diff --git "a/33539/metadata.json" "b/33539/metadata.json" new file mode 100644--- /dev/null +++ "b/33539/metadata.json" @@ -0,0 +1,51937 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "33539", + "quality_score": 0.9238, + "per_segment_quality_scores": [ + { + "start": 73.15, + "end": 75.7, + "probability": 0.9946 + }, + { + "start": 77.1, + "end": 79.96, + "probability": 0.8333 + }, + { + "start": 87.34, + "end": 87.48, + "probability": 0.0008 + }, + { + "start": 88.52, + "end": 93.6, + "probability": 0.969 + }, + { + "start": 94.74, + "end": 97.72, + "probability": 0.9624 + }, + { + "start": 98.24, + "end": 103.06, + "probability": 0.8156 + }, + { + "start": 104.14, + "end": 106.78, + "probability": 0.9249 + }, + { + "start": 107.6, + "end": 110.16, + "probability": 0.8367 + }, + { + "start": 111.06, + "end": 111.46, + "probability": 0.8638 + }, + { + "start": 118.2, + "end": 118.5, + "probability": 0.2689 + }, + { + "start": 118.58, + "end": 119.42, + "probability": 0.5912 + }, + { + "start": 120.78, + "end": 122.38, + "probability": 0.8639 + }, + { + "start": 125.52, + "end": 127.2, + "probability": 0.5803 + }, + { + "start": 149.24, + "end": 154.74, + "probability": 0.1937 + }, + { + "start": 157.86, + "end": 161.78, + "probability": 0.0717 + }, + { + "start": 161.78, + "end": 162.1, + "probability": 0.1019 + }, + { + "start": 163.04, + "end": 163.36, + "probability": 0.0564 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.4, + "end": 284.48, + "probability": 0.6635 + }, + { + "start": 284.72, + "end": 286.24, + "probability": 0.8874 + }, + { + "start": 286.48, + "end": 288.66, + "probability": 0.9915 + }, + { + "start": 289.54, + "end": 293.02, + "probability": 0.8909 + }, + { + "start": 293.02, + "end": 297.64, + "probability": 0.7563 + }, + { + "start": 299.1, + "end": 300.26, + "probability": 0.679 + }, + { + "start": 302.44, + "end": 303.12, + "probability": 0.8929 + }, + { + "start": 303.28, + "end": 305.16, + "probability": 0.8833 + }, + { + "start": 305.18, + "end": 307.28, + "probability": 0.7906 + }, + { + "start": 308.14, + "end": 309.7, + "probability": 0.9587 + }, + { + "start": 309.8, + "end": 310.38, + "probability": 0.7769 + }, + { + "start": 310.5, + "end": 312.46, + "probability": 0.8826 + }, + { + "start": 312.58, + "end": 314.04, + "probability": 0.9899 + }, + { + "start": 315.32, + "end": 316.26, + "probability": 0.9322 + }, + { + "start": 316.38, + "end": 320.14, + "probability": 0.9728 + }, + { + "start": 320.2, + "end": 320.68, + "probability": 0.9006 + }, + { + "start": 321.52, + "end": 323.98, + "probability": 0.9028 + }, + { + "start": 324.2, + "end": 326.62, + "probability": 0.9096 + }, + { + "start": 327.8, + "end": 329.78, + "probability": 0.9906 + }, + { + "start": 331.66, + "end": 333.82, + "probability": 0.7904 + }, + { + "start": 333.9, + "end": 334.48, + "probability": 0.8528 + }, + { + "start": 334.62, + "end": 337.04, + "probability": 0.8163 + }, + { + "start": 337.66, + "end": 340.18, + "probability": 0.9968 + }, + { + "start": 340.18, + "end": 341.78, + "probability": 0.9268 + }, + { + "start": 342.36, + "end": 345.02, + "probability": 0.8286 + }, + { + "start": 345.92, + "end": 348.22, + "probability": 0.8159 + }, + { + "start": 349.02, + "end": 350.25, + "probability": 0.9876 + }, + { + "start": 350.5, + "end": 351.24, + "probability": 0.7999 + }, + { + "start": 351.42, + "end": 351.88, + "probability": 0.5178 + }, + { + "start": 352.31, + "end": 355.16, + "probability": 0.8423 + }, + { + "start": 356.14, + "end": 359.18, + "probability": 0.9797 + }, + { + "start": 361.24, + "end": 364.42, + "probability": 0.9796 + }, + { + "start": 364.52, + "end": 365.8, + "probability": 0.969 + }, + { + "start": 366.06, + "end": 366.78, + "probability": 0.8341 + }, + { + "start": 368.38, + "end": 368.98, + "probability": 0.7309 + }, + { + "start": 369.26, + "end": 374.18, + "probability": 0.8931 + }, + { + "start": 374.34, + "end": 375.41, + "probability": 0.7793 + }, + { + "start": 375.98, + "end": 379.54, + "probability": 0.9892 + }, + { + "start": 379.54, + "end": 382.6, + "probability": 0.9868 + }, + { + "start": 382.78, + "end": 384.42, + "probability": 0.6881 + }, + { + "start": 384.48, + "end": 386.06, + "probability": 0.8979 + }, + { + "start": 386.6, + "end": 388.78, + "probability": 0.7455 + }, + { + "start": 390.02, + "end": 390.4, + "probability": 0.9564 + }, + { + "start": 390.52, + "end": 391.06, + "probability": 0.8605 + }, + { + "start": 391.14, + "end": 393.68, + "probability": 0.8613 + }, + { + "start": 394.1, + "end": 395.98, + "probability": 0.897 + }, + { + "start": 396.04, + "end": 397.15, + "probability": 0.9775 + }, + { + "start": 398.78, + "end": 403.48, + "probability": 0.8734 + }, + { + "start": 403.54, + "end": 408.26, + "probability": 0.9018 + }, + { + "start": 408.26, + "end": 411.38, + "probability": 0.9954 + }, + { + "start": 412.14, + "end": 413.52, + "probability": 0.9731 + }, + { + "start": 413.94, + "end": 416.3, + "probability": 0.9432 + }, + { + "start": 417.14, + "end": 421.2, + "probability": 0.9425 + }, + { + "start": 421.78, + "end": 423.08, + "probability": 0.9512 + }, + { + "start": 423.24, + "end": 423.92, + "probability": 0.9385 + }, + { + "start": 424.02, + "end": 425.24, + "probability": 0.9112 + }, + { + "start": 426.18, + "end": 429.62, + "probability": 0.9824 + }, + { + "start": 429.76, + "end": 432.92, + "probability": 0.8503 + }, + { + "start": 434.5, + "end": 437.74, + "probability": 0.9067 + }, + { + "start": 437.98, + "end": 438.3, + "probability": 0.5819 + }, + { + "start": 438.38, + "end": 440.94, + "probability": 0.9942 + }, + { + "start": 441.08, + "end": 443.04, + "probability": 0.9722 + }, + { + "start": 443.78, + "end": 447.76, + "probability": 0.9019 + }, + { + "start": 448.02, + "end": 450.38, + "probability": 0.9287 + }, + { + "start": 451.14, + "end": 453.64, + "probability": 0.9421 + }, + { + "start": 453.78, + "end": 454.8, + "probability": 0.7232 + }, + { + "start": 455.18, + "end": 456.34, + "probability": 0.2652 + }, + { + "start": 456.44, + "end": 457.28, + "probability": 0.8701 + }, + { + "start": 457.46, + "end": 458.76, + "probability": 0.9323 + }, + { + "start": 459.32, + "end": 461.36, + "probability": 0.95 + }, + { + "start": 462.66, + "end": 467.06, + "probability": 0.975 + }, + { + "start": 468.06, + "end": 468.78, + "probability": 0.9153 + }, + { + "start": 468.84, + "end": 472.06, + "probability": 0.8583 + }, + { + "start": 472.3, + "end": 474.48, + "probability": 0.8656 + }, + { + "start": 475.54, + "end": 477.9, + "probability": 0.9917 + }, + { + "start": 478.7, + "end": 481.05, + "probability": 0.9606 + }, + { + "start": 481.94, + "end": 483.86, + "probability": 0.9502 + }, + { + "start": 484.16, + "end": 485.0, + "probability": 0.9004 + }, + { + "start": 485.18, + "end": 486.22, + "probability": 0.9977 + }, + { + "start": 487.7, + "end": 488.42, + "probability": 0.8556 + }, + { + "start": 488.46, + "end": 490.72, + "probability": 0.8889 + }, + { + "start": 490.86, + "end": 491.84, + "probability": 0.6381 + }, + { + "start": 492.62, + "end": 498.58, + "probability": 0.8738 + }, + { + "start": 499.52, + "end": 503.78, + "probability": 0.9927 + }, + { + "start": 504.46, + "end": 505.46, + "probability": 0.9768 + }, + { + "start": 506.26, + "end": 506.82, + "probability": 0.4114 + }, + { + "start": 507.06, + "end": 507.84, + "probability": 0.7371 + }, + { + "start": 507.88, + "end": 511.32, + "probability": 0.9774 + }, + { + "start": 512.1, + "end": 514.78, + "probability": 0.9682 + }, + { + "start": 515.12, + "end": 522.12, + "probability": 0.9761 + }, + { + "start": 523.18, + "end": 525.28, + "probability": 0.657 + }, + { + "start": 525.36, + "end": 529.66, + "probability": 0.9392 + }, + { + "start": 532.33, + "end": 535.4, + "probability": 0.9979 + }, + { + "start": 535.56, + "end": 540.66, + "probability": 0.986 + }, + { + "start": 542.44, + "end": 545.68, + "probability": 0.9333 + }, + { + "start": 545.72, + "end": 548.64, + "probability": 0.9878 + }, + { + "start": 549.12, + "end": 553.02, + "probability": 0.9897 + }, + { + "start": 553.74, + "end": 555.22, + "probability": 0.7093 + }, + { + "start": 556.16, + "end": 558.26, + "probability": 0.9407 + }, + { + "start": 561.06, + "end": 561.82, + "probability": 0.6482 + }, + { + "start": 561.94, + "end": 567.52, + "probability": 0.9772 + }, + { + "start": 568.46, + "end": 569.6, + "probability": 0.7389 + }, + { + "start": 569.74, + "end": 576.1, + "probability": 0.9099 + }, + { + "start": 576.56, + "end": 577.98, + "probability": 0.9475 + }, + { + "start": 579.0, + "end": 579.88, + "probability": 0.9677 + }, + { + "start": 580.5, + "end": 581.72, + "probability": 0.7853 + }, + { + "start": 582.64, + "end": 585.62, + "probability": 0.9763 + }, + { + "start": 585.8, + "end": 588.04, + "probability": 0.9958 + }, + { + "start": 588.98, + "end": 590.34, + "probability": 0.6841 + }, + { + "start": 590.78, + "end": 593.16, + "probability": 0.9879 + }, + { + "start": 593.96, + "end": 596.1, + "probability": 0.9821 + }, + { + "start": 597.42, + "end": 599.58, + "probability": 0.7954 + }, + { + "start": 600.9, + "end": 603.54, + "probability": 0.9001 + }, + { + "start": 603.74, + "end": 607.2, + "probability": 0.7969 + }, + { + "start": 607.22, + "end": 608.42, + "probability": 0.7475 + }, + { + "start": 608.5, + "end": 610.91, + "probability": 0.9785 + }, + { + "start": 611.76, + "end": 617.02, + "probability": 0.7013 + }, + { + "start": 617.8, + "end": 623.28, + "probability": 0.9944 + }, + { + "start": 624.1, + "end": 625.92, + "probability": 0.9634 + }, + { + "start": 626.14, + "end": 630.2, + "probability": 0.9932 + }, + { + "start": 630.32, + "end": 631.66, + "probability": 0.735 + }, + { + "start": 632.16, + "end": 637.34, + "probability": 0.9824 + }, + { + "start": 637.46, + "end": 639.12, + "probability": 0.8147 + }, + { + "start": 639.34, + "end": 641.4, + "probability": 0.8056 + }, + { + "start": 642.46, + "end": 644.96, + "probability": 0.8494 + }, + { + "start": 645.0, + "end": 647.2, + "probability": 0.8408 + }, + { + "start": 648.06, + "end": 650.1, + "probability": 0.9966 + }, + { + "start": 650.42, + "end": 652.48, + "probability": 0.9121 + }, + { + "start": 653.26, + "end": 654.59, + "probability": 0.9048 + }, + { + "start": 655.12, + "end": 657.06, + "probability": 0.9172 + }, + { + "start": 657.1, + "end": 658.62, + "probability": 0.9694 + }, + { + "start": 659.5, + "end": 662.98, + "probability": 0.8867 + }, + { + "start": 663.06, + "end": 663.26, + "probability": 0.6622 + }, + { + "start": 664.5, + "end": 665.62, + "probability": 0.7549 + }, + { + "start": 666.06, + "end": 667.96, + "probability": 0.9722 + }, + { + "start": 668.16, + "end": 668.22, + "probability": 0.8621 + }, + { + "start": 668.34, + "end": 670.08, + "probability": 0.9945 + }, + { + "start": 670.1, + "end": 671.52, + "probability": 0.9807 + }, + { + "start": 681.14, + "end": 681.76, + "probability": 0.7324 + }, + { + "start": 681.92, + "end": 682.58, + "probability": 0.8231 + }, + { + "start": 683.36, + "end": 688.16, + "probability": 0.9835 + }, + { + "start": 689.08, + "end": 691.72, + "probability": 0.8744 + }, + { + "start": 692.89, + "end": 695.77, + "probability": 0.8425 + }, + { + "start": 696.46, + "end": 699.22, + "probability": 0.842 + }, + { + "start": 700.16, + "end": 701.44, + "probability": 0.5096 + }, + { + "start": 702.2, + "end": 704.2, + "probability": 0.9092 + }, + { + "start": 704.52, + "end": 706.04, + "probability": 0.9841 + }, + { + "start": 707.08, + "end": 707.6, + "probability": 0.597 + }, + { + "start": 707.9, + "end": 708.84, + "probability": 0.8348 + }, + { + "start": 708.88, + "end": 709.02, + "probability": 0.7274 + }, + { + "start": 709.06, + "end": 710.44, + "probability": 0.7208 + }, + { + "start": 710.5, + "end": 711.04, + "probability": 0.5769 + }, + { + "start": 711.06, + "end": 713.34, + "probability": 0.7637 + }, + { + "start": 713.34, + "end": 713.92, + "probability": 0.3904 + }, + { + "start": 713.92, + "end": 714.54, + "probability": 0.5643 + }, + { + "start": 715.78, + "end": 718.14, + "probability": 0.7306 + }, + { + "start": 718.56, + "end": 718.84, + "probability": 0.8548 + }, + { + "start": 718.94, + "end": 723.38, + "probability": 0.9706 + }, + { + "start": 724.18, + "end": 726.69, + "probability": 0.9826 + }, + { + "start": 727.24, + "end": 728.88, + "probability": 0.9725 + }, + { + "start": 729.58, + "end": 730.54, + "probability": 0.9792 + }, + { + "start": 731.06, + "end": 731.88, + "probability": 0.5804 + }, + { + "start": 732.84, + "end": 734.18, + "probability": 0.7619 + }, + { + "start": 734.26, + "end": 736.24, + "probability": 0.7993 + }, + { + "start": 736.7, + "end": 739.48, + "probability": 0.8838 + }, + { + "start": 740.84, + "end": 741.96, + "probability": 0.7795 + }, + { + "start": 742.06, + "end": 745.4, + "probability": 0.9717 + }, + { + "start": 745.74, + "end": 748.28, + "probability": 0.9951 + }, + { + "start": 748.38, + "end": 749.34, + "probability": 0.9546 + }, + { + "start": 749.92, + "end": 750.18, + "probability": 0.6705 + }, + { + "start": 750.34, + "end": 751.14, + "probability": 0.873 + }, + { + "start": 751.24, + "end": 756.14, + "probability": 0.9772 + }, + { + "start": 756.36, + "end": 757.06, + "probability": 0.7148 + }, + { + "start": 757.16, + "end": 759.04, + "probability": 0.5628 + }, + { + "start": 760.52, + "end": 761.4, + "probability": 0.6252 + }, + { + "start": 762.08, + "end": 764.08, + "probability": 0.8674 + }, + { + "start": 764.26, + "end": 767.86, + "probability": 0.9348 + }, + { + "start": 768.42, + "end": 770.78, + "probability": 0.9923 + }, + { + "start": 771.48, + "end": 776.74, + "probability": 0.998 + }, + { + "start": 778.4, + "end": 779.38, + "probability": 0.7427 + }, + { + "start": 779.44, + "end": 780.92, + "probability": 0.8284 + }, + { + "start": 781.1, + "end": 784.22, + "probability": 0.8501 + }, + { + "start": 784.38, + "end": 785.18, + "probability": 0.6039 + }, + { + "start": 785.32, + "end": 786.38, + "probability": 0.7458 + }, + { + "start": 786.84, + "end": 789.96, + "probability": 0.9573 + }, + { + "start": 790.56, + "end": 794.54, + "probability": 0.9604 + }, + { + "start": 795.66, + "end": 798.94, + "probability": 0.9849 + }, + { + "start": 800.06, + "end": 800.74, + "probability": 0.9299 + }, + { + "start": 800.8, + "end": 804.08, + "probability": 0.9973 + }, + { + "start": 804.76, + "end": 806.08, + "probability": 0.8997 + }, + { + "start": 806.34, + "end": 807.64, + "probability": 0.9995 + }, + { + "start": 808.5, + "end": 812.1, + "probability": 0.9934 + }, + { + "start": 812.1, + "end": 814.58, + "probability": 0.9997 + }, + { + "start": 814.98, + "end": 817.6, + "probability": 0.6113 + }, + { + "start": 818.2, + "end": 819.86, + "probability": 0.9814 + }, + { + "start": 820.1, + "end": 822.58, + "probability": 0.7586 + }, + { + "start": 822.62, + "end": 824.88, + "probability": 0.7798 + }, + { + "start": 825.42, + "end": 829.38, + "probability": 0.9795 + }, + { + "start": 830.18, + "end": 832.5, + "probability": 0.7611 + }, + { + "start": 832.64, + "end": 833.16, + "probability": 0.7775 + }, + { + "start": 833.22, + "end": 833.74, + "probability": 0.5221 + }, + { + "start": 833.86, + "end": 835.94, + "probability": 0.9935 + }, + { + "start": 836.7, + "end": 840.24, + "probability": 0.9585 + }, + { + "start": 840.24, + "end": 842.46, + "probability": 0.9188 + }, + { + "start": 842.58, + "end": 843.02, + "probability": 0.751 + }, + { + "start": 844.24, + "end": 844.6, + "probability": 0.8138 + }, + { + "start": 844.78, + "end": 846.98, + "probability": 0.9509 + }, + { + "start": 847.1, + "end": 848.58, + "probability": 0.7905 + }, + { + "start": 851.86, + "end": 853.22, + "probability": 0.7654 + }, + { + "start": 853.88, + "end": 856.72, + "probability": 0.993 + }, + { + "start": 857.4, + "end": 859.86, + "probability": 0.9363 + }, + { + "start": 861.12, + "end": 866.1, + "probability": 0.9929 + }, + { + "start": 866.18, + "end": 870.68, + "probability": 0.9806 + }, + { + "start": 872.06, + "end": 876.1, + "probability": 0.9614 + }, + { + "start": 876.66, + "end": 878.48, + "probability": 0.8261 + }, + { + "start": 879.12, + "end": 882.2, + "probability": 0.8944 + }, + { + "start": 882.74, + "end": 883.64, + "probability": 0.7342 + }, + { + "start": 883.8, + "end": 885.96, + "probability": 0.934 + }, + { + "start": 886.58, + "end": 887.8, + "probability": 0.9924 + }, + { + "start": 888.36, + "end": 892.02, + "probability": 0.9976 + }, + { + "start": 892.02, + "end": 895.54, + "probability": 0.9854 + }, + { + "start": 895.86, + "end": 901.64, + "probability": 0.9924 + }, + { + "start": 901.88, + "end": 902.16, + "probability": 0.6084 + }, + { + "start": 902.46, + "end": 903.7, + "probability": 0.7006 + }, + { + "start": 903.76, + "end": 904.66, + "probability": 0.716 + }, + { + "start": 905.68, + "end": 907.6, + "probability": 0.7796 + }, + { + "start": 908.5, + "end": 909.72, + "probability": 0.5576 + }, + { + "start": 910.14, + "end": 911.78, + "probability": 0.7867 + }, + { + "start": 912.72, + "end": 916.52, + "probability": 0.967 + }, + { + "start": 916.78, + "end": 918.24, + "probability": 0.9912 + }, + { + "start": 918.3, + "end": 919.04, + "probability": 0.7332 + }, + { + "start": 919.12, + "end": 920.34, + "probability": 0.7986 + }, + { + "start": 920.38, + "end": 920.88, + "probability": 0.8912 + }, + { + "start": 921.68, + "end": 923.74, + "probability": 0.9917 + }, + { + "start": 923.92, + "end": 925.8, + "probability": 0.9912 + }, + { + "start": 926.2, + "end": 927.66, + "probability": 0.5581 + }, + { + "start": 928.6, + "end": 930.36, + "probability": 0.8678 + }, + { + "start": 930.48, + "end": 934.3, + "probability": 0.8799 + }, + { + "start": 934.4, + "end": 935.16, + "probability": 0.4744 + }, + { + "start": 935.98, + "end": 938.4, + "probability": 0.8789 + }, + { + "start": 938.54, + "end": 939.96, + "probability": 0.8674 + }, + { + "start": 940.06, + "end": 942.84, + "probability": 0.7444 + }, + { + "start": 943.02, + "end": 943.82, + "probability": 0.8042 + }, + { + "start": 943.94, + "end": 945.94, + "probability": 0.9872 + }, + { + "start": 946.56, + "end": 947.46, + "probability": 0.6555 + }, + { + "start": 947.7, + "end": 951.12, + "probability": 0.5551 + }, + { + "start": 951.54, + "end": 953.76, + "probability": 0.8958 + }, + { + "start": 954.32, + "end": 955.44, + "probability": 0.9147 + }, + { + "start": 955.78, + "end": 959.0, + "probability": 0.8643 + }, + { + "start": 959.52, + "end": 961.68, + "probability": 0.9937 + }, + { + "start": 961.88, + "end": 963.16, + "probability": 0.7217 + }, + { + "start": 963.66, + "end": 965.82, + "probability": 0.9854 + }, + { + "start": 966.06, + "end": 966.88, + "probability": 0.6561 + }, + { + "start": 967.06, + "end": 967.6, + "probability": 0.6384 + }, + { + "start": 967.62, + "end": 969.6, + "probability": 0.8921 + }, + { + "start": 970.8, + "end": 974.12, + "probability": 0.6309 + }, + { + "start": 974.8, + "end": 975.52, + "probability": 0.8741 + }, + { + "start": 976.82, + "end": 977.77, + "probability": 0.9395 + }, + { + "start": 978.28, + "end": 978.98, + "probability": 0.9554 + }, + { + "start": 979.2, + "end": 979.6, + "probability": 0.975 + }, + { + "start": 979.7, + "end": 980.8, + "probability": 0.9136 + }, + { + "start": 980.94, + "end": 983.82, + "probability": 0.8643 + }, + { + "start": 983.82, + "end": 986.1, + "probability": 0.9883 + }, + { + "start": 986.18, + "end": 987.04, + "probability": 0.8445 + }, + { + "start": 987.3, + "end": 991.7, + "probability": 0.9816 + }, + { + "start": 992.3, + "end": 995.8, + "probability": 0.8097 + }, + { + "start": 996.46, + "end": 999.28, + "probability": 0.8833 + }, + { + "start": 999.36, + "end": 1001.64, + "probability": 0.8434 + }, + { + "start": 1002.64, + "end": 1008.92, + "probability": 0.9148 + }, + { + "start": 1009.02, + "end": 1009.96, + "probability": 0.8809 + }, + { + "start": 1010.1, + "end": 1011.56, + "probability": 0.9613 + }, + { + "start": 1012.72, + "end": 1014.3, + "probability": 0.9436 + }, + { + "start": 1014.4, + "end": 1014.92, + "probability": 0.758 + }, + { + "start": 1014.96, + "end": 1015.68, + "probability": 0.7923 + }, + { + "start": 1015.9, + "end": 1018.3, + "probability": 0.9965 + }, + { + "start": 1018.92, + "end": 1020.74, + "probability": 0.9985 + }, + { + "start": 1021.26, + "end": 1025.12, + "probability": 0.7948 + }, + { + "start": 1026.68, + "end": 1033.4, + "probability": 0.1196 + }, + { + "start": 1033.98, + "end": 1034.66, + "probability": 0.025 + }, + { + "start": 1034.66, + "end": 1034.66, + "probability": 0.2224 + }, + { + "start": 1034.66, + "end": 1034.66, + "probability": 0.0871 + }, + { + "start": 1034.66, + "end": 1036.41, + "probability": 0.3031 + }, + { + "start": 1036.84, + "end": 1037.86, + "probability": 0.8207 + }, + { + "start": 1039.86, + "end": 1041.16, + "probability": 0.6174 + }, + { + "start": 1041.72, + "end": 1042.74, + "probability": 0.5611 + }, + { + "start": 1042.82, + "end": 1046.08, + "probability": 0.9562 + }, + { + "start": 1046.24, + "end": 1048.5, + "probability": 0.4887 + }, + { + "start": 1048.5, + "end": 1052.4, + "probability": 0.9842 + }, + { + "start": 1052.76, + "end": 1054.08, + "probability": 0.3428 + }, + { + "start": 1055.18, + "end": 1056.46, + "probability": 0.9976 + }, + { + "start": 1057.06, + "end": 1057.72, + "probability": 0.7877 + }, + { + "start": 1058.16, + "end": 1058.52, + "probability": 0.5622 + }, + { + "start": 1058.52, + "end": 1061.26, + "probability": 0.6874 + }, + { + "start": 1061.26, + "end": 1062.02, + "probability": 0.4813 + }, + { + "start": 1063.08, + "end": 1063.08, + "probability": 0.1374 + }, + { + "start": 1063.08, + "end": 1063.54, + "probability": 0.6483 + }, + { + "start": 1063.66, + "end": 1064.7, + "probability": 0.6979 + }, + { + "start": 1065.0, + "end": 1065.52, + "probability": 0.7067 + }, + { + "start": 1065.6, + "end": 1066.44, + "probability": 0.9707 + }, + { + "start": 1066.54, + "end": 1067.26, + "probability": 0.5984 + }, + { + "start": 1067.28, + "end": 1068.16, + "probability": 0.6251 + }, + { + "start": 1068.88, + "end": 1069.8, + "probability": 0.9542 + }, + { + "start": 1069.84, + "end": 1071.37, + "probability": 0.9917 + }, + { + "start": 1071.42, + "end": 1072.22, + "probability": 0.7652 + }, + { + "start": 1072.28, + "end": 1072.68, + "probability": 0.8397 + }, + { + "start": 1072.76, + "end": 1073.4, + "probability": 0.7643 + }, + { + "start": 1074.6, + "end": 1074.74, + "probability": 0.4069 + }, + { + "start": 1074.74, + "end": 1077.74, + "probability": 0.7483 + }, + { + "start": 1077.9, + "end": 1078.22, + "probability": 0.8655 + }, + { + "start": 1078.22, + "end": 1078.82, + "probability": 0.8434 + }, + { + "start": 1078.88, + "end": 1080.36, + "probability": 0.585 + }, + { + "start": 1080.62, + "end": 1081.56, + "probability": 0.8374 + }, + { + "start": 1081.8, + "end": 1083.12, + "probability": 0.66 + }, + { + "start": 1083.39, + "end": 1084.94, + "probability": 0.7504 + }, + { + "start": 1085.52, + "end": 1086.32, + "probability": 0.9725 + }, + { + "start": 1087.04, + "end": 1089.46, + "probability": 0.8452 + }, + { + "start": 1089.66, + "end": 1090.08, + "probability": 0.1661 + }, + { + "start": 1090.98, + "end": 1091.82, + "probability": 0.5605 + }, + { + "start": 1092.34, + "end": 1094.92, + "probability": 0.6779 + }, + { + "start": 1095.2, + "end": 1095.74, + "probability": 0.5678 + }, + { + "start": 1095.88, + "end": 1096.16, + "probability": 0.6953 + }, + { + "start": 1096.26, + "end": 1098.0, + "probability": 0.8105 + }, + { + "start": 1098.12, + "end": 1099.36, + "probability": 0.8725 + }, + { + "start": 1099.48, + "end": 1101.74, + "probability": 0.8145 + }, + { + "start": 1102.48, + "end": 1102.86, + "probability": 0.8868 + }, + { + "start": 1103.48, + "end": 1105.98, + "probability": 0.7193 + }, + { + "start": 1106.42, + "end": 1109.86, + "probability": 0.9061 + }, + { + "start": 1110.48, + "end": 1112.08, + "probability": 0.9976 + }, + { + "start": 1112.12, + "end": 1114.18, + "probability": 0.5963 + }, + { + "start": 1114.3, + "end": 1115.84, + "probability": 0.9575 + }, + { + "start": 1116.7, + "end": 1117.86, + "probability": 0.7738 + }, + { + "start": 1118.08, + "end": 1119.28, + "probability": 0.9422 + }, + { + "start": 1120.1, + "end": 1125.64, + "probability": 0.9878 + }, + { + "start": 1125.92, + "end": 1127.04, + "probability": 0.9941 + }, + { + "start": 1127.74, + "end": 1128.4, + "probability": 0.7862 + }, + { + "start": 1129.0, + "end": 1129.86, + "probability": 0.5939 + }, + { + "start": 1130.54, + "end": 1133.1, + "probability": 0.9884 + }, + { + "start": 1133.22, + "end": 1133.96, + "probability": 0.8353 + }, + { + "start": 1134.06, + "end": 1139.4, + "probability": 0.9886 + }, + { + "start": 1140.18, + "end": 1143.28, + "probability": 0.9243 + }, + { + "start": 1143.82, + "end": 1146.74, + "probability": 0.794 + }, + { + "start": 1148.3, + "end": 1150.84, + "probability": 0.9102 + }, + { + "start": 1151.66, + "end": 1152.86, + "probability": 0.9318 + }, + { + "start": 1152.96, + "end": 1153.8, + "probability": 0.9927 + }, + { + "start": 1153.9, + "end": 1155.66, + "probability": 0.9683 + }, + { + "start": 1155.7, + "end": 1156.34, + "probability": 0.9576 + }, + { + "start": 1156.58, + "end": 1156.84, + "probability": 0.9681 + }, + { + "start": 1157.44, + "end": 1158.98, + "probability": 0.8921 + }, + { + "start": 1159.42, + "end": 1161.2, + "probability": 0.7654 + }, + { + "start": 1161.26, + "end": 1162.78, + "probability": 0.5561 + }, + { + "start": 1162.96, + "end": 1163.92, + "probability": 0.7186 + }, + { + "start": 1164.0, + "end": 1166.48, + "probability": 0.6484 + }, + { + "start": 1167.34, + "end": 1170.96, + "probability": 0.9786 + }, + { + "start": 1171.7, + "end": 1172.98, + "probability": 0.5892 + }, + { + "start": 1173.76, + "end": 1175.86, + "probability": 0.9019 + }, + { + "start": 1176.7, + "end": 1179.12, + "probability": 0.9844 + }, + { + "start": 1179.5, + "end": 1184.09, + "probability": 0.9651 + }, + { + "start": 1184.68, + "end": 1187.94, + "probability": 0.911 + }, + { + "start": 1188.68, + "end": 1193.66, + "probability": 0.8227 + }, + { + "start": 1193.92, + "end": 1194.86, + "probability": 0.8806 + }, + { + "start": 1194.92, + "end": 1195.18, + "probability": 0.774 + }, + { + "start": 1195.54, + "end": 1197.5, + "probability": 0.9207 + }, + { + "start": 1198.12, + "end": 1201.14, + "probability": 0.8963 + }, + { + "start": 1201.62, + "end": 1205.06, + "probability": 0.9991 + }, + { + "start": 1206.1, + "end": 1207.52, + "probability": 0.7742 + }, + { + "start": 1207.62, + "end": 1209.44, + "probability": 0.873 + }, + { + "start": 1209.58, + "end": 1210.62, + "probability": 0.7128 + }, + { + "start": 1210.72, + "end": 1212.18, + "probability": 0.6851 + }, + { + "start": 1212.88, + "end": 1213.18, + "probability": 0.7753 + }, + { + "start": 1213.32, + "end": 1215.5, + "probability": 0.9755 + }, + { + "start": 1215.68, + "end": 1218.18, + "probability": 0.9864 + }, + { + "start": 1218.78, + "end": 1219.88, + "probability": 0.9017 + }, + { + "start": 1220.54, + "end": 1224.0, + "probability": 0.9166 + }, + { + "start": 1224.66, + "end": 1226.98, + "probability": 0.9967 + }, + { + "start": 1226.98, + "end": 1233.84, + "probability": 0.8096 + }, + { + "start": 1233.96, + "end": 1236.38, + "probability": 0.9829 + }, + { + "start": 1237.1, + "end": 1238.68, + "probability": 0.9946 + }, + { + "start": 1239.54, + "end": 1241.76, + "probability": 0.9409 + }, + { + "start": 1241.96, + "end": 1243.28, + "probability": 0.9837 + }, + { + "start": 1244.38, + "end": 1248.08, + "probability": 0.9244 + }, + { + "start": 1248.08, + "end": 1253.88, + "probability": 0.8646 + }, + { + "start": 1255.08, + "end": 1257.56, + "probability": 0.7794 + }, + { + "start": 1258.36, + "end": 1259.5, + "probability": 0.6852 + }, + { + "start": 1259.54, + "end": 1260.3, + "probability": 0.755 + }, + { + "start": 1260.38, + "end": 1262.06, + "probability": 0.8083 + }, + { + "start": 1262.14, + "end": 1262.28, + "probability": 0.3682 + }, + { + "start": 1262.34, + "end": 1263.08, + "probability": 0.8336 + }, + { + "start": 1263.14, + "end": 1264.16, + "probability": 0.7856 + }, + { + "start": 1264.52, + "end": 1265.28, + "probability": 0.6461 + }, + { + "start": 1265.32, + "end": 1265.32, + "probability": 0.3797 + }, + { + "start": 1265.32, + "end": 1265.32, + "probability": 0.5167 + }, + { + "start": 1265.32, + "end": 1267.28, + "probability": 0.9365 + }, + { + "start": 1267.32, + "end": 1269.8, + "probability": 0.9619 + }, + { + "start": 1270.52, + "end": 1270.52, + "probability": 0.1817 + }, + { + "start": 1270.52, + "end": 1271.01, + "probability": 0.3431 + }, + { + "start": 1271.44, + "end": 1271.72, + "probability": 0.8883 + }, + { + "start": 1271.9, + "end": 1273.06, + "probability": 0.949 + }, + { + "start": 1273.16, + "end": 1275.24, + "probability": 0.9948 + }, + { + "start": 1276.18, + "end": 1277.18, + "probability": 0.3974 + }, + { + "start": 1277.18, + "end": 1277.5, + "probability": 0.9163 + }, + { + "start": 1278.14, + "end": 1279.18, + "probability": 0.8792 + }, + { + "start": 1279.28, + "end": 1280.31, + "probability": 0.9238 + }, + { + "start": 1280.78, + "end": 1282.22, + "probability": 0.9436 + }, + { + "start": 1282.34, + "end": 1283.44, + "probability": 0.894 + }, + { + "start": 1283.48, + "end": 1284.14, + "probability": 0.8312 + }, + { + "start": 1284.68, + "end": 1286.14, + "probability": 0.9145 + }, + { + "start": 1286.34, + "end": 1287.48, + "probability": 0.8185 + }, + { + "start": 1287.64, + "end": 1289.31, + "probability": 0.7819 + }, + { + "start": 1289.6, + "end": 1290.4, + "probability": 0.8123 + }, + { + "start": 1291.42, + "end": 1293.0, + "probability": 0.5269 + }, + { + "start": 1293.14, + "end": 1294.76, + "probability": 0.8154 + }, + { + "start": 1294.9, + "end": 1295.62, + "probability": 0.5352 + }, + { + "start": 1296.42, + "end": 1297.08, + "probability": 0.5974 + }, + { + "start": 1297.14, + "end": 1299.88, + "probability": 0.8655 + }, + { + "start": 1299.98, + "end": 1301.08, + "probability": 0.7683 + }, + { + "start": 1301.66, + "end": 1302.6, + "probability": 0.769 + }, + { + "start": 1302.74, + "end": 1303.62, + "probability": 0.9171 + }, + { + "start": 1304.38, + "end": 1305.2, + "probability": 0.2807 + }, + { + "start": 1305.38, + "end": 1307.38, + "probability": 0.9405 + }, + { + "start": 1307.46, + "end": 1307.78, + "probability": 0.5606 + }, + { + "start": 1307.86, + "end": 1309.48, + "probability": 0.8406 + }, + { + "start": 1309.9, + "end": 1312.02, + "probability": 0.9812 + }, + { + "start": 1312.16, + "end": 1313.56, + "probability": 0.962 + }, + { + "start": 1314.12, + "end": 1315.84, + "probability": 0.8043 + }, + { + "start": 1316.78, + "end": 1318.72, + "probability": 0.8391 + }, + { + "start": 1318.82, + "end": 1321.96, + "probability": 0.9762 + }, + { + "start": 1321.96, + "end": 1325.6, + "probability": 0.9867 + }, + { + "start": 1325.82, + "end": 1326.52, + "probability": 0.5732 + }, + { + "start": 1327.52, + "end": 1328.06, + "probability": 0.7999 + }, + { + "start": 1328.26, + "end": 1333.16, + "probability": 0.9054 + }, + { + "start": 1334.24, + "end": 1335.14, + "probability": 0.7357 + }, + { + "start": 1335.32, + "end": 1336.04, + "probability": 0.9666 + }, + { + "start": 1336.28, + "end": 1337.94, + "probability": 0.9648 + }, + { + "start": 1338.04, + "end": 1338.26, + "probability": 0.6782 + }, + { + "start": 1338.58, + "end": 1338.68, + "probability": 0.6598 + }, + { + "start": 1339.48, + "end": 1340.12, + "probability": 0.9587 + }, + { + "start": 1343.74, + "end": 1345.62, + "probability": 0.7806 + }, + { + "start": 1348.74, + "end": 1350.94, + "probability": 0.9561 + }, + { + "start": 1355.04, + "end": 1363.96, + "probability": 0.082 + }, + { + "start": 1364.88, + "end": 1366.6, + "probability": 0.8566 + }, + { + "start": 1366.66, + "end": 1367.36, + "probability": 0.5884 + }, + { + "start": 1367.48, + "end": 1368.5, + "probability": 0.6999 + }, + { + "start": 1369.36, + "end": 1370.76, + "probability": 0.9928 + }, + { + "start": 1371.44, + "end": 1374.3, + "probability": 0.9932 + }, + { + "start": 1375.12, + "end": 1375.84, + "probability": 0.8737 + }, + { + "start": 1376.5, + "end": 1378.46, + "probability": 0.9948 + }, + { + "start": 1379.14, + "end": 1381.16, + "probability": 0.9084 + }, + { + "start": 1382.1, + "end": 1383.32, + "probability": 0.8746 + }, + { + "start": 1384.26, + "end": 1385.74, + "probability": 0.8326 + }, + { + "start": 1385.84, + "end": 1387.94, + "probability": 0.8754 + }, + { + "start": 1388.38, + "end": 1390.18, + "probability": 0.8427 + }, + { + "start": 1390.48, + "end": 1394.48, + "probability": 0.9177 + }, + { + "start": 1394.68, + "end": 1399.46, + "probability": 0.9408 + }, + { + "start": 1400.12, + "end": 1403.38, + "probability": 0.9659 + }, + { + "start": 1403.82, + "end": 1405.3, + "probability": 0.899 + }, + { + "start": 1405.36, + "end": 1412.5, + "probability": 0.9891 + }, + { + "start": 1413.62, + "end": 1414.24, + "probability": 0.9561 + }, + { + "start": 1414.6, + "end": 1416.66, + "probability": 0.946 + }, + { + "start": 1416.84, + "end": 1417.84, + "probability": 0.5479 + }, + { + "start": 1418.46, + "end": 1419.08, + "probability": 0.7795 + }, + { + "start": 1419.22, + "end": 1421.84, + "probability": 0.9478 + }, + { + "start": 1422.04, + "end": 1423.56, + "probability": 0.9788 + }, + { + "start": 1423.64, + "end": 1423.82, + "probability": 0.2579 + }, + { + "start": 1424.1, + "end": 1425.04, + "probability": 0.7081 + }, + { + "start": 1425.16, + "end": 1428.62, + "probability": 0.9937 + }, + { + "start": 1429.32, + "end": 1431.48, + "probability": 0.9985 + }, + { + "start": 1431.48, + "end": 1434.26, + "probability": 0.892 + }, + { + "start": 1434.36, + "end": 1435.42, + "probability": 0.7871 + }, + { + "start": 1435.46, + "end": 1436.66, + "probability": 0.9482 + }, + { + "start": 1436.7, + "end": 1440.66, + "probability": 0.897 + }, + { + "start": 1440.74, + "end": 1443.6, + "probability": 0.8438 + }, + { + "start": 1443.64, + "end": 1452.3, + "probability": 0.9832 + }, + { + "start": 1452.82, + "end": 1454.1, + "probability": 0.6995 + }, + { + "start": 1454.78, + "end": 1455.9, + "probability": 0.7554 + }, + { + "start": 1456.12, + "end": 1459.08, + "probability": 0.9807 + }, + { + "start": 1459.08, + "end": 1462.8, + "probability": 0.9857 + }, + { + "start": 1463.36, + "end": 1466.18, + "probability": 0.9946 + }, + { + "start": 1466.18, + "end": 1469.42, + "probability": 0.9943 + }, + { + "start": 1469.5, + "end": 1475.58, + "probability": 0.9974 + }, + { + "start": 1476.58, + "end": 1480.1, + "probability": 0.9817 + }, + { + "start": 1480.26, + "end": 1485.82, + "probability": 0.9954 + }, + { + "start": 1486.0, + "end": 1489.82, + "probability": 0.994 + }, + { + "start": 1490.3, + "end": 1491.2, + "probability": 0.5726 + }, + { + "start": 1491.3, + "end": 1492.82, + "probability": 0.9797 + }, + { + "start": 1493.56, + "end": 1494.0, + "probability": 0.3866 + }, + { + "start": 1494.04, + "end": 1494.94, + "probability": 0.8912 + }, + { + "start": 1495.1, + "end": 1499.66, + "probability": 0.9828 + }, + { + "start": 1499.76, + "end": 1501.18, + "probability": 0.8024 + }, + { + "start": 1501.62, + "end": 1504.06, + "probability": 0.9248 + }, + { + "start": 1504.06, + "end": 1508.16, + "probability": 0.9732 + }, + { + "start": 1508.2, + "end": 1513.02, + "probability": 0.988 + }, + { + "start": 1514.08, + "end": 1516.42, + "probability": 0.8122 + }, + { + "start": 1516.46, + "end": 1520.46, + "probability": 0.615 + }, + { + "start": 1521.58, + "end": 1521.58, + "probability": 0.3695 + }, + { + "start": 1521.58, + "end": 1523.08, + "probability": 0.6104 + }, + { + "start": 1524.16, + "end": 1527.58, + "probability": 0.9371 + }, + { + "start": 1528.64, + "end": 1530.46, + "probability": 0.8676 + }, + { + "start": 1531.5, + "end": 1534.24, + "probability": 0.9709 + }, + { + "start": 1534.42, + "end": 1536.08, + "probability": 0.8504 + }, + { + "start": 1537.76, + "end": 1540.58, + "probability": 0.9105 + }, + { + "start": 1540.84, + "end": 1547.7, + "probability": 0.947 + }, + { + "start": 1548.96, + "end": 1549.98, + "probability": 0.5548 + }, + { + "start": 1550.04, + "end": 1551.68, + "probability": 0.9966 + }, + { + "start": 1551.76, + "end": 1552.54, + "probability": 0.9746 + }, + { + "start": 1552.64, + "end": 1553.8, + "probability": 0.9778 + }, + { + "start": 1553.98, + "end": 1555.36, + "probability": 0.9919 + }, + { + "start": 1556.42, + "end": 1558.88, + "probability": 0.96 + }, + { + "start": 1559.96, + "end": 1565.38, + "probability": 0.7829 + }, + { + "start": 1565.38, + "end": 1568.48, + "probability": 0.9917 + }, + { + "start": 1569.4, + "end": 1570.56, + "probability": 0.6472 + }, + { + "start": 1571.36, + "end": 1574.52, + "probability": 0.866 + }, + { + "start": 1575.28, + "end": 1577.42, + "probability": 0.8281 + }, + { + "start": 1578.12, + "end": 1580.76, + "probability": 0.9885 + }, + { + "start": 1582.12, + "end": 1584.54, + "probability": 0.941 + }, + { + "start": 1585.74, + "end": 1592.56, + "probability": 0.9829 + }, + { + "start": 1593.2, + "end": 1594.98, + "probability": 0.7306 + }, + { + "start": 1596.08, + "end": 1597.96, + "probability": 0.745 + }, + { + "start": 1599.14, + "end": 1602.82, + "probability": 0.8789 + }, + { + "start": 1602.92, + "end": 1607.86, + "probability": 0.8923 + }, + { + "start": 1608.5, + "end": 1612.48, + "probability": 0.9365 + }, + { + "start": 1614.34, + "end": 1615.66, + "probability": 0.948 + }, + { + "start": 1616.84, + "end": 1618.32, + "probability": 0.9876 + }, + { + "start": 1618.68, + "end": 1620.7, + "probability": 0.9899 + }, + { + "start": 1620.8, + "end": 1621.96, + "probability": 0.8929 + }, + { + "start": 1622.7, + "end": 1623.82, + "probability": 0.753 + }, + { + "start": 1624.5, + "end": 1627.46, + "probability": 0.8636 + }, + { + "start": 1627.72, + "end": 1629.68, + "probability": 0.9763 + }, + { + "start": 1629.83, + "end": 1630.04, + "probability": 0.1131 + }, + { + "start": 1630.26, + "end": 1632.72, + "probability": 0.6797 + }, + { + "start": 1633.42, + "end": 1637.8, + "probability": 0.9749 + }, + { + "start": 1637.8, + "end": 1639.78, + "probability": 0.9988 + }, + { + "start": 1639.88, + "end": 1641.12, + "probability": 0.6804 + }, + { + "start": 1641.62, + "end": 1645.02, + "probability": 0.9962 + }, + { + "start": 1645.68, + "end": 1651.8, + "probability": 0.8899 + }, + { + "start": 1652.34, + "end": 1653.06, + "probability": 0.7831 + }, + { + "start": 1654.04, + "end": 1657.12, + "probability": 0.9365 + }, + { + "start": 1657.68, + "end": 1662.1, + "probability": 0.9901 + }, + { + "start": 1662.84, + "end": 1663.53, + "probability": 0.9993 + }, + { + "start": 1664.78, + "end": 1666.86, + "probability": 0.9871 + }, + { + "start": 1667.0, + "end": 1670.22, + "probability": 0.9922 + }, + { + "start": 1670.22, + "end": 1674.42, + "probability": 0.986 + }, + { + "start": 1674.64, + "end": 1676.66, + "probability": 0.8916 + }, + { + "start": 1676.8, + "end": 1680.42, + "probability": 0.9933 + }, + { + "start": 1680.42, + "end": 1683.64, + "probability": 0.9978 + }, + { + "start": 1684.06, + "end": 1687.58, + "probability": 0.8096 + }, + { + "start": 1687.7, + "end": 1693.3, + "probability": 0.9216 + }, + { + "start": 1693.48, + "end": 1698.84, + "probability": 0.9971 + }, + { + "start": 1698.88, + "end": 1700.58, + "probability": 0.9989 + }, + { + "start": 1700.8, + "end": 1704.36, + "probability": 0.9978 + }, + { + "start": 1704.45, + "end": 1706.86, + "probability": 0.8488 + }, + { + "start": 1707.16, + "end": 1707.96, + "probability": 0.6419 + }, + { + "start": 1708.04, + "end": 1708.9, + "probability": 0.8439 + }, + { + "start": 1709.06, + "end": 1712.54, + "probability": 0.9899 + }, + { + "start": 1712.78, + "end": 1715.6, + "probability": 0.9778 + }, + { + "start": 1715.7, + "end": 1716.8, + "probability": 0.9652 + }, + { + "start": 1716.88, + "end": 1718.57, + "probability": 0.9795 + }, + { + "start": 1718.64, + "end": 1719.04, + "probability": 0.893 + }, + { + "start": 1719.5, + "end": 1720.62, + "probability": 0.8469 + }, + { + "start": 1720.64, + "end": 1722.58, + "probability": 0.9738 + }, + { + "start": 1722.7, + "end": 1723.56, + "probability": 0.9838 + }, + { + "start": 1723.86, + "end": 1724.92, + "probability": 0.9961 + }, + { + "start": 1725.46, + "end": 1727.1, + "probability": 0.6948 + }, + { + "start": 1727.2, + "end": 1730.42, + "probability": 0.8982 + }, + { + "start": 1730.48, + "end": 1730.82, + "probability": 0.4928 + }, + { + "start": 1730.98, + "end": 1731.52, + "probability": 0.8399 + }, + { + "start": 1731.62, + "end": 1735.24, + "probability": 0.9991 + }, + { + "start": 1735.96, + "end": 1738.36, + "probability": 0.9766 + }, + { + "start": 1738.4, + "end": 1740.64, + "probability": 0.83 + }, + { + "start": 1740.72, + "end": 1741.48, + "probability": 0.8432 + }, + { + "start": 1741.7, + "end": 1743.5, + "probability": 0.9716 + }, + { + "start": 1743.6, + "end": 1747.88, + "probability": 0.9897 + }, + { + "start": 1748.42, + "end": 1748.98, + "probability": 0.651 + }, + { + "start": 1749.12, + "end": 1750.02, + "probability": 0.7172 + }, + { + "start": 1750.02, + "end": 1754.32, + "probability": 0.9535 + }, + { + "start": 1755.14, + "end": 1758.46, + "probability": 0.6921 + }, + { + "start": 1758.62, + "end": 1760.92, + "probability": 0.8643 + }, + { + "start": 1761.32, + "end": 1761.66, + "probability": 0.3363 + }, + { + "start": 1761.9, + "end": 1763.02, + "probability": 0.7754 + }, + { + "start": 1763.08, + "end": 1764.32, + "probability": 0.9519 + }, + { + "start": 1764.4, + "end": 1764.86, + "probability": 0.7734 + }, + { + "start": 1764.96, + "end": 1769.58, + "probability": 0.996 + }, + { + "start": 1769.68, + "end": 1772.26, + "probability": 0.9954 + }, + { + "start": 1772.98, + "end": 1773.12, + "probability": 0.3311 + }, + { + "start": 1773.18, + "end": 1777.34, + "probability": 0.9871 + }, + { + "start": 1777.6, + "end": 1778.81, + "probability": 0.9609 + }, + { + "start": 1778.92, + "end": 1780.94, + "probability": 0.998 + }, + { + "start": 1780.94, + "end": 1784.52, + "probability": 0.7299 + }, + { + "start": 1784.52, + "end": 1787.22, + "probability": 0.9983 + }, + { + "start": 1787.22, + "end": 1790.0, + "probability": 0.96 + }, + { + "start": 1790.58, + "end": 1793.72, + "probability": 0.9941 + }, + { + "start": 1794.24, + "end": 1797.02, + "probability": 0.8027 + }, + { + "start": 1797.58, + "end": 1802.84, + "probability": 0.9447 + }, + { + "start": 1802.88, + "end": 1806.6, + "probability": 0.7144 + }, + { + "start": 1806.66, + "end": 1809.18, + "probability": 0.9201 + }, + { + "start": 1809.18, + "end": 1811.74, + "probability": 0.999 + }, + { + "start": 1812.5, + "end": 1813.28, + "probability": 0.7926 + }, + { + "start": 1813.4, + "end": 1815.02, + "probability": 0.7675 + }, + { + "start": 1815.16, + "end": 1816.54, + "probability": 0.8815 + }, + { + "start": 1817.24, + "end": 1827.16, + "probability": 0.9393 + }, + { + "start": 1827.64, + "end": 1828.48, + "probability": 0.9648 + }, + { + "start": 1828.56, + "end": 1828.9, + "probability": 0.5288 + }, + { + "start": 1829.02, + "end": 1830.06, + "probability": 0.7725 + }, + { + "start": 1830.76, + "end": 1837.96, + "probability": 0.9939 + }, + { + "start": 1838.18, + "end": 1841.22, + "probability": 0.9442 + }, + { + "start": 1841.64, + "end": 1845.94, + "probability": 0.8067 + }, + { + "start": 1846.2, + "end": 1847.14, + "probability": 0.9596 + }, + { + "start": 1847.66, + "end": 1851.46, + "probability": 0.8455 + }, + { + "start": 1851.98, + "end": 1852.34, + "probability": 0.6323 + }, + { + "start": 1852.34, + "end": 1853.48, + "probability": 0.8745 + }, + { + "start": 1853.58, + "end": 1857.52, + "probability": 0.9311 + }, + { + "start": 1857.52, + "end": 1861.08, + "probability": 0.7601 + }, + { + "start": 1861.08, + "end": 1861.76, + "probability": 0.2886 + }, + { + "start": 1862.3, + "end": 1864.3, + "probability": 0.9939 + }, + { + "start": 1864.36, + "end": 1865.9, + "probability": 0.8596 + }, + { + "start": 1866.06, + "end": 1868.46, + "probability": 0.9917 + }, + { + "start": 1868.54, + "end": 1869.04, + "probability": 0.8518 + }, + { + "start": 1869.14, + "end": 1869.76, + "probability": 0.6989 + }, + { + "start": 1870.02, + "end": 1870.82, + "probability": 0.7262 + }, + { + "start": 1870.88, + "end": 1871.44, + "probability": 0.9824 + }, + { + "start": 1871.48, + "end": 1876.06, + "probability": 0.9885 + }, + { + "start": 1876.7, + "end": 1877.82, + "probability": 0.875 + }, + { + "start": 1879.62, + "end": 1880.62, + "probability": 0.0046 + }, + { + "start": 1880.62, + "end": 1882.31, + "probability": 0.0397 + }, + { + "start": 1882.9, + "end": 1886.34, + "probability": 0.9738 + }, + { + "start": 1886.44, + "end": 1887.98, + "probability": 0.955 + }, + { + "start": 1888.1, + "end": 1890.3, + "probability": 0.9935 + }, + { + "start": 1891.98, + "end": 1896.2, + "probability": 0.8359 + }, + { + "start": 1896.22, + "end": 1901.86, + "probability": 0.7993 + }, + { + "start": 1902.42, + "end": 1904.74, + "probability": 0.9961 + }, + { + "start": 1906.0, + "end": 1906.5, + "probability": 0.4684 + }, + { + "start": 1907.06, + "end": 1912.84, + "probability": 0.9034 + }, + { + "start": 1913.71, + "end": 1915.88, + "probability": 0.819 + }, + { + "start": 1916.86, + "end": 1917.7, + "probability": 0.6444 + }, + { + "start": 1917.84, + "end": 1918.48, + "probability": 0.7334 + }, + { + "start": 1918.98, + "end": 1921.12, + "probability": 0.922 + }, + { + "start": 1921.72, + "end": 1923.26, + "probability": 0.994 + }, + { + "start": 1923.82, + "end": 1926.5, + "probability": 0.9709 + }, + { + "start": 1927.16, + "end": 1932.6, + "probability": 0.7265 + }, + { + "start": 1933.0, + "end": 1936.1, + "probability": 0.7928 + }, + { + "start": 1936.5, + "end": 1941.12, + "probability": 0.9823 + }, + { + "start": 1941.88, + "end": 1943.64, + "probability": 0.8497 + }, + { + "start": 1943.72, + "end": 1946.16, + "probability": 0.5916 + }, + { + "start": 1946.26, + "end": 1948.15, + "probability": 0.4048 + }, + { + "start": 1948.6, + "end": 1949.94, + "probability": 0.6671 + }, + { + "start": 1950.26, + "end": 1958.26, + "probability": 0.7827 + }, + { + "start": 1958.26, + "end": 1962.7, + "probability": 0.825 + }, + { + "start": 1964.18, + "end": 1966.22, + "probability": 0.8146 + }, + { + "start": 1966.98, + "end": 1969.32, + "probability": 0.7959 + }, + { + "start": 1971.58, + "end": 1975.2, + "probability": 0.6447 + }, + { + "start": 1976.7, + "end": 1981.8, + "probability": 0.6347 + }, + { + "start": 1981.8, + "end": 1984.98, + "probability": 0.71 + }, + { + "start": 1986.06, + "end": 1986.86, + "probability": 0.7655 + }, + { + "start": 1987.06, + "end": 1989.12, + "probability": 0.9951 + }, + { + "start": 1990.36, + "end": 1992.98, + "probability": 0.7134 + }, + { + "start": 1994.46, + "end": 1999.56, + "probability": 0.9343 + }, + { + "start": 2000.16, + "end": 2007.92, + "probability": 0.7793 + }, + { + "start": 2010.04, + "end": 2012.06, + "probability": 0.8354 + }, + { + "start": 2013.32, + "end": 2014.48, + "probability": 0.9688 + }, + { + "start": 2015.56, + "end": 2016.7, + "probability": 0.4027 + }, + { + "start": 2018.02, + "end": 2021.98, + "probability": 0.9929 + }, + { + "start": 2022.36, + "end": 2023.5, + "probability": 0.9132 + }, + { + "start": 2025.4, + "end": 2028.62, + "probability": 0.8747 + }, + { + "start": 2029.58, + "end": 2036.36, + "probability": 0.9158 + }, + { + "start": 2037.04, + "end": 2038.04, + "probability": 0.733 + }, + { + "start": 2038.56, + "end": 2039.78, + "probability": 0.7026 + }, + { + "start": 2040.6, + "end": 2044.82, + "probability": 0.8462 + }, + { + "start": 2045.24, + "end": 2049.74, + "probability": 0.7516 + }, + { + "start": 2050.72, + "end": 2055.52, + "probability": 0.9727 + }, + { + "start": 2057.12, + "end": 2059.06, + "probability": 0.7695 + }, + { + "start": 2059.8, + "end": 2061.27, + "probability": 0.9938 + }, + { + "start": 2061.84, + "end": 2063.13, + "probability": 0.8381 + }, + { + "start": 2066.12, + "end": 2067.36, + "probability": 0.7358 + }, + { + "start": 2068.02, + "end": 2070.14, + "probability": 0.776 + }, + { + "start": 2071.24, + "end": 2075.78, + "probability": 0.9448 + }, + { + "start": 2075.86, + "end": 2077.08, + "probability": 0.6708 + }, + { + "start": 2077.18, + "end": 2078.28, + "probability": 0.5133 + }, + { + "start": 2078.4, + "end": 2078.82, + "probability": 0.8475 + }, + { + "start": 2081.32, + "end": 2083.82, + "probability": 0.9584 + }, + { + "start": 2083.96, + "end": 2084.8, + "probability": 0.872 + }, + { + "start": 2084.9, + "end": 2089.72, + "probability": 0.9038 + }, + { + "start": 2090.36, + "end": 2091.42, + "probability": 0.9741 + }, + { + "start": 2092.16, + "end": 2092.96, + "probability": 0.8104 + }, + { + "start": 2093.18, + "end": 2096.54, + "probability": 0.6676 + }, + { + "start": 2097.56, + "end": 2102.78, + "probability": 0.8695 + }, + { + "start": 2104.0, + "end": 2105.1, + "probability": 0.5857 + }, + { + "start": 2105.22, + "end": 2111.58, + "probability": 0.4641 + }, + { + "start": 2112.0, + "end": 2116.98, + "probability": 0.9845 + }, + { + "start": 2117.06, + "end": 2119.18, + "probability": 0.9868 + }, + { + "start": 2120.12, + "end": 2121.7, + "probability": 0.7938 + }, + { + "start": 2121.72, + "end": 2122.98, + "probability": 0.6257 + }, + { + "start": 2131.5, + "end": 2133.62, + "probability": 0.7175 + }, + { + "start": 2134.46, + "end": 2135.44, + "probability": 0.7611 + }, + { + "start": 2135.64, + "end": 2136.74, + "probability": 0.4559 + }, + { + "start": 2137.08, + "end": 2142.24, + "probability": 0.9712 + }, + { + "start": 2142.38, + "end": 2143.64, + "probability": 0.8873 + }, + { + "start": 2145.06, + "end": 2148.24, + "probability": 0.8777 + }, + { + "start": 2149.0, + "end": 2152.24, + "probability": 0.908 + }, + { + "start": 2152.66, + "end": 2155.28, + "probability": 0.7439 + }, + { + "start": 2155.72, + "end": 2158.64, + "probability": 0.9671 + }, + { + "start": 2159.22, + "end": 2162.04, + "probability": 0.798 + }, + { + "start": 2162.42, + "end": 2167.72, + "probability": 0.8465 + }, + { + "start": 2168.12, + "end": 2172.5, + "probability": 0.945 + }, + { + "start": 2173.1, + "end": 2175.48, + "probability": 0.5979 + }, + { + "start": 2175.6, + "end": 2181.02, + "probability": 0.795 + }, + { + "start": 2181.86, + "end": 2184.24, + "probability": 0.884 + }, + { + "start": 2188.48, + "end": 2189.1, + "probability": 0.0345 + }, + { + "start": 2193.12, + "end": 2194.06, + "probability": 0.0679 + }, + { + "start": 2194.24, + "end": 2197.38, + "probability": 0.7072 + }, + { + "start": 2197.48, + "end": 2198.6, + "probability": 0.8029 + }, + { + "start": 2198.74, + "end": 2200.64, + "probability": 0.9585 + }, + { + "start": 2200.88, + "end": 2203.12, + "probability": 0.8288 + }, + { + "start": 2206.67, + "end": 2208.74, + "probability": 0.5483 + }, + { + "start": 2208.82, + "end": 2212.88, + "probability": 0.7991 + }, + { + "start": 2213.74, + "end": 2214.42, + "probability": 0.7793 + }, + { + "start": 2215.48, + "end": 2216.72, + "probability": 0.9423 + }, + { + "start": 2217.02, + "end": 2220.58, + "probability": 0.9405 + }, + { + "start": 2220.7, + "end": 2221.94, + "probability": 0.9633 + }, + { + "start": 2222.46, + "end": 2223.14, + "probability": 0.591 + }, + { + "start": 2223.2, + "end": 2225.32, + "probability": 0.8701 + }, + { + "start": 2225.72, + "end": 2230.22, + "probability": 0.9609 + }, + { + "start": 2230.72, + "end": 2232.78, + "probability": 0.9147 + }, + { + "start": 2233.0, + "end": 2237.2, + "probability": 0.911 + }, + { + "start": 2237.8, + "end": 2240.86, + "probability": 0.923 + }, + { + "start": 2242.44, + "end": 2243.78, + "probability": 0.6123 + }, + { + "start": 2243.88, + "end": 2246.9, + "probability": 0.7914 + }, + { + "start": 2249.24, + "end": 2249.24, + "probability": 0.1483 + }, + { + "start": 2249.24, + "end": 2251.96, + "probability": 0.5787 + }, + { + "start": 2251.96, + "end": 2256.33, + "probability": 0.9787 + }, + { + "start": 2257.92, + "end": 2260.26, + "probability": 0.9117 + }, + { + "start": 2260.64, + "end": 2264.22, + "probability": 0.9843 + }, + { + "start": 2264.28, + "end": 2268.68, + "probability": 0.9037 + }, + { + "start": 2269.02, + "end": 2271.76, + "probability": 0.5106 + }, + { + "start": 2273.52, + "end": 2274.12, + "probability": 0.738 + }, + { + "start": 2276.92, + "end": 2278.64, + "probability": 0.9548 + }, + { + "start": 2280.52, + "end": 2282.16, + "probability": 0.6408 + }, + { + "start": 2282.26, + "end": 2286.88, + "probability": 0.8512 + }, + { + "start": 2287.72, + "end": 2293.48, + "probability": 0.9547 + }, + { + "start": 2294.98, + "end": 2296.36, + "probability": 0.8274 + }, + { + "start": 2296.6, + "end": 2299.04, + "probability": 0.7235 + }, + { + "start": 2300.34, + "end": 2303.78, + "probability": 0.9824 + }, + { + "start": 2304.48, + "end": 2305.16, + "probability": 0.8596 + }, + { + "start": 2306.3, + "end": 2310.26, + "probability": 0.7765 + }, + { + "start": 2311.28, + "end": 2312.38, + "probability": 0.824 + }, + { + "start": 2312.42, + "end": 2315.18, + "probability": 0.756 + }, + { + "start": 2315.88, + "end": 2318.6, + "probability": 0.8487 + }, + { + "start": 2319.12, + "end": 2319.96, + "probability": 0.8739 + }, + { + "start": 2320.04, + "end": 2323.08, + "probability": 0.974 + }, + { + "start": 2323.12, + "end": 2324.46, + "probability": 0.631 + }, + { + "start": 2325.02, + "end": 2327.2, + "probability": 0.9513 + }, + { + "start": 2327.6, + "end": 2329.38, + "probability": 0.8294 + }, + { + "start": 2329.6, + "end": 2330.45, + "probability": 0.9946 + }, + { + "start": 2331.5, + "end": 2333.38, + "probability": 0.9282 + }, + { + "start": 2333.48, + "end": 2334.1, + "probability": 0.6945 + }, + { + "start": 2334.8, + "end": 2336.0, + "probability": 0.7445 + }, + { + "start": 2336.14, + "end": 2339.1, + "probability": 0.7974 + }, + { + "start": 2339.78, + "end": 2340.82, + "probability": 0.9293 + }, + { + "start": 2340.96, + "end": 2341.96, + "probability": 0.7522 + }, + { + "start": 2342.08, + "end": 2343.04, + "probability": 0.9979 + }, + { + "start": 2344.1, + "end": 2346.28, + "probability": 0.814 + }, + { + "start": 2346.34, + "end": 2348.16, + "probability": 0.9624 + }, + { + "start": 2348.26, + "end": 2352.32, + "probability": 0.9341 + }, + { + "start": 2352.58, + "end": 2356.04, + "probability": 0.9922 + }, + { + "start": 2356.74, + "end": 2358.82, + "probability": 0.7397 + }, + { + "start": 2358.92, + "end": 2361.32, + "probability": 0.9854 + }, + { + "start": 2361.46, + "end": 2365.22, + "probability": 0.9412 + }, + { + "start": 2366.58, + "end": 2368.4, + "probability": 0.8149 + }, + { + "start": 2370.5, + "end": 2374.76, + "probability": 0.9914 + }, + { + "start": 2374.98, + "end": 2376.38, + "probability": 0.7011 + }, + { + "start": 2376.44, + "end": 2378.12, + "probability": 0.9966 + }, + { + "start": 2378.84, + "end": 2380.76, + "probability": 0.9222 + }, + { + "start": 2382.32, + "end": 2383.22, + "probability": 0.9683 + }, + { + "start": 2384.54, + "end": 2389.02, + "probability": 0.8959 + }, + { + "start": 2389.16, + "end": 2391.08, + "probability": 0.9759 + }, + { + "start": 2391.72, + "end": 2392.24, + "probability": 0.4617 + }, + { + "start": 2392.36, + "end": 2393.88, + "probability": 0.5867 + }, + { + "start": 2394.1, + "end": 2396.47, + "probability": 0.7675 + }, + { + "start": 2398.06, + "end": 2399.48, + "probability": 0.9697 + }, + { + "start": 2399.62, + "end": 2402.36, + "probability": 0.7419 + }, + { + "start": 2402.88, + "end": 2404.47, + "probability": 0.9575 + }, + { + "start": 2405.22, + "end": 2406.3, + "probability": 0.7483 + }, + { + "start": 2406.68, + "end": 2407.58, + "probability": 0.701 + }, + { + "start": 2407.62, + "end": 2412.34, + "probability": 0.9407 + }, + { + "start": 2412.52, + "end": 2413.92, + "probability": 0.9613 + }, + { + "start": 2414.62, + "end": 2419.38, + "probability": 0.8718 + }, + { + "start": 2422.18, + "end": 2426.06, + "probability": 0.9236 + }, + { + "start": 2426.74, + "end": 2429.4, + "probability": 0.9534 + }, + { + "start": 2429.94, + "end": 2431.56, + "probability": 0.9901 + }, + { + "start": 2432.69, + "end": 2434.88, + "probability": 0.5362 + }, + { + "start": 2434.98, + "end": 2437.5, + "probability": 0.9158 + }, + { + "start": 2438.34, + "end": 2439.45, + "probability": 0.9932 + }, + { + "start": 2440.4, + "end": 2441.22, + "probability": 0.7001 + }, + { + "start": 2441.26, + "end": 2443.04, + "probability": 0.9663 + }, + { + "start": 2443.22, + "end": 2444.84, + "probability": 0.837 + }, + { + "start": 2445.02, + "end": 2448.02, + "probability": 0.9732 + }, + { + "start": 2448.7, + "end": 2450.78, + "probability": 0.9182 + }, + { + "start": 2451.42, + "end": 2452.6, + "probability": 0.8293 + }, + { + "start": 2452.7, + "end": 2454.8, + "probability": 0.981 + }, + { + "start": 2455.18, + "end": 2458.2, + "probability": 0.9941 + }, + { + "start": 2458.32, + "end": 2460.92, + "probability": 0.5744 + }, + { + "start": 2461.38, + "end": 2463.02, + "probability": 0.9951 + }, + { + "start": 2463.46, + "end": 2464.06, + "probability": 0.8068 + }, + { + "start": 2464.12, + "end": 2464.6, + "probability": 0.8351 + }, + { + "start": 2464.66, + "end": 2467.9, + "probability": 0.9886 + }, + { + "start": 2468.5, + "end": 2469.58, + "probability": 0.6109 + }, + { + "start": 2469.62, + "end": 2470.46, + "probability": 0.3249 + }, + { + "start": 2470.52, + "end": 2470.94, + "probability": 0.7761 + }, + { + "start": 2471.24, + "end": 2471.94, + "probability": 0.3601 + }, + { + "start": 2471.98, + "end": 2472.42, + "probability": 0.932 + }, + { + "start": 2472.5, + "end": 2473.42, + "probability": 0.5982 + }, + { + "start": 2473.88, + "end": 2475.32, + "probability": 0.826 + }, + { + "start": 2475.36, + "end": 2476.46, + "probability": 0.8564 + }, + { + "start": 2476.96, + "end": 2478.26, + "probability": 0.6624 + }, + { + "start": 2478.3, + "end": 2481.24, + "probability": 0.741 + }, + { + "start": 2481.34, + "end": 2481.9, + "probability": 0.8439 + }, + { + "start": 2482.82, + "end": 2486.18, + "probability": 0.9117 + }, + { + "start": 2486.46, + "end": 2488.82, + "probability": 0.9944 + }, + { + "start": 2489.08, + "end": 2490.42, + "probability": 0.9364 + }, + { + "start": 2494.88, + "end": 2501.86, + "probability": 0.8432 + }, + { + "start": 2502.62, + "end": 2507.48, + "probability": 0.9806 + }, + { + "start": 2510.05, + "end": 2514.3, + "probability": 0.8822 + }, + { + "start": 2514.44, + "end": 2516.72, + "probability": 0.9928 + }, + { + "start": 2517.44, + "end": 2517.82, + "probability": 0.3151 + }, + { + "start": 2517.82, + "end": 2519.98, + "probability": 0.6465 + }, + { + "start": 2521.7, + "end": 2523.0, + "probability": 0.7324 + }, + { + "start": 2523.56, + "end": 2526.36, + "probability": 0.9946 + }, + { + "start": 2527.66, + "end": 2533.7, + "probability": 0.9805 + }, + { + "start": 2534.62, + "end": 2537.72, + "probability": 0.8945 + }, + { + "start": 2540.18, + "end": 2543.7, + "probability": 0.9118 + }, + { + "start": 2544.16, + "end": 2545.32, + "probability": 0.9106 + }, + { + "start": 2546.02, + "end": 2549.88, + "probability": 0.9719 + }, + { + "start": 2550.44, + "end": 2550.74, + "probability": 0.7839 + }, + { + "start": 2551.26, + "end": 2552.2, + "probability": 0.6887 + }, + { + "start": 2552.68, + "end": 2553.54, + "probability": 0.635 + }, + { + "start": 2553.9, + "end": 2554.32, + "probability": 0.2383 + }, + { + "start": 2554.44, + "end": 2555.02, + "probability": 0.6331 + }, + { + "start": 2555.08, + "end": 2555.8, + "probability": 0.7818 + }, + { + "start": 2555.92, + "end": 2560.06, + "probability": 0.8555 + }, + { + "start": 2560.92, + "end": 2562.98, + "probability": 0.6972 + }, + { + "start": 2563.06, + "end": 2563.54, + "probability": 0.9175 + }, + { + "start": 2563.62, + "end": 2565.94, + "probability": 0.82 + }, + { + "start": 2566.1, + "end": 2568.46, + "probability": 0.9614 + }, + { + "start": 2568.46, + "end": 2570.98, + "probability": 0.8888 + }, + { + "start": 2571.8, + "end": 2575.16, + "probability": 0.9865 + }, + { + "start": 2575.38, + "end": 2575.96, + "probability": 0.612 + }, + { + "start": 2576.84, + "end": 2578.48, + "probability": 0.9943 + }, + { + "start": 2578.6, + "end": 2580.2, + "probability": 0.9707 + }, + { + "start": 2580.26, + "end": 2583.6, + "probability": 0.932 + }, + { + "start": 2583.6, + "end": 2586.36, + "probability": 0.9888 + }, + { + "start": 2587.04, + "end": 2589.96, + "probability": 0.9899 + }, + { + "start": 2590.58, + "end": 2591.38, + "probability": 0.4633 + }, + { + "start": 2591.5, + "end": 2591.86, + "probability": 0.7342 + }, + { + "start": 2591.92, + "end": 2596.98, + "probability": 0.9261 + }, + { + "start": 2597.12, + "end": 2598.03, + "probability": 0.8254 + }, + { + "start": 2598.72, + "end": 2604.96, + "probability": 0.9758 + }, + { + "start": 2604.96, + "end": 2609.94, + "probability": 0.9738 + }, + { + "start": 2610.44, + "end": 2613.75, + "probability": 0.9771 + }, + { + "start": 2614.4, + "end": 2614.62, + "probability": 0.1883 + }, + { + "start": 2614.74, + "end": 2618.22, + "probability": 0.842 + }, + { + "start": 2618.28, + "end": 2619.38, + "probability": 0.9965 + }, + { + "start": 2619.98, + "end": 2621.46, + "probability": 0.9805 + }, + { + "start": 2621.68, + "end": 2624.38, + "probability": 0.9907 + }, + { + "start": 2624.86, + "end": 2629.12, + "probability": 0.97 + }, + { + "start": 2629.38, + "end": 2631.9, + "probability": 0.8434 + }, + { + "start": 2631.94, + "end": 2632.4, + "probability": 0.8571 + }, + { + "start": 2632.5, + "end": 2633.7, + "probability": 0.8165 + }, + { + "start": 2634.26, + "end": 2636.84, + "probability": 0.9946 + }, + { + "start": 2636.84, + "end": 2641.52, + "probability": 0.9749 + }, + { + "start": 2641.52, + "end": 2644.48, + "probability": 0.9665 + }, + { + "start": 2645.12, + "end": 2645.94, + "probability": 0.211 + }, + { + "start": 2646.64, + "end": 2648.36, + "probability": 0.864 + }, + { + "start": 2648.9, + "end": 2651.88, + "probability": 0.7917 + }, + { + "start": 2652.2, + "end": 2655.4, + "probability": 0.852 + }, + { + "start": 2655.98, + "end": 2659.94, + "probability": 0.9595 + }, + { + "start": 2660.0, + "end": 2661.06, + "probability": 0.767 + }, + { + "start": 2661.52, + "end": 2663.16, + "probability": 0.9755 + }, + { + "start": 2664.02, + "end": 2666.42, + "probability": 0.8078 + }, + { + "start": 2666.5, + "end": 2667.22, + "probability": 0.7882 + }, + { + "start": 2667.36, + "end": 2668.4, + "probability": 0.7328 + }, + { + "start": 2668.42, + "end": 2671.32, + "probability": 0.978 + }, + { + "start": 2671.36, + "end": 2672.04, + "probability": 0.8932 + }, + { + "start": 2672.12, + "end": 2676.16, + "probability": 0.9818 + }, + { + "start": 2677.06, + "end": 2681.82, + "probability": 0.9692 + }, + { + "start": 2682.34, + "end": 2686.14, + "probability": 0.8642 + }, + { + "start": 2686.14, + "end": 2689.7, + "probability": 0.9889 + }, + { + "start": 2690.16, + "end": 2691.42, + "probability": 0.8634 + }, + { + "start": 2693.32, + "end": 2698.76, + "probability": 0.9788 + }, + { + "start": 2699.08, + "end": 2700.44, + "probability": 0.9951 + }, + { + "start": 2700.82, + "end": 2701.82, + "probability": 0.7523 + }, + { + "start": 2702.46, + "end": 2703.08, + "probability": 0.7412 + }, + { + "start": 2703.28, + "end": 2705.62, + "probability": 0.8654 + }, + { + "start": 2705.72, + "end": 2708.22, + "probability": 0.706 + }, + { + "start": 2708.56, + "end": 2710.24, + "probability": 0.8483 + }, + { + "start": 2710.7, + "end": 2713.22, + "probability": 0.7515 + }, + { + "start": 2713.44, + "end": 2716.0, + "probability": 0.9289 + }, + { + "start": 2716.38, + "end": 2717.44, + "probability": 0.616 + }, + { + "start": 2717.54, + "end": 2719.34, + "probability": 0.7505 + }, + { + "start": 2724.2, + "end": 2725.6, + "probability": 0.5324 + }, + { + "start": 2725.72, + "end": 2726.3, + "probability": 0.8001 + }, + { + "start": 2726.42, + "end": 2729.74, + "probability": 0.9888 + }, + { + "start": 2729.74, + "end": 2733.66, + "probability": 0.9837 + }, + { + "start": 2734.64, + "end": 2736.66, + "probability": 0.8179 + }, + { + "start": 2736.98, + "end": 2742.38, + "probability": 0.9792 + }, + { + "start": 2742.38, + "end": 2746.76, + "probability": 0.9086 + }, + { + "start": 2748.22, + "end": 2748.92, + "probability": 0.7757 + }, + { + "start": 2748.98, + "end": 2749.8, + "probability": 0.8896 + }, + { + "start": 2750.2, + "end": 2751.24, + "probability": 0.8081 + }, + { + "start": 2751.38, + "end": 2751.82, + "probability": 0.55 + }, + { + "start": 2751.88, + "end": 2755.8, + "probability": 0.9837 + }, + { + "start": 2756.5, + "end": 2759.25, + "probability": 0.7938 + }, + { + "start": 2759.86, + "end": 2764.51, + "probability": 0.75 + }, + { + "start": 2764.92, + "end": 2768.74, + "probability": 0.9933 + }, + { + "start": 2768.9, + "end": 2769.26, + "probability": 0.7858 + }, + { + "start": 2769.8, + "end": 2772.08, + "probability": 0.7886 + }, + { + "start": 2772.38, + "end": 2773.6, + "probability": 0.7185 + }, + { + "start": 2775.16, + "end": 2779.48, + "probability": 0.8655 + }, + { + "start": 2779.56, + "end": 2780.44, + "probability": 0.9613 + }, + { + "start": 2780.56, + "end": 2782.64, + "probability": 0.9829 + }, + { + "start": 2782.86, + "end": 2783.64, + "probability": 0.7949 + }, + { + "start": 2783.7, + "end": 2784.26, + "probability": 0.7693 + }, + { + "start": 2784.34, + "end": 2784.94, + "probability": 0.5806 + }, + { + "start": 2785.1, + "end": 2785.78, + "probability": 0.832 + }, + { + "start": 2785.84, + "end": 2789.28, + "probability": 0.9581 + }, + { + "start": 2790.18, + "end": 2791.36, + "probability": 0.6173 + }, + { + "start": 2791.58, + "end": 2792.88, + "probability": 0.9241 + }, + { + "start": 2792.9, + "end": 2793.28, + "probability": 0.5053 + }, + { + "start": 2793.4, + "end": 2794.7, + "probability": 0.9808 + }, + { + "start": 2794.7, + "end": 2796.68, + "probability": 0.9064 + }, + { + "start": 2796.8, + "end": 2797.15, + "probability": 0.6538 + }, + { + "start": 2797.96, + "end": 2800.18, + "probability": 0.9663 + }, + { + "start": 2800.92, + "end": 2803.9, + "probability": 0.7159 + }, + { + "start": 2804.2, + "end": 2806.9, + "probability": 0.7642 + }, + { + "start": 2807.06, + "end": 2807.48, + "probability": 0.5846 + }, + { + "start": 2807.56, + "end": 2810.16, + "probability": 0.7598 + }, + { + "start": 2810.46, + "end": 2811.4, + "probability": 0.7505 + }, + { + "start": 2811.62, + "end": 2814.58, + "probability": 0.7841 + }, + { + "start": 2815.64, + "end": 2816.0, + "probability": 0.7329 + }, + { + "start": 2816.02, + "end": 2817.36, + "probability": 0.9585 + }, + { + "start": 2817.78, + "end": 2819.6, + "probability": 0.709 + }, + { + "start": 2820.26, + "end": 2822.44, + "probability": 0.7923 + }, + { + "start": 2822.44, + "end": 2824.06, + "probability": 0.9856 + }, + { + "start": 2824.2, + "end": 2826.3, + "probability": 0.7907 + }, + { + "start": 2826.88, + "end": 2828.34, + "probability": 0.4215 + }, + { + "start": 2828.8, + "end": 2830.58, + "probability": 0.5909 + }, + { + "start": 2830.74, + "end": 2832.2, + "probability": 0.7706 + }, + { + "start": 2832.36, + "end": 2834.02, + "probability": 0.6602 + }, + { + "start": 2834.32, + "end": 2837.98, + "probability": 0.9739 + }, + { + "start": 2838.04, + "end": 2838.26, + "probability": 0.4765 + }, + { + "start": 2838.34, + "end": 2841.06, + "probability": 0.7101 + }, + { + "start": 2841.22, + "end": 2842.51, + "probability": 0.7245 + }, + { + "start": 2843.14, + "end": 2844.86, + "probability": 0.7777 + }, + { + "start": 2845.16, + "end": 2846.99, + "probability": 0.858 + }, + { + "start": 2848.3, + "end": 2848.42, + "probability": 0.3909 + }, + { + "start": 2848.62, + "end": 2849.14, + "probability": 0.738 + }, + { + "start": 2849.34, + "end": 2850.96, + "probability": 0.8965 + }, + { + "start": 2851.38, + "end": 2851.8, + "probability": 0.9225 + }, + { + "start": 2852.64, + "end": 2855.5, + "probability": 0.9662 + }, + { + "start": 2855.9, + "end": 2858.12, + "probability": 0.9169 + }, + { + "start": 2858.72, + "end": 2859.34, + "probability": 0.8618 + }, + { + "start": 2859.5, + "end": 2860.12, + "probability": 0.8635 + }, + { + "start": 2860.52, + "end": 2861.48, + "probability": 0.9216 + }, + { + "start": 2861.6, + "end": 2861.98, + "probability": 0.7591 + }, + { + "start": 2862.38, + "end": 2864.08, + "probability": 0.9019 + }, + { + "start": 2864.68, + "end": 2867.96, + "probability": 0.6337 + }, + { + "start": 2868.44, + "end": 2872.66, + "probability": 0.9767 + }, + { + "start": 2873.2, + "end": 2874.28, + "probability": 0.567 + }, + { + "start": 2874.36, + "end": 2874.98, + "probability": 0.7252 + }, + { + "start": 2875.12, + "end": 2876.16, + "probability": 0.9489 + }, + { + "start": 2876.26, + "end": 2877.78, + "probability": 0.8557 + }, + { + "start": 2878.3, + "end": 2880.56, + "probability": 0.8336 + }, + { + "start": 2880.64, + "end": 2881.42, + "probability": 0.9758 + }, + { + "start": 2881.62, + "end": 2885.3, + "probability": 0.7866 + }, + { + "start": 2885.42, + "end": 2886.28, + "probability": 0.536 + }, + { + "start": 2886.56, + "end": 2886.72, + "probability": 0.6383 + }, + { + "start": 2886.86, + "end": 2891.51, + "probability": 0.9612 + }, + { + "start": 2892.46, + "end": 2893.82, + "probability": 0.9661 + }, + { + "start": 2894.06, + "end": 2895.76, + "probability": 0.982 + }, + { + "start": 2896.0, + "end": 2897.84, + "probability": 0.7744 + }, + { + "start": 2898.78, + "end": 2900.74, + "probability": 0.9444 + }, + { + "start": 2901.9, + "end": 2906.26, + "probability": 0.7699 + }, + { + "start": 2906.78, + "end": 2911.0, + "probability": 0.8635 + }, + { + "start": 2911.08, + "end": 2916.24, + "probability": 0.9897 + }, + { + "start": 2917.78, + "end": 2918.94, + "probability": 0.8567 + }, + { + "start": 2919.1, + "end": 2919.88, + "probability": 0.7387 + }, + { + "start": 2919.9, + "end": 2920.92, + "probability": 0.8005 + }, + { + "start": 2921.46, + "end": 2924.76, + "probability": 0.9724 + }, + { + "start": 2924.88, + "end": 2925.56, + "probability": 0.7717 + }, + { + "start": 2925.6, + "end": 2926.32, + "probability": 0.9218 + }, + { + "start": 2926.44, + "end": 2930.4, + "probability": 0.9828 + }, + { + "start": 2930.94, + "end": 2934.86, + "probability": 0.9222 + }, + { + "start": 2935.84, + "end": 2937.62, + "probability": 0.9161 + }, + { + "start": 2937.74, + "end": 2939.82, + "probability": 0.9149 + }, + { + "start": 2939.9, + "end": 2944.02, + "probability": 0.9314 + }, + { + "start": 2944.46, + "end": 2946.72, + "probability": 0.8027 + }, + { + "start": 2946.78, + "end": 2949.42, + "probability": 0.8957 + }, + { + "start": 2949.5, + "end": 2950.14, + "probability": 0.9846 + }, + { + "start": 2950.94, + "end": 2952.72, + "probability": 0.85 + }, + { + "start": 2952.82, + "end": 2955.36, + "probability": 0.9023 + }, + { + "start": 2955.36, + "end": 2959.78, + "probability": 0.9878 + }, + { + "start": 2959.96, + "end": 2962.78, + "probability": 0.7641 + }, + { + "start": 2963.28, + "end": 2966.64, + "probability": 0.942 + }, + { + "start": 2966.88, + "end": 2968.68, + "probability": 0.9297 + }, + { + "start": 2968.7, + "end": 2969.82, + "probability": 0.6831 + }, + { + "start": 2970.38, + "end": 2970.96, + "probability": 0.6152 + }, + { + "start": 2971.04, + "end": 2971.82, + "probability": 0.8942 + }, + { + "start": 2971.92, + "end": 2975.18, + "probability": 0.863 + }, + { + "start": 2975.22, + "end": 2975.74, + "probability": 0.9565 + }, + { + "start": 2976.42, + "end": 2977.82, + "probability": 0.9973 + }, + { + "start": 2977.92, + "end": 2979.04, + "probability": 0.996 + }, + { + "start": 2979.42, + "end": 2979.8, + "probability": 0.5358 + }, + { + "start": 2979.88, + "end": 2979.92, + "probability": 0.8 + }, + { + "start": 2980.0, + "end": 2980.26, + "probability": 0.8312 + }, + { + "start": 2980.36, + "end": 2981.26, + "probability": 0.7283 + }, + { + "start": 2981.34, + "end": 2981.9, + "probability": 0.9448 + }, + { + "start": 2981.96, + "end": 2982.56, + "probability": 0.9204 + }, + { + "start": 2983.38, + "end": 2987.86, + "probability": 0.9811 + }, + { + "start": 2987.92, + "end": 2989.2, + "probability": 0.8961 + }, + { + "start": 2989.34, + "end": 2994.8, + "probability": 0.9269 + }, + { + "start": 2995.34, + "end": 2995.38, + "probability": 0.2525 + }, + { + "start": 2995.46, + "end": 2996.22, + "probability": 0.6468 + }, + { + "start": 2996.34, + "end": 2998.1, + "probability": 0.9644 + }, + { + "start": 2998.18, + "end": 2998.64, + "probability": 0.716 + }, + { + "start": 2998.72, + "end": 2998.94, + "probability": 0.8036 + }, + { + "start": 2999.04, + "end": 3000.8, + "probability": 0.7501 + }, + { + "start": 3001.34, + "end": 3004.72, + "probability": 0.9966 + }, + { + "start": 3004.72, + "end": 3007.92, + "probability": 0.989 + }, + { + "start": 3008.46, + "end": 3010.88, + "probability": 0.9591 + }, + { + "start": 3011.5, + "end": 3013.7, + "probability": 0.9885 + }, + { + "start": 3014.44, + "end": 3015.66, + "probability": 0.9793 + }, + { + "start": 3016.28, + "end": 3018.92, + "probability": 0.9414 + }, + { + "start": 3019.48, + "end": 3022.24, + "probability": 0.8188 + }, + { + "start": 3022.26, + "end": 3023.58, + "probability": 0.9872 + }, + { + "start": 3024.2, + "end": 3030.48, + "probability": 0.7804 + }, + { + "start": 3030.96, + "end": 3032.82, + "probability": 0.9954 + }, + { + "start": 3033.32, + "end": 3035.52, + "probability": 0.9249 + }, + { + "start": 3035.52, + "end": 3037.88, + "probability": 0.9955 + }, + { + "start": 3038.32, + "end": 3042.2, + "probability": 0.822 + }, + { + "start": 3042.86, + "end": 3045.9, + "probability": 0.923 + }, + { + "start": 3046.4, + "end": 3047.68, + "probability": 0.8126 + }, + { + "start": 3048.52, + "end": 3051.5, + "probability": 0.8012 + }, + { + "start": 3051.66, + "end": 3055.54, + "probability": 0.9813 + }, + { + "start": 3056.26, + "end": 3060.04, + "probability": 0.9133 + }, + { + "start": 3060.04, + "end": 3063.82, + "probability": 0.8016 + }, + { + "start": 3064.38, + "end": 3065.72, + "probability": 0.8752 + }, + { + "start": 3065.9, + "end": 3068.56, + "probability": 0.8366 + }, + { + "start": 3068.7, + "end": 3069.5, + "probability": 0.8106 + }, + { + "start": 3069.86, + "end": 3071.47, + "probability": 0.9934 + }, + { + "start": 3071.96, + "end": 3073.44, + "probability": 0.8678 + }, + { + "start": 3073.84, + "end": 3077.24, + "probability": 0.965 + }, + { + "start": 3078.06, + "end": 3079.44, + "probability": 0.9681 + }, + { + "start": 3079.86, + "end": 3081.34, + "probability": 0.9844 + }, + { + "start": 3081.52, + "end": 3085.12, + "probability": 0.8192 + }, + { + "start": 3085.24, + "end": 3087.13, + "probability": 0.7078 + }, + { + "start": 3087.62, + "end": 3089.18, + "probability": 0.7064 + }, + { + "start": 3089.44, + "end": 3092.3, + "probability": 0.9946 + }, + { + "start": 3092.4, + "end": 3093.49, + "probability": 0.9443 + }, + { + "start": 3093.68, + "end": 3094.54, + "probability": 0.5318 + }, + { + "start": 3094.94, + "end": 3096.2, + "probability": 0.9971 + }, + { + "start": 3096.52, + "end": 3097.47, + "probability": 0.9795 + }, + { + "start": 3097.68, + "end": 3100.25, + "probability": 0.9695 + }, + { + "start": 3101.26, + "end": 3102.66, + "probability": 0.8614 + }, + { + "start": 3102.72, + "end": 3104.84, + "probability": 0.9838 + }, + { + "start": 3105.02, + "end": 3108.92, + "probability": 0.4564 + }, + { + "start": 3109.0, + "end": 3109.77, + "probability": 0.9834 + }, + { + "start": 3110.96, + "end": 3111.16, + "probability": 0.8075 + }, + { + "start": 3111.16, + "end": 3113.06, + "probability": 0.9934 + }, + { + "start": 3113.8, + "end": 3115.45, + "probability": 0.9894 + }, + { + "start": 3117.14, + "end": 3118.32, + "probability": 0.6178 + }, + { + "start": 3118.32, + "end": 3122.1, + "probability": 0.9111 + }, + { + "start": 3122.1, + "end": 3124.66, + "probability": 0.8095 + }, + { + "start": 3125.56, + "end": 3128.26, + "probability": 0.9933 + }, + { + "start": 3128.26, + "end": 3129.93, + "probability": 0.9917 + }, + { + "start": 3130.56, + "end": 3132.6, + "probability": 0.9895 + }, + { + "start": 3132.78, + "end": 3134.28, + "probability": 0.6757 + }, + { + "start": 3134.36, + "end": 3135.0, + "probability": 0.7448 + }, + { + "start": 3135.16, + "end": 3135.9, + "probability": 0.9492 + }, + { + "start": 3136.78, + "end": 3140.16, + "probability": 0.9774 + }, + { + "start": 3140.16, + "end": 3144.78, + "probability": 0.9828 + }, + { + "start": 3145.34, + "end": 3147.94, + "probability": 0.7459 + }, + { + "start": 3148.04, + "end": 3151.28, + "probability": 0.8189 + }, + { + "start": 3151.34, + "end": 3155.38, + "probability": 0.9417 + }, + { + "start": 3155.7, + "end": 3158.06, + "probability": 0.8322 + }, + { + "start": 3158.48, + "end": 3159.4, + "probability": 0.9559 + }, + { + "start": 3160.22, + "end": 3163.94, + "probability": 0.8708 + }, + { + "start": 3164.4, + "end": 3167.02, + "probability": 0.9878 + }, + { + "start": 3167.02, + "end": 3170.28, + "probability": 0.9932 + }, + { + "start": 3170.94, + "end": 3173.54, + "probability": 0.9452 + }, + { + "start": 3174.0, + "end": 3176.32, + "probability": 0.9883 + }, + { + "start": 3176.74, + "end": 3177.62, + "probability": 0.9363 + }, + { + "start": 3178.64, + "end": 3182.4, + "probability": 0.9358 + }, + { + "start": 3183.0, + "end": 3185.88, + "probability": 0.9871 + }, + { + "start": 3186.38, + "end": 3187.78, + "probability": 0.9398 + }, + { + "start": 3188.24, + "end": 3189.0, + "probability": 0.8034 + }, + { + "start": 3189.5, + "end": 3190.78, + "probability": 0.9736 + }, + { + "start": 3191.26, + "end": 3196.72, + "probability": 0.8259 + }, + { + "start": 3197.06, + "end": 3198.58, + "probability": 0.7488 + }, + { + "start": 3199.08, + "end": 3201.16, + "probability": 0.7089 + }, + { + "start": 3201.16, + "end": 3203.48, + "probability": 0.9334 + }, + { + "start": 3203.86, + "end": 3207.32, + "probability": 0.969 + }, + { + "start": 3207.7, + "end": 3209.64, + "probability": 0.9614 + }, + { + "start": 3209.94, + "end": 3213.82, + "probability": 0.6704 + }, + { + "start": 3214.12, + "end": 3214.92, + "probability": 0.7999 + }, + { + "start": 3215.06, + "end": 3216.38, + "probability": 0.8708 + }, + { + "start": 3216.86, + "end": 3219.36, + "probability": 0.9639 + }, + { + "start": 3219.76, + "end": 3223.4, + "probability": 0.9963 + }, + { + "start": 3223.78, + "end": 3225.42, + "probability": 0.9922 + }, + { + "start": 3225.78, + "end": 3228.08, + "probability": 0.9897 + }, + { + "start": 3228.44, + "end": 3231.12, + "probability": 0.9463 + }, + { + "start": 3231.52, + "end": 3232.26, + "probability": 0.9907 + }, + { + "start": 3233.02, + "end": 3233.74, + "probability": 0.8785 + }, + { + "start": 3234.28, + "end": 3238.31, + "probability": 0.9902 + }, + { + "start": 3240.48, + "end": 3241.18, + "probability": 0.6721 + }, + { + "start": 3241.28, + "end": 3244.94, + "probability": 0.9862 + }, + { + "start": 3245.72, + "end": 3249.6, + "probability": 0.8913 + }, + { + "start": 3249.66, + "end": 3249.82, + "probability": 0.703 + }, + { + "start": 3250.0, + "end": 3253.5, + "probability": 0.9983 + }, + { + "start": 3253.82, + "end": 3257.78, + "probability": 0.9731 + }, + { + "start": 3258.06, + "end": 3258.38, + "probability": 0.7559 + }, + { + "start": 3259.14, + "end": 3259.86, + "probability": 0.6865 + }, + { + "start": 3260.1, + "end": 3261.06, + "probability": 0.9067 + }, + { + "start": 3261.52, + "end": 3263.7, + "probability": 0.9757 + }, + { + "start": 3263.74, + "end": 3265.04, + "probability": 0.9202 + }, + { + "start": 3265.16, + "end": 3266.34, + "probability": 0.7729 + }, + { + "start": 3266.94, + "end": 3271.7, + "probability": 0.9515 + }, + { + "start": 3272.32, + "end": 3274.58, + "probability": 0.9113 + }, + { + "start": 3274.7, + "end": 3275.98, + "probability": 0.4988 + }, + { + "start": 3276.86, + "end": 3277.8, + "probability": 0.9183 + }, + { + "start": 3277.92, + "end": 3280.68, + "probability": 0.7931 + }, + { + "start": 3280.74, + "end": 3282.54, + "probability": 0.9948 + }, + { + "start": 3282.64, + "end": 3285.2, + "probability": 0.9896 + }, + { + "start": 3285.48, + "end": 3288.1, + "probability": 0.9539 + }, + { + "start": 3288.1, + "end": 3291.06, + "probability": 0.9993 + }, + { + "start": 3291.42, + "end": 3293.8, + "probability": 0.9927 + }, + { + "start": 3293.8, + "end": 3295.58, + "probability": 0.9956 + }, + { + "start": 3296.22, + "end": 3297.0, + "probability": 0.7653 + }, + { + "start": 3297.2, + "end": 3298.78, + "probability": 0.9836 + }, + { + "start": 3298.88, + "end": 3299.74, + "probability": 0.2229 + }, + { + "start": 3300.32, + "end": 3300.96, + "probability": 0.8948 + }, + { + "start": 3301.62, + "end": 3306.06, + "probability": 0.9573 + }, + { + "start": 3306.5, + "end": 3307.0, + "probability": 0.4871 + }, + { + "start": 3307.1, + "end": 3308.42, + "probability": 0.8379 + }, + { + "start": 3308.54, + "end": 3309.26, + "probability": 0.8684 + }, + { + "start": 3309.5, + "end": 3309.74, + "probability": 0.7885 + }, + { + "start": 3310.54, + "end": 3311.72, + "probability": 0.6843 + }, + { + "start": 3312.56, + "end": 3316.44, + "probability": 0.9725 + }, + { + "start": 3317.1, + "end": 3320.4, + "probability": 0.9943 + }, + { + "start": 3321.32, + "end": 3323.54, + "probability": 0.8624 + }, + { + "start": 3323.62, + "end": 3326.6, + "probability": 0.7447 + }, + { + "start": 3326.74, + "end": 3327.38, + "probability": 0.5596 + }, + { + "start": 3329.54, + "end": 3332.94, + "probability": 0.9722 + }, + { + "start": 3333.58, + "end": 3334.14, + "probability": 0.5868 + }, + { + "start": 3334.48, + "end": 3337.17, + "probability": 0.9027 + }, + { + "start": 3349.98, + "end": 3354.02, + "probability": 0.868 + }, + { + "start": 3354.02, + "end": 3358.2, + "probability": 0.991 + }, + { + "start": 3358.44, + "end": 3360.88, + "probability": 0.9051 + }, + { + "start": 3360.96, + "end": 3362.91, + "probability": 0.667 + }, + { + "start": 3363.74, + "end": 3367.74, + "probability": 0.9926 + }, + { + "start": 3367.84, + "end": 3373.96, + "probability": 0.9846 + }, + { + "start": 3374.1, + "end": 3377.54, + "probability": 0.9948 + }, + { + "start": 3377.88, + "end": 3379.66, + "probability": 0.8205 + }, + { + "start": 3380.66, + "end": 3385.78, + "probability": 0.9617 + }, + { + "start": 3385.94, + "end": 3390.16, + "probability": 0.9897 + }, + { + "start": 3393.35, + "end": 3394.99, + "probability": 0.4775 + }, + { + "start": 3397.14, + "end": 3400.72, + "probability": 0.9382 + }, + { + "start": 3401.78, + "end": 3402.52, + "probability": 0.7847 + }, + { + "start": 3402.86, + "end": 3413.56, + "probability": 0.9784 + }, + { + "start": 3413.64, + "end": 3414.8, + "probability": 0.9792 + }, + { + "start": 3415.17, + "end": 3417.66, + "probability": 0.9672 + }, + { + "start": 3418.2, + "end": 3422.82, + "probability": 0.9594 + }, + { + "start": 3422.82, + "end": 3428.28, + "probability": 0.9909 + }, + { + "start": 3428.88, + "end": 3432.21, + "probability": 0.9918 + }, + { + "start": 3432.48, + "end": 3437.58, + "probability": 0.9943 + }, + { + "start": 3438.16, + "end": 3438.76, + "probability": 0.9974 + }, + { + "start": 3439.3, + "end": 3441.14, + "probability": 0.9993 + }, + { + "start": 3441.46, + "end": 3441.68, + "probability": 0.6711 + }, + { + "start": 3442.92, + "end": 3444.78, + "probability": 0.9861 + }, + { + "start": 3444.86, + "end": 3447.08, + "probability": 0.9984 + }, + { + "start": 3447.32, + "end": 3449.72, + "probability": 0.9626 + }, + { + "start": 3464.54, + "end": 3467.36, + "probability": 0.7795 + }, + { + "start": 3468.34, + "end": 3473.12, + "probability": 0.9778 + }, + { + "start": 3473.22, + "end": 3474.18, + "probability": 0.7848 + }, + { + "start": 3474.72, + "end": 3476.72, + "probability": 0.7843 + }, + { + "start": 3477.3, + "end": 3479.86, + "probability": 0.9937 + }, + { + "start": 3480.56, + "end": 3482.19, + "probability": 0.9881 + }, + { + "start": 3483.16, + "end": 3483.62, + "probability": 0.9963 + }, + { + "start": 3485.22, + "end": 3488.12, + "probability": 0.9566 + }, + { + "start": 3489.12, + "end": 3489.74, + "probability": 0.5355 + }, + { + "start": 3493.12, + "end": 3496.62, + "probability": 0.6015 + }, + { + "start": 3496.98, + "end": 3502.26, + "probability": 0.8605 + }, + { + "start": 3502.26, + "end": 3506.1, + "probability": 0.9971 + }, + { + "start": 3506.54, + "end": 3508.88, + "probability": 0.9974 + }, + { + "start": 3509.8, + "end": 3511.58, + "probability": 0.9746 + }, + { + "start": 3512.36, + "end": 3513.36, + "probability": 0.3628 + }, + { + "start": 3517.56, + "end": 3520.16, + "probability": 0.9638 + }, + { + "start": 3520.74, + "end": 3520.78, + "probability": 0.1467 + }, + { + "start": 3520.78, + "end": 3520.78, + "probability": 0.6525 + }, + { + "start": 3520.78, + "end": 3525.9, + "probability": 0.8646 + }, + { + "start": 3527.0, + "end": 3531.6, + "probability": 0.9914 + }, + { + "start": 3532.2, + "end": 3532.96, + "probability": 0.928 + }, + { + "start": 3533.88, + "end": 3537.16, + "probability": 0.8325 + }, + { + "start": 3537.88, + "end": 3542.48, + "probability": 0.7002 + }, + { + "start": 3543.0, + "end": 3547.6, + "probability": 0.9534 + }, + { + "start": 3547.6, + "end": 3554.42, + "probability": 0.9304 + }, + { + "start": 3554.48, + "end": 3556.92, + "probability": 0.991 + }, + { + "start": 3557.58, + "end": 3563.0, + "probability": 0.8644 + }, + { + "start": 3563.0, + "end": 3568.88, + "probability": 0.9993 + }, + { + "start": 3569.56, + "end": 3575.82, + "probability": 0.998 + }, + { + "start": 3576.14, + "end": 3579.76, + "probability": 0.9169 + }, + { + "start": 3580.24, + "end": 3581.04, + "probability": 0.6419 + }, + { + "start": 3581.16, + "end": 3581.36, + "probability": 0.2485 + }, + { + "start": 3581.54, + "end": 3582.28, + "probability": 0.9554 + }, + { + "start": 3583.66, + "end": 3586.68, + "probability": 0.9562 + }, + { + "start": 3587.5, + "end": 3590.52, + "probability": 0.9912 + }, + { + "start": 3591.18, + "end": 3594.44, + "probability": 0.5165 + }, + { + "start": 3594.46, + "end": 3597.92, + "probability": 0.8983 + }, + { + "start": 3598.16, + "end": 3599.2, + "probability": 0.8866 + }, + { + "start": 3599.76, + "end": 3604.56, + "probability": 0.9951 + }, + { + "start": 3605.3, + "end": 3611.74, + "probability": 0.9755 + }, + { + "start": 3611.74, + "end": 3616.14, + "probability": 0.898 + }, + { + "start": 3617.04, + "end": 3625.08, + "probability": 0.9927 + }, + { + "start": 3625.2, + "end": 3625.84, + "probability": 0.8321 + }, + { + "start": 3626.28, + "end": 3637.62, + "probability": 0.9393 + }, + { + "start": 3637.78, + "end": 3638.2, + "probability": 0.5842 + }, + { + "start": 3638.28, + "end": 3639.78, + "probability": 0.7906 + }, + { + "start": 3640.1, + "end": 3643.14, + "probability": 0.9925 + }, + { + "start": 3643.36, + "end": 3644.64, + "probability": 0.9038 + }, + { + "start": 3644.78, + "end": 3645.4, + "probability": 0.5466 + }, + { + "start": 3645.82, + "end": 3646.46, + "probability": 0.6895 + }, + { + "start": 3646.54, + "end": 3648.08, + "probability": 0.9927 + }, + { + "start": 3648.64, + "end": 3652.4, + "probability": 0.8522 + }, + { + "start": 3652.92, + "end": 3654.14, + "probability": 0.5229 + }, + { + "start": 3654.74, + "end": 3658.1, + "probability": 0.8571 + }, + { + "start": 3658.66, + "end": 3663.68, + "probability": 0.954 + }, + { + "start": 3663.74, + "end": 3665.3, + "probability": 0.7894 + }, + { + "start": 3665.82, + "end": 3671.54, + "probability": 0.902 + }, + { + "start": 3672.62, + "end": 3674.1, + "probability": 0.9393 + }, + { + "start": 3674.12, + "end": 3674.2, + "probability": 0.452 + }, + { + "start": 3674.22, + "end": 3675.18, + "probability": 0.9757 + }, + { + "start": 3675.46, + "end": 3676.82, + "probability": 0.8607 + }, + { + "start": 3677.0, + "end": 3677.38, + "probability": 0.69 + }, + { + "start": 3677.64, + "end": 3678.94, + "probability": 0.9184 + }, + { + "start": 3678.94, + "end": 3679.32, + "probability": 0.7404 + }, + { + "start": 3679.86, + "end": 3683.02, + "probability": 0.988 + }, + { + "start": 3683.5, + "end": 3687.68, + "probability": 0.928 + }, + { + "start": 3687.84, + "end": 3689.18, + "probability": 0.7906 + }, + { + "start": 3689.58, + "end": 3692.1, + "probability": 0.7426 + }, + { + "start": 3692.66, + "end": 3695.78, + "probability": 0.8345 + }, + { + "start": 3696.24, + "end": 3697.36, + "probability": 0.611 + }, + { + "start": 3697.46, + "end": 3699.84, + "probability": 0.8078 + }, + { + "start": 3711.92, + "end": 3713.58, + "probability": 0.6804 + }, + { + "start": 3714.14, + "end": 3715.44, + "probability": 0.5363 + }, + { + "start": 3715.64, + "end": 3716.96, + "probability": 0.9881 + }, + { + "start": 3717.04, + "end": 3718.54, + "probability": 0.9795 + }, + { + "start": 3719.52, + "end": 3722.82, + "probability": 0.9876 + }, + { + "start": 3722.96, + "end": 3725.5, + "probability": 0.9817 + }, + { + "start": 3726.2, + "end": 3728.56, + "probability": 0.9932 + }, + { + "start": 3729.28, + "end": 3731.22, + "probability": 0.998 + }, + { + "start": 3731.58, + "end": 3734.48, + "probability": 0.9596 + }, + { + "start": 3736.12, + "end": 3739.9, + "probability": 0.9204 + }, + { + "start": 3742.7, + "end": 3744.92, + "probability": 0.9895 + }, + { + "start": 3744.98, + "end": 3745.3, + "probability": 0.1265 + }, + { + "start": 3745.52, + "end": 3747.0, + "probability": 0.9623 + }, + { + "start": 3747.52, + "end": 3750.08, + "probability": 0.9897 + }, + { + "start": 3750.28, + "end": 3753.32, + "probability": 0.893 + }, + { + "start": 3753.32, + "end": 3757.04, + "probability": 0.9966 + }, + { + "start": 3757.94, + "end": 3759.9, + "probability": 0.2125 + }, + { + "start": 3759.9, + "end": 3763.78, + "probability": 0.7432 + }, + { + "start": 3764.36, + "end": 3766.1, + "probability": 0.8867 + }, + { + "start": 3766.62, + "end": 3769.68, + "probability": 0.9895 + }, + { + "start": 3770.06, + "end": 3773.9, + "probability": 0.9921 + }, + { + "start": 3775.84, + "end": 3780.34, + "probability": 0.0482 + }, + { + "start": 3781.38, + "end": 3781.44, + "probability": 0.0465 + }, + { + "start": 3783.0, + "end": 3784.34, + "probability": 0.0535 + }, + { + "start": 3784.7, + "end": 3786.24, + "probability": 0.0561 + }, + { + "start": 3787.02, + "end": 3788.64, + "probability": 0.0273 + }, + { + "start": 3788.64, + "end": 3790.06, + "probability": 0.0084 + }, + { + "start": 3791.82, + "end": 3793.7, + "probability": 0.0877 + }, + { + "start": 3793.88, + "end": 3794.93, + "probability": 0.2681 + }, + { + "start": 3796.52, + "end": 3798.68, + "probability": 0.2701 + }, + { + "start": 3798.68, + "end": 3800.64, + "probability": 0.3316 + }, + { + "start": 3801.02, + "end": 3801.65, + "probability": 0.76 + }, + { + "start": 3802.04, + "end": 3802.98, + "probability": 0.9002 + }, + { + "start": 3803.14, + "end": 3804.26, + "probability": 0.2699 + }, + { + "start": 3804.32, + "end": 3805.2, + "probability": 0.8974 + }, + { + "start": 3805.22, + "end": 3808.26, + "probability": 0.6997 + }, + { + "start": 3808.68, + "end": 3813.32, + "probability": 0.9919 + }, + { + "start": 3813.94, + "end": 3815.35, + "probability": 0.9995 + }, + { + "start": 3816.0, + "end": 3817.14, + "probability": 0.9276 + }, + { + "start": 3817.24, + "end": 3819.33, + "probability": 0.8721 + }, + { + "start": 3819.5, + "end": 3823.68, + "probability": 0.9836 + }, + { + "start": 3823.96, + "end": 3824.8, + "probability": 0.9355 + }, + { + "start": 3825.22, + "end": 3826.94, + "probability": 0.9772 + }, + { + "start": 3826.98, + "end": 3828.23, + "probability": 0.9757 + }, + { + "start": 3828.6, + "end": 3830.64, + "probability": 0.8364 + }, + { + "start": 3830.76, + "end": 3832.16, + "probability": 0.9616 + }, + { + "start": 3832.78, + "end": 3836.26, + "probability": 0.9945 + }, + { + "start": 3836.72, + "end": 3837.84, + "probability": 0.9802 + }, + { + "start": 3838.26, + "end": 3838.68, + "probability": 0.791 + }, + { + "start": 3839.12, + "end": 3839.78, + "probability": 0.3606 + }, + { + "start": 3839.98, + "end": 3840.12, + "probability": 