + }, + { + "start": 4994.72, + "end": 4995.56, + "probability": 0.7384 + }, + { + "start": 4996.14, + "end": 4997.83, + "probability": 0.8779 + }, + { + "start": 4998.68, + "end": 5001.02, + "probability": 0.9834 + }, + { + "start": 5001.02, + "end": 5005.42, + "probability": 0.9585 + }, + { + "start": 5006.36, + "end": 5007.5, + "probability": 0.9147 + }, + { + "start": 5008.1, + "end": 5010.94, + "probability": 0.9927 + }, + { + "start": 5011.82, + "end": 5013.78, + "probability": 0.671 + }, + { + "start": 5016.1, + "end": 5018.8, + "probability": 0.9854 + }, + { + "start": 5019.86, + "end": 5025.14, + "probability": 0.9954 + }, + { + "start": 5025.92, + "end": 5027.94, + "probability": 0.7163 + }, + { + "start": 5028.82, + "end": 5031.98, + "probability": 0.9426 + }, + { + "start": 5032.66, + "end": 5034.4, + "probability": 0.7882 + }, + { + "start": 5035.3, + "end": 5037.62, + "probability": 0.7349 + }, + { + "start": 5038.18, + "end": 5039.48, + "probability": 0.7254 + }, + { + "start": 5039.58, + "end": 5043.12, + "probability": 0.7157 + }, + { + "start": 5043.3, + "end": 5044.04, + "probability": 0.7372 + }, + { + "start": 5044.82, + "end": 5044.82, + "probability": 0.2009 + }, + { + "start": 5044.98, + "end": 5046.86, + "probability": 0.9451 + }, + { + "start": 5047.34, + "end": 5052.7, + "probability": 0.996 + }, + { + "start": 5053.48, + "end": 5054.54, + "probability": 0.9966 + }, + { + "start": 5054.66, + "end": 5057.12, + "probability": 0.8244 + }, + { + "start": 5057.6, + "end": 5059.18, + "probability": 0.4775 + }, + { + "start": 5059.28, + "end": 5063.48, + "probability": 0.9826 + }, + { + "start": 5063.96, + "end": 5066.72, + "probability": 0.8047 + }, + { + "start": 5067.96, + "end": 5072.04, + "probability": 0.9487 + }, + { + "start": 5072.04, + "end": 5075.86, + "probability": 0.979 + }, + { + "start": 5076.44, + "end": 5081.74, + "probability": 0.79 + }, + { + "start": 5082.14, + "end": 5085.97, + "probability": 0.7228 + }, + { + "start": 5086.38, + "end": 5089.58, + "probability": 0.9045 + }, + { + "start": 5089.58, + "end": 5092.78, + "probability": 0.9194 + }, + { + "start": 5093.0, + "end": 5093.48, + "probability": 0.8665 + }, + { + "start": 5093.72, + "end": 5095.76, + "probability": 0.7814 + }, + { + "start": 5095.94, + "end": 5098.16, + "probability": 0.9186 + }, + { + "start": 5135.22, + "end": 5137.24, + "probability": 0.6366 + }, + { + "start": 5138.98, + "end": 5140.6, + "probability": 0.9866 + }, + { + "start": 5141.7, + "end": 5144.26, + "probability": 0.9575 + }, + { + "start": 5144.26, + "end": 5146.72, + "probability": 0.9993 + }, + { + "start": 5149.06, + "end": 5151.66, + "probability": 0.8257 + }, + { + "start": 5152.5, + "end": 5154.34, + "probability": 0.9976 + }, + { + "start": 5155.4, + "end": 5156.88, + "probability": 0.7462 + }, + { + "start": 5157.96, + "end": 5161.56, + "probability": 0.9914 + }, + { + "start": 5162.8, + "end": 5165.38, + "probability": 0.8738 + }, + { + "start": 5167.34, + "end": 5169.84, + "probability": 0.98 + }, + { + "start": 5171.12, + "end": 5174.46, + "probability": 0.9702 + }, + { + "start": 5175.26, + "end": 5176.14, + "probability": 0.8208 + }, + { + "start": 5177.7, + "end": 5179.96, + "probability": 0.9323 + }, + { + "start": 5181.1, + "end": 5182.86, + "probability": 0.9634 + }, + { + "start": 5183.74, + "end": 5187.92, + "probability": 0.9902 + }, + { + "start": 5189.02, + "end": 5189.82, + "probability": 0.9912 + }, + { + "start": 5190.88, + "end": 5192.38, + "probability": 0.9907 + }, + { + "start": 5193.48, + "end": 5195.58, + "probability": 0.965 + }, + { + "start": 5196.82, + "end": 5201.88, + "probability": 0.9941 + }, + { + "start": 5204.6, + "end": 5208.14, + "probability": 0.9963 + }, + { + "start": 5208.96, + "end": 5210.88, + "probability": 0.9571 + }, + { + "start": 5212.28, + "end": 5213.76, + "probability": 0.9775 + }, + { + "start": 5215.0, + "end": 5220.06, + "probability": 0.9975 + }, + { + "start": 5220.06, + "end": 5223.18, + "probability": 0.9993 + }, + { + "start": 5224.06, + "end": 5225.0, + "probability": 0.8958 + }, + { + "start": 5226.52, + "end": 5230.86, + "probability": 0.9932 + }, + { + "start": 5231.56, + "end": 5232.54, + "probability": 0.8303 + }, + { + "start": 5233.7, + "end": 5237.46, + "probability": 0.9939 + }, + { + "start": 5238.06, + "end": 5239.48, + "probability": 0.9984 + }, + { + "start": 5240.38, + "end": 5243.88, + "probability": 0.8989 + }, + { + "start": 5244.66, + "end": 5247.42, + "probability": 0.9612 + }, + { + "start": 5248.54, + "end": 5249.62, + "probability": 0.9746 + }, + { + "start": 5250.74, + "end": 5253.52, + "probability": 0.9697 + }, + { + "start": 5254.36, + "end": 5256.06, + "probability": 0.9749 + }, + { + "start": 5258.38, + "end": 5262.04, + "probability": 0.9941 + }, + { + "start": 5262.04, + "end": 5264.4, + "probability": 0.9973 + }, + { + "start": 5266.02, + "end": 5269.68, + "probability": 0.988 + }, + { + "start": 5270.3, + "end": 5271.24, + "probability": 0.7768 + }, + { + "start": 5272.44, + "end": 5275.12, + "probability": 0.9902 + }, + { + "start": 5276.02, + "end": 5276.75, + "probability": 0.9731 + }, + { + "start": 5277.92, + "end": 5283.38, + "probability": 0.9885 + }, + { + "start": 5284.6, + "end": 5285.36, + "probability": 0.8357 + }, + { + "start": 5287.0, + "end": 5289.76, + "probability": 0.9939 + }, + { + "start": 5290.34, + "end": 5291.94, + "probability": 0.9995 + }, + { + "start": 5292.84, + "end": 5292.98, + "probability": 0.6371 + }, + { + "start": 5294.14, + "end": 5295.1, + "probability": 0.6974 + }, + { + "start": 5295.7, + "end": 5298.3, + "probability": 0.9464 + }, + { + "start": 5299.92, + "end": 5301.36, + "probability": 0.713 + }, + { + "start": 5302.16, + "end": 5304.56, + "probability": 0.9949 + }, + { + "start": 5305.66, + "end": 5306.72, + "probability": 0.8319 + }, + { + "start": 5307.18, + "end": 5309.58, + "probability": 0.9937 + }, + { + "start": 5310.54, + "end": 5313.74, + "probability": 0.8658 + }, + { + "start": 5313.88, + "end": 5317.28, + "probability": 0.967 + }, + { + "start": 5317.88, + "end": 5318.6, + "probability": 0.8397 + }, + { + "start": 5319.76, + "end": 5321.66, + "probability": 0.7691 + }, + { + "start": 5321.7, + "end": 5322.48, + "probability": 0.7086 + }, + { + "start": 5323.32, + "end": 5326.78, + "probability": 0.8812 + }, + { + "start": 5336.4, + "end": 5336.44, + "probability": 0.7326 + }, + { + "start": 5336.44, + "end": 5340.48, + "probability": 0.9 + }, + { + "start": 5340.54, + "end": 5340.9, + "probability": 0.7828 + }, + { + "start": 5340.9, + "end": 5341.78, + "probability": 0.2218 + }, + { + "start": 5342.1, + "end": 5342.1, + "probability": 0.2845 + }, + { + "start": 5342.1, + "end": 5342.66, + "probability": 0.0533 + }, + { + "start": 5342.66, + "end": 5342.66, + "probability": 0.0476 + }, + { + "start": 5361.72, + "end": 5364.42, + "probability": 0.9819 + }, + { + "start": 5364.94, + "end": 5366.12, + "probability": 0.7476 + }, + { + "start": 5366.9, + "end": 5369.16, + "probability": 0.9611 + }, + { + "start": 5369.7, + "end": 5371.62, + "probability": 0.9977 + }, + { + "start": 5372.9, + "end": 5373.64, + "probability": 0.6604 + }, + { + "start": 5374.28, + "end": 5376.38, + "probability": 0.8762 + }, + { + "start": 5377.36, + "end": 5378.32, + "probability": 0.7558 + }, + { + "start": 5380.37, + "end": 5381.9, + "probability": 0.5344 + }, + { + "start": 5381.9, + "end": 5383.11, + "probability": 0.6282 + }, + { + "start": 5384.48, + "end": 5386.08, + "probability": 0.7696 + }, + { + "start": 5386.64, + "end": 5387.64, + "probability": 0.853 + }, + { + "start": 5388.74, + "end": 5392.56, + "probability": 0.993 + }, + { + "start": 5392.56, + "end": 5396.58, + "probability": 0.9868 + }, + { + "start": 5397.14, + "end": 5398.6, + "probability": 0.9514 + }, + { + "start": 5399.2, + "end": 5402.52, + "probability": 0.9971 + }, + { + "start": 5403.44, + "end": 5404.06, + "probability": 0.4267 + }, + { + "start": 5405.82, + "end": 5407.88, + "probability": 0.9205 + }, + { + "start": 5408.2, + "end": 5409.4, + "probability": 0.9659 + }, + { + "start": 5410.2, + "end": 5412.24, + "probability": 0.9707 + }, + { + "start": 5412.86, + "end": 5413.26, + "probability": 0.6178 + }, + { + "start": 5414.62, + "end": 5417.4, + "probability": 0.7622 + }, + { + "start": 5417.54, + "end": 5417.6, + "probability": 0.3922 + }, + { + "start": 5418.42, + "end": 5423.88, + "probability": 0.9873 + }, + { + "start": 5425.42, + "end": 5426.22, + "probability": 0.6821 + }, + { + "start": 5427.8, + "end": 5430.34, + "probability": 0.9941 + }, + { + "start": 5431.06, + "end": 5434.34, + "probability": 0.9976 + }, + { + "start": 5434.8, + "end": 5436.06, + "probability": 0.8997 + }, + { + "start": 5436.8, + "end": 5436.8, + "probability": 0.0048 + }, + { + "start": 5436.8, + "end": 5438.9, + "probability": 0.8786 + }, + { + "start": 5439.42, + "end": 5441.68, + "probability": 0.9567 + }, + { + "start": 5442.18, + "end": 5443.56, + "probability": 0.9902 + }, + { + "start": 5444.48, + "end": 5445.52, + "probability": 0.0404 + }, + { + "start": 5446.36, + "end": 5446.36, + "probability": 0.4058 + }, + { + "start": 5446.36, + "end": 5449.54, + "probability": 0.6235 + }, + { + "start": 5450.14, + "end": 5451.82, + "probability": 0.9331 + }, + { + "start": 5452.38, + "end": 5453.34, + "probability": 0.4193 + }, + { + "start": 5453.88, + "end": 5458.62, + "probability": 0.9355 + }, + { + "start": 5459.86, + "end": 5464.36, + "probability": 0.9542 + }, + { + "start": 5465.1, + "end": 5468.9, + "probability": 0.6718 + }, + { + "start": 5469.76, + "end": 5472.56, + "probability": 0.8137 + }, + { + "start": 5472.84, + "end": 5473.3, + "probability": 0.9234 + }, + { + "start": 5473.7, + "end": 5476.66, + "probability": 0.9771 + }, + { + "start": 5477.2, + "end": 5479.44, + "probability": 0.9876 + }, + { + "start": 5480.02, + "end": 5481.66, + "probability": 0.936 + }, + { + "start": 5482.6, + "end": 5487.24, + "probability": 0.9927 + }, + { + "start": 5487.98, + "end": 5490.46, + "probability": 0.9352 + }, + { + "start": 5491.02, + "end": 5494.46, + "probability": 0.9861 + }, + { + "start": 5495.56, + "end": 5497.5, + "probability": 0.997 + }, + { + "start": 5497.94, + "end": 5501.74, + "probability": 0.9734 + }, + { + "start": 5502.16, + "end": 5504.24, + "probability": 0.8675 + }, + { + "start": 5504.78, + "end": 5506.86, + "probability": 0.8052 + }, + { + "start": 5507.42, + "end": 5510.44, + "probability": 0.9682 + }, + { + "start": 5510.94, + "end": 5512.16, + "probability": 0.9966 + }, + { + "start": 5513.56, + "end": 5514.04, + "probability": 0.9897 + }, + { + "start": 5514.72, + "end": 5517.36, + "probability": 0.7455 + }, + { + "start": 5518.02, + "end": 5520.4, + "probability": 0.571 + }, + { + "start": 5520.4, + "end": 5522.42, + "probability": 0.7038 + }, + { + "start": 5523.28, + "end": 5524.26, + "probability": 0.8979 + }, + { + "start": 5525.14, + "end": 5525.86, + "probability": 0.9512 + }, + { + "start": 5526.66, + "end": 5527.64, + "probability": 0.928 + }, + { + "start": 5527.74, + "end": 5528.6, + "probability": 0.9603 + }, + { + "start": 5528.92, + "end": 5530.12, + "probability": 0.9219 + }, + { + "start": 5530.7, + "end": 5531.92, + "probability": 0.9667 + }, + { + "start": 5532.6, + "end": 5534.98, + "probability": 0.9175 + }, + { + "start": 5535.58, + "end": 5537.44, + "probability": 0.9774 + }, + { + "start": 5537.8, + "end": 5538.44, + "probability": 0.9812 + }, + { + "start": 5538.78, + "end": 5540.84, + "probability": 0.8022 + }, + { + "start": 5541.62, + "end": 5542.02, + "probability": 0.3736 + }, + { + "start": 5542.78, + "end": 5542.78, + "probability": 0.0351 + }, + { + "start": 5542.78, + "end": 5544.1, + "probability": 0.9548 + }, + { + "start": 5544.84, + "end": 5547.32, + "probability": 0.9888 + }, + { + "start": 5548.14, + "end": 5548.96, + "probability": 0.3835 + }, + { + "start": 5549.74, + "end": 5550.82, + "probability": 0.8989 + }, + { + "start": 5551.36, + "end": 5552.4, + "probability": 0.9819 + }, + { + "start": 5553.0, + "end": 5554.74, + "probability": 0.8451 + }, + { + "start": 5555.26, + "end": 5555.7, + "probability": 0.5373 + }, + { + "start": 5556.32, + "end": 5557.72, + "probability": 0.9683 + }, + { + "start": 5558.4, + "end": 5562.44, + "probability": 0.964 + }, + { + "start": 5563.06, + "end": 5567.08, + "probability": 0.9817 + }, + { + "start": 5567.94, + "end": 5569.14, + "probability": 0.9048 + }, + { + "start": 5569.32, + "end": 5569.9, + "probability": 0.8752 + }, + { + "start": 5570.42, + "end": 5571.54, + "probability": 0.8792 + }, + { + "start": 5572.02, + "end": 5574.22, + "probability": 0.7795 + }, + { + "start": 5574.82, + "end": 5576.56, + "probability": 0.9366 + }, + { + "start": 5577.32, + "end": 5578.22, + "probability": 0.9803 + }, + { + "start": 5578.58, + "end": 5582.34, + "probability": 0.8389 + }, + { + "start": 5582.84, + "end": 5583.68, + "probability": 0.9397 + }, + { + "start": 5584.52, + "end": 5585.68, + "probability": 0.9235 + }, + { + "start": 5585.94, + "end": 5586.32, + "probability": 0.4048 + }, + { + "start": 5586.42, + "end": 5588.88, + "probability": 0.8012 + }, + { + "start": 5589.62, + "end": 5590.5, + "probability": 0.9615 + }, + { + "start": 5590.64, + "end": 5591.2, + "probability": 0.68 + }, + { + "start": 5591.58, + "end": 5592.38, + "probability": 0.7592 + }, + { + "start": 5592.74, + "end": 5594.02, + "probability": 0.9517 + }, + { + "start": 5594.24, + "end": 5594.42, + "probability": 0.6392 + }, + { + "start": 5594.62, + "end": 5595.46, + "probability": 0.9951 + }, + { + "start": 5595.76, + "end": 5598.26, + "probability": 0.9775 + }, + { + "start": 5598.7, + "end": 5603.0, + "probability": 0.9922 + }, + { + "start": 5603.32, + "end": 5604.2, + "probability": 0.967 + }, + { + "start": 5604.72, + "end": 5608.66, + "probability": 0.8943 + }, + { + "start": 5609.1, + "end": 5610.36, + "probability": 0.9652 + }, + { + "start": 5610.62, + "end": 5610.82, + "probability": 0.7927 + }, + { + "start": 5611.12, + "end": 5613.9, + "probability": 0.867 + }, + { + "start": 5615.18, + "end": 5618.16, + "probability": 0.8276 + }, + { + "start": 5619.02, + "end": 5620.02, + "probability": 0.9434 + }, + { + "start": 5620.62, + "end": 5622.56, + "probability": 0.9349 + }, + { + "start": 5622.72, + "end": 5623.16, + "probability": 0.8188 + }, + { + "start": 5623.3, + "end": 5624.16, + "probability": 0.9569 + }, + { + "start": 5624.16, + "end": 5626.62, + "probability": 0.9868 + }, + { + "start": 5627.38, + "end": 5628.58, + "probability": 0.7871 + }, + { + "start": 5630.4, + "end": 5631.9, + "probability": 0.2575 + }, + { + "start": 5632.24, + "end": 5632.68, + "probability": 0.3557 + }, + { + "start": 5636.16, + "end": 5637.12, + "probability": 0.8477 + }, + { + "start": 5637.32, + "end": 5638.2, + "probability": 0.8805 + }, + { + "start": 5638.42, + "end": 5639.24, + "probability": 0.9339 + }, + { + "start": 5639.32, + "end": 5639.86, + "probability": 0.9068 + }, + { + "start": 5640.3, + "end": 5641.46, + "probability": 0.9856 + }, + { + "start": 5642.32, + "end": 5644.34, + "probability": 0.9977 + }, + { + "start": 5644.96, + "end": 5646.34, + "probability": 0.8389 + }, + { + "start": 5646.9, + "end": 5648.5, + "probability": 0.1422 + }, + { + "start": 5649.0, + "end": 5650.38, + "probability": 0.9956 + }, + { + "start": 5650.48, + "end": 5652.36, + "probability": 0.9819 + }, + { + "start": 5653.12, + "end": 5655.74, + "probability": 0.8976 + }, + { + "start": 5656.24, + "end": 5658.66, + "probability": 0.9678 + }, + { + "start": 5658.68, + "end": 5659.84, + "probability": 0.9909 + }, + { + "start": 5660.48, + "end": 5662.16, + "probability": 0.9845 + }, + { + "start": 5662.78, + "end": 5664.92, + "probability": 0.9552 + }, + { + "start": 5665.72, + "end": 5670.75, + "probability": 0.9563 + }, + { + "start": 5671.68, + "end": 5672.62, + "probability": 0.9499 + }, + { + "start": 5673.44, + "end": 5674.32, + "probability": 0.9259 + }, + { + "start": 5675.18, + "end": 5676.34, + "probability": 0.8071 + }, + { + "start": 5676.96, + "end": 5681.0, + "probability": 0.9795 + }, + { + "start": 5682.06, + "end": 5683.78, + "probability": 0.9076 + }, + { + "start": 5685.86, + "end": 5688.92, + "probability": 0.9298 + }, + { + "start": 5689.62, + "end": 5693.7, + "probability": 0.6747 + }, + { + "start": 5694.86, + "end": 5694.86, + "probability": 0.0139 + }, + { + "start": 5694.86, + "end": 5700.52, + "probability": 0.8528 + }, + { + "start": 5701.34, + "end": 5704.82, + "probability": 0.9954 + }, + { + "start": 5705.7, + "end": 5707.12, + "probability": 0.9978 + }, + { + "start": 5707.64, + "end": 5710.2, + "probability": 0.9014 + }, + { + "start": 5711.42, + "end": 5714.12, + "probability": 0.9758 + }, + { + "start": 5714.74, + "end": 5715.22, + "probability": 0.4532 + }, + { + "start": 5716.14, + "end": 5716.84, + "probability": 0.8329 + }, + { + "start": 5717.36, + "end": 5718.42, + "probability": 0.998 + }, + { + "start": 5719.3, + "end": 5720.82, + "probability": 0.9866 + }, + { + "start": 5721.4, + "end": 5726.12, + "probability": 0.9878 + }, + { + "start": 5727.32, + "end": 5729.22, + "probability": 0.9253 + }, + { + "start": 5730.06, + "end": 5731.12, + "probability": 0.9475 + }, + { + "start": 5731.94, + "end": 5734.4, + "probability": 0.2223 + }, + { + "start": 5734.5, + "end": 5734.76, + "probability": 0.1084 + }, + { + "start": 5734.76, + "end": 5734.76, + "probability": 0.0902 + }, + { + "start": 5734.76, + "end": 5735.84, + "probability": 0.6819 + }, + { + "start": 5735.92, + "end": 5736.82, + "probability": 0.9964 + }, + { + "start": 5737.85, + "end": 5742.36, + "probability": 0.9893 + }, + { + "start": 5742.72, + "end": 5743.24, + "probability": 0.943 + }, + { + "start": 5743.96, + "end": 5747.22, + "probability": 0.9846 + }, + { + "start": 5747.98, + "end": 5748.76, + "probability": 0.8282 + }, + { + "start": 5749.12, + "end": 5754.72, + "probability": 0.9896 + }, + { + "start": 5755.1, + "end": 5755.94, + "probability": 0.6542 + }, + { + "start": 5756.4, + "end": 5757.08, + "probability": 0.9561 + }, + { + "start": 5757.62, + "end": 5759.78, + "probability": 0.7749 + }, + { + "start": 5760.32, + "end": 5761.72, + "probability": 0.9899 + }, + { + "start": 5762.28, + "end": 5763.92, + "probability": 0.961 + }, + { + "start": 5764.34, + "end": 5765.96, + "probability": 0.9709 + }, + { + "start": 5766.72, + "end": 5769.88, + "probability": 0.9971 + }, + { + "start": 5770.54, + "end": 5776.64, + "probability": 0.9942 + }, + { + "start": 5777.6, + "end": 5779.04, + "probability": 0.8863 + }, + { + "start": 5779.82, + "end": 5781.79, + "probability": 0.9692 + }, + { + "start": 5782.36, + "end": 5784.0, + "probability": 0.8577 + }, + { + "start": 5784.7, + "end": 5785.86, + "probability": 0.9652 + }, + { + "start": 5786.84, + "end": 5790.28, + "probability": 0.9585 + }, + { + "start": 5790.58, + "end": 5791.96, + "probability": 0.9799 + }, + { + "start": 5792.08, + "end": 5798.4, + "probability": 0.994 + }, + { + "start": 5798.92, + "end": 5800.22, + "probability": 0.9146 + }, + { + "start": 5800.88, + "end": 5802.18, + "probability": 0.6814 + }, + { + "start": 5802.5, + "end": 5803.24, + "probability": 0.7926 + }, + { + "start": 5804.14, + "end": 5805.62, + "probability": 0.8911 + }, + { + "start": 5805.7, + "end": 5808.04, + "probability": 0.937 + }, + { + "start": 5829.08, + "end": 5830.16, + "probability": 0.5688 + }, + { + "start": 5831.36, + "end": 5833.22, + "probability": 0.7642 + }, + { + "start": 5835.12, + "end": 5839.7, + "probability": 0.9278 + }, + { + "start": 5841.22, + "end": 5843.7, + "probability": 0.6472 + }, + { + "start": 5845.24, + "end": 5851.22, + "probability": 0.9378 + }, + { + "start": 5852.56, + "end": 5855.58, + "probability": 0.8756 + }, + { + "start": 5857.12, + "end": 5857.88, + "probability": 0.6185 + }, + { + "start": 5858.64, + "end": 5860.62, + "probability": 0.9827 + }, + { + "start": 5861.38, + "end": 5862.24, + "probability": 0.7917 + }, + { + "start": 5862.82, + "end": 5865.16, + "probability": 0.5595 + }, + { + "start": 5866.0, + "end": 5869.46, + "probability": 0.9777 + }, + { + "start": 5870.82, + "end": 5872.96, + "probability": 0.9556 + }, + { + "start": 5873.18, + "end": 5879.0, + "probability": 0.8413 + }, + { + "start": 5879.8, + "end": 5881.28, + "probability": 0.5243 + }, + { + "start": 5882.22, + "end": 5885.04, + "probability": 0.8205 + }, + { + "start": 5886.54, + "end": 5887.16, + "probability": 0.9727 + }, + { + "start": 5887.72, + "end": 5891.74, + "probability": 0.9771 + }, + { + "start": 5893.26, + "end": 5898.1, + "probability": 0.9457 + }, + { + "start": 5898.26, + "end": 5901.76, + "probability": 0.9973 + }, + { + "start": 5902.38, + "end": 5904.46, + "probability": 0.2986 + }, + { + "start": 5904.62, + "end": 5905.04, + "probability": 0.7033 + }, + { + "start": 5905.18, + "end": 5906.26, + "probability": 0.8684 + }, + { + "start": 5906.64, + "end": 5908.52, + "probability": 0.8482 + }, + { + "start": 5909.38, + "end": 5913.0, + "probability": 0.023 + }, + { + "start": 5914.04, + "end": 5914.2, + "probability": 0.0437 + }, + { + "start": 5914.2, + "end": 5914.42, + "probability": 0.041 + }, + { + "start": 5914.42, + "end": 5915.0, + "probability": 0.4478 + }, + { + "start": 5915.78, + "end": 5921.08, + "probability": 0.8167 + }, + { + "start": 5921.66, + "end": 5925.3, + "probability": 0.8909 + }, + { + "start": 5925.82, + "end": 5927.24, + "probability": 0.9767 + }, + { + "start": 5927.82, + "end": 5932.74, + "probability": 0.9956 + }, + { + "start": 5933.54, + "end": 5937.1, + "probability": 0.7974 + }, + { + "start": 5937.42, + "end": 5938.44, + "probability": 0.8551 + }, + { + "start": 5938.88, + "end": 5940.06, + "probability": 0.5772 + }, + { + "start": 5940.54, + "end": 5942.56, + "probability": 0.4723 + }, + { + "start": 5943.1, + "end": 5945.54, + "probability": 0.9795 + }, + { + "start": 5945.98, + "end": 5949.02, + "probability": 0.9919 + }, + { + "start": 5949.5, + "end": 5954.24, + "probability": 0.9961 + }, + { + "start": 5955.12, + "end": 5955.28, + "probability": 0.968 + }, + { + "start": 5955.8, + "end": 5957.06, + "probability": 0.8784 + }, + { + "start": 5957.7, + "end": 5963.04, + "probability": 0.5197 + }, + { + "start": 5964.14, + "end": 5965.3, + "probability": 0.9496 + }, + { + "start": 5965.78, + "end": 5968.14, + "probability": 0.65 + }, + { + "start": 5968.64, + "end": 5968.8, + "probability": 0.8584 + }, + { + "start": 5969.22, + "end": 5970.32, + "probability": 0.9525 + }, + { + "start": 5971.06, + "end": 5974.54, + "probability": 0.9748 + }, + { + "start": 5975.14, + "end": 5976.74, + "probability": 0.9935 + }, + { + "start": 5976.84, + "end": 5980.32, + "probability": 0.9878 + }, + { + "start": 5980.38, + "end": 5980.74, + "probability": 0.06 + }, + { + "start": 5980.86, + "end": 5981.14, + "probability": 0.0405 + }, + { + "start": 5981.14, + "end": 5987.54, + "probability": 0.8527 + }, + { + "start": 5987.54, + "end": 5987.76, + "probability": 0.0791 + }, + { + "start": 5988.02, + "end": 5988.02, + "probability": 0.0401 + }, + { + "start": 5988.02, + "end": 5988.02, + "probability": 0.0975 + }, + { + "start": 5988.02, + "end": 5988.77, + "probability": 0.8085 + }, + { + "start": 5989.64, + "end": 5992.64, + "probability": 0.9541 + }, + { + "start": 5993.22, + "end": 5993.54, + "probability": 0.1279 + }, + { + "start": 5993.54, + "end": 5993.54, + "probability": 0.1176 + }, + { + "start": 5993.54, + "end": 5995.77, + "probability": 0.5151 + }, + { + "start": 5996.22, + "end": 6000.42, + "probability": 0.8399 + }, + { + "start": 6001.0, + "end": 6001.78, + "probability": 0.387 + }, + { + "start": 6004.2, + "end": 6004.48, + "probability": 0.1781 + }, + { + "start": 6004.48, + "end": 6004.48, + "probability": 0.0879 + }, + { + "start": 6004.48, + "end": 6004.48, + "probability": 0.185 + }, + { + "start": 6004.48, + "end": 6004.48, + "probability": 0.2527 + }, + { + "start": 6004.48, + "end": 6004.48, + "probability": 0.2329 + }, + { + "start": 6004.48, + "end": 6005.12, + "probability": 0.8024 + }, + { + "start": 6005.62, + "end": 6006.56, + "probability": 0.9277 + }, + { + "start": 6006.62, + "end": 6007.94, + "probability": 0.8459 + }, + { + "start": 6008.34, + "end": 6009.02, + "probability": 0.4875 + }, + { + "start": 6009.96, + "end": 6009.96, + "probability": 0.3133 + }, + { + "start": 6009.96, + "end": 6010.62, + "probability": 0.04 + }, + { + "start": 6010.62, + "end": 6010.62, + "probability": 0.0426 + }, + { + "start": 6010.62, + "end": 6014.42, + "probability": 0.7944 + }, + { + "start": 6014.64, + "end": 6018.22, + "probability": 0.9419 + }, + { + "start": 6018.52, + "end": 6021.32, + "probability": 0.9237 + }, + { + "start": 6021.58, + "end": 6024.98, + "probability": 0.8993 + }, + { + "start": 6025.28, + "end": 6025.32, + "probability": 0.1219 + }, + { + "start": 6025.32, + "end": 6025.32, + "probability": 0.474 + }, + { + "start": 6025.32, + "end": 6026.2, + "probability": 0.5044 + }, + { + "start": 6026.6, + "end": 6028.18, + "probability": 0.7507 + }, + { + "start": 6028.56, + "end": 6031.9, + "probability": 0.7774 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6088.0, + "end": 6088.0, + "probability": 0.0 + }, + { + "start": 6090.52, + "end": 6094.04, + "probability": 0.0132 + }, + { + "start": 6094.04, + "end": 6100.36, + "probability": 0.0153 + }, + { + "start": 6101.06, + "end": 6103.16, + "probability": 0.1786 + }, + { + "start": 6103.76, + "end": 6106.77, + "probability": 0.2015 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6226.0, + "end": 6226.0, + "probability": 0.0 + }, + { + "start": 6228.53, + "end": 6228.6, + "probability": 0.1095 + }, + { + "start": 6242.62, + "end": 6246.92, + "probability": 0.1186 + }, + { + "start": 6246.92, + "end": 6247.3, + "probability": 0.0683 + }, + { + "start": 6247.3, + "end": 6247.3, + "probability": 0.0135 + }, + { + "start": 6247.3, + "end": 6247.88, + "probability": 0.1162 + }, + { + "start": 6247.88, + "end": 6248.04, + "probability": 0.407 + }, + { + "start": 6248.14, + "end": 6250.2, + "probability": 0.0147 + }, + { + "start": 6250.88, + "end": 6253.9, + "probability": 0.1434 + }, + { + "start": 6254.2, + "end": 6256.62, + "probability": 0.1551 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.0, + "end": 6350.0, + "probability": 0.0 + }, + { + "start": 6350.2, + "end": 6350.66, + "probability": 0.1733 + }, + { + "start": 6350.82, + "end": 6351.56, + "probability": 0.0916 + }, + { + "start": 6351.56, + "end": 6351.56, + "probability": 0.2137 + }, + { + "start": 6351.56, + "end": 6352.6, + "probability": 0.4243 + }, + { + "start": 6353.26, + "end": 6354.38, + "probability": 0.518 + }, + { + "start": 6364.94, + "end": 6366.38, + "probability": 0.8472 + }, + { + "start": 6366.66, + "end": 6367.78, + "probability": 0.1028 + }, + { + "start": 6367.9, + "end": 6369.68, + "probability": 0.904 + }, + { + "start": 6371.04, + "end": 6371.4, + "probability": 0.059 + }, + { + "start": 6371.4, + "end": 6372.0, + "probability": 0.1327 + }, + { + "start": 6372.88, + "end": 6373.16, + "probability": 0.0048 + }, + { + "start": 6373.7, + "end": 6374.52, + "probability": 0.0955 + }, + { + "start": 6375.28, + "end": 6375.32, + "probability": 0.1085 + }, + { + "start": 6379.36, + "end": 6380.72, + "probability": 0.3725 + }, + { + "start": 6381.38, + "end": 6383.4, + "probability": 0.1893 + }, + { + "start": 6383.4, + "end": 6383.9, + "probability": 0.0534 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6479.0, + "end": 6479.0, + "probability": 0.0 + }, + { + "start": 6480.36, + "end": 6480.68, + "probability": 0.0263 + }, + { + "start": 6480.68, + "end": 6480.68, + "probability": 0.0972 + }, + { + "start": 6480.68, + "end": 6480.68, + "probability": 0.0708 + }, + { + "start": 6480.68, + "end": 6480.68, + "probability": 0.0184 + }, + { + "start": 6480.68, + "end": 6480.68, + "probability": 0.0366 + }, + { + "start": 6480.68, + "end": 6486.12, + "probability": 0.8625 + }, + { + "start": 6486.3, + "end": 6489.3, + "probability": 0.7284 + }, + { + "start": 6491.6, + "end": 6494.08, + "probability": 0.9459 + }, + { + "start": 6494.18, + "end": 6494.62, + "probability": 0.933 + }, + { + "start": 6494.76, + "end": 6496.72, + "probability": 0.9979 + }, + { + "start": 6498.58, + "end": 6501.46, + "probability": 0.2419 + }, + { + "start": 6502.12, + "end": 6502.98, + "probability": 0.9684 + }, + { + "start": 6503.96, + "end": 6506.88, + "probability": 0.7547 + }, + { + "start": 6507.94, + "end": 6509.34, + "probability": 0.9849 + }, + { + "start": 6510.24, + "end": 6510.98, + "probability": 0.7629 + }, + { + "start": 6511.56, + "end": 6516.64, + "probability": 0.937 + }, + { + "start": 6517.7, + "end": 6517.8, + "probability": 0.2713 + }, + { + "start": 6517.82, + "end": 6519.76, + "probability": 0.6732 + }, + { + "start": 6519.86, + "end": 6524.52, + "probability": 0.8497 + }, + { + "start": 6525.16, + "end": 6527.88, + "probability": 0.9902 + }, + { + "start": 6528.7, + "end": 6532.38, + "probability": 0.1166 + }, + { + "start": 6533.34, + "end": 6533.98, + "probability": 0.1495 + }, + { + "start": 6533.98, + "end": 6533.98, + "probability": 0.0659 + }, + { + "start": 6533.98, + "end": 6533.98, + "probability": 0.1444 + }, + { + "start": 6533.98, + "end": 6533.98, + "probability": 0.0209 + }, + { + "start": 6533.98, + "end": 6534.78, + "probability": 0.4435 + }, + { + "start": 6537.08, + "end": 6539.32, + "probability": 0.7043 + }, + { + "start": 6540.14, + "end": 6540.14, + "probability": 0.0637 + }, + { + "start": 6540.32, + "end": 6540.32, + "probability": 0.0591 + }, + { + "start": 6540.32, + "end": 6543.32, + "probability": 0.5364 + }, + { + "start": 6543.32, + "end": 6543.6, + "probability": 0.368 + }, + { + "start": 6543.94, + "end": 6546.54, + "probability": 0.7047 + }, + { + "start": 6547.16, + "end": 6549.32, + "probability": 0.3821 + }, + { + "start": 6550.32, + "end": 6550.92, + "probability": 0.1043 + }, + { + "start": 6550.92, + "end": 6551.98, + "probability": 0.5382 + }, + { + "start": 6552.1, + "end": 6552.66, + "probability": 0.2924 + }, + { + "start": 6552.7, + "end": 6553.78, + "probability": 0.1767 + }, + { + "start": 6553.78, + "end": 6553.84, + "probability": 0.0931 + }, + { + "start": 6553.84, + "end": 6556.54, + "probability": 0.6826 + }, + { + "start": 6556.96, + "end": 6561.88, + "probability": 0.4377 + }, + { + "start": 6561.96, + "end": 6566.36, + "probability": 0.4347 + }, + { + "start": 6567.58, + "end": 6567.86, + "probability": 0.4016 + }, + { + "start": 6568.24, + "end": 6572.76, + "probability": 0.8957 + }, + { + "start": 6572.76, + "end": 6573.3, + "probability": 0.406 + }, + { + "start": 6573.7, + "end": 6575.1, + "probability": 0.5985 + }, + { + "start": 6575.48, + "end": 6576.14, + "probability": 0.9016 + }, + { + "start": 6576.76, + "end": 6579.32, + "probability": 0.3722 + }, + { + "start": 6579.32, + "end": 6579.39, + "probability": 0.109 + }, + { + "start": 6579.4, + "end": 6581.06, + "probability": 0.3917 + }, + { + "start": 6581.06, + "end": 6581.31, + "probability": 0.5829 + }, + { + "start": 6581.56, + "end": 6582.0, + "probability": 0.432 + }, + { + "start": 6582.72, + "end": 6585.86, + "probability": 0.757 + }, + { + "start": 6586.26, + "end": 6586.26, + "probability": 0.2068 + }, + { + "start": 6586.26, + "end": 6586.26, + "probability": 0.0263 + }, + { + "start": 6586.26, + "end": 6586.98, + "probability": 0.4688 + }, + { + "start": 6587.42, + "end": 6588.52, + "probability": 0.5004 + }, + { + "start": 6588.92, + "end": 6589.12, + "probability": 0.0707 + }, + { + "start": 6589.12, + "end": 6589.6, + "probability": 0.5967 + }, + { + "start": 6589.88, + "end": 6590.4, + "probability": 0.8945 + }, + { + "start": 6590.48, + "end": 6592.02, + "probability": 0.7146 + }, + { + "start": 6592.06, + "end": 6593.0, + "probability": 0.7987 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.7013 + }, + { + "start": 6593.0, + "end": 6594.28, + "probability": 0.8197 + }, + { + "start": 6595.44, + "end": 6596.26, + "probability": 0.357 + }, + { + "start": 6596.34, + "end": 6598.68, + "probability": 0.255 + }, + { + "start": 6599.92, + "end": 6601.64, + "probability": 0.5163 + }, + { + "start": 6602.7, + "end": 6603.26, + "probability": 0.1162 + }, + { + "start": 6606.1, + "end": 6607.26, + "probability": 0.339 + }, + { + "start": 6607.26, + "end": 6607.26, + "probability": 0.011 + }, + { + "start": 6607.4, + "end": 6607.44, + "probability": 0.1625 + }, + { + "start": 6607.9, + "end": 6607.9, + "probability": 0.2382 + }, + { + "start": 6607.9, + "end": 6607.9, + "probability": 0.2321 + }, + { + "start": 6607.96, + "end": 6608.48, + "probability": 0.211 + }, + { + "start": 6608.88, + "end": 6610.0, + "probability": 0.2809 + }, + { + "start": 6610.5, + "end": 6610.62, + "probability": 0.1269 + }, + { + "start": 6610.62, + "end": 6610.62, + "probability": 0.3311 + }, + { + "start": 6610.62, + "end": 6610.62, + "probability": 0.5346 + }, + { + "start": 6610.62, + "end": 6610.9, + "probability": 0.1698 + }, + { + "start": 6613.6, + "end": 6616.26, + "probability": 0.3383 + }, + { + "start": 6616.26, + "end": 6616.74, + "probability": 0.2412 + }, + { + "start": 6617.06, + "end": 6619.57, + "probability": 0.174 + }, + { + "start": 6620.56, + "end": 6621.2, + "probability": 0.0417 + }, + { + "start": 6624.22, + "end": 6630.63, + "probability": 0.1531 + }, + { + "start": 6631.56, + "end": 6632.24, + "probability": 0.3514 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6640.0, + "end": 6640.0, + "probability": 0.0 + }, + { + "start": 6645.18, + "end": 6645.24, + "probability": 0.0706 + }, + { + "start": 6645.42, + "end": 6647.59, + "probability": 0.4484 + }, + { + "start": 6647.9, + "end": 6648.48, + "probability": 0.5838 + }, + { + "start": 6648.62, + "end": 6651.04, + "probability": 0.6109 + }, + { + "start": 6651.54, + "end": 6655.52, + "probability": 0.7639 + }, + { + "start": 6655.66, + "end": 6656.58, + "probability": 0.5124 + }, + { + "start": 6657.24, + "end": 6658.02, + "probability": 0.5359 + }, + { + "start": 6658.36, + "end": 6659.66, + "probability": 0.7652 + }, + { + "start": 6661.05, + "end": 6662.47, + "probability": 0.9663 + }, + { + "start": 6663.7, + "end": 6665.5, + "probability": 0.9571 + }, + { + "start": 6665.7, + "end": 6668.71, + "probability": 0.0279 + }, + { + "start": 6670.58, + "end": 6672.64, + "probability": 0.7109 + }, + { + "start": 6672.68, + "end": 6674.26, + "probability": 0.8822 + }, + { + "start": 6674.68, + "end": 6676.84, + "probability": 0.9482 + }, + { + "start": 6676.96, + "end": 6677.82, + "probability": 0.6897 + }, + { + "start": 6677.98, + "end": 6679.6, + "probability": 0.5104 + }, + { + "start": 6679.64, + "end": 6680.24, + "probability": 0.4949 + }, + { + "start": 6682.04, + "end": 6682.5, + "probability": 0.5073 + }, + { + "start": 6682.72, + "end": 6685.64, + "probability": 0.577 + }, + { + "start": 6685.72, + "end": 6691.94, + "probability": 0.2898 + }, + { + "start": 6691.98, + "end": 6692.74, + "probability": 0.5952 + }, + { + "start": 6693.49, + "end": 6697.06, + "probability": 0.7451 + }, + { + "start": 6698.1, + "end": 6700.54, + "probability": 0.4283 + }, + { + "start": 6700.74, + "end": 6702.92, + "probability": 0.8039 + }, + { + "start": 6704.06, + "end": 6704.8, + "probability": 0.0276 + }, + { + "start": 6704.8, + "end": 6705.82, + "probability": 0.6962 + }, + { + "start": 6706.04, + "end": 6706.68, + "probability": 0.1478 + }, + { + "start": 6706.82, + "end": 6706.82, + "probability": 0.4128 + }, + { + "start": 6706.86, + "end": 6708.26, + "probability": 0.9439 + }, + { + "start": 6708.36, + "end": 6709.7, + "probability": 0.9456 + }, + { + "start": 6709.84, + "end": 6710.76, + "probability": 0.585 + }, + { + "start": 6710.82, + "end": 6711.2, + "probability": 0.1603 + }, + { + "start": 6711.2, + "end": 6712.7, + "probability": 0.5405 + }, + { + "start": 6713.24, + "end": 6713.46, + "probability": 0.1034 + }, + { + "start": 6713.46, + "end": 6715.8, + "probability": 0.0468 + }, + { + "start": 6715.8, + "end": 6717.82, + "probability": 0.653 + }, + { + "start": 6718.42, + "end": 6720.04, + "probability": 0.5362 + }, + { + "start": 6721.82, + "end": 6721.96, + "probability": 0.1088 + }, + { + "start": 6721.96, + "end": 6721.96, + "probability": 0.2658 + }, + { + "start": 6721.96, + "end": 6721.96, + "probability": 0.0311 + }, + { + "start": 6721.96, + "end": 6723.74, + "probability": 0.4713 + }, + { + "start": 6723.78, + "end": 6724.76, + "probability": 0.6216 + }, + { + "start": 6725.0, + "end": 6726.68, + "probability": 0.4647 + }, + { + "start": 6726.7, + "end": 6728.56, + "probability": 0.7444 + }, + { + "start": 6731.8, + "end": 6733.7, + "probability": 0.4074 + }, + { + "start": 6734.2, + "end": 6735.66, + "probability": 0.8385 + }, + { + "start": 6735.86, + "end": 6737.18, + "probability": 0.6128 + }, + { + "start": 6737.34, + "end": 6742.47, + "probability": 0.3718 + }, + { + "start": 6744.1, + "end": 6744.58, + "probability": 0.8003 + }, + { + "start": 6746.3, + "end": 6746.88, + "probability": 0.2564 + }, + { + "start": 6746.88, + "end": 6747.8, + "probability": 0.6184 + }, + { + "start": 6747.88, + "end": 6750.04, + "probability": 0.4019 + }, + { + "start": 6752.86, + "end": 6754.9, + "probability": 0.4139 + }, + { + "start": 6755.58, + "end": 6760.16, + "probability": 0.8845 + }, + { + "start": 6760.96, + "end": 6763.24, + "probability": 0.9897 + }, + { + "start": 6763.34, + "end": 6765.58, + "probability": 0.9422 + }, + { + "start": 6766.0, + "end": 6767.9, + "probability": 0.8191 + }, + { + "start": 6768.1, + "end": 6770.48, + "probability": 0.6634 + }, + { + "start": 6771.48, + "end": 6773.44, + "probability": 0.9056 + }, + { + "start": 6773.56, + "end": 6776.72, + "probability": 0.9482 + }, + { + "start": 6777.26, + "end": 6782.84, + "probability": 0.9863 + }, + { + "start": 6783.78, + "end": 6787.12, + "probability": 0.9638 + }, + { + "start": 6787.76, + "end": 6791.38, + "probability": 0.9993 + }, + { + "start": 6791.38, + "end": 6795.5, + "probability": 0.9821 + }, + { + "start": 6796.56, + "end": 6799.06, + "probability": 0.9787 + }, + { + "start": 6799.58, + "end": 6802.52, + "probability": 0.9948 + }, + { + "start": 6803.22, + "end": 6809.56, + "probability": 0.9754 + }, + { + "start": 6809.56, + "end": 6816.1, + "probability": 0.9955 + }, + { + "start": 6817.14, + "end": 6823.26, + "probability": 0.9946 + }, + { + "start": 6823.94, + "end": 6827.42, + "probability": 0.9849 + }, + { + "start": 6827.92, + "end": 6833.62, + "probability": 0.971 + }, + { + "start": 6833.66, + "end": 6838.32, + "probability": 0.9918 + }, + { + "start": 6838.86, + "end": 6844.68, + "probability": 0.994 + }, + { + "start": 6845.38, + "end": 6848.92, + "probability": 0.9763 + }, + { + "start": 6848.92, + "end": 6852.94, + "probability": 0.9971 + }, + { + "start": 6853.14, + "end": 6855.9, + "probability": 0.9813 + }, + { + "start": 6856.66, + "end": 6862.34, + "probability": 0.999 + }, + { + "start": 6862.34, + "end": 6869.22, + "probability": 0.9958 + }, + { + "start": 6869.48, + "end": 6870.98, + "probability": 0.1866 + }, + { + "start": 6873.72, + "end": 6873.92, + "probability": 0.0279 + }, + { + "start": 6873.92, + "end": 6873.92, + "probability": 0.0428 + }, + { + "start": 6873.92, + "end": 6873.92, + "probability": 0.0323 + }, + { + "start": 6873.92, + "end": 6876.48, + "probability": 0.9037 + }, + { + "start": 6877.32, + "end": 6881.58, + "probability": 0.9978 + }, + { + "start": 6881.58, + "end": 6888.86, + "probability": 0.965 + }, + { + "start": 6889.64, + "end": 6892.94, + "probability": 0.9944 + }, + { + "start": 6893.48, + "end": 6897.36, + "probability": 0.999 + }, + { + "start": 6898.26, + "end": 6899.94, + "probability": 0.998 + }, + { + "start": 6900.54, + "end": 6902.54, + "probability": 0.7597 + }, + { + "start": 6902.76, + "end": 6904.08, + "probability": 0.8571 + }, + { + "start": 6904.16, + "end": 6905.34, + "probability": 0.7211 + }, + { + "start": 6906.08, + "end": 6908.0, + "probability": 0.9456 + }, + { + "start": 6908.2, + "end": 6909.0, + "probability": 0.8901 + }, + { + "start": 6909.5, + "end": 6911.68, + "probability": 0.9709 + }, + { + "start": 6912.48, + "end": 6914.82, + "probability": 0.9751 + }, + { + "start": 6915.26, + "end": 6919.06, + "probability": 0.998 + }, + { + "start": 6919.2, + "end": 6922.88, + "probability": 0.9987 + }, + { + "start": 6923.8, + "end": 6924.69, + "probability": 0.6437 + }, + { + "start": 6925.28, + "end": 6927.76, + "probability": 0.9957 + }, + { + "start": 6928.44, + "end": 6929.56, + "probability": 0.9268 + }, + { + "start": 6930.14, + "end": 6933.8, + "probability": 0.9978 + }, + { + "start": 6933.8, + "end": 6937.68, + "probability": 0.9969 + }, + { + "start": 6937.7, + "end": 6937.88, + "probability": 0.4569 + }, + { + "start": 6938.22, + "end": 6940.64, + "probability": 0.9839 + }, + { + "start": 6941.56, + "end": 6943.7, + "probability": 0.7269 + }, + { + "start": 6943.74, + "end": 6944.88, + "probability": 0.9257 + }, + { + "start": 6945.34, + "end": 6951.22, + "probability": 0.9985 + }, + { + "start": 6951.72, + "end": 6954.66, + "probability": 0.9746 + }, + { + "start": 6954.88, + "end": 6955.26, + "probability": 0.5199 + }, + { + "start": 6955.32, + "end": 6955.74, + "probability": 0.5223 + }, + { + "start": 6955.78, + "end": 6960.66, + "probability": 0.9628 + }, + { + "start": 6960.66, + "end": 6964.16, + "probability": 0.9853 + }, + { + "start": 6964.34, + "end": 6964.84, + "probability": 0.3066 + }, + { + "start": 6964.96, + "end": 6965.18, + "probability": 0.7339 + }, + { + "start": 6965.18, + "end": 6968.54, + "probability": 0.9961 + }, + { + "start": 6968.54, + "end": 6972.38, + "probability": 0.998 + }, + { + "start": 6972.8, + "end": 6976.68, + "probability": 0.9504 + }, + { + "start": 6977.44, + "end": 6979.12, + "probability": 0.8582 + }, + { + "start": 6979.2, + "end": 6982.04, + "probability": 0.751 + }, + { + "start": 6988.06, + "end": 6990.0, + "probability": 0.6406 + }, + { + "start": 6991.26, + "end": 6992.14, + "probability": 0.7231 + }, + { + "start": 6992.42, + "end": 6992.54, + "probability": 0.2581 + }, + { + "start": 6993.08, + "end": 6994.36, + "probability": 0.2212 + }, + { + "start": 6994.52, + "end": 6994.74, + "probability": 0.2898 + }, + { + "start": 6996.08, + "end": 6997.4, + "probability": 0.8344 + }, + { + "start": 6997.52, + "end": 6998.3, + "probability": 0.1355 + }, + { + "start": 6999.6, + "end": 7000.82, + "probability": 0.1938 + }, + { + "start": 7001.48, + "end": 7002.58, + "probability": 0.7359 + }, + { + "start": 7003.72, + "end": 7006.92, + "probability": 0.6324 + }, + { + "start": 7007.64, + "end": 7008.36, + "probability": 0.5791 + }, + { + "start": 7009.16, + "end": 7010.18, + "probability": 0.3111 + }, + { + "start": 7010.18, + "end": 7011.11, + "probability": 0.5341 + }, + { + "start": 7011.58, + "end": 7014.06, + "probability": 0.751 + }, + { + "start": 7014.58, + "end": 7015.22, + "probability": 0.0202 + }, + { + "start": 7016.78, + "end": 7018.56, + "probability": 0.5507 + }, + { + "start": 7018.64, + "end": 7019.25, + "probability": 0.5952 + }, + { + "start": 7019.72, + "end": 7019.9, + "probability": 0.8379 + }, + { + "start": 7020.22, + "end": 7020.42, + "probability": 0.4546 + }, + { + "start": 7020.42, + "end": 7024.24, + "probability": 0.8851 + }, + { + "start": 7024.56, + "end": 7027.3, + "probability": 0.9658 + }, + { + "start": 7030.42, + "end": 7031.68, + "probability": 0.7021 + }, + { + "start": 7032.12, + "end": 7034.02, + "probability": 0.9121 + }, + { + "start": 7034.36, + "end": 7036.84, + "probability": 0.2084 + }, + { + "start": 7037.56, + "end": 7037.66, + "probability": 0.3336 + }, + { + "start": 7037.66, + "end": 7039.1, + "probability": 0.9917 + }, + { + "start": 7041.58, + "end": 7043.46, + "probability": 0.8741 + }, + { + "start": 7045.22, + "end": 7046.88, + "probability": 0.6827 + }, + { + "start": 7048.64, + "end": 7054.5, + "probability": 0.9573 + }, + { + "start": 7054.64, + "end": 7055.56, + "probability": 0.8137 + }, + { + "start": 7056.4, + "end": 7058.63, + "probability": 0.9553 + }, + { + "start": 7060.98, + "end": 7061.34, + "probability": 0.9092 + }, + { + "start": 7064.1, + "end": 7064.62, + "probability": 0.6405 + }, + { + "start": 7066.0, + "end": 7068.14, + "probability": 0.9797 + }, + { + "start": 7069.32, + "end": 7070.38, + "probability": 0.0217 + }, + { + "start": 7071.04, + "end": 7071.04, + "probability": 0.1559 + }, + { + "start": 7071.04, + "end": 7072.49, + "probability": 0.9546 + }, + { + "start": 7073.32, + "end": 7077.18, + "probability": 0.986 + }, + { + "start": 7077.96, + "end": 7080.76, + "probability": 0.9143 + }, + { + "start": 7081.64, + "end": 7082.78, + "probability": 0.4857 + }, + { + "start": 7084.38, + "end": 7087.06, + "probability": 0.4386 + }, + { + "start": 7087.56, + "end": 7088.16, + "probability": 0.4507 + }, + { + "start": 7089.04, + "end": 7091.76, + "probability": 0.8577 + }, + { + "start": 7091.84, + "end": 7092.64, + "probability": 0.9399 + }, + { + "start": 7093.48, + "end": 7094.34, + "probability": 0.9393 + }, + { + "start": 7096.24, + "end": 7099.42, + "probability": 0.675 + }, + { + "start": 7099.52, + "end": 7100.26, + "probability": 0.6339 + }, + { + "start": 7100.36, + "end": 7101.98, + "probability": 0.7554 + }, + { + "start": 7102.52, + "end": 7102.52, + "probability": 0.4072 + }, + { + "start": 7102.52, + "end": 7104.78, + "probability": 0.8085 + }, + { + "start": 7106.08, + "end": 7108.24, + "probability": 0.9484 + }, + { + "start": 7109.96, + "end": 7111.86, + "probability": 0.9145 + }, + { + "start": 7112.8, + "end": 7113.56, + "probability": 0.9757 + }, + { + "start": 7113.74, + "end": 7116.05, + "probability": 0.9403 + }, + { + "start": 7117.42, + "end": 7119.8, + "probability": 0.9877 + }, + { + "start": 7120.5, + "end": 7124.9, + "probability": 0.8879 + }, + { + "start": 7125.66, + "end": 7127.24, + "probability": 0.9714 + }, + { + "start": 7127.84, + "end": 7128.74, + "probability": 0.9592 + }, + { + "start": 7129.36, + "end": 7134.86, + "probability": 0.9979 + }, + { + "start": 7135.46, + "end": 7136.92, + "probability": 0.9294 + }, + { + "start": 7137.68, + "end": 7139.95, + "probability": 0.9326 + }, + { + "start": 7140.78, + "end": 7144.72, + "probability": 0.7166 + }, + { + "start": 7145.58, + "end": 7148.04, + "probability": 0.8152 + }, + { + "start": 7148.92, + "end": 7149.22, + "probability": 0.4675 + }, + { + "start": 7149.48, + "end": 7150.34, + "probability": 0.1708 + }, + { + "start": 7150.82, + "end": 7154.16, + "probability": 0.7738 + }, + { + "start": 7154.94, + "end": 7155.04, + "probability": 0.0493 + }, + { + "start": 7155.04, + "end": 7158.08, + "probability": 0.9359 + }, + { + "start": 7158.74, + "end": 7159.36, + "probability": 0.6075 + }, + { + "start": 7159.92, + "end": 7160.28, + "probability": 0.7266 + }, + { + "start": 7161.14, + "end": 7162.72, + "probability": 0.0856 + }, + { + "start": 7162.8, + "end": 7165.12, + "probability": 0.983 + }, + { + "start": 7165.56, + "end": 7167.8, + "probability": 0.989 + }, + { + "start": 7167.8, + "end": 7169.16, + "probability": 0.7118 + }, + { + "start": 7169.74, + "end": 7173.02, + "probability": 0.9858 + }, + { + "start": 7173.72, + "end": 7176.58, + "probability": 0.9919 + }, + { + "start": 7178.16, + "end": 7181.0, + "probability": 0.9141 + }, + { + "start": 7181.58, + "end": 7182.52, + "probability": 0.7945 + }, + { + "start": 7182.62, + "end": 7184.8, + "probability": 0.7095 + }, + { + "start": 7185.44, + "end": 7185.44, + "probability": 0.2088 + }, + { + "start": 7185.6, + "end": 7193.12, + "probability": 0.9834 + }, + { + "start": 7193.68, + "end": 7196.62, + "probability": 0.9899 + }, + { + "start": 7197.36, + "end": 7198.74, + "probability": 0.9502 + }, + { + "start": 7199.5, + "end": 7202.74, + "probability": 0.6025 + }, + { + "start": 7203.56, + "end": 7210.9, + "probability": 0.9958 + }, + { + "start": 7211.68, + "end": 7214.24, + "probability": 0.7478 + }, + { + "start": 7214.82, + "end": 7216.96, + "probability": 0.8604 + }, + { + "start": 7217.62, + "end": 7223.2, + "probability": 0.9598 + }, + { + "start": 7223.48, + "end": 7225.5, + "probability": 0.2793 + }, + { + "start": 7226.02, + "end": 7226.02, + "probability": 0.0461 + }, + { + "start": 7226.02, + "end": 7232.04, + "probability": 0.9018 + }, + { + "start": 7232.26, + "end": 7232.78, + "probability": 0.7553 + }, + { + "start": 7233.12, + "end": 7233.68, + "probability": 0.7213 + }, + { + "start": 7233.68, + "end": 7236.12, + "probability": 0.8758 + }, + { + "start": 7236.76, + "end": 7237.6, + "probability": 0.6474 + }, + { + "start": 7237.74, + "end": 7238.3, + "probability": 0.9186 + }, + { + "start": 7245.42, + "end": 7247.2, + "probability": 0.7772 + }, + { + "start": 7247.88, + "end": 7248.8, + "probability": 0.7474 + }, + { + "start": 7248.86, + "end": 7251.2, + "probability": 0.566 + }, + { + "start": 7251.28, + "end": 7252.76, + "probability": 0.656 + }, + { + "start": 7253.28, + "end": 7256.24, + "probability": 0.9791 + }, + { + "start": 7257.68, + "end": 7258.92, + "probability": 0.8089 + }, + { + "start": 7259.26, + "end": 7260.44, + "probability": 0.8899 + }, + { + "start": 7263.16, + "end": 7264.5, + "probability": 0.7373 + }, + { + "start": 7265.58, + "end": 7266.48, + "probability": 0.7376 + }, + { + "start": 7267.24, + "end": 7268.92, + "probability": 0.9857 + }, + { + "start": 7269.32, + "end": 7270.04, + "probability": 0.5015 + }, + { + "start": 7270.08, + "end": 7270.08, + "probability": 0.0051 + }, + { + "start": 7270.08, + "end": 7270.88, + "probability": 0.6452 + }, + { + "start": 7271.98, + "end": 7273.16, + "probability": 0.8447 + }, + { + "start": 7273.72, + "end": 7276.04, + "probability": 0.6348 + }, + { + "start": 7277.04, + "end": 7278.56, + "probability": 0.8182 + }, + { + "start": 7278.74, + "end": 7279.94, + "probability": 0.626 + }, + { + "start": 7280.24, + "end": 7281.22, + "probability": 0.1852 + }, + { + "start": 7282.02, + "end": 7282.62, + "probability": 0.4788 + }, + { + "start": 7282.94, + "end": 7284.32, + "probability": 0.7649 + }, + { + "start": 7284.32, + "end": 7285.54, + "probability": 0.6183 + }, + { + "start": 7285.54, + "end": 7285.62, + "probability": 0.1099 + }, + { + "start": 7285.62, + "end": 7287.53, + "probability": 0.8727 + }, + { + "start": 7288.03, + "end": 7289.52, + "probability": 0.4178 + }, + { + "start": 7290.16, + "end": 7292.04, + "probability": 0.9394 + }, + { + "start": 7292.2, + "end": 7295.5, + "probability": 0.9479 + }, + { + "start": 7295.74, + "end": 7299.34, + "probability": 0.9917 + }, + { + "start": 7300.52, + "end": 7301.88, + "probability": 0.8962 + }, + { + "start": 7301.94, + "end": 7303.0, + "probability": 0.6572 + }, + { + "start": 7303.02, + "end": 7303.76, + "probability": 0.7513 + }, + { + "start": 7303.82, + "end": 7305.64, + "probability": 0.9524 + }, + { + "start": 7306.26, + "end": 7307.52, + "probability": 0.9703 + }, + { + "start": 7308.86, + "end": 7309.72, + "probability": 0.7189 + }, + { + "start": 7309.8, + "end": 7310.12, + "probability": 0.9073 + }, + { + "start": 7310.18, + "end": 7311.7, + "probability": 0.9561 + }, + { + "start": 7311.8, + "end": 7315.92, + "probability": 0.8669 + }, + { + "start": 7316.76, + "end": 7317.96, + "probability": 0.9067 + }, + { + "start": 7318.04, + "end": 7320.32, + "probability": 0.9662 + }, + { + "start": 7321.16, + "end": 7321.67, + "probability": 0.5949 + }, + { + "start": 7322.62, + "end": 7323.12, + "probability": 0.9144 + }, + { + "start": 7323.3, + "end": 7323.96, + "probability": 0.925 + }, + { + "start": 7324.2, + "end": 7327.28, + "probability": 0.9814 + }, + { + "start": 7327.92, + "end": 7329.0, + "probability": 0.833 + }, + { + "start": 7329.78, + "end": 7330.32, + "probability": 0.9585 + }, + { + "start": 7331.46, + "end": 7331.9, + "probability": 0.5431 + }, + { + "start": 7332.12, + "end": 7334.3, + "probability": 0.8943 + }, + { + "start": 7334.78, + "end": 7337.38, + "probability": 0.6918 + }, + { + "start": 7338.18, + "end": 7342.26, + "probability": 0.9954 + }, + { + "start": 7343.96, + "end": 7346.78, + "probability": 0.9889 + }, + { + "start": 7348.29, + "end": 7349.67, + "probability": 0.9854 + }, + { + "start": 7350.68, + "end": 7353.52, + "probability": 0.9764 + }, + { + "start": 7353.98, + "end": 7355.94, + "probability": 0.9213 + }, + { + "start": 7356.14, + "end": 7357.32, + "probability": 0.9219 + }, + { + "start": 7358.22, + "end": 7359.5, + "probability": 0.8479 + }, + { + "start": 7360.52, + "end": 7363.98, + "probability": 0.9949 + }, + { + "start": 7364.28, + "end": 7366.38, + "probability": 0.9617 + }, + { + "start": 7366.56, + "end": 7366.84, + "probability": 0.9165 + }, + { + "start": 7367.3, + "end": 7367.84, + "probability": 0.7577 + }, + { + "start": 7368.6, + "end": 7370.03, + "probability": 0.8983 + }, + { + "start": 7370.72, + "end": 7374.18, + "probability": 0.8677 + }, + { + "start": 7374.7, + "end": 7376.68, + "probability": 0.9761 + }, + { + "start": 7377.38, + "end": 7380.07, + "probability": 0.8787 + }, + { + "start": 7381.06, + "end": 7381.34, + "probability": 0.4783 + }, + { + "start": 7381.38, + "end": 7381.54, + "probability": 0.7388 + }, + { + "start": 7381.54, + "end": 7382.1, + "probability": 0.9498 + }, + { + "start": 7382.2, + "end": 7382.84, + "probability": 0.9388 + }, + { + "start": 7384.08, + "end": 7388.02, + "probability": 0.7837 + }, + { + "start": 7388.02, + "end": 7391.2, + "probability": 0.9917 + }, + { + "start": 7391.78, + "end": 7393.14, + "probability": 0.7161 + }, + { + "start": 7393.26, + "end": 7394.48, + "probability": 0.4764 + }, + { + "start": 7394.96, + "end": 7398.66, + "probability": 0.9892 + }, + { + "start": 7399.42, + "end": 7401.6, + "probability": 0.8734 + }, + { + "start": 7402.18, + "end": 7404.6, + "probability": 0.9023 + }, + { + "start": 7405.0, + "end": 7406.36, + "probability": 0.9783 + }, + { + "start": 7406.92, + "end": 7407.44, + "probability": 0.9771 + }, + { + "start": 7407.76, + "end": 7409.38, + "probability": 0.3906 + }, + { + "start": 7409.48, + "end": 7410.04, + "probability": 0.8958 + }, + { + "start": 7410.52, + "end": 7412.64, + "probability": 0.9895 + }, + { + "start": 7413.18, + "end": 7415.72, + "probability": 0.8184 + }, + { + "start": 7416.18, + "end": 7417.72, + "probability": 0.9013 + }, + { + "start": 7418.4, + "end": 7419.1, + "probability": 0.8068 + }, + { + "start": 7419.2, + "end": 7419.3, + "probability": 0.9548 + }, + { + "start": 7419.56, + "end": 7422.66, + "probability": 0.8305 + }, + { + "start": 7423.12, + "end": 7424.38, + "probability": 0.9888 + }, + { + "start": 7425.16, + "end": 7425.16, + "probability": 0.5069 + }, + { + "start": 7425.16, + "end": 7428.16, + "probability": 0.716 + }, + { + "start": 7428.68, + "end": 7430.06, + "probability": 0.9784 + }, + { + "start": 7430.24, + "end": 7431.54, + "probability": 0.7516 + }, + { + "start": 7432.0, + "end": 7435.3, + "probability": 0.9426 + }, + { + "start": 7435.76, + "end": 7437.76, + "probability": 0.7436 + }, + { + "start": 7438.14, + "end": 7443.02, + "probability": 0.7599 + }, + { + "start": 7443.4, + "end": 7447.62, + "probability": 0.9439 + }, + { + "start": 7448.08, + "end": 7448.38, + "probability": 0.424 + }, + { + "start": 7448.66, + "end": 7449.54, + "probability": 0.9554 + }, + { + "start": 7449.58, + "end": 7450.18, + "probability": 0.6177 + }, + { + "start": 7450.28, + "end": 7451.1, + "probability": 0.9608 + }, + { + "start": 7451.46, + "end": 7455.22, + "probability": 0.9652 + }, + { + "start": 7455.7, + "end": 7457.42, + "probability": 0.877 + }, + { + "start": 7458.36, + "end": 7461.12, + "probability": 0.8807 + }, + { + "start": 7461.58, + "end": 7463.56, + "probability": 0.6395 + }, + { + "start": 7463.6, + "end": 7464.22, + "probability": 0.9535 + }, + { + "start": 7464.24, + "end": 7464.64, + "probability": 0.6843 + }, + { + "start": 7464.84, + "end": 7468.64, + "probability": 0.9852 + }, + { + "start": 7469.64, + "end": 7470.76, + "probability": 0.6583 + }, + { + "start": 7471.74, + "end": 7474.62, + "probability": 0.9888 + }, + { + "start": 7474.62, + "end": 7477.34, + "probability": 0.9542 + }, + { + "start": 7477.54, + "end": 7478.48, + "probability": 0.9124 + }, + { + "start": 7478.52, + "end": 7479.18, + "probability": 0.9108 + }, + { + "start": 7480.04, + "end": 7482.38, + "probability": 0.975 + }, + { + "start": 7483.26, + "end": 7486.98, + "probability": 0.9983 + }, + { + "start": 7487.52, + "end": 7488.74, + "probability": 0.8215 + }, + { + "start": 7488.82, + "end": 7489.28, + "probability": 0.7681 + }, + { + "start": 7489.72, + "end": 7492.44, + "probability": 0.9782 + }, + { + "start": 7492.46, + "end": 7493.86, + "probability": 0.7071 + }, + { + "start": 7496.34, + "end": 7497.0, + "probability": 0.5965 + }, + { + "start": 7497.66, + "end": 7498.4, + "probability": 0.742 + }, + { + "start": 7499.14, + "end": 7505.91, + "probability": 0.9543 + }, + { + "start": 7507.0, + "end": 7508.02, + "probability": 0.9839 + }, + { + "start": 7508.04, + "end": 7508.62, + "probability": 0.6013 + }, + { + "start": 7508.68, + "end": 7509.98, + "probability": 0.9312 + }, + { + "start": 7527.0, + "end": 7528.3, + "probability": 0.7491 + }, + { + "start": 7532.28, + "end": 7534.72, + "probability": 0.6603 + }, + { + "start": 7535.58, + "end": 7536.46, + "probability": 0.9413 + }, + { + "start": 7537.32, + "end": 7544.66, + "probability": 0.9853 + }, + { + "start": 7544.66, + "end": 7552.52, + "probability": 0.9847 + }, + { + "start": 7552.54, + "end": 7552.8, + "probability": 0.0021 + }, + { + "start": 7552.8, + "end": 7553.08, + "probability": 0.2362 + }, + { + "start": 7553.08, + "end": 7553.46, + "probability": 0.7019 + }, + { + "start": 7553.66, + "end": 7556.82, + "probability": 0.9083 + }, + { + "start": 7557.06, + "end": 7557.94, + "probability": 0.9733 + }, + { + "start": 7558.64, + "end": 7558.9, + "probability": 0.6252 + }, + { + "start": 7559.52, + "end": 7559.98, + "probability": 0.1768 + }, + { + "start": 7561.34, + "end": 7564.24, + "probability": 0.2263 + }, + { + "start": 7564.32, + "end": 7565.44, + "probability": 0.0016 + }, + { + "start": 7565.44, + "end": 7565.44, + "probability": 0.1318 + }, + { + "start": 7565.44, + "end": 7565.76, + "probability": 0.0379 + }, + { + "start": 7565.76, + "end": 7566.1, + "probability": 0.2689 + }, + { + "start": 7566.52, + "end": 7568.52, + "probability": 0.6902 + }, + { + "start": 7569.24, + "end": 7572.12, + "probability": 0.7306 + }, + { + "start": 7573.08, + "end": 7575.52, + "probability": 0.4249 + }, + { + "start": 7576.28, + "end": 7576.86, + "probability": 0.0476 + }, + { + "start": 7577.06, + "end": 7578.5, + "probability": 0.5059 + }, + { + "start": 7578.5, + "end": 7578.94, + "probability": 0.7928 + }, + { + "start": 7578.96, + "end": 7582.8, + "probability": 0.6939 + }, + { + "start": 7583.1, + "end": 7584.48, + "probability": 0.5651 + }, + { + "start": 7585.38, + "end": 7586.56, + "probability": 0.6708 + }, + { + "start": 7586.62, + "end": 7587.36, + "probability": 0.9472 + }, + { + "start": 7587.42, + "end": 7587.82, + "probability": 0.6827 + }, + { + "start": 7587.9, + "end": 7590.56, + "probability": 0.7581 + }, + { + "start": 7590.56, + "end": 7590.7, + "probability": 0.039 + }, + { + "start": 7590.7, + "end": 7591.68, + "probability": 0.5936 + }, + { + "start": 7591.8, + "end": 7591.86, + "probability": 0.2716 + }, + { + "start": 7591.86, + "end": 7592.07, + "probability": 0.3987 + }, + { + "start": 7593.14, + "end": 7594.62, + "probability": 0.8447 + }, + { + "start": 7594.74, + "end": 7597.2, + "probability": 0.9934 + }, + { + "start": 7597.9, + "end": 7598.36, + "probability": 0.8087 + }, + { + "start": 7598.46, + "end": 7598.85, + "probability": 0.8379 + }, + { + "start": 7599.7, + "end": 7605.26, + "probability": 0.9645 + }, + { + "start": 7605.68, + "end": 7606.49, + "probability": 0.2646 + }, + { + "start": 7606.98, + "end": 7608.0, + "probability": 0.3893 + }, + { + "start": 7608.16, + "end": 7608.16, + "probability": 0.3135 + }, + { + "start": 7608.16, + "end": 7611.38, + "probability": 0.9359 + }, + { + "start": 7611.98, + "end": 7613.2, + "probability": 0.9891 + }, + { + "start": 7614.76, + "end": 7615.48, + "probability": 0.6111 + }, + { + "start": 7615.9, + "end": 7617.88, + "probability": 0.9453 + }, + { + "start": 7617.98, + "end": 7620.46, + "probability": 0.8014 + }, + { + "start": 7620.72, + "end": 7621.84, + "probability": 0.9714 + }, + { + "start": 7621.88, + "end": 7622.26, + "probability": 0.7424 + }, + { + "start": 7622.4, + "end": 7623.66, + "probability": 0.973 + }, + { + "start": 7623.72, + "end": 7625.84, + "probability": 0.948 + }, + { + "start": 7630.54, + "end": 7631.32, + "probability": 0.7007 + }, + { + "start": 7632.28, + "end": 7637.98, + "probability": 0.9897 + }, + { + "start": 7639.83, + "end": 7642.86, + "probability": 0.9098 + }, + { + "start": 7643.18, + "end": 7644.94, + "probability": 0.9867 + }, + { + "start": 7645.68, + "end": 7649.32, + "probability": 0.9749 + }, + { + "start": 7649.88, + "end": 7650.9, + "probability": 0.7351 + }, + { + "start": 7651.86, + "end": 7662.92, + "probability": 0.9929 + }, + { + "start": 7664.3, + "end": 7667.18, + "probability": 0.7218 + }, + { + "start": 7667.76, + "end": 7674.64, + "probability": 0.64 + }, + { + "start": 7676.62, + "end": 7677.64, + "probability": 0.8896 + }, + { + "start": 7677.72, + "end": 7681.66, + "probability": 0.9976 + }, + { + "start": 7681.66, + "end": 7684.74, + "probability": 0.9248 + }, + { + "start": 7684.86, + "end": 7686.48, + "probability": 0.8095 + }, + { + "start": 7687.06, + "end": 7690.66, + "probability": 0.9961 + }, + { + "start": 7690.94, + "end": 7692.74, + "probability": 0.9718 + }, + { + "start": 7692.76, + "end": 7693.4, + "probability": 0.7135 + }, + { + "start": 7694.02, + "end": 7694.18, + "probability": 0.7725 + }, + { + "start": 7695.02, + "end": 7695.86, + "probability": 0.9619 + }, + { + "start": 7696.38, + "end": 7698.2, + "probability": 0.9915 + }, + { + "start": 7698.9, + "end": 7699.84, + "probability": 0.9357 + }, + { + "start": 7700.98, + "end": 7703.82, + "probability": 0.924 + }, + { + "start": 7704.52, + "end": 7706.56, + "probability": 0.9961 + }, + { + "start": 7708.34, + "end": 7709.74, + "probability": 0.4934 + }, + { + "start": 7710.26, + "end": 7714.02, + "probability": 0.9817 + }, + { + "start": 7715.02, + "end": 7716.44, + "probability": 0.9956 + }, + { + "start": 7716.98, + "end": 7718.82, + "probability": 0.9687 + }, + { + "start": 7719.82, + "end": 7721.06, + "probability": 0.7498 + }, + { + "start": 7723.1, + "end": 7725.04, + "probability": 0.9965 + }, + { + "start": 7725.32, + "end": 7725.92, + "probability": 0.9615 + }, + { + "start": 7726.66, + "end": 7728.0, + "probability": 0.8185 + }, + { + "start": 7731.24, + "end": 7732.1, + "probability": 0.885 + }, + { + "start": 7732.8, + "end": 7733.46, + "probability": 0.9011 + }, + { + "start": 7734.24, + "end": 7737.0, + "probability": 0.8667 + }, + { + "start": 7738.0, + "end": 7740.22, + "probability": 0.4817 + }, + { + "start": 7741.76, + "end": 7744.5, + "probability": 0.8994 + }, + { + "start": 7745.6, + "end": 7746.4, + "probability": 0.8484 + }, + { + "start": 7748.96, + "end": 7749.2, + "probability": 0.9087 + }, + { + "start": 7749.28, + "end": 7754.99, + "probability": 0.9862 + }, + { + "start": 7755.68, + "end": 7758.04, + "probability": 0.9748 + }, + { + "start": 7758.52, + "end": 7759.02, + "probability": 0.4998 + }, + { + "start": 7759.24, + "end": 7760.88, + "probability": 0.7715 + }, + { + "start": 7761.44, + "end": 7762.06, + "probability": 0.9136 + }, + { + "start": 7762.5, + "end": 7763.32, + "probability": 0.9781 + }, + { + "start": 7763.44, + "end": 7765.12, + "probability": 0.9901 + }, + { + "start": 7765.46, + "end": 7769.84, + "probability": 0.9841 + }, + { + "start": 7769.84, + "end": 7773.1, + "probability": 0.9985 + }, + { + "start": 7774.9, + "end": 7775.74, + "probability": 0.8127 + }, + { + "start": 7778.14, + "end": 7782.94, + "probability": 0.9961 + }, + { + "start": 7785.04, + "end": 7786.06, + "probability": 0.9863 + }, + { + "start": 7788.06, + "end": 7789.56, + "probability": 0.9878 + }, + { + "start": 7791.26, + "end": 7791.76, + "probability": 0.957 + }, + { + "start": 7793.2, + "end": 7795.72, + "probability": 0.8132 + }, + { + "start": 7797.16, + "end": 7798.26, + "probability": 0.6709 + }, + { + "start": 7800.2, + "end": 7801.16, + "probability": 0.3893 + }, + { + "start": 7802.44, + "end": 7804.49, + "probability": 0.9696 + }, + { + "start": 7805.56, + "end": 7807.02, + "probability": 0.936 + }, + { + "start": 7807.84, + "end": 7811.18, + "probability": 0.9899 + }, + { + "start": 7812.36, + "end": 7814.98, + "probability": 0.9929 + }, + { + "start": 7815.56, + "end": 7816.62, + "probability": 0.75 + }, + { + "start": 7819.1, + "end": 7819.94, + "probability": 0.6427 + }, + { + "start": 7820.58, + "end": 7821.96, + "probability": 0.8981 + }, + { + "start": 7822.74, + "end": 7823.34, + "probability": 0.881 + }, + { + "start": 7823.98, + "end": 7825.05, + "probability": 0.9585 + }, + { + "start": 7825.36, + "end": 7828.02, + "probability": 0.9897 + }, + { + "start": 7828.8, + "end": 7829.28, + "probability": 0.8946 + }, + { + "start": 7830.32, + "end": 7831.26, + "probability": 0.9609 + }, + { + "start": 7831.3, + "end": 7831.86, + "probability": 0.9728 + }, + { + "start": 7832.14, + "end": 7835.06, + "probability": 0.958 + }, + { + "start": 7835.98, + "end": 7840.72, + "probability": 0.9946 + }, + { + "start": 7842.24, + "end": 7847.0, + "probability": 0.9983 + }, + { + "start": 7847.58, + "end": 7849.32, + "probability": 0.9729 + }, + { + "start": 7849.88, + "end": 7851.26, + "probability": 0.9413 + }, + { + "start": 7851.86, + "end": 7852.48, + "probability": 0.937 + }, + { + "start": 7853.26, + "end": 7855.86, + "probability": 0.9473 + }, + { + "start": 7856.46, + "end": 7857.98, + "probability": 0.9815 + }, + { + "start": 7858.46, + "end": 7861.62, + "probability": 0.9988 + }, + { + "start": 7862.1, + "end": 7865.76, + "probability": 0.8403 + }, + { + "start": 7866.36, + "end": 7868.58, + "probability": 0.9393 + }, + { + "start": 7869.72, + "end": 7874.06, + "probability": 0.9808 + }, + { + "start": 7874.84, + "end": 7878.08, + "probability": 0.9877 + }, + { + "start": 7878.16, + "end": 7879.42, + "probability": 0.8925 + }, + { + "start": 7879.48, + "end": 7881.2, + "probability": 0.9681 + }, + { + "start": 7881.46, + "end": 7881.54, + "probability": 0.0007 + }, + { + "start": 7884.08, + "end": 7888.3, + "probability": 0.8798 + }, + { + "start": 7888.86, + "end": 7890.94, + "probability": 0.9987 + }, + { + "start": 7892.34, + "end": 7895.24, + "probability": 0.9673 + }, + { + "start": 7896.02, + "end": 7897.82, + "probability": 0.9972 + }, + { + "start": 7898.58, + "end": 7903.92, + "probability": 0.9657 + }, + { + "start": 7904.36, + "end": 7907.78, + "probability": 0.9937 + }, + { + "start": 7908.5, + "end": 7909.32, + "probability": 0.9216 + }, + { + "start": 7909.9, + "end": 7915.2, + "probability": 0.8937 + }, + { + "start": 7915.82, + "end": 7920.24, + "probability": 0.9568 + }, + { + "start": 7920.68, + "end": 7922.86, + "probability": 0.9919 + }, + { + "start": 7923.38, + "end": 7926.26, + "probability": 0.8759 + }, + { + "start": 7926.8, + "end": 7927.88, + "probability": 0.9993 + }, + { + "start": 7928.42, + "end": 7931.18, + "probability": 0.9918 + }, + { + "start": 7931.74, + "end": 7932.1, + "probability": 0.7271 + }, + { + "start": 7933.0, + "end": 7934.54, + "probability": 0.817 + }, + { + "start": 7939.3, + "end": 7944.26, + "probability": 0.9736 + }, + { + "start": 7945.06, + "end": 7946.1, + "probability": 0.9657 + }, + { + "start": 7946.78, + "end": 7948.16, + "probability": 0.7709 + }, + { + "start": 7949.16, + "end": 7955.12, + "probability": 0.9398 + }, + { + "start": 7955.18, + "end": 7958.18, + "probability": 0.9793 + }, + { + "start": 7958.88, + "end": 7961.32, + "probability": 0.8099 + }, + { + "start": 7962.02, + "end": 7965.92, + "probability": 0.8134 + }, + { + "start": 7966.3, + "end": 7966.66, + "probability": 0.172 + }, + { + "start": 7966.66, + "end": 7967.08, + "probability": 0.5901 + }, + { + "start": 7967.64, + "end": 7971.1, + "probability": 0.9805 + }, + { + "start": 7971.78, + "end": 7975.3, + "probability": 0.9613 + }, + { + "start": 7976.0, + "end": 7977.22, + "probability": 0.488 + }, + { + "start": 7977.28, + "end": 7978.38, + "probability": 0.9643 + }, + { + "start": 7978.82, + "end": 7980.46, + "probability": 0.9832 + }, + { + "start": 7980.54, + "end": 7982.48, + "probability": 0.9939 + }, + { + "start": 7983.16, + "end": 7986.64, + "probability": 0.932 + }, + { + "start": 7987.2, + "end": 7989.9, + "probability": 0.8027 + }, + { + "start": 7990.64, + "end": 7992.04, + "probability": 0.9836 + }, + { + "start": 7992.72, + "end": 7993.2, + "probability": 0.7632 + }, + { + "start": 7995.12, + "end": 7996.16, + "probability": 0.6378 + }, + { + "start": 7996.34, + "end": 7997.68, + "probability": 0.8154 + }, + { + "start": 8006.6, + "end": 8006.84, + "probability": 0.3632 + }, + { + "start": 8006.84, + "end": 8009.14, + "probability": 0.6142 + }, + { + "start": 8009.6, + "end": 8011.42, + "probability": 0.6828 + }, + { + "start": 8013.24, + "end": 8015.18, + "probability": 0.7537 + }, + { + "start": 8021.46, + "end": 8022.0, + "probability": 0.7909 + }, + { + "start": 8022.04, + "end": 8023.42, + "probability": 0.8036 + }, + { + "start": 8023.82, + "end": 8029.52, + "probability": 0.9636 + }, + { + "start": 8031.02, + "end": 8035.56, + "probability": 0.9578 + }, + { + "start": 8036.24, + "end": 8040.42, + "probability": 0.9536 + }, + { + "start": 8041.14, + "end": 8043.84, + "probability": 0.9493 + }, + { + "start": 8044.36, + "end": 8046.06, + "probability": 0.7323 + }, + { + "start": 8047.18, + "end": 8049.3, + "probability": 0.8263 + }, + { + "start": 8049.42, + "end": 8051.02, + "probability": 0.974 + }, + { + "start": 8051.76, + "end": 8053.42, + "probability": 0.9482 + }, + { + "start": 8054.22, + "end": 8056.1, + "probability": 0.9852 + }, + { + "start": 8064.7, + "end": 8066.98, + "probability": 0.768 + }, + { + "start": 8067.2, + "end": 8070.48, + "probability": 0.9884 + }, + { + "start": 8071.04, + "end": 8074.82, + "probability": 0.6751 + }, + { + "start": 8075.56, + "end": 8078.94, + "probability": 0.9947 + }, + { + "start": 8079.62, + "end": 8081.64, + "probability": 0.8039 + }, + { + "start": 8082.04, + "end": 8085.76, + "probability": 0.9801 + }, + { + "start": 8086.3, + "end": 8090.16, + "probability": 0.6721 + }, + { + "start": 8090.86, + "end": 8094.24, + "probability": 0.9639 + }, + { + "start": 8095.1, + "end": 8098.72, + "probability": 0.9325 + }, + { + "start": 8099.24, + "end": 8101.68, + "probability": 0.7686 + }, + { + "start": 8102.32, + "end": 8105.73, + "probability": 0.8183 + }, + { + "start": 8107.3, + "end": 8109.32, + "probability": 0.9883 + }, + { + "start": 8109.98, + "end": 8112.0, + "probability": 0.9425 + }, + { + "start": 8112.54, + "end": 8114.88, + "probability": 0.6583 + }, + { + "start": 8115.88, + "end": 8117.3, + "probability": 0.8152 + }, + { + "start": 8118.92, + "end": 8121.66, + "probability": 0.9957 + }, + { + "start": 8122.12, + "end": 8125.1, + "probability": 0.9692 + }, + { + "start": 8126.16, + "end": 8127.86, + "probability": 0.9729 + }, + { + "start": 8131.34, + "end": 8131.44, + "probability": 0.3479 + }, + { + "start": 8131.44, + "end": 8133.46, + "probability": 0.9902 + }, + { + "start": 8135.9, + "end": 8136.5, + "probability": 0.3612 + }, + { + "start": 8136.5, + "end": 8138.06, + "probability": 0.8934 + }, + { + "start": 8139.46, + "end": 8140.06, + "probability": 0.8101 + }, + { + "start": 8142.08, + "end": 8146.78, + "probability": 0.8999 + }, + { + "start": 8147.66, + "end": 8148.64, + "probability": 0.9885 + }, + { + "start": 8149.16, + "end": 8150.94, + "probability": 0.933 + }, + { + "start": 8152.3, + "end": 8155.42, + "probability": 0.9939 + }, + { + "start": 8155.42, + "end": 8158.62, + "probability": 0.8547 + }, + { + "start": 8159.54, + "end": 8160.88, + "probability": 0.8397 + }, + { + "start": 8161.1, + "end": 8163.56, + "probability": 0.7223 + }, + { + "start": 8165.4, + "end": 8166.06, + "probability": 0.2393 + }, + { + "start": 8166.9, + "end": 8167.36, + "probability": 0.9722 + }, + { + "start": 8168.5, + "end": 8169.68, + "probability": 0.83 + }, + { + "start": 8173.0, + "end": 8173.62, + "probability": 0.696 + }, + { + "start": 8174.56, + "end": 8177.28, + "probability": 0.8346 + }, + { + "start": 8178.0, + "end": 8178.38, + "probability": 0.9751 + }, + { + "start": 8178.9, + "end": 8179.78, + "probability": 0.8757 + }, + { + "start": 8183.5, + "end": 8184.34, + "probability": 0.8221 + }, + { + "start": 8185.22, + "end": 8186.38, + "probability": 0.9103 + }, + { + "start": 8188.36, + "end": 8188.82, + "probability": 0.784 + }, + { + "start": 8191.4, + "end": 8191.98, + "probability": 0.2824 + }, + { + "start": 8192.88, + "end": 8193.28, + "probability": 0.9453 + }, + { + "start": 8194.18, + "end": 8194.44, + "probability": 0.604 + }, + { + "start": 8197.98, + "end": 8199.16, + "probability": 0.4649 + }, + { + "start": 8200.32, + "end": 8200.6, + "probability": 0.8372 + }, + { + "start": 8204.38, + "end": 8205.02, + "probability": 0.363 + }, + { + "start": 8211.16, + "end": 8211.64, + "probability": 0.6416 + }, + { + "start": 8213.24, + "end": 8213.78, + "probability": 0.8221 + }, + { + "start": 8215.34, + "end": 8216.08, + "probability": 0.7559 + }, + { + "start": 8217.02, + "end": 8217.82, + "probability": 0.8413 + }, + { + "start": 8220.16, + "end": 8220.56, + "probability": 0.9868 + }, + { + "start": 8222.48, + "end": 8223.36, + "probability": 0.9581 + }, + { + "start": 8224.2, + "end": 8224.64, + "probability": 0.9945 + }, + { + "start": 8225.48, + "end": 8226.2, + "probability": 0.9071 + }, + { + "start": 8233.5, + "end": 8235.5, + "probability": 0.7662 + }, + { + "start": 8240.62, + "end": 8242.84, + "probability": 0.9371 + }, + { + "start": 8244.2, + "end": 8244.58, + "probability": 0.8975 + }, + { + "start": 8245.88, + "end": 8246.66, + "probability": 0.8887 + }, + { + "start": 8249.18, + "end": 8251.82, + "probability": 0.9689 + }, + { + "start": 8252.54, + "end": 8252.82, + "probability": 0.7617 + }, + { + "start": 8254.06, + "end": 8254.7, + "probability": 0.9466 + }, + { + "start": 8255.9, + "end": 8256.18, + "probability": 0.9618 + }, + { + "start": 8256.84, + "end": 8257.58, + "probability": 0.8922 + }, + { + "start": 8259.78, + "end": 8260.72, + "probability": 0.6864 + }, + { + "start": 8261.72, + "end": 8263.76, + "probability": 0.9463 + }, + { + "start": 8264.08, + "end": 8265.84, + "probability": 0.9745 + }, + { + "start": 8266.02, + "end": 8267.82, + "probability": 0.9644 + }, + { + "start": 8268.32, + "end": 8268.82, + "probability": 0.9878 + }, + { + "start": 8269.4, + "end": 8270.42, + "probability": 0.8351 + }, + { + "start": 8274.66, + "end": 8275.18, + "probability": 0.9595 + }, + { + "start": 8276.02, + "end": 8278.24, + "probability": 0.9403 + }, + { + "start": 8279.12, + "end": 8280.04, + "probability": 0.7813 + }, + { + "start": 8281.04, + "end": 8281.48, + "probability": 0.778 + }, + { + "start": 8284.3, + "end": 8284.92, + "probability": 0.7369 + }, + { + "start": 8286.0, + "end": 8287.38, + "probability": 0.9694 + }, + { + "start": 8288.58, + "end": 8290.58, + "probability": 0.9182 + }, + { + "start": 8293.94, + "end": 8294.82, + "probability": 0.9434 + }, + { + "start": 8295.44, + "end": 8295.82, + "probability": 0.8515 + }, + { + "start": 8297.94, + "end": 8299.56, + "probability": 0.9819 + }, + { + "start": 8301.86, + "end": 8302.88, + "probability": 0.5775 + }, + { + "start": 8305.14, + "end": 8306.06, + "probability": 0.8934 + }, + { + "start": 8306.66, + "end": 8307.36, + "probability": 0.8762 + }, + { + "start": 8307.94, + "end": 8309.4, + "probability": 0.8765 + }, + { + "start": 8313.16, + "end": 8313.54, + "probability": 0.9207 + }, + { + "start": 8315.06, + "end": 8316.02, + "probability": 0.9452 + }, + { + "start": 8317.04, + "end": 8317.78, + "probability": 0.9564 + }, + { + "start": 8318.66, + "end": 8320.83, + "probability": 0.9754 + }, + { + "start": 8322.06, + "end": 8323.24, + "probability": 0.7154 + }, + { + "start": 8324.06, + "end": 8324.5, + "probability": 0.9865 + }, + { + "start": 8325.66, + "end": 8326.4, + "probability": 0.8599 + }, + { + "start": 8327.24, + "end": 8329.06, + "probability": 0.9744 + }, + { + "start": 8330.54, + "end": 8330.96, + "probability": 0.7014 + }, + { + "start": 8331.98, + "end": 8332.88, + "probability": 0.5356 + }, + { + "start": 8333.76, + "end": 8334.14, + "probability": 0.9744 + }, + { + "start": 8335.48, + "end": 8336.12, + "probability": 0.2631 + }, + { + "start": 8337.52, + "end": 8338.26, + "probability": 0.5692 + }, + { + "start": 8339.1, + "end": 8339.88, + "probability": 0.9058 + }, + { + "start": 8341.14, + "end": 8341.64, + "probability": 0.9832 + }, + { + "start": 8343.38, + "end": 8344.3, + "probability": 0.6182 + }, + { + "start": 8345.2, + "end": 8345.6, + "probability": 0.842 + }, + { + "start": 8346.48, + "end": 8347.22, + "probability": 0.802 + }, + { + "start": 8348.22, + "end": 8348.68, + "probability": 0.9948 + }, + { + "start": 8350.3, + "end": 8351.52, + "probability": 0.9787 + }, + { + "start": 8352.34, + "end": 8352.76, + "probability": 0.9865 + }, + { + "start": 8354.04, + "end": 8355.32, + "probability": 0.8978 + }, + { + "start": 8356.14, + "end": 8356.54, + "probability": 0.9967 + }, + { + "start": 8358.62, + "end": 8359.48, + "probability": 0.9005 + }, + { + "start": 8360.52, + "end": 8360.78, + "probability": 0.6229 + }, + { + "start": 8362.98, + "end": 8364.2, + "probability": 0.7051 + }, + { + "start": 8366.1, + "end": 8368.02, + "probability": 0.5828 + }, + { + "start": 8368.5, + "end": 8370.58, + "probability": 0.9241 + }, + { + "start": 8370.96, + "end": 8371.66, + "probability": 0.9585 + }, + { + "start": 8372.26, + "end": 8375.14, + "probability": 0.9648 + }, + { + "start": 8376.22, + "end": 8377.48, + "probability": 0.9578 + }, + { + "start": 8378.98, + "end": 8379.46, + "probability": 0.9098 + }, + { + "start": 8380.96, + "end": 8381.4, + "probability": 0.9546 + }, + { + "start": 8383.74, + "end": 8384.08, + "probability": 0.8751 + }, + { + "start": 8385.22, + "end": 8385.5, + "probability": 0.7946 + }, + { + "start": 8386.94, + "end": 8387.82, + "probability": 0.8621 + }, + { + "start": 8389.38, + "end": 8389.64, + "probability": 0.7457 + }, + { + "start": 8393.46, + "end": 8394.12, + "probability": 0.4294 + }, + { + "start": 8395.78, + "end": 8397.24, + "probability": 0.9137 + }, + { + "start": 8398.0, + "end": 8398.44, + "probability": 0.7132 + }, + { + "start": 8405.82, + "end": 8406.2, + "probability": 0.6892 + }, + { + "start": 8408.04, + "end": 8408.64, + "probability": 0.6503 + }, + { + "start": 8410.5, + "end": 8412.92, + "probability": 0.9077 + }, + { + "start": 8414.44, + "end": 8415.12, + "probability": 0.9069 + }, + { + "start": 8416.16, + "end": 8417.58, + "probability": 0.8747 + }, + { + "start": 8418.22, + "end": 8419.92, + "probability": 0.9048 + }, + { + "start": 8420.66, + "end": 8422.3, + "probability": 0.9434 + }, + { + "start": 8425.88, + "end": 8426.3, + "probability": 0.9453 + }, + { + "start": 8427.76, + "end": 8428.22, + "probability": 0.9285 + }, + { + "start": 8430.22, + "end": 8430.48, + "probability": 0.9717 + }, + { + "start": 8432.16, + "end": 8432.78, + "probability": 0.9164 + }, + { + "start": 8433.74, + "end": 8434.0, + "probability": 0.7776 + }, + { + "start": 8435.24, + "end": 8435.8, + "probability": 0.7963 + }, + { + "start": 8436.64, + "end": 8437.28, + "probability": 0.8021 + }, + { + "start": 8437.86, + "end": 8438.88, + "probability": 0.7217 + }, + { + "start": 8439.1, + "end": 8440.44, + "probability": 0.9582 + }, + { + "start": 8440.5, + "end": 8442.02, + "probability": 0.9805 + }, + { + "start": 8442.92, + "end": 8443.66, + "probability": 0.9941 + }, + { + "start": 8444.7, + "end": 8445.6, + "probability": 0.9524 + }, + { + "start": 8446.2, + "end": 8446.56, + "probability": 0.7166 + }, + { + "start": 8447.8, + "end": 8448.86, + "probability": 0.9935 + }, + { + "start": 8449.46, + "end": 8451.42, + "probability": 0.9867 + }, + { + "start": 8452.2, + "end": 8452.62, + "probability": 0.9878 + }, + { + "start": 8454.18, + "end": 8455.3, + "probability": 0.7396 + }, + { + "start": 8459.38, + "end": 8459.76, + "probability": 0.8333 + }, + { + "start": 8462.12, + "end": 8462.74, + "probability": 0.8323 + }, + { + "start": 8463.52, + "end": 8465.4, + "probability": 0.717 + }, + { + "start": 8468.06, + "end": 8468.86, + "probability": 0.8454 + }, + { + "start": 8469.44, + "end": 8470.36, + "probability": 0.8643 + }, + { + "start": 8471.06, + "end": 8473.26, + "probability": 0.9277 + }, + { + "start": 8475.18, + "end": 8475.62, + "probability": 0.9953 + }, + { + "start": 8476.92, + "end": 8477.82, + "probability": 0.8846 + }, + { + "start": 8479.22, + "end": 8479.7, + "probability": 0.993 + }, + { + "start": 8481.08, + "end": 8481.88, + "probability": 0.9915 + }, + { + "start": 8482.96, + "end": 8483.2, + "probability": 0.7007 + }, + { + "start": 8484.2, + "end": 8485.2, + "probability": 0.5926 + }, + { + "start": 8486.48, + "end": 8487.26, + "probability": 0.8719 + }, + { + "start": 8487.84, + "end": 8488.84, + "probability": 0.7313 + }, + { + "start": 8494.18, + "end": 8494.66, + "probability": 0.8669 + }, + { + "start": 8496.04, + "end": 8496.68, + "probability": 0.9224 + }, + { + "start": 8497.5, + "end": 8497.88, + "probability": 0.9559 + }, + { + "start": 8498.46, + "end": 8499.16, + "probability": 0.9777 + }, + { + "start": 8500.98, + "end": 8501.86, + "probability": 0.9882 + }, + { + "start": 8504.4, + "end": 8505.5, + "probability": 0.9829 + }, + { + "start": 8506.18, + "end": 8506.62, + "probability": 0.9512 + }, + { + "start": 8508.1, + "end": 8511.38, + "probability": 0.8557 + }, + { + "start": 8511.94, + "end": 8514.08, + "probability": 0.7525 + }, + { + "start": 8515.06, + "end": 8515.54, + "probability": 0.9245 + }, + { + "start": 8516.84, + "end": 8517.94, + "probability": 0.6775 + }, + { + "start": 8519.0, + "end": 8519.48, + "probability": 0.9884 + }, + { + "start": 8520.36, + "end": 8521.36, + "probability": 0.9124 + }, + { + "start": 8526.66, + "end": 8527.06, + "probability": 0.8644 + }, + { + "start": 8528.48, + "end": 8529.18, + "probability": 0.7274 + }, + { + "start": 8532.24, + "end": 8534.4, + "probability": 0.8962 + }, + { + "start": 8535.18, + "end": 8535.62, + "probability": 0.9893 + }, + { + "start": 8536.52, + "end": 8537.32, + "probability": 0.8448 + }, + { + "start": 8538.5, + "end": 8538.94, + "probability": 0.981 + }, + { + "start": 8539.54, + "end": 8540.28, + "probability": 0.9571 + }, + { + "start": 8540.82, + "end": 8542.64, + "probability": 0.6454 + }, + { + "start": 8544.76, + "end": 8545.48, + "probability": 0.9805 + }, + { + "start": 8546.1, + "end": 8546.86, + "probability": 0.9074 + }, + { + "start": 8547.92, + "end": 8548.3, + "probability": 0.8364 + }, + { + "start": 8549.98, + "end": 8550.96, + "probability": 0.8864 + }, + { + "start": 8552.26, + "end": 8553.96, + "probability": 0.978 + }, + { + "start": 8554.94, + "end": 8555.88, + "probability": 0.6792 + }, + { + "start": 8558.68, + "end": 8559.2, + "probability": 0.9935 + }, + { + "start": 8560.84, + "end": 8561.66, + "probability": 0.8428 + }, + { + "start": 8563.32, + "end": 8565.48, + "probability": 0.9664 + }, + { + "start": 8567.06, + "end": 8567.44, + "probability": 0.9972 + }, + { + "start": 8568.32, + "end": 8569.2, + "probability": 0.92 + }, + { + "start": 8571.54, + "end": 8573.46, + "probability": 0.6689 + }, + { + "start": 8576.68, + "end": 8577.06, + "probability": 0.9106 + }, + { + "start": 8578.6, + "end": 8579.66, + "probability": 0.8636 + }, + { + "start": 8580.26, + "end": 8581.06, + "probability": 0.9415 + }, + { + "start": 8581.82, + "end": 8582.88, + "probability": 0.8523 + }, + { + "start": 8584.36, + "end": 8585.16, + "probability": 0.9612 + }, + { + "start": 8585.72, + "end": 8587.06, + "probability": 0.8995 + }, + { + "start": 8588.02, + "end": 8588.82, + "probability": 0.9492 + }, + { + "start": 8589.64, + "end": 8590.42, + "probability": 0.9745 + }, + { + "start": 8591.5, + "end": 8592.9, + "probability": 0.9873 + }, + { + "start": 8593.74, + "end": 8594.6, + "probability": 0.9938 + }, + { + "start": 8595.34, + "end": 8595.7, + "probability": 0.9935 + }, + { + "start": 8597.56, + "end": 8597.94, + "probability": 0.7532 + }, + { + "start": 8600.56, + "end": 8602.7, + "probability": 0.8433 + }, + { + "start": 8604.24, + "end": 8604.66, + "probability": 0.8469 + }, + { + "start": 8608.84, + "end": 8609.28, + "probability": 0.8538 + }, + { + "start": 8610.86, + "end": 8611.7, + "probability": 0.8142 + }, + { + "start": 8612.96, + "end": 8613.92, + "probability": 0.9818 + }, + { + "start": 8614.56, + "end": 8615.34, + "probability": 0.9471 + }, + { + "start": 8616.74, + "end": 8617.22, + "probability": 0.9937 + }, + { + "start": 8619.74, + "end": 8620.48, + "probability": 0.9839 + }, + { + "start": 8622.48, + "end": 8622.86, + "probability": 0.9933 + }, + { + "start": 8624.04, + "end": 8624.64, + "probability": 0.8589 + }, + { + "start": 8626.46, + "end": 8628.28, + "probability": 0.6509 + }, + { + "start": 8629.42, + "end": 8630.42, + "probability": 0.6027 + }, + { + "start": 8631.42, + "end": 8633.0, + "probability": 0.8792 + }, + { + "start": 8634.32, + "end": 8634.96, + "probability": 0.871 + }, + { + "start": 8635.54, + "end": 8636.46, + "probability": 0.8772 + }, + { + "start": 8637.98, + "end": 8638.46, + "probability": 0.8496 + }, + { + "start": 8639.34, + "end": 8640.32, + "probability": 0.784 + }, + { + "start": 8644.9, + "end": 8646.64, + "probability": 0.7722 + }, + { + "start": 8647.86, + "end": 8649.88, + "probability": 0.945 + }, + { + "start": 8651.42, + "end": 8652.16, + "probability": 0.9762 + }, + { + "start": 8653.0, + "end": 8654.04, + "probability": 0.8465 + }, + { + "start": 8655.34, + "end": 8656.22, + "probability": 0.9907 + }, + { + "start": 8656.8, + "end": 8657.52, + "probability": 0.9489 + }, + { + "start": 8658.82, + "end": 8659.52, + "probability": 0.9878 + }, + { + "start": 8660.16, + "end": 8661.3, + "probability": 0.7966 + }, + { + "start": 8662.98, + "end": 8665.42, + "probability": 0.7471 + }, + { + "start": 8666.74, + "end": 8667.54, + "probability": 0.7835 + }, + { + "start": 8669.44, + "end": 8671.98, + "probability": 0.95 + }, + { + "start": 8673.44, + "end": 8676.18, + "probability": 0.7484 + }, + { + "start": 8677.5, + "end": 8678.35, + "probability": 0.5226 + }, + { + "start": 8679.8, + "end": 8681.8, + "probability": 0.8592 + }, + { + "start": 8685.34, + "end": 8686.2, + "probability": 0.909 + }, + { + "start": 8686.82, + "end": 8687.9, + "probability": 0.9136 + }, + { + "start": 8691.22, + "end": 8692.14, + "probability": 0.9807 + }, + { + "start": 8693.48, + "end": 8694.3, + "probability": 0.9286 + }, + { + "start": 8695.84, + "end": 8696.3, + "probability": 0.7383 + }, + { + "start": 8699.28, + "end": 8700.06, + "probability": 0.7119 + }, + { + "start": 8701.69, + "end": 8704.38, + "probability": 0.8763 + }, + { + "start": 8705.84, + "end": 8706.28, + "probability": 0.8889 + }, + { + "start": 8708.6, + "end": 8709.58, + "probability": 0.9404 + }, + { + "start": 8710.4, + "end": 8710.78, + "probability": 0.7964 + }, + { + "start": 8712.34, + "end": 8713.2, + "probability": 0.9878 + }, + { + "start": 8718.05, + "end": 8720.62, + "probability": 0.8899 + }, + { + "start": 8723.78, + "end": 8724.56, + "probability": 0.9046 + }, + { + "start": 8725.2, + "end": 8726.16, + "probability": 0.9303 + }, + { + "start": 8727.84, + "end": 8728.76, + "probability": 0.9751 + }, + { + "start": 8733.38, + "end": 8733.92, + "probability": 0.3496 + }, + { + "start": 8734.98, + "end": 8736.2, + "probability": 0.7481 + }, + { + "start": 8737.96, + "end": 8739.64, + "probability": 0.9159 + }, + { + "start": 8740.7, + "end": 8741.1, + "probability": 0.9453 + }, + { + "start": 8743.04, + "end": 8743.76, + "probability": 0.9685 + }, + { + "start": 8745.04, + "end": 8745.76, + "probability": 0.9847 + }, + { + "start": 8746.32, + "end": 8746.96, + "probability": 0.8938 + }, + { + "start": 8747.78, + "end": 8748.2, + "probability": 0.9563 + }, + { + "start": 8750.42, + "end": 8751.06, + "probability": 0.7603 + }, + { + "start": 8752.48, + "end": 8753.26, + "probability": 0.9689 + }, + { + "start": 8754.6, + "end": 8755.84, + "probability": 0.6803 + }, + { + "start": 8756.68, + "end": 8757.08, + "probability": 0.5368 + }, + { + "start": 8759.26, + "end": 8759.74, + "probability": 0.1704 + }, + { + "start": 8760.0, + "end": 8761.72, + "probability": 0.7391 + }, + { + "start": 8761.74, + "end": 8762.9, + "probability": 0.7246 + }, + { + "start": 8764.42, + "end": 8764.66, + "probability": 0.525 + }, + { + "start": 8768.78, + "end": 8769.5, + "probability": 0.6505 + }, + { + "start": 8770.4, + "end": 8770.74, + "probability": 0.9451 + }, + { + "start": 8772.74, + "end": 8773.46, + "probability": 0.757 + }, + { + "start": 8775.24, + "end": 8776.52, + "probability": 0.9905 + }, + { + "start": 8777.1, + "end": 8777.48, + "probability": 0.9477 + }, + { + "start": 8779.64, + "end": 8785.12, + "probability": 0.9785 + }, + { + "start": 8787.4, + "end": 8790.24, + "probability": 0.8779 + }, + { + "start": 8791.52, + "end": 8792.6, + "probability": 0.6179 + }, + { + "start": 8793.28, + "end": 8793.52, + "probability": 0.9934 + }, + { + "start": 8795.5, + "end": 8796.18, + "probability": 0.9304 + }, + { + "start": 8797.06, + "end": 8797.44, + "probability": 0.9934 + }, + { + "start": 8799.88, + "end": 8800.84, + "probability": 0.9525 + }, + { + "start": 8802.2, + "end": 8802.66, + "probability": 0.6466 + }, + { + "start": 8804.76, + "end": 8805.58, + "probability": 0.8808 + }, + { + "start": 8808.0, + "end": 8810.98, + "probability": 0.8558 + }, + { + "start": 8815.66, + "end": 8816.54, + "probability": 0.8903 + }, + { + "start": 8817.22, + "end": 8818.28, + "probability": 0.9009 + }, + { + "start": 8819.53, + "end": 8822.68, + "probability": 0.97 + }, + { + "start": 8823.52, + "end": 8824.74, + "probability": 0.9856 + }, + { + "start": 8825.94, + "end": 8826.66, + "probability": 0.9902 + }, + { + "start": 8828.06, + "end": 8828.24, + "probability": 0.5746 + }, + { + "start": 8830.8, + "end": 8831.16, + "probability": 0.8019 + }, + { + "start": 8834.6, + "end": 8837.16, + "probability": 0.6899 + }, + { + "start": 8839.67, + "end": 8841.4, + "probability": 0.6396 + }, + { + "start": 8845.38, + "end": 8845.76, + "probability": 0.9022 + }, + { + "start": 8848.62, + "end": 8849.28, + "probability": 0.6651 + }, + { + "start": 8850.1, + "end": 8850.78, + "probability": 0.8859 + }, + { + "start": 8851.86, + "end": 8852.76, + "probability": 0.8095 + }, + { + "start": 8854.72, + "end": 8855.16, + "probability": 0.9229 + }, + { + "start": 8857.42, + "end": 8858.12, + "probability": 0.8457 + }, + { + "start": 8859.2, + "end": 8860.98, + "probability": 0.9888 + }, + { + "start": 8862.22, + "end": 8863.12, + "probability": 0.9539 + }, + { + "start": 8864.88, + "end": 8865.26, + "probability": 0.9924 + }, + { + "start": 8868.18, + "end": 8868.98, + "probability": 0.7518 + }, + { + "start": 8870.27, + "end": 8873.18, + "probability": 0.8726 + }, + { + "start": 8886.24, + "end": 8887.4, + "probability": 0.5698 + }, + { + "start": 8889.14, + "end": 8889.3, + "probability": 0.5158 + }, + { + "start": 8894.12, + "end": 8894.7, + "probability": 0.5714 + }, + { + "start": 8896.52, + "end": 8898.12, + "probability": 0.9636 + }, + { + "start": 8899.06, + "end": 8899.9, + "probability": 0.5946 + }, + { + "start": 8901.22, + "end": 8901.58, + "probability": 0.9854 + }, + { + "start": 8903.14, + "end": 8903.88, + "probability": 0.92 + }, + { + "start": 8905.8, + "end": 8907.82, + "probability": 0.9889 + }, + { + "start": 8911.74, + "end": 8912.08, + "probability": 0.9802 + }, + { + "start": 8914.02, + "end": 8915.02, + "probability": 0.8895 + }, + { + "start": 8916.18, + "end": 8918.1, + "probability": 0.8907 + }, + { + "start": 8918.94, + "end": 8920.0, + "probability": 0.978 + }, + { + "start": 8921.0, + "end": 8921.82, + "probability": 0.7717 + }, + { + "start": 8924.83, + "end": 8933.28, + "probability": 0.9736 + }, + { + "start": 8933.3, + "end": 8934.72, + "probability": 0.7014 + }, + { + "start": 8937.24, + "end": 8937.88, + "probability": 0.1471 + }, + { + "start": 8940.62, + "end": 8941.18, + "probability": 0.9475 + }, + { + "start": 8944.5, + "end": 8945.28, + "probability": 0.5466 + }, + { + "start": 8950.9, + "end": 8951.78, + "probability": 0.5714 + }, + { + "start": 8960.1, + "end": 8960.45, + "probability": 0.5022 + }, + { + "start": 8963.35, + "end": 8964.98, + "probability": 0.8464 + }, + { + "start": 8966.02, + "end": 8966.24, + "probability": 0.5485 + }, + { + "start": 8970.36, + "end": 8971.04, + "probability": 0.6752 + }, + { + "start": 8972.45, + "end": 8973.5, + "probability": 0.7263 + }, + { + "start": 8976.5, + "end": 8979.38, + "probability": 0.6757 + }, + { + "start": 8980.65, + "end": 8982.88, + "probability": 0.9932 + }, + { + "start": 8983.38, + "end": 8984.36, + "probability": 0.7727 + }, + { + "start": 8986.17, + "end": 8987.42, + "probability": 0.5925 + }, + { + "start": 8988.22, + "end": 8989.44, + "probability": 0.8675 + }, + { + "start": 8990.22, + "end": 8991.0, + "probability": 0.0198 + }, + { + "start": 8992.1, + "end": 8992.48, + "probability": 0.0456 + }, + { + "start": 8993.8, + "end": 8998.26, + "probability": 0.0525 + }, + { + "start": 9000.18, + "end": 9003.88, + "probability": 0.0884 + }, + { + "start": 9006.64, + "end": 9006.64, + "probability": 0.0074 + }, + { + "start": 9018.98, + "end": 9025.5, + "probability": 0.0363 + }, + { + "start": 9025.5, + "end": 9025.62, + "probability": 0.064 + }, + { + "start": 9152.2, + "end": 9152.93, + "probability": 0.4758 + }, + { + "start": 9154.14, + "end": 9154.64, + "probability": 0.7409 + }, + { + "start": 9154.7, + "end": 9155.44, + "probability": 0.8724 + }, + { + "start": 9155.52, + "end": 9157.1, + "probability": 0.9784 + }, + { + "start": 9158.34, + "end": 9159.26, + "probability": 0.4238 + }, + { + "start": 9160.98, + "end": 9162.06, + "probability": 0.9648 + }, + { + "start": 9163.24, + "end": 9164.28, + "probability": 0.6664 + }, + { + "start": 9165.58, + "end": 9169.12, + "probability": 0.7205 + }, + { + "start": 9170.06, + "end": 9170.36, + "probability": 0.9131 + }, + { + "start": 9171.58, + "end": 9172.34, + "probability": 0.8477 + }, + { + "start": 9173.44, + "end": 9174.1, + "probability": 0.7755 + }, + { + "start": 9174.96, + "end": 9175.8, + "probability": 0.92 + }, + { + "start": 9177.08, + "end": 9178.44, + "probability": 0.9141 + }, + { + "start": 9180.02, + "end": 9180.36, + "probability": 0.9919 + }, + { + "start": 9181.56, + "end": 9182.5, + "probability": 0.7242 + }, + { + "start": 9184.06, + "end": 9184.46, + "probability": 0.96 + }, + { + "start": 9186.2, + "end": 9186.96, + "probability": 0.732 + }, + { + "start": 9187.88, + "end": 9189.44, + "probability": 0.9946 + }, + { + "start": 9189.96, + "end": 9190.72, + "probability": 0.9795 + }, + { + "start": 9193.42, + "end": 9194.04, + "probability": 0.9362 + }, + { + "start": 9194.62, + "end": 9195.26, + "probability": 0.7825 + }, + { + "start": 9196.8, + "end": 9197.14, + "probability": 0.848 + }, + { + "start": 9198.76, + "end": 9199.7, + "probability": 0.8485 + }, + { + "start": 9200.3, + "end": 9200.74, + "probability": 0.9108 + }, + { + "start": 9201.42, + "end": 9202.1, + "probability": 0.8598 + }, + { + "start": 9203.69, + "end": 9205.8, + "probability": 0.9936 + }, + { + "start": 9207.42, + "end": 9207.92, + "probability": 0.9948 + }, + { + "start": 9208.74, + "end": 9209.44, + "probability": 0.9597 + }, + { + "start": 9214.06, + "end": 9214.42, + "probability": 0.818 + }, + { + "start": 9215.98, + "end": 9216.7, + "probability": 0.8065 + }, + { + "start": 9218.62, + "end": 9221.08, + "probability": 0.7342 + }, + { + "start": 9221.7, + "end": 9222.06, + "probability": 0.7378 + }, + { + "start": 9223.1, + "end": 9223.78, + "probability": 0.8765 + }, + { + "start": 9227.3, + "end": 9227.72, + "probability": 0.9399 + }, + { + "start": 9229.62, + "end": 9230.32, + "probability": 0.8983 + }, + { + "start": 9231.2, + "end": 9231.62, + "probability": 0.9408 + }, + { + "start": 9233.4, + "end": 9234.3, + "probability": 0.9043 + }, + { + "start": 9235.36, + "end": 9237.6, + "probability": 0.936 + }, + { + "start": 9238.72, + "end": 9239.46, + "probability": 0.956 + }, + { + "start": 9240.18, + "end": 9242.02, + "probability": 0.5678 + }, + { + "start": 9242.82, + "end": 9243.8, + "probability": 0.9703 + }, + { + "start": 9244.64, + "end": 9245.02, + "probability": 0.9494 + }, + { + "start": 9246.76, + "end": 9247.66, + "probability": 0.7453 + }, + { + "start": 9253.4, + "end": 9255.66, + "probability": 0.5155 + }, + { + "start": 9256.26, + "end": 9259.44, + "probability": 0.9405 + }, + { + "start": 9262.5, + "end": 9262.9, + "probability": 0.9883 + }, + { + "start": 9266.52, + "end": 9267.0, + "probability": 0.2971 + }, + { + "start": 9268.8, + "end": 9269.12, + "probability": 0.9671 + }, + { + "start": 9269.66, + "end": 9270.3, + "probability": 0.81 + }, + { + "start": 9275.38, + "end": 9275.86, + "probability": 0.8175 + }, + { + "start": 9276.56, + "end": 9277.18, + "probability": 0.7332 + }, + { + "start": 9278.02, + "end": 9278.82, + "probability": 0.8346 + }, + { + "start": 9279.52, + "end": 9279.86, + "probability": 0.8547 + }, + { + "start": 9281.32, + "end": 9283.12, + "probability": 0.9688 + }, + { + "start": 9284.2, + "end": 9284.7, + "probability": 0.9858 + }, + { + "start": 9285.58, + "end": 9286.22, + "probability": 0.9942 + }, + { + "start": 9287.38, + "end": 9287.72, + "probability": 0.9407 + }, + { + "start": 9288.5, + "end": 9288.94, + "probability": 0.9347 + }, + { + "start": 9290.32, + "end": 9290.7, + "probability": 0.9964 + }, + { + "start": 9291.74, + "end": 9292.32, + "probability": 0.9657 + }, + { + "start": 9293.36, + "end": 9294.04, + "probability": 0.9819 + }, + { + "start": 9294.56, + "end": 9295.34, + "probability": 0.9879 + }, + { + "start": 9296.04, + "end": 9296.2, + "probability": 0.6315 + }, + { + "start": 9296.8, + "end": 9297.9, + "probability": 0.4817 + }, + { + "start": 9298.78, + "end": 9300.2, + "probability": 0.7798 + }, + { + "start": 9301.02, + "end": 9302.74, + "probability": 0.9491 + }, + { + "start": 9304.71, + "end": 9306.8, + "probability": 0.977 + }, + { + "start": 9309.6, + "end": 9310.0, + "probability": 0.9862 + }, + { + "start": 9311.36, + "end": 9313.48, + "probability": 0.7292 + }, + { + "start": 9315.02, + "end": 9315.42, + "probability": 0.9876 + }, + { + "start": 9316.5, + "end": 9317.4, + "probability": 0.5264 + }, + { + "start": 9318.82, + "end": 9319.26, + "probability": 0.7419 + }, + { + "start": 9320.5, + "end": 9320.9, + "probability": 0.4425 + }, + { + "start": 9326.02, + "end": 9326.72, + "probability": 0.8039 + }, + { + "start": 9327.6, + "end": 9328.87, + "probability": 0.935 + }, + { + "start": 9330.0, + "end": 9330.36, + "probability": 0.9443 + }, + { + "start": 9331.24, + "end": 9332.22, + "probability": 0.9383 + }, + { + "start": 9333.24, + "end": 9334.0, + "probability": 0.9676 + }, + { + "start": 9334.78, + "end": 9335.62, + "probability": 0.8602 + }, + { + "start": 9340.04, + "end": 9342.34, + "probability": 0.8818 + }, + { + "start": 9343.6, + "end": 9344.04, + "probability": 0.8647 + }, + { + "start": 9345.04, + "end": 9345.72, + "probability": 0.4732 + }, + { + "start": 9346.38, + "end": 9351.32, + "probability": 0.3649 + }, + { + "start": 9352.34, + "end": 9352.7, + "probability": 0.6997 + }, + { + "start": 9354.52, + "end": 9355.22, + "probability": 0.8493 + }, + { + "start": 9356.82, + "end": 9357.24, + "probability": 0.9597 + }, + { + "start": 9358.58, + "end": 9359.28, + "probability": 0.8513 + }, + { + "start": 9361.08, + "end": 9361.52, + "probability": 0.9593 + }, + { + "start": 9362.36, + "end": 9362.98, + "probability": 0.877 + }, + { + "start": 9364.12, + "end": 9364.46, + "probability": 0.86 + }, + { + "start": 9365.28, + "end": 9366.26, + "probability": 0.9759 + }, + { + "start": 9370.24, + "end": 9370.68, + "probability": 0.9126 + }, + { + "start": 9372.88, + "end": 9373.56, + "probability": 0.8503 + }, + { + "start": 9374.62, + "end": 9375.04, + "probability": 0.9556 + }, + { + "start": 9376.32, + "end": 9376.94, + "probability": 0.9852 + }, + { + "start": 9379.06, + "end": 9379.28, + "probability": 0.6945 + }, + { + "start": 9380.34, + "end": 9381.02, + "probability": 0.8077 + }, + { + "start": 9382.1, + "end": 9382.42, + "probability": 0.8597 + }, + { + "start": 9382.96, + "end": 9383.58, + "probability": 0.9081 + }, + { + "start": 9384.96, + "end": 9386.94, + "probability": 0.888 + }, + { + "start": 9387.54, + "end": 9390.28, + "probability": 0.9252 + }, + { + "start": 9391.34, + "end": 9392.08, + "probability": 0.9675 + }, + { + "start": 9393.56, + "end": 9393.98, + "probability": 0.9866 + }, + { + "start": 9394.96, + "end": 9395.4, + "probability": 0.8859 + }, + { + "start": 9397.32, + "end": 9397.72, + "probability": 0.9959 + }, + { + "start": 9399.82, + "end": 9400.46, + "probability": 0.9847 + }, + { + "start": 9401.46, + "end": 9401.88, + "probability": 0.9702 + }, + { + "start": 9403.1, + "end": 9403.6, + "probability": 0.9889 + }, + { + "start": 9405.16, + "end": 9405.58, + "probability": 0.9944 + }, + { + "start": 9406.9, + "end": 9407.56, + "probability": 0.7283 + }, + { + "start": 9410.92, + "end": 9412.56, + "probability": 0.8087 + }, + { + "start": 9413.12, + "end": 9414.78, + "probability": 0.8969 + }, + { + "start": 9415.76, + "end": 9416.16, + "probability": 0.9715 + }, + { + "start": 9417.08, + "end": 9417.8, + "probability": 0.7998 + }, + { + "start": 9419.56, + "end": 9421.76, + "probability": 0.953 + }, + { + "start": 9422.32, + "end": 9425.4, + "probability": 0.9541 + }, + { + "start": 9430.46, + "end": 9430.84, + "probability": 0.8142 + }, + { + "start": 9432.8, + "end": 9434.0, + "probability": 0.8855 + }, + { + "start": 9435.66, + "end": 9436.0, + "probability": 0.9827 + }, + { + "start": 9438.4, + "end": 9439.46, + "probability": 0.7506 + }, + { + "start": 9440.6, + "end": 9442.58, + "probability": 0.7805 + }, + { + "start": 9443.68, + "end": 9444.48, + "probability": 0.9857 + }, + { + "start": 9445.12, + "end": 9447.12, + "probability": 0.967 + }, + { + "start": 9447.68, + "end": 9448.66, + "probability": 0.8354 + }, + { + "start": 9449.56, + "end": 9449.98, + "probability": 0.9971 + }, + { + "start": 9451.24, + "end": 9452.34, + "probability": 0.8887 + }, + { + "start": 9453.2, + "end": 9453.6, + "probability": 0.9964 + }, + { + "start": 9454.94, + "end": 9455.74, + "probability": 0.9244 + }, + { + "start": 9460.34, + "end": 9461.62, + "probability": 0.7722 + }, + { + "start": 9462.36, + "end": 9463.32, + "probability": 0.7017 + }, + { + "start": 9465.62, + "end": 9467.3, + "probability": 0.8257 + }, + { + "start": 9468.44, + "end": 9468.76, + "probability": 0.9214 + }, + { + "start": 9470.16, + "end": 9470.94, + "probability": 0.9206 + }, + { + "start": 9475.64, + "end": 9476.38, + "probability": 0.9647 + }, + { + "start": 9476.96, + "end": 9478.68, + "probability": 0.9456 + }, + { + "start": 9480.6, + "end": 9481.52, + "probability": 0.9908 + }, + { + "start": 9482.34, + "end": 9482.7, + "probability": 0.9821 + }, + { + "start": 9484.32, + "end": 9485.42, + "probability": 0.9489 + }, + { + "start": 9486.8, + "end": 9488.58, + "probability": 0.5151 + }, + { + "start": 9489.44, + "end": 9490.92, + "probability": 0.7252 + }, + { + "start": 9494.94, + "end": 9497.14, + "probability": 0.8103 + }, + { + "start": 9501.72, + "end": 9502.6, + "probability": 0.9247 + }, + { + "start": 9503.24, + "end": 9504.22, + "probability": 0.6655 + }, + { + "start": 9505.9, + "end": 9506.24, + "probability": 0.9935 + }, + { + "start": 9507.62, + "end": 9508.32, + "probability": 0.7563 + }, + { + "start": 9509.54, + "end": 9509.98, + "probability": 0.9146 + }, + { + "start": 9510.9, + "end": 9511.88, + "probability": 0.7619 + }, + { + "start": 9512.56, + "end": 9512.96, + "probability": 0.9904 + }, + { + "start": 9513.5, + "end": 9514.06, + "probability": 0.7116 + }, + { + "start": 9517.64, + "end": 9518.04, + "probability": 0.8503 + }, + { + "start": 9519.08, + "end": 9519.78, + "probability": 0.8582 + }, + { + "start": 9520.42, + "end": 9522.04, + "probability": 0.8781 + }, + { + "start": 9523.86, + "end": 9524.6, + "probability": 0.9818 + }, + { + "start": 9525.2, + "end": 9525.92, + "probability": 0.8944 + }, + { + "start": 9526.96, + "end": 9529.8, + "probability": 0.7634 + }, + { + "start": 9530.82, + "end": 9531.5, + "probability": 0.8079 + }, + { + "start": 9533.98, + "end": 9535.16, + "probability": 0.884 + }, + { + "start": 9536.06, + "end": 9536.94, + "probability": 0.5825 + }, + { + "start": 9538.22, + "end": 9538.76, + "probability": 0.9943 + }, + { + "start": 9539.46, + "end": 9540.14, + "probability": 0.8275 + }, + { + "start": 9541.56, + "end": 9542.38, + "probability": 0.3205 + }, + { + "start": 9549.08, + "end": 9550.18, + "probability": 0.109 + }, + { + "start": 9552.24, + "end": 9555.66, + "probability": 0.6071 + }, + { + "start": 9556.18, + "end": 9557.0, + "probability": 0.8181 + }, + { + "start": 9558.62, + "end": 9560.36, + "probability": 0.9333 + }, + { + "start": 9562.0, + "end": 9562.4, + "probability": 0.9748 + }, + { + "start": 9564.0, + "end": 9564.94, + "probability": 0.858 + }, + { + "start": 9565.94, + "end": 9566.74, + "probability": 0.9816 + }, + { + "start": 9567.26, + "end": 9568.02, + "probability": 0.8419 + }, + { + "start": 9569.18, + "end": 9571.72, + "probability": 0.9106 + }, + { + "start": 9572.6, + "end": 9572.78, + "probability": 0.9615 + }, + { + "start": 9573.92, + "end": 9574.3, + "probability": 0.6009 + }, + { + "start": 9575.64, + "end": 9576.12, + "probability": 0.9307 + }, + { + "start": 9577.06, + "end": 9577.86, + "probability": 0.9773 + }, + { + "start": 9578.76, + "end": 9579.4, + "probability": 0.9896 + }, + { + "start": 9580.58, + "end": 9581.42, + "probability": 0.973 + }, + { + "start": 9582.68, + "end": 9583.88, + "probability": 0.9487 + }, + { + "start": 9589.36, + "end": 9590.12, + "probability": 0.7391 + }, + { + "start": 9591.3, + "end": 9592.06, + "probability": 0.8782 + }, + { + "start": 9593.52, + "end": 9594.04, + "probability": 0.985 + }, + { + "start": 9594.74, + "end": 9595.52, + "probability": 0.9469 + }, + { + "start": 9596.42, + "end": 9596.82, + "probability": 0.9829 + }, + { + "start": 9599.9, + "end": 9600.54, + "probability": 0.3786 + }, + { + "start": 9601.66, + "end": 9602.86, + "probability": 0.8047 + }, + { + "start": 9604.42, + "end": 9604.94, + "probability": 0.9883 + }, + { + "start": 9605.92, + "end": 9606.54, + "probability": 0.9463 + }, + { + "start": 9607.5, + "end": 9607.96, + "probability": 0.9735 + }, + { + "start": 9608.56, + "end": 9609.22, + "probability": 0.9566 + }, + { + "start": 9610.6, + "end": 9612.56, + "probability": 0.8999 + }, + { + "start": 9613.92, + "end": 9614.32, + "probability": 0.8179 + }, + { + "start": 9615.52, + "end": 9616.33, + "probability": 0.6748 + }, + { + "start": 9620.82, + "end": 9622.82, + "probability": 0.8238 + }, + { + "start": 9624.4, + "end": 9625.1, + "probability": 0.8763 + }, + { + "start": 9625.64, + "end": 9626.54, + "probability": 0.905 + }, + { + "start": 9627.36, + "end": 9627.74, + "probability": 0.8296 + }, + { + "start": 9629.24, + "end": 9630.17, + "probability": 0.8668 + }, + { + "start": 9630.96, + "end": 9632.44, + "probability": 0.944 + }, + { + "start": 9633.5, + "end": 9635.62, + "probability": 0.9451 + }, + { + "start": 9636.44, + "end": 9638.16, + "probability": 0.8241 + }, + { + "start": 9640.04, + "end": 9640.46, + "probability": 0.9768 + }, + { + "start": 9646.5, + "end": 9649.06, + "probability": 0.936 + }, + { + "start": 9649.06, + "end": 9651.62, + "probability": 0.9403 + }, + { + "start": 9652.68, + "end": 9653.47, + "probability": 0.5293 + }, + { + "start": 9654.74, + "end": 9656.32, + "probability": 0.8599 + }, + { + "start": 9660.82, + "end": 9661.64, + "probability": 0.8352 + }, + { + "start": 9662.46, + "end": 9663.42, + "probability": 0.5481 + }, + { + "start": 9665.52, + "end": 9668.78, + "probability": 0.8313 + }, + { + "start": 9670.02, + "end": 9670.34, + "probability": 0.7307 + }, + { + "start": 9672.52, + "end": 9673.3, + "probability": 0.8977 + }, + { + "start": 9674.28, + "end": 9676.02, + "probability": 0.9133 + }, + { + "start": 9677.4, + "end": 9678.14, + "probability": 0.9628 + }, + { + "start": 9679.92, + "end": 9681.0, + "probability": 0.981 + }, + { + "start": 9682.62, + "end": 9683.38, + "probability": 0.4867 + }, + { + "start": 9686.6, + "end": 9686.94, + "probability": 0.6862 + }, + { + "start": 9690.16, + "end": 9691.0, + "probability": 0.7241 + }, + { + "start": 9692.1, + "end": 9692.62, + "probability": 0.7712 + }, + { + "start": 9694.24, + "end": 9695.04, + "probability": 0.7746 + }, + { + "start": 