diff --git "a/132455/metadata.json" "b/132455/metadata.json" new file mode 100644--- /dev/null +++ "b/132455/metadata.json" @@ -0,0 +1,62922 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "132455", + "quality_score": 0.8873, + "per_segment_quality_scores": [ + { + "start": 0.08, + "end": 1.24, + "probability": 0.1123 + }, + { + "start": 3.06, + "end": 3.82, + "probability": 0.0031 + }, + { + "start": 33.96, + "end": 37.84, + "probability": 0.9632 + }, + { + "start": 37.84, + "end": 43.44, + "probability": 0.9163 + }, + { + "start": 48.72, + "end": 50.76, + "probability": 0.8207 + }, + { + "start": 51.18, + "end": 57.96, + "probability": 0.9419 + }, + { + "start": 67.08, + "end": 69.14, + "probability": 0.7124 + }, + { + "start": 69.76, + "end": 71.6, + "probability": 0.8022 + }, + { + "start": 71.66, + "end": 72.64, + "probability": 0.7393 + }, + { + "start": 75.16, + "end": 80.94, + "probability": 0.9788 + }, + { + "start": 81.68, + "end": 83.38, + "probability": 0.9633 + }, + { + "start": 84.18, + "end": 86.2, + "probability": 0.9956 + }, + { + "start": 86.86, + "end": 87.82, + "probability": 0.6638 + }, + { + "start": 88.4, + "end": 92.82, + "probability": 0.9973 + }, + { + "start": 93.4, + "end": 95.96, + "probability": 0.9005 + }, + { + "start": 97.0, + "end": 97.58, + "probability": 0.6042 + }, + { + "start": 97.62, + "end": 98.38, + "probability": 0.8079 + }, + { + "start": 98.48, + "end": 99.4, + "probability": 0.7638 + }, + { + "start": 99.4, + "end": 100.9, + "probability": 0.6979 + }, + { + "start": 101.52, + "end": 103.77, + "probability": 0.9749 + }, + { + "start": 104.74, + "end": 107.84, + "probability": 0.9606 + }, + { + "start": 107.9, + "end": 109.51, + "probability": 0.9235 + }, + { + "start": 109.94, + "end": 112.16, + "probability": 0.9502 + }, + { + "start": 112.32, + "end": 113.22, + "probability": 0.9688 + }, + { + "start": 114.22, + "end": 117.52, + "probability": 0.9948 + }, + { + "start": 118.18, + "end": 122.42, + "probability": 0.952 + }, + { + "start": 123.08, + "end": 124.58, + "probability": 0.9901 + }, + { + "start": 124.74, + "end": 125.0, + "probability": 0.9338 + }, + { + "start": 125.04, + "end": 128.58, + "probability": 0.9949 + }, + { + "start": 129.24, + "end": 131.74, + "probability": 0.9646 + }, + { + "start": 132.46, + "end": 133.46, + "probability": 0.6494 + }, + { + "start": 134.32, + "end": 134.74, + "probability": 0.9473 + }, + { + "start": 134.82, + "end": 139.0, + "probability": 0.9947 + }, + { + "start": 140.34, + "end": 142.76, + "probability": 0.9624 + }, + { + "start": 143.72, + "end": 149.66, + "probability": 0.9946 + }, + { + "start": 149.8, + "end": 152.18, + "probability": 0.96 + }, + { + "start": 153.16, + "end": 156.94, + "probability": 0.9688 + }, + { + "start": 157.04, + "end": 159.73, + "probability": 0.9587 + }, + { + "start": 160.7, + "end": 162.6, + "probability": 0.964 + }, + { + "start": 163.4, + "end": 166.1, + "probability": 0.9939 + }, + { + "start": 166.94, + "end": 171.18, + "probability": 0.9893 + }, + { + "start": 172.08, + "end": 175.5, + "probability": 0.9656 + }, + { + "start": 176.8, + "end": 184.26, + "probability": 0.9027 + }, + { + "start": 185.18, + "end": 189.28, + "probability": 0.9503 + }, + { + "start": 189.96, + "end": 191.04, + "probability": 0.7313 + }, + { + "start": 191.2, + "end": 194.39, + "probability": 0.7625 + }, + { + "start": 194.6, + "end": 197.74, + "probability": 0.5241 + }, + { + "start": 198.8, + "end": 202.66, + "probability": 0.5786 + }, + { + "start": 202.66, + "end": 207.24, + "probability": 0.927 + }, + { + "start": 207.69, + "end": 211.26, + "probability": 0.9365 + }, + { + "start": 212.2, + "end": 214.74, + "probability": 0.9673 + }, + { + "start": 215.4, + "end": 217.26, + "probability": 0.8102 + }, + { + "start": 217.92, + "end": 219.02, + "probability": 0.8478 + }, + { + "start": 219.16, + "end": 224.52, + "probability": 0.9929 + }, + { + "start": 225.52, + "end": 225.94, + "probability": 0.6714 + }, + { + "start": 226.06, + "end": 229.27, + "probability": 0.9836 + }, + { + "start": 230.34, + "end": 232.64, + "probability": 0.9952 + }, + { + "start": 233.42, + "end": 234.54, + "probability": 0.7504 + }, + { + "start": 234.7, + "end": 237.04, + "probability": 0.9946 + }, + { + "start": 237.66, + "end": 238.48, + "probability": 0.7569 + }, + { + "start": 238.64, + "end": 244.32, + "probability": 0.9932 + }, + { + "start": 246.02, + "end": 249.66, + "probability": 0.9876 + }, + { + "start": 250.42, + "end": 252.74, + "probability": 0.9951 + }, + { + "start": 252.82, + "end": 253.1, + "probability": 0.7583 + }, + { + "start": 253.2, + "end": 253.82, + "probability": 0.6779 + }, + { + "start": 254.76, + "end": 259.66, + "probability": 0.7508 + }, + { + "start": 259.78, + "end": 260.16, + "probability": 0.9545 + }, + { + "start": 260.16, + "end": 261.34, + "probability": 0.7265 + }, + { + "start": 262.52, + "end": 263.3, + "probability": 0.9901 + }, + { + "start": 265.52, + "end": 268.1, + "probability": 0.9271 + }, + { + "start": 268.1, + "end": 272.06, + "probability": 0.9996 + }, + { + "start": 272.74, + "end": 275.14, + "probability": 0.9971 + }, + { + "start": 275.14, + "end": 277.68, + "probability": 0.8804 + }, + { + "start": 278.22, + "end": 280.1, + "probability": 0.9592 + }, + { + "start": 280.7, + "end": 284.8, + "probability": 0.9845 + }, + { + "start": 284.8, + "end": 288.48, + "probability": 0.9975 + }, + { + "start": 289.18, + "end": 293.96, + "probability": 0.9903 + }, + { + "start": 294.78, + "end": 296.62, + "probability": 0.6412 + }, + { + "start": 297.22, + "end": 297.84, + "probability": 0.7405 + }, + { + "start": 297.84, + "end": 300.47, + "probability": 0.9913 + }, + { + "start": 300.5, + "end": 303.66, + "probability": 0.9904 + }, + { + "start": 304.48, + "end": 304.92, + "probability": 0.9141 + }, + { + "start": 305.04, + "end": 305.34, + "probability": 0.9444 + }, + { + "start": 305.58, + "end": 309.98, + "probability": 0.9907 + }, + { + "start": 310.9, + "end": 314.36, + "probability": 0.994 + }, + { + "start": 314.42, + "end": 316.94, + "probability": 0.9015 + }, + { + "start": 317.78, + "end": 319.2, + "probability": 0.9697 + }, + { + "start": 319.32, + "end": 322.86, + "probability": 0.9683 + }, + { + "start": 323.54, + "end": 324.0, + "probability": 0.602 + }, + { + "start": 324.0, + "end": 327.3, + "probability": 0.9183 + }, + { + "start": 327.98, + "end": 330.1, + "probability": 0.9467 + }, + { + "start": 330.1, + "end": 332.52, + "probability": 0.9953 + }, + { + "start": 334.0, + "end": 334.66, + "probability": 0.927 + }, + { + "start": 334.72, + "end": 337.96, + "probability": 0.995 + }, + { + "start": 338.68, + "end": 341.54, + "probability": 0.9631 + }, + { + "start": 341.84, + "end": 342.28, + "probability": 0.9331 + }, + { + "start": 343.72, + "end": 345.16, + "probability": 0.9627 + }, + { + "start": 345.9, + "end": 348.62, + "probability": 0.7905 + }, + { + "start": 348.7, + "end": 351.78, + "probability": 0.4666 + }, + { + "start": 351.94, + "end": 353.37, + "probability": 0.8301 + }, + { + "start": 353.56, + "end": 354.5, + "probability": 0.6145 + }, + { + "start": 354.88, + "end": 357.5, + "probability": 0.9958 + }, + { + "start": 357.56, + "end": 360.9, + "probability": 0.9946 + }, + { + "start": 361.58, + "end": 366.0, + "probability": 0.9281 + }, + { + "start": 366.12, + "end": 366.72, + "probability": 0.5633 + }, + { + "start": 367.42, + "end": 368.28, + "probability": 0.6635 + }, + { + "start": 368.8, + "end": 371.14, + "probability": 0.7942 + }, + { + "start": 371.86, + "end": 372.76, + "probability": 0.8034 + }, + { + "start": 372.84, + "end": 378.04, + "probability": 0.8029 + }, + { + "start": 378.96, + "end": 379.88, + "probability": 0.9019 + }, + { + "start": 380.66, + "end": 381.82, + "probability": 0.6315 + }, + { + "start": 381.82, + "end": 384.5, + "probability": 0.9832 + }, + { + "start": 384.62, + "end": 388.54, + "probability": 0.8268 + }, + { + "start": 389.02, + "end": 392.64, + "probability": 0.8525 + }, + { + "start": 392.78, + "end": 395.12, + "probability": 0.8044 + }, + { + "start": 396.22, + "end": 400.12, + "probability": 0.9871 + }, + { + "start": 400.12, + "end": 402.6, + "probability": 0.9971 + }, + { + "start": 403.24, + "end": 403.72, + "probability": 0.6459 + }, + { + "start": 403.84, + "end": 405.94, + "probability": 0.9804 + }, + { + "start": 406.6, + "end": 409.82, + "probability": 0.9829 + }, + { + "start": 410.48, + "end": 411.92, + "probability": 0.9954 + }, + { + "start": 411.98, + "end": 413.02, + "probability": 0.9907 + }, + { + "start": 413.1, + "end": 416.33, + "probability": 0.9569 + }, + { + "start": 416.6, + "end": 417.7, + "probability": 0.5208 + }, + { + "start": 417.96, + "end": 419.02, + "probability": 0.8943 + }, + { + "start": 419.42, + "end": 424.72, + "probability": 0.9823 + }, + { + "start": 426.16, + "end": 428.64, + "probability": 0.8659 + }, + { + "start": 429.62, + "end": 433.08, + "probability": 0.9029 + }, + { + "start": 433.74, + "end": 434.82, + "probability": 0.9375 + }, + { + "start": 434.86, + "end": 436.8, + "probability": 0.8703 + }, + { + "start": 437.5, + "end": 438.91, + "probability": 0.9175 + }, + { + "start": 439.56, + "end": 441.96, + "probability": 0.9765 + }, + { + "start": 441.96, + "end": 444.22, + "probability": 0.9955 + }, + { + "start": 444.3, + "end": 444.96, + "probability": 0.744 + }, + { + "start": 445.06, + "end": 446.22, + "probability": 0.9761 + }, + { + "start": 447.06, + "end": 448.56, + "probability": 0.9984 + }, + { + "start": 448.92, + "end": 449.88, + "probability": 0.9629 + }, + { + "start": 450.9, + "end": 452.12, + "probability": 0.8796 + }, + { + "start": 452.4, + "end": 454.56, + "probability": 0.7916 + }, + { + "start": 455.34, + "end": 457.58, + "probability": 0.9266 + }, + { + "start": 457.58, + "end": 459.68, + "probability": 0.9916 + }, + { + "start": 460.52, + "end": 462.3, + "probability": 0.9265 + }, + { + "start": 462.3, + "end": 466.54, + "probability": 0.8738 + }, + { + "start": 466.68, + "end": 466.84, + "probability": 0.4511 + }, + { + "start": 466.94, + "end": 469.46, + "probability": 0.9945 + }, + { + "start": 470.16, + "end": 471.68, + "probability": 0.8727 + }, + { + "start": 472.5, + "end": 473.8, + "probability": 0.9368 + }, + { + "start": 474.08, + "end": 477.64, + "probability": 0.9711 + }, + { + "start": 477.92, + "end": 483.12, + "probability": 0.9932 + }, + { + "start": 483.64, + "end": 485.48, + "probability": 0.9235 + }, + { + "start": 486.08, + "end": 487.4, + "probability": 0.9909 + }, + { + "start": 488.08, + "end": 490.0, + "probability": 0.9751 + }, + { + "start": 490.54, + "end": 494.24, + "probability": 0.9736 + }, + { + "start": 494.54, + "end": 497.14, + "probability": 0.769 + }, + { + "start": 497.94, + "end": 501.82, + "probability": 0.9002 + }, + { + "start": 502.36, + "end": 502.5, + "probability": 0.7334 + }, + { + "start": 502.64, + "end": 505.6, + "probability": 0.9877 + }, + { + "start": 505.81, + "end": 510.3, + "probability": 0.9917 + }, + { + "start": 511.1, + "end": 513.78, + "probability": 0.8849 + }, + { + "start": 514.34, + "end": 515.74, + "probability": 0.9744 + }, + { + "start": 515.8, + "end": 517.08, + "probability": 0.9546 + }, + { + "start": 517.6, + "end": 519.4, + "probability": 0.8958 + }, + { + "start": 520.58, + "end": 523.78, + "probability": 0.8921 + }, + { + "start": 523.98, + "end": 526.56, + "probability": 0.7116 + }, + { + "start": 527.18, + "end": 528.08, + "probability": 0.77 + }, + { + "start": 529.02, + "end": 529.02, + "probability": 0.1225 + }, + { + "start": 529.02, + "end": 529.22, + "probability": 0.3862 + }, + { + "start": 529.26, + "end": 530.98, + "probability": 0.95 + }, + { + "start": 531.08, + "end": 532.68, + "probability": 0.9784 + }, + { + "start": 533.56, + "end": 535.88, + "probability": 0.9532 + }, + { + "start": 536.52, + "end": 538.54, + "probability": 0.9969 + }, + { + "start": 539.26, + "end": 540.54, + "probability": 0.7399 + }, + { + "start": 540.72, + "end": 543.94, + "probability": 0.9935 + }, + { + "start": 544.36, + "end": 546.38, + "probability": 0.9753 + }, + { + "start": 547.16, + "end": 548.24, + "probability": 0.9351 + }, + { + "start": 549.6, + "end": 552.06, + "probability": 0.9661 + }, + { + "start": 552.7, + "end": 555.6, + "probability": 0.9913 + }, + { + "start": 556.16, + "end": 559.06, + "probability": 0.9393 + }, + { + "start": 559.64, + "end": 560.86, + "probability": 0.7708 + }, + { + "start": 561.44, + "end": 562.74, + "probability": 0.8451 + }, + { + "start": 562.86, + "end": 566.1, + "probability": 0.7341 + }, + { + "start": 566.24, + "end": 567.76, + "probability": 0.9186 + }, + { + "start": 568.32, + "end": 571.1, + "probability": 0.9945 + }, + { + "start": 571.74, + "end": 572.9, + "probability": 0.9653 + }, + { + "start": 572.9, + "end": 575.56, + "probability": 0.9885 + }, + { + "start": 576.28, + "end": 577.4, + "probability": 0.9527 + }, + { + "start": 578.06, + "end": 578.84, + "probability": 0.7218 + }, + { + "start": 578.9, + "end": 581.2, + "probability": 0.927 + }, + { + "start": 581.5, + "end": 582.16, + "probability": 0.9432 + }, + { + "start": 582.96, + "end": 586.38, + "probability": 0.9985 + }, + { + "start": 587.18, + "end": 589.28, + "probability": 0.9511 + }, + { + "start": 589.88, + "end": 590.52, + "probability": 0.8678 + }, + { + "start": 590.6, + "end": 593.52, + "probability": 0.9836 + }, + { + "start": 594.3, + "end": 596.3, + "probability": 0.9828 + }, + { + "start": 596.52, + "end": 597.5, + "probability": 0.9676 + }, + { + "start": 597.88, + "end": 600.73, + "probability": 0.8604 + }, + { + "start": 601.24, + "end": 602.6, + "probability": 0.9027 + }, + { + "start": 603.38, + "end": 604.24, + "probability": 0.949 + }, + { + "start": 604.4, + "end": 606.68, + "probability": 0.9012 + }, + { + "start": 606.74, + "end": 609.32, + "probability": 0.9038 + }, + { + "start": 609.86, + "end": 613.04, + "probability": 0.9301 + }, + { + "start": 613.04, + "end": 616.6, + "probability": 0.9961 + }, + { + "start": 617.18, + "end": 617.62, + "probability": 0.3931 + }, + { + "start": 617.74, + "end": 620.44, + "probability": 0.9867 + }, + { + "start": 620.92, + "end": 622.72, + "probability": 0.8782 + }, + { + "start": 623.28, + "end": 625.48, + "probability": 0.9434 + }, + { + "start": 626.04, + "end": 628.68, + "probability": 0.9806 + }, + { + "start": 629.28, + "end": 630.64, + "probability": 0.9782 + }, + { + "start": 630.72, + "end": 631.34, + "probability": 0.8748 + }, + { + "start": 631.38, + "end": 634.6, + "probability": 0.9839 + }, + { + "start": 634.6, + "end": 637.48, + "probability": 0.9744 + }, + { + "start": 638.38, + "end": 639.1, + "probability": 0.6844 + }, + { + "start": 639.38, + "end": 639.5, + "probability": 0.0611 + }, + { + "start": 639.5, + "end": 642.42, + "probability": 0.9715 + }, + { + "start": 642.52, + "end": 643.1, + "probability": 0.8082 + }, + { + "start": 643.24, + "end": 646.6, + "probability": 0.9747 + }, + { + "start": 648.08, + "end": 649.46, + "probability": 0.8038 + }, + { + "start": 649.56, + "end": 653.24, + "probability": 0.9264 + }, + { + "start": 653.6, + "end": 654.52, + "probability": 0.6186 + }, + { + "start": 655.06, + "end": 656.06, + "probability": 0.9667 + }, + { + "start": 656.74, + "end": 658.7, + "probability": 0.7775 + }, + { + "start": 658.84, + "end": 661.86, + "probability": 0.9126 + }, + { + "start": 661.9, + "end": 663.18, + "probability": 0.9768 + }, + { + "start": 663.72, + "end": 665.74, + "probability": 0.9131 + }, + { + "start": 666.16, + "end": 666.54, + "probability": 0.8579 + }, + { + "start": 666.56, + "end": 667.46, + "probability": 0.9955 + }, + { + "start": 667.5, + "end": 673.72, + "probability": 0.9668 + }, + { + "start": 674.62, + "end": 676.58, + "probability": 0.9338 + }, + { + "start": 677.3, + "end": 678.38, + "probability": 0.8636 + }, + { + "start": 678.44, + "end": 682.38, + "probability": 0.9883 + }, + { + "start": 682.88, + "end": 685.58, + "probability": 0.3469 + }, + { + "start": 685.76, + "end": 686.56, + "probability": 0.8367 + }, + { + "start": 686.94, + "end": 690.02, + "probability": 0.978 + }, + { + "start": 690.08, + "end": 694.42, + "probability": 0.9188 + }, + { + "start": 694.58, + "end": 694.92, + "probability": 0.3153 + }, + { + "start": 695.02, + "end": 695.28, + "probability": 0.3639 + }, + { + "start": 695.28, + "end": 695.28, + "probability": 0.3542 + }, + { + "start": 695.28, + "end": 699.34, + "probability": 0.9525 + }, + { + "start": 699.94, + "end": 705.5, + "probability": 0.9675 + }, + { + "start": 706.18, + "end": 707.5, + "probability": 0.9369 + }, + { + "start": 707.66, + "end": 709.66, + "probability": 0.8679 + }, + { + "start": 710.54, + "end": 713.24, + "probability": 0.7939 + }, + { + "start": 713.36, + "end": 718.72, + "probability": 0.9152 + }, + { + "start": 719.42, + "end": 722.02, + "probability": 0.9676 + }, + { + "start": 722.42, + "end": 729.18, + "probability": 0.9963 + }, + { + "start": 729.94, + "end": 734.14, + "probability": 0.9641 + }, + { + "start": 734.8, + "end": 736.78, + "probability": 0.9529 + }, + { + "start": 737.6, + "end": 737.82, + "probability": 0.6115 + }, + { + "start": 737.88, + "end": 739.16, + "probability": 0.5478 + }, + { + "start": 739.32, + "end": 740.42, + "probability": 0.4009 + }, + { + "start": 740.64, + "end": 743.46, + "probability": 0.9281 + }, + { + "start": 748.82, + "end": 750.56, + "probability": 0.6943 + }, + { + "start": 751.32, + "end": 754.68, + "probability": 0.9851 + }, + { + "start": 755.84, + "end": 756.32, + "probability": 0.9263 + }, + { + "start": 757.34, + "end": 757.98, + "probability": 0.9553 + }, + { + "start": 758.86, + "end": 761.46, + "probability": 0.9985 + }, + { + "start": 762.62, + "end": 768.38, + "probability": 0.9959 + }, + { + "start": 768.38, + "end": 773.28, + "probability": 0.9986 + }, + { + "start": 773.38, + "end": 774.76, + "probability": 0.9725 + }, + { + "start": 774.9, + "end": 776.08, + "probability": 0.9438 + }, + { + "start": 776.78, + "end": 777.18, + "probability": 0.6792 + }, + { + "start": 778.64, + "end": 780.02, + "probability": 0.9904 + }, + { + "start": 781.98, + "end": 783.06, + "probability": 0.9615 + }, + { + "start": 783.12, + "end": 784.36, + "probability": 0.8557 + }, + { + "start": 784.4, + "end": 786.1, + "probability": 0.9813 + }, + { + "start": 787.52, + "end": 789.7, + "probability": 0.6456 + }, + { + "start": 791.1, + "end": 792.1, + "probability": 0.8756 + }, + { + "start": 792.58, + "end": 794.6, + "probability": 0.9771 + }, + { + "start": 796.38, + "end": 798.9, + "probability": 0.9096 + }, + { + "start": 799.52, + "end": 799.94, + "probability": 0.5186 + }, + { + "start": 800.88, + "end": 804.94, + "probability": 0.8699 + }, + { + "start": 805.04, + "end": 807.04, + "probability": 0.9807 + }, + { + "start": 808.22, + "end": 810.62, + "probability": 0.9857 + }, + { + "start": 810.68, + "end": 811.64, + "probability": 0.9771 + }, + { + "start": 811.88, + "end": 812.92, + "probability": 0.6397 + }, + { + "start": 813.74, + "end": 817.7, + "probability": 0.8997 + }, + { + "start": 818.84, + "end": 823.18, + "probability": 0.8968 + }, + { + "start": 823.98, + "end": 825.64, + "probability": 0.9628 + }, + { + "start": 826.34, + "end": 829.8, + "probability": 0.9898 + }, + { + "start": 829.8, + "end": 835.12, + "probability": 0.9847 + }, + { + "start": 835.2, + "end": 838.58, + "probability": 0.9399 + }, + { + "start": 839.28, + "end": 842.08, + "probability": 0.9239 + }, + { + "start": 842.22, + "end": 842.52, + "probability": 0.8776 + }, + { + "start": 842.58, + "end": 843.48, + "probability": 0.8796 + }, + { + "start": 843.64, + "end": 846.64, + "probability": 0.7574 + }, + { + "start": 847.8, + "end": 848.8, + "probability": 0.7796 + }, + { + "start": 849.4, + "end": 851.0, + "probability": 0.9902 + }, + { + "start": 851.1, + "end": 857.3, + "probability": 0.9805 + }, + { + "start": 857.8, + "end": 859.84, + "probability": 0.9653 + }, + { + "start": 860.36, + "end": 861.02, + "probability": 0.6309 + }, + { + "start": 861.44, + "end": 862.29, + "probability": 0.8052 + }, + { + "start": 862.78, + "end": 863.62, + "probability": 0.7136 + }, + { + "start": 863.62, + "end": 864.12, + "probability": 0.7366 + }, + { + "start": 864.24, + "end": 864.94, + "probability": 0.5897 + }, + { + "start": 865.34, + "end": 870.62, + "probability": 0.9956 + }, + { + "start": 871.18, + "end": 875.14, + "probability": 0.536 + }, + { + "start": 875.58, + "end": 877.38, + "probability": 0.5935 + }, + { + "start": 877.94, + "end": 879.46, + "probability": 0.6748 + }, + { + "start": 879.46, + "end": 880.44, + "probability": 0.0247 + }, + { + "start": 881.96, + "end": 884.58, + "probability": 0.8099 + }, + { + "start": 884.8, + "end": 886.66, + "probability": 0.9807 + }, + { + "start": 887.1, + "end": 888.36, + "probability": 0.7898 + }, + { + "start": 889.04, + "end": 893.88, + "probability": 0.9817 + }, + { + "start": 894.64, + "end": 896.88, + "probability": 0.9927 + }, + { + "start": 897.2, + "end": 900.14, + "probability": 0.9884 + }, + { + "start": 900.72, + "end": 904.24, + "probability": 0.9988 + }, + { + "start": 904.32, + "end": 905.07, + "probability": 0.811 + }, + { + "start": 905.36, + "end": 906.6, + "probability": 0.8343 + }, + { + "start": 907.14, + "end": 910.2, + "probability": 0.992 + }, + { + "start": 910.2, + "end": 913.9, + "probability": 0.8774 + }, + { + "start": 914.34, + "end": 915.12, + "probability": 0.9551 + }, + { + "start": 915.18, + "end": 917.0, + "probability": 0.9581 + }, + { + "start": 917.12, + "end": 918.08, + "probability": 0.9906 + }, + { + "start": 918.62, + "end": 920.06, + "probability": 0.895 + }, + { + "start": 920.64, + "end": 926.64, + "probability": 0.8886 + }, + { + "start": 927.16, + "end": 927.9, + "probability": 0.9961 + }, + { + "start": 928.72, + "end": 931.62, + "probability": 0.9532 + }, + { + "start": 932.04, + "end": 934.82, + "probability": 0.9695 + }, + { + "start": 934.92, + "end": 935.6, + "probability": 0.9064 + }, + { + "start": 935.64, + "end": 936.84, + "probability": 0.9886 + }, + { + "start": 937.2, + "end": 938.24, + "probability": 0.9116 + }, + { + "start": 938.56, + "end": 942.2, + "probability": 0.7673 + }, + { + "start": 943.06, + "end": 943.3, + "probability": 0.3158 + }, + { + "start": 943.32, + "end": 944.58, + "probability": 0.7884 + }, + { + "start": 944.84, + "end": 946.06, + "probability": 0.9129 + }, + { + "start": 946.38, + "end": 946.78, + "probability": 0.8998 + }, + { + "start": 959.98, + "end": 961.19, + "probability": 0.7588 + }, + { + "start": 961.5, + "end": 962.64, + "probability": 0.889 + }, + { + "start": 962.72, + "end": 964.54, + "probability": 0.9319 + }, + { + "start": 964.6, + "end": 965.14, + "probability": 0.9476 + }, + { + "start": 965.22, + "end": 967.5, + "probability": 0.9857 + }, + { + "start": 967.54, + "end": 970.06, + "probability": 0.9761 + }, + { + "start": 970.72, + "end": 972.38, + "probability": 0.9165 + }, + { + "start": 973.0, + "end": 974.72, + "probability": 0.9253 + }, + { + "start": 975.18, + "end": 975.54, + "probability": 0.4684 + }, + { + "start": 975.8, + "end": 982.0, + "probability": 0.9917 + }, + { + "start": 982.52, + "end": 983.98, + "probability": 0.9762 + }, + { + "start": 984.78, + "end": 985.6, + "probability": 0.9775 + }, + { + "start": 985.88, + "end": 988.54, + "probability": 0.9908 + }, + { + "start": 988.62, + "end": 989.58, + "probability": 0.824 + }, + { + "start": 989.66, + "end": 990.44, + "probability": 0.5007 + }, + { + "start": 991.12, + "end": 992.3, + "probability": 0.9311 + }, + { + "start": 993.1, + "end": 993.98, + "probability": 0.6804 + }, + { + "start": 994.04, + "end": 994.96, + "probability": 0.8269 + }, + { + "start": 994.98, + "end": 996.08, + "probability": 0.4196 + }, + { + "start": 996.22, + "end": 996.76, + "probability": 0.9641 + }, + { + "start": 996.96, + "end": 997.14, + "probability": 0.8914 + }, + { + "start": 997.68, + "end": 999.78, + "probability": 0.9449 + }, + { + "start": 1000.04, + "end": 1002.22, + "probability": 0.7123 + }, + { + "start": 1002.64, + "end": 1005.48, + "probability": 0.8707 + }, + { + "start": 1005.64, + "end": 1006.1, + "probability": 0.9037 + }, + { + "start": 1006.18, + "end": 1006.66, + "probability": 0.8558 + }, + { + "start": 1006.72, + "end": 1011.16, + "probability": 0.9749 + }, + { + "start": 1012.64, + "end": 1016.9, + "probability": 0.9902 + }, + { + "start": 1017.04, + "end": 1018.76, + "probability": 0.6127 + }, + { + "start": 1018.98, + "end": 1021.72, + "probability": 0.92 + }, + { + "start": 1021.82, + "end": 1025.58, + "probability": 0.9958 + }, + { + "start": 1025.64, + "end": 1027.48, + "probability": 0.9868 + }, + { + "start": 1027.56, + "end": 1027.86, + "probability": 0.721 + }, + { + "start": 1028.18, + "end": 1028.54, + "probability": 0.7339 + }, + { + "start": 1028.62, + "end": 1029.8, + "probability": 0.7689 + }, + { + "start": 1029.92, + "end": 1031.48, + "probability": 0.8368 + }, + { + "start": 1031.62, + "end": 1032.54, + "probability": 0.7016 + }, + { + "start": 1032.7, + "end": 1035.88, + "probability": 0.9811 + }, + { + "start": 1035.88, + "end": 1039.24, + "probability": 0.791 + }, + { + "start": 1040.9, + "end": 1044.32, + "probability": 0.984 + }, + { + "start": 1044.48, + "end": 1045.94, + "probability": 0.7422 + }, + { + "start": 1046.1, + "end": 1047.32, + "probability": 0.9923 + }, + { + "start": 1047.42, + "end": 1048.3, + "probability": 0.6338 + }, + { + "start": 1048.72, + "end": 1048.82, + "probability": 0.8218 + }, + { + "start": 1049.46, + "end": 1052.58, + "probability": 0.9784 + }, + { + "start": 1053.04, + "end": 1054.66, + "probability": 0.974 + }, + { + "start": 1055.28, + "end": 1056.72, + "probability": 0.6554 + }, + { + "start": 1057.22, + "end": 1059.8, + "probability": 0.9633 + }, + { + "start": 1060.62, + "end": 1062.56, + "probability": 0.6272 + }, + { + "start": 1063.58, + "end": 1067.5, + "probability": 0.9857 + }, + { + "start": 1067.62, + "end": 1074.96, + "probability": 0.9694 + }, + { + "start": 1075.08, + "end": 1075.76, + "probability": 0.7431 + }, + { + "start": 1077.06, + "end": 1082.22, + "probability": 0.9541 + }, + { + "start": 1083.88, + "end": 1084.77, + "probability": 0.9797 + }, + { + "start": 1085.78, + "end": 1088.44, + "probability": 0.9921 + }, + { + "start": 1089.46, + "end": 1090.12, + "probability": 0.8368 + }, + { + "start": 1090.34, + "end": 1096.82, + "probability": 0.9558 + }, + { + "start": 1097.68, + "end": 1101.42, + "probability": 0.9174 + }, + { + "start": 1101.96, + "end": 1106.96, + "probability": 0.9887 + }, + { + "start": 1107.08, + "end": 1108.66, + "probability": 0.9789 + }, + { + "start": 1109.32, + "end": 1112.36, + "probability": 0.9266 + }, + { + "start": 1113.06, + "end": 1114.74, + "probability": 0.9767 + }, + { + "start": 1115.62, + "end": 1119.5, + "probability": 0.966 + }, + { + "start": 1120.36, + "end": 1122.38, + "probability": 0.986 + }, + { + "start": 1123.62, + "end": 1130.2, + "probability": 0.9759 + }, + { + "start": 1130.6, + "end": 1131.32, + "probability": 0.7278 + }, + { + "start": 1131.46, + "end": 1132.32, + "probability": 0.8726 + }, + { + "start": 1133.48, + "end": 1134.8, + "probability": 0.9337 + }, + { + "start": 1135.42, + "end": 1138.7, + "probability": 0.9885 + }, + { + "start": 1138.7, + "end": 1142.28, + "probability": 0.9966 + }, + { + "start": 1142.84, + "end": 1144.98, + "probability": 0.7267 + }, + { + "start": 1145.86, + "end": 1148.78, + "probability": 0.9953 + }, + { + "start": 1149.72, + "end": 1150.78, + "probability": 0.6071 + }, + { + "start": 1151.38, + "end": 1155.94, + "probability": 0.9394 + }, + { + "start": 1156.22, + "end": 1158.5, + "probability": 0.9427 + }, + { + "start": 1159.08, + "end": 1161.92, + "probability": 0.9819 + }, + { + "start": 1162.0, + "end": 1162.68, + "probability": 0.8647 + }, + { + "start": 1162.74, + "end": 1164.07, + "probability": 0.9093 + }, + { + "start": 1165.34, + "end": 1168.06, + "probability": 0.9868 + }, + { + "start": 1168.58, + "end": 1169.06, + "probability": 0.1304 + }, + { + "start": 1169.86, + "end": 1171.24, + "probability": 0.7938 + }, + { + "start": 1171.84, + "end": 1174.08, + "probability": 0.9208 + }, + { + "start": 1174.16, + "end": 1176.7, + "probability": 0.9099 + }, + { + "start": 1177.5, + "end": 1183.42, + "probability": 0.9026 + }, + { + "start": 1184.18, + "end": 1185.88, + "probability": 0.986 + }, + { + "start": 1187.02, + "end": 1187.06, + "probability": 0.5616 + }, + { + "start": 1187.18, + "end": 1188.08, + "probability": 0.8729 + }, + { + "start": 1188.16, + "end": 1195.6, + "probability": 0.9895 + }, + { + "start": 1196.4, + "end": 1198.24, + "probability": 0.4298 + }, + { + "start": 1198.34, + "end": 1199.18, + "probability": 0.6445 + }, + { + "start": 1200.0, + "end": 1202.52, + "probability": 0.0185 + }, + { + "start": 1202.87, + "end": 1205.16, + "probability": 0.7843 + }, + { + "start": 1205.48, + "end": 1207.82, + "probability": 0.9836 + }, + { + "start": 1208.18, + "end": 1210.84, + "probability": 0.9044 + }, + { + "start": 1211.48, + "end": 1214.16, + "probability": 0.8535 + }, + { + "start": 1214.16, + "end": 1218.62, + "probability": 0.9553 + }, + { + "start": 1219.12, + "end": 1220.58, + "probability": 0.9792 + }, + { + "start": 1220.9, + "end": 1222.2, + "probability": 0.884 + }, + { + "start": 1223.2, + "end": 1227.74, + "probability": 0.1897 + }, + { + "start": 1227.74, + "end": 1229.76, + "probability": 0.1734 + }, + { + "start": 1230.46, + "end": 1236.02, + "probability": 0.6528 + }, + { + "start": 1236.02, + "end": 1239.42, + "probability": 0.9928 + }, + { + "start": 1239.94, + "end": 1242.5, + "probability": 0.8919 + }, + { + "start": 1243.04, + "end": 1244.46, + "probability": 0.9941 + }, + { + "start": 1244.52, + "end": 1246.12, + "probability": 0.9941 + }, + { + "start": 1246.94, + "end": 1247.92, + "probability": 0.9855 + }, + { + "start": 1248.0, + "end": 1249.68, + "probability": 0.9698 + }, + { + "start": 1249.68, + "end": 1250.52, + "probability": 0.9211 + }, + { + "start": 1251.2, + "end": 1251.8, + "probability": 0.618 + }, + { + "start": 1252.14, + "end": 1254.3, + "probability": 0.9033 + }, + { + "start": 1254.4, + "end": 1258.88, + "probability": 0.9829 + }, + { + "start": 1259.7, + "end": 1261.56, + "probability": 0.9057 + }, + { + "start": 1261.7, + "end": 1265.16, + "probability": 0.9629 + }, + { + "start": 1265.2, + "end": 1266.72, + "probability": 0.9548 + }, + { + "start": 1267.12, + "end": 1269.36, + "probability": 0.9482 + }, + { + "start": 1269.76, + "end": 1271.26, + "probability": 0.6615 + }, + { + "start": 1271.76, + "end": 1274.08, + "probability": 0.8269 + }, + { + "start": 1274.8, + "end": 1276.96, + "probability": 0.9325 + }, + { + "start": 1277.38, + "end": 1279.54, + "probability": 0.9964 + }, + { + "start": 1279.62, + "end": 1281.34, + "probability": 0.9939 + }, + { + "start": 1281.58, + "end": 1282.38, + "probability": 0.7913 + }, + { + "start": 1282.94, + "end": 1284.45, + "probability": 0.864 + }, + { + "start": 1284.98, + "end": 1285.34, + "probability": 0.5998 + }, + { + "start": 1285.52, + "end": 1287.0, + "probability": 0.9631 + }, + { + "start": 1287.06, + "end": 1291.22, + "probability": 0.2135 + }, + { + "start": 1291.24, + "end": 1293.14, + "probability": 0.4836 + }, + { + "start": 1293.44, + "end": 1295.38, + "probability": 0.0203 + }, + { + "start": 1295.4, + "end": 1297.68, + "probability": 0.9779 + }, + { + "start": 1297.68, + "end": 1300.26, + "probability": 0.9877 + }, + { + "start": 1300.88, + "end": 1302.08, + "probability": 0.7381 + }, + { + "start": 1302.18, + "end": 1303.64, + "probability": 0.7668 + }, + { + "start": 1304.32, + "end": 1306.88, + "probability": 0.9855 + }, + { + "start": 1307.52, + "end": 1311.58, + "probability": 0.9637 + }, + { + "start": 1312.04, + "end": 1315.46, + "probability": 0.9905 + }, + { + "start": 1316.74, + "end": 1321.04, + "probability": 0.9912 + }, + { + "start": 1321.26, + "end": 1323.9, + "probability": 0.9781 + }, + { + "start": 1324.66, + "end": 1325.5, + "probability": 0.9601 + }, + { + "start": 1325.88, + "end": 1329.5, + "probability": 0.8546 + }, + { + "start": 1329.58, + "end": 1330.12, + "probability": 0.9592 + }, + { + "start": 1330.26, + "end": 1332.86, + "probability": 0.6855 + }, + { + "start": 1333.02, + "end": 1334.12, + "probability": 0.7278 + }, + { + "start": 1334.26, + "end": 1335.02, + "probability": 0.894 + }, + { + "start": 1335.78, + "end": 1337.3, + "probability": 0.9938 + }, + { + "start": 1337.98, + "end": 1338.52, + "probability": 0.8182 + }, + { + "start": 1338.58, + "end": 1339.7, + "probability": 0.8747 + }, + { + "start": 1339.84, + "end": 1341.5, + "probability": 0.9932 + }, + { + "start": 1342.26, + "end": 1343.54, + "probability": 0.9747 + }, + { + "start": 1344.26, + "end": 1346.14, + "probability": 0.5012 + }, + { + "start": 1346.94, + "end": 1350.06, + "probability": 0.8893 + }, + { + "start": 1350.18, + "end": 1351.18, + "probability": 0.9421 + }, + { + "start": 1352.06, + "end": 1354.54, + "probability": 0.6376 + }, + { + "start": 1355.14, + "end": 1356.36, + "probability": 0.7087 + }, + { + "start": 1356.78, + "end": 1358.7, + "probability": 0.9987 + }, + { + "start": 1358.7, + "end": 1362.2, + "probability": 0.8706 + }, + { + "start": 1362.26, + "end": 1364.7, + "probability": 0.9968 + }, + { + "start": 1366.9, + "end": 1370.42, + "probability": 0.4206 + }, + { + "start": 1370.78, + "end": 1371.4, + "probability": 0.532 + }, + { + "start": 1371.5, + "end": 1374.22, + "probability": 0.8149 + }, + { + "start": 1374.26, + "end": 1376.26, + "probability": 0.7135 + }, + { + "start": 1376.46, + "end": 1380.72, + "probability": 0.5299 + }, + { + "start": 1381.1, + "end": 1384.46, + "probability": 0.5656 + }, + { + "start": 1384.66, + "end": 1385.62, + "probability": 0.1089 + }, + { + "start": 1385.82, + "end": 1385.9, + "probability": 0.1808 + }, + { + "start": 1386.48, + "end": 1388.44, + "probability": 0.5038 + }, + { + "start": 1388.62, + "end": 1394.92, + "probability": 0.9817 + }, + { + "start": 1395.4, + "end": 1396.86, + "probability": 0.7519 + }, + { + "start": 1397.34, + "end": 1402.5, + "probability": 0.9979 + }, + { + "start": 1403.82, + "end": 1404.92, + "probability": 0.0205 + }, + { + "start": 1404.94, + "end": 1406.64, + "probability": 0.7988 + }, + { + "start": 1407.22, + "end": 1411.42, + "probability": 0.9552 + }, + { + "start": 1411.88, + "end": 1414.18, + "probability": 0.9983 + }, + { + "start": 1414.8, + "end": 1415.34, + "probability": 0.9432 + }, + { + "start": 1415.4, + "end": 1416.06, + "probability": 0.9663 + }, + { + "start": 1416.24, + "end": 1419.44, + "probability": 0.9878 + }, + { + "start": 1419.94, + "end": 1420.6, + "probability": 0.8198 + }, + { + "start": 1421.38, + "end": 1423.04, + "probability": 0.3922 + }, + { + "start": 1423.04, + "end": 1423.46, + "probability": 0.6848 + }, + { + "start": 1424.26, + "end": 1426.0, + "probability": 0.9948 + }, + { + "start": 1426.08, + "end": 1427.48, + "probability": 0.995 + }, + { + "start": 1427.56, + "end": 1428.42, + "probability": 0.7389 + }, + { + "start": 1428.62, + "end": 1431.46, + "probability": 0.5927 + }, + { + "start": 1431.76, + "end": 1432.88, + "probability": 0.4134 + }, + { + "start": 1432.98, + "end": 1434.26, + "probability": 0.5259 + }, + { + "start": 1434.26, + "end": 1438.78, + "probability": 0.9601 + }, + { + "start": 1440.4, + "end": 1442.74, + "probability": 0.9482 + }, + { + "start": 1444.84, + "end": 1446.9, + "probability": 0.9808 + }, + { + "start": 1447.96, + "end": 1452.88, + "probability": 0.9749 + }, + { + "start": 1452.98, + "end": 1456.89, + "probability": 0.9782 + }, + { + "start": 1458.18, + "end": 1460.4, + "probability": 0.9915 + }, + { + "start": 1460.78, + "end": 1464.74, + "probability": 0.7382 + }, + { + "start": 1465.58, + "end": 1467.34, + "probability": 0.6624 + }, + { + "start": 1467.64, + "end": 1469.32, + "probability": 0.7206 + }, + { + "start": 1470.02, + "end": 1473.18, + "probability": 0.9512 + }, + { + "start": 1473.76, + "end": 1474.5, + "probability": 0.6881 + }, + { + "start": 1475.1, + "end": 1476.94, + "probability": 0.9571 + }, + { + "start": 1477.0, + "end": 1477.66, + "probability": 0.7205 + }, + { + "start": 1477.82, + "end": 1481.44, + "probability": 0.9987 + }, + { + "start": 1482.16, + "end": 1483.17, + "probability": 0.9043 + }, + { + "start": 1484.34, + "end": 1487.0, + "probability": 0.9738 + }, + { + "start": 1487.14, + "end": 1488.84, + "probability": 0.9983 + }, + { + "start": 1490.14, + "end": 1491.72, + "probability": 0.705 + }, + { + "start": 1492.14, + "end": 1493.48, + "probability": 0.9949 + }, + { + "start": 1493.98, + "end": 1497.94, + "probability": 0.9457 + }, + { + "start": 1498.48, + "end": 1499.6, + "probability": 0.5095 + }, + { + "start": 1500.1, + "end": 1503.14, + "probability": 0.9603 + }, + { + "start": 1504.87, + "end": 1507.06, + "probability": 0.7489 + }, + { + "start": 1507.84, + "end": 1511.66, + "probability": 0.9903 + }, + { + "start": 1512.48, + "end": 1513.52, + "probability": 0.9827 + }, + { + "start": 1513.8, + "end": 1516.52, + "probability": 0.9902 + }, + { + "start": 1517.12, + "end": 1522.46, + "probability": 0.9888 + }, + { + "start": 1522.72, + "end": 1523.74, + "probability": 0.9883 + }, + { + "start": 1524.26, + "end": 1527.32, + "probability": 0.9984 + }, + { + "start": 1527.32, + "end": 1529.74, + "probability": 0.9952 + }, + { + "start": 1530.1, + "end": 1531.3, + "probability": 0.9395 + }, + { + "start": 1531.42, + "end": 1533.62, + "probability": 0.9954 + }, + { + "start": 1534.32, + "end": 1537.24, + "probability": 0.9294 + }, + { + "start": 1538.2, + "end": 1543.28, + "probability": 0.9969 + }, + { + "start": 1543.74, + "end": 1546.1, + "probability": 0.853 + }, + { + "start": 1546.1, + "end": 1548.82, + "probability": 0.9845 + }, + { + "start": 1548.9, + "end": 1549.78, + "probability": 0.9139 + }, + { + "start": 1549.9, + "end": 1552.28, + "probability": 0.9819 + }, + { + "start": 1553.71, + "end": 1556.54, + "probability": 0.6184 + }, + { + "start": 1556.54, + "end": 1558.86, + "probability": 0.9554 + }, + { + "start": 1559.44, + "end": 1560.98, + "probability": 0.9876 + }, + { + "start": 1560.98, + "end": 1563.36, + "probability": 0.9943 + }, + { + "start": 1563.44, + "end": 1564.08, + "probability": 0.7727 + }, + { + "start": 1565.62, + "end": 1568.96, + "probability": 0.972 + }, + { + "start": 1569.48, + "end": 1571.76, + "probability": 0.896 + }, + { + "start": 1572.04, + "end": 1573.92, + "probability": 0.9641 + }, + { + "start": 1574.7, + "end": 1576.18, + "probability": 0.9236 + }, + { + "start": 1576.3, + "end": 1579.85, + "probability": 0.9841 + }, + { + "start": 1580.46, + "end": 1584.76, + "probability": 0.9589 + }, + { + "start": 1585.0, + "end": 1588.72, + "probability": 0.9757 + }, + { + "start": 1589.2, + "end": 1591.42, + "probability": 0.3645 + }, + { + "start": 1591.82, + "end": 1593.12, + "probability": 0.9448 + }, + { + "start": 1593.14, + "end": 1597.24, + "probability": 0.9942 + }, + { + "start": 1598.06, + "end": 1598.9, + "probability": 0.8417 + }, + { + "start": 1607.56, + "end": 1609.26, + "probability": 0.8304 + }, + { + "start": 1610.48, + "end": 1614.26, + "probability": 0.8791 + }, + { + "start": 1614.8, + "end": 1616.42, + "probability": 0.807 + }, + { + "start": 1616.42, + "end": 1621.12, + "probability": 0.9144 + }, + { + "start": 1621.5, + "end": 1624.01, + "probability": 0.9712 + }, + { + "start": 1625.76, + "end": 1627.56, + "probability": 0.9836 + }, + { + "start": 1627.62, + "end": 1628.46, + "probability": 0.7942 + }, + { + "start": 1628.58, + "end": 1630.22, + "probability": 0.6552 + }, + { + "start": 1630.38, + "end": 1632.0, + "probability": 0.8564 + }, + { + "start": 1632.08, + "end": 1634.7, + "probability": 0.9113 + }, + { + "start": 1634.74, + "end": 1635.16, + "probability": 0.854 + }, + { + "start": 1635.32, + "end": 1639.16, + "probability": 0.9885 + }, + { + "start": 1639.7, + "end": 1644.34, + "probability": 0.9915 + }, + { + "start": 1644.88, + "end": 1648.82, + "probability": 0.996 + }, + { + "start": 1649.3, + "end": 1652.06, + "probability": 0.8702 + }, + { + "start": 1652.68, + "end": 1654.58, + "probability": 0.3194 + }, + { + "start": 1655.66, + "end": 1660.54, + "probability": 0.9868 + }, + { + "start": 1660.68, + "end": 1666.76, + "probability": 0.9974 + }, + { + "start": 1667.91, + "end": 1671.76, + "probability": 0.9421 + }, + { + "start": 1671.84, + "end": 1674.2, + "probability": 0.827 + }, + { + "start": 1674.94, + "end": 1677.94, + "probability": 0.7671 + }, + { + "start": 1678.04, + "end": 1683.32, + "probability": 0.9922 + }, + { + "start": 1684.12, + "end": 1687.7, + "probability": 0.9966 + }, + { + "start": 1688.7, + "end": 1690.58, + "probability": 0.9973 + }, + { + "start": 1690.58, + "end": 1692.92, + "probability": 0.9905 + }, + { + "start": 1693.0, + "end": 1695.68, + "probability": 0.9985 + }, + { + "start": 1695.82, + "end": 1696.24, + "probability": 0.4513 + }, + { + "start": 1696.52, + "end": 1702.36, + "probability": 0.9901 + }, + { + "start": 1702.5, + "end": 1705.88, + "probability": 0.8394 + }, + { + "start": 1706.26, + "end": 1709.46, + "probability": 0.9976 + }, + { + "start": 1709.64, + "end": 1711.48, + "probability": 0.9415 + }, + { + "start": 1711.56, + "end": 1716.94, + "probability": 0.9856 + }, + { + "start": 1717.0, + "end": 1719.14, + "probability": 0.9897 + }, + { + "start": 1719.7, + "end": 1720.18, + "probability": 0.7623 + }, + { + "start": 1720.3, + "end": 1724.74, + "probability": 0.9759 + }, + { + "start": 1724.82, + "end": 1727.68, + "probability": 0.9712 + }, + { + "start": 1727.84, + "end": 1732.72, + "probability": 0.8305 + }, + { + "start": 1732.82, + "end": 1736.92, + "probability": 0.996 + }, + { + "start": 1737.5, + "end": 1742.0, + "probability": 0.9976 + }, + { + "start": 1742.54, + "end": 1744.28, + "probability": 0.968 + }, + { + "start": 1744.48, + "end": 1745.76, + "probability": 0.8 + }, + { + "start": 1746.1, + "end": 1750.26, + "probability": 0.9907 + }, + { + "start": 1750.88, + "end": 1754.96, + "probability": 0.9956 + }, + { + "start": 1755.14, + "end": 1759.08, + "probability": 0.9928 + }, + { + "start": 1759.9, + "end": 1762.14, + "probability": 0.9788 + }, + { + "start": 1762.76, + "end": 1766.5, + "probability": 0.7812 + }, + { + "start": 1766.5, + "end": 1769.46, + "probability": 0.9971 + }, + { + "start": 1769.8, + "end": 1771.9, + "probability": 0.9723 + }, + { + "start": 1772.08, + "end": 1773.8, + "probability": 0.9962 + }, + { + "start": 1774.28, + "end": 1776.68, + "probability": 0.9961 + }, + { + "start": 1776.86, + "end": 1778.02, + "probability": 0.962 + }, + { + "start": 1778.62, + "end": 1781.06, + "probability": 0.6417 + }, + { + "start": 1781.22, + "end": 1782.2, + "probability": 0.7457 + }, + { + "start": 1782.54, + "end": 1788.62, + "probability": 0.917 + }, + { + "start": 1789.08, + "end": 1791.92, + "probability": 0.9609 + }, + { + "start": 1791.92, + "end": 1796.44, + "probability": 0.5005 + }, + { + "start": 1796.78, + "end": 1801.16, + "probability": 0.8687 + }, + { + "start": 1801.66, + "end": 1804.14, + "probability": 0.9874 + }, + { + "start": 1804.26, + "end": 1806.24, + "probability": 0.9593 + }, + { + "start": 1806.64, + "end": 1808.24, + "probability": 0.9946 + }, + { + "start": 1808.84, + "end": 1810.66, + "probability": 0.9146 + }, + { + "start": 1811.08, + "end": 1812.02, + "probability": 0.9905 + }, + { + "start": 1812.1, + "end": 1813.2, + "probability": 0.7478 + }, + { + "start": 1813.44, + "end": 1816.54, + "probability": 0.622 + }, + { + "start": 1817.18, + "end": 1819.68, + "probability": 0.99 + }, + { + "start": 1820.22, + "end": 1823.96, + "probability": 0.994 + }, + { + "start": 1824.4, + "end": 1826.04, + "probability": 0.9967 + }, + { + "start": 1826.24, + "end": 1831.14, + "probability": 0.998 + }, + { + "start": 1831.72, + "end": 1835.16, + "probability": 0.9733 + }, + { + "start": 1835.26, + "end": 1836.18, + "probability": 0.961 + }, + { + "start": 1836.26, + "end": 1837.14, + "probability": 0.902 + }, + { + "start": 1837.56, + "end": 1841.5, + "probability": 0.9891 + }, + { + "start": 1841.58, + "end": 1843.98, + "probability": 0.9676 + }, + { + "start": 1844.44, + "end": 1846.64, + "probability": 0.794 + }, + { + "start": 1847.02, + "end": 1848.48, + "probability": 0.9819 + }, + { + "start": 1848.62, + "end": 1850.76, + "probability": 0.9973 + }, + { + "start": 1851.82, + "end": 1857.58, + "probability": 0.9714 + }, + { + "start": 1857.58, + "end": 1864.34, + "probability": 0.9865 + }, + { + "start": 1864.68, + "end": 1866.68, + "probability": 0.9775 + }, + { + "start": 1866.72, + "end": 1871.01, + "probability": 0.9815 + }, + { + "start": 1873.24, + "end": 1877.18, + "probability": 0.991 + }, + { + "start": 1877.78, + "end": 1878.74, + "probability": 0.969 + }, + { + "start": 1878.82, + "end": 1879.64, + "probability": 0.7762 + }, + { + "start": 1879.72, + "end": 1885.76, + "probability": 0.9787 + }, + { + "start": 1886.02, + "end": 1892.16, + "probability": 0.9931 + }, + { + "start": 1892.54, + "end": 1894.42, + "probability": 0.7532 + }, + { + "start": 1894.96, + "end": 1898.14, + "probability": 0.9894 + }, + { + "start": 1898.92, + "end": 1901.16, + "probability": 0.9585 + }, + { + "start": 1901.64, + "end": 1904.92, + "probability": 0.9897 + }, + { + "start": 1905.42, + "end": 1907.61, + "probability": 0.9661 + }, + { + "start": 1908.3, + "end": 1911.08, + "probability": 0.993 + }, + { + "start": 1911.8, + "end": 1915.62, + "probability": 0.9988 + }, + { + "start": 1916.44, + "end": 1916.9, + "probability": 0.9974 + }, + { + "start": 1917.42, + "end": 1918.4, + "probability": 0.7441 + }, + { + "start": 1918.8, + "end": 1920.42, + "probability": 0.911 + }, + { + "start": 1920.66, + "end": 1923.94, + "probability": 0.991 + }, + { + "start": 1924.16, + "end": 1925.78, + "probability": 0.7853 + }, + { + "start": 1926.48, + "end": 1928.02, + "probability": 0.9082 + }, + { + "start": 1928.56, + "end": 1930.66, + "probability": 0.9929 + }, + { + "start": 1931.12, + "end": 1935.48, + "probability": 0.9924 + }, + { + "start": 1942.38, + "end": 1943.14, + "probability": 0.7938 + }, + { + "start": 1947.6, + "end": 1950.04, + "probability": 0.8067 + }, + { + "start": 1951.72, + "end": 1955.34, + "probability": 0.8732 + }, + { + "start": 1960.34, + "end": 1961.48, + "probability": 0.6365 + }, + { + "start": 1962.08, + "end": 1962.78, + "probability": 0.997 + }, + { + "start": 1963.52, + "end": 1964.0, + "probability": 0.9434 + }, + { + "start": 1964.52, + "end": 1968.26, + "probability": 0.7813 + }, + { + "start": 1968.86, + "end": 1974.82, + "probability": 0.9667 + }, + { + "start": 1975.38, + "end": 1979.58, + "probability": 0.9825 + }, + { + "start": 1979.58, + "end": 1983.48, + "probability": 0.5168 + }, + { + "start": 1984.32, + "end": 1986.92, + "probability": 0.7348 + }, + { + "start": 1987.16, + "end": 1988.22, + "probability": 0.8666 + }, + { + "start": 1988.7, + "end": 1991.78, + "probability": 0.9745 + }, + { + "start": 1991.96, + "end": 1992.68, + "probability": 0.9349 + }, + { + "start": 1993.22, + "end": 1996.76, + "probability": 0.9863 + }, + { + "start": 1997.46, + "end": 2000.38, + "probability": 0.9917 + }, + { + "start": 2000.96, + "end": 2002.94, + "probability": 0.6122 + }, + { + "start": 2003.1, + "end": 2006.78, + "probability": 0.968 + }, + { + "start": 2007.34, + "end": 2012.78, + "probability": 0.6956 + }, + { + "start": 2013.36, + "end": 2022.6, + "probability": 0.9507 + }, + { + "start": 2022.78, + "end": 2024.62, + "probability": 0.9339 + }, + { + "start": 2025.14, + "end": 2026.42, + "probability": 0.9753 + }, + { + "start": 2027.02, + "end": 2031.39, + "probability": 0.9873 + }, + { + "start": 2031.52, + "end": 2035.1, + "probability": 0.9851 + }, + { + "start": 2035.98, + "end": 2039.02, + "probability": 0.7884 + }, + { + "start": 2039.92, + "end": 2044.12, + "probability": 0.9409 + }, + { + "start": 2046.6, + "end": 2053.56, + "probability": 0.9866 + }, + { + "start": 2053.62, + "end": 2054.18, + "probability": 0.5802 + }, + { + "start": 2054.62, + "end": 2058.46, + "probability": 0.961 + }, + { + "start": 2058.76, + "end": 2064.44, + "probability": 0.996 + }, + { + "start": 2064.5, + "end": 2069.04, + "probability": 0.991 + }, + { + "start": 2069.1, + "end": 2071.24, + "probability": 0.8115 + }, + { + "start": 2071.72, + "end": 2074.44, + "probability": 0.7593 + }, + { + "start": 2074.98, + "end": 2078.7, + "probability": 0.9854 + }, + { + "start": 2079.94, + "end": 2081.22, + "probability": 0.6961 + }, + { + "start": 2081.26, + "end": 2086.18, + "probability": 0.9565 + }, + { + "start": 2086.2, + "end": 2089.46, + "probability": 0.9944 + }, + { + "start": 2090.04, + "end": 2094.82, + "probability": 0.9291 + }, + { + "start": 2095.26, + "end": 2096.34, + "probability": 0.6668 + }, + { + "start": 2097.14, + "end": 2100.18, + "probability": 0.99 + }, + { + "start": 2100.3, + "end": 2103.04, + "probability": 0.5298 + }, + { + "start": 2103.1, + "end": 2103.28, + "probability": 0.6286 + }, + { + "start": 2103.98, + "end": 2105.58, + "probability": 0.8018 + }, + { + "start": 2105.6, + "end": 2105.96, + "probability": 0.5293 + }, + { + "start": 2106.56, + "end": 2108.64, + "probability": 0.938 + }, + { + "start": 2113.8, + "end": 2115.12, + "probability": 0.7739 + }, + { + "start": 2125.94, + "end": 2126.74, + "probability": 0.5959 + }, + { + "start": 2127.32, + "end": 2128.0, + "probability": 0.904 + }, + { + "start": 2128.16, + "end": 2130.94, + "probability": 0.9858 + }, + { + "start": 2131.32, + "end": 2136.52, + "probability": 0.9851 + }, + { + "start": 2136.64, + "end": 2139.68, + "probability": 0.9989 + }, + { + "start": 2140.2, + "end": 2141.4, + "probability": 0.9779 + }, + { + "start": 2141.98, + "end": 2142.67, + "probability": 0.994 + }, + { + "start": 2144.16, + "end": 2147.08, + "probability": 0.9958 + }, + { + "start": 2148.32, + "end": 2149.6, + "probability": 0.6492 + }, + { + "start": 2149.66, + "end": 2151.08, + "probability": 0.9596 + }, + { + "start": 2151.22, + "end": 2152.82, + "probability": 0.807 + }, + { + "start": 2152.92, + "end": 2156.58, + "probability": 0.9535 + }, + { + "start": 2157.12, + "end": 2159.68, + "probability": 0.9834 + }, + { + "start": 2160.26, + "end": 2162.4, + "probability": 0.9536 + }, + { + "start": 2163.0, + "end": 2165.04, + "probability": 0.7671 + }, + { + "start": 2165.58, + "end": 2168.1, + "probability": 0.9528 + }, + { + "start": 2169.26, + "end": 2169.7, + "probability": 0.983 + }, + { + "start": 2170.42, + "end": 2173.1, + "probability": 0.981 + }, + { + "start": 2173.96, + "end": 2177.62, + "probability": 0.9962 + }, + { + "start": 2177.64, + "end": 2178.97, + "probability": 0.6846 + }, + { + "start": 2180.22, + "end": 2184.16, + "probability": 0.9949 + }, + { + "start": 2185.56, + "end": 2187.2, + "probability": 0.9784 + }, + { + "start": 2188.42, + "end": 2191.66, + "probability": 0.9718 + }, + { + "start": 2192.62, + "end": 2194.8, + "probability": 0.9518 + }, + { + "start": 2195.78, + "end": 2197.92, + "probability": 0.9951 + }, + { + "start": 2198.54, + "end": 2201.58, + "probability": 0.9821 + }, + { + "start": 2203.14, + "end": 2208.22, + "probability": 0.9937 + }, + { + "start": 2208.38, + "end": 2209.1, + "probability": 0.6335 + }, + { + "start": 2209.12, + "end": 2210.32, + "probability": 0.8579 + }, + { + "start": 2211.08, + "end": 2213.5, + "probability": 0.9658 + }, + { + "start": 2214.82, + "end": 2216.93, + "probability": 0.9164 + }, + { + "start": 2218.14, + "end": 2220.98, + "probability": 0.9684 + }, + { + "start": 2221.28, + "end": 2224.04, + "probability": 0.9873 + }, + { + "start": 2224.36, + "end": 2225.86, + "probability": 0.9541 + }, + { + "start": 2226.1, + "end": 2228.32, + "probability": 0.9563 + }, + { + "start": 2228.32, + "end": 2230.62, + "probability": 0.9969 + }, + { + "start": 2231.68, + "end": 2235.4, + "probability": 0.929 + }, + { + "start": 2235.76, + "end": 2238.52, + "probability": 0.9946 + }, + { + "start": 2238.7, + "end": 2238.9, + "probability": 0.6602 + }, + { + "start": 2239.04, + "end": 2243.56, + "probability": 0.9837 + }, + { + "start": 2245.81, + "end": 2248.28, + "probability": 0.9941 + }, + { + "start": 2248.48, + "end": 2250.06, + "probability": 0.6683 + }, + { + "start": 2250.12, + "end": 2250.7, + "probability": 0.5974 + }, + { + "start": 2250.74, + "end": 2253.69, + "probability": 0.8678 + }, + { + "start": 2255.0, + "end": 2256.48, + "probability": 0.9216 + }, + { + "start": 2257.36, + "end": 2262.42, + "probability": 0.9823 + }, + { + "start": 2262.52, + "end": 2264.76, + "probability": 0.9401 + }, + { + "start": 2264.86, + "end": 2265.12, + "probability": 0.5422 + }, + { + "start": 2265.24, + "end": 2265.88, + "probability": 0.5763 + }, + { + "start": 2267.24, + "end": 2268.62, + "probability": 0.7516 + }, + { + "start": 2269.52, + "end": 2270.94, + "probability": 0.984 + }, + { + "start": 2271.46, + "end": 2272.36, + "probability": 0.8281 + }, + { + "start": 2272.36, + "end": 2278.08, + "probability": 0.9416 + }, + { + "start": 2278.76, + "end": 2281.76, + "probability": 0.9849 + }, + { + "start": 2282.18, + "end": 2285.64, + "probability": 0.9715 + }, + { + "start": 2286.0, + "end": 2287.6, + "probability": 0.9747 + }, + { + "start": 2288.72, + "end": 2293.3, + "probability": 0.9878 + }, + { + "start": 2293.8, + "end": 2295.86, + "probability": 0.9668 + }, + { + "start": 2296.36, + "end": 2297.61, + "probability": 0.9244 + }, + { + "start": 2298.38, + "end": 2301.28, + "probability": 0.9964 + }, + { + "start": 2301.84, + "end": 2303.36, + "probability": 0.9702 + }, + { + "start": 2304.26, + "end": 2306.84, + "probability": 0.9602 + }, + { + "start": 2307.78, + "end": 2310.9, + "probability": 0.99 + }, + { + "start": 2311.28, + "end": 2312.86, + "probability": 0.9875 + }, + { + "start": 2313.3, + "end": 2313.84, + "probability": 0.8529 + }, + { + "start": 2314.0, + "end": 2314.66, + "probability": 0.9329 + }, + { + "start": 2315.24, + "end": 2318.48, + "probability": 0.7267 + }, + { + "start": 2318.84, + "end": 2321.2, + "probability": 0.9587 + }, + { + "start": 2321.22, + "end": 2321.44, + "probability": 0.8621 + }, + { + "start": 2321.66, + "end": 2322.34, + "probability": 0.5611 + }, + { + "start": 2322.48, + "end": 2324.84, + "probability": 0.9185 + }, + { + "start": 2337.3, + "end": 2338.84, + "probability": 0.0514 + }, + { + "start": 2340.38, + "end": 2340.38, + "probability": 0.2649 + }, + { + "start": 2340.38, + "end": 2341.38, + "probability": 0.6269 + }, + { + "start": 2342.42, + "end": 2343.86, + "probability": 0.7523 + }, + { + "start": 2344.78, + "end": 2346.02, + "probability": 0.5112 + }, + { + "start": 2347.0, + "end": 2352.78, + "probability": 0.9307 + }, + { + "start": 2353.38, + "end": 2355.86, + "probability": 0.592 + }, + { + "start": 2358.66, + "end": 2362.2, + "probability": 0.9522 + }, + { + "start": 2362.38, + "end": 2363.86, + "probability": 0.9917 + }, + { + "start": 2364.8, + "end": 2373.7, + "probability": 0.9634 + }, + { + "start": 2375.06, + "end": 2375.58, + "probability": 0.6363 + }, + { + "start": 2376.88, + "end": 2377.88, + "probability": 0.9174 + }, + { + "start": 2379.58, + "end": 2385.22, + "probability": 0.668 + }, + { + "start": 2386.14, + "end": 2389.44, + "probability": 0.7438 + }, + { + "start": 2391.44, + "end": 2394.14, + "probability": 0.9966 + }, + { + "start": 2394.14, + "end": 2398.72, + "probability": 0.994 + }, + { + "start": 2400.34, + "end": 2402.64, + "probability": 0.999 + }, + { + "start": 2402.84, + "end": 2404.34, + "probability": 0.822 + }, + { + "start": 2405.59, + "end": 2412.18, + "probability": 0.9438 + }, + { + "start": 2412.24, + "end": 2418.52, + "probability": 0.9969 + }, + { + "start": 2419.12, + "end": 2423.44, + "probability": 0.7579 + }, + { + "start": 2425.28, + "end": 2426.82, + "probability": 0.9897 + }, + { + "start": 2428.06, + "end": 2429.7, + "probability": 0.8696 + }, + { + "start": 2433.12, + "end": 2436.52, + "probability": 0.9955 + }, + { + "start": 2438.54, + "end": 2442.1, + "probability": 0.7491 + }, + { + "start": 2442.96, + "end": 2443.98, + "probability": 0.8682 + }, + { + "start": 2444.68, + "end": 2446.48, + "probability": 0.7327 + }, + { + "start": 2446.54, + "end": 2448.96, + "probability": 0.9779 + }, + { + "start": 2448.96, + "end": 2453.34, + "probability": 0.9245 + }, + { + "start": 2453.6, + "end": 2460.7, + "probability": 0.8479 + }, + { + "start": 2461.28, + "end": 2462.06, + "probability": 0.7586 + }, + { + "start": 2463.32, + "end": 2468.58, + "probability": 0.9921 + }, + { + "start": 2469.3, + "end": 2471.44, + "probability": 0.9036 + }, + { + "start": 2472.1, + "end": 2474.4, + "probability": 0.9978 + }, + { + "start": 2475.6, + "end": 2476.72, + "probability": 0.8083 + }, + { + "start": 2477.7, + "end": 2481.14, + "probability": 0.9798 + }, + { + "start": 2481.52, + "end": 2487.64, + "probability": 0.9948 + }, + { + "start": 2487.82, + "end": 2488.58, + "probability": 0.9545 + }, + { + "start": 2488.7, + "end": 2489.78, + "probability": 0.9551 + }, + { + "start": 2490.8, + "end": 2493.88, + "probability": 0.796 + }, + { + "start": 2495.14, + "end": 2500.52, + "probability": 0.9885 + }, + { + "start": 2501.3, + "end": 2503.14, + "probability": 0.8952 + }, + { + "start": 2503.68, + "end": 2505.36, + "probability": 0.5815 + }, + { + "start": 2506.14, + "end": 2511.44, + "probability": 0.9842 + }, + { + "start": 2511.68, + "end": 2513.68, + "probability": 0.9884 + }, + { + "start": 2513.78, + "end": 2514.4, + "probability": 0.8863 + }, + { + "start": 2514.48, + "end": 2515.24, + "probability": 0.9513 + }, + { + "start": 2515.74, + "end": 2516.8, + "probability": 0.8993 + }, + { + "start": 2517.62, + "end": 2520.0, + "probability": 0.9438 + }, + { + "start": 2520.54, + "end": 2521.14, + "probability": 0.9159 + }, + { + "start": 2521.28, + "end": 2522.4, + "probability": 0.8928 + }, + { + "start": 2522.44, + "end": 2525.51, + "probability": 0.8162 + }, + { + "start": 2526.38, + "end": 2528.4, + "probability": 0.9485 + }, + { + "start": 2528.92, + "end": 2531.64, + "probability": 0.9658 + }, + { + "start": 2532.18, + "end": 2533.02, + "probability": 0.6058 + }, + { + "start": 2533.26, + "end": 2534.56, + "probability": 0.9448 + }, + { + "start": 2534.94, + "end": 2535.69, + "probability": 0.856 + }, + { + "start": 2538.42, + "end": 2539.74, + "probability": 0.3399 + }, + { + "start": 2541.84, + "end": 2545.04, + "probability": 0.9934 + }, + { + "start": 2545.06, + "end": 2546.96, + "probability": 0.956 + }, + { + "start": 2547.18, + "end": 2548.68, + "probability": 0.9593 + }, + { + "start": 2550.0, + "end": 2552.12, + "probability": 0.9971 + }, + { + "start": 2552.2, + "end": 2552.66, + "probability": 0.803 + }, + { + "start": 2553.28, + "end": 2554.36, + "probability": 0.6249 + }, + { + "start": 2554.48, + "end": 2556.92, + "probability": 0.9888 + }, + { + "start": 2557.48, + "end": 2560.92, + "probability": 0.9696 + }, + { + "start": 2569.14, + "end": 2571.49, + "probability": 0.834 + }, + { + "start": 2573.18, + "end": 2576.72, + "probability": 0.7921 + }, + { + "start": 2578.32, + "end": 2582.18, + "probability": 0.8747 + }, + { + "start": 2582.44, + "end": 2583.96, + "probability": 0.8189 + }, + { + "start": 2584.94, + "end": 2586.08, + "probability": 0.8647 + }, + { + "start": 2587.06, + "end": 2587.64, + "probability": 0.5066 + }, + { + "start": 2589.34, + "end": 2594.84, + "probability": 0.6953 + }, + { + "start": 2595.7, + "end": 2598.6, + "probability": 0.9937 + }, + { + "start": 2598.66, + "end": 2598.66, + "probability": 0.2706 + }, + { + "start": 2599.04, + "end": 2600.8, + "probability": 0.681 + }, + { + "start": 2600.9, + "end": 2601.4, + "probability": 0.9272 + }, + { + "start": 2601.88, + "end": 2603.78, + "probability": 0.9131 + }, + { + "start": 2604.34, + "end": 2606.96, + "probability": 0.9496 + }, + { + "start": 2607.14, + "end": 2611.42, + "probability": 0.7282 + }, + { + "start": 2611.6, + "end": 2613.07, + "probability": 0.8824 + }, + { + "start": 2613.66, + "end": 2616.02, + "probability": 0.7797 + }, + { + "start": 2616.9, + "end": 2618.32, + "probability": 0.9663 + }, + { + "start": 2619.24, + "end": 2621.32, + "probability": 0.9574 + }, + { + "start": 2622.2, + "end": 2623.76, + "probability": 0.4524 + }, + { + "start": 2624.42, + "end": 2626.47, + "probability": 0.9991 + }, + { + "start": 2626.96, + "end": 2631.34, + "probability": 0.9631 + }, + { + "start": 2631.8, + "end": 2632.82, + "probability": 0.9125 + }, + { + "start": 2633.38, + "end": 2634.46, + "probability": 0.9732 + }, + { + "start": 2634.52, + "end": 2636.08, + "probability": 0.9873 + }, + { + "start": 2636.1, + "end": 2637.12, + "probability": 0.9006 + }, + { + "start": 2637.2, + "end": 2637.88, + "probability": 0.9692 + }, + { + "start": 2638.36, + "end": 2638.66, + "probability": 0.4846 + }, + { + "start": 2639.2, + "end": 2640.61, + "probability": 0.9769 + }, + { + "start": 2641.62, + "end": 2645.38, + "probability": 0.7961 + }, + { + "start": 2645.38, + "end": 2648.5, + "probability": 0.9421 + }, + { + "start": 2648.5, + "end": 2652.14, + "probability": 0.6477 + }, + { + "start": 2652.53, + "end": 2659.24, + "probability": 0.9611 + }, + { + "start": 2659.24, + "end": 2663.84, + "probability": 0.9941 + }, + { + "start": 2663.84, + "end": 2671.32, + "probability": 0.9377 + }, + { + "start": 2671.32, + "end": 2674.88, + "probability": 0.5796 + }, + { + "start": 2674.94, + "end": 2676.7, + "probability": 0.6988 + }, + { + "start": 2677.12, + "end": 2677.66, + "probability": 0.8418 + }, + { + "start": 2677.74, + "end": 2678.32, + "probability": 0.684 + }, + { + "start": 2678.42, + "end": 2680.74, + "probability": 0.848 + }, + { + "start": 2681.32, + "end": 2683.6, + "probability": 0.7738 + }, + { + "start": 2683.76, + "end": 2684.96, + "probability": 0.7613 + }, + { + "start": 2685.06, + "end": 2685.36, + "probability": 0.7421 + }, + { + "start": 2688.9, + "end": 2692.86, + "probability": 0.8003 + }, + { + "start": 2693.82, + "end": 2694.72, + "probability": 0.669 + }, + { + "start": 2694.8, + "end": 2695.59, + "probability": 0.8755 + }, + { + "start": 2695.74, + "end": 2696.74, + "probability": 0.7813 + }, + { + "start": 2696.8, + "end": 2702.88, + "probability": 0.7574 + }, + { + "start": 2703.04, + "end": 2705.4, + "probability": 0.5191 + }, + { + "start": 2705.5, + "end": 2708.26, + "probability": 0.7965 + }, + { + "start": 2708.34, + "end": 2710.32, + "probability": 0.9736 + }, + { + "start": 2710.32, + "end": 2712.24, + "probability": 0.0799 + }, + { + "start": 2712.88, + "end": 2716.24, + "probability": 0.871 + }, + { + "start": 2716.26, + "end": 2716.76, + "probability": 0.9143 + }, + { + "start": 2716.84, + "end": 2718.76, + "probability": 0.794 + }, + { + "start": 2718.9, + "end": 2722.9, + "probability": 0.685 + }, + { + "start": 2724.56, + "end": 2729.28, + "probability": 0.8945 + }, + { + "start": 2729.28, + "end": 2733.56, + "probability": 0.7713 + }, + { + "start": 2733.64, + "end": 2734.58, + "probability": 0.8495 + }, + { + "start": 2735.18, + "end": 2735.44, + "probability": 0.7725 + }, + { + "start": 2735.54, + "end": 2735.88, + "probability": 0.9117 + }, + { + "start": 2735.98, + "end": 2739.7, + "probability": 0.8701 + }, + { + "start": 2740.02, + "end": 2742.04, + "probability": 0.8298 + }, + { + "start": 2742.46, + "end": 2745.48, + "probability": 0.9976 + }, + { + "start": 2745.48, + "end": 2746.92, + "probability": 0.6859 + }, + { + "start": 2747.38, + "end": 2748.72, + "probability": 0.6957 + }, + { + "start": 2749.4, + "end": 2752.0, + "probability": 0.7663 + }, + { + "start": 2752.62, + "end": 2755.18, + "probability": 0.9377 + }, + { + "start": 2755.86, + "end": 2757.55, + "probability": 0.9315 + }, + { + "start": 2758.34, + "end": 2759.9, + "probability": 0.726 + }, + { + "start": 2760.44, + "end": 2762.5, + "probability": 0.9719 + }, + { + "start": 2764.06, + "end": 2766.64, + "probability": 0.8629 + }, + { + "start": 2766.64, + "end": 2769.12, + "probability": 0.6908 + }, + { + "start": 2769.18, + "end": 2771.5, + "probability": 0.979 + }, + { + "start": 2771.61, + "end": 2774.45, + "probability": 0.8768 + }, + { + "start": 2775.22, + "end": 2779.16, + "probability": 0.7218 + }, + { + "start": 2779.44, + "end": 2779.88, + "probability": 0.9306 + }, + { + "start": 2780.74, + "end": 2785.38, + "probability": 0.9974 + }, + { + "start": 2785.48, + "end": 2788.78, + "probability": 0.9973 + }, + { + "start": 2788.82, + "end": 2791.02, + "probability": 0.9422 + }, + { + "start": 2791.16, + "end": 2794.34, + "probability": 0.8693 + }, + { + "start": 2794.38, + "end": 2798.48, + "probability": 0.9336 + }, + { + "start": 2799.24, + "end": 2800.42, + "probability": 0.6559 + }, + { + "start": 2801.04, + "end": 2802.06, + "probability": 0.8689 + }, + { + "start": 2802.3, + "end": 2804.0, + "probability": 0.9208 + }, + { + "start": 2804.14, + "end": 2804.82, + "probability": 0.411 + }, + { + "start": 2805.49, + "end": 2807.62, + "probability": 0.3722 + }, + { + "start": 2807.78, + "end": 2809.28, + "probability": 0.8905 + }, + { + "start": 2809.46, + "end": 2810.3, + "probability": 0.8137 + }, + { + "start": 2810.4, + "end": 2812.42, + "probability": 0.4753 + }, + { + "start": 2813.62, + "end": 2816.1, + "probability": 0.5696 + }, + { + "start": 2818.68, + "end": 2819.22, + "probability": 0.5728 + }, + { + "start": 2819.9, + "end": 2824.14, + "probability": 0.8696 + }, + { + "start": 2824.9, + "end": 2827.4, + "probability": 0.9486 + }, + { + "start": 2827.52, + "end": 2827.94, + "probability": 0.5205 + }, + { + "start": 2828.02, + "end": 2828.9, + "probability": 0.9865 + }, + { + "start": 2829.32, + "end": 2833.42, + "probability": 0.8936 + }, + { + "start": 2833.42, + "end": 2836.76, + "probability": 0.8608 + }, + { + "start": 2836.88, + "end": 2837.0, + "probability": 0.3079 + }, + { + "start": 2837.12, + "end": 2837.32, + "probability": 0.5003 + }, + { + "start": 2837.4, + "end": 2840.84, + "probability": 0.9944 + }, + { + "start": 2841.36, + "end": 2844.2, + "probability": 0.5038 + }, + { + "start": 2845.3, + "end": 2848.06, + "probability": 0.9949 + }, + { + "start": 2848.06, + "end": 2851.36, + "probability": 0.5091 + }, + { + "start": 2851.48, + "end": 2852.96, + "probability": 0.9645 + }, + { + "start": 2853.5, + "end": 2857.0, + "probability": 0.8236 + }, + { + "start": 2857.0, + "end": 2859.78, + "probability": 0.8262 + }, + { + "start": 2859.96, + "end": 2860.74, + "probability": 0.7723 + }, + { + "start": 2860.92, + "end": 2863.26, + "probability": 0.9549 + }, + { + "start": 2863.5, + "end": 2867.97, + "probability": 0.9688 + }, + { + "start": 2869.14, + "end": 2873.72, + "probability": 0.9386 + }, + { + "start": 2873.92, + "end": 2878.66, + "probability": 0.9717 + }, + { + "start": 2879.32, + "end": 2884.1, + "probability": 0.8945 + }, + { + "start": 2884.14, + "end": 2884.94, + "probability": 0.7983 + }, + { + "start": 2885.26, + "end": 2887.72, + "probability": 0.998 + }, + { + "start": 2888.34, + "end": 2891.3, + "probability": 0.9785 + }, + { + "start": 2891.3, + "end": 2894.7, + "probability": 0.8758 + }, + { + "start": 2895.16, + "end": 2895.76, + "probability": 0.3724 + }, + { + "start": 2895.82, + "end": 2898.46, + "probability": 0.722 + }, + { + "start": 2900.1, + "end": 2900.3, + "probability": 0.3701 + }, + { + "start": 2900.36, + "end": 2902.96, + "probability": 0.7402 + }, + { + "start": 2902.96, + "end": 2906.26, + "probability": 0.8799 + }, + { + "start": 2907.43, + "end": 2911.72, + "probability": 0.8136 + }, + { + "start": 2911.72, + "end": 2916.8, + "probability": 0.8778 + }, + { + "start": 2917.3, + "end": 2919.02, + "probability": 0.6476 + }, + { + "start": 2920.98, + "end": 2922.88, + "probability": 0.9966 + }, + { + "start": 2923.0, + "end": 2924.0, + "probability": 0.9559 + }, + { + "start": 2924.24, + "end": 2929.36, + "probability": 0.8532 + }, + { + "start": 2929.52, + "end": 2930.32, + "probability": 0.8743 + }, + { + "start": 2930.94, + "end": 2933.43, + "probability": 0.7922 + }, + { + "start": 2933.96, + "end": 2935.18, + "probability": 0.8409 + }, + { + "start": 2935.58, + "end": 2938.74, + "probability": 0.6583 + }, + { + "start": 2938.74, + "end": 2941.16, + "probability": 0.9343 + }, + { + "start": 2941.82, + "end": 2942.42, + "probability": 0.5294 + }, + { + "start": 2944.16, + "end": 2947.18, + "probability": 0.5634 + }, + { + "start": 2947.32, + "end": 2948.1, + "probability": 0.6218 + }, + { + "start": 2948.62, + "end": 2948.92, + "probability": 0.7594 + }, + { + "start": 2950.38, + "end": 2952.54, + "probability": 0.8583 + }, + { + "start": 2952.69, + "end": 2953.3, + "probability": 0.938 + }, + { + "start": 2954.02, + "end": 2958.39, + "probability": 0.7457 + }, + { + "start": 2959.14, + "end": 2960.44, + "probability": 0.9041 + }, + { + "start": 2960.9, + "end": 2964.2, + "probability": 0.9152 + }, + { + "start": 2965.16, + "end": 2965.96, + "probability": 0.996 + }, + { + "start": 2966.92, + "end": 2969.16, + "probability": 0.7049 + }, + { + "start": 2969.62, + "end": 2972.95, + "probability": 0.7051 + }, + { + "start": 2973.02, + "end": 2973.68, + "probability": 0.707 + }, + { + "start": 2973.98, + "end": 2976.26, + "probability": 0.7088 + }, + { + "start": 2976.84, + "end": 2977.88, + "probability": 0.8004 + }, + { + "start": 2978.16, + "end": 2983.16, + "probability": 0.9417 + }, + { + "start": 2984.02, + "end": 2986.3, + "probability": 0.6709 + }, + { + "start": 2986.3, + "end": 2988.7, + "probability": 0.4971 + }, + { + "start": 2989.66, + "end": 2992.76, + "probability": 0.9227 + }, + { + "start": 2992.76, + "end": 2996.62, + "probability": 0.8247 + }, + { + "start": 2997.58, + "end": 3003.64, + "probability": 0.853 + }, + { + "start": 3003.8, + "end": 3006.16, + "probability": 0.3144 + }, + { + "start": 3006.84, + "end": 3008.22, + "probability": 0.9489 + }, + { + "start": 3010.52, + "end": 3012.84, + "probability": 0.7829 + }, + { + "start": 3013.0, + "end": 3015.96, + "probability": 0.9614 + }, + { + "start": 3016.08, + "end": 3017.59, + "probability": 0.6711 + }, + { + "start": 3018.0, + "end": 3019.56, + "probability": 0.9934 + }, + { + "start": 3021.02, + "end": 3025.32, + "probability": 0.9934 + }, + { + "start": 3027.36, + "end": 3027.58, + "probability": 0.8926 + }, + { + "start": 3028.16, + "end": 3028.26, + "probability": 0.9999 + }, + { + "start": 3031.92, + "end": 3032.98, + "probability": 0.5571 + }, + { + "start": 3035.52, + "end": 3036.64, + "probability": 0.6835 + }, + { + "start": 3038.42, + "end": 3043.76, + "probability": 0.7528 + }, + { + "start": 3048.94, + "end": 3052.38, + "probability": 0.0582 + }, + { + "start": 3053.24, + "end": 3054.76, + "probability": 0.0438 + }, + { + "start": 3067.58, + "end": 3070.28, + "probability": 0.8901 + }, + { + "start": 3071.24, + "end": 3075.86, + "probability": 0.9879 + }, + { + "start": 3077.7, + "end": 3083.56, + "probability": 0.9884 + }, + { + "start": 3083.7, + "end": 3086.2, + "probability": 0.8254 + }, + { + "start": 3086.2, + "end": 3089.62, + "probability": 0.9827 + }, + { + "start": 3089.94, + "end": 3090.97, + "probability": 0.6328 + }, + { + "start": 3092.16, + "end": 3093.56, + "probability": 0.6798 + }, + { + "start": 3094.16, + "end": 3096.6, + "probability": 0.9623 + }, + { + "start": 3096.86, + "end": 3097.72, + "probability": 0.8735 + }, + { + "start": 3097.8, + "end": 3099.18, + "probability": 0.9043 + }, + { + "start": 3099.66, + "end": 3101.42, + "probability": 0.9983 + }, + { + "start": 3101.92, + "end": 3103.9, + "probability": 0.9779 + }, + { + "start": 3104.48, + "end": 3106.92, + "probability": 0.9867 + }, + { + "start": 3108.36, + "end": 3110.76, + "probability": 0.6662 + }, + { + "start": 3111.2, + "end": 3113.9, + "probability": 0.9979 + }, + { + "start": 3114.28, + "end": 3119.96, + "probability": 0.9935 + }, + { + "start": 3120.36, + "end": 3123.42, + "probability": 0.8296 + }, + { + "start": 3123.52, + "end": 3124.84, + "probability": 0.8927 + }, + { + "start": 3126.32, + "end": 3127.18, + "probability": 0.9559 + }, + { + "start": 3127.26, + "end": 3128.44, + "probability": 0.8101 + }, + { + "start": 3128.9, + "end": 3129.6, + "probability": 0.8394 + }, + { + "start": 3129.94, + "end": 3131.66, + "probability": 0.9934 + }, + { + "start": 3132.14, + "end": 3133.44, + "probability": 0.8584 + }, + { + "start": 3133.58, + "end": 3137.66, + "probability": 0.8336 + }, + { + "start": 3140.42, + "end": 3143.34, + "probability": 0.8762 + }, + { + "start": 3143.34, + "end": 3146.1, + "probability": 0.9541 + }, + { + "start": 3146.62, + "end": 3147.16, + "probability": 0.8237 + }, + { + "start": 3147.28, + "end": 3149.22, + "probability": 0.9609 + }, + { + "start": 3149.3, + "end": 3151.1, + "probability": 0.7386 + }, + { + "start": 3151.46, + "end": 3154.18, + "probability": 0.7468 + }, + { + "start": 3154.64, + "end": 3158.6, + "probability": 0.8882 + }, + { + "start": 3159.0, + "end": 3160.18, + "probability": 0.8901 + }, + { + "start": 3160.54, + "end": 3165.48, + "probability": 0.9955 + }, + { + "start": 3165.61, + "end": 3170.16, + "probability": 0.9365 + }, + { + "start": 3170.74, + "end": 3173.3, + "probability": 0.7567 + }, + { + "start": 3173.3, + "end": 3177.58, + "probability": 0.9111 + }, + { + "start": 3178.34, + "end": 3179.3, + "probability": 0.8189 + }, + { + "start": 3179.46, + "end": 3181.62, + "probability": 0.9949 + }, + { + "start": 3181.92, + "end": 3183.4, + "probability": 0.9019 + }, + { + "start": 3186.06, + "end": 3188.78, + "probability": 0.9933 + }, + { + "start": 3189.3, + "end": 3196.96, + "probability": 0.753 + }, + { + "start": 3197.52, + "end": 3197.82, + "probability": 0.4037 + }, + { + "start": 3197.96, + "end": 3201.08, + "probability": 0.9681 + }, + { + "start": 3201.15, + "end": 3205.2, + "probability": 0.981 + }, + { + "start": 3205.84, + "end": 3208.72, + "probability": 0.9745 + }, + { + "start": 3208.72, + "end": 3212.84, + "probability": 0.8001 + }, + { + "start": 3213.0, + "end": 3214.1, + "probability": 0.8947 + }, + { + "start": 3214.5, + "end": 3214.62, + "probability": 0.9744 + }, + { + "start": 3215.24, + "end": 3219.34, + "probability": 0.8469 + }, + { + "start": 3220.34, + "end": 3224.68, + "probability": 0.432 + }, + { + "start": 3225.86, + "end": 3231.74, + "probability": 0.8756 + }, + { + "start": 3231.78, + "end": 3232.26, + "probability": 0.7773 + }, + { + "start": 3232.88, + "end": 3234.78, + "probability": 0.6888 + }, + { + "start": 3234.88, + "end": 3235.97, + "probability": 0.7249 + }, + { + "start": 3237.18, + "end": 3244.86, + "probability": 0.7946 + }, + { + "start": 3245.44, + "end": 3248.58, + "probability": 0.7253 + }, + { + "start": 3250.95, + "end": 3255.41, + "probability": 0.6192 + }, + { + "start": 3256.6, + "end": 3259.58, + "probability": 0.9552 + }, + { + "start": 3259.82, + "end": 3260.66, + "probability": 0.8899 + }, + { + "start": 3260.76, + "end": 3261.38, + "probability": 0.8115 + }, + { + "start": 3261.56, + "end": 3262.62, + "probability": 0.9427 + }, + { + "start": 3262.76, + "end": 3263.54, + "probability": 0.8528 + }, + { + "start": 3263.7, + "end": 3263.96, + "probability": 0.8845 + }, + { + "start": 3264.02, + "end": 3265.82, + "probability": 0.9904 + }, + { + "start": 3266.68, + "end": 3270.18, + "probability": 0.9941 + }, + { + "start": 3270.28, + "end": 3272.6, + "probability": 0.9735 + }, + { + "start": 3272.98, + "end": 3277.46, + "probability": 0.8966 + }, + { + "start": 3277.46, + "end": 3282.78, + "probability": 0.7192 + }, + { + "start": 3283.0, + "end": 3286.82, + "probability": 0.9468 + }, + { + "start": 3288.48, + "end": 3290.36, + "probability": 0.7633 + }, + { + "start": 3292.72, + "end": 3296.7, + "probability": 0.1444 + }, + { + "start": 3299.7, + "end": 3306.18, + "probability": 0.4589 + }, + { + "start": 3306.18, + "end": 3309.8, + "probability": 0.2733 + }, + { + "start": 3310.02, + "end": 3313.34, + "probability": 0.3589 + }, + { + "start": 3313.86, + "end": 3320.18, + "probability": 0.5523 + }, + { + "start": 3323.04, + "end": 3326.14, + "probability": 0.471 + }, + { + "start": 3326.3, + "end": 3329.26, + "probability": 0.7069 + }, + { + "start": 3329.96, + "end": 3333.64, + "probability": 0.7832 + }, + { + "start": 3333.7, + "end": 3334.72, + "probability": 0.0172 + }, + { + "start": 3335.0, + "end": 3335.35, + "probability": 0.6996 + }, + { + "start": 3335.46, + "end": 3335.82, + "probability": 0.8579 + }, + { + "start": 3335.9, + "end": 3336.94, + "probability": 0.5933 + }, + { + "start": 3337.24, + "end": 3338.86, + "probability": 0.8432 + }, + { + "start": 3339.78, + "end": 3342.18, + "probability": 0.7015 + }, + { + "start": 3342.22, + "end": 3343.06, + "probability": 0.0943 + }, + { + "start": 3355.53, + "end": 3356.48, + "probability": 0.0265 + }, + { + "start": 3356.48, + "end": 3356.5, + "probability": 0.0578 + }, + { + "start": 3356.5, + "end": 3356.5, + "probability": 0.084 + }, + { + "start": 3356.5, + "end": 3357.82, + "probability": 0.2153 + }, + { + "start": 3357.82, + "end": 3360.68, + "probability": 0.4785 + }, + { + "start": 3360.74, + "end": 3361.02, + "probability": 0.4996 + }, + { + "start": 3361.02, + "end": 3362.18, + "probability": 0.6796 + }, + { + "start": 3362.26, + "end": 3362.74, + "probability": 0.7478 + }, + { + "start": 3364.03, + "end": 3371.98, + "probability": 0.9758 + }, + { + "start": 3372.06, + "end": 3372.46, + "probability": 0.5645 + }, + { + "start": 3375.81, + "end": 3377.94, + "probability": 0.9925 + }, + { + "start": 3383.04, + "end": 3384.86, + "probability": 0.7547 + }, + { + "start": 3385.04, + "end": 3387.86, + "probability": 0.9607 + }, + { + "start": 3388.72, + "end": 3393.94, + "probability": 0.9974 + }, + { + "start": 3394.72, + "end": 3398.96, + "probability": 0.9463 + }, + { + "start": 3399.22, + "end": 3402.84, + "probability": 0.9445 + }, + { + "start": 3403.38, + "end": 3404.58, + "probability": 0.8684 + }, + { + "start": 3405.42, + "end": 3407.62, + "probability": 0.9897 + }, + { + "start": 3408.12, + "end": 3408.48, + "probability": 0.2852 + }, + { + "start": 3408.54, + "end": 3410.66, + "probability": 0.9041 + }, + { + "start": 3410.76, + "end": 3412.22, + "probability": 0.8369 + }, + { + "start": 3412.22, + "end": 3414.76, + "probability": 0.7114 + }, + { + "start": 3414.76, + "end": 3416.42, + "probability": 0.9448 + }, + { + "start": 3416.44, + "end": 3418.14, + "probability": 0.7947 + }, + { + "start": 3418.14, + "end": 3421.6, + "probability": 0.9944 + }, + { + "start": 3422.04, + "end": 3424.06, + "probability": 0.7412 + }, + { + "start": 3424.06, + "end": 3425.38, + "probability": 0.999 + }, + { + "start": 3425.44, + "end": 3426.68, + "probability": 0.9977 + }, + { + "start": 3426.8, + "end": 3426.84, + "probability": 0.1455 + }, + { + "start": 3426.9, + "end": 3428.26, + "probability": 0.7878 + }, + { + "start": 3428.58, + "end": 3429.44, + "probability": 0.8962 + }, + { + "start": 3429.96, + "end": 3430.5, + "probability": 0.8956 + }, + { + "start": 3431.6, + "end": 3431.96, + "probability": 0.4968 + }, + { + "start": 3432.04, + "end": 3432.71, + "probability": 0.9871 + }, + { + "start": 3434.82, + "end": 3435.32, + "probability": 0.2885 + }, + { + "start": 3435.32, + "end": 3435.32, + "probability": 0.2646 + }, + { + "start": 3435.32, + "end": 3436.02, + "probability": 0.5431 + }, + { + "start": 3436.02, + "end": 3436.44, + "probability": 0.4416 + }, + { + "start": 3436.64, + "end": 3439.58, + "probability": 0.7303 + }, + { + "start": 3439.9, + "end": 3440.48, + "probability": 0.813 + }, + { + "start": 3442.14, + "end": 3442.14, + "probability": 0.0918 + }, + { + "start": 3442.14, + "end": 3442.66, + "probability": 0.5415 + }, + { + "start": 3442.68, + "end": 3444.7, + "probability": 0.9566 + }, + { + "start": 3444.7, + "end": 3446.44, + "probability": 0.8496 + }, + { + "start": 3446.46, + "end": 3447.22, + "probability": 0.5092 + }, + { + "start": 3447.34, + "end": 3448.02, + "probability": 0.8503 + }, + { + "start": 3448.9, + "end": 3449.32, + "probability": 0.1676 + }, + { + "start": 3449.64, + "end": 3451.5, + "probability": 0.0247 + }, + { + "start": 3452.04, + "end": 3453.1, + "probability": 0.5969 + }, + { + "start": 3453.86, + "end": 3456.16, + "probability": 0.6634 + }, + { + "start": 3456.22, + "end": 3456.22, + "probability": 0.5992 + }, + { + "start": 3456.54, + "end": 3459.54, + "probability": 0.9915 + }, + { + "start": 3459.68, + "end": 3460.9, + "probability": 0.9009 + }, + { + "start": 3460.9, + "end": 3464.02, + "probability": 0.7556 + }, + { + "start": 3464.48, + "end": 3466.16, + "probability": 0.0005 + }, + { + "start": 3466.76, + "end": 3468.16, + "probability": 0.7505 + }, + { + "start": 3468.48, + "end": 3469.42, + "probability": 0.5328 + }, + { + "start": 3469.8, + "end": 3470.74, + "probability": 0.7965 + }, + { + "start": 3471.08, + "end": 3473.56, + "probability": 0.7443 + }, + { + "start": 3473.9, + "end": 3476.22, + "probability": 0.9113 + }, + { + "start": 3477.38, + "end": 3479.66, + "probability": 0.5276 + }, + { + "start": 3479.66, + "end": 3481.54, + "probability": 0.8817 + }, + { + "start": 3481.68, + "end": 3481.68, + "probability": 0.5078 + }, + { + "start": 3481.68, + "end": 3481.78, + "probability": 0.2705 + }, + { + "start": 3482.31, + "end": 3484.94, + "probability": 0.7332 + }, + { + "start": 3485.08, + "end": 3486.94, + "probability": 0.3517 + }, + { + "start": 3486.94, + "end": 3488.58, + "probability": 0.7495 + }, + { + "start": 3488.82, + "end": 3489.96, + "probability": 0.9801 + }, + { + "start": 3490.44, + "end": 3491.64, + "probability": 0.7327 + }, + { + "start": 3492.42, + "end": 3493.43, + "probability": 0.8727 + }, + { + "start": 3495.16, + "end": 3496.66, + "probability": 0.7025 + }, + { + "start": 3496.86, + "end": 3496.86, + "probability": 0.2142 + }, + { + "start": 3496.86, + "end": 3498.1, + "probability": 0.5991 + }, + { + "start": 3498.38, + "end": 3498.68, + "probability": 0.6346 + }, + { + "start": 3498.98, + "end": 3499.48, + "probability": 0.7984 + }, + { + "start": 3499.56, + "end": 3502.0, + "probability": 0.9821 + }, + { + "start": 3503.12, + "end": 3503.78, + "probability": 0.2575 + }, + { + "start": 3503.78, + "end": 3504.16, + "probability": 0.557 + }, + { + "start": 3504.18, + "end": 3505.78, + "probability": 0.6287 + }, + { + "start": 3505.84, + "end": 3506.22, + "probability": 0.7456 + }, + { + "start": 3506.32, + "end": 3506.84, + "probability": 0.9047 + }, + { + "start": 3509.44, + "end": 3511.52, + "probability": 0.7657 + }, + { + "start": 3511.76, + "end": 3512.66, + "probability": 0.7557 + }, + { + "start": 3514.84, + "end": 3517.53, + "probability": 0.7513 + }, + { + "start": 3525.06, + "end": 3529.54, + "probability": 0.9825 + }, + { + "start": 3529.58, + "end": 3532.72, + "probability": 0.9858 + }, + { + "start": 3533.64, + "end": 3536.9, + "probability": 0.5993 + }, + { + "start": 3537.54, + "end": 3539.26, + "probability": 0.3747 + }, + { + "start": 3539.42, + "end": 3542.18, + "probability": 0.6281 + }, + { + "start": 3542.46, + "end": 3544.72, + "probability": 0.4864 + }, + { + "start": 3545.02, + "end": 3546.86, + "probability": 0.8586 + }, + { + "start": 3547.34, + "end": 3551.3, + "probability": 0.9788 + }, + { + "start": 3551.42, + "end": 3555.72, + "probability": 0.9674 + }, + { + "start": 3555.9, + "end": 3559.06, + "probability": 0.9639 + }, + { + "start": 3559.66, + "end": 3563.0, + "probability": 0.8013 + }, + { + "start": 3563.72, + "end": 3565.18, + "probability": 0.795 + }, + { + "start": 3565.4, + "end": 3567.64, + "probability": 0.1825 + }, + { + "start": 3583.78, + "end": 3586.86, + "probability": 0.7923 + }, + { + "start": 3587.14, + "end": 3593.82, + "probability": 0.8575 + }, + { + "start": 3593.9, + "end": 3595.14, + "probability": 0.3758 + }, + { + "start": 3595.48, + "end": 3596.61, + "probability": 0.0489 + }, + { + "start": 3600.2, + "end": 3600.32, + "probability": 0.0 + }, + { + "start": 3605.52, + "end": 3609.28, + "probability": 0.0411 + }, + { + "start": 3609.28, + "end": 3611.88, + "probability": 0.2367 + }, + { + "start": 3612.22, + "end": 3617.0, + "probability": 0.0396 + }, + { + "start": 3617.18, + "end": 3618.18, + "probability": 0.0751 + }, + { + "start": 3618.46, + "end": 3619.44, + "probability": 0.9798 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.0, + "end": 3684.0, + "probability": 0.0 + }, + { + "start": 3684.26, + "end": 3684.26, + "probability": 0.0559 + }, + { + "start": 3684.26, + "end": 3684.26, + "probability": 0.0416 + }, + { + "start": 3684.26, + "end": 3686.02, + "probability": 0.8339 + }, + { + "start": 3686.5, + "end": 3689.54, + "probability": 0.9285 + }, + { + "start": 3690.26, + "end": 3690.72, + "probability": 0.4167 + }, + { + "start": 3690.96, + "end": 3694.64, + "probability": 0.9692 + }, + { + "start": 3694.88, + "end": 3698.16, + "probability": 0.9854 + }, + { + "start": 3698.16, + "end": 3700.4, + "probability": 0.9415 + }, + { + "start": 3700.56, + "end": 3702.14, + "probability": 0.3503 + }, + { + "start": 3702.7, + "end": 3704.34, + "probability": 0.995 + }, + { + "start": 3704.48, + "end": 3705.0, + "probability": 0.8075 + }, + { + "start": 3720.97, + "end": 3723.61, + "probability": 0.2507 + }, + { + "start": 3725.0, + "end": 3725.34, + "probability": 0.1747 + }, + { + "start": 3728.94, + "end": 3730.4, + "probability": 0.0286 + }, + { + "start": 3731.42, + "end": 3738.34, + "probability": 0.05 + }, + { + "start": 3739.04, + "end": 3739.76, + "probability": 0.0636 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.0, + "end": 3812.0, + "probability": 0.0 + }, + { + "start": 3812.18, + "end": 3817.0, + "probability": 0.1834 + }, + { + "start": 3817.21, + "end": 3818.84, + "probability": 0.0196 + }, + { + "start": 3818.84, + "end": 3820.24, + "probability": 0.0065 + }, + { + "start": 3823.4, + "end": 3823.76, + "probability": 0.0435 + }, + { + "start": 3823.76, + "end": 3824.4, + "probability": 0.0703 + }, + { + "start": 3826.28, + "end": 3829.08, + "probability": 0.0615 + }, + { + "start": 3832.06, + "end": 3832.64, + "probability": 0.0681 + }, + { + "start": 3832.7, + "end": 3835.58, + "probability": 0.0518 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.0 + }, + { + "start": 3934.08, + "end": 3935.58, + "probability": 0.0476 + }, + { + "start": 3937.05, + "end": 3940.1, + "probability": 0.0607 + }, + { + "start": 3940.62, + "end": 3943.22, + "probability": 0.1197 + }, + { + "start": 3943.43, + "end": 3947.38, + "probability": 0.0229 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.0, + "end": 4076.0, + "probability": 0.0 + }, + { + "start": 4076.06, + "end": 4077.46, + "probability": 0.3963 + }, + { + "start": 4078.06, + "end": 4083.06, + "probability": 0.9141 + }, + { + "start": 4083.8, + "end": 4086.3, + "probability": 0.9696 + }, + { + "start": 4087.68, + "end": 4092.2, + "probability": 0.8504 + }, + { + "start": 4094.22, + "end": 4096.46, + "probability": 0.9802 + }, + { + "start": 4097.56, + "end": 4098.68, + "probability": 0.9875 + }, + { + "start": 4107.24, + "end": 4114.3, + "probability": 0.6204 + }, + { + "start": 4115.92, + "end": 4118.06, + "probability": 0.843 + }, + { + "start": 4118.6, + "end": 4120.66, + "probability": 0.9718 + }, + { + "start": 4121.62, + "end": 4123.18, + "probability": 0.9212 + }, + { + "start": 4124.24, + "end": 4129.9, + "probability": 0.9822 + }, + { + "start": 4130.82, + "end": 4133.14, + "probability": 0.5114 + }, + { + "start": 4134.0, + "end": 4135.5, + "probability": 0.7036 + }, + { + "start": 4136.48, + "end": 4136.92, + "probability": 0.7427 + }, + { + "start": 4137.58, + "end": 4138.52, + "probability": 0.7245 + }, + { + "start": 4140.27, + "end": 4143.66, + "probability": 0.7809 + }, + { + "start": 4144.4, + "end": 4146.54, + "probability": 0.8554 + }, + { + "start": 4147.22, + "end": 4148.88, + "probability": 0.8735 + }, + { + "start": 4149.92, + "end": 4152.96, + "probability": 0.6044 + }, + { + "start": 4154.32, + "end": 4157.1, + "probability": 0.8866 + }, + { + "start": 4158.86, + "end": 4160.66, + "probability": 0.904 + }, + { + "start": 4162.5, + "end": 4164.52, + "probability": 0.9019 + }, + { + "start": 4166.3, + "end": 4167.98, + "probability": 0.7338 + }, + { + "start": 4169.36, + "end": 4170.22, + "probability": 0.9055 + }, + { + "start": 4173.26, + "end": 4174.4, + "probability": 0.5631 + }, + { + "start": 4176.3, + "end": 4180.02, + "probability": 0.7024 + }, + { + "start": 4186.54, + "end": 4187.02, + "probability": 0.7233 + }, + { + "start": 4190.18, + "end": 4190.98, + "probability": 0.5353 + }, + { + "start": 4192.72, + "end": 4193.6, + "probability": 0.8049 + }, + { + "start": 4194.48, + "end": 4196.46, + "probability": 0.8134 + }, + { + "start": 4197.9, + "end": 4200.08, + "probability": 0.9532 + }, + { + "start": 4202.58, + "end": 4204.7, + "probability": 0.8945 + }, + { + "start": 4206.22, + "end": 4208.38, + "probability": 0.9419 + }, + { + "start": 4212.2, + "end": 4212.94, + "probability": 0.6037 + }, + { + "start": 4215.7, + "end": 4217.32, + "probability": 0.9871 + }, + { + "start": 4218.1, + "end": 4219.8, + "probability": 0.9012 + }, + { + "start": 4221.34, + "end": 4223.02, + "probability": 0.9719 + }, + { + "start": 4224.96, + "end": 4228.72, + "probability": 0.9844 + }, + { + "start": 4229.56, + "end": 4233.68, + "probability": 0.9714 + }, + { + "start": 4235.04, + "end": 4239.36, + "probability": 0.7201 + }, + { + "start": 4239.88, + "end": 4241.22, + "probability": 0.949 + }, + { + "start": 4242.84, + "end": 4244.96, + "probability": 0.9656 + }, + { + "start": 4245.74, + "end": 4247.46, + "probability": 0.9556 + }, + { + "start": 4247.48, + "end": 4249.62, + "probability": 0.9322 + }, + { + "start": 4250.08, + "end": 4251.22, + "probability": 0.8494 + }, + { + "start": 4251.28, + "end": 4252.88, + "probability": 0.7996 + }, + { + "start": 4253.28, + "end": 4256.32, + "probability": 0.8498 + }, + { + "start": 4256.44, + "end": 4257.86, + "probability": 0.8419 + }, + { + "start": 4257.92, + "end": 4259.12, + "probability": 0.7582 + }, + { + "start": 4259.14, + "end": 4261.2, + "probability": 0.9714 + }, + { + "start": 4262.8, + "end": 4265.94, + "probability": 0.7658 + }, + { + "start": 4267.28, + "end": 4269.2, + "probability": 0.8181 + }, + { + "start": 4271.26, + "end": 4274.0, + "probability": 0.6309 + }, + { + "start": 4274.94, + "end": 4276.02, + "probability": 0.7605 + }, + { + "start": 4279.28, + "end": 4279.66, + "probability": 0.557 + }, + { + "start": 4280.32, + "end": 4281.34, + "probability": 0.5526 + }, + { + "start": 4282.6, + "end": 4283.4, + "probability": 0.6534 + }, + { + "start": 4285.04, + "end": 4287.2, + "probability": 0.7999 + }, + { + "start": 4288.44, + "end": 4289.18, + "probability": 0.6827 + }, + { + "start": 4290.2, + "end": 4292.64, + "probability": 0.9773 + }, + { + "start": 4297.34, + "end": 4298.92, + "probability": 0.6737 + }, + { + "start": 4302.2, + "end": 4303.04, + "probability": 0.7309 + }, + { + "start": 4317.68, + "end": 4320.8, + "probability": 0.3285 + }, + { + "start": 4321.62, + "end": 4323.34, + "probability": 0.7952 + }, + { + "start": 4324.18, + "end": 4326.62, + "probability": 0.8772 + }, + { + "start": 4327.44, + "end": 4328.76, + "probability": 0.8473 + }, + { + "start": 4330.28, + "end": 4332.82, + "probability": 0.4549 + }, + { + "start": 4336.96, + "end": 4337.76, + "probability": 0.0508 + }, + { + "start": 4338.92, + "end": 4340.54, + "probability": 0.6156 + }, + { + "start": 4341.99, + "end": 4344.62, + "probability": 0.8376 + }, + { + "start": 4345.42, + "end": 4347.28, + "probability": 0.9318 + }, + { + "start": 4348.02, + "end": 4349.38, + "probability": 0.836 + }, + { + "start": 4349.46, + "end": 4351.02, + "probability": 0.9013 + }, + { + "start": 4351.42, + "end": 4352.92, + "probability": 0.663 + }, + { + "start": 4353.58, + "end": 4354.04, + "probability": 0.9329 + }, + { + "start": 4355.16, + "end": 4356.08, + "probability": 0.3776 + }, + { + "start": 4357.64, + "end": 4360.4, + "probability": 0.8611 + }, + { + "start": 4361.22, + "end": 4363.44, + "probability": 0.8564 + }, + { + "start": 4365.2, + "end": 4369.86, + "probability": 0.9717 + }, + { + "start": 4370.8, + "end": 4372.9, + "probability": 0.9208 + }, + { + "start": 4374.48, + "end": 4376.24, + "probability": 0.9124 + }, + { + "start": 4376.26, + "end": 4378.32, + "probability": 0.7664 + }, + { + "start": 4378.8, + "end": 4380.8, + "probability": 0.8844 + }, + { + "start": 4382.1, + "end": 4385.14, + "probability": 0.8737 + }, + { + "start": 4386.72, + "end": 4388.36, + "probability": 0.9222 + }, + { + "start": 4389.38, + "end": 4391.18, + "probability": 0.899 + }, + { + "start": 4392.44, + "end": 4396.42, + "probability": 0.9855 + }, + { + "start": 4397.1, + "end": 4398.54, + "probability": 0.9019 + }, + { + "start": 4399.6, + "end": 4401.52, + "probability": 0.9468 + }, + { + "start": 4401.9, + "end": 4403.26, + "probability": 0.8748 + }, + { + "start": 4403.72, + "end": 4406.22, + "probability": 0.936 + }, + { + "start": 4406.5, + "end": 4408.12, + "probability": 0.9478 + }, + { + "start": 4408.36, + "end": 4410.14, + "probability": 0.8955 + }, + { + "start": 4411.14, + "end": 4415.44, + "probability": 0.9155 + }, + { + "start": 4416.02, + "end": 4417.54, + "probability": 0.9104 + }, + { + "start": 4419.06, + "end": 4419.54, + "probability": 0.7624 + }, + { + "start": 4421.42, + "end": 4422.24, + "probability": 0.6133 + }, + { + "start": 4427.48, + "end": 4430.56, + "probability": 0.6186 + }, + { + "start": 4430.56, + "end": 4431.96, + "probability": 0.5903 + }, + { + "start": 4432.16, + "end": 4432.88, + "probability": 0.8858 + }, + { + "start": 4441.84, + "end": 4442.94, + "probability": 0.4279 + }, + { + "start": 4443.04, + "end": 4445.8, + "probability": 0.9462 + }, + { + "start": 4446.78, + "end": 4447.48, + "probability": 0.259 + }, + { + "start": 4448.06, + "end": 4450.42, + "probability": 0.561 + }, + { + "start": 4450.8, + "end": 4452.32, + "probability": 0.7144 + }, + { + "start": 4452.78, + "end": 4456.58, + "probability": 0.7457 + }, + { + "start": 4456.58, + "end": 4457.08, + "probability": 0.3232 + }, + { + "start": 4458.08, + "end": 4460.28, + "probability": 0.6773 + }, + { + "start": 4461.52, + "end": 4463.4, + "probability": 0.8338 + }, + { + "start": 4463.92, + "end": 4465.08, + "probability": 0.729 + }, + { + "start": 4465.16, + "end": 4466.2, + "probability": 0.6948 + }, + { + "start": 4466.26, + "end": 4468.04, + "probability": 0.9566 + }, + { + "start": 4468.52, + "end": 4469.76, + "probability": 0.8134 + }, + { + "start": 4469.78, + "end": 4471.1, + "probability": 0.7051 + }, + { + "start": 4471.1, + "end": 4473.36, + "probability": 0.7936 + }, + { + "start": 4473.78, + "end": 4473.94, + "probability": 0.96 + }, + { + "start": 4480.08, + "end": 4482.2, + "probability": 0.2402 + }, + { + "start": 4482.32, + "end": 4483.82, + "probability": 0.5621 + }, + { + "start": 4484.38, + "end": 4485.94, + "probability": 0.8754 + }, + { + "start": 4491.54, + "end": 4491.94, + "probability": 0.5637 + }, + { + "start": 4494.64, + "end": 4495.82, + "probability": 0.6435 + }, + { + "start": 4496.34, + "end": 4497.96, + "probability": 0.849 + }, + { + "start": 4498.16, + "end": 4499.58, + "probability": 0.9798 + }, + { + "start": 4499.66, + "end": 4501.38, + "probability": 0.9384 + }, + { + "start": 4501.82, + "end": 4505.28, + "probability": 0.6176 + }, + { + "start": 4505.74, + "end": 4506.7, + "probability": 0.9346 + }, + { + "start": 4508.18, + "end": 4508.92, + "probability": 0.7742 + }, + { + "start": 4509.26, + "end": 4510.72, + "probability": 0.9163 + }, + { + "start": 4513.29, + "end": 4514.68, + "probability": 0.2439 + }, + { + "start": 4514.68, + "end": 4514.68, + "probability": 0.1178 + }, + { + "start": 4514.68, + "end": 4515.14, + "probability": 0.4138 + }, + { + "start": 4515.22, + "end": 4516.88, + "probability": 0.6148 + }, + { + "start": 4516.98, + "end": 4518.56, + "probability": 0.8539 + }, + { + "start": 4518.98, + "end": 4519.72, + "probability": 0.927 + }, + { + "start": 4520.64, + "end": 4522.9, + "probability": 0.5268 + }, + { + "start": 4526.4, + "end": 4527.0, + "probability": 0.567 + }, + { + "start": 4528.6, + "end": 4530.6, + "probability": 0.3798 + }, + { + "start": 4531.5, + "end": 4535.24, + "probability": 0.7893 + }, + { + "start": 4536.06, + "end": 4537.37, + "probability": 0.821 + }, + { + "start": 4538.94, + "end": 4540.54, + "probability": 0.8743 + }, + { + "start": 4541.26, + "end": 4543.06, + "probability": 0.6966 + }, + { + "start": 4543.14, + "end": 4544.84, + "probability": 0.7009 + }, + { + "start": 4545.54, + "end": 4548.62, + "probability": 0.8118 + }, + { + "start": 4549.94, + "end": 4550.74, + "probability": 0.9412 + }, + { + "start": 4551.38, + "end": 4552.08, + "probability": 0.9925 + }, + { + "start": 4552.92, + "end": 4553.68, + "probability": 0.8497 + }, + { + "start": 4555.0, + "end": 4557.88, + "probability": 0.8647 + }, + { + "start": 4559.88, + "end": 4561.46, + "probability": 0.9484 + }, + { + "start": 4561.6, + "end": 4562.74, + "probability": 0.9582 + }, + { + "start": 4562.84, + "end": 4564.36, + "probability": 0.5395 + }, + { + "start": 4564.5, + "end": 4566.0, + "probability": 0.8069 + }, + { + "start": 4566.56, + "end": 4570.12, + "probability": 0.969 + }, + { + "start": 4570.74, + "end": 4572.12, + "probability": 0.9792 + }, + { + "start": 4572.28, + "end": 4573.28, + "probability": 0.7534 + }, + { + "start": 4573.3, + "end": 4574.26, + "probability": 0.7979 + }, + { + "start": 4574.54, + "end": 4575.96, + "probability": 0.469 + }, + { + "start": 4576.02, + "end": 4577.34, + "probability": 0.5787 + }, + { + "start": 4577.36, + "end": 4578.58, + "probability": 0.7448 + }, + { + "start": 4578.64, + "end": 4580.04, + "probability": 0.7104 + }, + { + "start": 4581.32, + "end": 4583.52, + "probability": 0.8116 + }, + { + "start": 4583.6, + "end": 4584.62, + "probability": 0.8078 + }, + { + "start": 4584.7, + "end": 4585.78, + "probability": 0.5083 + }, + { + "start": 4585.8, + "end": 4588.38, + "probability": 0.7422 + }, + { + "start": 4591.76, + "end": 4594.62, + "probability": 0.8201 + }, + { + "start": 4594.7, + "end": 4596.0, + "probability": 0.6178 + }, + { + "start": 4596.06, + "end": 4597.08, + "probability": 0.864 + }, + { + "start": 4597.16, + "end": 4599.58, + "probability": 0.9378 + }, + { + "start": 4600.0, + "end": 4601.52, + "probability": 0.7649 + }, + { + "start": 4601.58, + "end": 4604.56, + "probability": 0.6845 + }, + { + "start": 4604.9, + "end": 4607.16, + "probability": 0.7537 + }, + { + "start": 4608.84, + "end": 4611.42, + "probability": 0.7835 + }, + { + "start": 4612.16, + "end": 4612.78, + "probability": 0.8785 + }, + { + "start": 4612.86, + "end": 4613.98, + "probability": 0.9302 + }, + { + "start": 4614.06, + "end": 4616.06, + "probability": 0.7698 + }, + { + "start": 4616.06, + "end": 4617.42, + "probability": 0.6941 + }, + { + "start": 4619.46, + "end": 4619.92, + "probability": 0.9086 + }, + { + "start": 4623.32, + "end": 4630.42, + "probability": 0.7031 + }, + { + "start": 4633.78, + "end": 4634.78, + "probability": 0.2297 + }, + { + "start": 4634.98, + "end": 4637.82, + "probability": 0.6555 + }, + { + "start": 4637.9, + "end": 4639.72, + "probability": 0.6534 + }, + { + "start": 4639.76, + "end": 4642.44, + "probability": 0.9326 + }, + { + "start": 4643.16, + "end": 4643.6, + "probability": 0.8174 + }, + { + "start": 4644.62, + "end": 4647.34, + "probability": 0.9095 + }, + { + "start": 4648.08, + "end": 4648.4, + "probability": 0.9011 + }, + { + "start": 4650.22, + "end": 4651.0, + "probability": 0.7432 + }, + { + "start": 4652.08, + "end": 4652.86, + "probability": 0.7603 + }, + { + "start": 4654.7, + "end": 4655.56, + "probability": 0.8414 + }, + { + "start": 4655.78, + "end": 4657.58, + "probability": 0.9343 + }, + { + "start": 4657.68, + "end": 4659.26, + "probability": 0.9074 + }, + { + "start": 4659.6, + "end": 4662.08, + "probability": 0.8872 + }, + { + "start": 4663.56, + "end": 4666.02, + "probability": 0.9758 + }, + { + "start": 4666.16, + "end": 4667.76, + "probability": 0.7974 + }, + { + "start": 4668.24, + "end": 4670.14, + "probability": 0.8024 + }, + { + "start": 4670.4, + "end": 4671.8, + "probability": 0.6386 + }, + { + "start": 4672.14, + "end": 4672.74, + "probability": 0.9318 + }, + { + "start": 4673.5, + "end": 4677.42, + "probability": 0.7274 + }, + { + "start": 4678.71, + "end": 4680.48, + "probability": 0.3347 + }, + { + "start": 4681.02, + "end": 4683.24, + "probability": 0.7465 + }, + { + "start": 4684.16, + "end": 4685.95, + "probability": 0.7215 + }, + { + "start": 4716.44, + "end": 4717.0, + "probability": 0.0446 + }, + { + "start": 4726.56, + "end": 4727.0, + "probability": 0.0 + }, + { + "start": 4740.26, + "end": 4741.66, + "probability": 0.0268 + }, + { + "start": 4745.68, + "end": 4746.78, + "probability": 0.0569 + }, + { + "start": 4773.2, + "end": 4775.24, + "probability": 0.6711 + }, + { + "start": 4775.86, + "end": 4778.9, + "probability": 0.8486 + }, + { + "start": 4779.08, + "end": 4780.57, + "probability": 0.5029 + }, + { + "start": 4781.52, + "end": 4783.0, + "probability": 0.3467 + }, + { + "start": 4783.52, + "end": 4785.88, + "probability": 0.636 + }, + { + "start": 4785.94, + "end": 4786.52, + "probability": 0.9299 + }, + { + "start": 4787.16, + "end": 4789.16, + "probability": 0.9465 + }, + { + "start": 4790.88, + "end": 4792.56, + "probability": 0.6444 + }, + { + "start": 4792.74, + "end": 4794.64, + "probability": 0.7085 + }, + { + "start": 4795.32, + "end": 4795.66, + "probability": 0.2554 + }, + { + "start": 4795.84, + "end": 4796.94, + "probability": 0.7985 + }, + { + "start": 4797.08, + "end": 4799.1, + "probability": 0.385 + }, + { + "start": 4799.36, + "end": 4801.82, + "probability": 0.7617 + }, + { + "start": 4802.46, + "end": 4804.28, + "probability": 0.514 + }, + { + "start": 4804.36, + "end": 4805.6, + "probability": 0.9441 + }, + { + "start": 4805.78, + "end": 4806.9, + "probability": 0.8922 + }, + { + "start": 4812.0, + "end": 4813.58, + "probability": 0.7404 + }, + { + "start": 4814.78, + "end": 4817.14, + "probability": 0.7492 + }, + { + "start": 4817.26, + "end": 4820.02, + "probability": 0.9076 + }, + { + "start": 4821.4, + "end": 4824.4, + "probability": 0.9193 + }, + { + "start": 4824.64, + "end": 4826.04, + "probability": 0.8999 + }, + { + "start": 4826.12, + "end": 4828.26, + "probability": 0.995 + }, + { + "start": 4828.9, + "end": 4830.5, + "probability": 0.9804 + }, + { + "start": 4830.5, + "end": 4832.59, + "probability": 0.9951 + }, + { + "start": 4833.02, + "end": 4835.48, + "probability": 0.9932 + }, + { + "start": 4835.48, + "end": 4837.84, + "probability": 0.998 + }, + { + "start": 4838.02, + "end": 4839.44, + "probability": 0.9958 + }, + { + "start": 4839.76, + "end": 4842.04, + "probability": 0.9948 + }, + { + "start": 4842.42, + "end": 4844.04, + "probability": 0.9552 + }, + { + "start": 4844.14, + "end": 4844.94, + "probability": 0.1888 + }, + { + "start": 4845.86, + "end": 4850.76, + "probability": 0.1849 + }, + { + "start": 4851.46, + "end": 4853.36, + "probability": 0.9908 + }, + { + "start": 4853.42, + "end": 4854.4, + "probability": 0.8839 + }, + { + "start": 4857.34, + "end": 4859.14, + "probability": 0.6308 + }, + { + "start": 4859.98, + "end": 4860.98, + "probability": 0.9585 + }, + { + "start": 4861.0, + "end": 4861.18, + "probability": 0.8801 + }, + { + "start": 4861.34, + "end": 4865.96, + "probability": 0.9536 + }, + { + "start": 4867.44, + "end": 4871.82, + "probability": 0.9511 + }, + { + "start": 4872.82, + "end": 4873.44, + "probability": 0.8593 + }, + { + "start": 4873.6, + "end": 4875.8, + "probability": 0.9889 + }, + { + "start": 4875.86, + "end": 4876.76, + "probability": 0.8218 + }, + { + "start": 4878.2, + "end": 4880.56, + "probability": 0.9132 + }, + { + "start": 4881.7, + "end": 4882.58, + "probability": 0.9182 + }, + { + "start": 4882.72, + "end": 4884.02, + "probability": 0.9762 + }, + { + "start": 4884.56, + "end": 4887.78, + "probability": 0.9907 + }, + { + "start": 4888.22, + "end": 4889.24, + "probability": 0.9756 + }, + { + "start": 4890.46, + "end": 4892.88, + "probability": 0.9935 + }, + { + "start": 4893.28, + "end": 4894.84, + "probability": 0.7939 + }, + { + "start": 4896.08, + "end": 4900.76, + "probability": 0.9687 + }, + { + "start": 4901.32, + "end": 4904.62, + "probability": 0.9696 + }, + { + "start": 4905.86, + "end": 4906.54, + "probability": 0.6515 + }, + { + "start": 4906.6, + "end": 4910.58, + "probability": 0.9866 + }, + { + "start": 4911.0, + "end": 4914.68, + "probability": 0.9961 + }, + { + "start": 4914.68, + "end": 4917.4, + "probability": 0.9965 + }, + { + "start": 4917.76, + "end": 4920.92, + "probability": 0.8994 + }, + { + "start": 4921.0, + "end": 4921.74, + "probability": 0.6933 + }, + { + "start": 4922.86, + "end": 4928.52, + "probability": 0.9752 + }, + { + "start": 4929.7, + "end": 4931.92, + "probability": 0.9796 + }, + { + "start": 4932.0, + "end": 