0.1067 + }, + { + "start": 3840.44, + "end": 3845.02, + "probability": 0.1971 + }, + { + "start": 3845.38, + "end": 3846.16, + "probability": 0.088 + }, + { + "start": 3846.32, + "end": 3850.54, + "probability": 0.8972 + }, + { + "start": 3851.04, + "end": 3852.72, + "probability": 0.8711 + }, + { + "start": 3852.78, + "end": 3855.96, + "probability": 0.8942 + }, + { + "start": 3856.48, + "end": 3858.06, + "probability": 0.887 + }, + { + "start": 3858.24, + "end": 3859.14, + "probability": 0.597 + }, + { + "start": 3859.24, + "end": 3860.06, + "probability": 0.8658 + }, + { + "start": 3860.62, + "end": 3861.82, + "probability": 0.9893 + }, + { + "start": 3862.06, + "end": 3864.21, + "probability": 0.991 + }, + { + "start": 3864.82, + "end": 3869.7, + "probability": 0.9502 + }, + { + "start": 3869.82, + "end": 3873.54, + "probability": 0.0733 + }, + { + "start": 3873.76, + "end": 3873.76, + "probability": 0.2261 + }, + { + "start": 3873.76, + "end": 3876.65, + "probability": 0.6462 + }, + { + "start": 3877.68, + "end": 3880.4, + "probability": 0.8896 + }, + { + "start": 3880.88, + "end": 3882.4, + "probability": 0.9551 + }, + { + "start": 3882.46, + "end": 3888.2, + "probability": 0.9755 + }, + { + "start": 3888.84, + "end": 3890.36, + "probability": 0.7423 + }, + { + "start": 3890.56, + "end": 3890.78, + "probability": 0.6545 + }, + { + "start": 3890.88, + "end": 3891.48, + "probability": 0.926 + }, + { + "start": 3891.54, + "end": 3892.44, + "probability": 0.9196 + }, + { + "start": 3892.54, + "end": 3893.8, + "probability": 0.7252 + }, + { + "start": 3893.8, + "end": 3896.2, + "probability": 0.9351 + }, + { + "start": 3896.34, + "end": 3902.92, + "probability": 0.9768 + }, + { + "start": 3903.24, + "end": 3908.1, + "probability": 0.8938 + }, + { + "start": 3908.26, + "end": 3909.62, + "probability": 0.8585 + }, + { + "start": 3909.78, + "end": 3910.43, + "probability": 0.9849 + }, + { + "start": 3910.88, + "end": 3912.08, + "probability": 0.9791 + }, + { + "start": 3912.28, + "end": 3914.18, + "probability": 0.8118 + }, + { + "start": 3914.2, + "end": 3915.66, + "probability": 0.9172 + }, + { + "start": 3915.94, + "end": 3921.58, + "probability": 0.9966 + }, + { + "start": 3922.22, + "end": 3924.52, + "probability": 0.8998 + }, + { + "start": 3925.06, + "end": 3925.4, + "probability": 0.946 + }, + { + "start": 3925.52, + "end": 3926.34, + "probability": 0.9812 + }, + { + "start": 3926.5, + "end": 3930.56, + "probability": 0.9685 + }, + { + "start": 3931.02, + "end": 3931.62, + "probability": 0.7267 + }, + { + "start": 3931.84, + "end": 3932.72, + "probability": 0.7712 + }, + { + "start": 3932.84, + "end": 3934.0, + "probability": 0.8861 + }, + { + "start": 3934.44, + "end": 3935.1, + "probability": 0.9424 + }, + { + "start": 3935.74, + "end": 3939.35, + "probability": 0.9913 + }, + { + "start": 3939.6, + "end": 3944.1, + "probability": 0.996 + }, + { + "start": 3944.88, + "end": 3947.88, + "probability": 0.9975 + }, + { + "start": 3948.28, + "end": 3950.56, + "probability": 0.825 + }, + { + "start": 3951.14, + "end": 3952.12, + "probability": 0.6039 + }, + { + "start": 3952.54, + "end": 3955.79, + "probability": 0.8928 + }, + { + "start": 3955.98, + "end": 3958.66, + "probability": 0.9868 + }, + { + "start": 3958.94, + "end": 3959.46, + "probability": 0.6615 + }, + { + "start": 3960.02, + "end": 3960.68, + "probability": 0.8619 + }, + { + "start": 3960.88, + "end": 3961.58, + "probability": 0.513 + }, + { + "start": 3961.62, + "end": 3963.08, + "probability": 0.8476 + }, + { + "start": 3963.08, + "end": 3964.2, + "probability": 0.676 + }, + { + "start": 3964.26, + "end": 3964.96, + "probability": 0.7677 + }, + { + "start": 3965.02, + "end": 3967.36, + "probability": 0.9753 + }, + { + "start": 3967.42, + "end": 3967.94, + "probability": 0.6086 + }, + { + "start": 3968.22, + "end": 3969.48, + "probability": 0.9497 + }, + { + "start": 3969.6, + "end": 3970.84, + "probability": 0.5488 + }, + { + "start": 3971.06, + "end": 3972.61, + "probability": 0.1111 + }, + { + "start": 3976.78, + "end": 3979.86, + "probability": 0.9408 + }, + { + "start": 3980.04, + "end": 3984.36, + "probability": 0.9395 + }, + { + "start": 3984.52, + "end": 3987.6, + "probability": 0.8875 + }, + { + "start": 3988.9, + "end": 3989.6, + "probability": 0.7422 + }, + { + "start": 3989.72, + "end": 3990.48, + "probability": 0.8474 + }, + { + "start": 3990.86, + "end": 3992.1, + "probability": 0.9354 + }, + { + "start": 3992.26, + "end": 3992.76, + "probability": 0.4644 + }, + { + "start": 3994.02, + "end": 3997.76, + "probability": 0.8511 + }, + { + "start": 3998.7, + "end": 4002.3, + "probability": 0.9392 + }, + { + "start": 4002.48, + "end": 4002.48, + "probability": 0.5116 + }, + { + "start": 4003.56, + "end": 4006.36, + "probability": 0.8607 + }, + { + "start": 4006.48, + "end": 4007.68, + "probability": 0.9858 + }, + { + "start": 4008.58, + "end": 4010.22, + "probability": 0.8563 + }, + { + "start": 4010.26, + "end": 4011.0, + "probability": 0.887 + }, + { + "start": 4011.14, + "end": 4014.41, + "probability": 0.9901 + }, + { + "start": 4014.94, + "end": 4020.7, + "probability": 0.9633 + }, + { + "start": 4020.7, + "end": 4024.32, + "probability": 0.9973 + }, + { + "start": 4024.46, + "end": 4027.53, + "probability": 0.9981 + }, + { + "start": 4027.66, + "end": 4028.72, + "probability": 0.7755 + }, + { + "start": 4029.72, + "end": 4029.92, + "probability": 0.2551 + }, + { + "start": 4030.12, + "end": 4034.08, + "probability": 0.9847 + }, + { + "start": 4034.8, + "end": 4038.96, + "probability": 0.9966 + }, + { + "start": 4039.4, + "end": 4044.74, + "probability": 0.9856 + }, + { + "start": 4045.12, + "end": 4045.26, + "probability": 0.0356 + }, + { + "start": 4045.52, + "end": 4048.54, + "probability": 0.9928 + }, + { + "start": 4048.6, + "end": 4051.34, + "probability": 0.9571 + }, + { + "start": 4051.84, + "end": 4055.54, + "probability": 0.9705 + }, + { + "start": 4055.92, + "end": 4058.78, + "probability": 0.9943 + }, + { + "start": 4059.04, + "end": 4059.26, + "probability": 0.6017 + }, + { + "start": 4059.42, + "end": 4063.46, + "probability": 0.9934 + }, + { + "start": 4064.92, + "end": 4067.5, + "probability": 0.9539 + }, + { + "start": 4067.58, + "end": 4070.4, + "probability": 0.9933 + }, + { + "start": 4070.4, + "end": 4072.98, + "probability": 0.9932 + }, + { + "start": 4072.98, + "end": 4073.77, + "probability": 0.5732 + }, + { + "start": 4074.32, + "end": 4074.36, + "probability": 0.0001 + }, + { + "start": 4075.1, + "end": 4075.32, + "probability": 0.2385 + }, + { + "start": 4075.32, + "end": 4075.32, + "probability": 0.1604 + }, + { + "start": 4075.32, + "end": 4077.62, + "probability": 0.4781 + }, + { + "start": 4078.4, + "end": 4080.22, + "probability": 0.9019 + }, + { + "start": 4080.48, + "end": 4083.66, + "probability": 0.923 + }, + { + "start": 4083.86, + "end": 4087.5, + "probability": 0.8945 + }, + { + "start": 4088.28, + "end": 4091.24, + "probability": 0.9637 + }, + { + "start": 4092.96, + "end": 4092.96, + "probability": 0.2497 + }, + { + "start": 4092.96, + "end": 4096.96, + "probability": 0.6021 + }, + { + "start": 4096.98, + "end": 4097.76, + "probability": 0.6045 + }, + { + "start": 4097.9, + "end": 4099.88, + "probability": 0.0502 + }, + { + "start": 4102.06, + "end": 4102.16, + "probability": 0.1201 + }, + { + "start": 4102.52, + "end": 4103.04, + "probability": 0.2844 + }, + { + "start": 4103.14, + "end": 4103.64, + "probability": 0.1005 + }, + { + "start": 4103.64, + "end": 4105.35, + "probability": 0.2155 + }, + { + "start": 4106.24, + "end": 4106.8, + "probability": 0.5719 + }, + { + "start": 4106.94, + "end": 4108.33, + "probability": 0.5681 + }, + { + "start": 4108.44, + "end": 4109.94, + "probability": 0.194 + }, + { + "start": 4110.9, + "end": 4115.8, + "probability": 0.6418 + }, + { + "start": 4115.84, + "end": 4118.24, + "probability": 0.7677 + }, + { + "start": 4118.8, + "end": 4125.04, + "probability": 0.8754 + }, + { + "start": 4125.22, + "end": 4126.26, + "probability": 0.0581 + }, + { + "start": 4126.3, + "end": 4126.37, + "probability": 0.0362 + }, + { + "start": 4126.91, + "end": 4130.24, + "probability": 0.9985 + }, + { + "start": 4130.44, + "end": 4131.26, + "probability": 0.8787 + }, + { + "start": 4131.32, + "end": 4132.98, + "probability": 0.8832 + }, + { + "start": 4133.28, + "end": 4133.62, + "probability": 0.2906 + }, + { + "start": 4133.62, + "end": 4135.3, + "probability": 0.9255 + }, + { + "start": 4135.4, + "end": 4137.22, + "probability": 0.8263 + }, + { + "start": 4137.66, + "end": 4139.88, + "probability": 0.9937 + }, + { + "start": 4140.32, + "end": 4143.12, + "probability": 0.9973 + }, + { + "start": 4143.12, + "end": 4145.76, + "probability": 0.9978 + }, + { + "start": 4145.86, + "end": 4147.22, + "probability": 0.9412 + }, + { + "start": 4147.66, + "end": 4149.46, + "probability": 0.8654 + }, + { + "start": 4150.5, + "end": 4153.44, + "probability": 0.9321 + }, + { + "start": 4153.54, + "end": 4154.16, + "probability": 0.2389 + }, + { + "start": 4154.16, + "end": 4154.72, + "probability": 0.5611 + }, + { + "start": 4155.2, + "end": 4156.09, + "probability": 0.6521 + }, + { + "start": 4157.06, + "end": 4161.04, + "probability": 0.8882 + }, + { + "start": 4161.1, + "end": 4163.08, + "probability": 0.9899 + }, + { + "start": 4163.42, + "end": 4163.98, + "probability": 0.8961 + }, + { + "start": 4164.06, + "end": 4165.46, + "probability": 0.9705 + }, + { + "start": 4165.74, + "end": 4167.98, + "probability": 0.8973 + }, + { + "start": 4168.02, + "end": 4169.22, + "probability": 0.9602 + }, + { + "start": 4169.82, + "end": 4170.04, + "probability": 0.4114 + }, + { + "start": 4170.5, + "end": 4172.3, + "probability": 0.9333 + }, + { + "start": 4172.36, + "end": 4173.48, + "probability": 0.4139 + }, + { + "start": 4173.62, + "end": 4174.9, + "probability": 0.9839 + }, + { + "start": 4178.34, + "end": 4181.34, + "probability": 0.9823 + }, + { + "start": 4181.34, + "end": 4185.2, + "probability": 0.9026 + }, + { + "start": 4185.44, + "end": 4187.56, + "probability": 0.0428 + }, + { + "start": 4187.92, + "end": 4191.74, + "probability": 0.9686 + }, + { + "start": 4192.04, + "end": 4192.92, + "probability": 0.6185 + }, + { + "start": 4193.5, + "end": 4194.2, + "probability": 0.6372 + }, + { + "start": 4194.22, + "end": 4194.88, + "probability": 0.6996 + }, + { + "start": 4194.94, + "end": 4196.38, + "probability": 0.7653 + }, + { + "start": 4197.82, + "end": 4200.04, + "probability": 0.1701 + }, + { + "start": 4218.72, + "end": 4221.52, + "probability": 0.0412 + }, + { + "start": 4221.52, + "end": 4222.81, + "probability": 0.0838 + }, + { + "start": 4223.26, + "end": 4223.26, + "probability": 0.0301 + }, + { + "start": 4223.26, + "end": 4224.79, + "probability": 0.1283 + }, + { + "start": 4226.86, + "end": 4231.74, + "probability": 0.0593 + }, + { + "start": 4232.68, + "end": 4234.22, + "probability": 0.2676 + }, + { + "start": 4236.56, + "end": 4236.58, + "probability": 0.0011 + }, + { + "start": 4253.88, + "end": 4257.5, + "probability": 0.0225 + }, + { + "start": 4258.8, + "end": 4262.9, + "probability": 0.074 + }, + { + "start": 4262.9, + "end": 4263.12, + "probability": 0.0435 + }, + { + "start": 4263.88, + "end": 4264.48, + "probability": 0.0963 + }, + { + "start": 4264.92, + "end": 4267.32, + "probability": 0.063 + }, + { + "start": 4268.4, + "end": 4268.5, + "probability": 0.1428 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.0, + "end": 4278.0, + "probability": 0.0 + }, + { + "start": 4278.16, + "end": 4278.28, + "probability": 0.0186 + }, + { + "start": 4278.28, + "end": 4278.28, + "probability": 0.116 + }, + { + "start": 4278.28, + "end": 4281.5, + "probability": 0.597 + }, + { + "start": 4282.88, + "end": 4286.3, + "probability": 0.8511 + }, + { + "start": 4286.76, + "end": 4286.78, + "probability": 0.1863 + }, + { + "start": 4286.78, + "end": 4287.34, + "probability": 0.2324 + }, + { + "start": 4289.5, + "end": 4291.36, + "probability": 0.8941 + }, + { + "start": 4291.46, + "end": 4292.11, + "probability": 0.9293 + }, + { + "start": 4292.58, + "end": 4295.42, + "probability": 0.9569 + }, + { + "start": 4296.04, + "end": 4299.68, + "probability": 0.9694 + }, + { + "start": 4300.76, + "end": 4301.76, + "probability": 0.9352 + }, + { + "start": 4302.34, + "end": 4304.46, + "probability": 0.9022 + }, + { + "start": 4305.28, + "end": 4310.7, + "probability": 0.988 + }, + { + "start": 4311.56, + "end": 4315.02, + "probability": 0.999 + }, + { + "start": 4315.02, + "end": 4319.74, + "probability": 0.986 + }, + { + "start": 4320.66, + "end": 4322.14, + "probability": 0.8535 + }, + { + "start": 4322.34, + "end": 4322.34, + "probability": 0.0993 + }, + { + "start": 4322.52, + "end": 4322.78, + "probability": 0.5233 + }, + { + "start": 4323.08, + "end": 4324.64, + "probability": 0.8953 + }, + { + "start": 4325.76, + "end": 4331.64, + "probability": 0.7593 + }, + { + "start": 4332.6, + "end": 4336.04, + "probability": 0.9951 + }, + { + "start": 4337.24, + "end": 4342.14, + "probability": 0.9979 + }, + { + "start": 4342.24, + "end": 4345.0, + "probability": 0.9991 + }, + { + "start": 4346.06, + "end": 4349.14, + "probability": 0.976 + }, + { + "start": 4349.28, + "end": 4350.9, + "probability": 0.9791 + }, + { + "start": 4351.94, + "end": 4358.1, + "probability": 0.9984 + }, + { + "start": 4358.78, + "end": 4360.62, + "probability": 0.9946 + }, + { + "start": 4362.13, + "end": 4366.04, + "probability": 0.9854 + }, + { + "start": 4366.2, + "end": 4368.92, + "probability": 0.9952 + }, + { + "start": 4369.94, + "end": 4372.5, + "probability": 0.9414 + }, + { + "start": 4372.62, + "end": 4374.2, + "probability": 0.6625 + }, + { + "start": 4374.72, + "end": 4376.84, + "probability": 0.9963 + }, + { + "start": 4376.84, + "end": 4380.62, + "probability": 0.9995 + }, + { + "start": 4381.18, + "end": 4385.26, + "probability": 0.9951 + }, + { + "start": 4385.52, + "end": 4388.38, + "probability": 0.9941 + }, + { + "start": 4388.94, + "end": 4391.66, + "probability": 0.9982 + }, + { + "start": 4392.62, + "end": 4399.46, + "probability": 0.9834 + }, + { + "start": 4400.68, + "end": 4402.15, + "probability": 0.9703 + }, + { + "start": 4402.96, + "end": 4404.3, + "probability": 0.9939 + }, + { + "start": 4405.24, + "end": 4409.96, + "probability": 0.9976 + }, + { + "start": 4410.18, + "end": 4412.52, + "probability": 0.9414 + }, + { + "start": 4413.34, + "end": 4416.86, + "probability": 0.9073 + }, + { + "start": 4417.84, + "end": 4419.1, + "probability": 0.9786 + }, + { + "start": 4419.2, + "end": 4420.04, + "probability": 0.9227 + }, + { + "start": 4420.06, + "end": 4422.26, + "probability": 0.9948 + }, + { + "start": 4422.64, + "end": 4425.12, + "probability": 0.9891 + }, + { + "start": 4426.54, + "end": 4429.44, + "probability": 0.9782 + }, + { + "start": 4430.18, + "end": 4435.38, + "probability": 0.9899 + }, + { + "start": 4435.46, + "end": 4436.88, + "probability": 0.9839 + }, + { + "start": 4437.28, + "end": 4440.64, + "probability": 0.9958 + }, + { + "start": 4440.94, + "end": 4443.5, + "probability": 0.9951 + }, + { + "start": 4444.28, + "end": 4447.48, + "probability": 0.9976 + }, + { + "start": 4447.48, + "end": 4451.12, + "probability": 0.9997 + }, + { + "start": 4451.22, + "end": 4453.72, + "probability": 0.9939 + }, + { + "start": 4455.06, + "end": 4455.64, + "probability": 0.829 + }, + { + "start": 4455.78, + "end": 4457.42, + "probability": 0.8557 + }, + { + "start": 4457.88, + "end": 4458.76, + "probability": 0.8037 + }, + { + "start": 4458.86, + "end": 4459.92, + "probability": 0.5543 + }, + { + "start": 4460.08, + "end": 4464.84, + "probability": 0.9805 + }, + { + "start": 4464.9, + "end": 4465.53, + "probability": 0.9233 + }, + { + "start": 4465.74, + "end": 4467.86, + "probability": 0.9951 + }, + { + "start": 4468.72, + "end": 4470.62, + "probability": 0.978 + }, + { + "start": 4470.72, + "end": 4476.54, + "probability": 0.9886 + }, + { + "start": 4476.54, + "end": 4482.56, + "probability": 0.9988 + }, + { + "start": 4483.02, + "end": 4485.1, + "probability": 0.9751 + }, + { + "start": 4485.14, + "end": 4485.74, + "probability": 0.642 + }, + { + "start": 4485.82, + "end": 4487.96, + "probability": 0.0245 + }, + { + "start": 4488.16, + "end": 4491.22, + "probability": 0.5857 + }, + { + "start": 4494.78, + "end": 4496.08, + "probability": 0.8358 + }, + { + "start": 4496.24, + "end": 4497.3, + "probability": 0.8317 + }, + { + "start": 4497.4, + "end": 4497.62, + "probability": 0.2201 + }, + { + "start": 4497.62, + "end": 4497.62, + "probability": 0.5469 + }, + { + "start": 4497.74, + "end": 4497.94, + "probability": 0.3668 + }, + { + "start": 4498.06, + "end": 4499.74, + "probability": 0.9937 + }, + { + "start": 4499.86, + "end": 4500.38, + "probability": 0.6825 + }, + { + "start": 4500.58, + "end": 4503.04, + "probability": 0.6263 + }, + { + "start": 4503.16, + "end": 4504.86, + "probability": 0.7995 + }, + { + "start": 4504.86, + "end": 4504.86, + "probability": 0.5006 + }, + { + "start": 4504.86, + "end": 4505.08, + "probability": 0.98 + }, + { + "start": 4505.92, + "end": 4506.06, + "probability": 0.1686 + }, + { + "start": 4506.06, + "end": 4506.81, + "probability": 0.3772 + }, + { + "start": 4507.2, + "end": 4507.84, + "probability": 0.825 + }, + { + "start": 4508.06, + "end": 4508.64, + "probability": 0.913 + }, + { + "start": 4508.68, + "end": 4511.72, + "probability": 0.9912 + }, + { + "start": 4511.72, + "end": 4514.92, + "probability": 0.9609 + }, + { + "start": 4515.04, + "end": 4516.04, + "probability": 0.7314 + }, + { + "start": 4516.18, + "end": 4519.08, + "probability": 0.9688 + }, + { + "start": 4519.62, + "end": 4522.32, + "probability": 0.8247 + }, + { + "start": 4522.84, + "end": 4524.36, + "probability": 0.9301 + }, + { + "start": 4524.48, + "end": 4526.86, + "probability": 0.8015 + }, + { + "start": 4526.86, + "end": 4526.86, + "probability": 0.4293 + }, + { + "start": 4526.86, + "end": 4528.38, + "probability": 0.7695 + }, + { + "start": 4528.46, + "end": 4528.82, + "probability": 0.4149 + }, + { + "start": 4528.88, + "end": 4531.6, + "probability": 0.9922 + }, + { + "start": 4531.8, + "end": 4532.62, + "probability": 0.5958 + }, + { + "start": 4532.62, + "end": 4532.62, + "probability": 0.6395 + }, + { + "start": 4532.64, + "end": 4534.24, + "probability": 0.8758 + }, + { + "start": 4534.24, + "end": 4535.86, + "probability": 0.8284 + }, + { + "start": 4535.92, + "end": 4536.66, + "probability": 0.6823 + }, + { + "start": 4539.7, + "end": 4540.24, + "probability": 0.0855 + }, + { + "start": 4540.24, + "end": 4542.52, + "probability": 0.5073 + }, + { + "start": 4543.02, + "end": 4545.18, + "probability": 0.9868 + }, + { + "start": 4545.34, + "end": 4546.74, + "probability": 0.843 + }, + { + "start": 4546.76, + "end": 4548.22, + "probability": 0.814 + }, + { + "start": 4548.24, + "end": 4550.28, + "probability": 0.9549 + }, + { + "start": 4550.74, + "end": 4552.8, + "probability": 0.7337 + }, + { + "start": 4553.48, + "end": 4554.84, + "probability": 0.7285 + }, + { + "start": 4554.88, + "end": 4558.34, + "probability": 0.8487 + }, + { + "start": 4558.54, + "end": 4558.54, + "probability": 0.1126 + }, + { + "start": 4558.54, + "end": 4560.14, + "probability": 0.4417 + }, + { + "start": 4561.04, + "end": 4563.72, + "probability": 0.1168 + }, + { + "start": 4563.72, + "end": 4563.72, + "probability": 0.2397 + }, + { + "start": 4563.8, + "end": 4563.8, + "probability": 0.2768 + }, + { + "start": 4564.02, + "end": 4567.28, + "probability": 0.2514 + }, + { + "start": 4569.82, + "end": 4570.89, + "probability": 0.0998 + }, + { + "start": 4573.2, + "end": 4576.64, + "probability": 0.0753 + }, + { + "start": 4577.2, + "end": 4577.2, + "probability": 0.0491 + }, + { + "start": 4579.26, + "end": 4580.54, + "probability": 0.0059 + }, + { + "start": 4584.08, + "end": 4588.38, + "probability": 0.0296 + }, + { + "start": 4588.56, + "end": 4590.42, + "probability": 0.0534 + }, + { + "start": 4590.42, + "end": 4593.61, + "probability": 0.0799 + }, + { + "start": 4593.66, + "end": 4597.4, + "probability": 0.1167 + }, + { + "start": 4597.52, + "end": 4597.94, + "probability": 0.0351 + }, + { + "start": 4598.04, + "end": 4600.64, + "probability": 0.1328 + }, + { + "start": 4602.34, + "end": 4604.06, + "probability": 0.4113 + }, + { + "start": 4604.06, + "end": 4606.3, + "probability": 0.0867 + }, + { + "start": 4606.3, + "end": 4606.3, + "probability": 0.0096 + }, + { + "start": 4606.3, + "end": 4606.8, + "probability": 0.0427 + }, + { + "start": 4608.16, + "end": 4612.4, + "probability": 0.0303 + }, + { + "start": 4613.22, + "end": 4614.44, + "probability": 0.2951 + }, + { + "start": 4614.62, + "end": 4615.76, + "probability": 0.335 + }, + { + "start": 4615.86, + "end": 4617.3, + "probability": 0.3149 + }, + { + "start": 4617.4, + "end": 4620.97, + "probability": 0.0434 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.0, + "end": 4626.0, + "probability": 0.0 + }, + { + "start": 4626.2, + "end": 4626.58, + "probability": 0.0396 + }, + { + "start": 4626.58, + "end": 4626.58, + "probability": 0.0678 + }, + { + "start": 4626.58, + "end": 4627.7, + "probability": 0.2948 + }, + { + "start": 4627.84, + "end": 4628.66, + "probability": 0.4808 + }, + { + "start": 4628.86, + "end": 4631.7, + "probability": 0.8301 + }, + { + "start": 4633.43, + "end": 4635.72, + "probability": 0.9993 + }, + { + "start": 4635.72, + "end": 4639.58, + "probability": 0.998 + }, + { + "start": 4640.22, + "end": 4641.24, + "probability": 0.9937 + }, + { + "start": 4642.66, + "end": 4648.98, + "probability": 0.967 + }, + { + "start": 4649.4, + "end": 4650.38, + "probability": 0.8746 + }, + { + "start": 4650.76, + "end": 4652.64, + "probability": 0.9985 + }, + { + "start": 4652.86, + "end": 4653.65, + "probability": 0.614 + }, + { + "start": 4654.2, + "end": 4660.42, + "probability": 0.9323 + }, + { + "start": 4661.28, + "end": 4664.48, + "probability": 0.9509 + }, + { + "start": 4664.74, + "end": 4667.66, + "probability": 0.996 + }, + { + "start": 4667.84, + "end": 4670.7, + "probability": 0.9921 + }, + { + "start": 4671.2, + "end": 4677.48, + "probability": 0.9797 + }, + { + "start": 4679.06, + "end": 4680.36, + "probability": 0.1242 + }, + { + "start": 4681.22, + "end": 4682.6, + "probability": 0.1859 + }, + { + "start": 4682.6, + "end": 4683.78, + "probability": 0.0354 + }, + { + "start": 4684.95, + "end": 4685.36, + "probability": 0.0551 + }, + { + "start": 4685.36, + "end": 4685.36, + "probability": 0.178 + }, + { + "start": 4685.66, + "end": 4686.4, + "probability": 0.4634 + }, + { + "start": 4686.94, + "end": 4688.0, + "probability": 0.0144 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.044 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.1089 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.071 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.3649 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.266 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.4174 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.2621 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.4661 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.5204 + }, + { + "start": 4692.02, + "end": 4692.02, + "probability": 0.5786 + }, + { + "start": 4692.02, + "end": 4693.98, + "probability": 0.4031 + }, + { + "start": 4694.0, + "end": 4695.26, + "probability": 0.5696 + }, + { + "start": 4695.42, + "end": 4696.42, + "probability": 0.5899 + }, + { + "start": 4697.66, + "end": 4698.8, + "probability": 0.1337 + }, + { + "start": 4699.34, + "end": 4701.62, + "probability": 0.2531 + }, + { + "start": 4702.88, + "end": 4704.7, + "probability": 0.1818 + }, + { + "start": 4704.74, + "end": 4705.5, + "probability": 0.231 + }, + { + "start": 4705.5, + "end": 4706.28, + "probability": 0.0501 + }, + { + "start": 4706.64, + "end": 4711.5, + "probability": 0.0575 + }, + { + "start": 4714.9, + "end": 4717.98, + "probability": 0.0276 + }, + { + "start": 4718.22, + "end": 4719.02, + "probability": 0.1289 + }, + { + "start": 4720.42, + "end": 4721.6, + "probability": 0.0902 + }, + { + "start": 4722.44, + "end": 4725.6, + "probability": 0.2168 + }, + { + "start": 4725.62, + "end": 4729.28, + "probability": 0.0327 + }, + { + "start": 4729.94, + "end": 4730.38, + "probability": 0.0235 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.0, + "end": 4749.0, + "probability": 0.0 + }, + { + "start": 4749.36, + "end": 4749.36, + "probability": 0.0002 + }, + { + "start": 4749.74, + "end": 4751.48, + "probability": 0.9346 + }, + { + "start": 4751.72, + "end": 4752.58, + "probability": 0.8338 + }, + { + "start": 4752.7, + "end": 4756.48, + "probability": 0.8625 + }, + { + "start": 4756.48, + "end": 4757.74, + "probability": 0.8807 + }, + { + "start": 4758.0, + "end": 4758.9, + "probability": 0.8419 + }, + { + "start": 4759.3, + "end": 4760.66, + "probability": 0.9683 + }, + { + "start": 4760.82, + "end": 4763.36, + "probability": 0.9438 + }, + { + "start": 4763.6, + "end": 4763.6, + "probability": 0.2951 + }, + { + "start": 4763.6, + "end": 4763.96, + "probability": 0.8485 + }, + { + "start": 4764.06, + "end": 4765.72, + "probability": 0.8152 + }, + { + "start": 4765.96, + "end": 4767.32, + "probability": 0.5029 + }, + { + "start": 4767.44, + "end": 4769.52, + "probability": 0.9019 + }, + { + "start": 4769.74, + "end": 4771.67, + "probability": 0.7717 + }, + { + "start": 4773.3, + "end": 4778.62, + "probability": 0.9836 + }, + { + "start": 4779.2, + "end": 4781.01, + "probability": 0.9958 + }, + { + "start": 4781.82, + "end": 4784.58, + "probability": 0.9976 + }, + { + "start": 4785.26, + "end": 4785.7, + "probability": 0.5414 + }, + { + "start": 4785.74, + "end": 4786.72, + "probability": 0.7601 + }, + { + "start": 4786.86, + "end": 4790.86, + "probability": 0.8426 + }, + { + "start": 4790.86, + "end": 4794.86, + "probability": 0.8759 + }, + { + "start": 4795.16, + "end": 4796.02, + "probability": 0.8739 + }, + { + "start": 4796.04, + "end": 4798.36, + "probability": 0.9345 + }, + { + "start": 4798.58, + "end": 4799.82, + "probability": 0.619 + }, + { + "start": 4800.1, + "end": 4803.04, + "probability": 0.8922 + }, + { + "start": 4803.3, + "end": 4805.82, + "probability": 0.9939 + }, + { + "start": 4805.94, + "end": 4808.44, + "probability": 0.93 + }, + { + "start": 4809.14, + "end": 4813.24, + "probability": 0.9855 + }, + { + "start": 4813.46, + "end": 4814.18, + "probability": 0.3847 + }, + { + "start": 4814.66, + "end": 4816.54, + "probability": 0.9697 + }, + { + "start": 4816.8, + "end": 4820.66, + "probability": 0.7192 + }, + { + "start": 4820.66, + "end": 4821.28, + "probability": 0.8008 + }, + { + "start": 4821.46, + "end": 4821.9, + "probability": 0.7347 + }, + { + "start": 4822.08, + "end": 4825.36, + "probability": 0.9841 + }, + { + "start": 4829.98, + "end": 4830.12, + "probability": 0.2821 + }, + { + "start": 4831.89, + "end": 4838.46, + "probability": 0.6685 + }, + { + "start": 4838.6, + "end": 4841.14, + "probability": 0.9807 + }, + { + "start": 4841.64, + "end": 4843.46, + "probability": 0.6626 + }, + { + "start": 4845.06, + "end": 4846.9, + "probability": 0.924 + }, + { + "start": 4846.96, + "end": 4848.6, + "probability": 0.984 + }, + { + "start": 4855.4, + "end": 4857.3, + "probability": 0.0037 + }, + { + "start": 4857.64, + "end": 4859.14, + "probability": 0.8638 + }, + { + "start": 4859.18, + "end": 4860.86, + "probability": 0.6312 + }, + { + "start": 4860.98, + "end": 4864.92, + "probability": 0.9728 + }, + { + "start": 4865.18, + "end": 4866.06, + "probability": 0.6254 + }, + { + "start": 4866.14, + "end": 4868.16, + "probability": 0.6574 + }, + { + "start": 4868.98, + "end": 4873.42, + "probability": 0.9749 + }, + { + "start": 4873.58, + "end": 4874.44, + "probability": 0.6312 + }, + { + "start": 4874.67, + "end": 4878.45, + "probability": 0.883 + }, + { + "start": 4878.72, + "end": 4881.34, + "probability": 0.9986 + }, + { + "start": 4881.48, + "end": 4882.68, + "probability": 0.8086 + }, + { + "start": 4883.08, + "end": 4885.64, + "probability": 0.8418 + }, + { + "start": 4886.1, + "end": 4887.06, + "probability": 0.9832 + }, + { + "start": 4887.26, + "end": 4887.26, + "probability": 0.0032 + }, + { + "start": 4887.28, + "end": 4891.64, + "probability": 0.755 + }, + { + "start": 4891.76, + "end": 4895.44, + "probability": 0.808 + }, + { + "start": 4895.45, + "end": 4899.52, + "probability": 0.7835 + }, + { + "start": 4900.48, + "end": 4900.86, + "probability": 0.1005 + }, + { + "start": 4900.86, + "end": 4900.86, + "probability": 0.0583 + }, + { + "start": 4900.86, + "end": 4906.66, + "probability": 0.2929 + }, + { + "start": 4908.33, + "end": 4913.94, + "probability": 0.1577 + }, + { + "start": 4914.22, + "end": 4916.32, + "probability": 0.9536 + }, + { + "start": 4916.78, + "end": 4919.36, + "probability": 0.0691 + }, + { + "start": 4919.52, + "end": 4920.9, + "probability": 0.1563 + }, + { + "start": 4921.14, + "end": 4922.88, + "probability": 0.0899 + }, + { + "start": 4922.9, + "end": 4923.52, + "probability": 0.011 + }, + { + "start": 4924.28, + "end": 4924.54, + "probability": 0.0046 + }, + { + "start": 4924.54, + "end": 4924.96, + "probability": 0.0739 + }, + { + "start": 4924.96, + "end": 4924.96, + "probability": 0.1046 + }, + { + "start": 4924.96, + "end": 4924.96, + "probability": 0.1587 + }, + { + "start": 4924.96, + "end": 4925.7, + "probability": 0.0554 + }, + { + "start": 4926.08, + "end": 4927.02, + "probability": 0.1088 + }, + { + "start": 4928.0, + "end": 4929.96, + "probability": 0.0677 + }, + { + "start": 4930.64, + "end": 4933.04, + "probability": 0.287 + }, + { + "start": 4933.48, + "end": 4938.32, + "probability": 0.6303 + }, + { + "start": 4938.4, + "end": 4938.78, + "probability": 0.6032 + }, + { + "start": 4938.82, + "end": 4939.82, + "probability": 0.9837 + }, + { + "start": 4940.04, + "end": 4942.8, + "probability": 0.8859 + }, + { + "start": 4942.88, + "end": 4946.5, + "probability": 0.7635 + }, + { + "start": 4946.64, + "end": 4947.66, + "probability": 0.7892 + }, + { + "start": 4947.92, + "end": 4949.2, + "probability": 0.7576 + }, + { + "start": 4949.2, + "end": 4949.74, + "probability": 0.8482 + }, + { + "start": 4950.06, + "end": 4951.36, + "probability": 0.9427 + }, + { + "start": 4951.74, + "end": 4952.78, + "probability": 0.9366 + }, + { + "start": 4953.28, + "end": 4954.4, + "probability": 0.8956 + }, + { + "start": 4954.52, + "end": 4958.42, + "probability": 0.8224 + }, + { + "start": 4958.86, + "end": 4961.54, + "probability": 0.9883 + }, + { + "start": 4962.2, + "end": 4964.72, + "probability": 0.8189 + }, + { + "start": 4964.94, + "end": 4967.92, + "probability": 0.6423 + }, + { + "start": 4968.26, + "end": 4969.42, + "probability": 0.2403 + }, + { + "start": 4969.88, + "end": 4977.0, + "probability": 0.9251 + }, + { + "start": 4977.18, + "end": 4978.1, + "probability": 0.8813 + }, + { + "start": 4978.12, + "end": 4981.36, + "probability": 0.6911 + }, + { + "start": 4981.84, + "end": 4982.26, + "probability": 0.6102 + }, + { + "start": 4982.36, + "end": 4983.04, + "probability": 0.6885 + }, + { + "start": 4983.16, + "end": 4983.7, + "probability": 0.9664 + }, + { + "start": 4984.62, + "end": 4986.38, + "probability": 0.7317 + }, + { + "start": 4986.4, + "end": 4988.84, + "probability": 0.9897 + }, + { + "start": 4989.38, + "end": 4990.28, + "probability": 0.7906 + }, + { + "start": 4990.54, + "end": 4994.54, + "probability": 0.9984 + }, + { + "start": 4994.54, + "end": 4997.82, + "probability": 0.9448 + }, + { + "start": 4998.4, + "end": 5001.28, + "probability": 0.9685 + }, + { + "start": 5001.72, + "end": 5005.12, + "probability": 0.8171 + }, + { + "start": 5005.17, + "end": 5008.46, + "probability": 0.9851 + }, + { + "start": 5009.36, + "end": 5011.88, + "probability": 0.9748 + }, + { + "start": 5012.14, + "end": 5013.42, + "probability": 0.9241 + }, + { + "start": 5013.64, + "end": 5014.86, + "probability": 0.9706 + }, + { + "start": 5015.22, + "end": 5017.6, + "probability": 0.983 + }, + { + "start": 5017.84, + "end": 5020.02, + "probability": 0.995 + }, + { + "start": 5020.18, + "end": 5022.74, + "probability": 0.6679 + }, + { + "start": 5022.9, + "end": 5025.98, + "probability": 0.9652 + }, + { + "start": 5026.78, + "end": 5028.4, + "probability": 0.3377 + }, + { + "start": 5028.74, + "end": 5034.56, + "probability": 0.7087 + }, + { + "start": 5034.68, + "end": 5036.82, + "probability": 0.9898 + }, + { + "start": 5036.86, + "end": 5038.34, + "probability": 0.7174 + }, + { + "start": 5039.58, + "end": 5045.36, + "probability": 0.3016 + }, + { + "start": 5045.36, + "end": 5048.5, + "probability": 0.5747 + }, + { + "start": 5048.66, + "end": 5049.9, + "probability": 0.9917 + }, + { + "start": 5050.5, + "end": 5052.14, + "probability": 0.8759 + }, + { + "start": 5052.88, + "end": 5053.26, + "probability": 0.952 + }, + { + "start": 5053.32, + "end": 5057.56, + "probability": 0.9773 + }, + { + "start": 5057.58, + "end": 5058.74, + "probability": 0.7881 + }, + { + "start": 5059.72, + "end": 5063.42, + "probability": 0.9252 + }, + { + "start": 5063.66, + "end": 5064.94, + "probability": 0.772 + }, + { + "start": 5065.36, + "end": 5068.04, + "probability": 0.9401 + }, + { + "start": 5068.54, + "end": 5069.42, + "probability": 0.9541 + }, + { + "start": 5069.62, + "end": 5073.1, + "probability": 0.9746 + }, + { + "start": 5073.99, + "end": 5077.56, + "probability": 0.9564 + }, + { + "start": 5077.68, + "end": 5080.64, + "probability": 0.7461 + }, + { + "start": 5080.82, + "end": 5082.0, + "probability": 0.8631 + }, + { + "start": 5082.4, + "end": 5089.3, + "probability": 0.9871 + }, + { + "start": 5089.36, + "end": 5090.22, + "probability": 0.9601 + }, + { + "start": 5090.34, + "end": 5092.5, + "probability": 0.981 + }, + { + "start": 5092.66, + "end": 5093.94, + "probability": 0.8741 + }, + { + "start": 5094.02, + "end": 5097.62, + "probability": 0.7646 + }, + { + "start": 5097.62, + "end": 5102.06, + "probability": 0.9873 + }, + { + "start": 5103.72, + "end": 5105.58, + "probability": 0.8758 + }, + { + "start": 5105.64, + "end": 5106.6, + "probability": 0.7455 + }, + { + "start": 5106.82, + "end": 5111.56, + "probability": 0.9937 + }, + { + "start": 5112.16, + "end": 5113.8, + "probability": 0.9555 + }, + { + "start": 5114.24, + "end": 5117.28, + "probability": 0.8684 + }, + { + "start": 5119.24, + "end": 5121.2, + "probability": 0.0069 + }, + { + "start": 5127.07, + "end": 5128.45, + "probability": 0.0828 + }, + { + "start": 5129.17, + "end": 5132.89, + "probability": 0.9985 + }, + { + "start": 5133.11, + "end": 5133.95, + "probability": 0.6357 + }, + { + "start": 5134.01, + "end": 5136.88, + "probability": 0.7834 + }, + { + "start": 5137.24, + "end": 5138.05, + "probability": 0.7602 + }, + { + "start": 5138.09, + "end": 5141.87, + "probability": 0.9863 + }, + { + "start": 5142.81, + "end": 5144.51, + "probability": 0.9631 + }, + { + "start": 5145.23, + "end": 5146.28, + "probability": 0.98 + }, + { + "start": 5147.15, + "end": 5149.11, + "probability": 0.8892 + }, + { + "start": 5149.95, + "end": 5153.84, + "probability": 0.95 + }, + { + "start": 5154.79, + "end": 5158.67, + "probability": 0.9182 + }, + { + "start": 5159.55, + "end": 5163.73, + "probability": 0.9201 + }, + { + "start": 5163.89, + "end": 5165.21, + "probability": 0.0458 + }, + { + "start": 5165.53, + "end": 5172.07, + "probability": 0.9597 + }, + { + "start": 5172.07, + "end": 5175.93, + "probability": 0.9937 + }, + { + "start": 5176.07, + "end": 5178.67, + "probability": 0.9182 + }, + { + "start": 5178.71, + "end": 5180.81, + "probability": 0.8339 + }, + { + "start": 5181.61, + "end": 5184.51, + "probability": 0.8916 + }, + { + "start": 5184.63, + "end": 5186.71, + "probability": 0.5475 + }, + { + "start": 5186.85, + "end": 5188.53, + "probability": 0.8455 + }, + { + "start": 5188.59, + "end": 5189.95, + "probability": 0.9491 + }, + { + "start": 5190.92, + "end": 5196.07, + "probability": 0.9932 + }, + { + "start": 5196.07, + "end": 5196.77, + "probability": 0.9686 + }, + { + "start": 5196.85, + "end": 5198.25, + "probability": 0.5246 + }, + { + "start": 5199.03, + "end": 5199.03, + "probability": 0.1074 + }, + { + "start": 5199.03, + "end": 5200.33, + "probability": 0.6554 + }, + { + "start": 5201.01, + "end": 5206.85, + "probability": 0.3739 + }, + { + "start": 5207.21, + "end": 5207.81, + "probability": 0.28 + }, + { + "start": 5208.01, + "end": 5209.71, + "probability": 0.5427 + }, + { + "start": 5210.35, + "end": 5219.73, + "probability": 0.895 + }, + { + "start": 5219.81, + "end": 5220.65, + "probability": 0.7922 + }, + { + "start": 5220.71, + "end": 5221.11, + "probability": 0.7288 + }, + { + "start": 5221.17, + "end": 5222.39, + "probability": 0.8825 + }, + { + "start": 5222.41, + "end": 5226.79, + "probability": 0.9573 + }, + { + "start": 5226.93, + "end": 5229.49, + "probability": 0.4488 + }, + { + "start": 5229.55, + "end": 5231.13, + "probability": 0.7954 + }, + { + "start": 5231.73, + "end": 5233.95, + "probability": 0.1009 + }, + { + "start": 5234.35, + "end": 5240.91, + "probability": 0.5112 + }, + { + "start": 5241.07, + "end": 5243.95, + "probability": 0.7455 + }, + { + "start": 5244.13, + "end": 5246.07, + "probability": 0.2632 + }, + { + "start": 5246.07, + "end": 5247.85, + "probability": 0.3355 + }, + { + "start": 5249.41, + "end": 5250.31, + "probability": 0.1578 + }, + { + "start": 5250.31, + "end": 5254.53, + "probability": 0.6094 + }, + { + "start": 5254.53, + "end": 5258.93, + "probability": 0.9938 + }, + { + "start": 5259.13, + "end": 5260.16, + "probability": 0.6299 + }, + { + "start": 5260.79, + "end": 5263.47, + "probability": 0.9767 + }, + { + "start": 5263.77, + "end": 5266.47, + "probability": 0.8414 + }, + { + "start": 5266.53, + "end": 5266.57, + "probability": 0.0479 + }, + { + "start": 5266.57, + "end": 5271.71, + "probability": 0.6719 + }, + { + "start": 5271.73, + "end": 5275.63, + "probability": 0.5622 + }, + { + "start": 5275.91, + "end": 5279.82, + "probability": 0.6746 + }, + { + "start": 5280.05, + "end": 5281.47, + "probability": 0.2706 + }, + { + "start": 5282.21, + "end": 5284.71, + "probability": 0.3118 + }, + { + "start": 5285.0, + "end": 5286.51, + "probability": 0.9517 + }, + { + "start": 5286.67, + "end": 5288.45, + "probability": 0.8415 + }, + { + "start": 5288.55, + "end": 5290.47, + "probability": 0.8939 + }, + { + "start": 5290.49, + "end": 5293.81, + "probability": 0.9928 + }, + { + "start": 5294.69, + "end": 5296.05, + "probability": 0.263 + }, + { + "start": 5297.46, + "end": 5300.07, + "probability": 0.6356 + }, + { + "start": 5301.47, + "end": 5301.57, + "probability": 0.0318 + }, + { + "start": 5303.95, + "end": 5306.13, + "probability": 0.5613 + }, + { + "start": 5306.73, + "end": 5313.99, + "probability": 0.9001 + }, + { + "start": 5314.23, + "end": 5314.47, + "probability": 0.8528 + }, + { + "start": 5314.59, + "end": 5315.89, + "probability": 0.9823 + }, + { + "start": 5316.03, + "end": 5316.85, + "probability": 0.9742 + }, + { + "start": 5317.07, + "end": 5318.41, + "probability": 0.9927 + }, + { + "start": 5318.47, + "end": 5319.97, + "probability": 0.9347 + }, + { + "start": 5320.35, + "end": 5324.71, + "probability": 0.9805 + }, + { + "start": 5324.77, + "end": 5330.57, + "probability": 0.9883 + }, + { + "start": 5330.69, + "end": 5332.85, + "probability": 0.9871 + }, + { + "start": 5333.13, + "end": 5335.29, + "probability": 0.9764 + }, + { + "start": 5335.61, + "end": 5338.51, + "probability": 0.9366 + }, + { + "start": 5339.29, + "end": 5339.29, + "probability": 0.253 + }, + { + "start": 5339.31, + "end": 5340.09, + "probability": 0.1732 + }, + { + "start": 5340.09, + "end": 5341.21, + "probability": 0.4955 + }, + { + "start": 5341.55, + "end": 5343.75, + "probability": 0.7303 + }, + { + "start": 5344.81, + "end": 5347.13, + "probability": 0.9474 + }, + { + "start": 5347.49, + "end": 5348.17, + "probability": 0.8578 + }, + { + "start": 5348.47, + "end": 5351.79, + "probability": 0.8699 + }, + { + "start": 5352.19, + "end": 5354.07, + "probability": 0.9267 + }, + { + "start": 5354.63, + "end": 5356.13, + "probability": 0.6738 + }, + { + "start": 5356.57, + "end": 5358.15, + "probability": 0.9174 + }, + { + "start": 5358.61, + "end": 5362.17, + "probability": 0.9043 + }, + { + "start": 5362.27, + "end": 5364.59, + "probability": 0.9474 + }, + { + "start": 5364.67, + "end": 5366.35, + "probability": 0.6763 + }, + { + "start": 5366.55, + "end": 5367.41, + "probability": 0.3816 + }, + { + "start": 5367.41, + "end": 5368.29, + "probability": 0.6873 + }, + { + "start": 5368.37, + "end": 5370.21, + "probability": 0.9562 + }, + { + "start": 5370.65, + "end": 5374.07, + "probability": 0.9884 + }, + { + "start": 5374.07, + "end": 5378.01, + "probability": 0.8772 + }, + { + "start": 5378.01, + "end": 5381.45, + "probability": 0.9958 + }, + { + "start": 5382.2, + "end": 5385.67, + "probability": 0.6805 + }, + { + "start": 5386.21, + "end": 5389.17, + "probability": 0.9863 + }, + { + "start": 5389.21, + "end": 5391.11, + "probability": 0.6895 + }, + { + "start": 5391.59, + "end": 5393.15, + "probability": 0.8979 + }, + { + "start": 5393.73, + "end": 5393.97, + "probability": 0.035 + }, + { + "start": 5393.97, + "end": 5395.85, + "probability": 0.829 + }, + { + "start": 5396.23, + "end": 5398.95, + "probability": 0.5789 + }, + { + "start": 5399.27, + "end": 5401.55, + "probability": 0.8566 + }, + { + "start": 5401.69, + "end": 5402.25, + "probability": 0.5321 + }, + { + "start": 5402.29, + "end": 5403.58, + "probability": 0.9873 + }, + { + "start": 5403.71, + "end": 5406.58, + "probability": 0.9933 + }, + { + "start": 5406.99, + "end": 5411.85, + "probability": 0.9647 + }, + { + "start": 5412.01, + "end": 5413.05, + "probability": 0.856 + }, + { + "start": 5413.37, + "end": 5413.59, + "probability": 0.0435 + }, + { + "start": 5413.59, + "end": 5414.91, + "probability": 0.6797 + }, + { + "start": 5415.29, + "end": 5416.4, + "probability": 0.8924 + }, + { + "start": 5417.07, + "end": 5420.73, + "probability": 0.6468 + }, + { + "start": 5420.83, + "end": 5424.83, + "probability": 0.9949 + }, + { + "start": 5424.83, + "end": 5428.33, + "probability": 0.9517 + }, + { + "start": 5429.69, + "end": 5432.56, + "probability": 0.6211 + }, + { + "start": 5433.09, + "end": 5435.09, + "probability": 0.4894 + }, + { + "start": 5436.29, + "end": 5437.33, + "probability": 0.0978 + }, + { + "start": 5437.61, + "end": 5441.37, + "probability": 0.523 + }, + { + "start": 5442.93, + "end": 5443.83, + "probability": 0.4485 + }, + { + "start": 5443.83, + "end": 5446.13, + "probability": 0.1526 + }, + { + "start": 5446.79, + "end": 5451.07, + "probability": 0.1378 + }, + { + "start": 5460.91, + "end": 5463.91, + "probability": 0.0839 + }, + { + "start": 5464.05, + "end": 5470.55, + "probability": 0.0164 + }, + { + "start": 5471.45, + "end": 5473.23, + "probability": 0.0178 + }, + { + "start": 5473.23, + "end": 5477.75, + "probability": 0.1235 + }, + { + "start": 5478.93, + "end": 5482.75, + "probability": 0.0191 + }, + { + "start": 5483.55, + "end": 5485.97, + "probability": 0.0471 + }, + { + "start": 5485.97, + "end": 5492.97, + "probability": 0.041 + }, + { + "start": 5493.0, + "end": 5493.0, + "probability": 0.0 + }, + { + "start": 5493.0, + "end": 5493.0, + "probability": 0.0 + }, + { + "start": 5493.0, + "end": 5493.0, + "probability": 0.0 + }, + { + "start": 5493.0, + "end": 5493.0, + "probability": 0.0 + }, + { + "start": 5493.22, + "end": 5493.48, + "probability": 0.0277 + }, + { + "start": 5493.48, + "end": 5493.48, + "probability": 0.0993 + }, + { + "start": 5493.48, + "end": 5493.48, + "probability": 0.2295 + }, + { + "start": 5493.48, + "end": 5493.48, + "probability": 0.1917 + }, + { + "start": 5493.48, + "end": 5495.0, + "probability": 0.302 + }, + { + "start": 5495.1, + "end": 5497.42, + "probability": 0.63 + }, + { + "start": 5497.98, + "end": 5498.0, + "probability": 0.2904 + }, + { + "start": 5498.84, + "end": 5502.08, + "probability": 0.0513 + }, + { + "start": 5502.08, + "end": 5504.04, + "probability": 0.5125 + }, + { + "start": 5504.2, + "end": 5506.46, + "probability": 0.8625 + }, + { + "start": 5507.34, + "end": 5508.0, + "probability": 0.6837 + }, + { + "start": 5509.24, + "end": 5511.68, + "probability": 0.8994 + }, + { + "start": 5512.62, + "end": 5513.48, + "probability": 0.9122 + }, + { + "start": 5513.68, + "end": 5514.64, + "probability": 0.8887 + }, + { + "start": 5514.84, + "end": 5518.3, + "probability": 0.9903 + }, + { + "start": 5518.5, + "end": 5521.12, + "probability": 0.8334 + }, + { + "start": 5521.34, + "end": 5522.02, + "probability": 0.722 + }, + { + "start": 5522.22, + "end": 5525.3, + "probability": 0.6643 + }, + { + "start": 5525.3, + "end": 5528.92, + "probability": 0.9017 + }, + { + "start": 5530.1, + "end": 5534.08, + "probability": 0.7257 + }, + { + "start": 5534.74, + "end": 5536.62, + "probability": 0.9967 + }, + { + "start": 5536.7, + "end": 5541.44, + "probability": 0.915 + }, + { + "start": 5541.44, + "end": 5542.6, + "probability": 0.635 + }, + { + "start": 5550.96, + "end": 5553.76, + "probability": 0.9897 + }, + { + "start": 5553.76, + "end": 5557.78, + "probability": 0.9814 + }, + { + "start": 5557.94, + "end": 5559.0, + "probability": 0.5793 + }, + { + "start": 5559.4, + "end": 5562.98, + "probability": 0.9919 + }, + { + "start": 5563.7, + "end": 5565.06, + "probability": 0.584 + }, + { + "start": 5566.02, + "end": 5571.86, + "probability": 0.7241 + }, + { + "start": 5572.56, + "end": 5574.34, + "probability": 0.8381 + }, + { + "start": 5588.05, + "end": 5589.92, + "probability": 0.6532 + }, + { + "start": 5589.94, + "end": 5590.74, + "probability": 0.9631 + }, + { + "start": 5590.82, + "end": 5591.54, + "probability": 0.4691 + }, + { + "start": 5591.6, + "end": 5596.44, + "probability": 0.9843 + }, + { + "start": 5601.74, + "end": 5603.08, + "probability": 0.6942 + }, + { + "start": 5603.2, + "end": 5606.28, + "probability": 0.6926 + }, + { + "start": 5607.2, + "end": 5612.48, + "probability": 0.9744 + }, + { + "start": 5613.18, + "end": 5617.3, + "probability": 0.919 + }, + { + "start": 5617.3, + "end": 5621.92, + "probability": 0.9789 + }, + { + "start": 5622.92, + "end": 5624.2, + "probability": 0.8828 + }, + { + "start": 5624.68, + "end": 5629.42, + "probability": 0.986 + }, + { + "start": 5630.38, + "end": 5636.16, + "probability": 0.9596 + }, + { + "start": 5636.16, + "end": 5642.04, + "probability": 0.9856 + }, + { + "start": 5643.13, + "end": 5649.04, + "probability": 0.7632 + }, + { + "start": 5650.06, + "end": 5650.62, + "probability": 0.4063 + }, + { + "start": 5651.04, + "end": 5658.92, + "probability": 0.9242 + }, + { + "start": 5659.8, + "end": 5662.3, + "probability": 0.9635 + }, + { + "start": 5663.18, + "end": 5667.78, + "probability": 0.9724 + }, + { + "start": 5667.78, + "end": 5672.1, + "probability": 0.8538 + }, + { + "start": 5672.56, + "end": 5677.62, + "probability": 0.9758 + }, + { + "start": 5678.02, + "end": 5679.72, + "probability": 0.7995 + }, + { + "start": 5680.54, + "end": 5686.74, + "probability": 0.9854 + }, + { + "start": 5687.48, + "end": 5690.56, + "probability": 0.1627 + }, + { + "start": 5690.56, + "end": 5690.56, + "probability": 0.0721 + }, + { + "start": 5690.56, + "end": 5695.04, + "probability": 0.8887 + }, + { + "start": 5695.7, + "end": 5700.72, + "probability": 0.9408 + }, + { + "start": 5702.26, + "end": 5707.04, + "probability": 0.971 + }, + { + "start": 5708.28, + "end": 5710.62, + "probability": 0.8247 + }, + { + "start": 5711.78, + "end": 5714.06, + "probability": 0.6692 + }, + { + "start": 5714.54, + "end": 5717.16, + "probability": 0.892 + }, + { + "start": 5717.64, + "end": 5719.28, + "probability": 0.8058 + }, + { + "start": 5720.52, + "end": 5726.5, + "probability": 0.9812 + }, + { + "start": 5727.42, + "end": 5728.1, + "probability": 0.914 + }, + { + "start": 5728.72, + "end": 5730.54, + "probability": 0.752 + }, + { + "start": 5730.64, + "end": 5731.16, + "probability": 0.8172 + }, + { + "start": 5731.94, + "end": 5734.16, + "probability": 0.7052 + }, + { + "start": 5734.46, + "end": 5736.08, + "probability": 0.6243 + }, + { + "start": 5736.12, + "end": 5736.82, + "probability": 0.6443 + }, + { + "start": 5736.88, + "end": 5739.4, + "probability": 0.9902 + }, + { + "start": 5740.2, + "end": 5741.61, + "probability": 0.9797 + }, + { + "start": 5742.46, + "end": 5742.9, + "probability": 0.6859 + }, + { + "start": 5743.58, + "end": 5744.58, + "probability": 0.8315 + }, + { + "start": 5746.6, + "end": 5747.54, + "probability": 0.6937 + }, + { + "start": 5747.66, + "end": 5749.26, + "probability": 0.8462 + }, + { + "start": 5749.4, + "end": 5754.94, + "probability": 0.968 + }, + { + "start": 5755.06, + "end": 5755.9, + "probability": 0.7455 + }, + { + "start": 5755.94, + "end": 5758.08, + "probability": 0.9581 + }, + { + "start": 5758.56, + "end": 5760.58, + "probability": 0.8149 + }, + { + "start": 5760.58, + "end": 5763.06, + "probability": 0.9958 + }, + { + "start": 5763.28, + "end": 5765.38, + "probability": 0.8525 + }, + { + "start": 5765.48, + "end": 5766.76, + "probability": 0.8183 + }, + { + "start": 5766.9, + "end": 5768.5, + "probability": 0.9522 + }, + { + "start": 5769.32, + "end": 5772.82, + "probability": 0.8625 + }, + { + "start": 5773.22, + "end": 5778.26, + "probability": 0.9769 + }, + { + "start": 5778.6, + "end": 5783.86, + "probability": 0.9263 + }, + { + "start": 5784.72, + "end": 5789.62, + "probability": 0.9772 + }, + { + "start": 5789.92, + "end": 5792.48, + "probability": 0.8031 + }, + { + "start": 5792.62, + "end": 5794.36, + "probability": 0.8702 + }, + { + "start": 5794.8, + "end": 5796.5, + "probability": 0.802 + }, + { + "start": 5796.52, + "end": 5798.3, + "probability": 0.9138 + }, + { + "start": 5798.8, + "end": 5800.28, + "probability": 0.9717 + }, + { + "start": 5800.32, + "end": 5801.1, + "probability": 0.9978 + }, + { + "start": 5801.96, + "end": 5802.9, + "probability": 0.8594 + }, + { + "start": 5803.52, + "end": 5807.92, + "probability": 0.9729 + }, + { + "start": 5808.58, + "end": 5816.54, + "probability": 0.8945 + }, + { + "start": 5817.56, + "end": 5818.5, + "probability": 0.808 + }, + { + "start": 5818.68, + "end": 5821.48, + "probability": 0.9908 + }, + { + "start": 5821.72, + "end": 5824.58, + "probability": 0.9957 + }, + { + "start": 5825.26, + "end": 5827.9, + "probability": 0.9993 + }, + { + "start": 5827.9, + "end": 5831.38, + "probability": 0.9924 + }, + { + "start": 5831.38, + "end": 5834.46, + "probability": 0.851 + }, + { + "start": 5834.84, + "end": 5835.02, + "probability": 0.6297 + }, + { + "start": 5837.22, + "end": 5839.14, + "probability": 0.7921 + }, + { + "start": 5839.14, + "end": 5840.46, + "probability": 0.7545 + }, + { + "start": 5840.62, + "end": 5842.38, + "probability": 0.914 + }, + { + "start": 5842.46, + "end": 5842.76, + "probability": 0.9417 + }, + { + "start": 5846.64, + "end": 5846.64, + "probability": 0.2002 + }, + { + "start": 5846.64, + "end": 5846.88, + "probability": 0.6492 + }, + { + "start": 5849.28, + "end": 5850.64, + "probability": 0.3975 + }, + { + "start": 5851.2, + "end": 5853.54, + "probability": 0.6485 + }, + { + "start": 5857.94, + "end": 5859.06, + "probability": 0.7686 + }, + { + "start": 5861.84, + "end": 5863.18, + "probability": 0.7964 + }, + { + "start": 5877.92, + "end": 5879.21, + "probability": 0.7515 + }, + { + "start": 5879.92, + "end": 5881.12, + "probability": 0.8714 + }, + { + "start": 5881.88, + "end": 5885.28, + "probability": 0.9841 + }, + { + "start": 5885.28, + "end": 5887.84, + "probability": 0.959 + }, + { + "start": 5889.78, + "end": 5892.18, + "probability": 0.9315 + }, + { + "start": 5894.28, + "end": 5896.28, + "probability": 0.6901 + }, + { + "start": 5897.94, + "end": 5900.4, + "probability": 0.9956 + }, + { + "start": 5900.96, + "end": 5902.7, + "probability": 0.5181 + }, + { + "start": 5903.98, + "end": 5905.72, + "probability": 0.7493 + }, + { + "start": 5907.54, + "end": 5907.86, + "probability": 0.688 + }, + { + "start": 5908.94, + "end": 5910.52, + "probability": 0.9016 + }, + { + "start": 5912.34, + "end": 5918.22, + "probability": 0.9902 + }, + { + "start": 5919.2, + "end": 5920.96, + "probability": 0.9928 + }, + { + "start": 5922.74, + "end": 5924.52, + "probability": 0.9788 + }, + { + "start": 5926.68, + "end": 5930.56, + "probability": 0.925 + }, + { + "start": 5931.62, + "end": 5933.94, + "probability": 0.8156 + }, + { + "start": 5935.2, + "end": 5936.82, + "probability": 0.6098 + }, + { + "start": 5938.18, + "end": 5939.16, + "probability": 0.6754 + }, + { + "start": 5940.02, + "end": 5944.86, + "probability": 0.8643 + }, + { + "start": 5945.26, + "end": 5950.54, + "probability": 0.9746 + }, + { + "start": 5951.86, + "end": 5956.06, + "probability": 0.9976 + }, + { + "start": 5956.88, + "end": 5960.06, + "probability": 0.998 + }, + { + "start": 5960.8, + "end": 5961.68, + "probability": 0.897 + }, + { + "start": 5963.8, + "end": 5964.29, + "probability": 0.9297 + }, + { + "start": 5966.1, + "end": 5967.88, + "probability": 0.9545 + }, + { + "start": 5968.84, + "end": 5971.3, + "probability": 0.8428 + }, + { + "start": 5971.94, + "end": 5972.92, + "probability": 0.8694 + }, + { + "start": 5973.74, + "end": 5975.72, + "probability": 0.9885 + }, + { + "start": 5976.78, + "end": 5978.4, + "probability": 0.9692 + }, + { + "start": 5979.88, + "end": 5983.62, + "probability": 0.9661 + }, + { + "start": 5984.16, + "end": 5985.44, + "probability": 0.9833 + }, + { + "start": 5985.98, + "end": 5987.36, + "probability": 0.9609 + }, + { + "start": 5988.1, + "end": 5989.84, + "probability": 0.9961 + }, + { + "start": 5990.5, + "end": 5992.08, + "probability": 0.8271 + }, + { + "start": 5992.78, + "end": 5995.75, + "probability": 0.9915 + }, + { + "start": 5995.92, + "end": 5998.6, + "probability": 0.856 + }, + { + "start": 6000.16, + "end": 6001.45, + "probability": 0.7269 + }, + { + "start": 6002.78, + "end": 6005.18, + "probability": 0.9451 + }, + { + "start": 6005.9, + "end": 6008.1, + "probability": 0.9937 + }, + { + "start": 6009.16, + "end": 6016.12, + "probability": 0.9948 + }, + { + "start": 6017.44, + "end": 6020.48, + "probability": 0.9737 + }, + { + "start": 6021.72, + "end": 6021.94, + "probability": 0.9117 + }, + { + "start": 6022.0, + "end": 6027.26, + "probability": 0.9036 + }, + { + "start": 6028.02, + "end": 6029.25, + "probability": 0.7583 + }, + { + "start": 6030.22, + "end": 6038.24, + "probability": 0.8936 + }, + { + "start": 6039.22, + "end": 6041.12, + "probability": 0.7089 + }, + { + "start": 6041.92, + "end": 6043.04, + "probability": 0.7242 + }, + { + "start": 6043.76, + "end": 6049.06, + "probability": 0.9737 + }, + { + "start": 6050.46, + "end": 6051.58, + "probability": 0.9756 + }, + { + "start": 6053.08, + "end": 6054.49, + "probability": 0.9941 + }, + { + "start": 6055.74, + "end": 6058.08, + "probability": 0.9935 + }, + { + "start": 6059.2, + "end": 6062.8, + "probability": 0.9962 + }, + { + "start": 6063.98, + "end": 6065.9, + "probability": 0.7431 + }, + { + "start": 6066.82, + "end": 6069.74, + "probability": 0.9526 + }, + { + "start": 6069.96, + "end": 6071.79, + "probability": 0.7925 + }, + { + "start": 6071.92, + "end": 6073.6, + "probability": 0.9839 + }, + { + "start": 6074.18, + "end": 6075.44, + "probability": 0.9733 + }, + { + "start": 6075.68, + "end": 6080.04, + "probability": 0.8794 + }, + { + "start": 6080.16, + "end": 6080.16, + "probability": 0.0239 + }, + { + "start": 6080.16, + "end": 6081.4, + "probability": 0.7003 + }, + { + "start": 6082.48, + "end": 6084.5, + "probability": 0.9479 + }, + { + "start": 6085.74, + "end": 6087.88, + "probability": 0.7836 + }, + { + "start": 6088.48, + "end": 6095.22, + "probability": 0.9872 + }, + { + "start": 6095.78, + "end": 6097.42, + "probability": 0.783 + }, + { + "start": 6098.08, + "end": 6099.68, + "probability": 0.9496 + }, + { + "start": 6100.64, + "end": 6103.04, + "probability": 0.9043 + }, + { + "start": 6104.06, + "end": 6106.48, + "probability": 0.9175 + }, + { + "start": 6107.06, + "end": 6108.78, + "probability": 0.9969 + }, + { + "start": 6109.86, + "end": 6111.1, + "probability": 0.7493 + }, + { + "start": 6112.14, + "end": 6115.58, + "probability": 0.9193 + }, + { + "start": 6115.66, + "end": 6120.68, + "probability": 0.512 + }, + { + "start": 6120.82, + "end": 6122.08, + "probability": 0.7636 + }, + { + "start": 6122.6, + "end": 6124.24, + "probability": 0.8375 + }, + { + "start": 6124.28, + "end": 6125.12, + "probability": 0.5537 + }, + { + "start": 6125.3, + "end": 6126.38, + "probability": 0.4281 + }, + { + "start": 6126.46, + "end": 6129.66, + "probability": 0.9639 + }, + { + "start": 6130.02, + "end": 6130.46, + "probability": 0.6168 + }, + { + "start": 6131.36, + "end": 6133.82, + "probability": 0.9826 + }, + { + "start": 6134.4, + "end": 6136.19, + "probability": 0.9552 + }, + { + "start": 6137.24, + "end": 6137.24, + "probability": 0.1507 + }, + { + "start": 6137.24, + "end": 6140.46, + "probability": 0.9897 + }, + { + "start": 6140.88, + "end": 6141.88, + "probability": 0.9603 + }, + { + "start": 6142.28, + "end": 6142.96, + "probability": 0.8394 + }, + { + "start": 6143.38, + "end": 6143.92, + "probability": 0.7537 + }, + { + "start": 6144.22, + "end": 6146.94, + "probability": 0.8513 + }, + { + "start": 6147.9, + "end": 6148.48, + "probability": 0.6086 + }, + { + "start": 6149.9, + "end": 6150.68, + "probability": 0.6477 + }, + { + "start": 6150.88, + "end": 6152.02, + "probability": 0.1685 + }, + { + "start": 6152.22, + "end": 6155.98, + "probability": 0.9886 + }, + { + "start": 6156.42, + "end": 6157.34, + "probability": 0.7878 + }, + { + "start": 6157.64, + "end": 6157.64, + "probability": 0.7867 + }, + { + "start": 6157.66, + "end": 6163.1, + "probability": 0.989 + }, + { + "start": 6163.7, + "end": 6168.53, + "probability": 0.989 + }, + { + "start": 6169.32, + "end": 6174.66, + "probability": 0.7067 + }, + { + "start": 6175.13, + "end": 6177.48, + "probability": 0.9554 + }, + { + "start": 6177.82, + "end": 6181.36, + "probability": 0.9543 + }, + { + "start": 6181.5, + "end": 6184.16, + "probability": 0.9829 + }, + { + "start": 6184.22, + "end": 6185.9, + "probability": 0.9052 + }, + { + "start": 6186.18, + "end": 6186.46, + "probability": 0.8288 + }, + { + "start": 6186.58, + "end": 6186.72, + "probability": 0.6094 + }, + { + "start": 6186.8, + "end": 6187.74, + "probability": 0.9115 + }, + { + "start": 6188.06, + "end": 6188.9, + "probability": 0.9587 + }, + { + "start": 6189.02, + "end": 6189.94, + "probability": 0.3791 + }, + { + "start": 6190.3, + "end": 6192.48, + "probability": 0.6472 + }, + { + "start": 6194.72, + "end": 6195.6, + "probability": 0.9619 + }, + { + "start": 6195.66, + "end": 6197.22, + "probability": 0.8927 + }, + { + "start": 6197.38, + "end": 6198.04, + "probability": 0.6486 + }, + { + "start": 6198.24, + "end": 6199.64, + "probability": 0.9683 + }, + { + "start": 6199.64, + "end": 6202.54, + "probability": 0.9894 + }, + { + "start": 6203.6, + "end": 6205.08, + "probability": 0.9781 + }, + { + "start": 6205.18, + "end": 6207.34, + "probability": 0.8142 + }, + { + "start": 6208.04, + "end": 6208.88, + "probability": 0.5366 + }, + { + "start": 6231.28, + "end": 6231.7, + "probability": 0.0747 + }, + { + "start": 6234.86, + "end": 6239.14, + "probability": 0.4943 + }, + { + "start": 6242.06, + "end": 6242.36, + "probability": 0.0217 + }, + { + "start": 6243.18, + "end": 6243.3, + "probability": 0.0823 + }, + { + "start": 6244.92, + "end": 6248.2, + "probability": 0.0337 + }, + { + "start": 6248.2, + "end": 6249.08, + "probability": 0.1198 + }, + { + "start": 6255.42, + "end": 6255.44, + "probability": 0.007 + }, + { + "start": 6259.5, + "end": 6260.72, + "probability": 0.1224 + }, + { + "start": 6264.08, + "end": 6265.38, + "probability": 0.1649 + }, + { + "start": 6266.52, + "end": 6267.94, + "probability": 0.042 + }, + { + "start": 6267.94, + "end": 6271.86, + "probability": 0.0468 + }, + { + "start": 6271.86, + "end": 6272.54, + "probability": 0.2751 + }, + { + "start": 6274.2, + "end": 6274.74, + "probability": 0.3212 + }, + { + "start": 6274.88, + "end": 6277.86, + "probability": 0.5207 + }, + { + "start": 6277.94, + "end": 6278.08, + "probability": 0.0682 + }, + { + "start": 6278.08, + "end": 6278.08, + "probability": 0.189 + }, + { + "start": 6278.08, + "end": 6278.08, + "probability": 0.0559 + }, + { + "start": 6278.08, + "end": 6278.08, + "probability": 0.1875 + }, + { + "start": 6278.08, + "end": 6281.5, + "probability": 0.4763 + }, + { + "start": 6282.4, + "end": 6284.64, + "probability": 0.5061 + }, + { + "start": 6286.16, + "end": 6287.96, + "probability": 0.9901 + }, + { + "start": 6289.18, + "end": 6292.64, + "probability": 0.829 + }, + { + "start": 6293.5, + "end": 6296.22, + "probability": 0.9488 + }, + { + "start": 6296.34, + "end": 6297.54, + "probability": 0.9182 + }, + { + "start": 6315.2, + "end": 6315.76, + "probability": 0.3739 + }, + { + "start": 6315.96, + "end": 6316.52, + "probability": 0.916 + }, + { + "start": 6320.2, + "end": 6321.26, + "probability": 0.7515 + }, + { + "start": 6322.44, + "end": 6324.1, + "probability": 0.6911 + }, + { + "start": 6324.5, + "end": 6328.96, + "probability": 0.4992 + }, + { + "start": 6329.78, + "end": 6335.92, + "probability": 0.9589 + }, + { + "start": 6335.92, + "end": 6339.52, + "probability": 0.9904 + }, + { + "start": 6340.24, + "end": 6346.12, + "probability": 0.9436 + }, + { + "start": 6348.16, + "end": 6352.5, + "probability": 0.9644 + }, + { + "start": 6355.74, + "end": 6363.14, + "probability": 0.6696 + }, + { + "start": 6364.76, + "end": 6367.76, + "probability": 0.9478 + }, + { + "start": 6368.68, + "end": 6372.97, + "probability": 0.948 + }, + { + "start": 6373.14, + "end": 6375.9, + "probability": 0.8901 + }, + { + "start": 6376.04, + "end": 6376.82, + "probability": 0.7504 + }, + { + "start": 6377.2, + "end": 6379.66, + "probability": 0.917 + }, + { + "start": 6380.16, + "end": 6381.38, + "probability": 0.8485 + }, + { + "start": 6381.44, + "end": 6381.5, + "probability": 0.9282 + }, + { + "start": 6384.64, + "end": 6385.14, + "probability": 0.3901 + }, + { + "start": 6385.58, + "end": 6389.0, + "probability": 0.7489 + }, + { + "start": 6389.18, + "end": 6392.66, + "probability": 0.8942 + }, + { + "start": 6393.44, + "end": 6394.44, + "probability": 0.8435 + }, + { + "start": 6394.62, + "end": 6397.86, + "probability": 0.9973 + }, + { + "start": 6397.92, + "end": 6403.14, + "probability": 0.9578 + }, + { + "start": 6403.22, + "end": 6403.8, + "probability": 0.6919 + }, + { + "start": 6404.38, + "end": 6406.26, + "probability": 0.9189 + }, + { + "start": 6406.9, + "end": 6408.56, + "probability": 0.7286 + }, + { + "start": 6409.14, + "end": 6410.0, + "probability": 0.8329 + }, + { + "start": 6410.62, + "end": 6412.04, + "probability": 0.7586 + }, + { + "start": 6412.88, + "end": 6426.06, + "probability": 0.8267 + }, + { + "start": 6426.84, + "end": 6431.58, + "probability": 0.9161 + }, + { + "start": 6432.3, + "end": 6437.34, + "probability": 0.9781 + }, + { + "start": 6437.34, + "end": 6440.82, + "probability": 0.7188 + }, + { + "start": 6442.7, + "end": 6444.86, + "probability": 0.7389 + }, + { + "start": 6445.72, + "end": 6446.06, + "probability": 0.601 + }, + { + "start": 6446.18, + "end": 6447.1, + "probability": 0.9601 + }, + { + "start": 6447.54, + "end": 6452.5, + "probability": 0.9826 + }, + { + "start": 6452.5, + "end": 6457.34, + "probability": 0.9823 + }, + { + "start": 6457.84, + "end": 6459.44, + "probability": 0.9338 + }, + { + "start": 6459.94, + "end": 6462.86, + "probability": 0.9404 + }, + { + "start": 6463.64, + "end": 6468.36, + "probability": 0.9783 + }, + { + "start": 6469.37, + "end": 6476.93, + "probability": 0.8225 + }, + { + "start": 6477.74, + "end": 6478.1, + "probability": 0.5726 + }, + { + "start": 6478.48, + "end": 6479.88, + "probability": 0.8496 + }, + { + "start": 6480.12, + "end": 6484.34, + "probability": 0.6356 + }, + { + "start": 6484.64, + "end": 6487.04, + "probability": 0.7163 + }, + { + "start": 6487.74, + "end": 6492.08, + "probability": 0.9527 + }, + { + "start": 6492.9, + "end": 6493.92, + "probability": 0.985 + }, + { + "start": 6494.34, + "end": 6495.1, + "probability": 0.9814 + }, + { + "start": 6495.2, + "end": 6498.84, + "probability": 0.9961 + }, + { + "start": 6499.18, + "end": 6501.3, + "probability": 0.8528 + }, + { + "start": 6501.66, + "end": 6503.85, + "probability": 0.9932 + }, + { + "start": 6504.54, + "end": 6510.02, + "probability": 0.9966 + }, + { + "start": 6510.54, + "end": 6515.58, + "probability": 0.9927 + }, + { + "start": 6516.06, + "end": 6520.32, + "probability": 0.9907 + }, + { + "start": 6520.76, + "end": 6523.32, + "probability": 0.9104 + }, + { + "start": 6523.84, + "end": 6530.54, + "probability": 0.9604 + }, + { + "start": 6530.64, + "end": 6534.5, + "probability": 0.9746 + }, + { + "start": 6534.84, + "end": 6536.22, + "probability": 0.9211 + }, + { + "start": 6536.8, + "end": 6540.72, + "probability": 0.9724 + }, + { + "start": 6541.18, + "end": 6542.34, + "probability": 0.6715 + }, + { + "start": 6542.7, + "end": 6545.68, + "probability": 0.9725 + }, + { + "start": 6546.02, + "end": 6550.68, + "probability": 0.964 + }, + { + "start": 6550.98, + "end": 6551.42, + "probability": 0.6192 + }, + { + "start": 6551.54, + "end": 6551.88, + "probability": 0.4802 + }, + { + "start": 6551.98, + "end": 6552.7, + "probability": 0.9196 + }, + { + "start": 6552.96, + "end": 6553.44, + "probability": 0.7128 + }, + { + "start": 6553.62, + "end": 6554.18, + "probability": 0.6624 + }, + { + "start": 6554.54, + "end": 6554.89, + "probability": 0.7758 + }, + { + "start": 6555.52, + "end": 6556.9, + "probability": 0.9758 + }, + { + "start": 6557.22, + "end": 6559.2, + "probability": 0.959 + }, + { + "start": 6559.62, + "end": 6563.78, + "probability": 0.9854 + }, + { + "start": 6564.22, + "end": 6565.07, + "probability": 0.9869 + }, + { + "start": 6565.4, + "end": 6566.11, + "probability": 0.9598 + }, + { + "start": 6566.66, + "end": 6571.2, + "probability": 0.995 + }, + { + "start": 6571.62, + "end": 6573.16, + "probability": 0.9177 + }, + { + "start": 6573.62, + "end": 6574.72, + "probability": 0.9697 + }, + { + "start": 6575.06, + "end": 6576.0, + "probability": 0.8925 + }, + { + "start": 6576.34, + "end": 6580.92, + "probability": 0.9909 + }, + { + "start": 6581.32, + "end": 6585.12, + "probability": 0.9812 + }, + { + "start": 6585.42, + "end": 6586.24, + "probability": 0.8365 + }, + { + "start": 6586.7, + "end": 6589.38, + "probability": 0.9778 + }, + { + "start": 6589.66, + "end": 6590.33, + "probability": 0.9467 + }, + { + "start": 6590.78, + "end": 6591.58, + "probability": 0.9573 + }, + { + "start": 6591.7, + "end": 6592.18, + "probability": 0.7476 + }, + { + "start": 6592.36, + "end": 6593.02, + "probability": 0.8335 + }, + { + "start": 6593.38, + "end": 6597.84, + "probability": 0.9035 + }, + { + "start": 6598.22, + "end": 6600.24, + "probability": 0.8962 + }, + { + "start": 6600.58, + "end": 6603.48, + "probability": 0.9301 + }, + { + "start": 6603.68, + "end": 6604.06, + "probability": 0.7643 + }, + { + "start": 6604.22, + "end": 6608.6, + "probability": 0.9785 + }, + { + "start": 6609.06, + "end": 6610.56, + "probability": 0.9963 + }, + { + "start": 6610.9, + "end": 6611.72, + "probability": 0.8727 + }, + { + "start": 6612.24, + "end": 6613.72, + "probability": 0.7379 + }, + { + "start": 6614.34, + "end": 6616.5, + "probability": 0.7737 + }, + { + "start": 6616.76, + "end": 6617.68, + "probability": 0.9756 + }, + { + "start": 6618.18, + "end": 6622.02, + "probability": 0.8608 + }, + { + "start": 6622.02, + "end": 6624.62, + "probability": 0.9849 + }, + { + "start": 6624.74, + "end": 6626.84, + "probability": 0.6746 + }, + { + "start": 6627.48, + "end": 6630.14, + "probability": 0.6535 + }, + { + "start": 6630.48, + "end": 6633.14, + "probability": 0.8418 + }, + { + "start": 6633.32, + "end": 6639.48, + "probability": 0.9211 + }, + { + "start": 6639.6, + "end": 6640.48, + "probability": 0.6268 + }, + { + "start": 6641.06, + "end": 6642.35, + "probability": 0.6308 + }, + { + "start": 6643.1, + "end": 6646.06, + "probability": 0.8865 + }, + { + "start": 6646.14, + "end": 6647.08, + "probability": 0.8935 + }, + { + "start": 6666.18, + "end": 6667.98, + "probability": 0.6742 + }, + { + "start": 6670.04, + "end": 6674.04, + "probability": 0.7768 + }, + { + "start": 6674.94, + "end": 6676.21, + "probability": 0.9919 + }, + { + "start": 6677.64, + "end": 6680.82, + "probability": 0.9551 + }, + { + "start": 6681.46, + "end": 6687.9, + "probability": 0.9951 + }, + { + "start": 6687.94, + "end": 6693.12, + "probability": 0.9226 + }, + { + "start": 6693.12, + "end": 6697.32, + "probability": 0.9891 + }, + { + "start": 6699.06, + "end": 6700.2, + "probability": 0.7861 + }, + { + "start": 6700.38, + "end": 6701.26, + "probability": 0.8407 + }, + { + "start": 6701.32, + "end": 6704.72, + "probability": 0.9827 + }, + { + "start": 6705.26, + "end": 6706.66, + "probability": 0.0631 + }, + { + "start": 6707.38, + "end": 6710.46, + "probability": 0.9951 + }, + { + "start": 6710.46, + "end": 6713.84, + "probability": 0.9936 + }, + { + "start": 6715.16, + "end": 6716.24, + "probability": 0.8812 + }, + { + "start": 6717.54, + "end": 6722.9, + "probability": 0.8944 + }, + { + "start": 6722.9, + "end": 6726.54, + "probability": 0.9801 + }, + { + "start": 6727.1, + "end": 6729.68, + "probability": 0.9689 + }, + { + "start": 6730.4, + "end": 6732.3, + "probability": 0.9496 + }, + { + "start": 6732.94, + "end": 6740.3, + "probability": 0.6665 + }, + { + "start": 6741.12, + "end": 6744.04, + "probability": 0.9932 + }, + { + "start": 6745.04, + "end": 6747.72, + "probability": 0.958 + }, + { + "start": 6748.5, + "end": 6750.12, + "probability": 0.9893 + }, + { + "start": 6751.08, + "end": 6753.91, + "probability": 0.964 + }, + { + "start": 6755.12, + "end": 6758.72, + "probability": 0.7841 + }, + { + "start": 6759.76, + "end": 6763.04, + "probability": 0.9316 + }, + { + "start": 6763.6, + "end": 6765.62, + "probability": 0.9727 + }, + { + "start": 6765.84, + "end": 6769.32, + "probability": 0.9829 + }, + { + "start": 6769.48, + "end": 6769.62, + "probability": 0.4961 + }, + { + "start": 6769.88, + "end": 6772.56, + "probability": 0.9644 + }, + { + "start": 6772.72, + "end": 6773.22, + "probability": 0.8286 + }, + { + "start": 6773.62, + "end": 6775.36, + "probability": 0.9727 + }, + { + "start": 6775.94, + "end": 6776.96, + "probability": 0.6198 + }, + { + "start": 6777.72, + "end": 6780.5, + "probability": 0.824 + }, + { + "start": 6781.26, + "end": 6782.82, + "probability": 0.9554 + }, + { + "start": 6783.86, + "end": 6784.52, + "probability": 0.8931 + }, + { + "start": 6784.58, + "end": 6788.24, + "probability": 0.9935 + }, + { + "start": 6788.96, + "end": 6791.34, + "probability": 0.9839 + }, + { + "start": 6792.34, + "end": 6796.26, + "probability": 0.9477 + }, + { + "start": 6796.42, + "end": 6801.44, + "probability": 0.9878 + }, + { + "start": 6801.58, + "end": 6801.84, + "probability": 0.542 + }, + { + "start": 6802.42, + "end": 6803.26, + "probability": 0.6474 + }, + { + "start": 6803.32, + "end": 6805.74, + "probability": 0.5883 + }, + { + "start": 6807.62, + "end": 6810.14, + "probability": 0.7965 + }, + { + "start": 6810.78, + "end": 6810.88, + "probability": 0.7472 + }, + { + "start": 6819.9, + "end": 6820.76, + "probability": 0.6092 + }, + { + "start": 6820.84, + "end": 6824.38, + "probability": 0.9152 + }, + { + "start": 6825.04, + "end": 6826.0, + "probability": 0.7669 + }, + { + "start": 6827.24, + "end": 6830.26, + "probability": 0.498 + }, + { + "start": 6830.44, + "end": 6831.68, + "probability": 0.8844 + }, + { + "start": 6832.54, + "end": 6837.08, + "probability": 0.9768 + }, + { + "start": 6837.32, + "end": 6838.2, + "probability": 0.8054 + }, + { + "start": 6838.36, + "end": 6839.14, + "probability": 0.7605 + }, + { + "start": 6839.2, + "end": 6841.94, + "probability": 0.9769 + }, + { + "start": 6842.38, + "end": 6843.86, + "probability": 0.6041 + }, + { + "start": 6843.96, + "end": 6844.8, + "probability": 0.7644 + }, + { + "start": 6845.0, + "end": 6847.2, + "probability": 0.9341 + }, + { + "start": 6847.22, + "end": 6847.96, + "probability": 0.9631 + }, + { + "start": 6848.38, + "end": 6850.48, + "probability": 0.9609 + }, + { + "start": 6851.38, + "end": 6855.58, + "probability": 0.9277 + }, + { + "start": 6856.14, + "end": 6859.58, + "probability": 0.9423 + }, + { + "start": 6860.24, + "end": 6861.72, + "probability": 0.7057 + }, + { + "start": 6862.28, + "end": 6863.36, + "probability": 0.8875 + }, + { + "start": 6863.5, + "end": 6865.7, + "probability": 0.876 + }, + { + "start": 6866.64, + "end": 6867.56, + "probability": 0.8901 + }, + { + "start": 6867.58, + "end": 6867.88, + "probability": 0.8751 + }, + { + "start": 6867.94, + "end": 6870.44, + "probability": 0.9772 + }, + { + "start": 6870.84, + "end": 6877.02, + "probability": 0.9014 + }, + { + "start": 6877.16, + "end": 6878.58, + "probability": 0.9077 + }, + { + "start": 6878.84, + "end": 6881.5, + "probability": 0.9695 + }, + { + "start": 6882.1, + "end": 6884.64, + "probability": 0.7499 + }, + { + "start": 6884.98, + "end": 6886.77, + "probability": 0.9971 + }, + { + "start": 6887.28, + "end": 6888.9, + "probability": 0.929 + }, + { + "start": 6889.26, + "end": 6893.12, + "probability": 0.9973 + }, + { + "start": 6893.72, + "end": 6896.96, + "probability": 0.8761 + }, + { + "start": 6897.28, + "end": 6900.74, + "probability": 0.987 + }, + { + "start": 6900.74, + "end": 6904.16, + "probability": 0.9982 + }, + { + "start": 6904.44, + "end": 6905.92, + "probability": 0.994 + }, + { + "start": 6906.12, + "end": 6906.12, + "probability": 0.0071 + }, + { + "start": 6906.12, + "end": 6909.7, + "probability": 0.877 + }, + { + "start": 6910.16, + "end": 6911.74, + "probability": 0.939 + }, + { + "start": 6911.96, + "end": 6916.54, + "probability": 0.9419 + }, + { + "start": 6916.68, + "end": 6917.54, + "probability": 0.8109 + }, + { + "start": 6917.74, + "end": 6919.32, + "probability": 0.7051 + }, + { + "start": 6919.92, + "end": 6920.9, + "probability": 0.9075 + }, + { + "start": 6921.14, + "end": 6921.7, + "probability": 0.7186 + }, + { + "start": 6921.94, + "end": 6925.32, + "probability": 0.9501 + }, + { + "start": 6925.72, + "end": 6926.72, + "probability": 0.9688 + }, + { + "start": 6926.92, + "end": 6927.72, + "probability": 0.8954 + }, + { + "start": 6927.88, + "end": 6928.82, + "probability": 0.9834 + }, + { + "start": 6928.96, + "end": 6930.59, + "probability": 0.9961 + }, + { + "start": 6931.16, + "end": 6932.74, + "probability": 0.5451 + }, + { + "start": 6932.78, + "end": 6933.68, + "probability": 0.7771 + }, + { + "start": 6933.76, + "end": 6934.34, + "probability": 0.6462 + }, + { + "start": 6934.88, + "end": 6936.82, + "probability": 0.9889 + }, + { + "start": 6937.18, + "end": 6940.46, + "probability": 0.9256 + }, + { + "start": 6940.76, + "end": 6942.36, + "probability": 0.973 + }, + { + "start": 6942.84, + "end": 6943.88, + "probability": 0.7634 + }, + { + "start": 6944.2, + "end": 6945.32, + "probability": 0.736 + }, + { + "start": 6945.46, + "end": 6947.86, + "probability": 0.9756 + }, + { + "start": 6949.02, + "end": 6949.5, + "probability": 0.4898 + }, + { + "start": 6949.6, + "end": 6953.46, + "probability": 0.7186 + }, + { + "start": 6953.52, + "end": 6959.52, + "probability": 0.9843 + }, + { + "start": 6959.92, + "end": 6960.62, + "probability": 0.8325 + }, + { + "start": 6960.62, + "end": 6961.94, + "probability": 0.4682 + }, + { + "start": 6962.1, + "end": 6963.64, + "probability": 0.4844 + }, + { + "start": 6963.78, + "end": 6968.5, + "probability": 0.9886 + }, + { + "start": 6968.5, + "end": 6972.38, + "probability": 0.9435 + }, + { + "start": 6972.68, + "end": 6975.26, + "probability": 0.8787 + }, + { + "start": 6975.46, + "end": 6977.42, + "probability": 0.7154 + }, + { + "start": 6977.44, + "end": 6981.72, + "probability": 0.5819 + }, + { + "start": 6982.32, + "end": 6984.46, + "probability": 0.7486 + }, + { + "start": 6986.16, + "end": 6987.32, + "probability": 0.3064 + }, + { + "start": 6988.26, + "end": 6991.74, + "probability": 0.7817 + }, + { + "start": 6992.06, + "end": 6993.54, + "probability": 0.2988 + }, + { + "start": 6993.56, + "end": 6994.3, + "probability": 0.7101 + }, + { + "start": 6994.44, + "end": 6997.5, + "probability": 0.9278 + }, + { + "start": 6997.86, + "end": 7002.9, + "probability": 0.9818 + }, + { + "start": 7003.2, + "end": 7004.32, + "probability": 0.778 + }, + { + "start": 7004.56, + "end": 7006.82, + "probability": 0.9171 + }, + { + "start": 7007.04, + "end": 7009.86, + "probability": 0.9248 + }, + { + "start": 7009.86, + "end": 7012.38, + "probability": 0.9728 + }, + { + "start": 7012.68, + "end": 7015.9, + "probability": 0.7976 + }, + { + "start": 7016.02, + "end": 7017.69, + "probability": 0.622 + }, + { + "start": 7018.18, + "end": 7018.74, + "probability": 0.8581 + }, + { + "start": 7018.9, + "end": 7020.58, + "probability": 0.5506 + }, + { + "start": 7020.6, + "end": 7022.44, + "probability": 0.9345 + }, + { + "start": 7022.66, + "end": 7025.14, + "probability": 0.7934 + }, + { + "start": 7027.54, + "end": 7032.39, + "probability": 0.9731 + }, + { + "start": 7032.86, + "end": 7033.94, + "probability": 0.5091 + }, + { + "start": 7034.56, + "end": 7036.72, + "probability": 0.0419 + }, + { + "start": 7037.46, + "end": 7042.14, + "probability": 0.2625 + }, + { + "start": 7047.81, + "end": 7048.72, + "probability": 0.0953 + }, + { + "start": 7050.6, + "end": 7053.3, + "probability": 0.1782 + }, + { + "start": 7054.82, + "end": 7058.66, + "probability": 0.7953 + }, + { + "start": 7059.3, + "end": 7062.1, + "probability": 0.9839 + }, + { + "start": 7062.78, + "end": 7066.44, + "probability": 0.7474 + }, + { + "start": 7066.58, + "end": 7069.14, + "probability": 0.9853 + }, + { + "start": 7069.3, + "end": 7070.4, + "probability": 0.9589 + }, + { + "start": 7078.96, + "end": 7078.96, + "probability": 0.66 + }, + { + "start": 7078.96, + "end": 7080.4, + "probability": 0.5475 + }, + { + "start": 7080.74, + "end": 7081.66, + "probability": 0.8443 + }, + { + "start": 7085.0, + "end": 7087.46, + "probability": 0.6557 + }, + { + "start": 7089.9, + "end": 7092.72, + "probability": 0.7998 + }, + { + "start": 7092.84, + "end": 7095.26, + "probability": 0.8572 + }, + { + "start": 7096.96, + "end": 7101.66, + "probability": 0.5902 + }, + { + "start": 7101.66, + "end": 7105.74, + "probability": 0.9735 + }, + { + "start": 7105.92, + "end": 7107.88, + "probability": 0.5302 + }, + { + "start": 7108.5, + "end": 7110.4, + "probability": 0.5422 + }, + { + "start": 7110.98, + "end": 7113.54, + "probability": 0.7668 + }, + { + "start": 7113.76, + "end": 7118.28, + "probability": 0.9472 + }, + { + "start": 7119.5, + "end": 7123.76, + "probability": 0.8036 + }, + { + "start": 7123.82, + "end": 7128.6, + "probability": 0.875 + }, + { + "start": 7129.1, + "end": 7133.5, + "probability": 0.9292 + }, + { + "start": 7134.1, + "end": 7136.72, + "probability": 0.9058 + }, + { + "start": 7136.72, + "end": 7140.02, + "probability": 0.8543 + }, + { + "start": 7140.5, + "end": 7142.26, + "probability": 0.664 + }, + { + "start": 7142.4, + "end": 7146.02, + "probability": 0.5995 + }, + { + "start": 7147.22, + "end": 7151.46, + "probability": 0.9429 + }, + { + "start": 7151.46, + "end": 7155.92, + "probability": 0.9644 + }, + { + "start": 7156.6, + "end": 7161.48, + "probability": 0.689 + }, + { + "start": 7161.48, + "end": 7165.94, + "probability": 0.7123 + }, + { + "start": 7166.5, + "end": 7171.16, + "probability": 0.7863 + }, + { + "start": 7172.76, + "end": 7173.46, + "probability": 0.5184 + }, + { + "start": 7174.54, + "end": 7175.2, + "probability": 0.427 + }, + { + "start": 7179.0, + "end": 7181.78, + "probability": 0.8887 + }, + { + "start": 7182.72, + "end": 7184.92, + "probability": 0.8251 + }, + { + "start": 7185.12, + "end": 7193.38, + "probability": 0.885 + }, + { + "start": 7193.5, + "end": 7195.14, + "probability": 0.9393 + }, + { + "start": 7195.9, + "end": 7200.16, + "probability": 0.8999 + }, + { + "start": 7200.96, + "end": 7202.66, + "probability": 0.6773 + }, + { + "start": 7203.48, + "end": 7207.0, + "probability": 0.993 + }, + { + "start": 7207.46, + "end": 7208.94, + "probability": 0.8527 + }, + { + "start": 7209.16, + "end": 7211.44, + "probability": 0.9387 + }, + { + "start": 7212.42, + "end": 7214.38, + "probability": 0.8892 + }, + { + "start": 7215.38, + "end": 7216.58, + "probability": 0.2265 + }, + { + "start": 7217.42, + "end": 7221.1, + "probability": 0.9091 + }, + { + "start": 7221.82, + "end": 7229.16, + "probability": 0.6005 + }, + { + "start": 7230.9, + "end": 7231.66, + "probability": 0.4657 + }, + { + "start": 7232.37, + "end": 7235.94, + "probability": 0.7914 + }, + { + "start": 7236.44, + "end": 7237.7, + "probability": 0.9863 + }, + { + "start": 7240.12, + "end": 7243.16, + "probability": 0.7181 + }, + { + "start": 7243.48, + "end": 7244.42, + "probability": 0.3066 + }, + { + "start": 7244.6, + "end": 7246.1, + "probability": 0.9336 + }, + { + "start": 7248.2, + "end": 7254.16, + "probability": 0.678 + }, + { + "start": 7255.94, + "end": 7256.92, + "probability": 0.5094 + }, + { + "start": 7258.38, + "end": 7263.38, + "probability": 0.8791 + }, + { + "start": 7264.16, + "end": 7266.9, + "probability": 0.5991 + }, + { + "start": 7269.62, + "end": 7271.69, + "probability": 0.9983 + }, + { + "start": 7272.58, + "end": 7275.58, + "probability": 0.5612 + }, + { + "start": 7277.22, + "end": 7278.44, + "probability": 0.8164 + }, + { + "start": 7279.06, + "end": 7282.9, + "probability": 0.9635 + }, + { + "start": 7283.56, + "end": 7285.34, + "probability": 0.9575 + }, + { + "start": 7286.9, + "end": 7288.38, + "probability": 0.4993 + }, + { + "start": 7290.16, + "end": 7291.62, + "probability": 0.9905 + }, + { + "start": 7293.16, + "end": 7294.32, + "probability": 0.7105 + }, + { + "start": 7295.56, + "end": 7296.26, + "probability": 0.8296 + }, + { + "start": 7297.62, + "end": 7298.98, + "probability": 0.7576 + }, + { + "start": 7300.08, + "end": 7302.36, + "probability": 0.89 + }, + { + "start": 7302.86, + "end": 7304.96, + "probability": 0.9073 + }, + { + "start": 7305.94, + "end": 7308.48, + "probability": 0.9069 + }, + { + "start": 7309.64, + "end": 7310.56, + "probability": 0.6211 + }, + { + "start": 7310.78, + "end": 7312.16, + "probability": 0.2488 + }, + { + "start": 7312.46, + "end": 7314.28, + "probability": 0.6277 + }, + { + "start": 7314.4, + "end": 7314.84, + "probability": 0.8094 + }, + { + "start": 7314.88, + "end": 7315.4, + "probability": 0.6945 + }, + { + "start": 7315.68, + "end": 7316.42, + "probability": 0.2107 + }, + { + "start": 7319.8, + "end": 7322.3, + "probability": 0.6732 + }, + { + "start": 7322.4, + "end": 7327.42, + "probability": 0.7755 + }, + { + "start": 7327.98, + "end": 7331.04, + "probability": 0.7591 + }, + { + "start": 7331.98, + "end": 7332.96, + "probability": 0.6721 + }, + { + "start": 7335.12, + "end": 7339.64, + "probability": 0.8435 + }, + { + "start": 7339.74, + "end": 7340.92, + "probability": 0.974 + }, + { + "start": 7342.74, + "end": 7343.78, + "probability": 0.9119 + }, + { + "start": 7345.92, + "end": 7347.88, + "probability": 0.7756 + }, + { + "start": 7348.0, + "end": 7352.1, + "probability": 0.855 + }, + { + "start": 7357.08, + "end": 7361.16, + "probability": 0.7986 + }, + { + "start": 7361.9, + "end": 7364.92, + "probability": 0.6711 + }, + { + "start": 7365.76, + "end": 7371.72, + "probability": 0.9927 + }, + { + "start": 7372.46, + "end": 7375.3, + "probability": 0.9258 + }, + { + "start": 7375.38, + "end": 7376.28, + "probability": 0.8167 + }, + { + "start": 7376.86, + "end": 7380.94, + "probability": 0.7715 + }, + { + "start": 7381.96, + "end": 7383.88, + "probability": 0.6897 + }, + { + "start": 7384.9, + "end": 7387.04, + "probability": 0.9542 + }, + { + "start": 7387.26, + "end": 7388.68, + "probability": 0.9191 + }, + { + "start": 7390.22, + "end": 7396.22, + "probability": 0.9477 + }, + { + "start": 7397.12, + "end": 7400.38, + "probability": 0.78 + }, + { + "start": 7400.96, + "end": 7405.86, + "probability": 0.7935 + }, + { + "start": 7406.0, + "end": 7407.16, + "probability": 0.7673 + }, + { + "start": 7407.2, + "end": 7408.92, + "probability": 0.9344 + }, + { + "start": 7409.72, + "end": 7410.72, + "probability": 0.9347 + }, + { + "start": 7410.76, + "end": 7411.58, + "probability": 0.8717 + }, + { + "start": 7411.68, + "end": 7414.48, + "probability": 0.944 + }, + { + "start": 7415.46, + "end": 7417.94, + "probability": 0.9192 + }, + { + "start": 7418.84, + "end": 7419.6, + "probability": 0.4096 + }, + { + "start": 7419.98, + "end": 7422.62, + "probability": 0.7896 + }, + { + "start": 7423.04, + "end": 7425.06, + "probability": 0.9239 + }, + { + "start": 7425.54, + "end": 7427.42, + "probability": 0.921 + }, + { + "start": 7428.9, + "end": 7432.2, + "probability": 0.964 + }, + { + "start": 7433.7, + "end": 7437.58, + "probability": 0.9561 + }, + { + "start": 7438.64, + "end": 7444.18, + "probability": 0.7997 + }, + { + "start": 7444.78, + "end": 7445.46, + "probability": 0.8613 + }, + { + "start": 7446.14, + "end": 7446.96, + "probability": 0.7078 + }, + { + "start": 7447.58, + "end": 7452.2, + "probability": 0.9939 + }, + { + "start": 7452.56, + "end": 7453.04, + "probability": 0.87 + }, + { + "start": 7453.58, + "end": 7454.9, + "probability": 0.6935 + }, + { + "start": 7455.0, + "end": 7457.94, + "probability": 0.7162 + }, + { + "start": 7457.96, + "end": 7458.12, + "probability": 0.8482 + }, + { + "start": 7477.24, + "end": 7478.28, + "probability": 0.8051 + }, + { + "start": 7478.88, + "end": 7481.02, + "probability": 0.6954 + }, + { + "start": 7482.3, + "end": 7486.88, + "probability": 0.9736 + }, + { + "start": 7487.78, + "end": 7492.38, + "probability": 0.9657 + }, + { + "start": 7492.4, + "end": 7495.24, + "probability": 0.9363 + }, + { + "start": 7495.58, + "end": 7497.38, + "probability": 0.9828 + }, + { + "start": 7497.78, + "end": 7503.58, + "probability": 0.9799 + }, + { + "start": 7504.52, + "end": 7510.92, + "probability": 0.9458 + }, + { + "start": 7511.56, + "end": 7513.95, + "probability": 0.584 + }, + { + "start": 7514.2, + "end": 7518.12, + "probability": 0.8396 + }, + { + "start": 7518.58, + "end": 7521.32, + "probability": 0.8271 + }, + { + "start": 7521.44, + "end": 7522.88, + "probability": 0.9502 + }, + { + "start": 7525.86, + "end": 7527.8, + "probability": 0.0049 + }, + { + "start": 7530.12, + "end": 7534.38, + "probability": 0.7541 + }, + { + "start": 7535.26, + "end": 7536.22, + "probability": 0.5696 + }, + { + "start": 7536.3, + "end": 7537.74, + "probability": 0.1418 + }, + { + "start": 7538.62, + "end": 7539.42, + "probability": 0.3436 + }, + { + "start": 7541.58, + "end": 7543.56, + "probability": 0.2283 + }, + { + "start": 7544.02, + "end": 7545.76, + "probability": 0.7407 + }, + { + "start": 7546.6, + "end": 7551.56, + "probability": 0.9925 + }, + { + "start": 7552.3, + "end": 7557.02, + "probability": 0.45 + }, + { + "start": 7557.64, + "end": 7559.17, + "probability": 0.2027 + }, + { + "start": 7559.52, + "end": 7562.1, + "probability": 0.9669 + }, + { + "start": 7562.94, + "end": 7563.66, + "probability": 0.7958 + }, + { + "start": 7564.26, + "end": 7565.26, + "probability": 0.9915 + }, + { + "start": 7565.78, + "end": 7568.14, + "probability": 0.9261 + }, + { + "start": 7568.8, + "end": 7571.4, + "probability": 0.9787 + }, + { + "start": 7571.4, + "end": 7575.58, + "probability": 0.9894 + }, + { + "start": 7576.3, + "end": 7579.9, + "probability": 0.9985 + }, + { + "start": 7580.08, + "end": 7584.08, + "probability": 0.9973 + }, + { + "start": 7584.64, + "end": 7588.54, + "probability": 0.999 + }, + { + "start": 7588.98, + "end": 7594.2, + "probability": 0.9976 + }, + { + "start": 7594.96, + "end": 7597.22, + "probability": 0.8505 + }, + { + "start": 7597.4, + "end": 7601.8, + "probability": 0.9915 + }, + { + "start": 7602.36, + "end": 7605.5, + "probability": 0.9943 + }, + { + "start": 7606.32, + "end": 7607.68, + "probability": 0.8894 + }, + { + "start": 7608.36, + "end": 7608.94, + "probability": 0.9884 + }, + { + "start": 7609.46, + "end": 7614.28, + "probability": 0.962 + }, + { + "start": 7614.72, + "end": 7616.64, + "probability": 0.8225 + }, + { + "start": 7617.24, + "end": 7619.16, + "probability": 0.9877 + }, + { + "start": 7619.66, + "end": 7620.02, + "probability": 0.2689 + }, + { + "start": 7620.2, + "end": 7621.56, + "probability": 0.6204 + }, + { + "start": 7622.66, + "end": 7625.06, + "probability": 0.9943 + }, + { + "start": 7626.06, + "end": 7629.24, + "probability": 0.9775 + }, + { + "start": 7629.32, + "end": 7632.46, + "probability": 0.9968 + }, + { + "start": 7633.56, + "end": 7637.42, + "probability": 0.7951 + }, + { + "start": 7637.42, + "end": 7641.42, + "probability": 0.9884 + }, + { + "start": 7641.92, + "end": 7643.8, + "probability": 0.9766 + }, + { + "start": 7644.36, + "end": 7648.76, + "probability": 0.8106 + }, + { + "start": 7649.4, + "end": 7653.88, + "probability": 0.812 + }, + { + "start": 7654.68, + "end": 7655.02, + "probability": 0.0826 + }, + { + "start": 7655.02, + "end": 7655.02, + "probability": 0.0145 + }, + { + "start": 7655.02, + "end": 7658.9, + "probability": 0.7512 + }, + { + "start": 7659.3, + "end": 7662.7, + "probability": 0.9927 + }, + { + "start": 7663.06, + "end": 7668.42, + "probability": 0.9941 + }, + { + "start": 7668.82, + "end": 7668.82, + "probability": 0.0253 + }, + { + "start": 7668.82, + "end": 7675.3, + "probability": 0.7489 + }, + { + "start": 7675.38, + "end": 7675.38, + "probability": 0.1057 + }, + { + "start": 7675.38, + "end": 7675.58, + "probability": 0.7982 + }, + { + "start": 7675.68, + "end": 7676.0, + "probability": 0.3983 + }, + { + "start": 7676.4, + "end": 7681.66, + "probability": 0.4751 + }, + { + "start": 7683.3, + "end": 7684.04, + "probability": 0.0027 + }, + { + "start": 7684.04, + "end": 7684.04, + "probability": 0.1132 + }, + { + "start": 7684.04, + "end": 7685.12, + "probability": 0.3014 + }, + { + "start": 7685.6, + "end": 7686.0, + "probability": 0.8626 + }, + { + "start": 7686.1, + "end": 7687.08, + "probability": 0.6545 + }, + { + "start": 7687.16, + "end": 7689.4, + "probability": 0.9267 + }, + { + "start": 7690.04, + "end": 7692.04, + "probability": 0.8809 + }, + { + "start": 7692.22, + "end": 7692.28, + "probability": 0.3832 + }, + { + "start": 7692.38, + "end": 7693.36, + "probability": 0.7752 + }, + { + "start": 7693.72, + "end": 7698.32, + "probability": 0.9946 + }, + { + "start": 7698.32, + "end": 7702.42, + "probability": 0.9958 + }, + { + "start": 7702.8, + "end": 7704.24, + "probability": 0.8999 + }, + { + "start": 7704.8, + "end": 7707.19, + "probability": 0.71 + }, + { + "start": 7708.2, + "end": 7715.1, + "probability": 0.6466 + }, + { + "start": 7715.1, + "end": 7715.1, + "probability": 0.094 + }, + { + "start": 7715.1, + "end": 7717.14, + "probability": 0.9751 + }, + { + "start": 7717.14, + "end": 7721.28, + "probability": 0.9668 + }, + { + "start": 7721.94, + "end": 7722.18, + "probability": 0.0188 + }, + { + "start": 7722.18, + "end": 7722.18, + "probability": 0.0588 + }, + { + "start": 7722.18, + "end": 7724.3, + "probability": 0.8421 + }, + { + "start": 7724.92, + "end": 7729.32, + "probability": 0.6666 + }, + { + "start": 7729.88, + "end": 7729.88, + "probability": 0.0717 + }, + { + "start": 7729.88, + "end": 7730.5, + "probability": 0.6264 + }, + { + "start": 7730.98, + "end": 7732.8, + "probability": 0.8712 + }, + { + "start": 7733.22, + "end": 7734.78, + "probability": 0.9009 + }, + { + "start": 7735.32, + "end": 7740.86, + "probability": 0.9882 + }, + { + "start": 7740.86, + "end": 7744.06, + "probability": 0.9937 + }, + { + "start": 7744.5, + "end": 7746.74, + "probability": 0.9928 + }, + { + "start": 7746.74, + "end": 7749.46, + "probability": 0.8337 + }, + { + "start": 7750.06, + "end": 7753.02, + "probability": 0.9491 + }, + { + "start": 7753.4, + "end": 7756.12, + "probability": 0.9875 + }, + { + "start": 7756.4, + "end": 7758.82, + "probability": 0.9943 + }, + { + "start": 7758.92, + "end": 7761.54, + "probability": 0.9191 + }, + { + "start": 7762.43, + "end": 7763.68, + "probability": 