9702.56, + "end": 9702.63, + "probability": 0.4948 + }, + { + "start": 9703.68, + "end": 9705.24, + "probability": 0.9081 + }, + { + "start": 9706.04, + "end": 9707.9, + "probability": 0.9262 + }, + { + "start": 9708.5, + "end": 9708.92, + "probability": 0.9443 + }, + { + "start": 9711.64, + "end": 9714.36, + "probability": 0.8665 + }, + { + "start": 9720.7, + "end": 9722.12, + "probability": 0.6368 + }, + { + "start": 9722.7, + "end": 9723.56, + "probability": 0.5891 + }, + { + "start": 9724.44, + "end": 9724.74, + "probability": 0.544 + }, + { + "start": 9727.22, + "end": 9730.0, + "probability": 0.611 + }, + { + "start": 9731.58, + "end": 9732.4, + "probability": 0.8872 + }, + { + "start": 9734.5, + "end": 9736.2, + "probability": 0.9092 + }, + { + "start": 9738.24, + "end": 9738.68, + "probability": 0.9362 + }, + { + "start": 9740.58, + "end": 9742.18, + "probability": 0.9729 + }, + { + "start": 9742.96, + "end": 9744.04, + "probability": 0.5104 + }, + { + "start": 9746.26, + "end": 9746.7, + "probability": 0.58 + }, + { + "start": 9748.66, + "end": 9749.32, + "probability": 0.7099 + }, + { + "start": 9751.63, + "end": 9754.02, + "probability": 0.9487 + }, + { + "start": 9755.56, + "end": 9756.86, + "probability": 0.9856 + }, + { + "start": 9757.78, + "end": 9758.76, + "probability": 0.9865 + }, + { + "start": 9760.23, + "end": 9762.7, + "probability": 0.9771 + }, + { + "start": 9764.33, + "end": 9767.1, + "probability": 0.9067 + }, + { + "start": 9768.32, + "end": 9770.74, + "probability": 0.8184 + }, + { + "start": 9771.28, + "end": 9772.28, + "probability": 0.8638 + }, + { + "start": 9773.02, + "end": 9773.32, + "probability": 0.9871 + }, + { + "start": 9775.8, + "end": 9776.4, + "probability": 0.5165 + }, + { + "start": 9778.7, + "end": 9779.12, + "probability": 0.863 + }, + { + "start": 9781.56, + "end": 9782.64, + "probability": 0.6925 + }, + { + "start": 9783.22, + "end": 9784.92, + "probability": 0.9595 + }, + { + "start": 9785.86, + "end": 9786.62, + "probability": 0.9443 + }, + { + "start": 9787.18, + "end": 9787.66, + "probability": 0.9661 + }, + { + "start": 9788.4, + "end": 9789.16, + "probability": 0.9508 + }, + { + "start": 9792.78, + "end": 9793.16, + "probability": 0.5379 + }, + { + "start": 9796.7, + "end": 9797.58, + "probability": 0.582 + }, + { + "start": 9799.24, + "end": 9799.48, + "probability": 0.5679 + }, + { + "start": 9801.22, + "end": 9802.02, + "probability": 0.5239 + }, + { + "start": 9803.88, + "end": 9806.04, + "probability": 0.7838 + }, + { + "start": 9808.34, + "end": 9808.72, + "probability": 0.894 + }, + { + "start": 9810.7, + "end": 9811.74, + "probability": 0.7712 + }, + { + "start": 9812.78, + "end": 9813.2, + "probability": 0.8789 + }, + { + "start": 9815.76, + "end": 9816.56, + "probability": 0.9514 + }, + { + "start": 9817.58, + "end": 9818.1, + "probability": 0.991 + }, + { + "start": 9819.36, + "end": 9820.02, + "probability": 0.8847 + }, + { + "start": 9821.8, + "end": 9822.14, + "probability": 0.9707 + }, + { + "start": 9824.9, + "end": 9825.76, + "probability": 0.7537 + }, + { + "start": 9827.88, + "end": 9830.06, + "probability": 0.9341 + }, + { + "start": 9830.74, + "end": 9831.54, + "probability": 0.7617 + }, + { + "start": 9832.6, + "end": 9832.94, + "probability": 0.9246 + }, + { + "start": 9834.82, + "end": 9835.78, + "probability": 0.8154 + }, + { + "start": 9837.37, + "end": 9840.16, + "probability": 0.8985 + }, + { + "start": 9842.72, + "end": 9845.82, + "probability": 0.8995 + }, + { + "start": 9850.42, + "end": 9850.86, + "probability": 0.5902 + }, + { + "start": 9853.92, + "end": 9854.26, + "probability": 0.7485 + }, + { + "start": 9855.94, + "end": 9856.98, + "probability": 0.9304 + }, + { + "start": 9860.34, + "end": 9861.06, + "probability": 0.7628 + }, + { + "start": 9862.02, + "end": 9862.48, + "probability": 0.7739 + }, + { + "start": 9864.94, + "end": 9865.9, + "probability": 0.8172 + }, + { + "start": 9866.78, + "end": 9867.26, + "probability": 0.9441 + }, + { + "start": 9869.08, + "end": 9870.02, + "probability": 0.6324 + }, + { + "start": 9871.62, + "end": 9871.98, + "probability": 0.9214 + }, + { + "start": 9874.24, + "end": 9877.74, + "probability": 0.7811 + }, + { + "start": 9878.58, + "end": 9880.44, + "probability": 0.7969 + }, + { + "start": 9882.37, + "end": 9886.1, + "probability": 0.977 + }, + { + "start": 9887.1, + "end": 9887.74, + "probability": 0.0142 + }, + { + "start": 9889.24, + "end": 9890.06, + "probability": 0.8562 + }, + { + "start": 9891.38, + "end": 9892.38, + "probability": 0.6722 + }, + { + "start": 9893.1, + "end": 9894.0, + "probability": 0.5025 + }, + { + "start": 9894.98, + "end": 9895.44, + "probability": 0.8966 + }, + { + "start": 9896.54, + "end": 9896.88, + "probability": 0.7291 + }, + { + "start": 9906.22, + "end": 9906.68, + "probability": 0.5349 + }, + { + "start": 9916.24, + "end": 9919.14, + "probability": 0.7521 + }, + { + "start": 9920.2, + "end": 9921.26, + "probability": 0.3761 + }, + { + "start": 9921.26, + "end": 9921.66, + "probability": 0.3807 + }, + { + "start": 9921.68, + "end": 9921.9, + "probability": 0.915 + }, + { + "start": 9923.78, + "end": 9923.8, + "probability": 0.041 + }, + { + "start": 9927.3, + "end": 9931.48, + "probability": 0.0749 + }, + { + "start": 9935.6, + "end": 9937.06, + "probability": 0.0617 + }, + { + "start": 9938.42, + "end": 9939.32, + "probability": 0.0214 + }, + { + "start": 9942.94, + "end": 9945.22, + "probability": 0.0037 + }, + { + "start": 9945.9, + "end": 9948.12, + "probability": 0.0682 + }, + { + "start": 9949.86, + "end": 9950.06, + "probability": 0.0106 + }, + { + "start": 9952.94, + "end": 9954.76, + "probability": 0.0877 + }, + { + "start": 9998.35, + "end": 10002.63, + "probability": 0.0194 + }, + { + "start": 10014.0, + "end": 10014.0, + "probability": 0.0 + }, + { + "start": 10014.0, + "end": 10014.0, + "probability": 0.0 + }, + { + "start": 10014.66, + "end": 10022.46, + "probability": 0.0802 + }, + { + "start": 10023.42, + "end": 10024.06, + "probability": 0.0925 + }, + { + "start": 10070.84, + "end": 10071.82, + "probability": 0.0018 + }, + { + "start": 10088.08, + "end": 10088.18, + "probability": 0.7946 + }, + { + "start": 10092.36, + "end": 10093.22, + "probability": 0.521 + }, + { + "start": 10098.46, + "end": 10099.1, + "probability": 0.6339 + }, + { + "start": 10099.1, + "end": 10101.76, + "probability": 0.8862 + }, + { + "start": 10101.96, + "end": 10105.04, + "probability": 0.9939 + }, + { + "start": 10138.0, + "end": 10138.0, + "probability": 0.0 + }, + { + "start": 10138.0, + "end": 10138.0, + "probability": 0.0 + }, + { + "start": 10138.0, + "end": 10138.0, + "probability": 0.0 + }, + { + "start": 10138.0, + "end": 10138.0, + "probability": 0.0 + }, + { + "start": 10138.0, + "end": 10138.0, + "probability": 0.0 + }, + { + "start": 10138.0, + "end": 10138.0, + "probability": 0.0 + }, + { + "start": 10138.0, + "end": 10138.0, + "probability": 0.0 + }, + { + "start": 10151.48, + "end": 10156.19, + "probability": 0.4923 + }, + { + "start": 10156.58, + "end": 10157.0, + "probability": 0.0909 + }, + { + "start": 10157.08, + "end": 10157.48, + "probability": 0.0413 + }, + { + "start": 10158.2, + "end": 10160.36, + "probability": 0.0135 + }, + { + "start": 10160.46, + "end": 10161.34, + "probability": 0.0975 + }, + { + "start": 10161.36, + "end": 10161.36, + "probability": 0.0436 + }, + { + "start": 10161.36, + "end": 10162.98, + "probability": 0.201 + }, + { + "start": 10163.62, + "end": 10164.5, + "probability": 0.0352 + }, + { + "start": 10165.26, + "end": 10165.56, + "probability": 0.2219 + }, + { + "start": 10184.94, + "end": 10187.92, + "probability": 0.0176 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.0, + "end": 10264.0, + "probability": 0.0 + }, + { + "start": 10264.04, + "end": 10264.04, + "probability": 0.1788 + }, + { + "start": 10264.04, + "end": 10264.38, + "probability": 0.0327 + }, + { + "start": 10265.18, + "end": 10265.96, + "probability": 0.6318 + }, + { + "start": 10266.14, + "end": 10267.02, + "probability": 0.6942 + }, + { + "start": 10267.3, + "end": 10269.72, + "probability": 0.9066 + }, + { + "start": 10270.16, + "end": 10272.76, + "probability": 0.9647 + }, + { + "start": 10272.76, + "end": 10276.18, + "probability": 0.9979 + }, + { + "start": 10276.72, + "end": 10279.46, + "probability": 0.6465 + }, + { + "start": 10280.46, + "end": 10282.12, + "probability": 0.8394 + }, + { + "start": 10282.26, + "end": 10286.82, + "probability": 0.4875 + }, + { + "start": 10287.4, + "end": 10288.06, + "probability": 0.6104 + }, + { + "start": 10288.56, + "end": 10289.92, + "probability": 0.9971 + }, + { + "start": 10290.16, + "end": 10292.52, + "probability": 0.7122 + }, + { + "start": 10292.62, + "end": 10294.06, + "probability": 0.7394 + }, + { + "start": 10294.16, + "end": 10294.78, + "probability": 0.9751 + }, + { + "start": 10295.56, + "end": 10298.84, + "probability": 0.968 + }, + { + "start": 10299.44, + "end": 10302.58, + "probability": 0.9977 + }, + { + "start": 10302.64, + "end": 10306.54, + "probability": 0.783 + }, + { + "start": 10308.2, + "end": 10309.14, + "probability": 0.806 + }, + { + "start": 10309.7, + "end": 10312.74, + "probability": 0.6971 + }, + { + "start": 10312.92, + "end": 10315.34, + "probability": 0.9248 + }, + { + "start": 10315.8, + "end": 10318.06, + "probability": 0.8836 + }, + { + "start": 10318.54, + "end": 10324.62, + "probability": 0.9882 + }, + { + "start": 10324.62, + "end": 10330.04, + "probability": 0.9966 + }, + { + "start": 10330.86, + "end": 10332.44, + "probability": 0.8239 + }, + { + "start": 10334.32, + "end": 10339.48, + "probability": 0.9976 + }, + { + "start": 10340.06, + "end": 10340.14, + "probability": 0.4861 + }, + { + "start": 10340.26, + "end": 10341.44, + "probability": 0.4773 + }, + { + "start": 10341.86, + "end": 10344.42, + "probability": 0.3743 + }, + { + "start": 10344.58, + "end": 10345.52, + "probability": 0.7111 + }, + { + "start": 10345.6, + "end": 10346.02, + "probability": 0.5083 + }, + { + "start": 10346.16, + "end": 10348.28, + "probability": 0.9609 + }, + { + "start": 10352.91, + "end": 10356.4, + "probability": 0.7661 + }, + { + "start": 10356.94, + "end": 10360.1, + "probability": 0.5676 + }, + { + "start": 10360.54, + "end": 10362.5, + "probability": 0.9909 + }, + { + "start": 10362.6, + "end": 10363.46, + "probability": 0.3676 + }, + { + "start": 10363.58, + "end": 10364.34, + "probability": 0.6659 + }, + { + "start": 10364.4, + "end": 10365.1, + "probability": 0.7351 + }, + { + "start": 10365.12, + "end": 10366.18, + "probability": 0.525 + }, + { + "start": 10366.3, + "end": 10367.58, + "probability": 0.8129 + }, + { + "start": 10368.06, + "end": 10371.8, + "probability": 0.8949 + }, + { + "start": 10372.38, + "end": 10372.5, + "probability": 0.4966 + }, + { + "start": 10372.5, + "end": 10374.5, + "probability": 0.8003 + }, + { + "start": 10374.5, + "end": 10374.52, + "probability": 0.259 + }, + { + "start": 10374.62, + "end": 10378.5, + "probability": 0.8548 + }, + { + "start": 10378.6, + "end": 10379.36, + "probability": 0.7613 + }, + { + "start": 10379.64, + "end": 10383.26, + "probability": 0.8402 + }, + { + "start": 10383.78, + "end": 10385.32, + "probability": 0.8356 + }, + { + "start": 10385.32, + "end": 10385.32, + "probability": 0.3225 + }, + { + "start": 10385.32, + "end": 10388.41, + "probability": 0.7208 + }, + { + "start": 10390.32, + "end": 10390.42, + "probability": 0.0116 + }, + { + "start": 10390.42, + "end": 10390.42, + "probability": 0.0169 + }, + { + "start": 10390.42, + "end": 10391.88, + "probability": 0.4741 + }, + { + "start": 10391.92, + "end": 10392.74, + "probability": 0.8113 + }, + { + "start": 10392.86, + "end": 10395.5, + "probability": 0.8652 + }, + { + "start": 10396.06, + "end": 10396.06, + "probability": 0.1197 + }, + { + "start": 10396.06, + "end": 10397.5, + "probability": 0.8525 + }, + { + "start": 10397.64, + "end": 10400.44, + "probability": 0.9665 + }, + { + "start": 10400.54, + "end": 10401.82, + "probability": 0.6712 + }, + { + "start": 10402.36, + "end": 10402.36, + "probability": 0.0027 + }, + { + "start": 10402.36, + "end": 10404.36, + "probability": 0.6956 + }, + { + "start": 10404.46, + "end": 10407.16, + "probability": 0.9778 + }, + { + "start": 10407.3, + "end": 10408.46, + "probability": 0.9753 + }, + { + "start": 10408.98, + "end": 10408.98, + "probability": 0.1584 + }, + { + "start": 10408.98, + "end": 10411.48, + "probability": 0.9073 + }, + { + "start": 10411.5, + "end": 10412.2, + "probability": 0.8761 + }, + { + "start": 10412.56, + "end": 10416.76, + "probability": 0.9576 + }, + { + "start": 10417.18, + "end": 10420.16, + "probability": 0.9869 + }, + { + "start": 10420.3, + "end": 10421.5, + "probability": 0.9587 + }, + { + "start": 10422.28, + "end": 10426.6, + "probability": 0.8025 + }, + { + "start": 10427.4, + "end": 10429.18, + "probability": 0.9775 + }, + { + "start": 10429.28, + "end": 10432.4, + "probability": 0.5863 + }, + { + "start": 10432.54, + "end": 10435.76, + "probability": 0.9788 + }, + { + "start": 10436.32, + "end": 10440.16, + "probability": 0.9958 + }, + { + "start": 10440.82, + "end": 10442.06, + "probability": 0.4266 + }, + { + "start": 10442.58, + "end": 10445.08, + "probability": 0.8649 + }, + { + "start": 10446.46, + "end": 10446.62, + "probability": 0.3667 + }, + { + "start": 10446.72, + "end": 10450.99, + "probability": 0.9949 + }, + { + "start": 10452.06, + "end": 10453.9, + "probability": 0.6469 + }, + { + "start": 10454.44, + "end": 10456.74, + "probability": 0.9653 + }, + { + "start": 10457.44, + "end": 10458.5, + "probability": 0.6142 + }, + { + "start": 10458.58, + "end": 10461.52, + "probability": 0.9675 + }, + { + "start": 10462.72, + "end": 10465.9, + "probability": 0.9236 + }, + { + "start": 10466.59, + "end": 10470.82, + "probability": 0.9054 + }, + { + "start": 10471.12, + "end": 10471.3, + "probability": 0.3886 + }, + { + "start": 10471.88, + "end": 10472.32, + "probability": 0.5234 + }, + { + "start": 10472.4, + "end": 10473.8, + "probability": 0.8444 + }, + { + "start": 10473.98, + "end": 10475.19, + "probability": 0.4753 + }, + { + "start": 10475.78, + "end": 10477.32, + "probability": 0.8871 + }, + { + "start": 10478.04, + "end": 10479.42, + "probability": 0.8492 + }, + { + "start": 10482.02, + "end": 10483.5, + "probability": 0.9463 + }, + { + "start": 10488.2, + "end": 10492.68, + "probability": 0.8204 + }, + { + "start": 10493.56, + "end": 10495.24, + "probability": 0.7744 + }, + { + "start": 10495.7, + "end": 10499.78, + "probability": 0.9762 + }, + { + "start": 10499.9, + "end": 10502.06, + "probability": 0.7997 + }, + { + "start": 10502.68, + "end": 10508.12, + "probability": 0.9824 + }, + { + "start": 10508.28, + "end": 10512.72, + "probability": 0.9894 + }, + { + "start": 10512.72, + "end": 10515.32, + "probability": 0.9966 + }, + { + "start": 10516.14, + "end": 10521.94, + "probability": 0.9911 + }, + { + "start": 10521.94, + "end": 10528.16, + "probability": 0.9917 + }, + { + "start": 10528.48, + "end": 10529.1, + "probability": 0.8614 + }, + { + "start": 10529.24, + "end": 10531.66, + "probability": 0.9321 + }, + { + "start": 10532.26, + "end": 10534.14, + "probability": 0.9911 + }, + { + "start": 10534.24, + "end": 10536.38, + "probability": 0.9759 + }, + { + "start": 10536.82, + "end": 10541.24, + "probability": 0.9925 + }, + { + "start": 10542.76, + "end": 10543.92, + "probability": 0.029 + }, + { + "start": 10544.78, + "end": 10545.96, + "probability": 0.3028 + }, + { + "start": 10546.86, + "end": 10548.61, + "probability": 0.8804 + }, + { + "start": 10548.74, + "end": 10550.78, + "probability": 0.7206 + }, + { + "start": 10550.78, + "end": 10550.88, + "probability": 0.0237 + }, + { + "start": 10551.64, + "end": 10553.14, + "probability": 0.092 + }, + { + "start": 10553.16, + "end": 10555.72, + "probability": 0.3189 + }, + { + "start": 10555.92, + "end": 10556.9, + "probability": 0.5173 + }, + { + "start": 10556.96, + "end": 10556.96, + "probability": 0.177 + }, + { + "start": 10556.96, + "end": 10557.16, + "probability": 0.4765 + }, + { + "start": 10557.34, + "end": 10559.4, + "probability": 0.593 + }, + { + "start": 10559.52, + "end": 10559.9, + "probability": 0.4991 + }, + { + "start": 10560.12, + "end": 10561.12, + "probability": 0.9123 + }, + { + "start": 10561.28, + "end": 10562.66, + "probability": 0.9183 + }, + { + "start": 10562.68, + "end": 10563.3, + "probability": 0.7567 + }, + { + "start": 10563.46, + "end": 10564.2, + "probability": 0.6773 + }, + { + "start": 10565.44, + "end": 10568.58, + "probability": 0.6375 + }, + { + "start": 10568.78, + "end": 10569.52, + "probability": 0.8075 + }, + { + "start": 10570.06, + "end": 10570.32, + "probability": 0.2807 + }, + { + "start": 10570.32, + "end": 10570.32, + "probability": 0.1831 + }, + { + "start": 10570.32, + "end": 10570.6, + "probability": 0.6858 + }, + { + "start": 10570.8, + "end": 10571.74, + "probability": 0.7032 + }, + { + "start": 10571.76, + "end": 10572.58, + "probability": 0.6026 + }, + { + "start": 10572.7, + "end": 10573.06, + "probability": 0.9194 + }, + { + "start": 10573.14, + "end": 10574.5, + "probability": 0.5919 + }, + { + "start": 10574.64, + "end": 10576.16, + "probability": 0.967 + }, + { + "start": 10576.4, + "end": 10576.5, + "probability": 0.2025 + }, + { + "start": 10577.46, + "end": 10577.56, + "probability": 0.4754 + }, + { + "start": 10578.3, + "end": 10579.84, + "probability": 0.0601 + }, + { + "start": 10579.84, + "end": 10579.84, + "probability": 0.0536 + }, + { + "start": 10579.84, + "end": 10580.94, + "probability": 0.4982 + }, + { + "start": 10581.14, + "end": 10581.18, + "probability": 0.3375 + }, + { + "start": 10581.18, + "end": 10583.6, + "probability": 0.8533 + }, + { + "start": 10584.86, + "end": 10585.04, + "probability": 0.2063 + }, + { + "start": 10585.04, + "end": 10586.98, + "probability": 0.7172 + }, + { + "start": 10587.58, + "end": 10589.08, + "probability": 0.7827 + }, + { + "start": 10590.0, + "end": 10593.24, + "probability": 0.9852 + }, + { + "start": 10594.04, + "end": 10597.3, + "probability": 0.8124 + }, + { + "start": 10597.78, + "end": 10599.51, + "probability": 0.9722 + }, + { + "start": 10599.66, + "end": 10600.92, + "probability": 0.8056 + }, + { + "start": 10601.4, + "end": 10602.26, + "probability": 0.9821 + }, + { + "start": 10602.38, + "end": 10603.24, + "probability": 0.9907 + }, + { + "start": 10603.3, + "end": 10604.08, + "probability": 0.9826 + }, + { + "start": 10604.16, + "end": 10604.96, + "probability": 0.9655 + }, + { + "start": 10605.6, + "end": 10607.22, + "probability": 0.6611 + }, + { + "start": 10607.46, + "end": 10610.88, + "probability": 0.9862 + }, + { + "start": 10611.26, + "end": 10613.82, + "probability": 0.6911 + }, + { + "start": 10614.0, + "end": 10615.7, + "probability": 0.9124 + }, + { + "start": 10616.22, + "end": 10618.1, + "probability": 0.9487 + }, + { + "start": 10618.62, + "end": 10622.72, + "probability": 0.9831 + }, + { + "start": 10622.86, + "end": 10623.49, + "probability": 0.9817 + }, + { + "start": 10624.32, + "end": 10624.82, + "probability": 0.813 + }, + { + "start": 10625.2, + "end": 10626.36, + "probability": 0.8217 + }, + { + "start": 10626.72, + "end": 10631.62, + "probability": 0.9846 + }, + { + "start": 10632.36, + "end": 10634.5, + "probability": 0.7121 + }, + { + "start": 10634.84, + "end": 10637.61, + "probability": 0.9539 + }, + { + "start": 10638.3, + "end": 10640.64, + "probability": 0.993 + }, + { + "start": 10640.64, + "end": 10642.22, + "probability": 0.7607 + }, + { + "start": 10642.32, + "end": 10643.78, + "probability": 0.9956 + }, + { + "start": 10644.62, + "end": 10647.14, + "probability": 0.9361 + }, + { + "start": 10647.32, + "end": 10648.08, + "probability": 0.8313 + }, + { + "start": 10648.26, + "end": 10648.66, + "probability": 0.7435 + }, + { + "start": 10649.6, + "end": 10653.04, + "probability": 0.9639 + }, + { + "start": 10653.04, + "end": 10659.72, + "probability": 0.9826 + }, + { + "start": 10660.14, + "end": 10662.0, + "probability": 0.9946 + }, + { + "start": 10662.56, + "end": 10663.86, + "probability": 0.9521 + }, + { + "start": 10664.36, + "end": 10664.96, + "probability": 0.6455 + }, + { + "start": 10665.16, + "end": 10669.64, + "probability": 0.9951 + }, + { + "start": 10669.64, + "end": 10673.14, + "probability": 0.9854 + }, + { + "start": 10673.96, + "end": 10675.4, + "probability": 0.7476 + }, + { + "start": 10675.52, + "end": 10677.4, + "probability": 0.9918 + }, + { + "start": 10677.56, + "end": 10679.68, + "probability": 0.9881 + }, + { + "start": 10679.86, + "end": 10680.5, + "probability": 0.4267 + }, + { + "start": 10680.86, + "end": 10683.36, + "probability": 0.964 + }, + { + "start": 10683.76, + "end": 10684.12, + "probability": 0.8469 + }, + { + "start": 10684.18, + "end": 10685.46, + "probability": 0.6582 + }, + { + "start": 10685.52, + "end": 10686.98, + "probability": 0.8633 + }, + { + "start": 10687.98, + "end": 10688.28, + "probability": 0.645 + }, + { + "start": 10688.32, + "end": 10688.94, + "probability": 0.4045 + }, + { + "start": 10689.18, + "end": 10689.78, + "probability": 0.6528 + }, + { + "start": 10697.4, + "end": 10697.42, + "probability": 0.0864 + }, + { + "start": 10697.42, + "end": 10698.54, + "probability": 0.7163 + }, + { + "start": 10698.62, + "end": 10700.04, + "probability": 0.9246 + }, + { + "start": 10700.18, + "end": 10700.42, + "probability": 0.7987 + }, + { + "start": 10701.18, + "end": 10702.76, + "probability": 0.2155 + }, + { + "start": 10702.82, + "end": 10705.08, + "probability": 0.2368 + }, + { + "start": 10705.96, + "end": 10707.92, + "probability": 0.5457 + }, + { + "start": 10707.92, + "end": 10709.64, + "probability": 0.1743 + }, + { + "start": 10710.1, + "end": 10710.84, + "probability": 0.6596 + }, + { + "start": 10711.56, + "end": 10712.28, + "probability": 0.5335 + }, + { + "start": 10712.36, + "end": 10712.78, + "probability": 0.2021 + }, + { + "start": 10713.56, + "end": 10714.9, + "probability": 0.8577 + }, + { + "start": 10715.46, + "end": 10716.38, + "probability": 0.6785 + }, + { + "start": 10716.82, + "end": 10719.94, + "probability": 0.9185 + }, + { + "start": 10720.12, + "end": 10723.16, + "probability": 0.968 + }, + { + "start": 10723.22, + "end": 10725.2, + "probability": 0.9827 + }, + { + "start": 10725.7, + "end": 10726.64, + "probability": 0.5771 + }, + { + "start": 10728.06, + "end": 10728.08, + "probability": 0.0429 + }, + { + "start": 10728.66, + "end": 10729.27, + "probability": 0.8379 + }, + { + "start": 10730.02, + "end": 10730.84, + "probability": 0.5495 + }, + { + "start": 10730.98, + "end": 10732.48, + "probability": 0.8415 + }, + { + "start": 10732.72, + "end": 10734.18, + "probability": 0.9962 + }, + { + "start": 10735.96, + "end": 10740.48, + "probability": 0.9819 + }, + { + "start": 10740.74, + "end": 10743.26, + "probability": 0.9351 + }, + { + "start": 10743.98, + "end": 10746.06, + "probability": 0.9146 + }, + { + "start": 10747.48, + "end": 10750.9, + "probability": 0.995 + }, + { + "start": 10750.9, + "end": 10754.3, + "probability": 0.996 + }, + { + "start": 10754.38, + "end": 10758.72, + "probability": 0.9946 + }, + { + "start": 10759.0, + "end": 10759.7, + "probability": 0.8622 + }, + { + "start": 10761.0, + "end": 10764.78, + "probability": 0.9919 + }, + { + "start": 10765.3, + "end": 10766.81, + "probability": 0.9913 + }, + { + "start": 10767.46, + "end": 10771.16, + "probability": 0.9691 + }, + { + "start": 10771.62, + "end": 10772.72, + "probability": 0.8385 + }, + { + "start": 10773.06, + "end": 10773.79, + "probability": 0.8127 + }, + { + "start": 10774.12, + "end": 10778.48, + "probability": 0.9829 + }, + { + "start": 10778.74, + "end": 10782.24, + "probability": 0.9734 + }, + { + "start": 10783.22, + "end": 10787.72, + "probability": 0.8582 + }, + { + "start": 10787.78, + "end": 10788.38, + "probability": 0.7707 + }, + { + "start": 10788.92, + "end": 10789.28, + "probability": 0.4995 + }, + { + "start": 10790.06, + "end": 10792.54, + "probability": 0.8274 + }, + { + "start": 10793.24, + "end": 10793.94, + "probability": 0.822 + }, + { + "start": 10794.02, + "end": 10795.32, + "probability": 0.8112 + }, + { + "start": 10795.38, + "end": 10795.76, + "probability": 0.9552 + }, + { + "start": 10795.88, + "end": 10797.22, + "probability": 0.9891 + }, + { + "start": 10797.24, + "end": 10797.8, + "probability": 0.7333 + }, + { + "start": 10798.02, + "end": 10799.92, + "probability": 0.9937 + }, + { + "start": 10800.6, + "end": 10803.0, + "probability": 0.9818 + }, + { + "start": 10803.8, + "end": 10807.08, + "probability": 0.9985 + }, + { + "start": 10807.72, + "end": 10808.64, + "probability": 0.9052 + }, + { + "start": 10810.28, + "end": 10811.84, + "probability": 0.9468 + }, + { + "start": 10812.18, + "end": 10814.9, + "probability": 0.9983 + }, + { + "start": 10815.36, + "end": 10816.14, + "probability": 0.9932 + }, + { + "start": 10816.72, + "end": 10817.18, + "probability": 0.9099 + }, + { + "start": 10817.28, + "end": 10817.54, + "probability": 0.9351 + }, + { + "start": 10817.62, + "end": 10818.0, + "probability": 0.5833 + }, + { + "start": 10818.04, + "end": 10818.49, + "probability": 0.9543 + }, + { + "start": 10818.58, + "end": 10819.1, + "probability": 0.9193 + }, + { + "start": 10819.52, + "end": 10821.16, + "probability": 0.9878 + }, + { + "start": 10821.9, + "end": 10823.18, + "probability": 0.9589 + }, + { + "start": 10823.54, + "end": 10826.0, + "probability": 0.8375 + }, + { + "start": 10826.56, + "end": 10828.28, + "probability": 0.9989 + }, + { + "start": 10828.44, + "end": 10829.76, + "probability": 0.9523 + }, + { + "start": 10830.48, + "end": 10831.18, + "probability": 0.8502 + }, + { + "start": 10831.44, + "end": 10833.05, + "probability": 0.8688 + }, + { + "start": 10833.95, + "end": 10835.64, + "probability": 0.9696 + }, + { + "start": 10836.3, + "end": 10837.54, + "probability": 0.9914 + }, + { + "start": 10838.24, + "end": 10839.18, + "probability": 0.9998 + }, + { + "start": 10840.4, + "end": 10844.52, + "probability": 0.9881 + }, + { + "start": 10845.02, + "end": 10847.6, + "probability": 0.736 + }, + { + "start": 10847.64, + "end": 10848.3, + "probability": 0.8811 + }, + { + "start": 10848.92, + "end": 10850.8, + "probability": 0.9547 + }, + { + "start": 10852.2, + "end": 10856.56, + "probability": 0.9567 + }, + { + "start": 10857.12, + "end": 10857.6, + "probability": 0.9321 + }, + { + "start": 10858.58, + "end": 10859.76, + "probability": 0.9989 + }, + { + "start": 10860.28, + "end": 10862.88, + "probability": 0.8843 + }, + { + "start": 10864.42, + "end": 10869.38, + "probability": 0.5608 + }, + { + "start": 10869.72, + "end": 10872.56, + "probability": 0.9849 + }, + { + "start": 10872.6, + "end": 10873.18, + "probability": 0.6194 + }, + { + "start": 10874.16, + "end": 10876.68, + "probability": 0.9926 + }, + { + "start": 10877.66, + "end": 10879.52, + "probability": 0.9987 + }, + { + "start": 10880.14, + "end": 10881.9, + "probability": 0.999 + }, + { + "start": 10882.34, + "end": 10888.66, + "probability": 0.9681 + }, + { + "start": 10889.38, + "end": 10890.06, + "probability": 0.9312 + }, + { + "start": 10890.16, + "end": 10890.54, + "probability": 0.6258 + }, + { + "start": 10890.6, + "end": 10892.26, + "probability": 0.9818 + }, + { + "start": 10892.86, + "end": 10895.08, + "probability": 0.9978 + }, + { + "start": 10895.22, + "end": 10896.84, + "probability": 0.9387 + }, + { + "start": 10896.94, + "end": 10897.78, + "probability": 0.8106 + }, + { + "start": 10897.92, + "end": 10897.92, + "probability": 0.6945 + }, + { + "start": 10898.24, + "end": 10900.8, + "probability": 0.999 + }, + { + "start": 10900.94, + "end": 10902.64, + "probability": 0.8871 + }, + { + "start": 10903.72, + "end": 10905.22, + "probability": 0.8018 + }, + { + "start": 10905.42, + "end": 10907.74, + "probability": 0.9268 + }, + { + "start": 10908.0, + "end": 10908.22, + "probability": 0.9044 + }, + { + "start": 10908.84, + "end": 10910.42, + "probability": 0.9596 + }, + { + "start": 10910.68, + "end": 10912.46, + "probability": 0.7739 + }, + { + "start": 10926.7, + "end": 10927.72, + "probability": 0.5789 + }, + { + "start": 10927.8, + "end": 10928.74, + "probability": 0.6001 + }, + { + "start": 10930.02, + "end": 10931.88, + "probability": 0.9902 + }, + { + "start": 10933.06, + "end": 10935.86, + "probability": 0.9921 + }, + { + "start": 10936.94, + "end": 10939.5, + "probability": 0.8876 + }, + { + "start": 10940.18, + "end": 10943.18, + "probability": 0.8914 + }, + { + "start": 10943.7, + "end": 10945.54, + "probability": 0.9919 + }, + { + "start": 10946.18, + "end": 10947.74, + "probability": 0.9817 + }, + { + "start": 10949.5, + "end": 10951.56, + "probability": 0.9547 + }, + { + "start": 10952.62, + "end": 10956.38, + "probability": 0.978 + }, + { + "start": 10957.14, + "end": 10959.1, + "probability": 0.9272 + }, + { + "start": 10959.74, + "end": 10960.84, + "probability": 0.5712 + }, + { + "start": 10962.06, + "end": 10965.04, + "probability": 0.9904 + }, + { + "start": 10966.22, + "end": 10969.04, + "probability": 0.973 + }, + { + "start": 10969.42, + "end": 10972.28, + "probability": 0.9458 + }, + { + "start": 10974.42, + "end": 10978.9, + "probability": 0.9749 + }, + { + "start": 10979.56, + "end": 10981.06, + "probability": 0.9727 + }, + { + "start": 10981.74, + "end": 10985.68, + "probability": 0.9467 + }, + { + "start": 10986.34, + "end": 10988.5, + "probability": 0.8157 + }, + { + "start": 10989.62, + "end": 10992.86, + "probability": 0.9259 + }, + { + "start": 10993.98, + "end": 10994.64, + "probability": 0.8831 + }, + { + "start": 10995.32, + "end": 11000.28, + "probability": 0.9847 + }, + { + "start": 11000.88, + "end": 11002.1, + "probability": 0.7537 + }, + { + "start": 11002.7, + "end": 11004.78, + "probability": 0.6577 + }, + { + "start": 11005.5, + "end": 11006.66, + "probability": 0.9312 + }, + { + "start": 11007.88, + "end": 11012.82, + "probability": 0.9762 + }, + { + "start": 11013.96, + "end": 11020.88, + "probability": 0.9966 + }, + { + "start": 11021.92, + "end": 11024.94, + "probability": 0.9532 + }, + { + "start": 11025.5, + "end": 11028.94, + "probability": 0.9789 + }, + { + "start": 11030.12, + "end": 11033.36, + "probability": 0.9348 + }, + { + "start": 11034.48, + "end": 11035.74, + "probability": 0.9662 + }, + { + "start": 11036.78, + "end": 11040.1, + "probability": 0.991 + }, + { + "start": 11040.1, + "end": 11044.12, + "probability": 0.999 + }, + { + "start": 11044.96, + "end": 11047.18, + "probability": 0.8512 + }, + { + "start": 11048.14, + "end": 11052.3, + "probability": 0.9836 + }, + { + "start": 11053.28, + "end": 11054.82, + "probability": 0.8904 + }, + { + "start": 11056.88, + "end": 11058.76, + "probability": 0.9231 + }, + { + "start": 11059.7, + "end": 11060.7, + "probability": 0.8531 + }, + { + "start": 11061.96, + "end": 11062.32, + "probability": 0.7658 + }, + { + "start": 11062.48, + "end": 11068.22, + "probability": 0.9397 + }, + { + "start": 11068.82, + "end": 11069.56, + "probability": 0.9662 + }, + { + "start": 11070.34, + "end": 11072.2, + "probability": 0.9073 + }, + { + "start": 11073.02, + "end": 11073.12, + "probability": 0.8098 + }, + { + "start": 11073.64, + "end": 11074.46, + "probability": 0.8549 + }, + { + "start": 11075.5, + "end": 11080.14, + "probability": 0.7603 + }, + { + "start": 11080.86, + "end": 11081.46, + "probability": 0.9143 + }, + { + "start": 11082.14, + "end": 11083.36, + "probability": 0.7657 + }, + { + "start": 11084.22, + "end": 11084.98, + "probability": 0.9155 + }, + { + "start": 11085.56, + "end": 11087.44, + "probability": 0.9363 + }, + { + "start": 11088.46, + "end": 11090.84, + "probability": 0.9638 + }, + { + "start": 11091.88, + "end": 11092.46, + "probability": 0.9922 + }, + { + "start": 11093.44, + "end": 11094.26, + "probability": 0.9353 + }, + { + "start": 11094.78, + "end": 11097.24, + "probability": 0.6687 + }, + { + "start": 11097.94, + "end": 11098.2, + "probability": 0.7021 + }, + { + "start": 11098.92, + "end": 11100.1, + "probability": 0.9002 + }, + { + "start": 11100.84, + "end": 11101.62, + "probability": 0.964 + }, + { + "start": 11102.7, + "end": 11102.92, + "probability": 0.7546 + }, + { + "start": 11103.48, + "end": 11104.1, + "probability": 0.7633 + }, + { + "start": 11104.58, + "end": 11106.2, + "probability": 0.915 + }, + { + "start": 11119.48, + "end": 11120.05, + "probability": 0.3515 + }, + { + "start": 11121.2, + "end": 11121.92, + "probability": 0.7447 + }, + { + "start": 11123.64, + "end": 11126.44, + "probability": 0.9487 + }, + { + "start": 11127.9, + "end": 11129.2, + "probability": 0.9521 + }, + { + "start": 11130.02, + "end": 11131.23, + "probability": 0.9888 + }, + { + "start": 11131.38, + "end": 11132.5, + "probability": 0.9905 + }, + { + "start": 11133.68, + "end": 11137.22, + "probability": 0.997 + }, + { + "start": 11137.4, + "end": 11138.06, + "probability": 0.8324 + }, + { + "start": 11138.1, + "end": 11138.7, + "probability": 0.5192 + }, + { + "start": 11140.98, + "end": 11144.06, + "probability": 0.7821 + }, + { + "start": 11144.88, + "end": 11146.72, + "probability": 0.9478 + }, + { + "start": 11146.96, + "end": 11151.88, + "probability": 0.8311 + }, + { + "start": 11152.64, + "end": 11154.3, + "probability": 0.9077 + }, + { + "start": 11154.9, + "end": 11156.92, + "probability": 0.9643 + }, + { + "start": 11160.04, + "end": 11162.08, + "probability": 0.9684 + }, + { + "start": 11162.98, + "end": 11163.12, + "probability": 0.5467 + }, + { + "start": 11163.18, + "end": 11163.18, + "probability": 0.7995 + }, + { + "start": 11163.28, + "end": 11166.43, + "probability": 0.9963 + }, + { + "start": 11168.56, + "end": 11169.3, + "probability": 0.7349 + }, + { + "start": 11169.48, + "end": 11171.56, + "probability": 0.9487 + }, + { + "start": 11172.82, + "end": 11176.3, + "probability": 0.8888 + }, + { + "start": 11176.74, + "end": 11178.14, + "probability": 0.9808 + }, + { + "start": 11178.96, + "end": 11179.74, + "probability": 0.8639 + }, + { + "start": 11181.52, + "end": 11181.96, + "probability": 0.9272 + }, + { + "start": 11182.16, + "end": 11185.8, + "probability": 0.9651 + }, + { + "start": 11187.44, + "end": 11187.92, + "probability": 0.788 + }, + { + "start": 11190.08, + "end": 11192.26, + "probability": 0.9662 + }, + { + "start": 11193.22, + "end": 11194.36, + "probability": 0.231 + }, + { + "start": 11194.98, + "end": 11197.1, + "probability": 0.98 + }, + { + "start": 11197.48, + "end": 11202.0, + "probability": 0.2827 + }, + { + "start": 11202.0, + "end": 11203.16, + "probability": 0.8408 + }, + { + "start": 11203.2, + "end": 11203.28, + "probability": 0.013 + }, + { + "start": 11203.34, + "end": 11203.34, + "probability": 0.0762 + }, + { + "start": 11203.34, + "end": 11204.06, + "probability": 0.4691 + }, + { + "start": 11204.32, + "end": 11204.98, + "probability": 0.2983 + }, + { + "start": 11205.12, + "end": 11206.2, + "probability": 0.9884 + }, + { + "start": 11206.32, + "end": 11206.38, + "probability": 0.0617 + }, + { + "start": 11206.38, + "end": 11207.14, + "probability": 0.1909 + }, + { + "start": 11207.14, + "end": 11207.82, + "probability": 0.4114 + }, + { + "start": 11208.06, + "end": 11209.03, + "probability": 0.9639 + }, + { + "start": 11209.49, + "end": 11209.77, + "probability": 0.3781 + }, + { + "start": 11209.81, + "end": 11213.19, + "probability": 0.9639 + }, + { + "start": 11213.31, + "end": 11214.89, + "probability": 0.8053 + }, + { + "start": 11214.95, + "end": 11216.17, + "probability": 0.9261 + }, + { + "start": 11216.17, + "end": 11218.31, + "probability": 0.4071 + }, + { + "start": 11218.31, + "end": 11219.03, + "probability": 0.7859 + }, + { + "start": 11233.57, + "end": 11233.75, + "probability": 0.0639 + }, + { + "start": 11234.19, + "end": 11237.35, + "probability": 0.0496 + }, + { + "start": 11237.35, + "end": 11239.65, + "probability": 0.0411 + }, + { + "start": 11241.61, + "end": 11242.97, + "probability": 0.0268 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.0, + "end": 11333.0, + "probability": 0.0 + }, + { + "start": 11333.14, + "end": 11333.58, + "probability": 0.0822 + }, + { + "start": 11333.58, + "end": 11334.28, + "probability": 0.1958 + }, + { + "start": 11335.6, + "end": 11337.64, + "probability": 0.1517 + }, + { + "start": 11338.45, + "end": 11338.81, + "probability": 0.1813 + }, + { + "start": 11340.88, + "end": 11341.0, + "probability": 0.0793 + }, + { + "start": 11341.0, + "end": 11341.18, + "probability": 0.0899 + }, + { + "start": 11341.18, + "end": 11341.18, + "probability": 0.0649 + }, + { + "start": 11341.18, + "end": 11341.18, + "probability": 0.1708 + }, + { + "start": 11341.18, + "end": 11341.18, + "probability": 0.0314 + }, + { + "start": 11341.18, + "end": 11341.18, + "probability": 0.0524 + }, + { + "start": 11341.18, + "end": 11343.56, + "probability": 0.1017 + }, + { + "start": 11343.56, + "end": 11344.54, + "probability": 0.5095 + }, + { + "start": 11345.0, + "end": 11349.54, + "probability": 0.137 + }, + { + "start": 11352.38, + "end": 11352.62, + "probability": 0.0137 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0 + }, + { + "start": 11454.0, + "end": 11454.0, + "probability": 0.0344 + }, + { + "start": 11454.0, + "end": 11454.85, + "probability": 0.2822 + }, + { + "start": 11455.46, + "end": 11456.08, + "probability": 0.815 + }, + { + "start": 11456.96, + "end": 11458.72, + "probability": 0.944 + }, + { + "start": 11459.32, + "end": 11462.74, + "probability": 0.9563 + }, + { + "start": 11463.4, + "end": 11465.34, + "probability": 0.9675 + }, + { + "start": 11466.78, + "end": 11469.18, + "probability": 0.9006 + }, + { + "start": 11469.76, + "end": 11473.58, + "probability": 0.8915 + }, + { + "start": 11474.32, + "end": 11475.84, + "probability": 0.9702 + }, + { + "start": 11476.42, + "end": 11477.02, + "probability": 0.6861 + }, + { + "start": 11477.72, + "end": 11479.5, + "probability": 0.9051 + }, + { + "start": 11480.02, + "end": 11482.68, + "probability": 0.917 + }, + { + "start": 11483.58, + "end": 11486.82, + "probability": 0.9937 + }, + { + "start": 11487.52, + "end": 11490.9, + "probability": 0.9818 + }, + { + "start": 11490.9, + "end": 11493.44, + "probability": 0.9943 + }, + { + "start": 11494.54, + "end": 11498.7, + "probability": 0.9552 + }, + { + "start": 11498.94, + "end": 11499.28, + "probability": 0.8759 + }, + { + "start": 11499.4, + "end": 11501.64, + "probability": 0.9872 + }, + { + "start": 11501.64, + "end": 11504.72, + "probability": 0.9757 + }, + { + "start": 11505.26, + "end": 11508.24, + "probability": 0.9961 + }, + { + "start": 11508.24, + "end": 11511.02, + "probability": 0.9797 + }, + { + "start": 11512.16, + "end": 11512.94, + "probability": 0.6857 + }, + { + "start": 11513.6, + "end": 11514.14, + "probability": 0.5486 + }, + { + "start": 11514.74, + "end": 11518.78, + "probability": 0.9756 + }, + { + "start": 11519.38, + "end": 11521.56, + "probability": 0.9955 + }, + { + "start": 11522.33, + "end": 11523.3, + "probability": 0.9297 + }, + { + "start": 11524.8, + "end": 11525.38, + "probability": 0.8062 + }, + { + "start": 11526.72, + "end": 11528.9, + "probability": 0.9938 + }, + { + "start": 11529.06, + "end": 11530.48, + "probability": 0.9917 + }, + { + "start": 11530.58, + "end": 11531.76, + "probability": 0.9481 + }, + { + "start": 11532.34, + "end": 11535.24, + "probability": 0.9298 + }, + { + "start": 11536.2, + "end": 11536.92, + "probability": 0.7394 + }, + { + "start": 11537.64, + "end": 11538.38, + "probability": 0.6404 + }, + { + "start": 11538.58, + "end": 11540.06, + "probability": 0.9794 + }, + { + "start": 11540.54, + "end": 11543.62, + "probability": 0.9784 + }, + { + "start": 11543.82, + "end": 11544.42, + "probability": 0.7697 + }, + { + "start": 11546.62, + "end": 11547.24, + "probability": 0.827 + }, + { + "start": 11547.44, + "end": 11550.86, + "probability": 0.9548 + }, + { + "start": 11551.46, + "end": 11554.7, + "probability": 0.9749 + }, + { + "start": 11555.68, + "end": 11558.08, + "probability": 0.9963 + }, + { + "start": 11558.9, + "end": 11561.88, + "probability": 0.9266 + }, + { + "start": 11561.88, + "end": 11565.86, + "probability": 0.9805 + }, + { + "start": 11566.54, + "end": 11567.58, + "probability": 0.92 + }, + { + "start": 11568.14, + "end": 11569.88, + "probability": 0.739 + }, + { + "start": 11569.94, + "end": 11570.58, + "probability": 0.8185 + }, + { + "start": 11570.64, + "end": 11570.94, + "probability": 0.8991 + }, + { + "start": 11572.28, + "end": 11574.64, + "probability": 0.8533 + }, + { + "start": 11575.38, + "end": 11576.48, + "probability": 0.9607 + }, + { + "start": 11576.58, + "end": 11577.12, + "probability": 0.9621 + }, + { + "start": 11577.16, + "end": 11580.16, + "probability": 0.9647 + }, + { + "start": 11580.64, + "end": 11584.22, + "probability": 0.9136 + }, + { + "start": 11584.74, + "end": 11586.26, + "probability": 0.9012 + }, + { + "start": 11587.7, + "end": 11590.0, + "probability": 0.9903 + }, + { + "start": 11590.54, + "end": 11591.1, + "probability": 0.7345 + }, + { + "start": 11591.98, + "end": 11592.58, + "probability": 0.9038 + }, + { + "start": 11592.88, + "end": 11595.24, + "probability": 0.8124 + }, + { + "start": 11595.98, + "end": 11600.35, + "probability": 0.9858 + }, + { + "start": 11600.62, + "end": 11601.16, + "probability": 0.9777 + }, + { + "start": 11601.24, + "end": 11602.7, + "probability": 0.9961 + }, + { + "start": 11603.54, + "end": 11603.6, + "probability": 0.201 + }, + { + "start": 11603.6, + "end": 11605.2, + "probability": 0.8586 + }, + { + "start": 11605.92, + "end": 11609.2, + "probability": 0.9596 + }, + { + "start": 11609.7, + "end": 11610.08, + "probability": 0.7353 + }, + { + "start": 11610.52, + "end": 11610.98, + "probability": 0.7271 + }, + { + "start": 11611.84, + "end": 11613.6, + "probability": 0.7396 + }, + { + "start": 11642.24, + "end": 11646.1, + "probability": 0.7844 + }, + { + "start": 11648.12, + "end": 11648.6, + "probability": 0.9119 + }, + { + "start": 11649.58, + "end": 11651.42, + "probability": 0.8729 + }, + { + "start": 11651.6, + "end": 11652.32, + "probability": 0.8767 + }, + { + "start": 11652.4, + "end": 11659.24, + "probability": 0.9192 + }, + { + "start": 11660.78, + "end": 11665.24, + "probability": 0.94 + }, + { + "start": 11666.12, + "end": 11671.62, + "probability": 0.9862 + }, + { + "start": 11671.88, + "end": 11672.52, + "probability": 0.7778 + }, + { + "start": 11672.88, + "end": 11675.06, + "probability": 0.6982 + }, + { + "start": 11675.42, + "end": 11676.84, + "probability": 0.9178 + }, + { + "start": 11678.16, + "end": 11681.28, + "probability": 0.9992 + }, + { + "start": 11681.4, + "end": 11682.08, + "probability": 0.713 + }, + { + "start": 11683.32, + "end": 11687.0, + "probability": 0.9971 + }, + { + "start": 11687.18, + "end": 11692.16, + "probability": 0.6332 + }, + { + "start": 11692.26, + "end": 11692.5, + "probability": 0.6519 + }, + { + "start": 11692.66, + "end": 11693.14, + "probability": 0.4021 + }, + { + "start": 11693.14, + "end": 11693.24, + "probability": 0.5875 + }, + { + "start": 11693.82, + "end": 11696.72, + "probability": 0.9486 + }, + { + "start": 11696.92, + "end": 11697.34, + "probability": 0.6481 + }, + { + "start": 11697.38, + "end": 11697.68, + "probability": 0.969 + }, + { + "start": 11698.5, + "end": 11699.78, + "probability": 0.9071 + }, + { + "start": 11700.54, + "end": 11700.92, + "probability": 0.6919 + }, + { + "start": 11700.96, + "end": 11701.28, + "probability": 0.0099 + }, + { + "start": 11701.28, + "end": 11703.14, + "probability": 0.6161 + }, + { + "start": 11703.16, + "end": 11703.16, + "probability": 0.612 + }, + { + "start": 11703.16, + "end": 11704.34, + "probability": 0.8245 + }, + { + "start": 11704.48, + "end": 11708.86, + "probability": 0.9897 + }, + { + "start": 11709.68, + "end": 11709.75, + "probability": 0.5795 + }, + { + "start": 11710.16, + "end": 11710.2, + "probability": 0.2199 + }, + { + "start": 11710.2, + "end": 11712.92, + "probability": 0.4077 + }, + { + "start": 11713.36, + "end": 11714.54, + "probability": 0.7564 + }, + { + "start": 11715.28, + "end": 11716.92, + "probability": 0.7205 + }, + { + "start": 11717.06, + "end": 11721.06, + "probability": 0.9648 + }, + { + "start": 11721.4, + "end": 11725.26, + "probability": 0.8035 + }, + { + "start": 11725.26, + "end": 11725.26, + "probability": 0.1458 + }, + { + "start": 11725.26, + "end": 11725.3, + "probability": 0.4726 + }, + { + "start": 11725.44, + "end": 11727.82, + "probability": 0.3426 + }, + { + "start": 11728.04, + "end": 11729.08, + "probability": 0.9126 + }, + { + "start": 11729.18, + "end": 11729.18, + "probability": 0.2643 + }, + { + "start": 11729.3, + "end": 11731.4, + "probability": 0.9803 + }, + { + "start": 11731.56, + "end": 11731.56, + "probability": 0.2597 + }, + { + "start": 11731.66, + "end": 11734.28, + "probability": 0.9883 + }, + { + "start": 11734.78, + "end": 11736.58, + "probability": 0.9183 + }, + { + "start": 11737.02, + "end": 11738.58, + "probability": 0.94 + }, + { + "start": 11739.12, + "end": 11741.86, + "probability": 0.9965 + }, + { + "start": 11741.86, + "end": 11744.36, + "probability": 0.878 + }, + { + "start": 11744.36, + "end": 11746.18, + "probability": 0.8959 + }, + { + "start": 11746.56, + "end": 11747.63, + "probability": 0.0397 + }, + { + "start": 11747.8, + "end": 11749.2, + "probability": 0.4062 + }, + { + "start": 11749.34, + "end": 11750.72, + "probability": 0.9847 + }, + { + "start": 11750.9, + "end": 11752.76, + "probability": 0.9536 + }, + { + "start": 11753.08, + "end": 11757.9, + "probability": 0.7433 + }, + { + "start": 11758.22, + "end": 11759.2, + "probability": 0.7576 + }, + { + "start": 11759.58, + "end": 11761.18, + "probability": 0.7137 + }, + { + "start": 11761.5, + "end": 11762.72, + "probability": 0.6248 + }, + { + "start": 11762.9, + "end": 11762.9, + "probability": 0.0152 + }, + { + "start": 11762.9, + "end": 11763.36, + "probability": 0.6558 + }, + { + "start": 11763.46, + "end": 11764.58, + "probability": 0.884 + }, + { + "start": 11764.72, + "end": 11766.44, + "probability": 0.3712 + }, + { + "start": 11766.48, + "end": 11766.97, + "probability": 0.7515 + }, + { + "start": 11767.86, + "end": 11768.12, + "probability": 0.0533 + }, + { + "start": 11768.16, + "end": 11768.42, + "probability": 0.2078 + }, + { + "start": 11768.42, + "end": 11769.82, + "probability": 0.9696 + }, + { + "start": 11770.62, + "end": 11771.82, + "probability": 0.8292 + }, + { + "start": 11772.98, + "end": 11774.2, + "probability": 0.6262 + }, + { + "start": 11774.2, + "end": 11775.12, + "probability": 0.7388 + }, + { + "start": 11775.36, + "end": 11776.5, + "probability": 0.4154 + }, + { + "start": 11776.84, + "end": 11778.6, + "probability": 0.3975 + }, + { + "start": 11778.8, + "end": 11780.04, + "probability": 0.4803 + }, + { + "start": 11780.12, + "end": 11781.22, + "probability": 0.7939 + }, + { + "start": 11781.22, + "end": 11781.6, + "probability": 0.5033 + }, + { + "start": 11782.12, + "end": 11783.82, + "probability": 0.061 + }, + { + "start": 11783.82, + "end": 11785.7, + "probability": 0.2955 + }, + { + "start": 11786.94, + "end": 11789.22, + "probability": 0.3922 + }, + { + "start": 11791.84, + "end": 11794.14, + "probability": 0.0286 + }, + { + "start": 11794.72, + "end": 11796.48, + "probability": 0.7356 + }, + { + "start": 11796.62, + "end": 11797.92, + "probability": 0.1516 + }, + { + "start": 11799.6, + "end": 11800.0, + "probability": 0.4056 + }, + { + "start": 11800.62, + "end": 11801.12, + "probability": 0.2754 + }, + { + "start": 11804.5, + "end": 11809.24, + "probability": 0.0658 + }, + { + "start": 11809.24, + "end": 11809.24, + "probability": 0.1195 + }, + { + "start": 11809.44, + "end": 11810.98, + "probability": 0.8617 + }, + { + "start": 11810.98, + "end": 11813.38, + "probability": 0.5475 + }, + { + "start": 11814.14, + "end": 11816.54, + "probability": 0.2289 + }, + { + "start": 11817.58, + "end": 11818.56, + "probability": 0.061 + }, + { + "start": 11818.56, + "end": 11818.7, + "probability": 0.0919 + }, + { + "start": 11819.36, + "end": 11822.72, + "probability": 0.0349 + }, + { + "start": 11823.93, + "end": 11824.66, + "probability": 0.0913 + }, + { + "start": 11824.66, + "end": 11825.58, + "probability": 0.1908 + }, + { + "start": 11826.4, + "end": 11829.14, + "probability": 0.2655 + }, + { + "start": 11829.36, + "end": 11830.58, + "probability": 0.0312 + }, + { + "start": 11830.58, + "end": 11831.52, + "probability": 0.1098 + }, + { + "start": 11831.78, + "end": 11832.12, + "probability": 0.1586 + }, + { + "start": 11832.14, + "end": 11834.32, + "probability": 0.0839 + }, + { + "start": 11834.32, + "end": 11835.3, + "probability": 0.1046 + }, + { + "start": 11835.58, + "end": 11837.7, + "probability": 0.0175 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.0, + "end": 11857.0, + "probability": 0.0 + }, + { + "start": 11857.12, + "end": 11861.72, + "probability": 0.8626 + }, + { + "start": 11861.72, + "end": 11868.74, + "probability": 0.9971 + }, + { + "start": 11868.94, + "end": 11871.86, + "probability": 0.9821 + }, + { + "start": 11872.28, + "end": 11872.66, + "probability": 0.6483 + }, + { + "start": 11873.8, + "end": 11876.58, + "probability": 0.9365 + }, + { + "start": 11877.26, + "end": 11877.42, + "probability": 0.0004 + }, + { + "start": 11877.42, + "end": 11877.42, + "probability": 0.0816 + }, + { + "start": 11877.42, + "end": 11877.76, + "probability": 0.5477 + }, + { + "start": 11878.08, + "end": 11881.72, + "probability": 0.9814 + }, + { + "start": 11881.74, + "end": 11882.22, + "probability": 0.2733 + }, + { + "start": 11882.34, + "end": 11884.4, + "probability": 0.5764 + }, + { + "start": 11884.46, + "end": 11885.7, + "probability": 0.5565 + }, + { + "start": 11886.42, + "end": 11890.94, + "probability": 0.981 + }, + { + "start": 11890.94, + "end": 11891.08, + "probability": 0.8902 + }, + { + "start": 11891.46, + "end": 11893.28, + "probability": 0.3548 + }, + { + "start": 11893.36, + "end": 11894.01, + "probability": 0.699 + }, + { + "start": 11894.26, + "end": 11894.98, + "probability": 0.0246 + }, + { + "start": 11894.98, + "end": 11895.96, + "probability": 0.9137 + }, + { + "start": 11896.46, + "end": 11898.14, + "probability": 0.6238 + }, + { + "start": 11898.54, + "end": 11900.74, + "probability": 0.4836 + }, + { + "start": 11901.56, + "end": 11902.96, + "probability": 0.7177 + }, + { + "start": 11903.26, + "end": 11904.12, + "probability": 0.4951 + }, + { + "start": 11904.2, + "end": 11904.56, + "probability": 0.3072 + }, + { + "start": 11904.78, + "end": 11905.34, + "probability": 0.0106 + }, + { + "start": 11905.38, + "end": 11910.64, + "probability": 0.3194 + }, + { + "start": 11910.64, + "end": 11911.0, + "probability": 0.0395 + }, + { + "start": 11911.0, + "end": 11911.12, + "probability": 0.0612 + }, + { + "start": 11911.12, + "end": 11911.92, + "probability": 0.1329 + }, + { + "start": 11913.2, + "end": 11916.4, + "probability": 0.4935 + }, + { + "start": 11918.86, + "end": 11920.74, + "probability": 0.4839 + }, + { + "start": 11921.28, + "end": 11921.48, + "probability": 0.2328 + }, + { + "start": 11921.8, + "end": 11922.52, + "probability": 0.0744 + }, + { + "start": 11923.48, + "end": 11925.44, + "probability": 0.0652 + }, + { + "start": 11925.44, + "end": 11925.86, + "probability": 0.0538 + }, + { + "start": 11926.72, + "end": 11928.74, + "probability": 0.1018 + }, + { + "start": 11930.12, + "end": 11933.3, + "probability": 0.0261 + }, + { + "start": 11933.96, + "end": 11934.0, + "probability": 0.0042 + }, + { + "start": 11937.16, + "end": 11938.02, + "probability": 0.5194 + }, + { + "start": 11938.02, + "end": 11938.02, + "probability": 0.4941 + }, + { + "start": 11938.1, + "end": 11938.1, + "probability": 0.476 + }, + { + "start": 11938.2, + "end": 11940.6, + "probability": 0.0782 + }, + { + "start": 11941.22, + "end": 11943.58, + "probability": 0.2651 + }, + { + "start": 11943.82, + "end": 11948.29, + "probability": 0.1644 + }, + { + "start": 11949.72, + "end": 11950.7, + "probability": 0.1057 + }, + { + "start": 11950.7, + "end": 11950.7, + "probability": 0.0703 + }, + { + "start": 11950.7, + "end": 11950.76, + "probability": 0.088 + }, + { + "start": 11950.76, + "end": 11950.76, + "probability": 0.0471 + }, + { + "start": 11950.76, + "end": 11950.8, + "probability": 0.0739 + }, + { + "start": 11950.8, + "end": 11952.44, + "probability": 0.1592 + }, + { + "start": 11952.44, + "end": 11954.2, + "probability": 0.1043 + }, + { + "start": 11954.2, + "end": 11955.12, + "probability": 0.3409 + }, + { + "start": 11960.1, + "end": 11963.08, + "probability": 0.8331 + }, + { + "start": 11963.66, + "end": 11964.16, + "probability": 0.0439 + }, + { + "start": 11965.96, + "end": 11968.18, + "probability": 0.3862 + }, + { + "start": 11968.48, + "end": 11975.12, + "probability": 0.9912 + }, + { + "start": 11976.14, + "end": 11979.36, + "probability": 0.9963 + }, + { + "start": 11980.84, + "end": 11988.92, + "probability": 0.9937 + }, + { + "start": 11989.32, + "end": 11991.7, + "probability": 0.6733 + }, + { + "start": 11992.48, + "end": 11994.4, + "probability": 0.8259 + }, + { + "start": 11994.98, + "end": 11995.96, + "probability": 0.9312 + }, + { + "start": 11997.8, + "end": 12004.44, + "probability": 0.9834 + }, + { + "start": 12004.44, + "end": 12010.34, + "probability": 0.9968 + }, + { + "start": 12011.18, + "end": 12013.94, + "probability": 0.9619 + }, + { + "start": 12014.88, + "end": 12017.6, + "probability": 0.9885 + }, + { + "start": 12018.28, + "end": 12024.92, + "probability": 0.9868 + }, + { + "start": 12025.04, + "end": 12027.0, + "probability": 0.9721 + }, + { + "start": 12028.14, + "end": 12031.96, + "probability": 0.9984 + }, + { + "start": 12032.14, + "end": 12036.8, + "probability": 0.9448 + }, + { + "start": 12037.71, + "end": 12037.78, + "probability": 0.2882 + }, + { + "start": 12037.9, + "end": 12037.9, + "probability": 0.5636 + }, + { + "start": 12038.0, + "end": 12040.32, + "probability": 0.9478 + }, + { + "start": 12040.62, + "end": 12041.16, + "probability": 0.9614 + }, + { + "start": 12041.24, + "end": 12042.02, + "probability": 0.2542 + }, + { + "start": 12042.02, + "end": 12048.2, + "probability": 0.962 + }, + { + "start": 12048.78, + "end": 12052.2, + "probability": 0.6887 + }, + { + "start": 12053.04, + "end": 12055.74, + "probability": 0.9953 + }, + { + "start": 12056.4, + "end": 12057.12, + "probability": 0.9386 + }, + { + "start": 12058.82, + "end": 12063.7, + "probability": 0.9731 + }, + { + "start": 12063.84, + "end": 12065.26, + "probability": 0.9094 + }, + { + "start": 12066.12, + "end": 12069.42, + "probability": 0.9954 + }, + { + "start": 12070.0, + "end": 12073.42, + "probability": 0.9834 + }, + { + "start": 12074.02, + "end": 12075.12, + "probability": 0.8487 + }, + { + "start": 12075.68, + "end": 12077.02, + "probability": 0.943 + }, + { + "start": 12077.62, + "end": 12080.3, + "probability": 0.7128 + }, + { + "start": 12081.08, + "end": 12084.68, + "probability": 0.8709 + }, + { + "start": 12085.34, + "end": 12089.36, + "probability": 0.9788 + }, + { + "start": 12089.94, + "end": 12092.44, + "probability": 0.9053 + }, + { + "start": 12092.7, + "end": 12093.22, + "probability": 0.6162 + }, + { + "start": 12093.96, + "end": 12095.78, + "probability": 0.8608 + }, + { + "start": 12096.84, + "end": 12098.22, + "probability": 0.9786 + }, + { + "start": 12098.46, + "end": 12099.7, + "probability": 0.8309 + }, + { + "start": 12099.9, + "end": 12102.94, + "probability": 0.8555 + }, + { + "start": 12103.66, + "end": 12105.48, + "probability": 0.5422 + }, + { + "start": 12105.82, + "end": 12108.74, + "probability": 0.7555 + }, + { + "start": 12109.28, + "end": 12110.22, + "probability": 0.8767 + }, + { + "start": 12111.56, + "end": 12114.16, + "probability": 0.98 + }, + { + "start": 12114.22, + "end": 12119.2, + "probability": 0.9904 + }, + { + "start": 12119.66, + "end": 12123.94, + "probability": 0.8622 + }, + { + "start": 12124.16, + "end": 12128.86, + "probability": 0.8679 + }, + { + "start": 12129.84, + "end": 12131.72, + "probability": 0.718 + }, + { + "start": 12132.0, + "end": 12137.84, + "probability": 0.9645 + }, + { + "start": 12138.84, + "end": 12142.91, + "probability": 0.9981 + }, + { + "start": 12143.18, + "end": 12143.7, + "probability": 0.3043 + }, + { + "start": 12143.76, + "end": 12146.82, + "probability": 0.9922 + }, + { + "start": 12147.62, + "end": 12152.28, + "probability": 0.9971 + }, + { + "start": 12153.38, + "end": 12158.86, + "probability": 0.994 + }, + { + "start": 12158.96, + "end": 12163.12, + "probability": 0.97 + }, + { + "start": 12163.6, + "end": 12167.06, + "probability": 0.909 + }, + { + "start": 12167.06, + "end": 12168.86, + "probability": 0.9974 + }, + { + "start": 12168.92, + "end": 12169.2, + "probability": 0.8198 + }, + { + "start": 12170.42, + "end": 12171.46, + "probability": 0.6847 + }, + { + "start": 12182.36, + "end": 12183.44, + "probability": 0.6433 + }, + { + "start": 12184.14, + "end": 12186.12, + "probability": 0.6738 + }, + { + "start": 12187.04, + "end": 12191.7, + "probability": 0.9873 + }, + { + "start": 12192.04, + "end": 12193.42, + "probability": 0.9719 + }, + { + "start": 12195.2, + "end": 12196.64, + "probability": 0.9938 + }, + { + "start": 12197.82, + "end": 12200.6, + "probability": 0.9844 + }, + { + "start": 12200.86, + "end": 12203.22, + "probability": 0.8936 + }, + { + "start": 12204.26, + "end": 12206.74, + "probability": 0.9713 + }, + { + "start": 12207.86, + "end": 12208.92, + "probability": 0.8984 + }, + { + "start": 12209.44, + "end": 12210.84, + "probability": 0.9171 + }, + { + "start": 12210.96, + "end": 12211.06, + "probability": 0.1991 + }, + { + "start": 12211.06, + "end": 12213.64, + "probability": 0.611 + }, + { + "start": 12214.52, + "end": 12216.54, + "probability": 0.9983 + }, + { + "start": 12217.9, + "end": 12219.68, + "probability": 0.9359 + }, + { + "start": 12220.94, + "end": 12221.28, + "probability": 0.9465 + }, + { + "start": 12222.54, + "end": 12223.26, + "probability": 0.8719 + }, + { + "start": 12224.72, + "end": 12225.66, + "probability": 0.8787 + }, + { + "start": 12226.44, + "end": 12228.12, + "probability": 0.975 + }, + { + "start": 12228.3, + "end": 12228.46, + "probability": 0.5087 + }, + { + "start": 12229.0, + "end": 12230.3, + "probability": 0.7322 + }, + { + "start": 12230.62, + "end": 12233.84, + "probability": 0.9902 + }, + { + "start": 12234.16, + "end": 12235.52, + "probability": 0.9963 + }, + { + "start": 12235.75, + "end": 12236.78, + "probability": 0.9874 + }, + { + "start": 12236.78, + "end": 12237.74, + "probability": 0.847 + }, + { + "start": 12238.1, + "end": 12240.16, + "probability": 0.7403 + }, + { + "start": 12240.36, + "end": 12243.76, + "probability": 0.8538 + }, + { + "start": 12244.64, + "end": 12245.28, + "probability": 0.0376 + }, + { + "start": 12246.34, + "end": 12246.5, + "probability": 0.2807 + }, + { + "start": 12246.5, + "end": 12246.62, + "probability": 0.1721 + }, + { + "start": 12247.99, + "end": 12248.5, + "probability": 0.0628 + }, + { + "start": 12248.84, + "end": 12249.94, + "probability": 0.726 + }, + { + "start": 12250.12, + "end": 12250.36, + "probability": 0.4111 + }, + { + "start": 12250.48, + "end": 12254.18, + "probability": 0.9792 + }, + { + "start": 12254.3, + "end": 12255.46, + "probability": 0.7958 + }, + { + "start": 12256.1, + "end": 12257.22, + "probability": 0.8562 + }, + { + "start": 12257.66, + "end": 12260.92, + "probability": 0.7933 + }, + { + "start": 12262.0, + "end": 12262.8, + "probability": 0.38 + }, + { + "start": 12262.9, + "end": 12263.54, + "probability": 0.8069 + }, + { + "start": 12263.6, + "end": 12265.54, + "probability": 0.9912 + }, + { + "start": 12266.58, + "end": 12267.74, + "probability": 0.931 + }, + { + "start": 12267.8, + "end": 12268.72, + "probability": 0.6576 + }, + { + "start": 12269.44, + "end": 12270.16, + "probability": 0.5005 + }, + { + "start": 12270.24, + "end": 12270.9, + "probability": 0.547 + }, + { + "start": 12271.26, + "end": 12272.1, + "probability": 0.8754 + }, + { + "start": 12272.88, + "end": 12275.5, + "probability": 0.8052 + }, + { + "start": 12276.86, + "end": 12281.2, + "probability": 0.9314 + }, + { + "start": 12282.3, + "end": 12284.08, + "probability": 0.9631 + }, + { + "start": 12284.8, + "end": 12287.18, + "probability": 0.9789 + }, + { + "start": 12287.44, + "end": 12288.52, + "probability": 0.878 + }, + { + "start": 12289.46, + "end": 12291.84, + "probability": 0.9964 + }, + { + "start": 12293.1, + "end": 12293.48, + "probability": 0.8186 + }, + { + "start": 12294.42, + "end": 12295.4, + "probability": 0.775 + }, + { + "start": 12297.46, + "end": 12298.04, + "probability": 0.99 + }, + { + "start": 12298.92, + "end": 12305.2, + "probability": 0.9738 + }, + { + "start": 12306.1, + "end": 12308.86, + "probability": 0.9932 + }, + { + "start": 12309.02, + "end": 12310.4, + "probability": 0.8627 + }, + { + "start": 12310.9, + "end": 12312.82, + "probability": 0.9652 + }, + { + "start": 12313.38, + "end": 12316.3, + "probability": 0.9832 + }, + { + "start": 12316.86, + "end": 12320.1, + "probability": 0.96 + }, + { + "start": 12320.9, + "end": 12324.5, + "probability": 0.9746 + }, + { + "start": 12324.56, + "end": 12325.4, + "probability": 0.8873 + }, + { + "start": 12325.8, + "end": 12326.84, + "probability": 0.6026 + }, + { + "start": 12327.36, + "end": 12327.61, + "probability": 0.5078 + }, + { + "start": 12328.34, + "end": 12331.1, + "probability": 0.9612 + }, + { + "start": 12331.58, + "end": 12332.86, + "probability": 0.9434 + }, + { + "start": 12334.2, + "end": 12336.04, + "probability": 0.9569 + }, + { + "start": 12336.64, + "end": 12337.18, + "probability": 0.4456 + }, + { + "start": 12338.62, + "end": 12339.99, + "probability": 0.9907 + }, + { + "start": 12340.52, + "end": 12340.88, + "probability": 0.7278 + }, + { + "start": 12341.54, + "end": 12341.76, + "probability": 0.6217 + }, + { + "start": 12342.14, + "end": 12342.7, + "probability": 0.1673 + }, + { + "start": 12343.02, + "end": 12344.5, + "probability": 0.9984 + }, + { + "start": 12345.08, + "end": 12346.92, + "probability": 0.9121 + }, + { + "start": 12347.46, + "end": 12348.5, + "probability": 0.9471 + }, + { + "start": 12349.38, + "end": 12354.2, + "probability": 0.9982 + }, + { + "start": 12354.58, + "end": 12355.62, + "probability": 0.8696 + }, + { + "start": 12356.26, + "end": 12357.8, + "probability": 0.8402 + }, + { + "start": 12357.92, + "end": 12358.22, + "probability": 0.8324 + }, + { + "start": 12358.34, + "end": 12360.16, + "probability": 0.9907 + }, + { + "start": 12360.82, + "end": 12364.26, + "probability": 0.9607 + }, + { + "start": 12364.88, + "end": 12365.18, + "probability": 0.4249 + }, + { + "start": 12365.18, + "end": 12365.54, + "probability": 0.3359 + }, + { + "start": 12365.58, + "end": 12366.22, + "probability": 0.313 + }, + { + "start": 12366.76, + "end": 12368.8, + "probability": 0.9787 + }, + { + "start": 12369.38, + "end": 12371.02, + "probability": 0.9692 + }, + { + "start": 12371.12, + "end": 12371.36, + "probability": 0.735 + }, + { + "start": 12371.7, + "end": 12372.34, + "probability": 0.852 + }, + { + "start": 12373.92, + "end": 12374.28, + "probability": 0.5113 + }, + { + "start": 12374.34, + "end": 12375.3, + "probability": 0.9814 + }, + { + "start": 12375.38, + "end": 12376.72, + "probability": 0.7443 + }, + { + "start": 12377.26, + "end": 12380.88, + "probability": 0.9846 + }, + { + "start": 12380.98, + "end": 12381.52, + "probability": 0.7135 + }, + { + "start": 12381.6, + "end": 12382.49, + "probability": 0.6621 + }, + { + "start": 12383.1, + "end": 12384.56, + "probability": 0.8086 + }, + { + "start": 12385.6, + "end": 12385.98, + "probability": 0.9163 + }, + { + "start": 12402.52, + "end": 12403.14, + "probability": 0.4402 + }, + { + "start": 12403.24, + "end": 12405.66, + "probability": 0.9873 + }, + { + "start": 12406.08, + "end": 12409.3, + "probability": 0.9976 + }, + { + "start": 12410.26, + "end": 12412.84, + "probability": 0.9985 + }, + { + "start": 12414.04, + "end": 12416.92, + "probability": 0.9267 + }, + { + "start": 12418.38, + "end": 12419.6, + "probability": 0.9896 + }, + { + "start": 12420.68, + "end": 12423.34, + "probability": 0.9473 + }, + { + "start": 12423.48, + "end": 12424.4, + "probability": 0.7483 + }, + { + "start": 12425.28, + "end": 12426.04, + "probability": 0.8827 + }, + { + "start": 12427.42, + "end": 12431.23, + "probability": 0.8033 + }, + { + "start": 12432.04, + "end": 12436.02, + "probability": 0.9902 + }, + { + "start": 12437.12, + "end": 12439.9, + "probability": 0.7468 + }, + { + "start": 12441.94, + "end": 12444.26, + "probability": 0.6457 + }, + { + "start": 12444.46, + "end": 12446.26, + "probability": 0.0746 + }, + { + "start": 12447.45, + "end": 12451.26, + "probability": 0.9416 + }, + { + "start": 12452.18, + "end": 12455.78, + "probability": 0.984 + }, + { + "start": 12456.38, + "end": 12458.86, + "probability": 0.842 + }, + { + "start": 12459.92, + "end": 12461.19, + "probability": 0.9727 + }, + { + "start": 12461.48, + "end": 12465.32, + "probability": 0.9761 + }, + { + "start": 12465.7, + "end": 12467.92, + "probability": 0.7611 + }, + { + "start": 12468.68, + "end": 12471.54, + "probability": 0.957 + }, + { + "start": 12472.14, + "end": 12475.56, + "probability": 0.9629 + }, + { + "start": 12475.86, + "end": 12477.26, + "probability": 0.997 + }, + { + "start": 12478.92, + "end": 12481.42, + "probability": 0.8245 + }, + { + "start": 12482.5, + "end": 12488.1, + "probability": 0.9645 + }, + { + "start": 12488.3, + "end": 12492.24, + "probability": 0.9919 + }, + { + "start": 12492.5, + "end": 12493.62, + "probability": 0.9 + }, + { + "start": 12493.7, + "end": 12493.96, + "probability": 0.7775 + }, + { + "start": 12494.62, + "end": 12494.74, + "probability": 0.3078 + }, + { + "start": 12494.74, + "end": 12497.52, + "probability": 0.9772 + }, + { + "start": 12497.7, + "end": 12498.6, + "probability": 0.7538 + }, + { + "start": 12499.16, + "end": 12502.58, + "probability": 0.9063 + }, + { + "start": 12502.7, + "end": 12503.98, + "probability": 0.9888 + }, + { + "start": 12504.74, + "end": 12506.76, + "probability": 0.9883 + }, + { + "start": 12507.58, + "end": 12508.92, + "probability": 0.9914 + }, + { + "start": 12509.64, + "end": 12512.54, + "probability": 0.953 + }, + { + "start": 12513.28, + "end": 12516.32, + "probability": 0.8247 + }, + { + "start": 12517.03, + "end": 12519.5, + "probability": 0.9775 + }, + { + "start": 12519.64, + "end": 12520.52, + "probability": 0.9275 + }, + { + "start": 12520.54, + "end": 12521.44, + "probability": 0.7428 + }, + { + "start": 12522.38, + "end": 12524.14, + "probability": 0.921 + }, + { + "start": 12524.86, + "end": 12525.7, + "probability": 0.9166 + }, + { + "start": 12525.8, + "end": 12528.14, + "probability": 0.7496 + }, + { + "start": 12528.48, + "end": 12529.34, + "probability": 0.9645 + }, + { + "start": 12529.88, + "end": 12532.46, + "probability": 0.7643 + }, + { + "start": 12532.64, + "end": 12533.14, + "probability": 0.5509 + }, + { + "start": 12533.2, + "end": 12533.75, + "probability": 0.5144 + }, + { + "start": 12534.52, + "end": 12535.44, + "probability": 0.9069 + }, + { + "start": 12535.52, + "end": 12537.66, + "probability": 0.9302 + }, + { + "start": 12537.66, + "end": 12538.96, + "probability": 0.8665 + }, + { + "start": 12540.4, + "end": 12542.78, + "probability": 0.8101 + }, + { + "start": 12542.96, + "end": 12543.44, + "probability": 0.6981 + }, + { + "start": 12543.82, + "end": 12545.22, + "probability": 0.9932 + }, + { + "start": 12545.68, + "end": 12546.32, + "probability": 0.9023 + }, + { + "start": 12546.54, + "end": 12547.88, + "probability": 0.5151 + }, + { + "start": 12547.98, + "end": 12547.98, + "probability": 0.8241 + }, + { + "start": 12548.04, + "end": 12548.89, + "probability": 0.8569 + }, + { + "start": 12550.14, + "end": 12551.34, + "probability": 0.7551 + }, + { + "start": 12552.62, + "end": 12556.24, + "probability": 0.7417 + }, + { + "start": 12556.32, + "end": 12556.86, + "probability": 0.7092 + }, + { + "start": 12557.12, + "end": 12561.12, + "probability": 0.981 + }, + { + "start": 12561.86, + "end": 12565.32, + "probability": 0.907 + }, + { + "start": 12565.96, + "end": 12568.74, + "probability": 0.8966 + }, + { + "start": 12569.28, + "end": 12570.68, + "probability": 0.9018 + }, + { + "start": 12570.76, + "end": 12571.98, + "probability": 0.986 + }, + { + "start": 12572.14, + "end": 12572.9, + "probability": 0.8442 + }, + { + "start": 12573.02, + "end": 12575.24, + "probability": 0.8659 + }, + { + "start": 12575.58, + "end": 12576.56, + "probability": 0.8098 + }, + { + "start": 12577.08, + "end": 12577.74, + "probability": 0.8531 + }, + { + "start": 12578.46, + "end": 12580.86, + "probability": 0.9038 + }, + { + "start": 12580.94, + "end": 12585.85, + "probability": 0.9911 + }, + { + "start": 12586.3, + "end": 12587.18, + "probability": 0.6814 + }, + { + "start": 12587.32, + "end": 12589.44, + "probability": 0.8724 + }, + { + "start": 12590.06, + "end": 12591.62, + "probability": 0.9907 + }, + { + "start": 12591.66, + "end": 12593.38, + "probability": 0.5863 + }, + { + "start": 12593.48, + "end": 12596.2, + "probability": 0.9543 + }, + { + "start": 12596.58, + "end": 12598.66, + "probability": 0.9667 + }, + { + "start": 12598.78, + "end": 12599.24, + "probability": 0.8901 + }, + { + "start": 12599.44, + "end": 12602.3, + "probability": 0.8741 + }, + { + "start": 12609.84, + "end": 12612.6, + "probability": 0.6758 + }, + { + "start": 12614.36, + "end": 12615.46, + "probability": 0.7983 + }, + { + "start": 12626.68, + "end": 12628.16, + "probability": 0.5729 + }, + { + "start": 12629.58, + "end": 12630.78, + "probability": 0.7687 + }, + { + "start": 12631.66, + "end": 12637.66, + "probability": 0.8574 + }, + { + "start": 12637.66, + "end": 12641.2, + "probability": 0.9769 + }, + { + "start": 12642.34, + "end": 12643.94, + "probability": 0.9899 + }, + { + "start": 12644.04, + "end": 12645.32, + "probability": 0.9834 + }, + { + "start": 12645.4, + "end": 12645.88, + "probability": 0.8219 + }, + { + "start": 12646.5, + "end": 12647.26, + "probability": 0.7787 + }, + { + "start": 12647.3, + "end": 12648.08, + "probability": 0.5042 + }, + { + "start": 12648.16, + "end": 12649.2, + "probability": 0.7921 + }, + { + "start": 12649.22, + "end": 12650.0, + "probability": 0.5208 + }, + { + "start": 12650.14, + "end": 12651.36, + "probability": 0.9459 + }, + { + "start": 12651.44, + "end": 12651.82, + "probability": 0.873 + }, + { + "start": 12652.64, + "end": 12653.4, + "probability": 0.9372 + }, + { + "start": 12654.72, + "end": 12657.44, + "probability": 0.9749 + }, + { + "start": 12658.12, + "end": 12660.42, + "probability": 0.7482 + }, + { + "start": 12661.8, + "end": 12664.72, + "probability": 0.8712 + }, + { + "start": 12665.34, + "end": 12666.1, + "probability": 0.6378 + }, + { + "start": 12667.82, + "end": 12669.46, + "probability": 0.6987 + }, + { + "start": 12670.12, + "end": 12671.17, + "probability": 0.9344 + }, + { + "start": 12672.03, + "end": 12675.09, + "probability": 0.7588 + }, + { + "start": 12676.31, + "end": 12682.65, + "probability": 0.9452 + }, + { + "start": 12683.64, + "end": 12686.93, + "probability": 0.7965 + }, + { + "start": 12687.93, + "end": 12689.95, + "probability": 0.9614 + }, + { + "start": 12689.95, + "end": 12692.43, + "probability": 0.8961 + }, + { + "start": 12693.99, + "end": 12696.71, + "probability": 0.7653 + }, + { + "start": 12697.19, + "end": 12701.37, + "probability": 0.9734 + }, + { + "start": 12703.03, + "end": 12706.17, + "probability": 0.997 + }, + { + "start": 12706.81, + "end": 12709.13, + "probability": 0.9746 + }, + { + "start": 12710.23, + "end": 12710.59, + "probability": 0.8744 + }, + { + "start": 12710.79, + "end": 12714.61, + "probability": 0.9743 + }, + { + "start": 12714.87, + "end": 12717.71, + "probability": 0.9831 + }, + { + "start": 12718.83, + "end": 12720.89, + "probability": 0.9692 + }, + { + "start": 12721.49, + "end": 12723.33, + "probability": 0.9858 + }, + { + "start": 12723.89, + "end": 12727.73, + "probability": 0.9742 + }, + { + "start": 12728.15, + "end": 12729.2, + "probability": 0.9888 + }, + { + "start": 12729.67, + "end": 12730.61, + "probability": 0.9289 + }, + { + "start": 12730.81, + "end": 12732.63, + "probability": 0.7569 + }, + { + "start": 12733.51, + "end": 12735.49, + "probability": 0.8816 + }, + { + "start": 12736.03, + "end": 12740.01, + "probability": 0.9597 + }, + { + "start": 12740.71, + "end": 12742.59, + "probability": 0.6007 + }, + { + "start": 12744.37, + "end": 12750.41, + "probability": 0.0315 + }, + { + "start": 12750.41, + "end": 12753.47, + "probability": 0.0161 + }, + { + "start": 12753.69, + "end": 12754.79, + "probability": 0.015 + }, + { + "start": 12756.35, + "end": 12759.75, + "probability": 0.0514 + }, + { + "start": 12760.43, + "end": 12766.89, + "probability": 0.0983 + }, + { + "start": 12771.39, + "end": 12775.97, + "probability": 0.0642 + }, + { + "start": 12776.19, + "end": 12777.71, + "probability": 0.0138 + }, + { + "start": 12777.71, + "end": 12779.15, + "probability": 0.0892 + }, + { + "start": 12779.41, + "end": 12784.49, + "probability": 0.0838 + }, + { + "start": 12784.63, + "end": 12786.99, + "probability": 0.14 + }, + { + "start": 12786.99, + "end": 12790.61, + "probability": 0.028 + }, + { + "start": 12790.97, + "end": 12791.89, + "probability": 0.1041 + }, + { + "start": 12791.89, + "end": 12793.35, + "probability": 0.1646 + }, + { + "start": 12793.45, + "end": 12793.93, + "probability": 0.0268 + }, + { + "start": 12793.93, + "end": 12793.93, + "probability": 0.0092 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.0, + "end": 12852.0, + "probability": 0.0 + }, + { + "start": 12852.56, + "end": 12852.56, + "probability": 0.0487 + }, + { + "start": 12852.56, + "end": 12855.32, + "probability": 0.8826 + }, + { + "start": 12856.14, + "end": 12860.26, + "probability": 0.9741 + }, + { + "start": 12861.14, + "end": 12862.5, + "probability": 0.9815 + }, + { + "start": 12863.16, + "end": 12864.8, + "probability": 0.9568 + }, + { + "start": 12865.32, + "end": 12866.66, + "probability": 0.8939 + }, + { + "start": 12867.84, + "end": 12869.04, + "probability": 0.6606 + }, + { + "start": 12869.86, + "end": 12870.88, + "probability": 0.7307 + }, + { + "start": 12871.04, + "end": 12873.56, + "probability": 0.9704 + }, + { + "start": 12874.6, + "end": 12875.84, + "probability": 0.963 + }, + { + "start": 12876.66, + "end": 12880.06, + "probability": 0.804 + }, + { + "start": 12880.88, + "end": 12881.52, + "probability": 0.8186 + }, + { + "start": 12882.02, + "end": 12885.02, + "probability": 0.9722 + }, + { + "start": 12885.02, + "end": 12888.9, + "probability": 0.9701 + }, + { + "start": 12889.8, + "end": 12891.4, + "probability": 0.9133 + }, + { + "start": 12891.8, + "end": 12892.24, + "probability": 0.4814 + }, + { + "start": 12892.5, + "end": 12895.7, + "probability": 0.9614 + }, + { + "start": 12897.7, + "end": 12901.36, + "probability": 0.7875 + }, + { + "start": 12901.4, + "end": 12901.98, + "probability": 0.9664 + }, + { + "start": 12902.32, + "end": 12902.96, + "probability": 0.9373 + }, + { + "start": 12903.34, + "end": 12903.98, + "probability": 0.976 + }, + { + "start": 12904.78, + "end": 12905.98, + "probability": 0.9893 + }, + { + "start": 12906.64, + "end": 12909.34, + "probability": 0.9706 + }, + { + "start": 12909.96, + "end": 12910.4, + "probability": 0.8672 + }, + { + "start": 12911.8, + "end": 12913.14, + "probability": 0.8356 + }, + { + "start": 12914.56, + "end": 12918.34, + "probability": 0.9321 + }, + { + "start": 12919.0, + "end": 12924.56, + "probability": 0.9445 + }, + { + "start": 12925.32, + "end": 12927.3, + "probability": 0.4127 + }, + { + "start": 12929.06, + "end": 12932.97, + "probability": 0.9639 + }, + { + "start": 12933.1, + "end": 12937.8, + "probability": 0.9907 + }, + { + "start": 12939.0, + "end": 12939.36, + "probability": 0.7231 + }, + { + "start": 12940.24, + "end": 12940.46, + "probability": 0.5427 + }, + { + "start": 12940.46, + "end": 12945.2, + "probability": 0.9957 + }, + { + "start": 12946.04, + "end": 12947.22, + "probability": 0.7646 + }, + { + "start": 12947.3, + "end": 12950.62, + "probability": 0.9134 + }, + { + "start": 12952.32, + "end": 12955.54, + "probability": 0.5936 + }, + { + "start": 12956.72, + "end": 12958.7, + "probability": 0.6922 + }, + { + "start": 12959.14, + "end": 12962.66, + "probability": 0.9138 + }, + { + "start": 12963.76, + "end": 12965.94, + "probability": 0.9572 + }, + { + "start": 12966.72, + "end": 12967.42, + "probability": 0.4099 + }, + { + "start": 12968.06, + "end": 12969.53, + "probability": 0.6749 + }, + { + "start": 12970.42, + "end": 12970.6, + "probability": 0.0765 + }, + { + "start": 12970.6, + "end": 12973.15, + "probability": 0.0746 + }, + { + "start": 12973.98, + "end": 12977.5, + "probability": 0.0761 + }, + { + "start": 12977.54, + "end": 12978.4, + "probability": 0.3985 + }, + { + "start": 12979.92, + "end": 12983.4, + "probability": 0.0893 + }, + { + "start": 12984.41, + "end": 12987.68, + "probability": 0.1832 + }, + { + "start": 12988.34, + "end": 12991.46, + "probability": 0.0732 + }, + { + "start": 12991.92, + "end": 12995.12, + "probability": 0.2754 + }, + { + "start": 12995.86, + "end": 12997.18, + "probability": 0.2747 + }, + { + "start": 12998.36, + "end": 12999.9, + "probability": 0.1874 + }, + { + "start": 13000.2, + "end": 13002.78, + "probability": 0.4845 + }, + { + "start": 13003.3, + "end": 13003.3, + "probability": 0.0 + }, + { + "start": 13003.96, + "end": 13006.2, + "probability": 0.0835 + }, + { + "start": 13007.84, + "end": 13008.78, + "probability": 0.0545 + }, + { + "start": 13009.44, + "end": 13014.1, + "probability": 0.277 + }, + { + "start": 13014.54, + "end": 13017.42, + "probability": 0.8171 + }, + { + "start": 13017.54, + "end": 13018.28, + "probability": 0.9231 + }, + { + "start": 13024.96, + "end": 13028.0, + "probability": 0.6888 + }, + { + "start": 13028.2, + "end": 13029.86, + "probability": 0.8678 + }, + { + "start": 13041.52, + "end": 13042.46, + "probability": 0.6931 + }, + { + "start": 13042.98, + "end": 13043.98, + "probability": 0.5223 + }, + { + "start": 13044.66, + "end": 13050.24, + "probability": 0.9853 + }, + { + "start": 13050.24, + "end": 13055.46, + "probability": 0.9653 + }, + { + "start": 13057.24, + "end": 13058.22, + "probability": 0.8875 + }, + { + "start": 13058.7, + "end": 13062.28, + "probability": 0.9695 + }, + { + "start": 13063.2, + "end": 13066.08, + "probability": 0.7553 + }, + { + "start": 13067.8, + "end": 13072.52, + "probability": 0.9308 + }, + { + "start": 13073.18, + "end": 13074.36, + "probability": 0.8854 + }, + { + "start": 13075.1, + "end": 13081.02, + "probability": 0.9903 + }, + { + "start": 13081.76, + "end": 13086.6, + "probability": 0.8846 + }, + { + "start": 13087.4, + "end": 13089.4, + "probability": 0.9963 + }, + { + "start": 13090.0, + "end": 13092.48, + "probability": 0.8416 + }, + { + "start": 13093.24, + "end": 13094.98, + "probability": 0.9746 + }, + { + "start": 13095.58, + "end": 13096.44, + "probability": 0.9403 + }, + { + "start": 13097.74, + "end": 13099.22, + "probability": 0.7875 + }, + { + "start": 13099.38, + "end": 13101.82, + "probability": 0.9911 + }, + { + "start": 13102.6, + "end": 13103.26, + "probability": 0.9857 + }, + { + "start": 13103.84, + "end": 13107.36, + "probability": 0.9104 + }, + { + "start": 13108.94, + "end": 13110.42, + "probability": 0.7441 + }, + { + "start": 13111.78, + "end": 13115.82, + "probability": 0.8254 + }, + { + "start": 13116.46, + "end": 13117.18, + "probability": 0.84 + }, + { + "start": 13117.48, + "end": 13121.42, + "probability": 0.9745 + }, + { + "start": 13122.7, + "end": 13124.2, + "probability": 0.9113 + }, + { + "start": 13126.0, + "end": 13129.24, + "probability": 0.9784 + }, + { + "start": 13129.24, + "end": 13133.3, + "probability": 0.9992 + }, + { + "start": 13134.1, + "end": 13136.03, + "probability": 0.8348 + }, + { + "start": 13137.24, + "end": 13139.74, + "probability": 0.9624 + }, + { + "start": 13140.64, + "end": 13141.28, + "probability": 0.5529 + }, + { + "start": 13141.86, + "end": 13143.3, + "probability": 0.8422 + }, + { + "start": 13144.06, + "end": 13147.52, + "probability": 0.9884 + }, + { + "start": 13148.46, + "end": 13152.64, + "probability": 0.986 + }, + { + "start": 13154.72, + "end": 13156.68, + "probability": 0.8126 + }, + { + "start": 13157.38, + "end": 13162.08, + "probability": 0.9863 + }, + { + "start": 13162.68, + "end": 13164.78, + "probability": 0.9917 + }, + { + "start": 13165.88, + "end": 13168.26, + "probability": 0.9101 + }, + { + "start": 13169.2, + "end": 13173.66, + "probability": 0.9894 + }, + { + "start": 13173.8, + "end": 13177.56, + "probability": 0.9979 + }, + { + "start": 13177.78, + "end": 13179.6, + "probability": 0.823 + }, + { + "start": 13180.14, + "end": 13181.86, + "probability": 0.9775 + }, + { + "start": 13182.52, + "end": 13182.96, + "probability": 0.8467 + }, + { + "start": 13182.98, + "end": 13187.66, + "probability": 0.9731 + }, + { + "start": 13187.9, + "end": 13188.4, + "probability": 0.639 + }, + { + "start": 13188.72, + "end": 13189.2, + "probability": 0.8078 + }, + { + "start": 13191.12, + "end": 13192.2, + "probability": 0.7688 + }, + { + "start": 13200.4, + "end": 13201.58, + "probability": 0.9359 + }, + { + "start": 13203.68, + "end": 13204.66, + "probability": 0.7159 + }, + { + "start": 13204.8, + "end": 13206.92, + "probability": 0.8147 + }, + { + "start": 13207.36, + "end": 13207.98, + "probability": 0.963 + }, + { + "start": 13208.14, + "end": 13211.28, + "probability": 0.9106 + }, + { + "start": 13213.16, + "end": 13216.78, + "probability": 0.9984 + }, + { + "start": 13217.3, + "end": 13218.8, + "probability": 0.6476 + }, + { + "start": 13219.62, + "end": 13220.26, + "probability": 0.5103 + }, + { + "start": 13221.62, + "end": 13223.18, + "probability": 0.6851 + }, + { + "start": 13224.82, + "end": 13226.92, + "probability": 0.7637 + }, + { + "start": 13227.94, + "end": 13231.12, + "probability": 0.8888 + }, + { + "start": 13231.64, + "end": 13232.34, + "probability": 0.6599 + }, + { + "start": 13232.8, + "end": 13236.34, + "probability": 0.9293 + }, + { + "start": 13237.28, + "end": 13239.54, + "probability": 0.8673 + }, + { + "start": 13240.4, + "end": 13241.24, + "probability": 0.9249 + }, + { + "start": 13241.78, + "end": 13244.14, + "probability": 0.9609 + }, + { + "start": 13244.42, + "end": 13246.28, + "probability": 0.59 + }, + { + "start": 13246.7, + "end": 13247.32, + "probability": 0.6981 + }, + { + "start": 13247.48, + "end": 13247.62, + "probability": 0.8597 + }, + { + "start": 13248.1, + "end": 13248.42, + "probability": 0.9227 + }, + { + "start": 13250.32, + "end": 13250.5, + "probability": 0.9115 + }, + { + "start": 13251.9, + "end": 13252.16, + "probability": 0.9767 + }, + { + "start": 13253.26, + "end": 13253.48, + "probability": 0.9851 + }, + { + "start": 13255.02, + "end": 13256.56, + "probability": 0.9977 + }, + { + "start": 13257.98, + "end": 13258.84, + "probability": 0.4706 + }, + { + "start": 13259.56, + "end": 13260.76, + "probability": 0.9056 + }, + { + "start": 13261.68, + "end": 13262.54, + "probability": 0.8242 + }, + { + "start": 13263.2, + "end": 13265.36, + "probability": 0.8004 + }, + { + "start": 13266.04, + "end": 13266.9, + "probability": 0.9222 + }, + { + "start": 13267.8, + "end": 13268.52, + "probability": 0.9135 + }, + { + "start": 13270.52, + "end": 13270.8, + "probability": 0.8395 + }, + { + "start": 13271.48, + "end": 13272.74, + "probability": 0.8424 + }, + { + "start": 13273.18, + "end": 13278.32, + "probability": 0.9767 + }, + { + "start": 13279.32, + "end": 13279.92, + "probability": 0.0913 + }, + { + "start": 13280.44, + "end": 13280.98, + "probability": 0.0565 + }, + { + "start": 13280.98, + "end": 13281.78, + "probability": 0.8192 + }, + { + "start": 13282.4, + "end": 13283.96, + "probability": 0.4442 + }, + { + "start": 13285.7, + "end": 13289.48, + "probability": 0.8201 + }, + { + "start": 13290.66, + "end": 13292.72, + "probability": 0.8267 + }, + { + "start": 13293.3, + "end": 13293.84, + "probability": 0.9666 + }, + { + "start": 13294.86, + "end": 13297.76, + "probability": 0.9442 + }, + { + "start": 13300.46, + "end": 13301.64, + "probability": 0.8078 + }, + { + "start": 13303.08, + "end": 13304.04, + "probability": 0.9109 + }, + { + "start": 13304.72, + "end": 13305.44, + "probability": 0.7117 + }, + { + "start": 13305.54, + "end": 13306.5, + "probability": 0.9764 + }, + { + "start": 13308.23, + "end": 13312.23, + "probability": 0.978 + }, + { + "start": 13313.58, + "end": 13316.82, + "probability": 0.9924 + }, + { + "start": 13318.7, + "end": 13321.32, + "probability": 0.8725 + }, + { + "start": 13322.9, + "end": 13323.08, + "probability": 0.2749 + }, + { + "start": 13323.08, + "end": 13327.14, + "probability": 0.951 + }, + { + "start": 13328.18, + "end": 13331.5, + "probability": 0.9259 + }, + { + "start": 13332.82, + "end": 13337.58, + "probability": 0.9527 + }, + { + "start": 13338.28, + "end": 13342.88, + "probability": 0.9495 + }, + { + "start": 13343.14, + "end": 13345.92, + "probability": 0.9919 + }, + { + "start": 13347.08, + "end": 13348.94, + "probability": 0.7856 + }, + { + "start": 13350.18, + "end": 13351.88, + "probability": 0.8307 + }, + { + "start": 13352.54, + "end": 13354.46, + "probability": 0.5632 + }, + { + "start": 13355.0, + "end": 13356.32, + "probability": 0.8083 + }, + { + "start": 13358.16, + "end": 13359.54, + "probability": 0.9204 + }, + { + "start": 13360.76, + "end": 13362.02, + "probability": 0.9927 + }, + { + "start": 13363.9, + "end": 13364.9, + "probability": 0.9841 + }, + { + "start": 13365.88, + "end": 13367.6, + "probability": 0.5437 + }, + { + "start": 13369.22, + "end": 13373.64, + "probability": 0.7369 + }, + { + "start": 13374.64, + "end": 13375.96, + "probability": 0.5576 + }, + { + "start": 13376.9, + "end": 13378.84, + "probability": 0.7627 + }, + { + "start": 13379.5, + "end": 13380.48, + "probability": 0.9323 + }, + { + "start": 13382.24, + "end": 13384.76, + "probability": 0.9367 + }, + { + "start": 13385.9, + "end": 13387.82, + "probability": 0.7445 + }, + { + "start": 13388.38, + "end": 13388.52, + "probability": 0.4038 + }, + { + "start": 13388.52, + "end": 13392.32, + "probability": 0.9946 + }, + { + "start": 13393.42, + "end": 13395.38, + "probability": 0.9824 + }, + { + "start": 13396.12, + "end": 13396.8, + "probability": 0.7443 + }, + { + "start": 13398.8, + "end": 13400.66, + "probability": 0.9311 + }, + { + "start": 13401.48, + "end": 13403.82, + "probability": 0.8915 + }, + { + "start": 13405.34, + "end": 13406.3, + "probability": 0.8023 + }, + { + "start": 13407.68, + "end": 13409.79, + "probability": 0.8076 + }, + { + "start": 13410.06, + "end": 13411.09, + "probability": 0.7312 + }, + { + "start": 13411.98, + "end": 13412.48, + "probability": 0.6338 + }, + { + "start": 13412.48, + "end": 13413.7, + "probability": 0.744 + }, + { + "start": 13415.66, + "end": 13416.28, + "probability": 0.7122 + }, + { + "start": 13416.74, + "end": 13418.98, + "probability": 0.8743 + }, + { + "start": 13426.34, + "end": 13426.92, + "probability": 0.0804 + }, + { + "start": 13426.92, + "end": 13426.92, + "probability": 0.0399 + }, + { + "start": 13426.92, + "end": 13426.92, + "probability": 0.1414 + }, + { + "start": 13426.92, + "end": 13427.28, + "probability": 0.2645 + }, + { + "start": 13427.68, + "end": 13429.94, + "probability": 0.1076 + }, + { + "start": 13432.22, + "end": 13432.32, + "probability": 0.2864 + }, + { + "start": 13432.36, + "end": 13432.92, + "probability": 0.3586 + }, + { + "start": 13433.02, + "end": 13435.34, + "probability": 0.8586 + }, + { + "start": 13435.36, + "end": 13438.78, + "probability": 0.9984 + }, + { + "start": 13438.9, + "end": 13440.44, + "probability": 0.504 + }, + { + "start": 13441.98, + "end": 13444.04, + "probability": 0.9844 + }, + { + "start": 13444.22, + "end": 13445.16, + "probability": 0.9845 + }, + { + "start": 13445.56, + "end": 13446.76, + "probability": 0.9256 + }, + { + "start": 13446.88, + "end": 13449.32, + "probability": 0.9932 + }, + { + "start": 13449.8, + "end": 13450.74, + "probability": 0.6617 + }, + { + "start": 13451.7, + "end": 13452.5, + "probability": 0.8386 + }, + { + "start": 13452.68, + "end": 13453.0, + "probability": 0.7465 + }, + { + "start": 13453.26, + "end": 13453.5, + "probability": 0.4349 + }, + { + "start": 13453.62, + "end": 13455.66, + "probability": 0.98 + }, + { + "start": 13456.58, + "end": 13459.0, + "probability": 0.8667 + }, + { + "start": 13459.2, + "end": 13461.56, + "probability": 0.7719 + }, + { + "start": 13462.22, + "end": 13462.38, + "probability": 0.3003 + }, + { + "start": 13462.4, + "end": 13463.54, + "probability": 0.8796 + }, + { + "start": 13463.64, + "end": 13466.9, + "probability": 0.9888 + }, + { + "start": 13467.0, + "end": 13469.12, + "probability": 0.788 + }, + { + "start": 13469.74, + "end": 13474.24, + "probability": 0.9927 + }, + { + "start": 13475.2, + "end": 13475.54, + "probability": 0.969 + }, + { + "start": 13477.38, + "end": 13480.52, + "probability": 0.9879 + }, + { + "start": 13480.56, + "end": 13481.54, + "probability": 0.8544 + }, + { + "start": 13481.58, + "end": 13486.48, + "probability": 0.998 + }, + { + "start": 13486.72, + "end": 13488.46, + "probability": 0.9069 + }, + { + "start": 13489.16, + "end": 13491.96, + "probability": 0.9917 + }, + { + "start": 13492.5, + "end": 13496.34, + "probability": 0.9648 + }, + { + "start": 13496.84, + "end": 13500.1, + "probability": 0.9722 + }, + { + "start": 13500.54, + "end": 13502.26, + "probability": 0.9351 + }, + { + "start": 13502.5, + "end": 13506.04, + "probability": 0.8696 + }, + { + "start": 13506.3, + "end": 13506.96, + "probability": 0.7735 + }, + { + "start": 13507.08, + "end": 13509.5, + "probability": 0.9619 + }, + { + "start": 13509.68, + "end": 13513.52, + "probability": 0.9915 + }, + { + "start": 13514.36, + "end": 13516.26, + "probability": 0.8865 + }, + { + "start": 13516.84, + "end": 13518.7, + "probability": 0.911 + }, + { + "start": 13518.84, + "end": 13523.28, + "probability": 0.9912 + }, + { + "start": 13523.74, + "end": 13527.28, + "probability": 0.9724 + }, + { + "start": 13528.8, + "end": 13531.78, + "probability": 0.7743 + }, + { + "start": 13532.14, + "end": 13536.38, + "probability": 0.8692 + }, + { + "start": 13536.58, + "end": 13537.52, + "probability": 0.9686 + }, + { + "start": 13537.64, + "end": 13538.14, + "probability": 0.8001 + }, + { + "start": 13538.26, + "end": 13538.7, + "probability": 0.8929 + }, + { + "start": 13538.72, + "end": 13539.12, + "probability": 0.5547 + }, + { + "start": 13539.6, + "end": 13539.7, + "probability": 0.4609 + }, + { + "start": 13540.58, + "end": 13542.12, + "probability": 0.8459 + }, + { + "start": 13542.62, + "end": 13544.16, + "probability": 0.6546 + }, + { + "start": 13544.62, + "end": 13546.8, + "probability": 0.9931 + }, + { + "start": 13547.36, + "end": 13549.05, + "probability": 0.9913 + }, + { + "start": 13550.22, + "end": 13553.78, + "probability": 0.9498 + }, + { + "start": 13554.22, + "end": 13555.94, + "probability": 0.9938 + }, + { + "start": 13556.16, + "end": 13556.96, + "probability": 0.851 + }, + { + "start": 13557.9, + "end": 13559.78, + "probability": 0.9956 + }, + { + "start": 13560.56, + "end": 13561.71, + "probability": 0.9951 + }, + { + "start": 13562.64, + "end": 13563.96, + "probability": 0.9421 + }, + { + "start": 13564.32, + "end": 13564.7, + "probability": 0.8046 + }, + { + "start": 13564.82, + "end": 13565.24, + "probability": 0.8065 + }, + { + "start": 13565.44, + "end": 13566.24, + "probability": 0.9812 + }, + { + "start": 13566.92, + "end": 13567.22, + "probability": 0.7401 + }, + { + "start": 13568.22, + "end": 13568.76, + "probability": 0.7938 + }, + { + "start": 13570.58, + "end": 13571.68, + "probability": 0.9417 + }, + { + "start": 13572.42, + "end": 13572.88, + "probability": 0.4423 + }, + { + "start": 13573.02, + "end": 13573.84, + "probability": 0.7813 + }, + { + "start": 13574.36, + "end": 13576.28, + "probability": 0.7652 + }, + { + "start": 13578.56, + "end": 13581.78, + "probability": 0.7672 + }, + { + "start": 13586.38, + "end": 13587.22, + "probability": 0.3991 + }, + { + "start": 13587.32, + "end": 13589.38, + "probability": 0.7711 + }, + { + "start": 13592.35, + "end": 13598.68, + "probability": 0.9946 + }, + { + "start": 13599.38, + "end": 13602.72, + "probability": 0.9983 + }, + { + "start": 13603.66, + "end": 13605.76, + "probability": 0.9954 + }, + { + "start": 13607.34, + "end": 13612.18, + "probability": 0.9972 + }, + { + "start": 13613.3, + "end": 13613.82, + "probability": 0.9241 + }, + { + "start": 13614.14, + "end": 13620.36, + "probability": 0.9859 + }, + { + "start": 13620.66, + "end": 13625.84, + "probability": 0.998 + }, + { + "start": 13628.56, + "end": 13633.76, + "probability": 0.9907 + }, + { + "start": 13633.98, + "end": 13635.09, + "probability": 0.8215 + }, + { + "start": 13635.84, + "end": 13640.4, + "probability": 0.9861 + }, + { + "start": 13641.24, + "end": 13646.37, + "probability": 0.9979 + }, + { + "start": 13646.76, + "end": 13648.38, + "probability": 0.8949 + }, + { + "start": 13649.6, + "end": 13652.7, + "probability": 0.9942 + }, + { + "start": 13653.46, + "end": 13656.84, + "probability": 0.9893 + }, + { + "start": 13657.8, + "end": 13661.4, + "probability": 0.9988 + }, + { + "start": 13662.3, + "end": 13664.48, + "probability": 0.8338 + }, + { + "start": 13665.16, + "end": 13666.6, + "probability": 0.9452 + }, + { + "start": 13667.7, + "end": 13670.54, + "probability": 0.7544 + }, + { + "start": 13671.2, + "end": 13674.92, + "probability": 0.8765 + }, + { + "start": 13675.52, + "end": 13677.32, + "probability": 0.7661 + }, + { + "start": 13677.92, + "end": 13680.18, + "probability": 0.9911 + }, + { + "start": 13681.5, + "end": 13686.4, + "probability": 0.9977 + }, + { + "start": 13687.1, + "end": 13688.06, + "probability": 0.7175 + }, + { + "start": 13688.92, + "end": 13691.58, + "probability": 0.8098 + }, + { + "start": 13692.26, + "end": 13693.5, + "probability": 0.8862 + }, + { + "start": 13693.6, + "end": 13698.12, + "probability": 0.9876 + }, + { + "start": 13698.66, + "end": 13699.74, + "probability": 0.9753 + }, + { + "start": 13700.86, + "end": 13705.44, + "probability": 0.9966 + }, + { + "start": 13705.44, + "end": 13709.06, + "probability": 0.9799 + }, + { + "start": 13709.7, + "end": 13710.52, + "probability": 0.912 + }, + { + "start": 13711.46, + "end": 13714.78, + "probability": 0.7872 + }, + { + "start": 13714.8, + "end": 13717.16, + "probability": 0.9561 + }, + { + "start": 13718.36, + "end": 13721.04, + "probability": 0.9839 + }, + { + "start": 13721.38, + "end": 13722.32, + "probability": 0.9852 + }, + { + "start": 13723.56, + "end": 13725.84, + "probability": 0.9979 + }, + { + "start": 13726.4, + "end": 13728.82, + "probability": 0.9952 + }, + { + "start": 13730.38, + "end": 13735.42, + "probability": 0.8807 + }, + { + "start": 13736.3, + "end": 13739.24, + "probability": 0.9693 + }, + { + "start": 13740.18, + "end": 13743.26, + "probability": 0.9963 + }, + { + "start": 13743.34, + "end": 13746.78, + "probability": 0.9892 + }, + { + "start": 13748.06, + "end": 13752.36, + "probability": 0.9906 + }, + { + "start": 13753.42, + "end": 13755.36, + "probability": 0.9813 + }, + { + "start": 13756.08, + "end": 13758.52, + "probability": 0.9197 + }, + { + "start": 13759.4, + "end": 13762.5, + "probability": 0.9741 + }, + { + "start": 13763.2, + "end": 13766.34, + "probability": 0.8485 + }, + { + "start": 13767.1, + "end": 13767.6, + "probability": 0.9503 + }, + { + "start": 13768.48, + "end": 13770.54, + "probability": 0.9771 + }, + { + "start": 13770.96, + "end": 13772.94, + "probability": 0.8109 + }, + { + "start": 13785.78, + "end": 13786.0, + "probability": 0.2646 + }, + { + "start": 13786.06, + "end": 13788.32, + "probability": 0.7155 + }, + { + "start": 13789.58, + "end": 13792.72, + "probability": 0.9541 + }, + { + "start": 13793.16, + "end": 13795.04, + "probability": 0.9948 + }, + { + "start": 13795.6, + "end": 13796.94, + "probability": 0.9408 + }, + { + "start": 13797.82, + "end": 13801.56, + "probability": 0.9691 + }, + { + "start": 13802.78, + "end": 13806.16, + "probability": 0.8855 + }, + { + "start": 13806.76, + "end": 13808.66, + "probability": 0.799 + }, + { + "start": 13808.86, + "end": 13809.82, + "probability": 0.5952 + }, + { + "start": 13810.32, + "end": 13815.14, + "probability": 0.9445 + }, + { + "start": 13816.0, + "end": 13821.14, + "probability": 0.9776 + }, + { + "start": 13822.24, + "end": 13823.56, + "probability": 0.7449 + }, + { + "start": 13824.36, + "end": 13827.4, + "probability": 0.9051 + }, + { + "start": 13829.6, + "end": 13833.86, + "probability": 0.9723 + }, + { + "start": 13834.54, + "end": 13837.36, + "probability": 0.9834 + }, + { + "start": 13837.98, + "end": 13840.54, + "probability": 0.9409 + }, + { + "start": 13841.3, + "end": 13843.32, + "probability": 0.9968 + }, + { + "start": 13843.92, + "end": 13847.48, + "probability": 0.9443 + }, + { + "start": 13848.1, + "end": 13848.7, + "probability": 0.9345 + }, + { + "start": 13848.86, + "end": 13849.54, + "probability": 0.9413 + }, + { + "start": 13849.7, + "end": 13850.56, + "probability": 0.9133 + }, + { + "start": 13850.94, + "end": 13853.78, + "probability": 0.9955 + }, + { + "start": 13854.94, + "end": 13858.23, + "probability": 0.9906 + }, + { + "start": 13859.66, + "end": 13860.56, + "probability": 0.895 + }, + { + "start": 13861.26, + "end": 13862.24, + "probability": 0.9505 + }, + { + "start": 13862.84, + "end": 13863.72, + "probability": 0.6844 + }, + { + "start": 13865.1, + "end": 13869.7, + "probability": 0.9743 + }, + { + "start": 13870.12, + "end": 13872.16, + "probability": 0.9984 + }, + { + "start": 13872.78, + "end": 13875.52, + "probability": 0.9673 + }, + { + "start": 13875.84, + "end": 13880.06, + "probability": 0.9758 + }, + { + "start": 13881.32, + "end": 13882.6, + "probability": 0.6418 + }, + { + "start": 13882.74, + "end": 13884.86, + "probability": 0.994 + }, + { + "start": 13884.92, + "end": 13886.94, + "probability": 0.7343 + }, + { + "start": 13887.38, + "end": 13890.76, + "probability": 0.9354 + }, + { + "start": 13890.76, + "end": 13893.82, + "probability": 0.9979 + }, + { + "start": 13894.56, + "end": 13895.17, + "probability": 0.9294 + }, + { + "start": 13896.14, + "end": 13898.35, + "probability": 0.9933 + }, + { + "start": 13899.14, + "end": 13899.96, + "probability": 0.8833 + }, + { + "start": 13900.8, + "end": 13903.44, + "probability": 0.9235 + }, + { + "start": 13904.88, + "end": 13908.7, + "probability": 0.7338 + }, + { + "start": 13909.54, + "end": 13913.1, + "probability": 0.9933 + }, + { + "start": 13914.12, + "end": 13915.68, + "probability": 0.9992 + }, + { + "start": 13915.98, + "end": 13916.08, + "probability": 0.981 + }, + { + "start": 13916.5, + "end": 13917.3, + "probability": 0.9692 + }, + { + "start": 13917.46, + "end": 13917.96, + "probability": 0.954 + }, + { + "start": 13918.62, + "end": 13921.76, + "probability": 0.9832 + }, + { + "start": 13922.72, + "end": 13927.92, + "probability": 0.9978 + }, + { + "start": 13928.12, + "end": 13929.18, + "probability": 0.7471 + }, + { + "start": 13929.9, + "end": 13930.54, + "probability": 0.8978 + }, + { + "start": 13931.3, + "end": 13932.62, + "probability": 0.9762 + }, + { + "start": 13933.26, + "end": 13936.02, + "probability": 0.9819 + }, + { + "start": 13936.46, + "end": 13936.88, + "probability": 0.7428 + }, + { + "start": 13937.56, + "end": 13937.96, + "probability": 0.5574 + }, + { + "start": 13938.06, + "end": 13940.4, + "probability": 0.8912 + }, + { + "start": 13965.48, + "end": 13966.24, + "probability": 0.6215 + }, + { + "start": 13966.48, + "end": 13970.08, + "probability": 0.9265 + }, + { + "start": 13970.48, + "end": 13971.7, + "probability": 0.7356 + }, + { + "start": 13971.8, + "end": 13973.2, + "probability": 0.9723 + }, + { + "start": 13974.32, + "end": 13976.0, + "probability": 0.9767 + }, + { + "start": 13977.14, + "end": 13980.6, + "probability": 0.9878 + }, + { + "start": 13981.48, + "end": 13983.3, + "probability": 0.9924 + }, + { + "start": 13983.52, + "end": 13984.04, + "probability": 0.981 + }, + { + "start": 13984.56, + "end": 13985.68, + "probability": 0.999 + }, + { + "start": 13986.54, + "end": 13992.24, + "probability": 0.9631 + }, + { + "start": 13993.22, + "end": 13996.26, + "probability": 0.9963 + }, + { + "start": 13997.22, + "end": 14000.6, + "probability": 0.926 + }, + { + "start": 14000.6, + "end": 14004.92, + "probability": 0.9711 + }, + { + "start": 14005.14, + "end": 14006.32, + "probability": 0.6346 + }, + { + "start": 14006.42, + "end": 14006.62, + "probability": 0.9154 + }, + { + "start": 14006.7, + "end": 14007.04, + "probability": 0.6836 + }, + { + "start": 14007.12, + "end": 14007.22, + "probability": 0.066 + }, + { + "start": 14007.24, + "end": 14007.32, + "probability": 0.8647 + }, + { + "start": 14007.4, + "end": 14007.58, + "probability": 0.6117 + }, + { + "start": 14007.96, + "end": 14009.86, + "probability": 0.7494 + }, + { + "start": 14010.66, + "end": 14010.78, + "probability": 0.5224 + }, + { + "start": 14011.32, + "end": 14012.16, + "probability": 0.5478 + }, + { + "start": 14013.8, + "end": 14014.56, + "probability": 0.7631 + }, + { + "start": 14016.26, + "end": 14019.34, + "probability": 0.9502 + }, + { + "start": 14019.74, + "end": 14020.46, + "probability": 0.8336 + }, + { + "start": 14020.52, + "end": 14022.22, + "probability": 0.8995 + }, + { + "start": 14022.32, + "end": 14022.64, + "probability": 0.8906 + }, + { + "start": 14022.7, + "end": 14023.1, + "probability": 0.6983 + }, + { + "start": 14023.18, + "end": 14024.34, + "probability": 0.8534 + }, + { + "start": 14024.8, + "end": 14026.04, + "probability": 0.9883 + }, + { + "start": 14026.84, + "end": 14031.54, + "probability": 0.659 + }, + { + "start": 14033.12, + "end": 14038.36, + "probability": 0.8401 + }, + { + "start": 14039.4, + "end": 14042.78, + "probability": 0.9641 + }, + { + "start": 14043.1, + "end": 14045.22, + "probability": 0.7839 + }, + { + "start": 14046.32, + "end": 14048.7, + "probability": 0.8389 + }, + { + "start": 14048.82, + "end": 14049.65, + "probability": 0.0072 + }, + { + "start": 14049.72, + "end": 14049.72, + "probability": 0.0223 + }, + { + "start": 14049.72, + "end": 14051.22, + "probability": 0.6416 + }, + { + "start": 14051.22, + "end": 14053.54, + "probability": 0.2647 + }, + { + "start": 14055.71, + "end": 14057.88, + "probability": 0.3526 + }, + { + "start": 14057.94, + "end": 14060.12, + "probability": 0.2944 + }, + { + "start": 14060.82, + "end": 14061.42, + "probability": 0.3493 + }, + { + "start": 14061.6, + "end": 14063.2, + "probability": 0.6714 + }, + { + "start": 14063.6, + "end": 14065.44, + "probability": 0.9849 + }, + { + "start": 14065.68, + "end": 14066.22, + "probability": 0.3699 + }, + { + "start": 14067.12, + "end": 14069.5, + "probability": 0.6901 + }, + { + "start": 14069.66, + "end": 14070.56, + "probability": 0.7833 + }, + { + "start": 14071.11, + "end": 14074.62, + "probability": 0.958 + }, + { + "start": 14075.39, + "end": 14077.34, + "probability": 0.9196 + }, + { + "start": 14077.56, + "end": 14079.44, + "probability": 0.788 + }, + { + "start": 14082.19, + "end": 14083.48, + "probability": 0.4713 + }, + { + "start": 14084.92, + "end": 14086.62, + "probability": 0.4779 + }, + { + "start": 14086.76, + "end": 14088.84, + "probability": 0.858 + }, + { + "start": 14088.84, + "end": 14089.61, + "probability": 0.0357 + }, + { + "start": 14091.88, + "end": 14093.1, + "probability": 0.0494 + }, + { + "start": 14093.1, + "end": 14094.88, + "probability": 0.6709 + }, + { + "start": 14095.04, + "end": 14096.5, + "probability": 0.8379 + }, + { + "start": 14096.54, + "end": 14098.84, + "probability": 0.9764 + }, + { + "start": 14099.16, + "end": 14099.32, + "probability": 0.0889 + }, + { + "start": 14099.32, + "end": 14103.04, + "probability": 0.9236 + }, + { + "start": 14103.2, + "end": 14105.3, + "probability": 0.8434 + }, + { + "start": 14105.4, + "end": 14106.14, + "probability": 0.5123 + }, + { + "start": 14106.34, + "end": 14109.9, + "probability": 0.9365 + }, + { + "start": 14110.44, + "end": 14113.34, + "probability": 0.6206 + }, + { + "start": 14116.04, + "end": 14116.04, + "probability": 0.0724 + }, + { + "start": 14116.04, + "end": 14116.2, + "probability": 0.784 + }, + { + "start": 14116.34, + "end": 14118.88, + "probability": 0.7535 + }, + { + "start": 14119.04, + "end": 14125.62, + "probability": 0.947 + }, + { + "start": 14125.68, + "end": 14126.4, + "probability": 0.5165 + }, + { + "start": 14126.56, + "end": 14127.04, + "probability": 0.8018 + }, + { + "start": 14127.18, + "end": 14128.64, + "probability": 0.3814 + }, + { + "start": 14128.64, + "end": 14130.28, + "probability": 0.671 + }, + { + "start": 14130.8, + "end": 14134.04, + "probability": 0.6298 + }, + { + "start": 14134.04, + "end": 14135.86, + "probability": 0.9844 + }, + { + "start": 14135.88, + "end": 14140.52, + "probability": 0.8322 + }, + { + "start": 14140.86, + "end": 14143.64, + "probability": 0.744 + }, + { + "start": 14143.9, + "end": 14147.68, + "probability": 0.6935 + }, + { + "start": 14148.22, + "end": 14149.52, + "probability": 0.9844 + }, + { + "start": 14149.58, + "end": 14150.22, + "probability": 0.8995 + }, + { + "start": 14153.26, + "end": 14153.26, + "probability": 0.0219 + }, + { + "start": 14154.02, + "end": 14154.02, + "probability": 0.0056 + }, + { + "start": 14154.02, + "end": 14155.4, + "probability": 0.3614 + }, + { + "start": 14155.54, + "end": 14156.68, + "probability": 0.33 + }, + { + "start": 14156.8, + "end": 14158.24, + "probability": 0.5808 + }, + { + "start": 14158.32, + "end": 14159.48, + "probability": 0.6324 + }, + { + "start": 14160.24, + "end": 14163.14, + "probability": 0.7244 + }, + { + "start": 14163.92, + "end": 14166.86, + "probability": 0.5217 + }, + { + "start": 14166.94, + "end": 14168.22, + "probability": 0.0302 + }, + { + "start": 14168.38, + "end": 14170.29, + "probability": 0.1569 + }, + { + "start": 14170.34, + "end": 14171.06, + "probability": 0.228 + }, + { + "start": 14171.92, + "end": 14173.14, + "probability": 0.0594 + }, + { + "start": 14173.2, + "end": 14174.86, + "probability": 0.5326 + }, + { + "start": 14174.96, + "end": 14175.62, + "probability": 0.7487 + }, + { + "start": 14175.87, + "end": 14180.68, + "probability": 0.8606 + }, + { + "start": 14181.32, + "end": 14181.5, + "probability": 0.4912 + }, + { + "start": 14181.58, + "end": 14184.68, + "probability": 0.8903 + }, + { + "start": 14184.68, + "end": 14185.62, + "probability": 0.257 + }, + { + "start": 14185.8, + "end": 14186.26, + "probability": 0.5464 + }, + { + "start": 14186.26, + "end": 14188.26, + "probability": 0.8662 + }, + { + "start": 14189.58, + "end": 14190.44, + "probability": 0.2939 + }, + { + "start": 14190.56, + "end": 14191.74, + "probability": 0.9557 + }, + { + "start": 14193.52, + "end": 14195.22, + "probability": 0.5129 + }, + { + "start": 14196.1, + "end": 14197.36, + "probability": 0.8952 + }, + { + "start": 14198.68, + "end": 14200.42, + "probability": 0.3749 + }, + { + "start": 14200.42, + "end": 14201.2, + "probability": 0.118 + }, + { + "start": 14202.76, + "end": 14207.76, + "probability": 0.6401 + }, + { + "start": 14208.54, + "end": 14212.38, + "probability": 0.6978 + }, + { + "start": 14213.2, + "end": 14213.76, + "probability": 0.8965 + }, + { + "start": 14214.66, + "end": 14215.7, + "probability": 0.4596 + }, + { + "start": 14215.86, + "end": 14217.04, + "probability": 0.5998 + }, + { + "start": 14217.18, + "end": 14218.35, + "probability": 0.7681 + }, + { + "start": 14219.38, + "end": 14224.28, + "probability": 0.3459 + }, + { + "start": 14224.28, + "end": 14225.29, + "probability": 0.078 + }, + { + "start": 14226.66, + "end": 14227.12, + "probability": 0.6002 + }, + { + "start": 14227.54, + "end": 14229.76, + "probability": 0.0765 + }, + { + "start": 14229.92, + "end": 14230.78, + "probability": 0.294 + }, + { + "start": 14231.2, + "end": 14233.1, + "probability": 0.5198 + }, + { + "start": 14233.24, + "end": 14235.1, + "probability": 0.4257 + }, + { + "start": 14235.18, + "end": 14236.42, + "probability": 0.4987 + }, + { + "start": 14238.28, + "end": 14240.4, + "probability": 0.7777 + }, + { + "start": 14241.06, + "end": 14243.62, + "probability": 0.3375 + }, + { + "start": 14247.98, + "end": 14249.02, + "probability": 0.5659 + }, + { + "start": 14250.31, + "end": 14256.98, + "probability": 0.9768 + }, + { + "start": 14257.72, + "end": 14259.5, + "probability": 0.8158 + }, + { + "start": 14260.36, + "end": 14265.88, + "probability": 0.9946 + }, + { + "start": 14267.06, + "end": 14269.5, + "probability": 0.6958 + }, + { + "start": 14270.36, + "end": 14271.64, + "probability": 0.831 + }, + { + "start": 14271.78, + "end": 14278.44, + "probability": 0.998 + }, + { + "start": 14278.82, + "end": 14279.36, + "probability": 0.7268 + }, + { + "start": 14279.78, + "end": 