4932.63, + "probability": 0.7776 + }, + { + "start": 4933.4, + "end": 4934.16, + "probability": 0.9448 + }, + { + "start": 4934.48, + "end": 4936.12, + "probability": 0.8469 + }, + { + "start": 4936.22, + "end": 4936.56, + "probability": 0.9194 + }, + { + "start": 4936.58, + "end": 4936.94, + "probability": 0.863 + }, + { + "start": 4936.94, + "end": 4937.2, + "probability": 0.7495 + }, + { + "start": 4937.24, + "end": 4938.32, + "probability": 0.9985 + }, + { + "start": 4939.22, + "end": 4945.88, + "probability": 0.771 + }, + { + "start": 4947.26, + "end": 4950.14, + "probability": 0.7121 + }, + { + "start": 4951.16, + "end": 4953.42, + "probability": 0.9906 + }, + { + "start": 4954.66, + "end": 4957.58, + "probability": 0.9182 + }, + { + "start": 4957.66, + "end": 4960.16, + "probability": 0.9982 + }, + { + "start": 4961.6, + "end": 4962.58, + "probability": 0.5903 + }, + { + "start": 4963.86, + "end": 4968.96, + "probability": 0.9926 + }, + { + "start": 4969.84, + "end": 4971.3, + "probability": 0.933 + }, + { + "start": 4972.06, + "end": 4973.38, + "probability": 0.8958 + }, + { + "start": 4974.6, + "end": 4976.92, + "probability": 0.6712 + }, + { + "start": 4977.48, + "end": 4979.01, + "probability": 0.9922 + }, + { + "start": 4980.7, + "end": 4986.42, + "probability": 0.9948 + }, + { + "start": 4987.66, + "end": 4987.92, + "probability": 0.577 + }, + { + "start": 4990.76, + "end": 4993.72, + "probability": 0.9974 + }, + { + "start": 4993.72, + "end": 4996.38, + "probability": 0.9892 + }, + { + "start": 4997.42, + "end": 4997.54, + "probability": 0.082 + }, + { + "start": 4997.54, + "end": 4999.3, + "probability": 0.9746 + }, + { + "start": 5000.32, + "end": 5004.82, + "probability": 0.5718 + }, + { + "start": 5005.46, + "end": 5007.04, + "probability": 0.5206 + }, + { + "start": 5008.58, + "end": 5008.58, + "probability": 0.0273 + }, + { + "start": 5008.58, + "end": 5008.58, + "probability": 0.0092 + }, + { + "start": 5008.58, + "end": 5009.9, + "probability": 0.9197 + }, + { + "start": 5009.9, + "end": 5009.92, + "probability": 0.111 + }, + { + "start": 5009.92, + "end": 5011.76, + "probability": 0.8817 + }, + { + "start": 5012.96, + "end": 5014.74, + "probability": 0.0009 + }, + { + "start": 5015.3, + "end": 5016.42, + "probability": 0.1578 + }, + { + "start": 5016.42, + "end": 5016.42, + "probability": 0.0455 + }, + { + "start": 5016.42, + "end": 5016.42, + "probability": 0.1737 + }, + { + "start": 5016.42, + "end": 5018.1, + "probability": 0.3995 + }, + { + "start": 5018.48, + "end": 5020.88, + "probability": 0.9917 + }, + { + "start": 5021.7, + "end": 5022.82, + "probability": 0.819 + }, + { + "start": 5023.66, + "end": 5030.46, + "probability": 0.9681 + }, + { + "start": 5031.34, + "end": 5033.78, + "probability": 0.9911 + }, + { + "start": 5033.94, + "end": 5035.8, + "probability": 0.9907 + }, + { + "start": 5036.84, + "end": 5040.02, + "probability": 0.989 + }, + { + "start": 5040.14, + "end": 5043.76, + "probability": 0.9439 + }, + { + "start": 5044.34, + "end": 5050.54, + "probability": 0.9835 + }, + { + "start": 5051.6, + "end": 5052.96, + "probability": 0.9761 + }, + { + "start": 5053.0, + "end": 5053.7, + "probability": 0.7893 + }, + { + "start": 5054.86, + "end": 5057.08, + "probability": 0.3602 + }, + { + "start": 5058.7, + "end": 5058.8, + "probability": 0.0257 + }, + { + "start": 5058.8, + "end": 5058.8, + "probability": 0.3242 + }, + { + "start": 5058.8, + "end": 5059.62, + "probability": 0.7195 + }, + { + "start": 5060.34, + "end": 5063.0, + "probability": 0.857 + }, + { + "start": 5063.0, + "end": 5066.42, + "probability": 0.8218 + }, + { + "start": 5066.62, + "end": 5067.8, + "probability": 0.1804 + }, + { + "start": 5068.06, + "end": 5071.28, + "probability": 0.8944 + }, + { + "start": 5071.38, + "end": 5075.88, + "probability": 0.7436 + }, + { + "start": 5076.4, + "end": 5077.5, + "probability": 0.722 + }, + { + "start": 5083.22, + "end": 5086.24, + "probability": 0.9175 + }, + { + "start": 5099.8, + "end": 5100.3, + "probability": 0.3855 + }, + { + "start": 5100.4, + "end": 5101.56, + "probability": 0.5291 + }, + { + "start": 5102.57, + "end": 5105.28, + "probability": 0.6941 + }, + { + "start": 5106.22, + "end": 5108.42, + "probability": 0.9662 + }, + { + "start": 5109.28, + "end": 5112.8, + "probability": 0.9984 + }, + { + "start": 5113.52, + "end": 5115.14, + "probability": 0.998 + }, + { + "start": 5115.86, + "end": 5120.16, + "probability": 0.9353 + }, + { + "start": 5120.66, + "end": 5123.18, + "probability": 0.9257 + }, + { + "start": 5123.6, + "end": 5124.66, + "probability": 0.9862 + }, + { + "start": 5124.8, + "end": 5126.1, + "probability": 0.7265 + }, + { + "start": 5126.44, + "end": 5128.18, + "probability": 0.7983 + }, + { + "start": 5128.94, + "end": 5132.8, + "probability": 0.9949 + }, + { + "start": 5133.3, + "end": 5135.48, + "probability": 0.8352 + }, + { + "start": 5137.14, + "end": 5140.44, + "probability": 0.7587 + }, + { + "start": 5140.5, + "end": 5141.32, + "probability": 0.7375 + }, + { + "start": 5142.06, + "end": 5148.34, + "probability": 0.9973 + }, + { + "start": 5148.92, + "end": 5150.88, + "probability": 0.9897 + }, + { + "start": 5151.8, + "end": 5152.08, + "probability": 0.8687 + }, + { + "start": 5152.16, + "end": 5157.08, + "probability": 0.9597 + }, + { + "start": 5157.08, + "end": 5161.56, + "probability": 0.9985 + }, + { + "start": 5161.96, + "end": 5165.62, + "probability": 0.9544 + }, + { + "start": 5165.74, + "end": 5166.04, + "probability": 0.7681 + }, + { + "start": 5166.68, + "end": 5168.82, + "probability": 0.9981 + }, + { + "start": 5169.38, + "end": 5171.74, + "probability": 0.9945 + }, + { + "start": 5171.82, + "end": 5172.33, + "probability": 0.6836 + }, + { + "start": 5172.8, + "end": 5175.3, + "probability": 0.8317 + }, + { + "start": 5175.34, + "end": 5176.2, + "probability": 0.9896 + }, + { + "start": 5177.62, + "end": 5181.78, + "probability": 0.9951 + }, + { + "start": 5182.64, + "end": 5184.13, + "probability": 0.9313 + }, + { + "start": 5185.68, + "end": 5188.02, + "probability": 0.9907 + }, + { + "start": 5188.9, + "end": 5193.36, + "probability": 0.9893 + }, + { + "start": 5194.46, + "end": 5199.7, + "probability": 0.9932 + }, + { + "start": 5200.73, + "end": 5204.42, + "probability": 0.9682 + }, + { + "start": 5205.12, + "end": 5206.96, + "probability": 0.7034 + }, + { + "start": 5207.78, + "end": 5209.22, + "probability": 0.9619 + }, + { + "start": 5209.78, + "end": 5211.82, + "probability": 0.9774 + }, + { + "start": 5212.46, + "end": 5214.34, + "probability": 0.9755 + }, + { + "start": 5215.5, + "end": 5215.72, + "probability": 0.0444 + }, + { + "start": 5215.72, + "end": 5216.95, + "probability": 0.957 + }, + { + "start": 5217.48, + "end": 5218.72, + "probability": 0.5943 + }, + { + "start": 5219.22, + "end": 5219.86, + "probability": 0.5715 + }, + { + "start": 5219.88, + "end": 5220.2, + "probability": 0.6543 + }, + { + "start": 5221.04, + "end": 5224.44, + "probability": 0.9866 + }, + { + "start": 5224.48, + "end": 5226.08, + "probability": 0.9923 + }, + { + "start": 5227.38, + "end": 5232.54, + "probability": 0.9892 + }, + { + "start": 5233.14, + "end": 5233.62, + "probability": 0.5413 + }, + { + "start": 5234.58, + "end": 5234.94, + "probability": 0.4824 + }, + { + "start": 5235.08, + "end": 5236.31, + "probability": 0.9459 + }, + { + "start": 5236.9, + "end": 5237.74, + "probability": 0.9799 + }, + { + "start": 5237.74, + "end": 5238.66, + "probability": 0.957 + }, + { + "start": 5240.08, + "end": 5242.9, + "probability": 0.9753 + }, + { + "start": 5243.72, + "end": 5247.0, + "probability": 0.9838 + }, + { + "start": 5247.76, + "end": 5249.42, + "probability": 0.7076 + }, + { + "start": 5249.96, + "end": 5255.64, + "probability": 0.9941 + }, + { + "start": 5256.85, + "end": 5260.08, + "probability": 0.963 + }, + { + "start": 5260.68, + "end": 5262.18, + "probability": 0.9989 + }, + { + "start": 5262.86, + "end": 5264.12, + "probability": 0.9472 + }, + { + "start": 5265.04, + "end": 5267.1, + "probability": 0.9966 + }, + { + "start": 5267.6, + "end": 5270.18, + "probability": 0.9759 + }, + { + "start": 5270.52, + "end": 5273.44, + "probability": 0.9935 + }, + { + "start": 5274.2, + "end": 5277.74, + "probability": 0.9971 + }, + { + "start": 5278.42, + "end": 5280.38, + "probability": 0.9849 + }, + { + "start": 5281.1, + "end": 5282.68, + "probability": 0.9797 + }, + { + "start": 5283.62, + "end": 5284.26, + "probability": 0.9762 + }, + { + "start": 5284.62, + "end": 5288.38, + "probability": 0.978 + }, + { + "start": 5288.48, + "end": 5288.98, + "probability": 0.6367 + }, + { + "start": 5289.38, + "end": 5290.72, + "probability": 0.7701 + }, + { + "start": 5291.64, + "end": 5293.78, + "probability": 0.6795 + }, + { + "start": 5293.84, + "end": 5295.58, + "probability": 0.7546 + }, + { + "start": 5296.18, + "end": 5298.94, + "probability": 0.9467 + }, + { + "start": 5319.34, + "end": 5319.92, + "probability": 0.3828 + }, + { + "start": 5319.98, + "end": 5320.38, + "probability": 0.6618 + }, + { + "start": 5321.76, + "end": 5323.44, + "probability": 0.7996 + }, + { + "start": 5323.74, + "end": 5324.64, + "probability": 0.8321 + }, + { + "start": 5325.3, + "end": 5329.04, + "probability": 0.9259 + }, + { + "start": 5329.14, + "end": 5330.21, + "probability": 0.9601 + }, + { + "start": 5331.06, + "end": 5333.7, + "probability": 0.657 + }, + { + "start": 5333.8, + "end": 5334.32, + "probability": 0.8161 + }, + { + "start": 5335.0, + "end": 5335.16, + "probability": 0.3493 + }, + { + "start": 5335.16, + "end": 5336.54, + "probability": 0.86 + }, + { + "start": 5337.18, + "end": 5339.41, + "probability": 0.9768 + }, + { + "start": 5340.02, + "end": 5341.36, + "probability": 0.8581 + }, + { + "start": 5342.2, + "end": 5343.22, + "probability": 0.6721 + }, + { + "start": 5343.76, + "end": 5346.98, + "probability": 0.741 + }, + { + "start": 5346.98, + "end": 5349.58, + "probability": 0.8783 + }, + { + "start": 5349.68, + "end": 5352.2, + "probability": 0.3845 + }, + { + "start": 5352.3, + "end": 5354.38, + "probability": 0.8104 + }, + { + "start": 5354.5, + "end": 5356.28, + "probability": 0.6944 + }, + { + "start": 5356.34, + "end": 5356.78, + "probability": 0.4985 + }, + { + "start": 5357.48, + "end": 5357.8, + "probability": 0.7782 + }, + { + "start": 5358.44, + "end": 5359.34, + "probability": 0.934 + }, + { + "start": 5361.58, + "end": 5364.0, + "probability": 0.8299 + }, + { + "start": 5365.33, + "end": 5369.52, + "probability": 0.6589 + }, + { + "start": 5369.52, + "end": 5372.82, + "probability": 0.7219 + }, + { + "start": 5373.64, + "end": 5376.8, + "probability": 0.6626 + }, + { + "start": 5376.8, + "end": 5380.08, + "probability": 0.5055 + }, + { + "start": 5380.08, + "end": 5380.9, + "probability": 0.6251 + }, + { + "start": 5381.5, + "end": 5385.96, + "probability": 0.9521 + }, + { + "start": 5385.96, + "end": 5389.88, + "probability": 0.937 + }, + { + "start": 5389.96, + "end": 5390.72, + "probability": 0.7356 + }, + { + "start": 5391.9, + "end": 5395.52, + "probability": 0.8612 + }, + { + "start": 5396.2, + "end": 5398.85, + "probability": 0.5132 + }, + { + "start": 5403.16, + "end": 5403.16, + "probability": 0.0422 + }, + { + "start": 5403.16, + "end": 5405.36, + "probability": 0.8422 + }, + { + "start": 5405.74, + "end": 5406.48, + "probability": 0.9375 + }, + { + "start": 5407.74, + "end": 5408.88, + "probability": 0.9073 + }, + { + "start": 5410.08, + "end": 5410.6, + "probability": 0.963 + }, + { + "start": 5411.14, + "end": 5413.36, + "probability": 0.7637 + }, + { + "start": 5414.14, + "end": 5415.18, + "probability": 0.6752 + }, + { + "start": 5418.12, + "end": 5418.5, + "probability": 0.9956 + }, + { + "start": 5420.18, + "end": 5420.84, + "probability": 0.1828 + }, + { + "start": 5421.3, + "end": 5423.52, + "probability": 0.4133 + }, + { + "start": 5423.74, + "end": 5426.41, + "probability": 0.8151 + }, + { + "start": 5426.8, + "end": 5429.6, + "probability": 0.3358 + }, + { + "start": 5431.68, + "end": 5436.72, + "probability": 0.9698 + }, + { + "start": 5436.72, + "end": 5439.08, + "probability": 0.9033 + }, + { + "start": 5439.46, + "end": 5440.22, + "probability": 0.713 + }, + { + "start": 5440.34, + "end": 5440.74, + "probability": 0.7363 + }, + { + "start": 5442.32, + "end": 5444.8, + "probability": 0.9912 + }, + { + "start": 5444.8, + "end": 5444.82, + "probability": 0.1782 + }, + { + "start": 5444.82, + "end": 5446.96, + "probability": 0.9137 + }, + { + "start": 5447.24, + "end": 5447.4, + "probability": 0.3662 + }, + { + "start": 5447.48, + "end": 5449.26, + "probability": 0.9899 + }, + { + "start": 5449.42, + "end": 5452.4, + "probability": 0.3573 + }, + { + "start": 5452.48, + "end": 5453.74, + "probability": 0.3443 + }, + { + "start": 5455.12, + "end": 5457.68, + "probability": 0.495 + }, + { + "start": 5458.88, + "end": 5461.22, + "probability": 0.3054 + }, + { + "start": 5463.6, + "end": 5464.14, + "probability": 0.4574 + }, + { + "start": 5465.94, + "end": 5467.1, + "probability": 0.9276 + }, + { + "start": 5469.36, + "end": 5472.84, + "probability": 0.7637 + }, + { + "start": 5473.46, + "end": 5473.82, + "probability": 0.0217 + }, + { + "start": 5473.82, + "end": 5473.82, + "probability": 0.0677 + }, + { + "start": 5473.82, + "end": 5474.32, + "probability": 0.2041 + }, + { + "start": 5475.54, + "end": 5480.28, + "probability": 0.905 + }, + { + "start": 5481.14, + "end": 5483.38, + "probability": 0.8084 + }, + { + "start": 5483.96, + "end": 5485.06, + "probability": 0.7468 + }, + { + "start": 5485.78, + "end": 5489.4, + "probability": 0.7663 + }, + { + "start": 5490.76, + "end": 5496.94, + "probability": 0.8859 + }, + { + "start": 5497.5, + "end": 5498.38, + "probability": 0.9357 + }, + { + "start": 5499.52, + "end": 5503.86, + "probability": 0.8426 + }, + { + "start": 5503.86, + "end": 5506.34, + "probability": 0.9738 + }, + { + "start": 5506.7, + "end": 5508.04, + "probability": 0.9198 + }, + { + "start": 5508.56, + "end": 5509.9, + "probability": 0.9653 + }, + { + "start": 5510.46, + "end": 5514.66, + "probability": 0.8672 + }, + { + "start": 5515.58, + "end": 5519.3, + "probability": 0.946 + }, + { + "start": 5520.54, + "end": 5522.86, + "probability": 0.9508 + }, + { + "start": 5523.6, + "end": 5524.3, + "probability": 0.9026 + }, + { + "start": 5525.6, + "end": 5526.23, + "probability": 0.8545 + }, + { + "start": 5526.48, + "end": 5527.32, + "probability": 0.8786 + }, + { + "start": 5528.68, + "end": 5533.3, + "probability": 0.9867 + }, + { + "start": 5535.08, + "end": 5539.08, + "probability": 0.9487 + }, + { + "start": 5539.82, + "end": 5541.16, + "probability": 0.9576 + }, + { + "start": 5541.98, + "end": 5542.84, + "probability": 0.9976 + }, + { + "start": 5544.02, + "end": 5545.8, + "probability": 0.9875 + }, + { + "start": 5547.56, + "end": 5550.14, + "probability": 0.8094 + }, + { + "start": 5551.42, + "end": 5554.32, + "probability": 0.8712 + }, + { + "start": 5555.4, + "end": 5556.42, + "probability": 0.9839 + }, + { + "start": 5557.14, + "end": 5561.54, + "probability": 0.9865 + }, + { + "start": 5562.16, + "end": 5563.52, + "probability": 0.9715 + }, + { + "start": 5564.12, + "end": 5564.88, + "probability": 0.9015 + }, + { + "start": 5566.1, + "end": 5566.9, + "probability": 0.5608 + }, + { + "start": 5566.92, + "end": 5569.21, + "probability": 0.7861 + }, + { + "start": 5581.64, + "end": 5583.9, + "probability": 0.9829 + }, + { + "start": 5584.4, + "end": 5585.46, + "probability": 0.9087 + }, + { + "start": 5585.76, + "end": 5585.88, + "probability": 0.3926 + }, + { + "start": 5585.88, + "end": 5587.31, + "probability": 0.6931 + }, + { + "start": 5587.88, + "end": 5588.04, + "probability": 0.1711 + }, + { + "start": 5588.18, + "end": 5588.68, + "probability": 0.6048 + }, + { + "start": 5588.68, + "end": 5592.14, + "probability": 0.7726 + }, + { + "start": 5592.48, + "end": 5593.64, + "probability": 0.7643 + }, + { + "start": 5593.72, + "end": 5593.82, + "probability": 0.2992 + }, + { + "start": 5594.1, + "end": 5595.78, + "probability": 0.8145 + }, + { + "start": 5596.54, + "end": 5598.82, + "probability": 0.9741 + }, + { + "start": 5599.32, + "end": 5602.48, + "probability": 0.9832 + }, + { + "start": 5603.36, + "end": 5605.18, + "probability": 0.94 + }, + { + "start": 5605.28, + "end": 5606.56, + "probability": 0.629 + }, + { + "start": 5606.74, + "end": 5607.22, + "probability": 0.8541 + }, + { + "start": 5607.3, + "end": 5607.96, + "probability": 0.5005 + }, + { + "start": 5607.96, + "end": 5608.96, + "probability": 0.586 + }, + { + "start": 5609.08, + "end": 5611.32, + "probability": 0.9579 + }, + { + "start": 5611.42, + "end": 5612.7, + "probability": 0.9058 + }, + { + "start": 5613.08, + "end": 5614.54, + "probability": 0.9914 + }, + { + "start": 5614.81, + "end": 5615.26, + "probability": 0.5694 + }, + { + "start": 5615.36, + "end": 5616.4, + "probability": 0.62 + }, + { + "start": 5616.5, + "end": 5618.72, + "probability": 0.9279 + }, + { + "start": 5619.16, + "end": 5622.34, + "probability": 0.6594 + }, + { + "start": 5622.34, + "end": 5626.52, + "probability": 0.9681 + }, + { + "start": 5627.08, + "end": 5628.12, + "probability": 0.749 + }, + { + "start": 5628.54, + "end": 5629.28, + "probability": 0.6244 + }, + { + "start": 5629.28, + "end": 5630.96, + "probability": 0.9694 + }, + { + "start": 5631.52, + "end": 5634.14, + "probability": 0.9742 + }, + { + "start": 5634.62, + "end": 5635.3, + "probability": 0.6953 + }, + { + "start": 5635.48, + "end": 5637.59, + "probability": 0.688 + }, + { + "start": 5637.72, + "end": 5640.06, + "probability": 0.3791 + }, + { + "start": 5640.06, + "end": 5640.52, + "probability": 0.0051 + }, + { + "start": 5640.52, + "end": 5642.9, + "probability": 0.7829 + }, + { + "start": 5643.0, + "end": 5644.26, + "probability": 0.8833 + }, + { + "start": 5644.68, + "end": 5645.5, + "probability": 0.3297 + }, + { + "start": 5645.7, + "end": 5646.5, + "probability": 0.5033 + }, + { + "start": 5646.62, + "end": 5650.5, + "probability": 0.3822 + }, + { + "start": 5650.6, + "end": 5652.28, + "probability": 0.9564 + }, + { + "start": 5652.64, + "end": 5653.7, + "probability": 0.9866 + }, + { + "start": 5653.82, + "end": 5653.86, + "probability": 0.1011 + }, + { + "start": 5653.86, + "end": 5655.36, + "probability": 0.7556 + }, + { + "start": 5655.86, + "end": 5658.13, + "probability": 0.9678 + }, + { + "start": 5658.86, + "end": 5659.6, + "probability": 0.9632 + }, + { + "start": 5659.74, + "end": 5660.48, + "probability": 0.728 + }, + { + "start": 5660.64, + "end": 5661.6, + "probability": 0.821 + }, + { + "start": 5661.78, + "end": 5663.18, + "probability": 0.7472 + }, + { + "start": 5663.3, + "end": 5664.08, + "probability": 0.706 + }, + { + "start": 5664.18, + "end": 5664.88, + "probability": 0.6911 + }, + { + "start": 5665.16, + "end": 5665.46, + "probability": 0.6552 + }, + { + "start": 5666.62, + "end": 5669.9, + "probability": 0.996 + }, + { + "start": 5670.18, + "end": 5670.28, + "probability": 0.8945 + }, + { + "start": 5670.34, + "end": 5671.64, + "probability": 0.978 + }, + { + "start": 5671.78, + "end": 5672.18, + "probability": 0.8026 + }, + { + "start": 5672.22, + "end": 5672.9, + "probability": 0.8162 + }, + { + "start": 5673.14, + "end": 5673.84, + "probability": 0.8123 + }, + { + "start": 5674.04, + "end": 5674.46, + "probability": 0.9468 + }, + { + "start": 5675.56, + "end": 5675.91, + "probability": 0.7583 + }, + { + "start": 5676.52, + "end": 5677.54, + "probability": 0.9021 + }, + { + "start": 5677.6, + "end": 5678.08, + "probability": 0.5703 + }, + { + "start": 5678.56, + "end": 5679.68, + "probability": 0.0338 + }, + { + "start": 5680.6, + "end": 5685.16, + "probability": 0.167 + }, + { + "start": 5685.86, + "end": 5686.42, + "probability": 0.29 + }, + { + "start": 5686.42, + "end": 5686.42, + "probability": 0.0842 + }, + { + "start": 5686.42, + "end": 5686.42, + "probability": 0.0739 + }, + { + "start": 5686.42, + "end": 5686.42, + "probability": 0.0047 + }, + { + "start": 5686.42, + "end": 5686.96, + "probability": 0.3756 + }, + { + "start": 5687.2, + "end": 5688.28, + "probability": 0.9414 + }, + { + "start": 5689.04, + "end": 5693.4, + "probability": 0.718 + }, + { + "start": 5693.54, + "end": 5697.18, + "probability": 0.9058 + }, + { + "start": 5697.24, + "end": 5697.88, + "probability": 0.7127 + }, + { + "start": 5698.18, + "end": 5699.78, + "probability": 0.7711 + }, + { + "start": 5699.78, + "end": 5701.53, + "probability": 0.7508 + }, + { + "start": 5702.26, + "end": 5702.78, + "probability": 0.0824 + }, + { + "start": 5703.06, + "end": 5703.58, + "probability": 0.0401 + }, + { + "start": 5704.88, + "end": 5705.98, + "probability": 0.0524 + }, + { + "start": 5707.34, + "end": 5707.44, + "probability": 0.1119 + }, + { + "start": 5707.44, + "end": 5707.44, + "probability": 0.1578 + }, + { + "start": 5707.44, + "end": 5707.44, + "probability": 0.0717 + }, + { + "start": 5707.44, + "end": 5707.44, + "probability": 0.4225 + }, + { + "start": 5707.44, + "end": 5708.86, + "probability": 0.208 + }, + { + "start": 5709.42, + "end": 5711.44, + "probability": 0.1468 + }, + { + "start": 5712.74, + "end": 5713.62, + "probability": 0.1163 + }, + { + "start": 5714.04, + "end": 5714.1, + "probability": 0.1973 + }, + { + "start": 5714.1, + "end": 5714.1, + "probability": 0.1028 + }, + { + "start": 5714.1, + "end": 5714.1, + "probability": 0.0851 + }, + { + "start": 5714.1, + "end": 5715.22, + "probability": 0.2485 + }, + { + "start": 5715.26, + "end": 5715.98, + "probability": 0.7706 + }, + { + "start": 5716.16, + "end": 5717.14, + "probability": 0.3427 + }, + { + "start": 5718.08, + "end": 5718.2, + "probability": 0.0447 + }, + { + "start": 5718.2, + "end": 5718.6, + "probability": 0.2874 + }, + { + "start": 5718.66, + "end": 5721.81, + "probability": 0.4098 + }, + { + "start": 5722.2, + "end": 5723.84, + "probability": 0.6616 + }, + { + "start": 5723.96, + "end": 5724.0, + "probability": 0.2038 + }, + { + "start": 5724.0, + "end": 5725.09, + "probability": 0.0782 + }, + { + "start": 5725.64, + "end": 5727.22, + "probability": 0.7601 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5740.0, + "end": 5740.0, + "probability": 0.0 + }, + { + "start": 5741.3, + "end": 5747.5, + "probability": 0.8188 + }, + { + "start": 5748.16, + "end": 5750.31, + "probability": 0.6044 + }, + { + "start": 5750.78, + "end": 5754.54, + "probability": 0.9985 + }, + { + "start": 5754.64, + "end": 5757.66, + "probability": 0.8394 + }, + { + "start": 5757.7, + "end": 5758.44, + "probability": 0.3452 + }, + { + "start": 5758.68, + "end": 5759.66, + "probability": 0.6336 + }, + { + "start": 5759.84, + "end": 5761.8, + "probability": 0.9626 + }, + { + "start": 5762.08, + "end": 5763.58, + "probability": 0.9734 + }, + { + "start": 5764.64, + "end": 5766.72, + "probability": 0.9362 + }, + { + "start": 5767.12, + "end": 5768.1, + "probability": 0.9703 + }, + { + "start": 5768.2, + "end": 5770.12, + "probability": 0.9348 + }, + { + "start": 5770.16, + "end": 5771.52, + "probability": 0.9935 + }, + { + "start": 5771.68, + "end": 5774.44, + "probability": 0.9966 + }, + { + "start": 5774.72, + "end": 5778.0, + "probability": 0.9668 + }, + { + "start": 5778.22, + "end": 5782.46, + "probability": 0.9953 + }, + { + "start": 5782.72, + "end": 5786.74, + "probability": 0.9949 + }, + { + "start": 5787.16, + "end": 5788.88, + "probability": 0.9947 + }, + { + "start": 5789.06, + "end": 5789.76, + "probability": 0.8253 + }, + { + "start": 5790.06, + "end": 5792.8, + "probability": 0.9855 + }, + { + "start": 5793.62, + "end": 5795.8, + "probability": 0.9915 + }, + { + "start": 5795.92, + "end": 5796.8, + "probability": 0.6434 + }, + { + "start": 5796.86, + "end": 5796.98, + "probability": 0.406 + }, + { + "start": 5797.04, + "end": 5797.74, + "probability": 0.9148 + }, + { + "start": 5797.82, + "end": 5801.02, + "probability": 0.9932 + }, + { + "start": 5801.84, + "end": 5806.34, + "probability": 0.9509 + }, + { + "start": 5806.64, + "end": 5807.2, + "probability": 0.5273 + }, + { + "start": 5807.84, + "end": 5809.32, + "probability": 0.9989 + }, + { + "start": 5809.4, + "end": 5810.46, + "probability": 0.6157 + }, + { + "start": 5810.68, + "end": 5810.76, + "probability": 0.3059 + }, + { + "start": 5810.86, + "end": 5810.86, + "probability": 0.41 + }, + { + "start": 5812.32, + "end": 5812.72, + "probability": 0.4171 + }, + { + "start": 5812.74, + "end": 5813.54, + "probability": 0.0511 + }, + { + "start": 5814.04, + "end": 5816.84, + "probability": 0.953 + }, + { + "start": 5817.08, + "end": 5817.18, + "probability": 0.5261 + }, + { + "start": 5817.18, + "end": 5817.62, + "probability": 0.4204 + }, + { + "start": 5817.78, + "end": 5818.48, + "probability": 0.8179 + }, + { + "start": 5818.8, + "end": 5819.26, + "probability": 0.5816 + }, + { + "start": 5819.28, + "end": 5819.96, + "probability": 0.8623 + }, + { + "start": 5820.2, + "end": 5827.43, + "probability": 0.8401 + }, + { + "start": 5829.34, + "end": 5830.38, + "probability": 0.7871 + }, + { + "start": 5830.44, + "end": 5832.2, + "probability": 0.3163 + }, + { + "start": 5832.52, + "end": 5834.86, + "probability": 0.8508 + }, + { + "start": 5834.96, + "end": 5836.48, + "probability": 0.9743 + }, + { + "start": 5837.48, + "end": 5842.32, + "probability": 0.7829 + }, + { + "start": 5842.8, + "end": 5843.46, + "probability": 0.2484 + }, + { + "start": 5844.04, + "end": 5846.18, + "probability": 0.5612 + }, + { + "start": 5846.36, + "end": 5848.08, + "probability": 0.7688 + }, + { + "start": 5848.46, + "end": 5851.14, + "probability": 0.8983 + }, + { + "start": 5851.3, + "end": 5853.8, + "probability": 0.9024 + }, + { + "start": 5854.26, + "end": 5856.8, + "probability": 0.9687 + }, + { + "start": 5858.76, + "end": 5865.6, + "probability": 0.6188 + }, + { + "start": 5870.28, + "end": 5871.96, + "probability": 0.8783 + }, + { + "start": 5873.72, + "end": 5878.32, + "probability": 0.7137 + }, + { + "start": 5878.9, + "end": 5880.8, + "probability": 0.6982 + }, + { + "start": 5883.62, + "end": 5885.38, + "probability": 0.8698 + }, + { + "start": 5886.4, + "end": 5888.12, + "probability": 0.8696 + }, + { + "start": 5888.88, + "end": 5890.64, + "probability": 0.9689 + }, + { + "start": 5891.3, + "end": 5895.78, + "probability": 0.9332 + }, + { + "start": 5897.66, + "end": 5902.76, + "probability": 0.5101 + }, + { + "start": 5906.32, + "end": 5907.9, + "probability": 0.7599 + }, + { + "start": 5908.68, + "end": 5910.58, + "probability": 0.8261 + }, + { + "start": 5911.16, + "end": 5913.16, + "probability": 0.9012 + }, + { + "start": 5913.66, + "end": 5917.38, + "probability": 0.7068 + }, + { + "start": 5918.84, + "end": 5920.86, + "probability": 0.9863 + }, + { + "start": 5921.56, + "end": 5923.88, + "probability": 0.985 + }, + { + "start": 5925.32, + "end": 5927.66, + "probability": 0.9866 + }, + { + "start": 5927.82, + "end": 5930.22, + "probability": 0.6732 + }, + { + "start": 5930.72, + "end": 5932.84, + "probability": 0.9484 + }, + { + "start": 5934.11, + "end": 5936.9, + "probability": 0.5396 + }, + { + "start": 5939.82, + "end": 5942.22, + "probability": 0.9856 + }, + { + "start": 5943.04, + "end": 5946.68, + "probability": 0.9439 + }, + { + "start": 5947.68, + "end": 5951.48, + "probability": 0.9525 + }, + { + "start": 5952.06, + "end": 5957.38, + "probability": 0.9556 + }, + { + "start": 5958.44, + "end": 5961.08, + "probability": 0.9523 + }, + { + "start": 5961.66, + "end": 5963.96, + "probability": 0.9861 + }, + { + "start": 5964.94, + "end": 5968.08, + "probability": 0.8828 + }, + { + "start": 5968.74, + "end": 5971.74, + "probability": 0.921 + }, + { + "start": 5972.62, + "end": 5975.34, + "probability": 0.9004 + }, + { + "start": 5975.68, + "end": 5978.8, + "probability": 0.9544 + }, + { + "start": 5979.02, + "end": 5980.64, + "probability": 0.78 + }, + { + "start": 5980.94, + "end": 5985.94, + "probability": 0.737 + }, + { + "start": 5986.96, + "end": 5990.1, + "probability": 0.8718 + }, + { + "start": 5991.04, + "end": 5993.18, + "probability": 0.9814 + }, + { + "start": 5993.8, + "end": 5996.7, + "probability": 0.9437 + }, + { + "start": 5997.74, + "end": 6000.14, + "probability": 0.8853 + }, + { + "start": 6002.84, + "end": 6005.62, + "probability": 0.9671 + }, + { + "start": 6006.86, + "end": 6008.52, + "probability": 0.7175 + }, + { + "start": 6009.04, + "end": 6013.72, + "probability": 0.5932 + }, + { + "start": 6014.58, + "end": 6020.1, + "probability": 0.8419 + }, + { + "start": 6021.3, + "end": 6023.12, + "probability": 0.9846 + }, + { + "start": 6025.26, + "end": 6032.26, + "probability": 0.9131 + }, + { + "start": 6033.9, + "end": 6035.24, + "probability": 0.6752 + }, + { + "start": 6036.46, + "end": 6037.94, + "probability": 0.6619 + }, + { + "start": 6038.76, + "end": 6040.42, + "probability": 0.6352 + }, + { + "start": 6041.34, + "end": 6045.54, + "probability": 0.8572 + }, + { + "start": 6046.98, + "end": 6050.44, + "probability": 0.9399 + }, + { + "start": 6051.3, + "end": 6053.46, + "probability": 0.9413 + }, + { + "start": 6054.14, + "end": 6056.36, + "probability": 0.7471 + }, + { + "start": 6057.2, + "end": 6059.1, + "probability": 0.8549 + }, + { + "start": 6059.44, + "end": 6061.88, + "probability": 0.6289 + }, + { + "start": 6062.3, + "end": 6064.98, + "probability": 0.816 + }, + { + "start": 6065.98, + "end": 6068.6, + "probability": 0.7985 + }, + { + "start": 6070.24, + "end": 6072.46, + "probability": 0.9804 + }, + { + "start": 6073.74, + "end": 6078.0, + "probability": 0.965 + }, + { + "start": 6079.4, + "end": 6083.0, + "probability": 0.9775 + }, + { + "start": 6083.88, + "end": 6084.28, + "probability": 0.9847 + }, + { + "start": 6085.94, + "end": 6087.44, + "probability": 0.9784 + }, + { + "start": 6088.14, + "end": 6091.6, + "probability": 0.7448 + }, + { + "start": 6092.22, + "end": 6093.42, + "probability": 0.7876 + }, + { + "start": 6100.32, + "end": 6103.86, + "probability": 0.3253 + }, + { + "start": 6104.58, + "end": 6106.24, + "probability": 0.7421 + }, + { + "start": 6107.86, + "end": 6110.06, + "probability": 0.6862 + }, + { + "start": 6110.82, + "end": 6113.24, + "probability": 0.8206 + }, + { + "start": 6113.72, + "end": 6116.18, + "probability": 0.8017 + }, + { + "start": 6117.6, + "end": 6120.88, + "probability": 0.9471 + }, + { + "start": 6123.66, + "end": 6129.38, + "probability": 0.6621 + }, + { + "start": 6130.0, + "end": 6133.12, + "probability": 0.8714 + }, + { + "start": 6135.46, + "end": 6141.1, + "probability": 0.6183 + }, + { + "start": 6142.22, + "end": 6144.74, + "probability": 0.9508 + }, + { + "start": 6146.16, + "end": 6148.6, + "probability": 0.9878 + }, + { + "start": 6149.24, + "end": 6151.64, + "probability": 0.9966 + }, + { + "start": 6152.18, + "end": 6153.88, + "probability": 0.9813 + }, + { + "start": 6158.52, + "end": 6163.46, + "probability": 0.545 + }, + { + "start": 6164.14, + "end": 6166.0, + "probability": 0.8258 + }, + { + "start": 6166.54, + "end": 6170.4, + "probability": 0.849 + }, + { + "start": 6171.24, + "end": 6173.58, + "probability": 0.8343 + }, + { + "start": 6174.56, + "end": 6177.58, + "probability": 0.9736 + }, + { + "start": 6178.86, + "end": 6181.68, + "probability": 0.8076 + }, + { + "start": 6182.78, + "end": 6187.98, + "probability": 0.7185 + }, + { + "start": 6189.12, + "end": 6191.16, + "probability": 0.8595 + }, + { + "start": 6194.24, + "end": 6200.68, + "probability": 0.901 + }, + { + "start": 6201.28, + "end": 6207.52, + "probability": 0.7855 + }, + { + "start": 6208.22, + "end": 6214.38, + "probability": 0.9338 + }, + { + "start": 6217.92, + "end": 6223.4, + "probability": 0.8839 + }, + { + "start": 6224.52, + "end": 6226.48, + "probability": 0.8879 + }, + { + "start": 6227.66, + "end": 6229.96, + "probability": 0.9119 + }, + { + "start": 6231.68, + "end": 6234.42, + "probability": 0.9012 + }, + { + "start": 6234.82, + "end": 6237.26, + "probability": 0.9319 + }, + { + "start": 6238.04, + "end": 6244.38, + "probability": 0.8683 + }, + { + "start": 6245.76, + "end": 6249.96, + "probability": 0.928 + }, + { + "start": 6250.6, + "end": 6252.7, + "probability": 0.8358 + }, + { + "start": 6253.36, + "end": 6255.84, + "probability": 0.9819 + }, + { + "start": 6258.34, + "end": 6261.18, + "probability": 0.9066 + }, + { + "start": 6262.26, + "end": 6266.58, + "probability": 0.9919 + }, + { + "start": 6267.22, + "end": 6270.46, + "probability": 0.9097 + }, + { + "start": 6271.68, + "end": 6274.6, + "probability": 0.7726 + }, + { + "start": 6276.94, + "end": 6279.52, + "probability": 0.8886 + }, + { + "start": 6280.42, + "end": 6283.24, + "probability": 0.9917 + }, + { + "start": 6283.76, + "end": 6284.2, + "probability": 0.9896 + }, + { + "start": 6287.08, + "end": 6288.32, + "probability": 0.6669 + }, + { + "start": 6289.84, + "end": 6293.98, + "probability": 0.7973 + }, + { + "start": 6296.64, + "end": 6297.3, + "probability": 0.9525 + }, + { + "start": 6300.1, + "end": 6300.86, + "probability": 0.7344 + }, + { + "start": 6301.8, + "end": 6304.62, + "probability": 0.8345 + }, + { + "start": 6305.38, + "end": 6312.8, + "probability": 0.6981 + }, + { + "start": 6319.12, + "end": 6320.72, + "probability": 0.2443 + }, + { + "start": 6321.22, + "end": 6324.36, + "probability": 0.9268 + }, + { + "start": 6325.96, + "end": 6327.34, + "probability": 0.2646 + }, + { + "start": 6327.86, + "end": 6334.54, + "probability": 0.8996 + }, + { + "start": 6335.32, + "end": 6337.82, + "probability": 0.9496 + }, + { + "start": 6339.12, + "end": 6341.44, + "probability": 0.4945 + }, + { + "start": 6343.52, + "end": 6346.02, + "probability": 0.4676 + }, + { + "start": 6346.56, + "end": 6349.34, + "probability": 0.5261 + }, + { + "start": 6350.36, + "end": 6352.1, + "probability": 0.968 + }, + { + "start": 6352.82, + "end": 6354.48, + "probability": 0.9715 + }, + { + "start": 6355.26, + "end": 6358.96, + "probability": 0.979 + }, + { + "start": 6359.68, + "end": 6366.16, + "probability": 0.8504 + }, + { + "start": 6367.04, + "end": 6369.4, + "probability": 0.0615 + }, + { + "start": 6369.96, + "end": 6374.38, + "probability": 0.5577 + }, + { + "start": 6376.65, + "end": 6379.8, + "probability": 0.9615 + }, + { + "start": 6380.7, + "end": 6384.68, + "probability": 0.9021 + }, + { + "start": 6386.1, + "end": 6389.14, + "probability": 0.9517 + }, + { + "start": 6389.8, + "end": 6392.22, + "probability": 0.9677 + }, + { + "start": 6393.24, + "end": 6395.28, + "probability": 0.9826 + }, + { + "start": 6395.8, + "end": 6399.6, + "probability": 0.8747 + }, + { + "start": 6400.18, + "end": 6403.2, + "probability": 0.9734 + }, + { + "start": 6404.48, + "end": 6407.22, + "probability": 0.9366 + }, + { + "start": 6407.86, + "end": 6410.42, + "probability": 0.9647 + }, + { + "start": 6411.26, + "end": 6414.28, + "probability": 0.9814 + }, + { + "start": 6415.2, + "end": 6417.76, + "probability": 0.7757 + }, + { + "start": 6418.64, + "end": 6423.76, + "probability": 0.8792 + }, + { + "start": 6424.8, + "end": 6427.4, + "probability": 0.9774 + }, + { + "start": 6428.22, + "end": 6431.18, + "probability": 0.9568 + }, + { + "start": 6432.08, + "end": 6435.12, + "probability": 0.9097 + }, + { + "start": 6436.1, + "end": 6440.58, + "probability": 0.9209 + }, + { + "start": 6441.28, + "end": 6443.64, + "probability": 0.7706 + }, + { + "start": 6444.12, + "end": 6445.84, + "probability": 0.9586 + }, + { + "start": 6446.3, + "end": 6448.54, + "probability": 0.9658 + }, + { + "start": 6448.98, + "end": 6451.1, + "probability": 0.9426 + }, + { + "start": 6453.8, + "end": 6455.86, + "probability": 0.7223 + }, + { + "start": 6456.64, + "end": 6459.94, + "probability": 0.7006 + }, + { + "start": 6460.2, + "end": 6461.48, + "probability": 0.9754 + }, + { + "start": 6461.88, + "end": 6463.26, + "probability": 0.6738 + }, + { + "start": 6464.12, + "end": 6467.0, + "probability": 0.8771 + }, + { + "start": 6467.54, + "end": 6471.72, + "probability": 0.8954 + }, + { + "start": 6472.68, + "end": 6479.56, + "probability": 0.9014 + }, + { + "start": 6480.08, + "end": 6480.84, + "probability": 0.4851 + }, + { + "start": 6483.96, + "end": 6484.24, + "probability": 0.2342 + }, + { + "start": 6485.8, + "end": 6487.98, + "probability": 0.915 + }, + { + "start": 6488.42, + "end": 6490.58, + "probability": 0.8626 + }, + { + "start": 6490.82, + "end": 6493.56, + "probability": 0.939 + }, + { + "start": 6494.22, + "end": 6497.08, + "probability": 0.5508 + }, + { + "start": 6498.58, + "end": 6502.24, + "probability": 0.9712 + }, + { + "start": 6502.58, + "end": 6505.88, + "probability": 0.6369 + }, + { + "start": 6507.46, + "end": 6509.98, + "probability": 0.8261 + }, + { + "start": 6510.22, + "end": 6513.28, + "probability": 0.6333 + }, + { + "start": 6513.74, + "end": 6515.08, + "probability": 0.9544 + }, + { + "start": 6515.2, + "end": 6516.78, + "probability": 0.929 + }, + { + "start": 6517.88, + "end": 6520.64, + "probability": 0.9894 + }, + { + "start": 6521.34, + "end": 6523.36, + "probability": 0.9221 + }, + { + "start": 6524.36, + "end": 6526.14, + "probability": 0.9817 + }, + { + "start": 6527.66, + "end": 6530.26, + "probability": 0.8651 + }, + { + "start": 6531.08, + "end": 6533.48, + "probability": 0.8295 + }, + { + "start": 6534.32, + "end": 6535.1, + "probability": 0.9642 + }, + { + "start": 6538.56, + "end": 6541.46, + "probability": 0.9467 + }, + { + "start": 6544.4, + "end": 6545.82, + "probability": 0.9706 + }, + { + "start": 6546.6, + "end": 6548.3, + "probability": 0.4065 + }, + { + "start": 6548.8, + "end": 6548.96, + "probability": 0.4645 + }, + { + "start": 6550.02, + "end": 6551.02, + "probability": 0.8261 + }, + { + "start": 6573.64, + "end": 6574.2, + "probability": 0.073 + }, + { + "start": 6578.9, + "end": 6579.06, + "probability": 0.0512 + }, + { + "start": 6580.46, + "end": 6585.32, + "probability": 0.0017 + }, + { + "start": 6613.46, + "end": 6615.44, + "probability": 0.0113 + }, + { + "start": 6615.495, + "end": 6619.89, + "probability": 0.0031 + }, + { + "start": 6758.3, + "end": 6763.46, + "probability": 0.7285 + }, + { + "start": 6763.68, + "end": 6766.0, + "probability": 0.5986 + }, + { + "start": 6766.1, + "end": 6768.14, + "probability": 0.4422 + }, + { + "start": 6768.56, + "end": 6770.24, + "probability": 0.8662 + }, + { + "start": 6770.34, + "end": 6771.36, + "probability": 0.7413 + }, + { + "start": 6771.92, + "end": 6775.5, + "probability": 0.8702 + }, + { + "start": 6776.3, + "end": 6776.86, + "probability": 0.5439 + }, + { + "start": 6776.96, + "end": 6780.01, + "probability": 0.9434 + }, + { + "start": 6780.5, + "end": 6782.2, + "probability": 0.7869 + }, + { + "start": 6783.1, + "end": 6786.1, + "probability": 0.485 + }, + { + "start": 6794.98, + "end": 6796.92, + "probability": 0.4503 + }, + { + "start": 6797.08, + "end": 6797.88, + "probability": 0.7963 + }, + { + "start": 6797.98, + "end": 6799.11, + "probability": 0.779 + }, + { + "start": 6800.12, + "end": 6802.78, + "probability": 0.7415 + }, + { + "start": 6802.78, + "end": 6805.1, + "probability": 0.8888 + }, + { + "start": 6805.66, + "end": 6808.56, + "probability": 0.4445 + }, + { + "start": 6809.08, + "end": 6811.72, + "probability": 0.7472 + }, + { + "start": 6812.44, + "end": 6813.04, + "probability": 0.6509 + }, + { + "start": 6816.14, + "end": 6818.68, + "probability": 0.1831 + }, + { + "start": 6831.88, + "end": 6836.14, + "probability": 0.5014 + }, + { + "start": 6836.7, + "end": 6840.28, + "probability": 0.161 + }, + { + "start": 6844.66, + "end": 6846.68, + "probability": 0.5357 + }, + { + "start": 6847.54, + "end": 6848.42, + "probability": 0.0301 + }, + { + "start": 6854.54, + "end": 6858.82, + "probability": 0.0191 + }, + { + "start": 6858.88, + "end": 6859.92, + "probability": 0.1275 + }, + { + "start": 6860.14, + "end": 6861.64, + "probability": 0.0456 + }, + { + "start": 6861.76, + "end": 6864.68, + "probability": 0.1009 + }, + { + "start": 6864.68, + "end": 6868.16, + "probability": 0.0796 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.0, + "end": 6896.0, + "probability": 0.0 + }, + { + "start": 6896.62, + "end": 6898.4, + "probability": 0.943 + }, + { + "start": 6899.08, + "end": 6899.43, + "probability": 0.9063 + }, + { + "start": 6900.22, + "end": 6900.64, + "probability": 0.6483 + }, + { + "start": 6900.7, + "end": 6902.88, + "probability": 0.9138 + }, + { + "start": 6903.16, + "end": 6904.58, + "probability": 0.9907 + }, + { + "start": 6905.52, + "end": 6907.58, + "probability": 0.9122 + }, + { + "start": 6908.22, + "end": 6909.98, + "probability": 0.7222 + }, + { + "start": 6910.44, + "end": 6911.2, + "probability": 0.5425 + }, + { + "start": 6911.74, + "end": 6912.42, + "probability": 0.7406 + }, + { + "start": 6913.06, + "end": 6916.76, + "probability": 0.9933 + }, + { + "start": 6916.76, + "end": 6921.9, + "probability": 0.6658 + }, + { + "start": 6922.26, + "end": 6922.84, + "probability": 0.7243 + }, + { + "start": 6923.4, + "end": 6924.34, + "probability": 0.7876 + }, + { + "start": 6924.86, + "end": 6925.84, + "probability": 0.9199 + }, + { + "start": 6925.94, + "end": 6927.56, + "probability": 0.9863 + }, + { + "start": 6928.38, + "end": 6929.24, + "probability": 0.9209 + }, + { + "start": 6929.86, + "end": 6930.68, + "probability": 0.4169 + }, + { + "start": 6931.94, + "end": 6938.18, + "probability": 0.9336 + }, + { + "start": 6939.3, + "end": 6941.68, + "probability": 0.8815 + }, + { + "start": 6942.36, + "end": 6943.56, + "probability": 0.5688 + }, + { + "start": 6943.8, + "end": 6946.22, + "probability": 0.8577 + }, + { + "start": 6946.94, + "end": 6950.38, + "probability": 0.9801 + }, + { + "start": 6951.28, + "end": 6954.1, + "probability": 0.9845 + }, + { + "start": 6954.48, + "end": 6956.86, + "probability": 0.9982 + }, + { + "start": 6957.64, + "end": 6959.46, + "probability": 0.9922 + }, + { + "start": 6959.84, + "end": 6960.32, + "probability": 0.9672 + }, + { + "start": 6960.76, + "end": 6964.52, + "probability": 0.9837 + }, + { + "start": 6965.4, + "end": 6966.9, + "probability": 0.6984 + }, + { + "start": 6967.92, + "end": 6971.44, + "probability": 0.9406 + }, + { + "start": 6973.86, + "end": 6974.62, + "probability": 0.6772 + }, + { + "start": 6975.1, + "end": 6975.68, + "probability": 0.6319 + }, + { + "start": 6975.76, + "end": 6978.84, + "probability": 0.7861 + }, + { + "start": 6979.18, + "end": 6979.92, + "probability": 0.9213 + }, + { + "start": 6981.0, + "end": 6982.02, + "probability": 0.7234 + }, + { + "start": 6982.64, + "end": 6986.8, + "probability": 0.98 + }, + { + "start": 6987.22, + "end": 6991.02, + "probability": 0.9907 + }, + { + "start": 6991.02, + "end": 6993.52, + "probability": 0.9988 + }, + { + "start": 6994.34, + "end": 6996.82, + "probability": 0.8525 + }, + { + "start": 6997.7, + "end": 7002.24, + "probability": 0.9983 + }, + { + "start": 7002.76, + "end": 7003.62, + "probability": 0.973 + }, + { + "start": 7003.78, + "end": 7005.51, + "probability": 0.999 + }, + { + "start": 7006.08, + "end": 7008.1, + "probability": 0.9971 + }, + { + "start": 7008.56, + "end": 7010.66, + "probability": 0.7084 + }, + { + "start": 7011.56, + "end": 7013.92, + "probability": 0.9927 + }, + { + "start": 7014.84, + "end": 7017.84, + "probability": 0.9784 + }, + { + "start": 7018.68, + "end": 7023.72, + "probability": 0.9517 + }, + { + "start": 7025.6, + "end": 7026.22, + "probability": 0.8989 + }, + { + "start": 7026.22, + "end": 7026.82, + "probability": 0.7795 + }, + { + "start": 7027.2, + "end": 7028.48, + "probability": 0.8296 + }, + { + "start": 7028.68, + "end": 7029.94, + "probability": 0.7797 + }, + { + "start": 7030.22, + "end": 7031.88, + "probability": 0.9684 + }, + { + "start": 7032.66, + "end": 7034.62, + "probability": 0.8572 + }, + { + "start": 7034.8, + "end": 7035.4, + "probability": 0.7293 + }, + { + "start": 7036.1, + "end": 7042.14, + "probability": 0.9231 + }, + { + "start": 7042.14, + "end": 7048.88, + "probability": 0.9872 + }, + { + "start": 7049.4, + "end": 7051.42, + "probability": 0.9956 + }, + { + "start": 7052.32, + "end": 7053.86, + "probability": 0.9297 + }, + { + "start": 7054.62, + "end": 7056.5, + "probability": 0.8193 + }, + { + "start": 7057.51, + "end": 7062.08, + "probability": 0.8975 + }, + { + "start": 7062.92, + "end": 7063.88, + "probability": 0.9531 + }, + { + "start": 7064.2, + "end": 7066.16, + "probability": 0.9425 + }, + { + "start": 7066.64, + "end": 7067.14, + "probability": 0.8139 + }, + { + "start": 7067.16, + "end": 7068.0, + "probability": 0.8986 + }, + { + "start": 7068.04, + "end": 7068.84, + "probability": 0.919 + }, + { + "start": 7069.52, + "end": 7072.86, + "probability": 0.9877 + }, + { + "start": 7073.5, + "end": 7075.1, + "probability": 0.6767 + }, + { + "start": 7075.2, + "end": 7079.64, + "probability": 0.9978 + }, + { + "start": 7081.08, + "end": 7082.54, + "probability": 0.4537 + }, + { + "start": 7082.54, + "end": 7082.66, + "probability": 0.5307 + }, + { + "start": 7083.93, + "end": 7086.86, + "probability": 0.8233 + }, + { + "start": 7087.68, + "end": 7091.78, + "probability": 0.9915 + }, + { + "start": 7092.28, + "end": 7093.84, + "probability": 0.9745 + }, + { + "start": 7093.92, + "end": 7094.46, + "probability": 0.6683 + }, + { + "start": 7094.52, + "end": 7095.7, + "probability": 0.9943 + }, + { + "start": 7095.92, + "end": 7100.32, + "probability": 0.9904 + }, + { + "start": 7101.22, + "end": 7102.08, + "probability": 0.512 + }, + { + "start": 7102.4, + "end": 7103.74, + "probability": 0.891 + }, + { + "start": 7103.8, + "end": 7104.74, + "probability": 0.7829 + }, + { + "start": 7105.32, + "end": 7107.02, + "probability": 0.8537 + }, + { + "start": 7107.66, + "end": 7109.96, + "probability": 0.9939 + }, + { + "start": 7109.96, + "end": 7113.28, + "probability": 0.9972 + }, + { + "start": 7113.4, + "end": 7114.22, + "probability": 0.9843 + }, + { + "start": 7114.76, + "end": 7117.02, + "probability": 0.8665 + }, + { + "start": 7117.52, + "end": 7121.46, + "probability": 0.6711 + }, + { + "start": 7122.2, + "end": 7126.52, + "probability": 0.9959 + }, + { + "start": 7126.86, + "end": 7132.26, + "probability": 0.9842 + }, + { + "start": 7132.8, + "end": 7137.48, + "probability": 0.949 + }, + { + "start": 7137.48, + "end": 7140.9, + "probability": 0.9925 + }, + { + "start": 7141.34, + "end": 7141.64, + "probability": 0.6921 + }, + { + "start": 7141.76, + "end": 7144.4, + "probability": 0.9902 + }, + { + "start": 7144.46, + "end": 7150.34, + "probability": 0.8956 + }, + { + "start": 7151.06, + "end": 7152.18, + "probability": 0.7683 + }, + { + "start": 7152.74, + "end": 7153.7, + "probability": 0.9033 + }, + { + "start": 7154.43, + "end": 7155.42, + "probability": 0.5987 + }, + { + "start": 7155.46, + "end": 7159.12, + "probability": 0.9946 + }, + { + "start": 7159.5, + "end": 7160.42, + "probability": 0.9241 + }, + { + "start": 7161.0, + "end": 7162.42, + "probability": 0.998 + }, + { + "start": 7162.96, + "end": 7165.28, + "probability": 0.9606 + }, + { + "start": 7165.56, + "end": 7169.14, + "probability": 0.9873 + }, + { + "start": 7169.48, + "end": 7169.82, + "probability": 0.739 + }, + { + "start": 7169.98, + "end": 7174.48, + "probability": 0.9595 + }, + { + "start": 7175.1, + "end": 7178.88, + "probability": 0.8736 + }, + { + "start": 7179.62, + "end": 7180.72, + "probability": 0.8277 + }, + { + "start": 7180.82, + "end": 7181.6, + "probability": 0.9169 + }, + { + "start": 7181.72, + "end": 7182.58, + "probability": 0.7376 + }, + { + "start": 7182.68, + "end": 7184.16, + "probability": 0.9451 + }, + { + "start": 7184.3, + "end": 7186.98, + "probability": 0.9344 + }, + { + "start": 7187.14, + "end": 7187.49, + "probability": 0.8192 + }, + { + "start": 7188.02, + "end": 7189.48, + "probability": 0.7597 + }, + { + "start": 7189.98, + "end": 7194.68, + "probability": 0.8701 + }, + { + "start": 7195.12, + "end": 7198.74, + "probability": 0.9731 + }, + { + "start": 7199.32, + "end": 7201.26, + "probability": 0.9511 + }, + { + "start": 7201.34, + "end": 7201.5, + "probability": 0.6215 + }, + { + "start": 7201.54, + "end": 7206.78, + "probability": 0.985 + }, + { + "start": 7207.38, + "end": 7208.02, + "probability": 0.479 + }, + { + "start": 7208.68, + "end": 7211.64, + "probability": 0.9528 + }, + { + "start": 7212.04, + "end": 7212.82, + "probability": 0.9189 + }, + { + "start": 7212.88, + "end": 7214.72, + "probability": 0.8996 + }, + { + "start": 7215.0, + "end": 7216.24, + "probability": 0.9966 + }, + { + "start": 7216.44, + "end": 7219.1, + "probability": 0.9672 + }, + { + "start": 7219.52, + "end": 7222.37, + "probability": 0.8652 + }, + { + "start": 7223.38, + "end": 7225.76, + "probability": 0.9866 + }, + { + "start": 7225.92, + "end": 7226.14, + "probability": 0.4298 + }, + { + "start": 7226.44, + "end": 7228.36, + "probability": 0.9856 + }, + { + "start": 7228.8, + "end": 7230.1, + "probability": 0.6254 + }, + { + "start": 7230.7, + "end": 7231.98, + "probability": 0.7652 + }, + { + "start": 7232.14, + "end": 7234.74, + "probability": 0.8197 + }, + { + "start": 7235.3, + "end": 7236.78, + "probability": 0.998 + }, + { + "start": 7237.26, + "end": 7238.94, + "probability": 0.9602 + }, + { + "start": 7239.12, + "end": 7242.36, + "probability": 0.9844 + }, + { + "start": 7242.54, + "end": 7245.0, + "probability": 0.9639 + }, + { + "start": 7245.08, + "end": 7247.08, + "probability": 0.9796 + }, + { + "start": 7248.04, + "end": 7249.1, + "probability": 0.7449 + }, + { + "start": 7249.16, + "end": 7250.76, + "probability": 0.8002 + }, + { + "start": 7250.9, + "end": 7252.44, + "probability": 0.9902 + }, + { + "start": 7252.56, + "end": 7253.24, + "probability": 0.9789 + }, + { + "start": 7253.76, + "end": 7258.22, + "probability": 0.9709 + }, + { + "start": 7258.72, + "end": 7261.32, + "probability": 0.9857 + }, + { + "start": 7261.56, + "end": 7262.02, + "probability": 0.5971 + }, + { + "start": 7262.34, + "end": 7264.04, + "probability": 0.7544 + }, + { + "start": 7264.5, + "end": 7264.72, + "probability": 0.6959 + }, + { + "start": 7264.86, + "end": 7265.18, + "probability": 0.8336 + }, + { + "start": 7265.32, + "end": 7266.36, + "probability": 0.9215 + }, + { + "start": 7266.5, + "end": 7267.36, + "probability": 0.8577 + }, + { + "start": 7267.84, + "end": 7269.96, + "probability": 0.9923 + }, + { + "start": 7270.22, + "end": 7273.07, + "probability": 0.9937 + }, + { + "start": 7273.26, + "end": 7274.38, + "probability": 0.9916 + }, + { + "start": 7274.86, + "end": 7278.38, + "probability": 0.9609 + }, + { + "start": 7278.8, + "end": 7278.94, + "probability": 0.6866 + }, + { + "start": 7279.18, + "end": 7283.16, + "probability": 0.9951 + }, + { + "start": 7283.82, + "end": 7285.06, + "probability": 0.9509 + }, + { + "start": 7285.9, + "end": 7288.02, + "probability": 0.9766 + }, + { + "start": 7288.42, + "end": 7291.4, + "probability": 0.863 + }, + { + "start": 7291.64, + "end": 7292.24, + "probability": 0.865 + }, + { + "start": 7292.36, + "end": 7292.68, + "probability": 0.8405 + }, + { + "start": 7292.78, + "end": 7293.14, + "probability": 0.7266 + }, + { + "start": 7294.04, + "end": 7294.3, + "probability": 0.1317 + }, + { + "start": 7295.28, + "end": 7298.58, + "probability": 0.9428 + }, + { + "start": 7298.82, + "end": 7298.82, + "probability": 0.0259 + }, + { + "start": 7302.12, + "end": 7302.72, + "probability": 0.0175 + }, + { + "start": 7302.72, + "end": 7302.72, + "probability": 0.122 + }, + { + "start": 7302.72, + "end": 7303.52, + "probability": 0.1624 + }, + { + "start": 7303.54, + "end": 7307.26, + "probability": 0.9669 + }, + { + "start": 7307.5, + "end": 7311.82, + "probability": 0.9951 + }, + { + "start": 7312.08, + "end": 7313.4, + "probability": 0.9697 + }, + { + "start": 7313.9, + "end": 7315.16, + "probability": 0.835 + }, + { + "start": 7315.24, + "end": 7316.29, + "probability": 0.9651 + }, + { + "start": 7316.58, + "end": 7320.0, + "probability": 0.9883 + }, + { + "start": 7320.28, + "end": 7321.42, + "probability": 0.9209 + }, + { + "start": 7321.56, + "end": 7321.84, + "probability": 0.6401 + }, + { + "start": 7322.12, + "end": 7323.18, + "probability": 0.9187 + }, + { + "start": 7323.54, + "end": 7325.04, + "probability": 0.7874 + }, + { + "start": 7325.48, + "end": 7325.96, + "probability": 0.7474 + }, + { + "start": 7326.0, + "end": 7326.42, + "probability": 0.7911 + }, + { + "start": 7326.5, + "end": 7327.78, + "probability": 0.9976 + }, + { + "start": 7328.26, + "end": 7328.58, + "probability": 0.9495 + }, + { + "start": 7328.6, + "end": 7329.08, + "probability": 0.865 + }, + { + "start": 7329.18, + "end": 7330.46, + "probability": 0.9924 + }, + { + "start": 7330.76, + "end": 7331.1, + "probability": 0.9826 + }, + { + "start": 7331.18, + "end": 7331.78, + "probability": 0.9097 + }, + { + "start": 7332.04, + "end": 7337.06, + "probability": 0.9939 + }, + { + "start": 7337.28, + "end": 7337.78, + "probability": 0.5244 + }, + { + "start": 7338.16, + "end": 7339.7, + "probability": 0.9237 + }, + { + "start": 7340.06, + "end": 7342.34, + "probability": 0.9966 + }, + { + "start": 7342.68, + "end": 7343.8, + "probability": 0.6178 + }, + { + "start": 7344.1, + "end": 7346.42, + "probability": 0.9887 + }, + { + "start": 7346.52, + "end": 7347.92, + "probability": 0.986 + }, + { + "start": 7348.2, + "end": 7348.9, + "probability": 0.7151 + }, + { + "start": 7349.36, + "end": 7356.61, + "probability": 0.9723 + }, + { + "start": 7357.26, + "end": 7358.06, + "probability": 0.6871 + }, + { + "start": 7358.56, + "end": 7361.64, + "probability": 0.807 + }, + { + "start": 7361.8, + "end": 7362.9, + "probability": 0.6523 + }, + { + "start": 7363.04, + "end": 7365.72, + "probability": 0.6104 + }, + { + "start": 7366.3, + "end": 7367.39, + "probability": 0.7788 + }, + { + "start": 7368.38, + "end": 7372.6, + "probability": 0.9653 + }, + { + "start": 7372.6, + "end": 7375.62, + "probability": 0.9827 + }, + { + "start": 7376.3, + "end": 7380.52, + "probability": 0.9833 + }, + { + "start": 7380.66, + "end": 7383.68, + "probability": 0.9969 + }, + { + "start": 7383.88, + "end": 7385.86, + "probability": 0.95 + }, + { + "start": 7386.2, + "end": 7387.26, + "probability": 0.9599 + }, + { + "start": 7387.34, + "end": 7388.37, + "probability": 0.7361 + }, + { + "start": 7388.68, + "end": 7389.12, + "probability": 0.911 + }, + { + "start": 7389.2, + "end": 7389.68, + "probability": 0.9556 + }, + { + "start": 7389.9, + "end": 7391.22, + "probability": 0.9611 + }, + { + "start": 7391.34, + "end": 7392.24, + "probability": 0.9666 + }, + { + "start": 7392.32, + "end": 7392.8, + "probability": 0.5859 + }, + { + "start": 7393.16, + "end": 7395.6, + "probability": 0.905 + }, + { + "start": 7395.98, + "end": 7397.72, + "probability": 0.7742 + }, + { + "start": 7397.98, + "end": 7398.52, + "probability": 0.9419 + }, + { + "start": 7398.6, + "end": 7401.6, + "probability": 0.9915 + }, + { + "start": 7401.6, + "end": 7406.06, + "probability": 0.8992 + }, + { + "start": 7406.06, + "end": 7410.92, + "probability": 0.9957 + }, + { + "start": 7410.92, + "end": 7414.32, + "probability": 0.9419 + }, + { + "start": 7414.68, + "end": 7415.96, + "probability": 0.9578 + }, + { + "start": 7416.28, + "end": 7417.34, + "probability": 0.8801 + }, + { + "start": 7417.72, + "end": 7420.86, + "probability": 0.9805 + }, + { + "start": 7421.18, + "end": 7422.14, + "probability": 0.9844 + }, + { + "start": 7423.04, + "end": 7425.76, + "probability": 0.938 + }, + { + "start": 7426.4, + "end": 7427.2, + "probability": 0.1451 + }, + { + "start": 7427.66, + "end": 7428.58, + "probability": 0.9263 + }, + { + "start": 7428.76, + "end": 7432.54, + "probability": 0.8547 + }, + { + "start": 7432.86, + "end": 7434.02, + "probability": 0.9891 + }, + { + "start": 7434.12, + "end": 7437.48, + "probability": 0.9265 + }, + { + "start": 7437.94, + "end": 7439.72, + "probability": 0.8955 + }, + { + "start": 7440.02, + "end": 7441.46, + "probability": 0.9154 + }, + { + "start": 7441.76, + "end": 7445.06, + "probability": 0.972 + }, + { + "start": 7445.14, + "end": 7445.76, + "probability": 0.6252 + }, + { + "start": 7446.28, + "end": 7447.1, + "probability": 0.8033 + }, + { + "start": 7447.64, + "end": 7449.04, + "probability": 0.9626 + }, + { + "start": 7449.36, + "end": 7450.88, + "probability": 0.9976 + }, + { + "start": 7451.14, + "end": 7453.64, + "probability": 0.9839 + }, + { + "start": 7454.0, + "end": 7457.1, + "probability": 0.9406 + }, + { + "start": 7457.1, + "end": 7457.69, + "probability": 0.5397 + }, + { + "start": 7457.76, + "end": 7458.38, + "probability": 0.8196 + }, + { + "start": 7458.44, + "end": 7459.86, + "probability": 0.9823 + }, + { + "start": 7460.3, + "end": 7463.26, + "probability": 0.9657 + }, + { + "start": 7463.66, + "end": 7463.66, + "probability": 0.692 + }, + { + "start": 7463.66, + "end": 7465.76, + "probability": 0.8401 + }, + { + "start": 7465.82, + "end": 7470.86, + "probability": 0.9784 + }, + { + "start": 7471.4, + "end": 7474.58, + "probability": 0.9993 + }, + { + "start": 7474.58, + "end": 7477.78, + "probability": 0.9958 + }, + { + "start": 7478.26, + "end": 7478.6, + "probability": 0.59 + }, + { + "start": 7478.76, + "end": 7479.5, + "probability": 0.6327 + }, + { + "start": 7479.54, + "end": 7482.68, + "probability": 0.992 + }, + { + "start": 7483.2, + "end": 7484.34, + "probability": 0.6827 + }, + { + "start": 7484.42, + "end": 7486.24, + "probability": 0.7974 + }, + { + "start": 7486.24, + "end": 7489.48, + "probability": 0.7774 + }, + { + "start": 7490.28, + "end": 7490.78, + "probability": 0.8235 + }, + { + "start": 7499.06, + "end": 7500.16, + "probability": 0.57 + }, + { + "start": 7507.28, + "end": 7509.0, + "probability": 0.6909 + }, + { + "start": 7509.82, + "end": 7514.68, + "probability": 0.9398 + }, + { + "start": 7514.68, + "end": 7520.1, + "probability": 0.9965 + }, + { + "start": 7520.56, + "end": 7521.1, + "probability": 0.7311 + }, + { + "start": 7521.18, + "end": 7525.94, + "probability": 0.9279 + }, + { + "start": 7526.44, + "end": 7527.98, + "probability": 0.7994 + }, + { + "start": 7529.24, + "end": 7530.62, + "probability": 0.8955 + }, + { + "start": 7531.3, + "end": 7533.38, + "probability": 0.9879 + }, + { + "start": 7533.5, + "end": 7537.04, + "probability": 0.9976 + }, + { + "start": 7537.16, + "end": 7537.82, + "probability": 0.9161 + }, + { + "start": 7538.56, + "end": 7543.06, + "probability": 0.998 + }, + { + "start": 7543.06, + "end": 7547.14, + "probability": 0.9985 + }, + { + "start": 7547.26, + "end": 7549.04, + "probability": 0.9906 + }, + { + "start": 7549.66, + "end": 7551.06, + "probability": 0.9985 + }, + { + "start": 7552.44, + "end": 7553.24, + "probability": 0.884 + }, + { + "start": 7553.82, + "end": 7558.1, + "probability": 0.9883 + }, + { + "start": 7558.84, + "end": 7561.02, + "probability": 0.9703 + }, + { + "start": 7562.04, + "end": 7565.34, + "probability": 0.9678 + }, + { + "start": 7566.38, + "end": 7571.02, + "probability": 0.9675 + }, + { + "start": 7571.58, + "end": 7575.12, + "probability": 0.9823 + }, + { + "start": 7576.22, + "end": 7577.34, + "probability": 0.4599 + }, + { + "start": 7578.12, + "end": 7578.36, + "probability": 0.4362 + }, + { + "start": 7578.6, + "end": 7581.22, + "probability": 0.9059 + }, + { + "start": 7581.72, + "end": 7583.0, + "probability": 0.7208 + }, + { + "start": 7583.92, + "end": 7585.82, + "probability": 0.9084 + }, + { + "start": 7586.24, + "end": 7587.28, + "probability": 0.7879 + }, + { + "start": 7587.38, + "end": 7588.38, + "probability": 0.8957 + }, + { + "start": 7588.92, + "end": 7591.56, + "probability": 0.7568 + }, + { + "start": 7592.1, + "end": 7593.92, + "probability": 0.9671 + }, + { + "start": 7594.64, + "end": 7595.68, + "probability": 0.6207 + }, + { + "start": 7595.88, + "end": 7597.94, + "probability": 0.9743 + }, + { + "start": 7598.36, + "end": 7600.88, + "probability": 0.9919 + }, + { + "start": 7601.14, + "end": 7602.94, + "probability": 0.9865 + }, + { + "start": 7603.34, + "end": 7606.91, + "probability": 0.9727 + }, + { + "start": 7608.28, + "end": 7612.9, + "probability": 0.9385 + }, + { + "start": 7614.1, + "end": 7616.62, + "probability": 0.989 + }, + { + "start": 7617.2, + "end": 7619.52, + "probability": 0.8576 + }, + { + "start": 7620.02, + "end": 7620.4, + "probability": 0.5356 + }, + { + "start": 7620.44, + "end": 7622.42, + "probability": 0.9855 + }, + { + "start": 7622.56, + "end": 7623.75, + "probability": 0.9469 + }, + { + "start": 7624.72, + "end": 7626.8, + "probability": 0.9479 + }, + { + "start": 7626.92, + "end": 7628.24, + "probability": 0.9946 + }, + { + "start": 7628.44, + "end": 7629.14, + "probability": 0.7953 + }, + { + "start": 7629.56, + "end": 7630.38, + "probability": 0.8984 + }, + { + "start": 7631.32, + "end": 7636.26, + "probability": 0.999 + }, + { + "start": 7636.7, + "end": 7641.94, + "probability": 0.9948 + }, + { + "start": 7642.34, + "end": 7642.8, + "probability": 0.5341 + }, + { + "start": 7643.1, + "end": 7643.5, + "probability": 0.8896 + }, + { + "start": 7643.64, + "end": 7644.12, + "probability": 0.4955 + }, + { + "start": 7645.02, + "end": 7649.68, + "probability": 0.9978 + }, + { + "start": 7649.78, + "end": 7651.1, + "probability": 0.7837 + }, + { + "start": 7651.24, + "end": 7652.38, + "probability": 0.8899 + }, + { + "start": 7652.38, + "end": 7653.46, + "probability": 0.4852 + }, + { + "start": 7653.82, + "end": 7653.9, + "probability": 0.152 + }, + { + "start": 7653.92, + "end": 7653.96, + "probability": 0.0985 + }, + { + "start": 7654.34, + "end": 7657.38, + "probability": 0.2621 + }, + { + "start": 7657.5, + "end": 7658.12, + "probability": 0.5462 + }, + { + "start": 7658.18, + "end": 7658.62, + "probability": 0.9569 + }, + { + "start": 7659.0, + "end": 7661.66, + "probability": 0.9214 + }, + { + "start": 7661.96, + "end": 7664.06, + "probability": 0.9877 + }, + { + "start": 7664.2, + "end": 7665.94, + "probability": 0.0901 + }, + { + "start": 7666.22, + "end": 7668.02, + "probability": 0.9245 + }, + { + "start": 7668.42, + "end": 7671.24, + "probability": 0.9625 + }, + { + "start": 7671.66, + "end": 7671.96, + "probability": 0.0075 + }, + { + "start": 7673.06, + "end": 7673.74, + "probability": 0.1906 + }, + { + "start": 7673.74, + "end": 7675.79, + "probability": 0.3738 + }, + { + "start": 7677.04, + "end": 7680.48, + "probability": 0.996 + }, + { + "start": 7680.68, + "end": 7682.74, + "probability": 0.9933 + }, + { + "start": 7683.04, + "end": 7685.1, + "probability": 0.9526 + }, + { + "start": 7685.26, + "end": 7685.98, + "probability": 0.5431 + }, + { + "start": 7687.2, + "end": 7688.0, + "probability": 0.0796 + }, + { + "start": 7688.45, + "end": 7690.56, + "probability": 0.0583 + }, + { + "start": 7690.56, + "end": 7690.64, + "probability": 0.1031 + }, + { + "start": 7690.64, + "end": 7695.56, + "probability": 0.0891 + }, + { + "start": 7695.8, + "end": 7697.18, + "probability": 0.0104 + }, + { + "start": 7697.18, + "end": 7698.34, + "probability": 0.1915 + }, + { + "start": 7698.58, + "end": 7699.28, + "probability": 0.3467 + }, + { + "start": 7701.6, + "end": 7703.18, + "probability": 0.1405 + }, + { + "start": 7703.66, + "end": 7709.18, + "probability": 0.5481 + }, + { + "start": 7709.88, + "end": 7711.54, + "probability": 0.0313 + }, + { + "start": 7712.78, + "end": 7715.82, + "probability": 0.0367 + }, + { + "start": 7715.82, + "end": 7716.28, + "probability": 0.1747 + }, + { + "start": 7720.13, + "end": 7722.78, + "probability": 0.0142 + }, + { + "start": 7725.2, + "end": 7727.96, + "probability": 0.0117 + }, + { + "start": 7731.0, + "end": 7731.2, + "probability": 0.1533 + }, + { + "start": 7733.81, + "end": 7735.14, + "probability": 0.0152 + }, + { + "start": 7735.14, + "end": 7736.4, + "probability": 0.0101 + }, + { + "start": 7736.4, + "end": 7736.64, + "probability": 0.0154 + }, + { + "start": 7742.5, + "end": 7744.56, + "probability": 0.1764 + }, + { + "start": 7744.98, + "end": 7747.48, + "probability": 0.0907 + }, + { + "start": 7747.48, + "end": 7748.64, + "probability": 0.0847 + }, + { + "start": 7748.64, + "end": 7749.62, + "probability": 0.0425 + }, + { + "start": 7749.62, + "end": 7750.42, + "probability": 0.1923 + }, + { + "start": 7750.42, + "end": 7750.42, + "probability": 0.0437 + }, + { + "start": 7750.42, + "end": 7750.88, + "probability": 0.0692 + }, + { + "start": 7751.34, + "end": 7751.64, + "probability": 0.0418 + }, + { + "start": 7752.0, + "end": 7752.0, + "probability": 0.0 + }, + { + "start": 7752.0, + "end": 7752.0, + "probability": 0.0 + }, + { + "start": 7752.0, + "end": 7752.0, + "probability": 0.0 + }, + { + "start": 7778.02, + "end": 7778.92, + "probability": 0.3555 + }, + { + "start": 7780.08, + "end": 7780.52, + "probability": 0.0052 + }, + { + "start": 7780.52, + "end": 7783.0, + "probability": 0.0223 + }, + { + "start": 7783.2, + "end": 7785.48, + "probability": 0.0136 + }, + { + "start": 7786.02, + "end": 7791.18, + "probability": 0.0406 + }, + { + "start": 7792.37, + "end": 7795.06, + "probability": 0.0578 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7883.0, + "end": 7883.0, + "probability": 0.0 + }, + { + "start": 7898.43, + "end": 7900.58, + "probability": 0.0329 + }, + { + "start": 7900.58, + "end": 7902.5, + "probability": 0.1035 + }, + { + "start": 7902.91, + "end": 7904.56, + "probability": 0.0623 + }, + { + "start": 7918.1, + "end": 7919.5, + "probability": 0.2188 + }, + { + "start": 7921.33, + "end": 7923.36, + "probability": 0.031 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.16, + "end": 8012.16, + "probability": 0.1627 + }, + { + "start": 8012.16, + "end": 8012.16, + "probability": 0.1278 + }, + { + "start": 8012.16, + "end": 8012.16, + "probability": 0.055 + }, + { + "start": 8012.16, + "end": 8015.32, + "probability": 0.6254 + }, + { + "start": 8015.32, + "end": 8019.0, + "probability": 0.9675 + }, + { + "start": 8019.48, + "end": 8020.78, + "probability": 0.7517 + }, + { + "start": 8021.28, + "end": 8024.9, + "probability": 0.7598 + }, + { + "start": 8025.14, + "end": 8026.54, + "probability": 0.9421 + }, + { + "start": 8026.96, + "end": 8031.04, + "probability": 0.9884 + }, + { + "start": 8032.1, + "end": 8034.86, + "probability": 0.9278 + }, + { + "start": 8035.26, + "end": 8042.14, + "probability": 0.9937 + }, + { + "start": 8042.14, + "end": 8047.7, + "probability": 0.9977 + }, + { + "start": 8048.38, + "end": 8051.78, + "probability": 0.9954 + }, + { + "start": 8052.48, + "end": 8056.4, + "probability": 0.999 + }, + { + "start": 8056.42, + "end": 8060.58, + "probability": 0.9993 + }, + { + "start": 8060.96, + "end": 8061.88, + "probability": 0.8733 + }, + { + "start": 8062.52, + "end": 8063.49, + "probability": 0.9975 + }, + { + "start": 8064.92, + "end": 8069.3, + "probability": 0.0326 + }, + { + "start": 8069.3, + "end": 8072.3, + "probability": 0.6096 + }, + { + "start": 8078.74, + "end": 8079.68, + "probability": 0.0732 + }, + { + "start": 8079.68, + "end": 8079.68, + "probability": 0.2059 + }, + { + "start": 8079.68, + "end": 8081.08, + "probability": 0.053 + }, + { + "start": 8081.27, + "end": 8083.9, + "probability": 0.0842 + }, + { + "start": 8085.62, + "end": 8087.26, + "probability": 0.0003 + }, + { + "start": 8090.64, + "end": 8091.9, + "probability": 0.3418 + }, + { + "start": 8094.28, + "end": 8103.1, + "probability": 0.1432 + }, + { + "start": 8103.86, + "end": 8103.88, + "probability": 0.0428 + }, + { + "start": 8108.5, + "end": 8111.1, + "probability": 0.3354 + }, + { + "start": 8111.1, + "end": 8113.78, + "probability": 0.0423 + }, + { + "start": 8114.45, + "end": 8116.55, + "probability": 0.1398 + }, + { + "start": 8117.36, + "end": 8118.5, + "probability": 0.0529 + }, + { + "start": 8118.54, + "end": 8119.94, + "probability": 0.106 + }, + { + "start": 8119.94, + "end": 8120.94, + "probability": 0.053 + }, + { + "start": 8120.94, + "end": 8121.92, + "probability": 0.0474 + }, + { + "start": 8121.92, + "end": 8122.9, + "probability": 0.0807 + }, + { + "start": 8124.98, + "end": 8129.28, + "probability": 0.0349 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.18, + "probability": 0.0414 + }, + { + "start": 8137.18, + "end": 8137.18, + "probability": 0.3418 + }, + { + "start": 8137.18, + "end": 8137.18, + "probability": 0.0437 + }, + { + "start": 8137.18, + "end": 8139.42, + "probability": 0.8475 + }, + { + "start": 8139.9, + "end": 8141.92, + "probability": 0.9956 + }, + { + "start": 8141.94, + "end": 8142.4, + "probability": 0.0845 + }, + { + "start": 8142.4, + "end": 8142.6, + "probability": 0.0274 + }, + { + "start": 8142.6, + "end": 8145.88, + "probability": 0.6306 + }, + { + "start": 8146.44, + "end": 8146.82, + "probability": 0.3167 + }, + { + "start": 8146.86, + "end": 8147.98, + "probability": 0.4368 + }, + { + "start": 8148.02, + "end": 8149.36, + "probability": 0.9814 + }, + { + "start": 8149.78, + "end": 8152.46, + "probability": 0.8201 + }, + { + "start": 8152.76, + "end": 8154.79, + "probability": 0.2415 + }, + { + "start": 8158.19, + "end": 8159.6, + "probability": 0.0353 + }, + { + "start": 8159.7, + "end": 8160.18, + "probability": 0.1022 + }, + { + "start": 8160.18, + "end": 8162.85, + "probability": 0.3553 + }, + { + "start": 8163.94, + "end": 8165.88, + "probability": 0.4653 + }, + { + "start": 8166.46, + "end": 8166.66, + "probability": 0.0579 + }, + { + "start": 8166.66, + "end": 8166.66, + "probability": 0.1563 + }, + { + "start": 8166.66, + "end": 8168.36, + "probability": 0.4137 + }, + { + "start": 8168.92, + "end": 8171.98, + "probability": 0.785 + }, + { + "start": 8173.02, + "end": 8177.26, + "probability": 0.9661 + }, + { + "start": 8177.7, + "end": 8178.0, + "probability": 0.7382 + }, + { + "start": 8178.08, + "end": 8181.46, + "probability": 0.9807 + }, + { + "start": 8181.78, + "end": 8182.54, + "probability": 0.976 + }, + { + "start": 8182.64, + "end": 8184.34, + "probability": 0.9097 + }, + { + "start": 8184.64, + "end": 8187.44, + "probability": 0.9718 + }, + { + "start": 8187.5, + "end": 8188.32, + "probability": 0.7839 + }, + { + "start": 8188.82, + "end": 8189.5, + "probability": 0.6438 + }, + { + "start": 8189.5, + "end": 8192.92, + "probability": 0.6217 + }, + { + "start": 8193.1, + "end": 8195.92, + "probability": 0.8235 + }, + { + "start": 8200.38, + "end": 8202.0, + "probability": 0.7605 + }, + { + "start": 8203.48, + "end": 8206.48, + "probability": 0.5839 + }, + { + "start": 8206.52, + "end": 8207.52, + "probability": 0.7726 + }, + { + "start": 8207.9, + "end": 8212.92, + "probability": 0.7218 + }, + { + "start": 8214.54, + "end": 8217.34, + "probability": 0.6161 + }, + { + "start": 8217.8, + "end": 8218.86, + "probability": 0.9633 + }, + { + "start": 8219.24, + "end": 8224.06, + "probability": 0.2408 + }, + { + "start": 8227.46, + "end": 8231.26, + "probability": 0.186 + }, + { + "start": 8231.26, + "end": 8231.26, + "probability": 0.0825 + }, + { + "start": 8231.26, + "end": 8231.26, + "probability": 0.022 + }, + { + "start": 8231.26, + "end": 8232.14, + "probability": 0.2901 + }, + { + "start": 8232.6, + "end": 8237.18, + "probability": 0.7344 + }, + { + "start": 8237.18, + "end": 8239.88, + "probability": 0.8918 + }, + { + "start": 8240.74, + "end": 8241.54, + "probability": 0.9801 + }, + { + "start": 8242.44, + "end": 8245.1, + "probability": 0.9899 + }, + { + "start": 8245.18, + "end": 8247.84, + "probability": 0.9969 + }, + { + "start": 8248.06, + "end": 8254.34, + "probability": 0.9868 + }, + { + "start": 8255.74, + "end": 8258.24, + "probability": 0.8784 + }, + { + "start": 8259.1, + "end": 8262.22, + "probability": 0.9988 + }, + { + "start": 8262.66, + "end": 8265.92, + "probability": 0.9858 + }, + { + "start": 8266.26, + "end": 8268.02, + "probability": 0.9849 + }, + { + "start": 8268.62, + "end": 8273.84, + "probability": 0.9928 + }, + { + "start": 8274.44, + "end": 8279.4, + "probability": 0.9929 + }, + { + "start": 8280.16, + "end": 8282.5, + "probability": 0.8597 + }, + { + "start": 8283.06, + "end": 8285.7, + "probability": 0.9106 + }, + { + "start": 8286.2, + "end": 8290.06, + "probability": 0.8887 + }, + { + "start": 8290.14, + "end": 8292.92, + "probability": 0.802 + }, + { + "start": 8293.28, + "end": 8294.34, + "probability": 0.8678 + }, + { + "start": 8295.12, + "end": 8296.18, + "probability": 0.885 + }, + { + "start": 8296.3, + "end": 8297.87, + "probability": 0.965 + }, + { + "start": 8298.4, + "end": 8299.33, + "probability": 0.9658 + }, + { + "start": 8299.94, + "end": 8300.96, + "probability": 0.9565 + }, + { + "start": 8301.08, + "end": 8307.26, + "probability": 0.9893 + }, + { + "start": 8307.6, + "end": 8308.54, + "probability": 0.6915 + }, + { + "start": 8309.02, + "end": 8309.74, + "probability": 0.4604 + }, + { + "start": 8310.1, + "end": 8312.34, + "probability": 0.9283 + }, + { + "start": 8312.68, + "end": 8314.32, + "probability": 0.9976 + }, + { + "start": 8314.68, + "end": 8315.94, + "probability": 0.9253 + }, + { + "start": 8316.2, + "end": 8318.26, + "probability": 0.9695 + }, + { + "start": 8318.48, + "end": 8322.54, + "probability": 0.9863 + }, + { + "start": 8323.04, + "end": 8327.56, + "probability": 0.9714 + }, + { + "start": 8327.56, + "end": 8327.76, + "probability": 0.3841 + }, + { + "start": 8327.9, + "end": 8330.32, + "probability": 0.9639 + }, + { + "start": 8331.76, + "end": 8332.52, + "probability": 0.6746 + }, + { + "start": 8332.64, + "end": 8334.64, + "probability": 0.6268 + }, + { + "start": 8334.86, + "end": 8335.48, + "probability": 0.8792 + }, + { + "start": 8336.36, + "end": 8337.28, + "probability": 0.9299 + }, + { + "start": 8338.04, + "end": 8340.96, + "probability": 0.9482 + }, + { + "start": 8341.0, + "end": 8343.24, + "probability": 0.7483 + }, + { + "start": 8344.32, + "end": 8348.66, + "probability": 0.6506 + }, + { + "start": 8350.08, + "end": 8354.58, + "probability": 0.9051 + }, + { + "start": 8356.36, + "end": 8358.86, + "probability": 0.9803 + }, + { + "start": 8358.86, + "end": 8359.8, + "probability": 0.782 + }, + { + "start": 8360.34, + "end": 8362.88, + "probability": 0.6089 + }, + { + "start": 8363.42, + "end": 8364.1, + "probability": 0.5367 + }, + { + "start": 8364.72, + "end": 8365.08, + "probability": 0.9155 + }, + { + "start": 8365.62, + "end": 8367.36, + "probability": 0.6629 + }, + { + "start": 8368.06, + "end": 8370.2, + "probability": 0.8258 + }, + { + "start": 8370.76, + "end": 8373.02, + "probability": 0.9311 + }, + { + "start": 8374.04, + "end": 8376.44, + "probability": 0.769 + }, + { + "start": 8377.06, + "end": 8379.36, + "probability": 0.7537 + }, + { + "start": 8380.0, + "end": 8381.62, + "probability": 0.9041 + }, + { + "start": 8382.46, + "end": 8384.88, + "probability": 0.7394 + }, + { + "start": 8385.76, + "end": 8389.1, + "probability": 0.7557 + }, + { + "start": 8390.76, + "end": 8396.52, + "probability": 0.9563 + }, + { + "start": 8397.64, + "end": 8399.8, + "probability": 0.9882 + }, + { + "start": 8400.76, + "end": 8410.02, + "probability": 0.8992 + }, + { + "start": 8411.22, + "end": 8414.9, + "probability": 0.9202 + }, + { + "start": 8417.25, + "end": 8419.56, + "probability": 0.9651 + }, + { + "start": 8420.88, + "end": 8424.06, + "probability": 0.977 + }, + { + "start": 8425.2, + "end": 8428.88, + "probability": 0.979 + }, + { + "start": 8430.88, + "end": 8438.92, + "probability": 0.8437 + }, + { + "start": 8439.54, + "end": 8444.5, + "probability": 0.9669 + }, + { + "start": 8447.54, + "end": 8449.76, + "probability": 0.9859 + }, + { + "start": 8450.62, + "end": 8456.5, + "probability": 0.9837 + }, + { + "start": 8457.8, + "end": 8461.34, + "probability": 0.9497 + }, + { + "start": 8462.18, + "end": 8465.68, + "probability": 0.4427 + }, + { + "start": 8466.8, + "end": 8469.78, + "probability": 0.948 + }, + { + "start": 8471.06, + "end": 8473.64, + "probability": 0.8118 + }, + { + "start": 8474.92, + "end": 8477.38, + "probability": 0.903 + }, + { + "start": 8478.64, + "end": 8480.88, + "probability": 0.874 + }, + { + "start": 8481.88, + "end": 8485.9, + "probability": 0.9643 + }, + { + "start": 8486.42, + "end": 8490.0, + "probability": 0.9705 + }, + { + "start": 8490.88, + "end": 8493.08, + "probability": 0.8009 + }, + { + "start": 8494.1, + "end": 8497.14, + "probability": 0.8162 + }, + { + "start": 8498.84, + "end": 8502.06, + "probability": 0.7751 + }, + { + "start": 8502.9, + "end": 8504.88, + "probability": 0.8419 + }, + { + "start": 8509.54, + "end": 8511.22, + "probability": 0.619 + }, + { + "start": 8512.44, + "end": 8515.46, + "probability": 0.8266 + }, + { + "start": 8516.12, + "end": 8517.76, + "probability": 0.9554 + }, + { + "start": 8518.3, + "end": 8520.34, + "probability": 0.9628 + }, + { + "start": 8521.14, + "end": 8523.44, + "probability": 0.9189 + }, + { + "start": 8524.32, + "end": 8527.34, + "probability": 0.9727 + }, + { + "start": 8528.1, + "end": 8530.38, + "probability": 0.9299 + }, + { + "start": 8530.46, + "end": 8533.8, + "probability": 0.7461 + }, + { + "start": 8535.14, + "end": 8538.04, + "probability": 0.8209 + }, + { + "start": 8538.7, + "end": 8541.0, + "probability": 0.4209 + }, + { + "start": 8541.9, + "end": 8544.8, + "probability": 0.8268 + }, + { + "start": 8548.28, + "end": 8553.98, + "probability": 0.8799 + }, + { + "start": 8554.94, + "end": 8557.98, + "probability": 0.9785 + }, + { + "start": 8558.82, + "end": 8561.34, + "probability": 0.9094 + }, + { + "start": 8562.06, + "end": 8563.72, + "probability": 0.9141 + }, + { + "start": 8565.98, + "end": 8568.7, + "probability": 0.9547 + }, + { + "start": 8572.86, + "end": 8573.62, + "probability": 0.8706 + }, + { + "start": 8577.48, + "end": 8578.3, + "probability": 0.6955 + }, + { + "start": 8578.94, + "end": 8580.98, + "probability": 0.7008 + }, + { + "start": 8582.06, + "end": 8588.52, + "probability": 0.9346 + }, + { + "start": 8589.08, + "end": 8594.88, + "probability": 0.9696 + }, + { + "start": 8595.58, + "end": 8598.12, + "probability": 0.9846 + }, + { + "start": 8598.34, + "end": 8602.04, + "probability": 0.4969 + }, + { + "start": 8602.28, + "end": 8605.12, + "probability": 0.7799 + }, + { + "start": 8606.46, + "end": 8609.96, + "probability": 0.9825 + }, + { + "start": 8611.04, + "end": 8613.06, + "probability": 0.964 + }, + { + "start": 8613.92, + "end": 8616.68, + "probability": 0.8074 + }, + { + "start": 8618.26, + "end": 8620.62, + "probability": 0.9883 + }, + { + "start": 8622.78, + "end": 8625.12, + "probability": 0.9277 + }, + { + "start": 8627.8, + "end": 8629.56, + "probability": 0.9207 + }, + { + "start": 8630.78, + "end": 8633.0, + "probability": 0.8014 + }, + { + "start": 8633.92, + "end": 8637.26, + "probability": 0.7244 + }, + { + "start": 8638.18, + "end": 8641.04, + "probability": 0.9769 + }, + { + "start": 8642.33, + "end": 8644.88, + "probability": 0.9877 + }, + { + "start": 8645.34, + "end": 8647.66, + "probability": 0.9675 + }, + { + "start": 8648.42, + "end": 8650.92, + "probability": 0.9368 + }, + { + "start": 8655.32, + "end": 8658.88, + "probability": 0.8142 + }, + { + "start": 8660.46, + "end": 8663.2, + "probability": 0.8562 + }, + { + "start": 8665.82, + "end": 8669.58, + "probability": 0.9488 + }, + { + "start": 8670.56, + "end": 8672.92, + "probability": 0.8203 + }, + { + "start": 8674.34, + "end": 8677.3, + "probability": 0.9705 + }, + { + "start": 8677.88, + "end": 8679.92, + "probability": 0.9526 + }, + { + "start": 8684.06, + "end": 8685.86, + "probability": 0.688 + }, + { + "start": 8686.42, + "end": 8694.28, + "probability": 0.8059 + }, + { + "start": 8695.14, + "end": 8698.06, + "probability": 0.8756 + }, + { + "start": 8699.2, + "end": 8706.46, + "probability": 0.8318 + }, + { + "start": 8707.72, + "end": 8709.66, + "probability": 0.8594 + }, + { + "start": 8712.38, + "end": 8715.7, + "probability": 0.6198 + }, + { + "start": 8716.3, + "end": 8718.44, + "probability": 0.5722 + }, + { + "start": 8723.56, + "end": 8727.54, + "probability": 0.6894 + }, + { + "start": 8729.3, + "end": 8731.6, + "probability": 0.8142 + }, + { + "start": 8733.36, + "end": 8735.18, + "probability": 0.92 + }, + { + "start": 8735.96, + "end": 8738.36, + "probability": 0.8824 + }, + { + "start": 8739.52, + "end": 8746.46, + "probability": 0.6592 + }, + { + "start": 8748.24, + "end": 8755.3, + "probability": 0.7278 + }, + { + "start": 8757.38, + "end": 8765.52, + "probability": 0.9749 + }, + { + "start": 8766.48, + "end": 8768.24, + "probability": 0.9884 + }, + { + "start": 8769.58, + "end": 8772.1, + "probability": 0.9345 + }, + { + "start": 8775.64, + "end": 8778.34, + "probability": 0.6548 + }, + { + "start": 8779.28, + "end": 8782.4, + "probability": 0.9741 + }, + { + "start": 8783.26, + "end": 8786.06, + "probability": 0.8235 + }, + { + "start": 8789.08, + "end": 8791.62, + "probability": 0.9661 + }, + { + "start": 8792.36, + "end": 8797.36, + "probability": 0.9541 + }, + { + "start": 8798.52, + "end": 8801.6, + "probability": 0.9422 + }, + { + "start": 8802.34, + "end": 8804.0, + "probability": 0.6657 + }, + { + "start": 8804.94, + "end": 8809.06, + "probability": 0.9191 + }, + { + "start": 8810.64, + "end": 8813.94, + "probability": 0.9049 + }, + { + "start": 8815.1, + "end": 8819.76, + "probability": 0.9536 + }, + { + "start": 8821.4, + "end": 8824.43, + "probability": 0.8555 + }, + { + "start": 8825.1, + "end": 8827.32, + "probability": 0.9734 + }, + { + "start": 8827.42, + "end": 8831.28, + "probability": 0.9243 + }, + { + "start": 8831.54, + "end": 8834.7, + "probability": 0.9915 + }, + { + "start": 8835.42, + "end": 8838.24, + "probability": 0.6732 + }, + { + "start": 8839.66, + "end": 8841.78, + "probability": 0.7961 + }, + { + "start": 8842.5, + "end": 8844.56, + "probability": 0.794 + }, + { + "start": 8845.02, + "end": 8850.62, + "probability": 0.6923 + }, + { + "start": 8850.7, + "end": 8853.56, + "probability": 0.7485 + }, + { + "start": 8856.82, + "end": 8858.07, + "probability": 0.5029 + }, + { + "start": 8858.84, + "end": 8861.88, + "probability": 0.8043 + }, + { + "start": 8862.12, + "end": 8865.32, + "probability": 0.8735 + }, + { + "start": 8865.68, + "end": 8867.72, + "probability": 0.78 + }, + { + "start": 8868.56, + "end": 8869.16, + "probability": 0.7862 + }, + { + "start": 8870.7, + "end": 8871.88, + "probability": 0.7769 + }, + { + "start": 8873.78, + "end": 8876.46, + "probability": 0.8975 + }, + { + "start": 8877.12, + "end": 8878.92, + "probability": 0.983 + }, + { + "start": 8879.74, + "end": 8880.2, + "probability": 0.9092 + }, + { + "start": 8883.66, + "end": 8884.48, + "probability": 0.582 + }, + { + "start": 8885.74, + "end": 8890.9, + "probability": 0.916 + }, + { + "start": 8891.44, + "end": 8892.06, + "probability": 0.9832 + }, + { + "start": 8893.98, + "end": 8894.82, + "probability": 0.9633 + }, + { + "start": 8895.5, + "end": 8897.66, + "probability": 0.9932 + }, + { + "start": 8898.58, + "end": 8901.2, + "probability": 0.9208 + }, + { + "start": 8901.66, + "end": 8903.9, + "probability": 0.919 + }, + { + "start": 8905.06, + "end": 8905.82, + "probability": 0.9897 + }, + { + "start": 8906.7, + "end": 8907.66, + "probability": 0.6477 + }, + { + "start": 8908.34, + "end": 8911.2, + "probability": 0.9119 + }, + { + "start": 8912.26, + "end": 8912.48, + "probability": 0.9607 + }, + { + "start": 8913.08, + "end": 8914.64, + "probability": 0.9599 + }, + { + "start": 8916.36, + "end": 8919.7, + "probability": 0.9835 + }, + { + "start": 8920.7, + "end": 8922.5, + "probability": 0.9824 + }, + { + "start": 8923.06, + "end": 8923.5, + "probability": 0.9138 + }, + { + "start": 8929.74, + "end": 8930.52, + "probability": 0.583 + }, + { + "start": 8931.5, + "end": 8933.82, + "probability": 0.8976 + }, + { + "start": 8934.72, + "end": 8935.2, + "probability": 0.9674 + }, + { + "start": 8937.44, + "end": 8941.24, + "probability": 0.907 + }, + { + "start": 8942.86, + "end": 8945.92, + "probability": 0.9956 + }, + { + "start": 8946.58, + "end": 8948.36, + "probability": 0.9706 + }, + { + "start": 8949.24, + "end": 8951.78, + "probability": 0.981 + }, + { + "start": 8952.98, + "end": 8953.7, + "probability": 0.6446 + }, + { + "start": 8955.94, + "end": 8959.32, + "probability": 0.6985 + }, + { + "start": 8960.14, + "end": 8962.56, + "probability": 0.965 + }, + { + "start": 8963.3, + "end": 8965.72, + "probability": 0.9797 + }, + { + "start": 8966.24, + "end": 8968.12, + "probability": 0.9762 + }, + { + "start": 8968.9, + "end": 8971.46, + "probability": 0.9853 + }, + { + "start": 8975.12, + "end": 8975.98, + "probability": 0.5314 + }, + { + "start": 8977.04, + "end": 8978.7, + "probability": 0.7433 + }, + { + "start": 8981.58, + "end": 8982.78, + "probability": 0.687 + }, + { + "start": 8983.27, + "end": 8989.94, + "probability": 0.911 + }, + { + "start": 8991.24, + "end": 8992.92, + "probability": 0.5095 + }, + { + "start": 8994.0, + "end": 8995.52, + "probability": 0.6598 + }, + { + "start": 8995.66, + "end": 8995.96, + "probability": 0.3298 + }, + { + "start": 8996.72, + "end": 8998.5, + "probability": 0.7988 + }, + { + "start": 8998.72, + "end": 9000.88, + "probability": 0.1109 + }, + { + "start": 9001.56, + "end": 9002.08, + "probability": 0.0158 + }, + { + "start": 9022.38, + "end": 9023.04, + "probability": 0.3102 + }, + { + "start": 9023.84, + "end": 9024.28, + "probability": 0.6812 + }, + { + "start": 9024.3, + "end": 9024.3, + "probability": 0.0077 + }, + { + "start": 9024.3, + "end": 9024.48, + "probability": 0.3495 + }, + { + "start": 9024.72, + "end": 9026.64, + "probability": 0.0164 + }, + { + "start": 9026.64, + "end": 9027.32, + "probability": 0.1342 + }, + { + "start": 9028.08, + "end": 9030.18, + "probability": 0.0764 + }, + { + "start": 9030.66, + "end": 9031.86, + "probability": 0.0513 + }, + { + "start": 9032.56, + "end": 9034.48, + "probability": 0.2415 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.0, + "end": 9220.0, + "probability": 0.0 + }, + { + "start": 9220.18, + "end": 9223.28, + "probability": 0.8351 + }, + { + "start": 9223.28, + "end": 9226.0, + "probability": 0.8838 + }, + { + "start": 9226.16, + "end": 9229.92, + "probability": 0.0836 + }, + { + "start": 9230.76, + "end": 9233.34, + "probability": 0.5325 + }, + { + "start": 9234.72, + "end": 9234.94, + "probability": 0.6862 + }, + { + "start": 9235.1, + "end": 9238.36, + "probability": 0.9045 + }, + { + "start": 9238.4, + "end": 9243.26, + "probability": 0.8077 + }, + { + "start": 9245.16, + "end": 9245.78, + "probability": 0.8717 + }, + { + "start": 9245.9, + "end": 9248.84, + "probability": 0.4588 + }, + { + "start": 9249.04, + "end": 9250.9, + "probability": 0.1447 + }, + { + "start": 9251.62, + "end": 9256.56, + "probability": 0.037 + }, + { + "start": 9258.4, + "end": 9260.28, + "probability": 0.0577 + }, + { + "start": 9285.86, + "end": 9287.94, + "probability": 0.3856 + }, + { + "start": 9288.68, + "end": 9292.52, + "probability": 0.7852 + }, + { + "start": 9301.52, + "end": 9302.06, + "probability": 0.399 + }, + { + "start": 9302.24, + "end": 9304.23, + "probability": 0.5886 + }, + { + "start": 9318.08, + "end": 9320.64, + "probability": 0.7526 + }, + { + "start": 9321.0, + "end": 9321.24, + "probability": 0.8997 + }, + { + "start": 9321.28, + "end": 9322.72, + "probability": 0.9974 + }, + { + "start": 9323.2, + "end": 9324.1, + "probability": 0.5831 + }, + { + "start": 9324.44, + "end": 9325.8, + "probability": 0.9818 + }, + { + "start": 9326.48, + "end": 9328.8, + "probability": 0.9917 + }, + { + "start": 9329.26, + "end": 9333.7, + "probability": 0.9723 + }, + { + "start": 9334.08, + "end": 9337.26, + "probability": 0.9556 + }, + { + "start": 9337.38, + "end": 9340.82, + "probability": 0.9853 + }, + { + "start": 9341.1, + "end": 9342.4, + "probability": 0.8238 + }, + { + "start": 9342.78, + "end": 9342.86, + "probability": 0.1183 + }, + { + "start": 9342.86, + "end": 9342.86, + "probability": 0.0345 + }, + { + "start": 9342.86, + "end": 9343.2, + "probability": 0.2441 + }, + { + "start": 9343.22, + "end": 9345.08, + "probability": 0.7499 + }, + { + "start": 9345.18, + "end": 9346.94, + "probability": 0.8683 + }, + { + "start": 9347.24, + "end": 9350.38, + "probability": 0.6783 + }, + { + "start": 9350.96, + "end": 9351.48, + "probability": 0.3681 + }, + { + "start": 9351.5, + "end": 9353.0, + "probability": 0.4515 + }, + { + "start": 9353.04, + "end": 9353.76, + "probability": 0.448 + }, + { + "start": 9353.92, + "end": 9356.52, + "probability": 0.5808 + }, + { + "start": 9356.64, + "end": 9358.22, + "probability": 0.2555 + }, + { + "start": 9358.22, + "end": 9361.24, + "probability": 0.6255 + }, + { + "start": 9361.78, + "end": 9363.44, + "probability": 0.4289 + }, + { + "start": 9363.64, + "end": 9364.3, + "probability": 0.8796 + }, + { + "start": 9364.32, + "end": 9366.38, + "probability": 0.9521 + }, + { + "start": 9366.62, + "end": 9369.58, + "probability": 0.9932 + }, + { + "start": 9369.62, + "end": 9369.62, + "probability": 0.0711 + }, + { + "start": 9369.62, + "end": 9371.42, + "probability": 0.8193 + }, + { + "start": 9371.9, + "end": 9374.32, + "probability": 0.7248 + }, + { + "start": 9374.32, + "end": 9376.88, + "probability": 0.9875 + }, + { + "start": 9376.96, + "end": 9377.12, + "probability": 0.4045 + }, + { + "start": 9377.24, + "end": 9378.76, + "probability": 0.7148 + }, + { + "start": 9378.82, + "end": 9379.78, + "probability": 0.3865 + }, + { + "start": 9379.82, + "end": 9384.44, + "probability": 0.708 + }, + { + "start": 9384.5, + "end": 9384.64, + "probability": 0.0005 + }, + { + "start": 9385.56, + "end": 9385.78, + "probability": 0.0236 + }, + { + "start": 9385.78, + "end": 9387.2, + "probability": 0.4102 + }, + { + "start": 9387.34, + "end": 9389.72, + "probability": 0.9531 + }, + { + "start": 9389.82, + "end": 9392.0, + "probability": 0.712 + }, + { + "start": 9392.0, + "end": 9394.04, + "probability": 0.7329 + }, + { + "start": 9394.06, + "end": 9394.1, + "probability": 0.0414 + }, + { + "start": 9394.1, + "end": 9396.76, + "probability": 0.4736 + }, + { + "start": 9396.76, + "end": 9397.72, + "probability": 0.468 + }, + { + "start": 9397.72, + "end": 9398.18, + "probability": 0.3256 + }, + { + "start": 9398.22, + "end": 9400.82, + "probability": 0.6857 + }, + { + "start": 9400.84, + "end": 9402.24, + "probability": 0.9138 + }, + { + "start": 9402.36, + "end": 9403.74, + "probability": 0.555 + }, + { + "start": 9403.96, + "end": 9405.14, + "probability": 0.6867 + }, + { + "start": 9405.82, + "end": 9406.06, + "probability": 0.2427 + }, + { + "start": 9406.06, + "end": 9406.06, + "probability": 0.1002 + }, + { + "start": 9406.06, + "end": 9407.64, + "probability": 0.9494 + }, + { + "start": 9411.3, + "end": 9412.38, + "probability": 0.5079 + }, + { + "start": 9412.44, + "end": 9415.64, + "probability": 0.1812 + }, + { + "start": 9415.74, + "end": 9420.3, + "probability": 0.2826 + }, + { + "start": 9421.36, + "end": 9422.56, + "probability": 0.5127 + }, + { + "start": 9422.58, + "end": 9424.66, + "probability": 0.8458 + }, + { + "start": 9425.42, + "end": 9425.96, + "probability": 0.0488 + }, + { + "start": 9425.96, + "end": 9427.84, + "probability": 0.997 + }, + { + "start": 9428.34, + "end": 9432.16, + "probability": 0.9953 + }, + { + "start": 9432.48, + "end": 9432.6, + "probability": 0.6509 + }, + { + "start": 9432.78, + "end": 9437.68, + "probability": 0.8331 + }, + { + "start": 9438.14, + "end": 9440.02, + "probability": 0.9857 + }, + { + "start": 9440.1, + "end": 9445.44, + "probability": 0.8246 + }, + { + "start": 9445.46, + "end": 9449.66, + "probability": 0.9658 + }, + { + "start": 9449.66, + "end": 9454.24, + "probability": 0.9992 + }, + { + "start": 9454.56, + "end": 9456.36, + "probability": 0.5761 + }, + { + "start": 9456.36, + "end": 9456.36, + "probability": 0.2389 + }, + { + "start": 9456.36, + "end": 9456.36, + "probability": 0.0437 + }, + { + "start": 9456.36, + "end": 9459.94, + "probability": 0.5411 + }, + { + "start": 9460.38, + "end": 9460.91, + "probability": 0.5559 + }, + { + "start": 9462.18, + "end": 9468.68, + "probability": 0.8192 + }, + { + "start": 9469.52, + "end": 9473.96, + "probability": 0.9992 + }, + { + "start": 9473.96, + "end": 9477.16, + "probability": 0.9995 + }, + { + "start": 9477.38, + "end": 9478.94, + "probability": 0.5448 + }, + { + "start": 9479.22, + "end": 9480.1, + "probability": 0.6329 + }, + { + "start": 9480.3, + "end": 9482.76, + "probability": 0.537 + }, + { + "start": 9483.02, + "end": 9483.58, + "probability": 0.4669 + }, + { + "start": 9483.82, + "end": 9488.96, + "probability": 0.9504 + }, + { + "start": 9488.96, + "end": 9495.7, + "probability": 0.9272 + }, + { + "start": 9496.02, + "end": 9496.06, + "probability": 0.3314 + }, + { + "start": 9496.06, + "end": 9496.06, + "probability": 0.5392 + }, + { + "start": 9496.06, + "end": 9496.06, + "probability": 0.0594 + }, + { + "start": 9496.06, + "end": 9496.58, + "probability": 0.4625 + }, + { + "start": 9496.66, + "end": 9497.26, + "probability": 0.5625 + }, + { + "start": 9497.26, + "end": 9498.46, + "probability": 0.7752 + }, + { + "start": 9498.76, + "end": 9503.73, + "probability": 0.9617 + }, + { + "start": 9504.2, + "end": 9505.56, + "probability": 0.1553 + }, + { + "start": 9507.04, + "end": 9508.66, + "probability": 0.1826 + }, + { + "start": 9508.77, + "end": 9509.18, + "probability": 0.2228 + }, + { + "start": 9509.24, + "end": 9509.72, + "probability": 0.467 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.0, + "end": 9617.0, + "probability": 0.0 + }, + { + "start": 9617.46, + "end": 9617.46, + "probability": 0.0028 + }, + { + "start": 9620.48, + "end": 9622.82, + "probability": 0.1716 + }, + { + "start": 9623.22, + "end": 9624.36, + "probability": 0.324 + }, + { + "start": 9624.46, + "end": 9625.7, + "probability": 0.645 + }, + { + "start": 9626.46, + "end": 9632.6, + "probability": 0.7856 + }, + { + "start": 9633.02, + "end": 9637.36, + "probability": 0.9854 + }, + { + "start": 9638.4, + "end": 9638.86, + "probability": 0.2361 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.0, + "end": 9742.0, + "probability": 0.0 + }, + { + "start": 9742.26, + "end": 9743.36, + "probability": 0.0354 + }, + { + "start": 9743.42, + "end": 9745.96, + "probability": 0.2807 + }, + { + "start": 9745.96, + "end": 9748.74, + "probability": 0.1808 + }, + { + "start": 9748.74, + "end": 9748.74, + "probability": 0.1052 + }, + { + "start": 9748.74, + "end": 9748.74, + "probability": 0.0524 + }, + { + "start": 9748.74, + "end": 9748.74, + "probability": 0.0849 + }, + { + "start": 9748.74, + "end": 9749.82, + "probability": 0.2325 + }, + { + "start": 9750.6, + "end": 9751.26, + "probability": 0.0369 + }, + { + "start": 9751.26, + "end": 9751.26, + "probability": 0.0243 + }, + { + "start": 9751.26, + "end": 9751.26, + "probability": 0.1222 + }, + { + "start": 9751.26, + "end": 9751.92, + "probability": 0.0372 + }, + { + "start": 9752.52, + "end": 9753.42, + "probability": 0.2417 + }, + { + "start": 9753.78, + "end": 9755.12, + "probability": 0.2866 + }, + { + "start": 9755.24, + "end": 9756.8, + "probability": 0.0569 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.0, + "end": 9865.0, + "probability": 0.0 + }, + { + "start": 9865.68, + "end": 9870.08, + "probability": 0.8241 + }, + { + "start": 9870.6, + "end": 9874.38, + "probability": 0.6676 + }, + { + "start": 9874.38, + "end": 9875.57, + "probability": 0.9185 + }, + { + "start": 9875.88, + "end": 9876.44, + "probability": 0.8406 + }, + { + "start": 9876.74, + "end": 9878.04, + "probability": 0.9396 + }, + { + "start": 9878.14, + "end": 9880.88, + "probability": 0.8528 + }, + { + "start": 9881.2, + "end": 9883.09, + "probability": 0.9172 + }, + { + "start": 9883.52, + "end": 9887.88, + "probability": 0.7835 + }, + { + "start": 9887.88, + "end": 9890.94, + "probability": 0.9893 + }, + { + "start": 9891.14, + "end": 9892.7, + "probability": 0.9928 + }, + { + "start": 9892.82, + "end": 9893.88, + "probability": 0.5684 + }, + { + "start": 9893.96, + "end": 9895.84, + "probability": 0.6569 + }, + { + "start": 9895.84, + "end": 9898.86, + "probability": 0.8751 + }, + { + "start": 9898.92, + "end": 9899.8, + "probability": 0.7481 + }, + { + "start": 9899.94, + "end": 9901.64, + "probability": 0.9632 + }, + { + "start": 9901.78, + "end": 9902.5, + "probability": 0.9617 + }, + { + "start": 9903.0, + "end": 9903.66, + "probability": 0.6511 + }, + { + "start": 9903.82, + "end": 9907.44, + "probability": 0.849 + }, + { + "start": 9907.6, + "end": 9911.78, + "probability": 0.9648 + }, + { + "start": 9911.96, + "end": 9913.16, + "probability": 0.5364 + }, + { + "start": 9913.4, + "end": 9914.52, + "probability": 0.6771 + }, + { + "start": 9914.56, + "end": 9919.46, + "probability": 0.8986 + }, + { + "start": 9919.62, + "end": 9920.56, + "probability": 0.0758 + }, + { + "start": 9920.6, + "end": 9921.26, + "probability": 0.2975 + }, + { + "start": 9921.68, + "end": 9921.78, + "probability": 0.0816 + }, + { + "start": 9921.78, + "end": 9921.78, + "probability": 0.099 + }, + { + "start": 9921.78, + "end": 9922.68, + "probability": 0.4941 + }, + { + "start": 9923.2, + "end": 9923.92, + "probability": 0.5519 + }, + { + "start": 9924.02, + "end": 9925.0, + "probability": 0.6681 + }, + { + "start": 9925.08, + "end": 9926.04, + "probability": 0.8799 + }, + { + "start": 9926.3, + "end": 9929.0, + "probability": 0.2694 + }, + { + "start": 9929.08, + "end": 9929.08, + "probability": 0.0865 + }, + { + "start": 9929.38, + "end": 9930.08, + "probability": 0.6775 + }, + { + "start": 9930.14, + "end": 9930.82, + "probability": 0.6638 + }, + { + "start": 9930.9, + "end": 9931.9, + "probability": 0.7046 + }, + { + "start": 9931.98, + "end": 9934.32, + "probability": 0.9702 + }, + { + "start": 9934.98, + "end": 9936.4, + "probability": 0.9839 + }, + { + "start": 9936.66, + "end": 9940.04, + "probability": 0.8467 + }, + { + "start": 9940.42, + "end": 9940.46, + "probability": 0.0641 + }, + { + "start": 9940.46, + "end": 9941.05, + "probability": 0.2477 + }, + { + "start": 9941.94, + "end": 9942.68, + "probability": 0.6668 + }, + { + "start": 9942.86, + "end": 9944.18, + "probability": 0.6811 + }, + { + "start": 9944.32, + "end": 9945.3, + "probability": 0.7847 + }, + { + "start": 9945.56, + "end": 9947.58, + "probability": 0.7944 + }, + { + "start": 9947.8, + "end": 9949.06, + "probability": 0.7082 + }, + { + "start": 9949.42, + "end": 9949.92, + "probability": 0.7391 + }, + { + "start": 9949.96, + "end": 9950.82, + "probability": 0.9751 + }, + { + "start": 9951.4, + "end": 9952.4, + "probability": 0.8819 + }, + { + "start": 9952.48, + "end": 9953.42, + "probability": 0.9432 + }, + { + "start": 9953.42, + "end": 9954.56, + "probability": 0.8476 + }, + { + "start": 9954.62, + "end": 9955.02, + "probability": 0.8392 + }, + { + "start": 9955.16, + "end": 9956.08, + "probability": 0.9976 + }, + { + "start": 9956.54, + "end": 9958.84, + "probability": 0.9119 + }, + { + "start": 9958.84, + "end": 9959.4, + "probability": 0.5647 + }, + { + "start": 9960.72, + "end": 9962.3, + "probability": 0.5461 + }, + { + "start": 9962.3, + "end": 9962.3, + "probability": 0.1497 + }, + { + "start": 9962.3, + "end": 9962.74, + "probability": 0.1466 + }, + { + "start": 9963.66, + "end": 9963.74, + "probability": 0.1174 + }, + { + "start": 9963.74, + "end": 9963.74, + "probability": 0.2873 + }, + { + "start": 9963.74, + "end": 9964.56, + "probability": 0.5167 + }, + { + "start": 9964.64, + "end": 9965.44, + "probability": 0.8303 + }, + { + "start": 9965.6, + "end": 9965.7, + "probability": 0.3058 + }, + { + "start": 9965.8, + "end": 9966.6, + "probability": 0.8242 + }, + { + "start": 9967.0, + "end": 9968.4, + "probability": 0.9748 + }, + { + "start": 9968.68, + "end": 9969.68, + "probability": 0.7543 + }, + { + "start": 9970.1, + "end": 9970.2, + "probability": 0.147 + }, + { + "start": 9970.2, + "end": 9970.2, + "probability": 0.3718 + }, + { + "start": 9970.2, + "end": 9970.62, + "probability": 0.872 + }, + { + "start": 9971.46, + "end": 9973.54, + "probability": 0.9927 + }, + { + "start": 9973.54, + "end": 9973.78, + "probability": 0.4358 + }, + { + "start": 9973.92, + "end": 9974.48, + "probability": 0.3775 + }, + { + "start": 9974.48, + "end": 9975.26, + "probability": 0.2381 + }, + { + "start": 9975.34, + "end": 9978.18, + "probability": 0.1082 + }, + { + "start": 9978.24, + "end": 9979.74, + "probability": 0.7624 + }, + { + "start": 9980.34, + "end": 9981.48, + "probability": 0.8744 + }, + { + "start": 9981.56, + "end": 9982.24, + "probability": 0.7558 + }, + { + "start": 9982.34, + "end": 9984.8, + "probability": 0.8868 + }, + { + "start": 9984.86, + "end": 9988.86, + "probability": 0.9663 + }, + { + "start": 9989.42, + "end": 9992.04, + "probability": 0.9922 + }, + { + "start": 9992.42, + "end": 9993.11, + "probability": 0.9588 + }, + { + "start": 9993.44, + "end": 9997.54, + "probability": 0.9453 + }, + { + "start": 9997.62, + "end": 9997.8, + "probability": 0.6737 + }, + { + "start": 9997.92, + "end": 9999.09, + "probability": 0.9789 + }, + { + "start": 9999.26, + "end": 10001.1, + "probability": 0.8074 + }, + { + "start": 10001.46, + "end": 10002.66, + "probability": 0.9638 + }, + { + "start": 10002.86, + "end": 10003.78, + "probability": 0.9993 + }, + { + "start": 10004.16, + "end": 10006.61, + "probability": 0.9945 + }, + { + "start": 10007.0, + "end": 10011.12, + "probability": 0.9915 + }, + { + "start": 10011.42, + "end": 10012.22, + "probability": 0.9976 + }, + { + "start": 10012.6, + "end": 10013.88, + "probability": 0.9942 + }, + { + "start": 10014.3, + "end": 10015.1, + "probability": 0.9485 + }, + { + "start": 10015.24, + "end": 10017.0, + "probability": 0.9641 + }, + { + "start": 10017.06, + "end": 10017.16, + "probability": 0.583 + }, + { + "start": 10017.6, + "end": 10019.28, + "probability": 0.9899 + }, + { + "start": 10019.56, + "end": 10021.18, + "probability": 0.9945 + }, + { + "start": 10021.4, + "end": 10021.92, + "probability": 0.6005 + }, + { + "start": 10021.94, + "end": 10022.81, + "probability": 0.765 + }, + { + "start": 10023.14, + "end": 10023.84, + "probability": 0.7345 + }, + { + "start": 10024.5, + "end": 10026.5, + "probability": 0.9036 + }, + { + "start": 10026.62, + "end": 10027.06, + "probability": 0.8747 + }, + { + "start": 10027.2, + "end": 10029.52, + "probability": 0.9961 + }, + { + "start": 10029.7, + "end": 10031.22, + "probability": 0.9858 + }, + { + "start": 10031.44, + "end": 10033.98, + "probability": 0.8584 + }, + { + "start": 10034.2, + "end": 10038.72, + "probability": 0.9025 + }, + { + "start": 10039.52, + "end": 10043.0, + "probability": 0.9813 + }, + { + "start": 10043.12, + "end": 10044.14, + "probability": 0.8817 + }, + { + "start": 10044.4, + "end": 10047.46, + "probability": 0.9978 + }, + { + "start": 10047.58, + "end": 10048.63, + "probability": 0.6778 + }, + { + "start": 10048.82, + "end": 10051.22, + "probability": 0.971 + }, + { + "start": 10051.5, + "end": 10052.06, + "probability": 0.8098 + }, + { + "start": 10052.26, + "end": 10053.22, + "probability": 0.5924 + }, + { + "start": 10053.34, + "end": 10055.68, + "probability": 0.9548 + }, + { + "start": 10055.76, + "end": 10057.32, + "probability": 0.8698 + }, + { + "start": 10057.9, + "end": 10060.62, + "probability": 0.9899 + }, + { + "start": 10060.62, + "end": 10063.34, + "probability": 0.9907 + }, + { + "start": 10063.62, + "end": 10064.26, + "probability": 0.9053 + }, + { + "start": 10064.34, + "end": 10066.26, + "probability": 0.9956 + }, + { + "start": 10066.5, + "end": 10067.42, + "probability": 0.9675 + }, + { + "start": 10067.62, + "end": 10068.52, + "probability": 0.9751 + }, + { + "start": 10068.66, + "end": 10069.54, + "probability": 0.9769 + }, + { + "start": 10069.68, + "end": 10070.72, + "probability": 0.8877 + }, + { + "start": 10070.84, + "end": 10071.64, + "probability": 0.527 + }, + { + "start": 10071.66, + "end": 10073.28, + "probability": 0.6886 + }, + { + "start": 10073.56, + "end": 10074.54, + "probability": 0.6502 + }, + { + "start": 10074.9, + "end": 10078.5, + "probability": 0.985 + }, + { + "start": 10078.5, + "end": 10081.3, + "probability": 0.9931 + }, + { + "start": 10081.74, + "end": 10086.1, + "probability": 0.9656 + }, + { + "start": 10086.1, + "end": 10089.82, + "probability": 0.7508 + }, + { + "start": 10089.96, + "end": 10094.04, + "probability": 0.9053 + }, + { + "start": 10094.04, + "end": 10098.54, + "probability": 0.9976 + }, + { + "start": 10098.7, + "end": 10101.6, + "probability": 0.7898 + }, + { + "start": 10102.1, + "end": 10103.92, + "probability": 0.8417 + }, + { + "start": 10104.28, + "end": 10105.84, + "probability": 0.8776 + }, + { + "start": 10105.94, + "end": 10109.52, + "probability": 0.991 + }, + { + "start": 10109.72, + "end": 10112.19, + "probability": 0.9922 + }, + { + "start": 10112.22, + "end": 10115.64, + "probability": 0.9965 + }, + { + "start": 10115.9, + "end": 10116.94, + "probability": 0.9243 + }, + { + "start": 10117.24, + "end": 10122.24, + "probability": 0.9851 + }, + { + "start": 10122.7, + "end": 10126.14, + "probability": 0.9808 + }, + { + "start": 10126.76, + "end": 10129.3, + "probability": 0.7673 + }, + { + "start": 10129.74, + "end": 10130.26, + "probability": 0.8074 + }, + { + "start": 10130.88, + "end": 10134.04, + "probability": 0.9604 + }, + { + "start": 