0.0941 + }, + { + "start": 7763.68, + "end": 7766.12, + "probability": 0.9825 + }, + { + "start": 7766.58, + "end": 7769.01, + "probability": 0.8706 + }, + { + "start": 7769.52, + "end": 7771.66, + "probability": 0.7957 + }, + { + "start": 7771.7, + "end": 7773.2, + "probability": 0.8814 + }, + { + "start": 7773.3, + "end": 7775.44, + "probability": 0.8733 + }, + { + "start": 7775.9, + "end": 7777.62, + "probability": 0.9691 + }, + { + "start": 7777.94, + "end": 7780.76, + "probability": 0.9927 + }, + { + "start": 7781.53, + "end": 7784.08, + "probability": 0.0745 + }, + { + "start": 7784.24, + "end": 7784.58, + "probability": 0.0739 + }, + { + "start": 7784.58, + "end": 7786.68, + "probability": 0.1195 + }, + { + "start": 7787.08, + "end": 7788.12, + "probability": 0.2224 + }, + { + "start": 7788.12, + "end": 7789.54, + "probability": 0.0905 + }, + { + "start": 7789.54, + "end": 7791.2, + "probability": 0.1169 + }, + { + "start": 7792.1, + "end": 7794.94, + "probability": 0.9341 + }, + { + "start": 7795.6, + "end": 7799.22, + "probability": 0.9519 + }, + { + "start": 7799.56, + "end": 7800.5, + "probability": 0.7865 + }, + { + "start": 7800.56, + "end": 7801.6, + "probability": 0.9569 + }, + { + "start": 7802.12, + "end": 7805.04, + "probability": 0.9796 + }, + { + "start": 7805.1, + "end": 7808.02, + "probability": 0.9694 + }, + { + "start": 7809.92, + "end": 7810.12, + "probability": 0.6283 + }, + { + "start": 7810.26, + "end": 7810.52, + "probability": 0.9778 + }, + { + "start": 7811.58, + "end": 7811.8, + "probability": 0.5599 + }, + { + "start": 7812.38, + "end": 7812.82, + "probability": 0.6501 + }, + { + "start": 7812.88, + "end": 7813.86, + "probability": 0.6263 + }, + { + "start": 7813.9, + "end": 7816.02, + "probability": 0.2229 + }, + { + "start": 7816.02, + "end": 7817.58, + "probability": 0.7674 + }, + { + "start": 7818.08, + "end": 7818.5, + "probability": 0.1304 + }, + { + "start": 7818.56, + "end": 7819.12, + "probability": 0.6046 + }, + { + "start": 7819.12, + "end": 7819.42, + "probability": 0.161 + }, + { + "start": 7819.42, + "end": 7820.86, + "probability": 0.9523 + }, + { + "start": 7822.48, + "end": 7823.13, + "probability": 0.519 + }, + { + "start": 7824.82, + "end": 7825.58, + "probability": 0.5226 + }, + { + "start": 7826.04, + "end": 7829.24, + "probability": 0.1232 + }, + { + "start": 7829.34, + "end": 7831.34, + "probability": 0.0349 + }, + { + "start": 7832.04, + "end": 7834.26, + "probability": 0.9922 + }, + { + "start": 7834.68, + "end": 7837.38, + "probability": 0.3885 + }, + { + "start": 7837.7, + "end": 7839.36, + "probability": 0.761 + }, + { + "start": 7839.94, + "end": 7840.36, + "probability": 0.8854 + }, + { + "start": 7840.7, + "end": 7844.64, + "probability": 0.9951 + }, + { + "start": 7845.86, + "end": 7848.74, + "probability": 0.9941 + }, + { + "start": 7849.5, + "end": 7852.96, + "probability": 0.9958 + }, + { + "start": 7853.8, + "end": 7859.88, + "probability": 0.9976 + }, + { + "start": 7860.46, + "end": 7861.7, + "probability": 0.9987 + }, + { + "start": 7862.28, + "end": 7862.58, + "probability": 0.9215 + }, + { + "start": 7863.12, + "end": 7863.8, + "probability": 0.7824 + }, + { + "start": 7864.32, + "end": 7866.06, + "probability": 0.9785 + }, + { + "start": 7866.56, + "end": 7868.53, + "probability": 0.9097 + }, + { + "start": 7869.12, + "end": 7872.44, + "probability": 0.9202 + }, + { + "start": 7872.94, + "end": 7874.22, + "probability": 0.8963 + }, + { + "start": 7874.56, + "end": 7877.36, + "probability": 0.8206 + }, + { + "start": 7877.78, + "end": 7879.02, + "probability": 0.8412 + }, + { + "start": 7879.48, + "end": 7881.22, + "probability": 0.8951 + }, + { + "start": 7881.58, + "end": 7885.52, + "probability": 0.9938 + }, + { + "start": 7885.52, + "end": 7890.28, + "probability": 0.9959 + }, + { + "start": 7890.7, + "end": 7895.32, + "probability": 0.7395 + }, + { + "start": 7895.78, + "end": 7898.94, + "probability": 0.6701 + }, + { + "start": 7899.28, + "end": 7900.76, + "probability": 0.9937 + }, + { + "start": 7900.88, + "end": 7903.94, + "probability": 0.7685 + }, + { + "start": 7905.38, + "end": 7906.46, + "probability": 0.8013 + }, + { + "start": 7906.98, + "end": 7908.86, + "probability": 0.1601 + }, + { + "start": 7908.86, + "end": 7908.86, + "probability": 0.0735 + }, + { + "start": 7908.86, + "end": 7908.86, + "probability": 0.0573 + }, + { + "start": 7908.86, + "end": 7909.08, + "probability": 0.0922 + }, + { + "start": 7909.08, + "end": 7910.0, + "probability": 0.3011 + }, + { + "start": 7910.1, + "end": 7911.06, + "probability": 0.7482 + }, + { + "start": 7911.5, + "end": 7912.96, + "probability": 0.8441 + }, + { + "start": 7913.3, + "end": 7915.64, + "probability": 0.9215 + }, + { + "start": 7915.94, + "end": 7917.3, + "probability": 0.9762 + }, + { + "start": 7918.02, + "end": 7921.82, + "probability": 0.9323 + }, + { + "start": 7922.46, + "end": 7923.52, + "probability": 0.8727 + }, + { + "start": 7923.7, + "end": 7927.0, + "probability": 0.8125 + }, + { + "start": 7927.52, + "end": 7929.44, + "probability": 0.8947 + }, + { + "start": 7929.84, + "end": 7930.94, + "probability": 0.8939 + }, + { + "start": 7930.98, + "end": 7933.88, + "probability": 0.8373 + }, + { + "start": 7933.96, + "end": 7937.56, + "probability": 0.9922 + }, + { + "start": 7937.7, + "end": 7939.66, + "probability": 0.9956 + }, + { + "start": 7940.06, + "end": 7943.64, + "probability": 0.9684 + }, + { + "start": 7944.04, + "end": 7944.58, + "probability": 0.8992 + }, + { + "start": 7944.94, + "end": 7948.94, + "probability": 0.9841 + }, + { + "start": 7950.2, + "end": 7955.42, + "probability": 0.9709 + }, + { + "start": 7955.96, + "end": 7959.02, + "probability": 0.6162 + }, + { + "start": 7959.34, + "end": 7962.98, + "probability": 0.8913 + }, + { + "start": 7963.34, + "end": 7965.9, + "probability": 0.9824 + }, + { + "start": 7965.9, + "end": 7968.82, + "probability": 0.943 + }, + { + "start": 7969.28, + "end": 7972.74, + "probability": 0.9814 + }, + { + "start": 7973.18, + "end": 7975.3, + "probability": 0.9844 + }, + { + "start": 7975.68, + "end": 7978.0, + "probability": 0.8716 + }, + { + "start": 7978.24, + "end": 7979.98, + "probability": 0.9292 + }, + { + "start": 7980.94, + "end": 7984.94, + "probability": 0.9966 + }, + { + "start": 7985.1, + "end": 7985.1, + "probability": 0.0264 + }, + { + "start": 7985.1, + "end": 7985.82, + "probability": 0.9319 + }, + { + "start": 7986.42, + "end": 7988.12, + "probability": 0.7174 + }, + { + "start": 7988.42, + "end": 7989.12, + "probability": 0.8818 + }, + { + "start": 7989.78, + "end": 7990.54, + "probability": 0.5214 + }, + { + "start": 7990.98, + "end": 7995.2, + "probability": 0.9512 + }, + { + "start": 7995.48, + "end": 7998.24, + "probability": 0.9888 + }, + { + "start": 7998.32, + "end": 7999.26, + "probability": 0.935 + }, + { + "start": 7999.56, + "end": 8002.18, + "probability": 0.8887 + }, + { + "start": 8002.5, + "end": 8004.22, + "probability": 0.8187 + }, + { + "start": 8004.92, + "end": 8007.52, + "probability": 0.7862 + }, + { + "start": 8008.5, + "end": 8011.46, + "probability": 0.9344 + }, + { + "start": 8011.96, + "end": 8013.3, + "probability": 0.9898 + }, + { + "start": 8013.44, + "end": 8015.12, + "probability": 0.947 + }, + { + "start": 8015.46, + "end": 8016.58, + "probability": 0.9844 + }, + { + "start": 8016.96, + "end": 8020.28, + "probability": 0.972 + }, + { + "start": 8020.32, + "end": 8021.18, + "probability": 0.6832 + }, + { + "start": 8021.56, + "end": 8021.62, + "probability": 0.0076 + }, + { + "start": 8021.62, + "end": 8021.62, + "probability": 0.3283 + }, + { + "start": 8021.62, + "end": 8024.62, + "probability": 0.8689 + }, + { + "start": 8025.08, + "end": 8026.94, + "probability": 0.9374 + }, + { + "start": 8027.04, + "end": 8029.88, + "probability": 0.887 + }, + { + "start": 8030.62, + "end": 8032.9, + "probability": 0.8912 + }, + { + "start": 8033.1, + "end": 8033.1, + "probability": 0.0526 + }, + { + "start": 8033.1, + "end": 8033.94, + "probability": 0.6331 + }, + { + "start": 8034.0, + "end": 8034.56, + "probability": 0.7217 + }, + { + "start": 8034.62, + "end": 8036.04, + "probability": 0.4329 + }, + { + "start": 8036.1, + "end": 8037.88, + "probability": 0.9207 + }, + { + "start": 8039.08, + "end": 8040.7, + "probability": 0.7828 + }, + { + "start": 8041.28, + "end": 8044.06, + "probability": 0.9956 + }, + { + "start": 8044.72, + "end": 8046.7, + "probability": 0.6756 + }, + { + "start": 8047.22, + "end": 8050.44, + "probability": 0.8653 + }, + { + "start": 8051.0, + "end": 8052.32, + "probability": 0.6469 + }, + { + "start": 8052.68, + "end": 8053.81, + "probability": 0.9199 + }, + { + "start": 8054.06, + "end": 8056.76, + "probability": 0.5875 + }, + { + "start": 8057.22, + "end": 8059.16, + "probability": 0.9636 + }, + { + "start": 8059.64, + "end": 8063.1, + "probability": 0.9735 + }, + { + "start": 8063.14, + "end": 8066.22, + "probability": 0.7796 + }, + { + "start": 8066.64, + "end": 8067.04, + "probability": 0.1604 + }, + { + "start": 8067.2, + "end": 8070.64, + "probability": 0.8708 + }, + { + "start": 8070.94, + "end": 8073.06, + "probability": 0.8925 + }, + { + "start": 8073.42, + "end": 8073.44, + "probability": 0.0208 + }, + { + "start": 8073.44, + "end": 8075.33, + "probability": 0.9859 + }, + { + "start": 8076.08, + "end": 8076.58, + "probability": 0.7549 + }, + { + "start": 8076.6, + "end": 8077.58, + "probability": 0.6379 + }, + { + "start": 8077.62, + "end": 8080.14, + "probability": 0.9648 + }, + { + "start": 8084.66, + "end": 8086.04, + "probability": 0.483 + }, + { + "start": 8086.06, + "end": 8086.9, + "probability": 0.9504 + }, + { + "start": 8094.64, + "end": 8095.8, + "probability": 0.6929 + }, + { + "start": 8097.42, + "end": 8101.1, + "probability": 0.7767 + }, + { + "start": 8101.22, + "end": 8102.0, + "probability": 0.9084 + }, + { + "start": 8102.24, + "end": 8105.28, + "probability": 0.5362 + }, + { + "start": 8105.28, + "end": 8109.66, + "probability": 0.8041 + }, + { + "start": 8110.02, + "end": 8110.26, + "probability": 0.9399 + }, + { + "start": 8111.26, + "end": 8114.38, + "probability": 0.9473 + }, + { + "start": 8114.58, + "end": 8115.06, + "probability": 0.4843 + }, + { + "start": 8115.66, + "end": 8118.04, + "probability": 0.8241 + }, + { + "start": 8118.38, + "end": 8119.68, + "probability": 0.672 + }, + { + "start": 8119.72, + "end": 8120.18, + "probability": 0.7494 + }, + { + "start": 8120.32, + "end": 8120.89, + "probability": 0.627 + }, + { + "start": 8121.06, + "end": 8122.59, + "probability": 0.9723 + }, + { + "start": 8123.16, + "end": 8124.8, + "probability": 0.9283 + }, + { + "start": 8124.9, + "end": 8125.92, + "probability": 0.8566 + }, + { + "start": 8126.52, + "end": 8126.98, + "probability": 0.7681 + }, + { + "start": 8127.14, + "end": 8127.16, + "probability": 0.2226 + }, + { + "start": 8127.16, + "end": 8128.3, + "probability": 0.9194 + }, + { + "start": 8128.46, + "end": 8130.02, + "probability": 0.8718 + }, + { + "start": 8130.14, + "end": 8131.44, + "probability": 0.8469 + }, + { + "start": 8131.68, + "end": 8133.28, + "probability": 0.9927 + }, + { + "start": 8133.46, + "end": 8135.92, + "probability": 0.6987 + }, + { + "start": 8136.18, + "end": 8140.48, + "probability": 0.9793 + }, + { + "start": 8140.86, + "end": 8143.52, + "probability": 0.902 + }, + { + "start": 8144.65, + "end": 8146.48, + "probability": 0.8408 + }, + { + "start": 8147.54, + "end": 8150.58, + "probability": 0.8334 + }, + { + "start": 8151.22, + "end": 8153.8, + "probability": 0.7872 + }, + { + "start": 8154.26, + "end": 8155.12, + "probability": 0.5898 + }, + { + "start": 8155.16, + "end": 8156.82, + "probability": 0.8397 + }, + { + "start": 8157.6, + "end": 8159.06, + "probability": 0.9316 + }, + { + "start": 8159.22, + "end": 8159.86, + "probability": 0.676 + }, + { + "start": 8161.02, + "end": 8163.28, + "probability": 0.9728 + }, + { + "start": 8163.52, + "end": 8164.12, + "probability": 0.9717 + }, + { + "start": 8165.36, + "end": 8168.3, + "probability": 0.829 + }, + { + "start": 8169.1, + "end": 8172.64, + "probability": 0.8877 + }, + { + "start": 8173.1, + "end": 8174.27, + "probability": 0.9837 + }, + { + "start": 8175.36, + "end": 8176.44, + "probability": 0.5344 + }, + { + "start": 8176.56, + "end": 8177.6, + "probability": 0.9672 + }, + { + "start": 8177.7, + "end": 8179.24, + "probability": 0.542 + }, + { + "start": 8179.48, + "end": 8180.31, + "probability": 0.6692 + }, + { + "start": 8181.62, + "end": 8182.9, + "probability": 0.7603 + }, + { + "start": 8182.92, + "end": 8183.54, + "probability": 0.7608 + }, + { + "start": 8183.9, + "end": 8187.54, + "probability": 0.9574 + }, + { + "start": 8187.9, + "end": 8190.96, + "probability": 0.7605 + }, + { + "start": 8191.14, + "end": 8193.06, + "probability": 0.9008 + }, + { + "start": 8193.38, + "end": 8194.58, + "probability": 0.9436 + }, + { + "start": 8194.68, + "end": 8196.7, + "probability": 0.7653 + }, + { + "start": 8197.08, + "end": 8200.92, + "probability": 0.8561 + }, + { + "start": 8201.5, + "end": 8204.44, + "probability": 0.873 + }, + { + "start": 8205.1, + "end": 8206.18, + "probability": 0.7775 + }, + { + "start": 8207.3, + "end": 8210.32, + "probability": 0.9425 + }, + { + "start": 8210.44, + "end": 8210.84, + "probability": 0.8904 + }, + { + "start": 8211.42, + "end": 8213.02, + "probability": 0.8794 + }, + { + "start": 8213.8, + "end": 8215.58, + "probability": 0.7934 + }, + { + "start": 8216.12, + "end": 8217.96, + "probability": 0.272 + }, + { + "start": 8218.4, + "end": 8219.06, + "probability": 0.7654 + }, + { + "start": 8219.68, + "end": 8220.42, + "probability": 0.8862 + }, + { + "start": 8220.46, + "end": 8221.96, + "probability": 0.9561 + }, + { + "start": 8222.04, + "end": 8222.72, + "probability": 0.8046 + }, + { + "start": 8222.92, + "end": 8225.26, + "probability": 0.9831 + }, + { + "start": 8225.56, + "end": 8227.64, + "probability": 0.8794 + }, + { + "start": 8228.52, + "end": 8229.24, + "probability": 0.4455 + }, + { + "start": 8229.58, + "end": 8230.96, + "probability": 0.9121 + }, + { + "start": 8231.3, + "end": 8233.76, + "probability": 0.5563 + }, + { + "start": 8234.14, + "end": 8236.76, + "probability": 0.7052 + }, + { + "start": 8237.76, + "end": 8238.81, + "probability": 0.3528 + }, + { + "start": 8239.88, + "end": 8242.96, + "probability": 0.875 + }, + { + "start": 8243.2, + "end": 8243.22, + "probability": 0.0257 + }, + { + "start": 8243.88, + "end": 8244.46, + "probability": 0.3025 + }, + { + "start": 8245.8, + "end": 8245.96, + "probability": 0.2208 + }, + { + "start": 8245.96, + "end": 8246.56, + "probability": 0.923 + }, + { + "start": 8257.52, + "end": 8263.46, + "probability": 0.9907 + }, + { + "start": 8263.7, + "end": 8269.06, + "probability": 0.9994 + }, + { + "start": 8269.98, + "end": 8273.38, + "probability": 0.8541 + }, + { + "start": 8273.96, + "end": 8275.66, + "probability": 0.9966 + }, + { + "start": 8276.08, + "end": 8280.64, + "probability": 0.9932 + }, + { + "start": 8281.48, + "end": 8282.24, + "probability": 0.0234 + }, + { + "start": 8282.24, + "end": 8282.24, + "probability": 0.1164 + }, + { + "start": 8282.24, + "end": 8285.72, + "probability": 0.6666 + }, + { + "start": 8286.26, + "end": 8289.84, + "probability": 0.9409 + }, + { + "start": 8290.48, + "end": 8294.58, + "probability": 0.0324 + }, + { + "start": 8294.58, + "end": 8294.58, + "probability": 0.1048 + }, + { + "start": 8294.58, + "end": 8295.86, + "probability": 0.2631 + }, + { + "start": 8295.86, + "end": 8296.52, + "probability": 0.0089 + }, + { + "start": 8296.52, + "end": 8297.1, + "probability": 0.0676 + }, + { + "start": 8297.1, + "end": 8298.28, + "probability": 0.1264 + }, + { + "start": 8298.86, + "end": 8303.22, + "probability": 0.9299 + }, + { + "start": 8303.4, + "end": 8305.52, + "probability": 0.8509 + }, + { + "start": 8305.88, + "end": 8307.35, + "probability": 0.9497 + }, + { + "start": 8308.18, + "end": 8308.18, + "probability": 0.0296 + }, + { + "start": 8308.18, + "end": 8311.06, + "probability": 0.9012 + }, + { + "start": 8311.62, + "end": 8319.7, + "probability": 0.9895 + }, + { + "start": 8320.3, + "end": 8321.34, + "probability": 0.8549 + }, + { + "start": 8321.4, + "end": 8323.15, + "probability": 0.9973 + }, + { + "start": 8323.68, + "end": 8325.5, + "probability": 0.9864 + }, + { + "start": 8325.78, + "end": 8327.04, + "probability": 0.8262 + }, + { + "start": 8327.1, + "end": 8330.92, + "probability": 0.9935 + }, + { + "start": 8331.32, + "end": 8332.54, + "probability": 0.9819 + }, + { + "start": 8332.96, + "end": 8336.46, + "probability": 0.8682 + }, + { + "start": 8336.78, + "end": 8339.04, + "probability": 0.9811 + }, + { + "start": 8340.28, + "end": 8345.06, + "probability": 0.9607 + }, + { + "start": 8345.62, + "end": 8348.02, + "probability": 0.915 + }, + { + "start": 8348.44, + "end": 8351.16, + "probability": 0.9935 + }, + { + "start": 8351.5, + "end": 8353.32, + "probability": 0.6995 + }, + { + "start": 8353.48, + "end": 8355.52, + "probability": 0.9813 + }, + { + "start": 8356.66, + "end": 8357.66, + "probability": 0.3494 + }, + { + "start": 8357.68, + "end": 8359.66, + "probability": 0.8287 + }, + { + "start": 8360.58, + "end": 8367.04, + "probability": 0.7249 + }, + { + "start": 8368.34, + "end": 8369.26, + "probability": 0.7157 + }, + { + "start": 8370.54, + "end": 8372.5, + "probability": 0.9875 + }, + { + "start": 8372.92, + "end": 8373.4, + "probability": 0.9723 + }, + { + "start": 8376.25, + "end": 8378.76, + "probability": 0.0427 + }, + { + "start": 8379.86, + "end": 8381.62, + "probability": 0.1421 + }, + { + "start": 8382.84, + "end": 8383.2, + "probability": 0.8933 + }, + { + "start": 8384.14, + "end": 8385.98, + "probability": 0.866 + }, + { + "start": 8386.88, + "end": 8387.56, + "probability": 0.9283 + }, + { + "start": 8388.14, + "end": 8388.98, + "probability": 0.7102 + }, + { + "start": 8389.8, + "end": 8390.18, + "probability": 0.9932 + }, + { + "start": 8391.52, + "end": 8392.32, + "probability": 0.9199 + }, + { + "start": 8394.54, + "end": 8396.46, + "probability": 0.9711 + }, + { + "start": 8397.76, + "end": 8398.2, + "probability": 0.8407 + }, + { + "start": 8399.14, + "end": 8399.34, + "probability": 0.6863 + }, + { + "start": 8405.84, + "end": 8406.3, + "probability": 0.7744 + }, + { + "start": 8408.58, + "end": 8409.4, + "probability": 0.8381 + }, + { + "start": 8410.38, + "end": 8412.38, + "probability": 0.9539 + }, + { + "start": 8413.14, + "end": 8415.16, + "probability": 0.9539 + }, + { + "start": 8416.02, + "end": 8416.46, + "probability": 0.9813 + }, + { + "start": 8418.2, + "end": 8418.98, + "probability": 0.6723 + }, + { + "start": 8420.12, + "end": 8425.4, + "probability": 0.8529 + }, + { + "start": 8426.66, + "end": 8429.72, + "probability": 0.3313 + }, + { + "start": 8433.78, + "end": 8436.28, + "probability": 0.7006 + }, + { + "start": 8437.54, + "end": 8438.24, + "probability": 0.829 + }, + { + "start": 8438.86, + "end": 8439.8, + "probability": 0.938 + }, + { + "start": 8441.92, + "end": 8448.02, + "probability": 0.9217 + }, + { + "start": 8448.54, + "end": 8450.5, + "probability": 0.9259 + }, + { + "start": 8451.56, + "end": 8453.1, + "probability": 0.9657 + }, + { + "start": 8453.72, + "end": 8454.26, + "probability": 0.9827 + }, + { + "start": 8456.7, + "end": 8456.77, + "probability": 0.0657 + }, + { + "start": 8457.56, + "end": 8457.82, + "probability": 0.6525 + }, + { + "start": 8459.22, + "end": 8460.34, + "probability": 0.6386 + }, + { + "start": 8461.5, + "end": 8466.82, + "probability": 0.8833 + }, + { + "start": 8468.4, + "end": 8470.92, + "probability": 0.7433 + }, + { + "start": 8471.68, + "end": 8476.38, + "probability": 0.9397 + }, + { + "start": 8477.78, + "end": 8479.86, + "probability": 0.6808 + }, + { + "start": 8480.14, + "end": 8482.92, + "probability": 0.6459 + }, + { + "start": 8483.24, + "end": 8485.72, + "probability": 0.5345 + }, + { + "start": 8486.26, + "end": 8490.76, + "probability": 0.5012 + }, + { + "start": 8491.58, + "end": 8499.94, + "probability": 0.9546 + }, + { + "start": 8500.74, + "end": 8503.02, + "probability": 0.9316 + }, + { + "start": 8504.18, + "end": 8505.84, + "probability": 0.8777 + }, + { + "start": 8506.16, + "end": 8508.82, + "probability": 0.6058 + }, + { + "start": 8508.84, + "end": 8511.54, + "probability": 0.7598 + }, + { + "start": 8512.58, + "end": 8514.88, + "probability": 0.9608 + }, + { + "start": 8515.54, + "end": 8518.02, + "probability": 0.9388 + }, + { + "start": 8519.9, + "end": 8521.98, + "probability": 0.8258 + }, + { + "start": 8522.8, + "end": 8525.92, + "probability": 0.8583 + }, + { + "start": 8526.74, + "end": 8528.58, + "probability": 0.7873 + }, + { + "start": 8529.34, + "end": 8531.76, + "probability": 0.6556 + }, + { + "start": 8532.08, + "end": 8533.98, + "probability": 0.581 + }, + { + "start": 8533.98, + "end": 8536.84, + "probability": 0.6482 + }, + { + "start": 8537.94, + "end": 8540.06, + "probability": 0.8485 + }, + { + "start": 8540.62, + "end": 8541.4, + "probability": 0.9634 + }, + { + "start": 8542.72, + "end": 8543.64, + "probability": 0.9214 + }, + { + "start": 8544.6, + "end": 8546.3, + "probability": 0.8064 + }, + { + "start": 8548.48, + "end": 8552.1, + "probability": 0.7381 + }, + { + "start": 8552.66, + "end": 8554.72, + "probability": 0.6929 + }, + { + "start": 8555.3, + "end": 8556.94, + "probability": 0.6535 + }, + { + "start": 8560.76, + "end": 8560.84, + "probability": 0.0176 + }, + { + "start": 8562.98, + "end": 8566.76, + "probability": 0.2144 + }, + { + "start": 8570.36, + "end": 8573.4, + "probability": 0.324 + }, + { + "start": 8574.72, + "end": 8578.32, + "probability": 0.8547 + }, + { + "start": 8579.08, + "end": 8582.22, + "probability": 0.8367 + }, + { + "start": 8583.36, + "end": 8585.68, + "probability": 0.8069 + }, + { + "start": 8586.54, + "end": 8588.82, + "probability": 0.9407 + }, + { + "start": 8589.7, + "end": 8592.48, + "probability": 0.6901 + }, + { + "start": 8593.98, + "end": 8596.12, + "probability": 0.9489 + }, + { + "start": 8597.34, + "end": 8598.88, + "probability": 0.4946 + }, + { + "start": 8599.9, + "end": 8600.2, + "probability": 0.9027 + }, + { + "start": 8603.16, + "end": 8608.4, + "probability": 0.6685 + }, + { + "start": 8610.2, + "end": 8612.18, + "probability": 0.7809 + }, + { + "start": 8613.54, + "end": 8615.48, + "probability": 0.7936 + }, + { + "start": 8616.06, + "end": 8619.38, + "probability": 0.8232 + }, + { + "start": 8620.22, + "end": 8623.56, + "probability": 0.8383 + }, + { + "start": 8624.0, + "end": 8627.5, + "probability": 0.7315 + }, + { + "start": 8628.26, + "end": 8628.66, + "probability": 0.9946 + }, + { + "start": 8629.84, + "end": 8630.88, + "probability": 0.3807 + }, + { + "start": 8631.52, + "end": 8633.5, + "probability": 0.9069 + }, + { + "start": 8634.6, + "end": 8637.3, + "probability": 0.9035 + }, + { + "start": 8637.42, + "end": 8641.08, + "probability": 0.7751 + }, + { + "start": 8641.7, + "end": 8643.98, + "probability": 0.9233 + }, + { + "start": 8645.34, + "end": 8647.36, + "probability": 0.9547 + }, + { + "start": 8648.08, + "end": 8653.34, + "probability": 0.9833 + }, + { + "start": 8653.98, + "end": 8655.02, + "probability": 0.5955 + }, + { + "start": 8656.08, + "end": 8656.42, + "probability": 0.6323 + }, + { + "start": 8657.2, + "end": 8658.02, + "probability": 0.6963 + }, + { + "start": 8658.74, + "end": 8659.16, + "probability": 0.9505 + }, + { + "start": 8659.9, + "end": 8660.68, + "probability": 0.886 + }, + { + "start": 8661.8, + "end": 8663.9, + "probability": 0.9724 + }, + { + "start": 8666.72, + "end": 8667.24, + "probability": 0.9849 + }, + { + "start": 8668.66, + "end": 8669.64, + "probability": 0.8173 + }, + { + "start": 8671.42, + "end": 8672.98, + "probability": 0.8017 + }, + { + "start": 8673.52, + "end": 8674.34, + "probability": 0.8618 + }, + { + "start": 8675.26, + "end": 8675.7, + "probability": 0.9819 + }, + { + "start": 8677.34, + "end": 8678.34, + "probability": 0.9727 + }, + { + "start": 8678.94, + "end": 8680.52, + "probability": 0.8591 + }, + { + "start": 8682.04, + "end": 8682.78, + "probability": 0.9959 + }, + { + "start": 8684.76, + "end": 8685.7, + "probability": 0.6008 + }, + { + "start": 8687.0, + "end": 8687.52, + "probability": 0.884 + }, + { + "start": 8688.48, + "end": 8689.32, + "probability": 0.8407 + }, + { + "start": 8690.12, + "end": 8692.66, + "probability": 0.9084 + }, + { + "start": 8693.48, + "end": 8695.54, + "probability": 0.9805 + }, + { + "start": 8698.38, + "end": 8700.08, + "probability": 0.8936 + }, + { + "start": 8700.8, + "end": 8701.28, + "probability": 0.967 + }, + { + "start": 8703.18, + "end": 8707.74, + "probability": 0.9457 + }, + { + "start": 8709.66, + "end": 8711.2, + "probability": 0.8917 + }, + { + "start": 8712.82, + "end": 8713.68, + "probability": 0.5254 + }, + { + "start": 8714.64, + "end": 8715.46, + "probability": 0.8436 + }, + { + "start": 8716.8, + "end": 8717.28, + "probability": 0.9671 + }, + { + "start": 8718.46, + "end": 8719.38, + "probability": 0.8128 + }, + { + "start": 8721.09, + "end": 8724.32, + "probability": 0.7065 + }, + { + "start": 8727.52, + "end": 8729.14, + "probability": 0.9502 + }, + { + "start": 8730.04, + "end": 8731.52, + "probability": 0.8043 + }, + { + "start": 8732.8, + "end": 8735.2, + "probability": 0.9116 + }, + { + "start": 8736.72, + "end": 8737.12, + "probability": 0.8391 + }, + { + "start": 8737.7, + "end": 8738.44, + "probability": 0.9333 + }, + { + "start": 8739.24, + "end": 8739.6, + "probability": 0.9886 + }, + { + "start": 8740.5, + "end": 8740.82, + "probability": 0.7259 + }, + { + "start": 8742.56, + "end": 8744.06, + "probability": 0.8246 + }, + { + "start": 8745.9, + "end": 8747.68, + "probability": 0.8865 + }, + { + "start": 8748.96, + "end": 8749.36, + "probability": 0.9676 + }, + { + "start": 8751.18, + "end": 8751.66, + "probability": 0.833 + }, + { + "start": 8753.16, + "end": 8754.74, + "probability": 0.928 + }, + { + "start": 8755.82, + "end": 8756.32, + "probability": 0.9808 + }, + { + "start": 8758.1, + "end": 8758.92, + "probability": 0.8825 + }, + { + "start": 8759.88, + "end": 8760.26, + "probability": 0.9875 + }, + { + "start": 8762.86, + "end": 8763.84, + "probability": 0.9485 + }, + { + "start": 8766.04, + "end": 8767.16, + "probability": 0.0043 + }, + { + "start": 8767.7, + "end": 8768.46, + "probability": 0.7704 + }, + { + "start": 8771.94, + "end": 8772.15, + "probability": 0.2325 + }, + { + "start": 8773.56, + "end": 8774.0, + "probability": 0.8257 + }, + { + "start": 8775.3, + "end": 8776.22, + "probability": 0.8142 + }, + { + "start": 8778.0, + "end": 8779.92, + "probability": 0.9296 + }, + { + "start": 8782.81, + "end": 8785.59, + "probability": 0.2367 + }, + { + "start": 8787.76, + "end": 8788.24, + "probability": 0.9946 + }, + { + "start": 8789.44, + "end": 8790.3, + "probability": 0.8478 + }, + { + "start": 8791.44, + "end": 8791.82, + "probability": 0.9556 + }, + { + "start": 8792.66, + "end": 8793.44, + "probability": 0.7164 + }, + { + "start": 8794.56, + "end": 8794.92, + "probability": 0.9806 + }, + { + "start": 8795.7, + "end": 8796.54, + "probability": 0.8196 + }, + { + "start": 8797.2, + "end": 8797.42, + "probability": 0.7618 + }, + { + "start": 8798.3, + "end": 8799.1, + "probability": 0.8207 + }, + { + "start": 8799.96, + "end": 8800.32, + "probability": 0.9236 + }, + { + "start": 8801.44, + "end": 8802.28, + "probability": 0.9636 + }, + { + "start": 8803.24, + "end": 8804.98, + "probability": 0.9451 + }, + { + "start": 8806.22, + "end": 8806.8, + "probability": 0.9626 + }, + { + "start": 8811.24, + "end": 8811.94, + "probability": 0.6401 + }, + { + "start": 8813.18, + "end": 8815.34, + "probability": 0.6811 + }, + { + "start": 8816.26, + "end": 8818.42, + "probability": 0.9665 + }, + { + "start": 8820.46, + "end": 8822.06, + "probability": 0.9221 + }, + { + "start": 8823.02, + "end": 8825.44, + "probability": 0.6888 + }, + { + "start": 8826.3, + "end": 8826.7, + "probability": 0.9857 + }, + { + "start": 8830.04, + "end": 8831.14, + "probability": 0.3373 + }, + { + "start": 8831.24, + "end": 8834.98, + "probability": 0.9507 + }, + { + "start": 8835.26, + "end": 8839.46, + "probability": 0.2805 + }, + { + "start": 8840.24, + "end": 8842.28, + "probability": 0.8647 + }, + { + "start": 8843.16, + "end": 8843.62, + "probability": 0.9463 + }, + { + "start": 8845.72, + "end": 8846.56, + "probability": 0.7086 + }, + { + "start": 8847.44, + "end": 8847.88, + "probability": 0.9661 + }, + { + "start": 8849.94, + "end": 8850.76, + "probability": 0.5784 + }, + { + "start": 8852.1, + "end": 8854.36, + "probability": 0.8079 + }, + { + "start": 8855.54, + "end": 8857.9, + "probability": 0.9379 + }, + { + "start": 8858.72, + "end": 8860.74, + "probability": 0.9666 + }, + { + "start": 8862.04, + "end": 8862.76, + "probability": 0.9902 + }, + { + "start": 8864.86, + "end": 8866.04, + "probability": 0.9507 + }, + { + "start": 8868.16, + "end": 8868.54, + "probability": 0.6375 + }, + { + "start": 8869.26, + "end": 8870.28, + "probability": 0.8738 + }, + { + "start": 8871.32, + "end": 8872.06, + "probability": 0.9946 + }, + { + "start": 8872.66, + "end": 8873.72, + "probability": 0.7248 + }, + { + "start": 8874.58, + "end": 8875.3, + "probability": 0.9529 + }, + { + "start": 8875.82, + "end": 8876.92, + "probability": 0.8214 + }, + { + "start": 8877.9, + "end": 8878.32, + "probability": 0.5972 + }, + { + "start": 8880.28, + "end": 8881.1, + "probability": 0.7866 + }, + { + "start": 8882.22, + "end": 8883.04, + "probability": 0.9318 + }, + { + "start": 8884.0, + "end": 8885.3, + "probability": 0.9103 + }, + { + "start": 8887.67, + "end": 8890.1, + "probability": 0.7619 + }, + { + "start": 8891.74, + "end": 8893.06, + "probability": 0.8058 + }, + { + "start": 8893.68, + "end": 8894.58, + "probability": 0.7983 + }, + { + "start": 8897.2, + "end": 8898.88, + "probability": 0.5153 + }, + { + "start": 8899.92, + "end": 8900.86, + "probability": 0.7418 + }, + { + "start": 8901.7, + "end": 8902.52, + "probability": 0.9041 + }, + { + "start": 8903.72, + "end": 8904.7, + "probability": 0.7269 + }, + { + "start": 8905.48, + "end": 8906.12, + "probability": 0.6759 + }, + { + "start": 8906.78, + "end": 8907.7, + "probability": 0.8164 + }, + { + "start": 8908.26, + "end": 8910.52, + "probability": 0.9765 + }, + { + "start": 8911.46, + "end": 8913.02, + "probability": 0.9695 + }, + { + "start": 8914.44, + "end": 8915.2, + "probability": 0.9941 + }, + { + "start": 8916.5, + "end": 8917.42, + "probability": 0.9706 + }, + { + "start": 8919.9, + "end": 8922.06, + "probability": 0.3856 + }, + { + "start": 8924.78, + "end": 8925.58, + "probability": 0.254 + }, + { + "start": 8927.14, + "end": 8927.84, + "probability": 0.8141 + }, + { + "start": 8928.6, + "end": 8929.26, + "probability": 0.693 + }, + { + "start": 8930.52, + "end": 8932.7, + "probability": 0.5135 + }, + { + "start": 8936.06, + "end": 8937.04, + "probability": 0.2387 + }, + { + "start": 8937.36, + "end": 8938.39, + "probability": 0.2069 + }, + { + "start": 8938.68, + "end": 8940.49, + "probability": 0.8684 + }, + { + "start": 8941.48, + "end": 8943.6, + "probability": 0.9423 + }, + { + "start": 8943.66, + "end": 8944.78, + "probability": 0.448 + }, + { + "start": 8945.7, + "end": 8946.56, + "probability": 0.0594 + }, + { + "start": 8948.26, + "end": 8949.08, + "probability": 0.675 + }, + { + "start": 8950.66, + "end": 8951.02, + "probability": 0.8615 + }, + { + "start": 8951.94, + "end": 8953.02, + "probability": 0.7958 + }, + { + "start": 8954.06, + "end": 8954.72, + "probability": 0.9539 + }, + { + "start": 8955.48, + "end": 8956.24, + "probability": 0.8233 + }, + { + "start": 8957.62, + "end": 8958.28, + "probability": 0.9646 + }, + { + "start": 8958.96, + "end": 8959.7, + "probability": 0.9472 + }, + { + "start": 8960.8, + "end": 8961.5, + "probability": 0.9452 + }, + { + "start": 8962.02, + "end": 8962.72, + "probability": 0.9352 + }, + { + "start": 8963.3, + "end": 8963.96, + "probability": 0.9899 + }, + { + "start": 8964.84, + "end": 8965.8, + "probability": 0.8449 + }, + { + "start": 8967.08, + "end": 8969.72, + "probability": 0.7601 + }, + { + "start": 8970.38, + "end": 8971.82, + "probability": 0.6612 + }, + { + "start": 8972.66, + "end": 8973.4, + "probability": 0.9476 + }, + { + "start": 8974.64, + "end": 8975.52, + "probability": 0.8841 + }, + { + "start": 8976.26, + "end": 8978.04, + "probability": 0.947 + }, + { + "start": 8978.98, + "end": 8981.18, + "probability": 0.9491 + }, + { + "start": 8982.44, + "end": 8983.64, + "probability": 0.5321 + }, + { + "start": 8984.24, + "end": 8985.1, + "probability": 0.8458 + }, + { + "start": 8986.28, + "end": 8987.18, + "probability": 0.8081 + }, + { + "start": 8988.5, + "end": 8991.52, + "probability": 0.8302 + }, + { + "start": 8992.9, + "end": 8994.68, + "probability": 0.8223 + }, + { + "start": 8995.26, + "end": 8996.3, + "probability": 0.7568 + }, + { + "start": 8998.52, + "end": 9000.88, + "probability": 0.8053 + }, + { + "start": 9002.88, + "end": 9003.32, + "probability": 0.8965 + }, + { + "start": 9005.16, + "end": 9005.96, + "probability": 0.7156 + }, + { + "start": 9008.02, + "end": 9008.84, + "probability": 0.6903 + }, + { + "start": 9010.76, + "end": 9011.04, + "probability": 0.3692 + }, + { + "start": 9015.48, + "end": 9016.28, + "probability": 0.5854 + }, + { + "start": 9020.58, + "end": 9022.2, + "probability": 0.6681 + }, + { + "start": 9025.64, + "end": 9027.26, + "probability": 0.6166 + }, + { + "start": 9027.8, + "end": 9028.4, + "probability": 0.8422 + }, + { + "start": 9029.94, + "end": 9030.78, + "probability": 0.6338 + }, + { + "start": 9032.06, + "end": 9033.48, + "probability": 0.6171 + }, + { + "start": 9034.72, + "end": 9039.42, + "probability": 0.8364 + }, + { + "start": 9040.96, + "end": 9041.86, + "probability": 0.9051 + }, + { + "start": 9041.9, + "end": 9042.52, + "probability": 0.5032 + }, + { + "start": 9043.08, + "end": 9044.9, + "probability": 0.736 + }, + { + "start": 9044.9, + "end": 9045.5, + "probability": 0.6489 + }, + { + "start": 9134.34, + "end": 9134.44, + "probability": 0.7368 + }, + { + "start": 9135.28, + "end": 9136.02, + "probability": 0.7632 + }, + { + "start": 9136.1, + "end": 9138.76, + "probability": 0.8742 + }, + { + "start": 9138.94, + "end": 9140.52, + "probability": 0.8994 + }, + { + "start": 9140.94, + "end": 9142.52, + "probability": 0.8546 + }, + { + "start": 9142.72, + "end": 9143.24, + "probability": 0.4938 + }, + { + "start": 9143.83, + "end": 9146.46, + "probability": 0.916 + }, + { + "start": 9146.9, + "end": 9150.4, + "probability": 0.9269 + }, + { + "start": 9152.32, + "end": 9154.08, + "probability": 0.9507 + }, + { + "start": 9154.14, + "end": 9155.72, + "probability": 0.867 + }, + { + "start": 9155.78, + "end": 9158.02, + "probability": 0.9298 + }, + { + "start": 9158.86, + "end": 9160.3, + "probability": 0.9626 + }, + { + "start": 9160.5, + "end": 9162.16, + "probability": 0.8412 + }, + { + "start": 9180.26, + "end": 9181.38, + "probability": 0.6239 + }, + { + "start": 9182.46, + "end": 9183.86, + "probability": 0.8231 + }, + { + "start": 9185.4, + "end": 9186.6, + "probability": 0.644 + }, + { + "start": 9188.04, + "end": 9189.0, + "probability": 0.8468 + }, + { + "start": 9189.2, + "end": 9191.88, + "probability": 0.9922 + }, + { + "start": 9191.88, + "end": 9196.0, + "probability": 0.9875 + }, + { + "start": 9196.58, + "end": 9200.9, + "probability": 0.9487 + }, + { + "start": 9201.74, + "end": 9202.7, + "probability": 0.9917 + }, + { + "start": 9203.34, + "end": 9205.4, + "probability": 0.9979 + }, + { + "start": 9206.04, + "end": 9212.52, + "probability": 0.9803 + }, + { + "start": 9212.52, + "end": 9216.48, + "probability": 0.9951 + }, + { + "start": 9216.5, + "end": 9217.26, + "probability": 0.9081 + }, + { + "start": 9218.78, + "end": 9228.18, + "probability": 0.9835 + }, + { + "start": 9228.26, + "end": 9229.46, + "probability": 0.7943 + }, + { + "start": 9229.52, + "end": 9233.4, + "probability": 0.9984 + }, + { + "start": 9233.54, + "end": 9235.34, + "probability": 0.8787 + }, + { + "start": 9236.18, + "end": 9238.86, + "probability": 0.9878 + }, + { + "start": 9239.06, + "end": 9245.12, + "probability": 0.9842 + }, + { + "start": 9245.12, + "end": 9249.48, + "probability": 0.9996 + }, + { + "start": 9251.0, + "end": 9255.72, + "probability": 0.8326 + }, + { + "start": 9256.24, + "end": 9258.76, + "probability": 0.7731 + }, + { + "start": 9259.66, + "end": 9263.52, + "probability": 0.9857 + }, + { + "start": 9263.58, + "end": 9267.56, + "probability": 0.9597 + }, + { + "start": 9268.28, + "end": 9270.62, + "probability": 0.965 + }, + { + "start": 9270.9, + "end": 9273.26, + "probability": 0.9912 + }, + { + "start": 9273.68, + "end": 9277.28, + "probability": 0.9709 + }, + { + "start": 9277.82, + "end": 9278.24, + "probability": 0.9587 + }, + { + "start": 9278.98, + "end": 9281.8, + "probability": 0.9987 + }, + { + "start": 9282.42, + "end": 9283.64, + "probability": 0.7486 + }, + { + "start": 9283.72, + "end": 9287.88, + "probability": 0.9585 + }, + { + "start": 9288.4, + "end": 9289.38, + "probability": 0.8641 + }, + { + "start": 9289.48, + "end": 9294.78, + "probability": 0.9219 + }, + { + "start": 9295.56, + "end": 9299.14, + "probability": 0.9325 + }, + { + "start": 9300.66, + "end": 9303.24, + "probability": 0.4197 + }, + { + "start": 9307.12, + "end": 9312.0, + "probability": 0.6768 + }, + { + "start": 9312.54, + "end": 9314.24, + "probability": 0.9941 + }, + { + "start": 9314.82, + "end": 9316.14, + "probability": 0.5004 + }, + { + "start": 9316.32, + "end": 9318.92, + "probability": 0.7961 + }, + { + "start": 9319.28, + "end": 9321.6, + "probability": 0.6584 + }, + { + "start": 9322.14, + "end": 9327.44, + "probability": 0.7816 + }, + { + "start": 9327.6, + "end": 9329.3, + "probability": 0.8744 + }, + { + "start": 9329.34, + "end": 9331.7, + "probability": 0.9971 + }, + { + "start": 9332.1, + "end": 9337.1, + "probability": 0.9812 + }, + { + "start": 9337.4, + "end": 9338.56, + "probability": 0.8316 + }, + { + "start": 9338.88, + "end": 9340.76, + "probability": 0.9927 + }, + { + "start": 9341.42, + "end": 9345.56, + "probability": 0.9773 + }, + { + "start": 9346.02, + "end": 9346.38, + "probability": 0.9619 + }, + { + "start": 9346.62, + "end": 9347.02, + "probability": 0.9551 + }, + { + "start": 9348.22, + "end": 9352.0, + "probability": 0.5135 + }, + { + "start": 9352.24, + "end": 9353.3, + "probability": 0.8761 + }, + { + "start": 9353.38, + "end": 9354.86, + "probability": 0.4908 + }, + { + "start": 9354.86, + "end": 9359.3, + "probability": 0.8853 + }, + { + "start": 9359.68, + "end": 9362.06, + "probability": 0.8037 + }, + { + "start": 9362.58, + "end": 9366.84, + "probability": 0.9879 + }, + { + "start": 9367.22, + "end": 9367.36, + "probability": 0.4594 + }, + { + "start": 9368.5, + "end": 9377.38, + "probability": 0.7747 + }, + { + "start": 9378.08, + "end": 9382.76, + "probability": 0.9976 + }, + { + "start": 9383.26, + "end": 9386.8, + "probability": 0.9902 + }, + { + "start": 9387.54, + "end": 9388.06, + "probability": 0.5964 + }, + { + "start": 9388.14, + "end": 9388.76, + "probability": 0.6849 + }, + { + "start": 9388.82, + "end": 9391.52, + "probability": 0.9722 + }, + { + "start": 9391.66, + "end": 9396.96, + "probability": 0.9559 + }, + { + "start": 9397.06, + "end": 9398.86, + "probability": 0.9006 + }, + { + "start": 9399.74, + "end": 9404.32, + "probability": 0.6609 + }, + { + "start": 9404.42, + "end": 9405.62, + "probability": 0.7386 + }, + { + "start": 9405.7, + "end": 9406.64, + "probability": 0.6607 + }, + { + "start": 9406.9, + "end": 9407.78, + "probability": 0.8405 + }, + { + "start": 9408.14, + "end": 9409.98, + "probability": 0.3561 + }, + { + "start": 9409.98, + "end": 9413.05, + "probability": 0.9958 + }, + { + "start": 9414.26, + "end": 9416.4, + "probability": 0.978 + }, + { + "start": 9416.82, + "end": 9418.42, + "probability": 0.9977 + }, + { + "start": 9419.12, + "end": 9420.68, + "probability": 0.915 + }, + { + "start": 9420.96, + "end": 9422.12, + "probability": 0.9078 + }, + { + "start": 9422.2, + "end": 9424.31, + "probability": 0.9827 + }, + { + "start": 9424.38, + "end": 9428.08, + "probability": 0.9664 + }, + { + "start": 9428.42, + "end": 9428.86, + "probability": 0.7469 + }, + { + "start": 9430.18, + "end": 9431.46, + "probability": 0.4732 + }, + { + "start": 9431.5, + "end": 9434.1, + "probability": 0.7117 + }, + { + "start": 9434.16, + "end": 9436.42, + "probability": 0.8783 + }, + { + "start": 9437.56, + "end": 9441.02, + "probability": 0.8743 + }, + { + "start": 9441.3, + "end": 9444.08, + "probability": 0.9343 + }, + { + "start": 9444.32, + "end": 9445.38, + "probability": 0.8318 + }, + { + "start": 9451.18, + "end": 9451.18, + "probability": 0.1298 + }, + { + "start": 9451.18, + "end": 9451.18, + "probability": 0.1541 + }, + { + "start": 9451.18, + "end": 9451.18, + "probability": 0.2286 + }, + { + "start": 9451.18, + "end": 9451.18, + "probability": 0.1324 + }, + { + "start": 9451.18, + "end": 9451.2, + "probability": 0.0247 + }, + { + "start": 9461.96, + "end": 9462.52, + "probability": 0.0926 + }, + { + "start": 9473.68, + "end": 9473.68, + "probability": 0.0841 + }, + { + "start": 9473.68, + "end": 9473.68, + "probability": 0.1333 + }, + { + "start": 9473.68, + "end": 9473.74, + "probability": 0.1415 + }, + { + "start": 9473.74, + "end": 9473.74, + "probability": 0.0186 + }, + { + "start": 9473.74, + "end": 9474.96, + "probability": 0.0478 + }, + { + "start": 9474.96, + "end": 9475.0, + "probability": 0.0714 + }, + { + "start": 9482.44, + "end": 9485.98, + "probability": 0.0418 + }, + { + "start": 9485.98, + "end": 9485.98, + "probability": 0.0126 + }, + { + "start": 9486.54, + "end": 9489.8, + "probability": 0.5222 + }, + { + "start": 9494.68, + "end": 9500.32, + "probability": 0.4423 + }, + { + "start": 9501.18, + "end": 9505.92, + "probability": 0.0274 + }, + { + "start": 9534.44, + "end": 9534.96, + "probability": 0.0222 + }, + { + "start": 9535.02, + "end": 9539.42, + "probability": 0.9509 + }, + { + "start": 9540.14, + "end": 9542.17, + "probability": 0.8863 + }, + { + "start": 9543.16, + "end": 9545.32, + "probability": 0.9731 + }, + { + "start": 9545.32, + "end": 9547.84, + "probability": 0.996 + }, + { + "start": 9548.32, + "end": 9548.94, + "probability": 0.806 + }, + { + "start": 9549.1, + "end": 9551.76, + "probability": 0.9612 + }, + { + "start": 9552.5, + "end": 9555.8, + "probability": 0.8331 + }, + { + "start": 9557.14, + "end": 9561.34, + "probability": 0.9144 + }, + { + "start": 9561.86, + "end": 9565.34, + "probability": 0.996 + }, + { + "start": 9565.96, + "end": 9569.34, + "probability": 0.9934 + }, + { + "start": 9570.44, + "end": 9574.88, + "probability": 0.9634 + }, + { + "start": 9575.56, + "end": 9579.36, + "probability": 0.9845 + }, + { + "start": 9579.94, + "end": 9581.0, + "probability": 0.7847 + }, + { + "start": 9581.48, + "end": 9584.5, + "probability": 0.9978 + }, + { + "start": 9584.5, + "end": 9588.74, + "probability": 0.999 + }, + { + "start": 9589.54, + "end": 9595.92, + "probability": 0.9988 + }, + { + "start": 9596.24, + "end": 9597.46, + "probability": 0.8496 + }, + { + "start": 9598.24, + "end": 9601.56, + "probability": 0.9984 + }, + { + "start": 9602.38, + "end": 9604.28, + "probability": 0.9761 + }, + { + "start": 9604.92, + "end": 9606.42, + "probability": 0.9141 + }, + { + "start": 9607.08, + "end": 9610.82, + "probability": 0.9773 + }, + { + "start": 9611.5, + "end": 9613.48, + "probability": 0.9934 + }, + { + "start": 9613.56, + "end": 9615.44, + "probability": 0.9967 + }, + { + "start": 9616.18, + "end": 9617.6, + "probability": 0.9971 + }, + { + "start": 9618.34, + "end": 9619.88, + "probability": 0.9976 + }, + { + "start": 9620.92, + "end": 9622.46, + "probability": 0.9975 + }, + { + "start": 9623.88, + "end": 9626.38, + "probability": 0.8657 + }, + { + "start": 9626.68, + "end": 9628.64, + "probability": 0.9978 + }, + { + "start": 9628.7, + "end": 9629.84, + "probability": 0.9424 + }, + { + "start": 9631.46, + "end": 9632.46, + "probability": 0.9646 + }, + { + "start": 9632.58, + "end": 9636.66, + "probability": 0.9845 + }, + { + "start": 9637.24, + "end": 9640.8, + "probability": 0.9807 + }, + { + "start": 9641.72, + "end": 9644.24, + "probability": 0.9975 + }, + { + "start": 9644.54, + "end": 9648.82, + "probability": 0.9871 + }, + { + "start": 9649.38, + "end": 9651.4, + "probability": 0.9797 + }, + { + "start": 9652.06, + "end": 9656.58, + "probability": 0.9845 + }, + { + "start": 9657.32, + "end": 9660.68, + "probability": 0.9974 + }, + { + "start": 9661.38, + "end": 9665.24, + "probability": 0.9943 + }, + { + "start": 9665.78, + "end": 9670.16, + "probability": 0.9949 + }, + { + "start": 9671.26, + "end": 9674.5, + "probability": 0.9976 + }, + { + "start": 9675.4, + "end": 9679.22, + "probability": 0.9937 + }, + { + "start": 9680.8, + "end": 9685.82, + "probability": 0.9946 + }, + { + "start": 9686.56, + "end": 9690.98, + "probability": 0.9969 + }, + { + "start": 9691.74, + "end": 9693.98, + "probability": 0.7383 + }, + { + "start": 9694.82, + "end": 9696.19, + "probability": 0.9835 + }, + { + "start": 9696.28, + "end": 9699.12, + "probability": 0.9707 + }, + { + "start": 9699.84, + "end": 9702.84, + "probability": 0.9065 + }, + { + "start": 9703.46, + "end": 9706.92, + "probability": 0.8568 + }, + { + "start": 9707.56, + "end": 9712.22, + "probability": 0.9965 + }, + { + "start": 9713.06, + "end": 9718.64, + "probability": 0.9753 + }, + { + "start": 9719.62, + "end": 9722.34, + "probability": 0.9486 + }, + { + "start": 9723.58, + "end": 9726.96, + "probability": 0.8941 + }, + { + "start": 9727.72, + "end": 9730.36, + "probability": 0.7832 + }, + { + "start": 9730.9, + "end": 9732.7, + "probability": 0.9634 + }, + { + "start": 9733.5, + "end": 9736.4, + "probability": 0.5767 + }, + { + "start": 9737.0, + "end": 9740.88, + "probability": 0.9688 + }, + { + "start": 9741.38, + "end": 9743.86, + "probability": 0.9943 + }, + { + "start": 9743.86, + "end": 9748.98, + "probability": 0.9401 + }, + { + "start": 9749.5, + "end": 9751.36, + "probability": 0.5595 + }, + { + "start": 9752.0, + "end": 9753.32, + "probability": 0.986 + }, + { + "start": 9753.94, + "end": 9755.68, + "probability": 0.9945 + }, + { + "start": 9755.76, + "end": 9757.8, + "probability": 0.9553 + }, + { + "start": 9758.48, + "end": 9760.72, + "probability": 0.8701 + }, + { + "start": 9761.86, + "end": 9765.5, + "probability": 0.9922 + }, + { + "start": 9765.5, + "end": 9768.76, + "probability": 0.8788 + }, + { + "start": 9769.24, + "end": 9771.2, + "probability": 0.7725 + }, + { + "start": 9771.74, + "end": 9774.0, + "probability": 0.9792 + }, + { + "start": 9775.04, + "end": 9776.48, + "probability": 0.6618 + }, + { + "start": 9777.18, + "end": 9778.5, + "probability": 0.8822 + }, + { + "start": 9779.16, + "end": 9779.86, + "probability": 0.7074 + }, + { + "start": 9780.04, + "end": 9783.56, + "probability": 0.9964 + }, + { + "start": 9783.56, + "end": 9787.98, + "probability": 0.9951 + }, + { + "start": 9788.68, + "end": 9791.7, + "probability": 0.9973 + }, + { + "start": 9792.42, + "end": 9796.64, + "probability": 0.8382 + }, + { + "start": 9797.3, + "end": 9799.52, + "probability": 0.8344 + }, + { + "start": 9800.34, + "end": 9801.8, + "probability": 0.8527 + }, + { + "start": 9801.88, + "end": 9804.84, + "probability": 0.9747 + }, + { + "start": 9805.62, + "end": 9808.28, + "probability": 0.9833 + }, + { + "start": 9808.5, + "end": 9808.98, + "probability": 0.7588 + }, + { + "start": 9809.06, + "end": 9809.98, + "probability": 0.6952 + }, + { + "start": 9810.12, + "end": 9810.86, + "probability": 0.9528 + }, + { + "start": 9810.92, + "end": 9811.87, + "probability": 0.981 + }, + { + "start": 9812.2, + "end": 9814.44, + "probability": 0.9802 + }, + { + "start": 9815.26, + "end": 9816.66, + "probability": 0.91 + }, + { + "start": 9817.86, + "end": 9818.2, + "probability": 0.7155 + }, + { + "start": 9818.28, + "end": 9818.58, + "probability": 0.9749 + }, + { + "start": 9818.78, + "end": 9821.36, + "probability": 0.9871 + }, + { + "start": 9822.3, + "end": 9823.2, + "probability": 0.8052 + }, + { + "start": 9823.34, + "end": 9827.76, + "probability": 0.9958 + }, + { + "start": 9828.34, + "end": 9831.28, + "probability": 0.9769 + }, + { + "start": 9831.36, + "end": 9835.06, + "probability": 0.9799 + }, + { + "start": 9835.1, + "end": 9835.1, + "probability": 0.3727 + }, + { + "start": 9835.1, + "end": 9839.94, + "probability": 0.9489 + }, + { + "start": 9839.94, + "end": 9843.86, + "probability": 0.9946 + }, + { + "start": 9844.0, + "end": 9844.4, + "probability": 0.6353 + }, + { + "start": 9846.28, + "end": 9847.08, + "probability": 0.1797 + }, + { + "start": 9847.08, + "end": 9847.08, + "probability": 0.0772 + }, + { + "start": 9847.08, + "end": 9847.36, + "probability": 0.5035 + }, + { + "start": 9848.36, + "end": 9849.32, + "probability": 0.7712 + }, + { + "start": 9849.52, + "end": 9849.54, + "probability": 0.6187 + }, + { + "start": 9849.64, + "end": 9854.62, + "probability": 0.9072 + }, + { + "start": 9854.78, + "end": 9855.34, + "probability": 0.2376 + }, + { + "start": 9856.22, + "end": 9856.88, + "probability": 0.3398 + }, + { + "start": 9856.88, + "end": 9856.88, + "probability": 0.0804 + }, + { + "start": 9856.88, + "end": 9857.54, + "probability": 0.5007 + }, + { + "start": 9857.72, + "end": 9859.18, + "probability": 0.5832 + }, + { + "start": 9859.3, + "end": 9860.16, + "probability": 0.583 + }, + { + "start": 9860.18, + "end": 9861.16, + "probability": 0.3023 + }, + { + "start": 9861.82, + "end": 9863.04, + "probability": 0.9596 + }, + { + "start": 9863.68, + "end": 9864.39, + "probability": 0.9062 + }, + { + "start": 9865.28, + "end": 9871.38, + "probability": 0.9902 + }, + { + "start": 9872.02, + "end": 9876.46, + "probability": 0.9863 + }, + { + "start": 9876.56, + "end": 9879.78, + "probability": 0.9628 + }, + { + "start": 9880.16, + "end": 9881.14, + "probability": 0.8842 + }, + { + "start": 9881.54, + "end": 9882.44, + "probability": 0.9094 + }, + { + "start": 9882.76, + "end": 9883.2, + "probability": 0.7732 + }, + { + "start": 9883.34, + "end": 9885.6, + "probability": 0.9822 + }, + { + "start": 9885.64, + "end": 9886.14, + "probability": 0.6476 + }, + { + "start": 9886.3, + "end": 9888.96, + "probability": 0.9875 + }, + { + "start": 9889.38, + "end": 9893.02, + "probability": 0.9942 + }, + { + "start": 9893.4, + "end": 9894.64, + "probability": 0.9768 + }, + { + "start": 9895.0, + "end": 9896.16, + "probability": 0.6114 + }, + { + "start": 9896.8, + "end": 9901.08, + "probability": 0.9865 + }, + { + "start": 9901.08, + "end": 9904.2, + "probability": 0.9946 + }, + { + "start": 9904.64, + "end": 9907.26, + "probability": 0.8931 + }, + { + "start": 9907.52, + "end": 9908.64, + "probability": 0.7891 + }, + { + "start": 9908.88, + "end": 9910.16, + "probability": 0.963 + }, + { + "start": 9910.54, + "end": 9912.18, + "probability": 0.999 + }, + { + "start": 9912.84, + "end": 9915.0, + "probability": 0.9771 + }, + { + "start": 9915.32, + "end": 9917.04, + "probability": 0.9802 + }, + { + "start": 9917.16, + "end": 9918.28, + "probability": 0.6963 + }, + { + "start": 9918.76, + "end": 9923.96, + "probability": 0.9954 + }, + { + "start": 9924.08, + "end": 9925.54, + "probability": 0.9749 + }, + { + "start": 9927.3, + "end": 9933.8, + "probability": 0.9772 + }, + { + "start": 9934.7, + "end": 9936.64, + "probability": 0.9029 + }, + { + "start": 9937.06, + "end": 9938.38, + "probability": 0.9703 + }, + { + "start": 9938.54, + "end": 9939.54, + "probability": 0.8952 + }, + { + "start": 9939.94, + "end": 9941.76, + "probability": 0.8997 + }, + { + "start": 9943.18, + "end": 9943.32, + "probability": 0.0483 + }, + { + "start": 9943.32, + "end": 9943.94, + "probability": 0.6355 + }, + { + "start": 9944.1, + "end": 9945.94, + "probability": 0.5417 + }, + { + "start": 9946.36, + "end": 9949.02, + "probability": 0.9376 + }, + { + "start": 9949.62, + "end": 9950.76, + "probability": 0.7297 + }, + { + "start": 9951.3, + "end": 9955.92, + "probability": 0.9805 + }, + { + "start": 9956.8, + "end": 9958.21, + "probability": 0.9465 + }, + { + "start": 9958.66, + "end": 9961.66, + "probability": 0.9956 + }, + { + "start": 9962.24, + "end": 9963.32, + "probability": 0.9662 + }, + { + "start": 9963.46, + "end": 9966.25, + "probability": 0.9911 + }, + { + "start": 9967.22, + "end": 9970.22, + "probability": 0.9759 + }, + { + "start": 9970.86, + "end": 9974.1, + "probability": 0.9934 + }, + { + "start": 9974.62, + "end": 9978.88, + "probability": 0.9985 + }, + { + "start": 9978.98, + "end": 9980.94, + "probability": 0.9888 + }, + { + "start": 9981.44, + "end": 9983.76, + "probability": 0.998 + }, + { + "start": 9983.76, + "end": 9986.74, + "probability": 0.9988 + }, + { + "start": 9987.14, + "end": 9987.8, + "probability": 0.9751 + }, + { + "start": 9987.88, + "end": 9989.33, + "probability": 0.7135 + }, + { + "start": 9989.62, + "end": 9990.58, + "probability": 0.8711 + }, + { + "start": 9990.92, + "end": 9995.58, + "probability": 0.9778 + }, + { + "start": 9995.96, + "end": 10000.84, + "probability": 0.954 + }, + { + "start": 10000.84, + "end": 10004.18, + "probability": 0.9641 + }, + { + "start": 10004.44, + "end": 10008.02, + "probability": 0.9621 + }, + { + "start": 10008.5, + "end": 10010.9, + "probability": 0.9941 + }, + { + "start": 10011.26, + "end": 10013.98, + "probability": 0.9972 + }, + { + "start": 10014.8, + "end": 10016.56, + "probability": 0.6605 + }, + { + "start": 10016.82, + "end": 10019.4, + "probability": 0.8555 + }, + { + "start": 10021.34, + "end": 10021.86, + "probability": 0.2568 + }, + { + "start": 10024.0, + "end": 10025.84, + "probability": 0.5976 + }, + { + "start": 10025.84, + "end": 10025.84, + "probability": 0.4371 + }, + { + "start": 10025.84, + "end": 10027.44, + "probability": 0.0185 + }, + { + "start": 10030.46, + "end": 10033.0, + "probability": 0.0226 + }, + { + "start": 10037.84, + "end": 10041.29, + "probability": 0.0552 + }, + { + "start": 10044.16, + "end": 10049.8, + "probability": 0.081 + }, + { + "start": 10064.46, + "end": 10069.68, + "probability": 0.9895 + }, + { + "start": 10070.72, + "end": 10073.22, + "probability": 0.9532 + }, + { + "start": 10074.3, + "end": 10078.6, + "probability": 0.9834 + }, + { + "start": 10079.7, + "end": 10084.36, + "probability": 0.9949 + }, + { + "start": 10085.66, + "end": 10089.32, + "probability": 0.7613 + }, + { + "start": 10090.08, + "end": 10094.24, + "probability": 0.9452 + }, + { + "start": 10094.44, + "end": 10095.0, + "probability": 0.9137 + }, + { + "start": 10095.18, + "end": 10095.52, + "probability": 0.9139 + }, + { + "start": 10095.82, + "end": 10096.02, + "probability": 0.8792 + }, + { + "start": 10097.46, + "end": 10100.5, + "probability": 0.9288 + }, + { + "start": 10102.04, + "end": 10102.72, + "probability": 0.7771 + }, + { + "start": 10103.24, + "end": 10106.78, + "probability": 0.9875 + }, + { + "start": 10108.24, + "end": 10112.58, + "probability": 0.9781 + }, + { + "start": 10113.52, + "end": 10117.02, + "probability": 0.7981 + }, + { + "start": 10117.96, + "end": 10120.7, + "probability": 0.9864 + }, + { + "start": 10121.46, + "end": 10124.98, + "probability": 0.7496 + }, + { + "start": 10125.1, + "end": 10131.14, + "probability": 0.9772 + }, + { + "start": 10131.76, + "end": 10133.02, + "probability": 0.7566 + }, + { + "start": 10133.3, + "end": 10136.48, + "probability": 0.9857 + }, + { + "start": 10138.16, + "end": 10142.24, + "probability": 0.9881 + }, + { + "start": 10142.9, + "end": 10145.2, + "probability": 0.8883 + }, + { + "start": 10145.98, + "end": 10149.14, + "probability": 0.9876 + }, + { + "start": 10150.04, + "end": 10155.02, + "probability": 0.9902 + }, + { + "start": 10156.14, + "end": 10156.58, + "probability": 0.7565 + }, + { + "start": 10156.78, + "end": 10160.54, + "probability": 0.9773 + }, + { + "start": 10161.3, + "end": 10163.98, + "probability": 0.8906 + }, + { + "start": 10164.62, + "end": 10169.4, + "probability": 0.9233 + }, + { + "start": 10170.38, + "end": 10173.44, + "probability": 0.6853 + }, + { + "start": 10174.84, + "end": 10175.93, + "probability": 0.6034 + }, + { + "start": 10176.26, + "end": 10178.62, + "probability": 0.9585 + }, + { + "start": 10179.28, + "end": 10179.96, + "probability": 0.7006 + }, + { + "start": 10180.0, + "end": 10183.4, + "probability": 0.8895 + }, + { + "start": 10183.84, + "end": 10187.44, + "probability": 0.948 + }, + { + "start": 10189.78, + "end": 10191.48, + "probability": 0.0333 + }, + { + "start": 10195.66, + "end": 10196.74, + "probability": 0.5529 + }, + { + "start": 10198.08, + "end": 10198.52, + "probability": 0.7883 + }, + { + "start": 10200.28, + "end": 10201.36, + "probability": 0.5209 + }, + { + "start": 10202.2, + "end": 10205.6, + "probability": 0.8027 + }, + { + "start": 10206.34, + "end": 10208.34, + "probability": 0.9391 + }, + { + "start": 10211.72, + "end": 10212.6, + "probability": 0.6268 + }, + { + "start": 10219.6, + "end": 10220.24, + "probability": 0.8074 + }, + { + "start": 10222.56, + "end": 10223.38, + "probability": 0.8509 + }, + { + "start": 10224.16, + "end": 10224.92, + "probability": 0.8884 + }, + { + "start": 10225.52, + "end": 10226.44, + "probability": 0.8026 + }, + { + "start": 10227.96, + "end": 10230.0, + "probability": 0.7623 + }, + { + "start": 10239.28, + "end": 10241.06, + "probability": 0.6241 + }, + { + "start": 10241.92, + "end": 10242.3, + "probability": 0.6558 + }, + { + "start": 10245.78, + "end": 10246.78, + "probability": 0.582 + }, + { + "start": 10247.8, + "end": 10248.2, + "probability": 0.8184 + }, + { + "start": 10249.52, + "end": 10250.42, + "probability": 0.5117 + }, + { + "start": 10254.92, + "end": 10256.84, + "probability": 0.7969 + }, + { + "start": 10258.5, + "end": 10260.28, + "probability": 0.91 + }, + { + "start": 10262.48, + "end": 10264.58, + "probability": 0.9007 + }, + { + "start": 10267.02, + "end": 10267.52, + "probability": 0.8965 + }, + { + "start": 10268.56, + "end": 10269.46, + "probability": 0.9443 + }, + { + "start": 10270.5, + "end": 10270.98, + "probability": 0.9823 + }, + { + "start": 10272.22, + "end": 10273.26, + "probability": 0.9561 + }, + { + "start": 10276.14, + "end": 10278.38, + "probability": 0.9513 + }, + { + "start": 10279.16, + "end": 10279.6, + "probability": 0.9834 + }, + { + "start": 10280.98, + "end": 10284.5, + "probability": 0.7392 + }, + { + "start": 10285.22, + "end": 10286.96, + "probability": 0.9639 + }, + { + "start": 10288.04, + "end": 10290.5, + "probability": 0.6968 + }, + { + "start": 10291.7, + "end": 10293.66, + "probability": 0.8976 + }, + { + "start": 10294.42, + "end": 10296.5, + "probability": 0.9722 + }, + { + "start": 10297.46, + "end": 10299.12, + "probability": 0.9537 + }, + { + "start": 10300.72, + "end": 10301.12, + "probability": 0.6115 + }, + { + "start": 10302.8, + "end": 10303.7, + "probability": 0.4138 + }, + { + "start": 10304.58, + "end": 10306.14, + "probability": 0.8316 + }, + { + "start": 10306.86, + "end": 10307.3, + "probability": 0.9644 + }, + { + "start": 10308.34, + "end": 10309.06, + "probability": 0.791 + }, + { + "start": 10309.64, + "end": 10314.1, + "probability": 0.9318 + }, + { + "start": 10315.34, + "end": 10317.04, + "probability": 0.9417 + }, + { + "start": 10318.06, + "end": 10318.46, + "probability": 0.9823 + }, + { + "start": 10319.46, + "end": 10320.3, + "probability": 0.8231 + }, + { + "start": 10321.82, + "end": 10322.26, + "probability": 0.9891 + }, + { + "start": 10323.38, + "end": 10323.98, + "probability": 0.9678 + }, + { + "start": 10324.66, + "end": 10326.28, + "probability": 0.9858 + }, + { + "start": 10327.56, + "end": 10329.14, + "probability": 0.7429 + }, + { + "start": 10330.58, + "end": 10332.28, + "probability": 0.9515 + }, + { + "start": 10333.2, + "end": 10333.7, + "probability": 0.9238 + }, + { + "start": 10334.48, + "end": 10335.3, + "probability": 0.8047 + }, + { + "start": 10336.26, + "end": 10337.78, + "probability": 0.9825 + }, + { + "start": 10340.22, + "end": 10341.86, + "probability": 0.9554 + }, + { + "start": 10343.22, + "end": 10344.84, + "probability": 0.9841 + }, + { + "start": 10346.36, + "end": 10348.34, + "probability": 0.805 + }, + { + "start": 10351.66, + "end": 10352.68, + "probability": 0.7952 + }, + { + "start": 10353.6, + "end": 10354.58, + "probability": 0.712 + }, + { + "start": 10355.52, + "end": 10356.3, + "probability": 0.8997 + }, + { + "start": 10356.94, + "end": 10357.96, + "probability": 0.6721 + }, + { + "start": 10359.18, + "end": 10360.94, + "probability": 0.9355 + }, + { + "start": 10361.74, + "end": 10362.2, + "probability": 0.8506 + }, + { + "start": 10363.06, + "end": 10366.02, + "probability": 0.9338 + }, + { + "start": 10366.82, + "end": 10367.26, + "probability": 0.9814 + }, + { + "start": 10368.72, + "end": 10369.48, + "probability": 0.9784 + }, + { + "start": 10370.68, + "end": 10372.94, + "probability": 0.9585 + }, + { + "start": 10374.72, + "end": 10376.32, + "probability": 0.6586 + }, + { + "start": 10377.54, + "end": 10379.06, + "probability": 0.9589 + }, + { + "start": 10380.6, + "end": 10381.64, + "probability": 0.7443 + }, + { + "start": 10382.24, + "end": 10383.24, + "probability": 0.3055 + }, + { + "start": 10384.26, + "end": 10384.66, + "probability": 0.907 + }, + { + "start": 10385.58, + "end": 10386.46, + "probability": 0.6622 + }, + { + "start": 10387.46, + "end": 10387.76, + "probability": 0.929 + }, + { + "start": 10388.54, + "end": 10389.38, + "probability": 0.3929 + }, + { + "start": 10390.22, + "end": 10391.74, + "probability": 0.898 + }, + { + "start": 10393.5, + "end": 10394.5, + "probability": 0.5134 + }, + { + "start": 10395.08, + "end": 10395.8, + "probability": 0.9412 + }, + { + "start": 10398.54, + "end": 10399.2, + "probability": 0.9883 + }, + { + "start": 10399.72, + "end": 10400.72, + "probability": 0.947 + }, + { + "start": 10401.98, + "end": 10402.34, + "probability": 0.9189 + }, + { + "start": 10403.12, + "end": 10403.8, + "probability": 0.8052 + }, + { + "start": 10405.02, + "end": 10405.66, + "probability": 0.852 + }, + { + "start": 10406.2, + "end": 10406.76, + "probability": 0.775 + }, + { + "start": 10407.98, + "end": 10408.58, + "probability": 0.9364 + }, + { + "start": 10409.1, + "end": 10409.8, + "probability": 0.9213 + }, + { + "start": 10411.14, + "end": 10412.82, + "probability": 0.9089 + }, + { + "start": 10414.76, + "end": 10417.48, + "probability": 0.9438 + }, + { + "start": 10419.02, + "end": 10420.38, + "probability": 0.9468 + }, + { + "start": 10421.1, + "end": 10423.5, + "probability": 0.7343 + }, + { + "start": 10425.84, + "end": 10426.66, + "probability": 0.9615 + }, + { + "start": 10432.42, + "end": 10433.02, + "probability": 0.5596 + }, + { + "start": 10433.72, + "end": 10434.12, + "probability": 0.7734 + }, + { + "start": 10434.72, + "end": 10435.66, + "probability": 0.9299 + }, + { + "start": 10438.06, + "end": 10439.46, + "probability": 0.606 + }, + { + "start": 10440.68, + "end": 10442.52, + "probability": 0.955 + }, + { + "start": 10443.34, + "end": 10443.8, + "probability": 0.9928 + }, + { + "start": 10444.54, + "end": 10445.42, + "probability": 0.8563 + }, + { + "start": 10446.06, + "end": 10446.54, + "probability": 0.9862 + }, + { + "start": 10447.34, + "end": 10448.1, + "probability": 0.5543 + }, + { + "start": 10448.92, + "end": 10450.78, + "probability": 0.9906 + }, + { + "start": 10451.96, + "end": 10453.88, + "probability": 0.8298 + }, + { + "start": 10455.52, + "end": 10455.98, + "probability": 0.7365 + }, + { + "start": 10457.44, + "end": 10458.68, + "probability": 0.7498 + }, + { + "start": 10459.36, + "end": 10459.88, + "probability": 0.9489 + }, + { + "start": 10460.6, + "end": 10461.56, + "probability": 0.8763 + }, + { + "start": 10463.22, + "end": 10464.86, + "probability": 0.948 + }, + { + "start": 10465.8, + "end": 10467.46, + "probability": 0.9277 + }, + { + "start": 10473.7, + "end": 10475.52, + "probability": 0.2222 + }, + { + "start": 10477.38, + "end": 10478.4, + "probability": 0.3703 + }, + { + "start": 10479.32, + "end": 10479.66, + "probability": 0.8328 + }, + { + "start": 10480.98, + "end": 10481.74, + "probability": 0.4875 + }, + { + "start": 10482.7, + "end": 10483.14, + "probability": 0.9253 + }, + { + "start": 10484.44, + "end": 10485.16, + "probability": 0.8812 + }, + { + "start": 10486.78, + "end": 10487.28, + "probability": 0.9829 + }, + { + "start": 10488.22, + "end": 10489.14, + "probability": 0.9696 + }, + { + "start": 10489.94, + "end": 10490.24, + "probability": 0.8911 + }, + { + "start": 10491.0, + "end": 10491.96, + "probability": 0.8254 + }, + { + "start": 10493.2, + "end": 10494.8, + "probability": 0.933 + }, + { + "start": 10496.12, + "end": 10498.64, + "probability": 0.9039 + }, + { + "start": 10499.16, + "end": 10501.86, + "probability": 0.9721 + }, + { + "start": 10503.22, + "end": 10503.88, + "probability": 0.7762 + }, + { + "start": 10504.72, + "end": 10505.9, + "probability": 0.7864 + }, + { + "start": 10506.96, + "end": 10507.38, + "probability": 0.9139 + }, + { + "start": 10508.48, + "end": 10508.92, + "probability": 0.8378 + }, + { + "start": 10510.1, + "end": 10512.98, + "probability": 0.8989 + }, + { + "start": 10514.02, + "end": 10515.9, + "probability": 0.8164 + }, + { + "start": 10524.5, + "end": 10525.84, + "probability": 0.6315 + }, + { + "start": 10526.9, + "end": 10527.36, + "probability": 0.9023 + }, + { + "start": 10528.74, + "end": 10531.08, + "probability": 0.9294 + }, + { + "start": 10531.92, + "end": 10532.66, + "probability": 0.7859 + }, + { + "start": 10534.26, + "end": 10535.96, + "probability": 0.8717 + }, + { + "start": 10537.16, + "end": 10537.66, + "probability": 0.9956 + }, + { + "start": 10538.7, + "end": 10539.5, + "probability": 0.9466 + }, + { + "start": 10540.26, + "end": 10540.7, + "probability": 0.9945 + }, + { + "start": 10541.5, + "end": 10542.26, + "probability": 0.7823 + }, + { + "start": 10543.58, + "end": 10545.94, + "probability": 0.6239 + }, + { + "start": 10548.76, + "end": 10549.62, + "probability": 0.9925 + }, + { + "start": 10550.22, + "end": 10551.0, + "probability": 0.741 + }, + { + "start": 10551.96, + "end": 10553.54, + "probability": 0.7809 + }, + { + "start": 10555.08, + "end": 10556.68, + "probability": 0.9372 + }, + { + "start": 10557.76, + "end": 10559.34, + "probability": 0.9601 + }, + { + "start": 10560.56, + "end": 10561.26, + "probability": 0.8895 + }, + { + "start": 10562.34, + "end": 10563.4, + "probability": 0.872 + }, + { + "start": 10564.52, + "end": 10566.1, + "probability": 0.9176 + }, + { + "start": 10567.74, + "end": 10568.2, + "probability": 0.992 + }, + { + "start": 10569.9, + "end": 10570.9, + "probability": 0.7734 + }, + { + "start": 10573.3, + "end": 10575.12, + "probability": 0.6925 + }, + { + "start": 10576.64, + "end": 10577.3, + "probability": 0.5121 + }, + { + "start": 10578.52, + "end": 10578.88, + "probability": 0.9733 + }, + { + "start": 10579.64, + "end": 10580.34, + "probability": 0.8805 + }, + { + "start": 10582.92, + "end": 10584.48, + "probability": 0.9267 + }, + { + "start": 10585.38, + "end": 10585.82, + "probability": 0.9609 + }, + { + "start": 10587.68, + "end": 10588.78, + "probability": 0.9288 + }, + { + "start": 10590.36, + "end": 10591.9, + "probability": 0.9189 + }, + { + "start": 10593.16, + "end": 10596.36, + "probability": 0.9676 + }, + { + "start": 10598.96, + "end": 10599.86, + "probability": 0.8201 + }, + { + "start": 10601.04, + "end": 10601.44, + "probability": 0.9956 + }, + { + "start": 10602.66, + "end": 10603.4, + "probability": 0.2576 + }, + { + "start": 10604.4, + "end": 10604.86, + "probability": 0.9832 + }, + { + "start": 10605.7, + "end": 10606.72, + "probability": 0.8439 + }, + { + "start": 10607.7, + "end": 10610.66, + "probability": 0.9594 + }, + { + "start": 10611.6, + "end": 10617.54, + "probability": 0.9667 + }, + { + "start": 10618.52, + "end": 10619.56, + "probability": 0.8609 + }, + { + "start": 10621.37, + "end": 10624.96, + "probability": 0.9048 + }, + { + "start": 10626.14, + "end": 10627.92, + "probability": 0.9924 + }, + { + "start": 10628.64, + "end": 10629.1, + "probability": 0.9778 + }, + { + "start": 10630.08, + "end": 10630.82, + "probability": 0.8011 + }, + { + "start": 10631.62, + "end": 10634.32, + "probability": 0.7808 + }, + { + "start": 10636.5, + "end": 10638.16, + "probability": 0.8561 + }, + { + "start": 10639.38, + "end": 10641.76, + "probability": 0.477 + }, + { + "start": 10643.3, + "end": 10646.1, + "probability": 0.7984 + }, + { + "start": 10648.66, + "end": 10651.05, + "probability": 0.8804 + }, + { + "start": 10651.24, + "end": 10651.76, + "probability": 0.7873 + }, + { + "start": 10652.36, + "end": 10654.06, + "probability": 0.0113 + }, + { + "start": 10655.22, + "end": 10655.64, + "probability": 0.0326 + }, + { + "start": 10657.22, + "end": 10659.78, + "probability": 0.6085 + }, + { + "start": 10660.94, + "end": 10661.24, + "probability": 0.8867 + }, + { + "start": 10665.28, + "end": 10665.44, + "probability": 0.5751 + }, + { + "start": 10667.14, + "end": 10669.04, + "probability": 0.7148 + }, + { + "start": 10671.88, + "end": 10672.68, + "probability": 0.7071 + }, + { + "start": 10674.02, + "end": 10676.8, + "probability": 0.6842 + }, + { + "start": 10679.42, + "end": 10680.6, + "probability": 0.8322 + }, + { + "start": 10683.7, + "end": 10684.36, + "probability": 0.6103 + }, + { + "start": 10685.92, + "end": 10687.38, + "probability": 0.8873 + }, + { + "start": 10688.9, + "end": 10690.96, + "probability": 0.9436 + }, + { + "start": 10693.4, + "end": 10694.78, + "probability": 0.9025 + }, + { + "start": 10695.68, + "end": 10696.82, + "probability": 0.9337 + }, + { + "start": 10697.28, + "end": 10698.92, + "probability": 0.9367 + }, + { + "start": 10699.4, + "end": 10701.12, + "probability": 0.9418 + }, + { + "start": 10701.5, + "end": 10704.3, + "probability": 0.7229 + }, + { + "start": 10705.1, + "end": 10706.68, + "probability": 0.8575 + }, + { + "start": 10707.3, + "end": 10707.72, + "probability": 0.3831 + }, + { + "start": 10709.46, + "end": 10710.54, + "probability": 0.7149 + }, + { + "start": 10712.04, + "end": 10714.06, + "probability": 0.6161 + }, + { + "start": 10715.2, + "end": 10716.74, + "probability": 0.9429 + }, + { + "start": 10717.54, + "end": 10719.28, + "probability": 0.9137 + }, + { + "start": 10720.8, + "end": 10722.8, + "probability": 0.8822 + }, + { + "start": 10723.62, + "end": 10724.6, + "probability": 0.9515 + }, + { + "start": 10725.64, + "end": 10726.72, + "probability": 0.84 + }, + { + "start": 10727.64, + "end": 10729.38, + "probability": 0.8804 + }, + { + "start": 10730.96, + "end": 10732.92, + "probability": 0.7411 + }, + { + "start": 10734.14, + "end": 10736.3, + "probability": 0.8048 + }, + { + "start": 10738.32, + "end": 10738.94, + "probability": 0.9053 + }, + { + "start": 10740.04, + "end": 10740.98, + "probability": 0.9198 + }, + { + "start": 10743.46, + "end": 10744.24, + "probability": 0.9291 + }, + { + "start": 10745.66, + "end": 10746.54, + "probability": 0.9788 + }, + { + "start": 10747.24, + "end": 10748.04, + "probability": 0.9625 + }, + { + "start": 10749.12, + "end": 10750.1, + "probability": 0.8056 + }, + { + "start": 10751.0, + "end": 10755.52, + "probability": 0.972 + }, + { + "start": 10756.62, + "end": 10758.3, + "probability": 0.7907 + }, + { + "start": 10759.88, + "end": 10761.66, + "probability": 0.8639 + }, + { + "start": 10762.96, + "end": 10765.16, + "probability": 0.8208 + }, + { + "start": 10767.08, + "end": 10769.34, + "probability": 0.9158 + }, + { + "start": 10770.9, + "end": 10772.12, + "probability": 0.9274 + }, + { + "start": 10776.06, + "end": 10776.84, + "probability": 0.5444 + }, + { + "start": 10778.22, + "end": 10779.74, + "probability": 0.8096 + }, + { + "start": 10780.28, + "end": 10782.02, + "probability": 0.9006 + }, + { + "start": 10783.84, + "end": 10784.28, + "probability": 0.8984 + }, + { + "start": 10785.12, + "end": 10785.92, + "probability": 0.7913 + }, + { + "start": 10786.82, + "end": 10787.14, + "probability": 0.9295 + }, + { + "start": 10788.64, + "end": 10789.54, + "probability": 0.8949 + }, + { + "start": 10791.0, + "end": 10792.62, + "probability": 0.9294 + }, + { + "start": 10796.38, + "end": 10796.9, + "probability": 0.7706 + }, + { + "start": 10800.16, + "end": 10800.78, + "probability": 0.627 + }, + { + "start": 10801.98, + "end": 10803.36, + "probability": 0.9692 + }, + { + "start": 10804.58, + "end": 10805.5, + "probability": 0.8441 + }, + { + "start": 10806.14, + "end": 10807.84, + "probability": 0.8661 + }, + { + "start": 10810.42, + "end": 10812.72, + "probability": 0.8148 + }, + { + "start": 10813.38, + "end": 10813.76, + "probability": 0.9868 + }, + { + "start": 10815.12, + "end": 10815.86, + "probability": 0.951 + }, + { + "start": 10816.88, + "end": 10818.6, + "probability": 0.9806 + }, + { + "start": 10819.64, + "end": 10821.36, + "probability": 0.9908 + }, + { + "start": 10822.78, + "end": 10823.62, + "probability": 0.9977 + }, + { + "start": 10824.78, + "end": 10825.72, + "probability": 0.8417 + }, + { + "start": 10827.26, + "end": 10828.98, + "probability": 0.9403 + }, + { + "start": 10829.96, + "end": 10833.5, + "probability": 0.7923 + }, + { + "start": 10834.04, + "end": 10834.74, + "probability": 0.8874 + }, + { + "start": 10836.2, + "end": 10838.3, + "probability": 0.7494 + }, + { + "start": 10839.84, + "end": 10840.68, + "probability": 0.7308 + }, + { + "start": 10842.1, + "end": 10843.74, + "probability": 0.916 + }, + { + "start": 10844.7, + "end": 10849.04, + "probability": 0.6787 + }, + { + "start": 10849.72, + "end": 10851.26, + "probability": 0.9401 + }, + { + "start": 10852.36, + "end": 10854.16, + "probability": 0.9178 + }, + { + "start": 10855.28, + "end": 10856.98, + "probability": 0.9693 + }, + { + "start": 10858.18, + "end": 10859.02, + "probability": 0.9924 + }, + { + "start": 10860.0, + "end": 10861.0, + "probability": 0.9671 + }, + { + "start": 10862.04, + "end": 10863.64, + "probability": 0.9811 + }, + { + "start": 10865.28, + "end": 10866.0, + "probability": 0.9802 + }, + { + "start": 10866.64, + "end": 10867.42, + "probability": 0.8034 + }, + { + "start": 10869.08, + "end": 10870.64, + "probability": 0.8185 + }, + { + "start": 10871.88, + "end": 10873.54, + "probability": 0.8729 + }, + { + "start": 10876.16, + "end": 10879.52, + "probability": 0.6475 + }, + { + "start": 10880.98, + "end": 10883.64, + "probability": 0.7845 + }, + { + "start": 10884.4, + "end": 10885.5, + "probability": 0.4806 + }, + { + "start": 10886.43, + "end": 10888.16, + "probability": 0.7097 + }, + { + "start": 10888.44, + "end": 10890.76, + "probability": 0.2598 + }, + { + "start": 10892.4, + "end": 10895.32, + "probability": 0.3069 + }, + { + "start": 10895.74, + "end": 10896.86, + "probability": 0.5919 + }, + { + "start": 10896.96, + "end": 10898.46, + "probability": 0.1076 + }, + { + "start": 10898.82, + "end": 10900.86, + "probability": 0.0177 + }, + { + "start": 10901.9, + "end": 10903.04, + "probability": 0.0498 + }, + { + "start": 10977.1, + "end": 10977.24, + "probability": 0.0421 + }, + { + "start": 10977.24, + "end": 10978.68, + "probability": 0.1832 + }, + { + "start": 10979.56, + "end": 10984.42, + "probability": 0.9452 + }, + { + "start": 10984.54, + "end": 10986.61, + "probability": 0.9886 + }, + { + "start": 10986.64, + "end": 10987.03, + "probability": 0.9265 + }, + { + "start": 10987.54, + "end": 10991.3, + "probability": 0.891 + }, + { + "start": 10991.42, + "end": 10992.1, + "probability": 0.5015 + }, + { + "start": 10992.26, + "end": 10995.28, + "probability": 0.925 + }, + { + "start": 10997.92, + "end": 10998.42, + "probability": 0.8046 + }, + { + "start": 11002.94, + "end": 11004.16, + "probability": 0.1068 + }, + { + "start": 11021.56, + "end": 11024.28, + "probability": 0.1311 + }, + { + "start": 11025.46, + "end": 11034.04, + "probability": 0.0253 + }, + { + "start": 11036.38, + "end": 11040.52, + "probability": 0.0406 + }, + { + "start": 11041.7, + "end": 11042.22, + "probability": 0.0381 + }, + { + "start": 11042.54, + "end": 11050.02, + "probability": 0.0264 + }, + { + "start": 11111.0, + "end": 11111.0, + "probability": 0.0 + }, + { + "start": 11111.0, + "end": 11111.0, + "probability": 0.0 + }, + { + "start": 11111.0, + "end": 11111.0, + "probability": 0.0 + }, + { + "start": 11111.0, + "end": 11111.0, + "probability": 0.0 + }, + { + "start": 11111.0, + "end": 11111.0, + "probability": 0.0 + }, + { + "start": 11111.0, + "end": 11111.0, + "probability": 0.0 + }, + { + "start": 11111.0, + "end": 11111.0, + "probability": 0.0 + }, + { + "start": 11112.42, + "end": 11113.29, + "probability": 0.0656 + }, + { + "start": 11114.7, + "end": 11117.48, + "probability": 0.0487 + }, + { + "start": 11117.48, + "end": 11118.32, + "probability": 0.0336 + }, + { + "start": 11132.64, + "end": 11132.66, + "probability": 0.1277 + }, + { + "start": 11132.66, + "end": 11132.74, + "probability": 0.0118 + }, + { + "start": 11132.74, + "end": 11132.84, + "probability": 0.2099 + }, + { + "start": 11132.88, + "end": 11133.46, + "probability": 0.579 + }, + { + "start": 11142.56, + "end": 11143.26, + "probability": 0.6259 + }, + { + "start": 11144.22, + "end": 11145.0, + "probability": 0.7821 + }, + { + "start": 11146.32, + "end": 11152.38, + "probability": 0.9813 + }, + { + "start": 11152.52, + "end": 11153.88, + "probability": 0.9741 + }, + { + "start": 11156.14, + "end": 11157.92, + "probability": 0.7566 + }, + { + "start": 11159.18, + "end": 11160.76, + "probability": 0.9319 + }, + { + "start": 11160.8, + "end": 11162.96, + "probability": 0.9407 + }, + { + "start": 11163.08, + "end": 11163.96, + "probability": 0.9495 + }, + { + "start": 11164.82, + "end": 11168.02, + "probability": 0.9977 + }, + { + "start": 11168.62, + "end": 11172.0, + "probability": 0.948 + }, + { + "start": 11172.88, + "end": 11174.04, + "probability": 0.5922 + }, + { + "start": 11175.8, + "end": 11177.36, + "probability": 0.5016 + }, + { + "start": 11178.58, + "end": 11183.56, + "probability": 0.9608 + }, + { + "start": 11184.48, + "end": 11185.9, + "probability": 0.972 + }, + { + "start": 11186.86, + "end": 11190.59, + "probability": 0.9981 + }, + { + "start": 11191.62, + "end": 11192.46, + "probability": 0.979 + }, + { + "start": 11193.18, + "end": 11196.78, + "probability": 0.8718 + }, + { + "start": 11198.1, + "end": 11200.32, + "probability": 0.9878 + }, + { + "start": 11200.32, + "end": 11201.76, + "probability": 0.5644 + }, + { + "start": 11201.9, + "end": 11208.64, + "probability": 0.8626 + }, + { + "start": 11209.0, + "end": 11210.52, + "probability": 0.9697 + }, + { + "start": 11210.56, + "end": 11212.84, + "probability": 0.9351 + }, + { + "start": 11213.9, + "end": 11215.5, + "probability": 0.8725 + }, + { + "start": 11216.28, + "end": 11222.24, + "probability": 0.9734 + }, + { + "start": 11222.92, + "end": 11225.14, + "probability": 0.8512 + }, + { + "start": 11225.42, + "end": 11226.1, + "probability": 0.8859 + }, + { + "start": 11226.16, + "end": 11227.34, + "probability": 0.7692 + }, + { + "start": 11227.36, + "end": 11229.86, + "probability": 0.9098 + }, + { + "start": 11230.58, + "end": 11231.6, + "probability": 0.5786 + }, + { + "start": 11231.72, + "end": 11233.36, + "probability": 0.8042 + }, + { + "start": 11233.48, + "end": 11234.04, + "probability": 0.492 + }, + { + "start": 11234.04, + "end": 11237.58, + "probability": 0.8137 + }, + { + "start": 11237.72, + "end": 11238.58, + "probability": 0.7133 + }, + { + "start": 11240.8, + "end": 11241.62, + "probability": 0.5901 + }, + { + "start": 11241.8, + "end": 11244.66, + "probability": 0.9121 + }, + { + "start": 11244.9, + "end": 11247.48, + "probability": 0.7565 + }, + { + "start": 11247.52, + "end": 11249.5, + "probability": 0.949 + }, + { + "start": 11249.9, + "end": 11250.74, + "probability": 0.8589 + }, + { + "start": 11251.6, + "end": 11255.02, + "probability": 0.8423 + }, + { + "start": 11255.86, + "end": 11259.48, + "probability": 0.9766 + }, + { + "start": 11259.62, + "end": 11261.86, + "probability": 0.8876 + }, + { + "start": 11262.6, + "end": 11265.54, + "probability": 0.9761 + }, + { + "start": 11265.54, + "end": 11268.56, + "probability": 0.9185 + }, + { + "start": 11269.36, + "end": 11269.78, + "probability": 0.4221 + }, + { + "start": 11270.68, + "end": 11271.1, + "probability": 0.4321 + }, + { + "start": 11271.14, + "end": 11271.58, + "probability": 0.6962 + }, + { + "start": 11271.72, + "end": 11275.9, + "probability": 0.9979 + }, + { + "start": 11275.9, + "end": 11280.56, + "probability": 0.9798 + }, + { + "start": 11281.46, + "end": 11283.18, + "probability": 0.9347 + }, + { + "start": 11283.84, + "end": 11285.08, + "probability": 0.8117 + }, + { + "start": 11285.58, + "end": 11287.52, + "probability": 0.531 + }, + { + "start": 11287.66, + "end": 11290.64, + "probability": 0.841 + }, + { + "start": 11291.59, + "end": 11294.6, + "probability": 0.9364 + }, + { + "start": 11295.48, + "end": 11299.44, + "probability": 0.9833 + }, + { + "start": 11299.58, + "end": 11301.18, + "probability": 0.8941 + }, + { + "start": 11301.22, + "end": 11304.2, + "probability": 0.7666 + }, + { + "start": 11304.54, + "end": 11305.76, + "probability": 0.98 + }, + { + "start": 11306.42, + "end": 11306.56, + "probability": 0.3859 + }, + { + "start": 11306.66, + "end": 11311.56, + "probability": 0.9242 + }, + { + "start": 11315.0, + "end": 11316.15, + "probability": 0.6659 + }, + { + "start": 11316.52, + "end": 11318.96, + "probability": 0.8666 + }, + { + "start": 11319.36, + "end": 11319.9, + "probability": 0.3937 + }, + { + "start": 11320.88, + "end": 11321.26, + "probability": 0.7446 + }, + { + "start": 11321.6, + "end": 11322.26, + "probability": 0.5828 + }, + { + "start": 11322.26, + "end": 11327.96, + "probability": 0.9787 + }, + { + "start": 11328.3, + "end": 11332.06, + "probability": 0.9408 + }, + { + "start": 11333.04, + "end": 11333.9, + "probability": 0.6586 + }, + { + "start": 11335.04, + "end": 11337.28, + "probability": 0.7256 + }, + { + "start": 11339.92, + "end": 11342.22, + "probability": 0.8142 + }, + { + "start": 11342.8, + "end": 11342.98, + "probability": 0.4754 + }, + { + "start": 11343.2, + "end": 11346.0, + "probability": 0.8179 + }, + { + "start": 11346.0, + "end": 11347.32, + "probability": 0.6173 + }, + { + "start": 11347.78, + "end": 11348.08, + "probability": 0.7911 + }, + { + "start": 11348.38, + "end": 11349.8, + "probability": 0.2661 + }, + { + "start": 11349.8, + "end": 11352.14, + "probability": 0.4218 + }, + { + "start": 11352.44, + "end": 11354.56, + "probability": 0.6296 + }, + { + "start": 11354.62, + "end": 11355.42, + "probability": 0.6381 + }, + { + "start": 11355.62, + "end": 11357.87, + "probability": 0.8198 + }, + { + "start": 11358.94, + "end": 11360.08, + "probability": 0.9171 + }, + { + "start": 11360.14, + "end": 11361.04, + "probability": 0.8431 + }, + { + "start": 11361.1, + "end": 11361.54, + "probability": 0.8164 + }, + { + "start": 11361.6, + "end": 11362.41, + "probability": 0.6382 + }, + { + "start": 11362.56, + "end": 11363.62, + "probability": 0.9227 + }, + { + "start": 11364.78, + "end": 11369.68, + "probability": 0.9839 + }, + { + "start": 11369.82, + "end": 11371.28, + "probability": 0.7373 + }, + { + "start": 11371.3, + "end": 11373.12, + "probability": 0.9646 + }, + { + "start": 11373.72, + "end": 11375.66, + "probability": 0.8618 + }, + { + "start": 11376.32, + "end": 11376.88, + "probability": 0.9421 + }, + { + "start": 11377.68, + "end": 11377.94, + "probability": 0.9372 + }, + { + "start": 11378.02, + "end": 11381.52, + "probability": 0.9944 + }, + { + "start": 11382.16, + "end": 11386.18, + "probability": 0.9734 + }, + { + "start": 11388.82, + "end": 11391.04, + "probability": 0.8317 + }, + { + "start": 11392.12, + "end": 11397.28, + "probability": 0.9606 + }, + { + "start": 11397.34, + "end": 11399.46, + "probability": 0.9969 + }, + { + "start": 11400.0, + "end": 11400.67, + "probability": 0.9213 + }, + { + "start": 11401.4, + "end": 11403.12, + "probability": 0.838 + }, + { + "start": 11403.5, + "end": 11406.74, + "probability": 0.9926 + }, + { + "start": 11406.82, + "end": 11409.86, + "probability": 0.9666 + }, + { + "start": 11411.22, + "end": 11412.94, + "probability": 0.9937 + }, + { + "start": 11413.6, + "end": 11417.24, + "probability": 0.9284 + }, + { + "start": 11417.94, + "end": 11419.88, + "probability": 0.6814 + }, + { + "start": 11420.66, + "end": 11423.44, + "probability": 0.7359 + }, + { + "start": 11423.74, + "end": 11424.84, + "probability": 0.7323 + }, + { + "start": 11425.12, + "end": 11432.3, + "probability": 0.9709 + }, + { + "start": 11433.76, + "end": 11434.3, + "probability": 0.9105 + }, + { + "start": 11435.14, + "end": 11435.72, + "probability": 0.7363 + }, + { + "start": 11435.98, + "end": 11436.73, + "probability": 0.8407 + }, + { + "start": 11437.42, + "end": 11439.74, + "probability": 0.8574 + }, + { + "start": 11440.38, + "end": 11441.36, + "probability": 0.5715 + }, + { + "start": 11441.52, + "end": 11445.22, + "probability": 0.7924 + }, + { + "start": 11445.72, + "end": 11449.44, + "probability": 0.9729 + }, + { + "start": 11449.54, + "end": 11450.2, + "probability": 0.5557 + }, + { + "start": 11450.66, + "end": 11452.43, + "probability": 0.8307 + }, + { + "start": 11453.1, + "end": 11454.34, + "probability": 0.7068 + }, + { + "start": 11454.38, + "end": 11456.08, + "probability": 0.7295 + }, + { + "start": 11456.64, + "end": 11459.33, + "probability": 0.7829 + }, + { + "start": 11460.6, + "end": 11463.82, + "probability": 0.9246 + }, + { + "start": 11463.82, + "end": 11465.8, + "probability": 0.9958 + }, + { + "start": 11466.94, + "end": 11471.08, + "probability": 0.9744 + }, + { + "start": 11471.08, + "end": 11475.36, + "probability": 0.9993 + }, + { + "start": 11475.86, + "end": 11477.36, + "probability": 0.8579 + }, + { + "start": 11477.64, + "end": 11479.22, + "probability": 0.9972 + }, + { + "start": 11479.74, + "end": 11481.14, + "probability": 0.9984 + }, + { + "start": 11481.62, + "end": 11482.3, + "probability": 0.8076 + }, + { + "start": 11482.36, + "end": 11482.9, + "probability": 0.8939 + }, + { + "start": 11483.92, + "end": 11485.36, + "probability": 0.5775 + }, + { + "start": 11486.0, + "end": 11490.02, + "probability": 0.993 + }, + { + "start": 11490.02, + "end": 11493.34, + "probability": 0.998 + }, + { + "start": 11493.66, + "end": 11495.08, + "probability": 0.9927 + }, + { + "start": 11495.32, + "end": 11496.18, + "probability": 0.9431 + }, + { + "start": 11496.26, + "end": 11496.68, + "probability": 0.7594 + }, + { + "start": 11496.76, + "end": 11497.76, + "probability": 0.8674 + }, + { + "start": 11497.94, + "end": 11500.96, + "probability": 0.9489 + }, + { + "start": 11501.88, + "end": 11504.06, + "probability": 0.9853 + }, + { + "start": 11504.18, + "end": 11504.82, + "probability": 0.9105 + }, + { + "start": 11504.96, + "end": 11505.42, + "probability": 0.6045 + }, + { + "start": 11505.62, + "end": 11507.04, + "probability": 0.8349 + }, + { + "start": 11507.24, + "end": 11507.82, + "probability": 0.9139 + }, + { + "start": 11508.92, + "end": 11511.68, + "probability": 0.8482 + }, + { + "start": 11511.98, + "end": 11514.28, + "probability": 0.7533 + }, + { + "start": 11514.96, + "end": 11517.7, + "probability": 0.7454 + }, + { + "start": 11519.14, + "end": 11522.36, + "probability": 0.7344 + }, + { + "start": 11523.92, + "end": 11526.34, + "probability": 0.7845 + }, + { + "start": 11526.94, + "end": 11531.24, + "probability": 0.9533 + }, + { + "start": 11531.62, + "end": 11533.3, + "probability": 0.9691 + }, + { + "start": 11533.7, + "end": 11534.52, + "probability": 0.7009 + }, + { + "start": 11534.78, + "end": 11538.22, + "probability": 0.9905 + }, + { + "start": 11538.8, + "end": 11539.98, + "probability": 0.8725 + }, + { + "start": 11541.48, + "end": 11544.74, + "probability": 0.9616 + }, + { + "start": 11546.04, + "end": 11548.86, + "probability": 0.9901 + }, + { + "start": 11549.02, + "end": 11549.8, + "probability": 0.9677 + }, + { + "start": 11550.0, + "end": 11550.6, + "probability": 0.8709 + }, + { + "start": 11550.7, + "end": 11551.4, + "probability": 0.8556 + }, + { + "start": 11551.78, + "end": 11553.64, + "probability": 0.4369 + }, + { + "start": 11554.36, + "end": 11557.12, + "probability": 0.7822 + }, + { + "start": 11558.03, + "end": 11559.43, + "probability": 0.9692 + }, + { + "start": 11559.78, + "end": 11560.36, + "probability": 0.8008 + }, + { + "start": 11560.72, + "end": 11561.44, + "probability": 0.8633 + }, + { + "start": 11561.52, + "end": 11562.36, + "probability": 0.9335 + }, + { + "start": 11563.94, + "end": 11565.32, + "probability": 0.9119 + }, + { + "start": 11565.62, + "end": 11567.12, + "probability": 0.8943 + }, + { + "start": 11567.58, + "end": 11572.14, + "probability": 0.985 + }, + { + "start": 11572.22, + "end": 11573.5, + "probability": 0.9441 + }, + { + "start": 11573.6, + "end": 11574.43, + "probability": 0.9275 + }, + { + "start": 11574.68, + "end": 11574.8, + "probability": 0.4882 + }, + { + "start": 11574.84, + "end": 11577.02, + "probability": 0.694 + }, + { + "start": 11577.84, + "end": 11579.0, + "probability": 0.9173 + }, + { + "start": 11579.3, + "end": 11580.72, + "probability": 0.966 + }, + { + "start": 11580.78, + "end": 11582.52, + "probability": 0.8879 + }, + { + "start": 11583.42, + "end": 11584.62, + "probability": 0.9448 + }, + { + "start": 11585.5, + "end": 11588.46, + "probability": 0.818 + }, + { + "start": 11588.54, + "end": 11590.28, + "probability": 0.9341 + }, + { + "start": 11591.96, + "end": 11596.64, + "probability": 0.9966 + }, + { + "start": 11597.18, + "end": 11598.82, + "probability": 0.8022 + }, + { + "start": 11599.58, + "end": 11601.57, + "probability": 0.9389 + }, + { + "start": 11602.48, + "end": 11604.08, + "probability": 0.9905 + }, + { + "start": 11605.4, + "end": 11606.36, + "probability": 0.902 + }, + { + "start": 11608.7, + "end": 11612.92, + "probability": 0.815 + }, + { + "start": 11614.04, + "end": 11615.88, + "probability": 0.8876 + }, + { + "start": 11617.36, + "end": 11620.61, + "probability": 0.8821 + }, + { + "start": 11621.8, + "end": 11624.5, + "probability": 0.9904 + }, + { + "start": 11625.22, + "end": 11627.22, + "probability": 0.8519 + }, + { + "start": 11627.74, + "end": 11629.14, + "probability": 0.8241 + }, + { + "start": 11629.66, + "end": 11633.76, + "probability": 0.9878 + }, + { + "start": 11636.5, + "end": 11638.68, + "probability": 0.0436 + }, + { + "start": 11641.28, + "end": 11642.44, + "probability": 0.0287 + }, + { + "start": 11642.44, + "end": 11642.44, + "probability": 0.0194 + }, + { + "start": 11642.44, + "end": 11642.44, + "probability": 0.0405 + }, + { + "start": 11642.44, + "end": 11642.44, + "probability": 0.1429 + }, + { + "start": 11642.44, + "end": 11642.44, + "probability": 0.3236 + }, + { + "start": 11642.44, + "end": 11646.23, + "probability": 0.1893 + }, + { + "start": 11646.5, + "end": 11649.8, + "probability": 0.8491 + }, + { + "start": 11650.1, + "end": 11653.2, + "probability": 0.9133 + }, + { + "start": 11654.68, + "end": 11657.7, + "probability": 0.9295 + }, + { + "start": 11658.36, + "end": 11659.24, + "probability": 0.9497 + }, + { + "start": 11660.14, + "end": 11663.74, + "probability": 0.9343 + }, + { + "start": 11663.9, + "end": 11666.2, + "probability": 0.9429 + }, + { + "start": 11667.02, + "end": 11667.28, + "probability": 0.989 + }, + { + "start": 11668.08, + "end": 11668.72, + "probability": 0.4751 + }, + { + "start": 11669.3, + "end": 11672.4, + "probability": 0.9103 + }, + { + "start": 11672.78, + "end": 11674.38, + "probability": 0.6987 + }, + { + "start": 11675.06, + "end": 11678.98, + "probability": 0.9823 + }, + { + "start": 11679.82, + "end": 11682.14, + "probability": 0.9565 + }, + { + "start": 11682.94, + "end": 11685.68, + "probability": 0.9741 + }, + { + "start": 11686.22, + "end": 11691.3, + "probability": 0.9961 + }, + { + "start": 11691.94, + "end": 11694.16, + "probability": 0.7607 + }, + { + "start": 11694.52, + "end": 11694.94, + "probability": 0.7352 + }, + { + "start": 11695.12, + "end": 11696.8, + "probability": 0.9895 + }, + { + "start": 11696.82, + "end": 