14283.2, + "probability": 0.9811 + }, + { + "start": 14284.26, + "end": 14287.2, + "probability": 0.9823 + }, + { + "start": 14288.0, + "end": 14290.56, + "probability": 0.697 + }, + { + "start": 14291.72, + "end": 14292.16, + "probability": 0.6112 + }, + { + "start": 14292.32, + "end": 14292.84, + "probability": 0.8777 + }, + { + "start": 14293.0, + "end": 14300.7, + "probability": 0.9106 + }, + { + "start": 14301.92, + "end": 14304.68, + "probability": 0.6172 + }, + { + "start": 14305.38, + "end": 14309.02, + "probability": 0.9946 + }, + { + "start": 14309.66, + "end": 14310.38, + "probability": 0.9469 + }, + { + "start": 14311.68, + "end": 14313.72, + "probability": 0.6725 + }, + { + "start": 14314.6, + "end": 14315.9, + "probability": 0.9059 + }, + { + "start": 14316.8, + "end": 14318.3, + "probability": 0.9428 + }, + { + "start": 14319.04, + "end": 14323.0, + "probability": 0.9803 + }, + { + "start": 14323.72, + "end": 14325.04, + "probability": 0.8349 + }, + { + "start": 14325.5, + "end": 14328.54, + "probability": 0.75 + }, + { + "start": 14328.66, + "end": 14334.58, + "probability": 0.9185 + }, + { + "start": 14335.54, + "end": 14342.84, + "probability": 0.9574 + }, + { + "start": 14343.74, + "end": 14349.28, + "probability": 0.9214 + }, + { + "start": 14349.3, + "end": 14356.62, + "probability": 0.9785 + }, + { + "start": 14356.62, + "end": 14363.22, + "probability": 0.7737 + }, + { + "start": 14363.96, + "end": 14364.74, + "probability": 0.5283 + }, + { + "start": 14365.36, + "end": 14368.7, + "probability": 0.8276 + }, + { + "start": 14369.66, + "end": 14372.5, + "probability": 0.6864 + }, + { + "start": 14373.18, + "end": 14375.0, + "probability": 0.8318 + }, + { + "start": 14375.6, + "end": 14377.44, + "probability": 0.9853 + }, + { + "start": 14378.32, + "end": 14379.3, + "probability": 0.9503 + }, + { + "start": 14379.99, + "end": 14382.08, + "probability": 0.9272 + }, + { + "start": 14382.72, + "end": 14385.0, + "probability": 0.7594 + }, + { + "start": 14385.56, + "end": 14389.42, + "probability": 0.8047 + }, + { + "start": 14389.42, + "end": 14393.54, + "probability": 0.8462 + }, + { + "start": 14394.14, + "end": 14395.84, + "probability": 0.974 + }, + { + "start": 14396.78, + "end": 14402.14, + "probability": 0.9502 + }, + { + "start": 14402.6, + "end": 14408.08, + "probability": 0.7043 + }, + { + "start": 14409.18, + "end": 14413.08, + "probability": 0.245 + }, + { + "start": 14417.12, + "end": 14419.14, + "probability": 0.3631 + }, + { + "start": 14419.48, + "end": 14422.26, + "probability": 0.6675 + }, + { + "start": 14448.82, + "end": 14450.4, + "probability": 0.5201 + }, + { + "start": 14451.26, + "end": 14455.38, + "probability": 0.9836 + }, + { + "start": 14456.34, + "end": 14460.08, + "probability": 0.9935 + }, + { + "start": 14460.84, + "end": 14462.74, + "probability": 0.917 + }, + { + "start": 14463.82, + "end": 14466.14, + "probability": 0.9918 + }, + { + "start": 14466.14, + "end": 14468.9, + "probability": 0.9948 + }, + { + "start": 14469.3, + "end": 14472.64, + "probability": 0.9939 + }, + { + "start": 14473.04, + "end": 14475.98, + "probability": 0.9665 + }, + { + "start": 14476.96, + "end": 14479.84, + "probability": 0.998 + }, + { + "start": 14480.86, + "end": 14484.98, + "probability": 0.9915 + }, + { + "start": 14485.46, + "end": 14486.2, + "probability": 0.7806 + }, + { + "start": 14487.38, + "end": 14493.82, + "probability": 0.9888 + }, + { + "start": 14493.86, + "end": 14499.06, + "probability": 0.979 + }, + { + "start": 14500.16, + "end": 14501.12, + "probability": 0.8593 + }, + { + "start": 14501.62, + "end": 14504.56, + "probability": 0.9921 + }, + { + "start": 14504.56, + "end": 14508.46, + "probability": 0.9889 + }, + { + "start": 14509.22, + "end": 14513.29, + "probability": 0.9951 + }, + { + "start": 14514.42, + "end": 14515.7, + "probability": 0.9912 + }, + { + "start": 14519.56, + "end": 14524.72, + "probability": 0.9986 + }, + { + "start": 14524.76, + "end": 14529.82, + "probability": 0.999 + }, + { + "start": 14530.7, + "end": 14533.2, + "probability": 0.9991 + }, + { + "start": 14533.96, + "end": 14538.74, + "probability": 0.967 + }, + { + "start": 14539.06, + "end": 14540.46, + "probability": 0.9896 + }, + { + "start": 14540.9, + "end": 14542.26, + "probability": 0.9786 + }, + { + "start": 14542.36, + "end": 14543.5, + "probability": 0.8919 + }, + { + "start": 14544.22, + "end": 14548.76, + "probability": 0.9968 + }, + { + "start": 14549.68, + "end": 14552.44, + "probability": 0.9878 + }, + { + "start": 14552.48, + "end": 14555.7, + "probability": 0.9948 + }, + { + "start": 14555.7, + "end": 14558.8, + "probability": 0.9823 + }, + { + "start": 14559.4, + "end": 14562.06, + "probability": 0.9943 + }, + { + "start": 14562.42, + "end": 14565.28, + "probability": 0.9955 + }, + { + "start": 14565.96, + "end": 14566.72, + "probability": 0.6331 + }, + { + "start": 14567.16, + "end": 14569.84, + "probability": 0.9721 + }, + { + "start": 14569.86, + "end": 14574.9, + "probability": 0.9869 + }, + { + "start": 14575.52, + "end": 14577.0, + "probability": 0.7153 + }, + { + "start": 14577.8, + "end": 14578.82, + "probability": 0.9937 + }, + { + "start": 14579.42, + "end": 14584.72, + "probability": 0.9941 + }, + { + "start": 14585.56, + "end": 14589.52, + "probability": 0.9991 + }, + { + "start": 14589.96, + "end": 14591.4, + "probability": 0.9678 + }, + { + "start": 14592.0, + "end": 14593.88, + "probability": 0.9769 + }, + { + "start": 14595.06, + "end": 14595.95, + "probability": 0.8698 + }, + { + "start": 14596.08, + "end": 14596.53, + "probability": 0.9677 + }, + { + "start": 14597.08, + "end": 14597.9, + "probability": 0.7901 + }, + { + "start": 14597.98, + "end": 14602.36, + "probability": 0.9762 + }, + { + "start": 14602.72, + "end": 14607.38, + "probability": 0.9923 + }, + { + "start": 14608.12, + "end": 14610.64, + "probability": 0.6821 + }, + { + "start": 14611.68, + "end": 14613.16, + "probability": 0.9961 + }, + { + "start": 14614.0, + "end": 14617.48, + "probability": 0.9975 + }, + { + "start": 14618.56, + "end": 14619.5, + "probability": 0.9365 + }, + { + "start": 14619.92, + "end": 14620.02, + "probability": 0.4339 + }, + { + "start": 14620.32, + "end": 14624.18, + "probability": 0.9956 + }, + { + "start": 14624.58, + "end": 14625.44, + "probability": 0.9468 + }, + { + "start": 14625.86, + "end": 14630.78, + "probability": 0.9915 + }, + { + "start": 14630.92, + "end": 14633.52, + "probability": 0.973 + }, + { + "start": 14633.98, + "end": 14634.52, + "probability": 0.6849 + }, + { + "start": 14635.9, + "end": 14636.38, + "probability": 0.7913 + }, + { + "start": 14638.12, + "end": 14640.38, + "probability": 0.8716 + }, + { + "start": 14656.66, + "end": 14659.6, + "probability": 0.7552 + }, + { + "start": 14660.5, + "end": 14662.34, + "probability": 0.9635 + }, + { + "start": 14663.48, + "end": 14665.16, + "probability": 0.9579 + }, + { + "start": 14665.74, + "end": 14669.56, + "probability": 0.9864 + }, + { + "start": 14670.22, + "end": 14674.77, + "probability": 0.9371 + }, + { + "start": 14675.9, + "end": 14678.12, + "probability": 0.9976 + }, + { + "start": 14678.18, + "end": 14678.64, + "probability": 0.8879 + }, + { + "start": 14679.18, + "end": 14679.78, + "probability": 0.7723 + }, + { + "start": 14680.84, + "end": 14684.74, + "probability": 0.0818 + }, + { + "start": 14685.2, + "end": 14686.34, + "probability": 0.0789 + }, + { + "start": 14686.7, + "end": 14686.72, + "probability": 0.0028 + }, + { + "start": 14689.3, + "end": 14692.48, + "probability": 0.1 + }, + { + "start": 14693.3, + "end": 14695.18, + "probability": 0.1791 + }, + { + "start": 14697.14, + "end": 14700.0, + "probability": 0.1557 + }, + { + "start": 14701.96, + "end": 14704.02, + "probability": 0.3467 + }, + { + "start": 14704.32, + "end": 14707.9, + "probability": 0.0764 + }, + { + "start": 14708.34, + "end": 14711.62, + "probability": 0.1599 + }, + { + "start": 14714.48, + "end": 14714.7, + "probability": 0.0165 + }, + { + "start": 14715.73, + "end": 14718.48, + "probability": 0.8083 + }, + { + "start": 14718.7, + "end": 14721.0, + "probability": 0.3378 + }, + { + "start": 14721.0, + "end": 14721.46, + "probability": 0.0864 + }, + { + "start": 14721.46, + "end": 14722.3, + "probability": 0.7355 + }, + { + "start": 14723.52, + "end": 14725.4, + "probability": 0.8145 + }, + { + "start": 14726.16, + "end": 14726.96, + "probability": 0.4349 + }, + { + "start": 14727.96, + "end": 14729.74, + "probability": 0.5016 + }, + { + "start": 14730.47, + "end": 14735.36, + "probability": 0.887 + }, + { + "start": 14735.74, + "end": 14736.78, + "probability": 0.7516 + }, + { + "start": 14737.3, + "end": 14738.94, + "probability": 0.9707 + }, + { + "start": 14739.6, + "end": 14740.76, + "probability": 0.7744 + }, + { + "start": 14741.26, + "end": 14742.62, + "probability": 0.9895 + }, + { + "start": 14742.62, + "end": 14744.78, + "probability": 0.9978 + }, + { + "start": 14745.56, + "end": 14748.4, + "probability": 0.9893 + }, + { + "start": 14749.33, + "end": 14753.65, + "probability": 0.9995 + }, + { + "start": 14754.1, + "end": 14755.46, + "probability": 0.7752 + }, + { + "start": 14755.84, + "end": 14756.92, + "probability": 0.5815 + }, + { + "start": 14757.72, + "end": 14757.86, + "probability": 0.5305 + }, + { + "start": 14758.2, + "end": 14758.7, + "probability": 0.8807 + }, + { + "start": 14759.88, + "end": 14761.62, + "probability": 0.9594 + }, + { + "start": 14762.06, + "end": 14763.8, + "probability": 0.9976 + }, + { + "start": 14764.32, + "end": 14766.38, + "probability": 0.9205 + }, + { + "start": 14766.72, + "end": 14767.54, + "probability": 0.7061 + }, + { + "start": 14768.26, + "end": 14771.14, + "probability": 0.3266 + }, + { + "start": 14771.64, + "end": 14776.5, + "probability": 0.2889 + }, + { + "start": 14776.76, + "end": 14777.14, + "probability": 0.5901 + }, + { + "start": 14778.08, + "end": 14779.61, + "probability": 0.2778 + }, + { + "start": 14782.06, + "end": 14782.44, + "probability": 0.0054 + }, + { + "start": 14782.6, + "end": 14786.22, + "probability": 0.1785 + }, + { + "start": 14786.22, + "end": 14787.5, + "probability": 0.846 + }, + { + "start": 14787.72, + "end": 14789.9, + "probability": 0.9544 + }, + { + "start": 14790.26, + "end": 14794.54, + "probability": 0.9795 + }, + { + "start": 14795.9, + "end": 14796.64, + "probability": 0.8453 + }, + { + "start": 14797.44, + "end": 14798.46, + "probability": 0.7035 + }, + { + "start": 14799.06, + "end": 14800.68, + "probability": 0.9888 + }, + { + "start": 14801.52, + "end": 14803.62, + "probability": 0.9583 + }, + { + "start": 14804.14, + "end": 14807.28, + "probability": 0.9923 + }, + { + "start": 14807.56, + "end": 14809.52, + "probability": 0.9898 + }, + { + "start": 14810.06, + "end": 14811.48, + "probability": 0.974 + }, + { + "start": 14811.98, + "end": 14813.18, + "probability": 0.7493 + }, + { + "start": 14813.58, + "end": 14816.92, + "probability": 0.9232 + }, + { + "start": 14818.18, + "end": 14818.8, + "probability": 0.9282 + }, + { + "start": 14819.68, + "end": 14820.54, + "probability": 0.9396 + }, + { + "start": 14821.14, + "end": 14826.3, + "probability": 0.9932 + }, + { + "start": 14826.3, + "end": 14830.9, + "probability": 0.9977 + }, + { + "start": 14831.42, + "end": 14834.5, + "probability": 0.8927 + }, + { + "start": 14835.26, + "end": 14841.26, + "probability": 0.9977 + }, + { + "start": 14841.26, + "end": 14847.16, + "probability": 0.9997 + }, + { + "start": 14847.9, + "end": 14852.82, + "probability": 0.9964 + }, + { + "start": 14852.82, + "end": 14860.54, + "probability": 0.9991 + }, + { + "start": 14861.24, + "end": 14864.3, + "probability": 0.968 + }, + { + "start": 14865.46, + "end": 14868.8, + "probability": 0.9871 + }, + { + "start": 14869.34, + "end": 14871.94, + "probability": 0.9786 + }, + { + "start": 14872.44, + "end": 14876.64, + "probability": 0.9969 + }, + { + "start": 14877.46, + "end": 14878.18, + "probability": 0.802 + }, + { + "start": 14878.32, + "end": 14878.54, + "probability": 0.8763 + }, + { + "start": 14878.58, + "end": 14881.88, + "probability": 0.8744 + }, + { + "start": 14882.74, + "end": 14885.86, + "probability": 0.9571 + }, + { + "start": 14886.76, + "end": 14887.28, + "probability": 0.8801 + }, + { + "start": 14887.9, + "end": 14889.1, + "probability": 0.6258 + }, + { + "start": 14892.19, + "end": 14893.48, + "probability": 0.6245 + }, + { + "start": 14894.22, + "end": 14897.18, + "probability": 0.0197 + }, + { + "start": 14897.18, + "end": 14897.8, + "probability": 0.5384 + }, + { + "start": 14898.14, + "end": 14899.22, + "probability": 0.2139 + }, + { + "start": 14899.24, + "end": 14900.92, + "probability": 0.6961 + }, + { + "start": 14901.3, + "end": 14902.6, + "probability": 0.6745 + }, + { + "start": 14902.66, + "end": 14902.98, + "probability": 0.6875 + }, + { + "start": 14903.02, + "end": 14904.44, + "probability": 0.4145 + }, + { + "start": 14904.44, + "end": 14905.12, + "probability": 0.4433 + }, + { + "start": 14905.52, + "end": 14907.4, + "probability": 0.9755 + }, + { + "start": 14907.48, + "end": 14908.12, + "probability": 0.8933 + }, + { + "start": 14908.12, + "end": 14908.82, + "probability": 0.886 + }, + { + "start": 14909.02, + "end": 14911.52, + "probability": 0.5884 + }, + { + "start": 14912.3, + "end": 14913.88, + "probability": 0.3252 + }, + { + "start": 14914.14, + "end": 14914.16, + "probability": 0.7172 + }, + { + "start": 14914.16, + "end": 14918.68, + "probability": 0.544 + }, + { + "start": 14918.82, + "end": 14919.36, + "probability": 0.6844 + }, + { + "start": 14919.7, + "end": 14920.14, + "probability": 0.1524 + }, + { + "start": 14921.32, + "end": 14924.08, + "probability": 0.0443 + }, + { + "start": 14924.46, + "end": 14925.27, + "probability": 0.0356 + }, + { + "start": 14925.62, + "end": 14927.3, + "probability": 0.214 + }, + { + "start": 14927.38, + "end": 14928.12, + "probability": 0.5979 + }, + { + "start": 14931.66, + "end": 14932.04, + "probability": 0.4971 + }, + { + "start": 14932.04, + "end": 14932.22, + "probability": 0.1632 + }, + { + "start": 14932.22, + "end": 14932.22, + "probability": 0.0007 + }, + { + "start": 14932.24, + "end": 14932.24, + "probability": 0.2345 + }, + { + "start": 14932.24, + "end": 14933.6, + "probability": 0.1699 + }, + { + "start": 14933.62, + "end": 14933.62, + "probability": 0.1539 + }, + { + "start": 14933.88, + "end": 14935.02, + "probability": 0.606 + }, + { + "start": 14935.76, + "end": 14937.14, + "probability": 0.1289 + }, + { + "start": 14937.92, + "end": 14938.9, + "probability": 0.9141 + }, + { + "start": 14939.16, + "end": 14940.48, + "probability": 0.6019 + }, + { + "start": 14940.52, + "end": 14940.94, + "probability": 0.7567 + }, + { + "start": 14941.38, + "end": 14942.24, + "probability": 0.3636 + }, + { + "start": 14942.56, + "end": 14943.24, + "probability": 0.6183 + }, + { + "start": 14944.62, + "end": 14945.24, + "probability": 0.7211 + }, + { + "start": 14945.3, + "end": 14946.66, + "probability": 0.1093 + }, + { + "start": 14946.74, + "end": 14947.52, + "probability": 0.8235 + }, + { + "start": 14951.4, + "end": 14953.68, + "probability": 0.3059 + }, + { + "start": 14956.68, + "end": 14958.88, + "probability": 0.186 + }, + { + "start": 14961.12, + "end": 14961.12, + "probability": 0.7987 + }, + { + "start": 14961.12, + "end": 14962.82, + "probability": 0.5155 + }, + { + "start": 14963.62, + "end": 14964.62, + "probability": 0.5201 + }, + { + "start": 14964.9, + "end": 14965.1, + "probability": 0.7458 + }, + { + "start": 14965.2, + "end": 14966.93, + "probability": 0.5782 + }, + { + "start": 14968.48, + "end": 14970.84, + "probability": 0.341 + }, + { + "start": 14970.96, + "end": 14971.56, + "probability": 0.2726 + }, + { + "start": 14971.66, + "end": 14972.08, + "probability": 0.4903 + }, + { + "start": 14972.58, + "end": 14974.38, + "probability": 0.122 + }, + { + "start": 14974.48, + "end": 14976.02, + "probability": 0.9721 + }, + { + "start": 14976.92, + "end": 14978.22, + "probability": 0.3816 + }, + { + "start": 14978.64, + "end": 14978.98, + "probability": 0.949 + }, + { + "start": 14980.72, + "end": 14981.68, + "probability": 0.7991 + }, + { + "start": 14982.78, + "end": 14984.42, + "probability": 0.8993 + }, + { + "start": 14986.94, + "end": 14988.98, + "probability": 0.9935 + }, + { + "start": 14990.16, + "end": 14991.0, + "probability": 0.9395 + }, + { + "start": 14992.14, + "end": 14993.23, + "probability": 0.9463 + }, + { + "start": 14994.52, + "end": 14995.64, + "probability": 0.9993 + }, + { + "start": 14996.46, + "end": 14997.42, + "probability": 0.8535 + }, + { + "start": 15000.46, + "end": 15002.62, + "probability": 0.9931 + }, + { + "start": 15005.24, + "end": 15006.04, + "probability": 0.9922 + }, + { + "start": 15007.14, + "end": 15013.7, + "probability": 0.9564 + }, + { + "start": 15014.76, + "end": 15020.78, + "probability": 0.8108 + }, + { + "start": 15022.6, + "end": 15023.4, + "probability": 0.5634 + }, + { + "start": 15024.5, + "end": 15026.18, + "probability": 0.765 + }, + { + "start": 15027.42, + "end": 15028.66, + "probability": 0.7519 + }, + { + "start": 15029.88, + "end": 15033.7, + "probability": 0.9886 + }, + { + "start": 15034.7, + "end": 15039.3, + "probability": 0.9854 + }, + { + "start": 15040.72, + "end": 15043.62, + "probability": 0.9381 + }, + { + "start": 15045.48, + "end": 15048.34, + "probability": 0.7891 + }, + { + "start": 15050.16, + "end": 15053.34, + "probability": 0.7108 + }, + { + "start": 15054.66, + "end": 15055.54, + "probability": 0.8313 + }, + { + "start": 15057.48, + "end": 15060.22, + "probability": 0.9873 + }, + { + "start": 15063.18, + "end": 15065.34, + "probability": 0.9971 + }, + { + "start": 15066.52, + "end": 15068.98, + "probability": 0.8424 + }, + { + "start": 15071.44, + "end": 15072.1, + "probability": 0.9675 + }, + { + "start": 15073.86, + "end": 15075.66, + "probability": 0.9823 + }, + { + "start": 15076.12, + "end": 15077.45, + "probability": 0.9878 + }, + { + "start": 15078.54, + "end": 15082.6, + "probability": 0.902 + }, + { + "start": 15083.28, + "end": 15084.86, + "probability": 0.9363 + }, + { + "start": 15086.76, + "end": 15088.44, + "probability": 0.9893 + }, + { + "start": 15090.28, + "end": 15094.18, + "probability": 0.6813 + }, + { + "start": 15096.96, + "end": 15098.2, + "probability": 0.9889 + }, + { + "start": 15099.44, + "end": 15106.5, + "probability": 0.9974 + }, + { + "start": 15107.48, + "end": 15108.42, + "probability": 0.9438 + }, + { + "start": 15109.36, + "end": 15110.18, + "probability": 0.9587 + }, + { + "start": 15114.72, + "end": 15117.22, + "probability": 0.9545 + }, + { + "start": 15118.1, + "end": 15119.56, + "probability": 0.9275 + }, + { + "start": 15120.22, + "end": 15121.44, + "probability": 0.9324 + }, + { + "start": 15125.24, + "end": 15126.0, + "probability": 0.7887 + }, + { + "start": 15128.22, + "end": 15128.64, + "probability": 0.926 + }, + { + "start": 15129.44, + "end": 15130.12, + "probability": 0.5221 + }, + { + "start": 15136.3, + "end": 15137.46, + "probability": 0.9418 + }, + { + "start": 15145.04, + "end": 15145.04, + "probability": 0.1025 + }, + { + "start": 15145.04, + "end": 15145.04, + "probability": 0.0569 + }, + { + "start": 15145.04, + "end": 15145.1, + "probability": 0.0273 + }, + { + "start": 15145.1, + "end": 15145.14, + "probability": 0.081 + }, + { + "start": 15152.42, + "end": 15152.42, + "probability": 0.0427 + }, + { + "start": 15152.42, + "end": 15152.42, + "probability": 0.0636 + }, + { + "start": 15152.42, + "end": 15152.44, + "probability": 0.0404 + }, + { + "start": 15152.44, + "end": 15152.44, + "probability": 0.024 + }, + { + "start": 15152.44, + "end": 15152.44, + "probability": 0.0593 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.0, + "end": 15261.0, + "probability": 0.0 + }, + { + "start": 15261.46, + "end": 15263.64, + "probability": 0.0353 + }, + { + "start": 15264.04, + "end": 15265.58, + "probability": 0.2032 + }, + { + "start": 15265.94, + "end": 15268.16, + "probability": 0.7248 + }, + { + "start": 15268.38, + "end": 15269.9, + "probability": 0.0897 + }, + { + "start": 15272.32, + "end": 15274.44, + "probability": 0.4797 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.0, + "end": 15381.0, + "probability": 0.0 + }, + { + "start": 15381.54, + "end": 15381.68, + "probability": 0.0013 + }, + { + "start": 15381.68, + "end": 15382.92, + "probability": 0.2147 + }, + { + "start": 15383.16, + "end": 15385.16, + "probability": 0.7044 + }, + { + "start": 15385.16, + "end": 15385.6, + "probability": 0.0591 + }, + { + "start": 15385.6, + "end": 15386.52, + "probability": 0.105 + }, + { + "start": 15386.62, + "end": 15387.2, + "probability": 0.4115 + }, + { + "start": 15387.22, + "end": 15392.98, + "probability": 0.2272 + }, + { + "start": 15393.82, + "end": 15399.6, + "probability": 0.8815 + }, + { + "start": 15399.72, + "end": 15401.77, + "probability": 0.89 + }, + { + "start": 15403.18, + "end": 15404.61, + "probability": 0.7766 + }, + { + "start": 15404.78, + "end": 15408.34, + "probability": 0.9208 + }, + { + "start": 15409.72, + "end": 15410.96, + "probability": 0.0057 + }, + { + "start": 15412.96, + "end": 15417.26, + "probability": 0.2941 + }, + { + "start": 15417.4, + "end": 15419.24, + "probability": 0.126 + }, + { + "start": 15420.34, + "end": 15421.06, + "probability": 0.0079 + }, + { + "start": 15421.74, + "end": 15422.9, + "probability": 0.0233 + }, + { + "start": 15424.5, + "end": 15425.06, + "probability": 0.1896 + }, + { + "start": 15425.06, + "end": 15425.56, + "probability": 0.0323 + }, + { + "start": 15426.04, + "end": 15427.7, + "probability": 0.1062 + }, + { + "start": 15427.96, + "end": 15427.96, + "probability": 0.0217 + }, + { + "start": 15428.06, + "end": 15428.36, + "probability": 0.0768 + }, + { + "start": 15431.38, + "end": 15431.86, + "probability": 0.176 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15503.0, + "end": 15503.0, + "probability": 0.0 + }, + { + "start": 15505.08, + "end": 15508.26, + "probability": 0.3434 + }, + { + "start": 15508.3, + "end": 15508.46, + "probability": 0.7078 + }, + { + "start": 15508.52, + "end": 15508.8, + "probability": 0.5041 + }, + { + "start": 15508.8, + "end": 15511.46, + "probability": 0.4977 + }, + { + "start": 15511.46, + "end": 15512.52, + "probability": 0.7131 + }, + { + "start": 15512.52, + "end": 15514.02, + "probability": 0.7325 + }, + { + "start": 15514.4, + "end": 15514.72, + "probability": 0.9311 + }, + { + "start": 15515.06, + "end": 15515.4, + "probability": 0.6269 + }, + { + "start": 15515.4, + "end": 15516.34, + "probability": 0.6042 + }, + { + "start": 15517.9, + "end": 15517.9, + "probability": 0.5904 + }, + { + "start": 15517.9, + "end": 15517.9, + "probability": 0.023 + }, + { + "start": 15517.9, + "end": 15517.9, + "probability": 0.1205 + }, + { + "start": 15517.9, + "end": 15518.9, + "probability": 0.0733 + }, + { + "start": 15519.02, + "end": 15521.24, + "probability": 0.7294 + }, + { + "start": 15521.96, + "end": 15523.1, + "probability": 0.8611 + }, + { + "start": 15523.82, + "end": 15524.42, + "probability": 0.9593 + }, + { + "start": 15524.86, + "end": 15525.48, + "probability": 0.1921 + }, + { + "start": 15526.12, + "end": 15529.01, + "probability": 0.743 + }, + { + "start": 15529.18, + "end": 15529.2, + "probability": 0.4189 + }, + { + "start": 15529.24, + "end": 15530.72, + "probability": 0.8002 + }, + { + "start": 15530.78, + "end": 15531.56, + "probability": 0.7213 + }, + { + "start": 15531.58, + "end": 15532.98, + "probability": 0.8391 + }, + { + "start": 15533.82, + "end": 15535.48, + "probability": 0.5073 + }, + { + "start": 15535.48, + "end": 15536.64, + "probability": 0.4053 + }, + { + "start": 15537.04, + "end": 15537.84, + "probability": 0.9141 + }, + { + "start": 15537.94, + "end": 15539.9, + "probability": 0.2773 + }, + { + "start": 15540.32, + "end": 15542.28, + "probability": 0.9639 + }, + { + "start": 15542.9, + "end": 15544.74, + "probability": 0.0327 + }, + { + "start": 15546.42, + "end": 15547.52, + "probability": 0.1188 + }, + { + "start": 15548.08, + "end": 15548.08, + "probability": 0.0989 + }, + { + "start": 15548.08, + "end": 15548.08, + "probability": 0.3442 + }, + { + "start": 15548.3, + "end": 15551.22, + "probability": 0.6181 + }, + { + "start": 15553.28, + "end": 15553.66, + "probability": 0.2886 + }, + { + "start": 15554.32, + "end": 15554.94, + "probability": 0.0466 + }, + { + "start": 15557.98, + "end": 15560.58, + "probability": 0.173 + }, + { + "start": 15562.2, + "end": 15562.3, + "probability": 0.0643 + }, + { + "start": 15563.44, + "end": 15565.88, + "probability": 0.0294 + }, + { + "start": 15567.48, + "end": 15569.14, + "probability": 0.0917 + }, + { + "start": 15569.14, + "end": 15569.72, + "probability": 0.0553 + }, + { + "start": 15570.44, + "end": 15571.26, + "probability": 0.0185 + }, + { + "start": 15573.96, + "end": 15574.14, + "probability": 0.476 + }, + { + "start": 15577.26, + "end": 15578.28, + "probability": 0.005 + }, + { + "start": 15581.36, + "end": 15582.31, + "probability": 0.0177 + }, + { + "start": 15582.5, + "end": 15584.22, + "probability": 0.1308 + }, + { + "start": 15587.2, + "end": 15587.92, + "probability": 0.2187 + }, + { + "start": 15590.96, + "end": 15594.68, + "probability": 0.0075 + }, + { + "start": 15594.88, + "end": 15596.16, + "probability": 0.2968 + }, + { + "start": 15596.16, + "end": 15596.6, + "probability": 0.0439 + }, + { + "start": 15597.52, + "end": 15597.7, + "probability": 0.1542 + }, + { + "start": 15597.7, + "end": 15597.96, + "probability": 0.0188 + }, + { + "start": 15597.96, + "end": 15598.32, + "probability": 0.0628 + }, + { + "start": 15598.32, + "end": 15598.88, + "probability": 0.0124 + }, + { + "start": 15598.88, + "end": 15599.9, + "probability": 0.1183 + }, + { + "start": 15630.0, + "end": 15630.0, + "probability": 0.0 + }, + { + "start": 15630.0, + "end": 15630.0, + "probability": 0.0 + }, + { + "start": 15630.0, + "end": 15630.0, + "probability": 0.0 + }, + { + "start": 15630.0, + "end": 15630.0, + "probability": 0.0 + }, + { + "start": 15630.2, + "end": 15630.24, + "probability": 0.0486 + }, + { + "start": 15630.24, + "end": 15632.02, + "probability": 0.7487 + }, + { + "start": 15632.34, + "end": 15632.76, + "probability": 0.0654 + }, + { + "start": 15633.22, + "end": 15633.68, + "probability": 0.2668 + }, + { + "start": 15633.94, + "end": 15635.38, + "probability": 0.6733 + }, + { + "start": 15637.4, + "end": 15640.9, + "probability": 0.5633 + }, + { + "start": 15640.94, + "end": 15641.84, + "probability": 0.473 + }, + { + "start": 15651.56, + "end": 15652.68, + "probability": 0.9103 + }, + { + "start": 15654.36, + "end": 15655.28, + "probability": 0.8001 + }, + { + "start": 15660.66, + "end": 15663.38, + "probability": 0.4032 + }, + { + "start": 15663.38, + "end": 15663.58, + "probability": 0.3042 + }, + { + "start": 15664.06, + "end": 15666.38, + "probability": 0.4454 + }, + { + "start": 15666.6, + "end": 15667.86, + "probability": 0.0773 + }, + { + "start": 15668.68, + "end": 15670.5, + "probability": 0.5154 + }, + { + "start": 15671.36, + "end": 15672.1, + "probability": 0.7331 + }, + { + "start": 15672.54, + "end": 15672.64, + "probability": 0.8501 + }, + { + "start": 15673.14, + "end": 15675.18, + "probability": 0.1543 + }, + { + "start": 15675.32, + "end": 15676.78, + "probability": 0.6535 + }, + { + "start": 15678.49, + "end": 15680.98, + "probability": 0.8287 + }, + { + "start": 15681.0, + "end": 15681.58, + "probability": 0.0193 + }, + { + "start": 15683.0, + "end": 15685.5, + "probability": 0.1792 + }, + { + "start": 15685.68, + "end": 15687.29, + "probability": 0.8894 + }, + { + "start": 15687.64, + "end": 15688.44, + "probability": 0.3733 + }, + { + "start": 15688.5, + "end": 15689.48, + "probability": 0.2939 + }, + { + "start": 15689.74, + "end": 15690.5, + "probability": 0.5941 + }, + { + "start": 15690.9, + "end": 15690.9, + "probability": 0.3741 + }, + { + "start": 15690.9, + "end": 15696.48, + "probability": 0.9771 + }, + { + "start": 15697.18, + "end": 15697.72, + "probability": 0.9561 + }, + { + "start": 15699.1, + "end": 15700.86, + "probability": 0.9402 + }, + { + "start": 15702.4, + "end": 15704.09, + "probability": 0.998 + }, + { + "start": 15707.76, + "end": 15710.42, + "probability": 0.7755 + }, + { + "start": 15711.38, + "end": 15712.68, + "probability": 0.794 + }, + { + "start": 15714.12, + "end": 15716.02, + "probability": 0.7677 + }, + { + "start": 15717.24, + "end": 15722.38, + "probability": 0.9936 + }, + { + "start": 15722.98, + "end": 15725.52, + "probability": 0.841 + }, + { + "start": 15725.52, + "end": 15725.8, + "probability": 0.0595 + }, + { + "start": 15726.36, + "end": 15727.82, + "probability": 0.0095 + }, + { + "start": 15728.7, + "end": 15729.32, + "probability": 0.1497 + }, + { + "start": 15729.62, + "end": 15729.74, + "probability": 0.1521 + }, + { + "start": 15729.76, + "end": 15730.08, + "probability": 0.2324 + }, + { + "start": 15730.24, + "end": 15734.1, + "probability": 0.4246 + }, + { + "start": 15734.7, + "end": 15739.32, + "probability": 0.2258 + }, + { + "start": 15739.34, + "end": 15742.12, + "probability": 0.4178 + }, + { + "start": 15742.86, + "end": 15744.18, + "probability": 0.1845 + }, + { + "start": 15744.82, + "end": 15745.4, + "probability": 0.1138 + }, + { + "start": 15748.36, + "end": 15749.14, + "probability": 0.0241 + }, + { + "start": 15749.8, + "end": 15750.0, + "probability": 0.0157 + }, + { + "start": 15750.34, + "end": 15750.44, + "probability": 0.1363 + }, + { + "start": 15750.44, + "end": 15750.56, + "probability": 0.0741 + }, + { + "start": 15750.56, + "end": 15750.56, + "probability": 0.2688 + }, + { + "start": 15750.56, + "end": 15750.56, + "probability": 0.093 + }, + { + "start": 15750.56, + "end": 15751.06, + "probability": 0.0508 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.0, + "end": 15752.0, + "probability": 0.0 + }, + { + "start": 15752.88, + "end": 15753.06, + "probability": 0.0499 + }, + { + "start": 15753.82, + "end": 15754.54, + "probability": 0.2036 + }, + { + "start": 15755.22, + "end": 15755.77, + "probability": 0.3104 + }, + { + "start": 15758.86, + "end": 15760.11, + "probability": 0.094 + }, + { + "start": 15761.38, + "end": 15764.5, + "probability": 0.339 + }, + { + "start": 15764.5, + "end": 15766.1, + "probability": 0.4598 + }, + { + "start": 15766.1, + "end": 15766.12, + "probability": 0.2158 + }, + { + "start": 15766.46, + "end": 15767.64, + "probability": 0.0207 + }, + { + "start": 15767.64, + "end": 15768.34, + "probability": 0.0714 + }, + { + "start": 15768.76, + "end": 15772.7, + "probability": 0.1917 + }, + { + "start": 15772.7, + "end": 15774.24, + "probability": 0.0964 + }, + { + "start": 15775.8, + "end": 15778.04, + "probability": 0.0374 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15874.62, + "probability": 0.1717 + }, + { + "start": 15874.76, + "end": 15875.18, + "probability": 0.4721 + }, + { + "start": 15875.18, + "end": 15876.16, + "probability": 0.7549 + }, + { + "start": 15876.62, + "end": 15878.8, + "probability": 0.5909 + }, + { + "start": 15878.82, + "end": 15879.66, + "probability": 0.3503 + }, + { + "start": 15879.82, + "end": 15880.7, + "probability": 0.2876 + }, + { + "start": 15880.88, + "end": 15884.54, + "probability": 0.4026 + }, + { + "start": 15884.68, + "end": 15886.16, + "probability": 0.5391 + }, + { + "start": 15886.32, + "end": 15887.18, + "probability": 0.3356 + }, + { + "start": 15887.28, + "end": 15887.86, + "probability": 0.3881 + }, + { + "start": 15888.18, + "end": 15891.36, + "probability": 0.172 + }, + { + "start": 15894.34, + "end": 15895.46, + "probability": 0.3841 + }, + { + "start": 15895.72, + "end": 15897.94, + "probability": 0.1171 + }, + { + "start": 15899.6, + "end": 15900.54, + "probability": 0.6486 + }, + { + "start": 15900.78, + "end": 15901.96, + "probability": 0.4275 + }, + { + "start": 15902.46, + "end": 15909.5, + "probability": 0.9842 + }, + { + "start": 15910.2, + "end": 15915.78, + "probability": 0.9474 + }, + { + "start": 15915.78, + "end": 15919.44, + "probability": 0.0402 + }, + { + "start": 15920.63, + "end": 15920.99, + "probability": 0.1182 + }, + { + "start": 15921.52, + "end": 15922.54, + "probability": 0.1087 + }, + { + "start": 15922.54, + "end": 15925.9, + "probability": 0.0798 + }, + { + "start": 15927.52, + "end": 15930.42, + "probability": 0.4967 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.0, + "end": 15993.0, + "probability": 0.0 + }, + { + "start": 15993.12, + "end": 15993.12, + "probability": 0.0221 + }, + { + "start": 15993.12, + "end": 15993.22, + "probability": 0.1667 + }, + { + "start": 15993.3, + "end": 15995.22, + "probability": 0.9312 + }, + { + "start": 15995.48, + "end": 15997.38, + "probability": 0.9244 + }, + { + "start": 15997.58, + "end": 15998.76, + "probability": 0.7454 + }, + { + "start": 15999.26, + "end": 16000.1, + "probability": 0.9202 + }, + { + "start": 16000.12, + "end": 16000.78, + "probability": 0.5341 + }, + { + "start": 16000.78, + "end": 16001.36, + "probability": 0.7339 + }, + { + "start": 16001.36, + "end": 16005.38, + "probability": 0.638 + }, + { + "start": 16005.78, + "end": 16014.86, + "probability": 0.9331 + }, + { + "start": 16016.0, + "end": 16016.88, + "probability": 0.8645 + }, + { + "start": 16017.74, + "end": 16022.1, + "probability": 0.7993 + }, + { + "start": 16022.4, + "end": 16026.1, + "probability": 0.8546 + }, + { + "start": 16026.62, + "end": 16028.72, + "probability": 0.9946 + }, + { + "start": 16029.38, + "end": 16036.18, + "probability": 0.9451 + }, + { + "start": 16036.72, + "end": 16037.38, + "probability": 0.9451 + }, + { + "start": 16037.9, + "end": 16042.46, + "probability": 0.666 + }, + { + "start": 16042.7, + "end": 16042.7, + "probability": 0.8376 + }, + { + "start": 16042.92, + "end": 16044.36, + "probability": 0.9075 + }, + { + "start": 16045.66, + "end": 16048.96, + "probability": 0.9845 + }, + { + "start": 16049.6, + "end": 16050.58, + "probability": 0.3574 + }, + { + "start": 16050.58, + "end": 16052.92, + "probability": 0.7576 + }, + { + "start": 16053.18, + "end": 16054.38, + "probability": 0.9312 + }, + { + "start": 16054.38, + "end": 16057.38, + "probability": 0.9474 + }, + { + "start": 16057.74, + "end": 16062.22, + "probability": 0.9262 + }, + { + "start": 16062.66, + "end": 16063.1, + "probability": 0.6426 + }, + { + "start": 16064.22, + "end": 16065.6, + "probability": 0.7992 + }, + { + "start": 16086.7, + "end": 16089.58, + "probability": 0.7663 + }, + { + "start": 16089.7, + "end": 16090.6, + "probability": 0.8655 + }, + { + "start": 16090.7, + "end": 16091.14, + "probability": 0.9409 + }, + { + "start": 16091.42, + "end": 16092.14, + "probability": 0.2939 + }, + { + "start": 16095.78, + "end": 16097.36, + "probability": 0.7582 + }, + { + "start": 16097.46, + "end": 16105.2, + "probability": 0.9962 + }, + { + "start": 16105.38, + "end": 16108.34, + "probability": 0.9876 + }, + { + "start": 16108.86, + "end": 16112.64, + "probability": 0.9948 + }, + { + "start": 16113.18, + "end": 16118.16, + "probability": 0.9958 + }, + { + "start": 16118.56, + "end": 16122.02, + "probability": 0.999 + }, + { + "start": 16122.68, + "end": 16126.18, + "probability": 0.9905 + }, + { + "start": 16127.06, + "end": 16132.32, + "probability": 0.9906 + }, + { + "start": 16132.32, + "end": 16140.18, + "probability": 0.9667 + }, + { + "start": 16140.84, + "end": 16144.9, + "probability": 0.9932 + }, + { + "start": 16145.88, + "end": 16150.14, + "probability": 0.998 + }, + { + "start": 16150.74, + "end": 16152.94, + "probability": 0.9891 + }, + { + "start": 16153.12, + "end": 16157.22, + "probability": 0.9167 + }, + { + "start": 16157.3, + "end": 16160.2, + "probability": 0.9785 + }, + { + "start": 16160.82, + "end": 16164.14, + "probability": 0.998 + }, + { + "start": 16164.14, + "end": 16167.64, + "probability": 0.8439 + }, + { + "start": 16168.18, + "end": 16171.98, + "probability": 0.9721 + }, + { + "start": 16172.46, + "end": 16174.9, + "probability": 0.993 + }, + { + "start": 16175.32, + "end": 16181.68, + "probability": 0.9972 + }, + { + "start": 16181.7, + "end": 16187.5, + "probability": 0.9969 + }, + { + "start": 16187.98, + "end": 16192.46, + "probability": 0.9979 + }, + { + "start": 16192.46, + "end": 16196.44, + "probability": 0.9617 + }, + { + "start": 16197.12, + "end": 16200.0, + "probability": 0.9939 + }, + { + "start": 16200.08, + "end": 16204.68, + "probability": 0.9671 + }, + { + "start": 16205.28, + "end": 16209.2, + "probability": 0.9958 + }, + { + "start": 16209.62, + "end": 16210.52, + "probability": 0.9742 + }, + { + "start": 16210.9, + "end": 16211.78, + "probability": 0.944 + }, + { + "start": 16212.1, + "end": 16213.06, + "probability": 0.806 + }, + { + "start": 16213.08, + "end": 16215.24, + "probability": 0.9918 + }, + { + "start": 16215.72, + "end": 16219.72, + "probability": 0.9844 + }, + { + "start": 16220.4, + "end": 16227.02, + "probability": 0.996 + }, + { + "start": 16227.48, + "end": 16230.68, + "probability": 0.9948 + }, + { + "start": 16231.02, + "end": 16234.1, + "probability": 0.9858 + }, + { + "start": 16234.56, + "end": 16236.98, + "probability": 0.9373 + }, + { + "start": 16238.0, + "end": 16242.32, + "probability": 0.9751 + }, + { + "start": 16242.32, + "end": 16246.72, + "probability": 0.9889 + }, + { + "start": 16247.56, + "end": 16252.36, + "probability": 0.9945 + }, + { + "start": 16253.1, + "end": 16254.94, + "probability": 0.9268 + }, + { + "start": 16255.54, + "end": 16257.22, + "probability": 0.5223 + }, + { + "start": 16257.72, + "end": 16263.96, + "probability": 0.9953 + }, + { + "start": 16264.46, + "end": 16269.06, + "probability": 0.9934 + }, + { + "start": 16270.28, + "end": 16274.82, + "probability": 0.7923 + }, + { + "start": 16275.4, + "end": 16281.14, + "probability": 0.9681 + }, + { + "start": 16281.18, + "end": 16285.9, + "probability": 0.9891 + }, + { + "start": 16286.64, + "end": 16289.46, + "probability": 0.9972 + }, + { + "start": 16290.12, + "end": 16291.88, + "probability": 0.6075 + }, + { + "start": 16293.12, + "end": 16293.12, + "probability": 0.3736 + }, + { + "start": 16293.12, + "end": 16293.12, + "probability": 0.5526 + }, + { + "start": 16293.16, + "end": 16293.84, + "probability": 0.7596 + }, + { + "start": 16294.8, + "end": 16295.58, + "probability": 0.7842 + }, + { + "start": 16295.66, + "end": 16295.66, + "probability": 0.0629 + }, + { + "start": 16295.66, + "end": 16297.18, + "probability": 0.1707 + }, + { + "start": 16297.38, + "end": 16298.22, + "probability": 0.3106 + }, + { + "start": 16298.58, + "end": 16301.3, + "probability": 0.1861 + }, + { + "start": 16312.42, + "end": 16313.32, + "probability": 0.6522 + }, + { + "start": 16316.28, + "end": 16317.02, + "probability": 0.8228 + }, + { + "start": 16317.62, + "end": 16319.2, + "probability": 0.2044 + }, + { + "start": 16324.68, + "end": 16326.84, + "probability": 0.9846 + }, + { + "start": 16327.36, + "end": 16328.57, + "probability": 0.9695 + }, + { + "start": 16328.76, + "end": 16331.88, + "probability": 0.9624 + }, + { + "start": 16334.32, + "end": 16335.54, + "probability": 0.9944 + }, + { + "start": 16338.08, + "end": 16341.82, + "probability": 0.9979 + }, + { + "start": 16345.08, + "end": 16346.38, + "probability": 0.9761 + }, + { + "start": 16348.32, + "end": 16350.36, + "probability": 0.9446 + }, + { + "start": 16352.56, + "end": 16355.1, + "probability": 0.9828 + }, + { + "start": 16355.22, + "end": 16357.28, + "probability": 0.9478 + }, + { + "start": 16359.22, + "end": 16360.5, + "probability": 0.9904 + }, + { + "start": 16360.6, + "end": 16361.52, + "probability": 0.8559 + }, + { + "start": 16361.76, + "end": 16362.72, + "probability": 0.969 + }, + { + "start": 16365.0, + "end": 16368.54, + "probability": 0.9596 + }, + { + "start": 16373.12, + "end": 16374.74, + "probability": 0.8027 + }, + { + "start": 16375.58, + "end": 16376.0, + "probability": 0.7258 + }, + { + "start": 16377.04, + "end": 16380.36, + "probability": 0.98 + }, + { + "start": 16381.2, + "end": 16384.62, + "probability": 0.9854 + }, + { + "start": 16386.24, + "end": 16389.24, + "probability": 0.7468 + }, + { + "start": 16389.98, + "end": 16390.55, + "probability": 0.2169 + }, + { + "start": 16392.68, + "end": 16394.37, + "probability": 0.9971 + }, + { + "start": 16396.66, + "end": 16398.0, + "probability": 0.9624 + }, + { + "start": 16398.54, + "end": 16399.48, + "probability": 0.833 + }, + { + "start": 16400.0, + "end": 16400.28, + "probability": 0.1936 + }, + { + "start": 16400.28, + "end": 16400.28, + "probability": 0.1163 + }, + { + "start": 16400.28, + "end": 16400.28, + "probability": 0.517 + }, + { + "start": 16400.28, + "end": 16401.98, + "probability": 0.7784 + }, + { + "start": 16402.52, + "end": 16403.0, + "probability": 0.7227 + }, + { + "start": 16403.02, + "end": 16404.36, + "probability": 0.5459 + }, + { + "start": 16404.42, + "end": 16404.82, + "probability": 0.5261 + }, + { + "start": 16404.94, + "end": 16406.0, + "probability": 0.0681 + }, + { + "start": 16406.0, + "end": 16406.92, + "probability": 0.4434 + }, + { + "start": 16407.7, + "end": 16409.32, + "probability": 0.9971 + }, + { + "start": 16409.86, + "end": 16413.1, + "probability": 0.747 + }, + { + "start": 16414.36, + "end": 16417.14, + "probability": 0.9939 + }, + { + "start": 16418.16, + "end": 16421.54, + "probability": 0.9891 + }, + { + "start": 16423.04, + "end": 16424.0, + "probability": 0.9639 + }, + { + "start": 16424.44, + "end": 16427.22, + "probability": 0.957 + }, + { + "start": 16427.82, + "end": 16428.3, + "probability": 0.9872 + }, + { + "start": 16430.28, + "end": 16430.94, + "probability": 0.9788 + }, + { + "start": 16431.38, + "end": 16432.7, + "probability": 0.993 + }, + { + "start": 16433.38, + "end": 16434.6, + "probability": 0.9763 + }, + { + "start": 16435.98, + "end": 16436.32, + "probability": 0.9425 + }, + { + "start": 16436.42, + "end": 16437.38, + "probability": 0.9463 + }, + { + "start": 16437.58, + "end": 16440.54, + "probability": 0.9966 + }, + { + "start": 16440.6, + "end": 16443.34, + "probability": 0.9958 + }, + { + "start": 16443.58, + "end": 16444.64, + "probability": 0.8401 + }, + { + "start": 16445.9, + "end": 16446.91, + "probability": 0.9761 + }, + { + "start": 16448.18, + "end": 16449.5, + "probability": 0.9868 + }, + { + "start": 16450.56, + "end": 16451.26, + "probability": 0.9294 + }, + { + "start": 16451.42, + "end": 16452.44, + "probability": 0.9741 + }, + { + "start": 16453.02, + "end": 16455.7, + "probability": 0.9728 + }, + { + "start": 16456.66, + "end": 16458.74, + "probability": 0.9937 + }, + { + "start": 16459.08, + "end": 16460.13, + "probability": 0.9695 + }, + { + "start": 16460.8, + "end": 16461.92, + "probability": 0.9917 + }, + { + "start": 16463.08, + "end": 16468.38, + "probability": 0.9971 + }, + { + "start": 16468.5, + "end": 16470.02, + "probability": 0.9941 + }, + { + "start": 16471.28, + "end": 16473.02, + "probability": 0.9231 + }, + { + "start": 16475.7, + "end": 16477.74, + "probability": 0.9653 + }, + { + "start": 16478.84, + "end": 16479.36, + "probability": 0.9437 + }, + { + "start": 16480.66, + "end": 16485.9, + "probability": 0.9951 + }, + { + "start": 16486.48, + "end": 16487.82, + "probability": 0.9399 + }, + { + "start": 16489.5, + "end": 16490.52, + "probability": 0.0277 + }, + { + "start": 16490.54, + "end": 16493.26, + "probability": 0.2508 + }, + { + "start": 16493.86, + "end": 16494.2, + "probability": 0.0027 + }, + { + "start": 16494.2, + "end": 16495.68, + "probability": 0.1315 + }, + { + "start": 16495.68, + "end": 16495.68, + "probability": 0.4706 + }, + { + "start": 16495.74, + "end": 16496.66, + "probability": 0.8977 + }, + { + "start": 16497.38, + "end": 16498.5, + "probability": 0.7289 + }, + { + "start": 16499.68, + "end": 16503.16, + "probability": 0.8228 + }, + { + "start": 16503.84, + "end": 16505.2, + "probability": 0.9053 + }, + { + "start": 16506.92, + "end": 16508.12, + "probability": 0.7305 + }, + { + "start": 16508.82, + "end": 16510.1, + "probability": 0.4312 + }, + { + "start": 16510.1, + "end": 16510.78, + "probability": 0.4643 + }, + { + "start": 16511.14, + "end": 16512.56, + "probability": 0.6968 + }, + { + "start": 16513.86, + "end": 16515.86, + "probability": 0.9352 + }, + { + "start": 16517.2, + "end": 16517.9, + "probability": 0.9472 + }, + { + "start": 16518.04, + "end": 16520.68, + "probability": 0.9813 + }, + { + "start": 16520.72, + "end": 16521.3, + "probability": 0.9269 + }, + { + "start": 16521.96, + "end": 16522.96, + "probability": 0.9849 + }, + { + "start": 16523.78, + "end": 16525.06, + "probability": 0.9327 + }, + { + "start": 16525.08, + "end": 16525.6, + "probability": 0.376 + }, + { + "start": 16525.6, + "end": 16525.98, + "probability": 0.0611 + }, + { + "start": 16526.32, + "end": 16526.56, + "probability": 0.8143 + }, + { + "start": 16526.82, + "end": 16527.66, + "probability": 0.5605 + }, + { + "start": 16528.48, + "end": 16529.54, + "probability": 0.9558 + }, + { + "start": 16530.08, + "end": 16532.7, + "probability": 0.9299 + }, + { + "start": 16533.54, + "end": 16534.28, + "probability": 0.894 + }, + { + "start": 16534.68, + "end": 16535.24, + "probability": 0.3747 + }, + { + "start": 16535.94, + "end": 16537.86, + "probability": 0.9088 + }, + { + "start": 16537.89, + "end": 16541.88, + "probability": 0.513 + }, + { + "start": 16543.38, + "end": 16545.2, + "probability": 0.8688 + }, + { + "start": 16545.72, + "end": 16546.68, + "probability": 0.8093 + }, + { + "start": 16551.67, + "end": 16552.42, + "probability": 0.7874 + }, + { + "start": 16553.94, + "end": 16555.7, + "probability": 0.2698 + }, + { + "start": 16556.2, + "end": 16556.74, + "probability": 0.4887 + }, + { + "start": 16556.82, + "end": 16557.3, + "probability": 0.9028 + }, + { + "start": 16557.4, + "end": 16559.42, + "probability": 0.0145 + }, + { + "start": 16559.7, + "end": 16562.84, + "probability": 0.1372 + }, + { + "start": 16563.36, + "end": 16563.82, + "probability": 0.2889 + }, + { + "start": 16564.04, + "end": 16565.16, + "probability": 0.3138 + }, + { + "start": 16565.7, + "end": 16569.8, + "probability": 0.487 + }, + { + "start": 16569.8, + "end": 16570.64, + "probability": 0.6499 + }, + { + "start": 16570.66, + "end": 16571.7, + "probability": 0.5759 + }, + { + "start": 16571.7, + "end": 16572.25, + "probability": 0.8997 + }, + { + "start": 16572.59, + "end": 16574.76, + "probability": 0.9493 + }, + { + "start": 16575.02, + "end": 16576.2, + "probability": 0.7313 + }, + { + "start": 16576.74, + "end": 16577.36, + "probability": 0.6958 + }, + { + "start": 16577.56, + "end": 16579.36, + "probability": 0.6413 + }, + { + "start": 16579.72, + "end": 16579.92, + "probability": 0.9164 + }, + { + "start": 16580.22, + "end": 16581.45, + "probability": 0.917 + }, + { + "start": 16581.96, + "end": 16582.66, + "probability": 0.4597 + }, + { + "start": 16583.34, + "end": 16583.84, + "probability": 0.7826 + }, + { + "start": 16583.9, + "end": 16584.36, + "probability": 0.9348 + }, + { + "start": 16584.44, + "end": 16588.21, + "probability": 0.9932 + }, + { + "start": 16588.88, + "end": 16591.72, + "probability": 0.5065 + }, + { + "start": 16593.3, + "end": 16594.38, + "probability": 0.0632 + }, + { + "start": 16594.38, + "end": 16595.08, + "probability": 0.2493 + }, + { + "start": 16596.37, + "end": 16596.84, + "probability": 0.3218 + }, + { + "start": 16596.84, + "end": 16596.84, + "probability": 0.1702 + }, + { + "start": 16596.98, + "end": 16602.16, + "probability": 0.9834 + }, + { + "start": 16603.08, + "end": 16607.4, + "probability": 0.9908 + }, + { + "start": 16609.87, + "end": 16613.32, + "probability": 0.9193 + }, + { + "start": 16614.14, + "end": 16619.66, + "probability": 0.9966 + }, + { + "start": 16620.38, + "end": 16621.7, + "probability": 0.9879 + }, + { + "start": 16622.38, + "end": 16623.4, + "probability": 0.9742 + }, + { + "start": 16623.54, + "end": 16626.04, + "probability": 0.9035 + }, + { + "start": 16626.18, + "end": 16626.92, + "probability": 0.8935 + }, + { + "start": 16627.3, + "end": 16628.9, + "probability": 0.9279 + }, + { + "start": 16629.6, + "end": 16632.56, + "probability": 0.9941 + }, + { + "start": 16632.6, + "end": 16633.48, + "probability": 0.8826 + }, + { + "start": 16633.54, + "end": 16634.44, + "probability": 0.9429 + }, + { + "start": 16634.88, + "end": 16637.14, + "probability": 0.9886 + }, + { + "start": 16637.22, + "end": 16642.0, + "probability": 0.9449 + }, + { + "start": 16642.12, + "end": 16642.4, + "probability": 0.8828 + }, + { + "start": 16642.86, + "end": 16647.16, + "probability": 0.873 + }, + { + "start": 16647.8, + "end": 16649.26, + "probability": 0.9456 + }, + { + "start": 16649.32, + "end": 16653.16, + "probability": 0.9741 + }, + { + "start": 16653.84, + "end": 16655.48, + "probability": 0.9074 + }, + { + "start": 16656.64, + "end": 16658.12, + "probability": 0.9736 + }, + { + "start": 16659.42, + "end": 16664.34, + "probability": 0.9548 + }, + { + "start": 16664.4, + "end": 16664.98, + "probability": 0.8283 + }, + { + "start": 16665.62, + "end": 16667.6, + "probability": 0.9819 + }, + { + "start": 16668.52, + "end": 16671.92, + "probability": 0.9933 + }, + { + "start": 16672.9, + "end": 16673.2, + "probability": 0.6026 + }, + { + "start": 16674.08, + "end": 16677.22, + "probability": 0.9928 + }, + { + "start": 16677.44, + "end": 16680.38, + "probability": 0.9979 + }, + { + "start": 16681.5, + "end": 16683.76, + "probability": 0.9908 + }, + { + "start": 16683.82, + "end": 16688.1, + "probability": 0.9741 + }, + { + "start": 16689.4, + "end": 16689.66, + "probability": 0.2082 + }, + { + "start": 16689.72, + "end": 16691.62, + "probability": 0.7609 + }, + { + "start": 16691.84, + "end": 16692.86, + "probability": 0.6697 + }, + { + "start": 16693.28, + "end": 16694.98, + "probability": 0.8844 + }, + { + "start": 16695.6, + "end": 16698.0, + "probability": 0.5152 + }, + { + "start": 16699.16, + "end": 16702.5, + "probability": 0.7759 + }, + { + "start": 16703.08, + "end": 16704.02, + "probability": 0.5526 + }, + { + "start": 16704.14, + "end": 16707.86, + "probability": 0.9395 + }, + { + "start": 16708.04, + "end": 16709.16, + "probability": 0.9971 + }, + { + "start": 16709.68, + "end": 16711.22, + "probability": 0.9901 + }, + { + "start": 16712.22, + "end": 16713.4, + "probability": 0.8221 + }, + { + "start": 16714.08, + "end": 16716.26, + "probability": 0.9762 + }, + { + "start": 16716.64, + "end": 16717.48, + "probability": 0.8728 + }, + { + "start": 16718.2, + "end": 16718.76, + "probability": 0.8926 + }, + { + "start": 16718.98, + "end": 16719.7, + "probability": 0.9838 + }, + { + "start": 16720.26, + "end": 16722.18, + "probability": 0.9651 + }, + { + "start": 16723.22, + "end": 16725.06, + "probability": 0.9678 + }, + { + "start": 16725.3, + "end": 16727.34, + "probability": 0.5001 + }, + { + "start": 16727.74, + "end": 16731.22, + "probability": 0.9717 + }, + { + "start": 16731.82, + "end": 16735.4, + "probability": 0.9607 + }, + { + "start": 16736.32, + "end": 16737.94, + "probability": 0.9578 + }, + { + "start": 16738.94, + "end": 16740.78, + "probability": 0.9515 + }, + { + "start": 16741.5, + "end": 16744.22, + "probability": 0.8384 + }, + { + "start": 16744.98, + "end": 16747.04, + "probability": 0.9539 + }, + { + "start": 16747.96, + "end": 16750.66, + "probability": 0.9902 + }, + { + "start": 16750.66, + "end": 16754.24, + "probability": 0.9992 + }, + { + "start": 16755.14, + "end": 16757.96, + "probability": 0.9324 + }, + { + "start": 16758.48, + "end": 16760.62, + "probability": 0.8885 + }, + { + "start": 16762.12, + "end": 16763.46, + "probability": 0.7052 + }, + { + "start": 16763.9, + "end": 16764.58, + "probability": 0.9541 + }, + { + "start": 16766.0, + "end": 16766.0, + "probability": 0.5347 + }, + { + "start": 16766.0, + "end": 16768.04, + "probability": 0.931 + }, + { + "start": 16768.68, + "end": 16770.9, + "probability": 0.9018 + }, + { + "start": 16772.04, + "end": 16774.16, + "probability": 0.7092 + }, + { + "start": 16775.0, + "end": 16776.72, + "probability": 0.3835 + }, + { + "start": 16776.72, + "end": 16778.69, + "probability": 0.9771 + }, + { + "start": 16779.3, + "end": 16780.14, + "probability": 0.6803 + }, + { + "start": 16780.72, + "end": 16781.72, + "probability": 0.7516 + }, + { + "start": 16782.28, + "end": 16786.94, + "probability": 0.9059 + }, + { + "start": 16787.0, + "end": 16787.38, + "probability": 0.7067 + }, + { + "start": 16787.76, + "end": 16788.06, + "probability": 0.8029 + }, + { + "start": 16788.62, + "end": 16788.8, + "probability": 0.7271 + }, + { + "start": 16789.72, + "end": 16791.32, + "probability": 0.8554 + }, + { + "start": 16792.86, + "end": 16794.8, + "probability": 0.5103 + }, + { + "start": 16795.04, + "end": 16796.06, + "probability": 0.0694 + }, + { + "start": 16796.86, + "end": 16799.52, + "probability": 0.3007 + }, + { + "start": 16800.16, + "end": 16801.08, + "probability": 0.1186 + }, + { + "start": 16802.02, + "end": 16802.56, + "probability": 0.869 + }, + { + "start": 16804.46, + "end": 16804.74, + "probability": 0.0933 + }, + { + "start": 16806.06, + "end": 16807.62, + "probability": 0.4738 + }, + { + "start": 16807.83, + "end": 16808.04, + "probability": 0.0972 + }, + { + "start": 16808.04, + "end": 16809.1, + "probability": 0.2611 + }, + { + "start": 16810.44, + "end": 16811.5, + "probability": 0.511 + }, + { + "start": 16811.62, + "end": 16811.92, + "probability": 0.8768 + }, + { + "start": 16813.1, + "end": 16814.68, + "probability": 0.9445 + }, + { + "start": 16815.76, + "end": 16817.52, + "probability": 0.6652 + }, + { + "start": 16817.52, + "end": 16817.52, + "probability": 0.0867 + }, + { + "start": 16817.52, + "end": 16820.84, + "probability": 0.9897 + }, + { + "start": 16820.84, + "end": 16823.66, + "probability": 0.9971 + }, + { + "start": 16824.02, + "end": 16825.31, + "probability": 0.9749 + }, + { + "start": 16825.8, + "end": 16827.7, + "probability": 0.8452 + }, + { + "start": 16828.46, + "end": 16829.0, + "probability": 0.8342 + }, + { + "start": 16829.66, + "end": 16831.64, + "probability": 0.7887 + }, + { + "start": 16831.78, + "end": 16832.74, + "probability": 0.971 + }, + { + "start": 16832.86, + "end": 16833.52, + "probability": 0.7936 + }, + { + "start": 16834.06, + "end": 16834.96, + "probability": 0.9169 + }, + { + "start": 16835.8, + "end": 16836.16, + "probability": 0.8922 + }, + { + "start": 16836.16, + "end": 16836.64, + "probability": 0.756 + }, + { + "start": 16836.9, + "end": 16838.87, + "probability": 0.9875 + }, + { + "start": 16839.28, + "end": 16840.4, + "probability": 0.9907 + }, + { + "start": 16840.7, + "end": 16841.2, + "probability": 0.8386 + }, + { + "start": 16841.66, + "end": 16843.38, + "probability": 0.8933 + }, + { + "start": 16844.24, + "end": 16845.14, + "probability": 0.9552 + }, + { + "start": 16845.34, + "end": 16846.5, + "probability": 0.946 + }, + { + "start": 16846.56, + "end": 16848.12, + "probability": 0.904 + }, + { + "start": 16848.64, + "end": 16849.24, + "probability": 0.7551 + }, + { + "start": 16849.34, + "end": 16850.34, + "probability": 0.9111 + }, + { + "start": 16850.62, + "end": 16851.84, + "probability": 0.867 + }, + { + "start": 16852.44, + "end": 16853.52, + "probability": 0.9473 + }, + { + "start": 16853.92, + "end": 16855.92, + "probability": 0.9805 + }, + { + "start": 16856.34, + "end": 16858.04, + "probability": 0.6207 + }, + { + "start": 16860.5, + "end": 16862.72, + "probability": 0.8511 + }, + { + "start": 16862.78, + "end": 16865.64, + "probability": 0.9006 + }, + { + "start": 16865.64, + "end": 16867.36, + "probability": 0.9142 + }, + { + "start": 16867.74, + "end": 16871.38, + "probability": 0.9243 + }, + { + "start": 16872.04, + "end": 16873.54, + "probability": 0.7836 + }, + { + "start": 16873.94, + "end": 16877.02, + "probability": 0.9016 + }, + { + "start": 16877.38, + "end": 16879.36, + "probability": 0.824 + }, + { + "start": 16880.04, + "end": 16880.55, + "probability": 0.0224 + }, + { + "start": 16880.86, + "end": 16881.64, + "probability": 0.7814 + }, + { + "start": 16881.68, + "end": 16882.92, + "probability": 0.6045 + }, + { + "start": 16882.96, + "end": 16887.32, + "probability": 0.9698 + }, + { + "start": 16887.9, + "end": 16890.28, + "probability": 0.6235 + }, + { + "start": 16890.46, + "end": 16891.54, + "probability": 0.4498 + }, + { + "start": 16891.72, + "end": 16893.32, + "probability": 0.9363 + }, + { + "start": 16893.64, + "end": 16895.36, + "probability": 0.8374 + }, + { + "start": 16895.94, + "end": 16896.3, + "probability": 0.4261 + }, + { + "start": 16897.38, + "end": 16898.92, + "probability": 0.6668 + }, + { + "start": 16899.52, + "end": 16901.18, + "probability": 0.967 + }, + { + "start": 16901.8, + "end": 16903.02, + "probability": 0.8077 + }, + { + "start": 16903.62, + "end": 16906.04, + "probability": 0.942 + }, + { + "start": 16906.18, + "end": 16910.0, + "probability": 0.8342 + }, + { + "start": 16910.08, + "end": 16910.62, + "probability": 0.8463 + }, + { + "start": 16910.82, + "end": 16911.16, + "probability": 0.9413 + }, + { + "start": 16911.78, + "end": 16912.72, + "probability": 0.7396 + }, + { + "start": 16912.76, + "end": 16918.82, + "probability": 0.9691 + }, + { + "start": 16919.02, + "end": 16921.7, + "probability": 0.9751 + }, + { + "start": 16922.8, + "end": 16922.8, + "probability": 0.4303 + }, + { + "start": 16922.8, + "end": 16926.56, + "probability": 0.8903 + }, + { + "start": 16926.72, + "end": 16926.98, + "probability": 0.2909 + }, + { + "start": 16927.0, + "end": 16927.0, + "probability": 0.145 + }, + { + "start": 16927.0, + "end": 16929.82, + "probability": 0.866 + }, + { + "start": 16930.12, + "end": 16934.72, + "probability": 0.991 + }, + { + "start": 16935.32, + "end": 16937.84, + "probability": 0.1669 + }, + { + "start": 16937.84, + "end": 16938.08, + "probability": 0.045 + }, + { + "start": 16938.08, + "end": 16939.0, + "probability": 0.3576 + }, + { + "start": 16939.08, + "end": 16940.18, + "probability": 0.3636 + }, + { + "start": 16940.58, + "end": 16942.22, + "probability": 0.1735 + }, + { + "start": 16942.22, + "end": 16947.16, + "probability": 0.1761 + }, + { + "start": 16947.16, + "end": 16949.02, + "probability": 0.6219 + }, + { + "start": 16949.4, + "end": 16953.36, + "probability": 0.9806 + }, + { + "start": 16953.7, + "end": 16955.68, + "probability": 0.8765 + }, + { + "start": 16955.82, + "end": 16957.64, + "probability": 0.9967 + }, + { + "start": 16958.18, + "end": 16961.32, + "probability": 0.8782 + }, + { + "start": 16961.5, + "end": 16964.14, + "probability": 0.6387 + }, + { + "start": 16964.18, + "end": 16964.5, + "probability": 0.7326 + }, + { + "start": 16965.48, + "end": 16968.08, + "probability": 0.9651 + }, + { + "start": 16968.56, + "end": 16969.58, + "probability": 0.9176 + }, + { + "start": 16970.14, + "end": 16974.68, + "probability": 0.8884 + }, + { + "start": 16975.68, + "end": 16978.3, + "probability": 0.9752 + }, + { + "start": 16978.52, + "end": 16979.02, + "probability": 0.9071 + }, + { + "start": 16979.48, + "end": 16980.64, + "probability": 0.7818 + }, + { + "start": 16981.28, + "end": 16981.72, + "probability": 0.9655 + }, + { + "start": 16982.6, + "end": 16987.32, + "probability": 0.9959 + }, + { + "start": 16987.7, + "end": 16993.46, + "probability": 0.9712 + }, + { + "start": 16994.26, + "end": 16998.3, + "probability": 0.9307 + }, + { + "start": 16998.3, + "end": 16999.04, + "probability": 0.6668 + }, + { + "start": 16999.34, + "end": 16999.86, + "probability": 0.7444 + }, + { + "start": 17000.62, + "end": 17002.2, + "probability": 0.8699 + }, + { + "start": 17002.32, + "end": 17002.64, + "probability": 0.5945 + }, + { + "start": 17002.72, + "end": 17006.1, + "probability": 0.9062 + }, + { + "start": 17006.38, + "end": 17007.94, + "probability": 0.9974 + }, + { + "start": 17008.34, + "end": 17008.76, + "probability": 0.9187 + }, + { + "start": 17010.94, + "end": 17012.18, + "probability": 0.0887 + }, + { + "start": 17012.18, + "end": 17012.44, + "probability": 0.2783 + }, + { + "start": 17012.44, + "end": 17012.68, + "probability": 0.6051 + }, + { + "start": 17012.76, + "end": 17012.82, + "probability": 0.1973 + }, + { + "start": 17012.82, + "end": 17013.18, + "probability": 0.123 + }, + { + "start": 17013.32, + "end": 17014.51, + "probability": 0.5861 + }, + { + "start": 17014.56, + "end": 17018.56, + "probability": 0.9312 + }, + { + "start": 17018.64, + "end": 17019.32, + "probability": 0.0707 + }, + { + "start": 17019.66, + "end": 17021.98, + "probability": 0.4295 + }, + { + "start": 17022.69, + "end": 17022.76, + "probability": 0.0397 + }, + { + "start": 17022.76, + "end": 17024.16, + "probability": 0.0349 + }, + { + "start": 17024.16, + "end": 17025.26, + "probability": 0.2812 + }, + { + "start": 17025.56, + "end": 17027.6, + "probability": 0.2345 + }, + { + "start": 17027.6, + "end": 17029.56, + "probability": 0.7904 + }, + { + "start": 17031.3, + "end": 17032.96, + "probability": 0.3839 + }, + { + "start": 17032.96, + "end": 17033.06, + "probability": 0.4244 + }, + { + "start": 17033.62, + "end": 17036.0, + "probability": 0.9531 + }, + { + "start": 17036.32, + "end": 17041.74, + "probability": 0.9924 + }, + { + "start": 17042.06, + "end": 17042.12, + "probability": 0.0162 + }, + { + "start": 17042.12, + "end": 17042.96, + "probability": 0.7415 + }, + { + "start": 17043.48, + "end": 17046.06, + "probability": 0.6674 + }, + { + "start": 17046.22, + "end": 17048.3, + "probability": 0.9954 + }, + { + "start": 17048.64, + "end": 17049.72, + "probability": 0.7802 + }, + { + "start": 17050.0, + "end": 17051.11, + "probability": 0.8499 + }, + { + "start": 17051.48, + "end": 17053.74, + "probability": 0.9412 + }, + { + "start": 17054.08, + "end": 17054.74, + "probability": 0.4482 + }, + { + "start": 17055.08, + "end": 17055.16, + "probability": 0.6649 + }, + { + "start": 17055.26, + "end": 17056.26, + "probability": 0.9917 + }, + { + "start": 17056.58, + "end": 17060.68, + "probability": 0.9911 + }, + { + "start": 17060.98, + "end": 17062.68, + "probability": 0.5693 + }, + { + "start": 17063.04, + "end": 17064.74, + "probability": 0.5825 + }, + { + "start": 17064.76, + "end": 17067.0, + "probability": 0.9885 + }, + { + "start": 17067.44, + "end": 17067.86, + "probability": 0.4477 + }, + { + "start": 17068.74, + "end": 17072.63, + "probability": 0.7862 + }, + { + "start": 17073.4, + "end": 17078.02, + "probability": 0.0636 + }, + { + "start": 17078.02, + "end": 17078.72, + "probability": 0.0531 + }, + { + "start": 17079.0, + "end": 17079.26, + "probability": 0.8228 + }, + { + "start": 17079.64, + "end": 17081.42, + "probability": 0.1129 + }, + { + "start": 17081.82, + "end": 17082.56, + "probability": 0.7764 + }, + { + "start": 17082.6, + "end": 17082.82, + "probability": 0.795 + }, + { + "start": 17082.82, + "end": 17083.64, + "probability": 0.7698 + }, + { + "start": 17083.9, + "end": 17084.98, + "probability": 0.5621 + }, + { + "start": 17085.04, + "end": 17085.42, + "probability": 0.2979 + }, + { + "start": 17085.98, + "end": 17085.98, + "probability": 0.2167 + }, + { + "start": 17085.98, + "end": 17086.44, + "probability": 0.365 + }, + { + "start": 17086.6, + "end": 17089.2, + "probability": 0.7007 + }, + { + "start": 17090.42, + "end": 17093.38, + "probability": 0.2793 + }, + { + "start": 17093.9, + "end": 17097.3, + "probability": 0.8394 + }, + { + "start": 17097.42, + "end": 17098.22, + "probability": 0.7494 + }, + { + "start": 17101.4, + "end": 17104.66, + "probability": 0.7942 + }, + { + "start": 17105.96, + "end": 17108.64, + "probability": 0.8618 + }, + { + "start": 17110.1, + "end": 17111.02, + "probability": 0.8838 + }, + { + "start": 17111.04, + "end": 17111.08, + "probability": 0.9419 + }, + { + "start": 17111.14, + "end": 17112.38, + "probability": 0.5835 + }, + { + "start": 17112.42, + "end": 17114.2, + "probability": 0.9902 + }, + { + "start": 17114.32, + "end": 17115.3, + "probability": 0.3273 + }, + { + "start": 17116.02, + "end": 17116.68, + "probability": 0.9121 + }, + { + "start": 17116.8, + "end": 17118.7, + "probability": 0.7616 + }, + { + "start": 17118.82, + "end": 17118.96, + "probability": 0.7925 + }, + { + "start": 17119.98, + "end": 17125.56, + "probability": 0.9022 + }, + { + "start": 17125.72, + "end": 17131.78, + "probability": 0.9543 + }, + { + "start": 17132.96, + "end": 17134.78, + "probability": 0.8423 + }, + { + "start": 17134.94, + "end": 17138.72, + "probability": 0.9504 + }, + { + "start": 17140.2, + "end": 17143.76, + "probability": 0.9751 + }, + { + "start": 17143.96, + "end": 17147.18, + "probability": 0.8836 + }, + { + "start": 17148.04, + "end": 17152.36, + "probability": 0.8517 + }, + { + "start": 17153.32, + "end": 17156.54, + "probability": 0.9846 + }, + { + "start": 17157.98, + "end": 17159.42, + "probability": 0.9682 + }, + { + "start": 17160.2, + "end": 17162.3, + "probability": 0.9417 + }, + { + "start": 17163.1, + "end": 17166.0, + "probability": 0.9835 + }, + { + "start": 17167.97, + "end": 17172.08, + "probability": 0.9727 + }, + { + "start": 17172.26, + "end": 17176.34, + "probability": 0.857 + }, + { + "start": 17177.36, + "end": 17181.24, + "probability": 0.9727 + }, + { + "start": 17182.28, + "end": 17184.76, + "probability": 0.9226 + }, + { + "start": 17185.84, + "end": 17190.1, + "probability": 0.7667 + }, + { + "start": 17191.12, + "end": 17197.56, + "probability": 0.8484 + }, + { + "start": 17198.22, + "end": 17201.42, + "probability": 0.9185 + }, + { + "start": 17201.98, + "end": 17205.64, + "probability": 0.8912 + }, + { + "start": 17206.32, + "end": 17207.6, + "probability": 0.8009 + }, + { + "start": 17208.92, + "end": 17212.28, + "probability": 0.6906 + }, + { + "start": 17212.34, + "end": 17214.72, + "probability": 0.6707 + }, + { + "start": 17215.36, + "end": 17218.4, + "probability": 0.9947 + }, + { + "start": 17219.03, + "end": 17219.38, + "probability": 0.0388 + }, + { + "start": 17219.74, + "end": 17220.72, + "probability": 0.629 + }, + { + "start": 17221.48, + "end": 17223.96, + "probability": 0.8961 + }, + { + "start": 17226.16, + "end": 17228.16, + "probability": 0.9262 + }, + { + "start": 17229.18, + "end": 17232.22, + "probability": 0.9973 + }, + { + "start": 17232.22, + "end": 17235.26, + "probability": 0.9258 + }, + { + "start": 17236.26, + "end": 17241.44, + "probability": 0.9961 + }, + { + "start": 17242.18, + "end": 17243.6, + "probability": 0.79 + }, + { + "start": 17244.22, + "end": 17246.36, + "probability": 0.7512 + }, + { + "start": 17247.16, + "end": 17249.76, + "probability": 0.6995 + }, + { + "start": 17250.52, + "end": 17254.52, + "probability": 0.8533 + }, + { + "start": 17254.92, + "end": 17257.64, + "probability": 0.9218 + }, + { + "start": 17258.56, + "end": 17259.38, + "probability": 0.6488 + }, + { + "start": 17259.52, + "end": 17263.22, + "probability": 0.957 + }, + { + "start": 17263.22, + "end": 17266.34, + "probability": 0.9341 + }, + { + "start": 17267.0, + "end": 17270.2, + "probability": 0.892 + }, + { + "start": 17270.2, + "end": 17272.42, + "probability": 0.872 + }, + { + "start": 17274.36, + "end": 17277.52, + "probability": 0.9972 + }, + { + "start": 17277.52, + "end": 17283.18, + "probability": 0.798 + }, + { + "start": 17283.7, + "end": 17285.0, + "probability": 0.6473 + }, + { + "start": 17285.24, + "end": 17290.28, + "probability": 0.739 + }, + { + "start": 17290.92, + "end": 17292.8, + "probability": 0.7714 + }, + { + "start": 17293.34, + "end": 17294.08, + "probability": 0.5292 + }, + { + "start": 17294.08, + "end": 17294.12, + "probability": 0.7274 + }, + { + "start": 17294.16, + "end": 17295.46, + "probability": 0.4574 + }, + { + "start": 17295.5, + "end": 17300.6, + "probability": 0.982 + }, + { + "start": 17300.74, + "end": 17301.78, + "probability": 0.9919 + }, + { + "start": 17302.04, + "end": 17304.1, + "probability": 0.8465 + }, + { + "start": 17304.3, + "end": 17307.32, + "probability": 0.897 + }, + { + "start": 17308.02, + "end": 17312.88, + "probability": 0.8315 + }, + { + "start": 17313.34, + "end": 17314.92, + "probability": 0.9622 + }, + { + "start": 17315.26, + "end": 17319.18, + "probability": 0.9764 + }, + { + "start": 17319.66, + "end": 17320.7, + "probability": 0.6983 + }, + { + "start": 17320.88, + "end": 17321.6, + "probability": 0.5877 + }, + { + "start": 17321.78, + "end": 17325.44, + "probability": 0.7827 + }, + { + "start": 17325.68, + "end": 17328.58, + "probability": 0.9946 + }, + { + "start": 17329.54, + "end": 17331.51, + "probability": 0.8108 + }, + { + "start": 17332.64, + "end": 17334.84, + "probability": 0.5187 + }, + { + "start": 17335.48, + "end": 17335.48, + "probability": 0.4022 + }, + { + "start": 17335.48, + "end": 17335.5, + "probability": 0.0574 + }, + { + "start": 17335.5, + "end": 17335.5, + "probability": 0.055 + }, + { + "start": 17335.5, + "end": 17335.5, + "probability": 0.0319 + }, + { + "start": 17335.5, + "end": 17335.5, + "probability": 0.2844 + }, + { + "start": 17335.5, + "end": 17337.6, + "probability": 0.3702 + }, + { + "start": 17338.9, + "end": 17339.48, + "probability": 0.4049 + }, + { + "start": 17341.16, + "end": 17344.26, + "probability": 0.0437 + }, + { + "start": 17346.08, + "end": 17348.18, + "probability": 0.4848 + }, + { + "start": 17348.94, + "end": 17349.3, + "probability": 0.2672 + }, + { + "start": 17349.7, + "end": 17349.7, + "probability": 0.0813 + }, + { + "start": 17349.7, + "end": 17349.7, + "probability": 0.0195 + }, + { + "start": 17349.7, + "end": 17349.7, + "probability": 0.1622 + }, + { + "start": 17349.7, + "end": 17350.48, + "probability": 0.4604 + }, + { + "start": 17350.64, + "end": 17352.3, + "probability": 0.8703 + }, + { + "start": 17352.3, + "end": 17353.22, + "probability": 0.6667 + }, + { + "start": 17353.62, + "end": 17353.62, + "probability": 0.0638 + }, + { + "start": 17353.62, + "end": 17354.16, + "probability": 0.3899 + }, + { + "start": 17354.18, + "end": 17354.84, + "probability": 0.7446 + }, + { + "start": 17354.98, + "end": 17355.72, + "probability": 0.8691 + }, + { + "start": 17356.24, + "end": 17357.69, + "probability": 0.4998 + }, + { + "start": 17358.02, + "end": 17358.7, + "probability": 0.1699 + }, + { + "start": 17361.96, + "end": 17365.57, + "probability": 0.8838 + }, + { + "start": 17365.9, + "end": 17366.78, + "probability": 0.2827 + }, + { + "start": 17366.86, + "end": 17370.32, + "probability": 0.5814 + }, + { + "start": 17370.32, + "end": 17371.96, + "probability": 0.1332 + }, + { + "start": 17372.24, + "end": 17373.66, + "probability": 0.6713 + }, + { + "start": 17373.94, + "end": 17374.26, + "probability": 0.8341 + }, + { + "start": 17374.28, + "end": 17375.65, + "probability": 0.4959 + }, + { + "start": 17376.88, + "end": 17380.24, + "probability": 0.621 + }, + { + "start": 17381.94, + "end": 17384.42, + "probability": 0.9906 + }, + { + "start": 17386.34, + "end": 17391.84, + "probability": 0.988 + }, + { + "start": 17391.96, + "end": 17393.0, + "probability": 0.9471 + }, + { + "start": 17394.16, + "end": 17395.68, + "probability": 0.9934 + }, + { + "start": 17396.26, + "end": 17401.7, + "probability": 0.9904 + }, + { + "start": 17401.7, + "end": 17405.66, + "probability": 0.9577 + }, + { + "start": 17407.62, + "end": 17413.06, + "probability": 0.974 + }, + { + "start": 17413.7, + "end": 17418.28, + "probability": 0.9993 + }, + { + "start": 17418.38, + "end": 17422.38, + "probability": 0.9978 + }, + { + "start": 17424.12, + "end": 17425.98, + "probability": 0.9981 + }, + { + "start": 17426.48, + "end": 17427.22, + "probability": 0.5673 + }, + { + "start": 17427.26, + "end": 17429.2, + "probability": 0.9423 + }, + { + "start": 17429.4, + "end": 17430.54, + "probability": 0.949 + }, + { + "start": 17431.3, + "end": 17431.98, + "probability": 0.8106 + }, + { + "start": 17432.38, + "end": 17433.72, + "probability": 0.3076 + }, + { + "start": 17433.74, + "end": 17434.9, + "probability": 0.7812 + }, + { + "start": 17435.28, + "end": 17436.1, + "probability": 0.6641 + }, + { + "start": 17436.12, + "end": 17438.42, + "probability": 0.9381 + }, + { + "start": 17439.02, + "end": 17441.84, + "probability": 0.9894 + }, + { + "start": 17442.7, + "end": 17444.44, + "probability": 0.8404 + }, + { + "start": 17445.76, + "end": 17448.5, + "probability": 0.9972 + }, + { + "start": 17449.04, + "end": 17450.16, + "probability": 0.9391 + }, + { + "start": 17450.26, + "end": 17451.12, + "probability": 0.8448 + }, + { + "start": 17451.24, + "end": 17453.52, + "probability": 0.7367 + }, + { + "start": 17454.32, + "end": 17459.24, + "probability": 0.9604 + }, + { + "start": 17460.7, + "end": 17465.06, + "probability": 0.9897 + }, + { + "start": 17465.76, + "end": 17469.0, + "probability": 0.9814 + }, + { + "start": 17469.0, + "end": 17472.96, + "probability": 0.9945 + }, + { + "start": 17473.54, + "end": 17478.46, + "probability": 0.8977 + }, + { + "start": 17479.42, + "end": 17480.08, + "probability": 0.7654 + }, + { + "start": 17481.44, + "end": 17483.16, + "probability": 0.8871 + }, + { + "start": 17483.36, + "end": 17486.1, + "probability": 0.9956 + }, + { + "start": 17487.12, + "end": 17492.76, + "probability": 0.9942 + }, + { + "start": 17494.1, + "end": 17500.2, + "probability": 0.9849 + }, + { + "start": 17500.38, + "end": 17501.52, + "probability": 0.9359 + }, + { + "start": 17504.36, + "end": 17507.96, + "probability": 0.9689 + }, + { + "start": 17508.28, + "end": 17509.76, + "probability": 0.8971 + }, + { + "start": 17510.5, + "end": 17512.69, + "probability": 0.9983 + }, + { + "start": 17513.16, + "end": 17516.56, + "probability": 0.9862 + }, + { + "start": 17516.66, + "end": 17517.48, + "probability": 0.7999 + }, + { + "start": 17518.28, + "end": 17520.21, + "probability": 0.9875 + }, + { + "start": 17520.86, + "end": 17523.2, + "probability": 0.9203 + }, + { + "start": 17523.52, + "end": 17527.78, + "probability": 0.9629 + }, + { + "start": 17528.58, + "end": 17533.08, + "probability": 0.9982 + }, + { + "start": 17533.9, + "end": 17534.46, + "probability": 0.6189 + }, + { + "start": 17534.56, + "end": 17535.6, + "probability": 0.6085 + }, + { + "start": 17535.64, + "end": 17536.26, + "probability": 0.7811 + }, + { + "start": 17536.64, + "end": 17538.6, + "probability": 0.9775 + }, + { + "start": 17538.78, + "end": 17540.42, + "probability": 0.794 + }, + { + "start": 17541.22, + "end": 17545.98, + "probability": 0.9919 + }, + { + "start": 17545.98, + "end": 17549.28, + "probability": 0.9976 + }, + { + "start": 17549.96, + "end": 17552.64, + "probability": 0.7631 + }, + { + "start": 17553.18, + "end": 17555.18, + "probability": 0.628 + }, + { + "start": 17555.9, + "end": 17556.84, + "probability": 0.9759 + }, + { + "start": 17557.12, + "end": 17557.82, + "probability": 0.9414 + }, + { + "start": 17558.16, + "end": 17561.14, + "probability": 0.9906 + }, + { + "start": 17562.0, + "end": 17566.46, + "probability": 0.9965 + }, + { + "start": 17567.78, + "end": 17569.55, + "probability": 0.9745 + }, + { + "start": 17570.9, + "end": 17572.31, + "probability": 0.9966 + }, + { + "start": 17573.6, + "end": 17575.48, + "probability": 0.9866 + }, + { + "start": 17576.68, + "end": 17577.22, + "probability": 0.3549 + }, + { + "start": 17577.3, + "end": 17578.1, + "probability": 0.896 + }, + { + "start": 17578.32, + "end": 17580.38, + "probability": 0.8646 + }, + { + "start": 17580.44, + "end": 17581.34, + "probability": 0.9073 + }, + { + "start": 17581.76, + "end": 17584.44, + "probability": 0.9426 + }, + { + "start": 17584.98, + "end": 17585.54, + "probability": 0.8817 + }, + { + "start": 17586.2, + "end": 17586.66, + "probability": 0.8299 + }, + { + "start": 17588.72, + "end": 17589.86, + "probability": 0.9239 + }, + { + "start": 17593.22, + "end": 17594.58, + "probability": 0.3601 + }, + { + "start": 17615.58, + "end": 17618.62, + "probability": 0.7947 + }, + { + "start": 17620.22, + "end": 17622.74, + "probability": 0.8284 + }, + { + "start": 17624.08, + "end": 17625.3, + "probability": 0.9603 + }, + { + "start": 17626.58, + "end": 17629.78, + "probability": 0.9816 + }, + { + "start": 17630.6, + "end": 17632.94, + "probability": 0.9917 + }, + { + "start": 17633.48, + "end": 17634.58, + "probability": 0.9937 + }, + { + "start": 17635.22, + "end": 17636.26, + "probability": 0.9387 + }, + { + "start": 17636.8, + "end": 17638.32, + "probability": 0.9661 + }, + { + "start": 17640.18, + "end": 17642.66, + "probability": 0.9845 + }, + { + "start": 17643.92, + "end": 17646.22, + "probability": 0.9907 + }, + { + "start": 17649.26, + "end": 17651.76, + "probability": 0.9936 + }, + { + "start": 17652.94, + "end": 17653.22, + "probability": 0.5863 + }, + { + "start": 17656.34, + "end": 17659.52, + "probability": 0.9752 + }, + { + "start": 17660.18, + "end": 17663.76, + "probability": 0.9897 + }, + { + "start": 17664.4, + "end": 17665.78, + "probability": 0.983 + }, + { + "start": 17666.96, + "end": 17670.92, + "probability": 0.9559 + }, + { + "start": 17671.7, + "end": 17672.74, + "probability": 0.8594 + }, + { + "start": 17673.9, + "end": 17682.46, + "probability": 0.9956 + }, + { + "start": 17683.4, + "end": 17687.36, + "probability": 0.9969 + }, + { + "start": 17688.64, + "end": 17690.18, + "probability": 0.9276 + }, + { + "start": 17690.96, + "end": 17691.54, + "probability": 0.9713 + }, + { + "start": 17692.86, + "end": 17694.24, + "probability": 0.9634 + }, + { + "start": 17695.72, + "end": 17701.78, + "probability": 0.8979 + }, + { + "start": 17703.24, + "end": 17705.22, + "probability": 0.9927 + }, + { + "start": 17706.52, + "end": 17709.02, + "probability": 0.9969 + }, + { + "start": 17709.8, + "end": 17712.1, + "probability": 0.9587 + }, + { + "start": 17713.14, + "end": 17713.78, + "probability": 0.7232 + }, + { + "start": 17713.92, + "end": 17717.08, + "probability": 0.5356 + }, + { + "start": 17717.24, + "end": 17721.5, + "probability": 0.9486 + }, + { + "start": 17722.42, + "end": 17728.18, + "probability": 0.8823 + }, + { + "start": 17728.9, + "end": 17730.26, + "probability": 0.7259 + }, + { + "start": 17730.92, + "end": 17732.84, + "probability": 0.7952 + }, + { + "start": 17733.4, + "end": 17735.08, + "probability": 0.9507 + }, + { + "start": 17735.88, + "end": 17738.92, + "probability": 0.9043 + }, + { + "start": 17739.66, + "end": 17740.11, + "probability": 0.9241 + }, + { + "start": 17741.42, + "end": 17742.64, + "probability": 0.7518 + }, + { + "start": 17744.28, + "end": 17745.96, + "probability": 0.9584 + }, + { + "start": 17746.2, + "end": 17747.5, + "probability": 0.9023 + }, + { + "start": 17748.58, + "end": 17750.28, + "probability": 0.6662 + }, + { + "start": 17750.54, + "end": 17752.0, + "probability": 0.8708 + }, + { + "start": 17752.68, + "end": 17754.68, + "probability": 0.7729 + }, + { + "start": 17755.62, + "end": 17757.42, + "probability": 0.9824 + }, + { + "start": 17758.28, + "end": 17760.71, + "probability": 0.7226 + }, + { + "start": 17761.48, + "end": 17763.04, + "probability": 0.9341 + }, + { + "start": 17763.68, + "end": 17765.42, + "probability": 0.9883 + }, + { + "start": 17766.08, + "end": 17767.82, + "probability": 0.9396 + }, + { + "start": 17769.53, + "end": 17772.5, + "probability": 0.6554 + }, + { + "start": 17772.84, + "end": 17772.92, + "probability": 0.3136 + }, + { + "start": 17773.74, + "end": 17776.64, + "probability": 0.9958 + }, + { + "start": 17778.02, + "end": 17779.62, + "probability": 0.8198 + }, + { + "start": 17780.24, + "end": 17784.08, + "probability": 0.9765 + }, + { + "start": 17784.34, + "end": 17785.24, + "probability": 0.9466 + }, + { + "start": 17785.68, + "end": 17786.72, + "probability": 0.99 + }, + { + "start": 17786.86, + "end": 17786.96, + "probability": 0.7371 + }, + { + "start": 17787.2, + "end": 17788.12, + "probability": 0.7536 + }, + { + "start": 17788.54, + "end": 17790.8, + "probability": 0.9578 + }, + { + "start": 17792.04, + "end": 17792.24, + "probability": 0.1084 + }, + { + "start": 17792.38, + "end": 17793.26, + "probability": 0.9712 + }, + { + "start": 17793.78, + "end": 17795.66, + "probability": 0.6161 + }, + { + "start": 17795.76, + "end": 17796.48, + "probability": 0.8101 + }, + { + "start": 17796.92, + "end": 17799.94, + "probability": 0.825 + }, + { + "start": 17800.06, + "end": 17800.3, + "probability": 0.7455 + }, + { + "start": 17800.86, + "end": 17801.04, + "probability": 0.7589 + }, + { + "start": 17802.16, + "end": 17804.2, + "probability": 0.9648 + }, + { + "start": 17805.96, + "end": 17806.44, + "probability": 0.4411 + }, + { + "start": 17806.54, + "end": 17808.4, + "probability": 0.6663 + }, + { + "start": 17809.78, + "end": 17811.0, + "probability": 0.6254 + }, + { + "start": 17811.92, + "end": 17813.42, + "probability": 0.5358 + }, + { + "start": 17814.46, + "end": 17815.32, + "probability": 0.8521 + }, + { + "start": 17816.02, + "end": 17819.4, + "probability": 0.3017 + }, + { + "start": 17821.18, + "end": 17821.92, + "probability": 0.6426 + }, + { + "start": 17822.04, + "end": 17825.05, + "probability": 0.1161 + }, + { + "start": 17825.88, + "end": 17826.02, + "probability": 0.3742 + }, + { + "start": 17826.1, + "end": 17828.26, + "probability": 0.4218 + }, + { + "start": 17828.36, + "end": 17828.42, + "probability": 0.0512 + }, + { + "start": 17828.42, + "end": 17829.56, + "probability": 0.3982 + }, + { + "start": 17829.72, + "end": 17831.23, + "probability": 0.472 + }, + { + "start": 17831.52, + "end": 17832.82, + "probability": 0.7863 + }, + { + "start": 17833.64, + "end": 17835.38, + "probability": 0.6123 + }, + { + "start": 17836.14, + "end": 17836.76, + "probability": 0.1669 + }, + { + "start": 17836.76, + "end": 17837.64, + "probability": 0.3918 + }, + { + "start": 17838.16, + "end": 17840.16, + "probability": 0.9479 + }, + { + "start": 17840.9, + "end": 17841.42, + "probability": 0.8727 + }, + { + "start": 17841.42, + "end": 17843.48, + "probability": 0.7627 + }, + { + "start": 17844.06, + "end": 17845.1, + "probability": 0.9778 + }, + { + "start": 17845.88, + "end": 17849.58, + "probability": 0.7557 + }, + { + "start": 17850.8, + "end": 17854.44, + "probability": 0.9401 + }, + { + "start": 17855.46, + "end": 17857.84, + "probability": 0.9818 + }, + { + "start": 17858.5, + "end": 17862.44, + "probability": 0.6652 + }, + { + "start": 17862.7, + "end": 17863.33, + "probability": 0.4281 + }, + { + "start": 17864.0, + "end": 17864.95, + "probability": 0.8137 + }, + { + "start": 17865.68, + "end": 17869.6, + "probability": 0.9042 + }, + { + "start": 17870.66, + "end": 17871.84, + "probability": 0.9907 + }, + { + "start": 17872.46, + "end": 17877.04, + "probability": 0.9236 + }, + { + "start": 17877.82, + "end": 17878.94, + "probability": 0.9937 + }, + { + "start": 17879.68, + "end": 17880.56, + "probability": 0.9507 + }, + { + "start": 17881.06, + "end": 17884.4, + "probability": 0.9219 + }, + { + "start": 17885.38, + "end": 17887.52, + "probability": 0.8822 + }, + { + "start": 17888.3, + "end": 17891.63, + "probability": 0.9383 + }, + { + "start": 17892.54, + "end": 17893.74, + "probability": 0.8892 + }, + { + "start": 17895.22, + "end": 17899.52, + "probability": 0.9287 + }, + { + "start": 17900.36, + "end": 17902.96, + "probability": 0.7891 + }, + { + "start": 17903.78, + "end": 17907.04, + "probability": 0.8814 + }, + { + "start": 17908.42, + "end": 17912.34, + "probability": 0.9944 + }, + { + "start": 17913.46, + "end": 17913.8, + "probability": 0.9656 + }, + { + "start": 17915.66, + "end": 17917.64, + "probability": 0.9927 + }, + { + "start": 17917.94, + "end": 17922.52, + "probability": 0.9943 + }, + { + "start": 17924.0, + "end": 17927.06, + "probability": 0.9024 + }, + { + "start": 17927.06, + "end": 17930.88, + "probability": 0.9558 + }, + { + "start": 17932.06, + "end": 17934.72, + "probability": 0.8832 + }, + { + "start": 17935.4, + "end": 17937.98, + "probability": 0.7011 + }, + { + "start": 17938.24, + "end": 17938.36, + "probability": 0.1356 + }, + { + "start": 17938.36, + "end": 17941.32, + "probability": 0.9396 + }, + { + "start": 17942.34, + "end": 17946.36, + "probability": 0.9562 + }, + { + "start": 17946.36, + "end": 17949.46, + "probability": 0.9411 + }, + { + "start": 17953.21, + "end": 17955.42, + "probability": 0.8521 + }, + { + "start": 17956.0, + "end": 17956.28, + "probability": 0.6925 + }, + { + "start": 17957.38, + "end": 17958.89, + "probability": 0.9846 + }, + { + "start": 17959.1, + "end": 17960.3, + "probability": 0.8376 + }, + { + "start": 17961.48, + "end": 17962.86, + "probability": 0.8135 + }, + { + "start": 17963.52, + "end": 17964.7, + "probability": 0.8828 + }, + { + "start": 17965.6, + "end": 17966.7, + "probability": 0.8882 + }, + { + "start": 17967.3, + "end": 17969.86, + "probability": 0.9902 + }, + { + "start": 17970.56, + "end": 17973.72, + "probability": 0.9657 + }, + { + "start": 17974.76, + "end": 17977.2, + "probability": 0.9572 + }, + { + "start": 17978.66, + "end": 17983.14, + "probability": 0.9395 + }, + { + "start": 17983.92, + "end": 17985.88, + "probability": 0.9937 + }, + { + "start": 17987.04, + "end": 17988.72, + "probability": 0.9751 + }, + { + "start": 17989.18, + "end": 17990.16, + "probability": 0.8152 + }, + { + "start": 17990.68, + "end": 17994.62, + "probability": 0.9929 + }, + { + "start": 17995.42, + "end": 17997.04, + "probability": 0.7341 + }, + { + "start": 17997.52, + "end": 17998.22, + "probability": 0.95 + }, + { + "start": 17998.5, + "end": 17999.92, + "probability": 0.9597 + }, + { + "start": 18000.62, + "end": 18003.08, + "probability": 0.968 + }, + { + "start": 18004.18, + "end": 18005.57, + "probability": 0.8516 + }, + { + "start": 18006.74, + "end": 18008.24, + "probability": 0.9029 + }, + { + "start": 18008.7, + "end": 18010.52, + "probability": 0.861 + }, + { + "start": 18010.62, + "end": 18011.4, + "probability": 0.7661 + }, + { + "start": 18012.52, + "end": 18016.64, + "probability": 0.9703 + }, + { + "start": 18016.78, + "end": 18017.36, + "probability": 0.2823 + }, + { + "start": 18018.0, + "end": 18018.84, + "probability": 0.689 + }, + { + "start": 18019.08, + "end": 18019.88, + "probability": 0.7476 + }, + { + "start": 18019.94, + "end": 18020.72, + "probability": 0.6315 + }, + { + "start": 18021.2, + "end": 18022.12, + "probability": 0.6152 + }, + { + "start": 18022.28, + "end": 18022.66, + "probability": 0.5572 + }, + { + "start": 18022.96, + "end": 18024.98, + "probability": 0.9413 + }, + { + "start": 18025.52, + "end": 18028.56, + "probability": 0.8862 + }, + { + "start": 18029.02, + "end": 18030.32, + "probability": 0.7469 + }, + { + "start": 18030.34, + "end": 18030.72, + "probability": 0.5076 + }, + { + "start": 18030.74, + "end": 18032.46, + "probability": 0.4949 + }, + { + "start": 18032.46, + "end": 18032.84, + "probability": 0.3066 + }, + { + "start": 18033.42, + "end": 18034.82, + "probability": 0.9771 + }, + { + "start": 18034.92, + "end": 18036.74, + "probability": 0.8924 + }, + { + "start": 18037.0, + "end": 18038.54, + "probability": 0.7152 + }, + { + "start": 18039.32, + "end": 18041.06, + "probability": 0.62 + }, + { + "start": 18041.36, + "end": 18043.64, + "probability": 0.8159 + }, + { + "start": 18044.7, + "end": 18045.84, + "probability": 0.7691 + }, + { + "start": 18053.72, + "end": 18054.14, + "probability": 0.8978 + }, + { + "start": 18054.24, + "end": 18057.68, + "probability": 0.7584 + }, + { + "start": 18057.76, + "end": 18058.08, + "probability": 0.5594 + }, + { + "start": 18058.1, + "end": 18058.54, + "probability": 0.8058 + }, + { + "start": 18058.8, + "end": 18060.2, + "probability": 0.9271 + }, + { + "start": 18061.0, + "end": 18061.36, + "probability": 0.8367 + }, + { + "start": 18061.44, + "end": 18062.88, + "probability": 0.9701 + }, + { + "start": 18063.08, + "end": 18063.9, + "probability": 0.7339 + }, + { + "start": 18063.94, + "end": 18064.38, + "probability": 0.8012 + }, + { + "start": 18064.52, + "end": 18064.88, + "probability": 0.7338 + }, + { + "start": 18064.94, + "end": 18066.22, + "probability": 0.6724 + }, + { + "start": 18067.28, + "end": 18068.6, + "probability": 0.8284 + }, + { + "start": 18069.18, + "end": 18069.62, + "probability": 0.5036 + }, + { + "start": 18071.84, + "end": 18073.38, + "probability": 0.4961 + }, + { + "start": 18073.5, + "end": 18074.3, + "probability": 0.5023 + }, + { + "start": 18074.74, + "end": 18077.32, + "probability": 0.9494 + }, + { + "start": 18077.32, + "end": 18080.88, + "probability": 0.9976 + }, + { + "start": 18083.46, + "end": 18084.04, + "probability": 0.5225 + }, + { + "start": 18084.26, + "end": 18084.84, + "probability": 0.9545 + }, + { + "start": 18084.94, + "end": 18086.88, + "probability": 0.9825 + }, + { + "start": 18086.98, + "end": 18088.8, + "probability": 0.9038 + }, + { + "start": 18089.32, + "end": 18090.6, + "probability": 0.9873 + }, + { + "start": 18091.04, + "end": 18092.66, + "probability": 0.9764 + }, + { + "start": 18092.88, + "end": 18093.7, + "probability": 0.8983 + }, + { + "start": 18094.56, + "end": 18095.92, + "probability": 0.988 + }, + { + "start": 18097.3, + "end": 18101.8, + "probability": 0.9941 + }, + { + "start": 18102.0, + "end": 18103.82, + "probability": 0.989 + }, + { + "start": 18104.62, + "end": 18107.92, + "probability": 0.9914 + }, + { + "start": 18109.06, + "end": 18113.38, + "probability": 0.9844 + }, + { + "start": 18114.18, + "end": 18114.32, + "probability": 0.4235 + }, + { + "start": 18114.64, + "end": 18118.22, + "probability": 0.9734 + }, + { + "start": 18118.9, + "end": 18119.62, + "probability": 0.8596 + }, + { + "start": 18119.7, + "end": 18120.85, + "probability": 0.8306 + }, + { + "start": 18121.16, + "end": 18124.84, + "probability": 0.9568 + }, + { + "start": 18125.06, + "end": 18125.76, + "probability": 0.572 + }, + { + "start": 18125.86, + "end": 18126.88, + "probability": 0.4611 + }, + { + "start": 18128.1, + "end": 18129.6, + "probability": 0.6172 + }, + { + "start": 18130.68, + "end": 18130.89, + "probability": 0.6916 + }, + { + "start": 18131.84, + "end": 18132.82, + "probability": 0.9355 + }, + { + "start": 18132.94, + "end": 18133.22, + "probability": 0.8633 + }, + { + "start": 18133.26, + "end": 18134.52, + "probability": 0.8829 + }, + { + "start": 18134.62, + "end": 18137.76, + "probability": 0.9705 + }, + { + "start": 18138.52, + "end": 18140.06, + "probability": 0.7152 + }, + { + "start": 18140.48, + "end": 18141.68, + "probability": 0.9312 + }, + { + "start": 18142.56, + "end": 18144.74, + "probability": 0.998 + }, + { + "start": 18145.12, + "end": 18147.76, + "probability": 0.9883 + }, + { + "start": 18149.36, + "end": 18150.2, + "probability": 0.7654 + }, + { + "start": 18151.96, + "end": 18153.96, + "probability": 0.0913 + }, + { + "start": 18153.96, + "end": 18155.2, + "probability": 0.1831 + }, + { + "start": 18155.82, + "end": 18158.05, + "probability": 0.9436 + }, + { + "start": 18158.18, + "end": 18160.03, + "probability": 0.995 + }, + { + "start": 18160.6, + "end": 18161.34, + "probability": 0.7768 + }, + { + "start": 18161.82, + "end": 18162.5, + "probability": 0.5296 + }, + { + "start": 18162.84, + "end": 18165.24, + "probability": 0.9797 + }, + { + "start": 18165.78, + "end": 18169.64, + "probability": 0.976 + }, + { + "start": 18170.42, + "end": 18172.28, + "probability": 0.9738 + }, + { + "start": 18172.74, + "end": 18177.1, + "probability": 0.9958 + }, + { + "start": 18177.1, + "end": 18181.02, + "probability": 0.9669 + }, + { + "start": 18182.12, + "end": 18184.96, + "probability": 0.9971 + }, + { + "start": 18185.68, + "end": 18187.68, + "probability": 0.9089 + }, + { + "start": 18188.6, + "end": 18190.36, + "probability": 0.8817 + }, + { + "start": 18191.38, + "end": 18194.36, + "probability": 0.9883 + }, + { + "start": 18194.9, + "end": 18197.02, + "probability": 0.8194 + }, + { + "start": 18197.5, + "end": 18198.04, + "probability": 0.597 + }, + { + "start": 18198.16, + "end": 18199.04, + "probability": 0.5766 + }, + { + "start": 18199.12, + "end": 18201.06, + "probability": 0.9297 + }, + { + "start": 18201.22, + "end": 18203.38, + "probability": 0.5919 + }, + { + "start": 18203.4, + "end": 18203.74, + "probability": 0.8383 + }, + { + "start": 18203.82, + "end": 18203.82, + "probability": 0.4448 + }, + { + "start": 18204.0, + "end": 18206.8, + "probability": 0.9873 + }, + { + "start": 18206.9, + "end": 18207.18, + "probability": 0.6999 + }, + { + "start": 18208.38, + "end": 18209.34, + "probability": 0.3617 + }, + { + "start": 18209.8, + "end": 18212.48, + "probability": 0.8545 + }, + { + "start": 18213.22, + "end": 18213.61, + "probability": 0.9023 + }, + { + "start": 18213.72, + "end": 18215.94, + "probability": 0.9862 + }, + { + "start": 18216.34, + "end": 18217.06, + "probability": 0.8323 + }, + { + "start": 18217.48, + "end": 18218.6, + "probability": 0.9677 + }, + { + "start": 18218.84, + "end": 18219.8, + "probability": 0.9858 + }, + { + "start": 18219.92, + "end": 18221.98, + "probability": 0.9802 + }, + { + "start": 18222.02, + "end": 18223.04, + "probability": 0.8877 + }, + { + "start": 18224.51, + "end": 18226.51, + "probability": 0.9951 + }, + { + "start": 18227.06, + "end": 18230.1, + "probability": 0.9687 + }, + { + "start": 18230.54, + "end": 18231.06, + "probability": 0.987 + }, + { + "start": 18231.72, + "end": 18232.62, + "probability": 0.9318 + }, + { + "start": 18233.2, + "end": 18233.71, + "probability": 0.998 + }, + { + "start": 18234.5, + "end": 18236.46, + "probability": 0.9873 + }, + { + "start": 18237.34, + "end": 18241.5, + "probability": 0.8848 + }, + { + "start": 18242.42, + "end": 18246.12, + "probability": 0.9819 + }, + { + "start": 18246.8, + "end": 18250.82, + "probability": 0.9885 + }, + { + "start": 18250.95, + "end": 18253.88, + "probability": 0.9661 + }, + { + "start": 18254.06, + "end": 18254.42, + "probability": 0.8014 + }, + { + "start": 18255.22, + "end": 18255.74, + "probability": 0.8365 + }, + { + "start": 18256.64, + "end": 18258.06, + "probability": 0.7342 + }, + { + "start": 18285.26, + "end": 18285.92, + "probability": 0.3182 + }, + { + "start": 18285.95, + "end": 18288.32, + "probability": 0.725 + }, + { + "start": 18288.32, + "end": 18289.0, + "probability": 0.7103 + }, + { + "start": 18289.02, + "end": 18289.58, + "probability": 0.8368 + }, + { + "start": 18289.72, + "end": 18291.2, + "probability": 0.9876 + }, + { + "start": 18291.28, + "end": 18292.08, + "probability": 0.9377 + }, + { + "start": 18292.38, + "end": 18293.76, + "probability": 0.98 + }, + { + "start": 18293.8, + "end": 18294.52, + "probability": 0.8388 + }, + { + "start": 18295.42, + "end": 18295.98, + "probability": 0.6997 + }, + { + "start": 18296.7, + "end": 18296.8, + "probability": 0.158 + }, + { + "start": 18296.8, + "end": 18296.8, + "probability": 0.4958 + }, + { + "start": 18296.8, + "end": 18299.62, + "probability": 0.7635 + }, + { + "start": 18302.58, + "end": 18306.9, + "probability": 0.9867 + }, + { + "start": 18306.9, + "end": 18311.52, + "probability": 0.989 + }, + { + "start": 18312.32, + "end": 18314.64, + "probability": 0.8758 + }, + { + "start": 18315.34, + "end": 18316.76, + "probability": 0.9968 + }, + { + "start": 18317.54, + "end": 18322.8, + "probability": 0.998 + }, + { + "start": 18323.28, + "end": 18326.14, + "probability": 0.8935 + }, + { + "start": 18326.32, + "end": 18327.18, + "probability": 0.6344 + }, + { + "start": 18327.76, + "end": 18331.0, + "probability": 0.8734 + }, + { + "start": 18331.2, + "end": 18334.64, + "probability": 0.9875 + }, + { + "start": 18335.1, + "end": 18337.82, + "probability": 0.9955 + }, + { + "start": 18337.82, + "end": 18340.94, + "probability": 0.9984 + }, + { + "start": 18341.98, + "end": 18347.9, + "probability": 0.9965 + }, + { + "start": 18348.42, + "end": 18350.94, + "probability": 0.9938 + }, + { + "start": 18351.68, + "end": 18356.78, + "probability": 0.9969 + }, + { + "start": 18357.2, + "end": 18357.92, + "probability": 0.9573 + }, + { + "start": 18358.1, + "end": 18358.98, + "probability": 0.701 + }, + { + "start": 18359.36, + "end": 18361.28, + "probability": 0.9937 + }, + { + "start": 18361.94, + "end": 18365.1, + "probability": 0.9917 + }, + { + "start": 18365.7, + "end": 18366.86, + "probability": 0.9977 + }, + { + "start": 18367.48, + "end": 18370.64, + "probability": 0.9739 + }, + { + "start": 18371.44, + "end": 18376.96, + "probability": 0.987 + }, + { + "start": 18377.6, + "end": 18377.86, + "probability": 0.6313 + }, + { + "start": 18377.96, + "end": 18379.54, + "probability": 0.9582 + }, + { + "start": 18379.64, + "end": 18384.38, + "probability": 0.9894 + }, + { + "start": 18384.94, + "end": 18389.36, + "probability": 0.9693 + }, + { + "start": 18389.98, + "end": 18390.18, + "probability": 0.7042 + }, + { + "start": 18391.2, + "end": 18391.66, + "probability": 0.7009 + }, + { + "start": 18392.12, + "end": 18392.58, + "probability": 0.482 + }, + { + "start": 18392.66, + "end": 18393.26, + "probability": 0.8848 + }, + { + "start": 18393.38, + "end": 18394.38, + "probability": 0.7255 + }, + { + "start": 18394.42, + "end": 18394.9, + "probability": 0.396 + }, + { + "start": 18395.1, + "end": 18395.46, + "probability": 0.7684 + }, + { + "start": 18397.98, + "end": 18400.7, + "probability": 0.8275 + }, + { + "start": 18401.52, + "end": 18403.62, + "probability": 0.9675 + }, + { + "start": 18403.62, + "end": 18406.98, + "probability": 0.7081 + }, + { + "start": 18407.16, + "end": 18411.42, + "probability": 0.6992 + }, + { + "start": 18412.12, + "end": 18414.94, + "probability": 0.1161 + }, + { + "start": 18415.8, + "end": 18416.74, + "probability": 0.8943 + }, + { + "start": 18417.68, + "end": 18419.17, + "probability": 0.6532 + }, + { + "start": 18419.2, + "end": 18420.06, + "probability": 0.745 + }, + { + "start": 18420.56, + "end": 18424.11, + "probability": 0.967 + }, + { + "start": 18425.06, + "end": 18426.7, + "probability": 0.9908 + }, + { + "start": 18426.94, + "end": 18428.5, + "probability": 0.9844 + }, + { + "start": 18429.04, + "end": 18430.74, + "probability": 0.7366 + }, + { + "start": 18431.6, + "end": 18431.7, + "probability": 0.0322 + }, + { + "start": 18432.44, + "end": 18434.5, + "probability": 0.5865 + }, + { + "start": 18435.66, + "end": 18439.26, + "probability": 0.7437 + }, + { + "start": 18440.0, + "end": 18440.72, + "probability": 0.9194 + }, + { + "start": 18441.32, + "end": 18442.04, + "probability": 0.9111 + }, + { + "start": 18442.66, + "end": 18443.08, + "probability": 0.4894 + }, + { + "start": 18444.34, + "end": 18446.32, + "probability": 0.739 + }, + { + "start": 18446.52, + "end": 18449.1, + "probability": 0.509 + }, + { + "start": 18449.14, + "end": 18449.92, + "probability": 0.6223 + }, + { + "start": 18450.16, + "end": 18450.66, + "probability": 0.6507 + }, + { + "start": 18451.04, + "end": 18452.96, + "probability": 0.6416 + }, + { + "start": 18454.12, + "end": 18454.12, + "probability": 0.6797 + }, + { + "start": 18454.5, + "end": 18454.96, + "probability": 0.6636 + }, + { + "start": 18455.44, + "end": 18459.32, + "probability": 0.9883 + }, + { + "start": 18459.32, + "end": 18459.44, + "probability": 0.6565 + }, + { + "start": 18460.36, + "end": 18460.82, + "probability": 0.9707 + }, + { + "start": 18461.97, + "end": 18466.04, + "probability": 0.9788 + }, + { + "start": 18466.34, + "end": 18467.87, + "probability": 0.9729 + }, + { + "start": 18468.94, + "end": 18471.76, + "probability": 0.8815 + }, + { + "start": 18471.94, + "end": 18475.0, + "probability": 0.897 + }, + { + "start": 18475.06, + "end": 18477.6, + "probability": 0.9925 + }, + { + "start": 18477.76, + "end": 18483.34, + "probability": 0.9691 + }, + { + "start": 18483.44, + "end": 18483.72, + "probability": 0.7676 + }, + { + "start": 18483.86, + "end": 18484.86, + "probability": 0.9905 + }, + { + "start": 18485.02, + "end": 18488.98, + "probability": 0.873 + }, + { + "start": 18490.16, + "end": 18491.6, + "probability": 0.0517 + }, + { + "start": 18491.6, + "end": 18491.6, + "probability": 0.807 + }, + { + "start": 18491.64, + "end": 18495.78, + "probability": 0.9952 + }, + { + "start": 18495.8, + "end": 18499.38, + "probability": 0.8872 + }, + { + "start": 18499.68, + "end": 18504.59, + "probability": 0.9502 + }, + { + "start": 18505.38, + "end": 18508.0, + "probability": 0.9961 + }, + { + "start": 18508.08, + "end": 18509.3, + "probability": 0.7209 + }, + { + "start": 18509.8, + "end": 18511.82, + "probability": 0.7655 + }, + { + "start": 18512.18, + "end": 18513.2, + "probability": 0.5444 + }, + { + "start": 18513.26, + "end": 18515.7, + "probability": 0.9264 + }, + { + "start": 18516.08, + "end": 18517.11, + "probability": 0.7672 + }, + { + "start": 18518.06, + "end": 18523.5, + "probability": 0.9847 + }, + { + "start": 18523.86, + "end": 18524.56, + "probability": 0.9968 + }, + { + "start": 18525.82, + "end": 18526.56, + "probability": 0.8922 + }, + { + "start": 18527.4, + "end": 18528.18, + "probability": 0.9771 + }, + { + "start": 18528.82, + "end": 18534.88, + "probability": 0.9749 + }, + { + "start": 18535.02, + "end": 18538.04, + "probability": 0.9943 + }, + { + "start": 18538.74, + "end": 18541.74, + "probability": 0.9764 + }, + { + "start": 18541.98, + "end": 18548.32, + "probability": 0.9961 + }, + { + "start": 18548.42, + "end": 18549.48, + "probability": 0.5165 + }, + { + "start": 18549.96, + "end": 18554.04, + "probability": 0.6772 + }, + { + "start": 18554.04, + "end": 18558.76, + "probability": 0.9671 + }, + { + "start": 18560.2, + "end": 18561.83, + "probability": 0.8882 + }, + { + "start": 18562.48, + "end": 18563.2, + "probability": 0.8396 + }, + { + "start": 18564.5, + "end": 18569.92, + "probability": 0.9938 + }, + { + "start": 18570.82, + "end": 18573.18, + "probability": 0.9874 + }, + { + "start": 18574.12, + "end": 18578.38, + "probability": 0.9973 + }, + { + "start": 18578.54, + "end": 18580.06, + "probability": 0.9531 + }, + { + "start": 18580.66, + "end": 18584.64, + "probability": 0.9888 + }, + { + "start": 18584.8, + "end": 18586.14, + "probability": 0.8893 + }, + { + "start": 18586.6, + "end": 18587.8, + "probability": 0.9841 + }, + { + "start": 18588.32, + "end": 18589.24, + "probability": 0.9853 + }, + { + "start": 18589.56, + "end": 18590.9, + "probability": 0.9505 + }, + { + "start": 18590.96, + "end": 18593.24, + "probability": 0.9893 + }, + { + "start": 18593.84, + "end": 18595.6, + "probability": 0.9276 + }, + { + "start": 18595.76, + "end": 18596.28, + "probability": 0.9143 + }, + { + "start": 18596.4, + "end": 18597.62, + "probability": 0.9844 + }, + { + "start": 18598.4, + "end": 18600.32, + "probability": 0.9826 + }, + { + "start": 18600.9, + "end": 18603.34, + "probability": 0.9802 + }, + { + "start": 18603.96, + "end": 18606.8, + "probability": 0.9397 + }, + { + "start": 18607.42, + "end": 18609.62, + "probability": 0.9932 + }, + { + "start": 18610.62, + "end": 18613.58, + "probability": 0.9966 + }, + { + "start": 18614.28, + "end": 18618.14, + "probability": 0.998 + }, + { + "start": 18618.66, + "end": 18619.9, + "probability": 0.9119 + }, + { + "start": 18621.42, + "end": 18622.18, + "probability": 0.3086 + }, + { + "start": 18622.94, + "end": 18624.6, + "probability": 0.9937 + }, + { + "start": 18626.08, + "end": 18626.26, + "probability": 0.7073 + }, + { + "start": 18627.26, + "end": 18628.92, + "probability": 0.9969 + }, + { + "start": 18630.02, + "end": 18634.61, + "probability": 0.995 + }, + { + "start": 18635.24, + "end": 18637.84, + "probability": 0.9757 + }, + { + "start": 18638.94, + "end": 18642.24, + "probability": 0.6972 + }, + { + "start": 18642.76, + "end": 18643.53, + "probability": 0.5694 + }, + { + "start": 18644.28, + "end": 18646.9, + "probability": 0.977 + }, + { + "start": 18647.34, + "end": 18650.5, + "probability": 0.959 + }, + { + "start": 18651.1, + "end": 18653.42, + "probability": 0.9618 + }, + { + "start": 18654.14, + "end": 18656.86, + "probability": 0.8588 + }, + { + "start": 18657.24, + "end": 18660.62, + "probability": 0.9873 + }, + { + "start": 18661.06, + "end": 18663.84, + "probability": 0.9979 + }, + { + "start": 18663.84, + "end": 18666.94, + "probability": 0.9982 + }, + { + "start": 18666.98, + "end": 18667.38, + "probability": 0.7182 + }, + { + "start": 18667.86, + "end": 18668.4, + "probability": 0.6652 + }, + { + "start": 18670.18, + "end": 18672.04, + "probability": 0.9021 + }, + { + "start": 18672.6, + "end": 18673.34, + "probability": 0.7841 + }, + { + "start": 18680.56, + "end": 18681.18, + "probability": 0.7133 + }, + { + "start": 18695.52, + "end": 18698.38, + "probability": 0.7988 + }, + { + "start": 18699.82, + "end": 18700.08, + "probability": 0.3041 + }, + { + "start": 18700.12, + "end": 18705.08, + "probability": 0.9907 + }, + { + "start": 18705.76, + "end": 18709.3, + "probability": 0.9501 + }, + { + "start": 18710.18, + "end": 18714.86, + "probability": 0.9571 + }, + { + "start": 18714.88, + "end": 18716.16, + "probability": 0.7203 + }, + { + "start": 18716.82, + "end": 18719.28, + "probability": 0.9382 + }, + { + "start": 18720.72, + "end": 18721.24, + "probability": 0.6532 + }, + { + "start": 18721.78, + "end": 18724.04, + "probability": 0.7355 + }, + { + "start": 18724.54, + "end": 18728.16, + "probability": 0.967 + }, + { + "start": 18728.16, + "end": 18731.38, + "probability": 0.9976 + }, + { + "start": 18731.42, + "end": 18732.58, + "probability": 0.7512 + }, + { + "start": 18733.9, + "end": 18738.0, + "probability": 0.9741 + }, + { + "start": 18738.04, + "end": 18742.12, + "probability": 0.9949 + }, + { + "start": 18742.94, + "end": 18745.8, + "probability": 0.9967 + }, + { + "start": 18746.42, + "end": 18748.66, + "probability": 0.9371 + }, + { + "start": 18749.3, + "end": 18751.3, + "probability": 0.9235 + }, + { + "start": 18753.1, + "end": 18757.36, + "probability": 0.9906 + }, + { + "start": 18758.18, + "end": 18762.52, + "probability": 0.9131 + }, + { + "start": 18763.44, + "end": 18764.54, + "probability": 0.7949 + }, + { + "start": 18764.64, + "end": 18765.1, + "probability": 0.6394 + }, + { + "start": 18765.16, + "end": 18767.44, + "probability": 0.9707 + }, + { + "start": 18768.24, + "end": 18772.7, + "probability": 0.9597 + }, + { + "start": 18773.5, + "end": 18776.98, + "probability": 0.9478 + }, + { + "start": 18777.64, + "end": 18779.38, + "probability": 0.8549 + }, + { + "start": 18780.52, + "end": 18783.38, + "probability": 0.9105 + }, + { + "start": 18783.98, + "end": 18788.78, + "probability": 0.9919 + }, + { + "start": 18789.8, + "end": 18790.5, + "probability": 0.5507 + }, + { + "start": 18791.98, + "end": 18794.92, + "probability": 0.9664 + }, + { + "start": 18795.1, + "end": 18795.4, + "probability": 0.9814 + }, + { + "start": 18795.58, + "end": 18797.16, + "probability": 0.9854 + }, + { + "start": 18797.78, + "end": 18801.42, + "probability": 0.9482 + }, + { + "start": 18801.42, + "end": 18804.98, + "probability": 0.6613 + }, + { + "start": 18806.18, + "end": 18810.24, + "probability": 0.9712 + }, + { + "start": 18810.28, + "end": 18811.54, + "probability": 0.8065 + }, + { + "start": 18812.44, + "end": 18816.14, + "probability": 0.9585 + }, + { + "start": 18817.38, + "end": 18817.78, + "probability": 0.6937 + }, + { + "start": 18818.92, + "end": 18819.24, + "probability": 0.7654 + }, + { + "start": 18819.52, + "end": 18820.38, + "probability": 0.8746 + }, + { + "start": 18820.84, + "end": 18824.44, + "probability": 0.9871 + }, + { + "start": 18824.44, + "end": 18827.36, + "probability": 0.9885 + }, + { + "start": 18828.76, + "end": 18831.28, + "probability": 0.8721 + }, + { + "start": 18831.88, + "end": 18833.52, + "probability": 0.8571 + }, + { + "start": 18834.36, + "end": 18834.92, + "probability": 0.7171 + }, + { + "start": 18835.94, + "end": 18839.0, + "probability": 0.9881 + }, + { + "start": 18839.56, + "end": 18842.24, + "probability": 0.9223 + }, + { + "start": 18842.98, + "end": 18846.14, + "probability": 0.8268 + }, + { + "start": 18847.5, + "end": 18854.02, + "probability": 0.9733 + }, + { + "start": 18855.12, + "end": 18860.34, + "probability": 0.9684 + }, + { + "start": 18861.16, + "end": 18865.14, + "probability": 0.9296 + }, + { + "start": 18865.36, + "end": 18869.18, + "probability": 0.9701 + }, + { + "start": 18870.0, + "end": 18874.62, + "probability": 0.9853 + }, + { + "start": 18875.58, + "end": 18878.2, + "probability": 0.9556 + }, + { + "start": 18878.94, + "end": 18881.58, + "probability": 0.9849 + }, + { + "start": 18881.92, + "end": 18882.82, + "probability": 0.9721 + }, + { + "start": 18883.26, + "end": 18884.36, + "probability": 0.9199 + }, + { + "start": 18885.76, + "end": 18889.3, + "probability": 0.9936 + }, + { + "start": 18890.04, + "end": 18892.49, + "probability": 0.9966 + }, + { + "start": 18892.9, + "end": 18896.98, + "probability": 0.9876 + }, + { + "start": 18897.76, + "end": 18900.78, + "probability": 0.9849 + }, + { + "start": 18901.5, + "end": 18902.18, + "probability": 0.6962 + }, + { + "start": 18902.48, + "end": 18904.16, + "probability": 0.5607 + }, + { + "start": 18904.16, + "end": 18904.32, + "probability": 0.3402 + }, + { + "start": 18904.46, + "end": 18905.04, + "probability": 0.9393 + }, + { + "start": 18905.48, + "end": 18910.66, + "probability": 0.9032 + }, + { + "start": 18911.3, + "end": 18913.49, + "probability": 0.991 + }, + { + "start": 18913.74, + "end": 18916.36, + "probability": 0.4969 + }, + { + "start": 18916.64, + "end": 18917.02, + "probability": 