diff --git "a/64583/metadata.json" "b/64583/metadata.json" new file mode 100644--- /dev/null +++ "b/64583/metadata.json" @@ -0,0 +1,25027 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "64583", + "quality_score": 0.896, + "per_segment_quality_scores": [ + { + "start": 59.16, + "end": 59.2, + "probability": 0.1444 + }, + { + "start": 59.2, + "end": 59.2, + "probability": 0.2451 + }, + { + "start": 59.2, + "end": 59.94, + "probability": 0.2184 + }, + { + "start": 60.04, + "end": 60.9, + "probability": 0.4864 + }, + { + "start": 61.42, + "end": 66.86, + "probability": 0.6751 + }, + { + "start": 66.92, + "end": 68.8, + "probability": 0.6653 + }, + { + "start": 69.32, + "end": 70.1, + "probability": 0.5663 + }, + { + "start": 70.36, + "end": 73.24, + "probability": 0.9899 + }, + { + "start": 73.52, + "end": 74.76, + "probability": 0.6834 + }, + { + "start": 75.36, + "end": 76.98, + "probability": 0.8981 + }, + { + "start": 77.64, + "end": 78.7, + "probability": 0.8247 + }, + { + "start": 79.7, + "end": 80.88, + "probability": 0.0092 + }, + { + "start": 80.88, + "end": 81.77, + "probability": 0.1336 + }, + { + "start": 86.96, + "end": 89.4, + "probability": 0.4275 + }, + { + "start": 91.72, + "end": 92.32, + "probability": 0.0006 + }, + { + "start": 94.25, + "end": 94.61, + "probability": 0.0375 + }, + { + "start": 96.04, + "end": 96.38, + "probability": 0.1523 + }, + { + "start": 96.76, + "end": 97.32, + "probability": 0.0105 + }, + { + "start": 97.64, + "end": 100.09, + "probability": 0.0827 + }, + { + "start": 100.24, + "end": 100.4, + "probability": 0.0123 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.1, + "end": 121.73, + "probability": 0.5548 + }, + { + "start": 129.2, + "end": 131.62, + "probability": 0.6758 + }, + { + "start": 132.5, + "end": 134.94, + "probability": 0.9957 + }, + { + "start": 136.3, + "end": 139.72, + "probability": 0.9587 + }, + { + "start": 141.52, + "end": 142.28, + "probability": 0.7713 + }, + { + "start": 143.66, + "end": 146.38, + "probability": 0.8849 + }, + { + "start": 147.66, + "end": 148.8, + "probability": 0.7212 + }, + { + "start": 149.54, + "end": 150.5, + "probability": 0.9552 + }, + { + "start": 151.82, + "end": 158.46, + "probability": 0.9827 + }, + { + "start": 159.94, + "end": 161.64, + "probability": 0.9882 + }, + { + "start": 162.42, + "end": 162.86, + "probability": 0.9364 + }, + { + "start": 164.0, + "end": 165.04, + "probability": 0.6997 + }, + { + "start": 166.66, + "end": 168.9, + "probability": 0.8091 + }, + { + "start": 170.64, + "end": 172.18, + "probability": 0.637 + }, + { + "start": 173.02, + "end": 174.38, + "probability": 0.9888 + }, + { + "start": 175.14, + "end": 177.54, + "probability": 0.9986 + }, + { + "start": 178.28, + "end": 180.94, + "probability": 0.929 + }, + { + "start": 181.8, + "end": 182.28, + "probability": 0.7628 + }, + { + "start": 182.36, + "end": 185.68, + "probability": 0.9711 + }, + { + "start": 186.88, + "end": 189.22, + "probability": 0.7338 + }, + { + "start": 189.78, + "end": 191.96, + "probability": 0.977 + }, + { + "start": 192.3, + "end": 193.18, + "probability": 0.9848 + }, + { + "start": 193.22, + "end": 194.22, + "probability": 0.8693 + }, + { + "start": 195.0, + "end": 198.46, + "probability": 0.9938 + }, + { + "start": 198.58, + "end": 198.98, + "probability": 0.8314 + }, + { + "start": 199.62, + "end": 202.06, + "probability": 0.8997 + }, + { + "start": 202.52, + "end": 206.3, + "probability": 0.8238 + }, + { + "start": 206.86, + "end": 208.44, + "probability": 0.8544 + }, + { + "start": 211.74, + "end": 213.68, + "probability": 0.9286 + }, + { + "start": 214.64, + "end": 218.92, + "probability": 0.997 + }, + { + "start": 218.92, + "end": 221.78, + "probability": 0.9904 + }, + { + "start": 222.56, + "end": 226.58, + "probability": 0.9966 + }, + { + "start": 227.48, + "end": 230.12, + "probability": 0.9716 + }, + { + "start": 230.42, + "end": 230.86, + "probability": 0.6591 + }, + { + "start": 231.12, + "end": 232.04, + "probability": 0.785 + }, + { + "start": 232.7, + "end": 233.52, + "probability": 0.9627 + }, + { + "start": 233.7, + "end": 235.58, + "probability": 0.7092 + }, + { + "start": 235.68, + "end": 236.32, + "probability": 0.5795 + }, + { + "start": 236.88, + "end": 239.24, + "probability": 0.9325 + }, + { + "start": 240.1, + "end": 244.96, + "probability": 0.9868 + }, + { + "start": 246.08, + "end": 248.53, + "probability": 0.9473 + }, + { + "start": 249.86, + "end": 250.5, + "probability": 0.5604 + }, + { + "start": 251.46, + "end": 252.28, + "probability": 0.8343 + }, + { + "start": 252.52, + "end": 254.42, + "probability": 0.9954 + }, + { + "start": 254.96, + "end": 256.34, + "probability": 0.7282 + }, + { + "start": 257.18, + "end": 259.14, + "probability": 0.9042 + }, + { + "start": 259.5, + "end": 260.86, + "probability": 0.9038 + }, + { + "start": 261.58, + "end": 264.86, + "probability": 0.9704 + }, + { + "start": 265.4, + "end": 267.4, + "probability": 0.995 + }, + { + "start": 267.42, + "end": 268.82, + "probability": 0.9406 + }, + { + "start": 269.16, + "end": 271.8, + "probability": 0.8803 + }, + { + "start": 272.28, + "end": 274.96, + "probability": 0.9848 + }, + { + "start": 275.5, + "end": 277.52, + "probability": 0.9183 + }, + { + "start": 277.64, + "end": 280.4, + "probability": 0.9753 + }, + { + "start": 280.78, + "end": 281.8, + "probability": 0.9912 + }, + { + "start": 282.9, + "end": 284.56, + "probability": 0.9446 + }, + { + "start": 284.56, + "end": 285.76, + "probability": 0.9634 + }, + { + "start": 286.6, + "end": 289.14, + "probability": 0.9645 + }, + { + "start": 289.18, + "end": 290.6, + "probability": 0.9155 + }, + { + "start": 291.28, + "end": 292.56, + "probability": 0.7964 + }, + { + "start": 293.28, + "end": 294.42, + "probability": 0.6615 + }, + { + "start": 295.32, + "end": 296.92, + "probability": 0.9868 + }, + { + "start": 297.56, + "end": 299.88, + "probability": 0.9981 + }, + { + "start": 300.5, + "end": 301.5, + "probability": 0.9768 + }, + { + "start": 302.14, + "end": 303.6, + "probability": 0.887 + }, + { + "start": 303.74, + "end": 305.8, + "probability": 0.9878 + }, + { + "start": 306.26, + "end": 311.52, + "probability": 0.9922 + }, + { + "start": 311.52, + "end": 317.36, + "probability": 0.9985 + }, + { + "start": 317.52, + "end": 318.74, + "probability": 0.6346 + }, + { + "start": 319.18, + "end": 322.1, + "probability": 0.9897 + }, + { + "start": 322.5, + "end": 322.7, + "probability": 0.7374 + }, + { + "start": 323.18, + "end": 325.1, + "probability": 0.9095 + }, + { + "start": 325.28, + "end": 327.74, + "probability": 0.593 + }, + { + "start": 328.34, + "end": 330.34, + "probability": 0.6816 + }, + { + "start": 330.74, + "end": 332.84, + "probability": 0.7704 + }, + { + "start": 333.82, + "end": 340.52, + "probability": 0.8585 + }, + { + "start": 341.78, + "end": 344.18, + "probability": 0.9812 + }, + { + "start": 344.76, + "end": 347.44, + "probability": 0.995 + }, + { + "start": 348.22, + "end": 352.0, + "probability": 0.9974 + }, + { + "start": 353.76, + "end": 357.58, + "probability": 0.5831 + }, + { + "start": 358.36, + "end": 362.04, + "probability": 0.8569 + }, + { + "start": 362.9, + "end": 367.68, + "probability": 0.9108 + }, + { + "start": 367.68, + "end": 371.72, + "probability": 0.8847 + }, + { + "start": 372.62, + "end": 375.12, + "probability": 0.9963 + }, + { + "start": 375.9, + "end": 378.52, + "probability": 0.9963 + }, + { + "start": 378.52, + "end": 381.54, + "probability": 0.9424 + }, + { + "start": 382.32, + "end": 387.08, + "probability": 0.6393 + }, + { + "start": 387.9, + "end": 391.8, + "probability": 0.8188 + }, + { + "start": 392.86, + "end": 395.86, + "probability": 0.9846 + }, + { + "start": 396.52, + "end": 399.18, + "probability": 0.9896 + }, + { + "start": 399.52, + "end": 400.88, + "probability": 0.7551 + }, + { + "start": 400.98, + "end": 401.72, + "probability": 0.8973 + }, + { + "start": 401.88, + "end": 405.06, + "probability": 0.9816 + }, + { + "start": 405.98, + "end": 407.86, + "probability": 0.7644 + }, + { + "start": 408.54, + "end": 413.28, + "probability": 0.9189 + }, + { + "start": 413.88, + "end": 417.1, + "probability": 0.8014 + }, + { + "start": 417.72, + "end": 419.74, + "probability": 0.9911 + }, + { + "start": 420.22, + "end": 421.45, + "probability": 0.8485 + }, + { + "start": 421.9, + "end": 425.18, + "probability": 0.9795 + }, + { + "start": 425.66, + "end": 429.18, + "probability": 0.9403 + }, + { + "start": 430.28, + "end": 432.1, + "probability": 0.7211 + }, + { + "start": 432.48, + "end": 433.82, + "probability": 0.6693 + }, + { + "start": 434.58, + "end": 435.54, + "probability": 0.5628 + }, + { + "start": 436.8, + "end": 437.72, + "probability": 0.9552 + }, + { + "start": 440.92, + "end": 441.74, + "probability": 0.76 + }, + { + "start": 443.4, + "end": 449.44, + "probability": 0.9609 + }, + { + "start": 450.3, + "end": 453.9, + "probability": 0.9933 + }, + { + "start": 454.0, + "end": 458.06, + "probability": 0.9948 + }, + { + "start": 458.82, + "end": 462.7, + "probability": 0.9894 + }, + { + "start": 462.7, + "end": 466.34, + "probability": 0.9995 + }, + { + "start": 467.08, + "end": 471.6, + "probability": 0.9941 + }, + { + "start": 471.6, + "end": 475.5, + "probability": 0.9995 + }, + { + "start": 476.3, + "end": 478.6, + "probability": 0.973 + }, + { + "start": 479.22, + "end": 483.58, + "probability": 0.9989 + }, + { + "start": 484.28, + "end": 485.04, + "probability": 0.7932 + }, + { + "start": 485.16, + "end": 489.52, + "probability": 0.9917 + }, + { + "start": 490.38, + "end": 495.82, + "probability": 0.988 + }, + { + "start": 496.6, + "end": 500.82, + "probability": 0.9789 + }, + { + "start": 501.6, + "end": 503.28, + "probability": 0.8399 + }, + { + "start": 504.42, + "end": 504.96, + "probability": 0.9992 + }, + { + "start": 505.5, + "end": 506.9, + "probability": 0.9913 + }, + { + "start": 507.42, + "end": 509.26, + "probability": 0.998 + }, + { + "start": 509.94, + "end": 515.06, + "probability": 0.9966 + }, + { + "start": 516.1, + "end": 517.76, + "probability": 0.7732 + }, + { + "start": 518.18, + "end": 521.28, + "probability": 0.8146 + }, + { + "start": 521.8, + "end": 523.5, + "probability": 0.6789 + }, + { + "start": 525.6, + "end": 527.35, + "probability": 0.7609 + }, + { + "start": 527.5, + "end": 529.02, + "probability": 0.7253 + }, + { + "start": 529.78, + "end": 531.74, + "probability": 0.9344 + }, + { + "start": 532.08, + "end": 536.8, + "probability": 0.9919 + }, + { + "start": 537.96, + "end": 540.48, + "probability": 0.8276 + }, + { + "start": 541.92, + "end": 542.38, + "probability": 0.3155 + }, + { + "start": 542.38, + "end": 544.72, + "probability": 0.9964 + }, + { + "start": 545.66, + "end": 548.4, + "probability": 0.8706 + }, + { + "start": 548.48, + "end": 549.0, + "probability": 0.195 + }, + { + "start": 549.14, + "end": 549.62, + "probability": 0.0139 + }, + { + "start": 549.94, + "end": 554.08, + "probability": 0.8647 + }, + { + "start": 554.54, + "end": 556.48, + "probability": 0.7672 + }, + { + "start": 557.36, + "end": 559.88, + "probability": 0.9071 + }, + { + "start": 560.44, + "end": 562.64, + "probability": 0.8881 + }, + { + "start": 562.94, + "end": 564.62, + "probability": 0.844 + }, + { + "start": 564.86, + "end": 568.94, + "probability": 0.8527 + }, + { + "start": 569.22, + "end": 570.52, + "probability": 0.9528 + }, + { + "start": 571.0, + "end": 573.08, + "probability": 0.7526 + }, + { + "start": 573.68, + "end": 576.8, + "probability": 0.7786 + }, + { + "start": 577.16, + "end": 579.82, + "probability": 0.9399 + }, + { + "start": 579.82, + "end": 583.72, + "probability": 0.9939 + }, + { + "start": 584.12, + "end": 590.32, + "probability": 0.9884 + }, + { + "start": 590.94, + "end": 592.58, + "probability": 0.8404 + }, + { + "start": 593.02, + "end": 593.58, + "probability": 0.8581 + }, + { + "start": 593.74, + "end": 594.62, + "probability": 0.8984 + }, + { + "start": 595.02, + "end": 597.1, + "probability": 0.9103 + }, + { + "start": 597.52, + "end": 598.22, + "probability": 0.8479 + }, + { + "start": 598.56, + "end": 601.72, + "probability": 0.9795 + }, + { + "start": 602.66, + "end": 604.66, + "probability": 0.9451 + }, + { + "start": 604.9, + "end": 605.94, + "probability": 0.8994 + }, + { + "start": 606.38, + "end": 607.6, + "probability": 0.9985 + }, + { + "start": 608.22, + "end": 609.12, + "probability": 0.625 + }, + { + "start": 609.64, + "end": 612.08, + "probability": 0.9854 + }, + { + "start": 612.24, + "end": 614.3, + "probability": 0.9793 + }, + { + "start": 614.8, + "end": 615.12, + "probability": 0.7982 + }, + { + "start": 615.4, + "end": 616.2, + "probability": 0.7886 + }, + { + "start": 616.28, + "end": 617.92, + "probability": 0.8882 + }, + { + "start": 618.24, + "end": 621.06, + "probability": 0.91 + }, + { + "start": 621.58, + "end": 622.04, + "probability": 0.9322 + }, + { + "start": 622.64, + "end": 624.32, + "probability": 0.5129 + }, + { + "start": 624.54, + "end": 626.58, + "probability": 0.9893 + }, + { + "start": 627.14, + "end": 629.04, + "probability": 0.9944 + }, + { + "start": 629.72, + "end": 632.6, + "probability": 0.9061 + }, + { + "start": 633.52, + "end": 636.66, + "probability": 0.9779 + }, + { + "start": 637.4, + "end": 639.62, + "probability": 0.7039 + }, + { + "start": 640.62, + "end": 642.98, + "probability": 0.6006 + }, + { + "start": 643.2, + "end": 644.94, + "probability": 0.8302 + }, + { + "start": 645.0, + "end": 645.44, + "probability": 0.6486 + }, + { + "start": 645.46, + "end": 645.82, + "probability": 0.691 + }, + { + "start": 646.18, + "end": 647.04, + "probability": 0.7252 + }, + { + "start": 647.2, + "end": 648.78, + "probability": 0.9194 + }, + { + "start": 651.42, + "end": 653.0, + "probability": 0.7653 + }, + { + "start": 653.86, + "end": 654.76, + "probability": 0.9445 + }, + { + "start": 654.9, + "end": 655.38, + "probability": 0.8495 + }, + { + "start": 655.6, + "end": 656.04, + "probability": 0.9798 + }, + { + "start": 656.5, + "end": 661.38, + "probability": 0.5515 + }, + { + "start": 662.2, + "end": 664.54, + "probability": 0.8098 + }, + { + "start": 665.42, + "end": 667.54, + "probability": 0.9214 + }, + { + "start": 668.72, + "end": 670.22, + "probability": 0.746 + }, + { + "start": 671.24, + "end": 674.24, + "probability": 0.8201 + }, + { + "start": 675.06, + "end": 677.84, + "probability": 0.9098 + }, + { + "start": 678.78, + "end": 681.54, + "probability": 0.8081 + }, + { + "start": 682.3, + "end": 685.26, + "probability": 0.9902 + }, + { + "start": 685.98, + "end": 688.76, + "probability": 0.9861 + }, + { + "start": 689.3, + "end": 690.96, + "probability": 0.903 + }, + { + "start": 692.04, + "end": 696.84, + "probability": 0.9766 + }, + { + "start": 697.86, + "end": 699.7, + "probability": 0.8325 + }, + { + "start": 700.56, + "end": 703.26, + "probability": 0.9658 + }, + { + "start": 704.3, + "end": 704.48, + "probability": 0.023 + }, + { + "start": 713.44, + "end": 715.12, + "probability": 0.8532 + }, + { + "start": 716.26, + "end": 716.26, + "probability": 0.0532 + }, + { + "start": 716.26, + "end": 716.26, + "probability": 0.02 + }, + { + "start": 716.26, + "end": 718.6, + "probability": 0.1445 + }, + { + "start": 718.84, + "end": 722.08, + "probability": 0.2786 + }, + { + "start": 722.6, + "end": 724.74, + "probability": 0.715 + }, + { + "start": 725.22, + "end": 727.42, + "probability": 0.8539 + }, + { + "start": 727.96, + "end": 730.68, + "probability": 0.9935 + }, + { + "start": 731.1, + "end": 733.58, + "probability": 0.973 + }, + { + "start": 734.0, + "end": 734.22, + "probability": 0.9627 + }, + { + "start": 735.64, + "end": 738.06, + "probability": 0.7957 + }, + { + "start": 738.78, + "end": 740.4, + "probability": 0.9257 + }, + { + "start": 741.1, + "end": 742.62, + "probability": 0.7237 + }, + { + "start": 743.18, + "end": 744.52, + "probability": 0.9393 + }, + { + "start": 746.96, + "end": 748.38, + "probability": 0.6986 + }, + { + "start": 749.04, + "end": 753.9, + "probability": 0.7455 + }, + { + "start": 754.84, + "end": 758.88, + "probability": 0.9667 + }, + { + "start": 759.28, + "end": 759.42, + "probability": 0.7507 + }, + { + "start": 759.76, + "end": 762.1, + "probability": 0.9579 + }, + { + "start": 762.22, + "end": 763.43, + "probability": 0.9929 + }, + { + "start": 764.02, + "end": 767.2, + "probability": 0.9362 + }, + { + "start": 767.22, + "end": 769.4, + "probability": 0.9475 + }, + { + "start": 770.14, + "end": 776.52, + "probability": 0.9607 + }, + { + "start": 777.02, + "end": 779.82, + "probability": 0.9844 + }, + { + "start": 779.82, + "end": 782.04, + "probability": 0.985 + }, + { + "start": 782.16, + "end": 782.68, + "probability": 0.8 + }, + { + "start": 783.74, + "end": 786.72, + "probability": 0.9797 + }, + { + "start": 786.86, + "end": 789.44, + "probability": 0.8662 + }, + { + "start": 790.02, + "end": 793.22, + "probability": 0.9628 + }, + { + "start": 793.72, + "end": 795.1, + "probability": 0.8576 + }, + { + "start": 795.7, + "end": 799.46, + "probability": 0.9488 + }, + { + "start": 799.46, + "end": 802.02, + "probability": 0.5577 + }, + { + "start": 802.48, + "end": 806.5, + "probability": 0.9653 + }, + { + "start": 806.58, + "end": 811.26, + "probability": 0.2103 + }, + { + "start": 811.26, + "end": 811.9, + "probability": 0.4607 + }, + { + "start": 812.0, + "end": 812.78, + "probability": 0.863 + }, + { + "start": 812.9, + "end": 813.6, + "probability": 0.9213 + }, + { + "start": 814.18, + "end": 818.82, + "probability": 0.9986 + }, + { + "start": 819.0, + "end": 820.36, + "probability": 0.8734 + }, + { + "start": 820.76, + "end": 823.9, + "probability": 0.9929 + }, + { + "start": 824.34, + "end": 827.24, + "probability": 0.9413 + }, + { + "start": 827.76, + "end": 828.76, + "probability": 0.689 + }, + { + "start": 828.94, + "end": 832.3, + "probability": 0.9934 + }, + { + "start": 832.44, + "end": 832.96, + "probability": 0.9461 + }, + { + "start": 833.24, + "end": 833.94, + "probability": 0.9836 + }, + { + "start": 834.4, + "end": 835.8, + "probability": 0.9412 + }, + { + "start": 835.98, + "end": 838.86, + "probability": 0.9924 + }, + { + "start": 838.96, + "end": 839.66, + "probability": 0.9566 + }, + { + "start": 839.98, + "end": 841.26, + "probability": 0.9382 + }, + { + "start": 841.7, + "end": 844.42, + "probability": 0.9888 + }, + { + "start": 