11698.74, + "probability": 0.9912 + }, + { + "start": 11698.88, + "end": 11699.56, + "probability": 0.7633 + }, + { + "start": 11700.02, + "end": 11700.64, + "probability": 0.2259 + }, + { + "start": 11700.74, + "end": 11702.08, + "probability": 0.8484 + }, + { + "start": 11703.86, + "end": 11706.84, + "probability": 0.3354 + }, + { + "start": 11707.14, + "end": 11709.0, + "probability": 0.6102 + }, + { + "start": 11709.42, + "end": 11711.42, + "probability": 0.1258 + }, + { + "start": 11712.12, + "end": 11713.46, + "probability": 0.3968 + }, + { + "start": 11714.22, + "end": 11717.38, + "probability": 0.5639 + }, + { + "start": 11717.38, + "end": 11718.22, + "probability": 0.3855 + }, + { + "start": 11718.38, + "end": 11720.04, + "probability": 0.8905 + }, + { + "start": 11720.34, + "end": 11721.1, + "probability": 0.6665 + }, + { + "start": 11721.54, + "end": 11721.74, + "probability": 0.7622 + }, + { + "start": 11721.88, + "end": 11722.98, + "probability": 0.9337 + }, + { + "start": 11724.78, + "end": 11727.44, + "probability": 0.0453 + }, + { + "start": 11727.44, + "end": 11727.44, + "probability": 0.038 + }, + { + "start": 11727.44, + "end": 11728.52, + "probability": 0.1851 + }, + { + "start": 11728.7, + "end": 11731.78, + "probability": 0.9946 + }, + { + "start": 11732.12, + "end": 11733.72, + "probability": 0.9902 + }, + { + "start": 11734.06, + "end": 11735.64, + "probability": 0.8249 + }, + { + "start": 11736.24, + "end": 11738.3, + "probability": 0.9688 + }, + { + "start": 11739.28, + "end": 11740.19, + "probability": 0.9434 + }, + { + "start": 11740.28, + "end": 11740.5, + "probability": 0.4587 + }, + { + "start": 11740.88, + "end": 11741.52, + "probability": 0.5164 + }, + { + "start": 11741.7, + "end": 11743.42, + "probability": 0.8897 + }, + { + "start": 11743.94, + "end": 11746.84, + "probability": 0.9839 + }, + { + "start": 11746.96, + "end": 11748.62, + "probability": 0.8988 + }, + { + "start": 11749.58, + "end": 11751.3, + "probability": 0.9909 + }, + { + "start": 11751.82, + "end": 11755.28, + "probability": 0.9456 + }, + { + "start": 11755.74, + "end": 11758.06, + "probability": 0.8886 + }, + { + "start": 11758.36, + "end": 11760.68, + "probability": 0.9672 + }, + { + "start": 11761.22, + "end": 11761.7, + "probability": 0.7352 + }, + { + "start": 11763.94, + "end": 11765.16, + "probability": 0.613 + }, + { + "start": 11766.38, + "end": 11766.86, + "probability": 0.3559 + }, + { + "start": 11768.36, + "end": 11771.26, + "probability": 0.6556 + }, + { + "start": 11775.12, + "end": 11776.32, + "probability": 0.8768 + }, + { + "start": 11777.12, + "end": 11777.84, + "probability": 0.7862 + }, + { + "start": 11778.4, + "end": 11778.66, + "probability": 0.6182 + }, + { + "start": 11779.22, + "end": 11779.98, + "probability": 0.6155 + }, + { + "start": 11782.78, + "end": 11785.42, + "probability": 0.7759 + }, + { + "start": 11785.52, + "end": 11786.06, + "probability": 0.7343 + }, + { + "start": 11786.1, + "end": 11789.46, + "probability": 0.7768 + }, + { + "start": 11790.92, + "end": 11791.46, + "probability": 0.5061 + }, + { + "start": 11791.46, + "end": 11796.4, + "probability": 0.9071 + }, + { + "start": 11796.72, + "end": 11796.88, + "probability": 0.0463 + }, + { + "start": 11796.96, + "end": 11798.22, + "probability": 0.8676 + }, + { + "start": 11799.4, + "end": 11801.72, + "probability": 0.2717 + }, + { + "start": 11802.62, + "end": 11804.4, + "probability": 0.7016 + }, + { + "start": 11805.36, + "end": 11810.02, + "probability": 0.8976 + }, + { + "start": 11811.38, + "end": 11813.46, + "probability": 0.6505 + }, + { + "start": 11813.62, + "end": 11815.1, + "probability": 0.954 + }, + { + "start": 11815.86, + "end": 11818.97, + "probability": 0.9982 + }, + { + "start": 11819.48, + "end": 11820.58, + "probability": 0.6667 + }, + { + "start": 11820.62, + "end": 11822.88, + "probability": 0.9973 + }, + { + "start": 11823.72, + "end": 11824.88, + "probability": 0.8911 + }, + { + "start": 11825.88, + "end": 11831.4, + "probability": 0.9536 + }, + { + "start": 11832.68, + "end": 11836.65, + "probability": 0.9854 + }, + { + "start": 11837.36, + "end": 11838.16, + "probability": 0.9356 + }, + { + "start": 11838.9, + "end": 11843.14, + "probability": 0.9778 + }, + { + "start": 11844.16, + "end": 11847.0, + "probability": 0.9832 + }, + { + "start": 11847.74, + "end": 11850.22, + "probability": 0.9773 + }, + { + "start": 11850.58, + "end": 11852.44, + "probability": 0.8973 + }, + { + "start": 11852.74, + "end": 11857.58, + "probability": 0.9673 + }, + { + "start": 11858.72, + "end": 11861.44, + "probability": 0.2514 + }, + { + "start": 11862.0, + "end": 11866.7, + "probability": 0.9814 + }, + { + "start": 11867.8, + "end": 11873.38, + "probability": 0.9667 + }, + { + "start": 11873.84, + "end": 11876.74, + "probability": 0.9388 + }, + { + "start": 11877.38, + "end": 11878.1, + "probability": 0.7562 + }, + { + "start": 11878.32, + "end": 11882.94, + "probability": 0.9666 + }, + { + "start": 11883.04, + "end": 11884.9, + "probability": 0.991 + }, + { + "start": 11885.42, + "end": 11889.44, + "probability": 0.9907 + }, + { + "start": 11890.04, + "end": 11893.36, + "probability": 0.697 + }, + { + "start": 11893.9, + "end": 11897.26, + "probability": 0.9653 + }, + { + "start": 11897.88, + "end": 11902.4, + "probability": 0.9934 + }, + { + "start": 11903.02, + "end": 11906.2, + "probability": 0.5392 + }, + { + "start": 11907.14, + "end": 11907.62, + "probability": 0.7096 + }, + { + "start": 11908.16, + "end": 11909.14, + "probability": 0.4026 + }, + { + "start": 11909.84, + "end": 11912.76, + "probability": 0.749 + }, + { + "start": 11912.82, + "end": 11914.7, + "probability": 0.8727 + }, + { + "start": 11914.76, + "end": 11915.9, + "probability": 0.8129 + }, + { + "start": 11916.06, + "end": 11920.7, + "probability": 0.9395 + }, + { + "start": 11921.38, + "end": 11925.06, + "probability": 0.9921 + }, + { + "start": 11925.7, + "end": 11928.54, + "probability": 0.748 + }, + { + "start": 11929.1, + "end": 11930.28, + "probability": 0.6067 + }, + { + "start": 11930.46, + "end": 11931.46, + "probability": 0.8408 + }, + { + "start": 11931.56, + "end": 11933.2, + "probability": 0.9255 + }, + { + "start": 11933.64, + "end": 11936.18, + "probability": 0.9752 + }, + { + "start": 11936.28, + "end": 11937.46, + "probability": 0.1953 + }, + { + "start": 11937.84, + "end": 11941.06, + "probability": 0.9485 + }, + { + "start": 11941.72, + "end": 11942.48, + "probability": 0.3319 + }, + { + "start": 11944.11, + "end": 11946.67, + "probability": 0.0543 + }, + { + "start": 11946.76, + "end": 11948.64, + "probability": 0.0645 + }, + { + "start": 11952.24, + "end": 11952.63, + "probability": 0.212 + }, + { + "start": 11953.32, + "end": 11955.66, + "probability": 0.3104 + }, + { + "start": 11955.94, + "end": 11956.78, + "probability": 0.5431 + }, + { + "start": 11957.16, + "end": 11957.9, + "probability": 0.4689 + }, + { + "start": 11958.08, + "end": 11958.78, + "probability": 0.6595 + }, + { + "start": 11959.04, + "end": 11959.54, + "probability": 0.7408 + }, + { + "start": 11959.7, + "end": 11960.34, + "probability": 0.3451 + }, + { + "start": 11960.38, + "end": 11961.74, + "probability": 0.806 + }, + { + "start": 11962.5, + "end": 11963.76, + "probability": 0.5434 + }, + { + "start": 11964.5, + "end": 11967.04, + "probability": 0.9042 + }, + { + "start": 11967.68, + "end": 11969.46, + "probability": 0.9526 + }, + { + "start": 11969.52, + "end": 11972.28, + "probability": 0.7553 + }, + { + "start": 11972.44, + "end": 11972.96, + "probability": 0.8965 + }, + { + "start": 11973.28, + "end": 11976.68, + "probability": 0.9703 + }, + { + "start": 11977.56, + "end": 11980.78, + "probability": 0.9897 + }, + { + "start": 11981.38, + "end": 11983.98, + "probability": 0.9921 + }, + { + "start": 11984.56, + "end": 11986.92, + "probability": 0.5992 + }, + { + "start": 11987.3, + "end": 11989.98, + "probability": 0.9774 + }, + { + "start": 11992.14, + "end": 11995.06, + "probability": 0.0201 + }, + { + "start": 11995.06, + "end": 11998.8, + "probability": 0.7496 + }, + { + "start": 11999.28, + "end": 11999.72, + "probability": 0.3137 + }, + { + "start": 12000.36, + "end": 12001.64, + "probability": 0.8224 + }, + { + "start": 12001.74, + "end": 12004.88, + "probability": 0.9872 + }, + { + "start": 12004.88, + "end": 12007.84, + "probability": 0.929 + }, + { + "start": 12007.84, + "end": 12007.91, + "probability": 0.7852 + }, + { + "start": 12009.04, + "end": 12010.38, + "probability": 0.87 + }, + { + "start": 12010.62, + "end": 12011.84, + "probability": 0.7735 + }, + { + "start": 12011.92, + "end": 12011.92, + "probability": 0.1599 + }, + { + "start": 12012.0, + "end": 12013.14, + "probability": 0.3413 + }, + { + "start": 12013.46, + "end": 12013.86, + "probability": 0.9531 + }, + { + "start": 12014.12, + "end": 12015.54, + "probability": 0.9365 + }, + { + "start": 12015.98, + "end": 12017.42, + "probability": 0.972 + }, + { + "start": 12017.64, + "end": 12019.3, + "probability": 0.9776 + }, + { + "start": 12019.48, + "end": 12019.82, + "probability": 0.5425 + }, + { + "start": 12019.94, + "end": 12020.5, + "probability": 0.5832 + }, + { + "start": 12021.02, + "end": 12021.8, + "probability": 0.4129 + }, + { + "start": 12021.9, + "end": 12023.94, + "probability": 0.891 + }, + { + "start": 12025.1, + "end": 12026.08, + "probability": 0.844 + }, + { + "start": 12039.32, + "end": 12040.04, + "probability": 0.3271 + }, + { + "start": 12040.06, + "end": 12040.64, + "probability": 0.7861 + }, + { + "start": 12040.74, + "end": 12043.2, + "probability": 0.9584 + }, + { + "start": 12043.32, + "end": 12046.12, + "probability": 0.9963 + }, + { + "start": 12047.2, + "end": 12048.68, + "probability": 0.5935 + }, + { + "start": 12048.7, + "end": 12050.18, + "probability": 0.752 + }, + { + "start": 12050.7, + "end": 12052.02, + "probability": 0.8952 + }, + { + "start": 12052.9, + "end": 12055.54, + "probability": 0.918 + }, + { + "start": 12055.6, + "end": 12056.24, + "probability": 0.9641 + }, + { + "start": 12057.08, + "end": 12057.54, + "probability": 0.7786 + }, + { + "start": 12058.56, + "end": 12061.74, + "probability": 0.7202 + }, + { + "start": 12061.88, + "end": 12065.88, + "probability": 0.8095 + }, + { + "start": 12066.06, + "end": 12067.16, + "probability": 0.8181 + }, + { + "start": 12068.14, + "end": 12068.99, + "probability": 0.5952 + }, + { + "start": 12069.28, + "end": 12069.66, + "probability": 0.6499 + }, + { + "start": 12069.72, + "end": 12070.62, + "probability": 0.9185 + }, + { + "start": 12070.7, + "end": 12071.9, + "probability": 0.8569 + }, + { + "start": 12072.72, + "end": 12078.36, + "probability": 0.9946 + }, + { + "start": 12078.4, + "end": 12080.86, + "probability": 0.9953 + }, + { + "start": 12081.46, + "end": 12082.52, + "probability": 0.9186 + }, + { + "start": 12082.82, + "end": 12084.22, + "probability": 0.8532 + }, + { + "start": 12084.64, + "end": 12086.12, + "probability": 0.999 + }, + { + "start": 12086.32, + "end": 12088.7, + "probability": 0.9924 + }, + { + "start": 12088.78, + "end": 12089.98, + "probability": 0.4598 + }, + { + "start": 12090.32, + "end": 12091.02, + "probability": 0.6143 + }, + { + "start": 12091.92, + "end": 12092.98, + "probability": 0.2773 + }, + { + "start": 12093.18, + "end": 12094.71, + "probability": 0.6829 + }, + { + "start": 12095.32, + "end": 12095.72, + "probability": 0.1041 + }, + { + "start": 12095.84, + "end": 12097.48, + "probability": 0.8477 + }, + { + "start": 12098.2, + "end": 12099.1, + "probability": 0.9536 + }, + { + "start": 12099.4, + "end": 12101.0, + "probability": 0.8582 + }, + { + "start": 12101.1, + "end": 12102.56, + "probability": 0.6599 + }, + { + "start": 12102.62, + "end": 12104.24, + "probability": 0.5011 + }, + { + "start": 12104.82, + "end": 12107.1, + "probability": 0.9888 + }, + { + "start": 12107.52, + "end": 12113.06, + "probability": 0.9365 + }, + { + "start": 12113.4, + "end": 12117.0, + "probability": 0.7284 + }, + { + "start": 12117.12, + "end": 12120.3, + "probability": 0.6149 + }, + { + "start": 12120.98, + "end": 12124.5, + "probability": 0.991 + }, + { + "start": 12124.82, + "end": 12127.6, + "probability": 0.7184 + }, + { + "start": 12127.76, + "end": 12130.22, + "probability": 0.996 + }, + { + "start": 12130.72, + "end": 12131.7, + "probability": 0.8934 + }, + { + "start": 12131.82, + "end": 12136.08, + "probability": 0.7857 + }, + { + "start": 12137.78, + "end": 12140.56, + "probability": 0.9753 + }, + { + "start": 12140.56, + "end": 12140.56, + "probability": 0.3569 + }, + { + "start": 12140.56, + "end": 12141.58, + "probability": 0.6312 + }, + { + "start": 12141.92, + "end": 12144.0, + "probability": 0.736 + }, + { + "start": 12144.0, + "end": 12146.74, + "probability": 0.8172 + }, + { + "start": 12146.98, + "end": 12148.46, + "probability": 0.8663 + }, + { + "start": 12148.62, + "end": 12151.46, + "probability": 0.9869 + }, + { + "start": 12152.88, + "end": 12156.86, + "probability": 0.9038 + }, + { + "start": 12157.04, + "end": 12158.02, + "probability": 0.65 + }, + { + "start": 12158.44, + "end": 12159.38, + "probability": 0.8628 + }, + { + "start": 12159.48, + "end": 12162.75, + "probability": 0.9233 + }, + { + "start": 12163.27, + "end": 12165.13, + "probability": 0.5742 + }, + { + "start": 12165.55, + "end": 12169.75, + "probability": 0.9249 + }, + { + "start": 12170.33, + "end": 12175.57, + "probability": 0.9646 + }, + { + "start": 12176.03, + "end": 12177.17, + "probability": 0.6538 + }, + { + "start": 12177.41, + "end": 12179.27, + "probability": 0.8435 + }, + { + "start": 12179.83, + "end": 12182.47, + "probability": 0.7649 + }, + { + "start": 12183.01, + "end": 12186.3, + "probability": 0.9952 + }, + { + "start": 12186.91, + "end": 12191.09, + "probability": 0.8087 + }, + { + "start": 12191.83, + "end": 12196.33, + "probability": 0.9766 + }, + { + "start": 12196.45, + "end": 12196.85, + "probability": 0.733 + }, + { + "start": 12197.95, + "end": 12199.27, + "probability": 0.5219 + }, + { + "start": 12199.27, + "end": 12199.27, + "probability": 0.5053 + }, + { + "start": 12199.27, + "end": 12199.99, + "probability": 0.4663 + }, + { + "start": 12200.17, + "end": 12201.74, + "probability": 0.6592 + }, + { + "start": 12201.77, + "end": 12202.11, + "probability": 0.3737 + }, + { + "start": 12202.23, + "end": 12202.63, + "probability": 0.5433 + }, + { + "start": 12202.69, + "end": 12203.33, + "probability": 0.6316 + }, + { + "start": 12203.45, + "end": 12203.73, + "probability": 0.4341 + }, + { + "start": 12203.83, + "end": 12203.93, + "probability": 0.3169 + }, + { + "start": 12204.11, + "end": 12205.91, + "probability": 0.7742 + }, + { + "start": 12205.99, + "end": 12208.07, + "probability": 0.9829 + }, + { + "start": 12208.21, + "end": 12211.45, + "probability": 0.681 + }, + { + "start": 12211.57, + "end": 12214.49, + "probability": 0.5677 + }, + { + "start": 12214.63, + "end": 12218.33, + "probability": 0.6675 + }, + { + "start": 12218.85, + "end": 12221.43, + "probability": 0.9624 + }, + { + "start": 12221.43, + "end": 12221.65, + "probability": 0.6087 + }, + { + "start": 12221.97, + "end": 12225.59, + "probability": 0.9447 + }, + { + "start": 12225.59, + "end": 12228.41, + "probability": 0.5671 + }, + { + "start": 12228.99, + "end": 12230.13, + "probability": 0.4024 + }, + { + "start": 12231.27, + "end": 12231.75, + "probability": 0.3554 + }, + { + "start": 12231.75, + "end": 12232.25, + "probability": 0.2883 + }, + { + "start": 12232.29, + "end": 12232.81, + "probability": 0.6051 + }, + { + "start": 12233.75, + "end": 12234.11, + "probability": 0.6326 + }, + { + "start": 12240.09, + "end": 12240.15, + "probability": 0.6791 + }, + { + "start": 12249.91, + "end": 12255.37, + "probability": 0.1566 + }, + { + "start": 12255.37, + "end": 12255.37, + "probability": 0.0362 + }, + { + "start": 12255.37, + "end": 12255.37, + "probability": 0.0983 + }, + { + "start": 12255.37, + "end": 12256.9, + "probability": 0.2259 + }, + { + "start": 12258.33, + "end": 12265.37, + "probability": 0.1175 + }, + { + "start": 12266.17, + "end": 12266.43, + "probability": 0.0965 + }, + { + "start": 12266.43, + "end": 12270.55, + "probability": 0.0409 + }, + { + "start": 12273.3, + "end": 12277.81, + "probability": 0.2231 + }, + { + "start": 12278.68, + "end": 12279.55, + "probability": 0.3697 + }, + { + "start": 12279.55, + "end": 12279.89, + "probability": 0.0558 + }, + { + "start": 12280.95, + "end": 12282.69, + "probability": 0.0125 + }, + { + "start": 12289.88, + "end": 12291.59, + "probability": 0.1109 + }, + { + "start": 12291.59, + "end": 12291.59, + "probability": 0.0446 + }, + { + "start": 12291.59, + "end": 12293.22, + "probability": 0.1303 + }, + { + "start": 12294.83, + "end": 12295.19, + "probability": 0.074 + }, + { + "start": 12299.72, + "end": 12302.81, + "probability": 0.647 + }, + { + "start": 12304.15, + "end": 12307.57, + "probability": 0.2231 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.0, + "end": 12323.0, + "probability": 0.0 + }, + { + "start": 12323.08, + "end": 12326.3, + "probability": 0.9565 + }, + { + "start": 12326.78, + "end": 12329.92, + "probability": 0.9902 + }, + { + "start": 12330.54, + "end": 12335.7, + "probability": 0.9588 + }, + { + "start": 12336.56, + "end": 12337.04, + "probability": 0.7537 + }, + { + "start": 12337.04, + "end": 12338.22, + "probability": 0.9649 + }, + { + "start": 12338.32, + "end": 12341.4, + "probability": 0.9893 + }, + { + "start": 12342.06, + "end": 12342.82, + "probability": 0.8525 + }, + { + "start": 12342.96, + "end": 12343.64, + "probability": 0.9173 + }, + { + "start": 12343.78, + "end": 12344.52, + "probability": 0.9844 + }, + { + "start": 12344.64, + "end": 12345.94, + "probability": 0.8759 + }, + { + "start": 12347.16, + "end": 12349.94, + "probability": 0.8875 + }, + { + "start": 12350.02, + "end": 12352.58, + "probability": 0.6397 + }, + { + "start": 12353.62, + "end": 12356.5, + "probability": 0.9963 + }, + { + "start": 12356.9, + "end": 12358.5, + "probability": 0.9705 + }, + { + "start": 12359.8, + "end": 12363.88, + "probability": 0.9881 + }, + { + "start": 12364.82, + "end": 12369.54, + "probability": 0.89 + }, + { + "start": 12370.12, + "end": 12376.12, + "probability": 0.7703 + }, + { + "start": 12376.32, + "end": 12376.74, + "probability": 0.7795 + }, + { + "start": 12377.38, + "end": 12379.38, + "probability": 0.9673 + }, + { + "start": 12380.3, + "end": 12381.38, + "probability": 0.919 + }, + { + "start": 12381.96, + "end": 12384.68, + "probability": 0.9911 + }, + { + "start": 12385.24, + "end": 12389.46, + "probability": 0.9878 + }, + { + "start": 12389.46, + "end": 12393.4, + "probability": 0.9961 + }, + { + "start": 12394.28, + "end": 12398.52, + "probability": 0.9972 + }, + { + "start": 12398.52, + "end": 12404.96, + "probability": 0.9882 + }, + { + "start": 12406.0, + "end": 12409.6, + "probability": 0.8552 + }, + { + "start": 12409.6, + "end": 12415.14, + "probability": 0.5421 + }, + { + "start": 12415.68, + "end": 12424.72, + "probability": 0.7848 + }, + { + "start": 12425.48, + "end": 12427.24, + "probability": 0.9549 + }, + { + "start": 12427.74, + "end": 12432.44, + "probability": 0.9921 + }, + { + "start": 12433.06, + "end": 12434.06, + "probability": 0.9921 + }, + { + "start": 12435.06, + "end": 12435.28, + "probability": 0.697 + }, + { + "start": 12435.34, + "end": 12437.92, + "probability": 0.9928 + }, + { + "start": 12438.14, + "end": 12441.8, + "probability": 0.996 + }, + { + "start": 12442.7, + "end": 12445.28, + "probability": 0.8856 + }, + { + "start": 12445.36, + "end": 12449.1, + "probability": 0.9425 + }, + { + "start": 12449.36, + "end": 12451.74, + "probability": 0.876 + }, + { + "start": 12451.74, + "end": 12455.04, + "probability": 0.9906 + }, + { + "start": 12456.0, + "end": 12459.22, + "probability": 0.9994 + }, + { + "start": 12459.24, + "end": 12463.36, + "probability": 0.9738 + }, + { + "start": 12463.76, + "end": 12466.22, + "probability": 0.9956 + }, + { + "start": 12467.06, + "end": 12468.88, + "probability": 0.7033 + }, + { + "start": 12469.58, + "end": 12472.22, + "probability": 0.6839 + }, + { + "start": 12472.3, + "end": 12473.18, + "probability": 0.7174 + }, + { + "start": 12473.52, + "end": 12479.16, + "probability": 0.9163 + }, + { + "start": 12479.84, + "end": 12484.28, + "probability": 0.9945 + }, + { + "start": 12485.1, + "end": 12485.7, + "probability": 0.7412 + }, + { + "start": 12485.72, + "end": 12489.84, + "probability": 0.9915 + }, + { + "start": 12490.4, + "end": 12493.88, + "probability": 0.9132 + }, + { + "start": 12494.04, + "end": 12494.74, + "probability": 0.9584 + }, + { + "start": 12495.64, + "end": 12498.0, + "probability": 0.9707 + }, + { + "start": 12498.0, + "end": 12502.08, + "probability": 0.9662 + }, + { + "start": 12502.76, + "end": 12504.08, + "probability": 0.9843 + }, + { + "start": 12504.96, + "end": 12509.38, + "probability": 0.829 + }, + { + "start": 12510.04, + "end": 12511.62, + "probability": 0.9384 + }, + { + "start": 12511.8, + "end": 12516.32, + "probability": 0.9602 + }, + { + "start": 12516.92, + "end": 12520.28, + "probability": 0.9897 + }, + { + "start": 12525.98, + "end": 12528.74, + "probability": 0.9879 + }, + { + "start": 12528.74, + "end": 12531.5, + "probability": 0.9993 + }, + { + "start": 12531.56, + "end": 12533.82, + "probability": 0.9948 + }, + { + "start": 12533.82, + "end": 12537.76, + "probability": 0.9562 + }, + { + "start": 12538.5, + "end": 12540.34, + "probability": 0.7497 + }, + { + "start": 12540.44, + "end": 12542.72, + "probability": 0.9854 + }, + { + "start": 12543.24, + "end": 12545.6, + "probability": 0.9676 + }, + { + "start": 12545.6, + "end": 12548.76, + "probability": 0.9752 + }, + { + "start": 12549.48, + "end": 12551.4, + "probability": 0.9815 + }, + { + "start": 12551.4, + "end": 12553.9, + "probability": 0.9749 + }, + { + "start": 12555.04, + "end": 12558.42, + "probability": 0.9899 + }, + { + "start": 12559.22, + "end": 12561.58, + "probability": 0.9977 + }, + { + "start": 12561.58, + "end": 12564.96, + "probability": 0.9941 + }, + { + "start": 12565.62, + "end": 12568.26, + "probability": 0.9927 + }, + { + "start": 12568.26, + "end": 12570.88, + "probability": 0.99 + }, + { + "start": 12571.36, + "end": 12574.42, + "probability": 0.9598 + }, + { + "start": 12575.84, + "end": 12576.18, + "probability": 0.4367 + }, + { + "start": 12576.3, + "end": 12579.98, + "probability": 0.9984 + }, + { + "start": 12580.56, + "end": 12582.46, + "probability": 0.9714 + }, + { + "start": 12583.0, + "end": 12584.08, + "probability": 0.9257 + }, + { + "start": 12584.88, + "end": 12587.6, + "probability": 0.9589 + }, + { + "start": 12587.9, + "end": 12589.4, + "probability": 0.9901 + }, + { + "start": 12590.46, + "end": 12593.24, + "probability": 0.988 + }, + { + "start": 12593.24, + "end": 12596.14, + "probability": 0.9906 + }, + { + "start": 12597.14, + "end": 12598.5, + "probability": 0.8831 + }, + { + "start": 12599.14, + "end": 12602.02, + "probability": 0.6294 + }, + { + "start": 12602.92, + "end": 12606.04, + "probability": 0.613 + }, + { + "start": 12606.84, + "end": 12610.4, + "probability": 0.841 + }, + { + "start": 12610.48, + "end": 12610.82, + "probability": 0.574 + }, + { + "start": 12610.94, + "end": 12611.48, + "probability": 0.592 + }, + { + "start": 12611.56, + "end": 12613.08, + "probability": 0.9233 + }, + { + "start": 12614.3, + "end": 12615.33, + "probability": 0.9888 + }, + { + "start": 12615.74, + "end": 12617.72, + "probability": 0.9251 + }, + { + "start": 12618.15, + "end": 12624.3, + "probability": 0.664 + }, + { + "start": 12624.3, + "end": 12628.32, + "probability": 0.9946 + }, + { + "start": 12628.88, + "end": 12630.38, + "probability": 0.967 + }, + { + "start": 12630.92, + "end": 12632.22, + "probability": 0.9644 + }, + { + "start": 12632.36, + "end": 12633.36, + "probability": 0.8522 + }, + { + "start": 12633.5, + "end": 12635.66, + "probability": 0.7681 + }, + { + "start": 12636.26, + "end": 12641.22, + "probability": 0.9819 + }, + { + "start": 12641.54, + "end": 12647.82, + "probability": 0.975 + }, + { + "start": 12647.92, + "end": 12650.46, + "probability": 0.9941 + }, + { + "start": 12651.42, + "end": 12652.38, + "probability": 0.9987 + }, + { + "start": 12652.56, + "end": 12656.79, + "probability": 0.9993 + }, + { + "start": 12657.58, + "end": 12659.56, + "probability": 0.983 + }, + { + "start": 12659.72, + "end": 12660.92, + "probability": 0.6209 + }, + { + "start": 12660.96, + "end": 12663.34, + "probability": 0.7579 + }, + { + "start": 12663.92, + "end": 12666.34, + "probability": 0.9967 + }, + { + "start": 12667.36, + "end": 12669.04, + "probability": 0.9912 + }, + { + "start": 12670.36, + "end": 12675.64, + "probability": 0.9779 + }, + { + "start": 12675.72, + "end": 12677.31, + "probability": 0.9888 + }, + { + "start": 12678.0, + "end": 12680.62, + "probability": 0.6237 + }, + { + "start": 12681.54, + "end": 12686.28, + "probability": 0.7262 + }, + { + "start": 12686.5, + "end": 12688.58, + "probability": 0.9892 + }, + { + "start": 12688.78, + "end": 12692.64, + "probability": 0.9697 + }, + { + "start": 12692.88, + "end": 12693.92, + "probability": 0.9944 + }, + { + "start": 12694.14, + "end": 12695.32, + "probability": 0.9919 + }, + { + "start": 12695.68, + "end": 12696.92, + "probability": 0.8415 + }, + { + "start": 12699.12, + "end": 12701.68, + "probability": 0.9817 + }, + { + "start": 12701.88, + "end": 12703.06, + "probability": 0.9837 + }, + { + "start": 12703.2, + "end": 12704.44, + "probability": 0.9463 + }, + { + "start": 12705.18, + "end": 12706.5, + "probability": 0.9964 + }, + { + "start": 12707.62, + "end": 12709.34, + "probability": 0.4997 + }, + { + "start": 12710.2, + "end": 12711.26, + "probability": 0.8579 + }, + { + "start": 12711.34, + "end": 12712.28, + "probability": 0.9324 + }, + { + "start": 12712.42, + "end": 12713.5, + "probability": 0.7877 + }, + { + "start": 12714.0, + "end": 12716.02, + "probability": 0.7386 + }, + { + "start": 12717.24, + "end": 12721.04, + "probability": 0.7925 + }, + { + "start": 12721.74, + "end": 12725.62, + "probability": 0.9445 + }, + { + "start": 12725.74, + "end": 12727.94, + "probability": 0.7519 + }, + { + "start": 12728.78, + "end": 12730.88, + "probability": 0.82 + }, + { + "start": 12731.24, + "end": 12733.44, + "probability": 0.7974 + }, + { + "start": 12733.84, + "end": 12735.76, + "probability": 0.9865 + }, + { + "start": 12737.0, + "end": 12739.96, + "probability": 0.9672 + }, + { + "start": 12740.56, + "end": 12745.54, + "probability": 0.9731 + }, + { + "start": 12745.54, + "end": 12750.04, + "probability": 0.9989 + }, + { + "start": 12750.56, + "end": 12751.42, + "probability": 0.3423 + }, + { + "start": 12754.12, + "end": 12758.32, + "probability": 0.9631 + }, + { + "start": 12758.86, + "end": 12759.94, + "probability": 0.8734 + }, + { + "start": 12761.04, + "end": 12763.54, + "probability": 0.569 + }, + { + "start": 12764.96, + "end": 12766.7, + "probability": 0.9961 + }, + { + "start": 12767.5, + "end": 12769.28, + "probability": 0.8868 + }, + { + "start": 12769.42, + "end": 12769.98, + "probability": 0.761 + }, + { + "start": 12770.06, + "end": 12771.12, + "probability": 0.8572 + }, + { + "start": 12772.02, + "end": 12775.74, + "probability": 0.9978 + }, + { + "start": 12776.34, + "end": 12778.0, + "probability": 0.8902 + }, + { + "start": 12778.98, + "end": 12781.6, + "probability": 0.2982 + }, + { + "start": 12781.76, + "end": 12782.22, + "probability": 0.442 + }, + { + "start": 12782.22, + "end": 12782.92, + "probability": 0.6093 + }, + { + "start": 12783.0, + "end": 12783.94, + "probability": 0.9342 + }, + { + "start": 12784.56, + "end": 12786.28, + "probability": 0.9786 + }, + { + "start": 12786.46, + "end": 12787.1, + "probability": 0.7411 + }, + { + "start": 12787.12, + "end": 12787.66, + "probability": 0.7388 + }, + { + "start": 12787.84, + "end": 12789.06, + "probability": 0.852 + }, + { + "start": 12790.04, + "end": 12791.35, + "probability": 0.4216 + }, + { + "start": 12792.72, + "end": 12794.14, + "probability": 0.7483 + }, + { + "start": 12794.58, + "end": 12795.32, + "probability": 0.9876 + }, + { + "start": 12795.38, + "end": 12797.96, + "probability": 0.9957 + }, + { + "start": 12799.7, + "end": 12801.76, + "probability": 0.9576 + }, + { + "start": 12802.42, + "end": 12804.62, + "probability": 0.9962 + }, + { + "start": 12804.82, + "end": 12805.64, + "probability": 0.8333 + }, + { + "start": 12807.2, + "end": 12808.86, + "probability": 0.9923 + }, + { + "start": 12810.6, + "end": 12814.22, + "probability": 0.9948 + }, + { + "start": 12814.46, + "end": 12815.22, + "probability": 0.6556 + }, + { + "start": 12815.34, + "end": 12815.92, + "probability": 0.7917 + }, + { + "start": 12816.0, + "end": 12817.44, + "probability": 0.8401 + }, + { + "start": 12818.36, + "end": 12819.34, + "probability": 0.9087 + }, + { + "start": 12819.34, + "end": 12819.92, + "probability": 0.871 + }, + { + "start": 12819.92, + "end": 12822.66, + "probability": 0.9257 + }, + { + "start": 12822.86, + "end": 12825.14, + "probability": 0.9189 + }, + { + "start": 12825.78, + "end": 12828.06, + "probability": 0.9992 + }, + { + "start": 12828.06, + "end": 12831.08, + "probability": 0.9955 + }, + { + "start": 12832.14, + "end": 12833.02, + "probability": 0.7955 + }, + { + "start": 12833.14, + "end": 12833.8, + "probability": 0.8226 + }, + { + "start": 12833.92, + "end": 12834.44, + "probability": 0.9666 + }, + { + "start": 12834.52, + "end": 12835.3, + "probability": 0.9498 + }, + { + "start": 12835.36, + "end": 12836.14, + "probability": 0.8156 + }, + { + "start": 12836.88, + "end": 12837.4, + "probability": 0.9551 + }, + { + "start": 12838.84, + "end": 12839.92, + "probability": 0.8654 + }, + { + "start": 12840.64, + "end": 12842.8, + "probability": 0.9982 + }, + { + "start": 12842.92, + "end": 12845.41, + "probability": 0.8521 + }, + { + "start": 12846.16, + "end": 12847.92, + "probability": 0.6304 + }, + { + "start": 12848.0, + "end": 12850.92, + "probability": 0.9303 + }, + { + "start": 12851.02, + "end": 12853.02, + "probability": 0.9922 + }, + { + "start": 12853.56, + "end": 12855.56, + "probability": 0.9336 + }, + { + "start": 12857.06, + "end": 12857.72, + "probability": 0.4171 + }, + { + "start": 12857.86, + "end": 12858.92, + "probability": 0.9773 + }, + { + "start": 12859.04, + "end": 12860.0, + "probability": 0.8577 + }, + { + "start": 12860.08, + "end": 12862.48, + "probability": 0.9062 + }, + { + "start": 12862.98, + "end": 12864.6, + "probability": 0.7921 + }, + { + "start": 12864.98, + "end": 12866.28, + "probability": 0.9731 + }, + { + "start": 12866.42, + "end": 12867.48, + "probability": 0.8848 + }, + { + "start": 12867.96, + "end": 12870.98, + "probability": 0.8472 + }, + { + "start": 12871.88, + "end": 12873.16, + "probability": 0.7647 + }, + { + "start": 12873.3, + "end": 12874.1, + "probability": 0.6711 + }, + { + "start": 12874.12, + "end": 12874.82, + "probability": 0.8438 + }, + { + "start": 12874.86, + "end": 12875.56, + "probability": 0.6683 + }, + { + "start": 12875.64, + "end": 12876.46, + "probability": 0.9184 + }, + { + "start": 12876.52, + "end": 12877.52, + "probability": 0.8742 + }, + { + "start": 12878.08, + "end": 12878.3, + "probability": 0.5236 + }, + { + "start": 12878.38, + "end": 12881.5, + "probability": 0.9517 + }, + { + "start": 12881.64, + "end": 12884.22, + "probability": 0.9932 + }, + { + "start": 12884.84, + "end": 12887.84, + "probability": 0.831 + }, + { + "start": 12888.4, + "end": 12890.84, + "probability": 0.9952 + }, + { + "start": 12892.08, + "end": 12893.62, + "probability": 0.9146 + }, + { + "start": 12894.3, + "end": 12896.1, + "probability": 0.9874 + }, + { + "start": 12897.08, + "end": 12899.56, + "probability": 0.998 + }, + { + "start": 12900.44, + "end": 12902.24, + "probability": 0.9766 + }, + { + "start": 12903.04, + "end": 12906.88, + "probability": 0.9923 + }, + { + "start": 12907.36, + "end": 12909.9, + "probability": 0.7207 + }, + { + "start": 12910.54, + "end": 12913.72, + "probability": 0.8848 + }, + { + "start": 12913.72, + "end": 12916.8, + "probability": 0.9992 + }, + { + "start": 12916.92, + "end": 12919.02, + "probability": 0.9433 + }, + { + "start": 12919.78, + "end": 12921.78, + "probability": 0.9609 + }, + { + "start": 12922.68, + "end": 12922.92, + "probability": 0.8057 + }, + { + "start": 12923.64, + "end": 12923.74, + "probability": 0.7547 + }, + { + "start": 12924.62, + "end": 12925.34, + "probability": 0.602 + }, + { + "start": 12925.42, + "end": 12928.76, + "probability": 0.9698 + }, + { + "start": 12929.56, + "end": 12932.4, + "probability": 0.883 + }, + { + "start": 12933.28, + "end": 12934.32, + "probability": 0.8018 + }, + { + "start": 12935.14, + "end": 12937.2, + "probability": 0.7412 + }, + { + "start": 12938.2, + "end": 12940.18, + "probability": 0.6029 + }, + { + "start": 12940.32, + "end": 12941.66, + "probability": 0.7924 + }, + { + "start": 12941.72, + "end": 12943.02, + "probability": 0.1361 + }, + { + "start": 12943.18, + "end": 12947.24, + "probability": 0.8738 + }, + { + "start": 12947.5, + "end": 12949.08, + "probability": 0.554 + }, + { + "start": 12950.26, + "end": 12951.92, + "probability": 0.8146 + }, + { + "start": 12953.36, + "end": 12953.94, + "probability": 0.5811 + }, + { + "start": 12954.36, + "end": 12955.68, + "probability": 0.9782 + }, + { + "start": 12955.78, + "end": 12956.48, + "probability": 0.95 + }, + { + "start": 12956.88, + "end": 12958.3, + "probability": 0.7133 + }, + { + "start": 12959.4, + "end": 12963.16, + "probability": 0.7714 + }, + { + "start": 12963.36, + "end": 12964.54, + "probability": 0.7148 + }, + { + "start": 12964.88, + "end": 12966.7, + "probability": 0.9227 + }, + { + "start": 12966.76, + "end": 12967.52, + "probability": 0.7165 + }, + { + "start": 12967.54, + "end": 12967.74, + "probability": 0.7292 + }, + { + "start": 12967.76, + "end": 12970.8, + "probability": 0.7954 + }, + { + "start": 12971.56, + "end": 12978.48, + "probability": 0.9152 + }, + { + "start": 12979.76, + "end": 12981.94, + "probability": 0.9923 + }, + { + "start": 12982.34, + "end": 12982.92, + "probability": 0.5695 + }, + { + "start": 12983.02, + "end": 12984.22, + "probability": 0.8497 + }, + { + "start": 12984.32, + "end": 12987.52, + "probability": 0.9857 + }, + { + "start": 12988.94, + "end": 12992.32, + "probability": 0.9393 + }, + { + "start": 12993.22, + "end": 12995.8, + "probability": 0.8943 + }, + { + "start": 12996.12, + "end": 12999.76, + "probability": 0.9949 + }, + { + "start": 13000.18, + "end": 13004.74, + "probability": 0.9924 + }, + { + "start": 13005.28, + "end": 13011.8, + "probability": 0.8973 + }, + { + "start": 13012.92, + "end": 13016.22, + "probability": 0.9896 + }, + { + "start": 13017.28, + "end": 13018.45, + "probability": 0.9086 + }, + { + "start": 13018.8, + "end": 13024.64, + "probability": 0.9961 + }, + { + "start": 13025.46, + "end": 13029.32, + "probability": 0.9245 + }, + { + "start": 13029.98, + "end": 13035.38, + "probability": 0.9924 + }, + { + "start": 13036.02, + "end": 13041.74, + "probability": 0.9912 + }, + { + "start": 13042.4, + "end": 13045.76, + "probability": 0.954 + }, + { + "start": 13046.08, + "end": 13048.2, + "probability": 0.9171 + }, + { + "start": 13048.8, + "end": 13051.74, + "probability": 0.9548 + }, + { + "start": 13052.72, + "end": 13054.22, + "probability": 0.9825 + }, + { + "start": 13054.3, + "end": 13057.28, + "probability": 0.9968 + }, + { + "start": 13058.48, + "end": 13062.76, + "probability": 0.7007 + }, + { + "start": 13063.54, + "end": 13065.23, + "probability": 0.5928 + }, + { + "start": 13065.72, + "end": 13067.6, + "probability": 0.6272 + }, + { + "start": 13067.66, + "end": 13068.86, + "probability": 0.3663 + }, + { + "start": 13069.36, + "end": 13071.88, + "probability": 0.9984 + }, + { + "start": 13072.66, + "end": 13075.82, + "probability": 0.9826 + }, + { + "start": 13076.58, + "end": 13080.08, + "probability": 0.9919 + }, + { + "start": 13080.08, + "end": 13084.6, + "probability": 0.9818 + }, + { + "start": 13084.86, + "end": 13086.74, + "probability": 0.9974 + }, + { + "start": 13087.0, + "end": 13089.16, + "probability": 0.999 + }, + { + "start": 13089.62, + "end": 13089.66, + "probability": 0.5723 + }, + { + "start": 13089.86, + "end": 13091.0, + "probability": 0.9206 + }, + { + "start": 13091.48, + "end": 13095.84, + "probability": 0.9917 + }, + { + "start": 13096.16, + "end": 13097.98, + "probability": 0.8832 + }, + { + "start": 13098.3, + "end": 13099.16, + "probability": 0.9437 + }, + { + "start": 13099.46, + "end": 13103.78, + "probability": 0.9718 + }, + { + "start": 13104.48, + "end": 13105.1, + "probability": 0.5117 + }, + { + "start": 13105.56, + "end": 13107.86, + "probability": 0.9855 + }, + { + "start": 13108.18, + "end": 13110.58, + "probability": 0.697 + }, + { + "start": 13110.92, + "end": 13110.92, + "probability": 0.228 + }, + { + "start": 13110.92, + "end": 13113.96, + "probability": 0.9198 + }, + { + "start": 13114.08, + "end": 13118.22, + "probability": 0.9692 + }, + { + "start": 13118.8, + "end": 13123.16, + "probability": 0.9932 + }, + { + "start": 13123.46, + "end": 13125.32, + "probability": 0.9725 + }, + { + "start": 13125.6, + "end": 13128.06, + "probability": 0.9993 + }, + { + "start": 13128.8, + "end": 13134.94, + "probability": 0.9889 + }, + { + "start": 13135.18, + "end": 13136.54, + "probability": 0.9353 + }, + { + "start": 13136.8, + "end": 13137.06, + "probability": 0.6966 + }, + { + "start": 13137.42, + "end": 13139.96, + "probability": 0.7671 + }, + { + "start": 13140.42, + "end": 13141.76, + "probability": 0.9858 + }, + { + "start": 13142.5, + "end": 13144.38, + "probability": 0.9006 + }, + { + "start": 13145.82, + "end": 13147.72, + "probability": 0.9374 + }, + { + "start": 13147.76, + "end": 13150.08, + "probability": 0.9675 + }, + { + "start": 13151.6, + "end": 13153.18, + "probability": 0.1564 + }, + { + "start": 13155.01, + "end": 13156.58, + "probability": 0.9076 + }, + { + "start": 13157.74, + "end": 13158.48, + "probability": 0.2164 + }, + { + "start": 13158.9, + "end": 13160.6, + "probability": 0.6861 + }, + { + "start": 13160.78, + "end": 13161.5, + "probability": 0.8224 + }, + { + "start": 13161.58, + "end": 13162.86, + "probability": 0.8523 + }, + { + "start": 13162.98, + "end": 13166.54, + "probability": 0.995 + }, + { + "start": 13166.54, + "end": 13170.06, + "probability": 0.964 + }, + { + "start": 13171.14, + "end": 13177.68, + "probability": 0.9071 + }, + { + "start": 13177.86, + "end": 13181.46, + "probability": 0.9906 + }, + { + "start": 13182.14, + "end": 13186.14, + "probability": 0.9666 + }, + { + "start": 13186.28, + "end": 13187.66, + "probability": 0.9912 + }, + { + "start": 13188.36, + "end": 13192.76, + "probability": 0.9948 + }, + { + "start": 13193.22, + "end": 13195.9, + "probability": 0.9785 + }, + { + "start": 13196.28, + "end": 13199.54, + "probability": 0.9967 + }, + { + "start": 13199.62, + "end": 13200.38, + "probability": 0.7491 + }, + { + "start": 13200.82, + "end": 13204.02, + "probability": 0.9927 + }, + { + "start": 13204.22, + "end": 13205.34, + "probability": 0.7418 + }, + { + "start": 13205.98, + "end": 13209.48, + "probability": 0.9823 + }, + { + "start": 13209.6, + "end": 13211.52, + "probability": 0.9302 + }, + { + "start": 13211.58, + "end": 13213.52, + "probability": 0.9899 + }, + { + "start": 13214.06, + "end": 13216.36, + "probability": 0.9951 + }, + { + "start": 13217.4, + "end": 13220.32, + "probability": 0.7645 + }, + { + "start": 13220.56, + "end": 13224.92, + "probability": 0.9858 + }, + { + "start": 13225.18, + "end": 13228.16, + "probability": 0.9656 + }, + { + "start": 13228.66, + "end": 13229.7, + "probability": 0.646 + }, + { + "start": 13229.96, + "end": 13233.82, + "probability": 0.9895 + }, + { + "start": 13233.96, + "end": 13239.92, + "probability": 0.9951 + }, + { + "start": 13240.18, + "end": 13240.56, + "probability": 0.2788 + }, + { + "start": 13240.56, + "end": 13241.56, + "probability": 0.582 + }, + { + "start": 13242.28, + "end": 13245.06, + "probability": 0.9791 + }, + { + "start": 13245.48, + "end": 13246.12, + "probability": 0.7982 + }, + { + "start": 13246.22, + "end": 13246.54, + "probability": 0.9227 + }, + { + "start": 13246.62, + "end": 13248.12, + "probability": 0.8532 + }, + { + "start": 13248.22, + "end": 13249.56, + "probability": 0.8948 + }, + { + "start": 13249.96, + "end": 13252.9, + "probability": 0.9877 + }, + { + "start": 13253.2, + "end": 13255.2, + "probability": 0.958 + }, + { + "start": 13255.22, + "end": 13257.24, + "probability": 0.6301 + }, + { + "start": 13257.64, + "end": 13258.56, + "probability": 0.4536 + }, + { + "start": 13258.72, + "end": 13264.54, + "probability": 0.9565 + }, + { + "start": 13264.76, + "end": 13267.18, + "probability": 0.9839 + }, + { + "start": 13267.42, + "end": 13267.96, + "probability": 0.9247 + }, + { + "start": 13268.28, + "end": 13275.3, + "probability": 0.9756 + }, + { + "start": 13275.7, + "end": 13281.64, + "probability": 0.9975 + }, + { + "start": 13281.8, + "end": 13282.84, + "probability": 0.8115 + }, + { + "start": 13282.92, + "end": 13286.1, + "probability": 0.9976 + }, + { + "start": 13286.16, + "end": 13288.04, + "probability": 0.9705 + }, + { + "start": 13288.06, + "end": 13291.01, + "probability": 0.9888 + }, + { + "start": 13291.38, + "end": 13294.52, + "probability": 0.9956 + }, + { + "start": 13294.72, + "end": 13302.22, + "probability": 0.9966 + }, + { + "start": 13302.22, + "end": 13308.68, + "probability": 0.9993 + }, + { + "start": 13308.68, + "end": 13315.84, + "probability": 0.9993 + }, + { + "start": 13315.94, + "end": 13317.2, + "probability": 0.4956 + }, + { + "start": 13317.26, + "end": 13317.96, + "probability": 0.6858 + }, + { + "start": 13318.1, + "end": 13323.1, + "probability": 0.8466 + }, + { + "start": 13323.22, + "end": 13327.08, + "probability": 0.9863 + }, + { + "start": 13327.16, + "end": 13329.6, + "probability": 0.983 + }, + { + "start": 13330.02, + "end": 13331.82, + "probability": 0.5848 + }, + { + "start": 13331.88, + "end": 13335.54, + "probability": 0.9977 + }, + { + "start": 13335.62, + "end": 13336.3, + "probability": 0.8627 + }, + { + "start": 13336.62, + "end": 13339.12, + "probability": 0.9317 + }, + { + "start": 13339.58, + "end": 13345.22, + "probability": 0.9856 + }, + { + "start": 13345.9, + "end": 13349.5, + "probability": 0.9611 + }, + { + "start": 13349.58, + "end": 13350.94, + "probability": 0.904 + }, + { + "start": 13351.4, + "end": 13356.18, + "probability": 0.998 + }, + { + "start": 13356.22, + "end": 13363.82, + "probability": 0.9958 + }, + { + "start": 13364.04, + "end": 13366.17, + "probability": 0.9785 + }, + { + "start": 13367.12, + "end": 13368.58, + "probability": 0.7399 + }, + { + "start": 13368.76, + "end": 13370.84, + "probability": 0.9927 + }, + { + "start": 13370.84, + "end": 13375.12, + "probability": 0.9987 + }, + { + "start": 13375.3, + "end": 13377.28, + "probability": 0.9632 + }, + { + "start": 13377.36, + "end": 13378.2, + "probability": 0.8267 + }, + { + "start": 13378.3, + "end": 13378.92, + "probability": 0.9968 + }, + { + "start": 13379.68, + "end": 13380.56, + "probability": 0.9561 + }, + { + "start": 13380.68, + "end": 13382.41, + "probability": 0.9834 + }, + { + "start": 13382.8, + "end": 13387.76, + "probability": 0.9956 + }, + { + "start": 13387.84, + "end": 13391.34, + "probability": 0.9155 + }, + { + "start": 13391.42, + "end": 13393.96, + "probability": 0.9576 + }, + { + "start": 13394.04, + "end": 13394.42, + "probability": 0.8971 + }, + { + "start": 13394.52, + "end": 13396.28, + "probability": 0.9753 + }, + { + "start": 13396.44, + "end": 13401.18, + "probability": 0.8764 + }, + { + "start": 13402.12, + "end": 13407.96, + "probability": 0.9902 + }, + { + "start": 13408.02, + "end": 13412.0, + "probability": 0.9398 + }, + { + "start": 13412.0, + "end": 13415.82, + "probability": 0.7273 + }, + { + "start": 13416.0, + "end": 13419.1, + "probability": 0.9951 + }, + { + "start": 13419.54, + "end": 13424.24, + "probability": 0.9606 + }, + { + "start": 13424.7, + "end": 13433.25, + "probability": 0.9793 + }, + { + "start": 13433.52, + "end": 13435.22, + "probability": 0.9441 + }, + { + "start": 13435.98, + "end": 13440.16, + "probability": 0.9871 + }, + { + "start": 13440.16, + "end": 13443.52, + "probability": 0.9997 + }, + { + "start": 13444.78, + "end": 13445.12, + "probability": 0.5181 + }, + { + "start": 13445.68, + "end": 13448.06, + "probability": 0.8376 + }, + { + "start": 13449.02, + "end": 13450.72, + "probability": 0.9967 + }, + { + "start": 13450.78, + "end": 13453.48, + "probability": 0.8409 + }, + { + "start": 13453.62, + "end": 13457.3, + "probability": 0.9731 + }, + { + "start": 13458.4, + "end": 13460.3, + "probability": 0.8006 + }, + { + "start": 13460.34, + "end": 13465.62, + "probability": 0.9391 + }, + { + "start": 13466.14, + "end": 13469.06, + "probability": 0.9849 + }, + { + "start": 13469.44, + "end": 13473.8, + "probability": 0.9805 + }, + { + "start": 13473.96, + "end": 13474.88, + "probability": 0.8399 + }, + { + "start": 13475.04, + "end": 13478.31, + "probability": 0.8687 + }, + { + "start": 13478.66, + "end": 13480.23, + "probability": 0.8672 + }, + { + "start": 13480.84, + "end": 13484.18, + "probability": 0.9824 + }, + { + "start": 13484.18, + "end": 13491.02, + "probability": 0.9967 + }, + { + "start": 13491.18, + "end": 13494.9, + "probability": 0.8596 + }, + { + "start": 13495.5, + "end": 13500.84, + "probability": 0.9166 + }, + { + "start": 13501.3, + "end": 13502.16, + "probability": 0.874 + }, + { + "start": 13502.62, + "end": 13504.3, + "probability": 0.9367 + }, + { + "start": 13504.88, + "end": 13507.92, + "probability": 0.756 + }, + { + "start": 13508.12, + "end": 13512.36, + "probability": 0.9902 + }, + { + "start": 13512.36, + "end": 13517.68, + "probability": 0.9878 + }, + { + "start": 13518.14, + "end": 13518.18, + "probability": 0.3663 + }, + { + "start": 13518.32, + "end": 13519.26, + "probability": 0.7042 + }, + { + "start": 13519.68, + "end": 13521.12, + "probability": 0.9819 + }, + { + "start": 13521.24, + "end": 13523.44, + "probability": 0.9943 + }, + { + "start": 13523.98, + "end": 13529.89, + "probability": 0.9296 + }, + { + "start": 13530.74, + "end": 13534.44, + "probability": 0.9912 + }, + { + "start": 13536.36, + "end": 13539.6, + "probability": 0.1914 + }, + { + "start": 13539.74, + "end": 13541.96, + "probability": 0.7935 + }, + { + "start": 13542.18, + "end": 13543.94, + "probability": 0.9692 + }, + { + "start": 13545.0, + "end": 13546.88, + "probability": 0.5676 + }, + { + "start": 13548.14, + "end": 13554.56, + "probability": 0.9875 + }, + { + "start": 13554.62, + "end": 13558.94, + "probability": 0.9975 + }, + { + "start": 13559.06, + "end": 13560.7, + "probability": 0.8033 + }, + { + "start": 13561.82, + "end": 13563.71, + "probability": 0.9177 + }, + { + "start": 13564.0, + "end": 13565.66, + "probability": 0.9947 + }, + { + "start": 13565.98, + "end": 13567.0, + "probability": 0.8989 + }, + { + "start": 13567.12, + "end": 13571.12, + "probability": 0.9954 + }, + { + "start": 13571.14, + "end": 13573.58, + "probability": 0.9519 + }, + { + "start": 13573.86, + "end": 13578.46, + "probability": 0.9487 + }, + { + "start": 13579.14, + "end": 13579.8, + "probability": 0.8453 + }, + { + "start": 13579.88, + "end": 13581.6, + "probability": 0.9743 + }, + { + "start": 13581.8, + "end": 13583.38, + "probability": 0.9709 + }, + { + "start": 13584.22, + "end": 13589.04, + "probability": 0.9922 + }, + { + "start": 13589.04, + "end": 13597.92, + "probability": 0.9966 + }, + { + "start": 13598.88, + "end": 13601.59, + "probability": 0.959 + }, + { + "start": 13603.06, + "end": 13604.08, + "probability": 0.8418 + }, + { + "start": 13604.68, + "end": 13611.14, + "probability": 0.9761 + }, + { + "start": 13611.84, + "end": 13616.98, + "probability": 0.9916 + }, + { + "start": 13617.34, + "end": 13618.64, + "probability": 0.9985 + }, + { + "start": 13618.74, + "end": 13619.46, + "probability": 0.7183 + }, + { + "start": 13619.78, + "end": 13620.3, + "probability": 0.6569 + }, + { + "start": 13620.34, + "end": 13623.46, + "probability": 0.9683 + }, + { + "start": 13623.5, + "end": 13624.06, + "probability": 0.8254 + }, + { + "start": 13624.18, + "end": 13630.22, + "probability": 0.9613 + }, + { + "start": 13630.34, + "end": 13631.54, + "probability": 0.778 + }, + { + "start": 13633.96, + "end": 13634.76, + "probability": 0.5678 + }, + { + "start": 13634.76, + "end": 13636.63, + "probability": 0.9015 + }, + { + "start": 13637.0, + "end": 13642.28, + "probability": 0.9947 + }, + { + "start": 13642.68, + "end": 13645.86, + "probability": 0.8083 + }, + { + "start": 13646.38, + "end": 13646.64, + "probability": 0.8216 + }, + { + "start": 13646.88, + "end": 13648.66, + "probability": 0.9258 + }, + { + "start": 13648.72, + "end": 13654.52, + "probability": 0.9932 + }, + { + "start": 13654.6, + "end": 13660.8, + "probability": 0.9967 + }, + { + "start": 13660.86, + "end": 13663.92, + "probability": 0.7499 + }, + { + "start": 13663.96, + "end": 13665.62, + "probability": 0.9959 + }, + { + "start": 13665.8, + "end": 13667.94, + "probability": 0.6618 + }, + { + "start": 13668.0, + "end": 13669.22, + "probability": 0.9513 + }, + { + "start": 13669.26, + "end": 13675.9, + "probability": 0.965 + }, + { + "start": 13676.02, + "end": 13680.26, + "probability": 0.9707 + }, + { + "start": 13680.3, + "end": 13683.47, + "probability": 0.9369 + }, + { + "start": 13683.66, + "end": 13685.22, + "probability": 0.8112 + }, + { + "start": 13685.36, + "end": 13687.52, + "probability": 0.9535 + }, + { + "start": 13687.7, + "end": 13691.76, + "probability": 0.9907 + }, + { + "start": 13691.76, + "end": 13698.37, + "probability": 0.9808 + }, + { + "start": 13699.06, + "end": 13701.61, + "probability": 0.9842 + }, + { + "start": 13701.9, + "end": 13702.72, + "probability": 0.7475 + }, + { + "start": 13703.0, + "end": 13704.94, + "probability": 0.9768 + }, + { + "start": 13705.02, + "end": 13706.12, + "probability": 0.903 + }, + { + "start": 13706.22, + "end": 13707.36, + "probability": 0.9924 + }, + { + "start": 13707.42, + "end": 13709.71, + "probability": 0.9452 + }, + { + "start": 13710.2, + "end": 13714.08, + "probability": 0.9875 + }, + { + "start": 13714.34, + "end": 13716.74, + "probability": 0.9736 + }, + { + "start": 13716.92, + "end": 13719.82, + "probability": 0.4908 + }, + { + "start": 13719.82, + "end": 13720.64, + "probability": 0.3557 + }, + { + "start": 13721.46, + "end": 13724.22, + "probability": 0.5652 + }, + { + "start": 13724.26, + "end": 13724.76, + "probability": 0.7979 + }, + { + "start": 13725.34, + "end": 13728.28, + "probability": 0.9934 + }, + { + "start": 13728.82, + "end": 13733.94, + "probability": 0.9636 + }, + { + "start": 13734.02, + "end": 13735.34, + "probability": 0.8626 + }, + { + "start": 13736.24, + "end": 13739.11, + "probability": 0.9867 + }, + { + "start": 13739.64, + "end": 13741.36, + "probability": 0.3722 + }, + { + "start": 13741.56, + "end": 13743.92, + "probability": 0.9821 + }, + { + "start": 13744.06, + "end": 13745.62, + "probability": 0.8219 + }, + { + "start": 13745.68, + "end": 13750.66, + "probability": 0.7916 + }, + { + "start": 13750.78, + "end": 13751.18, + "probability": 0.81 + }, + { + "start": 13751.32, + "end": 13753.51, + "probability": 0.6346 + }, + { + "start": 13753.72, + "end": 13755.2, + "probability": 0.8668 + }, + { + "start": 13755.84, + "end": 13758.86, + "probability": 0.8318 + }, + { + "start": 13759.08, + "end": 13761.82, + "probability": 0.8369 + }, + { + "start": 13762.54, + "end": 13764.35, + "probability": 0.84 + }, + { + "start": 13766.8, + "end": 13767.44, + "probability": 0.0772 + }, + { + "start": 13767.44, + "end": 13767.44, + "probability": 0.4261 + }, + { + "start": 13767.44, + "end": 13768.94, + "probability": 0.7724 + }, + { + "start": 13769.24, + "end": 13770.0, + "probability": 0.8619 + }, + { + "start": 13770.46, + "end": 13771.52, + "probability": 0.188 + }, + { + "start": 13772.4, + "end": 13773.08, + "probability": 0.8483 + }, + { + "start": 13773.38, + "end": 13774.22, + "probability": 0.8087 + }, + { + "start": 13774.24, + "end": 13779.72, + "probability": 0.6723 + }, + { + "start": 13779.78, + "end": 13780.88, + "probability": 0.6609 + }, + { + "start": 13781.08, + "end": 13781.22, + "probability": 0.6034 + }, + { + "start": 13781.38, + "end": 13783.82, + "probability": 0.9079 + }, + { + "start": 13784.24, + "end": 13788.34, + "probability": 0.9668 + }, + { + "start": 13789.14, + "end": 13789.94, + "probability": 0.8682 + }, + { + "start": 13789.94, + "end": 13790.82, + "probability": 0.333 + }, + { + "start": 13790.82, + "end": 13790.84, + "probability": 0.5074 + }, + { + "start": 13790.84, + "end": 13791.7, + "probability": 0.2089 + }, + { + "start": 13792.06, + "end": 13793.0, + "probability": 0.3037 + }, + { + "start": 13793.52, + "end": 13794.11, + "probability": 0.2706 + }, + { + "start": 13795.0, + "end": 13796.2, + "probability": 0.6063 + }, + { + "start": 13796.74, + "end": 13798.2, + "probability": 0.6925 + }, + { + "start": 13798.3, + "end": 13802.7, + "probability": 0.4062 + }, + { + "start": 13803.94, + "end": 13808.84, + "probability": 0.9256 + }, + { + "start": 13809.42, + "end": 13811.76, + "probability": 0.9248 + }, + { + "start": 13812.3, + "end": 13813.71, + "probability": 0.9894 + }, + { + "start": 13813.8, + "end": 13815.98, + "probability": 0.8352 + }, + { + "start": 13816.52, + "end": 13817.68, + "probability": 0.7371 + }, + { + "start": 13818.38, + "end": 13819.08, + "probability": 0.5074 + }, + { + "start": 13819.88, + "end": 13825.0, + "probability": 0.9855 + }, + { + "start": 13825.22, + "end": 13828.68, + "probability": 0.9882 + }, + { + "start": 13829.24, + "end": 13830.16, + "probability": 0.9731 + }, + { + "start": 13830.26, + "end": 13832.34, + "probability": 0.7779 + }, + { + "start": 13832.72, + "end": 13834.26, + "probability": 0.9825 + }, + { + "start": 13834.78, + "end": 13835.28, + "probability": 0.5848 + }, + { + "start": 13835.5, + "end": 13836.26, + "probability": 0.8003 + }, + { + "start": 13836.68, + "end": 13837.46, + "probability": 0.25 + }, + { + "start": 13837.52, + "end": 13839.88, + "probability": 0.9143 + }, + { + "start": 13840.06, + "end": 13841.93, + "probability": 0.9775 + }, + { + "start": 13842.26, + "end": 13843.82, + "probability": 0.9674 + }, + { + "start": 13844.12, + "end": 13845.16, + "probability": 0.947 + }, + { + "start": 13845.28, + "end": 13846.84, + "probability": 0.7275 + }, + { + "start": 13846.94, + "end": 13847.7, + "probability": 0.7847 + }, + { + "start": 13847.78, + "end": 13850.34, + "probability": 0.9922 + }, + { + "start": 13851.08, + "end": 13851.88, + "probability": 0.1697 + }, + { + "start": 13852.34, + "end": 13853.1, + "probability": 0.6907 + }, + { + "start": 13853.36, + "end": 13857.46, + "probability": 0.9272 + }, + { + "start": 13857.46, + "end": 13860.62, + "probability": 0.9464 + }, + { + "start": 13861.12, + "end": 13866.84, + "probability": 0.9451 + }, + { + "start": 13867.02, + "end": 13868.64, + "probability": 0.921 + }, + { + "start": 13869.16, + "end": 13870.14, + "probability": 0.4196 + }, + { + "start": 13870.66, + "end": 13872.22, + "probability": 0.5905 + }, + { + "start": 13872.4, + "end": 13873.58, + "probability": 0.8997 + }, + { + "start": 13873.74, + "end": 13874.8, + "probability": 0.6792 + }, + { + "start": 13875.4, + "end": 13877.26, + "probability": 0.9681 + }, + { + "start": 13877.44, + "end": 13877.94, + "probability": 0.8276 + }, + { + "start": 13878.28, + "end": 13879.3, + "probability": 0.9551 + }, + { + "start": 13879.5, + "end": 13881.32, + "probability": 0.71 + }, + { + "start": 13881.68, + "end": 13884.0, + "probability": 0.7161 + }, + { + "start": 13884.4, + "end": 13886.4, + "probability": 0.9867 + }, + { + "start": 13887.06, + "end": 13888.16, + "probability": 0.822 + }, + { + "start": 13888.4, + "end": 13890.85, + "probability": 0.9266 + }, + { + "start": 13891.36, + "end": 13892.05, + "probability": 0.7861 + }, + { + "start": 13892.98, + "end": 13893.28, + "probability": 0.7009 + }, + { + "start": 13894.16, + "end": 13896.94, + "probability": 0.9441 + }, + { + "start": 13897.66, + "end": 13900.08, + "probability": 0.974 + }, + { + "start": 13900.54, + "end": 13903.7, + "probability": 0.8269 + }, + { + "start": 13903.76, + "end": 13906.2, + "probability": 0.9554 + }, + { + "start": 13907.12, + "end": 13907.6, + "probability": 0.0757 + }, + { + "start": 13907.6, + "end": 13908.4, + "probability": 0.0339 + }, + { + "start": 13908.84, + "end": 13910.64, + "probability": 0.9846 + }, + { + "start": 13911.06, + "end": 13913.24, + "probability": 0.9386 + }, + { + "start": 13913.72, + "end": 13916.1, + "probability": 0.9501 + }, + { + "start": 13916.28, + "end": 13919.14, + "probability": 0.9975 + }, + { + "start": 13919.3, + "end": 13922.48, + "probability": 0.7795 + }, + { + "start": 13922.7, + "end": 13925.91, + "probability": 0.8918 + }, + { + "start": 13926.4, + "end": 13931.6, + "probability": 0.9147 + }, + { + "start": 13931.98, + "end": 13933.3, + "probability": 0.6127 + }, + { + "start": 13933.96, + "end": 13935.08, + "probability": 0.5641 + }, + { + "start": 13935.46, + "end": 13936.68, + "probability": 0.7612 + }, + { + "start": 13936.76, + "end": 13937.2, + "probability": 0.9136 + }, + { + "start": 13937.28, + "end": 13938.64, + "probability": 0.8986 + }, + { + "start": 13938.84, + "end": 13940.54, + "probability": 0.9525 + }, + { + "start": 13940.76, + "end": 13941.22, + "probability": 0.8603 + }, + { + "start": 13941.3, + "end": 13942.06, + "probability": 0.9141 + }, + { + "start": 13942.26, + "end": 13942.72, + "probability": 0.8875 + }, + { + "start": 13943.84, + "end": 13945.34, + "probability": 0.7973 + }, + { + "start": 13945.56, + "end": 13946.14, + "probability": 0.2642 + }, + { + "start": 13946.14, + "end": 13947.36, + "probability": 0.702 + }, + { + "start": 13947.5, + "end": 13950.07, + "probability": 0.8285 + }, + { + "start": 13951.04, + "end": 13951.94, + "probability": 0.6666 + }, + { + "start": 13952.46, + "end": 13955.22, + "probability": 0.9229 + }, + { + "start": 13955.34, + "end": 13956.58, + "probability": 0.6524 + }, + { + "start": 13956.66, + "end": 13959.38, + "probability": 0.3241 + }, + { + "start": 13959.7, + "end": 13960.4, + "probability": 0.8676 + }, + { + "start": 13960.82, + "end": 13961.28, + "probability": 0.9638 + }, + { + "start": 13965.06, + "end": 13972.06, + "probability": 0.1369 + }, + { + "start": 13972.78, + "end": 13974.14, + "probability": 0.1981 + }, + { + "start": 13974.14, + "end": 13974.26, + "probability": 0.0625 + }, + { + "start": 13974.58, + "end": 13975.1, + "probability": 0.1655 + }, + { + "start": 13977.4, + "end": 13979.58, + "probability": 0.6003 + }, + { + "start": 13979.64, + "end": 13980.0, + "probability": 0.6977 + }, + { + "start": 13980.76, + "end": 13983.32, + "probability": 0.9565 + }, + { + "start": 13983.32, + "end": 13985.54, + "probability": 0.9969 + }, + { + "start": 13985.76, + "end": 13988.14, + "probability": 0.7938 + }, + { + "start": 13988.14, + "end": 13991.82, + "probability": 0.6186 + }, + { + "start": 13992.42, + "end": 13993.98, + "probability": 0.6664 + }, + { + "start": 13994.64, + "end": 13994.86, + "probability": 0.1249 + }, + { + "start": 13994.98, + "end": 13996.1, + "probability": 0.6538 + }, + { + "start": 13996.53, + "end": 13998.46, + "probability": 0.3498 + }, + { + "start": 13998.56, + "end": 13999.04, + "probability": 0.6776 + }, + { + "start": 13999.12, + "end": 13999.54, + "probability": 0.9163 + }, + { + "start": 14002.3, + "end": 14004.34, + "probability": 0.0993 + }, + { + "start": 14009.98, + "end": 14009.98, + "probability": 0.0935 + }, + { + "start": 14009.98, + "end": 14009.98, + "probability": 0.0145 + }, + { + "start": 14015.46, + "end": 14015.46, + "probability": 0.0864 + }, + { + "start": 14015.46, + "end": 14017.7, + "probability": 0.4669 + }, + { + "start": 14017.76, + "end": 14017.86, + "probability": 0.6024 + }, + { + "start": 14018.12, + "end": 14020.6, + "probability": 0.7607 + }, + { + "start": 14020.6, + "end": 14023.02, + "probability": 0.3404 + }, + { + "start": 14024.02, + "end": 14026.04, + "probability": 0.7138 + }, + { + "start": 14026.36, + "end": 14027.56, + "probability": 0.6931 + }, + { + "start": 14027.6, + "end": 14028.72, + "probability": 0.6641 + }, + { + "start": 14028.8, + "end": 14030.18, + "probability": 0.9114 + }, + { + "start": 14030.36, + "end": 14031.8, + "probability": 0.9866 + }, + { + "start": 14032.32, + "end": 14034.7, + "probability": 0.7478 + }, + { + "start": 14035.14, + "end": 14036.86, + "probability": 0.2783 + }, + { + "start": 14036.98, + "end": 14038.22, + "probability": 0.9032 + }, + { + "start": 14038.72, + "end": 14039.46, + "probability": 0.7551 + }, + { + "start": 14039.5, + "end": 14043.22, + "probability": 0.5262 + }, + { + "start": 14043.6, + "end": 14043.98, + "probability": 0.8046 + }, + { + "start": 14044.0, + "end": 14044.0, + "probability": 0.0 + }, + { + "start": 14047.7, + "end": 14048.92, + "probability": 0.7456 + }, + { + "start": 14049.0, + "end": 14054.1, + "probability": 0.8809 + }, + { + "start": 14054.92, + "end": 14058.54, + "probability": 0.4892 + }, + { + "start": 14059.38, + "end": 14060.68, + "probability": 0.6761 + }, + { + "start": 14060.82, + "end": 14062.2, + "probability": 0.624 + }, + { + "start": 14062.52, + "end": 14063.96, + "probability": 0.8037 + }, + { + "start": 14064.92, + "end": 14067.5, + "probability": 0.7494 + }, + { + "start": 14067.78, + "end": 14072.66, + "probability": 0.7108 + }, + { + "start": 14072.86, + "end": 14073.9, + "probability": 0.8252 + }, + { + "start": 14074.32, + "end": 14076.5, + "probability": 0.6642 + }, + { + "start": 14076.72, + "end": 14077.62, + "probability": 0.502 + }, + { + "start": 14078.28, + "end": 14079.2, + "probability": 0.6061 + }, + { + "start": 14079.22, + "end": 14079.45, + "probability": 0.9597 + }, + { + "start": 14079.78, + "end": 14080.48, + "probability": 0.817 + }, + { + "start": 14080.5, + "end": 14081.16, + "probability": 0.2799 + }, + { + "start": 14081.24, + "end": 14081.68, + "probability": 0.6953 + }, + { + "start": 14082.28, + "end": 14082.84, + "probability": 0.8781 + }, + { + "start": 14083.08, + "end": 14083.44, + "probability": 0.2739 + }, + { + "start": 14084.0, + "end": 14084.7, + "probability": 0.7363 + }, + { + "start": 14084.98, + "end": 14085.82, + "probability": 0.5834 + }, + { + "start": 14086.86, + "end": 14087.39, + "probability": 0.2482 + }, + { + "start": 14088.16, + "end": 14092.94, + "probability": 0.9902 + }, + { + "start": 14093.36, + "end": 14095.57, + "probability": 0.8483 + }, + { + "start": 14096.32, + "end": 14096.54, + "probability": 0.6766 + }, + { + "start": 14096.62, + "end": 14097.5, + "probability": 0.9655 + }, + { + "start": 14097.92, + "end": 14098.66, + "probability": 0.8884 + }, + { + "start": 14099.32, + "end": 14100.74, + "probability": 0.924 + }, + { + "start": 14101.62, + "end": 14104.44, + "probability": 0.959 + }, + { + "start": 14104.76, + "end": 14108.08, + "probability": 0.9311 + }, + { + "start": 14108.24, + "end": 14111.64, + "probability": 0.7263 + }, + { + "start": 14111.68, + "end": 14113.58, + "probability": 0.7388 + }, + { + "start": 14114.04, + "end": 14114.94, + "probability": 0.8425 + }, + { + "start": 14115.4, + "end": 14118.62, + "probability": 0.9786 + }, + { + "start": 14119.24, + "end": 14123.22, + "probability": 0.9032 + }, + { + "start": 14123.62, + "end": 14125.56, + "probability": 0.791 + }, + { + "start": 14125.94, + "end": 14129.44, + "probability": 0.7634 + }, + { + "start": 14129.68, + "end": 14131.53, + "probability": 0.8787 + }, + { + "start": 14131.82, + "end": 14132.78, + "probability": 0.9373 + }, + { + "start": 14133.28, + "end": 14134.02, + "probability": 0.8804 + }, + { + "start": 14134.7, + "end": 14135.77, + "probability": 0.5988 + }, + { + "start": 14136.1, + "end": 14137.38, + "probability": 0.9557 + }, + { + "start": 14137.5, + "end": 14138.26, + "probability": 0.7701 + }, + { + "start": 14138.8, + "end": 14139.64, + "probability": 0.6055 + }, + { + "start": 14139.7, + "end": 14140.04, + "probability": 0.829 + }, + { + "start": 14140.12, + "end": 14143.36, + "probability": 0.6598 + }, + { + "start": 14143.78, + "end": 14145.18, + "probability": 0.9297 + }, + { + "start": 14146.5, + "end": 14149.92, + "probability": 0.9509 + }, + { + "start": 14150.18, + "end": 14151.56, + "probability": 0.6932 + }, + { + "start": 14151.8, + "end": 14155.8, + "probability": 0.693 + }, + { + "start": 14156.08, + "end": 14159.34, + "probability": 0.9243 + }, + { + "start": 14159.92, + "end": 14163.04, + "probability": 0.9101 + }, + { + "start": 14163.44, + "end": 14164.14, + "probability": 0.4985 + }, + { + "start": 14164.68, + "end": 14167.34, + "probability": 0.9428 + }, + { + "start": 14167.34, + "end": 14170.45, + "probability": 0.9933 + }, + { + "start": 14170.6, + "end": 14172.76, + "probability": 0.8811 + }, + { + "start": 14173.0, + "end": 14174.94, + "probability": 0.8595 + }, + { + "start": 14175.04, + "end": 14175.66, + "probability": 0.38 + }, + { + "start": 14175.96, + "end": 14177.38, + "probability": 0.8673 + }, + { + "start": 14177.72, + "end": 14180.76, + "probability": 0.981 + }, + { + "start": 14181.26, + "end": 14182.48, + "probability": 0.6873 + }, + { + "start": 14183.8, + "end": 14187.3, + "probability": 0.9085 + }, + { + "start": 14187.36, + "end": 14187.76, + "probability": 0.7872 + }, + { + "start": 14188.16, + "end": 14191.12, + "probability": 0.5952 + }, + { + "start": 14191.46, + "end": 14194.72, + "probability": 0.9745 + }, + { + "start": 14194.72, + "end": 14199.0, + "probability": 0.9581 + }, + { + "start": 14199.06, + "end": 14202.22, + "probability": 0.7486 + }, + { + "start": 14202.52, + "end": 14205.86, + "probability": 0.8413 + }, + { + "start": 14206.24, + "end": 14206.54, + "probability": 0.8772 + }, + { + "start": 14207.02, + "end": 14208.28, + "probability": 0.8447 + }, + { + "start": 14208.86, + "end": 14210.36, + "probability": 0.9766 + }, + { + "start": 14210.52, + "end": 14213.7, + "probability": 0.9926 + }, + { + "start": 14213.7, + "end": 14217.56, + "probability": 0.9806 + }, + { + "start": 14217.94, + "end": 14219.34, + "probability": 0.8571 + }, + { + "start": 14219.86, + "end": 14225.04, + "probability": 0.8428 + }, + { + "start": 14225.32, + "end": 14226.28, + "probability": 0.5183 + }, + { + "start": 14226.62, + "end": 14228.54, + "probability": 0.8771 + }, + { + "start": 14228.84, + "end": 14230.44, + "probability": 0.7478 + }, + { + "start": 14230.84, + "end": 14233.74, + "probability": 0.8568 + }, + { + "start": 14233.74, + "end": 14235.42, + "probability": 0.984 + }, + { + "start": 14235.64, + "end": 14236.3, + "probability": 0.7903 + }, + { + "start": 14236.58, + "end": 14238.31, + "probability": 0.8262 + }, + { + "start": 14238.58, + "end": 14241.27, + "probability": 0.9731 + }, + { + "start": 14242.06, + "end": 14246.42, + "probability": 0.5094 + }, + { + "start": 14246.78, + "end": 14249.3, + "probability": 0.9826 + }, + { + "start": 14249.58, + "end": 14251.52, + "probability": 0.9926 + }, + { + "start": 14251.64, + "end": 14252.02, + "probability": 0.6514 + }, + { + "start": 14252.12, + "end": 14252.26, + "probability": 0.662 + }, + { + "start": 14252.4, + "end": 14252.64, + "probability": 0.7631 + }, + { + "start": 14253.02, + "end": 14254.18, + "probability": 0.7719 + }, + { + "start": 14254.54, + "end": 14257.76, + "probability": 0.9871 + }, + { + "start": 14258.02, + "end": 14259.14, + "probability": 0.6394 + }, + { + "start": 14259.44, + "end": 14261.0, + "probability": 0.845 + }, + { + "start": 14261.36, + "end": 14262.66, + "probability": 0.8613 + }, + { + "start": 14262.72, + "end": 14263.06, + "probability": 0.4057 + }, + { + "start": 14263.06, + "end": 14267.4, + "probability": 0.8784 + }, + { + "start": 14267.42, + "end": 14268.53, + "probability": 0.4865 + }, + { + "start": 14268.94, + "end": 14271.76, + "probability": 0.9824 + }, + { + "start": 14271.76, + "end": 14274.04, + "probability": 0.9792 + }, + { + "start": 14274.88, + "end": 14276.14, + "probability": 0.7047 + }, + { + "start": 14276.66, + "end": 14276.92, + "probability": 0.6138 + }, + { + "start": 14277.54, + "end": 14279.28, + "probability": 0.6885 + }, + { + "start": 14292.48, + "end": 14295.94, + "probability": 0.874 + }, + { + "start": 14296.0, + "end": 14296.65, + "probability": 0.7688 + }, + { + "start": 14297.64, + "end": 14300.4, + "probability": 0.6274 + }, + { + "start": 14301.06, + "end": 14301.66, + "probability": 0.8144 + }, + { + "start": 14302.04, + "end": 14302.62, + "probability": 0.9077 + }, + { + "start": 14304.98, + "end": 14307.4, + "probability": 0.7652 + }, + { + "start": 14308.6, + "end": 14311.92, + "probability": 0.8597 + }, + { + "start": 14312.92, + "end": 14315.18, + "probability": 0.9308 + }, + { + "start": 14315.4, + "end": 14317.53, + "probability": 0.7946 + }, + { + "start": 14319.32, + "end": 14319.82, + "probability": 0.7538 + }, + { + "start": 14321.82, + "end": 14324.94, + "probability": 0.7996 + }, + { + "start": 14326.06, + "end": 14331.64, + "probability": 0.9961 + }, + { + "start": 14332.78, + "end": 14336.36, + "probability": 0.966 + }, + { + "start": 14337.26, + "end": 14342.48, + "probability": 0.9968 + }, + { + "start": 14343.12, + "end": 14344.6, + "probability": 0.5068 + }, + { + "start": 14345.4, + "end": 14348.08, + "probability": 0.9875 + }, + { + "start": 14348.24, + "end": 14350.09, + "probability": 0.7466 + }, + { + "start": 14350.7, + "end": 14353.86, + "probability": 0.9833 + }, + { + "start": 14354.5, + "end": 14356.14, + "probability": 0.9858 + }, + { + "start": 14356.78, + "end": 14359.76, + "probability": 0.9391 + }, + { + "start": 14360.62, + "end": 14363.98, + "probability": 0.9369 + }, + { + "start": 14364.86, + "end": 14368.12, + "probability": 0.7497 + }, + { + "start": 14369.18, + "end": 14372.08, + "probability": 0.4823 + }, + { + "start": 14372.62, + "end": 14376.54, + "probability": 0.665 + }, + { + "start": 14377.5, + "end": 14381.58, + "probability": 0.7284 + }, + { + "start": 14382.32, + "end": 14385.68, + "probability": 0.7041 + }, + { + "start": 14386.5, + "end": 14388.7, + "probability": 0.6958 + }, + { + "start": 14389.56, + "end": 14391.6, + "probability": 0.5021 + }, + { + "start": 14393.2, + "end": 14395.72, + "probability": 0.937 + }, + { + "start": 14396.88, + "end": 14400.28, + "probability": 0.8006 + }, + { + "start": 14401.16, + "end": 14404.76, + "probability": 0.805 + }, + { + "start": 14405.62, + "end": 14407.96, + "probability": 0.9992 + }, + { + "start": 14408.74, + "end": 14410.58, + "probability": 0.8873 + }, + { + "start": 14411.56, + "end": 14417.02, + "probability": 0.9068 + }, + { + "start": 14417.9, + "end": 14419.72, + "probability": 0.8477 + }, + { + "start": 14420.52, + "end": 14422.9, + "probability": 0.9971 + }, + { + "start": 14422.9, + "end": 14426.6, + "probability": 0.9463 + }, + { + "start": 14427.2, + "end": 14430.32, + "probability": 0.8658 + }, + { + "start": 14430.82, + "end": 14432.24, + "probability": 0.674 + }, + { + "start": 14432.76, + "end": 14434.8, + "probability": 0.758 + }, + { + "start": 14435.38, + "end": 14437.22, + "probability": 0.8719 + }, + { + "start": 14437.3, + "end": 14441.28, + "probability": 0.7866 + }, + { + "start": 14442.06, + "end": 14444.14, + "probability": 0.3472 + }, + { + "start": 14444.2, + "end": 14444.7, + "probability": 0.6345 + }, + { + "start": 14444.78, + "end": 14445.38, + "probability": 0.8563 + }, + { + "start": 14456.05, + "end": 14458.78, + "probability": 0.0567 + }, + { + "start": 14458.78, + "end": 14459.12, + "probability": 0.0451 + }, + { + "start": 14459.12, + "end": 14460.96, + "probability": 0.1649 + }, + { + "start": 14461.36, + "end": 14464.46, + "probability": 0.5273 + }, + { + "start": 14464.56, + "end": 14465.58, + "probability": 0.7521 + }, + { + "start": 14466.66, + "end": 14469.26, + "probability": 0.8318 + }, + { + "start": 14469.26, + "end": 14472.26, + "probability": 0.9729 + }, + { + "start": 14472.64, + "end": 14474.64, + "probability": 0.9414 + }, + { + "start": 14479.16, + "end": 14479.46, + "probability": 0.349 + }, + { + "start": 14481.26, + "end": 14482.25, + "probability": 0.5058 + }, + { + "start": 14497.12, + "end": 14500.76, + "probability": 0.5779 + }, + { + "start": 14500.86, + "end": 14502.58, + "probability": 0.6464 + }, + { + "start": 14504.28, + "end": 14505.54, + "probability": 0.5546 + }, + { + "start": 14507.34, + "end": 14509.58, + "probability": 0.8151 + }, + { + "start": 14510.24, + "end": 14514.18, + "probability": 0.833 + }, + { + "start": 14518.99, + "end": 14520.16, + "probability": 0.5239 + }, + { + "start": 14520.18, + "end": 14522.72, + "probability": 0.708 + }, + { + "start": 14528.42, + "end": 14530.94, + "probability": 0.3528 + }, + { + "start": 14533.16, + "end": 14537.52, + "probability": 0.7651 + }, + { + "start": 14546.29, + "end": 14547.86, + "probability": 0.8086 + }, + { + "start": 14548.0, + "end": 14548.88, + "probability": 0.5465 + }, + { + "start": 14549.16, + "end": 14554.82, + "probability": 0.3264 + }, + { + "start": 14554.82, + "end": 14555.5, + "probability": 0.8264 + }, + { + "start": 14558.68, + "end": 14562.16, + "probability": 0.7269 + }, + { + "start": 14564.24, + "end": 14565.86, + "probability": 0.2629 + }, + { + "start": 14565.9, + "end": 14567.28, + "probability": 0.8116 + }, + { + "start": 14568.02, + "end": 14568.72, + "probability": 0.7416 + }, + { + "start": 14573.94, + "end": 14574.22, + "probability": 0.371 + }, + { + "start": 14574.32, + "end": 14576.38, + "probability": 0.7548 + }, + { + "start": 14577.16, + "end": 14581.44, + "probability": 0.9484 + }, + { + "start": 14582.32, + "end": 14586.7, + "probability": 0.9883 + }, + { + "start": 14587.32, + "end": 14591.42, + "probability": 0.9135 + }, + { + "start": 14592.3, + "end": 14595.94, + "probability": 0.9851 + }, + { + "start": 14597.45, + "end": 14601.8, + "probability": 0.9339 + }, + { + "start": 14602.52, + "end": 14603.9, + "probability": 0.89 + }, + { + "start": 14605.04, + "end": 14608.88, + "probability": 0.9835 + }, + { + "start": 14609.22, + "end": 14612.3, + "probability": 0.9832 + }, + { + "start": 14613.76, + "end": 14621.4, + "probability": 0.9968 + }, + { + "start": 14621.77, + "end": 14629.62, + "probability": 0.9941 + }, + { + "start": 14629.84, + "end": 14631.86, + "probability": 0.8481 + }, + { + "start": 14632.66, + "end": 14633.54, + "probability": 0.9642 + }, + { + "start": 14634.92, + "end": 14636.8, + "probability": 0.9982 + }, + { + "start": 14637.68, + "end": 14643.08, + "probability": 0.9872 + }, + { + "start": 14643.28, + "end": 14644.74, + "probability": 0.762 + }, + { + "start": 14645.04, + "end": 14646.88, + "probability": 0.9824 + }, + { + "start": 14648.54, + "end": 14651.26, + "probability": 0.9766 + }, + { + "start": 14652.0, + "end": 14655.34, + "probability": 0.9868 + }, + { + "start": 14656.02, + "end": 14656.78, + "probability": 0.8534 + }, + { + "start": 14657.46, + "end": 14662.64, + "probability": 0.9771 + }, + { + "start": 14663.92, + "end": 14664.44, + "probability": 0.9154 + }, + { + "start": 14665.4, + "end": 14669.22, + "probability": 0.5559 + }, + { + "start": 14670.14, + "end": 14674.74, + "probability": 0.7168 + }, + { + "start": 14676.1, + "end": 14677.4, + "probability": 0.8161 + }, + { + "start": 14678.46, + "end": 14679.37, + "probability": 0.5079 + }, + { + "start": 14681.06, + "end": 14681.74, + "probability": 0.8563 + }, + { + "start": 14681.8, + "end": 14682.58, + "probability": 0.8827 + }, + { + "start": 14682.72, + "end": 14686.14, + "probability": 0.7643 + }, + { + "start": 14686.22, + "end": 14687.48, + "probability": 0.9883 + }, + { + "start": 14688.04, + "end": 14690.18, + "probability": 0.9915 + }, + { + "start": 14690.8, + "end": 14693.18, + "probability": 0.9777 + }, + { + "start": 14694.26, + "end": 14695.52, + "probability": 0.9577 + }, + { + "start": 14696.68, + "end": 14698.52, + "probability": 0.5976 + }, + { + "start": 14699.1, + "end": 14702.34, + "probability": 0.9657 + }, + { + "start": 14703.58, + "end": 14705.46, + "probability": 0.8146 + }, + { + "start": 14709.94, + "end": 14712.56, + "probability": 0.9535 + }, + { + "start": 14713.7, + "end": 14716.12, + "probability": 0.9534 + }, + { + "start": 14717.54, + "end": 14722.16, + "probability": 0.8403 + }, + { + "start": 14723.34, + "end": 14726.28, + "probability": 0.9908 + }, + { + "start": 14727.36, + "end": 14731.26, + "probability": 0.8735 + }, + { + "start": 14731.58, + "end": 14732.2, + "probability": 0.6184 + }, + { + "start": 14732.22, + "end": 14732.6, + "probability": 0.3293 + }, + { + "start": 14734.42, + "end": 14739.2, + "probability": 0.9619 + }, + { + "start": 14740.04, + "end": 14744.06, + "probability": 0.8652 + }, + { + "start": 14744.06, + "end": 14751.86, + "probability": 0.9954 + }, + { + "start": 14752.9, + "end": 14757.08, + "probability": 0.641 + }, + { + "start": 14757.66, + "end": 14762.96, + "probability": 0.9855 + }, + { + "start": 14763.68, + "end": 14764.72, + "probability": 0.8668 + }, + { + "start": 14765.26, + "end": 14767.12, + "probability": 0.9228 + }, + { + "start": 14768.08, + "end": 14773.34, + "probability": 0.9927 + }, + { + "start": 14774.08, + "end": 14775.0, + "probability": 0.8511 + }, + { + "start": 14776.42, + "end": 14779.76, + "probability": 0.5713 + }, + { + "start": 14780.34, + "end": 14782.64, + "probability": 0.8637 + }, + { + "start": 14783.5, + "end": 14787.65, + "probability": 0.974 + }, + { + "start": 14788.46, + "end": 14789.52, + "probability": 0.652 + }, + { + "start": 14792.5, + "end": 14799.98, + "probability": 0.9159 + }, + { + "start": 14801.24, + "end": 14803.36, + "probability": 0.7401 + }, + { + "start": 14803.92, + "end": 14807.52, + "probability": 0.884 + }, + { + "start": 14808.36, + "end": 14809.08, + "probability": 0.9658 + }, + { + "start": 14810.42, + "end": 14814.44, + "probability": 0.8052 + }, + { + "start": 14815.28, + "end": 14815.89, + "probability": 0.9858 + }, + { + "start": 14817.42, + "end": 14818.5, + "probability": 0.9017 + }, + { + "start": 14819.04, + "end": 14821.16, + "probability": 0.9951 + }, + { + "start": 14821.64, + "end": 14823.8, + "probability": 0.9939 + }, + { + "start": 14824.3, + "end": 14825.53, + "probability": 0.9927 + }, + { + "start": 14826.54, + "end": 14828.82, + "probability": 0.9225 + }, + { + "start": 14829.4, + "end": 14831.66, + "probability": 0.9821 + }, + { + "start": 14831.76, + "end": 14832.68, + "probability": 0.789 + }, + { + "start": 14833.14, + "end": 14837.48, + "probability": 0.9912 + }, + { + "start": 14837.98, + "end": 14840.28, + "probability": 0.6938 + }, + { + "start": 14840.62, + "end": 14843.3, + "probability": 0.9477 + }, + { + "start": 14843.62, + "end": 14845.26, + "probability": 0.9838 + }, + { + "start": 14845.94, + "end": 14846.8, + "probability": 0.9771 + }, + { + "start": 14847.52, + "end": 14853.28, + "probability": 0.9846 + }, + { + "start": 14853.82, + "end": 14855.62, + "probability": 0.7219 + }, + { + "start": 14855.66, + "end": 14856.0, + "probability": 0.3792 + }, + { + "start": 14856.06, + "end": 14859.9, + "probability": 0.8766 + }, + { + "start": 14859.94, + "end": 14863.68, + "probability": 0.9863 + }, + { + "start": 14865.04, + "end": 14868.8, + "probability": 0.9823 + }, + { + "start": 14869.4, + "end": 14870.08, + "probability": 0.7404 + }, + { + "start": 14870.24, + "end": 14871.5, + "probability": 0.9319 + }, + { + "start": 14871.7, + "end": 14874.38, + "probability": 0.8009 + }, + { + "start": 14874.8, + "end": 14876.84, + "probability": 0.996 + }, + { + "start": 14877.58, + "end": 14879.46, + "probability": 0.7402 + }, + { + "start": 14880.46, + "end": 14880.78, + "probability": 0.8613 + }, + { + "start": 14880.82, + "end": 14881.36, + "probability": 0.9626 + }, + { + "start": 14881.42, + "end": 14887.02, + "probability": 0.8599 + }, + { + "start": 14888.6, + "end": 14891.09, + "probability": 0.9019 + }, + { + "start": 14893.02, + "end": 14896.48, + "probability": 0.9596 + }, + { + "start": 14898.6, + "end": 14900.78, + "probability": 0.8982 + }, + { + "start": 14901.52, + "end": 14903.22, + "probability": 0.948 + }, + { + "start": 14906.78, + "end": 14911.5, + "probability": 0.8708 + }, + { + "start": 14911.54, + "end": 14913.36, + "probability": 0.9849 + }, + { + "start": 14913.98, + "end": 14914.68, + "probability": 0.6587 + }, + { + "start": 14915.52, + "end": 14916.22, + "probability": 0.6333 + }, + { + "start": 14917.06, + "end": 14920.48, + "probability": 0.8635 + }, + { + "start": 14921.28, + "end": 14921.66, + "probability": 0.6817 + }, + { + "start": 14922.54, + "end": 14924.32, + "probability": 0.9354 + }, + { + "start": 14925.2, + "end": 14925.76, + "probability": 0.9941 + }, + { + "start": 14926.94, + "end": 14929.86, + "probability": 0.982 + }, + { + "start": 14930.86, + "end": 14936.46, + "probability": 0.9222 + }, + { + "start": 14937.08, + "end": 14937.64, + "probability": 0.7505 + }, + { + "start": 14938.52, + "end": 14940.38, + "probability": 0.8904 + }, + { + "start": 14942.3, + "end": 14944.12, + "probability": 0.995 + }, + { + "start": 14945.5, + "end": 14951.96, + "probability": 0.9886 + }, + { + "start": 14953.54, + "end": 14954.44, + "probability": 0.7572 + }, + { + "start": 14955.64, + "end": 14959.58, + "probability": 0.6329 + }, + { + "start": 14960.42, + "end": 14961.58, + "probability": 0.8121 + }, + { + "start": 14962.54, + "end": 14965.22, + "probability": 0.8415 + }, + { + "start": 14966.76, + "end": 14969.34, + "probability": 0.9888 + }, + { + "start": 14970.3, + "end": 14972.28, + "probability": 0.9358 + }, + { + "start": 14972.92, + "end": 14974.14, + "probability": 0.9336 + }, + { + "start": 14975.36, + "end": 14977.28, + "probability": 0.9977 + }, + { + "start": 14978.52, + "end": 14980.76, + "probability": 0.9958 + }, + { + "start": 14981.92, + "end": 14987.1, + "probability": 0.9801 + }, + { + "start": 14987.14, + "end": 14989.06, + "probability": 0.8692 + }, + { + "start": 14989.54, + "end": 14990.02, + "probability": 0.6088 + }, + { + "start": 14990.46, + "end": 14993.08, + "probability": 0.9834 + }, + { + "start": 14994.12, + "end": 15000.06, + "probability": 0.9468 + }, + { + "start": 15000.42, + "end": 15001.34, + "probability": 0.841 + }, + { + "start": 15001.96, + "end": 15006.72, + "probability": 0.951 + }, + { + "start": 15007.34, + "end": 15009.16, + "probability": 0.9618 + }, + { + "start": 15009.78, + "end": 15013.78, + "probability": 0.9702 + }, + { + "start": 15014.44, + "end": 15015.04, + "probability": 0.9829 + }, + { + "start": 15015.96, + "end": 15016.64, + "probability": 0.361 + }, + { + "start": 15017.56, + "end": 15018.5, + "probability": 0.7288 + }, + { + "start": 15019.44, + "end": 15023.48, + "probability": 0.8668 + }, + { + "start": 15024.8, + "end": 15030.28, + "probability": 0.9882 + }, + { + "start": 15031.44, + "end": 15035.8, + "probability": 0.9387 + }, + { + "start": 15037.06, + "end": 15039.48, + "probability": 0.9961 + }, + { + "start": 15040.4, + "end": 15046.36, + "probability": 0.7526 + }, + { + "start": 15046.58, + "end": 15047.48, + "probability": 0.9951 + }, + { + "start": 15048.26, + "end": 15049.48, + "probability": 0.9121 + }, + { + "start": 15049.76, + "end": 15050.4, + "probability": 0.9391 + }, + { + "start": 15050.6, + "end": 15054.58, + "probability": 0.9756 + }, + { + "start": 15055.96, + "end": 15059.34, + "probability": 0.9749 + }, + { + "start": 15059.94, + "end": 15060.96, + "probability": 0.835 + }, + { + "start": 15062.38, + "end": 15063.8, + "probability": 0.8333 + }, + { + "start": 15064.78, + "end": 15068.94, + "probability": 0.8799 + }, + { + "start": 15069.3, + "end": 15070.16, + "probability": 0.7935 + }, + { + "start": 15070.28, + "end": 15070.76, + "probability": 0.0227 + }, + { + "start": 15071.46, + "end": 15073.3, + "probability": 0.8728 + }, + { + "start": 15074.3, + "end": 15076.54, + "probability": 0.8618 + }, + { + "start": 15077.9, + "end": 15080.84, + "probability": 0.9701 + }, + { + "start": 15081.58, + "end": 15082.36, + "probability": 0.953 + }, + { + "start": 15084.36, + "end": 15089.14, + "probability": 0.6821 + }, + { + "start": 15089.58, + "end": 15094.82, + "probability": 0.8579 + }, + { + "start": 15094.94, + "end": 15095.86, + "probability": 0.826 + }, + { + "start": 15096.48, + "end": 15100.16, + "probability": 0.9216 + }, + { + "start": 15100.88, + "end": 15102.22, + "probability": 0.8584 + }, + { + "start": 15102.74, + "end": 15104.22, + "probability": 0.628 + }, + { + "start": 15104.84, + "end": 15106.28, + "probability": 0.9416 + }, + { + "start": 15107.06, + "end": 15109.1, + "probability": 0.9097 + }, + { + "start": 15110.04, + "end": 15115.4, + "probability": 0.9497 + }, + { + "start": 15115.88, + "end": 15119.36, + "probability": 0.9819 + }, + { + "start": 15120.2, + "end": 15122.8, + "probability": 0.995 + }, + { + "start": 15123.0, + "end": 15124.0, + "probability": 0.9336 + }, + { + "start": 15124.68, + "end": 15126.64, + "probability": 0.9014 + }, + { + "start": 15127.06, + "end": 15128.24, + "probability": 0.6733 + }, + { + "start": 15128.7, + "end": 15130.5, + "probability": 0.9822 + }, + { + "start": 15130.64, + "end": 15132.88, + "probability": 0.8667 + }, + { + "start": 15133.44, + "end": 15134.98, + "probability": 0.983 + }, + { + "start": 15135.28, + "end": 15139.7, + "probability": 0.8423 + }, + { + "start": 15139.78, + "end": 15140.66, + "probability": 0.8018 + }, + { + "start": 15141.72, + "end": 15142.34, + "probability": 0.3388 + }, + { + "start": 15142.88, + "end": 15143.94, + "probability": 0.5539 + }, + { + "start": 15145.5, + "end": 15148.18, + "probability": 0.9952 + }, + { + "start": 15149.54, + "end": 15152.06, + "probability": 0.985 + }, + { + "start": 15152.24, + "end": 15153.48, + "probability": 0.9417 + }, + { + "start": 15156.33, + "end": 15157.38, + "probability": 0.1697 + }, + { + "start": 15157.38, + "end": 15160.06, + "probability": 0.7204 + }, + { + "start": 15160.52, + "end": 15161.7, + "probability": 0.6885 + }, + { + "start": 15162.28, + "end": 15163.28, + "probability": 0.6819 + }, + { + "start": 15164.04, + "end": 15166.72, + "probability": 0.8789 + }, + { + "start": 15167.3, + "end": 15169.12, + "probability": 0.647 + }, + { + "start": 15169.86, + "end": 15174.16, + "probability": 0.9592 + }, + { + "start": 15176.46, + "end": 15176.86, + "probability": 0.6655 + }, + { + "start": 15177.2, + "end": 15178.18, + "probability": 0.6089 + }, + { + "start": 15178.2, + "end": 15179.42, + "probability": 0.7967 + }, + { + "start": 15179.42, + "end": 15182.72, + "probability": 0.6627 + }, + { + "start": 15182.82, + "end": 15183.08, + "probability": 0.8958 + }, + { + "start": 15183.08, + "end": 15184.78, + "probability": 0.8015 + }, + { + "start": 15185.24, + "end": 15188.86, + "probability": 0.9916 + }, + { + "start": 15189.8, + "end": 15192.82, + "probability": 0.9566 + }, + { + "start": 15193.38, + "end": 15195.1, + "probability": 0.9856 + }, + { + "start": 15195.56, + "end": 15196.7, + "probability": 0.9524 + }, + { + "start": 15196.94, + "end": 15199.84, + "probability": 0.9633 + }, + { + "start": 15200.78, + "end": 15203.22, + "probability": 0.9918 + }, + { + "start": 15203.74, + "end": 15205.36, + "probability": 0.6541 + }, + { + "start": 15205.42, + "end": 15205.84, + "probability": 0.8918 + }, + { + "start": 15205.88, + "end": 15206.9, + "probability": 0.9164 + }, + { + "start": 15207.14, + "end": 15208.12, + "probability": 0.9316 + }, + { + "start": 15208.72, + "end": 15211.66, + "probability": 0.7733 + }, + { + "start": 15212.28, + "end": 15213.94, + "probability": 0.9818 + }, + { + "start": 15214.06, + "end": 15214.52, + "probability": 0.4647 + }, + { + "start": 15215.48, + "end": 15219.06, + "probability": 0.9476 + }, + { + "start": 15219.68, + "end": 15221.44, + "probability": 0.8765 + }, + { + "start": 15222.24, + "end": 15223.28, + "probability": 0.9907 + }, + { + "start": 15224.36, + "end": 15225.12, + "probability": 0.9292 + }, + { + "start": 15225.28, + "end": 15230.4, + "probability": 0.9851 + }, + { + "start": 15230.54, + "end": 15232.16, + "probability": 0.7575 + }, + { + "start": 15232.88, + "end": 15234.56, + "probability": 0.9357 + }, + { + "start": 15235.06, + "end": 15236.52, + "probability": 0.9813 + }, + { + "start": 15237.12, + "end": 15242.86, + "probability": 0.9877 + }, + { + "start": 15243.32, + "end": 15248.64, + "probability": 0.9955 + }, + { + "start": 15249.08, + "end": 15250.34, + "probability": 0.8501 + }, + { + "start": 15250.86, + "end": 15252.46, + "probability": 0.9521 + }, + { + "start": 15252.8, + "end": 15253.4, + "probability": 0.8568 + }, + { + "start": 15253.66, + "end": 15256.8, + "probability": 0.8324 + }, + { + "start": 15258.6, + "end": 15262.2, + "probability": 0.5904 + }, + { + "start": 15262.32, + "end": 15266.36, + "probability": 0.8326 + }, + { + "start": 15267.44, + "end": 15270.52, + "probability": 0.9601 + }, + { + "start": 15270.52, + "end": 15273.32, + "probability": 0.8372 + }, + { + "start": 15273.92, + "end": 15276.64, + "probability": 0.6198 + }, + { + "start": 15276.66, + "end": 15277.26, + "probability": 0.554 + }, + { + "start": 15277.9, + "end": 15279.62, + "probability": 0.8444 + }, + { + "start": 15280.2, + "end": 15280.96, + "probability": 0.9665 + }, + { + "start": 15281.08, + "end": 15281.76, + "probability": 0.7697 + }, + { + "start": 15287.8, + "end": 15288.56, + "probability": 0.6017 + }, + { + "start": 15288.82, + "end": 15290.74, + "probability": 0.4062 + }, + { + "start": 15290.8, + "end": 15292.04, + "probability": 0.6663 + }, + { + "start": 15292.28, + "end": 15293.74, + "probability": 0.6469 + }, + { + "start": 15295.22, + "end": 15297.08, + "probability": 0.9648 + }, + { + "start": 15298.42, + "end": 15301.22, + "probability": 0.977 + }, + { + "start": 15302.38, + "end": 15304.91, + "probability": 0.9724 + }, + { + "start": 15305.7, + "end": 15306.98, + "probability": 0.8855 + }, + { + "start": 15307.5, + "end": 15308.69, + "probability": 0.9829 + }, + { + "start": 15309.42, + "end": 15310.76, + "probability": 0.9891 + }, + { + "start": 15311.48, + "end": 15313.76, + "probability": 0.9656 + }, + { + "start": 15314.32, + "end": 15317.22, + "probability": 0.9907 + }, + { + "start": 15317.88, + "end": 15324.5, + "probability": 0.9534 + }, + { + "start": 15325.56, + "end": 15326.8, + "probability": 0.5849 + }, + { + "start": 15327.18, + "end": 15327.5, + "probability": 0.8207 + }, + { + "start": 15328.12, + "end": 15328.94, + "probability": 0.8051 + }, + { + "start": 15329.5, + "end": 15332.58, + "probability": 0.9735 + }, + { + "start": 15333.64, + "end": 15334.2, + "probability": 0.889 + }, + { + "start": 15334.78, + "end": 15336.32, + "probability": 0.9821 + }, + { + "start": 15337.68, + "end": 15342.1, + "probability": 0.9888 + }, + { + "start": 15343.32, + "end": 15345.46, + "probability": 0.9943 + }, + { + "start": 15346.16, + "end": 15351.22, + "probability": 0.998 + }, + { + "start": 15352.24, + "end": 15356.1, + "probability": 0.9971 + }, + { + "start": 15356.98, + "end": 15358.78, + "probability": 0.8571 + }, + { + "start": 15359.7, + "end": 15360.78, + "probability": 0.8853 + }, + { + "start": 15361.74, + "end": 15363.46, + "probability": 0.4994 + }, + { + "start": 15364.26, + "end": 15366.0, + "probability": 0.8966 + }, + { + "start": 15366.8, + "end": 15369.1, + "probability": 0.9628 + }, + { + "start": 15370.16, + "end": 15371.08, + "probability": 0.9321 + }, + { + "start": 15371.6, + "end": 15374.96, + "probability": 0.9464 + }, + { + "start": 15375.52, + "end": 15377.96, + "probability": 0.6971 + }, + { + "start": 15378.88, + "end": 15382.04, + "probability": 0.6725 + }, + { + "start": 15382.04, + "end": 15385.28, + "probability": 0.7955 + }, + { + "start": 15386.14, + "end": 15387.08, + "probability": 0.8357 + }, + { + "start": 15388.0, + "end": 15389.6, + "probability": 0.9733 + }, + { + "start": 15390.46, + "end": 15393.0, + "probability": 0.9813 + }, + { + "start": 15393.78, + "end": 15398.66, + "probability": 0.9976 + }, + { + "start": 15399.2, + "end": 15402.5, + "probability": 0.9617 + }, + { + "start": 15403.18, + "end": 