0.8815 + }, + { + "start": 18918.38, + "end": 18920.44, + "probability": 0.9152 + }, + { + "start": 18920.52, + "end": 18923.58, + "probability": 0.8716 + }, + { + "start": 18925.74, + "end": 18927.08, + "probability": 0.7618 + }, + { + "start": 18928.16, + "end": 18932.2, + "probability": 0.2784 + }, + { + "start": 18932.72, + "end": 18932.92, + "probability": 0.3492 + }, + { + "start": 18936.56, + "end": 18936.66, + "probability": 0.1132 + }, + { + "start": 18937.74, + "end": 18937.74, + "probability": 0.0197 + }, + { + "start": 18952.12, + "end": 18956.98, + "probability": 0.7881 + }, + { + "start": 18956.98, + "end": 18957.48, + "probability": 0.8096 + }, + { + "start": 18957.62, + "end": 18959.08, + "probability": 0.3309 + }, + { + "start": 18959.08, + "end": 18959.44, + "probability": 0.5988 + }, + { + "start": 18959.44, + "end": 18959.44, + "probability": 0.0125 + }, + { + "start": 18959.44, + "end": 18962.2, + "probability": 0.4149 + }, + { + "start": 18962.56, + "end": 18963.65, + "probability": 0.566 + }, + { + "start": 18964.46, + "end": 18965.96, + "probability": 0.315 + }, + { + "start": 18966.48, + "end": 18968.4, + "probability": 0.7251 + }, + { + "start": 18968.44, + "end": 18969.84, + "probability": 0.8901 + }, + { + "start": 18970.0, + "end": 18970.72, + "probability": 0.7417 + }, + { + "start": 18970.76, + "end": 18971.26, + "probability": 0.9124 + }, + { + "start": 18972.06, + "end": 18973.96, + "probability": 0.625 + }, + { + "start": 18974.08, + "end": 18977.24, + "probability": 0.8391 + }, + { + "start": 18978.22, + "end": 18982.78, + "probability": 0.9697 + }, + { + "start": 18983.5, + "end": 18987.78, + "probability": 0.9857 + }, + { + "start": 18989.38, + "end": 18991.8, + "probability": 0.9443 + }, + { + "start": 18992.78, + "end": 18994.18, + "probability": 0.6917 + }, + { + "start": 18994.96, + "end": 18996.74, + "probability": 0.9871 + }, + { + "start": 18997.28, + "end": 18997.94, + "probability": 0.877 + }, + { + "start": 18999.16, + "end": 18999.94, + "probability": 0.9255 + }, + { + "start": 19000.78, + "end": 19001.42, + "probability": 0.4888 + }, + { + "start": 19001.6, + "end": 19004.86, + "probability": 0.7986 + }, + { + "start": 19005.36, + "end": 19005.5, + "probability": 0.7715 + }, + { + "start": 19005.74, + "end": 19006.18, + "probability": 0.9562 + }, + { + "start": 19006.76, + "end": 19008.8, + "probability": 0.7075 + }, + { + "start": 19009.46, + "end": 19012.7, + "probability": 0.9212 + }, + { + "start": 19013.16, + "end": 19015.16, + "probability": 0.924 + }, + { + "start": 19015.58, + "end": 19017.82, + "probability": 0.9924 + }, + { + "start": 19018.62, + "end": 19021.28, + "probability": 0.9064 + }, + { + "start": 19022.36, + "end": 19023.38, + "probability": 0.7476 + }, + { + "start": 19023.94, + "end": 19028.46, + "probability": 0.9187 + }, + { + "start": 19028.48, + "end": 19033.8, + "probability": 0.9914 + }, + { + "start": 19034.98, + "end": 19035.5, + "probability": 0.7531 + }, + { + "start": 19036.4, + "end": 19037.9, + "probability": 0.9944 + }, + { + "start": 19038.84, + "end": 19040.88, + "probability": 0.7781 + }, + { + "start": 19042.02, + "end": 19043.38, + "probability": 0.9964 + }, + { + "start": 19043.72, + "end": 19045.0, + "probability": 0.9684 + }, + { + "start": 19045.8, + "end": 19048.8, + "probability": 0.6872 + }, + { + "start": 19049.8, + "end": 19052.7, + "probability": 0.8679 + }, + { + "start": 19053.94, + "end": 19057.08, + "probability": 0.673 + }, + { + "start": 19057.64, + "end": 19061.54, + "probability": 0.9988 + }, + { + "start": 19062.46, + "end": 19066.76, + "probability": 0.9958 + }, + { + "start": 19067.4, + "end": 19069.62, + "probability": 0.9996 + }, + { + "start": 19070.82, + "end": 19071.78, + "probability": 0.8516 + }, + { + "start": 19072.94, + "end": 19076.56, + "probability": 0.6673 + }, + { + "start": 19077.84, + "end": 19080.4, + "probability": 0.7874 + }, + { + "start": 19080.9, + "end": 19082.96, + "probability": 0.854 + }, + { + "start": 19084.1, + "end": 19084.86, + "probability": 0.6022 + }, + { + "start": 19085.3, + "end": 19089.9, + "probability": 0.8066 + }, + { + "start": 19089.9, + "end": 19093.88, + "probability": 0.9978 + }, + { + "start": 19094.92, + "end": 19097.44, + "probability": 0.8087 + }, + { + "start": 19098.48, + "end": 19102.38, + "probability": 0.9989 + }, + { + "start": 19102.38, + "end": 19106.36, + "probability": 0.9951 + }, + { + "start": 19107.12, + "end": 19107.38, + "probability": 0.5403 + }, + { + "start": 19109.54, + "end": 19115.26, + "probability": 0.7993 + }, + { + "start": 19115.4, + "end": 19116.18, + "probability": 0.8075 + }, + { + "start": 19118.48, + "end": 19121.32, + "probability": 0.7305 + }, + { + "start": 19122.04, + "end": 19125.0, + "probability": 0.9463 + }, + { + "start": 19125.0, + "end": 19129.1, + "probability": 0.9426 + }, + { + "start": 19130.2, + "end": 19131.36, + "probability": 0.9909 + }, + { + "start": 19132.16, + "end": 19134.44, + "probability": 0.9976 + }, + { + "start": 19134.88, + "end": 19136.3, + "probability": 0.7893 + }, + { + "start": 19136.34, + "end": 19137.22, + "probability": 0.93 + }, + { + "start": 19137.62, + "end": 19139.46, + "probability": 0.9693 + }, + { + "start": 19140.66, + "end": 19141.2, + "probability": 0.6402 + }, + { + "start": 19141.58, + "end": 19145.48, + "probability": 0.9708 + }, + { + "start": 19146.32, + "end": 19147.38, + "probability": 0.8369 + }, + { + "start": 19147.46, + "end": 19151.78, + "probability": 0.9828 + }, + { + "start": 19152.78, + "end": 19157.92, + "probability": 0.999 + }, + { + "start": 19158.16, + "end": 19162.16, + "probability": 0.9445 + }, + { + "start": 19163.6, + "end": 19163.68, + "probability": 0.6685 + }, + { + "start": 19163.78, + "end": 19166.02, + "probability": 0.9484 + }, + { + "start": 19166.52, + "end": 19170.32, + "probability": 0.9729 + }, + { + "start": 19171.5, + "end": 19172.28, + "probability": 0.4942 + }, + { + "start": 19172.84, + "end": 19174.88, + "probability": 0.986 + }, + { + "start": 19175.86, + "end": 19179.64, + "probability": 0.7112 + }, + { + "start": 19180.58, + "end": 19184.58, + "probability": 0.9761 + }, + { + "start": 19185.4, + "end": 19187.4, + "probability": 0.9334 + }, + { + "start": 19187.86, + "end": 19191.46, + "probability": 0.9971 + }, + { + "start": 19191.58, + "end": 19191.78, + "probability": 0.8998 + }, + { + "start": 19192.6, + "end": 19193.02, + "probability": 0.7507 + }, + { + "start": 19193.94, + "end": 19195.06, + "probability": 0.7662 + }, + { + "start": 19195.92, + "end": 19196.42, + "probability": 0.436 + }, + { + "start": 19196.74, + "end": 19200.74, + "probability": 0.709 + }, + { + "start": 19200.78, + "end": 19201.82, + "probability": 0.1805 + }, + { + "start": 19202.38, + "end": 19204.14, + "probability": 0.3451 + }, + { + "start": 19204.26, + "end": 19205.3, + "probability": 0.6317 + }, + { + "start": 19205.54, + "end": 19206.46, + "probability": 0.0141 + }, + { + "start": 19206.56, + "end": 19207.46, + "probability": 0.8071 + }, + { + "start": 19207.96, + "end": 19208.22, + "probability": 0.3571 + }, + { + "start": 19210.1, + "end": 19210.48, + "probability": 0.015 + }, + { + "start": 19211.24, + "end": 19212.82, + "probability": 0.2119 + }, + { + "start": 19213.08, + "end": 19217.62, + "probability": 0.9675 + }, + { + "start": 19218.7, + "end": 19220.14, + "probability": 0.9694 + }, + { + "start": 19220.26, + "end": 19221.72, + "probability": 0.9938 + }, + { + "start": 19222.3, + "end": 19222.56, + "probability": 0.8409 + }, + { + "start": 19222.72, + "end": 19224.32, + "probability": 0.2898 + }, + { + "start": 19224.75, + "end": 19226.7, + "probability": 0.3617 + }, + { + "start": 19227.1, + "end": 19227.36, + "probability": 0.6672 + }, + { + "start": 19227.42, + "end": 19229.74, + "probability": 0.9709 + }, + { + "start": 19230.78, + "end": 19232.06, + "probability": 0.7508 + }, + { + "start": 19232.2, + "end": 19233.2, + "probability": 0.9321 + }, + { + "start": 19233.32, + "end": 19234.04, + "probability": 0.9614 + }, + { + "start": 19234.44, + "end": 19235.96, + "probability": 0.8757 + }, + { + "start": 19238.2, + "end": 19239.12, + "probability": 0.3294 + }, + { + "start": 19239.56, + "end": 19242.28, + "probability": 0.9849 + }, + { + "start": 19242.96, + "end": 19243.72, + "probability": 0.8901 + }, + { + "start": 19244.18, + "end": 19244.18, + "probability": 0.8428 + }, + { + "start": 19245.72, + "end": 19248.3, + "probability": 0.8905 + }, + { + "start": 19248.34, + "end": 19248.48, + "probability": 0.3499 + }, + { + "start": 19248.66, + "end": 19248.84, + "probability": 0.9321 + }, + { + "start": 19248.96, + "end": 19249.2, + "probability": 0.6344 + }, + { + "start": 19249.22, + "end": 19251.29, + "probability": 0.7358 + }, + { + "start": 19252.74, + "end": 19253.92, + "probability": 0.5347 + }, + { + "start": 19254.9, + "end": 19258.1, + "probability": 0.7442 + }, + { + "start": 19258.48, + "end": 19259.74, + "probability": 0.9868 + }, + { + "start": 19259.78, + "end": 19261.72, + "probability": 0.98 + }, + { + "start": 19262.26, + "end": 19262.94, + "probability": 0.8721 + }, + { + "start": 19263.54, + "end": 19264.88, + "probability": 0.9795 + }, + { + "start": 19266.26, + "end": 19268.84, + "probability": 0.6403 + }, + { + "start": 19270.52, + "end": 19275.12, + "probability": 0.9961 + }, + { + "start": 19275.88, + "end": 19276.98, + "probability": 0.933 + }, + { + "start": 19278.12, + "end": 19282.32, + "probability": 0.9775 + }, + { + "start": 19282.9, + "end": 19284.36, + "probability": 0.5772 + }, + { + "start": 19284.76, + "end": 19286.32, + "probability": 0.9491 + }, + { + "start": 19286.36, + "end": 19289.18, + "probability": 0.9604 + }, + { + "start": 19289.7, + "end": 19292.56, + "probability": 0.9607 + }, + { + "start": 19292.72, + "end": 19294.64, + "probability": 0.6885 + }, + { + "start": 19295.24, + "end": 19299.62, + "probability": 0.943 + }, + { + "start": 19300.08, + "end": 19302.24, + "probability": 0.9748 + }, + { + "start": 19302.36, + "end": 19304.76, + "probability": 0.9642 + }, + { + "start": 19304.82, + "end": 19306.36, + "probability": 0.8242 + }, + { + "start": 19306.42, + "end": 19307.22, + "probability": 0.7463 + }, + { + "start": 19307.9, + "end": 19308.24, + "probability": 0.6989 + }, + { + "start": 19309.18, + "end": 19311.34, + "probability": 0.821 + }, + { + "start": 19311.9, + "end": 19312.08, + "probability": 0.8555 + }, + { + "start": 19312.74, + "end": 19313.06, + "probability": 0.7686 + }, + { + "start": 19313.3, + "end": 19313.94, + "probability": 0.8919 + }, + { + "start": 19315.5, + "end": 19316.63, + "probability": 0.7629 + }, + { + "start": 19317.46, + "end": 19318.68, + "probability": 0.9449 + }, + { + "start": 19319.32, + "end": 19320.63, + "probability": 0.541 + }, + { + "start": 19322.34, + "end": 19325.54, + "probability": 0.6169 + }, + { + "start": 19325.56, + "end": 19325.92, + "probability": 0.4085 + }, + { + "start": 19326.64, + "end": 19326.84, + "probability": 0.9204 + }, + { + "start": 19327.88, + "end": 19328.3, + "probability": 0.4854 + }, + { + "start": 19328.5, + "end": 19328.92, + "probability": 0.106 + }, + { + "start": 19329.7, + "end": 19330.14, + "probability": 0.8507 + }, + { + "start": 19330.24, + "end": 19332.15, + "probability": 0.9844 + }, + { + "start": 19332.34, + "end": 19333.14, + "probability": 0.9269 + }, + { + "start": 19334.08, + "end": 19334.14, + "probability": 0.0247 + }, + { + "start": 19334.92, + "end": 19335.74, + "probability": 0.0025 + }, + { + "start": 19335.74, + "end": 19336.58, + "probability": 0.2596 + }, + { + "start": 19336.6, + "end": 19339.96, + "probability": 0.9843 + }, + { + "start": 19340.36, + "end": 19340.7, + "probability": 0.6584 + }, + { + "start": 19340.76, + "end": 19341.86, + "probability": 0.9834 + }, + { + "start": 19341.94, + "end": 19346.9, + "probability": 0.9674 + }, + { + "start": 19347.38, + "end": 19350.34, + "probability": 0.9409 + }, + { + "start": 19350.7, + "end": 19352.42, + "probability": 0.9574 + }, + { + "start": 19352.6, + "end": 19356.78, + "probability": 0.9724 + }, + { + "start": 19356.98, + "end": 19358.5, + "probability": 0.9592 + }, + { + "start": 19358.58, + "end": 19358.58, + "probability": 0.0453 + }, + { + "start": 19358.58, + "end": 19360.7, + "probability": 0.5485 + }, + { + "start": 19361.3, + "end": 19361.52, + "probability": 0.8481 + }, + { + "start": 19361.88, + "end": 19362.06, + "probability": 0.4844 + }, + { + "start": 19362.12, + "end": 19362.48, + "probability": 0.78 + }, + { + "start": 19362.5, + "end": 19363.46, + "probability": 0.6752 + }, + { + "start": 19363.76, + "end": 19373.46, + "probability": 0.3094 + }, + { + "start": 19374.42, + "end": 19376.56, + "probability": 0.5762 + }, + { + "start": 19378.5, + "end": 19381.26, + "probability": 0.6484 + }, + { + "start": 19381.56, + "end": 19381.6, + "probability": 0.4638 + }, + { + "start": 19381.6, + "end": 19383.44, + "probability": 0.7296 + }, + { + "start": 19383.44, + "end": 19383.44, + "probability": 0.0326 + }, + { + "start": 19383.54, + "end": 19383.75, + "probability": 0.7843 + }, + { + "start": 19383.94, + "end": 19384.76, + "probability": 0.8096 + }, + { + "start": 19385.0, + "end": 19385.7, + "probability": 0.6506 + }, + { + "start": 19386.8, + "end": 19388.0, + "probability": 0.3809 + }, + { + "start": 19388.0, + "end": 19388.06, + "probability": 0.3112 + }, + { + "start": 19388.26, + "end": 19389.28, + "probability": 0.7428 + }, + { + "start": 19389.3, + "end": 19389.8, + "probability": 0.5464 + }, + { + "start": 19389.84, + "end": 19393.24, + "probability": 0.783 + }, + { + "start": 19393.36, + "end": 19393.76, + "probability": 0.6619 + }, + { + "start": 19393.86, + "end": 19394.64, + "probability": 0.8008 + }, + { + "start": 19394.72, + "end": 19396.24, + "probability": 0.9074 + }, + { + "start": 19396.44, + "end": 19397.4, + "probability": 0.8103 + }, + { + "start": 19398.12, + "end": 19398.26, + "probability": 0.6343 + }, + { + "start": 19398.89, + "end": 19401.51, + "probability": 0.9395 + }, + { + "start": 19401.72, + "end": 19405.55, + "probability": 0.9033 + }, + { + "start": 19405.84, + "end": 19407.06, + "probability": 0.996 + }, + { + "start": 19407.88, + "end": 19410.3, + "probability": 0.8682 + }, + { + "start": 19410.8, + "end": 19411.96, + "probability": 0.9966 + }, + { + "start": 19412.72, + "end": 19413.52, + "probability": 0.886 + }, + { + "start": 19413.64, + "end": 19414.44, + "probability": 0.9565 + }, + { + "start": 19414.5, + "end": 19418.26, + "probability": 0.8849 + }, + { + "start": 19418.48, + "end": 19420.54, + "probability": 0.9965 + }, + { + "start": 19421.36, + "end": 19425.24, + "probability": 0.9925 + }, + { + "start": 19426.02, + "end": 19428.58, + "probability": 0.832 + }, + { + "start": 19428.92, + "end": 19431.12, + "probability": 0.8867 + }, + { + "start": 19431.26, + "end": 19432.02, + "probability": 0.4745 + }, + { + "start": 19432.34, + "end": 19432.96, + "probability": 0.8973 + }, + { + "start": 19433.1, + "end": 19433.38, + "probability": 0.1809 + }, + { + "start": 19433.54, + "end": 19434.06, + "probability": 0.6555 + }, + { + "start": 19434.42, + "end": 19435.66, + "probability": 0.9277 + }, + { + "start": 19435.72, + "end": 19436.58, + "probability": 0.9365 + }, + { + "start": 19436.64, + "end": 19437.34, + "probability": 0.7694 + }, + { + "start": 19437.4, + "end": 19438.46, + "probability": 0.9431 + }, + { + "start": 19438.54, + "end": 19439.3, + "probability": 0.7716 + }, + { + "start": 19439.7, + "end": 19440.54, + "probability": 0.858 + }, + { + "start": 19440.68, + "end": 19440.8, + "probability": 0.3564 + }, + { + "start": 19440.84, + "end": 19441.92, + "probability": 0.0972 + }, + { + "start": 19441.92, + "end": 19442.97, + "probability": 0.9088 + }, + { + "start": 19444.0, + "end": 19444.62, + "probability": 0.6337 + }, + { + "start": 19444.7, + "end": 19448.02, + "probability": 0.8264 + }, + { + "start": 19448.16, + "end": 19449.3, + "probability": 0.8733 + }, + { + "start": 19450.26, + "end": 19452.04, + "probability": 0.9373 + }, + { + "start": 19452.16, + "end": 19452.58, + "probability": 0.9647 + }, + { + "start": 19453.66, + "end": 19454.6, + "probability": 0.9927 + }, + { + "start": 19455.2, + "end": 19455.32, + "probability": 0.88 + }, + { + "start": 19455.42, + "end": 19458.0, + "probability": 0.9018 + }, + { + "start": 19458.32, + "end": 19459.64, + "probability": 0.8894 + }, + { + "start": 19460.48, + "end": 19460.68, + "probability": 0.1804 + }, + { + "start": 19460.68, + "end": 19460.96, + "probability": 0.6271 + }, + { + "start": 19461.4, + "end": 19463.88, + "probability": 0.3193 + }, + { + "start": 19463.98, + "end": 19464.66, + "probability": 0.7362 + }, + { + "start": 19464.72, + "end": 19465.26, + "probability": 0.4984 + }, + { + "start": 19465.36, + "end": 19466.06, + "probability": 0.7221 + }, + { + "start": 19466.46, + "end": 19468.36, + "probability": 0.679 + }, + { + "start": 19468.36, + "end": 19469.88, + "probability": 0.6912 + }, + { + "start": 19470.04, + "end": 19470.3, + "probability": 0.4692 + }, + { + "start": 19470.48, + "end": 19470.48, + "probability": 0.0208 + }, + { + "start": 19470.48, + "end": 19470.48, + "probability": 0.5979 + }, + { + "start": 19470.48, + "end": 19472.76, + "probability": 0.7264 + }, + { + "start": 19472.78, + "end": 19473.22, + "probability": 0.8335 + }, + { + "start": 19474.0, + "end": 19480.36, + "probability": 0.9816 + }, + { + "start": 19480.86, + "end": 19483.16, + "probability": 0.9922 + }, + { + "start": 19483.44, + "end": 19484.38, + "probability": 0.9738 + }, + { + "start": 19484.72, + "end": 19486.04, + "probability": 0.929 + }, + { + "start": 19486.76, + "end": 19489.46, + "probability": 0.9849 + }, + { + "start": 19489.82, + "end": 19492.36, + "probability": 0.8065 + }, + { + "start": 19492.74, + "end": 19498.08, + "probability": 0.854 + }, + { + "start": 19498.16, + "end": 19500.12, + "probability": 0.9167 + }, + { + "start": 19500.48, + "end": 19502.12, + "probability": 0.9458 + }, + { + "start": 19502.18, + "end": 19503.2, + "probability": 0.9506 + }, + { + "start": 19503.28, + "end": 19504.34, + "probability": 0.9945 + }, + { + "start": 19504.76, + "end": 19505.26, + "probability": 0.7642 + }, + { + "start": 19506.52, + "end": 19511.22, + "probability": 0.0134 + }, + { + "start": 19511.54, + "end": 19514.46, + "probability": 0.0394 + }, + { + "start": 19515.66, + "end": 19516.96, + "probability": 0.0809 + }, + { + "start": 19518.72, + "end": 19519.62, + "probability": 0.0428 + }, + { + "start": 19519.62, + "end": 19520.24, + "probability": 0.5884 + }, + { + "start": 19520.76, + "end": 19522.18, + "probability": 0.0878 + }, + { + "start": 19522.22, + "end": 19525.26, + "probability": 0.0506 + }, + { + "start": 19525.26, + "end": 19525.26, + "probability": 0.1067 + }, + { + "start": 19525.26, + "end": 19525.86, + "probability": 0.2288 + }, + { + "start": 19525.86, + "end": 19527.36, + "probability": 0.0683 + }, + { + "start": 19527.88, + "end": 19529.15, + "probability": 0.6204 + }, + { + "start": 19529.7, + "end": 19532.2, + "probability": 0.1907 + }, + { + "start": 19532.38, + "end": 19534.18, + "probability": 0.5909 + }, + { + "start": 19534.36, + "end": 19534.4, + "probability": 0.0146 + }, + { + "start": 19534.4, + "end": 19534.48, + "probability": 0.0443 + }, + { + "start": 19534.48, + "end": 19534.48, + "probability": 0.1506 + }, + { + "start": 19534.48, + "end": 19535.84, + "probability": 0.2098 + }, + { + "start": 19536.2, + "end": 19539.46, + "probability": 0.6152 + }, + { + "start": 19539.7, + "end": 19540.77, + "probability": 0.5833 + }, + { + "start": 19541.5, + "end": 19541.56, + "probability": 0.2085 + }, + { + "start": 19541.56, + "end": 19542.4, + "probability": 0.2058 + }, + { + "start": 19542.52, + "end": 19543.3, + "probability": 0.2029 + }, + { + "start": 19543.54, + "end": 19544.48, + "probability": 0.4439 + }, + { + "start": 19544.7, + "end": 19547.02, + "probability": 0.5662 + }, + { + "start": 19547.02, + "end": 19547.6, + "probability": 0.6664 + }, + { + "start": 19548.62, + "end": 19549.36, + "probability": 0.4883 + }, + { + "start": 19549.46, + "end": 19549.94, + "probability": 0.7932 + }, + { + "start": 19550.38, + "end": 19551.18, + "probability": 0.2955 + }, + { + "start": 19551.84, + "end": 19554.82, + "probability": 0.9915 + }, + { + "start": 19554.82, + "end": 19556.98, + "probability": 0.7829 + }, + { + "start": 19558.04, + "end": 19560.59, + "probability": 0.768 + }, + { + "start": 19561.88, + "end": 19562.86, + "probability": 0.5962 + }, + { + "start": 19563.22, + "end": 19565.94, + "probability": 0.9614 + }, + { + "start": 19566.84, + "end": 19569.5, + "probability": 0.7889 + }, + { + "start": 19570.3, + "end": 19573.66, + "probability": 0.9894 + }, + { + "start": 19573.7, + "end": 19575.88, + "probability": 0.6009 + }, + { + "start": 19576.26, + "end": 19576.98, + "probability": 0.8314 + }, + { + "start": 19577.32, + "end": 19577.68, + "probability": 0.7736 + }, + { + "start": 19578.26, + "end": 19580.6, + "probability": 0.9916 + }, + { + "start": 19580.74, + "end": 19583.96, + "probability": 0.7643 + }, + { + "start": 19584.54, + "end": 19589.28, + "probability": 0.9701 + }, + { + "start": 19589.8, + "end": 19592.82, + "probability": 0.9988 + }, + { + "start": 19593.78, + "end": 19595.36, + "probability": 0.3145 + }, + { + "start": 19595.9, + "end": 19596.1, + "probability": 0.1418 + }, + { + "start": 19596.1, + "end": 19597.02, + "probability": 0.6099 + }, + { + "start": 19597.38, + "end": 19598.64, + "probability": 0.8284 + }, + { + "start": 19598.68, + "end": 19599.86, + "probability": 0.6204 + }, + { + "start": 19599.86, + "end": 19600.84, + "probability": 0.8828 + }, + { + "start": 19600.92, + "end": 19601.32, + "probability": 0.5947 + }, + { + "start": 19601.6, + "end": 19603.9, + "probability": 0.5267 + }, + { + "start": 19603.98, + "end": 19604.14, + "probability": 0.7041 + }, + { + "start": 19604.18, + "end": 19607.09, + "probability": 0.8112 + }, + { + "start": 19608.12, + "end": 19613.42, + "probability": 0.8209 + }, + { + "start": 19613.9, + "end": 19618.92, + "probability": 0.0939 + }, + { + "start": 19621.2, + "end": 19622.12, + "probability": 0.0194 + }, + { + "start": 19622.88, + "end": 19623.1, + "probability": 0.0212 + }, + { + "start": 19623.1, + "end": 19623.4, + "probability": 0.084 + }, + { + "start": 19623.4, + "end": 19627.72, + "probability": 0.6385 + }, + { + "start": 19628.26, + "end": 19631.58, + "probability": 0.8212 + }, + { + "start": 19632.04, + "end": 19634.3, + "probability": 0.9858 + }, + { + "start": 19634.4, + "end": 19636.24, + "probability": 0.9897 + }, + { + "start": 19636.8, + "end": 19638.72, + "probability": 0.9817 + }, + { + "start": 19639.94, + "end": 19642.54, + "probability": 0.9403 + }, + { + "start": 19642.68, + "end": 19646.98, + "probability": 0.9771 + }, + { + "start": 19646.98, + "end": 19651.48, + "probability": 0.9648 + }, + { + "start": 19652.2, + "end": 19653.14, + "probability": 0.9707 + }, + { + "start": 19653.26, + "end": 19657.13, + "probability": 0.9981 + }, + { + "start": 19657.3, + "end": 19661.34, + "probability": 0.9955 + }, + { + "start": 19661.66, + "end": 19664.36, + "probability": 0.9554 + }, + { + "start": 19664.92, + "end": 19666.5, + "probability": 0.8971 + }, + { + "start": 19666.94, + "end": 19670.44, + "probability": 0.6978 + }, + { + "start": 19670.98, + "end": 19674.44, + "probability": 0.9719 + }, + { + "start": 19674.86, + "end": 19674.96, + "probability": 0.2673 + }, + { + "start": 19674.96, + "end": 19676.46, + "probability": 0.9911 + }, + { + "start": 19677.16, + "end": 19678.46, + "probability": 0.5693 + }, + { + "start": 19678.66, + "end": 19679.46, + "probability": 0.9873 + }, + { + "start": 19680.12, + "end": 19681.06, + "probability": 0.8957 + }, + { + "start": 19681.6, + "end": 19681.7, + "probability": 0.4756 + }, + { + "start": 19681.7, + "end": 19684.18, + "probability": 0.993 + }, + { + "start": 19684.64, + "end": 19689.44, + "probability": 0.9023 + }, + { + "start": 19689.84, + "end": 19691.28, + "probability": 0.7248 + }, + { + "start": 19691.48, + "end": 19692.06, + "probability": 0.9263 + }, + { + "start": 19692.86, + "end": 19695.22, + "probability": 0.9739 + }, + { + "start": 19695.76, + "end": 19700.86, + "probability": 0.9858 + }, + { + "start": 19701.48, + "end": 19702.36, + "probability": 0.9443 + }, + { + "start": 19702.66, + "end": 19705.07, + "probability": 0.9858 + }, + { + "start": 19705.78, + "end": 19714.78, + "probability": 0.9813 + }, + { + "start": 19715.08, + "end": 19717.76, + "probability": 0.9863 + }, + { + "start": 19718.28, + "end": 19722.06, + "probability": 0.8989 + }, + { + "start": 19722.5, + "end": 19727.46, + "probability": 0.9741 + }, + { + "start": 19727.88, + "end": 19729.98, + "probability": 0.9784 + }, + { + "start": 19730.34, + "end": 19732.1, + "probability": 0.9312 + }, + { + "start": 19732.18, + "end": 19732.74, + "probability": 0.4771 + }, + { + "start": 19732.78, + "end": 19733.94, + "probability": 0.7347 + }, + { + "start": 19735.42, + "end": 19739.28, + "probability": 0.9384 + }, + { + "start": 19739.32, + "end": 19740.4, + "probability": 0.3244 + }, + { + "start": 19740.92, + "end": 19741.02, + "probability": 0.0113 + }, + { + "start": 19741.44, + "end": 19741.44, + "probability": 0.241 + }, + { + "start": 19741.44, + "end": 19742.54, + "probability": 0.5713 + }, + { + "start": 19744.06, + "end": 19744.06, + "probability": 0.4736 + }, + { + "start": 19744.2, + "end": 19745.3, + "probability": 0.9756 + }, + { + "start": 19749.06, + "end": 19750.56, + "probability": 0.7986 + }, + { + "start": 19763.46, + "end": 19765.64, + "probability": 0.5628 + }, + { + "start": 19765.8, + "end": 19767.08, + "probability": 0.7048 + }, + { + "start": 19769.14, + "end": 19769.7, + "probability": 0.9747 + }, + { + "start": 19771.22, + "end": 19772.34, + "probability": 0.9803 + }, + { + "start": 19774.28, + "end": 19775.24, + "probability": 0.9612 + }, + { + "start": 19775.9, + "end": 19777.44, + "probability": 0.9907 + }, + { + "start": 19779.26, + "end": 19780.74, + "probability": 0.9326 + }, + { + "start": 19781.78, + "end": 19785.36, + "probability": 0.9941 + }, + { + "start": 19787.98, + "end": 19790.14, + "probability": 0.8216 + }, + { + "start": 19790.76, + "end": 19792.54, + "probability": 0.9792 + }, + { + "start": 19794.14, + "end": 19796.98, + "probability": 0.9555 + }, + { + "start": 19798.62, + "end": 19800.84, + "probability": 0.7674 + }, + { + "start": 19801.72, + "end": 19804.86, + "probability": 0.928 + }, + { + "start": 19805.16, + "end": 19805.58, + "probability": 0.288 + }, + { + "start": 19805.66, + "end": 19805.84, + "probability": 0.3858 + }, + { + "start": 19805.84, + "end": 19810.86, + "probability": 0.7024 + }, + { + "start": 19811.58, + "end": 19811.94, + "probability": 0.4579 + }, + { + "start": 19812.46, + "end": 19812.56, + "probability": 0.1037 + }, + { + "start": 19812.56, + "end": 19812.56, + "probability": 0.296 + }, + { + "start": 19812.56, + "end": 19815.5, + "probability": 0.8612 + }, + { + "start": 19815.5, + "end": 19815.64, + "probability": 0.0139 + }, + { + "start": 19815.74, + "end": 19816.67, + "probability": 0.1346 + }, + { + "start": 19816.78, + "end": 19816.78, + "probability": 0.256 + }, + { + "start": 19816.78, + "end": 19817.94, + "probability": 0.6936 + }, + { + "start": 19818.06, + "end": 19818.74, + "probability": 0.1151 + }, + { + "start": 19818.96, + "end": 19819.1, + "probability": 0.0277 + }, + { + "start": 19819.1, + "end": 19821.72, + "probability": 0.6846 + }, + { + "start": 19821.82, + "end": 19823.36, + "probability": 0.6522 + }, + { + "start": 19823.36, + "end": 19823.9, + "probability": 0.8125 + }, + { + "start": 19824.04, + "end": 19825.7, + "probability": 0.9603 + }, + { + "start": 19825.98, + "end": 19828.44, + "probability": 0.678 + }, + { + "start": 19828.5, + "end": 19829.1, + "probability": 0.8114 + }, + { + "start": 19829.16, + "end": 19829.42, + "probability": 0.5569 + }, + { + "start": 19829.42, + "end": 19830.44, + "probability": 0.6851 + }, + { + "start": 19830.44, + "end": 19831.2, + "probability": 0.5815 + }, + { + "start": 19831.98, + "end": 19833.38, + "probability": 0.3942 + }, + { + "start": 19833.42, + "end": 19835.2, + "probability": 0.7446 + }, + { + "start": 19837.06, + "end": 19837.44, + "probability": 0.1612 + }, + { + "start": 19837.46, + "end": 19837.86, + "probability": 0.3142 + }, + { + "start": 19837.86, + "end": 19838.74, + "probability": 0.447 + }, + { + "start": 19838.76, + "end": 19844.1, + "probability": 0.8423 + }, + { + "start": 19844.1, + "end": 19844.8, + "probability": 0.3398 + }, + { + "start": 19845.1, + "end": 19845.38, + "probability": 0.4551 + }, + { + "start": 19845.52, + "end": 19846.24, + "probability": 0.5975 + }, + { + "start": 19846.4, + "end": 19846.96, + "probability": 0.7951 + }, + { + "start": 19847.1, + "end": 19850.28, + "probability": 0.7114 + }, + { + "start": 19850.64, + "end": 19853.0, + "probability": 0.2342 + }, + { + "start": 19853.08, + "end": 19853.63, + "probability": 0.2059 + }, + { + "start": 19854.18, + "end": 19855.64, + "probability": 0.0816 + }, + { + "start": 19856.34, + "end": 19856.66, + "probability": 0.5123 + }, + { + "start": 19856.66, + "end": 19857.92, + "probability": 0.0234 + }, + { + "start": 19857.92, + "end": 19864.18, + "probability": 0.0225 + }, + { + "start": 19865.36, + "end": 19865.68, + "probability": 0.2784 + }, + { + "start": 19865.68, + "end": 19866.54, + "probability": 0.4168 + }, + { + "start": 19866.54, + "end": 19866.56, + "probability": 0.4741 + }, + { + "start": 19866.56, + "end": 19867.26, + "probability": 0.5786 + }, + { + "start": 19869.49, + "end": 19871.08, + "probability": 0.3925 + }, + { + "start": 19871.1, + "end": 19871.5, + "probability": 0.1909 + }, + { + "start": 19871.6, + "end": 19872.5, + "probability": 0.4936 + }, + { + "start": 19874.74, + "end": 19875.54, + "probability": 0.0722 + }, + { + "start": 19875.54, + "end": 19876.02, + "probability": 0.3085 + }, + { + "start": 19879.0, + "end": 19879.46, + "probability": 0.3384 + }, + { + "start": 19879.98, + "end": 19883.56, + "probability": 0.9583 + }, + { + "start": 19883.66, + "end": 19884.24, + "probability": 0.827 + }, + { + "start": 19884.48, + "end": 19885.63, + "probability": 0.5551 + }, + { + "start": 19886.46, + "end": 19888.96, + "probability": 0.9247 + }, + { + "start": 19889.48, + "end": 19891.32, + "probability": 0.0016 + }, + { + "start": 19891.88, + "end": 19892.62, + "probability": 0.0216 + }, + { + "start": 19892.62, + "end": 19892.84, + "probability": 0.1978 + }, + { + "start": 19893.0, + "end": 19893.24, + "probability": 0.5042 + }, + { + "start": 19893.28, + "end": 19894.68, + "probability": 0.0541 + }, + { + "start": 19894.82, + "end": 19897.46, + "probability": 0.2626 + }, + { + "start": 19898.02, + "end": 19898.92, + "probability": 0.242 + }, + { + "start": 19898.92, + "end": 19900.78, + "probability": 0.759 + }, + { + "start": 19901.02, + "end": 19901.98, + "probability": 0.5742 + }, + { + "start": 19902.3, + "end": 19904.0, + "probability": 0.2777 + }, + { + "start": 19904.12, + "end": 19905.23, + "probability": 0.9663 + }, + { + "start": 19905.38, + "end": 19907.0, + "probability": 0.4358 + }, + { + "start": 19907.46, + "end": 19907.56, + "probability": 0.0429 + }, + { + "start": 19907.56, + "end": 19907.92, + "probability": 0.7883 + }, + { + "start": 19908.12, + "end": 19908.38, + "probability": 0.1617 + }, + { + "start": 19908.44, + "end": 19908.74, + "probability": 0.4648 + }, + { + "start": 19908.86, + "end": 19910.84, + "probability": 0.4256 + }, + { + "start": 19914.48, + "end": 19915.38, + "probability": 0.0466 + }, + { + "start": 19915.38, + "end": 19915.42, + "probability": 0.4092 + }, + { + "start": 19915.42, + "end": 19915.76, + "probability": 0.0631 + }, + { + "start": 19916.46, + "end": 19917.72, + "probability": 0.4247 + }, + { + "start": 19918.02, + "end": 19919.08, + "probability": 0.4712 + }, + { + "start": 19919.38, + "end": 19920.24, + "probability": 0.1834 + }, + { + "start": 19920.68, + "end": 19925.76, + "probability": 0.1875 + }, + { + "start": 19934.4, + "end": 19935.2, + "probability": 0.1559 + }, + { + "start": 19935.56, + "end": 19936.08, + "probability": 0.163 + }, + { + "start": 19936.46, + "end": 19938.22, + "probability": 0.1194 + }, + { + "start": 19939.14, + "end": 19939.14, + "probability": 0.1198 + }, + { + "start": 19939.26, + "end": 19941.44, + "probability": 0.0127 + }, + { + "start": 19942.4, + "end": 19943.3, + "probability": 0.0541 + }, + { + "start": 19944.12, + "end": 19945.06, + "probability": 0.0809 + }, + { + "start": 19945.28, + "end": 19946.06, + "probability": 0.1565 + }, + { + "start": 19946.76, + "end": 19946.84, + "probability": 0.0242 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.0, + "probability": 0.0 + }, + { + "start": 19947.0, + "end": 19947.44, + "probability": 0.3429 + }, + { + "start": 19948.37, + "end": 19952.74, + "probability": 0.6007 + }, + { + "start": 19952.74, + "end": 19953.26, + "probability": 0.6301 + }, + { + "start": 19953.34, + "end": 19955.02, + "probability": 0.403 + }, + { + "start": 19956.73, + "end": 19958.18, + "probability": 0.0021 + }, + { + "start": 19958.96, + "end": 19959.38, + "probability": 0.4883 + }, + { + "start": 19959.38, + "end": 19959.38, + "probability": 0.1908 + }, + { + "start": 19959.38, + "end": 19960.72, + "probability": 0.6978 + }, + { + "start": 19961.12, + "end": 19962.02, + "probability": 0.6321 + }, + { + "start": 19962.68, + "end": 19962.68, + "probability": 0.5181 + }, + { + "start": 19962.8, + "end": 19962.94, + "probability": 0.1967 + }, + { + "start": 19963.96, + "end": 19965.52, + "probability": 0.088 + }, + { + "start": 19966.54, + "end": 19969.14, + "probability": 0.7827 + }, + { + "start": 19969.84, + "end": 19970.78, + "probability": 0.9819 + }, + { + "start": 19971.26, + "end": 19971.98, + "probability": 0.6622 + }, + { + "start": 19972.02, + "end": 19972.8, + "probability": 0.018 + }, + { + "start": 19972.8, + "end": 19973.82, + "probability": 0.8284 + }, + { + "start": 19974.54, + "end": 19977.26, + "probability": 0.9321 + }, + { + "start": 19978.7, + "end": 19978.8, + "probability": 0.4685 + }, + { + "start": 19980.06, + "end": 19982.78, + "probability": 0.9891 + }, + { + "start": 19983.24, + "end": 19984.41, + "probability": 0.968 + }, + { + "start": 19985.44, + "end": 19990.36, + "probability": 0.9486 + }, + { + "start": 19990.84, + "end": 19992.54, + "probability": 0.0793 + }, + { + "start": 19992.86, + "end": 19993.7, + "probability": 0.8038 + }, + { + "start": 19993.74, + "end": 19994.56, + "probability": 0.7115 + }, + { + "start": 19994.96, + "end": 19997.71, + "probability": 0.6362 + }, + { + "start": 19999.06, + "end": 19999.72, + "probability": 0.989 + }, + { + "start": 20000.84, + "end": 20004.7, + "probability": 0.9661 + }, + { + "start": 20005.6, + "end": 20007.2, + "probability": 0.607 + }, + { + "start": 20008.0, + "end": 20008.32, + "probability": 0.5032 + }, + { + "start": 20008.88, + "end": 20010.32, + "probability": 0.9559 + }, + { + "start": 20011.86, + "end": 20013.3, + "probability": 0.7799 + }, + { + "start": 20014.18, + "end": 20015.36, + "probability": 0.9976 + }, + { + "start": 20016.34, + "end": 20017.32, + "probability": 0.9912 + }, + { + "start": 20017.94, + "end": 20020.88, + "probability": 0.9738 + }, + { + "start": 20021.8, + "end": 20024.32, + "probability": 0.5258 + }, + { + "start": 20024.38, + "end": 20027.18, + "probability": 0.8853 + }, + { + "start": 20027.74, + "end": 20029.6, + "probability": 0.9113 + }, + { + "start": 20029.7, + "end": 20030.6, + "probability": 0.7059 + }, + { + "start": 20030.68, + "end": 20031.33, + "probability": 0.8003 + }, + { + "start": 20032.56, + "end": 20033.4, + "probability": 0.9882 + }, + { + "start": 20034.02, + "end": 20034.9, + "probability": 0.972 + }, + { + "start": 20035.32, + "end": 20038.68, + "probability": 0.9968 + }, + { + "start": 20039.7, + "end": 20044.34, + "probability": 0.9928 + }, + { + "start": 20044.92, + "end": 20047.96, + "probability": 0.9752 + }, + { + "start": 20048.58, + "end": 20051.02, + "probability": 0.9253 + }, + { + "start": 20051.04, + "end": 20053.14, + "probability": 0.8698 + }, + { + "start": 20053.16, + "end": 20056.14, + "probability": 0.9993 + }, + { + "start": 20056.56, + "end": 20059.32, + "probability": 0.999 + }, + { + "start": 20060.24, + "end": 20062.02, + "probability": 0.9961 + }, + { + "start": 20062.86, + "end": 20064.98, + "probability": 0.9932 + }, + { + "start": 20065.08, + "end": 20065.32, + "probability": 0.0188 + }, + { + "start": 20065.36, + "end": 20066.2, + "probability": 0.5932 + }, + { + "start": 20066.2, + "end": 20066.78, + "probability": 0.3342 + }, + { + "start": 20066.78, + "end": 20067.78, + "probability": 0.412 + }, + { + "start": 20067.98, + "end": 20068.8, + "probability": 0.7231 + }, + { + "start": 20069.18, + "end": 20069.18, + "probability": 0.7377 + }, + { + "start": 20069.58, + "end": 20070.82, + "probability": 0.9892 + }, + { + "start": 20072.16, + "end": 20072.74, + "probability": 0.4119 + }, + { + "start": 20073.84, + "end": 20075.18, + "probability": 0.8267 + }, + { + "start": 20089.52, + "end": 20095.1, + "probability": 0.6226 + }, + { + "start": 20095.26, + "end": 20095.42, + "probability": 0.308 + }, + { + "start": 20095.42, + "end": 20096.42, + "probability": 0.8802 + }, + { + "start": 20097.14, + "end": 20097.6, + "probability": 0.4588 + }, + { + "start": 20099.54, + "end": 20100.62, + "probability": 0.6329 + }, + { + "start": 20100.64, + "end": 20104.16, + "probability": 0.7559 + }, + { + "start": 20105.54, + "end": 20109.36, + "probability": 0.9945 + }, + { + "start": 20110.2, + "end": 20112.2, + "probability": 0.9798 + }, + { + "start": 20112.36, + "end": 20112.98, + "probability": 0.5785 + }, + { + "start": 20113.58, + "end": 20113.68, + "probability": 0.8102 + }, + { + "start": 20114.9, + "end": 20116.52, + "probability": 0.9238 + }, + { + "start": 20117.06, + "end": 20118.7, + "probability": 0.9832 + }, + { + "start": 20119.88, + "end": 20120.5, + "probability": 0.9064 + }, + { + "start": 20120.64, + "end": 20123.18, + "probability": 0.9351 + }, + { + "start": 20123.78, + "end": 20125.9, + "probability": 0.9766 + }, + { + "start": 20126.76, + "end": 20128.24, + "probability": 0.654 + }, + { + "start": 20129.42, + "end": 20130.52, + "probability": 0.9578 + }, + { + "start": 20130.62, + "end": 20132.62, + "probability": 0.8727 + }, + { + "start": 20132.74, + "end": 20134.3, + "probability": 0.9907 + }, + { + "start": 20135.16, + "end": 20136.69, + "probability": 0.9937 + }, + { + "start": 20137.62, + "end": 20139.14, + "probability": 0.7641 + }, + { + "start": 20139.88, + "end": 20140.82, + "probability": 0.9979 + }, + { + "start": 20141.5, + "end": 20143.2, + "probability": 0.87 + }, + { + "start": 20144.06, + "end": 20145.58, + "probability": 0.9914 + }, + { + "start": 20146.08, + "end": 20149.6, + "probability": 0.9605 + }, + { + "start": 20150.46, + "end": 20150.46, + "probability": 0.1319 + }, + { + "start": 20150.54, + "end": 20151.54, + "probability": 0.7142 + }, + { + "start": 20152.28, + "end": 20152.28, + "probability": 0.1581 + }, + { + "start": 20152.28, + "end": 20155.26, + "probability": 0.9705 + }, + { + "start": 20155.32, + "end": 20156.54, + "probability": 0.9501 + }, + { + "start": 20156.86, + "end": 20157.26, + "probability": 0.1517 + }, + { + "start": 20157.76, + "end": 20160.12, + "probability": 0.6103 + }, + { + "start": 20161.74, + "end": 20163.4, + "probability": 0.9817 + }, + { + "start": 20163.6, + "end": 20163.86, + "probability": 0.6621 + }, + { + "start": 20163.88, + "end": 20164.64, + "probability": 0.6063 + }, + { + "start": 20164.92, + "end": 20167.14, + "probability": 0.8495 + }, + { + "start": 20167.22, + "end": 20168.28, + "probability": 0.9676 + }, + { + "start": 20169.36, + "end": 20172.0, + "probability": 0.9925 + }, + { + "start": 20172.3, + "end": 20172.82, + "probability": 0.8361 + }, + { + "start": 20172.94, + "end": 20173.22, + "probability": 0.8438 + }, + { + "start": 20174.32, + "end": 20174.62, + "probability": 0.923 + }, + { + "start": 20175.5, + "end": 20178.14, + "probability": 0.9937 + }, + { + "start": 20178.14, + "end": 20181.46, + "probability": 0.8733 + }, + { + "start": 20182.62, + "end": 20185.66, + "probability": 0.9208 + }, + { + "start": 20186.98, + "end": 20189.06, + "probability": 0.7505 + }, + { + "start": 20189.16, + "end": 20190.48, + "probability": 0.9189 + }, + { + "start": 20191.36, + "end": 20195.82, + "probability": 0.981 + }, + { + "start": 20196.34, + "end": 20198.24, + "probability": 0.9714 + }, + { + "start": 20199.64, + "end": 20202.66, + "probability": 0.9436 + }, + { + "start": 20203.38, + "end": 20206.82, + "probability": 0.8279 + }, + { + "start": 20207.36, + "end": 20208.6, + "probability": 0.8376 + }, + { + "start": 20210.32, + "end": 20214.04, + "probability": 0.9951 + }, + { + "start": 20214.26, + "end": 20214.74, + "probability": 0.451 + }, + { + "start": 20215.48, + "end": 20216.56, + "probability": 0.9838 + }, + { + "start": 20217.76, + "end": 20219.96, + "probability": 0.7871 + }, + { + "start": 20220.12, + "end": 20220.84, + "probability": 0.699 + }, + { + "start": 20220.98, + "end": 20222.34, + "probability": 0.967 + }, + { + "start": 20223.36, + "end": 20228.96, + "probability": 0.9952 + }, + { + "start": 20229.66, + "end": 20230.3, + "probability": 0.6289 + }, + { + "start": 20230.76, + "end": 20231.36, + "probability": 0.9614 + }, + { + "start": 20232.22, + "end": 20233.62, + "probability": 0.4837 + }, + { + "start": 20235.54, + "end": 20236.1, + "probability": 0.9262 + }, + { + "start": 20236.58, + "end": 20237.3, + "probability": 0.8215 + }, + { + "start": 20237.86, + "end": 20240.14, + "probability": 0.9609 + }, + { + "start": 20240.96, + "end": 20244.1, + "probability": 0.9924 + }, + { + "start": 20244.88, + "end": 20249.78, + "probability": 0.9956 + }, + { + "start": 20251.64, + "end": 20253.28, + "probability": 0.9299 + }, + { + "start": 20254.14, + "end": 20255.44, + "probability": 0.8321 + }, + { + "start": 20256.04, + "end": 20259.44, + "probability": 0.912 + }, + { + "start": 20260.14, + "end": 20265.06, + "probability": 0.9765 + }, + { + "start": 20265.48, + "end": 20265.72, + "probability": 0.8898 + }, + { + "start": 20266.08, + "end": 20266.5, + "probability": 0.8037 + }, + { + "start": 20267.56, + "end": 20268.82, + "probability": 0.1262 + }, + { + "start": 20269.0, + "end": 20272.9, + "probability": 0.7302 + }, + { + "start": 20273.2, + "end": 20273.52, + "probability": 0.5509 + }, + { + "start": 20274.14, + "end": 20280.42, + "probability": 0.9487 + }, + { + "start": 20281.3, + "end": 20286.86, + "probability": 0.0204 + }, + { + "start": 20286.86, + "end": 20290.68, + "probability": 0.2416 + }, + { + "start": 20300.72, + "end": 20302.07, + "probability": 0.3624 + }, + { + "start": 20302.6, + "end": 20304.48, + "probability": 0.1736 + }, + { + "start": 20305.04, + "end": 20308.64, + "probability": 0.0485 + }, + { + "start": 20308.64, + "end": 20309.66, + "probability": 0.247 + }, + { + "start": 20309.66, + "end": 20310.98, + "probability": 0.0223 + }, + { + "start": 20317.24, + "end": 20318.86, + "probability": 0.4708 + }, + { + "start": 20318.98, + "end": 20320.26, + "probability": 0.022 + }, + { + "start": 20320.26, + "end": 20321.08, + "probability": 0.1798 + }, + { + "start": 20321.08, + "end": 20321.38, + "probability": 0.1494 + }, + { + "start": 20321.38, + "end": 20321.38, + "probability": 0.335 + }, + { + "start": 20321.38, + "end": 20321.38, + "probability": 0.4662 + }, + { + "start": 20321.38, + "end": 20321.73, + "probability": 0.0661 + }, + { + "start": 20322.96, + "end": 20324.0, + "probability": 0.05 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20376.0, + "end": 20376.0, + "probability": 0.0 + }, + { + "start": 20377.86, + "end": 20378.66, + "probability": 0.2463 + }, + { + "start": 20379.1, + "end": 20380.98, + "probability": 0.4603 + }, + { + "start": 20381.06, + "end": 20381.86, + "probability": 0.8745 + }, + { + "start": 20382.18, + "end": 20383.18, + "probability": 0.1234 + }, + { + "start": 20384.38, + "end": 20385.06, + "probability": 0.8052 + }, + { + "start": 20385.06, + "end": 20385.55, + "probability": 0.4366 + }, + { + "start": 20385.74, + "end": 20387.04, + "probability": 0.5706 + }, + { + "start": 20387.04, + "end": 20387.88, + "probability": 0.612 + }, + { + "start": 20388.14, + "end": 20389.36, + "probability": 0.4216 + }, + { + "start": 20389.52, + "end": 20391.42, + "probability": 0.4369 + }, + { + "start": 20391.54, + "end": 20392.52, + "probability": 0.7148 + }, + { + "start": 20392.6, + "end": 20396.16, + "probability": 0.8777 + }, + { + "start": 20397.51, + "end": 20401.74, + "probability": 0.6547 + }, + { + "start": 20403.2, + "end": 20404.36, + "probability": 0.6696 + }, + { + "start": 20405.72, + "end": 20406.39, + "probability": 0.5831 + }, + { + "start": 20406.8, + "end": 20409.4, + "probability": 0.7624 + }, + { + "start": 20409.54, + "end": 20410.16, + "probability": 0.6186 + }, + { + "start": 20410.24, + "end": 20415.2, + "probability": 0.8457 + }, + { + "start": 20415.98, + "end": 20419.24, + "probability": 0.7554 + }, + { + "start": 20420.02, + "end": 20421.76, + "probability": 0.1976 + }, + { + "start": 20421.76, + "end": 20422.28, + "probability": 0.6003 + }, + { + "start": 20422.98, + "end": 20426.38, + "probability": 0.967 + }, + { + "start": 20430.34, + "end": 20433.54, + "probability": 0.9768 + }, + { + "start": 20433.62, + "end": 20438.02, + "probability": 0.9785 + }, + { + "start": 20438.9, + "end": 20442.07, + "probability": 0.9629 + }, + { + "start": 20443.18, + "end": 20445.72, + "probability": 0.9614 + }, + { + "start": 20446.02, + "end": 20447.38, + "probability": 0.9712 + }, + { + "start": 20447.84, + "end": 20448.44, + "probability": 0.8188 + }, + { + "start": 20449.04, + "end": 20451.2, + "probability": 0.9506 + }, + { + "start": 20452.3, + "end": 20455.4, + "probability": 0.9984 + }, + { + "start": 20455.92, + "end": 20457.96, + "probability": 0.9983 + }, + { + "start": 20458.5, + "end": 20460.92, + "probability": 0.9767 + }, + { + "start": 20461.76, + "end": 20463.38, + "probability": 0.9561 + }, + { + "start": 20464.08, + "end": 20465.84, + "probability": 0.9918 + }, + { + "start": 20466.48, + "end": 20467.98, + "probability": 0.9412 + }, + { + "start": 20468.96, + "end": 20471.26, + "probability": 0.9766 + }, + { + "start": 20471.78, + "end": 20473.46, + "probability": 0.9921 + }, + { + "start": 20474.44, + "end": 20475.58, + "probability": 0.9644 + }, + { + "start": 20476.22, + "end": 20477.26, + "probability": 0.8516 + }, + { + "start": 20478.0, + "end": 20479.64, + "probability": 0.9648 + }, + { + "start": 20481.08, + "end": 20484.9, + "probability": 0.9895 + }, + { + "start": 20485.54, + "end": 20488.88, + "probability": 0.9814 + }, + { + "start": 20489.74, + "end": 20491.32, + "probability": 0.8275 + }, + { + "start": 20491.86, + "end": 20492.66, + "probability": 0.7672 + }, + { + "start": 20493.24, + "end": 20498.04, + "probability": 0.9956 + }, + { + "start": 20498.16, + "end": 20498.68, + "probability": 0.7511 + }, + { + "start": 20499.48, + "end": 20500.76, + "probability": 0.9901 + }, + { + "start": 20501.46, + "end": 20504.66, + "probability": 0.8745 + }, + { + "start": 20505.34, + "end": 20508.96, + "probability": 0.9927 + }, + { + "start": 20509.78, + "end": 20513.4, + "probability": 0.9915 + }, + { + "start": 20514.04, + "end": 20516.14, + "probability": 0.7915 + }, + { + "start": 20516.26, + "end": 20517.14, + "probability": 0.8341 + }, + { + "start": 20517.66, + "end": 20518.86, + "probability": 0.7483 + }, + { + "start": 20519.38, + "end": 20524.86, + "probability": 0.9291 + }, + { + "start": 20525.62, + "end": 20528.68, + "probability": 0.9975 + }, + { + "start": 20529.2, + "end": 20530.52, + "probability": 0.9677 + }, + { + "start": 20531.86, + "end": 20533.64, + "probability": 0.8043 + }, + { + "start": 20534.58, + "end": 20534.96, + "probability": 0.6825 + }, + { + "start": 20535.52, + "end": 20536.0, + "probability": 0.9589 + }, + { + "start": 20536.74, + "end": 20538.02, + "probability": 0.9868 + }, + { + "start": 20538.06, + "end": 20538.92, + "probability": 0.9904 + }, + { + "start": 20539.34, + "end": 20540.4, + "probability": 0.9901 + }, + { + "start": 20540.82, + "end": 20541.56, + "probability": 0.6142 + }, + { + "start": 20541.8, + "end": 20544.14, + "probability": 0.8474 + }, + { + "start": 20544.16, + "end": 20547.68, + "probability": 0.9654 + }, + { + "start": 20548.46, + "end": 20548.8, + "probability": 0.6456 + }, + { + "start": 20549.42, + "end": 20550.68, + "probability": 0.9868 + }, + { + "start": 20551.72, + "end": 20554.38, + "probability": 0.8861 + }, + { + "start": 20555.54, + "end": 20556.7, + "probability": 0.5704 + }, + { + "start": 20557.74, + "end": 20558.28, + "probability": 0.6208 + }, + { + "start": 20558.34, + "end": 20561.0, + "probability": 0.7212 + }, + { + "start": 20561.34, + "end": 20567.34, + "probability": 0.9823 + }, + { + "start": 20568.06, + "end": 20575.48, + "probability": 0.9991 + }, + { + "start": 20575.52, + "end": 20579.62, + "probability": 0.5391 + }, + { + "start": 20579.74, + "end": 20580.02, + "probability": 0.0093 + }, + { + "start": 20581.1, + "end": 20581.4, + "probability": 0.0648 + }, + { + "start": 20581.4, + "end": 20581.4, + "probability": 0.0551 + }, + { + "start": 20581.4, + "end": 20581.4, + "probability": 0.1205 + }, + { + "start": 20581.4, + "end": 20581.42, + "probability": 0.1785 + }, + { + "start": 20581.64, + "end": 20582.55, + "probability": 0.9432 + }, + { + "start": 20582.78, + "end": 20583.19, + "probability": 0.9162 + }, + { + "start": 20583.78, + "end": 20584.7, + "probability": 0.5425 + }, + { + "start": 20585.06, + "end": 20586.06, + "probability": 0.8376 + }, + { + "start": 20586.76, + "end": 20590.56, + "probability": 0.9539 + }, + { + "start": 20590.56, + "end": 20593.62, + "probability": 0.6838 + }, + { + "start": 20593.62, + "end": 20598.12, + "probability": 0.9822 + }, + { + "start": 20598.18, + "end": 20598.92, + "probability": 0.8378 + }, + { + "start": 20599.32, + "end": 20600.5, + "probability": 0.9457 + }, + { + "start": 20601.1, + "end": 20602.9, + "probability": 0.977 + }, + { + "start": 20604.52, + "end": 20606.9, + "probability": 0.9881 + }, + { + "start": 20607.42, + "end": 20609.61, + "probability": 0.6661 + }, + { + "start": 20610.54, + "end": 20612.68, + "probability": 0.5381 + }, + { + "start": 20612.8, + "end": 20612.8, + "probability": 0.4426 + }, + { + "start": 20613.06, + "end": 20613.96, + "probability": 0.5234 + }, + { + "start": 20614.06, + "end": 20614.5, + "probability": 0.8273 + }, + { + "start": 20615.34, + "end": 20617.5, + "probability": 0.9465 + }, + { + "start": 20617.56, + "end": 20621.0, + "probability": 0.9842 + }, + { + "start": 20621.04, + "end": 20622.0, + "probability": 0.4416 + }, + { + "start": 20622.04, + "end": 20626.89, + "probability": 0.8534 + }, + { + "start": 20627.26, + "end": 20627.7, + "probability": 0.9241 + }, + { + "start": 20628.22, + "end": 20629.78, + "probability": 0.7911 + }, + { + "start": 20630.3, + "end": 20633.3, + "probability": 0.9857 + }, + { + "start": 20633.68, + "end": 20633.94, + "probability": 0.955 + }, + { + "start": 20634.84, + "end": 20635.32, + "probability": 0.7448 + }, + { + "start": 20637.48, + "end": 20638.78, + "probability": 0.7844 + }, + { + "start": 20654.16, + "end": 20655.12, + "probability": 0.5353 + }, + { + "start": 20656.84, + "end": 20666.06, + "probability": 0.9575 + }, + { + "start": 20667.4, + "end": 20668.96, + "probability": 0.9084 + }, + { + "start": 20669.36, + "end": 20673.6, + "probability": 0.99 + }, + { + "start": 20674.42, + "end": 20675.14, + "probability": 0.9673 + }, + { + "start": 20675.34, + "end": 20678.2, + "probability": 0.9989 + }, + { + "start": 20679.32, + "end": 20680.56, + "probability": 0.9583 + }, + { + "start": 20681.56, + "end": 20684.48, + "probability": 0.9728 + }, + { + "start": 20685.12, + "end": 20686.36, + "probability": 0.8868 + }, + { + "start": 20687.06, + "end": 20687.64, + "probability": 0.9763 + }, + { + "start": 20688.46, + "end": 20690.62, + "probability": 0.971 + }, + { + "start": 20691.2, + "end": 20692.52, + "probability": 0.7493 + }, + { + "start": 20692.6, + "end": 20693.34, + "probability": 0.577 + }, + { + "start": 20693.9, + "end": 20695.56, + "probability": 0.9418 + }, + { + "start": 20696.52, + "end": 20698.2, + "probability": 0.9019 + }, + { + "start": 20699.12, + "end": 20702.78, + "probability": 0.9791 + }, + { + "start": 20703.76, + "end": 20707.6, + "probability": 0.9621 + }, + { + "start": 20707.78, + "end": 20709.14, + "probability": 0.9163 + }, + { + "start": 20709.62, + "end": 20710.0, + "probability": 0.7445 + }, + { + "start": 20710.12, + "end": 20710.94, + "probability": 0.7679 + }, + { + "start": 20711.3, + "end": 20712.58, + "probability": 0.9011 + }, + { + "start": 20713.14, + "end": 20715.2, + "probability": 0.9771 + }, + { + "start": 20716.52, + "end": 20717.96, + "probability": 0.6025 + }, + { + "start": 20718.66, + "end": 20719.61, + "probability": 0.7268 + }, + { + "start": 20719.94, + "end": 20722.96, + "probability": 0.9976 + }, + { + "start": 20723.48, + "end": 20724.82, + "probability": 0.984 + }, + { + "start": 20725.78, + "end": 20726.04, + "probability": 0.7162 + }, + { + "start": 20726.12, + "end": 20735.16, + "probability": 0.9711 + }, + { + "start": 20735.36, + "end": 20736.2, + "probability": 0.6709 + }, + { + "start": 20736.3, + "end": 20736.48, + "probability": 0.8577 + }, + { + "start": 20737.3, + "end": 20739.74, + "probability": 0.9839 + }, + { + "start": 20740.24, + "end": 20743.84, + "probability": 0.9969 + }, + { + "start": 20744.96, + "end": 20745.43, + "probability": 0.8159 + }, + { + "start": 20746.36, + "end": 20747.46, + "probability": 0.979 + }, + { + "start": 20748.64, + "end": 20749.58, + "probability": 0.9929 + }, + { + "start": 20750.3, + "end": 20755.16, + "probability": 0.9946 + }, + { + "start": 20755.66, + "end": 20760.88, + "probability": 0.9268 + }, + { + "start": 20761.38, + "end": 20764.68, + "probability": 0.9852 + }, + { + "start": 20765.38, + "end": 20771.0, + "probability": 0.9868 + }, + { + "start": 20771.88, + "end": 20773.52, + "probability": 0.879 + }, + { + "start": 20773.72, + "end": 20775.0, + "probability": 0.9928 + }, + { + "start": 20775.42, + "end": 20776.32, + "probability": 0.8442 + }, + { + "start": 20777.08, + "end": 20778.5, + "probability": 0.9784 + }, + { + "start": 20778.86, + "end": 20779.7, + "probability": 0.8608 + }, + { + "start": 20780.2, + "end": 20784.62, + "probability": 0.9733 + }, + { + "start": 20785.06, + "end": 20787.12, + "probability": 0.9721 + }, + { + "start": 20787.78, + "end": 20790.12, + "probability": 0.9906 + }, + { + "start": 20790.64, + "end": 20791.27, + "probability": 0.9912 + }, + { + "start": 20794.44, + "end": 20796.4, + "probability": 0.981 + }, + { + "start": 20797.04, + "end": 20801.86, + "probability": 0.9111 + }, + { + "start": 20802.26, + "end": 20803.06, + "probability": 0.8948 + }, + { + "start": 20803.34, + "end": 20805.12, + "probability": 0.9733 + }, + { + "start": 20805.78, + "end": 20809.56, + "probability": 0.9835 + }, + { + "start": 20810.68, + "end": 20813.82, + "probability": 0.9845 + }, + { + "start": 20814.1, + "end": 20815.46, + "probability": 0.9995 + }, + { + "start": 20815.98, + "end": 20822.66, + "probability": 0.9917 + }, + { + "start": 20823.0, + "end": 20824.5, + "probability": 0.974 + }, + { + "start": 20825.1, + "end": 20825.86, + "probability": 0.9518 + }, + { + "start": 20826.2, + "end": 20826.92, + "probability": 0.8495 + }, + { + "start": 20827.22, + "end": 20831.08, + "probability": 0.9924 + }, + { + "start": 20831.12, + "end": 20837.14, + "probability": 0.9984 + }, + { + "start": 20837.52, + "end": 20838.14, + "probability": 0.9886 + }, + { + "start": 20838.66, + "end": 20838.92, + "probability": 0.6263 + }, + { + "start": 20839.28, + "end": 20839.42, + "probability": 0.641 + }, + { + "start": 20840.28, + "end": 20841.88, + "probability": 0.8186 + }, + { + "start": 20846.76, + "end": 20847.34, + "probability": 0.1664 + }, + { + "start": 20860.6, + "end": 20862.92, + "probability": 0.7172 + }, + { + "start": 20865.8, + "end": 20870.82, + "probability": 0.9849 + }, + { + "start": 20871.64, + "end": 20873.46, + "probability": 0.9995 + }, + { + "start": 20874.34, + "end": 20875.16, + "probability": 0.7305 + }, + { + "start": 20875.76, + "end": 20877.9, + "probability": 0.9955 + }, + { + "start": 20879.36, + "end": 20883.56, + "probability": 0.99 + }, + { + "start": 20884.32, + "end": 20888.86, + "probability": 0.9633 + }, + { + "start": 20889.84, + "end": 20892.78, + "probability": 0.9822 + }, + { + "start": 20893.38, + "end": 20895.36, + "probability": 0.9195 + }, + { + "start": 20895.94, + "end": 20900.08, + "probability": 0.9723 + }, + { + "start": 20901.54, + "end": 20905.0, + "probability": 0.9987 + }, + { + "start": 20905.06, + "end": 20907.36, + "probability": 0.7783 + }, + { + "start": 20907.48, + "end": 20910.28, + "probability": 0.7774 + }, + { + "start": 20911.0, + "end": 20913.2, + "probability": 0.796 + }, + { + "start": 20913.92, + "end": 20917.64, + "probability": 0.9889 + }, + { + "start": 20917.68, + "end": 20920.86, + "probability": 0.9959 + }, + { + "start": 20921.56, + "end": 20922.22, + "probability": 0.6722 + }, + { + "start": 20922.56, + "end": 20924.66, + "probability": 0.7972 + }, + { + "start": 20924.78, + "end": 20925.9, + "probability": 0.8798 + }, + { + "start": 20926.44, + "end": 20928.48, + "probability": 0.8078 + }, + { + "start": 20929.04, + "end": 20930.22, + "probability": 0.9832 + }, + { + "start": 20930.8, + "end": 20931.74, + "probability": 0.5029 + }, + { + "start": 20932.33, + "end": 20932.92, + "probability": 0.9076 + }, + { + "start": 20934.64, + "end": 20938.9, + "probability": 0.9913 + }, + { + "start": 20940.76, + "end": 20941.72, + "probability": 0.9883 + }, + { + "start": 20942.3, + "end": 20944.44, + "probability": 0.9121 + }, + { + "start": 20945.64, + "end": 20946.16, + "probability": 0.8631 + }, + { + "start": 20946.8, + "end": 20951.64, + "probability": 0.9714 + }, + { + "start": 20952.18, + "end": 20953.08, + "probability": 0.9365 + }, + { + "start": 20953.76, + "end": 20954.92, + "probability": 0.6992 + }, + { + "start": 20955.08, + "end": 20956.3, + "probability": 0.998 + }, + { + "start": 20957.66, + "end": 20958.48, + "probability": 0.9102 + }, + { + "start": 20959.02, + "end": 20960.76, + "probability": 0.9883 + }, + { + "start": 20961.56, + "end": 20965.18, + "probability": 0.9971 + }, + { + "start": 20965.18, + "end": 20967.78, + "probability": 0.9989 + }, + { + "start": 20968.52, + "end": 20969.0, + "probability": 0.6016 + }, + { + "start": 20969.74, + "end": 20970.8, + "probability": 0.6377 + }, + { + "start": 20971.34, + "end": 20974.72, + "probability": 0.8265 + }, + { + "start": 20975.26, + "end": 20978.32, + "probability": 0.9692 + }, + { + "start": 20978.96, + "end": 20981.84, + "probability": 0.9775 + }, + { + "start": 20982.58, + "end": 20985.9, + "probability": 0.7455 + }, + { + "start": 20986.22, + "end": 20988.34, + "probability": 0.8336 + }, + { + "start": 20988.52, + "end": 20988.78, + "probability": 0.7794 + }, + { + "start": 20988.98, + "end": 20991.2, + "probability": 0.9076 + }, + { + "start": 20991.54, + "end": 20994.4, + "probability": 0.964 + }, + { + "start": 20995.56, + "end": 20999.2, + "probability": 0.9937 + }, + { + "start": 20999.58, + "end": 21001.74, + "probability": 0.7999 + }, + { + "start": 21001.86, + "end": 21003.66, + "probability": 0.9844 + }, + { + "start": 21004.5, + "end": 21008.56, + "probability": 0.8123 + }, + { + "start": 21010.12, + "end": 21012.76, + "probability": 0.9165 + }, + { + "start": 21013.28, + "end": 21014.94, + "probability": 0.9616 + }, + { + "start": 21015.04, + "end": 21015.98, + "probability": 0.7521 + }, + { + "start": 21016.38, + "end": 21018.32, + "probability": 0.9817 + }, + { + "start": 21018.7, + "end": 21019.18, + "probability": 0.7821 + }, + { + "start": 21019.32, + "end": 21022.12, + "probability": 0.986 + }, + { + "start": 21022.12, + "end": 21023.42, + "probability": 0.9751 + }, + { + "start": 21024.96, + "end": 21025.4, + "probability": 0.8466 + }, + { + "start": 21026.52, + "end": 21029.12, + "probability": 0.6732 + }, + { + "start": 21029.12, + "end": 21031.62, + "probability": 0.9662 + }, + { + "start": 21032.54, + "end": 21035.62, + "probability": 0.9789 + }, + { + "start": 21036.02, + "end": 21039.8, + "probability": 0.9805 + }, + { + "start": 21040.32, + "end": 21044.74, + "probability": 0.9974 + }, + { + "start": 21045.1, + "end": 21046.48, + "probability": 0.7548 + }, + { + "start": 21047.0, + "end": 21050.06, + "probability": 0.5766 + }, + { + "start": 21050.32, + "end": 21050.7, + "probability": 0.719 + }, + { + "start": 21051.85, + "end": 21053.82, + "probability": 0.8766 + }, + { + "start": 21054.4, + "end": 21056.02, + "probability": 0.7756 + }, + { + "start": 21056.38, + "end": 21057.5, + "probability": 0.9888 + }, + { + "start": 21058.42, + "end": 21058.54, + "probability": 0.256 + }, + { + "start": 21058.54, + "end": 21058.64, + "probability": 0.7682 + }, + { + "start": 21061.06, + "end": 21066.04, + "probability": 0.8458 + }, + { + "start": 21066.08, + "end": 21066.46, + "probability": 0.9317 + }, + { + "start": 21066.56, + "end": 21066.88, + "probability": 0.9507 + }, + { + "start": 21067.5, + "end": 21068.84, + "probability": 0.7508 + }, + { + "start": 21069.62, + "end": 21071.41, + "probability": 0.1127 + }, + { + "start": 21072.26, + "end": 21073.02, + "probability": 0.137 + }, + { + "start": 21073.62, + "end": 21074.84, + "probability": 0.1117 + }, + { + "start": 21074.84, + "end": 21076.06, + "probability": 0.7858 + }, + { + "start": 21076.1, + "end": 21077.1, + "probability": 0.6201 + }, + { + "start": 21077.12, + "end": 21077.6, + "probability": 0.7885 + }, + { + "start": 21077.66, + "end": 21079.64, + "probability": 0.7719 + }, + { + "start": 21079.76, + "end": 21082.12, + "probability": 0.9615 + }, + { + "start": 21082.72, + "end": 21083.28, + "probability": 0.7907 + }, + { + "start": 21083.79, + "end": 21086.6, + "probability": 0.8096 + }, + { + "start": 21088.06, + "end": 21090.28, + "probability": 0.8325 + }, + { + "start": 21092.12, + "end": 21093.14, + "probability": 0.2961 + }, + { + "start": 21093.48, + "end": 21094.0, + "probability": 0.0115 + }, + { + "start": 21094.46, + "end": 21095.22, + "probability": 0.096 + }, + { + "start": 21096.54, + "end": 21098.32, + "probability": 0.7846 + }, + { + "start": 21098.94, + "end": 21099.4, + "probability": 0.5723 + }, + { + "start": 21099.66, + "end": 21100.54, + "probability": 0.9553 + }, + { + "start": 21101.76, + "end": 21103.56, + "probability": 0.6273 + }, + { + "start": 21105.52, + "end": 21107.36, + "probability": 0.2727 + }, + { + "start": 21122.02, + "end": 21123.74, + "probability": 0.5529 + }, + { + "start": 21125.94, + "end": 21128.7, + "probability": 0.9868 + }, + { + "start": 21129.56, + "end": 21131.02, + "probability": 0.9285 + }, + { + "start": 21131.76, + "end": 21134.46, + "probability": 0.9635 + }, + { + "start": 21135.6, + "end": 21137.88, + "probability": 0.9928 + }, + { + "start": 21139.12, + "end": 21142.24, + "probability": 0.9933 + }, + { + "start": 21143.74, + "end": 21145.22, + "probability": 0.9941 + }, + { + "start": 21147.04, + "end": 21149.32, + "probability": 0.6235 + }, + { + "start": 21149.32, + "end": 21151.04, + "probability": 0.9185 + }, + { + "start": 21151.5, + "end": 21151.96, + "probability": 0.7141 + }, + { + "start": 21152.04, + "end": 21153.1, + "probability": 0.8232 + }, + { + "start": 21153.5, + "end": 21156.12, + "probability": 0.9751 + }, + { + "start": 21157.76, + "end": 21159.28, + "probability": 0.6898 + }, + { + "start": 21160.5, + "end": 21161.36, + "probability": 0.5377 + }, + { + "start": 21161.98, + "end": 21165.12, + "probability": 0.9811 + }, + { + "start": 21165.86, + "end": 21167.24, + "probability": 0.9175 + }, + { + "start": 21167.8, + "end": 21169.88, + "probability": 0.9749 + }, + { + "start": 21170.56, + "end": 21171.14, + "probability": 0.8005 + }, + { + "start": 21171.18, + "end": 21171.94, + "probability": 0.9329 + }, + { + "start": 21172.74, + "end": 21173.9, + "probability": 0.9492 + }, + { + "start": 21174.64, + "end": 21177.24, + "probability": 0.5943 + }, + { + "start": 21177.62, + "end": 21179.1, + "probability": 0.705 + }, + { + "start": 21179.16, + "end": 21180.94, + "probability": 0.4988 + }, + { + "start": 21182.3, + "end": 21184.06, + "probability": 0.8137 + }, + { + "start": 21184.24, + "end": 21185.34, + "probability": 0.7692 + }, + { + "start": 21185.34, + "end": 21187.04, + "probability": 0.9883 + }, + { + "start": 21187.84, + "end": 21189.44, + "probability": 0.8676 + }, + { + "start": 21189.56, + "end": 21193.0, + "probability": 0.0509 + }, + { + "start": 21193.0, + "end": 21195.82, + "probability": 0.6013 + }, + { + "start": 21196.44, + "end": 21199.42, + "probability": 0.6946 + }, + { + "start": 21200.08, + "end": 21200.68, + "probability": 0.763 + }, + { + "start": 21200.78, + "end": 21202.3, + "probability": 0.9964 + }, + { + "start": 21202.76, + "end": 21204.4, + "probability": 0.9228 + }, + { + "start": 21205.26, + "end": 21207.44, + "probability": 0.8953 + }, + { + "start": 21208.28, + "end": 21211.14, + "probability": 0.9307 + }, + { + "start": 21211.22, + "end": 21214.82, + "probability": 0.9869 + }, + { + "start": 21215.68, + "end": 21216.12, + "probability": 0.8776 + }, + { + "start": 21216.64, + "end": 21221.16, + "probability": 0.9318 + }, + { + "start": 21221.72, + "end": 21222.34, + "probability": 0.621 + }, + { + "start": 21222.64, + "end": 21225.74, + "probability": 0.832 + }, + { + "start": 21226.44, + "end": 21230.46, + "probability": 0.9441 + }, + { + "start": 21230.68, + "end": 21232.9, + "probability": 0.7983 + }, + { + "start": 21234.12, + "end": 21235.98, + "probability": 0.6497 + }, + { + "start": 21236.98, + "end": 21238.48, + "probability": 0.8304 + }, + { + "start": 21238.86, + "end": 21239.54, + "probability": 0.8419 + }, + { + "start": 21239.92, + "end": 21241.22, + "probability": 0.8317 + }, + { + "start": 21241.86, + "end": 21247.64, + "probability": 0.9602 + }, + { + "start": 21248.5, + "end": 21249.52, + "probability": 0.9311 + }, + { + "start": 21250.24, + "end": 21251.89, + "probability": 0.9089 + }, + { + "start": 21251.98, + "end": 21253.42, + "probability": 0.8299 + }, + { + "start": 21253.86, + "end": 21255.04, + "probability": 0.8924 + }, + { + "start": 21255.42, + "end": 21256.92, + "probability": 0.998 + }, + { + "start": 21257.5, + "end": 21257.9, + "probability": 0.829 + }, + { + "start": 21259.22, + "end": 21259.64, + "probability": 0.763 + }, + { + "start": 21262.02, + "end": 21264.14, + "probability": 0.8955 + }, + { + "start": 21270.9, + "end": 21271.46, + "probability": 0.6725 + }, + { + "start": 21272.06, + "end": 21272.92, + "probability": 0.8846 + }, + { + "start": 21287.08, + "end": 21287.82, + "probability": 0.9554 + }, + { + "start": 21288.86, + "end": 21290.08, + "probability": 0.2534 + }, + { + "start": 21293.48, + "end": 21295.88, + "probability": 0.9941 + }, + { + "start": 21296.0, + "end": 21297.59, + "probability": 0.9221 + }, + { + "start": 21298.18, + "end": 21299.48, + "probability": 0.4409 + }, + { + "start": 21299.6, + "end": 21301.24, + "probability": 0.7738 + }, + { + "start": 21302.46, + "end": 21304.18, + "probability": 0.7788 + }, + { + "start": 21307.82, + "end": 21311.06, + "probability": 0.8617 + }, + { + "start": 21311.74, + "end": 21312.0, + "probability": 0.0007 + }, + { + "start": 21313.62, + "end": 21315.64, + "probability": 0.9946 + }, + { + "start": 21316.34, + "end": 21320.68, + "probability": 0.9915 + }, + { + "start": 21321.3, + "end": 21322.84, + "probability": 0.9268 + }, + { + "start": 21323.54, + "end": 21327.4, + "probability": 0.8259 + }, + { + "start": 21328.18, + "end": 21331.34, + "probability": 0.9461 + }, + { + "start": 21331.94, + "end": 21333.77, + "probability": 0.8436 + }, + { + "start": 21335.28, + "end": 21336.9, + "probability": 0.9948 + }, + { + "start": 21337.98, + "end": 21338.36, + "probability": 0.7257 + }, + { + "start": 21338.72, + "end": 21342.92, + "probability": 0.9665 + }, + { + "start": 21343.98, + "end": 21344.66, + "probability": 0.9506 + }, + { + "start": 21344.76, + "end": 21345.38, + "probability": 0.9308 + }, + { + "start": 21345.42, + "end": 21348.6, + "probability": 0.9857 + }, + { + "start": 21349.8, + "end": 21350.08, + "probability": 0.7538 + }, + { + "start": 21350.44, + "end": 21351.31, + "probability": 0.3661 + }, + { + "start": 21351.54, + "end": 21353.78, + "probability": 0.5232 + }, + { + "start": 21354.02, + "end": 21355.44, + "probability": 0.8955 + }, + { + "start": 21355.46, + "end": 21355.54, + "probability": 0.1008 + }, + { + "start": 21355.54, + "end": 21355.54, + "probability": 0.9482 + }, + { + "start": 21355.54, + "end": 21356.05, + "probability": 0.7336 + }, + { + "start": 21356.4, + "end": 21356.42, + "probability": 0.4612 + }, + { + "start": 21356.46, + "end": 21356.66, + "probability": 0.8579 + }, + { + "start": 21356.68, + "end": 21359.32, + "probability": 0.7224 + }, + { + "start": 21360.32, + "end": 21360.64, + "probability": 0.1537 + }, + { + "start": 21360.82, + "end": 21364.86, + "probability": 0.9426 + }, + { + "start": 21365.2, + "end": 21369.36, + "probability": 0.998 + }, + { + "start": 21370.18, + "end": 21371.62, + "probability": 0.8678 + }, + { + "start": 21371.84, + "end": 21374.38, + "probability": 0.9827 + }, + { + "start": 21374.38, + "end": 21376.54, + "probability": 0.9972 + }, + { + "start": 21377.4, + "end": 21379.86, + "probability": 0.767 + }, + { + "start": 21380.48, + "end": 21381.04, + "probability": 0.5876 + }, + { + "start": 21381.18, + "end": 21385.42, + "probability": 0.9951 + }, + { + "start": 21386.52, + "end": 21389.92, + "probability": 0.9888 + }, + { + "start": 21390.84, + "end": 21393.54, + "probability": 0.987 + }, + { + "start": 21395.0, + "end": 21396.52, + "probability": 0.9939 + }, + { + "start": 21397.34, + "end": 21400.1, + "probability": 0.9985 + }, + { + "start": 21400.8, + "end": 21403.18, + "probability": 0.9983 + }, + { + "start": 21403.18, + "end": 21405.46, + "probability": 0.9356 + }, + { + "start": 21406.1, + "end": 21406.8, + "probability": 0.9358 + }, + { + "start": 21407.76, + "end": 21412.82, + "probability": 0.9897 + }, + { + "start": 21414.5, + "end": 21417.5, + "probability": 0.9865 + }, + { + "start": 21417.58, + "end": 21418.96, + "probability": 0.5593 + }, + { + "start": 21419.34, + "end": 21421.68, + "probability": 0.9976 + }, + { + "start": 21422.28, + "end": 21423.32, + "probability": 0.8782 + }, + { + "start": 21424.22, + "end": 21427.14, + "probability": 0.9229 + }, + { + "start": 21427.86, + "end": 21430.64, + "probability": 0.9344 + }, + { + "start": 21431.5, + "end": 21432.54, + "probability": 0.557 + }, + { + "start": 21432.72, + "end": 21435.32, + "probability": 0.9888 + }, + { + "start": 21435.56, + "end": 21436.7, + "probability": 0.6312 + }, + { + "start": 21437.34, + "end": 21441.36, + "probability": 0.9932 + }, + { + "start": 21442.2, + "end": 21444.78, + "probability": 0.9674 + }, + { + "start": 21445.4, + "end": 21446.06, + "probability": 0.8909 + }, + { + "start": 21446.68, + "end": 21449.24, + "probability": 0.9799 + }, + { + "start": 21449.24, + "end": 21452.04, + "probability": 0.9689 + }, + { + "start": 21453.16, + "end": 21455.14, + "probability": 0.8634 + }, + { + "start": 21456.7, + "end": 21458.0, + "probability": 0.7424 + }, + { + "start": 21458.62, + "end": 21461.38, + "probability": 0.8493 + }, + { + "start": 21462.24, + "end": 21463.02, + "probability": 0.1562 + }, + { + "start": 21463.04, + "end": 21463.4, + "probability": 0.1251 + }, + { + "start": 21470.04, + "end": 21472.7, + "probability": 0.494 + }, + { + "start": 21472.92, + "end": 21474.8, + "probability": 0.8287 + }, + { + "start": 21475.2, + "end": 21476.15, + "probability": 0.7713 + }, + { + "start": 21478.92, + "end": 21481.54, + "probability": 0.8882 + }, + { + "start": 21481.56, + "end": 21484.8, + "probability": 0.5698 + }, + { + "start": 21484.86, + "end": 21485.58, + "probability": 0.5687 + }, + { + "start": 21486.34, + "end": 21487.44, + "probability": 0.98 + }, + { + "start": 21489.04, + "end": 21491.8, + "probability": 0.9629 + }, + { + "start": 21491.8, + "end": 21493.8, + "probability": 0.998 + }, + { + "start": 21495.24, + "end": 21495.6, + "probability": 0.3834 + }, + { + "start": 21495.96, + "end": 21497.1, + "probability": 0.6655 + }, + { + "start": 21499.06, + "end": 21499.24, + "probability": 0.0758 + }, + { + "start": 21499.38, + "end": 21499.42, + "probability": 0.1622 + }, + { + "start": 21499.42, + "end": 21502.44, + "probability": 0.8536 + }, + { + "start": 21502.44, + "end": 21505.92, + "probability": 0.9974 + }, + { + "start": 21506.86, + "end": 21508.8, + "probability": 0.6841 + }, + { + "start": 21508.92, + "end": 21509.96, + "probability": 0.707 + }, + { + "start": 21510.02, + "end": 21510.26, + "probability": 0.3236 + }, + { + "start": 21510.98, + "end": 21515.44, + "probability": 0.9671 + }, + { + "start": 21515.88, + "end": 21518.45, + "probability": 0.899 + }, + { + "start": 21520.32, + "end": 21521.14, + "probability": 0.7596 + }, + { + "start": 21521.18, + "end": 21524.06, + "probability": 0.6982 + }, + { + "start": 21524.6, + "end": 21525.68, + "probability": 0.4626 + }, + { + "start": 21526.28, + "end": 21528.8, + "probability": 0.226 + }, + { + "start": 21528.8, + "end": 21529.22, + "probability": 0.064 + }, + { + "start": 21529.22, + "end": 21529.74, + "probability": 0.1014 + }, + { + "start": 21529.74, + "end": 21529.84, + "probability": 0.4063 + }, + { + "start": 21529.84, + "end": 21530.39, + "probability": 0.3737 + }, + { + "start": 21530.48, + "end": 21531.0, + "probability": 0.4882 + }, + { + "start": 21532.98, + "end": 21535.1, + "probability": 0.8534 + }, + { + "start": 21538.14, + "end": 21540.04, + "probability": 0.8968 + }, + { + "start": 21540.32, + "end": 21541.28, + "probability": 0.3411 + }, + { + "start": 21541.32, + "end": 21541.56, + "probability": 0.7458 + }, + { + "start": 21541.66, + "end": 21543.11, + "probability": 0.597 + }, + { + "start": 21543.32, + "end": 21543.48, + "probability": 0.7809 + }, + { + "start": 21543.94, + "end": 21545.6, + "probability": 0.8651 + }, + { + "start": 21550.72, + "end": 21552.96, + "probability": 0.8823 + }, + { + "start": 21553.04, + "end": 21553.42, + "probability": 0.976 + }, + { + "start": 21553.52, + "end": 21553.98, + "probability": 0.9061 + }, + { + "start": 21553.98, + "end": 21554.08, + "probability": 0.7086 + }, + { + "start": 21554.66, + "end": 21555.48, + "probability": 0.5702 + }, + { + "start": 21556.02, + "end": 21556.74, + "probability": 0.9453 + }, + { + "start": 21577.98, + "end": 21578.7, + "probability": 0.7294 + }, + { + "start": 21580.82, + "end": 21581.98, + "probability": 0.9251 + }, + { + "start": 21583.48, + "end": 21585.98, + "probability": 0.9985 + }, + { + "start": 21587.64, + "end": 21588.94, + "probability": 0.999 + }, + { + "start": 21589.5, + "end": 21594.04, + "probability": 0.9976 + }, + { + "start": 21595.68, + "end": 21598.14, + "probability": 0.9707 + }, + { + "start": 21599.22, + "end": 21600.72, + "probability": 0.9575 + }, + { + "start": 21601.3, + "end": 21601.9, + "probability": 0.999 + }, + { + "start": 21602.6, + "end": 21604.7, + "probability": 0.9998 + }, + { + "start": 21605.78, + "end": 21607.24, + "probability": 0.9363 + }, + { + "start": 21608.06, + "end": 21610.04, + "probability": 0.9975 + }, + { + "start": 21610.4, + "end": 21613.82, + "probability": 0.9914 + }, + { + "start": 21615.04, + "end": 21618.9, + "probability": 0.7956 + }, + { + "start": 21619.18, + "end": 21619.52, + "probability": 0.4624 + }, + { + "start": 21619.7, + "end": 21620.68, + "probability": 0.473 + }, + { + "start": 21621.9, + "end": 21626.44, + "probability": 0.9699 + }, + { + "start": 21627.66, + "end": 21630.04, + "probability": 0.799 + }, + { + "start": 21631.0, + "end": 21635.4, + "probability": 0.2508 + }, + { + "start": 21635.4, + "end": 21635.4, + "probability": 0.3007 + }, + { + "start": 21635.4, + "end": 21636.42, + "probability": 0.5637 + }, + { + "start": 21636.62, + "end": 21639.12, + "probability": 0.8858 + }, + { + "start": 21639.62, + "end": 21640.7, + "probability": 0.9155 + }, + { + "start": 21640.78, + "end": 21641.42, + "probability": 0.9631 + }, + { + "start": 21641.44, + "end": 21642.28, + "probability": 0.82 + }, + { + "start": 21642.74, + "end": 21644.12, + "probability": 0.9004 + }, + { + "start": 21645.14, + "end": 21645.42, + "probability": 0.0552 + }, + { + "start": 21645.42, + "end": 21645.68, + "probability": 0.5087 + }, + { + "start": 21646.2, + "end": 21648.66, + "probability": 0.6817 + }, + { + "start": 21648.86, + "end": 21649.44, + "probability": 0.7584 + }, + { + "start": 21649.5, + "end": 21652.8, + "probability": 0.8252 + }, + { + "start": 21652.92, + "end": 21653.2, + "probability": 0.9309 + }, + { + "start": 21654.1, + "end": 21657.94, + "probability": 0.9926 + }, + { + "start": 21658.84, + "end": 21659.46, + "probability": 0.535 + }, + { + "start": 21661.1, + "end": 21662.54, + "probability": 0.8848 + }, + { + "start": 21662.6, + "end": 21665.04, + "probability": 0.9829 + }, + { + "start": 21666.16, + "end": 21667.83, + "probability": 0.9987 + }, + { + "start": 21668.66, + "end": 21669.26, + "probability": 0.7883 + }, + { + "start": 21671.86, + "end": 21672.22, + "probability": 0.0589 + }, + { + "start": 21672.22, + "end": 21674.08, + "probability": 0.6143 + }, + { + "start": 21674.76, + "end": 21676.52, + "probability": 0.8153 + }, + { + "start": 21676.68, + "end": 21678.94, + "probability": 0.9937 + }, + { + "start": 21679.7, + "end": 21681.98, + "probability": 0.9937 + }, + { + "start": 21682.76, + "end": 21683.48, + "probability": 0.6011 + }, + { + "start": 21684.84, + "end": 21689.04, + "probability": 0.9972 + }, + { + "start": 21689.04, + "end": 21692.38, + "probability": 0.9982 + }, + { + "start": 21693.34, + "end": 21697.76, + "probability": 0.9482 + }, + { + "start": 21698.74, + "end": 21702.32, + "probability": 0.8814 + }, + { + "start": 21702.72, + "end": 21702.84, + "probability": 0.2134 + }, + { + "start": 21702.84, + "end": 21703.9, + "probability": 0.459 + }, + { + "start": 21704.0, + "end": 21704.62, + "probability": 0.7355 + }, + { + "start": 21704.8, + "end": 21705.31, + "probability": 0.694 + }, + { + "start": 21705.4, + "end": 21705.78, + "probability": 0.8831 + }, + { + "start": 21705.78, + "end": 21708.16, + "probability": 0.5183 + }, + { + "start": 21708.2, + "end": 21709.2, + "probability": 0.9495 + }, + { + "start": 21709.28, + "end": 21709.98, + "probability": 0.6676 + }, + { + "start": 21710.2, + "end": 21712.32, + "probability": 0.4893 + }, + { + "start": 21712.66, + "end": 21712.76, + "probability": 0.4218 + }, + { + "start": 21712.84, + "end": 21712.86, + "probability": 0.2233 + }, + { + "start": 21712.86, + "end": 21712.86, + "probability": 0.5159 + }, + { + "start": 21712.86, + "end": 21712.86, + "probability": 0.5616 + }, + { + "start": 21712.86, + "end": 21713.5, + "probability": 0.5784 + }, + { + "start": 21713.56, + "end": 21716.1, + "probability": 0.2751 + }, + { + "start": 21716.62, + "end": 21718.04, + "probability": 0.9893 + }, + { + "start": 21718.18, + "end": 21719.13, + "probability": 0.354 + }, + { + "start": 21719.4, + "end": 21721.32, + "probability": 0.8742 + }, + { + "start": 21721.6, + "end": 21723.73, + "probability": 0.9468 + }, + { + "start": 21723.9, + "end": 21725.12, + "probability": 0.7275 + }, + { + "start": 21725.36, + "end": 21729.52, + "probability": 0.9403 + }, + { + "start": 21730.3, + "end": 21732.72, + "probability": 0.9864 + }, + { + "start": 21733.62, + "end": 21735.7, + "probability": 0.6 + }, + { + "start": 21735.7, + "end": 21737.6, + "probability": 0.7088 + }, + { + "start": 21737.76, + "end": 21737.86, + "probability": 0.5192 + }, + { + "start": 21738.0, + "end": 21740.58, + "probability": 0.1771 + }, + { + "start": 21740.68, + "end": 21743.04, + "probability": 0.6601 + }, + { + "start": 21744.14, + "end": 21745.68, + "probability": 0.1042 + }, + { + "start": 21745.7, + "end": 21748.18, + "probability": 0.4965 + }, + { + "start": 21748.44, + "end": 21750.08, + "probability": 0.1156 + }, + { + "start": 21750.12, + "end": 21750.18, + "probability": 0.0188 + }, + { + "start": 21750.18, + "end": 21750.18, + "probability": 0.1085 + }, + { + "start": 21750.18, + "end": 21753.66, + "probability": 0.7691 + }, + { + "start": 21754.18, + "end": 21759.2, + "probability": 0.9812 + }, + { + "start": 21759.92, + "end": 21763.26, + "probability": 0.8231 + }, + { + "start": 21763.48, + "end": 21765.44, + "probability": 0.9921 + }, + { + "start": 21766.1, + "end": 21768.26, + "probability": 0.9731 + }, + { + "start": 21769.04, + "end": 21771.84, + "probability": 0.9849 + }, + { + "start": 21772.46, + "end": 21773.36, + "probability": 0.7728 + }, + { + "start": 21774.04, + "end": 21775.48, + "probability": 0.1317 + }, + { + "start": 21779.48, + "end": 21779.54, + "probability": 0.2017 + }, + { + "start": 21779.54, + "end": 21779.54, + "probability": 0.0676 + }, + { + "start": 21779.54, + "end": 21779.54, + "probability": 0.0341 + }, + { + "start": 21779.54, + "end": 21780.38, + "probability": 0.1568 + }, + { + "start": 21780.78, + "end": 21783.18, + "probability": 0.8198 + }, + { + "start": 21783.88, + "end": 21787.86, + "probability": 0.9933 + }, + { + "start": 21788.78, + "end": 21791.88, + "probability": 0.9972 + }, + { + "start": 21792.44, + "end": 21794.18, + "probability": 0.9974 + }, + { + "start": 21794.74, + "end": 21797.18, + "probability": 0.7556 + }, + { + "start": 21798.0, + "end": 21801.14, + "probability": 0.894 + }, + { + "start": 21802.52, + "end": 21802.52, + "probability": 0.0753 + }, + { + "start": 21802.52, + "end": 21802.52, + "probability": 0.0357 + }, + { + "start": 21802.52, + "end": 21802.52, + "probability": 0.1512 + }, + { + "start": 21802.52, + "end": 21804.42, + "probability": 0.3981 + }, + { + "start": 21804.58, + "end": 21805.38, + "probability": 0.4343 + }, + { + "start": 21805.38, + "end": 21807.22, + "probability": 0.4616 + }, + { + "start": 21807.5, + "end": 21808.26, + "probability": 0.8314 + }, + { + "start": 21808.36, + "end": 21810.52, + "probability": 0.7965 + }, + { + "start": 21810.84, + "end": 21812.82, + "probability": 0.9828 + }, + { + "start": 21812.84, + "end": 21813.06, + "probability": 0.072 + }, + { + "start": 21813.3, + "end": 21815.14, + "probability": 0.9612 + }, + { + "start": 21815.22, + "end": 21817.66, + "probability": 0.9891 + }, + { + "start": 21818.28, + "end": 21819.26, + "probability": 0.936 + }, + { + "start": 21819.7, + "end": 21821.56, + "probability": 0.7262 + }, + { + "start": 21821.96, + "end": 21824.42, + "probability": 0.9969 + }, + { + "start": 21824.94, + "end": 21826.34, + "probability": 0.9432 + }, + { + "start": 21827.18, + "end": 21830.2, + "probability": 0.989 + }, + { + "start": 21830.74, + "end": 21834.88, + "probability": 0.7893 + }, + { + "start": 21835.44, + "end": 21835.44, + "probability": 0.6027 + }, + { + "start": 21835.44, + "end": 21836.2, + "probability": 0.9695 + }, + { + "start": 21836.52, + "end": 21836.64, + "probability": 0.4075 + }, + { + "start": 21836.72, + "end": 21838.3, + "probability": 0.7863 + }, + { + "start": 21838.3, + "end": 21841.9, + "probability": 0.4597 + }, + { + "start": 21841.98, + "end": 21842.68, + "probability": 0.43 + }, + { + "start": 21842.72, + "end": 21842.72, + "probability": 0.1004 + }, + { + "start": 21842.76, + "end": 21843.34, + "probability": 0.7961 + }, + { + "start": 21843.78, + "end": 21844.24, + "probability": 0.3192 + }, + { + "start": 21844.38, + "end": 21846.76, + "probability": 0.8213 + }, + { + "start": 21847.24, + "end": 21849.56, + "probability": 0.9304 + }, + { + "start": 21850.28, + "end": 21852.32, + "probability": 0.9361 + }, + { + "start": 21852.8, + "end": 21855.54, + "probability": 0.9478 + }, + { + "start": 21855.96, + "end": 21856.71, + "probability": 0.5705 + }, + { + "start": 21857.44, + "end": 21860.42, + "probability": 0.9641 + }, + { + "start": 21862.72, + "end": 21862.9, + "probability": 0.2427 + }, + { + "start": 21862.9, + "end": 21863.48, + "probability": 0.0691 + }, + { + "start": 21863.5, + "end": 21866.76, + "probability": 0.3495 + }, + { + "start": 21866.8, + "end": 21867.32, + "probability": 0.4065 + }, + { + "start": 21867.42, + "end": 21870.2, + "probability": 0.9648 + }, + { + "start": 21870.2, + "end": 21871.14, + "probability": 0.4609 + }, + { + "start": 21871.14, + "end": 21873.7, + "probability": 0.9805 + }, + { + "start": 21874.12, + "end": 21875.72, + "probability": 0.8065 + }, + { + "start": 21875.9, + "end": 21876.08, + "probability": 0.6509 + }, + { + "start": 21876.08, + "end": 21876.86, + "probability": 0.819 + }, + { + "start": 21876.88, + "end": 21877.57, + "probability": 0.9017 + }, + { + "start": 21878.38, + "end": 21879.04, + "probability": 0.3411 + }, + { + "start": 21879.18, + "end": 21880.67, + "probability": 0.427 + }, + { + "start": 21880.8, + "end": 21882.42, + "probability": 0.9883 + }, + { + "start": 21882.42, + "end": 21884.76, + "probability": 0.9917 + }, + { + "start": 21885.32, + "end": 21891.08, + "probability": 0.9958 + }, + { + "start": 21891.86, + "end": 21894.32, + "probability": 0.9965 + }, + { + "start": 21894.64, + "end": 21894.9, + "probability": 0.7604 + }, + { + "start": 21895.44, + "end": 21895.86, + "probability": 0.7842 + }, + { + "start": 21896.38, + "end": 21897.12, + "probability": 0.9897 + }, + { + "start": 21897.14, + "end": 21897.8, + "probability": 0.9724 + }, + { + "start": 21898.04, + "end": 21898.16, + "probability": 0.8081 + }, + { + "start": 21899.08, + "end": 21901.02, + "probability": 0.9642 + }, + { + "start": 21903.18, + "end": 21904.3, + "probability": 0.9177 + }, + { + "start": 21911.34, + "end": 21912.44, + "probability": 0.8059 + }, + { + "start": 21923.66, + "end": 21924.98, + "probability": 0.6877 + }, + { + "start": 21925.24, + "end": 21928.68, + "probability": 0.8777 + }, + { + "start": 21929.28, + "end": 21930.62, + "probability": 0.8844 + }, + { + "start": 21931.16, + "end": 21934.58, + "probability": 0.9967 + }, + { + "start": 21934.74, + "end": 21937.88, + "probability": 0.8995 + }, + { + "start": 21938.4, + "end": 21939.06, + "probability": 0.1304 + }, + { + "start": 21939.38, + "end": 21942.7, + "probability": 0.7123 + }, + { + "start": 21942.78, + "end": 21944.4, + "probability": 0.9598 + }, + { + "start": 21944.7, + "end": 21947.13, + "probability": 0.9807 + }, + { + "start": 21947.7, + "end": 21950.94, + "probability": 0.1443 + }, + { + "start": 21951.16, + "end": 21951.78, + "probability": 0.0597 + }, + { + "start": 21952.13, + "end": 21952.62, + "probability": 0.0254 + }, + { + "start": 21952.62, + "end": 21952.62, + "probability": 0.0163 + }, + { + "start": 21952.62, + "end": 21952.62, + "probability": 0.117 + }, + { + "start": 21952.62, + "end": 21952.62, + "probability": 0.1483 + }, + { + "start": 21952.62, + "end": 21954.43, + "probability": 0.6742 + }, + { + "start": 21955.4, + "end": 21958.32, + "probability": 0.5973 + }, + { + "start": 21959.1, + "end": 21960.72, + "probability": 0.5288 + }, + { + "start": 21960.76, + "end": 21963.46, + "probability": 0.7417 + }, + { + "start": 21964.42, + "end": 21966.72, + "probability": 0.8523 + }, + { + "start": 21967.18, + "end": 21969.92, + "probability": 0.976 + }, + { + "start": 21970.18, + "end": 21970.92, + "probability": 0.5701 + }, + { + "start": 21971.18, + "end": 21972.38, + "probability": 0.978 + }, + { + "start": 21972.7, + "end": 21973.93, + "probability": 0.8779 + }, + { + "start": 21974.32, + "end": 21975.54, + "probability": 0.9365 + }, + { + "start": 21976.06, + "end": 21978.38, + "probability": 0.5946 + }, + { + "start": 21978.4, + "end": 21979.68, + "probability": 0.8333 + }, + { + "start": 21979.88, + "end": 21982.44, + "probability": 0.6502 + }, + { + "start": 21982.58, + "end": 21983.1, + "probability": 0.0962 + }, + { + "start": 21983.1, + "end": 21984.21, + "probability": 0.5717 + }, + { + "start": 21984.36, + "end": 21985.04, + "probability": 0.0412 + }, + { + "start": 21985.04, + "end": 21985.06, + "probability": 0.2232 + }, + { + "start": 21985.18, + "end": 21987.72, + "probability": 0.846 + }, + { + "start": 21988.12, + "end": 21990.14, + "probability": 0.6534 + }, + { + "start": 21990.26, + "end": 21990.58, + "probability": 0.2869 + }, + { + "start": 21990.8, + "end": 21992.92, + "probability": 0.9227 + }, + { + "start": 21993.06, + "end": 21996.38, + "probability": 0.3361 + }, + { + "start": 21996.38, + "end": 21999.48, + "probability": 0.9924 + }, + { + "start": 21999.84, + "end": 22003.12, + "probability": 0.9854 + }, + { + "start": 22005.58, + "end": 22012.14, + "probability": 0.9993 + }, + { + "start": 22012.72, + "end": 22016.6, + "probability": 0.9992 + }, + { + "start": 22017.16, + "end": 22018.38, + "probability": 0.9573 + }, + { + "start": 22018.74, + "end": 22020.98, + "probability": 0.9331 + }, + { + "start": 22021.3, + "end": 22022.98, + "probability": 0.6061 + }, + { + "start": 22023.06, + "end": 22026.26, + "probability": 0.9941 + }, + { + "start": 22026.64, + "end": 22027.68, + "probability": 0.5036 + }, + { + "start": 22027.76, + "end": 22029.1, + "probability": 0.8156 + }, + { + "start": 22029.56, + "end": 22031.46, + "probability": 0.8639 + }, + { + "start": 22031.62, + "end": 22033.38, + "probability": 0.8862 + }, + { + "start": 22035.35, + "end": 22035.42, + "probability": 0.0402 + }, + { + "start": 22040.3, + "end": 22042.74, + "probability": 0.3244 + }, + { + "start": 22042.74, + "end": 22043.54, + "probability": 0.091 + }, + { + "start": 22043.62, + "end": 22046.26, + "probability": 0.3579 + }, + { + "start": 22052.31, + "end": 22060.92, + "probability": 0.3275 + }, + { + "start": 22060.92, + "end": 22061.14, + "probability": 0.4756 + }, + { + "start": 22061.14, + "end": 22062.48, + "probability": 0.4052 + }, + { + "start": 22062.88, + "end": 22063.66, + "probability": 0.0965 + }, + { + "start": 22063.66, + "end": 22064.5, + "probability": 0.1979 + }, + { + "start": 22072.2, + "end": 22074.1, + "probability": 0.0444 + }, + { + "start": 22074.1, + "end": 22085.66, + "probability": 0.4461 + }, + { + "start": 22085.66, + "end": 22086.78, + "probability": 0.3416 + }, + { + "start": 22086.78, + "end": 22087.24, + "probability": 0.4161 + }, + { + "start": 22087.62, + "end": 22088.14, + "probability": 0.1253 + }, + { + "start": 22088.74, + "end": 22090.86, + "probability": 0.0349 + }, + { + "start": 22093.12, + "end": 22094.88, + "probability": 0.0164 + }, + { + "start": 22094.88, + "end": 22098.66, + "probability": 0.165 + }, + { + "start": 22100.64, + "end": 22102.36, + "probability": 0.1369 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.0, + "end": 22124.0, + "probability": 0.0 + }, + { + "start": 22124.28, + "end": 22124.5, + "probability": 0.1799 + }, + { + "start": 22124.5, + "end": 22124.5, + "probability": 0.0388 + }, + { + "start": 22124.5, + "end": 22124.64, + "probability": 0.0389 + }, + { + "start": 22124.64, + "end": 22124.64, + "probability": 0.0396 + }, + { + "start": 22124.64, + "end": 22126.72, + "probability": 0.4548 + }, + { + "start": 22126.84, + "end": 22129.12, + "probability": 0.9104 + }, + { + "start": 22143.84, + "end": 22144.24, + "probability": 0.0265 + }, + { + "start": 22144.24, + "end": 22144.28, + "probability": 0.1023 + }, + { + "start": 22144.28, + "end": 22144.28, + "probability": 0.2419 + }, + { + "start": 22144.28, + "end": 22146.12, + "probability": 0.3993 + }, + { + "start": 22148.68, + "end": 22149.94, + "probability": 0.0164 + }, + { + "start": 22149.94, + "end": 22150.06, + "probability": 0.0164 + }, + { + "start": 22150.06, + "end": 22151.04, + "probability": 0.1655 + }, + { + "start": 22154.3, + "end": 22155.4, + "probability": 0.4593 + }, + { + "start": 22155.64, + "end": 22155.64, + "probability": 0.0136 + }, + { + "start": 22155.64, + "end": 22157.56, + "probability": 0.0997 + }, + { + "start": 22159.34, + "end": 22162.18, + "probability": 0.0338 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.0, + "end": 22259.0, + "probability": 0.0 + }, + { + "start": 22259.08, + "end": 22260.6, + "probability": 0.5598 + }, + { + "start": 22261.44, + "end": 22261.9, + "probability": 0.8418 + }, + { + "start": 22262.54, + "end": 22263.48, + "probability": 0.7002 + }, + { + "start": 22264.26, + "end": 22266.4, + "probability": 0.8902 + }, + { + "start": 22267.06, + "end": 22271.4, + "probability": 0.7294 + }, + { + "start": 22275.6, + "end": 22277.78, + "probability": 0.8261 + }, + { + "start": 22278.38, + "end": 22279.08, + "probability": 0.51 + }, + { + "start": 22280.9, + "end": 22283.08, + "probability": 0.9393 + }, + { + "start": 22283.74, + "end": 22285.7, + "probability": 0.9516 + }, + { + "start": 22289.24, + "end": 22289.94, + "probability": 0.9775 + }, + { + "start": 22290.62, + "end": 22291.6, + "probability": 0.9748 + }, + { + "start": 22292.4, + "end": 22292.84, + "probability": 0.9426 + }, + { + "start": 22293.74, + "end": 22294.32, + "probability": 0.9294 + }, + { + "start": 22295.1, + "end": 22296.76, + "probability": 0.9683 + }, + { + "start": 22298.94, + "end": 22301.46, + "probability": 0.9311 + }, + { + "start": 22302.1, + "end": 22302.78, + "probability": 0.7862 + }, + { + "start": 22303.68, + "end": 22303.92, + "probability": 0.5526 + }, + { + "start": 22305.26, + "end": 22307.84, + "probability": 0.8363 + }, + { + "start": 22309.7, + "end": 22310.36, + "probability": 0.7708 + }, + { + "start": 22311.26, + "end": 22312.0, + "probability": 0.964 + }, + { + "start": 22314.36, + "end": 22318.8, + "probability": 0.9397 + }, + { + "start": 22320.26, + "end": 22322.3, + "probability": 0.9692 + }, + { + "start": 22322.66, + "end": 22324.2, + "probability": 0.8132 + }, + { + "start": 22324.3, + "end": 22325.84, + "probability": 0.9401 + }, + { + "start": 22328.14, + "end": 22328.76, + "probability": 0.7211 + }, + { + "start": 22329.42, + "end": 22330.32, + "probability": 0.9491 + }, + { + "start": 22331.12, + "end": 22331.62, + "probability": 0.7362 + }, + { + "start": 22333.02, + "end": 22333.9, + "probability": 0.8348 + }, + { + "start": 22334.6, + "end": 22336.8, + "probability": 0.96 + }, + { + "start": 22337.62, + "end": 22338.0, + "probability": 0.9834 + }, + { + "start": 22340.68, + "end": 22341.36, + "probability": 0.948 + }, + { + "start": 22343.36, + "end": 22344.82, + "probability": 0.9445 + }, + { + "start": 22348.1, + "end": 22348.38, + "probability": 0.5992 + }, + { + "start": 22349.44, + "end": 22350.0, + "probability": 0.5802 + }, + { + "start": 22350.44, + "end": 22351.82, + "probability": 0.7985 + }, + { + "start": 22352.24, + "end": 22353.52, + "probability": 0.8906 + }, + { + "start": 22354.82, + "end": 22355.28, + "probability": 0.9744 + }, + { + "start": 22356.28, + "end": 22358.2, + "probability": 0.9739 + }, + { + "start": 22361.76, + "end": 22363.8, + "probability": 0.9004 + }, + { + "start": 22364.5, + "end": 22366.24, + "probability": 0.9886 + }, + { + "start": 22366.9, + "end": 22367.7, + "probability": 0.9578 + }, + { + "start": 22368.34, + "end": 22369.4, + "probability": 0.6528 + }, + { + "start": 22372.12, + "end": 22372.56, + "probability": 0.6216 + }, + { + "start": 22373.2, + "end": 22373.84, + "probability": 0.5025 + }, + { + "start": 22375.27, + "end": 22377.42, + "probability": 0.978 + }, + { + "start": 22378.6, + "end": 22381.0, + "probability": 0.9851 + }, + { + "start": 22381.86, + "end": 22384.74, + "probability": 0.8535 + }, + { + "start": 22385.93, + "end": 22387.92, + "probability": 0.6208 + }, + { + "start": 22388.62, + "end": 22393.52, + "probability": 0.8113 + }, + { + "start": 22394.88, + "end": 22395.38, + "probability": 0.544 + }, + { + "start": 22396.44, + "end": 22397.64, + "probability": 0.8872 + }, + { + "start": 22398.36, + "end": 22399.96, + "probability": 0.8644 + }, + { + "start": 22401.44, + "end": 22403.92, + "probability": 0.7575 + }, + { + "start": 22405.1, + "end": 22406.26, + "probability": 0.6969 + }, + { + "start": 22406.94, + "end": 22407.76, + "probability": 0.9174 + }, + { + "start": 22408.5, + "end": 22408.78, + "probability": 0.3847 + }, + { + "start": 22408.86, + "end": 22410.26, + "probability": 0.7715 + }, + { + "start": 22410.32, + "end": 22413.3, + "probability": 0.0131 + }, + { + "start": 22413.3, + "end": 22413.88, + "probability": 0.4022 + }, + { + "start": 22418.24, + "end": 22418.62, + "probability": 0.9438 + }, + { + "start": 22420.4, + "end": 22421.08, + "probability": 0.799 + }, + { + "start": 22422.62, + "end": 22423.02, + "probability": 0.7822 + }, + { + "start": 22425.08, + "end": 22425.62, + "probability": 0.9088 + }, + { + "start": 22427.04, + "end": 22428.7, + "probability": 0.9705 + }, + { + "start": 22430.34, + "end": 22430.78, + "probability": 0.9763 + }, + { + "start": 22440.3, + "end": 22441.0, + "probability": 0.8492 + }, + { + "start": 22441.64, + "end": 22442.38, + "probability": 0.4406 + }, + { + "start": 22443.72, + "end": 22444.43, + "probability": 0.33 + }, + { + "start": 22452.53, + "end": 22452.88, + "probability": 0.5111 + }, + { + "start": 22452.88, + "end": 22453.06, + "probability": 0.4203 + }, + { + "start": 22453.06, + "end": 22453.16, + "probability": 0.0704 + }, + { + "start": 22453.62, + "end": 22455.66, + "probability": 0.0648 + }, + { + "start": 22455.72, + "end": 22455.9, + "probability": 0.1337 + }, + { + "start": 22455.9, + "end": 22455.9, + "probability": 0.0927 + }, + { + "start": 22455.9, + "end": 22457.48, + "probability": 0.2887 + }, + { + "start": 22458.58, + "end": 22458.76, + "probability": 0.1009 + }, + { + "start": 22481.88, + "end": 22483.06, + "probability": 0.3432 + }, + { + "start": 22484.38, + "end": 22485.46, + "probability": 0.3096 + }, + { + "start": 22485.46, + "end": 22486.58, + "probability": 0.6654 + }, + { + "start": 22486.62, + "end": 22488.78, + "probability": 0.4013 + }, + { + "start": 22488.88, + "end": 22488.88, + "probability": 0.322 + }, + { + "start": 22505.2, + "end": 22506.48, + "probability": 0.2446 + }, + { + "start": 22509.52, + "end": 22513.1, + "probability": 0.8426 + }, + { + "start": 22514.18, + "end": 22514.92, + "probability": 0.7546 + }, + { + "start": 22515.58, + "end": 22516.68, + "probability": 0.8947 + }, + { + "start": 22518.06, + "end": 22518.58, + "probability": 0.9277 + }, + { + "start": 22520.02, + "end": 22520.98, + "probability": 0.7423 + }, + { + "start": 22521.08, + "end": 22522.46, + "probability": 0.7316 + }, + { + "start": 22522.52, + "end": 22524.08, + "probability": 0.9045 + }, + { + "start": 22524.98, + "end": 22526.68, + "probability": 0.9526 + }, + { + "start": 22527.22, + "end": 22527.66, + "probability": 0.9617 + }, + { + "start": 22528.74, + "end": 22529.88, + "probability": 0.8999 + }, + { + "start": 22530.96, + "end": 22531.48, + "probability": 0.9761 + }, + { + "start": 22533.08, + "end": 22533.9, + "probability": 0.9802 + }, + { + "start": 22534.44, + "end": 22537.22, + "probability": 0.993 + }, + { + "start": 22537.82, + "end": 22539.76, + "probability": 0.6255 + }, + { + "start": 22540.46, + "end": 22540.88, + "probability": 0.7915 + }, + { + "start": 22541.56, + "end": 22542.16, + "probability": 0.945 + }, + { + "start": 22543.22, + "end": 22544.68, + "probability": 0.9751 + }, + { + "start": 22546.34, + "end": 22547.26, + "probability": 0.8904 + }, + { + "start": 22549.96, + "end": 22553.64, + "probability": 0.7828 + }, + { + "start": 22554.24, + "end": 22555.1, + "probability": 0.7539 + }, + { + "start": 22556.06, + "end": 22558.43, + "probability": 0.9182 + }, + { + "start": 22560.9, + "end": 22561.42, + "probability": 0.6409 + }, + { + "start": 22562.32, + "end": 22563.4, + "probability": 0.8274 + }, + { + "start": 22564.94, + "end": 22565.38, + "probability": 0.9385 + }, + { + "start": 22566.34, + "end": 22567.02, + "probability": 0.9606 + }, + { + "start": 22568.2, + "end": 22568.64, + "probability": 0.9614 + }, + { + "start": 22569.6, + "end": 22570.3, + "probability": 0.8176 + }, + { + "start": 22572.36, + "end": 22572.74, + "probability": 0.9858 + }, + { + "start": 22573.7, + "end": 22574.78, + "probability": 0.8574 + }, + { + "start": 22576.64, + "end": 22579.22, + "probability": 0.8161 + }, + { + "start": 22579.76, + "end": 22580.56, + "probability": 0.506 + }, + { + "start": 22581.96, + "end": 22584.36, + "probability": 0.7334 + }, + { + "start": 22585.2, + "end": 22587.88, + "probability": 0.8163 + }, + { + "start": 22591.78, + "end": 22592.2, + "probability": 0.959 + }, + { + "start": 22594.04, + "end": 22594.66, + "probability": 0.9211 + }, + { + "start": 22596.12, + "end": 22596.56, + "probability": 0.9744 + }, + { + "start": 22597.48, + "end": 22598.38, + "probability": 0.9309 + }, + { + "start": 22600.04, + "end": 22600.48, + "probability": 0.9969 + }, + { + "start": 22601.68, + "end": 22602.34, + "probability": 0.4641 + }, + { + "start": 22604.1, + "end": 22604.54, + "probability": 0.5676 + }, + { + "start": 22605.8, + "end": 22606.52, + "probability": 0.671 + }, + { + "start": 22607.52, + "end": 22607.84, + "probability": 0.9596 + }, + { + "start": 22608.58, + "end": 22608.98, + "probability": 0.9247 + }, + { + "start": 22610.1, + "end": 22611.88, + "probability": 0.9434 + }, + { + "start": 22613.4, + "end": 22615.1, + "probability": 0.8213 + }, + { + "start": 22615.84, + "end": 22616.86, + "probability": 0.8869 + }, + { + "start": 22617.54, + "end": 22617.92, + "probability": 0.9722 + }, + { + "start": 22619.44, + "end": 22620.46, + "probability": 0.9352 + }, + { + "start": 22621.72, + "end": 22623.76, + "probability": 0.8503 + }, + { + "start": 22624.72, + "end": 22627.98, + "probability": 0.7408 + }, + { + "start": 22631.22, + "end": 22632.04, + "probability": 0.8097 + }, + { + "start": 22632.66, + "end": 22633.5, + "probability": 0.8854 + }, + { + "start": 22635.1, + "end": 22635.5, + "probability": 0.6854 + }, + { + "start": 22636.98, + "end": 22637.7, + "probability": 0.9246 + }, + { + "start": 22639.97, + "end": 22641.8, + "probability": 0.9668 + }, + { + "start": 22644.74, + "end": 22645.24, + "probability": 0.9769 + }, + { + "start": 22647.04, + "end": 22647.82, + "probability": 0.8083 + }, + { + "start": 22649.39, + "end": 22651.1, + "probability": 0.9834 + }, + { + "start": 22655.14, + "end": 22656.6, + "probability": 0.1397 + }, + { + "start": 22667.74, + "end": 22668.74, + "probability": 0.2118 + }, + { + "start": 22669.78, + "end": 22671.12, + "probability": 0.644 + }, + { + "start": 22672.6, + "end": 22674.72, + "probability": 0.8163 + }, + { + "start": 22675.62, + "end": 22677.48, + "probability": 0.7872 + }, + { + "start": 22678.46, + "end": 22681.9, + "probability": 0.9687 + }, + { + "start": 22682.6, + "end": 22685.44, + "probability": 0.9163 + }, + { + "start": 22686.36, + "end": 22686.56, + "probability": 0.0004 + }, + { + "start": 22689.86, + "end": 22690.64, + "probability": 0.33 + }, + { + "start": 22691.68, + "end": 22694.3, + "probability": 0.7806 + }, + { + "start": 22698.26, + "end": 22698.72, + "probability": 0.9272 + }, + { + "start": 22700.46, + "end": 22701.26, + "probability": 0.6692 + }, + { + "start": 22701.88, + "end": 22704.17, + "probability": 0.9282 + }, + { + "start": 22707.14, + "end": 22708.36, + "probability": 0.3228 + }, + { + "start": 22709.06, + "end": 22710.6, + "probability": 0.3647 + }, + { + "start": 22710.9, + "end": 22711.44, + "probability": 0.6355 + }, + { + "start": 22711.98, + "end": 22713.26, + "probability": 0.8478 + }, + { + "start": 22716.02, + "end": 22716.02, + "probability": 0.0201 + }, + { + "start": 22716.02, + "end": 22716.5, + "probability": 0.3223 + }, + { + "start": 22719.58, + "end": 22720.24, + "probability": 0.7161 + }, + { + "start": 22721.38, + "end": 22722.38, + "probability": 0.398 + }, + { + "start": 22727.02, + "end": 22727.24, + "probability": 0.9299 + }, + { + "start": 22730.16, + "end": 22731.06, + "probability": 0.3547 + }, + { + "start": 22731.8, + "end": 22732.26, + "probability": 0.9237 + }, + { + "start": 22734.1, + "end": 22734.92, + "probability": 0.4965 + }, + { + "start": 22736.48, + "end": 22738.36, + "probability": 0.8957 + }, + { + "start": 22739.84, + "end": 22740.58, + "probability": 0.8966 + }, + { + "start": 22741.18, + "end": 22742.04, + "probability": 0.8178 + }, + { + "start": 22744.88, + "end": 22745.22, + "probability": 0.9819 + }, + { + "start": 22747.74, + "end": 22748.56, + "probability": 0.9181 + }, + { + "start": 22750.28, + "end": 22753.96, + "probability": 0.9353 + }, + { + "start": 22757.96, + "end": 22758.66, + "probability": 0.5994 + }, + { + "start": 22765.18, + "end": 22765.7, + "probability": 0.7722 + }, + { + "start": 22768.02, + "end": 22768.84, + "probability": 0.67 + }, + { + "start": 22769.84, + "end": 22773.56, + "probability": 0.4499 + }, + { + "start": 22777.1, + "end": 22779.02, + "probability": 0.8578 + }, + { + "start": 22779.66, + "end": 22780.06, + "probability": 0.8818 + }, + { + "start": 22782.18, + "end": 22783.0, + "probability": 0.9617 + }, + { + "start": 22783.8, + "end": 22784.2, + "probability": 0.966 + }, + { + "start": 22785.3, + "end": 22785.98, + "probability": 0.9933 + }, + { + "start": 22786.8, + "end": 22787.16, + "probability": 0.9816 + }, + { + "start": 22788.82, + "end": 22789.78, + "probability": 0.9916 + }, + { + "start": 22791.42, + "end": 22793.1, + "probability": 0.6687 + }, + { + "start": 22793.7, + "end": 22794.58, + "probability": 0.7578 + }, + { + "start": 22795.22, + "end": 22795.58, + "probability": 0.9671 + }, + { + "start": 22802.62, + "end": 22803.26, + "probability": 0.7925 + }, + { + "start": 22805.56, + "end": 22808.48, + "probability": 0.8081 + }, + { + "start": 22824.48, + "end": 22824.48, + "probability": 0.0148 + }, + { + "start": 22825.92, + "end": 22829.22, + "probability": 0.6604 + }, + { + "start": 22831.96, + "end": 22833.94, + "probability": 0.8772 + }, + { + "start": 22834.58, + "end": 22834.98, + "probability": 0.9793 + }, + { + "start": 22837.56, + "end": 22839.26, + "probability": 0.7632 + }, + { + "start": 22844.12, + "end": 22845.78, + "probability": 0.446 + }, + { + "start": 22848.98, + "end": 22849.76, + "probability": 0.3937 + }, + { + "start": 22855.72, + "end": 22856.7, + "probability": 0.4621 + }, + { + "start": 22858.04, + "end": 22859.62, + "probability": 0.495 + }, + { + "start": 22859.62, + "end": 22861.12, + "probability": 0.7087 + }, + { + "start": 22861.14, + "end": 22862.42, + "probability": 0.7791 + }, + { + "start": 22863.92, + "end": 22864.94, + "probability": 0.6841 + }, + { + "start": 22889.78, + "end": 22890.62, + "probability": 0.6034 + }, + { + "start": 22891.5, + "end": 22892.02, + "probability": 0.6999 + }, + { + "start": 22893.94, + "end": 22894.36, + "probability": 0.8185 + }, + { + "start": 22897.48, + "end": 22897.74, + "probability": 0.7778 + }, + { + "start": 22899.62, + "end": 22900.46, + "probability": 0.6109 + }, + { + "start": 22901.64, + "end": 22903.54, + "probability": 0.9858 + }, + { + "start": 22904.12, + "end": 22904.98, + "probability": 0.8464 + }, + { + "start": 22906.84, + "end": 22907.6, + "probability": 0.8531 + }, + { + "start": 22908.22, + "end": 22908.72, + "probability": 0.9003 + }, + { + "start": 22911.98, + "end": 22913.78, + "probability": 0.6382 + }, + { + "start": 22914.4, + "end": 22914.94, + "probability": 0.9922 + }, + { + "start": 22917.46, + "end": 22917.96, + "probability": 0.9734 + }, + { + "start": 22919.42, + "end": 22919.92, + "probability": 0.9959 + }, + { + "start": 22921.72, + "end": 22922.62, + "probability": 0.9258 + }, + { + "start": 22923.4, + "end": 22926.08, + "probability": 0.4779 + }, + { + "start": 22927.46, + "end": 22929.4, + "probability": 0.8258 + }, + { + "start": 22931.54, + "end": 22932.28, + "probability": 0.9096 + }, + { + "start": 22933.44, + "end": 22934.28, + "probability": 0.8516 + }, + { + "start": 22935.52, + "end": 22935.96, + "probability": 0.9779 + }, + { + "start": 22937.88, + "end": 22938.8, + "probability": 0.7415 + }, + { + "start": 22940.22, + "end": 22941.08, + "probability": 0.9818 + }, + { + "start": 22941.68, + "end": 22942.54, + "probability": 0.7515 + }, + { + "start": 22945.72, + "end": 22946.6, + "probability": 0.9203 + }, + { + "start": 22947.32, + "end": 22948.38, + "probability": 0.8396 + }, + { + "start": 22949.4, + "end": 22949.82, + "probability": 0.987 + }, + { + "start": 22952.32, + "end": 22953.0, + "probability": 0.9791 + }, + { + "start": 22954.24, + "end": 22954.6, + "probability": 0.9941 + }, + { + "start": 22957.3, + "end": 22958.28, + "probability": 0.7558 + }, + { + "start": 22958.8, + "end": 22959.48, + "probability": 0.7875 + }, + { + "start": 22960.04, + "end": 22960.94, + "probability": 0.7408 + }, + { + "start": 22961.64, + "end": 22962.22, + "probability": 0.9932 + }, + { + "start": 22963.76, + "end": 22964.54, + "probability": 0.706 + }, + { + "start": 22965.56, + "end": 22966.02, + "probability": 0.991 + }, + { + "start": 22968.28, + "end": 22969.4, + "probability": 0.9296 + }, + { + "start": 22970.82, + "end": 22971.62, + "probability": 0.921 + }, + { + "start": 22972.34, + "end": 22973.12, + "probability": 0.8628 + }, + { + "start": 22975.0, + "end": 22975.52, + "probability": 0.9959 + }, + { + "start": 22978.4, + "end": 22979.02, + "probability": 0.6326 + }, + { + "start": 22980.44, + "end": 22982.42, + "probability": 0.9871 + }, + { + "start": 22983.38, + "end": 22984.26, + "probability": 0.8202 + }, + { + "start": 22985.34, + "end": 22985.62, + "probability": 0.7694 + }, + { + "start": 22988.14, + "end": 22989.3, + "probability": 0.6925 + }, + { + "start": 22991.12, + "end": 22992.9, + "probability": 0.9904 + }, + { + "start": 22994.02, + "end": 22995.38, + "probability": 0.7677 + }, + { + "start": 22996.46, + "end": 22998.16, + "probability": 0.9795 + }, + { + "start": 22999.62, + "end": 23000.32, + "probability": 0.9795 + }, + { + "start": 23001.02, + "end": 23001.36, + "probability": 0.9607 + }, + { + "start": 23006.48, + "end": 23007.02, + "probability": 0.9778 + }, + { + "start": 23008.58, + "end": 23009.12, + "probability": 0.9178 + }, + { + "start": 23011.06, + "end": 23011.87, + "probability": 0.6972 + }, + { + "start": 23013.24, + "end": 23013.72, + "probability": 0.9878 + }, + { + "start": 23016.02, + "end": 23016.96, + "probability": 0.86 + }, + { + "start": 23017.82, + "end": 23018.08, + "probability": 0.7077 + }, + { + "start": 23020.86, + "end": 23021.6, + "probability": 0.621 + }, + { + "start": 23024.96, + "end": 23027.58, + "probability": 0.8565 + }, + { + "start": 23029.36, + "end": 23031.04, + "probability": 0.8365 + }, + { + "start": 23032.04, + "end": 23032.38, + "probability": 0.9894 + }, + { + "start": 23034.0, + "end": 23034.88, + "probability": 0.7639 + }, + { + "start": 23036.34, + "end": 23037.2, + "probability": 0.9832 + }, + { + "start": 23038.86, + "end": 23039.2, + "probability": 0.5572 + }, + { + "start": 23039.74, + "end": 23042.16, + "probability": 0.9786 + }, + { + "start": 23042.48, + "end": 23043.08, + "probability": 0.6377 + }, + { + "start": 23043.26, + "end": 23044.62, + "probability": 0.0727 + }, + { + "start": 23047.18, + "end": 23048.58, + "probability": 0.8511 + }, + { + "start": 23052.48, + "end": 23052.48, + "probability": 0.2394 + }, + { + "start": 23057.82, + "end": 23057.96, + "probability": 0.1267 + }, + { + "start": 23058.36, + "end": 23061.16, + "probability": 0.1289 + }, + { + "start": 23061.89, + "end": 23066.28, + "probability": 0.0272 + }, + { + "start": 23077.92, + "end": 23080.54, + "probability": 0.1142 + }, + { + "start": 23082.64, + "end": 23083.04, + "probability": 0.1316 + }, + { + "start": 23089.52, + "end": 23091.52, + "probability": 0.0965 + }, + { + "start": 23091.76, + "end": 23092.54, + "probability": 0.0629 + }, + { + "start": 23093.52, + "end": 23094.46, + "probability": 0.0121 + }, + { + "start": 23094.98, + "end": 23098.54, + "probability": 0.0713 + }, + { + "start": 23212.0, + "end": 23212.0, + "probability": 0.0 + }, + { + "start": 23212.22, + "end": 23212.76, + "probability": 0.036 + }, + { + "start": 23212.76, + "end": 23212.98, + "probability": 0.1181 + }, + { + "start": 23213.1, + "end": 23213.66, + "probability": 0.7533 + }, + { + "start": 23214.3, + "end": 23218.95, + "probability": 0.9781 + }, + { + "start": 23224.18, + "end": 23227.32, + "probability": 0.7194 + }, + { + "start": 23227.54, + "end": 23228.63, + "probability": 0.7659 + }, + { + "start": 23229.3, + "end": 23232.2, + "probability": 0.8309 + }, + { + "start": 23232.36, + "end": 23232.48, + "probability": 0.926 + }, + { + "start": 23234.1, + "end": 23235.1, + "probability": 0.5036 + }, + { + "start": 23235.16, + "end": 23236.58, + "probability": 0.9377 + }, + { + "start": 23238.9, + "end": 23239.56, + "probability": 0.8928 + }, + { + "start": 23246.24, + "end": 23246.86, + "probability": 0.0745 + }, + { + "start": 23246.99, + "end": 23247.48, + "probability": 0.0205 + }, + { + "start": 23248.16, + "end": 23249.7, + "probability": 0.1588 + }, + { + "start": 23250.72, + "end": 23251.74, + "probability": 0.0618 + }, + { + "start": 23253.32, + "end": 23254.7, + "probability": 0.604 + }, + { + "start": 23256.8, + "end": 23256.9, + "probability": 0.0859 + }, + { + "start": 23256.9, + "end": 23257.26, + "probability": 0.2383 + }, + { + "start": 23257.32, + "end": 23257.92, + "probability": 0.5951 + }, + { + "start": 23271.18, + "end": 23272.14, + "probability": 0.0498 + }, + { + "start": 23273.08, + "end": 23275.0, + "probability": 0.2362 + }, + { + "start": 23275.48, + "end": 23275.52, + "probability": 0.1704 + }, + { + "start": 23275.52, + "end": 23276.59, + "probability": 0.016 + }, + { + "start": 23276.66, + "end": 23276.7, + "probability": 0.2206 + }, + { + "start": 23276.7, + "end": 23277.44, + "probability": 0.075 + }, + { + "start": 23280.38, + "end": 23280.68, + "probability": 0.0252 + }, + { + "start": 23286.3, + "end": 23287.04, + "probability": 0.1713 + }, + { + "start": 23287.04, + "end": 23289.28, + "probability": 0.5775 + }, + { + "start": 23289.8, + "end": 23291.24, + "probability": 0.6884 + }, + { + "start": 23291.26, + "end": 23292.66, + "probability": 0.0204 + }, + { + "start": 23293.61, + "end": 23294.24, + "probability": 0.0257 + }, + { + "start": 23294.42, + "end": 23295.9, + "probability": 0.4188 + }, + { + "start": 23296.12, + "end": 23296.54, + "probability": 0.141 + }, + { + "start": 23301.2, + "end": 23302.32, + "probability": 0.2288 + }, + { + "start": 23304.6, + "end": 23307.76, + "probability": 0.0157 + }, + { + "start": 23308.41, + "end": 23309.14, + "probability": 0.0498 + }, + { + "start": 23309.18, + "end": 23309.56, + "probability": 0.0273 + }, + { + "start": 23309.56, + "end": 23310.36, + "probability": 0.0464 + }, + { + "start": 23310.36, + "end": 23310.78, + "probability": 0.3441 + }, + { + "start": 23311.54, + "end": 23312.98, + "probability": 0.404 + }, + { + "start": 23314.22, + "end": 23314.56, + "probability": 0.176 + }, + { + "start": 23315.46, + "end": 23316.72, + "probability": 0.0249 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.0, + "end": 23336.0, + "probability": 0.0 + }, + { + "start": 23336.26, + "end": 23338.7, + "probability": 0.0551 + }, + { + "start": 23338.7, + "end": 23340.24, + "probability": 0.3028 + }, + { + "start": 23340.32, + "end": 23340.32, + "probability": 0.0858 + }, + { + "start": 23340.32, + "end": 23342.07, + "probability": 0.122 + }, + { + "start": 23343.88, + "end": 23347.08, + "probability": 0.3802 + }, + { + "start": 23347.62, + "end": 23350.7, + "probability": 0.2082 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.0, + "end": 23467.0, + "probability": 0.0 + }, + { + "start": 23467.68, + "end": 23472.0, + "probability": 0.7457 + }, + { + "start": 23472.74, + "end": 23477.26, + "probability": 0.9546 + }, + { + "start": 23477.68, + "end": 23479.0, + "probability": 0.9111 + }, + { + "start": 23479.54, + "end": 23484.06, + "probability": 0.9766 + }, + { + "start": 23484.06, + "end": 23487.82, + "probability": 0.9958 + }, + { + "start": 23487.86, + "end": 23490.06, + "probability": 0.9375 + }, + { + "start": 23490.28, + "end": 23492.54, + "probability": 0.97 + }, + { + "start": 23493.7, + "end": 23498.0, + "probability": 0.9879 + }, + { + "start": 23498.8, + "end": 23502.54, + "probability": 0.9393 + }, + { + "start": 23503.06, + "end": 23505.12, + "probability": 0.7542 + }, + { + "start": 23505.36, + "end": 23511.84, + "probability": 0.9121 + }, + { + "start": 23511.96, + "end": 23512.68, + "probability": 0.6842 + }, + { + "start": 23513.18, + "end": 23518.28, + "probability": 0.9812 + }, + { + "start": 23519.64, + "end": 23523.18, + "probability": 0.9592 + }, + { + "start": 23523.36, + "end": 23523.98, + "probability": 0.8342 + }, + { + "start": 23524.04, + "end": 23526.5, + "probability": 0.96 + }, + { + "start": 23527.1, + "end": 23529.08, + "probability": 0.9976 + }, + { + "start": 23529.72, + "end": 23534.44, + "probability": 0.998 + }, + { + "start": 23535.02, + "end": 23538.48, + "probability": 0.9453 + }, + { + "start": 23538.48, + "end": 23541.64, + "probability": 0.999 + }, + { + "start": 23542.16, + "end": 23542.78, + "probability": 0.6986 + }, + { + "start": 23542.92, + "end": 23543.3, + "probability": 0.6181 + }, + { + "start": 23543.42, + "end": 23546.22, + "probability": 0.9779 + }, + { + "start": 23546.22, + "end": 23548.64, + "probability": 0.9973 + }, + { + "start": 23549.28, + "end": 23551.58, + "probability": 0.9083 + }, + { + "start": 23552.16, + "end": 23554.92, + "probability": 0.9072 + }, + { + "start": 23555.54, + "end": 23556.7, + "probability": 0.7587 + }, + { + "start": 23556.92, + "end": 23558.06, + "probability": 0.9334 + }, + { + "start": 23558.68, + "end": 23560.1, + "probability": 0.9822 + }, + { + "start": 23560.32, + "end": 23563.16, + "probability": 0.9878 + }, + { + "start": 23563.2, + "end": 23565.08, + "probability": 0.8785 + }, + { + "start": 23565.68, + "end": 23571.72, + "probability": 0.948 + }, + { + "start": 23572.06, + "end": 23575.32, + "probability": 0.9927 + }, + { + "start": 23575.46, + "end": 23578.54, + "probability": 0.8841 + }, + { + "start": 23579.04, + "end": 23582.44, + "probability": 0.9304 + }, + { + "start": 23583.06, + "end": 23586.7, + "probability": 0.9449 + }, + { + "start": 23587.52, + "end": 23587.82, + "probability": 0.2329 + }, + { + "start": 23588.08, + "end": 23592.04, + "probability": 0.4063 + }, + { + "start": 23592.14, + "end": 23594.2, + "probability": 0.9427 + }, + { + "start": 23594.28, + "end": 23595.62, + "probability": 0.478 + }, + { + "start": 23595.62, + "end": 23601.0, + "probability": 0.8476 + }, + { + "start": 23601.32, + "end": 23605.44, + "probability": 0.9209 + }, + { + "start": 23605.44, + "end": 23606.42, + "probability": 0.7614 + }, + { + "start": 23606.78, + "end": 23607.64, + "probability": 0.734 + }, + { + "start": 23608.39, + "end": 23613.16, + "probability": 0.9312 + }, + { + "start": 23613.2, + "end": 23614.3, + "probability": 0.7538 + }, + { + "start": 23614.64, + "end": 23614.8, + "probability": 0.7518 + }, + { + "start": 23614.8, + "end": 23614.8, + "probability": 0.7153 + }, + { + "start": 23614.8, + "end": 23628.18, + "probability": 0.3431 + }, + { + "start": 23628.92, + "end": 23630.04, + "probability": 0.0326 + }, + { + "start": 23633.04, + "end": 23635.86, + "probability": 0.9949 + }, + { + "start": 23640.62, + "end": 23642.84, + "probability": 0.7612 + }, + { + "start": 23643.28, + "end": 23644.74, + "probability": 0.4398 + }, + { + "start": 23644.74, + "end": 23648.24, + "probability": 0.645 + }, + { + "start": 23648.6, + "end": 23648.74, + "probability": 0.4805 + }, + { + "start": 23648.88, + "end": 23650.1, + "probability": 0.1469 + }, + { + "start": 23651.14, + "end": 23653.0, + "probability": 0.7834 + }, + { + "start": 23653.06, + "end": 23653.62, + "probability": 0.9934 + }, + { + "start": 23654.38, + "end": 23655.78, + "probability": 0.4157 + }, + { + "start": 23655.78, + "end": 23656.54, + "probability": 0.4493 + }, + { + "start": 23657.31, + "end": 23660.5, + "probability": 0.5024 + }, + { + "start": 23660.5, + "end": 23662.35, + "probability": 0.5941 + }, + { + "start": 23663.12, + "end": 23664.52, + "probability": 0.5331 + }, + { + "start": 23664.58, + "end": 23665.38, + "probability": 0.7325 + }, + { + "start": 23665.54, + "end": 23665.66, + "probability": 0.4573 + }, + { + "start": 23666.28, + "end": 23666.9, + "probability": 0.176 + }, + { + "start": 23666.9, + "end": 23667.4, + "probability": 0.3932 + }, + { + "start": 23667.44, + "end": 23669.07, + "probability": 0.2067 + }, + { + "start": 23669.78, + "end": 23670.32, + "probability": 0.6202 + }, + { + "start": 23671.04, + "end": 23671.52, + "probability": 0.5418 + }, + { + "start": 23672.42, + "end": 23672.66, + "probability": 0.5179 + }, + { + "start": 23672.66, + "end": 23674.52, + "probability": 0.4657 + }, + { + "start": 23675.04, + "end": 23677.89, + "probability": 0.4105 + }, + { + "start": 23678.14, + "end": 23680.24, + "probability": 0.4442 + }, + { + "start": 23680.44, + "end": 23680.6, + "probability": 0.0794 + }, + { + "start": 23680.6, + "end": 23681.86, + "probability": 0.1325 + }, + { + "start": 23682.02, + "end": 23683.8, + "probability": 0.4043 + }, + { + "start": 23683.88, + "end": 23685.08, + "probability": 0.0544 + }, + { + "start": 23685.08, + "end": 23685.08, + "probability": 0.0739 + }, + { + "start": 23685.08, + "end": 23686.98, + "probability": 0.9508 + }, + { + "start": 23687.44, + "end": 23688.7, + "probability": 0.7399 + }, + { + "start": 23688.84, + "end": 23688.84, + "probability": 0.2429 + }, + { + "start": 23688.84, + "end": 23691.01, + "probability": 0.9512 + }, + { + "start": 23691.4, + "end": 23693.38, + "probability": 0.9646 + }, + { + "start": 23694.08, + "end": 23695.02, + "probability": 0.7595 + }, + { + "start": 23695.48, + "end": 23696.54, + "probability": 0.8158 + }, + { + "start": 23696.94, + "end": 23701.0, + "probability": 0.9676 + }, + { + "start": 23701.26, + "end": 23702.8, + "probability": 0.9098 + }, + { + "start": 23703.68, + "end": 23706.82, + "probability": 0.758 + }, + { + "start": 23707.34, + "end": 23708.74, + "probability": 0.999 + }, + { + "start": 23709.08, + "end": 23714.66, + "probability": 0.9973 + }, + { + "start": 23715.16, + "end": 23716.22, + "probability": 0.7523 + }, + { + "start": 23716.34, + "end": 23718.76, + "probability": 0.9919 + }, + { + "start": 23719.18, + "end": 23723.42, + "probability": 0.9807 + }, + { + "start": 23724.34, + "end": 23726.16, + "probability": 0.9977 + }, + { + "start": 23726.22, + "end": 23726.74, + "probability": 0.6057 + }, + { + "start": 23727.08, + "end": 23730.96, + "probability": 0.9039 + }, + { + "start": 23731.5, + "end": 23736.08, + "probability": 0.8821 + }, + { + "start": 23736.12, + "end": 23736.8, + "probability": 0.7118 + }, + { + "start": 23737.12, + "end": 23738.62, + "probability": 0.9729 + }, + { + "start": 23739.76, + "end": 23742.04, + "probability": 0.7891 + }, + { + "start": 23742.48, + "end": 23743.0, + "probability": 0.1959 + }, + { + "start": 23743.08, + "end": 23743.08, + "probability": 0.4812 + }, + { + "start": 23743.16, + "end": 23746.76, + "probability": 0.8516 + }, + { + "start": 23747.66, + "end": 23749.26, + "probability": 0.9755 + }, + { + "start": 23749.3, + "end": 23752.06, + "probability": 0.8359 + }, + { + "start": 23752.56, + "end": 23754.76, + "probability": 0.3489 + }, + { + "start": 23754.76, + "end": 23755.26, + "probability": 0.2867 + }, + { + "start": 23755.26, + "end": 23755.26, + "probability": 0.6201 + }, + { + "start": 23755.26, + "end": 23756.56, + "probability": 0.8003 + }, + { + "start": 23757.86, + "end": 23764.26, + "probability": 0.7323 + }, + { + "start": 23770.42, + "end": 23774.88, + "probability": 0.3192 + }, + { + "start": 23774.88, + "end": 23775.04, + "probability": 0.017 + }, + { + "start": 23775.04, + "end": 23775.04, + "probability": 0.6035 + }, + { + "start": 23775.04, + "end": 23775.24, + "probability": 0.1621 + }, + { + "start": 23775.24, + "end": 23777.58, + "probability": 0.3913 + }, + { + "start": 23777.82, + "end": 23777.92, + "probability": 0.048 + }, + { + "start": 23777.92, + "end": 23777.92, + "probability": 0.0443 + }, + { + "start": 23777.92, + "end": 23777.92, + "probability": 0.0766 + }, + { + "start": 23777.92, + "end": 23777.92, + "probability": 0.0381 + }, + { + "start": 23777.92, + "end": 23781.98, + "probability": 0.825 + }, + { + "start": 23782.66, + "end": 23784.02, + "probability": 0.9186 + }, + { + "start": 23784.14, + "end": 23786.98, + "probability": 0.8378 + }, + { + "start": 23786.98, + "end": 23789.36, + "probability": 0.9943 + }, + { + "start": 23789.74, + "end": 23790.4, + "probability": 0.6329 + }, + { + "start": 23790.62, + "end": 23793.38, + "probability": 0.9897 + }, + { + "start": 23793.64, + "end": 23794.42, + "probability": 0.9346 + }, + { + "start": 23795.46, + "end": 23799.52, + "probability": 0.7243 + }, + { + "start": 23800.28, + "end": 23801.58, + "probability": 0.6305 + }, + { + "start": 23801.68, + "end": 23802.02, + "probability": 0.6714 + }, + { + "start": 23802.66, + "end": 23803.64, + "probability": 0.6059 + }, + { + "start": 23803.8, + "end": 23804.56, + "probability": 0.842 + }, + { + "start": 23804.72, + "end": 23805.76, + "probability": 0.9338 + }, + { + "start": 23805.98, + "end": 23807.28, + "probability": 0.7915 + }, + { + "start": 23808.02, + "end": 23811.3, + "probability": 0.5106 + }, + { + "start": 23811.3, + "end": 23815.12, + "probability": 0.925 + }, + { + "start": 23815.24, + "end": 23816.6, + "probability": 0.9941 + }, + { + "start": 23817.52, + "end": 23821.14, + "probability": 0.9881 + }, + { + "start": 23821.3, + "end": 23821.76, + "probability": 0.9238 + }, + { + "start": 23821.94, + "end": 23823.1, + "probability": 0.9962 + }, + { + "start": 23823.68, + "end": 23824.42, + "probability": 0.9443 + }, + { + "start": 23825.22, + "end": 23826.34, + "probability": 0.9078 + }, + { + "start": 23826.38, + "end": 23829.44, + "probability": 0.4217 + }, + { + "start": 23829.96, + "end": 23831.24, + "probability": 0.9966 + }, + { + "start": 23831.66, + "end": 23833.1, + "probability": 0.9983 + }, + { + "start": 23833.26, + "end": 23833.98, + "probability": 0.6501 + }, + { + "start": 23834.82, + "end": 23836.92, + "probability": 0.97 + }, + { + "start": 23837.0, + "end": 23839.52, + "probability": 0.936 + }, + { + "start": 23840.0, + "end": 23842.54, + "probability": 0.9864 + }, + { + "start": 23842.54, + "end": 23846.04, + "probability": 0.9985 + }, + { + "start": 23846.4, + "end": 23848.48, + "probability": 0.9776 + }, + { + "start": 23849.02, + "end": 23849.24, + "probability": 0.3957 + }, + { + "start": 23849.32, + "end": 23851.02, + "probability": 0.9961 + }, + { + "start": 23851.3, + "end": 23852.56, + "probability": 0.9795 + }, + { + "start": 23852.9, + "end": 23853.98, + "probability": 0.9826 + }, + { + "start": 23854.04, + "end": 23856.72, + "probability": 0.9457 + }, + { + "start": 23856.72, + "end": 23858.28, + "probability": 0.9741 + }, + { + "start": 23860.52, + "end": 23860.82, + "probability": 0.7322 + }, + { + "start": 23862.14, + "end": 23863.74, + "probability": 0.9187 + }, + { + "start": 23867.4, + "end": 23870.02, + "probability": 0.4883 + }, + { + "start": 23871.74, + "end": 23875.02, + "probability": 0.9158 + }, + { + "start": 23878.28, + "end": 23878.72, + "probability": 0.3716 + }, + { + "start": 23889.36, + "end": 23903.92, + "probability": 0.7526 + }, + { + "start": 23904.6, + "end": 23908.58, + "probability": 0.756 + }, + { + "start": 23909.86, + "end": 23912.82, + "probability": 0.6278 + }, + { + "start": 23912.98, + "end": 23913.94, + "probability": 0.7371 + }, + { + "start": 23913.94, + "end": 23917.16, + "probability": 0.9927 + }, + { + "start": 23917.92, + "end": 23919.48, + "probability": 0.9874 + }, + { + "start": 23920.08, + "end": 23923.68, + "probability": 0.9727 + }, + { + "start": 23923.78, + "end": 23926.7, + "probability": 0.6554 + }, + { + "start": 23926.78, + "end": 23930.84, + "probability": 0.9858 + }, + { + "start": 23931.0, + "end": 23933.32, + "probability": 0.9908 + }, + { + "start": 23934.72, + "end": 23936.96, + "probability": 0.9001 + }, + { + "start": 23937.2, + "end": 23940.52, + "probability": 0.9953 + }, + { + "start": 23940.52, + "end": 23943.66, + "probability": 0.6689 + }, + { + "start": 23943.82, + "end": 23944.04, + "probability": 0.792 + }, + { + "start": 23944.14, + "end": 23945.92, + "probability": 0.6724 + }, + { + "start": 23947.72, + "end": 23951.28, + "probability": 0.9119 + }, + { + "start": 23951.54, + "end": 23953.7, + "probability": 0.9924 + }, + { + "start": 23953.92, + "end": 23956.44, + "probability": 0.9905 + }, + { + "start": 23956.98, + "end": 23961.0, + "probability": 0.9941 + }, + { + "start": 23961.28, + "end": 23962.38, + "probability": 0.7413 + }, + { + "start": 23962.54, + "end": 23963.48, + "probability": 0.9412 + }, + { + "start": 23963.98, + "end": 23967.14, + "probability": 0.9784 + }, + { + "start": 23967.2, + "end": 23971.46, + "probability": 0.859 + }, + { + "start": 23972.3, + "end": 23976.16, + "probability": 0.8613 + }, + { + "start": 23976.18, + "end": 23976.62, + "probability": 0.8305 + }, + { + "start": 23977.14, + "end": 23978.3, + "probability": 0.9521 + }, + { + "start": 23978.48, + "end": 23979.44, + "probability": 0.7967 + }, + { + "start": 23979.54, + "end": 23988.37, + "probability": 0.7274 + }, + { + "start": 23989.08, + "end": 23989.38, + "probability": 0.6244 + }, + { + "start": 23989.92, + "end": 23990.5, + "probability": 0.6045 + }, + { + "start": 23991.86, + "end": 23992.54, + "probability": 0.4293 + }, + { + "start": 23992.54, + "end": 23992.74, + "probability": 0.2693 + }, + { + "start": 23992.96, + "end": 23993.9, + "probability": 0.5052 + }, + { + "start": 23994.02, + "end": 23997.48, + "probability": 0.7847 + }, + { + "start": 23997.62, + "end": 23999.66, + "probability": 0.9857 + }, + { + "start": 23999.7, + "end": 24001.38, + "probability": 0.4796 + }, + { + "start": 24001.58, + "end": 24002.74, + "probability": 0.7006 + }, + { + "start": 24002.9, + "end": 24003.66, + "probability": 0.88 + }, + { + "start": 24004.02, + "end": 24006.04, + "probability": 0.6822 + }, + { + "start": 24006.06, + "end": 24006.68, + "probability": 0.4984 + }, + { + "start": 24006.76, + "end": 24008.8, + "probability": 0.4438 + }, + { + "start": 24008.8, + "end": 24010.18, + "probability": 0.3268 + }, + { + "start": 24010.95, + "end": 24013.14, + "probability": 0.6217 + }, + { + "start": 24013.2, + "end": 24015.58, + "probability": 0.7185 + }, + { + "start": 24016.4, + "end": 24017.54, + "probability": 0.9597 + }, + { + "start": 24017.9, + "end": 24019.2, + "probability": 0.1799 + }, + { + "start": 24019.26, + "end": 24019.36, + "probability": 0.1647 + }, + { + "start": 24019.36, + "end": 24021.7, + "probability": 0.8473 + }, + { + "start": 24021.76, + "end": 24024.6, + "probability": 0.9146 + }, + { + "start": 24024.76, + "end": 24025.84, + "probability": 0.183 + }, + { + "start": 24027.74, + "end": 24027.82, + "probability": 0.0212 + }, + { + "start": 24027.82, + "end": 24028.82, + "probability": 0.0484 + }, + { + "start": 24029.96, + "end": 24030.68, + "probability": 0.8021 + }, + { + "start": 24030.82, + "end": 24033.32, + "probability": 0.8069 + }, + { + "start": 24033.38, + "end": 24034.18, + "probability": 0.9308 + }, + { + "start": 24036.39, + "end": 24041.12, + "probability": 0.9717 + }, + { + "start": 24042.09, + "end": 24048.58, + "probability": 0.9983 + }, + { + "start": 24049.44, + "end": 24050.56, + "probability": 0.9772 + }, + { + "start": 24050.82, + "end": 24054.35, + "probability": 0.7517 + }, + { + "start": 24056.0, + "end": 24056.0, + "probability": 0.4786 + }, + { + "start": 24056.0, + "end": 24057.94, + "probability": 0.0391 + }, + { + "start": 24058.42, + "end": 24060.16, + "probability": 0.5734 + }, + { + "start": 24060.18, + "end": 24061.09, + "probability": 0.5181 + }, + { + "start": 24061.48, + "end": 24062.84, + "probability": 0.2238 + }, + { + "start": 24063.62, + "end": 24064.38, + "probability": 0.5174 + }, + { + "start": 24064.56, + "end": 24065.33, + "probability": 0.5137 + }, + { + "start": 24065.54, + "end": 24066.72, + "probability": 0.6302 + }, + { + "start": 24066.94, + "end": 24068.84, + "probability": 0.5671 + }, + { + "start": 24069.54, + "end": 24071.06, + "probability": 0.8242 + }, + { + "start": 24071.22, + "end": 24074.7, + "probability": 0.7109 + }, + { + "start": 24074.92, + "end": 24076.56, + "probability": 0.7329 + }, + { + "start": 24076.64, + "end": 24078.34, + "probability": 0.6521 + }, + { + "start": 24078.62, + "end": 24078.82, + "probability": 0.521 + }, + { + "start": 24079.26, + "end": 24079.94, + "probability": 0.5329 + }, + { + "start": 24080.08, + "end": 24081.28, + "probability": 0.5616 + }, + { + "start": 24081.74, + "end": 24083.3, + "probability": 0.2421 + }, + { + "start": 24083.42, + "end": 24083.9, + "probability": 0.1324 + }, + { + "start": 24084.83, + "end": 24086.7, + "probability": 0.4411 + }, + { + "start": 24086.78, + "end": 24087.44, + "probability": 0.2523 + }, + { + "start": 24087.58, + "end": 24087.84, + "probability": 0.5141 + }, + { + "start": 24088.0, + "end": 24090.94, + "probability": 0.5183 + }, + { + "start": 24090.96, + "end": 24092.58, + "probability": 0.8035 + }, + { + "start": 24092.72, + "end": 24094.74, + "probability": 0.9905 + }, + { + "start": 24094.92, + "end": 24095.9, + "probability": 0.8994 + }, + { + "start": 24095.98, + "end": 24097.42, + "probability": 0.9575 + }, + { + "start": 24097.44, + "end": 24100.85, + "probability": 0.2229 + }, + { + "start": 24101.88, + "end": 24102.74, + "probability": 0.4184 + }, + { + "start": 24102.82, + "end": 24103.78, + "probability": 0.8086 + }, + { + "start": 24103.92, + "end": 24105.82, + "probability": 0.8016 + }, + { + "start": 24106.0, + "end": 24108.16, + "probability": 0.7772 + }, + { + "start": 24108.22, + "end": 24109.58, + "probability": 0.6006 + }, + { + "start": 24110.18, + "end": 24112.68, + "probability": 0.7786 + }, + { + "start": 24113.1, + "end": 24115.12, + "probability": 0.7969 + }, + { + "start": 24115.74, + "end": 24116.58, + "probability": 0.7921 + }, + { + "start": 24116.74, + "end": 24118.56, + "probability": 0.6049 + }, + { + "start": 24118.72, + "end": 24119.3, + "probability": 0.7837 + }, + { + "start": 24119.3, + "end": 24125.6, + "probability": 0.9896 + }, + { + "start": 24125.68, + "end": 24126.34, + "probability": 0.6868 + }, + { + "start": 24126.44, + "end": 24126.82, + "probability": 0.7437 + }, + { + "start": 24127.56, + "end": 24128.92, + "probability": 0.8258 + }, + { + "start": 24129.46, + "end": 24131.28, + "probability": 0.9932 + }, + { + "start": 24131.78, + "end": 24134.03, + "probability": 0.7812 + }, + { + "start": 24134.2, + "end": 24137.48, + "probability": 0.83 + }, + { + "start": 24137.5, + "end": 24138.76, + "probability": 0.9461 + }, + { + "start": 24138.84, + "end": 24141.06, + "probability": 0.9806 + }, + { + "start": 24141.34, + "end": 24142.56, + "probability": 0.649 + }, + { + "start": 24142.72, + "end": 24143.81, + "probability": 0.6051 + }, + { + "start": 24144.46, + "end": 24144.86, + "probability": 0.7959 + }, + { + "start": 24145.0, + "end": 24146.64, + "probability": 0.8194 + }, + { + "start": 24146.78, + "end": 24150.2, + "probability": 0.8445 + }, + { + "start": 24151.68, + "end": 24155.22, + "probability": 0.7663 + }, + { + "start": 24155.34, + "end": 24158.64, + "probability": 0.9814 + }, + { + "start": 24158.7, + "end": 24162.54, + "probability": 0.995 + }, + { + "start": 24162.7, + "end": 24166.4, + "probability": 0.9214 + }, + { + "start": 24166.82, + "end": 24168.16, + "probability": 0.8763 + }, + { + "start": 24168.38, + "end": 24170.8, + "probability": 0.9093 + }, + { + "start": 24171.32, + "end": 24174.74, + "probability": 0.9878 + }, + { + "start": 24175.44, + "end": 24175.46, + "probability": 0.0511 + }, + { + "start": 24175.46, + "end": 24177.36, + "probability": 0.7871 + }, + { + "start": 24177.64, + "end": 24178.46, + "probability": 0.446 + }, + { + "start": 24178.6, + "end": 24181.44, + "probability": 0.9534 + }, + { + "start": 24182.04, + "end": 24182.72, + "probability": 0.5248 + }, + { + "start": 24183.08, + "end": 24184.32, + "probability": 0.8412 + }, + { + "start": 24184.62, + "end": 24185.24, + "probability": 0.6324 + }, + { + "start": 24185.44, + "end": 24185.94, + "probability": 0.804 + }, + { + "start": 24186.16, + "end": 24186.54, + "probability": 0.7786 + }, + { + "start": 24186.56, + "end": 24187.04, + "probability": 0.9284 + }, + { + "start": 24187.34, + "end": 24190.6, + "probability": 0.9876 + }, + { + "start": 24190.78, + "end": 24192.6, + "probability": 0.8303 + }, + { + "start": 24193.14, + "end": 24193.76, + "probability": 0.9865 + }, + { + "start": 24194.96, + "end": 24197.08, + "probability": 0.7001 + }, + { + "start": 24197.68, + "end": 24198.02, + "probability": 0.6608 + }, + { + "start": 24198.16, + "end": 24203.54, + "probability": 0.9954 + }, + { + "start": 24203.86, + "end": 24205.3, + "probability": 0.9724 + }, + { + "start": 24205.48, + "end": 24207.82, + "probability": 0.9797 + }, + { + "start": 24208.02, + "end": 24210.06, + "probability": 0.9375 + }, + { + "start": 24210.22, + "end": 24211.57, + "probability": 0.8448 + }, + { + "start": 24211.8, + "end": 24213.42, + "probability": 0.7148 + }, + { + "start": 24215.02, + "end": 24216.98, + "probability": 0.6999 + }, + { + "start": 24217.22, + "end": 24218.34, + "probability": 0.9507 + }, + { + "start": 24219.34, + "end": 24220.52, + "probability": 0.8067 + }, + { + "start": 24220.54, + "end": 24222.44, + "probability": 0.9847 + }, + { + "start": 24222.44, + "end": 24223.9, + "probability": 0.8176 + }, + { + "start": 24224.12, + "end": 24225.2, + "probability": 0.5401 + }, + { + "start": 24225.68, + "end": 24227.54, + "probability": 0.9283 + }, + { + "start": 24227.62, + "end": 24229.02, + "probability": 0.9445 + }, + { + "start": 24229.54, + "end": 24230.0, + "probability": 0.7927 + }, + { + "start": 24230.5, + "end": 24230.8, + "probability": 0.8481 + }, + { + "start": 24232.56, + "end": 24233.86, + "probability": 0.8677 + }, + { + "start": 24243.74, + "end": 24244.48, + "probability": 0.557 + }, + { + "start": 24245.36, + "end": 24245.94, + "probability": 0.5744 + }, + { + "start": 24246.08, + "end": 24247.04, + "probability": 0.7507 + }, + { + "start": 24247.36, + "end": 24249.74, + "probability": 0.9936 + }, + { + "start": 24249.8, + "end": 24256.82, + "probability": 0.9944 + }, + { + "start": 24260.12, + "end": 24264.34, + "probability": 0.8929 + }, + { + "start": 24264.56, + "end": 24265.32, + "probability": 0.8693 + }, + { + "start": 24265.42, + "end": 24266.96, + "probability": 0.8095 + }, + { + "start": 24268.2, + "end": 24272.46, + "probability": 0.9459 + }, + { + "start": 24273.52, + "end": 24275.36, + "probability": 0.9954 + }, + { + "start": 24276.08, + "end": 24277.0, + "probability": 0.8469 + }, + { + "start": 24277.08, + "end": 24278.68, + "probability": 0.875 + }, + { + "start": 24278.8, + "end": 24280.52, + "probability": 0.998 + }, + { + "start": 24282.0, + "end": 24284.8, + "probability": 0.7709 + }, + { + "start": 24286.74, + "end": 24288.36, + "probability": 0.7938 + }, + { + "start": 24288.67, + "end": 24295.76, + "probability": 0.9513 + }, + { + "start": 24295.8, + "end": 24299.66, + "probability": 0.9189 + }, + { + "start": 24300.76, + "end": 24302.96, + "probability": 0.9843 + }, + { + "start": 24303.24, + "end": 24303.92, + "probability": 0.8846 + }, + { + "start": 24305.52, + "end": 24307.94, + "probability": 0.8953 + }, + { + "start": 24308.58, + "end": 24310.05, + "probability": 0.9252 + }, + { + "start": 24310.28, + "end": 24311.0, + "probability": 0.3156 + }, + { + "start": 24311.22, + "end": 24312.58, + "probability": 0.946 + }, + { + "start": 24313.24, + "end": 24314.3, + "probability": 0.8711 + }, + { + "start": 24314.92, + "end": 24317.18, + "probability": 0.8571 + }, + { + "start": 24317.94, + "end": 24320.84, + "probability": 0.9661 + }, + { + "start": 24321.44, + "end": 24322.18, + "probability": 0.748 + }, + { + "start": 24322.92, + "end": 24325.64, + "probability": 0.9877 + }, + { + "start": 24325.94, + "end": 24328.9, + "probability": 0.9819 + }, + { + "start": 24331.2, + "end": 24333.22, + "probability": 0.9988 + }, + { + "start": 24335.2, + "end": 24336.48, + "probability": 0.7873 + }, + { + "start": 24337.08, + "end": 24338.02, + "probability": 0.8139 + }, + { + "start": 24338.46, + "end": 24340.59, + "probability": 0.9709 + }, + { + "start": 24341.5, + "end": 24343.3, + "probability": 0.9775 + }, + { + "start": 24348.16, + "end": 24351.48, + "probability": 0.9989 + }, + { + "start": 24352.02, + "end": 24353.26, + "probability": 0.8639 + }, + { + "start": 24353.9, + "end": 24355.3, + "probability": 0.9795 + }, + { + "start": 24356.26, + "end": 24358.62, + "probability": 0.9985 + }, + { + "start": 24358.78, + "end": 24361.74, + "probability": 0.9968 + }, + { + "start": 24362.38, + "end": 24363.7, + "probability": 0.9908 + }, + { + "start": 24364.22, + "end": 24368.14, + "probability": 0.9816 + }, + { + "start": 24369.02, + "end": 24370.82, + "probability": 0.9882 + }, + { + "start": 24371.88, + "end": 24372.64, + "probability": 0.9265 + }, + { + "start": 24373.18, + "end": 24373.5, + "probability": 0.6972 + }, + { + "start": 24374.32, + "end": 24378.3, + "probability": 0.99 + }, + { + "start": 24378.9, + "end": 24379.98, + "probability": 0.9794 + }, + { + "start": 24381.2, + "end": 24382.76, + "probability": 0.7631 + }, + { + "start": 24383.94, + "end": 24386.4, + "probability": 0.9231 + }, + { + "start": 24387.44, + "end": 24390.04, + "probability": 0.9101 + }, + { + "start": 24390.2, + "end": 24392.04, + "probability": 0.9719 + }, + { + "start": 24392.62, + "end": 24394.6, + "probability": 0.9801 + }, + { + "start": 24395.58, + "end": 24397.9, + "probability": 0.9558 + }, + { + "start": 24398.9, + "end": 24400.96, + "probability": 0.9087 + }, + { + "start": 24401.68, + "end": 24402.92, + "probability": 0.9827 + }, + { + "start": 24403.1, + "end": 24407.3, + "probability": 0.963 + }, + { + "start": 24408.24, + "end": 24409.6, + "probability": 0.9792 + }, + { + "start": 24410.5, + "end": 24411.18, + "probability": 0.8092 + }, + { + "start": 24411.86, + "end": 24412.4, + "probability": 0.5931 + }, + { + "start": 24412.48, + "end": 24415.7, + "probability": 0.9409 + }, + { + "start": 24415.82, + "end": 24417.94, + "probability": 0.8505 + }, + { + "start": 24418.82, + "end": 24419.72, + "probability": 0.8592 + }, + { + "start": 24420.48, + "end": 24425.38, + "probability": 0.9963 + }, + { + "start": 24426.2, + "end": 24428.18, + "probability": 0.9644 + }, + { + "start": 24428.54, + "end": 24429.62, + "probability": 0.8247 + }, + { + "start": 24430.02, + "end": 24433.38, + "probability": 0.9323 + }, + { + "start": 24434.04, + "end": 24437.64, + "probability": 0.9879 + }, + { + "start": 24438.22, + "end": 24443.68, + "probability": 0.9984 + }, + { + "start": 24444.18, + "end": 24444.84, + "probability": 0.8548 + }, + { + "start": 24445.46, + "end": 24445.9, + "probability": 0.86 + }, + { + "start": 24448.3, + "end": 24449.74, + "probability": 0.9191 + }, + { + "start": 24464.48, + "end": 24466.74, + "probability": 0.5392 + }, + { + "start": 24468.0, + "end": 24468.81, + "probability": 0.7916 + }, + { + "start": 24468.94, + "end": 24470.88, + "probability": 0.9495 + }, + { + "start": 24472.68, + "end": 24473.84, + "probability": 0.9588 + }, + { + "start": 24475.32, + "end": 24476.74, + "probability": 0.9802 + }, + { + "start": 24477.46, + "end": 24477.66, + "probability": 0.9541 + }, + { + "start": 24478.5, + "end": 24479.0, + "probability": 0.9308 + }, + { + "start": 24479.84, + "end": 24481.08, + "probability": 0.9866 + }, + { + "start": 24482.26, + "end": 24485.34, + "probability": 0.9932 + }, + { + "start": 24485.46, + "end": 24487.0, + "probability": 0.6836 + }, + { + "start": 24487.62, + "end": 24491.5, + "probability": 0.7886 + }, + { + "start": 24491.76, + "end": 24495.54, + "probability": 0.9812 + }, + { + "start": 24495.62, + "end": 24496.66, + "probability": 0.9958 + }, + { + "start": 24497.76, + "end": 24498.4, + "probability": 0.8181 + }, + { + "start": 24500.26, + "end": 24501.38, + "probability": 0.8949 + }, + { + "start": 24502.6, + "end": 24504.76, + "probability": 0.7861 + }, + { + "start": 24506.06, + "end": 24508.12, + "probability": 0.9966 + }, + { + "start": 24508.2, + "end": 24509.4, + "probability": 0.929 + }, + { + "start": 24513.28, + "end": 24513.78, + "probability": 0.0868 + }, + { + "start": 24513.78, + "end": 24515.94, + "probability": 0.6683 + }, + { + "start": 24516.08, + "end": 24517.9, + "probability": 0.9935 + }, + { + "start": 24518.86, + "end": 24520.1, + "probability": 0.6899 + }, + { + "start": 24520.84, + "end": 24524.44, + "probability": 0.9851 + }, + { + "start": 24526.46, + "end": 24529.54, + "probability": 0.638 + }, + { + "start": 24530.22, + "end": 24533.68, + "probability": 0.9831 + }, + { + "start": 24534.44, + "end": 24536.14, + "probability": 0.7739 + }, + { + "start": 24537.4, + "end": 24541.76, + "probability": 0.9874 + }, + { + "start": 24542.96, + "end": 24546.34, + "probability": 0.9948 + }, + { + "start": 24548.24, + "end": 24554.02, + "probability": 0.9642 + }, + { + "start": 24554.46, + "end": 24555.72, + "probability": 0.9312 + }, + { + "start": 24555.98, + "end": 24558.78, + "probability": 0.9921 + }, + { + "start": 24559.74, + "end": 24562.9, + "probability": 0.7329 + }, + { + "start": 24563.9, + "end": 24564.84, + "probability": 0.7682 + }, + { + "start": 24565.96, + "end": 24569.2, + "probability": 0.8478 + }, + { + "start": 24572.06, + "end": 24572.06, + "probability": 0.0408 + }, + { + "start": 24572.06, + "end": 24573.24, + "probability": 0.9171 + }, + { + "start": 24574.74, + "end": 24578.26, + "probability": 0.9502 + }, + { + "start": 24578.26, + "end": 24581.64, + "probability": 0.9901 + }, + { + "start": 24582.54, + "end": 24583.68, + "probability": 0.9517 + }, + { + "start": 24584.74, + "end": 24586.3, + "probability": 0.7893 + }, + { + "start": 24586.54, + "end": 24588.58, + "probability": 0.7291 + }, + { + "start": 24589.64, + "end": 24591.0, + "probability": 0.872 + }, + { + "start": 24593.14, + "end": 24594.26, + "probability": 0.8911 + }, + { + "start": 24595.8, + "end": 24597.06, + "probability": 0.9672 + }, + { + "start": 24598.86, + "end": 24601.82, + "probability": 0.9326 + }, + { + "start": 24601.82, + "end": 24607.3, + "probability": 0.9772 + }, + { + "start": 24608.06, + "end": 24608.44, + "probability": 0.7593 + }, + { + "start": 24608.46, + "end": 24611.92, + "probability": 0.8113 + }, + { + "start": 24613.7, + "end": 24615.6, + "probability": 0.9984 + }, + { + "start": 24616.7, + "end": 24617.9, + "probability": 0.5947 + }, + { + "start": 24618.76, + "end": 24619.46, + "probability": 0.9839 + }, + { + "start": 24619.66, + "end": 24619.86, + "probability": 0.9431 + }, + { + "start": 24621.38, + "end": 24625.3, + "probability": 0.8398 + }, + { + "start": 24626.04, + "end": 24627.52, + "probability": 0.9222 + }, + { + "start": 24628.96, + "end": 24630.0, + "probability": 0.6933 + }, + { + "start": 24630.42, + "end": 24630.42, + "probability": 0.5269 + }, + { + "start": 24630.66, + "end": 24633.94, + "probability": 0.7062 + }, + { + "start": 24635.2, + "end": 24637.48, + "probability": 0.9529 + }, + { + "start": 24638.4, + "end": 24642.64, + "probability": 0.9451 + }, + { + "start": 24642.9, + "end": 24644.86, + "probability": 0.9587 + }, + { + "start": 24646.18, + "end": 24650.1, + "probability": 0.9041 + }, + { + "start": 24650.3, + "end": 24654.1, + "probability": 0.9914 + }, + { + "start": 24654.52, + "end": 24654.8, + "probability": 0.4639 + }, + { + "start": 24655.86, + "end": 24656.38, + "probability": 0.4943 + }, + { + "start": 24656.9, + "end": 24657.7, + "probability": 0.7178 + }, + { + "start": 24658.24, + "end": 24659.59, + "probability": 0.8945 + }, + { + "start": 24660.98, + "end": 24666.02, + "probability": 0.9868 + }, + { + "start": 24666.54, + "end": 24668.08, + "probability": 0.8713 + }, + { + "start": 24668.58, + "end": 24671.72, + "probability": 0.9688 + }, + { + "start": 24671.82, + "end": 24673.44, + "probability": 0.9419 + }, + { + "start": 24673.84, + "end": 24675.3, + "probability": 0.884 + }, + { + "start": 24676.14, + "end": 24678.38, + "probability": 0.7812 + }, + { + "start": 24678.44, + "end": 24678.82, + "probability": 0.1876 + }, + { + "start": 24679.16, + "end": 24679.24, + "probability": 0.1171 + }, + { + "start": 24679.24, + "end": 24680.18, + "probability": 0.9648 + }, + { + "start": 24681.69, + "end": 24684.16, + "probability": 0.9688 + }, + { + "start": 24684.82, + "end": 24686.78, + "probability": 0.5466 + }, + { + "start": 24687.38, + "end": 24688.13, + "probability": 0.8794 + }, + { + "start": 24688.28, + "end": 24690.26, + "probability": 0.8869 + }, + { + "start": 24690.48, + "end": 24690.68, + "probability": 0.8478 + }, + { + "start": 24694.52, + "end": 24697.82, + "probability": 0.7994 + }, + { + "start": 24698.04, + "end": 24699.46, + "probability": 0.1266 + }, + { + "start": 24700.06, + "end": 24701.22, + "probability": 0.2798 + }, + { + "start": 24704.16, + "end": 24704.44, + "probability": 0.2719 + }, + { + "start": 24705.84, + "end": 24706.23, + "probability": 0.4206 + }, + { + "start": 24712.06, + "end": 24713.58, + "probability": 0.5825 + }, + { + "start": 24713.68, + "end": 24714.8, + "probability": 0.6081 + }, + { + "start": 24715.42, + "end": 24716.16, + "probability": 0.881 + }, + { + "start": 24716.32, + "end": 24721.22, + "probability": 0.9853 + }, + { + "start": 24721.48, + "end": 24722.26, + "probability": 0.9648 + }, + { + "start": 24724.16, + "end": 24724.4, + "probability": 0.9484 + }, + { + "start": 24724.4, + "end": 24724.78, + "probability": 0.9503 + }, + { + "start": 24724.92, + "end": 24727.56, + "probability": 0.9902 + }, + { + "start": 24727.96, + "end": 24729.74, + "probability": 0.9518 + }, + { + "start": 24730.04, + "end": 24730.5, + "probability": 0.7843 + }, + { + "start": 24731.3, + "end": 24734.3, + "probability": 0.9951 + }, + { + "start": 24735.52, + "end": 24736.72, + "probability": 0.9691 + }, + { + "start": 24738.42, + "end": 24743.46, + "probability": 0.9546 + }, + { + "start": 24744.1, + "end": 24744.78, + "probability": 0.8087 + }, + { + "start": 24745.5, + "end": 24746.3, + "probability": 0.7261 + }, + { + "start": 24747.28, + "end": 24748.6, + "probability": 0.8949 + }, + { + "start": 24749.32, + "end": 24753.1, + "probability": 0.9146 + }, + { + "start": 24753.82, + "end": 24754.54, + "probability": 0.9889 + }, + { + "start": 24755.58, + "end": 24757.68, + "probability": 0.7179 + }, + { + "start": 24759.14, + "end": 24762.21, + "probability": 0.9959 + }, + { + "start": 24762.98, + "end": 24764.1, + "probability": 0.9611 + }, + { + "start": 24764.98, + "end": 24767.02, + "probability": 0.8815 + }, + { + "start": 24768.16, + "end": 24769.26, + "probability": 0.9272 + }, + { + "start": 24770.8, + "end": 24771.9, + "probability": 0.9907 + }, + { + "start": 24773.02, + "end": 24774.42, + "probability": 0.8784 + }, + { + "start": 24775.22, + "end": 24777.32, + "probability": 0.9719 + }, + { + "start": 24777.98, + "end": 24779.68, + "probability": 0.875 + }, + { + "start": 24781.38, + "end": 24783.2, + "probability": 0.7303 + }, + { + "start": 24784.16, + "end": 24784.56, + "probability": 0.9871 + }, + { + "start": 24785.28, + "end": 24786.94, + "probability": 0.8622 + }, + { + "start": 24787.88, + "end": 24790.34, + "probability": 0.8283 + }, + { + "start": 24790.96, + "end": 24795.8, + "probability": 0.9643 + }, + { + "start": 24797.38, + "end": 24800.81, + "probability": 0.9686 + }, + { + "start": 24802.1, + "end": 24805.18, + "probability": 0.1533 + }, + { + "start": 24805.18, + "end": 24809.58, + "probability": 0.9654 + }, + { + "start": 24810.76, + "end": 24812.26, + "probability": 0.8498 + }, + { + "start": 24812.34, + "end": 24815.9, + "probability": 0.9871 + }, + { + "start": 24816.52, + "end": 24821.6, + "probability": 0.9263 + }, + { + "start": 24822.12, + "end": 24823.0, + "probability": 0.5653 + }, + { + "start": 24823.56, + "end": 24825.7, + "probability": 0.9932 + }, + { + "start": 24827.66, + "end": 24829.44, + "probability": 0.9939 + }, + { + "start": 24831.36, + "end": 24835.64, + "probability": 0.9895 + }, + { + "start": 24835.64, + "end": 24839.56, + "probability": 0.9769 + }, + { + "start": 24840.88, + "end": 24845.31, + "probability": 0.9749 + }, + { + "start": 24846.72, + "end": 24849.68, + "probability": 0.9806 + }, + { + "start": 24850.72, + "end": 24852.42, + "probability": 0.9438 + }, + { + "start": 24853.2, + "end": 24853.82, + "probability": 0.6071 + }, + { + "start": 24855.2, + "end": 24856.58, + "probability": 0.9786 + }, + { + "start": 24857.56, + "end": 24858.48, + "probability": 0.979 + }, + { + "start": 24860.04, + "end": 24861.02, + "probability": 0.8621 + }, + { + "start": 24861.98, + "end": 24863.58, + "probability": 0.9914 + }, + { + "start": 24864.18, + "end": 24865.4, + "probability": 0.9915 + }, + { + "start": 24866.68, + "end": 24868.8, + "probability": 0.9543 + }, + { + "start": 24869.36, + "end": 24870.08, + "probability": 0.9106 + }, + { + "start": 24870.54, + "end": 24872.34, + "probability": 0.8919 + }, + { + "start": 24872.74, + "end": 24873.62, + "probability": 0.9146 + }, + { + "start": 24873.8, + "end": 24874.24, + "probability": 0.7464 + }, + { + "start": 24875.58, + "end": 24876.1, + "probability": 0.7027 + }, + { + "start": 24877.78, + "end": 24879.06, + "probability": 0.8838 + }, + { + "start": 24895.74, + "end": 24895.74, + "probability": 0.0247 + }, + { + "start": 24895.74, + "end": 24895.86, + "probability": 0.4653 + }, + { + "start": 24898.62, + "end": 24899.12, + "probability": 0.5512 + }, + { + "start": 24899.64, + "end": 24901.52, + "probability": 0.0054 + }, + { + "start": 24901.52, + "end": 24903.14, + "probability": 0.7284 + }, + { + "start": 24903.32, + "end": 24904.66, + "probability": 0.8407 + }, + { + "start": 24905.18, + "end": 24906.86, + "probability": 0.8601 + }, + { + "start": 24908.26, + "end": 24909.3, + "probability": 0.7821 + }, + { + "start": 24910.48, + "end": 24911.38, + "probability": 0.9885 + }, + { + "start": 24913.1, + "end": 24916.26, + "probability": 0.9907 + }, + { + "start": 24916.8, + "end": 24917.34, + "probability": 0.9303 + }, + { + "start": 24918.92, + "end": 24920.32, + "probability": 0.9706 + }, + { + "start": 24921.3, + "end": 24922.8, + "probability": 0.972 + }, + { + "start": 24924.26, + "end": 24925.82, + "probability": 0.9957 + }, + { + "start": 24926.54, + "end": 24929.54, + "probability": 0.9962 + }, + { + "start": 24930.1, + "end": 24932.05, + "probability": 0.9827 + }, + { + "start": 24932.92, + "end": 24935.7, + "probability": 0.8906 + }, + { + "start": 24936.26, + "end": 24942.48, + "probability": 0.9609 + }, + { + "start": 24943.42, + "end": 24944.21, + "probability": 0.8907 + }, + { + "start": 24944.98, + "end": 24948.0, + "probability": 0.9765 + }, + { + "start": 24948.98, + "end": 24951.38, + "probability": 0.9855 + }, + { + "start": 24952.14, + "end": 24952.98, + "probability": 0.6745 + }, + { + "start": 24953.64, + "end": 24955.9, + "probability": 0.996 + }, + { + "start": 24956.58, + "end": 24958.44, + "probability": 0.9771 + }, + { + "start": 24958.84, + "end": 24960.36, + "probability": 0.9814 + }, + { + "start": 24960.8, + "end": 24961.88, + "probability": 0.8298 + }, + { + "start": 24962.34, + "end": 24963.86, + "probability": 0.998 + }, + { + "start": 24965.18, + "end": 24967.14, + "probability": 0.86 + }, + { + "start": 24967.14, + "end": 24970.0, + "probability": 0.9983 + }, + { + "start": 24971.48, + "end": 24974.04, + "probability": 0.8789 + }, + { + "start": 24974.66, + "end": 24980.14, + "probability": 0.9558 + }, + { + "start": 24980.14, + "end": 24984.48, + "probability": 0.9986 + }, + { + "start": 24984.64, + "end": 24985.62, + "probability": 0.6849 + }, + { + "start": 24986.06, + "end": 24989.32, + "probability": 0.9941 + }, + { + "start": 24990.74, + "end": 24994.8, + "probability": 0.8243 + }, + { + "start": 24995.32, + "end": 24999.66, + "probability": 0.9979 + }, + { + "start": 25000.32, + "end": 25003.3, + "probability": 0.99 + }, + { + "start": 25005.06, + "end": 25006.12, + "probability": 0.5291 + }, + { + "start": 25006.12, + "end": 25007.06, + "probability": 0.7851 + }, + { + "start": 25007.48, + "end": 25008.53, + "probability": 0.7256 + }, + { + "start": 25009.14, + "end": 25014.5, + "probability": 0.9877 + }, + { + "start": 25015.04, + "end": 25016.2, + "probability": 0.9454 + }, + { + "start": 25017.38, + "end": 25019.1, + "probability": 0.9429 + }, + { + "start": 25020.5, + "end": 25025.82, + "probability": 0.9957 + }, + { + "start": 25027.0, + "end": 25028.86, + "probability": 0.9873 + }, + { + "start": 25029.44, + "end": 25032.88, + "probability": 0.9561 + }, + { + "start": 25033.34, + "end": 25034.68, + "probability": 0.9979 + }, + { + "start": 25035.18, + "end": 25037.12, + "probability": 0.9279 + }, + { + "start": 25037.7, + "end": 25038.9, + "probability": 0.8514 + }, + { + "start": 25039.18, + "end": 25043.26, + "probability": 0.9061 + }, + { + "start": 25044.0, + "end": 25049.34, + "probability": 0.9171 + }, + { + "start": 25050.24, + "end": 25053.24, + "probability": 0.9956 + }, + { + "start": 25053.74, + "end": 25055.02, + "probability": 0.8743 + }, + { + "start": 25055.54, + "end": 25058.18, + "probability": 0.9421 + }, + { + "start": 25058.53, + "end": 25060.46, + "probability": 0.9867 + }, + { + "start": 25061.4, + "end": 25065.54, + "probability": 0.9598 + }, + { + "start": 25066.68, + "end": 25068.98, + "probability": 0.9767 + }, + { + "start": 25069.58, + "end": 25070.3, + "probability": 0.941 + }, + { + "start": 25070.98, + "end": 25071.92, + "probability": 0.8978 + }, + { + "start": 25072.14, + "end": 25074.38, + "probability": 0.9888 + }, + { + "start": 25074.74, + "end": 25075.92, + "probability": 0.9043 + }, + { + "start": 25076.58, + "end": 25080.12, + "probability": 0.9943 + }, + { + "start": 25081.5, + "end": 25082.66, + "probability": 0.9086 + }, + { + "start": 25083.36, + "end": 25087.42, + "probability": 0.984 + }, + { + "start": 25087.42, + "end": 25089.98, + "probability": 0.9361 + }, + { + "start": 25090.08, + "end": 25090.32, + "probability": 0.713 + }, + { + "start": 25091.66, + "end": 25093.48, + "probability": 0.7987 + }, + { + "start": 25113.82, + "end": 25114.9, + "probability": 0.6669 + }, + { + "start": 25116.3, + "end": 25117.46, + "probability": 0.8106 + }, + { + "start": 25119.2, + "end": 25120.64, + "probability": 0.8778 + }, + { + "start": 25122.38, + "end": 25126.32, + "probability": 0.946 + }, + { + "start": 25128.64, + "end": 25130.62, + "probability": 0.9989 + }, + { + "start": 25133.56, + "end": 25138.16, + "probability": 0.7961 + }, + { + "start": 25140.54, + "end": 25141.54, + "probability": 0.5188 + }, + { + "start": 25143.12, + "end": 25144.56, + "probability": 0.8886 + }, + { + "start": 25144.82, + "end": 25145.5, + "probability": 0.8234 + }, + { + "start": 25145.76, + "end": 25146.58, + "probability": 0.8317 + }, + { + "start": 25147.0, + "end": 25147.12, + "probability": 0.2356 + }, + { + "start": 25147.9, + "end": 25151.74, + "probability": 0.5346 + }, + { + "start": 25151.96, + "end": 25152.58, + "probability": 0.5605 + }, + { + "start": 25153.4, + "end": 25156.22, + "probability": 0.9685 + }, + { + "start": 25156.94, + "end": 25158.5, + "probability": 0.2756 + }, + { + "start": 25158.96, + "end": 25159.98, + "probability": 0.9583 + }, + { + "start": 25160.54, + "end": 25161.18, + "probability": 0.5832 + }, + { + "start": 25162.5, + "end": 25163.46, + "probability": 0.9026 + }, + { + "start": 25164.28, + "end": 25165.4, + "probability": 0.8576 + }, + { + "start": 25166.04, + "end": 25167.1, + "probability": 0.9832 + }, + { + "start": 25167.74, + "end": 25168.36, + "probability": 0.6846 + }, + { + "start": 25168.48, + "end": 25168.92, + "probability": 0.6705 + }, + { + "start": 25169.4, + "end": 25169.9, + "probability": 0.6931 + }, + { + "start": 25171.72, + "end": 25173.18, + "probability": 0.9141 + }, + { + "start": 25173.98, + "end": 25175.26, + "probability": 0.9482 + }, + { + "start": 25177.62, + "end": 25180.08, + "probability": 0.9841 + }, + { + "start": 25181.46, + "end": 25185.26, + "probability": 0.9768 + }, + { + "start": 25185.66, + "end": 25186.74, + "probability": 0.9587 + }, + { + "start": 25187.36, + "end": 25189.96, + "probability": 0.9299 + }, + { + "start": 25190.34, + "end": 25192.73, + "probability": 0.9888 + }, + { + "start": 25192.9, + "end": 25195.32, + "probability": 0.9827 + }, + { + "start": 25195.88, + "end": 25199.66, + "probability": 0.9727 + }, + { + "start": 25200.34, + "end": 25203.34, + "probability": 0.9887 + }, + { + "start": 25203.72, + "end": 25205.7, + "probability": 0.9836 + }, + { + "start": 25207.84, + "end": 25208.78, + "probability": 0.7712 + }, + { + "start": 25211.08, + "end": 25211.98, + "probability": 0.8762 + }, + { + "start": 25213.16, + "end": 25214.96, + "probability": 0.876 + }, + { + "start": 25215.98, + "end": 25217.04, + "probability": 0.9343 + }, + { + "start": 25219.0, + "end": 25220.84, + "probability": 0.9996 + }, + { + "start": 25221.48, + "end": 25223.26, + "probability": 0.9803 + }, + { + "start": 25223.6, + "end": 25224.48, + "probability": 0.9862 + }, + { + "start": 25226.54, + "end": 25227.34, + "probability": 0.567 + }, + { + "start": 25228.28, + "end": 25230.62, + "probability": 0.9973 + }, + { + "start": 25231.46, + "end": 25233.92, + "probability": 0.8328 + }, + { + "start": 25234.38, + "end": 25238.18, + "probability": 0.9959 + }, + { + "start": 25239.5, + "end": 25240.98, + "probability": 0.6898 + }, + { + "start": 25242.68, + "end": 25246.2, + "probability": 0.9785 + }, + { + "start": 25247.24, + "end": 25250.8, + "probability": 0.9915 + }, + { + "start": 25251.5, + "end": 25254.0, + "probability": 0.9915 + }, + { + "start": 25254.18, + "end": 25255.36, + "probability": 0.8104 + }, + { + "start": 25260.16, + "end": 25260.56, + "probability": 0.799 + }, + { + "start": 25261.46, + "end": 25264.48, + "probability": 0.8431 + }, + { + "start": 25268.1, + "end": 25269.62, + "probability": 0.909 + }, + { + "start": 25271.66, + "end": 25272.5, + "probability": 0.832 + }, + { + "start": 25273.92, + "end": 25274.44, + "probability": 0.9188 + }, + { + "start": 25276.02, + "end": 25279.2, + "probability": 0.989 + }, + { + "start": 25282.76, + "end": 25283.54, + "probability": 0.8638 + }, + { + "start": 25284.5, + "end": 25287.78, + "probability": 0.8794 + }, + { + "start": 25289.64, + "end": 25293.32, + "probability": 0.1227 + }, + { + "start": 25293.36, + "end": 25293.48, + "probability": 0.0093 + }, + { + "start": 25305.52, + "end": 25308.7, + "probability": 0.1295 + }, + { + "start": 25308.7, + "end": 25309.06, + "probability": 0.4781 + }, + { + "start": 25309.51, + "end": 25309.58, + "probability": 0.865 + }, + { + "start": 25309.58, + "end": 25309.84, + "probability": 0.4592 + }, + { + "start": 25310.16, + "end": 25311.6, + "probability": 0.502 + }, + { + "start": 25312.58, + "end": 25313.7, + "probability": 0.9834 + }, + { + "start": 25313.8, + "end": 25317.62, + "probability": 0.954 + }, + { + "start": 25318.54, + "end": 25318.98, + "probability": 0.5838 + }, + { + "start": 25319.28, + "end": 25319.36, + "probability": 0.3116 + }, + { + "start": 25322.08, + "end": 25322.82, + "probability": 0.1603 + }, + { + "start": 25323.04, + "end": 25323.14, + "probability": 0.6857 + }, + { + "start": 25323.52, + "end": 25325.76, + "probability": 0.9915 + }, + { + "start": 25326.56, + "end": 25330.04, + "probability": 0.9436 + }, + { + "start": 25330.74, + "end": 25332.3, + "probability": 0.9341 + }, + { + "start": 25332.58, + "end": 25333.0, + "probability": 0.9616 + }, + { + "start": 25333.42, + "end": 25335.62, + "probability": 0.9897 + }, + { + "start": 25335.98, + "end": 25337.64, + "probability": 0.7018 + }, + { + "start": 25337.92, + "end": 25338.22, + "probability": 0.44 + }, + { + "start": 25338.84, + "end": 25342.78, + "probability": 0.9921 + }, + { + "start": 25343.28, + "end": 25344.64, + "probability": 0.5997 + }, + { + "start": 25344.96, + "end": 25346.16, + "probability": 0.9315 + }, + { + "start": 25346.32, + "end": 25346.84, + "probability": 0.4404 + }, + { + "start": 25346.86, + "end": 25349.3, + "probability": 0.951 + }, + { + "start": 25349.76, + "end": 25352.04, + "probability": 0.9829 + }, + { + "start": 25352.68, + "end": 25354.6, + "probability": 0.5408 + }, + { + "start": 25355.38, + "end": 25356.5, + "probability": 0.9762 + }, + { + "start": 25357.44, + "end": 25361.46, + "probability": 0.9792 + }, + { + "start": 25361.52, + "end": 25363.68, + "probability": 0.9974 + }, + { + "start": 25364.14, + "end": 25367.06, + "probability": 0.9527 + }, + { + "start": 25367.58, + "end": 25369.7, + "probability": 0.9974 + }, + { + "start": 25370.32, + "end": 25371.66, + "probability": 0.99 + }, + { + "start": 25372.04, + "end": 25375.02, + "probability": 0.9822 + }, + { + "start": 25375.16, + "end": 25375.9, + "probability": 0.9465 + }, + { + "start": 25376.16, + "end": 25380.06, + "probability": 0.9783 + }, + { + "start": 25381.74, + "end": 25386.48, + "probability": 0.9832 + }, + { + "start": 25388.44, + "end": 25388.96, + "probability": 0.6667 + }, + { + "start": 25389.06, + "end": 25390.42, + "probability": 0.8149 + }, + { + "start": 25390.66, + "end": 25390.9, + "probability": 0.3883 + }, + { + "start": 25391.02, + "end": 25393.66, + "probability": 0.9823 + }, + { + "start": 25394.66, + "end": 25396.5, + "probability": 0.9702 + }, + { + "start": 25397.5, + "end": 25399.0, + "probability": 0.9976 + }, + { + "start": 25399.06, + "end": 25401.34, + "probability": 0.9958 + }, + { + "start": 25402.42, + "end": 25404.22, + "probability": 0.9961 + }, + { + "start": 25404.82, + "end": 25406.62, + "probability": 0.9845 + }, + { + "start": 25407.48, + "end": 25409.14, + "probability": 0.9976 + }, + { + "start": 25409.24, + "end": 25410.28, + "probability": 0.9829 + }, + { + "start": 25410.84, + "end": 25411.78, + "probability": 0.83 + }, + { + "start": 25412.34, + "end": 25416.15, + "probability": 0.9623 + }, + { + "start": 25416.26, + "end": 25416.86, + "probability": 0.3943 + }, + { + "start": 25417.34, + "end": 25418.44, + "probability": 0.8484 + }, + { + "start": 25419.08, + "end": 25421.74, + "probability": 0.8853 + }, + { + "start": 25422.22, + "end": 25424.28, + "probability": 0.9629 + }, + { + "start": 25425.22, + "end": 25428.18, + "probability": 0.9504 + }, + { + "start": 25428.98, + "end": 25432.6, + "probability": 0.9803 + }, + { + "start": 25433.18, + "end": 25433.5, + "probability": 0.856 + }, + { + "start": 25434.38, + "end": 25435.84, + "probability": 0.8665 + }, + { + "start": 25436.58, + "end": 25438.02, + "probability": 0.9989 + }, + { + "start": 25438.6, + "end": 25441.32, + "probability": 0.9966 + }, + { + "start": 25442.04, + "end": 25442.8, + "probability": 0.6161 + }, + { + "start": 25443.66, + "end": 25444.46, + "probability": 0.9347 + }, + { + "start": 25445.02, + "end": 25445.58, + "probability": 0.8986 + }, + { + "start": 25447.5, + "end": 25449.0, + "probability": 0.8807 + }, + { + "start": 25450.16, + "end": 25452.2, + "probability": 0.9976 + }, + { + "start": 25452.98, + "end": 25456.14, + "probability": 0.9969 + }, + { + "start": 25456.14, + "end": 25460.18, + "probability": 0.9866 + }, + { + "start": 25460.52, + "end": 25461.5, + "probability": 0.9456 + }, + { + "start": 25461.8, + "end": 25463.02, + "probability": 0.9966 + }, + { + "start": 25463.64, + "end": 25466.84, + "probability": 0.5124 + }, + { + "start": 25466.84, + "end": 25471.46, + "probability": 0.9513 + }, + { + "start": 25471.58, + "end": 25473.16, + "probability": 0.7993 + }, + { + "start": 25474.06, + "end": 25474.42, + "probability": 0.869 + }, + { + "start": 25474.7, + "end": 25475.88, + "probability": 0.9363 + }, + { + "start": 25476.3, + "end": 25478.28, + "probability": 0.9805 + }, + { + "start": 25478.28, + "end": 25481.1, + "probability": 0.9999 + }, + { + "start": 25482.24, + "end": 25485.39, + "probability": 0.998 + }, + { + "start": 25486.94, + "end": 25491.82, + "probability": 0.9947 + }, + { + "start": 25492.46, + "end": 25493.3, + "probability": 0.8826 + }, + { + "start": 25494.1, + "end": 25494.74, + "probability": 0.3914 + }, + { + "start": 25495.46, + "end": 25500.48, + "probability": 0.9912 + }, + { + "start": 25500.94, + "end": 25502.74, + "probability": 0.9602 + }, + { + "start": 25503.18, + "end": 25505.88, + "probability": 0.9787 + }, + { + "start": 25506.4, + "end": 25510.74, + "probability": 0.9015 + }, + { + "start": 25511.26, + "end": 25514.22, + "probability": 0.9282 + }, + { + "start": 25514.62, + "end": 25516.16, + "probability": 0.849 + }, + { + "start": 25516.42, + "end": 25519.72, + "probability": 0.9878 + }, + { + "start": 25520.08, + "end": 25522.14, + "probability": 0.9763 + }, + { + "start": 25524.04, + "end": 25525.9, + "probability": 0.4937 + }, + { + "start": 25526.22, + "end": 25526.22, + "probability": 0.019 + }, + { + "start": 25526.22, + "end": 25526.22, + "probability": 0.2716 + }, + { + "start": 25526.22, + "end": 25530.12, + "probability": 0.9926 + }, + { + "start": 25530.58, + "end": 25531.18, + "probability": 0.7933 + }, + { + "start": 25531.58, + "end": 25534.46, + "probability": 0.7147 + }, + { + "start": 25534.82, + "end": 25535.9, + "probability": 0.9126 + }, + { + "start": 25553.18, + "end": 25553.18, + "probability": 0.0612 + }, + { + "start": 25553.18, + "end": 25554.34, + "probability": 0.3629 + }, + { + "start": 25555.28, + "end": 25558.24, + "probability": 0.993 + }, + { + "start": 25559.3, + "end": 25561.32, + "probability": 0.8346 + }, + { + "start": 25562.06, + "end": 25567.4, + "probability": 0.91 + }, + { + "start": 25569.44, + "end": 25571.86, + "probability": 0.9971 + }, + { + "start": 25572.44, + "end": 25574.08, + "probability": 0.9961 + }, + { + "start": 25574.64, + "end": 25577.26, + "probability": 0.993 + }, + { + "start": 25577.72, + "end": 25579.4, + "probability": 0.9816 + }, + { + "start": 25579.48, + "end": 25579.8, + "probability": 0.7299 + }, + { + "start": 25579.86, + "end": 25580.75, + "probability": 0.9685 + }, + { + "start": 25581.58, + "end": 25584.06, + "probability": 0.9991 + }, + { + "start": 25584.86, + "end": 25587.64, + "probability": 0.9963 + }, + { + "start": 25588.44, + "end": 25591.16, + "probability": 0.9299 + }, + { + "start": 25591.8, + "end": 25593.74, + "probability": 0.9814 + }, + { + "start": 25594.7, + "end": 25598.13, + "probability": 0.9741 + }, + { + "start": 25599.16, + "end": 25602.94, + "probability": 0.9667 + }, + { + "start": 25604.66, + "end": 25605.04, + "probability": 0.7783 + }, + { + "start": 25606.02, + "end": 25606.76, + "probability": 0.9619 + }, + { + "start": 25607.26, + "end": 25607.92, + "probability": 0.6299 + }, + { + "start": 25609.54, + "end": 25611.62, + "probability": 0.9193 + }, + { + "start": 25612.12, + "end": 25612.6, + "probability": 0.7652 + }, + { + "start": 25613.54, + "end": 25614.64, + "probability": 0.7776 + }, + { + "start": 25614.98, + "end": 25616.84, + "probability": 0.9781 + }, + { + "start": 25617.16, + "end": 25620.92, + "probability": 0.8718 + }, + { + "start": 25622.2, + "end": 25622.82, + "probability": 0.9738 + }, + { + "start": 25624.08, + "end": 25625.04, + "probability": 0.3117 + }, + { + "start": 25625.84, + "end": 25626.56, + "probability": 0.4283 + }, + { + "start": 25626.66, + "end": 25629.31, + "probability": 0.8736 + }, + { + "start": 25629.5, + "end": 25632.34, + "probability": 0.9546 + }, + { + "start": 25633.18, + "end": 25634.18, + "probability": 0.1919 + }, + { + "start": 25634.78, + "end": 25635.94, + "probability": 0.9288 + }, + { + "start": 25637.26, + "end": 25638.14, + "probability": 0.9738 + }, + { + "start": 25639.1, + "end": 25644.5, + "probability": 0.9813 + }, + { + "start": 25645.04, + "end": 25645.44, + "probability": 0.2506 + }, + { + "start": 25646.28, + "end": 25647.2, + "probability": 0.58 + }, + { + "start": 25648.12, + "end": 25648.52, + "probability": 0.6622 + }, + { + "start": 25649.48, + "end": 25654.36, + "probability": 0.9805 + }, + { + "start": 25654.56, + "end": 25655.16, + "probability": 0.8482 + }, + { + "start": 25656.2, + "end": 25656.72, + "probability": 0.8055 + }, + { + "start": 25657.82, + "end": 25658.7, + "probability": 0.9138 + }, + { + "start": 25658.86, + "end": 25661.22, + "probability": 0.9681 + }, + { + "start": 25661.6, + "end": 25662.06, + "probability": 0.2511 + }, + { + "start": 25663.42, + "end": 25665.26, + "probability": 0.9447 + }, + { + "start": 25665.94, + "end": 25669.1, + "probability": 0.9954 + }, + { + "start": 25670.44, + "end": 25671.74, + "probability": 0.6513 + }, + { + "start": 25672.44, + "end": 25673.58, + "probability": 0.9993 + }, + { + "start": 25674.38, + "end": 25675.22, + "probability": 0.6976 + }, + { + "start": 25675.6, + "end": 25676.92, + "probability": 0.9076 + }, + { + "start": 25677.0, + "end": 25680.08, + "probability": 0.9889 + }, + { + "start": 25680.98, + "end": 25681.6, + "probability": 0.5111 + }, + { + "start": 25682.6, + "end": 25683.72, + "probability": 0.8899 + }, + { + "start": 25684.88, + "end": 25685.3, + "probability": 0.6001 + }, + { + "start": 25686.24, + "end": 25687.16, + "probability": 0.6107 + }, + { + "start": 25687.26, + "end": 25688.42, + "probability": 0.85 + }, + { + "start": 25688.48, + "end": 25689.4, + "probability": 0.987 + }, + { + "start": 25689.56, + "end": 25691.13, + "probability": 0.9875 + }, + { + "start": 25691.66, + "end": 25693.46, + "probability": 0.9974 + }, + { + "start": 25693.84, + "end": 25694.3, + "probability": 0.3803 + }, + { + "start": 25694.94, + "end": 25695.46, + "probability": 0.5008 + }, + { + "start": 25696.44, + "end": 25697.6, + "probability": 0.9243 + }, + { + "start": 25697.92, + "end": 25698.34, + "probability": 0.7717 + }, + { + "start": 25698.68, + "end": 25700.0, + "probability": 0.9833 + }, + { + "start": 25700.4, + "end": 25702.56, + "probability": 0.9821 + }, + { + "start": 25703.04, + "end": 25703.66, + "probability": 0.7223 + }, + { + "start": 25704.24, + "end": 25707.4, + "probability": 0.9368 + }, + { + "start": 25708.38, + "end": 25710.0, + "probability": 0.9976 + }, + { + "start": 25710.76, + "end": 25714.64, + "probability": 0.9873 + }, + { + "start": 25715.18, + "end": 25715.28, + "probability": 0.5532 + }, + { + "start": 25716.24, + "end": 25716.86, + "probability": 0.919 + }, + { + "start": 25717.88, + "end": 25720.36, + "probability": 0.9966 + }, + { + "start": 25720.84, + "end": 25723.44, + "probability": 0.9976 + }, + { + "start": 25723.58, + "end": 25726.16, + "probability": 0.9927 + }, + { + "start": 25726.56, + "end": 25729.54, + "probability": 0.9903 + }, + { + "start": 25729.88, + "end": 25732.16, + "probability": 0.9847 + }, + { + "start": 25732.16, + "end": 25736.22, + "probability": 0.9954 + }, + { + "start": 25736.76, + "end": 25740.34, + "probability": 0.9986 + }, + { + "start": 25740.86, + "end": 25741.61, + "probability": 0.9922 + }, + { + "start": 25742.22, + "end": 25747.46, + "probability": 0.986 + }, + { + "start": 25748.02, + "end": 25750.84, + "probability": 0.9386 + }, + { + "start": 25751.06, + "end": 25751.44, + "probability": 0.7513 + }, + { + "start": 25752.12, + "end": 25753.7, + "probability": 0.4648 + }, + { + "start": 25754.68, + "end": 25756.88, + "probability": 0.1703 + }, + { + "start": 25756.88, + "end": 25759.24, + "probability": 0.0635 + }, + { + "start": 25759.24, + "end": 25761.24, + "probability": 0.9919 + }, + { + "start": 25761.42, + "end": 25764.48, + "probability": 0.7201 + }, + { + "start": 25765.02, + "end": 25768.56, + "probability": 0.959 + }, + { + "start": 25768.86, + "end": 25769.84, + "probability": 0.4168 + }, + { + "start": 25770.34, + "end": 25771.56, + "probability": 0.5222 + }, + { + "start": 25771.66, + "end": 25772.09, + "probability": 0.9121 + }, + { + "start": 25772.56, + "end": 25773.38, + "probability": 0.8541 + }, + { + "start": 25774.98, + "end": 25779.86, + "probability": 0.8894 + }, + { + "start": 25780.02, + "end": 25780.62, + "probability": 0.7382 + }, + { + "start": 25781.58, + "end": 25781.66, + "probability": 0.6943 + }, + { + "start": 25782.56, + "end": 25784.72, + "probability": 0.9945 + }, + { + "start": 25785.62, + "end": 25786.6, + "probability": 0.7163 + }, + { + "start": 25788.76, + "end": 25790.68, + "probability": 0.5786 + }, + { + "start": 25791.4, + "end": 25792.48, + "probability": 0.9801 + }, + { + "start": 25792.48, + "end": 25798.0, + "probability": 0.8715 + }, + { + "start": 25798.4, + "end": 25801.82, + "probability": 0.9203 + }, + { + "start": 25801.88, + "end": 25803.38, + "probability": 0.8886 + }, + { + "start": 25804.37, + "end": 25805.86, + "probability": 0.7455 + }, + { + "start": 25806.0, + "end": 25808.74, + "probability": 0.9974 + }, + { + "start": 25809.24, + "end": 25811.93, + "probability": 0.9287 + }, + { + "start": 25812.56, + "end": 25816.28, + "probability": 0.9725 + }, + { + "start": 25816.92, + "end": 25818.52, + "probability": 0.7605 + }, + { + "start": 25819.06, + "end": 25821.66, + "probability": 0.9364 + }, + { + "start": 25822.28, + "end": 25823.1, + "probability": 0.9094 + }, + { + "start": 25823.58, + "end": 25825.1, + "probability": 0.9603 + }, + { + "start": 25825.54, + "end": 25826.66, + "probability": 0.8017 + }, + { + "start": 25827.02, + "end": 25829.82, + "probability": 0.9772 + }, + { + "start": 25830.54, + "end": 25831.92, + "probability": 0.7568 + }, + { + "start": 25832.72, + "end": 25834.48, + "probability": 0.6282 + }, + { + "start": 25835.0, + "end": 25837.0, + "probability": 0.9711 + }, + { + "start": 25837.66, + "end": 25840.54, + "probability": 0.9951 + }, + { + "start": 25840.88, + "end": 25843.58, + "probability": 0.8154 + }, + { + "start": 25843.94, + "end": 25845.6, + "probability": 0.9587 + }, + { + "start": 25845.66, + "end": 25847.76, + "probability": 0.8269 + }, + { + "start": 25848.18, + "end": 25848.9, + "probability": 0.9578 + }, + { + "start": 25849.34, + "end": 25849.44, + "probability": 0.6162 + }, + { + "start": 25849.44, + "end": 25852.16, + "probability": 0.9951 + }, + { + "start": 25852.52, + "end": 25853.76, + "probability": 0.9588 + }, + { + "start": 25854.04, + "end": 25857.04, + "probability": 0.98 + }, + { + "start": 25857.14, + "end": 25859.08, + "probability": 0.9224 + }, + { + "start": 25859.4, + "end": 25859.7, + "probability": 0.8093 + }, + { + "start": 25861.1, + "end": 25863.04, + "probability": 0.9276 + }, + { + "start": 25863.24, + "end": 25866.38, + "probability": 0.9565 + }, + { + "start": 25872.4, + "end": 25874.22, + "probability": 0.5931 + }, + { + "start": 25874.72, + "end": 25875.72, + "probability": 0.4377 + }, + { + "start": 25875.92, + "end": 25877.1, + "probability": 0.9573 + }, + { + "start": 25877.22, + "end": 25881.18, + "probability": 0.837 + }, + { + "start": 25881.7, + "end": 25882.96, + "probability": 0.9666 + }, + { + "start": 25883.32, + "end": 25886.64, + "probability": 0.8525 + }, + { + "start": 25887.0, + "end": 25890.32, + "probability": 0.9293 + }, + { + "start": 25891.38, + "end": 25892.72, + "probability": 0.15 + }, + { + "start": 25894.14, + "end": 25897.6, + "probability": 0.5398 + }, + { + "start": 25898.2, + "end": 25899.08, + "probability": 0.635 + }, + { + "start": 25900.86, + "end": 25906.42, + "probability": 0.9829 + }, + { + "start": 25906.9, + "end": 25909.8, + "probability": 0.9227 + }, + { + "start": 25910.56, + "end": 25913.56, + "probability": 0.77 + }, + { + "start": 25913.72, + "end": 25917.02, + "probability": 0.9881 + }, + { + "start": 25917.42, + "end": 25920.74, + "probability": 0.7458 + }, + { + "start": 25920.86, + "end": 25921.74, + "probability": 0.9116 + }, + { + "start": 25922.38, + "end": 25925.66, + "probability": 0.9907 + }, + { + "start": 25926.36, + "end": 25929.36, + "probability": 0.9634 + }, + { + "start": 25929.44, + "end": 25932.26, + "probability": 0.9961 + }, + { + "start": 25932.26, + "end": 25934.74, + "probability": 0.9768 + }, + { + "start": 25935.34, + "end": 25937.0, + "probability": 0.9268 + }, + { + "start": 25937.6, + "end": 25938.4, + "probability": 0.6559 + }, + { + "start": 25938.52, + "end": 25940.58, + "probability": 0.914 + }, + { + "start": 25940.64, + "end": 25943.86, + "probability": 0.8669 + }, + { + "start": 25944.82, + "end": 25946.18, + "probability": 0.9869 + }, + { + "start": 25948.56, + "end": 25952.02, + "probability": 0.7626 + }, + { + "start": 25952.92, + "end": 25954.86, + "probability": 0.9012 + }, + { + "start": 25954.92, + "end": 25955.66, + "probability": 0.7945 + }, + { + "start": 25955.76, + "end": 25956.32, + "probability": 0.6961 + }, + { + "start": 25956.38, + "end": 25957.14, + "probability": 0.8781 + }, + { + "start": 25957.72, + "end": 25962.6, + "probability": 0.9975 + }, + { + "start": 25963.08, + "end": 25965.8, + "probability": 0.967 + }, + { + "start": 25965.96, + "end": 25967.02, + "probability": 0.7756 + }, + { + "start": 25967.14, + "end": 25970.46, + "probability": 0.9867 + }, + { + "start": 25970.58, + "end": 25971.3, + "probability": 0.8942 + }, + { + "start": 25971.3, + "end": 25972.12, + "probability": 0.8768 + }, + { + "start": 25972.3, + "end": 25973.58, + "probability": 0.9902 + }, + { + "start": 25973.6, + "end": 25974.22, + "probability": 0.6001 + }, + { + "start": 25974.98, + "end": 25976.36, + "probability": 0.9678 + }, + { + "start": 25977.24, + "end": 25978.3, + "probability": 0.813 + }, + { + "start": 25978.4, + "end": 25979.08, + "probability": 0.9423 + }, + { + "start": 25979.74, + "end": 25983.26, + "probability": 0.988 + }, + { + "start": 25983.32, + "end": 25987.2, + "probability": 0.9938 + }, + { + "start": 25987.94, + "end": 25989.6, + "probability": 0.9319 + }, + { + "start": 25990.48, + "end": 25992.24, + "probability": 0.9581 + }, + { + "start": 25992.36, + "end": 25994.26, + "probability": 0.9594 + }, + { + "start": 25994.4, + "end": 25995.94, + "probability": 0.7521 + }, + { + "start": 25996.46, + "end": 25999.04, + "probability": 0.8577 + }, + { + "start": 25999.68, + "end": 26000.98, + "probability": 0.6002 + }, + { + "start": 26001.5, + "end": 26003.28, + "probability": 0.9634 + }, + { + "start": 26003.54, + "end": 26005.61, + "probability": 0.7718 + }, + { + "start": 26005.72, + "end": 26007.98, + "probability": 0.7931 + }, + { + "start": 26008.54, + "end": 26010.5, + "probability": 0.9249 + }, + { + "start": 26011.42, + "end": 26011.52, + "probability": 0.4844 + }, + { + "start": 26011.8, + "end": 26013.04, + "probability": 0.7158 + }, + { + "start": 26013.08, + "end": 26014.5, + "probability": 0.9808 + }, + { + "start": 26014.9, + "end": 26015.66, + "probability": 0.7849 + }, + { + "start": 26015.84, + "end": 26016.3, + "probability": 0.9817 + }, + { + "start": 26016.38, + "end": 26021.28, + "probability": 0.9436 + }, + { + "start": 26022.04, + "end": 26023.54, + "probability": 0.8698 + }, + { + "start": 26024.2, + "end": 26025.26, + "probability": 0.9344 + }, + { + "start": 26025.52, + "end": 26030.1, + "probability": 0.8474 + }, + { + "start": 26030.72, + "end": 26034.54, + "probability": 0.9803 + }, + { + "start": 26034.64, + "end": 26035.44, + "probability": 0.9988 + }, + { + "start": 26036.0, + "end": 26039.44, + "probability": 0.9566 + }, + { + "start": 26040.12, + "end": 26041.21, + "probability": 0.9197 + }, + { + "start": 26041.32, + "end": 26044.17, + "probability": 0.9973 + }, + { + "start": 26045.04, + "end": 26047.46, + "probability": 0.9893 + }, + { + "start": 26048.32, + "end": 26050.66, + "probability": 0.0334 + }, + { + "start": 26050.66, + "end": 26054.76, + "probability": 0.9941 + }, + { + "start": 26055.62, + "end": 26056.98, + "probability": 0.7238 + }, + { + "start": 26057.62, + "end": 26061.55, + "probability": 0.9858 + }, + { + "start": 26061.78, + "end": 26062.5, + "probability": 0.7701 + }, + { + "start": 26062.64, + "end": 26064.46, + "probability": 0.7046 + }, + { + "start": 26065.3, + "end": 26066.96, + "probability": 0.9934 + }, + { + "start": 26067.16, + "end": 26068.44, + "probability": 0.5012 + }, + { + "start": 26069.18, + "end": 26070.26, + "probability": 0.8441 + }, + { + "start": 26070.4, + "end": 26070.96, + "probability": 0.8046 + }, + { + "start": 26071.18, + "end": 26071.83, + "probability": 0.971 + }, + { + "start": 26072.66, + "end": 26075.61, + "probability": 0.8043 + }, + { + "start": 26076.0, + "end": 26076.0, + "probability": 0.5653 + }, + { + "start": 26076.44, + "end": 26078.1, + "probability": 0.7678 + }, + { + "start": 26080.38, + "end": 26082.72, + "probability": 0.8212 + }, + { + "start": 26083.48, + "end": 26086.02, + "probability": 0.9969 + }, + { + "start": 26086.34, + "end": 26087.29, + "probability": 0.9183 + }, + { + "start": 26087.52, + "end": 26088.63, + "probability": 0.9922 + }, + { + "start": 26089.04, + "end": 26091.22, + "probability": 0.9826 + }, + { + "start": 26091.42, + "end": 26092.44, + "probability": 0.9683 + }, + { + "start": 26092.9, + "end": 26095.6, + "probability": 0.7804 + }, + { + "start": 26096.76, + "end": 26099.28, + "probability": 0.9966 + }, + { + "start": 26100.72, + "end": 26101.44, + "probability": 0.9183 + }, + { + "start": 26101.64, + "end": 26102.36, + "probability": 0.8402 + }, + { + "start": 26102.84, + "end": 26105.86, + "probability": 0.9963 + }, + { + "start": 26106.24, + "end": 26108.16, + "probability": 0.9346 + }, + { + "start": 26108.82, + "end": 26111.48, + "probability": 0.959 + }, + { + "start": 26111.92, + "end": 26115.8, + "probability": 0.9327 + }, + { + "start": 26116.3, + "end": 26119.84, + "probability": 0.9457 + }, + { + "start": 26119.92, + "end": 26120.74, + "probability": 0.9454 + }, + { + "start": 26120.88, + "end": 26122.86, + "probability": 0.8358 + }, + { + "start": 26123.12, + "end": 26124.44, + "probability": 0.9801 + }, + { + "start": 26125.6, + "end": 26128.16, + "probability": 0.7173 + }, + { + "start": 26128.44, + "end": 26131.32, + "probability": 0.9098 + }, + { + "start": 26131.42, + "end": 26131.84, + "probability": 0.7573 + }, + { + "start": 26131.84, + "end": 26132.12, + "probability": 0.6133 + }, + { + "start": 26132.24, + "end": 26132.28, + "probability": 0.4217 + }, + { + "start": 26132.28, + "end": 26133.0, + "probability": 0.5025 + }, + { + "start": 26133.02, + "end": 26134.14, + "probability": 0.9213 + }, + { + "start": 26134.18, + "end": 26134.77, + "probability": 0.9744 + }, + { + "start": 26135.32, + "end": 26137.2, + "probability": 0.9707 + }, + { + "start": 26137.28, + "end": 26138.16, + "probability": 0.9637 + }, + { + "start": 26138.7, + "end": 26140.6, + "probability": 0.7239 + }, + { + "start": 26140.62, + "end": 26141.24, + "probability": 0.9095 + }, + { + "start": 26143.64, + "end": 26144.55, + "probability": 0.1991 + }, + { + "start": 26144.82, + "end": 26145.72, + "probability": 0.8542 + }, + { + "start": 26145.72, + "end": 26146.8, + "probability": 0.5231 + }, + { + "start": 26147.5, + "end": 26150.1, + "probability": 0.9287 + }, + { + "start": 26150.74, + "end": 26151.52, + "probability": 0.6933 + }, + { + "start": 26152.4, + "end": 26153.1, + "probability": 0.6695 + }, + { + "start": 26153.46, + "end": 26154.76, + "probability": 0.8633 + }, + { + "start": 26154.84, + "end": 26156.42, + "probability": 0.9246 + }, + { + "start": 26156.5, + "end": 26157.02, + "probability": 0.765 + }, + { + "start": 26157.14, + "end": 26157.76, + "probability": 0.8369 + }, + { + "start": 26157.92, + "end": 26159.2, + "probability": 0.798 + }, + { + "start": 26159.24, + "end": 26160.02, + "probability": 0.8257 + }, + { + "start": 26160.86, + "end": 26161.6, + "probability": 0.7407 + }, + { + "start": 26162.28, + "end": 26164.38, + "probability": 0.9066 + }, + { + "start": 26164.66, + "end": 26165.78, + "probability": 0.9448 + }, + { + "start": 26166.24, + "end": 26169.18, + "probability": 0.9769 + }, + { + "start": 26169.98, + "end": 26172.28, + "probability": 0.8999 + }, + { + "start": 26172.98, + "end": 26174.38, + "probability": 0.5573 + }, + { + "start": 26174.56, + "end": 26176.14, + "probability": 0.676 + }, + { + "start": 26176.14, + "end": 26176.26, + "probability": 0.451 + }, + { + "start": 26176.34, + "end": 26179.9, + "probability": 0.9983 + }, + { + "start": 26181.02, + "end": 26181.26, + "probability": 0.0378 + }, + { + "start": 26181.26, + "end": 26184.08, + "probability": 0.694 + }, + { + "start": 26184.78, + "end": 26186.12, + "probability": 0.689 + }, + { + "start": 26186.18, + "end": 26186.48, + "probability": 0.5817 + }, + { + "start": 26186.82, + "end": 26187.3, + "probability": 0.7038 + }, + { + "start": 26187.7, + "end": 26188.78, + "probability": 0.5181 + }, + { + "start": 26188.96, + "end": 26191.42, + "probability": 0.953 + }, + { + "start": 26192.98, + "end": 26196.02, + "probability": 0.7515 + }, + { + "start": 26196.84, + "end": 26198.04, + "probability": 0.7014 + }, + { + "start": 26198.6, + "end": 26199.78, + "probability": 0.9371 + }, + { + "start": 26214.7, + "end": 26214.7, + "probability": 0.8386 + }, + { + "start": 26214.7, + "end": 26216.53, + "probability": 0.8834 + }, + { + "start": 26217.54, + "end": 26218.78, + "probability": 0.7568 + }, + { + "start": 26219.6, + "end": 26221.46, + "probability": 0.8757 + }, + { + "start": 26223.81, + "end": 26227.32, + "probability": 0.945 + }, + { + "start": 26227.96, + "end": 26231.06, + "probability": 0.9673 + }, + { + "start": 26232.32, + "end": 26234.18, + "probability": 0.716 + }, + { + "start": 26234.84, + "end": 26235.82, + "probability": 0.1838 + }, + { + "start": 26236.36, + "end": 26236.62, + "probability": 0.0677 + }, + { + "start": 26238.82, + "end": 26238.92, + "probability": 0.0033 + }, + { + "start": 26241.04, + "end": 26241.64, + "probability": 0.5064 + }, + { + "start": 26243.36, + "end": 26244.04, + "probability": 0.4025 + }, + { + "start": 26244.28, + "end": 26246.57, + "probability": 0.6656 + }, + { + "start": 26252.3, + "end": 26254.66, + "probability": 0.6179 + }, + { + "start": 26254.74, + "end": 26255.38, + "probability": 0.802 + }, + { + "start": 26255.58, + "end": 26256.74, + "probability": 0.9995 + }, + { + "start": 26257.76, + "end": 26259.2, + "probability": 0.978 + }, + { + "start": 26261.22, + "end": 26266.76, + "probability": 0.9165 + }, + { + "start": 26267.34, + "end": 26269.12, + "probability": 0.6805 + }, + { + "start": 26269.9, + "end": 26272.44, + "probability": 0.9824 + }, + { + "start": 26272.88, + "end": 26276.04, + "probability": 0.9652 + }, + { + "start": 26276.7, + "end": 26281.74, + "probability": 0.9391 + }, + { + "start": 26282.5, + "end": 26285.24, + "probability": 0.958 + }, + { + "start": 26286.06, + "end": 26289.14, + "probability": 0.7783 + }, + { + "start": 26290.28, + "end": 26293.62, + "probability": 0.9661 + }, + { + "start": 26293.86, + "end": 26296.04, + "probability": 0.9949 + }, + { + "start": 26296.12, + "end": 26300.2, + "probability": 0.9927 + }, + { + "start": 26300.68, + "end": 26303.56, + "probability": 0.6504 + }, + { + "start": 26304.22, + "end": 26307.3, + "probability": 0.7744 + }, + { + "start": 26307.6, + "end": 26311.68, + "probability": 0.9678 + }, + { + "start": 26312.14, + "end": 26314.2, + "probability": 0.9967 + }, + { + "start": 26314.78, + "end": 26315.74, + "probability": 0.8879 + }, + { + "start": 26316.08, + "end": 26317.26, + "probability": 0.7253 + }, + { + "start": 26317.5, + "end": 26318.14, + "probability": 0.7878 + }, + { + "start": 26318.48, + "end": 26319.96, + "probability": 0.9609 + }, + { + "start": 26320.78, + "end": 26323.26, + "probability": 0.9338 + }, + { + "start": 26323.7, + "end": 26329.84, + "probability": 0.9467 + }, + { + "start": 26330.04, + "end": 26330.4, + "probability": 0.8668 + }, + { + "start": 26330.42, + "end": 26331.5, + "probability": 0.8193 + }, + { + "start": 26332.84, + "end": 26333.98, + "probability": 0.9168 + }, + { + "start": 26334.42, + "end": 26335.68, + "probability": 0.6219 + }, + { + "start": 26335.8, + "end": 26337.08, + "probability": 0.7622 + }, + { + "start": 26337.5, + "end": 26340.92, + "probability": 0.9181 + }, + { + "start": 26341.76, + "end": 26342.88, + "probability": 0.9661 + }, + { + "start": 26343.44, + "end": 26344.92, + "probability": 0.981 + }, + { + "start": 26346.84, + "end": 26349.16, + "probability": 0.6358 + }, + { + "start": 26349.68, + "end": 26350.18, + "probability": 0.3139 + }, + { + "start": 26351.16, + "end": 26351.58, + "probability": 0.3282 + }, + { + "start": 26353.02, + "end": 26354.38, + "probability": 0.4563 + }, + { + "start": 26354.46, + "end": 26355.3, + "probability": 0.43 + }, + { + "start": 26355.3, + "end": 26355.76, + "probability": 0.6128 + }, + { + "start": 26356.26, + "end": 26360.72, + "probability": 0.6013 + }, + { + "start": 26361.54, + "end": 26364.1, + "probability": 0.9866 + }, + { + "start": 26364.16, + "end": 26365.48, + "probability": 0.9963 + }, + { + "start": 26366.08, + "end": 26371.08, + "probability": 0.51 + }, + { + "start": 26371.66, + "end": 26373.0, + "probability": 0.7183 + }, + { + "start": 26373.32, + "end": 26374.52, + "probability": 0.9539 + }, + { + "start": 26374.84, + "end": 26376.02, + "probability": 0.5444 + }, + { + "start": 26376.62, + "end": 26376.97, + "probability": 0.0823 + }, + { + "start": 26377.28, + "end": 26377.52, + "probability": 0.1773 + }, + { + "start": 26377.7, + "end": 26381.16, + "probability": 0.3853 + }, + { + "start": 26381.36, + "end": 26381.66, + "probability": 0.7563 + }, + { + "start": 26382.88, + "end": 26386.44, + "probability": 0.9924 + }, + { + "start": 26386.52, + "end": 26388.06, + "probability": 0.9989 + }, + { + "start": 26389.2, + "end": 26392.08, + "probability": 0.9198 + }, + { + "start": 26392.82, + "end": 26394.58, + "probability": 0.9763 + }, + { + "start": 26395.28, + "end": 26397.24, + "probability": 0.9595 + }, + { + "start": 26397.6, + "end": 26399.98, + "probability": 0.9967 + }, + { + "start": 26400.26, + "end": 26403.64, + "probability": 0.99 + }, + { + "start": 26404.44, + "end": 26407.5, + "probability": 0.9465 + }, + { + "start": 26407.72, + "end": 26409.04, + "probability": 0.9819 + }, + { + "start": 26409.4, + "end": 26410.32, + "probability": 0.8688 + }, + { + "start": 26410.38, + "end": 26411.07, + "probability": 0.9663 + }, + { + "start": 26411.86, + "end": 26412.44, + "probability": 0.7643 + }, + { + "start": 26412.46, + "end": 26413.5, + "probability": 0.9046 + }, + { + "start": 26413.54, + "end": 26414.7, + "probability": 0.9451 + }, + { + "start": 26415.22, + "end": 26416.6, + "probability": 0.8557 + }, + { + "start": 26417.06, + "end": 26417.96, + "probability": 0.6961 + }, + { + "start": 26418.18, + "end": 26419.68, + "probability": 0.8695 + }, + { + "start": 26419.98, + "end": 26420.55, + "probability": 0.9406 + }, + { + "start": 26420.78, + "end": 26423.56, + "probability": 0.8947 + }, + { + "start": 26423.98, + "end": 26426.42, + "probability": 0.9761 + }, + { + "start": 26427.02, + "end": 26428.78, + "probability": 0.9206 + }, + { + "start": 26428.9, + "end": 26430.05, + "probability": 0.9653 + }, + { + "start": 26430.6, + "end": 26433.16, + "probability": 0.8716 + }, + { + "start": 26433.5, + "end": 26433.68, + "probability": 0.6105 + }, + { + "start": 26434.24, + "end": 26435.54, + "probability": 0.812 + }, + { + "start": 26435.84, + "end": 26437.32, + "probability": 0.9355 + }, + { + "start": 26437.36, + "end": 26439.3, + "probability": 0.9973 + }, + { + "start": 26439.8, + "end": 26442.52, + "probability": 0.9885 + }, + { + "start": 26443.2, + "end": 26444.84, + "probability": 0.559 + }, + { + "start": 26445.18, + "end": 26445.76, + "probability": 0.8737 + }, + { + "start": 26446.2, + "end": 26447.96, + "probability": 0.9331 + }, + { + "start": 26448.08, + "end": 26448.32, + "probability": 0.83 + }, + { + "start": 26448.8, + "end": 26451.2, + "probability": 0.8788 + }, + { + "start": 26451.34, + "end": 26452.96, + "probability": 0.9303 + }, + { + "start": 26473.42, + "end": 26476.44, + "probability": 0.8462 + }, + { + "start": 26476.58, + "end": 26477.5, + "probability": 0.9382 + }, + { + "start": 26478.06, + "end": 26479.2, + "probability": 0.614 + }, + { + "start": 26482.88, + "end": 26485.56, + "probability": 0.9934 + }, + { + "start": 26485.66, + "end": 26492.64, + "probability": 0.9939 + }, + { + "start": 26493.16, + "end": 26493.78, + "probability": 0.3368 + }, + { + "start": 26493.96, + "end": 26497.56, + "probability": 0.9491 + }, + { + "start": 26497.72, + "end": 26499.78, + "probability": 0.9961 + }, + { + "start": 26501.62, + "end": 26506.42, + "probability": 0.9825 + }, + { + "start": 26506.42, + "end": 26509.82, + "probability": 0.995 + }, + { + "start": 26510.58, + "end": 26512.22, + "probability": 0.7607 + }, + { + "start": 26512.32, + "end": 26515.08, + "probability": 0.9932 + }, + { + "start": 26515.5, + "end": 26516.95, + "probability": 0.9736 + }, + { + "start": 26517.24, + "end": 26518.01, + "probability": 0.5665 + }, + { + "start": 26518.2, + "end": 26518.7, + "probability": 0.9791 + }, + { + "start": 26520.88, + "end": 26524.08, + "probability": 0.9832 + }, + { + "start": 26525.86, + "end": 26528.7, + "probability": 0.9987 + }, + { + "start": 26529.64, + "end": 26531.18, + "probability": 0.9667 + }, + { + "start": 26531.4, + "end": 26532.8, + "probability": 0.9071 + }, + { + "start": 26534.47, + "end": 26537.0, + "probability": 0.9793 + }, + { + "start": 26539.04, + "end": 26541.14, + "probability": 0.8625 + }, + { + "start": 26541.66, + "end": 26544.36, + "probability": 0.8526 + }, + { + "start": 26544.36, + "end": 26546.34, + "probability": 0.9979 + }, + { + "start": 26547.54, + "end": 26549.4, + "probability": 0.8384 + }, + { + "start": 26549.4, + "end": 26551.64, + "probability": 0.989 + }, + { + "start": 26552.64, + "end": 26554.86, + "probability": 0.9929 + }, + { + "start": 26554.9, + "end": 26557.68, + "probability": 0.9967 + }, + { + "start": 26558.28, + "end": 26560.04, + "probability": 0.9864 + }, + { + "start": 26561.08, + "end": 26561.32, + "probability": 0.7216 + }, + { + "start": 26561.88, + "end": 26563.22, + "probability": 0.9619 + }, + { + "start": 26564.08, + "end": 26566.32, + "probability": 0.9965 + }, + { + "start": 26566.92, + "end": 26571.18, + "probability": 0.9985 + }, + { + "start": 26572.02, + "end": 26573.02, + "probability": 0.9956 + }, + { + "start": 26574.1, + "end": 26576.66, + "probability": 0.925 + }, + { + "start": 26576.9, + "end": 26579.5, + "probability": 0.9942 + }, + { + "start": 26580.38, + "end": 26581.6, + "probability": 0.7465 + }, + { + "start": 26582.58, + "end": 26586.38, + "probability": 0.991 + }, + { + "start": 26586.9, + "end": 26590.38, + "probability": 0.9973 + }, + { + "start": 26590.38, + "end": 26596.5, + "probability": 0.9833 + }, + { + "start": 26597.06, + "end": 26599.68, + "probability": 0.9396 + }, + { + "start": 26600.2, + "end": 26602.38, + "probability": 0.9966 + }, + { + "start": 26603.6, + "end": 26605.56, + "probability": 0.7155 + }, + { + "start": 26606.28, + "end": 26609.48, + "probability": 0.9759 + }, + { + "start": 26609.94, + "end": 26611.6, + "probability": 0.9941 + }, + { + "start": 26612.12, + "end": 26613.86, + "probability": 0.9963 + }, + { + "start": 26615.58, + "end": 26616.72, + "probability": 0.9968 + }, + { + "start": 26617.34, + "end": 26620.82, + "probability": 0.9655 + }, + { + "start": 26621.92, + "end": 26623.84, + "probability": 0.907 + }, + { + "start": 26623.94, + "end": 26626.28, + "probability": 0.8437 + }, + { + "start": 26627.0, + "end": 26627.42, + "probability": 0.5574 + }, + { + "start": 26628.08, + "end": 26631.42, + "probability": 0.9975 + }, + { + "start": 26631.42, + "end": 26636.2, + "probability": 0.9922 + }, + { + "start": 26636.98, + "end": 26639.54, + "probability": 0.9979 + }, + { + "start": 26639.66, + "end": 26643.38, + "probability": 0.9783 + }, + { + "start": 26643.92, + "end": 26647.0, + "probability": 0.9902 + }, + { + "start": 26647.58, + "end": 26650.06, + "probability": 0.9985 + }, + { + "start": 26650.06, + "end": 26653.94, + "probability": 0.9744 + }, + { + "start": 26654.18, + "end": 26654.94, + "probability": 0.8936 + }, + { + "start": 26656.18, + "end": 26659.3, + "probability": 0.9982 + }, + { + "start": 26659.42, + "end": 26663.52, + "probability": 0.9877 + }, + { + "start": 26664.24, + "end": 26666.54, + "probability": 0.9985 + }, + { + "start": 26666.54, + "end": 26668.82, + "probability": 0.9659 + }, + { + "start": 26669.38, + "end": 26671.86, + "probability": 0.9838 + }, + { + "start": 26671.88, + "end": 26674.4, + "probability": 0.9592 + }, + { + "start": 26675.02, + "end": 26679.12, + "probability": 0.9814 + }, + { + "start": 26679.8, + "end": 26680.26, + "probability": 0.7491 + }, + { + "start": 26680.86, + "end": 26680.96, + "probability": 0.4824 + }, + { + "start": 26681.04, + "end": 26681.72, + "probability": 0.5318 + }, + { + "start": 26681.72, + "end": 26682.34, + "probability": 0.788 + }, + { + "start": 26683.04, + "end": 26684.04, + "probability": 0.0385 + }, + { + "start": 26684.6, + "end": 26686.76, + "probability": 0.1656 + }, + { + "start": 26688.76, + "end": 26690.62, + "probability": 0.8523 + }, + { + "start": 26693.29, + "end": 26695.8, + "probability": 0.7782 + }, + { + "start": 26700.16, + "end": 26702.96, + "probability": 0.7106 + }, + { + "start": 26703.28, + "end": 26703.28, + "probability": 0.6907 + }, + { + "start": 26703.28, + "end": 26704.24, + "probability": 0.0841 + }, + { + "start": 26715.9, + "end": 26716.86, + "probability": 0.1083 + }, + { + "start": 26720.24, + "end": 26720.96, + "probability": 0.6139 + }, + { + "start": 26722.18, + "end": 26724.02, + "probability": 0.5507 + }, + { + "start": 26747.36, + "end": 26747.88, + "probability": 0.5599 + }, + { + "start": 26750.56, + "end": 26754.44, + "probability": 0.7263 + }, + { + "start": 26757.1, + "end": 26761.46, + "probability": 0.9718 + }, + { + "start": 26763.56, + "end": 26769.02, + "probability": 0.9523 + }, + { + "start": 26771.82, + "end": 26773.26, + "probability": 0.6431 + }, + { + "start": 26775.18, + "end": 26777.59, + "probability": 0.6611 + }, + { + "start": 26779.38, + "end": 26781.06, + "probability": 0.6168 + }, + { + "start": 26781.94, + "end": 26783.8, + "probability": 0.9788 + }, + { + "start": 26784.5, + "end": 26785.56, + "probability": 0.8208 + }, + { + "start": 26786.2, + "end": 26787.26, + "probability": 0.834 + }, + { + "start": 26788.7, + "end": 26788.7, + "probability": 0.937 + }, + { + "start": 26790.34, + "end": 26791.22, + "probability": 0.8232 + }, + { + "start": 26792.14, + "end": 26797.42, + "probability": 0.9579 + }, + { + "start": 26798.48, + "end": 26805.44, + "probability": 0.9495 + }, + { + "start": 26809.56, + "end": 26811.18, + "probability": 0.9773 + }, + { + "start": 26812.14, + "end": 26813.58, + "probability": 0.8929 + }, + { + "start": 26816.34, + "end": 26817.71, + "probability": 0.7479 + }, + { + "start": 26820.04, + "end": 26825.24, + "probability": 0.889 + }, + { + "start": 26825.9, + "end": 26826.88, + "probability": 0.9475 + }, + { + "start": 26827.76, + "end": 26828.26, + "probability": 0.5103 + }, + { + "start": 26829.86, + "end": 26830.82, + "probability": 0.9816 + }, + { + "start": 26831.98, + "end": 26835.5, + "probability": 0.9049 + }, + { + "start": 26836.76, + "end": 26840.42, + "probability": 0.6524 + }, + { + "start": 26841.36, + "end": 26845.36, + "probability": 0.8682 + }, + { + "start": 26845.46, + "end": 26847.0, + "probability": 0.8521 + }, + { + "start": 26847.62, + "end": 26852.66, + "probability": 0.9695 + }, + { + "start": 26853.02, + "end": 26853.46, + "probability": 0.8141 + }, + { + "start": 26853.52, + "end": 26853.96, + "probability": 0.7182 + }, + { + "start": 26856.56, + "end": 26857.66, + "probability": 0.7615 + }, + { + "start": 26858.8, + "end": 26868.26, + "probability": 0.9443 + }, + { + "start": 26869.56, + "end": 26870.88, + "probability": 0.9652 + }, + { + "start": 26872.08, + "end": 26874.98, + "probability": 0.9841 + }, + { + "start": 26876.16, + "end": 26876.86, + "probability": 0.9305 + }, + { + "start": 26877.42, + "end": 26878.56, + "probability": 0.9824 + }, + { + "start": 26881.92, + "end": 26886.1, + "probability": 0.9878 + }, + { + "start": 26887.94, + "end": 26890.96, + "probability": 0.9979 + }, + { + "start": 26892.36, + "end": 26893.58, + "probability": 0.7933 + }, + { + "start": 26895.64, + "end": 26899.8, + "probability": 0.9836 + }, + { + "start": 26900.86, + "end": 26902.84, + "probability": 0.5002 + }, + { + "start": 26903.9, + "end": 26909.28, + "probability": 0.9415 + }, + { + "start": 26911.9, + "end": 26913.94, + "probability": 0.7407 + }, + { + "start": 26916.96, + "end": 26919.52, + "probability": 0.9885 + }, + { + "start": 26921.36, + "end": 26928.68, + "probability": 0.9932 + }, + { + "start": 26931.28, + "end": 26935.2, + "probability": 0.9956 + }, + { + "start": 26936.52, + "end": 26937.1, + "probability": 0.991 + }, + { + "start": 26937.66, + "end": 26938.24, + "probability": 0.6642 + }, + { + "start": 26939.92, + "end": 26940.86, + "probability": 0.6584 + }, + { + "start": 26940.9, + "end": 26943.16, + "probability": 0.7795 + }, + { + "start": 26944.54, + "end": 26948.58, + "probability": 0.8035 + }, + { + "start": 26949.0, + "end": 26950.82, + "probability": 0.9953 + }, + { + "start": 26950.9, + "end": 26952.64, + "probability": 0.9954 + }, + { + "start": 26952.64, + "end": 26953.62, + "probability": 0.3353 + }, + { + "start": 26955.02, + "end": 26958.9, + "probability": 0.9927 + }, + { + "start": 26959.6, + "end": 26961.1, + "probability": 0.914 + }, + { + "start": 26961.66, + "end": 26962.24, + "probability": 0.8811 + }, + { + "start": 26963.36, + "end": 26964.76, + "probability": 0.712 + }, + { + "start": 26965.16, + "end": 26966.28, + "probability": 0.8629 + }, + { + "start": 26966.46, + "end": 26967.62, + "probability": 0.9243 + }, + { + "start": 26968.24, + "end": 26970.02, + "probability": 0.8057 + }, + { + "start": 26971.02, + "end": 26971.94, + "probability": 0.7735 + }, + { + "start": 26973.28, + "end": 26975.96, + "probability": 0.7429 + }, + { + "start": 26976.1, + "end": 26978.38, + "probability": 0.9785 + }, + { + "start": 26979.78, + "end": 26981.02, + "probability": 0.9858 + }, + { + "start": 26984.04, + "end": 26984.96, + "probability": 0.9641 + }, + { + "start": 26997.54, + "end": 26997.92, + "probability": 0.7362 + }, + { + "start": 26998.04, + "end": 26998.6, + "probability": 0.5082 + }, + { + "start": 26998.76, + "end": 26999.98, + "probability": 0.3855 + }, + { + "start": 27000.8, + "end": 27003.56, + "probability": 0.9907 + }, + { + "start": 27003.56, + "end": 27007.74, + "probability": 0.9902 + }, + { + "start": 27008.38, + "end": 27010.24, + "probability": 0.6967 + }, + { + "start": 27010.84, + "end": 27013.0, + "probability": 0.9898 + }, + { + "start": 27013.94, + "end": 27015.02, + "probability": 0.6843 + }, + { + "start": 27015.92, + "end": 27017.7, + "probability": 0.9344 + }, + { + "start": 27018.42, + "end": 27023.06, + "probability": 0.9974 + }, + { + "start": 27023.06, + "end": 27029.76, + "probability": 0.9983 + }, + { + "start": 27029.88, + "end": 27031.21, + "probability": 0.999 + }, + { + "start": 27032.92, + "end": 27036.44, + "probability": 0.9851 + }, + { + "start": 27038.0, + "end": 27042.14, + "probability": 0.8765 + }, + { + "start": 27043.12, + "end": 27044.24, + "probability": 0.8719 + }, + { + "start": 27045.7, + "end": 27048.04, + "probability": 0.9948 + }, + { + "start": 27048.86, + "end": 27051.3, + "probability": 0.9919 + }, + { + "start": 27053.04, + "end": 27055.09, + "probability": 0.9675 + }, + { + "start": 27056.66, + "end": 27058.36, + "probability": 0.6933 + }, + { + "start": 27059.04, + "end": 27061.3, + "probability": 0.9944 + }, + { + "start": 27064.7, + "end": 27066.56, + "probability": 0.7909 + }, + { + "start": 27066.72, + "end": 27067.54, + "probability": 0.8708 + }, + { + "start": 27068.04, + "end": 27069.49, + "probability": 0.9547 + }, + { + "start": 27069.96, + "end": 27073.92, + "probability": 0.9609 + }, + { + "start": 27078.02, + "end": 27084.52, + "probability": 0.9957 + }, + { + "start": 27084.52, + "end": 27091.66, + "probability": 0.9989 + }, + { + "start": 27094.02, + "end": 27095.04, + "probability": 0.9944 + }, + { + "start": 27096.24, + "end": 27096.89, + "probability": 0.8789 + }, + { + "start": 27098.3, + "end": 27100.68, + "probability": 0.9048 + }, + { + "start": 27101.36, + "end": 27104.26, + "probability": 0.9776 + }, + { + "start": 27104.36, + "end": 27104.82, + "probability": 0.3538 + }, + { + "start": 27105.74, + "end": 27107.06, + "probability": 0.4719 + }, + { + "start": 27108.06, + "end": 27111.34, + "probability": 0.8981 + }, + { + "start": 27111.86, + "end": 27112.48, + "probability": 0.9512 + }, + { + "start": 27113.16, + "end": 27115.6, + "probability": 0.8514 + }, + { + "start": 27116.1, + "end": 27118.44, + "probability": 0.9907 + }, + { + "start": 27120.52, + "end": 27123.62, + "probability": 0.7753 + }, + { + "start": 27124.18, + "end": 27126.88, + "probability": 0.9474 + }, + { + "start": 27127.46, + "end": 27129.08, + "probability": 0.9888 + }, + { + "start": 27130.92, + "end": 27134.2, + "probability": 0.949 + }, + { + "start": 27135.46, + "end": 27135.82, + "probability": 0.0565 + }, + { + "start": 27135.82, + "end": 27136.28, + "probability": 0.4992 + }, + { + "start": 27136.98, + "end": 27138.0, + "probability": 0.853 + }, + { + "start": 27138.06, + "end": 27139.34, + "probability": 0.9673 + }, + { + "start": 27139.94, + "end": 27143.56, + "probability": 0.9961 + }, + { + "start": 27143.66, + "end": 27144.0, + "probability": 0.8239 + }, + { + "start": 27144.1, + "end": 27144.4, + "probability": 0.8401 + }, + { + "start": 27144.5, + "end": 27144.8, + "probability": 0.4986 + }, + { + "start": 27145.52, + "end": 27145.76, + "probability": 0.6846 + }, + { + "start": 27147.6, + "end": 27148.8, + "probability": 0.0452 + }, + { + "start": 27149.78, + "end": 27153.26, + "probability": 0.0213 + }, + { + "start": 27153.62, + "end": 27155.36, + "probability": 0.3893 + }, + { + "start": 27155.36, + "end": 27155.38, + "probability": 0.0365 + }, + { + "start": 27155.38, + "end": 27157.44, + "probability": 0.1614 + }, + { + "start": 27157.56, + "end": 27157.56, + "probability": 0.0893 + }, + { + "start": 27157.96, + "end": 27159.7, + "probability": 0.6173 + }, + { + "start": 27161.72, + "end": 27163.69, + "probability": 0.5034 + }, + { + "start": 27176.72, + "end": 27177.82, + "probability": 0.1812 + }, + { + "start": 27177.82, + "end": 27177.82, + "probability": 0.0875 + }, + { + "start": 27177.82, + "end": 27177.82, + "probability": 0.1296 + }, + { + "start": 27177.82, + "end": 27177.82, + "probability": 0.0922 + }, + { + "start": 27177.82, + "end": 27178.42, + "probability": 0.2385 + }, + { + "start": 27180.9, + "end": 27182.78, + "probability": 0.6716 + }, + { + "start": 27185.02, + "end": 27185.84, + "probability": 0.4536 + }, + { + "start": 27188.3, + "end": 27191.16, + "probability": 0.9902 + }, + { + "start": 27191.74, + "end": 27194.2, + "probability": 0.7292 + }, + { + "start": 27194.46, + "end": 27198.4, + "probability": 0.944 + }, + { + "start": 27198.54, + "end": 27198.82, + "probability": 0.7996 + }, + { + "start": 27199.14, + "end": 27200.32, + "probability": 0.7819 + }, + { + "start": 27200.88, + "end": 27201.32, + "probability": 0.7386 + }, + { + "start": 27201.42, + "end": 27203.66, + "probability": 0.9414 + }, + { + "start": 27215.98, + "end": 27217.24, + "probability": 0.5273 + }, + { + "start": 27217.26, + "end": 27218.42, + "probability": 0.8609 + }, + { + "start": 27218.78, + "end": 27225.2, + "probability": 0.7522 + }, + { + "start": 27225.56, + "end": 27226.79, + "probability": 0.5692 + }, + { + "start": 27227.12, + "end": 27227.5, + "probability": 0.0373 + }, + { + "start": 27227.62, + "end": 27228.2, + "probability": 0.7939 + }, + { + "start": 27229.1, + "end": 27235.66, + "probability": 0.9894 + }, + { + "start": 27235.66, + "end": 27238.96, + "probability": 0.9637 + }, + { + "start": 27239.08, + "end": 27239.64, + "probability": 0.9757 + }, + { + "start": 27241.59, + "end": 27244.46, + "probability": 0.9888 + }, + { + "start": 27245.04, + "end": 27245.24, + "probability": 0.7819 + }, + { + "start": 27246.14, + "end": 27247.26, + "probability": 0.6158 + }, + { + "start": 27248.72, + "end": 27252.14, + "probability": 0.4834 + }, + { + "start": 27253.4, + "end": 27257.04, + "probability": 0.7743 + }, + { + "start": 27258.08, + "end": 27261.6, + "probability": 0.9985 + }, + { + "start": 27262.24, + "end": 27266.76, + "probability": 0.9986 + }, + { + "start": 27267.44, + "end": 27269.3, + "probability": 0.866 + }, + { + "start": 27269.82, + "end": 27272.98, + "probability": 0.7492 + }, + { + "start": 27273.4, + "end": 27276.92, + "probability": 0.9895 + }, + { + "start": 27279.28, + "end": 27280.72, + "probability": 0.5793 + }, + { + "start": 27281.3, + "end": 27285.62, + "probability": 0.8858 + }, + { + "start": 27285.62, + "end": 27287.04, + "probability": 0.9171 + }, + { + "start": 27288.14, + "end": 27288.88, + "probability": 0.1724 + }, + { + "start": 27289.64, + "end": 27290.26, + "probability": 0.3215 + }, + { + "start": 27290.36, + "end": 27290.88, + "probability": 0.7035 + }, + { + "start": 27291.06, + "end": 27292.1, + "probability": 0.8361 + }, + { + "start": 27292.65, + "end": 27294.16, + "probability": 0.36 + }, + { + "start": 27294.3, + "end": 27298.6, + "probability": 0.4294 + }, + { + "start": 27298.62, + "end": 27299.18, + "probability": 0.9369 + }, + { + "start": 27299.42, + "end": 27300.96, + "probability": 0.473 + }, + { + "start": 27302.4, + "end": 27303.92, + "probability": 0.4322 + }, + { + "start": 27304.98, + "end": 27306.62, + "probability": 0.8225 + }, + { + "start": 27306.9, + "end": 27307.3, + "probability": 0.7983 + }, + { + "start": 27308.24, + "end": 27311.44, + "probability": 0.5586 + }, + { + "start": 27312.48, + "end": 27314.96, + "probability": 0.7913 + }, + { + "start": 27315.66, + "end": 27318.34, + "probability": 0.9648 + }, + { + "start": 27318.9, + "end": 27320.9, + "probability": 0.6898 + }, + { + "start": 27321.64, + "end": 27325.1, + "probability": 0.9477 + }, + { + "start": 27325.64, + "end": 27327.34, + "probability": 0.8481 + }, + { + "start": 27327.52, + "end": 27330.52, + "probability": 0.3218 + }, + { + "start": 27332.5, + "end": 27332.66, + "probability": 0.2547 + }, + { + "start": 27332.7, + "end": 27332.7, + "probability": 0.1261 + }, + { + "start": 27332.74, + "end": 27334.2, + "probability": 0.6053 + }, + { + "start": 27335.38, + "end": 27337.38, + "probability": 0.9693 + }, + { + "start": 27337.4, + "end": 27338.46, + "probability": 0.8316 + }, + { + "start": 27338.56, + "end": 27339.74, + "probability": 0.8965 + }, + { + "start": 27341.04, + "end": 27341.96, + "probability": 0.9605 + }, + { + "start": 27342.04, + "end": 27343.68, + "probability": 0.9009 + }, + { + "start": 27343.94, + "end": 27345.9, + "probability": 0.7343 + }, + { + "start": 27346.1, + "end": 27347.5, + "probability": 0.7398 + }, + { + "start": 27347.52, + "end": 27348.92, + "probability": 0.5114 + }, + { + "start": 27348.96, + "end": 27350.26, + "probability": 0.9329 + }, + { + "start": 27350.58, + "end": 27351.34, + "probability": 0.8895 + }, + { + "start": 27351.54, + "end": 27353.1, + "probability": 0.938 + }, + { + "start": 27353.18, + "end": 27354.36, + "probability": 0.8611 + }, + { + "start": 27354.98, + "end": 27355.74, + "probability": 0.2478 + }, + { + "start": 27358.19, + "end": 27361.0, + "probability": 0.8786 + }, + { + "start": 27361.74, + "end": 27363.28, + "probability": 0.9259 + }, + { + "start": 27363.78, + "end": 27366.18, + "probability": 0.5208 + }, + { + "start": 27366.48, + "end": 27367.0, + "probability": 0.9548 + }, + { + "start": 27367.04, + "end": 27369.2, + "probability": 0.988 + }, + { + "start": 27369.2, + "end": 27369.34, + "probability": 0.5632 + }, + { + "start": 27370.02, + "end": 27371.48, + "probability": 0.3101 + }, + { + "start": 27371.48, + "end": 27373.55, + "probability": 0.9963 + }, + { + "start": 27374.16, + "end": 27375.24, + "probability": 0.9685 + }, + { + "start": 27375.46, + "end": 27377.3, + "probability": 0.9548 + }, + { + "start": 27377.9, + "end": 27380.6, + "probability": 0.9813 + }, + { + "start": 27381.14, + "end": 27383.08, + "probability": 0.9884 + }, + { + "start": 27383.46, + "end": 27385.08, + "probability": 0.8533 + }, + { + "start": 27385.8, + "end": 27388.08, + "probability": 0.966 + }, + { + "start": 27388.24, + "end": 27390.32, + "probability": 0.0276 + }, + { + "start": 27390.88, + "end": 27391.44, + "probability": 0.478 + }, + { + "start": 27391.74, + "end": 27393.52, + "probability": 0.2776 + }, + { + "start": 27393.7, + "end": 27395.16, + "probability": 0.9071 + }, + { + "start": 27395.22, + "end": 27397.74, + "probability": 0.0456 + }, + { + "start": 27398.04, + "end": 27399.26, + "probability": 0.7313 + }, + { + "start": 27399.7, + "end": 27401.04, + "probability": 0.5762 + }, + { + "start": 27401.24, + "end": 27402.28, + "probability": 0.6636 + }, + { + "start": 27402.28, + "end": 27403.92, + "probability": 0.324 + }, + { + "start": 27404.04, + "end": 27408.1, + "probability": 0.6734 + }, + { + "start": 27408.3, + "end": 27409.2, + "probability": 0.2537 + }, + { + "start": 27409.2, + "end": 27410.72, + "probability": 0.8893 + }, + { + "start": 27411.32, + "end": 27414.52, + "probability": 0.7489 + }, + { + "start": 27414.68, + "end": 27416.48, + "probability": 0.7554 + }, + { + "start": 27416.86, + "end": 27419.8, + "probability": 0.8812 + }, + { + "start": 27420.38, + "end": 27421.38, + "probability": 0.9526 + }, + { + "start": 27422.38, + "end": 27423.98, + "probability": 0.5892 + }, + { + "start": 27425.0, + "end": 27425.56, + "probability": 0.6591 + }, + { + "start": 27425.68, + "end": 27426.26, + "probability": 0.9131 + }, + { + "start": 27427.34, + "end": 27428.86, + "probability": 0.7104 + }, + { + "start": 27428.9, + "end": 27428.9, + "probability": 0.5076 + }, + { + "start": 27428.9, + "end": 27431.38, + "probability": 0.8901 + }, + { + "start": 27431.42, + "end": 27434.34, + "probability": 0.7243 + }, + { + "start": 27440.9, + "end": 27443.22, + "probability": 0.8683 + }, + { + "start": 27444.9, + "end": 27446.17, + "probability": 0.0889 + }, + { + "start": 27449.04, + "end": 27449.3, + "probability": 0.3789 + }, + { + "start": 27450.02, + "end": 27451.44, + "probability": 0.1023 + }, + { + "start": 27451.44, + "end": 27451.48, + "probability": 0.1559 + }, + { + "start": 27451.48, + "end": 27453.9, + "probability": 0.1073 + }, + { + "start": 27467.65, + "end": 27468.34, + "probability": 0.7026 + }, + { + "start": 27474.12, + "end": 27474.3, + "probability": 0.0047 + }, + { + "start": 27486.1, + "end": 27489.66, + "probability": 0.8951 + }, + { + "start": 27490.24, + "end": 27491.76, + "probability": 0.9932 + }, + { + "start": 27492.68, + "end": 27495.96, + "probability": 0.9052 + }, + { + "start": 27496.82, + "end": 27502.36, + "probability": 0.839 + }, + { + "start": 27503.44, + "end": 27504.5, + "probability": 0.9077 + }, + { + "start": 27505.18, + "end": 27508.76, + "probability": 0.7969 + }, + { + "start": 27509.12, + "end": 27509.92, + "probability": 0.7224 + }, + { + "start": 27510.04, + "end": 27514.31, + "probability": 0.9875 + }, + { + "start": 27514.56, + "end": 27518.16, + "probability": 0.9924 + }, + { + "start": 27518.68, + "end": 27520.28, + "probability": 0.9663 + }, + { + "start": 27521.84, + "end": 27522.99, + "probability": 0.7418 + }, + { + "start": 27523.14, + "end": 27524.52, + "probability": 0.7143 + }, + { + "start": 27524.54, + "end": 27527.28, + "probability": 0.7039 + }, + { + "start": 27527.86, + "end": 27533.42, + "probability": 0.9712 + }, + { + "start": 27534.9, + "end": 27538.96, + "probability": 0.959 + }, + { + "start": 27538.96, + "end": 27541.44, + "probability": 0.9941 + }, + { + "start": 27542.64, + "end": 27543.36, + "probability": 0.8373 + }, + { + "start": 27543.44, + "end": 27546.24, + "probability": 0.8258 + }, + { + "start": 27546.28, + "end": 27550.5, + "probability": 0.9907 + }, + { + "start": 27550.74, + "end": 27555.26, + "probability": 0.8213 + }, + { + "start": 27556.42, + "end": 27559.78, + "probability": 0.7899 + }, + { + "start": 27560.4, + "end": 27561.68, + "probability": 0.6699 + }, + { + "start": 27562.92, + "end": 27563.54, + "probability": 0.8401 + }, + { + "start": 27563.58, + "end": 27564.88, + "probability": 0.9764 + }, + { + "start": 27565.02, + "end": 27565.78, + "probability": 0.9403 + }, + { + "start": 27565.98, + "end": 27566.8, + "probability": 0.6331 + }, + { + "start": 27567.44, + "end": 27572.58, + "probability": 0.8782 + }, + { + "start": 27573.22, + "end": 27575.74, + "probability": 0.9214 + }, + { + "start": 27576.4, + "end": 27577.2, + "probability": 0.7967 + }, + { + "start": 27581.08, + "end": 27582.14, + "probability": 0.02 + }, + { + "start": 27582.29, + "end": 27585.6, + "probability": 0.7858 + }, + { + "start": 27586.54, + "end": 27587.78, + "probability": 0.9799 + }, + { + "start": 27589.26, + "end": 27590.3, + "probability": 0.4354 + }, + { + "start": 27591.51, + "end": 27592.32, + "probability": 0.8853 + }, + { + "start": 27594.14, + "end": 27596.2, + "probability": 0.9572 + }, + { + "start": 27597.3, + "end": 27603.14, + "probability": 0.9609 + }, + { + "start": 27603.76, + "end": 27607.24, + "probability": 0.935 + }, + { + "start": 27608.38, + "end": 27610.2, + "probability": 0.7207 + }, + { + "start": 27610.7, + "end": 27616.02, + "probability": 0.6686 + }, + { + "start": 27616.02, + "end": 27619.22, + "probability": 0.9671 + }, + { + "start": 27619.72, + "end": 27624.43, + "probability": 0.9205 + }, + { + "start": 27625.74, + "end": 27629.66, + "probability": 0.9919 + }, + { + "start": 27630.86, + "end": 27633.32, + "probability": 0.8631 + }, + { + "start": 27633.88, + "end": 27637.44, + "probability": 0.9977 + }, + { + "start": 27638.36, + "end": 27638.98, + "probability": 0.7022 + }, + { + "start": 27640.4, + "end": 27643.22, + "probability": 0.9915 + }, + { + "start": 27644.5, + "end": 27646.2, + "probability": 0.7733 + }, + { + "start": 27646.96, + "end": 27648.2, + "probability": 0.9005 + }, + { + "start": 27648.32, + "end": 27654.82, + "probability": 0.8717 + }, + { + "start": 27655.3, + "end": 27656.02, + "probability": 0.9604 + }, + { + "start": 27656.14, + "end": 27656.62, + "probability": 0.8388 + }, + { + "start": 27656.66, + "end": 27658.36, + "probability": 0.7079 + }, + { + "start": 27658.5, + "end": 27659.3, + "probability": 0.8497 + }, + { + "start": 27659.68, + "end": 27661.92, + "probability": 0.9323 + }, + { + "start": 27662.6, + "end": 27665.62, + "probability": 0.624 + }, + { + "start": 27666.36, + "end": 27668.04, + "probability": 0.6614 + }, + { + "start": 27668.98, + "end": 27669.74, + "probability": 0.6264 + }, + { + "start": 27670.06, + "end": 27673.18, + "probability": 0.9808 + }, + { + "start": 27673.98, + "end": 27675.42, + "probability": 0.9761 + }, + { + "start": 27675.96, + "end": 27678.14, + "probability": 0.9077 + }, + { + "start": 27678.6, + "end": 27681.66, + "probability": 0.9418 + }, + { + "start": 27682.28, + "end": 27683.84, + "probability": 0.8997 + }, + { + "start": 27684.42, + "end": 27689.26, + "probability": 0.9807 + }, + { + "start": 27690.06, + "end": 27692.18, + "probability": 0.9946 + }, + { + "start": 27692.84, + "end": 27697.88, + "probability": 0.9971 + }, + { + "start": 27698.44, + "end": 27699.16, + "probability": 0.5123 + }, + { + "start": 27700.88, + "end": 27705.98, + "probability": 0.9962 + }, + { + "start": 27705.98, + "end": 27711.96, + "probability": 0.9987 + }, + { + "start": 27712.5, + "end": 27713.12, + "probability": 0.708 + }, + { + "start": 27713.56, + "end": 27719.68, + "probability": 0.8586 + }, + { + "start": 27720.12, + "end": 27721.44, + "probability": 0.9922 + }, + { + "start": 27721.92, + "end": 27726.3, + "probability": 0.6655 + }, + { + "start": 27726.68, + "end": 27727.06, + "probability": 0.7971 + }, + { + "start": 27727.58, + "end": 27727.74, + "probability": 0.7056 + }, + { + "start": 27728.18, + "end": 27730.38, + "probability": 0.7988 + }, + { + "start": 27730.64, + "end": 27732.26, + "probability": 0.6632 + }, + { + "start": 27732.86, + "end": 27733.74, + "probability": 0.6801 + }, + { + "start": 27734.08, + "end": 27737.08, + "probability": 0.715 + }, + { + "start": 27737.58, + "end": 27740.08, + "probability": 0.8169 + }, + { + "start": 27752.66, + "end": 27756.54, + "probability": 0.607 + }, + { + "start": 27758.02, + "end": 27758.88, + "probability": 0.7687 + }, + { + "start": 27759.86, + "end": 27765.62, + "probability": 0.99 + }, + { + "start": 27766.38, + "end": 27770.94, + "probability": 0.7832 + }, + { + "start": 27771.8, + "end": 27772.46, + "probability": 0.7651 + }, + { + "start": 27773.44, + "end": 27780.66, + "probability": 0.9569 + }, + { + "start": 27783.2, + "end": 27784.12, + "probability": 0.9693 + }, + { + "start": 27785.04, + "end": 27785.56, + "probability": 0.6911 + }, + { + "start": 27786.34, + "end": 27787.72, + "probability": 0.9997 + }, + { + "start": 27788.74, + "end": 27792.34, + "probability": 0.9386 + }, + { + "start": 27792.86, + "end": 27793.84, + "probability": 0.877 + }, + { + "start": 27794.56, + "end": 27795.26, + "probability": 0.9559 + }, + { + "start": 27796.42, + "end": 27797.12, + "probability": 0.8337 + }, + { + "start": 27797.86, + "end": 27798.54, + "probability": 0.989 + }, + { + "start": 27799.18, + "end": 27803.96, + "probability": 0.9061 + }, + { + "start": 27804.36, + "end": 27804.76, + "probability": 0.3688 + }, + { + "start": 27805.72, + "end": 27808.38, + "probability": 0.9938 + }, + { + "start": 27809.28, + "end": 27812.24, + "probability": 0.9945 + }, + { + "start": 27812.6, + "end": 27816.7, + "probability": 0.9979 + }, + { + "start": 27817.6, + "end": 27821.2, + "probability": 0.9941 + }, + { + "start": 27822.3, + "end": 27824.34, + "probability": 0.9958 + }, + { + "start": 27825.26, + "end": 27826.9, + "probability": 0.7596 + }, + { + "start": 27827.42, + "end": 27828.36, + "probability": 0.8653 + }, + { + "start": 27829.64, + "end": 27830.92, + "probability": 0.5578 + }, + { + "start": 27831.9, + "end": 27834.26, + "probability": 0.9026 + }, + { + "start": 27835.46, + "end": 27836.84, + "probability": 0.9792 + }, + { + "start": 27837.36, + "end": 27838.44, + "probability": 0.7395 + }, + { + "start": 27839.08, + "end": 27841.3, + "probability": 0.9557 + }, + { + "start": 27842.28, + "end": 27845.28, + "probability": 0.9884 + }, + { + "start": 27846.04, + "end": 27847.85, + "probability": 0.9961 + }, + { + "start": 27848.88, + "end": 27850.67, + "probability": 0.99 + }, + { + "start": 27851.6, + "end": 27852.38, + "probability": 0.9443 + }, + { + "start": 27852.94, + "end": 27854.86, + "probability": 0.8653 + }, + { + "start": 27855.48, + "end": 27858.78, + "probability": 0.9974 + }, + { + "start": 27860.02, + "end": 27860.82, + "probability": 0.474 + }, + { + "start": 27861.58, + "end": 27866.28, + "probability": 0.9923 + }, + { + "start": 27866.98, + "end": 27871.16, + "probability": 0.9911 + }, + { + "start": 27872.24, + "end": 27873.0, + "probability": 0.7956 + }, + { + "start": 27873.6, + "end": 27874.92, + "probability": 0.3859 + }, + { + "start": 27875.52, + "end": 27877.7, + "probability": 0.857 + }, + { + "start": 27880.36, + "end": 27884.3, + "probability": 0.5396 + }, + { + "start": 27884.5, + "end": 27885.94, + "probability": 0.7826 + }, + { + "start": 27886.68, + "end": 27887.16, + "probability": 0.8433 + }, + { + "start": 27902.72, + "end": 27902.72, + "probability": 0.1384 + }, + { + "start": 27902.72, + "end": 27903.56, + "probability": 0.1337 + }, + { + "start": 27905.02, + "end": 27906.2, + "probability": 0.8604 + }, + { + "start": 27906.92, + "end": 27908.84, + "probability": 0.7269 + }, + { + "start": 27910.04, + "end": 27911.46, + "probability": 0.9939 + }, + { + "start": 27912.36, + "end": 27913.08, + "probability": 0.7973 + }, + { + "start": 27914.38, + "end": 27915.12, + "probability": 0.5445 + }, + { + "start": 27919.12, + "end": 27919.98, + "probability": 0.7598 + }, + { + "start": 27921.42, + "end": 27930.07, + "probability": 0.9319 + }, + { + "start": 27930.84, + "end": 27931.7, + "probability": 0.8089 + }, + { + "start": 27934.16, + "end": 27936.9, + "probability": 0.9844 + }, + { + "start": 27938.14, + "end": 27939.34, + "probability": 0.94 + }, + { + "start": 27939.94, + "end": 27941.52, + "probability": 0.9911 + }, + { + "start": 27944.26, + "end": 27946.5, + "probability": 0.9351 + }, + { + "start": 27947.06, + "end": 27947.44, + "probability": 0.5645 + }, + { + "start": 27948.8, + "end": 27952.38, + "probability": 0.9719 + }, + { + "start": 27952.46, + "end": 27953.62, + "probability": 0.1635 + }, + { + "start": 27955.46, + "end": 27956.58, + "probability": 0.3842 + }, + { + "start": 27958.1, + "end": 27959.06, + "probability": 0.9972 + }, + { + "start": 27959.6, + "end": 27960.94, + "probability": 0.938 + }, + { + "start": 27961.76, + "end": 27963.38, + "probability": 0.9952 + }, + { + "start": 27964.8, + "end": 27965.76, + "probability": 0.8074 + }, + { + "start": 27966.78, + "end": 27967.62, + "probability": 0.9658 + }, + { + "start": 27969.46, + "end": 27970.34, + "probability": 0.747 + }, + { + "start": 27970.84, + "end": 27976.6, + "probability": 0.7879 + }, + { + "start": 27978.32, + "end": 27979.04, + "probability": 0.7432 + }, + { + "start": 27980.14, + "end": 27981.14, + "probability": 0.8299 + }, + { + "start": 27982.64, + "end": 27984.72, + "probability": 0.9666 + }, + { + "start": 27985.44, + "end": 27985.78, + "probability": 0.3848 + }, + { + "start": 27987.6, + "end": 27989.08, + "probability": 0.9575 + }, + { + "start": 27991.1, + "end": 27991.82, + "probability": 0.999 + }, + { + "start": 27992.84, + "end": 27993.9, + "probability": 0.8354 + }, + { + "start": 27995.8, + "end": 27998.6, + "probability": 0.9727 + }, + { + "start": 27999.68, + "end": 28001.98, + "probability": 0.9116 + }, + { + "start": 28003.18, + "end": 28005.2, + "probability": 0.9988 + }, + { + "start": 28006.38, + "end": 28008.62, + "probability": 0.9676 + }, + { + "start": 28010.3, + "end": 28012.24, + "probability": 0.7583 + }, + { + "start": 28012.85, + "end": 28014.38, + "probability": 0.9967 + }, + { + "start": 28015.62, + "end": 28019.42, + "probability": 0.9907 + }, + { + "start": 28020.84, + "end": 28022.44, + "probability": 0.9191 + }, + { + "start": 28023.42, + "end": 28025.4, + "probability": 0.3396 + }, + { + "start": 28026.68, + "end": 28028.98, + "probability": 0.6436 + }, + { + "start": 28029.66, + "end": 28033.58, + "probability": 0.7395 + }, + { + "start": 28035.08, + "end": 28037.74, + "probability": 0.8678 + }, + { + "start": 28038.34, + "end": 28039.36, + "probability": 0.7037 + }, + { + "start": 28040.34, + "end": 28042.26, + "probability": 0.8789 + }, + { + "start": 28044.26, + "end": 28045.1, + "probability": 0.9525 + }, + { + "start": 28046.26, + "end": 28048.38, + "probability": 0.8545 + }, + { + "start": 28049.22, + "end": 28050.16, + "probability": 0.9185 + }, + { + "start": 28051.48, + "end": 28052.74, + "probability": 0.9726 + }, + { + "start": 28053.7, + "end": 28055.42, + "probability": 0.9789 + }, + { + "start": 28056.22, + "end": 28057.66, + "probability": 0.8906 + }, + { + "start": 28059.0, + "end": 28061.1, + "probability": 0.668 + }, + { + "start": 28061.68, + "end": 28065.16, + "probability": 0.968 + }, + { + "start": 28066.78, + "end": 28069.52, + "probability": 0.9673 + }, + { + "start": 28070.2, + "end": 28073.58, + "probability": 0.9685 + }, + { + "start": 28074.08, + "end": 28076.51, + "probability": 0.9659 + }, + { + "start": 28077.62, + "end": 28079.94, + "probability": 0.9723 + }, + { + "start": 28081.32, + "end": 28083.2, + "probability": 0.9976 + }, + { + "start": 28085.02, + "end": 28089.58, + "probability": 0.9938 + }, + { + "start": 28090.22, + "end": 28094.22, + "probability": 0.9815 + }, + { + "start": 28095.58, + "end": 28097.86, + "probability": 0.7212 + }, + { + "start": 28098.06, + "end": 28099.42, + "probability": 0.9752 + }, + { + "start": 28099.98, + "end": 28100.72, + "probability": 0.8883 + }, + { + "start": 28101.42, + "end": 28102.24, + "probability": 0.0215 + }, + { + "start": 28102.77, + "end": 28104.05, + "probability": 0.0187 + }, + { + "start": 28105.62, + "end": 28109.66, + "probability": 0.0912 + }, + { + "start": 28132.54, + "end": 28137.1, + "probability": 0.7221 + }, + { + "start": 28137.56, + "end": 28138.36, + "probability": 0.7477 + }, + { + "start": 28138.96, + "end": 28144.32, + "probability": 0.9805 + }, + { + "start": 28145.12, + "end": 28148.28, + "probability": 0.7561 + }, + { + "start": 28148.32, + "end": 28149.28, + "probability": 0.8416 + }, + { + "start": 28150.02, + "end": 28155.26, + "probability": 0.9336 + }, + { + "start": 28155.9, + "end": 28161.92, + "probability": 0.9994 + }, + { + "start": 28162.64, + "end": 28165.42, + "probability": 0.8302 + }, + { + "start": 28165.92, + "end": 28168.7, + "probability": 0.9588 + }, + { + "start": 28169.18, + "end": 28177.16, + "probability": 0.9982 + }, + { + "start": 28177.44, + "end": 28181.08, + "probability": 0.9984 + }, + { + "start": 28181.08, + "end": 28184.12, + "probability": 0.9981 + }, + { + "start": 28184.72, + "end": 28186.2, + "probability": 0.9369 + }, + { + "start": 28186.74, + "end": 28187.04, + "probability": 0.7321 + }, + { + "start": 28187.16, + "end": 28188.4, + "probability": 0.9727 + }, + { + "start": 28188.66, + "end": 28192.8, + "probability": 0.9954 + }, + { + "start": 28193.04, + "end": 28194.54, + "probability": 0.9878 + }, + { + "start": 28195.2, + "end": 28197.06, + "probability": 0.9383 + }, + { + "start": 28198.2, + "end": 28201.96, + "probability": 0.9468 + }, + { + "start": 28202.54, + "end": 28203.72, + "probability": 0.9648 + }, + { + "start": 28204.36, + "end": 28211.02, + "probability": 0.963 + }, + { + "start": 28211.98, + "end": 28219.28, + "probability": 0.9967 + }, + { + "start": 28219.8, + "end": 28219.86, + "probability": 0.5197 + }, + { + "start": 28219.94, + "end": 28220.66, + "probability": 0.9402 + }, + { + "start": 28221.1, + "end": 28225.8, + "probability": 0.9932 + }, + { + "start": 28225.8, + "end": 28231.12, + "probability": 0.999 + }, + { + "start": 28231.78, + "end": 28232.32, + "probability": 0.3064 + }, + { + "start": 28232.44, + "end": 28233.5, + "probability": 0.7831 + }, + { + "start": 28233.7, + "end": 28239.98, + "probability": 0.9873 + }, + { + "start": 28240.74, + "end": 28243.12, + "probability": 0.8967 + }, + { + "start": 28244.04, + "end": 28244.42, + "probability": 0.5873 + }, + { + "start": 28245.5, + "end": 28250.78, + "probability": 0.9219 + }, + { + "start": 28251.42, + "end": 28257.86, + "probability": 0.8815 + }, + { + "start": 28258.6, + "end": 28261.26, + "probability": 0.9028 + }, + { + "start": 28261.5, + "end": 28263.82, + "probability": 0.6687 + }, + { + "start": 28264.16, + "end": 28267.58, + "probability": 0.9486 + }, + { + "start": 28268.14, + "end": 28269.96, + "probability": 0.8592 + }, + { + "start": 28270.62, + "end": 28273.64, + "probability": 0.9773 + }, + { + "start": 28273.64, + "end": 28277.4, + "probability": 0.9983 + }, + { + "start": 28277.8, + "end": 28282.08, + "probability": 0.9982 + }, + { + "start": 28282.08, + "end": 28285.0, + "probability": 0.976 + }, + { + "start": 28285.2, + "end": 28291.62, + "probability": 0.9935 + }, + { + "start": 28292.42, + "end": 28297.3, + "probability": 0.993 + }, + { + "start": 28297.78, + "end": 28298.78, + "probability": 0.9695 + }, + { + "start": 28299.9, + "end": 28300.38, + "probability": 0.2085 + }, + { + "start": 28300.38, + "end": 28305.0, + "probability": 0.984 + }, + { + "start": 28305.02, + "end": 28309.5, + "probability": 0.9771 + }, + { + "start": 28310.06, + "end": 28313.34, + "probability": 0.9956 + }, + { + "start": 28313.84, + "end": 28314.46, + "probability": 0.6082 + }, + { + "start": 28315.64, + "end": 28318.26, + "probability": 0.9462 + }, + { + "start": 28318.82, + "end": 28319.78, + "probability": 0.8166 + }, + { + "start": 28320.26, + "end": 28320.86, + "probability": 0.7432 + }, + { + "start": 28333.4, + "end": 28335.22, + "probability": 0.6112 + }, + { + "start": 28339.09, + "end": 28342.72, + "probability": 0.3678 + }, + { + "start": 28343.98, + "end": 28343.98, + "probability": 0.0541 + }, + { + "start": 28344.82, + "end": 28347.34, + "probability": 0.4908 + }, + { + "start": 28348.24, + "end": 28350.8, + "probability": 0.2926 + }, + { + "start": 28351.0, + "end": 28351.8, + "probability": 0.2048 + }, + { + "start": 28352.0, + "end": 28353.44, + "probability": 0.4749 + }, + { + "start": 28358.46, + "end": 28362.48, + "probability": 0.3117 + }, + { + "start": 28365.68, + "end": 28367.84, + "probability": 0.4974 + }, + { + "start": 28367.84, + "end": 28368.5, + "probability": 0.8503 + }, + { + "start": 28371.1, + "end": 28376.26, + "probability": 0.8094 + }, + { + "start": 28376.48, + "end": 28377.68, + "probability": 0.5881 + }, + { + "start": 28377.68, + "end": 28380.02, + "probability": 0.9713 + }, + { + "start": 28380.98, + "end": 28383.82, + "probability": 0.9819 + }, + { + "start": 28384.8, + "end": 28387.5, + "probability": 0.9666 + }, + { + "start": 28388.06, + "end": 28389.18, + "probability": 0.4968 + }, + { + "start": 28389.8, + "end": 28394.92, + "probability": 0.9982 + }, + { + "start": 28395.0, + "end": 28396.58, + "probability": 0.7635 + }, + { + "start": 28398.06, + "end": 28404.14, + "probability": 0.9827 + }, + { + "start": 28404.9, + "end": 28408.36, + "probability": 0.9812 + }, + { + "start": 28409.04, + "end": 28410.78, + "probability": 0.8873 + }, + { + "start": 28411.06, + "end": 28412.59, + "probability": 0.3463 + }, + { + "start": 28413.22, + "end": 28413.4, + "probability": 0.0326 + }, + { + "start": 28413.4, + "end": 28415.04, + "probability": 0.4849 + }, + { + "start": 28415.16, + "end": 28416.46, + "probability": 0.9899 + }, + { + "start": 28418.15, + "end": 28420.1, + "probability": 0.8672 + }, + { + "start": 28420.8, + "end": 28421.95, + "probability": 0.9673 + }, + { + "start": 28422.64, + "end": 28424.36, + "probability": 0.9707 + }, + { + "start": 28425.1, + "end": 28427.4, + "probability": 0.9551 + }, + { + "start": 28427.96, + "end": 28430.08, + "probability": 0.9269 + }, + { + "start": 28430.22, + "end": 28430.84, + "probability": 0.8357 + }, + { + "start": 28431.18, + "end": 28432.77, + "probability": 0.8209 + }, + { + "start": 28433.2, + "end": 28434.44, + "probability": 0.0291 + }, + { + "start": 28434.86, + "end": 28435.53, + "probability": 0.6844 + }, + { + "start": 28435.72, + "end": 28436.84, + "probability": 0.6072 + }, + { + "start": 28436.9, + "end": 28438.84, + "probability": 0.8026 + }, + { + "start": 28439.18, + "end": 28443.34, + "probability": 0.9962 + }, + { + "start": 28443.54, + "end": 28445.16, + "probability": 0.826 + }, + { + "start": 28446.7, + "end": 28451.36, + "probability": 0.9065 + }, + { + "start": 28451.6, + "end": 28452.34, + "probability": 0.8143 + }, + { + "start": 28452.44, + "end": 28454.94, + "probability": 0.698 + }, + { + "start": 28455.98, + "end": 28458.18, + "probability": 0.9795 + }, + { + "start": 28458.58, + "end": 28462.92, + "probability": 0.9932 + }, + { + "start": 28463.94, + "end": 28464.95, + "probability": 0.9946 + }, + { + "start": 28466.0, + "end": 28466.1, + "probability": 0.4609 + }, + { + "start": 28466.46, + "end": 28468.28, + "probability": 0.8638 + }, + { + "start": 28468.4, + "end": 28471.58, + "probability": 0.9877 + }, + { + "start": 28472.56, + "end": 28475.86, + "probability": 0.9866 + }, + { + "start": 28476.44, + "end": 28479.22, + "probability": 0.9778 + }, + { + "start": 28479.32, + "end": 28483.44, + "probability": 0.9481 + }, + { + "start": 28483.96, + "end": 28488.7, + "probability": 0.9797 + }, + { + "start": 28488.84, + "end": 28489.36, + "probability": 0.9149 + }, + { + "start": 28490.32, + "end": 28492.08, + "probability": 0.9972 + }, + { + "start": 28492.72, + "end": 28495.02, + "probability": 0.9961 + }, + { + "start": 28495.74, + "end": 28497.21, + "probability": 0.8848 + }, + { + "start": 28497.3, + "end": 28498.44, + "probability": 0.965 + }, + { + "start": 28498.56, + "end": 28500.04, + "probability": 0.991 + }, + { + "start": 28500.86, + "end": 28501.9, + "probability": 0.9982 + }, + { + "start": 28502.52, + "end": 28506.46, + "probability": 0.9923 + }, + { + "start": 28507.06, + "end": 28507.5, + "probability": 0.7982 + }, + { + "start": 28507.6, + "end": 28508.48, + "probability": 0.9119 + }, + { + "start": 28508.56, + "end": 28512.46, + "probability": 0.9265 + }, + { + "start": 28512.96, + "end": 28519.52, + "probability": 0.9907 + }, + { + "start": 28520.74, + "end": 28522.77, + "probability": 0.9341 + }, + { + "start": 28523.02, + "end": 28523.56, + "probability": 0.4986 + }, + { + "start": 28524.51, + "end": 28527.22, + "probability": 0.8411 + }, + { + "start": 28527.8, + "end": 28529.34, + "probability": 0.8323 + }, + { + "start": 28529.98, + "end": 28533.34, + "probability": 0.998 + }, + { + "start": 28534.42, + "end": 28535.4, + "probability": 0.9102 + }, + { + "start": 28535.84, + "end": 28536.88, + "probability": 0.9866 + }, + { + "start": 28537.1, + "end": 28537.56, + "probability": 0.5987 + }, + { + "start": 28537.62, + "end": 28539.3, + "probability": 0.9928 + }, + { + "start": 28539.34, + "end": 28540.98, + "probability": 0.9985 + }, + { + "start": 28541.56, + "end": 28543.86, + "probability": 0.998 + }, + { + "start": 28543.93, + "end": 28547.78, + "probability": 0.976 + }, + { + "start": 28547.94, + "end": 28548.28, + "probability": 0.7427 + }, + { + "start": 28549.44, + "end": 28552.02, + "probability": 0.673 + }, + { + "start": 28552.12, + "end": 28554.7, + "probability": 0.6866 + }, + { + "start": 28579.02, + "end": 28580.12, + "probability": 0.5032 + }, + { + "start": 28580.14, + "end": 28580.88, + "probability": 0.9208 + }, + { + "start": 28581.42, + "end": 28581.72, + "probability": 0.3983 + }, + { + "start": 28581.76, + "end": 28583.36, + "probability": 0.6556 + }, + { + "start": 28584.78, + "end": 28587.2, + "probability": 0.9445 + }, + { + "start": 28588.38, + "end": 28590.62, + "probability": 0.8935 + }, + { + "start": 28591.58, + "end": 28595.39, + "probability": 0.7031 + }, + { + "start": 28596.08, + "end": 28597.81, + "probability": 0.8481 + }, + { + "start": 28599.08, + "end": 28601.16, + "probability": 0.9961 + }, + { + "start": 28601.98, + "end": 28603.62, + "probability": 0.8724 + }, + { + "start": 28605.4, + "end": 28607.14, + "probability": 0.9291 + }, + { + "start": 28607.6, + "end": 28613.42, + "probability": 0.9907 + }, + { + "start": 28614.3, + "end": 28615.34, + "probability": 0.9454 + }, + { + "start": 28616.86, + "end": 28620.68, + "probability": 0.9697 + }, + { + "start": 28621.4, + "end": 28622.18, + "probability": 0.6602 + }, + { + "start": 28623.54, + "end": 28624.92, + "probability": 0.8965 + }, + { + "start": 28625.5, + "end": 28626.7, + "probability": 0.5834 + }, + { + "start": 28628.71, + "end": 28635.18, + "probability": 0.9626 + }, + { + "start": 28636.54, + "end": 28640.18, + "probability": 0.9578 + }, + { + "start": 28640.36, + "end": 28645.6, + "probability": 0.8799 + }, + { + "start": 28645.72, + "end": 28653.2, + "probability": 0.9951 + }, + { + "start": 28653.7, + "end": 28654.22, + "probability": 0.731 + }, + { + "start": 28654.76, + "end": 28658.09, + "probability": 0.997 + }, + { + "start": 28658.56, + "end": 28661.95, + "probability": 0.9918 + }, + { + "start": 28663.2, + "end": 28671.86, + "probability": 0.7822 + }, + { + "start": 28672.52, + "end": 28677.8, + "probability": 0.9712 + }, + { + "start": 28678.8, + "end": 28682.26, + "probability": 0.9951 + }, + { + "start": 28683.36, + "end": 28688.56, + "probability": 0.9956 + }, + { + "start": 28690.04, + "end": 28690.78, + "probability": 0.5011 + }, + { + "start": 28691.3, + "end": 28693.42, + "probability": 0.996 + }, + { + "start": 28694.08, + "end": 28698.14, + "probability": 0.9817 + }, + { + "start": 28699.02, + "end": 28703.44, + "probability": 0.9111 + }, + { + "start": 28704.0, + "end": 28705.74, + "probability": 0.9861 + }, + { + "start": 28706.78, + "end": 28714.7, + "probability": 0.9907 + }, + { + "start": 28715.24, + "end": 28717.24, + "probability": 0.9788 + }, + { + "start": 28718.02, + "end": 28719.1, + "probability": 0.7467 + }, + { + "start": 28719.82, + "end": 28722.08, + "probability": 0.9583 + }, + { + "start": 28722.16, + "end": 28724.77, + "probability": 0.7385 + }, + { + "start": 28725.24, + "end": 28730.4, + "probability": 0.8218 + }, + { + "start": 28731.36, + "end": 28734.04, + "probability": 0.9294 + }, + { + "start": 28734.9, + "end": 28740.12, + "probability": 0.9974 + }, + { + "start": 28740.88, + "end": 28745.24, + "probability": 0.6484 + }, + { + "start": 28746.62, + "end": 28752.22, + "probability": 0.9929 + }, + { + "start": 28753.04, + "end": 28757.62, + "probability": 0.8959 + }, + { + "start": 28758.62, + "end": 28761.72, + "probability": 0.9972 + }, + { + "start": 28762.22, + "end": 28766.76, + "probability": 0.976 + }, + { + "start": 28767.82, + "end": 28771.42, + "probability": 0.7871 + }, + { + "start": 28772.22, + "end": 28775.18, + "probability": 0.7137 + }, + { + "start": 28776.1, + "end": 28776.1, + "probability": 0.3017 + }, + { + "start": 28776.1, + "end": 28779.46, + "probability": 0.8522 + }, + { + "start": 28780.1, + "end": 28781.24, + "probability": 0.9406 + }, + { + "start": 28781.32, + "end": 28787.06, + "probability": 0.9572 + }, + { + "start": 28788.08, + "end": 28790.55, + "probability": 0.6667 + }, + { + "start": 28791.72, + "end": 28793.06, + "probability": 0.7754 + }, + { + "start": 28794.1, + "end": 28794.92, + "probability": 0.4464 + }, + { + "start": 28795.44, + "end": 28797.62, + "probability": 0.9037 + }, + { + "start": 28798.18, + "end": 28800.18, + "probability": 0.7301 + }, + { + "start": 28807.86, + "end": 28808.96, + "probability": 0.8799 + }, + { + "start": 28810.18, + "end": 28811.14, + "probability": 0.4967 + }, + { + "start": 28812.14, + "end": 28813.16, + "probability": 0.4545 + }, + { + "start": 28814.36, + "end": 28818.46, + "probability": 0.9166 + }, + { + "start": 28819.54, + "end": 28822.64, + "probability": 0.9977 + }, + { + "start": 28823.6, + "end": 28826.22, + "probability": 0.9285 + }, + { + "start": 28827.44, + "end": 28831.04, + "probability": 0.9953 + }, + { + "start": 28831.8, + "end": 28833.13, + "probability": 0.9932 + }, + { + "start": 28834.38, + "end": 28838.02, + "probability": 0.9786 + }, + { + "start": 28838.76, + "end": 28839.3, + "probability": 0.7966 + }, + { + "start": 28839.9, + "end": 28842.96, + "probability": 0.9036 + }, + { + "start": 28844.36, + "end": 28848.24, + "probability": 0.9891 + }, + { + "start": 28848.76, + "end": 28850.4, + "probability": 0.8984 + }, + { + "start": 28850.92, + "end": 28851.92, + "probability": 0.8146 + }, + { + "start": 28853.04, + "end": 28855.33, + "probability": 0.9602 + }, + { + "start": 28855.56, + "end": 28857.96, + "probability": 0.7506 + }, + { + "start": 28857.96, + "end": 28861.34, + "probability": 0.9736 + }, + { + "start": 28861.96, + "end": 28862.7, + "probability": 0.917 + }, + { + "start": 28863.64, + "end": 28866.16, + "probability": 0.9954 + }, + { + "start": 28866.16, + "end": 28869.26, + "probability": 0.9871 + }, + { + "start": 28870.2, + "end": 28872.96, + "probability": 0.9742 + }, + { + "start": 28873.04, + "end": 28873.84, + "probability": 0.7558 + }, + { + "start": 28873.88, + "end": 28876.82, + "probability": 0.882 + }, + { + "start": 28877.18, + "end": 28879.58, + "probability": 0.9912 + }, + { + "start": 28880.4, + "end": 28885.16, + "probability": 0.9905 + }, + { + "start": 28886.14, + "end": 28891.32, + "probability": 0.9728 + }, + { + "start": 28891.32, + "end": 28897.14, + "probability": 0.9952 + }, + { + "start": 28897.6, + "end": 28899.16, + "probability": 0.8938 + }, + { + "start": 28899.36, + "end": 28900.04, + "probability": 0.8922 + }, + { + "start": 28900.42, + "end": 28904.76, + "probability": 0.834 + }, + { + "start": 28905.96, + "end": 28908.48, + "probability": 0.9272 + }, + { + "start": 28908.52, + "end": 28912.5, + "probability": 0.9274 + }, + { + "start": 28912.74, + "end": 28913.8, + "probability": 0.9511 + }, + { + "start": 28913.9, + "end": 28915.22, + "probability": 0.9561 + }, + { + "start": 28915.62, + "end": 28916.38, + "probability": 0.8983 + }, + { + "start": 28916.6, + "end": 28917.26, + "probability": 0.9179 + }, + { + "start": 28917.74, + "end": 28923.24, + "probability": 0.9654 + }, + { + "start": 28923.72, + "end": 28925.56, + "probability": 0.9871 + }, + { + "start": 28926.7, + "end": 28931.8, + "probability": 0.917 + }, + { + "start": 28932.28, + "end": 28935.26, + "probability": 0.9943 + }, + { + "start": 28935.6, + "end": 28940.26, + "probability": 0.9139 + }, + { + "start": 28941.02, + "end": 28942.5, + "probability": 0.9951 + }, + { + "start": 28943.18, + "end": 28944.94, + "probability": 0.9064 + }, + { + "start": 28945.28, + "end": 28951.5, + "probability": 0.8779 + }, + { + "start": 28951.5, + "end": 28957.98, + "probability": 0.9863 + }, + { + "start": 28959.74, + "end": 28962.56, + "probability": 0.9187 + }, + { + "start": 28962.56, + "end": 28965.58, + "probability": 0.9634 + }, + { + "start": 28965.68, + "end": 28967.26, + "probability": 0.8862 + }, + { + "start": 28967.82, + "end": 28971.64, + "probability": 0.9225 + }, + { + "start": 28971.84, + "end": 28973.04, + "probability": 0.8592 + }, + { + "start": 28973.78, + "end": 28976.5, + "probability": 0.9956 + }, + { + "start": 28977.1, + "end": 28980.3, + "probability": 0.9845 + }, + { + "start": 28980.3, + "end": 28983.8, + "probability": 0.9857 + }, + { + "start": 28985.6, + "end": 28985.9, + "probability": 0.2581 + }, + { + "start": 28985.9, + "end": 28988.24, + "probability": 0.6928 + }, + { + "start": 28988.8, + "end": 28990.76, + "probability": 0.9458 + }, + { + "start": 29016.7, + "end": 29018.34, + "probability": 0.6712 + }, + { + "start": 29019.52, + "end": 29019.94, + "probability": 0.3979 + }, + { + "start": 29020.06, + "end": 29021.96, + "probability": 0.5556 + }, + { + "start": 29025.32, + "end": 29027.52, + "probability": 0.9072 + }, + { + "start": 29029.68, + "end": 29031.52, + "probability": 0.7721 + }, + { + "start": 29031.52, + "end": 29032.32, + "probability": 0.8882 + }, + { + "start": 29033.88, + "end": 29039.5, + "probability": 0.9927 + }, + { + "start": 29039.5, + "end": 29044.74, + "probability": 0.999 + }, + { + "start": 29046.44, + "end": 29048.66, + "probability": 0.7238 + }, + { + "start": 29049.46, + "end": 29053.46, + "probability": 0.9456 + }, + { + "start": 29054.32, + "end": 29055.14, + "probability": 0.974 + }, + { + "start": 29056.5, + "end": 29060.28, + "probability": 0.9735 + }, + { + "start": 29060.98, + "end": 29061.88, + "probability": 0.7888 + }, + { + "start": 29062.66, + "end": 29067.12, + "probability": 0.9915 + }, + { + "start": 29067.74, + "end": 29072.12, + "probability": 0.9986 + }, + { + "start": 29073.1, + "end": 29077.26, + "probability": 0.9976 + }, + { + "start": 29078.08, + "end": 29081.34, + "probability": 0.8643 + }, + { + "start": 29082.7, + "end": 29083.08, + "probability": 0.8002 + }, + { + "start": 29084.68, + "end": 29087.36, + "probability": 0.9563 + }, + { + "start": 29088.76, + "end": 29090.52, + "probability": 0.9595 + }, + { + "start": 29091.88, + "end": 29095.56, + "probability": 0.9744 + }, + { + "start": 29096.8, + "end": 29099.48, + "probability": 0.9841 + }, + { + "start": 29102.48, + "end": 29106.62, + "probability": 0.7299 + }, + { + "start": 29107.26, + "end": 29112.14, + "probability": 0.9222 + }, + { + "start": 29112.66, + "end": 29117.96, + "probability": 0.993 + }, + { + "start": 29118.98, + "end": 29123.36, + "probability": 0.996 + }, + { + "start": 29124.34, + "end": 29125.84, + "probability": 0.9304 + }, + { + "start": 29126.66, + "end": 29129.3, + "probability": 0.9226 + }, + { + "start": 29129.3, + "end": 29132.52, + "probability": 0.9922 + }, + { + "start": 29133.38, + "end": 29136.92, + "probability": 0.9984 + }, + { + "start": 29137.52, + "end": 29140.96, + "probability": 0.989 + }, + { + "start": 29141.36, + "end": 29144.38, + "probability": 0.9414 + }, + { + "start": 29144.82, + "end": 29145.14, + "probability": 0.6963 + }, + { + "start": 29145.5, + "end": 29149.38, + "probability": 0.9756 + }, + { + "start": 29150.28, + "end": 29153.92, + "probability": 0.9763 + }, + { + "start": 29153.92, + "end": 29158.74, + "probability": 0.9956 + }, + { + "start": 29159.26, + "end": 29160.24, + "probability": 0.7936 + }, + { + "start": 29161.56, + "end": 29164.66, + "probability": 0.9152 + }, + { + "start": 29165.88, + "end": 29167.56, + "probability": 0.9836 + }, + { + "start": 29167.66, + "end": 29168.78, + "probability": 0.889 + }, + { + "start": 29169.14, + "end": 29170.82, + "probability": 0.941 + }, + { + "start": 29171.02, + "end": 29171.6, + "probability": 0.8284 + }, + { + "start": 29171.64, + "end": 29173.52, + "probability": 0.738 + }, + { + "start": 29174.08, + "end": 29179.14, + "probability": 0.992 + }, + { + "start": 29179.62, + "end": 29187.28, + "probability": 0.9803 + }, + { + "start": 29188.14, + "end": 29190.9, + "probability": 0.9792 + }, + { + "start": 29191.58, + "end": 29192.24, + "probability": 0.8975 + }, + { + "start": 29192.52, + "end": 29195.2, + "probability": 0.9543 + }, + { + "start": 29195.26, + "end": 29196.26, + "probability": 0.881 + }, + { + "start": 29196.9, + "end": 29201.24, + "probability": 0.9097 + }, + { + "start": 29201.91, + "end": 29205.04, + "probability": 0.9785 + }, + { + "start": 29205.58, + "end": 29206.06, + "probability": 0.8317 + }, + { + "start": 29206.6, + "end": 29208.82, + "probability": 0.9246 + }, + { + "start": 29209.58, + "end": 29212.34, + "probability": 0.9948 + }, + { + "start": 29213.3, + "end": 29214.04, + "probability": 0.5288 + }, + { + "start": 29215.06, + "end": 29218.02, + "probability": 0.9058 + }, + { + "start": 29219.44, + "end": 29231.6, + "probability": 0.9776 + }, + { + "start": 29231.68, + "end": 29232.62, + "probability": 0.9601 + }, + { + "start": 29232.76, + "end": 29234.4, + "probability": 0.8254 + }, + { + "start": 29235.02, + "end": 29238.44, + "probability": 0.9011 + }, + { + "start": 29239.26, + "end": 29240.99, + "probability": 0.7489 + }, + { + "start": 29242.16, + "end": 29243.44, + "probability": 0.5692 + }, + { + "start": 29245.22, + "end": 29245.22, + "probability": 0.2425 + }, + { + "start": 29245.22, + "end": 29245.22, + "probability": 0.3353 + }, + { + "start": 29245.22, + "end": 29245.22, + "probability": 0.2215 + }, + { + "start": 29245.22, + "end": 29247.82, + "probability": 0.7096 + }, + { + "start": 29247.88, + "end": 29248.34, + "probability": 0.5796 + }, + { + "start": 29248.34, + "end": 29249.14, + "probability": 0.7959 + }, + { + "start": 29249.3, + "end": 29251.8, + "probability": 0.9093 + }, + { + "start": 29251.88, + "end": 29252.88, + "probability": 0.9344 + }, + { + "start": 29253.14, + "end": 29254.22, + "probability": 0.7441 + }, + { + "start": 29254.88, + "end": 29255.94, + "probability": 0.6279 + }, + { + "start": 29256.12, + "end": 29257.8, + "probability": 0.9568 + }, + { + "start": 29258.32, + "end": 29261.85, + "probability": 0.9901 + }, + { + "start": 29262.44, + "end": 29264.73, + "probability": 0.9907 + }, + { + "start": 29265.36, + "end": 29268.08, + "probability": 0.8393 + }, + { + "start": 29270.1, + "end": 29270.14, + "probability": 0.0354 + }, + { + "start": 29270.14, + "end": 29270.44, + "probability": 0.5876 + }, + { + "start": 29272.8, + "end": 29273.06, + "probability": 0.0582 + }, + { + "start": 29273.06, + "end": 29273.06, + "probability": 0.0546 + }, + { + "start": 29273.06, + "end": 29273.06, + "probability": 0.057 + }, + { + "start": 29273.06, + "end": 29274.82, + "probability": 0.3906 + }, + { + "start": 29274.84, + "end": 29275.46, + "probability": 0.7387 + }, + { + "start": 29275.78, + "end": 29276.86, + "probability": 0.5779 + }, + { + "start": 29277.52, + "end": 29280.62, + "probability": 0.5527 + }, + { + "start": 29281.26, + "end": 29282.36, + "probability": 0.8748 + }, + { + "start": 29283.06, + "end": 29284.72, + "probability": 0.8916 + }, + { + "start": 29285.8, + "end": 29287.98, + "probability": 0.9951 + }, + { + "start": 29287.98, + "end": 29290.36, + "probability": 0.905 + }, + { + "start": 29291.18, + "end": 29293.08, + "probability": 0.2319 + }, + { + "start": 29293.62, + "end": 29294.94, + "probability": 0.9941 + }, + { + "start": 29295.28, + "end": 29296.52, + "probability": 0.9743 + }, + { + "start": 29296.52, + "end": 29298.36, + "probability": 0.1127 + }, + { + "start": 29298.36, + "end": 29298.99, + "probability": 0.4573 + }, + { + "start": 29299.1, + "end": 29301.62, + "probability": 0.8932 + }, + { + "start": 29303.44, + "end": 29304.96, + "probability": 0.9526 + }, + { + "start": 29305.06, + "end": 29306.94, + "probability": 0.9713 + }, + { + "start": 29308.58, + "end": 29311.7, + "probability": 0.9249 + }, + { + "start": 29312.2, + "end": 29313.82, + "probability": 0.9902 + }, + { + "start": 29314.24, + "end": 29315.54, + "probability": 0.8346 + }, + { + "start": 29315.76, + "end": 29318.6, + "probability": 0.8361 + }, + { + "start": 29319.09, + "end": 29325.06, + "probability": 0.6649 + }, + { + "start": 29325.82, + "end": 29327.6, + "probability": 0.9555 + }, + { + "start": 29328.12, + "end": 29332.7, + "probability": 0.9133 + }, + { + "start": 29332.7, + "end": 29336.56, + "probability": 0.7204 + }, + { + "start": 29337.24, + "end": 29341.14, + "probability": 0.808 + }, + { + "start": 29342.32, + "end": 29345.8, + "probability": 0.9795 + }, + { + "start": 29346.74, + "end": 29348.1, + "probability": 0.8203 + }, + { + "start": 29349.02, + "end": 29353.26, + "probability": 0.8377 + }, + { + "start": 29354.04, + "end": 29358.2, + "probability": 0.9434 + }, + { + "start": 29360.28, + "end": 29361.74, + "probability": 0.9406 + }, + { + "start": 29362.66, + "end": 29364.12, + "probability": 0.9785 + }, + { + "start": 29364.7, + "end": 29369.54, + "probability": 0.994 + }, + { + "start": 29369.54, + "end": 29375.08, + "probability": 0.8255 + }, + { + "start": 29376.66, + "end": 29377.14, + "probability": 0.4675 + }, + { + "start": 29377.58, + "end": 29383.32, + "probability": 0.7778 + }, + { + "start": 29383.88, + "end": 29385.38, + "probability": 0.8398 + }, + { + "start": 29386.38, + "end": 29386.96, + "probability": 0.9546 + }, + { + "start": 29387.04, + "end": 29387.98, + "probability": 0.8857 + }, + { + "start": 29388.62, + "end": 29388.94, + "probability": 0.8951 + }, + { + "start": 29389.9, + "end": 29390.88, + "probability": 0.8823 + }, + { + "start": 29392.1, + "end": 29392.72, + "probability": 0.4748 + }, + { + "start": 29392.98, + "end": 29393.4, + "probability": 0.7913 + }, + { + "start": 29393.58, + "end": 29393.96, + "probability": 0.7467 + }, + { + "start": 29394.0, + "end": 29396.03, + "probability": 0.8906 + }, + { + "start": 29396.46, + "end": 29397.0, + "probability": 0.9921 + }, + { + "start": 29397.54, + "end": 29398.98, + "probability": 0.9126 + }, + { + "start": 29399.38, + "end": 29402.62, + "probability": 0.9093 + }, + { + "start": 29403.74, + "end": 29406.0, + "probability": 0.9946 + }, + { + "start": 29406.58, + "end": 29409.16, + "probability": 0.9873 + }, + { + "start": 29410.78, + "end": 29411.6, + "probability": 0.8923 + }, + { + "start": 29412.26, + "end": 29413.18, + "probability": 0.536 + }, + { + "start": 29414.62, + "end": 29417.54, + "probability": 0.7549 + }, + { + "start": 29418.06, + "end": 29420.06, + "probability": 0.9866 + }, + { + "start": 29420.76, + "end": 29421.58, + "probability": 0.3927 + }, + { + "start": 29422.14, + "end": 29422.44, + "probability": 0.9961 + }, + { + "start": 29424.34, + "end": 29425.52, + "probability": 0.8037 + }, + { + "start": 29433.66, + "end": 29435.76, + "probability": 0.8266 + }, + { + "start": 29435.76, + "end": 29437.34, + "probability": 0.8949 + }, + { + "start": 29437.52, + "end": 29438.08, + "probability": 0.6951 + }, + { + "start": 29438.3, + "end": 29439.28, + "probability": 0.4488 + }, + { + "start": 29441.24, + "end": 29441.82, + "probability": 0.7 + }, + { + "start": 29442.08, + "end": 29443.72, + "probability": 0.7131 + }, + { + "start": 29443.74, + "end": 29444.02, + "probability": 0.7676 + }, + { + "start": 29444.04, + "end": 29444.8, + "probability": 0.9813 + }, + { + "start": 29445.06, + "end": 29445.94, + "probability": 0.9286 + }, + { + "start": 29446.92, + "end": 29448.08, + "probability": 0.9872 + }, + { + "start": 29449.16, + "end": 29450.0, + "probability": 0.9644 + }, + { + "start": 29450.84, + "end": 29453.54, + "probability": 0.9937 + }, + { + "start": 29454.26, + "end": 29455.46, + "probability": 0.9919 + }, + { + "start": 29456.42, + "end": 29458.68, + "probability": 0.9968 + }, + { + "start": 29459.58, + "end": 29463.54, + "probability": 0.9785 + }, + { + "start": 29463.58, + "end": 29464.14, + "probability": 0.634 + }, + { + "start": 29464.44, + "end": 29464.68, + "probability": 0.2728 + }, + { + "start": 29465.84, + "end": 29469.32, + "probability": 0.9976 + }, + { + "start": 29470.28, + "end": 29471.86, + "probability": 0.8414 + }, + { + "start": 29472.68, + "end": 29476.36, + "probability": 0.8991 + }, + { + "start": 29477.2, + "end": 29477.72, + "probability": 0.3274 + }, + { + "start": 29477.74, + "end": 29478.0, + "probability": 0.3566 + }, + { + "start": 29478.02, + "end": 29481.36, + "probability": 0.9582 + }, + { + "start": 29482.36, + "end": 29483.96, + "probability": 0.7958 + }, + { + "start": 29484.64, + "end": 29486.72, + "probability": 0.8698 + }, + { + "start": 29488.1, + "end": 29489.88, + "probability": 0.7233 + }, + { + "start": 29489.94, + "end": 29491.16, + "probability": 0.7045 + }, + { + "start": 29491.34, + "end": 29491.8, + "probability": 0.5464 + }, + { + "start": 29491.94, + "end": 29492.72, + "probability": 0.888 + }, + { + "start": 29492.78, + "end": 29493.25, + "probability": 0.8572 + }, + { + "start": 29494.1, + "end": 29496.74, + "probability": 0.9973 + }, + { + "start": 29497.58, + "end": 29499.84, + "probability": 0.9022 + }, + { + "start": 29500.52, + "end": 29502.28, + "probability": 0.9993 + }, + { + "start": 29502.56, + "end": 29503.18, + "probability": 0.5018 + }, + { + "start": 29503.22, + "end": 29504.36, + "probability": 0.8793 + }, + { + "start": 29504.9, + "end": 29505.34, + "probability": 0.9103 + }, + { + "start": 29506.26, + "end": 29507.64, + "probability": 0.8944 + }, + { + "start": 29508.46, + "end": 29509.0, + "probability": 0.9027 + }, + { + "start": 29509.3, + "end": 29510.3, + "probability": 0.9689 + }, + { + "start": 29510.46, + "end": 29513.46, + "probability": 0.9397 + }, + { + "start": 29514.1, + "end": 29516.8, + "probability": 0.9238 + }, + { + "start": 29516.88, + "end": 29518.72, + "probability": 0.9985 + }, + { + "start": 29519.48, + "end": 29520.5, + "probability": 0.9941 + }, + { + "start": 29521.4, + "end": 29522.8, + "probability": 0.9973 + }, + { + "start": 29523.62, + "end": 29525.6, + "probability": 0.9954 + }, + { + "start": 29525.64, + "end": 29529.44, + "probability": 0.8099 + }, + { + "start": 29530.08, + "end": 29531.24, + "probability": 0.96 + }, + { + "start": 29531.34, + "end": 29532.94, + "probability": 0.9998 + }, + { + "start": 29533.36, + "end": 29536.32, + "probability": 0.9901 + }, + { + "start": 29536.62, + "end": 29536.94, + "probability": 0.891 + }, + { + "start": 29537.58, + "end": 29539.42, + "probability": 0.9948 + }, + { + "start": 29539.86, + "end": 29540.24, + "probability": 0.989 + }, + { + "start": 29540.92, + "end": 29542.64, + "probability": 0.993 + }, + { + "start": 29543.16, + "end": 29544.38, + "probability": 0.9806 + }, + { + "start": 29544.98, + "end": 29545.7, + "probability": 0.7157 + }, + { + "start": 29546.9, + "end": 29551.22, + "probability": 0.9189 + }, + { + "start": 29551.68, + "end": 29556.72, + "probability": 0.999 + }, + { + "start": 29557.96, + "end": 29561.4, + "probability": 0.9991 + }, + { + "start": 29561.4, + "end": 29567.22, + "probability": 0.9982 + }, + { + "start": 29567.84, + "end": 29568.14, + "probability": 0.7506 + }, + { + "start": 29569.72, + "end": 29570.82, + "probability": 0.9073 + }, + { + "start": 29571.42, + "end": 29573.82, + "probability": 0.9963 + }, + { + "start": 29574.42, + "end": 29574.78, + "probability": 0.7235 + }, + { + "start": 29576.06, + "end": 29580.64, + "probability": 0.9839 + }, + { + "start": 29582.26, + "end": 29585.52, + "probability": 0.9916 + }, + { + "start": 29585.52, + "end": 29587.92, + "probability": 0.9717 + }, + { + "start": 29588.92, + "end": 29593.32, + "probability": 0.9788 + }, + { + "start": 29593.82, + "end": 29599.24, + "probability": 0.879 + }, + { + "start": 29599.66, + "end": 29603.16, + "probability": 0.9832 + }, + { + "start": 29603.66, + "end": 29604.6, + "probability": 0.8317 + }, + { + "start": 29606.36, + "end": 29611.56, + "probability": 0.9904 + }, + { + "start": 29612.42, + "end": 29615.8, + "probability": 0.9925 + }, + { + "start": 29616.4, + "end": 29617.82, + "probability": 0.9897 + }, + { + "start": 29618.54, + "end": 29621.94, + "probability": 0.984 + }, + { + "start": 29622.58, + "end": 29625.52, + "probability": 0.9909 + }, + { + "start": 29626.5, + "end": 29626.74, + "probability": 0.8359 + }, + { + "start": 29627.56, + "end": 29628.81, + "probability": 0.8408 + }, + { + "start": 29630.64, + "end": 29631.24, + "probability": 0.9596 + }, + { + "start": 29631.44, + "end": 29631.74, + "probability": 0.5164 + }, + { + "start": 29633.1, + "end": 29633.96, + "probability": 0.4832 + }, + { + "start": 29634.18, + "end": 29636.26, + "probability": 0.9671 + }, + { + "start": 29653.88, + "end": 29656.2, + "probability": 0.5708 + }, + { + "start": 29658.16, + "end": 29662.02, + "probability": 0.9748 + }, + { + "start": 29662.02, + "end": 29666.74, + "probability": 0.9586 + }, + { + "start": 29667.3, + "end": 29668.86, + "probability": 0.9831 + }, + { + "start": 29669.78, + "end": 29670.2, + "probability": 0.9595 + }, + { + "start": 29672.02, + "end": 29672.68, + "probability": 0.7523 + }, + { + "start": 29673.72, + "end": 29676.54, + "probability": 0.9633 + }, + { + "start": 29677.24, + "end": 29678.72, + "probability": 0.9528 + }, + { + "start": 29679.22, + "end": 29682.18, + "probability": 0.9854 + }, + { + "start": 29683.08, + "end": 29687.3, + "probability": 0.9293 + }, + { + "start": 29688.58, + "end": 29689.68, + "probability": 0.8534 + }, + { + "start": 29690.86, + "end": 29694.52, + "probability": 0.9985 + }, + { + "start": 29694.54, + "end": 29697.64, + "probability": 0.9915 + }, + { + "start": 29698.84, + "end": 29700.32, + "probability": 0.9875 + }, + { + "start": 29700.88, + "end": 29703.22, + "probability": 0.9933 + }, + { + "start": 29703.86, + "end": 29707.5, + "probability": 0.9829 + }, + { + "start": 29708.7, + "end": 29708.88, + "probability": 0.8935 + }, + { + "start": 29710.02, + "end": 29715.56, + "probability": 0.9749 + }, + { + "start": 29716.02, + "end": 29719.0, + "probability": 0.9934 + }, + { + "start": 29719.0, + "end": 29722.46, + "probability": 0.9952 + }, + { + "start": 29723.54, + "end": 29726.5, + "probability": 0.9883 + }, + { + "start": 29726.98, + "end": 29728.78, + "probability": 0.9042 + }, + { + "start": 29729.36, + "end": 29732.7, + "probability": 0.9246 + }, + { + "start": 29734.82, + "end": 29739.48, + "probability": 0.8169 + }, + { + "start": 29739.6, + "end": 29744.62, + "probability": 0.9852 + }, + { + "start": 29745.94, + "end": 29748.56, + "probability": 0.989 + }, + { + "start": 29749.9, + "end": 29753.52, + "probability": 0.9915 + }, + { + "start": 29753.52, + "end": 29756.24, + "probability": 0.9794 + }, + { + "start": 29756.94, + "end": 29759.92, + "probability": 0.9519 + }, + { + "start": 29760.52, + "end": 29762.8, + "probability": 0.9963 + }, + { + "start": 29762.9, + "end": 29764.16, + "probability": 0.8518 + }, + { + "start": 29764.24, + "end": 29765.1, + "probability": 0.8263 + }, + { + "start": 29765.86, + "end": 29767.9, + "probability": 0.9482 + }, + { + "start": 29768.76, + "end": 29769.92, + "probability": 0.9381 + }, + { + "start": 29771.34, + "end": 29775.56, + "probability": 0.9906 + }, + { + "start": 29775.58, + "end": 29781.69, + "probability": 0.9969 + }, + { + "start": 29782.26, + "end": 29785.52, + "probability": 0.9905 + }, + { + "start": 29786.3, + "end": 29788.3, + "probability": 0.9118 + }, + { + "start": 29789.98, + "end": 29793.26, + "probability": 0.959 + }, + { + "start": 29793.88, + "end": 29795.14, + "probability": 0.9904 + }, + { + "start": 29796.96, + "end": 29802.56, + "probability": 0.9862 + }, + { + "start": 29804.34, + "end": 29807.82, + "probability": 0.9959 + }, + { + "start": 29807.82, + "end": 29810.8, + "probability": 0.9486 + }, + { + "start": 29811.7, + "end": 29813.4, + "probability": 0.9976 + }, + { + "start": 29815.22, + "end": 29818.94, + "probability": 0.9913 + }, + { + "start": 29819.16, + "end": 29821.82, + "probability": 0.9794 + }, + { + "start": 29822.62, + "end": 29825.74, + "probability": 0.9082 + }, + { + "start": 29826.42, + "end": 29827.8, + "probability": 0.9956 + }, + { + "start": 29828.38, + "end": 29830.0, + "probability": 0.9915 + }, + { + "start": 29832.46, + "end": 29836.38, + "probability": 0.8783 + }, + { + "start": 29836.66, + "end": 29837.94, + "probability": 0.9919 + }, + { + "start": 29838.1, + "end": 29839.56, + "probability": 0.9747 + }, + { + "start": 29840.26, + "end": 29842.94, + "probability": 0.8871 + }, + { + "start": 29844.04, + "end": 29846.46, + "probability": 0.8773 + }, + { + "start": 29850.54, + "end": 29851.28, + "probability": 0.0372 + }, + { + "start": 29851.28, + "end": 29853.92, + "probability": 0.7442 + }, + { + "start": 29854.06, + "end": 29855.8, + "probability": 0.8912 + }, + { + "start": 29856.46, + "end": 29860.86, + "probability": 0.9409 + }, + { + "start": 29861.8, + "end": 29863.86, + "probability": 0.9878 + }, + { + "start": 29864.58, + "end": 29865.46, + "probability": 0.0284 + }, + { + "start": 29878.34, + "end": 29881.24, + "probability": 0.8101 + }, + { + "start": 29881.7, + "end": 29884.22, + "probability": 0.0039 + }, + { + "start": 29884.22, + "end": 29885.82, + "probability": 0.9343 + }, + { + "start": 29886.82, + "end": 29887.96, + "probability": 0.6593 + }, + { + "start": 29888.42, + "end": 29889.52, + "probability": 0.3784 + }, + { + "start": 29890.38, + "end": 29891.06, + "probability": 0.7938 + }, + { + "start": 29891.14, + "end": 29893.74, + "probability": 0.8696 + }, + { + "start": 29893.98, + "end": 29894.42, + "probability": 0.9209 + }, + { + "start": 29901.08, + "end": 29903.26, + "probability": 0.9457 + }, + { + "start": 29903.4, + "end": 29903.96, + "probability": 0.9612 + }, + { + "start": 29904.08, + "end": 29904.54, + "probability": 0.8101 + }, + { + "start": 29904.58, + "end": 29905.48, + "probability": 0.9183 + }, + { + "start": 29905.8, + "end": 29906.48, + "probability": 0.7893 + }, + { + "start": 29906.66, + "end": 29909.44, + "probability": 0.9947 + }, + { + "start": 29909.56, + "end": 29914.78, + "probability": 0.981 + }, + { + "start": 29917.6, + "end": 29920.28, + "probability": 0.9741 + }, + { + "start": 29921.0, + "end": 29921.72, + "probability": 0.7371 + }, + { + "start": 29923.3, + "end": 29924.2, + "probability": 0.7345 + }, + { + "start": 29924.2, + "end": 29924.2, + "probability": 0.7337 + }, + { + "start": 29926.64, + "end": 29929.3, + "probability": 0.7079 + }, + { + "start": 29929.86, + "end": 29932.96, + "probability": 0.9502 + }, + { + "start": 29933.04, + "end": 29934.58, + "probability": 0.7915 + }, + { + "start": 29934.58, + "end": 29934.8, + "probability": 0.7133 + }, + { + "start": 29935.0, + "end": 29937.52, + "probability": 0.9935 + }, + { + "start": 29937.56, + "end": 29938.6, + "probability": 0.8895 + }, + { + "start": 29938.98, + "end": 29939.28, + "probability": 0.8536 + }, + { + "start": 29939.84, + "end": 29943.02, + "probability": 0.6551 + }, + { + "start": 29946.02, + "end": 29948.08, + "probability": 0.998 + }, + { + "start": 29948.38, + "end": 29949.52, + "probability": 0.6926 + }, + { + "start": 29949.68, + "end": 29952.96, + "probability": 0.9985 + }, + { + "start": 29953.42, + "end": 29955.52, + "probability": 0.9023 + }, + { + "start": 29955.7, + "end": 29956.92, + "probability": 0.5818 + }, + { + "start": 29957.12, + "end": 29959.1, + "probability": 0.7855 + }, + { + "start": 29959.88, + "end": 29960.8, + "probability": 0.734 + }, + { + "start": 29961.84, + "end": 29963.32, + "probability": 0.3812 + }, + { + "start": 29963.98, + "end": 29964.82, + "probability": 0.9277 + }, + { + "start": 29964.9, + "end": 29967.34, + "probability": 0.9063 + }, + { + "start": 29968.44, + "end": 29969.52, + "probability": 0.9159 + }, + { + "start": 29970.22, + "end": 29972.02, + "probability": 0.991 + }, + { + "start": 29972.94, + "end": 29976.8, + "probability": 0.6914 + }, + { + "start": 29977.04, + "end": 29978.4, + "probability": 0.4383 + }, + { + "start": 29978.4, + "end": 29980.24, + "probability": 0.8116 + }, + { + "start": 29980.28, + "end": 29980.84, + "probability": 0.7057 + }, + { + "start": 29980.96, + "end": 29983.98, + "probability": 0.9854 + }, + { + "start": 29984.06, + "end": 29986.06, + "probability": 0.9971 + }, + { + "start": 29986.06, + "end": 29987.9, + "probability": 0.9748 + }, + { + "start": 29988.0, + "end": 29988.4, + "probability": 0.9276 + }, + { + "start": 29988.48, + "end": 29989.84, + "probability": 0.9959 + }, + { + "start": 29989.88, + "end": 29991.86, + "probability": 0.8823 + }, + { + "start": 29992.64, + "end": 29992.68, + "probability": 0.792 + }, + { + "start": 29992.82, + "end": 29993.3, + "probability": 0.3337 + }, + { + "start": 29993.36, + "end": 29993.36, + "probability": 0.5303 + }, + { + "start": 29993.36, + "end": 29994.92, + "probability": 0.9967 + }, + { + "start": 29995.1, + "end": 29996.3, + "probability": 0.9854 + }, + { + "start": 29996.9, + "end": 30000.16, + "probability": 0.98 + }, + { + "start": 30001.18, + "end": 30002.18, + "probability": 0.3571 + }, + { + "start": 30002.62, + "end": 30003.26, + "probability": 0.1462 + }, + { + "start": 30003.48, + "end": 30004.24, + "probability": 0.3723 + }, + { + "start": 30005.04, + "end": 30006.58, + "probability": 0.5258 + }, + { + "start": 30006.62, + "end": 30006.94, + "probability": 0.7123 + }, + { + "start": 30007.04, + "end": 30007.88, + "probability": 0.9449 + }, + { + "start": 30007.92, + "end": 30011.8, + "probability": 0.9366 + }, + { + "start": 30011.9, + "end": 30014.14, + "probability": 0.981 + }, + { + "start": 30014.3, + "end": 30018.82, + "probability": 0.9679 + }, + { + "start": 30018.88, + "end": 30022.34, + "probability": 0.5755 + }, + { + "start": 30023.38, + "end": 30025.44, + "probability": 0.8731 + }, + { + "start": 30026.46, + "end": 30027.94, + "probability": 0.8981 + }, + { + "start": 30028.02, + "end": 30029.04, + "probability": 0.9848 + }, + { + "start": 30029.66, + "end": 30032.12, + "probability": 0.9766 + }, + { + "start": 30033.04, + "end": 30033.74, + "probability": 0.8518 + }, + { + "start": 30033.84, + "end": 30035.92, + "probability": 0.9854 + }, + { + "start": 30036.24, + "end": 30036.48, + "probability": 0.7237 + }, + { + "start": 30036.72, + "end": 30040.34, + "probability": 0.9907 + }, + { + "start": 30040.76, + "end": 30042.38, + "probability": 0.51 + }, + { + "start": 30042.74, + "end": 30043.92, + "probability": 0.9556 + }, + { + "start": 30044.0, + "end": 30049.42, + "probability": 0.8854 + }, + { + "start": 30049.56, + "end": 30050.7, + "probability": 0.5925 + }, + { + "start": 30051.08, + "end": 30055.22, + "probability": 0.9637 + }, + { + "start": 30055.32, + "end": 30056.72, + "probability": 0.9904 + }, + { + "start": 30056.92, + "end": 30059.23, + "probability": 0.9971 + }, + { + "start": 30059.7, + "end": 30060.62, + "probability": 0.9514 + }, + { + "start": 30061.68, + "end": 30062.94, + "probability": 0.7737 + }, + { + "start": 30063.2, + "end": 30066.02, + "probability": 0.8564 + }, + { + "start": 30066.12, + "end": 30069.93, + "probability": 0.9189 + }, + { + "start": 30070.58, + "end": 30072.0, + "probability": 0.2328 + }, + { + "start": 30072.12, + "end": 30072.9, + "probability": 0.7732 + }, + { + "start": 30073.34, + "end": 30075.48, + "probability": 0.8037 + }, + { + "start": 30076.42, + "end": 30080.64, + "probability": 0.8833 + }, + { + "start": 30080.68, + "end": 30083.12, + "probability": 0.991 + }, + { + "start": 30084.18, + "end": 30086.1, + "probability": 0.953 + }, + { + "start": 30086.32, + "end": 30087.9, + "probability": 0.9971 + }, + { + "start": 30088.7, + "end": 30089.14, + "probability": 0.8677 + }, + { + "start": 30089.88, + "end": 30094.38, + "probability": 0.8465 + }, + { + "start": 30095.28, + "end": 30097.98, + "probability": 0.9966 + }, + { + "start": 30098.06, + "end": 30098.5, + "probability": 0.5074 + }, + { + "start": 30098.56, + "end": 30100.2, + "probability": 0.9927 + }, + { + "start": 30100.86, + "end": 30102.34, + "probability": 0.9707 + }, + { + "start": 30105.04, + "end": 30105.04, + "probability": 0.0871 + }, + { + "start": 30105.04, + "end": 30105.16, + "probability": 0.5489 + }, + { + "start": 30105.24, + "end": 30107.8, + "probability": 0.9205 + }, + { + "start": 30108.9, + "end": 30110.68, + "probability": 0.9843 + }, + { + "start": 30112.36, + "end": 30113.32, + "probability": 0.8092 + }, + { + "start": 30113.7, + "end": 30115.28, + "probability": 0.9894 + }, + { + "start": 30124.7, + "end": 30125.24, + "probability": 0.6356 + }, + { + "start": 30125.84, + "end": 30126.08, + "probability": 0.2846 + }, + { + "start": 30126.16, + "end": 30127.22, + "probability": 0.3804 + }, + { + "start": 30128.32, + "end": 30131.42, + "probability": 0.7481 + }, + { + "start": 30132.66, + "end": 30135.12, + "probability": 0.8413 + }, + { + "start": 30135.98, + "end": 30140.4, + "probability": 0.9453 + }, + { + "start": 30141.3, + "end": 30144.28, + "probability": 0.9591 + }, + { + "start": 30144.9, + "end": 30144.97, + "probability": 0.0146 + }, + { + "start": 30145.78, + "end": 30145.94, + "probability": 0.917 + }, + { + "start": 30146.04, + "end": 30146.64, + "probability": 0.7424 + }, + { + "start": 30146.88, + "end": 30152.02, + "probability": 0.6021 + }, + { + "start": 30153.92, + "end": 30154.94, + "probability": 0.6897 + }, + { + "start": 30155.06, + "end": 30157.4, + "probability": 0.8834 + }, + { + "start": 30157.4, + "end": 30158.52, + "probability": 0.5834 + }, + { + "start": 30158.62, + "end": 30159.52, + "probability": 0.8445 + }, + { + "start": 30161.6, + "end": 30163.72, + "probability": 0.9993 + }, + { + "start": 30163.78, + "end": 30167.5, + "probability": 0.9289 + }, + { + "start": 30168.1, + "end": 30170.58, + "probability": 0.9618 + }, + { + "start": 30170.68, + "end": 30172.34, + "probability": 0.9879 + }, + { + "start": 30173.32, + "end": 30175.74, + "probability": 0.9752 + }, + { + "start": 30177.64, + "end": 30178.94, + "probability": 0.8848 + }, + { + "start": 30179.76, + "end": 30182.34, + "probability": 0.6472 + }, + { + "start": 30183.26, + "end": 30184.42, + "probability": 0.9535 + }, + { + "start": 30185.04, + "end": 30186.2, + "probability": 0.7392 + }, + { + "start": 30186.28, + "end": 30189.46, + "probability": 0.9893 + }, + { + "start": 30189.82, + "end": 30190.8, + "probability": 0.9072 + }, + { + "start": 30192.68, + "end": 30193.68, + "probability": 0.9556 + }, + { + "start": 30194.26, + "end": 30197.0, + "probability": 0.972 + }, + { + "start": 30197.16, + "end": 30198.85, + "probability": 0.857 + }, + { + "start": 30200.42, + "end": 30202.86, + "probability": 0.958 + }, + { + "start": 30203.78, + "end": 30206.44, + "probability": 0.8228 + }, + { + "start": 30206.98, + "end": 30211.26, + "probability": 0.9946 + }, + { + "start": 30212.46, + "end": 30214.48, + "probability": 0.9781 + }, + { + "start": 30214.9, + "end": 30215.72, + "probability": 0.9658 + }, + { + "start": 30216.72, + "end": 30220.36, + "probability": 0.9984 + }, + { + "start": 30220.52, + "end": 30221.58, + "probability": 0.9108 + }, + { + "start": 30222.58, + "end": 30224.08, + "probability": 0.9991 + }, + { + "start": 30224.6, + "end": 30226.28, + "probability": 0.9991 + }, + { + "start": 30226.84, + "end": 30228.34, + "probability": 0.9751 + }, + { + "start": 30229.66, + "end": 30231.62, + "probability": 0.9875 + }, + { + "start": 30231.66, + "end": 30232.78, + "probability": 0.9739 + }, + { + "start": 30232.96, + "end": 30234.48, + "probability": 0.6974 + }, + { + "start": 30234.66, + "end": 30235.28, + "probability": 0.7418 + }, + { + "start": 30235.34, + "end": 30236.12, + "probability": 0.3169 + }, + { + "start": 30236.58, + "end": 30238.06, + "probability": 0.5181 + }, + { + "start": 30238.34, + "end": 30239.86, + "probability": 0.9431 + }, + { + "start": 30240.62, + "end": 30241.34, + "probability": 0.9198 + }, + { + "start": 30242.22, + "end": 30245.68, + "probability": 0.9945 + }, + { + "start": 30246.14, + "end": 30247.26, + "probability": 0.4398 + }, + { + "start": 30247.8, + "end": 30248.3, + "probability": 0.9543 + }, + { + "start": 30248.42, + "end": 30250.12, + "probability": 0.8208 + }, + { + "start": 30250.52, + "end": 30252.9, + "probability": 0.9938 + }, + { + "start": 30253.2, + "end": 30253.68, + "probability": 0.2722 + }, + { + "start": 30254.06, + "end": 30256.12, + "probability": 0.9911 + }, + { + "start": 30256.38, + "end": 30257.8, + "probability": 0.9962 + }, + { + "start": 30257.96, + "end": 30259.4, + "probability": 0.9493 + }, + { + "start": 30259.58, + "end": 30260.14, + "probability": 0.7603 + }, + { + "start": 30260.48, + "end": 30262.2, + "probability": 0.9612 + }, + { + "start": 30262.62, + "end": 30267.96, + "probability": 0.9603 + }, + { + "start": 30268.46, + "end": 30271.18, + "probability": 0.9741 + }, + { + "start": 30271.76, + "end": 30272.62, + "probability": 0.6787 + }, + { + "start": 30273.3, + "end": 30276.14, + "probability": 0.9606 + }, + { + "start": 30276.56, + "end": 30279.68, + "probability": 0.8691 + }, + { + "start": 30280.18, + "end": 30282.92, + "probability": 0.876 + }, + { + "start": 30284.44, + "end": 30286.96, + "probability": 0.891 + }, + { + "start": 30287.7, + "end": 30290.54, + "probability": 0.9172 + }, + { + "start": 30291.3, + "end": 30292.36, + "probability": 0.9637 + }, + { + "start": 30292.8, + "end": 30294.33, + "probability": 0.9973 + }, + { + "start": 30294.58, + "end": 30295.57, + "probability": 0.9323 + }, + { + "start": 30296.2, + "end": 30300.24, + "probability": 0.9971 + }, + { + "start": 30300.24, + "end": 30304.16, + "probability": 0.999 + }, + { + "start": 30304.9, + "end": 30306.18, + "probability": 0.9682 + }, + { + "start": 30306.94, + "end": 30309.62, + "probability": 0.9254 + }, + { + "start": 30310.02, + "end": 30310.28, + "probability": 0.8036 + }, + { + "start": 30311.16, + "end": 30313.66, + "probability": 0.7153 + }, + { + "start": 30313.98, + "end": 30316.4, + "probability": 0.9927 + }, + { + "start": 30334.12, + "end": 30335.82, + "probability": 0.8733 + }, + { + "start": 30337.04, + "end": 30341.14, + "probability": 0.3662 + }, + { + "start": 30341.26, + "end": 30343.14, + "probability": 0.5671 + }, + { + "start": 30344.82, + "end": 30347.78, + "probability": 0.1726 + }, + { + "start": 30349.08, + "end": 30349.08, + "probability": 0.0853 + }, + { + "start": 30349.08, + "end": 30350.48, + "probability": 0.114 + }, + { + "start": 30352.64, + "end": 30355.07, + "probability": 0.5428 + }, + { + "start": 30355.76, + "end": 30358.4, + "probability": 0.899 + }, + { + "start": 30358.58, + "end": 30366.48, + "probability": 0.7666 + }, + { + "start": 30367.28, + "end": 30375.62, + "probability": 0.9806 + }, + { + "start": 30377.13, + "end": 30382.34, + "probability": 0.9969 + }, + { + "start": 30382.5, + "end": 30387.54, + "probability": 0.9946 + }, + { + "start": 30388.58, + "end": 30389.48, + "probability": 0.9846 + }, + { + "start": 30390.62, + "end": 30394.12, + "probability": 0.9884 + }, + { + "start": 30395.08, + "end": 30401.46, + "probability": 0.9731 + }, + { + "start": 30402.1, + "end": 30404.44, + "probability": 0.9186 + }, + { + "start": 30404.8, + "end": 30413.54, + "probability": 0.9894 + }, + { + "start": 30413.98, + "end": 30414.66, + "probability": 0.7914 + }, + { + "start": 30414.92, + "end": 30415.62, + "probability": 0.7329 + }, + { + "start": 30416.66, + "end": 30418.16, + "probability": 0.9776 + }, + { + "start": 30419.5, + "end": 30420.66, + "probability": 0.7484 + }, + { + "start": 30421.53, + "end": 30423.0, + "probability": 0.999 + }, + { + "start": 30423.84, + "end": 30425.26, + "probability": 0.9723 + }, + { + "start": 30426.3, + "end": 30429.14, + "probability": 0.9222 + }, + { + "start": 30430.14, + "end": 30433.6, + "probability": 0.986 + }, + { + "start": 30435.04, + "end": 30436.54, + "probability": 0.9653 + }, + { + "start": 30437.32, + "end": 30438.18, + "probability": 0.9976 + }, + { + "start": 30439.56, + "end": 30442.56, + "probability": 0.8483 + }, + { + "start": 30443.2, + "end": 30445.38, + "probability": 0.9618 + }, + { + "start": 30446.12, + "end": 30453.44, + "probability": 0.9969 + }, + { + "start": 30454.2, + "end": 30456.64, + "probability": 0.8911 + }, + { + "start": 30456.78, + "end": 30459.66, + "probability": 0.7974 + }, + { + "start": 30461.9, + "end": 30462.38, + "probability": 0.8926 + }, + { + "start": 30463.04, + "end": 30465.9, + "probability": 0.8143 + }, + { + "start": 30467.32, + "end": 30469.54, + "probability": 0.8128 + }, + { + "start": 30470.42, + "end": 30473.8, + "probability": 0.9966 + }, + { + "start": 30475.18, + "end": 30475.7, + "probability": 0.7285 + }, + { + "start": 30475.84, + "end": 30476.68, + "probability": 0.9679 + }, + { + "start": 30477.6, + "end": 30479.26, + "probability": 0.9938 + }, + { + "start": 30480.28, + "end": 30483.52, + "probability": 0.9985 + }, + { + "start": 30484.18, + "end": 30484.6, + "probability": 0.9767 + }, + { + "start": 30485.38, + "end": 30486.78, + "probability": 0.9964 + }, + { + "start": 30487.86, + "end": 30491.24, + "probability": 0.9927 + }, + { + "start": 30492.3, + "end": 30494.5, + "probability": 0.8653 + }, + { + "start": 30495.16, + "end": 30498.86, + "probability": 0.9101 + }, + { + "start": 30499.32, + "end": 30504.42, + "probability": 0.9974 + }, + { + "start": 30505.4, + "end": 30509.68, + "probability": 0.965 + }, + { + "start": 30509.78, + "end": 30514.54, + "probability": 0.9989 + }, + { + "start": 30515.96, + "end": 30520.12, + "probability": 0.9878 + }, + { + "start": 30521.12, + "end": 30523.68, + "probability": 0.9684 + }, + { + "start": 30524.02, + "end": 30525.34, + "probability": 0.7549 + }, + { + "start": 30525.44, + "end": 30532.7, + "probability": 0.9919 + }, + { + "start": 30532.82, + "end": 30536.16, + "probability": 0.9864 + }, + { + "start": 30536.68, + "end": 30542.04, + "probability": 0.9753 + }, + { + "start": 30542.66, + "end": 30543.8, + "probability": 0.8557 + }, + { + "start": 30543.92, + "end": 30544.16, + "probability": 0.6969 + }, + { + "start": 30544.8, + "end": 30547.8, + "probability": 0.8363 + }, + { + "start": 30547.96, + "end": 30549.5, + "probability": 0.9501 + }, + { + "start": 30562.98, + "end": 30562.98, + "probability": 0.7509 + }, + { + "start": 30562.98, + "end": 30563.48, + "probability": 0.5623 + }, + { + "start": 30564.1, + "end": 30564.72, + "probability": 0.8662 + }, + { + "start": 30565.06, + "end": 30569.4, + "probability": 0.5892 + }, + { + "start": 30570.48, + "end": 30573.64, + "probability": 0.9712 + }, + { + "start": 30575.06, + "end": 30577.22, + "probability": 0.9797 + }, + { + "start": 30579.22, + "end": 30583.82, + "probability": 0.9895 + }, + { + "start": 30584.86, + "end": 30585.84, + "probability": 0.9945 + }, + { + "start": 30586.42, + "end": 30588.08, + "probability": 0.9995 + }, + { + "start": 30589.32, + "end": 30596.24, + "probability": 0.9041 + }, + { + "start": 30597.04, + "end": 30601.0, + "probability": 0.9952 + }, + { + "start": 30602.8, + "end": 30604.58, + "probability": 0.9932 + }, + { + "start": 30605.54, + "end": 30607.7, + "probability": 0.9674 + }, + { + "start": 30608.82, + "end": 30613.34, + "probability": 0.9942 + }, + { + "start": 30614.32, + "end": 30616.6, + "probability": 0.877 + }, + { + "start": 30617.58, + "end": 30618.74, + "probability": 0.7548 + }, + { + "start": 30619.58, + "end": 30621.22, + "probability": 0.9978 + }, + { + "start": 30622.14, + "end": 30628.02, + "probability": 0.7702 + }, + { + "start": 30628.96, + "end": 30630.4, + "probability": 0.9774 + }, + { + "start": 30632.33, + "end": 30633.88, + "probability": 0.475 + }, + { + "start": 30633.88, + "end": 30635.82, + "probability": 0.7485 + }, + { + "start": 30637.34, + "end": 30641.84, + "probability": 0.9783 + }, + { + "start": 30643.4, + "end": 30645.82, + "probability": 0.9893 + }, + { + "start": 30646.88, + "end": 30647.9, + "probability": 0.9677 + }, + { + "start": 30648.86, + "end": 30654.48, + "probability": 0.9904 + }, + { + "start": 30655.42, + "end": 30657.88, + "probability": 0.9707 + }, + { + "start": 30659.12, + "end": 30660.56, + "probability": 0.9855 + }, + { + "start": 30661.68, + "end": 30663.42, + "probability": 0.8914 + }, + { + "start": 30663.56, + "end": 30664.34, + "probability": 0.7366 + }, + { + "start": 30664.48, + "end": 30665.09, + "probability": 0.8996 + }, + { + "start": 30666.44, + "end": 30668.21, + "probability": 0.9988 + }, + { + "start": 30670.28, + "end": 30671.54, + "probability": 0.6984 + }, + { + "start": 30671.68, + "end": 30672.76, + "probability": 0.8234 + }, + { + "start": 30672.92, + "end": 30673.88, + "probability": 0.9617 + }, + { + "start": 30674.72, + "end": 30676.95, + "probability": 0.9382 + }, + { + "start": 30678.06, + "end": 30679.24, + "probability": 0.9841 + }, + { + "start": 30679.86, + "end": 30681.3, + "probability": 0.9416 + }, + { + "start": 30682.1, + "end": 30685.06, + "probability": 0.9897 + }, + { + "start": 30686.14, + "end": 30690.02, + "probability": 0.9905 + }, + { + "start": 30690.78, + "end": 30693.54, + "probability": 0.6935 + }, + { + "start": 30694.32, + "end": 30698.08, + "probability": 0.6892 + }, + { + "start": 30698.98, + "end": 30706.16, + "probability": 0.9172 + }, + { + "start": 30706.32, + "end": 30708.18, + "probability": 0.9152 + }, + { + "start": 30708.98, + "end": 30710.8, + "probability": 0.9789 + }, + { + "start": 30712.24, + "end": 30715.02, + "probability": 0.9875 + }, + { + "start": 30715.86, + "end": 30717.65, + "probability": 0.9722 + }, + { + "start": 30718.54, + "end": 30724.4, + "probability": 0.9568 + }, + { + "start": 30724.88, + "end": 30726.26, + "probability": 0.9272 + }, + { + "start": 30727.16, + "end": 30731.31, + "probability": 0.9952 + }, + { + "start": 30731.98, + "end": 30735.74, + "probability": 0.9915 + }, + { + "start": 30736.3, + "end": 30737.5, + "probability": 0.5115 + }, + { + "start": 30737.54, + "end": 30739.62, + "probability": 0.9318 + }, + { + "start": 30740.22, + "end": 30740.6, + "probability": 0.8457 + }, + { + "start": 30741.16, + "end": 30741.36, + "probability": 0.9363 + }, + { + "start": 30742.8, + "end": 30745.53, + "probability": 0.8457 + }, + { + "start": 30745.7, + "end": 30747.7, + "probability": 0.9137 + }, + { + "start": 30759.16, + "end": 30760.22, + "probability": 0.7607 + }, + { + "start": 30763.06, + "end": 30763.72, + "probability": 0.8235 + }, + { + "start": 30763.9, + "end": 30764.68, + "probability": 0.9166 + }, + { + "start": 30764.94, + "end": 30766.22, + "probability": 0.6548 + }, + { + "start": 30766.36, + "end": 30767.1, + "probability": 0.6986 + }, + { + "start": 30768.02, + "end": 30775.64, + "probability": 0.9229 + }, + { + "start": 30776.38, + "end": 30778.32, + "probability": 0.7965 + }, + { + "start": 30778.44, + "end": 30783.9, + "probability": 0.9915 + }, + { + "start": 30784.26, + "end": 30784.96, + "probability": 0.6742 + }, + { + "start": 30785.84, + "end": 30787.35, + "probability": 0.9969 + }, + { + "start": 30787.7, + "end": 30788.98, + "probability": 0.7836 + }, + { + "start": 30789.04, + "end": 30793.97, + "probability": 0.9922 + }, + { + "start": 30795.2, + "end": 30797.06, + "probability": 0.8368 + }, + { + "start": 30797.36, + "end": 30797.92, + "probability": 0.77 + }, + { + "start": 30797.98, + "end": 30799.95, + "probability": 0.6895 + }, + { + "start": 30801.7, + "end": 30804.44, + "probability": 0.9954 + }, + { + "start": 30805.22, + "end": 30807.6, + "probability": 0.9933 + }, + { + "start": 30808.42, + "end": 30809.36, + "probability": 0.9949 + }, + { + "start": 30810.1, + "end": 30812.86, + "probability": 0.6962 + }, + { + "start": 30814.04, + "end": 30814.64, + "probability": 0.7168 + }, + { + "start": 30815.72, + "end": 30816.06, + "probability": 0.0271 + }, + { + "start": 30816.28, + "end": 30816.63, + "probability": 0.6113 + }, + { + "start": 30817.16, + "end": 30817.65, + "probability": 0.3855 + }, + { + "start": 30818.14, + "end": 30820.56, + "probability": 0.0119 + }, + { + "start": 30820.56, + "end": 30820.8, + "probability": 0.0517 + }, + { + "start": 30820.8, + "end": 30821.04, + "probability": 0.0801 + }, + { + "start": 30821.72, + "end": 30823.84, + "probability": 0.95 + }, + { + "start": 30824.48, + "end": 30825.08, + "probability": 0.8634 + }, + { + "start": 30825.18, + "end": 30827.06, + "probability": 0.9587 + }, + { + "start": 30827.16, + "end": 30829.66, + "probability": 0.9685 + }, + { + "start": 30830.04, + "end": 30834.34, + "probability": 0.9443 + }, + { + "start": 30834.66, + "end": 30834.76, + "probability": 0.0358 + }, + { + "start": 30834.76, + "end": 30834.8, + "probability": 0.0433 + }, + { + "start": 30834.8, + "end": 30834.8, + "probability": 0.2792 + }, + { + "start": 30834.8, + "end": 30834.8, + "probability": 0.3568 + }, + { + "start": 30834.8, + "end": 30838.52, + "probability": 0.7116 + }, + { + "start": 30839.08, + "end": 30841.3, + "probability": 0.8784 + }, + { + "start": 30841.88, + "end": 30844.42, + "probability": 0.9883 + }, + { + "start": 30845.08, + "end": 30849.4, + "probability": 0.9949 + }, + { + "start": 30849.44, + "end": 30850.12, + "probability": 0.8528 + }, + { + "start": 30850.26, + "end": 30851.46, + "probability": 0.8404 + }, + { + "start": 30852.36, + "end": 30856.76, + "probability": 0.77 + }, + { + "start": 30857.88, + "end": 30859.68, + "probability": 0.5911 + }, + { + "start": 30859.8, + "end": 30859.86, + "probability": 0.015 + }, + { + "start": 30860.36, + "end": 30863.04, + "probability": 0.2547 + }, + { + "start": 30863.04, + "end": 30863.82, + "probability": 0.6896 + }, + { + "start": 30863.84, + "end": 30864.04, + "probability": 0.1008 + }, + { + "start": 30864.04, + "end": 30865.36, + "probability": 0.4861 + }, + { + "start": 30865.74, + "end": 30869.2, + "probability": 0.8874 + }, + { + "start": 30869.66, + "end": 30876.26, + "probability": 0.8768 + }, + { + "start": 30876.66, + "end": 30881.1, + "probability": 0.8823 + }, + { + "start": 30881.7, + "end": 30884.66, + "probability": 0.9974 + }, + { + "start": 30885.2, + "end": 30886.72, + "probability": 0.9731 + }, + { + "start": 30887.16, + "end": 30893.26, + "probability": 0.9985 + }, + { + "start": 30893.26, + "end": 30898.44, + "probability": 0.9998 + }, + { + "start": 30898.96, + "end": 30901.2, + "probability": 0.9961 + }, + { + "start": 30901.7, + "end": 30902.94, + "probability": 0.7943 + }, + { + "start": 30903.54, + "end": 30905.4, + "probability": 0.7605 + }, + { + "start": 30905.74, + "end": 30908.66, + "probability": 0.9202 + }, + { + "start": 30909.44, + "end": 30912.08, + "probability": 0.89 + }, + { + "start": 30912.58, + "end": 30913.1, + "probability": 0.9744 + }, + { + "start": 30913.94, + "end": 30917.84, + "probability": 0.9915 + }, + { + "start": 30917.9, + "end": 30919.14, + "probability": 0.9346 + }, + { + "start": 30919.62, + "end": 30920.66, + "probability": 0.9668 + }, + { + "start": 30921.08, + "end": 30923.2, + "probability": 0.996 + }, + { + "start": 30923.24, + "end": 30924.66, + "probability": 0.9893 + }, + { + "start": 30925.9, + "end": 30929.12, + "probability": 0.9922 + }, + { + "start": 30929.4, + "end": 30931.46, + "probability": 0.6081 + }, + { + "start": 30931.94, + "end": 30937.74, + "probability": 0.9494 + }, + { + "start": 30938.2, + "end": 30939.4, + "probability": 0.891 + }, + { + "start": 30939.8, + "end": 30944.94, + "probability": 0.9448 + }, + { + "start": 30945.42, + "end": 30948.22, + "probability": 0.9912 + }, + { + "start": 30948.34, + "end": 30948.92, + "probability": 0.7199 + }, + { + "start": 30949.04, + "end": 30951.62, + "probability": 0.0101 + }, + { + "start": 30952.16, + "end": 30954.46, + "probability": 0.9028 + }, + { + "start": 30955.32, + "end": 30956.18, + "probability": 0.6614 + }, + { + "start": 30956.34, + "end": 30961.6, + "probability": 0.9957 + }, + { + "start": 30961.66, + "end": 30964.32, + "probability": 0.9998 + }, + { + "start": 30965.06, + "end": 30967.32, + "probability": 0.8489 + }, + { + "start": 30967.84, + "end": 30970.78, + "probability": 0.9971 + }, + { + "start": 30970.86, + "end": 30972.12, + "probability": 0.9983 + }, + { + "start": 30973.04, + "end": 30975.59, + "probability": 0.6109 + }, + { + "start": 30975.78, + "end": 30978.24, + "probability": 0.9378 + }, + { + "start": 30992.58, + "end": 30995.46, + "probability": 0.8603 + }, + { + "start": 30995.94, + "end": 30996.2, + "probability": 0.1282 + }, + { + "start": 30996.2, + "end": 30999.66, + "probability": 0.9495 + }, + { + "start": 30999.86, + "end": 31001.08, + "probability": 0.8828 + }, + { + "start": 31001.16, + "end": 31002.12, + "probability": 0.7059 + }, + { + "start": 31002.88, + "end": 31005.46, + "probability": 0.9253 + }, + { + "start": 31006.12, + "end": 31011.18, + "probability": 0.9856 + }, + { + "start": 31011.78, + "end": 31014.5, + "probability": 0.9976 + }, + { + "start": 31014.5, + "end": 31018.46, + "probability": 0.9961 + }, + { + "start": 31018.58, + "end": 31019.96, + "probability": 0.7527 + }, + { + "start": 31020.38, + "end": 31021.44, + "probability": 0.9139 + }, + { + "start": 31021.52, + "end": 31024.66, + "probability": 0.9879 + }, + { + "start": 31024.88, + "end": 31027.05, + "probability": 0.8485 + }, + { + "start": 31027.82, + "end": 31031.24, + "probability": 0.9931 + }, + { + "start": 31031.72, + "end": 31035.52, + "probability": 0.9736 + }, + { + "start": 31035.52, + "end": 31042.08, + "probability": 0.9913 + }, + { + "start": 31042.62, + "end": 31046.06, + "probability": 0.7536 + }, + { + "start": 31046.72, + "end": 31050.54, + "probability": 0.9895 + }, + { + "start": 31051.66, + "end": 31056.42, + "probability": 0.9598 + }, + { + "start": 31056.54, + "end": 31060.0, + "probability": 0.6664 + }, + { + "start": 31061.24, + "end": 31063.24, + "probability": 0.9966 + }, + { + "start": 31063.86, + "end": 31066.54, + "probability": 0.6832 + }, + { + "start": 31067.18, + "end": 31070.0, + "probability": 0.9653 + }, + { + "start": 31070.66, + "end": 31073.56, + "probability": 0.9974 + }, + { + "start": 31074.04, + "end": 31077.04, + "probability": 0.9897 + }, + { + "start": 31077.76, + "end": 31078.6, + "probability": 0.6715 + }, + { + "start": 31079.12, + "end": 31082.7, + "probability": 0.6663 + }, + { + "start": 31082.8, + "end": 31084.9, + "probability": 0.9802 + }, + { + "start": 31085.04, + "end": 31086.35, + "probability": 0.8663 + }, + { + "start": 31087.24, + "end": 31090.6, + "probability": 0.9792 + }, + { + "start": 31091.78, + "end": 31095.65, + "probability": 0.9047 + }, + { + "start": 31096.12, + "end": 31097.96, + "probability": 0.9842 + }, + { + "start": 31098.9, + "end": 31104.92, + "probability": 0.9856 + }, + { + "start": 31106.16, + "end": 31107.8, + "probability": 0.5571 + }, + { + "start": 31107.9, + "end": 31112.44, + "probability": 0.9607 + }, + { + "start": 31112.68, + "end": 31116.18, + "probability": 0.8804 + }, + { + "start": 31117.02, + "end": 31119.52, + "probability": 0.6982 + }, + { + "start": 31120.0, + "end": 31121.52, + "probability": 0.9989 + }, + { + "start": 31122.06, + "end": 31123.86, + "probability": 0.7855 + }, + { + "start": 31124.42, + "end": 31125.48, + "probability": 0.7803 + }, + { + "start": 31126.36, + "end": 31129.42, + "probability": 0.9302 + }, + { + "start": 31129.42, + "end": 31132.32, + "probability": 0.7502 + }, + { + "start": 31133.04, + "end": 31137.0, + "probability": 0.7462 + }, + { + "start": 31137.62, + "end": 31138.58, + "probability": 0.8639 + }, + { + "start": 31138.7, + "end": 31139.58, + "probability": 0.7563 + }, + { + "start": 31139.78, + "end": 31141.3, + "probability": 0.908 + }, + { + "start": 31142.22, + "end": 31145.16, + "probability": 0.991 + }, + { + "start": 31145.76, + "end": 31149.58, + "probability": 0.8828 + }, + { + "start": 31150.44, + "end": 31153.16, + "probability": 0.8508 + }, + { + "start": 31153.84, + "end": 31154.82, + "probability": 0.7817 + }, + { + "start": 31154.88, + "end": 31159.08, + "probability": 0.9904 + }, + { + "start": 31159.84, + "end": 31163.04, + "probability": 0.7851 + }, + { + "start": 31163.58, + "end": 31167.86, + "probability": 0.9943 + }, + { + "start": 31168.46, + "end": 31169.65, + "probability": 0.5482 + }, + { + "start": 31169.74, + "end": 31173.26, + "probability": 0.9536 + }, + { + "start": 31173.68, + "end": 31178.44, + "probability": 0.9871 + }, + { + "start": 31178.46, + "end": 31179.34, + "probability": 0.8311 + }, + { + "start": 31179.72, + "end": 31180.88, + "probability": 0.9407 + }, + { + "start": 31181.24, + "end": 31181.44, + "probability": 0.8289 + }, + { + "start": 31182.16, + "end": 31185.06, + "probability": 0.9082 + }, + { + "start": 31185.5, + "end": 31187.18, + "probability": 0.9736 + }, + { + "start": 31188.12, + "end": 31188.9, + "probability": 0.4733 + }, + { + "start": 31189.52, + "end": 31191.0, + "probability": 0.9977 + }, + { + "start": 31192.14, + "end": 31192.74, + "probability": 0.3715 + }, + { + "start": 31193.74, + "end": 31195.08, + "probability": 0.6239 + }, + { + "start": 31198.11, + "end": 31200.82, + "probability": 0.5793 + }, + { + "start": 31201.36, + "end": 31202.8, + "probability": 0.7606 + }, + { + "start": 31202.98, + "end": 31203.16, + "probability": 0.2609 + }, + { + "start": 31203.4, + "end": 31204.6, + "probability": 0.0136 + }, + { + "start": 31206.94, + "end": 31207.7, + "probability": 0.496 + }, + { + "start": 31208.3, + "end": 31209.94, + "probability": 0.4553 + }, + { + "start": 31210.12, + "end": 31210.68, + "probability": 0.9672 + }, + { + "start": 31211.74, + "end": 31213.54, + "probability": 0.7342 + }, + { + "start": 31214.82, + "end": 31217.18, + "probability": 0.8731 + }, + { + "start": 31217.76, + "end": 31218.04, + "probability": 0.7707 + }, + { + "start": 31218.1, + "end": 31218.82, + "probability": 0.7102 + }, + { + "start": 31218.98, + "end": 31219.72, + "probability": 0.6644 + }, + { + "start": 31220.72, + "end": 31223.06, + "probability": 0.6554 + }, + { + "start": 31224.58, + "end": 31227.42, + "probability": 0.9722 + }, + { + "start": 31229.04, + "end": 31230.56, + "probability": 0.9403 + }, + { + "start": 31231.2, + "end": 31232.28, + "probability": 0.8239 + }, + { + "start": 31232.4, + "end": 31235.62, + "probability": 0.9482 + }, + { + "start": 31236.76, + "end": 31240.92, + "probability": 0.8743 + }, + { + "start": 31241.78, + "end": 31245.12, + "probability": 0.9614 + }, + { + "start": 31246.98, + "end": 31248.46, + "probability": 0.7197 + }, + { + "start": 31249.76, + "end": 31252.52, + "probability": 0.5667 + }, + { + "start": 31253.5, + "end": 31258.92, + "probability": 0.7711 + }, + { + "start": 31259.86, + "end": 31261.56, + "probability": 0.9983 + }, + { + "start": 31262.28, + "end": 31264.94, + "probability": 0.8347 + }, + { + "start": 31266.78, + "end": 31269.6, + "probability": 0.9966 + }, + { + "start": 31270.74, + "end": 31271.98, + "probability": 0.9451 + }, + { + "start": 31273.98, + "end": 31277.64, + "probability": 0.9622 + }, + { + "start": 31278.4, + "end": 31279.9, + "probability": 0.9587 + }, + { + "start": 31281.48, + "end": 31284.68, + "probability": 0.8787 + }, + { + "start": 31284.82, + "end": 31285.3, + "probability": 0.4959 + }, + { + "start": 31286.1, + "end": 31288.42, + "probability": 0.9658 + }, + { + "start": 31289.02, + "end": 31291.6, + "probability": 0.8565 + }, + { + "start": 31292.2, + "end": 31295.82, + "probability": 0.7204 + }, + { + "start": 31295.82, + "end": 31299.88, + "probability": 0.9868 + }, + { + "start": 31300.48, + "end": 31301.68, + "probability": 0.884 + }, + { + "start": 31302.34, + "end": 31307.6, + "probability": 0.996 + }, + { + "start": 31308.32, + "end": 31310.86, + "probability": 0.9883 + }, + { + "start": 31311.52, + "end": 31313.09, + "probability": 0.9854 + }, + { + "start": 31314.14, + "end": 31315.68, + "probability": 0.6994 + }, + { + "start": 31316.7, + "end": 31319.08, + "probability": 0.9843 + }, + { + "start": 31319.9, + "end": 31321.96, + "probability": 0.9917 + }, + { + "start": 31322.78, + "end": 31326.94, + "probability": 0.9146 + }, + { + "start": 31326.94, + "end": 31331.64, + "probability": 0.9992 + }, + { + "start": 31332.96, + "end": 31335.64, + "probability": 0.998 + }, + { + "start": 31336.36, + "end": 31340.78, + "probability": 0.9941 + }, + { + "start": 31341.66, + "end": 31342.76, + "probability": 0.4765 + }, + { + "start": 31343.36, + "end": 31345.74, + "probability": 0.9966 + }, + { + "start": 31346.56, + "end": 31347.26, + "probability": 0.9653 + }, + { + "start": 31348.52, + "end": 31350.88, + "probability": 0.9939 + }, + { + "start": 31351.62, + "end": 31358.16, + "probability": 0.9963 + }, + { + "start": 31359.08, + "end": 31361.38, + "probability": 0.7768 + }, + { + "start": 31362.3, + "end": 31364.52, + "probability": 0.9873 + }, + { + "start": 31365.94, + "end": 31367.2, + "probability": 0.7476 + }, + { + "start": 31367.34, + "end": 31370.6, + "probability": 0.9463 + }, + { + "start": 31370.84, + "end": 31373.02, + "probability": 0.4434 + }, + { + "start": 31373.02, + "end": 31375.24, + "probability": 0.9849 + }, + { + "start": 31376.66, + "end": 31377.86, + "probability": 0.7881 + }, + { + "start": 31378.72, + "end": 31381.98, + "probability": 0.8671 + }, + { + "start": 31382.72, + "end": 31383.2, + "probability": 0.6716 + }, + { + "start": 31384.2, + "end": 31389.32, + "probability": 0.9764 + }, + { + "start": 31389.98, + "end": 31391.68, + "probability": 0.7497 + }, + { + "start": 31392.32, + "end": 31395.18, + "probability": 0.896 + }, + { + "start": 31395.48, + "end": 31396.98, + "probability": 0.4097 + }, + { + "start": 31398.36, + "end": 31399.54, + "probability": 0.9914 + }, + { + "start": 31400.36, + "end": 31403.3, + "probability": 0.9056 + }, + { + "start": 31403.54, + "end": 31404.18, + "probability": 0.7772 + }, + { + "start": 31405.78, + "end": 31407.12, + "probability": 0.999 + }, + { + "start": 31407.86, + "end": 31410.14, + "probability": 0.6252 + }, + { + "start": 31410.14, + "end": 31415.28, + "probability": 0.9613 + }, + { + "start": 31415.4, + "end": 31418.02, + "probability": 0.8703 + }, + { + "start": 31418.5, + "end": 31418.76, + "probability": 0.6948 + }, + { + "start": 31419.2, + "end": 31423.02, + "probability": 0.6373 + }, + { + "start": 31424.52, + "end": 31426.48, + "probability": 0.8079 + }, + { + "start": 31428.76, + "end": 31429.82, + "probability": 0.4778 + }, + { + "start": 31430.14, + "end": 31431.66, + "probability": 0.7884 + }, + { + "start": 31453.98, + "end": 31453.98, + "probability": 0.7375 + }, + { + "start": 31453.98, + "end": 31454.54, + "probability": 0.6371 + }, + { + "start": 31455.1, + "end": 31456.38, + "probability": 0.8235 + }, + { + "start": 31457.06, + "end": 31459.0, + "probability": 0.595 + }, + { + "start": 31461.34, + "end": 31466.0, + "probability": 0.9867 + }, + { + "start": 31466.84, + "end": 31471.08, + "probability": 0.9685 + }, + { + "start": 31471.68, + "end": 31472.26, + "probability": 0.8076 + }, + { + "start": 31473.46, + "end": 31476.06, + "probability": 0.9938 + }, + { + "start": 31476.06, + "end": 31480.66, + "probability": 0.9973 + }, + { + "start": 31482.18, + "end": 31484.04, + "probability": 0.7741 + }, + { + "start": 31484.62, + "end": 31485.98, + "probability": 0.9511 + }, + { + "start": 31486.04, + "end": 31488.25, + "probability": 0.991 + }, + { + "start": 31489.24, + "end": 31493.9, + "probability": 0.9841 + }, + { + "start": 31494.64, + "end": 31499.29, + "probability": 0.9955 + }, + { + "start": 31500.66, + "end": 31505.38, + "probability": 0.994 + }, + { + "start": 31505.52, + "end": 31508.06, + "probability": 0.998 + }, + { + "start": 31509.06, + "end": 31514.18, + "probability": 0.9935 + }, + { + "start": 31514.62, + "end": 31516.18, + "probability": 0.9984 + }, + { + "start": 31516.96, + "end": 31518.5, + "probability": 0.9966 + }, + { + "start": 31518.66, + "end": 31521.28, + "probability": 0.9854 + }, + { + "start": 31521.88, + "end": 31524.2, + "probability": 0.9799 + }, + { + "start": 31524.76, + "end": 31527.16, + "probability": 0.9419 + }, + { + "start": 31527.74, + "end": 31531.14, + "probability": 0.8022 + }, + { + "start": 31532.04, + "end": 31536.92, + "probability": 0.993 + }, + { + "start": 31536.92, + "end": 31540.98, + "probability": 0.9966 + }, + { + "start": 31541.22, + "end": 31541.96, + "probability": 0.8521 + }, + { + "start": 31542.58, + "end": 31544.24, + "probability": 0.9648 + }, + { + "start": 31547.08, + "end": 31552.02, + "probability": 0.9824 + }, + { + "start": 31552.02, + "end": 31556.7, + "probability": 0.9941 + }, + { + "start": 31558.22, + "end": 31562.52, + "probability": 0.8602 + }, + { + "start": 31563.24, + "end": 31564.3, + "probability": 0.965 + }, + { + "start": 31565.64, + "end": 31569.72, + "probability": 0.9874 + }, + { + "start": 31569.94, + "end": 31570.52, + "probability": 0.372 + }, + { + "start": 31570.66, + "end": 31571.04, + "probability": 0.9465 + }, + { + "start": 31571.28, + "end": 31571.94, + "probability": 0.9673 + }, + { + "start": 31572.28, + "end": 31576.18, + "probability": 0.9908 + }, + { + "start": 31577.32, + "end": 31580.66, + "probability": 0.756 + }, + { + "start": 31581.22, + "end": 31584.86, + "probability": 0.9766 + }, + { + "start": 31585.52, + "end": 31588.52, + "probability": 0.8778 + }, + { + "start": 31589.14, + "end": 31593.86, + "probability": 0.9916 + }, + { + "start": 31594.0, + "end": 31599.74, + "probability": 0.9642 + }, + { + "start": 31600.88, + "end": 31603.92, + "probability": 0.9253 + }, + { + "start": 31604.6, + "end": 31606.32, + "probability": 0.9398 + }, + { + "start": 31607.52, + "end": 31609.34, + "probability": 0.9713 + }, + { + "start": 31610.0, + "end": 31611.05, + "probability": 0.9976 + }, + { + "start": 31611.46, + "end": 31613.06, + "probability": 0.9725 + }, + { + "start": 31613.44, + "end": 31614.22, + "probability": 0.9694 + }, + { + "start": 31614.42, + "end": 31615.18, + "probability": 0.8866 + }, + { + "start": 31616.14, + "end": 31616.88, + "probability": 0.9771 + }, + { + "start": 31618.08, + "end": 31618.4, + "probability": 0.7928 + }, + { + "start": 31619.62, + "end": 31619.98, + "probability": 0.7996 + }, + { + "start": 31622.46, + "end": 31625.48, + "probability": 0.8681 + }, + { + "start": 31625.72, + "end": 31627.5, + "probability": 0.9496 + }, + { + "start": 31634.32, + "end": 31634.32, + "probability": 0.1107 + }, + { + "start": 31634.32, + "end": 31634.32, + "probability": 0.1916 + }, + { + "start": 31651.14, + "end": 31651.88, + "probability": 0.1934 + }, + { + "start": 31653.0, + "end": 31654.26, + "probability": 0.5662 + }, + { + "start": 31655.3, + "end": 31657.02, + "probability": 0.7497 + }, + { + "start": 31658.4, + "end": 31659.82, + "probability": 0.8975 + }, + { + "start": 31660.26, + "end": 31665.4, + "probability": 0.9945 + }, + { + "start": 31666.02, + "end": 31668.62, + "probability": 0.9872 + }, + { + "start": 31669.54, + "end": 31672.56, + "probability": 0.9866 + }, + { + "start": 31673.3, + "end": 31678.7, + "probability": 0.9779 + }, + { + "start": 31679.26, + "end": 31680.58, + "probability": 0.9985 + }, + { + "start": 31681.18, + "end": 31682.28, + "probability": 0.9727 + }, + { + "start": 31682.84, + "end": 31684.9, + "probability": 0.7859 + }, + { + "start": 31685.54, + "end": 31686.46, + "probability": 0.263 + }, + { + "start": 31686.98, + "end": 31687.62, + "probability": 0.9695 + }, + { + "start": 31688.68, + "end": 31690.06, + "probability": 0.6475 + }, + { + "start": 31690.8, + "end": 31692.86, + "probability": 0.9934 + }, + { + "start": 31693.36, + "end": 31696.56, + "probability": 0.9961 + }, + { + "start": 31697.14, + "end": 31702.5, + "probability": 0.9743 + }, + { + "start": 31703.58, + "end": 31707.52, + "probability": 0.9753 + }, + { + "start": 31708.34, + "end": 31711.4, + "probability": 0.9898 + }, + { + "start": 31712.76, + "end": 31716.38, + "probability": 0.9741 + }, + { + "start": 31717.4, + "end": 31719.28, + "probability": 0.9153 + }, + { + "start": 31719.86, + "end": 31721.5, + "probability": 0.981 + }, + { + "start": 31722.2, + "end": 31724.6, + "probability": 0.9811 + }, + { + "start": 31725.04, + "end": 31729.12, + "probability": 0.9854 + }, + { + "start": 31729.68, + "end": 31730.34, + "probability": 0.7268 + }, + { + "start": 31731.02, + "end": 31731.68, + "probability": 0.9633 + }, + { + "start": 31732.36, + "end": 31733.08, + "probability": 0.9635 + }, + { + "start": 31733.68, + "end": 31735.52, + "probability": 0.989 + }, + { + "start": 31736.3, + "end": 31742.58, + "probability": 0.9338 + }, + { + "start": 31743.56, + "end": 31746.96, + "probability": 0.9609 + }, + { + "start": 31747.3, + "end": 31749.16, + "probability": 0.9761 + }, + { + "start": 31749.9, + "end": 31754.14, + "probability": 0.9967 + }, + { + "start": 31754.22, + "end": 31756.6, + "probability": 0.9957 + }, + { + "start": 31757.7, + "end": 31761.82, + "probability": 0.9291 + }, + { + "start": 31762.02, + "end": 31762.88, + "probability": 0.7545 + }, + { + "start": 31763.72, + "end": 31767.92, + "probability": 0.9312 + }, + { + "start": 31768.82, + "end": 31771.2, + "probability": 0.9326 + }, + { + "start": 31773.04, + "end": 31773.58, + "probability": 0.7957 + }, + { + "start": 31774.12, + "end": 31777.02, + "probability": 0.9661 + }, + { + "start": 31777.42, + "end": 31780.4, + "probability": 0.8398 + }, + { + "start": 31781.62, + "end": 31783.52, + "probability": 0.7004 + }, + { + "start": 31784.82, + "end": 31789.52, + "probability": 0.995 + }, + { + "start": 31789.52, + "end": 31793.5, + "probability": 0.9954 + }, + { + "start": 31794.18, + "end": 31796.66, + "probability": 0.9813 + }, + { + "start": 31797.88, + "end": 31802.16, + "probability": 0.9961 + }, + { + "start": 31802.5, + "end": 31806.08, + "probability": 0.9849 + }, + { + "start": 31806.08, + "end": 31810.48, + "probability": 0.9976 + }, + { + "start": 31811.52, + "end": 31815.46, + "probability": 0.989 + }, + { + "start": 31816.04, + "end": 31816.52, + "probability": 0.8643 + }, + { + "start": 31816.62, + "end": 31817.22, + "probability": 0.9628 + }, + { + "start": 31817.58, + "end": 31818.72, + "probability": 0.947 + }, + { + "start": 31818.72, + "end": 31821.62, + "probability": 0.969 + }, + { + "start": 31822.04, + "end": 31825.87, + "probability": 0.9943 + }, + { + "start": 31826.39, + "end": 31831.34, + "probability": 0.9736 + }, + { + "start": 31831.4, + "end": 31832.04, + "probability": 0.7316 + }, + { + "start": 31832.54, + "end": 31833.88, + "probability": 0.7559 + }, + { + "start": 31834.54, + "end": 31835.28, + "probability": 0.7365 + }, + { + "start": 31836.44, + "end": 31837.52, + "probability": 0.5376 + }, + { + "start": 31838.24, + "end": 31838.94, + "probability": 0.7292 + }, + { + "start": 31839.26, + "end": 31840.4, + "probability": 0.6119 + }, + { + "start": 31841.18, + "end": 31844.22, + "probability": 0.9855 + }, + { + "start": 31844.28, + "end": 31846.18, + "probability": 0.9504 + }, + { + "start": 31847.2, + "end": 31851.36, + "probability": 0.7847 + }, + { + "start": 31861.94, + "end": 31862.6, + "probability": 0.8118 + }, + { + "start": 31864.06, + "end": 31864.7, + "probability": 0.6009 + }, + { + "start": 31864.86, + "end": 31868.08, + "probability": 0.7466 + }, + { + "start": 31869.86, + "end": 31872.96, + "probability": 0.9387 + }, + { + "start": 31874.4, + "end": 31874.94, + "probability": 0.9416 + }, + { + "start": 31876.28, + "end": 31882.64, + "probability": 0.9942 + }, + { + "start": 31884.08, + "end": 31887.52, + "probability": 0.9837 + }, + { + "start": 31888.76, + "end": 31891.4, + "probability": 0.9967 + }, + { + "start": 31891.92, + "end": 31894.18, + "probability": 0.9888 + }, + { + "start": 31894.7, + "end": 31895.8, + "probability": 0.7617 + }, + { + "start": 31896.96, + "end": 31897.68, + "probability": 0.6498 + }, + { + "start": 31898.6, + "end": 31900.1, + "probability": 0.9966 + }, + { + "start": 31901.24, + "end": 31901.58, + "probability": 0.0736 + }, + { + "start": 31901.58, + "end": 31902.38, + "probability": 0.8195 + }, + { + "start": 31902.82, + "end": 31907.82, + "probability": 0.9365 + }, + { + "start": 31908.12, + "end": 31909.04, + "probability": 0.0602 + }, + { + "start": 31909.14, + "end": 31909.56, + "probability": 0.0112 + }, + { + "start": 31909.56, + "end": 31909.64, + "probability": 0.305 + }, + { + "start": 31909.64, + "end": 31911.2, + "probability": 0.5439 + }, + { + "start": 31911.7, + "end": 31915.56, + "probability": 0.9506 + }, + { + "start": 31916.66, + "end": 31919.6, + "probability": 0.7672 + }, + { + "start": 31920.38, + "end": 31921.82, + "probability": 0.7582 + }, + { + "start": 31922.7, + "end": 31922.82, + "probability": 0.4008 + }, + { + "start": 31924.14, + "end": 31928.66, + "probability": 0.8979 + }, + { + "start": 31929.76, + "end": 31930.74, + "probability": 0.8256 + }, + { + "start": 31931.64, + "end": 31934.54, + "probability": 0.9774 + }, + { + "start": 31934.82, + "end": 31936.8, + "probability": 0.9876 + }, + { + "start": 31937.34, + "end": 31943.56, + "probability": 0.9467 + }, + { + "start": 31944.2, + "end": 31944.8, + "probability": 0.9404 + }, + { + "start": 31945.7, + "end": 31947.76, + "probability": 0.8372 + }, + { + "start": 31948.54, + "end": 31949.92, + "probability": 0.9993 + }, + { + "start": 31950.44, + "end": 31952.54, + "probability": 0.9712 + }, + { + "start": 31953.2, + "end": 31954.34, + "probability": 0.998 + }, + { + "start": 31955.22, + "end": 31955.98, + "probability": 0.9951 + }, + { + "start": 31958.16, + "end": 31959.7, + "probability": 0.9618 + }, + { + "start": 31960.34, + "end": 31962.0, + "probability": 0.5442 + }, + { + "start": 31962.52, + "end": 31963.59, + "probability": 0.943 + }, + { + "start": 31963.7, + "end": 31964.24, + "probability": 0.7882 + }, + { + "start": 31964.34, + "end": 31965.3, + "probability": 0.9814 + }, + { + "start": 31965.48, + "end": 31966.04, + "probability": 0.8886 + }, + { + "start": 31966.06, + "end": 31967.58, + "probability": 0.9509 + }, + { + "start": 31968.26, + "end": 31970.46, + "probability": 0.9291 + }, + { + "start": 31971.74, + "end": 31972.64, + "probability": 0.7519 + }, + { + "start": 31973.3, + "end": 31977.88, + "probability": 0.9896 + }, + { + "start": 31978.54, + "end": 31979.48, + "probability": 0.9929 + }, + { + "start": 31980.2, + "end": 31982.5, + "probability": 0.9963 + }, + { + "start": 31983.52, + "end": 31985.64, + "probability": 0.9601 + }, + { + "start": 31986.5, + "end": 31989.88, + "probability": 0.9941 + }, + { + "start": 31990.77, + "end": 31993.72, + "probability": 0.992 + }, + { + "start": 31994.48, + "end": 31997.88, + "probability": 0.9976 + }, + { + "start": 31997.88, + "end": 32004.5, + "probability": 0.9326 + }, + { + "start": 32005.14, + "end": 32008.56, + "probability": 0.9928 + }, + { + "start": 32008.74, + "end": 32011.54, + "probability": 0.9961 + }, + { + "start": 32012.12, + "end": 32014.6, + "probability": 0.9711 + }, + { + "start": 32015.86, + "end": 32019.8, + "probability": 0.9858 + }, + { + "start": 32020.4, + "end": 32023.9, + "probability": 0.0866 + }, + { + "start": 32023.98, + "end": 32026.82, + "probability": 0.9944 + }, + { + "start": 32029.14, + "end": 32031.36, + "probability": 0.8041 + }, + { + "start": 32031.84, + "end": 32033.27, + "probability": 0.8398 + }, + { + "start": 32033.4, + "end": 32033.72, + "probability": 0.8627 + }, + { + "start": 32033.92, + "end": 32035.38, + "probability": 0.2768 + }, + { + "start": 32035.52, + "end": 32036.28, + "probability": 0.9747 + }, + { + "start": 32036.68, + "end": 32040.58, + "probability": 0.9994 + }, + { + "start": 32041.1, + "end": 32043.86, + "probability": 0.9961 + }, + { + "start": 32044.78, + "end": 32050.46, + "probability": 0.9932 + }, + { + "start": 32051.04, + "end": 32053.78, + "probability": 0.8727 + }, + { + "start": 32054.5, + "end": 32056.44, + "probability": 0.9955 + }, + { + "start": 32056.56, + "end": 32057.78, + "probability": 0.9899 + }, + { + "start": 32058.16, + "end": 32060.02, + "probability": 0.9976 + }, + { + "start": 32060.72, + "end": 32064.84, + "probability": 0.9934 + }, + { + "start": 32065.5, + "end": 32067.64, + "probability": 0.999 + }, + { + "start": 32068.04, + "end": 32068.14, + "probability": 0.6421 + }, + { + "start": 32068.4, + "end": 32068.5, + "probability": 0.4845 + }, + { + "start": 32068.7, + "end": 32070.62, + "probability": 0.9956 + }, + { + "start": 32071.6, + "end": 32075.18, + "probability": 0.9966 + }, + { + "start": 32075.18, + "end": 32080.78, + "probability": 0.9902 + }, + { + "start": 32081.6, + "end": 32081.62, + "probability": 0.0219 + }, + { + "start": 32081.62, + "end": 32081.86, + "probability": 0.5212 + }, + { + "start": 32082.12, + "end": 32082.92, + "probability": 0.7848 + }, + { + "start": 32083.08, + "end": 32084.62, + "probability": 0.9243 + }, + { + "start": 32084.82, + "end": 32087.96, + "probability": 0.9725 + }, + { + "start": 32088.7, + "end": 32091.76, + "probability": 0.8105 + }, + { + "start": 32092.06, + "end": 32092.68, + "probability": 0.8122 + }, + { + "start": 32092.8, + "end": 32095.0, + "probability": 0.5278 + }, + { + "start": 32095.16, + "end": 32096.28, + "probability": 0.7434 + }, + { + "start": 32097.4, + "end": 32098.02, + "probability": 0.5134 + }, + { + "start": 32098.78, + "end": 32099.16, + "probability": 0.8793 + }, + { + "start": 32099.22, + "end": 32101.68, + "probability": 0.7604 + }, + { + "start": 32102.06, + "end": 32102.72, + "probability": 0.5877 + }, + { + "start": 32103.04, + "end": 32103.74, + "probability": 0.815 + }, + { + "start": 32103.82, + "end": 32104.24, + "probability": 0.9461 + }, + { + "start": 32121.14, + "end": 32122.38, + "probability": 0.5032 + }, + { + "start": 32123.9, + "end": 32125.36, + "probability": 0.5672 + }, + { + "start": 32126.22, + "end": 32127.16, + "probability": 0.8371 + }, + { + "start": 32127.68, + "end": 32129.57, + "probability": 0.9145 + }, + { + "start": 32130.34, + "end": 32133.52, + "probability": 0.8709 + }, + { + "start": 32134.04, + "end": 32134.72, + "probability": 0.616 + }, + { + "start": 32136.2, + "end": 32138.56, + "probability": 0.8989 + }, + { + "start": 32139.14, + "end": 32141.5, + "probability": 0.9932 + }, + { + "start": 32142.08, + "end": 32143.3, + "probability": 0.8812 + }, + { + "start": 32144.14, + "end": 32147.92, + "probability": 0.8996 + }, + { + "start": 32148.7, + "end": 32150.21, + "probability": 0.7976 + }, + { + "start": 32151.72, + "end": 32153.1, + "probability": 0.9134 + }, + { + "start": 32153.36, + "end": 32156.06, + "probability": 0.9756 + }, + { + "start": 32156.66, + "end": 32158.22, + "probability": 0.6294 + }, + { + "start": 32158.4, + "end": 32160.86, + "probability": 0.7886 + }, + { + "start": 32160.94, + "end": 32162.34, + "probability": 0.7088 + }, + { + "start": 32162.52, + "end": 32167.86, + "probability": 0.9818 + }, + { + "start": 32167.88, + "end": 32168.08, + "probability": 0.708 + }, + { + "start": 32169.08, + "end": 32171.38, + "probability": 0.9935 + }, + { + "start": 32171.66, + "end": 32173.28, + "probability": 0.5944 + }, + { + "start": 32173.38, + "end": 32173.76, + "probability": 0.8807 + }, + { + "start": 32173.94, + "end": 32174.8, + "probability": 0.9166 + }, + { + "start": 32174.9, + "end": 32175.56, + "probability": 0.9001 + }, + { + "start": 32175.68, + "end": 32176.7, + "probability": 0.9696 + }, + { + "start": 32176.82, + "end": 32177.38, + "probability": 0.8721 + }, + { + "start": 32177.5, + "end": 32180.04, + "probability": 0.5207 + }, + { + "start": 32180.08, + "end": 32181.4, + "probability": 0.9051 + }, + { + "start": 32181.4, + "end": 32183.18, + "probability": 0.7062 + }, + { + "start": 32183.57, + "end": 32185.41, + "probability": 0.8522 + }, + { + "start": 32185.73, + "end": 32185.8, + "probability": 0.866 + }, + { + "start": 32185.8, + "end": 32187.18, + "probability": 0.8335 + }, + { + "start": 32187.18, + "end": 32187.42, + "probability": 0.9769 + }, + { + "start": 32187.48, + "end": 32192.46, + "probability": 0.9951 + }, + { + "start": 32192.66, + "end": 32192.84, + "probability": 0.6239 + }, + { + "start": 32192.9, + "end": 32196.0, + "probability": 0.9912 + }, + { + "start": 32196.06, + "end": 32200.76, + "probability": 0.877 + }, + { + "start": 32200.76, + "end": 32201.86, + "probability": 0.829 + }, + { + "start": 32202.12, + "end": 32204.2, + "probability": 0.8008 + }, + { + "start": 32204.24, + "end": 32205.49, + "probability": 0.9152 + }, + { + "start": 32205.94, + "end": 32210.52, + "probability": 0.9589 + }, + { + "start": 32210.66, + "end": 32212.36, + "probability": 0.9282 + }, + { + "start": 32212.82, + "end": 32215.9, + "probability": 0.9954 + }, + { + "start": 32216.22, + "end": 32216.4, + "probability": 0.029 + }, + { + "start": 32216.5, + "end": 32217.38, + "probability": 0.5356 + }, + { + "start": 32218.8, + "end": 32218.82, + "probability": 0.0147 + }, + { + "start": 32218.82, + "end": 32222.18, + "probability": 0.7401 + }, + { + "start": 32222.24, + "end": 32222.99, + "probability": 0.8984 + }, + { + "start": 32223.58, + "end": 32224.55, + "probability": 0.9761 + }, + { + "start": 32225.64, + "end": 32228.6, + "probability": 0.9028 + }, + { + "start": 32228.8, + "end": 32233.16, + "probability": 0.9927 + }, + { + "start": 32233.42, + "end": 32238.82, + "probability": 0.8494 + }, + { + "start": 32239.04, + "end": 32246.68, + "probability": 0.9654 + }, + { + "start": 32246.76, + "end": 32247.5, + "probability": 0.0082 + }, + { + "start": 32247.68, + "end": 32247.78, + "probability": 0.1684 + }, + { + "start": 32247.78, + "end": 32247.78, + "probability": 0.3154 + }, + { + "start": 32247.78, + "end": 32249.92, + "probability": 0.7694 + }, + { + "start": 32250.3, + "end": 32252.86, + "probability": 0.6976 + }, + { + "start": 32253.36, + "end": 32254.06, + "probability": 0.158 + }, + { + "start": 32254.18, + "end": 32258.66, + "probability": 0.9779 + }, + { + "start": 32259.86, + "end": 32261.3, + "probability": 0.9206 + }, + { + "start": 32262.08, + "end": 32269.2, + "probability": 0.9725 + }, + { + "start": 32269.34, + "end": 32270.02, + "probability": 0.9591 + }, + { + "start": 32270.46, + "end": 32272.12, + "probability": 0.9904 + }, + { + "start": 32272.58, + "end": 32276.9, + "probability": 0.9966 + }, + { + "start": 32277.54, + "end": 