844.54, + "end": 846.1, + "probability": 0.9909 + }, + { + "start": 846.18, + "end": 848.09, + "probability": 0.7799 + }, + { + "start": 848.7, + "end": 851.46, + "probability": 0.9835 + }, + { + "start": 851.7, + "end": 852.74, + "probability": 0.7121 + }, + { + "start": 853.02, + "end": 853.72, + "probability": 0.9749 + }, + { + "start": 853.84, + "end": 855.4, + "probability": 0.9839 + }, + { + "start": 856.48, + "end": 860.2, + "probability": 0.9581 + }, + { + "start": 860.9, + "end": 862.82, + "probability": 0.744 + }, + { + "start": 863.36, + "end": 866.68, + "probability": 0.7921 + }, + { + "start": 867.4, + "end": 868.52, + "probability": 0.5355 + }, + { + "start": 869.1, + "end": 870.78, + "probability": 0.7221 + }, + { + "start": 871.64, + "end": 872.54, + "probability": 0.6087 + }, + { + "start": 872.78, + "end": 874.94, + "probability": 0.9482 + }, + { + "start": 875.24, + "end": 877.08, + "probability": 0.9503 + }, + { + "start": 877.72, + "end": 881.62, + "probability": 0.9561 + }, + { + "start": 882.38, + "end": 885.18, + "probability": 0.7369 + }, + { + "start": 885.82, + "end": 889.78, + "probability": 0.8052 + }, + { + "start": 890.52, + "end": 893.2, + "probability": 0.9531 + }, + { + "start": 893.22, + "end": 895.22, + "probability": 0.9761 + }, + { + "start": 895.7, + "end": 898.32, + "probability": 0.9186 + }, + { + "start": 898.94, + "end": 902.12, + "probability": 0.8831 + }, + { + "start": 902.28, + "end": 905.06, + "probability": 0.9913 + }, + { + "start": 906.34, + "end": 908.7, + "probability": 0.9359 + }, + { + "start": 908.74, + "end": 909.62, + "probability": 0.7901 + }, + { + "start": 909.68, + "end": 910.94, + "probability": 0.9373 + }, + { + "start": 911.6, + "end": 914.34, + "probability": 0.9981 + }, + { + "start": 915.16, + "end": 917.8, + "probability": 0.8879 + }, + { + "start": 918.32, + "end": 922.68, + "probability": 0.942 + }, + { + "start": 923.22, + "end": 925.32, + "probability": 0.6426 + }, + { + "start": 926.04, + "end": 927.92, + "probability": 0.939 + }, + { + "start": 928.08, + "end": 929.08, + "probability": 0.7247 + }, + { + "start": 929.24, + "end": 930.02, + "probability": 0.9127 + }, + { + "start": 930.5, + "end": 935.0, + "probability": 0.9946 + }, + { + "start": 935.94, + "end": 936.94, + "probability": 0.8918 + }, + { + "start": 937.52, + "end": 939.28, + "probability": 0.9682 + }, + { + "start": 939.86, + "end": 941.72, + "probability": 0.9977 + }, + { + "start": 943.22, + "end": 944.54, + "probability": 0.8917 + }, + { + "start": 945.0, + "end": 945.7, + "probability": 0.9058 + }, + { + "start": 946.52, + "end": 948.88, + "probability": 0.9321 + }, + { + "start": 950.04, + "end": 953.84, + "probability": 0.9829 + }, + { + "start": 954.5, + "end": 955.3, + "probability": 0.7977 + }, + { + "start": 955.98, + "end": 956.68, + "probability": 0.9883 + }, + { + "start": 957.28, + "end": 959.88, + "probability": 0.9376 + }, + { + "start": 959.98, + "end": 964.24, + "probability": 0.948 + }, + { + "start": 964.24, + "end": 967.9, + "probability": 0.9633 + }, + { + "start": 968.1, + "end": 969.0, + "probability": 0.9429 + }, + { + "start": 969.62, + "end": 971.91, + "probability": 0.9557 + }, + { + "start": 972.34, + "end": 978.9, + "probability": 0.9407 + }, + { + "start": 979.6, + "end": 981.46, + "probability": 0.91 + }, + { + "start": 982.22, + "end": 983.68, + "probability": 0.8158 + }, + { + "start": 984.2, + "end": 984.6, + "probability": 0.2771 + }, + { + "start": 984.6, + "end": 987.18, + "probability": 0.9209 + }, + { + "start": 987.4, + "end": 988.14, + "probability": 0.9508 + }, + { + "start": 988.96, + "end": 990.18, + "probability": 0.8161 + }, + { + "start": 990.9, + "end": 992.76, + "probability": 0.8357 + }, + { + "start": 992.9, + "end": 995.62, + "probability": 0.6479 + }, + { + "start": 996.08, + "end": 996.96, + "probability": 0.6234 + }, + { + "start": 997.5, + "end": 998.94, + "probability": 0.9214 + }, + { + "start": 1002.08, + "end": 1003.48, + "probability": 0.6334 + }, + { + "start": 1003.76, + "end": 1005.61, + "probability": 0.9015 + }, + { + "start": 1006.16, + "end": 1009.78, + "probability": 0.9752 + }, + { + "start": 1010.3, + "end": 1015.56, + "probability": 0.9958 + }, + { + "start": 1015.72, + "end": 1018.52, + "probability": 0.7952 + }, + { + "start": 1019.54, + "end": 1024.4, + "probability": 0.9797 + }, + { + "start": 1024.54, + "end": 1032.08, + "probability": 0.9858 + }, + { + "start": 1032.9, + "end": 1033.68, + "probability": 0.866 + }, + { + "start": 1034.3, + "end": 1035.26, + "probability": 0.884 + }, + { + "start": 1036.94, + "end": 1042.66, + "probability": 0.9476 + }, + { + "start": 1043.06, + "end": 1044.04, + "probability": 0.9349 + }, + { + "start": 1044.14, + "end": 1047.52, + "probability": 0.9905 + }, + { + "start": 1048.16, + "end": 1051.16, + "probability": 0.9956 + }, + { + "start": 1051.82, + "end": 1057.58, + "probability": 0.958 + }, + { + "start": 1058.54, + "end": 1061.44, + "probability": 0.9967 + }, + { + "start": 1062.94, + "end": 1069.04, + "probability": 0.9968 + }, + { + "start": 1069.54, + "end": 1070.68, + "probability": 0.941 + }, + { + "start": 1070.96, + "end": 1072.28, + "probability": 0.9362 + }, + { + "start": 1072.68, + "end": 1076.98, + "probability": 0.987 + }, + { + "start": 1077.54, + "end": 1079.66, + "probability": 0.9419 + }, + { + "start": 1081.1, + "end": 1088.7, + "probability": 0.99 + }, + { + "start": 1089.62, + "end": 1092.32, + "probability": 0.6633 + }, + { + "start": 1092.86, + "end": 1096.16, + "probability": 0.7398 + }, + { + "start": 1096.54, + "end": 1097.96, + "probability": 0.731 + }, + { + "start": 1098.4, + "end": 1098.74, + "probability": 0.4184 + }, + { + "start": 1099.42, + "end": 1099.98, + "probability": 0.8359 + }, + { + "start": 1100.22, + "end": 1100.22, + "probability": 0.3814 + }, + { + "start": 1100.26, + "end": 1104.94, + "probability": 0.99 + }, + { + "start": 1104.94, + "end": 1110.12, + "probability": 0.9883 + }, + { + "start": 1111.24, + "end": 1113.6, + "probability": 0.4664 + }, + { + "start": 1113.88, + "end": 1116.8, + "probability": 0.8394 + }, + { + "start": 1116.9, + "end": 1117.54, + "probability": 0.5658 + }, + { + "start": 1118.52, + "end": 1120.02, + "probability": 0.9201 + }, + { + "start": 1124.8, + "end": 1125.76, + "probability": 0.7607 + }, + { + "start": 1126.36, + "end": 1127.7, + "probability": 0.6391 + }, + { + "start": 1128.52, + "end": 1129.3, + "probability": 0.7775 + }, + { + "start": 1129.82, + "end": 1133.44, + "probability": 0.9924 + }, + { + "start": 1134.12, + "end": 1135.06, + "probability": 0.9445 + }, + { + "start": 1135.6, + "end": 1136.62, + "probability": 0.9401 + }, + { + "start": 1137.64, + "end": 1143.08, + "probability": 0.9978 + }, + { + "start": 1143.08, + "end": 1148.62, + "probability": 0.9996 + }, + { + "start": 1149.16, + "end": 1149.5, + "probability": 0.496 + }, + { + "start": 1149.64, + "end": 1153.24, + "probability": 0.8445 + }, + { + "start": 1153.96, + "end": 1160.18, + "probability": 0.9801 + }, + { + "start": 1161.78, + "end": 1163.98, + "probability": 0.8069 + }, + { + "start": 1164.22, + "end": 1165.16, + "probability": 0.8855 + }, + { + "start": 1165.34, + "end": 1166.26, + "probability": 0.9312 + }, + { + "start": 1166.36, + "end": 1167.18, + "probability": 0.9626 + }, + { + "start": 1167.42, + "end": 1171.32, + "probability": 0.9678 + }, + { + "start": 1171.5, + "end": 1172.24, + "probability": 0.8563 + }, + { + "start": 1172.6, + "end": 1174.3, + "probability": 0.6391 + }, + { + "start": 1175.01, + "end": 1178.68, + "probability": 0.99 + }, + { + "start": 1179.04, + "end": 1182.28, + "probability": 0.9952 + }, + { + "start": 1182.28, + "end": 1185.68, + "probability": 0.8454 + }, + { + "start": 1186.44, + "end": 1190.75, + "probability": 0.9989 + }, + { + "start": 1191.8, + "end": 1196.6, + "probability": 0.9912 + }, + { + "start": 1197.06, + "end": 1198.8, + "probability": 0.9018 + }, + { + "start": 1199.6, + "end": 1203.26, + "probability": 0.9449 + }, + { + "start": 1203.78, + "end": 1204.82, + "probability": 0.968 + }, + { + "start": 1205.06, + "end": 1207.4, + "probability": 0.9854 + }, + { + "start": 1207.9, + "end": 1210.58, + "probability": 0.9981 + }, + { + "start": 1210.9, + "end": 1214.36, + "probability": 0.9971 + }, + { + "start": 1214.52, + "end": 1215.06, + "probability": 0.8591 + }, + { + "start": 1215.38, + "end": 1219.46, + "probability": 0.9954 + }, + { + "start": 1219.64, + "end": 1220.67, + "probability": 0.9949 + }, + { + "start": 1221.44, + "end": 1223.92, + "probability": 0.8273 + }, + { + "start": 1224.52, + "end": 1227.66, + "probability": 0.7871 + }, + { + "start": 1228.18, + "end": 1229.8, + "probability": 0.9797 + }, + { + "start": 1231.48, + "end": 1232.48, + "probability": 0.8193 + }, + { + "start": 1232.66, + "end": 1240.44, + "probability": 0.9685 + }, + { + "start": 1240.68, + "end": 1242.16, + "probability": 0.6672 + }, + { + "start": 1242.22, + "end": 1242.88, + "probability": 0.8701 + }, + { + "start": 1243.72, + "end": 1246.26, + "probability": 0.9966 + }, + { + "start": 1247.08, + "end": 1248.94, + "probability": 0.8414 + }, + { + "start": 1249.68, + "end": 1251.1, + "probability": 0.9983 + }, + { + "start": 1251.22, + "end": 1252.38, + "probability": 0.9666 + }, + { + "start": 1252.9, + "end": 1258.18, + "probability": 0.9925 + }, + { + "start": 1259.64, + "end": 1263.66, + "probability": 0.9947 + }, + { + "start": 1263.8, + "end": 1272.48, + "probability": 0.9888 + }, + { + "start": 1273.66, + "end": 1282.38, + "probability": 0.9791 + }, + { + "start": 1282.44, + "end": 1283.71, + "probability": 0.7951 + }, + { + "start": 1283.92, + "end": 1291.1, + "probability": 0.9577 + }, + { + "start": 1291.26, + "end": 1294.92, + "probability": 0.9655 + }, + { + "start": 1295.82, + "end": 1298.7, + "probability": 0.9713 + }, + { + "start": 1299.32, + "end": 1304.1, + "probability": 0.9879 + }, + { + "start": 1304.1, + "end": 1307.4, + "probability": 0.9705 + }, + { + "start": 1307.94, + "end": 1313.54, + "probability": 0.9947 + }, + { + "start": 1313.84, + "end": 1318.3, + "probability": 0.9924 + }, + { + "start": 1318.36, + "end": 1321.92, + "probability": 0.9929 + }, + { + "start": 1322.48, + "end": 1322.68, + "probability": 0.4727 + }, + { + "start": 1323.26, + "end": 1324.96, + "probability": 0.5355 + }, + { + "start": 1325.26, + "end": 1327.56, + "probability": 0.6834 + }, + { + "start": 1327.68, + "end": 1329.64, + "probability": 0.9642 + }, + { + "start": 1333.5, + "end": 1334.96, + "probability": 0.821 + }, + { + "start": 1336.98, + "end": 1341.94, + "probability": 0.7272 + }, + { + "start": 1342.0, + "end": 1344.6, + "probability": 0.8931 + }, + { + "start": 1345.84, + "end": 1346.98, + "probability": 0.7599 + }, + { + "start": 1348.32, + "end": 1350.14, + "probability": 0.9897 + }, + { + "start": 1351.06, + "end": 1355.28, + "probability": 0.5837 + }, + { + "start": 1356.28, + "end": 1357.92, + "probability": 0.5212 + }, + { + "start": 1358.86, + "end": 1363.34, + "probability": 0.9722 + }, + { + "start": 1364.82, + "end": 1371.2, + "probability": 0.9197 + }, + { + "start": 1371.28, + "end": 1372.14, + "probability": 0.5827 + }, + { + "start": 1372.9, + "end": 1378.04, + "probability": 0.3874 + }, + { + "start": 1378.1, + "end": 1381.78, + "probability": 0.813 + }, + { + "start": 1382.3, + "end": 1384.26, + "probability": 0.9549 + }, + { + "start": 1384.32, + "end": 1387.08, + "probability": 0.8478 + }, + { + "start": 1388.06, + "end": 1391.3, + "probability": 0.7999 + }, + { + "start": 1391.96, + "end": 1393.64, + "probability": 0.3915 + }, + { + "start": 1394.72, + "end": 1396.3, + "probability": 0.9399 + }, + { + "start": 1396.82, + "end": 1397.6, + "probability": 0.559 + }, + { + "start": 1398.24, + "end": 1398.88, + "probability": 0.7024 + }, + { + "start": 1399.04, + "end": 1400.14, + "probability": 0.9048 + }, + { + "start": 1400.88, + "end": 1401.88, + "probability": 0.8743 + }, + { + "start": 1401.96, + "end": 1402.5, + "probability": 0.7884 + }, + { + "start": 1402.54, + "end": 1402.88, + "probability": 0.9041 + }, + { + "start": 1403.12, + "end": 1405.28, + "probability": 0.6628 + }, + { + "start": 1405.94, + "end": 1409.94, + "probability": 0.9371 + }, + { + "start": 1410.26, + "end": 1411.02, + "probability": 0.6852 + }, + { + "start": 1411.48, + "end": 1413.5, + "probability": 0.6502 + }, + { + "start": 1413.66, + "end": 1414.58, + "probability": 0.4163 + }, + { + "start": 1414.76, + "end": 1415.18, + "probability": 0.7843 + }, + { + "start": 1415.22, + "end": 1415.84, + "probability": 0.8614 + }, + { + "start": 1415.86, + "end": 1416.74, + "probability": 0.8674 + }, + { + "start": 1417.22, + "end": 1417.74, + "probability": 0.6825 + }, + { + "start": 1417.84, + "end": 1420.74, + "probability": 0.9507 + }, + { + "start": 1420.8, + "end": 1421.0, + "probability": 0.6663 + }, + { + "start": 1421.54, + "end": 1423.18, + "probability": 0.8179 + }, + { + "start": 1423.54, + "end": 1425.56, + "probability": 0.8804 + }, + { + "start": 1425.66, + "end": 1426.0, + "probability": 0.6591 + }, + { + "start": 1426.12, + "end": 1427.28, + "probability": 0.9081 + }, + { + "start": 1430.14, + "end": 1430.6, + "probability": 0.821 + }, + { + "start": 1431.08, + "end": 1432.22, + "probability": 0.761 + }, + { + "start": 1432.46, + "end": 1433.7, + "probability": 0.7136 + }, + { + "start": 1435.06, + "end": 1438.5, + "probability": 0.69 + }, + { + "start": 1439.22, + "end": 1439.9, + "probability": 0.8691 + }, + { + "start": 1440.5, + "end": 1441.62, + "probability": 0.3751 + }, + { + "start": 1443.14, + "end": 1446.18, + "probability": 0.8501 + }, + { + "start": 1447.64, + "end": 1451.32, + "probability": 0.9493 + }, + { + "start": 1451.74, + "end": 1453.06, + "probability": 0.6836 + }, + { + "start": 1453.5, + "end": 1454.52, + "probability": 0.6734 + }, + { + "start": 1454.94, + "end": 1455.43, + "probability": 0.7964 + }, + { + "start": 1456.04, + "end": 1458.62, + "probability": 0.8461 + }, + { + "start": 1458.94, + "end": 1459.62, + "probability": 0.6853 + }, + { + "start": 1459.66, + "end": 1460.84, + "probability": 0.784 + }, + { + "start": 1461.32, + "end": 1463.88, + "probability": 0.9507 + }, + { + "start": 1464.38, + "end": 1466.36, + "probability": 0.9557 + }, + { + "start": 1466.36, + "end": 1468.92, + "probability": 0.9258 + }, + { + "start": 1470.36, + "end": 1471.64, + "probability": 0.6474 + }, + { + "start": 1471.68, + "end": 1472.96, + "probability": 0.7682 + }, + { + "start": 1473.16, + "end": 1473.72, + "probability": 0.7924 + }, + { + "start": 1473.78, + "end": 1475.06, + "probability": 0.916 + }, + { + "start": 1475.5, + "end": 1476.54, + "probability": 0.7938 + }, + { + "start": 1477.12, + "end": 1478.66, + "probability": 0.8423 + }, + { + "start": 1479.3, + "end": 1482.2, + "probability": 0.8138 + }, + { + "start": 1482.2, + "end": 1484.92, + "probability": 0.7539 + }, + { + "start": 1485.28, + "end": 1486.28, + "probability": 0.2975 + }, + { + "start": 1486.38, + "end": 1486.72, + "probability": 0.4268 + }, + { + "start": 1486.82, + "end": 1487.54, + "probability": 0.6514 + }, + { + "start": 1489.68, + "end": 1490.5, + "probability": 0.7414 + }, + { + "start": 1491.06, + "end": 1491.66, + "probability": 0.9183 + }, + { + "start": 1492.32, + "end": 1495.46, + "probability": 0.8485 + }, + { + "start": 1496.04, + "end": 1498.04, + "probability": 0.8488 + }, + { + "start": 1498.62, + "end": 1499.46, + "probability": 0.8568 + }, + { + "start": 1499.92, + "end": 1500.79, + "probability": 0.9062 + }, + { + "start": 1501.44, + "end": 1501.88, + "probability": 0.9024 + }, + { + "start": 1501.96, + "end": 1502.4, + "probability": 0.9451 + }, + { + "start": 1502.48, + "end": 1503.12, + "probability": 0.7971 + }, + { + "start": 1503.18, + "end": 1505.9, + "probability": 0.8745 + }, + { + "start": 1506.32, + "end": 1507.2, + "probability": 0.9928 + }, + { + "start": 1507.76, + "end": 1508.5, + "probability": 0.4464 + }, + { + "start": 1508.76, + "end": 1511.38, + "probability": 0.5455 + }, + { + "start": 1511.68, + "end": 1512.16, + "probability": 0.5437 + }, + { + "start": 1512.6, + "end": 1512.88, + "probability": 0.5453 + }, + { + "start": 1513.46, + "end": 1516.16, + "probability": 0.6362 + }, + { + "start": 1516.38, + "end": 1517.62, + "probability": 0.7854 + }, + { + "start": 1517.86, + "end": 1519.96, + "probability": 0.7956 + }, + { + "start": 1520.32, + "end": 1522.24, + "probability": 0.6368 + }, + { + "start": 1523.04, + "end": 1523.44, + "probability": 0.5073 + }, + { + "start": 1523.54, + "end": 1527.12, + "probability": 0.9863 + }, + { + "start": 1527.8, + "end": 1528.0, + "probability": 0.8414 + }, + { + "start": 1528.18, + "end": 1530.32, + "probability": 0.8573 + }, + { + "start": 1530.4, + "end": 1531.46, + "probability": 0.9437 + }, + { + "start": 1531.68, + "end": 1532.04, + "probability": 0.7657 + }, + { + "start": 1532.12, + "end": 1532.48, + "probability": 0.2399 + }, + { + "start": 1532.56, + "end": 1533.02, + "probability": 0.7845 + }, + { + "start": 1533.14, + "end": 1534.91, + "probability": 0.7465 + }, + { + "start": 1540.36, + "end": 1542.62, + "probability": 0.7541 + }, + { + "start": 1544.56, + "end": 1547.24, + "probability": 0.9985 + }, + { + "start": 1548.58, + "end": 1551.06, + "probability": 0.9148 + }, + { + "start": 1551.88, + "end": 1552.18, + "probability": 0.7164 + }, + { + "start": 1555.62, + "end": 1557.64, + "probability": 0.9615 + }, + { + "start": 1559.5, + "end": 1562.06, + "probability": 0.9536 + }, + { + "start": 1563.28, + "end": 1565.92, + "probability": 0.7453 + }, + { + "start": 1566.88, + "end": 1570.7, + "probability": 0.9448 + }, + { + "start": 1571.76, + "end": 1573.54, + "probability": 0.9884 + }, + { + "start": 1574.52, + "end": 1577.68, + "probability": 0.9956 + }, + { + "start": 1578.94, + "end": 1581.34, + "probability": 0.921 + }, + { + "start": 1582.36, + "end": 1583.82, + "probability": 0.9943 + }, + { + "start": 1585.0, + "end": 1589.42, + "probability": 0.9885 + }, + { + "start": 1591.98, + "end": 1594.58, + "probability": 0.9648 + }, + { + "start": 1595.12, + "end": 1597.02, + "probability": 0.9944 + }, + { + "start": 1597.28, + "end": 1599.42, + "probability": 0.9315 + }, + { + "start": 1599.94, + "end": 1600.38, + "probability": 0.4582 + }, + { + "start": 1601.74, + "end": 1605.54, + "probability": 0.8838 + }, + { + "start": 1607.62, + "end": 1609.98, + "probability": 0.4847 + }, + { + "start": 1611.0, + "end": 1614.16, + "probability": 0.9497 + }, + { + "start": 1614.36, + "end": 1618.12, + "probability": 0.9365 + }, + { + "start": 1618.86, + "end": 1621.06, + "probability": 0.9949 + }, + { + "start": 1621.46, + "end": 1625.68, + "probability": 0.9354 + }, + { + "start": 1626.3, + "end": 1627.54, + "probability": 0.7821 + }, + { + "start": 1627.94, + "end": 1629.38, + "probability": 0.9635 + }, + { + "start": 1629.58, + "end": 1634.28, + "probability": 0.9976 + }, + { + "start": 1634.84, + "end": 1636.52, + "probability": 0.7006 + }, + { + "start": 1636.68, + "end": 1639.04, + "probability": 0.7423 + }, + { + "start": 1639.12, + "end": 1640.6, + "probability": 0.8438 + }, + { + "start": 1645.22, + "end": 1646.06, + "probability": 0.2092 + }, + { + "start": 1646.3, + "end": 1647.1, + "probability": 0.5737 + }, + { + "start": 1648.36, + "end": 1650.62, + "probability": 0.9061 + }, + { + "start": 1650.74, + "end": 1650.98, + "probability": 0.8302 + }, + { + "start": 1651.1, + "end": 1653.98, + "probability": 0.9985 + }, + { + "start": 1654.92, + "end": 1655.66, + "probability": 0.8851 + }, + { + "start": 1656.92, + "end": 1663.16, + "probability": 0.9576 + }, + { + "start": 1663.16, + "end": 1668.29, + "probability": 0.9622 + }, + { + "start": 1669.94, + "end": 1671.82, + "probability": 0.8201 + }, + { + "start": 1671.88, + "end": 1673.7, + "probability": 0.77 + }, + { + "start": 1674.42, + "end": 1682.62, + "probability": 0.9849 + }, + { + "start": 1683.28, + "end": 1688.86, + "probability": 0.9561 + }, + { + "start": 1690.08, + "end": 1690.82, + "probability": 0.9317 + }, + { + "start": 1690.92, + "end": 1691.84, + "probability": 0.9798 + }, + { + "start": 1691.96, + "end": 1693.08, + "probability": 0.7382 + }, + { + "start": 1694.28, + "end": 1698.44, + "probability": 0.8616 + }, + { + "start": 1698.98, + "end": 1700.38, + "probability": 0.9958 + }, + { + "start": 1700.58, + "end": 1701.6, + "probability": 0.897 + }, + { + "start": 1702.24, + "end": 1704.8, + "probability": 0.9218 + }, + { + "start": 1705.78, + "end": 1708.16, + "probability": 0.9774 + }, + { + "start": 1708.94, + "end": 1710.26, + "probability": 0.9722 + }, + { + "start": 1710.86, + "end": 1715.26, + "probability": 0.9896 + }, + { + "start": 1715.28, + "end": 1716.08, + "probability": 0.8583 + }, + { + "start": 1716.84, + "end": 1719.52, + "probability": 0.9298 + }, + { + "start": 1720.2, + "end": 1722.44, + "probability": 0.6884 + }, + { + "start": 1722.98, + "end": 1725.8, + "probability": 0.9247 + }, + { + "start": 1726.53, + "end": 1728.53, + "probability": 0.7861 + }, + { + "start": 1728.64, + "end": 1730.2, + "probability": 0.9707 + }, + { + "start": 1731.08, + "end": 1736.0, + "probability": 0.9975 + }, + { + "start": 1736.2, + "end": 1736.46, + "probability": 0.591 + }, + { + "start": 1736.8, + "end": 1739.0, + "probability": 0.6013 + }, + { + "start": 1739.04, + "end": 1741.16, + "probability": 0.8984 + }, + { + "start": 1741.18, + "end": 1743.82, + "probability": 0.8914 + }, + { + "start": 1745.82, + "end": 1746.52, + "probability": 0.7113 + }, + { + "start": 1746.62, + "end": 1755.42, + "probability": 0.9296 + }, + { + "start": 1755.74, + "end": 1757.5, + "probability": 0.9731 + }, + { + "start": 1758.06, + "end": 1760.74, + "probability": 0.7621 + }, + { + "start": 1763.6, + "end": 1763.88, + "probability": 0.5363 + }, + { + "start": 1764.6, + "end": 1766.06, + "probability": 0.8846 + }, + { + "start": 1767.44, + "end": 1770.66, + "probability": 0.9518 + }, + { + "start": 1771.46, + "end": 1774.12, + "probability": 0.9995 + }, + { + "start": 1775.9, + "end": 1776.06, + "probability": 0.486 + }, + { + "start": 1776.16, + "end": 1777.72, + "probability": 0.9924 + }, + { + "start": 1778.02, + "end": 1780.96, + "probability": 0.7552 + }, + { + "start": 1781.4, + "end": 1783.36, + "probability": 0.9815 + }, + { + "start": 1784.4, + "end": 1788.02, + "probability": 0.9893 + }, + { + "start": 1788.68, + "end": 1790.98, + "probability": 0.9891 + }, + { + "start": 1791.38, + "end": 1793.88, + "probability": 0.9946 + }, + { + "start": 1794.84, + "end": 1797.38, + "probability": 0.9839 + }, + { + "start": 1797.4, + "end": 1800.6, + "probability": 0.9864 + }, + { + "start": 1801.9, + "end": 1805.92, + "probability": 0.9914 + }, + { + "start": 1805.92, + "end": 1810.44, + "probability": 0.9976 + }, + { + "start": 1811.18, + "end": 1812.68, + "probability": 0.8851 + }, + { + "start": 1813.0, + "end": 1814.46, + "probability": 0.957 + }, + { + "start": 1814.5, + "end": 1815.94, + "probability": 0.9795 + }, + { + "start": 1816.74, + "end": 1819.44, + "probability": 0.9611 + }, + { + "start": 1819.5, + "end": 1820.42, + "probability": 0.8996 + }, + { + "start": 1820.46, + "end": 1822.24, + "probability": 0.97 + }, + { + "start": 1822.76, + "end": 1823.0, + "probability": 0.7829 + }, + { + "start": 1823.14, + "end": 1824.6, + "probability": 0.5986 + }, + { + "start": 1824.76, + "end": 1826.88, + "probability": 0.8918 + }, + { + "start": 1837.42, + "end": 1839.2, + "probability": 0.6873 + }, + { + "start": 1840.24, + "end": 1845.12, + "probability": 0.9955 + }, + { + "start": 1845.28, + "end": 1846.4, + "probability": 0.9823 + }, + { + "start": 1846.86, + "end": 1848.08, + "probability": 0.9016 + }, + { + "start": 1848.34, + "end": 1848.99, + "probability": 0.713 + }, + { + "start": 1849.28, + "end": 1851.98, + "probability": 0.8319 + }, + { + "start": 1852.88, + "end": 1854.12, + "probability": 0.7893 + }, + { + "start": 1854.22, + "end": 1855.8, + "probability": 0.9941 + }, + { + "start": 1856.4, + "end": 1858.98, + "probability": 0.9938 + }, + { + "start": 1859.02, + "end": 1860.08, + "probability": 0.9779 + }, + { + "start": 1860.52, + "end": 1861.97, + "probability": 0.9924 + }, + { + "start": 1862.3, + "end": 1863.44, + "probability": 0.9648 + }, + { + "start": 1864.04, + "end": 1867.11, + "probability": 0.9819 + }, + { + "start": 1868.28, + "end": 1871.54, + "probability": 0.9478 + }, + { + "start": 1871.58, + "end": 1874.7, + "probability": 0.8855 + }, + { + "start": 1875.12, + "end": 1878.3, + "probability": 0.9888 + }, + { + "start": 1878.7, + "end": 1880.98, + "probability": 0.9946 + }, + { + "start": 1881.58, + "end": 1884.64, + "probability": 0.9967 + }, + { + "start": 1884.96, + "end": 1888.3, + "probability": 0.966 + }, + { + "start": 1888.3, + "end": 1891.04, + "probability": 0.9889 + }, + { + "start": 1891.44, + "end": 1892.53, + "probability": 0.8435 + }, + { + "start": 1892.72, + "end": 1895.8, + "probability": 0.9972 + }, + { + "start": 1896.18, + "end": 1896.3, + "probability": 0.4843 + }, + { + "start": 1896.98, + "end": 1897.5, + "probability": 0.5847 + }, + { + "start": 1897.54, + "end": 1898.0, + "probability": 0.4806 + }, + { + "start": 1898.08, + "end": 1899.34, + "probability": 0.9629 + }, + { + "start": 1899.44, + "end": 1903.7, + "probability": 0.9814 + }, + { + "start": 1904.14, + "end": 1909.5, + "probability": 0.973 + }, + { + "start": 1910.0, + "end": 1910.62, + "probability": 0.8643 + }, + { + "start": 1910.66, + "end": 1911.62, + "probability": 0.5862 + }, + { + "start": 1911.62, + "end": 1914.76, + "probability": 0.7855 + }, + { + "start": 1915.22, + "end": 1916.34, + "probability": 0.8312 + }, + { + "start": 1916.74, + "end": 1917.38, + "probability": 0.7153 + }, + { + "start": 1917.42, + "end": 1918.26, + "probability": 0.9506 + }, + { + "start": 1918.74, + "end": 1919.26, + "probability": 0.7697 + }, + { + "start": 1919.76, + "end": 1921.88, + "probability": 0.8948 + }, + { + "start": 1922.06, + "end": 1923.72, + "probability": 0.9146 + }, + { + "start": 1924.56, + "end": 1925.74, + "probability": 0.9941 + }, + { + "start": 1926.66, + "end": 1931.34, + "probability": 0.9932 + }, + { + "start": 1931.5, + "end": 1934.94, + "probability": 0.7768 + }, + { + "start": 1935.92, + "end": 1938.18, + "probability": 0.9812 + }, + { + "start": 1938.32, + "end": 1939.7, + "probability": 0.9036 + }, + { + "start": 1940.82, + "end": 1941.82, + "probability": 0.5167 + }, + { + "start": 1941.96, + "end": 1943.26, + "probability": 0.9007 + }, + { + "start": 1947.32, + "end": 1947.9, + "probability": 0.5912 + }, + { + "start": 1948.02, + "end": 1950.51, + "probability": 0.7741 + }, + { + "start": 1951.38, + "end": 1953.26, + "probability": 0.9972 + }, + { + "start": 1953.26, + "end": 1955.28, + "probability": 0.9977 + }, + { + "start": 1955.42, + "end": 1958.54, + "probability": 0.7781 + }, + { + "start": 1959.16, + "end": 1961.4, + "probability": 0.841 + }, + { + "start": 1961.5, + "end": 1962.42, + "probability": 0.2514 + }, + { + "start": 1962.66, + "end": 1966.26, + "probability": 0.9622 + }, + { + "start": 1966.34, + "end": 1968.74, + "probability": 0.8803 + }, + { + "start": 1969.24, + "end": 1969.56, + "probability": 0.5616 + }, + { + "start": 1971.8, + "end": 1973.26, + "probability": 0.7075 + }, + { + "start": 1973.86, + "end": 1974.78, + "probability": 0.7201 + }, + { + "start": 1974.88, + "end": 1976.5, + "probability": 0.9143 + }, + { + "start": 1977.0, + "end": 1978.34, + "probability": 0.8401 + }, + { + "start": 1978.48, + "end": 1981.14, + "probability": 0.9322 + }, + { + "start": 1981.66, + "end": 1982.8, + "probability": 0.674 + }, + { + "start": 1982.98, + "end": 1984.9, + "probability": 0.1529 + }, + { + "start": 1985.36, + "end": 1987.42, + "probability": 0.9775 + }, + { + "start": 1987.58, + "end": 1992.8, + "probability": 0.9706 + }, + { + "start": 1992.8, + "end": 1996.8, + "probability": 0.9981 + }, + { + "start": 1997.64, + "end": 1999.24, + "probability": 0.2213 + }, + { + "start": 1999.78, + "end": 2001.38, + "probability": 0.9212 + }, + { + "start": 2014.68, + "end": 2015.68, + "probability": 0.6909 + }, + { + "start": 2017.94, + "end": 2019.26, + "probability": 0.729 + }, + { + "start": 2022.74, + "end": 2023.3, + "probability": 0.7046 + }, + { + "start": 2027.08, + "end": 2030.72, + "probability": 0.998 + }, + { + "start": 2031.26, + "end": 2032.31, + "probability": 0.9906 + }, + { + "start": 2033.62, + "end": 2035.18, + "probability": 0.9868 + }, + { + "start": 2036.2, + "end": 2039.72, + "probability": 0.9978 + }, + { + "start": 2040.82, + "end": 2042.0, + "probability": 0.6749 + }, + { + "start": 2043.2, + "end": 2050.16, + "probability": 0.7725 + }, + { + "start": 2050.8, + "end": 2052.64, + "probability": 0.7373 + }, + { + "start": 2053.66, + "end": 2059.28, + "probability": 0.9925 + }, + { + "start": 2059.28, + "end": 2064.4, + "probability": 0.9971 + }, + { + "start": 2065.26, + "end": 2067.24, + "probability": 0.9995 + }, + { + "start": 2069.9, + "end": 2072.08, + "probability": 0.9904 + }, + { + "start": 2073.28, + "end": 2078.12, + "probability": 0.9956 + }, + { + "start": 2078.12, + "end": 2083.8, + "probability": 0.9648 + }, + { + "start": 2085.44, + "end": 2088.84, + "probability": 0.9211 + }, + { + "start": 2089.52, + "end": 2094.64, + "probability": 0.9482 + }, + { + "start": 2095.82, + "end": 2099.98, + "probability": 0.9609 + }, + { + "start": 2102.32, + "end": 2104.1, + "probability": 0.7707 + }, + { + "start": 2104.24, + "end": 2104.84, + "probability": 0.7834 + }, + { + "start": 2105.08, + "end": 2107.44, + "probability": 0.9861 + }, + { + "start": 2107.44, + "end": 2111.52, + "probability": 0.9464 + }, + { + "start": 2112.2, + "end": 2114.78, + "probability": 0.9381 + }, + { + "start": 2115.36, + "end": 2116.04, + "probability": 0.9841 + }, + { + "start": 2116.56, + "end": 2117.46, + "probability": 0.9871 + }, + { + "start": 2118.94, + "end": 2122.66, + "probability": 0.934 + }, + { + "start": 2122.66, + "end": 2127.28, + "probability": 0.9971 + }, + { + "start": 2127.28, + "end": 2131.88, + "probability": 0.9878 + }, + { + "start": 2133.56, + "end": 2134.61, + "probability": 0.6964 + }, + { + "start": 2135.78, + "end": 2137.82, + "probability": 0.9646 + }, + { + "start": 2138.8, + "end": 2140.54, + "probability": 0.4932 + }, + { + "start": 2141.5, + "end": 2149.0, + "probability": 0.9163 + }, + { + "start": 2150.5, + "end": 2152.42, + "probability": 0.9658 + }, + { + "start": 2152.62, + "end": 2157.8, + "probability": 0.9934 + }, + { + "start": 2160.22, + "end": 2163.86, + "probability": 0.9983 + }, + { + "start": 2165.2, + "end": 2171.24, + "probability": 0.9973 + }, + { + "start": 2173.76, + "end": 2176.94, + "probability": 0.9895 + }, + { + "start": 2177.44, + "end": 2179.7, + "probability": 0.9925 + }, + { + "start": 2180.28, + "end": 2182.88, + "probability": 0.7328 + }, + { + "start": 2183.58, + "end": 2184.7, + "probability": 0.9333 + }, + { + "start": 2186.36, + "end": 2186.88, + "probability": 0.7708 + }, + { + "start": 2187.64, + "end": 2191.26, + "probability": 0.9918 + }, + { + "start": 2192.02, + "end": 2193.44, + "probability": 0.9029 + }, + { + "start": 2194.14, + "end": 2197.8, + "probability": 0.9948 + }, + { + "start": 2202.22, + "end": 2205.8, + "probability": 0.7368 + }, + { + "start": 2207.08, + "end": 2209.98, + "probability": 0.9291 + }, + { + "start": 2211.94, + "end": 2215.6, + "probability": 0.9663 + }, + { + "start": 2216.48, + "end": 2219.82, + "probability": 0.7355 + }, + { + "start": 2220.24, + "end": 2221.14, + "probability": 0.6301 + }, + { + "start": 2222.72, + "end": 2227.48, + "probability": 0.9853 + }, + { + "start": 2229.18, + "end": 2233.18, + "probability": 0.9888 + }, + { + "start": 2234.68, + "end": 2237.44, + "probability": 0.9072 + }, + { + "start": 2238.02, + "end": 2239.26, + "probability": 0.9984 + }, + { + "start": 2239.78, + "end": 2240.26, + "probability": 0.8809 + }, + { + "start": 2241.92, + "end": 2246.48, + "probability": 0.9983 + }, + { + "start": 2246.48, + "end": 2251.66, + "probability": 0.9572 + }, + { + "start": 2252.7, + "end": 2254.42, + "probability": 0.8972 + }, + { + "start": 2255.8, + "end": 2257.88, + "probability": 0.9807 + }, + { + "start": 2260.1, + "end": 2260.46, + "probability": 0.5317 + }, + { + "start": 2261.52, + "end": 2263.92, + "probability": 0.9897 + }, + { + "start": 2264.68, + "end": 2266.24, + "probability": 0.6485 + }, + { + "start": 2267.38, + "end": 2269.16, + "probability": 0.8544 + }, + { + "start": 2271.06, + "end": 2275.08, + "probability": 0.9964 + }, + { + "start": 2276.08, + "end": 2279.08, + "probability": 0.9912 + }, + { + "start": 2280.26, + "end": 2280.98, + "probability": 0.7639 + }, + { + "start": 2282.26, + "end": 2283.6, + "probability": 0.9746 + }, + { + "start": 2285.7, + "end": 2286.44, + "probability": 0.808 + }, + { + "start": 2287.06, + "end": 2293.7, + "probability": 0.7989 + }, + { + "start": 2293.7, + "end": 2296.9, + "probability": 0.9938 + }, + { + "start": 2297.98, + "end": 2299.66, + "probability": 0.9918 + }, + { + "start": 2300.46, + "end": 2302.14, + "probability": 0.991 + }, + { + "start": 2304.52, + "end": 2310.3, + "probability": 0.9971 + }, + { + "start": 2310.3, + "end": 2315.44, + "probability": 0.9989 + }, + { + "start": 2316.7, + "end": 2319.46, + "probability": 0.7174 + }, + { + "start": 2320.78, + "end": 2325.94, + "probability": 0.9644 + }, + { + "start": 2327.34, + "end": 2327.76, + "probability": 0.019 + }, + { + "start": 2328.8, + "end": 2332.32, + "probability": 0.9839 + }, + { + "start": 2333.14, + "end": 2334.8, + "probability": 0.9985 + }, + { + "start": 2335.68, + "end": 2343.02, + "probability": 0.8047 + }, + { + "start": 2343.34, + "end": 2343.68, + "probability": 0.9341 + }, + { + "start": 2346.62, + "end": 2352.02, + "probability": 0.9937 + }, + { + "start": 2353.02, + "end": 2356.42, + "probability": 0.8817 + }, + { + "start": 2357.1, + "end": 2359.3, + "probability": 0.9963 + }, + { + "start": 2361.66, + "end": 2363.86, + "probability": 0.9857 + }, + { + "start": 2364.88, + "end": 2369.24, + "probability": 0.9536 + }, + { + "start": 2369.86, + "end": 2371.7, + "probability": 0.5551 + }, + { + "start": 2372.42, + "end": 2374.82, + "probability": 0.996 + }, + { + "start": 2375.72, + "end": 2378.16, + "probability": 0.7481 + }, + { + "start": 2378.82, + "end": 2380.92, + "probability": 0.6226 + }, + { + "start": 2382.02, + "end": 2383.52, + "probability": 0.9967 + }, + { + "start": 2384.18, + "end": 2387.2, + "probability": 0.984 + }, + { + "start": 2389.76, + "end": 2390.66, + "probability": 0.4022 + }, + { + "start": 2390.84, + "end": 2391.48, + "probability": 0.7928 + }, + { + "start": 2391.72, + "end": 2393.38, + "probability": 0.9981 + }, + { + "start": 2394.5, + "end": 2404.4, + "probability": 0.8823 + }, + { + "start": 2405.66, + "end": 2409.26, + "probability": 0.991 + }, + { + "start": 2410.1, + "end": 2413.64, + "probability": 0.9934 + }, + { + "start": 2415.9, + "end": 2417.72, + "probability": 0.9829 + }, + { + "start": 2418.34, + "end": 2420.9, + "probability": 0.9979 + }, + { + "start": 2421.64, + "end": 2423.25, + "probability": 0.9732 + }, + { + "start": 2424.96, + "end": 2426.15, + "probability": 0.9899 + }, + { + "start": 2427.18, + "end": 2431.24, + "probability": 0.9989 + }, + { + "start": 2431.84, + "end": 2433.38, + "probability": 0.9448 + }, + { + "start": 2435.06, + "end": 2442.06, + "probability": 0.9822 + }, + { + "start": 2442.58, + "end": 2449.62, + "probability": 0.9993 + }, + { + "start": 2449.96, + "end": 2452.6, + "probability": 0.8964 + }, + { + "start": 2453.3, + "end": 2453.88, + "probability": 0.5981 + }, + { + "start": 2454.68, + "end": 2455.6, + "probability": 0.6824 + }, + { + "start": 2456.72, + "end": 2457.42, + "probability": 0.7568 + }, + { + "start": 2457.5, + "end": 2458.24, + "probability": 0.676 + }, + { + "start": 2458.3, + "end": 2459.48, + "probability": 0.953 + }, + { + "start": 2459.98, + "end": 2460.68, + "probability": 0.9686 + }, + { + "start": 2462.52, + "end": 2465.7, + "probability": 0.849 + }, + { + "start": 2466.2, + "end": 2467.26, + "probability": 0.9801 + }, + { + "start": 2467.62, + "end": 2468.64, + "probability": 0.8582 + }, + { + "start": 2471.34, + "end": 2472.96, + "probability": 0.9904 + }, + { + "start": 2473.56, + "end": 2477.56, + "probability": 0.9994 + }, + { + "start": 2477.56, + "end": 2480.16, + "probability": 0.844 + }, + { + "start": 2481.46, + "end": 2483.2, + "probability": 0.9946 + }, + { + "start": 2484.18, + "end": 2486.72, + "probability": 0.9881 + }, + { + "start": 2487.74, + "end": 2491.02, + "probability": 0.9969 + }, + { + "start": 2491.56, + "end": 2493.1, + "probability": 0.4738 + }, + { + "start": 