15406.06, + "probability": 0.981 + }, + { + "start": 15406.96, + "end": 15409.02, + "probability": 0.9654 + }, + { + "start": 15409.68, + "end": 15412.08, + "probability": 0.986 + }, + { + "start": 15412.72, + "end": 15414.26, + "probability": 0.9346 + }, + { + "start": 15415.56, + "end": 15420.28, + "probability": 0.9854 + }, + { + "start": 15420.28, + "end": 15423.72, + "probability": 0.962 + }, + { + "start": 15424.44, + "end": 15426.3, + "probability": 0.9419 + }, + { + "start": 15427.68, + "end": 15430.36, + "probability": 0.8489 + }, + { + "start": 15431.18, + "end": 15432.46, + "probability": 0.6452 + }, + { + "start": 15433.3, + "end": 15438.8, + "probability": 0.9738 + }, + { + "start": 15439.76, + "end": 15441.06, + "probability": 0.704 + }, + { + "start": 15441.2, + "end": 15443.44, + "probability": 0.9762 + }, + { + "start": 15444.34, + "end": 15445.86, + "probability": 0.9905 + }, + { + "start": 15446.8, + "end": 15447.6, + "probability": 0.6683 + }, + { + "start": 15449.28, + "end": 15453.52, + "probability": 0.9952 + }, + { + "start": 15454.44, + "end": 15456.32, + "probability": 0.9797 + }, + { + "start": 15457.38, + "end": 15459.88, + "probability": 0.9078 + }, + { + "start": 15460.52, + "end": 15462.28, + "probability": 0.9954 + }, + { + "start": 15462.9, + "end": 15464.06, + "probability": 0.8877 + }, + { + "start": 15464.96, + "end": 15468.53, + "probability": 0.9858 + }, + { + "start": 15469.08, + "end": 15472.46, + "probability": 0.9564 + }, + { + "start": 15473.3, + "end": 15477.72, + "probability": 0.9971 + }, + { + "start": 15478.56, + "end": 15479.1, + "probability": 0.8857 + }, + { + "start": 15479.82, + "end": 15485.6, + "probability": 0.9437 + }, + { + "start": 15486.16, + "end": 15487.84, + "probability": 0.9975 + }, + { + "start": 15489.02, + "end": 15492.58, + "probability": 0.9798 + }, + { + "start": 15493.46, + "end": 15498.5, + "probability": 0.9966 + }, + { + "start": 15499.24, + "end": 15501.6, + "probability": 0.9947 + }, + { + "start": 15502.44, + "end": 15503.46, + "probability": 0.7522 + }, + { + "start": 15504.94, + "end": 15506.82, + "probability": 0.9819 + }, + { + "start": 15507.98, + "end": 15509.78, + "probability": 0.9092 + }, + { + "start": 15510.2, + "end": 15512.48, + "probability": 0.9765 + }, + { + "start": 15512.68, + "end": 15519.46, + "probability": 0.9949 + }, + { + "start": 15520.48, + "end": 15522.54, + "probability": 0.998 + }, + { + "start": 15523.26, + "end": 15525.26, + "probability": 0.9984 + }, + { + "start": 15525.98, + "end": 15530.06, + "probability": 0.999 + }, + { + "start": 15530.92, + "end": 15531.54, + "probability": 0.7757 + }, + { + "start": 15532.16, + "end": 15535.36, + "probability": 0.9949 + }, + { + "start": 15535.36, + "end": 15538.86, + "probability": 0.9007 + }, + { + "start": 15539.74, + "end": 15541.78, + "probability": 0.9752 + }, + { + "start": 15542.48, + "end": 15544.06, + "probability": 0.997 + }, + { + "start": 15544.42, + "end": 15546.12, + "probability": 0.9926 + }, + { + "start": 15546.46, + "end": 15547.46, + "probability": 0.9904 + }, + { + "start": 15547.76, + "end": 15548.88, + "probability": 0.995 + }, + { + "start": 15549.32, + "end": 15550.04, + "probability": 0.9777 + }, + { + "start": 15550.16, + "end": 15551.2, + "probability": 0.61 + }, + { + "start": 15551.82, + "end": 15555.86, + "probability": 0.9076 + }, + { + "start": 15555.98, + "end": 15558.34, + "probability": 0.9664 + }, + { + "start": 15559.12, + "end": 15560.68, + "probability": 0.8739 + }, + { + "start": 15561.22, + "end": 15564.04, + "probability": 0.9979 + }, + { + "start": 15565.18, + "end": 15569.44, + "probability": 0.9974 + }, + { + "start": 15569.44, + "end": 15573.36, + "probability": 0.9982 + }, + { + "start": 15574.12, + "end": 15578.32, + "probability": 0.9771 + }, + { + "start": 15578.92, + "end": 15581.88, + "probability": 0.989 + }, + { + "start": 15582.48, + "end": 15585.22, + "probability": 0.9308 + }, + { + "start": 15586.08, + "end": 15589.24, + "probability": 0.8856 + }, + { + "start": 15589.38, + "end": 15592.34, + "probability": 0.9609 + }, + { + "start": 15593.38, + "end": 15594.14, + "probability": 0.5086 + }, + { + "start": 15595.42, + "end": 15596.72, + "probability": 0.3572 + }, + { + "start": 15597.44, + "end": 15601.5, + "probability": 0.9784 + }, + { + "start": 15602.38, + "end": 15607.22, + "probability": 0.9859 + }, + { + "start": 15608.04, + "end": 15609.26, + "probability": 0.9326 + }, + { + "start": 15610.1, + "end": 15611.2, + "probability": 0.9881 + }, + { + "start": 15611.82, + "end": 15613.06, + "probability": 0.8252 + }, + { + "start": 15613.56, + "end": 15614.6, + "probability": 0.8559 + }, + { + "start": 15615.04, + "end": 15615.56, + "probability": 0.9934 + }, + { + "start": 15615.64, + "end": 15622.14, + "probability": 0.9974 + }, + { + "start": 15623.18, + "end": 15625.84, + "probability": 0.7605 + }, + { + "start": 15626.8, + "end": 15629.4, + "probability": 0.9875 + }, + { + "start": 15630.34, + "end": 15631.28, + "probability": 0.8268 + }, + { + "start": 15632.0, + "end": 15634.02, + "probability": 0.9944 + }, + { + "start": 15634.76, + "end": 15636.76, + "probability": 0.988 + }, + { + "start": 15637.52, + "end": 15639.04, + "probability": 0.9979 + }, + { + "start": 15639.74, + "end": 15642.1, + "probability": 0.999 + }, + { + "start": 15642.1, + "end": 15645.44, + "probability": 0.9974 + }, + { + "start": 15646.26, + "end": 15651.26, + "probability": 0.9985 + }, + { + "start": 15651.82, + "end": 15653.16, + "probability": 0.9049 + }, + { + "start": 15653.88, + "end": 15656.78, + "probability": 0.9114 + }, + { + "start": 15657.3, + "end": 15658.6, + "probability": 0.968 + }, + { + "start": 15659.26, + "end": 15662.58, + "probability": 0.9683 + }, + { + "start": 15663.24, + "end": 15667.5, + "probability": 0.9819 + }, + { + "start": 15668.08, + "end": 15670.54, + "probability": 0.9003 + }, + { + "start": 15671.98, + "end": 15675.82, + "probability": 0.9026 + }, + { + "start": 15676.42, + "end": 15679.76, + "probability": 0.9923 + }, + { + "start": 15680.54, + "end": 15683.26, + "probability": 0.9951 + }, + { + "start": 15683.84, + "end": 15687.46, + "probability": 0.9502 + }, + { + "start": 15688.5, + "end": 15693.14, + "probability": 0.9899 + }, + { + "start": 15693.6, + "end": 15695.64, + "probability": 0.9468 + }, + { + "start": 15696.6, + "end": 15701.72, + "probability": 0.9954 + }, + { + "start": 15703.32, + "end": 15704.06, + "probability": 0.5595 + }, + { + "start": 15705.62, + "end": 15707.28, + "probability": 0.8925 + }, + { + "start": 15707.96, + "end": 15710.5, + "probability": 0.9961 + }, + { + "start": 15711.34, + "end": 15715.48, + "probability": 0.9142 + }, + { + "start": 15716.12, + "end": 15718.12, + "probability": 0.9822 + }, + { + "start": 15718.64, + "end": 15720.42, + "probability": 0.9012 + }, + { + "start": 15720.84, + "end": 15723.66, + "probability": 0.9956 + }, + { + "start": 15724.64, + "end": 15728.66, + "probability": 0.8147 + }, + { + "start": 15729.4, + "end": 15733.9, + "probability": 0.971 + }, + { + "start": 15734.34, + "end": 15735.98, + "probability": 0.8779 + }, + { + "start": 15736.9, + "end": 15740.64, + "probability": 0.9633 + }, + { + "start": 15741.4, + "end": 15743.1, + "probability": 0.946 + }, + { + "start": 15743.98, + "end": 15747.26, + "probability": 0.9914 + }, + { + "start": 15747.54, + "end": 15748.22, + "probability": 0.79 + }, + { + "start": 15748.6, + "end": 15749.44, + "probability": 0.7648 + }, + { + "start": 15749.52, + "end": 15750.56, + "probability": 0.8956 + }, + { + "start": 15751.36, + "end": 15754.62, + "probability": 0.89 + }, + { + "start": 15755.26, + "end": 15758.64, + "probability": 0.9905 + }, + { + "start": 15759.24, + "end": 15761.76, + "probability": 0.7323 + }, + { + "start": 15762.68, + "end": 15764.6, + "probability": 0.8851 + }, + { + "start": 15765.34, + "end": 15768.32, + "probability": 0.9777 + }, + { + "start": 15769.04, + "end": 15772.18, + "probability": 0.9221 + }, + { + "start": 15772.18, + "end": 15775.56, + "probability": 0.9769 + }, + { + "start": 15776.18, + "end": 15778.84, + "probability": 0.9935 + }, + { + "start": 15779.44, + "end": 15783.9, + "probability": 0.2415 + }, + { + "start": 15783.9, + "end": 15787.56, + "probability": 0.8914 + }, + { + "start": 15788.16, + "end": 15789.7, + "probability": 0.8452 + }, + { + "start": 15790.74, + "end": 15794.64, + "probability": 0.9187 + }, + { + "start": 15795.24, + "end": 15795.92, + "probability": 0.8322 + }, + { + "start": 15796.48, + "end": 15797.63, + "probability": 0.9584 + }, + { + "start": 15798.72, + "end": 15801.96, + "probability": 0.9984 + }, + { + "start": 15802.66, + "end": 15803.62, + "probability": 0.6176 + }, + { + "start": 15804.64, + "end": 15808.66, + "probability": 0.995 + }, + { + "start": 15809.0, + "end": 15813.52, + "probability": 0.9884 + }, + { + "start": 15814.1, + "end": 15816.36, + "probability": 0.98 + }, + { + "start": 15817.22, + "end": 15819.62, + "probability": 0.8921 + }, + { + "start": 15819.68, + "end": 15820.56, + "probability": 0.7938 + }, + { + "start": 15820.62, + "end": 15821.52, + "probability": 0.8583 + }, + { + "start": 15822.18, + "end": 15828.32, + "probability": 0.9956 + }, + { + "start": 15828.48, + "end": 15829.66, + "probability": 0.7185 + }, + { + "start": 15830.72, + "end": 15831.38, + "probability": 0.9454 + }, + { + "start": 15831.46, + "end": 15832.78, + "probability": 0.9059 + }, + { + "start": 15833.06, + "end": 15834.02, + "probability": 0.5971 + }, + { + "start": 15834.34, + "end": 15835.58, + "probability": 0.7817 + }, + { + "start": 15836.54, + "end": 15837.08, + "probability": 0.6161 + }, + { + "start": 15837.14, + "end": 15837.56, + "probability": 0.8763 + }, + { + "start": 15851.1, + "end": 15851.22, + "probability": 0.0388 + }, + { + "start": 15851.22, + "end": 15854.44, + "probability": 0.4705 + }, + { + "start": 15854.44, + "end": 15855.42, + "probability": 0.1673 + }, + { + "start": 15855.52, + "end": 15856.16, + "probability": 0.4079 + }, + { + "start": 15857.52, + "end": 15858.6, + "probability": 0.6636 + }, + { + "start": 15858.76, + "end": 15860.84, + "probability": 0.7678 + }, + { + "start": 15861.56, + "end": 15863.32, + "probability": 0.6348 + }, + { + "start": 15863.96, + "end": 15864.06, + "probability": 0.5144 + }, + { + "start": 15864.14, + "end": 15868.54, + "probability": 0.9896 + }, + { + "start": 15870.54, + "end": 15871.84, + "probability": 0.1196 + }, + { + "start": 15871.94, + "end": 15872.68, + "probability": 0.8948 + }, + { + "start": 15873.2, + "end": 15875.61, + "probability": 0.9985 + }, + { + "start": 15876.1, + "end": 15878.67, + "probability": 0.9328 + }, + { + "start": 15879.02, + "end": 15880.37, + "probability": 0.5055 + }, + { + "start": 15881.14, + "end": 15886.91, + "probability": 0.9933 + }, + { + "start": 15888.2, + "end": 15893.08, + "probability": 0.9806 + }, + { + "start": 15893.28, + "end": 15899.56, + "probability": 0.9987 + }, + { + "start": 15899.74, + "end": 15903.34, + "probability": 0.6722 + }, + { + "start": 15903.88, + "end": 15907.94, + "probability": 0.9678 + }, + { + "start": 15908.92, + "end": 15909.68, + "probability": 0.493 + }, + { + "start": 15909.8, + "end": 15915.74, + "probability": 0.849 + }, + { + "start": 15915.84, + "end": 15919.26, + "probability": 0.8661 + }, + { + "start": 15919.48, + "end": 15925.76, + "probability": 0.9911 + }, + { + "start": 15925.88, + "end": 15926.92, + "probability": 0.6473 + }, + { + "start": 15927.1, + "end": 15928.48, + "probability": 0.7899 + }, + { + "start": 15928.64, + "end": 15935.28, + "probability": 0.9915 + }, + { + "start": 15936.18, + "end": 15936.92, + "probability": 0.7226 + }, + { + "start": 15937.52, + "end": 15943.44, + "probability": 0.9092 + }, + { + "start": 15943.44, + "end": 15948.34, + "probability": 0.9982 + }, + { + "start": 15949.9, + "end": 15950.32, + "probability": 0.6506 + }, + { + "start": 15950.4, + "end": 15951.04, + "probability": 0.9443 + }, + { + "start": 15951.16, + "end": 15952.36, + "probability": 0.6839 + }, + { + "start": 15952.46, + "end": 15958.04, + "probability": 0.9792 + }, + { + "start": 15958.04, + "end": 15962.26, + "probability": 0.9965 + }, + { + "start": 15962.26, + "end": 15968.22, + "probability": 0.999 + }, + { + "start": 15968.38, + "end": 15969.78, + "probability": 0.6176 + }, + { + "start": 15971.76, + "end": 15974.1, + "probability": 0.9962 + }, + { + "start": 15975.52, + "end": 15978.86, + "probability": 0.9938 + }, + { + "start": 15978.86, + "end": 15982.52, + "probability": 0.9868 + }, + { + "start": 15983.34, + "end": 15987.28, + "probability": 0.947 + }, + { + "start": 15987.9, + "end": 15988.28, + "probability": 0.8029 + }, + { + "start": 15988.36, + "end": 15988.94, + "probability": 0.9612 + }, + { + "start": 15989.08, + "end": 15994.54, + "probability": 0.9649 + }, + { + "start": 15994.78, + "end": 16002.54, + "probability": 0.9854 + }, + { + "start": 16002.74, + "end": 16004.5, + "probability": 0.9983 + }, + { + "start": 16005.94, + "end": 16009.48, + "probability": 0.9712 + }, + { + "start": 16009.94, + "end": 16011.14, + "probability": 0.7704 + }, + { + "start": 16011.2, + "end": 16016.18, + "probability": 0.9968 + }, + { + "start": 16017.62, + "end": 16019.02, + "probability": 0.8145 + }, + { + "start": 16019.1, + "end": 16022.32, + "probability": 0.996 + }, + { + "start": 16022.5, + "end": 16028.12, + "probability": 0.9949 + }, + { + "start": 16028.16, + "end": 16033.16, + "probability": 0.8543 + }, + { + "start": 16033.3, + "end": 16035.94, + "probability": 0.9769 + }, + { + "start": 16035.94, + "end": 16039.77, + "probability": 0.9995 + }, + { + "start": 16039.9, + "end": 16043.26, + "probability": 0.9986 + }, + { + "start": 16043.46, + "end": 16046.76, + "probability": 0.9727 + }, + { + "start": 16046.98, + "end": 16053.54, + "probability": 0.9893 + }, + { + "start": 16054.3, + "end": 16055.12, + "probability": 0.2651 + }, + { + "start": 16056.4, + "end": 16059.4, + "probability": 0.9684 + }, + { + "start": 16060.08, + "end": 16065.04, + "probability": 0.9941 + }, + { + "start": 16065.62, + "end": 16068.88, + "probability": 0.995 + }, + { + "start": 16069.06, + "end": 16072.54, + "probability": 0.8941 + }, + { + "start": 16072.6, + "end": 16075.06, + "probability": 0.9792 + }, + { + "start": 16075.8, + "end": 16079.52, + "probability": 0.9972 + }, + { + "start": 16079.52, + "end": 16082.62, + "probability": 0.9937 + }, + { + "start": 16083.24, + "end": 16086.9, + "probability": 0.9869 + }, + { + "start": 16088.04, + "end": 16091.28, + "probability": 0.982 + }, + { + "start": 16091.74, + "end": 16092.14, + "probability": 0.3966 + }, + { + "start": 16092.26, + "end": 16092.6, + "probability": 0.6646 + }, + { + "start": 16092.7, + "end": 16093.0, + "probability": 0.9686 + }, + { + "start": 16093.08, + "end": 16094.2, + "probability": 0.8883 + }, + { + "start": 16094.42, + "end": 16098.4, + "probability": 0.9582 + }, + { + "start": 16098.46, + "end": 16100.5, + "probability": 0.8878 + }, + { + "start": 16101.48, + "end": 16106.36, + "probability": 0.9987 + }, + { + "start": 16106.36, + "end": 16110.96, + "probability": 0.9993 + }, + { + "start": 16110.96, + "end": 16115.08, + "probability": 0.9997 + }, + { + "start": 16116.12, + "end": 16118.6, + "probability": 0.4975 + }, + { + "start": 16121.9, + "end": 16122.41, + "probability": 0.0105 + }, + { + "start": 16123.6, + "end": 16123.7, + "probability": 0.0153 + }, + { + "start": 16125.32, + "end": 16127.48, + "probability": 0.1024 + }, + { + "start": 16134.73, + "end": 16136.91, + "probability": 0.0463 + }, + { + "start": 16161.14, + "end": 16164.96, + "probability": 0.1956 + }, + { + "start": 16188.8, + "end": 16196.7, + "probability": 0.1466 + }, + { + "start": 16206.78, + "end": 16209.64, + "probability": 0.9139 + }, + { + "start": 16210.2, + "end": 16214.76, + "probability": 0.9922 + }, + { + "start": 16215.22, + "end": 16219.72, + "probability": 0.9873 + }, + { + "start": 16219.8, + "end": 16225.14, + "probability": 0.9665 + }, + { + "start": 16225.7, + "end": 16227.84, + "probability": 0.6536 + }, + { + "start": 16228.5, + "end": 16233.46, + "probability": 0.9878 + }, + { + "start": 16233.46, + "end": 16237.28, + "probability": 0.9978 + }, + { + "start": 16238.44, + "end": 16238.86, + "probability": 0.9844 + }, + { + "start": 16239.04, + "end": 16240.3, + "probability": 0.9574 + }, + { + "start": 16240.72, + "end": 16243.0, + "probability": 0.9565 + }, + { + "start": 16243.26, + "end": 16250.18, + "probability": 0.9972 + }, + { + "start": 16250.4, + "end": 16254.22, + "probability": 0.7288 + }, + { + "start": 16254.36, + "end": 16255.55, + "probability": 0.9425 + }, + { + "start": 16256.36, + "end": 16256.64, + "probability": 0.5085 + }, + { + "start": 16256.7, + "end": 16257.14, + "probability": 0.9176 + }, + { + "start": 16257.24, + "end": 16261.9, + "probability": 0.9792 + }, + { + "start": 16262.62, + "end": 16265.68, + "probability": 0.9961 + }, + { + "start": 16265.84, + "end": 16269.56, + "probability": 0.9966 + }, + { + "start": 16270.04, + "end": 16275.8, + "probability": 0.9983 + }, + { + "start": 16275.8, + "end": 16281.18, + "probability": 0.9974 + }, + { + "start": 16281.34, + "end": 16288.32, + "probability": 0.9864 + }, + { + "start": 16288.56, + "end": 16288.88, + "probability": 0.6026 + }, + { + "start": 16289.02, + "end": 16289.68, + "probability": 0.9053 + }, + { + "start": 16289.86, + "end": 16292.38, + "probability": 0.8702 + }, + { + "start": 16292.76, + "end": 16297.34, + "probability": 0.9696 + }, + { + "start": 16297.38, + "end": 16301.72, + "probability": 0.9324 + }, + { + "start": 16301.8, + "end": 16305.6, + "probability": 0.9844 + }, + { + "start": 16306.44, + "end": 16310.94, + "probability": 0.9424 + }, + { + "start": 16311.06, + "end": 16313.64, + "probability": 0.985 + }, + { + "start": 16313.64, + "end": 16316.22, + "probability": 0.9998 + }, + { + "start": 16316.32, + "end": 16321.7, + "probability": 0.9926 + }, + { + "start": 16322.28, + "end": 16327.7, + "probability": 0.998 + }, + { + "start": 16327.86, + "end": 16330.05, + "probability": 0.9978 + }, + { + "start": 16331.32, + "end": 16336.04, + "probability": 0.9948 + }, + { + "start": 16336.98, + "end": 16337.7, + "probability": 0.9409 + }, + { + "start": 16339.04, + "end": 16344.52, + "probability": 0.9902 + }, + { + "start": 16345.12, + "end": 16352.2, + "probability": 0.988 + }, + { + "start": 16352.72, + "end": 16357.1, + "probability": 0.8461 + }, + { + "start": 16357.28, + "end": 16359.88, + "probability": 0.986 + }, + { + "start": 16360.32, + "end": 16361.54, + "probability": 0.7633 + }, + { + "start": 16361.64, + "end": 16362.04, + "probability": 0.9188 + }, + { + "start": 16362.12, + "end": 16362.92, + "probability": 0.9459 + }, + { + "start": 16363.0, + "end": 16367.84, + "probability": 0.929 + }, + { + "start": 16367.84, + "end": 16371.32, + "probability": 0.9954 + }, + { + "start": 16371.48, + "end": 16374.02, + "probability": 0.9622 + }, + { + "start": 16374.18, + "end": 16378.58, + "probability": 0.9789 + }, + { + "start": 16378.68, + "end": 16383.66, + "probability": 0.9977 + }, + { + "start": 16384.3, + "end": 16386.97, + "probability": 0.9979 + }, + { + "start": 16388.26, + "end": 16392.76, + "probability": 0.8957 + }, + { + "start": 16393.38, + "end": 16399.16, + "probability": 0.9976 + }, + { + "start": 16399.96, + "end": 16401.9, + "probability": 0.9615 + }, + { + "start": 16402.18, + "end": 16405.84, + "probability": 0.9966 + }, + { + "start": 16405.98, + "end": 16407.63, + "probability": 0.9907 + }, + { + "start": 16408.72, + "end": 16410.28, + "probability": 0.9945 + }, + { + "start": 16410.86, + "end": 16418.66, + "probability": 0.9963 + }, + { + "start": 16419.96, + "end": 16422.56, + "probability": 0.952 + }, + { + "start": 16423.2, + "end": 16424.56, + "probability": 0.9786 + }, + { + "start": 16424.56, + "end": 16429.06, + "probability": 0.9977 + }, + { + "start": 16429.24, + "end": 16432.51, + "probability": 0.8704 + }, + { + "start": 16433.1, + "end": 16438.9, + "probability": 0.9891 + }, + { + "start": 16439.94, + "end": 16440.68, + "probability": 0.8675 + }, + { + "start": 16440.84, + "end": 16444.28, + "probability": 0.9961 + }, + { + "start": 16444.28, + "end": 16448.12, + "probability": 0.9983 + }, + { + "start": 16448.28, + "end": 16455.02, + "probability": 0.9825 + }, + { + "start": 16455.04, + "end": 16457.3, + "probability": 0.8433 + }, + { + "start": 16458.08, + "end": 16465.86, + "probability": 0.9943 + }, + { + "start": 16465.96, + "end": 16466.72, + "probability": 0.9572 + }, + { + "start": 16466.76, + "end": 16470.4, + "probability": 0.9928 + }, + { + "start": 16471.16, + "end": 16472.74, + "probability": 0.8898 + }, + { + "start": 16472.88, + "end": 16475.36, + "probability": 0.9906 + }, + { + "start": 16475.94, + "end": 16478.7, + "probability": 0.8396 + }, + { + "start": 16480.02, + "end": 16485.48, + "probability": 0.9914 + }, + { + "start": 16485.58, + "end": 16487.08, + "probability": 0.9945 + }, + { + "start": 16487.14, + "end": 16488.52, + "probability": 0.9502 + }, + { + "start": 16489.0, + "end": 16494.2, + "probability": 0.9858 + }, + { + "start": 16494.52, + "end": 16497.46, + "probability": 0.996 + }, + { + "start": 16497.66, + "end": 16500.64, + "probability": 0.993 + }, + { + "start": 16501.2, + "end": 16507.14, + "probability": 0.995 + }, + { + "start": 16507.14, + "end": 16514.32, + "probability": 0.9958 + }, + { + "start": 16514.64, + "end": 16521.54, + "probability": 0.9995 + }, + { + "start": 16522.0, + "end": 16523.65, + "probability": 0.9972 + }, + { + "start": 16525.42, + "end": 16530.4, + "probability": 0.9936 + }, + { + "start": 16530.64, + "end": 16535.08, + "probability": 0.9895 + }, + { + "start": 16535.56, + "end": 16536.82, + "probability": 0.8812 + }, + { + "start": 16536.96, + "end": 16541.74, + "probability": 0.9248 + }, + { + "start": 16542.26, + "end": 16544.14, + "probability": 0.9431 + }, + { + "start": 16544.24, + "end": 16548.19, + "probability": 0.9941 + }, + { + "start": 16548.4, + "end": 16549.26, + "probability": 0.7263 + }, + { + "start": 16549.44, + "end": 16550.9, + "probability": 0.8932 + }, + { + "start": 16551.24, + "end": 16554.34, + "probability": 0.9865 + }, + { + "start": 16554.34, + "end": 16557.38, + "probability": 0.9902 + }, + { + "start": 16557.48, + "end": 16559.26, + "probability": 0.9434 + }, + { + "start": 16560.72, + "end": 16566.6, + "probability": 0.9915 + }, + { + "start": 16567.44, + "end": 16570.85, + "probability": 0.9811 + }, + { + "start": 16571.44, + "end": 16573.36, + "probability": 0.8356 + }, + { + "start": 16573.6, + "end": 16574.02, + "probability": 0.7222 + }, + { + "start": 16574.62, + "end": 16585.48, + "probability": 0.9795 + }, + { + "start": 16586.04, + "end": 16586.84, + "probability": 0.5822 + }, + { + "start": 16587.2, + "end": 16592.17, + "probability": 0.9977 + }, + { + "start": 16592.34, + "end": 16596.88, + "probability": 0.9062 + }, + { + "start": 16597.26, + "end": 16601.3, + "probability": 0.9957 + }, + { + "start": 16601.86, + "end": 16609.68, + "probability": 0.9937 + }, + { + "start": 16609.96, + "end": 16611.18, + "probability": 0.9237 + }, + { + "start": 16611.74, + "end": 16614.23, + "probability": 0.9958 + }, + { + "start": 16615.18, + "end": 16620.38, + "probability": 0.9972 + }, + { + "start": 16621.2, + "end": 16622.76, + "probability": 0.9399 + }, + { + "start": 16622.82, + "end": 16624.12, + "probability": 0.9871 + }, + { + "start": 16624.62, + "end": 16627.8, + "probability": 0.9877 + }, + { + "start": 16627.8, + "end": 16632.56, + "probability": 0.9997 + }, + { + "start": 16632.66, + "end": 16637.18, + "probability": 0.999 + }, + { + "start": 16637.72, + "end": 16638.7, + "probability": 0.9194 + }, + { + "start": 16638.86, + "end": 16640.22, + "probability": 0.8384 + }, + { + "start": 16640.32, + "end": 16641.6, + "probability": 0.9519 + }, + { + "start": 16641.94, + "end": 16642.26, + "probability": 0.4926 + }, + { + "start": 16642.4, + "end": 16649.16, + "probability": 0.9952 + }, + { + "start": 16649.68, + "end": 16652.46, + "probability": 0.9983 + }, + { + "start": 16652.46, + "end": 16656.82, + "probability": 0.9995 + }, + { + "start": 16657.48, + "end": 16663.94, + "probability": 0.9881 + }, + { + "start": 16664.1, + "end": 16668.97, + "probability": 0.9152 + }, + { + "start": 16669.32, + "end": 16673.06, + "probability": 0.9958 + }, + { + "start": 16674.0, + "end": 16676.3, + "probability": 0.9894 + }, + { + "start": 16676.88, + "end": 16679.14, + "probability": 0.9748 + }, + { + "start": 16679.58, + "end": 16682.72, + "probability": 0.9738 + }, + { + "start": 16682.8, + "end": 16683.98, + "probability": 0.7703 + }, + { + "start": 16684.44, + "end": 16686.96, + "probability": 0.7229 + }, + { + "start": 16687.06, + "end": 16687.5, + "probability": 0.5931 + }, + { + "start": 16687.66, + "end": 16687.9, + "probability": 0.8461 + }, + { + "start": 16688.0, + "end": 16689.14, + "probability": 0.7632 + }, + { + "start": 16689.16, + "end": 16693.56, + "probability": 0.9746 + }, + { + "start": 16693.64, + "end": 16697.46, + "probability": 0.9823 + }, + { + "start": 16697.54, + "end": 16702.4, + "probability": 0.9985 + }, + { + "start": 16702.74, + "end": 16708.16, + "probability": 0.9858 + }, + { + "start": 16708.42, + "end": 16712.06, + "probability": 0.9502 + }, + { + "start": 16712.32, + "end": 16716.7, + "probability": 0.999 + }, + { + "start": 16716.86, + "end": 16719.72, + "probability": 0.8835 + }, + { + "start": 16719.8, + "end": 16721.32, + "probability": 0.924 + }, + { + "start": 16722.62, + "end": 16723.76, + "probability": 0.6148 + }, + { + "start": 16724.3, + "end": 16725.54, + "probability": 0.9806 + }, + { + "start": 16725.72, + "end": 16730.84, + "probability": 0.9852 + }, + { + "start": 16731.16, + "end": 16732.16, + "probability": 0.9156 + }, + { + "start": 16732.36, + "end": 16736.24, + "probability": 0.9884 + }, + { + "start": 16736.38, + "end": 16738.1, + "probability": 0.676 + }, + { + "start": 16738.22, + "end": 16738.96, + "probability": 0.7257 + }, + { + "start": 16739.28, + "end": 16740.24, + "probability": 0.6854 + }, + { + "start": 16740.38, + "end": 16742.4, + "probability": 0.9902 + }, + { + "start": 16742.84, + "end": 16746.08, + "probability": 0.9297 + }, + { + "start": 16746.22, + "end": 16750.14, + "probability": 0.4687 + }, + { + "start": 16750.28, + "end": 16752.32, + "probability": 0.4423 + }, + { + "start": 16752.78, + "end": 16753.3, + "probability": 0.7204 + }, + { + "start": 16753.4, + "end": 16761.12, + "probability": 0.9331 + }, + { + "start": 16761.46, + "end": 16761.83, + "probability": 0.5079 + }, + { + "start": 16762.18, + "end": 16765.56, + "probability": 0.9821 + }, + { + "start": 16766.9, + "end": 16770.03, + "probability": 0.9911 + }, + { + "start": 16772.1, + "end": 16775.8, + "probability": 0.9979 + }, + { + "start": 16776.98, + "end": 16778.72, + "probability": 0.9612 + }, + { + "start": 16778.82, + "end": 16780.59, + "probability": 0.9378 + }, + { + "start": 16781.26, + "end": 16782.17, + "probability": 0.9888 + }, + { + "start": 16782.38, + "end": 16783.25, + "probability": 0.9583 + }, + { + "start": 16783.4, + "end": 16784.36, + "probability": 0.9863 + }, + { + "start": 16785.14, + "end": 16789.54, + "probability": 0.991 + }, + { + "start": 16789.82, + "end": 16794.7, + "probability": 0.8984 + }, + { + "start": 16795.02, + "end": 16796.26, + "probability": 0.8932 + }, + { + "start": 16796.44, + "end": 16796.54, + "probability": 0.3065 + }, + { + "start": 16796.66, + "end": 16797.7, + "probability": 0.9316 + }, + { + "start": 16798.18, + "end": 16799.22, + "probability": 0.7012 + }, + { + "start": 16799.26, + "end": 16799.7, + "probability": 0.7427 + }, + { + "start": 16804.47, + "end": 16805.25, + "probability": 0.0647 + }, + { + "start": 16805.75, + "end": 16807.31, + "probability": 0.1166 + }, + { + "start": 16807.31, + "end": 16809.06, + "probability": 0.0315 + }, + { + "start": 16811.11, + "end": 16816.89, + "probability": 0.8003 + }, + { + "start": 16820.73, + "end": 16826.93, + "probability": 0.0881 + }, + { + "start": 16828.95, + "end": 16831.09, + "probability": 0.3452 + }, + { + "start": 16831.25, + "end": 16832.51, + "probability": 0.9048 + }, + { + "start": 16832.69, + "end": 16834.39, + "probability": 0.8724 + }, + { + "start": 16834.53, + "end": 16835.83, + "probability": 0.9761 + }, + { + "start": 16836.91, + "end": 16840.51, + "probability": 0.9981 + }, + { + "start": 16840.71, + "end": 16841.25, + "probability": 0.6444 + }, + { + "start": 16841.35, + "end": 16842.01, + "probability": 0.9464 + }, + { + "start": 16842.13, + "end": 16843.77, + "probability": 0.9619 + }, + { + "start": 16843.85, + "end": 16846.7, + "probability": 0.9927 + }, + { + "start": 16847.91, + "end": 16849.65, + "probability": 0.9731 + }, + { + "start": 16849.73, + "end": 16853.47, + "probability": 0.992 + }, + { + "start": 16853.93, + "end": 16854.71, + "probability": 0.7546 + }, + { + "start": 16854.99, + "end": 16858.19, + "probability": 0.8426 + }, + { + "start": 16858.43, + "end": 16863.43, + "probability": 0.9679 + }, + { + "start": 16863.57, + "end": 16867.57, + "probability": 0.9946 + }, + { + "start": 16867.71, + "end": 16873.71, + "probability": 0.9907 + }, + { + "start": 16873.91, + "end": 16879.35, + "probability": 0.994 + }, + { + "start": 16879.81, + "end": 16882.47, + "probability": 0.9192 + }, + { + "start": 16883.31, + "end": 16885.95, + "probability": 0.9815 + }, + { + "start": 16886.61, + "end": 16893.11, + "probability": 0.9779 + }, + { + "start": 16893.21, + "end": 16901.23, + "probability": 0.7416 + }, + { + "start": 16901.43, + "end": 16905.83, + "probability": 0.8683 + }, + { + "start": 16906.01, + "end": 16906.93, + "probability": 0.7449 + }, + { + "start": 16907.31, + "end": 16908.37, + "probability": 0.9861 + }, + { + "start": 16908.47, + "end": 16912.17, + "probability": 0.989 + }, + { + "start": 16912.75, + "end": 16918.73, + "probability": 0.9943 + }, + { + "start": 16918.75, + "end": 16921.09, + "probability": 0.881 + }, + { + "start": 16921.33, + "end": 16921.39, + "probability": 0.2712 + }, + { + "start": 16921.39, + "end": 16921.89, + "probability": 0.6879 + }, + { + "start": 16922.15, + "end": 16923.01, + "probability": 0.7938 + }, + { + "start": 16923.09, + "end": 16923.99, + "probability": 0.9639 + }, + { + "start": 16924.19, + "end": 16930.05, + "probability": 0.985 + }, + { + "start": 16930.13, + "end": 16930.57, + "probability": 0.6917 + }, + { + "start": 16930.63, + "end": 16932.72, + "probability": 0.9781 + }, + { + "start": 16933.45, + "end": 16935.15, + "probability": 0.8949 + }, + { + "start": 16935.17, + "end": 16936.89, + "probability": 0.979 + }, + { + "start": 16936.95, + "end": 16939.65, + "probability": 0.9355 + }, + { + "start": 16939.85, + "end": 16940.48, + "probability": 0.7849 + }, + { + "start": 16940.99, + "end": 16942.57, + "probability": 0.985 + }, + { + "start": 16942.89, + "end": 16944.63, + "probability": 0.9961 + }, + { + "start": 16945.09, + "end": 16947.33, + "probability": 0.9798 + }, + { + "start": 16947.51, + "end": 16952.05, + "probability": 0.9852 + }, + { + "start": 16952.45, + "end": 16954.27, + "probability": 0.7818 + }, + { + "start": 16954.45, + "end": 16955.31, + "probability": 0.8899 + }, + { + "start": 16955.43, + "end": 16959.45, + "probability": 0.9912 + }, + { + "start": 16960.01, + "end": 16960.49, + "probability": 0.9131 + }, + { + "start": 16960.53, + "end": 16963.07, + "probability": 0.9955 + }, + { + "start": 16963.53, + "end": 16965.47, + "probability": 0.9951 + }, + { + "start": 16965.95, + "end": 16970.28, + "probability": 0.9979 + }, + { + "start": 16970.83, + "end": 16971.77, + "probability": 0.6514 + }, + { + "start": 16972.23, + "end": 16973.25, + "probability": 0.7055 + }, + { + "start": 16973.29, + "end": 16974.25, + "probability": 0.7357 + }, + { + "start": 16974.55, + "end": 16979.43, + "probability": 0.9682 + }, + { + "start": 16980.45, + "end": 16983.67, + "probability": 0.3926 + }, + { + "start": 16984.71, + "end": 16984.71, + "probability": 0.1837 + }, + { + "start": 16984.71, + "end": 16984.71, + "probability": 0.5386 + }, + { + "start": 16984.71, + "end": 16985.83, + "probability": 0.8222 + }, + { + "start": 16986.07, + "end": 16987.25, + "probability": 0.4569 + }, + { + "start": 16987.55, + "end": 16988.23, + "probability": 0.5219 + }, + { + "start": 16988.43, + "end": 16989.79, + "probability": 0.6823 + }, + { + "start": 16990.07, + "end": 16991.51, + "probability": 0.9106 + }, + { + "start": 16991.61, + "end": 16996.99, + "probability": 0.9958 + }, + { + "start": 16997.77, + "end": 16998.47, + "probability": 0.88 + }, + { + "start": 16999.07, + "end": 17001.83, + "probability": 0.9479 + }, + { + "start": 17002.31, + "end": 17004.47, + "probability": 0.9937 + }, + { + "start": 17004.55, + "end": 17007.13, + "probability": 0.9829 + }, + { + "start": 17008.19, + "end": 17013.45, + "probability": 0.9958 + }, + { + "start": 17013.53, + "end": 17018.09, + "probability": 0.9982 + }, + { + "start": 17018.47, + "end": 17020.67, + "probability": 0.6566 + }, + { + "start": 17020.99, + "end": 17024.55, + "probability": 0.9862 + }, + { + "start": 17024.69, + "end": 17026.07, + "probability": 0.7396 + }, + { + "start": 17026.25, + "end": 17028.09, + "probability": 0.9266 + }, + { + "start": 17028.11, + "end": 17030.57, + "probability": 0.7575 + }, + { + "start": 17030.91, + "end": 17034.79, + "probability": 0.8191 + }, + { + "start": 17035.31, + "end": 17041.25, + "probability": 0.9253 + }, + { + "start": 17041.73, + "end": 17044.65, + "probability": 0.8244 + }, + { + "start": 17044.69, + "end": 17046.27, + "probability": 0.7236 + }, + { + "start": 17046.87, + "end": 17047.33, + "probability": 0.8307 + }, + { + "start": 17047.39, + "end": 17048.45, + "probability": 0.9878 + }, + { + "start": 17048.51, + "end": 17050.99, + "probability": 0.9795 + }, + { + "start": 17051.37, + "end": 17053.37, + "probability": 0.9203 + }, + { + "start": 17053.73, + "end": 17057.49, + "probability": 0.9722 + }, + { + "start": 17057.95, + "end": 17060.42, + "probability": 0.9594 + }, + { + "start": 17061.03, + "end": 17065.97, + "probability": 0.9814 + }, + { + "start": 17066.51, + "end": 17067.15, + "probability": 0.9951 + }, + { + "start": 17068.51, + "end": 17069.55, + "probability": 0.7477 + }, + { + "start": 17069.77, + "end": 17070.51, + "probability": 0.5123 + }, + { + "start": 17071.01, + "end": 17071.99, + "probability": 0.7502 + }, + { + "start": 17072.19, + "end": 17074.27, + "probability": 0.9885 + }, + { + "start": 17074.69, + "end": 17075.25, + "probability": 0.7521 + }, + { + "start": 17075.25, + "end": 17075.59, + "probability": 0.9179 + }, + { + "start": 17075.69, + "end": 17076.67, + "probability": 0.8644 + }, + { + "start": 17076.93, + "end": 17078.62, + "probability": 0.9585 + }, + { + "start": 17079.15, + "end": 17082.19, + "probability": 0.8159 + }, + { + "start": 17082.31, + "end": 17082.75, + "probability": 0.9504 + }, + { + "start": 17084.23, + "end": 17090.43, + "probability": 0.9954 + }, + { + "start": 17090.97, + "end": 17095.67, + "probability": 0.997 + }, + { + "start": 17095.67, + "end": 17100.37, + "probability": 0.9989 + }, + { + "start": 17100.37, + "end": 17107.21, + "probability": 0.9985 + }, + { + "start": 17107.25, + "end": 17113.15, + "probability": 0.9948 + }, + { + "start": 17113.21, + "end": 17113.63, + "probability": 0.7688 + }, + { + "start": 17114.75, + "end": 17116.53, + "probability": 0.885 + }, + { + "start": 17116.61, + "end": 17119.45, + "probability": 0.9696 + }, + { + "start": 17119.85, + "end": 17122.97, + "probability": 0.9911 + }, + { + "start": 17123.09, + "end": 17125.07, + "probability": 0.9801 + }, + { + "start": 17125.73, + "end": 17127.07, + "probability": 0.973 + }, + { + "start": 17127.63, + "end": 17130.29, + "probability": 0.8397 + }, + { + "start": 17130.37, + "end": 17131.29, + "probability": 0.9636 + }, + { + "start": 17131.41, + "end": 17133.59, + "probability": 0.6553 + }, + { + "start": 17133.79, + "end": 17139.03, + "probability": 0.8409 + }, + { + "start": 17139.93, + "end": 17141.21, + "probability": 0.9003 + }, + { + "start": 17141.31, + "end": 17148.01, + "probability": 0.825 + }, + { + "start": 17148.01, + "end": 17152.27, + "probability": 0.9535 + }, + { + "start": 17152.43, + "end": 17155.83, + "probability": 0.9775 + }, + { + "start": 17155.99, + "end": 17158.63, + "probability": 0.8135 + }, + { + "start": 17158.67, + "end": 17161.63, + "probability": 0.9775 + }, + { + "start": 17161.71, + "end": 17162.57, + "probability": 0.5612 + }, + { + "start": 17162.59, + "end": 17163.05, + "probability": 0.7127 + }, + { + "start": 17163.11, + "end": 17163.63, + "probability": 0.7685 + }, + { + "start": 17167.91, + "end": 17168.05, + "probability": 0.6995 + }, + { + "start": 17180.27, + "end": 17180.97, + "probability": 0.177 + }, + { + "start": 17180.97, + "end": 17181.11, + "probability": 0.1235 + }, + { + "start": 17181.81, + "end": 17183.45, + "probability": 0.4111 + }, + { + "start": 17183.95, + "end": 17184.43, + "probability": 0.5742 + }, + { + "start": 17185.07, + "end": 17189.65, + "probability": 0.7151 + }, + { + "start": 17189.81, + "end": 17190.65, + "probability": 0.567 + }, + { + "start": 17191.31, + "end": 17194.07, + "probability": 0.9404 + }, + { + "start": 17194.13, + "end": 17197.97, + "probability": 0.6343 + }, + { + "start": 17198.83, + "end": 17200.11, + "probability": 0.5766 + }, + { + "start": 17200.57, + "end": 17205.69, + "probability": 0.6648 + }, + { + "start": 17205.69, + "end": 17206.05, + "probability": 0.7064 + }, + { + "start": 17210.57, + "end": 17211.47, + "probability": 0.9019 + }, + { + "start": 17215.87, + "end": 17217.71, + "probability": 0.7424 + }, + { + "start": 17218.37, + "end": 17219.25, + "probability": 0.8219 + }, + { + "start": 17220.35, + "end": 17222.09, + "probability": 0.9913 + }, + { + "start": 17222.21, + "end": 17224.01, + "probability": 0.937 + }, + { + "start": 17224.67, + "end": 17228.17, + "probability": 0.7891 + }, + { + "start": 17228.99, + "end": 17230.33, + "probability": 0.3832 + }, + { + "start": 17230.83, + "end": 17235.39, + "probability": 0.903 + }, + { + "start": 17235.39, + "end": 17238.91, + "probability": 0.9491 + }, + { + "start": 17239.59, + "end": 17240.95, + "probability": 0.9258 + }, + { + "start": 17241.85, + "end": 17245.37, + "probability": 0.9746 + }, + { + "start": 17246.35, + "end": 17248.79, + "probability": 0.9851 + }, + { + "start": 17249.13, + "end": 17251.97, + "probability": 0.0556 + }, + { + "start": 17252.85, + "end": 17255.11, + "probability": 0.9858 + }, + { + "start": 17255.27, + "end": 17256.59, + "probability": 0.9954 + }, + { + "start": 17261.51, + "end": 17265.67, + "probability": 0.9843 + }, + { + "start": 17266.13, + "end": 17267.67, + "probability": 0.9347 + }, + { + "start": 17268.43, + "end": 17272.25, + "probability": 0.9748 + }, + { + "start": 17272.81, + "end": 17274.03, + "probability": 0.877 + }, + { + "start": 17274.57, + "end": 17277.18, + "probability": 0.9946 + }, + { + "start": 17278.01, + "end": 17281.69, + "probability": 0.9904 + }, + { + "start": 17282.61, + "end": 17286.15, + "probability": 0.9764 + }, + { + "start": 17286.15, + "end": 17289.47, + "probability": 0.9628 + }, + { + "start": 17290.07, + "end": 17294.35, + "probability": 0.7106 + }, + { + "start": 17295.17, + "end": 17298.27, + "probability": 0.7893 + }, + { + "start": 17298.83, + "end": 17301.69, + "probability": 0.744 + }, + { + "start": 17302.07, + "end": 17303.31, + "probability": 0.9752 + }, + { + "start": 17304.07, + "end": 17307.5, + "probability": 0.8638 + }, + { + "start": 17308.09, + "end": 17311.73, + "probability": 0.9814 + }, + { + "start": 17312.67, + "end": 17316.59, + "probability": 0.9657 + }, + { + "start": 17317.15, + "end": 17318.97, + "probability": 0.9284 + }, + { + "start": 17319.57, + "end": 17319.67, + "probability": 0.4865 + }, + { + "start": 17320.37, + "end": 17323.41, + "probability": 0.8845 + }, + { + "start": 17323.85, + "end": 17328.03, + "probability": 0.9626 + }, + { + "start": 17328.71, + "end": 17330.03, + "probability": 0.9262 + }, + { + "start": 17330.21, + "end": 17331.29, + "probability": 0.6222 + }, + { + "start": 17331.81, + "end": 17334.93, + "probability": 0.7383 + }, + { + "start": 17335.29, + "end": 17340.09, + "probability": 0.9875 + }, + { + "start": 17340.73, + "end": 17344.71, + "probability": 0.936 + }, + { + "start": 17344.75, + "end": 17345.41, + "probability": 0.8361 + }, + { + "start": 17348.67, + "end": 17350.41, + "probability": 0.9042 + }, + { + "start": 17350.65, + "end": 17352.97, + "probability": 0.6504 + }, + { + "start": 17353.03, + "end": 17360.75, + "probability": 0.8014 + }, + { + "start": 17361.53, + "end": 17363.15, + "probability": 0.4308 + }, + { + "start": 17363.93, + "end": 17365.95, + "probability": 0.5036 + }, + { + "start": 17365.97, + "end": 17370.37, + "probability": 0.9889 + }, + { + "start": 17370.47, + "end": 17372.33, + "probability": 0.8713 + }, + { + "start": 17372.37, + "end": 17372.95, + "probability": 0.7887 + }, + { + "start": 17373.77, + "end": 17373.77, + "probability": 0.0012 + }, + { + "start": 17380.53, + "end": 17380.53, + "probability": 0.0927 + }, + { + "start": 17380.53, + "end": 17380.53, + "probability": 0.0115 + }, + { + "start": 17380.53, + "end": 17380.53, + "probability": 0.0118 + }, + { + "start": 17380.53, + "end": 17380.53, + "probability": 0.0357 + }, + { + "start": 17380.53, + "end": 17380.53, + "probability": 0.0416 + }, + { + "start": 17380.53, + "end": 17380.55, + "probability": 0.0546 + }, + { + "start": 17389.53, + "end": 17392.17, + "probability": 0.4329 + }, + { + "start": 17393.21, + "end": 17394.67, + "probability": 0.5369 + }, + { + "start": 17395.57, + "end": 17398.13, + "probability": 0.7591 + }, + { + "start": 17398.25, + "end": 17401.91, + "probability": 0.767 + }, + { + "start": 17403.27, + "end": 17404.55, + "probability": 0.0822 + }, + { + "start": 17405.63, + "end": 17406.45, + "probability": 0.3725 + }, + { + "start": 17407.41, + "end": 17409.85, + "probability": 0.7319 + }, + { + "start": 17410.03, + "end": 17413.19, + "probability": 0.9586 + }, + { + "start": 17413.23, + "end": 17417.75, + "probability": 0.9728 + }, + { + "start": 17417.81, + "end": 17420.42, + "probability": 0.7242 + }, + { + "start": 17421.03, + "end": 17422.31, + "probability": 0.7103 + }, + { + "start": 17422.33, + "end": 17425.53, + "probability": 0.7653 + }, + { + "start": 17425.53, + "end": 17426.43, + "probability": 0.8017 + }, + { + "start": 17426.75, + "end": 17428.17, + "probability": 0.8729 + }, + { + "start": 17428.55, + "end": 17429.71, + "probability": 0.7246 + }, + { + "start": 17429.79, + "end": 17431.09, + "probability": 0.704 + }, + { + "start": 17431.19, + "end": 17432.53, + "probability": 0.9432 + }, + { + "start": 17432.69, + "end": 17433.87, + "probability": 0.9152 + }, + { + "start": 17434.85, + "end": 17438.91, + "probability": 0.8153 + }, + { + "start": 17439.13, + "end": 17439.65, + "probability": 0.3628 + }, + { + "start": 17439.73, + "end": 17441.41, + "probability": 0.9402 + }, + { + "start": 17441.45, + "end": 17441.95, + "probability": 0.9266 + }, + { + "start": 17442.33, + "end": 17442.51, + "probability": 0.7758 + }, + { + "start": 17443.49, + "end": 17445.11, + "probability": 0.8232 + }, + { + "start": 17445.29, + "end": 17449.29, + "probability": 0.7748 + }, + { + "start": 17450.59, + "end": 17454.03, + "probability": 0.7247 + }, + { + "start": 17454.61, + "end": 17456.99, + "probability": 0.7531 + }, + { + "start": 17456.99, + "end": 17458.73, + "probability": 0.6755 + }, + { + "start": 17458.91, + "end": 17461.09, + "probability": 0.7165 + }, + { + "start": 17462.39, + "end": 17467.55, + "probability": 0.925 + }, + { + "start": 17467.55, + "end": 17470.63, + "probability": 0.9981 + }, + { + "start": 17471.73, + "end": 17473.07, + "probability": 0.998 + }, + { + "start": 17473.83, + "end": 17476.69, + "probability": 0.9922 + }, + { + "start": 17476.89, + "end": 17481.65, + "probability": 0.906 + }, + { + "start": 17481.71, + "end": 17482.93, + "probability": 0.8589 + }, + { + "start": 17483.71, + "end": 17486.83, + "probability": 0.9874 + }, + { + "start": 17487.43, + "end": 17489.71, + "probability": 0.9976 + }, + { + "start": 17489.87, + "end": 17490.71, + "probability": 0.9016 + }, + { + "start": 17491.53, + "end": 17496.21, + "probability": 0.9296 + }, + { + "start": 17497.31, + "end": 17497.77, + "probability": 0.7382 + }, + { + "start": 17497.85, + "end": 17498.72, + "probability": 0.9856 + }, + { + "start": 17499.03, + "end": 17500.93, + "probability": 0.9943 + }, + { + "start": 17500.95, + "end": 17503.85, + "probability": 0.8717 + }, + { + "start": 17504.93, + "end": 17507.05, + "probability": 0.6357 + }, + { + "start": 17507.59, + "end": 17509.55, + "probability": 0.6952 + }, + { + "start": 17510.61, + "end": 17513.41, + "probability": 0.935 + }, + { + "start": 17514.31, + "end": 17516.67, + "probability": 0.9224 + }, + { + "start": 17517.51, + "end": 17522.67, + "probability": 0.9883 + }, + { + "start": 17524.11, + "end": 17527.91, + "probability": 0.7463 + }, + { + "start": 17528.09, + "end": 17528.17, + "probability": 0.3381 + }, + { + "start": 17528.17, + "end": 17531.95, + "probability": 0.8973 + }, + { + "start": 17531.95, + "end": 17534.25, + "probability": 0.9783 + }, + { + "start": 17534.95, + "end": 17537.43, + "probability": 0.9391 + }, + { + "start": 17537.93, + "end": 17542.13, + "probability": 0.8744 + }, + { + "start": 17543.25, + "end": 17546.49, + "probability": 0.9842 + }, + { + "start": 17547.29, + "end": 17549.35, + "probability": 0.5897 + }, + { + "start": 17549.83, + "end": 17552.19, + "probability": 0.9439 + }, + { + "start": 17552.25, + "end": 17559.69, + "probability": 0.9785 + }, + { + "start": 17559.73, + "end": 17565.99, + "probability": 0.9741 + }, + { + "start": 17566.33, + "end": 17568.73, + "probability": 0.8364 + }, + { + "start": 17569.33, + "end": 17571.81, + "probability": 0.9351 + }, + { + "start": 17571.95, + "end": 17573.87, + "probability": 0.9265 + }, + { + "start": 17574.29, + "end": 17576.41, + "probability": 0.5871 + }, + { + "start": 17576.43, + "end": 17580.15, + "probability": 0.9138 + }, + { + "start": 17580.35, + "end": 17584.07, + "probability": 0.8186 + }, + { + "start": 17585.13, + "end": 17591.47, + "probability": 0.9825 + }, + { + "start": 17591.49, + "end": 17594.61, + "probability": 0.9302 + }, + { + "start": 17596.05, + "end": 17598.69, + "probability": 0.7851 + }, + { + "start": 17599.25, + "end": 17601.01, + "probability": 0.6055 + }, + { + "start": 17601.69, + "end": 17603.71, + "probability": 0.7483 + }, + { + "start": 17603.87, + "end": 17604.93, + "probability": 0.8584 + }, + { + "start": 17605.51, + "end": 17607.17, + "probability": 0.7356 + }, + { + "start": 17607.79, + "end": 17610.21, + "probability": 0.5772 + }, + { + "start": 17611.19, + "end": 17612.07, + "probability": 0.9307 + }, + { + "start": 17612.95, + "end": 17614.01, + "probability": 0.8002 + }, + { + "start": 17614.11, + "end": 17614.47, + "probability": 0.7557 + }, + { + "start": 17614.55, + "end": 17615.47, + "probability": 0.9377 + }, + { + "start": 17615.75, + "end": 17617.37, + "probability": 0.9414 + }, + { + "start": 17618.73, + "end": 17619.07, + "probability": 0.4256 + }, + { + "start": 17619.19, + "end": 17622.07, + "probability": 0.9412 + }, + { + "start": 17625.65, + "end": 17626.79, + "probability": 0.8066 + }, + { + "start": 17628.43, + "end": 17630.83, + "probability": 0.8405 + }, + { + "start": 17631.21, + "end": 17634.33, + "probability": 0.9912 + }, + { + "start": 17634.33, + "end": 17638.33, + "probability": 0.9878 + }, + { + "start": 17638.33, + "end": 17638.91, + "probability": 0.7242 + }, + { + "start": 17639.69, + "end": 17645.1, + "probability": 0.9911 + }, + { + "start": 17645.62, + "end": 17647.35, + "probability": 0.571 + }, + { + "start": 17648.11, + "end": 17649.31, + "probability": 0.9785 + }, + { + "start": 17649.31, + "end": 17651.79, + "probability": 0.9813 + }, + { + "start": 17652.47, + "end": 17653.61, + "probability": 0.7732 + }, + { + "start": 17654.03, + "end": 17655.91, + "probability": 0.9894 + }, + { + "start": 17656.01, + "end": 17656.47, + "probability": 0.8005 + }, + { + "start": 17657.21, + "end": 17658.87, + "probability": 0.7929 + }, + { + "start": 17658.97, + "end": 17661.17, + "probability": 0.9948 + }, + { + "start": 17661.77, + "end": 17664.27, + "probability": 0.9176 + }, + { + "start": 17664.89, + "end": 17667.03, + "probability": 0.9933 + }, + { + "start": 17668.21, + "end": 17669.15, + "probability": 0.7972 + }, + { + "start": 17670.29, + "end": 17674.95, + "probability": 0.8438 + }, + { + "start": 17674.95, + "end": 17679.63, + "probability": 0.996 + }, + { + "start": 17680.45, + "end": 17684.99, + "probability": 0.9878 + }, + { + "start": 17685.85, + "end": 17690.13, + "probability": 0.9871 + }, + { + "start": 17690.23, + "end": 17691.57, + "probability": 0.841 + }, + { + "start": 17691.67, + "end": 17693.27, + "probability": 0.8282 + }, + { + "start": 17694.91, + "end": 17698.35, + "probability": 0.9851 + }, + { + "start": 17699.03, + "end": 17700.91, + "probability": 0.8874 + }, + { + "start": 17701.23, + "end": 17704.91, + "probability": 0.9969 + }, + { + "start": 17705.23, + "end": 17708.15, + "probability": 0.9938 + }, + { + "start": 17708.69, + "end": 17711.43, + "probability": 0.9738 + }, + { + "start": 17711.55, + "end": 17712.43, + "probability": 0.7241 + }, + { + "start": 17712.79, + "end": 17715.67, + "probability": 0.9963 + }, + { + "start": 17715.88, + "end": 17719.73, + "probability": 0.9751 + }, + { + "start": 17720.27, + "end": 17721.33, + "probability": 0.9645 + }, + { + "start": 17723.02, + "end": 17726.83, + "probability": 0.7217 + }, + { + "start": 17727.07, + "end": 17729.93, + "probability": 0.9935 + }, + { + "start": 17730.75, + "end": 17732.93, + "probability": 0.9883 + }, + { + "start": 17734.05, + "end": 17739.83, + "probability": 0.9954 + }, + { + "start": 17739.89, + "end": 17741.19, + "probability": 0.8916 + }, + { + "start": 17741.65, + "end": 17744.91, + "probability": 0.9888 + }, + { + "start": 17745.69, + "end": 17746.61, + "probability": 0.9895 + }, + { + "start": 17747.59, + "end": 17752.43, + "probability": 0.9985 + }, + { + "start": 17753.09, + "end": 17757.05, + "probability": 0.8396 + }, + { + "start": 17757.67, + "end": 17761.13, + "probability": 0.9602 + }, + { + "start": 17761.13, + "end": 17763.99, + "probability": 0.9154 + }, + { + "start": 17764.49, + "end": 17765.69, + "probability": 0.9754 + }, + { + "start": 17766.85, + "end": 17768.05, + "probability": 0.8874 + }, + { + "start": 17769.13, + "end": 17772.13, + "probability": 0.9443 + }, + { + "start": 17772.13, + "end": 17774.03, + "probability": 0.9797 + }, + { + "start": 17774.79, + "end": 17777.73, + "probability": 0.9985 + }, + { + "start": 17778.73, + "end": 17782.13, + "probability": 0.9818 + }, + { + "start": 17782.27, + "end": 17782.99, + "probability": 0.8441 + }, + { + "start": 17783.03, + "end": 17784.57, + "probability": 0.9342 + }, + { + "start": 17785.19, + "end": 17787.0, + "probability": 0.9949 + }, + { + "start": 17788.65, + "end": 17789.39, + "probability": 0.9482 + }, + { + "start": 17789.47, + "end": 17790.77, + "probability": 0.9439 + }, + { + "start": 17791.23, + "end": 17795.77, + "probability": 0.9301 + }, + { + "start": 17795.99, + "end": 17797.13, + "probability": 0.9299 + }, + { + "start": 17797.63, + "end": 17798.67, + "probability": 0.7126 + }, + { + "start": 17799.17, + "end": 17800.79, + "probability": 0.9271 + }, + { + "start": 17801.99, + "end": 17806.97, + "probability": 0.9981 + }, + { + "start": 17806.97, + "end": 17811.87, + "probability": 0.9781 + }, + { + "start": 17811.95, + "end": 17812.85, + "probability": 0.7028 + }, + { + "start": 17812.89, + "end": 17815.52, + "probability": 0.9363 + }, + { + "start": 17815.93, + "end": 17818.65, + "probability": 0.8701 + }, + { + "start": 17819.35, + "end": 17822.08, + "probability": 0.9915 + }, + { + "start": 17822.23, + "end": 17823.27, + "probability": 0.833 + }, + { + "start": 17823.39, + "end": 17823.87, + "probability": 0.8891 + }, + { + "start": 17824.45, + "end": 17825.15, + "probability": 0.9772 + }, + { + "start": 17825.25, + "end": 17827.73, + "probability": 0.9901 + }, + { + "start": 17828.15, + "end": 17829.93, + "probability": 0.5685 + }, + { + "start": 17830.11, + "end": 17831.19, + "probability": 0.9457 + }, + { + "start": 17832.15, + "end": 17832.91, + "probability": 0.4667 + }, + { + "start": 17833.07, + "end": 17834.31, + "probability": 0.909 + }, + { + "start": 17834.75, + "end": 17839.63, + "probability": 0.9576 + }, + { + "start": 17840.75, + "end": 17841.75, + "probability": 0.8605 + }, + { + "start": 17842.61, + "end": 17843.25, + "probability": 0.5765 + }, + { + "start": 17843.91, + "end": 17846.91, + "probability": 0.9301 + }, + { + "start": 17847.89, + "end": 17849.89, + "probability": 0.9163 + }, + { + "start": 17849.93, + "end": 17850.99, + "probability": 0.9946 + }, + { + "start": 17851.15, + "end": 17856.71, + "probability": 0.895 + }, + { + "start": 17856.77, + "end": 17857.99, + "probability": 0.9778 + }, + { + "start": 17858.37, + "end": 17859.14, + "probability": 0.8701 + }, + { + "start": 17860.71, + "end": 17861.47, + "probability": 0.891 + }, + { + "start": 17861.53, + "end": 17864.71, + "probability": 0.8569 + }, + { + "start": 17865.35, + "end": 17870.55, + "probability": 0.8891 + }, + { + "start": 17871.43, + "end": 17873.45, + "probability": 0.9685 + }, + { + "start": 17873.45, + "end": 17873.95, + "probability": 0.8004 + }, + { + "start": 17874.83, + "end": 17875.71, + "probability": 0.9365 + }, + { + "start": 17875.81, + "end": 17877.95, + "probability": 0.8558 + }, + { + "start": 17878.39, + "end": 17880.27, + "probability": 0.9805 + }, + { + "start": 17880.91, + "end": 17881.39, + "probability": 0.8937 + }, + { + "start": 17881.79, + "end": 17883.81, + "probability": 0.9264 + }, + { + "start": 17883.97, + "end": 17884.33, + "probability": 0.9237 + }, + { + "start": 17884.45, + "end": 17886.17, + "probability": 0.9355 + }, + { + "start": 17886.27, + "end": 17888.81, + "probability": 0.9941 + }, + { + "start": 17889.53, + "end": 17890.86, + "probability": 0.9861 + }, + { + "start": 17891.51, + "end": 17894.41, + "probability": 0.9951 + }, + { + "start": 17894.97, + "end": 17896.41, + "probability": 0.6766 + }, + { + "start": 17896.95, + "end": 17897.77, + "probability": 0.7286 + }, + { + "start": 17898.03, + "end": 17898.53, + "probability": 0.5359 + }, + { + "start": 17898.55, + "end": 17901.17, + "probability": 0.9921 + }, + { + "start": 17901.71, + "end": 17907.03, + "probability": 0.9868 + }, + { + "start": 17907.55, + "end": 17909.35, + "probability": 0.9939 + }, + { + "start": 17909.69, + "end": 17912.71, + "probability": 0.6869 + }, + { + "start": 17913.17, + "end": 17915.25, + "probability": 0.9912 + }, + { + "start": 17916.39, + "end": 17918.77, + "probability": 0.9991 + }, + { + "start": 17918.77, + "end": 17923.05, + "probability": 0.7692 + }, + { + "start": 17923.43, + "end": 17926.82, + "probability": 0.9834 + }, + { + "start": 17927.25, + "end": 17928.41, + "probability": 0.9909 + }, + { + "start": 17929.03, + "end": 17930.35, + "probability": 0.8234 + }, + { + "start": 17931.79, + "end": 17933.25, + "probability": 0.7876 + }, + { + "start": 17934.33, + "end": 17935.79, + "probability": 0.8177 + }, + { + "start": 17935.87, + "end": 17936.53, + "probability": 0.8532 + }, + { + "start": 17936.63, + "end": 17937.59, + "probability": 0.9054 + }, + { + "start": 17938.15, + "end": 17940.51, + "probability": 0.9924 + }, + { + "start": 17941.53, + "end": 17943.91, + "probability": 0.9688 + }, + { + "start": 17944.49, + "end": 17945.12, + "probability": 0.8849 + }, + { + "start": 17945.99, + "end": 17946.65, + "probability": 0.9591 + }, + { + "start": 17947.41, + "end": 17948.97, + "probability": 0.9886 + }, + { + "start": 17949.07, + "end": 17953.13, + "probability": 0.966 + }, + { + "start": 17953.83, + "end": 17959.21, + "probability": 0.9767 + }, + { + "start": 17960.03, + "end": 17962.81, + "probability": 0.995 + }, + { + "start": 17962.81, + "end": 17967.57, + "probability": 0.9995 + }, + { + "start": 17968.43, + "end": 17974.19, + "probability": 0.9976 + }, + { + "start": 17974.83, + "end": 17977.19, + "probability": 0.9932 + }, + { + "start": 17977.53, + "end": 17979.49, + "probability": 0.8236 + }, + { + "start": 17980.15, + "end": 17982.15, + "probability": 0.9418 + }, + { + "start": 17982.59, + "end": 17985.19, + "probability": 0.995 + }, + { + "start": 17985.25, + "end": 17986.03, + "probability": 0.9439 + }, + { + "start": 17986.29, + "end": 17987.07, + "probability": 0.9765 + }, + { + "start": 17987.33, + "end": 17991.25, + "probability": 0.9807 + }, + { + "start": 17991.73, + "end": 17996.47, + "probability": 0.9987 + }, + { + "start": 17997.07, + "end": 18001.71, + "probability": 0.9342 + }, + { + "start": 18002.92, + "end": 18008.15, + "probability": 0.7487 + }, + { + "start": 18008.29, + "end": 18012.03, + "probability": 0.6758 + }, + { + "start": 18012.15, + "end": 18012.67, + "probability": 0.8488 + }, + { + "start": 18012.71, + "end": 18013.47, + "probability": 0.2215 + }, + { + "start": 18013.73, + "end": 18014.91, + "probability": 0.9928 + }, + { + "start": 18015.69, + "end": 18016.97, + "probability": 0.7505 + }, + { + "start": 18017.73, + "end": 18021.77, + "probability": 0.9882 + }, + { + "start": 18022.51, + "end": 18024.65, + "probability": 0.7407 + }, + { + "start": 18024.65, + "end": 18027.41, + "probability": 0.6904 + }, + { + "start": 18027.59, + "end": 18028.65, + "probability": 0.76 + }, + { + "start": 18028.67, + "end": 18029.83, + "probability": 0.9659 + }, + { + "start": 18030.31, + "end": 18031.99, + "probability": 0.9928 + }, + { + "start": 18032.07, + "end": 18033.31, + "probability": 0.9146 + }, + { + "start": 18033.71, + "end": 18035.31, + "probability": 0.9837 + }, + { + "start": 18035.79, + "end": 18037.29, + "probability": 0.9028 + }, + { + "start": 18037.63, + "end": 18041.99, + "probability": 0.9287 + }, + { + "start": 18041.99, + "end": 18045.43, + "probability": 0.9967 + }, + { + "start": 18046.31, + "end": 18046.99, + "probability": 0.9619 + }, + { + "start": 18047.81, + "end": 18051.25, + "probability": 0.8936 + }, + { + "start": 18051.83, + "end": 18051.95, + "probability": 0.1641 + }, + { + "start": 18052.17, + "end": 18055.77, + "probability": 0.9138 + }, + { + "start": 18057.13, + "end": 18060.25, + "probability": 0.9249 + }, + { + "start": 18060.77, + "end": 18063.25, + "probability": 0.8153 + }, + { + "start": 18064.03, + "end": 18066.49, + "probability": 0.9641 + }, + { + "start": 18067.03, + "end": 18070.99, + "probability": 0.9971 + }, + { + "start": 18071.95, + "end": 18072.87, + "probability": 0.8199 + }, + { + "start": 18073.79, + "end": 18074.61, + "probability": 0.7794 + }, + { + "start": 18075.65, + "end": 18077.41, + "probability": 0.9531 + }, + { + "start": 18078.27, + "end": 18078.95, + "probability": 0.995 + }, + { + "start": 18079.63, + "end": 18080.23, + "probability": 0.504 + }, + { + "start": 18080.89, + "end": 18085.23, + "probability": 0.9771 + }, + { + "start": 18085.77, + "end": 18087.59, + "probability": 0.8773 + }, + { + "start": 18087.93, + "end": 18088.59, + "probability": 0.5294 + }, + { + "start": 18088.99, + "end": 18090.83, + "probability": 0.9331 + }, + { + "start": 18090.99, + "end": 18092.47, + "probability": 0.9862 + }, + { + "start": 18093.61, + "end": 18096.37, + "probability": 0.9507 + }, + { + "start": 18096.65, + "end": 18097.31, + "probability": 0.9927 + }, + { + "start": 18097.67, + "end": 18098.07, + "probability": 0.8298 + }, + { + "start": 18098.11, + "end": 18101.27, + "probability": 0.9937 + }, + { + "start": 18101.35, + "end": 18102.37, + "probability": 0.9966 + }, + { + "start": 18103.07, + "end": 18106.15, + "probability": 0.8592 + }, + { + "start": 18106.15, + "end": 18109.41, + "probability": 0.2331 + }, + { + "start": 18109.41, + "end": 18110.19, + "probability": 0.7011 + }, + { + "start": 18110.49, + "end": 18111.61, + "probability": 0.5534 + }, + { + "start": 18112.41, + "end": 18116.69, + "probability": 0.9247 + }, + { + "start": 18117.43, + "end": 18118.65, + "probability": 0.8811 + }, + { + "start": 18118.79, + "end": 18119.17, + "probability": 0.0727 + }, + { + "start": 18119.27, + "end": 18120.21, + "probability": 0.259 + }, + { + "start": 18120.49, + "end": 18123.39, + "probability": 0.987 + }, + { + "start": 18123.39, + "end": 18125.42, + "probability": 0.8093 + }, + { + "start": 18125.85, + "end": 18127.91, + "probability": 0.9092 + }, + { + "start": 18128.57, + "end": 18130.01, + "probability": 0.9775 + }, + { + "start": 18130.59, + "end": 18134.91, + "probability": 0.9841 + }, + { + "start": 18135.35, + "end": 18136.95, + "probability": 0.8989 + }, + { + "start": 18137.39, + "end": 18141.07, + "probability": 0.9264 + }, + { + "start": 18141.81, + "end": 18143.33, + "probability": 0.9774 + }, + { + "start": 18144.21, + "end": 18147.35, + "probability": 0.9955 + }, + { + "start": 18147.35, + "end": 18150.67, + "probability": 0.9956 + }, + { + "start": 18151.11, + "end": 18152.17, + "probability": 0.9929 + }, + { + "start": 18153.03, + "end": 18154.49, + "probability": 0.9517 + }, + { + "start": 18155.03, + "end": 18159.89, + "probability": 0.9793 + }, + { + "start": 18160.49, + "end": 18160.77, + "probability": 0.629 + }, + { + "start": 18161.37, + "end": 18162.37, + "probability": 0.627 + }, + { + "start": 18162.73, + "end": 18164.59, + "probability": 0.9868 + }, + { + "start": 18164.99, + "end": 18167.39, + "probability": 0.9972 + }, + { + "start": 18167.57, + "end": 18168.43, + "probability": 0.7664 + }, + { + "start": 18168.69, + "end": 18170.21, + "probability": 0.9757 + }, + { + "start": 18170.85, + "end": 18174.33, + "probability": 0.9945 + }, + { + "start": 18174.83, + "end": 18175.61, + "probability": 0.6615 + }, + { + "start": 18176.37, + "end": 18176.89, + "probability": 0.4976 + }, + { + "start": 18177.27, + "end": 18179.23, + "probability": 0.7431 + }, + { + "start": 18179.43, + "end": 18182.13, + "probability": 0.9873 + }, + { + "start": 18182.17, + "end": 18182.91, + "probability": 0.9289 + }, + { + "start": 18183.51, + "end": 18186.09, + "probability": 0.8334 + }, + { + "start": 18186.69, + "end": 18190.89, + "probability": 0.9678 + }, + { + "start": 18191.97, + "end": 18192.63, + "probability": 0.7553 + }, + { + "start": 18192.73, + "end": 18194.91, + "probability": 0.8431 + }, + { + "start": 18195.03, + "end": 18196.03, + "probability": 0.8604 + }, + { + "start": 18196.17, + "end": 18197.87, + "probability": 0.8157 + }, + { + "start": 18198.55, + "end": 18201.15, + "probability": 0.7532 + }, + { + "start": 18201.15, + "end": 18203.93, + "probability": 0.9966 + }, + { + "start": 18204.71, + "end": 18206.65, + "probability": 0.7475 + }, + { + "start": 18207.51, + "end": 18210.89, + "probability": 0.9778 + }, + { + "start": 18211.31, + "end": 18212.83, + "probability": 0.8342 + }, + { + "start": 18213.65, + "end": 18215.35, + "probability": 0.915 + }, + { + "start": 18215.47, + "end": 18220.15, + "probability": 0.8915 + }, + { + "start": 18220.25, + "end": 18220.51, + "probability": 0.0151 + }, + { + "start": 18221.17, + "end": 18222.5, + "probability": 0.6848 + }, + { + "start": 18223.89, + "end": 18228.45, + "probability": 0.9851 + }, + { + "start": 18229.67, + "end": 18230.21, + "probability": 0.7971 + }, + { + "start": 18233.51, + "end": 18233.53, + "probability": 0.0037 + }, + { + "start": 18233.53, + "end": 18233.53, + "probability": 0.0631 + }, + { + "start": 18233.53, + "end": 18236.93, + "probability": 0.4502 + }, + { + "start": 18237.85, + "end": 18239.25, + "probability": 0.3606 + }, + { + "start": 18239.79, + "end": 18240.95, + "probability": 0.5865 + }, + { + "start": 18241.23, + "end": 18245.51, + "probability": 0.9901 + }, + { + "start": 18245.97, + "end": 18248.15, + "probability": 0.9904 + }, + { + "start": 18248.55, + "end": 18248.69, + "probability": 0.3219 + }, + { + "start": 18248.73, + "end": 18249.33, + "probability": 0.8857 + }, + { + "start": 18249.55, + "end": 18251.21, + "probability": 0.998 + }, + { + "start": 18251.55, + "end": 18253.47, + "probability": 0.9303 + }, + { + "start": 18253.97, + "end": 18255.57, + "probability": 0.9899 + }, + { + "start": 18256.37, + "end": 18257.49, + "probability": 0.9765 + }, + { + "start": 18257.61, + "end": 18258.59, + "probability": 0.8329 + }, + { + "start": 18258.87, + "end": 18262.31, + "probability": 0.9937 + }, + { + "start": 18262.31, + "end": 18265.23, + "probability": 0.9958 + }, + { + "start": 18265.87, + "end": 18267.13, + "probability": 0.808 + }, + { + "start": 18267.81, + "end": 18270.85, + "probability": 0.9296 + }, + { + "start": 18271.47, + "end": 18271.83, + "probability": 0.8854 + }, + { + "start": 18272.95, + "end": 18274.71, + "probability": 0.887 + }, + { + "start": 18275.15, + "end": 18278.77, + "probability": 0.9969 + }, + { + "start": 18279.03, + "end": 18281.99, + "probability": 0.9551 + }, + { + "start": 18282.19, + "end": 18284.83, + "probability": 0.9438 + }, + { + "start": 18285.87, + "end": 18288.85, + "probability": 0.9961 + }, + { + "start": 18290.77, + "end": 18292.51, + "probability": 0.9517 + }, + { + "start": 18296.47, + "end": 18297.89, + "probability": 0.7117 + }, + { + "start": 18298.05, + "end": 18299.11, + "probability": 0.9829 + }, + { + "start": 18300.03, + "end": 18303.93, + "probability": 0.9805 + }, + { + "start": 18303.93, + "end": 18307.93, + "probability": 0.9805 + }, + { + "start": 18308.93, + "end": 18313.41, + "probability": 0.9958 + }, + { + "start": 18313.41, + "end": 18317.03, + "probability": 0.9985 + }, + { + "start": 18318.31, + "end": 18322.81, + "probability": 0.9861 + }, + { + "start": 18323.05, + "end": 18323.89, + "probability": 0.764 + }, + { + "start": 18324.59, + "end": 18328.89, + "probability": 0.8382 + }, + { + "start": 18329.51, + "end": 18334.33, + "probability": 0.9951 + }, + { + "start": 18335.29, + "end": 18341.23, + "probability": 0.9887 + }, + { + "start": 18341.91, + "end": 18343.57, + "probability": 0.8755 + }, + { + "start": 18344.19, + "end": 18346.79, + "probability": 0.9946 + }, + { + "start": 18346.93, + "end": 18349.95, + "probability": 0.9842 + }, + { + "start": 18350.79, + "end": 18352.31, + "probability": 0.9891 + }, + { + "start": 18353.07, + "end": 18357.07, + "probability": 0.9722 + }, + { + "start": 18357.53, + "end": 18360.47, + "probability": 0.9375 + }, + { + "start": 18360.55, + "end": 18362.01, + "probability": 0.8493 + }, + { + "start": 18362.55, + "end": 18365.69, + "probability": 0.6188 + }, + { + "start": 18366.29, + "end": 18370.13, + "probability": 0.9919 + }, + { + "start": 18370.97, + "end": 18374.21, + "probability": 0.7997 + }, + { + "start": 18374.27, + "end": 18375.54, + "probability": 0.7131 + }, + { + "start": 18376.87, + "end": 18378.57, + "probability": 0.8906 + }, + { + "start": 18379.17, + "end": 18380.91, + "probability": 0.7983 + }, + { + "start": 18380.95, + "end": 18385.57, + "probability": 0.9927 + }, + { + "start": 18385.71, + "end": 18386.65, + "probability": 0.6851 + }, + { + "start": 18387.27, + "end": 18394.57, + "probability": 0.9684 + }, + { + "start": 18395.45, + "end": 18400.19, + "probability": 0.981 + }, + { + "start": 18400.97, + "end": 18406.21, + "probability": 0.9932 + }, + { + "start": 18406.95, + "end": 18409.57, + "probability": 0.8492 + }, + { + "start": 18409.71, + "end": 18413.99, + "probability": 0.7646 + }, + { + "start": 18414.99, + "end": 18416.47, + "probability": 0.7936 + }, + { + "start": 18417.09, + "end": 18418.23, + "probability": 0.988 + }, + { + "start": 18418.31, + "end": 18419.13, + "probability": 0.8544 + }, + { + "start": 18419.17, + "end": 18420.63, + "probability": 0.9116 + }, + { + "start": 18421.49, + "end": 18427.69, + "probability": 0.9301 + }, + { + "start": 18428.15, + "end": 18430.71, + "probability": 0.9769 + }, + { + "start": 18431.35, + "end": 18433.25, + "probability": 0.9118 + }, + { + "start": 18433.81, + "end": 18437.61, + "probability": 0.9337 + }, + { + "start": 18438.05, + "end": 18438.83, + "probability": 0.8622 + }, + { + "start": 18439.01, + "end": 18443.21, + "probability": 0.7429 + }, + { + "start": 18443.21, + "end": 18443.81, + "probability": 0.31 + }, + { + "start": 18443.93, + "end": 18444.35, + "probability": 0.8333 + }, + { + "start": 18445.07, + "end": 18447.53, + "probability": 0.9728 + }, + { + "start": 18447.65, + "end": 18450.29, + "probability": 0.9169 + }, + { + "start": 18450.53, + "end": 18452.25, + "probability": 0.6234 + }, + { + "start": 18453.01, + "end": 18453.77, + "probability": 0.8793 + }, + { + "start": 18454.03, + "end": 18458.03, + "probability": 0.9752 + }, + { + "start": 18458.03, + "end": 18462.85, + "probability": 0.9949 + }, + { + "start": 18463.37, + "end": 18466.19, + "probability": 0.7988 + }, + { + "start": 18466.97, + "end": 18471.53, + "probability": 0.9969 + }, + { + "start": 18471.77, + "end": 18474.25, + "probability": 0.9058 + }, + { + "start": 18474.89, + "end": 18476.35, + "probability": 0.8264 + }, + { + "start": 18476.81, + "end": 18478.95, + "probability": 0.9904 + }, + { + "start": 18479.31, + "end": 18480.79, + "probability": 0.7531 + }, + { + "start": 18480.79, + "end": 18482.27, + "probability": 0.9498 + }, + { + "start": 18483.11, + "end": 18485.09, + "probability": 0.9801 + }, + { + "start": 18485.09, + "end": 18487.63, + "probability": 0.998 + }, + { + "start": 18488.31, + "end": 18489.37, + "probability": 0.7361 + }, + { + "start": 18489.65, + "end": 18492.25, + "probability": 0.8819 + }, + { + "start": 18492.67, + "end": 18496.45, + "probability": 0.9844 + }, + { + "start": 18497.71, + "end": 18500.79, + "probability": 0.8286 + }, + { + "start": 18501.69, + "end": 18504.45, + "probability": 0.8246 + }, + { + "start": 18504.51, + "end": 18505.27, + "probability": 0.7458 + }, + { + "start": 18505.37, + "end": 18507.55, + "probability": 0.9446 + }, + { + "start": 18508.87, + "end": 18512.79, + "probability": 0.9468 + }, + { + "start": 18513.71, + "end": 18514.69, + "probability": 0.6597 + }, + { + "start": 18515.29, + "end": 18519.75, + "probability": 0.9787 + }, + { + "start": 18520.67, + "end": 18523.59, + "probability": 0.8381 + }, + { + "start": 18524.15, + "end": 18526.33, + "probability": 0.7737 + }, + { + "start": 18526.89, + "end": 18528.65, + "probability": 0.8223 + }, + { + "start": 18529.69, + "end": 18532.03, + "probability": 0.9854 + }, + { + "start": 18533.01, + "end": 18537.31, + "probability": 0.9193 + }, + { + "start": 18537.31, + "end": 18539.75, + "probability": 0.9995 + }, + { + "start": 18540.53, + "end": 18542.23, + "probability": 0.9485 + }, + { + "start": 18542.23, + "end": 18544.55, + "probability": 0.9941 + }, + { + "start": 18544.83, + "end": 18549.11, + "probability": 0.9457 + }, + { + "start": 18549.63, + "end": 18551.67, + "probability": 0.9772 + }, + { + "start": 18552.33, + "end": 18553.19, + "probability": 0.7193 + }, + { + "start": 18553.29, + "end": 18555.69, + "probability": 0.998 + }, + { + "start": 18556.53, + "end": 18557.31, + "probability": 0.9813 + }, + { + "start": 18557.43, + "end": 18560.07, + "probability": 0.9786 + }, + { + "start": 18560.25, + "end": 18560.99, + "probability": 0.7386 + }, + { + "start": 18561.43, + "end": 18563.59, + "probability": 0.989 + }, + { + "start": 18564.33, + "end": 18567.77, + "probability": 0.9907 + }, + { + "start": 18568.87, + "end": 18573.73, + "probability": 0.9902 + }, + { + "start": 18574.27, + "end": 18575.71, + "probability": 0.9108 + }, + { + "start": 18575.83, + "end": 18581.71, + "probability": 0.9795 + }, + { + "start": 18581.99, + "end": 18586.61, + "probability": 0.9954 + }, + { + "start": 18587.17, + "end": 18590.15, + "probability": 0.88 + }, + { + "start": 18590.15, + "end": 18593.39, + "probability": 0.9188 + }, + { + "start": 18594.41, + "end": 18596.61, + "probability": 0.9507 + }, + { + "start": 18597.29, + "end": 18597.61, + "probability": 0.6304 + }, + { + "start": 18597.67, + "end": 18601.83, + "probability": 0.9937 + }, + { + "start": 18602.35, + "end": 18604.79, + "probability": 0.8613 + }, + { + "start": 18605.31, + "end": 18608.17, + "probability": 0.9966 + }, + { + "start": 18609.29, + "end": 18611.73, + "probability": 0.8759 + }, + { + "start": 18612.51, + "end": 18614.45, + "probability": 0.8996 + }, + { + "start": 18615.77, + "end": 18617.15, + "probability": 0.856 + }, + { + "start": 18617.95, + "end": 18619.97, + "probability": 0.9397 + }, + { + "start": 18620.47, + "end": 18622.53, + "probability": 0.9561 + }, + { + "start": 18623.43, + "end": 18628.25, + "probability": 0.9824 + }, + { + "start": 18628.33, + "end": 18629.23, + "probability": 0.6252 + }, + { + "start": 18629.81, + "end": 18631.51, + "probability": 0.9382 + }, + { + "start": 18631.65, + "end": 18633.14, + "probability": 0.9836 + }, + { + "start": 18633.61, + "end": 18634.63, + "probability": 0.9533 + }, + { + "start": 18634.75, + "end": 18636.19, + "probability": 0.9378 + }, + { + "start": 18636.79, + "end": 18640.25, + "probability": 0.9792 + }, + { + "start": 18641.31, + "end": 18645.01, + "probability": 0.9736 + }, + { + "start": 18645.09, + "end": 18646.59, + "probability": 0.4888 + }, + { + "start": 18647.35, + "end": 18648.73, + "probability": 0.8678 + }, + { + "start": 18648.87, + "end": 18651.63, + "probability": 0.9884 + }, + { + "start": 18652.11, + "end": 18655.5, + "probability": 0.874 + }, + { + "start": 18655.79, + "end": 18656.59, + "probability": 0.5974 + }, + { + "start": 18656.61, + "end": 18657.45, + "probability": 0.86 + }, + { + "start": 18658.43, + "end": 18664.97, + "probability": 0.9014 + }, + { + "start": 18665.79, + "end": 18667.03, + "probability": 0.9612 + }, + { + "start": 18667.75, + "end": 18671.07, + "probability": 0.9941 + }, + { + "start": 18672.15, + "end": 18675.19, + "probability": 0.6705 + }, + { + "start": 18675.81, + "end": 18678.63, + "probability": 0.9746 + }, + { + "start": 18679.49, + "end": 18682.33, + "probability": 0.9969 + }, + { + "start": 18682.47, + "end": 18685.85, + "probability": 0.9795 + }, + { + "start": 18686.13, + "end": 18688.91, + "probability": 0.8907 + }, + { + "start": 18689.26, + "end": 18692.19, + "probability": 0.9654 + }, + { + "start": 18692.27, + "end": 18692.99, + "probability": 0.9536 + }, + { + "start": 18693.57, + "end": 18695.39, + "probability": 0.9526 + }, + { + "start": 18695.45, + "end": 18696.67, + "probability": 0.9937 + }, + { + "start": 18697.45, + "end": 18699.67, + "probability": 0.9666 + }, + { + "start": 18699.83, + "end": 18704.61, + "probability": 0.9302 + }, + { + "start": 18705.19, + "end": 18707.81, + "probability": 0.9721 + }, + { + "start": 18708.69, + "end": 18712.29, + "probability": 0.9078 + }, + { + "start": 18713.57, + "end": 18714.63, + "probability": 0.7095 + }, + { + "start": 18715.17, + "end": 18718.07, + "probability": 0.8826 + }, + { + "start": 18718.69, + "end": 18722.67, + "probability": 0.9792 + }, + { + "start": 18723.59, + "end": 18725.91, + "probability": 0.564 + }, + { + "start": 18726.73, + "end": 18729.19, + "probability": 0.9763 + }, + { + "start": 18729.33, + "end": 18731.33, + "probability": 0.8599 + }, + { + "start": 18732.43, + "end": 18736.09, + "probability": 0.974 + }, + { + "start": 18736.67, + "end": 18737.81, + "probability": 0.9239 + }, + { + "start": 18738.35, + "end": 18742.68, + "probability": 0.9676 + }, + { + "start": 18742.85, + "end": 18744.55, + "probability": 0.8998 + }, + { + "start": 18745.61, + "end": 18748.45, + "probability": 0.998 + }, + { + "start": 18749.59, + "end": 18751.91, + "probability": 0.9957 + }, + { + "start": 18754.77, + "end": 18756.89, + "probability": 0.8068 + }, + { + "start": 18756.93, + "end": 18759.83, + "probability": 0.942 + }, + { + "start": 18760.31, + "end": 18760.93, + "probability": 0.4539 + }, + { + "start": 18761.47, + "end": 18764.41, + "probability": 0.8296 + }, + { + "start": 18765.17, + "end": 18766.43, + "probability": 0.8613 + }, + { + "start": 18766.51, + "end": 18768.3, + "probability": 0.9495 + }, + { + "start": 18768.75, + "end": 18770.03, + "probability": 0.7864 + }, + { + "start": 18770.55, + "end": 18771.23, + "probability": 0.6965 + }, + { + "start": 18771.27, + "end": 18771.79, + "probability": 0.4678 + }, + { + "start": 18772.17, + "end": 18775.23, + "probability": 0.8909 + }, + { + "start": 18775.75, + "end": 18779.19, + "probability": 0.9441 + }, + { + "start": 18779.37, + "end": 18779.79, + "probability": 0.8101 + }, + { + "start": 18781.49, + "end": 18783.41, + "probability": 0.812 + }, + { + "start": 18783.69, + "end": 18785.19, + "probability": 0.8149 + }, + { + "start": 18785.41, + "end": 18788.71, + "probability": 0.9953 + }, + { + "start": 18788.85, + "end": 18791.11, + "probability": 0.8195 + }, + { + "start": 18791.83, + "end": 18793.07, + "probability": 0.9489 + }, + { + "start": 18793.15, + "end": 18795.15, + "probability": 0.9852 + }, + { + "start": 18795.37, + "end": 18798.02, + "probability": 0.719 + }, + { + "start": 18805.57, + "end": 18806.47, + "probability": 0.4748 + }, + { + "start": 18806.51, + "end": 18806.75, + "probability": 0.7459 + }, + { + "start": 18813.21, + "end": 18814.11, + "probability": 0.5617 + }, + { + "start": 18814.23, + "end": 18814.23, + "probability": 0.4101 + }, + { + "start": 18814.23, + "end": 18814.69, + "probability": 0.7489 + }, + { + "start": 18814.87, + "end": 18816.37, + "probability": 0.7976 + }, + { + "start": 18817.23, + "end": 18820.65, + "probability": 0.6203 + }, + { + "start": 18820.91, + "end": 18823.21, + "probability": 0.9098 + }, + { + "start": 18823.99, + "end": 18825.91, + "probability": 0.9597 + }, + { + "start": 18827.09, + "end": 18830.52, + "probability": 0.9976 + }, + { + "start": 18831.29, + "end": 18837.87, + "probability": 0.9874 + }, + { + "start": 18838.19, + "end": 18839.05, + "probability": 0.5782 + }, + { + "start": 18840.13, + "end": 18843.41, + "probability": 0.9782 + }, + { + "start": 18844.17, + "end": 18846.31, + "probability": 0.8814 + }, + { + "start": 18846.61, + "end": 18852.62, + "probability": 0.9764 + }, + { + "start": 18855.63, + "end": 18856.51, + "probability": 0.3674 + }, + { + "start": 18856.57, + "end": 18858.27, + "probability": 0.9956 + }, + { + "start": 18858.33, + "end": 18862.63, + "probability": 0.9946 + }, + { + "start": 18862.81, + "end": 18863.69, + "probability": 0.9694 + }, + { + "start": 18864.93, + "end": 18868.25, + "probability": 0.9852 + }, + { + "start": 18868.81, + "end": 18871.23, + "probability": 0.9951 + }, + { + "start": 18871.31, + "end": 18874.37, + "probability": 0.9951 + }, + { + "start": 18874.37, + "end": 18878.05, + "probability": 0.9836 + }, + { + "start": 18878.71, + "end": 18881.05, + "probability": 0.9907 + }, + { + "start": 18881.31, + "end": 18884.53, + "probability": 0.9984 + }, + { + "start": 18885.61, + "end": 18892.27, + "probability": 0.981 + }, + { + "start": 18893.57, + "end": 18894.31, + "probability": 0.9785 + }, + { + "start": 18894.97, + "end": 18897.61, + "probability": 0.9993 + }, + { + "start": 18899.75, + "end": 18902.45, + "probability": 0.9299 + }, + { + "start": 18903.45, + "end": 18905.79, + "probability": 0.9351 + }, + { + "start": 18906.47, + "end": 18906.91, + "probability": 0.6003 + }, + { + "start": 18907.57, + "end": 18908.25, + "probability": 0.9202 + }, + { + "start": 18908.87, + "end": 18911.58, + "probability": 0.9971 + }, + { + "start": 18913.13, + "end": 18914.97, + "probability": 0.95 + }, + { + "start": 18915.89, + "end": 18917.79, + "probability": 0.9877 + }, + { + "start": 18919.43, + "end": 18922.59, + "probability": 0.9377 + }, + { + "start": 18924.03, + "end": 18929.01, + "probability": 0.9965 + }, + { + "start": 18929.01, + "end": 18934.17, + "probability": 0.9954 + }, + { + "start": 18934.89, + "end": 18937.85, + "probability": 0.7537 + }, + { + "start": 18938.15, + "end": 18946.57, + "probability": 0.9903 + }, + { + "start": 18946.69, + "end": 18948.81, + "probability": 0.998 + }, + { + "start": 18948.89, + "end": 18949.91, + "probability": 0.7804 + }, + { + "start": 18950.15, + "end": 18951.55, + "probability": 0.7198 + }, + { + "start": 18951.63, + "end": 18953.85, + "probability": 0.9928 + }, + { + "start": 18956.13, + "end": 18961.33, + "probability": 0.9877 + }, + { + "start": 18961.45, + "end": 18962.13, + "probability": 0.9618 + }, + { + "start": 18962.59, + "end": 18964.39, + "probability": 0.8826 + }, + { + "start": 18964.87, + "end": 18969.67, + "probability": 0.8923 + }, + { + "start": 18970.25, + "end": 18974.81, + "probability": 0.9893 + }, + { + "start": 18975.57, + "end": 18979.81, + "probability": 0.9965 + }, + { + "start": 18979.81, + "end": 18984.35, + "probability": 0.9989 + }, + { + "start": 18984.81, + "end": 18986.03, + "probability": 0.9987 + }, + { + "start": 18986.23, + "end": 18987.81, + "probability": 0.9715 + }, + { + "start": 18987.91, + "end": 18989.49, + "probability": 0.8696 + }, + { + "start": 18990.29, + "end": 18994.17, + "probability": 0.8763 + }, + { + "start": 18994.81, + "end": 19001.15, + "probability": 0.9512 + }, + { + "start": 19002.23, + "end": 19005.63, + "probability": 0.8932 + }, + { + "start": 19005.79, + "end": 19009.09, + "probability": 0.8843 + }, + { + "start": 19009.57, + "end": 19011.15, + "probability": 0.9394 + }, + { + "start": 19030.75, + "end": 19033.47, + "probability": 0.8007 + }, + { + "start": 19034.83, + "end": 19037.89, + "probability": 0.84 + }, + { + "start": 19038.93, + "end": 19041.61, + "probability": 0.8657 + }, + { + "start": 19042.59, + "end": 19045.77, + "probability": 0.7364 + }, + { + "start": 19047.55, + "end": 19050.31, + "probability": 0.5857 + }, + { + "start": 19051.21, + "end": 19056.51, + "probability": 0.9177 + }, + { + "start": 19056.91, + "end": 19059.23, + "probability": 0.9897 + }, + { + "start": 19060.35, + "end": 19063.03, + "probability": 0.9153 + }, + { + "start": 19063.73, + "end": 19068.95, + "probability": 0.9264 + }, + { + "start": 19068.95, + "end": 19073.05, + "probability": 0.996 + }, + { + "start": 19074.85, + "end": 19076.53, + "probability": 0.852 + }, + { + "start": 19077.09, + "end": 19078.13, + "probability": 0.8557 + }, + { + "start": 19078.29, + "end": 19082.15, + "probability": 0.9951 + }, + { + "start": 19083.83, + "end": 19088.45, + "probability": 0.6951 + }, + { + "start": 19089.33, + "end": 19090.83, + "probability": 0.5729 + }, + { + "start": 19090.97, + "end": 19095.47, + "probability": 0.9027 + }, + { + "start": 19097.15, + "end": 19103.13, + "probability": 0.9971 + }, + { + "start": 19104.29, + "end": 19106.15, + "probability": 0.9845 + }, + { + "start": 19107.85, + "end": 19111.51, + "probability": 0.9889 + }, + { + "start": 19111.85, + "end": 19113.17, + "probability": 0.9653 + }, + { + "start": 19114.11, + "end": 19114.75, + "probability": 0.8274 + }, + { + "start": 19116.55, + "end": 19117.71, + "probability": 0.9021 + }, + { + "start": 19117.89, + "end": 19123.27, + "probability": 0.9776 + }, + { + "start": 19123.67, + "end": 19124.23, + "probability": 0.5225 + }, + { + "start": 19125.75, + "end": 19131.09, + "probability": 0.8804 + }, + { + "start": 19132.85, + "end": 19136.59, + "probability": 0.8581 + }, + { + "start": 19137.73, + "end": 19139.89, + "probability": 0.93 + }, + { + "start": 19140.61, + "end": 19141.77, + "probability": 0.5326 + }, + { + "start": 19142.73, + "end": 19143.95, + "probability": 0.8323 + }, + { + "start": 19144.25, + "end": 19147.63, + "probability": 0.9154 + }, + { + "start": 19148.39, + "end": 19151.28, + "probability": 0.9639 + }, + { + "start": 19152.65, + "end": 19153.07, + "probability": 0.8929 + }, + { + "start": 19153.83, + "end": 19160.65, + "probability": 0.896 + }, + { + "start": 19161.37, + "end": 19163.01, + "probability": 0.9484 + }, + { + "start": 19164.35, + "end": 19169.07, + "probability": 0.988 + }, + { + "start": 19169.77, + "end": 19172.83, + "probability": 0.9871 + }, + { + "start": 19173.67, + "end": 19177.7, + "probability": 0.8385 + }, + { + "start": 19178.81, + "end": 19181.73, + "probability": 0.7987 + }, + { + "start": 19182.61, + "end": 19188.03, + "probability": 0.8539 + }, + { + "start": 19188.31, + "end": 19190.35, + "probability": 0.9956 + }, + { + "start": 19191.23, + "end": 19199.23, + "probability": 0.9365 + }, + { + "start": 19200.19, + "end": 19202.77, + "probability": 0.7293 + }, + { + "start": 19203.89, + "end": 19206.81, + "probability": 0.8187 + }, + { + "start": 19207.55, + "end": 19213.39, + "probability": 0.9552 + }, + { + "start": 19215.05, + "end": 19216.71, + "probability": 0.5814 + }, + { + "start": 19217.15, + "end": 19222.01, + "probability": 0.9587 + }, + { + "start": 19222.79, + "end": 19225.03, + "probability": 0.9832 + }, + { + "start": 19226.31, + "end": 19230.91, + "probability": 0.9279 + }, + { + "start": 19231.71, + "end": 19235.69, + "probability": 0.9854 + }, + { + "start": 19236.23, + "end": 19240.07, + "probability": 0.8389 + }, + { + "start": 19240.25, + "end": 19240.47, + "probability": 0.7216 + }, + { + "start": 19244.71, + "end": 19246.85, + "probability": 0.6617 + }, + { + "start": 19247.09, + "end": 19249.07, + "probability": 0.9165 + }, + { + "start": 19262.15, + "end": 19263.35, + "probability": 0.3729 + }, + { + "start": 19266.51, + "end": 19267.15, + "probability": 0.7373 + }, + { + "start": 19268.13, + "end": 19268.73, + "probability": 0.8008 + }, + { + "start": 19269.09, + "end": 19270.03, + "probability": 0.9348 + }, + { + "start": 19270.19, + "end": 19270.93, + "probability": 0.9339 + }, + { + "start": 19271.17, + "end": 19271.99, + "probability": 0.9727 + }, + { + "start": 19272.15, + "end": 19274.35, + "probability": 0.9863 + }, + { + "start": 19274.43, + "end": 19275.69, + "probability": 0.8301 + }, + { + "start": 19275.85, + "end": 19279.65, + "probability": 0.9411 + }, + { + "start": 19282.15, + "end": 19285.33, + "probability": 0.7613 + }, + { + "start": 19286.35, + "end": 19290.25, + "probability": 0.9195 + }, + { + "start": 19291.45, + "end": 19292.27, + "probability": 0.9203 + }, + { + "start": 19292.35, + "end": 19293.05, + "probability": 0.7796 + }, + { + "start": 19293.09, + "end": 19297.37, + "probability": 0.9946 + }, + { + "start": 19298.15, + "end": 19299.45, + "probability": 0.6944 + }, + { + "start": 19299.61, + "end": 19301.23, + "probability": 0.8727 + }, + { + "start": 19302.29, + "end": 19305.23, + "probability": 0.9459 + }, + { + "start": 19306.29, + "end": 19308.37, + "probability": 0.9946 + }, + { + "start": 19309.57, + "end": 19312.11, + "probability": 0.945 + }, + { + "start": 19312.11, + "end": 19315.71, + "probability": 0.9955 + }, + { + "start": 19317.19, + "end": 19319.15, + "probability": 0.8133 + }, + { + "start": 19319.33, + "end": 19322.71, + "probability": 0.9644 + }, + { + "start": 19323.51, + "end": 19327.69, + "probability": 0.9888 + }, + { + "start": 19328.23, + "end": 19329.67, + "probability": 0.8848 + }, + { + "start": 19330.41, + "end": 19331.97, + "probability": 0.9578 + }, + { + "start": 19333.49, + "end": 19334.62, + "probability": 0.9609 + }, + { + "start": 19336.79, + "end": 19340.71, + "probability": 0.9895 + }, + { + "start": 19340.71, + "end": 19344.65, + "probability": 0.9395 + }, + { + "start": 19345.39, + "end": 19349.81, + "probability": 0.8233 + }, + { + "start": 19349.81, + "end": 19353.91, + "probability": 0.9893 + }, + { + "start": 19354.99, + "end": 19356.19, + "probability": 0.9845 + }, + { + "start": 19356.29, + "end": 19359.67, + "probability": 0.9946 + }, + { + "start": 19359.71, + "end": 19362.68, + "probability": 0.9618 + }, + { + "start": 19364.27, + "end": 19366.09, + "probability": 0.9642 + }, + { + "start": 19366.85, + "end": 19368.01, + "probability": 0.6375 + }, + { + "start": 19368.11, + "end": 19369.59, + "probability": 0.6764 + }, + { + "start": 19370.53, + "end": 19372.97, + "probability": 0.9941 + }, + { + "start": 19373.27, + "end": 19377.61, + "probability": 0.9933 + }, + { + "start": 19378.45, + "end": 19380.21, + "probability": 0.9796 + }, + { + "start": 19381.57, + "end": 19381.81, + "probability": 0.7232 + }, + { + "start": 19382.81, + "end": 19387.67, + "probability": 0.9845 + }, + { + "start": 19388.51, + "end": 19389.17, + "probability": 0.8604 + }, + { + "start": 19389.29, + "end": 19389.95, + "probability": 0.8836 + }, + { + "start": 19390.13, + "end": 19395.01, + "probability": 0.9611 + }, + { + "start": 19395.01, + "end": 19400.83, + "probability": 0.9933 + }, + { + "start": 19401.79, + "end": 19404.75, + "probability": 0.9847 + }, + { + "start": 19405.65, + "end": 19408.73, + "probability": 0.996 + }, + { + "start": 19410.27, + "end": 19412.85, + "probability": 0.9833 + }, + { + "start": 19413.57, + "end": 19416.91, + "probability": 0.9958 + }, + { + "start": 19417.57, + "end": 19420.79, + "probability": 0.9871 + }, + { + "start": 19421.37, + "end": 19422.65, + "probability": 0.7874 + }, + { + "start": 19423.37, + "end": 19427.75, + "probability": 0.7277 + }, + { + "start": 19428.61, + "end": 19428.95, + "probability": 0.1711 + }, + { + "start": 19429.39, + "end": 19431.55, + "probability": 0.9769 + }, + { + "start": 19432.71, + "end": 19433.51, + "probability": 0.8252 + }, + { + "start": 19433.97, + "end": 19434.85, + "probability": 0.9851 + }, + { + "start": 19435.33, + "end": 19436.19, + "probability": 0.9631 + }, + { + "start": 19436.49, + "end": 19437.53, + "probability": 0.5925 + }, + { + "start": 19438.57, + "end": 19442.89, + "probability": 0.9865 + }, + { + "start": 19443.67, + "end": 19447.21, + "probability": 0.9865 + }, + { + "start": 19447.89, + "end": 19451.63, + "probability": 0.98 + }, + { + "start": 19451.63, + "end": 19456.65, + "probability": 0.8909 + }, + { + "start": 19457.55, + "end": 19461.05, + "probability": 0.7638 + }, + { + "start": 19461.55, + "end": 19464.83, + "probability": 0.9675 + }, + { + "start": 19466.57, + "end": 19469.01, + "probability": 0.851 + }, + { + "start": 19469.23, + "end": 19471.33, + "probability": 0.9117 + }, + { + "start": 19476.07, + "end": 19478.55, + "probability": 0.9757 + }, + { + "start": 19487.03, + "end": 19488.03, + "probability": 0.3446 + }, + { + "start": 19488.83, + "end": 19489.62, + "probability": 0.9248 + }, + { + "start": 19490.59, + "end": 19491.57, + "probability": 0.8768 + }, + { + "start": 19491.87, + "end": 19493.25, + "probability": 0.6557 + }, + { + "start": 19493.69, + "end": 19495.53, + "probability": 0.8771 + }, + { + "start": 19497.09, + "end": 19501.25, + "probability": 0.7671 + }, + { + "start": 19501.93, + "end": 19505.45, + "probability": 0.7956 + }, + { + "start": 19505.53, + "end": 19506.71, + "probability": 0.5951 + }, + { + "start": 19506.77, + "end": 19507.85, + "probability": 0.9596 + }, + { + "start": 19508.63, + "end": 19509.51, + "probability": 0.9841 + }, + { + "start": 19510.79, + "end": 19513.59, + "probability": 0.9692 + }, + { + "start": 19514.35, + "end": 19516.15, + "probability": 0.8675 + }, + { + "start": 19516.33, + "end": 19518.25, + "probability": 0.8439 + }, + { + "start": 19519.05, + "end": 19519.65, + "probability": 0.6394 + }, + { + "start": 19520.61, + "end": 19521.79, + "probability": 0.8814 + }, + { + "start": 19522.31, + "end": 19525.93, + "probability": 0.9412 + }, + { + "start": 19526.85, + "end": 19528.67, + "probability": 0.9189 + }, + { + "start": 19529.59, + "end": 19530.55, + "probability": 0.6937 + }, + { + "start": 19530.61, + "end": 19531.19, + "probability": 0.8255 + }, + { + "start": 19531.31, + "end": 19536.53, + "probability": 0.9673 + }, + { + "start": 19538.11, + "end": 19539.45, + "probability": 0.6875 + }, + { + "start": 19539.45, + "end": 19542.09, + "probability": 0.8587 + }, + { + "start": 19542.23, + "end": 19544.17, + "probability": 0.6289 + }, + { + "start": 19545.13, + "end": 19545.45, + "probability": 0.5759 + }, + { + "start": 19545.57, + "end": 19547.15, + "probability": 0.6785 + }, + { + "start": 19547.61, + "end": 19549.71, + "probability": 0.9948 + }, + { + "start": 19550.79, + "end": 19551.93, + "probability": 0.5295 + }, + { + "start": 19552.49, + "end": 19555.23, + "probability": 0.8517 + }, + { + "start": 19555.95, + "end": 