10134.44, + "end": 10137.7, + "probability": 0.9919 + }, + { + "start": 10137.9, + "end": 10140.78, + "probability": 0.796 + }, + { + "start": 10141.2, + "end": 10144.62, + "probability": 0.9858 + }, + { + "start": 10145.14, + "end": 10147.94, + "probability": 0.9286 + }, + { + "start": 10148.1, + "end": 10149.0, + "probability": 0.956 + }, + { + "start": 10149.26, + "end": 10151.58, + "probability": 0.9945 + }, + { + "start": 10152.0, + "end": 10153.5, + "probability": 0.8779 + }, + { + "start": 10153.64, + "end": 10155.22, + "probability": 0.7415 + }, + { + "start": 10155.86, + "end": 10157.76, + "probability": 0.9976 + }, + { + "start": 10158.52, + "end": 10159.16, + "probability": 0.9624 + }, + { + "start": 10159.18, + "end": 10161.68, + "probability": 0.9896 + }, + { + "start": 10161.92, + "end": 10162.22, + "probability": 0.6056 + }, + { + "start": 10162.34, + "end": 10165.18, + "probability": 0.9736 + }, + { + "start": 10165.46, + "end": 10167.36, + "probability": 0.8371 + }, + { + "start": 10167.42, + "end": 10168.14, + "probability": 0.3861 + }, + { + "start": 10168.22, + "end": 10169.58, + "probability": 0.4057 + }, + { + "start": 10169.7, + "end": 10169.9, + "probability": 0.311 + }, + { + "start": 10170.1, + "end": 10170.42, + "probability": 0.6855 + }, + { + "start": 10170.54, + "end": 10170.82, + "probability": 0.9228 + }, + { + "start": 10171.0, + "end": 10171.26, + "probability": 0.5551 + }, + { + "start": 10171.32, + "end": 10171.8, + "probability": 0.9695 + }, + { + "start": 10172.3, + "end": 10175.8, + "probability": 0.8881 + }, + { + "start": 10175.9, + "end": 10178.66, + "probability": 0.8715 + }, + { + "start": 10178.68, + "end": 10179.82, + "probability": 0.2755 + }, + { + "start": 10179.82, + "end": 10180.5, + "probability": 0.7014 + }, + { + "start": 10180.5, + "end": 10183.58, + "probability": 0.8874 + }, + { + "start": 10185.05, + "end": 10186.59, + "probability": 0.8932 + }, + { + "start": 10187.18, + "end": 10188.44, + "probability": 0.6206 + }, + { + "start": 10188.78, + "end": 10192.66, + "probability": 0.9565 + }, + { + "start": 10192.66, + "end": 10196.76, + "probability": 0.8378 + }, + { + "start": 10197.2, + "end": 10200.22, + "probability": 0.6877 + }, + { + "start": 10200.74, + "end": 10204.96, + "probability": 0.9727 + }, + { + "start": 10205.2, + "end": 10206.58, + "probability": 0.9988 + }, + { + "start": 10206.94, + "end": 10209.54, + "probability": 0.9271 + }, + { + "start": 10209.88, + "end": 10211.56, + "probability": 0.8998 + }, + { + "start": 10211.86, + "end": 10213.04, + "probability": 0.9115 + }, + { + "start": 10213.64, + "end": 10213.7, + "probability": 0.1272 + }, + { + "start": 10213.78, + "end": 10214.06, + "probability": 0.8653 + }, + { + "start": 10214.1, + "end": 10214.9, + "probability": 0.9062 + }, + { + "start": 10215.06, + "end": 10216.18, + "probability": 0.8055 + }, + { + "start": 10216.6, + "end": 10217.24, + "probability": 0.7432 + }, + { + "start": 10217.8, + "end": 10221.14, + "probability": 0.7818 + }, + { + "start": 10221.32, + "end": 10223.44, + "probability": 0.7059 + }, + { + "start": 10223.72, + "end": 10225.12, + "probability": 0.5186 + }, + { + "start": 10225.14, + "end": 10225.56, + "probability": 0.5137 + }, + { + "start": 10225.6, + "end": 10225.6, + "probability": 0.2214 + }, + { + "start": 10225.6, + "end": 10226.8, + "probability": 0.5411 + }, + { + "start": 10226.86, + "end": 10227.04, + "probability": 0.6734 + }, + { + "start": 10227.04, + "end": 10228.2, + "probability": 0.9049 + }, + { + "start": 10228.52, + "end": 10230.46, + "probability": 0.9375 + }, + { + "start": 10230.56, + "end": 10232.5, + "probability": 0.9973 + }, + { + "start": 10232.8, + "end": 10232.92, + "probability": 0.1635 + }, + { + "start": 10232.92, + "end": 10233.62, + "probability": 0.9648 + }, + { + "start": 10234.34, + "end": 10236.38, + "probability": 0.5582 + }, + { + "start": 10236.52, + "end": 10239.24, + "probability": 0.0486 + }, + { + "start": 10239.52, + "end": 10241.42, + "probability": 0.6786 + }, + { + "start": 10241.62, + "end": 10243.68, + "probability": 0.9493 + }, + { + "start": 10243.74, + "end": 10246.96, + "probability": 0.7781 + }, + { + "start": 10247.3, + "end": 10247.62, + "probability": 0.0754 + }, + { + "start": 10249.47, + "end": 10254.42, + "probability": 0.1974 + }, + { + "start": 10256.2, + "end": 10256.3, + "probability": 0.0658 + }, + { + "start": 10256.3, + "end": 10259.78, + "probability": 0.1567 + }, + { + "start": 10260.38, + "end": 10261.34, + "probability": 0.083 + }, + { + "start": 10261.34, + "end": 10261.5, + "probability": 0.1905 + }, + { + "start": 10264.92, + "end": 10266.04, + "probability": 0.0236 + }, + { + "start": 10266.06, + "end": 10266.78, + "probability": 0.0241 + }, + { + "start": 10267.0, + "end": 10267.0, + "probability": 0.3329 + }, + { + "start": 10267.0, + "end": 10267.0, + "probability": 0.0163 + }, + { + "start": 10267.06, + "end": 10267.68, + "probability": 0.1576 + }, + { + "start": 10267.68, + "end": 10270.62, + "probability": 0.4606 + }, + { + "start": 10271.04, + "end": 10271.96, + "probability": 0.5695 + }, + { + "start": 10272.6, + "end": 10273.62, + "probability": 0.8197 + }, + { + "start": 10282.34, + "end": 10282.96, + "probability": 0.3318 + }, + { + "start": 10283.6, + "end": 10285.26, + "probability": 0.1149 + }, + { + "start": 10285.26, + "end": 10285.6, + "probability": 0.0962 + }, + { + "start": 10287.84, + "end": 10288.98, + "probability": 0.0525 + }, + { + "start": 10293.24, + "end": 10294.94, + "probability": 0.3237 + }, + { + "start": 10295.82, + "end": 10298.28, + "probability": 0.7697 + }, + { + "start": 10298.84, + "end": 10301.96, + "probability": 0.5615 + }, + { + "start": 10303.14, + "end": 10304.58, + "probability": 0.726 + }, + { + "start": 10304.66, + "end": 10308.32, + "probability": 0.8575 + }, + { + "start": 10309.04, + "end": 10311.76, + "probability": 0.9953 + }, + { + "start": 10312.42, + "end": 10315.2, + "probability": 0.7255 + }, + { + "start": 10316.46, + "end": 10320.68, + "probability": 0.9509 + }, + { + "start": 10320.68, + "end": 10325.02, + "probability": 0.991 + }, + { + "start": 10325.66, + "end": 10327.98, + "probability": 0.9517 + }, + { + "start": 10328.62, + "end": 10329.8, + "probability": 0.9696 + }, + { + "start": 10329.88, + "end": 10331.56, + "probability": 0.9264 + }, + { + "start": 10332.42, + "end": 10333.74, + "probability": 0.9057 + }, + { + "start": 10335.5, + "end": 10336.54, + "probability": 0.9818 + }, + { + "start": 10337.06, + "end": 10339.9, + "probability": 0.9928 + }, + { + "start": 10340.0, + "end": 10344.02, + "probability": 0.7967 + }, + { + "start": 10344.36, + "end": 10346.2, + "probability": 0.9546 + }, + { + "start": 10347.08, + "end": 10348.92, + "probability": 0.9886 + }, + { + "start": 10349.12, + "end": 10351.54, + "probability": 0.9355 + }, + { + "start": 10354.54, + "end": 10355.84, + "probability": 0.8674 + }, + { + "start": 10357.04, + "end": 10358.22, + "probability": 0.8975 + }, + { + "start": 10362.28, + "end": 10367.28, + "probability": 0.9748 + }, + { + "start": 10367.96, + "end": 10373.66, + "probability": 0.9927 + }, + { + "start": 10374.4, + "end": 10376.04, + "probability": 0.9848 + }, + { + "start": 10376.82, + "end": 10378.32, + "probability": 0.9761 + }, + { + "start": 10378.74, + "end": 10381.72, + "probability": 0.7191 + }, + { + "start": 10382.72, + "end": 10384.14, + "probability": 0.9922 + }, + { + "start": 10384.94, + "end": 10387.48, + "probability": 0.9637 + }, + { + "start": 10390.84, + "end": 10391.96, + "probability": 0.8608 + }, + { + "start": 10392.12, + "end": 10392.68, + "probability": 0.9063 + }, + { + "start": 10392.8, + "end": 10394.22, + "probability": 0.8595 + }, + { + "start": 10398.68, + "end": 10400.44, + "probability": 0.8873 + }, + { + "start": 10406.5, + "end": 10406.9, + "probability": 0.6242 + }, + { + "start": 10407.62, + "end": 10407.94, + "probability": 0.5009 + }, + { + "start": 10408.0, + "end": 10412.86, + "probability": 0.9604 + }, + { + "start": 10413.14, + "end": 10414.58, + "probability": 0.757 + }, + { + "start": 10415.14, + "end": 10418.0, + "probability": 0.9059 + }, + { + "start": 10418.32, + "end": 10420.28, + "probability": 0.9165 + }, + { + "start": 10420.86, + "end": 10421.24, + "probability": 0.6425 + }, + { + "start": 10421.7, + "end": 10422.92, + "probability": 0.8565 + }, + { + "start": 10423.06, + "end": 10425.88, + "probability": 0.9748 + }, + { + "start": 10425.96, + "end": 10431.92, + "probability": 0.8682 + }, + { + "start": 10432.56, + "end": 10433.32, + "probability": 0.9114 + }, + { + "start": 10433.52, + "end": 10434.02, + "probability": 0.4771 + }, + { + "start": 10434.16, + "end": 10435.98, + "probability": 0.8864 + }, + { + "start": 10436.06, + "end": 10439.36, + "probability": 0.9118 + }, + { + "start": 10439.46, + "end": 10440.88, + "probability": 0.7509 + }, + { + "start": 10440.98, + "end": 10442.1, + "probability": 0.7208 + }, + { + "start": 10442.72, + "end": 10443.98, + "probability": 0.6216 + }, + { + "start": 10443.98, + "end": 10445.44, + "probability": 0.9359 + }, + { + "start": 10445.58, + "end": 10450.02, + "probability": 0.9832 + }, + { + "start": 10450.32, + "end": 10452.02, + "probability": 0.8997 + }, + { + "start": 10452.26, + "end": 10454.94, + "probability": 0.9801 + }, + { + "start": 10455.26, + "end": 10459.66, + "probability": 0.9687 + }, + { + "start": 10459.66, + "end": 10463.28, + "probability": 0.9924 + }, + { + "start": 10463.74, + "end": 10466.14, + "probability": 0.9901 + }, + { + "start": 10466.36, + "end": 10467.48, + "probability": 0.7948 + }, + { + "start": 10467.66, + "end": 10469.68, + "probability": 0.8479 + }, + { + "start": 10469.8, + "end": 10470.74, + "probability": 0.9668 + }, + { + "start": 10471.38, + "end": 10473.56, + "probability": 0.9355 + }, + { + "start": 10473.76, + "end": 10475.46, + "probability": 0.9769 + }, + { + "start": 10475.74, + "end": 10480.66, + "probability": 0.9382 + }, + { + "start": 10481.52, + "end": 10482.66, + "probability": 0.6116 + }, + { + "start": 10482.92, + "end": 10484.66, + "probability": 0.911 + }, + { + "start": 10485.2, + "end": 10490.98, + "probability": 0.9967 + }, + { + "start": 10491.72, + "end": 10495.86, + "probability": 0.818 + }, + { + "start": 10496.12, + "end": 10499.04, + "probability": 0.9849 + }, + { + "start": 10499.64, + "end": 10500.99, + "probability": 0.9863 + }, + { + "start": 10501.34, + "end": 10503.54, + "probability": 0.98 + }, + { + "start": 10503.62, + "end": 10505.42, + "probability": 0.9857 + }, + { + "start": 10505.82, + "end": 10508.4, + "probability": 0.9746 + }, + { + "start": 10508.66, + "end": 10511.42, + "probability": 0.9939 + }, + { + "start": 10511.68, + "end": 10512.78, + "probability": 0.9745 + }, + { + "start": 10513.06, + "end": 10515.65, + "probability": 0.9391 + }, + { + "start": 10515.92, + "end": 10517.48, + "probability": 0.9575 + }, + { + "start": 10517.62, + "end": 10518.64, + "probability": 0.9868 + }, + { + "start": 10519.8, + "end": 10525.28, + "probability": 0.9908 + }, + { + "start": 10525.62, + "end": 10526.98, + "probability": 0.9549 + }, + { + "start": 10527.04, + "end": 10528.42, + "probability": 0.9609 + }, + { + "start": 10528.7, + "end": 10530.84, + "probability": 0.976 + }, + { + "start": 10531.1, + "end": 10531.96, + "probability": 0.9118 + }, + { + "start": 10532.06, + "end": 10532.82, + "probability": 0.8621 + }, + { + "start": 10532.98, + "end": 10533.42, + "probability": 0.7112 + }, + { + "start": 10533.48, + "end": 10534.02, + "probability": 0.9375 + }, + { + "start": 10534.04, + "end": 10534.72, + "probability": 0.9374 + }, + { + "start": 10534.92, + "end": 10535.66, + "probability": 0.9339 + }, + { + "start": 10535.74, + "end": 10537.14, + "probability": 0.3044 + }, + { + "start": 10537.48, + "end": 10543.6, + "probability": 0.9805 + }, + { + "start": 10543.84, + "end": 10546.94, + "probability": 0.9297 + }, + { + "start": 10547.34, + "end": 10549.26, + "probability": 0.8662 + }, + { + "start": 10549.6, + "end": 10551.28, + "probability": 0.9363 + }, + { + "start": 10551.56, + "end": 10553.88, + "probability": 0.9724 + }, + { + "start": 10554.76, + "end": 10556.32, + "probability": 0.8369 + }, + { + "start": 10556.68, + "end": 10558.22, + "probability": 0.9479 + }, + { + "start": 10558.62, + "end": 10558.74, + "probability": 0.3077 + }, + { + "start": 10559.04, + "end": 10563.88, + "probability": 0.8709 + }, + { + "start": 10564.24, + "end": 10564.24, + "probability": 0.0282 + }, + { + "start": 10564.24, + "end": 10564.96, + "probability": 0.6353 + }, + { + "start": 10565.86, + "end": 10568.14, + "probability": 0.8298 + }, + { + "start": 10568.32, + "end": 10570.24, + "probability": 0.7288 + }, + { + "start": 10570.5, + "end": 10573.04, + "probability": 0.969 + }, + { + "start": 10573.36, + "end": 10577.46, + "probability": 0.9959 + }, + { + "start": 10578.06, + "end": 10578.9, + "probability": 0.7612 + }, + { + "start": 10579.54, + "end": 10579.86, + "probability": 0.4589 + }, + { + "start": 10580.1, + "end": 10581.48, + "probability": 0.9139 + }, + { + "start": 10581.82, + "end": 10584.71, + "probability": 0.9873 + }, + { + "start": 10585.9, + "end": 10587.94, + "probability": 0.9452 + }, + { + "start": 10588.18, + "end": 10590.94, + "probability": 0.9858 + }, + { + "start": 10592.2, + "end": 10595.14, + "probability": 0.5594 + }, + { + "start": 10595.24, + "end": 10595.78, + "probability": 0.9548 + }, + { + "start": 10595.9, + "end": 10601.04, + "probability": 0.9749 + }, + { + "start": 10601.78, + "end": 10606.72, + "probability": 0.9917 + }, + { + "start": 10607.12, + "end": 10608.5, + "probability": 0.6868 + }, + { + "start": 10609.06, + "end": 10613.78, + "probability": 0.9984 + }, + { + "start": 10614.6, + "end": 10616.14, + "probability": 0.7558 + }, + { + "start": 10616.9, + "end": 10618.6, + "probability": 0.6955 + }, + { + "start": 10619.06, + "end": 10620.54, + "probability": 0.9712 + }, + { + "start": 10621.12, + "end": 10622.18, + "probability": 0.5723 + }, + { + "start": 10622.24, + "end": 10624.24, + "probability": 0.9775 + }, + { + "start": 10624.4, + "end": 10626.1, + "probability": 0.9922 + }, + { + "start": 10626.86, + "end": 10629.32, + "probability": 0.7017 + }, + { + "start": 10629.32, + "end": 10632.08, + "probability": 0.4433 + }, + { + "start": 10632.74, + "end": 10635.86, + "probability": 0.9313 + }, + { + "start": 10636.02, + "end": 10638.9, + "probability": 0.9377 + }, + { + "start": 10639.86, + "end": 10640.42, + "probability": 0.5556 + }, + { + "start": 10641.54, + "end": 10643.36, + "probability": 0.9019 + }, + { + "start": 10643.52, + "end": 10644.1, + "probability": 0.8562 + }, + { + "start": 10644.44, + "end": 10645.42, + "probability": 0.5481 + }, + { + "start": 10645.8, + "end": 10649.54, + "probability": 0.9978 + }, + { + "start": 10650.22, + "end": 10652.22, + "probability": 0.9985 + }, + { + "start": 10652.44, + "end": 10653.5, + "probability": 0.6957 + }, + { + "start": 10654.14, + "end": 10657.66, + "probability": 0.9959 + }, + { + "start": 10657.84, + "end": 10660.91, + "probability": 0.9946 + }, + { + "start": 10661.38, + "end": 10662.78, + "probability": 0.7014 + }, + { + "start": 10662.92, + "end": 10666.28, + "probability": 0.9962 + }, + { + "start": 10666.32, + "end": 10668.75, + "probability": 0.9925 + }, + { + "start": 10669.24, + "end": 10670.92, + "probability": 0.9941 + }, + { + "start": 10674.88, + "end": 10677.08, + "probability": 0.826 + }, + { + "start": 10677.08, + "end": 10677.6, + "probability": 0.9945 + }, + { + "start": 10677.9, + "end": 10681.54, + "probability": 0.9924 + }, + { + "start": 10682.08, + "end": 10685.08, + "probability": 0.9968 + }, + { + "start": 10685.68, + "end": 10687.93, + "probability": 0.9933 + }, + { + "start": 10688.5, + "end": 10688.99, + "probability": 0.7376 + }, + { + "start": 10689.94, + "end": 10693.08, + "probability": 0.9791 + }, + { + "start": 10694.18, + "end": 10695.06, + "probability": 0.5968 + }, + { + "start": 10695.08, + "end": 10696.36, + "probability": 0.5891 + }, + { + "start": 10702.58, + "end": 10702.58, + "probability": 0.4609 + }, + { + "start": 10716.78, + "end": 10718.78, + "probability": 0.7833 + }, + { + "start": 10721.1, + "end": 10723.86, + "probability": 0.4002 + }, + { + "start": 10724.12, + "end": 10725.19, + "probability": 0.736 + }, + { + "start": 10726.3, + "end": 10727.82, + "probability": 0.6056 + }, + { + "start": 10728.44, + "end": 10729.96, + "probability": 0.9652 + }, + { + "start": 10730.94, + "end": 10733.36, + "probability": 0.9069 + }, + { + "start": 10734.54, + "end": 10737.32, + "probability": 0.9956 + }, + { + "start": 10737.92, + "end": 10741.73, + "probability": 0.9888 + }, + { + "start": 10742.38, + "end": 10745.62, + "probability": 0.9854 + }, + { + "start": 10746.16, + "end": 10746.36, + "probability": 0.8599 + }, + { + "start": 10746.42, + "end": 10752.66, + "probability": 0.9946 + }, + { + "start": 10753.24, + "end": 10754.66, + "probability": 0.8971 + }, + { + "start": 10755.36, + "end": 10758.98, + "probability": 0.9617 + }, + { + "start": 10760.54, + "end": 10763.72, + "probability": 0.6481 + }, + { + "start": 10764.86, + "end": 10767.11, + "probability": 0.9803 + }, + { + "start": 10767.92, + "end": 10769.21, + "probability": 0.9819 + }, + { + "start": 10769.66, + "end": 10771.06, + "probability": 0.9155 + }, + { + "start": 10771.62, + "end": 10777.58, + "probability": 0.985 + }, + { + "start": 10778.6, + "end": 10780.41, + "probability": 0.9724 + }, + { + "start": 10781.46, + "end": 10785.74, + "probability": 0.9897 + }, + { + "start": 10785.74, + "end": 10790.72, + "probability": 0.9989 + }, + { + "start": 10790.82, + "end": 10794.0, + "probability": 0.8308 + }, + { + "start": 10795.0, + "end": 10796.1, + "probability": 0.0225 + }, + { + "start": 10796.62, + "end": 10798.34, + "probability": 0.0731 + }, + { + "start": 10798.34, + "end": 10802.86, + "probability": 0.3105 + }, + { + "start": 10803.6, + "end": 10807.2, + "probability": 0.9901 + }, + { + "start": 10808.06, + "end": 10809.8, + "probability": 0.9701 + }, + { + "start": 10810.08, + "end": 10811.82, + "probability": 0.8279 + }, + { + "start": 10812.18, + "end": 10813.94, + "probability": 0.9509 + }, + { + "start": 10814.42, + "end": 10819.66, + "probability": 0.998 + }, + { + "start": 10820.28, + "end": 10825.71, + "probability": 0.9961 + }, + { + "start": 10826.04, + "end": 10830.42, + "probability": 0.9937 + }, + { + "start": 10830.8, + "end": 10833.34, + "probability": 0.9855 + }, + { + "start": 10834.78, + "end": 10836.64, + "probability": 0.939 + }, + { + "start": 10837.28, + "end": 10838.84, + "probability": 0.9396 + }, + { + "start": 10839.95, + "end": 10844.24, + "probability": 0.6665 + }, + { + "start": 10844.94, + "end": 10847.12, + "probability": 0.8105 + }, + { + "start": 10847.16, + "end": 10850.5, + "probability": 0.938 + }, + { + "start": 10850.92, + "end": 10853.16, + "probability": 0.9871 + }, + { + "start": 10853.64, + "end": 10856.66, + "probability": 0.9876 + }, + { + "start": 10857.02, + "end": 10860.28, + "probability": 0.9463 + }, + { + "start": 10860.9, + "end": 10863.72, + "probability": 0.9878 + }, + { + "start": 10864.62, + "end": 10867.7, + "probability": 0.9824 + }, + { + "start": 10868.82, + "end": 10871.58, + "probability": 0.999 + }, + { + "start": 10872.18, + "end": 10875.06, + "probability": 0.9871 + }, + { + "start": 10875.12, + "end": 10878.18, + "probability": 0.8856 + }, + { + "start": 10878.72, + "end": 10880.18, + "probability": 0.8453 + }, + { + "start": 10880.58, + "end": 10883.5, + "probability": 0.9876 + }, + { + "start": 10883.88, + "end": 10884.38, + "probability": 0.7684 + }, + { + "start": 10885.3, + "end": 10887.74, + "probability": 0.9556 + }, + { + "start": 10888.46, + "end": 10891.0, + "probability": 0.9526 + }, + { + "start": 10891.2, + "end": 10891.94, + "probability": 0.8537 + }, + { + "start": 10892.76, + "end": 10895.28, + "probability": 0.9895 + }, + { + "start": 10895.92, + "end": 10897.28, + "probability": 0.6545 + }, + { + "start": 10897.78, + "end": 10899.4, + "probability": 0.9078 + }, + { + "start": 10899.86, + "end": 10901.86, + "probability": 0.8679 + }, + { + "start": 10902.3, + "end": 10904.24, + "probability": 0.8987 + }, + { + "start": 10904.44, + "end": 10907.94, + "probability": 0.8841 + }, + { + "start": 10908.74, + "end": 10910.94, + "probability": 0.9982 + }, + { + "start": 10911.78, + "end": 10915.14, + "probability": 0.7295 + }, + { + "start": 10915.56, + "end": 10919.42, + "probability": 0.9891 + }, + { + "start": 10920.72, + "end": 10922.84, + "probability": 0.9739 + }, + { + "start": 10923.38, + "end": 10924.78, + "probability": 0.9576 + }, + { + "start": 10924.92, + "end": 10926.48, + "probability": 0.9378 + }, + { + "start": 10926.88, + "end": 10927.86, + "probability": 0.958 + }, + { + "start": 10928.1, + "end": 10928.74, + "probability": 0.8804 + }, + { + "start": 10928.86, + "end": 10929.72, + "probability": 0.9194 + }, + { + "start": 10930.32, + "end": 10933.92, + "probability": 0.957 + }, + { + "start": 10934.92, + "end": 10939.14, + "probability": 0.9848 + }, + { + "start": 10939.88, + "end": 10940.68, + "probability": 0.6876 + }, + { + "start": 10940.8, + "end": 10942.16, + "probability": 0.9023 + }, + { + "start": 10942.24, + "end": 10944.22, + "probability": 0.9832 + }, + { + "start": 10945.3, + "end": 10953.26, + "probability": 0.9869 + }, + { + "start": 10953.92, + "end": 10958.16, + "probability": 0.9985 + }, + { + "start": 10958.8, + "end": 10960.6, + "probability": 0.9963 + }, + { + "start": 10961.04, + "end": 10961.85, + "probability": 0.6361 + }, + { + "start": 10961.92, + "end": 10962.74, + "probability": 0.8836 + }, + { + "start": 10963.06, + "end": 10965.08, + "probability": 0.923 + }, + { + "start": 10965.12, + "end": 10965.52, + "probability": 0.4098 + }, + { + "start": 10965.58, + "end": 10968.66, + "probability": 0.8495 + }, + { + "start": 10969.1, + "end": 10973.78, + "probability": 0.9397 + }, + { + "start": 10974.08, + "end": 10974.5, + "probability": 0.802 + }, + { + "start": 10975.38, + "end": 10976.08, + "probability": 0.6683 + }, + { + "start": 10978.76, + "end": 10980.68, + "probability": 0.7341 + }, + { + "start": 10990.18, + "end": 10990.5, + "probability": 0.374 + }, + { + "start": 10991.32, + "end": 10996.16, + "probability": 0.9503 + }, + { + "start": 10996.4, + "end": 10996.82, + "probability": 0.6278 + }, + { + "start": 10997.02, + "end": 10997.74, + "probability": 0.3845 + }, + { + "start": 10998.0, + "end": 11000.06, + "probability": 0.6776 + }, + { + "start": 11000.3, + "end": 11000.42, + "probability": 0.7912 + }, + { + "start": 11002.86, + "end": 11003.32, + "probability": 0.7239 + }, + { + "start": 11003.4, + "end": 11004.92, + "probability": 0.3583 + }, + { + "start": 11004.94, + "end": 11007.66, + "probability": 0.84 + }, + { + "start": 11007.84, + "end": 11009.12, + "probability": 0.9819 + }, + { + "start": 11009.26, + "end": 11009.88, + "probability": 0.9753 + }, + { + "start": 11010.78, + "end": 11012.94, + "probability": 0.9064 + }, + { + "start": 11012.98, + "end": 11016.36, + "probability": 0.8281 + }, + { + "start": 11016.5, + "end": 11017.1, + "probability": 0.9802 + }, + { + "start": 11017.22, + "end": 11017.78, + "probability": 0.5801 + }, + { + "start": 11018.14, + "end": 11020.64, + "probability": 0.9922 + }, + { + "start": 11022.12, + "end": 11024.44, + "probability": 0.9849 + }, + { + "start": 11024.46, + "end": 11026.46, + "probability": 0.7118 + }, + { + "start": 11026.52, + "end": 11027.45, + "probability": 0.9971 + }, + { + "start": 11027.62, + "end": 11028.02, + "probability": 0.9824 + }, + { + "start": 11028.28, + "end": 11029.96, + "probability": 0.8218 + }, + { + "start": 11030.44, + "end": 11032.06, + "probability": 0.9899 + }, + { + "start": 11032.18, + "end": 11033.2, + "probability": 0.9432 + }, + { + "start": 11033.28, + "end": 11034.1, + "probability": 0.9485 + }, + { + "start": 11034.8, + "end": 11036.46, + "probability": 0.9946 + }, + { + "start": 11036.76, + "end": 11038.54, + "probability": 0.9872 + }, + { + "start": 11038.72, + "end": 11040.12, + "probability": 0.9517 + }, + { + "start": 11040.24, + "end": 11041.36, + "probability": 0.9858 + }, + { + "start": 11043.0, + "end": 11047.18, + "probability": 0.8918 + }, + { + "start": 11047.78, + "end": 11048.96, + "probability": 0.8735 + }, + { + "start": 11049.56, + "end": 11053.2, + "probability": 0.8911 + }, + { + "start": 11053.98, + "end": 11057.64, + "probability": 0.9821 + }, + { + "start": 11058.68, + "end": 11063.86, + "probability": 0.9963 + }, + { + "start": 11064.88, + "end": 11067.36, + "probability": 0.9775 + }, + { + "start": 11067.96, + "end": 11072.62, + "probability": 0.9995 + }, + { + "start": 11073.14, + "end": 11074.29, + "probability": 0.6962 + }, + { + "start": 11074.94, + "end": 11075.74, + "probability": 0.7284 + }, + { + "start": 11076.7, + "end": 11079.28, + "probability": 0.9967 + }, + { + "start": 11079.9, + "end": 11082.8, + "probability": 0.9951 + }, + { + "start": 11083.12, + "end": 11089.52, + "probability": 0.9948 + }, + { + "start": 11089.76, + "end": 11090.76, + "probability": 0.8223 + }, + { + "start": 11090.76, + "end": 11094.08, + "probability": 0.9836 + }, + { + "start": 11094.4, + "end": 11095.12, + "probability": 0.9922 + }, + { + "start": 11095.8, + "end": 11096.5, + "probability": 0.867 + }, + { + "start": 11097.16, + "end": 11097.88, + "probability": 0.939 + }, + { + "start": 11099.86, + "end": 11100.84, + "probability": 0.8123 + }, + { + "start": 11101.28, + "end": 11103.32, + "probability": 0.9953 + }, + { + "start": 11103.42, + "end": 11104.38, + "probability": 0.8266 + }, + { + "start": 11104.74, + "end": 11106.72, + "probability": 0.9993 + }, + { + "start": 11108.24, + "end": 11108.74, + "probability": 0.7292 + }, + { + "start": 11108.84, + "end": 11112.8, + "probability": 0.9961 + }, + { + "start": 11113.5, + "end": 11120.58, + "probability": 0.9981 + }, + { + "start": 11121.22, + "end": 11125.54, + "probability": 0.9932 + }, + { + "start": 11126.6, + "end": 11129.5, + "probability": 0.8421 + }, + { + "start": 11130.26, + "end": 11130.96, + "probability": 0.7511 + }, + { + "start": 11131.52, + "end": 11134.02, + "probability": 0.9964 + }, + { + "start": 11134.38, + "end": 11137.68, + "probability": 0.9909 + }, + { + "start": 11139.08, + "end": 11142.58, + "probability": 0.8602 + }, + { + "start": 11143.1, + "end": 11150.16, + "probability": 0.9902 + }, + { + "start": 11150.24, + "end": 11151.08, + "probability": 0.5613 + }, + { + "start": 11152.22, + "end": 11153.9, + "probability": 0.717 + }, + { + "start": 11154.6, + "end": 11156.22, + "probability": 0.8928 + }, + { + "start": 11156.88, + "end": 11157.93, + "probability": 0.832 + }, + { + "start": 11159.18, + "end": 11160.78, + "probability": 0.8842 + }, + { + "start": 11161.32, + "end": 11164.42, + "probability": 0.8463 + }, + { + "start": 11164.42, + "end": 11169.46, + "probability": 0.7018 + }, + { + "start": 11170.52, + "end": 11174.58, + "probability": 0.9795 + }, + { + "start": 11175.74, + "end": 11179.48, + "probability": 0.9232 + }, + { + "start": 11180.32, + "end": 11183.8, + "probability": 0.9891 + }, + { + "start": 11184.76, + "end": 11186.64, + "probability": 0.7388 + }, + { + "start": 11188.46, + "end": 11189.96, + "probability": 0.9178 + }, + { + "start": 11190.02, + "end": 11190.54, + "probability": 0.8297 + }, + { + "start": 11190.62, + "end": 11192.06, + "probability": 0.9893 + }, + { + "start": 11192.12, + "end": 11192.78, + "probability": 0.806 + }, + { + "start": 11193.78, + "end": 11198.82, + "probability": 0.9748 + }, + { + "start": 11198.82, + "end": 11202.88, + "probability": 0.9645 + }, + { + "start": 11206.62, + "end": 11211.08, + "probability": 0.9879 + }, + { + "start": 11213.86, + "end": 11216.22, + "probability": 0.9946 + }, + { + "start": 11217.9, + "end": 11220.68, + "probability": 0.8342 + }, + { + "start": 11221.22, + "end": 11223.68, + "probability": 0.9474 + }, + { + "start": 11224.36, + "end": 11226.24, + "probability": 0.9143 + }, + { + "start": 11227.54, + "end": 11229.4, + "probability": 0.992 + }, + { + "start": 11229.96, + "end": 11232.3, + "probability": 0.895 + }, + { + "start": 11233.06, + "end": 11234.5, + "probability": 0.8167 + }, + { + "start": 11235.22, + "end": 11237.18, + "probability": 0.8822 + }, + { + "start": 11239.34, + "end": 11241.3, + "probability": 0.996 + }, + { + "start": 11242.12, + "end": 11244.62, + "probability": 0.9497 + }, + { + "start": 11245.84, + "end": 11252.08, + "probability": 0.9857 + }, + { + "start": 11252.86, + "end": 11253.74, + "probability": 0.6334 + }, + { + "start": 11253.86, + "end": 11256.02, + "probability": 0.9966 + }, + { + "start": 11256.58, + "end": 11257.37, + "probability": 0.9738 + }, + { + "start": 11259.38, + "end": 11261.52, + "probability": 0.9497 + }, + { + "start": 11261.68, + "end": 11262.28, + "probability": 0.9603 + }, + { + "start": 11262.66, + "end": 11262.94, + "probability": 0.9911 + }, + { + "start": 11262.98, + "end": 11263.52, + "probability": 0.5818 + }, + { + "start": 11263.66, + "end": 11264.38, + "probability": 0.5977 + }, + { + "start": 11265.72, + "end": 11269.46, + "probability": 0.9915 + }, + { + "start": 11270.1, + "end": 11273.26, + "probability": 0.9025 + }, + { + "start": 11273.8, + "end": 11276.22, + "probability": 0.8391 + }, + { + "start": 11277.0, + "end": 11280.5, + "probability": 0.9969 + }, + { + "start": 11281.18, + "end": 11282.4, + "probability": 0.9877 + }, + { + "start": 11283.16, + "end": 11288.18, + "probability": 0.9954 + }, + { + "start": 11289.42, + "end": 11290.26, + "probability": 0.3958 + }, + { + "start": 11290.84, + "end": 11292.78, + "probability": 0.8445 + }, + { + "start": 11293.36, + "end": 11297.24, + "probability": 0.9749 + }, + { + "start": 11297.96, + "end": 11299.9, + "probability": 0.9956 + }, + { + "start": 11300.56, + "end": 11302.48, + "probability": 0.9199 + }, + { + "start": 11303.32, + "end": 11306.92, + "probability": 0.9854 + }, + { + "start": 11307.26, + "end": 11307.72, + "probability": 0.5046 + }, + { + "start": 11307.8, + "end": 11309.32, + "probability": 0.9978 + }, + { + "start": 11309.56, + "end": 11310.36, + "probability": 0.7557 + }, + { + "start": 11310.84, + "end": 11315.62, + "probability": 0.9324 + }, + { + "start": 11315.62, + "end": 11319.74, + "probability": 0.5302 + }, + { + "start": 11320.22, + "end": 11322.24, + "probability": 0.5734 + }, + { + "start": 11323.44, + "end": 11325.34, + "probability": 0.7411 + }, + { + "start": 11326.28, + "end": 11327.66, + "probability": 0.9948 + }, + { + "start": 11328.44, + "end": 11331.98, + "probability": 0.7164 + }, + { + "start": 11332.38, + "end": 11335.18, + "probability": 0.9544 + }, + { + "start": 11335.82, + "end": 11336.5, + "probability": 0.8181 + }, + { + "start": 11336.68, + "end": 11338.96, + "probability": 0.5014 + }, + { + "start": 11339.5, + "end": 11342.54, + "probability": 0.9912 + }, + { + "start": 11343.26, + "end": 11346.72, + "probability": 0.8529 + }, + { + "start": 11347.6, + "end": 11348.64, + "probability": 0.8487 + }, + { + "start": 11349.6, + "end": 11350.82, + "probability": 0.899 + }, + { + "start": 11354.76, + "end": 11355.48, + "probability": 0.668 + }, + { + "start": 11356.04, + "end": 11357.4, + "probability": 0.4958 + }, + { + "start": 11358.88, + "end": 11361.24, + "probability": 0.8831 + }, + { + "start": 11362.36, + "end": 11363.5, + "probability": 0.8814 + }, + { + "start": 11364.98, + "end": 11365.66, + "probability": 0.8083 + }, + { + "start": 11367.34, + "end": 11368.82, + "probability": 0.9979 + }, + { + "start": 11370.14, + "end": 11371.24, + "probability": 0.9997 + }, + { + "start": 11372.04, + "end": 11372.77, + "probability": 0.9873 + }, + { + "start": 11374.6, + "end": 11375.6, + "probability": 0.7163 + }, + { + "start": 11376.74, + "end": 11380.52, + "probability": 0.6042 + }, + { + "start": 11382.1, + "end": 11386.14, + "probability": 0.179 + }, + { + "start": 11386.34, + "end": 11389.52, + "probability": 0.2634 + }, + { + "start": 11389.9, + "end": 11393.6, + "probability": 0.7486 + }, + { + "start": 11396.06, + "end": 11397.6, + "probability": 0.9897 + }, + { + "start": 11398.56, + "end": 11399.24, + "probability": 0.8379 + }, + { + "start": 11400.18, + "end": 11404.04, + "probability": 0.8656 + }, + { + "start": 11406.32, + "end": 11408.3, + "probability": 0.9928 + }, + { + "start": 11409.16, + "end": 11413.48, + "probability": 0.9521 + }, + { + "start": 11414.4, + "end": 11417.02, + "probability": 0.9868 + }, + { + "start": 11417.54, + "end": 11418.56, + "probability": 0.8605 + }, + { + "start": 11419.14, + "end": 11420.57, + "probability": 0.9312 + }, + { + "start": 11421.76, + "end": 11423.5, + "probability": 0.9972 + }, + { + "start": 11424.92, + "end": 11425.9, + "probability": 0.8058 + }, + { + "start": 11427.1, + "end": 11428.42, + "probability": 0.9098 + }, + { + "start": 11429.34, + "end": 11431.3, + "probability": 0.9958 + }, + { + "start": 11432.08, + "end": 11434.64, + "probability": 0.9948 + }, + { + "start": 11436.02, + "end": 11436.7, + "probability": 0.9611 + }, + { + "start": 11437.34, + "end": 11440.46, + "probability": 0.9681 + }, + { + "start": 11440.54, + "end": 11442.38, + "probability": 0.8754 + }, + { + "start": 11442.52, + "end": 11444.22, + "probability": 0.8166 + }, + { + "start": 11445.22, + "end": 11447.82, + "probability": 0.8503 + }, + { + "start": 11448.3, + "end": 11451.24, + "probability": 0.9871 + }, + { + "start": 11451.28, + "end": 11452.26, + "probability": 0.7804 + }, + { + "start": 11452.96, + "end": 11455.1, + "probability": 0.9959 + }, + { + "start": 11455.1, + "end": 11457.84, + "probability": 0.9984 + }, + { + "start": 11458.12, + "end": 11460.48, + "probability": 0.9857 + }, + { + "start": 11461.2, + "end": 11464.98, + "probability": 0.7173 + }, + { + "start": 11465.22, + "end": 11466.06, + "probability": 0.5254 + }, + { + "start": 11466.68, + "end": 11470.66, + "probability": 0.993 + }, + { + "start": 11471.16, + "end": 11473.46, + "probability": 0.9664 + }, + { + "start": 11474.88, + "end": 11476.36, + "probability": 0.9979 + }, + { + "start": 11477.96, + "end": 11481.36, + "probability": 0.9837 + }, + { + "start": 11482.36, + "end": 11484.34, + "probability": 0.9923 + }, + { + "start": 11485.68, + "end": 11487.9, + "probability": 0.9707 + }, + { + "start": 11488.52, + "end": 11491.72, + "probability": 0.8848 + }, + { + "start": 11492.76, + "end": 11497.14, + "probability": 0.9974 + }, + { + "start": 11498.76, + "end": 11499.56, + "probability": 0.7535 + }, + { + "start": 11500.64, + "end": 11502.74, + "probability": 0.886 + }, + { + "start": 11503.72, + "end": 11504.47, + "probability": 0.9883 + }, + { + "start": 11505.32, + "end": 11507.56, + "probability": 0.9497 + }, + { + "start": 11510.56, + "end": 11511.58, + "probability": 0.4508 + }, + { + "start": 11512.68, + "end": 11513.94, + "probability": 0.6589 + }, + { + "start": 11514.74, + "end": 11515.74, + "probability": 0.8438 + }, + { + "start": 11516.78, + "end": 11517.76, + "probability": 0.7497 + }, + { + "start": 11518.66, + "end": 11519.66, + "probability": 0.8338 + }, + { + "start": 11520.68, + "end": 11522.05, + "probability": 0.9869 + }, + { + "start": 11522.84, + "end": 11524.18, + "probability": 0.805 + }, + { + "start": 11525.42, + "end": 11526.98, + "probability": 0.6148 + }, + { + "start": 11527.8, + "end": 11529.85, + "probability": 0.9795 + }, + { + "start": 11530.62, + "end": 11532.02, + "probability": 0.9849 + }, + { + "start": 11534.7, + "end": 11535.9, + "probability": 0.765 + }, + { + "start": 11536.72, + "end": 11539.32, + "probability": 0.8498 + }, + { + "start": 11539.88, + "end": 11542.88, + "probability": 0.8289 + }, + { + "start": 11543.44, + "end": 11547.64, + "probability": 0.9743 + }, + { + "start": 11548.3, + "end": 11549.54, + "probability": 0.9989 + }, + { + "start": 11551.2, + "end": 11555.5, + "probability": 0.9951 + }, + { + "start": 11555.5, + "end": 11558.0, + "probability": 0.9672 + }, + { + "start": 11559.3, + "end": 11560.64, + "probability": 0.8695 + }, + { + "start": 11561.36, + "end": 11564.83, + "probability": 0.7793 + }, + { + "start": 11565.6, + "end": 11569.58, + "probability": 0.9756 + }, + { + "start": 11570.46, + "end": 11572.68, + "probability": 0.8552 + }, + { + "start": 11573.22, + "end": 11573.81, + "probability": 0.9302 + }, + { + "start": 11575.26, + "end": 11576.92, + "probability": 0.9724 + }, + { + "start": 11578.18, + "end": 11580.3, + "probability": 0.9319 + }, + { + "start": 11581.62, + "end": 11583.84, + "probability": 0.7728 + }, + { + "start": 11584.56, + "end": 11586.53, + "probability": 0.9409 + }, + { + "start": 11588.99, + "end": 11591.4, + "probability": 0.9272 + }, + { + "start": 11593.18, + "end": 11594.06, + "probability": 0.6656 + }, + { + "start": 11596.16, + "end": 11598.8, + "probability": 0.9731 + }, + { + "start": 11599.14, + "end": 11600.66, + "probability": 0.9985 + }, + { + "start": 11601.42, + "end": 11602.75, + "probability": 0.968 + }, + { + "start": 11603.38, + "end": 11604.12, + "probability": 0.7388 + }, + { + "start": 11605.52, + "end": 11610.44, + "probability": 0.9816 + }, + { + "start": 11611.34, + "end": 11614.3, + "probability": 0.9918 + }, + { + "start": 11615.14, + "end": 11617.52, + "probability": 0.9322 + }, + { + "start": 11618.28, + "end": 11619.74, + "probability": 0.7353 + }, + { + "start": 11620.88, + "end": 11623.06, + "probability": 0.8252 + }, + { + "start": 11623.96, + "end": 11625.16, + "probability": 0.8971 + }, + { + "start": 11625.82, + "end": 11626.68, + "probability": 0.7455 + }, + { + "start": 11627.3, + "end": 11632.17, + "probability": 0.9652 + }, + { + "start": 11633.76, + "end": 11636.1, + "probability": 0.9475 + }, + { + "start": 11637.1, + "end": 11641.28, + "probability": 0.9482 + }, + { + "start": 11642.02, + "end": 11645.48, + "probability": 0.9978 + }, + { + "start": 11646.3, + "end": 11648.78, + "probability": 0.8413 + }, + { + "start": 11650.6, + "end": 11653.9, + "probability": 0.9578 + }, + { + "start": 11654.68, + "end": 11657.6, + "probability": 0.9917 + }, + { + "start": 11658.76, + "end": 11659.3, + "probability": 0.8525 + }, + { + "start": 11659.9, + "end": 11660.8, + "probability": 0.8042 + }, + { + "start": 11661.64, + "end": 11666.26, + "probability": 0.9142 + }, + { + "start": 11667.48, + "end": 11675.28, + "probability": 0.9502 + }, + { + "start": 11675.46, + "end": 11677.22, + "probability": 0.7006 + }, + { + "start": 11677.86, + "end": 11680.96, + "probability": 0.9951 + }, + { + "start": 11682.0, + "end": 11685.83, + "probability": 0.9608 + }, + { + "start": 11687.94, + "end": 11689.62, + "probability": 0.5439 + }, + { + "start": 11691.32, + "end": 11693.64, + "probability": 0.9878 + }, + { + "start": 11693.76, + "end": 11694.32, + "probability": 0.9075 + }, + { + "start": 11694.4, + "end": 11695.84, + "probability": 0.9666 + }, + { + "start": 11696.68, + "end": 11697.86, + "probability": 0.9802 + }, + { + "start": 11698.72, + "end": 11701.96, + "probability": 0.9966 + }, + { + "start": 11702.5, + "end": 11706.48, + "probability": 0.9992 + }, + { + "start": 11708.3, + "end": 11709.28, + "probability": 0.9998 + }, + { + "start": 11710.54, + "end": 11711.6, + "probability": 0.9941 + }, + { + "start": 11712.72, + "end": 11714.16, + "probability": 0.9507 + }, + { + "start": 11715.1, + "end": 11715.46, + "probability": 0.9713 + }, + { + "start": 11716.62, + "end": 11719.56, + "probability": 0.8629 + }, + { + "start": 11720.0, + "end": 11723.36, + "probability": 0.9943 + }, + { + "start": 11724.02, + "end": 11726.08, + "probability": 0.9876 + }, + { + "start": 11726.52, + "end": 11727.0, + "probability": 0.5923 + }, + { + "start": 11727.28, + "end": 11728.72, + "probability": 0.7937 + }, + { + "start": 11730.44, + "end": 11731.98, + "probability": 0.9766 + }, + { + "start": 11732.66, + "end": 11733.36, + "probability": 0.3463 + }, + { + "start": 11733.52, + "end": 11735.51, + "probability": 0.9633 + }, + { + "start": 11736.46, + "end": 11737.18, + "probability": 0.9742 + }, + { + "start": 11738.38, + "end": 11742.42, + "probability": 0.999 + }, + { + "start": 11743.04, + "end": 11744.02, + "probability": 0.7456 + }, + { + "start": 11744.88, + "end": 11747.22, + "probability": 0.7389 + }, + { + "start": 11747.74, + "end": 11748.82, + "probability": 0.7246 + }, + { + "start": 11749.84, + "end": 11750.58, + "probability": 0.7437 + }, + { + "start": 11750.98, + "end": 11752.52, + "probability": 0.9609 + }, + { + "start": 11752.74, + "end": 11753.9, + "probability": 0.9517 + }, + { + "start": 11754.32, + "end": 11755.22, + "probability": 0.6797 + }, + { + "start": 11756.14, + "end": 11758.54, + "probability": 0.9613 + }, + { + "start": 11759.62, + "end": 11762.92, + "probability": 0.6832 + }, + { + "start": 11764.02, + "end": 11766.1, + "probability": 0.951 + }, + { + "start": 11767.34, + "end": 11770.8, + "probability": 0.9941 + }, + { + "start": 11770.92, + "end": 11772.32, + "probability": 0.9714 + }, + { + "start": 11772.96, + "end": 11774.74, + "probability": 0.6943 + }, + { + "start": 11775.26, + "end": 11780.48, + "probability": 0.9705 + }, + { + "start": 11781.04, + "end": 11783.08, + "probability": 0.9648 + }, + { + "start": 11783.16, + "end": 11783.92, + "probability": 0.6346 + }, + { + "start": 11785.36, + "end": 11788.22, + "probability": 0.8593 + }, + { + "start": 11788.78, + "end": 11792.58, + "probability": 0.7292 + }, + { + "start": 11793.0, + "end": 11799.68, + "probability": 0.9369 + }, + { + "start": 11800.0, + "end": 11801.64, + "probability": 0.9597 + }, + { + "start": 11801.84, + "end": 11803.82, + "probability": 0.8993 + }, + { + "start": 11804.18, + "end": 11809.08, + "probability": 0.985 + }, + { + "start": 11809.4, + "end": 11812.16, + "probability": 0.807 + }, + { + "start": 11812.6, + "end": 11813.9, + "probability": 0.8822 + }, + { + "start": 11815.46, + "end": 11819.58, + "probability": 0.9956 + }, + { + "start": 11820.5, + "end": 11821.78, + "probability": 0.8323 + }, + { + "start": 11822.68, + "end": 11825.02, + "probability": 0.9537 + }, + { + "start": 11826.74, + "end": 11827.84, + "probability": 0.9349 + }, + { + "start": 11828.64, + "end": 11831.9, + "probability": 0.6901 + }, + { + "start": 11832.38, + "end": 11834.82, + "probability": 0.7001 + }, + { + "start": 11834.92, + "end": 11836.58, + "probability": 0.9653 + }, + { + "start": 11837.24, + "end": 11838.9, + "probability": 0.9595 + }, + { + "start": 11839.52, + "end": 11843.0, + "probability": 0.9756 + }, + { + "start": 11843.76, + "end": 11845.34, + "probability": 0.7072 + }, + { + "start": 11846.08, + "end": 11853.0, + "probability": 0.9514 + }, + { + "start": 11853.18, + "end": 11853.98, + "probability": 0.1709 + }, + { + "start": 11855.0, + "end": 11856.02, + "probability": 0.8752 + }, + { + "start": 11856.42, + "end": 11856.8, + "probability": 0.8898 + }, + { + "start": 11856.82, + "end": 11858.44, + "probability": 0.7447 + }, + { + "start": 11860.52, + "end": 11862.04, + "probability": 0.7555 + }, + { + "start": 11867.25, + "end": 11867.96, + "probability": 0.0082 + }, + { + "start": 11867.96, + "end": 11869.54, + "probability": 0.6117 + }, + { + "start": 11871.16, + "end": 11872.5, + "probability": 0.9116 + }, + { + "start": 11874.14, + "end": 11875.48, + "probability": 0.8587 + }, + { + "start": 11876.44, + "end": 11879.46, + "probability": 0.8816 + }, + { + "start": 11879.46, + "end": 11880.58, + "probability": 0.9494 + }, + { + "start": 11880.78, + "end": 11881.26, + "probability": 0.989 + }, + { + "start": 11881.94, + "end": 11883.92, + "probability": 0.5896 + }, + { + "start": 11885.08, + "end": 11885.36, + "probability": 0.9174 + }, + { + "start": 11885.44, + "end": 11887.15, + "probability": 0.901 + }, + { + "start": 11887.54, + "end": 11889.34, + "probability": 0.981 + }, + { + "start": 11889.9, + "end": 11891.78, + "probability": 0.8708 + }, + { + "start": 11892.1, + "end": 11896.42, + "probability": 0.9378 + }, + { + "start": 11897.08, + "end": 11899.3, + "probability": 0.7498 + }, + { + "start": 11899.9, + "end": 11901.34, + "probability": 0.8705 + }, + { + "start": 11901.38, + "end": 11901.64, + "probability": 0.6008 + }, + { + "start": 11901.74, + "end": 11902.7, + "probability": 0.9585 + }, + { + "start": 11902.76, + "end": 11903.72, + "probability": 0.8496 + }, + { + "start": 11904.32, + "end": 11907.4, + "probability": 0.9761 + }, + { + "start": 11908.04, + "end": 11909.9, + "probability": 0.9873 + }, + { + "start": 11910.4, + "end": 11911.98, + "probability": 0.8709 + }, + { + "start": 11912.38, + "end": 11914.48, + "probability": 0.9951 + }, + { + "start": 11915.08, + "end": 11917.04, + "probability": 0.998 + }, + { + "start": 11917.52, + "end": 11920.08, + "probability": 0.9915 + }, + { + "start": 11920.16, + "end": 11921.08, + "probability": 0.9679 + }, + { + "start": 11922.82, + "end": 11927.44, + "probability": 0.9756 + }, + { + "start": 11927.76, + "end": 11929.1, + "probability": 0.8505 + }, + { + "start": 11931.22, + "end": 11932.63, + "probability": 0.9736 + }, + { + "start": 11933.4, + "end": 11933.82, + "probability": 0.6448 + }, + { + "start": 11935.2, + "end": 11935.78, + "probability": 0.8735 + }, + { + "start": 11936.32, + "end": 11941.92, + "probability": 0.9196 + }, + { + "start": 11942.4, + "end": 11948.3, + "probability": 0.9966 + }, + { + "start": 11948.64, + "end": 11952.48, + "probability": 0.9851 + }, + { + "start": 11952.66, + "end": 11953.12, + "probability": 0.7276 + }, + { + "start": 11953.12, + "end": 11953.34, + "probability": 0.5816 + }, + { + "start": 11953.42, + "end": 11957.78, + "probability": 0.9866 + }, + { + "start": 11957.78, + "end": 11963.82, + "probability": 0.9924 + }, + { + "start": 11963.94, + "end": 11965.82, + "probability": 0.7783 + }, + { + "start": 11968.38, + "end": 11969.86, + "probability": 0.1408 + }, + { + "start": 11970.02, + "end": 11970.94, + "probability": 0.7952 + }, + { + "start": 11971.04, + "end": 11974.36, + "probability": 0.6387 + }, + { + "start": 11975.13, + "end": 11976.64, + "probability": 0.7979 + }, + { + "start": 11977.8, + "end": 11979.3, + "probability": 0.849 + }, + { + "start": 11980.32, + "end": 11983.18, + "probability": 0.9895 + }, + { + "start": 11983.18, + "end": 11986.36, + "probability": 0.6615 + }, + { + "start": 11986.38, + "end": 11987.78, + "probability": 0.8518 + }, + { + "start": 11987.8, + "end": 11989.82, + "probability": 0.9707 + }, + { + "start": 11990.28, + "end": 11993.14, + "probability": 0.9097 + }, + { + "start": 11994.22, + "end": 11997.84, + "probability": 0.988 + }, + { + "start": 11998.2, + "end": 12000.6, + "probability": 0.9775 + }, + { + "start": 12001.16, + "end": 12004.6, + "probability": 0.5462 + }, + { + "start": 12004.96, + "end": 12006.97, + "probability": 0.812 + }, + { + "start": 12007.44, + "end": 12012.4, + "probability": 0.9973 + }, + { + "start": 12012.4, + "end": 12017.38, + "probability": 0.9575 + }, + { + "start": 12018.0, + "end": 12022.02, + "probability": 0.9989 + }, + { + "start": 12022.04, + "end": 12024.64, + "probability": 0.9792 + }, + { + "start": 12024.76, + "end": 12027.79, + "probability": 0.9318 + }, + { + "start": 12028.38, + "end": 12029.94, + "probability": 0.9639 + }, + { + "start": 12030.26, + "end": 12032.14, + "probability": 0.9033 + }, + { + "start": 12032.64, + "end": 12036.5, + "probability": 0.9873 + }, + { + "start": 12036.68, + "end": 12037.84, + "probability": 0.0006 + }, + { + "start": 12038.7, + "end": 12038.98, + "probability": 0.5249 + }, + { + "start": 12039.22, + "end": 12039.84, + "probability": 0.7415 + }, + { + "start": 12039.92, + "end": 12041.22, + "probability": 0.7778 + }, + { + "start": 12041.28, + "end": 12042.56, + "probability": 0.9902 + }, + { + "start": 12042.56, + "end": 12043.72, + "probability": 0.9688 + }, + { + "start": 12044.68, + "end": 12047.34, + "probability": 0.0339 + }, + { + "start": 12047.34, + "end": 12051.96, + "probability": 0.9993 + }, + { + "start": 12051.96, + "end": 12055.32, + "probability": 0.9989 + }, + { + "start": 12055.54, + "end": 12057.08, + "probability": 0.9539 + }, + { + "start": 12057.36, + "end": 12057.64, + "probability": 0.8131 + }, + { + "start": 12057.74, + "end": 12058.78, + "probability": 0.8901 + }, + { + "start": 12058.88, + "end": 12060.38, + "probability": 0.9937 + }, + { + "start": 12060.78, + "end": 12062.23, + "probability": 0.9856 + }, + { + "start": 12062.84, + "end": 12065.84, + "probability": 0.9062 + }, + { + "start": 12066.2, + "end": 12067.44, + "probability": 0.9126 + }, + { + "start": 12067.6, + "end": 12069.08, + "probability": 0.6392 + }, + { + "start": 12069.4, + "end": 12070.6, + "probability": 0.9166 + }, + { + "start": 12070.66, + "end": 12074.28, + "probability": 0.9683 + }, + { + "start": 12074.38, + "end": 12077.56, + "probability": 0.8399 + }, + { + "start": 12077.98, + "end": 12078.77, + "probability": 0.9531 + }, + { + "start": 12079.44, + "end": 12079.88, + "probability": 0.8636 + }, + { + "start": 12081.1, + "end": 12083.34, + "probability": 0.9525 + }, + { + "start": 12084.14, + "end": 12089.0, + "probability": 0.9432 + }, + { + "start": 12089.42, + "end": 12091.22, + "probability": 0.9968 + }, + { + "start": 12092.06, + "end": 12092.28, + "probability": 0.563 + }, + { + "start": 12092.28, + "end": 12093.76, + "probability": 0.9419 + }, + { + "start": 12094.14, + "end": 12095.98, + "probability": 0.9467 + }, + { + "start": 12096.58, + "end": 12104.14, + "probability": 0.9814 + }, + { + "start": 12104.36, + "end": 12105.68, + "probability": 0.8779 + }, + { + "start": 12106.1, + "end": 12107.74, + "probability": 0.788 + }, + { + "start": 12108.12, + "end": 12109.1, + "probability": 0.9648 + }, + { + "start": 12109.66, + "end": 12109.66, + "probability": 0.2632 + }, + { + "start": 12109.66, + "end": 12111.38, + "probability": 0.8586 + }, + { + "start": 12111.8, + "end": 12113.4, + "probability": 0.5728 + }, + { + "start": 12113.76, + "end": 12117.2, + "probability": 0.9258 + }, + { + "start": 12117.78, + "end": 12120.2, + "probability": 0.8982 + }, + { + "start": 12120.88, + "end": 12123.04, + "probability": 0.9508 + }, + { + "start": 12123.36, + "end": 12128.62, + "probability": 0.9789 + }, + { + "start": 12129.14, + "end": 12133.38, + "probability": 0.9964 + }, + { + "start": 12133.54, + "end": 12134.82, + "probability": 0.7805 + }, + { + "start": 12135.42, + "end": 12138.54, + "probability": 0.9964 + }, + { + "start": 12138.78, + "end": 12142.52, + "probability": 0.9804 + }, + { + "start": 12142.94, + "end": 12144.94, + "probability": 0.9602 + }, + { + "start": 12145.26, + "end": 12146.52, + "probability": 0.8366 + }, + { + "start": 12148.44, + "end": 12150.06, + "probability": 0.9946 + }, + { + "start": 12150.42, + "end": 12150.92, + "probability": 0.3443 + }, + { + "start": 12151.12, + "end": 12151.12, + "probability": 0.606 + }, + { + "start": 12151.26, + "end": 12153.4, + "probability": 0.939 + }, + { + "start": 12153.88, + "end": 12160.04, + "probability": 0.9977 + }, + { + "start": 12161.26, + "end": 12165.06, + "probability": 0.9308 + }, + { + "start": 12165.38, + "end": 12165.68, + "probability": 0.7169 + }, + { + "start": 12166.42, + "end": 12167.12, + "probability": 0.7353 + }, + { + "start": 12167.48, + "end": 12167.9, + "probability": 0.8127 + }, + { + "start": 12167.94, + "end": 12170.9, + "probability": 0.8667 + }, + { + "start": 12170.9, + "end": 12175.68, + "probability": 0.9755 + }, + { + "start": 12182.12, + "end": 12184.06, + "probability": 0.6865 + }, + { + "start": 12184.94, + "end": 12186.84, + "probability": 0.8735 + }, + { + "start": 12188.08, + "end": 12190.66, + "probability": 0.8723 + }, + { + "start": 12190.86, + "end": 12193.63, + "probability": 0.9807 + }, + { + "start": 12194.42, + "end": 12195.01, + "probability": 0.9829 + }, + { + "start": 12196.04, + "end": 12196.59, + "probability": 0.298 + }, + { + "start": 12196.82, + "end": 12197.36, + "probability": 0.9199 + }, + { + "start": 12199.54, + "end": 12201.52, + "probability": 0.8412 + }, + { + "start": 12202.04, + "end": 12202.8, + "probability": 0.9821 + }, + { + "start": 12203.78, + "end": 12204.37, + "probability": 0.9644 + }, + { + "start": 12205.84, + "end": 12206.78, + "probability": 0.9932 + }, + { + "start": 12207.8, + "end": 12212.5, + "probability": 0.9038 + }, + { + "start": 12213.72, + "end": 12214.64, + "probability": 0.9762 + }, + { + "start": 12216.04, + "end": 12216.72, + "probability": 0.8798 + }, + { + "start": 12217.48, + "end": 12218.56, + "probability": 0.9133 + }, + { + "start": 12221.8, + "end": 12222.08, + "probability": 0.4245 + }, + { + "start": 12222.2, + "end": 12223.08, + "probability": 0.5368 + }, + { + "start": 12223.18, + "end": 12226.96, + "probability": 0.9943 + }, + { + "start": 12228.24, + "end": 12230.02, + "probability": 0.9551 + }, + { + "start": 12230.66, + "end": 12233.28, + "probability": 0.9897 + }, + { + "start": 12233.74, + "end": 12239.14, + "probability": 0.9525 + }, + { + "start": 12240.84, + "end": 12243.48, + "probability": 0.8664 + }, + { + "start": 12244.08, + "end": 12244.96, + "probability": 0.9618 + }, + { + "start": 12246.48, + "end": 12250.44, + "probability": 0.8553 + }, + { + "start": 12250.69, + "end": 12255.1, + "probability": 0.9972 + }, + { + "start": 12256.0, + "end": 12257.26, + "probability": 0.9023 + }, + { + "start": 12257.3, + "end": 12259.24, + "probability": 0.681 + }, + { + "start": 12259.54, + "end": 12261.56, + "probability": 0.5092 + }, + { + "start": 12263.56, + "end": 12265.74, + "probability": 0.8073 + }, + { + "start": 12266.56, + "end": 12269.68, + "probability": 0.8318 + }, + { + "start": 12270.16, + "end": 12271.0, + "probability": 0.6736 + }, + { + "start": 12271.04, + "end": 12272.92, + "probability": 0.9934 + }, + { + "start": 12274.9, + "end": 12275.96, + "probability": 0.8672 + }, + { + "start": 12276.54, + "end": 12281.1, + "probability": 0.9717 + }, + { + "start": 12281.1, + "end": 12285.7, + "probability": 0.9972 + }, + { + "start": 12286.4, + "end": 12288.94, + "probability": 0.7935 + }, + { + "start": 12289.48, + "end": 12296.14, + "probability": 0.9458 + }, + { + "start": 12297.22, + "end": 12300.22, + "probability": 0.9781 + }, + { + "start": 12301.06, + "end": 12304.26, + "probability": 0.9971 + }, + { + "start": 12304.98, + "end": 12308.6, + "probability": 0.9793 + }, + { + "start": 12309.44, + "end": 12312.06, + "probability": 0.853 + }, + { + "start": 12312.94, + "end": 12313.54, + "probability": 0.5852 + }, + { + "start": 12313.68, + "end": 12319.18, + "probability": 0.9194 + }, + { + "start": 12319.36, + "end": 12322.72, + "probability": 0.9844 + }, + { + "start": 12323.26, + "end": 12324.08, + "probability": 0.8708 + }, + { + "start": 12324.82, + "end": 12325.88, + "probability": 0.984 + }, + { + "start": 12327.04, + "end": 12330.14, + "probability": 0.9399 + }, + { + "start": 12331.0, + "end": 12333.4, + "probability": 0.9491 + }, + { + "start": 12333.9, + "end": 12337.32, + "probability": 0.61 + }, + { + "start": 12337.38, + "end": 12337.92, + "probability": 0.5615 + }, + { + "start": 12338.04, + "end": 12339.7, + "probability": 0.9934 + }, + { + "start": 12340.22, + "end": 12346.8, + "probability": 0.9922 + }, + { + "start": 12347.42, + "end": 12347.93, + "probability": 0.6362 + }, + { + "start": 12349.08, + "end": 12351.26, + "probability": 0.8538 + }, + { + "start": 12351.38, + "end": 12356.36, + "probability": 0.5925 + }, + { + "start": 12356.42, + "end": 12356.58, + "probability": 0.1342 + }, + { + "start": 12356.58, + "end": 12356.58, + "probability": 0.0536 + }, + { + "start": 12356.58, + "end": 12360.87, + "probability": 0.8865 + }, + { + "start": 12362.32, + "end": 12363.08, + "probability": 0.6557 + }, + { + "start": 12363.76, + "end": 12364.86, + "probability": 0.9097 + }, + { + "start": 12365.58, + "end": 12367.06, + "probability": 0.9861 + }, + { + "start": 12367.58, + "end": 12369.52, + "probability": 0.9963 + }, + { + "start": 12370.68, + "end": 12373.76, + "probability": 0.9686 + }, + { + "start": 12374.38, + "end": 12375.36, + "probability": 0.9362 + }, + { + "start": 12375.48, + "end": 12376.12, + "probability": 0.627 + }, + { + "start": 12376.28, + "end": 12378.66, + "probability": 0.9458 + }, + { + "start": 12378.92, + "end": 12381.16, + "probability": 0.9586 + }, + { + "start": 12382.32, + "end": 12383.12, + "probability": 0.9897 + }, + { + "start": 12383.26, + "end": 12387.36, + "probability": 0.7483 + }, + { + "start": 12388.54, + "end": 12389.02, + "probability": 0.9925 + }, + { + "start": 12390.16, + "end": 12391.04, + "probability": 0.8548 + }, + { + "start": 12391.6, + "end": 12394.46, + "probability": 0.9633 + }, + { + "start": 12395.66, + "end": 12397.11, + "probability": 0.7058 + }, + { + "start": 12398.26, + "end": 12399.3, + "probability": 0.6772 + }, + { + "start": 12400.34, + "end": 12400.36, + "probability": 0.1641 + }, + { + "start": 12400.36, + "end": 12402.04, + "probability": 0.7357 + }, + { + "start": 12402.08, + "end": 12403.9, + "probability": 0.647 + }, + { + "start": 12404.44, + "end": 12406.42, + "probability": 0.9246 + }, + { + "start": 12406.42, + "end": 12409.98, + "probability": 0.9891 + }, + { + "start": 12411.28, + "end": 12412.42, + "probability": 0.9382 + }, + { + "start": 12412.48, + "end": 12413.48, + "probability": 0.9506 + }, + { + "start": 12414.28, + "end": 12416.16, + "probability": 0.3633 + }, + { + "start": 12416.16, + "end": 12417.12, + "probability": 0.0067 + }, + { + "start": 12417.18, + "end": 12417.18, + "probability": 0.206 + }, + { + "start": 12417.34, + "end": 12419.54, + "probability": 0.6993 + }, + { + "start": 12419.92, + "end": 12423.63, + "probability": 0.9912 + }, + { + "start": 12423.98, + "end": 12424.54, + "probability": 0.9842 + }, + { + "start": 12424.64, + "end": 12426.14, + "probability": 0.9959 + }, + { + "start": 12427.24, + "end": 12427.81, + "probability": 0.9897 + }, + { + "start": 12428.54, + "end": 12429.58, + "probability": 0.9889 + }, + { + "start": 12430.0, + "end": 12430.44, + "probability": 0.9778 + }, + { + "start": 12430.6, + "end": 12431.28, + "probability": 0.7923 + }, + { + "start": 12431.68, + "end": 12432.84, + "probability": 0.1391 + }, + { + "start": 12433.16, + "end": 12433.52, + "probability": 0.4955 + }, + { + "start": 12433.58, + "end": 12434.58, + "probability": 0.7329 + }, + { + "start": 12434.8, + "end": 12437.1, + "probability": 0.956 + }, + { + "start": 12437.88, + "end": 12443.58, + "probability": 0.9949 + }, + { + "start": 12444.08, + "end": 12445.66, + "probability": 0.3972 + }, + { + "start": 12446.72, + "end": 12447.66, + "probability": 0.8675 + }, + { + "start": 12448.0, + "end": 12451.13, + "probability": 0.1305 + }, + { + "start": 12451.32, + "end": 12453.2, + "probability": 0.5919 + }, + { + "start": 12453.3, + "end": 12454.6, + "probability": 0.9146 + }, + { + "start": 12454.76, + "end": 12455.12, + "probability": 0.4475 + }, + { + "start": 12455.12, + "end": 12455.86, + "probability": 0.877 + }, + { + "start": 12456.04, + "end": 12458.38, + "probability": 0.0016 + }, + { + "start": 12459.26, + "end": 12459.54, + "probability": 0.2418 + }, + { + "start": 12459.54, + "end": 12460.48, + "probability": 0.1493 + }, + { + "start": 12460.94, + "end": 12464.22, + "probability": 0.5808 + }, + { + "start": 12464.76, + "end": 12465.82, + "probability": 0.4665 + }, + { + "start": 12468.58, + "end": 12470.96, + "probability": 0.5009 + }, + { + "start": 12471.2, + "end": 12474.8, + "probability": 0.5238 + }, + { + "start": 12474.8, + "end": 12475.6, + "probability": 0.7776 + }, + { + "start": 12475.76, + "end": 12478.6, + "probability": 0.7244 + }, + { + "start": 12479.32, + "end": 12479.94, + "probability": 0.9254 + }, + { + "start": 12480.46, + "end": 12485.76, + "probability": 0.7961 + }, + { + "start": 12486.64, + "end": 12487.72, + "probability": 0.3098 + }, + { + "start": 12487.72, + "end": 12490.12, + "probability": 0.4477 + }, + { + "start": 12490.3, + "end": 12491.3, + "probability": 0.8575 + }, + { + "start": 12491.48, + "end": 12492.61, + "probability": 0.9687 + }, + { + "start": 12493.14, + "end": 12495.44, + "probability": 0.0245 + }, + { + "start": 12495.72, + "end": 12496.5, + "probability": 0.7283 + }, + { + "start": 12496.7, + "end": 12497.07, + "probability": 0.8931 + }, + { + "start": 12502.15, + "end": 12503.32, + "probability": 0.7086 + }, + { + "start": 12503.38, + "end": 12507.35, + "probability": 0.9487 + }, + { + "start": 12507.96, + "end": 12509.56, + "probability": 0.9472 + }, + { + "start": 12511.82, + "end": 12515.68, + "probability": 0.5834 + }, + { + "start": 12516.06, + "end": 12518.98, + "probability": 0.9054 + }, + { + "start": 12519.44, + "end": 12521.55, + "probability": 0.6751 + }, + { + "start": 12522.46, + "end": 12530.02, + "probability": 0.2708 + }, + { + "start": 12530.72, + "end": 12531.25, + "probability": 0.0421 + }, + { + "start": 12532.32, + "end": 12532.62, + "probability": 0.309 + }, + { + "start": 12532.72, + "end": 12533.08, + "probability": 0.7018 + }, + { + "start": 12533.56, + "end": 12535.02, + "probability": 0.7369 + }, + { + "start": 12535.74, + "end": 12537.22, + "probability": 0.8141 + }, + { + "start": 12537.74, + "end": 12542.62, + "probability": 0.7826 + }, + { + "start": 12544.32, + "end": 12550.48, + "probability": 0.6194 + }, + { + "start": 12550.92, + "end": 12551.68, + "probability": 0.3406 + }, + { + "start": 12553.2, + "end": 12554.64, + "probability": 0.6871 + }, + { + "start": 12554.78, + "end": 12555.76, + "probability": 0.662 + }, + { + "start": 12556.12, + "end": 12557.12, + "probability": 0.6283 + }, + { + "start": 12557.12, + "end": 12565.2, + "probability": 0.8851 + }, + { + "start": 12565.88, + "end": 12568.28, + "probability": 0.4059 + }, + { + "start": 12568.36, + "end": 12571.42, + "probability": 0.9946 + }, + { + "start": 12571.42, + "end": 12574.6, + "probability": 0.9903 + }, + { + "start": 12575.26, + "end": 12575.89, + "probability": 0.5505 + }, + { + "start": 12576.4, + "end": 12582.22, + "probability": 0.4707 + }, + { + "start": 12582.34, + "end": 12583.68, + "probability": 0.7788 + }, + { + "start": 12583.8, + "end": 12587.44, + "probability": 0.9823 + }, + { + "start": 12587.88, + "end": 12589.18, + "probability": 0.5479 + }, + { + "start": 12589.36, + "end": 12591.11, + "probability": 0.9863 + }, + { + "start": 12591.66, + "end": 12592.85, + "probability": 0.7964 + }, + { + "start": 12593.32, + "end": 12595.54, + "probability": 0.8971 + }, + { + "start": 12596.16, + "end": 12597.83, + "probability": 0.9914 + }, + { + "start": 12598.56, + "end": 12600.48, + "probability": 0.96 + }, + { + "start": 12600.52, + "end": 12602.36, + "probability": 0.994 + }, + { + "start": 12602.46, + "end": 12611.02, + "probability": 0.9934 + }, + { + "start": 12615.08, + "end": 12617.46, + "probability": 0.6113 + }, + { + "start": 12618.0, + "end": 12619.18, + "probability": 0.7439 + }, + { + "start": 12619.74, + "end": 12620.2, + "probability": 0.1848 + }, + { + "start": 12620.26, + "end": 12621.84, + "probability": 0.9057 + }, + { + "start": 12622.2, + "end": 12633.02, + "probability": 0.6147 + }, + { + "start": 12633.02, + "end": 12639.34, + "probability": 0.933 + }, + { + "start": 12639.78, + "end": 12640.42, + "probability": 0.0641 + }, + { + "start": 12641.28, + "end": 12642.0, + "probability": 0.0492 + }, + { + "start": 12642.74, + "end": 12643.12, + "probability": 0.3463 + }, + { + "start": 12643.24, + "end": 12652.08, + "probability": 0.3619 + }, + { + "start": 12653.18, + "end": 12653.2, + "probability": 0.3828 + }, + { + "start": 12653.2, + "end": 12653.78, + "probability": 0.6717 + }, + { + "start": 12654.04, + "end": 12657.2, + "probability": 0.9866 + }, + { + "start": 12657.2, + "end": 12658.7, + "probability": 0.1634 + }, + { + "start": 12658.98, + "end": 12659.96, + "probability": 0.3202 + }, + { + "start": 12661.34, + "end": 12665.04, + "probability": 0.3635 + }, + { + "start": 12665.66, + "end": 12666.22, + "probability": 0.3741 + }, + { + "start": 12666.22, + "end": 12667.68, + "probability": 0.2086 + }, + { + "start": 12669.02, + "end": 12670.24, + "probability": 0.9753 + }, + { + "start": 12672.64, + "end": 12674.5, + "probability": 0.9296 + }, + { + "start": 12675.09, + "end": 12679.68, + "probability": 0.9481 + }, + { + "start": 12679.74, + "end": 12681.35, + "probability": 0.5842 + }, + { + "start": 12682.08, + "end": 12684.89, + "probability": 0.6487 + }, + { + "start": 12685.16, + "end": 12685.16, + "probability": 0.272 + }, + { + "start": 12685.16, + "end": 12686.89, + "probability": 0.9038 + }, + { + "start": 12687.56, + "end": 12689.94, + "probability": 0.5887 + }, + { + "start": 12691.88, + "end": 12694.14, + "probability": 0.6899 + }, + { + "start": 12696.86, + "end": 12699.3, + "probability": 0.6975 + }, + { + "start": 12699.9, + "end": 12700.8, + "probability": 0.336 + }, + { + "start": 12700.82, + "end": 12701.08, + "probability": 0.4499 + }, + { + "start": 12701.08, + "end": 12705.14, + "probability": 0.8452 + }, + { + "start": 12705.14, + "end": 12707.36, + "probability": 0.7261 + }, + { + "start": 12707.52, + "end": 12708.62, + "probability": 0.6265 + }, + { + "start": 12708.62, + "end": 12712.88, + "probability": 0.3945 + }, + { + "start": 12712.96, + "end": 12717.8, + "probability": 0.909 + }, + { + "start": 12718.66, + "end": 12720.92, + "probability": 0.8565 + }, + { + "start": 12720.96, + "end": 12721.98, + "probability": 0.965 + }, + { + "start": 12722.18, + "end": 12722.74, + "probability": 0.8908 + }, + { + "start": 12722.8, + "end": 12723.16, + "probability": 0.9123 + }, + { + "start": 12723.26, + "end": 12724.23, + "probability": 0.779 + }, + { + "start": 12724.44, + "end": 12727.96, + "probability": 0.9966 + }, + { + "start": 12729.26, + "end": 12729.76, + "probability": 0.2172 + }, + { + "start": 12730.12, + "end": 12733.62, + "probability": 0.9513 + }, + { + "start": 12733.86, + "end": 12734.79, + "probability": 0.9784 + }, + { + "start": 12735.04, + "end": 12735.92, + "probability": 0.6784 + }, + { + "start": 12736.12, + "end": 12740.1, + "probability": 0.9388 + }, + { + "start": 12741.58, + "end": 12743.52, + "probability": 0.1302 + }, + { + "start": 12743.96, + "end": 12745.12, + "probability": 0.9609 + }, + { + "start": 12745.3, + "end": 12752.24, + "probability": 0.7513 + }, + { + "start": 12753.35, + "end": 12759.22, + "probability": 0.8581 + }, + { + "start": 12759.38, + "end": 12761.56, + "probability": 0.7603 + }, + { + "start": 12761.74, + "end": 12765.0, + "probability": 0.6825 + }, + { + "start": 12765.0, + "end": 12766.08, + "probability": 0.5698 + }, + { + "start": 12766.7, + "end": 12768.66, + "probability": 0.9907 + }, + { + "start": 12769.72, + "end": 12773.34, + "probability": 0.9985 + }, + { + "start": 12773.68, + "end": 12775.83, + "probability": 0.9276 + }, + { + "start": 12787.16, + "end": 12788.98, + "probability": 0.7695 + }, + { + "start": 12789.12, + "end": 12790.84, + "probability": 0.7594 + }, + { + "start": 12791.17, + "end": 12797.66, + "probability": 0.9973 + }, + { + "start": 12797.82, + "end": 12799.4, + "probability": 0.8742 + }, + { + "start": 12799.48, + "end": 12800.16, + "probability": 0.7925 + }, + { + "start": 12800.38, + "end": 12801.5, + "probability": 0.9933 + }, + { + "start": 12801.6, + "end": 12803.12, + "probability": 0.9268 + }, + { + "start": 12804.72, + "end": 12811.16, + "probability": 0.9631 + }, + { + "start": 12811.52, + "end": 12812.22, + "probability": 0.9328 + }, + { + "start": 12812.34, + "end": 12813.08, + "probability": 0.9595 + }, + { + "start": 12813.22, + "end": 12814.12, + "probability": 0.9794 + }, + { + "start": 12814.52, + "end": 12815.7, + "probability": 0.9634 + }, + { + "start": 12816.22, + "end": 12819.54, + "probability": 0.9949 + }, + { + "start": 12820.42, + "end": 12827.3, + "probability": 0.9834 + }, + { + "start": 12827.3, + "end": 12832.34, + "probability": 0.9997 + }, + { + "start": 12833.02, + "end": 12834.46, + "probability": 0.644 + }, + { + "start": 12834.74, + "end": 12836.24, + "probability": 0.5895 + }, + { + "start": 12836.28, + "end": 12837.22, + "probability": 0.5089 + }, + { + "start": 12837.22, + "end": 12838.22, + "probability": 0.8184 + }, + { + "start": 12838.26, + "end": 12838.98, + "probability": 0.6674 + }, + { + "start": 12839.64, + "end": 12843.62, + "probability": 0.4924 + }, + { + "start": 12843.68, + "end": 12845.3, + "probability": 0.7586 + }, + { + "start": 12845.74, + "end": 12848.0, + "probability": 0.9671 + }, + { + "start": 12848.7, + "end": 12850.36, + "probability": 0.8944 + }, + { + "start": 12851.04, + "end": 12855.5, + "probability": 0.9731 + }, + { + "start": 12856.26, + "end": 12859.88, + "probability": 0.9144 + }, + { + "start": 12859.88, + "end": 12864.94, + "probability": 0.8931 + }, + { + "start": 12865.5, + "end": 12867.56, + "probability": 0.9913 + }, + { + "start": 12868.18, + "end": 12871.22, + "probability": 0.9882 + }, + { + "start": 12872.38, + "end": 12877.72, + "probability": 0.9751 + }, + { + "start": 12878.56, + "end": 12883.54, + "probability": 0.9966 + }, + { + "start": 12884.32, + "end": 12887.5, + "probability": 0.9961 + }, + { + "start": 12888.2, + "end": 12891.62, + "probability": 0.9964 + }, + { + "start": 12892.42, + "end": 12898.74, + "probability": 0.9829 + }, + { + "start": 12899.52, + "end": 12904.18, + "probability": 0.9944 + }, + { + "start": 12905.38, + "end": 12907.5, + "probability": 0.4433 + }, + { + "start": 12907.5, + "end": 12911.94, + "probability": 0.8848 + }, + { + "start": 12912.62, + "end": 12916.48, + "probability": 0.9463 + }, + { + "start": 12917.3, + "end": 12922.3, + "probability": 0.9901 + }, + { + "start": 12923.14, + "end": 12928.28, + "probability": 0.9818 + }, + { + "start": 12928.64, + "end": 12933.48, + "probability": 0.9922 + }, + { + "start": 12934.2, + "end": 12937.6, + "probability": 0.8343 + }, + { + "start": 12937.82, + "end": 12941.38, + "probability": 0.996 + }, + { + "start": 12942.34, + "end": 12948.2, + "probability": 0.951 + }, + { + "start": 12948.58, + "end": 12953.24, + "probability": 0.7608 + }, + { + "start": 12954.28, + "end": 12957.58, + "probability": 0.9862 + }, + { + "start": 12958.62, + "end": 12962.32, + "probability": 0.9298 + }, + { + "start": 12963.38, + "end": 12963.94, + "probability": 0.4816 + }, + { + "start": 12964.48, + "end": 12968.88, + "probability": 0.987 + }, + { + "start": 12969.48, + "end": 12972.38, + "probability": 0.9993 + }, + { + "start": 12972.38, + "end": 12976.16, + "probability": 0.9885 + }, + { + "start": 12976.96, + "end": 12978.02, + "probability": 0.9601 + }, + { + "start": 12978.92, + "end": 12981.82, + "probability": 0.9415 + }, + { + "start": 12983.18, + "end": 12988.38, + "probability": 0.9973 + }, + { + "start": 12988.94, + "end": 12992.8, + "probability": 0.9886 + }, + { + "start": 12993.44, + "end": 12994.58, + "probability": 0.8287 + }, + { + "start": 12995.2, + "end": 12998.08, + "probability": 0.9854 + }, + { + "start": 12998.66, + "end": 13002.8, + "probability": 0.9961 + }, + { + "start": 13003.44, + "end": 13007.98, + "probability": 0.9556 + }, + { + "start": 13008.0, + "end": 13012.98, + "probability": 0.9976 + }, + { + "start": 13015.18, + "end": 13015.98, + "probability": 0.4954 + }, + { + "start": 13016.04, + "end": 13019.56, + "probability": 0.8265 + }, + { + "start": 13019.62, + "end": 13020.0, + "probability": 0.8195 + }, + { + "start": 13020.06, + "end": 13024.18, + "probability": 0.9966 + }, + { + "start": 13024.88, + "end": 13025.74, + "probability": 0.973 + }, + { + "start": 13025.94, + "end": 13030.18, + "probability": 0.6568 + }, + { + "start": 13030.94, + "end": 13034.28, + "probability": 0.9237 + }, + { + "start": 13034.9, + "end": 13035.53, + "probability": 0.9897 + }, + { + "start": 13036.26, + "end": 13037.46, + "probability": 0.9218 + }, + { + "start": 13038.0, + "end": 13043.42, + "probability": 0.9219 + }, + { + "start": 13044.42, + "end": 13048.56, + "probability": 0.994 + }, + { + "start": 13049.02, + "end": 13050.28, + "probability": 0.9249 + }, + { + "start": 13050.9, + "end": 13054.7, + "probability": 0.9743 + }, + { + "start": 13055.76, + "end": 13058.08, + "probability": 0.7472 + }, + { + "start": 13058.94, + "end": 13063.96, + "probability": 0.9981 + }, + { + "start": 13064.64, + "end": 13068.24, + "probability": 0.9666 + }, + { + "start": 13068.24, + "end": 13073.28, + "probability": 0.9957 + }, + { + "start": 13073.68, + "end": 13075.26, + "probability": 0.9951 + }, + { + "start": 13076.32, + "end": 13078.6, + "probability": 0.9966 + }, + { + "start": 13079.2, + "end": 13081.58, + "probability": 0.889 + }, + { + "start": 13082.32, + "end": 13085.9, + "probability": 0.811 + }, + { + "start": 13087.16, + "end": 13089.26, + "probability": 0.9905 + }, + { + "start": 13089.86, + "end": 13090.56, + "probability": 0.7571 + }, + { + "start": 13090.64, + "end": 13093.14, + "probability": 0.5711 + }, + { + "start": 13093.64, + "end": 13097.14, + "probability": 0.9938 + }, + { + "start": 13097.14, + "end": 13101.48, + "probability": 0.9795 + }, + { + "start": 13102.0, + "end": 13103.96, + "probability": 0.9626 + }, + { + "start": 13105.06, + "end": 13106.52, + "probability": 0.835 + }, + { + "start": 13106.6, + "end": 13109.94, + "probability": 0.9532 + }, + { + "start": 13109.98, + "end": 13111.5, + "probability": 0.9067 + }, + { + "start": 13112.46, + "end": 13115.26, + "probability": 0.9767 + }, + { + "start": 13116.08, + "end": 13119.42, + "probability": 0.6739 + }, + { + "start": 13120.14, + "end": 13121.22, + "probability": 0.8286 + }, + { + "start": 13121.3, + "end": 13123.7, + "probability": 0.6565 + }, + { + "start": 13124.68, + "end": 13128.74, + "probability": 0.9734 + }, + { + "start": 13129.62, + "end": 13130.92, + "probability": 0.9672 + }, + { + "start": 13132.46, + "end": 13135.88, + "probability": 0.9438 + }, + { + "start": 13137.86, + "end": 13139.1, + "probability": 0.8784 + }, + { + "start": 13139.28, + "end": 13141.54, + "probability": 0.991 + }, + { + "start": 13142.02, + "end": 13146.14, + "probability": 0.9797 + }, + { + "start": 13146.24, + "end": 13147.04, + "probability": 0.893 + }, + { + "start": 13147.5, + "end": 13150.5, + "probability": 0.7881 + }, + { + "start": 13150.58, + "end": 13152.72, + "probability": 0.985 + }, + { + "start": 13152.92, + "end": 13155.74, + "probability": 0.9715 + }, + { + "start": 13156.64, + "end": 13159.32, + "probability": 0.6953 + }, + { + "start": 13159.46, + "end": 13160.78, + "probability": 0.9751 + }, + { + "start": 13160.86, + "end": 13162.46, + "probability": 0.6531 + }, + { + "start": 13163.44, + "end": 13167.28, + "probability": 0.7933 + }, + { + "start": 13167.78, + "end": 13170.16, + "probability": 0.937 + }, + { + "start": 13170.36, + "end": 13171.38, + "probability": 0.6376 + }, + { + "start": 13172.04, + "end": 13178.2, + "probability": 0.7849 + }, + { + "start": 13178.34, + "end": 13181.8, + "probability": 0.9834 + }, + { + "start": 13182.26, + "end": 13182.54, + "probability": 0.5877 + }, + { + "start": 13182.88, + "end": 13183.42, + "probability": 0.8356 + }, + { + "start": 13183.5, + "end": 13183.96, + "probability": 0.9579 + }, + { + "start": 13184.32, + "end": 13188.82, + "probability": 0.9094 + }, + { + "start": 13189.52, + "end": 13193.62, + "probability": 0.9982 + }, + { + "start": 13194.1, + "end": 13195.04, + "probability": 0.8457 + }, + { + "start": 13196.72, + "end": 13199.04, + "probability": 0.8596 + }, + { + "start": 13199.64, + "end": 13200.54, + "probability": 0.9145 + }, + { + "start": 13200.58, + "end": 13202.36, + "probability": 0.8879 + }, + { + "start": 13202.72, + "end": 13204.84, + "probability": 0.9046 + }, + { + "start": 13204.9, + "end": 13206.32, + "probability": 0.9907 + }, + { + "start": 13208.3, + "end": 13211.54, + "probability": 0.9839 + }, + { + "start": 13211.82, + "end": 13213.06, + "probability": 0.7904 + }, + { + "start": 13214.8, + "end": 13217.46, + "probability": 0.9115 + }, + { + "start": 13219.14, + "end": 13220.73, + "probability": 0.9733 + }, + { + "start": 13221.04, + "end": 13223.08, + "probability": 0.7967 + }, + { + "start": 13223.48, + "end": 13225.57, + "probability": 0.7528 + }, + { + "start": 13225.88, + "end": 13227.1, + "probability": 0.8081 + }, + { + "start": 13227.12, + "end": 13228.15, + "probability": 0.8042 + }, + { + "start": 13229.64, + "end": 13231.88, + "probability": 0.969 + }, + { + "start": 13232.3, + "end": 13232.88, + "probability": 0.9501 + }, + { + "start": 13236.56, + "end": 13238.98, + "probability": 0.5581 + }, + { + "start": 13241.16, + "end": 13242.19, + "probability": 0.959 + }, + { + "start": 13243.38, + "end": 13245.5, + "probability": 0.8342 + }, + { + "start": 13245.58, + "end": 13247.72, + "probability": 0.9941 + }, + { + "start": 13247.76, + "end": 13250.54, + "probability": 0.9793 + }, + { + "start": 13250.62, + "end": 13252.12, + "probability": 0.9483 + }, + { + "start": 13252.5, + "end": 13255.5, + "probability": 0.9763 + }, + { + "start": 13255.66, + "end": 13257.06, + "probability": 0.9531 + }, + { + "start": 13257.24, + "end": 13258.26, + "probability": 0.9865 + }, + { + "start": 13258.44, + "end": 13259.02, + "probability": 0.5378 + }, + { + "start": 13259.1, + "end": 13263.18, + "probability": 0.9956 + }, + { + "start": 13263.56, + "end": 13264.84, + "probability": 0.7868 + }, + { + "start": 13264.98, + "end": 13265.9, + "probability": 0.8762 + }, + { + "start": 13266.32, + "end": 13269.4, + "probability": 0.9365 + }, + { + "start": 13269.96, + "end": 13272.72, + "probability": 0.9906 + }, + { + "start": 13272.72, + "end": 13274.58, + "probability": 0.9995 + }, + { + "start": 13274.66, + "end": 13275.32, + "probability": 0.6871 + }, + { + "start": 13275.88, + "end": 13278.68, + "probability": 0.9515 + }, + { + "start": 13278.88, + "end": 13281.06, + "probability": 0.9224 + }, + { + "start": 13281.5, + "end": 13282.2, + "probability": 0.7226 + }, + { + "start": 13283.64, + "end": 13286.32, + "probability": 0.9941 + }, + { + "start": 13286.48, + "end": 13287.58, + "probability": 0.9863 + }, + { + "start": 13288.2, + "end": 13289.48, + "probability": 0.934 + }, + { + "start": 13290.0, + "end": 13293.98, + "probability": 0.9874 + }, + { + "start": 13294.5, + "end": 13299.82, + "probability": 0.9995 + }, + { + "start": 13300.28, + "end": 13307.38, + "probability": 0.9911 + }, + { + "start": 13307.86, + "end": 13308.86, + "probability": 0.8429 + }, + { + "start": 13309.06, + "end": 13309.86, + "probability": 0.7256 + }, + { + "start": 13309.96, + "end": 13312.0, + "probability": 0.9911 + }, + { + "start": 13313.02, + "end": 13317.94, + "probability": 0.9889 + }, + { + "start": 13318.14, + "end": 13320.78, + "probability": 0.7997 + }, + { + "start": 13329.3, + "end": 13332.3, + "probability": 0.8143 + }, + { + "start": 13332.92, + "end": 13338.26, + "probability": 0.8721 + }, + { + "start": 13338.26, + "end": 13341.64, + "probability": 0.8399 + }, + { + "start": 13342.52, + "end": 13345.86, + "probability": 0.9119 + }, + { + "start": 13346.02, + "end": 13350.03, + "probability": 0.7149 + }, + { + "start": 13351.48, + "end": 13354.76, + "probability": 0.7285 + }, + { + "start": 13354.84, + "end": 13356.88, + "probability": 0.8101 + }, + { + "start": 13357.04, + "end": 13358.82, + "probability": 0.4179 + }, + { + "start": 13359.48, + "end": 13362.56, + "probability": 0.9598 + }, + { + "start": 13362.56, + "end": 13366.6, + "probability": 0.9789 + }, + { + "start": 13366.72, + "end": 13369.72, + "probability": 0.9552 + }, + { + "start": 13371.82, + "end": 13375.4, + "probability": 0.8646 + }, + { + "start": 13375.4, + "end": 13379.4, + "probability": 0.9816 + }, + { + "start": 13381.0, + "end": 13383.14, + "probability": 0.8434 + }, + { + "start": 13384.72, + "end": 13386.2, + "probability": 0.3199 + }, + { + "start": 13386.56, + "end": 13389.08, + "probability": 0.9772 + }, + { + "start": 13389.08, + "end": 13392.82, + "probability": 0.9738 + }, + { + "start": 13393.14, + "end": 13397.28, + "probability": 0.8224 + }, + { + "start": 13397.88, + "end": 13403.3, + "probability": 0.9399 + }, + { + "start": 13403.44, + "end": 13408.04, + "probability": 0.9882 + }, + { + "start": 13408.46, + "end": 13411.46, + "probability": 0.6153 + }, + { + "start": 13411.46, + "end": 13415.66, + "probability": 0.9902 + }, + { + "start": 13416.2, + "end": 13419.3, + "probability": 0.9056 + }, + { + "start": 13419.56, + "end": 13422.36, + "probability": 0.9832 + }, + { + "start": 13423.82, + "end": 13427.36, + "probability": 0.9437 + }, + { + "start": 13427.36, + "end": 13431.92, + "probability": 0.9866 + }, + { + "start": 13432.22, + "end": 13435.86, + "probability": 0.6403 + }, + { + "start": 13435.86, + "end": 13442.24, + "probability": 0.9859 + }, + { + "start": 13443.93, + "end": 13445.08, + "probability": 0.3198 + }, + { + "start": 13445.18, + "end": 13446.44, + "probability": 0.296 + }, + { + "start": 13447.1, + "end": 13447.14, + "probability": 0.0691 + }, + { + "start": 13447.14, + "end": 13451.2, + "probability": 0.5555 + }, + { + "start": 13455.55, + "end": 13459.7, + "probability": 0.9948 + }, + { + "start": 13459.92, + "end": 13463.64, + "probability": 0.906 + }, + { + "start": 13463.66, + "end": 13465.66, + "probability": 0.9873 + }, + { + "start": 13465.7, + "end": 13471.4, + "probability": 0.9791 + }, + { + "start": 13471.48, + "end": 13472.34, + "probability": 0.4556 + }, + { + "start": 13478.0, + "end": 13480.02, + "probability": 0.8181 + }, + { + "start": 13481.05, + "end": 13486.04, + "probability": 0.7448 + }, + { + "start": 13486.52, + "end": 13490.46, + "probability": 0.8853 + }, + { + "start": 13491.54, + "end": 13493.14, + "probability": 0.7919 + }, + { + "start": 13493.46, + "end": 13493.58, + "probability": 0.0953 + }, + { + "start": 13493.58, + "end": 13496.12, + "probability": 0.9788 + }, + { + "start": 13496.12, + "end": 13497.58, + "probability": 0.7084 + }, + { + "start": 13498.86, + "end": 13503.08, + "probability": 0.9674 + }, + { + "start": 13503.42, + "end": 13506.1, + "probability": 0.8484 + }, + { + "start": 13507.42, + "end": 13509.36, + "probability": 0.9058 + }, + { + "start": 13509.8, + "end": 13510.76, + "probability": 0.7211 + }, + { + "start": 13510.84, + "end": 13512.48, + "probability": 0.6426 + }, + { + "start": 13512.82, + "end": 13515.38, + "probability": 0.7808 + }, + { + "start": 13515.44, + "end": 13520.54, + "probability": 0.8387 + }, + { + "start": 13521.02, + "end": 13523.66, + "probability": 0.9603 + }, + { + "start": 13523.96, + "end": 13527.16, + "probability": 0.9806 + }, + { + "start": 13527.16, + "end": 13531.7, + "probability": 0.9813 + }, + { + "start": 13532.28, + "end": 13535.3, + "probability": 0.9302 + }, + { + "start": 13535.3, + "end": 13538.5, + "probability": 0.9697 + }, + { + "start": 13538.98, + "end": 13542.46, + "probability": 0.9963 + }, + { + "start": 13542.46, + "end": 13547.28, + "probability": 0.7232 + }, + { + "start": 13547.44, + "end": 13549.8, + "probability": 0.9625 + }, + { + "start": 13549.9, + "end": 13550.5, + "probability": 0.3726 + }, + { + "start": 13550.52, + "end": 13553.88, + "probability": 0.8739 + }, + { + "start": 13554.22, + "end": 13556.72, + "probability": 0.9193 + }, + { + "start": 13557.12, + "end": 13559.98, + "probability": 0.8412 + }, + { + "start": 13560.18, + "end": 13563.92, + "probability": 0.7169 + }, + { + "start": 13564.4, + "end": 13569.42, + "probability": 0.9898 + }, + { + "start": 13570.04, + "end": 13574.45, + "probability": 0.9794 + }, + { + "start": 13575.02, + "end": 13578.86, + "probability": 0.9724 + }, + { + "start": 13580.82, + "end": 13583.48, + "probability": 0.8495 + }, + { + "start": 13583.48, + "end": 13587.06, + "probability": 0.9926 + }, + { + "start": 13587.4, + "end": 13588.26, + "probability": 0.5358 + }, + { + "start": 13588.28, + "end": 13589.52, + "probability": 0.7841 + }, + { + "start": 13589.86, + "end": 13593.78, + "probability": 0.9939 + }, + { + "start": 13594.16, + "end": 13597.36, + "probability": 0.9565 + }, + { + "start": 13597.94, + "end": 13599.82, + "probability": 0.7864 + }, + { + "start": 13600.18, + "end": 13602.88, + "probability": 0.9206 + }, + { + "start": 13603.4, + "end": 13603.76, + "probability": 0.4003 + }, + { + "start": 13603.8, + "end": 13604.86, + "probability": 0.8205 + }, + { + "start": 13605.06, + "end": 13607.54, + "probability": 0.7481 + }, + { + "start": 13608.04, + "end": 13610.3, + "probability": 0.9025 + }, + { + "start": 13611.5, + "end": 13612.98, + "probability": 0.6383 + }, + { + "start": 13618.8, + "end": 13621.66, + "probability": 0.9622 + }, + { + "start": 13621.84, + "end": 13625.26, + "probability": 0.9848 + }, + { + "start": 13625.5, + "end": 13630.07, + "probability": 0.6331 + }, + { + "start": 13630.64, + "end": 13631.27, + "probability": 0.6972 + }, + { + "start": 13633.99, + "end": 13635.58, + "probability": 0.089 + }, + { + "start": 13635.58, + "end": 13637.34, + "probability": 0.5209 + }, + { + "start": 13637.42, + "end": 13639.4, + "probability": 0.6396 + }, + { + "start": 13639.5, + "end": 13639.98, + "probability": 0.5255 + }, + { + "start": 13640.08, + "end": 13642.3, + "probability": 0.5752 + }, + { + "start": 13642.3, + "end": 13644.18, + "probability": 0.7645 + }, + { + "start": 13644.44, + "end": 13645.64, + "probability": 0.24 + }, + { + "start": 13645.78, + "end": 13647.56, + "probability": 0.968 + }, + { + "start": 13647.64, + "end": 13649.6, + "probability": 0.5948 + }, + { + "start": 13649.6, + "end": 13649.83, + "probability": 0.6807 + }, + { + "start": 13650.22, + "end": 13653.24, + "probability": 0.9194 + }, + { + "start": 13653.66, + "end": 13660.1, + "probability": 0.8578 + }, + { + "start": 13660.14, + "end": 13660.46, + "probability": 0.0215 + }, + { + "start": 13660.46, + "end": 13662.8, + "probability": 0.8262 + }, + { + "start": 13663.06, + "end": 13664.08, + "probability": 0.9794 + }, + { + "start": 13664.18, + "end": 13664.88, + "probability": 0.7814 + }, + { + "start": 13665.08, + "end": 13668.86, + "probability": 0.7077 + }, + { + "start": 13668.86, + "end": 13671.08, + "probability": 0.8997 + }, + { + "start": 13671.32, + "end": 13671.67, + "probability": 0.7167 + }, + { + "start": 13672.24, + "end": 13676.18, + "probability": 0.5542 + }, + { + "start": 13676.38, + "end": 13678.04, + "probability": 0.6739 + }, + { + "start": 13678.1, + "end": 13679.98, + "probability": 0.8276 + }, + { + "start": 13680.38, + "end": 13682.2, + "probability": 0.8796 + }, + { + "start": 13682.32, + "end": 13685.28, + "probability": 0.9204 + }, + { + "start": 13685.3, + "end": 13686.72, + "probability": 0.5403 + }, + { + "start": 13688.36, + "end": 13692.66, + "probability": 0.6627 + }, + { + "start": 13693.12, + "end": 13701.68, + "probability": 0.7194 + }, + { + "start": 13708.9, + "end": 13711.34, + "probability": 0.6687 + }, + { + "start": 13712.48, + "end": 13718.26, + "probability": 0.9231 + }, + { + "start": 13718.46, + "end": 13720.7, + "probability": 0.907 + }, + { + "start": 13721.04, + "end": 13721.76, + "probability": 0.8091 + }, + { + "start": 13721.92, + "end": 13724.18, + "probability": 0.7033 + }, + { + "start": 13724.82, + "end": 13728.2, + "probability": 0.9671 + }, + { + "start": 13728.24, + "end": 13730.08, + "probability": 0.8909 + }, + { + "start": 13731.3, + "end": 13732.02, + "probability": 0.8579 + }, + { + "start": 13732.42, + "end": 13735.78, + "probability": 0.9572 + }, + { + "start": 13735.78, + "end": 13740.74, + "probability": 0.9877 + }, + { + "start": 13741.06, + "end": 13741.96, + "probability": 0.9786 + }, + { + "start": 13742.4, + "end": 13744.56, + "probability": 0.8902 + }, + { + "start": 13745.0, + "end": 13746.14, + "probability": 0.2827 + }, + { + "start": 13747.24, + "end": 13749.24, + "probability": 0.896 + }, + { + "start": 13750.06, + "end": 13751.0, + "probability": 0.7165 + }, + { + "start": 13751.28, + "end": 13753.98, + "probability": 0.946 + }, + { + "start": 13755.87, + "end": 13759.68, + "probability": 0.9723 + }, + { + "start": 13759.94, + "end": 13760.74, + "probability": 0.8927 + }, + { + "start": 13761.16, + "end": 13763.21, + "probability": 0.9227 + }, + { + "start": 13763.56, + "end": 13764.76, + "probability": 0.956 + }, + { + "start": 13765.5, + "end": 13767.48, + "probability": 0.6583 + }, + { + "start": 13767.92, + "end": 13768.84, + "probability": 0.1688 + }, + { + "start": 13769.14, + "end": 13772.16, + "probability": 0.6825 + }, + { + "start": 13772.4, + "end": 13773.16, + "probability": 0.6631 + }, + { + "start": 13773.46, + "end": 13775.76, + "probability": 0.6992 + }, + { + "start": 13776.04, + "end": 13776.7, + "probability": 0.8268 + }, + { + "start": 13777.22, + "end": 13780.44, + "probability": 0.8434 + }, + { + "start": 13780.86, + "end": 13783.22, + "probability": 0.7508 + }, + { + "start": 13783.8, + "end": 13788.1, + "probability": 0.9771 + }, + { + "start": 13788.92, + "end": 13790.7, + "probability": 0.8429 + }, + { + "start": 13790.82, + "end": 13794.02, + "probability": 0.7622 + }, + { + "start": 13794.22, + "end": 13795.44, + "probability": 0.7877 + }, + { + "start": 13795.62, + "end": 13797.24, + "probability": 0.7004 + }, + { + "start": 13797.88, + "end": 13800.96, + "probability": 0.8126 + }, + { + "start": 13801.32, + "end": 13805.9, + "probability": 0.9907 + }, + { + "start": 13806.42, + "end": 13808.48, + "probability": 0.6168 + }, + { + "start": 13809.04, + "end": 13811.74, + "probability": 0.8742 + }, + { + "start": 13812.04, + "end": 13816.8, + "probability": 0.6897 + }, + { + "start": 13816.98, + "end": 13817.42, + "probability": 0.9089 + }, + { + "start": 13817.74, + "end": 13819.34, + "probability": 0.8148 + }, + { + "start": 13819.6, + "end": 13820.1, + "probability": 0.8164 + }, + { + "start": 13820.24, + "end": 13822.96, + "probability": 0.7913 + }, + { + "start": 13823.18, + "end": 13826.01, + "probability": 0.9939 + }, + { + "start": 13826.22, + "end": 13827.48, + "probability": 0.9592 + }, + { + "start": 13827.58, + "end": 13828.04, + "probability": 0.7314 + }, + { + "start": 13828.34, + "end": 13830.64, + "probability": 0.8455 + }, + { + "start": 13830.78, + "end": 13831.68, + "probability": 0.7812 + }, + { + "start": 13831.92, + "end": 13832.86, + "probability": 0.5606 + }, + { + "start": 13833.08, + "end": 13837.66, + "probability": 0.8849 + }, + { + "start": 13838.14, + "end": 13839.42, + "probability": 0.7947 + }, + { + "start": 13839.92, + "end": 13841.6, + "probability": 0.9735 + }, + { + "start": 13841.94, + "end": 13844.84, + "probability": 0.9934 + }, + { + "start": 13845.08, + "end": 13848.72, + "probability": 0.8787 + }, + { + "start": 13848.74, + "end": 13849.92, + "probability": 0.6807 + }, + { + "start": 13850.1, + "end": 13851.12, + "probability": 0.6896 + }, + { + "start": 13851.18, + "end": 13851.98, + "probability": 0.852 + }, + { + "start": 13852.14, + "end": 13853.36, + "probability": 0.9767 + }, + { + "start": 13853.84, + "end": 13856.74, + "probability": 0.8139 + }, + { + "start": 13857.56, + "end": 13858.18, + "probability": 0.9758 + }, + { + "start": 13858.3, + "end": 13861.6, + "probability": 0.6056 + }, + { + "start": 13861.86, + "end": 13862.5, + "probability": 0.5406 + }, + { + "start": 13862.6, + "end": 13863.18, + "probability": 0.2484 + }, + { + "start": 13863.56, + "end": 13866.77, + "probability": 0.9521 + }, + { + "start": 13867.46, + "end": 13869.06, + "probability": 0.9656 + }, + { + "start": 13869.24, + "end": 13871.18, + "probability": 0.8868 + }, + { + "start": 13871.38, + "end": 13873.5, + "probability": 0.7481 + }, + { + "start": 13873.54, + "end": 13874.14, + "probability": 0.6504 + }, + { + "start": 13874.28, + "end": 13875.19, + "probability": 0.7103 + }, + { + "start": 13875.48, + "end": 13876.46, + "probability": 0.9306 + }, + { + "start": 13876.86, + "end": 13881.48, + "probability": 0.9434 + }, + { + "start": 13881.7, + "end": 13882.42, + "probability": 0.9536 + }, + { + "start": 13882.56, + "end": 13883.53, + "probability": 0.993 + }, + { + "start": 13883.9, + "end": 13886.36, + "probability": 0.9108 + }, + { + "start": 13886.46, + "end": 13889.06, + "probability": 0.9779 + }, + { + "start": 13889.06, + "end": 13892.3, + "probability": 0.9971 + }, + { + "start": 13892.5, + "end": 13892.94, + "probability": 0.6919 + }, + { + "start": 13892.94, + "end": 13893.71, + "probability": 0.5613 + }, + { + "start": 13894.24, + "end": 13895.36, + "probability": 0.7241 + }, + { + "start": 13895.4, + "end": 13897.06, + "probability": 0.4374 + }, + { + "start": 13897.14, + "end": 13897.68, + "probability": 0.5189 + }, + { + "start": 13897.68, + "end": 13898.38, + "probability": 0.8485 + }, + { + "start": 13898.96, + "end": 13905.42, + "probability": 0.9816 + }, + { + "start": 13910.98, + "end": 13912.04, + "probability": 0.7888 + }, + { + "start": 13914.74, + "end": 13918.46, + "probability": 0.762 + }, + { + "start": 13918.52, + "end": 13920.1, + "probability": 0.8243 + }, + { + "start": 13920.52, + "end": 13923.09, + "probability": 0.9263 + }, + { + "start": 13923.68, + "end": 13926.22, + "probability": 0.9962 + }, + { + "start": 13927.0, + "end": 13929.56, + "probability": 0.9952 + }, + { + "start": 13930.22, + "end": 13931.18, + "probability": 0.3269 + }, + { + "start": 13931.64, + "end": 13934.22, + "probability": 0.8934 + }, + { + "start": 13934.44, + "end": 13936.2, + "probability": 0.6868 + }, + { + "start": 13936.36, + "end": 13937.22, + "probability": 0.8462 + }, + { + "start": 13937.28, + "end": 13940.98, + "probability": 0.9918 + }, + { + "start": 13941.08, + "end": 13943.56, + "probability": 0.722 + }, + { + "start": 13943.66, + "end": 13949.04, + "probability": 0.9535 + }, + { + "start": 13949.64, + "end": 13952.5, + "probability": 0.9694 + }, + { + "start": 13953.04, + "end": 13954.26, + "probability": 0.9281 + }, + { + "start": 13955.06, + "end": 13958.66, + "probability": 0.9248 + }, + { + "start": 13959.04, + "end": 13963.08, + "probability": 0.9928 + }, + { + "start": 13963.88, + "end": 13967.8, + "probability": 0.9077 + }, + { + "start": 13968.6, + "end": 13971.1, + "probability": 0.8863 + }, + { + "start": 13971.82, + "end": 13972.24, + "probability": 0.6769 + }, + { + "start": 13972.24, + "end": 13972.82, + "probability": 0.8738 + }, + { + "start": 13973.28, + "end": 13974.98, + "probability": 0.9865 + }, + { + "start": 13975.42, + "end": 13980.36, + "probability": 0.9404 + }, + { + "start": 13980.5, + "end": 13981.05, + "probability": 0.9106 + }, + { + "start": 13981.82, + "end": 13983.28, + "probability": 0.7931 + }, + { + "start": 13983.28, + "end": 13985.5, + "probability": 0.7947 + }, + { + "start": 13985.66, + "end": 13986.84, + "probability": 0.9454 + }, + { + "start": 13986.96, + "end": 13990.24, + "probability": 0.9437 + }, + { + "start": 13991.22, + "end": 13994.98, + "probability": 0.9695 + }, + { + "start": 13995.28, + "end": 13997.02, + "probability": 0.8319 + }, + { + "start": 13997.26, + "end": 14003.38, + "probability": 0.9878 + }, + { + "start": 14003.9, + "end": 14008.52, + "probability": 0.9973 + }, + { + "start": 14008.74, + "end": 14013.44, + "probability": 0.9022 + }, + { + "start": 14013.98, + "end": 14015.28, + "probability": 0.937 + }, + { + "start": 14015.4, + "end": 14017.18, + "probability": 0.9956 + }, + { + "start": 14017.9, + "end": 14019.04, + "probability": 0.633 + }, + { + "start": 14020.12, + "end": 14021.48, + "probability": 0.9249 + }, + { + "start": 14021.56, + "end": 14022.22, + "probability": 0.8446 + }, + { + "start": 14022.34, + "end": 14025.98, + "probability": 0.9883 + }, + { + "start": 14026.36, + "end": 14027.7, + "probability": 0.9587 + }, + { + "start": 14027.76, + "end": 14029.41, + "probability": 0.9661 + }, + { + "start": 14029.52, + "end": 14031.42, + "probability": 0.9893 + }, + { + "start": 14031.76, + "end": 14032.7, + "probability": 0.5767 + }, + { + "start": 14033.02, + "end": 14035.05, + "probability": 0.959 + }, + { + "start": 14035.34, + "end": 14037.6, + "probability": 0.9633 + }, + { + "start": 14037.78, + "end": 14041.02, + "probability": 0.9943 + }, + { + "start": 14041.6, + "end": 14046.44, + "probability": 0.9552 + }, + { + "start": 14046.94, + "end": 14047.52, + "probability": 0.7219 + }, + { + "start": 14047.6, + "end": 14048.6, + "probability": 0.9388 + }, + { + "start": 14048.74, + "end": 14051.14, + "probability": 0.8306 + }, + { + "start": 14051.6, + "end": 14052.82, + "probability": 0.8916 + }, + { + "start": 14052.86, + "end": 14056.36, + "probability": 0.9746 + }, + { + "start": 14056.68, + "end": 14058.72, + "probability": 0.948 + }, + { + "start": 14058.82, + "end": 14062.36, + "probability": 0.9563 + }, + { + "start": 14062.56, + "end": 14067.76, + "probability": 0.978 + }, + { + "start": 14068.2, + "end": 14070.88, + "probability": 0.7003 + }, + { + "start": 14071.2, + "end": 14074.52, + "probability": 0.9959 + }, + { + "start": 14075.06, + "end": 14075.76, + "probability": 0.8067 + }, + { + "start": 14076.28, + "end": 14076.9, + "probability": 0.5799 + }, + { + "start": 14076.9, + "end": 14078.38, + "probability": 0.8555 + }, + { + "start": 14078.48, + "end": 14082.82, + "probability": 0.9831 + }, + { + "start": 14082.86, + "end": 14085.64, + "probability": 0.7983 + }, + { + "start": 14085.64, + "end": 14092.06, + "probability": 0.6462 + }, + { + "start": 14095.2, + "end": 14099.26, + "probability": 0.5849 + }, + { + "start": 14099.58, + "end": 14100.78, + "probability": 0.3873 + }, + { + "start": 14114.64, + "end": 14115.24, + "probability": 0.176 + }, + { + "start": 14118.88, + "end": 14121.36, + "probability": 0.3748 + }, + { + "start": 14121.4, + "end": 14123.58, + "probability": 0.7346 + }, + { + "start": 14123.72, + "end": 14126.8, + "probability": 0.7265 + }, + { + "start": 14126.98, + "end": 14128.0, + "probability": 0.652 + }, + { + "start": 14128.9, + "end": 14130.62, + "probability": 0.3965 + }, + { + "start": 14131.8, + "end": 14133.5, + "probability": 0.0457 + }, + { + "start": 14134.82, + "end": 14138.4, + "probability": 0.0738 + }, + { + "start": 14138.4, + "end": 14141.54, + "probability": 0.0383 + }, + { + "start": 14141.54, + "end": 14145.84, + "probability": 0.0648 + }, + { + "start": 14146.6, + "end": 14148.38, + "probability": 0.0493 + }, + { + "start": 14149.74, + "end": 14149.92, + "probability": 0.037 + }, + { + "start": 14150.48, + "end": 14154.2, + "probability": 0.1291 + }, + { + "start": 14158.5, + "end": 14158.72, + "probability": 0.1849 + }, + { + "start": 14162.02, + "end": 14162.16, + "probability": 0.114 + }, + { + "start": 14162.16, + "end": 14162.72, + "probability": 0.0717 + }, + { + "start": 14162.72, + "end": 14166.03, + "probability": 0.0587 + }, + { + "start": 14168.5, + "end": 14170.64, + "probability": 0.2107 + }, + { + "start": 14170.64, + "end": 14171.2, + "probability": 0.1219 + }, + { + "start": 14171.2, + "end": 14174.94, + "probability": 0.2665 + }, + { + "start": 14175.0, + "end": 14175.0, + "probability": 0.0 + }, + { + "start": 14175.0, + "end": 14175.0, + "probability": 0.0 + }, + { + "start": 14175.0, + "end": 14175.0, + "probability": 0.0 + }, + { + "start": 14175.0, + "end": 14175.0, + "probability": 0.0 + }, + { + "start": 14175.0, + "end": 14175.0, + "probability": 0.0 + }, + { + "start": 14175.0, + "end": 14175.0, + "probability": 0.0 + }, + { + "start": 14175.0, + "end": 14175.0, + "probability": 0.0 + }, + { + "start": 14175.22, + "end": 14181.19, + "probability": 0.098 + }, + { + "start": 14184.7, + "end": 14188.4, + "probability": 0.0862 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.0, + "end": 14300.0, + "probability": 0.0 + }, + { + "start": 14300.16, + "end": 14300.82, + "probability": 0.0587 + }, + { + "start": 14301.36, + "end": 14303.04, + "probability": 0.7941 + }, + { + "start": 14303.12, + "end": 14306.96, + "probability": 0.9667 + }, + { + "start": 14307.34, + "end": 14309.16, + "probability": 0.9534 + }, + { + "start": 14310.02, + "end": 14313.16, + "probability": 0.9666 + }, + { + "start": 14313.66, + "end": 14316.58, + "probability": 0.9979 + }, + { + "start": 14317.06, + "end": 14321.44, + "probability": 0.9546 + }, + { + "start": 14322.62, + "end": 14327.76, + "probability": 0.9683 + }, + { + "start": 14327.9, + "end": 14329.14, + "probability": 0.5319 + }, + { + "start": 14331.58, + "end": 14333.0, + "probability": 0.9927 + }, + { + "start": 14334.6, + "end": 14337.56, + "probability": 0.4709 + }, + { + "start": 14337.96, + "end": 14338.7, + "probability": 0.5412 + }, + { + "start": 14339.04, + "end": 14340.28, + "probability": 0.9111 + }, + { + "start": 14340.76, + "end": 14345.48, + "probability": 0.8872 + }, + { + "start": 14345.48, + "end": 14345.48, + "probability": 0.2481 + }, + { + "start": 14345.48, + "end": 14346.56, + "probability": 0.66 + }, + { + "start": 14346.82, + "end": 14347.9, + "probability": 0.3057 + }, + { + "start": 14348.18, + "end": 14349.18, + "probability": 0.6002 + }, + { + "start": 14350.38, + "end": 14353.52, + "probability": 0.9788 + }, + { + "start": 14354.14, + "end": 14357.48, + "probability": 0.9453 + }, + { + "start": 14358.2, + "end": 14358.58, + "probability": 0.8816 + }, + { + "start": 14358.58, + "end": 14358.96, + "probability": 0.4696 + }, + { + "start": 14359.1, + "end": 14360.8, + "probability": 0.8005 + }, + { + "start": 14361.26, + "end": 14362.98, + "probability": 0.7921 + }, + { + "start": 14363.4, + "end": 14367.22, + "probability": 0.9792 + }, + { + "start": 14368.16, + "end": 14372.52, + "probability": 0.9951 + }, + { + "start": 14372.88, + "end": 14377.46, + "probability": 0.9971 + }, + { + "start": 14378.26, + "end": 14382.68, + "probability": 0.9894 + }, + { + "start": 14382.96, + "end": 14383.8, + "probability": 0.5616 + }, + { + "start": 14383.98, + "end": 14387.22, + "probability": 0.9699 + }, + { + "start": 14387.32, + "end": 14387.88, + "probability": 0.9539 + }, + { + "start": 14387.96, + "end": 14390.16, + "probability": 0.9145 + }, + { + "start": 14402.92, + "end": 14406.04, + "probability": 0.0786 + }, + { + "start": 14407.1, + "end": 14408.1, + "probability": 0.0158 + }, + { + "start": 14410.91, + "end": 14411.36, + "probability": 0.0267 + }, + { + "start": 14413.47, + "end": 14418.56, + "probability": 0.024 + }, + { + "start": 14418.89, + "end": 14419.95, + "probability": 0.0469 + }, + { + "start": 14421.62, + "end": 14421.8, + "probability": 0.5585 + }, + { + "start": 14421.8, + "end": 14421.8, + "probability": 0.0005 + }, + { + "start": 14421.8, + "end": 14421.8, + "probability": 0.0633 + }, + { + "start": 14421.8, + "end": 14421.8, + "probability": 0.0316 + }, + { + "start": 14421.8, + "end": 14421.8, + "probability": 0.0074 + }, + { + "start": 14421.8, + "end": 14422.74, + "probability": 0.1513 + }, + { + "start": 14423.54, + "end": 14426.44, + "probability": 0.6881 + }, + { + "start": 14429.94, + "end": 14430.76, + "probability": 0.011 + }, + { + "start": 14431.52, + "end": 14433.02, + "probability": 0.5503 + }, + { + "start": 14434.1, + "end": 14441.78, + "probability": 0.8841 + }, + { + "start": 14441.98, + "end": 14443.68, + "probability": 0.7643 + }, + { + "start": 14444.28, + "end": 14445.5, + "probability": 0.9963 + }, + { + "start": 14446.56, + "end": 14450.12, + "probability": 0.9692 + }, + { + "start": 14450.64, + "end": 14452.36, + "probability": 0.9946 + }, + { + "start": 14453.12, + "end": 14455.08, + "probability": 0.9746 + }, + { + "start": 14455.82, + "end": 14458.72, + "probability": 0.9736 + }, + { + "start": 14460.04, + "end": 14463.5, + "probability": 0.853 + }, + { + "start": 14464.08, + "end": 14465.06, + "probability": 0.6146 + }, + { + "start": 14465.72, + "end": 14466.92, + "probability": 0.7727 + }, + { + "start": 14467.78, + "end": 14470.4, + "probability": 0.9152 + }, + { + "start": 14470.94, + "end": 14473.1, + "probability": 0.9694 + }, + { + "start": 14473.16, + "end": 14474.08, + "probability": 0.91 + }, + { + "start": 14474.12, + "end": 14475.32, + "probability": 0.9695 + }, + { + "start": 14475.78, + "end": 14477.76, + "probability": 0.8733 + }, + { + "start": 14477.88, + "end": 14484.86, + "probability": 0.991 + }, + { + "start": 14485.28, + "end": 14486.3, + "probability": 0.9528 + }, + { + "start": 14487.22, + "end": 14490.26, + "probability": 0.9592 + }, + { + "start": 14490.88, + "end": 14493.21, + "probability": 0.9388 + }, + { + "start": 14494.28, + "end": 14495.48, + "probability": 0.9541 + }, + { + "start": 14495.52, + "end": 14499.22, + "probability": 0.9707 + }, + { + "start": 14499.74, + "end": 14500.73, + "probability": 0.992 + }, + { + "start": 14500.94, + "end": 14502.66, + "probability": 0.9709 + }, + { + "start": 14503.1, + "end": 14505.86, + "probability": 0.9536 + }, + { + "start": 14506.22, + "end": 14507.7, + "probability": 0.9386 + }, + { + "start": 14507.78, + "end": 14509.58, + "probability": 0.9777 + }, + { + "start": 14510.64, + "end": 14518.8, + "probability": 0.9871 + }, + { + "start": 14520.02, + "end": 14522.62, + "probability": 0.8606 + }, + { + "start": 14522.8, + "end": 14528.46, + "probability": 0.8815 + }, + { + "start": 14529.22, + "end": 14535.7, + "probability": 0.9277 + }, + { + "start": 