32280.41, + "probability": 0.9593 + }, + { + "start": 32281.18, + "end": 32281.74, + "probability": 0.3695 + }, + { + "start": 32281.74, + "end": 32282.98, + "probability": 0.7722 + }, + { + "start": 32284.96, + "end": 32287.6, + "probability": 0.988 + }, + { + "start": 32288.02, + "end": 32289.88, + "probability": 0.9585 + }, + { + "start": 32289.94, + "end": 32290.5, + "probability": 0.7433 + }, + { + "start": 32290.66, + "end": 32293.8, + "probability": 0.9307 + }, + { + "start": 32294.18, + "end": 32297.54, + "probability": 0.9965 + }, + { + "start": 32297.98, + "end": 32303.34, + "probability": 0.9901 + }, + { + "start": 32305.4, + "end": 32305.4, + "probability": 0.1571 + }, + { + "start": 32305.4, + "end": 32306.76, + "probability": 0.9688 + }, + { + "start": 32307.24, + "end": 32309.19, + "probability": 0.9302 + }, + { + "start": 32309.36, + "end": 32311.28, + "probability": 0.9694 + }, + { + "start": 32312.0, + "end": 32315.8, + "probability": 0.9526 + }, + { + "start": 32316.26, + "end": 32321.44, + "probability": 0.9824 + }, + { + "start": 32321.96, + "end": 32322.82, + "probability": 0.6917 + }, + { + "start": 32323.22, + "end": 32325.14, + "probability": 0.9556 + }, + { + "start": 32325.56, + "end": 32326.86, + "probability": 0.9314 + }, + { + "start": 32327.36, + "end": 32332.26, + "probability": 0.9871 + }, + { + "start": 32332.86, + "end": 32335.78, + "probability": 0.9258 + }, + { + "start": 32337.34, + "end": 32343.08, + "probability": 0.9421 + }, + { + "start": 32343.91, + "end": 32348.34, + "probability": 0.9736 + }, + { + "start": 32349.44, + "end": 32351.28, + "probability": 0.9992 + }, + { + "start": 32351.9, + "end": 32354.14, + "probability": 0.7062 + }, + { + "start": 32354.76, + "end": 32355.37, + "probability": 0.9449 + }, + { + "start": 32356.1, + "end": 32357.98, + "probability": 0.9124 + }, + { + "start": 32358.72, + "end": 32360.9, + "probability": 0.9443 + }, + { + "start": 32361.48, + "end": 32364.3, + "probability": 0.7226 + }, + { + "start": 32364.84, + "end": 32366.44, + "probability": 0.8916 + }, + { + "start": 32366.58, + "end": 32368.34, + "probability": 0.3242 + }, + { + "start": 32368.46, + "end": 32369.06, + "probability": 0.8297 + }, + { + "start": 32369.44, + "end": 32370.88, + "probability": 0.5367 + }, + { + "start": 32371.26, + "end": 32376.08, + "probability": 0.9872 + }, + { + "start": 32376.96, + "end": 32378.46, + "probability": 0.9985 + }, + { + "start": 32378.8, + "end": 32379.1, + "probability": 0.7629 + }, + { + "start": 32379.92, + "end": 32380.74, + "probability": 0.2554 + }, + { + "start": 32381.86, + "end": 32384.56, + "probability": 0.8447 + }, + { + "start": 32384.82, + "end": 32390.4, + "probability": 0.7997 + }, + { + "start": 32393.58, + "end": 32395.88, + "probability": 0.826 + }, + { + "start": 32396.54, + "end": 32397.84, + "probability": 0.9755 + }, + { + "start": 32399.22, + "end": 32400.68, + "probability": 0.2518 + }, + { + "start": 32401.86, + "end": 32402.32, + "probability": 0.7057 + }, + { + "start": 32403.22, + "end": 32404.34, + "probability": 0.6463 + }, + { + "start": 32405.16, + "end": 32406.7, + "probability": 0.7991 + }, + { + "start": 32408.01, + "end": 32411.34, + "probability": 0.8981 + }, + { + "start": 32412.66, + "end": 32413.8, + "probability": 0.9795 + }, + { + "start": 32414.62, + "end": 32415.6, + "probability": 0.9039 + }, + { + "start": 32416.6, + "end": 32418.84, + "probability": 0.9344 + }, + { + "start": 32422.94, + "end": 32423.72, + "probability": 0.8464 + }, + { + "start": 32424.44, + "end": 32425.0, + "probability": 0.4688 + }, + { + "start": 32425.68, + "end": 32426.06, + "probability": 0.6903 + }, + { + "start": 32426.66, + "end": 32427.68, + "probability": 0.5637 + }, + { + "start": 32430.6, + "end": 32431.44, + "probability": 0.8991 + }, + { + "start": 32432.46, + "end": 32433.34, + "probability": 0.7081 + }, + { + "start": 32433.86, + "end": 32438.0, + "probability": 0.9627 + }, + { + "start": 32439.62, + "end": 32440.42, + "probability": 0.997 + }, + { + "start": 32441.82, + "end": 32448.42, + "probability": 0.5248 + }, + { + "start": 32458.98, + "end": 32459.92, + "probability": 0.0796 + }, + { + "start": 32461.04, + "end": 32461.34, + "probability": 0.5286 + }, + { + "start": 32463.72, + "end": 32464.6, + "probability": 0.8146 + }, + { + "start": 32467.84, + "end": 32469.76, + "probability": 0.8533 + }, + { + "start": 32470.58, + "end": 32472.7, + "probability": 0.9022 + }, + { + "start": 32473.62, + "end": 32474.5, + "probability": 0.8977 + }, + { + "start": 32475.48, + "end": 32477.34, + "probability": 0.8981 + }, + { + "start": 32478.1, + "end": 32478.7, + "probability": 0.5869 + }, + { + "start": 32479.42, + "end": 32481.5, + "probability": 0.7995 + }, + { + "start": 32482.26, + "end": 32482.54, + "probability": 0.6066 + }, + { + "start": 32483.34, + "end": 32484.3, + "probability": 0.92 + }, + { + "start": 32484.98, + "end": 32488.84, + "probability": 0.9817 + }, + { + "start": 32489.72, + "end": 32490.52, + "probability": 0.9005 + }, + { + "start": 32491.42, + "end": 32492.5, + "probability": 0.9935 + }, + { + "start": 32493.48, + "end": 32495.02, + "probability": 0.8677 + }, + { + "start": 32495.9, + "end": 32496.92, + "probability": 0.984 + }, + { + "start": 32497.8, + "end": 32498.38, + "probability": 0.9695 + }, + { + "start": 32499.46, + "end": 32500.42, + "probability": 0.7228 + }, + { + "start": 32501.1, + "end": 32503.28, + "probability": 0.8361 + }, + { + "start": 32504.52, + "end": 32505.0, + "probability": 0.8477 + }, + { + "start": 32509.02, + "end": 32509.88, + "probability": 0.628 + }, + { + "start": 32511.08, + "end": 32513.34, + "probability": 0.7723 + }, + { + "start": 32517.2, + "end": 32518.7, + "probability": 0.8704 + }, + { + "start": 32519.32, + "end": 32521.42, + "probability": 0.945 + }, + { + "start": 32524.78, + "end": 32525.64, + "probability": 0.9163 + }, + { + "start": 32527.06, + "end": 32527.78, + "probability": 0.9088 + }, + { + "start": 32528.8, + "end": 32529.32, + "probability": 0.9678 + }, + { + "start": 32529.84, + "end": 32532.32, + "probability": 0.9724 + }, + { + "start": 32535.54, + "end": 32538.82, + "probability": 0.9284 + }, + { + "start": 32539.42, + "end": 32540.3, + "probability": 0.8287 + }, + { + "start": 32540.82, + "end": 32541.3, + "probability": 0.5957 + }, + { + "start": 32541.96, + "end": 32545.32, + "probability": 0.7088 + }, + { + "start": 32545.88, + "end": 32547.36, + "probability": 0.9749 + }, + { + "start": 32550.26, + "end": 32552.18, + "probability": 0.9752 + }, + { + "start": 32553.16, + "end": 32553.46, + "probability": 0.9939 + }, + { + "start": 32553.98, + "end": 32556.38, + "probability": 0.9424 + }, + { + "start": 32557.14, + "end": 32561.46, + "probability": 0.6342 + }, + { + "start": 32562.64, + "end": 32563.12, + "probability": 0.7998 + }, + { + "start": 32565.1, + "end": 32566.39, + "probability": 0.9471 + }, + { + "start": 32569.06, + "end": 32569.6, + "probability": 0.9448 + }, + { + "start": 32571.32, + "end": 32572.72, + "probability": 0.9226 + }, + { + "start": 32573.8, + "end": 32575.44, + "probability": 0.9198 + }, + { + "start": 32577.18, + "end": 32579.88, + "probability": 0.8621 + }, + { + "start": 32580.72, + "end": 32583.18, + "probability": 0.8875 + }, + { + "start": 32583.8, + "end": 32584.54, + "probability": 0.2514 + }, + { + "start": 32584.54, + "end": 32586.08, + "probability": 0.5593 + }, + { + "start": 32586.14, + "end": 32587.58, + "probability": 0.8191 + }, + { + "start": 32588.66, + "end": 32590.54, + "probability": 0.9862 + }, + { + "start": 32591.8, + "end": 32593.46, + "probability": 0.9462 + }, + { + "start": 32595.3, + "end": 32595.72, + "probability": 0.8372 + }, + { + "start": 32597.24, + "end": 32597.98, + "probability": 0.8545 + }, + { + "start": 32598.88, + "end": 32600.16, + "probability": 0.9824 + }, + { + "start": 32601.34, + "end": 32603.4, + "probability": 0.9893 + }, + { + "start": 32604.16, + "end": 32605.0, + "probability": 0.925 + }, + { + "start": 32606.04, + "end": 32607.22, + "probability": 0.9557 + }, + { + "start": 32609.22, + "end": 32610.2, + "probability": 0.6724 + }, + { + "start": 32611.7, + "end": 32612.46, + "probability": 0.8232 + }, + { + "start": 32613.66, + "end": 32615.48, + "probability": 0.855 + }, + { + "start": 32616.62, + "end": 32618.22, + "probability": 0.9527 + }, + { + "start": 32619.22, + "end": 32620.98, + "probability": 0.9714 + }, + { + "start": 32621.98, + "end": 32623.82, + "probability": 0.961 + }, + { + "start": 32624.78, + "end": 32625.22, + "probability": 0.9821 + }, + { + "start": 32626.54, + "end": 32627.16, + "probability": 0.9686 + }, + { + "start": 32628.64, + "end": 32630.68, + "probability": 0.9871 + }, + { + "start": 32631.34, + "end": 32632.36, + "probability": 0.9078 + }, + { + "start": 32634.66, + "end": 32635.04, + "probability": 0.5421 + }, + { + "start": 32636.22, + "end": 32636.38, + "probability": 0.5024 + }, + { + "start": 32639.44, + "end": 32640.06, + "probability": 0.9551 + }, + { + "start": 32640.76, + "end": 32641.88, + "probability": 0.5421 + }, + { + "start": 32642.48, + "end": 32643.94, + "probability": 0.8957 + }, + { + "start": 32644.54, + "end": 32646.02, + "probability": 0.9212 + }, + { + "start": 32648.38, + "end": 32649.96, + "probability": 0.9037 + }, + { + "start": 32651.04, + "end": 32652.1, + "probability": 0.8146 + }, + { + "start": 32653.04, + "end": 32656.6, + "probability": 0.9476 + }, + { + "start": 32657.34, + "end": 32660.36, + "probability": 0.9497 + }, + { + "start": 32662.44, + "end": 32662.88, + "probability": 0.673 + }, + { + "start": 32664.52, + "end": 32669.54, + "probability": 0.9614 + }, + { + "start": 32670.46, + "end": 32672.64, + "probability": 0.9727 + }, + { + "start": 32673.18, + "end": 32675.26, + "probability": 0.9744 + }, + { + "start": 32676.16, + "end": 32677.18, + "probability": 0.9075 + }, + { + "start": 32678.06, + "end": 32679.1, + "probability": 0.9905 + }, + { + "start": 32680.48, + "end": 32681.28, + "probability": 0.9945 + }, + { + "start": 32682.52, + "end": 32685.86, + "probability": 0.6218 + }, + { + "start": 32686.88, + "end": 32688.64, + "probability": 0.9529 + }, + { + "start": 32689.2, + "end": 32689.84, + "probability": 0.9766 + }, + { + "start": 32690.97, + "end": 32694.26, + "probability": 0.994 + }, + { + "start": 32696.1, + "end": 32697.24, + "probability": 0.9908 + }, + { + "start": 32697.82, + "end": 32699.74, + "probability": 0.8599 + }, + { + "start": 32700.26, + "end": 32702.98, + "probability": 0.9824 + }, + { + "start": 32708.04, + "end": 32709.58, + "probability": 0.0259 + }, + { + "start": 32714.22, + "end": 32716.46, + "probability": 0.0986 + }, + { + "start": 32718.02, + "end": 32718.36, + "probability": 0.6627 + }, + { + "start": 32720.2, + "end": 32721.32, + "probability": 0.5839 + }, + { + "start": 32723.0, + "end": 32725.74, + "probability": 0.9629 + }, + { + "start": 32727.22, + "end": 32728.74, + "probability": 0.911 + }, + { + "start": 32730.44, + "end": 32730.92, + "probability": 0.9868 + }, + { + "start": 32731.88, + "end": 32733.1, + "probability": 0.7354 + }, + { + "start": 32734.58, + "end": 32735.0, + "probability": 0.9697 + }, + { + "start": 32735.86, + "end": 32736.66, + "probability": 0.8886 + }, + { + "start": 32737.46, + "end": 32741.24, + "probability": 0.8448 + }, + { + "start": 32743.62, + "end": 32744.48, + "probability": 0.9654 + }, + { + "start": 32745.3, + "end": 32746.0, + "probability": 0.8767 + }, + { + "start": 32748.3, + "end": 32749.1, + "probability": 0.9914 + }, + { + "start": 32750.12, + "end": 32751.08, + "probability": 0.8748 + }, + { + "start": 32753.86, + "end": 32754.72, + "probability": 0.9241 + }, + { + "start": 32755.34, + "end": 32756.36, + "probability": 0.606 + }, + { + "start": 32757.14, + "end": 32757.62, + "probability": 0.9253 + }, + { + "start": 32759.88, + "end": 32760.72, + "probability": 0.859 + }, + { + "start": 32761.74, + "end": 32763.54, + "probability": 0.9705 + }, + { + "start": 32764.52, + "end": 32765.08, + "probability": 0.9468 + }, + { + "start": 32766.44, + "end": 32768.8, + "probability": 0.974 + }, + { + "start": 32770.58, + "end": 32771.58, + "probability": 0.3659 + }, + { + "start": 32774.5, + "end": 32774.92, + "probability": 0.6198 + }, + { + "start": 32776.24, + "end": 32779.58, + "probability": 0.7712 + }, + { + "start": 32780.64, + "end": 32784.76, + "probability": 0.9465 + }, + { + "start": 32785.48, + "end": 32786.0, + "probability": 0.9707 + }, + { + "start": 32786.98, + "end": 32787.76, + "probability": 0.9933 + }, + { + "start": 32788.5, + "end": 32788.96, + "probability": 0.9937 + }, + { + "start": 32789.92, + "end": 32790.58, + "probability": 0.9409 + }, + { + "start": 32792.22, + "end": 32792.7, + "probability": 0.9873 + }, + { + "start": 32793.72, + "end": 32794.1, + "probability": 0.759 + }, + { + "start": 32796.12, + "end": 32798.96, + "probability": 0.798 + }, + { + "start": 32799.58, + "end": 32800.26, + "probability": 0.6009 + }, + { + "start": 32801.36, + "end": 32801.72, + "probability": 0.6609 + }, + { + "start": 32803.02, + "end": 32803.96, + "probability": 0.8552 + }, + { + "start": 32805.66, + "end": 32805.88, + "probability": 0.5637 + }, + { + "start": 32809.22, + "end": 32812.06, + "probability": 0.6643 + }, + { + "start": 32813.36, + "end": 32814.82, + "probability": 0.7567 + }, + { + "start": 32815.8, + "end": 32816.22, + "probability": 0.9272 + }, + { + "start": 32817.14, + "end": 32817.92, + "probability": 0.8442 + }, + { + "start": 32819.62, + "end": 32820.1, + "probability": 0.9849 + }, + { + "start": 32821.54, + "end": 32822.28, + "probability": 0.9549 + }, + { + "start": 32823.76, + "end": 32826.06, + "probability": 0.9066 + }, + { + "start": 32829.06, + "end": 32829.46, + "probability": 0.9759 + }, + { + "start": 32831.24, + "end": 32832.34, + "probability": 0.7547 + }, + { + "start": 32833.54, + "end": 32834.46, + "probability": 0.4059 + }, + { + "start": 32835.52, + "end": 32836.22, + "probability": 0.491 + }, + { + "start": 32837.54, + "end": 32839.56, + "probability": 0.8581 + }, + { + "start": 32841.4, + "end": 32843.1, + "probability": 0.9216 + }, + { + "start": 32843.3, + "end": 32844.68, + "probability": 0.9292 + }, + { + "start": 32844.76, + "end": 32846.66, + "probability": 0.9113 + }, + { + "start": 32852.26, + "end": 32852.68, + "probability": 0.8282 + }, + { + "start": 32854.14, + "end": 32856.06, + "probability": 0.886 + }, + { + "start": 32860.54, + "end": 32861.8, + "probability": 0.6579 + }, + { + "start": 32863.16, + "end": 32864.33, + "probability": 0.2774 + }, + { + "start": 32864.86, + "end": 32866.58, + "probability": 0.6217 + }, + { + "start": 32868.1, + "end": 32869.8, + "probability": 0.9043 + }, + { + "start": 32871.26, + "end": 32873.34, + "probability": 0.9521 + }, + { + "start": 32874.82, + "end": 32876.76, + "probability": 0.9546 + }, + { + "start": 32877.64, + "end": 32877.98, + "probability": 0.509 + }, + { + "start": 32880.24, + "end": 32881.16, + "probability": 0.2873 + }, + { + "start": 32883.44, + "end": 32886.84, + "probability": 0.7148 + }, + { + "start": 32888.0, + "end": 32888.76, + "probability": 0.8627 + }, + { + "start": 32889.34, + "end": 32890.36, + "probability": 0.9236 + }, + { + "start": 32891.0, + "end": 32892.86, + "probability": 0.9602 + }, + { + "start": 32895.7, + "end": 32896.52, + "probability": 0.9655 + }, + { + "start": 32897.22, + "end": 32898.1, + "probability": 0.9086 + }, + { + "start": 32900.34, + "end": 32900.84, + "probability": 0.9928 + }, + { + "start": 32903.18, + "end": 32907.86, + "probability": 0.6936 + }, + { + "start": 32908.46, + "end": 32912.6, + "probability": 0.1989 + }, + { + "start": 32913.58, + "end": 32916.18, + "probability": 0.8769 + }, + { + "start": 32919.2, + "end": 32921.28, + "probability": 0.9779 + }, + { + "start": 32921.84, + "end": 32923.36, + "probability": 0.8906 + }, + { + "start": 32925.16, + "end": 32925.6, + "probability": 0.9751 + }, + { + "start": 32927.9, + "end": 32928.86, + "probability": 0.9723 + }, + { + "start": 32931.0, + "end": 32931.76, + "probability": 0.7565 + }, + { + "start": 32932.34, + "end": 32933.3, + "probability": 0.7937 + }, + { + "start": 32934.1, + "end": 32934.62, + "probability": 0.7122 + }, + { + "start": 32938.5, + "end": 32939.02, + "probability": 0.3782 + }, + { + "start": 32940.48, + "end": 32942.02, + "probability": 0.9135 + }, + { + "start": 32942.68, + "end": 32943.54, + "probability": 0.9822 + }, + { + "start": 32944.34, + "end": 32944.74, + "probability": 0.9188 + }, + { + "start": 32948.84, + "end": 32949.64, + "probability": 0.9291 + }, + { + "start": 32950.76, + "end": 32951.48, + "probability": 0.9847 + }, + { + "start": 32952.6, + "end": 32954.06, + "probability": 0.9927 + }, + { + "start": 32955.36, + "end": 32957.04, + "probability": 0.9635 + }, + { + "start": 32957.72, + "end": 32958.16, + "probability": 0.9915 + }, + { + "start": 32960.88, + "end": 32961.64, + "probability": 0.9265 + }, + { + "start": 32963.02, + "end": 32965.74, + "probability": 0.9717 + }, + { + "start": 32965.86, + "end": 32966.64, + "probability": 0.1525 + }, + { + "start": 32968.18, + "end": 32969.02, + "probability": 0.6816 + }, + { + "start": 32970.12, + "end": 32971.0, + "probability": 0.6432 + }, + { + "start": 32972.26, + "end": 32974.52, + "probability": 0.8975 + }, + { + "start": 32975.32, + "end": 32976.24, + "probability": 0.8534 + }, + { + "start": 32977.06, + "end": 32977.64, + "probability": 0.4569 + }, + { + "start": 32977.64, + "end": 32979.66, + "probability": 0.8536 + }, + { + "start": 32979.7, + "end": 32981.04, + "probability": 0.6534 + }, + { + "start": 32981.8, + "end": 32982.14, + "probability": 0.8105 + }, + { + "start": 32984.54, + "end": 32985.36, + "probability": 0.8793 + }, + { + "start": 32986.18, + "end": 32986.96, + "probability": 0.8288 + }, + { + "start": 32989.04, + "end": 32989.82, + "probability": 0.9259 + }, + { + "start": 32991.3, + "end": 32992.1, + "probability": 0.9893 + }, + { + "start": 32993.0, + "end": 32993.8, + "probability": 0.8758 + }, + { + "start": 32995.5, + "end": 32996.1, + "probability": 0.981 + }, + { + "start": 32997.36, + "end": 32997.78, + "probability": 0.967 + }, + { + "start": 32998.88, + "end": 32999.94, + "probability": 0.9854 + }, + { + "start": 33000.98, + "end": 33001.84, + "probability": 0.9184 + }, + { + "start": 33004.58, + "end": 33005.42, + "probability": 0.957 + }, + { + "start": 33006.44, + "end": 33007.44, + "probability": 0.9135 + }, + { + "start": 33009.44, + "end": 33010.29, + "probability": 0.3411 + }, + { + "start": 33014.52, + "end": 33016.98, + "probability": 0.5859 + }, + { + "start": 33017.94, + "end": 33018.22, + "probability": 0.8478 + }, + { + "start": 33019.98, + "end": 33020.68, + "probability": 0.8333 + }, + { + "start": 33023.56, + "end": 33025.48, + "probability": 0.9206 + }, + { + "start": 33026.28, + "end": 33026.74, + "probability": 0.8601 + }, + { + "start": 33028.24, + "end": 33029.1, + "probability": 0.8247 + }, + { + "start": 33030.38, + "end": 33032.4, + "probability": 0.9664 + }, + { + "start": 33033.02, + "end": 33034.02, + "probability": 0.9469 + }, + { + "start": 33035.0, + "end": 33037.46, + "probability": 0.9677 + }, + { + "start": 33038.54, + "end": 33039.44, + "probability": 0.7962 + }, + { + "start": 33040.34, + "end": 33040.64, + "probability": 0.7177 + }, + { + "start": 33042.9, + "end": 33043.86, + "probability": 0.5387 + }, + { + "start": 33047.12, + "end": 33048.1, + "probability": 0.9617 + }, + { + "start": 33048.82, + "end": 33049.84, + "probability": 0.7722 + }, + { + "start": 33050.44, + "end": 33051.28, + "probability": 0.9851 + }, + { + "start": 33051.86, + "end": 33052.88, + "probability": 0.8368 + }, + { + "start": 33053.48, + "end": 33055.32, + "probability": 0.9794 + }, + { + "start": 33056.12, + "end": 33056.9, + "probability": 0.921 + }, + { + "start": 33058.2, + "end": 33061.36, + "probability": 0.9588 + }, + { + "start": 33064.16, + "end": 33066.26, + "probability": 0.7509 + }, + { + "start": 33067.02, + "end": 33068.56, + "probability": 0.9021 + }, + { + "start": 33070.94, + "end": 33071.62, + "probability": 0.9773 + }, + { + "start": 33072.24, + "end": 33074.44, + "probability": 0.6962 + }, + { + "start": 33075.5, + "end": 33077.32, + "probability": 0.9448 + }, + { + "start": 33078.66, + "end": 33080.68, + "probability": 0.6662 + }, + { + "start": 33081.22, + "end": 33081.86, + "probability": 0.9344 + }, + { + "start": 33082.68, + "end": 33083.6, + "probability": 0.8459 + }, + { + "start": 33084.44, + "end": 33084.86, + "probability": 0.9824 + }, + { + "start": 33087.56, + "end": 33088.84, + "probability": 0.9108 + }, + { + "start": 33091.94, + "end": 33092.52, + "probability": 0.994 + }, + { + "start": 33094.74, + "end": 33096.18, + "probability": 0.8957 + }, + { + "start": 33098.08, + "end": 33098.56, + "probability": 0.995 + }, + { + "start": 33101.0, + "end": 33101.8, + "probability": 0.9516 + }, + { + "start": 33103.26, + "end": 33104.17, + "probability": 0.0865 + }, + { + "start": 33105.72, + "end": 33106.14, + "probability": 0.0603 + }, + { + "start": 33119.12, + "end": 33120.82, + "probability": 0.0267 + }, + { + "start": 33121.74, + "end": 33122.1, + "probability": 0.7994 + }, + { + "start": 33124.18, + "end": 33125.06, + "probability": 0.6573 + }, + { + "start": 33127.34, + "end": 33129.12, + "probability": 0.8576 + }, + { + "start": 33130.02, + "end": 33130.54, + "probability": 0.987 + }, + { + "start": 33132.16, + "end": 33135.58, + "probability": 0.869 + }, + { + "start": 33136.54, + "end": 33137.3, + "probability": 0.5008 + }, + { + "start": 33137.98, + "end": 33139.7, + "probability": 0.1898 + }, + { + "start": 33140.68, + "end": 33143.02, + "probability": 0.7911 + }, + { + "start": 33144.22, + "end": 33148.5, + "probability": 0.9931 + }, + { + "start": 33150.34, + "end": 33155.62, + "probability": 0.5742 + }, + { + "start": 33156.42, + "end": 33156.84, + "probability": 0.5371 + }, + { + "start": 33158.34, + "end": 33160.06, + "probability": 0.7837 + }, + { + "start": 33161.85, + "end": 33162.92, + "probability": 0.0657 + }, + { + "start": 33164.84, + "end": 33165.56, + "probability": 0.6984 + }, + { + "start": 33166.48, + "end": 33166.9, + "probability": 0.9733 + }, + { + "start": 33169.56, + "end": 33170.32, + "probability": 0.6555 + }, + { + "start": 33171.98, + "end": 33176.82, + "probability": 0.0872 + }, + { + "start": 33300.76, + "end": 33305.24, + "probability": 0.6686 + }, + { + "start": 33306.08, + "end": 33307.5, + "probability": 0.8524 + }, + { + "start": 33308.04, + "end": 33312.02, + "probability": 0.5736 + }, + { + "start": 33312.34, + "end": 33313.84, + "probability": 0.6719 + }, + { + "start": 33314.52, + "end": 33316.68, + "probability": 0.916 + }, + { + "start": 33316.78, + "end": 33319.88, + "probability": 0.9992 + }, + { + "start": 33321.82, + "end": 33323.9, + "probability": 0.9055 + }, + { + "start": 33326.34, + "end": 33330.2, + "probability": 0.9476 + }, + { + "start": 33330.2, + "end": 33333.7, + "probability": 0.674 + }, + { + "start": 33333.74, + "end": 33334.62, + "probability": 0.4857 + }, + { + "start": 33335.18, + "end": 33336.02, + "probability": 0.639 + }, + { + "start": 33336.6, + "end": 33338.16, + "probability": 0.9956 + }, + { + "start": 33341.34, + "end": 33345.84, + "probability": 0.7465 + }, + { + "start": 33350.3, + "end": 33351.22, + "probability": 0.6221 + }, + { + "start": 33351.38, + "end": 33352.04, + "probability": 0.7143 + }, + { + "start": 33352.12, + "end": 33353.3, + "probability": 0.896 + }, + { + "start": 33353.4, + "end": 33354.26, + "probability": 0.9849 + }, + { + "start": 33354.36, + "end": 33354.86, + "probability": 0.5299 + }, + { + "start": 33355.06, + "end": 33355.1, + "probability": 0.1571 + }, + { + "start": 33356.61, + "end": 33359.32, + "probability": 0.8175 + }, + { + "start": 33359.5, + "end": 33359.76, + "probability": 0.5197 + }, + { + "start": 33359.76, + "end": 33360.4, + "probability": 0.5859 + }, + { + "start": 33362.03, + "end": 33364.04, + "probability": 0.3806 + }, + { + "start": 33364.04, + "end": 33366.76, + "probability": 0.8094 + }, + { + "start": 33367.76, + "end": 33370.52, + "probability": 0.8259 + }, + { + "start": 33371.38, + "end": 33373.54, + "probability": 0.976 + }, + { + "start": 33373.54, + "end": 33374.58, + "probability": 0.9409 + }, + { + "start": 33375.04, + "end": 33377.58, + "probability": 0.8738 + }, + { + "start": 33378.32, + "end": 33378.7, + "probability": 0.2252 + }, + { + "start": 33378.96, + "end": 33383.04, + "probability": 0.7504 + }, + { + "start": 33383.04, + "end": 33385.86, + "probability": 0.4535 + }, + { + "start": 33385.88, + "end": 33387.24, + "probability": 0.4204 + }, + { + "start": 33388.46, + "end": 33391.01, + "probability": 0.9116 + }, + { + "start": 33391.74, + "end": 33395.5, + "probability": 0.973 + }, + { + "start": 33396.14, + "end": 33398.72, + "probability": 0.7497 + }, + { + "start": 33398.78, + "end": 33403.84, + "probability": 0.9518 + }, + { + "start": 33404.86, + "end": 33408.88, + "probability": 0.7947 + }, + { + "start": 33409.42, + "end": 33410.86, + "probability": 0.9954 + }, + { + "start": 33411.42, + "end": 33416.9, + "probability": 0.9971 + }, + { + "start": 33418.18, + "end": 33419.64, + "probability": 0.9995 + }, + { + "start": 33420.26, + "end": 33422.82, + "probability": 0.9951 + }, + { + "start": 33423.28, + "end": 33424.76, + "probability": 0.9491 + }, + { + "start": 33424.86, + "end": 33426.58, + "probability": 0.9021 + }, + { + "start": 33427.16, + "end": 33429.38, + "probability": 0.9474 + }, + { + "start": 33429.5, + "end": 33430.72, + "probability": 0.7137 + }, + { + "start": 33431.16, + "end": 33433.85, + "probability": 0.9438 + }, + { + "start": 33435.04, + "end": 33437.22, + "probability": 0.7559 + }, + { + "start": 33437.56, + "end": 33438.56, + "probability": 0.0931 + }, + { + "start": 33438.66, + "end": 33439.3, + "probability": 0.6977 + }, + { + "start": 33441.18, + "end": 33442.6, + "probability": 0.7759 + }, + { + "start": 33442.68, + "end": 33444.38, + "probability": 0.74 + }, + { + "start": 33444.7, + "end": 33446.46, + "probability": 0.5245 + }, + { + "start": 33446.56, + "end": 33446.82, + "probability": 0.3789 + }, + { + "start": 33446.82, + "end": 33448.2, + "probability": 0.3329 + }, + { + "start": 33448.5, + "end": 33449.94, + "probability": 0.7634 + }, + { + "start": 33450.86, + "end": 33450.94, + "probability": 0.0498 + }, + { + "start": 33450.94, + "end": 33451.34, + "probability": 0.0238 + }, + { + "start": 33451.48, + "end": 33451.88, + "probability": 0.0601 + }, + { + "start": 33451.88, + "end": 33452.04, + "probability": 0.4754 + }, + { + "start": 33452.09, + "end": 33452.72, + "probability": 0.426 + }, + { + "start": 33452.9, + "end": 33454.86, + "probability": 0.9607 + }, + { + "start": 33455.24, + "end": 33457.9, + "probability": 0.994 + }, + { + "start": 33458.1, + "end": 33461.22, + "probability": 0.7351 + }, + { + "start": 33461.26, + "end": 33462.28, + "probability": 0.926 + }, + { + "start": 33462.68, + "end": 33468.4, + "probability": 0.9853 + }, + { + "start": 33469.02, + "end": 33472.0, + "probability": 0.9362 + }, + { + "start": 33472.0, + "end": 33475.68, + "probability": 0.9744 + }, + { + "start": 33476.22, + "end": 33476.96, + "probability": 0.0035 + }, + { + "start": 33477.68, + "end": 33478.3, + "probability": 0.7341 + }, + { + "start": 33478.84, + "end": 33481.88, + "probability": 0.9502 + }, + { + "start": 33481.88, + "end": 33484.94, + "probability": 0.9827 + }, + { + "start": 33486.03, + "end": 33486.76, + "probability": 0.463 + }, + { + "start": 33488.02, + "end": 33488.32, + "probability": 0.0635 + }, + { + "start": 33488.32, + "end": 33488.32, + "probability": 0.0057 + }, + { + "start": 33488.32, + "end": 33490.6, + "probability": 0.6891 + }, + { + "start": 33490.6, + "end": 33493.06, + "probability": 0.775 + }, + { + "start": 33493.34, + "end": 33493.96, + "probability": 0.41 + }, + { + "start": 33493.96, + "end": 33495.52, + "probability": 0.3 + }, + { + "start": 33495.52, + "end": 33496.36, + "probability": 0.278 + }, + { + "start": 33496.36, + "end": 33498.0, + "probability": 0.0356 + }, + { + "start": 33498.0, + "end": 33498.86, + "probability": 0.4513 + }, + { + "start": 33499.02, + "end": 33499.66, + "probability": 0.507 + }, + { + "start": 33499.72, + "end": 33501.32, + "probability": 0.7188 + }, + { + "start": 33501.74, + "end": 33504.56, + "probability": 0.863 + }, + { + "start": 33506.06, + "end": 33508.74, + "probability": 0.8648 + }, + { + "start": 33509.48, + "end": 33512.64, + "probability": 0.3517 + }, + { + "start": 33512.78, + "end": 33512.88, + "probability": 0.107 + }, + { + "start": 33512.88, + "end": 33514.28, + "probability": 0.9385 + }, + { + "start": 33514.34, + "end": 33515.46, + "probability": 0.981 + }, + { + "start": 33515.66, + "end": 33517.18, + "probability": 0.984 + }, + { + "start": 33517.4, + "end": 33519.24, + "probability": 0.5699 + }, + { + "start": 33519.8, + "end": 33522.9, + "probability": 0.7996 + }, + { + "start": 33523.35, + "end": 33530.12, + "probability": 0.9941 + }, + { + "start": 33530.66, + "end": 33534.34, + "probability": 0.9897 + }, + { + "start": 33534.34, + "end": 33537.92, + "probability": 0.9992 + }, + { + "start": 33538.1, + "end": 33539.32, + "probability": 0.5116 + }, + { + "start": 33539.38, + "end": 33543.42, + "probability": 0.9159 + }, + { + "start": 33543.72, + "end": 33546.34, + "probability": 0.6903 + }, + { + "start": 33546.46, + "end": 33546.46, + "probability": 0.1418 + }, + { + "start": 33546.46, + "end": 33546.84, + "probability": 0.0905 + }, + { + "start": 33546.96, + "end": 33547.14, + "probability": 0.1114 + }, + { + "start": 33547.28, + "end": 33547.72, + "probability": 0.5516 + }, + { + "start": 33547.88, + "end": 33548.42, + "probability": 0.4567 + }, + { + "start": 33548.42, + "end": 33550.22, + "probability": 0.8755 + }, + { + "start": 33550.32, + "end": 33550.52, + "probability": 0.1708 + }, + { + "start": 33550.52, + "end": 33550.52, + "probability": 0.172 + }, + { + "start": 33550.52, + "end": 33550.92, + "probability": 0.4008 + }, + { + "start": 33550.92, + "end": 33551.7, + "probability": 0.9023 + }, + { + "start": 33551.82, + "end": 33555.46, + "probability": 0.9229 + }, + { + "start": 33555.54, + "end": 33556.34, + "probability": 0.1689 + }, + { + "start": 33556.34, + "end": 33557.42, + "probability": 0.7422 + }, + { + "start": 33558.08, + "end": 33558.54, + "probability": 0.8409 + }, + { + "start": 33558.54, + "end": 33559.56, + "probability": 0.4282 + }, + { + "start": 33559.62, + "end": 33559.62, + "probability": 0.3277 + }, + { + "start": 33559.62, + "end": 33560.22, + "probability": 0.2748 + }, + { + "start": 33560.98, + "end": 33562.8, + "probability": 0.9805 + }, + { + "start": 33563.22, + "end": 33566.56, + "probability": 0.8633 + }, + { + "start": 33568.54, + "end": 33569.96, + "probability": 0.834 + }, + { + "start": 33570.92, + "end": 33573.34, + "probability": 0.9122 + }, + { + "start": 33587.98, + "end": 33588.56, + "probability": 0.6947 + }, + { + "start": 33588.92, + "end": 33590.58, + "probability": 0.5056 + }, + { + "start": 33591.24, + "end": 33594.24, + "probability": 0.6919 + }, + { + "start": 33595.24, + "end": 33599.34, + "probability": 0.9285 + }, + { + "start": 33599.64, + "end": 33600.94, + "probability": 0.8697 + }, + { + "start": 33601.4, + "end": 33602.68, + "probability": 0.901 + }, + { + "start": 33602.78, + "end": 33606.68, + "probability": 0.9619 + }, + { + "start": 33606.72, + "end": 33607.6, + "probability": 0.6226 + }, + { + "start": 33607.8, + "end": 33611.54, + "probability": 0.952 + }, + { + "start": 33613.02, + "end": 33618.76, + "probability": 0.9863 + }, + { + "start": 33618.88, + "end": 33619.8, + "probability": 0.8199 + }, + { + "start": 33620.46, + "end": 33622.02, + "probability": 0.9362 + }, + { + "start": 33622.18, + "end": 33625.18, + "probability": 0.9795 + }, + { + "start": 33625.84, + "end": 33629.4, + "probability": 0.9878 + }, + { + "start": 33629.96, + "end": 33634.0, + "probability": 0.9958 + }, + { + "start": 33634.52, + "end": 33638.04, + "probability": 0.9506 + }, + { + "start": 33638.6, + "end": 33640.46, + "probability": 0.9952 + }, + { + "start": 33641.22, + "end": 33643.0, + "probability": 0.9941 + }, + { + "start": 33643.12, + "end": 33644.96, + "probability": 0.9639 + }, + { + "start": 33646.1, + "end": 33649.15, + "probability": 0.9974 + }, + { + "start": 33650.06, + "end": 33653.21, + "probability": 0.9976 + }, + { + "start": 33653.72, + "end": 33655.5, + "probability": 0.9936 + }, + { + "start": 33656.2, + "end": 33660.76, + "probability": 0.9938 + }, + { + "start": 33661.3, + "end": 33663.78, + "probability": 0.9902 + }, + { + "start": 33664.6, + "end": 33666.22, + "probability": 0.7273 + }, + { + "start": 33666.22, + "end": 33666.26, + "probability": 0.8129 + }, + { + "start": 33666.38, + "end": 33667.88, + "probability": 0.7967 + }, + { + "start": 33668.08, + "end": 33669.06, + "probability": 0.784 + }, + { + "start": 33669.86, + "end": 33670.86, + "probability": 0.4139 + }, + { + "start": 33674.52, + "end": 33675.7, + "probability": 0.6514 + }, + { + "start": 33676.98, + "end": 33678.7, + "probability": 0.7172 + }, + { + "start": 33679.53, + "end": 33681.3, + "probability": 0.7852 + }, + { + "start": 33681.3, + "end": 33681.86, + "probability": 0.7987 + }, + { + "start": 33682.3, + "end": 33683.93, + "probability": 0.6223 + }, + { + "start": 33684.72, + "end": 33688.12, + "probability": 0.9473 + }, + { + "start": 33688.9, + "end": 33692.5, + "probability": 0.9898 + }, + { + "start": 33693.08, + "end": 33697.08, + "probability": 0.9976 + }, + { + "start": 33697.08, + "end": 33702.48, + "probability": 0.9528 + }, + { + "start": 33703.3, + "end": 33705.88, + "probability": 0.8127 + }, + { + "start": 33705.88, + "end": 33707.7, + "probability": 0.9957 + }, + { + "start": 33708.76, + "end": 33709.26, + "probability": 0.5874 + }, + { + "start": 33709.38, + "end": 33712.12, + "probability": 0.9785 + }, + { + "start": 33712.64, + "end": 33715.0, + "probability": 0.9956 + }, + { + "start": 33715.4, + "end": 33716.76, + "probability": 0.925 + }, + { + "start": 33717.3, + "end": 33719.08, + "probability": 0.998 + }, + { + "start": 33719.08, + "end": 33722.0, + "probability": 0.9816 + }, + { + "start": 33722.5, + "end": 33725.18, + "probability": 0.902 + }, + { + "start": 33725.56, + "end": 33727.18, + "probability": 0.9829 + }, + { + "start": 33727.92, + "end": 33731.14, + "probability": 0.9727 + }, + { + "start": 33731.22, + "end": 33733.2, + "probability": 0.8188 + }, + { + "start": 33734.04, + "end": 33737.98, + "probability": 0.9883 + }, + { + "start": 33738.52, + "end": 33740.04, + "probability": 0.8931 + }, + { + "start": 33740.94, + "end": 33745.69, + "probability": 0.9966 + }, + { + "start": 33745.9, + "end": 33747.46, + "probability": 0.9746 + }, + { + "start": 33747.66, + "end": 33751.44, + "probability": 0.95 + }, + { + "start": 33751.56, + "end": 33752.26, + "probability": 0.9176 + }, + { + "start": 33752.66, + "end": 33755.82, + "probability": 0.9937 + }, + { + "start": 33755.82, + "end": 33758.5, + "probability": 0.9734 + }, + { + "start": 33759.3, + "end": 33761.94, + "probability": 0.9938 + }, + { + "start": 33762.02, + "end": 33765.54, + "probability": 0.9962 + }, + { + "start": 33765.54, + "end": 33768.6, + "probability": 0.9991 + }, + { + "start": 33770.1, + "end": 33775.98, + "probability": 0.9906 + }, + { + "start": 33776.38, + "end": 33778.26, + "probability": 0.9955 + }, + { + "start": 33778.82, + "end": 33780.82, + "probability": 0.9966 + }, + { + "start": 33780.82, + "end": 33783.84, + "probability": 0.9992 + }, + { + "start": 33784.36, + "end": 33789.96, + "probability": 0.9867 + }, + { + "start": 33790.58, + "end": 33792.62, + "probability": 0.9954 + }, + { + "start": 33793.7, + "end": 33795.16, + "probability": 0.9979 + }, + { + "start": 33795.7, + "end": 33797.98, + "probability": 0.9816 + }, + { + "start": 33798.52, + "end": 33805.36, + "probability": 0.979 + }, + { + "start": 33806.4, + "end": 33806.54, + "probability": 0.7572 + }, + { + "start": 33806.54, + "end": 33809.46, + "probability": 0.8408 + }, + { + "start": 33809.56, + "end": 33810.58, + "probability": 0.7595 + }, + { + "start": 33810.88, + "end": 33815.6, + "probability": 0.9878 + }, + { + "start": 33815.62, + "end": 33816.7, + "probability": 0.1885 + }, + { + "start": 33816.7, + "end": 33817.16, + "probability": 0.0612 + }, + { + "start": 33817.16, + "end": 33820.74, + "probability": 0.9204 + }, + { + "start": 33822.62, + "end": 33825.5, + "probability": 0.8069 + }, + { + "start": 33833.16, + "end": 33834.84, + "probability": 0.7274 + }, + { + "start": 33835.0, + "end": 33835.4, + "probability": 0.7953 + }, + { + "start": 33835.82, + "end": 33837.2, + "probability": 0.7978 + }, + { + "start": 33837.86, + "end": 33840.7, + "probability": 0.9491 + }, + { + "start": 33842.0, + "end": 33846.24, + "probability": 0.9705 + }, + { + "start": 33847.24, + "end": 33850.18, + "probability": 0.9913 + }, + { + "start": 33850.18, + "end": 33854.26, + "probability": 0.981 + }, + { + "start": 33855.24, + "end": 33856.22, + "probability": 0.4219 + }, + { + "start": 33856.3, + "end": 33857.56, + "probability": 0.9264 + }, + { + "start": 33857.76, + "end": 33857.96, + "probability": 0.8695 + }, + { + "start": 33858.06, + "end": 33859.44, + "probability": 0.9733 + }, + { + "start": 33859.64, + "end": 33860.22, + "probability": 0.4335 + }, + { + "start": 33860.97, + "end": 33865.22, + "probability": 0.1542 + }, + { + "start": 33865.22, + "end": 33865.22, + "probability": 0.2034 + }, + { + "start": 33865.22, + "end": 33866.7, + "probability": 0.3658 + }, + { + "start": 33866.94, + "end": 33867.36, + "probability": 0.1616 + }, + { + "start": 33868.18, + "end": 33870.14, + "probability": 0.6788 + }, + { + "start": 33871.58, + "end": 33872.94, + "probability": 0.23 + }, + { + "start": 33874.44, + "end": 33876.28, + "probability": 0.9155 + }, + { + "start": 33876.36, + "end": 33877.14, + "probability": 0.3344 + }, + { + "start": 33877.32, + "end": 33877.98, + "probability": 0.6577 + }, + { + "start": 33878.18, + "end": 33879.36, + "probability": 0.3141 + }, + { + "start": 33879.66, + "end": 33881.08, + "probability": 0.1602 + }, + { + "start": 33882.7, + "end": 33886.86, + "probability": 0.9838 + }, + { + "start": 33887.0, + "end": 33887.92, + "probability": 0.9619 + }, + { + "start": 33888.18, + "end": 33888.88, + "probability": 0.4242 + }, + { + "start": 33888.98, + "end": 33892.48, + "probability": 0.61 + }, + { + "start": 33892.7, + "end": 33892.86, + "probability": 0.3315 + }, + { + "start": 33897.7, + "end": 33897.7, + "probability": 0.1733 + }, + { + "start": 33897.9, + "end": 33898.94, + "probability": 0.2216 + }, + { + "start": 33899.26, + "end": 33901.22, + "probability": 0.3452 + }, + { + "start": 33901.45, + "end": 33902.29, + "probability": 0.2363 + }, + { + "start": 33902.5, + "end": 33902.5, + "probability": 0.0299 + }, + { + "start": 33902.5, + "end": 33904.52, + "probability": 0.7793 + }, + { + "start": 33905.34, + "end": 33906.84, + "probability": 0.8398 + }, + { + "start": 33907.04, + "end": 33907.04, + "probability": 0.0377 + }, + { + "start": 33907.04, + "end": 33907.04, + "probability": 0.1133 + }, + { + "start": 33907.04, + "end": 33909.04, + "probability": 0.7563 + }, + { + "start": 33909.96, + "end": 33910.2, + "probability": 0.9097 + }, + { + "start": 33910.28, + "end": 33911.68, + "probability": 0.9773 + }, + { + "start": 33911.92, + "end": 33913.34, + "probability": 0.9455 + }, + { + "start": 33914.28, + "end": 33915.82, + "probability": 0.3198 + }, + { + "start": 33915.84, + "end": 33916.82, + "probability": 0.6618 + }, + { + "start": 33917.58, + "end": 33919.58, + "probability": 0.8062 + }, + { + "start": 33920.02, + "end": 33921.6, + "probability": 0.9648 + }, + { + "start": 33921.9, + "end": 33923.7, + "probability": 0.9843 + }, + { + "start": 33924.66, + "end": 33924.72, + "probability": 0.0569 + }, + { + "start": 33924.72, + "end": 33924.98, + "probability": 0.3987 + }, + { + "start": 33926.14, + "end": 33929.92, + "probability": 0.0563 + }, + { + "start": 33930.8, + "end": 33931.4, + "probability": 0.311 + }, + { + "start": 33932.26, + "end": 33934.8, + "probability": 0.8219 + }, + { + "start": 33935.06, + "end": 33937.22, + "probability": 0.5031 + }, + { + "start": 33937.26, + "end": 33938.58, + "probability": 0.5277 + }, + { + "start": 33938.7, + "end": 33941.73, + "probability": 0.3755 + }, + { + "start": 33941.92, + "end": 33942.16, + "probability": 0.0507 + }, + { + "start": 33942.32, + "end": 33943.06, + "probability": 0.1699 + }, + { + "start": 33943.06, + "end": 33945.8, + "probability": 0.3507 + }, + { + "start": 33945.8, + "end": 33947.3, + "probability": 0.4925 + }, + { + "start": 33947.46, + "end": 33948.24, + "probability": 0.4696 + }, + { + "start": 33948.64, + "end": 33951.7, + "probability": 0.9641 + }, + { + "start": 33951.8, + "end": 33952.86, + "probability": 0.9863 + }, + { + "start": 33953.3, + "end": 33957.28, + "probability": 0.9346 + }, + { + "start": 33957.66, + "end": 33959.52, + "probability": 0.9637 + }, + { + "start": 33960.2, + "end": 33962.36, + "probability": 0.6893 + }, + { + "start": 33962.84, + "end": 33965.32, + "probability": 0.9005 + }, + { + "start": 33965.66, + "end": 33966.46, + "probability": 0.8043 + }, + { + "start": 33966.81, + "end": 33969.3, + "probability": 0.8869 + }, + { + "start": 33969.88, + "end": 33971.39, + "probability": 0.9712 + }, + { + "start": 33971.68, + "end": 33974.68, + "probability": 0.9077 + }, + { + "start": 33975.64, + "end": 33978.48, + "probability": 0.6907 + }, + { + "start": 33979.1, + "end": 33980.86, + "probability": 0.6818 + }, + { + "start": 33981.12, + "end": 33984.38, + "probability": 0.6858 + }, + { + "start": 33984.98, + "end": 33988.36, + "probability": 0.9465 + }, + { + "start": 33988.36, + "end": 33991.2, + "probability": 0.9897 + }, + { + "start": 33991.68, + "end": 33994.88, + "probability": 0.9109 + }, + { + "start": 33995.08, + "end": 33996.72, + "probability": 0.9971 + }, + { + "start": 33996.82, + "end": 33998.0, + "probability": 0.9062 + }, + { + "start": 33998.16, + "end": 33999.08, + "probability": 0.8691 + }, + { + "start": 33999.18, + "end": 34000.02, + "probability": 0.8611 + }, + { + "start": 34000.42, + "end": 34003.8, + "probability": 0.7026 + }, + { + "start": 34003.88, + "end": 34005.6, + "probability": 0.8158 + }, + { + "start": 34006.26, + "end": 34009.52, + "probability": 0.9845 + }, + { + "start": 34009.52, + "end": 34011.6, + "probability": 0.8828 + }, + { + "start": 34012.0, + "end": 34013.28, + "probability": 0.7166 + }, + { + "start": 34014.16, + "end": 34017.3, + "probability": 0.8375 + }, + { + "start": 34017.5, + "end": 34018.04, + "probability": 0.7493 + }, + { + "start": 34018.56, + "end": 34020.74, + "probability": 0.7949 + }, + { + "start": 34020.88, + "end": 34022.22, + "probability": 0.8984 + }, + { + "start": 34022.36, + "end": 34024.96, + "probability": 0.9633 + }, + { + "start": 34025.1, + "end": 34026.64, + "probability": 0.6613 + }, + { + "start": 34027.12, + "end": 34030.36, + "probability": 0.7406 + }, + { + "start": 34030.86, + "end": 34032.32, + "probability": 0.9806 + }, + { + "start": 34033.22, + "end": 34035.48, + "probability": 0.8961 + }, + { + "start": 34035.64, + "end": 34039.3, + "probability": 0.9888 + }, + { + "start": 34039.62, + "end": 34042.38, + "probability": 0.9159 + }, + { + "start": 34042.96, + "end": 34043.56, + "probability": 0.4926 + }, + { + "start": 34045.5, + "end": 34047.34, + "probability": 0.8288 + }, + { + "start": 34047.34, + "end": 34048.2, + "probability": 0.7538 + }, + { + "start": 34048.26, + "end": 34048.96, + "probability": 0.9213 + }, + { + "start": 34049.14, + "end": 34052.78, + "probability": 0.849 + }, + { + "start": 34052.9, + "end": 34054.36, + "probability": 0.7944 + }, + { + "start": 34054.54, + "end": 34055.28, + "probability": 0.942 + }, + { + "start": 34055.94, + "end": 34056.47, + "probability": 0.918 + }, + { + "start": 34057.28, + "end": 34058.56, + "probability": 0.9551 + }, + { + "start": 34058.6, + "end": 34061.74, + "probability": 0.938 + }, + { + "start": 34062.26, + "end": 34062.3, + "probability": 0.1635 + }, + { + "start": 34062.3, + "end": 34063.7, + "probability": 0.907 + }, + { + "start": 34064.6, + "end": 34068.5, + "probability": 0.9149 + }, + { + "start": 34069.78, + "end": 34070.56, + "probability": 0.0168 + }, + { + "start": 34071.76, + "end": 34072.56, + "probability": 0.1964 + }, + { + "start": 34073.72, + "end": 34075.09, + "probability": 0.0077 + }, + { + "start": 34075.48, + "end": 34077.9, + "probability": 0.0953 + }, + { + "start": 34079.83, + "end": 34080.6, + "probability": 0.0814 + }, + { + "start": 34080.6, + "end": 34082.14, + "probability": 0.0162 + }, + { + "start": 34082.22, + "end": 34082.3, + "probability": 0.17 + }, + { + "start": 34082.84, + "end": 34082.98, + "probability": 0.5302 + }, + { + "start": 34082.98, + "end": 34083.48, + "probability": 0.7556 + }, + { + "start": 34083.97, + "end": 34086.1, + "probability": 0.9441 + }, + { + "start": 34086.22, + "end": 34086.22, + "probability": 0.0055 + }, + { + "start": 34086.22, + "end": 34086.22, + "probability": 0.0233 + }, + { + "start": 34086.22, + "end": 34087.36, + "probability": 0.4648 + }, + { + "start": 34087.44, + "end": 34087.5, + "probability": 0.1118 + }, + { + "start": 34087.5, + "end": 34088.1, + "probability": 0.3581 + }, + { + "start": 34088.52, + "end": 34089.44, + "probability": 0.3696 + }, + { + "start": 34090.86, + "end": 34092.36, + "probability": 0.6178 + }, + { + "start": 34093.82, + "end": 34093.82, + "probability": 0.0133 + }, + { + "start": 34093.82, + "end": 34097.5, + "probability": 0.2722 + }, + { + "start": 34097.68, + "end": 34098.4, + "probability": 0.8375 + }, + { + "start": 34098.56, + "end": 34098.86, + "probability": 0.0901 + }, + { + "start": 34098.86, + "end": 34098.86, + "probability": 0.0581 + }, + { + "start": 34098.86, + "end": 34101.5, + "probability": 0.8472 + }, + { + "start": 34101.62, + "end": 34102.04, + "probability": 0.5044 + }, + { + "start": 34102.08, + "end": 34104.1, + "probability": 0.558 + }, + { + "start": 34104.28, + "end": 34106.02, + "probability": 0.8506 + }, + { + "start": 34106.7, + "end": 34107.2, + "probability": 0.0678 + }, + { + "start": 34107.84, + "end": 34111.08, + "probability": 0.5336 + }, + { + "start": 34112.2, + "end": 34116.34, + "probability": 0.1322 + }, + { + "start": 34116.92, + "end": 34118.36, + "probability": 0.4157 + }, + { + "start": 34118.74, + "end": 34121.2, + "probability": 0.5514 + }, + { + "start": 34121.34, + "end": 34123.28, + "probability": 0.8447 + }, + { + "start": 34123.32, + "end": 34124.7, + "probability": 0.7076 + }, + { + "start": 34124.7, + "end": 34125.98, + "probability": 0.8452 + }, + { + "start": 34126.16, + "end": 34129.92, + "probability": 0.9834 + }, + { + "start": 34130.92, + "end": 34134.38, + "probability": 0.9029 + }, + { + "start": 34135.3, + "end": 34138.52, + "probability": 0.9494 + }, + { + "start": 34139.12, + "end": 34140.08, + "probability": 0.9353 + }, + { + "start": 34140.26, + "end": 34143.36, + "probability": 0.9927 + }, + { + "start": 34143.36, + "end": 34147.3, + "probability": 0.8859 + }, + { + "start": 34147.38, + "end": 34147.78, + "probability": 0.4638 + }, + { + "start": 34148.08, + "end": 34148.6, + "probability": 0.8425 + }, + { + "start": 34149.34, + "end": 34152.9, + "probability": 0.9187 + }, + { + "start": 34153.52, + "end": 34157.38, + "probability": 0.8242 + }, + { + "start": 34157.76, + "end": 34157.9, + "probability": 0.3615 + }, + { + "start": 34158.06, + "end": 34158.64, + "probability": 0.9621 + }, + { + "start": 34158.72, + "end": 34163.02, + "probability": 0.9678 + }, + { + "start": 34163.62, + "end": 34165.3, + "probability": 0.9008 + }, + { + "start": 34166.06, + "end": 34169.14, + "probability": 0.8625 + }, + { + "start": 34169.92, + "end": 34170.96, + "probability": 0.915 + }, + { + "start": 34171.98, + "end": 34172.82, + "probability": 0.8871 + }, + { + "start": 34173.7, + "end": 34178.08, + "probability": 0.9222 + }, + { + "start": 34178.66, + "end": 34179.7, + "probability": 0.9303 + }, + { + "start": 34180.58, + "end": 34181.8, + "probability": 0.9611 + }, + { + "start": 34182.5, + "end": 34183.86, + "probability": 0.6107 + }, + { + "start": 34183.92, + "end": 34185.26, + "probability": 0.991 + }, + { + "start": 34186.58, + "end": 34187.86, + "probability": 0.9543 + }, + { + "start": 34188.38, + "end": 34190.46, + "probability": 0.9772 + }, + { + "start": 34191.88, + "end": 34191.98, + "probability": 0.403 + }, + { + "start": 34192.1, + "end": 34192.9, + "probability": 0.6589 + }, + { + "start": 34193.43, + "end": 34194.72, + "probability": 0.7002 + }, + { + "start": 34195.56, + "end": 34196.56, + "probability": 0.9288 + }, + { + "start": 34196.76, + "end": 34200.06, + "probability": 0.9344 + }, + { + "start": 34200.4, + "end": 34202.5, + "probability": 0.9896 + }, + { + "start": 34203.02, + "end": 34203.88, + "probability": 0.999 + }, + { + "start": 34204.54, + "end": 34206.22, + "probability": 0.9976 + }, + { + "start": 34206.58, + "end": 34210.64, + "probability": 0.9748 + }, + { + "start": 34211.76, + "end": 34214.04, + "probability": 0.916 + }, + { + "start": 34214.74, + "end": 34216.44, + "probability": 0.8712 + }, + { + "start": 34216.56, + "end": 34216.66, + "probability": 0.9308 + }, + { + "start": 34216.96, + "end": 34218.88, + "probability": 0.8483 + }, + { + "start": 34219.28, + "end": 34221.2, + "probability": 0.996 + }, + { + "start": 34222.24, + "end": 34224.56, + "probability": 0.7596 + }, + { + "start": 34224.66, + "end": 34226.03, + "probability": 0.7698 + }, + { + "start": 34226.7, + "end": 34227.74, + "probability": 0.8782 + }, + { + "start": 34228.86, + "end": 34231.02, + "probability": 0.7009 + }, + { + "start": 34231.64, + "end": 34232.7, + "probability": 0.9772 + }, + { + "start": 34233.14, + "end": 34235.54, + "probability": 0.9673 + }, + { + "start": 34236.04, + "end": 34236.98, + "probability": 0.9362 + }, + { + "start": 34237.62, + "end": 34239.1, + "probability": 0.8554 + }, + { + "start": 34239.18, + "end": 34239.5, + "probability": 0.8244 + }, + { + "start": 34240.52, + "end": 34242.42, + "probability": 0.8123 + }, + { + "start": 34243.32, + "end": 34246.46, + "probability": 0.9834 + }, + { + "start": 34246.98, + "end": 34247.89, + "probability": 0.8535 + }, + { + "start": 34249.02, + "end": 34250.22, + "probability": 0.9349 + }, + { + "start": 34251.02, + "end": 34254.72, + "probability": 0.8807 + }, + { + "start": 34255.52, + "end": 34257.09, + "probability": 0.9812 + }, + { + "start": 34257.9, + "end": 34259.23, + "probability": 0.931 + }, + { + "start": 34259.64, + "end": 34260.74, + "probability": 0.7906 + }, + { + "start": 34261.28, + "end": 34266.36, + "probability": 0.9932 + }, + { + "start": 34267.1, + "end": 34268.57, + "probability": 0.9907 + }, + { + "start": 34269.52, + "end": 34270.78, + "probability": 0.6047 + }, + { + "start": 34272.38, + "end": 34277.08, + "probability": 0.9948 + }, + { + "start": 34279.03, + "end": 34280.16, + "probability": 0.9349 + }, + { + "start": 34281.9, + "end": 34282.8, + "probability": 0.7659 + }, + { + "start": 34284.22, + "end": 34286.99, + "probability": 0.9919 + }, + { + "start": 34288.16, + "end": 34290.87, + "probability": 0.7249 + }, + { + "start": 34291.7, + "end": 34294.36, + "probability": 0.9686 + }, + { + "start": 34295.06, + "end": 34296.38, + "probability": 0.9756 + }, + { + "start": 34296.48, + "end": 34296.66, + "probability": 0.6676 + }, + { + "start": 34296.82, + "end": 34297.64, + "probability": 0.7402 + }, + { + "start": 34297.68, + "end": 34298.82, + "probability": 0.8 + }, + { + "start": 34299.22, + "end": 34300.6, + "probability": 0.8909 + }, + { + "start": 34300.88, + "end": 34301.8, + "probability": 0.5642 + }, + { + "start": 34302.5, + "end": 34303.3, + "probability": 0.8469 + }, + { + "start": 34303.38, + "end": 34304.22, + "probability": 0.2309 + }, + { + "start": 34304.32, + "end": 34304.7, + "probability": 0.5648 + }, + { + "start": 34305.14, + "end": 34307.56, + "probability": 0.9966 + }, + { + "start": 34308.12, + "end": 34311.36, + "probability": 0.8951 + }, + { + "start": 34311.46, + "end": 34313.7, + "probability": 0.9548 + }, + { + "start": 34313.84, + "end": 34316.74, + "probability": 0.712 + }, + { + "start": 34317.04, + "end": 34318.02, + "probability": 0.842 + }, + { + "start": 34318.36, + "end": 34318.54, + "probability": 0.9477 + }, + { + "start": 34319.04, + "end": 34319.26, + "probability": 0.6099 + }, + { + "start": 34319.44, + "end": 34321.84, + "probability": 0.6655 + }, + { + "start": 34322.02, + "end": 34325.0, + "probability": 0.7765 + }, + { + "start": 34341.6, + "end": 34341.98, + "probability": 0.4504 + }, + { + "start": 34343.88, + "end": 34345.24, + "probability": 0.3638 + }, + { + "start": 34346.76, + "end": 34349.12, + "probability": 0.7984 + }, + { + "start": 34349.16, + "end": 34349.6, + "probability": 0.8841 + }, + { + "start": 34349.68, + "end": 34350.8, + "probability": 0.6964 + }, + { + "start": 34350.98, + "end": 34351.92, + "probability": 0.6404 + }, + { + "start": 34352.12, + "end": 34353.02, + "probability": 0.7197 + }, + { + "start": 34355.83, + "end": 34357.61, + "probability": 0.6357 + }, + { + "start": 34358.38, + "end": 34358.98, + "probability": 0.4956 + }, + { + "start": 34359.16, + "end": 34359.56, + "probability": 0.8344 + }, + { + "start": 34360.22, + "end": 34361.62, + "probability": 0.9755 + }, + { + "start": 34363.04, + "end": 34366.56, + "probability": 0.9762 + }, + { + "start": 34367.0, + "end": 34368.62, + "probability": 0.9632 + }, + { + "start": 34368.78, + "end": 34373.52, + "probability": 0.6329 + }, + { + "start": 34375.6, + "end": 34375.68, + "probability": 0.5038 + }, + { + "start": 34375.74, + "end": 34378.82, + "probability": 0.9629 + }, + { + "start": 34379.38, + "end": 34381.15, + "probability": 0.8963 + }, + { + "start": 34382.82, + "end": 34384.06, + "probability": 0.7351 + }, + { + "start": 34384.78, + "end": 34386.8, + "probability": 0.1969 + }, + { + "start": 34387.38, + "end": 34390.3, + "probability": 0.9081 + }, + { + "start": 34391.4, + "end": 34392.24, + "probability": 0.9003 + }, + { + "start": 34392.28, + "end": 34392.52, + "probability": 0.8021 + }, + { + "start": 34393.06, + "end": 34397.21, + "probability": 0.7449 + }, + { + "start": 34398.48, + "end": 34402.18, + "probability": 0.961 + }, + { + "start": 34402.34, + "end": 34403.36, + "probability": 0.7699 + }, + { + "start": 34403.36, + "end": 34404.32, + "probability": 0.9855 + }, + { + "start": 34405.24, + "end": 34409.64, + "probability": 0.9839 + }, + { + "start": 34410.5, + "end": 34413.44, + "probability": 0.7233 + }, + { + "start": 34414.6, + "end": 34414.97, + "probability": 0.9927 + }, + { + "start": 34416.44, + "end": 34417.94, + "probability": 0.6953 + }, + { + "start": 34418.46, + "end": 34420.61, + "probability": 0.8507 + }, + { + "start": 34421.5, + "end": 34426.26, + "probability": 0.4301 + }, + { + "start": 34427.46, + "end": 34431.26, + "probability": 0.9074 + }, + { + "start": 34433.49, + "end": 34437.48, + "probability": 0.4843 + }, + { + "start": 34438.36, + "end": 34441.54, + "probability": 0.9496 + }, + { + "start": 34441.82, + "end": 34443.99, + "probability": 0.9972 + }, + { + "start": 34444.5, + "end": 34446.78, + "probability": 0.8819 + }, + { + "start": 34449.02, + "end": 34450.52, + "probability": 0.043 + }, + { + "start": 34451.6, + "end": 34451.6, + "probability": 0.0254 + }, + { + "start": 34451.6, + "end": 34453.0, + "probability": 0.9468 + }, + { + "start": 34453.72, + "end": 34455.06, + "probability": 0.6837 + }, + { + "start": 34455.3, + "end": 34455.64, + "probability": 0.6692 + }, + { + "start": 34455.66, + "end": 34458.6, + "probability": 0.7346 + }, + { + "start": 34460.36, + "end": 34462.34, + "probability": 0.9021 + }, + { + "start": 34463.76, + "end": 34466.36, + "probability": 0.6891 + }, + { + "start": 34467.28, + "end": 34471.38, + "probability": 0.9715 + }, + { + "start": 34471.68, + "end": 34473.9, + "probability": 0.9025 + }, + { + "start": 34474.6, + "end": 34476.86, + "probability": 0.9956 + }, + { + "start": 34477.94, + "end": 34478.98, + "probability": 0.8503 + }, + { + "start": 34481.22, + "end": 34484.68, + "probability": 0.9966 + }, + { + "start": 34485.24, + "end": 34485.8, + "probability": 0.7221 + }, + { + "start": 34486.64, + "end": 34487.82, + "probability": 0.9516 + }, + { + "start": 34488.78, + "end": 34491.24, + "probability": 0.955 + }, + { + "start": 34492.04, + "end": 34492.76, + "probability": 0.5712 + }, + { + "start": 34493.64, + "end": 34494.92, + "probability": 0.5221 + }, + { + "start": 34497.86, + "end": 34504.22, + "probability": 0.9968 + }, + { + "start": 34505.06, + "end": 34506.98, + "probability": 0.9649 + }, + { + "start": 34507.58, + "end": 34509.64, + "probability": 0.855 + }, + { + "start": 34510.58, + "end": 34514.32, + "probability": 0.8309 + }, + { + "start": 34515.0, + "end": 34516.46, + "probability": 0.9824 + }, + { + "start": 34518.16, + "end": 34519.68, + "probability": 0.9958 + }, + { + "start": 34520.2, + "end": 34523.22, + "probability": 0.8629 + }, + { + "start": 34523.76, + "end": 34525.34, + "probability": 0.9756 + }, + { + "start": 34526.96, + "end": 34527.62, + "probability": 0.9976 + }, + { + "start": 34529.12, + "end": 34529.71, + "probability": 0.7321 + }, + { + "start": 34530.72, + "end": 34531.9, + "probability": 0.7773 + }, + { + "start": 34532.64, + "end": 34536.88, + "probability": 0.8927 + }, + { + "start": 34537.06, + "end": 34537.34, + "probability": 0.8145 + }, + { + "start": 34539.92, + "end": 34542.86, + "probability": 0.6615 + }, + { + "start": 34543.36, + "end": 34545.24, + "probability": 0.9644 + }, + { + "start": 34549.09, + "end": 34552.8, + "probability": 0.8728 + }, + { + "start": 34555.8, + "end": 34559.38, + "probability": 0.8186 + }, + { + "start": 34559.92, + "end": 34560.88, + "probability": 0.9948 + }, + { + "start": 34562.82, + "end": 34566.92, + "probability": 0.945 + }, + { + "start": 34567.58, + "end": 34568.2, + "probability": 0.9812 + }, + { + "start": 34568.24, + "end": 34572.78, + "probability": 0.9667 + }, + { + "start": 34572.9, + "end": 34577.84, + "probability": 0.8633 + }, + { + "start": 34578.44, + "end": 34583.44, + "probability": 0.981 + }, + { + "start": 34585.22, + "end": 34586.7, + "probability": 0.4993 + }, + { + "start": 34587.76, + "end": 34593.1, + "probability": 0.8325 + }, + { + "start": 34593.64, + "end": 34595.44, + "probability": 0.5542 + }, + { + "start": 34595.96, + "end": 34597.3, + "probability": 0.9661 + }, + { + "start": 34597.4, + "end": 34599.58, + "probability": 0.8377 + }, + { + "start": 34599.74, + "end": 34600.62, + "probability": 0.9384 + }, + { + "start": 34601.38, + "end": 34602.06, + "probability": 0.6681 + }, + { + "start": 34602.52, + "end": 34603.52, + "probability": 0.666 + }, + { + "start": 34604.92, + "end": 34607.02, + "probability": 0.9897 + }, + { + "start": 34607.18, + "end": 34608.36, + "probability": 0.9876 + }, + { + "start": 34608.36, + "end": 34613.84, + "probability": 0.9642 + }, + { + "start": 34616.04, + "end": 34619.56, + "probability": 0.9956 + }, + { + "start": 34620.16, + "end": 34621.4, + "probability": 0.9956 + }, + { + "start": 34623.46, + "end": 34629.16, + "probability": 0.9835 + }, + { + "start": 34629.7, + "end": 34632.94, + "probability": 0.9196 + }, + { + "start": 34633.74, + "end": 34634.86, + "probability": 0.9456 + }, + { + "start": 34635.42, + "end": 34638.82, + "probability": 0.913 + }, + { + "start": 34639.44, + "end": 34641.56, + "probability": 0.921 + }, + { + "start": 34643.28, + "end": 34644.12, + "probability": 0.2486 + }, + { + "start": 34644.36, + "end": 34645.14, + "probability": 0.3156 + }, + { + "start": 34645.38, + "end": 34646.58, + "probability": 0.4995 + }, + { + "start": 34646.74, + "end": 34647.92, + "probability": 0.8683 + }, + { + "start": 34648.32, + "end": 34648.74, + "probability": 0.8713 + }, + { + "start": 34648.8, + "end": 34650.52, + "probability": 0.7491 + }, + { + "start": 34651.32, + "end": 34654.66, + "probability": 0.8217 + }, + { + "start": 34655.28, + "end": 34656.48, + "probability": 0.9467 + }, + { + "start": 34657.0, + "end": 34661.58, + "probability": 0.9757 + }, + { + "start": 34662.16, + "end": 34669.16, + "probability": 0.9711 + }, + { + "start": 34669.64, + "end": 34670.92, + "probability": 0.9852 + }, + { + "start": 34671.56, + "end": 34674.2, + "probability": 0.3749 + }, + { + "start": 34674.2, + "end": 34678.8, + "probability": 0.6913 + }, + { + "start": 34679.02, + "end": 34680.58, + "probability": 0.554 + }, + { + "start": 34681.16, + "end": 34682.56, + "probability": 0.4115 + }, + { + "start": 34683.76, + "end": 34686.8, + "probability": 0.9927 + }, + { + "start": 34687.28, + "end": 34688.92, + "probability": 0.9405 + }, + { + "start": 34688.98, + "end": 34691.72, + "probability": 0.9779 + }, + { + "start": 34694.58, + "end": 34695.56, + "probability": 0.8776 + }, + { + "start": 34696.52, + "end": 34699.54, + "probability": 0.9912 + }, + { + "start": 34704.6, + "end": 34709.78, + "probability": 0.9962 + }, + { + "start": 34710.04, + "end": 34711.16, + "probability": 0.9269 + }, + { + "start": 34711.24, + "end": 34712.44, + "probability": 0.8989 + }, + { + "start": 34712.98, + "end": 34716.16, + "probability": 0.9712 + }, + { + "start": 34716.48, + "end": 34719.58, + "probability": 0.7094 + }, + { + "start": 34720.2, + "end": 34721.76, + "probability": 0.8679 + }, + { + "start": 34721.82, + "end": 34723.0, + "probability": 0.984 + }, + { + "start": 34723.12, + "end": 34723.84, + "probability": 0.8808 + }, + { + "start": 34723.88, + "end": 34724.38, + "probability": 0.8482 + }, + { + "start": 34725.28, + "end": 34727.32, + "probability": 0.9908 + }, + { + "start": 34728.36, + "end": 34729.74, + "probability": 0.6175 + }, + { + "start": 34730.3, + "end": 34733.0, + "probability": 0.9924 + }, + { + "start": 34733.32, + "end": 34735.22, + "probability": 0.6995 + }, + { + "start": 34735.42, + "end": 34735.64, + "probability": 0.7645 + }, + { + "start": 34736.62, + "end": 34739.46, + "probability": 0.8554 + }, + { + "start": 34739.58, + "end": 34743.08, + "probability": 0.6611 + }, + { + "start": 34754.84, + "end": 34756.84, + "probability": 0.8559 + }, + { + "start": 34757.02, + "end": 34757.84, + "probability": 0.6499 + }, + { + "start": 34758.2, + "end": 34759.7, + "probability": 0.3443 + }, + { + "start": 34759.7, + "end": 34761.3, + "probability": 0.422 + }, + { + "start": 34761.6, + "end": 34761.84, + "probability": 0.4372 + }, + { + "start": 34761.92, + "end": 34762.75, + "probability": 0.7462 + }, + { + "start": 34764.1, + "end": 34765.38, + "probability": 0.6354 + }, + { + "start": 34767.7, + "end": 34771.94, + "probability": 0.8657 + }, + { + "start": 34772.6, + "end": 34773.88, + "probability": 0.8173 + }, + { + "start": 34775.06, + "end": 34779.52, + "probability": 0.9954 + }, + { + "start": 34781.12, + "end": 34785.14, + "probability": 0.9463 + }, + { + "start": 34785.9, + "end": 34788.9, + "probability": 0.9443 + }, + { + "start": 34788.96, + "end": 34791.2, + "probability": 0.9744 + }, + { + "start": 34791.94, + "end": 34793.36, + "probability": 0.8877 + }, + { + "start": 34793.75, + "end": 34798.06, + "probability": 0.4723 + }, + { + "start": 34798.06, + "end": 34801.74, + "probability": 0.99 + }, + { + "start": 34801.9, + "end": 34804.19, + "probability": 0.9014 + }, + { + "start": 34805.3, + "end": 34807.42, + "probability": 0.7921 + }, + { + "start": 34807.98, + "end": 34810.26, + "probability": 0.9688 + }, + { + "start": 34811.34, + "end": 34815.88, + "probability": 0.9907 + }, + { + "start": 34816.78, + "end": 34818.7, + "probability": 0.9868 + }, + { + "start": 34818.82, + "end": 34819.98, + "probability": 0.7053 + }, + { + "start": 34820.06, + "end": 34820.52, + "probability": 0.5345 + }, + { + "start": 34821.32, + "end": 34821.72, + "probability": 0.7009 + }, + { + "start": 34821.82, + "end": 34826.78, + "probability": 0.8076 + }, + { + "start": 34827.76, + "end": 34828.87, + "probability": 0.9736 + }, + { + "start": 34829.46, + "end": 34830.88, + "probability": 0.9041 + }, + { + "start": 34831.28, + "end": 34832.96, + "probability": 0.7086 + }, + { + "start": 34833.04, + "end": 34834.08, + "probability": 0.8165 + }, + { + "start": 34835.14, + "end": 34838.1, + "probability": 0.8898 + }, + { + "start": 34838.22, + "end": 34839.78, + "probability": 0.9372 + }, + { + "start": 34840.38, + "end": 34841.3, + "probability": 0.7444 + }, + { + "start": 34841.38, + "end": 34843.02, + "probability": 0.8197 + }, + { + "start": 34843.02, + "end": 34845.38, + "probability": 0.9872 + }, + { + "start": 34846.48, + "end": 34854.0, + "probability": 0.9218 + }, + { + "start": 34854.52, + "end": 34855.56, + "probability": 0.9043 + }, + { + "start": 34856.0, + "end": 34856.5, + "probability": 0.8166 + }, + { + "start": 34857.56, + "end": 34858.08, + "probability": 0.7527 + }, + { + "start": 34858.68, + "end": 34859.36, + "probability": 0.5695 + }, + { + "start": 34863.08, + "end": 34866.56, + "probability": 0.9551 + }, + { + "start": 34867.14, + "end": 34873.86, + "probability": 0.9413 + }, + { + "start": 34874.26, + "end": 34874.82, + "probability": 0.8652 + }, + { + "start": 34874.9, + "end": 34875.28, + "probability": 0.4948 + }, + { + "start": 34877.2, + "end": 34877.98, + "probability": 0.9604 + }, + { + "start": 34878.42, + "end": 34879.27, + "probability": 0.9504 + }, + { + "start": 34879.6, + "end": 34880.2, + "probability": 0.8762 + }, + { + "start": 34881.76, + "end": 34886.02, + "probability": 0.9923 + }, + { + "start": 34887.46, + "end": 34890.78, + "probability": 0.9795 + }, + { + "start": 34891.28, + "end": 34892.58, + "probability": 0.9627 + }, + { + "start": 34893.12, + "end": 34895.64, + "probability": 0.6816 + }, + { + "start": 34895.76, + "end": 34896.42, + "probability": 0.9464 + }, + { + "start": 34897.72, + "end": 34900.8, + "probability": 0.9929 + }, + { + "start": 34901.94, + "end": 34903.1, + "probability": 0.9068 + }, + { + "start": 34903.66, + "end": 34906.1, + "probability": 0.873 + }, + { + "start": 34908.46, + "end": 34909.72, + "probability": 0.7305 + }, + { + "start": 34911.88, + "end": 34912.66, + "probability": 0.9915 + }, + { + "start": 34913.4, + "end": 34915.74, + "probability": 0.855 + }, + { + "start": 34917.08, + "end": 34918.26, + "probability": 0.9604 + }, + { + "start": 34918.48, + "end": 34920.62, + "probability": 0.9849 + }, + { + "start": 34921.64, + "end": 34926.14, + "probability": 0.9005 + }, + { + "start": 34926.78, + "end": 34927.44, + "probability": 0.7506 + }, + { + "start": 34928.38, + "end": 34931.08, + "probability": 0.9911 + }, + { + "start": 34932.28, + "end": 34934.64, + "probability": 0.8456 + }, + { + "start": 34935.18, + "end": 34936.14, + "probability": 0.97 + }, + { + "start": 34937.26, + "end": 34939.8, + "probability": 0.6355 + }, + { + "start": 34940.76, + "end": 34940.8, + "probability": 0.0611 + }, + { + "start": 34940.8, + "end": 34942.85, + "probability": 0.6301 + }, + { + "start": 34943.6, + "end": 34946.1, + "probability": 0.9745 + }, + { + "start": 34946.62, + "end": 34947.16, + "probability": 0.2691 + }, + { + "start": 34947.28, + "end": 34947.7, + "probability": 0.8136 + }, + { + "start": 34947.84, + "end": 34953.22, + "probability": 0.8068 + }, + { + "start": 34954.08, + "end": 34954.55, + "probability": 0.8578 + }, + { + "start": 34955.5, + "end": 34956.32, + "probability": 0.5147 + }, + { + "start": 34956.96, + "end": 34960.78, + "probability": 0.7663 + }, + { + "start": 34961.06, + "end": 34965.22, + "probability": 0.7635 + }, + { + "start": 34965.8, + "end": 34969.18, + "probability": 0.9603 + }, + { + "start": 34969.84, + "end": 34972.24, + "probability": 0.0931 + }, + { + "start": 34972.88, + "end": 34972.88, + "probability": 0.1551 + }, + { + "start": 34972.88, + "end": 34973.64, + "probability": 0.8989 + }, + { + "start": 34974.56, + "end": 34975.48, + "probability": 0.9582 + }, + { + "start": 34975.96, + "end": 34976.56, + "probability": 0.4997 + }, + { + "start": 34976.94, + "end": 34977.12, + "probability": 0.1454 + }, + { + "start": 34978.04, + "end": 34978.88, + "probability": 0.715 + }, + { + "start": 34979.8, + "end": 34981.12, + "probability": 0.95 + }, + { + "start": 34981.62, + "end": 34982.45, + "probability": 0.9733 + }, + { + "start": 34983.0, + "end": 34983.6, + "probability": 0.5064 + }, + { + "start": 34985.0, + "end": 34986.16, + "probability": 0.7271 + }, + { + "start": 34986.5, + "end": 34987.04, + "probability": 0.8435 + }, + { + "start": 34988.06, + "end": 34988.74, + "probability": 0.5411 + }, + { + "start": 34988.86, + "end": 34991.22, + "probability": 0.6919 + }, + { + "start": 34991.5, + "end": 34993.68, + "probability": 0.6963 + }, + { + "start": 34994.32, + "end": 34994.88, + "probability": 0.5809 + }, + { + "start": 34999.58, + "end": 34999.76, + "probability": 0.9816 + }, + { + "start": 35007.48, + "end": 35008.18, + "probability": 0.229 + }, + { + "start": 35015.16, + "end": 35017.14, + "probability": 0.2806 + }, + { + "start": 35017.14, + "end": 35021.08, + "probability": 0.8726 + }, + { + "start": 35021.8, + "end": 35023.24, + "probability": 0.8331 + }, + { + "start": 35023.92, + "end": 35026.68, + "probability": 0.7539 + }, + { + "start": 35027.46, + "end": 35033.74, + "probability": 0.8924 + }, + { + "start": 35034.82, + "end": 35034.88, + "probability": 0.5143 + }, + { + "start": 35034.88, + "end": 35035.12, + "probability": 0.4523 + }, + { + "start": 35035.32, + "end": 35039.06, + "probability": 0.8916 + }, + { + "start": 35039.18, + "end": 35041.81, + "probability": 0.6987 + }, + { + "start": 35043.58, + "end": 35044.9, + "probability": 0.9833 + }, + { + "start": 35045.04, + "end": 35049.34, + "probability": 0.7838 + }, + { + "start": 35049.94, + "end": 35054.22, + "probability": 0.9976 + }, + { + "start": 35055.06, + "end": 35056.22, + "probability": 0.9644 + }, + { + "start": 35056.52, + "end": 35057.75, + "probability": 0.9697 + }, + { + "start": 35058.48, + "end": 35062.7, + "probability": 0.9901 + }, + { + "start": 35063.62, + "end": 35064.24, + "probability": 0.7532 + }, + { + "start": 35064.94, + "end": 35068.24, + "probability": 0.977 + }, + { + "start": 35068.52, + "end": 35071.44, + "probability": 0.8687 + }, + { + "start": 35072.1, + "end": 35074.92, + "probability": 0.8901 + }, + { + "start": 35075.34, + "end": 35076.5, + "probability": 0.911 + }, + { + "start": 35076.92, + "end": 35079.51, + "probability": 0.8953 + }, + { + "start": 35080.16, + "end": 35081.39, + "probability": 0.9049 + }, + { + "start": 35081.76, + "end": 35082.56, + "probability": 0.9439 + }, + { + "start": 35083.14, + "end": 35083.59, + "probability": 0.9559 + }, + { + "start": 35084.82, + "end": 35086.55, + "probability": 0.9083 + }, + { + "start": 35086.8, + "end": 35087.36, + "probability": 0.9234 + }, + { + "start": 35087.8, + "end": 35088.34, + "probability": 0.7536 + }, + { + "start": 35088.42, + "end": 35088.78, + "probability": 0.7721 + }, + { + "start": 35088.86, + "end": 35089.61, + "probability": 0.9169 + }, + { + "start": 35090.1, + "end": 35090.74, + "probability": 0.9319 + }, + { + "start": 35091.28, + "end": 35091.94, + "probability": 0.9838 + }, + { + "start": 35092.12, + "end": 35095.92, + "probability": 0.6763 + }, + { + "start": 35095.92, + "end": 35096.58, + "probability": 0.1344 + }, + { + "start": 35097.2, + "end": 35100.18, + "probability": 0.6566 + }, + { + "start": 35100.56, + "end": 35104.18, + "probability": 0.9037 + }, + { + "start": 35104.36, + "end": 35106.46, + "probability": 0.9951 + }, + { + "start": 35107.4, + "end": 35108.26, + "probability": 0.7137 + }, + { + "start": 35109.86, + "end": 35115.38, + "probability": 0.9789 + }, + { + "start": 35116.48, + "end": 35118.22, + "probability": 0.9919 + }, + { + "start": 35118.5, + "end": 35120.03, + "probability": 0.9874 + }, + { + "start": 35120.94, + "end": 35122.06, + "probability": 0.246 + }, + { + "start": 35122.24, + "end": 35122.92, + "probability": 0.8414 + }, + { + "start": 35123.12, + "end": 35123.52, + "probability": 0.8212 + }, + { + "start": 35123.68, + "end": 35125.08, + "probability": 0.9941 + }, + { + "start": 35125.56, + "end": 35126.06, + "probability": 0.8368 + }, + { + "start": 35126.3, + "end": 35129.19, + "probability": 0.9946 + }, + { + "start": 35130.36, + "end": 35131.42, + "probability": 0.7933 + }, + { + "start": 35131.88, + "end": 35134.82, + "probability": 0.9833 + }, + { + "start": 35135.22, + "end": 35135.78, + "probability": 0.8858 + }, + { + "start": 35135.98, + "end": 35142.64, + "probability": 0.9478 + }, + { + "start": 35142.68, + "end": 35143.34, + "probability": 0.8132 + }, + { + "start": 35143.64, + "end": 35147.06, + "probability": 0.9964 + }, + { + "start": 35147.06, + "end": 35149.74, + "probability": 0.9988 + }, + { + "start": 35149.88, + "end": 35150.62, + "probability": 0.5887 + }, + { + "start": 35151.22, + "end": 35153.38, + "probability": 0.9955 + }, + { + "start": 35154.22, + "end": 35154.56, + "probability": 0.9479 + }, + { + "start": 35154.88, + "end": 35158.36, + "probability": 0.9934 + }, + { + "start": 35159.0, + "end": 35162.12, + "probability": 0.998 + }, + { + "start": 35163.06, + "end": 35164.9, + "probability": 0.7789 + }, + { + "start": 35165.0, + "end": 35165.86, + "probability": 0.6584 + }, + { + "start": 35166.68, + "end": 35170.18, + "probability": 0.9921 + }, + { + "start": 35170.66, + "end": 35173.96, + "probability": 0.8324 + }, + { + "start": 35174.6, + "end": 35177.56, + "probability": 0.9919 + }, + { + "start": 35178.7, + "end": 35180.18, + "probability": 0.9116 + }, + { + "start": 35180.7, + "end": 35184.74, + "probability": 0.9904 + }, + { + "start": 35185.36, + "end": 35187.2, + "probability": 0.9803 + }, + { + "start": 35187.36, + "end": 35189.08, + "probability": 0.9088 + }, + { + "start": 35189.42, + "end": 35192.24, + "probability": 0.9936 + }, + { + "start": 35192.72, + "end": 35193.48, + "probability": 0.9124 + }, + { + "start": 35193.86, + "end": 35195.0, + "probability": 0.9309 + }, + { + "start": 35195.46, + "end": 35198.98, + "probability": 0.9832 + }, + { + "start": 35199.2, + "end": 35199.6, + "probability": 0.6859 + }, + { + "start": 35199.8, + "end": 35202.07, + "probability": 0.6615 + }, + { + "start": 35202.28, + "end": 35204.5, + "probability": 0.9792 + }, + { + "start": 35205.92, + "end": 35206.38, + "probability": 0.008 + }, + { + "start": 35216.72, + "end": 35217.0, + "probability": 0.1033 + }, + { + "start": 35230.18, + "end": 35231.1, + "probability": 0.1181 + }, + { + "start": 35232.38, + "end": 35233.04, + "probability": 0.3916 + }, + { + "start": 35234.42, + "end": 35237.34, + "probability": 0.799 + }, + { + "start": 35243.88, + "end": 35248.78, + "probability": 0.8526 + }, + { + "start": 35249.92, + "end": 35250.78, + "probability": 0.6321 + }, + { + "start": 35250.84, + "end": 35251.68, + "probability": 0.6745 + }, + { + "start": 35252.28, + "end": 35254.68, + "probability": 0.981 + }, + { + "start": 35256.32, + "end": 35256.91, + "probability": 0.9926 + }, + { + "start": 35257.12, + "end": 35257.48, + "probability": 0.9889 + }, + { + "start": 35258.42, + "end": 35258.83, + "probability": 0.9954 + }, + { + "start": 35259.26, + "end": 35261.22, + "probability": 0.999 + }, + { + "start": 35262.2, + "end": 35264.56, + "probability": 0.9992 + }, + { + "start": 35265.06, + "end": 35265.3, + "probability": 0.532 + }, + { + "start": 35265.3, + "end": 35270.72, + "probability": 0.4845 + }, + { + "start": 35270.84, + "end": 35271.26, + "probability": 0.8177 + }, + { + "start": 35272.0, + "end": 35273.16, + "probability": 0.7188 + }, + { + "start": 35274.24, + "end": 35275.82, + "probability": 0.0655 + }, + { + "start": 35278.68, + "end": 35278.96, + "probability": 0.3029 + }, + { + "start": 35278.96, + "end": 35278.96, + "probability": 0.5159 + }, + { + "start": 35278.96, + "end": 35278.96, + "probability": 0.0922 + }, + { + "start": 35278.96, + "end": 35281.28, + "probability": 0.698 + }, + { + "start": 35281.98, + "end": 35283.37, + "probability": 0.926 + }, + { + "start": 35284.42, + "end": 35286.62, + "probability": 0.728 + }, + { + "start": 35287.12, + "end": 35287.16, + "probability": 0.6586 + }, + { + "start": 35287.16, + "end": 35290.68, + "probability": 0.8977 + }, + { + "start": 35291.14, + "end": 35296.8, + "probability": 0.9743 + }, + { + "start": 35296.88, + "end": 35299.24, + "probability": 0.9881 + }, + { + "start": 35300.54, + "end": 35302.8, + "probability": 0.9948 + }, + { + "start": 35303.96, + "end": 35305.86, + "probability": 0.8125 + }, + { + "start": 35305.94, + "end": 35308.3, + "probability": 0.9776 + }, + { + "start": 35308.62, + "end": 35312.5, + "probability": 0.8054 + }, + { + "start": 35313.64, + "end": 35315.78, + "probability": 0.9243 + }, + { + "start": 35315.86, + "end": 35317.34, + "probability": 0.9924 + }, + { + "start": 35317.54, + "end": 35320.7, + "probability": 0.9972 + }, + { + "start": 35320.82, + "end": 35321.18, + "probability": 0.8766 + }, + { + "start": 35321.32, + "end": 35324.08, + "probability": 0.856 + }, + { + "start": 35324.5, + "end": 35327.38, + "probability": 0.9946 + }, + { + "start": 35327.5, + "end": 35328.58, + "probability": 0.7134 + }, + { + "start": 35329.1, + "end": 35330.13, + "probability": 0.8529 + }, + { + "start": 35331.56, + "end": 35333.66, + "probability": 0.9734 + }, + { + "start": 35334.94, + "end": 35339.26, + "probability": 0.941 + }, + { + "start": 35339.26, + "end": 35344.7, + "probability": 0.9902 + }, + { + "start": 35345.22, + "end": 35346.22, + "probability": 0.5037 + }, + { + "start": 35346.42, + "end": 35347.5, + "probability": 0.6957 + }, + { + "start": 35347.58, + "end": 35349.7, + "probability": 0.9941 + }, + { + "start": 35350.68, + "end": 35352.58, + "probability": 0.6297 + }, + { + "start": 35353.97, + "end": 35356.06, + "probability": 0.9902 + }, + { + "start": 35356.76, + "end": 35357.31, + "probability": 0.7168 + }, + { + "start": 35357.84, + "end": 35359.42, + "probability": 0.995 + }, + { + "start": 35359.78, + "end": 35361.14, + "probability": 0.9712 + }, + { + "start": 35361.24, + "end": 35362.32, + "probability": 0.8728 + }, + { + "start": 35363.0, + "end": 35363.5, + "probability": 0.763 + }, + { + "start": 35364.47, + "end": 35365.24, + "probability": 0.6391 + }, + { + "start": 35366.42, + "end": 35369.06, + "probability": 0.9193 + }, + { + "start": 35369.76, + "end": 35372.48, + "probability": 0.8599 + }, + { + "start": 35372.88, + "end": 35374.42, + "probability": 0.999 + }, + { + "start": 35374.98, + "end": 35376.45, + "probability": 0.9954 + }, + { + "start": 35377.08, + "end": 35377.96, + "probability": 0.9866 + }, + { + "start": 35378.1, + "end": 35379.3, + "probability": 0.9534 + }, + { + "start": 35380.2, + "end": 35383.38, + "probability": 0.8554 + }, + { + "start": 35383.5, + "end": 35385.3, + "probability": 0.9927 + }, + { + "start": 35385.76, + "end": 35386.42, + "probability": 0.8096 + }, + { + "start": 35386.54, + "end": 35390.64, + "probability": 0.9819 + }, + { + "start": 35391.66, + "end": 35393.42, + "probability": 0.9896 + }, + { + "start": 35393.56, + "end": 35394.32, + "probability": 0.9893 + }, + { + "start": 35394.92, + "end": 35395.84, + "probability": 0.8589 + }, + { + "start": 35396.52, + "end": 35397.64, + "probability": 0.8423 + }, + { + "start": 35398.26, + "end": 35400.36, + "probability": 0.8 + }, + { + "start": 35402.94, + "end": 35408.46, + "probability": 0.6694 + }, + { + "start": 35408.94, + "end": 35408.94, + "probability": 0.3777 + }, + { + "start": 35408.94, + "end": 35409.56, + "probability": 0.6665 + }, + { + "start": 35409.62, + "end": 35412.14, + "probability": 0.9944 + }, + { + "start": 35412.54, + "end": 35413.69, + "probability": 0.9961 + }, + { + "start": 35413.88, + "end": 35416.15, + "probability": 0.9976 + }, + { + "start": 35416.86, + "end": 35418.72, + "probability": 0.8477 + }, + { + "start": 35418.82, + "end": 35421.56, + "probability": 0.9988 + }, + { + "start": 35421.92, + "end": 35424.86, + "probability": 0.6833 + }, + { + "start": 35425.4, + "end": 35426.56, + "probability": 0.9475 + }, + { + "start": 35427.12, + "end": 35430.18, + "probability": 0.9832 + }, + { + "start": 35430.66, + "end": 35435.62, + "probability": 0.9951 + }, + { + "start": 35435.94, + "end": 35436.66, + "probability": 0.3803 + }, + { + "start": 35437.44, + "end": 35438.02, + "probability": 0.3783 + }, + { + "start": 35438.08, + "end": 35438.26, + "probability": 0.0052 + }, + { + "start": 35438.26, + "end": 35439.12, + "probability": 0.8535 + }, + { + "start": 35439.38, + "end": 35441.24, + "probability": 0.9565 + }, + { + "start": 35441.34, + "end": 35442.38, + "probability": 0.6909 + }, + { + "start": 35442.46, + "end": 35446.54, + "probability": 0.8679 + }, + { + "start": 35447.12, + "end": 35449.71, + "probability": 0.9976 + }, + { + "start": 35450.16, + "end": 35453.02, + "probability": 0.9991 + }, + { + "start": 35453.02, + "end": 35454.9, + "probability": 0.999 + }, + { + "start": 35455.2, + "end": 35456.98, + "probability": 0.8445 + }, + { + "start": 35457.4, + "end": 35461.04, + "probability": 0.9941 + }, + { + "start": 35461.94, + "end": 35463.76, + "probability": 0.9616 + }, + { + "start": 35464.6, + "end": 35465.92, + "probability": 0.9885 + }, + { + "start": 35467.1, + "end": 35467.54, + "probability": 0.7339 + }, + { + "start": 35468.1, + "end": 35472.08, + "probability": 0.8659 + }, + { + "start": 35472.34, + "end": 35475.04, + "probability": 0.6552 + }, + { + "start": 35475.28, + "end": 35475.64, + "probability": 0.5998 + }, + { + "start": 35476.32, + "end": 35478.8, + "probability": 0.6211 + }, + { + "start": 35478.82, + "end": 35480.76, + "probability": 0.5428 + }, + { + "start": 35480.88, + "end": 35481.64, + "probability": 0.8401 + }, + { + "start": 35481.9, + "end": 35484.92, + "probability": 0.976 + }, + { + "start": 35485.1, + "end": 35486.34, + "probability": 0.6597 + }, + { + "start": 35487.18, + "end": 35489.72, + "probability": 0.8311 + }, + { + "start": 35490.1, + "end": 35492.58, + "probability": 0.9912 + }, + { + "start": 35493.04, + "end": 35493.8, + "probability": 0.9905 + }, + { + "start": 35494.9, + "end": 35497.12, + "probability": 0.8337 + }, + { + "start": 35497.64, + "end": 35498.88, + "probability": 0.9849 + }, + { + "start": 35499.74, + "end": 35502.46, + "probability": 0.9333 + }, + { + "start": 35510.26, + "end": 35513.92, + "probability": 0.5252 + }, + { + "start": 35514.16, + "end": 35514.46, + "probability": 0.3714 + }, + { + "start": 35515.14, + "end": 35516.29, + "probability": 0.614 + }, + { + "start": 35516.68, + "end": 35516.92, + "probability": 0.4921 + }, + { + "start": 35519.2, + "end": 35521.12, + "probability": 0.4693 + }, + { + "start": 35521.28, + "end": 35522.62, + "probability": 0.8718 + }, + { + "start": 35523.06, + "end": 35528.1, + "probability": 0.8728 + }, + { + "start": 35528.2, + "end": 35528.54, + "probability": 0.8389 + }, + { + "start": 35529.7, + "end": 35530.38, + "probability": 0.5961 + }, + { + "start": 35530.48, + "end": 35531.54, + "probability": 0.5012 + }, + { + "start": 35531.54, + "end": 35532.3, + "probability": 0.5081 + }, + { + "start": 35532.86, + "end": 35535.0, + "probability": 0.5241 + }, + { + "start": 35535.78, + "end": 35540.42, + "probability": 0.9038 + }, + { + "start": 35541.9, + "end": 35546.74, + "probability": 0.99 + }, + { + "start": 35547.74, + "end": 35548.6, + "probability": 0.4443 + }, + { + "start": 35549.6, + "end": 35552.3, + "probability": 0.7481 + }, + { + "start": 35552.86, + "end": 35554.46, + "probability": 0.9226 + }, + { + "start": 35555.26, + "end": 35556.98, + "probability": 0.5299 + }, + { + "start": 35557.54, + "end": 35558.12, + "probability": 0.6407 + }, + { + "start": 35558.2, + "end": 35559.34, + "probability": 0.8982 + }, + { + "start": 35560.46, + "end": 35561.2, + "probability": 0.9917 + }, + { + "start": 35561.88, + "end": 35566.54, + "probability": 0.7499 + }, + { + "start": 35567.34, + "end": 35569.68, + "probability": 0.5139 + }, + { + "start": 35569.8, + "end": 35570.54, + "probability": 0.1554 + }, + { + "start": 35571.32, + "end": 35573.84, + "probability": 0.7876 + }, + { + "start": 35574.94, + "end": 35576.0, + "probability": 0.2204 + }, + { + "start": 35576.26, + "end": 35577.02, + "probability": 0.795 + }, + { + "start": 35577.4, + "end": 35579.5, + "probability": 0.6477 + }, + { + "start": 35581.26, + "end": 35582.62, + "probability": 0.8114 + }, + { + "start": 35582.98, + "end": 35585.88, + "probability": 0.8719 + }, + { + "start": 35586.4, + "end": 35588.67, + "probability": 0.6373 + }, + { + "start": 35589.88, + "end": 35591.64, + "probability": 0.3431 + }, + { + "start": 35592.3, + "end": 35594.22, + "probability": 0.5687 + }, + { + "start": 35594.84, + "end": 35597.1, + "probability": 0.8333 + }, + { + "start": 35598.7, + "end": 35604.62, + "probability": 0.9771 + }, + { + "start": 35605.18, + "end": 35605.95, + "probability": 0.9919 + }, + { + "start": 35606.28, + "end": 35607.06, + "probability": 0.9293 + }, + { + "start": 35607.14, + "end": 35608.54, + "probability": 0.6745 + }, + { + "start": 35609.6, + "end": 35611.64, + "probability": 0.9847 + }, + { + "start": 35612.18, + "end": 35613.06, + "probability": 0.897 + }, + { + "start": 35616.14, + "end": 35616.82, + "probability": 0.5914 + }, + { + "start": 35616.82, + "end": 35618.34, + "probability": 0.5781 + }, + { + "start": 35619.34, + "end": 35622.44, + "probability": 0.9395 + }, + { + "start": 35622.58, + "end": 35623.34, + "probability": 0.9775 + }, + { + "start": 35624.06, + "end": 35624.16, + "probability": 0.7975 + }, + { + "start": 35624.98, + "end": 35629.88, + "probability": 0.9852 + }, + { + "start": 35630.4, + "end": 35630.94, + "probability": 0.9434 + }, + { + "start": 35632.76, + "end": 35634.72, + "probability": 0.4316 + }, + { + "start": 35638.18, + "end": 35639.42, + "probability": 0.8475 + }, + { + "start": 35639.5, + "end": 35640.64, + "probability": 0.9597 + }, + { + "start": 35641.76, + "end": 35643.2, + "probability": 0.974 + }, + { + "start": 35643.84, + "end": 35646.88, + "probability": 0.9887 + }, + { + "start": 35647.96, + "end": 35648.38, + "probability": 0.5208 + }, + { + "start": 35648.84, + "end": 35650.6, + "probability": 0.9205 + }, + { + "start": 35651.48, + "end": 35652.36, + "probability": 0.9805 + }, + { + "start": 35654.16, + "end": 35656.66, + "probability": 0.8481 + }, + { + "start": 35657.2, + "end": 35658.0, + "probability": 0.7731 + }, + { + "start": 35659.02, + "end": 35659.6, + "probability": 0.7218 + }, + { + "start": 35660.64, + "end": 35661.82, + "probability": 0.446 + }, + { + "start": 35663.2, + "end": 35666.5, + "probability": 0.9419 + }, + { + "start": 35667.32, + "end": 35669.32, + "probability": 0.8597 + }, + { + "start": 35670.16, + "end": 35673.14, + "probability": 0.9049 + }, + { + "start": 35674.34, + "end": 35678.62, + "probability": 0.1782 + }, + { + "start": 35678.88, + "end": 35680.12, + "probability": 0.7968 + }, + { + "start": 35680.84, + "end": 35684.42, + "probability": 0.873 + }, + { + "start": 35685.02, + "end": 35688.34, + "probability": 0.958 + }, + { + "start": 35688.34, + "end": 35689.12, + "probability": 0.471 + }, + { + "start": 35689.2, + "end": 35690.96, + "probability": 0.9581 + }, + { + "start": 35691.24, + "end": 35692.72, + "probability": 0.9718 + }, + { + "start": 35694.2, + "end": 35696.04, + "probability": 0.9956 + }, + { + "start": 35696.78, + "end": 35698.97, + "probability": 0.9925 + }, + { + "start": 35699.12, + "end": 35700.94, + "probability": 0.9811 + }, + { + "start": 35701.52, + "end": 35703.78, + "probability": 0.6105 + }, + { + "start": 35704.54, + "end": 35705.8, + "probability": 0.5754 + }, + { + "start": 35705.98, + "end": 35707.86, + "probability": 0.8943 + }, + { + "start": 35708.0, + "end": 35709.02, + "probability": 0.5589 + }, + { + "start": 35709.06, + "end": 35711.3, + "probability": 0.8804 + }, + { + "start": 35711.5, + "end": 35712.88, + "probability": 0.7832 + }, + { + "start": 35713.48, + "end": 35717.32, + "probability": 0.9097 + }, + { + "start": 35717.9, + "end": 35719.34, + "probability": 0.8904 + }, + { + "start": 35720.38, + "end": 35721.06, + "probability": 0.5694 + }, + { + "start": 35721.08, + "end": 35723.76, + "probability": 0.9912 + }, + { + "start": 35723.8, + "end": 35727.58, + "probability": 0.706 + }, + { + "start": 35728.06, + "end": 35731.42, + "probability": 0.9932 + }, + { + "start": 35731.56, + "end": 35731.98, + "probability": 0.7537 + }, + { + "start": 35732.24, + "end": 35732.98, + "probability": 0.7432 + }, + { + "start": 35733.18, + "end": 35735.88, + "probability": 0.909 + }, + { + "start": 35735.96, + "end": 35737.82, + "probability": 0.9869 + }, + { + "start": 35749.3, + "end": 35749.92, + "probability": 0.4266 + }, + { + "start": 35750.56, + "end": 35751.15, + "probability": 0.402 + }, + { + "start": 35754.88, + "end": 35757.72, + "probability": 0.9863 + }, + { + "start": 35759.56, + "end": 35767.74, + "probability": 0.9854 + }, + { + "start": 35767.86, + "end": 35768.88, + "probability": 0.9951 + }, + { + "start": 35769.38, + "end": 35771.32, + "probability": 0.6499 + }, + { + "start": 35771.5, + "end": 35774.48, + "probability": 0.2763 + }, + { + "start": 35774.48, + "end": 35778.9, + "probability": 0.9932 + }, + { + "start": 35780.16, + "end": 35781.08, + "probability": 0.999 + }, + { + "start": 35784.78, + "end": 35787.32, + "probability": 0.7691 + }, + { + "start": 35787.32, + "end": 35788.9, + "probability": 0.5467 + }, + { + "start": 35794.61, + "end": 35799.77, + "probability": 0.5999 + }, + { + "start": 35800.12, + "end": 35803.82, + "probability": 0.9419 + }, + { + "start": 35804.5, + "end": 35806.34, + "probability": 0.9755 + }, + { + "start": 35806.92, + "end": 35809.26, + "probability": 0.9501 + }, + { + "start": 35811.52, + "end": 35813.4, + "probability": 0.9451 + }, + { + "start": 35813.98, + "end": 35814.68, + "probability": 0.9738 + }, + { + "start": 35815.1, + "end": 35817.06, + "probability": 0.9956 + }, + { + "start": 35818.02, + "end": 35819.44, + "probability": 0.9492 + }, + { + "start": 35820.8, + "end": 35822.06, + "probability": 0.8996 + }, + { + "start": 35822.94, + "end": 35825.14, + "probability": 0.9799 + }, + { + "start": 35826.5, + "end": 35831.88, + "probability": 0.9733 + }, + { + "start": 35831.88, + "end": 35837.1, + "probability": 0.74 + }, + { + "start": 35837.14, + "end": 35840.36, + "probability": 0.7201 + }, + { + "start": 35840.86, + "end": 35844.32, + "probability": 0.9581 + }, + { + "start": 35845.58, + "end": 35845.58, + "probability": 0.1108 + }, + { + "start": 35845.58, + "end": 35846.9, + "probability": 0.9384 + }, + { + "start": 35847.56, + "end": 35848.46, + "probability": 0.9956 + }, + { + "start": 35850.54, + "end": 35851.98, + "probability": 0.8923 + }, + { + "start": 35853.94, + "end": 35856.04, + "probability": 0.9885 + }, + { + "start": 35856.2, + "end": 35856.4, + "probability": 0.8632 + }, + { + "start": 35856.46, + "end": 35856.72, + "probability": 0.8925 + }, + { + "start": 35857.1, + "end": 35857.46, + "probability": 0.9019 + }, + { + "start": 35858.44, + "end": 35860.58, + "probability": 0.9907 + }, + { + "start": 35861.52, + "end": 35865.72, + "probability": 0.9976 + }, + { + "start": 35866.68, + "end": 35867.66, + "probability": 0.4378 + }, + { + "start": 35867.68, + "end": 35869.64, + "probability": 0.9912 + }, + { + "start": 35869.64, + "end": 35873.7, + "probability": 0.9991 + }, + { + "start": 35873.78, + "end": 35875.21, + "probability": 0.998 + }, + { + "start": 35875.8, + "end": 35878.44, + "probability": 0.2063 + }, + { + "start": 35878.78, + "end": 35879.38, + "probability": 0.6194 + }, + { + "start": 35880.4, + "end": 35881.44, + "probability": 0.5332 + }, + { + "start": 35881.54, + "end": 35885.86, + "probability": 0.8747 + }, + { + "start": 35886.66, + "end": 35887.84, + "probability": 0.9513 + }, + { + "start": 35888.36, + "end": 35892.7, + "probability": 0.9934 + }, + { + "start": 35893.64, + "end": 35895.02, + "probability": 0.9976 + }, + { + "start": 35896.0, + "end": 35897.38, + "probability": 0.9939 + }, + { + "start": 35897.54, + "end": 35901.18, + "probability": 0.9921 + }, + { + "start": 35902.94, + "end": 35907.79, + "probability": 0.998 + }, + { + "start": 35908.22, + "end": 35911.66, + "probability": 0.9837 + }, + { + "start": 35913.12, + "end": 35914.68, + "probability": 0.9825 + }, + { + "start": 35914.76, + "end": 35917.64, + "probability": 0.9976 + }, + { + "start": 35918.56, + "end": 35922.06, + "probability": 0.9406 + }, + { + "start": 35922.78, + "end": 35924.62, + "probability": 0.9185 + }, + { + "start": 35924.82, + "end": 35929.82, + "probability": 0.9888 + }, + { + "start": 35930.7, + "end": 35932.5, + "probability": 0.8175 + }, + { + "start": 35933.42, + "end": 35935.2, + "probability": 0.8115 + }, + { + "start": 35935.3, + "end": 35936.46, + "probability": 0.2656 + }, + { + "start": 35937.06, + "end": 35940.06, + "probability": 0.9836 + }, + { + "start": 35941.96, + "end": 35945.46, + "probability": 0.999 + }, + { + "start": 35945.46, + "end": 35948.28, + "probability": 0.9973 + }, + { + "start": 35948.44, + "end": 35951.78, + "probability": 0.6585 + }, + { + "start": 35951.78, + "end": 35953.16, + "probability": 0.779 + }, + { + "start": 35954.1, + "end": 35956.72, + "probability": 0.9961 + }, + { + "start": 35957.65, + "end": 35959.52, + "probability": 0.6039 + }, + { + "start": 35959.52, + "end": 35959.7, + "probability": 0.6495 + }, + { + "start": 35960.24, + "end": 35964.18, + "probability": 0.986 + }, + { + "start": 35964.18, + "end": 35967.32, + "probability": 0.997 + }, + { + "start": 35967.72, + "end": 35968.0, + "probability": 0.6835 + }, + { + "start": 35968.72, + "end": 35971.02, + "probability": 0.8547 + }, + { + "start": 35971.1, + "end": 35973.8, + "probability": 0.8424 + }, + { + "start": 35974.44, + "end": 35979.14, + "probability": 0.699 + }, + { + "start": 35980.62, + "end": 35981.48, + "probability": 0.7313 + }, + { + "start": 35982.4, + "end": 35983.5, + "probability": 0.7813 + }, + { + "start": 35984.52, + "end": 35985.4, + "probability": 0.7013 + }, + { + "start": 35987.7, + "end": 35989.24, + "probability": 0.4172 + }, + { + "start": 35998.06, + "end": 35999.64, + "probability": 0.8521 + }, + { + "start": 36000.52, + "end": 36002.9, + "probability": 0.7148 + }, + { + "start": 36003.9, + "end": 36009.64, + "probability": 0.9148 + }, + { + "start": 36009.64, + "end": 36015.94, + "probability": 0.9963 + }, + { + "start": 36016.7, + "end": 36019.0, + "probability": 0.9917 + }, + { + "start": 36020.46, + "end": 36021.74, + "probability": 0.7477 + }, + { + "start": 36022.08, + "end": 36022.9, + "probability": 0.9838 + }, + { + "start": 36023.84, + "end": 36026.38, + "probability": 0.9839 + }, + { + "start": 36027.14, + "end": 36029.88, + "probability": 0.9598 + }, + { + "start": 36030.64, + "end": 36033.06, + "probability": 0.9697 + }, + { + "start": 36034.08, + "end": 36035.04, + "probability": 0.9847 + }, + { + "start": 36035.56, + "end": 36038.0, + "probability": 0.9897 + }, + { + "start": 36038.82, + "end": 36041.66, + "probability": 0.9963 + }, + { + "start": 36042.4, + "end": 36045.24, + "probability": 0.292 + }, + { + "start": 36045.54, + "end": 36049.48, + "probability": 0.984 + }, + { + "start": 36050.14, + "end": 36054.52, + "probability": 0.9191 + }, + { + "start": 36054.98, + "end": 36058.24, + "probability": 0.9465 + }, + { + "start": 36059.2, + "end": 36062.52, + "probability": 0.9966 + }, + { + "start": 36063.2, + "end": 36067.66, + "probability": 0.9961 + }, + { + "start": 36068.0, + "end": 36073.38, + "probability": 0.9988 + }, + { + "start": 36073.92, + "end": 36076.08, + "probability": 0.9958 + }, + { + "start": 36076.96, + "end": 36080.06, + "probability": 0.9934 + }, + { + "start": 36080.7, + "end": 36083.08, + "probability": 0.8084 + }, + { + "start": 36083.82, + "end": 36087.16, + "probability": 0.9893 + }, + { + "start": 36088.58, + "end": 36090.0, + "probability": 0.8578 + }, + { + "start": 36090.1, + "end": 36093.16, + "probability": 0.9792 + }, + { + "start": 36093.54, + "end": 36093.96, + "probability": 0.6241 + }, + { + "start": 36094.82, + "end": 36098.06, + "probability": 0.6564 + }, + { + "start": 36099.24, + "end": 36101.98, + "probability": 0.9798 + }, + { + "start": 36103.58, + "end": 36108.2, + "probability": 0.973 + }, + { + "start": 36109.54, + "end": 36111.78, + "probability": 0.985 + }, + { + "start": 36113.08, + "end": 36116.56, + "probability": 0.9958 + }, + { + "start": 36117.26, + "end": 36118.42, + "probability": 0.8316 + }, + { + "start": 36119.84, + "end": 36122.96, + "probability": 0.9993 + }, + { + "start": 36123.7, + "end": 36126.12, + "probability": 0.9984 + }, + { + "start": 36127.18, + "end": 36129.92, + "probability": 0.8278 + }, + { + "start": 36130.74, + "end": 36136.28, + "probability": 0.9766 + }, + { + "start": 36137.06, + "end": 36143.22, + "probability": 0.9949 + }, + { + "start": 36144.14, + "end": 36151.56, + "probability": 0.9924 + }, + { + "start": 36152.68, + "end": 36155.2, + "probability": 0.9774 + }, + { + "start": 36155.82, + "end": 36158.54, + "probability": 0.9917 + }, + { + "start": 36159.24, + "end": 36162.64, + "probability": 0.9935 + }, + { + "start": 36163.46, + "end": 36169.2, + "probability": 0.9484 + }, + { + "start": 36170.42, + "end": 36173.39, + "probability": 0.8862 + }, + { + "start": 36175.02, + "end": 36176.52, + "probability": 0.9912 + }, + { + "start": 36177.54, + "end": 36182.22, + "probability": 0.907 + }, + { + "start": 36183.22, + "end": 36186.0, + "probability": 0.9418 + }, + { + "start": 36186.68, + "end": 36187.62, + "probability": 0.8337 + }, + { + "start": 36188.72, + "end": 36190.84, + "probability": 0.8745 + }, + { + "start": 36191.7, + "end": 36192.42, + "probability": 0.9391 + }, + { + "start": 36193.32, + "end": 36198.58, + "probability": 0.9958 + }, + { + "start": 36199.26, + "end": 36200.24, + "probability": 0.7503 + }, + { + "start": 36200.76, + "end": 36202.28, + "probability": 0.9998 + }, + { + "start": 36202.8, + "end": 36204.22, + "probability": 0.9975 + }, + { + "start": 36204.64, + "end": 36204.82, + "probability": 0.7717 + }, + { + "start": 36207.72, + "end": 36208.94, + "probability": 0.7996 + }, + { + "start": 36209.54, + "end": 36210.62, + "probability": 0.6478 + }, + { + "start": 36221.62, + "end": 36222.42, + "probability": 0.6953 + }, + { + "start": 36222.6, + "end": 36224.04, + "probability": 0.8562 + }, + { + "start": 36224.12, + "end": 36225.64, + "probability": 0.5988 + }, + { + "start": 36227.06, + "end": 36228.14, + "probability": 0.9043 + }, + { + "start": 36230.34, + "end": 36231.91, + "probability": 0.8027 + }, + { + "start": 36233.98, + "end": 36237.1, + "probability": 0.8217 + }, + { + "start": 36237.52, + "end": 36239.6, + "probability": 0.6979 + }, + { + "start": 36240.98, + "end": 36245.18, + "probability": 0.9715 + }, + { + "start": 36245.24, + "end": 36245.5, + "probability": 0.6664 + }, + { + "start": 36245.54, + "end": 36246.9, + "probability": 0.9814 + }, + { + "start": 36247.2, + "end": 36247.68, + "probability": 0.9606 + }, + { + "start": 36249.4, + "end": 36251.98, + "probability": 0.9834 + }, + { + "start": 36252.76, + "end": 36254.26, + "probability": 0.986 + }, + { + "start": 36255.7, + "end": 36258.34, + "probability": 0.7222 + }, + { + "start": 36259.66, + "end": 36260.1, + "probability": 0.7473 + }, + { + "start": 36260.94, + "end": 36262.28, + "probability": 0.7073 + }, + { + "start": 36262.42, + "end": 36265.08, + "probability": 0.9045 + }, + { + "start": 36265.74, + "end": 36267.16, + "probability": 0.7862 + }, + { + "start": 36268.04, + "end": 36268.46, + "probability": 0.9093 + }, + { + "start": 36268.54, + "end": 36272.85, + "probability": 0.9727 + }, + { + "start": 36273.32, + "end": 36276.78, + "probability": 0.9956 + }, + { + "start": 36278.2, + "end": 36283.04, + "probability": 0.99 + }, + { + "start": 36283.56, + "end": 36284.92, + "probability": 0.9688 + }, + { + "start": 36286.6, + "end": 36288.42, + "probability": 0.9956 + }, + { + "start": 36289.34, + "end": 36290.48, + "probability": 0.9803 + }, + { + "start": 36292.62, + "end": 36293.46, + "probability": 0.8342 + }, + { + "start": 36294.6, + "end": 36296.28, + "probability": 0.958 + }, + { + "start": 36297.88, + "end": 36299.4, + "probability": 0.9476 + }, + { + "start": 36300.7, + "end": 36301.96, + "probability": 0.4195 + }, + { + "start": 36302.64, + "end": 36303.76, + "probability": 0.9564 + }, + { + "start": 36305.7, + "end": 36307.79, + "probability": 0.9839 + }, + { + "start": 36309.2, + "end": 36311.54, + "probability": 0.995 + }, + { + "start": 36313.8, + "end": 36314.58, + "probability": 0.9849 + }, + { + "start": 36315.4, + "end": 36318.48, + "probability": 0.9952 + }, + { + "start": 36318.58, + "end": 36321.0, + "probability": 0.9972 + }, + { + "start": 36321.66, + "end": 36324.12, + "probability": 0.9854 + }, + { + "start": 36324.46, + "end": 36325.96, + "probability": 0.6801 + }, + { + "start": 36327.76, + "end": 36329.38, + "probability": 0.6279 + }, + { + "start": 36329.66, + "end": 36333.76, + "probability": 0.9966 + }, + { + "start": 36334.76, + "end": 36335.04, + "probability": 0.5255 + }, + { + "start": 36337.06, + "end": 36337.88, + "probability": 0.7332 + }, + { + "start": 36339.44, + "end": 36340.28, + "probability": 0.8344 + }, + { + "start": 36341.2, + "end": 36343.42, + "probability": 0.5021 + }, + { + "start": 36343.96, + "end": 36345.72, + "probability": 0.7557 + }, + { + "start": 36346.52, + "end": 36346.84, + "probability": 0.7848 + }, + { + "start": 36348.28, + "end": 36349.54, + "probability": 0.9041 + }, + { + "start": 36350.48, + "end": 36351.84, + "probability": 0.8992 + }, + { + "start": 36352.58, + "end": 36355.38, + "probability": 0.9358 + }, + { + "start": 36356.14, + "end": 36357.96, + "probability": 0.8856 + }, + { + "start": 36358.94, + "end": 36362.48, + "probability": 0.9658 + }, + { + "start": 36362.92, + "end": 36365.04, + "probability": 0.9935 + }, + { + "start": 36365.58, + "end": 36369.54, + "probability": 0.9729 + }, + { + "start": 36371.48, + "end": 36373.08, + "probability": 0.9983 + }, + { + "start": 36373.94, + "end": 36374.86, + "probability": 0.995 + }, + { + "start": 36375.38, + "end": 36376.62, + "probability": 0.9924 + }, + { + "start": 36376.7, + "end": 36378.24, + "probability": 0.8726 + }, + { + "start": 36378.96, + "end": 36382.5, + "probability": 0.995 + }, + { + "start": 36384.3, + "end": 36388.96, + "probability": 0.9911 + }, + { + "start": 36389.56, + "end": 36391.24, + "probability": 0.998 + }, + { + "start": 36392.52, + "end": 36394.02, + "probability": 0.9862 + }, + { + "start": 36395.5, + "end": 36398.12, + "probability": 0.973 + }, + { + "start": 36398.72, + "end": 36401.66, + "probability": 0.9661 + }, + { + "start": 36402.42, + "end": 36406.68, + "probability": 0.9975 + }, + { + "start": 36407.2, + "end": 36411.5, + "probability": 0.9971 + }, + { + "start": 36413.08, + "end": 36415.0, + "probability": 0.9377 + }, + { + "start": 36417.28, + "end": 36418.84, + "probability": 0.9052 + }, + { + "start": 36419.84, + "end": 36420.4, + "probability": 0.8138 + }, + { + "start": 36421.04, + "end": 36422.42, + "probability": 0.9742 + }, + { + "start": 36423.28, + "end": 36425.52, + "probability": 0.9688 + }, + { + "start": 36426.4, + "end": 36430.34, + "probability": 0.9941 + }, + { + "start": 36431.54, + "end": 36433.28, + "probability": 0.8849 + }, + { + "start": 36433.4, + "end": 36433.94, + "probability": 0.5719 + }, + { + "start": 36434.54, + "end": 36434.74, + "probability": 0.7343 + }, + { + "start": 36436.06, + "end": 36437.24, + "probability": 0.9601 + }, + { + "start": 36438.38, + "end": 36439.02, + "probability": 0.8299 + }, + { + "start": 36440.04, + "end": 36441.32, + "probability": 0.7555 + }, + { + "start": 36443.56, + "end": 36444.14, + "probability": 0.7473 + }, + { + "start": 36444.84, + "end": 36446.08, + "probability": 0.7509 + }, + { + "start": 36447.1, + "end": 36449.48, + "probability": 0.7547 + }, + { + "start": 36450.02, + "end": 36452.54, + "probability": 0.4159 + }, + { + "start": 36454.06, + "end": 36455.42, + "probability": 0.9301 + }, + { + "start": 36462.48, + "end": 36463.88, + "probability": 0.3489 + }, + { + "start": 36465.3, + "end": 36467.7, + "probability": 0.8449 + }, + { + "start": 36468.65, + "end": 36471.4, + "probability": 0.8995 + }, + { + "start": 36471.58, + "end": 36474.82, + "probability": 0.9912 + }, + { + "start": 36475.58, + "end": 36476.58, + "probability": 0.63 + }, + { + "start": 36477.56, + "end": 36479.32, + "probability": 0.9868 + }, + { + "start": 36479.36, + "end": 36480.14, + "probability": 0.99 + }, + { + "start": 36481.72, + "end": 36485.2, + "probability": 0.9797 + }, + { + "start": 36485.2, + "end": 36486.98, + "probability": 0.9883 + }, + { + "start": 36487.5, + "end": 36488.7, + "probability": 0.8804 + }, + { + "start": 36489.92, + "end": 36493.38, + "probability": 0.9788 + }, + { + "start": 36493.98, + "end": 36496.98, + "probability": 0.9333 + }, + { + "start": 36497.72, + "end": 36498.54, + "probability": 0.826 + }, + { + "start": 36499.1, + "end": 36500.8, + "probability": 0.752 + }, + { + "start": 36501.22, + "end": 36502.64, + "probability": 0.9849 + }, + { + "start": 36502.72, + "end": 36503.56, + "probability": 0.7441 + }, + { + "start": 36503.8, + "end": 36505.58, + "probability": 0.9014 + }, + { + "start": 36506.16, + "end": 36507.58, + "probability": 0.9081 + }, + { + "start": 36508.02, + "end": 36510.62, + "probability": 0.9966 + }, + { + "start": 36511.24, + "end": 36513.78, + "probability": 0.916 + }, + { + "start": 36514.34, + "end": 36516.18, + "probability": 0.9927 + }, + { + "start": 36516.48, + "end": 36518.9, + "probability": 0.8802 + }, + { + "start": 36519.8, + "end": 36521.74, + "probability": 0.9055 + }, + { + "start": 36522.48, + "end": 36524.16, + "probability": 0.911 + }, + { + "start": 36524.68, + "end": 36525.61, + "probability": 0.9946 + }, + { + "start": 36526.44, + "end": 36529.22, + "probability": 0.9816 + }, + { + "start": 36530.16, + "end": 36533.16, + "probability": 0.7931 + }, + { + "start": 36533.24, + "end": 36535.48, + "probability": 0.7909 + }, + { + "start": 36536.14, + "end": 36537.28, + "probability": 0.7317 + }, + { + "start": 36538.26, + "end": 36540.66, + "probability": 0.9606 + }, + { + "start": 36540.88, + "end": 36542.76, + "probability": 0.959 + }, + { + "start": 36542.96, + "end": 36544.72, + "probability": 0.5041 + }, + { + "start": 36544.86, + "end": 36546.44, + "probability": 0.8584 + }, + { + "start": 36546.8, + "end": 36547.68, + "probability": 0.9732 + }, + { + "start": 36547.88, + "end": 36548.52, + "probability": 0.4087 + }, + { + "start": 36548.66, + "end": 36551.42, + "probability": 0.9134 + }, + { + "start": 36551.42, + "end": 36553.74, + "probability": 0.9873 + }, + { + "start": 36554.4, + "end": 36556.32, + "probability": 0.7727 + }, + { + "start": 36556.98, + "end": 36558.94, + "probability": 0.979 + }, + { + "start": 36559.44, + "end": 36563.54, + "probability": 0.9641 + }, + { + "start": 36564.08, + "end": 36565.8, + "probability": 0.9627 + }, + { + "start": 36565.8, + "end": 36567.88, + "probability": 0.9828 + }, + { + "start": 36568.66, + "end": 36571.42, + "probability": 0.9696 + }, + { + "start": 36571.92, + "end": 36575.64, + "probability": 0.9965 + }, + { + "start": 36576.18, + "end": 36578.64, + "probability": 0.695 + }, + { + "start": 36579.16, + "end": 36580.33, + "probability": 0.9961 + }, + { + "start": 36580.7, + "end": 36582.66, + "probability": 0.9863 + }, + { + "start": 36583.3, + "end": 36585.98, + "probability": 0.9855 + }, + { + "start": 36586.66, + "end": 36589.4, + "probability": 0.9631 + }, + { + "start": 36589.88, + "end": 36590.84, + "probability": 0.9179 + }, + { + "start": 36591.46, + "end": 36594.48, + "probability": 0.9952 + }, + { + "start": 36594.48, + "end": 36597.12, + "probability": 0.9963 + }, + { + "start": 36597.2, + "end": 36598.14, + "probability": 0.8694 + }, + { + "start": 36598.72, + "end": 36599.18, + "probability": 0.7602 + }, + { + "start": 36599.34, + "end": 36601.6, + "probability": 0.9152 + }, + { + "start": 36601.92, + "end": 36602.3, + "probability": 0.7624 + }, + { + "start": 36603.38, + "end": 36603.78, + "probability": 0.8219 + }, + { + "start": 36606.94, + "end": 36609.96, + "probability": 0.6674 + }, + { + "start": 36610.52, + "end": 36612.88, + "probability": 0.922 + }, + { + "start": 36612.98, + "end": 36614.48, + "probability": 0.8932 + }, + { + "start": 36614.8, + "end": 36615.42, + "probability": 0.9385 + }, + { + "start": 36623.6, + "end": 36624.44, + "probability": 0.1212 + }, + { + "start": 36626.4, + "end": 36627.02, + "probability": 0.2615 + }, + { + "start": 36629.36, + "end": 36630.1, + "probability": 0.9804 + }, + { + "start": 36630.48, + "end": 36632.26, + "probability": 0.4819 + }, + { + "start": 36633.18, + "end": 36634.64, + "probability": 0.6908 + }, + { + "start": 