2493.9, + "end": 2495.82, + "probability": 0.9969 + }, + { + "start": 2496.72, + "end": 2499.13, + "probability": 0.9458 + }, + { + "start": 2500.14, + "end": 2506.42, + "probability": 0.7496 + }, + { + "start": 2508.24, + "end": 2512.16, + "probability": 0.6771 + }, + { + "start": 2513.32, + "end": 2515.4, + "probability": 0.9368 + }, + { + "start": 2515.94, + "end": 2517.8, + "probability": 0.7333 + }, + { + "start": 2519.02, + "end": 2522.82, + "probability": 0.9489 + }, + { + "start": 2522.82, + "end": 2525.62, + "probability": 0.8384 + }, + { + "start": 2526.54, + "end": 2533.14, + "probability": 0.9276 + }, + { + "start": 2533.14, + "end": 2537.92, + "probability": 0.9761 + }, + { + "start": 2539.68, + "end": 2542.3, + "probability": 0.647 + }, + { + "start": 2542.82, + "end": 2543.32, + "probability": 0.998 + }, + { + "start": 2544.32, + "end": 2545.84, + "probability": 0.9438 + }, + { + "start": 2546.68, + "end": 2553.62, + "probability": 0.9855 + }, + { + "start": 2555.4, + "end": 2555.82, + "probability": 0.6715 + }, + { + "start": 2556.14, + "end": 2556.8, + "probability": 0.6375 + }, + { + "start": 2557.04, + "end": 2557.86, + "probability": 0.7781 + }, + { + "start": 2557.98, + "end": 2561.12, + "probability": 0.996 + }, + { + "start": 2561.8, + "end": 2562.86, + "probability": 0.9973 + }, + { + "start": 2563.66, + "end": 2568.9, + "probability": 0.9826 + }, + { + "start": 2569.32, + "end": 2570.83, + "probability": 0.7597 + }, + { + "start": 2571.96, + "end": 2573.08, + "probability": 0.8732 + }, + { + "start": 2574.1, + "end": 2576.34, + "probability": 0.8384 + }, + { + "start": 2577.08, + "end": 2582.86, + "probability": 0.854 + }, + { + "start": 2583.42, + "end": 2584.74, + "probability": 0.4441 + }, + { + "start": 2585.18, + "end": 2586.58, + "probability": 0.8879 + }, + { + "start": 2587.16, + "end": 2588.62, + "probability": 0.8879 + }, + { + "start": 2589.86, + "end": 2590.46, + "probability": 0.233 + }, + { + "start": 2593.48, + "end": 2594.42, + "probability": 0.9121 + }, + { + "start": 2594.52, + "end": 2595.43, + "probability": 0.7473 + }, + { + "start": 2595.5, + "end": 2599.78, + "probability": 0.9902 + }, + { + "start": 2599.88, + "end": 2602.0, + "probability": 0.566 + }, + { + "start": 2603.38, + "end": 2604.52, + "probability": 0.939 + }, + { + "start": 2623.84, + "end": 2627.0, + "probability": 0.825 + }, + { + "start": 2628.22, + "end": 2629.3, + "probability": 0.9951 + }, + { + "start": 2630.24, + "end": 2632.38, + "probability": 0.6824 + }, + { + "start": 2633.58, + "end": 2636.0, + "probability": 0.9918 + }, + { + "start": 2636.58, + "end": 2640.7, + "probability": 0.7302 + }, + { + "start": 2641.52, + "end": 2645.78, + "probability": 0.9928 + }, + { + "start": 2646.56, + "end": 2648.44, + "probability": 0.9959 + }, + { + "start": 2649.42, + "end": 2653.82, + "probability": 0.9034 + }, + { + "start": 2654.46, + "end": 2656.24, + "probability": 0.9814 + }, + { + "start": 2656.88, + "end": 2659.56, + "probability": 0.7456 + }, + { + "start": 2660.3, + "end": 2662.84, + "probability": 0.9779 + }, + { + "start": 2663.64, + "end": 2665.88, + "probability": 0.8651 + }, + { + "start": 2666.48, + "end": 2668.44, + "probability": 0.7302 + }, + { + "start": 2669.62, + "end": 2672.28, + "probability": 0.9135 + }, + { + "start": 2672.64, + "end": 2676.8, + "probability": 0.886 + }, + { + "start": 2677.0, + "end": 2677.98, + "probability": 0.9022 + }, + { + "start": 2678.44, + "end": 2681.46, + "probability": 0.8672 + }, + { + "start": 2681.72, + "end": 2682.94, + "probability": 0.6283 + }, + { + "start": 2683.06, + "end": 2683.68, + "probability": 0.573 + }, + { + "start": 2684.18, + "end": 2686.3, + "probability": 0.6749 + }, + { + "start": 2686.86, + "end": 2690.52, + "probability": 0.9684 + }, + { + "start": 2691.64, + "end": 2694.16, + "probability": 0.7736 + }, + { + "start": 2695.34, + "end": 2698.6, + "probability": 0.8045 + }, + { + "start": 2699.14, + "end": 2705.28, + "probability": 0.937 + }, + { + "start": 2705.92, + "end": 2707.04, + "probability": 0.5211 + }, + { + "start": 2707.12, + "end": 2711.96, + "probability": 0.9602 + }, + { + "start": 2712.58, + "end": 2713.5, + "probability": 0.8313 + }, + { + "start": 2714.06, + "end": 2717.58, + "probability": 0.6456 + }, + { + "start": 2718.2, + "end": 2720.96, + "probability": 0.4425 + }, + { + "start": 2721.56, + "end": 2724.42, + "probability": 0.7598 + }, + { + "start": 2724.94, + "end": 2727.06, + "probability": 0.9324 + }, + { + "start": 2728.26, + "end": 2731.14, + "probability": 0.6843 + }, + { + "start": 2732.34, + "end": 2733.72, + "probability": 0.9618 + }, + { + "start": 2734.52, + "end": 2738.76, + "probability": 0.9492 + }, + { + "start": 2738.86, + "end": 2739.42, + "probability": 0.5311 + }, + { + "start": 2739.84, + "end": 2740.66, + "probability": 0.936 + }, + { + "start": 2741.34, + "end": 2742.76, + "probability": 0.9243 + }, + { + "start": 2742.78, + "end": 2744.12, + "probability": 0.6611 + }, + { + "start": 2744.28, + "end": 2744.6, + "probability": 0.7545 + }, + { + "start": 2744.66, + "end": 2746.3, + "probability": 0.6249 + }, + { + "start": 2746.52, + "end": 2748.26, + "probability": 0.9561 + }, + { + "start": 2748.94, + "end": 2749.86, + "probability": 0.7525 + }, + { + "start": 2749.98, + "end": 2751.12, + "probability": 0.7223 + }, + { + "start": 2751.62, + "end": 2755.6, + "probability": 0.9795 + }, + { + "start": 2756.16, + "end": 2759.44, + "probability": 0.9824 + }, + { + "start": 2760.32, + "end": 2762.28, + "probability": 0.4995 + }, + { + "start": 2762.84, + "end": 2770.62, + "probability": 0.9855 + }, + { + "start": 2771.04, + "end": 2771.28, + "probability": 0.8422 + }, + { + "start": 2771.78, + "end": 2774.38, + "probability": 0.612 + }, + { + "start": 2774.72, + "end": 2777.09, + "probability": 0.7593 + }, + { + "start": 2777.7, + "end": 2779.23, + "probability": 0.9699 + }, + { + "start": 2796.5, + "end": 2797.38, + "probability": 0.2667 + }, + { + "start": 2797.78, + "end": 2798.0, + "probability": 0.5367 + }, + { + "start": 2800.0, + "end": 2801.62, + "probability": 0.9679 + }, + { + "start": 2803.38, + "end": 2806.09, + "probability": 0.965 + }, + { + "start": 2807.26, + "end": 2809.38, + "probability": 0.8159 + }, + { + "start": 2810.2, + "end": 2810.58, + "probability": 0.9932 + }, + { + "start": 2811.22, + "end": 2811.82, + "probability": 0.5137 + }, + { + "start": 2812.3, + "end": 2813.64, + "probability": 0.9639 + }, + { + "start": 2814.02, + "end": 2817.42, + "probability": 0.8985 + }, + { + "start": 2818.08, + "end": 2822.9, + "probability": 0.8608 + }, + { + "start": 2823.5, + "end": 2826.12, + "probability": 0.8972 + }, + { + "start": 2827.22, + "end": 2828.68, + "probability": 0.9777 + }, + { + "start": 2829.66, + "end": 2832.1, + "probability": 0.9205 + }, + { + "start": 2833.84, + "end": 2836.52, + "probability": 0.6403 + }, + { + "start": 2837.14, + "end": 2841.32, + "probability": 0.9563 + }, + { + "start": 2841.7, + "end": 2843.34, + "probability": 0.8952 + }, + { + "start": 2843.44, + "end": 2844.0, + "probability": 0.4244 + }, + { + "start": 2844.72, + "end": 2845.62, + "probability": 0.5009 + }, + { + "start": 2847.06, + "end": 2848.61, + "probability": 0.9741 + }, + { + "start": 2849.64, + "end": 2852.72, + "probability": 0.9138 + }, + { + "start": 2855.2, + "end": 2860.56, + "probability": 0.9116 + }, + { + "start": 2861.16, + "end": 2862.74, + "probability": 0.9992 + }, + { + "start": 2863.38, + "end": 2865.6, + "probability": 0.7385 + }, + { + "start": 2866.52, + "end": 2867.4, + "probability": 0.8508 + }, + { + "start": 2868.76, + "end": 2871.3, + "probability": 0.7282 + }, + { + "start": 2872.16, + "end": 2874.14, + "probability": 0.8021 + }, + { + "start": 2875.42, + "end": 2878.64, + "probability": 0.9346 + }, + { + "start": 2879.0, + "end": 2880.48, + "probability": 0.7389 + }, + { + "start": 2881.6, + "end": 2883.7, + "probability": 0.9629 + }, + { + "start": 2884.8, + "end": 2889.04, + "probability": 0.9517 + }, + { + "start": 2889.44, + "end": 2894.8, + "probability": 0.636 + }, + { + "start": 2894.98, + "end": 2895.48, + "probability": 0.8123 + }, + { + "start": 2895.54, + "end": 2897.9, + "probability": 0.6743 + }, + { + "start": 2897.98, + "end": 2898.98, + "probability": 0.9595 + }, + { + "start": 2899.4, + "end": 2903.92, + "probability": 0.7503 + }, + { + "start": 2904.08, + "end": 2905.78, + "probability": 0.9924 + }, + { + "start": 2906.56, + "end": 2911.58, + "probability": 0.6657 + }, + { + "start": 2911.92, + "end": 2912.52, + "probability": 0.6061 + }, + { + "start": 2913.36, + "end": 2914.76, + "probability": 0.7316 + }, + { + "start": 2915.9, + "end": 2919.38, + "probability": 0.9908 + }, + { + "start": 2919.5, + "end": 2919.92, + "probability": 0.6948 + }, + { + "start": 2920.64, + "end": 2922.16, + "probability": 0.9661 + }, + { + "start": 2923.34, + "end": 2923.86, + "probability": 0.6263 + }, + { + "start": 2924.1, + "end": 2927.78, + "probability": 0.9178 + }, + { + "start": 2928.5, + "end": 2929.19, + "probability": 0.9832 + }, + { + "start": 2931.38, + "end": 2933.82, + "probability": 0.681 + }, + { + "start": 2934.0, + "end": 2934.49, + "probability": 0.2088 + }, + { + "start": 2934.7, + "end": 2935.02, + "probability": 0.6533 + }, + { + "start": 2935.22, + "end": 2935.82, + "probability": 0.8977 + }, + { + "start": 2935.84, + "end": 2937.18, + "probability": 0.9126 + }, + { + "start": 2937.26, + "end": 2942.56, + "probability": 0.9823 + }, + { + "start": 2943.18, + "end": 2943.6, + "probability": 0.0133 + }, + { + "start": 2943.86, + "end": 2944.58, + "probability": 0.2105 + }, + { + "start": 2944.74, + "end": 2946.3, + "probability": 0.3472 + }, + { + "start": 2946.34, + "end": 2948.68, + "probability": 0.7974 + }, + { + "start": 2948.72, + "end": 2951.04, + "probability": 0.7637 + }, + { + "start": 2951.04, + "end": 2951.78, + "probability": 0.0842 + }, + { + "start": 2951.78, + "end": 2952.3, + "probability": 0.5902 + }, + { + "start": 2952.32, + "end": 2953.84, + "probability": 0.6231 + }, + { + "start": 2953.96, + "end": 2954.78, + "probability": 0.2834 + }, + { + "start": 2954.98, + "end": 2955.61, + "probability": 0.3643 + }, + { + "start": 2956.5, + "end": 2961.54, + "probability": 0.1303 + }, + { + "start": 2963.62, + "end": 2964.5, + "probability": 0.3917 + }, + { + "start": 2964.5, + "end": 2965.78, + "probability": 0.6443 + }, + { + "start": 2966.4, + "end": 2969.46, + "probability": 0.5127 + }, + { + "start": 2969.74, + "end": 2972.82, + "probability": 0.9748 + }, + { + "start": 2973.2, + "end": 2975.12, + "probability": 0.617 + }, + { + "start": 2975.2, + "end": 2976.07, + "probability": 0.7002 + }, + { + "start": 2976.16, + "end": 2981.56, + "probability": 0.5489 + }, + { + "start": 2981.56, + "end": 2982.76, + "probability": 0.9463 + }, + { + "start": 2982.98, + "end": 2985.94, + "probability": 0.9972 + }, + { + "start": 2986.72, + "end": 2987.0, + "probability": 0.1466 + }, + { + "start": 2987.0, + "end": 2991.02, + "probability": 0.1469 + }, + { + "start": 2992.44, + "end": 2994.02, + "probability": 0.1357 + }, + { + "start": 2994.04, + "end": 2994.48, + "probability": 0.0193 + }, + { + "start": 2994.64, + "end": 3000.3, + "probability": 0.9128 + }, + { + "start": 3001.28, + "end": 3005.24, + "probability": 0.8503 + }, + { + "start": 3005.42, + "end": 3007.67, + "probability": 0.9658 + }, + { + "start": 3008.12, + "end": 3009.36, + "probability": 0.7849 + }, + { + "start": 3010.33, + "end": 3012.66, + "probability": 0.8526 + }, + { + "start": 3012.68, + "end": 3013.18, + "probability": 0.5391 + }, + { + "start": 3013.46, + "end": 3015.72, + "probability": 0.9687 + }, + { + "start": 3016.1, + "end": 3020.42, + "probability": 0.9898 + }, + { + "start": 3021.02, + "end": 3023.14, + "probability": 0.9872 + }, + { + "start": 3023.54, + "end": 3026.62, + "probability": 0.5994 + }, + { + "start": 3026.7, + "end": 3031.5, + "probability": 0.9693 + }, + { + "start": 3032.32, + "end": 3034.42, + "probability": 0.6216 + }, + { + "start": 3034.54, + "end": 3036.52, + "probability": 0.9404 + }, + { + "start": 3037.88, + "end": 3039.92, + "probability": 0.642 + }, + { + "start": 3041.04, + "end": 3043.54, + "probability": 0.8652 + }, + { + "start": 3044.7, + "end": 3045.42, + "probability": 0.5522 + }, + { + "start": 3046.48, + "end": 3048.42, + "probability": 0.8511 + }, + { + "start": 3050.8, + "end": 3052.86, + "probability": 0.8074 + }, + { + "start": 3061.24, + "end": 3063.22, + "probability": 0.6721 + }, + { + "start": 3065.08, + "end": 3065.76, + "probability": 0.9951 + }, + { + "start": 3066.94, + "end": 3070.16, + "probability": 0.7593 + }, + { + "start": 3072.02, + "end": 3073.88, + "probability": 0.9006 + }, + { + "start": 3074.62, + "end": 3076.86, + "probability": 0.9019 + }, + { + "start": 3077.86, + "end": 3081.18, + "probability": 0.9453 + }, + { + "start": 3082.6, + "end": 3083.04, + "probability": 0.5268 + }, + { + "start": 3083.3, + "end": 3087.16, + "probability": 0.9812 + }, + { + "start": 3087.74, + "end": 3088.94, + "probability": 0.9628 + }, + { + "start": 3089.66, + "end": 3092.84, + "probability": 0.8485 + }, + { + "start": 3093.94, + "end": 3095.58, + "probability": 0.9209 + }, + { + "start": 3099.6, + "end": 3100.18, + "probability": 0.7769 + }, + { + "start": 3101.88, + "end": 3103.92, + "probability": 0.8992 + }, + { + "start": 3104.36, + "end": 3105.98, + "probability": 0.9923 + }, + { + "start": 3107.1, + "end": 3108.3, + "probability": 0.9147 + }, + { + "start": 3109.92, + "end": 3112.76, + "probability": 0.9822 + }, + { + "start": 3114.68, + "end": 3116.82, + "probability": 0.9211 + }, + { + "start": 3117.02, + "end": 3117.92, + "probability": 0.5201 + }, + { + "start": 3118.06, + "end": 3121.36, + "probability": 0.8582 + }, + { + "start": 3122.3, + "end": 3124.02, + "probability": 0.99 + }, + { + "start": 3125.92, + "end": 3128.3, + "probability": 0.8077 + }, + { + "start": 3129.12, + "end": 3131.98, + "probability": 0.8291 + }, + { + "start": 3132.64, + "end": 3136.04, + "probability": 0.7563 + }, + { + "start": 3138.2, + "end": 3140.64, + "probability": 0.9934 + }, + { + "start": 3141.7, + "end": 3145.9, + "probability": 0.9344 + }, + { + "start": 3145.96, + "end": 3146.52, + "probability": 0.4031 + }, + { + "start": 3147.7, + "end": 3152.16, + "probability": 0.9371 + }, + { + "start": 3152.56, + "end": 3153.2, + "probability": 0.875 + }, + { + "start": 3153.84, + "end": 3155.74, + "probability": 0.8539 + }, + { + "start": 3156.86, + "end": 3157.5, + "probability": 0.9474 + }, + { + "start": 3158.54, + "end": 3162.0, + "probability": 0.6726 + }, + { + "start": 3162.7, + "end": 3165.08, + "probability": 0.976 + }, + { + "start": 3167.28, + "end": 3168.58, + "probability": 0.9812 + }, + { + "start": 3171.68, + "end": 3173.4, + "probability": 0.8982 + }, + { + "start": 3173.48, + "end": 3177.42, + "probability": 0.9115 + }, + { + "start": 3177.82, + "end": 3180.01, + "probability": 0.376 + }, + { + "start": 3180.86, + "end": 3184.34, + "probability": 0.6572 + }, + { + "start": 3186.34, + "end": 3186.9, + "probability": 0.1446 + }, + { + "start": 3188.44, + "end": 3188.76, + "probability": 0.114 + }, + { + "start": 3188.76, + "end": 3188.76, + "probability": 0.0619 + }, + { + "start": 3188.76, + "end": 3188.76, + "probability": 0.0702 + }, + { + "start": 3188.76, + "end": 3188.76, + "probability": 0.1302 + }, + { + "start": 3188.76, + "end": 3192.16, + "probability": 0.6998 + }, + { + "start": 3192.72, + "end": 3195.92, + "probability": 0.7994 + }, + { + "start": 3196.56, + "end": 3203.46, + "probability": 0.47 + }, + { + "start": 3203.94, + "end": 3206.78, + "probability": 0.5377 + }, + { + "start": 3206.9, + "end": 3206.92, + "probability": 0.4117 + }, + { + "start": 3206.92, + "end": 3210.18, + "probability": 0.3763 + }, + { + "start": 3211.02, + "end": 3211.96, + "probability": 0.9644 + }, + { + "start": 3212.22, + "end": 3215.8, + "probability": 0.4644 + }, + { + "start": 3215.8, + "end": 3218.76, + "probability": 0.7397 + }, + { + "start": 3219.12, + "end": 3222.02, + "probability": 0.8379 + }, + { + "start": 3223.16, + "end": 3226.14, + "probability": 0.8308 + }, + { + "start": 3226.72, + "end": 3231.32, + "probability": 0.9709 + }, + { + "start": 3231.98, + "end": 3232.84, + "probability": 0.8984 + }, + { + "start": 3233.08, + "end": 3235.08, + "probability": 0.9574 + }, + { + "start": 3235.54, + "end": 3236.18, + "probability": 0.7211 + }, + { + "start": 3237.7, + "end": 3239.84, + "probability": 0.7662 + }, + { + "start": 3239.92, + "end": 3242.22, + "probability": 0.9038 + }, + { + "start": 3242.38, + "end": 3242.92, + "probability": 0.7526 + }, + { + "start": 3243.42, + "end": 3244.94, + "probability": 0.7622 + }, + { + "start": 3246.26, + "end": 3247.6, + "probability": 0.9893 + }, + { + "start": 3248.1, + "end": 3248.22, + "probability": 0.8499 + }, + { + "start": 3248.58, + "end": 3249.2, + "probability": 0.7593 + }, + { + "start": 3249.58, + "end": 3251.04, + "probability": 0.7049 + }, + { + "start": 3251.46, + "end": 3253.12, + "probability": 0.9897 + }, + { + "start": 3254.6, + "end": 3259.56, + "probability": 0.9443 + }, + { + "start": 3259.66, + "end": 3259.88, + "probability": 0.4466 + }, + { + "start": 3261.3, + "end": 3262.64, + "probability": 0.7345 + }, + { + "start": 3263.32, + "end": 3264.18, + "probability": 0.9952 + }, + { + "start": 3264.9, + "end": 3269.4, + "probability": 0.9506 + }, + { + "start": 3269.44, + "end": 3270.52, + "probability": 0.9941 + }, + { + "start": 3270.94, + "end": 3271.56, + "probability": 0.3289 + }, + { + "start": 3272.36, + "end": 3273.7, + "probability": 0.9232 + }, + { + "start": 3276.68, + "end": 3278.82, + "probability": 0.8912 + }, + { + "start": 3280.34, + "end": 3283.84, + "probability": 0.97 + }, + { + "start": 3284.08, + "end": 3284.94, + "probability": 0.5265 + }, + { + "start": 3285.22, + "end": 3286.5, + "probability": 0.9055 + }, + { + "start": 3287.82, + "end": 3289.86, + "probability": 0.7617 + }, + { + "start": 3290.34, + "end": 3290.86, + "probability": 0.6386 + }, + { + "start": 3293.66, + "end": 3296.0, + "probability": 0.9943 + }, + { + "start": 3296.14, + "end": 3296.88, + "probability": 0.6695 + }, + { + "start": 3296.94, + "end": 3298.64, + "probability": 0.9188 + }, + { + "start": 3318.78, + "end": 3320.12, + "probability": 0.6402 + }, + { + "start": 