14535.82, + "end": 14539.2, + "probability": 0.8506 + }, + { + "start": 14539.78, + "end": 14541.28, + "probability": 0.8786 + }, + { + "start": 14541.62, + "end": 14545.37, + "probability": 0.9194 + }, + { + "start": 14546.32, + "end": 14550.64, + "probability": 0.9652 + }, + { + "start": 14550.94, + "end": 14554.56, + "probability": 0.9846 + }, + { + "start": 14554.56, + "end": 14557.44, + "probability": 0.9985 + }, + { + "start": 14558.5, + "end": 14561.4, + "probability": 0.9827 + }, + { + "start": 14561.98, + "end": 14564.06, + "probability": 0.9956 + }, + { + "start": 14564.24, + "end": 14567.1, + "probability": 0.9715 + }, + { + "start": 14567.22, + "end": 14568.08, + "probability": 0.7854 + }, + { + "start": 14568.58, + "end": 14571.52, + "probability": 0.9507 + }, + { + "start": 14571.54, + "end": 14574.64, + "probability": 0.9602 + }, + { + "start": 14576.97, + "end": 14580.7, + "probability": 0.6733 + }, + { + "start": 14580.72, + "end": 14584.02, + "probability": 0.9933 + }, + { + "start": 14584.4, + "end": 14585.42, + "probability": 0.8199 + }, + { + "start": 14586.8, + "end": 14590.62, + "probability": 0.9041 + }, + { + "start": 14592.16, + "end": 14596.46, + "probability": 0.9972 + }, + { + "start": 14596.8, + "end": 14598.82, + "probability": 0.9695 + }, + { + "start": 14599.24, + "end": 14603.38, + "probability": 0.9926 + }, + { + "start": 14603.54, + "end": 14606.66, + "probability": 0.7199 + }, + { + "start": 14607.2, + "end": 14611.76, + "probability": 0.9429 + }, + { + "start": 14612.1, + "end": 14614.22, + "probability": 0.9862 + }, + { + "start": 14614.22, + "end": 14616.2, + "probability": 0.9967 + }, + { + "start": 14616.26, + "end": 14617.31, + "probability": 0.9424 + }, + { + "start": 14617.58, + "end": 14619.94, + "probability": 0.9779 + }, + { + "start": 14620.16, + "end": 14621.36, + "probability": 0.9694 + }, + { + "start": 14621.72, + "end": 14622.58, + "probability": 0.9502 + }, + { + "start": 14622.72, + "end": 14623.54, + "probability": 0.9052 + }, + { + "start": 14624.0, + "end": 14627.44, + "probability": 0.9268 + }, + { + "start": 14627.62, + "end": 14628.2, + "probability": 0.6476 + }, + { + "start": 14628.32, + "end": 14630.4, + "probability": 0.9124 + }, + { + "start": 14631.3, + "end": 14634.96, + "probability": 0.8695 + }, + { + "start": 14635.28, + "end": 14637.7, + "probability": 0.9877 + }, + { + "start": 14638.22, + "end": 14640.74, + "probability": 0.9858 + }, + { + "start": 14641.64, + "end": 14645.02, + "probability": 0.9532 + }, + { + "start": 14645.86, + "end": 14647.28, + "probability": 0.9946 + }, + { + "start": 14647.36, + "end": 14648.9, + "probability": 0.9963 + }, + { + "start": 14649.04, + "end": 14650.52, + "probability": 0.8262 + }, + { + "start": 14651.24, + "end": 14654.54, + "probability": 0.9427 + }, + { + "start": 14654.54, + "end": 14658.68, + "probability": 0.8982 + }, + { + "start": 14659.58, + "end": 14661.28, + "probability": 0.9826 + }, + { + "start": 14661.4, + "end": 14663.28, + "probability": 0.8508 + }, + { + "start": 14663.42, + "end": 14667.68, + "probability": 0.9855 + }, + { + "start": 14668.86, + "end": 14669.74, + "probability": 0.5847 + }, + { + "start": 14669.88, + "end": 14673.14, + "probability": 0.9893 + }, + { + "start": 14673.76, + "end": 14675.58, + "probability": 0.7932 + }, + { + "start": 14676.14, + "end": 14680.27, + "probability": 0.9763 + }, + { + "start": 14681.14, + "end": 14682.58, + "probability": 0.866 + }, + { + "start": 14682.74, + "end": 14687.26, + "probability": 0.9502 + }, + { + "start": 14687.34, + "end": 14691.54, + "probability": 0.4132 + }, + { + "start": 14693.74, + "end": 14693.84, + "probability": 0.4858 + }, + { + "start": 14694.0, + "end": 14694.58, + "probability": 0.6527 + }, + { + "start": 14694.72, + "end": 14699.86, + "probability": 0.9725 + }, + { + "start": 14700.4, + "end": 14702.8, + "probability": 0.9546 + }, + { + "start": 14702.9, + "end": 14704.26, + "probability": 0.8786 + }, + { + "start": 14704.76, + "end": 14705.54, + "probability": 0.9814 + }, + { + "start": 14705.72, + "end": 14706.11, + "probability": 0.9744 + }, + { + "start": 14706.54, + "end": 14709.72, + "probability": 0.9463 + }, + { + "start": 14710.3, + "end": 14713.66, + "probability": 0.9761 + }, + { + "start": 14713.66, + "end": 14717.18, + "probability": 0.9983 + }, + { + "start": 14717.9, + "end": 14718.14, + "probability": 0.2716 + }, + { + "start": 14718.26, + "end": 14720.34, + "probability": 0.6519 + }, + { + "start": 14720.34, + "end": 14724.2, + "probability": 0.7047 + }, + { + "start": 14724.48, + "end": 14726.14, + "probability": 0.472 + }, + { + "start": 14726.48, + "end": 14732.36, + "probability": 0.981 + }, + { + "start": 14732.58, + "end": 14733.82, + "probability": 0.8167 + }, + { + "start": 14734.32, + "end": 14737.76, + "probability": 0.9533 + }, + { + "start": 14738.3, + "end": 14742.3, + "probability": 0.9124 + }, + { + "start": 14742.48, + "end": 14743.42, + "probability": 0.9915 + }, + { + "start": 14743.54, + "end": 14744.58, + "probability": 0.9502 + }, + { + "start": 14744.86, + "end": 14747.0, + "probability": 0.8774 + }, + { + "start": 14747.5, + "end": 14749.52, + "probability": 0.9499 + }, + { + "start": 14749.9, + "end": 14752.0, + "probability": 0.9104 + }, + { + "start": 14752.12, + "end": 14753.82, + "probability": 0.9849 + }, + { + "start": 14754.36, + "end": 14756.12, + "probability": 0.9943 + }, + { + "start": 14756.56, + "end": 14760.5, + "probability": 0.9769 + }, + { + "start": 14760.54, + "end": 14761.0, + "probability": 0.9496 + }, + { + "start": 14761.08, + "end": 14763.28, + "probability": 0.9973 + }, + { + "start": 14763.76, + "end": 14766.64, + "probability": 0.8769 + }, + { + "start": 14766.94, + "end": 14767.86, + "probability": 0.6842 + }, + { + "start": 14768.44, + "end": 14770.12, + "probability": 0.9888 + }, + { + "start": 14770.22, + "end": 14771.1, + "probability": 0.8622 + }, + { + "start": 14771.36, + "end": 14772.38, + "probability": 0.8674 + }, + { + "start": 14772.44, + "end": 14773.29, + "probability": 0.9832 + }, + { + "start": 14774.08, + "end": 14775.8, + "probability": 0.9547 + }, + { + "start": 14776.16, + "end": 14776.42, + "probability": 0.0013 + }, + { + "start": 14777.36, + "end": 14782.42, + "probability": 0.9984 + }, + { + "start": 14782.42, + "end": 14786.34, + "probability": 0.9991 + }, + { + "start": 14786.46, + "end": 14789.6, + "probability": 0.7918 + }, + { + "start": 14790.42, + "end": 14791.0, + "probability": 0.5943 + }, + { + "start": 14791.0, + "end": 14794.08, + "probability": 0.8464 + }, + { + "start": 14796.0, + "end": 14799.4, + "probability": 0.4729 + }, + { + "start": 14800.12, + "end": 14803.32, + "probability": 0.7456 + }, + { + "start": 14803.82, + "end": 14807.84, + "probability": 0.9253 + }, + { + "start": 14808.24, + "end": 14809.3, + "probability": 0.5888 + }, + { + "start": 14809.54, + "end": 14813.19, + "probability": 0.9712 + }, + { + "start": 14813.22, + "end": 14813.62, + "probability": 0.0328 + }, + { + "start": 14815.86, + "end": 14816.6, + "probability": 0.892 + }, + { + "start": 14818.16, + "end": 14819.72, + "probability": 0.5695 + }, + { + "start": 14822.5, + "end": 14824.62, + "probability": 0.2718 + }, + { + "start": 14825.26, + "end": 14825.78, + "probability": 0.3583 + }, + { + "start": 14825.88, + "end": 14826.34, + "probability": 0.6835 + }, + { + "start": 14826.4, + "end": 14827.36, + "probability": 0.6481 + }, + { + "start": 14827.81, + "end": 14832.76, + "probability": 0.9808 + }, + { + "start": 14834.32, + "end": 14834.48, + "probability": 0.1721 + }, + { + "start": 14834.48, + "end": 14834.48, + "probability": 0.1522 + }, + { + "start": 14834.48, + "end": 14834.48, + "probability": 0.3135 + }, + { + "start": 14834.48, + "end": 14834.9, + "probability": 0.4942 + }, + { + "start": 14835.16, + "end": 14838.94, + "probability": 0.9348 + }, + { + "start": 14840.6, + "end": 14843.06, + "probability": 0.9094 + }, + { + "start": 14843.54, + "end": 14846.16, + "probability": 0.996 + }, + { + "start": 14846.16, + "end": 14849.78, + "probability": 0.5417 + }, + { + "start": 14850.68, + "end": 14854.12, + "probability": 0.9067 + }, + { + "start": 14854.92, + "end": 14858.24, + "probability": 0.9785 + }, + { + "start": 14858.48, + "end": 14860.48, + "probability": 0.9867 + }, + { + "start": 14861.28, + "end": 14864.2, + "probability": 0.8611 + }, + { + "start": 14864.48, + "end": 14865.28, + "probability": 0.57 + }, + { + "start": 14866.06, + "end": 14870.58, + "probability": 0.9562 + }, + { + "start": 14871.0, + "end": 14872.42, + "probability": 0.9937 + }, + { + "start": 14872.84, + "end": 14873.26, + "probability": 0.7096 + }, + { + "start": 14873.62, + "end": 14875.34, + "probability": 0.9362 + }, + { + "start": 14875.92, + "end": 14879.64, + "probability": 0.91 + }, + { + "start": 14880.18, + "end": 14880.86, + "probability": 0.9001 + }, + { + "start": 14881.44, + "end": 14882.76, + "probability": 0.9826 + }, + { + "start": 14883.58, + "end": 14885.0, + "probability": 0.9972 + }, + { + "start": 14885.52, + "end": 14890.54, + "probability": 0.9381 + }, + { + "start": 14891.5, + "end": 14893.04, + "probability": 0.9644 + }, + { + "start": 14893.94, + "end": 14895.72, + "probability": 0.9236 + }, + { + "start": 14896.92, + "end": 14902.86, + "probability": 0.7709 + }, + { + "start": 14903.54, + "end": 14904.24, + "probability": 0.7081 + }, + { + "start": 14904.88, + "end": 14906.0, + "probability": 0.6458 + }, + { + "start": 14906.48, + "end": 14908.62, + "probability": 0.958 + }, + { + "start": 14909.84, + "end": 14910.34, + "probability": 0.3062 + }, + { + "start": 14911.1, + "end": 14914.76, + "probability": 0.9906 + }, + { + "start": 14915.68, + "end": 14921.4, + "probability": 0.9953 + }, + { + "start": 14921.74, + "end": 14923.68, + "probability": 0.9292 + }, + { + "start": 14926.22, + "end": 14926.91, + "probability": 0.427 + }, + { + "start": 14929.16, + "end": 14930.0, + "probability": 0.2783 + }, + { + "start": 14930.0, + "end": 14930.02, + "probability": 0.0252 + }, + { + "start": 14930.14, + "end": 14930.38, + "probability": 0.5264 + }, + { + "start": 14930.42, + "end": 14931.97, + "probability": 0.9574 + }, + { + "start": 14932.38, + "end": 14935.0, + "probability": 0.423 + }, + { + "start": 14935.04, + "end": 14935.84, + "probability": 0.5144 + }, + { + "start": 14935.84, + "end": 14938.22, + "probability": 0.9639 + }, + { + "start": 14938.3, + "end": 14938.74, + "probability": 0.5232 + }, + { + "start": 14939.03, + "end": 14939.1, + "probability": 0.0511 + }, + { + "start": 14939.1, + "end": 14939.97, + "probability": 0.8389 + }, + { + "start": 14940.6, + "end": 14942.6, + "probability": 0.9752 + }, + { + "start": 14942.8, + "end": 14945.24, + "probability": 0.9249 + }, + { + "start": 14946.14, + "end": 14947.16, + "probability": 0.9876 + }, + { + "start": 14947.9, + "end": 14949.18, + "probability": 0.9849 + }, + { + "start": 14950.62, + "end": 14952.1, + "probability": 0.917 + }, + { + "start": 14953.36, + "end": 14957.04, + "probability": 0.9996 + }, + { + "start": 14957.04, + "end": 14961.02, + "probability": 0.9915 + }, + { + "start": 14961.8, + "end": 14964.6, + "probability": 0.9381 + }, + { + "start": 14965.36, + "end": 14969.76, + "probability": 0.98 + }, + { + "start": 14970.38, + "end": 14975.14, + "probability": 0.9917 + }, + { + "start": 14976.6, + "end": 14977.28, + "probability": 0.7377 + }, + { + "start": 14977.86, + "end": 14979.04, + "probability": 0.9103 + }, + { + "start": 14979.08, + "end": 14981.04, + "probability": 0.2692 + }, + { + "start": 14981.32, + "end": 14982.2, + "probability": 0.644 + }, + { + "start": 14982.36, + "end": 14983.2, + "probability": 0.7592 + }, + { + "start": 14983.3, + "end": 14984.48, + "probability": 0.8241 + }, + { + "start": 14984.66, + "end": 14985.8, + "probability": 0.8777 + }, + { + "start": 14985.86, + "end": 14987.6, + "probability": 0.9956 + }, + { + "start": 14987.96, + "end": 14989.5, + "probability": 0.984 + }, + { + "start": 14989.92, + "end": 14991.4, + "probability": 0.9917 + }, + { + "start": 14991.56, + "end": 14992.35, + "probability": 0.8611 + }, + { + "start": 14992.86, + "end": 14994.16, + "probability": 0.9882 + }, + { + "start": 14994.24, + "end": 14995.56, + "probability": 0.7608 + }, + { + "start": 14995.86, + "end": 14997.16, + "probability": 0.8525 + }, + { + "start": 14997.6, + "end": 14998.86, + "probability": 0.9371 + }, + { + "start": 14999.8, + "end": 15002.0, + "probability": 0.8288 + }, + { + "start": 15002.3, + "end": 15007.0, + "probability": 0.9954 + }, + { + "start": 15007.4, + "end": 15011.84, + "probability": 0.998 + }, + { + "start": 15012.22, + "end": 15015.38, + "probability": 0.9865 + }, + { + "start": 15015.54, + "end": 15015.88, + "probability": 0.8819 + }, + { + "start": 15016.02, + "end": 15017.5, + "probability": 0.9751 + }, + { + "start": 15017.64, + "end": 15022.58, + "probability": 0.9976 + }, + { + "start": 15023.56, + "end": 15024.36, + "probability": 0.5818 + }, + { + "start": 15024.78, + "end": 15026.94, + "probability": 0.9536 + }, + { + "start": 15027.44, + "end": 15029.12, + "probability": 0.896 + }, + { + "start": 15029.62, + "end": 15034.82, + "probability": 0.9746 + }, + { + "start": 15034.96, + "end": 15036.26, + "probability": 0.9933 + }, + { + "start": 15037.28, + "end": 15038.14, + "probability": 0.6877 + }, + { + "start": 15038.26, + "end": 15040.88, + "probability": 0.9578 + }, + { + "start": 15041.8, + "end": 15044.18, + "probability": 0.732 + }, + { + "start": 15044.24, + "end": 15046.36, + "probability": 0.7761 + }, + { + "start": 15046.92, + "end": 15050.87, + "probability": 0.9526 + }, + { + "start": 15051.09, + "end": 15053.03, + "probability": 0.4913 + }, + { + "start": 15053.09, + "end": 15053.51, + "probability": 0.9216 + }, + { + "start": 15053.91, + "end": 15054.61, + "probability": 0.0469 + }, + { + "start": 15055.73, + "end": 15057.01, + "probability": 0.9591 + }, + { + "start": 15057.11, + "end": 15058.29, + "probability": 0.6071 + }, + { + "start": 15058.43, + "end": 15059.75, + "probability": 0.9076 + }, + { + "start": 15059.99, + "end": 15061.01, + "probability": 0.9673 + }, + { + "start": 15061.53, + "end": 15067.13, + "probability": 0.9705 + }, + { + "start": 15067.61, + "end": 15068.71, + "probability": 0.7356 + }, + { + "start": 15068.77, + "end": 15071.89, + "probability": 0.9036 + }, + { + "start": 15072.27, + "end": 15074.79, + "probability": 0.9963 + }, + { + "start": 15074.85, + "end": 15075.27, + "probability": 0.8993 + }, + { + "start": 15076.39, + "end": 15079.29, + "probability": 0.4033 + }, + { + "start": 15079.47, + "end": 15080.23, + "probability": 0.7923 + }, + { + "start": 15080.43, + "end": 15081.79, + "probability": 0.9854 + }, + { + "start": 15095.01, + "end": 15095.27, + "probability": 0.162 + }, + { + "start": 15095.27, + "end": 15095.83, + "probability": 0.0441 + }, + { + "start": 15096.41, + "end": 15099.51, + "probability": 0.0761 + }, + { + "start": 15102.07, + "end": 15104.33, + "probability": 0.0472 + }, + { + "start": 15105.79, + "end": 15107.59, + "probability": 0.1152 + }, + { + "start": 15107.77, + "end": 15108.45, + "probability": 0.0316 + }, + { + "start": 15108.55, + "end": 15110.31, + "probability": 0.0239 + }, + { + "start": 15110.61, + "end": 15113.63, + "probability": 0.1722 + }, + { + "start": 15114.05, + "end": 15118.05, + "probability": 0.1118 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.0, + "end": 15178.0, + "probability": 0.0 + }, + { + "start": 15178.12, + "end": 15178.12, + "probability": 0.4971 + }, + { + "start": 15178.12, + "end": 15178.84, + "probability": 0.0139 + }, + { + "start": 15178.86, + "end": 15180.5, + "probability": 0.6981 + }, + { + "start": 15180.54, + "end": 15181.69, + "probability": 0.9222 + }, + { + "start": 15183.3, + "end": 15186.58, + "probability": 0.8207 + }, + { + "start": 15187.16, + "end": 15189.68, + "probability": 0.9949 + }, + { + "start": 15189.94, + "end": 15191.16, + "probability": 0.9781 + }, + { + "start": 15191.24, + "end": 15192.12, + "probability": 0.9268 + }, + { + "start": 15192.18, + "end": 15193.7, + "probability": 0.9803 + }, + { + "start": 15194.96, + "end": 15197.56, + "probability": 0.9599 + }, + { + "start": 15198.44, + "end": 15202.64, + "probability": 0.9807 + }, + { + "start": 15203.74, + "end": 15205.44, + "probability": 0.9803 + }, + { + "start": 15206.38, + "end": 15211.96, + "probability": 0.9978 + }, + { + "start": 15212.78, + "end": 15214.96, + "probability": 0.9961 + }, + { + "start": 15215.96, + "end": 15220.78, + "probability": 0.8999 + }, + { + "start": 15221.06, + "end": 15222.62, + "probability": 0.6527 + }, + { + "start": 15222.66, + "end": 15223.44, + "probability": 0.8533 + }, + { + "start": 15224.92, + "end": 15227.46, + "probability": 0.998 + }, + { + "start": 15227.62, + "end": 15228.28, + "probability": 0.5022 + }, + { + "start": 15228.38, + "end": 15229.0, + "probability": 0.8831 + }, + { + "start": 15229.52, + "end": 15231.2, + "probability": 0.9807 + }, + { + "start": 15232.36, + "end": 15236.38, + "probability": 0.9865 + }, + { + "start": 15236.64, + "end": 15238.04, + "probability": 0.9785 + }, + { + "start": 15238.8, + "end": 15240.4, + "probability": 0.9652 + }, + { + "start": 15241.4, + "end": 15242.32, + "probability": 0.6441 + }, + { + "start": 15243.16, + "end": 15245.74, + "probability": 0.9706 + }, + { + "start": 15246.88, + "end": 15248.86, + "probability": 0.9912 + }, + { + "start": 15249.16, + "end": 15250.81, + "probability": 0.9912 + }, + { + "start": 15251.14, + "end": 15253.58, + "probability": 0.9915 + }, + { + "start": 15254.56, + "end": 15257.68, + "probability": 0.9929 + }, + { + "start": 15259.16, + "end": 15260.68, + "probability": 0.9812 + }, + { + "start": 15261.48, + "end": 15265.04, + "probability": 0.991 + }, + { + "start": 15265.56, + "end": 15269.32, + "probability": 0.9973 + }, + { + "start": 15271.28, + "end": 15272.18, + "probability": 0.9089 + }, + { + "start": 15273.78, + "end": 15277.2, + "probability": 0.8221 + }, + { + "start": 15277.52, + "end": 15282.16, + "probability": 0.9976 + }, + { + "start": 15282.88, + "end": 15283.68, + "probability": 0.7979 + }, + { + "start": 15283.86, + "end": 15285.06, + "probability": 0.962 + }, + { + "start": 15296.68, + "end": 15299.78, + "probability": 0.7744 + }, + { + "start": 15301.64, + "end": 15305.14, + "probability": 0.9888 + }, + { + "start": 15305.9, + "end": 15308.0, + "probability": 0.8638 + }, + { + "start": 15308.0, + "end": 15311.4, + "probability": 0.9905 + }, + { + "start": 15312.38, + "end": 15315.2, + "probability": 0.9683 + }, + { + "start": 15315.28, + "end": 15317.0, + "probability": 0.8312 + }, + { + "start": 15317.06, + "end": 15318.46, + "probability": 0.7832 + }, + { + "start": 15318.5, + "end": 15320.28, + "probability": 0.9784 + }, + { + "start": 15320.42, + "end": 15321.38, + "probability": 0.8924 + }, + { + "start": 15322.02, + "end": 15323.62, + "probability": 0.4707 + }, + { + "start": 15324.1, + "end": 15324.22, + "probability": 0.5509 + }, + { + "start": 15324.94, + "end": 15325.4, + "probability": 0.6576 + }, + { + "start": 15325.52, + "end": 15325.78, + "probability": 0.17 + }, + { + "start": 15325.9, + "end": 15327.78, + "probability": 0.5175 + }, + { + "start": 15327.98, + "end": 15329.78, + "probability": 0.9783 + }, + { + "start": 15330.56, + "end": 15331.02, + "probability": 0.6918 + }, + { + "start": 15331.16, + "end": 15332.22, + "probability": 0.6868 + }, + { + "start": 15332.42, + "end": 15333.59, + "probability": 0.8906 + }, + { + "start": 15333.72, + "end": 15334.14, + "probability": 0.0128 + }, + { + "start": 15334.14, + "end": 15335.54, + "probability": 0.7304 + }, + { + "start": 15339.46, + "end": 15340.42, + "probability": 0.4169 + }, + { + "start": 15341.14, + "end": 15342.74, + "probability": 0.0933 + }, + { + "start": 15343.58, + "end": 15344.94, + "probability": 0.4332 + }, + { + "start": 15344.98, + "end": 15345.28, + "probability": 0.7975 + }, + { + "start": 15345.34, + "end": 15349.26, + "probability": 0.9836 + }, + { + "start": 15349.3, + "end": 15350.62, + "probability": 0.8251 + }, + { + "start": 15352.59, + "end": 15356.75, + "probability": 0.6655 + }, + { + "start": 15358.1, + "end": 15359.17, + "probability": 0.9789 + }, + { + "start": 15360.74, + "end": 15363.74, + "probability": 0.9877 + }, + { + "start": 15364.44, + "end": 15366.94, + "probability": 0.6337 + }, + { + "start": 15368.04, + "end": 15370.66, + "probability": 0.9015 + }, + { + "start": 15371.16, + "end": 15372.2, + "probability": 0.8873 + }, + { + "start": 15372.68, + "end": 15374.7, + "probability": 0.948 + }, + { + "start": 15375.92, + "end": 15380.22, + "probability": 0.9214 + }, + { + "start": 15380.28, + "end": 15380.98, + "probability": 0.9139 + }, + { + "start": 15381.72, + "end": 15383.48, + "probability": 0.9566 + }, + { + "start": 15383.54, + "end": 15389.54, + "probability": 0.9395 + }, + { + "start": 15390.94, + "end": 15396.08, + "probability": 0.9937 + }, + { + "start": 15396.92, + "end": 15400.73, + "probability": 0.9951 + }, + { + "start": 15400.9, + "end": 15405.08, + "probability": 0.9085 + }, + { + "start": 15405.24, + "end": 15405.34, + "probability": 0.0079 + }, + { + "start": 15406.5, + "end": 15406.68, + "probability": 0.0465 + }, + { + "start": 15406.68, + "end": 15406.68, + "probability": 0.0344 + }, + { + "start": 15406.68, + "end": 15406.68, + "probability": 0.0508 + }, + { + "start": 15406.68, + "end": 15406.68, + "probability": 0.2198 + }, + { + "start": 15406.68, + "end": 15406.68, + "probability": 0.2521 + }, + { + "start": 15406.68, + "end": 15406.92, + "probability": 0.2724 + }, + { + "start": 15407.04, + "end": 15408.96, + "probability": 0.1169 + }, + { + "start": 15408.96, + "end": 15409.56, + "probability": 0.2057 + }, + { + "start": 15409.98, + "end": 15413.14, + "probability": 0.2705 + }, + { + "start": 15413.96, + "end": 15414.9, + "probability": 0.8931 + }, + { + "start": 15415.04, + "end": 15418.56, + "probability": 0.9814 + }, + { + "start": 15418.58, + "end": 15428.02, + "probability": 0.9783 + }, + { + "start": 15428.32, + "end": 15433.84, + "probability": 0.9321 + }, + { + "start": 15433.84, + "end": 15433.84, + "probability": 0.1407 + }, + { + "start": 15433.84, + "end": 15434.28, + "probability": 0.1461 + }, + { + "start": 15434.48, + "end": 15434.68, + "probability": 0.6375 + }, + { + "start": 15434.84, + "end": 15438.92, + "probability": 0.9168 + }, + { + "start": 15439.6, + "end": 15442.04, + "probability": 0.9161 + }, + { + "start": 15442.6, + "end": 15445.66, + "probability": 0.9709 + }, + { + "start": 15445.76, + "end": 15446.4, + "probability": 0.6941 + }, + { + "start": 15446.44, + "end": 15446.54, + "probability": 0.1781 + }, + { + "start": 15446.54, + "end": 15446.86, + "probability": 0.1178 + }, + { + "start": 15446.86, + "end": 15451.04, + "probability": 0.9326 + }, + { + "start": 15451.56, + "end": 15454.0, + "probability": 0.9823 + }, + { + "start": 15454.1, + "end": 15458.24, + "probability": 0.9914 + }, + { + "start": 15459.24, + "end": 15459.54, + "probability": 0.0199 + }, + { + "start": 15459.58, + "end": 15459.7, + "probability": 0.1117 + }, + { + "start": 15459.7, + "end": 15459.7, + "probability": 0.206 + }, + { + "start": 15459.7, + "end": 15467.68, + "probability": 0.993 + }, + { + "start": 15467.68, + "end": 15473.58, + "probability": 0.9482 + }, + { + "start": 15474.58, + "end": 15477.7, + "probability": 0.8956 + }, + { + "start": 15478.28, + "end": 15481.3, + "probability": 0.9973 + }, + { + "start": 15481.3, + "end": 15484.22, + "probability": 0.9991 + }, + { + "start": 15484.74, + "end": 15485.54, + "probability": 0.7652 + }, + { + "start": 15486.1, + "end": 15487.46, + "probability": 0.9421 + }, + { + "start": 15487.92, + "end": 15489.14, + "probability": 0.8765 + }, + { + "start": 15489.48, + "end": 15490.58, + "probability": 0.9721 + }, + { + "start": 15490.66, + "end": 15491.86, + "probability": 0.9458 + }, + { + "start": 15492.08, + "end": 15494.56, + "probability": 0.985 + }, + { + "start": 15494.68, + "end": 15499.52, + "probability": 0.8462 + }, + { + "start": 15500.08, + "end": 15505.46, + "probability": 0.847 + }, + { + "start": 15505.68, + "end": 15507.04, + "probability": 0.8076 + }, + { + "start": 15507.62, + "end": 15512.84, + "probability": 0.9843 + }, + { + "start": 15513.24, + "end": 15515.47, + "probability": 0.8322 + }, + { + "start": 15515.62, + "end": 15515.74, + "probability": 0.0441 + }, + { + "start": 15515.74, + "end": 15515.74, + "probability": 0.0691 + }, + { + "start": 15515.74, + "end": 15517.9, + "probability": 0.8185 + }, + { + "start": 15518.64, + "end": 15526.08, + "probability": 0.8241 + }, + { + "start": 15526.9, + "end": 15531.78, + "probability": 0.9974 + }, + { + "start": 15532.88, + "end": 15535.32, + "probability": 0.8464 + }, + { + "start": 15535.7, + "end": 15538.62, + "probability": 0.9929 + }, + { + "start": 15539.64, + "end": 15541.8, + "probability": 0.9946 + }, + { + "start": 15542.02, + "end": 15545.18, + "probability": 0.996 + }, + { + "start": 15545.72, + "end": 15546.76, + "probability": 0.8582 + }, + { + "start": 15547.14, + "end": 15552.76, + "probability": 0.9478 + }, + { + "start": 15553.28, + "end": 15553.52, + "probability": 0.0817 + }, + { + "start": 15553.52, + "end": 15557.58, + "probability": 0.9401 + }, + { + "start": 15557.82, + "end": 15563.56, + "probability": 0.9973 + }, + { + "start": 15564.26, + "end": 15565.32, + "probability": 0.8272 + }, + { + "start": 15565.96, + "end": 15567.02, + "probability": 0.2734 + }, + { + "start": 15567.64, + "end": 15573.16, + "probability": 0.9959 + }, + { + "start": 15573.4, + "end": 15575.14, + "probability": 0.7973 + }, + { + "start": 15575.28, + "end": 15582.82, + "probability": 0.9971 + }, + { + "start": 15583.2, + "end": 15584.8, + "probability": 0.8987 + }, + { + "start": 15585.36, + "end": 15589.22, + "probability": 0.9473 + }, + { + "start": 15589.78, + "end": 15593.54, + "probability": 0.5671 + }, + { + "start": 15593.8, + "end": 15599.24, + "probability": 0.9763 + }, + { + "start": 15599.72, + "end": 15603.4, + "probability": 0.897 + }, + { + "start": 15604.54, + "end": 15608.46, + "probability": 0.9906 + }, + { + "start": 15609.04, + "end": 15611.24, + "probability": 0.9668 + }, + { + "start": 15613.61, + "end": 15617.1, + "probability": 0.6775 + }, + { + "start": 15617.1, + "end": 15618.58, + "probability": 0.2855 + }, + { + "start": 15619.38, + "end": 15623.06, + "probability": 0.8979 + }, + { + "start": 15623.58, + "end": 15626.64, + "probability": 0.9412 + }, + { + "start": 15627.22, + "end": 15630.18, + "probability": 0.9783 + }, + { + "start": 15630.64, + "end": 15638.1, + "probability": 0.8602 + }, + { + "start": 15638.68, + "end": 15643.88, + "probability": 0.9692 + }, + { + "start": 15644.4, + "end": 15645.32, + "probability": 0.4202 + }, + { + "start": 15645.34, + "end": 15647.02, + "probability": 0.9423 + }, + { + "start": 15649.02, + "end": 15655.4, + "probability": 0.8929 + }, + { + "start": 15655.76, + "end": 15659.56, + "probability": 0.9885 + }, + { + "start": 15659.98, + "end": 15663.18, + "probability": 0.9941 + }, + { + "start": 15664.06, + "end": 15666.74, + "probability": 0.9785 + }, + { + "start": 15667.16, + "end": 15670.68, + "probability": 0.9529 + }, + { + "start": 15671.3, + "end": 15674.64, + "probability": 0.7707 + }, + { + "start": 15674.98, + "end": 15681.24, + "probability": 0.9691 + }, + { + "start": 15682.12, + "end": 15683.48, + "probability": 0.5486 + }, + { + "start": 15684.35, + "end": 15685.96, + "probability": 0.6364 + }, + { + "start": 15686.2, + "end": 15687.08, + "probability": 0.6295 + }, + { + "start": 15687.36, + "end": 15688.56, + "probability": 0.5146 + }, + { + "start": 15689.74, + "end": 15690.94, + "probability": 0.7843 + }, + { + "start": 15691.76, + "end": 15694.06, + "probability": 0.9917 + }, + { + "start": 15694.18, + "end": 15694.76, + "probability": 0.3287 + }, + { + "start": 15694.8, + "end": 15695.26, + "probability": 0.816 + }, + { + "start": 15695.3, + "end": 15696.68, + "probability": 0.9722 + }, + { + "start": 15697.3, + "end": 15702.72, + "probability": 0.8811 + }, + { + "start": 15703.76, + "end": 15705.14, + "probability": 0.5837 + }, + { + "start": 15706.36, + "end": 15710.2, + "probability": 0.869 + }, + { + "start": 15710.78, + "end": 15711.92, + "probability": 0.843 + }, + { + "start": 15712.58, + "end": 15718.54, + "probability": 0.9726 + }, + { + "start": 15719.08, + "end": 15727.16, + "probability": 0.9909 + }, + { + "start": 15727.62, + "end": 15728.78, + "probability": 0.7199 + }, + { + "start": 15728.84, + "end": 15730.76, + "probability": 0.923 + }, + { + "start": 15731.4, + "end": 15739.78, + "probability": 0.9702 + }, + { + "start": 15739.82, + "end": 15746.24, + "probability": 0.9989 + }, + { + "start": 15746.96, + "end": 15749.04, + "probability": 0.0265 + }, + { + "start": 15749.04, + "end": 15749.04, + "probability": 0.388 + }, + { + "start": 15749.04, + "end": 15750.98, + "probability": 0.6624 + }, + { + "start": 15751.28, + "end": 15755.5, + "probability": 0.7128 + }, + { + "start": 15755.92, + "end": 15755.92, + "probability": 0.0496 + }, + { + "start": 15755.92, + "end": 15757.52, + "probability": 0.0987 + }, + { + "start": 15757.52, + "end": 15759.48, + "probability": 0.7469 + }, + { + "start": 15760.52, + "end": 15763.38, + "probability": 0.4251 + }, + { + "start": 15765.0, + "end": 15765.24, + "probability": 0.0348 + }, + { + "start": 15765.24, + "end": 15768.86, + "probability": 0.9288 + }, + { + "start": 15769.3, + "end": 15773.46, + "probability": 0.9818 + }, + { + "start": 15773.62, + "end": 15775.7, + "probability": 0.8291 + }, + { + "start": 15775.82, + "end": 15775.82, + "probability": 0.3473 + }, + { + "start": 15775.96, + "end": 15780.16, + "probability": 0.9508 + }, + { + "start": 15780.38, + "end": 15782.12, + "probability": 0.8635 + }, + { + "start": 15788.4, + "end": 15789.4, + "probability": 0.8182 + }, + { + "start": 15789.44, + "end": 15791.1, + "probability": 0.8465 + }, + { + "start": 15791.22, + "end": 15792.09, + "probability": 0.9476 + }, + { + "start": 15792.24, + "end": 15793.42, + "probability": 0.899 + }, + { + "start": 15793.46, + "end": 15797.44, + "probability": 0.9853 + }, + { + "start": 15797.86, + "end": 15798.3, + "probability": 0.9341 + }, + { + "start": 15798.36, + "end": 15799.08, + "probability": 0.9668 + }, + { + "start": 15799.16, + "end": 15799.92, + "probability": 0.9595 + }, + { + "start": 15800.26, + "end": 15801.64, + "probability": 0.9243 + }, + { + "start": 15801.98, + "end": 15802.76, + "probability": 0.8129 + }, + { + "start": 15802.86, + "end": 15804.59, + "probability": 0.9907 + }, + { + "start": 15805.08, + "end": 15806.72, + "probability": 0.9761 + }, + { + "start": 15806.88, + "end": 15808.57, + "probability": 0.9624 + }, + { + "start": 15809.0, + "end": 15811.98, + "probability": 0.9961 + }, + { + "start": 15811.98, + "end": 15817.26, + "probability": 0.9902 + }, + { + "start": 15817.36, + "end": 15817.72, + "probability": 0.2305 + }, + { + "start": 15817.9, + "end": 15820.15, + "probability": 0.9858 + }, + { + "start": 15820.28, + "end": 15821.52, + "probability": 0.9817 + }, + { + "start": 15821.9, + "end": 15823.06, + "probability": 0.957 + }, + { + "start": 15823.66, + "end": 15827.52, + "probability": 0.9941 + }, + { + "start": 15827.52, + "end": 15828.0, + "probability": 0.2557 + }, + { + "start": 15828.64, + "end": 15829.84, + "probability": 0.6396 + }, + { + "start": 15830.14, + "end": 15832.98, + "probability": 0.9692 + }, + { + "start": 15832.98, + "end": 15834.06, + "probability": 0.9062 + }, + { + "start": 15834.82, + "end": 15837.02, + "probability": 0.9206 + }, + { + "start": 15837.08, + "end": 15841.12, + "probability": 0.9548 + }, + { + "start": 15841.12, + "end": 15845.82, + "probability": 0.9996 + }, + { + "start": 15846.44, + "end": 15848.82, + "probability": 0.98 + }, + { + "start": 15849.0, + "end": 15854.46, + "probability": 0.9771 + }, + { + "start": 15854.96, + "end": 15857.46, + "probability": 0.9331 + }, + { + "start": 15857.88, + "end": 15860.28, + "probability": 0.8983 + }, + { + "start": 15860.58, + "end": 15863.38, + "probability": 0.9967 + }, + { + "start": 15863.92, + "end": 15868.48, + "probability": 0.9897 + }, + { + "start": 15868.9, + "end": 15872.04, + "probability": 0.9924 + }, + { + "start": 15872.2, + "end": 15876.88, + "probability": 0.9606 + }, + { + "start": 15877.04, + "end": 15878.04, + "probability": 0.6737 + }, + { + "start": 15878.34, + "end": 15880.3, + "probability": 0.9779 + }, + { + "start": 15880.3, + "end": 15880.68, + "probability": 0.665 + }, + { + "start": 15881.04, + "end": 15883.78, + "probability": 0.6331 + }, + { + "start": 15883.9, + "end": 15885.32, + "probability": 0.3481 + }, + { + "start": 15885.6, + "end": 15886.92, + "probability": 0.3925 + }, + { + "start": 15887.4, + "end": 15888.72, + "probability": 0.0052 + }, + { + "start": 15889.24, + "end": 15889.58, + "probability": 0.3978 + }, + { + "start": 15889.62, + "end": 15890.7, + "probability": 0.8108 + }, + { + "start": 15891.02, + "end": 15891.12, + "probability": 0.3914 + }, + { + "start": 15891.12, + "end": 15891.28, + "probability": 0.4113 + }, + { + "start": 15891.3, + "end": 15892.28, + "probability": 0.988 + }, + { + "start": 15892.5, + "end": 15893.1, + "probability": 0.0172 + }, + { + "start": 15894.34, + "end": 15896.72, + "probability": 0.7664 + }, + { + "start": 15896.78, + "end": 15897.96, + "probability": 0.9551 + }, + { + "start": 15898.6, + "end": 15902.32, + "probability": 0.9686 + }, + { + "start": 15902.96, + "end": 15906.02, + "probability": 0.9365 + }, + { + "start": 15906.58, + "end": 15908.9, + "probability": 0.9833 + }, + { + "start": 15909.06, + "end": 15914.4, + "probability": 0.982 + }, + { + "start": 15914.94, + "end": 15916.32, + "probability": 0.9951 + }, + { + "start": 15916.4, + "end": 15916.98, + "probability": 0.8062 + }, + { + "start": 15917.04, + "end": 15918.06, + "probability": 0.8604 + }, + { + "start": 15918.42, + "end": 15919.78, + "probability": 0.9038 + }, + { + "start": 15919.84, + "end": 15921.1, + "probability": 0.9606 + }, + { + "start": 15921.64, + "end": 15928.4, + "probability": 0.9421 + }, + { + "start": 15928.9, + "end": 15933.0, + "probability": 0.9997 + }, + { + "start": 15933.16, + "end": 15937.66, + "probability": 0.9987 + }, + { + "start": 15938.1, + "end": 15940.96, + "probability": 0.8086 + }, + { + "start": 15941.08, + "end": 15941.32, + "probability": 0.3082 + }, + { + "start": 15941.36, + "end": 15941.62, + "probability": 0.5038 + }, + { + "start": 15941.78, + "end": 15944.06, + "probability": 0.9991 + }, + { + "start": 15944.26, + "end": 15945.58, + "probability": 0.9961 + }, + { + "start": 15945.76, + "end": 15947.28, + "probability": 0.9889 + }, + { + "start": 15947.7, + "end": 15949.28, + "probability": 0.8701 + }, + { + "start": 15949.76, + "end": 15950.96, + "probability": 0.6815 + }, + { + "start": 15951.58, + "end": 15953.3, + "probability": 0.584 + }, + { + "start": 15953.34, + "end": 15953.66, + "probability": 0.54 + }, + { + "start": 15954.84, + "end": 15958.42, + "probability": 0.5812 + }, + { + "start": 15959.02, + "end": 15963.14, + "probability": 0.9009 + }, + { + "start": 15963.34, + "end": 15968.1, + "probability": 0.6406 + }, + { + "start": 15968.9, + "end": 15973.92, + "probability": 0.2173 + }, + { + "start": 15980.22, + "end": 15981.6, + "probability": 0.0051 + }, + { + "start": 15987.58, + "end": 15990.18, + "probability": 0.5718 + }, + { + "start": 15990.26, + "end": 15993.24, + "probability": 0.946 + }, + { + "start": 15993.48, + "end": 15995.5, + "probability": 0.3974 + }, + { + "start": 15995.7, + "end": 15997.26, + "probability": 0.3912 + }, + { + "start": 15998.46, + "end": 15999.2, + "probability": 0.13 + }, + { + "start": 15999.94, + "end": 16000.82, + "probability": 0.0337 + }, + { + "start": 16000.82, + "end": 16002.46, + "probability": 0.1743 + }, + { + "start": 16002.98, + "end": 16005.4, + "probability": 0.0855 + }, + { + "start": 16005.4, + "end": 16005.6, + "probability": 0.2068 + }, + { + "start": 16007.02, + "end": 16009.28, + "probability": 0.0149 + }, + { + "start": 16009.98, + "end": 16011.64, + "probability": 0.0783 + }, + { + "start": 16011.64, + "end": 16015.94, + "probability": 0.1042 + }, + { + "start": 16017.88, + "end": 16018.12, + "probability": 0.0129 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.0, + "end": 16063.0, + "probability": 0.0 + }, + { + "start": 16063.12, + "end": 16063.99, + "probability": 0.1518 + }, + { + "start": 16066.46, + "end": 16068.28, + "probability": 0.9338 + }, + { + "start": 16068.88, + "end": 16075.9, + "probability": 0.9364 + }, + { + "start": 16076.82, + "end": 16080.0, + "probability": 0.9395 + }, + { + "start": 16081.72, + "end": 16082.7, + "probability": 0.4432 + }, + { + "start": 16082.84, + "end": 16087.52, + "probability": 0.6489 + }, + { + "start": 16088.08, + "end": 16089.06, + "probability": 0.4477 + }, + { + "start": 16089.7, + "end": 16091.5, + "probability": 0.8511 + }, + { + "start": 16093.18, + "end": 16100.66, + "probability": 0.9897 + }, + { + "start": 16100.66, + "end": 16103.22, + "probability": 0.9067 + }, + { + "start": 16103.28, + "end": 16103.94, + "probability": 0.6891 + }, + { + "start": 16104.04, + "end": 16105.62, + "probability": 0.9481 + }, + { + "start": 16105.64, + "end": 16106.34, + "probability": 0.7479 + }, + { + "start": 16107.2, + "end": 16108.08, + "probability": 0.6617 + }, + { + "start": 16110.38, + "end": 16116.8, + "probability": 0.7592 + }, + { + "start": 16117.28, + "end": 16117.88, + "probability": 0.3149 + }, + { + "start": 16118.16, + "end": 16124.3, + "probability": 0.9694 + }, + { + "start": 16125.58, + "end": 16132.1, + "probability": 0.7861 + }, + { + "start": 16132.12, + "end": 16133.61, + "probability": 0.5399 + }, + { + "start": 16134.3, + "end": 16134.78, + "probability": 0.516 + }, + { + "start": 16135.4, + "end": 16136.96, + "probability": 0.6698 + }, + { + "start": 16137.52, + "end": 16139.72, + "probability": 0.8831 + }, + { + "start": 16140.48, + "end": 16142.76, + "probability": 0.7055 + }, + { + "start": 16143.74, + "end": 16153.56, + "probability": 0.9339 + }, + { + "start": 16155.04, + "end": 16160.36, + "probability": 0.7393 + }, + { + "start": 16160.9, + "end": 16162.3, + "probability": 0.7801 + }, + { + "start": 16163.3, + "end": 16169.32, + "probability": 0.7499 + }, + { + "start": 16170.86, + "end": 16172.18, + "probability": 0.8991 + }, + { + "start": 16173.32, + "end": 16175.62, + "probability": 0.9548 + }, + { + "start": 16177.88, + "end": 16183.02, + "probability": 0.9139 + }, + { + "start": 16183.48, + "end": 16185.2, + "probability": 0.8665 + }, + { + "start": 16186.22, + "end": 16191.36, + "probability": 0.9689 + }, + { + "start": 16191.36, + "end": 16195.72, + "probability": 0.9839 + }, + { + "start": 16197.16, + "end": 16197.46, + "probability": 0.6134 + }, + { + "start": 16198.3, + "end": 16199.96, + "probability": 0.7011 + }, + { + "start": 16200.72, + "end": 16205.84, + "probability": 0.9944 + }, + { + "start": 16206.78, + "end": 16213.04, + "probability": 0.6634 + }, + { + "start": 16213.98, + "end": 16215.6, + "probability": 0.8639 + }, + { + "start": 16216.7, + "end": 16217.9, + "probability": 0.6254 + }, + { + "start": 16218.7, + "end": 16219.68, + "probability": 0.3942 + }, + { + "start": 16220.58, + "end": 16228.08, + "probability": 0.7681 + }, + { + "start": 16228.78, + "end": 16231.4, + "probability": 0.9883 + }, + { + "start": 16231.94, + "end": 16235.26, + "probability": 0.9777 + }, + { + "start": 16236.24, + "end": 16237.92, + "probability": 0.9363 + }, + { + "start": 16238.48, + "end": 16242.56, + "probability": 0.998 + }, + { + "start": 16243.76, + "end": 16244.6, + "probability": 0.2675 + }, + { + "start": 16247.78, + "end": 16252.74, + "probability": 0.7927 + }, + { + "start": 16252.86, + "end": 16257.32, + "probability": 0.9681 + }, + { + "start": 16257.32, + "end": 16262.06, + "probability": 0.9622 + }, + { + "start": 16262.16, + "end": 16265.92, + "probability": 0.9541 + }, + { + "start": 16268.06, + "end": 16278.24, + "probability": 0.7988 + }, + { + "start": 16279.1, + "end": 16282.45, + "probability": 0.9698 + }, + { + "start": 16284.72, + "end": 16285.26, + "probability": 0.9019 + }, + { + "start": 16285.42, + "end": 16287.02, + "probability": 0.585 + }, + { + "start": 16287.2, + "end": 16288.04, + "probability": 0.6856 + }, + { + "start": 16288.22, + "end": 16293.72, + "probability": 0.965 + }, + { + "start": 16294.96, + "end": 16295.96, + "probability": 0.3188 + }, + { + "start": 16296.58, + "end": 16299.34, + "probability": 0.9628 + }, + { + "start": 16299.56, + "end": 16302.6, + "probability": 0.854 + }, + { + "start": 16302.74, + "end": 16304.06, + "probability": 0.638 + }, + { + "start": 16304.22, + "end": 16305.44, + "probability": 0.8394 + }, + { + "start": 16305.52, + "end": 16308.5, + "probability": 0.9663 + }, + { + "start": 16308.66, + "end": 16313.16, + "probability": 0.9781 + }, + { + "start": 16313.72, + "end": 16315.96, + "probability": 0.7643 + }, + { + "start": 16316.5, + "end": 16321.36, + "probability": 0.7862 + }, + { + "start": 16321.42, + "end": 16325.92, + "probability": 0.9807 + }, + { + "start": 16325.92, + "end": 16330.98, + "probability": 0.711 + }, + { + "start": 16331.86, + "end": 16335.19, + "probability": 0.9707 + }, + { + "start": 16337.34, + "end": 16341.5, + "probability": 0.9893 + }, + { + "start": 16342.04, + "end": 16344.24, + "probability": 0.5218 + }, + { + "start": 16344.76, + "end": 16347.56, + "probability": 0.9569 + }, + { + "start": 16347.9, + "end": 16351.48, + "probability": 0.824 + }, + { + "start": 16352.08, + "end": 16355.54, + "probability": 0.9924 + }, + { + "start": 16356.9, + "end": 16359.34, + "probability": 0.9847 + }, + { + "start": 16359.72, + "end": 16365.54, + "probability": 0.9688 + }, + { + "start": 16367.04, + "end": 16368.54, + "probability": 0.9923 + }, + { + "start": 16369.1, + "end": 16370.22, + "probability": 0.8694 + }, + { + "start": 16371.0, + "end": 16374.44, + "probability": 0.9558 + }, + { + "start": 16378.2, + "end": 16381.08, + "probability": 0.6715 + }, + { + "start": 16381.28, + "end": 16383.67, + "probability": 0.9162 + }, + { + "start": 16384.04, + "end": 16392.78, + "probability": 0.9847 + }, + { + "start": 16393.64, + "end": 16397.2, + "probability": 0.9814 + }, + { + "start": 16397.72, + "end": 16403.98, + "probability": 0.9346 + }, + { + "start": 16404.14, + "end": 16404.14, + "probability": 0.0047 + }, + { + "start": 16406.34, + "end": 16409.56, + "probability": 0.6643 + }, + { + "start": 16410.36, + "end": 16412.72, + "probability": 0.5356 + }, + { + "start": 16413.52, + "end": 16414.42, + "probability": 0.7351 + }, + { + "start": 16415.02, + "end": 16424.96, + "probability": 0.9819 + }, + { + "start": 16425.94, + "end": 16427.98, + "probability": 0.9601 + }, + { + "start": 16428.6, + "end": 16433.16, + "probability": 0.7713 + }, + { + "start": 16434.32, + "end": 16438.5, + "probability": 0.5939 + }, + { + "start": 16439.26, + "end": 16441.18, + "probability": 0.732 + }, + { + "start": 16441.22, + "end": 16446.94, + "probability": 0.8231 + }, + { + "start": 16447.34, + "end": 16448.34, + "probability": 0.4468 + }, + { + "start": 16448.64, + "end": 16449.62, + "probability": 0.752 + }, + { + "start": 16450.1, + "end": 16454.08, + "probability": 0.8676 + }, + { + "start": 16454.14, + "end": 16455.98, + "probability": 0.9298 + }, + { + "start": 16456.1, + "end": 16457.54, + "probability": 0.8838 + }, + { + "start": 16458.06, + "end": 16461.78, + "probability": 0.9608 + }, + { + "start": 16462.06, + "end": 16464.96, + "probability": 0.8984 + }, + { + "start": 16465.3, + "end": 16467.56, + "probability": 0.9938 + }, + { + "start": 16468.06, + "end": 16468.56, + "probability": 0.813 + }, + { + "start": 16469.06, + "end": 16469.44, + "probability": 0.6637 + }, + { + "start": 16469.54, + "end": 16472.84, + "probability": 0.984 + }, + { + "start": 16472.84, + "end": 16477.72, + "probability": 0.9815 + }, + { + "start": 16478.2, + "end": 16479.42, + "probability": 0.9883 + }, + { + "start": 16489.8, + "end": 16492.42, + "probability": 0.7332 + }, + { + "start": 16493.22, + "end": 16494.98, + "probability": 0.9198 + }, + { + "start": 16495.16, + "end": 16497.12, + "probability": 0.7607 + }, + { + "start": 16497.62, + "end": 16498.44, + "probability": 0.2659 + }, + { + "start": 16498.44, + "end": 16501.16, + "probability": 0.7471 + }, + { + "start": 16502.0, + "end": 16506.64, + "probability": 0.9839 + }, + { + "start": 16506.64, + "end": 16514.2, + "probability": 0.9978 + }, + { + "start": 16514.2, + "end": 16519.14, + "probability": 0.9826 + }, + { + "start": 16519.76, + "end": 16522.32, + "probability": 0.7497 + }, + { + "start": 16522.32, + "end": 16525.3, + "probability": 0.5767 + }, + { + "start": 16525.54, + "end": 16526.7, + "probability": 0.7841 + }, + { + "start": 16526.78, + "end": 16528.24, + "probability": 0.9689 + }, + { + "start": 16529.1, + "end": 16532.24, + "probability": 0.79 + }, + { + "start": 16532.68, + "end": 16534.2, + "probability": 0.5032 + }, + { + "start": 16535.2, + "end": 16538.34, + "probability": 0.9906 + }, + { + "start": 16539.16, + "end": 16541.78, + "probability": 0.7427 + }, + { + "start": 16541.78, + "end": 16544.62, + "probability": 0.9229 + }, + { + "start": 16545.58, + "end": 16547.94, + "probability": 0.5616 + }, + { + "start": 16548.02, + "end": 16551.2, + "probability": 0.8454 + }, + { + "start": 16551.2, + "end": 16555.38, + "probability": 0.8818 + }, + { + "start": 16555.54, + "end": 16556.16, + "probability": 0.5897 + }, + { + "start": 16556.56, + "end": 16560.12, + "probability": 0.9486 + }, + { + "start": 16560.12, + "end": 16562.7, + "probability": 0.6109 + }, + { + "start": 16562.76, + "end": 16563.72, + "probability": 0.9267 + }, + { + "start": 16564.46, + "end": 16567.9, + "probability": 0.8066 + }, + { + "start": 16567.9, + "end": 16571.94, + "probability": 0.9964 + }, + { + "start": 16572.2, + "end": 16575.34, + "probability": 0.609 + }, + { + "start": 16575.46, + "end": 16579.44, + "probability": 0.9606 + }, + { + "start": 16581.06, + "end": 16585.44, + "probability": 0.9989 + }, + { + "start": 16585.54, + "end": 16586.12, + "probability": 0.7896 + }, + { + "start": 16586.68, + "end": 16587.8, + "probability": 0.5639 + }, + { + "start": 16588.96, + "end": 16589.98, + "probability": 0.8646 + }, + { + "start": 16591.08, + "end": 16595.5, + "probability": 0.9957 + }, + { + "start": 16595.5, + "end": 16600.8, + "probability": 0.7864 + }, + { + "start": 16601.44, + "end": 16601.76, + "probability": 0.8255 + }, + { + "start": 16602.4, + "end": 16604.7, + "probability": 0.6497 + }, + { + "start": 16604.86, + "end": 16607.46, + "probability": 0.6719 + }, + { + "start": 16607.46, + "end": 16609.38, + "probability": 0.8744 + }, + { + "start": 16609.38, + "end": 16609.92, + "probability": 0.6221 + }, + { + "start": 16610.28, + "end": 16611.0, + "probability": 0.774 + }, + { + "start": 16611.22, + "end": 16616.26, + "probability": 0.9595 + }, + { + "start": 16616.86, + "end": 16619.52, + "probability": 0.8495 + }, + { + "start": 16620.06, + "end": 16620.62, + "probability": 0.7077 + }, + { + "start": 16621.0, + "end": 16625.96, + "probability": 0.871 + }, + { + "start": 16626.04, + "end": 16629.74, + "probability": 0.8988 + }, + { + "start": 16630.06, + "end": 16630.52, + "probability": 0.9606 + }, + { + "start": 16631.34, + "end": 16635.0, + "probability": 0.7007 + }, + { + "start": 16635.12, + "end": 16641.88, + "probability": 0.893 + }, + { + "start": 16641.98, + "end": 16645.8, + "probability": 0.9795 + }, + { + "start": 16646.8, + "end": 16647.46, + "probability": 0.7361 + }, + { + "start": 16647.58, + "end": 16648.5, + "probability": 0.8266 + }, + { + "start": 16648.66, + "end": 16653.32, + "probability": 0.886 + }, + { + "start": 16653.32, + "end": 16657.62, + "probability": 0.6833 + }, + { + "start": 16657.76, + "end": 16660.44, + "probability": 0.4899 + }, + { + "start": 16660.88, + "end": 16661.22, + "probability": 0.4326 + }, + { + "start": 16661.4, + "end": 16664.28, + "probability": 0.9548 + }, + { + "start": 16664.74, + "end": 16669.68, + "probability": 0.9017 + }, + { + "start": 16670.3, + "end": 16671.76, + "probability": 0.7063 + }, + { + "start": 16672.06, + "end": 16676.56, + "probability": 0.8046 + }, + { + "start": 16676.56, + "end": 16679.72, + "probability": 0.9995 + }, + { + "start": 16680.16, + "end": 16684.48, + "probability": 0.7582 + }, + { + "start": 16684.48, + "end": 16688.58, + "probability": 0.9349 + }, + { + "start": 16689.1, + "end": 16689.5, + "probability": 0.2615 + }, + { + "start": 16689.54, + "end": 16692.72, + "probability": 0.9978 + }, + { + "start": 16692.82, + "end": 16693.17, + "probability": 0.9704 + }, + { + "start": 16693.88, + "end": 16694.54, + "probability": 0.8833 + }, + { + "start": 16694.94, + "end": 16698.52, + "probability": 0.8825 + }, + { + "start": 16698.98, + "end": 16703.4, + "probability": 0.9865 + }, + { + "start": 16703.54, + "end": 16704.94, + "probability": 0.7505 + }, + { + "start": 16705.46, + "end": 16707.66, + "probability": 0.9976 + }, + { + "start": 16708.04, + "end": 16711.62, + "probability": 0.966 + }, + { + "start": 16711.74, + "end": 16715.6, + "probability": 0.9698 + }, + { + "start": 16715.66, + "end": 16719.14, + "probability": 0.6955 + }, + { + "start": 16719.3, + "end": 16723.28, + "probability": 0.9148 + }, + { + "start": 16723.8, + "end": 16726.68, + "probability": 0.6313 + }, + { + "start": 16727.2, + "end": 16728.16, + "probability": 0.6782 + }, + { + "start": 16728.16, + "end": 16730.82, + "probability": 0.9631 + }, + { + "start": 16731.24, + "end": 16733.82, + "probability": 0.906 + }, + { + "start": 16734.24, + "end": 16736.88, + "probability": 0.9619 + }, + { + "start": 16737.36, + "end": 16737.86, + "probability": 0.6689 + }, + { + "start": 16738.48, + "end": 16741.2, + "probability": 0.984 + }, + { + "start": 16741.2, + "end": 16745.34, + "probability": 0.8384 + }, + { + "start": 16745.46, + "end": 16746.36, + "probability": 0.6927 + }, + { + "start": 16746.8, + "end": 16752.08, + "probability": 0.9602 + }, + { + "start": 16753.56, + "end": 16753.8, + "probability": 0.3451 + }, + { + "start": 16753.92, + "end": 16755.76, + "probability": 0.8632 + }, + { + "start": 16756.18, + "end": 16756.92, + "probability": 0.6829 + }, + { + "start": 16757.58, + "end": 16760.16, + "probability": 0.953 + }, + { + "start": 16760.68, + "end": 16763.36, + "probability": 0.9377 + }, + { + "start": 16763.44, + "end": 16765.66, + "probability": 0.8864 + }, + { + "start": 16765.66, + "end": 16768.64, + "probability": 0.7889 + }, + { + "start": 16768.66, + "end": 16769.86, + "probability": 0.8853 + }, + { + "start": 16770.32, + "end": 16773.51, + "probability": 0.8452 + }, + { + "start": 16775.88, + "end": 16776.54, + "probability": 0.7261 + }, + { + "start": 16777.32, + "end": 16779.8, + "probability": 0.7496 + }, + { + "start": 16781.32, + "end": 16782.75, + "probability": 0.0227 + }, + { + "start": 16782.94, + "end": 16783.56, + "probability": 0.1738 + }, + { + "start": 16783.7, + "end": 16784.36, + "probability": 0.4861 + }, + { + "start": 16784.44, + "end": 16786.16, + "probability": 0.8464 + }, + { + "start": 16786.42, + "end": 16788.6, + "probability": 0.6923 + }, + { + "start": 16788.6, + "end": 16791.1, + "probability": 0.3748 + }, + { + "start": 16791.1, + "end": 16792.26, + "probability": 0.7007 + }, + { + "start": 16792.82, + "end": 16794.34, + "probability": 0.4912 + }, + { + "start": 16794.5, + "end": 16794.99, + "probability": 0.7932 + }, + { + "start": 16795.86, + "end": 16799.64, + "probability": 0.917 + }, + { + "start": 16799.72, + "end": 16800.66, + "probability": 0.7562 + }, + { + "start": 16801.1, + "end": 16804.78, + "probability": 0.7746 + }, + { + "start": 16804.9, + "end": 16807.02, + "probability": 0.8726 + }, + { + "start": 16807.2, + "end": 16809.25, + "probability": 0.8845 + }, + { + "start": 16809.52, + "end": 16811.28, + "probability": 0.9814 + }, + { + "start": 16811.38, + "end": 16814.02, + "probability": 0.9763 + }, + { + "start": 16814.42, + "end": 16819.06, + "probability": 0.7332 + }, + { + "start": 16819.66, + "end": 16822.16, + "probability": 0.9917 + }, + { + "start": 16822.58, + "end": 16827.17, + "probability": 0.8748 + }, + { + "start": 16828.83, + "end": 16835.66, + "probability": 0.9893 + }, + { + "start": 16835.66, + "end": 16836.08, + "probability": 0.24 + }, + { + "start": 16836.64, + "end": 16842.54, + "probability": 0.8682 + }, + { + "start": 16843.2, + "end": 16850.06, + "probability": 0.8989 + }, + { + "start": 16850.78, + "end": 16853.92, + "probability": 0.9675 + }, + { + "start": 16854.08, + "end": 16856.82, + "probability": 0.8923 + }, + { + "start": 16857.64, + "end": 16859.86, + "probability": 0.6592 + }, + { + "start": 16860.74, + "end": 16864.32, + "probability": 0.8773 + }, + { + "start": 16864.88, + "end": 16868.26, + "probability": 0.945 + }, + { + "start": 16868.92, + "end": 16874.0, + "probability": 0.9963 + }, + { + "start": 16874.62, + "end": 16876.1, + "probability": 0.9934 + }, + { + "start": 16876.5, + "end": 16879.22, + "probability": 0.9678 + }, + { + "start": 16879.76, + "end": 16882.16, + "probability": 0.9611 + }, + { + "start": 16882.3, + "end": 16884.26, + "probability": 0.8914 + }, + { + "start": 16884.7, + "end": 16885.74, + "probability": 0.9312 + }, + { + "start": 16886.06, + "end": 16887.5, + "probability": 0.9641 + }, + { + "start": 16887.88, + "end": 16888.98, + "probability": 0.9465 + }, + { + "start": 16889.08, + "end": 16890.08, + "probability": 0.8849 + }, + { + "start": 16892.62, + "end": 16892.9, + "probability": 0.322 + }, + { + "start": 16892.9, + "end": 16895.48, + "probability": 0.9175 + }, + { + "start": 16895.68, + "end": 16896.36, + "probability": 0.8874 + }, + { + "start": 16896.76, + "end": 16897.84, + "probability": 0.6246 + }, + { + "start": 16898.2, + "end": 16899.28, + "probability": 0.9448 + }, + { + "start": 16899.68, + "end": 16900.52, + "probability": 0.5131 + }, + { + "start": 16900.54, + "end": 16901.81, + "probability": 0.8831 + }, + { + "start": 16902.52, + "end": 16903.4, + "probability": 0.4546 + }, + { + "start": 16904.08, + "end": 16905.88, + "probability": 0.8879 + }, + { + "start": 16906.48, + "end": 16909.76, + "probability": 0.6974 + }, + { + "start": 16909.82, + "end": 16912.72, + "probability": 0.7409 + }, + { + "start": 16913.36, + "end": 16915.72, + "probability": 0.9128 + }, + { + "start": 16916.32, + "end": 16919.88, + "probability": 0.9985 + }, + { + "start": 16919.96, + "end": 16921.92, + "probability": 0.9824 + }, + { + "start": 16922.36, + "end": 16924.82, + "probability": 0.8802 + }, + { + "start": 16925.94, + "end": 16928.98, + "probability": 0.9977 + }, + { + "start": 16929.12, + "end": 16930.12, + "probability": 0.7505 + }, + { + "start": 16930.58, + "end": 16932.74, + "probability": 0.9009 + }, + { + "start": 16933.18, + "end": 16934.7, + "probability": 0.7529 + }, + { + "start": 16935.18, + "end": 16935.74, + "probability": 0.6071 + }, + { + "start": 16936.08, + "end": 16938.96, + "probability": 0.9979 + }, + { + "start": 16939.02, + "end": 16940.22, + "probability": 0.9011 + }, + { + "start": 16940.7, + "end": 16943.34, + "probability": 0.9848 + }, + { + "start": 16943.86, + "end": 16947.04, + "probability": 0.9152 + }, + { + "start": 16947.22, + "end": 16949.66, + "probability": 0.9668 + }, + { + "start": 16950.0, + "end": 16951.78, + "probability": 0.9249 + }, + { + "start": 16952.22, + "end": 16957.44, + "probability": 0.9899 + }, + { + "start": 16958.16, + "end": 16958.93, + "probability": 0.6865 + }, + { + "start": 16959.42, + "end": 16960.1, + "probability": 0.6745 + }, + { + "start": 16960.44, + "end": 16962.9, + "probability": 0.6925 + }, + { + "start": 16963.48, + "end": 16966.04, + "probability": 0.956 + }, + { + "start": 16966.04, + "end": 16969.04, + "probability": 0.7101 + }, + { + "start": 16969.68, + "end": 16974.46, + "probability": 0.7456 + }, + { + "start": 16974.96, + "end": 16978.74, + "probability": 0.9205 + }, + { + "start": 16979.04, + "end": 16980.18, + "probability": 0.9888 + }, + { + "start": 16980.2, + "end": 16981.06, + "probability": 0.6795 + }, + { + "start": 16981.28, + "end": 16983.12, + "probability": 0.8444 + }, + { + "start": 16983.48, + "end": 16984.31, + "probability": 0.8303 + }, + { + "start": 16984.96, + "end": 16989.0, + "probability": 0.988 + }, + { + "start": 16989.06, + "end": 16992.74, + "probability": 0.8798 + }, + { + "start": 16993.16, + "end": 16995.86, + "probability": 0.6185 + }, + { + "start": 16996.08, + "end": 17001.54, + "probability": 0.9667 + }, + { + "start": 17001.88, + "end": 17002.9, + "probability": 0.9543 + }, + { + "start": 17003.3, + "end": 17004.0, + "probability": 0.7395 + }, + { + "start": 17004.68, + "end": 17008.34, + "probability": 0.8616 + }, + { + "start": 17008.78, + "end": 17011.62, + "probability": 0.9769 + }, + { + "start": 17012.2, + "end": 17013.52, + "probability": 0.9578 + }, + { + "start": 17013.64, + "end": 17017.08, + "probability": 0.98 + }, + { + "start": 17017.26, + "end": 17019.72, + "probability": 0.9951 + }, + { + "start": 17020.28, + "end": 17024.48, + "probability": 0.8065 + }, + { + "start": 17024.48, + "end": 17028.74, + "probability": 0.9554 + }, + { + "start": 17029.24, + "end": 17032.18, + "probability": 0.8164 + }, + { + "start": 17032.72, + "end": 17033.98, + "probability": 0.755 + }, + { + "start": 17034.66, + "end": 17038.48, + "probability": 0.9683 + }, + { + "start": 17038.66, + "end": 17041.72, + "probability": 0.7983 + }, + { + "start": 17041.72, + "end": 17041.98, + "probability": 0.5626 + }, + { + "start": 17041.98, + "end": 17042.56, + "probability": 0.5064 + }, + { + "start": 17044.47, + "end": 17047.74, + "probability": 0.8881 + }, + { + "start": 17049.74, + "end": 17051.14, + "probability": 0.9491 + }, + { + "start": 17063.76, + "end": 17065.22, + "probability": 0.6504 + }, + { + "start": 17065.34, + "end": 17066.12, + "probability": 0.8668 + }, + { + "start": 17066.38, + "end": 17071.85, + "probability": 0.9077 + }, + { + "start": 17072.98, + "end": 17079.42, + "probability": 0.9772 + }, + { + "start": 17079.94, + "end": 17086.9, + "probability": 0.985 + }, + { + "start": 17087.68, + "end": 17088.8, + "probability": 0.6663 + }, + { + "start": 17088.94, + "end": 17089.82, + "probability": 0.0083 + }, + { + "start": 17089.82, + "end": 17090.46, + "probability": 0.4852 + }, + { + "start": 17090.46, + "end": 17091.72, + "probability": 0.8394 + }, + { + "start": 17092.06, + "end": 17097.64, + "probability": 0.9476 + }, + { + "start": 17098.0, + "end": 17101.48, + "probability": 0.9772 + }, + { + "start": 17101.7, + "end": 17102.6, + "probability": 0.8689 + }, + { + "start": 17102.9, + "end": 17104.42, + "probability": 0.299 + }, + { + "start": 17104.66, + "end": 17105.2, + "probability": 0.7802 + }, + { + "start": 17105.36, + "end": 17107.34, + "probability": 0.8564 + }, + { + "start": 17107.38, + "end": 17111.42, + "probability": 0.9779 + }, + { + "start": 17111.44, + "end": 17118.12, + "probability": 0.9946 + }, + { + "start": 17118.34, + "end": 17119.26, + "probability": 0.7817 + }, + { + "start": 17119.64, + "end": 17120.3, + "probability": 0.512 + }, + { + "start": 17120.32, + "end": 17122.08, + "probability": 0.7767 + }, + { + "start": 17122.08, + "end": 17128.52, + "probability": 0.8202 + }, + { + "start": 17128.82, + "end": 17130.3, + "probability": 0.6314 + }, + { + "start": 17130.44, + "end": 17135.42, + "probability": 0.5705 + }, + { + "start": 17138.78, + "end": 17140.94, + "probability": 0.3406 + }, + { + "start": 17147.16, + "end": 17150.56, + "probability": 0.0642 + }, + { + "start": 17153.44, + "end": 17154.78, + "probability": 0.7506 + }, + { + "start": 17154.86, + "end": 17156.44, + "probability": 0.6021 + }, + { + "start": 17156.86, + "end": 17158.1, + "probability": 0.5596 + }, + { + "start": 17158.3, + "end": 17159.4, + "probability": 0.0987 + }, + { + "start": 17160.5, + "end": 17161.78, + "probability": 0.1142 + }, + { + "start": 17163.6, + "end": 17164.18, + "probability": 0.0197 + }, + { + "start": 17164.18, + "end": 17165.12, + "probability": 0.024 + }, + { + "start": 17165.12, + "end": 17167.44, + "probability": 0.0179 + }, + { + "start": 17168.32, + "end": 17172.22, + "probability": 0.0138 + }, + { + "start": 17173.24, + "end": 17174.26, + "probability": 0.0526 + }, + { + "start": 17174.92, + "end": 17177.5, + "probability": 0.0577 + }, + { + "start": 17177.62, + "end": 17179.96, + "probability": 0.0049 + }, + { + "start": 17180.72, + "end": 17181.02, + "probability": 0.0019 + }, + { + "start": 17182.44, + "end": 17183.18, + "probability": 0.0217 + }, + { + "start": 17183.92, + "end": 17184.78, + "probability": 0.0558 + }, + { + "start": 17186.19, + "end": 17186.7, + "probability": 0.0786 + }, + { + "start": 17191.68, + "end": 17191.68, + "probability": 0.0035 + }, + { + "start": 17202.27, + "end": 17204.44, + "probability": 0.1505 + }, + { + "start": 17204.9, + "end": 17206.1, + "probability": 0.0351 + }, + { + "start": 17206.78, + "end": 17208.3, + "probability": 0.7246 + }, + { + "start": 17208.98, + "end": 17211.67, + "probability": 0.7874 + }, + { + "start": 17212.48, + "end": 17215.72, + "probability": 0.8215 + }, + { + "start": 17216.32, + "end": 17219.25, + "probability": 0.9823 + }, + { + "start": 17219.9, + "end": 17224.22, + "probability": 0.9972 + }, + { + "start": 17224.76, + "end": 17231.58, + "probability": 0.9987 + }, + { + "start": 17231.58, + "end": 17233.9, + "probability": 0.9951 + }, + { + "start": 17233.98, + "end": 17238.16, + "probability": 0.9971 + }, + { + "start": 17238.38, + "end": 17241.22, + "probability": 0.8569 + }, + { + "start": 17241.4, + "end": 17244.58, + "probability": 0.9938 + }, + { + "start": 17245.0, + "end": 17249.02, + "probability": 0.9768 + }, + { + "start": 17249.34, + "end": 17249.84, + "probability": 0.9163 + }, + { + "start": 17249.96, + "end": 17251.18, + "probability": 0.9186 + }, + { + "start": 17251.68, + "end": 17256.32, + "probability": 0.9798 + }, + { + "start": 17256.32, + "end": 17262.04, + "probability": 0.9956 + }, + { + "start": 17262.5, + "end": 17265.48, + "probability": 0.9963 + }, + { + "start": 17265.7, + "end": 17267.24, + "probability": 0.8966 + }, + { + "start": 17267.64, + "end": 17271.8, + "probability": 0.9878 + }, + { + "start": 17272.02, + "end": 17275.26, + "probability": 0.9973 + }, + { + "start": 17275.82, + "end": 17279.22, + "probability": 0.9917 + }, + { + "start": 17279.94, + "end": 17282.2, + "probability": 0.8402 + }, + { + "start": 17282.36, + "end": 17285.8, + "probability": 0.9957 + }, + { + "start": 17286.22, + "end": 17289.1, + "probability": 0.9983 + }, + { + "start": 17289.7, + "end": 17294.4, + "probability": 0.9967 + }, + { + "start": 17295.02, + "end": 17296.62, + "probability": 0.9886 + }, + { + "start": 17296.74, + "end": 17301.19, + "probability": 0.9764 + }, + { + "start": 17301.56, + "end": 17304.52, + "probability": 0.8333 + }, + { + "start": 17305.12, + "end": 17312.06, + "probability": 0.9504 + }, + { + "start": 17312.06, + "end": 17313.18, + "probability": 0.7138 + }, + { + "start": 17313.26, + "end": 17315.88, + "probability": 0.9766 + }, + { + "start": 17316.38, + "end": 17323.21, + "probability": 0.9686 + }, + { + "start": 17323.88, + "end": 17328.01, + "probability": 0.9901 + }, + { + "start": 17328.84, + "end": 17332.12, + "probability": 0.7083 + }, + { + "start": 17332.58, + "end": 17336.44, + "probability": 0.9832 + }, + { + "start": 17336.44, + "end": 17340.52, + "probability": 0.9982 + }, + { + "start": 17341.02, + "end": 17344.98, + "probability": 0.9905 + }, + { + "start": 17345.16, + "end": 17348.28, + "probability": 0.9963 + }, + { + "start": 17348.28, + "end": 17351.66, + "probability": 0.9689 + }, + { + "start": 17351.8, + "end": 17355.02, + "probability": 0.8253 + }, + { + "start": 17355.26, + "end": 17357.06, + "probability": 0.6195 + }, + { + "start": 17357.16, + "end": 17359.3, + "probability": 0.9232 + }, + { + "start": 17360.27, + "end": 17365.76, + "probability": 0.9973 + }, + { + "start": 17366.26, + "end": 17371.5, + "probability": 0.9937 + }, + { + "start": 17372.18, + "end": 17373.6, + "probability": 0.9531 + }, + { + "start": 17374.3, + "end": 17377.36, + "probability": 0.9993 + }, + { + "start": 17377.45, + "end": 17381.64, + "probability": 0.9993 + }, + { + "start": 17382.2, + "end": 17386.06, + "probability": 0.9971 + }, + { + "start": 17386.88, + "end": 17390.42, + "probability": 0.9985 + }, + { + "start": 17390.94, + "end": 17395.42, + "probability": 0.954 + }, + { + "start": 17395.9, + "end": 17399.38, + "probability": 0.9714 + }, + { + "start": 17399.78, + "end": 17401.52, + "probability": 0.9837 + }, + { + "start": 17401.66, + "end": 17405.26, + "probability": 0.9866 + }, + { + "start": 17405.46, + "end": 17407.46, + "probability": 0.9496 + }, + { + "start": 17408.02, + "end": 17409.7, + "probability": 0.8855 + }, + { + "start": 17410.12, + "end": 17411.88, + "probability": 0.8634 + }, + { + "start": 17412.52, + "end": 17414.12, + "probability": 0.9849 + }, + { + "start": 17414.22, + "end": 17416.3, + "probability": 0.9976 + }, + { + "start": 17416.68, + "end": 17419.92, + "probability": 0.9656 + }, + { + "start": 17420.34, + "end": 17422.84, + "probability": 0.9956 + }, + { + "start": 17423.62, + "end": 17425.7, + "probability": 0.9313 + }, + { + "start": 17426.24, + "end": 17428.9, + "probability": 0.9979 + }, + { + "start": 17429.3, + "end": 17431.16, + "probability": 0.9574 + }, + { + "start": 17431.72, + "end": 17434.92, + "probability": 0.9688 + }, + { + "start": 17435.3, + "end": 17439.62, + "probability": 0.9962 + }, + { + "start": 17439.66, + "end": 17440.66, + "probability": 0.7742 + }, + { + "start": 17441.12, + "end": 17444.38, + "probability": 0.9974 + }, + { + "start": 17444.38, + "end": 17448.74, + "probability": 0.9346 + }, + { + "start": 17449.1, + "end": 17452.12, + "probability": 0.8834 + }, + { + "start": 17452.16, + "end": 17454.26, + "probability": 0.9784 + }, + { + "start": 17454.36, + "end": 17455.02, + "probability": 0.8987 + }, + { + "start": 17455.2, + "end": 17456.1, + "probability": 0.9518 + }, + { + "start": 17456.22, + "end": 17457.24, + "probability": 0.9305 + }, + { + "start": 17457.86, + "end": 17461.28, + "probability": 0.9926 + }, + { + "start": 17461.7, + "end": 17464.34, + "probability": 0.9637 + }, + { + "start": 17464.8, + "end": 17467.62, + "probability": 0.9654 + }, + { + "start": 17468.26, + "end": 17474.48, + "probability": 0.981 + }, + { + "start": 17474.7, + "end": 17476.04, + "probability": 0.9848 + }, + { + "start": 17476.58, + "end": 17478.94, + "probability": 0.9951 + }, + { + "start": 17479.4, + "end": 17480.17, + "probability": 0.9844 + }, + { + "start": 17480.44, + "end": 17480.96, + "probability": 0.9636 + }, + { + "start": 17481.42, + "end": 17482.62, + "probability": 0.9984 + }, + { + "start": 17482.96, + "end": 17487.14, + "probability": 0.9978 + }, + { + "start": 17487.14, + "end": 17490.4, + "probability": 0.9993 + }, + { + "start": 17490.44, + "end": 17491.26, + "probability": 0.7451 + }, + { + "start": 17491.88, + "end": 17492.26, + "probability": 0.6856 + }, + { + "start": 17492.32, + "end": 17497.42, + "probability": 0.8546 + }, + { + "start": 17498.1, + "end": 17498.76, + "probability": 0.9064 + }, + { + "start": 17505.1, + "end": 17506.23, + "probability": 0.6668 + }, + { + "start": 17507.54, + "end": 17508.88, + "probability": 0.8228 + }, + { + "start": 17509.02, + "end": 17509.54, + "probability": 0.5032 + }, + { + "start": 17515.82, + "end": 17516.32, + "probability": 0.4799 + }, + { + "start": 17516.98, + "end": 17519.0, + "probability": 0.6282 + }, + { + "start": 17519.12, + "end": 17520.52, + "probability": 0.7346 + }, + { + "start": 17520.62, + "end": 17522.07, + "probability": 0.9231 + }, + { + "start": 17522.64, + "end": 17523.2, + "probability": 0.6056 + }, + { + "start": 17524.48, + "end": 17527.74, + "probability": 0.5393 + }, + { + "start": 17534.42, + "end": 17535.26, + "probability": 0.6723 + }, + { + "start": 17535.3, + "end": 17536.46, + "probability": 0.8401 + }, + { + "start": 17536.56, + "end": 17537.38, + "probability": 0.6545 + }, + { + "start": 17537.48, + "end": 17538.1, + "probability": 0.7229 + }, + { + "start": 17538.58, + "end": 17539.78, + "probability": 0.8706 + }, + { + "start": 17539.82, + "end": 17542.28, + "probability": 0.722 + }, + { + "start": 17542.98, + "end": 17543.7, + "probability": 0.7383 + }, + { + "start": 17543.8, + "end": 17546.78, + "probability": 0.9416 + }, + { + "start": 17547.2, + "end": 17548.34, + "probability": 0.986 + }, + { + "start": 17549.1, + "end": 17554.44, + "probability": 0.9856 + }, + { + "start": 17554.62, + "end": 17558.06, + "probability": 0.9761 + }, + { + "start": 17558.12, + "end": 17562.84, + "probability": 0.9909 + }, + { + "start": 17562.94, + "end": 17563.54, + "probability": 0.7786 + }, + { + "start": 17564.22, + "end": 17568.68, + "probability": 0.9632 + }, + { + "start": 17568.8, + "end": 17569.46, + "probability": 0.9375 + }, + { + "start": 17569.48, + "end": 17570.62, + "probability": 0.841 + }, + { + "start": 17570.7, + "end": 17574.14, + "probability": 0.9635 + }, + { + "start": 17574.28, + "end": 17578.24, + "probability": 0.9814 + }, + { + "start": 17579.2, + "end": 17580.82, + "probability": 0.5702 + }, + { + "start": 17580.9, + "end": 17584.54, + "probability": 0.9044 + }, + { + "start": 17585.66, + "end": 17586.96, + "probability": 0.9791 + }, + { + "start": 17588.24, + "end": 17592.7, + "probability": 0.9209 + }, + { + "start": 17593.4, + "end": 17597.62, + "probability": 0.9939 + }, + { + "start": 17599.22, + "end": 17604.54, + "probability": 0.908 + }, + { + "start": 17605.62, + "end": 17608.1, + "probability": 0.998 + }, + { + "start": 17608.1, + "end": 17611.06, + "probability": 0.9972 + }, + { + "start": 17611.38, + "end": 17616.42, + "probability": 0.7149 + }, + { + "start": 17616.64, + "end": 17619.94, + "probability": 0.929 + }, + { + "start": 17620.78, + "end": 17626.4, + "probability": 0.9714 + }, + { + "start": 17627.04, + "end": 17628.78, + "probability": 0.968 + }, + { + "start": 17629.5, + "end": 17630.08, + "probability": 0.7065 + }, + { + "start": 17630.52, + "end": 17635.72, + "probability": 0.9679 + }, + { + "start": 17635.8, + "end": 17640.88, + "probability": 0.9398 + }, + { + "start": 17641.04, + "end": 17644.42, + "probability": 0.9973 + }, + { + "start": 17644.52, + "end": 17650.24, + "probability": 0.9718 + }, + { + "start": 17650.74, + "end": 17655.44, + "probability": 0.8662 + }, + { + "start": 17655.7, + "end": 17656.5, + "probability": 0.9302 + }, + { + "start": 17657.2, + "end": 17661.0, + "probability": 0.9919 + }, + { + "start": 17661.56, + "end": 17663.76, + "probability": 0.9837 + }, + { + "start": 17664.18, + "end": 17666.58, + "probability": 0.9611 + }, + { + "start": 17666.8, + "end": 17667.48, + "probability": 0.6641 + }, + { + "start": 17667.48, + "end": 17669.24, + "probability": 0.7115 + }, + { + "start": 17669.68, + "end": 17671.82, + "probability": 0.9514 + }, + { + "start": 17671.98, + "end": 17677.1, + "probability": 0.957 + }, + { + "start": 17677.1, + "end": 17680.26, + "probability": 0.9978 + }, + { + "start": 17680.76, + "end": 17684.38, + "probability": 0.9935 + }, + { + "start": 17686.62, + "end": 17687.12, + "probability": 0.4764 + }, + { + "start": 17687.64, + "end": 17691.22, + "probability": 0.9023 + }, + { + "start": 17691.82, + "end": 17695.22, + "probability": 0.9717 + }, + { + "start": 17695.92, + "end": 17698.0, + "probability": 0.9209 + }, + { + "start": 17698.48, + "end": 17701.92, + "probability": 0.9773 + }, + { + "start": 17702.1, + "end": 17706.92, + "probability": 0.9904 + }, + { + "start": 17707.64, + "end": 17710.28, + "probability": 0.8951 + }, + { + "start": 17710.68, + "end": 17713.14, + "probability": 0.9174 + }, + { + "start": 17713.8, + "end": 17716.06, + "probability": 0.9269 + }, + { + "start": 17716.86, + "end": 17719.02, + "probability": 0.7086 + }, + { + "start": 17719.82, + "end": 17724.2, + "probability": 0.9919 + }, + { + "start": 17724.7, + "end": 17729.16, + "probability": 0.9974 + }, + { + "start": 17730.1, + "end": 17732.88, + "probability": 0.9825 + }, + { + "start": 17733.44, + "end": 17738.2, + "probability": 0.9906 + }, + { + "start": 17739.16, + "end": 17741.32, + "probability": 0.8088 + }, + { + "start": 17741.76, + "end": 17744.6, + "probability": 0.9932 + }, + { + "start": 17744.6, + "end": 17748.92, + "probability": 0.9806 + }, + { + "start": 17748.98, + "end": 17749.2, + "probability": 0.7969 + }, + { + "start": 17750.82, + "end": 17751.82, + "probability": 0.7352 + }, + { + "start": 17752.3, + "end": 17754.74, + "probability": 0.9154 + }, + { + "start": 17761.94, + "end": 17762.06, + "probability": 0.2588 + }, + { + "start": 17794.4, + "end": 17795.32, + "probability": 0.5551 + }, + { + "start": 17795.42, + "end": 17796.5, + "probability": 0.7252 + }, + { + "start": 17796.5, + "end": 17800.04, + "probability": 0.9966 + }, + { + "start": 17800.6, + "end": 17801.16, + "probability": 0.3653 + }, + { + "start": 17801.16, + "end": 17805.64, + "probability": 0.6738 + }, + { + "start": 17805.98, + "end": 17808.56, + "probability": 0.9347 + }, + { + "start": 17809.06, + "end": 17812.6, + "probability": 0.8105 + }, + { + "start": 17813.08, + "end": 17814.76, + "probability": 0.9749 + }, + { + "start": 17815.64, + "end": 17816.44, + "probability": 0.6748 + }, + { + "start": 17816.46, + "end": 17821.62, + "probability": 0.4833 + }, + { + "start": 17822.14, + "end": 17826.8, + "probability": 0.809 + }, + { + "start": 17827.56, + "end": 17831.72, + "probability": 0.8728 + }, + { + "start": 17832.1, + "end": 17833.54, + "probability": 0.4407 + }, + { + "start": 17833.68, + "end": 17841.02, + "probability": 0.9218 + }, + { + "start": 17841.58, + "end": 17844.62, + "probability": 0.9746 + }, + { + "start": 17845.76, + "end": 17846.68, + "probability": 0.9747 + }, + { + "start": 17847.26, + "end": 17853.64, + "probability": 0.8856 + }, + { + "start": 17854.04, + "end": 17861.36, + "probability": 0.8607 + }, + { + "start": 17861.36, + "end": 17866.36, + "probability": 0.7764 + }, + { + "start": 17866.56, + "end": 17868.14, + "probability": 0.8506 + }, + { + "start": 17868.58, + "end": 17873.34, + "probability": 0.9364 + }, + { + "start": 17874.0, + "end": 17876.42, + "probability": 0.8185 + }, + { + "start": 17876.64, + "end": 17880.94, + "probability": 0.8669 + }, + { + "start": 17881.24, + "end": 17883.12, + "probability": 0.6858 + }, + { + "start": 17883.16, + "end": 17884.4, + "probability": 0.6855 + }, + { + "start": 17884.76, + "end": 17886.08, + "probability": 0.9873 + }, + { + "start": 17886.34, + "end": 17889.9, + "probability": 0.7212 + }, + { + "start": 17890.36, + "end": 17894.54, + "probability": 0.7991 + }, + { + "start": 17894.76, + "end": 17896.46, + "probability": 0.9531 + }, + { + "start": 17896.76, + "end": 17898.6, + "probability": 0.9893 + }, + { + "start": 17899.22, + "end": 17905.95, + "probability": 0.938 + }, + { + "start": 17906.18, + "end": 17910.46, + "probability": 0.9647 + }, + { + "start": 17910.68, + "end": 17913.7, + "probability": 0.8953 + }, + { + "start": 17914.04, + "end": 17917.06, + "probability": 0.9671 + }, + { + "start": 17917.26, + "end": 17918.82, + "probability": 0.9934 + }, + { + "start": 17919.16, + "end": 17921.88, + "probability": 0.9794 + }, + { + "start": 17922.14, + "end": 17927.76, + "probability": 0.9812 + }, + { + "start": 17928.04, + "end": 17928.82, + "probability": 0.4081 + }, + { + "start": 17928.98, + "end": 17929.6, + "probability": 0.2283 + }, + { + "start": 17929.9, + "end": 17930.88, + "probability": 0.9757 + }, + { + "start": 17931.32, + "end": 17934.22, + "probability": 0.5205 + }, + { + "start": 17934.56, + "end": 17936.52, + "probability": 0.7769 + }, + { + "start": 17936.76, + "end": 17938.24, + "probability": 0.7639 + }, + { + "start": 17938.7, + "end": 17942.32, + "probability": 0.8679 + }, + { + "start": 17942.58, + "end": 17945.32, + "probability": 0.9722 + }, + { + "start": 17945.58, + "end": 17947.36, + "probability": 0.0973 + }, + { + "start": 17947.36, + "end": 17947.36, + "probability": 0.0755 + }, + { + "start": 17947.36, + "end": 17950.9, + "probability": 0.8678 + }, + { + "start": 17951.48, + "end": 17953.36, + "probability": 0.5238 + }, + { + "start": 17953.46, + "end": 17962.5, + "probability": 0.07 + }, + { + "start": 17963.22, + "end": 17966.54, + "probability": 0.8789 + }, + { + "start": 17966.54, + "end": 17967.54, + "probability": 0.4016 + }, + { + "start": 17968.1, + "end": 17971.02, + "probability": 0.1159 + }, + { + "start": 17971.02, + "end": 17971.02, + "probability": 0.0925 + }, + { + "start": 17971.02, + "end": 17971.02, + "probability": 0.0864 + }, + { + "start": 17971.02, + "end": 17971.02, + "probability": 0.134 + }, + { + "start": 17971.02, + "end": 17972.59, + "probability": 0.7751 + }, + { + "start": 17973.28, + "end": 17978.36, + "probability": 0.9565 + }, + { + "start": 17978.88, + "end": 17982.12, + "probability": 0.8504 + }, + { + "start": 17982.42, + "end": 17984.14, + "probability": 0.8128 + }, + { + "start": 17984.14, + "end": 17985.14, + "probability": 0.6817 + }, + { + "start": 17985.14, + "end": 17986.42, + "probability": 0.9362 + }, + { + "start": 17987.1, + "end": 17987.1, + "probability": 0.0072 + }, + { + "start": 17987.12, + "end": 17989.48, + "probability": 0.9941 + }, + { + "start": 17989.88, + "end": 17990.74, + "probability": 0.7708 + }, + { + "start": 17990.74, + "end": 17994.1, + "probability": 0.6606 + }, + { + "start": 17994.12, + "end": 17994.24, + "probability": 0.7143 + }, + { + "start": 17994.34, + "end": 17995.52, + "probability": 0.8461 + }, + { + "start": 17995.54, + "end": 17995.61, + "probability": 0.3607 + }, + { + "start": 17996.16, + "end": 17996.64, + "probability": 0.7816 + }, + { + "start": 17997.22, + "end": 17997.58, + "probability": 0.74 + }, + { + "start": 17997.64, + "end": 17999.42, + "probability": 0.8206 + }, + { + "start": 18000.56, + "end": 18001.49, + "probability": 0.4988 + }, + { + "start": 18011.66, + "end": 18014.47, + "probability": 0.9945 + }, + { + "start": 18014.92, + "end": 18021.04, + "probability": 0.9922 + }, + { + "start": 18021.98, + "end": 18024.38, + "probability": 0.8789 + }, + { + "start": 18024.42, + "end": 18027.99, + "probability": 0.9773 + }, + { + "start": 18032.14, + "end": 18033.72, + "probability": 0.2309 + }, + { + "start": 18033.72, + "end": 18034.06, + "probability": 0.0505 + }, + { + "start": 18034.14, + "end": 18036.96, + "probability": 0.4496 + }, + { + "start": 18037.0, + "end": 18041.72, + "probability": 0.9821 + }, + { + "start": 18042.06, + "end": 18043.72, + "probability": 0.8971 + }, + { + "start": 18043.78, + "end": 18046.5, + "probability": 0.9909 + }, + { + "start": 18046.5, + "end": 18049.04, + "probability": 0.9429 + }, + { + "start": 18049.14, + "end": 18051.94, + "probability": 0.9975 + }, + { + "start": 18052.02, + "end": 18053.82, + "probability": 0.978 + }, + { + "start": 18054.14, + "end": 18055.16, + "probability": 0.7191 + }, + { + "start": 18055.42, + "end": 18056.62, + "probability": 0.8245 + }, + { + "start": 18056.76, + "end": 18057.4, + "probability": 0.7263 + }, + { + "start": 18057.9, + "end": 18062.42, + "probability": 0.9148 + }, + { + "start": 18062.78, + "end": 18066.38, + "probability": 0.9855 + }, + { + "start": 18066.38, + "end": 18066.73, + "probability": 0.1599 + }, + { + "start": 18067.88, + "end": 18068.72, + "probability": 0.7802 + }, + { + "start": 18069.3, + "end": 18071.64, + "probability": 0.6808 + }, + { + "start": 18071.66, + "end": 18071.92, + "probability": 0.1536 + }, + { + "start": 18074.6, + "end": 18075.76, + "probability": 0.0425 + }, + { + "start": 18078.55, + "end": 18081.58, + "probability": 0.798 + }, + { + "start": 18082.98, + "end": 18085.04, + "probability": 0.5232 + }, + { + "start": 18085.1, + "end": 18085.84, + "probability": 0.8198 + }, + { + "start": 18085.9, + "end": 18086.5, + "probability": 0.7528 + }, + { + "start": 18087.46, + "end": 18089.46, + "probability": 0.9937 + }, + { + "start": 18089.46, + "end": 18092.52, + "probability": 0.3351 + }, + { + "start": 18092.52, + "end": 18093.82, + "probability": 0.6731 + }, + { + "start": 18094.26, + "end": 18099.02, + "probability": 0.9542 + }, + { + "start": 18099.82, + "end": 18102.16, + "probability": 0.4893 + }, + { + "start": 18102.9, + "end": 18105.66, + "probability": 0.8782 + }, + { + "start": 18105.68, + "end": 18106.96, + "probability": 0.9464 + }, + { + "start": 18107.0, + "end": 18108.72, + "probability": 0.9353 + }, + { + "start": 18109.42, + "end": 18109.42, + "probability": 0.0658 + }, + { + "start": 18109.42, + "end": 18110.34, + "probability": 0.3792 + }, + { + "start": 18110.6, + "end": 18113.2, + "probability": 0.7182 + }, + { + "start": 18113.52, + "end": 18114.98, + "probability": 0.6836 + }, + { + "start": 18115.54, + "end": 18118.04, + "probability": 0.5837 + }, + { + "start": 18118.62, + "end": 18120.58, + "probability": 0.6979 + }, + { + "start": 18121.56, + "end": 18125.04, + "probability": 0.6561 + }, + { + "start": 18126.32, + "end": 18127.92, + "probability": 0.7696 + }, + { + "start": 18129.2, + "end": 18130.38, + "probability": 0.9644 + }, + { + "start": 18130.96, + "end": 18134.64, + "probability": 0.5662 + }, + { + "start": 18135.18, + "end": 18137.2, + "probability": 0.655 + }, + { + "start": 18139.76, + "end": 18142.44, + "probability": 0.8602 + }, + { + "start": 18147.07, + "end": 18150.66, + "probability": 0.8993 + }, + { + "start": 18151.32, + "end": 18152.96, + "probability": 0.8887 + }, + { + "start": 18156.28, + "end": 18158.3, + "probability": 0.0131 + }, + { + "start": 18167.46, + "end": 18171.76, + "probability": 0.695 + }, + { + "start": 18172.66, + "end": 18175.3, + "probability": 0.9239 + }, + { + "start": 18175.82, + "end": 18178.96, + "probability": 0.9479 + }, + { + "start": 18185.06, + "end": 18186.18, + "probability": 0.5017 + }, + { + "start": 18186.88, + "end": 18188.3, + "probability": 0.6056 + }, + { + "start": 18189.14, + "end": 18190.68, + "probability": 0.7432 + }, + { + "start": 18200.66, + "end": 18201.76, + "probability": 0.4046 + }, + { + "start": 18202.76, + "end": 18203.2, + "probability": 0.8101 + }, + { + "start": 18204.08, + "end": 18205.26, + "probability": 0.664 + }, + { + "start": 18206.62, + "end": 18208.44, + "probability": 0.946 + }, + { + "start": 18211.08, + "end": 18214.2, + "probability": 0.7431 + }, + { + "start": 18216.4, + "end": 18218.58, + "probability": 0.9243 + }, + { + "start": 18218.64, + "end": 18219.84, + "probability": 0.693 + }, + { + "start": 18219.86, + "end": 18221.22, + "probability": 0.8429 + }, + { + "start": 18222.4, + "end": 18224.42, + "probability": 0.6421 + }, + { + "start": 18224.52, + "end": 18226.0, + "probability": 0.5189 + }, + { + "start": 18226.12, + "end": 18227.5, + "probability": 0.6385 + }, + { + "start": 18228.4, + "end": 18230.7, + "probability": 0.8982 + }, + { + "start": 18231.08, + "end": 18234.06, + "probability": 0.6542 + }, + { + "start": 18234.12, + "end": 18235.4, + "probability": 0.8291 + }, + { + "start": 18235.58, + "end": 18237.46, + "probability": 0.4213 + }, + { + "start": 18238.86, + "end": 18240.34, + "probability": 0.9509 + }, + { + "start": 18240.92, + "end": 18241.86, + "probability": 0.7695 + }, + { + "start": 18242.5, + "end": 18244.64, + "probability": 0.7573 + }, + { + "start": 18245.56, + "end": 18247.5, + "probability": 0.8482 + }, + { + "start": 18247.86, + "end": 18249.56, + "probability": 0.8723 + }, + { + "start": 18252.52, + "end": 18254.78, + "probability": 0.788 + }, + { + "start": 18256.72, + "end": 18260.78, + "probability": 0.2781 + }, + { + "start": 18261.52, + "end": 18261.94, + "probability": 0.755 + }, + { + "start": 18262.54, + "end": 18265.5, + "probability": 0.6705 + }, + { + "start": 18266.52, + "end": 18268.1, + "probability": 0.9784 + }, + { + "start": 18268.72, + "end": 18270.22, + "probability": 0.991 + }, + { + "start": 18271.24, + "end": 18271.82, + "probability": 0.8271 + }, + { + "start": 18276.42, + "end": 18278.68, + "probability": 0.8719 + }, + { + "start": 18279.1, + "end": 18281.44, + "probability": 0.9708 + }, + { + "start": 18281.5, + "end": 18283.96, + "probability": 0.9539 + }, + { + "start": 18285.82, + "end": 18286.76, + "probability": 0.9699 + }, + { + "start": 18287.56, + "end": 18288.7, + "probability": 0.779 + }, + { + "start": 18289.92, + "end": 18291.04, + "probability": 0.8174 + }, + { + "start": 18291.36, + "end": 18293.04, + "probability": 0.8018 + }, + { + "start": 18293.06, + "end": 18294.52, + "probability": 0.656 + }, + { + "start": 18296.46, + "end": 18298.58, + "probability": 0.8867 + }, + { + "start": 18298.74, + "end": 18299.96, + "probability": 0.9249 + }, + { + "start": 18300.44, + "end": 18304.02, + "probability": 0.9624 + }, + { + "start": 18304.06, + "end": 18305.52, + "probability": 0.9429 + }, + { + "start": 18306.16, + "end": 18307.66, + "probability": 0.5638 + }, + { + "start": 18307.8, + "end": 18308.78, + "probability": 0.8523 + }, + { + "start": 18308.84, + "end": 18310.0, + "probability": 0.8078 + }, + { + "start": 18311.16, + "end": 18313.6, + "probability": 0.6882 + }, + { + "start": 18315.3, + "end": 18319.12, + "probability": 0.9482 + }, + { + "start": 18319.98, + "end": 18323.16, + "probability": 0.7737 + }, + { + "start": 18325.0, + "end": 18327.08, + "probability": 0.8271 + }, + { + "start": 18327.16, + "end": 18328.36, + "probability": 0.8626 + }, + { + "start": 18328.4, + "end": 18329.56, + "probability": 0.6939 + }, + { + "start": 18329.56, + "end": 18331.42, + "probability": 0.8828 + }, + { + "start": 18333.02, + "end": 18336.84, + "probability": 0.6796 + }, + { + "start": 18338.3, + "end": 18341.68, + "probability": 0.845 + }, + { + "start": 18342.52, + "end": 18344.36, + "probability": 0.9096 + }, + { + "start": 18344.94, + "end": 18346.86, + "probability": 0.911 + }, + { + "start": 18348.62, + "end": 18349.98, + "probability": 0.9512 + }, + { + "start": 18350.1, + "end": 18351.5, + "probability": 0.9621 + }, + { + "start": 18351.56, + "end": 18353.44, + "probability": 0.4801 + }, + { + "start": 18354.06, + "end": 18357.18, + "probability": 0.6347 + }, + { + "start": 18358.06, + "end": 18359.64, + "probability": 0.8408 + }, + { + "start": 18360.62, + "end": 18365.44, + "probability": 0.83 + }, + { + "start": 18366.92, + "end": 18372.4, + "probability": 0.8414 + }, + { + "start": 18373.84, + "end": 18375.12, + "probability": 0.3384 + }, + { + "start": 18376.0, + "end": 18377.58, + "probability": 0.5883 + }, + { + "start": 18379.54, + "end": 18384.46, + "probability": 0.8521 + }, + { + "start": 18386.34, + "end": 18386.94, + "probability": 0.9893 + }, + { + "start": 18387.56, + "end": 18390.9, + "probability": 0.866 + }, + { + "start": 18392.64, + "end": 18397.22, + "probability": 0.8025 + }, + { + "start": 18397.74, + "end": 18401.0, + "probability": 0.655 + }, + { + "start": 18404.0, + "end": 18406.98, + "probability": 0.6981 + }, + { + "start": 18408.08, + "end": 18409.24, + "probability": 0.9351 + }, + { + "start": 18410.34, + "end": 18411.14, + "probability": 0.7833 + }, + { + "start": 18412.5, + "end": 18412.96, + "probability": 0.4306 + }, + { + "start": 18413.82, + "end": 18414.92, + "probability": 0.8085 + }, + { + "start": 18415.68, + "end": 18417.32, + "probability": 0.7848 + }, + { + "start": 18417.32, + "end": 18418.66, + "probability": 0.8696 + }, + { + "start": 18423.46, + "end": 18426.54, + "probability": 0.6745 + }, + { + "start": 18427.1, + "end": 18427.42, + "probability": 0.5513 + }, + { + "start": 18428.46, + "end": 18429.36, + "probability": 0.9064 + }, + { + "start": 18430.2, + "end": 18431.54, + "probability": 0.9144 + }, + { + "start": 18431.7, + "end": 18433.14, + "probability": 0.8112 + }, + { + "start": 18433.64, + "end": 18435.74, + "probability": 0.9874 + }, + { + "start": 18437.04, + "end": 18438.34, + "probability": 0.9602 + }, + { + "start": 18439.38, + "end": 18444.1, + "probability": 0.9866 + }, + { + "start": 18445.54, + "end": 18447.02, + "probability": 0.8644 + }, + { + "start": 18447.1, + "end": 18449.0, + "probability": 0.6794 + }, + { + "start": 18449.52, + "end": 18450.8, + "probability": 0.5526 + }, + { + "start": 18452.2, + "end": 18454.02, + "probability": 0.9711 + }, + { + "start": 18454.14, + "end": 18455.72, + "probability": 0.8431 + }, + { + "start": 18455.8, + "end": 18456.74, + "probability": 0.7752 + }, + { + "start": 18456.8, + "end": 18458.28, + "probability": 0.6792 + }, + { + "start": 18462.6, + "end": 18464.62, + "probability": 0.567 + }, + { + "start": 18464.98, + "end": 18467.26, + "probability": 0.7314 + }, + { + "start": 18467.34, + "end": 18468.08, + "probability": 0.9439 + }, + { + "start": 18469.02, + "end": 18473.02, + "probability": 0.8792 + }, + { + "start": 18473.92, + "end": 18474.7, + "probability": 0.5136 + }, + { + "start": 18474.92, + "end": 18476.24, + "probability": 0.6267 + }, + { + "start": 18476.28, + "end": 18477.28, + "probability": 0.6215 + }, + { + "start": 18477.64, + "end": 18478.52, + "probability": 0.4524 + }, + { + "start": 18478.52, + "end": 18479.68, + "probability": 0.7227 + }, + { + "start": 18479.72, + "end": 18481.08, + "probability": 0.9424 + }, + { + "start": 18481.46, + "end": 18482.82, + "probability": 0.5149 + }, + { + "start": 18483.72, + "end": 18485.52, + "probability": 0.8075 + }, + { + "start": 18485.66, + "end": 18488.24, + "probability": 0.4033 + }, + { + "start": 18488.28, + "end": 18489.28, + "probability": 0.6037 + }, + { + "start": 18490.64, + "end": 18493.22, + "probability": 0.8851 + }, + { + "start": 18493.22, + "end": 18494.44, + "probability": 0.7643 + }, + { + "start": 18494.46, + "end": 18495.94, + "probability": 0.6598 + }, + { + "start": 18496.08, + "end": 18497.94, + "probability": 0.8757 + }, + { + "start": 18498.08, + "end": 18499.12, + "probability": 0.6394 + }, + { + "start": 18499.36, + "end": 18500.52, + "probability": 0.9565 + }, + { + "start": 18500.6, + "end": 18502.32, + "probability": 0.7746 + }, + { + "start": 18502.44, + "end": 18503.48, + "probability": 0.901 + }, + { + "start": 18503.58, + "end": 18504.52, + "probability": 0.5914 + }, + { + "start": 18504.62, + "end": 18505.56, + "probability": 0.9426 + }, + { + "start": 18505.68, + "end": 18507.22, + "probability": 0.6957 + }, + { + "start": 18507.76, + "end": 18507.76, + "probability": 0.2414 + }, + { + "start": 18507.76, + "end": 18508.22, + "probability": 0.3675 + }, + { + "start": 18508.3, + "end": 18509.58, + "probability": 0.4613 + }, + { + "start": 18509.66, + "end": 18510.78, + "probability": 0.5339 + }, + { + "start": 18511.74, + "end": 18513.58, + "probability": 0.7927 + }, + { + "start": 18513.62, + "end": 18514.96, + "probability": 0.747 + }, + { + "start": 18515.12, + "end": 18516.6, + "probability": 0.6428 + }, + { + "start": 18517.52, + "end": 18519.84, + "probability": 0.4127 + }, + { + "start": 18521.08, + "end": 18525.02, + "probability": 0.4953 + }, + { + "start": 18526.4, + "end": 18527.94, + "probability": 0.9091 + }, + { + "start": 18528.84, + "end": 18529.02, + "probability": 0.9561 + }, + { + "start": 18529.64, + "end": 18530.84, + "probability": 0.8306 + }, + { + "start": 18530.86, + "end": 18531.96, + "probability": 0.8499 + }, + { + "start": 18533.66, + "end": 18534.2, + "probability": 0.2993 + }, + { + "start": 18534.2, + "end": 18534.42, + "probability": 0.161 + }, + { + "start": 18534.44, + "end": 18535.48, + "probability": 0.476 + }, + { + "start": 18536.02, + "end": 18536.23, + "probability": 0.8106 + }, + { + "start": 18536.44, + "end": 18538.12, + "probability": 0.5541 + }, + { + "start": 18538.12, + "end": 18539.16, + "probability": 0.7405 + }, + { + "start": 18539.18, + "end": 18541.04, + "probability": 0.7212 + }, + { + "start": 18542.74, + "end": 18544.24, + "probability": 0.6444 + }, + { + "start": 18545.44, + "end": 18551.02, + "probability": 0.776 + }, + { + "start": 18551.14, + "end": 18553.22, + "probability": 0.8422 + }, + { + "start": 18555.48, + "end": 18555.96, + "probability": 0.918 + }, + { + "start": 18558.52, + "end": 18559.52, + "probability": 0.7669 + }, + { + "start": 18559.62, + "end": 18561.24, + "probability": 0.4866 + }, + { + "start": 18561.36, + "end": 18562.4, + "probability": 0.4488 + }, + { + "start": 18562.42, + "end": 18563.92, + "probability": 0.8173 + }, + { + "start": 18565.3, + "end": 18567.0, + "probability": 0.5379 + }, + { + "start": 18567.08, + "end": 18568.3, + "probability": 0.7849 + }, + { + "start": 18568.36, + "end": 18570.34, + "probability": 0.6504 + }, + { + "start": 18571.92, + "end": 18572.94, + "probability": 0.9614 + }, + { + "start": 18573.5, + "end": 18574.1, + "probability": 0.6324 + }, + { + "start": 18574.2, + "end": 18576.44, + "probability": 0.7746 + }, + { + "start": 18576.86, + "end": 18578.18, + "probability": 0.893 + }, + { + "start": 18578.34, + "end": 18580.1, + "probability": 0.5974 + }, + { + "start": 18580.2, + "end": 18580.96, + "probability": 0.7146 + }, + { + "start": 18581.92, + "end": 18582.62, + "probability": 0.8495 + }, + { + "start": 18582.7, + "end": 18584.76, + "probability": 0.3012 + }, + { + "start": 18584.76, + "end": 18585.32, + "probability": 0.2847 + }, + { + "start": 18585.32, + "end": 18586.12, + "probability": 0.654 + }, + { + "start": 18586.68, + "end": 18589.4, + "probability": 0.8004 + }, + { + "start": 18590.38, + "end": 18591.6, + "probability": 0.7705 + }, + { + "start": 18591.6, + "end": 18592.56, + "probability": 0.7665 + }, + { + "start": 18592.64, + "end": 18594.24, + "probability": 0.9101 + }, + { + "start": 18594.84, + "end": 18596.14, + "probability": 0.5983 + }, + { + "start": 18596.44, + "end": 18598.22, + "probability": 0.7295 + }, + { + "start": 18598.34, + "end": 18599.22, + "probability": 0.7372 + }, + { + "start": 18599.3, + "end": 18600.62, + "probability": 0.7118 + }, + { + "start": 18600.74, + "end": 18602.58, + "probability": 0.9215 + }, + { + "start": 18602.7, + "end": 18603.32, + "probability": 0.7533 + }, + { + "start": 18604.6, + "end": 18606.51, + "probability": 0.7445 + }, + { + "start": 18607.26, + "end": 18607.72, + "probability": 0.0297 + }, + { + "start": 18607.72, + "end": 18608.06, + "probability": 0.2153 + }, + { + "start": 18608.18, + "end": 18608.98, + "probability": 0.6281 + }, + { + "start": 18610.0, + "end": 18614.24, + "probability": 0.9743 + }, + { + "start": 18617.16, + "end": 18618.38, + "probability": 0.864 + }, + { + "start": 18618.96, + "end": 18619.56, + "probability": 0.4403 + }, + { + "start": 18622.08, + "end": 18623.1, + "probability": 0.0 + }, + { + "start": 18629.88, + "end": 18631.32, + "probability": 0.032 + }, + { + "start": 18637.74, + "end": 18637.88, + "probability": 0.1766 + }, + { + "start": 18638.82, + "end": 18640.34, + "probability": 0.2191 + }, + { + "start": 18643.76, + "end": 18644.28, + "probability": 0.117 + }, + { + "start": 18646.46, + "end": 18650.3, + "probability": 0.0038 + }, + { + "start": 18666.52, + "end": 18667.86, + "probability": 0.068 + }, + { + "start": 18679.5, + "end": 18680.36, + "probability": 0.2429 + }, + { + "start": 18681.06, + "end": 18681.5, + "probability": 0.3484 + }, + { + "start": 18707.26, + "end": 18713.66, + "probability": 0.918 + }, + { + "start": 18715.18, + "end": 18718.6, + "probability": 0.7257 + }, + { + "start": 18718.66, + "end": 18719.12, + "probability": 0.7265 + }, + { + "start": 18719.32, + "end": 18720.18, + "probability": 0.6369 + }, + { + "start": 18720.48, + "end": 18720.97, + "probability": 0.2586 + }, + { + "start": 18721.14, + "end": 18724.18, + "probability": 0.909 + }, + { + "start": 18724.18, + "end": 18730.86, + "probability": 0.575 + }, + { + "start": 18731.24, + "end": 18732.1, + "probability": 0.879 + }, + { + "start": 18732.22, + "end": 18732.86, + "probability": 0.8353 + }, + { + "start": 18732.94, + "end": 18734.96, + "probability": 0.6875 + }, + { + "start": 18735.68, + "end": 18735.82, + "probability": 0.0323 + }, + { + "start": 18736.36, + "end": 18736.88, + "probability": 0.0244 + }, + { + "start": 18736.88, + "end": 18736.88, + "probability": 0.2701 + }, + { + "start": 18737.06, + "end": 18737.68, + "probability": 0.714 + }, + { + "start": 18741.6, + "end": 18743.62, + "probability": 0.793 + }, + { + "start": 18747.52, + "end": 18748.18, + "probability": 0.057 + }, + { + "start": 18749.36, + "end": 18751.22, + "probability": 0.5663 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.0, + "end": 18853.0, + "probability": 0.0 + }, + { + "start": 18853.11, + "end": 18856.26, + "probability": 0.9711 + }, + { + "start": 18856.4, + "end": 18858.48, + "probability": 0.8695 + }, + { + "start": 18858.88, + "end": 18860.08, + "probability": 0.7835 + }, + { + "start": 18860.6, + "end": 18866.12, + "probability": 0.9909 + }, + { + "start": 18866.14, + "end": 18868.78, + "probability": 0.9062 + }, + { + "start": 18870.08, + "end": 18871.84, + "probability": 0.9771 + }, + { + "start": 18871.88, + "end": 18872.38, + "probability": 0.4651 + }, + { + "start": 18872.5, + "end": 18876.7, + "probability": 0.9966 + }, + { + "start": 18877.38, + "end": 18878.38, + "probability": 0.8273 + }, + { + "start": 18879.16, + "end": 18880.57, + "probability": 0.923 + }, + { + "start": 18881.18, + "end": 18884.16, + "probability": 0.9273 + }, + { + "start": 18884.26, + "end": 18887.6, + "probability": 0.921 + }, + { + "start": 18888.12, + "end": 18890.63, + "probability": 0.8008 + }, + { + "start": 18892.5, + "end": 18895.18, + "probability": 0.9889 + }, + { + "start": 18895.5, + "end": 18896.41, + "probability": 0.6461 + }, + { + "start": 18896.84, + "end": 18898.88, + "probability": 0.9907 + }, + { + "start": 18899.42, + "end": 18900.64, + "probability": 0.9913 + }, + { + "start": 18900.98, + "end": 18902.52, + "probability": 0.7021 + }, + { + "start": 18903.16, + "end": 18904.02, + "probability": 0.8401 + }, + { + "start": 18905.2, + "end": 18907.24, + "probability": 0.9932 + }, + { + "start": 18907.64, + "end": 18911.76, + "probability": 0.9966 + }, + { + "start": 18911.81, + "end": 18915.68, + "probability": 0.7318 + }, + { + "start": 18916.1, + "end": 18918.56, + "probability": 0.9938 + }, + { + "start": 18918.56, + "end": 18921.26, + "probability": 0.9929 + }, + { + "start": 18921.64, + "end": 18924.67, + "probability": 0.9601 + }, + { + "start": 18925.22, + "end": 18928.5, + "probability": 0.9961 + }, + { + "start": 18929.2, + "end": 18929.96, + "probability": 0.8921 + }, + { + "start": 18930.66, + "end": 18931.34, + "probability": 0.965 + }, + { + "start": 18931.94, + "end": 18934.54, + "probability": 0.9971 + }, + { + "start": 18934.84, + "end": 18936.82, + "probability": 0.7581 + }, + { + "start": 18937.06, + "end": 18938.16, + "probability": 0.7483 + }, + { + "start": 18938.34, + "end": 18939.3, + "probability": 0.8269 + }, + { + "start": 18939.6, + "end": 18943.9, + "probability": 0.9677 + }, + { + "start": 18945.0, + "end": 18948.36, + "probability": 0.9927 + }, + { + "start": 18948.68, + "end": 18949.39, + "probability": 0.5762 + }, + { + "start": 18950.42, + "end": 18954.18, + "probability": 0.9956 + }, + { + "start": 18954.72, + "end": 18955.98, + "probability": 0.9947 + }, + { + "start": 18956.08, + "end": 18957.18, + "probability": 0.9817 + }, + { + "start": 18957.2, + "end": 18960.36, + "probability": 0.97 + }, + { + "start": 18960.58, + "end": 18962.52, + "probability": 0.9979 + }, + { + "start": 18964.14, + "end": 18966.46, + "probability": 0.9958 + }, + { + "start": 18966.64, + "end": 18970.1, + "probability": 0.9971 + }, + { + "start": 18970.36, + "end": 18972.94, + "probability": 0.6622 + }, + { + "start": 18973.38, + "end": 18975.66, + "probability": 0.9885 + }, + { + "start": 18975.78, + "end": 18978.52, + "probability": 0.9963 + }, + { + "start": 18978.76, + "end": 18981.14, + "probability": 0.9949 + }, + { + "start": 18981.18, + "end": 18983.32, + "probability": 0.8787 + }, + { + "start": 18983.44, + "end": 18984.84, + "probability": 0.9779 + }, + { + "start": 18985.26, + "end": 18986.88, + "probability": 0.949 + }, + { + "start": 18987.0, + "end": 18987.58, + "probability": 0.5566 + }, + { + "start": 18987.72, + "end": 18988.76, + "probability": 0.7287 + }, + { + "start": 18988.92, + "end": 18992.02, + "probability": 0.9983 + }, + { + "start": 18992.5, + "end": 18993.92, + "probability": 0.8092 + }, + { + "start": 18994.06, + "end": 18998.56, + "probability": 0.8767 + }, + { + "start": 18998.68, + "end": 18999.4, + "probability": 0.4505 + }, + { + "start": 18999.44, + "end": 19000.08, + "probability": 0.7771 + }, + { + "start": 19000.44, + "end": 19001.58, + "probability": 0.5458 + }, + { + "start": 19001.96, + "end": 19002.6, + "probability": 0.6832 + }, + { + "start": 19002.94, + "end": 19004.56, + "probability": 0.9617 + }, + { + "start": 19004.76, + "end": 19006.37, + "probability": 0.9749 + }, + { + "start": 19006.88, + "end": 19008.14, + "probability": 0.9545 + }, + { + "start": 19008.8, + "end": 19011.12, + "probability": 0.9712 + }, + { + "start": 19011.18, + "end": 19011.66, + "probability": 0.9874 + }, + { + "start": 19011.92, + "end": 19012.54, + "probability": 0.9844 + }, + { + "start": 19013.56, + "end": 19014.36, + "probability": 0.9949 + }, + { + "start": 19014.82, + "end": 19016.14, + "probability": 0.9949 + }, + { + "start": 19016.26, + "end": 19017.06, + "probability": 0.9308 + }, + { + "start": 19017.38, + "end": 19018.32, + "probability": 0.9941 + }, + { + "start": 19018.92, + "end": 19020.56, + "probability": 0.7101 + }, + { + "start": 19021.06, + "end": 19023.08, + "probability": 0.7322 + }, + { + "start": 19023.28, + "end": 19025.3, + "probability": 0.9101 + }, + { + "start": 19025.68, + "end": 19026.7, + "probability": 0.9327 + }, + { + "start": 19026.92, + "end": 19028.52, + "probability": 0.9863 + }, + { + "start": 19028.8, + "end": 19029.96, + "probability": 0.9844 + }, + { + "start": 19031.1, + "end": 19032.0, + "probability": 0.8596 + }, + { + "start": 19032.16, + "end": 19033.62, + "probability": 0.8294 + }, + { + "start": 19033.98, + "end": 19037.64, + "probability": 0.9929 + }, + { + "start": 19037.64, + "end": 19039.76, + "probability": 0.7471 + }, + { + "start": 19041.02, + "end": 19042.57, + "probability": 0.6407 + }, + { + "start": 19043.0, + "end": 19047.14, + "probability": 0.9841 + }, + { + "start": 19047.16, + "end": 19047.52, + "probability": 0.6202 + }, + { + "start": 19048.92, + "end": 19049.38, + "probability": 0.6423 + }, + { + "start": 19049.42, + "end": 19051.22, + "probability": 0.9329 + }, + { + "start": 19078.62, + "end": 19078.94, + "probability": 0.75 + }, + { + "start": 19079.36, + "end": 19080.58, + "probability": 0.3774 + }, + { + "start": 19082.16, + "end": 19083.74, + "probability": 0.2181 + }, + { + "start": 19084.24, + "end": 19085.94, + "probability": 0.0216 + }, + { + "start": 19087.0, + "end": 19087.42, + "probability": 0.0249 + }, + { + "start": 19106.08, + "end": 19106.62, + "probability": 0.228 + }, + { + "start": 19108.14, + "end": 19109.86, + "probability": 0.7468 + }, + { + "start": 19111.48, + "end": 19112.36, + "probability": 0.6801 + }, + { + "start": 19112.48, + "end": 19115.52, + "probability": 0.9045 + }, + { + "start": 19116.48, + "end": 19117.98, + "probability": 0.7284 + }, + { + "start": 19118.8, + "end": 19120.18, + "probability": 0.8466 + }, + { + "start": 19122.5, + "end": 19126.9, + "probability": 0.854 + }, + { + "start": 19128.26, + "end": 19129.34, + "probability": 0.8885 + }, + { + "start": 19130.12, + "end": 19133.2, + "probability": 0.9321 + }, + { + "start": 19134.22, + "end": 19136.6, + "probability": 0.9897 + }, + { + "start": 19139.16, + "end": 19142.5, + "probability": 0.9911 + }, + { + "start": 19143.54, + "end": 19147.7, + "probability": 0.9954 + }, + { + "start": 19149.0, + "end": 19151.66, + "probability": 0.634 + }, + { + "start": 19151.76, + "end": 19155.12, + "probability": 0.8168 + }, + { + "start": 19156.26, + "end": 19158.48, + "probability": 0.7922 + }, + { + "start": 19159.02, + "end": 19159.76, + "probability": 0.8371 + }, + { + "start": 19160.88, + "end": 19161.74, + "probability": 0.9451 + }, + { + "start": 19165.12, + "end": 19165.52, + "probability": 0.0017 + }, + { + "start": 19165.52, + "end": 19165.68, + "probability": 0.1978 + }, + { + "start": 19165.68, + "end": 19166.36, + "probability": 0.0874 + }, + { + "start": 19166.88, + "end": 19172.72, + "probability": 0.9679 + }, + { + "start": 19172.8, + "end": 19174.5, + "probability": 0.7703 + }, + { + "start": 19176.04, + "end": 19177.84, + "probability": 0.5074 + }, + { + "start": 19178.22, + "end": 19179.2, + "probability": 0.0076 + }, + { + "start": 19179.98, + "end": 19184.36, + "probability": 0.9881 + }, + { + "start": 19184.44, + "end": 19185.08, + "probability": 0.7137 + }, + { + "start": 19186.02, + "end": 19187.36, + "probability": 