19558.09, + "probability": 0.9741 + }, + { + "start": 19559.61, + "end": 19561.95, + "probability": 0.9277 + }, + { + "start": 19562.01, + "end": 19562.83, + "probability": 0.733 + }, + { + "start": 19563.63, + "end": 19565.95, + "probability": 0.9755 + }, + { + "start": 19567.29, + "end": 19569.83, + "probability": 0.8773 + }, + { + "start": 19570.63, + "end": 19575.29, + "probability": 0.841 + }, + { + "start": 19576.53, + "end": 19577.33, + "probability": 0.8515 + }, + { + "start": 19577.43, + "end": 19578.41, + "probability": 0.8038 + }, + { + "start": 19578.81, + "end": 19580.95, + "probability": 0.9138 + }, + { + "start": 19580.99, + "end": 19581.45, + "probability": 0.887 + }, + { + "start": 19582.73, + "end": 19584.99, + "probability": 0.9961 + }, + { + "start": 19586.27, + "end": 19589.27, + "probability": 0.917 + }, + { + "start": 19589.77, + "end": 19591.17, + "probability": 0.8987 + }, + { + "start": 19592.89, + "end": 19594.21, + "probability": 0.8022 + }, + { + "start": 19594.97, + "end": 19595.93, + "probability": 0.8608 + }, + { + "start": 19596.29, + "end": 19598.57, + "probability": 0.877 + }, + { + "start": 19598.97, + "end": 19601.55, + "probability": 0.7219 + }, + { + "start": 19602.51, + "end": 19604.49, + "probability": 0.9704 + }, + { + "start": 19605.13, + "end": 19606.39, + "probability": 0.9529 + }, + { + "start": 19607.99, + "end": 19610.93, + "probability": 0.9928 + }, + { + "start": 19610.99, + "end": 19615.23, + "probability": 0.7321 + }, + { + "start": 19616.33, + "end": 19617.47, + "probability": 0.5637 + }, + { + "start": 19617.55, + "end": 19618.01, + "probability": 0.6543 + }, + { + "start": 19618.13, + "end": 19618.93, + "probability": 0.7408 + }, + { + "start": 19619.03, + "end": 19620.37, + "probability": 0.7174 + }, + { + "start": 19620.65, + "end": 19625.75, + "probability": 0.4939 + }, + { + "start": 19626.71, + "end": 19628.11, + "probability": 0.9619 + }, + { + "start": 19629.09, + "end": 19630.52, + "probability": 0.937 + }, + { + "start": 19631.47, + "end": 19633.01, + "probability": 0.9452 + }, + { + "start": 19634.01, + "end": 19635.71, + "probability": 0.7309 + }, + { + "start": 19636.35, + "end": 19639.95, + "probability": 0.9304 + }, + { + "start": 19640.53, + "end": 19641.57, + "probability": 0.9583 + }, + { + "start": 19642.89, + "end": 19643.53, + "probability": 0.8193 + }, + { + "start": 19644.01, + "end": 19645.63, + "probability": 0.9684 + }, + { + "start": 19646.11, + "end": 19646.39, + "probability": 0.7664 + }, + { + "start": 19647.05, + "end": 19648.87, + "probability": 0.7663 + }, + { + "start": 19649.53, + "end": 19651.45, + "probability": 0.9551 + }, + { + "start": 19651.55, + "end": 19653.79, + "probability": 0.9858 + }, + { + "start": 19658.21, + "end": 19661.75, + "probability": 0.2001 + }, + { + "start": 19671.77, + "end": 19672.11, + "probability": 0.616 + }, + { + "start": 19672.15, + "end": 19674.11, + "probability": 0.7588 + }, + { + "start": 19674.19, + "end": 19674.85, + "probability": 0.8376 + }, + { + "start": 19675.33, + "end": 19678.01, + "probability": 0.8712 + }, + { + "start": 19678.41, + "end": 19679.33, + "probability": 0.9761 + }, + { + "start": 19679.39, + "end": 19680.43, + "probability": 0.8813 + }, + { + "start": 19680.89, + "end": 19683.57, + "probability": 0.716 + }, + { + "start": 19684.77, + "end": 19686.19, + "probability": 0.8776 + }, + { + "start": 19686.53, + "end": 19687.25, + "probability": 0.8745 + }, + { + "start": 19687.65, + "end": 19689.27, + "probability": 0.4983 + }, + { + "start": 19689.39, + "end": 19693.03, + "probability": 0.9775 + }, + { + "start": 19694.03, + "end": 19695.51, + "probability": 0.9552 + }, + { + "start": 19696.24, + "end": 19698.11, + "probability": 0.9961 + }, + { + "start": 19698.73, + "end": 19699.99, + "probability": 0.9761 + }, + { + "start": 19700.69, + "end": 19703.19, + "probability": 0.8974 + }, + { + "start": 19703.61, + "end": 19704.83, + "probability": 0.8382 + }, + { + "start": 19705.31, + "end": 19708.49, + "probability": 0.9971 + }, + { + "start": 19709.09, + "end": 19710.65, + "probability": 0.9782 + }, + { + "start": 19711.21, + "end": 19712.47, + "probability": 0.7165 + }, + { + "start": 19712.59, + "end": 19715.23, + "probability": 0.8297 + }, + { + "start": 19715.41, + "end": 19716.97, + "probability": 0.981 + }, + { + "start": 19717.39, + "end": 19721.03, + "probability": 0.9908 + }, + { + "start": 19721.13, + "end": 19724.05, + "probability": 0.999 + }, + { + "start": 19724.55, + "end": 19725.35, + "probability": 0.9312 + }, + { + "start": 19726.31, + "end": 19728.05, + "probability": 0.7485 + }, + { + "start": 19728.17, + "end": 19729.75, + "probability": 0.7062 + }, + { + "start": 19729.91, + "end": 19732.48, + "probability": 0.9843 + }, + { + "start": 19733.59, + "end": 19734.41, + "probability": 0.6999 + }, + { + "start": 19734.57, + "end": 19735.73, + "probability": 0.6884 + }, + { + "start": 19736.49, + "end": 19737.81, + "probability": 0.7636 + }, + { + "start": 19738.29, + "end": 19740.53, + "probability": 0.6611 + }, + { + "start": 19740.55, + "end": 19746.23, + "probability": 0.7706 + }, + { + "start": 19746.47, + "end": 19747.99, + "probability": 0.9567 + }, + { + "start": 19748.59, + "end": 19750.29, + "probability": 0.8674 + }, + { + "start": 19750.81, + "end": 19752.69, + "probability": 0.3513 + }, + { + "start": 19754.29, + "end": 19757.21, + "probability": 0.8997 + }, + { + "start": 19757.31, + "end": 19761.35, + "probability": 0.9173 + }, + { + "start": 19761.47, + "end": 19762.43, + "probability": 0.9548 + }, + { + "start": 19763.07, + "end": 19765.21, + "probability": 0.7078 + }, + { + "start": 19765.27, + "end": 19766.81, + "probability": 0.9138 + }, + { + "start": 19766.93, + "end": 19767.81, + "probability": 0.6642 + }, + { + "start": 19768.55, + "end": 19771.81, + "probability": 0.7231 + }, + { + "start": 19772.05, + "end": 19772.77, + "probability": 0.5485 + }, + { + "start": 19773.13, + "end": 19773.75, + "probability": 0.6533 + }, + { + "start": 19774.19, + "end": 19776.77, + "probability": 0.9121 + }, + { + "start": 19777.03, + "end": 19777.27, + "probability": 0.3172 + }, + { + "start": 19777.37, + "end": 19779.83, + "probability": 0.8229 + }, + { + "start": 19780.43, + "end": 19782.71, + "probability": 0.9941 + }, + { + "start": 19782.79, + "end": 19786.11, + "probability": 0.9895 + }, + { + "start": 19786.49, + "end": 19788.45, + "probability": 0.9928 + }, + { + "start": 19788.71, + "end": 19789.41, + "probability": 0.7307 + }, + { + "start": 19789.53, + "end": 19790.05, + "probability": 0.7809 + }, + { + "start": 19790.13, + "end": 19791.21, + "probability": 0.8483 + }, + { + "start": 19791.91, + "end": 19795.59, + "probability": 0.6696 + }, + { + "start": 19795.81, + "end": 19796.81, + "probability": 0.781 + }, + { + "start": 19796.91, + "end": 19801.13, + "probability": 0.825 + }, + { + "start": 19801.25, + "end": 19803.77, + "probability": 0.9551 + }, + { + "start": 19803.81, + "end": 19807.23, + "probability": 0.8893 + }, + { + "start": 19807.93, + "end": 19808.33, + "probability": 0.5943 + }, + { + "start": 19808.49, + "end": 19809.45, + "probability": 0.7199 + }, + { + "start": 19809.79, + "end": 19811.37, + "probability": 0.7958 + }, + { + "start": 19812.07, + "end": 19815.13, + "probability": 0.9514 + }, + { + "start": 19815.45, + "end": 19817.17, + "probability": 0.8736 + }, + { + "start": 19817.75, + "end": 19819.77, + "probability": 0.9897 + }, + { + "start": 19820.29, + "end": 19823.31, + "probability": 0.9102 + }, + { + "start": 19823.45, + "end": 19825.77, + "probability": 0.8604 + }, + { + "start": 19826.13, + "end": 19827.93, + "probability": 0.9895 + }, + { + "start": 19828.25, + "end": 19829.81, + "probability": 0.6214 + }, + { + "start": 19830.27, + "end": 19831.45, + "probability": 0.8534 + }, + { + "start": 19831.53, + "end": 19832.44, + "probability": 0.8293 + }, + { + "start": 19832.67, + "end": 19833.59, + "probability": 0.8444 + }, + { + "start": 19833.93, + "end": 19835.37, + "probability": 0.3666 + }, + { + "start": 19835.53, + "end": 19837.91, + "probability": 0.9783 + }, + { + "start": 19838.75, + "end": 19841.75, + "probability": 0.9164 + }, + { + "start": 19842.27, + "end": 19843.01, + "probability": 0.3198 + }, + { + "start": 19843.61, + "end": 19844.13, + "probability": 0.7502 + }, + { + "start": 19844.25, + "end": 19845.43, + "probability": 0.5742 + }, + { + "start": 19845.47, + "end": 19847.09, + "probability": 0.8889 + }, + { + "start": 19847.17, + "end": 19848.52, + "probability": 0.9617 + }, + { + "start": 19848.75, + "end": 19849.05, + "probability": 0.7059 + }, + { + "start": 19849.11, + "end": 19851.43, + "probability": 0.9677 + }, + { + "start": 19851.49, + "end": 19853.71, + "probability": 0.9443 + }, + { + "start": 19854.07, + "end": 19855.75, + "probability": 0.8787 + }, + { + "start": 19856.17, + "end": 19859.99, + "probability": 0.9902 + }, + { + "start": 19860.01, + "end": 19862.17, + "probability": 0.955 + }, + { + "start": 19862.23, + "end": 19864.47, + "probability": 0.9714 + }, + { + "start": 19864.55, + "end": 19865.97, + "probability": 0.9297 + }, + { + "start": 19866.35, + "end": 19870.69, + "probability": 0.9971 + }, + { + "start": 19871.79, + "end": 19873.24, + "probability": 0.8554 + }, + { + "start": 19873.59, + "end": 19874.09, + "probability": 0.6995 + }, + { + "start": 19874.17, + "end": 19877.29, + "probability": 0.8035 + }, + { + "start": 19877.37, + "end": 19878.37, + "probability": 0.7857 + }, + { + "start": 19878.55, + "end": 19879.73, + "probability": 0.3206 + }, + { + "start": 19879.89, + "end": 19880.45, + "probability": 0.2422 + }, + { + "start": 19880.73, + "end": 19881.23, + "probability": 0.3077 + }, + { + "start": 19881.23, + "end": 19882.17, + "probability": 0.5253 + }, + { + "start": 19882.75, + "end": 19885.29, + "probability": 0.9795 + }, + { + "start": 19885.29, + "end": 19885.95, + "probability": 0.7451 + }, + { + "start": 19886.43, + "end": 19890.35, + "probability": 0.8384 + }, + { + "start": 19890.85, + "end": 19891.97, + "probability": 0.6815 + }, + { + "start": 19892.49, + "end": 19895.15, + "probability": 0.9137 + }, + { + "start": 19895.99, + "end": 19897.57, + "probability": 0.8871 + }, + { + "start": 19897.71, + "end": 19898.01, + "probability": 0.7596 + }, + { + "start": 19898.17, + "end": 19899.47, + "probability": 0.5714 + }, + { + "start": 19899.69, + "end": 19900.09, + "probability": 0.7215 + }, + { + "start": 19900.15, + "end": 19901.33, + "probability": 0.9532 + }, + { + "start": 19901.63, + "end": 19902.27, + "probability": 0.5379 + }, + { + "start": 19902.29, + "end": 19903.53, + "probability": 0.8553 + }, + { + "start": 19913.07, + "end": 19915.29, + "probability": 0.4375 + }, + { + "start": 19917.39, + "end": 19918.19, + "probability": 0.9076 + }, + { + "start": 19919.41, + "end": 19921.51, + "probability": 0.962 + }, + { + "start": 19923.41, + "end": 19924.57, + "probability": 0.9874 + }, + { + "start": 19925.45, + "end": 19927.25, + "probability": 0.8352 + }, + { + "start": 19928.35, + "end": 19930.17, + "probability": 0.9832 + }, + { + "start": 19930.93, + "end": 19933.97, + "probability": 0.9066 + }, + { + "start": 19934.95, + "end": 19937.61, + "probability": 0.8197 + }, + { + "start": 19938.11, + "end": 19941.32, + "probability": 0.981 + }, + { + "start": 19942.77, + "end": 19943.37, + "probability": 0.9596 + }, + { + "start": 19945.55, + "end": 19947.33, + "probability": 0.9975 + }, + { + "start": 19947.43, + "end": 19950.47, + "probability": 0.951 + }, + { + "start": 19951.35, + "end": 19954.53, + "probability": 0.9876 + }, + { + "start": 19954.71, + "end": 19956.77, + "probability": 0.8099 + }, + { + "start": 19957.69, + "end": 19960.89, + "probability": 0.9713 + }, + { + "start": 19961.57, + "end": 19963.31, + "probability": 0.9078 + }, + { + "start": 19964.11, + "end": 19965.69, + "probability": 0.9285 + }, + { + "start": 19966.61, + "end": 19970.25, + "probability": 0.9611 + }, + { + "start": 19970.57, + "end": 19971.47, + "probability": 0.6521 + }, + { + "start": 19971.97, + "end": 19973.27, + "probability": 0.9894 + }, + { + "start": 19973.49, + "end": 19974.79, + "probability": 0.984 + }, + { + "start": 19975.47, + "end": 19978.29, + "probability": 0.9474 + }, + { + "start": 19979.27, + "end": 19983.53, + "probability": 0.9798 + }, + { + "start": 19984.01, + "end": 19984.73, + "probability": 0.9797 + }, + { + "start": 19986.19, + "end": 19988.49, + "probability": 0.9756 + }, + { + "start": 19989.07, + "end": 19993.29, + "probability": 0.9958 + }, + { + "start": 19994.35, + "end": 19996.15, + "probability": 0.9982 + }, + { + "start": 19996.89, + "end": 19999.63, + "probability": 0.998 + }, + { + "start": 19999.63, + "end": 20002.03, + "probability": 0.9997 + }, + { + "start": 20004.29, + "end": 20005.23, + "probability": 0.9122 + }, + { + "start": 20005.93, + "end": 20007.39, + "probability": 0.9312 + }, + { + "start": 20008.97, + "end": 20010.11, + "probability": 0.976 + }, + { + "start": 20010.47, + "end": 20013.21, + "probability": 0.9482 + }, + { + "start": 20013.31, + "end": 20016.6, + "probability": 0.9956 + }, + { + "start": 20017.11, + "end": 20018.83, + "probability": 0.9906 + }, + { + "start": 20019.79, + "end": 20022.83, + "probability": 0.9731 + }, + { + "start": 20023.11, + "end": 20027.29, + "probability": 0.8164 + }, + { + "start": 20028.21, + "end": 20029.07, + "probability": 0.8352 + }, + { + "start": 20029.21, + "end": 20032.45, + "probability": 0.9004 + }, + { + "start": 20032.97, + "end": 20036.65, + "probability": 0.96 + }, + { + "start": 20038.11, + "end": 20040.93, + "probability": 0.9891 + }, + { + "start": 20041.69, + "end": 20043.75, + "probability": 0.9966 + }, + { + "start": 20044.45, + "end": 20046.17, + "probability": 0.7244 + }, + { + "start": 20046.45, + "end": 20048.95, + "probability": 0.973 + }, + { + "start": 20049.59, + "end": 20052.03, + "probability": 0.9956 + }, + { + "start": 20052.05, + "end": 20053.99, + "probability": 0.9048 + }, + { + "start": 20054.35, + "end": 20057.63, + "probability": 0.9814 + }, + { + "start": 20057.77, + "end": 20059.45, + "probability": 0.877 + }, + { + "start": 20060.33, + "end": 20061.81, + "probability": 0.9443 + }, + { + "start": 20062.11, + "end": 20065.39, + "probability": 0.9218 + }, + { + "start": 20066.03, + "end": 20068.07, + "probability": 0.9661 + }, + { + "start": 20068.71, + "end": 20070.41, + "probability": 0.9944 + }, + { + "start": 20070.99, + "end": 20072.83, + "probability": 0.9873 + }, + { + "start": 20073.13, + "end": 20073.43, + "probability": 0.6775 + }, + { + "start": 20073.53, + "end": 20074.49, + "probability": 0.7787 + }, + { + "start": 20075.45, + "end": 20076.29, + "probability": 0.8415 + }, + { + "start": 20076.37, + "end": 20077.09, + "probability": 0.8929 + }, + { + "start": 20077.57, + "end": 20078.76, + "probability": 0.9365 + }, + { + "start": 20079.23, + "end": 20080.6, + "probability": 0.9966 + }, + { + "start": 20081.52, + "end": 20084.79, + "probability": 0.9592 + }, + { + "start": 20084.85, + "end": 20085.77, + "probability": 0.7887 + }, + { + "start": 20085.83, + "end": 20088.33, + "probability": 0.9707 + }, + { + "start": 20088.43, + "end": 20088.74, + "probability": 0.9395 + }, + { + "start": 20089.33, + "end": 20091.01, + "probability": 0.7964 + }, + { + "start": 20091.39, + "end": 20095.71, + "probability": 0.796 + }, + { + "start": 20096.23, + "end": 20100.25, + "probability": 0.9888 + }, + { + "start": 20100.49, + "end": 20103.19, + "probability": 0.9971 + }, + { + "start": 20103.99, + "end": 20105.19, + "probability": 0.6404 + }, + { + "start": 20105.49, + "end": 20110.01, + "probability": 0.9572 + }, + { + "start": 20110.89, + "end": 20113.19, + "probability": 0.9971 + }, + { + "start": 20113.71, + "end": 20117.11, + "probability": 0.9775 + }, + { + "start": 20117.61, + "end": 20118.97, + "probability": 0.9308 + }, + { + "start": 20120.13, + "end": 20122.89, + "probability": 0.5687 + }, + { + "start": 20123.43, + "end": 20125.01, + "probability": 0.6528 + }, + { + "start": 20125.99, + "end": 20126.97, + "probability": 0.9647 + }, + { + "start": 20127.09, + "end": 20127.71, + "probability": 0.9378 + }, + { + "start": 20127.87, + "end": 20130.11, + "probability": 0.9854 + }, + { + "start": 20130.19, + "end": 20132.89, + "probability": 0.991 + }, + { + "start": 20134.09, + "end": 20137.78, + "probability": 0.9829 + }, + { + "start": 20138.29, + "end": 20139.87, + "probability": 0.7502 + }, + { + "start": 20139.95, + "end": 20143.01, + "probability": 0.9937 + }, + { + "start": 20143.11, + "end": 20144.3, + "probability": 0.979 + }, + { + "start": 20144.41, + "end": 20146.27, + "probability": 0.9835 + }, + { + "start": 20146.51, + "end": 20149.65, + "probability": 0.8966 + }, + { + "start": 20149.95, + "end": 20151.05, + "probability": 0.9788 + }, + { + "start": 20151.07, + "end": 20153.95, + "probability": 0.9857 + }, + { + "start": 20154.01, + "end": 20156.45, + "probability": 0.9352 + }, + { + "start": 20156.77, + "end": 20159.75, + "probability": 0.9846 + }, + { + "start": 20159.99, + "end": 20160.13, + "probability": 0.728 + }, + { + "start": 20160.57, + "end": 20161.73, + "probability": 0.7537 + }, + { + "start": 20162.19, + "end": 20164.83, + "probability": 0.6671 + }, + { + "start": 20165.01, + "end": 20167.07, + "probability": 0.7642 + }, + { + "start": 20180.49, + "end": 20180.75, + "probability": 0.2466 + }, + { + "start": 20180.79, + "end": 20182.15, + "probability": 0.4356 + }, + { + "start": 20182.55, + "end": 20184.37, + "probability": 0.6279 + }, + { + "start": 20184.81, + "end": 20185.53, + "probability": 0.5296 + }, + { + "start": 20186.03, + "end": 20187.61, + "probability": 0.6675 + }, + { + "start": 20188.09, + "end": 20191.43, + "probability": 0.9886 + }, + { + "start": 20191.95, + "end": 20195.19, + "probability": 0.9958 + }, + { + "start": 20195.61, + "end": 20196.47, + "probability": 0.9054 + }, + { + "start": 20196.73, + "end": 20197.83, + "probability": 0.9086 + }, + { + "start": 20198.55, + "end": 20200.37, + "probability": 0.8363 + }, + { + "start": 20200.93, + "end": 20205.95, + "probability": 0.9291 + }, + { + "start": 20207.01, + "end": 20213.57, + "probability": 0.8094 + }, + { + "start": 20214.31, + "end": 20215.39, + "probability": 0.7903 + }, + { + "start": 20215.95, + "end": 20221.25, + "probability": 0.9916 + }, + { + "start": 20221.39, + "end": 20222.47, + "probability": 0.9609 + }, + { + "start": 20222.57, + "end": 20222.99, + "probability": 0.6225 + }, + { + "start": 20223.65, + "end": 20225.64, + "probability": 0.9261 + }, + { + "start": 20227.33, + "end": 20227.43, + "probability": 0.8208 + }, + { + "start": 20227.97, + "end": 20228.67, + "probability": 0.6016 + }, + { + "start": 20228.81, + "end": 20233.05, + "probability": 0.9708 + }, + { + "start": 20233.41, + "end": 20235.87, + "probability": 0.9915 + }, + { + "start": 20236.53, + "end": 20237.07, + "probability": 0.8362 + }, + { + "start": 20237.21, + "end": 20238.25, + "probability": 0.9186 + }, + { + "start": 20238.25, + "end": 20241.95, + "probability": 0.9036 + }, + { + "start": 20242.09, + "end": 20243.39, + "probability": 0.6749 + }, + { + "start": 20244.35, + "end": 20245.39, + "probability": 0.7739 + }, + { + "start": 20245.49, + "end": 20246.31, + "probability": 0.9706 + }, + { + "start": 20246.49, + "end": 20249.25, + "probability": 0.9106 + }, + { + "start": 20249.39, + "end": 20250.53, + "probability": 0.9881 + }, + { + "start": 20251.23, + "end": 20251.73, + "probability": 0.8945 + }, + { + "start": 20252.43, + "end": 20253.31, + "probability": 0.7656 + }, + { + "start": 20253.35, + "end": 20256.41, + "probability": 0.9837 + }, + { + "start": 20256.41, + "end": 20260.31, + "probability": 0.9966 + }, + { + "start": 20260.31, + "end": 20261.51, + "probability": 0.8128 + }, + { + "start": 20262.41, + "end": 20265.83, + "probability": 0.8783 + }, + { + "start": 20266.13, + "end": 20268.01, + "probability": 0.9294 + }, + { + "start": 20268.13, + "end": 20269.17, + "probability": 0.9062 + }, + { + "start": 20269.93, + "end": 20275.37, + "probability": 0.9556 + }, + { + "start": 20276.41, + "end": 20278.65, + "probability": 0.9929 + }, + { + "start": 20279.67, + "end": 20284.15, + "probability": 0.9933 + }, + { + "start": 20285.17, + "end": 20287.35, + "probability": 0.8824 + }, + { + "start": 20287.75, + "end": 20293.76, + "probability": 0.9889 + }, + { + "start": 20294.11, + "end": 20298.43, + "probability": 0.9186 + }, + { + "start": 20299.29, + "end": 20300.07, + "probability": 0.9758 + }, + { + "start": 20302.23, + "end": 20303.25, + "probability": 0.8081 + }, + { + "start": 20304.87, + "end": 20309.81, + "probability": 0.8102 + }, + { + "start": 20310.37, + "end": 20315.15, + "probability": 0.8181 + }, + { + "start": 20315.45, + "end": 20317.57, + "probability": 0.9409 + }, + { + "start": 20318.55, + "end": 20321.54, + "probability": 0.9062 + }, + { + "start": 20322.05, + "end": 20328.41, + "probability": 0.9703 + }, + { + "start": 20329.19, + "end": 20334.58, + "probability": 0.9864 + }, + { + "start": 20335.03, + "end": 20338.57, + "probability": 0.7368 + }, + { + "start": 20339.55, + "end": 20343.95, + "probability": 0.8089 + }, + { + "start": 20344.51, + "end": 20347.31, + "probability": 0.972 + }, + { + "start": 20347.69, + "end": 20348.89, + "probability": 0.8515 + }, + { + "start": 20349.05, + "end": 20352.23, + "probability": 0.9768 + }, + { + "start": 20352.37, + "end": 20359.09, + "probability": 0.98 + }, + { + "start": 20359.33, + "end": 20365.45, + "probability": 0.9941 + }, + { + "start": 20365.89, + "end": 20365.95, + "probability": 0.2656 + }, + { + "start": 20365.95, + "end": 20368.4, + "probability": 0.857 + }, + { + "start": 20368.79, + "end": 20369.35, + "probability": 0.4501 + }, + { + "start": 20369.35, + "end": 20370.69, + "probability": 0.8579 + }, + { + "start": 20370.97, + "end": 20371.41, + "probability": 0.5168 + }, + { + "start": 20371.43, + "end": 20372.83, + "probability": 0.8054 + }, + { + "start": 20372.95, + "end": 20374.41, + "probability": 0.5452 + }, + { + "start": 20374.55, + "end": 20376.41, + "probability": 0.9244 + }, + { + "start": 20378.35, + "end": 20379.41, + "probability": 0.7651 + }, + { + "start": 20382.55, + "end": 20386.79, + "probability": 0.9856 + }, + { + "start": 20392.59, + "end": 20392.99, + "probability": 0.1976 + }, + { + "start": 20392.99, + "end": 20396.99, + "probability": 0.6335 + }, + { + "start": 20399.47, + "end": 20405.41, + "probability": 0.97 + }, + { + "start": 20405.41, + "end": 20408.11, + "probability": 0.8885 + }, + { + "start": 20408.31, + "end": 20410.41, + "probability": 0.981 + }, + { + "start": 20411.57, + "end": 20413.97, + "probability": 0.9889 + }, + { + "start": 20414.51, + "end": 20415.41, + "probability": 0.9618 + }, + { + "start": 20416.37, + "end": 20420.29, + "probability": 0.9627 + }, + { + "start": 20421.29, + "end": 20424.33, + "probability": 0.898 + }, + { + "start": 20425.25, + "end": 20426.65, + "probability": 0.9287 + }, + { + "start": 20426.77, + "end": 20427.29, + "probability": 0.9546 + }, + { + "start": 20427.43, + "end": 20428.49, + "probability": 0.8145 + }, + { + "start": 20428.55, + "end": 20430.73, + "probability": 0.9922 + }, + { + "start": 20432.15, + "end": 20434.75, + "probability": 0.7381 + }, + { + "start": 20435.39, + "end": 20440.37, + "probability": 0.9648 + }, + { + "start": 20441.03, + "end": 20444.13, + "probability": 0.955 + }, + { + "start": 20444.41, + "end": 20447.59, + "probability": 0.9917 + }, + { + "start": 20448.55, + "end": 20451.77, + "probability": 0.9734 + }, + { + "start": 20452.69, + "end": 20455.37, + "probability": 0.7148 + }, + { + "start": 20456.11, + "end": 20458.51, + "probability": 0.736 + }, + { + "start": 20459.33, + "end": 20465.47, + "probability": 0.944 + }, + { + "start": 20466.11, + "end": 20471.83, + "probability": 0.998 + }, + { + "start": 20472.87, + "end": 20473.93, + "probability": 0.7328 + }, + { + "start": 20474.03, + "end": 20475.15, + "probability": 0.9465 + }, + { + "start": 20475.29, + "end": 20478.09, + "probability": 0.8883 + }, + { + "start": 20478.09, + "end": 20480.91, + "probability": 0.9949 + }, + { + "start": 20481.41, + "end": 20485.05, + "probability": 0.9979 + }, + { + "start": 20486.29, + "end": 20489.73, + "probability": 0.8039 + }, + { + "start": 20489.81, + "end": 20491.51, + "probability": 0.9933 + }, + { + "start": 20492.03, + "end": 20494.83, + "probability": 0.9958 + }, + { + "start": 20495.07, + "end": 20500.49, + "probability": 0.9865 + }, + { + "start": 20502.21, + "end": 20505.24, + "probability": 0.9957 + }, + { + "start": 20505.31, + "end": 20508.37, + "probability": 0.9957 + }, + { + "start": 20509.09, + "end": 20513.85, + "probability": 0.9709 + }, + { + "start": 20514.41, + "end": 20518.89, + "probability": 0.9851 + }, + { + "start": 20519.13, + "end": 20521.23, + "probability": 0.8525 + }, + { + "start": 20521.37, + "end": 20521.61, + "probability": 0.8129 + }, + { + "start": 20522.81, + "end": 20529.83, + "probability": 0.9964 + }, + { + "start": 20530.45, + "end": 20537.13, + "probability": 0.9815 + }, + { + "start": 20537.69, + "end": 20538.77, + "probability": 0.9676 + }, + { + "start": 20539.41, + "end": 20542.39, + "probability": 0.8452 + }, + { + "start": 20542.59, + "end": 20544.01, + "probability": 0.7341 + }, + { + "start": 20544.65, + "end": 20547.91, + "probability": 0.9953 + }, + { + "start": 20548.83, + "end": 20553.97, + "probability": 0.8886 + }, + { + "start": 20554.71, + "end": 20557.97, + "probability": 0.8146 + }, + { + "start": 20558.39, + "end": 20561.98, + "probability": 0.9917 + }, + { + "start": 20562.61, + "end": 20563.53, + "probability": 0.9351 + }, + { + "start": 20563.97, + "end": 20569.61, + "probability": 0.994 + }, + { + "start": 20570.55, + "end": 20575.31, + "probability": 0.9832 + }, + { + "start": 20575.77, + "end": 20578.55, + "probability": 0.9749 + }, + { + "start": 20578.89, + "end": 20580.54, + "probability": 0.995 + }, + { + "start": 20581.05, + "end": 20587.15, + "probability": 0.9776 + }, + { + "start": 20588.69, + "end": 20589.91, + "probability": 0.9073 + }, + { + "start": 20590.09, + "end": 20592.75, + "probability": 0.9961 + }, + { + "start": 20593.31, + "end": 20599.89, + "probability": 0.9709 + }, + { + "start": 20600.79, + "end": 20603.99, + "probability": 0.8368 + }, + { + "start": 20603.99, + "end": 20606.73, + "probability": 0.9904 + }, + { + "start": 20607.19, + "end": 20610.99, + "probability": 0.7906 + }, + { + "start": 20611.17, + "end": 20616.21, + "probability": 0.906 + }, + { + "start": 20616.87, + "end": 20619.89, + "probability": 0.6792 + }, + { + "start": 20620.07, + "end": 20624.15, + "probability": 0.8118 + }, + { + "start": 20624.15, + "end": 20627.65, + "probability": 0.8412 + }, + { + "start": 20628.31, + "end": 20629.25, + "probability": 0.7163 + }, + { + "start": 20629.37, + "end": 20629.83, + "probability": 0.8494 + }, + { + "start": 20630.19, + "end": 20631.34, + "probability": 0.6821 + }, + { + "start": 20631.55, + "end": 20633.15, + "probability": 0.5065 + }, + { + "start": 20633.83, + "end": 20635.55, + "probability": 0.9612 + }, + { + "start": 20636.31, + "end": 20639.33, + "probability": 0.8769 + }, + { + "start": 20639.39, + "end": 20640.69, + "probability": 0.8973 + }, + { + "start": 20641.43, + "end": 20642.87, + "probability": 0.99 + }, + { + "start": 20643.67, + "end": 20647.13, + "probability": 0.9606 + }, + { + "start": 20647.15, + "end": 20649.25, + "probability": 0.9648 + }, + { + "start": 20649.33, + "end": 20651.39, + "probability": 0.9971 + }, + { + "start": 20652.15, + "end": 20655.87, + "probability": 0.9851 + }, + { + "start": 20656.05, + "end": 20658.99, + "probability": 0.9926 + }, + { + "start": 20659.41, + "end": 20662.61, + "probability": 0.9556 + }, + { + "start": 20662.69, + "end": 20664.41, + "probability": 0.9858 + }, + { + "start": 20664.43, + "end": 20668.57, + "probability": 0.9917 + }, + { + "start": 20668.89, + "end": 20669.13, + "probability": 0.2535 + }, + { + "start": 20669.13, + "end": 20669.37, + "probability": 0.6314 + }, + { + "start": 20669.63, + "end": 20669.91, + "probability": 0.7353 + }, + { + "start": 20670.41, + "end": 20672.67, + "probability": 0.8618 + }, + { + "start": 20674.05, + "end": 20676.07, + "probability": 0.9026 + }, + { + "start": 20677.21, + "end": 20678.91, + "probability": 0.9655 + }, + { + "start": 20679.77, + "end": 20680.99, + "probability": 0.757 + }, + { + "start": 20682.37, + "end": 20683.89, + "probability": 0.9425 + }, + { + "start": 20687.41, + "end": 20689.33, + "probability": 0.5998 + }, + { + "start": 20689.37, + "end": 20692.81, + "probability": 0.9862 + }, + { + "start": 20692.87, + "end": 20693.91, + "probability": 0.8738 + }, + { + "start": 20694.05, + "end": 20694.23, + "probability": 0.7631 + }, + { + "start": 20706.59, + "end": 20706.95, + "probability": 0.355 + }, + { + "start": 20707.03, + "end": 20707.21, + "probability": 0.8632 + }, + { + "start": 20708.21, + "end": 20708.37, + "probability": 0.3636 + }, + { + "start": 20709.09, + "end": 20710.29, + "probability": 0.5 + }, + { + "start": 20711.59, + "end": 20713.71, + "probability": 0.7367 + }, + { + "start": 20715.43, + "end": 20719.03, + "probability": 0.8402 + }, + { + "start": 20720.35, + "end": 20723.79, + "probability": 0.9655 + }, + { + "start": 20725.87, + "end": 20729.47, + "probability": 0.8833 + }, + { + "start": 20729.53, + "end": 20733.35, + "probability": 0.9971 + }, + { + "start": 20737.29, + "end": 20741.17, + "probability": 0.9985 + }, + { + "start": 20742.01, + "end": 20753.79, + "probability": 0.9455 + }, + { + "start": 20755.25, + "end": 20760.87, + "probability": 0.932 + }, + { + "start": 20760.87, + "end": 20766.81, + "probability": 0.9792 + }, + { + "start": 20768.31, + "end": 20770.39, + "probability": 0.8515 + }, + { + "start": 20771.19, + "end": 20774.68, + "probability": 0.9961 + }, + { + "start": 20776.2, + "end": 20783.57, + "probability": 0.8831 + }, + { + "start": 20784.79, + "end": 20786.61, + "probability": 0.9675 + }, + { + "start": 20787.81, + "end": 20791.61, + "probability": 0.9089 + }, + { + "start": 20793.23, + "end": 20797.83, + "probability": 0.9613 + }, + { + "start": 20798.69, + "end": 20801.77, + "probability": 0.8925 + }, + { + "start": 20801.77, + "end": 20803.95, + "probability": 0.9965 + }, + { + "start": 20805.11, + "end": 20811.19, + "probability": 0.9024 + }, + { + "start": 20811.51, + "end": 20816.27, + "probability": 0.9797 + }, + { + "start": 20817.27, + "end": 20821.23, + "probability": 0.998 + }, + { + "start": 20822.13, + "end": 20827.75, + "probability": 0.9843 + }, + { + "start": 20827.75, + "end": 20831.87, + "probability": 0.8413 + }, + { + "start": 20832.31, + "end": 20834.39, + "probability": 0.7625 + }, + { + "start": 20835.59, + "end": 20841.73, + "probability": 0.9245 + }, + { + "start": 20846.43, + "end": 20851.35, + "probability": 0.813 + }, + { + "start": 20852.09, + "end": 20852.79, + "probability": 0.7715 + }, + { + "start": 20853.89, + "end": 20856.75, + "probability": 0.7739 + }, + { + "start": 20859.28, + "end": 20862.93, + "probability": 0.9585 + }, + { + "start": 20864.17, + "end": 20864.41, + "probability": 0.8772 + }, + { + "start": 20864.97, + "end": 20867.27, + "probability": 0.7428 + }, + { + "start": 20868.13, + "end": 20870.01, + "probability": 0.5966 + }, + { + "start": 20870.07, + "end": 20873.55, + "probability": 0.5615 + }, + { + "start": 20873.99, + "end": 20874.13, + "probability": 0.3913 + }, + { + "start": 20881.37, + "end": 20882.49, + "probability": 0.0294 + }, + { + "start": 20883.47, + "end": 20886.81, + "probability": 0.5424 + }, + { + "start": 20888.55, + "end": 20892.16, + "probability": 0.9634 + }, + { + "start": 20893.39, + "end": 20896.13, + "probability": 0.6587 + }, + { + "start": 20896.23, + "end": 20896.67, + "probability": 0.2289 + }, + { + "start": 20897.45, + "end": 20898.47, + "probability": 0.845 + }, + { + "start": 20899.45, + "end": 20904.21, + "probability": 0.9201 + }, + { + "start": 20904.89, + "end": 20907.41, + "probability": 0.6962 + }, + { + "start": 20908.45, + "end": 20913.56, + "probability": 0.9845 + }, + { + "start": 20915.05, + "end": 20915.61, + "probability": 0.9609 + }, + { + "start": 20916.99, + "end": 20922.75, + "probability": 0.7061 + }, + { + "start": 20923.81, + "end": 20927.31, + "probability": 0.7859 + }, + { + "start": 20928.49, + "end": 20935.31, + "probability": 0.9375 + }, + { + "start": 20937.31, + "end": 20940.19, + "probability": 0.0027 + }, + { + "start": 20942.29, + "end": 20942.49, + "probability": 0.0205 + }, + { + "start": 20942.49, + "end": 20942.49, + "probability": 0.2052 + }, + { + "start": 20942.49, + "end": 20943.83, + "probability": 0.6536 + }, + { + "start": 20944.27, + "end": 20945.67, + "probability": 0.7399 + }, + { + "start": 20947.21, + "end": 20950.65, + "probability": 0.9628 + }, + { + "start": 20951.63, + "end": 20954.79, + "probability": 0.7476 + }, + { + "start": 20955.65, + "end": 20959.63, + "probability": 0.857 + }, + { + "start": 20959.72, + "end": 20963.81, + "probability": 0.8967 + }, + { + "start": 20964.33, + "end": 20968.89, + "probability": 0.9271 + }, + { + "start": 20970.43, + "end": 20974.43, + "probability": 0.6423 + }, + { + "start": 20975.31, + "end": 20980.01, + "probability": 0.9443 + }, + { + "start": 20981.55, + "end": 20987.15, + "probability": 0.9653 + }, + { + "start": 20987.15, + "end": 20991.09, + "probability": 0.9149 + }, + { + "start": 20991.87, + "end": 20992.99, + "probability": 0.6392 + }, + { + "start": 20993.91, + "end": 20996.59, + "probability": 0.9957 + }, + { + "start": 20996.75, + "end": 20998.15, + "probability": 0.7533 + }, + { + "start": 20998.75, + "end": 21000.95, + "probability": 0.8367 + }, + { + "start": 21002.19, + "end": 21006.05, + "probability": 0.9603 + }, + { + "start": 21006.69, + "end": 21011.01, + "probability": 0.8255 + }, + { + "start": 21011.41, + "end": 21017.71, + "probability": 0.8896 + }, + { + "start": 21017.71, + "end": 21020.45, + "probability": 0.7852 + }, + { + "start": 21021.23, + "end": 21022.15, + "probability": 0.7894 + }, + { + "start": 21022.65, + "end": 21023.99, + "probability": 0.6202 + }, + { + "start": 21024.01, + "end": 21024.73, + "probability": 0.5508 + }, + { + "start": 21024.79, + "end": 21027.51, + "probability": 0.3283 + }, + { + "start": 21027.99, + "end": 21030.99, + "probability": 0.7585 + }, + { + "start": 21031.63, + "end": 21034.87, + "probability": 0.8802 + }, + { + "start": 21035.61, + "end": 21036.95, + "probability": 0.9146 + }, + { + "start": 21037.07, + "end": 21042.09, + "probability": 0.9678 + }, + { + "start": 21042.15, + "end": 21045.07, + "probability": 0.5952 + }, + { + "start": 21045.95, + "end": 21049.61, + "probability": 0.9578 + }, + { + "start": 21050.29, + "end": 21052.83, + "probability": 0.9073 + }, + { + "start": 21053.59, + "end": 21054.23, + "probability": 0.7516 + }, + { + "start": 21054.29, + "end": 21054.85, + "probability": 0.797 + }, + { + "start": 21055.09, + "end": 21056.63, + "probability": 0.7909 + }, + { + "start": 21057.13, + "end": 21062.59, + "probability": 0.9692 + }, + { + "start": 21063.13, + "end": 21063.51, + "probability": 0.0496 + }, + { + "start": 21063.51, + "end": 21064.33, + "probability": 0.4574 + }, + { + "start": 21065.97, + "end": 21069.43, + "probability": 0.9725 + }, + { + "start": 21069.43, + "end": 21074.77, + "probability": 0.9493 + }, + { + "start": 21075.27, + "end": 21076.31, + "probability": 0.821 + }, + { + "start": 21077.15, + "end": 21078.85, + "probability": 0.9861 + }, + { + "start": 21078.93, + "end": 21080.31, + "probability": 0.6738 + }, + { + "start": 21080.39, + "end": 21083.13, + "probability": 0.9177 + }, + { + "start": 21084.75, + "end": 21089.05, + "probability": 0.7611 + }, + { + "start": 21089.19, + "end": 21092.53, + "probability": 0.9945 + }, + { + "start": 21093.25, + "end": 21094.53, + "probability": 0.8257 + }, + { + "start": 21094.65, + "end": 21099.01, + "probability": 0.6214 + }, + { + "start": 21099.69, + "end": 21102.49, + "probability": 0.8545 + }, + { + "start": 21102.87, + "end": 21107.65, + "probability": 0.8679 + }, + { + "start": 21107.65, + "end": 21107.97, + "probability": 0.6395 + }, + { + "start": 21108.11, + "end": 21111.15, + "probability": 0.5261 + }, + { + "start": 21111.15, + "end": 21113.69, + "probability": 0.7872 + }, + { + "start": 21113.69, + "end": 21116.99, + "probability": 0.9184 + }, + { + "start": 21116.99, + "end": 21117.23, + "probability": 0.4468 + }, + { + "start": 21117.67, + "end": 21119.17, + "probability": 0.7635 + }, + { + "start": 21119.37, + "end": 21121.81, + "probability": 0.9451 + }, + { + "start": 21123.79, + "end": 21124.47, + "probability": 0.3871 + }, + { + "start": 21125.11, + "end": 21127.43, + "probability": 0.8508 + }, + { + "start": 21129.1, + "end": 21131.17, + "probability": 0.8288 + }, + { + "start": 21148.69, + "end": 21149.55, + "probability": 0.6746 + }, + { + "start": 21150.09, + "end": 21151.53, + "probability": 0.9173 + }, + { + "start": 21152.33, + "end": 21152.91, + "probability": 0.5698 + }, + { + "start": 21155.03, + "end": 21161.59, + "probability": 0.9918 + }, + { + "start": 21162.31, + "end": 21165.67, + "probability": 0.7963 + }, + { + "start": 21165.79, + "end": 21169.81, + "probability": 0.9659 + }, + { + "start": 21170.49, + "end": 21171.59, + "probability": 0.9908 + }, + { + "start": 21172.45, + "end": 21177.95, + "probability": 0.9492 + }, + { + "start": 21179.73, + "end": 21183.43, + "probability": 0.9933 + }, + { + "start": 21183.43, + "end": 21187.41, + "probability": 0.9969 + }, + { + "start": 21188.13, + "end": 21190.37, + "probability": 0.9989 + }, + { + "start": 21191.37, + "end": 21194.61, + "probability": 0.9656 + }, + { + "start": 21195.57, + "end": 21202.05, + "probability": 0.9943 + }, + { + "start": 21202.24, + "end": 21205.16, + "probability": 0.9722 + }, + { + "start": 21206.19, + "end": 21206.97, + "probability": 0.9868 + }, + { + "start": 21207.83, + "end": 21210.61, + "probability": 0.835 + }, + { + "start": 21211.79, + "end": 21217.65, + "probability": 0.9102 + }, + { + "start": 21217.93, + "end": 21218.83, + "probability": 0.9814 + }, + { + "start": 21219.05, + "end": 21219.99, + "probability": 0.8911 + }, + { + "start": 21220.79, + "end": 21223.77, + "probability": 0.9028 + }, + { + "start": 21225.25, + "end": 21225.65, + "probability": 0.5369 + }, + { + "start": 21225.75, + "end": 21227.75, + "probability": 0.6442 + }, + { + "start": 21228.09, + "end": 21230.15, + "probability": 0.537 + }, + { + "start": 21230.29, + "end": 21236.71, + "probability": 0.9448 + }, + { + "start": 21237.21, + "end": 21240.29, + "probability": 0.9225 + }, + { + "start": 21241.19, + "end": 21242.21, + "probability": 0.4129 + }, + { + "start": 21242.43, + "end": 21245.23, + "probability": 0.8199 + }, + { + "start": 21245.37, + "end": 21247.27, + "probability": 0.9797 + }, + { + "start": 21247.97, + "end": 21252.11, + "probability": 0.976 + }, + { + "start": 21253.23, + "end": 21254.91, + "probability": 0.988 + }, + { + "start": 21255.61, + "end": 21256.17, + "probability": 0.4893 + }, + { + "start": 21256.19, + "end": 21256.85, + "probability": 0.8779 + }, + { + "start": 21256.93, + "end": 21258.69, + "probability": 0.9571 + }, + { + "start": 21258.95, + "end": 21261.45, + "probability": 0.7637 + }, + { + "start": 21262.31, + "end": 21262.91, + "probability": 0.7085 + }, + { + "start": 21262.95, + "end": 21265.89, + "probability": 0.9615 + }, + { + "start": 21265.99, + "end": 21267.41, + "probability": 0.9926 + }, + { + "start": 21267.91, + "end": 21268.13, + "probability": 0.5601 + }, + { + "start": 21268.21, + "end": 21268.47, + "probability": 0.6989 + }, + { + "start": 21268.53, + "end": 21271.75, + "probability": 0.9071 + }, + { + "start": 21271.89, + "end": 21273.55, + "probability": 0.9099 + }, + { + "start": 21273.89, + "end": 21277.71, + "probability": 0.6424 + }, + { + "start": 21279.13, + "end": 21280.27, + "probability": 0.6064 + }, + { + "start": 21281.47, + "end": 21281.75, + "probability": 0.9138 + }, + { + "start": 21282.51, + "end": 21282.91, + "probability": 0.2289 + }, + { + "start": 21282.91, + "end": 21283.42, + "probability": 0.8082 + }, + { + "start": 21283.81, + "end": 21284.61, + "probability": 0.7877 + }, + { + "start": 21285.23, + "end": 21287.11, + "probability": 0.9696 + }, + { + "start": 21287.29, + "end": 21290.43, + "probability": 0.9304 + }, + { + "start": 21290.63, + "end": 21293.03, + "probability": 0.8117 + }, + { + "start": 21295.59, + "end": 21298.59, + "probability": 0.9275 + }, + { + "start": 21298.65, + "end": 21299.15, + "probability": 0.6108 + }, + { + "start": 21299.21, + "end": 21303.49, + "probability": 0.4431 + }, + { + "start": 21303.49, + "end": 21306.29, + "probability": 0.4256 + }, + { + "start": 21306.55, + "end": 21307.81, + "probability": 0.8315 + }, + { + "start": 21309.33, + "end": 21311.37, + "probability": 0.9477 + }, + { + "start": 21312.39, + "end": 21313.81, + "probability": 0.7596 + }, + { + "start": 21314.59, + "end": 21317.01, + "probability": 0.774 + }, + { + "start": 21317.13, + "end": 21320.51, + "probability": 0.956 + }, + { + "start": 21321.63, + "end": 21325.03, + "probability": 0.9636 + }, + { + "start": 21325.47, + "end": 21327.25, + "probability": 0.8519 + }, + { + "start": 21327.69, + "end": 21330.59, + "probability": 0.8345 + }, + { + "start": 21331.07, + "end": 21334.21, + "probability": 0.8962 + }, + { + "start": 21334.45, + "end": 21336.99, + "probability": 0.9102 + }, + { + "start": 21337.19, + "end": 21339.29, + "probability": 0.6119 + }, + { + "start": 21340.07, + "end": 21342.57, + "probability": 0.9957 + }, + { + "start": 21343.37, + "end": 21346.09, + "probability": 0.7003 + }, + { + "start": 21346.77, + "end": 21347.45, + "probability": 0.9985 + }, + { + "start": 21348.45, + "end": 21351.99, + "probability": 0.9871 + }, + { + "start": 21352.27, + "end": 21356.45, + "probability": 0.9689 + }, + { + "start": 21356.47, + "end": 21356.87, + "probability": 0.8967 + }, + { + "start": 21357.61, + "end": 21359.07, + "probability": 0.7316 + }, + { + "start": 21359.67, + "end": 21361.51, + "probability": 0.9766 + }, + { + "start": 21361.71, + "end": 21363.43, + "probability": 0.7071 + }, + { + "start": 21363.93, + "end": 21368.79, + "probability": 0.738 + }, + { + "start": 21369.01, + "end": 21370.49, + "probability": 0.9288 + }, + { + "start": 21371.16, + "end": 21375.69, + "probability": 0.4876 + }, + { + "start": 21375.99, + "end": 21377.89, + "probability": 0.8944 + }, + { + "start": 21378.27, + "end": 21378.85, + "probability": 0.8638 + }, + { + "start": 21380.05, + "end": 21380.64, + "probability": 0.5587 + }, + { + "start": 21381.51, + "end": 21383.05, + "probability": 0.9868 + }, + { + "start": 21383.17, + "end": 21383.77, + "probability": 0.4412 + }, + { + "start": 21383.81, + "end": 21386.79, + "probability": 0.9985 + }, + { + "start": 21386.79, + "end": 21389.61, + "probability": 0.9899 + }, + { + "start": 21390.55, + "end": 21391.53, + "probability": 0.9977 + }, + { + "start": 21392.33, + "end": 21392.97, + "probability": 0.8025 + }, + { + "start": 21394.03, + "end": 21395.27, + "probability": 0.9643 + }, + { + "start": 21395.73, + "end": 21399.01, + "probability": 0.9188 + }, + { + "start": 21399.47, + "end": 21403.41, + "probability": 0.7438 + }, + { + "start": 21403.89, + "end": 21404.89, + "probability": 0.5032 + }, + { + "start": 21405.65, + "end": 21406.85, + "probability": 0.7588 + }, + { + "start": 21407.03, + "end": 21409.37, + "probability": 0.9718 + }, + { + "start": 21409.45, + "end": 21412.59, + "probability": 0.8691 + }, + { + "start": 21412.83, + "end": 21414.99, + "probability": 0.8217 + }, + { + "start": 21415.55, + "end": 21418.51, + "probability": 0.9932 + }, + { + "start": 21418.51, + "end": 21422.75, + "probability": 0.9798 + }, + { + "start": 21423.05, + "end": 21424.75, + "probability": 0.9445 + }, + { + "start": 21425.65, + "end": 21426.77, + "probability": 0.9744 + }, + { + "start": 21426.91, + "end": 21427.67, + "probability": 0.9613 + }, + { + "start": 21428.49, + "end": 21429.79, + "probability": 0.9386 + }, + { + "start": 21429.87, + "end": 21433.27, + "probability": 0.9253 + }, + { + "start": 21433.89, + "end": 21435.07, + "probability": 0.7912 + }, + { + "start": 21435.15, + "end": 21436.25, + "probability": 0.9732 + }, + { + "start": 21436.33, + "end": 21439.27, + "probability": 0.9841 + }, + { + "start": 21440.11, + "end": 21442.21, + "probability": 0.7086 + }, + { + "start": 21443.01, + "end": 21447.25, + "probability": 0.9868 + }, + { + "start": 21448.21, + "end": 21448.43, + "probability": 0.595 + }, + { + "start": 21448.89, + "end": 21451.45, + "probability": 0.9255 + }, + { + "start": 21451.57, + "end": 21453.19, + "probability": 0.9633 + }, + { + "start": 21453.93, + "end": 21454.35, + "probability": 0.2514 + }, + { + "start": 21454.39, + "end": 21458.48, + "probability": 0.8703 + }, + { + "start": 21459.27, + "end": 21461.17, + "probability": 0.8833 + }, + { + "start": 21461.73, + "end": 21465.97, + "probability": 0.9134 + }, + { + "start": 21466.33, + "end": 21468.39, + "probability": 0.7963 + }, + { + "start": 21468.73, + "end": 21471.67, + "probability": 0.6032 + }, + { + "start": 21471.67, + "end": 21474.77, + "probability": 0.9187 + }, + { + "start": 21474.87, + "end": 21475.01, + "probability": 0.8367 + }, + { + "start": 21475.09, + "end": 21476.55, + "probability": 0.6944 + }, + { + "start": 21476.65, + "end": 21478.49, + "probability": 0.8776 + }, + { + "start": 21478.59, + "end": 21478.97, + "probability": 0.3849 + }, + { + "start": 21479.11, + "end": 21480.51, + "probability": 0.9119 + }, + { + "start": 21480.75, + "end": 21481.39, + "probability": 0.8806 + }, + { + "start": 21490.49, + "end": 21493.25, + "probability": 0.7518 + }, + { + "start": 21495.11, + "end": 21501.17, + "probability": 0.9969 + }, + { + "start": 21502.17, + "end": 21503.09, + "probability": 0.8832 + }, + { + "start": 21505.49, + "end": 21509.5, + "probability": 0.9912 + }, + { + "start": 21512.49, + "end": 21513.45, + "probability": 0.6815 + }, + { + "start": 21515.17, + "end": 21519.53, + "probability": 0.9363 + }, + { + "start": 21519.55, + "end": 21520.3, + "probability": 0.9871 + }, + { + "start": 21522.39, + "end": 21524.21, + "probability": 0.9458 + }, + { + "start": 21524.29, + "end": 21526.91, + "probability": 0.9525 + }, + { + "start": 21527.71, + "end": 21529.29, + "probability": 0.9976 + }, + { + "start": 21531.11, + "end": 21537.71, + "probability": 0.967 + }, + { + "start": 21538.41, + "end": 21542.01, + "probability": 0.9956 + }, + { + "start": 21543.81, + "end": 21548.51, + "probability": 0.6924 + }, + { + "start": 21553.07, + "end": 21553.98, + "probability": 0.2468 + }, + { + "start": 21555.73, + "end": 21558.17, + "probability": 0.7606 + }, + { + "start": 21559.39, + "end": 21561.49, + "probability": 0.9971 + }, + { + "start": 21563.49, + "end": 21565.05, + "probability": 0.9421 + }, + { + "start": 21565.7, + "end": 21567.35, + "probability": 0.7617 + }, + { + "start": 21568.35, + "end": 21569.31, + "probability": 0.6279 + }, + { + "start": 21572.49, + "end": 21573.47, + "probability": 0.9831 + }, + { + "start": 21574.35, + "end": 21577.83, + "probability": 0.9384 + }, + { + "start": 21579.65, + "end": 21581.53, + "probability": 0.7732 + }, + { + "start": 21581.73, + "end": 21582.83, + "probability": 0.8099 + }, + { + "start": 21582.91, + "end": 21587.05, + "probability": 0.9495 + }, + { + "start": 21589.03, + "end": 21592.73, + "probability": 0.9662 + }, + { + "start": 21594.25, + "end": 21600.55, + "probability": 0.9277 + }, + { + "start": 21600.55, + "end": 21603.71, + "probability": 0.9985 + }, + { + "start": 21605.81, + "end": 21609.07, + "probability": 0.0299 + }, + { + "start": 21609.17, + "end": 21613.07, + "probability": 0.8438 + }, + { + "start": 21614.75, + "end": 21616.73, + "probability": 0.5076 + }, + { + "start": 21618.51, + "end": 21621.55, + "probability": 0.7362 + }, + { + "start": 21623.47, + "end": 21627.31, + "probability": 0.8306 + }, + { + "start": 21628.15, + "end": 21629.45, + "probability": 0.9499 + }, + { + "start": 21630.63, + "end": 21633.97, + "probability": 0.7881 + }, + { + "start": 21634.89, + "end": 21636.45, + "probability": 0.9653 + }, + { + "start": 21637.27, + "end": 21638.53, + "probability": 0.6016 + }, + { + "start": 21639.09, + "end": 21641.87, + "probability": 0.9541 + }, + { + "start": 21643.87, + "end": 21645.75, + "probability": 0.9855 + }, + { + "start": 21646.57, + "end": 21648.15, + "probability": 0.942 + }, + { + "start": 21648.55, + "end": 21649.69, + "probability": 0.9137 + }, + { + "start": 21650.57, + "end": 21651.51, + "probability": 0.8999 + }, + { + "start": 21652.47, + "end": 21653.55, + "probability": 0.8363 + }, + { + "start": 21654.79, + "end": 21655.67, + "probability": 0.7677 + }, + { + "start": 21657.01, + "end": 21659.79, + "probability": 0.837 + }, + { + "start": 21660.05, + "end": 21660.29, + "probability": 0.7822 + }, + { + "start": 21660.35, + "end": 21661.35, + "probability": 0.8753 + }, + { + "start": 21661.49, + "end": 21663.21, + "probability": 0.8138 + }, + { + "start": 21663.39, + "end": 21665.71, + "probability": 0.9231 + }, + { + "start": 21666.67, + "end": 21669.79, + "probability": 0.8506 + }, + { + "start": 21669.87, + "end": 21670.35, + "probability": 0.379 + }, + { + "start": 21670.53, + "end": 21671.85, + "probability": 0.7568 + }, + { + "start": 21682.65, + "end": 21684.93, + "probability": 0.5095 + }, + { + "start": 21686.03, + "end": 21692.57, + "probability": 0.9779 + }, + { + "start": 21692.57, + "end": 21696.93, + "probability": 0.9457 + }, + { + "start": 21699.07, + "end": 21702.41, + "probability": 0.9945 + }, + { + "start": 21703.05, + "end": 21704.15, + "probability": 0.8902 + }, + { + "start": 21704.69, + "end": 21707.77, + "probability": 0.9766 + }, + { + "start": 21707.77, + "end": 21711.91, + "probability": 0.9384 + }, + { + "start": 21712.63, + "end": 21716.37, + "probability": 0.9904 + }, + { + "start": 21716.37, + "end": 21718.81, + "probability": 0.8586 + }, + { + "start": 21721.01, + "end": 21722.55, + "probability": 0.9863 + }, + { + "start": 21722.67, + "end": 21724.91, + "probability": 0.9502 + }, + { + "start": 21725.73, + "end": 21728.01, + "probability": 0.9773 + }, + { + "start": 21730.09, + "end": 21732.69, + "probability": 0.9945 + }, + { + "start": 21732.89, + "end": 21736.01, + "probability": 0.9939 + }, + { + "start": 21736.33, + "end": 21736.51, + "probability": 0.0103 + }, + { + "start": 21737.75, + "end": 21739.89, + "probability": 0.9993 + }, + { + "start": 21740.63, + "end": 21742.17, + "probability": 0.8774 + }, + { + "start": 21742.71, + "end": 21745.61, + "probability": 0.935 + }, + { + "start": 21745.65, + "end": 21746.89, + "probability": 0.9888 + }, + { + "start": 21751.25, + "end": 21755.75, + "probability": 0.9941 + }, + { + "start": 21756.41, + "end": 21758.99, + "probability": 0.6065 + }, + { + "start": 21759.71, + "end": 21764.13, + "probability": 0.9858 + }, + { + "start": 21764.13, + "end": 21767.21, + "probability": 0.8031 + }, + { + "start": 21768.33, + "end": 21769.83, + "probability": 0.7802 + }, + { + "start": 21771.43, + "end": 21774.71, + "probability": 0.986 + }, + { + "start": 21775.71, + "end": 21776.97, + "probability": 0.9238 + }, + { + "start": 21777.13, + "end": 21777.83, + "probability": 0.9763 + }, + { + "start": 21778.49, + "end": 21781.14, + "probability": 0.9941 + }, + { + "start": 21781.21, + "end": 21784.97, + "probability": 0.7571 + }, + { + "start": 21784.99, + "end": 21788.87, + "probability": 0.8813 + }, + { + "start": 21789.21, + "end": 21790.05, + "probability": 0.6747 + }, + { + "start": 21790.33, + "end": 21790.43, + "probability": 0.6551 + }, + { + "start": 21790.73, + "end": 21792.23, + "probability": 0.9844 + }, + { + "start": 21792.37, + "end": 21792.89, + "probability": 0.904 + }, + { + "start": 21793.25, + "end": 21797.53, + "probability": 0.9339 + }, + { + "start": 21797.69, + "end": 21798.77, + "probability": 0.7326 + }, + { + "start": 21798.87, + "end": 21802.09, + "probability": 0.9852 + }, + { + "start": 21802.61, + "end": 21803.21, + "probability": 0.738 + }, + { + "start": 21804.33, + "end": 21807.37, + "probability": 0.9771 + }, + { + "start": 21809.21, + "end": 21812.33, + "probability": 0.9487 + }, + { + "start": 21813.47, + "end": 21818.19, + "probability": 0.8174 + }, + { + "start": 21818.49, + "end": 21818.89, + "probability": 0.3666 + }, + { + "start": 21818.95, + "end": 21822.89, + "probability": 0.9927 + }, + { + "start": 21824.99, + "end": 21825.73, + "probability": 0.663 + }, + { + "start": 21826.39, + "end": 21827.17, + "probability": 0.8466 + }, + { + "start": 21828.27, + "end": 21834.25, + "probability": 0.7881 + }, + { + "start": 21834.29, + "end": 21839.07, + "probability": 0.9806 + }, + { + "start": 21840.09, + "end": 21842.65, + "probability": 0.9919 + }, + { + "start": 21842.83, + "end": 21844.41, + "probability": 0.9587 + }, + { + "start": 21845.65, + "end": 21848.81, + "probability": 0.9828 + }, + { + "start": 21849.35, + "end": 21854.19, + "probability": 0.9893 + }, + { + "start": 21854.19, + "end": 21857.23, + "probability": 0.9879 + }, + { + "start": 21858.23, + "end": 21859.35, + "probability": 0.9865 + }, + { + "start": 21860.13, + "end": 21862.21, + "probability": 0.8848 + }, + { + "start": 21863.01, + "end": 21864.89, + "probability": 0.9883 + }, + { + "start": 21866.57, + "end": 21867.06, + "probability": 0.7861 + }, + { + "start": 21867.73, + "end": 21868.45, + "probability": 0.7181 + }, + { + "start": 21868.99, + "end": 21871.33, + "probability": 0.5587 + }, + { + "start": 21871.89, + "end": 21874.17, + "probability": 0.9896 + }, + { + "start": 21874.23, + "end": 21874.63, + "probability": 0.4826 + }, + { + "start": 21874.71, + "end": 21875.13, + "probability": 0.7308 + }, + { + "start": 21875.17, + "end": 21876.53, + "probability": 0.8803 + }, + { + "start": 21876.83, + "end": 21878.83, + "probability": 0.747 + }, + { + "start": 21879.35, + "end": 21880.77, + "probability": 0.9622 + }, + { + "start": 21881.43, + "end": 21883.53, + "probability": 0.946 + }, + { + "start": 21884.19, + "end": 21884.97, + "probability": 0.8969 + }, + { + "start": 21885.35, + "end": 21885.99, + "probability": 0.7287 + }, + { + "start": 21886.27, + "end": 21892.45, + "probability": 0.9862 + }, + { + "start": 21893.09, + "end": 21893.55, + "probability": 0.8234 + }, + { + "start": 21894.71, + "end": 21896.67, + "probability": 0.6991 + }, + { + "start": 21897.09, + "end": 21899.05, + "probability": 0.8339 + }, + { + "start": 21900.87, + "end": 21902.25, + "probability": 0.0091 + }, + { + "start": 21925.75, + "end": 21926.87, + "probability": 0.4422 + }, + { + "start": 21928.79, + "end": 21930.61, + "probability": 0.7623 + }, + { + "start": 21933.43, + "end": 21934.81, + "probability": 0.8021 + }, + { + "start": 21935.67, + "end": 21937.71, + "probability": 0.9896 + }, + { + "start": 21940.43, + "end": 21941.19, + "probability": 0.392 + }, + { + "start": 21943.35, + "end": 21944.91, + "probability": 0.9069 + }, + { + "start": 21945.71, + "end": 21953.69, + "probability": 0.9393 + }, + { + "start": 21956.19, + "end": 21957.81, + "probability": 0.731 + }, + { + "start": 21959.39, + "end": 21960.01, + "probability": 0.9587 + }, + { + "start": 21961.39, + "end": 21963.13, + "probability": 0.9042 + }, + { + "start": 21966.67, + "end": 21969.53, + "probability": 0.9829 + }, + { + "start": 21971.25, + "end": 21973.43, + "probability": 0.9355 + }, + { + "start": 21975.41, + "end": 21981.27, + "probability": 0.9774 + }, + { + "start": 21982.79, + "end": 21983.63, + "probability": 0.7926 + }, + { + "start": 21984.17, + "end": 21985.37, + "probability": 0.9904 + }, + { + "start": 21986.57, + "end": 21991.24, + "probability": 0.904 + }, + { + "start": 21992.23, + "end": 21993.13, + "probability": 0.8632 + }, + { + "start": 21994.35, + "end": 21999.79, + "probability": 0.9802 + }, + { + "start": 22000.93, + "end": 22003.23, + "probability": 0.99 + }, + { + "start": 22003.39, + "end": 22004.23, + "probability": 0.681 + }, + { + "start": 22004.35, + "end": 22006.25, + "probability": 0.8328 + }, + { + "start": 22007.03, + "end": 22007.75, + "probability": 0.961 + }, + { + "start": 22008.59, + "end": 22010.65, + "probability": 0.6861 + }, + { + "start": 22010.67, + "end": 22011.41, + "probability": 0.9457 + }, + { + "start": 22012.43, + "end": 22014.29, + "probability": 0.9877 + }, + { + "start": 22015.29, + "end": 22016.47, + "probability": 0.9967 + }, + { + "start": 22017.89, + "end": 22022.91, + "probability": 0.9689 + }, + { + "start": 22024.61, + "end": 22025.52, + "probability": 0.4994 + }, + { + "start": 22027.03, + "end": 22029.61, + "probability": 0.7943 + }, + { + "start": 22030.97, + "end": 22034.73, + "probability": 0.8918 + }, + { + "start": 22035.53, + "end": 22039.77, + "probability": 0.9315 + }, + { + "start": 22040.19, + "end": 22041.21, + "probability": 0.8269 + }, + { + "start": 22041.83, + "end": 22043.15, + "probability": 0.8133 + }, + { + "start": 22044.13, + "end": 22045.2, + "probability": 0.7448 + }, + { + "start": 22045.57, + "end": 22047.31, + "probability": 0.9885 + }, + { + "start": 22047.99, + "end": 22049.51, + "probability": 0.8671 + }, + { + "start": 22050.49, + "end": 22051.17, + "probability": 0.7887 + }, + { + "start": 22051.99, + "end": 22056.97, + "probability": 0.9734 + }, + { + "start": 22058.91, + "end": 22059.73, + "probability": 0.8711 + }, + { + "start": 22060.89, + "end": 22062.09, + "probability": 0.9802 + }, + { + "start": 22062.39, + "end": 22066.03, + "probability": 0.9922 + }, + { + "start": 22066.03, + "end": 22070.45, + "probability": 0.9971 + }, + { + "start": 22071.05, + "end": 22075.67, + "probability": 0.9853 + }, + { + "start": 22076.15, + "end": 22076.77, + "probability": 0.6399 + }, + { + "start": 22076.79, + "end": 22077.95, + "probability": 0.8508 + }, + { + "start": 22079.87, + "end": 22081.23, + "probability": 0.3376 + }, + { + "start": 22085.31, + "end": 22086.97, + "probability": 0.5358 + }, + { + "start": 22087.49, + "end": 22088.59, + "probability": 0.6924 + }, + { + "start": 22088.63, + "end": 22092.97, + "probability": 0.84 + }, + { + "start": 22093.15, + "end": 22094.79, + "probability": 0.9474 + }, + { + "start": 22094.89, + "end": 22095.37, + "probability": 0.6991 + }, + { + "start": 22095.49, + "end": 22096.11, + "probability": 0.8347 + }, + { + "start": 22097.75, + "end": 22100.05, + "probability": 0.9577 + }, + { + "start": 22103.29, + "end": 22110.43, + "probability": 0.9958 + }, + { + "start": 22110.61, + "end": 22116.19, + "probability": 0.999 + }, + { + "start": 22116.97, + "end": 22120.33, + "probability": 0.9976 + }, + { + "start": 22121.25, + "end": 22122.65, + "probability": 0.9771 + }, + { + "start": 22122.73, + "end": 22124.05, + "probability": 0.8434 + }, + { + "start": 22124.49, + "end": 22127.65, + "probability": 0.9858 + }, + { + "start": 22128.15, + "end": 22129.87, + "probability": 0.894 + }, + { + "start": 22130.73, + "end": 22136.95, + "probability": 0.9257 + }, + { + "start": 22137.83, + "end": 22138.91, + "probability": 0.7223 + }, + { + "start": 22139.13, + "end": 22141.29, + "probability": 0.7268 + }, + { + "start": 22141.29, + "end": 22143.27, + "probability": 0.8984 + }, + { + "start": 22143.83, + "end": 22144.89, + "probability": 0.8435 + }, + { + "start": 22145.79, + "end": 22149.97, + "probability": 0.9774 + }, + { + "start": 22149.97, + "end": 22153.41, + "probability": 0.9893 + }, + { + "start": 22154.15, + "end": 22155.07, + "probability": 0.8638 + }, + { + "start": 22155.19, + "end": 22155.69, + "probability": 0.9392 + }, + { + "start": 22155.91, + "end": 22158.59, + "probability": 0.9797 + }, + { + "start": 22159.51, + "end": 22160.17, + "probability": 0.186 + }, + { + "start": 22160.27, + "end": 22162.55, + "probability": 0.0556 + }, + { + "start": 22182.35, + "end": 22183.07, + "probability": 0.2729 + }, + { + "start": 22185.55, + "end": 22187.35, + "probability": 0.8922 + }, + { + "start": 22187.59, + "end": 22188.09, + "probability": 0.5672 + }, + { + "start": 22188.23, + "end": 22191.99, + "probability": 0.821 + }, + { + "start": 22193.39, + "end": 22199.51, + "probability": 0.9912 + }, + { + "start": 22199.61, + "end": 22200.51, + "probability": 0.5651 + }, + { + "start": 22200.51, + "end": 22200.61, + "probability": 0.5618 + }, + { + "start": 22201.17, + "end": 22202.17, + "probability": 0.369 + }, + { + "start": 22202.55, + "end": 22205.53, + "probability": 0.9961 + }, + { + "start": 22205.99, + "end": 22211.81, + "probability": 0.7629 + }, + { + "start": 22211.89, + "end": 22214.19, + "probability": 0.948 + }, + { + "start": 22214.73, + "end": 22219.21, + "probability": 0.9956 + }, + { + "start": 22219.75, + "end": 22221.97, + "probability": 0.9639 + }, + { + "start": 22222.39, + "end": 22224.49, + "probability": 0.9968 + }, + { + "start": 22224.61, + "end": 22227.19, + "probability": 0.9883 + }, + { + "start": 22227.61, + "end": 22230.05, + "probability": 0.4596 + }, + { + "start": 22230.17, + "end": 22232.45, + "probability": 0.8774 + }, + { + "start": 22233.11, + "end": 22235.17, + "probability": 0.3423 + }, + { + "start": 22236.09, + "end": 22238.31, + "probability": 0.9839 + }, + { + "start": 22238.97, + "end": 22241.85, + "probability": 0.9013 + }, + { + "start": 22242.31, + "end": 22243.69, + "probability": 0.6724 + }, + { + "start": 22243.81, + "end": 22244.21, + "probability": 0.7737 + }, + { + "start": 22244.25, + "end": 22245.93, + "probability": 0.9097 + }, + { + "start": 22245.99, + "end": 22246.47, + "probability": 0.5817 + }, + { + "start": 22246.51, + "end": 22247.73, + "probability": 0.983 + }, + { + "start": 22249.15, + "end": 22250.81, + "probability": 0.8595 + }, + { + "start": 22269.85, + "end": 22270.03, + "probability": 0.1936 + }, + { + "start": 22270.05, + "end": 22272.97, + "probability": 0.5907 + }, + { + "start": 22274.95, + "end": 22277.49, + "probability": 0.9884 + }, + { + "start": 22277.49, + "end": 22278.75, + "probability": 0.9286 + }, + { + "start": 22279.83, + "end": 22284.31, + "probability": 0.9955 + }, + { + "start": 22285.15, + "end": 22285.33, + "probability": 0.325 + }, + { + "start": 22288.75, + "end": 22289.79, + "probability": 0.8413 + }, + { + "start": 22289.97, + "end": 22290.65, + "probability": 0.7421 + }, + { + "start": 22292.79, + "end": 22295.87, + "probability": 0.8544 + }, + { + "start": 22295.99, + "end": 22297.23, + "probability": 0.9373 + }, + { + "start": 22297.51, + "end": 22298.61, + "probability": 0.7862 + }, + { + "start": 22298.95, + "end": 22300.77, + "probability": 0.9124 + }, + { + "start": 22301.51, + "end": 22303.75, + "probability": 0.8277 + }, + { + "start": 22304.35, + "end": 22306.77, + "probability": 0.9982 + }, + { + "start": 22307.43, + "end": 22310.67, + "probability": 0.96 + }, + { + "start": 22310.79, + "end": 22312.06, + "probability": 0.933 + }, + { + "start": 22313.23, + "end": 22315.65, + "probability": 0.9075 + }, + { + "start": 22316.31, + "end": 22320.73, + "probability": 0.9925 + }, + { + "start": 22321.01, + "end": 22322.03, + "probability": 0.7318 + }, + { + "start": 22322.67, + "end": 22323.43, + "probability": 0.9718 + }, + { + "start": 22324.15, + "end": 22327.95, + "probability": 0.9908 + }, + { + "start": 22329.37, + "end": 22338.83, + "probability": 0.9881 + }, + { + "start": 22339.13, + "end": 22340.73, + "probability": 0.6991 + }, + { + "start": 22340.79, + "end": 22344.05, + "probability": 0.9914 + }, + { + "start": 22345.15, + "end": 22351.01, + "probability": 0.9956 + }, + { + "start": 22351.59, + "end": 22354.09, + "probability": 0.9726 + }, + { + "start": 22355.33, + "end": 22356.29, + "probability": 0.9874 + }, + { + "start": 22357.57, + "end": 22359.33, + "probability": 0.997 + }, + { + "start": 22359.99, + "end": 22361.37, + "probability": 0.5884 + }, + { + "start": 22362.01, + "end": 22365.52, + "probability": 0.981 + }, + { + "start": 22366.87, + "end": 22371.83, + "probability": 0.9744 + }, + { + "start": 22371.91, + "end": 22374.13, + "probability": 0.9447 + }, + { + "start": 22375.45, + "end": 22379.4, + "probability": 0.7947 + }, + { + "start": 22380.29, + "end": 22382.15, + "probability": 0.918 + }, + { + "start": 22382.89, + "end": 22389.63, + "probability": 0.9902 + }, + { + "start": 22390.51, + "end": 22394.77, + "probability": 0.9683 + }, + { + "start": 22395.19, + "end": 22398.12, + "probability": 0.9496 + }, + { + "start": 22398.99, + "end": 22399.91, + "probability": 0.6591 + }, + { + "start": 22400.41, + "end": 22401.57, + "probability": 0.9814 + }, + { + "start": 22402.51, + "end": 22405.49, + "probability": 0.5076 + }, + { + "start": 22405.55, + "end": 22410.41, + "probability": 0.945 + }, + { + "start": 22412.27, + "end": 22416.85, + "probability": 0.9066 + }, + { + "start": 22417.29, + "end": 22417.69, + "probability": 0.3738 + }, + { + "start": 22418.43, + "end": 22420.59, + "probability": 0.9279 + }, + { + "start": 22420.83, + "end": 22425.65, + "probability": 0.9927 + }, + { + "start": 22425.95, + "end": 22426.83, + "probability": 0.9504 + }, + { + "start": 22427.81, + "end": 22428.81, + "probability": 0.9854 + }, + { + "start": 22433.81, + "end": 22436.97, + "probability": 0.9993 + }, + { + "start": 22437.71, + "end": 22442.19, + "probability": 0.9982 + }, + { + "start": 22443.61, + "end": 22445.55, + "probability": 0.8809 + }, + { + "start": 22445.59, + "end": 22446.75, + "probability": 0.6863 + }, + { + "start": 22447.23, + "end": 22450.91, + "probability": 0.9912 + }, + { + "start": 22452.61, + "end": 22453.31, + "probability": 0.7162 + }, + { + "start": 22454.03, + "end": 22456.93, + "probability": 0.5962 + }, + { + "start": 22457.09, + "end": 22458.71, + "probability": 0.9568 + }, + { + "start": 22461.09, + "end": 22461.51, + "probability": 0.8428 + }, + { + "start": 22461.59, + "end": 22465.35, + "probability": 0.9557 + }, + { + "start": 22465.53, + "end": 22466.13, + "probability": 0.5599 + }, + { + "start": 22467.05, + "end": 22468.45, + "probability": 0.8301 + }, + { + "start": 22468.65, + "end": 22469.69, + "probability": 0.2679 + }, + { + "start": 22469.73, + "end": 22470.83, + "probability": 0.5761 + }, + { + "start": 22470.95, + "end": 22471.07, + "probability": 0.3775 + }, + { + "start": 22471.17, + "end": 22471.91, + "probability": 0.7297 + }, + { + "start": 22472.89, + "end": 22474.34, + "probability": 0.7533 + }, + { + "start": 22474.83, + "end": 22476.71, + "probability": 0.7973 + }, + { + "start": 22479.75, + "end": 22482.29, + "probability": 0.9851 + }, + { + "start": 22482.69, + "end": 22484.43, + "probability": 0.5638 + }, + { + "start": 22485.45, + "end": 22487.57, + "probability": 0.7536 + }, + { + "start": 22487.99, + "end": 22488.99, + "probability": 0.7281 + }, + { + "start": 22490.73, + "end": 22491.89, + "probability": 0.84 + }, + { + "start": 22492.97, + "end": 22497.29, + "probability": 0.9761 + }, + { + "start": 22498.45, + "end": 22501.55, + "probability": 0.846 + }, + { + "start": 22503.21, + "end": 22508.25, + "probability": 0.9961 + }, + { + "start": 22508.99, + "end": 22512.09, + "probability": 0.9129 + }, + { + "start": 22513.19, + "end": 22514.45, + "probability": 0.9966 + }, + { + "start": 22515.57, + "end": 22519.93, + "probability": 0.9878 + }, + { + "start": 22520.99, + "end": 22525.49, + "probability": 0.7954 + }, + { + "start": 22525.59, + "end": 22527.89, + "probability": 0.8552 + }, + { + "start": 22528.53, + "end": 22530.49, + "probability": 0.9917 + }, + { + "start": 22531.07, + "end": 22532.09, + "probability": 0.9739 + }, + { + "start": 22533.37, + "end": 22535.97, + "probability": 0.9924 + }, + { + "start": 22536.71, + "end": 22538.37, + "probability": 0.9937 + }, + { + "start": 22540.11, + "end": 22541.37, + "probability": 0.7277 + }, + { + "start": 22542.03, + "end": 22545.65, + "probability": 0.9954 + }, + { + "start": 22546.75, + "end": 22552.57, + "probability": 0.8441 + }, + { + "start": 22553.35, + "end": 22554.79, + "probability": 0.7363 + }, + { + "start": 22557.47, + "end": 22560.81, + "probability": 0.6468 + }, + { + "start": 22562.55, + "end": 22566.42, + "probability": 0.8581 + }, + { + "start": 22567.27, + "end": 22568.48, + "probability": 0.8473 + }, + { + "start": 22569.35, + "end": 22573.41, + "probability": 0.9839 + }, + { + "start": 22573.41, + "end": 22578.37, + "probability": 0.9975 + }, + { + "start": 22579.39, + "end": 22581.01, + "probability": 0.9583 + }, + { + "start": 22581.17, + "end": 22585.43, + "probability": 0.9538 + }, + { + "start": 22586.73, + "end": 22588.51, + "probability": 0.6418 + }, + { + "start": 22588.65, + "end": 22591.81, + "probability": 0.7336 + }, + { + "start": 22592.77, + "end": 22595.71, + "probability": 0.9188 + }, + { + "start": 22597.31, + "end": 22598.76, + "probability": 0.8422 + }, + { + "start": 22601.69, + "end": 22603.78, + "probability": 0.9966 + }, + { + "start": 22603.83, + "end": 22606.97, + "probability": 0.8917 + }, + { + "start": 22607.69, + "end": 22608.87, + "probability": 0.935 + }, + { + "start": 22610.35, + "end": 22616.05, + "probability": 0.9951 + }, + { + "start": 22616.19, + "end": 22618.85, + "probability": 0.9983 + }, + { + "start": 22620.47, + "end": 22620.79, + "probability": 0.6332 + }, + { + "start": 22620.93, + "end": 22623.65, + "probability": 0.9995 + }, + { + "start": 22624.57, + "end": 22627.27, + "probability": 0.853 + }, + { + "start": 22627.43, + "end": 22629.21, + "probability": 0.8985 + }, + { + "start": 22630.19, + "end": 22631.95, + "probability": 0.9561 + }, + { + "start": 22632.95, + "end": 22636.45, + "probability": 0.9661 + }, + { + "start": 22637.21, + "end": 22637.99, + "probability": 0.9253 + }, + { + "start": 22638.67, + "end": 22640.45, + "probability": 0.9531 + }, + { + "start": 22641.29, + "end": 22645.61, + "probability": 0.5476 + }, + { + "start": 22647.13, + "end": 22648.53, + "probability": 0.9248 + }, + { + "start": 22649.67, + "end": 22652.31, + "probability": 0.6869 + }, + { + "start": 22653.37, + "end": 22657.75, + "probability": 0.9736 + }, + { + "start": 22658.55, + "end": 22659.89, + "probability": 0.58 + }, + { + "start": 22660.85, + "end": 22662.37, + "probability": 0.8589 + }, + { + "start": 22663.23, + "end": 22665.78, + "probability": 0.9977 + }, + { + "start": 22665.81, + "end": 22668.65, + "probability": 0.9985 + }, + { + "start": 22669.51, + "end": 22670.53, + "probability": 0.5647 + }, + { + "start": 22671.27, + "end": 22673.23, + "probability": 0.9822 + }, + { + "start": 22674.37, + "end": 22677.87, + "probability": 0.9976 + }, + { + "start": 22678.69, + "end": 22679.67, + "probability": 0.739 + }, + { + "start": 22680.55, + "end": 22683.43, + "probability": 0.9923 + }, + { + "start": 22684.41, + "end": 22687.05, + "probability": 0.971 + }, + { + "start": 22687.83, + "end": 22691.21, + "probability": 0.9715 + }, + { + "start": 22692.05, + "end": 22694.43, + "probability": 0.9979 + }, + { + "start": 22695.01, + "end": 22700.25, + "probability": 0.8996 + }, + { + "start": 22700.69, + "end": 22703.43, + "probability": 0.9968 + }, + { + "start": 22703.91, + "end": 22708.37, + "probability": 0.8874 + }, + { + "start": 22708.65, + "end": 22710.09, + "probability": 0.845 + }, + { + "start": 22710.65, + "end": 22712.33, + "probability": 0.797 + }, + { + "start": 22712.87, + "end": 22714.99, + "probability": 0.9661 + }, + { + "start": 22715.63, + "end": 22716.78, + "probability": 0.8491 + }, + { + "start": 22717.89, + "end": 22721.79, + "probability": 0.9362 + }, + { + "start": 22726.21, + "end": 22728.29, + "probability": 0.3086 + }, + { + "start": 22728.29, + "end": 22730.01, + "probability": 0.7328 + }, + { + "start": 22731.31, + "end": 22731.63, + "probability": 0.75 + }, + { + "start": 22732.09, + "end": 22734.47, + "probability": 0.9012 + }, + { + "start": 22734.93, + "end": 22738.13, + "probability": 0.9744 + }, + { + "start": 22738.75, + "end": 22741.53, + "probability": 0.9785 + }, + { + "start": 22742.05, + "end": 22745.99, + "probability": 0.9137 + }, + { + "start": 22746.69, + "end": 22749.53, + "probability": 0.8901 + }, + { + "start": 22750.09, + "end": 22755.57, + "probability": 0.9609 + }, + { + "start": 22755.65, + "end": 22755.93, + "probability": 0.7876 + }, + { + "start": 22756.51, + "end": 22758.13, + "probability": 0.6684 + }, + { + "start": 22758.25, + "end": 22760.81, + "probability": 0.7913 + }, + { + "start": 22760.85, + "end": 22761.47, + "probability": 0.4057 + }, + { + "start": 22761.67, + "end": 22763.27, + "probability": 0.5643 + }, + { + "start": 22764.43, + "end": 22766.09, + "probability": 0.9373 + }, + { + "start": 22785.99, + "end": 22787.01, + "probability": 0.6288 + }, + { + "start": 22787.61, + "end": 22789.91, + "probability": 0.8001 + }, + { + "start": 22790.53, + "end": 22791.01, + "probability": 0.6859 + }, + { + "start": 22791.67, + "end": 22792.11, + "probability": 0.8038 + }, + { + "start": 22793.79, + "end": 22797.07, + "probability": 0.9626 + }, + { + "start": 22798.27, + "end": 22799.78, + "probability": 0.9457 + }, + { + "start": 22800.77, + "end": 22801.79, + "probability": 0.7744 + }, + { + "start": 22802.99, + "end": 22806.21, + "probability": 0.7206 + }, + { + "start": 22806.21, + "end": 22809.97, + "probability": 0.9968 + }, + { + "start": 22811.07, + "end": 22812.05, + "probability": 0.7212 + }, + { + "start": 22813.49, + "end": 22815.05, + "probability": 0.7422 + }, + { + "start": 22815.89, + "end": 22820.33, + "probability": 0.9854 + }, + { + "start": 22820.95, + "end": 22821.37, + "probability": 0.9729 + }, + { + "start": 22822.71, + "end": 22824.13, + "probability": 0.7699 + }, + { + "start": 22824.57, + "end": 22827.27, + "probability": 0.9533 + }, + { + "start": 22827.73, + "end": 22833.13, + "probability": 0.7785 + }, + { + "start": 22833.23, + "end": 22833.83, + "probability": 0.6073 + }, + { + "start": 22834.59, + "end": 22837.91, + "probability": 0.9811 + }, + { + "start": 22838.95, + "end": 22845.27, + "probability": 0.9858 + }, + { + "start": 22846.11, + "end": 22848.41, + "probability": 0.6995 + }, + { + "start": 22849.03, + "end": 22854.69, + "probability": 0.9981 + }, + { + "start": 22854.69, + "end": 22859.17, + "probability": 0.9955 + }, + { + "start": 22860.09, + "end": 22863.01, + "probability": 0.9248 + }, + { + "start": 22864.01, + "end": 22868.21, + "probability": 0.9663 + }, + { + "start": 22868.87, + "end": 22871.65, + "probability": 0.9535 + }, + { + "start": 22872.25, + "end": 22877.55, + "probability": 0.9882 + }, + { + "start": 22878.25, + "end": 22878.99, + "probability": 0.4212 + }, + { + "start": 22879.07, + "end": 22884.07, + "probability": 0.7803 + }, + { + "start": 22884.41, + "end": 22889.63, + "probability": 0.8346 + }, + { + "start": 22889.77, + "end": 22891.03, + "probability": 0.9357 + }, + { + "start": 22892.19, + "end": 22893.75, + "probability": 0.6066 + }, + { + "start": 22894.19, + "end": 22896.23, + "probability": 0.9902 + }, + { + "start": 22897.11, + "end": 22901.09, + "probability": 0.9233 + }, + { + "start": 22901.25, + "end": 22902.35, + "probability": 0.8363 + }, + { + "start": 22904.87, + "end": 22909.15, + "probability": 0.5391 + }, + { + "start": 22914.49, + "end": 22920.45, + "probability": 0.9559 + }, + { + "start": 22920.45, + "end": 22929.09, + "probability": 0.9633 + }, + { + "start": 22929.13, + "end": 22929.23, + "probability": 0.0172 + }, + { + "start": 22931.43, + "end": 22934.77, + "probability": 0.9905 + }, + { + "start": 22935.47, + "end": 22937.17, + "probability": 0.96 + }, + { + "start": 22937.81, + "end": 22939.09, + "probability": 0.8621 + }, + { + "start": 22939.39, + "end": 22945.41, + "probability": 0.8643 + }, + { + "start": 22945.79, + "end": 22947.75, + "probability": 0.7657 + }, + { + "start": 22948.65, + "end": 22953.15, + "probability": 0.9318 + }, + { + "start": 22953.59, + "end": 22955.95, + "probability": 0.9955 + }, + { + "start": 22956.41, + "end": 22958.91, + "probability": 0.9717 + }, + { + "start": 22959.21, + "end": 22959.69, + "probability": 0.872 + }, + { + "start": 22960.63, + "end": 22962.17, + "probability": 0.6324 + }, + { + "start": 22962.33, + "end": 22964.27, + "probability": 0.7834 + }, + { + "start": 22965.49, + "end": 22965.87, + "probability": 0.3301 + }, + { + "start": 22965.95, + "end": 22967.27, + "probability": 0.9659 + }, + { + "start": 22967.31, + "end": 22967.67, + "probability": 0.8577 + }, + { + "start": 22967.75, + "end": 22969.03, + "probability": 0.9896 + }, + { + "start": 22982.25, + "end": 22982.63, + "probability": 0.4542 + }, + { + "start": 22982.81, + "end": 22983.95, + "probability": 0.8579 + }, + { + "start": 22985.97, + "end": 22987.73, + "probability": 0.8191 + }, + { + "start": 22989.19, + "end": 22992.09, + "probability": 0.7533 + }, + { + "start": 22992.79, + "end": 22995.93, + "probability": 0.5023 + }, + { + "start": 23007.89, + "end": 23008.75, + "probability": 0.0756 + }, + { + "start": 23008.75, + "end": 23008.75, + "probability": 0.0406 + }, + { + "start": 23008.75, + "end": 23008.75, + "probability": 0.148 + }, + { + "start": 23008.75, + "end": 23012.71, + "probability": 0.3129 + }, + { + "start": 23012.89, + "end": 23015.55, + "probability": 0.5139 + }, + { + "start": 23016.63, + "end": 23019.21, + "probability": 0.8374 + }, + { + "start": 23020.35, + "end": 23022.03, + "probability": 0.7179 + }, + { + "start": 23023.21, + "end": 23027.79, + "probability": 0.8275 + }, + { + "start": 23028.25, + "end": 23029.51, + "probability": 0.8307 + }, + { + "start": 23030.21, + "end": 23032.29, + "probability": 0.6651 + }, + { + "start": 23033.73, + "end": 23041.75, + "probability": 0.9673 + }, + { + "start": 23043.29, + "end": 23045.69, + "probability": 0.9001 + }, + { + "start": 23046.43, + "end": 23049.71, + "probability": 0.8629 + }, + { + "start": 23050.77, + "end": 23055.98, + "probability": 0.8839 + }, + { + "start": 23056.05, + "end": 23057.07, + "probability": 0.8303 + }, + { + "start": 23057.17, + "end": 23058.11, + "probability": 0.8295 + }, + { + "start": 23059.19, + "end": 23060.49, + "probability": 0.5912 + }, + { + "start": 23061.57, + "end": 23062.51, + "probability": 0.9827 + }, + { + "start": 23063.45, + "end": 23066.45, + "probability": 0.9392 + }, + { + "start": 23067.89, + "end": 23071.67, + "probability": 0.9519 + }, + { + "start": 23072.23, + "end": 23072.87, + "probability": 0.7372 + }, + { + "start": 23073.77, + "end": 23076.95, + "probability": 0.9977 + }, + { + "start": 23077.71, + "end": 23080.75, + "probability": 0.5025 + }, + { + "start": 23081.29, + "end": 23085.33, + "probability": 0.5131 + }, + { + "start": 23086.63, + "end": 23087.59, + "probability": 0.9843 + }, + { + "start": 23088.57, + "end": 23092.19, + "probability": 0.7331 + }, + { + "start": 23093.51, + "end": 23096.19, + "probability": 0.8047 + }, + { + "start": 23097.13, + "end": 23102.83, + "probability": 0.924 + }, + { + "start": 23103.01, + "end": 23104.07, + "probability": 0.6929 + }, + { + "start": 23104.71, + "end": 23105.89, + "probability": 0.89 + }, + { + "start": 23106.71, + "end": 23108.51, + "probability": 0.9617 + }, + { + "start": 23109.15, + "end": 23109.99, + "probability": 0.3817 + }, + { + "start": 23110.55, + "end": 23112.17, + "probability": 0.9862 + }, + { + "start": 23113.49, + "end": 23114.95, + "probability": 0.9479 + }, + { + "start": 23115.61, + "end": 23117.81, + "probability": 0.6833 + }, + { + "start": 23118.43, + "end": 23119.25, + "probability": 0.7141 + }, + { + "start": 23120.35, + "end": 23121.91, + "probability": 0.4599 + }, + { + "start": 23122.87, + "end": 23126.65, + "probability": 0.9841 + }, + { + "start": 23127.55, + "end": 23129.95, + "probability": 0.9966 + }, + { + "start": 23132.01, + "end": 23132.23, + "probability": 0.679 + }, + { + "start": 23132.85, + "end": 23133.9, + "probability": 0.9564 + }, + { + "start": 23134.35, + "end": 23135.35, + "probability": 0.8135 + }, + { + "start": 23135.51, + "end": 23138.53, + "probability": 0.9717 + }, + { + "start": 23138.53, + "end": 23142.51, + "probability": 0.842 + }, + { + "start": 23143.29, + "end": 23146.2, + "probability": 0.979 + }, + { + "start": 23147.35, + "end": 23147.71, + "probability": 0.8776 + }, + { + "start": 23148.23, + "end": 23150.39, + "probability": 0.7993 + }, + { + "start": 23151.79, + "end": 23152.35, + "probability": 0.9949 + }, + { + "start": 23153.03, + "end": 23153.63, + "probability": 0.3479 + }, + { + "start": 23155.84, + "end": 23161.35, + "probability": 0.8283 + }, + { + "start": 23161.57, + "end": 23164.31, + "probability": 0.9917 + }, + { + "start": 23165.65, + "end": 23168.77, + "probability": 0.9236 + }, + { + "start": 23169.93, + "end": 23172.97, + "probability": 0.9073 + }, + { + "start": 23174.11, + "end": 23176.75, + "probability": 0.9795 + }, + { + "start": 23177.59, + "end": 23180.47, + "probability": 0.8387 + }, + { + "start": 23180.91, + "end": 23183.71, + "probability": 0.4763 + }, + { + "start": 23184.33, + "end": 23189.26, + "probability": 0.9663 + }, + { + "start": 23189.97, + "end": 23193.21, + "probability": 0.9699 + }, + { + "start": 23193.81, + "end": 23195.09, + "probability": 0.886 + }, + { + "start": 23196.05, + "end": 23199.79, + "probability": 0.5373 + }, + { + "start": 23200.45, + "end": 23203.45, + "probability": 0.9255 + }, + { + "start": 23204.27, + "end": 23209.87, + "probability": 0.9422 + }, + { + "start": 23210.31, + "end": 23211.99, + "probability": 0.9834 + }, + { + "start": 23212.47, + "end": 23212.47, + "probability": 0.9492 + }, + { + "start": 23213.11, + "end": 23218.11, + "probability": 0.9835 + }, + { + "start": 23218.91, + "end": 23220.24, + "probability": 0.8629 + }, + { + "start": 23221.29, + "end": 23222.43, + "probability": 0.9606 + }, + { + "start": 23223.21, + "end": 23224.73, + "probability": 0.8602 + }, + { + "start": 23225.49, + "end": 23228.57, + "probability": 0.986 + }, + { + "start": 23229.15, + "end": 23230.65, + "probability": 0.8432 + }, + { + "start": 23231.67, + "end": 23235.55, + "probability": 0.955 + }, + { + "start": 23235.55, + "end": 23240.37, + "probability": 0.9974 + }, + { + "start": 23240.81, + "end": 23240.99, + "probability": 0.7084 + }, + { + "start": 23241.19, + "end": 23242.73, + "probability": 0.7299 + }, + { + "start": 23243.23, + "end": 23245.96, + "probability": 0.9749 + }, + { + "start": 23246.47, + "end": 23248.21, + "probability": 0.9792 + }, + { + "start": 23249.29, + "end": 23253.35, + "probability": 0.7518 + }, + { + "start": 23254.61, + "end": 23257.93, + "probability": 0.9271 + }, + { + "start": 23258.85, + "end": 23259.17, + "probability": 0.9664 + }, + { + "start": 23260.85, + "end": 23262.61, + "probability": 0.7291 + }, + { + "start": 23264.13, + "end": 23266.25, + "probability": 0.7388 + }, + { + "start": 23266.97, + "end": 23268.09, + "probability": 0.8014 + }, + { + "start": 23268.81, + "end": 23271.77, + "probability": 0.8912 + }, + { + "start": 23271.87, + "end": 23274.17, + "probability": 0.9081 + }, + { + "start": 23274.31, + "end": 23275.05, + "probability": 0.8976 + }, + { + "start": 23275.73, + "end": 23277.81, + "probability": 0.7435 + }, + { + "start": 23278.73, + "end": 23280.85, + "probability": 0.8432 + }, + { + "start": 23282.79, + "end": 23286.71, + "probability": 0.9979 + }, + { + "start": 23287.75, + "end": 23291.27, + "probability": 0.988 + }, + { + "start": 23292.21, + "end": 23293.23, + "probability": 0.949 + }, + { + "start": 23293.25, + "end": 23296.07, + "probability": 0.0359 + }, + { + "start": 23296.07, + "end": 23297.21, + "probability": 0.7891 + }, + { + "start": 23298.07, + "end": 23302.71, + "probability": 0.9557 + }, + { + "start": 23305.25, + "end": 23306.65, + "probability": 0.9424 + }, + { + "start": 23308.21, + "end": 23309.95, + "probability": 0.9854 + }, + { + "start": 23310.49, + "end": 23312.17, + "probability": 0.7561 + }, + { + "start": 23314.23, + "end": 23314.81, + "probability": 0.9219 + }, + { + "start": 23315.35, + "end": 23316.21, + "probability": 0.9556 + }, + { + "start": 23316.95, + "end": 23319.05, + "probability": 0.9967 + }, + { + "start": 23320.71, + "end": 23322.21, + "probability": 0.9598 + }, + { + "start": 23323.33, + "end": 23324.45, + "probability": 0.9427 + }, + { + "start": 23325.49, + "end": 23327.23, + "probability": 0.9819 + }, + { + "start": 23327.49, + "end": 23330.35, + "probability": 0.7365 + }, + { + "start": 23331.67, + "end": 23334.65, + "probability": 0.9203 + }, + { + "start": 23334.73, + "end": 23335.63, + "probability": 0.5894 + }, + { + "start": 23336.51, + "end": 23340.09, + "probability": 0.9834 + }, + { + "start": 23340.75, + "end": 23344.65, + "probability": 0.9274 + }, + { + "start": 23345.19, + "end": 23346.29, + "probability": 0.4294 + }, + { + "start": 23347.77, + "end": 23349.27, + "probability": 0.802 + }, + { + "start": 23355.07, + "end": 23357.43, + "probability": 0.6316 + }, + { + "start": 23359.27, + "end": 23360.07, + "probability": 0.9985 + }, + { + "start": 23361.71, + "end": 23363.75, + "probability": 0.7962 + }, + { + "start": 23363.87, + "end": 23365.17, + "probability": 0.6297 + }, + { + "start": 23366.83, + "end": 23369.97, + "probability": 0.5599 + }, + { + "start": 23371.11, + "end": 23372.85, + "probability": 0.8865 + }, + { + "start": 23373.93, + "end": 23376.27, + "probability": 0.7646 + }, + { + "start": 23377.27, + "end": 23379.11, + "probability": 0.9878 + }, + { + "start": 23380.77, + "end": 23384.15, + "probability": 0.9482 + }, + { + "start": 23385.39, + "end": 23387.49, + "probability": 0.9828 + }, + { + "start": 23388.63, + "end": 23391.59, + "probability": 0.9629 + }, + { + "start": 23391.73, + "end": 23393.01, + "probability": 0.6019 + }, + { + "start": 23394.35, + "end": 23396.45, + "probability": 0.985 + }, + { + "start": 23397.21, + "end": 23399.15, + "probability": 0.8391 + }, + { + "start": 23399.77, + "end": 23403.85, + "probability": 0.9832 + }, + { + "start": 23405.03, + "end": 23407.69, + "probability": 0.7503 + }, + { + "start": 23408.17, + "end": 23408.51, + "probability": 0.6397 + }, + { + "start": 23408.59, + "end": 23409.17, + "probability": 0.5408 + }, + { + "start": 23409.21, + "end": 23409.75, + "probability": 0.9026 + }, + { + "start": 23410.51, + "end": 23414.17, + "probability": 0.8993 + }, + { + "start": 23415.19, + "end": 23416.05, + "probability": 0.9189 + }, + { + "start": 23418.19, + "end": 23419.79, + "probability": 0.9824 + }, + { + "start": 23420.87, + "end": 23423.57, + "probability": 0.9827 + }, + { + "start": 23424.47, + "end": 23426.53, + "probability": 0.9403 + }, + { + "start": 23428.45, + "end": 23433.63, + "probability": 0.8684 + }, + { + "start": 23435.11, + "end": 23437.91, + "probability": 0.9894 + }, + { + "start": 23438.75, + "end": 23439.73, + "probability": 0.767 + }, + { + "start": 23439.83, + "end": 23442.13, + "probability": 0.9668 + }, + { + "start": 23443.19, + "end": 23447.33, + "probability": 0.9923 + }, + { + "start": 23448.37, + "end": 23452.95, + "probability": 0.9816 + }, + { + "start": 23453.51, + "end": 23456.89, + "probability": 0.8102 + }, + { + "start": 23457.25, + "end": 23460.77, + "probability": 0.9118 + }, + { + "start": 23461.57, + "end": 23463.33, + "probability": 0.8754 + }, + { + "start": 23463.85, + "end": 23467.11, + "probability": 0.5619 + }, + { + "start": 23467.91, + "end": 23470.25, + "probability": 0.7856 + }, + { + "start": 23471.39, + "end": 23475.53, + "probability": 0.8628 + }, + { + "start": 23476.23, + "end": 23478.11, + "probability": 0.6808 + }, + { + "start": 23478.65, + "end": 23479.83, + "probability": 0.9609 + }, + { + "start": 23479.89, + "end": 23481.41, + "probability": 0.9023 + }, + { + "start": 23481.91, + "end": 23482.63, + "probability": 0.9595 + }, + { + "start": 23483.85, + "end": 23487.55, + "probability": 0.7449 + }, + { + "start": 23487.61, + "end": 23488.41, + "probability": 0.7098 + }, + { + "start": 23488.45, + "end": 23489.15, + "probability": 0.6644 + }, + { + "start": 23489.53, + "end": 23489.73, + "probability": 0.9103 + }, + { + "start": 23490.15, + "end": 23493.37, + "probability": 0.7973 + }, + { + "start": 23494.11, + "end": 23497.23, + "probability": 0.9289 + }, + { + "start": 23498.13, + "end": 23502.27, + "probability": 0.9794 + }, + { + "start": 23502.63, + "end": 23504.25, + "probability": 0.8 + }, + { + "start": 23504.77, + "end": 23505.43, + "probability": 0.8292 + }, + { + "start": 23505.95, + "end": 23507.53, + "probability": 0.9961 + }, + { + "start": 23507.55, + "end": 23509.93, + "probability": 0.9875 + }, + { + "start": 23510.05, + "end": 23510.23, + "probability": 0.8202 + }, + { + "start": 23511.21, + "end": 23513.14, + "probability": 0.8957 + }, + { + "start": 23513.47, + "end": 23515.25, + "probability": 0.9937 + }, + { + "start": 23516.49, + "end": 23517.29, + "probability": 0.5017 + }, + { + "start": 23517.45, + "end": 23518.33, + "probability": 0.689 + }, + { + "start": 23518.61, + "end": 23521.21, + "probability": 0.9896 + }, + { + "start": 23522.54, + "end": 23526.29, + "probability": 0.9941 + }, + { + "start": 23537.35, + "end": 23539.65, + "probability": 0.87 + }, + { + "start": 23540.09, + "end": 23540.33, + "probability": 0.2712 + }, + { + "start": 23540.41, + "end": 23542.03, + "probability": 0.5798 + }, + { + "start": 23543.35, + "end": 23545.97, + "probability": 0.7314 + }, + { + "start": 23547.49, + "end": 23550.23, + "probability": 0.9666 + }, + { + "start": 23550.79, + "end": 23551.35, + "probability": 0.5448 + }, + { + "start": 23552.67, + "end": 23556.59, + "probability": 0.9663 + }, + { + "start": 23557.61, + "end": 23558.29, + "probability": 0.5936 + }, + { + "start": 23558.47, + "end": 23560.19, + "probability": 0.9141 + }, + { + "start": 23561.33, + "end": 23563.61, + "probability": 0.9571 + }, + { + "start": 23564.25, + "end": 23565.21, + "probability": 0.544 + }, + { + "start": 23565.73, + "end": 23566.61, + "probability": 0.9395 + }, + { + "start": 23567.23, + "end": 23569.05, + "probability": 0.9462 + }, + { + "start": 23570.19, + "end": 23572.47, + "probability": 0.9238 + }, + { + "start": 23573.29, + "end": 23575.51, + "probability": 0.6213 + }, + { + "start": 23576.37, + "end": 23579.13, + "probability": 0.7456 + }, + { + "start": 23581.31, + "end": 23582.98, + "probability": 0.5912 + }, + { + "start": 23583.91, + "end": 23584.47, + "probability": 0.4532 + }, + { + "start": 23584.59, + "end": 23584.97, + "probability": 0.5527 + }, + { + "start": 23585.09, + "end": 23585.91, + "probability": 0.8158 + }, + { + "start": 23588.03, + "end": 23589.27, + "probability": 0.622 + }, + { + "start": 23589.47, + "end": 23590.23, + "probability": 0.8515 + }, + { + "start": 23590.33, + "end": 23591.73, + "probability": 0.9334 + }, + { + "start": 23592.13, + "end": 23593.11, + "probability": 0.9951 + }, + { + "start": 23594.07, + "end": 23598.77, + "probability": 0.9052 + }, + { + "start": 23599.07, + "end": 23600.89, + "probability": 0.7737 + }, + { + "start": 23601.07, + "end": 23602.27, + "probability": 0.9985 + }, + { + "start": 23602.39, + "end": 23604.45, + "probability": 0.8291 + }, + { + "start": 23605.13, + "end": 23608.41, + "probability": 0.9656 + }, + { + "start": 23609.03, + "end": 23610.47, + "probability": 0.8566 + }, + { + "start": 23610.67, + "end": 23612.05, + "probability": 0.8986 + }, + { + "start": 23612.37, + "end": 23613.21, + "probability": 0.9285 + }, + { + "start": 23613.29, + "end": 23614.59, + "probability": 0.993 + }, + { + "start": 23614.73, + "end": 23615.51, + "probability": 0.7155 + }, + { + "start": 23616.01, + "end": 23618.49, + "probability": 0.978 + }, + { + "start": 23618.49, + "end": 23620.97, + "probability": 0.972 + }, + { + "start": 23621.05, + "end": 23622.19, + "probability": 0.887 + }, + { + "start": 23622.87, + "end": 23623.15, + "probability": 0.6099 + }, + { + "start": 23623.35, + "end": 23624.77, + "probability": 0.8941 + }, + { + "start": 23624.87, + "end": 23627.49, + "probability": 0.8764 + }, + { + "start": 23627.99, + "end": 23628.09, + "probability": 0.4411 + }, + { + "start": 23628.71, + "end": 23630.87, + "probability": 0.8483 + }, + { + "start": 23631.03, + "end": 23631.51, + "probability": 0.3968 + }, + { + "start": 23631.57, + "end": 23632.23, + "probability": 0.4537 + }, + { + "start": 23635.29, + "end": 