3321.74, + "end": 3327.3, + "probability": 0.9812 + }, + { + "start": 3328.28, + "end": 3329.28, + "probability": 0.9889 + }, + { + "start": 3330.78, + "end": 3336.12, + "probability": 0.9391 + }, + { + "start": 3337.0, + "end": 3339.66, + "probability": 0.5809 + }, + { + "start": 3341.38, + "end": 3342.54, + "probability": 0.8979 + }, + { + "start": 3343.44, + "end": 3350.06, + "probability": 0.993 + }, + { + "start": 3350.76, + "end": 3352.54, + "probability": 0.9925 + }, + { + "start": 3354.02, + "end": 3356.94, + "probability": 0.731 + }, + { + "start": 3360.24, + "end": 3366.98, + "probability": 0.7406 + }, + { + "start": 3368.68, + "end": 3369.84, + "probability": 0.6416 + }, + { + "start": 3373.12, + "end": 3374.74, + "probability": 0.8255 + }, + { + "start": 3375.9, + "end": 3379.94, + "probability": 0.9977 + }, + { + "start": 3382.12, + "end": 3387.52, + "probability": 0.9746 + }, + { + "start": 3387.94, + "end": 3389.52, + "probability": 0.9544 + }, + { + "start": 3389.94, + "end": 3390.48, + "probability": 0.4255 + }, + { + "start": 3390.7, + "end": 3393.82, + "probability": 0.9951 + }, + { + "start": 3395.5, + "end": 3397.94, + "probability": 0.989 + }, + { + "start": 3398.08, + "end": 3398.92, + "probability": 0.7779 + }, + { + "start": 3400.44, + "end": 3403.28, + "probability": 0.9865 + }, + { + "start": 3403.98, + "end": 3405.88, + "probability": 0.8408 + }, + { + "start": 3406.4, + "end": 3408.44, + "probability": 0.8354 + }, + { + "start": 3409.72, + "end": 3416.52, + "probability": 0.9596 + }, + { + "start": 3416.52, + "end": 3421.98, + "probability": 0.9871 + }, + { + "start": 3422.98, + "end": 3424.12, + "probability": 0.9222 + }, + { + "start": 3424.34, + "end": 3424.86, + "probability": 0.892 + }, + { + "start": 3425.74, + "end": 3427.6, + "probability": 0.9978 + }, + { + "start": 3428.66, + "end": 3429.84, + "probability": 0.9687 + }, + { + "start": 3430.82, + "end": 3432.32, + "probability": 0.9698 + }, + { + "start": 3432.84, + "end": 3438.24, + "probability": 0.9709 + }, + { + "start": 3438.8, + "end": 3440.48, + "probability": 0.8486 + }, + { + "start": 3442.44, + "end": 3445.86, + "probability": 0.8551 + }, + { + "start": 3447.28, + "end": 3448.66, + "probability": 0.754 + }, + { + "start": 3448.72, + "end": 3452.56, + "probability": 0.9825 + }, + { + "start": 3452.62, + "end": 3455.14, + "probability": 0.9974 + }, + { + "start": 3455.72, + "end": 3457.48, + "probability": 0.3766 + }, + { + "start": 3458.1, + "end": 3462.96, + "probability": 0.9943 + }, + { + "start": 3463.86, + "end": 3465.48, + "probability": 0.9973 + }, + { + "start": 3466.46, + "end": 3470.26, + "probability": 0.9876 + }, + { + "start": 3470.9, + "end": 3473.84, + "probability": 0.9909 + }, + { + "start": 3474.02, + "end": 3475.92, + "probability": 0.9009 + }, + { + "start": 3476.64, + "end": 3479.37, + "probability": 0.9115 + }, + { + "start": 3482.32, + "end": 3482.9, + "probability": 0.511 + }, + { + "start": 3483.5, + "end": 3486.36, + "probability": 0.848 + }, + { + "start": 3486.78, + "end": 3487.98, + "probability": 0.5347 + }, + { + "start": 3488.5, + "end": 3493.14, + "probability": 0.9214 + }, + { + "start": 3493.74, + "end": 3494.42, + "probability": 0.6533 + }, + { + "start": 3494.5, + "end": 3494.96, + "probability": 0.7682 + }, + { + "start": 3495.36, + "end": 3497.3, + "probability": 0.9966 + }, + { + "start": 3497.82, + "end": 3499.32, + "probability": 0.9983 + }, + { + "start": 3499.72, + "end": 3500.8, + "probability": 0.4523 + }, + { + "start": 3501.58, + "end": 3503.64, + "probability": 0.8721 + }, + { + "start": 3505.12, + "end": 3506.0, + "probability": 0.4227 + }, + { + "start": 3506.18, + "end": 3508.08, + "probability": 0.9288 + }, + { + "start": 3508.24, + "end": 3509.84, + "probability": 0.9701 + }, + { + "start": 3510.48, + "end": 3512.64, + "probability": 0.852 + }, + { + "start": 3513.44, + "end": 3514.84, + "probability": 0.6785 + }, + { + "start": 3520.5, + "end": 3523.46, + "probability": 0.8058 + }, + { + "start": 3525.34, + "end": 3526.4, + "probability": 0.3712 + }, + { + "start": 3529.54, + "end": 3531.18, + "probability": 0.7433 + }, + { + "start": 3532.44, + "end": 3534.21, + "probability": 0.7993 + }, + { + "start": 3535.38, + "end": 3536.34, + "probability": 0.7721 + }, + { + "start": 3538.72, + "end": 3538.94, + "probability": 0.8705 + }, + { + "start": 3541.42, + "end": 3543.6, + "probability": 0.9395 + }, + { + "start": 3544.04, + "end": 3544.96, + "probability": 0.8135 + }, + { + "start": 3545.52, + "end": 3546.78, + "probability": 0.4812 + }, + { + "start": 3546.96, + "end": 3547.42, + "probability": 0.2493 + }, + { + "start": 3547.62, + "end": 3549.28, + "probability": 0.8059 + }, + { + "start": 3549.98, + "end": 3552.18, + "probability": 0.8416 + }, + { + "start": 3552.74, + "end": 3553.7, + "probability": 0.8794 + }, + { + "start": 3554.3, + "end": 3554.86, + "probability": 0.8329 + }, + { + "start": 3555.54, + "end": 3555.86, + "probability": 0.9231 + }, + { + "start": 3556.4, + "end": 3558.94, + "probability": 0.9927 + }, + { + "start": 3559.56, + "end": 3560.52, + "probability": 0.725 + }, + { + "start": 3562.97, + "end": 3564.27, + "probability": 0.2109 + }, + { + "start": 3565.48, + "end": 3566.44, + "probability": 0.553 + }, + { + "start": 3567.4, + "end": 3571.84, + "probability": 0.7086 + }, + { + "start": 3572.62, + "end": 3574.5, + "probability": 0.8937 + }, + { + "start": 3574.6, + "end": 3578.3, + "probability": 0.8798 + }, + { + "start": 3579.68, + "end": 3580.48, + "probability": 0.7454 + }, + { + "start": 3581.44, + "end": 3584.54, + "probability": 0.7948 + }, + { + "start": 3585.88, + "end": 3588.18, + "probability": 0.8261 + }, + { + "start": 3589.14, + "end": 3589.94, + "probability": 0.9668 + }, + { + "start": 3590.7, + "end": 3591.76, + "probability": 0.7277 + }, + { + "start": 3592.52, + "end": 3595.0, + "probability": 0.6687 + }, + { + "start": 3595.42, + "end": 3596.12, + "probability": 0.5989 + }, + { + "start": 3597.1, + "end": 3599.54, + "probability": 0.9316 + }, + { + "start": 3600.72, + "end": 3601.44, + "probability": 0.9208 + }, + { + "start": 3603.16, + "end": 3608.22, + "probability": 0.9341 + }, + { + "start": 3608.32, + "end": 3610.46, + "probability": 0.5215 + }, + { + "start": 3611.4, + "end": 3611.92, + "probability": 0.7091 + }, + { + "start": 3611.96, + "end": 3617.74, + "probability": 0.8567 + }, + { + "start": 3618.48, + "end": 3619.76, + "probability": 0.5649 + }, + { + "start": 3620.5, + "end": 3621.5, + "probability": 0.6545 + }, + { + "start": 3622.22, + "end": 3623.72, + "probability": 0.8096 + }, + { + "start": 3623.9, + "end": 3627.56, + "probability": 0.9922 + }, + { + "start": 3628.06, + "end": 3629.22, + "probability": 0.7526 + }, + { + "start": 3630.12, + "end": 3632.56, + "probability": 0.9821 + }, + { + "start": 3633.12, + "end": 3636.92, + "probability": 0.7347 + }, + { + "start": 3637.26, + "end": 3638.92, + "probability": 0.9648 + }, + { + "start": 3639.68, + "end": 3640.24, + "probability": 0.8381 + }, + { + "start": 3641.52, + "end": 3644.84, + "probability": 0.7454 + }, + { + "start": 3645.02, + "end": 3646.94, + "probability": 0.8294 + }, + { + "start": 3647.18, + "end": 3648.58, + "probability": 0.9595 + }, + { + "start": 3649.14, + "end": 3651.86, + "probability": 0.9944 + }, + { + "start": 3652.86, + "end": 3653.7, + "probability": 0.625 + }, + { + "start": 3653.76, + "end": 3654.38, + "probability": 0.974 + }, + { + "start": 3654.44, + "end": 3655.06, + "probability": 0.8049 + }, + { + "start": 3655.58, + "end": 3659.08, + "probability": 0.8569 + }, + { + "start": 3659.78, + "end": 3660.86, + "probability": 0.9516 + }, + { + "start": 3661.26, + "end": 3668.36, + "probability": 0.9574 + }, + { + "start": 3669.1, + "end": 3671.22, + "probability": 0.6587 + }, + { + "start": 3671.34, + "end": 3672.56, + "probability": 0.8541 + }, + { + "start": 3674.04, + "end": 3676.48, + "probability": 0.6264 + }, + { + "start": 3676.56, + "end": 3676.74, + "probability": 0.8549 + }, + { + "start": 3677.08, + "end": 3677.58, + "probability": 0.8562 + }, + { + "start": 3678.1, + "end": 3678.74, + "probability": 0.9868 + }, + { + "start": 3679.16, + "end": 3679.91, + "probability": 0.979 + }, + { + "start": 3680.5, + "end": 3684.38, + "probability": 0.9753 + }, + { + "start": 3685.64, + "end": 3686.92, + "probability": 0.9454 + }, + { + "start": 3687.64, + "end": 3691.34, + "probability": 0.8222 + }, + { + "start": 3691.42, + "end": 3692.21, + "probability": 0.5221 + }, + { + "start": 3693.5, + "end": 3699.06, + "probability": 0.8633 + }, + { + "start": 3700.6, + "end": 3702.92, + "probability": 0.7098 + }, + { + "start": 3703.9, + "end": 3706.2, + "probability": 0.8164 + }, + { + "start": 3706.72, + "end": 3707.7, + "probability": 0.6093 + }, + { + "start": 3708.96, + "end": 3713.68, + "probability": 0.7797 + }, + { + "start": 3714.2, + "end": 3714.2, + "probability": 0.0495 + }, + { + "start": 3714.2, + "end": 3715.08, + "probability": 0.9023 + }, + { + "start": 3715.98, + "end": 3716.84, + "probability": 0.851 + }, + { + "start": 3717.04, + "end": 3718.56, + "probability": 0.0822 + }, + { + "start": 3718.62, + "end": 3719.38, + "probability": 0.2818 + }, + { + "start": 3719.6, + "end": 3719.88, + "probability": 0.6986 + }, + { + "start": 3720.2, + "end": 3721.08, + "probability": 0.79 + }, + { + "start": 3721.26, + "end": 3724.08, + "probability": 0.9193 + }, + { + "start": 3724.6, + "end": 3726.44, + "probability": 0.2605 + }, + { + "start": 3726.74, + "end": 3729.24, + "probability": 0.4876 + }, + { + "start": 3729.96, + "end": 3731.56, + "probability": 0.0837 + }, + { + "start": 3731.62, + "end": 3731.96, + "probability": 0.0966 + }, + { + "start": 3731.96, + "end": 3731.96, + "probability": 0.0127 + }, + { + "start": 3731.96, + "end": 3732.73, + "probability": 0.515 + }, + { + "start": 3733.58, + "end": 3734.52, + "probability": 0.6783 + }, + { + "start": 3734.68, + "end": 3736.4, + "probability": 0.1899 + }, + { + "start": 3736.4, + "end": 3736.4, + "probability": 0.2142 + }, + { + "start": 3736.4, + "end": 3736.4, + "probability": 0.4017 + }, + { + "start": 3736.4, + "end": 3737.81, + "probability": 0.6047 + }, + { + "start": 3738.44, + "end": 3739.0, + "probability": 0.0289 + }, + { + "start": 3739.0, + "end": 3739.44, + "probability": 0.5807 + }, + { + "start": 3739.58, + "end": 3742.0, + "probability": 0.2274 + }, + { + "start": 3742.36, + "end": 3744.24, + "probability": 0.3983 + }, + { + "start": 3744.26, + "end": 3745.31, + "probability": 0.644 + }, + { + "start": 3746.54, + "end": 3748.78, + "probability": 0.8729 + }, + { + "start": 3750.32, + "end": 3750.7, + "probability": 0.4496 + }, + { + "start": 3750.96, + "end": 3753.24, + "probability": 0.59 + }, + { + "start": 3753.94, + "end": 3754.92, + "probability": 0.6099 + }, + { + "start": 3757.6, + "end": 3758.72, + "probability": 0.8589 + }, + { + "start": 3759.38, + "end": 3760.5, + "probability": 0.5468 + }, + { + "start": 3761.92, + "end": 3763.72, + "probability": 0.4906 + }, + { + "start": 3765.48, + "end": 3765.88, + "probability": 0.8234 + }, + { + "start": 3767.94, + "end": 3770.72, + "probability": 0.9678 + }, + { + "start": 3772.36, + "end": 3773.14, + "probability": 0.5048 + }, + { + "start": 3775.46, + "end": 3776.84, + "probability": 0.8637 + }, + { + "start": 3777.96, + "end": 3778.54, + "probability": 0.0323 + }, + { + "start": 3778.78, + "end": 3779.84, + "probability": 0.1455 + }, + { + "start": 3781.7, + "end": 3785.38, + "probability": 0.9438 + }, + { + "start": 3787.66, + "end": 3789.1, + "probability": 0.7061 + }, + { + "start": 3790.18, + "end": 3795.2, + "probability": 0.925 + }, + { + "start": 3796.05, + "end": 3796.28, + "probability": 0.4921 + }, + { + "start": 3798.72, + "end": 3798.72, + "probability": 0.0948 + }, + { + "start": 3798.72, + "end": 3800.2, + "probability": 0.8818 + }, + { + "start": 3800.24, + "end": 3801.6, + "probability": 0.4995 + }, + { + "start": 3801.86, + "end": 3802.98, + "probability": 0.9805 + }, + { + "start": 3804.48, + "end": 3807.04, + "probability": 0.6719 + }, + { + "start": 3808.92, + "end": 3814.04, + "probability": 0.811 + }, + { + "start": 3814.44, + "end": 3814.94, + "probability": 0.6514 + }, + { + "start": 3817.32, + "end": 3823.54, + "probability": 0.7256 + }, + { + "start": 3824.68, + "end": 3828.64, + "probability": 0.7542 + }, + { + "start": 3829.64, + "end": 3831.9, + "probability": 0.8126 + }, + { + "start": 3833.06, + "end": 3836.88, + "probability": 0.9059 + }, + { + "start": 3838.08, + "end": 3839.82, + "probability": 0.8467 + }, + { + "start": 3841.04, + "end": 3844.66, + "probability": 0.9324 + }, + { + "start": 3845.72, + "end": 3849.04, + "probability": 0.9208 + }, + { + "start": 3850.22, + "end": 3852.62, + "probability": 0.9937 + }, + { + "start": 3853.42, + "end": 3854.64, + "probability": 0.91 + }, + { + "start": 3855.6, + "end": 3857.28, + "probability": 0.9799 + }, + { + "start": 3858.18, + "end": 3862.24, + "probability": 0.84 + }, + { + "start": 3863.24, + "end": 3866.0, + "probability": 0.8702 + }, + { + "start": 3867.02, + "end": 3869.42, + "probability": 0.9139 + }, + { + "start": 3870.28, + "end": 3873.84, + "probability": 0.946 + }, + { + "start": 3874.74, + "end": 3876.15, + "probability": 0.6502 + }, + { + "start": 3877.32, + "end": 3878.86, + "probability": 0.6919 + }, + { + "start": 3879.88, + "end": 3883.04, + "probability": 0.7744 + }, + { + "start": 3884.16, + "end": 3884.58, + "probability": 0.938 + }, + { + "start": 3885.82, + "end": 3889.06, + "probability": 0.6609 + }, + { + "start": 3889.4, + "end": 3891.2, + "probability": 0.3306 + }, + { + "start": 3891.32, + "end": 3893.11, + "probability": 0.3529 + }, + { + "start": 3894.26, + "end": 3895.44, + "probability": 0.118 + }, + { + "start": 3895.44, + "end": 3895.46, + "probability": 0.3057 + }, + { + "start": 3895.46, + "end": 3903.66, + "probability": 0.8054 + }, + { + "start": 3904.34, + "end": 3911.64, + "probability": 0.9343 + }, + { + "start": 3911.94, + "end": 3911.94, + "probability": 0.2674 + }, + { + "start": 3911.94, + "end": 3912.5, + "probability": 0.419 + }, + { + "start": 3912.88, + "end": 3913.86, + "probability": 0.306 + }, + { + "start": 3913.9, + "end": 3914.87, + "probability": 0.7641 + }, + { + "start": 3915.7, + "end": 3920.72, + "probability": 0.7006 + }, + { + "start": 3922.3, + "end": 3923.9, + "probability": 0.9604 + }, + { + "start": 3924.22, + "end": 3924.68, + "probability": 0.2339 + }, + { + "start": 3924.68, + "end": 3925.04, + "probability": 0.416 + }, + { + "start": 3925.72, + "end": 3927.64, + "probability": 0.521 + }, + { + "start": 3927.8, + "end": 3929.3, + "probability": 0.8021 + }, + { + "start": 3929.72, + "end": 3930.52, + "probability": 0.7476 + }, + { + "start": 3930.72, + "end": 3932.3, + "probability": 0.9766 + }, + { + "start": 3932.9, + "end": 3933.52, + "probability": 0.5619 + }, + { + "start": 3933.74, + "end": 3937.36, + "probability": 0.6626 + }, + { + "start": 3938.08, + "end": 3940.04, + "probability": 0.873 + }, + { + "start": 3940.84, + "end": 3941.9, + "probability": 0.9827 + }, + { + "start": 3941.96, + "end": 3944.52, + "probability": 0.9904 + }, + { + "start": 3944.78, + "end": 3945.4, + "probability": 0.948 + }, + { + "start": 3945.52, + "end": 3945.98, + "probability": 0.8479 + }, + { + "start": 3946.56, + "end": 3946.76, + "probability": 0.6648 + }, + { + "start": 3947.76, + "end": 3948.6, + "probability": 0.6812 + }, + { + "start": 3952.3, + "end": 3957.06, + "probability": 0.0406 + }, + { + "start": 3957.68, + "end": 3958.66, + "probability": 0.9266 + }, + { + "start": 3961.2, + "end": 3964.94, + "probability": 0.7407 + }, + { + "start": 3966.36, + "end": 3970.28, + "probability": 0.9865 + }, + { + "start": 3971.5, + "end": 3975.06, + "probability": 0.8505 + }, + { + "start": 3976.08, + "end": 3977.53, + "probability": 0.8044 + }, + { + "start": 3978.44, + "end": 3979.3, + "probability": 0.6081 + }, + { + "start": 3980.66, + "end": 3983.98, + "probability": 0.5928 + }, + { + "start": 3984.12, + "end": 3987.34, + "probability": 0.9919 + }, + { + "start": 3989.3, + "end": 3992.42, + "probability": 0.597 + }, + { + "start": 3992.92, + "end": 3994.1, + "probability": 0.9146 + }, + { + "start": 3994.32, + "end": 3994.86, + "probability": 0.4018 + }, + { + "start": 3994.92, + "end": 4001.3, + "probability": 0.9854 + }, + { + "start": 4004.7, + "end": 4009.58, + "probability": 0.9941 + }, + { + "start": 4010.56, + "end": 4013.62, + "probability": 0.8778 + }, + { + "start": 4013.86, + "end": 4017.04, + "probability": 0.9859 + }, + { + "start": 4017.12, + "end": 4021.58, + "probability": 0.9718 + }, + { + "start": 4022.78, + "end": 4026.82, + "probability": 0.9943 + }, + { + "start": 4027.66, + "end": 4029.26, + "probability": 0.9282 + }, + { + "start": 4030.12, + "end": 4032.88, + "probability": 0.9716 + }, + { + "start": 4033.18, + "end": 4034.52, + "probability": 0.8791 + }, + { + "start": 4035.02, + "end": 4035.92, + "probability": 0.9233 + }, + { + "start": 4036.3, + "end": 4036.97, + "probability": 0.9624 + }, + { + "start": 4037.46, + "end": 4038.38, + "probability": 0.9205 + }, + { + "start": 4039.02, + "end": 4044.88, + "probability": 0.966 + }, + { + "start": 4044.88, + "end": 4048.68, + "probability": 0.8867 + }, + { + "start": 4048.68, + "end": 4052.54, + "probability": 0.988 + }, + { + "start": 4053.54, + "end": 4054.94, + "probability": 0.9775 + }, + { + "start": 4055.88, + "end": 4057.18, + "probability": 0.8851 + }, + { + "start": 4057.8, + "end": 4064.54, + "probability": 0.9944 + }, + { + "start": 4065.48, + "end": 4066.78, + "probability": 0.9839 + }, + { + "start": 4068.14, + "end": 4071.92, + "probability": 0.8582 + }, + { + "start": 4072.7, + "end": 4073.83, + "probability": 0.9871 + }, + { + "start": 4074.42, + "end": 4077.36, + "probability": 0.9961 + }, + { + "start": 4079.44, + "end": 4081.06, + "probability": 0.9578 + }, + { + "start": 4082.08, + "end": 4083.12, + "probability": 0.9359 + }, + { + "start": 4083.94, + "end": 4085.46, + "probability": 0.8339 + }, + { + "start": 4086.08, + "end": 4087.56, + "probability": 0.9583 + }, + { + "start": 4088.3, + "end": 4090.6, + "probability": 0.8343 + }, + { + "start": 4091.66, + "end": 4092.8, + "probability": 0.958 + }, + { + "start": 4093.96, + "end": 4097.1, + "probability": 0.8644 + }, + { + "start": 4097.3, + "end": 