0.9661 + }, + { + "start": 19188.3, + "end": 19189.94, + "probability": 0.9105 + }, + { + "start": 19190.1, + "end": 19191.72, + "probability": 0.9844 + }, + { + "start": 19191.78, + "end": 19194.91, + "probability": 0.6855 + }, + { + "start": 19196.1, + "end": 19197.42, + "probability": 0.9467 + }, + { + "start": 19198.18, + "end": 19198.96, + "probability": 0.9756 + }, + { + "start": 19200.32, + "end": 19202.53, + "probability": 0.8016 + }, + { + "start": 19202.9, + "end": 19204.32, + "probability": 0.8905 + }, + { + "start": 19204.38, + "end": 19205.9, + "probability": 0.8422 + }, + { + "start": 19206.44, + "end": 19208.18, + "probability": 0.634 + }, + { + "start": 19208.24, + "end": 19210.0, + "probability": 0.9724 + }, + { + "start": 19210.16, + "end": 19211.4, + "probability": 0.7053 + }, + { + "start": 19211.86, + "end": 19212.96, + "probability": 0.8268 + }, + { + "start": 19213.64, + "end": 19215.48, + "probability": 0.9495 + }, + { + "start": 19216.16, + "end": 19218.71, + "probability": 0.9316 + }, + { + "start": 19219.02, + "end": 19222.12, + "probability": 0.8876 + }, + { + "start": 19224.78, + "end": 19226.04, + "probability": 0.994 + }, + { + "start": 19226.6, + "end": 19228.32, + "probability": 0.4925 + }, + { + "start": 19230.74, + "end": 19233.72, + "probability": 0.8683 + }, + { + "start": 19237.08, + "end": 19238.28, + "probability": 0.8367 + }, + { + "start": 19238.8, + "end": 19246.34, + "probability": 0.9897 + }, + { + "start": 19247.04, + "end": 19251.02, + "probability": 0.7501 + }, + { + "start": 19252.4, + "end": 19255.1, + "probability": 0.706 + }, + { + "start": 19256.91, + "end": 19259.0, + "probability": 0.9785 + }, + { + "start": 19259.18, + "end": 19260.86, + "probability": 0.9219 + }, + { + "start": 19262.24, + "end": 19264.6, + "probability": 0.9862 + }, + { + "start": 19264.72, + "end": 19265.26, + "probability": 0.9857 + }, + { + "start": 19265.38, + "end": 19265.94, + "probability": 0.8595 + }, + { + "start": 19266.82, + "end": 19267.86, + "probability": 0.7227 + }, + { + "start": 19269.72, + "end": 19274.7, + "probability": 0.9203 + }, + { + "start": 19275.62, + "end": 19278.78, + "probability": 0.9915 + }, + { + "start": 19279.7, + "end": 19283.42, + "probability": 0.966 + }, + { + "start": 19283.94, + "end": 19285.38, + "probability": 0.8429 + }, + { + "start": 19285.98, + "end": 19288.32, + "probability": 0.687 + }, + { + "start": 19289.61, + "end": 19293.6, + "probability": 0.8324 + }, + { + "start": 19293.76, + "end": 19294.26, + "probability": 0.8992 + }, + { + "start": 19294.96, + "end": 19295.83, + "probability": 0.9839 + }, + { + "start": 19299.2, + "end": 19300.58, + "probability": 0.8029 + }, + { + "start": 19301.0, + "end": 19306.1, + "probability": 0.5633 + }, + { + "start": 19306.64, + "end": 19308.12, + "probability": 0.9957 + }, + { + "start": 19308.3, + "end": 19309.18, + "probability": 0.448 + }, + { + "start": 19309.24, + "end": 19312.26, + "probability": 0.9787 + }, + { + "start": 19313.24, + "end": 19315.56, + "probability": 0.9989 + }, + { + "start": 19315.66, + "end": 19317.04, + "probability": 0.8345 + }, + { + "start": 19317.68, + "end": 19318.5, + "probability": 0.704 + }, + { + "start": 19318.54, + "end": 19318.96, + "probability": 0.7885 + }, + { + "start": 19320.6, + "end": 19322.04, + "probability": 0.9739 + }, + { + "start": 19323.72, + "end": 19324.16, + "probability": 0.417 + }, + { + "start": 19325.68, + "end": 19326.8, + "probability": 0.8759 + }, + { + "start": 19351.52, + "end": 19353.72, + "probability": 0.7155 + }, + { + "start": 19354.22, + "end": 19357.84, + "probability": 0.5903 + }, + { + "start": 19359.18, + "end": 19365.86, + "probability": 0.6536 + }, + { + "start": 19366.86, + "end": 19371.48, + "probability": 0.8408 + }, + { + "start": 19372.8, + "end": 19375.56, + "probability": 0.5037 + }, + { + "start": 19376.84, + "end": 19378.0, + "probability": 0.9244 + }, + { + "start": 19383.8, + "end": 19384.94, + "probability": 0.8811 + }, + { + "start": 19385.88, + "end": 19386.56, + "probability": 0.7563 + }, + { + "start": 19387.46, + "end": 19391.16, + "probability": 0.9508 + }, + { + "start": 19391.98, + "end": 19399.6, + "probability": 0.6641 + }, + { + "start": 19400.46, + "end": 19406.84, + "probability": 0.9521 + }, + { + "start": 19407.52, + "end": 19411.78, + "probability": 0.9785 + }, + { + "start": 19412.83, + "end": 19418.3, + "probability": 0.8452 + }, + { + "start": 19418.86, + "end": 19421.58, + "probability": 0.6632 + }, + { + "start": 19422.1, + "end": 19423.86, + "probability": 0.6837 + }, + { + "start": 19425.12, + "end": 19429.6, + "probability": 0.9944 + }, + { + "start": 19430.68, + "end": 19432.9, + "probability": 0.3848 + }, + { + "start": 19433.46, + "end": 19436.18, + "probability": 0.6237 + }, + { + "start": 19436.86, + "end": 19440.18, + "probability": 0.8003 + }, + { + "start": 19441.04, + "end": 19442.52, + "probability": 0.8752 + }, + { + "start": 19442.74, + "end": 19447.56, + "probability": 0.9779 + }, + { + "start": 19448.72, + "end": 19452.98, + "probability": 0.9861 + }, + { + "start": 19454.08, + "end": 19457.24, + "probability": 0.992 + }, + { + "start": 19458.2, + "end": 19461.46, + "probability": 0.9212 + }, + { + "start": 19462.14, + "end": 19463.66, + "probability": 0.9544 + }, + { + "start": 19464.58, + "end": 19467.84, + "probability": 0.9393 + }, + { + "start": 19468.74, + "end": 19472.44, + "probability": 0.9904 + }, + { + "start": 19473.36, + "end": 19475.28, + "probability": 0.9824 + }, + { + "start": 19476.34, + "end": 19480.84, + "probability": 0.9943 + }, + { + "start": 19481.98, + "end": 19485.46, + "probability": 0.9941 + }, + { + "start": 19486.6, + "end": 19488.54, + "probability": 0.9984 + }, + { + "start": 19489.16, + "end": 19491.54, + "probability": 0.9576 + }, + { + "start": 19493.02, + "end": 19497.06, + "probability": 0.931 + }, + { + "start": 19498.06, + "end": 19500.8, + "probability": 0.8322 + }, + { + "start": 19501.4, + "end": 19508.36, + "probability": 0.969 + }, + { + "start": 19509.76, + "end": 19514.3, + "probability": 0.7839 + }, + { + "start": 19514.82, + "end": 19518.0, + "probability": 0.9487 + }, + { + "start": 19518.62, + "end": 19521.16, + "probability": 0.9019 + }, + { + "start": 19522.22, + "end": 19525.66, + "probability": 0.9958 + }, + { + "start": 19525.74, + "end": 19527.06, + "probability": 0.9286 + }, + { + "start": 19527.38, + "end": 19530.58, + "probability": 0.8972 + }, + { + "start": 19531.38, + "end": 19534.7, + "probability": 0.9963 + }, + { + "start": 19535.76, + "end": 19538.9, + "probability": 0.9876 + }, + { + "start": 19538.98, + "end": 19539.54, + "probability": 0.7724 + }, + { + "start": 19540.8, + "end": 19541.36, + "probability": 0.7296 + }, + { + "start": 19541.62, + "end": 19543.02, + "probability": 0.9733 + }, + { + "start": 19544.08, + "end": 19544.76, + "probability": 0.4906 + }, + { + "start": 19546.84, + "end": 19548.58, + "probability": 0.9666 + }, + { + "start": 19549.54, + "end": 19550.14, + "probability": 0.2783 + }, + { + "start": 19550.32, + "end": 19551.42, + "probability": 0.9339 + }, + { + "start": 19570.36, + "end": 19571.52, + "probability": 0.5919 + }, + { + "start": 19572.68, + "end": 19575.68, + "probability": 0.9656 + }, + { + "start": 19575.7, + "end": 19578.82, + "probability": 0.8893 + }, + { + "start": 19578.92, + "end": 19580.88, + "probability": 0.8021 + }, + { + "start": 19581.46, + "end": 19582.06, + "probability": 0.7957 + }, + { + "start": 19582.72, + "end": 19583.1, + "probability": 0.9181 + }, + { + "start": 19584.0, + "end": 19590.42, + "probability": 0.7746 + }, + { + "start": 19592.24, + "end": 19592.48, + "probability": 0.1441 + }, + { + "start": 19592.48, + "end": 19597.16, + "probability": 0.9051 + }, + { + "start": 19598.82, + "end": 19603.09, + "probability": 0.9944 + }, + { + "start": 19604.56, + "end": 19606.92, + "probability": 0.6692 + }, + { + "start": 19607.9, + "end": 19609.76, + "probability": 0.9963 + }, + { + "start": 19611.96, + "end": 19612.82, + "probability": 0.9561 + }, + { + "start": 19613.88, + "end": 19616.86, + "probability": 0.9387 + }, + { + "start": 19617.68, + "end": 19619.6, + "probability": 0.9761 + }, + { + "start": 19620.14, + "end": 19623.22, + "probability": 0.9549 + }, + { + "start": 19623.52, + "end": 19624.21, + "probability": 0.8213 + }, + { + "start": 19625.32, + "end": 19631.62, + "probability": 0.9739 + }, + { + "start": 19632.4, + "end": 19635.6, + "probability": 0.9933 + }, + { + "start": 19636.18, + "end": 19638.8, + "probability": 0.9152 + }, + { + "start": 19639.38, + "end": 19641.42, + "probability": 0.8467 + }, + { + "start": 19641.74, + "end": 19645.28, + "probability": 0.9404 + }, + { + "start": 19645.34, + "end": 19648.06, + "probability": 0.6579 + }, + { + "start": 19649.16, + "end": 19657.86, + "probability": 0.9851 + }, + { + "start": 19658.34, + "end": 19662.46, + "probability": 0.9027 + }, + { + "start": 19662.76, + "end": 19664.24, + "probability": 0.5096 + }, + { + "start": 19664.3, + "end": 19667.48, + "probability": 0.9624 + }, + { + "start": 19668.28, + "end": 19669.94, + "probability": 0.3609 + }, + { + "start": 19673.66, + "end": 19675.04, + "probability": 0.9922 + }, + { + "start": 19675.12, + "end": 19676.2, + "probability": 0.948 + }, + { + "start": 19676.38, + "end": 19677.58, + "probability": 0.9844 + }, + { + "start": 19678.42, + "end": 19679.3, + "probability": 0.6764 + }, + { + "start": 19680.8, + "end": 19684.7, + "probability": 0.997 + }, + { + "start": 19685.54, + "end": 19687.56, + "probability": 0.4808 + }, + { + "start": 19688.66, + "end": 19689.18, + "probability": 0.4341 + }, + { + "start": 19690.36, + "end": 19694.04, + "probability": 0.9869 + }, + { + "start": 19695.2, + "end": 19696.82, + "probability": 0.77 + }, + { + "start": 19697.34, + "end": 19698.54, + "probability": 0.9694 + }, + { + "start": 19699.06, + "end": 19700.79, + "probability": 0.9971 + }, + { + "start": 19701.8, + "end": 19707.28, + "probability": 0.8015 + }, + { + "start": 19708.44, + "end": 19709.72, + "probability": 0.7655 + }, + { + "start": 19711.66, + "end": 19715.44, + "probability": 0.9891 + }, + { + "start": 19716.0, + "end": 19717.28, + "probability": 0.8481 + }, + { + "start": 19717.92, + "end": 19718.9, + "probability": 0.9047 + }, + { + "start": 19720.46, + "end": 19721.56, + "probability": 0.6859 + }, + { + "start": 19723.14, + "end": 19725.1, + "probability": 0.9468 + }, + { + "start": 19726.22, + "end": 19727.94, + "probability": 0.9662 + }, + { + "start": 19731.34, + "end": 19739.76, + "probability": 0.8893 + }, + { + "start": 19743.16, + "end": 19743.16, + "probability": 0.4649 + }, + { + "start": 19743.3, + "end": 19744.24, + "probability": 0.6562 + }, + { + "start": 19746.22, + "end": 19746.8, + "probability": 0.8141 + }, + { + "start": 19747.22, + "end": 19750.44, + "probability": 0.9962 + }, + { + "start": 19750.98, + "end": 19757.12, + "probability": 0.898 + }, + { + "start": 19758.1, + "end": 19760.63, + "probability": 0.5461 + }, + { + "start": 19761.26, + "end": 19761.38, + "probability": 0.6969 + }, + { + "start": 19761.86, + "end": 19762.74, + "probability": 0.8201 + }, + { + "start": 19763.5, + "end": 19764.2, + "probability": 0.8913 + }, + { + "start": 19768.14, + "end": 19768.58, + "probability": 0.5467 + }, + { + "start": 19768.8, + "end": 19769.04, + "probability": 0.3209 + }, + { + "start": 19769.12, + "end": 19773.4, + "probability": 0.8848 + }, + { + "start": 19773.54, + "end": 19774.3, + "probability": 0.8863 + }, + { + "start": 19790.3, + "end": 19791.54, + "probability": 0.7262 + }, + { + "start": 19791.7, + "end": 19792.48, + "probability": 0.9227 + }, + { + "start": 19792.56, + "end": 19793.24, + "probability": 0.8164 + }, + { + "start": 19793.26, + "end": 19793.82, + "probability": 0.4921 + }, + { + "start": 19794.78, + "end": 19796.0, + "probability": 0.8244 + }, + { + "start": 19796.34, + "end": 19799.9, + "probability": 0.95 + }, + { + "start": 19801.76, + "end": 19802.72, + "probability": 0.0963 + }, + { + "start": 19802.72, + "end": 19802.86, + "probability": 0.4875 + }, + { + "start": 19803.88, + "end": 19804.4, + "probability": 0.1051 + }, + { + "start": 19804.68, + "end": 19805.34, + "probability": 0.589 + }, + { + "start": 19806.38, + "end": 19808.38, + "probability": 0.914 + }, + { + "start": 19808.8, + "end": 19811.36, + "probability": 0.9613 + }, + { + "start": 19811.4, + "end": 19812.78, + "probability": 0.9966 + }, + { + "start": 19813.32, + "end": 19814.7, + "probability": 0.648 + }, + { + "start": 19815.32, + "end": 19821.66, + "probability": 0.9341 + }, + { + "start": 19822.06, + "end": 19823.44, + "probability": 0.9294 + }, + { + "start": 19823.5, + "end": 19824.38, + "probability": 0.9666 + }, + { + "start": 19824.46, + "end": 19826.3, + "probability": 0.968 + }, + { + "start": 19826.86, + "end": 19829.72, + "probability": 0.6273 + }, + { + "start": 19829.84, + "end": 19832.08, + "probability": 0.9678 + }, + { + "start": 19832.26, + "end": 19833.08, + "probability": 0.7305 + }, + { + "start": 19833.46, + "end": 19837.32, + "probability": 0.9925 + }, + { + "start": 19837.66, + "end": 19839.54, + "probability": 0.9814 + }, + { + "start": 19840.0, + "end": 19840.76, + "probability": 0.9105 + }, + { + "start": 19841.62, + "end": 19844.84, + "probability": 0.86 + }, + { + "start": 19845.72, + "end": 19846.28, + "probability": 0.352 + }, + { + "start": 19846.4, + "end": 19848.78, + "probability": 0.9819 + }, + { + "start": 19849.48, + "end": 19851.08, + "probability": 0.6741 + }, + { + "start": 19851.1, + "end": 19852.81, + "probability": 0.8889 + }, + { + "start": 19853.34, + "end": 19853.74, + "probability": 0.8447 + }, + { + "start": 19853.88, + "end": 19857.12, + "probability": 0.7222 + }, + { + "start": 19857.18, + "end": 19858.11, + "probability": 0.4551 + }, + { + "start": 19858.96, + "end": 19862.92, + "probability": 0.6906 + }, + { + "start": 19863.08, + "end": 19863.85, + "probability": 0.5888 + }, + { + "start": 19864.06, + "end": 19864.76, + "probability": 0.4735 + }, + { + "start": 19865.06, + "end": 19865.68, + "probability": 0.7775 + }, + { + "start": 19865.8, + "end": 19866.7, + "probability": 0.9038 + }, + { + "start": 19866.76, + "end": 19867.94, + "probability": 0.9759 + }, + { + "start": 19867.94, + "end": 19869.42, + "probability": 0.9619 + }, + { + "start": 19869.68, + "end": 19870.86, + "probability": 0.8138 + }, + { + "start": 19870.9, + "end": 19873.02, + "probability": 0.7263 + }, + { + "start": 19873.34, + "end": 19874.88, + "probability": 0.7615 + }, + { + "start": 19875.12, + "end": 19875.74, + "probability": 0.669 + }, + { + "start": 19875.74, + "end": 19875.94, + "probability": 0.6339 + }, + { + "start": 19875.96, + "end": 19876.9, + "probability": 0.6918 + }, + { + "start": 19876.98, + "end": 19877.65, + "probability": 0.428 + }, + { + "start": 19877.96, + "end": 19879.44, + "probability": 0.8603 + }, + { + "start": 19879.88, + "end": 19880.72, + "probability": 0.3764 + }, + { + "start": 19880.84, + "end": 19881.44, + "probability": 0.3849 + }, + { + "start": 19881.54, + "end": 19882.08, + "probability": 0.667 + }, + { + "start": 19882.1, + "end": 19882.5, + "probability": 0.274 + }, + { + "start": 19882.6, + "end": 19884.22, + "probability": 0.2791 + }, + { + "start": 19884.34, + "end": 19887.36, + "probability": 0.9775 + }, + { + "start": 19887.44, + "end": 19889.4, + "probability": 0.9639 + }, + { + "start": 19889.88, + "end": 19892.72, + "probability": 0.9905 + }, + { + "start": 19893.22, + "end": 19894.92, + "probability": 0.8065 + }, + { + "start": 19895.36, + "end": 19895.98, + "probability": 0.8613 + }, + { + "start": 19896.54, + "end": 19898.16, + "probability": 0.687 + }, + { + "start": 19898.9, + "end": 19901.44, + "probability": 0.9088 + }, + { + "start": 19902.5, + "end": 19905.3, + "probability": 0.9517 + }, + { + "start": 19905.66, + "end": 19910.54, + "probability": 0.9016 + }, + { + "start": 19911.5, + "end": 19911.68, + "probability": 0.1794 + }, + { + "start": 19911.68, + "end": 19912.88, + "probability": 0.7482 + }, + { + "start": 19914.48, + "end": 19916.54, + "probability": 0.385 + }, + { + "start": 19918.03, + "end": 19922.02, + "probability": 0.809 + }, + { + "start": 19922.24, + "end": 19925.32, + "probability": 0.8282 + }, + { + "start": 19926.16, + "end": 19928.3, + "probability": 0.7306 + }, + { + "start": 19928.98, + "end": 19930.7, + "probability": 0.6194 + }, + { + "start": 19932.2, + "end": 19933.88, + "probability": 0.1208 + }, + { + "start": 19935.44, + "end": 19938.68, + "probability": 0.639 + }, + { + "start": 19939.12, + "end": 19943.0, + "probability": 0.9143 + }, + { + "start": 19944.42, + "end": 19948.38, + "probability": 0.7937 + }, + { + "start": 19948.42, + "end": 19950.8, + "probability": 0.6954 + }, + { + "start": 19951.28, + "end": 19952.18, + "probability": 0.1021 + }, + { + "start": 19952.18, + "end": 19952.18, + "probability": 0.1682 + }, + { + "start": 19952.18, + "end": 19952.96, + "probability": 0.1853 + }, + { + "start": 19953.04, + "end": 19954.12, + "probability": 0.5635 + }, + { + "start": 19954.2, + "end": 19956.64, + "probability": 0.8164 + }, + { + "start": 19957.16, + "end": 19957.68, + "probability": 0.5848 + }, + { + "start": 19957.74, + "end": 19958.34, + "probability": 0.9345 + }, + { + "start": 19958.5, + "end": 19959.3, + "probability": 0.5853 + }, + { + "start": 19959.6, + "end": 19960.09, + "probability": 0.0603 + }, + { + "start": 19960.44, + "end": 19962.78, + "probability": 0.6968 + }, + { + "start": 19963.18, + "end": 19964.38, + "probability": 0.7654 + }, + { + "start": 19964.56, + "end": 19965.42, + "probability": 0.937 + }, + { + "start": 19965.54, + "end": 19966.12, + "probability": 0.9843 + }, + { + "start": 19966.2, + "end": 19967.68, + "probability": 0.8936 + }, + { + "start": 19967.8, + "end": 19969.34, + "probability": 0.9705 + }, + { + "start": 19969.54, + "end": 19971.86, + "probability": 0.7754 + }, + { + "start": 19972.78, + "end": 19975.06, + "probability": 0.3093 + }, + { + "start": 19975.72, + "end": 19979.96, + "probability": 0.8851 + }, + { + "start": 19980.82, + "end": 19981.2, + "probability": 0.5037 + }, + { + "start": 19981.24, + "end": 19983.12, + "probability": 0.7473 + }, + { + "start": 19983.22, + "end": 19987.87, + "probability": 0.6169 + }, + { + "start": 19989.01, + "end": 19989.22, + "probability": 0.1047 + }, + { + "start": 19989.22, + "end": 19989.8, + "probability": 0.2035 + }, + { + "start": 19990.78, + "end": 19991.9, + "probability": 0.654 + }, + { + "start": 19992.28, + "end": 19993.8, + "probability": 0.9839 + }, + { + "start": 19993.9, + "end": 19995.4, + "probability": 0.9018 + }, + { + "start": 19996.04, + "end": 19997.99, + "probability": 0.8758 + }, + { + "start": 19998.58, + "end": 20000.34, + "probability": 0.3171 + }, + { + "start": 20000.34, + "end": 20006.18, + "probability": 0.9805 + }, + { + "start": 20006.44, + "end": 20006.78, + "probability": 0.2714 + }, + { + "start": 20007.02, + "end": 20007.94, + "probability": 0.9799 + }, + { + "start": 20008.04, + "end": 20009.65, + "probability": 0.7507 + }, + { + "start": 20010.9, + "end": 20014.74, + "probability": 0.845 + }, + { + "start": 20016.88, + "end": 20017.84, + "probability": 0.4168 + }, + { + "start": 20019.6, + "end": 20026.66, + "probability": 0.2886 + }, + { + "start": 20028.34, + "end": 20028.66, + "probability": 0.1988 + }, + { + "start": 20029.02, + "end": 20030.5, + "probability": 0.1969 + }, + { + "start": 20030.92, + "end": 20031.72, + "probability": 0.1203 + }, + { + "start": 20032.62, + "end": 20034.58, + "probability": 0.2294 + }, + { + "start": 20034.58, + "end": 20037.08, + "probability": 0.2781 + }, + { + "start": 20037.54, + "end": 20038.52, + "probability": 0.7198 + }, + { + "start": 20038.54, + "end": 20039.68, + "probability": 0.6458 + }, + { + "start": 20040.26, + "end": 20041.86, + "probability": 0.7789 + }, + { + "start": 20042.44, + "end": 20043.14, + "probability": 0.4089 + }, + { + "start": 20043.6, + "end": 20046.86, + "probability": 0.6459 + }, + { + "start": 20047.14, + "end": 20050.3, + "probability": 0.7325 + }, + { + "start": 20050.52, + "end": 20051.68, + "probability": 0.9856 + }, + { + "start": 20052.42, + "end": 20054.0, + "probability": 0.6957 + }, + { + "start": 20054.16, + "end": 20054.88, + "probability": 0.8829 + }, + { + "start": 20054.88, + "end": 20059.48, + "probability": 0.6036 + }, + { + "start": 20059.86, + "end": 20060.6, + "probability": 0.7375 + }, + { + "start": 20060.92, + "end": 20064.42, + "probability": 0.8023 + }, + { + "start": 20064.42, + "end": 20065.8, + "probability": 0.8827 + }, + { + "start": 20065.9, + "end": 20067.6, + "probability": 0.8127 + }, + { + "start": 20067.7, + "end": 20071.23, + "probability": 0.8713 + }, + { + "start": 20071.46, + "end": 20073.56, + "probability": 0.7879 + }, + { + "start": 20073.64, + "end": 20074.22, + "probability": 0.8607 + }, + { + "start": 20074.44, + "end": 20075.34, + "probability": 0.969 + }, + { + "start": 20075.56, + "end": 20076.82, + "probability": 0.9556 + }, + { + "start": 20077.1, + "end": 20078.74, + "probability": 0.5368 + }, + { + "start": 20079.32, + "end": 20082.06, + "probability": 0.9072 + }, + { + "start": 20082.38, + "end": 20085.56, + "probability": 0.5606 + }, + { + "start": 20086.2, + "end": 20087.78, + "probability": 0.0557 + }, + { + "start": 20088.2, + "end": 20090.76, + "probability": 0.951 + }, + { + "start": 20090.95, + "end": 20092.6, + "probability": 0.9025 + }, + { + "start": 20093.4, + "end": 20094.96, + "probability": 0.2654 + }, + { + "start": 20095.16, + "end": 20096.22, + "probability": 0.6511 + }, + { + "start": 20096.36, + "end": 20098.02, + "probability": 0.6279 + }, + { + "start": 20098.98, + "end": 20101.44, + "probability": 0.5161 + }, + { + "start": 20101.44, + "end": 20102.92, + "probability": 0.6467 + }, + { + "start": 20103.62, + "end": 20104.6, + "probability": 0.8643 + }, + { + "start": 20104.74, + "end": 20105.76, + "probability": 0.6833 + }, + { + "start": 20105.86, + "end": 20108.8, + "probability": 0.3115 + }, + { + "start": 20109.32, + "end": 20111.16, + "probability": 0.6689 + }, + { + "start": 20112.86, + "end": 20117.72, + "probability": 0.3858 + }, + { + "start": 20117.78, + "end": 20121.32, + "probability": 0.7131 + }, + { + "start": 20123.06, + "end": 20125.87, + "probability": 0.373 + }, + { + "start": 20126.38, + "end": 20129.5, + "probability": 0.9912 + }, + { + "start": 20129.74, + "end": 20129.96, + "probability": 0.4202 + }, + { + "start": 20130.04, + "end": 20131.74, + "probability": 0.7476 + }, + { + "start": 20133.36, + "end": 20135.46, + "probability": 0.9738 + }, + { + "start": 20135.94, + "end": 20139.84, + "probability": 0.8349 + }, + { + "start": 20139.84, + "end": 20142.12, + "probability": 0.9641 + }, + { + "start": 20142.16, + "end": 20143.3, + "probability": 0.5122 + }, + { + "start": 20143.46, + "end": 20147.4, + "probability": 0.8701 + }, + { + "start": 20147.78, + "end": 20151.36, + "probability": 0.4472 + }, + { + "start": 20151.42, + "end": 20152.3, + "probability": 0.5765 + }, + { + "start": 20152.7, + "end": 20153.92, + "probability": 0.4852 + }, + { + "start": 20153.98, + "end": 20155.99, + "probability": 0.5566 + }, + { + "start": 20156.76, + "end": 20161.26, + "probability": 0.759 + }, + { + "start": 20161.38, + "end": 20162.82, + "probability": 0.1398 + }, + { + "start": 20163.66, + "end": 20164.92, + "probability": 0.3437 + }, + { + "start": 20165.52, + "end": 20167.06, + "probability": 0.7217 + }, + { + "start": 20167.6, + "end": 20167.82, + "probability": 0.5926 + }, + { + "start": 20168.96, + "end": 20173.1, + "probability": 0.3416 + }, + { + "start": 20173.32, + "end": 20174.82, + "probability": 0.1083 + }, + { + "start": 20174.86, + "end": 20175.52, + "probability": 0.2565 + }, + { + "start": 20176.34, + "end": 20180.18, + "probability": 0.3646 + }, + { + "start": 20181.6, + "end": 20182.44, + "probability": 0.0099 + }, + { + "start": 20182.44, + "end": 20184.08, + "probability": 0.3278 + }, + { + "start": 20184.2, + "end": 20185.59, + "probability": 0.6967 + }, + { + "start": 20186.24, + "end": 20187.98, + "probability": 0.6139 + }, + { + "start": 20188.04, + "end": 20192.74, + "probability": 0.9414 + }, + { + "start": 20193.08, + "end": 20194.18, + "probability": 0.9595 + }, + { + "start": 20194.3, + "end": 20195.1, + "probability": 0.7984 + }, + { + "start": 20195.52, + "end": 20198.48, + "probability": 0.6298 + }, + { + "start": 20198.56, + "end": 20201.18, + "probability": 0.649 + }, + { + "start": 20201.52, + "end": 20203.08, + "probability": 0.6869 + }, + { + "start": 20203.12, + "end": 20204.14, + "probability": 0.7004 + }, + { + "start": 20204.48, + "end": 20207.44, + "probability": 0.9429 + }, + { + "start": 20207.44, + "end": 20209.96, + "probability": 0.9603 + }, + { + "start": 20210.1, + "end": 20211.92, + "probability": 0.9275 + }, + { + "start": 20212.54, + "end": 20213.92, + "probability": 0.2457 + }, + { + "start": 20214.48, + "end": 20219.44, + "probability": 0.835 + }, + { + "start": 20219.64, + "end": 20221.96, + "probability": 0.9263 + }, + { + "start": 20222.06, + "end": 20225.42, + "probability": 0.8934 + }, + { + "start": 20226.61, + "end": 20229.06, + "probability": 0.6815 + }, + { + "start": 20229.58, + "end": 20230.62, + "probability": 0.9257 + }, + { + "start": 20230.76, + "end": 20231.46, + "probability": 0.3109 + }, + { + "start": 20231.5, + "end": 20231.74, + "probability": 0.1842 + }, + { + "start": 20231.88, + "end": 20234.44, + "probability": 0.9815 + }, + { + "start": 20235.04, + "end": 20237.06, + "probability": 0.986 + }, + { + "start": 20237.06, + "end": 20240.62, + "probability": 0.6545 + }, + { + "start": 20240.96, + "end": 20242.0, + "probability": 0.4195 + }, + { + "start": 20242.3, + "end": 20246.16, + "probability": 0.7408 + }, + { + "start": 20246.22, + "end": 20247.11, + "probability": 0.5945 + }, + { + "start": 20248.04, + "end": 20249.04, + "probability": 0.8553 + }, + { + "start": 20249.32, + "end": 20250.7, + "probability": 0.8993 + }, + { + "start": 20250.78, + "end": 20251.78, + "probability": 0.8135 + }, + { + "start": 20251.82, + "end": 20253.68, + "probability": 0.5397 + }, + { + "start": 20254.44, + "end": 20257.6, + "probability": 0.6349 + }, + { + "start": 20257.8, + "end": 20260.08, + "probability": 0.9399 + }, + { + "start": 20261.7, + "end": 20265.3, + "probability": 0.9665 + }, + { + "start": 20265.58, + "end": 20268.36, + "probability": 0.9154 + }, + { + "start": 20269.32, + "end": 20272.8, + "probability": 0.9857 + }, + { + "start": 20272.8, + "end": 20278.32, + "probability": 0.9944 + }, + { + "start": 20278.48, + "end": 20283.76, + "probability": 0.9546 + }, + { + "start": 20283.76, + "end": 20286.78, + "probability": 0.7248 + }, + { + "start": 20287.14, + "end": 20291.92, + "probability": 0.6398 + }, + { + "start": 20291.96, + "end": 20293.84, + "probability": 0.8322 + }, + { + "start": 20293.92, + "end": 20294.42, + "probability": 0.4855 + }, + { + "start": 20294.42, + "end": 20294.78, + "probability": 0.4832 + }, + { + "start": 20295.74, + "end": 20296.12, + "probability": 0.9407 + }, + { + "start": 20297.12, + "end": 20301.38, + "probability": 0.9218 + }, + { + "start": 20302.26, + "end": 20302.56, + "probability": 0.6861 + }, + { + "start": 20302.66, + "end": 20303.52, + "probability": 0.8282 + }, + { + "start": 20303.58, + "end": 20304.79, + "probability": 0.7975 + }, + { + "start": 20305.5, + "end": 20309.06, + "probability": 0.8979 + }, + { + "start": 20310.68, + "end": 20314.48, + "probability": 0.9097 + }, + { + "start": 20316.22, + "end": 20318.38, + "probability": 0.947 + }, + { + "start": 20318.38, + "end": 20321.54, + "probability": 0.8757 + }, + { + "start": 20322.56, + "end": 20325.2, + "probability": 0.9734 + }, + { + "start": 20325.24, + "end": 20326.52, + "probability": 0.947 + }, + { + "start": 20326.96, + "end": 20332.76, + "probability": 0.8877 + }, + { + "start": 20333.15, + "end": 20336.62, + "probability": 0.6049 + }, + { + "start": 20336.62, + "end": 20339.28, + "probability": 0.9901 + }, + { + "start": 20340.48, + "end": 20342.06, + "probability": 0.8086 + }, + { + "start": 20342.78, + "end": 20348.05, + "probability": 0.8061 + }, + { + "start": 20348.36, + "end": 20351.02, + "probability": 0.5835 + }, + { + "start": 20351.18, + "end": 20356.62, + "probability": 0.9053 + }, + { + "start": 20356.62, + "end": 20358.82, + "probability": 0.3987 + }, + { + "start": 20358.82, + "end": 20363.86, + "probability": 0.8936 + }, + { + "start": 20364.0, + "end": 20367.88, + "probability": 0.9247 + }, + { + "start": 20368.38, + "end": 20371.76, + "probability": 0.9845 + }, + { + "start": 20372.14, + "end": 20374.87, + "probability": 0.7939 + }, + { + "start": 20375.36, + "end": 20376.52, + "probability": 0.9966 + }, + { + "start": 20376.8, + "end": 20379.22, + "probability": 0.6509 + }, + { + "start": 20379.22, + "end": 20383.02, + "probability": 0.5179 + }, + { + "start": 20383.22, + "end": 20384.92, + "probability": 0.9814 + }, + { + "start": 20385.04, + "end": 20386.44, + "probability": 0.4331 + }, + { + "start": 20386.58, + "end": 20387.68, + "probability": 0.4784 + }, + { + "start": 20387.92, + "end": 20389.43, + "probability": 0.7923 + }, + { + "start": 20389.94, + "end": 20391.76, + "probability": 0.777 + }, + { + "start": 20392.34, + "end": 20395.02, + "probability": 0.1927 + }, + { + "start": 20395.46, + "end": 20399.46, + "probability": 0.9873 + }, + { + "start": 20399.46, + "end": 20403.62, + "probability": 0.992 + }, + { + "start": 20403.7, + "end": 20404.87, + "probability": 0.9864 + }, + { + "start": 20405.42, + "end": 20406.2, + "probability": 0.8728 + }, + { + "start": 20406.74, + "end": 20410.78, + "probability": 0.9537 + }, + { + "start": 20411.5, + "end": 20413.36, + "probability": 0.9847 + }, + { + "start": 20413.7, + "end": 20414.82, + "probability": 0.9343 + }, + { + "start": 20415.04, + "end": 20415.52, + "probability": 0.9124 + }, + { + "start": 20415.54, + "end": 20416.34, + "probability": 0.8658 + }, + { + "start": 20416.86, + "end": 20418.28, + "probability": 0.9418 + }, + { + "start": 20418.36, + "end": 20419.17, + "probability": 0.9418 + }, + { + "start": 20419.66, + "end": 20421.92, + "probability": 0.8533 + }, + { + "start": 20422.08, + "end": 20425.04, + "probability": 0.9152 + }, + { + "start": 20425.88, + "end": 20427.78, + "probability": 0.978 + }, + { + "start": 20428.26, + "end": 20429.7, + "probability": 0.9492 + }, + { + "start": 20430.14, + "end": 20432.48, + "probability": 0.813 + }, + { + "start": 20432.66, + "end": 20433.06, + "probability": 0.49 + }, + { + "start": 20433.16, + "end": 20436.12, + "probability": 0.5137 + }, + { + "start": 20436.24, + "end": 20436.56, + "probability": 0.3007 + }, + { + "start": 20437.24, + "end": 20438.39, + "probability": 0.9046 + }, + { + "start": 20439.18, + "end": 20440.44, + "probability": 0.6336 + }, + { + "start": 20440.9, + "end": 20443.3, + "probability": 0.8698 + }, + { + "start": 20443.5, + "end": 20444.4, + "probability": 0.6588 + }, + { + "start": 20444.6, + "end": 20445.94, + "probability": 0.7105 + }, + { + "start": 20446.02, + "end": 20447.16, + "probability": 0.9004 + }, + { + "start": 20447.96, + "end": 20450.44, + "probability": 0.9033 + }, + { + "start": 20450.88, + "end": 20455.76, + "probability": 0.8115 + }, + { + "start": 20455.84, + "end": 20456.08, + "probability": 0.7432 + }, + { + "start": 20456.28, + "end": 20456.88, + "probability": 0.6694 + }, + { + "start": 20457.12, + "end": 20461.16, + "probability": 0.8281 + }, + { + "start": 20461.62, + "end": 20463.3, + "probability": 0.9026 + }, + { + "start": 20463.48, + "end": 20465.14, + "probability": 0.8091 + }, + { + "start": 20465.32, + "end": 20466.9, + "probability": 0.6852 + }, + { + "start": 20466.98, + "end": 20469.74, + "probability": 0.9604 + }, + { + "start": 20470.86, + "end": 20474.16, + "probability": 0.3501 + }, + { + "start": 20474.18, + "end": 20476.64, + "probability": 0.7717 + }, + { + "start": 20476.88, + "end": 20477.86, + "probability": 0.8163 + }, + { + "start": 20478.02, + "end": 20478.92, + "probability": 0.8511 + }, + { + "start": 20479.34, + "end": 20480.46, + "probability": 0.9182 + }, + { + "start": 20480.66, + "end": 20482.56, + "probability": 0.9061 + }, + { + "start": 20483.46, + "end": 20485.04, + "probability": 0.6641 + }, + { + "start": 20485.82, + "end": 20487.64, + "probability": 0.5107 + }, + { + "start": 20487.8, + "end": 20490.12, + "probability": 0.9858 + }, + { + "start": 20490.82, + "end": 20491.38, + "probability": 0.2983 + }, + { + "start": 20491.82, + "end": 20495.16, + "probability": 0.4737 + }, + { + "start": 20495.22, + "end": 20497.42, + "probability": 0.6115 + }, + { + "start": 20497.54, + "end": 20499.94, + "probability": 0.9538 + }, + { + "start": 20500.38, + "end": 20502.32, + "probability": 0.908 + }, + { + "start": 20502.46, + "end": 20503.46, + "probability": 0.964 + }, + { + "start": 20503.78, + "end": 20506.92, + "probability": 0.6982 + }, + { + "start": 20506.96, + "end": 20508.16, + "probability": 0.736 + }, + { + "start": 20508.34, + "end": 20512.3, + "probability": 0.5387 + }, + { + "start": 20512.42, + "end": 20513.77, + "probability": 0.7784 + }, + { + "start": 20513.84, + "end": 20517.33, + "probability": 0.9376 + }, + { + "start": 20517.66, + "end": 20519.26, + "probability": 0.8068 + }, + { + "start": 20519.64, + "end": 20519.64, + "probability": 0.887 + }, + { + "start": 20519.64, + "end": 20522.42, + "probability": 0.3408 + }, + { + "start": 20522.56, + "end": 20522.94, + "probability": 0.2826 + }, + { + "start": 20522.94, + "end": 20522.96, + "probability": 0.1884 + }, + { + "start": 20523.0, + "end": 20524.82, + "probability": 0.2376 + }, + { + "start": 20524.82, + "end": 20528.42, + "probability": 0.4558 + }, + { + "start": 20528.7, + "end": 20530.8, + "probability": 0.6039 + }, + { + "start": 20530.9, + "end": 20530.9, + "probability": 0.1263 + }, + { + "start": 20530.9, + "end": 20530.9, + "probability": 0.1554 + }, + { + "start": 20530.9, + "end": 20530.98, + "probability": 0.009 + }, + { + "start": 20530.98, + "end": 20532.04, + "probability": 0.5403 + }, + { + "start": 20532.18, + "end": 20533.25, + "probability": 0.9023 + }, + { + "start": 20534.12, + "end": 20538.62, + "probability": 0.9375 + }, + { + "start": 20538.66, + "end": 20539.38, + "probability": 0.1862 + }, + { + "start": 20540.6, + "end": 20540.66, + "probability": 0.2873 + }, + { + "start": 20540.66, + "end": 20544.1, + "probability": 0.8514 + }, + { + "start": 20544.4, + "end": 20545.32, + "probability": 0.7875 + }, + { + "start": 20545.66, + "end": 20546.76, + "probability": 0.7805 + }, + { + "start": 20547.34, + "end": 20549.06, + "probability": 0.979 + }, + { + "start": 20549.58, + "end": 20552.92, + "probability": 0.5868 + }, + { + "start": 20553.44, + "end": 20555.66, + "probability": 0.8877 + }, + { + "start": 20556.56, + "end": 20558.32, + "probability": 0.948 + }, + { + "start": 20559.67, + "end": 20561.02, + "probability": 0.7615 + }, + { + "start": 20561.2, + "end": 20562.68, + "probability": 0.9043 + }, + { + "start": 20562.8, + "end": 20563.84, + "probability": 0.7399 + }, + { + "start": 20563.98, + "end": 20565.78, + "probability": 0.9485 + }, + { + "start": 20565.78, + "end": 20568.44, + "probability": 0.7781 + }, + { + "start": 20568.44, + "end": 20570.16, + "probability": 0.3541 + }, + { + "start": 20570.68, + "end": 20570.68, + "probability": 0.0596 + }, + { + "start": 20570.68, + "end": 20573.06, + "probability": 0.7478 + }, + { + "start": 20573.1, + "end": 20574.38, + "probability": 0.6431 + }, + { + "start": 20574.68, + "end": 20575.14, + "probability": 0.877 + }, + { + "start": 20575.24, + "end": 20577.06, + "probability": 0.9963 + }, + { + "start": 20577.9, + "end": 20578.32, + "probability": 0.143 + }, + { + "start": 20579.68, + "end": 20586.24, + "probability": 0.2537 + }, + { + "start": 20586.28, + "end": 20590.26, + "probability": 0.5927 + }, + { + "start": 20590.34, + "end": 20593.04, + "probability": 0.7269 + }, + { + "start": 20593.3, + "end": 20595.24, + "probability": 0.5699 + }, + { + "start": 20595.36, + "end": 20597.98, + "probability": 0.9955 + }, + { + "start": 20598.88, + "end": 20602.14, + "probability": 0.6013 + }, + { + "start": 20602.4, + "end": 20603.58, + "probability": 0.8584 + }, + { + "start": 20603.62, + "end": 20605.5, + "probability": 0.661 + }, + { + "start": 20605.94, + "end": 20607.44, + "probability": 0.9352 + }, + { + "start": 20607.54, + "end": 20611.68, + "probability": 0.9467 + }, + { + "start": 20611.82, + "end": 20613.19, + "probability": 0.9993 + }, + { + "start": 20614.58, + "end": 20615.7, + "probability": 0.3912 + }, + { + "start": 20615.84, + "end": 20617.04, + "probability": 0.1439 + }, + { + "start": 20617.28, + "end": 20618.46, + "probability": 0.0739 + }, + { + "start": 20618.78, + "end": 20620.6, + "probability": 0.7372 + }, + { + "start": 20620.9, + "end": 20621.92, + "probability": 0.6501 + }, + { + "start": 20622.04, + "end": 20623.76, + "probability": 0.6345 + }, + { + "start": 20624.8, + "end": 20628.32, + "probability": 0.831 + }, + { + "start": 20628.76, + "end": 20633.44, + "probability": 0.6465 + }, + { + "start": 20633.64, + "end": 20638.12, + "probability": 0.8925 + }, + { + "start": 20638.56, + "end": 20639.6, + "probability": 0.9925 + }, + { + "start": 20639.78, + "end": 20641.94, + "probability": 0.9834 + }, + { + "start": 20642.62, + "end": 20645.46, + "probability": 0.9077 + }, + { + "start": 20646.62, + "end": 20648.86, + "probability": 0.9686 + }, + { + "start": 20648.86, + "end": 20651.66, + "probability": 0.8083 + }, + { + "start": 20652.22, + "end": 20653.92, + "probability": 0.9692 + }, + { + "start": 20654.36, + "end": 20654.36, + "probability": 0.0231 + }, + { + "start": 20654.36, + "end": 20657.2, + "probability": 0.0691 + }, + { + "start": 20658.1, + "end": 20659.2, + "probability": 0.0051 + }, + { + "start": 20659.2, + "end": 20659.56, + "probability": 0.2144 + }, + { + "start": 20659.78, + "end": 20660.52, + "probability": 0.3628 + }, + { + "start": 20661.04, + "end": 20661.42, + "probability": 0.3464 + }, + { + "start": 20661.96, + "end": 20663.8, + "probability": 0.386 + }, + { + "start": 20663.92, + "end": 20666.32, + "probability": 0.5162 + }, + { + "start": 20666.36, + "end": 20667.32, + "probability": 0.1317 + }, + { + "start": 20667.64, + "end": 20669.76, + "probability": 0.5723 + }, + { + "start": 20670.36, + "end": 20674.26, + "probability": 0.7369 + }, + { + "start": 20674.9, + "end": 20675.96, + "probability": 0.728 + }, + { + "start": 20676.06, + "end": 20678.2, + "probability": 0.4387 + }, + { + "start": 20678.2, + "end": 20678.6, + "probability": 0.4175 + }, + { + "start": 20678.68, + "end": 20679.54, + "probability": 0.8987 + }, + { + "start": 20679.7, + "end": 20682.34, + "probability": 0.5214 + }, + { + "start": 20682.66, + "end": 20683.5, + "probability": 0.3886 + }, + { + "start": 20683.62, + "end": 20687.9, + "probability": 0.8806 + }, + { + "start": 20688.06, + "end": 20688.72, + "probability": 0.3899 + }, + { + "start": 20688.88, + "end": 20691.54, + "probability": 0.8403 + }, + { + "start": 20691.88, + "end": 20693.98, + "probability": 0.8926 + }, + { + "start": 20694.76, + "end": 20699.76, + "probability": 0.5849 + }, + { + "start": 20700.34, + "end": 20701.88, + "probability": 0.9325 + }, + { + "start": 20701.94, + "end": 20702.34, + "probability": 0.9238 + }, + { + "start": 20703.46, + "end": 20703.88, + "probability": 0.558 + }, + { + "start": 20703.92, + "end": 20704.77, + "probability": 0.5054 + }, + { + "start": 20705.12, + "end": 20705.62, + "probability": 0.37 + }, + { + "start": 20706.46, + "end": 20707.4, + "probability": 0.7005 + }, + { + "start": 20708.32, + "end": 20709.9, + "probability": 0.9927 + }, + { + "start": 20710.68, + "end": 20711.32, + "probability": 0.5153 + }, + { + "start": 20711.36, + "end": 20713.36, + "probability": 0.7606 + }, + { + "start": 20714.78, + "end": 20715.9, + "probability": 0.9067 + }, + { + "start": 20715.98, + "end": 20717.38, + "probability": 0.7141 + }, + { + "start": 20717.48, + "end": 20722.9, + "probability": 0.7559 + }, + { + "start": 20727.68, + "end": 20728.08, + "probability": 0.7446 + }, + { + "start": 20728.76, + "end": 20732.02, + "probability": 0.2981 + }, + { + "start": 20735.4, + "end": 20737.9, + "probability": 0.5592 + }, + { + "start": 20739.0, + "end": 20739.1, + "probability": 0.1911 + }, + { + "start": 20741.0, + "end": 20744.52, + "probability": 0.6854 + }, + { + "start": 20744.94, + "end": 20748.48, + "probability": 0.9347 + }, + { + "start": 20751.36, + "end": 20754.22, + "probability": 0.9152 + }, + { + "start": 20754.22, + "end": 20756.64, + "probability": 0.9258 + }, + { + "start": 20756.78, + "end": 20759.32, + "probability": 0.6993 + }, + { + "start": 20759.96, + "end": 20761.66, + "probability": 0.5657 + }, + { + "start": 20761.74, + "end": 20763.8, + "probability": 0.8885 + }, + { + "start": 20771.44, + "end": 20771.46, + "probability": 0.5717 + }, + { + "start": 20771.46, + "end": 20772.98, + "probability": 0.9443 + }, + { + "start": 20773.02, + "end": 20773.36, + "probability": 0.6074 + }, + { + "start": 20773.5, + "end": 20774.26, + "probability": 0.7166 + }, + { + "start": 20774.94, + "end": 20775.48, + "probability": 0.785 + }, + { + "start": 20777.16, + "end": 20781.6, + "probability": 0.5353 + }, + { + "start": 20782.1, + "end": 20784.46, + "probability": 0.726 + }, + { + "start": 20785.96, + "end": 20789.5, + "probability": 0.9844 + }, + { + "start": 20789.56, + "end": 20792.9, + "probability": 0.9946 + }, + { + "start": 20794.52, + "end": 20795.28, + "probability": 0.9171 + }, + { + "start": 20796.64, + "end": 20798.14, + "probability": 0.9615 + }, + { + "start": 20798.8, + "end": 20801.62, + "probability": 0.7677 + }, + { + "start": 20802.46, + "end": 20805.0, + "probability": 0.9345 + }, + { + "start": 20805.1, + "end": 20805.34, + "probability": 0.5508 + }, + { + "start": 20805.46, + "end": 20806.44, + "probability": 0.938 + }, + { + "start": 20807.36, + "end": 20811.94, + "probability": 0.816 + }, + { + "start": 20812.76, + "end": 20814.08, + "probability": 0.8391 + }, + { + "start": 20814.18, + "end": 20816.06, + "probability": 0.6304 + }, + { + "start": 20816.52, + "end": 20817.08, + "probability": 0.9528 + }, + { + "start": 20817.22, + "end": 20817.48, + "probability": 0.9495 + }, + { + "start": 20817.56, + "end": 20818.6, + "probability": 0.9922 + }, + { + "start": 20818.74, + "end": 20820.4, + "probability": 0.9846 + }, + { + "start": 20821.16, + "end": 20822.92, + "probability": 0.8506 + }, + { + "start": 20823.4, + "end": 20825.06, + "probability": 0.8667 + }, + { + "start": 20825.68, + "end": 20829.32, + "probability": 0.7275 + }, + { + "start": 20829.88, + "end": 20833.5, + "probability": 0.9012 + }, + { + "start": 20834.16, + "end": 20836.24, + "probability": 0.8033 + }, + { + "start": 20836.84, + "end": 20838.76, + "probability": 0.8638 + }, + { + "start": 20838.76, + "end": 20841.48, + "probability": 0.9961 + }, + { + "start": 20841.48, + "end": 20844.3, + "probability": 0.9053 + }, + { + "start": 20844.8, + "end": 20848.06, + "probability": 0.9854 + }, + { + "start": 20848.66, + "end": 20851.08, + "probability": 0.869 + }, + { + "start": 20851.54, + "end": 20853.8, + "probability": 0.8214 + }, + { + "start": 20854.14, + "end": 20858.34, + "probability": 0.7305 + }, + { + "start": 20859.48, + "end": 20862.36, + "probability": 0.7641 + }, + { + "start": 20862.5, + "end": 20863.42, + "probability": 0.3495 + }, + { + "start": 20863.86, + "end": 20864.72, + "probability": 0.1307 + }, + { + "start": 20864.76, + "end": 20867.0, + "probability": 0.9108 + }, + { + "start": 20867.04, + "end": 20867.84, + "probability": 0.4386 + }, + { + "start": 20867.92, + "end": 20868.2, + "probability": 0.5332 + }, + { + "start": 20868.42, + "end": 20869.24, + "probability": 0.975 + }, + { + "start": 20869.38, + "end": 20870.08, + "probability": 0.3501 + }, + { + "start": 20871.94, + "end": 20871.94, + "probability": 0.1535 + }, + { + "start": 20871.94, + "end": 20872.04, + "probability": 0.0119 + }, + { + "start": 20872.04, + "end": 20873.62, + "probability": 0.4972 + }, + { + "start": 20875.16, + "end": 20878.72, + "probability": 0.8722 + }, + { + "start": 20879.36, + "end": 20884.52, + "probability": 0.7443 + }, + { + "start": 20885.24, + "end": 20891.08, + "probability": 0.8525 + }, + { + "start": 20891.26, + "end": 20892.92, + "probability": 0.8633 + }, + { + "start": 20893.06, + "end": 20894.22, + "probability": 0.7804 + }, + { + "start": 20894.78, + "end": 20896.78, + "probability": 0.9825 + }, + { + "start": 20897.26, + "end": 20898.58, + "probability": 0.9373 + }, + { + "start": 20899.3, + "end": 20900.68, + "probability": 0.9727 + }, + { + "start": 20900.72, + "end": 20901.32, + "probability": 0.9328 + }, + { + "start": 20901.74, + "end": 20902.68, + "probability": 0.9902 + }, + { + "start": 20903.14, + "end": 20904.02, + "probability": 0.4901 + }, + { + "start": 20904.7, + "end": 20907.74, + "probability": 0.9834 + }, + { + "start": 20908.18, + "end": 20910.34, + "probability": 0.9718 + }, + { + "start": 20910.8, + "end": 20915.1, + "probability": 0.9913 + }, + { + "start": 20915.56, + "end": 20916.72, + "probability": 0.9555 + }, + { + "start": 20917.16, + "end": 20917.92, + "probability": 0.9847 + }, + { + "start": 20918.48, + "end": 20921.7, + "probability": 0.4457 + }, + { + "start": 20922.6, + "end": 20923.7, + "probability": 0.9216 + }, + { + "start": 20923.9, + "end": 20924.18, + "probability": 0.5409 + }, + { + "start": 20924.26, + "end": 20924.98, + "probability": 0.6682 + }, + { + "start": 20925.74, + "end": 20926.84, + "probability": 0.96 + }, + { + "start": 20927.14, + "end": 20928.58, + "probability": 0.8693 + }, + { + "start": 20928.9, + "end": 20930.34, + "probability": 0.9576 + }, + { + "start": 20930.82, + "end": 20933.68, + "probability": 0.7979 + }, + { + "start": 20934.7, + "end": 20936.76, + "probability": 0.974 + }, + { + "start": 20937.16, + "end": 20939.32, + "probability": 0.9867 + }, + { + "start": 20939.8, + "end": 20942.7, + "probability": 0.9667 + }, + { + "start": 20943.42, + "end": 20944.98, + "probability": 0.9745 + }, + { + "start": 20945.46, + "end": 20946.72, + "probability": 0.9899 + }, + { + "start": 20947.16, + "end": 20949.1, + "probability": 0.9802 + }, + { + "start": 20949.54, + "end": 20951.46, + "probability": 0.9946 + }, + { + "start": 20951.9, + "end": 20953.2, + "probability": 0.6479 + }, + { + "start": 20953.58, + "end": 20956.06, + "probability": 0.9873 + }, + { + "start": 20956.18, + "end": 20956.64, + "probability": 0.6243 + }, + { + "start": 20956.72, + "end": 20959.32, + "probability": 0.8463 + }, + { + "start": 20959.58, + "end": 20960.68, + "probability": 0.9858 + }, + { + "start": 20961.12, + "end": 20961.96, + "probability": 0.7823 + }, + { + "start": 20962.08, + "end": 20962.34, + "probability": 0.6129 + }, + { + "start": 20962.76, + "end": 20964.38, + "probability": 0.9882 + }, + { + "start": 20964.6, + "end": 20965.08, + "probability": 0.4714 + }, + { + "start": 20965.22, + "end": 20966.44, + "probability": 0.3945 + }, + { + "start": 20966.74, + "end": 20967.42, + "probability": 0.8726 + }, + { + "start": 20967.48, + "end": 20969.62, + "probability": 0.9608 + }, + { + "start": 20969.9, + "end": 20971.65, + "probability": 0.9924 + }, + { + "start": 20971.9, + "end": 20972.5, + "probability": 0.8122 + }, + { + "start": 20973.88, + "end": 20976.42, + "probability": 0.7385 + }, + { + "start": 20997.16, + "end": 20998.52, + "probability": 0.8984 + }, + { + "start": 20999.1, + "end": 21001.14, + "probability": 0.6582 + }, + { + "start": 21002.3, + "end": 21012.1, + "probability": 0.9613 + }, + { + "start": 21012.14, + "end": 21013.42, + "probability": 0.993 + }, + { + "start": 21014.28, + "end": 21020.0, + "probability": 0.9971 + }, + { + "start": 21020.78, + "end": 21026.02, + "probability": 0.8319 + }, + { + "start": 21026.02, + "end": 21030.2, + "probability": 0.979 + }, + { + "start": 21030.42, + "end": 21033.66, + "probability": 0.999 + }, + { + "start": 21034.24, + "end": 21035.76, + "probability": 0.9038 + }, + { + "start": 21037.02, + "end": 21043.24, + "probability": 0.4835 + }, + { + "start": 21043.78, + "end": 21046.64, + "probability": 0.9836 + }, + { + "start": 21047.26, + "end": 21051.42, + "probability": 0.9524 + }, + { + "start": 21052.1, + "end": 21055.92, + "probability": 0.9644 + }, + { + "start": 21055.98, + "end": 21060.45, + "probability": 0.9171 + }, + { + "start": 21061.12, + "end": 21063.34, + "probability": 0.9387 + }, + { + "start": 21063.92, + "end": 21067.9, + "probability": 0.9808 + }, + { + "start": 21067.9, + "end": 21073.14, + "probability": 0.9548 + }, + { + "start": 21073.66, + "end": 21077.88, + "probability": 0.9871 + }, + { + "start": 21078.58, + "end": 21079.4, + "probability": 0.9429 + }, + { + "start": 21079.88, + "end": 21083.64, + "probability": 0.9959 + }, + { + "start": 21083.96, + "end": 21086.58, + "probability": 0.9547 + }, + { + "start": 21086.7, + "end": 21089.94, + "probability": 0.8691 + }, + { + "start": 21089.94, + "end": 21093.92, + "probability": 0.9918 + }, + { + "start": 21094.34, + "end": 21095.39, + "probability": 0.9777 + }, + { + "start": 21095.82, + "end": 21100.62, + "probability": 0.6674 + }, + { + "start": 21100.62, + "end": 21104.46, + "probability": 0.9941 + }, + { + "start": 21104.86, + "end": 21106.26, + "probability": 0.9565 + }, + { + "start": 21106.74, + "end": 21107.66, + "probability": 0.8604 + }, + { + "start": 21108.54, + "end": 21112.24, + "probability": 0.9924 + }, + { + "start": 21112.66, + "end": 21116.1, + "probability": 0.7895 + }, + { + "start": 21116.4, + "end": 21119.16, + "probability": 0.9806 + }, + { + "start": 21119.18, + "end": 21122.6, + "probability": 0.986 + }, + { + "start": 21123.34, + "end": 21124.98, + "probability": 0.7542 + }, + { + "start": 21124.98, + "end": 21129.86, + "probability": 0.9915 + }, + { + "start": 21130.38, + "end": 21133.58, + "probability": 0.958 + }, + { + "start": 21134.14, + "end": 21135.8, + "probability": 0.5889 + }, + { + "start": 21135.96, + "end": 21140.36, + "probability": 0.9878 + }, + { + "start": 21140.36, + "end": 21144.9, + "probability": 0.9718 + }, + { + "start": 21145.28, + "end": 21149.08, + "probability": 0.9565 + }, + { + "start": 21149.08, + "end": 21152.9, + "probability": 0.9965 + }, + { + "start": 21153.32, + "end": 21159.28, + "probability": 0.9975 + }, + { + "start": 21159.68, + "end": 21163.26, + "probability": 0.973 + }, + { + "start": 21163.26, + "end": 21167.3, + "probability": 0.9956 + }, + { + "start": 21167.76, + "end": 21169.86, + "probability": 0.5815 + }, + { + "start": 21170.04, + "end": 21173.22, + "probability": 0.926 + }, + { + "start": 21173.56, + "end": 21177.44, + "probability": 0.9198 + }, + { + "start": 21177.44, + "end": 21180.02, + "probability": 0.9946 + }, + { + "start": 21180.86, + "end": 21186.54, + "probability": 0.9868 + }, + { + "start": 21187.04, + "end": 21189.66, + "probability": 0.9972 + }, + { + "start": 21190.0, + "end": 21192.48, + "probability": 0.9586 + }, + { + "start": 21192.86, + "end": 21196.96, + "probability": 0.9417 + }, + { + "start": 21196.96, + "end": 21201.76, + "probability": 0.6662 + }, + { + "start": 21202.16, + "end": 21204.92, + "probability": 0.7487 + }, + { + "start": 21205.22, + "end": 21205.4, + "probability": 0.7715 + }, + { + "start": 21206.88, + "end": 21207.26, + "probability": 0.3655 + }, + { + "start": 21207.32, + "end": 21208.6, + "probability": 0.5761 + }, + { + "start": 21227.42, + "end": 21228.76, + "probability": 0.8761 + }, + { + "start": 21229.04, + "end": 21230.66, + "probability": 0.5791 + }, + { + "start": 21232.56, + "end": 21236.58, + "probability": 0.9956 + }, + { + "start": 21238.4, + "end": 21239.0, + "probability": 0.7482 + }, + { + "start": 21239.42, + "end": 21247.38, + "probability": 0.9811 + }, + { + "start": 21248.82, + "end": 21252.2, + "probability": 0.9348 + }, + { + "start": 21252.76, + "end": 21253.64, + "probability": 0.6533 + }, + { + "start": 21255.34, + "end": 21260.46, + "probability": 0.9971 + }, + { + "start": 21261.38, + "end": 21264.54, + "probability": 0.9608 + }, + { + "start": 21265.18, + "end": 21272.36, + "probability": 0.9928 + }, + { + "start": 21272.98, + "end": 21274.72, + "probability": 0.981 + }, + { + "start": 21275.6, + "end": 21279.68, + "probability": 0.886 + }, + { + "start": 21280.36, + "end": 21282.78, + "probability": 0.7991 + }, + { + "start": 21283.68, + "end": 21286.6, + "probability": 0.955 + }, + { + "start": 21287.44, + "end": 21289.28, + "probability": 0.9924 + }, + { + "start": 21289.28, + "end": 21291.82, + "probability": 0.9858 + }, + { + "start": 21292.74, + "end": 21296.32, + "probability": 0.975 + }, + { + "start": 21296.32, + "end": 21298.38, + "probability": 0.943 + }, + { + "start": 21300.24, + "end": 21302.5, + "probability": 0.9176 + }, + { + "start": 21302.9, + "end": 21304.3, + "probability": 0.9966 + }, + { + "start": 21304.98, + "end": 21306.62, + "probability": 0.9567 + }, + { + "start": 21307.48, + "end": 21308.08, + "probability": 0.5298 + }, + { + "start": 21308.82, + "end": 21311.9, + "probability": 0.9789 + }, + { + "start": 21312.62, + "end": 21313.4, + "probability": 0.8769 + }, + { + "start": 21314.32, + "end": 21320.32, + "probability": 0.8971 + }, + { + "start": 21321.86, + "end": 21325.32, + "probability": 0.9763 + }, + { + "start": 21326.7, + "end": 21328.76, + "probability": 0.7655 + }, + { + "start": 21329.88, + "end": 21333.74, + "probability": 0.979 + }, + { + "start": 21335.24, + "end": 21337.9, + "probability": 0.897 + }, + { + "start": 21338.1, + "end": 21339.56, + "probability": 0.9344 + }, + { + "start": 21339.64, + "end": 21342.38, + "probability": 0.9528 + }, + { + "start": 21342.42, + "end": 21342.52, + "probability": 0.4608 + }, + { + "start": 21343.34, + "end": 21345.74, + "probability": 0.9628 + }, + { + "start": 21347.24, + "end": 21348.06, + "probability": 0.892 + }, + { + "start": 21348.7, + "end": 21353.42, + "probability": 0.9856 + }, + { + "start": 21353.82, + "end": 21355.2, + "probability": 0.9782 + }, + { + "start": 21356.28, + "end": 21357.48, + "probability": 0.7026 + }, + { + "start": 21357.88, + "end": 21360.76, + "probability": 0.994 + }, + { + "start": 21361.86, + "end": 21365.84, + "probability": 0.9677 + }, + { + "start": 21367.66, + "end": 21371.18, + "probability": 0.9362 + }, + { + "start": 21371.5, + "end": 21372.92, + "probability": 0.8322 + }, + { + "start": 21374.18, + "end": 21379.24, + "probability": 0.9796 + }, + { + "start": 21380.1, + "end": 21384.5, + "probability": 0.9167 + }, + { + "start": 21385.18, + "end": 21388.04, + "probability": 0.959 + }, + { + "start": 21389.46, + "end": 21390.52, + "probability": 0.9466 + }, + { + "start": 21391.68, + "end": 21394.32, + "probability": 0.7586 + }, + { + "start": 21395.16, + "end": 21395.42, + "probability": 0.8564 + }, + { + "start": 21396.48, + "end": 21397.04, + "probability": 0.8666 + }, + { + "start": 21400.74, + "end": 21403.22, + "probability": 0.9226 + }, + { + "start": 21422.26, + "end": 21423.74, + "probability": 0.5956 + }, + { + "start": 21424.36, + "end": 21425.38, + "probability": 0.8359 + }, + { + "start": 21427.12, + "end": 21429.16, + "probability": 0.8633 + }, + { + "start": 21429.48, + "end": 21430.1, + "probability": 0.9097 + }, + { + "start": 21431.72, + "end": 21433.76, + "probability": 0.7852 + }, + { + "start": 21433.78, + "end": 21436.32, + "probability": 0.9739 + }, + { + "start": 21437.2, + "end": 21439.34, + "probability": 0.9987 + }, + { + "start": 21439.34, + "end": 21441.76, + "probability": 0.9769 + }, + { + "start": 21442.84, + "end": 21447.92, + "probability": 0.9679 + }, + { + "start": 21447.92, + "end": 21452.63, + "probability": 0.9808 + }, + { + "start": 21455.94, + "end": 21458.19, + "probability": 0.8895 + }, + { + "start": 21459.54, + "end": 21461.38, + "probability": 0.7011 + }, + { + "start": 21464.42, + "end": 21467.96, + "probability": 0.7758 + }, + { + "start": 21468.12, + "end": 21470.26, + "probability": 0.8697 + }, + { + "start": 21471.1, + "end": 21474.42, + "probability": 0.7507 + }, + { + "start": 21474.76, + "end": 21477.06, + "probability": 0.9589 + }, + { + "start": 21477.1, + "end": 21477.4, + "probability": 0.7821 + }, + { + "start": 21477.8, + "end": 21478.3, + "probability": 0.5652 + }, + { + "start": 21479.38, + "end": 21479.74, + "probability": 0.8846 + }, + { + "start": 21479.78, + "end": 21480.88, + "probability": 0.9867 + }, + { + "start": 21481.0, + "end": 21482.26, + "probability": 0.8977 + }, + { + "start": 21483.68, + "end": 21486.86, + "probability": 0.8324 + }, + { + "start": 21487.26, + "end": 21491.42, + "probability": 0.9308 + }, + { + "start": 21492.32, + "end": 21494.48, + "probability": 0.9686 + }, + { + "start": 21495.34, + "end": 21497.52, + "probability": 0.9926 + }, + { + "start": 21498.02, + "end": 21498.82, + "probability": 0.8688 + }, + { + "start": 21499.5, + "end": 21501.58, + "probability": 0.8866 + }, + { + "start": 21501.72, + "end": 21503.5, + "probability": 0.9896 + }, + { + "start": 21504.38, + "end": 21509.64, + "probability": 0.9332 + }, + { + "start": 21510.5, + "end": 21514.6, + "probability": 0.9419 + }, + { + "start": 21516.84, + "end": 21517.48, + "probability": 0.7679 + }, + { + "start": 21517.62, + "end": 21519.26, + "probability": 0.9347 + }, + { + "start": 21519.38, + "end": 21522.52, + "probability": 0.9692 + }, + { + "start": 21523.86, + "end": 21524.44, + "probability": 0.8347 + }, + { + "start": 21524.54, + "end": 21527.12, + "probability": 0.876 + }, + { + "start": 21527.52, + "end": 21530.12, + "probability": 0.937 + }, + { + "start": 21530.54, + "end": 21531.96, + "probability": 0.608 + }, + { + "start": 21532.02, + "end": 21533.06, + "probability": 0.8127 + }, + { + "start": 21533.72, + "end": 21535.64, + "probability": 0.8473 + }, + { + "start": 21536.34, + "end": 21539.26, + "probability": 0.9359 + }, + { + "start": 21541.04, + "end": 21544.74, + "probability": 0.8451 + }, + { + "start": 21546.74, + "end": 21548.3, + "probability": 0.8292 + }, + { + "start": 21548.38, + "end": 21550.32, + "probability": 0.9397 + }, + { + "start": 21550.4, + "end": 21551.02, + "probability": 0.7295 + }, + { + "start": 21551.9, + "end": 21557.88, + "probability": 0.9211 + }, + { + "start": 21558.78, + "end": 21561.26, + "probability": 0.6987 + }, + { + "start": 21561.48, + "end": 21562.46, + "probability": 0.9434 + }, + { + "start": 21563.06, + "end": 21564.34, + "probability": 0.8483 + }, + { + "start": 21565.36, + "end": 21567.8, + "probability": 0.9336 + }, + { + "start": 21568.26, + "end": 21571.8, + "probability": 0.9736 + }, + { + "start": 21572.6, + "end": 21574.6, + "probability": 0.9676 + }, + { + "start": 21574.6, + "end": 21577.94, + "probability": 0.9764 + }, + { + "start": 21578.18, + "end": 21581.0, + "probability": 0.9712 + }, + { + "start": 21581.18, + "end": 21581.66, + "probability": 0.6515 + }, + { + "start": 21582.92, + "end": 21584.86, + "probability": 0.9128 + }, + { + "start": 21584.86, + "end": 21587.38, + "probability": 0.9657 + }, + { + "start": 21588.18, + "end": 21590.12, + "probability": 0.7495 + }, + { + "start": 21590.12, + "end": 21591.92, + "probability": 0.8189 + }, + { + "start": 21591.98, + "end": 21592.24, + "probability": 0.5768 + }, + { + "start": 21592.32, + "end": 21594.54, + "probability": 0.9044 + }, + { + "start": 21595.44, + "end": 21597.66, + "probability": 0.9729 + }, + { + "start": 21597.78, + "end": 21599.94, + "probability": 0.8256 + }, + { + "start": 21601.02, + "end": 21604.26, + "probability": 0.9316 + }, + { + "start": 21605.06, + "end": 21608.24, + "probability": 0.9379 + }, + { + "start": 21608.44, + "end": 21609.86, + "probability": 0.9669 + }, + { + "start": 21610.56, + "end": 21611.42, + "probability": 0.9122 + }, + { + "start": 21612.24, + "end": 21616.4, + "probability": 0.7606 + }, + { + "start": 21617.24, + "end": 21620.22, + "probability": 0.9703 + }, + { + "start": 21620.34, + "end": 21621.78, + "probability": 0.8973 + }, + { + "start": 21622.64, + "end": 21623.7, + "probability": 0.9078 + }, + { + "start": 21624.54, + "end": 21625.38, + "probability": 0.8146 + }, + { + "start": 21625.84, + "end": 21628.0, + "probability": 0.9177 + }, + { + "start": 21628.7, + "end": 21630.88, + "probability": 0.953 + }, + { + "start": 21630.93, + "end": 21633.68, + "probability": 0.9845 + }, + { + "start": 21634.4, + "end": 21635.06, + "probability": 0.6751 + }, + { + "start": 21635.26, + "end": 21639.76, + "probability": 0.9431 + }, + { + "start": 21640.92, + "end": 21641.52, + "probability": 0.8771 + }, + { + "start": 21642.3, + "end": 21643.48, + "probability": 0.8762 + }, + { + "start": 21645.54, + "end": 21648.74, + "probability": 0.6886 + }, + { + "start": 21648.74, + "end": 21648.82, + "probability": 0.3831 + }, + { + "start": 21648.82, + "end": 21649.32, + "probability": 0.2217 + }, + { + "start": 21649.5, + "end": 21650.84, + "probability": 0.4684 + }, + { + "start": 21651.04, + "end": 21651.66, + "probability": 0.8279 + }, + { + "start": 21651.98, + "end": 21653.48, + "probability": 0.9302 + }, + { + "start": 21654.46, + "end": 21655.18, + "probability": 0.8713 + }, + { + "start": 21655.84, + "end": 21656.54, + "probability": 0.8083 + }, + { + "start": 21661.48, + "end": 21664.0, + "probability": 0.2762 + }, + { + "start": 21666.4, + "end": 21667.78, + "probability": 0.4613 + }, + { + "start": 21669.08, + "end": 21669.7, + "probability": 0.1972 + }, + { + "start": 21670.8, + "end": 21674.18, + "probability": 0.082 + }, + { + "start": 21675.02, + "end": 21676.38, + "probability": 0.6682 + }, + { + "start": 21676.52, + "end": 21680.85, + "probability": 0.9541 + }, + { + "start": 21686.96, + "end": 21689.4, + "probability": 0.816 + }, + { + "start": 21689.52, + "end": 21690.66, + "probability": 0.839 + }, + { + "start": 21690.8, + "end": 21691.94, + "probability": 0.4624 + }, + { + "start": 21692.06, + "end": 21693.7, + "probability": 0.9177 + }, + { + "start": 21693.8, + "end": 21699.02, + "probability": 0.9713 + }, + { + "start": 21699.3, + "end": 21700.56, + "probability": 0.6262 + }, + { + "start": 21700.8, + "end": 21702.9, + "probability": 0.9865 + }, + { + "start": 21703.93, + "end": 21707.3, + "probability": 0.9884 + }, + { + "start": 21707.3, + "end": 21710.8, + "probability": 0.5394 + }, + { + "start": 21710.88, + "end": 21712.96, + "probability": 0.5984 + }, + { + "start": 21713.22, + "end": 21714.06, + "probability": 0.6831 + }, + { + "start": 21722.94, + "end": 21726.64, + "probability": 0.722 + }, + { + "start": 21726.64, + "end": 21730.12, + "probability": 0.9905 + }, + { + "start": 21730.94, + "end": 21733.5, + "probability": 0.9265 + }, + { + "start": 21733.6, + "end": 21735.04, + "probability": 0.6811 + }, + { + "start": 21736.74, + "end": 21737.02, + "probability": 0.3317 + }, + { + "start": 21765.67, + "end": 21768.12, + "probability": 0.9254 + }, + { + "start": 21769.16, + "end": 21770.76, + "probability": 0.6513 + }, + { + "start": 21772.32, + "end": 21773.82, + "probability": 0.9769 + }, + { + "start": 21773.92, + "end": 21776.06, + "probability": 0.9929 + }, + { + "start": 21777.32, + "end": 21777.78, + "probability": 0.9657 + }, + { + "start": 21779.4, + "end": 21781.82, + "probability": 0.8952 + }, + { + "start": 21783.04, + "end": 21783.58, + "probability": 0.9459 + }, + { + "start": 21784.76, + "end": 21788.6, + "probability": 0.8944 + }, + { + "start": 21789.18, + "end": 21789.7, + "probability": 0.7012 + }, + { + "start": 21789.89, + "end": 21797.52, + "probability": 0.9889 + }, + { + "start": 21798.5, + "end": 21801.58, + "probability": 0.9839 + }, + { + "start": 21802.36, + "end": 21803.6, + "probability": 0.9769 + }, + { + "start": 21803.6, + "end": 21809.62, + "probability": 0.9701 + }, + { + "start": 21809.86, + "end": 21810.42, + "probability": 0.5863 + }, + { + "start": 21810.48, + "end": 21810.92, + "probability": 0.7832 + }, + { + "start": 21811.44, + "end": 21813.7, + "probability": 0.9881 + }, + { + "start": 21814.1, + "end": 21817.52, + "probability": 0.9639 + }, + { + "start": 21818.2, + "end": 21822.09, + "probability": 0.9802 + }, + { + "start": 21822.52, + "end": 21825.9, + "probability": 0.936 + }, + { + "start": 21826.98, + "end": 21827.84, + "probability": 0.5963 + }, + { + "start": 21828.46, + "end": 21829.54, + "probability": 0.7198 + }, + { + "start": 21830.16, + "end": 21832.94, + "probability": 0.9753 + }, + { + "start": 21834.3, + "end": 21835.72, + "probability": 0.8365 + }, + { + "start": 21836.02, + "end": 21837.97, + "probability": 0.999 + }, + { + "start": 21838.38, + "end": 21839.28, + "probability": 0.8976 + }, + { + "start": 21839.44, + "end": 21839.96, + "probability": 0.9242 + }, + { + "start": 21840.1, + "end": 21840.6, + "probability": 0.889 + }, + { + "start": 21840.88, + "end": 21843.38, + "probability": 0.9948 + }, + { + "start": 21844.0, + "end": 21847.64, + "probability": 0.8588 + }, + { + "start": 21848.24, + "end": 21852.72, + "probability": 0.9954 + }, + { + "start": 21854.42, + "end": 21858.7, + "probability": 0.9894 + }, + { + "start": 21859.44, + "end": 21860.08, + "probability": 0.945 + }, + { + "start": 21861.4, + "end": 21868.66, + "probability": 0.9969 + }, + { + "start": 21869.24, + "end": 21869.8, + "probability": 0.9336 + }, + { + "start": 21870.2, + "end": 21870.72, + "probability": 0.7007 + }, + { + "start": 21871.18, + "end": 21871.54, + "probability": 0.2815 + }, + { + "start": 21872.02, + "end": 21877.9, + "probability": 0.9967 + }, + { + "start": 21878.0, + "end": 21878.68, + "probability": 0.747 + }, + { + "start": 21879.16, + "end": 21880.21, + "probability": 0.9917 + }, + { + "start": 21880.78, + "end": 21882.36, + "probability": 0.8931 + }, + { + "start": 21882.88, + "end": 21889.36, + "probability": 0.9985 + }, + { + "start": 21890.44, + "end": 21895.7, + "probability": 0.9966 + }, + { + "start": 21895.78, + "end": 21900.12, + "probability": 0.0394 + }, + { + "start": 21900.58, + "end": 21907.76, + "probability": 0.2615 + }, + { + "start": 21907.76, + "end": 21907.86, + "probability": 0.1855 + }, + { + "start": 21907.86, + "end": 21907.86, + "probability": 0.1307 + }, + { + "start": 21907.86, + "end": 21907.86, + "probability": 0.117 + }, + { + "start": 21907.86, + "end": 21907.86, + "probability": 0.0966 + }, + { + "start": 21907.86, + "end": 21907.86, + "probability": 0.0864 + }, + { + "start": 21907.86, + "end": 21908.62, + "probability": 0.1294 + }, + { + "start": 21908.7, + "end": 21913.56, + "probability": 0.91 + }, + { + "start": 21914.42, + "end": 21915.6, + "probability": 0.6929 + }, + { + "start": 21916.46, + "end": 21917.04, + "probability": 0.9854 + }, + { + "start": 21917.94, + "end": 21924.06, + "probability": 0.9987 + }, + { + "start": 21924.2, + "end": 21927.6, + "probability": 0.7756 + }, + { + "start": 21927.84, + "end": 21929.58, + "probability": 0.6183 + }, + { + "start": 21929.98, + "end": 21930.76, + "probability": 0.8049 + }, + { + "start": 21931.24, + "end": 21932.58, + "probability": 0.9879 + }, + { + "start": 21933.02, + "end": 21934.52, + "probability": 0.9787 + }, + { + "start": 21934.98, + "end": 21936.2, + "probability": 0.9966 + }, + { + "start": 21936.34, + "end": 21937.16, + "probability": 0.833 + }, + { + "start": 21938.65, + "end": 21940.81, + "probability": 0.9956 + }, + { + "start": 21940.88, + "end": 21942.86, + "probability": 0.9937 + }, + { + "start": 21943.34, + "end": 21945.25, + "probability": 0.9941 + }, + { + "start": 21945.52, + "end": 21946.76, + "probability": 0.5315 + }, + { + "start": 21947.06, + "end": 21947.62, + "probability": 0.4481 + }, + { + "start": 21948.06, + "end": 21950.7, + "probability": 0.2579 + }, + { + "start": 21950.8, + "end": 21952.74, + "probability": 0.3138 + }, + { + "start": 21952.74, + "end": 21953.3, + "probability": 0.7272 + }, + { + "start": 21953.34, + "end": 21954.86, + "probability": 0.6823 + }, + { + "start": 21955.24, + "end": 21957.26, + "probability": 0.9751 + }, + { + "start": 21957.36, + "end": 21959.26, + "probability": 0.9846 + }, + { + "start": 21960.04, + "end": 21963.76, + "probability": 0.9932 + }, + { + "start": 21964.36, + "end": 21966.86, + "probability": 0.9875 + }, + { + "start": 21967.0, + "end": 21968.08, + "probability": 0.9875 + }, + { + "start": 21968.84, + "end": 21969.42, + "probability": 0.7685 + }, + { + "start": 21969.58, + "end": 21969.76, + "probability": 0.8655 + }, + { + "start": 21969.78, + "end": 21970.26, + "probability": 0.7256 + }, + { + "start": 21970.34, + "end": 21971.32, + "probability": 0.9958 + }, + { + "start": 21971.7, + "end": 21973.74, + "probability": 0.9888 + }, + { + "start": 21974.12, + "end": 21978.06, + "probability": 0.9956 + }, + { + "start": 21978.38, + "end": 21980.16, + "probability": 0.8545 + }, + { + "start": 21980.8, + "end": 21982.02, + "probability": 0.9966 + }, + { + "start": 21982.12, + "end": 21984.26, + "probability": 0.9775 + }, + { + "start": 21984.62, + "end": 21985.48, + "probability": 0.9599 + }, + { + "start": 21985.52, + "end": 21986.24, + "probability": 0.9683 + }, + { + "start": 21986.72, + "end": 21988.28, + "probability": 0.9844 + }, + { + "start": 21988.36, + "end": 21989.14, + "probability": 0.969 + }, + { + "start": 21989.22, + "end": 21989.98, + "probability": 0.8206 + }, + { + "start": 21989.98, + "end": 21994.66, + "probability": 0.8623 + }, + { + "start": 21995.22, + "end": 21998.2, + "probability": 0.9854 + }, + { + "start": 21999.2, + "end": 22000.86, + "probability": 0.5866 + }, + { + "start": 22001.46, + "end": 22002.88, + "probability": 0.8329 + }, + { + "start": 22013.18, + "end": 22013.95, + "probability": 0.798 + }, + { + "start": 22014.26, + "end": 22014.8, + "probability": 0.4974 + }, + { + "start": 22016.52, + "end": 22018.76, + "probability": 0.5284 + }, + { + "start": 22019.32, + "end": 22022.92, + "probability": 0.3729 + }, + { + "start": 22023.12, + "end": 22028.4, + "probability": 0.5376 + }, + { + "start": 22028.46, + "end": 22028.96, + "probability": 0.9281 + }, + { + "start": 22029.32, + "end": 22031.36, + "probability": 0.6058 + }, + { + "start": 22032.34, + "end": 22034.28, + "probability": 0.9409 + }, + { + "start": 22034.9, + "end": 22035.84, + "probability": 0.9657 + }, + { + "start": 22036.92, + "end": 22038.52, + "probability": 0.4144 + }, + { + "start": 22039.66, + "end": 22043.08, + "probability": 0.9439 + }, + { + "start": 22043.88, + "end": 22044.74, + "probability": 0.8441 + }, + { + "start": 22045.7, + "end": 22049.88, + "probability": 0.7427 + }, + { + "start": 22050.0, + "end": 22052.32, + "probability": 0.8472 + }, + { + "start": 22053.14, + "end": 22056.38, + "probability": 0.9893 + }, + { + "start": 22056.38, + "end": 22059.48, + "probability": 0.8807 + }, + { + "start": 22060.72, + "end": 22063.52, + "probability": 0.7446 + }, + { + "start": 22064.38, + "end": 22066.06, + "probability": 0.9897 + }, + { + "start": 22067.36, + "end": 22068.38, + "probability": 0.708 + }, + { + "start": 22069.24, + "end": 22075.16, + "probability": 0.6727 + }, + { + "start": 22077.1, + "end": 22084.66, + "probability": 0.9015 + }, + { + "start": 22085.44, + "end": 22088.0, + "probability": 0.8008 + }, + { + "start": 22089.08, + "end": 22096.78, + "probability": 0.951 + }, + { + "start": 22098.04, + "end": 22103.96, + "probability": 0.6562 + }, + { + "start": 22104.82, + "end": 22106.08, + "probability": 0.9721 + }, + { + "start": 22106.68, + "end": 22109.82, + "probability": 0.7904 + }, + { + "start": 22110.6, + "end": 22112.36, + "probability": 0.9525 + }, + { + "start": 22112.44, + "end": 22114.28, + "probability": 0.9489 + }, + { + "start": 22114.96, + "end": 22117.28, + "probability": 0.8152 + }, + { + "start": 22117.82, + "end": 22118.68, + "probability": 0.8507 + }, + { + "start": 22119.76, + "end": 22121.4, + "probability": 0.761 + }, + { + "start": 22122.0, + "end": 22122.55, + "probability": 0.9591 + }, + { + "start": 22122.82, + "end": 22123.32, + "probability": 0.9858 + }, + { + "start": 22123.78, + "end": 22125.86, + "probability": 0.9852 + }, + { + "start": 22126.34, + "end": 22126.64, + "probability": 0.9551 + }, + { + "start": 22127.54, + "end": 22128.64, + "probability": 0.9935 + }, + { + "start": 22129.28, + "end": 22131.78, + "probability": 0.9961 + }, + { + "start": 22132.16, + "end": 22134.0, + "probability": 0.6546 + }, + { + "start": 22134.62, + "end": 22140.26, + "probability": 0.6993 + }, + { + "start": 22141.04, + "end": 22141.58, + "probability": 0.9172 + }, + { + "start": 22142.42, + "end": 22143.4, + "probability": 0.9506 + }, + { + "start": 22143.5, + "end": 22144.14, + "probability": 0.4632 + }, + { + "start": 22144.2, + "end": 22146.24, + "probability": 0.8908 + }, + { + "start": 22146.28, + "end": 22152.12, + "probability": 0.6521 + }, + { + "start": 22153.3, + "end": 22157.24, + "probability": 0.9966 + }, + { + "start": 22157.24, + "end": 22163.58, + "probability": 0.9934 + }, + { + "start": 22164.1, + "end": 22164.78, + "probability": 0.7387 + }, + { + "start": 22165.52, + "end": 22171.51, + "probability": 0.9953 + }, + { + "start": 22171.6, + "end": 22175.9, + "probability": 0.6773 + }, + { + "start": 22176.56, + "end": 22178.18, + "probability": 0.9971 + }, + { + "start": 22178.68, + "end": 22182.18, + "probability": 0.7513 + }, + { + "start": 22182.56, + "end": 22183.48, + "probability": 0.8269 + }, + { + "start": 22183.62, + "end": 22188.62, + "probability": 0.8604 + }, + { + "start": 22189.9, + "end": 22193.88, + "probability": 0.9932 + }, + { + "start": 22194.32, + "end": 22195.02, + "probability": 0.9531 + }, + { + "start": 22195.84, + "end": 22200.86, + "probability": 0.9855 + }, + { + "start": 22200.86, + "end": 22205.54, + "probability": 0.9877 + }, + { + "start": 22207.81, + "end": 22209.95, + "probability": 0.2545 + }, + { + "start": 22210.38, + "end": 22210.62, + "probability": 0.4708 + }, + { + "start": 22210.94, + "end": 22211.18, + "probability": 0.6237 + }, + { + "start": 22211.8, + "end": 22215.24, + "probability": 0.8081 + }, + { + "start": 22216.16, + "end": 22217.99, + "probability": 0.3687 + }, + { + "start": 22218.6, + "end": 22219.38, + "probability": 0.4927 + }, + { + "start": 22219.58, + "end": 22220.34, + "probability": 0.7587 + }, + { + "start": 22220.34, + "end": 22221.11, + "probability": 0.7891 + }, + { + "start": 22221.9, + "end": 22223.88, + "probability": 0.0504 + }, + { + "start": 22224.56, + "end": 22226.68, + "probability": 0.4182 + }, + { + "start": 22226.98, + "end": 22227.47, + "probability": 0.6022 + }, + { + "start": 22234.06, + "end": 22235.34, + "probability": 0.5716 + }, + { + "start": 22238.42, + "end": 22239.85, + "probability": 0.9166 + }, + { + "start": 22240.46, + "end": 22242.02, + "probability": 0.4562 + }, + { + "start": 22249.28, + "end": 22253.08, + "probability": 0.545 + }, + { + "start": 22254.82, + "end": 22257.62, + "probability": 0.6261 + }, + { + "start": 22258.24, + "end": 22259.64, + "probability": 0.8391 + }, + { + "start": 22259.82, + "end": 22261.34, + "probability": 0.9233 + }, + { + "start": 22262.87, + "end": 22266.14, + "probability": 0.9819 + }, + { + "start": 22267.38, + "end": 22273.52, + "probability": 0.9087 + }, + { + "start": 22274.16, + "end": 22275.62, + "probability": 0.8591 + }, + { + "start": 22276.4, + "end": 22278.06, + "probability": 0.5998 + }, + { + "start": 22278.28, + "end": 22281.64, + "probability": 0.792 + }, + { + "start": 22281.8, + "end": 22282.5, + "probability": 0.8866 + }, + { + "start": 22282.62, + "end": 22282.88, + "probability": 0.2998 + }, + { + "start": 22282.92, + "end": 22283.68, + "probability": 0.6711 + }, + { + "start": 22284.06, + "end": 22285.77, + "probability": 0.7574 + }, + { + "start": 22287.16, + "end": 22288.88, + "probability": 0.9535 + }, + { + "start": 22290.7, + "end": 22291.92, + "probability": 0.6961 + }, + { + "start": 22294.06, + "end": 22295.04, + "probability": 0.8556 + }, + { + "start": 22295.58, + "end": 22299.02, + "probability": 0.9472 + }, + { + "start": 22299.64, + "end": 22301.0, + "probability": 0.8837 + }, + { + "start": 22301.46, + "end": 22302.92, + "probability": 0.8472 + }, + { + "start": 22303.56, + "end": 22304.47, + "probability": 0.5938 + }, + { + "start": 22306.24, + "end": 22308.18, + "probability": 0.9876 + }, + { + "start": 22308.84, + "end": 22312.08, + "probability": 0.9906 + }, + { + "start": 22313.15, + "end": 22316.56, + "probability": 0.9688 + }, + { + "start": 22317.36, + "end": 22320.3, + "probability": 0.7773 + }, + { + "start": 22321.0, + "end": 22321.79, + "probability": 0.6646 + }, + { + "start": 22323.24, + "end": 22324.24, + "probability": 0.3755 + }, + { + "start": 22324.42, + "end": 22328.24, + "probability": 0.9026 + }, + { + "start": 22329.04, + "end": 22329.98, + "probability": 0.6926 + }, + { + "start": 22330.5, + "end": 22334.96, + "probability": 0.9723 + }, + { + "start": 22335.96, + "end": 22342.31, + "probability": 0.9444 + }, + { + "start": 22343.36, + "end": 22345.2, + "probability": 0.9819 + }, + { + "start": 22345.32, + "end": 22349.24, + "probability": 0.9912 + }, + { + "start": 22349.24, + "end": 22353.7, + "probability": 0.9968 + }, + { + "start": 22354.42, + "end": 22356.48, + "probability": 0.7685 + }, + { + "start": 22356.62, + "end": 22359.48, + "probability": 0.8607 + }, + { + "start": 22359.96, + "end": 22360.28, + "probability": 0.7001 + }, + { + "start": 22360.52, + "end": 22361.22, + "probability": 0.9064 + }, + { + "start": 22361.6, + "end": 22362.08, + "probability": 0.8458 + }, + { + "start": 22362.22, + "end": 22366.62, + "probability": 0.7876 + }, + { + "start": 22366.68, + "end": 22366.84, + "probability": 0.0361 + }, + { + "start": 22366.96, + "end": 22368.6, + "probability": 0.8228 + }, + { + "start": 22369.42, + "end": 22371.4, + "probability": 0.9004 + }, + { + "start": 22371.46, + "end": 22372.6, + "probability": 0.6824 + }, + { + "start": 22372.64, + "end": 22374.0, + "probability": 0.989 + }, + { + "start": 22374.64, + "end": 22375.06, + "probability": 0.5186 + }, + { + "start": 22375.22, + "end": 22376.38, + "probability": 0.9216 + }, + { + "start": 22376.82, + "end": 22378.59, + "probability": 0.9606 + }, + { + "start": 22379.7, + "end": 22384.52, + "probability": 0.8046 + }, + { + "start": 22385.1, + "end": 22387.66, + "probability": 0.946 + }, + { + "start": 22387.86, + "end": 22388.72, + "probability": 0.684 + }, + { + "start": 22389.54, + "end": 22390.6, + "probability": 0.5421 + }, + { + "start": 22391.14, + "end": 22395.06, + "probability": 0.7085 + }, + { + "start": 22396.74, + "end": 22399.86, + "probability": 0.459 + }, + { + "start": 22400.64, + "end": 22403.92, + "probability": 0.9839 + }, + { + "start": 22405.3, + "end": 22407.38, + "probability": 0.8882 + }, + { + "start": 22408.32, + "end": 22410.94, + "probability": 0.9831 + }, + { + "start": 22411.46, + "end": 22415.72, + "probability": 0.4923 + }, + { + "start": 22416.36, + "end": 22419.06, + "probability": 0.9785 + }, + { + "start": 22419.18, + "end": 22420.12, + "probability": 0.7411 + }, + { + "start": 22420.56, + "end": 22422.5, + "probability": 0.948 + }, + { + "start": 22422.76, + "end": 22424.28, + "probability": 0.5094 + }, + { + "start": 22425.24, + "end": 22427.64, + "probability": 0.5714 + }, + { + "start": 22428.8, + "end": 22429.26, + "probability": 0.2968 + }, + { + "start": 22429.92, + "end": 22430.76, + "probability": 0.4689 + }, + { + "start": 22430.96, + "end": 22431.62, + "probability": 0.6088 + }, + { + "start": 22431.72, + "end": 22432.32, + "probability": 0.5517 + }, + { + "start": 22432.72, + "end": 22433.78, + "probability": 0.8482 + }, + { + "start": 22433.84, + "end": 22436.05, + "probability": 0.7817 + }, + { + "start": 22436.64, + "end": 22437.86, + "probability": 0.7949 + }, + { + "start": 22438.16, + "end": 22440.02, + "probability": 0.9105 + }, + { + "start": 22440.24, + "end": 22441.58, + "probability": 0.9403 + }, + { + "start": 22441.94, + "end": 22445.1, + "probability": 0.9965 + }, + { + "start": 22445.5, + "end": 22446.38, + "probability": 0.6965 + }, + { + "start": 22446.56, + "end": 22451.36, + "probability": 0.9778 + }, + { + "start": 22451.82, + "end": 22457.1, + "probability": 0.9443 + }, + { + "start": 22457.73, + "end": 22463.22, + "probability": 0.7576 + }, + { + "start": 22463.68, + "end": 22467.18, + "probability": 0.9676 + }, + { + "start": 22467.5, + "end": 22468.26, + "probability": 0.7567 + }, + { + "start": 22468.32, + "end": 22470.18, + "probability": 0.9128 + }, + { + "start": 22470.38, + "end": 22472.72, + "probability": 0.8314 + }, + { + "start": 22473.04, + "end": 22476.58, + "probability": 0.9835 + }, + { + "start": 22476.9, + "end": 22477.32, + "probability": 0.4265 + }, + { + "start": 22477.32, + "end": 22478.4, + "probability": 0.7527 + }, + { + "start": 22479.84, + "end": 22482.06, + "probability": 0.797 + }, + { + "start": 22483.72, + "end": 22485.66, + "probability": 0.8341 + }, + { + "start": 22486.38, + "end": 22490.68, + "probability": 0.8985 + }, + { + "start": 22490.96, + "end": 22492.52, + "probability": 0.9829 + }, + { + "start": 22492.98, + "end": 22494.54, + "probability": 0.987 + }, + { + "start": 22495.02, + "end": 22496.94, + "probability": 0.8825 + }, + { + "start": 22497.42, + "end": 22500.32, + "probability": 0.9585 + }, + { + "start": 22500.74, + "end": 22503.2, + "probability": 0.5489 + }, + { + "start": 22503.3, + "end": 22505.78, + "probability": 0.9872 + }, + { + "start": 22506.56, + "end": 22512.04, + "probability": 0.9756 + }, + { + "start": 22512.58, + "end": 22517.22, + "probability": 0.9796 + }, + { + "start": 22517.58, + "end": 22519.9, + "probability": 0.8072 + }, + { + "start": 22520.76, + "end": 22525.82, + "probability": 0.6083 + }, + { + "start": 22525.92, + "end": 22526.41, + "probability": 0.8447 + }, + { + "start": 22526.92, + "end": 22529.12, + "probability": 0.8647 + }, + { + "start": 22529.74, + "end": 22534.06, + "probability": 0.9058 + }, + { + "start": 22534.74, + "end": 22536.64, + "probability": 0.9041 + }, + { + "start": 22537.18, + "end": 22539.04, + "probability": 0.7736 + }, + { + "start": 22539.56, + "end": 22542.92, + "probability": 0.9956 + }, + { + "start": 22543.4, + "end": 22546.94, + "probability": 0.9789 + }, + { + "start": 22547.46, + "end": 22551.2, + "probability": 0.999 + }, + { + "start": 22551.7, + "end": 22552.86, + "probability": 0.9894 + }, + { + "start": 22553.3, + "end": 22557.48, + "probability": 0.9964 + }, + { + "start": 22558.06, + "end": 22558.46, + "probability": 0.6979 + }, + { + "start": 22558.94, + "end": 22560.54, + "probability": 0.9221 + }, + { + "start": 22560.96, + "end": 22568.32, + "probability": 0.999 + }, + { + "start": 22568.98, + "end": 22568.98, + "probability": 0.0 + }, + { + "start": 22570.3, + "end": 22574.72, + "probability": 0.9354 + }, + { + "start": 22575.92, + "end": 22577.32, + "probability": 0.1369 + }, + { + "start": 22578.64, + "end": 22580.46, + "probability": 0.3058 + }, + { + "start": 22580.58, + "end": 22581.66, + "probability": 0.4231 + }, + { + "start": 22581.76, + "end": 22582.39, + "probability": 0.771 + }, + { + "start": 22582.6, + "end": 22583.96, + "probability": 0.1057 + }, + { + "start": 22584.08, + "end": 22584.28, + "probability": 0.3881 + }, + { + "start": 22584.58, + "end": 22587.5, + "probability": 0.9956 + }, + { + "start": 22587.5, + "end": 22591.4, + "probability": 0.9259 + }, + { + "start": 22591.74, + "end": 22594.46, + "probability": 0.849 + }, + { + "start": 22595.06, + "end": 22599.4, + "probability": 0.923 + }, + { + "start": 22600.92, + "end": 22601.6, + "probability": 0.9499 + }, + { + "start": 22602.54, + "end": 22604.17, + "probability": 0.877 + }, + { + "start": 22605.26, + "end": 22605.52, + "probability": 0.6208 + }, + { + "start": 22606.32, + "end": 22608.96, + "probability": 0.6072 + }, + { + "start": 22609.16, + "end": 22616.92, + "probability": 0.3446 + }, + { + "start": 22616.98, + "end": 22617.26, + "probability": 0.3486 + }, + { + "start": 22617.66, + "end": 22622.38, + "probability": 0.5469 + }, + { + "start": 22623.0, + "end": 22623.9, + "probability": 0.6904 + }, + { + "start": 22625.64, + "end": 22626.5, + "probability": 0.7582 + }, + { + "start": 22627.75, + "end": 22628.38, + "probability": 0.197 + }, + { + "start": 22628.38, + "end": 22628.38, + "probability": 0.1552 + }, + { + "start": 22628.38, + "end": 22628.66, + "probability": 0.8297 + }, + { + "start": 22628.66, + "end": 22629.94, + "probability": 0.8628 + }, + { + "start": 22630.2, + "end": 22631.8, + "probability": 0.6021 + }, + { + "start": 22632.44, + "end": 22634.24, + "probability": 0.7137 + }, + { + "start": 22634.26, + "end": 22636.06, + "probability": 0.9575 + }, + { + "start": 22636.96, + "end": 22639.14, + "probability": 0.9464 + }, + { + "start": 22639.16, + "end": 22640.24, + "probability": 0.7883 + }, + { + "start": 22640.4, + "end": 22640.9, + "probability": 0.8946 + }, + { + "start": 22642.14, + "end": 22642.14, + "probability": 0.4334 + }, + { + "start": 22642.32, + "end": 22642.62, + "probability": 0.3261 + }, + { + "start": 22642.7, + "end": 22642.88, + "probability": 0.683 + }, + { + "start": 22642.98, + "end": 22646.62, + "probability": 0.8942 + }, + { + "start": 22646.82, + "end": 22650.22, + "probability": 0.9956 + }, + { + "start": 22650.8, + "end": 22654.84, + "probability": 0.9922 + }, + { + "start": 22655.1, + "end": 22656.56, + "probability": 0.993 + }, + { + "start": 22656.76, + "end": 22658.32, + "probability": 0.8101 + }, + { + "start": 22658.64, + "end": 22660.34, + "probability": 0.9233 + }, + { + "start": 22660.48, + "end": 22662.4, + "probability": 0.8682 + }, + { + "start": 22662.72, + "end": 22665.58, + "probability": 0.8551 + }, + { + "start": 22665.84, + "end": 22667.94, + "probability": 0.9086 + }, + { + "start": 22668.42, + "end": 22669.4, + "probability": 0.7265 + }, + { + "start": 22669.72, + "end": 22670.37, + "probability": 0.9932 + }, + { + "start": 22670.88, + "end": 22671.92, + "probability": 0.9664 + }, + { + "start": 22672.56, + "end": 22675.68, + "probability": 0.89 + }, + { + "start": 22676.16, + "end": 22677.04, + "probability": 0.6885 + }, + { + "start": 22677.1, + "end": 22677.61, + "probability": 0.9157 + }, + { + "start": 22678.22, + "end": 22679.0, + "probability": 0.9741 + }, + { + "start": 22679.34, + "end": 22680.64, + "probability": 0.7735 + }, + { + "start": 22681.44, + "end": 22685.56, + "probability": 0.7893 + }, + { + "start": 22686.18, + "end": 22687.5, + "probability": 0.9751 + }, + { + "start": 22701.64, + "end": 22701.64, + "probability": 0.2279 + }, + { + "start": 22701.64, + "end": 22701.82, + "probability": 0.068 + }, + { + "start": 22702.46, + "end": 22704.04, + "probability": 0.5878 + }, + { + "start": 22704.18, + "end": 22708.12, + "probability": 0.8058 + }, + { + "start": 22709.22, + "end": 22710.0, + "probability": 0.9634 + }, + { + "start": 22710.84, + "end": 22712.54, + "probability": 0.6688 + }, + { + "start": 22712.58, + "end": 22714.76, + "probability": 0.9798 + }, + { + "start": 22715.6, + "end": 22718.7, + "probability": 0.9056 + }, + { + "start": 22718.78, + "end": 22721.0, + "probability": 0.9485 + }, + { + "start": 22742.08, + "end": 22743.14, + "probability": 0.5028 + }, + { + "start": 22743.66, + "end": 22745.6, + "probability": 0.8373 + }, + { + "start": 22746.18, + "end": 22747.1, + "probability": 0.8755 + }, + { + "start": 22748.24, + "end": 22749.64, + "probability": 0.7291 + }, + { + "start": 22750.68, + "end": 22755.08, + "probability": 0.9863 + }, + { + "start": 22756.04, + "end": 22760.24, + "probability": 0.9155 + }, + { + "start": 22760.96, + "end": 22763.78, + "probability": 0.9799 + }, + { + "start": 22764.76, + "end": 22768.34, + "probability": 0.8962 + }, + { + "start": 22769.38, + "end": 22771.51, + "probability": 0.9911 + }, + { + "start": 22772.34, + "end": 22773.42, + "probability": 0.9586 + }, + { + "start": 22774.42, + "end": 22775.64, + "probability": 0.9919 + }, + { + "start": 22775.66, + "end": 22780.38, + "probability": 0.9976 + }, + { + "start": 22781.3, + "end": 22782.1, + "probability": 0.8164 + }, + { + "start": 22782.28, + "end": 22783.4, + "probability": 0.6063 + }, + { + "start": 22783.4, + "end": 22784.68, + "probability": 0.9323 + }, + { + "start": 22784.84, + "end": 22785.76, + "probability": 0.7241 + }, + { + "start": 22785.82, + "end": 22786.4, + "probability": 0.8307 + }, + { + "start": 22787.1, + "end": 22789.26, + "probability": 0.7836 + }, + { + "start": 22789.72, + "end": 22790.36, + "probability": 0.847 + }, + { + "start": 22790.84, + "end": 22792.0, + "probability": 0.9412 + }, + { + "start": 22792.46, + "end": 22798.34, + "probability": 0.8864 + }, + { + "start": 22798.9, + "end": 22799.48, + "probability": 0.9121 + }, + { + "start": 22800.02, + "end": 22802.8, + "probability": 0.9866 + }, + { + "start": 22803.66, + "end": 22804.3, + "probability": 0.8221 + }, + { + "start": 22805.72, + "end": 22806.14, + "probability": 0.9553 + }, + { + "start": 22806.74, + "end": 22809.02, + "probability": 0.9352 + }, + { + "start": 22809.6, + "end": 22811.72, + "probability": 0.9901 + }, + { + "start": 22812.72, + "end": 22813.1, + "probability": 0.9224 + }, + { + "start": 22814.04, + "end": 22814.32, + "probability": 0.9215 + }, + { + "start": 22814.7, + "end": 22815.76, + "probability": 0.931 + }, + { + "start": 22817.58, + "end": 22822.1, + "probability": 0.9845 + }, + { + "start": 22822.72, + "end": 22825.1, + "probability": 0.8813 + }, + { + "start": 22825.86, + "end": 22827.64, + "probability": 0.8918 + }, + { + "start": 22828.66, + "end": 22828.96, + "probability": 0.4331 + }, + { + "start": 22829.1, + "end": 22831.1, + "probability": 0.8831 + }, + { + "start": 22831.1, + "end": 22834.4, + "probability": 0.894 + }, + { + "start": 22835.58, + "end": 22840.22, + "probability": 0.9662 + }, + { + "start": 22841.08, + "end": 22843.3, + "probability": 0.9728 + }, + { + "start": 22843.88, + "end": 22845.28, + "probability": 0.8405 + }, + { + "start": 22845.78, + "end": 22846.14, + "probability": 0.5363 + }, + { + "start": 22846.2, + "end": 22847.22, + "probability": 0.6738 + }, + { + "start": 22847.32, + "end": 22849.4, + "probability": 0.8665 + }, + { + "start": 22850.04, + "end": 22855.5, + "probability": 0.897 + }, + { + "start": 22855.82, + "end": 22857.26, + "probability": 0.6661 + }, + { + "start": 22858.28, + "end": 22861.63, + "probability": 0.578 + }, + { + "start": 22862.72, + "end": 22864.4, + "probability": 0.8496 + }, + { + "start": 22865.04, + "end": 22867.78, + "probability": 0.6595 + }, + { + "start": 22869.0, + "end": 22869.1, + "probability": 0.458 + }, + { + "start": 22869.1, + "end": 22870.48, + "probability": 0.6096 + }, + { + "start": 22870.5, + "end": 22873.56, + "probability": 0.9636 + }, + { + "start": 22875.34, + "end": 22875.64, + "probability": 0.2709 + }, + { + "start": 22875.64, + "end": 22875.64, + "probability": 0.3652 + }, + { + "start": 22876.42, + "end": 22877.05, + "probability": 0.2705 + }, + { + "start": 22877.74, + "end": 22878.6, + "probability": 0.5509 + }, + { + "start": 22878.92, + "end": 22879.94, + "probability": 0.6836 + }, + { + "start": 22880.06, + "end": 22881.96, + "probability": 0.9143 + }, + { + "start": 22882.02, + "end": 22883.84, + "probability": 0.9573 + }, + { + "start": 22883.98, + "end": 22884.24, + "probability": 0.981 + }, + { + "start": 22885.85, + "end": 22887.58, + "probability": 0.9888 + }, + { + "start": 22888.4, + "end": 22888.98, + "probability": 0.5463 + }, + { + "start": 22888.98, + "end": 22889.9, + "probability": 0.8135 + }, + { + "start": 22890.14, + "end": 22893.44, + "probability": 0.5923 + }, + { + "start": 22893.54, + "end": 22895.84, + "probability": 0.5564 + }, + { + "start": 22896.36, + "end": 22897.46, + "probability": 0.0024 + }, + { + "start": 22899.66, + "end": 22901.08, + "probability": 0.6302 + }, + { + "start": 22901.2, + "end": 22901.92, + "probability": 0.0285 + }, + { + "start": 22901.92, + "end": 22903.14, + "probability": 0.7087 + }, + { + "start": 22907.0, + "end": 22907.0, + "probability": 0.2113 + }, + { + "start": 22907.0, + "end": 22907.0, + "probability": 0.2772 + }, + { + "start": 22907.0, + "end": 22907.0, + "probability": 0.1829 + }, + { + "start": 22907.0, + "end": 22908.18, + "probability": 0.6748 + }, + { + "start": 22908.5, + "end": 22910.52, + "probability": 0.7928 + }, + { + "start": 22910.56, + "end": 22912.52, + "probability": 0.7498 + }, + { + "start": 22912.76, + "end": 22916.46, + "probability": 0.9648 + }, + { + "start": 22916.54, + "end": 22918.2, + "probability": 0.9811 + }, + { + "start": 22918.32, + "end": 22919.48, + "probability": 0.8995 + }, + { + "start": 22919.9, + "end": 22921.69, + "probability": 0.9961 + }, + { + "start": 22921.84, + "end": 22925.62, + "probability": 0.9891 + }, + { + "start": 22925.7, + "end": 22926.62, + "probability": 0.8576 + }, + { + "start": 22926.98, + "end": 22927.12, + "probability": 0.1641 + }, + { + "start": 22931.85, + "end": 22933.62, + "probability": 0.9644 + }, + { + "start": 22933.62, + "end": 22935.02, + "probability": 0.307 + }, + { + "start": 22935.36, + "end": 22937.62, + "probability": 0.5347 + }, + { + "start": 22938.0, + "end": 22941.26, + "probability": 0.7515 + }, + { + "start": 22941.68, + "end": 22942.86, + "probability": 0.9352 + }, + { + "start": 22943.72, + "end": 22947.74, + "probability": 0.968 + }, + { + "start": 22948.32, + "end": 22950.54, + "probability": 0.8054 + }, + { + "start": 22951.54, + "end": 22954.25, + "probability": 0.9482 + }, + { + "start": 22955.54, + "end": 22957.78, + "probability": 0.9964 + }, + { + "start": 22958.66, + "end": 22960.54, + "probability": 0.1488 + }, + { + "start": 22960.54, + "end": 22960.66, + "probability": 0.5545 + }, + { + "start": 22960.66, + "end": 22962.38, + "probability": 0.5867 + }, + { + "start": 22962.46, + "end": 22962.64, + "probability": 0.1729 + }, + { + "start": 22962.78, + "end": 22962.88, + "probability": 0.5586 + }, + { + "start": 22962.88, + "end": 22965.32, + "probability": 0.5314 + }, + { + "start": 22965.4, + "end": 22965.62, + "probability": 0.8794 + }, + { + "start": 22965.7, + "end": 22967.84, + "probability": 0.8035 + }, + { + "start": 22967.9, + "end": 22968.64, + "probability": 0.9944 + }, + { + "start": 22968.66, + "end": 22969.64, + "probability": 0.983 + }, + { + "start": 22970.24, + "end": 22974.3, + "probability": 0.8677 + }, + { + "start": 22974.54, + "end": 22976.72, + "probability": 0.8623 + }, + { + "start": 22977.6, + "end": 22978.42, + "probability": 0.8723 + }, + { + "start": 22979.12, + "end": 22980.3, + "probability": 0.6642 + }, + { + "start": 22980.66, + "end": 22982.8, + "probability": 0.9469 + }, + { + "start": 22983.2, + "end": 22984.28, + "probability": 0.9558 + }, + { + "start": 22984.78, + "end": 22986.28, + "probability": 0.9624 + }, + { + "start": 22988.02, + "end": 22990.78, + "probability": 0.8254 + }, + { + "start": 22991.04, + "end": 22992.28, + "probability": 0.7846 + }, + { + "start": 22992.92, + "end": 22995.3, + "probability": 0.9901 + }, + { + "start": 22995.88, + "end": 22996.26, + "probability": 0.8833 + }, + { + "start": 22996.52, + "end": 22997.32, + "probability": 0.6366 + }, + { + "start": 22997.6, + "end": 22999.9, + "probability": 0.8357 + }, + { + "start": 23000.32, + "end": 23002.74, + "probability": 0.7628 + }, + { + "start": 23003.76, + "end": 23005.64, + "probability": 0.8727 + }, + { + "start": 23005.64, + "end": 23007.9, + "probability": 0.8677 + }, + { + "start": 23008.28, + "end": 23009.32, + "probability": 0.9976 + }, + { + "start": 23010.5, + "end": 23012.24, + "probability": 0.8686 + }, + { + "start": 23013.36, + "end": 23013.98, + "probability": 0.8214 + }, + { + "start": 23014.06, + "end": 23018.1, + "probability": 0.9828 + }, + { + "start": 23018.8, + "end": 23019.18, + "probability": 0.5327 + }, + { + "start": 23019.82, + "end": 23021.0, + "probability": 0.7617 + }, + { + "start": 23021.08, + "end": 23022.26, + "probability": 0.5 + }, + { + "start": 23022.38, + "end": 23022.84, + "probability": 0.2804 + }, + { + "start": 23022.92, + "end": 23023.02, + "probability": 0.626 + }, + { + "start": 23023.38, + "end": 23024.44, + "probability": 0.9325 + }, + { + "start": 23024.78, + "end": 23025.82, + "probability": 0.7826 + }, + { + "start": 23026.56, + "end": 23027.82, + "probability": 0.5432 + }, + { + "start": 23028.32, + "end": 23028.4, + "probability": 0.672 + }, + { + "start": 23028.46, + "end": 23028.76, + "probability": 0.7596 + }, + { + "start": 23028.84, + "end": 23030.24, + "probability": 0.9263 + }, + { + "start": 23030.28, + "end": 23034.42, + "probability": 0.9816 + }, + { + "start": 23034.42, + "end": 23038.08, + "probability": 0.8432 + }, + { + "start": 23038.44, + "end": 23040.26, + "probability": 0.9681 + }, + { + "start": 23040.7, + "end": 23042.4, + "probability": 0.7779 + }, + { + "start": 23047.12, + "end": 23048.75, + "probability": 0.8565 + }, + { + "start": 23049.24, + "end": 23050.66, + "probability": 0.7497 + }, + { + "start": 23050.88, + "end": 23052.62, + "probability": 0.9338 + }, + { + "start": 23053.4, + "end": 23057.08, + "probability": 0.9609 + }, + { + "start": 23057.4, + "end": 23058.57, + "probability": 0.9991 + }, + { + "start": 23059.12, + "end": 23062.36, + "probability": 0.9819 + }, + { + "start": 23062.42, + "end": 23062.96, + "probability": 0.7983 + }, + { + "start": 23063.4, + "end": 23064.82, + "probability": 0.8541 + }, + { + "start": 23064.88, + "end": 23066.3, + "probability": 0.9526 + }, + { + "start": 23067.0, + "end": 23068.32, + "probability": 0.8047 + }, + { + "start": 23068.58, + "end": 23070.52, + "probability": 0.9534 + }, + { + "start": 23070.72, + "end": 23071.38, + "probability": 0.9824 + }, + { + "start": 23071.4, + "end": 23072.88, + "probability": 0.6494 + }, + { + "start": 23073.68, + "end": 23073.68, + "probability": 0.2877 + }, + { + "start": 23073.78, + "end": 23076.12, + "probability": 0.8984 + }, + { + "start": 23076.24, + "end": 23076.72, + "probability": 0.7747 + }, + { + "start": 23076.74, + "end": 23076.78, + "probability": 0.0479 + }, + { + "start": 23076.78, + "end": 23077.18, + "probability": 0.4842 + }, + { + "start": 23077.32, + "end": 23079.43, + "probability": 0.9679 + }, + { + "start": 23080.24, + "end": 23081.62, + "probability": 0.9949 + }, + { + "start": 23081.82, + "end": 23083.7, + "probability": 0.5949 + }, + { + "start": 23083.94, + "end": 23085.7, + "probability": 0.9363 + }, + { + "start": 23085.78, + "end": 23086.78, + "probability": 0.8991 + }, + { + "start": 23086.78, + "end": 23086.88, + "probability": 0.038 + }, + { + "start": 23086.94, + "end": 23086.96, + "probability": 0.3554 + }, + { + "start": 23086.96, + "end": 23087.46, + "probability": 0.6343 + }, + { + "start": 23087.52, + "end": 23088.12, + "probability": 0.76 + }, + { + "start": 23088.9, + "end": 23089.98, + "probability": 0.872 + }, + { + "start": 23093.68, + "end": 23095.04, + "probability": 0.968 + }, + { + "start": 23095.26, + "end": 23095.74, + "probability": 0.2545 + }, + { + "start": 23096.12, + "end": 23096.33, + "probability": 0.4709 + }, + { + "start": 23096.66, + "end": 23098.26, + "probability": 0.063 + }, + { + "start": 23098.26, + "end": 23099.42, + "probability": 0.0844 + }, + { + "start": 23099.5, + "end": 23100.4, + "probability": 0.1751 + }, + { + "start": 23105.86, + "end": 23106.72, + "probability": 0.0712 + }, + { + "start": 23123.2, + "end": 23125.79, + "probability": 0.2093 + }, + { + "start": 23126.95, + "end": 23130.72, + "probability": 0.621 + }, + { + "start": 23131.6, + "end": 23133.42, + "probability": 0.9564 + }, + { + "start": 23135.24, + "end": 23138.16, + "probability": 0.9837 + }, + { + "start": 23138.94, + "end": 23141.24, + "probability": 0.9886 + }, + { + "start": 23141.36, + "end": 23144.08, + "probability": 0.7676 + }, + { + "start": 23144.76, + "end": 23148.42, + "probability": 0.9871 + }, + { + "start": 23149.42, + "end": 23153.22, + "probability": 0.9523 + }, + { + "start": 23154.1, + "end": 23154.92, + "probability": 0.7279 + }, + { + "start": 23155.12, + "end": 23155.76, + "probability": 0.9424 + }, + { + "start": 23156.58, + "end": 23159.64, + "probability": 0.9727 + }, + { + "start": 23160.94, + "end": 23163.06, + "probability": 0.9951 + }, + { + "start": 23163.12, + "end": 23165.27, + "probability": 0.559 + }, + { + "start": 23165.66, + "end": 23167.3, + "probability": 0.8005 + }, + { + "start": 23167.46, + "end": 23171.04, + "probability": 0.9825 + }, + { + "start": 23171.68, + "end": 23174.1, + "probability": 0.6573 + }, + { + "start": 23174.22, + "end": 23174.66, + "probability": 0.8551 + }, + { + "start": 23174.76, + "end": 23174.94, + "probability": 0.7607 + }, + { + "start": 23175.0, + "end": 23175.64, + "probability": 0.9658 + }, + { + "start": 23175.7, + "end": 23176.76, + "probability": 0.9565 + }, + { + "start": 23177.3, + "end": 23179.32, + "probability": 0.8846 + }, + { + "start": 23179.92, + "end": 23181.82, + "probability": 0.9874 + }, + { + "start": 23181.98, + "end": 23183.9, + "probability": 0.9668 + }, + { + "start": 23184.7, + "end": 23185.72, + "probability": 0.4394 + }, + { + "start": 23187.06, + "end": 23188.8, + "probability": 0.3779 + }, + { + "start": 23189.58, + "end": 23197.08, + "probability": 0.7721 + }, + { + "start": 23198.22, + "end": 23201.08, + "probability": 0.7562 + }, + { + "start": 23201.76, + "end": 23204.04, + "probability": 0.9137 + }, + { + "start": 23204.98, + "end": 23204.98, + "probability": 0.0474 + }, + { + "start": 23204.98, + "end": 23206.4, + "probability": 0.7777 + }, + { + "start": 23207.04, + "end": 23209.98, + "probability": 0.9907 + }, + { + "start": 23210.48, + "end": 23211.46, + "probability": 0.8079 + }, + { + "start": 23211.96, + "end": 23212.68, + "probability": 0.7715 + }, + { + "start": 23213.26, + "end": 23214.0, + "probability": 0.7731 + }, + { + "start": 23215.24, + "end": 23217.82, + "probability": 0.9926 + }, + { + "start": 23218.42, + "end": 23221.42, + "probability": 0.9344 + }, + { + "start": 23222.1, + "end": 23223.64, + "probability": 0.8633 + }, + { + "start": 23225.02, + "end": 23227.86, + "probability": 0.846 + }, + { + "start": 23228.82, + "end": 23231.76, + "probability": 0.9927 + }, + { + "start": 23232.7, + "end": 23235.2, + "probability": 0.9968 + }, + { + "start": 23236.26, + "end": 23237.89, + "probability": 0.9561 + }, + { + "start": 23238.9, + "end": 23241.64, + "probability": 0.8691 + }, + { + "start": 23241.76, + "end": 23244.88, + "probability": 0.9758 + }, + { + "start": 23245.14, + "end": 23247.48, + "probability": 0.9891 + }, + { + "start": 23248.68, + "end": 23250.8, + "probability": 0.9724 + }, + { + "start": 23250.86, + "end": 23253.92, + "probability": 0.9666 + }, + { + "start": 23254.06, + "end": 23254.3, + "probability": 0.4893 + }, + { + "start": 23254.36, + "end": 23255.82, + "probability": 0.9946 + }, + { + "start": 23256.06, + "end": 23257.42, + "probability": 0.8234 + }, + { + "start": 23258.34, + "end": 23260.7, + "probability": 0.9941 + }, + { + "start": 23261.64, + "end": 23263.98, + "probability": 0.9105 + }, + { + "start": 23264.9, + "end": 23266.8, + "probability": 0.962 + }, + { + "start": 23267.68, + "end": 23269.2, + "probability": 0.9987 + }, + { + "start": 23269.98, + "end": 23272.64, + "probability": 0.8682 + }, + { + "start": 23273.16, + "end": 23277.46, + "probability": 0.9408 + }, + { + "start": 23278.02, + "end": 23281.86, + "probability": 0.9535 + }, + { + "start": 23282.28, + "end": 23283.52, + "probability": 0.8619 + }, + { + "start": 23283.64, + "end": 23284.48, + "probability": 0.937 + }, + { + "start": 23284.6, + "end": 23285.35, + "probability": 0.9855 + }, + { + "start": 23286.44, + "end": 23288.16, + "probability": 0.9489 + }, + { + "start": 23289.2, + "end": 23290.98, + "probability": 0.9748 + }, + { + "start": 23291.66, + "end": 23295.46, + "probability": 0.8101 + }, + { + "start": 23295.9, + "end": 23297.3, + "probability": 0.9812 + }, + { + "start": 23298.22, + "end": 23300.56, + "probability": 0.835 + }, + { + "start": 23301.9, + "end": 23304.96, + "probability": 0.9821 + }, + { + "start": 23305.02, + "end": 23306.54, + "probability": 0.8973 + }, + { + "start": 23306.66, + "end": 23307.73, + "probability": 0.8291 + }, + { + "start": 23308.48, + "end": 23309.86, + "probability": 0.9624 + }, + { + "start": 23310.28, + "end": 23313.78, + "probability": 0.938 + }, + { + "start": 23314.56, + "end": 23317.56, + "probability": 0.7529 + }, + { + "start": 23319.42, + "end": 23322.62, + "probability": 0.938 + }, + { + "start": 23323.18, + "end": 23324.98, + "probability": 0.8933 + }, + { + "start": 23325.32, + "end": 23328.2, + "probability": 0.8382 + }, + { + "start": 23329.18, + "end": 23330.76, + "probability": 0.9574 + }, + { + "start": 23331.54, + "end": 23332.86, + "probability": 0.9728 + }, + { + "start": 23333.02, + "end": 23333.76, + "probability": 0.8305 + }, + { + "start": 23334.16, + "end": 23336.18, + "probability": 0.9031 + }, + { + "start": 23336.78, + "end": 