23636.97, + "probability": 0.5487 + }, + { + "start": 23636.97, + "end": 23640.14, + "probability": 0.5525 + }, + { + "start": 23641.23, + "end": 23643.61, + "probability": 0.7622 + }, + { + "start": 23644.29, + "end": 23649.46, + "probability": 0.9829 + }, + { + "start": 23650.97, + "end": 23652.53, + "probability": 0.7928 + }, + { + "start": 23652.59, + "end": 23653.23, + "probability": 0.546 + }, + { + "start": 23653.33, + "end": 23657.11, + "probability": 0.6796 + }, + { + "start": 23659.31, + "end": 23662.53, + "probability": 0.9645 + }, + { + "start": 23663.27, + "end": 23665.2, + "probability": 0.2721 + }, + { + "start": 23665.37, + "end": 23669.75, + "probability": 0.9087 + }, + { + "start": 23670.51, + "end": 23673.11, + "probability": 0.8146 + }, + { + "start": 23674.17, + "end": 23674.76, + "probability": 0.5365 + }, + { + "start": 23674.97, + "end": 23677.49, + "probability": 0.6965 + }, + { + "start": 23679.93, + "end": 23680.87, + "probability": 0.4997 + }, + { + "start": 23681.61, + "end": 23681.79, + "probability": 0.7339 + }, + { + "start": 23683.97, + "end": 23684.33, + "probability": 0.4366 + }, + { + "start": 23685.83, + "end": 23685.83, + "probability": 0.0926 + }, + { + "start": 23685.83, + "end": 23685.83, + "probability": 0.0252 + }, + { + "start": 23685.83, + "end": 23689.43, + "probability": 0.9902 + }, + { + "start": 23689.51, + "end": 23690.39, + "probability": 0.3807 + }, + { + "start": 23690.49, + "end": 23690.75, + "probability": 0.3743 + }, + { + "start": 23690.75, + "end": 23691.47, + "probability": 0.9086 + }, + { + "start": 23691.89, + "end": 23694.77, + "probability": 0.9696 + }, + { + "start": 23695.37, + "end": 23697.65, + "probability": 0.9832 + }, + { + "start": 23697.81, + "end": 23700.57, + "probability": 0.7133 + }, + { + "start": 23700.67, + "end": 23702.31, + "probability": 0.8281 + }, + { + "start": 23702.87, + "end": 23705.69, + "probability": 0.9059 + }, + { + "start": 23705.69, + "end": 23710.89, + "probability": 0.9666 + }, + { + "start": 23711.39, + "end": 23711.43, + "probability": 0.0789 + }, + { + "start": 23711.43, + "end": 23713.12, + "probability": 0.251 + }, + { + "start": 23714.17, + "end": 23715.99, + "probability": 0.8427 + }, + { + "start": 23716.07, + "end": 23717.17, + "probability": 0.942 + }, + { + "start": 23717.51, + "end": 23718.41, + "probability": 0.91 + }, + { + "start": 23718.51, + "end": 23719.47, + "probability": 0.9595 + }, + { + "start": 23720.31, + "end": 23720.55, + "probability": 0.5752 + }, + { + "start": 23720.95, + "end": 23721.78, + "probability": 0.9634 + }, + { + "start": 23722.83, + "end": 23723.44, + "probability": 0.7764 + }, + { + "start": 23725.27, + "end": 23726.23, + "probability": 0.8295 + }, + { + "start": 23726.83, + "end": 23727.17, + "probability": 0.5558 + }, + { + "start": 23727.41, + "end": 23727.89, + "probability": 0.6687 + }, + { + "start": 23728.47, + "end": 23729.69, + "probability": 0.6485 + }, + { + "start": 23730.21, + "end": 23732.81, + "probability": 0.9142 + }, + { + "start": 23733.45, + "end": 23733.69, + "probability": 0.4331 + }, + { + "start": 23734.71, + "end": 23738.37, + "probability": 0.7553 + }, + { + "start": 23738.43, + "end": 23740.79, + "probability": 0.5376 + }, + { + "start": 23741.61, + "end": 23742.15, + "probability": 0.7893 + }, + { + "start": 23743.05, + "end": 23745.47, + "probability": 0.8639 + }, + { + "start": 23746.27, + "end": 23747.49, + "probability": 0.9113 + }, + { + "start": 23747.55, + "end": 23748.03, + "probability": 0.6544 + }, + { + "start": 23748.11, + "end": 23748.83, + "probability": 0.9797 + }, + { + "start": 23749.33, + "end": 23751.35, + "probability": 0.8686 + }, + { + "start": 23752.51, + "end": 23753.83, + "probability": 0.5833 + }, + { + "start": 23755.93, + "end": 23757.75, + "probability": 0.9483 + }, + { + "start": 23758.51, + "end": 23759.55, + "probability": 0.9861 + }, + { + "start": 23761.05, + "end": 23761.63, + "probability": 0.5114 + }, + { + "start": 23761.79, + "end": 23764.67, + "probability": 0.9832 + }, + { + "start": 23765.11, + "end": 23767.33, + "probability": 0.845 + }, + { + "start": 23767.85, + "end": 23768.49, + "probability": 0.5196 + }, + { + "start": 23768.57, + "end": 23769.99, + "probability": 0.1964 + }, + { + "start": 23770.87, + "end": 23771.47, + "probability": 0.8177 + }, + { + "start": 23771.67, + "end": 23774.69, + "probability": 0.559 + }, + { + "start": 23775.05, + "end": 23775.93, + "probability": 0.9015 + }, + { + "start": 23776.49, + "end": 23777.15, + "probability": 0.5184 + }, + { + "start": 23777.47, + "end": 23780.39, + "probability": 0.9592 + }, + { + "start": 23780.89, + "end": 23784.35, + "probability": 0.9017 + }, + { + "start": 23784.87, + "end": 23786.19, + "probability": 0.7278 + }, + { + "start": 23787.13, + "end": 23790.75, + "probability": 0.9783 + }, + { + "start": 23791.73, + "end": 23794.39, + "probability": 0.9104 + }, + { + "start": 23798.77, + "end": 23803.59, + "probability": 0.9865 + }, + { + "start": 23809.37, + "end": 23812.23, + "probability": 0.8361 + }, + { + "start": 23813.23, + "end": 23814.07, + "probability": 0.6734 + }, + { + "start": 23815.47, + "end": 23817.17, + "probability": 0.8857 + }, + { + "start": 23817.49, + "end": 23822.53, + "probability": 0.9783 + }, + { + "start": 23823.59, + "end": 23826.15, + "probability": 0.9963 + }, + { + "start": 23826.29, + "end": 23827.07, + "probability": 0.7707 + }, + { + "start": 23827.35, + "end": 23828.45, + "probability": 0.5558 + }, + { + "start": 23829.65, + "end": 23832.47, + "probability": 0.9944 + }, + { + "start": 23833.91, + "end": 23836.02, + "probability": 0.9826 + }, + { + "start": 23837.07, + "end": 23840.69, + "probability": 0.8411 + }, + { + "start": 23841.49, + "end": 23843.29, + "probability": 0.9136 + }, + { + "start": 23844.47, + "end": 23847.05, + "probability": 0.8336 + }, + { + "start": 23848.13, + "end": 23849.85, + "probability": 0.9487 + }, + { + "start": 23849.97, + "end": 23854.05, + "probability": 0.9446 + }, + { + "start": 23855.53, + "end": 23857.71, + "probability": 0.816 + }, + { + "start": 23859.61, + "end": 23864.06, + "probability": 0.9893 + }, + { + "start": 23866.21, + "end": 23869.39, + "probability": 0.9717 + }, + { + "start": 23870.43, + "end": 23874.85, + "probability": 0.986 + }, + { + "start": 23876.05, + "end": 23881.29, + "probability": 0.9779 + }, + { + "start": 23881.95, + "end": 23882.67, + "probability": 0.7474 + }, + { + "start": 23883.63, + "end": 23886.55, + "probability": 0.9547 + }, + { + "start": 23887.69, + "end": 23890.67, + "probability": 0.999 + }, + { + "start": 23892.13, + "end": 23897.99, + "probability": 0.9607 + }, + { + "start": 23898.57, + "end": 23903.53, + "probability": 0.9951 + }, + { + "start": 23904.89, + "end": 23906.49, + "probability": 0.9666 + }, + { + "start": 23907.77, + "end": 23912.73, + "probability": 0.9015 + }, + { + "start": 23913.75, + "end": 23918.19, + "probability": 0.9723 + }, + { + "start": 23918.97, + "end": 23921.25, + "probability": 0.9964 + }, + { + "start": 23922.05, + "end": 23927.53, + "probability": 0.8644 + }, + { + "start": 23928.53, + "end": 23934.47, + "probability": 0.9885 + }, + { + "start": 23935.23, + "end": 23938.07, + "probability": 0.8976 + }, + { + "start": 23939.01, + "end": 23940.43, + "probability": 0.9624 + }, + { + "start": 23941.59, + "end": 23948.23, + "probability": 0.9877 + }, + { + "start": 23949.19, + "end": 23950.69, + "probability": 0.7761 + }, + { + "start": 23951.97, + "end": 23955.55, + "probability": 0.6768 + }, + { + "start": 23956.09, + "end": 23956.17, + "probability": 0.1835 + }, + { + "start": 23956.17, + "end": 23956.17, + "probability": 0.1106 + }, + { + "start": 23956.17, + "end": 23957.37, + "probability": 0.7294 + }, + { + "start": 23957.45, + "end": 23959.43, + "probability": 0.9678 + }, + { + "start": 23960.79, + "end": 23961.39, + "probability": 0.7539 + }, + { + "start": 23962.63, + "end": 23964.91, + "probability": 0.9772 + }, + { + "start": 23966.47, + "end": 23967.93, + "probability": 0.9021 + }, + { + "start": 23969.79, + "end": 23970.67, + "probability": 0.2985 + }, + { + "start": 23972.47, + "end": 23975.73, + "probability": 0.9153 + }, + { + "start": 23977.03, + "end": 23981.33, + "probability": 0.9972 + }, + { + "start": 23981.91, + "end": 23985.79, + "probability": 0.9439 + }, + { + "start": 23986.79, + "end": 23987.47, + "probability": 0.9915 + }, + { + "start": 23989.21, + "end": 23993.07, + "probability": 0.8818 + }, + { + "start": 23994.61, + "end": 23994.87, + "probability": 0.6346 + }, + { + "start": 23996.35, + "end": 23999.01, + "probability": 0.6646 + }, + { + "start": 24000.17, + "end": 24002.29, + "probability": 0.7886 + }, + { + "start": 24002.77, + "end": 24004.83, + "probability": 0.9141 + }, + { + "start": 24004.91, + "end": 24005.97, + "probability": 0.8571 + }, + { + "start": 24006.81, + "end": 24009.75, + "probability": 0.8687 + }, + { + "start": 24011.37, + "end": 24013.49, + "probability": 0.9824 + }, + { + "start": 24013.95, + "end": 24014.65, + "probability": 0.8744 + }, + { + "start": 24014.91, + "end": 24015.63, + "probability": 0.9169 + }, + { + "start": 24015.93, + "end": 24016.63, + "probability": 0.9302 + }, + { + "start": 24023.45, + "end": 24024.55, + "probability": 0.6793 + }, + { + "start": 24024.71, + "end": 24026.53, + "probability": 0.5661 + }, + { + "start": 24027.71, + "end": 24028.85, + "probability": 0.7768 + }, + { + "start": 24029.93, + "end": 24030.65, + "probability": 0.9424 + }, + { + "start": 24031.55, + "end": 24032.79, + "probability": 0.8994 + }, + { + "start": 24034.23, + "end": 24035.59, + "probability": 0.8544 + }, + { + "start": 24036.71, + "end": 24038.65, + "probability": 0.7346 + }, + { + "start": 24039.35, + "end": 24043.13, + "probability": 0.9966 + }, + { + "start": 24043.25, + "end": 24049.05, + "probability": 0.9946 + }, + { + "start": 24049.21, + "end": 24050.49, + "probability": 0.8792 + }, + { + "start": 24051.25, + "end": 24052.87, + "probability": 0.7584 + }, + { + "start": 24053.59, + "end": 24057.65, + "probability": 0.9938 + }, + { + "start": 24058.21, + "end": 24060.53, + "probability": 0.9888 + }, + { + "start": 24061.27, + "end": 24062.31, + "probability": 0.9424 + }, + { + "start": 24062.39, + "end": 24063.13, + "probability": 0.701 + }, + { + "start": 24063.25, + "end": 24067.03, + "probability": 0.9824 + }, + { + "start": 24067.49, + "end": 24071.21, + "probability": 0.7801 + }, + { + "start": 24071.57, + "end": 24075.43, + "probability": 0.8707 + }, + { + "start": 24075.79, + "end": 24077.15, + "probability": 0.9972 + }, + { + "start": 24077.69, + "end": 24078.79, + "probability": 0.7999 + }, + { + "start": 24079.43, + "end": 24080.67, + "probability": 0.8442 + }, + { + "start": 24081.33, + "end": 24083.47, + "probability": 0.9683 + }, + { + "start": 24084.07, + "end": 24089.33, + "probability": 0.9432 + }, + { + "start": 24089.91, + "end": 24095.97, + "probability": 0.9408 + }, + { + "start": 24096.59, + "end": 24101.55, + "probability": 0.99 + }, + { + "start": 24101.55, + "end": 24108.41, + "probability": 0.9969 + }, + { + "start": 24109.43, + "end": 24110.55, + "probability": 0.8325 + }, + { + "start": 24111.21, + "end": 24112.23, + "probability": 0.8293 + }, + { + "start": 24113.47, + "end": 24114.69, + "probability": 0.819 + }, + { + "start": 24115.87, + "end": 24118.43, + "probability": 0.936 + }, + { + "start": 24118.85, + "end": 24120.26, + "probability": 0.926 + }, + { + "start": 24120.39, + "end": 24121.17, + "probability": 0.8464 + }, + { + "start": 24121.33, + "end": 24122.27, + "probability": 0.8799 + }, + { + "start": 24122.73, + "end": 24125.11, + "probability": 0.808 + }, + { + "start": 24125.11, + "end": 24126.69, + "probability": 0.6696 + }, + { + "start": 24127.47, + "end": 24128.81, + "probability": 0.89 + }, + { + "start": 24128.85, + "end": 24130.05, + "probability": 0.8034 + }, + { + "start": 24130.45, + "end": 24134.87, + "probability": 0.9658 + }, + { + "start": 24134.87, + "end": 24138.51, + "probability": 0.9964 + }, + { + "start": 24139.35, + "end": 24141.57, + "probability": 0.5721 + }, + { + "start": 24142.25, + "end": 24144.27, + "probability": 0.8642 + }, + { + "start": 24144.73, + "end": 24148.85, + "probability": 0.9782 + }, + { + "start": 24149.47, + "end": 24154.59, + "probability": 0.992 + }, + { + "start": 24156.15, + "end": 24160.05, + "probability": 0.7937 + }, + { + "start": 24160.81, + "end": 24162.11, + "probability": 0.7259 + }, + { + "start": 24164.65, + "end": 24165.29, + "probability": 0.3888 + }, + { + "start": 24166.01, + "end": 24167.97, + "probability": 0.862 + }, + { + "start": 24168.95, + "end": 24170.79, + "probability": 0.991 + }, + { + "start": 24171.53, + "end": 24174.93, + "probability": 0.8429 + }, + { + "start": 24175.71, + "end": 24176.61, + "probability": 0.7687 + }, + { + "start": 24177.19, + "end": 24178.15, + "probability": 0.8217 + }, + { + "start": 24178.69, + "end": 24184.37, + "probability": 0.9508 + }, + { + "start": 24184.89, + "end": 24185.45, + "probability": 0.7096 + }, + { + "start": 24185.99, + "end": 24187.31, + "probability": 0.8333 + }, + { + "start": 24187.73, + "end": 24188.91, + "probability": 0.9076 + }, + { + "start": 24189.27, + "end": 24189.83, + "probability": 0.8971 + }, + { + "start": 24189.93, + "end": 24191.61, + "probability": 0.9944 + }, + { + "start": 24192.05, + "end": 24193.66, + "probability": 0.5476 + }, + { + "start": 24195.63, + "end": 24197.03, + "probability": 0.8031 + }, + { + "start": 24197.87, + "end": 24199.57, + "probability": 0.6182 + }, + { + "start": 24200.19, + "end": 24202.31, + "probability": 0.9272 + }, + { + "start": 24203.29, + "end": 24204.3, + "probability": 0.8628 + }, + { + "start": 24205.19, + "end": 24207.99, + "probability": 0.7881 + }, + { + "start": 24208.55, + "end": 24209.71, + "probability": 0.8737 + }, + { + "start": 24210.53, + "end": 24212.43, + "probability": 0.9215 + }, + { + "start": 24212.77, + "end": 24215.09, + "probability": 0.9716 + }, + { + "start": 24215.61, + "end": 24216.75, + "probability": 0.7896 + }, + { + "start": 24217.25, + "end": 24222.19, + "probability": 0.8918 + }, + { + "start": 24222.55, + "end": 24226.35, + "probability": 0.8786 + }, + { + "start": 24226.91, + "end": 24229.93, + "probability": 0.9301 + }, + { + "start": 24230.59, + "end": 24233.21, + "probability": 0.9714 + }, + { + "start": 24234.43, + "end": 24235.29, + "probability": 0.7432 + }, + { + "start": 24235.91, + "end": 24237.47, + "probability": 0.9112 + }, + { + "start": 24238.17, + "end": 24239.37, + "probability": 0.7944 + }, + { + "start": 24240.07, + "end": 24243.33, + "probability": 0.9115 + }, + { + "start": 24243.95, + "end": 24247.17, + "probability": 0.9965 + }, + { + "start": 24247.81, + "end": 24249.05, + "probability": 0.7209 + }, + { + "start": 24249.19, + "end": 24251.19, + "probability": 0.8507 + }, + { + "start": 24251.33, + "end": 24252.61, + "probability": 0.8469 + }, + { + "start": 24253.49, + "end": 24254.57, + "probability": 0.924 + }, + { + "start": 24255.21, + "end": 24256.35, + "probability": 0.95 + }, + { + "start": 24257.75, + "end": 24260.87, + "probability": 0.9156 + }, + { + "start": 24261.31, + "end": 24262.17, + "probability": 0.9077 + }, + { + "start": 24262.25, + "end": 24263.45, + "probability": 0.9119 + }, + { + "start": 24263.93, + "end": 24266.12, + "probability": 0.9912 + }, + { + "start": 24266.87, + "end": 24268.41, + "probability": 0.9909 + }, + { + "start": 24269.07, + "end": 24269.83, + "probability": 0.8167 + }, + { + "start": 24270.33, + "end": 24270.71, + "probability": 0.8116 + }, + { + "start": 24270.83, + "end": 24273.09, + "probability": 0.8657 + }, + { + "start": 24273.43, + "end": 24275.43, + "probability": 0.977 + }, + { + "start": 24275.83, + "end": 24281.69, + "probability": 0.9746 + }, + { + "start": 24282.27, + "end": 24282.85, + "probability": 0.9357 + }, + { + "start": 24283.09, + "end": 24286.11, + "probability": 0.7808 + }, + { + "start": 24286.45, + "end": 24290.97, + "probability": 0.9658 + }, + { + "start": 24291.43, + "end": 24293.11, + "probability": 0.826 + }, + { + "start": 24293.69, + "end": 24299.37, + "probability": 0.9382 + }, + { + "start": 24299.45, + "end": 24299.99, + "probability": 0.3439 + }, + { + "start": 24300.01, + "end": 24300.33, + "probability": 0.5038 + }, + { + "start": 24300.99, + "end": 24305.73, + "probability": 0.8916 + }, + { + "start": 24306.17, + "end": 24309.21, + "probability": 0.9869 + }, + { + "start": 24309.61, + "end": 24311.85, + "probability": 0.8892 + }, + { + "start": 24312.29, + "end": 24316.37, + "probability": 0.9849 + }, + { + "start": 24316.43, + "end": 24318.93, + "probability": 0.9934 + }, + { + "start": 24319.51, + "end": 24322.43, + "probability": 0.6118 + }, + { + "start": 24322.77, + "end": 24323.71, + "probability": 0.9341 + }, + { + "start": 24324.01, + "end": 24325.69, + "probability": 0.7819 + }, + { + "start": 24326.39, + "end": 24327.13, + "probability": 0.966 + }, + { + "start": 24327.81, + "end": 24333.55, + "probability": 0.9334 + }, + { + "start": 24333.61, + "end": 24336.75, + "probability": 0.9306 + }, + { + "start": 24337.29, + "end": 24343.07, + "probability": 0.957 + }, + { + "start": 24343.89, + "end": 24344.89, + "probability": 0.9502 + }, + { + "start": 24344.99, + "end": 24345.77, + "probability": 0.7548 + }, + { + "start": 24346.27, + "end": 24350.13, + "probability": 0.9482 + }, + { + "start": 24350.13, + "end": 24354.63, + "probability": 0.9868 + }, + { + "start": 24355.05, + "end": 24355.79, + "probability": 0.6153 + }, + { + "start": 24355.87, + "end": 24357.31, + "probability": 0.7805 + }, + { + "start": 24357.45, + "end": 24358.55, + "probability": 0.8288 + }, + { + "start": 24358.89, + "end": 24359.91, + "probability": 0.9338 + }, + { + "start": 24360.27, + "end": 24361.77, + "probability": 0.7305 + }, + { + "start": 24361.87, + "end": 24362.47, + "probability": 0.9169 + }, + { + "start": 24363.11, + "end": 24365.87, + "probability": 0.9739 + }, + { + "start": 24365.87, + "end": 24371.61, + "probability": 0.9845 + }, + { + "start": 24372.11, + "end": 24375.91, + "probability": 0.5624 + }, + { + "start": 24376.43, + "end": 24382.45, + "probability": 0.9477 + }, + { + "start": 24382.99, + "end": 24386.29, + "probability": 0.4486 + }, + { + "start": 24386.87, + "end": 24387.41, + "probability": 0.5433 + }, + { + "start": 24388.21, + "end": 24392.29, + "probability": 0.9717 + }, + { + "start": 24392.33, + "end": 24396.61, + "probability": 0.9915 + }, + { + "start": 24396.61, + "end": 24399.29, + "probability": 0.9848 + }, + { + "start": 24411.17, + "end": 24413.03, + "probability": 0.7878 + }, + { + "start": 24413.59, + "end": 24414.09, + "probability": 0.4314 + }, + { + "start": 24415.43, + "end": 24422.23, + "probability": 0.9678 + }, + { + "start": 24423.17, + "end": 24424.57, + "probability": 0.9187 + }, + { + "start": 24425.95, + "end": 24427.73, + "probability": 0.7298 + }, + { + "start": 24430.47, + "end": 24431.25, + "probability": 0.873 + }, + { + "start": 24431.63, + "end": 24433.91, + "probability": 0.996 + }, + { + "start": 24433.91, + "end": 24437.53, + "probability": 0.9979 + }, + { + "start": 24438.13, + "end": 24440.43, + "probability": 0.7973 + }, + { + "start": 24442.35, + "end": 24446.81, + "probability": 0.9937 + }, + { + "start": 24447.81, + "end": 24450.73, + "probability": 0.9976 + }, + { + "start": 24451.83, + "end": 24455.49, + "probability": 0.9877 + }, + { + "start": 24455.99, + "end": 24459.11, + "probability": 0.9856 + }, + { + "start": 24460.29, + "end": 24464.81, + "probability": 0.9972 + }, + { + "start": 24464.81, + "end": 24468.59, + "probability": 0.9795 + }, + { + "start": 24471.29, + "end": 24473.95, + "probability": 0.9841 + }, + { + "start": 24474.09, + "end": 24476.31, + "probability": 0.5085 + }, + { + "start": 24477.17, + "end": 24481.17, + "probability": 0.9701 + }, + { + "start": 24481.79, + "end": 24484.75, + "probability": 0.9309 + }, + { + "start": 24485.31, + "end": 24485.99, + "probability": 0.8971 + }, + { + "start": 24488.23, + "end": 24491.09, + "probability": 0.9879 + }, + { + "start": 24492.81, + "end": 24494.67, + "probability": 0.9407 + }, + { + "start": 24495.95, + "end": 24498.05, + "probability": 0.9925 + }, + { + "start": 24499.57, + "end": 24503.37, + "probability": 0.9619 + }, + { + "start": 24503.55, + "end": 24504.61, + "probability": 0.6683 + }, + { + "start": 24505.61, + "end": 24507.07, + "probability": 0.9446 + }, + { + "start": 24508.47, + "end": 24511.25, + "probability": 0.9744 + }, + { + "start": 24511.59, + "end": 24515.05, + "probability": 0.993 + }, + { + "start": 24516.73, + "end": 24517.37, + "probability": 0.9483 + }, + { + "start": 24517.93, + "end": 24521.83, + "probability": 0.9902 + }, + { + "start": 24523.17, + "end": 24524.35, + "probability": 0.9857 + }, + { + "start": 24524.99, + "end": 24527.23, + "probability": 0.9865 + }, + { + "start": 24528.05, + "end": 24531.59, + "probability": 0.8447 + }, + { + "start": 24532.95, + "end": 24533.45, + "probability": 0.6605 + }, + { + "start": 24534.11, + "end": 24536.99, + "probability": 0.9981 + }, + { + "start": 24538.11, + "end": 24540.61, + "probability": 0.9922 + }, + { + "start": 24540.91, + "end": 24543.95, + "probability": 0.9297 + }, + { + "start": 24545.59, + "end": 24547.33, + "probability": 0.8767 + }, + { + "start": 24548.13, + "end": 24550.31, + "probability": 0.9906 + }, + { + "start": 24551.11, + "end": 24554.49, + "probability": 0.5022 + }, + { + "start": 24555.63, + "end": 24559.33, + "probability": 0.9937 + }, + { + "start": 24559.91, + "end": 24563.89, + "probability": 0.8108 + }, + { + "start": 24564.53, + "end": 24564.71, + "probability": 0.7708 + }, + { + "start": 24567.25, + "end": 24568.85, + "probability": 0.7834 + }, + { + "start": 24569.01, + "end": 24572.29, + "probability": 0.9858 + }, + { + "start": 24573.53, + "end": 24576.29, + "probability": 0.8329 + }, + { + "start": 24576.51, + "end": 24581.65, + "probability": 0.9539 + }, + { + "start": 24582.25, + "end": 24586.21, + "probability": 0.9904 + }, + { + "start": 24586.57, + "end": 24587.45, + "probability": 0.4524 + }, + { + "start": 24587.89, + "end": 24588.37, + "probability": 0.5873 + }, + { + "start": 24588.49, + "end": 24589.51, + "probability": 0.9017 + }, + { + "start": 24589.59, + "end": 24590.19, + "probability": 0.9636 + }, + { + "start": 24590.25, + "end": 24590.95, + "probability": 0.9637 + }, + { + "start": 24591.39, + "end": 24591.79, + "probability": 0.8605 + }, + { + "start": 24591.85, + "end": 24592.95, + "probability": 0.9411 + }, + { + "start": 24593.31, + "end": 24594.17, + "probability": 0.8146 + }, + { + "start": 24601.75, + "end": 24603.25, + "probability": 0.8054 + }, + { + "start": 24604.33, + "end": 24607.31, + "probability": 0.0419 + }, + { + "start": 24607.63, + "end": 24611.17, + "probability": 0.9771 + }, + { + "start": 24611.51, + "end": 24614.97, + "probability": 0.7836 + }, + { + "start": 24615.44, + "end": 24617.89, + "probability": 0.8098 + }, + { + "start": 24618.07, + "end": 24619.33, + "probability": 0.3475 + }, + { + "start": 24625.65, + "end": 24626.37, + "probability": 0.0179 + }, + { + "start": 24627.13, + "end": 24627.63, + "probability": 0.1449 + }, + { + "start": 24628.87, + "end": 24631.95, + "probability": 0.9574 + }, + { + "start": 24631.95, + "end": 24634.29, + "probability": 0.7513 + }, + { + "start": 24635.87, + "end": 24636.47, + "probability": 0.5774 + }, + { + "start": 24636.71, + "end": 24638.87, + "probability": 0.6505 + }, + { + "start": 24640.07, + "end": 24644.09, + "probability": 0.9978 + }, + { + "start": 24644.67, + "end": 24646.75, + "probability": 0.9833 + }, + { + "start": 24647.67, + "end": 24651.07, + "probability": 0.9799 + }, + { + "start": 24651.21, + "end": 24652.79, + "probability": 0.9614 + }, + { + "start": 24653.61, + "end": 24656.93, + "probability": 0.9751 + }, + { + "start": 24658.33, + "end": 24659.19, + "probability": 0.6653 + }, + { + "start": 24659.79, + "end": 24662.37, + "probability": 0.9379 + }, + { + "start": 24662.89, + "end": 24665.73, + "probability": 0.9949 + }, + { + "start": 24666.45, + "end": 24671.73, + "probability": 0.8981 + }, + { + "start": 24671.85, + "end": 24674.53, + "probability": 0.9917 + }, + { + "start": 24675.05, + "end": 24677.68, + "probability": 0.9956 + }, + { + "start": 24677.97, + "end": 24682.73, + "probability": 0.9746 + }, + { + "start": 24682.87, + "end": 24686.15, + "probability": 0.8909 + }, + { + "start": 24686.57, + "end": 24688.89, + "probability": 0.9104 + }, + { + "start": 24689.31, + "end": 24695.85, + "probability": 0.8174 + }, + { + "start": 24696.29, + "end": 24698.92, + "probability": 0.9897 + }, + { + "start": 24700.48, + "end": 24703.37, + "probability": 0.9966 + }, + { + "start": 24703.71, + "end": 24707.91, + "probability": 0.913 + }, + { + "start": 24707.95, + "end": 24713.71, + "probability": 0.6961 + }, + { + "start": 24713.79, + "end": 24716.29, + "probability": 0.9396 + }, + { + "start": 24716.43, + "end": 24718.79, + "probability": 0.9878 + }, + { + "start": 24719.37, + "end": 24720.79, + "probability": 0.9806 + }, + { + "start": 24721.53, + "end": 24724.25, + "probability": 0.9953 + }, + { + "start": 24724.83, + "end": 24725.15, + "probability": 0.5947 + }, + { + "start": 24725.21, + "end": 24727.91, + "probability": 0.8075 + }, + { + "start": 24728.01, + "end": 24729.51, + "probability": 0.3701 + }, + { + "start": 24730.79, + "end": 24734.83, + "probability": 0.9526 + }, + { + "start": 24734.83, + "end": 24737.72, + "probability": 0.9738 + }, + { + "start": 24738.51, + "end": 24741.25, + "probability": 0.9243 + }, + { + "start": 24742.07, + "end": 24747.41, + "probability": 0.977 + }, + { + "start": 24747.83, + "end": 24749.68, + "probability": 0.8244 + }, + { + "start": 24750.57, + "end": 24752.13, + "probability": 0.9966 + }, + { + "start": 24753.19, + "end": 24756.43, + "probability": 0.9661 + }, + { + "start": 24757.19, + "end": 24759.61, + "probability": 0.9609 + }, + { + "start": 24760.59, + "end": 24761.05, + "probability": 0.6572 + }, + { + "start": 24761.73, + "end": 24763.09, + "probability": 0.9922 + }, + { + "start": 24763.79, + "end": 24766.69, + "probability": 0.6414 + }, + { + "start": 24767.27, + "end": 24770.51, + "probability": 0.9946 + }, + { + "start": 24771.05, + "end": 24773.91, + "probability": 0.9914 + }, + { + "start": 24774.97, + "end": 24777.09, + "probability": 0.9125 + }, + { + "start": 24777.49, + "end": 24779.07, + "probability": 0.7987 + }, + { + "start": 24779.19, + "end": 24779.83, + "probability": 0.8605 + }, + { + "start": 24780.39, + "end": 24783.55, + "probability": 0.9929 + }, + { + "start": 24783.89, + "end": 24786.71, + "probability": 0.971 + }, + { + "start": 24787.79, + "end": 24788.75, + "probability": 0.8372 + }, + { + "start": 24789.33, + "end": 24791.47, + "probability": 0.9714 + }, + { + "start": 24791.71, + "end": 24795.09, + "probability": 0.9083 + }, + { + "start": 24795.59, + "end": 24797.81, + "probability": 0.9406 + }, + { + "start": 24798.39, + "end": 24800.31, + "probability": 0.9905 + }, + { + "start": 24800.31, + "end": 24803.25, + "probability": 0.9962 + }, + { + "start": 24803.97, + "end": 24806.35, + "probability": 0.7722 + }, + { + "start": 24806.77, + "end": 24811.87, + "probability": 0.9481 + }, + { + "start": 24812.61, + "end": 24815.69, + "probability": 0.9984 + }, + { + "start": 24815.69, + "end": 24820.89, + "probability": 0.9984 + }, + { + "start": 24820.89, + "end": 24825.21, + "probability": 0.8968 + }, + { + "start": 24825.87, + "end": 24828.49, + "probability": 0.6779 + }, + { + "start": 24829.23, + "end": 24831.69, + "probability": 0.9841 + }, + { + "start": 24832.21, + "end": 24834.93, + "probability": 0.9792 + }, + { + "start": 24835.67, + "end": 24836.91, + "probability": 0.996 + }, + { + "start": 24837.93, + "end": 24838.19, + "probability": 0.6852 + }, + { + "start": 24838.39, + "end": 24840.33, + "probability": 0.9787 + }, + { + "start": 24840.39, + "end": 24840.91, + "probability": 0.6575 + }, + { + "start": 24840.99, + "end": 24841.41, + "probability": 0.9098 + }, + { + "start": 24841.81, + "end": 24843.25, + "probability": 0.9722 + }, + { + "start": 24843.41, + "end": 24843.93, + "probability": 0.4844 + }, + { + "start": 24844.11, + "end": 24844.49, + "probability": 0.7294 + }, + { + "start": 24844.65, + "end": 24844.89, + "probability": 0.9223 + }, + { + "start": 24845.33, + "end": 24845.89, + "probability": 0.9642 + }, + { + "start": 24845.93, + "end": 24846.51, + "probability": 0.973 + }, + { + "start": 24846.97, + "end": 24847.43, + "probability": 0.7776 + }, + { + "start": 24847.47, + "end": 24848.37, + "probability": 0.856 + }, + { + "start": 24848.45, + "end": 24849.21, + "probability": 0.5634 + }, + { + "start": 24849.81, + "end": 24852.77, + "probability": 0.9361 + }, + { + "start": 24852.77, + "end": 24856.95, + "probability": 0.9839 + }, + { + "start": 24860.87, + "end": 24863.57, + "probability": 0.6648 + }, + { + "start": 24864.41, + "end": 24869.4, + "probability": 0.9033 + }, + { + "start": 24869.77, + "end": 24875.29, + "probability": 0.8047 + }, + { + "start": 24875.29, + "end": 24879.75, + "probability": 0.881 + }, + { + "start": 24880.79, + "end": 24885.47, + "probability": 0.9304 + }, + { + "start": 24885.47, + "end": 24889.99, + "probability": 0.9814 + }, + { + "start": 24890.87, + "end": 24893.83, + "probability": 0.9988 + }, + { + "start": 24893.83, + "end": 24897.33, + "probability": 0.9514 + }, + { + "start": 24897.91, + "end": 24900.17, + "probability": 0.9156 + }, + { + "start": 24900.43, + "end": 24901.65, + "probability": 0.9429 + }, + { + "start": 24902.29, + "end": 24904.97, + "probability": 0.9046 + }, + { + "start": 24905.53, + "end": 24908.99, + "probability": 0.9817 + }, + { + "start": 24908.99, + "end": 24912.91, + "probability": 0.8867 + }, + { + "start": 24913.07, + "end": 24913.27, + "probability": 0.7272 + }, + { + "start": 24914.61, + "end": 24916.85, + "probability": 0.7191 + }, + { + "start": 24916.93, + "end": 24922.75, + "probability": 0.8798 + }, + { + "start": 24923.53, + "end": 24924.47, + "probability": 0.7808 + }, + { + "start": 24925.19, + "end": 24929.83, + "probability": 0.9731 + }, + { + "start": 24929.95, + "end": 24931.57, + "probability": 0.7257 + }, + { + "start": 24931.61, + "end": 24933.21, + "probability": 0.7577 + }, + { + "start": 24933.63, + "end": 24935.09, + "probability": 0.7434 + }, + { + "start": 24936.07, + "end": 24940.99, + "probability": 0.666 + }, + { + "start": 24940.99, + "end": 24942.98, + "probability": 0.7125 + }, + { + "start": 24943.41, + "end": 24947.41, + "probability": 0.9253 + }, + { + "start": 24948.95, + "end": 24954.51, + "probability": 0.6623 + }, + { + "start": 24954.59, + "end": 24955.03, + "probability": 0.3341 + }, + { + "start": 24955.15, + "end": 24955.23, + "probability": 0.4906 + }, + { + "start": 24970.43, + "end": 24970.63, + "probability": 0.5504 + }, + { + "start": 24970.63, + "end": 24970.63, + "probability": 0.0975 + }, + { + "start": 24970.63, + "end": 24971.83, + "probability": 0.3835 + }, + { + "start": 24972.59, + "end": 24973.55, + "probability": 0.3383 + }, + { + "start": 24973.73, + "end": 24975.87, + "probability": 0.9688 + }, + { + "start": 24976.15, + "end": 24978.91, + "probability": 0.6813 + }, + { + "start": 24979.79, + "end": 24982.75, + "probability": 0.9175 + }, + { + "start": 24982.83, + "end": 24984.77, + "probability": 0.9364 + }, + { + "start": 24984.85, + "end": 24985.73, + "probability": 0.7305 + }, + { + "start": 24985.87, + "end": 24986.43, + "probability": 0.4908 + }, + { + "start": 24986.55, + "end": 24986.91, + "probability": 0.797 + }, + { + "start": 24987.01, + "end": 24987.63, + "probability": 0.8887 + }, + { + "start": 24987.69, + "end": 24988.23, + "probability": 0.9605 + }, + { + "start": 24988.31, + "end": 24989.07, + "probability": 0.8949 + }, + { + "start": 24989.19, + "end": 24989.41, + "probability": 0.6012 + }, + { + "start": 24989.47, + "end": 24990.33, + "probability": 0.9461 + }, + { + "start": 24990.55, + "end": 24991.25, + "probability": 0.2976 + }, + { + "start": 24992.39, + "end": 24993.11, + "probability": 0.5744 + }, + { + "start": 24993.45, + "end": 24994.05, + "probability": 0.8433 + }, + { + "start": 24994.29, + "end": 24995.03, + "probability": 0.7552 + }, + { + "start": 25015.11, + "end": 25015.25, + "probability": 0.0481 + }, + { + "start": 25015.25, + "end": 25017.71, + "probability": 0.6233 + }, + { + "start": 25017.93, + "end": 25021.25, + "probability": 0.9534 + }, + { + "start": 25022.11, + "end": 25025.74, + "probability": 0.8933 + }, + { + "start": 25026.17, + "end": 25028.21, + "probability": 0.989 + }, + { + "start": 25028.59, + "end": 25033.31, + "probability": 0.986 + }, + { + "start": 25034.49, + "end": 25036.57, + "probability": 0.4373 + }, + { + "start": 25037.91, + "end": 25041.53, + "probability": 0.5029 + }, + { + "start": 25042.57, + "end": 25042.63, + "probability": 0.0315 + }, + { + "start": 25042.63, + "end": 25042.63, + "probability": 0.3931 + }, + { + "start": 25042.63, + "end": 25042.63, + "probability": 0.1214 + }, + { + "start": 25042.63, + "end": 25043.85, + "probability": 0.8541 + }, + { + "start": 25043.97, + "end": 25044.61, + "probability": 0.6867 + }, + { + "start": 25044.71, + "end": 25046.25, + "probability": 0.7859 + }, + { + "start": 25046.99, + "end": 25050.31, + "probability": 0.74 + }, + { + "start": 25050.85, + "end": 25052.79, + "probability": 0.9229 + }, + { + "start": 25053.03, + "end": 25054.6, + "probability": 0.9246 + }, + { + "start": 25068.45, + "end": 25069.53, + "probability": 0.6155 + }, + { + "start": 25070.57, + "end": 25072.41, + "probability": 0.7048 + }, + { + "start": 25074.25, + "end": 25079.43, + "probability": 0.9969 + }, + { + "start": 25079.43, + "end": 25086.05, + "probability": 0.9985 + }, + { + "start": 25088.53, + "end": 25089.79, + "probability": 0.9609 + }, + { + "start": 25090.47, + "end": 25090.83, + "probability": 0.4941 + }, + { + "start": 25092.37, + "end": 25095.25, + "probability": 0.7057 + }, + { + "start": 25095.93, + "end": 25097.03, + "probability": 0.8525 + }, + { + "start": 25097.83, + "end": 25099.75, + "probability": 0.7348 + }, + { + "start": 25100.45, + "end": 25104.61, + "probability": 0.8077 + }, + { + "start": 25105.51, + "end": 25108.62, + "probability": 0.9756 + }, + { + "start": 25110.53, + "end": 25113.79, + "probability": 0.9564 + }, + { + "start": 25114.25, + "end": 25120.71, + "probability": 0.954 + }, + { + "start": 25121.45, + "end": 25122.31, + "probability": 0.8958 + }, + { + "start": 25122.65, + "end": 25128.27, + "probability": 0.993 + }, + { + "start": 25129.27, + "end": 25130.66, + "probability": 0.8682 + }, + { + "start": 25132.21, + "end": 25136.23, + "probability": 0.9653 + }, + { + "start": 25136.81, + "end": 25139.33, + "probability": 0.9711 + }, + { + "start": 25141.57, + "end": 25146.85, + "probability": 0.8937 + }, + { + "start": 25146.85, + "end": 25150.75, + "probability": 0.9989 + }, + { + "start": 25151.87, + "end": 25158.33, + "probability": 0.9655 + }, + { + "start": 25158.33, + "end": 25164.31, + "probability": 0.9924 + }, + { + "start": 25165.23, + "end": 25165.89, + "probability": 0.413 + }, + { + "start": 25166.87, + "end": 25167.77, + "probability": 0.6392 + }, + { + "start": 25180.59, + "end": 25181.39, + "probability": 0.688 + }, + { + "start": 25182.85, + "end": 25184.35, + "probability": 0.6738 + }, + { + "start": 25184.49, + "end": 25186.07, + "probability": 0.8297 + }, + { + "start": 25187.03, + "end": 25189.21, + "probability": 0.9777 + }, + { + "start": 25190.15, + "end": 25197.61, + "probability": 0.9973 + }, + { + "start": 25198.01, + "end": 25198.67, + "probability": 0.6014 + }, + { + "start": 25199.95, + "end": 25201.73, + "probability": 0.6535 + }, + { + "start": 25203.27, + "end": 25207.27, + "probability": 0.8606 + }, + { + "start": 25207.31, + "end": 25209.45, + "probability": 0.7559 + }, + { + "start": 25209.95, + "end": 25213.23, + "probability": 0.9819 + }, + { + "start": 25213.23, + "end": 25219.27, + "probability": 0.9794 + }, + { + "start": 25220.21, + "end": 25220.66, + "probability": 0.9285 + }, + { + "start": 25221.59, + "end": 25224.89, + "probability": 0.7326 + }, + { + "start": 25225.61, + "end": 25226.75, + "probability": 0.9928 + }, + { + "start": 25226.83, + "end": 25227.34, + "probability": 0.8609 + }, + { + "start": 25228.11, + "end": 25230.29, + "probability": 0.6493 + }, + { + "start": 25231.49, + "end": 25232.65, + "probability": 0.9919 + }, + { + "start": 25232.79, + "end": 25235.57, + "probability": 0.9629 + }, + { + "start": 25236.01, + "end": 25238.49, + "probability": 0.7022 + }, + { + "start": 25238.91, + "end": 25240.67, + "probability": 0.9603 + }, + { + "start": 25241.03, + "end": 25244.33, + "probability": 0.9923 + }, + { + "start": 25244.53, + "end": 25245.39, + "probability": 0.8799 + }, + { + "start": 25245.65, + "end": 25249.99, + "probability": 0.9813 + }, + { + "start": 25250.43, + "end": 25253.85, + "probability": 0.983 + }, + { + "start": 25254.63, + "end": 25256.35, + "probability": 0.8386 + }, + { + "start": 25257.09, + "end": 25259.97, + "probability": 0.9688 + }, + { + "start": 25260.03, + "end": 25265.03, + "probability": 0.9019 + }, + { + "start": 25265.53, + "end": 25267.31, + "probability": 0.9124 + }, + { + "start": 25267.89, + "end": 25275.87, + "probability": 0.9158 + }, + { + "start": 25276.15, + "end": 25276.35, + "probability": 0.5226 + }, + { + "start": 25277.01, + "end": 25279.23, + "probability": 0.9754 + }, + { + "start": 25279.69, + "end": 25283.01, + "probability": 0.877 + }, + { + "start": 25285.79, + "end": 25287.65, + "probability": 0.974 + }, + { + "start": 25288.19, + "end": 25289.59, + "probability": 0.9379 + }, + { + "start": 25306.61, + "end": 25307.45, + "probability": 0.3756 + }, + { + "start": 25308.53, + "end": 25311.39, + "probability": 0.6336 + }, + { + "start": 25316.47, + "end": 25319.67, + "probability": 0.8543 + }, + { + "start": 25319.91, + "end": 25321.39, + "probability": 0.8195 + }, + { + "start": 25321.45, + "end": 25322.09, + "probability": 0.8318 + }, + { + "start": 25322.23, + "end": 25322.53, + "probability": 0.7709 + }, + { + "start": 25322.71, + "end": 25325.21, + "probability": 0.944 + }, + { + "start": 25327.21, + "end": 25330.31, + "probability": 0.9961 + }, + { + "start": 25331.59, + "end": 25332.31, + "probability": 0.7593 + }, + { + "start": 25333.43, + "end": 25336.35, + "probability": 0.7051 + }, + { + "start": 25337.55, + "end": 25337.93, + "probability": 0.6194 + }, + { + "start": 25338.95, + "end": 25339.65, + "probability": 0.8439 + }, + { + "start": 25341.31, + "end": 25345.21, + "probability": 0.9455 + }, + { + "start": 25345.21, + "end": 25349.51, + "probability": 0.7468 + }, + { + "start": 25349.75, + "end": 25350.53, + "probability": 0.9799 + }, + { + "start": 25352.13, + "end": 25352.91, + "probability": 0.7546 + }, + { + "start": 25356.25, + "end": 25360.99, + "probability": 0.8514 + }, + { + "start": 25362.15, + "end": 25367.17, + "probability": 0.9915 + }, + { + "start": 25368.71, + "end": 25371.91, + "probability": 0.9975 + }, + { + "start": 25373.43, + "end": 25374.06, + "probability": 0.7213 + }, + { + "start": 25374.57, + "end": 25376.19, + "probability": 0.9043 + }, + { + "start": 25376.25, + "end": 25378.75, + "probability": 0.9871 + }, + { + "start": 25379.43, + "end": 25384.45, + "probability": 0.9516 + }, + { + "start": 25385.33, + "end": 25387.21, + "probability": 0.9277 + }, + { + "start": 25387.71, + "end": 25389.79, + "probability": 0.7932 + }, + { + "start": 25393.49, + "end": 25395.36, + "probability": 0.901 + }, + { + "start": 25397.31, + "end": 25400.37, + "probability": 0.9875 + }, + { + "start": 25400.89, + "end": 25405.47, + "probability": 0.8923 + }, + { + "start": 25405.69, + "end": 25407.83, + "probability": 0.9158 + }, + { + "start": 25408.37, + "end": 25409.95, + "probability": 0.9946 + }, + { + "start": 25410.07, + "end": 25410.67, + "probability": 0.3306 + }, + { + "start": 25411.51, + "end": 25412.01, + "probability": 0.3216 + }, + { + "start": 25412.13, + "end": 25414.41, + "probability": 0.9971 + }, + { + "start": 25414.41, + "end": 25418.57, + "probability": 0.9837 + }, + { + "start": 25419.57, + "end": 25420.39, + "probability": 0.8578 + }, + { + "start": 25420.93, + "end": 25422.05, + "probability": 0.8729 + }, + { + "start": 25422.75, + "end": 25427.99, + "probability": 0.9935 + }, + { + "start": 25428.73, + "end": 25430.83, + "probability": 0.9713 + }, + { + "start": 25431.47, + "end": 25433.83, + "probability": 0.936 + }, + { + "start": 25434.41, + "end": 25436.41, + "probability": 0.9829 + }, + { + "start": 25438.27, + "end": 25439.37, + "probability": 0.9602 + }, + { + "start": 25439.47, + "end": 25439.97, + "probability": 0.7761 + }, + { + "start": 25439.97, + "end": 25440.15, + "probability": 0.5891 + }, + { + "start": 25440.21, + "end": 25441.23, + "probability": 0.7436 + }, + { + "start": 25441.49, + "end": 25444.05, + "probability": 0.9925 + }, + { + "start": 25444.43, + "end": 25450.03, + "probability": 0.9731 + }, + { + "start": 25450.43, + "end": 25452.12, + "probability": 0.921 + }, + { + "start": 25453.63, + "end": 25455.09, + "probability": 0.6545 + }, + { + "start": 25455.23, + "end": 25455.99, + "probability": 0.9109 + }, + { + "start": 25456.35, + "end": 25456.93, + "probability": 0.4997 + }, + { + "start": 25457.09, + "end": 25457.79, + "probability": 0.8692 + }, + { + "start": 25457.89, + "end": 25459.49, + "probability": 0.7253 + }, + { + "start": 25459.55, + "end": 25461.83, + "probability": 0.2073 + }, + { + "start": 25462.09, + "end": 25462.09, + "probability": 0.2167 + }, + { + "start": 25462.09, + "end": 25468.01, + "probability": 0.9826 + }, + { + "start": 25468.21, + "end": 25469.05, + "probability": 0.6769 + }, + { + "start": 25469.63, + "end": 25471.79, + "probability": 0.9307 + }, + { + "start": 25473.27, + "end": 25474.75, + "probability": 0.9702 + }, + { + "start": 25475.89, + "end": 25476.55, + "probability": 0.6845 + }, + { + "start": 25476.61, + "end": 25479.72, + "probability": 0.9177 + }, + { + "start": 25480.69, + "end": 25484.37, + "probability": 0.9666 + }, + { + "start": 25484.41, + "end": 25487.43, + "probability": 0.9265 + }, + { + "start": 25487.53, + "end": 25487.87, + "probability": 0.8704 + }, + { + "start": 25488.73, + "end": 25490.05, + "probability": 0.9878 + }, + { + "start": 25490.13, + "end": 25492.13, + "probability": 0.9058 + }, + { + "start": 25492.75, + "end": 25493.3, + "probability": 0.6521 + }, + { + "start": 25496.01, + "end": 25497.67, + "probability": 0.9604 + }, + { + "start": 25499.21, + "end": 25499.27, + "probability": 0.8064 + }, + { + "start": 25499.37, + "end": 25503.55, + "probability": 0.9324 + }, + { + "start": 25504.31, + "end": 25505.83, + "probability": 0.7797 + }, + { + "start": 25505.89, + "end": 25507.97, + "probability": 0.8463 + }, + { + "start": 25508.13, + "end": 25509.89, + "probability": 0.677 + }, + { + "start": 25511.09, + "end": 25512.26, + "probability": 0.932 + }, + { + "start": 25513.31, + "end": 25518.01, + "probability": 0.9446 + }, + { + "start": 25519.05, + "end": 25520.39, + "probability": 0.9805 + }, + { + "start": 25521.69, + "end": 25522.31, + "probability": 0.6748 + }, + { + "start": 25522.41, + "end": 25522.9, + "probability": 0.8699 + }, + { + "start": 25523.25, + "end": 25524.79, + "probability": 0.9878 + }, + { + "start": 25526.17, + "end": 25529.45, + "probability": 0.9533 + }, + { + "start": 25529.97, + "end": 25530.43, + "probability": 0.8079 + }, + { + "start": 25530.71, + "end": 25531.25, + "probability": 0.6496 + }, + { + "start": 25532.31, + "end": 25534.33, + "probability": 0.9515 + }, + { + "start": 25534.41, + "end": 25536.67, + "probability": 0.813 + }, + { + "start": 25548.29, + "end": 25549.05, + "probability": 0.7168 + }, + { + "start": 25549.93, + "end": 25550.57, + "probability": 0.8136 + }, + { + "start": 25558.45, + "end": 25558.47, + "probability": 0.1239 + }, + { + "start": 25558.47, + "end": 25561.23, + "probability": 0.6465 + }, + { + "start": 25562.17, + "end": 25567.35, + "probability": 0.8842 + }, + { + "start": 25568.37, + "end": 25569.41, + "probability": 0.7525 + }, + { + "start": 25569.53, + "end": 25571.65, + "probability": 0.73 + }, + { + "start": 25571.87, + "end": 25573.69, + "probability": 0.958 + }, + { + "start": 25574.46, + "end": 25579.55, + "probability": 0.9208 + }, + { + "start": 25581.11, + "end": 25582.91, + "probability": 0.6198 + }, + { + "start": 25583.29, + "end": 25584.13, + "probability": 0.8819 + }, + { + "start": 25584.17, + "end": 25585.77, + "probability": 0.8083 + }, + { + "start": 25585.85, + "end": 25587.27, + "probability": 0.978 + }, + { + "start": 25588.17, + "end": 25590.49, + "probability": 0.9905 + }, + { + "start": 25590.67, + "end": 25592.03, + "probability": 0.846 + }, + { + "start": 25592.19, + "end": 25593.19, + "probability": 0.8208 + }, + { + "start": 25593.25, + "end": 25593.95, + "probability": 0.9118 + }, + { + "start": 25594.09, + "end": 25595.05, + "probability": 0.97 + }, + { + "start": 25595.31, + "end": 25595.99, + "probability": 0.9873 + }, + { + "start": 25596.07, + "end": 25596.89, + "probability": 0.8894 + }, + { + "start": 25597.31, + "end": 25598.59, + "probability": 0.9861 + }, + { + "start": 25598.81, + "end": 25599.21, + "probability": 0.5037 + }, + { + "start": 25599.23, + "end": 25599.59, + "probability": 0.8146 + }, + { + "start": 25599.73, + "end": 25601.91, + "probability": 0.9546 + }, + { + "start": 25603.31, + "end": 25604.97, + "probability": 0.8708 + }, + { + "start": 25605.31, + "end": 25612.59, + "probability": 0.987 + }, + { + "start": 25613.29, + "end": 25616.03, + "probability": 0.939 + }, + { + "start": 25616.99, + "end": 25619.59, + "probability": 0.6953 + }, + { + "start": 25620.43, + "end": 25621.86, + "probability": 0.9841 + }, + { + "start": 25621.97, + "end": 25623.43, + "probability": 0.9932 + }, + { + "start": 25624.47, + "end": 25627.29, + "probability": 0.9823 + }, + { + "start": 25629.23, + "end": 25629.69, + "probability": 0.3805 + }, + { + "start": 25630.21, + "end": 25630.91, + "probability": 0.6326 + }, + { + "start": 25630.93, + "end": 25634.15, + "probability": 0.946 + }, + { + "start": 25634.25, + "end": 25636.11, + "probability": 0.9165 + }, + { + "start": 25636.17, + "end": 25638.57, + "probability": 0.9722 + }, + { + "start": 25639.87, + "end": 25643.23, + "probability": 0.6528 + }, + { + "start": 25644.53, + "end": 25649.01, + "probability": 0.9748 + }, + { + "start": 25649.93, + "end": 25652.77, + "probability": 0.9484 + }, + { + "start": 25653.39, + "end": 25656.77, + "probability": 0.9701 + }, + { + "start": 25658.15, + "end": 25661.07, + "probability": 0.9852 + }, + { + "start": 25661.61, + "end": 25663.91, + "probability": 0.9991 + }, + { + "start": 25664.43, + "end": 25665.85, + "probability": 0.9327 + }, + { + "start": 25666.37, + "end": 25669.79, + "probability": 0.9776 + }, + { + "start": 25670.39, + "end": 25673.95, + "probability": 0.9855 + }, + { + "start": 25674.53, + "end": 25678.49, + "probability": 0.9646 + }, + { + "start": 25678.71, + "end": 25679.79, + "probability": 0.559 + }, + { + "start": 25680.01, + "end": 25682.47, + "probability": 0.8851 + }, + { + "start": 25683.41, + "end": 25684.07, + "probability": 0.8885 + }, + { + "start": 25684.83, + "end": 25687.07, + "probability": 0.9629 + }, + { + "start": 25688.07, + "end": 25691.87, + "probability": 0.9937 + }, + { + "start": 25691.87, + "end": 25694.39, + "probability": 0.9845 + }, + { + "start": 25695.07, + "end": 25696.63, + "probability": 0.9846 + }, + { + "start": 25697.15, + "end": 25699.83, + "probability": 0.9337 + }, + { + "start": 25699.91, + "end": 25701.83, + "probability": 0.8781 + }, + { + "start": 25702.47, + "end": 25707.73, + "probability": 0.9922 + }, + { + "start": 25708.81, + "end": 25715.51, + "probability": 0.9917 + }, + { + "start": 25716.39, + "end": 25719.01, + "probability": 0.8538 + }, + { + "start": 25720.19, + "end": 25721.91, + "probability": 0.9436 + }, + { + "start": 25722.63, + "end": 25723.65, + "probability": 0.9669 + }, + { + "start": 25724.37, + "end": 25726.01, + "probability": 0.9787 + }, + { + "start": 25726.55, + "end": 25728.83, + "probability": 0.9696 + }, + { + "start": 25729.61, + "end": 25730.91, + "probability": 0.9338 + }, + { + "start": 25732.01, + "end": 25734.75, + "probability": 0.999 + }, + { + "start": 25735.29, + "end": 25740.89, + "probability": 0.9976 + }, + { + "start": 25741.41, + "end": 25747.17, + "probability": 0.9968 + }, + { + "start": 25747.93, + "end": 25751.81, + "probability": 0.973 + }, + { + "start": 25752.31, + "end": 25755.63, + "probability": 0.9882 + }, + { + "start": 25756.11, + "end": 25758.89, + "probability": 0.9587 + }, + { + "start": 25759.33, + "end": 25761.75, + "probability": 0.9927 + }, + { + "start": 25761.83, + "end": 25762.21, + "probability": 0.8495 + }, + { + "start": 25763.13, + "end": 25765.07, + "probability": 0.877 + }, + { + "start": 25765.55, + "end": 25767.55, + "probability": 0.9836 + }, + { + "start": 25771.11, + "end": 25771.55, + "probability": 0.3121 + }, + { + "start": 25771.79, + "end": 25777.23, + "probability": 0.9357 + }, + { + "start": 25778.17, + "end": 25781.19, + "probability": 0.9147 + }, + { + "start": 25781.59, + "end": 25782.19, + "probability": 0.811 + }, + { + "start": 25783.01, + "end": 25786.17, + "probability": 0.9658 + }, + { + "start": 25786.23, + "end": 25788.07, + "probability": 0.7143 + }, + { + "start": 25788.55, + "end": 25789.91, + "probability": 0.5127 + }, + { + "start": 25790.33, + "end": 25791.71, + "probability": 0.7811 + }, + { + "start": 25795.85, + "end": 25797.83, + "probability": 0.8475 + }, + { + "start": 25798.63, + "end": 25799.43, + "probability": 0.8271 + }, + { + "start": 25800.33, + "end": 25801.93, + "probability": 0.5074 + }, + { + "start": 25804.49, + "end": 25807.75, + "probability": 0.5859 + }, + { + "start": 25807.95, + "end": 25809.19, + "probability": 0.9058 + }, + { + "start": 25809.65, + "end": 25812.69, + "probability": 0.8037 + }, + { + "start": 25813.77, + "end": 25816.45, + "probability": 0.7921 + }, + { + "start": 25818.21, + "end": 25820.37, + "probability": 0.9607 + }, + { + "start": 25821.55, + "end": 25824.63, + "probability": 0.9165 + }, + { + "start": 25825.81, + "end": 25827.57, + "probability": 0.9919 + }, + { + "start": 25828.79, + "end": 25830.87, + "probability": 0.9576 + }, + { + "start": 25831.35, + "end": 25832.11, + "probability": 0.5235 + }, + { + "start": 25832.23, + "end": 25834.21, + "probability": 0.6667 + }, + { + "start": 25834.77, + "end": 25835.39, + "probability": 0.995 + }, + { + "start": 25836.67, + "end": 25838.11, + "probability": 0.9723 + }, + { + "start": 25839.07, + "end": 25842.05, + "probability": 0.9908 + }, + { + "start": 25842.63, + "end": 25845.93, + "probability": 0.99 + }, + { + "start": 25846.71, + "end": 25850.53, + "probability": 0.9894 + }, + { + "start": 25851.91, + "end": 25853.95, + "probability": 0.6745 + }, + { + "start": 25854.53, + "end": 25857.53, + "probability": 0.8298 + }, + { + "start": 25858.59, + "end": 25861.95, + "probability": 0.9504 + }, + { + "start": 25862.19, + "end": 25865.87, + "probability": 0.9604 + }, + { + "start": 25866.09, + "end": 25869.81, + "probability": 0.9969 + }, + { + "start": 25870.37, + "end": 25871.55, + "probability": 0.9906 + }, + { + "start": 25872.87, + "end": 25875.01, + "probability": 0.9729 + }, + { + "start": 25875.33, + "end": 25876.41, + "probability": 0.8776 + }, + { + "start": 25876.51, + "end": 25877.15, + "probability": 0.8671 + }, + { + "start": 25877.83, + "end": 25882.71, + "probability": 0.9881 + }, + { + "start": 25883.73, + "end": 25885.83, + "probability": 0.9266 + }, + { + "start": 25885.95, + "end": 25890.41, + "probability": 0.9775 + }, + { + "start": 25891.47, + "end": 25894.69, + "probability": 0.9928 + }, + { + "start": 25895.65, + "end": 25896.07, + "probability": 0.7368 + }, + { + "start": 25896.73, + "end": 25899.09, + "probability": 0.7236 + }, + { + "start": 25899.65, + "end": 25902.59, + "probability": 0.9762 + }, + { + "start": 25902.59, + "end": 25904.81, + "probability": 0.6824 + }, + { + "start": 25905.07, + "end": 25906.55, + "probability": 0.7535 + }, + { + "start": 25907.27, + "end": 25909.01, + "probability": 0.6631 + }, + { + "start": 25909.11, + "end": 25911.67, + "probability": 0.9821 + }, + { + "start": 25913.41, + "end": 25917.61, + "probability": 0.9782 + }, + { + "start": 25917.61, + "end": 25921.97, + "probability": 0.9831 + }, + { + "start": 25923.91, + "end": 25932.43, + "probability": 0.9806 + }, + { + "start": 25933.45, + "end": 25936.11, + "probability": 0.9924 + }, + { + "start": 25936.69, + "end": 25939.27, + "probability": 0.9435 + }, + { + "start": 25940.87, + "end": 25942.05, + "probability": 0.4999 + }, + { + "start": 25942.67, + "end": 25947.57, + "probability": 0.9851 + }, + { + "start": 25948.29, + "end": 25950.75, + "probability": 0.9946 + }, + { + "start": 25951.83, + "end": 25953.57, + "probability": 0.5017 + }, + { + "start": 25953.95, + "end": 25956.11, + "probability": 0.7542 + }, + { + "start": 25956.97, + "end": 25957.63, + "probability": 0.6837 + }, + { + "start": 25958.21, + "end": 25961.93, + "probability": 0.9205 + }, + { + "start": 25963.11, + "end": 25966.89, + "probability": 0.9702 + }, + { + "start": 25966.97, + "end": 25968.64, + "probability": 0.9682 + }, + { + "start": 25969.43, + "end": 25971.15, + "probability": 0.2897 + }, + { + "start": 25971.15, + "end": 25971.63, + "probability": 0.5147 + }, + { + "start": 25972.01, + "end": 25972.67, + "probability": 0.677 + }, + { + "start": 25973.87, + "end": 25975.13, + "probability": 0.9187 + }, + { + "start": 25976.63, + "end": 25980.11, + "probability": 0.0912 + }, + { + "start": 25980.27, + "end": 25980.89, + "probability": 0.8136 + }, + { + "start": 25981.73, + "end": 25982.51, + "probability": 0.8875 + }, + { + "start": 25982.69, + "end": 25984.43, + "probability": 0.9349 + }, + { + "start": 25984.53, + "end": 25985.54, + "probability": 0.874 + }, + { + "start": 25987.69, + "end": 25987.83, + "probability": 0.0047 + }, + { + "start": 25987.83, + "end": 25988.95, + "probability": 0.9424 + }, + { + "start": 25990.36, + "end": 25992.39, + "probability": 0.311 + }, + { + "start": 25996.95, + "end": 25997.07, + "probability": 0.4932 + }, + { + "start": 25997.21, + "end": 25997.21, + "probability": 0.3707 + }, + { + "start": 25997.21, + "end": 25997.83, + "probability": 0.8034 + }, + { + "start": 25997.91, + "end": 25999.17, + "probability": 0.9543 + }, + { + "start": 25999.37, + "end": 26000.54, + "probability": 0.5953 + }, + { + "start": 26001.47, + "end": 26006.85, + "probability": 0.4576 + }, + { + "start": 26006.85, + "end": 26007.19, + "probability": 0.5161 + }, + { + "start": 26007.95, + "end": 26010.15, + "probability": 0.7633 + }, + { + "start": 26010.91, + "end": 26010.91, + "probability": 0.5339 + }, + { + "start": 26011.55, + "end": 26011.55, + "probability": 0.4776 + }, + { + "start": 26011.55, + "end": 26011.93, + "probability": 0.2847 + }, + { + "start": 26011.93, + "end": 26015.53, + "probability": 0.5433 + }, + { + "start": 26016.33, + "end": 26017.27, + "probability": 0.6809 + }, + { + "start": 26017.49, + "end": 26018.01, + "probability": 0.6024 + }, + { + "start": 26018.03, + "end": 26018.71, + "probability": 0.7597 + }, + { + "start": 26038.33, + "end": 26040.73, + "probability": 0.3454 + }, + { + "start": 26040.73, + "end": 26040.89, + "probability": 0.0168 + }, + { + "start": 26040.89, + "end": 26040.89, + "probability": 0.2796 + }, + { + "start": 26040.93, + "end": 26042.51, + "probability": 0.087 + }, + { + "start": 26043.47, + "end": 26046.11, + "probability": 0.6923 + }, + { + "start": 26046.77, + "end": 26048.72, + "probability": 0.9961 + }, + { + "start": 26049.37, + "end": 26052.97, + "probability": 0.8117 + }, + { + "start": 26053.83, + "end": 26053.83, + "probability": 0.0381 + }, + { + "start": 26053.83, + "end": 26054.65, + "probability": 0.7136 + }, + { + "start": 26055.21, + "end": 26057.27, + "probability": 0.8896 + }, + { + "start": 26059.45, + "end": 26059.45, + "probability": 0.6203 + }, + { + "start": 26059.45, + "end": 26062.27, + "probability": 0.849 + }, + { + "start": 26073.49, + "end": 26073.89, + "probability": 0.1155 + }, + { + "start": 26074.05, + "end": 26074.35, + "probability": 0.4174 + }, + { + "start": 26076.41, + "end": 26077.29, + "probability": 0.8763 + }, + { + "start": 26078.57, + "end": 26081.73, + "probability": 0.738 + }, + { + "start": 26084.5, + "end": 26089.01, + "probability": 0.9551 + }, + { + "start": 26090.13, + "end": 26091.99, + "probability": 0.9701 + }, + { + "start": 26092.65, + "end": 26094.49, + "probability": 0.9202 + }, + { + "start": 26095.05, + "end": 26100.37, + "probability": 0.9976 + }, + { + "start": 26102.35, + "end": 26102.73, + "probability": 0.7591 + }, + { + "start": 26104.43, + "end": 26107.93, + "probability": 0.9546 + }, + { + "start": 26108.39, + "end": 26108.93, + "probability": 0.7837 + }, + { + "start": 26113.03, + "end": 26114.45, + "probability": 0.4969 + }, + { + "start": 26115.07, + "end": 26117.25, + "probability": 0.9865 + }, + { + "start": 26117.59, + "end": 26118.21, + "probability": 0.8638 + }, + { + "start": 26118.27, + "end": 26119.09, + "probability": 0.9468 + }, + { + "start": 26120.57, + "end": 26122.85, + "probability": 0.9453 + }, + { + "start": 26123.49, + "end": 26125.17, + "probability": 0.9755 + }, + { + "start": 26126.09, + "end": 26128.45, + "probability": 0.9396 + }, + { + "start": 26130.07, + "end": 26132.47, + "probability": 0.8241 + }, + { + "start": 26133.05, + "end": 26133.73, + "probability": 0.7338 + }, + { + "start": 26134.75, + "end": 26136.51, + "probability": 0.7826 + }, + { + "start": 26138.27, + "end": 26140.35, + "probability": 0.652 + }, + { + "start": 26140.43, + "end": 26141.53, + "probability": 0.9932 + }, + { + "start": 26142.65, + "end": 26145.71, + "probability": 0.9204 + }, + { + "start": 26147.29, + "end": 26147.81, + "probability": 0.7134 + }, + { + "start": 26149.21, + "end": 26149.99, + "probability": 0.9838 + }, + { + "start": 26151.63, + "end": 26153.47, + "probability": 0.3746 + }, + { + "start": 26154.21, + "end": 26157.81, + "probability": 0.9807 + }, + { + "start": 26159.69, + "end": 26160.45, + "probability": 0.86 + }, + { + "start": 26163.4, + "end": 26165.27, + "probability": 0.7035 + }, + { + "start": 26167.1, + "end": 26171.61, + "probability": 0.7133 + }, + { + "start": 26172.77, + "end": 26174.11, + "probability": 0.712 + }, + { + "start": 26175.44, + "end": 26178.59, + "probability": 0.9436 + }, + { + "start": 26180.07, + "end": 26180.78, + "probability": 0.9062 + }, + { + "start": 26182.34, + "end": 26182.78, + "probability": 0.9543 + }, + { + "start": 26184.17, + "end": 26185.88, + "probability": 0.9708 + }, + { + "start": 26188.02, + "end": 26189.1, + "probability": 0.9644 + }, + { + "start": 26191.76, + "end": 26191.98, + "probability": 0.2157 + }, + { + "start": 26192.12, + "end": 26193.0, + "probability": 0.748 + }, + { + "start": 26194.3, + "end": 26194.42, + "probability": 0.6807 + }, + { + "start": 26194.8, + "end": 26194.98, + "probability": 0.9526 + }, + { + "start": 26196.94, + "end": 26198.98, + "probability": 0.9618 + }, + { + "start": 26200.68, + "end": 26203.72, + "probability": 0.9658 + }, + { + "start": 26204.86, + "end": 26206.48, + "probability": 0.9519 + }, + { + "start": 26207.82, + "end": 26211.22, + "probability": 0.9954 + }, + { + "start": 26213.16, + "end": 26215.2, + "probability": 0.7574 + }, + { + "start": 26219.02, + "end": 26221.02, + "probability": 0.954 + }, + { + "start": 26221.16, + "end": 26222.72, + "probability": 0.3499 + }, + { + "start": 26222.86, + "end": 26223.9, + "probability": 0.8253 + }, + { + "start": 26224.22, + "end": 26224.82, + "probability": 0.9897 + }, + { + "start": 26224.98, + "end": 26228.2, + "probability": 0.939 + }, + { + "start": 26229.9, + "end": 26230.78, + "probability": 0.9834 + }, + { + "start": 26232.04, + "end": 26233.68, + "probability": 0.8638 + }, + { + "start": 26234.0, + "end": 26235.86, + "probability": 0.9268 + }, + { + "start": 26238.62, + "end": 26239.34, + "probability": 0.6694 + }, + { + "start": 26241.02, + "end": 26244.86, + "probability": 0.9479 + }, + { + "start": 26245.84, + "end": 26246.94, + "probability": 0.9429 + }, + { + "start": 26250.0, + "end": 26253.22, + "probability": 0.9882 + }, + { + "start": 26255.59, + "end": 26256.34, + "probability": 0.4165 + }, + { + "start": 26257.58, + "end": 26259.32, + "probability": 0.9317 + }, + { + "start": 26260.92, + "end": 26265.52, + "probability": 0.9951 + }, + { + "start": 26269.72, + "end": 26270.38, + "probability": 0.4718 + }, + { + "start": 26272.14, + "end": 26274.1, + "probability": 0.4818 + }, + { + "start": 26274.66, + "end": 26276.88, + "probability": 0.3169 + }, + { + "start": 26277.3, + "end": 26277.37, + "probability": 0.4019 + }, + { + "start": 26278.76, + "end": 26283.96, + "probability": 0.8588 + }, + { + "start": 26284.76, + "end": 26287.1, + "probability": 0.1264 + }, + { + "start": 26287.92, + "end": 26291.5, + "probability": 0.7168 + }, + { + "start": 26292.94, + "end": 26293.96, + "probability": 0.9922 + }, + { + "start": 26294.98, + "end": 26298.24, + "probability": 0.9485 + }, + { + "start": 26300.9, + "end": 26303.0, + "probability": 0.9982 + }, + { + "start": 26305.18, + "end": 26309.0, + "probability": 0.9974 + }, + { + "start": 26310.78, + "end": 26312.88, + "probability": 0.9949 + }, + { + "start": 26315.1, + "end": 26316.5, + "probability": 0.9671 + }, + { + "start": 26317.2, + "end": 26318.48, + "probability": 0.5744 + }, + { + "start": 26319.32, + "end": 26323.12, + "probability": 0.3058 + }, + { + "start": 26324.12, + "end": 26324.4, + "probability": 0.0124 + }, + { + "start": 26327.9, + "end": 26330.26, + "probability": 0.0156 + }, + { + "start": 26330.26, + "end": 26336.84, + "probability": 0.041 + }, + { + "start": 26336.84, + "end": 26336.86, + "probability": 0.0265 + }, + { + "start": 26338.8, + "end": 26339.88, + "probability": 0.366 + }, + { + "start": 26339.88, + "end": 26340.82, + "probability": 0.7097 + }, + { + "start": 26347.81, + "end": 26349.24, + "probability": 0.1331 + }, + { + "start": 26349.24, + "end": 26349.6, + "probability": 0.054 + }, + { + "start": 26350.46, + "end": 26350.56, + "probability": 0.6382 + }, + { + "start": 26352.24, + "end": 26353.6, + "probability": 0.1212 + }, + { + "start": 26355.02, + "end": 26357.24, + "probability": 0.0299 + }, + { + "start": 26358.12, + "end": 26358.78, + "probability": 0.0441 + }, + { + "start": 26359.62, + "end": 26360.16, + "probability": 0.0157 + }, + { + "start": 26360.16, + "end": 26364.28, + "probability": 0.0835 + }, + { + "start": 26365.53, + "end": 26369.4, + "probability": 0.0559 + }, + { + "start": 26369.72, + "end": 26373.46, + "probability": 0.0804 + }, + { + "start": 26373.48, + "end": 26375.48, + "probability": 0.2426 + }, + { + "start": 26375.86, + "end": 26375.86, + "probability": 0.0252 + }, + { + "start": 26376.0, + "end": 26376.0, + "probability": 0.0 + }, + { + "start": 26376.0, + "end": 26376.0, + "probability": 0.0 + }, + { + "start": 26376.0, + "end": 26376.0, + "probability": 0.0 + }, + { + "start": 26376.0, + "end": 26376.0, + "probability": 0.0 + }, + { + "start": 26376.0, + "end": 26376.0, + "probability": 0.0 + }, + { + "start": 26376.0, + "end": 26376.0, + "probability": 0.0 + }, + { + "start": 26376.0, + "end": 26376.0, + "probability": 0.0 + }, + { + "start": 26376.14, + "end": 26376.38, + "probability": 0.1772 + }, + { + "start": 26376.38, + "end": 26376.54, + "probability": 0.0428 + }, + { + "start": 26376.54, + "end": 26379.96, + "probability": 0.5362 + }, + { + "start": 26379.96, + "end": 26383.96, + "probability": 0.9943 + }, + { + "start": 26384.46, + "end": 26386.46, + "probability": 0.9295 + }, + { + "start": 26386.72, + "end": 26389.68, + "probability": 0.9558 + }, + { + "start": 26389.8, + "end": 26390.32, + "probability": 0.9703 + }, + { + "start": 26391.18, + "end": 26391.72, + "probability": 0.4453 + }, + { + "start": 26393.7, + "end": 26396.02, + "probability": 0.8726 + }, + { + "start": 26396.2, + "end": 26396.5, + "probability": 0.3159 + }, + { + "start": 26396.58, + "end": 26397.2, + "probability": 0.866 + }, + { + "start": 26400.16, + "end": 26401.4, + "probability": 0.7813 + }, + { + "start": 26402.08, + "end": 26403.66, + "probability": 0.8858 + }, + { + "start": 26405.2, + "end": 26407.78, + "probability": 0.923 + }, + { + "start": 26408.52, + "end": 26409.44, + "probability": 0.9041 + }, + { + "start": 26410.08, + "end": 26415.32, + "probability": 0.9903 + }, + { + "start": 26416.88, + "end": 26417.78, + "probability": 0.9548 + }, + { + "start": 26419.4, + "end": 26421.7, + "probability": 0.9562 + }, + { + "start": 26422.84, + "end": 26425.22, + "probability": 0.8782 + }, + { + "start": 26425.9, + "end": 26427.74, + "probability": 0.9523 + }, + { + "start": 26427.94, + "end": 26429.98, + "probability": 0.8372 + }, + { + "start": 26430.62, + "end": 26432.54, + "probability": 0.9613 + }, + { + "start": 26433.36, + "end": 26435.86, + "probability": 0.85 + }, + { + "start": 26436.1, + "end": 26442.36, + "probability": 0.6576 + }, + { + "start": 26443.04, + "end": 26448.2, + "probability": 0.728 + }, + { + "start": 26448.38, + "end": 26449.72, + "probability": 0.403 + }, + { + "start": 26449.82, + "end": 26454.38, + "probability": 0.8049 + }, + { + "start": 26454.44, + "end": 26455.04, + "probability": 0.836 + }, + { + "start": 26455.98, + "end": 26459.6, + "probability": 0.9611 + }, + { + "start": 26460.76, + "end": 26461.96, + "probability": 0.59 + }, + { + "start": 26463.12, + "end": 26470.54, + "probability": 0.906 + }, + { + "start": 26470.72, + "end": 26471.76, + "probability": 0.8161 + }, + { + "start": 26473.04, + "end": 26475.68, + "probability": 0.97 + }, + { + "start": 26476.72, + "end": 26477.24, + "probability": 0.9083 + }, + { + "start": 26477.92, + "end": 26478.78, + "probability": 0.8862 + }, + { + "start": 26479.56, + "end": 26483.72, + "probability": 0.7944 + }, + { + "start": 26484.94, + "end": 26488.63, + "probability": 0.7241 + }, + { + "start": 26489.54, + "end": 26490.13, + "probability": 0.8233 + }, + { + "start": 26490.74, + "end": 26491.0, + "probability": 0.9451 + }, + { + "start": 26492.52, + "end": 26496.2, + "probability": 0.721 + }, + { + "start": 26496.9, + "end": 26497.5, + "probability": 0.7429 + }, + { + "start": 26497.58, + "end": 26499.56, + "probability": 0.5498 + }, + { + "start": 26499.62, + "end": 26500.16, + "probability": 0.5054 + }, + { + "start": 26500.28, + "end": 26502.18, + "probability": 0.6159 + }, + { + "start": 26502.2, + "end": 26503.1, + "probability": 0.8926 + }, + { + "start": 26503.84, + "end": 26503.96, + "probability": 0.2243 + }, + { + "start": 26504.12, + "end": 26504.12, + "probability": 0.2173 + }, + { + "start": 26504.16, + "end": 26504.8, + "probability": 0.8566 + }, + { + "start": 26505.5, + "end": 26507.18, + "probability": 0.9558 + }, + { + "start": 26507.64, + "end": 26510.22, + "probability": 0.9883 + }, + { + "start": 26511.1, + "end": 26512.48, + "probability": 0.9676 + }, + { + "start": 26514.28, + "end": 26518.16, + "probability": 0.9678 + }, + { + "start": 26518.94, + "end": 26521.14, + "probability": 0.8145 + }, + { + "start": 26522.78, + "end": 26523.32, + "probability": 0.8965 + }, + { + "start": 26523.96, + "end": 26526.26, + "probability": 0.8669 + }, + { + "start": 26527.58, + "end": 26528.5, + "probability": 0.7664 + }, + { + "start": 26529.1, + "end": 26529.72, + "probability": 0.4937 + }, + { + "start": 26530.34, + "end": 26532.48, + "probability": 0.9795 + }, + { + "start": 26533.42, + "end": 26534.32, + "probability": 0.8563 + }, + { + "start": 26534.84, + "end": 26535.0, + "probability": 0.9158 + }, + { + "start": 26535.92, + "end": 26536.9, + "probability": 0.4126 + }, + { + "start": 26537.06, + "end": 26538.7, + "probability": 0.7779 + }, + { + "start": 26540.8, + "end": 26543.7, + "probability": 0.9934 + }, + { + "start": 26544.5, + "end": 26545.02, + "probability": 0.6201 + }, + { + "start": 26545.42, + "end": 26546.06, + "probability": 0.8197 + }, + { + "start": 26546.4, + "end": 26546.94, + "probability": 0.8823 + }, + { + "start": 26547.06, + "end": 26547.22, + "probability": 0.9441 + }, + { + "start": 26549.03, + "end": 26550.76, + "probability": 0.8959 + }, + { + "start": 26551.74, + "end": 26552.16, + "probability": 0.4763 + }, + { + "start": 26552.4, + "end": 26554.94, + "probability": 0.8564 + }, + { + "start": 26555.28, + "end": 26556.44, + "probability": 0.5274 + }, + { + "start": 26556.86, + "end": 26558.16, + "probability": 0.3644 + }, + { + "start": 26558.16, + "end": 26558.98, + "probability": 0.6289 + }, + { + "start": 26559.34, + "end": 26560.54, + "probability": 0.6822 + }, + { + "start": 26560.92, + "end": 26561.88, + "probability": 0.8553 + }, + { + "start": 26562.14, + "end": 26563.18, + "probability": 0.8818 + }, + { + "start": 26563.38, + "end": 26565.34, + "probability": 0.7841 + }, + { + "start": 26565.8, + "end": 26567.02, + "probability": 0.9841 + }, + { + "start": 26567.76, + "end": 26569.34, + "probability": 0.8748 + }, + { + "start": 26570.72, + "end": 26570.98, + "probability": 0.0298 + }, + { + "start": 26570.98, + "end": 26571.2, + "probability": 0.5843 + }, + { + "start": 26571.74, + "end": 26573.62, + "probability": 0.7769 + }, + { + "start": 26576.16, + "end": 26576.84, + "probability": 0.1375 + }, + { + "start": 26576.84, + "end": 26576.84, + "probability": 0.0064 + }, + { + "start": 26576.84, + "end": 26576.84, + "probability": 0.1641 + }, + { + "start": 26576.84, + "end": 26576.84, + "probability": 0.0776 + }, + { + "start": 26576.84, + "end": 26577.42, + "probability": 0.2753 + }, + { + "start": 26577.62, + "end": 26578.82, + "probability": 0.1256 + }, + { + "start": 26578.96, + "end": 26580.62, + "probability": 0.9834 + }, + { + "start": 26580.74, + "end": 26581.06, + "probability": 0.5559 + }, + { + "start": 26581.62, + "end": 26582.42, + "probability": 0.5734 + }, + { + "start": 26583.14, + "end": 26584.04, + "probability": 0.5451 + }, + { + "start": 26584.3, + "end": 26585.32, + "probability": 0.3702 + }, + { + "start": 26585.56, + "end": 26589.68, + "probability": 0.395 + }, + { + "start": 26591.28, + "end": 26591.58, + "probability": 0.0468 + }, + { + "start": 26591.58, + "end": 26592.08, + "probability": 0.0361 + }, + { + "start": 26592.08, + "end": 26592.44, + "probability": 0.0791 + }, + { + "start": 26592.44, + "end": 26592.44, + "probability": 0.0412 + }, + { + "start": 26592.44, + "end": 26592.52, + "probability": 0.0565 + }, + { + "start": 26592.68, + "end": 26595.58, + "probability": 0.8422 + }, + { + "start": 26596.18, + "end": 26599.42, + "probability": 0.6617 + }, + { + "start": 26600.46, + "end": 26604.08, + "probability": 0.98 + }, + { + "start": 26605.44, + "end": 26606.26, + "probability": 0.3501 + }, + { + "start": 26606.58, + "end": 26610.98, + "probability": 0.6314 + }, + { + "start": 26611.12, + "end": 26611.14, + "probability": 0.5312 + }, + { + "start": 26611.34, + "end": 26614.06, + "probability": 0.9551 + }, + { + "start": 26615.78, + "end": 26617.32, + "probability": 0.8009 + }, + { + "start": 26617.9, + "end": 26622.36, + "probability": 0.9558 + }, + { + "start": 26622.78, + "end": 26623.74, + "probability": 0.9098 + }, + { + "start": 26624.44, + "end": 26627.76, + "probability": 0.7594 + }, + { + "start": 26628.24, + "end": 26628.78, + "probability": 0.3796 + }, + { + "start": 26628.82, + "end": 26629.18, + "probability": 0.5567 + }, + { + "start": 26629.32, + "end": 26631.22, + "probability": 0.6582 + }, + { + "start": 26631.42, + "end": 26634.44, + "probability": 0.9272 + }, + { + "start": 26635.42, + "end": 26641.06, + "probability": 0.8258 + }, + { + "start": 26641.92, + "end": 26643.98, + "probability": 0.8767 + }, + { + "start": 26644.32, + "end": 26646.98, + "probability": 0.7879 + }, + { + "start": 26651.32, + "end": 26652.1, + "probability": 0.617 + }, + { + "start": 26659.02, + "end": 26661.28, + "probability": 0.7167 + }, + { + "start": 26662.52, + "end": 26667.38, + "probability": 0.9683 + }, + { + "start": 26669.2, + "end": 26672.76, + "probability": 0.7525 + }, + { + "start": 26675.96, + "end": 26679.98, + "probability": 0.9946 + }, + { + "start": 26680.46, + "end": 26681.4, + "probability": 0.9844 + }, + { + "start": 26682.34, + "end": 26683.28, + "probability": 0.9818 + }, + { + "start": 26684.06, + "end": 26686.38, + "probability": 0.9976 + }, + { + "start": 26688.6, + "end": 26693.88, + "probability": 0.9367 + }, + { + "start": 26695.7, + "end": 26699.42, + "probability": 0.9035 + }, + { + "start": 26700.58, + "end": 26702.44, + "probability": 0.9595 + }, + { + "start": 26702.9, + "end": 26704.76, + "probability": 0.9689 + }, + { + "start": 26706.78, + "end": 26708.8, + "probability": 0.9846 + }, + { + "start": 26708.9, + "end": 26712.44, + "probability": 0.9965 + }, + { + "start": 26714.4, + "end": 26715.1, + "probability": 0.5427 + }, + { + "start": 26716.16, + "end": 26720.0, + "probability": 0.9704 + }, + { + "start": 26720.54, + "end": 26725.06, + "probability": 0.9827 + }, + { + "start": 26726.26, + "end": 26729.72, + "probability": 0.9213 + }, + { + "start": 26730.44, + "end": 26732.98, + "probability": 0.8268 + }, + { + "start": 26733.54, + "end": 26735.66, + "probability": 0.8965 + }, + { + "start": 26737.24, + "end": 26739.2, + "probability": 0.9976 + }, + { + "start": 26740.44, + "end": 26742.76, + "probability": 0.9875 + }, + { + "start": 26744.2, + "end": 26746.26, + "probability": 0.6078 + }, + { + "start": 26746.82, + "end": 26747.54, + "probability": 0.9382 + }, + { + "start": 26748.96, + "end": 26749.84, + "probability": 0.7799 + }, + { + "start": 26751.34, + "end": 26753.62, + "probability": 0.6819 + }, + { + "start": 26754.2, + "end": 26757.0, + "probability": 0.8276 + }, + { + "start": 26758.48, + "end": 26762.12, + "probability": 0.9881 + }, + { + "start": 26763.9, + "end": 26765.18, + "probability": 0.9077 + }, + { + "start": 26766.32, + "end": 26770.4, + "probability": 0.6947 + }, + { + "start": 26771.46, + "end": 26776.88, + "probability": 0.9719 + }, + { + "start": 26777.56, + "end": 26781.46, + "probability": 0.996 + }, + { + "start": 26782.68, + "end": 26788.32, + "probability": 0.9988 + }, + { + "start": 26788.7, + "end": 26790.72, + "probability": 0.8643 + }, + { + "start": 26791.46, + "end": 26794.64, + "probability": 0.9473 + }, + { + "start": 26795.56, + "end": 26801.58, + "probability": 0.9531 + }, + { + "start": 26802.0, + "end": 26802.28, + "probability": 0.5704 + }, + { + "start": 26803.84, + "end": 26808.96, + "probability": 0.9925 + }, + { + "start": 26810.02, + "end": 26817.94, + "probability": 0.9604 + }, + { + "start": 26818.42, + "end": 26820.12, + "probability": 0.9607 + }, + { + "start": 26820.52, + "end": 26821.66, + "probability": 0.6625 + }, + { + "start": 26821.74, + "end": 26823.6, + "probability": 0.9966 + }, + { + "start": 26825.24, + "end": 26826.7, + "probability": 0.9961 + }, + { + "start": 26826.74, + "end": 26829.62, + "probability": 0.9992 + }, + { + "start": 26830.96, + "end": 26833.92, + "probability": 0.7856 + }, + { + "start": 26835.12, + "end": 26837.9, + "probability": 0.9531 + }, + { + "start": 26837.92, + "end": 26840.2, + "probability": 0.9866 + }, + { + "start": 26840.98, + "end": 26845.98, + "probability": 0.9044 + }, + { + "start": 26846.14, + "end": 26846.14, + "probability": 0.5841 + }, + { + "start": 26846.14, + "end": 26851.46, + "probability": 0.9927 + }, + { + "start": 26852.0, + "end": 26853.7, + "probability": 0.0905 + }, + { + "start": 26853.7, + "end": 26853.7, + "probability": 0.0144 + }, + { + "start": 26853.92, + "end": 26860.44, + "probability": 0.9632 + }, + { + "start": 26861.12, + "end": 26864.7, + "probability": 0.8773 + }, + { + "start": 26865.26, + "end": 26873.2, + "probability": 0.9541 + }, + { + "start": 26873.2, + "end": 26876.28, + "probability": 0.999 + }, + { + "start": 26876.8, + "end": 26876.92, + "probability": 0.7317 + }, + { + "start": 26878.76, + "end": 26880.04, + "probability": 0.5663 + }, + { + "start": 26880.78, + "end": 26881.3, + "probability": 0.8334 + }, + { + "start": 26882.2, + "end": 26882.7, + "probability": 0.4439 + }, + { + "start": 26885.12, + "end": 26889.04, + "probability": 0.9922 + }, + { + "start": 26889.04, + "end": 26892.3, + "probability": 0.9917 + }, + { + "start": 26892.74, + "end": 26893.7, + "probability": 0.9319 + }, + { + "start": 26894.62, + "end": 26896.42, + "probability": 0.996 + }, + { + "start": 26897.54, + "end": 26898.7, + "probability": 0.99 + }, + { + "start": 26899.56, + "end": 26901.58, + "probability": 0.6252 + }, + { + "start": 26902.72, + "end": 26903.82, + "probability": 0.7993 + }, + { + "start": 26904.54, + "end": 26905.82, + "probability": 0.988 + }, + { + "start": 26907.1, + "end": 26908.88, + "probability": 0.8769 + }, + { + "start": 26910.46, + "end": 26910.62, + "probability": 0.6272 + }, + { + "start": 26910.8, + "end": 26912.48, + "probability": 0.9432 + }, + { + "start": 26912.6, + "end": 26913.34, + "probability": 0.9763 + }, + { + "start": 26913.52, + "end": 26915.0, + "probability": 0.9893 + }, + { + "start": 26915.94, + "end": 26918.96, + "probability": 0.8777 + }, + { + "start": 26919.52, + "end": 26922.16, + "probability": 0.939 + }, + { + "start": 26923.26, + "end": 26925.24, + "probability": 0.8928 + }, + { + "start": 26925.9, + "end": 26926.74, + "probability": 0.5571 + }, + { + "start": 26926.86, + "end": 26927.72, + "probability": 0.9446 + }, + { + "start": 26927.84, + "end": 26928.32, + "probability": 0.6213 + }, + { + "start": 26928.4, + "end": 26928.88, + "probability": 0.4702 + }, + { + "start": 26930.02, + "end": 26930.7, + "probability": 0.9409 + }, + { + "start": 26930.76, + "end": 26931.44, + "probability": 0.8415 + }, + { + "start": 26932.08, + "end": 26932.62, + "probability": 0.8864 + }, + { + "start": 26933.16, + "end": 26935.52, + "probability": 0.9919 + }, + { + "start": 26935.62, + "end": 26937.02, + "probability": 0.9883 + }, + { + "start": 26937.1, + "end": 26937.32, + "probability": 0.7609 + }, + { + "start": 26938.46, + "end": 26939.42, + "probability": 0.8793 + }, + { + "start": 26939.46, + "end": 26941.2, + "probability": 0.9575 + }, + { + "start": 26941.28, + "end": 26941.62, + "probability": 0.5608 + }, + { + "start": 26941.7, + "end": 26942.02, + "probability": 0.8707 + }, + { + "start": 26942.9, + "end": 26944.96, + "probability": 0.9856 + }, + { + "start": 26945.34, + "end": 26946.18, + "probability": 0.876 + }, + { + "start": 26946.28, + "end": 26947.38, + "probability": 0.9297 + }, + { + "start": 26947.48, + "end": 26949.14, + "probability": 0.9819 + }, + { + "start": 26949.64, + "end": 26950.93, + "probability": 0.8784 + }, + { + "start": 26951.22, + "end": 26952.62, + "probability": 0.9285 + }, + { + "start": 26953.32, + "end": 26955.82, + "probability": 0.9775 + }, + { + "start": 26955.98, + "end": 26958.32, + "probability": 0.8934 + }, + { + "start": 26958.52, + "end": 26959.2, + "probability": 0.85 + }, + { + "start": 26959.76, + "end": 26961.56, + "probability": 0.9943 + }, + { + "start": 26963.0, + "end": 26968.7, + "probability": 0.9753 + }, + { + "start": 26969.76, + "end": 26972.52, + "probability": 0.9159 + }, + { + "start": 26973.42, + "end": 26975.76, + "probability": 0.9972 + }, + { + "start": 26976.1, + "end": 26976.5, + "probability": 0.528 + }, + { + "start": 26976.66, + "end": 26976.94, + "probability": 0.8752 + }, + { + "start": 26977.02, + "end": 26977.92, + "probability": 0.7454 + }, + { + "start": 26977.96, + "end": 26978.54, + "probability": 0.9619 + }, + { + "start": 26979.24, + "end": 26980.24, + "probability": 0.9974 + }, + { + "start": 26980.32, + "end": 26984.1, + "probability": 0.9731 + }, + { + "start": 26984.24, + "end": 26984.76, + "probability": 0.6142 + }, + { + "start": 26984.82, + "end": 26985.1, + "probability": 0.9716 + }, + { + "start": 26985.5, + "end": 26986.16, + "probability": 0.7705 + }, + { + "start": 26986.42, + "end": 26988.06, + "probability": 0.9749 + }, + { + "start": 26988.64, + "end": 26990.48, + "probability": 0.8863 + }, + { + "start": 26991.06, + "end": 26994.24, + "probability": 0.9821 + }, + { + "start": 26996.56, + "end": 27000.92, + "probability": 0.711 + }, + { + "start": 27001.02, + "end": 27001.88, + "probability": 0.6277 + }, + { + "start": 27002.64, + "end": 27004.86, + "probability": 0.9842 + }, + { + "start": 27005.66, + "end": 27007.54, + "probability": 0.9873 + }, + { + "start": 27008.82, + "end": 27012.4, + "probability": 0.9708 + }, + { + "start": 27012.5, + "end": 27014.1, + "probability": 0.974 + }, + { + "start": 27015.06, + "end": 27018.54, + "probability": 0.9417 + }, + { + "start": 27019.12, + "end": 27023.84, + "probability": 0.9552 + }, + { + "start": 27023.84, + "end": 27029.54, + "probability": 0.9905 + }, + { + "start": 27030.36, + "end": 27033.5, + "probability": 0.993 + }, + { + "start": 27033.5, + "end": 27038.16, + "probability": 0.9968 + }, + { + "start": 27039.64, + "end": 27043.7, + "probability": 0.9985 + }, + { + "start": 27043.7, + "end": 27048.42, + "probability": 0.994 + }, + { + "start": 27048.42, + "end": 27052.56, + "probability": 0.9794 + }, + { + "start": 27053.1, + "end": 27055.54, + "probability": 0.9908 + }, + { + "start": 27056.48, + "end": 27061.7, + "probability": 0.9828 + }, + { + "start": 27063.04, + "end": 27064.96, + "probability": 0.9136 + }, + { + "start": 27065.58, + "end": 27068.68, + "probability": 0.9604 + }, + { + "start": 27068.68, + "end": 27073.28, + "probability": 0.9362 + }, + { + "start": 27074.62, + "end": 27078.4, + "probability": 0.9037 + }, + { + "start": 27078.5, + "end": 27079.86, + "probability": 0.8901 + }, + { + "start": 27080.8, + "end": 27084.1, + "probability": 0.9779 + }, + { + "start": 27084.12, + "end": 27088.82, + "probability": 0.786 + }, + { + "start": 27089.02, + "end": 27090.6, + "probability": 0.9611 + }, + { + "start": 27091.12, + "end": 27093.2, + "probability": 0.9946 + }, + { + "start": 27093.84, + "end": 27094.68, + "probability": 0.7446 + }, + { + "start": 27096.74, + "end": 27097.66, + "probability": 0.2025 + }, + { + "start": 27097.66, + "end": 27097.9, + "probability": 0.4922 + }, + { + "start": 27098.28, + "end": 27099.82, + "probability": 0.5948 + }, + { + "start": 27100.06, + "end": 27100.86, + "probability": 0.2538 + }, + { + "start": 27100.98, + "end": 27101.42, + "probability": 0.8493 + }, + { + "start": 27102.38, + "end": 27102.48, + "probability": 0.5837 + }, + { + "start": 27102.48, + "end": 27104.02, + "probability": 0.8334 + }, + { + "start": 27104.34, + "end": 27104.6, + "probability": 0.4861 + }, + { + "start": 27104.86, + "end": 27104.98, + "probability": 0.7898 + }, + { + "start": 27105.86, + "end": 27107.64, + "probability": 0.9606 + }, + { + "start": 27108.94, + "end": 27113.36, + "probability": 0.931 + }, + { + "start": 27113.36, + "end": 27115.98, + "probability": 0.5761 + }, + { + "start": 27116.5, + "end": 27117.06, + "probability": 0.6416 + }, + { + "start": 27117.84, + "end": 27120.48, + "probability": 0.9102 + }, + { + "start": 27120.48, + "end": 27123.04, + "probability": 0.8081 + }, + { + "start": 27123.54, + "end": 27124.92, + "probability": 0.8477 + }, + { + "start": 27125.18, + "end": 27126.88, + "probability": 0.8784 + }, + { + "start": 27127.04, + "end": 27129.78, + "probability": 0.9611 + }, + { + "start": 27129.9, + "end": 27131.12, + "probability": 0.9575 + }, + { + "start": 27132.36, + "end": 27134.56, + "probability": 0.8373 + }, + { + "start": 27134.56, + "end": 27137.14, + "probability": 0.9957 + }, + { + "start": 27137.94, + "end": 27141.16, + "probability": 0.9959 + }, + { + "start": 27141.3, + "end": 27141.94, + "probability": 0.9793 + }, + { + "start": 27142.58, + "end": 27143.49, + "probability": 0.9796 + }, + { + "start": 27145.3, + "end": 27146.46, + "probability": 0.9969 + }, + { + "start": 27147.46, + "end": 27151.16, + "probability": 0.9915 + }, + { + "start": 27151.8, + "end": 27154.74, + "probability": 0.9935 + }, + { + "start": 27156.04, + "end": 27161.08, + "probability": 0.9738 + }, + { + "start": 27161.08, + "end": 27165.2, + "probability": 0.9866 + }, + { + "start": 27166.08, + "end": 27169.68, + "probability": 0.9958 + }, + { + "start": 27170.32, + "end": 27171.86, + "probability": 0.9898 + }, + { + "start": 27173.12, + "end": 27175.54, + "probability": 0.9627 + }, + { + "start": 27176.3, + "end": 27181.62, + "probability": 0.9769 + }, + { + "start": 27182.66, + "end": 27186.82, + "probability": 0.9961 + }, + { + "start": 27188.7, + "end": 27194.12, + "probability": 0.9857 + }, + { + "start": 27194.96, + "end": 27195.72, + "probability": 0.7113 + }, + { + "start": 27196.34, + "end": 27196.84, + "probability": 0.8981 + }, + { + "start": 27197.26, + "end": 27197.76, + "probability": 0.985 + }, + { + "start": 27197.92, + "end": 27198.46, + "probability": 0.7387 + }, + { + "start": 27198.5, + "end": 27201.42, + "probability": 0.9977 + }, + { + "start": 27202.46, + "end": 27207.06, + "probability": 0.9568 + }, + { + "start": 27207.06, + "end": 27211.42, + "probability": 0.9845 + }, + { + "start": 27212.68, + "end": 27213.18, + "probability": 0.8844 + }, + { + "start": 27213.48, + "end": 27217.74, + "probability": 0.9886 + }, + { + "start": 27217.92, + "end": 27220.16, + "probability": 0.9789 + }, + { + "start": 27220.2, + "end": 27220.82, + "probability": 0.1233 + }, + { + "start": 27221.62, + "end": 27223.02, + "probability": 0.9615 + }, + { + "start": 27223.88, + "end": 27224.48, + "probability": 0.8237 + }, + { + "start": 27224.56, + "end": 27227.58, + "probability": 0.9446 + }, + { + "start": 27228.02, + "end": 27231.24, + "probability": 0.9377 + }, + { + "start": 27232.04, + "end": 27235.54, + "probability": 0.9932 + }, + { + "start": 27235.54, + "end": 27239.32, + "probability": 0.9652 + }, + { + "start": 27240.02, + "end": 27241.02, + "probability": 0.9146 + }, + { + "start": 27241.62, + "end": 27244.94, + "probability": 0.996 + }, + { + "start": 27245.06, + "end": 27245.98, + "probability": 0.8278 + }, + { + "start": 27247.06, + "end": 27248.46, + "probability": 0.9917 + }, + { + "start": 27249.06, + "end": 27249.54, + "probability": 0.6767 + }, + { + "start": 27250.1, + "end": 27253.66, + "probability": 0.9707 + }, + { + "start": 27254.4, + "end": 27256.84, + "probability": 0.873 + }, + { + "start": 27257.52, + "end": 27258.36, + "probability": 0.6646 + }, + { + "start": 27258.86, + "end": 27261.8, + "probability": 0.9768 + }, + { + "start": 27262.9, + "end": 27265.76, + "probability": 0.9549 + }, + { + "start": 27266.92, + "end": 27267.28, + "probability": 0.7324 + }, + { + "start": 27267.44, + "end": 27269.06, + "probability": 0.3694 + }, + { + "start": 27269.22, + "end": 27271.64, + "probability": 0.8845 + }, + { + "start": 27272.36, + "end": 27273.04, + "probability": 0.5599 + }, + { + "start": 27273.5, + "end": 27275.16, + "probability": 0.9909 + }, + { + "start": 27275.36, + "end": 27275.84, + "probability": 0.508 + }, + { + "start": 27276.02, + "end": 27276.76, + "probability": 0.8537 + }, + { + "start": 27277.22, + "end": 27277.46, + "probability": 0.969 + }, + { + "start": 27277.56, + "end": 27277.88, + "probability": 0.8326 + }, + { + "start": 27278.08, + "end": 27279.84, + "probability": 0.9258 + }, + { + "start": 27279.9, + "end": 27280.0, + "probability": 0.0824 + }, + { + "start": 27280.0, + "end": 27280.56, + "probability": 0.633 + }, + { + "start": 27281.14, + "end": 27283.04, + "probability": 0.6581 + }, + { + "start": 27283.92, + "end": 27286.34, + "probability": 0.7379 + }, + { + "start": 27286.48, + "end": 27287.26, + "probability": 0.8188 + }, + { + "start": 27287.4, + "end": 27288.38, + "probability": 0.7995 + }, + { + "start": 27288.98, + "end": 27289.5, + "probability": 0.8979 + }, + { + "start": 27289.54, + "end": 27292.24, + "probability": 0.7781 + }, + { + "start": 27292.84, + "end": 27293.56, + "probability": 0.8057 + }, + { + "start": 27294.52, + "end": 27296.56, + "probability": 0.9829 + }, + { + "start": 27297.5, + "end": 27299.54, + "probability": 0.9907 + }, + { + "start": 27299.54, + "end": 27301.46, + "probability": 0.9888 + }, + { + "start": 27301.56, + "end": 27304.46, + "probability": 0.9201 + }, + { + "start": 27304.64, + "end": 27306.08, + "probability": 0.7021 + }, + { + "start": 27307.24, + "end": 27309.13, + "probability": 0.9166 + }, + { + "start": 27309.88, + "end": 27310.85, + "probability": 0.958 + }, + { + "start": 27312.12, + "end": 27313.0, + "probability": 0.9863 + }, + { + "start": 27314.86, + "end": 27316.04, + "probability": 0.9151 + }, + { + "start": 27316.08, + "end": 27317.38, + "probability": 0.7243 + }, + { + "start": 27317.76, + "end": 27320.7, + "probability": 0.8986 + }, + { + "start": 27320.82, + "end": 27323.16, + "probability": 0.9895 + }, + { + "start": 27324.08, + "end": 27326.22, + "probability": 0.8862 + }, + { + "start": 27326.4, + "end": 27328.26, + "probability": 0.7462 + }, + { + "start": 27328.42, + "end": 27329.3, + "probability": 0.8883 + }, + { + "start": 27329.78, + "end": 27330.76, + "probability": 0.779 + }, + { + "start": 27331.6, + "end": 27332.68, + "probability": 0.8653 + }, + { + "start": 27332.72, + "end": 27335.96, + "probability": 0.9546 + }, + { + "start": 27337.54, + "end": 27338.36, + "probability": 0.688 + }, + { + "start": 27339.3, + "end": 27341.88, + "probability": 0.6378 + }, + { + "start": 27342.4, + "end": 27342.74, + "probability": 0.9779 + }, + { + "start": 27343.26, + "end": 27344.74, + "probability": 0.9443 + }, + { + "start": 27345.1, + "end": 27346.64, + "probability": 0.6085 + }, + { + "start": 27347.06, + "end": 27348.98, + "probability": 0.9644 + }, + { + "start": 27349.34, + "end": 27351.2, + "probability": 0.8154 + }, + { + "start": 27351.22, + "end": 27355.04, + "probability": 0.9617 + }, + { + "start": 27356.34, + "end": 27359.08, + "probability": 0.8465 + }, + { + "start": 27360.34, + "end": 27362.26, + "probability": 0.9836 + }, + { + "start": 27362.44, + "end": 27363.7, + "probability": 0.7503 + }, + { + "start": 27363.84, + "end": 27365.46, + "probability": 0.7847 + }, + { + "start": 27366.34, + "end": 27369.5, + "probability": 0.4779 + }, + { + "start": 27370.48, + "end": 27374.02, + "probability": 0.9882 + }, + { + "start": 27374.96, + "end": 27377.0, + "probability": 0.9938 + }, + { + "start": 27378.0, + "end": 27385.78, + "probability": 0.9531 + }, + { + "start": 27386.95, + "end": 27389.78, + "probability": 0.7526 + }, + { + "start": 27390.32, + "end": 27391.46, + "probability": 0.8923 + }, + { + "start": 27391.64, + "end": 27395.68, + "probability": 0.8974 + }, + { + "start": 27396.14, + "end": 27398.04, + "probability": 0.9565 + }, + { + "start": 27398.68, + "end": 27399.84, + "probability": 0.8034 + }, + { + "start": 27400.54, + "end": 27402.38, + "probability": 0.5674 + }, + { + "start": 27402.38, + "end": 27402.98, + "probability": 0.6226 + }, + { + "start": 27403.12, + "end": 27406.92, + "probability": 0.9236 + }, + { + "start": 27407.4, + "end": 27411.86, + "probability": 0.9519 + }, + { + "start": 27412.2, + "end": 27415.54, + "probability": 0.9961 + }, + { + "start": 27415.68, + "end": 27416.22, + "probability": 0.7405 + }, + { + "start": 27418.26, + "end": 27420.4, + "probability": 0.7635 + }, + { + "start": 27421.5, + "end": 27422.48, + "probability": 0.6611 + }, + { + "start": 27422.48, + "end": 27424.32, + "probability": 0.8583 + }, + { + "start": 27424.48, + "end": 27426.96, + "probability": 0.9704 + }, + { + "start": 27431.0, + "end": 27431.8, + "probability": 0.6041 + }, + { + "start": 27452.08, + "end": 27452.2, + "probability": 0.3255 + }, + { + "start": 27452.2, + "end": 27452.2, + "probability": 0.5064 + }, + { + "start": 27452.2, + "end": 27453.52, + "probability": 0.48 + }, + { + "start": 27454.9, + "end": 27458.3, + "probability": 0.9883 + }, + { + "start": 27459.1, + "end": 27459.82, + "probability": 0.7486 + }, + { + "start": 27460.62, + "end": 27461.3, + "probability": 0.5074 + }, + { + "start": 27461.32, + "end": 27461.84, + "probability": 0.6987 + }, + { + "start": 27462.8, + "end": 27465.36, + "probability": 