4097.84, + "probability": 0.5126 + }, + { + "start": 4098.56, + "end": 4099.82, + "probability": 0.9692 + }, + { + "start": 4100.1, + "end": 4101.68, + "probability": 0.9397 + }, + { + "start": 4102.12, + "end": 4104.06, + "probability": 0.9121 + }, + { + "start": 4104.26, + "end": 4105.36, + "probability": 0.7465 + }, + { + "start": 4105.64, + "end": 4106.84, + "probability": 0.9758 + }, + { + "start": 4108.06, + "end": 4110.82, + "probability": 0.9961 + }, + { + "start": 4112.2, + "end": 4113.38, + "probability": 0.477 + }, + { + "start": 4114.06, + "end": 4114.9, + "probability": 0.7872 + }, + { + "start": 4115.6, + "end": 4116.92, + "probability": 0.9935 + }, + { + "start": 4117.38, + "end": 4120.94, + "probability": 0.9591 + }, + { + "start": 4121.34, + "end": 4122.72, + "probability": 0.9888 + }, + { + "start": 4123.14, + "end": 4123.64, + "probability": 0.9483 + }, + { + "start": 4124.06, + "end": 4125.14, + "probability": 0.4362 + }, + { + "start": 4125.48, + "end": 4126.6, + "probability": 0.748 + }, + { + "start": 4126.98, + "end": 4129.36, + "probability": 0.9219 + }, + { + "start": 4130.8, + "end": 4131.7, + "probability": 0.7115 + }, + { + "start": 4131.74, + "end": 4132.52, + "probability": 0.9224 + }, + { + "start": 4133.34, + "end": 4136.1, + "probability": 0.9811 + }, + { + "start": 4137.18, + "end": 4141.14, + "probability": 0.9822 + }, + { + "start": 4141.56, + "end": 4148.84, + "probability": 0.8779 + }, + { + "start": 4148.94, + "end": 4157.22, + "probability": 0.8253 + }, + { + "start": 4157.62, + "end": 4159.62, + "probability": 0.9836 + }, + { + "start": 4159.72, + "end": 4160.92, + "probability": 0.8623 + }, + { + "start": 4161.42, + "end": 4162.76, + "probability": 0.941 + }, + { + "start": 4163.58, + "end": 4166.18, + "probability": 0.7035 + }, + { + "start": 4166.34, + "end": 4167.7, + "probability": 0.6327 + }, + { + "start": 4169.25, + "end": 4171.26, + "probability": 0.6562 + }, + { + "start": 4171.98, + "end": 4172.98, + "probability": 0.8755 + }, + { + "start": 4176.12, + "end": 4178.88, + "probability": 0.6656 + }, + { + "start": 4184.06, + "end": 4186.98, + "probability": 0.6985 + }, + { + "start": 4187.32, + "end": 4188.3, + "probability": 0.9766 + }, + { + "start": 4188.86, + "end": 4189.5, + "probability": 0.7901 + }, + { + "start": 4190.04, + "end": 4191.58, + "probability": 0.8633 + }, + { + "start": 4193.1, + "end": 4194.96, + "probability": 0.5425 + }, + { + "start": 4196.78, + "end": 4198.92, + "probability": 0.978 + }, + { + "start": 4200.08, + "end": 4204.02, + "probability": 0.9937 + }, + { + "start": 4204.96, + "end": 4206.82, + "probability": 0.7815 + }, + { + "start": 4207.88, + "end": 4210.5, + "probability": 0.9971 + }, + { + "start": 4211.12, + "end": 4212.3, + "probability": 0.9772 + }, + { + "start": 4213.46, + "end": 4217.96, + "probability": 0.9953 + }, + { + "start": 4219.5, + "end": 4224.72, + "probability": 0.9963 + }, + { + "start": 4225.44, + "end": 4227.88, + "probability": 0.939 + }, + { + "start": 4229.84, + "end": 4233.16, + "probability": 0.9173 + }, + { + "start": 4233.88, + "end": 4234.48, + "probability": 0.658 + }, + { + "start": 4235.06, + "end": 4235.92, + "probability": 0.8562 + }, + { + "start": 4236.56, + "end": 4240.32, + "probability": 0.9891 + }, + { + "start": 4241.42, + "end": 4242.56, + "probability": 0.9992 + }, + { + "start": 4243.44, + "end": 4244.0, + "probability": 0.9862 + }, + { + "start": 4244.84, + "end": 4246.04, + "probability": 0.553 + }, + { + "start": 4247.04, + "end": 4253.42, + "probability": 0.9888 + }, + { + "start": 4255.56, + "end": 4259.48, + "probability": 0.9629 + }, + { + "start": 4261.76, + "end": 4264.54, + "probability": 0.9971 + }, + { + "start": 4265.38, + "end": 4266.76, + "probability": 0.9684 + }, + { + "start": 4268.34, + "end": 4270.78, + "probability": 0.987 + }, + { + "start": 4271.32, + "end": 4274.12, + "probability": 0.9961 + }, + { + "start": 4275.82, + "end": 4276.72, + "probability": 0.6771 + }, + { + "start": 4277.64, + "end": 4281.76, + "probability": 0.9948 + }, + { + "start": 4282.96, + "end": 4284.04, + "probability": 0.7868 + }, + { + "start": 4285.28, + "end": 4287.3, + "probability": 0.7834 + }, + { + "start": 4288.76, + "end": 4294.14, + "probability": 0.9969 + }, + { + "start": 4294.88, + "end": 4297.69, + "probability": 0.9979 + }, + { + "start": 4298.72, + "end": 4301.26, + "probability": 0.9557 + }, + { + "start": 4302.36, + "end": 4303.94, + "probability": 0.8387 + }, + { + "start": 4304.7, + "end": 4309.52, + "probability": 0.9806 + }, + { + "start": 4311.38, + "end": 4313.58, + "probability": 0.881 + }, + { + "start": 4314.3, + "end": 4318.8, + "probability": 0.9756 + }, + { + "start": 4318.98, + "end": 4320.94, + "probability": 0.9323 + }, + { + "start": 4321.6, + "end": 4324.76, + "probability": 0.8895 + }, + { + "start": 4324.78, + "end": 4325.78, + "probability": 0.9116 + }, + { + "start": 4325.8, + "end": 4326.24, + "probability": 0.4281 + }, + { + "start": 4326.28, + "end": 4326.76, + "probability": 0.9779 + }, + { + "start": 4327.66, + "end": 4333.12, + "probability": 0.991 + }, + { + "start": 4333.78, + "end": 4334.82, + "probability": 0.9726 + }, + { + "start": 4336.64, + "end": 4342.3, + "probability": 0.9878 + }, + { + "start": 4342.3, + "end": 4346.88, + "probability": 0.9542 + }, + { + "start": 4347.88, + "end": 4348.88, + "probability": 0.6875 + }, + { + "start": 4349.86, + "end": 4354.64, + "probability": 0.9919 + }, + { + "start": 4354.92, + "end": 4355.58, + "probability": 0.9328 + }, + { + "start": 4355.74, + "end": 4357.72, + "probability": 0.9476 + }, + { + "start": 4357.98, + "end": 4359.0, + "probability": 0.9941 + }, + { + "start": 4359.48, + "end": 4361.72, + "probability": 0.9556 + }, + { + "start": 4361.78, + "end": 4363.06, + "probability": 0.6725 + }, + { + "start": 4363.64, + "end": 4365.94, + "probability": 0.9349 + }, + { + "start": 4366.0, + "end": 4369.3, + "probability": 0.9715 + }, + { + "start": 4369.42, + "end": 4371.18, + "probability": 0.9766 + }, + { + "start": 4371.54, + "end": 4373.8, + "probability": 0.9079 + }, + { + "start": 4374.48, + "end": 4374.72, + "probability": 0.7261 + }, + { + "start": 4374.78, + "end": 4377.28, + "probability": 0.9831 + }, + { + "start": 4377.46, + "end": 4381.38, + "probability": 0.959 + }, + { + "start": 4381.92, + "end": 4384.68, + "probability": 0.7436 + }, + { + "start": 4384.96, + "end": 4384.96, + "probability": 0.525 + }, + { + "start": 4385.12, + "end": 4392.1, + "probability": 0.9966 + }, + { + "start": 4392.98, + "end": 4395.08, + "probability": 0.896 + }, + { + "start": 4395.46, + "end": 4398.12, + "probability": 0.7175 + }, + { + "start": 4398.5, + "end": 4399.54, + "probability": 0.8101 + }, + { + "start": 4400.06, + "end": 4401.48, + "probability": 0.5269 + }, + { + "start": 4402.2, + "end": 4404.4, + "probability": 0.91 + }, + { + "start": 4405.62, + "end": 4406.04, + "probability": 0.7562 + }, + { + "start": 4415.52, + "end": 4415.52, + "probability": 0.4577 + }, + { + "start": 4415.52, + "end": 4415.94, + "probability": 0.471 + }, + { + "start": 4417.74, + "end": 4418.14, + "probability": 0.6904 + }, + { + "start": 4418.52, + "end": 4420.72, + "probability": 0.7367 + }, + { + "start": 4422.36, + "end": 4426.27, + "probability": 0.7689 + }, + { + "start": 4427.58, + "end": 4429.44, + "probability": 0.9373 + }, + { + "start": 4429.56, + "end": 4432.7, + "probability": 0.843 + }, + { + "start": 4433.44, + "end": 4434.56, + "probability": 0.9312 + }, + { + "start": 4439.18, + "end": 4440.22, + "probability": 0.8695 + }, + { + "start": 4441.74, + "end": 4446.24, + "probability": 0.7988 + }, + { + "start": 4446.88, + "end": 4447.84, + "probability": 0.2031 + }, + { + "start": 4447.84, + "end": 4449.08, + "probability": 0.5291 + }, + { + "start": 4449.54, + "end": 4451.17, + "probability": 0.4718 + }, + { + "start": 4451.34, + "end": 4456.58, + "probability": 0.689 + }, + { + "start": 4457.34, + "end": 4459.92, + "probability": 0.7497 + }, + { + "start": 4461.32, + "end": 4465.48, + "probability": 0.4995 + }, + { + "start": 4466.66, + "end": 4467.68, + "probability": 0.4123 + }, + { + "start": 4468.22, + "end": 4470.34, + "probability": 0.8808 + }, + { + "start": 4471.3, + "end": 4472.8, + "probability": 0.568 + }, + { + "start": 4472.88, + "end": 4473.18, + "probability": 0.3958 + }, + { + "start": 4473.5, + "end": 4474.0, + "probability": 0.3061 + }, + { + "start": 4474.16, + "end": 4477.88, + "probability": 0.97 + }, + { + "start": 4478.44, + "end": 4479.56, + "probability": 0.8314 + }, + { + "start": 4479.68, + "end": 4480.52, + "probability": 0.7781 + }, + { + "start": 4480.92, + "end": 4487.88, + "probability": 0.9685 + }, + { + "start": 4488.82, + "end": 4490.9, + "probability": 0.5477 + }, + { + "start": 4491.94, + "end": 4496.6, + "probability": 0.9756 + }, + { + "start": 4497.16, + "end": 4498.34, + "probability": 0.9871 + }, + { + "start": 4499.04, + "end": 4501.9, + "probability": 0.4878 + }, + { + "start": 4503.14, + "end": 4504.22, + "probability": 0.8549 + }, + { + "start": 4504.54, + "end": 4509.4, + "probability": 0.9002 + }, + { + "start": 4510.42, + "end": 4514.46, + "probability": 0.7028 + }, + { + "start": 4515.74, + "end": 4516.14, + "probability": 0.743 + }, + { + "start": 4516.18, + "end": 4523.46, + "probability": 0.874 + }, + { + "start": 4524.42, + "end": 4527.98, + "probability": 0.4595 + }, + { + "start": 4528.68, + "end": 4533.58, + "probability": 0.8449 + }, + { + "start": 4534.32, + "end": 4536.91, + "probability": 0.8947 + }, + { + "start": 4537.9, + "end": 4539.04, + "probability": 0.6653 + }, + { + "start": 4539.58, + "end": 4540.84, + "probability": 0.798 + }, + { + "start": 4542.28, + "end": 4545.32, + "probability": 0.9783 + }, + { + "start": 4545.6, + "end": 4549.62, + "probability": 0.9272 + }, + { + "start": 4550.24, + "end": 4552.2, + "probability": 0.5061 + }, + { + "start": 4552.4, + "end": 4555.18, + "probability": 0.903 + }, + { + "start": 4556.42, + "end": 4558.88, + "probability": 0.9663 + }, + { + "start": 4558.94, + "end": 4562.1, + "probability": 0.9836 + }, + { + "start": 4562.98, + "end": 4563.3, + "probability": 0.9231 + }, + { + "start": 4565.52, + "end": 4567.7, + "probability": 0.7215 + }, + { + "start": 4568.2, + "end": 4570.24, + "probability": 0.7378 + }, + { + "start": 4570.5, + "end": 4572.75, + "probability": 0.8616 + }, + { + "start": 4574.3, + "end": 4576.94, + "probability": 0.1683 + }, + { + "start": 4578.08, + "end": 4580.18, + "probability": 0.0885 + }, + { + "start": 4580.72, + "end": 4581.75, + "probability": 0.0216 + }, + { + "start": 4590.04, + "end": 4590.08, + "probability": 0.1813 + }, + { + "start": 4590.08, + "end": 4590.18, + "probability": 0.0408 + }, + { + "start": 4590.18, + "end": 4591.0, + "probability": 0.544 + }, + { + "start": 4600.16, + "end": 4600.16, + "probability": 0.0051 + }, + { + "start": 4600.36, + "end": 4600.44, + "probability": 0.2074 + }, + { + "start": 4600.44, + "end": 4600.54, + "probability": 0.1805 + }, + { + "start": 4600.54, + "end": 4600.54, + "probability": 0.0578 + }, + { + "start": 4600.54, + "end": 4600.54, + "probability": 0.1504 + }, + { + "start": 4600.54, + "end": 4600.54, + "probability": 0.2261 + }, + { + "start": 4600.54, + "end": 4601.07, + "probability": 0.8789 + }, + { + "start": 4601.86, + "end": 4601.9, + "probability": 0.346 + }, + { + "start": 4601.9, + "end": 4604.76, + "probability": 0.5412 + }, + { + "start": 4604.82, + "end": 4606.12, + "probability": 0.9802 + }, + { + "start": 4606.5, + "end": 4607.3, + "probability": 0.0117 + }, + { + "start": 4609.18, + "end": 4610.22, + "probability": 0.227 + }, + { + "start": 4611.08, + "end": 4613.12, + "probability": 0.6813 + }, + { + "start": 4613.5, + "end": 4614.12, + "probability": 0.6263 + }, + { + "start": 4614.28, + "end": 4615.66, + "probability": 0.4419 + }, + { + "start": 4615.72, + "end": 4616.84, + "probability": 0.9706 + }, + { + "start": 4616.9, + "end": 4619.7, + "probability": 0.7131 + }, + { + "start": 4623.38, + "end": 4624.18, + "probability": 0.1737 + }, + { + "start": 4624.18, + "end": 4624.22, + "probability": 0.1637 + }, + { + "start": 4624.22, + "end": 4624.22, + "probability": 0.1696 + }, + { + "start": 4624.22, + "end": 4624.22, + "probability": 0.203 + }, + { + "start": 4624.22, + "end": 4624.3, + "probability": 0.1559 + }, + { + "start": 4624.3, + "end": 4624.98, + "probability": 0.0775 + }, + { + "start": 4625.64, + "end": 4627.82, + "probability": 0.5703 + }, + { + "start": 4628.46, + "end": 4630.24, + "probability": 0.7172 + }, + { + "start": 4631.46, + "end": 4632.54, + "probability": 0.9636 + }, + { + "start": 4633.42, + "end": 4636.38, + "probability": 0.9349 + }, + { + "start": 4638.14, + "end": 4640.6, + "probability": 0.834 + }, + { + "start": 4640.74, + "end": 4641.7, + "probability": 0.7614 + }, + { + "start": 4641.8, + "end": 4643.86, + "probability": 0.9897 + }, + { + "start": 4644.48, + "end": 4649.6, + "probability": 0.989 + }, + { + "start": 4649.6, + "end": 4652.42, + "probability": 0.9998 + }, + { + "start": 4653.58, + "end": 4656.26, + "probability": 0.8958 + }, + { + "start": 4656.88, + "end": 4660.14, + "probability": 0.9839 + }, + { + "start": 4660.88, + "end": 4668.9, + "probability": 0.8936 + }, + { + "start": 4669.08, + "end": 4669.84, + "probability": 0.4823 + }, + { + "start": 4671.38, + "end": 4676.7, + "probability": 0.9797 + }, + { + "start": 4677.44, + "end": 4679.86, + "probability": 0.9936 + }, + { + "start": 4681.46, + "end": 4684.0, + "probability": 0.8364 + }, + { + "start": 4685.28, + "end": 4689.0, + "probability": 0.9694 + }, + { + "start": 4690.16, + "end": 4692.14, + "probability": 0.9965 + }, + { + "start": 4692.8, + "end": 4698.52, + "probability": 0.9786 + }, + { + "start": 4699.32, + "end": 4702.02, + "probability": 0.9502 + }, + { + "start": 4702.76, + "end": 4707.28, + "probability": 0.989 + }, + { + "start": 4709.12, + "end": 4710.66, + "probability": 0.7649 + }, + { + "start": 4711.92, + "end": 4712.68, + "probability": 0.8347 + }, + { + "start": 4714.78, + "end": 4716.56, + "probability": 0.9582 + }, + { + "start": 4717.16, + "end": 4718.68, + "probability": 0.9632 + }, + { + "start": 4718.8, + "end": 4720.44, + "probability": 0.8796 + }, + { + "start": 4721.52, + "end": 4724.58, + "probability": 0.9794 + }, + { + "start": 4726.76, + "end": 4727.87, + "probability": 0.9885 + }, + { + "start": 4728.62, + "end": 4730.6, + "probability": 0.989 + }, + { + "start": 4731.34, + "end": 4735.38, + "probability": 0.9596 + }, + { + "start": 4735.72, + "end": 4740.64, + "probability": 0.9912 + }, + { + "start": 4742.34, + "end": 4742.92, + "probability": 0.735 + }, + { + "start": 4743.34, + "end": 4744.2, + "probability": 0.9709 + }, + { + "start": 4744.5, + "end": 4747.26, + "probability": 0.9854 + }, + { + "start": 4748.06, + "end": 4749.24, + "probability": 0.6831 + }, + { + "start": 4750.16, + "end": 4753.66, + "probability": 0.9948 + }, + { + "start": 4753.66, + "end": 4756.34, + "probability": 0.9958 + }, + { + "start": 4758.44, + "end": 4760.49, + "probability": 0.8567 + }, + { + "start": 4761.44, + "end": 4762.99, + "probability": 0.9966 + }, + { + "start": 4763.46, + "end": 4764.36, + "probability": 0.6726 + }, + { + "start": 4764.52, + "end": 4771.68, + "probability": 0.979 + }, + { + "start": 4773.76, + "end": 4779.78, + "probability": 0.9897 + }, + { + "start": 4780.52, + "end": 4783.11, + "probability": 0.9907 + }, + { + "start": 4783.9, + "end": 4785.8, + "probability": 0.9878 + }, + { + "start": 4786.42, + "end": 4787.26, + "probability": 0.9865 + }, + { + "start": 4788.46, + "end": 4789.54, + "probability": 0.9281 + }, + { + "start": 4789.94, + "end": 4794.54, + "probability": 0.9925 + }, + { + "start": 4794.54, + "end": 4801.38, + "probability": 0.9992 + }, + { + "start": 4802.34, + "end": 4804.92, + "probability": 0.9803 + }, + { + "start": 4805.82, + "end": 4810.68, + "probability": 0.9978 + }, + { + "start": 4811.38, + "end": 4814.44, + "probability": 0.9966 + }, + { + "start": 4815.0, + "end": 4816.92, + "probability": 0.9189 + }, + { + "start": 4818.06, + "end": 4820.08, + "probability": 0.8995 + }, + { + "start": 4820.18, + "end": 4822.18, + "probability": 0.7593 + }, + { + "start": 4822.38, + "end": 4827.8, + "probability": 0.9253 + }, + { + "start": 4829.96, + "end": 4830.52, + "probability": 0.8054 + }, + { + "start": 4831.22, + "end": 4831.46, + "probability": 0.7458 + }, + { + "start": 4832.8, + "end": 4834.94, + "probability": 0.8933 + }, + { + "start": 4835.58, + "end": 4835.9, + "probability": 0.3241 + }, + { + "start": 4835.98, + "end": 4837.4, + "probability": 0.6993 + }, + { + "start": 4838.26, + "end": 4839.36, + "probability": 0.8107 + }, + { + "start": 4840.94, + "end": 4843.63, + "probability": 0.9346 + }, + { + "start": 4843.8, + "end": 4846.34, + "probability": 0.8237 + }, + { + "start": 4846.5, + "end": 4850.56, + "probability": 0.7313 + }, + { + "start": 4851.84, + "end": 4852.82, + "probability": 0.943 + }, + { + "start": 4853.36, + "end": 4853.92, + "probability": 0.8867 + }, + { + "start": 4855.24, + "end": 4856.72, + "probability": 0.9683 + }, + { + "start": 4858.22, + "end": 4858.74, + "probability": 0.874 + }, + { + "start": 4861.92, + "end": 4865.68, + "probability": 0.9888 + }, + { + "start": 4867.76, + "end": 4872.66, + "probability": 0.9878 + }, + { + "start": 4873.68, + "end": 4874.1, + "probability": 0.9149 + }, + { + "start": 4876.26, + "end": 4879.2, + "probability": 0.9696 + }, + { + "start": 4881.0, + "end": 4887.24, + "probability": 0.9653 + }, + { + "start": 4888.08, + "end": 4891.18, + "probability": 0.9984 + }, + { + "start": 4892.52, + "end": 4894.94, + "probability": 0.9545 + }, + { + "start": 4896.92, + "end": 4900.65, + "probability": 0.855 + }, + { + "start": 4902.86, + "end": 4904.1, + "probability": 0.7834 + }, + { + "start": 4905.26, + "end": 4906.78, + "probability": 0.7292 + }, + { + "start": 4907.84, + "end": 4908.34, + "probability": 0.9888 + }, + { + "start": 4909.9, + "end": 4911.72, + "probability": 0.8972 + }, + { + "start": 4912.44, + "end": 4914.64, + "probability": 0.9958 + }, + { + "start": 4916.2, + "end": 4918.82, + "probability": 0.9744 + }, + { + "start": 4920.22, + "end": 4921.18, + "probability": 0.746 + }, + { + "start": 4922.64, + "end": 4925.48, + "probability": 0.783 + }, + { + "start": 4926.24, + "end": 