23340.28, + "probability": 0.9523 + }, + { + "start": 23340.8, + "end": 23343.7, + "probability": 0.9949 + }, + { + "start": 23344.58, + "end": 23347.86, + "probability": 0.879 + }, + { + "start": 23348.5, + "end": 23351.38, + "probability": 0.9948 + }, + { + "start": 23351.38, + "end": 23354.32, + "probability": 0.9059 + }, + { + "start": 23354.54, + "end": 23355.86, + "probability": 0.5977 + }, + { + "start": 23355.94, + "end": 23356.78, + "probability": 0.8101 + }, + { + "start": 23357.26, + "end": 23359.72, + "probability": 0.6636 + }, + { + "start": 23359.78, + "end": 23362.6, + "probability": 0.9973 + }, + { + "start": 23363.74, + "end": 23365.32, + "probability": 0.9994 + }, + { + "start": 23366.04, + "end": 23370.5, + "probability": 0.9962 + }, + { + "start": 23370.6, + "end": 23371.24, + "probability": 0.0137 + }, + { + "start": 23372.24, + "end": 23373.58, + "probability": 0.8159 + }, + { + "start": 23374.7, + "end": 23376.4, + "probability": 0.9179 + }, + { + "start": 23379.64, + "end": 23382.76, + "probability": 0.9036 + }, + { + "start": 23383.54, + "end": 23384.78, + "probability": 0.8947 + }, + { + "start": 23398.84, + "end": 23400.44, + "probability": 0.6663 + }, + { + "start": 23400.72, + "end": 23403.28, + "probability": 0.4886 + }, + { + "start": 23403.52, + "end": 23404.81, + "probability": 0.9524 + }, + { + "start": 23405.62, + "end": 23408.37, + "probability": 0.9302 + }, + { + "start": 23409.02, + "end": 23412.58, + "probability": 0.9919 + }, + { + "start": 23412.58, + "end": 23414.76, + "probability": 0.7258 + }, + { + "start": 23415.6, + "end": 23418.22, + "probability": 0.9659 + }, + { + "start": 23419.4, + "end": 23419.96, + "probability": 0.7587 + }, + { + "start": 23420.12, + "end": 23422.43, + "probability": 0.979 + }, + { + "start": 23422.86, + "end": 23423.22, + "probability": 0.5116 + }, + { + "start": 23423.22, + "end": 23424.0, + "probability": 0.6906 + }, + { + "start": 23424.3, + "end": 23425.6, + "probability": 0.6582 + }, + { + "start": 23426.16, + "end": 23428.09, + "probability": 0.4809 + }, + { + "start": 23429.36, + "end": 23431.18, + "probability": 0.9087 + }, + { + "start": 23432.2, + "end": 23432.72, + "probability": 0.7186 + }, + { + "start": 23433.18, + "end": 23434.96, + "probability": 0.9463 + }, + { + "start": 23435.18, + "end": 23437.62, + "probability": 0.9805 + }, + { + "start": 23438.64, + "end": 23440.38, + "probability": 0.9958 + }, + { + "start": 23441.42, + "end": 23443.74, + "probability": 0.7921 + }, + { + "start": 23444.4, + "end": 23445.78, + "probability": 0.7775 + }, + { + "start": 23446.38, + "end": 23446.74, + "probability": 0.7719 + }, + { + "start": 23447.06, + "end": 23448.8, + "probability": 0.9779 + }, + { + "start": 23449.34, + "end": 23453.28, + "probability": 0.9632 + }, + { + "start": 23454.82, + "end": 23456.74, + "probability": 0.7049 + }, + { + "start": 23458.22, + "end": 23461.16, + "probability": 0.9505 + }, + { + "start": 23461.92, + "end": 23463.5, + "probability": 0.9947 + }, + { + "start": 23464.46, + "end": 23465.44, + "probability": 0.7635 + }, + { + "start": 23467.18, + "end": 23467.98, + "probability": 0.6947 + }, + { + "start": 23468.1, + "end": 23471.08, + "probability": 0.8883 + }, + { + "start": 23474.14, + "end": 23479.34, + "probability": 0.9923 + }, + { + "start": 23479.92, + "end": 23483.24, + "probability": 0.9985 + }, + { + "start": 23483.3, + "end": 23486.84, + "probability": 0.9937 + }, + { + "start": 23487.62, + "end": 23487.84, + "probability": 0.6304 + }, + { + "start": 23488.0, + "end": 23488.7, + "probability": 0.961 + }, + { + "start": 23488.8, + "end": 23492.24, + "probability": 0.9629 + }, + { + "start": 23492.88, + "end": 23493.52, + "probability": 0.9649 + }, + { + "start": 23494.4, + "end": 23494.7, + "probability": 0.8744 + }, + { + "start": 23494.84, + "end": 23496.74, + "probability": 0.9435 + }, + { + "start": 23496.8, + "end": 23498.78, + "probability": 0.8646 + }, + { + "start": 23499.6, + "end": 23501.29, + "probability": 0.9868 + }, + { + "start": 23502.34, + "end": 23502.86, + "probability": 0.9814 + }, + { + "start": 23505.84, + "end": 23506.56, + "probability": 0.8766 + }, + { + "start": 23507.68, + "end": 23509.02, + "probability": 0.9673 + }, + { + "start": 23509.3, + "end": 23510.08, + "probability": 0.9929 + }, + { + "start": 23510.6, + "end": 23512.94, + "probability": 0.998 + }, + { + "start": 23514.0, + "end": 23515.04, + "probability": 0.8558 + }, + { + "start": 23515.52, + "end": 23517.9, + "probability": 0.9329 + }, + { + "start": 23519.08, + "end": 23520.96, + "probability": 0.9686 + }, + { + "start": 23521.44, + "end": 23523.54, + "probability": 0.995 + }, + { + "start": 23523.54, + "end": 23526.1, + "probability": 0.9982 + }, + { + "start": 23526.82, + "end": 23528.08, + "probability": 0.6127 + }, + { + "start": 23528.26, + "end": 23531.36, + "probability": 0.9747 + }, + { + "start": 23532.68, + "end": 23535.53, + "probability": 0.9066 + }, + { + "start": 23536.5, + "end": 23537.72, + "probability": 0.8741 + }, + { + "start": 23538.24, + "end": 23541.56, + "probability": 0.993 + }, + { + "start": 23542.08, + "end": 23542.62, + "probability": 0.8417 + }, + { + "start": 23543.7, + "end": 23546.04, + "probability": 0.7408 + }, + { + "start": 23547.18, + "end": 23547.4, + "probability": 0.4978 + }, + { + "start": 23547.94, + "end": 23550.5, + "probability": 0.849 + }, + { + "start": 23570.1, + "end": 23571.66, + "probability": 0.9214 + }, + { + "start": 23571.74, + "end": 23573.13, + "probability": 0.9414 + }, + { + "start": 23579.74, + "end": 23580.62, + "probability": 0.1689 + }, + { + "start": 23581.88, + "end": 23584.18, + "probability": 0.7904 + }, + { + "start": 23584.74, + "end": 23585.72, + "probability": 0.7535 + }, + { + "start": 23587.04, + "end": 23587.68, + "probability": 0.4693 + }, + { + "start": 23588.26, + "end": 23589.54, + "probability": 0.9121 + }, + { + "start": 23590.48, + "end": 23592.68, + "probability": 0.6492 + }, + { + "start": 23593.2, + "end": 23594.22, + "probability": 0.9286 + }, + { + "start": 23594.34, + "end": 23600.0, + "probability": 0.7767 + }, + { + "start": 23605.3, + "end": 23607.3, + "probability": 0.291 + }, + { + "start": 23608.44, + "end": 23610.06, + "probability": 0.1188 + }, + { + "start": 23610.1, + "end": 23611.58, + "probability": 0.2055 + }, + { + "start": 23611.9, + "end": 23616.0, + "probability": 0.9565 + }, + { + "start": 23616.92, + "end": 23619.44, + "probability": 0.8648 + }, + { + "start": 23620.62, + "end": 23627.14, + "probability": 0.9529 + }, + { + "start": 23627.72, + "end": 23630.34, + "probability": 0.9956 + }, + { + "start": 23631.42, + "end": 23633.22, + "probability": 0.8997 + }, + { + "start": 23633.88, + "end": 23634.32, + "probability": 0.9292 + }, + { + "start": 23635.38, + "end": 23640.34, + "probability": 0.9799 + }, + { + "start": 23640.48, + "end": 23647.76, + "probability": 0.9771 + }, + { + "start": 23647.92, + "end": 23649.16, + "probability": 0.6677 + }, + { + "start": 23650.1, + "end": 23652.92, + "probability": 0.9941 + }, + { + "start": 23654.74, + "end": 23657.68, + "probability": 0.7301 + }, + { + "start": 23657.84, + "end": 23660.14, + "probability": 0.9648 + }, + { + "start": 23660.24, + "end": 23664.36, + "probability": 0.8032 + }, + { + "start": 23665.54, + "end": 23667.5, + "probability": 0.7319 + }, + { + "start": 23667.66, + "end": 23668.4, + "probability": 0.7725 + }, + { + "start": 23668.5, + "end": 23672.1, + "probability": 0.9706 + }, + { + "start": 23673.42, + "end": 23675.0, + "probability": 0.0884 + }, + { + "start": 23675.3, + "end": 23675.46, + "probability": 0.1641 + }, + { + "start": 23676.14, + "end": 23679.62, + "probability": 0.5761 + }, + { + "start": 23680.38, + "end": 23681.82, + "probability": 0.9492 + }, + { + "start": 23681.94, + "end": 23683.98, + "probability": 0.9208 + }, + { + "start": 23685.54, + "end": 23689.22, + "probability": 0.8996 + }, + { + "start": 23690.5, + "end": 23692.58, + "probability": 0.9967 + }, + { + "start": 23692.84, + "end": 23695.58, + "probability": 0.7244 + }, + { + "start": 23696.12, + "end": 23699.9, + "probability": 0.9464 + }, + { + "start": 23701.06, + "end": 23701.94, + "probability": 0.8029 + }, + { + "start": 23702.0, + "end": 23703.52, + "probability": 0.937 + }, + { + "start": 23703.92, + "end": 23707.86, + "probability": 0.8937 + }, + { + "start": 23708.2, + "end": 23709.98, + "probability": 0.5435 + }, + { + "start": 23710.28, + "end": 23711.04, + "probability": 0.3869 + }, + { + "start": 23711.24, + "end": 23718.98, + "probability": 0.911 + }, + { + "start": 23719.98, + "end": 23722.94, + "probability": 0.9324 + }, + { + "start": 23725.12, + "end": 23729.36, + "probability": 0.9912 + }, + { + "start": 23729.44, + "end": 23730.36, + "probability": 0.947 + }, + { + "start": 23731.32, + "end": 23732.72, + "probability": 0.5902 + }, + { + "start": 23734.56, + "end": 23736.9, + "probability": 0.9348 + }, + { + "start": 23737.48, + "end": 23741.58, + "probability": 0.5879 + }, + { + "start": 23743.7, + "end": 23747.22, + "probability": 0.8849 + }, + { + "start": 23747.62, + "end": 23748.06, + "probability": 0.5206 + }, + { + "start": 23748.84, + "end": 23755.0, + "probability": 0.9834 + }, + { + "start": 23756.14, + "end": 23756.52, + "probability": 0.6857 + }, + { + "start": 23757.48, + "end": 23761.7, + "probability": 0.9776 + }, + { + "start": 23761.7, + "end": 23766.9, + "probability": 0.9912 + }, + { + "start": 23767.66, + "end": 23768.2, + "probability": 0.4987 + }, + { + "start": 23768.28, + "end": 23769.06, + "probability": 0.8321 + }, + { + "start": 23769.12, + "end": 23775.22, + "probability": 0.9904 + }, + { + "start": 23776.4, + "end": 23777.54, + "probability": 0.6662 + }, + { + "start": 23778.18, + "end": 23782.74, + "probability": 0.9634 + }, + { + "start": 23782.74, + "end": 23787.98, + "probability": 0.9923 + }, + { + "start": 23787.98, + "end": 23793.24, + "probability": 0.9984 + }, + { + "start": 23793.32, + "end": 23798.14, + "probability": 0.957 + }, + { + "start": 23799.24, + "end": 23802.06, + "probability": 0.9892 + }, + { + "start": 23802.84, + "end": 23805.74, + "probability": 0.7742 + }, + { + "start": 23807.36, + "end": 23809.52, + "probability": 0.3178 + }, + { + "start": 23810.26, + "end": 23811.1, + "probability": 0.744 + }, + { + "start": 23811.82, + "end": 23816.8, + "probability": 0.8929 + }, + { + "start": 23816.8, + "end": 23822.94, + "probability": 0.9784 + }, + { + "start": 23824.12, + "end": 23830.36, + "probability": 0.944 + }, + { + "start": 23830.36, + "end": 23838.02, + "probability": 0.9833 + }, + { + "start": 23838.98, + "end": 23840.24, + "probability": 0.6551 + }, + { + "start": 23840.32, + "end": 23846.81, + "probability": 0.9106 + }, + { + "start": 23847.7, + "end": 23848.8, + "probability": 0.7547 + }, + { + "start": 23849.52, + "end": 23854.16, + "probability": 0.9772 + }, + { + "start": 23854.16, + "end": 23859.82, + "probability": 0.9922 + }, + { + "start": 23859.82, + "end": 23866.6, + "probability": 0.9806 + }, + { + "start": 23867.1, + "end": 23869.19, + "probability": 0.8083 + }, + { + "start": 23869.64, + "end": 23870.18, + "probability": 0.6621 + }, + { + "start": 23870.38, + "end": 23873.7, + "probability": 0.7509 + }, + { + "start": 23874.54, + "end": 23880.52, + "probability": 0.9785 + }, + { + "start": 23881.54, + "end": 23882.3, + "probability": 0.5985 + }, + { + "start": 23882.64, + "end": 23887.78, + "probability": 0.9384 + }, + { + "start": 23888.44, + "end": 23891.92, + "probability": 0.9973 + }, + { + "start": 23891.92, + "end": 23896.64, + "probability": 0.9561 + }, + { + "start": 23896.66, + "end": 23897.68, + "probability": 0.751 + }, + { + "start": 23898.14, + "end": 23899.3, + "probability": 0.9028 + }, + { + "start": 23899.56, + "end": 23900.4, + "probability": 0.9538 + }, + { + "start": 23900.62, + "end": 23901.48, + "probability": 0.9797 + }, + { + "start": 23901.6, + "end": 23902.7, + "probability": 0.9863 + }, + { + "start": 23904.74, + "end": 23906.38, + "probability": 0.6651 + }, + { + "start": 23906.44, + "end": 23912.82, + "probability": 0.9126 + }, + { + "start": 23913.88, + "end": 23915.94, + "probability": 0.7912 + }, + { + "start": 23916.64, + "end": 23920.96, + "probability": 0.9205 + }, + { + "start": 23921.56, + "end": 23923.62, + "probability": 0.9374 + }, + { + "start": 23923.74, + "end": 23928.32, + "probability": 0.7889 + }, + { + "start": 23929.28, + "end": 23931.44, + "probability": 0.9125 + }, + { + "start": 23932.1, + "end": 23934.46, + "probability": 0.7638 + }, + { + "start": 23934.94, + "end": 23939.74, + "probability": 0.973 + }, + { + "start": 23940.52, + "end": 23946.96, + "probability": 0.9568 + }, + { + "start": 23948.2, + "end": 23948.84, + "probability": 0.5 + }, + { + "start": 23949.14, + "end": 23949.84, + "probability": 0.2424 + }, + { + "start": 23949.96, + "end": 23951.72, + "probability": 0.836 + }, + { + "start": 23951.78, + "end": 23953.5, + "probability": 0.5667 + }, + { + "start": 23953.88, + "end": 23957.14, + "probability": 0.8831 + }, + { + "start": 23957.9, + "end": 23960.36, + "probability": 0.8387 + }, + { + "start": 23961.04, + "end": 23962.0, + "probability": 0.8785 + }, + { + "start": 23962.16, + "end": 23964.44, + "probability": 0.7042 + }, + { + "start": 23964.48, + "end": 23967.22, + "probability": 0.9848 + }, + { + "start": 23967.68, + "end": 23968.16, + "probability": 0.8834 + }, + { + "start": 23970.94, + "end": 23971.98, + "probability": 0.8105 + }, + { + "start": 23972.4, + "end": 23974.76, + "probability": 0.507 + }, + { + "start": 23975.66, + "end": 23975.74, + "probability": 0.2921 + }, + { + "start": 23975.8, + "end": 23977.13, + "probability": 0.5104 + }, + { + "start": 23977.58, + "end": 23978.96, + "probability": 0.7505 + }, + { + "start": 23979.06, + "end": 23979.66, + "probability": 0.9307 + }, + { + "start": 23979.94, + "end": 23982.96, + "probability": 0.9841 + }, + { + "start": 23982.96, + "end": 23987.26, + "probability": 0.9741 + }, + { + "start": 23987.88, + "end": 23989.82, + "probability": 0.8925 + }, + { + "start": 23990.6, + "end": 23993.72, + "probability": 0.8289 + }, + { + "start": 23993.78, + "end": 23996.11, + "probability": 0.9941 + }, + { + "start": 23996.36, + "end": 24001.88, + "probability": 0.7826 + }, + { + "start": 24002.1, + "end": 24004.94, + "probability": 0.694 + }, + { + "start": 24005.22, + "end": 24007.02, + "probability": 0.7479 + }, + { + "start": 24007.54, + "end": 24008.78, + "probability": 0.0409 + }, + { + "start": 24008.9, + "end": 24010.0, + "probability": 0.769 + }, + { + "start": 24010.08, + "end": 24010.53, + "probability": 0.9343 + }, + { + "start": 24010.74, + "end": 24011.16, + "probability": 0.2857 + }, + { + "start": 24011.22, + "end": 24011.68, + "probability": 0.8769 + }, + { + "start": 24011.74, + "end": 24012.66, + "probability": 0.6255 + }, + { + "start": 24012.96, + "end": 24015.42, + "probability": 0.491 + }, + { + "start": 24016.14, + "end": 24019.93, + "probability": 0.8965 + }, + { + "start": 24020.62, + "end": 24022.46, + "probability": 0.8394 + }, + { + "start": 24022.68, + "end": 24023.58, + "probability": 0.7529 + }, + { + "start": 24023.92, + "end": 24026.28, + "probability": 0.6266 + }, + { + "start": 24026.36, + "end": 24033.16, + "probability": 0.9912 + }, + { + "start": 24033.4, + "end": 24035.46, + "probability": 0.9476 + }, + { + "start": 24035.58, + "end": 24038.2, + "probability": 0.8773 + }, + { + "start": 24038.34, + "end": 24041.34, + "probability": 0.0712 + }, + { + "start": 24041.34, + "end": 24044.16, + "probability": 0.9115 + }, + { + "start": 24044.24, + "end": 24045.58, + "probability": 0.7007 + }, + { + "start": 24045.58, + "end": 24046.5, + "probability": 0.9624 + }, + { + "start": 24047.1, + "end": 24048.07, + "probability": 0.9819 + }, + { + "start": 24048.9, + "end": 24050.3, + "probability": 0.9048 + }, + { + "start": 24050.38, + "end": 24054.72, + "probability": 0.8893 + }, + { + "start": 24054.8, + "end": 24055.12, + "probability": 0.7576 + }, + { + "start": 24055.18, + "end": 24055.62, + "probability": 0.6332 + }, + { + "start": 24055.68, + "end": 24058.96, + "probability": 0.7423 + }, + { + "start": 24060.16, + "end": 24060.96, + "probability": 0.7778 + }, + { + "start": 24062.5, + "end": 24067.06, + "probability": 0.8423 + }, + { + "start": 24067.74, + "end": 24070.14, + "probability": 0.9138 + }, + { + "start": 24071.82, + "end": 24074.08, + "probability": 0.9153 + }, + { + "start": 24074.72, + "end": 24076.87, + "probability": 0.9048 + }, + { + "start": 24077.82, + "end": 24081.18, + "probability": 0.9558 + }, + { + "start": 24081.7, + "end": 24083.04, + "probability": 0.5798 + }, + { + "start": 24083.88, + "end": 24089.7, + "probability": 0.9596 + }, + { + "start": 24090.18, + "end": 24094.81, + "probability": 0.811 + }, + { + "start": 24095.04, + "end": 24095.64, + "probability": 0.7765 + }, + { + "start": 24096.18, + "end": 24100.48, + "probability": 0.5914 + }, + { + "start": 24100.6, + "end": 24101.38, + "probability": 0.675 + }, + { + "start": 24101.7, + "end": 24102.94, + "probability": 0.7939 + }, + { + "start": 24103.36, + "end": 24104.04, + "probability": 0.8715 + }, + { + "start": 24104.16, + "end": 24107.36, + "probability": 0.7763 + }, + { + "start": 24107.36, + "end": 24109.39, + "probability": 0.5608 + }, + { + "start": 24109.52, + "end": 24110.54, + "probability": 0.5617 + }, + { + "start": 24111.4, + "end": 24117.0, + "probability": 0.9746 + }, + { + "start": 24117.88, + "end": 24118.7, + "probability": 0.7906 + }, + { + "start": 24118.8, + "end": 24124.7, + "probability": 0.8998 + }, + { + "start": 24125.32, + "end": 24127.79, + "probability": 0.964 + }, + { + "start": 24128.52, + "end": 24131.58, + "probability": 0.8742 + }, + { + "start": 24131.58, + "end": 24135.98, + "probability": 0.998 + }, + { + "start": 24136.1, + "end": 24137.2, + "probability": 0.9843 + }, + { + "start": 24137.24, + "end": 24138.88, + "probability": 0.8905 + }, + { + "start": 24139.4, + "end": 24141.18, + "probability": 0.9537 + }, + { + "start": 24141.68, + "end": 24145.9, + "probability": 0.9705 + }, + { + "start": 24145.92, + "end": 24146.82, + "probability": 0.7482 + }, + { + "start": 24147.1, + "end": 24147.36, + "probability": 0.6667 + }, + { + "start": 24147.44, + "end": 24149.94, + "probability": 0.9888 + }, + { + "start": 24150.62, + "end": 24150.8, + "probability": 0.5913 + }, + { + "start": 24152.0, + "end": 24152.7, + "probability": 0.3262 + }, + { + "start": 24154.09, + "end": 24157.24, + "probability": 0.7615 + }, + { + "start": 24158.1, + "end": 24159.4, + "probability": 0.5126 + }, + { + "start": 24160.1, + "end": 24160.36, + "probability": 0.0762 + }, + { + "start": 24162.2, + "end": 24171.06, + "probability": 0.3838 + }, + { + "start": 24172.64, + "end": 24174.78, + "probability": 0.8385 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.0, + "end": 24271.0, + "probability": 0.0 + }, + { + "start": 24271.83, + "end": 24273.38, + "probability": 0.016 + }, + { + "start": 24273.38, + "end": 24273.38, + "probability": 0.0866 + }, + { + "start": 24273.38, + "end": 24273.5, + "probability": 0.131 + }, + { + "start": 24273.98, + "end": 24275.8, + "probability": 0.1697 + }, + { + "start": 24276.42, + "end": 24279.26, + "probability": 0.8906 + }, + { + "start": 24279.36, + "end": 24279.82, + "probability": 0.9585 + }, + { + "start": 24279.94, + "end": 24282.08, + "probability": 0.6727 + }, + { + "start": 24282.2, + "end": 24283.0, + "probability": 0.1268 + }, + { + "start": 24283.0, + "end": 24284.48, + "probability": 0.8072 + }, + { + "start": 24284.58, + "end": 24286.52, + "probability": 0.8859 + }, + { + "start": 24287.2, + "end": 24292.1, + "probability": 0.9143 + }, + { + "start": 24292.62, + "end": 24296.18, + "probability": 0.884 + }, + { + "start": 24296.4, + "end": 24297.78, + "probability": 0.4312 + }, + { + "start": 24297.84, + "end": 24299.98, + "probability": 0.2586 + }, + { + "start": 24300.14, + "end": 24301.48, + "probability": 0.9354 + }, + { + "start": 24301.86, + "end": 24302.6, + "probability": 0.9392 + }, + { + "start": 24302.72, + "end": 24304.1, + "probability": 0.9204 + }, + { + "start": 24304.42, + "end": 24305.94, + "probability": 0.9955 + }, + { + "start": 24305.94, + "end": 24306.24, + "probability": 0.1099 + }, + { + "start": 24306.66, + "end": 24307.42, + "probability": 0.9644 + }, + { + "start": 24307.72, + "end": 24308.84, + "probability": 0.9559 + }, + { + "start": 24309.04, + "end": 24309.76, + "probability": 0.1771 + }, + { + "start": 24310.12, + "end": 24312.72, + "probability": 0.8488 + }, + { + "start": 24313.52, + "end": 24314.5, + "probability": 0.9473 + }, + { + "start": 24315.06, + "end": 24316.72, + "probability": 0.9766 + }, + { + "start": 24317.36, + "end": 24319.02, + "probability": 0.9718 + }, + { + "start": 24319.1, + "end": 24323.98, + "probability": 0.9876 + }, + { + "start": 24324.1, + "end": 24326.18, + "probability": 0.3267 + }, + { + "start": 24326.52, + "end": 24330.12, + "probability": 0.9508 + }, + { + "start": 24330.66, + "end": 24333.96, + "probability": 0.8981 + }, + { + "start": 24334.62, + "end": 24337.88, + "probability": 0.9692 + }, + { + "start": 24338.26, + "end": 24340.7, + "probability": 0.8195 + }, + { + "start": 24341.24, + "end": 24342.54, + "probability": 0.6083 + }, + { + "start": 24343.06, + "end": 24343.62, + "probability": 0.799 + }, + { + "start": 24343.7, + "end": 24347.42, + "probability": 0.8903 + }, + { + "start": 24347.8, + "end": 24350.12, + "probability": 0.9769 + }, + { + "start": 24351.26, + "end": 24352.94, + "probability": 0.805 + }, + { + "start": 24353.18, + "end": 24356.82, + "probability": 0.999 + }, + { + "start": 24356.82, + "end": 24361.22, + "probability": 0.9986 + }, + { + "start": 24361.78, + "end": 24365.12, + "probability": 0.9156 + }, + { + "start": 24365.12, + "end": 24369.2, + "probability": 0.9971 + }, + { + "start": 24369.76, + "end": 24373.4, + "probability": 0.817 + }, + { + "start": 24374.02, + "end": 24375.84, + "probability": 0.8673 + }, + { + "start": 24376.02, + "end": 24376.3, + "probability": 0.8895 + }, + { + "start": 24376.4, + "end": 24378.64, + "probability": 0.9895 + }, + { + "start": 24379.14, + "end": 24381.41, + "probability": 0.9926 + }, + { + "start": 24381.68, + "end": 24385.84, + "probability": 0.976 + }, + { + "start": 24385.84, + "end": 24389.16, + "probability": 0.7552 + }, + { + "start": 24389.62, + "end": 24393.88, + "probability": 0.9855 + }, + { + "start": 24394.46, + "end": 24395.6, + "probability": 0.5837 + }, + { + "start": 24395.76, + "end": 24396.8, + "probability": 0.2832 + }, + { + "start": 24396.84, + "end": 24398.76, + "probability": 0.869 + }, + { + "start": 24400.94, + "end": 24404.0, + "probability": 0.608 + }, + { + "start": 24404.06, + "end": 24404.56, + "probability": 0.7388 + }, + { + "start": 24408.5, + "end": 24410.7, + "probability": 0.6908 + }, + { + "start": 24410.78, + "end": 24415.02, + "probability": 0.7552 + }, + { + "start": 24415.4, + "end": 24416.42, + "probability": 0.8088 + }, + { + "start": 24416.54, + "end": 24417.5, + "probability": 0.8845 + }, + { + "start": 24417.7, + "end": 24419.36, + "probability": 0.9765 + }, + { + "start": 24419.84, + "end": 24424.06, + "probability": 0.9973 + }, + { + "start": 24424.68, + "end": 24428.6, + "probability": 0.8602 + }, + { + "start": 24429.26, + "end": 24434.1, + "probability": 0.9625 + }, + { + "start": 24434.1, + "end": 24437.56, + "probability": 0.9939 + }, + { + "start": 24437.68, + "end": 24438.66, + "probability": 0.6719 + }, + { + "start": 24439.14, + "end": 24443.28, + "probability": 0.9596 + }, + { + "start": 24443.68, + "end": 24445.36, + "probability": 0.8301 + }, + { + "start": 24445.46, + "end": 24448.44, + "probability": 0.9919 + }, + { + "start": 24448.92, + "end": 24450.82, + "probability": 0.9928 + }, + { + "start": 24451.68, + "end": 24457.46, + "probability": 0.7985 + }, + { + "start": 24457.56, + "end": 24459.56, + "probability": 0.978 + }, + { + "start": 24460.52, + "end": 24463.34, + "probability": 0.9978 + }, + { + "start": 24463.34, + "end": 24467.12, + "probability": 0.9824 + }, + { + "start": 24467.5, + "end": 24470.72, + "probability": 0.9927 + }, + { + "start": 24470.84, + "end": 24476.88, + "probability": 0.9773 + }, + { + "start": 24477.94, + "end": 24481.04, + "probability": 0.353 + }, + { + "start": 24481.06, + "end": 24482.54, + "probability": 0.3641 + }, + { + "start": 24482.62, + "end": 24484.62, + "probability": 0.0331 + }, + { + "start": 24485.85, + "end": 24487.7, + "probability": 0.0432 + }, + { + "start": 24490.1, + "end": 24491.34, + "probability": 0.0291 + }, + { + "start": 24492.96, + "end": 24498.84, + "probability": 0.0357 + }, + { + "start": 24503.58, + "end": 24507.38, + "probability": 0.0176 + }, + { + "start": 24507.38, + "end": 24507.54, + "probability": 0.1321 + }, + { + "start": 24507.54, + "end": 24508.6, + "probability": 0.0265 + }, + { + "start": 24510.26, + "end": 24515.7, + "probability": 0.0654 + }, + { + "start": 24516.64, + "end": 24517.94, + "probability": 0.1762 + }, + { + "start": 24518.02, + "end": 24521.38, + "probability": 0.0386 + }, + { + "start": 24521.38, + "end": 24523.04, + "probability": 0.0514 + }, + { + "start": 24523.28, + "end": 24524.32, + "probability": 0.0362 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.0, + "end": 24546.0, + "probability": 0.0 + }, + { + "start": 24546.04, + "end": 24546.34, + "probability": 0.1448 + }, + { + "start": 24546.34, + "end": 24549.42, + "probability": 0.0215 + }, + { + "start": 24549.96, + "end": 24550.7, + "probability": 0.2721 + }, + { + "start": 24550.8, + "end": 24553.46, + "probability": 0.8077 + }, + { + "start": 24553.54, + "end": 24556.56, + "probability": 0.6494 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.0, + "end": 24667.0, + "probability": 0.0 + }, + { + "start": 24667.18, + "end": 24667.5, + "probability": 0.0619 + }, + { + "start": 24667.56, + "end": 24668.4, + "probability": 0.8412 + }, + { + "start": 24668.88, + "end": 24670.04, + "probability": 0.4641 + }, + { + "start": 24670.34, + "end": 24673.64, + "probability": 0.9406 + }, + { + "start": 24674.42, + "end": 24676.0, + "probability": 0.9851 + }, + { + "start": 24676.24, + "end": 24679.04, + "probability": 0.9975 + }, + { + "start": 24679.62, + "end": 24683.66, + "probability": 0.9616 + }, + { + "start": 24685.54, + "end": 24689.02, + "probability": 0.9823 + }, + { + "start": 24689.64, + "end": 24691.26, + "probability": 0.9696 + }, + { + "start": 24691.5, + "end": 24693.62, + "probability": 0.9944 + }, + { + "start": 24694.36, + "end": 24695.28, + "probability": 0.9822 + }, + { + "start": 24696.6, + "end": 24700.14, + "probability": 0.998 + }, + { + "start": 24700.84, + "end": 24703.56, + "probability": 0.9941 + }, + { + "start": 24704.08, + "end": 24706.68, + "probability": 0.9914 + }, + { + "start": 24707.62, + "end": 24710.3, + "probability": 0.9742 + }, + { + "start": 24710.36, + "end": 24711.06, + "probability": 0.8346 + }, + { + "start": 24712.0, + "end": 24715.12, + "probability": 0.9918 + }, + { + "start": 24715.12, + "end": 24718.52, + "probability": 0.9933 + }, + { + "start": 24719.5, + "end": 24721.08, + "probability": 0.9719 + }, + { + "start": 24721.66, + "end": 24722.92, + "probability": 0.8226 + }, + { + "start": 24723.14, + "end": 24724.8, + "probability": 0.8744 + }, + { + "start": 24725.0, + "end": 24726.18, + "probability": 0.9839 + }, + { + "start": 24726.82, + "end": 24728.94, + "probability": 0.991 + }, + { + "start": 24729.56, + "end": 24730.64, + "probability": 0.9707 + }, + { + "start": 24730.82, + "end": 24733.14, + "probability": 0.9598 + }, + { + "start": 24733.66, + "end": 24735.96, + "probability": 0.9038 + }, + { + "start": 24736.02, + "end": 24737.16, + "probability": 0.9385 + }, + { + "start": 24737.6, + "end": 24740.46, + "probability": 0.9867 + }, + { + "start": 24741.3, + "end": 24741.98, + "probability": 0.5475 + }, + { + "start": 24742.32, + "end": 24744.36, + "probability": 0.9494 + }, + { + "start": 24745.2, + "end": 24748.16, + "probability": 0.9761 + }, + { + "start": 24748.16, + "end": 24751.74, + "probability": 0.9951 + }, + { + "start": 24752.54, + "end": 24753.54, + "probability": 0.6465 + }, + { + "start": 24753.66, + "end": 24754.58, + "probability": 0.9528 + }, + { + "start": 24754.68, + "end": 24756.44, + "probability": 0.9931 + }, + { + "start": 24757.22, + "end": 24758.12, + "probability": 0.982 + }, + { + "start": 24758.24, + "end": 24761.86, + "probability": 0.9124 + }, + { + "start": 24762.74, + "end": 24763.26, + "probability": 0.8611 + }, + { + "start": 24763.4, + "end": 24764.08, + "probability": 0.9296 + }, + { + "start": 24764.38, + "end": 24767.62, + "probability": 0.921 + }, + { + "start": 24768.3, + "end": 24769.94, + "probability": 0.9939 + }, + { + "start": 24770.14, + "end": 24772.88, + "probability": 0.9647 + }, + { + "start": 24773.88, + "end": 24778.92, + "probability": 0.9907 + }, + { + "start": 24779.42, + "end": 24782.0, + "probability": 0.9968 + }, + { + "start": 24782.0, + "end": 24784.76, + "probability": 0.9267 + }, + { + "start": 24785.52, + "end": 24789.54, + "probability": 0.9946 + }, + { + "start": 24790.12, + "end": 24791.74, + "probability": 0.948 + }, + { + "start": 24791.84, + "end": 24795.82, + "probability": 0.9971 + }, + { + "start": 24796.24, + "end": 24800.2, + "probability": 0.9866 + }, + { + "start": 24801.0, + "end": 24801.6, + "probability": 0.7168 + }, + { + "start": 24801.74, + "end": 24805.22, + "probability": 0.9849 + }, + { + "start": 24805.22, + "end": 24809.2, + "probability": 0.9907 + }, + { + "start": 24810.1, + "end": 24812.78, + "probability": 0.9989 + }, + { + "start": 24813.38, + "end": 24815.2, + "probability": 0.8717 + }, + { + "start": 24815.62, + "end": 24816.61, + "probability": 0.7673 + }, + { + "start": 24817.1, + "end": 24820.06, + "probability": 0.9893 + }, + { + "start": 24820.3, + "end": 24821.39, + "probability": 0.6592 + }, + { + "start": 24821.9, + "end": 24824.14, + "probability": 0.9631 + }, + { + "start": 24824.72, + "end": 24825.78, + "probability": 0.9447 + }, + { + "start": 24826.4, + "end": 24828.52, + "probability": 0.9976 + }, + { + "start": 24829.04, + "end": 24831.58, + "probability": 0.9448 + }, + { + "start": 24832.7, + "end": 24833.34, + "probability": 0.845 + }, + { + "start": 24833.98, + "end": 24836.06, + "probability": 0.8031 + }, + { + "start": 24836.58, + "end": 24839.42, + "probability": 0.9946 + }, + { + "start": 24839.98, + "end": 24841.36, + "probability": 0.9892 + }, + { + "start": 24842.02, + "end": 24843.24, + "probability": 0.8175 + }, + { + "start": 24843.7, + "end": 24845.36, + "probability": 0.9805 + }, + { + "start": 24845.44, + "end": 24845.84, + "probability": 0.8555 + }, + { + "start": 24845.94, + "end": 24846.36, + "probability": 0.887 + }, + { + "start": 24846.46, + "end": 24846.84, + "probability": 0.9871 + }, + { + "start": 24846.92, + "end": 24847.48, + "probability": 0.9916 + }, + { + "start": 24847.56, + "end": 24848.26, + "probability": 0.8883 + }, + { + "start": 24848.42, + "end": 24849.54, + "probability": 0.9907 + }, + { + "start": 24849.7, + "end": 24852.54, + "probability": 0.9882 + }, + { + "start": 24853.06, + "end": 24853.52, + "probability": 0.8687 + }, + { + "start": 24854.38, + "end": 24859.3, + "probability": 0.9584 + }, + { + "start": 24859.7, + "end": 24862.82, + "probability": 0.941 + }, + { + "start": 24863.48, + "end": 24866.44, + "probability": 0.9873 + }, + { + "start": 24867.28, + "end": 24868.08, + "probability": 0.916 + }, + { + "start": 24868.88, + "end": 24871.22, + "probability": 0.9949 + }, + { + "start": 24871.92, + "end": 24873.02, + "probability": 0.8359 + }, + { + "start": 24873.14, + "end": 24875.18, + "probability": 0.7988 + }, + { + "start": 24875.46, + "end": 24877.66, + "probability": 0.7761 + }, + { + "start": 24878.14, + "end": 24879.68, + "probability": 0.981 + }, + { + "start": 24879.72, + "end": 24880.74, + "probability": 0.9403 + }, + { + "start": 24881.36, + "end": 24882.1, + "probability": 0.7308 + }, + { + "start": 24882.36, + "end": 24883.98, + "probability": 0.9087 + }, + { + "start": 24884.5, + "end": 24885.88, + "probability": 0.6591 + }, + { + "start": 24886.0, + "end": 24888.52, + "probability": 0.9932 + }, + { + "start": 24889.58, + "end": 24891.9, + "probability": 0.9596 + }, + { + "start": 24892.46, + "end": 24896.6, + "probability": 0.9732 + }, + { + "start": 24897.2, + "end": 24897.92, + "probability": 0.5769 + }, + { + "start": 24898.1, + "end": 24900.9, + "probability": 0.8936 + }, + { + "start": 24901.94, + "end": 24905.34, + "probability": 0.8468 + }, + { + "start": 24905.34, + "end": 24909.26, + "probability": 0.9633 + }, + { + "start": 24910.08, + "end": 24912.2, + "probability": 0.8717 + }, + { + "start": 24912.5, + "end": 24915.88, + "probability": 0.9956 + }, + { + "start": 24916.7, + "end": 24918.72, + "probability": 0.5171 + }, + { + "start": 24918.82, + "end": 24919.74, + "probability": 0.6609 + }, + { + "start": 24920.02, + "end": 24920.34, + "probability": 0.8961 + }, + { + "start": 24921.62, + "end": 24924.1, + "probability": 0.6725 + }, + { + "start": 24924.66, + "end": 24927.06, + "probability": 0.9023 + }, + { + "start": 24949.66, + "end": 24952.12, + "probability": 0.8933 + }, + { + "start": 24954.06, + "end": 24956.88, + "probability": 0.9695 + }, + { + "start": 24957.88, + "end": 24959.94, + "probability": 0.9989 + }, + { + "start": 24962.2, + "end": 24969.29, + "probability": 0.9982 + }, + { + "start": 24969.58, + "end": 24974.3, + "probability": 0.9981 + }, + { + "start": 24975.8, + "end": 24981.32, + "probability": 0.9969 + }, + { + "start": 24982.48, + "end": 24988.54, + "probability": 0.9884 + }, + { + "start": 24989.32, + "end": 24991.62, + "probability": 0.8494 + }, + { + "start": 24992.28, + "end": 24994.58, + "probability": 0.8868 + }, + { + "start": 24995.8, + "end": 24998.52, + "probability": 0.6877 + }, + { + "start": 24999.22, + "end": 25001.06, + "probability": 0.922 + }, + { + "start": 25001.28, + "end": 25002.76, + "probability": 0.9909 + }, + { + "start": 25003.24, + "end": 25006.16, + "probability": 0.9925 + }, + { + "start": 25008.56, + "end": 25011.08, + "probability": 0.9843 + }, + { + "start": 25011.92, + "end": 25015.58, + "probability": 0.9667 + }, + { + "start": 25016.82, + "end": 25019.9, + "probability": 0.8944 + }, + { + "start": 25020.64, + "end": 25023.32, + "probability": 0.9966 + }, + { + "start": 25024.46, + "end": 25028.0, + "probability": 0.982 + }, + { + "start": 25028.98, + "end": 25031.24, + "probability": 0.989 + }, + { + "start": 25031.46, + "end": 25036.26, + "probability": 0.998 + }, + { + "start": 25036.88, + "end": 25041.24, + "probability": 0.2319 + }, + { + "start": 25041.92, + "end": 25044.24, + "probability": 0.7151 + }, + { + "start": 25044.4, + "end": 25046.54, + "probability": 0.8788 + }, + { + "start": 25046.6, + "end": 25047.56, + "probability": 0.5708 + }, + { + "start": 25047.92, + "end": 25051.52, + "probability": 0.9259 + }, + { + "start": 25052.5, + "end": 25053.56, + "probability": 0.9175 + }, + { + "start": 25053.56, + "end": 25058.16, + "probability": 0.9526 + }, + { + "start": 25059.5, + "end": 25064.3, + "probability": 0.9972 + }, + { + "start": 25065.08, + "end": 25066.14, + "probability": 0.8063 + }, + { + "start": 25066.92, + "end": 25068.64, + "probability": 0.7701 + }, + { + "start": 25069.58, + "end": 25071.6, + "probability": 0.9944 + }, + { + "start": 25072.16, + "end": 25073.6, + "probability": 0.9541 + }, + { + "start": 25074.14, + "end": 25075.76, + "probability": 0.9448 + }, + { + "start": 25077.06, + "end": 25079.06, + "probability": 0.8498 + }, + { + "start": 25079.64, + "end": 25082.5, + "probability": 0.9928 + }, + { + "start": 25083.5, + "end": 25085.36, + "probability": 0.7461 + }, + { + "start": 25085.8, + "end": 25086.88, + "probability": 0.9193 + }, + { + "start": 25087.08, + "end": 25087.76, + "probability": 0.8861 + }, + { + "start": 25088.98, + "end": 25092.96, + "probability": 0.7369 + }, + { + "start": 25093.54, + "end": 25098.5, + "probability": 0.9976 + }, + { + "start": 25099.56, + "end": 25102.9, + "probability": 0.9949 + }, + { + "start": 25103.72, + "end": 25105.6, + "probability": 0.9917 + }, + { + "start": 25105.8, + "end": 25108.94, + "probability": 0.9534 + }, + { + "start": 25109.36, + "end": 25110.36, + "probability": 0.9681 + }, + { + "start": 25110.76, + "end": 25111.72, + "probability": 0.9084 + }, + { + "start": 25112.42, + "end": 25114.04, + "probability": 0.9971 + }, + { + "start": 25114.54, + "end": 25117.66, + "probability": 0.9835 + }, + { + "start": 25118.64, + "end": 25120.78, + "probability": 0.9093 + }, + { + "start": 25121.42, + "end": 25124.42, + "probability": 0.1688 + }, + { + "start": 25124.42, + "end": 25126.14, + "probability": 0.493 + }, + { + "start": 25126.96, + "end": 25130.82, + "probability": 0.8942 + }, + { + "start": 25131.48, + "end": 25132.82, + "probability": 0.932 + }, + { + "start": 25133.46, + "end": 25134.98, + "probability": 0.9889 + }, + { + "start": 25135.48, + "end": 25137.64, + "probability": 0.9971 + }, + { + "start": 25137.82, + "end": 25139.94, + "probability": 0.9138 + }, + { + "start": 25140.42, + "end": 25143.6, + "probability": 0.9562 + }, + { + "start": 25144.94, + "end": 25146.08, + "probability": 0.8449 + }, + { + "start": 25147.44, + "end": 25149.44, + "probability": 0.8714 + }, + { + "start": 25150.06, + "end": 25152.42, + "probability": 0.9862 + }, + { + "start": 25153.16, + "end": 25153.86, + "probability": 0.7553 + }, + { + "start": 25154.5, + "end": 25155.98, + "probability": 0.9779 + }, + { + "start": 25156.76, + "end": 25158.52, + "probability": 0.8038 + }, + { + "start": 25159.1, + "end": 25162.74, + "probability": 0.9911 + }, + { + "start": 25163.22, + "end": 25165.42, + "probability": 0.9858 + }, + { + "start": 25166.08, + "end": 25167.25, + "probability": 0.9971 + }, + { + "start": 25168.08, + "end": 25170.54, + "probability": 0.9937 + }, + { + "start": 25170.88, + "end": 25172.94, + "probability": 0.8221 + }, + { + "start": 25173.44, + "end": 25174.12, + "probability": 0.6016 + }, + { + "start": 25174.14, + "end": 25174.6, + "probability": 0.5657 + }, + { + "start": 25174.98, + "end": 25175.92, + "probability": 0.7481 + }, + { + "start": 25176.48, + "end": 25178.1, + "probability": 0.9482 + }, + { + "start": 25178.18, + "end": 25180.92, + "probability": 0.9242 + }, + { + "start": 25181.82, + "end": 25183.32, + "probability": 0.9941 + }, + { + "start": 25183.7, + "end": 25190.52, + "probability": 0.9933 + }, + { + "start": 25191.28, + "end": 25192.64, + "probability": 0.7819 + }, + { + "start": 25193.64, + "end": 25195.94, + "probability": 0.9985 + }, + { + "start": 25196.28, + "end": 25197.6, + "probability": 0.9976 + }, + { + "start": 25197.66, + "end": 25198.94, + "probability": 0.9449 + }, + { + "start": 25199.62, + "end": 25202.08, + "probability": 0.7764 + }, + { + "start": 25202.66, + "end": 25204.42, + "probability": 0.7415 + }, + { + "start": 25205.14, + "end": 25207.27, + "probability": 0.9829 + }, + { + "start": 25207.98, + "end": 25210.36, + "probability": 0.8821 + }, + { + "start": 25210.82, + "end": 25211.94, + "probability": 0.7943 + }, + { + "start": 25212.52, + "end": 25213.18, + "probability": 0.9572 + }, + { + "start": 25213.88, + "end": 25215.98, + "probability": 0.7558 + }, + { + "start": 25216.56, + "end": 25219.92, + "probability": 0.9911 + }, + { + "start": 25220.66, + "end": 25220.96, + "probability": 0.2419 + }, + { + "start": 25220.96, + "end": 25222.22, + "probability": 0.7027 + }, + { + "start": 25222.42, + "end": 25225.98, + "probability": 0.7387 + }, + { + "start": 25226.48, + "end": 25227.3, + "probability": 0.9747 + }, + { + "start": 25227.62, + "end": 25228.44, + "probability": 0.6209 + }, + { + "start": 25228.74, + "end": 25230.46, + "probability": 0.9867 + }, + { + "start": 25231.04, + "end": 25234.3, + "probability": 0.8932 + }, + { + "start": 25234.38, + "end": 25237.83, + "probability": 0.9871 + }, + { + "start": 25238.2, + "end": 25238.82, + "probability": 0.4827 + }, + { + "start": 25239.16, + "end": 25240.0, + "probability": 0.9778 + }, + { + "start": 25240.12, + "end": 25241.34, + "probability": 0.9786 + }, + { + "start": 25241.7, + "end": 25245.88, + "probability": 0.998 + }, + { + "start": 25246.24, + "end": 25248.04, + "probability": 0.6987 + }, + { + "start": 25248.44, + "end": 25251.16, + "probability": 0.8567 + }, + { + "start": 25251.36, + "end": 25253.04, + "probability": 0.9598 + }, + { + "start": 25253.04, + "end": 25255.02, + "probability": 0.9494 + }, + { + "start": 25255.48, + "end": 25260.02, + "probability": 0.9857 + }, + { + "start": 25260.3, + "end": 25263.76, + "probability": 0.9984 + }, + { + "start": 25264.78, + "end": 25265.24, + "probability": 0.5226 + }, + { + "start": 25266.12, + "end": 25268.72, + "probability": 0.7994 + }, + { + "start": 25269.12, + "end": 25271.49, + "probability": 0.9421 + }, + { + "start": 25272.24, + "end": 25273.58, + "probability": 0.9946 + }, + { + "start": 25274.62, + "end": 25275.96, + "probability": 0.9912 + }, + { + "start": 25291.7, + "end": 25292.3, + "probability": 0.5716 + }, + { + "start": 25292.92, + "end": 25293.75, + "probability": 0.9166 + }, + { + "start": 25293.82, + "end": 25295.29, + "probability": 0.8026 + }, + { + "start": 25295.34, + "end": 25295.66, + "probability": 0.8802 + }, + { + "start": 25297.4, + "end": 25299.39, + "probability": 0.9834 + }, + { + "start": 25301.28, + "end": 25302.36, + "probability": 0.5555 + }, + { + "start": 25303.18, + "end": 25303.7, + "probability": 0.1095 + }, + { + "start": 25304.44, + "end": 25304.44, + "probability": 0.0212 + }, + { + "start": 25309.68, + "end": 25313.96, + "probability": 0.9883 + }, + { + "start": 25317.71, + "end": 25320.19, + "probability": 0.081 + }, + { + "start": 25320.19, + "end": 25321.93, + "probability": 0.0118 + }, + { + "start": 25322.09, + "end": 25322.71, + "probability": 0.1413 + }, + { + "start": 25323.17, + "end": 25327.72, + "probability": 0.0758 + }, + { + "start": 25329.41, + "end": 25330.94, + "probability": 0.9431 + }, + { + "start": 25332.39, + "end": 25336.87, + "probability": 0.9785 + }, + { + "start": 25337.49, + "end": 25342.27, + "probability": 0.8457 + }, + { + "start": 25342.49, + "end": 25343.59, + "probability": 0.9732 + }, + { + "start": 25343.95, + "end": 25345.29, + "probability": 0.7718 + }, + { + "start": 25345.31, + "end": 25347.19, + "probability": 0.9826 + }, + { + "start": 25348.87, + "end": 25352.72, + "probability": 0.9917 + }, + { + "start": 25352.95, + "end": 25358.07, + "probability": 0.9978 + }, + { + "start": 25359.09, + "end": 25362.53, + "probability": 0.9728 + }, + { + "start": 25363.31, + "end": 25365.79, + "probability": 0.9392 + }, + { + "start": 25366.21, + "end": 25366.79, + "probability": 0.8315 + }, + { + "start": 25367.25, + "end": 25367.97, + "probability": 0.8701 + }, + { + "start": 25368.09, + "end": 25369.15, + "probability": 0.8198 + }, + { + "start": 25370.01, + "end": 25372.71, + "probability": 0.8524 + }, + { + "start": 25375.5, + "end": 25383.57, + "probability": 0.9348 + }, + { + "start": 25383.59, + "end": 25385.05, + "probability": 0.889 + }, + { + "start": 25385.89, + "end": 25388.19, + "probability": 0.7188 + }, + { + "start": 25389.25, + "end": 25389.77, + "probability": 0.9646 + }, + { + "start": 25389.89, + "end": 25390.87, + "probability": 0.9205 + }, + { + "start": 25391.23, + "end": 25395.65, + "probability": 0.9302 + }, + { + "start": 25395.91, + "end": 25397.33, + "probability": 0.733 + }, + { + "start": 25397.51, + "end": 25401.27, + "probability": 0.9594 + }, + { + "start": 25401.37, + "end": 25402.09, + "probability": 0.9781 + }, + { + "start": 25402.33, + "end": 25402.71, + "probability": 0.9154 + }, + { + "start": 25402.83, + "end": 25403.93, + "probability": 0.9797 + }, + { + "start": 25405.15, + "end": 25409.09, + "probability": 0.811 + }, + { + "start": 25410.07, + "end": 25411.69, + "probability": 0.9284 + }, + { + "start": 25411.91, + "end": 25414.67, + "probability": 0.7473 + }, + { + "start": 25415.85, + "end": 25418.39, + "probability": 0.9956 + }, + { + "start": 25418.99, + "end": 25422.37, + "probability": 0.5867 + }, + { + "start": 25422.75, + "end": 25423.01, + "probability": 0.2766 + }, + { + "start": 25423.11, + "end": 25423.33, + "probability": 0.8775 + }, + { + "start": 25423.37, + "end": 25423.99, + "probability": 0.8027 + }, + { + "start": 25424.05, + "end": 25424.77, + "probability": 0.7301 + }, + { + "start": 25426.09, + "end": 25433.49, + "probability": 0.9293 + }, + { + "start": 25433.65, + "end": 25436.11, + "probability": 0.9289 + }, + { + "start": 25437.21, + "end": 25441.15, + "probability": 0.9642 + }, + { + "start": 25442.13, + "end": 25444.07, + "probability": 0.9984 + }, + { + "start": 25444.19, + "end": 25445.63, + "probability": 0.8864 + }, + { + "start": 25445.73, + "end": 25447.87, + "probability": 0.9805 + }, + { + "start": 25447.87, + "end": 25451.33, + "probability": 0.9786 + }, + { + "start": 25452.01, + "end": 25453.51, + "probability": 0.9889 + }, + { + "start": 25454.27, + "end": 25457.57, + "probability": 0.7524 + }, + { + "start": 25458.51, + "end": 25469.25, + "probability": 0.9847 + }, + { + "start": 25470.63, + "end": 25473.15, + "probability": 0.9829 + }, + { + "start": 25473.89, + "end": 25475.41, + "probability": 0.9857 + }, + { + "start": 25476.19, + "end": 25480.31, + "probability": 0.8661 + }, + { + "start": 25481.39, + "end": 25483.43, + "probability": 0.9813 + }, + { + "start": 25484.83, + "end": 25489.41, + "probability": 0.9876 + }, + { + "start": 25490.11, + "end": 25491.27, + "probability": 0.9062 + }, + { + "start": 25492.79, + "end": 25494.76, + "probability": 0.9966 + }, + { + "start": 25497.01, + "end": 25501.97, + "probability": 0.9746 + }, + { + "start": 25503.43, + "end": 25505.51, + "probability": 0.9834 + }, + { + "start": 25507.2, + "end": 25514.67, + "probability": 0.9358 + }, + { + "start": 25514.67, + "end": 25519.97, + "probability": 0.9854 + }, + { + "start": 25522.37, + "end": 25522.93, + "probability": 0.6298 + }, + { + "start": 25524.21, + "end": 25526.77, + "probability": 0.8225 + }, + { + "start": 25526.77, + "end": 25529.87, + "probability": 0.9769 + }, + { + "start": 25530.39, + "end": 25533.55, + "probability": 0.9553 + }, + { + "start": 25534.05, + "end": 25537.65, + "probability": 0.8672 + }, + { + "start": 25539.23, + "end": 25540.55, + "probability": 0.991 + }, + { + "start": 25541.47, + "end": 25542.23, + "probability": 0.1766 + }, + { + "start": 25542.73, + "end": 25543.09, + "probability": 0.0275 + }, + { + "start": 25543.39, + "end": 25544.15, + "probability": 0.3282 + }, + { + "start": 25544.31, + "end": 25546.19, + "probability": 0.7611 + }, + { + "start": 25546.49, + "end": 25547.19, + "probability": 0.8062 + }, + { + "start": 25547.33, + "end": 25551.58, + "probability": 0.9893 + }, + { + "start": 25551.89, + "end": 25556.39, + "probability": 0.9531 + }, + { + "start": 25557.01, + "end": 25558.33, + "probability": 0.9963 + }, + { + "start": 25559.31, + "end": 25561.79, + "probability": 0.8269 + }, + { + "start": 25561.89, + "end": 25566.25, + "probability": 0.9032 + }, + { + "start": 25566.83, + "end": 25567.45, + "probability": 0.429 + }, + { + "start": 25568.07, + "end": 25568.79, + "probability": 0.7671 + }, + { + "start": 25570.42, + "end": 25572.16, + "probability": 0.5283 + }, + { + "start": 25573.35, + "end": 25576.66, + "probability": 0.7091 + }, + { + "start": 25576.71, + "end": 25578.83, + "probability": 0.2641 + }, + { + "start": 25578.99, + "end": 25580.95, + "probability": 0.7476 + }, + { + "start": 25581.73, + "end": 25583.81, + "probability": 0.9048 + }, + { + "start": 25583.97, + "end": 25584.63, + "probability": 0.737 + }, + { + "start": 25584.73, + "end": 25585.23, + "probability": 0.9318 + }, + { + "start": 25585.23, + "end": 25589.99, + "probability": 0.9731 + }, + { + "start": 25590.25, + "end": 25593.55, + "probability": 0.93 + }, + { + "start": 25593.55, + "end": 25597.23, + "probability": 0.9979 + }, + { + "start": 25597.39, + "end": 25597.39, + "probability": 0.2721 + }, + { + "start": 25597.39, + "end": 25600.41, + "probability": 0.9961 + }, + { + "start": 25601.33, + "end": 25603.85, + "probability": 0.5053 + }, + { + "start": 25603.85, + "end": 25604.31, + "probability": 0.6217 + }, + { + "start": 25604.61, + "end": 25606.19, + "probability": 0.4736 + }, + { + "start": 25606.99, + "end": 25608.58, + "probability": 0.9941 + }, + { + "start": 25608.63, + "end": 25609.47, + "probability": 0.9214 + }, + { + "start": 25609.55, + "end": 25609.93, + "probability": 0.7681 + }, + { + "start": 25610.09, + "end": 25610.39, + "probability": 0.6493 + }, + { + "start": 25610.39, + "end": 25614.07, + "probability": 0.9653 + }, + { + "start": 25614.19, + "end": 25617.67, + "probability": 0.9928 + }, + { + "start": 25617.67, + "end": 25621.05, + "probability": 0.9887 + }, + { + "start": 25621.15, + "end": 25621.43, + "probability": 0.5814 + }, + { + "start": 25622.13, + "end": 25622.89, + "probability": 0.5591 + }, + { + "start": 25623.03, + "end": 25626.09, + "probability": 0.8354 + }, + { + "start": 25626.71, + "end": 25629.25, + "probability": 0.8438 + }, + { + "start": 25629.45, + "end": 25629.69, + "probability": 0.8535 + }, + { + "start": 25629.81, + "end": 25633.07, + "probability": 0.6577 + }, + { + "start": 25633.23, + "end": 25635.19, + "probability": 0.9298 + }, + { + "start": 25636.85, + "end": 25639.21, + "probability": 0.8697 + }, + { + "start": 25645.95, + "end": 25646.07, + "probability": 0.5615 + }, + { + "start": 25646.07, + "end": 25649.01, + "probability": 0.9087 + }, + { + "start": 25649.57, + "end": 25650.23, + "probability": 0.6518 + }, + { + "start": 25653.95, + "end": 25655.59, + "probability": 0.7713 + }, + { + "start": 25663.38, + "end": 25665.51, + "probability": 0.8427 + }, + { + "start": 25666.53, + "end": 25671.51, + "probability": 0.9761 + }, + { + "start": 25672.43, + "end": 25677.41, + "probability": 0.9952 + }, + { + "start": 25677.43, + "end": 25683.53, + "probability": 0.9863 + }, + { + "start": 25684.45, + "end": 25686.17, + "probability": 0.8412 + }, + { + "start": 25686.95, + "end": 25690.81, + "probability": 0.7501 + }, + { + "start": 25691.45, + "end": 25697.59, + "probability": 0.8833 + }, + { + "start": 25698.61, + "end": 25700.91, + "probability": 0.9855 + }, + { + "start": 25701.71, + "end": 25703.61, + "probability": 0.814 + }, + { + "start": 25703.81, + "end": 25709.51, + "probability": 0.9465 + }, + { + "start": 25709.99, + "end": 25711.29, + "probability": 0.5856 + }, + { + "start": 25712.59, + "end": 25718.97, + "probability": 0.9852 + }, + { + "start": 25719.09, + "end": 25722.85, + "probability": 0.8776 + }, + { + "start": 25722.85, + "end": 25726.07, + "probability": 0.9719 + }, + { + "start": 25727.47, + "end": 25731.11, + "probability": 0.9924 + }, + { + "start": 25732.43, + "end": 25733.99, + "probability": 0.9797 + }, + { + "start": 25735.15, + "end": 25736.57, + "probability": 0.9912 + }, + { + "start": 25736.73, + "end": 25738.23, + "probability": 0.6192 + }, + { + "start": 25738.71, + "end": 25739.47, + "probability": 0.6897 + }, + { + "start": 25740.43, + "end": 25740.69, + "probability": 0.4605 + }, + { + "start": 25740.83, + "end": 25740.97, + "probability": 0.896 + }, + { + "start": 25741.05, + "end": 25743.18, + "probability": 0.9682 + }, + { + "start": 25743.89, + "end": 25744.52, + "probability": 0.9736 + }, + { + "start": 25746.03, + "end": 25746.69, + "probability": 0.9834 + }, + { + "start": 25747.49, + "end": 25752.69, + "probability": 0.9917 + }, + { + "start": 25752.77, + "end": 25755.43, + "probability": 0.9435 + }, + { + "start": 25756.57, + "end": 25760.25, + "probability": 0.9913 + }, + { + "start": 25760.77, + "end": 25762.39, + "probability": 0.9285 + }, + { + "start": 25763.17, + "end": 25766.67, + "probability": 0.9589 + }, + { + "start": 25767.41, + "end": 25767.79, + "probability": 0.7766 + }, + { + "start": 25767.83, + "end": 25771.27, + "probability": 0.8991 + }, + { + "start": 25771.35, + "end": 25772.61, + "probability": 0.6973 + }, + { + "start": 25772.85, + "end": 25774.01, + "probability": 0.5908 + }, + { + "start": 25774.21, + "end": 25774.39, + "probability": 0.6747 + }, + { + "start": 25775.13, + "end": 25778.55, + "probability": 0.8962 + }, + { + "start": 25779.41, + "end": 25785.11, + "probability": 0.9752 + }, + { + "start": 25785.49, + "end": 25786.45, + "probability": 0.6123 + }, + { + "start": 25786.69, + "end": 25789.59, + "probability": 0.8259 + }, + { + "start": 25790.31, + "end": 25793.45, + "probability": 0.7494 + }, + { + "start": 25793.61, + "end": 25795.69, + "probability": 0.9802 + }, + { + "start": 25796.37, + "end": 25797.19, + "probability": 0.8895 + }, + { + "start": 25797.93, + "end": 25798.21, + "probability": 0.6304 + }, + { + "start": 25798.29, + "end": 25803.67, + "probability": 0.9283 + }, + { + "start": 25803.93, + "end": 25804.49, + "probability": 0.8646 + }, + { + "start": 25805.45, + "end": 25805.77, + "probability": 0.8537 + }, + { + "start": 25806.39, + "end": 25808.61, + "probability": 0.9387 + }, + { + "start": 25809.31, + "end": 25812.19, + "probability": 0.8977 + }, + { + "start": 25812.75, + "end": 25813.67, + "probability": 0.9664 + }, + { + "start": 25814.51, + "end": 25817.73, + "probability": 0.8304 + }, + { + "start": 25818.41, + "end": 25819.55, + "probability": 0.6264 + }, + { + "start": 25820.75, + "end": 25824.67, + "probability": 0.8508 + }, + { + "start": 25825.49, + "end": 25826.03, + "probability": 0.8176 + }, + { + "start": 25827.23, + "end": 25828.97, + "probability": 0.5019 + }, + { + "start": 25830.29, + "end": 25831.55, + "probability": 0.9323 + }, + { + "start": 25832.95, + "end": 25833.45, + "probability": 0.8926 + }, + { + "start": 25833.51, + "end": 25835.51, + "probability": 0.8914 + }, + { + "start": 25835.55, + "end": 25836.17, + "probability": 0.9612 + }, + { + "start": 25836.27, + "end": 25838.53, + "probability": 0.5573 + }, + { + "start": 25839.31, + "end": 25840.61, + "probability": 0.775 + }, + { + "start": 25840.65, + "end": 25841.73, + "probability": 0.8442 + }, + { + "start": 25841.99, + "end": 25844.47, + "probability": 0.8562 + }, + { + "start": 25844.49, + "end": 25850.69, + "probability": 0.9783 + }, + { + "start": 25850.75, + "end": 25852.03, + "probability": 0.6301 + }, + { + "start": 25852.15, + "end": 25854.29, + "probability": 0.3421 + }, + { + "start": 25854.47, + "end": 25855.57, + "probability": 0.7382 + }, + { + "start": 25855.69, + "end": 25857.87, + "probability": 0.7387 + }, + { + "start": 25860.25, + "end": 25861.61, + "probability": 0.3668 + }, + { + "start": 25862.03, + "end": 25863.57, + "probability": 0.1653 + }, + { + "start": 25863.63, + "end": 25864.73, + "probability": 0.3513 + }, + { + "start": 25864.99, + "end": 25867.91, + "probability": 0.5185 + }, + { + "start": 25868.91, + "end": 25869.49, + "probability": 0.4652 + }, + { + "start": 25869.69, + "end": 25870.95, + "probability": 0.9551 + }, + { + "start": 25871.13, + "end": 25873.87, + "probability": 0.8701 + }, + { + "start": 25874.81, + "end": 25875.75, + "probability": 0.7886 + }, + { + "start": 25875.97, + "end": 25876.65, + "probability": 0.9307 + }, + { + "start": 25876.83, + "end": 25877.79, + "probability": 0.7276 + }, + { + "start": 25877.93, + "end": 25878.34, + "probability": 0.9526 + }, + { + "start": 25878.51, + "end": 25879.49, + "probability": 0.9648 + }, + { + "start": 25880.55, + "end": 25882.23, + "probability": 0.7521 + }, + { + "start": 25883.41, + "end": 25888.11, + "probability": 0.8934 + }, + { + "start": 25888.11, + "end": 25890.75, + "probability": 0.4999 + }, + { + "start": 25891.71, + "end": 25892.97, + "probability": 0.6802 + }, + { + "start": 25893.71, + "end": 25894.97, + "probability": 0.9785 + }, + { + "start": 25895.23, + "end": 25898.27, + "probability": 0.9352 + }, + { + "start": 25899.99, + "end": 25903.31, + "probability": 0.9075 + }, + { + "start": 25903.87, + "end": 25906.37, + "probability": 0.9243 + }, + { + "start": 25907.29, + "end": 25908.39, + "probability": 0.7224 + }, + { + "start": 25908.91, + "end": 25910.43, + "probability": 0.8238 + }, + { + "start": 25910.83, + "end": 25914.19, + "probability": 0.9419 + }, + { + "start": 25914.97, + "end": 25919.13, + "probability": 0.9795 + }, + { + "start": 25919.13, + "end": 25922.63, + "probability": 0.997 + }, + { + "start": 25923.55, + "end": 25927.03, + "probability": 0.9943 + }, + { + "start": 25927.61, + "end": 25929.53, + "probability": 0.9976 + }, + { + "start": 25930.29, + "end": 25934.25, + "probability": 0.9969 + }, + { + "start": 25934.27, + "end": 25935.95, + "probability": 0.9917 + }, + { + "start": 25935.95, + "end": 25938.26, + "probability": 0.8586 + }, + { + "start": 25938.59, + "end": 25939.91, + "probability": 0.6166 + }, + { + "start": 25940.89, + "end": 25942.81, + "probability": 0.759 + }, + { + "start": 25944.57, + "end": 25946.89, + "probability": 0.8884 + }, + { + "start": 25946.99, + "end": 25948.23, + "probability": 0.7886 + }, + { + "start": 25948.35, + "end": 25948.59, + "probability": 0.8945 + }, + { + "start": 25949.99, + "end": 25950.43, + "probability": 0.1951 + }, + { + "start": 25951.91, + "end": 25954.99, + "probability": 0.4359 + }, + { + "start": 25955.19, + "end": 25955.89, + "probability": 0.4663 + }, + { + "start": 25956.05, + "end": 25958.69, + "probability": 0.8748 + }, + { + "start": 25959.27, + "end": 25962.01, + "probability": 0.9325 + }, + { + "start": 25963.13, + "end": 25965.87, + "probability": 0.9609 + }, + { + "start": 25966.47, + "end": 25970.13, + "probability": 0.8559 + }, + { + "start": 25970.13, + "end": 25975.27, + "probability": 0.9211 + }, + { + "start": 25975.39, + "end": 25977.75, + "probability": 0.5752 + }, + { + "start": 25978.41, + "end": 25982.44, + "probability": 0.9967 + }, + { + "start": 25984.21, + "end": 25991.89, + "probability": 0.9854 + }, + { + "start": 25992.67, + "end": 25993.47, + "probability": 0.6307 + }, + { + "start": 25994.43, + "end": 25998.43, + "probability": 0.9694 + }, + { + "start": 25998.43, + "end": 26002.19, + "probability": 0.9985 + }, + { + "start": 26002.27, + "end": 26004.37, + "probability": 0.9596 + }, + { + "start": 26005.51, + "end": 26008.01, + "probability": 0.7849 + }, + { + "start": 26008.17, + "end": 26011.47, + "probability": 0.989 + }, + { + "start": 26012.27, + "end": 26015.57, + "probability": 0.9984 + }, + { + "start": 26016.11, + "end": 26018.85, + "probability": 0.9986 + }, + { + "start": 26019.29, + "end": 26021.75, + "probability": 0.9946 + }, + { + "start": 26022.57, + "end": 26025.35, + "probability": 0.9956 + }, + { + "start": 26025.39, + "end": 26027.85, + "probability": 0.8634 + }, + { + "start": 26028.29, + "end": 26029.81, + "probability": 0.9436 + }, + { + "start": 26029.93, + "end": 26031.13, + "probability": 0.8978 + }, + { + "start": 26031.51, + "end": 26032.51, + "probability": 0.8759 + }, + { + "start": 26032.75, + "end": 26033.79, + "probability": 0.987 + }, + { + "start": 26034.17, + "end": 26036.63, + "probability": 0.9397 + }, + { + "start": 26039.67, + "end": 26040.13, + "probability": 0.1067 + }, + { + "start": 26040.25, + "end": 26042.43, + "probability": 0.8579 + }, + { + "start": 26042.57, + "end": 26043.73, + "probability": 0.807 + }, + { + "start": 26043.77, + "end": 26045.39, + "probability": 0.8757 + }, + { + "start": 26046.01, + "end": 26047.11, + "probability": 0.5565 + }, + { + "start": 26047.19, + "end": 26048.41, + "probability": 0.7998 + }, + { + "start": 26048.49, + "end": 26049.73, + "probability": 0.7114 + }, + { + "start": 26049.99, + "end": 26050.67, + "probability": 0.9213 + }, + { + "start": 26050.79, + "end": 26054.01, + "probability": 0.9541 + }, + { + "start": 26054.67, + "end": 26057.69, + "probability": 0.9773 + }, + { + "start": 26058.03, + "end": 26063.77, + "probability": 0.7968 + }, + { + "start": 26064.13, + "end": 26064.83, + "probability": 0.8995 + }, + { + "start": 26066.51, + "end": 26068.19, + "probability": 0.844 + }, + { + "start": 26068.29, + "end": 26068.29, + "probability": 0.0959 + }, + { + "start": 26069.29, + "end": 26071.01, + "probability": 0.8349 + }, + { + "start": 26071.01, + "end": 26073.45, + "probability": 0.0864 + }, + { + "start": 26079.08, + "end": 26082.05, + "probability": 0.9227 + }, + { + "start": 26082.19, + "end": 26084.45, + "probability": 0.6646 + }, + { + "start": 26091.75, + "end": 26093.59, + "probability": 0.6352 + }, + { + "start": 26093.67, + "end": 26095.69, + "probability": 0.9197 + }, + { + "start": 26096.15, + "end": 26100.17, + "probability": 0.9547 + }, + { + "start": 26100.35, + "end": 26101.77, + "probability": 0.9442 + }, + { + "start": 26101.89, + "end": 26102.61, + "probability": 0.6493 + }, + { + "start": 26103.23, + "end": 26106.75, + "probability": 0.9629 + }, + { + "start": 26107.93, + "end": 26109.75, + "probability": 0.6521 + }, + { + "start": 26111.15, + "end": 26115.31, + "probability": 0.9864 + }, + { + "start": 26116.61, + "end": 26117.59, + "probability": 0.7451 + }, + { + "start": 26118.47, + "end": 26123.05, + "probability": 0.8774 + }, + { + "start": 26123.95, + "end": 26125.15, + "probability": 0.9781 + }, + { + "start": 26126.69, + "end": 26131.43, + "probability": 0.7214 + }, + { + "start": 26131.63, + "end": 26134.75, + "probability": 0.9869 + }, + { + "start": 26136.85, + "end": 26137.51, + "probability": 0.5871 + }, + { + "start": 26138.59, + "end": 26139.81, + "probability": 0.8692 + }, + { + "start": 26141.13, + "end": 26148.13, + "probability": 0.9919 + }, + { + "start": 26149.51, + "end": 26153.99, + "probability": 0.9154 + }, + { + "start": 26154.39, + "end": 26160.65, + "probability": 0.9472 + }, + { + "start": 26161.45, + "end": 26166.45, + "probability": 0.9401 + }, + { + "start": 26167.03, + "end": 26167.97, + "probability": 0.5629 + }, + { + "start": 26168.19, + "end": 26168.63, + "probability": 0.3421 + }, + { + "start": 26169.17, + "end": 26171.17, + "probability": 0.9206 + }, + { + "start": 26171.73, + "end": 26174.69, + "probability": 0.7001 + }, + { + "start": 26175.25, + "end": 26178.87, + "probability": 0.9219 + }, + { + "start": 26180.03, + "end": 26181.89, + "probability": 0.8619 + }, + { + "start": 26182.75, + "end": 26183.89, + "probability": 0.6268 + }, + { + "start": 26184.17, + "end": 26188.13, + "probability": 0.9391 + }, + { + "start": 26188.29, + "end": 26191.87, + "probability": 0.8057 + }, + { + "start": 26192.07, + "end": 26196.35, + "probability": 0.9854 + }, + { + "start": 26197.17, + "end": 26200.81, + "probability": 0.6994 + }, + { + "start": 26202.39, + "end": 26205.45, + "probability": 0.9706 + }, + { + "start": 26205.93, + "end": 26210.45, + "probability": 0.9497 + }, + { + "start": 26211.95, + "end": 26213.61, + "probability": 0.9163 + }, + { + "start": 26215.89, + "end": 26218.89, + "probability": 0.9836 + }, + { + "start": 26219.83, + "end": 26222.35, + "probability": 0.9939 + }, + { + "start": 26223.71, + "end": 26225.19, + "probability": 0.9995 + }, + { + "start": 26226.71, + "end": 26229.21, + "probability": 0.9889 + }, + { + "start": 26232.17, + "end": 26235.43, + "probability": 0.9839 + }, + { + "start": 26235.63, + "end": 26237.31, + "probability": 0.9949 + }, + { + "start": 26237.43, + "end": 26237.96, + "probability": 0.8519 + }, + { + "start": 26239.47, + "end": 26241.57, + "probability": 0.6101 + }, + { + "start": 26243.01, + "end": 26245.79, + "probability": 0.7679 + }, + { + "start": 26247.45, + "end": 26248.81, + "probability": 0.745 + }, + { + "start": 26249.55, + "end": 26254.29, + "probability": 0.99 + }, + { + "start": 26255.81, + "end": 26261.09, + "probability": 0.998 + }, + { + "start": 26261.39, + "end": 26263.53, + "probability": 0.8115 + }, + { + "start": 26263.71, + "end": 26264.47, + "probability": 0.2678 + }, + { + "start": 26265.67, + "end": 26269.93, + "probability": 0.8808 + }, + { + "start": 26270.57, + "end": 26273.43, + "probability": 0.9639 + }, + { + "start": 26274.21, + "end": 26276.49, + "probability": 0.6034 + }, + { + "start": 26278.15, + "end": 26280.99, + "probability": 0.9778 + }, + { + "start": 26281.67, + "end": 26282.85, + "probability": 0.9896 + }, + { + "start": 26283.43, + "end": 26284.75, + "probability": 0.7945 + }, + { + "start": 26286.31, + "end": 26289.43, + "probability": 0.9281 + }, + { + "start": 26291.49, + "end": 26293.65, + "probability": 0.9546 + }, + { + "start": 26293.73, + "end": 26295.37, + "probability": 0.8091 + }, + { + "start": 26295.41, + "end": 26296.79, + "probability": 0.7985 + }, + { + "start": 26297.61, + "end": 26302.45, + "probability": 0.9891 + }, + { + "start": 26303.05, + "end": 26304.38, + "probability": 0.9396 + }, + { + "start": 26305.05, + "end": 26308.21, + "probability": 0.9146 + }, + { + "start": 26310.83, + "end": 26313.77, + "probability": 0.9296 + }, + { + "start": 26314.39, + "end": 26315.73, + "probability": 0.3775 + }, + { + "start": 26316.77, + "end": 26318.29, + "probability": 0.9188 + }, + { + "start": 26318.41, + "end": 26321.29, + "probability": 0.6467 + }, + { + "start": 26322.09, + "end": 26324.85, + "probability": 0.9984 + }, + { + "start": 26325.87, + "end": 26329.01, + "probability": 0.9712 + }, + { + "start": 26330.25, + "end": 26332.67, + "probability": 0.9992 + }, + { + "start": 26332.79, + "end": 26334.69, + "probability": 0.9766 + }, + { + "start": 26335.85, + "end": 26337.35, + "probability": 0.8379 + }, + { + "start": 26338.19, + "end": 26340.25, + "probability": 0.9978 + }, + { + "start": 26340.35, + "end": 26341.79, + "probability": 0.9775 + }, + { + "start": 26342.15, + "end": 26343.09, + "probability": 0.8241 + }, + { + "start": 26344.63, + "end": 26347.29, + "probability": 0.9637 + }, + { + "start": 26348.21, + "end": 26350.31, + "probability": 0.6779 + }, + { + "start": 26351.33, + "end": 26352.79, + "probability": 0.7536 + }, + { + "start": 26352.95, + "end": 26354.67, + "probability": 0.8207 + }, + { + "start": 26354.75, + "end": 26357.43, + "probability": 0.9827 + }, + { + "start": 26357.71, + "end": 26359.57, + "probability": 0.9408 + }, + { + "start": 26360.27, + "end": 26362.63, + "probability": 0.9467 + }, + { + "start": 26364.13, + "end": 26367.73, + "probability": 0.9636 + }, + { + "start": 26368.37, + "end": 26369.31, + "probability": 0.8855 + }, + { + "start": 26370.65, + "end": 26372.23, + "probability": 0.6935 + }, + { + "start": 26373.23, + "end": 26373.37, + "probability": 0.792 + }, + { + "start": 26373.39, + "end": 26374.13, + "probability": 0.7981 + }, + { + "start": 26374.21, + "end": 26377.09, + "probability": 0.9296 + }, + { + "start": 26377.19, + "end": 26378.77, + "probability": 0.8178 + }, + { + "start": 26379.67, + "end": 26382.21, + "probability": 0.9308 + }, + { + "start": 26383.71, + "end": 26385.67, + "probability": 0.8906 + }, + { + "start": 26386.25, + "end": 26387.42, + "probability": 0.9918 + }, + { + "start": 26389.49, + "end": 26393.57, + "probability": 0.9956 + }, + { + "start": 26394.89, + "end": 26396.83, + "probability": 0.937 + }, + { + "start": 26397.35, + "end": 26398.17, + "probability": 0.8608 + }, + { + "start": 26398.99, + "end": 26401.21, + "probability": 0.9553 + }, + { + "start": 26401.63, + "end": 26405.35, + "probability": 0.8789 + }, + { + "start": 26406.47, + "end": 26407.59, + "probability": 0.98 + }, + { + "start": 26408.45, + "end": 26413.11, + "probability": 0.9946 + }, + { + "start": 26413.57, + "end": 26416.88, + "probability": 0.9601 + }, + { + "start": 26418.75, + "end": 26420.09, + "probability": 0.5562 + }, + { + "start": 26420.83, + "end": 26425.53, + "probability": 0.9972 + }, + { + "start": 26425.64, + "end": 26431.57, + "probability": 0.9977 + }, + { + "start": 26432.71, + "end": 26434.39, + "probability": 0.9966 + }, + { + "start": 26435.59, + "end": 26437.23, + "probability": 0.9808 + }, + { + "start": 26437.97, + "end": 26439.35, + "probability": 0.9156 + }, + { + "start": 26439.87, + "end": 26440.25, + "probability": 0.6494 + }, + { + "start": 26441.59, + "end": 26450.63, + "probability": 0.9314 + }, + { + "start": 26450.85, + "end": 26452.09, + "probability": 0.914 + }, + { + "start": 26452.67, + "end": 26457.95, + "probability": 0.6857 + }, + { + "start": 26458.09, + "end": 26458.97, + "probability": 0.8046 + }, + { + "start": 26459.19, + "end": 26460.47, + "probability": 0.6753 + }, + { + "start": 26461.49, + "end": 26462.41, + "probability": 0.6912 + }, + { + "start": 26463.07, + "end": 26465.67, + "probability": 0.6248 + }, + { + "start": 26467.71, + "end": 26469.83, + "probability": 0.974 + }, + { + "start": 26471.05, + "end": 26474.45, + "probability": 0.8951 + }, + { + "start": 26477.51, + "end": 26479.63, + "probability": 0.7349 + }, + { + "start": 26485.31, + "end": 26486.45, + "probability": 0.5885 + }, + { + "start": 26487.06, + "end": 26493.09, + "probability": 0.9696 + }, + { + "start": 26494.47, + "end": 26499.59, + "probability": 0.9951 + }, + { + "start": 26499.79, + "end": 26500.95, + "probability": 0.9872 + }, + { + "start": 26501.03, + "end": 26502.09, + "probability": 0.5853 + }, + { + "start": 26504.43, + "end": 26508.17, + "probability": 0.9666 + }, + { + "start": 26508.83, + "end": 26513.87, + "probability": 0.9413 + }, + { + "start": 26515.21, + "end": 26520.51, + "probability": 0.9701 + }, + { + "start": 26521.75, + "end": 26523.29, + "probability": 0.9038 + }, + { + "start": 26524.15, + "end": 26525.45, + "probability": 0.7342 + }, + { + "start": 26525.87, + "end": 26526.69, + "probability": 0.9902 + }, + { + "start": 26527.09, + "end": 26529.03, + "probability": 0.866 + }, + { + "start": 26529.83, + "end": 26533.45, + "probability": 0.8241 + }, + { + "start": 26533.89, + "end": 26538.11, + "probability": 0.9705 + }, + { + "start": 26538.63, + "end": 26540.95, + "probability": 0.9924 + }, + { + "start": 26541.63, + "end": 26546.31, + "probability": 0.9863 + }, + { + "start": 26546.83, + "end": 26549.11, + "probability": 0.9123 + }, + { + "start": 26550.83, + "end": 26555.31, + "probability": 0.8263 + }, + { + "start": 26556.35, + "end": 26558.25, + "probability": 0.9336 + }, + { + "start": 26558.89, + "end": 26562.01, + "probability": 0.9989 + }, + { + "start": 26562.23, + "end": 26564.99, + "probability": 0.9566 + }, + { + "start": 26567.49, + "end": 26573.33, + "probability": 0.9971 + }, + { + "start": 26573.33, + "end": 26576.29, + "probability": 0.9554 + }, + { + "start": 26576.85, + "end": 26577.96, + "probability": 0.78 + }, + { + "start": 26578.95, + "end": 26584.57, + "probability": 0.9905 + }, + { + "start": 26584.95, + "end": 26587.57, + "probability": 0.9695 + }, + { + "start": 26588.45, + "end": 26591.85, + "probability": 0.7344 + }, + { + "start": 26592.51, + "end": 26593.72, + "probability": 0.9765 + }, + { + "start": 26594.67, + "end": 26596.55, + "probability": 0.9961 + }, + { + "start": 26596.71, + "end": 26600.65, + "probability": 0.9883 + }, + { + "start": 26601.35, + "end": 26603.05, + "probability": 0.9844 + }, + { + "start": 26603.73, + "end": 26604.97, + "probability": 0.9839 + }, + { + "start": 26606.43, + "end": 26608.13, + "probability": 0.9447 + }, + { + "start": 26609.37, + "end": 26614.35, + "probability": 0.9909 + }, + { + "start": 26616.21, + "end": 26618.87, + "probability": 0.9918 + }, + { + "start": 26619.81, + "end": 26621.29, + "probability": 0.9427 + }, + { + "start": 26621.43, + "end": 26627.31, + "probability": 0.9871 + }, + { + "start": 26628.25, + "end": 26630.85, + "probability": 0.8996 + }, + { + "start": 26631.57, + "end": 26632.21, + "probability": 0.8344 + }, + { + "start": 26632.73, + "end": 26634.37, + "probability": 0.9956 + }, + { + "start": 26634.99, + "end": 26637.31, + "probability": 0.9893 + }, + { + "start": 26638.15, + "end": 26639.99, + "probability": 0.9985 + }, + { + "start": 26640.75, + "end": 26644.45, + "probability": 0.9969 + }, + { + "start": 26645.07, + "end": 26646.81, + "probability": 0.9723 + }, + { + "start": 26647.35, + "end": 26647.84, + "probability": 0.7124 + }, + { + "start": 26648.21, + "end": 26649.27, + "probability": 0.9034 + }, + { + "start": 26649.47, + "end": 26651.87, + "probability": 0.9956 + }, + { + "start": 26654.05, + "end": 26655.05, + "probability": 0.9051 + }, + { + "start": 26655.33, + "end": 26656.33, + "probability": 0.9765 + }, + { + "start": 26656.59, + "end": 26657.59, + "probability": 0.9319 + }, + { + "start": 26658.03, + "end": 26662.17, + "probability": 0.9872 + }, + { + "start": 26662.73, + "end": 26664.61, + "probability": 0.8609 + }, + { + "start": 26664.67, + "end": 26668.07, + "probability": 0.916 + }, + { + "start": 26669.43, + "end": 26671.69, + "probability": 0.9966 + }, + { + "start": 26672.71, + "end": 26678.79, + "probability": 0.9946 + }, + { + "start": 26679.57, + "end": 26684.45, + "probability": 0.9934 + }, + { + "start": 26685.39, + "end": 26686.71, + "probability": 0.9692 + }, + { + "start": 26687.39, + "end": 26692.23, + "probability": 0.9854 + }, + { + "start": 26693.07, + "end": 26697.57, + "probability": 0.9884 + }, + { + "start": 26698.19, + "end": 26703.55, + "probability": 0.9734 + }, + { + "start": 26705.11, + "end": 26710.03, + "probability": 0.984 + }, + { + "start": 26710.03, + "end": 26715.97, + "probability": 0.9976 + }, + { + "start": 26716.89, + "end": 26720.11, + "probability": 0.988 + }, + { + "start": 26720.21, + "end": 26723.43, + "probability": 0.9979 + }, + { + "start": 26724.65, + "end": 26726.91, + "probability": 0.87 + }, + { + "start": 26727.03, + "end": 26728.53, + "probability": 0.9459 + }, + { + "start": 26729.97, + "end": 26733.23, + "probability": 0.9944 + }, + { + "start": 26733.23, + "end": 26735.89, + "probability": 0.998 + }, + { + "start": 26736.39, + "end": 26741.79, + "probability": 0.9717 + }, + { + "start": 26742.67, + "end": 26748.11, + "probability": 0.9974 + }, + { + "start": 26749.29, + "end": 26751.71, + "probability": 0.945 + }, + { + "start": 26751.93, + "end": 26753.23, + "probability": 0.9893 + }, + { + "start": 26754.29, + "end": 26755.65, + "probability": 0.9678 + }, + { + "start": 26756.85, + "end": 26760.59, + "probability": 0.9145 + }, + { + "start": 26761.59, + "end": 26763.31, + "probability": 0.869 + }, + { + "start": 26764.49, + "end": 26766.75, + "probability": 0.9904 + }, + { + "start": 26767.67, + "end": 26769.41, + "probability": 0.9768 + }, + { + "start": 26770.25, + "end": 26775.57, + "probability": 0.9976 + }, + { + "start": 26776.47, + "end": 26778.53, + "probability": 0.9033 + }, + { + "start": 26779.35, + "end": 26784.13, + "probability": 0.9937 + }, + { + "start": 26785.87, + "end": 26786.25, + "probability": 0.8372 + }, + { + "start": 26786.79, + "end": 26787.67, + "probability": 0.6345 + }, + { + "start": 26787.91, + "end": 26789.77, + "probability": 0.8171 + }, + { + "start": 26810.13, + "end": 26811.63, + "probability": 0.9043 + }, + { + "start": 26811.69, + "end": 26811.97, + "probability": 0.7917 + }, + { + "start": 26813.13, + "end": 26816.61, + "probability": 0.9054 + }, + { + "start": 26817.77, + "end": 26821.15, + "probability": 0.9486 + }, + { + "start": 26821.83, + "end": 26823.17, + "probability": 0.9843 + }, + { + "start": 26824.23, + "end": 26827.09, + "probability": 0.9743 + }, + { + "start": 26828.85, + "end": 26834.69, + "probability": 0.9971 + }, + { + "start": 26835.07, + "end": 26837.11, + "probability": 0.9952 + }, + { + "start": 26838.03, + "end": 26839.21, + "probability": 0.9967 + }, + { + "start": 26839.33, + "end": 26840.47, + "probability": 0.9539 + }, + { + "start": 26840.67, + "end": 26845.81, + "probability": 0.9515 + }, + { + "start": 26846.81, + "end": 26852.25, + "probability": 0.976 + }, + { + "start": 26853.41, + "end": 26861.79, + "probability": 0.1417 + }, + { + "start": 26868.5, + "end": 26871.13, + "probability": 0.1598 + }, + { + "start": 26871.13, + "end": 26871.91, + "probability": 0.2039 + }, + { + "start": 26871.91, + "end": 26873.37, + "probability": 0.0193 + }, + { + "start": 26873.37, + "end": 26873.37, + "probability": 0.0471 + }, + { + "start": 26873.37, + "end": 26873.37, + "probability": 0.1957 + }, + { + "start": 26873.37, + "end": 26874.21, + "probability": 0.1381 + }, + { + "start": 26874.91, + "end": 26875.61, + "probability": 0.5284 + }, + { + "start": 26876.23, + "end": 26877.73, + "probability": 0.3326 + }, + { + "start": 26880.61, + "end": 26881.41, + "probability": 0.2726 + }, + { + "start": 26882.63, + "end": 26882.83, + "probability": 0.0887 + }, + { + "start": 26882.83, + "end": 26884.63, + "probability": 0.1078 + }, + { + "start": 26885.11, + "end": 26885.61, + "probability": 0.1146 + }, + { + "start": 26886.17, + "end": 26886.81, + "probability": 0.0458 + }, + { + "start": 26886.97, + "end": 26887.63, + "probability": 0.0378 + }, + { + "start": 26888.01, + "end": 26888.01, + "probability": 0.1088 + }, + { + "start": 26888.75, + "end": 26888.97, + "probability": 0.0497 + }, + { + "start": 26889.15, + "end": 26891.07, + "probability": 0.1036 + }, + { + "start": 26896.97, + "end": 26897.67, + "probability": 0.0283 + }, + { + "start": 26897.67, + "end": 26897.81, + "probability": 0.0213 + }, + { + "start": 26897.81, + "end": 26897.91, + "probability": 0.305 + }, + { + "start": 26897.91, + "end": 26898.25, + "probability": 0.1603 + }, + { + "start": 26899.93, + "end": 26900.95, + "probability": 0.4174 + }, + { + "start": 26901.13, + "end": 26901.43, + "probability": 0.0682 + }, + { + "start": 26902.63, + "end": 26903.41, + "probability": 0.1054 + }, + { + "start": 26904.13, + "end": 26905.45, + "probability": 0.0834 + }, + { + "start": 26907.23, + "end": 26910.21, + "probability": 0.0645 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.0, + "end": 26945.0, + "probability": 0.0 + }, + { + "start": 26945.55, + "end": 26946.42, + "probability": 0.7588 + }, + { + "start": 26946.5, + "end": 26946.7, + "probability": 0.0257 + }, + { + "start": 26946.82, + "end": 26949.62, + "probability": 0.5737 + }, + { + "start": 26950.32, + "end": 26950.32, + "probability": 0.0915 + }, + { + "start": 26950.92, + "end": 26950.92, + "probability": 0.243 + }, + { + "start": 26950.92, + "end": 26950.92, + "probability": 0.6191 + }, + { + "start": 26950.92, + "end": 26952.96, + "probability": 0.671 + }, + { + "start": 26953.2, + "end": 26954.06, + "probability": 0.8827 + }, + { + "start": 26954.34, + "end": 26954.96, + "probability": 0.5838 + }, + { + "start": 26957.52, + "end": 26962.38, + "probability": 0.9648 + }, + { + "start": 26962.96, + "end": 26963.86, + "probability": 0.106 + }, + { + "start": 26963.9, + "end": 26966.2, + "probability": 0.3128 + }, + { + "start": 26966.34, + "end": 26967.16, + "probability": 0.3909 + }, + { + "start": 26968.26, + "end": 26968.76, + "probability": 0.0222 + }, + { + "start": 26968.76, + "end": 26968.76, + "probability": 0.1802 + }, + { + "start": 26968.76, + "end": 26968.9, + "probability": 0.0621 + }, + { + "start": 26968.9, + "end": 26968.9, + "probability": 0.2382 + }, + { + "start": 26968.9, + "end": 26968.9, + "probability": 0.1678 + }, + { + "start": 26968.9, + "end": 26973.82, + "probability": 0.6694 + }, + { + "start": 26975.82, + "end": 26979.32, + "probability": 0.9422 + }, + { + "start": 26979.4, + "end": 26980.34, + "probability": 0.9983 + }, + { + "start": 26980.5, + "end": 26981.6, + "probability": 0.9639 + }, + { + "start": 26981.78, + "end": 26983.08, + "probability": 0.9877 + }, + { + "start": 26983.44, + "end": 26985.6, + "probability": 0.994 + }, + { + "start": 26985.74, + "end": 26987.78, + "probability": 0.0848 + }, + { + "start": 26987.78, + "end": 26987.78, + "probability": 0.1063 + }, + { + "start": 26987.78, + "end": 26987.78, + "probability": 0.1629 + }, + { + "start": 26987.78, + "end": 26989.62, + "probability": 0.6108 + }, + { + "start": 26989.74, + "end": 26991.88, + "probability": 0.5904 + }, + { + "start": 26991.96, + "end": 26992.14, + "probability": 0.9181 + }, + { + "start": 26992.9, + "end": 26994.82, + "probability": 0.8536 + }, + { + "start": 26994.9, + "end": 26996.24, + "probability": 0.3855 + }, + { + "start": 26996.92, + "end": 26998.1, + "probability": 0.7997 + }, + { + "start": 26998.2, + "end": 26999.84, + "probability": 0.9071 + }, + { + "start": 27000.26, + "end": 27004.06, + "probability": 0.9644 + }, + { + "start": 27004.98, + "end": 27005.66, + "probability": 0.9505 + }, + { + "start": 27006.68, + "end": 27007.64, + "probability": 0.2667 + }, + { + "start": 27007.64, + "end": 27007.64, + "probability": 0.2437 + }, + { + "start": 27007.64, + "end": 27007.92, + "probability": 0.5577 + }, + { + "start": 27008.66, + "end": 27008.92, + "probability": 0.3538 + }, + { + "start": 27009.14, + "end": 27009.16, + "probability": 0.6763 + }, + { + "start": 27009.16, + "end": 27009.62, + "probability": 0.4726 + }, + { + "start": 27009.72, + "end": 27011.14, + "probability": 0.8747 + }, + { + "start": 27011.76, + "end": 27013.98, + "probability": 0.7958 + }, + { + "start": 27015.1, + "end": 27015.87, + "probability": 0.9839 + }, + { + "start": 27016.46, + "end": 27019.02, + "probability": 0.6907 + }, + { + "start": 27020.94, + "end": 27026.02, + "probability": 0.9364 + }, + { + "start": 27027.46, + "end": 27028.5, + "probability": 0.9896 + }, + { + "start": 27028.76, + "end": 27029.7, + "probability": 0.9102 + }, + { + "start": 27029.78, + "end": 27030.74, + "probability": 0.861 + }, + { + "start": 27030.8, + "end": 27032.08, + "probability": 0.9985 + }, + { + "start": 27032.82, + "end": 27033.78, + "probability": 0.9142 + }, + { + "start": 27034.1, + "end": 27036.3, + "probability": 0.9739 + }, + { + "start": 27037.48, + "end": 27039.84, + "probability": 0.9937 + }, + { + "start": 27039.92, + "end": 27040.68, + "probability": 0.8823 + }, + { + "start": 27040.7, + "end": 27041.56, + "probability": 0.8221 + }, + { + "start": 27041.84, + "end": 27043.28, + "probability": 0.9973 + }, + { + "start": 27044.04, + "end": 27046.76, + "probability": 0.992 + }, + { + "start": 27046.88, + "end": 27048.08, + "probability": 0.9777 + }, + { + "start": 27048.16, + "end": 27049.4, + "probability": 0.8253 + }, + { + "start": 27049.62, + "end": 27050.08, + "probability": 0.8921 + }, + { + "start": 27050.2, + "end": 27051.28, + "probability": 0.8364 + }, + { + "start": 27051.58, + "end": 27052.64, + "probability": 0.978 + }, + { + "start": 27053.84, + "end": 27058.47, + "probability": 0.9929 + }, + { + "start": 27058.8, + "end": 27063.86, + "probability": 0.9966 + }, + { + "start": 27064.62, + "end": 27068.36, + "probability": 0.9977 + }, + { + "start": 27068.72, + "end": 27074.14, + "probability": 0.9971 + }, + { + "start": 27074.82, + "end": 27076.12, + "probability": 0.7743 + }, + { + "start": 27076.48, + "end": 27077.74, + "probability": 0.9446 + }, + { + "start": 27077.94, + "end": 27079.36, + "probability": 0.7205 + }, + { + "start": 27079.54, + "end": 27081.97, + "probability": 0.7275 + }, + { + "start": 27082.58, + "end": 27084.6, + "probability": 0.8592 + }, + { + "start": 27085.04, + "end": 27087.2, + "probability": 0.9976 + }, + { + "start": 27087.96, + "end": 27090.5, + "probability": 0.981 + }, + { + "start": 27091.18, + "end": 27093.03, + "probability": 0.987 + }, + { + "start": 27094.38, + "end": 27098.83, + "probability": 0.8022 + }, + { + "start": 27099.84, + "end": 27102.68, + "probability": 0.9868 + }, + { + "start": 27102.68, + "end": 27105.26, + "probability": 0.9626 + }, + { + "start": 27106.1, + "end": 27107.04, + "probability": 0.7845 + }, + { + "start": 27107.86, + "end": 27115.1, + "probability": 0.991 + }, + { + "start": 27116.22, + "end": 27119.62, + "probability": 0.9854 + }, + { + "start": 27119.92, + "end": 27123.98, + "probability": 0.998 + }, + { + "start": 27124.6, + "end": 27130.58, + "probability": 0.9962 + }, + { + "start": 27131.46, + "end": 27133.56, + "probability": 0.9873 + }, + { + "start": 27133.56, + "end": 27137.24, + "probability": 0.9961 + }, + { + "start": 27138.74, + "end": 27142.41, + "probability": 0.9965 + }, + { + "start": 27143.36, + "end": 27147.24, + "probability": 0.9958 + }, + { + "start": 27149.16, + "end": 27152.72, + "probability": 0.9342 + }, + { + "start": 27152.86, + "end": 27153.82, + "probability": 0.9142 + }, + { + "start": 27154.08, + "end": 27158.36, + "probability": 0.9873 + }, + { + "start": 27159.44, + "end": 27160.6, + "probability": 0.9959 + }, + { + "start": 27161.26, + "end": 27162.48, + "probability": 0.9701 + }, + { + "start": 27163.12, + "end": 27167.68, + "probability": 0.9644 + }, + { + "start": 27167.84, + "end": 27168.2, + "probability": 0.8187 + }, + { + "start": 27168.26, + "end": 27168.74, + "probability": 0.6943 + }, + { + "start": 27168.84, + "end": 27169.84, + "probability": 0.9751 + }, + { + "start": 27170.76, + "end": 27175.55, + "probability": 0.8447 + }, + { + "start": 27176.8, + "end": 27178.46, + "probability": 0.8638 + }, + { + "start": 27179.84, + "end": 27184.72, + "probability": 0.9939 + }, + { + "start": 27185.98, + "end": 27187.2, + "probability": 0.9956 + }, + { + "start": 27188.34, + "end": 27190.26, + "probability": 0.9977 + }, + { + "start": 27191.46, + "end": 27192.64, + "probability": 0.5769 + }, + { + "start": 27192.88, + "end": 27196.02, + "probability": 0.999 + }, + { + "start": 27197.18, + "end": 27199.38, + "probability": 0.9953 + }, + { + "start": 27199.48, + "end": 27200.26, + "probability": 0.9515 + }, + { + "start": 27200.38, + "end": 27203.38, + "probability": 0.9966 + }, + { + "start": 27204.06, + "end": 27210.14, + "probability": 0.9944 + }, + { + "start": 27210.34, + "end": 27211.94, + "probability": 0.881 + }, + { + "start": 27212.42, + "end": 27219.0, + "probability": 0.9744 + }, + { + "start": 27219.82, + "end": 27222.6, + "probability": 0.5527 + }, + { + "start": 27223.46, + "end": 27226.06, + "probability": 0.9836 + }, + { + "start": 27226.62, + "end": 27228.06, + "probability": 0.9666 + }, + { + "start": 27228.24, + "end": 27229.64, + "probability": 0.8103 + }, + { + "start": 27229.8, + "end": 27230.42, + "probability": 0.935 + }, + { + "start": 27230.48, + "end": 27232.85, + "probability": 0.9951 + }, + { + "start": 27233.38, + "end": 27236.2, + "probability": 0.9917 + }, + { + "start": 27236.74, + "end": 27239.37, + "probability": 0.9795 + }, + { + "start": 27241.4, + "end": 27244.86, + "probability": 0.9728 + }, + { + "start": 27244.98, + "end": 27246.76, + "probability": 0.7 + }, + { + "start": 27247.52, + "end": 27255.42, + "probability": 0.9902 + }, + { + "start": 27255.42, + "end": 27260.68, + "probability": 0.9932 + }, + { + "start": 27261.3, + "end": 27263.28, + "probability": 0.9986 + }, + { + "start": 27263.84, + "end": 27265.7, + "probability": 0.4879 + }, + { + "start": 27265.8, + "end": 27266.3, + "probability": 0.8404 + }, + { + "start": 27266.42, + "end": 27268.76, + "probability": 0.7394 + }, + { + "start": 27269.14, + "end": 27270.84, + "probability": 0.9756 + }, + { + "start": 27271.02, + "end": 27275.02, + "probability": 0.9946 + }, + { + "start": 27275.16, + "end": 27276.08, + "probability": 0.8179 + }, + { + "start": 27276.46, + "end": 27279.45, + "probability": 0.9878 + }, + { + "start": 27280.85, + "end": 27283.12, + "probability": 0.8958 + }, + { + "start": 27283.5, + "end": 27287.2, + "probability": 0.9868 + }, + { + "start": 27287.54, + "end": 27289.54, + "probability": 0.9844 + }, + { + "start": 27289.8, + "end": 27292.22, + "probability": 0.9988 + }, + { + "start": 27293.22, + "end": 27298.58, + "probability": 0.9949 + }, + { + "start": 27298.84, + "end": 27300.64, + "probability": 0.9885 + }, + { + "start": 27301.54, + "end": 27304.02, + "probability": 0.9761 + }, + { + "start": 27304.16, + "end": 27304.51, + "probability": 0.9213 + }, + { + "start": 27305.18, + "end": 27308.98, + "probability": 0.9694 + }, + { + "start": 27308.98, + "end": 27311.16, + "probability": 0.9928 + }, + { + "start": 27311.72, + "end": 27312.96, + "probability": 0.9493 + }, + { + "start": 27313.0, + "end": 27318.12, + "probability": 0.9869 + }, + { + "start": 27318.32, + "end": 27319.02, + "probability": 0.7697 + }, + { + "start": 27319.42, + "end": 27320.28, + "probability": 0.7118 + }, + { + "start": 27320.8, + "end": 27322.58, + "probability": 0.8254 + }, + { + "start": 27331.6, + "end": 27335.12, + "probability": 0.7056 + }, + { + "start": 27335.66, + "end": 27337.41, + "probability": 0.7089 + }, + { + "start": 27338.28, + "end": 27338.91, + "probability": 0.96 + }, + { + "start": 27340.0, + "end": 27346.34, + "probability": 0.9937 + }, + { + "start": 27347.58, + "end": 27349.22, + "probability": 0.8469 + }, + { + "start": 27350.02, + "end": 27351.68, + "probability": 0.7498 + }, + { + "start": 27352.78, + "end": 27357.4, + "probability": 0.9878 + }, + { + "start": 27358.36, + "end": 27361.02, + "probability": 0.9764 + }, + { + "start": 27362.02, + "end": 27364.36, + "probability": 0.9713 + }, + { + "start": 27365.76, + "end": 27367.4, + "probability": 0.8208 + }, + { + "start": 27368.64, + "end": 27371.88, + "probability": 0.9085 + }, + { + "start": 27373.36, + "end": 27376.34, + "probability": 0.9042 + }, + { + "start": 27376.34, + "end": 27382.56, + "probability": 0.9993 + }, + { + "start": 27382.62, + "end": 27383.66, + "probability": 0.7442 + }, + { + "start": 27384.84, + "end": 27389.42, + "probability": 0.7729 + }, + { + "start": 27390.52, + "end": 27391.33, + "probability": 0.8182 + }, + { + "start": 27393.22, + "end": 27396.8, + "probability": 0.9193 + }, + { + "start": 27397.94, + "end": 27402.12, + "probability": 0.9945 + }, + { + "start": 27402.12, + "end": 27407.06, + "probability": 0.9988 + }, + { + "start": 27408.5, + "end": 27412.8, + "probability": 0.998 + }, + { + "start": 27413.78, + "end": 27416.46, + "probability": 0.993 + }, + { + "start": 27416.46, + "end": 27419.4, + "probability": 0.9915 + }, + { + "start": 27420.52, + "end": 27423.96, + "probability": 0.9479 + }, + { + "start": 27424.14, + "end": 27430.1, + "probability": 0.9067 + }, + { + "start": 27431.1, + "end": 27432.38, + "probability": 0.5457 + }, + { + "start": 27433.08, + "end": 27434.26, + "probability": 0.6542 + }, + { + "start": 27434.86, + "end": 27436.88, + "probability": 0.9791 + }, + { + "start": 27437.08, + "end": 27438.69, + "probability": 0.9028 + }, + { + "start": 27438.98, + "end": 27440.1, + "probability": 0.9595 + }, + { + "start": 27440.6, + "end": 27442.86, + "probability": 0.9849 + }, + { + "start": 27443.78, + "end": 27447.68, + "probability": 0.865 + }, + { + "start": 27448.36, + "end": 27450.04, + "probability": 0.9146 + }, + { + "start": 27450.58, + "end": 27451.68, + "probability": 0.7132 + }, + { + "start": 27453.22, + "end": 27458.68, + "probability": 0.8595 + }, + { + "start": 27459.56, + "end": 27463.32, + "probability": 0.979 + }, + { + "start": 27463.32, + "end": 27467.68, + "probability": 0.9926 + }, + { + "start": 27468.36, + "end": 27473.16, + "probability": 0.9985 + }, + { + "start": 27474.48, + "end": 27475.38, + "probability": 0.52 + }, + { + "start": 27476.2, + "end": 27479.54, + "probability": 0.9299 + }, + { + "start": 27480.76, + "end": 27485.34, + "probability": 0.7791 + }, + { + "start": 27485.42, + "end": 27485.98, + "probability": 0.7292 + }, + { + "start": 27487.12, + "end": 27489.16, + "probability": 0.9907 + }, + { + "start": 27489.8, + "end": 27493.7, + "probability": 0.9888 + }, + { + "start": 27495.1, + "end": 27500.38, + "probability": 0.9917 + }, + { + "start": 27502.02, + "end": 27502.2, + "probability": 0.4603 + }, + { + "start": 27502.26, + "end": 27505.68, + "probability": 0.9561 + }, + { + "start": 27505.68, + "end": 27508.4, + "probability": 0.955 + }, + { + "start": 27508.6, + "end": 27509.82, + "probability": 0.9423 + }, + { + "start": 27510.84, + "end": 27515.78, + "probability": 0.9825 + }, + { + "start": 27516.6, + "end": 27519.54, + "probability": 0.9205 + }, + { + "start": 27520.16, + "end": 27525.12, + "probability": 0.959 + }, + { + "start": 27526.14, + "end": 27533.78, + "probability": 0.9841 + }, + { + "start": 27535.02, + "end": 27535.76, + "probability": 0.5181 + }, + { + "start": 27537.02, + "end": 27539.52, + "probability": 0.9031 + }, + { + "start": 27540.28, + "end": 27545.34, + "probability": 0.968 + }, + { + "start": 27545.98, + "end": 27546.44, + "probability": 0.4765 + }, + { + "start": 27547.16, + "end": 27547.94, + "probability": 0.9248 + }, + { + "start": 27548.46, + "end": 27552.48, + "probability": 0.9946 + }, + { + "start": 27553.12, + "end": 27555.48, + "probability": 0.9927 + }, + { + "start": 27557.6, + "end": 27561.64, + "probability": 0.9844 + }, + { + "start": 27562.88, + "end": 27565.7, + "probability": 0.9644 + }, + { + "start": 27566.4, + "end": 27567.86, + "probability": 0.7909 + }, + { + "start": 27568.8, + "end": 27569.8, + "probability": 0.5852 + }, + { + "start": 27571.48, + "end": 27573.66, + "probability": 0.7699 + }, + { + "start": 27575.79, + "end": 27579.58, + "probability": 0.996 + }, + { + "start": 27579.58, + "end": 27583.52, + "probability": 0.6347 + }, + { + "start": 27584.3, + "end": 27584.82, + "probability": 0.9768 + }, + { + "start": 27586.26, + "end": 27588.72, + "probability": 0.8739 + }, + { + "start": 27589.8, + "end": 27592.4, + "probability": 0.9983 + }, + { + "start": 27592.88, + "end": 27597.9, + "probability": 0.9943 + }, + { + "start": 27599.28, + "end": 27601.0, + "probability": 0.9896 + }, + { + "start": 27601.04, + "end": 27603.98, + "probability": 0.9746 + }, + { + "start": 27604.66, + "end": 27608.16, + "probability": 0.9817 + }, + { + "start": 27608.32, + "end": 27609.1, + "probability": 0.8455 + }, + { + "start": 27609.2, + "end": 27609.96, + "probability": 0.5681 + }, + { + "start": 27611.22, + "end": 27613.14, + "probability": 0.9559 + }, + { + "start": 27614.56, + "end": 27615.32, + "probability": 0.7319 + }, + { + "start": 27615.92, + "end": 27617.52, + "probability": 0.9587 + }, + { + "start": 27618.22, + "end": 27620.16, + "probability": 0.9956 + }, + { + "start": 27621.0, + "end": 27623.46, + "probability": 0.9872 + }, + { + "start": 27624.6, + "end": 27626.08, + "probability": 0.5928 + }, + { + "start": 27628.14, + "end": 27630.58, + "probability": 0.9167 + }, + { + "start": 27631.26, + "end": 27632.5, + "probability": 0.9954 + }, + { + "start": 27633.24, + "end": 27634.76, + "probability": 0.999 + }, + { + "start": 27635.58, + "end": 27637.08, + "probability": 0.9901 + }, + { + "start": 27637.76, + "end": 27638.0, + "probability": 0.8789 + }, + { + "start": 27638.88, + "end": 27639.52, + "probability": 0.619 + }, + { + "start": 27639.58, + "end": 27641.66, + "probability": 0.9279 + }, + { + "start": 27649.88, + "end": 27651.14, + "probability": 0.7645 + }, + { + "start": 27651.5, + "end": 27651.98, + "probability": 0.5467 + }, + { + "start": 27652.02, + "end": 27654.49, + "probability": 0.7319 + }, + { + "start": 27655.16, + "end": 27657.91, + "probability": 0.9482 + }, + { + "start": 27659.06, + "end": 27662.78, + "probability": 0.9939 + }, + { + "start": 27663.54, + "end": 27666.42, + "probability": 0.6843 + }, + { + "start": 27666.98, + "end": 27668.68, + "probability": 0.9933 + }, + { + "start": 27669.0, + "end": 27670.64, + "probability": 0.9881 + }, + { + "start": 27671.04, + "end": 27671.8, + "probability": 0.9283 + }, + { + "start": 27672.76, + "end": 27674.4, + "probability": 0.8071 + }, + { + "start": 27674.62, + "end": 27676.14, + "probability": 0.8136 + }, + { + "start": 27676.22, + "end": 27677.54, + "probability": 0.6245 + }, + { + "start": 27678.44, + "end": 27679.0, + "probability": 0.5639 + }, + { + "start": 27680.74, + "end": 27683.38, + "probability": 0.889 + }, + { + "start": 27683.78, + "end": 27685.12, + "probability": 0.8599 + }, + { + "start": 27686.2, + "end": 27686.52, + "probability": 0.6184 + }, + { + "start": 27686.64, + "end": 27687.06, + "probability": 0.7788 + }, + { + "start": 27687.32, + "end": 27688.46, + "probability": 0.988 + }, + { + "start": 27688.74, + "end": 27690.02, + "probability": 0.981 + }, + { + "start": 27691.96, + "end": 27692.46, + "probability": 0.949 + }, + { + "start": 27692.98, + "end": 27693.74, + "probability": 0.8337 + }, + { + "start": 27693.74, + "end": 27696.0, + "probability": 0.9454 + }, + { + "start": 27696.36, + "end": 27697.72, + "probability": 0.8684 + }, + { + "start": 27698.54, + "end": 27699.42, + "probability": 0.6816 + }, + { + "start": 27700.28, + "end": 27700.82, + "probability": 0.8512 + }, + { + "start": 27702.0, + "end": 27703.1, + "probability": 0.9519 + }, + { + "start": 27704.1, + "end": 27710.04, + "probability": 0.9971 + }, + { + "start": 27711.98, + "end": 27716.16, + "probability": 0.9736 + }, + { + "start": 27717.12, + "end": 27721.26, + "probability": 0.9628 + }, + { + "start": 27722.06, + "end": 27722.34, + "probability": 0.4988 + }, + { + "start": 27722.38, + "end": 27724.83, + "probability": 0.9222 + }, + { + "start": 27725.9, + "end": 27727.18, + "probability": 0.6312 + }, + { + "start": 27728.22, + "end": 27729.42, + "probability": 0.7283 + }, + { + "start": 27730.44, + "end": 27731.21, + "probability": 0.6 + }, + { + "start": 27732.26, + "end": 27736.5, + "probability": 0.9235 + }, + { + "start": 27737.42, + "end": 27739.62, + "probability": 0.6188 + }, + { + "start": 27740.18, + "end": 27741.0, + "probability": 0.5489 + }, + { + "start": 27741.42, + "end": 27742.98, + "probability": 0.9624 + }, + { + "start": 27743.88, + "end": 27744.42, + "probability": 0.7805 + }, + { + "start": 27745.16, + "end": 27745.68, + "probability": 0.7744 + }, + { + "start": 27747.86, + "end": 27749.78, + "probability": 0.6317 + }, + { + "start": 27750.02, + "end": 27752.8, + "probability": 0.9816 + }, + { + "start": 27753.86, + "end": 27754.34, + "probability": 0.7209 + }, + { + "start": 27755.12, + "end": 27756.9, + "probability": 0.8141 + }, + { + "start": 27757.46, + "end": 27758.46, + "probability": 0.6357 + }, + { + "start": 27759.24, + "end": 27761.48, + "probability": 0.9313 + }, + { + "start": 27761.88, + "end": 27763.16, + "probability": 0.9784 + }, + { + "start": 27764.64, + "end": 27765.4, + "probability": 0.894 + }, + { + "start": 27767.46, + "end": 27770.64, + "probability": 0.9478 + }, + { + "start": 27772.46, + "end": 27774.74, + "probability": 0.9226 + }, + { + "start": 27776.42, + "end": 27776.78, + "probability": 0.9329 + }, + { + "start": 27776.94, + "end": 27778.78, + "probability": 0.9933 + }, + { + "start": 27779.22, + "end": 27780.56, + "probability": 0.9746 + }, + { + "start": 27781.2, + "end": 27784.32, + "probability": 0.9668 + }, + { + "start": 27785.34, + "end": 27787.62, + "probability": 0.9964 + }, + { + "start": 27788.88, + "end": 27791.68, + "probability": 0.9917 + }, + { + "start": 27793.36, + "end": 27797.82, + "probability": 0.8306 + }, + { + "start": 27798.38, + "end": 27801.54, + "probability": 0.9126 + }, + { + "start": 27803.4, + "end": 27806.52, + "probability": 0.9941 + }, + { + "start": 27807.08, + "end": 27807.6, + "probability": 0.794 + }, + { + "start": 27807.76, + "end": 27808.16, + "probability": 0.8776 + }, + { + "start": 27808.28, + "end": 27808.54, + "probability": 0.7254 + }, + { + "start": 27808.88, + "end": 27811.36, + "probability": 0.988 + }, + { + "start": 27812.66, + "end": 27815.66, + "probability": 0.9622 + }, + { + "start": 27817.42, + "end": 27817.82, + "probability": 0.8898 + }, + { + "start": 27819.5, + "end": 27821.92, + "probability": 0.7968 + }, + { + "start": 27822.0, + "end": 27822.52, + "probability": 0.8223 + }, + { + "start": 27822.54, + "end": 27823.54, + "probability": 0.8493 + }, + { + "start": 27824.4, + "end": 27826.88, + "probability": 0.969 + }, + { + "start": 27827.52, + "end": 27828.45, + "probability": 0.8142 + }, + { + "start": 27829.04, + "end": 27830.54, + "probability": 0.7524 + }, + { + "start": 27830.96, + "end": 27832.8, + "probability": 0.92 + }, + { + "start": 27834.12, + "end": 27834.92, + "probability": 0.8401 + }, + { + "start": 27835.28, + "end": 27835.96, + "probability": 0.4847 + }, + { + "start": 27836.16, + "end": 27838.98, + "probability": 0.8984 + }, + { + "start": 27839.38, + "end": 27842.79, + "probability": 0.9712 + }, + { + "start": 27843.46, + "end": 27845.46, + "probability": 0.8735 + }, + { + "start": 27845.72, + "end": 27847.34, + "probability": 0.698 + }, + { + "start": 27847.98, + "end": 27848.26, + "probability": 0.9732 + }, + { + "start": 27849.68, + "end": 27850.52, + "probability": 0.9548 + }, + { + "start": 27852.12, + "end": 27852.57, + "probability": 0.7595 + }, + { + "start": 27853.26, + "end": 27854.91, + "probability": 0.8296 + }, + { + "start": 27855.92, + "end": 27857.68, + "probability": 0.7015 + }, + { + "start": 27857.96, + "end": 27859.32, + "probability": 0.9046 + }, + { + "start": 27860.44, + "end": 27864.48, + "probability": 0.9782 + }, + { + "start": 27865.6, + "end": 27870.47, + "probability": 0.8336 + }, + { + "start": 27871.16, + "end": 27871.92, + "probability": 0.8531 + }, + { + "start": 27872.96, + "end": 27873.92, + "probability": 0.8933 + }, + { + "start": 27874.38, + "end": 27875.6, + "probability": 0.9393 + }, + { + "start": 27876.74, + "end": 27878.75, + "probability": 0.9229 + }, + { + "start": 27879.28, + "end": 27880.99, + "probability": 0.7489 + }, + { + "start": 27882.02, + "end": 27882.36, + "probability": 0.3945 + }, + { + "start": 27883.22, + "end": 27883.64, + "probability": 0.4931 + }, + { + "start": 27884.14, + "end": 27885.94, + "probability": 0.9052 + }, + { + "start": 27886.54, + "end": 27890.08, + "probability": 0.9865 + }, + { + "start": 27891.86, + "end": 27893.98, + "probability": 0.9775 + }, + { + "start": 27895.86, + "end": 27896.34, + "probability": 0.9879 + }, + { + "start": 27896.42, + "end": 27897.02, + "probability": 0.7422 + }, + { + "start": 27897.06, + "end": 27897.3, + "probability": 0.8634 + }, + { + "start": 27897.6, + "end": 27899.64, + "probability": 0.9294 + }, + { + "start": 27900.0, + "end": 27900.78, + "probability": 0.9626 + }, + { + "start": 27900.86, + "end": 27903.02, + "probability": 0.2275 + }, + { + "start": 27903.02, + "end": 27904.16, + "probability": 0.6758 + }, + { + "start": 27905.48, + "end": 27907.68, + "probability": 0.9802 + }, + { + "start": 27909.22, + "end": 27911.14, + "probability": 0.9956 + }, + { + "start": 27911.62, + "end": 27913.72, + "probability": 0.8847 + }, + { + "start": 27914.02, + "end": 27914.92, + "probability": 0.7693 + }, + { + "start": 27914.98, + "end": 27916.98, + "probability": 0.8724 + }, + { + "start": 27918.78, + "end": 27919.34, + "probability": 0.6219 + }, + { + "start": 27920.86, + "end": 27921.73, + "probability": 0.8317 + }, + { + "start": 27921.92, + "end": 27922.22, + "probability": 0.8477 + }, + { + "start": 27922.36, + "end": 27923.7, + "probability": 0.5352 + }, + { + "start": 27926.16, + "end": 27926.84, + "probability": 0.8734 + }, + { + "start": 27927.32, + "end": 27928.0, + "probability": 0.9604 + }, + { + "start": 27928.18, + "end": 27930.12, + "probability": 0.8573 + }, + { + "start": 27930.3, + "end": 27931.4, + "probability": 0.9461 + }, + { + "start": 27931.6, + "end": 27933.04, + "probability": 0.9833 + }, + { + "start": 27933.72, + "end": 27935.92, + "probability": 0.9721 + }, + { + "start": 27936.62, + "end": 27937.79, + "probability": 0.8521 + }, + { + "start": 27939.78, + "end": 27940.12, + "probability": 0.429 + }, + { + "start": 27941.52, + "end": 27942.62, + "probability": 0.6573 + }, + { + "start": 27943.28, + "end": 27949.6, + "probability": 0.9523 + }, + { + "start": 27950.3, + "end": 27951.02, + "probability": 0.375 + }, + { + "start": 27951.02, + "end": 27951.7, + "probability": 0.7969 + }, + { + "start": 27952.2, + "end": 27955.74, + "probability": 0.8702 + }, + { + "start": 27956.64, + "end": 27958.3, + "probability": 0.9425 + }, + { + "start": 27958.42, + "end": 27959.06, + "probability": 0.1868 + }, + { + "start": 27959.52, + "end": 27962.14, + "probability": 0.9903 + }, + { + "start": 27962.22, + "end": 27962.68, + "probability": 0.9183 + }, + { + "start": 27962.76, + "end": 27963.44, + "probability": 0.4658 + }, + { + "start": 27963.98, + "end": 27965.28, + "probability": 0.9037 + }, + { + "start": 27966.44, + "end": 27967.44, + "probability": 0.7331 + }, + { + "start": 27969.14, + "end": 27972.64, + "probability": 0.9782 + }, + { + "start": 27972.76, + "end": 27973.58, + "probability": 0.4954 + }, + { + "start": 27974.02, + "end": 27974.72, + "probability": 0.7276 + }, + { + "start": 27974.82, + "end": 27975.64, + "probability": 0.4686 + }, + { + "start": 27975.96, + "end": 27978.06, + "probability": 0.9616 + }, + { + "start": 27979.8, + "end": 27980.52, + "probability": 0.9233 + }, + { + "start": 27981.94, + "end": 27988.32, + "probability": 0.984 + }, + { + "start": 27988.7, + "end": 27989.94, + "probability": 0.8706 + }, + { + "start": 27990.36, + "end": 27991.88, + "probability": 0.7718 + }, + { + "start": 27992.34, + "end": 27992.96, + "probability": 0.6258 + }, + { + "start": 27993.1, + "end": 27993.61, + "probability": 0.6083 + }, + { + "start": 27993.74, + "end": 27994.12, + "probability": 0.8267 + }, + { + "start": 27994.28, + "end": 27994.92, + "probability": 0.9709 + }, + { + "start": 27995.94, + "end": 