0.951 + }, + { + "start": 27466.34, + "end": 27471.36, + "probability": 0.7787 + }, + { + "start": 27471.36, + "end": 27474.26, + "probability": 0.3113 + }, + { + "start": 27475.08, + "end": 27475.08, + "probability": 0.0569 + }, + { + "start": 27475.08, + "end": 27476.72, + "probability": 0.9302 + }, + { + "start": 27493.26, + "end": 27493.46, + "probability": 0.2979 + }, + { + "start": 27493.72, + "end": 27494.14, + "probability": 0.3699 + }, + { + "start": 27498.2, + "end": 27500.64, + "probability": 0.7353 + }, + { + "start": 27501.86, + "end": 27504.54, + "probability": 0.9907 + }, + { + "start": 27505.4, + "end": 27508.94, + "probability": 0.9858 + }, + { + "start": 27509.82, + "end": 27510.94, + "probability": 0.9707 + }, + { + "start": 27512.24, + "end": 27515.68, + "probability": 0.9763 + }, + { + "start": 27515.94, + "end": 27518.94, + "probability": 0.9939 + }, + { + "start": 27519.66, + "end": 27521.23, + "probability": 0.9958 + }, + { + "start": 27522.3, + "end": 27525.4, + "probability": 0.981 + }, + { + "start": 27526.14, + "end": 27527.5, + "probability": 0.8176 + }, + { + "start": 27527.7, + "end": 27532.62, + "probability": 0.9938 + }, + { + "start": 27533.08, + "end": 27534.2, + "probability": 0.9969 + }, + { + "start": 27534.78, + "end": 27539.35, + "probability": 0.9972 + }, + { + "start": 27539.82, + "end": 27545.0, + "probability": 0.9972 + }, + { + "start": 27545.7, + "end": 27546.86, + "probability": 0.9644 + }, + { + "start": 27547.16, + "end": 27550.52, + "probability": 0.9954 + }, + { + "start": 27551.16, + "end": 27551.5, + "probability": 0.8453 + }, + { + "start": 27551.6, + "end": 27552.48, + "probability": 0.7928 + }, + { + "start": 27553.42, + "end": 27554.82, + "probability": 0.6084 + }, + { + "start": 27555.42, + "end": 27555.7, + "probability": 0.9587 + }, + { + "start": 27556.08, + "end": 27558.64, + "probability": 0.9879 + }, + { + "start": 27558.64, + "end": 27561.59, + "probability": 0.9615 + }, + { + "start": 27562.22, + "end": 27565.34, + "probability": 0.6914 + }, + { + "start": 27566.32, + "end": 27567.04, + "probability": 0.689 + }, + { + "start": 27567.9, + "end": 27573.68, + "probability": 0.9897 + }, + { + "start": 27573.68, + "end": 27579.06, + "probability": 0.977 + }, + { + "start": 27580.08, + "end": 27583.2, + "probability": 0.9547 + }, + { + "start": 27583.2, + "end": 27586.22, + "probability": 0.7939 + }, + { + "start": 27586.38, + "end": 27587.64, + "probability": 0.7976 + }, + { + "start": 27588.7, + "end": 27591.42, + "probability": 0.9995 + }, + { + "start": 27592.78, + "end": 27594.72, + "probability": 0.998 + }, + { + "start": 27596.12, + "end": 27598.1, + "probability": 0.9772 + }, + { + "start": 27598.1, + "end": 27600.26, + "probability": 0.9344 + }, + { + "start": 27600.76, + "end": 27601.92, + "probability": 0.8347 + }, + { + "start": 27602.68, + "end": 27606.26, + "probability": 0.9937 + }, + { + "start": 27606.26, + "end": 27610.88, + "probability": 0.9912 + }, + { + "start": 27611.74, + "end": 27613.64, + "probability": 0.7561 + }, + { + "start": 27613.74, + "end": 27614.88, + "probability": 0.6997 + }, + { + "start": 27615.16, + "end": 27618.56, + "probability": 0.9684 + }, + { + "start": 27619.66, + "end": 27623.48, + "probability": 0.9885 + }, + { + "start": 27624.0, + "end": 27630.22, + "probability": 0.9283 + }, + { + "start": 27630.22, + "end": 27633.96, + "probability": 0.993 + }, + { + "start": 27634.46, + "end": 27634.56, + "probability": 0.7488 + }, + { + "start": 27634.64, + "end": 27635.38, + "probability": 0.7787 + }, + { + "start": 27636.22, + "end": 27637.78, + "probability": 0.9306 + }, + { + "start": 27638.1, + "end": 27638.86, + "probability": 0.7508 + }, + { + "start": 27638.92, + "end": 27639.42, + "probability": 0.7633 + }, + { + "start": 27639.48, + "end": 27641.98, + "probability": 0.9866 + }, + { + "start": 27642.5, + "end": 27644.78, + "probability": 0.9575 + }, + { + "start": 27644.82, + "end": 27645.2, + "probability": 0.5544 + }, + { + "start": 27645.56, + "end": 27647.35, + "probability": 0.9857 + }, + { + "start": 27648.06, + "end": 27649.82, + "probability": 0.7656 + }, + { + "start": 27650.5, + "end": 27651.58, + "probability": 0.7892 + }, + { + "start": 27651.66, + "end": 27652.86, + "probability": 0.9546 + }, + { + "start": 27652.9, + "end": 27653.34, + "probability": 0.823 + }, + { + "start": 27653.78, + "end": 27654.28, + "probability": 0.1827 + }, + { + "start": 27654.42, + "end": 27655.94, + "probability": 0.7645 + }, + { + "start": 27656.48, + "end": 27658.52, + "probability": 0.8174 + }, + { + "start": 27659.32, + "end": 27660.22, + "probability": 0.9658 + }, + { + "start": 27662.28, + "end": 27662.6, + "probability": 0.6653 + }, + { + "start": 27663.38, + "end": 27664.3, + "probability": 0.9589 + }, + { + "start": 27664.58, + "end": 27669.34, + "probability": 0.9067 + }, + { + "start": 27669.48, + "end": 27670.46, + "probability": 0.7497 + }, + { + "start": 27671.4, + "end": 27673.36, + "probability": 0.5502 + }, + { + "start": 27673.98, + "end": 27675.1, + "probability": 0.715 + }, + { + "start": 27675.12, + "end": 27677.66, + "probability": 0.96 + }, + { + "start": 27677.82, + "end": 27680.96, + "probability": 0.9909 + }, + { + "start": 27681.6, + "end": 27683.3, + "probability": 0.7204 + }, + { + "start": 27683.84, + "end": 27685.6, + "probability": 0.7815 + }, + { + "start": 27686.24, + "end": 27687.82, + "probability": 0.93 + }, + { + "start": 27690.22, + "end": 27690.34, + "probability": 0.3899 + }, + { + "start": 27690.34, + "end": 27690.84, + "probability": 0.5792 + }, + { + "start": 27691.62, + "end": 27692.26, + "probability": 0.9775 + }, + { + "start": 27693.28, + "end": 27694.56, + "probability": 0.9265 + }, + { + "start": 27694.62, + "end": 27695.32, + "probability": 0.8675 + }, + { + "start": 27695.54, + "end": 27696.26, + "probability": 0.7989 + }, + { + "start": 27696.38, + "end": 27697.46, + "probability": 0.8713 + }, + { + "start": 27697.6, + "end": 27698.58, + "probability": 0.8535 + }, + { + "start": 27700.86, + "end": 27701.84, + "probability": 0.9498 + }, + { + "start": 27701.98, + "end": 27703.28, + "probability": 0.9481 + }, + { + "start": 27703.38, + "end": 27706.04, + "probability": 0.9189 + }, + { + "start": 27706.3, + "end": 27706.94, + "probability": 0.7777 + }, + { + "start": 27707.06, + "end": 27708.47, + "probability": 0.8126 + }, + { + "start": 27710.14, + "end": 27711.56, + "probability": 0.814 + }, + { + "start": 27712.32, + "end": 27715.4, + "probability": 0.8564 + }, + { + "start": 27715.54, + "end": 27717.52, + "probability": 0.8972 + }, + { + "start": 27718.1, + "end": 27720.34, + "probability": 0.4958 + }, + { + "start": 27720.72, + "end": 27722.88, + "probability": 0.9421 + }, + { + "start": 27723.52, + "end": 27729.82, + "probability": 0.9718 + }, + { + "start": 27730.46, + "end": 27731.82, + "probability": 0.8596 + }, + { + "start": 27732.24, + "end": 27735.72, + "probability": 0.9923 + }, + { + "start": 27735.84, + "end": 27736.18, + "probability": 0.5688 + }, + { + "start": 27736.3, + "end": 27736.56, + "probability": 0.5777 + }, + { + "start": 27736.66, + "end": 27737.94, + "probability": 0.9864 + }, + { + "start": 27738.66, + "end": 27741.3, + "probability": 0.8149 + }, + { + "start": 27741.94, + "end": 27744.26, + "probability": 0.7909 + }, + { + "start": 27744.48, + "end": 27745.8, + "probability": 0.9941 + }, + { + "start": 27745.98, + "end": 27749.04, + "probability": 0.9126 + }, + { + "start": 27750.02, + "end": 27756.94, + "probability": 0.9426 + }, + { + "start": 27757.08, + "end": 27758.96, + "probability": 0.9779 + }, + { + "start": 27759.14, + "end": 27760.74, + "probability": 0.5738 + }, + { + "start": 27760.74, + "end": 27763.96, + "probability": 0.6755 + }, + { + "start": 27764.44, + "end": 27767.86, + "probability": 0.8118 + }, + { + "start": 27768.46, + "end": 27771.56, + "probability": 0.8977 + }, + { + "start": 27771.68, + "end": 27776.1, + "probability": 0.995 + }, + { + "start": 27776.1, + "end": 27781.32, + "probability": 0.9979 + }, + { + "start": 27781.64, + "end": 27782.18, + "probability": 0.668 + }, + { + "start": 27782.56, + "end": 27783.12, + "probability": 0.7628 + }, + { + "start": 27783.16, + "end": 27784.14, + "probability": 0.749 + }, + { + "start": 27784.2, + "end": 27786.64, + "probability": 0.7894 + }, + { + "start": 27787.12, + "end": 27789.08, + "probability": 0.7899 + }, + { + "start": 27789.12, + "end": 27791.44, + "probability": 0.9816 + }, + { + "start": 27792.0, + "end": 27796.94, + "probability": 0.9895 + }, + { + "start": 27797.42, + "end": 27799.5, + "probability": 0.8931 + }, + { + "start": 27799.9, + "end": 27800.3, + "probability": 0.6269 + }, + { + "start": 27801.1, + "end": 27803.64, + "probability": 0.9725 + }, + { + "start": 27803.76, + "end": 27806.28, + "probability": 0.9237 + }, + { + "start": 27814.56, + "end": 27815.92, + "probability": 0.7344 + }, + { + "start": 27816.66, + "end": 27818.0, + "probability": 0.981 + }, + { + "start": 27818.14, + "end": 27821.98, + "probability": 0.699 + }, + { + "start": 27823.54, + "end": 27824.56, + "probability": 0.8032 + }, + { + "start": 27824.66, + "end": 27825.94, + "probability": 0.8613 + }, + { + "start": 27826.44, + "end": 27827.28, + "probability": 0.9693 + }, + { + "start": 27827.42, + "end": 27828.22, + "probability": 0.8521 + }, + { + "start": 27829.08, + "end": 27830.86, + "probability": 0.8682 + }, + { + "start": 27830.96, + "end": 27831.9, + "probability": 0.5868 + }, + { + "start": 27832.0, + "end": 27833.32, + "probability": 0.8041 + }, + { + "start": 27834.16, + "end": 27835.12, + "probability": 0.9082 + }, + { + "start": 27835.34, + "end": 27840.84, + "probability": 0.9592 + }, + { + "start": 27841.58, + "end": 27842.74, + "probability": 0.9165 + }, + { + "start": 27843.32, + "end": 27847.14, + "probability": 0.9922 + }, + { + "start": 27848.4, + "end": 27849.24, + "probability": 0.8886 + }, + { + "start": 27850.06, + "end": 27852.44, + "probability": 0.9913 + }, + { + "start": 27852.62, + "end": 27854.32, + "probability": 0.6281 + }, + { + "start": 27854.48, + "end": 27854.94, + "probability": 0.7902 + }, + { + "start": 27855.88, + "end": 27858.44, + "probability": 0.9964 + }, + { + "start": 27858.44, + "end": 27862.28, + "probability": 0.9392 + }, + { + "start": 27863.04, + "end": 27865.82, + "probability": 0.7723 + }, + { + "start": 27865.82, + "end": 27869.22, + "probability": 0.9327 + }, + { + "start": 27869.74, + "end": 27871.46, + "probability": 0.97 + }, + { + "start": 27872.38, + "end": 27877.26, + "probability": 0.9611 + }, + { + "start": 27878.18, + "end": 27879.46, + "probability": 0.5336 + }, + { + "start": 27879.6, + "end": 27883.58, + "probability": 0.9399 + }, + { + "start": 27884.16, + "end": 27886.16, + "probability": 0.9423 + }, + { + "start": 27886.16, + "end": 27889.26, + "probability": 0.9993 + }, + { + "start": 27890.3, + "end": 27895.74, + "probability": 0.9788 + }, + { + "start": 27896.38, + "end": 27899.92, + "probability": 0.6846 + }, + { + "start": 27900.74, + "end": 27901.26, + "probability": 0.7431 + }, + { + "start": 27902.08, + "end": 27905.02, + "probability": 0.993 + }, + { + "start": 27906.1, + "end": 27906.66, + "probability": 0.7213 + }, + { + "start": 27907.2, + "end": 27910.22, + "probability": 0.9911 + }, + { + "start": 27911.36, + "end": 27913.98, + "probability": 0.9437 + }, + { + "start": 27915.22, + "end": 27918.56, + "probability": 0.9989 + }, + { + "start": 27919.56, + "end": 27923.06, + "probability": 0.8904 + }, + { + "start": 27924.38, + "end": 27928.2, + "probability": 0.9973 + }, + { + "start": 27929.3, + "end": 27930.98, + "probability": 0.9961 + }, + { + "start": 27931.0, + "end": 27931.92, + "probability": 0.5916 + }, + { + "start": 27931.94, + "end": 27933.54, + "probability": 0.9872 + }, + { + "start": 27934.74, + "end": 27937.24, + "probability": 0.6999 + }, + { + "start": 27937.98, + "end": 27938.4, + "probability": 0.4565 + }, + { + "start": 27939.22, + "end": 27944.48, + "probability": 0.9757 + }, + { + "start": 27945.7, + "end": 27946.84, + "probability": 0.9517 + }, + { + "start": 27947.4, + "end": 27949.8, + "probability": 0.9914 + }, + { + "start": 27950.34, + "end": 27952.96, + "probability": 0.915 + }, + { + "start": 27955.38, + "end": 27957.44, + "probability": 0.9316 + }, + { + "start": 27958.66, + "end": 27961.08, + "probability": 0.9099 + }, + { + "start": 27963.18, + "end": 27965.28, + "probability": 0.9131 + }, + { + "start": 27966.84, + "end": 27967.3, + "probability": 0.7684 + }, + { + "start": 27968.76, + "end": 27975.0, + "probability": 0.9805 + }, + { + "start": 27975.0, + "end": 27977.36, + "probability": 0.9834 + }, + { + "start": 27978.66, + "end": 27984.76, + "probability": 0.9694 + }, + { + "start": 27984.88, + "end": 27985.32, + "probability": 0.9097 + }, + { + "start": 27986.34, + "end": 27992.24, + "probability": 0.9866 + }, + { + "start": 27995.04, + "end": 27996.6, + "probability": 0.749 + }, + { + "start": 27998.26, + "end": 28000.16, + "probability": 0.7568 + }, + { + "start": 28000.92, + "end": 28002.52, + "probability": 0.95 + }, + { + "start": 28003.66, + "end": 28005.66, + "probability": 0.9592 + }, + { + "start": 28005.66, + "end": 28009.68, + "probability": 0.7984 + }, + { + "start": 28010.74, + "end": 28014.1, + "probability": 0.8951 + }, + { + "start": 28014.18, + "end": 28016.74, + "probability": 0.9906 + }, + { + "start": 28017.68, + "end": 28018.92, + "probability": 0.6907 + }, + { + "start": 28019.86, + "end": 28025.1, + "probability": 0.9965 + }, + { + "start": 28026.8, + "end": 28029.64, + "probability": 0.9607 + }, + { + "start": 28030.4, + "end": 28032.94, + "probability": 0.9911 + }, + { + "start": 28033.58, + "end": 28034.55, + "probability": 0.9805 + }, + { + "start": 28035.6, + "end": 28037.08, + "probability": 0.9971 + }, + { + "start": 28037.98, + "end": 28040.56, + "probability": 0.9315 + }, + { + "start": 28041.46, + "end": 28042.84, + "probability": 0.4282 + }, + { + "start": 28044.34, + "end": 28046.56, + "probability": 0.9873 + }, + { + "start": 28047.6, + "end": 28049.84, + "probability": 0.9986 + }, + { + "start": 28050.56, + "end": 28055.34, + "probability": 0.9869 + }, + { + "start": 28056.44, + "end": 28057.79, + "probability": 0.9702 + }, + { + "start": 28058.88, + "end": 28062.08, + "probability": 0.9939 + }, + { + "start": 28063.02, + "end": 28063.89, + "probability": 0.999 + }, + { + "start": 28065.8, + "end": 28066.78, + "probability": 0.9485 + }, + { + "start": 28066.88, + "end": 28069.04, + "probability": 0.7838 + }, + { + "start": 28069.56, + "end": 28070.44, + "probability": 0.9353 + }, + { + "start": 28071.32, + "end": 28072.16, + "probability": 0.9582 + }, + { + "start": 28072.98, + "end": 28074.02, + "probability": 0.6796 + }, + { + "start": 28074.78, + "end": 28076.12, + "probability": 0.9942 + }, + { + "start": 28077.14, + "end": 28083.8, + "probability": 0.9892 + }, + { + "start": 28084.4, + "end": 28086.52, + "probability": 0.8422 + }, + { + "start": 28086.92, + "end": 28088.48, + "probability": 0.8867 + }, + { + "start": 28089.56, + "end": 28091.94, + "probability": 0.9772 + }, + { + "start": 28092.9, + "end": 28095.08, + "probability": 0.9698 + }, + { + "start": 28117.48, + "end": 28119.06, + "probability": 0.5319 + }, + { + "start": 28120.22, + "end": 28122.3, + "probability": 0.7837 + }, + { + "start": 28123.72, + "end": 28124.64, + "probability": 0.9112 + }, + { + "start": 28124.78, + "end": 28126.28, + "probability": 0.991 + }, + { + "start": 28126.9, + "end": 28127.58, + "probability": 0.9366 + }, + { + "start": 28129.28, + "end": 28133.06, + "probability": 0.9592 + }, + { + "start": 28134.2, + "end": 28139.48, + "probability": 0.994 + }, + { + "start": 28139.62, + "end": 28140.98, + "probability": 0.9861 + }, + { + "start": 28141.5, + "end": 28142.78, + "probability": 0.4085 + }, + { + "start": 28143.36, + "end": 28143.66, + "probability": 0.2072 + }, + { + "start": 28143.66, + "end": 28147.1, + "probability": 0.9946 + }, + { + "start": 28148.72, + "end": 28156.42, + "probability": 0.7229 + }, + { + "start": 28157.34, + "end": 28161.54, + "probability": 0.9855 + }, + { + "start": 28162.56, + "end": 28164.9, + "probability": 0.9779 + }, + { + "start": 28166.42, + "end": 28168.4, + "probability": 0.8616 + }, + { + "start": 28169.66, + "end": 28172.4, + "probability": 0.8975 + }, + { + "start": 28173.54, + "end": 28174.9, + "probability": 0.9079 + }, + { + "start": 28176.88, + "end": 28178.36, + "probability": 0.9507 + }, + { + "start": 28178.52, + "end": 28179.3, + "probability": 0.9208 + }, + { + "start": 28180.64, + "end": 28181.24, + "probability": 0.7982 + }, + { + "start": 28183.18, + "end": 28184.06, + "probability": 0.8907 + }, + { + "start": 28184.9, + "end": 28188.02, + "probability": 0.9993 + }, + { + "start": 28189.74, + "end": 28190.84, + "probability": 0.7463 + }, + { + "start": 28192.1, + "end": 28192.86, + "probability": 0.9139 + }, + { + "start": 28193.98, + "end": 28194.96, + "probability": 0.7428 + }, + { + "start": 28197.52, + "end": 28199.78, + "probability": 0.8376 + }, + { + "start": 28199.9, + "end": 28204.46, + "probability": 0.9713 + }, + { + "start": 28204.46, + "end": 28209.0, + "probability": 0.9976 + }, + { + "start": 28209.86, + "end": 28212.24, + "probability": 0.9896 + }, + { + "start": 28212.9, + "end": 28214.48, + "probability": 0.9281 + }, + { + "start": 28215.4, + "end": 28216.18, + "probability": 0.9712 + }, + { + "start": 28217.96, + "end": 28221.1, + "probability": 0.5729 + }, + { + "start": 28222.0, + "end": 28223.58, + "probability": 0.9688 + }, + { + "start": 28224.6, + "end": 28225.26, + "probability": 0.9109 + }, + { + "start": 28226.6, + "end": 28228.16, + "probability": 0.9957 + }, + { + "start": 28228.94, + "end": 28230.38, + "probability": 0.9426 + }, + { + "start": 28231.38, + "end": 28234.12, + "probability": 0.9375 + }, + { + "start": 28234.86, + "end": 28236.64, + "probability": 0.9913 + }, + { + "start": 28237.5, + "end": 28238.72, + "probability": 0.6702 + }, + { + "start": 28239.9, + "end": 28240.72, + "probability": 0.8595 + }, + { + "start": 28241.46, + "end": 28242.2, + "probability": 0.9015 + }, + { + "start": 28243.08, + "end": 28243.84, + "probability": 0.8291 + }, + { + "start": 28244.96, + "end": 28245.78, + "probability": 0.9071 + }, + { + "start": 28246.88, + "end": 28248.18, + "probability": 0.991 + }, + { + "start": 28249.68, + "end": 28253.8, + "probability": 0.99 + }, + { + "start": 28255.44, + "end": 28258.86, + "probability": 0.9767 + }, + { + "start": 28259.5, + "end": 28261.54, + "probability": 0.9685 + }, + { + "start": 28265.02, + "end": 28268.08, + "probability": 0.626 + }, + { + "start": 28270.06, + "end": 28270.9, + "probability": 0.8758 + }, + { + "start": 28271.84, + "end": 28273.46, + "probability": 0.9967 + }, + { + "start": 28274.36, + "end": 28276.04, + "probability": 0.9919 + }, + { + "start": 28277.94, + "end": 28284.24, + "probability": 0.9857 + }, + { + "start": 28284.3, + "end": 28287.06, + "probability": 0.7947 + }, + { + "start": 28288.1, + "end": 28289.44, + "probability": 0.9355 + }, + { + "start": 28289.54, + "end": 28291.28, + "probability": 0.9733 + }, + { + "start": 28291.8, + "end": 28294.82, + "probability": 0.9312 + }, + { + "start": 28294.88, + "end": 28296.22, + "probability": 0.9814 + }, + { + "start": 28297.86, + "end": 28300.16, + "probability": 0.3352 + }, + { + "start": 28301.48, + "end": 28302.46, + "probability": 0.5108 + }, + { + "start": 28303.84, + "end": 28305.94, + "probability": 0.9803 + }, + { + "start": 28306.98, + "end": 28310.56, + "probability": 0.9512 + }, + { + "start": 28310.62, + "end": 28313.86, + "probability": 0.9933 + }, + { + "start": 28313.93, + "end": 28317.22, + "probability": 0.989 + }, + { + "start": 28318.12, + "end": 28322.38, + "probability": 0.986 + }, + { + "start": 28323.32, + "end": 28325.68, + "probability": 0.9209 + }, + { + "start": 28326.46, + "end": 28327.5, + "probability": 0.9755 + }, + { + "start": 28328.34, + "end": 28329.16, + "probability": 0.8042 + }, + { + "start": 28329.2, + "end": 28330.94, + "probability": 0.989 + }, + { + "start": 28332.88, + "end": 28337.22, + "probability": 0.979 + }, + { + "start": 28337.46, + "end": 28337.96, + "probability": 0.9678 + }, + { + "start": 28338.78, + "end": 28340.28, + "probability": 0.9858 + }, + { + "start": 28341.38, + "end": 28344.12, + "probability": 0.9108 + }, + { + "start": 28345.22, + "end": 28347.28, + "probability": 0.8426 + }, + { + "start": 28348.42, + "end": 28350.46, + "probability": 0.8397 + }, + { + "start": 28351.46, + "end": 28352.44, + "probability": 0.7567 + }, + { + "start": 28352.52, + "end": 28353.94, + "probability": 0.851 + }, + { + "start": 28354.76, + "end": 28355.58, + "probability": 0.5073 + }, + { + "start": 28355.64, + "end": 28358.42, + "probability": 0.9756 + }, + { + "start": 28359.76, + "end": 28360.84, + "probability": 0.8514 + }, + { + "start": 28361.52, + "end": 28367.28, + "probability": 0.8726 + }, + { + "start": 28368.22, + "end": 28369.7, + "probability": 0.9191 + }, + { + "start": 28370.24, + "end": 28372.1, + "probability": 0.9962 + }, + { + "start": 28372.18, + "end": 28372.46, + "probability": 0.6794 + }, + { + "start": 28373.36, + "end": 28375.9, + "probability": 0.9917 + }, + { + "start": 28376.04, + "end": 28382.32, + "probability": 0.873 + }, + { + "start": 28382.48, + "end": 28386.18, + "probability": 0.9081 + }, + { + "start": 28386.92, + "end": 28388.04, + "probability": 0.8461 + }, + { + "start": 28390.38, + "end": 28392.24, + "probability": 0.571 + }, + { + "start": 28394.9, + "end": 28396.52, + "probability": 0.9856 + }, + { + "start": 28397.58, + "end": 28399.34, + "probability": 0.8745 + }, + { + "start": 28399.6, + "end": 28402.92, + "probability": 0.8682 + }, + { + "start": 28403.38, + "end": 28406.16, + "probability": 0.9858 + }, + { + "start": 28406.92, + "end": 28411.66, + "probability": 0.9919 + }, + { + "start": 28413.0, + "end": 28416.98, + "probability": 0.9505 + }, + { + "start": 28417.98, + "end": 28419.38, + "probability": 0.8312 + }, + { + "start": 28420.02, + "end": 28425.3, + "probability": 0.9421 + }, + { + "start": 28426.14, + "end": 28428.56, + "probability": 0.9198 + }, + { + "start": 28429.32, + "end": 28429.76, + "probability": 0.7229 + }, + { + "start": 28430.64, + "end": 28433.2, + "probability": 0.9318 + }, + { + "start": 28433.96, + "end": 28434.78, + "probability": 0.6908 + }, + { + "start": 28435.86, + "end": 28436.66, + "probability": 0.8341 + }, + { + "start": 28440.74, + "end": 28446.36, + "probability": 0.874 + }, + { + "start": 28446.56, + "end": 28447.5, + "probability": 0.512 + }, + { + "start": 28447.62, + "end": 28448.22, + "probability": 0.556 + }, + { + "start": 28448.72, + "end": 28450.38, + "probability": 0.2164 + }, + { + "start": 28451.9, + "end": 28452.84, + "probability": 0.6348 + }, + { + "start": 28462.72, + "end": 28463.18, + "probability": 0.5179 + }, + { + "start": 28464.55, + "end": 28466.67, + "probability": 0.3372 + }, + { + "start": 28468.56, + "end": 28471.32, + "probability": 0.6696 + }, + { + "start": 28475.94, + "end": 28478.38, + "probability": 0.8276 + }, + { + "start": 28479.92, + "end": 28480.5, + "probability": 0.5395 + }, + { + "start": 28480.58, + "end": 28482.48, + "probability": 0.9763 + }, + { + "start": 28483.16, + "end": 28484.36, + "probability": 0.5891 + }, + { + "start": 28484.36, + "end": 28487.02, + "probability": 0.7181 + }, + { + "start": 28488.84, + "end": 28489.16, + "probability": 0.0004 + }, + { + "start": 28491.02, + "end": 28491.02, + "probability": 0.1294 + }, + { + "start": 28491.02, + "end": 28492.52, + "probability": 0.3412 + }, + { + "start": 28495.08, + "end": 28499.5, + "probability": 0.0129 + }, + { + "start": 28526.72, + "end": 28530.96, + "probability": 0.7499 + }, + { + "start": 28532.84, + "end": 28535.62, + "probability": 0.4015 + }, + { + "start": 28538.42, + "end": 28542.94, + "probability": 0.8941 + }, + { + "start": 28544.34, + "end": 28547.04, + "probability": 0.8244 + }, + { + "start": 28548.44, + "end": 28549.58, + "probability": 0.7452 + }, + { + "start": 28550.08, + "end": 28551.44, + "probability": 0.6968 + }, + { + "start": 28552.56, + "end": 28554.17, + "probability": 0.8718 + }, + { + "start": 28556.26, + "end": 28561.18, + "probability": 0.9077 + }, + { + "start": 28562.24, + "end": 28564.49, + "probability": 0.9937 + }, + { + "start": 28566.46, + "end": 28571.56, + "probability": 0.9918 + }, + { + "start": 28571.56, + "end": 28575.94, + "probability": 0.9858 + }, + { + "start": 28576.74, + "end": 28578.32, + "probability": 0.9909 + }, + { + "start": 28578.38, + "end": 28581.74, + "probability": 0.9924 + }, + { + "start": 28582.62, + "end": 28583.78, + "probability": 0.9957 + }, + { + "start": 28584.4, + "end": 28585.47, + "probability": 0.9987 + }, + { + "start": 28586.18, + "end": 28587.92, + "probability": 0.9669 + }, + { + "start": 28588.64, + "end": 28590.38, + "probability": 0.9264 + }, + { + "start": 28593.38, + "end": 28594.36, + "probability": 0.8954 + }, + { + "start": 28594.48, + "end": 28594.9, + "probability": 0.496 + }, + { + "start": 28595.0, + "end": 28600.71, + "probability": 0.9899 + }, + { + "start": 28606.28, + "end": 28607.1, + "probability": 0.1661 + }, + { + "start": 28607.24, + "end": 28607.52, + "probability": 0.5235 + }, + { + "start": 28610.6, + "end": 28613.1, + "probability": 0.9299 + }, + { + "start": 28614.44, + "end": 28619.26, + "probability": 0.9636 + }, + { + "start": 28619.92, + "end": 28622.08, + "probability": 0.9409 + }, + { + "start": 28623.82, + "end": 28629.56, + "probability": 0.98 + }, + { + "start": 28631.14, + "end": 28632.57, + "probability": 0.8755 + }, + { + "start": 28636.04, + "end": 28638.42, + "probability": 0.5164 + }, + { + "start": 28638.64, + "end": 28645.16, + "probability": 0.9508 + }, + { + "start": 28645.16, + "end": 28648.72, + "probability": 0.8321 + }, + { + "start": 28649.9, + "end": 28653.08, + "probability": 0.722 + }, + { + "start": 28653.74, + "end": 28658.26, + "probability": 0.8846 + }, + { + "start": 28659.04, + "end": 28663.34, + "probability": 0.9283 + }, + { + "start": 28663.4, + "end": 28666.2, + "probability": 0.9543 + }, + { + "start": 28667.1, + "end": 28671.3, + "probability": 0.9652 + }, + { + "start": 28672.22, + "end": 28677.08, + "probability": 0.5559 + }, + { + "start": 28677.18, + "end": 28677.92, + "probability": 0.56 + }, + { + "start": 28677.94, + "end": 28678.68, + "probability": 0.9637 + }, + { + "start": 28678.74, + "end": 28679.44, + "probability": 0.7709 + }, + { + "start": 28679.48, + "end": 28680.32, + "probability": 0.5862 + }, + { + "start": 28681.04, + "end": 28685.28, + "probability": 0.9729 + }, + { + "start": 28688.04, + "end": 28688.32, + "probability": 0.3212 + }, + { + "start": 28688.9, + "end": 28691.4, + "probability": 0.9777 + }, + { + "start": 28692.84, + "end": 28693.77, + "probability": 0.8262 + }, + { + "start": 28695.68, + "end": 28700.7, + "probability": 0.9379 + }, + { + "start": 28701.82, + "end": 28706.78, + "probability": 0.9945 + }, + { + "start": 28708.38, + "end": 28713.8, + "probability": 0.9663 + }, + { + "start": 28714.62, + "end": 28718.9, + "probability": 0.9785 + }, + { + "start": 28719.76, + "end": 28724.82, + "probability": 0.9695 + }, + { + "start": 28724.9, + "end": 28725.82, + "probability": 0.5322 + }, + { + "start": 28728.15, + "end": 28734.94, + "probability": 0.9934 + }, + { + "start": 28735.6, + "end": 28737.16, + "probability": 0.9935 + }, + { + "start": 28738.16, + "end": 28740.02, + "probability": 0.7179 + }, + { + "start": 28740.8, + "end": 28747.98, + "probability": 0.8397 + }, + { + "start": 28749.44, + "end": 28756.66, + "probability": 0.8468 + }, + { + "start": 28756.76, + "end": 28758.08, + "probability": 0.8799 + }, + { + "start": 28758.56, + "end": 28760.66, + "probability": 0.6932 + }, + { + "start": 28762.0, + "end": 28762.36, + "probability": 0.5178 + }, + { + "start": 28763.76, + "end": 28764.6, + "probability": 0.8317 + }, + { + "start": 28764.66, + "end": 28766.4, + "probability": 0.9782 + }, + { + "start": 28767.2, + "end": 28767.74, + "probability": 0.82 + }, + { + "start": 28768.12, + "end": 28773.14, + "probability": 0.9858 + }, + { + "start": 28774.18, + "end": 28774.86, + "probability": 0.6675 + }, + { + "start": 28777.08, + "end": 28779.12, + "probability": 0.922 + }, + { + "start": 28780.08, + "end": 28780.82, + "probability": 0.7585 + }, + { + "start": 28781.08, + "end": 28783.36, + "probability": 0.9329 + }, + { + "start": 28783.48, + "end": 28783.66, + "probability": 0.7527 + }, + { + "start": 28783.76, + "end": 28784.88, + "probability": 0.9705 + }, + { + "start": 28785.82, + "end": 28788.72, + "probability": 0.9913 + }, + { + "start": 28789.56, + "end": 28790.84, + "probability": 0.876 + }, + { + "start": 28790.98, + "end": 28792.96, + "probability": 0.7402 + }, + { + "start": 28793.62, + "end": 28796.18, + "probability": 0.9878 + }, + { + "start": 28796.8, + "end": 28799.14, + "probability": 0.9561 + }, + { + "start": 28800.04, + "end": 28800.84, + "probability": 0.8394 + }, + { + "start": 28800.88, + "end": 28801.68, + "probability": 0.4438 + }, + { + "start": 28801.88, + "end": 28805.02, + "probability": 0.9718 + }, + { + "start": 28805.54, + "end": 28807.5, + "probability": 0.9096 + }, + { + "start": 28807.62, + "end": 28808.0, + "probability": 0.5517 + }, + { + "start": 28808.18, + "end": 28808.6, + "probability": 0.5405 + }, + { + "start": 28808.62, + "end": 28809.34, + "probability": 0.9244 + }, + { + "start": 28809.44, + "end": 28810.34, + "probability": 0.8332 + }, + { + "start": 28810.74, + "end": 28814.52, + "probability": 0.9683 + }, + { + "start": 28815.46, + "end": 28817.76, + "probability": 0.9885 + }, + { + "start": 28818.68, + "end": 28822.74, + "probability": 0.9922 + }, + { + "start": 28822.84, + "end": 28823.32, + "probability": 0.8343 + }, + { + "start": 28823.58, + "end": 28827.66, + "probability": 0.9955 + }, + { + "start": 28827.72, + "end": 28828.4, + "probability": 0.5648 + }, + { + "start": 28828.86, + "end": 28830.41, + "probability": 0.8886 + }, + { + "start": 28830.64, + "end": 28833.8, + "probability": 0.6854 + }, + { + "start": 28833.92, + "end": 28837.12, + "probability": 0.8376 + }, + { + "start": 28839.43, + "end": 28844.38, + "probability": 0.7736 + }, + { + "start": 28845.78, + "end": 28849.52, + "probability": 0.9687 + }, + { + "start": 28850.9, + "end": 28851.0, + "probability": 0.4209 + }, + { + "start": 28851.16, + "end": 28852.42, + "probability": 0.9626 + }, + { + "start": 28852.66, + "end": 28855.68, + "probability": 0.9841 + }, + { + "start": 28855.68, + "end": 28856.02, + "probability": 0.2881 + }, + { + "start": 28856.34, + "end": 28856.38, + "probability": 0.0189 + }, + { + "start": 28857.12, + "end": 28857.88, + "probability": 0.641 + }, + { + "start": 28857.94, + "end": 28863.57, + "probability": 0.979 + }, + { + "start": 28864.08, + "end": 28867.54, + "probability": 0.9951 + }, + { + "start": 28868.16, + "end": 28872.24, + "probability": 0.937 + }, + { + "start": 28872.82, + "end": 28875.28, + "probability": 0.9235 + }, + { + "start": 28876.0, + "end": 28876.6, + "probability": 0.7806 + }, + { + "start": 28876.64, + "end": 28879.38, + "probability": 0.7629 + }, + { + "start": 28879.48, + "end": 28879.78, + "probability": 0.9072 + }, + { + "start": 28879.84, + "end": 28880.9, + "probability": 0.5645 + }, + { + "start": 28882.34, + "end": 28885.36, + "probability": 0.7863 + }, + { + "start": 28886.12, + "end": 28887.76, + "probability": 0.9897 + }, + { + "start": 28888.16, + "end": 28893.5, + "probability": 0.9647 + }, + { + "start": 28893.86, + "end": 28894.58, + "probability": 0.5409 + }, + { + "start": 28895.24, + "end": 28895.74, + "probability": 0.6312 + }, + { + "start": 28895.8, + "end": 28896.62, + "probability": 0.9136 + }, + { + "start": 28896.86, + "end": 28900.16, + "probability": 0.9966 + }, + { + "start": 28900.86, + "end": 28902.24, + "probability": 0.566 + }, + { + "start": 28902.24, + "end": 28902.74, + "probability": 0.9576 + }, + { + "start": 28903.4, + "end": 28903.84, + "probability": 0.3201 + }, + { + "start": 28903.94, + "end": 28904.74, + "probability": 0.9312 + }, + { + "start": 28904.8, + "end": 28905.26, + "probability": 0.5922 + }, + { + "start": 28905.68, + "end": 28906.46, + "probability": 0.5725 + }, + { + "start": 28906.54, + "end": 28906.86, + "probability": 0.6602 + }, + { + "start": 28906.92, + "end": 28907.36, + "probability": 0.5154 + }, + { + "start": 28907.48, + "end": 28909.21, + "probability": 0.2465 + }, + { + "start": 28909.9, + "end": 28912.16, + "probability": 0.8955 + }, + { + "start": 28912.46, + "end": 28913.06, + "probability": 0.7748 + }, + { + "start": 28913.12, + "end": 28914.76, + "probability": 0.8374 + }, + { + "start": 28915.44, + "end": 28917.22, + "probability": 0.9868 + }, + { + "start": 28917.7, + "end": 28920.72, + "probability": 0.9893 + }, + { + "start": 28920.72, + "end": 28922.66, + "probability": 0.9985 + }, + { + "start": 28923.18, + "end": 28925.44, + "probability": 0.9618 + }, + { + "start": 28926.28, + "end": 28931.3, + "probability": 0.9345 + }, + { + "start": 28931.56, + "end": 28931.84, + "probability": 0.2601 + }, + { + "start": 28931.84, + "end": 28933.9, + "probability": 0.9293 + }, + { + "start": 28933.94, + "end": 28935.84, + "probability": 0.9053 + }, + { + "start": 28935.88, + "end": 28936.58, + "probability": 0.8929 + }, + { + "start": 28952.4, + "end": 28954.24, + "probability": 0.6463 + }, + { + "start": 28957.1, + "end": 28957.94, + "probability": 0.5957 + }, + { + "start": 28958.66, + "end": 28960.18, + "probability": 0.8298 + }, + { + "start": 28961.02, + "end": 28962.1, + "probability": 0.9328 + }, + { + "start": 28963.46, + "end": 28966.26, + "probability": 0.9433 + }, + { + "start": 28967.08, + "end": 28968.2, + "probability": 0.9702 + }, + { + "start": 28969.08, + "end": 28972.32, + "probability": 0.7915 + }, + { + "start": 28972.58, + "end": 28975.0, + "probability": 0.9806 + }, + { + "start": 28975.28, + "end": 28976.28, + "probability": 0.7166 + }, + { + "start": 28976.38, + "end": 28978.2, + "probability": 0.6597 + }, + { + "start": 28978.54, + "end": 28980.16, + "probability": 0.9214 + }, + { + "start": 28981.08, + "end": 28983.42, + "probability": 0.9651 + }, + { + "start": 28984.96, + "end": 28985.18, + "probability": 0.4388 + }, + { + "start": 28985.48, + "end": 28989.9, + "probability": 0.846 + }, + { + "start": 28989.96, + "end": 28992.14, + "probability": 0.8115 + }, + { + "start": 28992.74, + "end": 28995.88, + "probability": 0.998 + }, + { + "start": 28995.88, + "end": 29000.9, + "probability": 0.9143 + }, + { + "start": 29001.62, + "end": 29002.7, + "probability": 0.8789 + }, + { + "start": 29003.2, + "end": 29004.16, + "probability": 0.7846 + }, + { + "start": 29004.52, + "end": 29007.28, + "probability": 0.8892 + }, + { + "start": 29007.56, + "end": 29008.2, + "probability": 0.5795 + }, + { + "start": 29008.3, + "end": 29008.7, + "probability": 0.7109 + }, + { + "start": 29009.16, + "end": 29010.24, + "probability": 0.5585 + }, + { + "start": 29010.36, + "end": 29010.76, + "probability": 0.6665 + }, + { + "start": 29010.78, + "end": 29012.5, + "probability": 0.8215 + }, + { + "start": 29013.0, + "end": 29014.7, + "probability": 0.9452 + }, + { + "start": 29014.86, + "end": 29015.56, + "probability": 0.8382 + }, + { + "start": 29016.16, + "end": 29019.76, + "probability": 0.58 + }, + { + "start": 29020.86, + "end": 29023.5, + "probability": 0.7976 + }, + { + "start": 29023.88, + "end": 29025.7, + "probability": 0.8862 + }, + { + "start": 29026.1, + "end": 29028.24, + "probability": 0.9854 + }, + { + "start": 29028.34, + "end": 29029.42, + "probability": 0.9289 + }, + { + "start": 29029.58, + "end": 29031.7, + "probability": 0.7831 + }, + { + "start": 29031.76, + "end": 29034.24, + "probability": 0.9961 + }, + { + "start": 29034.82, + "end": 29036.48, + "probability": 0.8901 + }, + { + "start": 29036.98, + "end": 29039.34, + "probability": 0.9643 + }, + { + "start": 29039.44, + "end": 29040.86, + "probability": 0.9821 + }, + { + "start": 29041.72, + "end": 29043.64, + "probability": 0.6625 + }, + { + "start": 29044.12, + "end": 29044.42, + "probability": 0.7722 + }, + { + "start": 29045.06, + "end": 29046.86, + "probability": 0.496 + }, + { + "start": 29047.04, + "end": 29053.32, + "probability": 0.5698 + }, + { + "start": 29054.02, + "end": 29058.76, + "probability": 0.7958 + }, + { + "start": 29059.72, + "end": 29060.78, + "probability": 0.9546 + }, + { + "start": 29061.46, + "end": 29063.56, + "probability": 0.9896 + }, + { + "start": 29064.18, + "end": 29065.44, + "probability": 0.7564 + }, + { + "start": 29066.32, + "end": 29067.98, + "probability": 0.9868 + }, + { + "start": 29068.1, + "end": 29069.56, + "probability": 0.837 + }, + { + "start": 29069.72, + "end": 29071.84, + "probability": 0.9822 + }, + { + "start": 29072.22, + "end": 29073.64, + "probability": 0.9236 + }, + { + "start": 29074.1, + "end": 29074.86, + "probability": 0.91 + }, + { + "start": 29075.36, + "end": 29076.36, + "probability": 0.9307 + }, + { + "start": 29077.12, + "end": 29080.36, + "probability": 0.9413 + }, + { + "start": 29080.6, + "end": 29082.08, + "probability": 0.7094 + }, + { + "start": 29082.38, + "end": 29083.2, + "probability": 0.8625 + }, + { + "start": 29083.62, + "end": 29087.3, + "probability": 0.9966 + }, + { + "start": 29087.5, + "end": 29087.82, + "probability": 0.714 + }, + { + "start": 29088.62, + "end": 29094.7, + "probability": 0.9976 + }, + { + "start": 29094.72, + "end": 29095.88, + "probability": 0.6644 + }, + { + "start": 29096.06, + "end": 29096.62, + "probability": 0.694 + }, + { + "start": 29097.18, + "end": 29098.16, + "probability": 0.4144 + }, + { + "start": 29098.98, + "end": 29100.62, + "probability": 0.8447 + }, + { + "start": 29101.16, + "end": 29103.14, + "probability": 0.729 + }, + { + "start": 29103.74, + "end": 29106.24, + "probability": 0.7299 + }, + { + "start": 29107.06, + "end": 29109.46, + "probability": 0.7808 + }, + { + "start": 29109.68, + "end": 29112.04, + "probability": 0.9944 + }, + { + "start": 29113.02, + "end": 29113.14, + "probability": 0.0687 + }, + { + "start": 29113.14, + "end": 29115.06, + "probability": 0.7891 + }, + { + "start": 29115.52, + "end": 29118.68, + "probability": 0.7502 + }, + { + "start": 29119.6, + "end": 29121.72, + "probability": 0.6995 + }, + { + "start": 29121.86, + "end": 29123.16, + "probability": 0.8128 + }, + { + "start": 29123.66, + "end": 29125.18, + "probability": 0.9517 + }, + { + "start": 29125.74, + "end": 29127.98, + "probability": 0.7811 + }, + { + "start": 29128.96, + "end": 29130.36, + "probability": 0.7124 + }, + { + "start": 29130.36, + "end": 29130.92, + "probability": 0.7593 + }, + { + "start": 29131.02, + "end": 29132.89, + "probability": 0.9 + }, + { + "start": 29133.98, + "end": 29135.38, + "probability": 0.831 + }, + { + "start": 29135.98, + "end": 29138.47, + "probability": 0.7126 + }, + { + "start": 29139.3, + "end": 29141.5, + "probability": 0.9375 + }, + { + "start": 29141.62, + "end": 29142.28, + "probability": 0.7059 + }, + { + "start": 29142.38, + "end": 29143.5, + "probability": 0.56 + }, + { + "start": 29144.02, + "end": 29144.38, + "probability": 0.5015 + }, + { + "start": 29144.44, + "end": 29145.8, + "probability": 0.4146 + }, + { + "start": 29145.92, + "end": 29148.86, + "probability": 0.5722 + }, + { + "start": 29149.41, + "end": 29154.0, + "probability": 0.8028 + }, + { + "start": 29154.26, + "end": 29156.58, + "probability": 0.703 + }, + { + "start": 29156.68, + "end": 29157.52, + "probability": 0.8566 + }, + { + "start": 29157.78, + "end": 29161.0, + "probability": 0.8606 + }, + { + "start": 29161.24, + "end": 29161.76, + "probability": 0.7146 + }, + { + "start": 29161.88, + "end": 29164.52, + "probability": 0.9598 + }, + { + "start": 29164.72, + "end": 29164.92, + "probability": 0.8156 + }, + { + "start": 29165.74, + "end": 29168.78, + "probability": 0.9889 + }, + { + "start": 29169.5, + "end": 29174.38, + "probability": 0.9755 + }, + { + "start": 29175.34, + "end": 29177.42, + "probability": 0.725 + }, + { + "start": 29177.74, + "end": 29178.4, + "probability": 0.7039 + }, + { + "start": 29178.56, + "end": 29180.48, + "probability": 0.899 + }, + { + "start": 29193.56, + "end": 29194.16, + "probability": 0.4977 + }, + { + "start": 29194.78, + "end": 29196.74, + "probability": 0.7517 + }, + { + "start": 29198.3, + "end": 29199.26, + "probability": 0.7681 + }, + { + "start": 29200.64, + "end": 29203.3, + "probability": 0.8033 + }, + { + "start": 29203.42, + "end": 29204.4, + "probability": 0.7682 + }, + { + "start": 29207.1, + "end": 29207.64, + "probability": 0.3729 + }, + { + "start": 29207.74, + "end": 29212.04, + "probability": 0.9293 + }, + { + "start": 29212.84, + "end": 29213.54, + "probability": 0.9683 + }, + { + "start": 29213.64, + "end": 29216.18, + "probability": 0.8639 + }, + { + "start": 29216.36, + "end": 29217.32, + "probability": 0.7142 + }, + { + "start": 29217.42, + "end": 29217.88, + "probability": 0.7479 + }, + { + "start": 29218.04, + "end": 29220.5, + "probability": 0.9632 + }, + { + "start": 29222.1, + "end": 29225.86, + "probability": 0.6731 + }, + { + "start": 29225.98, + "end": 29228.18, + "probability": 0.7327 + }, + { + "start": 29228.86, + "end": 29236.12, + "probability": 0.6247 + }, + { + "start": 29236.3, + "end": 29238.33, + "probability": 0.9666 + }, + { + "start": 29239.8, + "end": 29244.08, + "probability": 0.7388 + }, + { + "start": 29244.4, + "end": 29245.24, + "probability": 0.4952 + }, + { + "start": 29245.32, + "end": 29249.2, + "probability": 0.6687 + }, + { + "start": 29250.26, + "end": 29255.34, + "probability": 0.6218 + }, + { + "start": 29257.1, + "end": 29260.7, + "probability": 0.7504 + }, + { + "start": 29261.02, + "end": 29262.19, + "probability": 0.8996 + }, + { + "start": 29262.84, + "end": 29266.86, + "probability": 0.7786 + }, + { + "start": 29267.4, + "end": 29268.9, + "probability": 0.9886 + }, + { + "start": 29269.04, + "end": 29269.98, + "probability": 0.9507 + }, + { + "start": 29270.44, + "end": 29270.92, + "probability": 0.7254 + }, + { + "start": 29271.06, + "end": 29271.78, + "probability": 0.9734 + }, + { + "start": 29272.24, + "end": 29275.26, + "probability": 0.9933 + }, + { + "start": 29275.84, + "end": 29276.16, + "probability": 0.7318 + }, + { + "start": 29276.28, + "end": 29278.22, + "probability": 0.807 + }, + { + "start": 29278.26, + "end": 29279.14, + "probability": 0.8477 + }, + { + "start": 29279.48, + "end": 29280.46, + "probability": 0.87 + }, + { + "start": 29282.68, + "end": 29284.06, + "probability": 0.6662 + }, + { + "start": 29284.32, + "end": 29291.14, + "probability": 0.9564 + }, + { + "start": 29292.06, + "end": 29297.59, + "probability": 0.9551 + }, + { + "start": 29297.74, + "end": 29300.52, + "probability": 0.9509 + }, + { + "start": 29301.38, + "end": 29305.08, + "probability": 0.8383 + }, + { + "start": 29305.48, + "end": 29306.4, + "probability": 0.2763 + }, + { + "start": 29306.42, + "end": 29307.1, + "probability": 0.8349 + }, + { + "start": 29307.58, + "end": 29312.24, + "probability": 0.9698 + }, + { + "start": 29312.98, + "end": 29315.32, + "probability": 0.9775 + }, + { + "start": 29315.9, + "end": 29318.24, + "probability": 0.9792 + }, + { + "start": 29319.74, + "end": 29321.48, + "probability": 0.8229 + }, + { + "start": 29322.0, + "end": 29322.92, + "probability": 0.9668 + }, + { + "start": 29322.92, + "end": 29323.94, + "probability": 0.9111 + }, + { + "start": 29324.36, + "end": 29328.84, + "probability": 0.9532 + }, + { + "start": 29330.62, + "end": 29333.3, + "probability": 0.9105 + }, + { + "start": 29333.5, + "end": 29336.66, + "probability": 0.7727 + }, + { + "start": 29337.18, + "end": 29338.82, + "probability": 0.8474 + }, + { + "start": 29339.24, + "end": 29341.54, + "probability": 0.8948 + }, + { + "start": 29342.0, + "end": 29347.24, + "probability": 0.9893 + }, + { + "start": 29347.78, + "end": 29348.36, + "probability": 0.812 + }, + { + "start": 29362.38, + "end": 29363.42, + "probability": 0.0001 + }, + { + "start": 29367.58, + "end": 29371.76, + "probability": 0.8943 + }, + { + "start": 29371.76, + "end": 29375.7, + "probability": 0.996 + }, + { + "start": 29376.34, + "end": 29382.18, + "probability": 0.933 + }, + { + "start": 29383.04, + "end": 29383.92, + "probability": 0.8792 + }, + { + "start": 29384.0, + "end": 29386.78, + "probability": 0.8704 + }, + { + "start": 29386.8, + "end": 29387.18, + "probability": 0.8454 + }, + { + "start": 29387.26, + "end": 29389.72, + "probability": 0.8864 + }, + { + "start": 29389.82, + "end": 29392.13, + "probability": 0.7444 + }, + { + "start": 29392.54, + "end": 29394.24, + "probability": 0.9752 + }, + { + "start": 29394.68, + "end": 29399.48, + "probability": 0.8477 + }, + { + "start": 29399.48, + "end": 29401.5, + "probability": 0.8285 + }, + { + "start": 29401.68, + "end": 29402.62, + "probability": 0.2896 + }, + { + "start": 29403.1, + "end": 29410.82, + "probability": 0.9824 + }, + { + "start": 29411.38, + "end": 29415.24, + "probability": 0.9115 + }, + { + "start": 29415.34, + "end": 29418.74, + "probability": 0.9984 + }, + { + "start": 29419.4, + "end": 29420.0, + "probability": 0.8713 + }, + { + "start": 29420.4, + "end": 29424.86, + "probability": 0.9746 + }, + { + "start": 29425.44, + "end": 29430.5, + "probability": 0.9883 + }, + { + "start": 29431.02, + "end": 29433.74, + "probability": 0.7185 + }, + { + "start": 29434.02, + "end": 29439.62, + "probability": 0.9194 + }, + { + "start": 29440.14, + "end": 29444.36, + "probability": 0.9828 + }, + { + "start": 29444.74, + "end": 29448.18, + "probability": 0.8803 + }, + { + "start": 29448.76, + "end": 29453.62, + "probability": 0.9526 + }, + { + "start": 29454.16, + "end": 29458.38, + "probability": 0.9871 + }, + { + "start": 29458.38, + "end": 29463.0, + "probability": 0.9987 + }, + { + "start": 29464.58, + "end": 29466.18, + "probability": 0.3664 + }, + { + "start": 29466.26, + "end": 29468.08, + "probability": 0.8939 + }, + { + "start": 29468.4, + "end": 29471.6, + "probability": 0.7606 + }, + { + "start": 29472.16, + "end": 29476.48, + "probability": 0.8997 + }, + { + "start": 29476.48, + "end": 29481.3, + "probability": 0.9966 + }, + { + "start": 29481.82, + "end": 29484.1, + "probability": 0.9901 + }, + { + "start": 29484.52, + "end": 29486.12, + "probability": 0.9754 + }, + { + "start": 29486.6, + "end": 29491.78, + "probability": 0.9722 + }, + { + "start": 29492.34, + "end": 29497.86, + "probability": 0.9883 + }, + { + "start": 29498.36, + "end": 29500.2, + "probability": 0.9387 + }, + { + "start": 29500.38, + "end": 29500.62, + "probability": 0.7317 + }, + { + "start": 29501.62, + "end": 29503.58, + "probability": 0.8657 + }, + { + "start": 29503.8, + "end": 29504.99, + "probability": 0.6486 + }, + { + "start": 29505.62, + "end": 29505.86, + "probability": 0.7067 + }, + { + "start": 29506.72, + "end": 29509.16, + "probability": 0.9248 + }, + { + "start": 29510.34, + "end": 29511.22, + "probability": 0.6943 + }, + { + "start": 29528.14, + "end": 29528.68, + "probability": 0.5275 + }, + { + "start": 29528.88, + "end": 29530.12, + "probability": 0.4997 + }, + { + "start": 29530.28, + "end": 29530.92, + "probability": 0.8753 + }, + { + "start": 29531.06, + "end": 29532.38, + "probability": 0.7414 + }, + { + "start": 29532.62, + "end": 29535.68, + "probability": 0.8517 + }, + { + "start": 29536.4, + "end": 29542.72, + "probability": 0.9965 + }, + { + "start": 29542.72, + "end": 29547.48, + "probability": 0.7819 + }, + { + "start": 29548.04, + "end": 29549.66, + "probability": 0.9907 + }, + { + "start": 29549.78, + "end": 29554.2, + "probability": 0.9704 + }, + { + "start": 29554.3, + "end": 29555.48, + "probability": 0.9031 + }, + { + "start": 29555.6, + "end": 29556.86, + "probability": 0.9043 + }, + { + "start": 29557.08, + "end": 29557.8, + "probability": 0.7076 + }, + { + "start": 29558.56, + "end": 29558.68, + "probability": 0.5937 + }, + { + "start": 29558.68, + "end": 29558.84, + "probability": 0.4753 + }, + { + "start": 29560.06, + "end": 29560.7, + "probability": 0.5462 + }, + { + "start": 29560.7, + "end": 29561.16, + "probability": 0.6568 + }, + { + "start": 29561.31, + "end": 29564.68, + "probability": 0.9392 + }, + { + "start": 29564.76, + "end": 29566.42, + "probability": 0.9481 + }, + { + "start": 29566.52, + "end": 29568.32, + "probability": 0.9917 + }, + { + "start": 29568.74, + "end": 29571.62, + "probability": 0.9935 + }, + { + "start": 29572.58, + "end": 29573.24, + "probability": 0.7832 + }, + { + "start": 29573.4, + "end": 29577.3, + "probability": 0.7415 + }, + { + "start": 29577.8, + "end": 29581.86, + "probability": 0.9944 + }, + { + "start": 29581.86, + "end": 29586.56, + "probability": 0.9237 + }, + { + "start": 29587.04, + "end": 29588.8, + "probability": 0.9277 + }, + { + "start": 29589.2, + "end": 29592.8, + "probability": 0.6816 + }, + { + "start": 29592.8, + "end": 29595.28, + "probability": 0.9385 + }, + { + "start": 29595.6, + "end": 29595.74, + "probability": 0.4387 + }, + { + "start": 29596.08, + "end": 29599.4, + "probability": 0.984 + }, + { + "start": 29599.4, + "end": 29602.1, + "probability": 0.9978 + }, + { + "start": 29602.18, + "end": 29604.62, + "probability": 0.998 + }, + { + "start": 29605.44, + "end": 29607.32, + "probability": 0.5476 + }, + { + "start": 29607.5, + "end": 29612.3, + "probability": 0.926 + }, + { + "start": 29612.3, + "end": 29617.56, + "probability": 0.9871 + }, + { + "start": 29617.62, + "end": 29618.1, + "probability": 0.9793 + }, + { + "start": 29618.64, + "end": 29619.88, + "probability": 0.871 + }, + { + "start": 29620.38, + "end": 29623.56, + "probability": 0.9944 + }, + { + "start": 29623.6, + "end": 29630.62, + "probability": 0.9678 + }, + { + "start": 29631.88, + "end": 29635.04, + "probability": 0.9772 + }, + { + "start": 29635.8, + "end": 29638.62, + "probability": 0.9964 + }, + { + "start": 29639.12, + "end": 29641.32, + "probability": 0.9373 + }, + { + "start": 29641.88, + "end": 29643.7, + "probability": 0.9653 + }, + { + "start": 29643.74, + "end": 29645.38, + "probability": 0.9479 + }, + { + "start": 29645.48, + "end": 29649.66, + "probability": 0.9965 + }, + { + "start": 29649.94, + "end": 29651.62, + "probability": 0.9946 + }, + { + "start": 29652.22, + "end": 29653.98, + "probability": 0.9243 + }, + { + "start": 29654.04, + "end": 29655.61, + "probability": 0.8379 + }, + { + "start": 29656.3, + "end": 29659.68, + "probability": 0.996 + }, + { + "start": 29660.52, + "end": 29663.56, + "probability": 0.9973 + }, + { + "start": 29663.56, + "end": 29666.7, + "probability": 0.9924 + }, + { + "start": 29667.42, + "end": 29668.08, + "probability": 0.4399 + }, + { + "start": 29668.58, + "end": 29671.22, + "probability": 0.9838 + }, + { + "start": 29671.24, + "end": 29675.04, + "probability": 0.9044 + }, + { + "start": 29675.66, + "end": 29677.74, + "probability": 0.8795 + }, + { + "start": 29677.74, + "end": 29680.34, + "probability": 0.9897 + }, + { + "start": 29681.02, + "end": 29684.18, + "probability": 0.9816 + }, + { + "start": 29684.24, + "end": 29688.26, + "probability": 0.978 + }, + { + "start": 29688.48, + "end": 29688.48, + "probability": 0.0283 + }, + { + "start": 29688.68, + "end": 29689.06, + "probability": 0.801 + }, + { + "start": 29689.34, + "end": 29692.12, + "probability": 0.7216 + }, + { + "start": 29692.12, + "end": 29694.76, + "probability": 0.9891 + }, + { + "start": 29695.02, + "end": 29696.5, + "probability": 0.8966 + }, + { + "start": 29696.56, + "end": 29699.84, + "probability": 0.9396 + }, + { + "start": 29700.32, + "end": 29703.32, + "probability": 0.9505 + }, + { + "start": 29703.52, + "end": 29704.58, + "probability": 0.6336 + }, + { + "start": 29704.72, + "end": 29705.4, + "probability": 0.7158 + }, + { + "start": 29705.52, + "end": 29705.96, + "probability": 0.8914 + }, + { + "start": 29706.54, + "end": 29707.82, + "probability": 0.9683 + }, + { + "start": 29708.26, + "end": 29711.32, + "probability": 0.9627 + }, + { + "start": 29711.4, + "end": 29714.7, + "probability": 0.9751 + }, + { + "start": 29714.74, + "end": 29718.78, + "probability": 0.9971 + }, + { + "start": 29719.24, + "end": 29720.38, + "probability": 0.998 + }, + { + "start": 29720.58, + "end": 29722.96, + "probability": 0.9973 + }, + { + "start": 29723.82, + "end": 29726.56, + "probability": 0.9674 + }, + { + "start": 29727.18, + "end": 29728.08, + "probability": 0.7747 + }, + { + "start": 29728.96, + "end": 29732.0, + "probability": 0.9975 + }, + { + "start": 29732.48, + "end": 29734.16, + "probability": 0.9972 + }, + { + "start": 29734.8, + "end": 29738.12, + "probability": 0.8511 + }, + { + "start": 29738.26, + "end": 29739.34, + "probability": 0.9704 + }, + { + "start": 29739.68, + "end": 29741.66, + "probability": 0.9871 + }, + { + "start": 29741.84, + "end": 29744.56, + "probability": 0.9963 + }, + { + "start": 29745.26, + "end": 29746.35, + "probability": 0.8469 + }, + { + "start": 29746.88, + "end": 29748.1, + "probability": 0.8765 + }, + { + "start": 29748.26, + "end": 29749.36, + "probability": 0.7671 + }, + { + "start": 29749.8, + "end": 29752.76, + "probability": 0.998 + }, + { + "start": 29753.1, + "end": 29757.38, + "probability": 0.9954 + }, + { + "start": 29757.52, + "end": 29761.46, + "probability": 0.9662 + }, + { + "start": 29761.52, + "end": 29763.6, + "probability": 0.999 + }, + { + "start": 29764.12, + "end": 29767.1, + "probability": 0.9966 + }, + { + "start": 29767.1, + "end": 29770.34, + "probability": 0.9979 + }, + { + "start": 29770.46, + "end": 29771.01, + "probability": 0.6088 + }, + { + "start": 29771.3, + "end": 29772.1, + "probability": 0.5932 + }, + { + "start": 29772.5, + "end": 29775.14, + "probability": 0.9951 + }, + { + "start": 29775.36, + "end": 29778.02, + "probability": 0.9832 + }, + { + "start": 29778.28, + "end": 29780.22, + "probability": 0.9468 + }, + { + "start": 29780.38, + "end": 29781.42, + "probability": 0.5864 + }, + { + "start": 29782.08, + "end": 29784.24, + "probability": 0.9807 + }, + { + "start": 29784.42, + "end": 29785.8, + "probability": 0.8524 + }, + { + "start": 29785.96, + "end": 29786.76, + "probability": 0.741 + }, + { + "start": 29786.92, + "end": 29789.36, + "probability": 0.9097 + }, + { + "start": 29790.46, + "end": 29792.26, + "probability": 0.5982 + }, + { + "start": 29792.34, + "end": 29795.4, + "probability": 0.9956 + }, + { + "start": 29795.6, + "end": 29798.98, + "probability": 0.9922 + }, + { + "start": 29799.06, + "end": 29802.76, + "probability": 0.969 + }, + { + "start": 29803.3, + "end": 29804.04, + "probability": 0.9929 + }, + { + "start": 29804.62, + "end": 29807.58, + "probability": 0.9604 + }, + { + "start": 29807.62, + "end": 29807.78, + "probability": 0.8048 + }, + { + "start": 29807.86, + "end": 29810.74, + "probability": 0.85 + }, + { + "start": 29811.08, + "end": 29814.56, + "probability": 0.7855 + }, + { + "start": 29815.04, + "end": 29817.9, + "probability": 0.9917 + }, + { + "start": 29819.1, + "end": 29822.82, + "probability": 0.766 + }, + { + "start": 29822.88, + "end": 29824.96, + "probability": 0.8826 + }, + { + "start": 29825.04, + "end": 29829.28, + "probability": 0.9618 + }, + { + "start": 29829.76, + "end": 29833.62, + "probability": 0.9548 + }, + { + "start": 29834.34, + "end": 29837.48, + "probability": 0.9035 + }, + { + "start": 29838.14, + "end": 29842.26, + "probability": 0.9968 + }, + { + "start": 29842.26, + "end": 29844.98, + "probability": 0.9894 + }, + { + "start": 29845.04, + "end": 29846.4, + "probability": 0.9546 + }, + { + "start": 29846.66, + "end": 29849.06, + "probability": 0.8209 + }, + { + "start": 29849.46, + "end": 29852.9, + "probability": 0.7048 + }, + { + "start": 29853.12, + "end": 29853.32, + "probability": 0.8391 + }, + { + "start": 29853.56, + "end": 29854.42, + "probability": 0.9828 + }, + { + "start": 29854.54, + "end": 29855.42, + "probability": 0.972 + }, + { + "start": 29856.0, + "end": 29857.8, + "probability": 0.9312 + }, + { + "start": 29858.08, + "end": 29862.22, + "probability": 0.9917 + }, + { + "start": 29862.78, + "end": 29863.58, + "probability": 0.9062 + }, + { + "start": 29863.78, + "end": 29863.94, + "probability": 0.9267 + }, + { + "start": 29864.02, + "end": 29864.76, + "probability": 0.6377 + }, + { + "start": 29864.96, + "end": 29866.3, + "probability": 0.864 + }, + { + "start": 29866.4, + "end": 29868.26, + "probability": 0.959 + }, + { + "start": 29868.36, + "end": 29869.0, + "probability": 0.6804 + }, + { + "start": 29870.38, + "end": 29870.54, + "probability": 0.0172 + }, + { + "start": 29870.86, + "end": 29872.02, + "probability": 0.8678 + }, + { + "start": 29872.18, + "end": 29872.92, + "probability": 0.5056 + }, + { + "start": 29873.02, + "end": 29874.5, + "probability": 0.9443 + }, + { + "start": 29874.62, + "end": 29875.02, + "probability": 0.9164 + }, + { + "start": 29875.18, + "end": 29876.46, + "probability": 0.9854 + }, + { + "start": 29876.66, + "end": 29878.64, + "probability": 0.7453 + }, + { + "start": 29878.8, + "end": 29882.08, + "probability": 0.9858 + }, + { + "start": 29883.08, + "end": 29885.62, + "probability": 0.9983 + }, + { + "start": 29885.68, + "end": 29887.34, + "probability": 0.9885 + }, + { + "start": 29887.44, + "end": 29889.44, + "probability": 0.7891 + }, + { + "start": 29889.54, + "end": 29893.88, + "probability": 0.9759 + }, + { + "start": 29894.12, + "end": 29895.64, + "probability": 0.871 + }, + { + "start": 29896.16, + "end": 29897.76, + "probability": 0.9266 + }, + { + "start": 29897.82, + "end": 29899.86, + "probability": 0.954 + }, + { + "start": 29900.08, + "end": 29903.24, + "probability": 0.9693 + }, + { + "start": 29903.46, + "end": 29906.16, + "probability": 0.7571 + }, + { + "start": 29906.24, + "end": 29907.4, + "probability": 0.8097 + }, + { + "start": 29907.58, + "end": 29909.14, + "probability": 0.9953 + }, + { + "start": 29909.52, + "end": 29912.45, + "probability": 0.8306 + }, + { + "start": 29912.7, + "end": 29914.88, + "probability": 0.8278 + }, + { + "start": 29917.0, + "end": 29920.2, + "probability": 0.9771 + }, + { + "start": 29920.74, + "end": 29924.16, + "probability": 0.9799 + }, + { + "start": 29924.24, + "end": 29924.82, + "probability": 0.3501 + }, + { + "start": 29924.92, + "end": 29925.8, + "probability": 0.7008 + }, + { + "start": 29925.98, + "end": 29926.98, + "probability": 0.9018 + }, + { + "start": 29927.32, + "end": 29932.44, + "probability": 0.9674 + }, + { + "start": 29932.52, + "end": 29934.6, + "probability": 0.6436 + }, + { + "start": 29934.7, + "end": 29935.88, + "probability": 0.9446 + }, + { + "start": 29936.46, + "end": 29939.6, + "probability": 0.9985 + }, + { + "start": 29940.69, + "end": 29944.02, + "probability": 0.9036 + }, + { + "start": 29944.28, + "end": 29944.58, + "probability": 0.5125 + }, + { + "start": 29945.12, + "end": 29945.62, + "probability": 0.0835 + }, + { + "start": 29945.92, + "end": 29948.82, + "probability": 0.9777 + }, + { + "start": 29949.1, + "end": 29953.98, + "probability": 0.9949 + }, + { + "start": 29954.1, + "end": 29954.22, + "probability": 0.0769 + }, + { + "start": 29954.32, + "end": 29955.18, + "probability": 0.8445 + }, + { + "start": 29955.22, + "end": 29957.44, + "probability": 0.9842 + }, + { + "start": 29957.5, + "end": 29960.22, + "probability": 0.9717 + }, + { + "start": 29960.22, + "end": 29963.28, + "probability": 0.9932 + }, + { + "start": 29963.9, + "end": 29967.94, + "probability": 0.9571 + }, + { + "start": 29968.16, + "end": 29968.36, + "probability": 0.7538 + }, + { + "start": 29968.42, + "end": 29968.9, + "probability": 0.7692 + }, + { + "start": 29969.36, + "end": 29972.2, + "probability": 0.9927 + }, + { + "start": 29972.78, + "end": 29974.64, + "probability": 0.9888 + }, + { + "start": 29975.26, + "end": 29977.5, + "probability": 0.7959 + }, + { + "start": 29977.5, + "end": 29980.7, + "probability": 0.8473 + }, + { + "start": 29980.72, + "end": 29982.35, + "probability": 0.9723 + }, + { + "start": 29983.18, + "end": 29984.54, + "probability": 0.7495 + }, + { + "start": 29985.24, + "end": 29988.2, + "probability": 0.9963 + }, + { + "start": 29988.26, + "end": 29991.14, + "probability": 0.9432 + }, + { + "start": 29991.54, + "end": 29994.68, + "probability": 0.9933 + }, + { + "start": 29994.84, + "end": 29995.0, + "probability": 0.2475 + }, + { + "start": 29995.06, + "end": 29997.46, + "probability": 0.8424 + }, + { + "start": 29997.88, + "end": 30000.12, + "probability": 0.7238 + }, + { + "start": 30001.06, + "end": 30001.76, + "probability": 0.773 + }, + { + "start": 30001.8, + "end": 30005.28, + "probability": 0.9863 + }, + { + "start": 30005.74, + "end": 30008.38, + "probability": 0.9743 + }, + { + "start": 30008.42, + "end": 30013.0, + "probability": 0.994 + }, + { + "start": 30013.24, + "end": 30015.4, + "probability": 0.9922 + }, + { + "start": 30015.92, + "end": 30018.3, + "probability": 0.8917 + }, + { + "start": 30018.66, + "end": 30020.24, + "probability": 0.9774 + }, + { + "start": 30020.99, + "end": 30025.3, + "probability": 0.8906 + }, + { + "start": 30025.62, + "end": 30030.12, + "probability": 0.9918 + }, + { + "start": 30030.98, + "end": 30034.54, + "probability": 0.8347 + }, + { + "start": 30034.6, + "end": 30036.82, + "probability": 0.9651 + }, + { + "start": 30037.3, + "end": 30038.72, + "probability": 0.9707 + }, + { + "start": 30038.88, + "end": 30040.08, + "probability": 0.7773 + }, + { + "start": 30040.18, + "end": 30041.68, + "probability": 0.8102 + }, + { + "start": 30042.06, + "end": 30047.48, + "probability": 0.8863 + }, + { + "start": 30047.6, + "end": 30049.48, + "probability": 0.9863 + }, + { + "start": 30050.5, + "end": 30054.14, + "probability": 0.8979 + }, + { + "start": 30054.42, + "end": 30054.7, + "probability": 0.5355 + }, + { + "start": 30054.8, + "end": 30056.7, + "probability": 0.8936 + }, + { + "start": 30056.8, + "end": 30058.46, + "probability": 0.9858 + }, + { + "start": 30058.9, + "end": 30062.96, + "probability": 0.9559 + }, + { + "start": 30062.96, + "end": 30066.2, + "probability": 0.8815 + }, + { + "start": 30066.26, + "end": 30066.52, + "probability": 0.5147 + }, + { + "start": 30066.6, + "end": 30071.54, + "probability": 0.9923 + }, + { + "start": 30071.66, + "end": 30073.12, + "probability": 0.9109 + }, + { + "start": 30073.3, + "end": 30075.72, + "probability": 0.9858 + }, + { + "start": 30075.8, + "end": 30076.86, + "probability": 0.9082 + }, + { + "start": 30077.06, + "end": 30077.22, + "probability": 0.9121 + }, + { + "start": 30077.76, + "end": 30079.62, + "probability": 0.9947 + }, + { + "start": 30080.06, + "end": 30084.22, + "probability": 0.9796 + }, + { + "start": 30084.76, + "end": 30086.48, + "probability": 0.9954 + }, + { + "start": 30087.12, + "end": 30087.22, + "probability": 0.4952 + }, + { + "start": 30087.68, + "end": 30089.08, + "probability": 0.8323 + }, + { + "start": 30089.36, + "end": 30091.18, + "probability": 0.9217 + }, + { + "start": 30092.0, + "end": 30095.52, + "probability": 0.9371 + }, + { + "start": 30095.84, + "end": 30099.92, + "probability": 0.8393 + }, + { + "start": 30100.16, + "end": 30101.36, + "probability": 0.8201 + }, + { + "start": 30101.54, + "end": 30102.7, + "probability": 0.8299 + }, + { + "start": 30102.7, + "end": 30105.1, + "probability": 0.9688 + }, + { + "start": 30105.2, + "end": 30106.7, + "probability": 0.9849 + }, + { + "start": 30106.76, + "end": 30109.16, + "probability": 0.9134 + }, + { + "start": 30109.22, + "end": 30111.46, + "probability": 0.9946 + }, + { + "start": 30111.46, + "end": 30113.94, + "probability": 0.8793 + }, + { + "start": 30114.08, + "end": 30114.26, + "probability": 0.7896 + }, + { + "start": 30114.74, + "end": 30116.5, + "probability": 0.9342 + }, + { + "start": 30116.74, + "end": 30117.66, + "probability": 0.9651 + }, + { + "start": 30118.1, + "end": 30118.87, + "probability": 0.9702 + }, + { + "start": 30119.4, + "end": 30121.36, + "probability": 0.998 + }, + { + "start": 30121.44, + "end": 30126.5, + "probability": 0.9817 + }, + { + "start": 30127.34, + "end": 30128.72, + "probability": 0.9342 + }, + { + "start": 30128.76, + "end": 30130.74, + "probability": 0.8931 + }, + { + "start": 30130.78, + "end": 30132.48, + "probability": 0.9885 + }, + { + "start": 30133.02, + "end": 30133.28, + "probability": 0.842 + }, + { + "start": 30133.34, + "end": 30138.38, + "probability": 0.98 + }, + { + "start": 30138.76, + "end": 30140.06, + "probability": 0.9043 + }, + { + "start": 30140.62, + "end": 30145.02, + "probability": 0.9895 + }, + { + "start": 30145.02, + "end": 30148.94, + "probability": 0.8233 + }, + { + "start": 30149.5, + "end": 30151.64, + "probability": 0.8384 + }, + { + "start": 30151.64, + "end": 30153.78, + "probability": 0.9805 + }, + { + "start": 30153.88, + "end": 30154.12, + "probability": 0.5555 + }, + { + "start": 30154.3, + "end": 30155.46, + "probability": 0.9228 + }, + { + "start": 30155.62, + "end": 30155.76, + "probability": 0.9082 + }, + { + "start": 30156.24, + "end": 30156.4, + "probability": 0.3281 + }, + { + "start": 30156.58, + "end": 30158.32, + "probability": 0.9668 + }, + { + "start": 30158.46, + "end": 30161.35, + "probability": 0.9 + }, + { + "start": 30162.48, + "end": 30163.12, + "probability": 0.9086 + }, + { + "start": 30163.7, + "end": 30165.52, + "probability": 0.9071 + }, + { + "start": 30165.68, + "end": 30169.6, + "probability": 0.9487 + }, + { + "start": 30170.1, + "end": 30172.36, + "probability": 0.8174 + }, + { + "start": 30172.9, + "end": 30176.82, + "probability": 0.9568 + }, + { + "start": 30177.26, + "end": 30180.54, + "probability": 0.9595 + }, + { + "start": 30180.64, + "end": 30185.12, + "probability": 0.9758 + }, + { + "start": 30185.24, + "end": 30189.82, + "probability": 0.9829 + }, + { + "start": 30189.82, + "end": 30193.26, + "probability": 0.9226 + }, + { + "start": 30194.46, + "end": 30199.4, + "probability": 0.885 + }, + { + "start": 30199.82, + "end": 30202.41, + "probability": 0.9954 + }, + { + "start": 30202.84, + "end": 30204.42, + "probability": 0.8674 + }, + { + "start": 30204.42, + "end": 30206.8, + "probability": 0.985 + }, + { + "start": 30207.93, + "end": 30212.54, + "probability": 0.8808 + }, + { + "start": 30212.62, + "end": 30213.02, + "probability": 0.7579 + }, + { + "start": 30213.56, + "end": 30216.48, + "probability": 0.981 + }, + { + "start": 30216.58, + "end": 30219.58, + "probability": 0.9915 + }, + { + "start": 30219.88, + "end": 30223.5, + "probability": 0.9866 + }, + { + "start": 30224.36, + "end": 30226.48, + "probability": 0.9895 + }, + { + "start": 30226.56, + "end": 30229.88, + "probability": 0.9829 + }, + { + "start": 30230.66, + "end": 30234.18, + "probability": 0.9976 + }, + { + "start": 30234.18, + "end": 30237.56, + "probability": 0.9993 + }, + { + "start": 30237.7, + "end": 30239.76, + "probability": 0.9338 + }, + { + "start": 30240.32, + "end": 30242.28, + "probability": 0.8674 + }, + { + "start": 30242.28, + "end": 30245.08, + "probability": 0.9945 + }, + { + "start": 30245.38, + "end": 30245.84, + "probability": 0.744 + }, + { + "start": 30246.02, + "end": 30248.66, + "probability": 0.9912 + }, + { + "start": 30248.88, + "end": 30250.66, + "probability": 0.7525 + }, + { + "start": 30250.82, + "end": 30251.82, + "probability": 0.9097 + }, + { + "start": 30252.36, + "end": 30255.08, + "probability": 0.9828 + }, + { + "start": 30255.78, + "end": 30259.32, + "probability": 0.9986 + }, + { + "start": 30259.44, + "end": 30263.58, + "probability": 0.9978 + }, + { + "start": 30263.7, + "end": 30267.4, + "probability": 0.9686 + }, + { + "start": 30268.08, + "end": 30271.8, + "probability": 0.9849 + }, + { + "start": 30271.9, + "end": 30274.82, + "probability": 0.9985 + }, + { + "start": 30275.14, + "end": 30278.46, + "probability": 0.9942 + }, + { + "start": 30278.94, + "end": 30283.3, + "probability": 0.9683 + }, + { + "start": 30283.76, + "end": 30285.66, + "probability": 0.9971 + }, + { + "start": 30285.8, + "end": 30288.2, + "probability": 0.9659 + }, + { + "start": 30288.56, + "end": 30289.98, + "probability": 0.9803 + }, + { + "start": 30291.23, + "end": 30294.42, + "probability": 0.9514 + }, + { + "start": 30294.96, + "end": 30296.02, + "probability": 0.895 + }, + { + "start": 30296.1, + "end": 30298.52, + "probability": 0.9503 + }, + { + "start": 30298.52, + "end": 30302.06, + "probability": 0.836 + }, + { + "start": 30302.24, + "end": 30304.7, + "probability": 0.993 + }, + { + "start": 30304.84, + "end": 30307.44, + "probability": 0.7435 + }, + { + "start": 30307.5, + "end": 30310.4, + "probability": 0.9515 + }, + { + "start": 30310.54, + "end": 30311.62, + "probability": 0.9534 + }, + { + "start": 30312.6, + "end": 30313.56, + "probability": 0.9644 + }, + { + "start": 30313.74, + "end": 30317.32, + "probability": 0.9927 + }, + { + "start": 30317.76, + "end": 30319.4, + "probability": 0.9995 + }, + { + "start": 30319.74, + "end": 30322.36, + "probability": 0.9504 + }, + { + "start": 30322.4, + "end": 30324.76, + "probability": 0.9918 + }, + { + "start": 30325.18, + "end": 30328.64, + "probability": 0.9969 + }, + { + "start": 30328.64, + "end": 30331.66, + "probability": 0.9937 + }, + { + "start": 30332.4, + "end": 30334.04, + "probability": 0.9695 + }, + { + "start": 30334.46, + "end": 30337.1, + "probability": 0.9941 + }, + { + "start": 30337.1, + "end": 30340.72, + "probability": 0.931 + }, + { + "start": 30341.1, + "end": 30343.68, + "probability": 0.9902 + }, + { + "start": 30343.68, + "end": 30347.04, + "probability": 0.6334 + }, + { + "start": 30347.28, + "end": 30350.62, + "probability": 0.9836 + }, + { + "start": 30350.62, + "end": 30353.58, + "probability": 0.9787 + }, + { + "start": 30354.04, + "end": 30354.44, + "probability": 0.6994 + }, + { + "start": 30355.54, + "end": 30357.06, + "probability": 0.5032 + }, + { + "start": 30358.46, + "end": 30360.54, + "probability": 0.8455 + }, + { + "start": 30361.58, + "end": 30361.58, + "probability": 0.36 + }, + { + "start": 30361.58, + "end": 30361.58, + "probability": 0.0723 + }, + { + "start": 30361.58, + "end": 30361.58, + "probability": 0.2741 + }, + { + "start": 30361.58, + "end": 30364.16, + "probability": 0.5457 + }, + { + "start": 30364.3, + "end": 30365.86, + "probability": 0.9653 + }, + { + "start": 30365.92, + "end": 30367.96, + "probability": 0.9714 + }, + { + "start": 30368.16, + "end": 30370.3, + "probability": 0.9473 + }, + { + "start": 30370.34, + "end": 30372.38, + "probability": 0.8877 + }, + { + "start": 30372.44, + "end": 30372.6, + "probability": 0.5682 + }, + { + "start": 30372.6, + "end": 30374.32, + "probability": 0.8825 + }, + { + "start": 30374.82, + "end": 30375.92, + "probability": 0.6969 + }, + { + "start": 30379.86, + "end": 30380.18, + "probability": 0.4208 + }, + { + "start": 30380.18, + "end": 30380.18, + "probability": 0.2649 + }, + { + "start": 30380.18, + "end": 30380.18, + "probability": 0.1273 + }, + { + "start": 30380.18, + "end": 30380.38, + "probability": 0.3062 + }, + { + "start": 30380.42, + "end": 30380.68, + "probability": 0.499 + }, + { + "start": 30380.82, + "end": 30383.14, + "probability": 0.8137 + }, + { + "start": 30383.62, + "end": 30387.85, + "probability": 0.9612 + }, + { + "start": 30390.65, + "end": 30393.62, + "probability": 0.7417 + }, + { + "start": 30395.02, + "end": 30396.04, + "probability": 0.7909 + }, + { + "start": 30396.26, + "end": 30396.86, + "probability": 0.7498 + }, + { + "start": 30397.44, + "end": 30398.34, + "probability": 0.6905 + }, + { + "start": 30398.44, + "end": 30401.03, + "probability": 0.6316 + }, + { + "start": 30401.9, + "end": 30403.38, + "probability": 0.8574 + }, + { + "start": 30403.58, + "end": 30403.96, + "probability": 0.465 + }, + { + "start": 30404.68, + "end": 30406.62, + "probability": 0.088 + }, + { + "start": 30408.74, + "end": 30409.7, + "probability": 0.006 + }, + { + "start": 30410.38, + "end": 30410.86, + "probability": 0.078 + }, + { + "start": 30410.96, + "end": 30411.18, + "probability": 0.0133 + }, + { + "start": 30411.38, + "end": 30411.48, + "probability": 0.2694 + }, + { + "start": 30411.5, + "end": 30411.5, + "probability": 0.162 + }, + { + "start": 30411.96, + "end": 30415.0, + "probability": 0.4355 + }, + { + "start": 30415.18, + "end": 30421.54, + "probability": 0.7828 + }, + { + "start": 30422.52, + "end": 30424.04, + "probability": 0.8743 + }, + { + "start": 30424.2, + "end": 30426.16, + "probability": 0.9192 + }, + { + "start": 30426.32, + "end": 30427.22, + "probability": 0.9709 + }, + { + "start": 30427.86, + "end": 30431.82, + "probability": 0.8867 + }, + { + "start": 30432.46, + "end": 30433.84, + "probability": 0.9784 + }, + { + "start": 30434.6, + "end": 30435.74, + "probability": 0.8359 + }, + { + "start": 30436.66, + "end": 30441.28, + "probability": 0.9255 + }, + { + "start": 30441.28, + "end": 30445.5, + "probability": 0.995 + }, + { + "start": 30445.8, + "end": 30447.26, + "probability": 0.5354 + }, + { + "start": 30447.46, + "end": 30447.68, + "probability": 0.6924 + }, + { + "start": 30448.42, + "end": 30450.14, + "probability": 0.8689 + }, + { + "start": 30450.36, + "end": 30451.64, + "probability": 0.4879 + }, + { + "start": 30451.76, + "end": 30452.46, + "probability": 0.9048 + }, + { + "start": 30452.9, + "end": 30457.26, + "probability": 0.6645 + }, + { + "start": 30458.64, + "end": 30461.18, + "probability": 0.359 + }, + { + "start": 30472.26, + "end": 30472.36, + "probability": 0.1393 + }, + { + "start": 30472.36, + "end": 30474.1, + "probability": 0.6147 + }, + { + "start": 30474.6, + "end": 30478.08, + "probability": 0.9305 + }, + { + "start": 30478.9, + "end": 30479.48, + "probability": 0.5962 + }, + { + "start": 30479.68, + "end": 30483.2, + "probability": 0.9793 + }, + { + "start": 30483.32, + "end": 30483.92, + "probability": 0.6913 + }, + { + "start": 30484.88, + "end": 30486.12, + "probability": 0.7971 + }, + { + "start": 30486.22, + "end": 30487.34, + "probability": 0.5821 + }, + { + "start": 30487.4, + "end": 30488.9, + "probability": 0.7765 + }, + { + "start": 30489.12, + "end": 30490.48, + "probability": 0.9573 + }, + { + "start": 30491.06, + "end": 30493.6, + "probability": 0.7731 + }, + { + "start": 30494.26, + "end": 30495.02, + "probability": 0.3502 + }, + { + "start": 30496.14, + "end": 30498.67, + "probability": 0.7736 + }, + { + "start": 30499.4, + "end": 30499.9, + "probability": 0.8019 + }, + { + "start": 30500.66, + "end": 30502.54, + "probability": 0.9966 + }, + { + "start": 30502.6, + "end": 30505.26, + "probability": 0.8419 + }, + { + "start": 30505.78, + "end": 30508.36, + "probability": 0.8958 + }, + { + "start": 30508.46, + "end": 30510.66, + "probability": 0.7653 + }, + { + "start": 30511.16, + "end": 30511.2, + "probability": 0.088 + }, + { + "start": 30511.2, + "end": 30512.78, + "probability": 0.5358 + }, + { + "start": 30512.92, + "end": 30514.1, + "probability": 0.9341 + }, + { + "start": 30517.06, + "end": 30519.4, + "probability": 0.8397 + }, + { + "start": 30521.4, + "end": 30523.98, + "probability": 0.7363 + }, + { + "start": 30524.52, + "end": 30525.04, + "probability": 0.9803 + }, + { + "start": 30527.8, + "end": 30530.12, + "probability": 0.7406 + }, + { + "start": 30531.4, + "end": 30531.62, + "probability": 0.5008 + }, + { + "start": 30534.38, + "end": 30536.04, + "probability": 0.724 + }, + { + "start": 30538.68, + "end": 30544.02, + "probability": 0.9437 + }, + { + "start": 30545.0, + "end": 30549.22, + "probability": 0.9625 + }, + { + "start": 30550.66, + "end": 30551.54, + "probability": 0.9863 + }, + { + "start": 30551.8, + "end": 30553.28, + "probability": 0.7319 + }, + { + "start": 30554.1, + "end": 30555.48, + "probability": 0.9877 + }, + { + "start": 30556.34, + "end": 30557.98, + "probability": 0.9569 + }, + { + "start": 30558.64, + "end": 30560.92, + "probability": 0.946 + }, + { + "start": 30561.7, + "end": 30563.04, + "probability": 0.678 + }, + { + "start": 30564.6, + "end": 30567.42, + "probability": 0.9773 + }, + { + "start": 30568.08, + "end": 30570.38, + "probability": 0.9708 + }, + { + "start": 30571.54, + "end": 30573.7, + "probability": 0.857 + }, + { + "start": 30574.32, + "end": 30576.22, + "probability": 0.9456 + }, + { + "start": 30577.82, + "end": 30579.66, + "probability": 0.6969 + }, + { + "start": 30579.84, + "end": 30582.24, + "probability": 0.8079 + }, + { + "start": 30582.32, + "end": 30583.66, + "probability": 0.9902 + }, + { + "start": 30584.72, + "end": 30588.74, + "probability": 0.9813 + }, + { + "start": 30589.76, + "end": 30591.32, + "probability": 0.9127 + }, + { + "start": 30593.0, + "end": 30596.1, + "probability": 0.9288 + }, + { + "start": 30597.04, + "end": 30598.88, + "probability": 0.9595 + }, + { + "start": 30600.26, + "end": 30605.04, + "probability": 0.9674 + }, + { + "start": 30606.24, + "end": 30608.56, + "probability": 0.9745 + }, + { + "start": 30609.42, + "end": 30612.16, + "probability": 0.9958 + }, + { + "start": 30612.82, + "end": 30614.96, + "probability": 0.9885 + }, + { + "start": 30615.04, + "end": 30615.4, + "probability": 0.7129 + }, + { + "start": 30615.52, + "end": 30621.46, + "probability": 0.9876 + }, + { + "start": 30622.78, + "end": 30625.56, + "probability": 0.994 + }, + { + "start": 30625.56, + "end": 30630.8, + "probability": 0.9805 + }, + { + "start": 30632.54, + "end": 30634.46, + "probability": 0.9504 + }, + { + "start": 30635.44, + "end": 30637.16, + "probability": 0.9976 + }, + { + "start": 30638.14, + "end": 30641.0, + "probability": 0.9795 + }, + { + "start": 30641.76, + "end": 30643.98, + "probability": 0.9676 + }, + { + "start": 30645.14, + "end": 30649.12, + "probability": 0.9173 + }, + { + "start": 30649.82, + "end": 30652.46, + "probability": 0.9888 + }, + { + "start": 30656.42, + "end": 30657.12, + "probability": 0.6713 + }, + { + "start": 30659.1, + "end": 30663.26, + "probability": 0.7626 + }, + { + "start": 30663.94, + "end": 30667.5, + "probability": 0.9438 + }, + { + "start": 30667.68, + "end": 30669.12, + "probability": 0.8255 + }, + { + "start": 30670.02, + "end": 30671.22, + "probability": 0.9099 + }, + { + "start": 30672.7, + "end": 30678.74, + "probability": 0.7097 + }, + { + "start": 30679.56, + "end": 30681.96, + "probability": 0.7243 + }, + { + "start": 30682.62, + "end": 30686.02, + "probability": 0.7183 + }, + { + "start": 30686.92, + "end": 30688.02, + "probability": 0.4394 + }, + { + "start": 30688.82, + "end": 30692.1, + "probability": 0.8 + }, + { + "start": 30692.72, + "end": 30695.06, + "probability": 0.9728 + }, + { + "start": 30695.94, + "end": 30698.82, + "probability": 0.969 + }, + { + "start": 30698.88, + "end": 30700.2, + "probability": 0.7196 + }, + { + "start": 30701.18, + "end": 30702.28, + "probability": 0.8167 + }, + { + "start": 30704.93, + "end": 30710.68, + "probability": 0.6195 + }, + { + "start": 30711.42, + "end": 30713.82, + "probability": 0.872 + }, + { + "start": 30713.86, + "end": 30714.38, + "probability": 0.8805 + }, + { + "start": 30714.78, + "end": 30715.2, + "probability": 0.6151 + }, + { + "start": 30715.22, + "end": 30717.96, + "probability": 0.9204 + }, + { + "start": 30718.02, + "end": 30719.12, + "probability": 0.9613 + }, + { + "start": 30719.6, + "end": 30719.9, + "probability": 0.7037 + }, + { + "start": 30719.92, + "end": 30725.0, + "probability": 0.8659 + }, + { + "start": 30725.14, + "end": 30728.14, + "probability": 0.7339 + }, + { + "start": 30729.68, + "end": 30733.54, + "probability": 0.9511 + }, + { + "start": 30733.66, + "end": 30734.84, + "probability": 0.8166 + }, + { + "start": 30735.84, + "end": 30739.3, + "probability": 0.9083 + }, + { + "start": 30740.32, + "end": 30743.22, + "probability": 0.9929 + }, + { + "start": 30743.92, + "end": 30747.12, + "probability": 0.9993 + }, + { + "start": 30747.74, + "end": 30750.54, + "probability": 0.8807 + }, + { + "start": 30751.7, + "end": 30754.0, + "probability": 0.8645 + }, + { + "start": 30754.16, + "end": 30755.2, + "probability": 0.9767 + }, + { + "start": 30755.8, + "end": 30757.66, + "probability": 0.9968 + }, + { + "start": 30759.12, + "end": 30762.16, + "probability": 0.6716 + }, + { + "start": 30762.76, + "end": 30768.4, + "probability": 0.9462 + }, + { + "start": 30768.98, + "end": 30771.28, + "probability": 0.9923 + }, + { + "start": 30773.94, + "end": 30777.22, + "probability": 0.9194 + }, + { + "start": 30778.08, + "end": 30781.52, + "probability": 0.9727 + }, + { + "start": 30782.64, + "end": 30784.54, + "probability": 0.7511 + }, + { + "start": 30785.74, + "end": 30789.1, + "probability": 0.8671 + }, + { + "start": 30790.46, + "end": 30795.15, + "probability": 0.9413 + }, + { + "start": 30796.44, + "end": 30799.44, + "probability": 0.9831 + }, + { + "start": 30800.62, + "end": 30803.94, + "probability": 0.9016 + }, + { + "start": 30804.58, + "end": 30807.92, + "probability": 0.8768 + }, + { + "start": 30809.6, + "end": 30815.0, + "probability": 0.9221 + }, + { + "start": 30815.64, + "end": 30817.8, + "probability": 0.937 + }, + { + "start": 30818.44, + "end": 30823.48, + "probability": 0.9887 + }, + { + "start": 30825.4, + "end": 30828.18, + "probability": 0.9921 + }, + { + "start": 30829.22, + "end": 30830.26, + "probability": 0.8233 + }, + { + "start": 30830.74, + "end": 30831.52, + "probability": 0.9896 + }, + { + "start": 30831.8, + "end": 30834.7, + "probability": 0.9556 + }, + { + "start": 30835.58, + "end": 30836.8, + "probability": 0.9246 + }, + { + "start": 30837.86, + "end": 30840.9, + "probability": 0.823 + }, + { + "start": 30841.84, + "end": 30843.54, + "probability": 0.467 + }, + { + "start": 30848.16, + "end": 30850.8, + "probability": 0.908 + }, + { + "start": 30853.2, + "end": 30856.6, + "probability": 0.5623 + }, + { + "start": 30857.14, + "end": 30863.38, + "probability": 0.9111 + }, + { + "start": 30864.22, + "end": 30866.9, + "probability": 0.9846 + }, + { + "start": 30867.94, + "end": 30869.86, + "probability": 0.9972 + }, + { + "start": 30870.64, + "end": 30875.02, + "probability": 0.9725 + }, + { + "start": 30875.98, + "end": 30876.6, + "probability": 0.6901 + }, + { + "start": 30877.7, + "end": 30878.6, + "probability": 0.8418 + }, + { + "start": 30879.52, + "end": 30883.46, + "probability": 0.964 + }, + { + "start": 30884.06, + "end": 30886.06, + "probability": 0.8491 + }, + { + "start": 30886.76, + "end": 30887.48, + "probability": 0.5944 + }, + { + "start": 30888.16, + "end": 30890.64, + "probability": 0.9482 + }, + { + "start": 30892.24, + "end": 30896.86, + "probability": 0.9089 + }, + { + "start": 30897.66, + "end": 30904.44, + "probability": 0.96 + }, + { + "start": 30905.3, + "end": 30907.24, + "probability": 0.8343 + }, + { + "start": 30907.82, + "end": 30910.38, + "probability": 0.9957 + }, + { + "start": 30911.32, + "end": 30911.86, + "probability": 0.3912 + }, + { + "start": 30912.7, + "end": 30915.04, + "probability": 0.9888 + }, + { + "start": 30915.88, + "end": 30918.38, + "probability": 0.9971 + }, + { + "start": 30919.4, + "end": 30921.04, + "probability": 0.4622 + }, + { + "start": 30921.72, + "end": 30923.28, + "probability": 0.7948 + }, + { + "start": 30924.1, + "end": 30928.0, + "probability": 0.5119 + }, + { + "start": 30929.3, + "end": 30931.42, + "probability": 0.9951 + }, + { + "start": 30932.42, + "end": 30936.94, + "probability": 0.7922 + }, + { + "start": 30938.08, + "end": 30943.34, + "probability": 0.8875 + }, + { + "start": 30943.92, + "end": 30944.44, + "probability": 0.6622 + }, + { + "start": 30945.02, + "end": 30947.02, + "probability": 0.8673 + }, + { + "start": 30948.11, + "end": 30951.42, + "probability": 0.7267 + }, + { + "start": 30952.18, + "end": 30954.82, + "probability": 0.9951 + }, + { + "start": 30955.6, + "end": 30955.88, + "probability": 0.8185 + }, + { + "start": 30956.94, + "end": 30957.26, + "probability": 0.8297 + }, + { + "start": 30959.52, + "end": 30962.22, + "probability": 0.7485 + }, + { + "start": 30963.54, + "end": 30969.84, + "probability": 0.9837 + }, + { + "start": 30969.84, + "end": 30972.56, + "probability": 0.988 + }, + { + "start": 30973.08, + "end": 30974.08, + "probability": 0.9813 + }, + { + "start": 30975.12, + "end": 30977.66, + "probability": 0.7705 + }, + { + "start": 30978.82, + "end": 30980.02, + "probability": 0.8035 + }, + { + "start": 30980.78, + "end": 30983.24, + "probability": 0.9027 + }, + { + "start": 30984.6, + "end": 30988.12, + "probability": 0.908 + }, + { + "start": 30988.8, + "end": 30990.46, + "probability": 0.4053 + }, + { + "start": 30991.32, + "end": 30992.62, + "probability": 0.6846 + }, + { + "start": 30994.22, + "end": 30995.26, + "probability": 0.9141 + }, + { + "start": 30997.58, + "end": 31001.66, + "probability": 0.8807 + }, + { + "start": 31002.66, + "end": 31005.44, + "probability": 0.9297 + }, + { + "start": 31006.54, + "end": 31008.98, + "probability": 0.9941 + }, + { + "start": 31009.66, + "end": 31011.5, + "probability": 0.9508 + }, + { + "start": 31011.56, + "end": 31012.14, + "probability": 0.985 + }, + { + "start": 31012.82, + "end": 31013.84, + "probability": 0.8508 + }, + { + "start": 31015.1, + "end": 31016.1, + "probability": 0.6947 + }, + { + "start": 31016.82, + "end": 31020.23, + "probability": 0.79 + }, + { + "start": 31021.42, + "end": 31025.42, + "probability": 0.9634 + }, + { + "start": 31025.6, + "end": 31027.06, + "probability": 0.4783 + }, + { + "start": 31027.96, + "end": 31032.4, + "probability": 0.9622 + }, + { + "start": 31032.48, + "end": 31035.1, + "probability": 0.8657 + }, + { + "start": 31036.04, + "end": 31040.38, + "probability": 0.9769 + }, + { + "start": 31040.74, + "end": 31045.64, + "probability": 0.8962 + }, + { + "start": 31046.84, + "end": 31049.82, + "probability": 0.6832 + }, + { + "start": 31050.44, + "end": 31057.96, + "probability": 0.8859 + }, + { + "start": 31059.22, + "end": 31061.32, + "probability": 0.999 + }, + { + "start": 31062.12, + "end": 31065.04, + "probability": 0.9992 + }, + { + "start": 31065.88, + "end": 31066.58, + "probability": 0.7012 + }, + { + "start": 31067.6, + "end": 31067.96, + "probability": 0.7895 + }, + { + "start": 31071.4, + "end": 31074.92, + "probability": 0.8067 + }, + { + "start": 31076.36, + "end": 31083.06, + "probability": 0.9624 + }, + { + "start": 31083.26, + "end": 31087.0, + "probability": 0.9868 + }, + { + "start": 31087.0, + "end": 31092.02, + "probability": 0.9371 + }, + { + "start": 31093.08, + "end": 31094.48, + "probability": 0.9405 + }, + { + "start": 31094.76, + "end": 31095.22, + "probability": 0.6702 + }, + { + "start": 31095.74, + "end": 31097.76, + "probability": 0.8739 + }, + { + "start": 31098.2, + "end": 31102.54, + "probability": 0.9656 + }, + { + "start": 31103.02, + "end": 31105.3, + "probability": 0.9388 + }, + { + "start": 31105.34, + "end": 31106.04, + "probability": 0.8703 + }, + { + "start": 31119.54, + "end": 31120.0, + "probability": 0.1643 + }, + { + "start": 31120.94, + "end": 31121.76, + "probability": 0.8507 + }, + { + "start": 31122.54, + "end": 31123.0, + "probability": 0.4753 + }, + { + "start": 31124.02, + "end": 31126.92, + "probability": 0.9789 + }, + { + "start": 31126.96, + "end": 31129.86, + "probability": 0.9596 + }, + { + "start": 31130.96, + "end": 31135.8, + "probability": 0.9929 + }, + { + "start": 31136.0, + "end": 31139.58, + "probability": 0.9557 + }, + { + "start": 31140.9, + "end": 31144.16, + "probability": 0.9893 + }, + { + "start": 31145.36, + "end": 31146.76, + "probability": 0.9979 + }, + { + "start": 31147.42, + "end": 31148.06, + "probability": 0.825 + }, + { + "start": 31149.2, + "end": 31150.14, + "probability": 0.6931 + }, + { + "start": 31150.68, + "end": 31155.92, + "probability": 0.9873 + }, + { + "start": 31157.18, + "end": 31160.36, + "probability": 0.9498 + }, + { + "start": 31161.14, + "end": 31161.62, + "probability": 0.714 + }, + { + "start": 31161.76, + "end": 31163.46, + "probability": 0.9286 + }, + { + "start": 31163.88, + "end": 31168.02, + "probability": 0.9834 + }, + { + "start": 31168.6, + "end": 31172.88, + "probability": 0.9885 + }, + { + "start": 31173.52, + "end": 31176.66, + "probability": 0.9931 + }, + { + "start": 31176.8, + "end": 31179.74, + "probability": 0.9966 + }, + { + "start": 31180.22, + "end": 31182.74, + "probability": 0.9919 + }, + { + "start": 31183.92, + "end": 31184.4, + "probability": 0.9304 + }, + { + "start": 31185.48, + "end": 31187.34, + "probability": 0.9966 + }, + { + "start": 31187.86, + "end": 31193.14, + "probability": 0.979 + }, + { + "start": 31194.44, + "end": 31194.76, + "probability": 0.7112 + }, + { + "start": 31195.36, + "end": 31199.48, + "probability": 0.9979 + }, + { + "start": 31200.04, + "end": 31200.8, + "probability": 0.9784 + }, + { + "start": 31201.44, + "end": 31206.96, + "probability": 0.9934 + }, + { + "start": 31207.64, + "end": 31208.26, + "probability": 0.9885 + }, + { + "start": 31209.44, + "end": 31212.2, + "probability": 0.7917 + }, + { + "start": 31212.72, + "end": 31215.44, + "probability": 0.9897 + }, + { + "start": 31216.74, + "end": 31217.32, + "probability": 0.9323 + }, + { + "start": 31217.9, + "end": 31221.4, + "probability": 0.9896 + }, + { + "start": 31222.14, + "end": 31227.1, + "probability": 0.9878 + }, + { + "start": 31227.66, + "end": 31228.12, + "probability": 0.9579 + }, + { + "start": 31228.66, + "end": 31231.8, + "probability": 0.9899 + }, + { + "start": 31233.6, + "end": 31233.9, + "probability": 0.8301 + }, + { + "start": 31234.76, + "end": 31237.5, + "probability": 0.9763 + }, + { + "start": 31238.28, + "end": 31241.46, + "probability": 0.9963 + }, + { + "start": 31241.7, + "end": 31245.7, + "probability": 0.9723 + }, + { + "start": 31246.52, + "end": 31248.38, + "probability": 0.9491 + }, + { + "start": 31249.46, + "end": 31254.38, + "probability": 0.9962 + }, + { + "start": 31254.4, + "end": 31259.76, + "probability": 0.9995 + }, + { + "start": 31260.9, + "end": 31263.16, + "probability": 0.989 + }, + { + "start": 31263.16, + "end": 31266.14, + "probability": 0.9988 + }, + { + "start": 31266.4, + "end": 31266.92, + "probability": 0.8722 + }, + { + "start": 31268.1, + "end": 31268.5, + "probability": 0.6193 + }, + { + "start": 31269.06, + "end": 31271.18, + "probability": 0.7624 + }, + { + "start": 31271.56, + "end": 31276.52, + "probability": 0.9798 + }, + { + "start": 31276.52, + "end": 31280.5, + "probability": 0.993 + }, + { + "start": 31281.6, + "end": 31284.52, + "probability": 0.9979 + }, + { + "start": 31285.3, + "end": 31287.58, + "probability": 0.9347 + }, + { + "start": 31287.64, + "end": 31290.26, + "probability": 0.9964 + }, + { + "start": 31291.0, + "end": 31291.36, + "probability": 0.896 + }, + { + "start": 31291.98, + "end": 31295.34, + "probability": 0.9636 + }, + { + "start": 31296.28, + "end": 31298.78, + "probability": 0.9798 + }, + { + "start": 31299.54, + "end": 31301.52, + "probability": 0.7558 + }, + { + "start": 31301.74, + "end": 31306.1, + "probability": 0.9482 + }, + { + "start": 31307.64, + "end": 31308.06, + "probability": 0.6548 + }, + { + "start": 31308.54, + "end": 31312.46, + "probability": 0.8791 + }, + { + "start": 31313.4, + "end": 31317.42, + "probability": 0.9888 + }, + { + "start": 31317.48, + "end": 31318.66, + "probability": 0.897 + }, + { + "start": 31319.78, + "end": 31320.98, + "probability": 0.9507 + }, + { + "start": 31323.6, + "end": 31324.18, + "probability": 0.2721 + }, + { + "start": 31325.88, + "end": 31327.25, + "probability": 0.6721 + }, + { + "start": 31328.64, + "end": 31329.46, + "probability": 0.6964 + }, + { + "start": 31329.8, + "end": 31332.54, + "probability": 0.9563 + }, + { + "start": 31333.06, + "end": 31333.76, + "probability": 0.7847 + }, + { + "start": 31350.3, + "end": 31354.04, + "probability": 0.5487 + }, + { + "start": 31355.54, + "end": 31356.16, + "probability": 0.0249 + }, + { + "start": 31356.16, + "end": 31362.8, + "probability": 0.133 + }, + { + "start": 31364.04, + "end": 31367.66, + "probability": 0.1039 + }, + { + "start": 31368.78, + "end": 31369.04, + "probability": 0.0176 + } + ], + "segments_count": 10384, + "words_count": 52507, + "avg_words_per_segment": 5.0565, + "avg_segment_duration": 2.2256, + "avg_words_per_minute": 100.3881, + "plenum_id": "33539", + "duration": 31382.42, + "title": null, + "plenum_date": "2013-12-25" +} \ No newline at end of file