36637.29, + "end": 36638.06, + "probability": 0.9251 + }, + { + "start": 36639.02, + "end": 36640.64, + "probability": 0.8978 + }, + { + "start": 36640.76, + "end": 36641.6, + "probability": 0.9746 + }, + { + "start": 36642.6, + "end": 36642.96, + "probability": 0.7429 + }, + { + "start": 36643.8, + "end": 36646.98, + "probability": 0.4896 + }, + { + "start": 36648.34, + "end": 36650.97, + "probability": 0.8061 + }, + { + "start": 36657.63, + "end": 36659.14, + "probability": 0.8823 + }, + { + "start": 36659.78, + "end": 36661.38, + "probability": 0.8666 + }, + { + "start": 36661.82, + "end": 36662.76, + "probability": 0.7397 + }, + { + "start": 36663.42, + "end": 36663.7, + "probability": 0.6125 + }, + { + "start": 36664.9, + "end": 36666.22, + "probability": 0.9824 + }, + { + "start": 36666.72, + "end": 36667.08, + "probability": 0.8893 + }, + { + "start": 36674.38, + "end": 36677.96, + "probability": 0.951 + }, + { + "start": 36680.68, + "end": 36682.1, + "probability": 0.662 + }, + { + "start": 36682.2, + "end": 36684.84, + "probability": 0.9958 + }, + { + "start": 36684.98, + "end": 36686.06, + "probability": 0.7023 + }, + { + "start": 36686.56, + "end": 36686.84, + "probability": 0.7344 + }, + { + "start": 36687.16, + "end": 36689.14, + "probability": 0.7493 + }, + { + "start": 36689.54, + "end": 36690.2, + "probability": 0.4038 + }, + { + "start": 36690.38, + "end": 36693.6, + "probability": 0.8912 + }, + { + "start": 36695.06, + "end": 36697.42, + "probability": 0.8682 + }, + { + "start": 36698.7, + "end": 36700.48, + "probability": 0.9771 + }, + { + "start": 36700.9, + "end": 36703.44, + "probability": 0.9941 + }, + { + "start": 36704.06, + "end": 36705.72, + "probability": 0.9899 + }, + { + "start": 36706.7, + "end": 36708.9, + "probability": 0.9883 + }, + { + "start": 36709.56, + "end": 36710.52, + "probability": 0.8043 + }, + { + "start": 36711.46, + "end": 36712.58, + "probability": 0.7094 + }, + { + "start": 36712.66, + "end": 36716.56, + "probability": 0.9761 + }, + { + "start": 36717.6, + "end": 36718.55, + "probability": 0.919 + }, + { + "start": 36718.76, + "end": 36721.46, + "probability": 0.9985 + }, + { + "start": 36722.6, + "end": 36728.9, + "probability": 0.9665 + }, + { + "start": 36729.48, + "end": 36731.74, + "probability": 0.9681 + }, + { + "start": 36732.44, + "end": 36734.56, + "probability": 0.9884 + }, + { + "start": 36735.34, + "end": 36736.34, + "probability": 0.9861 + }, + { + "start": 36736.76, + "end": 36738.48, + "probability": 0.9732 + }, + { + "start": 36738.56, + "end": 36741.08, + "probability": 0.9629 + }, + { + "start": 36741.5, + "end": 36741.5, + "probability": 0.1587 + }, + { + "start": 36741.5, + "end": 36742.34, + "probability": 0.9202 + }, + { + "start": 36743.02, + "end": 36744.6, + "probability": 0.7444 + }, + { + "start": 36745.12, + "end": 36750.2, + "probability": 0.9956 + }, + { + "start": 36750.2, + "end": 36755.72, + "probability": 0.9199 + }, + { + "start": 36755.72, + "end": 36757.14, + "probability": 0.2918 + }, + { + "start": 36757.5, + "end": 36758.59, + "probability": 0.7376 + }, + { + "start": 36758.86, + "end": 36759.56, + "probability": 0.6182 + }, + { + "start": 36759.9, + "end": 36760.26, + "probability": 0.8397 + }, + { + "start": 36760.46, + "end": 36762.62, + "probability": 0.5622 + }, + { + "start": 36762.9, + "end": 36764.66, + "probability": 0.879 + }, + { + "start": 36765.59, + "end": 36768.72, + "probability": 0.5991 + }, + { + "start": 36769.1, + "end": 36770.84, + "probability": 0.888 + }, + { + "start": 36771.22, + "end": 36772.58, + "probability": 0.7016 + }, + { + "start": 36773.48, + "end": 36774.02, + "probability": 0.5268 + }, + { + "start": 36774.56, + "end": 36775.76, + "probability": 0.9282 + }, + { + "start": 36776.36, + "end": 36779.06, + "probability": 0.9796 + }, + { + "start": 36780.42, + "end": 36784.28, + "probability": 0.9095 + }, + { + "start": 36784.94, + "end": 36786.3, + "probability": 0.9399 + }, + { + "start": 36786.4, + "end": 36788.3, + "probability": 0.8071 + }, + { + "start": 36788.86, + "end": 36790.18, + "probability": 0.9526 + }, + { + "start": 36790.64, + "end": 36794.38, + "probability": 0.979 + }, + { + "start": 36795.12, + "end": 36796.88, + "probability": 0.9984 + }, + { + "start": 36797.74, + "end": 36798.76, + "probability": 0.613 + }, + { + "start": 36799.14, + "end": 36799.7, + "probability": 0.7279 + }, + { + "start": 36799.86, + "end": 36803.64, + "probability": 0.9325 + }, + { + "start": 36804.6, + "end": 36808.4, + "probability": 0.8662 + }, + { + "start": 36808.62, + "end": 36809.88, + "probability": 0.9346 + }, + { + "start": 36810.38, + "end": 36812.4, + "probability": 0.716 + }, + { + "start": 36812.84, + "end": 36813.8, + "probability": 0.8573 + }, + { + "start": 36813.9, + "end": 36814.36, + "probability": 0.894 + }, + { + "start": 36814.42, + "end": 36815.4, + "probability": 0.856 + }, + { + "start": 36815.9, + "end": 36817.6, + "probability": 0.8125 + }, + { + "start": 36818.1, + "end": 36819.02, + "probability": 0.8161 + }, + { + "start": 36819.86, + "end": 36823.6, + "probability": 0.8767 + }, + { + "start": 36824.3, + "end": 36825.7, + "probability": 0.9875 + }, + { + "start": 36826.02, + "end": 36827.7, + "probability": 0.856 + }, + { + "start": 36828.02, + "end": 36828.38, + "probability": 0.9197 + }, + { + "start": 36828.56, + "end": 36829.16, + "probability": 0.963 + }, + { + "start": 36830.24, + "end": 36832.86, + "probability": 0.9914 + }, + { + "start": 36832.86, + "end": 36836.92, + "probability": 0.9962 + }, + { + "start": 36837.34, + "end": 36839.06, + "probability": 0.7854 + }, + { + "start": 36839.18, + "end": 36839.38, + "probability": 0.2531 + }, + { + "start": 36839.62, + "end": 36839.94, + "probability": 0.7472 + }, + { + "start": 36840.26, + "end": 36841.04, + "probability": 0.8781 + }, + { + "start": 36841.16, + "end": 36842.16, + "probability": 0.855 + }, + { + "start": 36842.32, + "end": 36842.66, + "probability": 0.9266 + }, + { + "start": 36842.76, + "end": 36843.68, + "probability": 0.6 + }, + { + "start": 36844.26, + "end": 36846.26, + "probability": 0.7762 + }, + { + "start": 36847.04, + "end": 36848.9, + "probability": 0.7097 + }, + { + "start": 36849.08, + "end": 36849.08, + "probability": 0.6353 + }, + { + "start": 36849.08, + "end": 36850.58, + "probability": 0.6787 + }, + { + "start": 36850.82, + "end": 36853.71, + "probability": 0.886 + }, + { + "start": 36854.2, + "end": 36854.4, + "probability": 0.6758 + }, + { + "start": 36854.8, + "end": 36856.86, + "probability": 0.599 + }, + { + "start": 36857.0, + "end": 36858.26, + "probability": 0.9905 + }, + { + "start": 36858.36, + "end": 36859.98, + "probability": 0.9865 + }, + { + "start": 36860.26, + "end": 36861.34, + "probability": 0.9766 + }, + { + "start": 36861.4, + "end": 36861.72, + "probability": 0.9657 + }, + { + "start": 36862.18, + "end": 36863.56, + "probability": 0.9652 + }, + { + "start": 36863.56, + "end": 36864.24, + "probability": 0.8371 + }, + { + "start": 36864.82, + "end": 36867.44, + "probability": 0.9692 + }, + { + "start": 36868.6, + "end": 36874.9, + "probability": 0.9058 + }, + { + "start": 36875.94, + "end": 36877.68, + "probability": 0.9546 + }, + { + "start": 36877.78, + "end": 36879.72, + "probability": 0.7064 + }, + { + "start": 36879.72, + "end": 36882.08, + "probability": 0.9188 + }, + { + "start": 36882.1, + "end": 36884.34, + "probability": 0.9793 + }, + { + "start": 36884.96, + "end": 36887.74, + "probability": 0.9841 + }, + { + "start": 36888.3, + "end": 36889.82, + "probability": 0.8624 + }, + { + "start": 36889.94, + "end": 36892.48, + "probability": 0.7847 + }, + { + "start": 36892.6, + "end": 36893.26, + "probability": 0.6723 + }, + { + "start": 36893.48, + "end": 36894.62, + "probability": 0.5648 + }, + { + "start": 36894.62, + "end": 36895.58, + "probability": 0.746 + }, + { + "start": 36895.58, + "end": 36898.56, + "probability": 0.8375 + }, + { + "start": 36898.58, + "end": 36899.4, + "probability": 0.5049 + }, + { + "start": 36899.4, + "end": 36904.82, + "probability": 0.9589 + }, + { + "start": 36904.9, + "end": 36905.98, + "probability": 0.4521 + }, + { + "start": 36906.12, + "end": 36906.28, + "probability": 0.1726 + }, + { + "start": 36906.79, + "end": 36908.84, + "probability": 0.7493 + }, + { + "start": 36908.84, + "end": 36911.44, + "probability": 0.9423 + }, + { + "start": 36911.46, + "end": 36913.46, + "probability": 0.8799 + }, + { + "start": 36913.72, + "end": 36918.92, + "probability": 0.9978 + }, + { + "start": 36919.46, + "end": 36922.14, + "probability": 0.9408 + }, + { + "start": 36922.2, + "end": 36924.38, + "probability": 0.9382 + }, + { + "start": 36925.08, + "end": 36927.86, + "probability": 0.9388 + }, + { + "start": 36928.88, + "end": 36929.36, + "probability": 0.7414 + }, + { + "start": 36929.48, + "end": 36930.44, + "probability": 0.1983 + }, + { + "start": 36931.76, + "end": 36932.06, + "probability": 0.0179 + }, + { + "start": 36932.06, + "end": 36932.46, + "probability": 0.0192 + }, + { + "start": 36932.46, + "end": 36938.24, + "probability": 0.9226 + }, + { + "start": 36943.36, + "end": 36943.66, + "probability": 0.5276 + }, + { + "start": 36943.66, + "end": 36944.98, + "probability": 0.0732 + }, + { + "start": 36945.04, + "end": 36948.58, + "probability": 0.1191 + }, + { + "start": 36948.58, + "end": 36952.58, + "probability": 0.3579 + }, + { + "start": 36952.98, + "end": 36958.98, + "probability": 0.6007 + }, + { + "start": 36965.62, + "end": 36965.7, + "probability": 0.0342 + }, + { + "start": 36973.94, + "end": 36974.62, + "probability": 0.0509 + }, + { + "start": 36975.4, + "end": 36977.66, + "probability": 0.79 + }, + { + "start": 36978.18, + "end": 36978.82, + "probability": 0.9829 + }, + { + "start": 36979.38, + "end": 36979.88, + "probability": 0.9066 + }, + { + "start": 36981.32, + "end": 36982.28, + "probability": 0.5807 + }, + { + "start": 36982.34, + "end": 36983.77, + "probability": 0.9921 + }, + { + "start": 36984.42, + "end": 36989.24, + "probability": 0.7696 + }, + { + "start": 36989.96, + "end": 36990.28, + "probability": 0.4319 + }, + { + "start": 36990.96, + "end": 36993.18, + "probability": 0.8448 + }, + { + "start": 36993.78, + "end": 36995.72, + "probability": 0.9204 + }, + { + "start": 36996.38, + "end": 37001.4, + "probability": 0.9888 + }, + { + "start": 37001.4, + "end": 37002.94, + "probability": 0.9075 + }, + { + "start": 37003.02, + "end": 37007.0, + "probability": 0.9185 + }, + { + "start": 37007.46, + "end": 37009.66, + "probability": 0.8202 + }, + { + "start": 37010.36, + "end": 37010.46, + "probability": 0.052 + }, + { + "start": 37010.46, + "end": 37011.78, + "probability": 0.6424 + }, + { + "start": 37012.52, + "end": 37013.42, + "probability": 0.921 + }, + { + "start": 37014.5, + "end": 37016.96, + "probability": 0.8674 + }, + { + "start": 37017.52, + "end": 37023.46, + "probability": 0.8792 + }, + { + "start": 37023.84, + "end": 37025.12, + "probability": 0.9814 + }, + { + "start": 37030.12, + "end": 37030.9, + "probability": 0.6551 + }, + { + "start": 37031.02, + "end": 37035.02, + "probability": 0.993 + }, + { + "start": 37035.6, + "end": 37036.8, + "probability": 0.9671 + }, + { + "start": 37037.66, + "end": 37038.08, + "probability": 0.5528 + }, + { + "start": 37038.78, + "end": 37039.32, + "probability": 0.7565 + }, + { + "start": 37039.82, + "end": 37041.04, + "probability": 0.5749 + }, + { + "start": 37041.98, + "end": 37043.0, + "probability": 0.7833 + }, + { + "start": 37045.08, + "end": 37046.94, + "probability": 0.4263 + }, + { + "start": 37049.04, + "end": 37050.5, + "probability": 0.2931 + }, + { + "start": 37052.88, + "end": 37054.38, + "probability": 0.7263 + }, + { + "start": 37055.9, + "end": 37058.96, + "probability": 0.9701 + }, + { + "start": 37059.74, + "end": 37061.76, + "probability": 0.9634 + }, + { + "start": 37062.32, + "end": 37067.26, + "probability": 0.9809 + }, + { + "start": 37068.16, + "end": 37068.66, + "probability": 0.6595 + }, + { + "start": 37070.14, + "end": 37071.5, + "probability": 0.8942 + }, + { + "start": 37075.28, + "end": 37078.74, + "probability": 0.9923 + }, + { + "start": 37079.38, + "end": 37083.16, + "probability": 0.995 + }, + { + "start": 37083.64, + "end": 37084.56, + "probability": 0.9854 + }, + { + "start": 37084.96, + "end": 37087.2, + "probability": 0.6592 + }, + { + "start": 37087.44, + "end": 37089.88, + "probability": 0.569 + }, + { + "start": 37090.43, + "end": 37091.64, + "probability": 0.2757 + }, + { + "start": 37091.98, + "end": 37095.1, + "probability": 0.5015 + }, + { + "start": 37096.26, + "end": 37097.64, + "probability": 0.7197 + }, + { + "start": 37098.74, + "end": 37100.76, + "probability": 0.9899 + }, + { + "start": 37101.12, + "end": 37103.24, + "probability": 0.9902 + }, + { + "start": 37103.38, + "end": 37103.98, + "probability": 0.9663 + }, + { + "start": 37104.56, + "end": 37105.56, + "probability": 0.6674 + }, + { + "start": 37106.58, + "end": 37107.74, + "probability": 0.5502 + }, + { + "start": 37108.64, + "end": 37111.1, + "probability": 0.9844 + }, + { + "start": 37111.32, + "end": 37113.0, + "probability": 0.9086 + }, + { + "start": 37113.46, + "end": 37114.96, + "probability": 0.8354 + }, + { + "start": 37115.08, + "end": 37116.54, + "probability": 0.9551 + }, + { + "start": 37116.8, + "end": 37117.2, + "probability": 0.6959 + }, + { + "start": 37117.22, + "end": 37118.9, + "probability": 0.7577 + }, + { + "start": 37119.02, + "end": 37119.4, + "probability": 0.3057 + }, + { + "start": 37119.66, + "end": 37121.34, + "probability": 0.7208 + }, + { + "start": 37121.46, + "end": 37124.38, + "probability": 0.9071 + }, + { + "start": 37124.84, + "end": 37125.94, + "probability": 0.8393 + }, + { + "start": 37126.38, + "end": 37126.72, + "probability": 0.4995 + }, + { + "start": 37127.46, + "end": 37128.82, + "probability": 0.8945 + }, + { + "start": 37129.06, + "end": 37131.11, + "probability": 0.8422 + }, + { + "start": 37132.42, + "end": 37135.18, + "probability": 0.455 + }, + { + "start": 37135.98, + "end": 37136.14, + "probability": 0.7454 + }, + { + "start": 37136.8, + "end": 37138.74, + "probability": 0.9099 + }, + { + "start": 37140.7, + "end": 37142.22, + "probability": 0.7911 + }, + { + "start": 37142.44, + "end": 37143.16, + "probability": 0.9238 + }, + { + "start": 37143.56, + "end": 37144.52, + "probability": 0.8892 + }, + { + "start": 37145.08, + "end": 37146.36, + "probability": 0.7321 + }, + { + "start": 37146.98, + "end": 37148.42, + "probability": 0.9464 + }, + { + "start": 37149.28, + "end": 37151.95, + "probability": 0.8455 + }, + { + "start": 37152.96, + "end": 37156.46, + "probability": 0.973 + }, + { + "start": 37157.0, + "end": 37159.58, + "probability": 0.9061 + }, + { + "start": 37160.1, + "end": 37161.52, + "probability": 0.9224 + }, + { + "start": 37161.94, + "end": 37162.6, + "probability": 0.5301 + }, + { + "start": 37163.28, + "end": 37165.32, + "probability": 0.8727 + }, + { + "start": 37166.38, + "end": 37168.52, + "probability": 0.0484 + }, + { + "start": 37169.14, + "end": 37169.68, + "probability": 0.6063 + }, + { + "start": 37169.84, + "end": 37170.4, + "probability": 0.7384 + }, + { + "start": 37170.4, + "end": 37173.09, + "probability": 0.968 + }, + { + "start": 37173.76, + "end": 37177.2, + "probability": 0.9834 + }, + { + "start": 37177.82, + "end": 37180.16, + "probability": 0.8534 + }, + { + "start": 37180.64, + "end": 37183.12, + "probability": 0.968 + }, + { + "start": 37184.14, + "end": 37185.12, + "probability": 0.9768 + }, + { + "start": 37185.74, + "end": 37187.66, + "probability": 0.9934 + }, + { + "start": 37188.88, + "end": 37191.32, + "probability": 0.9381 + }, + { + "start": 37192.22, + "end": 37196.54, + "probability": 0.9756 + }, + { + "start": 37196.9, + "end": 37198.74, + "probability": 0.6315 + }, + { + "start": 37198.84, + "end": 37199.38, + "probability": 0.8804 + }, + { + "start": 37200.3, + "end": 37202.22, + "probability": 0.6396 + }, + { + "start": 37202.22, + "end": 37203.2, + "probability": 0.4051 + }, + { + "start": 37203.64, + "end": 37204.18, + "probability": 0.3699 + }, + { + "start": 37204.18, + "end": 37205.94, + "probability": 0.907 + }, + { + "start": 37206.44, + "end": 37206.54, + "probability": 0.6951 + }, + { + "start": 37206.84, + "end": 37208.88, + "probability": 0.6948 + }, + { + "start": 37208.98, + "end": 37209.7, + "probability": 0.8374 + }, + { + "start": 37210.78, + "end": 37212.26, + "probability": 0.9621 + }, + { + "start": 37212.68, + "end": 37213.24, + "probability": 0.0008 + }, + { + "start": 37214.34, + "end": 37215.54, + "probability": 0.0509 + }, + { + "start": 37217.32, + "end": 37219.46, + "probability": 0.1284 + }, + { + "start": 37221.34, + "end": 37221.86, + "probability": 0.0344 + }, + { + "start": 37247.16, + "end": 37247.98, + "probability": 0.0935 + }, + { + "start": 37248.42, + "end": 37253.32, + "probability": 0.9861 + }, + { + "start": 37253.32, + "end": 37258.76, + "probability": 0.9964 + }, + { + "start": 37259.7, + "end": 37261.84, + "probability": 0.9328 + }, + { + "start": 37262.62, + "end": 37263.36, + "probability": 0.7454 + }, + { + "start": 37263.62, + "end": 37266.46, + "probability": 0.8096 + }, + { + "start": 37266.46, + "end": 37271.26, + "probability": 0.9963 + }, + { + "start": 37271.82, + "end": 37275.3, + "probability": 0.9972 + }, + { + "start": 37276.12, + "end": 37278.42, + "probability": 0.9944 + }, + { + "start": 37279.46, + "end": 37280.96, + "probability": 0.9598 + }, + { + "start": 37282.44, + "end": 37282.94, + "probability": 0.5373 + }, + { + "start": 37283.94, + "end": 37287.12, + "probability": 0.8799 + }, + { + "start": 37287.9, + "end": 37288.6, + "probability": 0.7133 + }, + { + "start": 37288.6, + "end": 37290.88, + "probability": 0.8594 + }, + { + "start": 37290.94, + "end": 37292.06, + "probability": 0.9938 + }, + { + "start": 37292.32, + "end": 37293.18, + "probability": 0.9924 + }, + { + "start": 37294.0, + "end": 37296.66, + "probability": 0.6727 + }, + { + "start": 37297.06, + "end": 37297.48, + "probability": 0.8813 + }, + { + "start": 37297.78, + "end": 37298.1, + "probability": 0.8897 + }, + { + "start": 37298.14, + "end": 37299.4, + "probability": 0.976 + }, + { + "start": 37299.8, + "end": 37300.22, + "probability": 0.6424 + }, + { + "start": 37300.3, + "end": 37301.59, + "probability": 0.6023 + }, + { + "start": 37315.38, + "end": 37318.82, + "probability": 0.0518 + }, + { + "start": 37318.82, + "end": 37320.88, + "probability": 0.1914 + }, + { + "start": 37320.88, + "end": 37321.65, + "probability": 0.0683 + }, + { + "start": 37322.82, + "end": 37324.36, + "probability": 0.0992 + }, + { + "start": 37324.56, + "end": 37324.76, + "probability": 0.0506 + }, + { + "start": 37325.3, + "end": 37326.56, + "probability": 0.3815 + }, + { + "start": 37326.96, + "end": 37327.68, + "probability": 0.3845 + }, + { + "start": 37327.82, + "end": 37327.84, + "probability": 0.0715 + }, + { + "start": 37329.44, + "end": 37329.54, + "probability": 0.0684 + }, + { + "start": 37329.54, + "end": 37332.7, + "probability": 0.2342 + }, + { + "start": 37333.08, + "end": 37334.24, + "probability": 0.5919 + }, + { + "start": 37335.08, + "end": 37335.18, + "probability": 0.3823 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37423.0, + "end": 37423.0, + "probability": 0.0 + }, + { + "start": 37424.17, + "end": 37425.7, + "probability": 0.4631 + }, + { + "start": 37425.8, + "end": 37428.64, + "probability": 0.7247 + }, + { + "start": 37428.98, + "end": 37430.4, + "probability": 0.0161 + }, + { + "start": 37430.62, + "end": 37431.24, + "probability": 0.1959 + }, + { + "start": 37431.54, + "end": 37433.52, + "probability": 0.4787 + }, + { + "start": 37433.82, + "end": 37435.08, + "probability": 0.2196 + }, + { + "start": 37435.7, + "end": 37436.26, + "probability": 0.5877 + }, + { + "start": 37436.56, + "end": 37439.98, + "probability": 0.6354 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37598.0, + "end": 37598.0, + "probability": 0.0 + }, + { + "start": 37599.91, + "end": 37602.74, + "probability": 0.3546 + }, + { + "start": 37603.26, + "end": 37604.4, + "probability": 0.1497 + }, + { + "start": 37604.4, + "end": 37604.52, + "probability": 0.0227 + }, + { + "start": 37604.52, + "end": 37606.66, + "probability": 0.2444 + }, + { + "start": 37607.66, + "end": 37609.6, + "probability": 0.3141 + }, + { + "start": 37609.8, + "end": 37611.69, + "probability": 0.6543 + }, + { + "start": 37612.0, + "end": 37614.4, + "probability": 0.3514 + }, + { + "start": 37615.32, + "end": 37617.56, + "probability": 0.127 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37722.0, + "end": 37722.0, + "probability": 0.0 + }, + { + "start": 37732.12, + "end": 37734.3, + "probability": 0.1783 + }, + { + "start": 37734.86, + "end": 37737.96, + "probability": 0.1927 + }, + { + "start": 37739.02, + "end": 37740.74, + "probability": 0.0627 + }, + { + "start": 37744.48, + "end": 37745.94, + "probability": 0.0421 + }, + { + "start": 37748.79, + "end": 37752.49, + "probability": 0.1096 + }, + { + "start": 37753.56, + "end": 37755.04, + "probability": 0.1292 + }, + { + "start": 37756.08, + "end": 37756.26, + "probability": 0.1306 + }, + { + "start": 37756.26, + "end": 37757.74, + "probability": 0.3975 + }, + { + "start": 37760.84, + "end": 37761.98, + "probability": 0.3396 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.0, + "end": 37850.0, + "probability": 0.0 + }, + { + "start": 37850.46, + "end": 37850.46, + "probability": 0.0281 + }, + { + "start": 37850.46, + "end": 37850.46, + "probability": 0.0469 + }, + { + "start": 37850.46, + "end": 37850.46, + "probability": 0.0449 + }, + { + "start": 37850.46, + "end": 37850.46, + "probability": 0.0691 + }, + { + "start": 37850.46, + "end": 37851.08, + "probability": 0.2409 + }, + { + "start": 37851.08, + "end": 37852.58, + "probability": 0.5133 + }, + { + "start": 37852.58, + "end": 37853.24, + "probability": 0.3592 + }, + { + "start": 37857.62, + "end": 37859.1, + "probability": 0.9609 + }, + { + "start": 37860.44, + "end": 37862.52, + "probability": 0.8843 + }, + { + "start": 37863.12, + "end": 37865.26, + "probability": 0.9349 + }, + { + "start": 37865.82, + "end": 37869.28, + "probability": 0.9908 + }, + { + "start": 37869.94, + "end": 37870.4, + "probability": 0.9807 + }, + { + "start": 37871.88, + "end": 37878.78, + "probability": 0.9932 + }, + { + "start": 37879.36, + "end": 37882.66, + "probability": 0.9698 + }, + { + "start": 37883.32, + "end": 37884.24, + "probability": 0.9287 + }, + { + "start": 37885.22, + "end": 37886.84, + "probability": 0.8188 + }, + { + "start": 37887.5, + "end": 37889.46, + "probability": 0.9081 + }, + { + "start": 37890.12, + "end": 37896.1, + "probability": 0.9875 + }, + { + "start": 37896.82, + "end": 37897.78, + "probability": 0.9702 + }, + { + "start": 37899.03, + "end": 37903.08, + "probability": 0.2177 + }, + { + "start": 37904.06, + "end": 37907.3, + "probability": 0.8289 + }, + { + "start": 37907.9, + "end": 37908.6, + "probability": 0.6409 + }, + { + "start": 37909.54, + "end": 37912.07, + "probability": 0.832 + }, + { + "start": 37917.16, + "end": 37918.1, + "probability": 0.5049 + }, + { + "start": 37919.04, + "end": 37919.72, + "probability": 0.7666 + }, + { + "start": 37922.0, + "end": 37926.28, + "probability": 0.8076 + }, + { + "start": 37926.34, + "end": 37931.4, + "probability": 0.9858 + }, + { + "start": 37931.98, + "end": 37935.48, + "probability": 0.988 + }, + { + "start": 37936.38, + "end": 37938.64, + "probability": 0.9948 + }, + { + "start": 37938.64, + "end": 37941.6, + "probability": 0.9871 + }, + { + "start": 37942.72, + "end": 37946.08, + "probability": 0.8948 + }, + { + "start": 37946.56, + "end": 37949.56, + "probability": 0.9956 + }, + { + "start": 37950.6, + "end": 37951.78, + "probability": 0.9955 + }, + { + "start": 37952.62, + "end": 37956.3, + "probability": 0.9559 + }, + { + "start": 37956.94, + "end": 37959.24, + "probability": 0.9808 + }, + { + "start": 37959.78, + "end": 37961.76, + "probability": 0.9681 + }, + { + "start": 37963.88, + "end": 37965.16, + "probability": 0.9436 + }, + { + "start": 37965.72, + "end": 37967.1, + "probability": 0.9675 + }, + { + "start": 37967.78, + "end": 37968.95, + "probability": 0.7648 + }, + { + "start": 37969.3, + "end": 37969.84, + "probability": 0.7709 + }, + { + "start": 37971.46, + "end": 37973.54, + "probability": 0.9053 + }, + { + "start": 37975.17, + "end": 37977.32, + "probability": 0.1889 + }, + { + "start": 37990.62, + "end": 37990.78, + "probability": 0.0858 + }, + { + "start": 37990.78, + "end": 37991.82, + "probability": 0.6511 + }, + { + "start": 37991.92, + "end": 37993.34, + "probability": 0.695 + }, + { + "start": 37993.7, + "end": 37995.06, + "probability": 0.9143 + }, + { + "start": 37996.3, + "end": 37996.82, + "probability": 0.7512 + }, + { + "start": 37997.18, + "end": 37997.82, + "probability": 0.5701 + }, + { + "start": 37998.06, + "end": 37999.02, + "probability": 0.9773 + }, + { + "start": 37999.48, + "end": 38001.3, + "probability": 0.8054 + }, + { + "start": 38002.16, + "end": 38006.64, + "probability": 0.6021 + }, + { + "start": 38006.7, + "end": 38008.52, + "probability": 0.9922 + }, + { + "start": 38008.9, + "end": 38011.38, + "probability": 0.9268 + }, + { + "start": 38012.06, + "end": 38015.8, + "probability": 0.9788 + }, + { + "start": 38016.66, + "end": 38018.72, + "probability": 0.7426 + }, + { + "start": 38021.22, + "end": 38023.88, + "probability": 0.8856 + }, + { + "start": 38025.34, + "end": 38028.02, + "probability": 0.9802 + }, + { + "start": 38028.26, + "end": 38028.72, + "probability": 0.8997 + }, + { + "start": 38029.22, + "end": 38033.62, + "probability": 0.9081 + }, + { + "start": 38033.68, + "end": 38035.3, + "probability": 0.9095 + }, + { + "start": 38036.22, + "end": 38038.58, + "probability": 0.9937 + }, + { + "start": 38039.16, + "end": 38040.72, + "probability": 0.9966 + }, + { + "start": 38041.26, + "end": 38043.24, + "probability": 0.9967 + }, + { + "start": 38044.24, + "end": 38049.86, + "probability": 0.9536 + }, + { + "start": 38050.88, + "end": 38054.02, + "probability": 0.9602 + }, + { + "start": 38054.02, + "end": 38058.32, + "probability": 0.9943 + }, + { + "start": 38058.9, + "end": 38064.78, + "probability": 0.9954 + }, + { + "start": 38065.32, + "end": 38067.98, + "probability": 0.9535 + }, + { + "start": 38068.0, + "end": 38068.34, + "probability": 0.7925 + }, + { + "start": 38068.84, + "end": 38073.1, + "probability": 0.994 + }, + { + "start": 38073.4, + "end": 38075.02, + "probability": 0.9545 + }, + { + "start": 38075.4, + "end": 38076.16, + "probability": 0.8663 + }, + { + "start": 38076.6, + "end": 38079.3, + "probability": 0.9722 + }, + { + "start": 38080.26, + "end": 38082.0, + "probability": 0.9808 + }, + { + "start": 38082.78, + "end": 38083.66, + "probability": 0.8892 + }, + { + "start": 38084.6, + "end": 38086.02, + "probability": 0.9836 + }, + { + "start": 38086.84, + "end": 38090.28, + "probability": 0.942 + }, + { + "start": 38090.96, + "end": 38093.39, + "probability": 0.9137 + }, + { + "start": 38093.63, + "end": 38095.15, + "probability": 0.8843 + }, + { + "start": 38095.23, + "end": 38096.09, + "probability": 0.9353 + }, + { + "start": 38096.33, + "end": 38097.25, + "probability": 0.9181 + }, + { + "start": 38097.67, + "end": 38099.15, + "probability": 0.9939 + }, + { + "start": 38099.69, + "end": 38101.15, + "probability": 0.9587 + }, + { + "start": 38102.13, + "end": 38103.77, + "probability": 0.9463 + }, + { + "start": 38104.73, + "end": 38107.55, + "probability": 0.9834 + }, + { + "start": 38107.93, + "end": 38109.69, + "probability": 0.9751 + }, + { + "start": 38110.67, + "end": 38111.21, + "probability": 0.9047 + }, + { + "start": 38112.63, + "end": 38114.61, + "probability": 0.996 + }, + { + "start": 38115.23, + "end": 38117.57, + "probability": 0.8594 + }, + { + "start": 38117.61, + "end": 38118.51, + "probability": 0.6221 + }, + { + "start": 38118.61, + "end": 38119.47, + "probability": 0.9391 + }, + { + "start": 38120.05, + "end": 38123.15, + "probability": 0.9824 + }, + { + "start": 38124.13, + "end": 38125.81, + "probability": 0.9962 + }, + { + "start": 38126.33, + "end": 38127.71, + "probability": 0.9819 + }, + { + "start": 38128.19, + "end": 38130.55, + "probability": 0.989 + }, + { + "start": 38131.15, + "end": 38132.69, + "probability": 0.9715 + }, + { + "start": 38132.85, + "end": 38135.89, + "probability": 0.9751 + }, + { + "start": 38136.37, + "end": 38136.81, + "probability": 0.8964 + }, + { + "start": 38137.49, + "end": 38138.53, + "probability": 0.4272 + }, + { + "start": 38138.73, + "end": 38140.11, + "probability": 0.3508 + }, + { + "start": 38140.21, + "end": 38141.55, + "probability": 0.1375 + }, + { + "start": 38141.87, + "end": 38142.21, + "probability": 0.1996 + }, + { + "start": 38143.58, + "end": 38145.57, + "probability": 0.6222 + }, + { + "start": 38147.02, + "end": 38149.87, + "probability": 0.9722 + }, + { + "start": 38149.91, + "end": 38152.17, + "probability": 0.9741 + }, + { + "start": 38152.59, + "end": 38155.99, + "probability": 0.9463 + }, + { + "start": 38156.93, + "end": 38159.65, + "probability": 0.9896 + }, + { + "start": 38160.09, + "end": 38162.81, + "probability": 0.9723 + }, + { + "start": 38162.81, + "end": 38165.37, + "probability": 0.9726 + }, + { + "start": 38165.99, + "end": 38167.53, + "probability": 0.8545 + }, + { + "start": 38168.51, + "end": 38171.47, + "probability": 0.98 + }, + { + "start": 38171.47, + "end": 38172.11, + "probability": 0.7639 + }, + { + "start": 38172.27, + "end": 38172.76, + "probability": 0.8047 + }, + { + "start": 38173.93, + "end": 38174.61, + "probability": 0.1745 + }, + { + "start": 38174.81, + "end": 38174.85, + "probability": 0.2347 + }, + { + "start": 38174.85, + "end": 38174.89, + "probability": 0.4132 + }, + { + "start": 38174.89, + "end": 38179.65, + "probability": 0.9863 + }, + { + "start": 38180.61, + "end": 38182.97, + "probability": 0.7641 + }, + { + "start": 38183.53, + "end": 38184.17, + "probability": 0.1853 + }, + { + "start": 38184.17, + "end": 38185.78, + "probability": 0.5586 + }, + { + "start": 38186.01, + "end": 38186.11, + "probability": 0.6281 + }, + { + "start": 38186.89, + "end": 38187.01, + "probability": 0.1146 + }, + { + "start": 38187.01, + "end": 38187.83, + "probability": 0.4816 + }, + { + "start": 38187.91, + "end": 38188.01, + "probability": 0.2977 + }, + { + "start": 38188.53, + "end": 38189.25, + "probability": 0.4189 + }, + { + "start": 38189.25, + "end": 38190.01, + "probability": 0.0125 + }, + { + "start": 38190.21, + "end": 38192.39, + "probability": 0.7948 + }, + { + "start": 38193.11, + "end": 38194.33, + "probability": 0.275 + }, + { + "start": 38194.57, + "end": 38195.85, + "probability": 0.2903 + }, + { + "start": 38196.07, + "end": 38197.63, + "probability": 0.5018 + }, + { + "start": 38197.73, + "end": 38198.83, + "probability": 0.4872 + }, + { + "start": 38198.87, + "end": 38200.89, + "probability": 0.6325 + }, + { + "start": 38202.69, + "end": 38202.83, + "probability": 0.0623 + }, + { + "start": 38202.97, + "end": 38203.89, + "probability": 0.1247 + }, + { + "start": 38203.89, + "end": 38204.67, + "probability": 0.105 + }, + { + "start": 38204.67, + "end": 38204.75, + "probability": 0.0603 + }, + { + "start": 38204.75, + "end": 38205.43, + "probability": 0.5126 + }, + { + "start": 38205.61, + "end": 38210.81, + "probability": 0.989 + }, + { + "start": 38211.38, + "end": 38216.31, + "probability": 0.7686 + }, + { + "start": 38216.91, + "end": 38216.97, + "probability": 0.0574 + }, + { + "start": 38216.97, + "end": 38216.97, + "probability": 0.0353 + }, + { + "start": 38216.97, + "end": 38216.97, + "probability": 0.0905 + }, + { + "start": 38216.97, + "end": 38218.55, + "probability": 0.5149 + }, + { + "start": 38218.77, + "end": 38221.17, + "probability": 0.9127 + }, + { + "start": 38221.65, + "end": 38227.17, + "probability": 0.043 + }, + { + "start": 38227.17, + "end": 38227.29, + "probability": 0.0955 + }, + { + "start": 38227.29, + "end": 38231.09, + "probability": 0.7145 + }, + { + "start": 38232.42, + "end": 38235.01, + "probability": 0.0711 + }, + { + "start": 38235.59, + "end": 38237.73, + "probability": 0.0194 + }, + { + "start": 38237.73, + "end": 38237.97, + "probability": 0.1233 + }, + { + "start": 38237.97, + "end": 38237.97, + "probability": 0.1244 + }, + { + "start": 38237.97, + "end": 38241.95, + "probability": 0.039 + }, + { + "start": 38242.65, + "end": 38242.83, + "probability": 0.1604 + }, + { + "start": 38242.83, + "end": 38242.83, + "probability": 0.0192 + }, + { + "start": 38242.83, + "end": 38242.83, + "probability": 0.0288 + }, + { + "start": 38242.83, + "end": 38242.83, + "probability": 0.136 + }, + { + "start": 38242.83, + "end": 38243.41, + "probability": 0.2156 + }, + { + "start": 38243.63, + "end": 38251.15, + "probability": 0.0121 + }, + { + "start": 38251.43, + "end": 38251.43, + "probability": 0.1239 + }, + { + "start": 38251.43, + "end": 38251.43, + "probability": 0.0326 + }, + { + "start": 38251.43, + "end": 38251.43, + "probability": 0.1327 + }, + { + "start": 38251.43, + "end": 38251.69, + "probability": 0.0889 + }, + { + "start": 38251.69, + "end": 38257.97, + "probability": 0.7537 + }, + { + "start": 38258.21, + "end": 38260.33, + "probability": 0.9941 + }, + { + "start": 38260.77, + "end": 38261.25, + "probability": 0.7254 + }, + { + "start": 38261.57, + "end": 38263.09, + "probability": 0.8632 + }, + { + "start": 38263.13, + "end": 38264.95, + "probability": 0.7463 + }, + { + "start": 38265.31, + "end": 38267.57, + "probability": 0.9009 + }, + { + "start": 38268.09, + "end": 38268.61, + "probability": 0.5114 + }, + { + "start": 38269.49, + "end": 38270.13, + "probability": 0.9044 + }, + { + "start": 38270.95, + "end": 38271.73, + "probability": 0.9676 + }, + { + "start": 38272.35, + "end": 38273.13, + "probability": 0.9487 + }, + { + "start": 38273.75, + "end": 38273.97, + "probability": 0.4694 + }, + { + "start": 38274.85, + "end": 38275.65, + "probability": 0.4898 + }, + { + "start": 38276.23, + "end": 38277.19, + "probability": 0.9321 + }, + { + "start": 38277.49, + "end": 38281.67, + "probability": 0.9808 + }, + { + "start": 38281.97, + "end": 38283.46, + "probability": 0.9972 + }, + { + "start": 38284.35, + "end": 38287.03, + "probability": 0.8468 + }, + { + "start": 38287.49, + "end": 38288.66, + "probability": 0.9902 + }, + { + "start": 38290.53, + "end": 38293.75, + "probability": 0.7876 + }, + { + "start": 38294.22, + "end": 38296.01, + "probability": 0.4353 + }, + { + "start": 38296.01, + "end": 38297.79, + "probability": 0.9336 + }, + { + "start": 38297.89, + "end": 38298.75, + "probability": 0.1574 + }, + { + "start": 38299.25, + "end": 38301.91, + "probability": 0.7906 + }, + { + "start": 38301.91, + "end": 38303.69, + "probability": 0.7993 + }, + { + "start": 38304.29, + "end": 38305.59, + "probability": 0.9989 + }, + { + "start": 38305.69, + "end": 38308.27, + "probability": 0.7585 + }, + { + "start": 38308.27, + "end": 38313.43, + "probability": 0.9413 + }, + { + "start": 38313.87, + "end": 38318.63, + "probability": 0.9911 + }, + { + "start": 38319.21, + "end": 38320.23, + "probability": 0.4383 + }, + { + "start": 38320.25, + "end": 38321.17, + "probability": 0.8224 + }, + { + "start": 38321.61, + "end": 38323.25, + "probability": 0.5045 + }, + { + "start": 38323.25, + "end": 38324.01, + "probability": 0.676 + }, + { + "start": 38324.65, + "end": 38325.47, + "probability": 0.9708 + }, + { + "start": 38325.89, + "end": 38326.8, + "probability": 0.7399 + }, + { + "start": 38326.99, + "end": 38327.67, + "probability": 0.7779 + }, + { + "start": 38327.67, + "end": 38328.17, + "probability": 0.4326 + }, + { + "start": 38328.29, + "end": 38329.17, + "probability": 0.7244 + }, + { + "start": 38329.23, + "end": 38330.35, + "probability": 0.5728 + }, + { + "start": 38330.35, + "end": 38332.29, + "probability": 0.7209 + }, + { + "start": 38332.51, + "end": 38333.65, + "probability": 0.8036 + }, + { + "start": 38333.69, + "end": 38335.89, + "probability": 0.855 + }, + { + "start": 38336.19, + "end": 38336.51, + "probability": 0.8535 + }, + { + "start": 38336.59, + "end": 38337.33, + "probability": 0.9849 + }, + { + "start": 38337.41, + "end": 38338.03, + "probability": 0.7717 + }, + { + "start": 38338.21, + "end": 38340.55, + "probability": 0.9858 + }, + { + "start": 38341.11, + "end": 38342.15, + "probability": 0.9656 + }, + { + "start": 38342.81, + "end": 38345.91, + "probability": 0.964 + }, + { + "start": 38346.31, + "end": 38347.77, + "probability": 0.9259 + }, + { + "start": 38348.77, + "end": 38351.23, + "probability": 0.9719 + }, + { + "start": 38352.01, + "end": 38353.29, + "probability": 0.3656 + }, + { + "start": 38353.33, + "end": 38354.75, + "probability": 0.369 + }, + { + "start": 38354.81, + "end": 38357.59, + "probability": 0.4261 + }, + { + "start": 38357.67, + "end": 38361.01, + "probability": 0.4689 + }, + { + "start": 38361.49, + "end": 38362.83, + "probability": 0.5614 + }, + { + "start": 38363.71, + "end": 38364.79, + "probability": 0.0697 + }, + { + "start": 38367.45, + "end": 38367.53, + "probability": 0.1185 + }, + { + "start": 38367.53, + "end": 38367.83, + "probability": 0.0114 + }, + { + "start": 38379.35, + "end": 38381.11, + "probability": 0.0734 + }, + { + "start": 38381.61, + "end": 38383.51, + "probability": 0.193 + }, + { + "start": 38388.03, + "end": 38390.51, + "probability": 0.821 + }, + { + "start": 38398.17, + "end": 38399.93, + "probability": 0.9983 + }, + { + "start": 38400.71, + "end": 38404.41, + "probability": 0.95 + }, + { + "start": 38405.41, + "end": 38408.01, + "probability": 0.9943 + }, + { + "start": 38409.03, + "end": 38409.63, + "probability": 0.7332 + }, + { + "start": 38412.43, + "end": 38419.65, + "probability": 0.9917 + }, + { + "start": 38420.39, + "end": 38423.69, + "probability": 0.9973 + }, + { + "start": 38423.79, + "end": 38426.01, + "probability": 0.9757 + }, + { + "start": 38426.75, + "end": 38431.15, + "probability": 0.8945 + }, + { + "start": 38433.05, + "end": 38435.67, + "probability": 0.6873 + }, + { + "start": 38435.81, + "end": 38439.07, + "probability": 0.9525 + }, + { + "start": 38440.29, + "end": 38441.95, + "probability": 0.7661 + }, + { + "start": 38442.53, + "end": 38444.97, + "probability": 0.9945 + }, + { + "start": 38445.13, + "end": 38447.29, + "probability": 0.9474 + }, + { + "start": 38448.99, + "end": 38450.45, + "probability": 0.9722 + }, + { + "start": 38451.31, + "end": 38452.51, + "probability": 0.7655 + }, + { + "start": 38453.19, + "end": 38454.43, + "probability": 0.6116 + }, + { + "start": 38455.67, + "end": 38458.29, + "probability": 0.6567 + }, + { + "start": 38458.29, + "end": 38459.01, + "probability": 0.4352 + }, + { + "start": 38459.11, + "end": 38460.75, + "probability": 0.7391 + }, + { + "start": 38461.33, + "end": 38461.95, + "probability": 0.1541 + }, + { + "start": 38461.99, + "end": 38463.55, + "probability": 0.9167 + }, + { + "start": 38463.75, + "end": 38464.23, + "probability": 0.9115 + }, + { + "start": 38465.11, + "end": 38466.53, + "probability": 0.8087 + }, + { + "start": 38467.15, + "end": 38468.71, + "probability": 0.0755 + }, + { + "start": 38468.71, + "end": 38469.77, + "probability": 0.5176 + }, + { + "start": 38471.96, + "end": 38475.21, + "probability": 0.8569 + }, + { + "start": 38475.23, + "end": 38476.05, + "probability": 0.6514 + }, + { + "start": 38476.29, + "end": 38477.83, + "probability": 0.8521 + }, + { + "start": 38478.09, + "end": 38479.23, + "probability": 0.9935 + }, + { + "start": 38479.81, + "end": 38481.05, + "probability": 0.2773 + }, + { + "start": 38481.05, + "end": 38482.21, + "probability": 0.2773 + }, + { + "start": 38482.21, + "end": 38482.77, + "probability": 0.445 + }, + { + "start": 38483.47, + "end": 38485.81, + "probability": 0.8831 + }, + { + "start": 38485.89, + "end": 38486.84, + "probability": 0.9554 + }, + { + "start": 38487.09, + "end": 38488.39, + "probability": 0.1634 + }, + { + "start": 38489.23, + "end": 38489.89, + "probability": 0.0077 + }, + { + "start": 38490.93, + "end": 38491.95, + "probability": 0.4284 + }, + { + "start": 38492.05, + "end": 38494.03, + "probability": 0.8584 + }, + { + "start": 38494.13, + "end": 38494.73, + "probability": 0.2568 + }, + { + "start": 38494.73, + "end": 38495.69, + "probability": 0.6858 + }, + { + "start": 38495.71, + "end": 38495.85, + "probability": 0.0404 + }, + { + "start": 38495.97, + "end": 38497.63, + "probability": 0.4091 + }, + { + "start": 38497.77, + "end": 38498.13, + "probability": 0.4465 + }, + { + "start": 38498.59, + "end": 38499.05, + "probability": 0.009 + }, + { + "start": 38500.46, + "end": 38504.63, + "probability": 0.6997 + }, + { + "start": 38505.71, + "end": 38508.83, + "probability": 0.9043 + }, + { + "start": 38509.59, + "end": 38512.49, + "probability": 0.9587 + }, + { + "start": 38513.09, + "end": 38516.45, + "probability": 0.9404 + }, + { + "start": 38518.01, + "end": 38520.29, + "probability": 0.8232 + }, + { + "start": 38521.51, + "end": 38523.59, + "probability": 0.9733 + }, + { + "start": 38525.28, + "end": 38526.79, + "probability": 0.9674 + }, + { + "start": 38526.81, + "end": 38527.15, + "probability": 0.7325 + }, + { + "start": 38527.79, + "end": 38528.57, + "probability": 0.8052 + }, + { + "start": 38529.27, + "end": 38531.39, + "probability": 0.9631 + }, + { + "start": 38532.41, + "end": 38533.09, + "probability": 0.7184 + }, + { + "start": 38533.67, + "end": 38536.19, + "probability": 0.8677 + }, + { + "start": 38537.41, + "end": 38537.73, + "probability": 0.6587 + }, + { + "start": 38538.73, + "end": 38540.55, + "probability": 0.6709 + }, + { + "start": 38540.91, + "end": 38541.03, + "probability": 0.2187 + }, + { + "start": 38541.03, + "end": 38541.03, + "probability": 0.2086 + }, + { + "start": 38541.03, + "end": 38542.41, + "probability": 0.7518 + }, + { + "start": 38542.41, + "end": 38543.43, + "probability": 0.8137 + }, + { + "start": 38544.03, + "end": 38545.41, + "probability": 0.5794 + }, + { + "start": 38546.03, + "end": 38546.71, + "probability": 0.7708 + }, + { + "start": 38547.61, + "end": 38549.19, + "probability": 0.9365 + }, + { + "start": 38549.77, + "end": 38550.03, + "probability": 0.3249 + }, + { + "start": 38551.83, + "end": 38553.79, + "probability": 0.5794 + }, + { + "start": 38559.63, + "end": 38560.21, + "probability": 0.6172 + }, + { + "start": 38560.21, + "end": 38560.87, + "probability": 0.6071 + }, + { + "start": 38561.05, + "end": 38561.67, + "probability": 0.9497 + }, + { + "start": 38562.36, + "end": 38565.55, + "probability": 0.8997 + }, + { + "start": 38565.59, + "end": 38566.47, + "probability": 0.3176 + }, + { + "start": 38566.61, + "end": 38566.71, + "probability": 0.8958 + }, + { + "start": 38567.71, + "end": 38572.29, + "probability": 0.9938 + }, + { + "start": 38573.17, + "end": 38576.49, + "probability": 0.817 + }, + { + "start": 38577.29, + "end": 38578.87, + "probability": 0.7926 + }, + { + "start": 38580.89, + "end": 38586.99, + "probability": 0.1384 + }, + { + "start": 38586.99, + "end": 38589.49, + "probability": 0.441 + }, + { + "start": 38590.41, + "end": 38590.41, + "probability": 0.1777 + }, + { + "start": 38590.41, + "end": 38590.41, + "probability": 0.0377 + }, + { + "start": 38590.41, + "end": 38590.41, + "probability": 0.0493 + }, + { + "start": 38590.41, + "end": 38590.41, + "probability": 0.1374 + }, + { + "start": 38590.41, + "end": 38590.97, + "probability": 0.5954 + }, + { + "start": 38591.43, + "end": 38593.05, + "probability": 0.3816 + }, + { + "start": 38594.09, + "end": 38597.65, + "probability": 0.7705 + }, + { + "start": 38598.17, + "end": 38601.03, + "probability": 0.091 + }, + { + "start": 38601.13, + "end": 38601.83, + "probability": 0.2598 + }, + { + "start": 38602.15, + "end": 38603.69, + "probability": 0.5219 + }, + { + "start": 38603.69, + "end": 38603.79, + "probability": 0.5166 + }, + { + "start": 38603.79, + "end": 38603.89, + "probability": 0.5185 + }, + { + "start": 38604.57, + "end": 38605.25, + "probability": 0.6436 + }, + { + "start": 38605.91, + "end": 38608.39, + "probability": 0.8397 + }, + { + "start": 38608.77, + "end": 38608.91, + "probability": 0.251 + }, + { + "start": 38608.91, + "end": 38609.31, + "probability": 0.2257 + }, + { + "start": 38609.31, + "end": 38610.0, + "probability": 0.0995 + }, + { + "start": 38610.25, + "end": 38611.03, + "probability": 0.3468 + }, + { + "start": 38612.11, + "end": 38613.11, + "probability": 0.5818 + }, + { + "start": 38613.13, + "end": 38614.69, + "probability": 0.2249 + }, + { + "start": 38614.99, + "end": 38616.75, + "probability": 0.1679 + }, + { + "start": 38617.73, + "end": 38618.91, + "probability": 0.5777 + }, + { + "start": 38619.01, + "end": 38620.65, + "probability": 0.5708 + }, + { + "start": 38620.67, + "end": 38622.24, + "probability": 0.8674 + }, + { + "start": 38622.43, + "end": 38626.73, + "probability": 0.7414 + }, + { + "start": 38626.77, + "end": 38629.39, + "probability": 0.6513 + }, + { + "start": 38629.45, + "end": 38629.77, + "probability": 0.5657 + }, + { + "start": 38630.51, + "end": 38631.05, + "probability": 0.5007 + }, + { + "start": 38631.11, + "end": 38631.75, + "probability": 0.4253 + }, + { + "start": 38631.95, + "end": 38632.47, + "probability": 0.722 + }, + { + "start": 38632.73, + "end": 38633.43, + "probability": 0.9131 + }, + { + "start": 38633.53, + "end": 38634.01, + "probability": 0.9658 + }, + { + "start": 38634.63, + "end": 38637.59, + "probability": 0.905 + }, + { + "start": 38638.69, + "end": 38641.53, + "probability": 0.6884 + }, + { + "start": 38641.93, + "end": 38642.65, + "probability": 0.1303 + }, + { + "start": 38642.65, + "end": 38643.43, + "probability": 0.2143 + }, + { + "start": 38643.49, + "end": 38644.41, + "probability": 0.7612 + }, + { + "start": 38644.85, + "end": 38646.91, + "probability": 0.9843 + }, + { + "start": 38646.97, + "end": 38647.21, + "probability": 0.4169 + }, + { + "start": 38647.61, + "end": 38648.55, + "probability": 0.9171 + }, + { + "start": 38649.17, + "end": 38649.99, + "probability": 0.6743 + }, + { + "start": 38650.53, + "end": 38651.27, + "probability": 0.5924 + }, + { + "start": 38651.37, + "end": 38653.01, + "probability": 0.9559 + }, + { + "start": 38653.11, + "end": 38653.95, + "probability": 0.9598 + }, + { + "start": 38654.19, + "end": 38656.25, + "probability": 0.9113 + }, + { + "start": 38656.75, + "end": 38657.61, + "probability": 0.3426 + }, + { + "start": 38657.61, + "end": 38658.39, + "probability": 0.8372 + }, + { + "start": 38658.72, + "end": 38660.25, + "probability": 0.6792 + }, + { + "start": 38660.79, + "end": 38661.19, + "probability": 0.6971 + }, + { + "start": 38661.79, + "end": 38662.65, + "probability": 0.9121 + }, + { + "start": 38663.39, + "end": 38664.83, + "probability": 0.8345 + }, + { + "start": 38665.49, + "end": 38668.91, + "probability": 0.828 + }, + { + "start": 38669.27, + "end": 38670.09, + "probability": 0.1892 + }, + { + "start": 38670.51, + "end": 38671.96, + "probability": 0.9842 + }, + { + "start": 38673.83, + "end": 38674.57, + "probability": 0.2102 + }, + { + "start": 38674.57, + "end": 38674.73, + "probability": 0.1421 + }, + { + "start": 38674.92, + "end": 38678.35, + "probability": 0.4908 + }, + { + "start": 38678.37, + "end": 38680.75, + "probability": 0.7498 + }, + { + "start": 38681.09, + "end": 38682.15, + "probability": 0.2013 + }, + { + "start": 38684.35, + "end": 38685.97, + "probability": 0.4998 + }, + { + "start": 38687.31, + "end": 38690.33, + "probability": 0.7051 + }, + { + "start": 38690.33, + "end": 38691.35, + "probability": 0.9318 + }, + { + "start": 38691.35, + "end": 38691.95, + "probability": 0.8398 + }, + { + "start": 38692.05, + "end": 38693.01, + "probability": 0.383 + }, + { + "start": 38693.07, + "end": 38694.45, + "probability": 0.4805 + }, + { + "start": 38694.59, + "end": 38694.65, + "probability": 0.1039 + }, + { + "start": 38694.69, + "end": 38694.93, + "probability": 0.2391 + }, + { + "start": 38697.57, + "end": 38697.97, + "probability": 0.0376 + }, + { + "start": 38699.17, + "end": 38700.62, + "probability": 0.9943 + }, + { + "start": 38700.95, + "end": 38702.01, + "probability": 0.3203 + }, + { + "start": 38702.33, + "end": 38703.23, + "probability": 0.32 + }, + { + "start": 38703.35, + "end": 38705.35, + "probability": 0.8397 + }, + { + "start": 38705.37, + "end": 38706.75, + "probability": 0.8867 + }, + { + "start": 38706.83, + "end": 38707.75, + "probability": 0.7173 + }, + { + "start": 38707.93, + "end": 38708.43, + "probability": 0.7376 + }, + { + "start": 38709.57, + "end": 38710.85, + "probability": 0.2068 + }, + { + "start": 38711.51, + "end": 38712.89, + "probability": 0.3608 + }, + { + "start": 38713.01, + "end": 38715.57, + "probability": 0.7558 + }, + { + "start": 38715.57, + "end": 38717.91, + "probability": 0.8268 + }, + { + "start": 38718.41, + "end": 38720.79, + "probability": 0.5086 + }, + { + "start": 38721.65, + "end": 38723.79, + "probability": 0.1012 + }, + { + "start": 38723.89, + "end": 38725.99, + "probability": 0.5518 + }, + { + "start": 38727.87, + "end": 38728.57, + "probability": 0.0087 + }, + { + "start": 38728.57, + "end": 38730.35, + "probability": 0.9937 + }, + { + "start": 38730.63, + "end": 38730.85, + "probability": 0.8318 + }, + { + "start": 38731.21, + "end": 38731.87, + "probability": 0.9004 + }, + { + "start": 38732.51, + "end": 38733.96, + "probability": 0.742 + }, + { + "start": 38734.05, + "end": 38734.73, + "probability": 0.652 + }, + { + "start": 38735.13, + "end": 38736.73, + "probability": 0.6113 + }, + { + "start": 38736.73, + "end": 38738.11, + "probability": 0.9536 + }, + { + "start": 38738.37, + "end": 38738.43, + "probability": 0.1686 + }, + { + "start": 38738.59, + "end": 38739.99, + "probability": 0.0904 + }, + { + "start": 38740.71, + "end": 38744.33, + "probability": 0.9173 + }, + { + "start": 38744.51, + "end": 38745.47, + "probability": 0.439 + }, + { + "start": 38746.05, + "end": 38748.51, + "probability": 0.617 + }, + { + "start": 38749.19, + "end": 38751.43, + "probability": 0.8072 + }, + { + "start": 38751.53, + "end": 38752.29, + "probability": 0.9517 + }, + { + "start": 38753.17, + "end": 38754.43, + "probability": 0.7441 + }, + { + "start": 38754.53, + "end": 38755.09, + "probability": 0.1321 + }, + { + "start": 38755.75, + "end": 38758.83, + "probability": 0.7391 + }, + { + "start": 38758.83, + "end": 38760.23, + "probability": 0.7036 + }, + { + "start": 38760.33, + "end": 38761.45, + "probability": 0.9526 + }, + { + "start": 38761.55, + "end": 38761.81, + "probability": 0.8278 + }, + { + "start": 38762.03, + "end": 38762.11, + "probability": 0.2336 + }, + { + "start": 38762.11, + "end": 38762.63, + "probability": 0.8683 + }, + { + "start": 38767.29, + "end": 38769.65, + "probability": 0.8165 + }, + { + "start": 38771.39, + "end": 38772.03, + "probability": 0.6862 + }, + { + "start": 38772.77, + "end": 38773.99, + "probability": 0.905 + }, + { + "start": 38798.65, + "end": 38801.31, + "probability": 0.788 + }, + { + "start": 38802.65, + "end": 38804.23, + "probability": 0.8793 + }, + { + "start": 38806.51, + "end": 38807.57, + "probability": 0.914 + }, + { + "start": 38815.21, + "end": 38815.31, + "probability": 0.0392 + }, + { + "start": 38816.19, + "end": 38816.53, + "probability": 0.2727 + }, + { + "start": 38817.97, + "end": 38818.13, + "probability": 0.7969 + }, + { + "start": 38818.23, + "end": 38819.97, + "probability": 0.7846 + }, + { + "start": 38820.17, + "end": 38821.99, + "probability": 0.8401 + }, + { + "start": 38822.13, + "end": 38824.65, + "probability": 0.9596 + }, + { + "start": 38825.45, + "end": 38829.63, + "probability": 0.8695 + }, + { + "start": 38830.91, + "end": 38835.11, + "probability": 0.9287 + }, + { + "start": 38835.83, + "end": 38840.35, + "probability": 0.8647 + }, + { + "start": 38841.13, + "end": 38843.86, + "probability": 0.9716 + }, + { + "start": 38844.95, + "end": 38847.55, + "probability": 0.9847 + }, + { + "start": 38848.35, + "end": 38849.33, + "probability": 0.7874 + }, + { + "start": 38850.21, + "end": 38853.41, + "probability": 0.985 + }, + { + "start": 38853.85, + "end": 38857.59, + "probability": 0.9962 + }, + { + "start": 38858.59, + "end": 38862.39, + "probability": 0.8674 + }, + { + "start": 38863.03, + "end": 38865.99, + "probability": 0.9943 + }, + { + "start": 38866.59, + "end": 38868.65, + "probability": 0.9304 + }, + { + "start": 38870.65, + "end": 38874.15, + "probability": 0.9978 + }, + { + "start": 38874.21, + "end": 38878.81, + "probability": 0.9915 + }, + { + "start": 38879.03, + "end": 38884.35, + "probability": 0.9905 + }, + { + "start": 38884.41, + "end": 38887.33, + "probability": 0.9954 + }, + { + "start": 38887.83, + "end": 38888.49, + "probability": 0.7809 + }, + { + "start": 38888.65, + "end": 38890.29, + "probability": 0.5946 + }, + { + "start": 38890.39, + "end": 38891.67, + "probability": 0.817 + }, + { + "start": 38891.85, + "end": 38893.53, + "probability": 0.9639 + }, + { + "start": 38893.95, + "end": 38894.91, + "probability": 0.9189 + }, + { + "start": 38897.21, + "end": 38899.19, + "probability": 0.9798 + }, + { + "start": 38900.11, + "end": 38900.95, + "probability": 0.9969 + }, + { + "start": 38901.85, + "end": 38903.63, + "probability": 0.9879 + }, + { + "start": 38904.57, + "end": 38910.01, + "probability": 0.9971 + }, + { + "start": 38911.01, + "end": 38913.41, + "probability": 0.9947 + }, + { + "start": 38914.33, + "end": 38915.23, + "probability": 0.8393 + }, + { + "start": 38915.81, + "end": 38918.27, + "probability": 0.733 + }, + { + "start": 38918.91, + "end": 38922.55, + "probability": 0.2772 + }, + { + "start": 38922.57, + "end": 38924.15, + "probability": 0.2337 + }, + { + "start": 38925.01, + "end": 38925.85, + "probability": 0.5406 + }, + { + "start": 38926.25, + "end": 38929.07, + "probability": 0.9835 + }, + { + "start": 38929.25, + "end": 38932.39, + "probability": 0.5832 + }, + { + "start": 38932.39, + "end": 38932.59, + "probability": 0.1216 + }, + { + "start": 38932.59, + "end": 38933.01, + "probability": 0.3051 + }, + { + "start": 38933.07, + "end": 38933.69, + "probability": 0.7593 + }, + { + "start": 38933.75, + "end": 38934.39, + "probability": 0.6558 + }, + { + "start": 38934.45, + "end": 38935.61, + "probability": 0.9991 + }, + { + "start": 38936.49, + "end": 38942.55, + "probability": 0.9946 + }, + { + "start": 38944.07, + "end": 38946.95, + "probability": 0.9992 + }, + { + "start": 38947.95, + "end": 38949.43, + "probability": 0.9115 + }, + { + "start": 38951.95, + "end": 38952.58, + "probability": 0.8035 + }, + { + "start": 38952.81, + "end": 38953.03, + "probability": 0.9279 + }, + { + "start": 38953.41, + "end": 38955.89, + "probability": 0.9626 + }, + { + "start": 38957.03, + "end": 38958.37, + "probability": 0.9221 + }, + { + "start": 38958.73, + "end": 38960.29, + "probability": 0.8521 + }, + { + "start": 38960.53, + "end": 38960.61, + "probability": 0.287 + }, + { + "start": 38960.61, + "end": 38961.43, + "probability": 0.4967 + }, + { + "start": 38961.91, + "end": 38965.53, + "probability": 0.5417 + }, + { + "start": 38966.29, + "end": 38966.29, + "probability": 0.6344 + }, + { + "start": 38966.29, + "end": 38967.83, + "probability": 0.634 + }, + { + "start": 38968.11, + "end": 38969.21, + "probability": 0.2017 + }, + { + "start": 38969.21, + "end": 38971.21, + "probability": 0.5455 + }, + { + "start": 38971.23, + "end": 38971.23, + "probability": 0.3833 + }, + { + "start": 38971.23, + "end": 38972.19, + "probability": 0.784 + }, + { + "start": 38972.75, + "end": 38974.17, + "probability": 0.4966 + }, + { + "start": 38974.17, + "end": 38974.17, + "probability": 0.1615 + }, + { + "start": 38974.17, + "end": 38975.97, + "probability": 0.8252 + }, + { + "start": 38975.97, + "end": 38976.57, + "probability": 0.3885 + }, + { + "start": 38976.97, + "end": 38978.97, + "probability": 0.9917 + }, + { + "start": 38979.57, + "end": 38982.05, + "probability": 0.0116 + }, + { + "start": 38982.07, + "end": 38985.68, + "probability": 0.2534 + }, + { + "start": 38996.23, + "end": 38998.65, + "probability": 0.2249 + }, + { + "start": 38998.65, + "end": 39000.77, + "probability": 0.069 + }, + { + "start": 39002.17, + "end": 39006.13, + "probability": 0.131 + }, + { + "start": 39006.33, + "end": 39006.59, + "probability": 0.0453 + }, + { + "start": 39009.29, + "end": 39010.35, + "probability": 0.0152 + }, + { + "start": 39010.95, + "end": 39013.19, + "probability": 0.2691 + }, + { + "start": 39013.19, + "end": 39013.19, + "probability": 0.2159 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.0, + "end": 39070.0, + "probability": 0.0 + }, + { + "start": 39070.18, + "end": 39071.38, + "probability": 0.3537 + }, + { + "start": 39071.9, + "end": 39072.34, + "probability": 0.8659 + }, + { + "start": 39072.42, + "end": 39072.66, + "probability": 0.5463 + }, + { + "start": 39072.68, + "end": 39073.6, + "probability": 0.5218 + }, + { + "start": 39073.68, + "end": 39074.8, + "probability": 0.9061 + }, + { + "start": 39075.14, + "end": 39077.26, + "probability": 0.8857 + }, + { + "start": 39077.48, + "end": 39081.64, + "probability": 0.7959 + }, + { + "start": 39081.92, + "end": 39083.46, + "probability": 0.5363 + }, + { + "start": 39083.48, + "end": 39084.32, + "probability": 0.1103 + }, + { + "start": 39084.54, + "end": 39085.66, + "probability": 0.4551 + }, + { + "start": 39086.32, + "end": 39086.52, + "probability": 0.5853 + }, + { + "start": 39088.88, + "end": 39091.02, + "probability": 0.8159 + }, + { + "start": 39091.02, + "end": 39091.62, + "probability": 0.3597 + }, + { + "start": 39092.26, + "end": 39092.5, + "probability": 0.1958 + }, + { + "start": 39092.5, + "end": 39095.2, + "probability": 0.7439 + }, + { + "start": 39095.2, + "end": 39096.82, + "probability": 0.5355 + }, + { + "start": 39097.22, + "end": 39097.84, + "probability": 0.5027 + }, + { + "start": 39098.04, + "end": 39099.68, + "probability": 0.7388 + }, + { + "start": 39099.74, + "end": 39103.74, + "probability": 0.692 + }, + { + "start": 39104.2, + "end": 39104.2, + "probability": 0.0276 + }, + { + "start": 39104.2, + "end": 39104.9, + "probability": 0.3531 + }, + { + "start": 39104.9, + "end": 39107.24, + "probability": 0.9707 + }, + { + "start": 39107.24, + "end": 39110.12, + "probability": 0.9521 + }, + { + "start": 39111.78, + "end": 39113.28, + "probability": 0.4386 + }, + { + "start": 39114.52, + "end": 39117.34, + "probability": 0.2662 + }, + { + "start": 39118.0, + "end": 39119.32, + "probability": 0.6891 + }, + { + "start": 39119.86, + "end": 39120.9, + "probability": 0.7053 + }, + { + "start": 39121.06, + "end": 39122.78, + "probability": 0.5622 + }, + { + "start": 39123.04, + "end": 39125.38, + "probability": 0.6505 + }, + { + "start": 39126.12, + "end": 39127.69, + "probability": 0.2441 + }, + { + "start": 39128.3, + "end": 39129.38, + "probability": 0.0143 + }, + { + "start": 39129.38, + "end": 39129.52, + "probability": 0.1462 + }, + { + "start": 39129.52, + "end": 39129.52, + "probability": 0.0343 + }, + { + "start": 39129.52, + "end": 39129.52, + "probability": 0.2759 + }, + { + "start": 39129.52, + "end": 39130.92, + "probability": 0.3998 + }, + { + "start": 39131.34, + "end": 39131.62, + "probability": 0.6333 + }, + { + "start": 39132.4, + "end": 39134.69, + "probability": 0.3586 + }, + { + "start": 39136.02, + "end": 39138.52, + "probability": 0.5569 + }, + { + "start": 39139.8, + "end": 39140.5, + "probability": 0.1092 + }, + { + "start": 39141.56, + "end": 39143.48, + "probability": 0.8274 + }, + { + "start": 39143.48, + "end": 39144.58, + "probability": 0.2327 + }, + { + "start": 39145.12, + "end": 39146.92, + "probability": 0.5608 + }, + { + "start": 39147.38, + "end": 39149.8, + "probability": 0.5338 + }, + { + "start": 39152.04, + "end": 39154.36, + "probability": 0.9119 + }, + { + "start": 39154.82, + "end": 39154.82, + "probability": 0.5628 + }, + { + "start": 39154.82, + "end": 39156.86, + "probability": 0.66 + }, + { + "start": 39157.68, + "end": 39158.2, + "probability": 0.7936 + }, + { + "start": 39158.92, + "end": 39159.62, + "probability": 0.9437 + }, + { + "start": 39164.66, + "end": 39166.84, + "probability": 0.5317 + }, + { + "start": 39167.04, + "end": 39170.44, + "probability": 0.996 + }, + { + "start": 39171.32, + "end": 39174.08, + "probability": 0.9218 + }, + { + "start": 39174.88, + "end": 39177.06, + "probability": 0.6312 + }, + { + "start": 39177.34, + "end": 39178.72, + "probability": 0.9768 + }, + { + "start": 39179.82, + "end": 39181.2, + "probability": 0.8157 + }, + { + "start": 39181.2, + "end": 39181.98, + "probability": 0.7209 + }, + { + "start": 39182.48, + "end": 39183.54, + "probability": 0.9611 + }, + { + "start": 39183.78, + "end": 39185.96, + "probability": 0.981 + }, + { + "start": 39186.24, + "end": 39187.72, + "probability": 0.8768 + }, + { + "start": 39188.42, + "end": 39189.92, + "probability": 0.7374 + }, + { + "start": 39191.12, + "end": 39194.62, + "probability": 0.9899 + }, + { + "start": 39194.86, + "end": 39196.68, + "probability": 0.9933 + }, + { + "start": 39196.98, + "end": 39198.96, + "probability": 0.9868 + }, + { + "start": 39198.98, + "end": 39201.44, + "probability": 0.998 + }, + { + "start": 39202.72, + "end": 39203.18, + "probability": 0.8231 + }, + { + "start": 39203.32, + "end": 39203.56, + "probability": 0.9503 + }, + { + "start": 39203.64, + "end": 39204.14, + "probability": 0.6504 + }, + { + "start": 39204.52, + "end": 39208.04, + "probability": 0.974 + }, + { + "start": 39209.42, + "end": 39213.06, + "probability": 0.9943 + }, + { + "start": 39213.8, + "end": 39216.0, + "probability": 0.2741 + }, + { + "start": 39216.0, + "end": 39218.9, + "probability": 0.8242 + }, + { + "start": 39219.26, + "end": 39223.48, + "probability": 0.9583 + }, + { + "start": 39224.34, + "end": 39226.82, + "probability": 0.9897 + }, + { + "start": 39227.7, + "end": 39229.2, + "probability": 0.9982 + }, + { + "start": 39231.48, + "end": 39237.02, + "probability": 0.9969 + }, + { + "start": 39238.38, + "end": 39239.94, + "probability": 0.7566 + }, + { + "start": 39240.12, + "end": 39241.94, + "probability": 0.743 + }, + { + "start": 39242.12, + "end": 39245.5, + "probability": 0.957 + }, + { + "start": 39245.58, + "end": 39253.0, + "probability": 0.9575 + }, + { + "start": 39253.88, + "end": 39254.78, + "probability": 0.9301 + }, + { + "start": 39255.8, + "end": 39258.02, + "probability": 0.8661 + }, + { + "start": 39259.76, + "end": 39261.08, + "probability": 0.6232 + }, + { + "start": 39261.36, + "end": 39265.74, + "probability": 0.8751 + }, + { + "start": 39266.44, + "end": 39269.16, + "probability": 0.998 + }, + { + "start": 39269.96, + "end": 39272.4, + "probability": 0.9453 + }, + { + "start": 39273.14, + "end": 39276.08, + "probability": 0.9943 + }, + { + "start": 39277.34, + "end": 39279.84, + "probability": 0.9819 + }, + { + "start": 39280.88, + "end": 39281.98, + "probability": 0.8728 + }, + { + "start": 39282.52, + "end": 39284.3, + "probability": 0.9003 + }, + { + "start": 39285.3, + "end": 39287.2, + "probability": 0.9434 + }, + { + "start": 39288.24, + "end": 39292.66, + "probability": 0.9604 + }, + { + "start": 39294.84, + "end": 39298.38, + "probability": 0.9954 + }, + { + "start": 39299.06, + "end": 39301.12, + "probability": 0.9805 + }, + { + "start": 39301.26, + "end": 39307.16, + "probability": 0.9897 + }, + { + "start": 39307.9, + "end": 39310.68, + "probability": 0.9304 + }, + { + "start": 39312.12, + "end": 39312.82, + "probability": 0.7991 + }, + { + "start": 39313.36, + "end": 39315.66, + "probability": 0.9602 + }, + { + "start": 39316.08, + "end": 39318.66, + "probability": 0.9351 + }, + { + "start": 39319.24, + "end": 39320.22, + "probability": 0.8507 + }, + { + "start": 39320.48, + "end": 39322.66, + "probability": 0.9873 + }, + { + "start": 39324.2, + "end": 39324.66, + "probability": 0.9014 + }, + { + "start": 39325.8, + "end": 39326.72, + "probability": 0.8014 + }, + { + "start": 39328.08, + "end": 39328.92, + "probability": 0.9571 + }, + { + "start": 39329.72, + "end": 39331.24, + "probability": 0.9897 + }, + { + "start": 39332.12, + "end": 39332.92, + "probability": 0.9748 + }, + { + "start": 39333.58, + "end": 39338.7, + "probability": 0.9974 + }, + { + "start": 39339.44, + "end": 39340.16, + "probability": 0.7729 + }, + { + "start": 39340.72, + "end": 39341.36, + "probability": 0.846 + }, + { + "start": 39342.0, + "end": 39342.86, + "probability": 0.9966 + }, + { + "start": 39343.94, + "end": 39344.64, + "probability": 0.9266 + }, + { + "start": 39345.48, + "end": 39349.68, + "probability": 0.9905 + }, + { + "start": 39350.0, + "end": 39350.22, + "probability": 0.9277 + }, + { + "start": 39351.22, + "end": 39351.68, + "probability": 0.7587 + }, + { + "start": 39353.62, + "end": 39355.22, + "probability": 0.9451 + }, + { + "start": 39356.18, + "end": 39356.62, + "probability": 0.0704 + }, + { + "start": 39357.2, + "end": 39359.22, + "probability": 0.7404 + }, + { + "start": 39360.6, + "end": 39361.86, + "probability": 0.5408 + }, + { + "start": 39361.96, + "end": 39363.16, + "probability": 0.8823 + }, + { + "start": 39365.4, + "end": 39365.94, + "probability": 0.6038 + }, + { + "start": 39365.94, + "end": 39366.06, + "probability": 0.5719 + }, + { + "start": 39366.22, + "end": 39368.1, + "probability": 0.9363 + }, + { + "start": 39368.88, + "end": 39370.58, + "probability": 0.6096 + }, + { + "start": 39371.46, + "end": 39373.52, + "probability": 0.6625 + }, + { + "start": 39373.92, + "end": 39374.8, + "probability": 0.1091 + }, + { + "start": 39376.58, + "end": 39379.18, + "probability": 0.2671 + }, + { + "start": 39379.46, + "end": 39380.4, + "probability": 0.6115 + }, + { + "start": 39380.5, + "end": 39383.1, + "probability": 0.2179 + }, + { + "start": 39383.1, + "end": 39384.66, + "probability": 0.1077 + }, + { + "start": 39388.04, + "end": 39390.25, + "probability": 0.5246 + }, + { + "start": 39391.2, + "end": 39391.54, + "probability": 0.1403 + }, + { + "start": 39391.54, + "end": 39392.12, + "probability": 0.105 + }, + { + "start": 39392.62, + "end": 39394.43, + "probability": 0.2439 + }, + { + "start": 39400.06, + "end": 39400.96, + "probability": 0.2132 + }, + { + "start": 39401.25, + "end": 39403.92, + "probability": 0.8125 + }, + { + "start": 39405.22, + "end": 39407.38, + "probability": 0.873 + }, + { + "start": 39408.38, + "end": 39409.98, + "probability": 0.9972 + }, + { + "start": 39411.52, + "end": 39417.32, + "probability": 0.8186 + }, + { + "start": 39418.24, + "end": 39419.32, + "probability": 0.1298 + }, + { + "start": 39419.9, + "end": 39419.9, + "probability": 0.1886 + }, + { + "start": 39419.9, + "end": 39421.06, + "probability": 0.6907 + }, + { + "start": 39421.36, + "end": 39422.16, + "probability": 0.9269 + }, + { + "start": 39422.26, + "end": 39423.04, + "probability": 0.9753 + }, + { + "start": 39423.28, + "end": 39423.94, + "probability": 0.528 + }, + { + "start": 39425.06, + "end": 39425.86, + "probability": 0.4699 + }, + { + "start": 39426.12, + "end": 39429.4, + "probability": 0.9927 + }, + { + "start": 39430.4, + "end": 39433.02, + "probability": 0.9518 + }, + { + "start": 39433.94, + "end": 39436.68, + "probability": 0.9482 + }, + { + "start": 39437.04, + "end": 39437.76, + "probability": 0.7756 + }, + { + "start": 39438.04, + "end": 39440.54, + "probability": 0.8494 + }, + { + "start": 39442.1, + "end": 39442.98, + "probability": 0.883 + }, + { + "start": 39443.08, + "end": 39443.72, + "probability": 0.9004 + }, + { + "start": 39443.78, + "end": 39446.88, + "probability": 0.9887 + }, + { + "start": 39447.44, + "end": 39448.0, + "probability": 0.9824 + }, + { + "start": 39448.54, + "end": 39454.74, + "probability": 0.9924 + }, + { + "start": 39456.76, + "end": 39462.7, + "probability": 0.9958 + }, + { + "start": 39463.24, + "end": 39465.66, + "probability": 0.9985 + }, + { + "start": 39466.44, + "end": 39469.92, + "probability": 0.9977 + }, + { + "start": 39470.88, + "end": 39475.92, + "probability": 0.9904 + }, + { + "start": 39476.54, + "end": 39477.98, + "probability": 0.9319 + }, + { + "start": 39479.08, + "end": 39483.76, + "probability": 0.9914 + }, + { + "start": 39484.86, + "end": 39488.72, + "probability": 0.9539 + }, + { + "start": 39488.72, + "end": 39491.84, + "probability": 0.9896 + }, + { + "start": 39492.74, + "end": 39497.64, + "probability": 0.981 + }, + { + "start": 39498.78, + "end": 39502.3, + "probability": 0.9982 + }, + { + "start": 39502.92, + "end": 39504.46, + "probability": 0.9858 + }, + { + "start": 39504.98, + "end": 39506.98, + "probability": 0.7222 + }, + { + "start": 39507.8, + "end": 39512.86, + "probability": 0.9225 + }, + { + "start": 39514.26, + "end": 39514.74, + "probability": 0.9513 + }, + { + "start": 39515.92, + "end": 39519.78, + "probability": 0.9878 + }, + { + "start": 39519.78, + "end": 39524.52, + "probability": 0.9921 + }, + { + "start": 39525.52, + "end": 39527.98, + "probability": 0.6716 + }, + { + "start": 39528.72, + "end": 39529.02, + "probability": 0.6282 + }, + { + "start": 39529.84, + "end": 39533.6, + "probability": 0.96 + }, + { + "start": 39534.92, + "end": 39538.48, + "probability": 0.9963 + }, + { + "start": 39539.62, + "end": 39542.96, + "probability": 0.9424 + }, + { + "start": 39544.58, + "end": 39547.5, + "probability": 0.9937 + }, + { + "start": 39548.36, + "end": 39553.02, + "probability": 0.9798 + }, + { + "start": 39554.24, + "end": 39556.96, + "probability": 0.9269 + }, + { + "start": 39557.54, + "end": 39561.78, + "probability": 0.9922 + }, + { + "start": 39561.88, + "end": 39563.82, + "probability": 0.6786 + }, + { + "start": 39564.54, + "end": 39566.28, + "probability": 0.9726 + }, + { + "start": 39567.1, + "end": 39570.52, + "probability": 0.9966 + }, + { + "start": 39571.0, + "end": 39572.66, + "probability": 0.9943 + }, + { + "start": 39573.6, + "end": 39577.54, + "probability": 0.9503 + }, + { + "start": 39578.44, + "end": 39580.96, + "probability": 0.832 + }, + { + "start": 39581.72, + "end": 39584.18, + "probability": 0.9518 + }, + { + "start": 39584.6, + "end": 39585.46, + "probability": 0.7219 + }, + { + "start": 39585.8, + "end": 39586.6, + "probability": 0.958 + }, + { + "start": 39587.22, + "end": 39588.42, + "probability": 0.9717 + }, + { + "start": 39588.94, + "end": 39590.18, + "probability": 0.6692 + }, + { + "start": 39591.04, + "end": 39591.68, + "probability": 0.4142 + }, + { + "start": 39593.56, + "end": 39596.18, + "probability": 0.6394 + }, + { + "start": 39597.68, + "end": 39599.06, + "probability": 0.7274 + }, + { + "start": 39601.74, + "end": 39603.2, + "probability": 0.8837 + }, + { + "start": 39612.48, + "end": 39620.88, + "probability": 0.1563 + }, + { + "start": 39625.32, + "end": 39625.32, + "probability": 0.0381 + }, + { + "start": 39625.32, + "end": 39625.32, + "probability": 0.0087 + }, + { + "start": 39625.32, + "end": 39625.46, + "probability": 0.0108 + }, + { + "start": 39636.37, + "end": 39636.86, + "probability": 0.0238 + }, + { + "start": 39636.86, + "end": 39637.42, + "probability": 0.0725 + }, + { + "start": 39637.52, + "end": 39637.82, + "probability": 0.0461 + }, + { + "start": 39637.82, + "end": 39637.82, + "probability": 0.0573 + }, + { + "start": 39637.82, + "end": 39637.82, + "probability": 0.0664 + }, + { + "start": 39637.82, + "end": 39637.82, + "probability": 0.0724 + }, + { + "start": 39661.38, + "end": 39664.42, + "probability": 0.9939 + }, + { + "start": 39665.16, + "end": 39669.28, + "probability": 0.9913 + }, + { + "start": 39669.34, + "end": 39673.6, + "probability": 0.9972 + }, + { + "start": 39675.78, + "end": 39677.16, + "probability": 0.6853 + }, + { + "start": 39677.32, + "end": 39680.92, + "probability": 0.9866 + }, + { + "start": 39682.3, + "end": 39686.08, + "probability": 0.9898 + }, + { + "start": 39686.7, + "end": 39690.02, + "probability": 0.9969 + }, + { + "start": 39691.1, + "end": 39691.76, + "probability": 0.6803 + }, + { + "start": 39692.52, + "end": 39696.4, + "probability": 0.9875 + }, + { + "start": 39697.82, + "end": 39700.82, + "probability": 0.9904 + }, + { + "start": 39702.58, + "end": 39702.9, + "probability": 0.1782 + }, + { + "start": 39704.6, + "end": 39707.84, + "probability": 0.9844 + }, + { + "start": 39708.48, + "end": 39710.94, + "probability": 0.9915 + }, + { + "start": 39711.16, + "end": 39713.38, + "probability": 0.9301 + }, + { + "start": 39714.74, + "end": 39716.34, + "probability": 0.871 + }, + { + "start": 39717.28, + "end": 39719.48, + "probability": 0.9773 + }, + { + "start": 39721.18, + "end": 39725.53, + "probability": 0.9961 + }, + { + "start": 39726.12, + "end": 39729.52, + "probability": 0.9982 + }, + { + "start": 39730.46, + "end": 39730.86, + "probability": 0.8772 + }, + { + "start": 39731.4, + "end": 39732.48, + "probability": 0.8436 + }, + { + "start": 39733.46, + "end": 39733.74, + "probability": 0.713 + }, + { + "start": 39740.52, + "end": 39741.4, + "probability": 0.7072 + }, + { + "start": 39741.48, + "end": 39743.9, + "probability": 0.9716 + }, + { + "start": 39744.18, + "end": 39744.58, + "probability": 0.7646 + }, + { + "start": 39745.16, + "end": 39750.36, + "probability": 0.9908 + }, + { + "start": 39751.1, + "end": 39754.5, + "probability": 0.995 + }, + { + "start": 39755.28, + "end": 39756.58, + "probability": 0.9139 + }, + { + "start": 39756.84, + "end": 39759.2, + "probability": 0.9829 + }, + { + "start": 39759.78, + "end": 39761.46, + "probability": 0.981 + }, + { + "start": 39761.88, + "end": 39762.23, + "probability": 0.9675 + }, + { + "start": 39762.88, + "end": 39763.78, + "probability": 0.6858 + }, + { + "start": 39764.32, + "end": 39767.7, + "probability": 0.8337 + }, + { + "start": 39769.8, + "end": 39770.44, + "probability": 0.5461 + }, + { + "start": 39772.03, + "end": 39774.44, + "probability": 0.4999 + }, + { + "start": 39774.52, + "end": 39775.68, + "probability": 0.9559 + }, + { + "start": 39775.78, + "end": 39778.98, + "probability": 0.9905 + }, + { + "start": 39778.98, + "end": 39779.68, + "probability": 0.9357 + }, + { + "start": 39779.76, + "end": 39779.92, + "probability": 0.9453 + }, + { + "start": 39780.06, + "end": 39780.3, + "probability": 0.9207 + }, + { + "start": 39780.44, + "end": 39780.96, + "probability": 0.9903 + }, + { + "start": 39781.28, + "end": 39782.8, + "probability": 0.681 + }, + { + "start": 39783.22, + "end": 39783.62, + "probability": 0.5166 + }, + { + "start": 39784.9, + "end": 39788.48, + "probability": 0.9806 + }, + { + "start": 39788.58, + "end": 39789.54, + "probability": 0.6509 + }, + { + "start": 39789.64, + "end": 39795.26, + "probability": 0.8001 + }, + { + "start": 39795.26, + "end": 39798.06, + "probability": 0.9946 + }, + { + "start": 39798.94, + "end": 39800.88, + "probability": 0.9811 + }, + { + "start": 39801.92, + "end": 39804.49, + "probability": 0.8328 + }, + { + "start": 39804.7, + "end": 39807.87, + "probability": 0.9671 + }, + { + "start": 39808.98, + "end": 39811.92, + "probability": 0.9641 + }, + { + "start": 39811.92, + "end": 39814.72, + "probability": 0.9939 + }, + { + "start": 39815.42, + "end": 39817.72, + "probability": 0.94 + }, + { + "start": 39819.38, + "end": 39821.04, + "probability": 0.7573 + }, + { + "start": 39822.6, + "end": 39824.44, + "probability": 0.9569 + }, + { + "start": 39825.4, + "end": 39828.2, + "probability": 0.9959 + }, + { + "start": 39829.5, + "end": 39831.44, + "probability": 0.9656 + }, + { + "start": 39831.62, + "end": 39836.4, + "probability": 0.9931 + }, + { + "start": 39837.1, + "end": 39842.68, + "probability": 0.9785 + }, + { + "start": 39843.92, + "end": 39843.94, + "probability": 0.7275 + }, + { + "start": 39843.94, + "end": 39844.74, + "probability": 0.3663 + }, + { + "start": 39845.92, + "end": 39848.74, + "probability": 0.8308 + }, + { + "start": 39848.88, + "end": 39851.68, + "probability": 0.9543 + }, + { + "start": 39852.46, + "end": 39856.08, + "probability": 0.8653 + }, + { + "start": 39857.0, + "end": 39859.38, + "probability": 0.8207 + }, + { + "start": 39859.8, + "end": 39864.08, + "probability": 0.9895 + }, + { + "start": 39864.98, + "end": 39867.44, + "probability": 0.9408 + }, + { + "start": 39868.2, + "end": 39872.4, + "probability": 0.9316 + }, + { + "start": 39872.9, + "end": 39875.18, + "probability": 0.9736 + }, + { + "start": 39876.3, + "end": 39878.54, + "probability": 0.9924 + }, + { + "start": 39879.5, + "end": 39881.04, + "probability": 0.9932 + }, + { + "start": 39882.26, + "end": 39884.12, + "probability": 0.9971 + }, + { + "start": 39885.16, + "end": 39886.57, + "probability": 0.9966 + }, + { + "start": 39886.86, + "end": 39890.08, + "probability": 0.8166 + }, + { + "start": 39890.26, + "end": 39891.02, + "probability": 0.7414 + }, + { + "start": 39891.86, + "end": 39895.2, + "probability": 0.9946 + }, + { + "start": 39895.8, + "end": 39899.22, + "probability": 0.7562 + }, + { + "start": 39900.0, + "end": 39900.32, + "probability": 0.4044 + }, + { + "start": 39901.88, + "end": 39903.48, + "probability": 0.8308 + }, + { + "start": 39903.5, + "end": 39905.47, + "probability": 0.7915 + }, + { + "start": 39905.64, + "end": 39906.3, + "probability": 0.9508 + }, + { + "start": 39906.32, + "end": 39907.0, + "probability": 0.8446 + }, + { + "start": 39907.02, + "end": 39907.02, + "probability": 0.1443 + }, + { + "start": 39907.02, + "end": 39907.18, + "probability": 0.709 + }, + { + "start": 39907.88, + "end": 39910.42, + "probability": 0.9681 + }, + { + "start": 39910.42, + "end": 39912.4, + "probability": 0.9841 + }, + { + "start": 39912.88, + "end": 39913.12, + "probability": 0.7108 + }, + { + "start": 39913.16, + "end": 39913.4, + "probability": 0.6979 + }, + { + "start": 39914.38, + "end": 39915.56, + "probability": 0.8814 + }, + { + "start": 39916.78, + "end": 39917.48, + "probability": 0.6235 + }, + { + "start": 39918.42, + "end": 39919.56, + "probability": 0.9883 + }, + { + "start": 39922.54, + "end": 39923.12, + "probability": 0.954 + }, + { + "start": 39924.44, + "end": 39928.16, + "probability": 0.7646 + }, + { + "start": 39931.3, + "end": 39934.28, + "probability": 0.9195 + }, + { + "start": 39935.02, + "end": 39935.54, + "probability": 0.3043 + }, + { + "start": 39935.7, + "end": 39937.86, + "probability": 0.9162 + }, + { + "start": 39938.34, + "end": 39941.88, + "probability": 0.5092 + }, + { + "start": 39941.94, + "end": 39942.72, + "probability": 0.8507 + }, + { + "start": 39942.92, + "end": 39943.22, + "probability": 0.4436 + }, + { + "start": 39944.14, + "end": 39944.72, + "probability": 0.1516 + }, + { + "start": 39945.72, + "end": 39945.72, + "probability": 0.072 + }, + { + "start": 39946.57, + "end": 39948.6, + "probability": 0.499 + }, + { + "start": 39949.5, + "end": 39951.16, + "probability": 0.1432 + }, + { + "start": 39965.22, + "end": 39968.78, + "probability": 0.6682 + }, + { + "start": 39970.56, + "end": 39971.38, + "probability": 0.5288 + }, + { + "start": 39972.88, + "end": 39976.48, + "probability": 0.4629 + }, + { + "start": 39981.66, + "end": 39985.68, + "probability": 0.7347 + }, + { + "start": 39986.38, + "end": 39988.22, + "probability": 0.7989 + }, + { + "start": 39989.32, + "end": 39990.46, + "probability": 0.3948 + }, + { + "start": 39992.2, + "end": 39993.96, + "probability": 0.7437 + }, + { + "start": 39995.28, + "end": 39996.74, + "probability": 0.7635 + }, + { + "start": 39997.5, + "end": 40000.72, + "probability": 0.8179 + }, + { + "start": 40001.78, + "end": 40005.04, + "probability": 0.8343 + }, + { + "start": 40005.96, + "end": 40007.72, + "probability": 0.9784 + }, + { + "start": 40008.72, + "end": 40009.82, + "probability": 0.896 + }, + { + "start": 40010.98, + "end": 40011.88, + "probability": 0.9937 + }, + { + "start": 40013.32, + "end": 40016.6, + "probability": 0.8873 + }, + { + "start": 40019.08, + "end": 40023.06, + "probability": 0.9942 + }, + { + "start": 40025.16, + "end": 40028.28, + "probability": 0.9962 + }, + { + "start": 40030.36, + "end": 40031.02, + "probability": 0.747 + }, + { + "start": 40032.12, + "end": 40037.02, + "probability": 0.9863 + }, + { + "start": 40037.08, + "end": 40037.6, + "probability": 0.5774 + }, + { + "start": 40037.62, + "end": 40038.12, + "probability": 0.875 + }, + { + "start": 40039.6, + "end": 40042.92, + "probability": 0.7086 + }, + { + "start": 40043.12, + "end": 40043.78, + "probability": 0.3902 + }, + { + "start": 40043.78, + "end": 40045.48, + "probability": 0.9474 + }, + { + "start": 40046.24, + "end": 40047.38, + "probability": 0.9496 + }, + { + "start": 40047.46, + "end": 40047.98, + "probability": 0.9288 + }, + { + "start": 40048.8, + "end": 40053.42, + "probability": 0.9974 + }, + { + "start": 40053.7, + "end": 40054.88, + "probability": 0.995 + }, + { + "start": 40055.84, + "end": 40056.83, + "probability": 0.9985 + }, + { + "start": 40057.66, + "end": 40062.16, + "probability": 0.9956 + }, + { + "start": 40063.2, + "end": 40065.78, + "probability": 0.9531 + }, + { + "start": 40066.64, + "end": 40069.04, + "probability": 0.9852 + }, + { + "start": 40069.62, + "end": 40071.86, + "probability": 0.9989 + }, + { + "start": 40072.74, + "end": 40073.28, + "probability": 0.3687 + }, + { + "start": 40073.28, + "end": 40075.46, + "probability": 0.6139 + }, + { + "start": 40076.0, + "end": 40077.46, + "probability": 0.9287 + }, + { + "start": 40078.06, + "end": 40078.58, + "probability": 0.232 + }, + { + "start": 40078.98, + "end": 40081.78, + "probability": 0.9023 + }, + { + "start": 40081.96, + "end": 40082.92, + "probability": 0.986 + }, + { + "start": 40083.76, + "end": 40084.86, + "probability": 0.9665 + }, + { + "start": 40086.38, + "end": 40088.56, + "probability": 0.7009 + }, + { + "start": 40089.2, + "end": 40090.2, + "probability": 0.7109 + }, + { + "start": 40091.3, + "end": 40093.16, + "probability": 0.7326 + }, + { + "start": 40094.04, + "end": 40095.54, + "probability": 0.9854 + }, + { + "start": 40096.1, + "end": 40096.98, + "probability": 0.9985 + }, + { + "start": 40098.14, + "end": 40099.68, + "probability": 0.9932 + }, + { + "start": 40100.4, + "end": 40102.1, + "probability": 0.995 + }, + { + "start": 40102.64, + "end": 40104.56, + "probability": 0.9821 + }, + { + "start": 40105.58, + "end": 40107.34, + "probability": 0.7424 + }, + { + "start": 40108.28, + "end": 40109.76, + "probability": 0.9432 + }, + { + "start": 40111.6, + "end": 40117.4, + "probability": 0.9827 + }, + { + "start": 40118.22, + "end": 40120.14, + "probability": 0.9939 + }, + { + "start": 40121.22, + "end": 40122.11, + "probability": 0.8476 + }, + { + "start": 40122.84, + "end": 40127.02, + "probability": 0.9885 + }, + { + "start": 40128.54, + "end": 40133.52, + "probability": 0.9976 + }, + { + "start": 40133.96, + "end": 40135.23, + "probability": 0.952 + }, + { + "start": 40138.18, + "end": 40139.18, + "probability": 0.2086 + }, + { + "start": 40139.22, + "end": 40139.22, + "probability": 0.1026 + }, + { + "start": 40139.22, + "end": 40139.78, + "probability": 0.1382 + }, + { + "start": 40140.22, + "end": 40141.52, + "probability": 0.9045 + }, + { + "start": 40142.26, + "end": 40143.87, + "probability": 0.7169 + }, + { + "start": 40144.34, + "end": 40146.44, + "probability": 0.9217 + }, + { + "start": 40146.78, + "end": 40147.54, + "probability": 0.7935 + }, + { + "start": 40147.64, + "end": 40147.82, + "probability": 0.8714 + }, + { + "start": 40147.92, + "end": 40149.78, + "probability": 0.968 + }, + { + "start": 40150.24, + "end": 40150.96, + "probability": 0.8303 + }, + { + "start": 40151.38, + "end": 40153.7, + "probability": 0.9685 + }, + { + "start": 40154.2, + "end": 40158.2, + "probability": 0.9943 + }, + { + "start": 40158.2, + "end": 40162.04, + "probability": 0.9354 + }, + { + "start": 40162.5, + "end": 40163.6, + "probability": 0.9385 + }, + { + "start": 40164.36, + "end": 40166.08, + "probability": 0.9761 + }, + { + "start": 40166.62, + "end": 40166.62, + "probability": 0.0312 + }, + { + "start": 40166.62, + "end": 40166.62, + "probability": 0.2717 + }, + { + "start": 40166.62, + "end": 40168.39, + "probability": 0.7967 + }, + { + "start": 40169.32, + "end": 40169.86, + "probability": 0.1138 + }, + { + "start": 40169.92, + "end": 40171.34, + "probability": 0.492 + }, + { + "start": 40171.68, + "end": 40171.76, + "probability": 0.3911 + }, + { + "start": 40171.76, + "end": 40172.98, + "probability": 0.6016 + }, + { + "start": 40173.0, + "end": 40175.16, + "probability": 0.9416 + }, + { + "start": 40175.48, + "end": 40176.11, + "probability": 0.7549 + }, + { + "start": 40176.78, + "end": 40177.66, + "probability": 0.4812 + }, + { + "start": 40180.48, + "end": 40181.1, + "probability": 0.2104 + }, + { + "start": 40181.72, + "end": 40183.34, + "probability": 0.0757 + }, + { + "start": 40183.34, + "end": 40183.34, + "probability": 0.0067 + }, + { + "start": 40183.34, + "end": 40183.7, + "probability": 0.1658 + }, + { + "start": 40185.18, + "end": 40187.34, + "probability": 0.6329 + }, + { + "start": 40187.5, + "end": 40190.14, + "probability": 0.9814 + }, + { + "start": 40190.72, + "end": 40191.4, + "probability": 0.558 + }, + { + "start": 40192.4, + "end": 40197.56, + "probability": 0.9617 + }, + { + "start": 40198.36, + "end": 40200.36, + "probability": 0.9839 + }, + { + "start": 40203.7, + "end": 40205.14, + "probability": 0.6 + }, + { + "start": 40205.66, + "end": 40207.36, + "probability": 0.5276 + }, + { + "start": 40207.78, + "end": 40209.35, + "probability": 0.8521 + }, + { + "start": 40209.82, + "end": 40210.84, + "probability": 0.9649 + }, + { + "start": 40211.52, + "end": 40213.62, + "probability": 0.8225 + }, + { + "start": 40214.7, + "end": 40216.76, + "probability": 0.9882 + }, + { + "start": 40216.9, + "end": 40217.58, + "probability": 0.8345 + }, + { + "start": 40217.6, + "end": 40217.94, + "probability": 0.8483 + }, + { + "start": 40219.6, + "end": 40221.6, + "probability": 0.7753 + }, + { + "start": 40222.26, + "end": 40224.38, + "probability": 0.8592 + }, + { + "start": 40225.78, + "end": 40226.48, + "probability": 0.9694 + }, + { + "start": 40227.88, + "end": 40229.36, + "probability": 0.9979 + }, + { + "start": 40229.98, + "end": 40230.56, + "probability": 0.7437 + }, + { + "start": 40232.24, + "end": 40233.74, + "probability": 0.9923 + }, + { + "start": 40239.18, + "end": 40241.18, + "probability": 0.7676 + }, + { + "start": 40248.64, + "end": 40251.1, + "probability": 0.6882 + }, + { + "start": 40255.68, + "end": 40260.18, + "probability": 0.9927 + }, + { + "start": 40263.18, + "end": 40266.02, + "probability": 0.8291 + }, + { + "start": 40269.06, + "end": 40271.32, + "probability": 0.5 + }, + { + "start": 40272.79, + "end": 40275.48, + "probability": 0.6517 + }, + { + "start": 40276.16, + "end": 40277.86, + "probability": 0.5691 + }, + { + "start": 40277.86, + "end": 40278.46, + "probability": 0.3575 + }, + { + "start": 40278.7, + "end": 40279.9, + "probability": 0.8894 + }, + { + "start": 40280.74, + "end": 40281.88, + "probability": 0.0148 + }, + { + "start": 40281.94, + "end": 40283.26, + "probability": 0.7311 + }, + { + "start": 40283.4, + "end": 40285.84, + "probability": 0.8164 + }, + { + "start": 40285.84, + "end": 40287.9, + "probability": 0.5529 + }, + { + "start": 40287.98, + "end": 40291.34, + "probability": 0.0055 + }, + { + "start": 40291.34, + "end": 40291.34, + "probability": 0.0585 + }, + { + "start": 40291.34, + "end": 40292.38, + "probability": 0.2809 + }, + { + "start": 40294.2, + "end": 40294.32, + "probability": 0.2425 + }, + { + "start": 40295.7, + "end": 40297.9, + "probability": 0.6835 + }, + { + "start": 40299.2, + "end": 40303.06, + "probability": 0.703 + }, + { + "start": 40303.42, + "end": 40304.18, + "probability": 0.2852 + }, + { + "start": 40304.6, + "end": 40305.19, + "probability": 0.5883 + }, + { + "start": 40308.56, + "end": 40311.54, + "probability": 0.6273 + }, + { + "start": 40311.68, + "end": 40317.66, + "probability": 0.856 + }, + { + "start": 40317.78, + "end": 40318.24, + "probability": 0.3428 + }, + { + "start": 40318.4, + "end": 40321.84, + "probability": 0.9724 + }, + { + "start": 40321.9, + "end": 40325.06, + "probability": 0.9878 + }, + { + "start": 40325.5, + "end": 40329.3, + "probability": 0.9915 + }, + { + "start": 40330.06, + "end": 40331.38, + "probability": 0.8599 + }, + { + "start": 40331.58, + "end": 40334.8, + "probability": 0.9479 + }, + { + "start": 40334.98, + "end": 40336.02, + "probability": 0.978 + }, + { + "start": 40336.6, + "end": 40341.8, + "probability": 0.728 + }, + { + "start": 40342.02, + "end": 40343.36, + "probability": 0.8823 + }, + { + "start": 40343.46, + "end": 40344.44, + "probability": 0.6092 + }, + { + "start": 40345.07, + "end": 40348.9, + "probability": 0.6729 + }, + { + "start": 40349.62, + "end": 40351.34, + "probability": 0.9896 + }, + { + "start": 40351.48, + "end": 40352.82, + "probability": 0.9722 + }, + { + "start": 40353.04, + "end": 40356.9, + "probability": 0.9526 + }, + { + "start": 40357.16, + "end": 40357.92, + "probability": 0.4424 + }, + { + "start": 40358.08, + "end": 40358.67, + "probability": 0.9718 + }, + { + "start": 40359.32, + "end": 40360.62, + "probability": 0.9945 + }, + { + "start": 40360.66, + "end": 40362.9, + "probability": 0.9764 + }, + { + "start": 40363.54, + "end": 40366.56, + "probability": 0.8661 + }, + { + "start": 40367.42, + "end": 40368.88, + "probability": 0.7348 + }, + { + "start": 40368.92, + "end": 40372.26, + "probability": 0.7797 + }, + { + "start": 40372.38, + "end": 40376.74, + "probability": 0.9985 + }, + { + "start": 40376.84, + "end": 40382.56, + "probability": 0.9705 + }, + { + "start": 40382.8, + "end": 40384.28, + "probability": 0.8742 + }, + { + "start": 40384.34, + "end": 40385.35, + "probability": 0.9976 + }, + { + "start": 40386.28, + "end": 40387.1, + "probability": 0.7657 + }, + { + "start": 40389.4, + "end": 40389.86, + "probability": 0.4878 + }, + { + "start": 40389.98, + "end": 40390.78, + "probability": 0.4061 + }, + { + "start": 40391.18, + "end": 40393.18, + "probability": 0.6921 + }, + { + "start": 40393.18, + "end": 40393.98, + "probability": 0.6201 + }, + { + "start": 40394.0, + "end": 40394.32, + "probability": 0.8941 + }, + { + "start": 40394.32, + "end": 40396.4, + "probability": 0.6188 + }, + { + "start": 40396.48, + "end": 40397.0, + "probability": 0.5381 + }, + { + "start": 40398.34, + "end": 40400.92, + "probability": 0.4576 + }, + { + "start": 40401.09, + "end": 40401.6, + "probability": 0.2093 + }, + { + "start": 40401.6, + "end": 40401.76, + "probability": 0.1083 + }, + { + "start": 40402.06, + "end": 40402.78, + "probability": 0.7907 + }, + { + "start": 40402.8, + "end": 40404.12, + "probability": 0.7943 + }, + { + "start": 40404.16, + "end": 40404.46, + "probability": 0.9253 + }, + { + "start": 40404.92, + "end": 40406.67, + "probability": 0.1244 + }, + { + "start": 40414.36, + "end": 40417.96, + "probability": 0.1578 + }, + { + "start": 40418.26, + "end": 40418.38, + "probability": 0.0611 + }, + { + "start": 40418.38, + "end": 40418.38, + "probability": 0.0399 + }, + { + "start": 40418.38, + "end": 40418.38, + "probability": 0.0793 + }, + { + "start": 40418.38, + "end": 40418.78, + "probability": 0.2999 + }, + { + "start": 40419.08, + "end": 40419.08, + "probability": 0.1152 + }, + { + "start": 40421.12, + "end": 40422.62, + "probability": 0.6264 + }, + { + "start": 40423.06, + "end": 40423.06, + "probability": 0.0344 + }, + { + "start": 40423.06, + "end": 40423.08, + "probability": 0.1079 + }, + { + "start": 40423.08, + "end": 40424.48, + "probability": 0.1862 + }, + { + "start": 40424.51, + "end": 40426.74, + "probability": 0.9049 + }, + { + "start": 40427.48, + "end": 40428.48, + "probability": 0.8374 + }, + { + "start": 40428.76, + "end": 40430.06, + "probability": 0.7231 + }, + { + "start": 40430.36, + "end": 40431.76, + "probability": 0.7195 + }, + { + "start": 40432.52, + "end": 40435.26, + "probability": 0.7117 + }, + { + "start": 40435.32, + "end": 40436.48, + "probability": 0.9512 + }, + { + "start": 40436.7, + "end": 40437.32, + "probability": 0.9681 + }, + { + "start": 40437.42, + "end": 40439.62, + "probability": 0.7786 + }, + { + "start": 40440.29, + "end": 40441.92, + "probability": 0.9683 + }, + { + "start": 40442.36, + "end": 40442.94, + "probability": 0.4023 + }, + { + "start": 40442.98, + "end": 40444.26, + "probability": 0.9323 + }, + { + "start": 40444.46, + "end": 40445.74, + "probability": 0.9533 + }, + { + "start": 40445.82, + "end": 40448.62, + "probability": 0.9805 + }, + { + "start": 40448.78, + "end": 40449.88, + "probability": 0.7505 + }, + { + "start": 40449.96, + "end": 40450.4, + "probability": 0.9558 + }, + { + "start": 40450.46, + "end": 40453.58, + "probability": 0.9976 + }, + { + "start": 40454.14, + "end": 40456.86, + "probability": 0.9949 + }, + { + "start": 40457.54, + "end": 40459.72, + "probability": 0.783 + }, + { + "start": 40459.8, + "end": 40464.79, + "probability": 0.958 + }, + { + "start": 40465.44, + "end": 40465.44, + "probability": 0.2686 + }, + { + "start": 40465.6, + "end": 40466.32, + "probability": 0.8862 + }, + { + "start": 40466.46, + "end": 40467.66, + "probability": 0.8512 + }, + { + "start": 40468.12, + "end": 40471.82, + "probability": 0.99 + }, + { + "start": 40472.32, + "end": 40473.32, + "probability": 0.617 + }, + { + "start": 40473.64, + "end": 40474.85, + "probability": 0.7723 + }, + { + "start": 40475.88, + "end": 40476.78, + "probability": 0.5293 + }, + { + "start": 40477.7, + "end": 40479.52, + "probability": 0.8231 + }, + { + "start": 40479.62, + "end": 40480.38, + "probability": 0.8734 + }, + { + "start": 40480.48, + "end": 40483.26, + "probability": 0.9016 + }, + { + "start": 40484.62, + "end": 40489.2, + "probability": 0.9971 + }, + { + "start": 40489.2, + "end": 40494.66, + "probability": 0.9923 + }, + { + "start": 40495.28, + "end": 40499.56, + "probability": 0.999 + }, + { + "start": 40500.86, + "end": 40503.62, + "probability": 0.9475 + }, + { + "start": 40503.72, + "end": 40504.78, + "probability": 0.9503 + }, + { + "start": 40505.86, + "end": 40508.42, + "probability": 0.8533 + }, + { + "start": 40509.04, + "end": 40511.5, + "probability": 0.5146 + }, + { + "start": 40511.52, + "end": 40512.72, + "probability": 0.2581 + }, + { + "start": 40513.4, + "end": 40514.16, + "probability": 0.6433 + }, + { + "start": 40514.36, + "end": 40516.16, + "probability": 0.9839 + }, + { + "start": 40516.44, + "end": 40518.16, + "probability": 0.9946 + }, + { + "start": 40518.6, + "end": 40519.98, + "probability": 0.9668 + }, + { + "start": 40521.36, + "end": 40524.07, + "probability": 0.9264 + }, + { + "start": 40524.52, + "end": 40530.2, + "probability": 0.7542 + }, + { + "start": 40530.48, + "end": 40531.38, + "probability": 0.7349 + }, + { + "start": 40531.46, + "end": 40531.56, + "probability": 0.8293 + }, + { + "start": 40532.38, + "end": 40533.56, + "probability": 0.8477 + }, + { + "start": 40533.64, + "end": 40535.34, + "probability": 0.7777 + }, + { + "start": 40535.62, + "end": 40536.26, + "probability": 0.4962 + }, + { + "start": 40536.42, + "end": 40537.5, + "probability": 0.6013 + }, + { + "start": 40538.32, + "end": 40538.82, + "probability": 0.3187 + }, + { + "start": 40539.36, + "end": 40539.84, + "probability": 0.0498 + }, + { + "start": 40542.76, + "end": 40543.16, + "probability": 0.1085 + }, + { + "start": 40543.24, + "end": 40543.52, + "probability": 0.0986 + }, + { + "start": 40546.62, + "end": 40548.32, + "probability": 0.1999 + }, + { + "start": 40548.32, + "end": 40548.78, + "probability": 0.0288 + }, + { + "start": 40548.98, + "end": 40549.52, + "probability": 0.0586 + }, + { + "start": 40551.16, + "end": 40552.21, + "probability": 0.2233 + }, + { + "start": 40553.18, + "end": 40553.66, + "probability": 0.0351 + }, + { + "start": 40553.66, + "end": 40553.98, + "probability": 0.1194 + }, + { + "start": 40555.9, + "end": 40557.0, + "probability": 0.2779 + }, + { + "start": 40557.02, + "end": 40559.86, + "probability": 0.1422 + }, + { + "start": 40566.46, + "end": 40566.92, + "probability": 0.054 + }, + { + "start": 40567.04, + "end": 40567.04, + "probability": 0.1588 + }, + { + "start": 40568.46, + "end": 40568.56, + "probability": 0.0837 + }, + { + "start": 40568.56, + "end": 40572.12, + "probability": 0.1667 + }, + { + "start": 40572.72, + "end": 40573.52, + "probability": 0.0157 + }, + { + "start": 40574.82, + "end": 40577.26, + "probability": 0.0736 + }, + { + "start": 40577.28, + "end": 40578.82, + "probability": 0.0871 + }, + { + "start": 40580.72, + "end": 40582.96, + "probability": 0.2592 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40638.0, + "end": 40638.0, + "probability": 0.0 + }, + { + "start": 40642.14, + "end": 40644.34, + "probability": 0.7388 + }, + { + "start": 40644.54, + "end": 40644.64, + "probability": 0.6737 + }, + { + "start": 40646.29, + "end": 40653.4, + "probability": 0.3822 + }, + { + "start": 40653.7, + "end": 40657.4, + "probability": 0.9598 + }, + { + "start": 40658.38, + "end": 40661.62, + "probability": 0.9966 + }, + { + "start": 40661.62, + "end": 40663.5, + "probability": 0.9404 + }, + { + "start": 40663.66, + "end": 40665.04, + "probability": 0.5929 + }, + { + "start": 40665.22, + "end": 40667.7, + "probability": 0.8838 + }, + { + "start": 40668.68, + "end": 40673.66, + "probability": 0.9331 + }, + { + "start": 40675.48, + "end": 40677.38, + "probability": 0.3072 + }, + { + "start": 40678.12, + "end": 40681.12, + "probability": 0.8608 + }, + { + "start": 40681.7, + "end": 40682.47, + "probability": 0.6154 + }, + { + "start": 40683.88, + "end": 40687.74, + "probability": 0.9908 + }, + { + "start": 40688.34, + "end": 40690.39, + "probability": 0.9697 + }, + { + "start": 40691.36, + "end": 40692.16, + "probability": 0.4667 + }, + { + "start": 40692.74, + "end": 40693.54, + "probability": 0.9673 + }, + { + "start": 40694.3, + "end": 40701.6, + "probability": 0.9863 + }, + { + "start": 40702.1, + "end": 40703.24, + "probability": 0.8911 + }, + { + "start": 40704.28, + "end": 40705.4, + "probability": 0.9918 + }, + { + "start": 40705.66, + "end": 40710.42, + "probability": 0.9976 + }, + { + "start": 40712.64, + "end": 40715.82, + "probability": 0.8378 + }, + { + "start": 40717.36, + "end": 40717.66, + "probability": 0.8572 + }, + { + "start": 40717.72, + "end": 40719.18, + "probability": 0.9844 + }, + { + "start": 40719.22, + "end": 40720.42, + "probability": 0.8566 + }, + { + "start": 40720.52, + "end": 40725.78, + "probability": 0.7837 + }, + { + "start": 40726.3, + "end": 40727.18, + "probability": 0.8767 + }, + { + "start": 40727.28, + "end": 40728.4, + "probability": 0.6193 + }, + { + "start": 40729.18, + "end": 40730.42, + "probability": 0.9515 + }, + { + "start": 40731.54, + "end": 40731.88, + "probability": 0.7004 + }, + { + "start": 40732.88, + "end": 40733.91, + "probability": 0.9297 + }, + { + "start": 40735.34, + "end": 40737.42, + "probability": 0.9968 + }, + { + "start": 40738.4, + "end": 40740.58, + "probability": 0.9302 + }, + { + "start": 40741.22, + "end": 40742.48, + "probability": 0.9535 + }, + { + "start": 40743.08, + "end": 40744.9, + "probability": 0.9691 + }, + { + "start": 40745.56, + "end": 40745.92, + "probability": 0.9031 + }, + { + "start": 40747.22, + "end": 40756.68, + "probability": 0.9973 + }, + { + "start": 40757.4, + "end": 40760.58, + "probability": 0.9993 + }, + { + "start": 40761.6, + "end": 40763.22, + "probability": 0.7908 + }, + { + "start": 40764.48, + "end": 40768.74, + "probability": 0.995 + }, + { + "start": 40769.82, + "end": 40771.06, + "probability": 0.9256 + }, + { + "start": 40772.96, + "end": 40773.3, + "probability": 0.8824 + }, + { + "start": 40774.12, + "end": 40775.22, + "probability": 0.968 + }, + { + "start": 40775.98, + "end": 40780.32, + "probability": 0.9976 + }, + { + "start": 40780.84, + "end": 40782.02, + "probability": 0.8035 + }, + { + "start": 40783.16, + "end": 40785.44, + "probability": 0.9951 + }, + { + "start": 40786.62, + "end": 40792.88, + "probability": 0.9291 + }, + { + "start": 40793.64, + "end": 40795.02, + "probability": 0.9256 + }, + { + "start": 40795.76, + "end": 40799.59, + "probability": 0.8853 + }, + { + "start": 40800.44, + "end": 40805.5, + "probability": 0.9701 + }, + { + "start": 40806.12, + "end": 40810.18, + "probability": 0.9879 + }, + { + "start": 40810.98, + "end": 40812.98, + "probability": 0.9477 + }, + { + "start": 40813.82, + "end": 40818.8, + "probability": 0.9784 + }, + { + "start": 40818.82, + "end": 40819.4, + "probability": 0.9352 + }, + { + "start": 40819.9, + "end": 40821.1, + "probability": 0.9003 + }, + { + "start": 40821.74, + "end": 40823.96, + "probability": 0.9603 + }, + { + "start": 40824.5, + "end": 40827.28, + "probability": 0.9961 + }, + { + "start": 40827.8, + "end": 40830.64, + "probability": 0.9878 + }, + { + "start": 40831.44, + "end": 40831.94, + "probability": 0.6245 + }, + { + "start": 40832.54, + "end": 40836.42, + "probability": 0.9238 + }, + { + "start": 40836.84, + "end": 40841.02, + "probability": 0.996 + }, + { + "start": 40841.52, + "end": 40846.8, + "probability": 0.9963 + }, + { + "start": 40846.82, + "end": 40851.08, + "probability": 0.9963 + }, + { + "start": 40851.52, + "end": 40857.48, + "probability": 0.9842 + }, + { + "start": 40858.0, + "end": 40861.04, + "probability": 0.9966 + }, + { + "start": 40861.74, + "end": 40864.58, + "probability": 0.6733 + }, + { + "start": 40864.58, + "end": 40865.22, + "probability": 0.6331 + }, + { + "start": 40865.98, + "end": 40868.88, + "probability": 0.9961 + }, + { + "start": 40869.3, + "end": 40870.82, + "probability": 0.7897 + }, + { + "start": 40871.2, + "end": 40871.74, + "probability": 0.6073 + }, + { + "start": 40871.78, + "end": 40872.3, + "probability": 0.677 + }, + { + "start": 40873.1, + "end": 40874.72, + "probability": 0.9729 + }, + { + "start": 40874.92, + "end": 40875.18, + "probability": 0.7457 + }, + { + "start": 40876.0, + "end": 40876.52, + "probability": 0.7337 + }, + { + "start": 40877.24, + "end": 40880.78, + "probability": 0.7425 + }, + { + "start": 40881.74, + "end": 40883.86, + "probability": 0.9278 + }, + { + "start": 40898.88, + "end": 40900.72, + "probability": 0.6033 + }, + { + "start": 40905.38, + "end": 40907.88, + "probability": 0.9844 + }, + { + "start": 40908.08, + "end": 40911.08, + "probability": 0.902 + }, + { + "start": 40912.6, + "end": 40916.42, + "probability": 0.9254 + }, + { + "start": 40917.58, + "end": 40920.26, + "probability": 0.9967 + }, + { + "start": 40920.26, + "end": 40922.46, + "probability": 0.9995 + }, + { + "start": 40923.52, + "end": 40926.54, + "probability": 0.7866 + }, + { + "start": 40927.26, + "end": 40929.3, + "probability": 0.9131 + }, + { + "start": 40930.2, + "end": 40934.18, + "probability": 0.9368 + }, + { + "start": 40935.62, + "end": 40936.1, + "probability": 0.6626 + }, + { + "start": 40937.32, + "end": 40938.56, + "probability": 0.6764 + }, + { + "start": 40938.74, + "end": 40938.98, + "probability": 0.5561 + }, + { + "start": 40940.04, + "end": 40940.48, + "probability": 0.7 + }, + { + "start": 40941.88, + "end": 40944.22, + "probability": 0.9922 + }, + { + "start": 40948.16, + "end": 40953.2, + "probability": 0.996 + }, + { + "start": 40954.64, + "end": 40955.96, + "probability": 0.6756 + }, + { + "start": 40956.5, + "end": 40957.72, + "probability": 0.9473 + }, + { + "start": 40958.46, + "end": 40961.08, + "probability": 0.9944 + }, + { + "start": 40962.0, + "end": 40963.52, + "probability": 0.7165 + }, + { + "start": 40964.24, + "end": 40966.76, + "probability": 0.9561 + }, + { + "start": 40967.58, + "end": 40968.94, + "probability": 0.84 + }, + { + "start": 40969.08, + "end": 40969.98, + "probability": 0.7426 + }, + { + "start": 40970.28, + "end": 40970.98, + "probability": 0.1832 + }, + { + "start": 40972.26, + "end": 40972.78, + "probability": 0.7028 + }, + { + "start": 40974.22, + "end": 40975.3, + "probability": 0.3981 + }, + { + "start": 40976.96, + "end": 40978.06, + "probability": 0.8747 + }, + { + "start": 40979.74, + "end": 40980.24, + "probability": 0.1804 + }, + { + "start": 40980.24, + "end": 40983.32, + "probability": 0.2687 + }, + { + "start": 40983.8, + "end": 40984.42, + "probability": 0.5296 + }, + { + "start": 40986.08, + "end": 40986.72, + "probability": 0.3725 + }, + { + "start": 40986.74, + "end": 40987.04, + "probability": 0.4709 + }, + { + "start": 40987.46, + "end": 40990.76, + "probability": 0.1359 + }, + { + "start": 40990.76, + "end": 40991.7, + "probability": 0.0386 + }, + { + "start": 40991.84, + "end": 40992.06, + "probability": 0.8665 + }, + { + "start": 40992.62, + "end": 40994.26, + "probability": 0.7896 + }, + { + "start": 40994.98, + "end": 40997.08, + "probability": 0.2147 + }, + { + "start": 41001.3, + "end": 41005.78, + "probability": 0.7975 + }, + { + "start": 41005.92, + "end": 41006.12, + "probability": 0.4369 + }, + { + "start": 41006.7, + "end": 41007.22, + "probability": 0.4187 + }, + { + "start": 41007.5, + "end": 41009.28, + "probability": 0.9023 + }, + { + "start": 41010.28, + "end": 41013.04, + "probability": 0.5895 + }, + { + "start": 41013.62, + "end": 41014.73, + "probability": 0.0757 + }, + { + "start": 41015.1, + "end": 41019.03, + "probability": 0.7554 + }, + { + "start": 41019.5, + "end": 41021.78, + "probability": 0.5381 + }, + { + "start": 41028.4, + "end": 41029.8, + "probability": 0.2525 + }, + { + "start": 41030.54, + "end": 41031.98, + "probability": 0.6133 + }, + { + "start": 41032.08, + "end": 41035.72, + "probability": 0.9932 + }, + { + "start": 41035.72, + "end": 41038.54, + "probability": 0.9603 + }, + { + "start": 41038.54, + "end": 41038.72, + "probability": 0.4399 + }, + { + "start": 41039.54, + "end": 41040.94, + "probability": 0.6274 + }, + { + "start": 41042.02, + "end": 41044.34, + "probability": 0.9434 + }, + { + "start": 41045.32, + "end": 41047.65, + "probability": 0.9968 + }, + { + "start": 41048.78, + "end": 41050.52, + "probability": 0.7405 + }, + { + "start": 41051.16, + "end": 41054.06, + "probability": 0.9536 + }, + { + "start": 41054.72, + "end": 41056.28, + "probability": 0.8971 + }, + { + "start": 41057.46, + "end": 41058.8, + "probability": 0.588 + }, + { + "start": 41059.54, + "end": 41063.98, + "probability": 0.9937 + }, + { + "start": 41064.26, + "end": 41064.9, + "probability": 0.5529 + }, + { + "start": 41065.5, + "end": 41066.56, + "probability": 0.829 + }, + { + "start": 41066.84, + "end": 41071.6, + "probability": 0.9443 + }, + { + "start": 41072.18, + "end": 41075.98, + "probability": 0.7819 + }, + { + "start": 41077.06, + "end": 41080.04, + "probability": 0.9783 + }, + { + "start": 41080.78, + "end": 41085.22, + "probability": 0.8327 + }, + { + "start": 41085.54, + "end": 41088.02, + "probability": 0.9054 + }, + { + "start": 41088.54, + "end": 41089.46, + "probability": 0.8181 + }, + { + "start": 41090.04, + "end": 41091.96, + "probability": 0.9118 + }, + { + "start": 41092.66, + "end": 41095.98, + "probability": 0.9928 + }, + { + "start": 41096.5, + "end": 41097.58, + "probability": 0.7858 + }, + { + "start": 41098.4, + "end": 41101.68, + "probability": 0.9458 + }, + { + "start": 41102.4, + "end": 41103.6, + "probability": 0.9096 + }, + { + "start": 41104.12, + "end": 41108.44, + "probability": 0.995 + }, + { + "start": 41108.44, + "end": 41114.76, + "probability": 0.9977 + }, + { + "start": 41115.34, + "end": 41117.36, + "probability": 0.6638 + }, + { + "start": 41117.42, + "end": 41117.8, + "probability": 0.6813 + }, + { + "start": 41122.98, + "end": 41125.58, + "probability": 0.8136 + }, + { + "start": 41126.46, + "end": 41127.18, + "probability": 0.7278 + }, + { + "start": 41128.08, + "end": 41130.26, + "probability": 0.9788 + }, + { + "start": 41133.16, + "end": 41134.21, + "probability": 0.915 + }, + { + "start": 41134.34, + "end": 41135.86, + "probability": 0.9855 + }, + { + "start": 41139.64, + "end": 41140.24, + "probability": 0.6716 + }, + { + "start": 41144.26, + "end": 41144.7, + "probability": 0.761 + }, + { + "start": 41148.34, + "end": 41149.2, + "probability": 0.8879 + }, + { + "start": 41149.26, + "end": 41149.84, + "probability": 0.664 + }, + { + "start": 41150.52, + "end": 41151.84, + "probability": 0.6422 + }, + { + "start": 41152.66, + "end": 41157.04, + "probability": 0.2208 + }, + { + "start": 41157.04, + "end": 41159.18, + "probability": 0.1301 + }, + { + "start": 41184.0, + "end": 41184.12, + "probability": 0.1249 + }, + { + "start": 41186.44, + "end": 41191.34, + "probability": 0.4272 + }, + { + "start": 41191.88, + "end": 41192.48, + "probability": 0.3731 + }, + { + "start": 41198.08, + "end": 41201.92, + "probability": 0.2711 + }, + { + "start": 41203.26, + "end": 41203.7, + "probability": 0.5032 + }, + { + "start": 41207.48, + "end": 41208.16, + "probability": 0.5028 + }, + { + "start": 41208.26, + "end": 41209.96, + "probability": 0.8587 + }, + { + "start": 41210.7, + "end": 41212.5, + "probability": 0.7266 + }, + { + "start": 41213.44, + "end": 41213.54, + "probability": 0.0089 + } + ], + "segments_count": 15654, + "words_count": 71939, + "avg_words_per_segment": 4.5956, + "avg_segment_duration": 1.6262, + "avg_words_per_minute": 104.5691, + "plenum_id": "113309", + "duration": 41277.41, + "title": null, + "plenum_date": "2023-02-06" +} \ No newline at end of file