27996.66, + "probability": 0.9353 + }, + { + "start": 27997.42, + "end": 27999.98, + "probability": 0.9578 + }, + { + "start": 28002.2, + "end": 28002.96, + "probability": 0.9127 + }, + { + "start": 28003.54, + "end": 28007.3, + "probability": 0.8718 + }, + { + "start": 28007.52, + "end": 28009.38, + "probability": 0.9623 + }, + { + "start": 28009.38, + "end": 28009.82, + "probability": 0.7298 + }, + { + "start": 28010.46, + "end": 28011.16, + "probability": 0.5209 + }, + { + "start": 28011.2, + "end": 28013.06, + "probability": 0.8533 + }, + { + "start": 28020.94, + "end": 28022.02, + "probability": 0.823 + }, + { + "start": 28022.7, + "end": 28024.13, + "probability": 0.8399 + }, + { + "start": 28026.26, + "end": 28028.36, + "probability": 0.9495 + }, + { + "start": 28029.06, + "end": 28032.06, + "probability": 0.7668 + }, + { + "start": 28033.36, + "end": 28034.76, + "probability": 0.7684 + }, + { + "start": 28036.34, + "end": 28036.75, + "probability": 0.5516 + }, + { + "start": 28037.51, + "end": 28041.26, + "probability": 0.9302 + }, + { + "start": 28041.38, + "end": 28041.96, + "probability": 0.6672 + }, + { + "start": 28042.04, + "end": 28042.7, + "probability": 0.1732 + }, + { + "start": 28045.3, + "end": 28048.84, + "probability": 0.9023 + }, + { + "start": 28049.0, + "end": 28052.4, + "probability": 0.6402 + }, + { + "start": 28053.4, + "end": 28054.56, + "probability": 0.4462 + }, + { + "start": 28054.64, + "end": 28059.89, + "probability": 0.9717 + }, + { + "start": 28061.05, + "end": 28065.14, + "probability": 0.8857 + }, + { + "start": 28066.8, + "end": 28070.02, + "probability": 0.9326 + }, + { + "start": 28071.0, + "end": 28071.88, + "probability": 0.5369 + }, + { + "start": 28072.4, + "end": 28074.5, + "probability": 0.7292 + }, + { + "start": 28075.74, + "end": 28077.88, + "probability": 0.8242 + }, + { + "start": 28078.6, + "end": 28079.7, + "probability": 0.9331 + }, + { + "start": 28080.5, + "end": 28081.98, + "probability": 0.632 + }, + { + "start": 28082.66, + "end": 28085.88, + "probability": 0.9414 + }, + { + "start": 28086.7, + "end": 28088.24, + "probability": 0.9386 + }, + { + "start": 28088.66, + "end": 28089.85, + "probability": 0.9951 + }, + { + "start": 28090.92, + "end": 28093.02, + "probability": 0.9962 + }, + { + "start": 28094.62, + "end": 28095.74, + "probability": 0.9875 + }, + { + "start": 28095.9, + "end": 28100.06, + "probability": 0.9956 + }, + { + "start": 28100.12, + "end": 28101.66, + "probability": 0.9258 + }, + { + "start": 28101.7, + "end": 28102.52, + "probability": 0.7744 + }, + { + "start": 28102.86, + "end": 28106.72, + "probability": 0.9462 + }, + { + "start": 28107.02, + "end": 28108.92, + "probability": 0.7695 + }, + { + "start": 28108.94, + "end": 28111.4, + "probability": 0.2205 + }, + { + "start": 28111.42, + "end": 28111.74, + "probability": 0.792 + }, + { + "start": 28111.8, + "end": 28112.62, + "probability": 0.8888 + }, + { + "start": 28112.72, + "end": 28118.14, + "probability": 0.9536 + }, + { + "start": 28118.36, + "end": 28120.26, + "probability": 0.9585 + }, + { + "start": 28120.8, + "end": 28121.65, + "probability": 0.9746 + }, + { + "start": 28123.02, + "end": 28125.78, + "probability": 0.9865 + }, + { + "start": 28125.98, + "end": 28127.66, + "probability": 0.9556 + }, + { + "start": 28128.74, + "end": 28130.32, + "probability": 0.999 + }, + { + "start": 28131.54, + "end": 28131.88, + "probability": 0.8748 + }, + { + "start": 28135.16, + "end": 28137.7, + "probability": 0.6187 + }, + { + "start": 28138.18, + "end": 28145.22, + "probability": 0.9913 + }, + { + "start": 28145.44, + "end": 28146.6, + "probability": 0.8042 + }, + { + "start": 28147.44, + "end": 28149.88, + "probability": 0.9137 + }, + { + "start": 28150.88, + "end": 28157.52, + "probability": 0.9943 + }, + { + "start": 28158.38, + "end": 28159.48, + "probability": 0.8335 + }, + { + "start": 28159.62, + "end": 28162.32, + "probability": 0.9632 + }, + { + "start": 28163.86, + "end": 28167.62, + "probability": 0.9934 + }, + { + "start": 28168.74, + "end": 28174.34, + "probability": 0.939 + }, + { + "start": 28174.98, + "end": 28175.98, + "probability": 0.8359 + }, + { + "start": 28175.98, + "end": 28178.4, + "probability": 0.8424 + }, + { + "start": 28179.34, + "end": 28182.74, + "probability": 0.9361 + }, + { + "start": 28184.5, + "end": 28186.34, + "probability": 0.8428 + }, + { + "start": 28186.44, + "end": 28187.92, + "probability": 0.978 + }, + { + "start": 28188.36, + "end": 28190.04, + "probability": 0.9407 + }, + { + "start": 28190.16, + "end": 28194.96, + "probability": 0.9955 + }, + { + "start": 28195.62, + "end": 28197.48, + "probability": 0.8669 + }, + { + "start": 28197.6, + "end": 28200.2, + "probability": 0.8118 + }, + { + "start": 28201.08, + "end": 28206.18, + "probability": 0.9534 + }, + { + "start": 28206.18, + "end": 28209.74, + "probability": 0.9966 + }, + { + "start": 28209.74, + "end": 28213.44, + "probability": 0.9959 + }, + { + "start": 28215.5, + "end": 28217.56, + "probability": 0.786 + }, + { + "start": 28218.26, + "end": 28219.86, + "probability": 0.8311 + }, + { + "start": 28220.26, + "end": 28221.68, + "probability": 0.9039 + }, + { + "start": 28221.8, + "end": 28224.3, + "probability": 0.9062 + }, + { + "start": 28224.54, + "end": 28226.16, + "probability": 0.5088 + }, + { + "start": 28237.9, + "end": 28238.16, + "probability": 0.0704 + }, + { + "start": 28238.16, + "end": 28238.6, + "probability": 0.0872 + }, + { + "start": 28240.1, + "end": 28242.4, + "probability": 0.7374 + }, + { + "start": 28242.52, + "end": 28243.62, + "probability": 0.7854 + }, + { + "start": 28244.12, + "end": 28246.0, + "probability": 0.9043 + }, + { + "start": 28246.82, + "end": 28246.82, + "probability": 0.025 + }, + { + "start": 28246.82, + "end": 28248.08, + "probability": 0.9646 + }, + { + "start": 28249.34, + "end": 28252.64, + "probability": 0.9569 + }, + { + "start": 28253.26, + "end": 28254.58, + "probability": 0.9932 + }, + { + "start": 28255.36, + "end": 28256.64, + "probability": 0.9956 + }, + { + "start": 28257.44, + "end": 28260.22, + "probability": 0.8887 + }, + { + "start": 28260.66, + "end": 28262.2, + "probability": 0.996 + }, + { + "start": 28262.94, + "end": 28267.14, + "probability": 0.999 + }, + { + "start": 28267.9, + "end": 28274.02, + "probability": 0.9292 + }, + { + "start": 28274.02, + "end": 28278.24, + "probability": 0.9606 + }, + { + "start": 28279.32, + "end": 28280.38, + "probability": 0.211 + }, + { + "start": 28280.38, + "end": 28280.38, + "probability": 0.1971 + }, + { + "start": 28280.38, + "end": 28280.38, + "probability": 0.0809 + }, + { + "start": 28280.38, + "end": 28280.8, + "probability": 0.518 + }, + { + "start": 28281.8, + "end": 28284.2, + "probability": 0.9305 + }, + { + "start": 28284.34, + "end": 28287.46, + "probability": 0.7369 + }, + { + "start": 28287.58, + "end": 28288.66, + "probability": 0.9362 + }, + { + "start": 28289.68, + "end": 28293.64, + "probability": 0.9895 + }, + { + "start": 28294.48, + "end": 28295.7, + "probability": 0.8349 + }, + { + "start": 28296.48, + "end": 28297.64, + "probability": 0.8823 + }, + { + "start": 28298.32, + "end": 28299.7, + "probability": 0.9995 + }, + { + "start": 28300.36, + "end": 28301.82, + "probability": 0.9995 + }, + { + "start": 28301.84, + "end": 28302.68, + "probability": 0.6158 + }, + { + "start": 28303.16, + "end": 28307.76, + "probability": 0.9811 + }, + { + "start": 28310.08, + "end": 28310.68, + "probability": 0.7566 + }, + { + "start": 28311.44, + "end": 28312.3, + "probability": 0.6142 + }, + { + "start": 28312.62, + "end": 28314.99, + "probability": 0.8809 + }, + { + "start": 28325.16, + "end": 28326.56, + "probability": 0.7366 + }, + { + "start": 28331.52, + "end": 28332.18, + "probability": 0.6564 + }, + { + "start": 28332.26, + "end": 28333.14, + "probability": 0.8053 + }, + { + "start": 28333.2, + "end": 28333.5, + "probability": 0.8197 + }, + { + "start": 28333.54, + "end": 28334.2, + "probability": 0.9827 + }, + { + "start": 28335.74, + "end": 28337.9, + "probability": 0.9746 + }, + { + "start": 28337.94, + "end": 28339.64, + "probability": 0.974 + }, + { + "start": 28339.94, + "end": 28341.56, + "probability": 0.9124 + }, + { + "start": 28341.64, + "end": 28342.78, + "probability": 0.9524 + }, + { + "start": 28344.16, + "end": 28346.36, + "probability": 0.7678 + }, + { + "start": 28347.04, + "end": 28349.06, + "probability": 0.6654 + }, + { + "start": 28349.18, + "end": 28350.0, + "probability": 0.7627 + }, + { + "start": 28351.02, + "end": 28352.22, + "probability": 0.9236 + }, + { + "start": 28354.49, + "end": 28355.29, + "probability": 0.6685 + }, + { + "start": 28357.02, + "end": 28357.98, + "probability": 0.8119 + }, + { + "start": 28359.24, + "end": 28361.76, + "probability": 0.9901 + }, + { + "start": 28363.06, + "end": 28364.07, + "probability": 0.9829 + }, + { + "start": 28366.06, + "end": 28368.15, + "probability": 0.8092 + }, + { + "start": 28368.36, + "end": 28370.72, + "probability": 0.9946 + }, + { + "start": 28371.42, + "end": 28374.94, + "probability": 0.941 + }, + { + "start": 28376.78, + "end": 28376.88, + "probability": 0.7925 + }, + { + "start": 28377.0, + "end": 28378.76, + "probability": 0.8438 + }, + { + "start": 28378.84, + "end": 28379.7, + "probability": 0.9331 + }, + { + "start": 28379.78, + "end": 28380.46, + "probability": 0.9722 + }, + { + "start": 28380.52, + "end": 28380.62, + "probability": 0.5451 + }, + { + "start": 28380.78, + "end": 28381.88, + "probability": 0.8151 + }, + { + "start": 28381.9, + "end": 28382.76, + "probability": 0.9723 + }, + { + "start": 28382.78, + "end": 28383.38, + "probability": 0.6041 + }, + { + "start": 28384.44, + "end": 28387.12, + "probability": 0.9163 + }, + { + "start": 28388.32, + "end": 28390.49, + "probability": 0.9916 + }, + { + "start": 28391.96, + "end": 28393.56, + "probability": 0.7815 + }, + { + "start": 28395.54, + "end": 28396.47, + "probability": 0.9375 + }, + { + "start": 28396.8, + "end": 28399.5, + "probability": 0.9844 + }, + { + "start": 28400.8, + "end": 28401.74, + "probability": 0.842 + }, + { + "start": 28403.52, + "end": 28407.66, + "probability": 0.9438 + }, + { + "start": 28409.56, + "end": 28410.02, + "probability": 0.8753 + }, + { + "start": 28410.94, + "end": 28412.8, + "probability": 0.9194 + }, + { + "start": 28414.24, + "end": 28415.08, + "probability": 0.9595 + }, + { + "start": 28416.26, + "end": 28416.94, + "probability": 0.9427 + }, + { + "start": 28417.72, + "end": 28418.64, + "probability": 0.5352 + }, + { + "start": 28419.36, + "end": 28419.98, + "probability": 0.7986 + }, + { + "start": 28421.28, + "end": 28422.92, + "probability": 0.9363 + }, + { + "start": 28425.12, + "end": 28426.26, + "probability": 0.9021 + }, + { + "start": 28427.98, + "end": 28430.22, + "probability": 0.9836 + }, + { + "start": 28430.98, + "end": 28433.4, + "probability": 0.9845 + }, + { + "start": 28434.38, + "end": 28437.54, + "probability": 0.7881 + }, + { + "start": 28438.9, + "end": 28440.8, + "probability": 0.9258 + }, + { + "start": 28442.54, + "end": 28444.84, + "probability": 0.9556 + }, + { + "start": 28446.4, + "end": 28449.38, + "probability": 0.9926 + }, + { + "start": 28450.2, + "end": 28451.42, + "probability": 0.9937 + }, + { + "start": 28451.5, + "end": 28455.06, + "probability": 0.9827 + }, + { + "start": 28455.6, + "end": 28459.6, + "probability": 0.9392 + }, + { + "start": 28459.86, + "end": 28462.28, + "probability": 0.9424 + }, + { + "start": 28463.82, + "end": 28464.4, + "probability": 0.7842 + }, + { + "start": 28464.46, + "end": 28464.62, + "probability": 0.8605 + }, + { + "start": 28464.68, + "end": 28465.6, + "probability": 0.8618 + }, + { + "start": 28465.7, + "end": 28467.59, + "probability": 0.9406 + }, + { + "start": 28467.98, + "end": 28469.44, + "probability": 0.9785 + }, + { + "start": 28470.14, + "end": 28472.44, + "probability": 0.1857 + }, + { + "start": 28472.44, + "end": 28472.44, + "probability": 0.0068 + }, + { + "start": 28472.44, + "end": 28473.86, + "probability": 0.4139 + }, + { + "start": 28475.34, + "end": 28476.46, + "probability": 0.8425 + }, + { + "start": 28476.54, + "end": 28477.06, + "probability": 0.6451 + }, + { + "start": 28477.08, + "end": 28477.58, + "probability": 0.5838 + }, + { + "start": 28477.64, + "end": 28478.42, + "probability": 0.541 + }, + { + "start": 28478.9, + "end": 28480.02, + "probability": 0.4782 + }, + { + "start": 28481.02, + "end": 28482.58, + "probability": 0.6101 + }, + { + "start": 28482.98, + "end": 28483.4, + "probability": 0.7307 + }, + { + "start": 28483.8, + "end": 28484.2, + "probability": 0.2553 + }, + { + "start": 28484.2, + "end": 28485.04, + "probability": 0.4688 + }, + { + "start": 28486.06, + "end": 28486.88, + "probability": 0.9458 + }, + { + "start": 28488.36, + "end": 28489.44, + "probability": 0.7269 + }, + { + "start": 28490.52, + "end": 28495.97, + "probability": 0.9697 + }, + { + "start": 28496.44, + "end": 28497.37, + "probability": 0.9448 + }, + { + "start": 28497.58, + "end": 28498.68, + "probability": 0.9917 + }, + { + "start": 28499.02, + "end": 28501.06, + "probability": 0.8377 + }, + { + "start": 28503.88, + "end": 28505.86, + "probability": 0.998 + }, + { + "start": 28506.82, + "end": 28507.88, + "probability": 0.9644 + }, + { + "start": 28510.44, + "end": 28512.39, + "probability": 0.9336 + }, + { + "start": 28512.8, + "end": 28514.2, + "probability": 0.7696 + }, + { + "start": 28514.98, + "end": 28516.32, + "probability": 0.9126 + }, + { + "start": 28518.89, + "end": 28520.22, + "probability": 0.3612 + }, + { + "start": 28520.28, + "end": 28521.38, + "probability": 0.5928 + }, + { + "start": 28522.54, + "end": 28523.14, + "probability": 0.5091 + }, + { + "start": 28523.2, + "end": 28523.96, + "probability": 0.9708 + }, + { + "start": 28526.14, + "end": 28529.22, + "probability": 0.8479 + }, + { + "start": 28531.44, + "end": 28531.64, + "probability": 0.9452 + }, + { + "start": 28532.28, + "end": 28533.3, + "probability": 0.7835 + }, + { + "start": 28533.98, + "end": 28535.38, + "probability": 0.6759 + }, + { + "start": 28536.38, + "end": 28537.38, + "probability": 0.911 + }, + { + "start": 28538.62, + "end": 28540.98, + "probability": 0.9861 + }, + { + "start": 28541.8, + "end": 28542.56, + "probability": 0.7808 + }, + { + "start": 28542.96, + "end": 28546.12, + "probability": 0.8257 + }, + { + "start": 28547.92, + "end": 28549.26, + "probability": 0.9954 + }, + { + "start": 28550.86, + "end": 28553.2, + "probability": 0.9726 + }, + { + "start": 28553.82, + "end": 28555.22, + "probability": 0.6778 + }, + { + "start": 28556.96, + "end": 28558.48, + "probability": 0.8917 + }, + { + "start": 28559.3, + "end": 28560.56, + "probability": 0.5573 + }, + { + "start": 28561.3, + "end": 28566.32, + "probability": 0.7573 + }, + { + "start": 28567.32, + "end": 28568.62, + "probability": 0.9332 + }, + { + "start": 28571.04, + "end": 28572.18, + "probability": 0.9639 + }, + { + "start": 28574.42, + "end": 28577.54, + "probability": 0.9578 + }, + { + "start": 28578.16, + "end": 28579.98, + "probability": 0.6893 + }, + { + "start": 28580.7, + "end": 28581.92, + "probability": 0.8883 + }, + { + "start": 28582.36, + "end": 28585.2, + "probability": 0.9875 + }, + { + "start": 28586.18, + "end": 28586.46, + "probability": 0.8265 + }, + { + "start": 28586.54, + "end": 28586.92, + "probability": 0.6618 + }, + { + "start": 28587.1, + "end": 28588.26, + "probability": 0.9846 + }, + { + "start": 28588.76, + "end": 28589.48, + "probability": 0.8901 + }, + { + "start": 28589.78, + "end": 28591.7, + "probability": 0.9766 + }, + { + "start": 28592.2, + "end": 28595.54, + "probability": 0.9625 + }, + { + "start": 28596.1, + "end": 28597.22, + "probability": 0.8298 + }, + { + "start": 28599.22, + "end": 28602.36, + "probability": 0.7778 + }, + { + "start": 28603.08, + "end": 28604.1, + "probability": 0.7496 + }, + { + "start": 28605.26, + "end": 28606.18, + "probability": 0.2236 + }, + { + "start": 28606.8, + "end": 28609.58, + "probability": 0.9862 + }, + { + "start": 28611.28, + "end": 28612.16, + "probability": 0.9546 + }, + { + "start": 28615.2, + "end": 28615.66, + "probability": 0.9714 + }, + { + "start": 28617.26, + "end": 28618.16, + "probability": 0.5774 + }, + { + "start": 28618.26, + "end": 28620.99, + "probability": 0.915 + }, + { + "start": 28621.44, + "end": 28623.96, + "probability": 0.9985 + }, + { + "start": 28624.86, + "end": 28625.9, + "probability": 0.9358 + }, + { + "start": 28625.98, + "end": 28628.6, + "probability": 0.7691 + }, + { + "start": 28629.12, + "end": 28630.18, + "probability": 0.9358 + }, + { + "start": 28630.42, + "end": 28632.75, + "probability": 0.8403 + }, + { + "start": 28633.1, + "end": 28634.1, + "probability": 0.882 + }, + { + "start": 28634.6, + "end": 28634.98, + "probability": 0.7716 + }, + { + "start": 28635.54, + "end": 28638.2, + "probability": 0.9573 + }, + { + "start": 28638.26, + "end": 28638.6, + "probability": 0.4191 + }, + { + "start": 28639.36, + "end": 28640.58, + "probability": 0.8612 + }, + { + "start": 28640.78, + "end": 28642.96, + "probability": 0.8271 + }, + { + "start": 28643.08, + "end": 28643.92, + "probability": 0.6618 + }, + { + "start": 28644.36, + "end": 28646.66, + "probability": 0.9033 + }, + { + "start": 28646.84, + "end": 28648.92, + "probability": 0.9021 + }, + { + "start": 28649.3, + "end": 28650.28, + "probability": 0.9902 + }, + { + "start": 28650.54, + "end": 28652.2, + "probability": 0.9927 + }, + { + "start": 28652.66, + "end": 28653.96, + "probability": 0.6077 + }, + { + "start": 28654.78, + "end": 28657.76, + "probability": 0.8458 + }, + { + "start": 28658.0, + "end": 28661.12, + "probability": 0.793 + }, + { + "start": 28671.56, + "end": 28671.62, + "probability": 0.7931 + }, + { + "start": 28671.62, + "end": 28673.66, + "probability": 0.6754 + }, + { + "start": 28674.22, + "end": 28675.74, + "probability": 0.5068 + }, + { + "start": 28676.12, + "end": 28677.02, + "probability": 0.7852 + }, + { + "start": 28679.12, + "end": 28684.0, + "probability": 0.9281 + }, + { + "start": 28684.56, + "end": 28685.3, + "probability": 0.999 + }, + { + "start": 28685.7, + "end": 28686.36, + "probability": 0.0054 + }, + { + "start": 28687.26, + "end": 28687.62, + "probability": 0.7755 + }, + { + "start": 28688.66, + "end": 28690.38, + "probability": 0.9181 + }, + { + "start": 28691.44, + "end": 28692.24, + "probability": 0.128 + }, + { + "start": 28692.24, + "end": 28692.58, + "probability": 0.5075 + }, + { + "start": 28692.6, + "end": 28693.8, + "probability": 0.9882 + }, + { + "start": 28694.04, + "end": 28694.94, + "probability": 0.9772 + }, + { + "start": 28695.02, + "end": 28696.88, + "probability": 0.9378 + }, + { + "start": 28697.46, + "end": 28699.4, + "probability": 0.5029 + }, + { + "start": 28699.62, + "end": 28701.28, + "probability": 0.9772 + }, + { + "start": 28702.22, + "end": 28704.24, + "probability": 0.9971 + }, + { + "start": 28704.32, + "end": 28705.38, + "probability": 0.9978 + }, + { + "start": 28705.44, + "end": 28706.06, + "probability": 0.9926 + }, + { + "start": 28706.06, + "end": 28707.06, + "probability": 0.67 + }, + { + "start": 28708.22, + "end": 28710.04, + "probability": 0.9657 + }, + { + "start": 28710.82, + "end": 28711.6, + "probability": 0.7837 + }, + { + "start": 28711.7, + "end": 28712.68, + "probability": 0.5218 + }, + { + "start": 28712.72, + "end": 28714.54, + "probability": 0.9554 + }, + { + "start": 28715.02, + "end": 28715.36, + "probability": 0.689 + }, + { + "start": 28716.44, + "end": 28719.02, + "probability": 0.9946 + }, + { + "start": 28719.2, + "end": 28721.36, + "probability": 0.9976 + }, + { + "start": 28722.58, + "end": 28724.08, + "probability": 0.8538 + }, + { + "start": 28724.16, + "end": 28725.98, + "probability": 0.9966 + }, + { + "start": 28726.52, + "end": 28728.29, + "probability": 0.9856 + }, + { + "start": 28730.06, + "end": 28732.24, + "probability": 0.9951 + }, + { + "start": 28732.4, + "end": 28737.0, + "probability": 0.9941 + }, + { + "start": 28741.04, + "end": 28741.58, + "probability": 0.8724 + }, + { + "start": 28742.38, + "end": 28745.28, + "probability": 0.999 + }, + { + "start": 28747.5, + "end": 28750.26, + "probability": 0.7318 + }, + { + "start": 28752.04, + "end": 28753.76, + "probability": 0.9631 + }, + { + "start": 28754.46, + "end": 28755.58, + "probability": 0.9717 + }, + { + "start": 28755.7, + "end": 28755.98, + "probability": 0.8461 + }, + { + "start": 28756.92, + "end": 28759.0, + "probability": 0.9937 + }, + { + "start": 28759.08, + "end": 28759.46, + "probability": 0.9556 + }, + { + "start": 28760.52, + "end": 28763.24, + "probability": 0.9725 + }, + { + "start": 28764.34, + "end": 28767.46, + "probability": 0.9927 + }, + { + "start": 28767.52, + "end": 28769.26, + "probability": 0.9888 + }, + { + "start": 28772.4, + "end": 28774.04, + "probability": 0.9855 + }, + { + "start": 28775.52, + "end": 28777.98, + "probability": 0.9221 + }, + { + "start": 28779.52, + "end": 28781.04, + "probability": 0.9912 + }, + { + "start": 28782.56, + "end": 28783.82, + "probability": 0.6927 + }, + { + "start": 28784.52, + "end": 28785.5, + "probability": 0.956 + }, + { + "start": 28786.4, + "end": 28787.3, + "probability": 0.6498 + }, + { + "start": 28788.02, + "end": 28788.38, + "probability": 0.6531 + }, + { + "start": 28789.2, + "end": 28789.62, + "probability": 0.8508 + }, + { + "start": 28790.9, + "end": 28791.24, + "probability": 0.537 + }, + { + "start": 28792.58, + "end": 28796.64, + "probability": 0.9542 + }, + { + "start": 28798.02, + "end": 28802.52, + "probability": 0.9928 + }, + { + "start": 28804.08, + "end": 28807.06, + "probability": 0.6343 + }, + { + "start": 28808.04, + "end": 28809.94, + "probability": 0.9944 + }, + { + "start": 28810.56, + "end": 28811.5, + "probability": 0.9919 + }, + { + "start": 28812.08, + "end": 28812.62, + "probability": 0.6254 + }, + { + "start": 28814.1, + "end": 28817.28, + "probability": 0.8784 + }, + { + "start": 28817.88, + "end": 28819.48, + "probability": 0.8481 + }, + { + "start": 28820.18, + "end": 28821.12, + "probability": 0.9023 + }, + { + "start": 28823.38, + "end": 28824.66, + "probability": 0.775 + }, + { + "start": 28825.4, + "end": 28826.44, + "probability": 0.9761 + }, + { + "start": 28828.42, + "end": 28829.12, + "probability": 0.9895 + }, + { + "start": 28831.72, + "end": 28833.12, + "probability": 0.7265 + }, + { + "start": 28834.24, + "end": 28836.2, + "probability": 0.9644 + }, + { + "start": 28837.6, + "end": 28839.04, + "probability": 0.7015 + }, + { + "start": 28840.72, + "end": 28841.76, + "probability": 0.819 + }, + { + "start": 28843.14, + "end": 28845.36, + "probability": 0.8742 + }, + { + "start": 28846.6, + "end": 28847.86, + "probability": 0.9712 + }, + { + "start": 28850.66, + "end": 28851.26, + "probability": 0.237 + }, + { + "start": 28851.94, + "end": 28854.78, + "probability": 0.9851 + }, + { + "start": 28854.78, + "end": 28858.06, + "probability": 0.9787 + }, + { + "start": 28859.94, + "end": 28861.04, + "probability": 0.8365 + }, + { + "start": 28861.86, + "end": 28863.0, + "probability": 0.8147 + }, + { + "start": 28864.14, + "end": 28869.72, + "probability": 0.9639 + }, + { + "start": 28869.92, + "end": 28874.2, + "probability": 0.9823 + }, + { + "start": 28875.6, + "end": 28876.06, + "probability": 0.6644 + }, + { + "start": 28877.1, + "end": 28879.7, + "probability": 0.8414 + }, + { + "start": 28882.14, + "end": 28885.08, + "probability": 0.9899 + }, + { + "start": 28887.98, + "end": 28888.82, + "probability": 0.6556 + }, + { + "start": 28890.4, + "end": 28891.36, + "probability": 0.8262 + }, + { + "start": 28895.14, + "end": 28896.52, + "probability": 0.8715 + }, + { + "start": 28897.74, + "end": 28898.56, + "probability": 0.4267 + }, + { + "start": 28899.64, + "end": 28902.34, + "probability": 0.8929 + }, + { + "start": 28903.26, + "end": 28904.22, + "probability": 0.7856 + }, + { + "start": 28905.1, + "end": 28905.88, + "probability": 0.7755 + }, + { + "start": 28906.52, + "end": 28907.68, + "probability": 0.9863 + }, + { + "start": 28907.76, + "end": 28908.26, + "probability": 0.7196 + }, + { + "start": 28910.56, + "end": 28917.46, + "probability": 0.998 + }, + { + "start": 28918.4, + "end": 28920.02, + "probability": 0.999 + }, + { + "start": 28920.78, + "end": 28923.28, + "probability": 0.8285 + }, + { + "start": 28924.92, + "end": 28927.1, + "probability": 0.9966 + }, + { + "start": 28927.96, + "end": 28928.86, + "probability": 0.8846 + }, + { + "start": 28929.12, + "end": 28929.94, + "probability": 0.9941 + }, + { + "start": 28930.4, + "end": 28932.02, + "probability": 0.8492 + }, + { + "start": 28932.3, + "end": 28937.4, + "probability": 0.9851 + }, + { + "start": 28937.52, + "end": 28938.68, + "probability": 0.7964 + }, + { + "start": 28939.28, + "end": 28941.42, + "probability": 0.9956 + }, + { + "start": 28941.96, + "end": 28942.92, + "probability": 0.7378 + }, + { + "start": 28944.22, + "end": 28947.12, + "probability": 0.9481 + }, + { + "start": 28948.44, + "end": 28951.84, + "probability": 0.9984 + }, + { + "start": 28952.28, + "end": 28954.52, + "probability": 0.9932 + }, + { + "start": 28954.66, + "end": 28957.84, + "probability": 0.9047 + }, + { + "start": 28958.26, + "end": 28962.62, + "probability": 0.9398 + }, + { + "start": 28963.04, + "end": 28964.38, + "probability": 0.755 + }, + { + "start": 28968.38, + "end": 28968.88, + "probability": 0.7692 + }, + { + "start": 28969.92, + "end": 28971.9, + "probability": 0.9846 + }, + { + "start": 28971.94, + "end": 28975.6, + "probability": 0.9887 + }, + { + "start": 28976.36, + "end": 28978.4, + "probability": 0.9883 + }, + { + "start": 28978.6, + "end": 28980.46, + "probability": 0.997 + }, + { + "start": 28982.2, + "end": 28984.36, + "probability": 0.7946 + }, + { + "start": 28985.54, + "end": 28985.74, + "probability": 0.4496 + }, + { + "start": 28986.9, + "end": 28987.44, + "probability": 0.4292 + }, + { + "start": 28989.18, + "end": 28991.3, + "probability": 0.9986 + }, + { + "start": 28993.34, + "end": 28996.28, + "probability": 0.9951 + }, + { + "start": 28997.82, + "end": 29003.38, + "probability": 0.9787 + }, + { + "start": 29004.86, + "end": 29005.24, + "probability": 0.8744 + }, + { + "start": 29005.88, + "end": 29006.96, + "probability": 0.7085 + }, + { + "start": 29008.24, + "end": 29010.86, + "probability": 0.8741 + }, + { + "start": 29023.6, + "end": 29023.66, + "probability": 0.7388 + }, + { + "start": 29023.66, + "end": 29025.04, + "probability": 0.6507 + }, + { + "start": 29025.04, + "end": 29025.5, + "probability": 0.9181 + }, + { + "start": 29029.56, + "end": 29031.08, + "probability": 0.6406 + }, + { + "start": 29031.18, + "end": 29032.16, + "probability": 0.6384 + }, + { + "start": 29033.02, + "end": 29035.78, + "probability": 0.9954 + }, + { + "start": 29035.94, + "end": 29036.72, + "probability": 0.8264 + }, + { + "start": 29036.9, + "end": 29039.78, + "probability": 0.9929 + }, + { + "start": 29040.72, + "end": 29043.06, + "probability": 0.963 + }, + { + "start": 29045.24, + "end": 29047.38, + "probability": 0.4996 + }, + { + "start": 29047.7, + "end": 29049.42, + "probability": 0.9482 + }, + { + "start": 29050.12, + "end": 29051.66, + "probability": 0.9584 + }, + { + "start": 29051.9, + "end": 29057.02, + "probability": 0.983 + }, + { + "start": 29057.82, + "end": 29059.86, + "probability": 0.9917 + }, + { + "start": 29060.44, + "end": 29063.68, + "probability": 0.9083 + }, + { + "start": 29064.24, + "end": 29068.08, + "probability": 0.9855 + }, + { + "start": 29069.08, + "end": 29074.52, + "probability": 0.9861 + }, + { + "start": 29075.14, + "end": 29077.9, + "probability": 0.8462 + }, + { + "start": 29078.64, + "end": 29081.94, + "probability": 0.9796 + }, + { + "start": 29082.86, + "end": 29085.88, + "probability": 0.9666 + }, + { + "start": 29086.76, + "end": 29090.06, + "probability": 0.9406 + }, + { + "start": 29090.58, + "end": 29094.2, + "probability": 0.995 + }, + { + "start": 29095.12, + "end": 29099.0, + "probability": 0.999 + }, + { + "start": 29099.72, + "end": 29102.6, + "probability": 0.9871 + }, + { + "start": 29103.64, + "end": 29106.02, + "probability": 0.9744 + }, + { + "start": 29106.12, + "end": 29108.9, + "probability": 0.9825 + }, + { + "start": 29109.18, + "end": 29111.6, + "probability": 0.9537 + }, + { + "start": 29112.3, + "end": 29113.4, + "probability": 0.7268 + }, + { + "start": 29113.52, + "end": 29117.36, + "probability": 0.9934 + }, + { + "start": 29118.14, + "end": 29120.81, + "probability": 0.9966 + }, + { + "start": 29122.0, + "end": 29123.58, + "probability": 0.6089 + }, + { + "start": 29123.62, + "end": 29126.14, + "probability": 0.9115 + }, + { + "start": 29126.62, + "end": 29127.55, + "probability": 0.9374 + }, + { + "start": 29128.26, + "end": 29129.6, + "probability": 0.9557 + }, + { + "start": 29130.62, + "end": 29132.14, + "probability": 0.9762 + }, + { + "start": 29132.9, + "end": 29137.32, + "probability": 0.9923 + }, + { + "start": 29137.78, + "end": 29139.08, + "probability": 0.9174 + }, + { + "start": 29139.88, + "end": 29142.1, + "probability": 0.9987 + }, + { + "start": 29142.18, + "end": 29143.58, + "probability": 0.9442 + }, + { + "start": 29144.48, + "end": 29147.44, + "probability": 0.9861 + }, + { + "start": 29147.46, + "end": 29148.76, + "probability": 0.9915 + }, + { + "start": 29149.32, + "end": 29151.32, + "probability": 0.9993 + }, + { + "start": 29151.78, + "end": 29152.3, + "probability": 0.958 + }, + { + "start": 29152.56, + "end": 29152.58, + "probability": 0.3375 + }, + { + "start": 29152.58, + "end": 29155.96, + "probability": 0.6334 + }, + { + "start": 29156.26, + "end": 29157.92, + "probability": 0.9756 + }, + { + "start": 29158.24, + "end": 29158.96, + "probability": 0.7868 + }, + { + "start": 29159.32, + "end": 29160.82, + "probability": 0.9254 + }, + { + "start": 29161.24, + "end": 29164.84, + "probability": 0.8232 + }, + { + "start": 29165.92, + "end": 29168.4, + "probability": 0.9202 + }, + { + "start": 29169.02, + "end": 29172.1, + "probability": 0.9946 + }, + { + "start": 29172.88, + "end": 29175.2, + "probability": 0.9827 + }, + { + "start": 29175.24, + "end": 29178.6, + "probability": 0.9983 + }, + { + "start": 29178.7, + "end": 29184.82, + "probability": 0.9963 + }, + { + "start": 29185.58, + "end": 29189.08, + "probability": 0.9994 + }, + { + "start": 29189.92, + "end": 29193.16, + "probability": 0.9973 + }, + { + "start": 29194.02, + "end": 29196.38, + "probability": 0.885 + }, + { + "start": 29196.82, + "end": 29198.7, + "probability": 0.9969 + }, + { + "start": 29199.42, + "end": 29205.26, + "probability": 0.9751 + }, + { + "start": 29206.46, + "end": 29208.96, + "probability": 0.9939 + }, + { + "start": 29209.32, + "end": 29211.36, + "probability": 0.9729 + }, + { + "start": 29211.48, + "end": 29212.42, + "probability": 0.7337 + }, + { + "start": 29212.92, + "end": 29214.04, + "probability": 0.9501 + }, + { + "start": 29214.8, + "end": 29216.0, + "probability": 0.9823 + }, + { + "start": 29217.04, + "end": 29220.64, + "probability": 0.9649 + }, + { + "start": 29221.46, + "end": 29222.18, + "probability": 0.3112 + }, + { + "start": 29222.34, + "end": 29222.96, + "probability": 0.261 + }, + { + "start": 29222.96, + "end": 29226.36, + "probability": 0.5953 + }, + { + "start": 29227.4, + "end": 29230.86, + "probability": 0.995 + }, + { + "start": 29230.86, + "end": 29234.58, + "probability": 0.9972 + }, + { + "start": 29235.0, + "end": 29236.82, + "probability": 0.4976 + }, + { + "start": 29238.84, + "end": 29240.14, + "probability": 0.6627 + }, + { + "start": 29241.04, + "end": 29244.94, + "probability": 0.8971 + }, + { + "start": 29245.76, + "end": 29249.5, + "probability": 0.9917 + }, + { + "start": 29249.64, + "end": 29252.2, + "probability": 0.9896 + }, + { + "start": 29254.32, + "end": 29258.98, + "probability": 0.9517 + }, + { + "start": 29258.98, + "end": 29262.08, + "probability": 0.9981 + }, + { + "start": 29263.02, + "end": 29264.88, + "probability": 0.9922 + }, + { + "start": 29265.3, + "end": 29266.2, + "probability": 0.9507 + }, + { + "start": 29267.08, + "end": 29272.28, + "probability": 0.9977 + }, + { + "start": 29272.28, + "end": 29275.41, + "probability": 0.9413 + }, + { + "start": 29275.94, + "end": 29276.8, + "probability": 0.725 + }, + { + "start": 29277.1, + "end": 29281.14, + "probability": 0.9806 + }, + { + "start": 29281.4, + "end": 29282.38, + "probability": 0.8472 + }, + { + "start": 29282.52, + "end": 29283.8, + "probability": 0.5503 + }, + { + "start": 29284.44, + "end": 29287.84, + "probability": 0.9169 + }, + { + "start": 29288.3, + "end": 29290.0, + "probability": 0.8841 + }, + { + "start": 29290.24, + "end": 29290.82, + "probability": 0.6891 + }, + { + "start": 29292.14, + "end": 29293.7, + "probability": 0.875 + }, + { + "start": 29293.74, + "end": 29296.0, + "probability": 0.9449 + }, + { + "start": 29296.04, + "end": 29298.64, + "probability": 0.8212 + }, + { + "start": 29298.7, + "end": 29299.4, + "probability": 0.9579 + }, + { + "start": 29299.9, + "end": 29301.88, + "probability": 0.9861 + }, + { + "start": 29304.56, + "end": 29308.34, + "probability": 0.998 + }, + { + "start": 29308.84, + "end": 29312.18, + "probability": 0.9897 + }, + { + "start": 29312.46, + "end": 29317.86, + "probability": 0.8821 + }, + { + "start": 29320.0, + "end": 29322.84, + "probability": 0.9967 + }, + { + "start": 29322.84, + "end": 29324.98, + "probability": 0.999 + }, + { + "start": 29326.06, + "end": 29326.74, + "probability": 0.721 + }, + { + "start": 29326.91, + "end": 29329.42, + "probability": 0.8643 + }, + { + "start": 29329.44, + "end": 29332.14, + "probability": 0.9853 + }, + { + "start": 29332.5, + "end": 29333.54, + "probability": 0.6552 + }, + { + "start": 29333.94, + "end": 29335.6, + "probability": 0.9897 + }, + { + "start": 29336.1, + "end": 29338.6, + "probability": 0.9926 + }, + { + "start": 29339.36, + "end": 29344.37, + "probability": 0.9941 + }, + { + "start": 29346.05, + "end": 29351.38, + "probability": 0.9661 + }, + { + "start": 29351.56, + "end": 29351.74, + "probability": 0.7484 + }, + { + "start": 29352.66, + "end": 29353.42, + "probability": 0.5377 + }, + { + "start": 29353.5, + "end": 29355.76, + "probability": 0.7009 + }, + { + "start": 29360.76, + "end": 29361.58, + "probability": 0.7079 + }, + { + "start": 29362.46, + "end": 29363.24, + "probability": 0.8944 + }, + { + "start": 29365.02, + "end": 29367.86, + "probability": 0.8757 + }, + { + "start": 29369.66, + "end": 29372.54, + "probability": 0.9953 + }, + { + "start": 29374.06, + "end": 29378.58, + "probability": 0.9819 + }, + { + "start": 29378.76, + "end": 29384.62, + "probability": 0.9482 + }, + { + "start": 29385.42, + "end": 29387.94, + "probability": 0.9954 + }, + { + "start": 29388.26, + "end": 29389.6, + "probability": 0.8197 + }, + { + "start": 29389.76, + "end": 29392.04, + "probability": 0.9759 + }, + { + "start": 29392.46, + "end": 29394.86, + "probability": 0.993 + }, + { + "start": 29395.8, + "end": 29397.48, + "probability": 0.0547 + }, + { + "start": 29397.98, + "end": 29400.36, + "probability": 0.927 + }, + { + "start": 29400.9, + "end": 29402.6, + "probability": 0.7787 + }, + { + "start": 29403.2, + "end": 29408.44, + "probability": 0.8203 + }, + { + "start": 29408.48, + "end": 29409.64, + "probability": 0.6404 + }, + { + "start": 29410.02, + "end": 29410.61, + "probability": 0.4557 + }, + { + "start": 29411.6, + "end": 29413.38, + "probability": 0.3016 + }, + { + "start": 29413.5, + "end": 29414.14, + "probability": 0.3797 + }, + { + "start": 29414.84, + "end": 29415.1, + "probability": 0.1387 + }, + { + "start": 29416.18, + "end": 29416.94, + "probability": 0.3145 + }, + { + "start": 29417.7, + "end": 29418.32, + "probability": 0.3345 + }, + { + "start": 29419.18, + "end": 29419.2, + "probability": 0.2971 + }, + { + "start": 29419.2, + "end": 29419.82, + "probability": 0.2807 + }, + { + "start": 29419.82, + "end": 29419.82, + "probability": 0.3746 + }, + { + "start": 29421.56, + "end": 29421.56, + "probability": 0.2953 + }, + { + "start": 29421.56, + "end": 29424.14, + "probability": 0.9339 + }, + { + "start": 29425.12, + "end": 29425.84, + "probability": 0.7783 + }, + { + "start": 29426.1, + "end": 29429.64, + "probability": 0.8954 + }, + { + "start": 29429.7, + "end": 29431.7, + "probability": 0.9821 + }, + { + "start": 29431.8, + "end": 29432.78, + "probability": 0.9118 + }, + { + "start": 29433.0, + "end": 29434.06, + "probability": 0.8757 + }, + { + "start": 29435.6, + "end": 29436.16, + "probability": 0.8799 + }, + { + "start": 29437.22, + "end": 29440.16, + "probability": 0.9845 + }, + { + "start": 29440.78, + "end": 29445.48, + "probability": 0.9779 + }, + { + "start": 29446.04, + "end": 29446.84, + "probability": 0.7644 + }, + { + "start": 29447.94, + "end": 29451.48, + "probability": 0.9779 + }, + { + "start": 29452.18, + "end": 29455.46, + "probability": 0.9856 + }, + { + "start": 29456.1, + "end": 29458.48, + "probability": 0.8223 + }, + { + "start": 29459.18, + "end": 29461.46, + "probability": 0.9948 + }, + { + "start": 29461.46, + "end": 29465.84, + "probability": 0.9831 + }, + { + "start": 29466.78, + "end": 29470.22, + "probability": 0.9822 + }, + { + "start": 29472.76, + "end": 29476.06, + "probability": 0.9834 + }, + { + "start": 29476.48, + "end": 29479.72, + "probability": 0.9946 + }, + { + "start": 29479.94, + "end": 29480.74, + "probability": 0.525 + }, + { + "start": 29480.92, + "end": 29484.5, + "probability": 0.9907 + }, + { + "start": 29485.66, + "end": 29487.58, + "probability": 0.9995 + }, + { + "start": 29488.58, + "end": 29489.59, + "probability": 0.9635 + }, + { + "start": 29492.68, + "end": 29492.92, + "probability": 0.1846 + }, + { + "start": 29492.92, + "end": 29493.88, + "probability": 0.7518 + }, + { + "start": 29494.32, + "end": 29495.96, + "probability": 0.8503 + }, + { + "start": 29496.96, + "end": 29498.26, + "probability": 0.6991 + }, + { + "start": 29498.64, + "end": 29500.96, + "probability": 0.9961 + }, + { + "start": 29501.84, + "end": 29502.48, + "probability": 0.9411 + }, + { + "start": 29502.54, + "end": 29503.32, + "probability": 0.986 + }, + { + "start": 29503.7, + "end": 29504.56, + "probability": 0.937 + }, + { + "start": 29505.04, + "end": 29506.52, + "probability": 0.983 + }, + { + "start": 29506.6, + "end": 29508.4, + "probability": 0.897 + }, + { + "start": 29509.86, + "end": 29511.08, + "probability": 0.7222 + }, + { + "start": 29512.58, + "end": 29513.64, + "probability": 0.661 + }, + { + "start": 29513.8, + "end": 29519.35, + "probability": 0.8859 + }, + { + "start": 29522.04, + "end": 29524.53, + "probability": 0.9805 + }, + { + "start": 29524.84, + "end": 29525.49, + "probability": 0.9889 + }, + { + "start": 29525.86, + "end": 29526.62, + "probability": 0.7195 + }, + { + "start": 29527.3, + "end": 29527.94, + "probability": 0.3382 + }, + { + "start": 29528.78, + "end": 29532.02, + "probability": 0.9543 + }, + { + "start": 29532.48, + "end": 29534.1, + "probability": 0.9797 + }, + { + "start": 29538.04, + "end": 29540.1, + "probability": 0.8324 + }, + { + "start": 29540.72, + "end": 29546.16, + "probability": 0.99 + }, + { + "start": 29546.32, + "end": 29548.96, + "probability": 0.8546 + }, + { + "start": 29549.06, + "end": 29550.3, + "probability": 0.9803 + }, + { + "start": 29550.96, + "end": 29551.6, + "probability": 0.9154 + }, + { + "start": 29552.04, + "end": 29554.42, + "probability": 0.9746 + }, + { + "start": 29554.9, + "end": 29555.44, + "probability": 0.6985 + }, + { + "start": 29555.5, + "end": 29556.68, + "probability": 0.8368 + }, + { + "start": 29557.66, + "end": 29558.78, + "probability": 0.909 + }, + { + "start": 29560.0, + "end": 29560.64, + "probability": 0.9357 + }, + { + "start": 29560.78, + "end": 29561.76, + "probability": 0.8881 + }, + { + "start": 29562.28, + "end": 29564.24, + "probability": 0.9674 + }, + { + "start": 29564.92, + "end": 29566.76, + "probability": 0.8656 + }, + { + "start": 29567.44, + "end": 29569.52, + "probability": 0.9922 + }, + { + "start": 29570.38, + "end": 29571.28, + "probability": 0.6709 + }, + { + "start": 29571.42, + "end": 29573.52, + "probability": 0.7119 + }, + { + "start": 29573.8, + "end": 29575.68, + "probability": 0.954 + }, + { + "start": 29576.26, + "end": 29578.38, + "probability": 0.8501 + }, + { + "start": 29578.54, + "end": 29584.5, + "probability": 0.9935 + }, + { + "start": 29586.44, + "end": 29587.74, + "probability": 0.9128 + }, + { + "start": 29587.86, + "end": 29589.02, + "probability": 0.9136 + }, + { + "start": 29589.28, + "end": 29590.52, + "probability": 0.7468 + }, + { + "start": 29590.84, + "end": 29592.18, + "probability": 0.8707 + }, + { + "start": 29594.36, + "end": 29596.1, + "probability": 0.52 + }, + { + "start": 29596.4, + "end": 29601.54, + "probability": 0.852 + }, + { + "start": 29601.58, + "end": 29602.24, + "probability": 0.6589 + }, + { + "start": 29602.68, + "end": 29603.28, + "probability": 0.5929 + }, + { + "start": 29604.06, + "end": 29606.16, + "probability": 0.1673 + }, + { + "start": 29608.32, + "end": 29609.68, + "probability": 0.9592 + }, + { + "start": 29610.78, + "end": 29613.78, + "probability": 0.9922 + }, + { + "start": 29614.24, + "end": 29615.44, + "probability": 0.6955 + }, + { + "start": 29616.0, + "end": 29618.19, + "probability": 0.9885 + }, + { + "start": 29618.74, + "end": 29620.36, + "probability": 0.9937 + }, + { + "start": 29621.42, + "end": 29622.64, + "probability": 0.9084 + }, + { + "start": 29623.26, + "end": 29625.87, + "probability": 0.9946 + }, + { + "start": 29626.14, + "end": 29626.64, + "probability": 0.9875 + }, + { + "start": 29626.74, + "end": 29627.08, + "probability": 0.2102 + }, + { + "start": 29627.18, + "end": 29628.5, + "probability": 0.7725 + }, + { + "start": 29630.24, + "end": 29631.02, + "probability": 0.8385 + }, + { + "start": 29631.92, + "end": 29634.66, + "probability": 0.9551 + }, + { + "start": 29634.9, + "end": 29636.64, + "probability": 0.5775 + }, + { + "start": 29637.58, + "end": 29640.36, + "probability": 0.9703 + }, + { + "start": 29641.34, + "end": 29647.08, + "probability": 0.98 + }, + { + "start": 29647.32, + "end": 29651.32, + "probability": 0.9852 + }, + { + "start": 29651.32, + "end": 29655.18, + "probability": 0.9985 + }, + { + "start": 29655.5, + "end": 29658.14, + "probability": 0.9976 + }, + { + "start": 29658.14, + "end": 29661.5, + "probability": 0.9551 + }, + { + "start": 29663.88, + "end": 29664.74, + "probability": 0.8518 + }, + { + "start": 29665.1, + "end": 29670.26, + "probability": 0.9971 + }, + { + "start": 29670.76, + "end": 29672.44, + "probability": 0.9907 + }, + { + "start": 29673.7, + "end": 29677.92, + "probability": 0.9976 + }, + { + "start": 29678.26, + "end": 29681.72, + "probability": 0.9971 + }, + { + "start": 29682.46, + "end": 29683.06, + "probability": 0.4517 + }, + { + "start": 29683.88, + "end": 29687.02, + "probability": 0.9516 + }, + { + "start": 29687.24, + "end": 29688.06, + "probability": 0.575 + }, + { + "start": 29688.68, + "end": 29690.82, + "probability": 0.9963 + }, + { + "start": 29691.88, + "end": 29692.82, + "probability": 0.5444 + }, + { + "start": 29693.12, + "end": 29694.58, + "probability": 0.8403 + }, + { + "start": 29704.14, + "end": 29705.78, + "probability": 0.8714 + }, + { + "start": 29709.88, + "end": 29713.0, + "probability": 0.709 + }, + { + "start": 29714.3, + "end": 29717.44, + "probability": 0.989 + }, + { + "start": 29718.44, + "end": 29723.02, + "probability": 0.8926 + }, + { + "start": 29723.56, + "end": 29725.08, + "probability": 0.8765 + }, + { + "start": 29726.0, + "end": 29727.06, + "probability": 0.92 + }, + { + "start": 29728.88, + "end": 29732.08, + "probability": 0.8855 + }, + { + "start": 29732.6, + "end": 29734.08, + "probability": 0.9075 + }, + { + "start": 29734.76, + "end": 29735.88, + "probability": 0.8708 + }, + { + "start": 29736.76, + "end": 29738.94, + "probability": 0.8056 + }, + { + "start": 29739.56, + "end": 29741.94, + "probability": 0.9696 + }, + { + "start": 29743.24, + "end": 29747.28, + "probability": 0.9722 + }, + { + "start": 29747.92, + "end": 29749.12, + "probability": 0.9723 + }, + { + "start": 29750.2, + "end": 29751.12, + "probability": 0.9781 + }, + { + "start": 29752.34, + "end": 29753.28, + "probability": 0.9902 + }, + { + "start": 29754.0, + "end": 29760.5, + "probability": 0.9985 + }, + { + "start": 29761.42, + "end": 29769.16, + "probability": 0.9988 + }, + { + "start": 29770.56, + "end": 29771.3, + "probability": 0.7717 + }, + { + "start": 29772.54, + "end": 29774.94, + "probability": 0.986 + }, + { + "start": 29775.66, + "end": 29782.34, + "probability": 0.9958 + }, + { + "start": 29783.22, + "end": 29784.58, + "probability": 0.9985 + }, + { + "start": 29785.48, + "end": 29788.36, + "probability": 0.9138 + }, + { + "start": 29789.04, + "end": 29790.0, + "probability": 0.9791 + }, + { + "start": 29790.56, + "end": 29791.96, + "probability": 0.9954 + }, + { + "start": 29793.14, + "end": 29794.54, + "probability": 0.9308 + }, + { + "start": 29795.68, + "end": 29799.86, + "probability": 0.9966 + }, + { + "start": 29800.44, + "end": 29801.86, + "probability": 0.8943 + }, + { + "start": 29802.64, + "end": 29804.8, + "probability": 0.9486 + }, + { + "start": 29805.56, + "end": 29808.88, + "probability": 0.9932 + }, + { + "start": 29810.18, + "end": 29810.74, + "probability": 0.4627 + }, + { + "start": 29811.54, + "end": 29814.7, + "probability": 0.9756 + }, + { + "start": 29815.56, + "end": 29819.88, + "probability": 0.993 + }, + { + "start": 29822.38, + "end": 29826.42, + "probability": 0.9633 + }, + { + "start": 29827.04, + "end": 29828.16, + "probability": 0.8781 + }, + { + "start": 29828.94, + "end": 29836.56, + "probability": 0.9531 + }, + { + "start": 29839.14, + "end": 29843.62, + "probability": 0.8597 + }, + { + "start": 29843.7, + "end": 29849.26, + "probability": 0.963 + }, + { + "start": 29850.0, + "end": 29854.12, + "probability": 0.9949 + }, + { + "start": 29854.94, + "end": 29857.7, + "probability": 0.8798 + }, + { + "start": 29858.1, + "end": 29861.74, + "probability": 0.9255 + }, + { + "start": 29861.84, + "end": 29862.66, + "probability": 0.9734 + }, + { + "start": 29864.32, + "end": 29868.54, + "probability": 0.9835 + }, + { + "start": 29868.54, + "end": 29873.8, + "probability": 0.9962 + }, + { + "start": 29874.92, + "end": 29877.2, + "probability": 0.9123 + }, + { + "start": 29878.48, + "end": 29881.54, + "probability": 0.986 + }, + { + "start": 29882.52, + "end": 29883.64, + "probability": 0.9692 + }, + { + "start": 29885.4, + "end": 29885.8, + "probability": 0.7527 + }, + { + "start": 29885.96, + "end": 29886.8, + "probability": 0.6615 + }, + { + "start": 29886.88, + "end": 29891.56, + "probability": 0.9782 + }, + { + "start": 29891.56, + "end": 29894.88, + "probability": 0.9967 + }, + { + "start": 29895.44, + "end": 29896.48, + "probability": 0.9987 + }, + { + "start": 29898.08, + "end": 29900.0, + "probability": 0.8903 + }, + { + "start": 29901.28, + "end": 29901.32, + "probability": 0.728 + }, + { + "start": 29902.04, + "end": 29904.04, + "probability": 0.9614 + }, + { + "start": 29904.8, + "end": 29906.85, + "probability": 0.9771 + }, + { + "start": 29907.77, + "end": 29908.87, + "probability": 0.7026 + }, + { + "start": 29910.1, + "end": 29910.4, + "probability": 0.9731 + }, + { + "start": 29911.82, + "end": 29917.34, + "probability": 0.9527 + }, + { + "start": 29918.76, + "end": 29921.54, + "probability": 0.7831 + }, + { + "start": 29922.78, + "end": 29923.92, + "probability": 0.9481 + }, + { + "start": 29924.04, + "end": 29924.64, + "probability": 0.8561 + }, + { + "start": 29924.78, + "end": 29928.68, + "probability": 0.8596 + }, + { + "start": 29929.48, + "end": 29930.98, + "probability": 0.9214 + }, + { + "start": 29932.08, + "end": 29932.94, + "probability": 0.8399 + }, + { + "start": 29933.48, + "end": 29934.56, + "probability": 0.6915 + }, + { + "start": 29935.14, + "end": 29937.4, + "probability": 0.9873 + }, + { + "start": 29938.36, + "end": 29940.9, + "probability": 0.9216 + }, + { + "start": 29941.64, + "end": 29944.38, + "probability": 0.9764 + }, + { + "start": 29945.14, + "end": 29950.28, + "probability": 0.9667 + }, + { + "start": 29951.1, + "end": 29952.04, + "probability": 0.8752 + }, + { + "start": 29954.76, + "end": 29955.32, + "probability": 0.7979 + }, + { + "start": 29956.52, + "end": 29963.28, + "probability": 0.9993 + }, + { + "start": 29964.04, + "end": 29964.54, + "probability": 0.8964 + }, + { + "start": 29965.88, + "end": 29969.36, + "probability": 0.9842 + }, + { + "start": 29970.58, + "end": 29973.58, + "probability": 0.9822 + }, + { + "start": 29974.52, + "end": 29982.5, + "probability": 0.9941 + }, + { + "start": 29983.54, + "end": 29983.54, + "probability": 0.0606 + }, + { + "start": 29983.54, + "end": 29985.28, + "probability": 0.6701 + }, + { + "start": 29985.98, + "end": 29988.16, + "probability": 0.9892 + }, + { + "start": 29988.92, + "end": 29989.02, + "probability": 0.217 + }, + { + "start": 29989.02, + "end": 29993.56, + "probability": 0.7525 + }, + { + "start": 29994.5, + "end": 29994.62, + "probability": 0.0015 + }, + { + "start": 29994.62, + "end": 29994.62, + "probability": 0.0872 + }, + { + "start": 29994.62, + "end": 30002.38, + "probability": 0.7118 + }, + { + "start": 30002.38, + "end": 30005.32, + "probability": 0.734 + }, + { + "start": 30005.82, + "end": 30008.08, + "probability": 0.4082 + }, + { + "start": 30010.14, + "end": 30010.68, + "probability": 0.0073 + }, + { + "start": 30010.68, + "end": 30012.38, + "probability": 0.323 + }, + { + "start": 30013.5, + "end": 30014.6, + "probability": 0.1058 + }, + { + "start": 30017.04, + "end": 30018.3, + "probability": 0.024 + }, + { + "start": 30018.74, + "end": 30019.08, + "probability": 0.3413 + }, + { + "start": 30019.08, + "end": 30019.58, + "probability": 0.3737 + }, + { + "start": 30026.3, + "end": 30029.29, + "probability": 0.3447 + }, + { + "start": 30030.9, + "end": 30032.26, + "probability": 0.6574 + }, + { + "start": 30033.08, + "end": 30033.74, + "probability": 0.8363 + }, + { + "start": 30034.82, + "end": 30035.58, + "probability": 0.4 + }, + { + "start": 30036.68, + "end": 30038.11, + "probability": 0.7908 + }, + { + "start": 30038.76, + "end": 30041.06, + "probability": 0.8719 + }, + { + "start": 30042.0, + "end": 30043.82, + "probability": 0.9862 + }, + { + "start": 30044.46, + "end": 30045.2, + "probability": 0.8313 + }, + { + "start": 30046.44, + "end": 30047.22, + "probability": 0.8383 + }, + { + "start": 30047.98, + "end": 30050.94, + "probability": 0.9924 + }, + { + "start": 30051.44, + "end": 30052.46, + "probability": 0.9529 + }, + { + "start": 30052.82, + "end": 30053.58, + "probability": 0.5608 + }, + { + "start": 30054.64, + "end": 30055.22, + "probability": 0.8794 + }, + { + "start": 30056.7, + "end": 30057.54, + "probability": 0.8906 + }, + { + "start": 30059.2, + "end": 30059.78, + "probability": 0.9172 + }, + { + "start": 30060.52, + "end": 30061.56, + "probability": 0.9936 + }, + { + "start": 30061.96, + "end": 30064.36, + "probability": 0.9727 + }, + { + "start": 30065.08, + "end": 30066.02, + "probability": 0.9756 + }, + { + "start": 30066.54, + "end": 30069.12, + "probability": 0.9592 + }, + { + "start": 30069.92, + "end": 30071.12, + "probability": 0.9238 + }, + { + "start": 30073.04, + "end": 30076.68, + "probability": 0.9919 + }, + { + "start": 30077.12, + "end": 30077.54, + "probability": 0.9502 + }, + { + "start": 30077.74, + "end": 30080.2, + "probability": 0.9902 + }, + { + "start": 30081.04, + "end": 30083.46, + "probability": 0.999 + }, + { + "start": 30084.22, + "end": 30084.59, + "probability": 0.9946 + }, + { + "start": 30084.8, + "end": 30085.58, + "probability": 0.9798 + }, + { + "start": 30085.66, + "end": 30087.98, + "probability": 0.9282 + }, + { + "start": 30088.76, + "end": 30089.35, + "probability": 0.9136 + }, + { + "start": 30089.68, + "end": 30090.52, + "probability": 0.9629 + }, + { + "start": 30091.28, + "end": 30091.89, + "probability": 0.5415 + }, + { + "start": 30092.44, + "end": 30093.22, + "probability": 0.8001 + }, + { + "start": 30093.84, + "end": 30095.04, + "probability": 0.9094 + }, + { + "start": 30095.92, + "end": 30101.16, + "probability": 0.986 + }, + { + "start": 30101.6, + "end": 30104.24, + "probability": 0.9979 + }, + { + "start": 30105.38, + "end": 30106.5, + "probability": 0.4634 + }, + { + "start": 30107.44, + "end": 30109.74, + "probability": 0.757 + }, + { + "start": 30110.46, + "end": 30112.4, + "probability": 0.9832 + }, + { + "start": 30112.5, + "end": 30115.06, + "probability": 0.9846 + }, + { + "start": 30115.08, + "end": 30119.12, + "probability": 0.9954 + }, + { + "start": 30119.6, + "end": 30120.32, + "probability": 0.6942 + }, + { + "start": 30121.26, + "end": 30121.54, + "probability": 0.5918 + }, + { + "start": 30121.58, + "end": 30123.44, + "probability": 0.6708 + }, + { + "start": 30124.86, + "end": 30128.7, + "probability": 0.9834 + }, + { + "start": 30128.9, + "end": 30130.84, + "probability": 0.9395 + }, + { + "start": 30131.8, + "end": 30135.1, + "probability": 0.9864 + }, + { + "start": 30135.92, + "end": 30139.5, + "probability": 0.9988 + }, + { + "start": 30140.28, + "end": 30146.74, + "probability": 0.9943 + }, + { + "start": 30147.54, + "end": 30150.38, + "probability": 0.9981 + }, + { + "start": 30150.69, + "end": 30153.62, + "probability": 0.9849 + }, + { + "start": 30153.76, + "end": 30154.96, + "probability": 0.694 + }, + { + "start": 30156.2, + "end": 30160.34, + "probability": 0.8576 + }, + { + "start": 30160.88, + "end": 30162.36, + "probability": 0.5259 + }, + { + "start": 30162.96, + "end": 30164.4, + "probability": 0.9578 + }, + { + "start": 30165.1, + "end": 30165.86, + "probability": 0.9926 + }, + { + "start": 30166.84, + "end": 30168.86, + "probability": 0.8975 + }, + { + "start": 30169.76, + "end": 30171.12, + "probability": 0.9785 + }, + { + "start": 30171.18, + "end": 30174.18, + "probability": 0.9949 + }, + { + "start": 30174.78, + "end": 30176.24, + "probability": 0.9236 + }, + { + "start": 30177.3, + "end": 30178.52, + "probability": 0.9951 + }, + { + "start": 30179.36, + "end": 30180.4, + "probability": 0.9824 + }, + { + "start": 30180.46, + "end": 30181.78, + "probability": 0.9061 + }, + { + "start": 30182.96, + "end": 30183.78, + "probability": 0.9292 + }, + { + "start": 30184.76, + "end": 30185.52, + "probability": 0.712 + }, + { + "start": 30185.56, + "end": 30186.26, + "probability": 0.9744 + }, + { + "start": 30186.26, + "end": 30189.6, + "probability": 0.9827 + }, + { + "start": 30189.8, + "end": 30189.98, + "probability": 0.7316 + }, + { + "start": 30190.52, + "end": 30191.62, + "probability": 0.9193 + }, + { + "start": 30192.08, + "end": 30194.88, + "probability": 0.8887 + }, + { + "start": 30195.76, + "end": 30198.06, + "probability": 0.9738 + }, + { + "start": 30198.2, + "end": 30201.86, + "probability": 0.998 + }, + { + "start": 30203.24, + "end": 30205.92, + "probability": 0.9891 + }, + { + "start": 30206.7, + "end": 30207.06, + "probability": 0.6622 + }, + { + "start": 30207.24, + "end": 30208.5, + "probability": 0.9792 + }, + { + "start": 30208.58, + "end": 30210.4, + "probability": 0.9176 + }, + { + "start": 30210.56, + "end": 30212.24, + "probability": 0.9307 + }, + { + "start": 30213.1, + "end": 30216.4, + "probability": 0.991 + }, + { + "start": 30216.46, + "end": 30218.08, + "probability": 0.9711 + }, + { + "start": 30219.08, + "end": 30220.9, + "probability": 0.9974 + }, + { + "start": 30222.64, + "end": 30223.18, + "probability": 0.8716 + }, + { + "start": 30223.6, + "end": 30224.44, + "probability": 0.8875 + }, + { + "start": 30224.56, + "end": 30225.46, + "probability": 0.9717 + }, + { + "start": 30225.54, + "end": 30226.12, + "probability": 0.7325 + }, + { + "start": 30226.78, + "end": 30227.88, + "probability": 0.9817 + }, + { + "start": 30228.18, + "end": 30229.22, + "probability": 0.8546 + }, + { + "start": 30229.34, + "end": 30230.44, + "probability": 0.9081 + }, + { + "start": 30230.5, + "end": 30232.58, + "probability": 0.8418 + }, + { + "start": 30233.04, + "end": 30235.24, + "probability": 0.9867 + }, + { + "start": 30236.52, + "end": 30237.34, + "probability": 0.9364 + }, + { + "start": 30237.38, + "end": 30241.24, + "probability": 0.999 + }, + { + "start": 30242.16, + "end": 30243.24, + "probability": 0.8604 + }, + { + "start": 30244.26, + "end": 30248.6, + "probability": 0.8833 + }, + { + "start": 30250.62, + "end": 30251.04, + "probability": 0.6396 + }, + { + "start": 30252.42, + "end": 30253.49, + "probability": 0.9954 + }, + { + "start": 30253.68, + "end": 30257.28, + "probability": 0.9746 + }, + { + "start": 30257.28, + "end": 30257.56, + "probability": 0.847 + }, + { + "start": 30258.14, + "end": 30263.74, + "probability": 0.9937 + }, + { + "start": 30264.66, + "end": 30266.14, + "probability": 0.9625 + }, + { + "start": 30266.34, + "end": 30271.52, + "probability": 0.968 + }, + { + "start": 30272.64, + "end": 30273.34, + "probability": 0.8143 + }, + { + "start": 30274.3, + "end": 30275.04, + "probability": 0.9036 + }, + { + "start": 30275.8, + "end": 30280.76, + "probability": 0.9313 + }, + { + "start": 30280.76, + "end": 30283.38, + "probability": 0.999 + }, + { + "start": 30284.26, + "end": 30286.56, + "probability": 0.8419 + }, + { + "start": 30287.4, + "end": 30289.26, + "probability": 0.9993 + }, + { + "start": 30289.76, + "end": 30291.62, + "probability": 0.9243 + }, + { + "start": 30293.0, + "end": 30294.8, + "probability": 0.6994 + }, + { + "start": 30295.78, + "end": 30301.94, + "probability": 0.9971 + }, + { + "start": 30304.28, + "end": 30304.98, + "probability": 0.8192 + }, + { + "start": 30306.32, + "end": 30308.78, + "probability": 0.9986 + }, + { + "start": 30309.1, + "end": 30311.42, + "probability": 0.9746 + }, + { + "start": 30312.28, + "end": 30315.18, + "probability": 0.9958 + }, + { + "start": 30316.22, + "end": 30318.13, + "probability": 0.9922 + }, + { + "start": 30319.06, + "end": 30319.5, + "probability": 0.5587 + }, + { + "start": 30320.16, + "end": 30321.5, + "probability": 0.9812 + }, + { + "start": 30321.58, + "end": 30324.38, + "probability": 0.9263 + }, + { + "start": 30325.18, + "end": 30326.83, + "probability": 0.9971 + }, + { + "start": 30327.74, + "end": 30329.44, + "probability": 0.9631 + }, + { + "start": 30329.94, + "end": 30334.08, + "probability": 0.9985 + }, + { + "start": 30334.8, + "end": 30338.1, + "probability": 0.914 + }, + { + "start": 30339.62, + "end": 30340.42, + "probability": 0.6549 + }, + { + "start": 30340.58, + "end": 30343.48, + "probability": 0.6642 + }, + { + "start": 30358.06, + "end": 30359.82, + "probability": 0.734 + }, + { + "start": 30361.08, + "end": 30362.46, + "probability": 0.0865 + }, + { + "start": 30367.16, + "end": 30368.06, + "probability": 0.1181 + }, + { + "start": 30369.02, + "end": 30374.52, + "probability": 0.8684 + }, + { + "start": 30374.66, + "end": 30376.64, + "probability": 0.9976 + }, + { + "start": 30377.94, + "end": 30379.04, + "probability": 0.8831 + }, + { + "start": 30379.56, + "end": 30381.16, + "probability": 0.9569 + }, + { + "start": 30381.26, + "end": 30385.64, + "probability": 0.9543 + }, + { + "start": 30386.56, + "end": 30388.28, + "probability": 0.9917 + }, + { + "start": 30390.38, + "end": 30393.98, + "probability": 0.9707 + }, + { + "start": 30395.72, + "end": 30397.1, + "probability": 0.9117 + }, + { + "start": 30397.68, + "end": 30399.34, + "probability": 0.754 + }, + { + "start": 30400.06, + "end": 30402.98, + "probability": 0.9884 + }, + { + "start": 30403.76, + "end": 30406.54, + "probability": 0.9932 + }, + { + "start": 30407.78, + "end": 30410.24, + "probability": 0.9497 + }, + { + "start": 30411.2, + "end": 30411.94, + "probability": 0.39 + }, + { + "start": 30412.72, + "end": 30414.32, + "probability": 0.9667 + }, + { + "start": 30415.42, + "end": 30417.1, + "probability": 0.8657 + }, + { + "start": 30417.66, + "end": 30418.04, + "probability": 0.9402 + }, + { + "start": 30418.48, + "end": 30418.84, + "probability": 0.9448 + }, + { + "start": 30420.04, + "end": 30424.06, + "probability": 0.8914 + }, + { + "start": 30424.96, + "end": 30426.18, + "probability": 0.8626 + }, + { + "start": 30426.96, + "end": 30428.22, + "probability": 0.9778 + }, + { + "start": 30430.0, + "end": 30435.48, + "probability": 0.9866 + }, + { + "start": 30436.1, + "end": 30436.92, + "probability": 0.9946 + }, + { + "start": 30437.48, + "end": 30439.96, + "probability": 0.9761 + }, + { + "start": 30440.94, + "end": 30442.02, + "probability": 0.7883 + }, + { + "start": 30443.36, + "end": 30445.64, + "probability": 0.8381 + }, + { + "start": 30446.94, + "end": 30450.14, + "probability": 0.9572 + }, + { + "start": 30450.7, + "end": 30453.44, + "probability": 0.9859 + }, + { + "start": 30454.2, + "end": 30455.6, + "probability": 0.9922 + }, + { + "start": 30456.48, + "end": 30458.92, + "probability": 0.8729 + }, + { + "start": 30459.48, + "end": 30461.16, + "probability": 0.8959 + }, + { + "start": 30462.18, + "end": 30465.02, + "probability": 0.9514 + }, + { + "start": 30465.56, + "end": 30467.32, + "probability": 0.9431 + }, + { + "start": 30468.06, + "end": 30469.4, + "probability": 0.96 + }, + { + "start": 30470.42, + "end": 30471.19, + "probability": 0.8972 + }, + { + "start": 30472.12, + "end": 30472.84, + "probability": 0.7445 + }, + { + "start": 30473.14, + "end": 30473.58, + "probability": 0.5075 + }, + { + "start": 30474.36, + "end": 30475.17, + "probability": 0.9946 + }, + { + "start": 30476.2, + "end": 30476.84, + "probability": 0.9383 + }, + { + "start": 30477.04, + "end": 30482.52, + "probability": 0.9913 + }, + { + "start": 30483.22, + "end": 30484.74, + "probability": 0.9058 + }, + { + "start": 30485.26, + "end": 30486.4, + "probability": 0.7011 + }, + { + "start": 30486.92, + "end": 30488.22, + "probability": 0.9317 + }, + { + "start": 30489.38, + "end": 30495.32, + "probability": 0.9965 + }, + { + "start": 30496.32, + "end": 30498.9, + "probability": 0.9744 + }, + { + "start": 30499.68, + "end": 30500.6, + "probability": 0.9815 + }, + { + "start": 30501.76, + "end": 30503.78, + "probability": 0.759 + }, + { + "start": 30504.36, + "end": 30505.62, + "probability": 0.8312 + }, + { + "start": 30506.24, + "end": 30507.28, + "probability": 0.9658 + }, + { + "start": 30508.38, + "end": 30509.73, + "probability": 0.8799 + }, + { + "start": 30510.86, + "end": 30512.52, + "probability": 0.9468 + }, + { + "start": 30513.52, + "end": 30518.02, + "probability": 0.9612 + }, + { + "start": 30519.42, + "end": 30521.28, + "probability": 0.8637 + }, + { + "start": 30521.8, + "end": 30523.24, + "probability": 0.9941 + }, + { + "start": 30524.1, + "end": 30527.0, + "probability": 0.6996 + }, + { + "start": 30527.22, + "end": 30528.14, + "probability": 0.9814 + }, + { + "start": 30528.86, + "end": 30531.16, + "probability": 0.9954 + }, + { + "start": 30531.38, + "end": 30532.06, + "probability": 0.9626 + }, + { + "start": 30533.58, + "end": 30537.8, + "probability": 0.9834 + }, + { + "start": 30538.48, + "end": 30542.84, + "probability": 0.9728 + }, + { + "start": 30543.94, + "end": 30544.58, + "probability": 0.6653 + }, + { + "start": 30545.24, + "end": 30548.7, + "probability": 0.9892 + }, + { + "start": 30549.02, + "end": 30550.78, + "probability": 0.9963 + }, + { + "start": 30551.94, + "end": 30555.1, + "probability": 0.9965 + }, + { + "start": 30555.6, + "end": 30556.98, + "probability": 0.8308 + }, + { + "start": 30557.96, + "end": 30558.4, + "probability": 0.9391 + }, + { + "start": 30558.92, + "end": 30562.44, + "probability": 0.9715 + }, + { + "start": 30563.16, + "end": 30564.18, + "probability": 0.9824 + }, + { + "start": 30564.96, + "end": 30567.0, + "probability": 0.9509 + }, + { + "start": 30567.62, + "end": 30568.76, + "probability": 0.7907 + }, + { + "start": 30568.96, + "end": 30569.72, + "probability": 0.9666 + }, + { + "start": 30570.68, + "end": 30573.54, + "probability": 0.9893 + }, + { + "start": 30574.12, + "end": 30574.54, + "probability": 0.8555 + }, + { + "start": 30575.24, + "end": 30575.96, + "probability": 0.9231 + }, + { + "start": 30577.14, + "end": 30578.38, + "probability": 0.832 + }, + { + "start": 30579.2, + "end": 30580.82, + "probability": 0.9941 + }, + { + "start": 30581.2, + "end": 30581.6, + "probability": 0.925 + }, + { + "start": 30582.02, + "end": 30584.02, + "probability": 0.9956 + }, + { + "start": 30585.04, + "end": 30590.66, + "probability": 0.9876 + }, + { + "start": 30591.92, + "end": 30593.64, + "probability": 0.998 + }, + { + "start": 30594.04, + "end": 30594.96, + "probability": 0.6534 + }, + { + "start": 30595.78, + "end": 30598.22, + "probability": 0.9803 + }, + { + "start": 30600.8, + "end": 30604.16, + "probability": 0.9965 + }, + { + "start": 30605.08, + "end": 30608.6, + "probability": 0.516 + }, + { + "start": 30610.38, + "end": 30611.6, + "probability": 0.9977 + }, + { + "start": 30612.14, + "end": 30612.58, + "probability": 0.7394 + }, + { + "start": 30613.48, + "end": 30615.8, + "probability": 0.9983 + }, + { + "start": 30617.12, + "end": 30621.94, + "probability": 0.9958 + }, + { + "start": 30622.68, + "end": 30624.4, + "probability": 0.9946 + }, + { + "start": 30625.46, + "end": 30627.3, + "probability": 0.6365 + }, + { + "start": 30628.78, + "end": 30630.36, + "probability": 0.9131 + }, + { + "start": 30631.26, + "end": 30636.12, + "probability": 0.9964 + }, + { + "start": 30637.24, + "end": 30638.46, + "probability": 0.9295 + }, + { + "start": 30639.7, + "end": 30643.76, + "probability": 0.9977 + }, + { + "start": 30644.92, + "end": 30646.4, + "probability": 0.7826 + }, + { + "start": 30647.4, + "end": 30649.3, + "probability": 0.8482 + }, + { + "start": 30650.22, + "end": 30652.32, + "probability": 0.9797 + }, + { + "start": 30652.94, + "end": 30653.89, + "probability": 0.5951 + }, + { + "start": 30655.22, + "end": 30657.04, + "probability": 0.948 + }, + { + "start": 30657.92, + "end": 30662.66, + "probability": 0.9153 + }, + { + "start": 30663.5, + "end": 30664.96, + "probability": 0.9604 + }, + { + "start": 30667.04, + "end": 30667.98, + "probability": 0.6629 + }, + { + "start": 30669.22, + "end": 30671.44, + "probability": 0.8005 + }, + { + "start": 30681.42, + "end": 30682.05, + "probability": 0.7959 + }, + { + "start": 30685.2, + "end": 30686.74, + "probability": 0.7478 + }, + { + "start": 30687.54, + "end": 30687.92, + "probability": 0.6516 + }, + { + "start": 30690.36, + "end": 30695.9, + "probability": 0.8962 + }, + { + "start": 30697.6, + "end": 30699.96, + "probability": 0.9582 + }, + { + "start": 30702.16, + "end": 30706.02, + "probability": 0.9796 + }, + { + "start": 30706.02, + "end": 30711.98, + "probability": 0.9834 + }, + { + "start": 30713.76, + "end": 30716.64, + "probability": 0.9985 + }, + { + "start": 30717.64, + "end": 30719.46, + "probability": 0.9915 + }, + { + "start": 30720.1, + "end": 30724.92, + "probability": 0.981 + }, + { + "start": 30724.92, + "end": 30728.14, + "probability": 0.9924 + }, + { + "start": 30728.82, + "end": 30734.0, + "probability": 0.6827 + }, + { + "start": 30735.92, + "end": 30740.78, + "probability": 0.8846 + }, + { + "start": 30743.22, + "end": 30748.72, + "probability": 0.9602 + }, + { + "start": 30748.84, + "end": 30750.02, + "probability": 0.8704 + }, + { + "start": 30751.62, + "end": 30752.86, + "probability": 0.7174 + }, + { + "start": 30752.92, + "end": 30755.92, + "probability": 0.9602 + }, + { + "start": 30756.78, + "end": 30757.42, + "probability": 0.7816 + }, + { + "start": 30757.64, + "end": 30760.42, + "probability": 0.9993 + }, + { + "start": 30760.42, + "end": 30765.64, + "probability": 0.8543 + }, + { + "start": 30765.66, + "end": 30771.68, + "probability": 0.9518 + }, + { + "start": 30773.5, + "end": 30775.98, + "probability": 0.9517 + }, + { + "start": 30776.44, + "end": 30778.72, + "probability": 0.9399 + }, + { + "start": 30778.84, + "end": 30783.22, + "probability": 0.9676 + }, + { + "start": 30783.34, + "end": 30788.64, + "probability": 0.9852 + }, + { + "start": 30790.36, + "end": 30791.16, + "probability": 0.8166 + }, + { + "start": 30791.22, + "end": 30795.58, + "probability": 0.9701 + }, + { + "start": 30795.68, + "end": 30796.74, + "probability": 0.7526 + }, + { + "start": 30797.24, + "end": 30800.02, + "probability": 0.9501 + }, + { + "start": 30801.04, + "end": 30801.36, + "probability": 0.478 + }, + { + "start": 30801.46, + "end": 30803.44, + "probability": 0.9425 + }, + { + "start": 30803.56, + "end": 30809.08, + "probability": 0.8912 + }, + { + "start": 30809.26, + "end": 30815.06, + "probability": 0.9355 + }, + { + "start": 30815.1, + "end": 30816.6, + "probability": 0.5238 + }, + { + "start": 30816.66, + "end": 30818.06, + "probability": 0.9242 + }, + { + "start": 30819.5, + "end": 30820.56, + "probability": 0.6781 + }, + { + "start": 30820.78, + "end": 30822.18, + "probability": 0.96 + }, + { + "start": 30823.18, + "end": 30825.6, + "probability": 0.9235 + }, + { + "start": 30826.26, + "end": 30831.36, + "probability": 0.9244 + }, + { + "start": 30831.66, + "end": 30833.52, + "probability": 0.9966 + }, + { + "start": 30835.62, + "end": 30840.8, + "probability": 0.9403 + }, + { + "start": 30841.78, + "end": 30843.46, + "probability": 0.9327 + }, + { + "start": 30844.58, + "end": 30848.86, + "probability": 0.9688 + }, + { + "start": 30849.1, + "end": 30850.7, + "probability": 0.932 + }, + { + "start": 30851.28, + "end": 30854.38, + "probability": 0.9839 + }, + { + "start": 30855.3, + "end": 30859.62, + "probability": 0.9937 + }, + { + "start": 30860.36, + "end": 30863.31, + "probability": 0.9183 + }, + { + "start": 30864.08, + "end": 30864.84, + "probability": 0.7424 + }, + { + "start": 30865.34, + "end": 30868.04, + "probability": 0.8347 + }, + { + "start": 30869.42, + "end": 30873.8, + "probability": 0.9805 + }, + { + "start": 30874.64, + "end": 30876.78, + "probability": 0.9937 + }, + { + "start": 30877.1, + "end": 30881.33, + "probability": 0.877 + }, + { + "start": 30881.9, + "end": 30884.82, + "probability": 0.9562 + }, + { + "start": 30885.7, + "end": 30889.01, + "probability": 0.9907 + }, + { + "start": 30890.64, + "end": 30896.66, + "probability": 0.962 + }, + { + "start": 30897.36, + "end": 30901.5, + "probability": 0.9444 + }, + { + "start": 30901.62, + "end": 30904.66, + "probability": 0.9854 + }, + { + "start": 30905.62, + "end": 30909.74, + "probability": 0.9901 + }, + { + "start": 30910.28, + "end": 30913.46, + "probability": 0.9602 + }, + { + "start": 30914.58, + "end": 30915.88, + "probability": 0.957 + }, + { + "start": 30916.02, + "end": 30917.26, + "probability": 0.9678 + }, + { + "start": 30917.4, + "end": 30920.22, + "probability": 0.7976 + }, + { + "start": 30921.14, + "end": 30924.0, + "probability": 0.9668 + }, + { + "start": 30924.82, + "end": 30932.2, + "probability": 0.9839 + }, + { + "start": 30932.84, + "end": 30937.68, + "probability": 0.9851 + }, + { + "start": 30938.6, + "end": 30942.22, + "probability": 0.2122 + }, + { + "start": 30942.24, + "end": 30942.66, + "probability": 0.3753 + }, + { + "start": 30942.76, + "end": 30945.06, + "probability": 0.937 + }, + { + "start": 30946.18, + "end": 30948.52, + "probability": 0.7652 + }, + { + "start": 30948.9, + "end": 30952.82, + "probability": 0.9951 + }, + { + "start": 30953.52, + "end": 30956.72, + "probability": 0.9977 + }, + { + "start": 30958.56, + "end": 30962.71, + "probability": 0.8619 + }, + { + "start": 30963.8, + "end": 30967.4, + "probability": 0.8938 + }, + { + "start": 30968.18, + "end": 30973.06, + "probability": 0.9928 + }, + { + "start": 30973.76, + "end": 30977.36, + "probability": 0.9309 + }, + { + "start": 30977.98, + "end": 30980.02, + "probability": 0.9977 + }, + { + "start": 30980.74, + "end": 30983.6, + "probability": 0.9178 + }, + { + "start": 30984.08, + "end": 30985.42, + "probability": 0.4659 + }, + { + "start": 30985.88, + "end": 30988.94, + "probability": 0.9953 + }, + { + "start": 30990.34, + "end": 30991.32, + "probability": 0.7068 + }, + { + "start": 30991.98, + "end": 30994.54, + "probability": 0.8899 + }, + { + "start": 31004.32, + "end": 31005.65, + "probability": 0.748 + }, + { + "start": 31008.04, + "end": 31010.1, + "probability": 0.3913 + }, + { + "start": 31010.3, + "end": 31011.48, + "probability": 0.6998 + }, + { + "start": 31011.62, + "end": 31013.78, + "probability": 0.9979 + }, + { + "start": 31014.28, + "end": 31015.98, + "probability": 0.9878 + }, + { + "start": 31016.24, + "end": 31019.22, + "probability": 0.997 + }, + { + "start": 31019.7, + "end": 31020.88, + "probability": 0.9102 + }, + { + "start": 31021.64, + "end": 31025.14, + "probability": 0.7531 + }, + { + "start": 31025.64, + "end": 31026.08, + "probability": 0.9418 + }, + { + "start": 31026.44, + "end": 31030.74, + "probability": 0.949 + }, + { + "start": 31030.94, + "end": 31031.72, + "probability": 0.939 + }, + { + "start": 31032.12, + "end": 31032.52, + "probability": 0.7493 + }, + { + "start": 31033.12, + "end": 31034.5, + "probability": 0.9782 + }, + { + "start": 31035.18, + "end": 31038.44, + "probability": 0.9971 + }, + { + "start": 31038.82, + "end": 31045.26, + "probability": 0.99 + }, + { + "start": 31045.66, + "end": 31050.18, + "probability": 0.9961 + }, + { + "start": 31050.18, + "end": 31053.56, + "probability": 0.9655 + }, + { + "start": 31053.64, + "end": 31055.12, + "probability": 0.7921 + }, + { + "start": 31055.64, + "end": 31057.35, + "probability": 0.9433 + }, + { + "start": 31057.82, + "end": 31059.52, + "probability": 0.9945 + }, + { + "start": 31060.32, + "end": 31064.2, + "probability": 0.9932 + }, + { + "start": 31065.3, + "end": 31066.86, + "probability": 0.7751 + }, + { + "start": 31067.14, + "end": 31068.16, + "probability": 0.591 + }, + { + "start": 31068.5, + "end": 31073.54, + "probability": 0.9756 + }, + { + "start": 31074.14, + "end": 31074.88, + "probability": 0.7238 + }, + { + "start": 31076.16, + "end": 31077.7, + "probability": 0.9675 + }, + { + "start": 31078.28, + "end": 31082.24, + "probability": 0.9536 + }, + { + "start": 31082.94, + "end": 31083.04, + "probability": 0.7114 + }, + { + "start": 31083.18, + "end": 31084.1, + "probability": 0.5833 + }, + { + "start": 31084.32, + "end": 31084.88, + "probability": 0.9263 + }, + { + "start": 31084.88, + "end": 31086.56, + "probability": 0.993 + }, + { + "start": 31086.9, + "end": 31087.16, + "probability": 0.948 + }, + { + "start": 31087.18, + "end": 31088.1, + "probability": 0.8601 + }, + { + "start": 31088.48, + "end": 31094.96, + "probability": 0.9854 + }, + { + "start": 31095.56, + "end": 31100.54, + "probability": 0.9958 + }, + { + "start": 31100.9, + "end": 31102.5, + "probability": 0.9971 + }, + { + "start": 31102.86, + "end": 31104.3, + "probability": 0.9988 + }, + { + "start": 31104.7, + "end": 31107.08, + "probability": 0.9963 + }, + { + "start": 31107.66, + "end": 31108.58, + "probability": 0.8145 + }, + { + "start": 31108.66, + "end": 31109.66, + "probability": 0.9058 + }, + { + "start": 31109.96, + "end": 31111.96, + "probability": 0.9967 + }, + { + "start": 31112.0, + "end": 31113.12, + "probability": 0.9829 + }, + { + "start": 31113.62, + "end": 31114.54, + "probability": 0.9135 + }, + { + "start": 31114.74, + "end": 31115.3, + "probability": 0.9347 + }, + { + "start": 31115.3, + "end": 31116.08, + "probability": 0.7467 + }, + { + "start": 31116.44, + "end": 31118.86, + "probability": 0.9523 + }, + { + "start": 31118.9, + "end": 31120.38, + "probability": 0.9906 + }, + { + "start": 31120.48, + "end": 31122.12, + "probability": 0.9872 + }, + { + "start": 31122.46, + "end": 31124.36, + "probability": 0.9587 + }, + { + "start": 31125.22, + "end": 31126.46, + "probability": 0.9962 + }, + { + "start": 31126.84, + "end": 31131.16, + "probability": 0.9907 + }, + { + "start": 31131.74, + "end": 31132.68, + "probability": 0.8403 + }, + { + "start": 31133.54, + "end": 31135.8, + "probability": 0.989 + }, + { + "start": 31136.92, + "end": 31139.24, + "probability": 0.9865 + }, + { + "start": 31139.44, + "end": 31143.68, + "probability": 0.9941 + }, + { + "start": 31144.4, + "end": 31149.76, + "probability": 0.726 + }, + { + "start": 31150.46, + "end": 31153.78, + "probability": 0.9966 + }, + { + "start": 31154.7, + "end": 31155.62, + "probability": 0.9976 + }, + { + "start": 31155.7, + "end": 31157.92, + "probability": 0.918 + }, + { + "start": 31158.96, + "end": 31162.96, + "probability": 0.9771 + }, + { + "start": 31163.58, + "end": 31166.14, + "probability": 0.9951 + }, + { + "start": 31166.68, + "end": 31171.46, + "probability": 0.9953 + }, + { + "start": 31172.22, + "end": 31174.16, + "probability": 0.9937 + }, + { + "start": 31174.62, + "end": 31178.12, + "probability": 0.999 + }, + { + "start": 31179.28, + "end": 31184.68, + "probability": 0.9983 + }, + { + "start": 31185.08, + "end": 31187.7, + "probability": 0.9224 + }, + { + "start": 31188.18, + "end": 31194.0, + "probability": 0.9973 + }, + { + "start": 31194.56, + "end": 31195.76, + "probability": 0.7931 + }, + { + "start": 31195.8, + "end": 31197.52, + "probability": 0.9897 + }, + { + "start": 31197.56, + "end": 31199.02, + "probability": 0.8288 + }, + { + "start": 31200.14, + "end": 31201.7, + "probability": 0.9821 + }, + { + "start": 31202.2, + "end": 31205.24, + "probability": 0.9973 + }, + { + "start": 31205.98, + "end": 31207.6, + "probability": 0.8676 + }, + { + "start": 31208.24, + "end": 31209.86, + "probability": 0.7951 + }, + { + "start": 31211.28, + "end": 31212.2, + "probability": 0.7528 + }, + { + "start": 31213.16, + "end": 31214.04, + "probability": 0.8526 + }, + { + "start": 31214.62, + "end": 31216.74, + "probability": 0.9527 + }, + { + "start": 31217.3, + "end": 31220.66, + "probability": 0.9763 + }, + { + "start": 31221.06, + "end": 31225.24, + "probability": 0.9889 + }, + { + "start": 31225.88, + "end": 31229.94, + "probability": 0.9591 + }, + { + "start": 31230.88, + "end": 31232.94, + "probability": 0.9539 + }, + { + "start": 31232.96, + "end": 31234.36, + "probability": 0.876 + }, + { + "start": 31234.58, + "end": 31235.78, + "probability": 0.917 + }, + { + "start": 31236.18, + "end": 31237.94, + "probability": 0.7795 + }, + { + "start": 31238.8, + "end": 31248.92, + "probability": 0.925 + }, + { + "start": 31249.54, + "end": 31251.1, + "probability": 0.9038 + }, + { + "start": 31251.18, + "end": 31257.46, + "probability": 0.8523 + }, + { + "start": 31257.96, + "end": 31258.5, + "probability": 0.851 + }, + { + "start": 31259.06, + "end": 31264.72, + "probability": 0.9749 + }, + { + "start": 31264.72, + "end": 31269.52, + "probability": 0.9984 + }, + { + "start": 31269.88, + "end": 31271.66, + "probability": 0.9717 + }, + { + "start": 31272.2, + "end": 31273.78, + "probability": 0.7945 + }, + { + "start": 31274.02, + "end": 31280.56, + "probability": 0.999 + }, + { + "start": 31281.02, + "end": 31281.96, + "probability": 0.5727 + }, + { + "start": 31282.0, + "end": 31282.66, + "probability": 0.6297 + }, + { + "start": 31283.38, + "end": 31288.28, + "probability": 0.9683 + }, + { + "start": 31289.54, + "end": 31293.02, + "probability": 0.9702 + }, + { + "start": 31293.54, + "end": 31295.8, + "probability": 0.842 + }, + { + "start": 31296.22, + "end": 31297.86, + "probability": 0.5784 + }, + { + "start": 31298.28, + "end": 31301.46, + "probability": 0.9915 + }, + { + "start": 31302.2, + "end": 31303.76, + "probability": 0.7998 + }, + { + "start": 31304.62, + "end": 31307.92, + "probability": 0.9443 + }, + { + "start": 31308.0, + "end": 31308.68, + "probability": 0.8348 + }, + { + "start": 31308.72, + "end": 31309.14, + "probability": 0.8891 + }, + { + "start": 31309.54, + "end": 31312.82, + "probability": 0.9905 + }, + { + "start": 31313.92, + "end": 31317.46, + "probability": 0.8252 + }, + { + "start": 31317.74, + "end": 31319.18, + "probability": 0.5756 + }, + { + "start": 31319.18, + "end": 31320.3, + "probability": 0.3325 + }, + { + "start": 31320.76, + "end": 31323.32, + "probability": 0.9372 + }, + { + "start": 31323.88, + "end": 31325.12, + "probability": 0.8519 + }, + { + "start": 31325.4, + "end": 31327.06, + "probability": 0.9909 + }, + { + "start": 31327.44, + "end": 31329.14, + "probability": 0.7361 + }, + { + "start": 31329.42, + "end": 31331.06, + "probability": 0.937 + }, + { + "start": 31331.38, + "end": 31333.76, + "probability": 0.9801 + }, + { + "start": 31334.14, + "end": 31337.66, + "probability": 0.9871 + }, + { + "start": 31338.26, + "end": 31339.22, + "probability": 0.9265 + }, + { + "start": 31339.9, + "end": 31342.06, + "probability": 0.9849 + }, + { + "start": 31342.84, + "end": 31343.14, + "probability": 0.6876 + }, + { + "start": 31343.58, + "end": 31344.28, + "probability": 0.655 + }, + { + "start": 31344.42, + "end": 31347.84, + "probability": 0.7747 + }, + { + "start": 31347.98, + "end": 31349.16, + "probability": 0.9307 + }, + { + "start": 31362.96, + "end": 31364.12, + "probability": 0.5256 + }, + { + "start": 31364.36, + "end": 31366.68, + "probability": 0.5679 + }, + { + "start": 31366.82, + "end": 31371.48, + "probability": 0.9929 + }, + { + "start": 31372.0, + "end": 31373.96, + "probability": 0.767 + }, + { + "start": 31375.04, + "end": 31376.04, + "probability": 0.8525 + }, + { + "start": 31377.08, + "end": 31378.38, + "probability": 0.9838 + }, + { + "start": 31378.82, + "end": 31379.72, + "probability": 0.6972 + }, + { + "start": 31380.04, + "end": 31386.58, + "probability": 0.9241 + }, + { + "start": 31387.42, + "end": 31389.52, + "probability": 0.9302 + }, + { + "start": 31389.66, + "end": 31390.36, + "probability": 0.9186 + }, + { + "start": 31390.76, + "end": 31395.2, + "probability": 0.9951 + }, + { + "start": 31396.14, + "end": 31403.42, + "probability": 0.96 + }, + { + "start": 31404.34, + "end": 31407.56, + "probability": 0.9827 + }, + { + "start": 31408.3, + "end": 31412.52, + "probability": 0.9946 + }, + { + "start": 31413.06, + "end": 31414.38, + "probability": 0.985 + }, + { + "start": 31415.14, + "end": 31420.42, + "probability": 0.9744 + }, + { + "start": 31423.02, + "end": 31426.3, + "probability": 0.9022 + }, + { + "start": 31426.4, + "end": 31427.16, + "probability": 0.908 + }, + { + "start": 31427.26, + "end": 31429.14, + "probability": 0.9351 + }, + { + "start": 31429.98, + "end": 31430.9, + "probability": 0.9113 + }, + { + "start": 31431.04, + "end": 31433.4, + "probability": 0.9736 + }, + { + "start": 31433.76, + "end": 31436.1, + "probability": 0.9863 + }, + { + "start": 31436.72, + "end": 31437.5, + "probability": 0.956 + }, + { + "start": 31437.64, + "end": 31438.82, + "probability": 0.9823 + }, + { + "start": 31439.44, + "end": 31442.77, + "probability": 0.876 + }, + { + "start": 31443.9, + "end": 31445.12, + "probability": 0.8639 + }, + { + "start": 31445.22, + "end": 31448.62, + "probability": 0.9567 + }, + { + "start": 31448.74, + "end": 31449.6, + "probability": 0.8597 + }, + { + "start": 31449.72, + "end": 31452.04, + "probability": 0.9532 + }, + { + "start": 31452.66, + "end": 31453.44, + "probability": 0.7725 + }, + { + "start": 31454.42, + "end": 31461.34, + "probability": 0.9741 + }, + { + "start": 31462.48, + "end": 31463.59, + "probability": 0.8678 + }, + { + "start": 31463.92, + "end": 31465.18, + "probability": 0.5345 + }, + { + "start": 31465.6, + "end": 31466.55, + "probability": 0.9838 + }, + { + "start": 31466.72, + "end": 31468.06, + "probability": 0.6499 + }, + { + "start": 31468.54, + "end": 31470.54, + "probability": 0.9458 + }, + { + "start": 31471.52, + "end": 31472.82, + "probability": 0.9841 + }, + { + "start": 31473.56, + "end": 31480.01, + "probability": 0.9858 + }, + { + "start": 31480.72, + "end": 31485.43, + "probability": 0.9961 + }, + { + "start": 31485.94, + "end": 31490.58, + "probability": 0.9845 + }, + { + "start": 31491.42, + "end": 31495.17, + "probability": 0.9979 + }, + { + "start": 31495.46, + "end": 31498.56, + "probability": 0.96 + }, + { + "start": 31499.2, + "end": 31500.64, + "probability": 0.9985 + }, + { + "start": 31501.66, + "end": 31503.36, + "probability": 0.9775 + }, + { + "start": 31503.58, + "end": 31505.44, + "probability": 0.8997 + }, + { + "start": 31505.82, + "end": 31507.12, + "probability": 0.9817 + }, + { + "start": 31507.48, + "end": 31510.8, + "probability": 0.9937 + }, + { + "start": 31511.02, + "end": 31513.78, + "probability": 0.7136 + }, + { + "start": 31514.74, + "end": 31516.92, + "probability": 0.8912 + }, + { + "start": 31517.06, + "end": 31517.44, + "probability": 0.863 + }, + { + "start": 31517.54, + "end": 31517.98, + "probability": 0.8457 + }, + { + "start": 31518.04, + "end": 31520.26, + "probability": 0.9357 + }, + { + "start": 31521.02, + "end": 31522.51, + "probability": 0.9913 + }, + { + "start": 31522.66, + "end": 31524.48, + "probability": 0.8787 + }, + { + "start": 31524.96, + "end": 31527.94, + "probability": 0.9173 + }, + { + "start": 31528.78, + "end": 31530.74, + "probability": 0.7171 + }, + { + "start": 31530.9, + "end": 31531.1, + "probability": 0.9596 + }, + { + "start": 31531.18, + "end": 31536.2, + "probability": 0.9961 + }, + { + "start": 31536.86, + "end": 31538.24, + "probability": 0.96 + }, + { + "start": 31538.72, + "end": 31543.2, + "probability": 0.9771 + }, + { + "start": 31543.84, + "end": 31545.74, + "probability": 0.7765 + }, + { + "start": 31546.68, + "end": 31548.38, + "probability": 0.916 + }, + { + "start": 31549.24, + "end": 31551.2, + "probability": 0.9971 + }, + { + "start": 31551.4, + "end": 31552.06, + "probability": 0.9843 + }, + { + "start": 31552.22, + "end": 31554.82, + "probability": 0.9609 + }, + { + "start": 31555.32, + "end": 31556.96, + "probability": 0.9794 + }, + { + "start": 31557.42, + "end": 31560.68, + "probability": 0.9844 + }, + { + "start": 31560.74, + "end": 31561.66, + "probability": 0.5498 + }, + { + "start": 31562.2, + "end": 31564.28, + "probability": 0.9922 + }, + { + "start": 31564.44, + "end": 31565.54, + "probability": 0.9902 + }, + { + "start": 31566.04, + "end": 31567.48, + "probability": 0.95 + }, + { + "start": 31568.04, + "end": 31571.96, + "probability": 0.9627 + }, + { + "start": 31572.82, + "end": 31575.39, + "probability": 0.9841 + }, + { + "start": 31576.22, + "end": 31577.63, + "probability": 0.9468 + }, + { + "start": 31577.74, + "end": 31580.98, + "probability": 0.842 + }, + { + "start": 31581.38, + "end": 31585.52, + "probability": 0.9617 + }, + { + "start": 31586.62, + "end": 31589.18, + "probability": 0.998 + }, + { + "start": 31589.5, + "end": 31594.58, + "probability": 0.9962 + }, + { + "start": 31595.14, + "end": 31596.56, + "probability": 0.9956 + }, + { + "start": 31596.72, + "end": 31601.58, + "probability": 0.939 + }, + { + "start": 31601.84, + "end": 31603.0, + "probability": 0.9874 + }, + { + "start": 31603.16, + "end": 31603.9, + "probability": 0.9733 + }, + { + "start": 31604.04, + "end": 31606.0, + "probability": 0.9969 + }, + { + "start": 31606.14, + "end": 31607.1, + "probability": 0.6873 + }, + { + "start": 31607.46, + "end": 31609.44, + "probability": 0.6107 + }, + { + "start": 31609.56, + "end": 31612.92, + "probability": 0.9509 + }, + { + "start": 31614.64, + "end": 31615.66, + "probability": 0.793 + }, + { + "start": 31615.98, + "end": 31618.78, + "probability": 0.8921 + }, + { + "start": 31619.3, + "end": 31623.14, + "probability": 0.8995 + }, + { + "start": 31623.5, + "end": 31624.52, + "probability": 0.9941 + }, + { + "start": 31624.98, + "end": 31627.78, + "probability": 0.8244 + }, + { + "start": 31628.2, + "end": 31629.6, + "probability": 0.9786 + }, + { + "start": 31630.26, + "end": 31631.78, + "probability": 0.9749 + }, + { + "start": 31631.88, + "end": 31634.36, + "probability": 0.649 + }, + { + "start": 31634.36, + "end": 31637.84, + "probability": 0.9739 + }, + { + "start": 31638.52, + "end": 31639.54, + "probability": 0.9697 + }, + { + "start": 31639.98, + "end": 31643.94, + "probability": 0.9909 + }, + { + "start": 31644.28, + "end": 31646.08, + "probability": 0.9915 + }, + { + "start": 31646.7, + "end": 31647.74, + "probability": 0.9858 + }, + { + "start": 31648.94, + "end": 31652.12, + "probability": 0.9767 + }, + { + "start": 31652.72, + "end": 31655.53, + "probability": 0.9497 + }, + { + "start": 31655.84, + "end": 31656.14, + "probability": 0.7336 + }, + { + "start": 31656.22, + "end": 31658.96, + "probability": 0.7337 + }, + { + "start": 31659.06, + "end": 31661.28, + "probability": 0.9381 + }, + { + "start": 31661.7, + "end": 31664.38, + "probability": 0.974 + }, + { + "start": 31664.8, + "end": 31666.92, + "probability": 0.8967 + }, + { + "start": 31667.04, + "end": 31667.38, + "probability": 0.8412 + }, + { + "start": 31667.64, + "end": 31668.26, + "probability": 0.8145 + }, + { + "start": 31670.04, + "end": 31672.84, + "probability": 0.782 + }, + { + "start": 31686.4, + "end": 31687.92, + "probability": 0.8125 + }, + { + "start": 31688.24, + "end": 31693.56, + "probability": 0.6285 + }, + { + "start": 31693.62, + "end": 31694.62, + "probability": 0.6957 + }, + { + "start": 31696.12, + "end": 31698.5, + "probability": 0.56 + }, + { + "start": 31700.88, + "end": 31703.98, + "probability": 0.9752 + }, + { + "start": 31705.52, + "end": 31706.9, + "probability": 0.0632 + }, + { + "start": 31708.02, + "end": 31708.54, + "probability": 0.0165 + }, + { + "start": 31708.54, + "end": 31711.27, + "probability": 0.5045 + }, + { + "start": 31712.54, + "end": 31713.6, + "probability": 0.917 + }, + { + "start": 31714.38, + "end": 31717.46, + "probability": 0.9124 + }, + { + "start": 31718.48, + "end": 31721.16, + "probability": 0.955 + }, + { + "start": 31722.46, + "end": 31724.86, + "probability": 0.981 + }, + { + "start": 31726.38, + "end": 31729.8, + "probability": 0.9114 + }, + { + "start": 31731.52, + "end": 31734.27, + "probability": 0.9937 + }, + { + "start": 31735.68, + "end": 31737.56, + "probability": 0.9924 + }, + { + "start": 31738.3, + "end": 31739.56, + "probability": 0.7213 + }, + { + "start": 31740.08, + "end": 31741.92, + "probability": 0.9974 + }, + { + "start": 31743.3, + "end": 31744.14, + "probability": 0.9291 + }, + { + "start": 31744.88, + "end": 31744.88, + "probability": 0.0001 + }, + { + "start": 31746.74, + "end": 31748.59, + "probability": 0.0106 + }, + { + "start": 31749.22, + "end": 31752.18, + "probability": 0.9304 + }, + { + "start": 31752.94, + "end": 31756.46, + "probability": 0.8583 + }, + { + "start": 31757.66, + "end": 31759.52, + "probability": 0.9659 + }, + { + "start": 31760.68, + "end": 31766.62, + "probability": 0.9786 + }, + { + "start": 31767.38, + "end": 31770.06, + "probability": 0.9987 + }, + { + "start": 31772.09, + "end": 31778.88, + "probability": 0.9947 + }, + { + "start": 31779.04, + "end": 31781.36, + "probability": 0.9867 + }, + { + "start": 31782.2, + "end": 31784.86, + "probability": 0.6789 + }, + { + "start": 31785.76, + "end": 31786.9, + "probability": 0.7679 + }, + { + "start": 31789.54, + "end": 31792.06, + "probability": 0.9671 + }, + { + "start": 31792.18, + "end": 31793.48, + "probability": 0.7396 + }, + { + "start": 31793.83, + "end": 31794.93, + "probability": 0.9128 + }, + { + "start": 31795.66, + "end": 31796.22, + "probability": 0.9919 + }, + { + "start": 31797.26, + "end": 31799.78, + "probability": 0.9949 + }, + { + "start": 31800.44, + "end": 31802.64, + "probability": 0.9746 + }, + { + "start": 31802.72, + "end": 31806.14, + "probability": 0.9232 + }, + { + "start": 31806.6, + "end": 31808.48, + "probability": 0.9955 + }, + { + "start": 31809.58, + "end": 31811.76, + "probability": 0.7794 + }, + { + "start": 31812.52, + "end": 31816.46, + "probability": 0.9083 + }, + { + "start": 31816.96, + "end": 31818.68, + "probability": 0.9926 + }, + { + "start": 31819.32, + "end": 31820.6, + "probability": 0.9377 + }, + { + "start": 31821.16, + "end": 31822.64, + "probability": 0.9961 + }, + { + "start": 31823.1, + "end": 31823.98, + "probability": 0.5895 + }, + { + "start": 31824.56, + "end": 31825.64, + "probability": 0.6063 + }, + { + "start": 31826.1, + "end": 31828.08, + "probability": 0.659 + }, + { + "start": 31828.14, + "end": 31829.44, + "probability": 0.8291 + }, + { + "start": 31829.62, + "end": 31829.84, + "probability": 0.7573 + }, + { + "start": 31829.88, + "end": 31830.44, + "probability": 0.7908 + }, + { + "start": 31830.86, + "end": 31834.54, + "probability": 0.9565 + }, + { + "start": 31835.56, + "end": 31837.06, + "probability": 0.9902 + }, + { + "start": 31837.9, + "end": 31845.92, + "probability": 0.9565 + }, + { + "start": 31846.34, + "end": 31851.46, + "probability": 0.9905 + }, + { + "start": 31852.48, + "end": 31853.82, + "probability": 0.9973 + }, + { + "start": 31854.34, + "end": 31861.26, + "probability": 0.8039 + }, + { + "start": 31861.26, + "end": 31865.86, + "probability": 0.9712 + }, + { + "start": 31865.96, + "end": 31868.2, + "probability": 0.3345 + }, + { + "start": 31868.28, + "end": 31870.1, + "probability": 0.9797 + }, + { + "start": 31870.5, + "end": 31872.04, + "probability": 0.8835 + }, + { + "start": 31872.14, + "end": 31874.34, + "probability": 0.7194 + }, + { + "start": 31874.46, + "end": 31875.38, + "probability": 0.9274 + }, + { + "start": 31875.46, + "end": 31875.6, + "probability": 0.4764 + }, + { + "start": 31876.06, + "end": 31877.26, + "probability": 0.9949 + }, + { + "start": 31877.34, + "end": 31877.76, + "probability": 0.9543 + }, + { + "start": 31879.46, + "end": 31882.86, + "probability": 0.9116 + }, + { + "start": 31883.2, + "end": 31883.2, + "probability": 0.2888 + }, + { + "start": 31883.2, + "end": 31889.56, + "probability": 0.3689 + }, + { + "start": 31889.68, + "end": 31891.46, + "probability": 0.7802 + }, + { + "start": 31891.46, + "end": 31894.64, + "probability": 0.2097 + }, + { + "start": 31895.16, + "end": 31896.56, + "probability": 0.9858 + }, + { + "start": 31896.56, + "end": 31897.06, + "probability": 0.7921 + }, + { + "start": 31897.06, + "end": 31900.56, + "probability": 0.9499 + }, + { + "start": 31900.56, + "end": 31903.5, + "probability": 0.973 + }, + { + "start": 31903.8, + "end": 31904.76, + "probability": 0.8542 + }, + { + "start": 31904.84, + "end": 31906.04, + "probability": 0.5518 + }, + { + "start": 31906.34, + "end": 31907.5, + "probability": 0.9537 + }, + { + "start": 31907.78, + "end": 31909.76, + "probability": 0.9746 + }, + { + "start": 31910.28, + "end": 31913.62, + "probability": 0.9081 + }, + { + "start": 31913.66, + "end": 31917.06, + "probability": 0.9966 + }, + { + "start": 31917.44, + "end": 31918.32, + "probability": 0.4827 + }, + { + "start": 31919.14, + "end": 31924.3, + "probability": 0.996 + }, + { + "start": 31924.84, + "end": 31925.86, + "probability": 0.9912 + }, + { + "start": 31925.9, + "end": 31928.78, + "probability": 0.8904 + }, + { + "start": 31929.54, + "end": 31930.94, + "probability": 0.4533 + }, + { + "start": 31931.4, + "end": 31934.96, + "probability": 0.9297 + }, + { + "start": 31935.22, + "end": 31938.82, + "probability": 0.8934 + }, + { + "start": 31939.02, + "end": 31940.58, + "probability": 0.5901 + }, + { + "start": 31940.8, + "end": 31944.8, + "probability": 0.7034 + }, + { + "start": 31945.52, + "end": 31948.0, + "probability": 0.44 + }, + { + "start": 31948.2, + "end": 31950.48, + "probability": 0.8918 + }, + { + "start": 31950.7, + "end": 31951.88, + "probability": 0.6583 + }, + { + "start": 31952.64, + "end": 31954.42, + "probability": 0.5175 + }, + { + "start": 31955.24, + "end": 31957.4, + "probability": 0.9893 + }, + { + "start": 31958.14, + "end": 31962.52, + "probability": 0.9976 + }, + { + "start": 31962.78, + "end": 31965.34, + "probability": 0.662 + }, + { + "start": 31965.7, + "end": 31967.64, + "probability": 0.8201 + }, + { + "start": 31967.86, + "end": 31969.27, + "probability": 0.9134 + }, + { + "start": 31969.82, + "end": 31971.46, + "probability": 0.9801 + }, + { + "start": 31971.66, + "end": 31972.04, + "probability": 0.8483 + }, + { + "start": 31972.08, + "end": 31972.28, + "probability": 0.7928 + }, + { + "start": 31972.32, + "end": 31973.4, + "probability": 0.9456 + }, + { + "start": 31973.82, + "end": 31975.66, + "probability": 0.9592 + }, + { + "start": 31976.1, + "end": 31977.06, + "probability": 0.4369 + }, + { + "start": 31977.54, + "end": 31980.04, + "probability": 0.9816 + }, + { + "start": 31980.42, + "end": 31981.3, + "probability": 0.4922 + }, + { + "start": 31981.46, + "end": 31982.02, + "probability": 0.7013 + }, + { + "start": 31982.88, + "end": 31983.74, + "probability": 0.9317 + }, + { + "start": 31984.0, + "end": 31984.56, + "probability": 0.9276 + }, + { + "start": 31984.76, + "end": 31985.6, + "probability": 0.797 + }, + { + "start": 31985.72, + "end": 31986.48, + "probability": 0.4136 + }, + { + "start": 31986.48, + "end": 31987.96, + "probability": 0.4461 + }, + { + "start": 31987.96, + "end": 31989.62, + "probability": 0.7429 + }, + { + "start": 31989.66, + "end": 31990.1, + "probability": 0.3306 + }, + { + "start": 31990.2, + "end": 31993.12, + "probability": 0.9026 + }, + { + "start": 31993.28, + "end": 31994.44, + "probability": 0.9136 + }, + { + "start": 31994.66, + "end": 31999.08, + "probability": 0.9041 + }, + { + "start": 31999.16, + "end": 32000.28, + "probability": 0.5608 + }, + { + "start": 32000.42, + "end": 32001.27, + "probability": 0.5405 + }, + { + "start": 32001.64, + "end": 32003.7, + "probability": 0.6221 + }, + { + "start": 32003.7, + "end": 32006.92, + "probability": 0.6587 + }, + { + "start": 32006.96, + "end": 32007.92, + "probability": 0.518 + }, + { + "start": 32008.0, + "end": 32009.22, + "probability": 0.7583 + }, + { + "start": 32009.7, + "end": 32011.49, + "probability": 0.2343 + }, + { + "start": 32013.32, + "end": 32014.64, + "probability": 0.6993 + }, + { + "start": 32014.64, + "end": 32018.5, + "probability": 0.8397 + }, + { + "start": 32019.68, + "end": 32021.52, + "probability": 0.5855 + }, + { + "start": 32021.56, + "end": 32022.12, + "probability": 0.9493 + }, + { + "start": 32022.44, + "end": 32023.51, + "probability": 0.2153 + }, + { + "start": 32024.0, + "end": 32025.12, + "probability": 0.5244 + }, + { + "start": 32025.12, + "end": 32029.36, + "probability": 0.5575 + }, + { + "start": 32030.46, + "end": 32036.68, + "probability": 0.9971 + }, + { + "start": 32036.72, + "end": 32038.54, + "probability": 0.988 + }, + { + "start": 32039.34, + "end": 32042.66, + "probability": 0.9424 + }, + { + "start": 32042.66, + "end": 32045.88, + "probability": 0.9984 + }, + { + "start": 32046.5, + "end": 32049.8, + "probability": 0.9988 + }, + { + "start": 32050.94, + "end": 32052.2, + "probability": 0.9951 + }, + { + "start": 32052.46, + "end": 32054.58, + "probability": 0.0545 + }, + { + "start": 32056.96, + "end": 32057.3, + "probability": 0.0385 + }, + { + "start": 32057.3, + "end": 32057.3, + "probability": 0.6388 + }, + { + "start": 32057.3, + "end": 32057.94, + "probability": 0.2528 + }, + { + "start": 32080.78, + "end": 32082.8, + "probability": 0.9283 + }, + { + "start": 32084.22, + "end": 32087.22, + "probability": 0.6352 + }, + { + "start": 32088.12, + "end": 32090.62, + "probability": 0.8222 + }, + { + "start": 32092.54, + "end": 32096.52, + "probability": 0.992 + }, + { + "start": 32102.62, + "end": 32104.36, + "probability": 0.8689 + }, + { + "start": 32105.22, + "end": 32105.52, + "probability": 0.2145 + }, + { + "start": 32105.52, + "end": 32105.66, + "probability": 0.6634 + }, + { + "start": 32106.26, + "end": 32110.76, + "probability": 0.8605 + }, + { + "start": 32112.08, + "end": 32116.5, + "probability": 0.8822 + }, + { + "start": 32117.36, + "end": 32120.66, + "probability": 0.9983 + }, + { + "start": 32120.66, + "end": 32124.4, + "probability": 0.9957 + }, + { + "start": 32125.8, + "end": 32126.9, + "probability": 0.5437 + }, + { + "start": 32126.92, + "end": 32128.08, + "probability": 0.9469 + }, + { + "start": 32128.3, + "end": 32128.78, + "probability": 0.6121 + }, + { + "start": 32128.86, + "end": 32129.68, + "probability": 0.9541 + }, + { + "start": 32130.52, + "end": 32130.66, + "probability": 0.1738 + }, + { + "start": 32131.64, + "end": 32131.74, + "probability": 0.6276 + }, + { + "start": 32131.74, + "end": 32132.56, + "probability": 0.769 + }, + { + "start": 32132.64, + "end": 32133.54, + "probability": 0.8789 + }, + { + "start": 32133.64, + "end": 32136.42, + "probability": 0.9731 + }, + { + "start": 32137.32, + "end": 32137.96, + "probability": 0.7532 + }, + { + "start": 32138.86, + "end": 32142.83, + "probability": 0.9897 + }, + { + "start": 32143.1, + "end": 32145.8, + "probability": 0.8741 + }, + { + "start": 32146.32, + "end": 32148.38, + "probability": 0.9989 + }, + { + "start": 32148.6, + "end": 32148.86, + "probability": 0.7172 + }, + { + "start": 32148.98, + "end": 32149.61, + "probability": 0.8618 + }, + { + "start": 32150.68, + "end": 32153.02, + "probability": 0.9951 + }, + { + "start": 32153.22, + "end": 32154.26, + "probability": 0.7917 + }, + { + "start": 32154.88, + "end": 32158.9, + "probability": 0.5314 + }, + { + "start": 32159.22, + "end": 32163.38, + "probability": 0.9347 + }, + { + "start": 32163.7, + "end": 32165.84, + "probability": 0.9931 + }, + { + "start": 32168.0, + "end": 32171.54, + "probability": 0.9893 + }, + { + "start": 32171.62, + "end": 32175.98, + "probability": 0.8682 + }, + { + "start": 32177.08, + "end": 32178.98, + "probability": 0.8683 + }, + { + "start": 32179.04, + "end": 32181.68, + "probability": 0.9819 + }, + { + "start": 32182.36, + "end": 32183.2, + "probability": 0.9852 + }, + { + "start": 32183.88, + "end": 32185.6, + "probability": 0.992 + }, + { + "start": 32186.4, + "end": 32187.31, + "probability": 0.5663 + }, + { + "start": 32187.46, + "end": 32189.64, + "probability": 0.981 + }, + { + "start": 32189.96, + "end": 32192.16, + "probability": 0.9663 + }, + { + "start": 32192.6, + "end": 32193.82, + "probability": 0.8904 + }, + { + "start": 32195.56, + "end": 32197.46, + "probability": 0.6889 + }, + { + "start": 32197.98, + "end": 32199.0, + "probability": 0.9263 + }, + { + "start": 32199.12, + "end": 32201.38, + "probability": 0.9297 + }, + { + "start": 32202.58, + "end": 32203.42, + "probability": 0.4851 + }, + { + "start": 32203.52, + "end": 32204.7, + "probability": 0.8451 + }, + { + "start": 32204.94, + "end": 32208.0, + "probability": 0.9821 + }, + { + "start": 32208.2, + "end": 32209.2, + "probability": 0.841 + }, + { + "start": 32209.96, + "end": 32209.96, + "probability": 0.3993 + }, + { + "start": 32209.98, + "end": 32211.12, + "probability": 0.6263 + }, + { + "start": 32211.7, + "end": 32213.76, + "probability": 0.957 + }, + { + "start": 32214.18, + "end": 32215.98, + "probability": 0.9512 + }, + { + "start": 32216.18, + "end": 32217.6, + "probability": 0.9872 + }, + { + "start": 32217.88, + "end": 32218.7, + "probability": 0.9095 + }, + { + "start": 32219.38, + "end": 32225.24, + "probability": 0.9978 + }, + { + "start": 32226.22, + "end": 32227.18, + "probability": 0.7466 + }, + { + "start": 32227.32, + "end": 32231.78, + "probability": 0.8857 + }, + { + "start": 32232.68, + "end": 32234.24, + "probability": 0.9616 + }, + { + "start": 32234.38, + "end": 32237.5, + "probability": 0.8088 + }, + { + "start": 32237.5, + "end": 32240.36, + "probability": 0.752 + }, + { + "start": 32241.04, + "end": 32242.92, + "probability": 0.5534 + }, + { + "start": 32243.52, + "end": 32244.82, + "probability": 0.6444 + }, + { + "start": 32244.96, + "end": 32252.68, + "probability": 0.5701 + }, + { + "start": 32252.74, + "end": 32253.12, + "probability": 0.4374 + }, + { + "start": 32253.32, + "end": 32256.52, + "probability": 0.9897 + }, + { + "start": 32256.88, + "end": 32257.64, + "probability": 0.6913 + }, + { + "start": 32258.48, + "end": 32261.66, + "probability": 0.9336 + }, + { + "start": 32262.48, + "end": 32268.98, + "probability": 0.5245 + }, + { + "start": 32269.18, + "end": 32273.08, + "probability": 0.8093 + }, + { + "start": 32273.6, + "end": 32276.71, + "probability": 0.9069 + }, + { + "start": 32277.34, + "end": 32278.86, + "probability": 0.9362 + }, + { + "start": 32278.9, + "end": 32280.0, + "probability": 0.7832 + }, + { + "start": 32280.04, + "end": 32281.54, + "probability": 0.9635 + }, + { + "start": 32283.28, + "end": 32286.98, + "probability": 0.9028 + }, + { + "start": 32288.02, + "end": 32288.7, + "probability": 0.9683 + }, + { + "start": 32289.1, + "end": 32292.08, + "probability": 0.8881 + }, + { + "start": 32292.46, + "end": 32294.3, + "probability": 0.9928 + }, + { + "start": 32294.78, + "end": 32297.24, + "probability": 0.9045 + }, + { + "start": 32297.98, + "end": 32299.6, + "probability": 0.6856 + }, + { + "start": 32299.66, + "end": 32300.6, + "probability": 0.6207 + }, + { + "start": 32300.64, + "end": 32301.8, + "probability": 0.9688 + }, + { + "start": 32301.88, + "end": 32302.88, + "probability": 0.856 + }, + { + "start": 32303.12, + "end": 32305.42, + "probability": 0.8477 + }, + { + "start": 32305.78, + "end": 32308.9, + "probability": 0.7259 + }, + { + "start": 32309.42, + "end": 32311.14, + "probability": 0.5418 + }, + { + "start": 32311.2, + "end": 32311.42, + "probability": 0.6263 + }, + { + "start": 32311.42, + "end": 32311.7, + "probability": 0.6649 + }, + { + "start": 32311.7, + "end": 32314.38, + "probability": 0.8687 + }, + { + "start": 32314.44, + "end": 32316.36, + "probability": 0.9585 + }, + { + "start": 32316.66, + "end": 32325.38, + "probability": 0.4863 + }, + { + "start": 32326.07, + "end": 32329.46, + "probability": 0.889 + }, + { + "start": 32329.74, + "end": 32331.19, + "probability": 0.9871 + }, + { + "start": 32332.06, + "end": 32335.06, + "probability": 0.9724 + }, + { + "start": 32335.72, + "end": 32337.92, + "probability": 0.8863 + }, + { + "start": 32338.86, + "end": 32342.98, + "probability": 0.9213 + }, + { + "start": 32343.1, + "end": 32344.36, + "probability": 0.9302 + }, + { + "start": 32345.2, + "end": 32347.54, + "probability": 0.9626 + }, + { + "start": 32348.06, + "end": 32350.26, + "probability": 0.9775 + }, + { + "start": 32351.08, + "end": 32354.38, + "probability": 0.9907 + }, + { + "start": 32355.16, + "end": 32356.88, + "probability": 0.8149 + }, + { + "start": 32357.44, + "end": 32359.06, + "probability": 0.7986 + }, + { + "start": 32360.44, + "end": 32362.42, + "probability": 0.9983 + }, + { + "start": 32362.58, + "end": 32363.76, + "probability": 0.8734 + }, + { + "start": 32364.28, + "end": 32365.95, + "probability": 0.9675 + }, + { + "start": 32366.36, + "end": 32368.74, + "probability": 0.2396 + }, + { + "start": 32368.96, + "end": 32370.34, + "probability": 0.9535 + }, + { + "start": 32370.69, + "end": 32372.66, + "probability": 0.6853 + }, + { + "start": 32373.72, + "end": 32375.94, + "probability": 0.9695 + }, + { + "start": 32376.02, + "end": 32380.62, + "probability": 0.847 + }, + { + "start": 32380.76, + "end": 32382.26, + "probability": 0.9051 + }, + { + "start": 32382.38, + "end": 32384.26, + "probability": 0.8484 + }, + { + "start": 32384.58, + "end": 32385.8, + "probability": 0.7931 + }, + { + "start": 32385.8, + "end": 32386.22, + "probability": 0.4978 + }, + { + "start": 32386.24, + "end": 32387.52, + "probability": 0.5072 + }, + { + "start": 32387.56, + "end": 32388.14, + "probability": 0.5575 + }, + { + "start": 32389.37, + "end": 32392.14, + "probability": 0.9906 + }, + { + "start": 32392.46, + "end": 32394.38, + "probability": 0.7033 + }, + { + "start": 32394.84, + "end": 32396.08, + "probability": 0.9584 + }, + { + "start": 32396.3, + "end": 32396.86, + "probability": 0.9038 + }, + { + "start": 32396.96, + "end": 32399.76, + "probability": 0.9889 + }, + { + "start": 32400.48, + "end": 32401.08, + "probability": 0.8325 + }, + { + "start": 32401.16, + "end": 32403.08, + "probability": 0.9915 + }, + { + "start": 32403.72, + "end": 32404.34, + "probability": 0.6749 + }, + { + "start": 32404.76, + "end": 32411.08, + "probability": 0.988 + }, + { + "start": 32411.2, + "end": 32412.24, + "probability": 0.2534 + }, + { + "start": 32412.32, + "end": 32415.28, + "probability": 0.8631 + }, + { + "start": 32415.62, + "end": 32417.56, + "probability": 0.6912 + }, + { + "start": 32418.02, + "end": 32420.22, + "probability": 0.9905 + }, + { + "start": 32421.2, + "end": 32423.1, + "probability": 0.8898 + }, + { + "start": 32423.2, + "end": 32423.88, + "probability": 0.8992 + }, + { + "start": 32424.06, + "end": 32425.38, + "probability": 0.7894 + }, + { + "start": 32425.66, + "end": 32425.98, + "probability": 0.9092 + }, + { + "start": 32426.08, + "end": 32426.81, + "probability": 0.9832 + }, + { + "start": 32427.74, + "end": 32431.1, + "probability": 0.9352 + }, + { + "start": 32431.34, + "end": 32432.9, + "probability": 0.9836 + }, + { + "start": 32433.26, + "end": 32434.63, + "probability": 0.7741 + }, + { + "start": 32435.06, + "end": 32436.44, + "probability": 0.9976 + }, + { + "start": 32436.84, + "end": 32440.18, + "probability": 0.8997 + }, + { + "start": 32440.38, + "end": 32440.38, + "probability": 0.9326 + }, + { + "start": 32440.38, + "end": 32440.76, + "probability": 0.2426 + }, + { + "start": 32441.22, + "end": 32441.82, + "probability": 0.7583 + }, + { + "start": 32442.42, + "end": 32444.54, + "probability": 0.5184 + }, + { + "start": 32444.54, + "end": 32445.7, + "probability": 0.663 + }, + { + "start": 32447.42, + "end": 32447.94, + "probability": 0.0375 + }, + { + "start": 32447.94, + "end": 32448.26, + "probability": 0.1646 + }, + { + "start": 32448.36, + "end": 32448.76, + "probability": 0.0241 + }, + { + "start": 32448.76, + "end": 32448.76, + "probability": 0.6767 + }, + { + "start": 32448.76, + "end": 32449.5, + "probability": 0.8757 + }, + { + "start": 32449.5, + "end": 32452.6, + "probability": 0.6324 + }, + { + "start": 32459.36, + "end": 32464.16, + "probability": 0.1346 + }, + { + "start": 32466.72, + "end": 32467.08, + "probability": 0.3212 + }, + { + "start": 32467.08, + "end": 32467.5, + "probability": 0.8228 + }, + { + "start": 32468.8, + "end": 32469.82, + "probability": 0.1149 + }, + { + "start": 32480.98, + "end": 32481.36, + "probability": 0.2389 + }, + { + "start": 32481.84, + "end": 32483.92, + "probability": 0.827 + }, + { + "start": 32484.08, + "end": 32486.0, + "probability": 0.1509 + }, + { + "start": 32487.94, + "end": 32490.76, + "probability": 0.0526 + }, + { + "start": 32491.58, + "end": 32492.52, + "probability": 0.0354 + }, + { + "start": 32495.18, + "end": 32497.32, + "probability": 0.0489 + }, + { + "start": 32498.54, + "end": 32499.26, + "probability": 0.0938 + }, + { + "start": 32499.26, + "end": 32499.52, + "probability": 0.3925 + }, + { + "start": 32499.7, + "end": 32500.04, + "probability": 0.1309 + }, + { + "start": 32505.38, + "end": 32506.98, + "probability": 0.067 + }, + { + "start": 32507.54, + "end": 32508.04, + "probability": 0.0249 + }, + { + "start": 32511.16, + "end": 32512.08, + "probability": 0.048 + }, + { + "start": 32519.2, + "end": 32520.28, + "probability": 0.1997 + }, + { + "start": 32527.26, + "end": 32528.68, + "probability": 0.0182 + }, + { + "start": 32529.64, + "end": 32533.12, + "probability": 0.2563 + }, + { + "start": 32533.12, + "end": 32533.22, + "probability": 0.2375 + }, + { + "start": 32533.22, + "end": 32533.67, + "probability": 0.0168 + }, + { + "start": 32535.28, + "end": 32536.3, + "probability": 0.0108 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32537.0, + "end": 32537.0, + "probability": 0.0 + }, + { + "start": 32540.3, + "end": 32541.7, + "probability": 0.0002 + }, + { + "start": 32545.51, + "end": 32547.54, + "probability": 0.9797 + }, + { + "start": 32549.16, + "end": 32551.44, + "probability": 0.5713 + }, + { + "start": 32554.42, + "end": 32555.98, + "probability": 0.4413 + }, + { + "start": 32556.64, + "end": 32557.48, + "probability": 0.4084 + }, + { + "start": 32557.6, + "end": 32558.26, + "probability": 0.6646 + }, + { + "start": 32558.28, + "end": 32559.6, + "probability": 0.6731 + }, + { + "start": 32559.8, + "end": 32560.58, + "probability": 0.9622 + }, + { + "start": 32561.38, + "end": 32562.24, + "probability": 0.9287 + }, + { + "start": 32563.52, + "end": 32565.48, + "probability": 0.0634 + }, + { + "start": 32576.02, + "end": 32581.25, + "probability": 0.3697 + }, + { + "start": 32582.64, + "end": 32584.0, + "probability": 0.3641 + }, + { + "start": 32584.0, + "end": 32586.98, + "probability": 0.9883 + }, + { + "start": 32587.24, + "end": 32588.72, + "probability": 0.9683 + }, + { + "start": 32588.94, + "end": 32589.12, + "probability": 0.0684 + }, + { + "start": 32589.12, + "end": 32591.18, + "probability": 0.0476 + }, + { + "start": 32591.72, + "end": 32594.18, + "probability": 0.5016 + }, + { + "start": 32594.18, + "end": 32595.78, + "probability": 0.7835 + }, + { + "start": 32596.04, + "end": 32598.0, + "probability": 0.7939 + }, + { + "start": 32598.02, + "end": 32598.6, + "probability": 0.5593 + }, + { + "start": 32598.62, + "end": 32599.6, + "probability": 0.3398 + }, + { + "start": 32599.62, + "end": 32600.53, + "probability": 0.6181 + }, + { + "start": 32601.02, + "end": 32603.82, + "probability": 0.928 + }, + { + "start": 32603.88, + "end": 32604.84, + "probability": 0.5916 + }, + { + "start": 32604.98, + "end": 32606.26, + "probability": 0.9854 + }, + { + "start": 32606.52, + "end": 32608.84, + "probability": 0.9929 + }, + { + "start": 32609.5, + "end": 32611.87, + "probability": 0.9633 + }, + { + "start": 32612.56, + "end": 32615.28, + "probability": 0.7193 + }, + { + "start": 32615.36, + "end": 32617.5, + "probability": 0.9354 + }, + { + "start": 32617.72, + "end": 32618.42, + "probability": 0.8199 + }, + { + "start": 32618.84, + "end": 32621.2, + "probability": 0.9328 + }, + { + "start": 32621.34, + "end": 32623.04, + "probability": 0.8893 + }, + { + "start": 32623.16, + "end": 32623.86, + "probability": 0.3289 + }, + { + "start": 32623.9, + "end": 32625.45, + "probability": 0.9317 + }, + { + "start": 32625.9, + "end": 32626.56, + "probability": 0.9293 + }, + { + "start": 32626.96, + "end": 32626.96, + "probability": 0.232 + }, + { + "start": 32626.96, + "end": 32627.24, + "probability": 0.7291 + }, + { + "start": 32627.34, + "end": 32630.62, + "probability": 0.7964 + }, + { + "start": 32631.43, + "end": 32632.3, + "probability": 0.853 + }, + { + "start": 32634.86, + "end": 32635.1, + "probability": 0.2913 + }, + { + "start": 32635.1, + "end": 32635.26, + "probability": 0.0672 + }, + { + "start": 32635.68, + "end": 32636.4, + "probability": 0.2313 + }, + { + "start": 32636.44, + "end": 32636.72, + "probability": 0.2512 + }, + { + "start": 32636.72, + "end": 32639.26, + "probability": 0.9403 + }, + { + "start": 32639.34, + "end": 32639.94, + "probability": 0.4594 + }, + { + "start": 32640.1, + "end": 32645.14, + "probability": 0.989 + }, + { + "start": 32645.16, + "end": 32645.72, + "probability": 0.1909 + }, + { + "start": 32646.42, + "end": 32648.56, + "probability": 0.6758 + }, + { + "start": 32648.88, + "end": 32649.22, + "probability": 0.2535 + }, + { + "start": 32649.58, + "end": 32650.9, + "probability": 0.2145 + }, + { + "start": 32650.9, + "end": 32650.96, + "probability": 0.45 + }, + { + "start": 32651.1, + "end": 32653.72, + "probability": 0.8936 + }, + { + "start": 32654.28, + "end": 32658.02, + "probability": 0.8193 + }, + { + "start": 32658.06, + "end": 32659.88, + "probability": 0.9722 + }, + { + "start": 32659.96, + "end": 32661.02, + "probability": 0.8887 + }, + { + "start": 32661.78, + "end": 32664.08, + "probability": 0.5814 + }, + { + "start": 32664.08, + "end": 32665.64, + "probability": 0.6064 + }, + { + "start": 32665.76, + "end": 32668.88, + "probability": 0.9859 + }, + { + "start": 32668.9, + "end": 32673.56, + "probability": 0.9607 + }, + { + "start": 32673.86, + "end": 32675.04, + "probability": 0.4911 + }, + { + "start": 32675.54, + "end": 32677.06, + "probability": 0.9506 + }, + { + "start": 32677.65, + "end": 32677.72, + "probability": 0.2035 + }, + { + "start": 32677.72, + "end": 32677.74, + "probability": 0.1036 + }, + { + "start": 32677.74, + "end": 32678.94, + "probability": 0.3908 + }, + { + "start": 32679.18, + "end": 32681.76, + "probability": 0.9124 + }, + { + "start": 32681.88, + "end": 32683.33, + "probability": 0.9412 + }, + { + "start": 32683.4, + "end": 32686.88, + "probability": 0.9086 + }, + { + "start": 32687.7, + "end": 32688.9, + "probability": 0.141 + }, + { + "start": 32691.68, + "end": 32691.74, + "probability": 0.0228 + }, + { + "start": 32692.34, + "end": 32692.42, + "probability": 0.0113 + }, + { + "start": 32692.42, + "end": 32692.54, + "probability": 0.1165 + }, + { + "start": 32692.54, + "end": 32695.94, + "probability": 0.5019 + }, + { + "start": 32696.1, + "end": 32697.09, + "probability": 0.757 + }, + { + "start": 32697.96, + "end": 32698.96, + "probability": 0.96 + }, + { + "start": 32711.76, + "end": 32716.64, + "probability": 0.8776 + }, + { + "start": 32716.94, + "end": 32717.78, + "probability": 0.9352 + }, + { + "start": 32718.7, + "end": 32718.84, + "probability": 0.0365 + }, + { + "start": 32719.54, + "end": 32720.46, + "probability": 0.0167 + }, + { + "start": 32721.21, + "end": 32723.74, + "probability": 0.966 + }, + { + "start": 32723.8, + "end": 32726.74, + "probability": 0.9992 + }, + { + "start": 32733.55, + "end": 32734.93, + "probability": 0.4152 + }, + { + "start": 32734.95, + "end": 32737.15, + "probability": 0.555 + }, + { + "start": 32737.23, + "end": 32738.13, + "probability": 0.8071 + }, + { + "start": 32738.23, + "end": 32739.6, + "probability": 0.9398 + }, + { + "start": 32740.17, + "end": 32741.03, + "probability": 0.5297 + }, + { + "start": 32741.11, + "end": 32742.13, + "probability": 0.7357 + }, + { + "start": 32742.21, + "end": 32743.95, + "probability": 0.851 + }, + { + "start": 32745.27, + "end": 32747.59, + "probability": 0.5931 + }, + { + "start": 32748.61, + "end": 32750.18, + "probability": 0.3932 + }, + { + "start": 32750.81, + "end": 32751.37, + "probability": 0.5528 + }, + { + "start": 32751.83, + "end": 32754.17, + "probability": 0.4256 + }, + { + "start": 32754.17, + "end": 32758.27, + "probability": 0.8768 + }, + { + "start": 32758.37, + "end": 32760.39, + "probability": 0.55 + }, + { + "start": 32760.47, + "end": 32761.83, + "probability": 0.8972 + }, + { + "start": 32762.23, + "end": 32762.67, + "probability": 0.3708 + }, + { + "start": 32763.09, + "end": 32763.33, + "probability": 0.1741 + }, + { + "start": 32763.33, + "end": 32763.41, + "probability": 0.4509 + }, + { + "start": 32763.63, + "end": 32765.71, + "probability": 0.8105 + }, + { + "start": 32765.99, + "end": 32767.63, + "probability": 0.9956 + }, + { + "start": 32768.45, + "end": 32771.57, + "probability": 0.9949 + }, + { + "start": 32771.83, + "end": 32772.41, + "probability": 0.0759 + }, + { + "start": 32772.41, + "end": 32772.55, + "probability": 0.1967 + }, + { + "start": 32772.55, + "end": 32773.05, + "probability": 0.0698 + }, + { + "start": 32773.65, + "end": 32775.85, + "probability": 0.1327 + }, + { + "start": 32775.85, + "end": 32777.75, + "probability": 0.2522 + }, + { + "start": 32777.75, + "end": 32779.13, + "probability": 0.0442 + }, + { + "start": 32779.35, + "end": 32781.47, + "probability": 0.2047 + }, + { + "start": 32782.61, + "end": 32784.65, + "probability": 0.5814 + }, + { + "start": 32785.17, + "end": 32788.17, + "probability": 0.2242 + }, + { + "start": 32790.05, + "end": 32792.95, + "probability": 0.0346 + }, + { + "start": 32793.67, + "end": 32794.75, + "probability": 0.4948 + }, + { + "start": 32794.75, + "end": 32795.89, + "probability": 0.1281 + }, + { + "start": 32796.27, + "end": 32796.57, + "probability": 0.4748 + }, + { + "start": 32796.57, + "end": 32796.81, + "probability": 0.0393 + }, + { + "start": 32797.21, + "end": 32798.99, + "probability": 0.0733 + }, + { + "start": 32800.09, + "end": 32800.86, + "probability": 0.0558 + }, + { + "start": 32801.93, + "end": 32803.25, + "probability": 0.4976 + }, + { + "start": 32805.69, + "end": 32808.55, + "probability": 0.3751 + }, + { + "start": 32808.83, + "end": 32810.59, + "probability": 0.3475 + }, + { + "start": 32810.59, + "end": 32810.71, + "probability": 0.0979 + }, + { + "start": 32811.47, + "end": 32812.89, + "probability": 0.0372 + }, + { + "start": 32813.09, + "end": 32815.35, + "probability": 0.0721 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32850.0, + "end": 32850.0, + "probability": 0.0 + }, + { + "start": 32857.5, + "end": 32858.71, + "probability": 0.1074 + }, + { + "start": 32860.12, + "end": 32861.04, + "probability": 0.3189 + }, + { + "start": 32862.26, + "end": 32862.86, + "probability": 0.2816 + }, + { + "start": 32863.4, + "end": 32864.2, + "probability": 0.1267 + }, + { + "start": 32864.32, + "end": 32864.62, + "probability": 0.0526 + }, + { + "start": 32865.24, + "end": 32866.32, + "probability": 0.1587 + }, + { + "start": 32866.58, + "end": 32866.98, + "probability": 0.0749 + }, + { + "start": 32868.2, + "end": 32870.1, + "probability": 0.3194 + }, + { + "start": 32878.24, + "end": 32878.42, + "probability": 0.0398 + }, + { + "start": 32879.2, + "end": 32880.82, + "probability": 0.1319 + }, + { + "start": 32881.52, + "end": 32883.08, + "probability": 0.0459 + }, + { + "start": 32884.96, + "end": 32886.72, + "probability": 0.1386 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.0, + "end": 32978.0, + "probability": 0.0 + }, + { + "start": 32978.8, + "end": 32980.72, + "probability": 0.0326 + }, + { + "start": 32981.08, + "end": 32982.84, + "probability": 0.8927 + }, + { + "start": 32996.04, + "end": 33001.26, + "probability": 0.7515 + }, + { + "start": 33001.3, + "end": 33003.48, + "probability": 0.2715 + }, + { + "start": 33008.18, + "end": 33008.96, + "probability": 0.812 + }, + { + "start": 33009.66, + "end": 33011.42, + "probability": 0.3785 + }, + { + "start": 33011.48, + "end": 33013.22, + "probability": 0.9358 + }, + { + "start": 33013.7, + "end": 33015.5, + "probability": 0.8847 + }, + { + "start": 33015.62, + "end": 33017.4, + "probability": 0.8361 + }, + { + "start": 33017.56, + "end": 33019.74, + "probability": 0.9058 + }, + { + "start": 33020.08, + "end": 33020.28, + "probability": 0.1423 + }, + { + "start": 33025.08, + "end": 33025.24, + "probability": 0.0051 + }, + { + "start": 33043.6, + "end": 33046.22, + "probability": 0.5045 + }, + { + "start": 33046.24, + "end": 33047.68, + "probability": 0.7603 + }, + { + "start": 33047.82, + "end": 33051.66, + "probability": 0.7176 + }, + { + "start": 33051.76, + "end": 33055.1, + "probability": 0.9233 + }, + { + "start": 33055.44, + "end": 33058.36, + "probability": 0.9269 + }, + { + "start": 33058.44, + "end": 33059.54, + "probability": 0.9848 + }, + { + "start": 33060.0, + "end": 33060.54, + "probability": 0.3675 + }, + { + "start": 33061.44, + "end": 33064.12, + "probability": 0.9077 + }, + { + "start": 33087.12, + "end": 33088.14, + "probability": 0.5846 + }, + { + "start": 33088.14, + "end": 33088.95, + "probability": 0.7208 + }, + { + "start": 33089.7, + "end": 33091.42, + "probability": 0.9092 + }, + { + "start": 33094.22, + "end": 33095.86, + "probability": 0.665 + }, + { + "start": 33097.66, + "end": 33098.92, + "probability": 0.6483 + }, + { + "start": 33099.28, + "end": 33101.78, + "probability": 0.6982 + }, + { + "start": 33101.82, + "end": 33106.3, + "probability": 0.9094 + }, + { + "start": 33106.4, + "end": 33106.97, + "probability": 0.3372 + }, + { + "start": 33107.4, + "end": 33107.86, + "probability": 0.8063 + }, + { + "start": 33108.08, + "end": 33108.68, + "probability": 0.9653 + }, + { + "start": 33108.86, + "end": 33111.4, + "probability": 0.9747 + }, + { + "start": 33111.4, + "end": 33115.32, + "probability": 0.9995 + }, + { + "start": 33115.44, + "end": 33118.82, + "probability": 0.9951 + }, + { + "start": 33118.92, + "end": 33119.69, + "probability": 0.5943 + }, + { + "start": 33120.82, + "end": 33124.16, + "probability": 0.8906 + }, + { + "start": 33124.3, + "end": 33127.78, + "probability": 0.7964 + }, + { + "start": 33128.76, + "end": 33130.33, + "probability": 0.3378 + }, + { + "start": 33130.62, + "end": 33132.47, + "probability": 0.7211 + }, + { + "start": 33132.78, + "end": 33134.16, + "probability": 0.7463 + }, + { + "start": 33134.5, + "end": 33136.16, + "probability": 0.4536 + }, + { + "start": 33136.16, + "end": 33137.35, + "probability": 0.0897 + }, + { + "start": 33137.68, + "end": 33138.48, + "probability": 0.7117 + }, + { + "start": 33138.48, + "end": 33141.42, + "probability": 0.1696 + }, + { + "start": 33141.54, + "end": 33142.08, + "probability": 0.7909 + }, + { + "start": 33142.14, + "end": 33144.58, + "probability": 0.9941 + }, + { + "start": 33144.6, + "end": 33145.02, + "probability": 0.2218 + }, + { + "start": 33145.08, + "end": 33146.58, + "probability": 0.9941 + }, + { + "start": 33146.72, + "end": 33148.42, + "probability": 0.6625 + }, + { + "start": 33148.44, + "end": 33149.14, + "probability": 0.9789 + }, + { + "start": 33149.8, + "end": 33152.4, + "probability": 0.737 + }, + { + "start": 33152.44, + "end": 33156.38, + "probability": 0.8676 + }, + { + "start": 33156.38, + "end": 33158.26, + "probability": 0.6099 + }, + { + "start": 33158.42, + "end": 33159.64, + "probability": 0.8242 + }, + { + "start": 33160.0, + "end": 33160.49, + "probability": 0.8707 + }, + { + "start": 33160.84, + "end": 33162.2, + "probability": 0.9626 + }, + { + "start": 33162.3, + "end": 33163.16, + "probability": 0.8623 + }, + { + "start": 33163.24, + "end": 33165.0, + "probability": 0.4159 + }, + { + "start": 33165.57, + "end": 33167.38, + "probability": 0.7457 + }, + { + "start": 33167.46, + "end": 33170.2, + "probability": 0.9891 + }, + { + "start": 33170.26, + "end": 33170.84, + "probability": 0.7726 + }, + { + "start": 33170.9, + "end": 33173.46, + "probability": 0.7601 + }, + { + "start": 33174.13, + "end": 33178.66, + "probability": 0.9949 + }, + { + "start": 33179.12, + "end": 33180.66, + "probability": 0.9572 + }, + { + "start": 33180.74, + "end": 33183.52, + "probability": 0.9972 + }, + { + "start": 33184.18, + "end": 33185.8, + "probability": 0.9086 + }, + { + "start": 33185.98, + "end": 33188.34, + "probability": 0.9958 + }, + { + "start": 33188.54, + "end": 33193.26, + "probability": 0.9723 + }, + { + "start": 33193.38, + "end": 33194.72, + "probability": 0.4095 + }, + { + "start": 33195.1, + "end": 33196.06, + "probability": 0.5719 + }, + { + "start": 33196.2, + "end": 33196.54, + "probability": 0.5805 + }, + { + "start": 33196.54, + "end": 33197.4, + "probability": 0.7662 + }, + { + "start": 33197.52, + "end": 33197.87, + "probability": 0.8639 + }, + { + "start": 33198.48, + "end": 33201.74, + "probability": 0.9243 + }, + { + "start": 33201.74, + "end": 33202.44, + "probability": 0.3197 + }, + { + "start": 33203.14, + "end": 33203.2, + "probability": 0.2206 + }, + { + "start": 33203.66, + "end": 33204.9, + "probability": 0.0122 + }, + { + "start": 33204.92, + "end": 33204.92, + "probability": 0.1482 + }, + { + "start": 33204.92, + "end": 33204.92, + "probability": 0.5165 + }, + { + "start": 33204.92, + "end": 33204.92, + "probability": 0.1243 + }, + { + "start": 33204.92, + "end": 33204.92, + "probability": 0.191 + }, + { + "start": 33204.92, + "end": 33206.42, + "probability": 0.748 + }, + { + "start": 33206.5, + "end": 33208.28, + "probability": 0.8963 + }, + { + "start": 33208.36, + "end": 33210.38, + "probability": 0.8724 + }, + { + "start": 33210.56, + "end": 33212.66, + "probability": 0.6087 + }, + { + "start": 33212.76, + "end": 33216.9, + "probability": 0.0124 + }, + { + "start": 33216.9, + "end": 33216.98, + "probability": 0.02 + }, + { + "start": 33216.98, + "end": 33216.98, + "probability": 0.2397 + }, + { + "start": 33216.98, + "end": 33218.46, + "probability": 0.7867 + }, + { + "start": 33218.64, + "end": 33220.42, + "probability": 0.996 + }, + { + "start": 33220.54, + "end": 33221.7, + "probability": 0.7866 + }, + { + "start": 33221.72, + "end": 33222.0, + "probability": 0.8704 + }, + { + "start": 33222.1, + "end": 33224.94, + "probability": 0.7839 + }, + { + "start": 33225.26, + "end": 33229.7, + "probability": 0.1174 + }, + { + "start": 33229.7, + "end": 33230.05, + "probability": 0.7238 + }, + { + "start": 33230.68, + "end": 33232.0, + "probability": 0.0509 + }, + { + "start": 33232.0, + "end": 33232.44, + "probability": 0.1149 + }, + { + "start": 33232.58, + "end": 33233.92, + "probability": 0.1657 + }, + { + "start": 33233.94, + "end": 33235.08, + "probability": 0.5329 + }, + { + "start": 33238.56, + "end": 33242.14, + "probability": 0.6699 + }, + { + "start": 33242.14, + "end": 33242.48, + "probability": 0.5386 + }, + { + "start": 33242.48, + "end": 33243.22, + "probability": 0.5009 + }, + { + "start": 33244.0, + "end": 33247.8, + "probability": 0.9188 + }, + { + "start": 33248.12, + "end": 33249.86, + "probability": 0.0458 + }, + { + "start": 33249.86, + "end": 33250.08, + "probability": 0.0105 + }, + { + "start": 33250.08, + "end": 33252.48, + "probability": 0.0605 + }, + { + "start": 33253.3, + "end": 33258.66, + "probability": 0.3083 + }, + { + "start": 33258.8, + "end": 33260.9, + "probability": 0.342 + }, + { + "start": 33260.9, + "end": 33261.42, + "probability": 0.1118 + }, + { + "start": 33261.42, + "end": 33264.76, + "probability": 0.0752 + }, + { + "start": 33266.07, + "end": 33266.43, + "probability": 0.0278 + }, + { + "start": 33267.0, + "end": 33267.08, + "probability": 0.072 + }, + { + "start": 33267.08, + "end": 33267.08, + "probability": 0.01 + }, + { + "start": 33267.08, + "end": 33270.08, + "probability": 0.0637 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.0, + "probability": 0.0 + }, + { + "start": 33318.0, + "end": 33318.68, + "probability": 0.0045 + }, + { + "start": 33319.02, + "end": 33320.52, + "probability": 0.0751 + }, + { + "start": 33320.52, + "end": 33320.52, + "probability": 0.136 + }, + { + "start": 33321.4, + "end": 33322.4, + "probability": 0.2345 + }, + { + "start": 33323.74, + "end": 33328.94, + "probability": 0.1704 + }, + { + "start": 33328.94, + "end": 33331.0, + "probability": 0.1037 + }, + { + "start": 33331.72, + "end": 33332.41, + "probability": 0.0744 + }, + { + "start": 33334.08, + "end": 33334.51, + "probability": 0.0404 + }, + { + "start": 33338.74, + "end": 33340.36, + "probability": 0.2391 + }, + { + "start": 33342.42, + "end": 33344.36, + "probability": 0.0914 + }, + { + "start": 33345.18, + "end": 33347.24, + "probability": 0.4101 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33441.0, + "end": 33441.0, + "probability": 0.0 + }, + { + "start": 33459.68, + "end": 33463.88, + "probability": 0.7077 + }, + { + "start": 33465.68, + "end": 33466.6, + "probability": 0.562 + }, + { + "start": 33468.8, + "end": 33469.78, + "probability": 0.1559 + }, + { + "start": 33470.93, + "end": 33478.33, + "probability": 0.1048 + }, + { + "start": 33479.04, + "end": 33482.5, + "probability": 0.0706 + }, + { + "start": 33483.56, + "end": 33483.66, + "probability": 0.0232 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.0, + "end": 33592.0, + "probability": 0.0 + }, + { + "start": 33592.26, + "end": 33595.08, + "probability": 0.9468 + }, + { + "start": 33595.08, + "end": 33598.24, + "probability": 0.9312 + }, + { + "start": 33598.38, + "end": 33598.78, + "probability": 0.5826 + }, + { + "start": 33599.26, + "end": 33601.32, + "probability": 0.9841 + }, + { + "start": 33601.84, + "end": 33603.64, + "probability": 0.9501 + }, + { + "start": 33603.8, + "end": 33606.62, + "probability": 0.9242 + }, + { + "start": 33606.79, + "end": 33610.76, + "probability": 0.9956 + }, + { + "start": 33611.26, + "end": 33614.4, + "probability": 0.9959 + }, + { + "start": 33615.24, + "end": 33619.56, + "probability": 0.8835 + }, + { + "start": 33619.56, + "end": 33624.5, + "probability": 0.9678 + }, + { + "start": 33625.38, + "end": 33628.54, + "probability": 0.763 + }, + { + "start": 33629.08, + "end": 33631.72, + "probability": 0.9976 + }, + { + "start": 33631.72, + "end": 33634.92, + "probability": 0.961 + }, + { + "start": 33635.66, + "end": 33637.42, + "probability": 0.9512 + }, + { + "start": 33638.1, + "end": 33641.6, + "probability": 0.9941 + }, + { + "start": 33641.6, + "end": 33645.42, + "probability": 0.8971 + }, + { + "start": 33646.04, + "end": 33653.78, + "probability": 0.9187 + }, + { + "start": 33654.0, + "end": 33656.14, + "probability": 0.9811 + }, + { + "start": 33656.84, + "end": 33657.7, + "probability": 0.8302 + }, + { + "start": 33658.12, + "end": 33664.14, + "probability": 0.9744 + }, + { + "start": 33664.5, + "end": 33668.52, + "probability": 0.9261 + }, + { + "start": 33668.88, + "end": 33673.36, + "probability": 0.9868 + }, + { + "start": 33673.42, + "end": 33676.72, + "probability": 0.9521 + }, + { + "start": 33676.72, + "end": 33681.68, + "probability": 0.956 + }, + { + "start": 33682.0, + "end": 33687.62, + "probability": 0.996 + }, + { + "start": 33687.62, + "end": 33691.76, + "probability": 0.9874 + }, + { + "start": 33691.76, + "end": 33695.58, + "probability": 0.9966 + }, + { + "start": 33696.34, + "end": 33701.38, + "probability": 0.9856 + }, + { + "start": 33701.38, + "end": 33706.14, + "probability": 0.9989 + }, + { + "start": 33708.16, + "end": 33709.86, + "probability": 0.9356 + }, + { + "start": 33709.96, + "end": 33711.55, + "probability": 0.9797 + }, + { + "start": 33712.42, + "end": 33716.96, + "probability": 0.9945 + }, + { + "start": 33717.75, + "end": 33719.65, + "probability": 0.9317 + }, + { + "start": 33720.2, + "end": 33729.28, + "probability": 0.8533 + }, + { + "start": 33729.96, + "end": 33731.21, + "probability": 0.8735 + }, + { + "start": 33731.26, + "end": 33732.04, + "probability": 0.5179 + }, + { + "start": 33732.16, + "end": 33736.9, + "probability": 0.9972 + }, + { + "start": 33737.94, + "end": 33738.8, + "probability": 0.8088 + }, + { + "start": 33739.12, + "end": 33743.14, + "probability": 0.9803 + }, + { + "start": 33743.24, + "end": 33746.02, + "probability": 0.9937 + }, + { + "start": 33747.24, + "end": 33749.94, + "probability": 0.998 + }, + { + "start": 33750.29, + "end": 33754.72, + "probability": 0.9854 + }, + { + "start": 33755.18, + "end": 33758.34, + "probability": 0.7576 + }, + { + "start": 33762.2, + "end": 33764.72, + "probability": 0.384 + }, + { + "start": 33766.17, + "end": 33769.46, + "probability": 0.7033 + }, + { + "start": 33770.02, + "end": 33771.58, + "probability": 0.9746 + }, + { + "start": 33772.06, + "end": 33774.88, + "probability": 0.9724 + }, + { + "start": 33775.08, + "end": 33776.02, + "probability": 0.6145 + }, + { + "start": 33776.42, + "end": 33781.12, + "probability": 0.9889 + }, + { + "start": 33781.22, + "end": 33781.72, + "probability": 0.7418 + }, + { + "start": 33781.94, + "end": 33782.7, + "probability": 0.7257 + }, + { + "start": 33784.0, + "end": 33785.75, + "probability": 0.8232 + }, + { + "start": 33786.24, + "end": 33790.14, + "probability": 0.8955 + }, + { + "start": 33790.3, + "end": 33791.4, + "probability": 0.5259 + }, + { + "start": 33791.48, + "end": 33792.04, + "probability": 0.5811 + }, + { + "start": 33792.28, + "end": 33793.48, + "probability": 0.7726 + }, + { + "start": 33793.58, + "end": 33794.08, + "probability": 0.9598 + }, + { + "start": 33794.22, + "end": 33795.58, + "probability": 0.9476 + }, + { + "start": 33795.58, + "end": 33796.26, + "probability": 0.9084 + }, + { + "start": 33796.78, + "end": 33797.96, + "probability": 0.482 + }, + { + "start": 33798.1, + "end": 33798.88, + "probability": 0.9337 + }, + { + "start": 33798.92, + "end": 33800.04, + "probability": 0.6376 + }, + { + "start": 33800.64, + "end": 33804.32, + "probability": 0.7277 + }, + { + "start": 33804.32, + "end": 33805.72, + "probability": 0.7804 + }, + { + "start": 33805.8, + "end": 33810.78, + "probability": 0.7419 + }, + { + "start": 33810.78, + "end": 33814.2, + "probability": 0.6523 + }, + { + "start": 33814.34, + "end": 33815.94, + "probability": 0.2754 + }, + { + "start": 33816.88, + "end": 33818.94, + "probability": 0.6662 + }, + { + "start": 33819.18, + "end": 33823.09, + "probability": 0.0019 + }, + { + "start": 33832.56, + "end": 33835.28, + "probability": 0.5815 + }, + { + "start": 33835.5, + "end": 33838.88, + "probability": 0.9277 + }, + { + "start": 33840.06, + "end": 33841.58, + "probability": 0.9797 + }, + { + "start": 33843.2, + "end": 33846.48, + "probability": 0.7718 + }, + { + "start": 33846.62, + "end": 33848.74, + "probability": 0.3944 + }, + { + "start": 33848.96, + "end": 33849.58, + "probability": 0.7239 + }, + { + "start": 33863.12, + "end": 33863.5, + "probability": 0.2331 + }, + { + "start": 33863.5, + "end": 33863.5, + "probability": 0.1761 + }, + { + "start": 33863.5, + "end": 33863.5, + "probability": 0.1938 + }, + { + "start": 33863.5, + "end": 33865.38, + "probability": 0.703 + }, + { + "start": 33865.54, + "end": 33868.12, + "probability": 0.7559 + }, + { + "start": 33868.66, + "end": 33869.12, + "probability": 0.1698 + }, + { + "start": 33869.18, + "end": 33871.1, + "probability": 0.3671 + }, + { + "start": 33871.42, + "end": 33874.8, + "probability": 0.9451 + }, + { + "start": 33875.72, + "end": 33877.94, + "probability": 0.7715 + }, + { + "start": 33878.02, + "end": 33879.1, + "probability": 0.1809 + }, + { + "start": 33879.5, + "end": 33881.24, + "probability": 0.6839 + }, + { + "start": 33881.44, + "end": 33883.44, + "probability": 0.4112 + }, + { + "start": 33890.38, + "end": 33891.88, + "probability": 0.4647 + }, + { + "start": 33891.88, + "end": 33892.72, + "probability": 0.7433 + }, + { + "start": 33893.2, + "end": 33893.44, + "probability": 0.3013 + }, + { + "start": 33896.58, + "end": 33900.46, + "probability": 0.6625 + }, + { + "start": 33901.62, + "end": 33906.6, + "probability": 0.9969 + }, + { + "start": 33907.58, + "end": 33913.36, + "probability": 0.9819 + }, + { + "start": 33913.96, + "end": 33915.06, + "probability": 0.7973 + }, + { + "start": 33915.78, + "end": 33917.01, + "probability": 0.9189 + }, + { + "start": 33917.98, + "end": 33920.2, + "probability": 0.8791 + }, + { + "start": 33921.38, + "end": 33924.98, + "probability": 0.9209 + }, + { + "start": 33925.7, + "end": 33926.86, + "probability": 0.6656 + }, + { + "start": 33928.24, + "end": 33931.6, + "probability": 0.9215 + }, + { + "start": 33931.9, + "end": 33934.16, + "probability": 0.995 + }, + { + "start": 33934.9, + "end": 33935.94, + "probability": 0.7667 + }, + { + "start": 33936.72, + "end": 33938.32, + "probability": 0.9746 + }, + { + "start": 33944.44, + "end": 33948.26, + "probability": 0.6987 + }, + { + "start": 33949.44, + "end": 33951.46, + "probability": 0.7235 + }, + { + "start": 33952.2, + "end": 33956.32, + "probability": 0.8789 + }, + { + "start": 33956.38, + "end": 33957.16, + "probability": 0.8394 + }, + { + "start": 33957.24, + "end": 33961.92, + "probability": 0.9948 + }, + { + "start": 33962.52, + "end": 33963.1, + "probability": 0.8944 + }, + { + "start": 33963.1, + "end": 33963.52, + "probability": 0.6027 + }, + { + "start": 33963.72, + "end": 33967.64, + "probability": 0.8412 + }, + { + "start": 33967.78, + "end": 33969.28, + "probability": 0.9342 + }, + { + "start": 33969.36, + "end": 33972.56, + "probability": 0.9984 + }, + { + "start": 33972.84, + "end": 33973.94, + "probability": 0.9766 + }, + { + "start": 33974.1, + "end": 33975.02, + "probability": 0.5122 + }, + { + "start": 33975.64, + "end": 33976.96, + "probability": 0.7246 + }, + { + "start": 33978.46, + "end": 33980.3, + "probability": 0.8365 + }, + { + "start": 33980.34, + "end": 33981.02, + "probability": 0.957 + }, + { + "start": 33981.16, + "end": 33982.64, + "probability": 0.9707 + }, + { + "start": 33983.26, + "end": 33985.56, + "probability": 0.925 + }, + { + "start": 33985.66, + "end": 33987.92, + "probability": 0.6277 + }, + { + "start": 33988.58, + "end": 33990.52, + "probability": 0.9966 + }, + { + "start": 33990.82, + "end": 33992.24, + "probability": 0.8816 + }, + { + "start": 33993.28, + "end": 33993.99, + "probability": 0.6443 + }, + { + "start": 33995.64, + "end": 34001.64, + "probability": 0.9745 + }, + { + "start": 34002.66, + "end": 34003.26, + "probability": 0.7521 + }, + { + "start": 34004.8, + "end": 34008.37, + "probability": 0.6063 + }, + { + "start": 34009.66, + "end": 34010.92, + "probability": 0.9494 + }, + { + "start": 34012.28, + "end": 34014.06, + "probability": 0.9451 + }, + { + "start": 34014.6, + "end": 34015.68, + "probability": 0.9491 + }, + { + "start": 34016.92, + "end": 34018.42, + "probability": 0.9963 + }, + { + "start": 34019.5, + "end": 34021.34, + "probability": 0.5685 + }, + { + "start": 34021.42, + "end": 34021.49, + "probability": 0.6986 + }, + { + "start": 34022.14, + "end": 34023.16, + "probability": 0.8495 + }, + { + "start": 34023.36, + "end": 34024.16, + "probability": 0.9121 + }, + { + "start": 34025.06, + "end": 34027.5, + "probability": 0.75 + }, + { + "start": 34028.16, + "end": 34030.4, + "probability": 0.9938 + }, + { + "start": 34031.04, + "end": 34036.38, + "probability": 0.9875 + }, + { + "start": 34036.66, + "end": 34037.66, + "probability": 0.855 + }, + { + "start": 34038.34, + "end": 34041.72, + "probability": 0.9823 + }, + { + "start": 34042.58, + "end": 34046.34, + "probability": 0.9752 + }, + { + "start": 34046.92, + "end": 34049.54, + "probability": 0.8496 + }, + { + "start": 34050.0, + "end": 34050.46, + "probability": 0.8924 + }, + { + "start": 34050.8, + "end": 34051.7, + "probability": 0.8169 + }, + { + "start": 34052.62, + "end": 34053.34, + "probability": 0.6231 + }, + { + "start": 34053.4, + "end": 34055.2, + "probability": 0.494 + }, + { + "start": 34055.2, + "end": 34058.4, + "probability": 0.5675 + }, + { + "start": 34058.64, + "end": 34060.16, + "probability": 0.2727 + }, + { + "start": 34060.2, + "end": 34061.94, + "probability": 0.5754 + }, + { + "start": 34062.1, + "end": 34063.08, + "probability": 0.7885 + }, + { + "start": 34063.14, + "end": 34064.92, + "probability": 0.7703 + }, + { + "start": 34065.18, + "end": 34066.33, + "probability": 0.7475 + }, + { + "start": 34066.78, + "end": 34067.32, + "probability": 0.8125 + }, + { + "start": 34076.7, + "end": 34079.36, + "probability": 0.6193 + }, + { + "start": 34080.14, + "end": 34081.92, + "probability": 0.9968 + }, + { + "start": 34084.96, + "end": 34087.3, + "probability": 0.7116 + }, + { + "start": 34087.3, + "end": 34090.5, + "probability": 0.7765 + }, + { + "start": 34091.7, + "end": 34093.88, + "probability": 0.8493 + }, + { + "start": 34094.7, + "end": 34097.28, + "probability": 0.9102 + }, + { + "start": 34097.48, + "end": 34099.26, + "probability": 0.5084 + }, + { + "start": 34099.52, + "end": 34100.88, + "probability": 0.8243 + }, + { + "start": 34101.44, + "end": 34105.6, + "probability": 0.9907 + }, + { + "start": 34106.12, + "end": 34111.3, + "probability": 0.6941 + }, + { + "start": 34111.3, + "end": 34116.34, + "probability": 0.9181 + }, + { + "start": 34116.46, + "end": 34117.9, + "probability": 0.5658 + }, + { + "start": 34117.96, + "end": 34118.74, + "probability": 0.8038 + }, + { + "start": 34119.18, + "end": 34120.18, + "probability": 0.9684 + }, + { + "start": 34120.68, + "end": 34122.68, + "probability": 0.9569 + }, + { + "start": 34123.2, + "end": 34128.46, + "probability": 0.9978 + }, + { + "start": 34128.46, + "end": 34133.66, + "probability": 0.9907 + }, + { + "start": 34134.38, + "end": 34138.16, + "probability": 0.3874 + }, + { + "start": 34138.44, + "end": 34142.54, + "probability": 0.9915 + }, + { + "start": 34143.28, + "end": 34144.0, + "probability": 0.7188 + }, + { + "start": 34145.7, + "end": 34148.86, + "probability": 0.9729 + }, + { + "start": 34149.26, + "end": 34151.68, + "probability": 0.9626 + }, + { + "start": 34152.28, + "end": 34156.54, + "probability": 0.8719 + }, + { + "start": 34157.08, + "end": 34161.84, + "probability": 0.9707 + }, + { + "start": 34162.28, + "end": 34164.0, + "probability": 0.7767 + }, + { + "start": 34164.14, + "end": 34168.4, + "probability": 0.9311 + }, + { + "start": 34168.98, + "end": 34173.1, + "probability": 0.9829 + }, + { + "start": 34173.1, + "end": 34177.14, + "probability": 0.9209 + }, + { + "start": 34178.9, + "end": 34179.1, + "probability": 0.2995 + }, + { + "start": 34179.2, + "end": 34182.12, + "probability": 0.9963 + }, + { + "start": 34182.56, + "end": 34184.38, + "probability": 0.9804 + }, + { + "start": 34184.92, + "end": 34188.46, + "probability": 0.9753 + }, + { + "start": 34188.9, + "end": 34191.08, + "probability": 0.9775 + }, + { + "start": 34191.14, + "end": 34194.49, + "probability": 0.9858 + }, + { + "start": 34195.2, + "end": 34195.76, + "probability": 0.9204 + }, + { + "start": 34195.92, + "end": 34199.76, + "probability": 0.9789 + }, + { + "start": 34199.76, + "end": 34203.28, + "probability": 0.9295 + }, + { + "start": 34203.78, + "end": 34206.42, + "probability": 0.9519 + }, + { + "start": 34206.42, + "end": 34210.02, + "probability": 0.9915 + }, + { + "start": 34210.82, + "end": 34213.5, + "probability": 0.9902 + }, + { + "start": 34213.6, + "end": 34217.6, + "probability": 0.9562 + }, + { + "start": 34217.62, + "end": 34221.48, + "probability": 0.9932 + }, + { + "start": 34222.02, + "end": 34227.76, + "probability": 0.9767 + }, + { + "start": 34228.36, + "end": 34233.4, + "probability": 0.8985 + }, + { + "start": 34233.56, + "end": 34237.74, + "probability": 0.9355 + }, + { + "start": 34238.3, + "end": 34242.9, + "probability": 0.9866 + }, + { + "start": 34243.0, + "end": 34243.38, + "probability": 0.7449 + }, + { + "start": 34244.38, + "end": 34245.48, + "probability": 0.8083 + }, + { + "start": 34247.42, + "end": 34249.24, + "probability": 0.9095 + }, + { + "start": 34249.54, + "end": 34255.22, + "probability": 0.7397 + }, + { + "start": 34255.3, + "end": 34256.62, + "probability": 0.56 + }, + { + "start": 34256.7, + "end": 34257.42, + "probability": 0.6898 + }, + { + "start": 34257.9, + "end": 34259.08, + "probability": 0.9007 + }, + { + "start": 34259.18, + "end": 34259.8, + "probability": 0.919 + }, + { + "start": 34259.92, + "end": 34261.38, + "probability": 0.616 + }, + { + "start": 34261.6, + "end": 34262.7, + "probability": 0.8087 + }, + { + "start": 34263.84, + "end": 34266.96, + "probability": 0.857 + }, + { + "start": 34268.24, + "end": 34270.9, + "probability": 0.0789 + }, + { + "start": 34270.98, + "end": 34271.52, + "probability": 0.6731 + }, + { + "start": 34272.59, + "end": 34274.75, + "probability": 0.7497 + }, + { + "start": 34275.28, + "end": 34275.82, + "probability": 0.423 + }, + { + "start": 34275.94, + "end": 34277.32, + "probability": 0.3018 + }, + { + "start": 34277.44, + "end": 34279.78, + "probability": 0.3085 + }, + { + "start": 34279.86, + "end": 34280.56, + "probability": 0.6076 + }, + { + "start": 34280.58, + "end": 34281.3, + "probability": 0.5162 + }, + { + "start": 34281.5, + "end": 34281.98, + "probability": 0.5223 + }, + { + "start": 34283.18, + "end": 34286.78, + "probability": 0.9392 + }, + { + "start": 34286.78, + "end": 34288.4, + "probability": 0.2214 + }, + { + "start": 34288.52, + "end": 34289.08, + "probability": 0.3208 + }, + { + "start": 34290.02, + "end": 34292.7, + "probability": 0.7808 + }, + { + "start": 34293.08, + "end": 34293.98, + "probability": 0.5585 + }, + { + "start": 34293.98, + "end": 34295.46, + "probability": 0.6046 + }, + { + "start": 34296.4, + "end": 34296.8, + "probability": 0.6287 + }, + { + "start": 34297.4, + "end": 34298.24, + "probability": 0.1469 + }, + { + "start": 34298.24, + "end": 34302.68, + "probability": 0.6308 + }, + { + "start": 34303.26, + "end": 34304.02, + "probability": 0.6463 + }, + { + "start": 34304.06, + "end": 34305.28, + "probability": 0.7431 + }, + { + "start": 34305.32, + "end": 34305.7, + "probability": 0.3577 + }, + { + "start": 34305.84, + "end": 34306.38, + "probability": 0.2099 + }, + { + "start": 34306.56, + "end": 34309.5, + "probability": 0.5068 + }, + { + "start": 34309.62, + "end": 34311.12, + "probability": 0.7689 + }, + { + "start": 34311.82, + "end": 34312.46, + "probability": 0.8897 + }, + { + "start": 34316.44, + "end": 34317.58, + "probability": 0.6537 + }, + { + "start": 34318.02, + "end": 34319.42, + "probability": 0.6661 + }, + { + "start": 34319.92, + "end": 34322.58, + "probability": 0.8679 + }, + { + "start": 34324.52, + "end": 34327.15, + "probability": 0.9431 + }, + { + "start": 34327.99, + "end": 34331.47, + "probability": 0.8367 + }, + { + "start": 34332.1, + "end": 34333.8, + "probability": 0.9559 + }, + { + "start": 34334.64, + "end": 34337.12, + "probability": 0.9836 + }, + { + "start": 34337.32, + "end": 34339.14, + "probability": 0.8586 + }, + { + "start": 34339.84, + "end": 34344.0, + "probability": 0.991 + }, + { + "start": 34344.0, + "end": 34347.74, + "probability": 0.9846 + }, + { + "start": 34348.38, + "end": 34350.06, + "probability": 0.9071 + }, + { + "start": 34350.34, + "end": 34352.48, + "probability": 0.926 + }, + { + "start": 34353.42, + "end": 34357.76, + "probability": 0.959 + }, + { + "start": 34358.16, + "end": 34364.32, + "probability": 0.972 + }, + { + "start": 34364.84, + "end": 34368.29, + "probability": 0.9872 + }, + { + "start": 34368.36, + "end": 34370.86, + "probability": 0.8203 + }, + { + "start": 34371.28, + "end": 34377.14, + "probability": 0.9962 + }, + { + "start": 34377.56, + "end": 34382.92, + "probability": 0.9927 + }, + { + "start": 34383.0, + "end": 34385.84, + "probability": 0.9871 + }, + { + "start": 34386.4, + "end": 34389.42, + "probability": 0.9974 + }, + { + "start": 34389.42, + "end": 34392.9, + "probability": 0.9971 + }, + { + "start": 34392.98, + "end": 34397.8, + "probability": 0.99 + }, + { + "start": 34398.32, + "end": 34401.46, + "probability": 0.9986 + }, + { + "start": 34402.02, + "end": 34405.36, + "probability": 0.9995 + }, + { + "start": 34405.88, + "end": 34406.66, + "probability": 0.9087 + }, + { + "start": 34407.12, + "end": 34409.38, + "probability": 0.996 + }, + { + "start": 34409.38, + "end": 34412.92, + "probability": 0.99 + }, + { + "start": 34412.98, + "end": 34416.76, + "probability": 0.9795 + }, + { + "start": 34417.38, + "end": 34420.72, + "probability": 0.8584 + }, + { + "start": 34421.86, + "end": 34425.3, + "probability": 0.9691 + }, + { + "start": 34425.94, + "end": 34431.76, + "probability": 0.9717 + }, + { + "start": 34431.96, + "end": 34434.38, + "probability": 0.9346 + }, + { + "start": 34435.02, + "end": 34438.04, + "probability": 0.9507 + }, + { + "start": 34438.5, + "end": 34440.03, + "probability": 0.9272 + }, + { + "start": 34440.14, + "end": 34445.9, + "probability": 0.873 + }, + { + "start": 34445.9, + "end": 34451.18, + "probability": 0.9907 + }, + { + "start": 34451.52, + "end": 34455.6, + "probability": 0.967 + }, + { + "start": 34455.92, + "end": 34462.39, + "probability": 0.9564 + }, + { + "start": 34462.68, + "end": 34463.94, + "probability": 0.4605 + }, + { + "start": 34464.08, + "end": 34469.16, + "probability": 0.9706 + }, + { + "start": 34469.22, + "end": 34471.0, + "probability": 0.9837 + }, + { + "start": 34471.48, + "end": 34475.46, + "probability": 0.9666 + }, + { + "start": 34475.98, + "end": 34480.16, + "probability": 0.9872 + }, + { + "start": 34480.66, + "end": 34483.6, + "probability": 0.9944 + }, + { + "start": 34483.6, + "end": 34485.94, + "probability": 0.9919 + }, + { + "start": 34486.44, + "end": 34489.3, + "probability": 0.857 + }, + { + "start": 34489.42, + "end": 34491.22, + "probability": 0.8607 + }, + { + "start": 34491.9, + "end": 34494.16, + "probability": 0.8758 + }, + { + "start": 34494.32, + "end": 34494.84, + "probability": 0.6649 + }, + { + "start": 34495.0, + "end": 34495.48, + "probability": 0.8917 + }, + { + "start": 34495.56, + "end": 34497.04, + "probability": 0.9718 + }, + { + "start": 34497.6, + "end": 34500.94, + "probability": 0.9647 + }, + { + "start": 34500.94, + "end": 34504.02, + "probability": 0.9881 + }, + { + "start": 34504.7, + "end": 34508.46, + "probability": 0.9895 + }, + { + "start": 34508.46, + "end": 34512.42, + "probability": 0.9971 + }, + { + "start": 34512.48, + "end": 34512.82, + "probability": 0.6624 + }, + { + "start": 34512.98, + "end": 34518.86, + "probability": 0.9919 + }, + { + "start": 34518.92, + "end": 34519.08, + "probability": 0.5944 + }, + { + "start": 34519.26, + "end": 34519.58, + "probability": 0.8984 + }, + { + "start": 34519.7, + "end": 34523.6, + "probability": 0.999 + }, + { + "start": 34524.26, + "end": 34528.78, + "probability": 0.9976 + }, + { + "start": 34528.78, + "end": 34533.36, + "probability": 0.9971 + }, + { + "start": 34533.74, + "end": 34535.78, + "probability": 0.9918 + }, + { + "start": 34536.14, + "end": 34539.46, + "probability": 0.9856 + }, + { + "start": 34540.52, + "end": 34544.86, + "probability": 0.9992 + }, + { + "start": 34545.42, + "end": 34547.56, + "probability": 0.8884 + }, + { + "start": 34547.66, + "end": 34548.1, + "probability": 0.8251 + }, + { + "start": 34548.22, + "end": 34548.82, + "probability": 0.7784 + }, + { + "start": 34550.18, + "end": 34551.88, + "probability": 0.8857 + }, + { + "start": 34554.1, + "end": 34554.84, + "probability": 0.0362 + }, + { + "start": 34554.84, + "end": 34555.6, + "probability": 0.8412 + }, + { + "start": 34563.18, + "end": 34564.82, + "probability": 0.6637 + }, + { + "start": 34565.1, + "end": 34565.3, + "probability": 0.7491 + }, + { + "start": 34566.16, + "end": 34567.26, + "probability": 0.4214 + }, + { + "start": 34567.34, + "end": 34567.92, + "probability": 0.6184 + }, + { + "start": 34568.58, + "end": 34569.66, + "probability": 0.8853 + }, + { + "start": 34570.16, + "end": 34572.74, + "probability": 0.9937 + }, + { + "start": 34573.18, + "end": 34575.16, + "probability": 0.998 + }, + { + "start": 34575.8, + "end": 34580.36, + "probability": 0.9774 + }, + { + "start": 34581.74, + "end": 34585.14, + "probability": 0.9913 + }, + { + "start": 34585.52, + "end": 34590.62, + "probability": 0.9893 + }, + { + "start": 34591.24, + "end": 34593.66, + "probability": 0.748 + }, + { + "start": 34594.34, + "end": 34599.5, + "probability": 0.9932 + }, + { + "start": 34599.5, + "end": 34602.14, + "probability": 0.9946 + }, + { + "start": 34603.02, + "end": 34607.0, + "probability": 0.9861 + }, + { + "start": 34607.0, + "end": 34610.6, + "probability": 0.9924 + }, + { + "start": 34612.75, + "end": 34613.24, + "probability": 0.012 + }, + { + "start": 34613.24, + "end": 34614.52, + "probability": 0.7203 + }, + { + "start": 34614.88, + "end": 34617.38, + "probability": 0.9313 + }, + { + "start": 34617.58, + "end": 34620.28, + "probability": 0.8964 + }, + { + "start": 34620.72, + "end": 34622.92, + "probability": 0.9883 + }, + { + "start": 34622.92, + "end": 34623.1, + "probability": 0.7852 + }, + { + "start": 34623.72, + "end": 34624.46, + "probability": 0.7593 + }, + { + "start": 34625.46, + "end": 34627.18, + "probability": 0.3968 + }, + { + "start": 34627.28, + "end": 34627.7, + "probability": 0.5423 + }, + { + "start": 34627.82, + "end": 34629.38, + "probability": 0.9707 + }, + { + "start": 34629.46, + "end": 34631.24, + "probability": 0.9927 + }, + { + "start": 34631.28, + "end": 34631.72, + "probability": 0.9174 + }, + { + "start": 34631.96, + "end": 34633.34, + "probability": 0.4582 + }, + { + "start": 34633.48, + "end": 34634.3, + "probability": 0.7939 + }, + { + "start": 34634.74, + "end": 34635.58, + "probability": 0.6731 + }, + { + "start": 34635.66, + "end": 34636.2, + "probability": 0.6564 + }, + { + "start": 34636.72, + "end": 34637.58, + "probability": 0.9414 + }, + { + "start": 34637.62, + "end": 34638.16, + "probability": 0.7415 + }, + { + "start": 34638.26, + "end": 34640.21, + "probability": 0.9392 + }, + { + "start": 34640.58, + "end": 34641.1, + "probability": 0.8445 + }, + { + "start": 34641.18, + "end": 34642.32, + "probability": 0.8932 + }, + { + "start": 34642.98, + "end": 34643.76, + "probability": 0.7032 + }, + { + "start": 34649.14, + "end": 34649.64, + "probability": 0.2579 + }, + { + "start": 34649.64, + "end": 34649.64, + "probability": 0.19 + }, + { + "start": 34649.64, + "end": 34650.06, + "probability": 0.9085 + }, + { + "start": 34650.16, + "end": 34650.76, + "probability": 0.6794 + }, + { + "start": 34651.26, + "end": 34652.94, + "probability": 0.9727 + }, + { + "start": 34653.04, + "end": 34654.36, + "probability": 0.7893 + }, + { + "start": 34654.36, + "end": 34655.44, + "probability": 0.9542 + }, + { + "start": 34655.64, + "end": 34656.9, + "probability": 0.5443 + }, + { + "start": 34657.6, + "end": 34658.22, + "probability": 0.6646 + }, + { + "start": 34658.3, + "end": 34659.22, + "probability": 0.4164 + }, + { + "start": 34659.32, + "end": 34659.88, + "probability": 0.6282 + }, + { + "start": 34660.34, + "end": 34661.58, + "probability": 0.9585 + }, + { + "start": 34662.02, + "end": 34663.56, + "probability": 0.8027 + }, + { + "start": 34663.66, + "end": 34665.04, + "probability": 0.7749 + }, + { + "start": 34665.16, + "end": 34665.82, + "probability": 0.9318 + }, + { + "start": 34666.56, + "end": 34667.58, + "probability": 0.7727 + }, + { + "start": 34667.64, + "end": 34668.1, + "probability": 0.706 + }, + { + "start": 34668.22, + "end": 34669.68, + "probability": 0.9797 + }, + { + "start": 34669.76, + "end": 34671.38, + "probability": 0.631 + }, + { + "start": 34671.46, + "end": 34672.26, + "probability": 0.1479 + }, + { + "start": 34672.26, + "end": 34672.88, + "probability": 0.567 + }, + { + "start": 34673.0, + "end": 34673.4, + "probability": 0.3424 + }, + { + "start": 34673.4, + "end": 34673.4, + "probability": 0.5826 + }, + { + "start": 34673.4, + "end": 34674.12, + "probability": 0.7532 + }, + { + "start": 34674.12, + "end": 34674.9, + "probability": 0.8795 + }, + { + "start": 34675.2, + "end": 34676.7, + "probability": 0.9434 + }, + { + "start": 34676.72, + "end": 34679.0, + "probability": 0.9624 + }, + { + "start": 34679.58, + "end": 34680.54, + "probability": 0.397 + }, + { + "start": 34680.54, + "end": 34680.54, + "probability": 0.5046 + }, + { + "start": 34680.54, + "end": 34681.24, + "probability": 0.5171 + }, + { + "start": 34681.46, + "end": 34681.98, + "probability": 0.4769 + }, + { + "start": 34682.14, + "end": 34683.1, + "probability": 0.6664 + }, + { + "start": 34683.2, + "end": 34684.72, + "probability": 0.7285 + }, + { + "start": 34686.28, + "end": 34686.94, + "probability": 0.8572 + }, + { + "start": 34687.02, + "end": 34690.24, + "probability": 0.842 + }, + { + "start": 34690.24, + "end": 34692.8, + "probability": 0.5466 + }, + { + "start": 34693.08, + "end": 34695.18, + "probability": 0.2125 + }, + { + "start": 34695.6, + "end": 34697.6, + "probability": 0.7592 + }, + { + "start": 34704.06, + "end": 34704.12, + "probability": 0.3465 + }, + { + "start": 34704.12, + "end": 34705.84, + "probability": 0.0516 + }, + { + "start": 34713.28, + "end": 34715.64, + "probability": 0.5112 + }, + { + "start": 34716.69, + "end": 34720.84, + "probability": 0.7693 + }, + { + "start": 34720.94, + "end": 34723.02, + "probability": 0.9409 + }, + { + "start": 34723.02, + "end": 34725.04, + "probability": 0.6928 + }, + { + "start": 34725.72, + "end": 34729.04, + "probability": 0.2153 + }, + { + "start": 34744.3, + "end": 34744.78, + "probability": 0.2059 + }, + { + "start": 34744.78, + "end": 34744.78, + "probability": 0.1176 + }, + { + "start": 34744.78, + "end": 34744.78, + "probability": 0.2327 + }, + { + "start": 34744.78, + "end": 34746.02, + "probability": 0.4589 + }, + { + "start": 34746.18, + "end": 34752.7, + "probability": 0.7773 + }, + { + "start": 34753.12, + "end": 34753.68, + "probability": 0.5201 + }, + { + "start": 34754.46, + "end": 34754.58, + "probability": 0.0488 + }, + { + "start": 34754.72, + "end": 34757.84, + "probability": 0.7953 + }, + { + "start": 34758.22, + "end": 34760.36, + "probability": 0.829 + }, + { + "start": 34777.48, + "end": 34777.76, + "probability": 0.4518 + }, + { + "start": 34777.88, + "end": 34779.21, + "probability": 0.6341 + }, + { + "start": 34781.28, + "end": 34782.94, + "probability": 0.9464 + }, + { + "start": 34783.18, + "end": 34789.84, + "probability": 0.9914 + }, + { + "start": 34790.54, + "end": 34795.3, + "probability": 0.9345 + }, + { + "start": 34796.3, + "end": 34799.24, + "probability": 0.6927 + }, + { + "start": 34799.32, + "end": 34800.2, + "probability": 0.5007 + }, + { + "start": 34800.3, + "end": 34805.14, + "probability": 0.8467 + }, + { + "start": 34805.16, + "end": 34806.32, + "probability": 0.861 + }, + { + "start": 34806.4, + "end": 34813.3, + "probability": 0.9554 + }, + { + "start": 34813.64, + "end": 34818.94, + "probability": 0.9967 + }, + { + "start": 34819.62, + "end": 34821.38, + "probability": 0.7951 + }, + { + "start": 34822.68, + "end": 34828.06, + "probability": 0.9503 + }, + { + "start": 34828.18, + "end": 34832.8, + "probability": 0.7896 + }, + { + "start": 34833.5, + "end": 34837.02, + "probability": 0.994 + }, + { + "start": 34837.2, + "end": 34838.66, + "probability": 0.9817 + }, + { + "start": 34839.26, + "end": 34843.86, + "probability": 0.9016 + }, + { + "start": 34844.3, + "end": 34849.06, + "probability": 0.7353 + }, + { + "start": 34849.32, + "end": 34850.88, + "probability": 0.2824 + }, + { + "start": 34851.12, + "end": 34855.26, + "probability": 0.5819 + }, + { + "start": 34855.56, + "end": 34856.26, + "probability": 0.485 + }, + { + "start": 34856.78, + "end": 34862.54, + "probability": 0.9888 + }, + { + "start": 34862.54, + "end": 34869.82, + "probability": 0.9994 + }, + { + "start": 34870.26, + "end": 34873.04, + "probability": 0.8174 + }, + { + "start": 34873.48, + "end": 34877.64, + "probability": 0.6616 + }, + { + "start": 34877.64, + "end": 34881.28, + "probability": 0.993 + }, + { + "start": 34882.76, + "end": 34884.82, + "probability": 0.7372 + }, + { + "start": 34884.94, + "end": 34889.8, + "probability": 0.937 + }, + { + "start": 34890.54, + "end": 34897.58, + "probability": 0.9711 + }, + { + "start": 34897.8, + "end": 34904.98, + "probability": 0.9933 + }, + { + "start": 34905.98, + "end": 34912.18, + "probability": 0.9544 + }, + { + "start": 34912.5, + "end": 34913.2, + "probability": 0.5846 + }, + { + "start": 34913.32, + "end": 34920.02, + "probability": 0.6138 + }, + { + "start": 34920.02, + "end": 34923.8, + "probability": 0.9881 + }, + { + "start": 34924.58, + "end": 34925.74, + "probability": 0.9695 + }, + { + "start": 34925.86, + "end": 34929.82, + "probability": 0.9414 + }, + { + "start": 34929.9, + "end": 34931.02, + "probability": 0.7505 + }, + { + "start": 34931.72, + "end": 34938.66, + "probability": 0.9678 + }, + { + "start": 34939.18, + "end": 34943.0, + "probability": 0.7992 + }, + { + "start": 34943.56, + "end": 34945.74, + "probability": 0.9943 + }, + { + "start": 34946.92, + "end": 34951.66, + "probability": 0.9164 + }, + { + "start": 34953.02, + "end": 34955.92, + "probability": 0.525 + }, + { + "start": 34956.38, + "end": 34956.96, + "probability": 0.7241 + }, + { + "start": 34958.49, + "end": 34963.68, + "probability": 0.7056 + }, + { + "start": 34965.1, + "end": 34965.64, + "probability": 0.606 + }, + { + "start": 34965.68, + "end": 34966.78, + "probability": 0.708 + }, + { + "start": 34982.8, + "end": 34983.68, + "probability": 0.7464 + }, + { + "start": 34984.22, + "end": 34985.8, + "probability": 0.7353 + }, + { + "start": 34986.1, + "end": 34987.34, + "probability": 0.8139 + }, + { + "start": 34987.4, + "end": 34988.88, + "probability": 0.6558 + }, + { + "start": 34989.28, + "end": 34992.46, + "probability": 0.959 + }, + { + "start": 34992.46, + "end": 34998.68, + "probability": 0.8562 + }, + { + "start": 34999.18, + "end": 35003.12, + "probability": 0.762 + }, + { + "start": 35004.06, + "end": 35009.99, + "probability": 0.9764 + }, + { + "start": 35012.06, + "end": 35013.16, + "probability": 0.3829 + }, + { + "start": 35013.78, + "end": 35020.56, + "probability": 0.9115 + }, + { + "start": 35021.04, + "end": 35021.92, + "probability": 0.6107 + }, + { + "start": 35021.98, + "end": 35023.04, + "probability": 0.99 + }, + { + "start": 35023.16, + "end": 35029.7, + "probability": 0.8901 + }, + { + "start": 35030.1, + "end": 35031.3, + "probability": 0.7558 + }, + { + "start": 35032.0, + "end": 35032.92, + "probability": 0.8644 + }, + { + "start": 35033.1, + "end": 35040.84, + "probability": 0.9938 + }, + { + "start": 35040.92, + "end": 35048.9, + "probability": 0.9663 + }, + { + "start": 35049.52, + "end": 35052.98, + "probability": 0.7865 + }, + { + "start": 35053.3, + "end": 35054.52, + "probability": 0.5492 + }, + { + "start": 35054.68, + "end": 35055.2, + "probability": 0.7471 + }, + { + "start": 35055.68, + "end": 35058.58, + "probability": 0.9543 + }, + { + "start": 35058.6, + "end": 35061.0, + "probability": 0.9248 + }, + { + "start": 35061.6, + "end": 35064.54, + "probability": 0.958 + }, + { + "start": 35064.88, + "end": 35065.64, + "probability": 0.7441 + }, + { + "start": 35066.06, + "end": 35066.72, + "probability": 0.7838 + }, + { + "start": 35068.04, + "end": 35068.62, + "probability": 0.5382 + }, + { + "start": 35068.72, + "end": 35070.02, + "probability": 0.5789 + }, + { + "start": 35070.18, + "end": 35073.2, + "probability": 0.7986 + }, + { + "start": 35073.72, + "end": 35076.06, + "probability": 0.3272 + }, + { + "start": 35077.8, + "end": 35079.02, + "probability": 0.9732 + }, + { + "start": 35079.08, + "end": 35082.52, + "probability": 0.7971 + }, + { + "start": 35082.62, + "end": 35084.02, + "probability": 0.8718 + }, + { + "start": 35084.36, + "end": 35086.92, + "probability": 0.9427 + }, + { + "start": 35087.5, + "end": 35088.98, + "probability": 0.9756 + }, + { + "start": 35091.64, + "end": 35091.76, + "probability": 0.3424 + }, + { + "start": 35093.0, + "end": 35095.32, + "probability": 0.2259 + }, + { + "start": 35095.32, + "end": 35098.06, + "probability": 0.2092 + }, + { + "start": 35119.68, + "end": 35120.78, + "probability": 0.1273 + }, + { + "start": 35122.04, + "end": 35123.92, + "probability": 0.4493 + }, + { + "start": 35124.04, + "end": 35125.76, + "probability": 0.9956 + }, + { + "start": 35126.42, + "end": 35131.26, + "probability": 0.8592 + }, + { + "start": 35131.34, + "end": 35133.16, + "probability": 0.4746 + }, + { + "start": 35133.16, + "end": 35134.82, + "probability": 0.7141 + }, + { + "start": 35136.0, + "end": 35136.78, + "probability": 0.6966 + }, + { + "start": 35137.2, + "end": 35140.74, + "probability": 0.6503 + }, + { + "start": 35141.48, + "end": 35146.87, + "probability": 0.9841 + }, + { + "start": 35147.22, + "end": 35152.22, + "probability": 0.9961 + }, + { + "start": 35153.52, + "end": 35155.3, + "probability": 0.9852 + }, + { + "start": 35156.02, + "end": 35157.56, + "probability": 0.8085 + }, + { + "start": 35158.22, + "end": 35161.34, + "probability": 0.9913 + }, + { + "start": 35161.34, + "end": 35165.14, + "probability": 0.9644 + }, + { + "start": 35165.24, + "end": 35165.8, + "probability": 0.4474 + }, + { + "start": 35166.34, + "end": 35169.6, + "probability": 0.9094 + }, + { + "start": 35170.14, + "end": 35173.24, + "probability": 0.9642 + }, + { + "start": 35175.0, + "end": 35180.98, + "probability": 0.9781 + }, + { + "start": 35181.9, + "end": 35184.9, + "probability": 0.9988 + }, + { + "start": 35185.58, + "end": 35187.56, + "probability": 0.9093 + }, + { + "start": 35188.1, + "end": 35193.72, + "probability": 0.9436 + }, + { + "start": 35193.88, + "end": 35194.58, + "probability": 0.4399 + }, + { + "start": 35195.48, + "end": 35201.18, + "probability": 0.9318 + }, + { + "start": 35201.44, + "end": 35206.52, + "probability": 0.9036 + }, + { + "start": 35206.98, + "end": 35209.18, + "probability": 0.9718 + }, + { + "start": 35210.0, + "end": 35214.44, + "probability": 0.9653 + }, + { + "start": 35214.44, + "end": 35219.12, + "probability": 0.9993 + }, + { + "start": 35219.88, + "end": 35221.54, + "probability": 0.9907 + }, + { + "start": 35221.72, + "end": 35222.7, + "probability": 0.7088 + }, + { + "start": 35223.18, + "end": 35226.02, + "probability": 0.9967 + }, + { + "start": 35226.8, + "end": 35229.6, + "probability": 0.9192 + }, + { + "start": 35229.6, + "end": 35232.58, + "probability": 0.9362 + }, + { + "start": 35233.0, + "end": 35233.52, + "probability": 0.7366 + }, + { + "start": 35233.9, + "end": 35234.98, + "probability": 0.9003 + }, + { + "start": 35235.5, + "end": 35238.83, + "probability": 0.773 + }, + { + "start": 35239.48, + "end": 35245.06, + "probability": 0.9072 + }, + { + "start": 35245.1, + "end": 35246.36, + "probability": 0.9215 + }, + { + "start": 35246.8, + "end": 35251.84, + "probability": 0.9917 + }, + { + "start": 35252.34, + "end": 35255.12, + "probability": 0.9062 + }, + { + "start": 35255.7, + "end": 35261.44, + "probability": 0.9928 + }, + { + "start": 35262.46, + "end": 35267.62, + "probability": 0.9884 + }, + { + "start": 35268.36, + "end": 35270.58, + "probability": 0.6663 + }, + { + "start": 35271.12, + "end": 35274.14, + "probability": 0.9451 + }, + { + "start": 35274.98, + "end": 35279.86, + "probability": 0.9928 + }, + { + "start": 35280.52, + "end": 35287.24, + "probability": 0.9084 + }, + { + "start": 35287.64, + "end": 35288.68, + "probability": 0.9254 + }, + { + "start": 35288.82, + "end": 35289.84, + "probability": 0.5887 + }, + { + "start": 35290.2, + "end": 35293.92, + "probability": 0.8477 + }, + { + "start": 35294.72, + "end": 35299.82, + "probability": 0.9944 + }, + { + "start": 35300.4, + "end": 35306.0, + "probability": 0.9812 + }, + { + "start": 35306.14, + "end": 35306.56, + "probability": 0.6309 + }, + { + "start": 35306.74, + "end": 35309.8, + "probability": 0.7953 + }, + { + "start": 35309.98, + "end": 35313.36, + "probability": 0.9888 + }, + { + "start": 35313.78, + "end": 35314.12, + "probability": 0.5402 + }, + { + "start": 35314.2, + "end": 35315.66, + "probability": 0.9052 + }, + { + "start": 35316.22, + "end": 35320.86, + "probability": 0.9674 + }, + { + "start": 35321.4, + "end": 35326.02, + "probability": 0.9868 + }, + { + "start": 35326.02, + "end": 35329.84, + "probability": 0.9972 + }, + { + "start": 35330.44, + "end": 35334.98, + "probability": 0.9785 + }, + { + "start": 35335.42, + "end": 35341.58, + "probability": 0.9396 + }, + { + "start": 35342.36, + "end": 35345.04, + "probability": 0.825 + }, + { + "start": 35347.23, + "end": 35355.94, + "probability": 0.9742 + }, + { + "start": 35356.66, + "end": 35361.04, + "probability": 0.9932 + }, + { + "start": 35361.04, + "end": 35365.34, + "probability": 0.9985 + }, + { + "start": 35365.34, + "end": 35372.94, + "probability": 0.9922 + }, + { + "start": 35373.54, + "end": 35375.4, + "probability": 0.5891 + }, + { + "start": 35375.4, + "end": 35377.48, + "probability": 0.9954 + }, + { + "start": 35377.48, + "end": 35380.7, + "probability": 0.9832 + }, + { + "start": 35381.22, + "end": 35385.26, + "probability": 0.9976 + }, + { + "start": 35385.26, + "end": 35389.76, + "probability": 0.9962 + }, + { + "start": 35390.48, + "end": 35395.9, + "probability": 0.9985 + }, + { + "start": 35396.4, + "end": 35399.24, + "probability": 0.9554 + }, + { + "start": 35399.66, + "end": 35402.7, + "probability": 0.9093 + }, + { + "start": 35403.18, + "end": 35409.14, + "probability": 0.9983 + }, + { + "start": 35409.5, + "end": 35411.0, + "probability": 0.9635 + }, + { + "start": 35411.48, + "end": 35414.94, + "probability": 0.9816 + }, + { + "start": 35415.02, + "end": 35418.4, + "probability": 0.9951 + }, + { + "start": 35418.98, + "end": 35422.44, + "probability": 0.9423 + }, + { + "start": 35423.1, + "end": 35423.98, + "probability": 0.962 + }, + { + "start": 35424.4, + "end": 35425.56, + "probability": 0.9579 + }, + { + "start": 35425.96, + "end": 35427.8, + "probability": 0.9715 + }, + { + "start": 35428.42, + "end": 35430.52, + "probability": 0.8394 + }, + { + "start": 35430.84, + "end": 35433.86, + "probability": 0.994 + }, + { + "start": 35434.28, + "end": 35438.4, + "probability": 0.9974 + }, + { + "start": 35439.14, + "end": 35440.38, + "probability": 0.8789 + }, + { + "start": 35440.9, + "end": 35445.12, + "probability": 0.9921 + }, + { + "start": 35445.46, + "end": 35448.0, + "probability": 0.9989 + }, + { + "start": 35449.28, + "end": 35453.12, + "probability": 0.999 + }, + { + "start": 35453.12, + "end": 35458.88, + "probability": 0.9954 + }, + { + "start": 35459.32, + "end": 35461.52, + "probability": 0.9951 + }, + { + "start": 35461.9, + "end": 35467.78, + "probability": 0.75 + }, + { + "start": 35467.78, + "end": 35474.04, + "probability": 0.8984 + }, + { + "start": 35474.56, + "end": 35479.62, + "probability": 0.9651 + }, + { + "start": 35479.8, + "end": 35485.7, + "probability": 0.9978 + }, + { + "start": 35486.16, + "end": 35486.72, + "probability": 0.6698 + }, + { + "start": 35487.06, + "end": 35488.92, + "probability": 0.9948 + }, + { + "start": 35489.02, + "end": 35491.68, + "probability": 0.8385 + }, + { + "start": 35491.76, + "end": 35492.78, + "probability": 0.8615 + }, + { + "start": 35493.58, + "end": 35497.68, + "probability": 0.9932 + }, + { + "start": 35498.2, + "end": 35498.98, + "probability": 0.7771 + }, + { + "start": 35499.18, + "end": 35499.9, + "probability": 0.5298 + }, + { + "start": 35500.26, + "end": 35502.44, + "probability": 0.9893 + }, + { + "start": 35502.9, + "end": 35507.54, + "probability": 0.999 + }, + { + "start": 35508.06, + "end": 35510.34, + "probability": 0.9956 + }, + { + "start": 35510.62, + "end": 35510.94, + "probability": 0.7412 + }, + { + "start": 35511.2, + "end": 35511.76, + "probability": 0.7347 + }, + { + "start": 35513.48, + "end": 35515.98, + "probability": 0.6699 + }, + { + "start": 35516.3, + "end": 35517.0, + "probability": 0.1649 + }, + { + "start": 35517.72, + "end": 35517.72, + "probability": 0.0117 + }, + { + "start": 35518.48, + "end": 35519.8, + "probability": 0.6709 + }, + { + "start": 35519.8, + "end": 35519.94, + "probability": 0.3547 + }, + { + "start": 35520.08, + "end": 35523.4, + "probability": 0.8921 + }, + { + "start": 35524.16, + "end": 35526.04, + "probability": 0.6377 + }, + { + "start": 35526.62, + "end": 35530.8, + "probability": 0.4603 + }, + { + "start": 35532.12, + "end": 35532.22, + "probability": 0.0237 + }, + { + "start": 35532.22, + "end": 35533.3, + "probability": 0.3518 + }, + { + "start": 35533.38, + "end": 35534.0, + "probability": 0.2541 + }, + { + "start": 35534.0, + "end": 35536.92, + "probability": 0.8338 + }, + { + "start": 35538.18, + "end": 35541.06, + "probability": 0.7555 + }, + { + "start": 35541.28, + "end": 35541.68, + "probability": 0.4751 + }, + { + "start": 35548.94, + "end": 35550.42, + "probability": 0.7159 + }, + { + "start": 35550.64, + "end": 35551.64, + "probability": 0.7067 + }, + { + "start": 35555.0, + "end": 35558.48, + "probability": 0.6108 + }, + { + "start": 35563.08, + "end": 35566.36, + "probability": 0.5541 + }, + { + "start": 35566.38, + "end": 35567.46, + "probability": 0.6642 + }, + { + "start": 35567.6, + "end": 35580.24, + "probability": 0.9908 + }, + { + "start": 35581.5, + "end": 35582.18, + "probability": 0.5058 + }, + { + "start": 35582.78, + "end": 35587.1, + "probability": 0.9684 + }, + { + "start": 35587.76, + "end": 35592.68, + "probability": 0.9855 + }, + { + "start": 35594.12, + "end": 35598.38, + "probability": 0.9692 + }, + { + "start": 35599.18, + "end": 35604.66, + "probability": 0.9772 + }, + { + "start": 35605.96, + "end": 35609.16, + "probability": 0.8368 + }, + { + "start": 35611.64, + "end": 35613.28, + "probability": 0.2212 + }, + { + "start": 35614.12, + "end": 35617.65, + "probability": 0.877 + }, + { + "start": 35618.62, + "end": 35622.6, + "probability": 0.943 + }, + { + "start": 35625.06, + "end": 35625.88, + "probability": 0.9631 + }, + { + "start": 35629.18, + "end": 35630.6, + "probability": 0.8443 + }, + { + "start": 35630.6, + "end": 35633.36, + "probability": 0.3096 + }, + { + "start": 35633.36, + "end": 35639.88, + "probability": 0.5313 + }, + { + "start": 35639.88, + "end": 35642.1, + "probability": 0.0839 + }, + { + "start": 35642.9, + "end": 35647.12, + "probability": 0.9873 + }, + { + "start": 35648.4, + "end": 35652.42, + "probability": 0.8834 + }, + { + "start": 35653.8, + "end": 35654.4, + "probability": 0.8909 + }, + { + "start": 35654.56, + "end": 35656.44, + "probability": 0.9652 + }, + { + "start": 35656.48, + "end": 35661.0, + "probability": 0.8707 + }, + { + "start": 35661.58, + "end": 35664.0, + "probability": 0.9188 + }, + { + "start": 35664.06, + "end": 35671.28, + "probability": 0.9662 + }, + { + "start": 35671.38, + "end": 35673.22, + "probability": 0.8137 + }, + { + "start": 35674.04, + "end": 35675.66, + "probability": 0.9933 + }, + { + "start": 35675.7, + "end": 35675.72, + "probability": 0.7065 + }, + { + "start": 35676.3, + "end": 35679.64, + "probability": 0.9927 + }, + { + "start": 35679.98, + "end": 35681.02, + "probability": 0.7732 + }, + { + "start": 35681.9, + "end": 35683.38, + "probability": 0.6631 + }, + { + "start": 35684.64, + "end": 35688.14, + "probability": 0.6156 + }, + { + "start": 35689.02, + "end": 35692.06, + "probability": 0.9282 + }, + { + "start": 35693.16, + "end": 35699.26, + "probability": 0.979 + }, + { + "start": 35700.14, + "end": 35701.78, + "probability": 0.537 + }, + { + "start": 35703.5, + "end": 35706.62, + "probability": 0.996 + }, + { + "start": 35707.42, + "end": 35712.08, + "probability": 0.9884 + }, + { + "start": 35712.74, + "end": 35714.1, + "probability": 0.9414 + }, + { + "start": 35714.72, + "end": 35718.0, + "probability": 0.9985 + }, + { + "start": 35719.42, + "end": 35722.82, + "probability": 0.9751 + }, + { + "start": 35724.3, + "end": 35727.38, + "probability": 0.9052 + }, + { + "start": 35727.44, + "end": 35728.15, + "probability": 0.8911 + }, + { + "start": 35728.94, + "end": 35730.33, + "probability": 0.9985 + }, + { + "start": 35732.96, + "end": 35736.7, + "probability": 0.9897 + }, + { + "start": 35736.98, + "end": 35741.44, + "probability": 0.9575 + }, + { + "start": 35742.42, + "end": 35746.24, + "probability": 0.9616 + }, + { + "start": 35746.38, + "end": 35747.84, + "probability": 0.7379 + }, + { + "start": 35749.41, + "end": 35752.3, + "probability": 0.9956 + }, + { + "start": 35753.1, + "end": 35755.7, + "probability": 0.5624 + }, + { + "start": 35757.06, + "end": 35761.0, + "probability": 0.639 + }, + { + "start": 35761.5, + "end": 35764.84, + "probability": 0.9924 + }, + { + "start": 35766.04, + "end": 35771.7, + "probability": 0.686 + }, + { + "start": 35773.04, + "end": 35775.0, + "probability": 0.5673 + }, + { + "start": 35775.56, + "end": 35778.04, + "probability": 0.943 + }, + { + "start": 35778.92, + "end": 35781.98, + "probability": 0.9739 + }, + { + "start": 35782.64, + "end": 35784.58, + "probability": 0.9351 + }, + { + "start": 35792.56, + "end": 35793.32, + "probability": 0.693 + }, + { + "start": 35794.36, + "end": 35796.34, + "probability": 0.8116 + }, + { + "start": 35796.72, + "end": 35797.68, + "probability": 0.8068 + }, + { + "start": 35797.76, + "end": 35802.64, + "probability": 0.9714 + }, + { + "start": 35803.74, + "end": 35804.56, + "probability": 0.7205 + }, + { + "start": 35804.6, + "end": 35804.96, + "probability": 0.7395 + }, + { + "start": 35805.08, + "end": 35811.44, + "probability": 0.9729 + }, + { + "start": 35812.22, + "end": 35813.8, + "probability": 0.9951 + }, + { + "start": 35815.12, + "end": 35817.88, + "probability": 0.7105 + }, + { + "start": 35818.02, + "end": 35819.94, + "probability": 0.9534 + }, + { + "start": 35820.12, + "end": 35821.6, + "probability": 0.9497 + }, + { + "start": 35821.64, + "end": 35824.98, + "probability": 0.6863 + }, + { + "start": 35825.06, + "end": 35825.1, + "probability": 0.6721 + }, + { + "start": 35825.1, + "end": 35826.32, + "probability": 0.9346 + }, + { + "start": 35826.4, + "end": 35828.04, + "probability": 0.7061 + }, + { + "start": 35828.12, + "end": 35832.4, + "probability": 0.9963 + }, + { + "start": 35833.06, + "end": 35834.64, + "probability": 0.8976 + }, + { + "start": 35836.67, + "end": 35840.38, + "probability": 0.9891 + }, + { + "start": 35840.56, + "end": 35844.38, + "probability": 0.77 + }, + { + "start": 35845.44, + "end": 35845.86, + "probability": 0.7069 + }, + { + "start": 35846.2, + "end": 35847.28, + "probability": 0.7465 + }, + { + "start": 35847.48, + "end": 35855.78, + "probability": 0.8994 + }, + { + "start": 35855.9, + "end": 35856.18, + "probability": 0.61 + }, + { + "start": 35856.18, + "end": 35858.06, + "probability": 0.0903 + }, + { + "start": 35858.9, + "end": 35860.46, + "probability": 0.0597 + }, + { + "start": 35860.76, + "end": 35866.26, + "probability": 0.948 + }, + { + "start": 35866.6, + "end": 35868.04, + "probability": 0.6928 + }, + { + "start": 35868.2, + "end": 35869.22, + "probability": 0.755 + }, + { + "start": 35870.72, + "end": 35872.3, + "probability": 0.6268 + }, + { + "start": 35888.76, + "end": 35889.74, + "probability": 0.7201 + }, + { + "start": 35890.2, + "end": 35891.56, + "probability": 0.5422 + }, + { + "start": 35891.56, + "end": 35895.16, + "probability": 0.7989 + }, + { + "start": 35895.3, + "end": 35900.3, + "probability": 0.972 + }, + { + "start": 35901.24, + "end": 35906.8, + "probability": 0.9397 + }, + { + "start": 35907.48, + "end": 35908.28, + "probability": 0.9804 + }, + { + "start": 35910.16, + "end": 35912.9, + "probability": 0.7586 + }, + { + "start": 35913.94, + "end": 35916.48, + "probability": 0.9816 + }, + { + "start": 35917.6, + "end": 35921.44, + "probability": 0.7363 + }, + { + "start": 35922.26, + "end": 35924.98, + "probability": 0.9844 + }, + { + "start": 35926.42, + "end": 35930.0, + "probability": 0.9663 + }, + { + "start": 35930.0, + "end": 35935.72, + "probability": 0.9964 + }, + { + "start": 35936.54, + "end": 35941.0, + "probability": 0.9736 + }, + { + "start": 35941.84, + "end": 35942.9, + "probability": 0.4935 + }, + { + "start": 35943.02, + "end": 35944.82, + "probability": 0.7227 + }, + { + "start": 35945.76, + "end": 35950.2, + "probability": 0.8879 + }, + { + "start": 35950.42, + "end": 35951.66, + "probability": 0.7724 + }, + { + "start": 35952.22, + "end": 35953.28, + "probability": 0.9161 + }, + { + "start": 35953.84, + "end": 35962.0, + "probability": 0.9603 + }, + { + "start": 35962.12, + "end": 35963.16, + "probability": 0.5731 + }, + { + "start": 35964.52, + "end": 35966.86, + "probability": 0.6089 + }, + { + "start": 35967.9, + "end": 35968.66, + "probability": 0.3812 + }, + { + "start": 35968.66, + "end": 35969.64, + "probability": 0.695 + }, + { + "start": 35971.36, + "end": 35971.36, + "probability": 0.3345 + }, + { + "start": 35971.36, + "end": 35971.44, + "probability": 0.2496 + }, + { + "start": 35971.44, + "end": 35972.54, + "probability": 0.9296 + }, + { + "start": 35973.38, + "end": 35973.88, + "probability": 0.9417 + }, + { + "start": 35973.88, + "end": 35974.56, + "probability": 0.3369 + }, + { + "start": 35975.04, + "end": 35975.96, + "probability": 0.9034 + }, + { + "start": 35976.82, + "end": 35979.4, + "probability": 0.7695 + }, + { + "start": 35979.94, + "end": 35983.56, + "probability": 0.5898 + }, + { + "start": 35984.8, + "end": 35988.86, + "probability": 0.7194 + }, + { + "start": 35989.98, + "end": 35992.74, + "probability": 0.9653 + }, + { + "start": 35993.42, + "end": 35996.34, + "probability": 0.9259 + }, + { + "start": 35996.94, + "end": 35999.68, + "probability": 0.9233 + }, + { + "start": 36000.78, + "end": 36002.8, + "probability": 0.7437 + }, + { + "start": 36003.84, + "end": 36007.48, + "probability": 0.9333 + }, + { + "start": 36007.62, + "end": 36008.72, + "probability": 0.8585 + }, + { + "start": 36010.0, + "end": 36014.66, + "probability": 0.9799 + }, + { + "start": 36014.66, + "end": 36019.96, + "probability": 0.9919 + }, + { + "start": 36020.52, + "end": 36024.45, + "probability": 0.99 + }, + { + "start": 36025.18, + "end": 36027.77, + "probability": 0.9774 + }, + { + "start": 36027.92, + "end": 36030.3, + "probability": 0.9985 + }, + { + "start": 36030.9, + "end": 36031.8, + "probability": 0.6723 + }, + { + "start": 36032.44, + "end": 36038.02, + "probability": 0.9478 + }, + { + "start": 36038.02, + "end": 36043.48, + "probability": 0.9809 + }, + { + "start": 36043.7, + "end": 36046.44, + "probability": 0.637 + }, + { + "start": 36048.32, + "end": 36049.34, + "probability": 0.8916 + }, + { + "start": 36051.54, + "end": 36052.88, + "probability": 0.8398 + }, + { + "start": 36053.46, + "end": 36054.64, + "probability": 0.819 + }, + { + "start": 36056.02, + "end": 36057.12, + "probability": 0.979 + }, + { + "start": 36059.24, + "end": 36064.74, + "probability": 0.987 + }, + { + "start": 36065.32, + "end": 36066.32, + "probability": 0.7408 + }, + { + "start": 36067.38, + "end": 36073.92, + "probability": 0.9754 + }, + { + "start": 36074.94, + "end": 36077.06, + "probability": 0.7634 + }, + { + "start": 36078.66, + "end": 36080.5, + "probability": 0.9465 + }, + { + "start": 36081.48, + "end": 36086.63, + "probability": 0.843 + }, + { + "start": 36086.86, + "end": 36087.58, + "probability": 0.9638 + }, + { + "start": 36088.06, + "end": 36090.33, + "probability": 0.9828 + }, + { + "start": 36091.72, + "end": 36094.66, + "probability": 0.984 + }, + { + "start": 36095.46, + "end": 36100.72, + "probability": 0.9945 + }, + { + "start": 36101.28, + "end": 36102.75, + "probability": 0.9827 + }, + { + "start": 36103.74, + "end": 36108.78, + "probability": 0.9827 + }, + { + "start": 36109.7, + "end": 36111.91, + "probability": 0.9331 + }, + { + "start": 36112.24, + "end": 36120.46, + "probability": 0.9646 + }, + { + "start": 36121.24, + "end": 36125.18, + "probability": 0.8286 + }, + { + "start": 36125.76, + "end": 36133.36, + "probability": 0.9967 + }, + { + "start": 36133.9, + "end": 36135.02, + "probability": 0.727 + }, + { + "start": 36135.42, + "end": 36140.76, + "probability": 0.8769 + }, + { + "start": 36140.8, + "end": 36141.32, + "probability": 0.7134 + }, + { + "start": 36141.86, + "end": 36146.16, + "probability": 0.942 + }, + { + "start": 36147.02, + "end": 36149.2, + "probability": 0.9589 + }, + { + "start": 36150.3, + "end": 36151.98, + "probability": 0.9421 + }, + { + "start": 36152.88, + "end": 36154.04, + "probability": 0.8727 + }, + { + "start": 36154.12, + "end": 36155.36, + "probability": 0.9304 + }, + { + "start": 36155.52, + "end": 36156.46, + "probability": 0.8344 + }, + { + "start": 36156.62, + "end": 36157.66, + "probability": 0.4442 + }, + { + "start": 36158.76, + "end": 36161.86, + "probability": 0.9806 + }, + { + "start": 36162.58, + "end": 36167.82, + "probability": 0.8948 + }, + { + "start": 36168.48, + "end": 36172.68, + "probability": 0.9831 + }, + { + "start": 36173.0, + "end": 36174.64, + "probability": 0.7206 + }, + { + "start": 36174.88, + "end": 36176.2, + "probability": 0.3897 + }, + { + "start": 36176.68, + "end": 36178.42, + "probability": 0.8058 + }, + { + "start": 36179.24, + "end": 36180.74, + "probability": 0.837 + }, + { + "start": 36181.36, + "end": 36184.32, + "probability": 0.8947 + }, + { + "start": 36184.42, + "end": 36184.92, + "probability": 0.8902 + }, + { + "start": 36185.88, + "end": 36186.74, + "probability": 0.8063 + }, + { + "start": 36187.56, + "end": 36187.72, + "probability": 0.915 + }, + { + "start": 36188.4, + "end": 36190.6, + "probability": 0.5228 + }, + { + "start": 36191.46, + "end": 36192.34, + "probability": 0.6589 + }, + { + "start": 36192.88, + "end": 36195.84, + "probability": 0.8012 + }, + { + "start": 36196.02, + "end": 36197.36, + "probability": 0.8154 + }, + { + "start": 36199.62, + "end": 36202.74, + "probability": 0.3604 + }, + { + "start": 36202.82, + "end": 36204.41, + "probability": 0.6398 + }, + { + "start": 36205.32, + "end": 36206.34, + "probability": 0.8621 + }, + { + "start": 36206.84, + "end": 36208.06, + "probability": 0.4872 + }, + { + "start": 36215.82, + "end": 36217.78, + "probability": 0.3682 + }, + { + "start": 36217.92, + "end": 36219.3, + "probability": 0.7378 + }, + { + "start": 36219.32, + "end": 36219.74, + "probability": 0.352 + }, + { + "start": 36220.74, + "end": 36225.26, + "probability": 0.2783 + }, + { + "start": 36225.42, + "end": 36227.31, + "probability": 0.1622 + }, + { + "start": 36229.02, + "end": 36229.72, + "probability": 0.4844 + }, + { + "start": 36229.94, + "end": 36233.3, + "probability": 0.8855 + }, + { + "start": 36233.74, + "end": 36236.34, + "probability": 0.6626 + }, + { + "start": 36236.34, + "end": 36237.1, + "probability": 0.3373 + }, + { + "start": 36237.2, + "end": 36240.14, + "probability": 0.9888 + }, + { + "start": 36241.14, + "end": 36244.98, + "probability": 0.9619 + }, + { + "start": 36246.54, + "end": 36247.96, + "probability": 0.3626 + }, + { + "start": 36248.26, + "end": 36254.16, + "probability": 0.4894 + }, + { + "start": 36254.38, + "end": 36255.48, + "probability": 0.8096 + }, + { + "start": 36256.8, + "end": 36257.42, + "probability": 0.9057 + }, + { + "start": 36258.14, + "end": 36260.2, + "probability": 0.9896 + }, + { + "start": 36262.04, + "end": 36263.06, + "probability": 0.8964 + }, + { + "start": 36263.84, + "end": 36266.58, + "probability": 0.8328 + }, + { + "start": 36268.86, + "end": 36269.58, + "probability": 0.679 + }, + { + "start": 36271.32, + "end": 36276.76, + "probability": 0.8396 + }, + { + "start": 36277.44, + "end": 36278.2, + "probability": 0.4235 + }, + { + "start": 36278.32, + "end": 36280.06, + "probability": 0.5373 + }, + { + "start": 36282.32, + "end": 36288.12, + "probability": 0.9883 + }, + { + "start": 36289.1, + "end": 36290.58, + "probability": 0.8688 + }, + { + "start": 36291.28, + "end": 36295.56, + "probability": 0.8124 + }, + { + "start": 36297.02, + "end": 36298.82, + "probability": 0.9938 + }, + { + "start": 36299.54, + "end": 36301.12, + "probability": 0.9783 + }, + { + "start": 36302.44, + "end": 36305.18, + "probability": 0.9932 + }, + { + "start": 36306.86, + "end": 36308.02, + "probability": 0.696 + }, + { + "start": 36308.6, + "end": 36313.5, + "probability": 0.9618 + }, + { + "start": 36314.12, + "end": 36315.14, + "probability": 0.8676 + }, + { + "start": 36317.05, + "end": 36321.12, + "probability": 0.9845 + }, + { + "start": 36321.52, + "end": 36322.86, + "probability": 0.9139 + }, + { + "start": 36323.72, + "end": 36327.84, + "probability": 0.9431 + }, + { + "start": 36328.08, + "end": 36329.08, + "probability": 0.9597 + }, + { + "start": 36329.1, + "end": 36332.91, + "probability": 0.9834 + }, + { + "start": 36334.48, + "end": 36336.0, + "probability": 0.9759 + }, + { + "start": 36337.44, + "end": 36341.14, + "probability": 0.9639 + }, + { + "start": 36342.72, + "end": 36343.86, + "probability": 0.9519 + }, + { + "start": 36344.78, + "end": 36347.18, + "probability": 0.8776 + }, + { + "start": 36347.72, + "end": 36348.74, + "probability": 0.8871 + }, + { + "start": 36350.78, + "end": 36352.68, + "probability": 0.9888 + }, + { + "start": 36352.8, + "end": 36353.64, + "probability": 0.6396 + }, + { + "start": 36354.6, + "end": 36357.14, + "probability": 0.8808 + }, + { + "start": 36357.26, + "end": 36358.0, + "probability": 0.7682 + }, + { + "start": 36358.06, + "end": 36360.46, + "probability": 0.7574 + }, + { + "start": 36361.26, + "end": 36362.28, + "probability": 0.6743 + }, + { + "start": 36363.42, + "end": 36365.94, + "probability": 0.686 + }, + { + "start": 36366.9, + "end": 36370.78, + "probability": 0.9804 + }, + { + "start": 36371.96, + "end": 36373.36, + "probability": 0.9023 + }, + { + "start": 36374.66, + "end": 36376.44, + "probability": 0.9066 + }, + { + "start": 36376.62, + "end": 36378.0, + "probability": 0.9875 + }, + { + "start": 36378.72, + "end": 36381.0, + "probability": 0.9489 + }, + { + "start": 36382.04, + "end": 36382.76, + "probability": 0.9971 + }, + { + "start": 36383.5, + "end": 36389.92, + "probability": 0.9844 + }, + { + "start": 36390.98, + "end": 36394.76, + "probability": 0.9683 + }, + { + "start": 36394.8, + "end": 36396.66, + "probability": 0.6619 + }, + { + "start": 36398.06, + "end": 36399.96, + "probability": 0.853 + }, + { + "start": 36401.16, + "end": 36401.98, + "probability": 0.9296 + }, + { + "start": 36402.62, + "end": 36403.36, + "probability": 0.7641 + }, + { + "start": 36404.36, + "end": 36405.52, + "probability": 0.5333 + }, + { + "start": 36406.3, + "end": 36407.38, + "probability": 0.9586 + }, + { + "start": 36407.48, + "end": 36410.86, + "probability": 0.8882 + }, + { + "start": 36411.14, + "end": 36413.48, + "probability": 0.9707 + }, + { + "start": 36413.64, + "end": 36414.98, + "probability": 0.8123 + }, + { + "start": 36418.06, + "end": 36421.3, + "probability": 0.8725 + }, + { + "start": 36421.46, + "end": 36422.56, + "probability": 0.7773 + }, + { + "start": 36423.1, + "end": 36425.08, + "probability": 0.8666 + }, + { + "start": 36427.0, + "end": 36428.8, + "probability": 0.9767 + }, + { + "start": 36429.3, + "end": 36429.52, + "probability": 0.8219 + }, + { + "start": 36430.22, + "end": 36430.82, + "probability": 0.7894 + }, + { + "start": 36432.36, + "end": 36433.78, + "probability": 0.6696 + }, + { + "start": 36434.38, + "end": 36434.98, + "probability": 0.3567 + }, + { + "start": 36435.02, + "end": 36436.68, + "probability": 0.9074 + }, + { + "start": 36443.88, + "end": 36443.94, + "probability": 0.2455 + }, + { + "start": 36443.94, + "end": 36443.96, + "probability": 0.1419 + }, + { + "start": 36443.96, + "end": 36443.96, + "probability": 0.1319 + }, + { + "start": 36443.96, + "end": 36443.96, + "probability": 0.0713 + }, + { + "start": 36443.96, + "end": 36444.54, + "probability": 0.1021 + }, + { + "start": 36445.77, + "end": 36446.26, + "probability": 0.1031 + }, + { + "start": 36466.18, + "end": 36469.76, + "probability": 0.8662 + }, + { + "start": 36469.86, + "end": 36471.06, + "probability": 0.3162 + }, + { + "start": 36472.32, + "end": 36474.16, + "probability": 0.8892 + }, + { + "start": 36474.98, + "end": 36481.06, + "probability": 0.6636 + }, + { + "start": 36482.8, + "end": 36489.76, + "probability": 0.7387 + }, + { + "start": 36489.84, + "end": 36490.84, + "probability": 0.7656 + }, + { + "start": 36491.64, + "end": 36494.0, + "probability": 0.9548 + }, + { + "start": 36494.36, + "end": 36495.6, + "probability": 0.8676 + }, + { + "start": 36495.66, + "end": 36497.4, + "probability": 0.9919 + }, + { + "start": 36498.42, + "end": 36500.1, + "probability": 0.8371 + }, + { + "start": 36500.8, + "end": 36502.5, + "probability": 0.8471 + }, + { + "start": 36503.88, + "end": 36505.22, + "probability": 0.5151 + }, + { + "start": 36505.42, + "end": 36510.46, + "probability": 0.6837 + }, + { + "start": 36510.54, + "end": 36510.96, + "probability": 0.77 + }, + { + "start": 36511.1, + "end": 36512.98, + "probability": 0.7874 + }, + { + "start": 36513.44, + "end": 36518.01, + "probability": 0.8364 + }, + { + "start": 36518.7, + "end": 36521.3, + "probability": 0.8588 + }, + { + "start": 36522.14, + "end": 36522.58, + "probability": 0.6847 + }, + { + "start": 36523.52, + "end": 36524.86, + "probability": 0.4869 + }, + { + "start": 36525.52, + "end": 36527.08, + "probability": 0.2455 + }, + { + "start": 36527.88, + "end": 36529.14, + "probability": 0.8917 + }, + { + "start": 36529.98, + "end": 36533.26, + "probability": 0.9819 + }, + { + "start": 36534.66, + "end": 36536.68, + "probability": 0.9169 + }, + { + "start": 36537.34, + "end": 36541.5, + "probability": 0.7312 + }, + { + "start": 36541.56, + "end": 36550.26, + "probability": 0.9907 + }, + { + "start": 36551.38, + "end": 36552.94, + "probability": 0.7619 + }, + { + "start": 36553.72, + "end": 36555.22, + "probability": 0.882 + }, + { + "start": 36555.84, + "end": 36558.52, + "probability": 0.9708 + }, + { + "start": 36558.58, + "end": 36562.84, + "probability": 0.9558 + }, + { + "start": 36563.64, + "end": 36565.62, + "probability": 0.9937 + }, + { + "start": 36566.06, + "end": 36566.86, + "probability": 0.6281 + }, + { + "start": 36566.9, + "end": 36568.22, + "probability": 0.8743 + }, + { + "start": 36568.66, + "end": 36569.22, + "probability": 0.8224 + }, + { + "start": 36569.44, + "end": 36573.74, + "probability": 0.978 + }, + { + "start": 36573.86, + "end": 36575.78, + "probability": 0.9771 + }, + { + "start": 36575.9, + "end": 36578.92, + "probability": 0.9807 + }, + { + "start": 36579.44, + "end": 36585.72, + "probability": 0.901 + }, + { + "start": 36585.92, + "end": 36588.12, + "probability": 0.9319 + }, + { + "start": 36588.22, + "end": 36589.82, + "probability": 0.9198 + }, + { + "start": 36590.16, + "end": 36594.38, + "probability": 0.9469 + }, + { + "start": 36594.8, + "end": 36594.98, + "probability": 0.5292 + }, + { + "start": 36595.8, + "end": 36596.56, + "probability": 0.7271 + }, + { + "start": 36598.48, + "end": 36599.76, + "probability": 0.6422 + }, + { + "start": 36599.76, + "end": 36600.2, + "probability": 0.4822 + }, + { + "start": 36600.3, + "end": 36601.38, + "probability": 0.8996 + }, + { + "start": 36601.5, + "end": 36602.12, + "probability": 0.6354 + }, + { + "start": 36602.62, + "end": 36603.86, + "probability": 0.8361 + }, + { + "start": 36603.86, + "end": 36604.2, + "probability": 0.8273 + }, + { + "start": 36604.32, + "end": 36605.42, + "probability": 0.5471 + }, + { + "start": 36607.08, + "end": 36608.12, + "probability": 0.6205 + }, + { + "start": 36608.32, + "end": 36608.88, + "probability": 0.2186 + }, + { + "start": 36608.88, + "end": 36608.88, + "probability": 0.2329 + }, + { + "start": 36608.88, + "end": 36609.54, + "probability": 0.3627 + }, + { + "start": 36609.54, + "end": 36610.12, + "probability": 0.3797 + }, + { + "start": 36611.4, + "end": 36612.18, + "probability": 0.8456 + }, + { + "start": 36612.66, + "end": 36613.66, + "probability": 0.882 + }, + { + "start": 36614.0, + "end": 36619.53, + "probability": 0.9068 + }, + { + "start": 36620.66, + "end": 36626.82, + "probability": 0.4606 + }, + { + "start": 36628.02, + "end": 36630.32, + "probability": 0.7059 + }, + { + "start": 36631.32, + "end": 36637.6, + "probability": 0.0027 + }, + { + "start": 36645.1, + "end": 36646.42, + "probability": 0.6144 + }, + { + "start": 36648.0, + "end": 36648.72, + "probability": 0.2673 + }, + { + "start": 36649.28, + "end": 36651.18, + "probability": 0.61 + }, + { + "start": 36651.2, + "end": 36653.18, + "probability": 0.9683 + }, + { + "start": 36653.18, + "end": 36657.1, + "probability": 0.3458 + }, + { + "start": 36657.12, + "end": 36662.12, + "probability": 0.2855 + }, + { + "start": 36663.14, + "end": 36663.24, + "probability": 0.0088 + }, + { + "start": 36666.02, + "end": 36667.42, + "probability": 0.1607 + }, + { + "start": 36673.26, + "end": 36673.86, + "probability": 0.2644 + }, + { + "start": 36675.98, + "end": 36676.4, + "probability": 0.1405 + }, + { + "start": 36676.4, + "end": 36678.5, + "probability": 0.6125 + }, + { + "start": 36679.06, + "end": 36681.86, + "probability": 0.8535 + }, + { + "start": 36682.42, + "end": 36684.78, + "probability": 0.4729 + }, + { + "start": 36685.54, + "end": 36688.94, + "probability": 0.971 + }, + { + "start": 36689.28, + "end": 36692.42, + "probability": 0.7258 + }, + { + "start": 36692.42, + "end": 36695.98, + "probability": 0.5435 + }, + { + "start": 36696.12, + "end": 36698.06, + "probability": 0.5039 + }, + { + "start": 36698.54, + "end": 36700.92, + "probability": 0.1821 + }, + { + "start": 36701.02, + "end": 36702.24, + "probability": 0.9237 + }, + { + "start": 36702.94, + "end": 36704.72, + "probability": 0.9596 + }, + { + "start": 36704.88, + "end": 36707.6, + "probability": 0.8001 + }, + { + "start": 36707.64, + "end": 36708.02, + "probability": 0.8658 + }, + { + "start": 36717.88, + "end": 36719.12, + "probability": 0.7578 + }, + { + "start": 36719.28, + "end": 36720.24, + "probability": 0.8805 + }, + { + "start": 36720.38, + "end": 36721.6, + "probability": 0.8535 + }, + { + "start": 36721.72, + "end": 36726.38, + "probability": 0.9836 + }, + { + "start": 36726.38, + "end": 36732.08, + "probability": 0.749 + }, + { + "start": 36732.76, + "end": 36733.58, + "probability": 0.6034 + }, + { + "start": 36734.22, + "end": 36735.72, + "probability": 0.2216 + }, + { + "start": 36736.56, + "end": 36740.26, + "probability": 0.5819 + }, + { + "start": 36740.38, + "end": 36742.74, + "probability": 0.9421 + }, + { + "start": 36743.84, + "end": 36746.24, + "probability": 0.5297 + }, + { + "start": 36746.62, + "end": 36751.02, + "probability": 0.9906 + }, + { + "start": 36751.34, + "end": 36755.6, + "probability": 0.992 + }, + { + "start": 36755.68, + "end": 36759.44, + "probability": 0.9436 + }, + { + "start": 36759.92, + "end": 36761.98, + "probability": 0.5232 + }, + { + "start": 36762.2, + "end": 36764.78, + "probability": 0.9403 + }, + { + "start": 36765.06, + "end": 36769.88, + "probability": 0.9982 + }, + { + "start": 36770.78, + "end": 36772.84, + "probability": 0.8111 + }, + { + "start": 36773.4, + "end": 36776.22, + "probability": 0.9868 + }, + { + "start": 36776.9, + "end": 36777.54, + "probability": 0.8444 + }, + { + "start": 36777.54, + "end": 36783.0, + "probability": 0.9945 + }, + { + "start": 36783.64, + "end": 36786.3, + "probability": 0.9939 + }, + { + "start": 36786.3, + "end": 36791.12, + "probability": 0.9044 + }, + { + "start": 36791.38, + "end": 36791.84, + "probability": 0.569 + }, + { + "start": 36791.98, + "end": 36794.78, + "probability": 0.9487 + }, + { + "start": 36795.18, + "end": 36799.2, + "probability": 0.9734 + }, + { + "start": 36799.28, + "end": 36802.42, + "probability": 0.8048 + }, + { + "start": 36802.88, + "end": 36805.76, + "probability": 0.9761 + }, + { + "start": 36806.34, + "end": 36810.1, + "probability": 0.9859 + }, + { + "start": 36810.44, + "end": 36810.98, + "probability": 0.8233 + }, + { + "start": 36811.06, + "end": 36815.85, + "probability": 0.9833 + }, + { + "start": 36816.8, + "end": 36818.06, + "probability": 0.9999 + }, + { + "start": 36818.8, + "end": 36819.36, + "probability": 0.6135 + }, + { + "start": 36819.64, + "end": 36822.46, + "probability": 0.7519 + }, + { + "start": 36822.62, + "end": 36827.84, + "probability": 0.984 + }, + { + "start": 36827.92, + "end": 36829.88, + "probability": 0.9721 + }, + { + "start": 36830.16, + "end": 36834.4, + "probability": 0.993 + }, + { + "start": 36834.54, + "end": 36839.62, + "probability": 0.9856 + }, + { + "start": 36839.8, + "end": 36840.3, + "probability": 0.8257 + }, + { + "start": 36840.52, + "end": 36841.54, + "probability": 0.9084 + }, + { + "start": 36841.92, + "end": 36845.26, + "probability": 0.9251 + }, + { + "start": 36845.94, + "end": 36851.36, + "probability": 0.9948 + }, + { + "start": 36851.92, + "end": 36853.86, + "probability": 0.8853 + }, + { + "start": 36854.22, + "end": 36859.68, + "probability": 0.936 + }, + { + "start": 36859.86, + "end": 36864.22, + "probability": 0.9938 + }, + { + "start": 36864.66, + "end": 36865.28, + "probability": 0.5288 + }, + { + "start": 36865.4, + "end": 36867.32, + "probability": 0.9256 + }, + { + "start": 36867.88, + "end": 36871.32, + "probability": 0.9303 + }, + { + "start": 36871.66, + "end": 36875.06, + "probability": 0.8497 + }, + { + "start": 36875.62, + "end": 36878.12, + "probability": 0.9292 + }, + { + "start": 36878.84, + "end": 36886.54, + "probability": 0.9344 + }, + { + "start": 36887.1, + "end": 36892.12, + "probability": 0.772 + }, + { + "start": 36893.14, + "end": 36897.1, + "probability": 0.9168 + }, + { + "start": 36897.2, + "end": 36900.12, + "probability": 0.9653 + }, + { + "start": 36900.24, + "end": 36904.22, + "probability": 0.7413 + }, + { + "start": 36904.36, + "end": 36906.18, + "probability": 0.8723 + }, + { + "start": 36906.22, + "end": 36909.64, + "probability": 0.991 + }, + { + "start": 36910.16, + "end": 36913.84, + "probability": 0.9406 + }, + { + "start": 36914.04, + "end": 36915.26, + "probability": 0.6841 + }, + { + "start": 36915.6, + "end": 36917.88, + "probability": 0.9788 + }, + { + "start": 36918.14, + "end": 36919.92, + "probability": 0.8616 + }, + { + "start": 36920.38, + "end": 36925.04, + "probability": 0.8877 + }, + { + "start": 36925.4, + "end": 36927.44, + "probability": 0.9435 + }, + { + "start": 36927.64, + "end": 36931.96, + "probability": 0.9666 + }, + { + "start": 36932.82, + "end": 36936.72, + "probability": 0.9799 + }, + { + "start": 36936.78, + "end": 36939.48, + "probability": 0.9961 + }, + { + "start": 36940.28, + "end": 36941.22, + "probability": 0.9464 + }, + { + "start": 36941.4, + "end": 36942.04, + "probability": 0.7174 + }, + { + "start": 36942.06, + "end": 36949.36, + "probability": 0.9651 + }, + { + "start": 36949.56, + "end": 36950.76, + "probability": 0.5116 + }, + { + "start": 36951.22, + "end": 36954.48, + "probability": 0.9225 + }, + { + "start": 36955.02, + "end": 36956.2, + "probability": 0.9753 + }, + { + "start": 36956.4, + "end": 36957.68, + "probability": 0.9669 + }, + { + "start": 36958.02, + "end": 36963.16, + "probability": 0.9939 + }, + { + "start": 36963.62, + "end": 36963.9, + "probability": 0.4249 + }, + { + "start": 36964.0, + "end": 36967.18, + "probability": 0.9688 + }, + { + "start": 36967.54, + "end": 36971.72, + "probability": 0.986 + }, + { + "start": 36972.12, + "end": 36975.18, + "probability": 0.9764 + }, + { + "start": 36975.68, + "end": 36982.82, + "probability": 0.6987 + }, + { + "start": 36982.96, + "end": 36983.44, + "probability": 0.4612 + }, + { + "start": 36984.12, + "end": 36987.2, + "probability": 0.977 + }, + { + "start": 36987.2, + "end": 36991.72, + "probability": 0.9968 + }, + { + "start": 36992.36, + "end": 36996.68, + "probability": 0.9826 + }, + { + "start": 36997.3, + "end": 37000.4, + "probability": 0.8545 + }, + { + "start": 37001.08, + "end": 37003.92, + "probability": 0.8993 + }, + { + "start": 37003.96, + "end": 37005.1, + "probability": 0.9272 + }, + { + "start": 37005.3, + "end": 37006.34, + "probability": 0.9303 + }, + { + "start": 37006.72, + "end": 37012.76, + "probability": 0.9167 + }, + { + "start": 37013.24, + "end": 37016.3, + "probability": 0.8678 + }, + { + "start": 37016.5, + "end": 37017.2, + "probability": 0.7327 + }, + { + "start": 37017.28, + "end": 37019.82, + "probability": 0.821 + }, + { + "start": 37020.02, + "end": 37021.39, + "probability": 0.703 + }, + { + "start": 37022.74, + "end": 37025.02, + "probability": 0.7391 + }, + { + "start": 37025.94, + "end": 37030.26, + "probability": 0.9826 + }, + { + "start": 37030.62, + "end": 37037.56, + "probability": 0.9809 + }, + { + "start": 37037.56, + "end": 37043.04, + "probability": 0.9979 + }, + { + "start": 37043.12, + "end": 37045.06, + "probability": 0.9979 + }, + { + "start": 37045.68, + "end": 37047.02, + "probability": 0.8038 + }, + { + "start": 37047.56, + "end": 37051.76, + "probability": 0.8933 + }, + { + "start": 37051.98, + "end": 37052.62, + "probability": 0.5392 + }, + { + "start": 37052.76, + "end": 37053.22, + "probability": 0.8852 + }, + { + "start": 37055.8, + "end": 37056.66, + "probability": 0.8255 + }, + { + "start": 37057.8, + "end": 37059.54, + "probability": 0.5278 + }, + { + "start": 37059.72, + "end": 37062.22, + "probability": 0.7222 + }, + { + "start": 37062.34, + "end": 37063.44, + "probability": 0.6279 + }, + { + "start": 37063.5, + "end": 37063.9, + "probability": 0.378 + }, + { + "start": 37063.98, + "end": 37064.98, + "probability": 0.9046 + }, + { + "start": 37065.04, + "end": 37065.4, + "probability": 0.4141 + }, + { + "start": 37065.5, + "end": 37066.46, + "probability": 0.55 + }, + { + "start": 37066.52, + "end": 37066.8, + "probability": 0.6536 + }, + { + "start": 37066.94, + "end": 37067.82, + "probability": 0.286 + }, + { + "start": 37067.9, + "end": 37068.48, + "probability": 0.5011 + }, + { + "start": 37069.14, + "end": 37071.28, + "probability": 0.664 + }, + { + "start": 37071.32, + "end": 37073.02, + "probability": 0.9827 + }, + { + "start": 37073.4, + "end": 37074.22, + "probability": 0.7568 + }, + { + "start": 37074.96, + "end": 37075.7, + "probability": 0.5248 + }, + { + "start": 37075.78, + "end": 37078.3, + "probability": 0.712 + }, + { + "start": 37078.3, + "end": 37081.24, + "probability": 0.4544 + }, + { + "start": 37081.34, + "end": 37083.32, + "probability": 0.5377 + }, + { + "start": 37083.66, + "end": 37085.44, + "probability": 0.2593 + }, + { + "start": 37085.62, + "end": 37086.74, + "probability": 0.647 + }, + { + "start": 37086.98, + "end": 37089.28, + "probability": 0.908 + }, + { + "start": 37089.64, + "end": 37090.16, + "probability": 0.7998 + }, + { + "start": 37090.92, + "end": 37092.56, + "probability": 0.0007 + }, + { + "start": 37102.46, + "end": 37103.46, + "probability": 0.0975 + }, + { + "start": 37104.4, + "end": 37106.0, + "probability": 0.2956 + }, + { + "start": 37106.22, + "end": 37108.28, + "probability": 0.5862 + }, + { + "start": 37108.36, + "end": 37110.94, + "probability": 0.8308 + }, + { + "start": 37110.94, + "end": 37114.2, + "probability": 0.856 + }, + { + "start": 37114.36, + "end": 37115.2, + "probability": 0.3061 + }, + { + "start": 37116.38, + "end": 37120.64, + "probability": 0.4104 + }, + { + "start": 37121.06, + "end": 37122.26, + "probability": 0.7161 + }, + { + "start": 37135.82, + "end": 37140.18, + "probability": 0.4117 + }, + { + "start": 37140.28, + "end": 37141.68, + "probability": 0.5258 + }, + { + "start": 37141.92, + "end": 37143.58, + "probability": 0.1372 + }, + { + "start": 37143.98, + "end": 37144.4, + "probability": 0.2676 + }, + { + "start": 37148.62, + "end": 37149.7, + "probability": 0.0147 + }, + { + "start": 37149.7, + "end": 37150.36, + "probability": 0.0177 + }, + { + "start": 37152.06, + "end": 37152.74, + "probability": 0.0063 + }, + { + "start": 37163.5, + "end": 37168.44, + "probability": 0.0102 + }, + { + "start": 37180.18, + "end": 37182.1, + "probability": 0.1097 + }, + { + "start": 37182.98, + "end": 37184.48, + "probability": 0.0615 + }, + { + "start": 37186.22, + "end": 37187.28, + "probability": 0.0851 + }, + { + "start": 37187.42, + "end": 37188.98, + "probability": 0.0876 + }, + { + "start": 37470.42, + "end": 37470.42, + "probability": 0.0 + }, + { + "start": 37470.42, + "end": 37470.42, + "probability": 0.0 + }, + { + "start": 37470.42, + "end": 37470.42, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + }, + { + "start": 37766.0, + "end": 37766.0, + "probability": 0.0 + } + ], + "segments_count": 12581, + "words_count": 63055, + "avg_words_per_segment": 5.0119, + "avg_segment_duration": 2.0661, + "avg_words_per_minute": 100.9676, + "plenum_id": "132455", + "duration": 37470.42, + "title": null, + "plenum_date": "2024-11-27" +} \ No newline at end of file