4927.62, + "probability": 0.8908 + }, + { + "start": 4928.44, + "end": 4929.5, + "probability": 0.3249 + }, + { + "start": 4930.18, + "end": 4937.18, + "probability": 0.9938 + }, + { + "start": 4937.82, + "end": 4939.24, + "probability": 0.6896 + }, + { + "start": 4939.44, + "end": 4941.7, + "probability": 0.8679 + }, + { + "start": 4942.28, + "end": 4944.06, + "probability": 0.9475 + }, + { + "start": 4944.58, + "end": 4946.74, + "probability": 0.999 + }, + { + "start": 4947.7, + "end": 4949.78, + "probability": 0.8069 + }, + { + "start": 4950.68, + "end": 4952.54, + "probability": 0.9758 + }, + { + "start": 4953.4, + "end": 4955.98, + "probability": 0.9706 + }, + { + "start": 4955.98, + "end": 4960.04, + "probability": 0.8994 + }, + { + "start": 4960.32, + "end": 4961.28, + "probability": 0.7001 + }, + { + "start": 4961.74, + "end": 4962.94, + "probability": 0.7451 + }, + { + "start": 4963.92, + "end": 4964.58, + "probability": 0.6028 + }, + { + "start": 4964.66, + "end": 4965.14, + "probability": 0.8596 + }, + { + "start": 4965.28, + "end": 4967.08, + "probability": 0.9473 + }, + { + "start": 4968.66, + "end": 4970.3, + "probability": 0.9498 + }, + { + "start": 4971.1, + "end": 4974.32, + "probability": 0.606 + }, + { + "start": 4975.26, + "end": 4976.92, + "probability": 0.4902 + }, + { + "start": 4977.0, + "end": 4977.52, + "probability": 0.3495 + }, + { + "start": 4978.2, + "end": 4978.78, + "probability": 0.6749 + }, + { + "start": 4979.48, + "end": 4981.2, + "probability": 0.7191 + }, + { + "start": 4981.86, + "end": 4991.12, + "probability": 0.917 + }, + { + "start": 4991.12, + "end": 4998.26, + "probability": 0.7012 + }, + { + "start": 4999.14, + "end": 4999.84, + "probability": 0.6817 + }, + { + "start": 5001.32, + "end": 5004.66, + "probability": 0.6213 + }, + { + "start": 5005.1, + "end": 5008.96, + "probability": 0.8591 + }, + { + "start": 5009.48, + "end": 5009.88, + "probability": 0.6714 + }, + { + "start": 5010.66, + "end": 5011.16, + "probability": 0.6896 + }, + { + "start": 5011.3, + "end": 5016.86, + "probability": 0.9348 + }, + { + "start": 5017.62, + "end": 5018.16, + "probability": 0.6761 + }, + { + "start": 5018.94, + "end": 5021.1, + "probability": 0.9836 + }, + { + "start": 5021.54, + "end": 5023.22, + "probability": 0.6652 + }, + { + "start": 5023.42, + "end": 5023.62, + "probability": 0.1679 + }, + { + "start": 5023.66, + "end": 5025.26, + "probability": 0.9508 + }, + { + "start": 5025.4, + "end": 5026.14, + "probability": 0.2758 + }, + { + "start": 5026.26, + "end": 5030.9, + "probability": 0.7273 + }, + { + "start": 5032.28, + "end": 5036.46, + "probability": 0.9963 + }, + { + "start": 5037.26, + "end": 5041.84, + "probability": 0.9353 + }, + { + "start": 5042.1, + "end": 5045.62, + "probability": 0.7508 + }, + { + "start": 5045.64, + "end": 5048.92, + "probability": 0.938 + }, + { + "start": 5048.98, + "end": 5051.72, + "probability": 0.9977 + }, + { + "start": 5051.82, + "end": 5053.52, + "probability": 0.5305 + }, + { + "start": 5053.8, + "end": 5055.78, + "probability": 0.6772 + }, + { + "start": 5056.02, + "end": 5056.16, + "probability": 0.4816 + }, + { + "start": 5056.22, + "end": 5056.3, + "probability": 0.4151 + }, + { + "start": 5056.3, + "end": 5059.68, + "probability": 0.9549 + }, + { + "start": 5060.02, + "end": 5060.89, + "probability": 0.9961 + }, + { + "start": 5061.8, + "end": 5064.38, + "probability": 0.8383 + }, + { + "start": 5064.52, + "end": 5067.04, + "probability": 0.9202 + }, + { + "start": 5067.72, + "end": 5069.88, + "probability": 0.98 + }, + { + "start": 5072.72, + "end": 5076.1, + "probability": 0.6648 + }, + { + "start": 5077.06, + "end": 5079.56, + "probability": 0.9444 + }, + { + "start": 5080.08, + "end": 5081.34, + "probability": 0.9496 + }, + { + "start": 5081.84, + "end": 5083.2, + "probability": 0.9344 + }, + { + "start": 5086.22, + "end": 5089.3, + "probability": 0.1697 + }, + { + "start": 5096.04, + "end": 5103.78, + "probability": 0.0406 + }, + { + "start": 5106.04, + "end": 5108.5, + "probability": 0.2078 + }, + { + "start": 5139.06, + "end": 5143.79, + "probability": 0.3597 + }, + { + "start": 5155.99, + "end": 5161.81, + "probability": 0.0768 + }, + { + "start": 5216.76, + "end": 5217.46, + "probability": 0.0293 + }, + { + "start": 5217.52, + "end": 5218.84, + "probability": 0.2021 + }, + { + "start": 5221.74, + "end": 5223.56, + "probability": 0.4255 + }, + { + "start": 5223.58, + "end": 5225.24, + "probability": 0.0087 + }, + { + "start": 5236.56, + "end": 5239.28, + "probability": 0.1239 + }, + { + "start": 5242.28, + "end": 5243.94, + "probability": 0.0269 + }, + { + "start": 5243.94, + "end": 5243.94, + "probability": 0.035 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.0, + "end": 5333.0, + "probability": 0.0 + }, + { + "start": 5333.1, + "end": 5334.16, + "probability": 0.2901 + }, + { + "start": 5334.32, + "end": 5336.0, + "probability": 0.8891 + }, + { + "start": 5336.16, + "end": 5336.86, + "probability": 0.6603 + }, + { + "start": 5336.98, + "end": 5338.28, + "probability": 0.8919 + }, + { + "start": 5338.96, + "end": 5342.46, + "probability": 0.9614 + }, + { + "start": 5343.06, + "end": 5344.68, + "probability": 0.9188 + }, + { + "start": 5345.66, + "end": 5347.72, + "probability": 0.8611 + }, + { + "start": 5348.36, + "end": 5349.68, + "probability": 0.8657 + }, + { + "start": 5350.2, + "end": 5350.52, + "probability": 0.8321 + }, + { + "start": 5358.32, + "end": 5358.42, + "probability": 0.0915 + }, + { + "start": 5358.42, + "end": 5358.46, + "probability": 0.0322 + }, + { + "start": 5358.46, + "end": 5358.48, + "probability": 0.0224 + }, + { + "start": 5358.48, + "end": 5358.54, + "probability": 0.034 + }, + { + "start": 5366.32, + "end": 5368.44, + "probability": 0.0399 + }, + { + "start": 5373.87, + "end": 5375.68, + "probability": 0.4432 + }, + { + "start": 5377.5, + "end": 5379.98, + "probability": 0.324 + }, + { + "start": 5380.7, + "end": 5380.98, + "probability": 0.0055 + }, + { + "start": 5380.98, + "end": 5380.98, + "probability": 0.0294 + }, + { + "start": 5411.92, + "end": 5413.56, + "probability": 0.0342 + }, + { + "start": 5414.46, + "end": 5416.52, + "probability": 0.5571 + }, + { + "start": 5417.94, + "end": 5420.22, + "probability": 0.6921 + }, + { + "start": 5421.68, + "end": 5424.98, + "probability": 0.9719 + }, + { + "start": 5426.24, + "end": 5429.02, + "probability": 0.9658 + }, + { + "start": 5429.78, + "end": 5430.54, + "probability": 0.9214 + }, + { + "start": 5432.72, + "end": 5433.8, + "probability": 0.9612 + }, + { + "start": 5434.44, + "end": 5435.0, + "probability": 0.6272 + }, + { + "start": 5435.1, + "end": 5435.22, + "probability": 0.8704 + }, + { + "start": 5435.3, + "end": 5439.1, + "probability": 0.9777 + }, + { + "start": 5439.6, + "end": 5441.78, + "probability": 0.9526 + }, + { + "start": 5442.4, + "end": 5446.2, + "probability": 0.9297 + }, + { + "start": 5446.38, + "end": 5449.42, + "probability": 0.5995 + }, + { + "start": 5449.84, + "end": 5450.98, + "probability": 0.9134 + }, + { + "start": 5451.5, + "end": 5454.04, + "probability": 0.8043 + }, + { + "start": 5454.76, + "end": 5457.02, + "probability": 0.6139 + }, + { + "start": 5459.12, + "end": 5462.9, + "probability": 0.9775 + }, + { + "start": 5462.98, + "end": 5464.08, + "probability": 0.3941 + }, + { + "start": 5464.68, + "end": 5465.74, + "probability": 0.551 + }, + { + "start": 5466.16, + "end": 5467.94, + "probability": 0.8779 + }, + { + "start": 5468.5, + "end": 5475.5, + "probability": 0.8409 + }, + { + "start": 5475.88, + "end": 5476.74, + "probability": 0.6645 + }, + { + "start": 5476.78, + "end": 5480.12, + "probability": 0.9661 + }, + { + "start": 5480.62, + "end": 5485.16, + "probability": 0.9933 + }, + { + "start": 5486.34, + "end": 5487.34, + "probability": 0.862 + }, + { + "start": 5488.12, + "end": 5491.56, + "probability": 0.9557 + }, + { + "start": 5493.12, + "end": 5496.12, + "probability": 0.987 + }, + { + "start": 5496.94, + "end": 5501.36, + "probability": 0.6331 + }, + { + "start": 5501.88, + "end": 5502.28, + "probability": 0.6599 + }, + { + "start": 5503.12, + "end": 5504.1, + "probability": 0.7956 + }, + { + "start": 5505.66, + "end": 5509.26, + "probability": 0.7075 + }, + { + "start": 5509.46, + "end": 5512.42, + "probability": 0.8815 + }, + { + "start": 5513.28, + "end": 5515.92, + "probability": 0.9819 + }, + { + "start": 5515.96, + "end": 5517.54, + "probability": 0.9209 + }, + { + "start": 5518.44, + "end": 5520.62, + "probability": 0.9966 + }, + { + "start": 5521.98, + "end": 5524.1, + "probability": 0.9906 + }, + { + "start": 5525.46, + "end": 5528.98, + "probability": 0.9955 + }, + { + "start": 5530.3, + "end": 5532.32, + "probability": 0.8239 + }, + { + "start": 5532.46, + "end": 5535.22, + "probability": 0.9695 + }, + { + "start": 5535.92, + "end": 5536.06, + "probability": 0.0282 + }, + { + "start": 5536.06, + "end": 5536.36, + "probability": 0.5244 + }, + { + "start": 5537.42, + "end": 5539.02, + "probability": 0.8449 + }, + { + "start": 5540.4, + "end": 5542.04, + "probability": 0.9644 + }, + { + "start": 5542.86, + "end": 5547.66, + "probability": 0.9465 + }, + { + "start": 5548.8, + "end": 5552.44, + "probability": 0.9351 + }, + { + "start": 5552.96, + "end": 5554.48, + "probability": 0.9951 + }, + { + "start": 5557.6, + "end": 5561.3, + "probability": 0.9969 + }, + { + "start": 5561.76, + "end": 5565.56, + "probability": 0.9848 + }, + { + "start": 5566.04, + "end": 5568.08, + "probability": 0.9802 + }, + { + "start": 5568.74, + "end": 5570.86, + "probability": 0.7529 + }, + { + "start": 5571.38, + "end": 5578.52, + "probability": 0.9937 + }, + { + "start": 5578.52, + "end": 5580.89, + "probability": 0.365 + }, + { + "start": 5582.84, + "end": 5583.56, + "probability": 0.6151 + }, + { + "start": 5584.32, + "end": 5586.04, + "probability": 0.8249 + }, + { + "start": 5586.24, + "end": 5588.72, + "probability": 0.7842 + }, + { + "start": 5589.14, + "end": 5592.82, + "probability": 0.7855 + }, + { + "start": 5593.56, + "end": 5596.7, + "probability": 0.7301 + }, + { + "start": 5597.2, + "end": 5597.7, + "probability": 0.929 + }, + { + "start": 5598.34, + "end": 5599.66, + "probability": 0.9622 + }, + { + "start": 5603.76, + "end": 5605.78, + "probability": 0.6883 + }, + { + "start": 5608.0, + "end": 5608.8, + "probability": 0.8124 + }, + { + "start": 5608.88, + "end": 5609.66, + "probability": 0.7036 + }, + { + "start": 5609.96, + "end": 5611.92, + "probability": 0.9473 + }, + { + "start": 5612.94, + "end": 5614.84, + "probability": 0.7481 + }, + { + "start": 5615.74, + "end": 5616.94, + "probability": 0.6389 + }, + { + "start": 5616.98, + "end": 5619.46, + "probability": 0.9831 + }, + { + "start": 5620.28, + "end": 5621.06, + "probability": 0.4914 + }, + { + "start": 5621.78, + "end": 5625.88, + "probability": 0.9926 + }, + { + "start": 5625.98, + "end": 5626.94, + "probability": 0.9937 + }, + { + "start": 5627.08, + "end": 5628.27, + "probability": 0.9937 + }, + { + "start": 5628.98, + "end": 5629.9, + "probability": 0.9839 + }, + { + "start": 5630.58, + "end": 5631.26, + "probability": 0.9792 + }, + { + "start": 5631.6, + "end": 5631.96, + "probability": 0.6699 + }, + { + "start": 5632.52, + "end": 5633.06, + "probability": 0.8333 + }, + { + "start": 5635.0, + "end": 5640.92, + "probability": 0.9547 + }, + { + "start": 5641.6, + "end": 5644.54, + "probability": 0.905 + }, + { + "start": 5645.3, + "end": 5647.08, + "probability": 0.9904 + }, + { + "start": 5648.68, + "end": 5650.54, + "probability": 0.7628 + }, + { + "start": 5651.58, + "end": 5654.38, + "probability": 0.9882 + }, + { + "start": 5654.38, + "end": 5655.68, + "probability": 0.5116 + }, + { + "start": 5656.58, + "end": 5657.82, + "probability": 0.9332 + }, + { + "start": 5658.82, + "end": 5660.16, + "probability": 0.8521 + }, + { + "start": 5660.74, + "end": 5662.82, + "probability": 0.9983 + }, + { + "start": 5664.14, + "end": 5670.82, + "probability": 0.9824 + }, + { + "start": 5670.96, + "end": 5672.72, + "probability": 0.5669 + }, + { + "start": 5674.3, + "end": 5675.28, + "probability": 0.8325 + }, + { + "start": 5677.15, + "end": 5680.07, + "probability": 0.9587 + }, + { + "start": 5681.74, + "end": 5684.68, + "probability": 0.9902 + }, + { + "start": 5685.56, + "end": 5687.48, + "probability": 0.8097 + }, + { + "start": 5688.3, + "end": 5689.58, + "probability": 0.7988 + }, + { + "start": 5690.3, + "end": 5693.52, + "probability": 0.9892 + }, + { + "start": 5694.3, + "end": 5697.89, + "probability": 0.9777 + }, + { + "start": 5698.84, + "end": 5699.46, + "probability": 0.809 + }, + { + "start": 5700.04, + "end": 5701.62, + "probability": 0.9985 + }, + { + "start": 5703.06, + "end": 5705.07, + "probability": 0.8154 + }, + { + "start": 5705.68, + "end": 5707.42, + "probability": 0.8211 + }, + { + "start": 5708.58, + "end": 5709.92, + "probability": 0.9529 + }, + { + "start": 5711.18, + "end": 5712.2, + "probability": 0.8338 + }, + { + "start": 5712.54, + "end": 5715.48, + "probability": 0.9965 + }, + { + "start": 5718.16, + "end": 5720.65, + "probability": 0.9514 + }, + { + "start": 5722.28, + "end": 5725.68, + "probability": 0.9907 + }, + { + "start": 5727.45, + "end": 5731.26, + "probability": 0.9975 + }, + { + "start": 5732.78, + "end": 5734.38, + "probability": 0.9329 + }, + { + "start": 5736.72, + "end": 5740.24, + "probability": 0.9836 + }, + { + "start": 5740.24, + "end": 5744.14, + "probability": 0.9786 + }, + { + "start": 5745.18, + "end": 5746.42, + "probability": 0.6029 + }, + { + "start": 5747.2, + "end": 5747.77, + "probability": 0.7385 + }, + { + "start": 5749.44, + "end": 5753.4, + "probability": 0.9963 + }, + { + "start": 5754.28, + "end": 5755.09, + "probability": 0.8878 + }, + { + "start": 5756.68, + "end": 5758.58, + "probability": 0.9845 + }, + { + "start": 5759.24, + "end": 5760.48, + "probability": 0.979 + }, + { + "start": 5761.72, + "end": 5764.46, + "probability": 0.9056 + }, + { + "start": 5767.14, + "end": 5770.1, + "probability": 0.9585 + }, + { + "start": 5771.46, + "end": 5777.48, + "probability": 0.9882 + }, + { + "start": 5778.94, + "end": 5782.6, + "probability": 0.9958 + }, + { + "start": 5783.28, + "end": 5784.0, + "probability": 0.7668 + }, + { + "start": 5784.7, + "end": 5784.72, + "probability": 0.1263 + }, + { + "start": 5784.92, + "end": 5789.88, + "probability": 0.8337 + }, + { + "start": 5790.66, + "end": 5791.14, + "probability": 0.9084 + }, + { + "start": 5792.04, + "end": 5792.04, + "probability": 0.2368 + }, + { + "start": 5792.06, + "end": 5793.96, + "probability": 0.6457 + }, + { + "start": 5794.52, + "end": 5797.66, + "probability": 0.9512 + }, + { + "start": 5798.54, + "end": 5800.16, + "probability": 0.8683 + }, + { + "start": 5800.36, + "end": 5801.54, + "probability": 0.8513 + }, + { + "start": 5802.24, + "end": 5803.34, + "probability": 0.9604 + }, + { + "start": 5803.98, + "end": 5804.84, + "probability": 0.958 + }, + { + "start": 5805.48, + "end": 5806.54, + "probability": 0.9602 + }, + { + "start": 5806.88, + "end": 5809.85, + "probability": 0.9688 + }, + { + "start": 5810.12, + "end": 5810.48, + "probability": 0.84 + }, + { + "start": 5810.72, + "end": 5810.94, + "probability": 0.9719 + }, + { + "start": 5811.7, + "end": 5814.28, + "probability": 0.6867 + }, + { + "start": 5815.02, + "end": 5818.14, + "probability": 0.8539 + }, + { + "start": 5818.48, + "end": 5822.32, + "probability": 0.9682 + }, + { + "start": 5822.4, + "end": 5822.82, + "probability": 0.8118 + }, + { + "start": 5823.28, + "end": 5825.41, + "probability": 0.9269 + }, + { + "start": 5828.86, + "end": 5828.9, + "probability": 0.2295 + }, + { + "start": 5828.9, + "end": 5829.71, + "probability": 0.6747 + }, + { + "start": 5830.4, + "end": 5832.54, + "probability": 0.867 + }, + { + "start": 5833.1, + "end": 5835.18, + "probability": 0.6332 + }, + { + "start": 5835.72, + "end": 5838.42, + "probability": 0.71 + }, + { + "start": 5839.0, + "end": 5839.3, + "probability": 0.495 + }, + { + "start": 5839.82, + "end": 5841.32, + "probability": 0.7502 + }, + { + "start": 5842.04, + "end": 5842.66, + "probability": 0.724 + }, + { + "start": 5842.9, + "end": 5845.06, + "probability": 0.9159 + }, + { + "start": 5845.54, + "end": 5846.3, + "probability": 0.9671 + }, + { + "start": 5846.44, + "end": 5847.92, + "probability": 0.9479 + }, + { + "start": 5848.62, + "end": 5851.12, + "probability": 0.7298 + }, + { + "start": 5852.12, + "end": 5853.28, + "probability": 0.5041 + }, + { + "start": 5853.28, + "end": 5854.06, + "probability": 0.7221 + }, + { + "start": 5854.62, + "end": 5856.76, + "probability": 0.8587 + }, + { + "start": 5877.74, + "end": 5878.54, + "probability": 0.8521 + }, + { + "start": 5881.32, + "end": 5883.44, + "probability": 0.6577 + }, + { + "start": 5884.52, + "end": 5888.42, + "probability": 0.9669 + }, + { + "start": 5889.1, + "end": 5893.7, + "probability": 0.9561 + }, + { + "start": 5894.58, + "end": 5898.72, + "probability": 0.992 + }, + { + "start": 5899.68, + "end": 5900.84, + "probability": 0.9263 + }, + { + "start": 5902.2, + "end": 5904.38, + "probability": 0.6719 + }, + { + "start": 5905.84, + "end": 5907.88, + "probability": 0.9299 + }, + { + "start": 5908.6, + "end": 5911.3, + "probability": 0.9305 + }, + { + "start": 5911.85, + "end": 5915.06, + "probability": 0.9863 + }, + { + "start": 5915.88, + "end": 5917.68, + "probability": 0.8334 + }, + { + "start": 5918.72, + "end": 5919.22, + "probability": 0.7878 + }, + { + "start": 5920.48, + "end": 5924.58, + "probability": 0.9548 + }, + { + "start": 5925.12, + "end": 5927.32, + "probability": 0.907 + }, + { + "start": 5928.14, + "end": 5929.56, + "probability": 0.9922 + }, + { + "start": 5930.12, + "end": 5931.14, + "probability": 0.9814 + }, + { + "start": 5931.76, + "end": 5933.78, + "probability": 0.8391 + }, + { + "start": 5934.6, + "end": 5936.68, + "probability": 0.9744 + }, + { + "start": 5937.7, + "end": 5939.9, + "probability": 0.876 + }, + { + "start": 5940.88, + "end": 5942.6, + "probability": 0.8533 + }, + { + "start": 5943.44, + "end": 5943.88, + "probability": 0.9393 + }, + { + "start": 5944.56, + "end": 5945.82, + "probability": 0.5046 + }, + { + "start": 5946.78, + "end": 5947.66, + "probability": 0.9586 + }, + { + "start": 5948.32, + "end": 5950.92, + "probability": 0.9932 + }, + { + "start": 5951.9, + "end": 5952.76, + "probability": 0.9438 + }, + { + "start": 5953.78, + "end": 5957.64, + "probability": 0.9541 + }, + { + "start": 5958.82, + "end": 5960.0, + "probability": 0.6166 + }, + { + "start": 5960.64, + "end": 5964.18, + "probability": 0.9704 + }, + { + "start": 5965.9, + "end": 5968.74, + "probability": 0.9907 + }, + { + "start": 5970.02, + "end": 5976.45, + "probability": 0.9691 + }, + { + "start": 5977.48, + "end": 5982.18, + "probability": 0.9829 + }, + { + "start": 5983.46, + "end": 5985.24, + "probability": 0.5629 + }, + { + "start": 5985.9, + "end": 5986.82, + "probability": 0.8971 + }, + { + "start": 5987.56, + "end": 5988.56, + "probability": 0.9749 + }, + { + "start": 5988.64, + "end": 5993.16, + "probability": 0.9342 + }, + { + "start": 5994.02, + "end": 5996.64, + "probability": 0.9124 + }, + { + "start": 5997.4, + "end": 5998.94, + "probability": 0.9437 + }, + { + "start": 5999.78, + "end": 6000.5, + "probability": 0.8423 + }, + { + "start": 6001.4, + "end": 6002.42, + "probability": 0.962 + }, + { + "start": 6003.28, + "end": 6005.96, + "probability": 0.7611 + }, + { + "start": 6006.74, + "end": 6007.78, + "probability": 0.8745 + }, + { + "start": 6008.38, + "end": 6012.32, + "probability": 0.9834 + }, + { + "start": 6013.14, + "end": 6015.84, + "probability": 0.6843 + }, + { + "start": 6016.54, + "end": 6018.96, + "probability": 0.9639 + }, + { + "start": 6019.5, + "end": 6024.38, + "probability": 0.9776 + }, + { + "start": 6024.38, + "end": 6029.32, + "probability": 0.943 + }, + { + "start": 6029.98, + "end": 6034.08, + "probability": 0.9374 + }, + { + "start": 6034.7, + "end": 6036.88, + "probability": 0.9858 + }, + { + "start": 6037.92, + "end": 6039.56, + "probability": 0.6077 + }, + { + "start": 6039.74, + "end": 6042.59, + "probability": 0.9775 + }, + { + "start": 6043.3, + "end": 6046.08, + "probability": 0.8699 + }, + { + "start": 6046.14, + "end": 6048.48, + "probability": 0.8724 + }, + { + "start": 6049.16, + "end": 6052.88, + "probability": 0.9395 + }, + { + "start": 6053.56, + "end": 6055.9, + "probability": 0.9785 + }, + { + "start": 6055.96, + "end": 6058.8, + "probability": 0.8754 + }, + { + "start": 6059.3, + "end": 6059.88, + "probability": 0.6555 + }, + { + "start": 6060.22, + "end": 6064.54, + "probability": 0.7673 + }, + { + "start": 6065.06, + "end": 6068.44, + "probability": 0.8972 + }, + { + "start": 6068.58, + "end": 6069.76, + "probability": 0.903 + }, + { + "start": 6070.34, + "end": 6072.38, + "probability": 0.6968 + }, + { + "start": 6072.44, + "end": 6075.18, + "probability": 0.8773 + }, + { + "start": 6075.56, + "end": 6081.22, + "probability": 0.9966 + }, + { + "start": 6081.38, + "end": 6082.55, + "probability": 0.9653 + }, + { + "start": 6082.88, + "end": 6083.3, + "probability": 0.748 + }, + { + "start": 6083.84, + "end": 6085.94, + "probability": 0.9522 + }, + { + "start": 6086.34, + "end": 6090.58, + "probability": 0.9738 + }, + { + "start": 6091.58, + "end": 6095.26, + "probability": 0.8706 + }, + { + "start": 6096.0, + "end": 6101.84, + "probability": 0.9746 + }, + { + "start": 6102.6, + "end": 6104.64, + "probability": 0.988 + }, + { + "start": 6105.9, + "end": 6111.48, + "probability": 0.9017 + }, + { + "start": 6118.7, + "end": 6120.66, + "probability": 0.6598 + }, + { + "start": 6121.66, + "end": 6122.78, + "probability": 0.7661 + }, + { + "start": 6126.0, + "end": 6127.11, + "probability": 0.9958 + }, + { + "start": 6128.1, + "end": 6129.22, + "probability": 0.9946 + }, + { + "start": 6130.92, + "end": 6132.6, + "probability": 0.998 + }, + { + "start": 6133.16, + "end": 6134.76, + "probability": 0.9908 + }, + { + "start": 6136.26, + "end": 6136.7, + "probability": 0.8126 + }, + { + "start": 6137.1, + "end": 6137.88, + "probability": 0.817 + }, + { + "start": 6138.7, + "end": 6139.18, + "probability": 0.7152 + }, + { + "start": 6140.08, + "end": 6143.72, + "probability": 0.9839 + }, + { + "start": 6144.32, + "end": 6145.62, + "probability": 0.7056 + }, + { + "start": 6146.98, + "end": 6151.14, + "probability": 0.9647 + }, + { + "start": 6152.06, + "end": 6155.46, + "probability": 0.9915 + }, + { + "start": 6157.64, + "end": 6158.1, + "probability": 0.509 + }, + { + "start": 6158.82, + "end": 6161.24, + "probability": 0.9592 + }, + { + "start": 6163.5, + "end": 6164.14, + "probability": 0.5363 + }, + { + "start": 6164.78, + "end": 6169.36, + "probability": 0.8955 + }, + { + "start": 6170.7, + "end": 6172.2, + "probability": 0.9229 + }, + { + "start": 6172.74, + "end": 6175.12, + "probability": 0.9337 + }, + { + "start": 6175.76, + "end": 6178.4, + "probability": 0.9785 + }, + { + "start": 6181.68, + "end": 6183.26, + "probability": 0.7997 + }, + { + "start": 6184.8, + "end": 6185.62, + "probability": 0.8195 + }, + { + "start": 6186.78, + "end": 6187.9, + "probability": 0.9608 + }, + { + "start": 6190.16, + "end": 6193.42, + "probability": 0.9694 + }, + { + "start": 6194.32, + "end": 6196.32, + "probability": 0.9697 + }, + { + "start": 6198.24, + "end": 6199.76, + "probability": 0.9499 + }, + { + "start": 6201.42, + "end": 6202.26, + "probability": 0.6927 + }, + { + "start": 6202.8, + "end": 6203.8, + "probability": 0.7002 + }, + { + "start": 6204.76, + "end": 6206.7, + "probability": 0.587 + }, + { + "start": 6207.6, + "end": 6208.28, + "probability": 0.771 + }, + { + "start": 6209.04, + "end": 6210.18, + "probability": 0.9865 + }, + { + "start": 6210.76, + "end": 6212.04, + "probability": 0.9915 + }, + { + "start": 6212.88, + "end": 6215.2, + "probability": 0.8325 + }, + { + "start": 6215.92, + "end": 6217.98, + "probability": 0.924 + }, + { + "start": 6218.64, + "end": 6219.9, + "probability": 0.9299 + }, + { + "start": 6221.34, + "end": 6222.2, + "probability": 0.9927 + }, + { + "start": 6224.6, + "end": 6227.18, + "probability": 0.978 + }, + { + "start": 6230.66, + "end": 6235.14, + "probability": 0.631 + }, + { + "start": 6236.24, + "end": 6237.26, + "probability": 0.9748 + }, + { + "start": 6238.38, + "end": 6239.24, + "probability": 0.8764 + }, + { + "start": 6241.22, + "end": 6242.23, + "probability": 0.8181 + }, + { + "start": 6244.9, + "end": 6250.28, + "probability": 0.9725 + }, + { + "start": 6250.74, + "end": 6252.28, + "probability": 0.9927 + }, + { + "start": 6253.28, + "end": 6255.52, + "probability": 0.7358 + }, + { + "start": 6256.18, + "end": 6258.98, + "probability": 0.9622 + }, + { + "start": 6261.46, + "end": 6264.42, + "probability": 0.9801 + }, + { + "start": 6265.94, + "end": 6267.6, + "probability": 0.9954 + }, + { + "start": 6268.22, + "end": 6272.2, + "probability": 0.9867 + }, + { + "start": 6273.82, + "end": 6276.74, + "probability": 0.9955 + }, + { + "start": 6277.12, + "end": 6277.78, + "probability": 0.7046 + }, + { + "start": 6277.88, + "end": 6278.74, + "probability": 0.8226 + }, + { + "start": 6280.12, + "end": 6280.94, + "probability": 0.986 + }, + { + "start": 6282.46, + "end": 6283.26, + "probability": 0.9966 + }, + { + "start": 6283.82, + "end": 6285.04, + "probability": 0.9794 + }, + { + "start": 6286.06, + "end": 6287.52, + "probability": 0.979 + }, + { + "start": 6288.76, + "end": 6293.12, + "probability": 0.9436 + }, + { + "start": 6294.0, + "end": 6295.38, + "probability": 0.973 + }, + { + "start": 6296.1, + "end": 6298.62, + "probability": 0.9971 + }, + { + "start": 6299.0, + "end": 6301.92, + "probability": 0.9847 + }, + { + "start": 6304.04, + "end": 6307.58, + "probability": 0.8857 + }, + { + "start": 6308.74, + "end": 6310.08, + "probability": 0.9553 + }, + { + "start": 6311.16, + "end": 6314.06, + "probability": 0.9769 + }, + { + "start": 6315.02, + "end": 6315.74, + "probability": 0.3711 + }, + { + "start": 6316.22, + "end": 6317.24, + "probability": 0.9484 + }, + { + "start": 6319.36, + "end": 6320.2, + "probability": 0.9467 + }, + { + "start": 6321.1, + "end": 6321.72, + "probability": 0.7379 + }, + { + "start": 6322.22, + "end": 6324.52, + "probability": 0.0411 + }, + { + "start": 6325.24, + "end": 6326.2, + "probability": 0.752 + }, + { + "start": 6326.66, + "end": 6334.44, + "probability": 0.9789 + }, + { + "start": 6334.66, + "end": 6335.3, + "probability": 0.7581 + }, + { + "start": 6335.4, + "end": 6338.7, + "probability": 0.9951 + }, + { + "start": 6338.72, + "end": 6339.12, + "probability": 0.7288 + }, + { + "start": 6340.66, + "end": 6345.94, + "probability": 0.9872 + }, + { + "start": 6346.8, + "end": 6349.46, + "probability": 0.7993 + }, + { + "start": 6350.04, + "end": 6350.58, + "probability": 0.6086 + }, + { + "start": 6351.14, + "end": 6353.62, + "probability": 0.8486 + }, + { + "start": 6354.2, + "end": 6355.1, + "probability": 0.7751 + }, + { + "start": 6356.14, + "end": 6358.8, + "probability": 0.8999 + }, + { + "start": 6359.6, + "end": 6360.58, + "probability": 0.9932 + }, + { + "start": 6361.44, + "end": 6364.46, + "probability": 0.9551 + }, + { + "start": 6366.04, + "end": 6369.59, + "probability": 0.9133 + }, + { + "start": 6371.94, + "end": 6374.88, + "probability": 0.9821 + }, + { + "start": 6375.84, + "end": 6377.74, + "probability": 0.876 + }, + { + "start": 6379.56, + "end": 6380.86, + "probability": 0.8543 + }, + { + "start": 6381.84, + "end": 6384.5, + "probability": 0.9795 + }, + { + "start": 6386.14, + "end": 6387.06, + "probability": 0.9581 + }, + { + "start": 6387.66, + "end": 6389.88, + "probability": 0.9482 + }, + { + "start": 6390.6, + "end": 6395.01, + "probability": 0.9899 + }, + { + "start": 6396.42, + "end": 6399.39, + "probability": 0.9707 + }, + { + "start": 6399.88, + "end": 6400.92, + "probability": 0.7895 + }, + { + "start": 6402.08, + "end": 6406.74, + "probability": 0.9945 + }, + { + "start": 6407.54, + "end": 6409.34, + "probability": 0.9595 + }, + { + "start": 6410.7, + "end": 6413.02, + "probability": 0.8322 + }, + { + "start": 6413.9, + "end": 6414.6, + "probability": 0.9263 + }, + { + "start": 6414.9, + "end": 6415.3, + "probability": 0.7731 + }, + { + "start": 6415.9, + "end": 6418.36, + "probability": 0.9539 + }, + { + "start": 6419.1, + "end": 6420.22, + "probability": 0.9934 + }, + { + "start": 6420.84, + "end": 6422.64, + "probability": 0.986 + }, + { + "start": 6423.5, + "end": 6424.32, + "probability": 0.9722 + }, + { + "start": 6424.94, + "end": 6426.6, + "probability": 0.9987 + }, + { + "start": 6427.18, + "end": 6429.46, + "probability": 0.7999 + }, + { + "start": 6430.76, + "end": 6432.86, + "probability": 0.999 + }, + { + "start": 6433.98, + "end": 6436.86, + "probability": 0.999 + }, + { + "start": 6437.16, + "end": 6440.14, + "probability": 0.972 + }, + { + "start": 6441.5, + "end": 6443.48, + "probability": 0.6157 + }, + { + "start": 6444.08, + "end": 6448.98, + "probability": 0.8274 + }, + { + "start": 6450.04, + "end": 6454.7, + "probability": 0.9666 + }, + { + "start": 6456.46, + "end": 6459.62, + "probability": 0.9978 + }, + { + "start": 6459.62, + "end": 6463.5, + "probability": 0.9939 + }, + { + "start": 6464.38, + "end": 6465.06, + "probability": 0.7708 + }, + { + "start": 6466.12, + "end": 6468.82, + "probability": 0.8515 + }, + { + "start": 6468.92, + "end": 6471.46, + "probability": 0.9486 + }, + { + "start": 6471.64, + "end": 6474.0, + "probability": 0.9951 + }, + { + "start": 6475.54, + "end": 6476.16, + "probability": 0.3656 + }, + { + "start": 6477.56, + "end": 6478.44, + "probability": 0.0023 + }, + { + "start": 6478.44, + "end": 6481.5, + "probability": 0.7531 + }, + { + "start": 6483.12, + "end": 6486.48, + "probability": 0.9214 + }, + { + "start": 6487.3, + "end": 6491.4, + "probability": 0.9813 + }, + { + "start": 6491.9, + "end": 6493.2, + "probability": 0.979 + }, + { + "start": 6493.7, + "end": 6496.5, + "probability": 0.9342 + }, + { + "start": 6497.76, + "end": 6498.6, + "probability": 0.3505 + }, + { + "start": 6499.24, + "end": 6500.06, + "probability": 0.9125 + }, + { + "start": 6502.8, + "end": 6505.54, + "probability": 0.981 + }, + { + "start": 6505.54, + "end": 6512.2, + "probability": 0.9603 + }, + { + "start": 6512.22, + "end": 6514.04, + "probability": 0.9539 + }, + { + "start": 6514.68, + "end": 6516.98, + "probability": 0.9479 + }, + { + "start": 6518.28, + "end": 6519.3, + "probability": 0.9083 + }, + { + "start": 6520.58, + "end": 6524.06, + "probability": 0.9646 + }, + { + "start": 6526.12, + "end": 6526.88, + "probability": 0.7233 + }, + { + "start": 6527.32, + "end": 6531.04, + "probability": 0.9995 + }, + { + "start": 6531.04, + "end": 6534.6, + "probability": 0.999 + }, + { + "start": 6536.86, + "end": 6540.64, + "probability": 0.5866 + }, + { + "start": 6541.38, + "end": 6542.26, + "probability": 0.99 + }, + { + "start": 6543.4, + "end": 6546.88, + "probability": 0.876 + }, + { + "start": 6547.72, + "end": 6548.78, + "probability": 0.607 + }, + { + "start": 6549.02, + "end": 6549.6, + "probability": 0.9351 + }, + { + "start": 6549.68, + "end": 6550.34, + "probability": 0.7591 + }, + { + "start": 6550.42, + "end": 6551.44, + "probability": 0.9769 + }, + { + "start": 6551.86, + "end": 6553.36, + "probability": 0.9814 + }, + { + "start": 6554.72, + "end": 6556.16, + "probability": 0.8757 + }, + { + "start": 6557.8, + "end": 6558.66, + "probability": 0.3586 + }, + { + "start": 6559.66, + "end": 6564.76, + "probability": 0.9292 + }, + { + "start": 6566.7, + "end": 6571.34, + "probability": 0.9867 + }, + { + "start": 6571.34, + "end": 6573.68, + "probability": 0.405 + }, + { + "start": 6574.32, + "end": 6577.82, + "probability": 0.7396 + }, + { + "start": 6578.52, + "end": 6579.88, + "probability": 0.7808 + }, + { + "start": 6581.84, + "end": 6585.12, + "probability": 0.4458 + }, + { + "start": 6585.28, + "end": 6586.88, + "probability": 0.5939 + }, + { + "start": 6586.88, + "end": 6590.26, + "probability": 0.5026 + }, + { + "start": 6590.34, + "end": 6591.62, + "probability": 0.9799 + }, + { + "start": 6591.68, + "end": 6593.02, + "probability": 0.6817 + }, + { + "start": 6593.18, + "end": 6594.94, + "probability": 0.7877 + }, + { + "start": 6596.06, + "end": 6597.56, + "probability": 0.7833 + }, + { + "start": 6598.44, + "end": 6599.8, + "probability": 0.9608 + }, + { + "start": 6601.02, + "end": 6608.34, + "probability": 0.9932 + }, + { + "start": 6608.98, + "end": 6611.28, + "probability": 0.3974 + }, + { + "start": 6611.4, + "end": 6611.72, + "probability": 0.6022 + }, + { + "start": 6611.76, + "end": 6614.42, + "probability": 0.7485 + }, + { + "start": 6614.58, + "end": 6615.9, + "probability": 0.7966 + }, + { + "start": 6616.58, + "end": 6617.58, + "probability": 0.8046 + }, + { + "start": 6618.96, + "end": 6623.16, + "probability": 0.9797 + }, + { + "start": 6623.62, + "end": 6626.8, + "probability": 0.9534 + }, + { + "start": 6628.26, + "end": 6631.3, + "probability": 0.9149 + }, + { + "start": 6632.5, + "end": 6635.86, + "probability": 0.4662 + }, + { + "start": 6637.0, + "end": 6638.2, + "probability": 0.5588 + }, + { + "start": 6640.74, + "end": 6641.64, + "probability": 0.9654 + }, + { + "start": 6641.68, + "end": 6642.8, + "probability": 0.7419 + }, + { + "start": 6643.18, + "end": 6646.94, + "probability": 0.853 + }, + { + "start": 6647.7, + "end": 6649.46, + "probability": 0.5189 + }, + { + "start": 6649.96, + "end": 6650.64, + "probability": 0.8176 + }, + { + "start": 6651.28, + "end": 6652.08, + "probability": 0.7087 + }, + { + "start": 6652.9, + "end": 6653.26, + "probability": 0.0158 + }, + { + "start": 6655.78, + "end": 6656.3, + "probability": 0.3788 + }, + { + "start": 6656.36, + "end": 6659.4, + "probability": 0.8902 + }, + { + "start": 6659.8, + "end": 6664.62, + "probability": 0.9972 + }, + { + "start": 6665.2, + "end": 6668.74, + "probability": 0.9644 + }, + { + "start": 6669.56, + "end": 6672.38, + "probability": 0.9952 + }, + { + "start": 6672.9, + "end": 6677.06, + "probability": 0.9315 + }, + { + "start": 6677.26, + "end": 6680.72, + "probability": 0.974 + }, + { + "start": 6681.12, + "end": 6684.6, + "probability": 0.9309 + }, + { + "start": 6685.06, + "end": 6688.46, + "probability": 0.9834 + }, + { + "start": 6689.58, + "end": 6690.18, + "probability": 0.5876 + }, + { + "start": 6691.0, + "end": 6692.55, + "probability": 0.9897 + }, + { + "start": 6695.09, + "end": 6699.14, + "probability": 0.9661 + }, + { + "start": 6700.82, + "end": 6704.64, + "probability": 0.9752 + }, + { + "start": 6705.74, + "end": 6707.68, + "probability": 0.9737 + }, + { + "start": 6708.2, + "end": 6708.7, + "probability": 0.2785 + }, + { + "start": 6711.08, + "end": 6713.98, + "probability": 0.9333 + }, + { + "start": 6715.06, + "end": 6720.18, + "probability": 0.7595 + }, + { + "start": 6721.58, + "end": 6722.58, + "probability": 0.5231 + }, + { + "start": 6723.52, + "end": 6726.0, + "probability": 0.7517 + }, + { + "start": 6726.94, + "end": 6729.32, + "probability": 0.9592 + }, + { + "start": 6730.82, + "end": 6731.76, + "probability": 0.9927 + }, + { + "start": 6732.3, + "end": 6734.56, + "probability": 0.7376 + }, + { + "start": 6735.22, + "end": 6737.28, + "probability": 0.9678 + }, + { + "start": 6737.74, + "end": 6740.22, + "probability": 0.9925 + }, + { + "start": 6740.94, + "end": 6744.31, + "probability": 0.9977 + }, + { + "start": 6744.62, + "end": 6745.14, + "probability": 0.6779 + }, + { + "start": 6746.4, + "end": 6750.46, + "probability": 0.9922 + }, + { + "start": 6750.78, + "end": 6751.67, + "probability": 0.9778 + }, + { + "start": 6752.74, + "end": 6754.22, + "probability": 0.9612 + }, + { + "start": 6755.2, + "end": 6757.78, + "probability": 0.9898 + }, + { + "start": 6758.96, + "end": 6762.56, + "probability": 0.7298 + }, + { + "start": 6763.38, + "end": 6767.64, + "probability": 0.9926 + }, + { + "start": 6767.9, + "end": 6772.28, + "probability": 0.9908 + }, + { + "start": 6773.84, + "end": 6776.95, + "probability": 0.9956 + }, + { + "start": 6777.78, + "end": 6778.66, + "probability": 0.8778 + }, + { + "start": 6779.64, + "end": 6781.08, + "probability": 0.9984 + }, + { + "start": 6781.9, + "end": 6786.88, + "probability": 0.9968 + }, + { + "start": 6788.44, + "end": 6795.22, + "probability": 0.9959 + }, + { + "start": 6796.52, + "end": 6799.78, + "probability": 0.9735 + }, + { + "start": 6800.84, + "end": 6802.66, + "probability": 0.9958 + }, + { + "start": 6803.88, + "end": 6807.14, + "probability": 0.9879 + }, + { + "start": 6807.28, + "end": 6808.08, + "probability": 0.6774 + }, + { + "start": 6808.58, + "end": 6809.14, + "probability": 0.9411 + }, + { + "start": 6809.86, + "end": 6811.9, + "probability": 0.9844 + }, + { + "start": 6812.66, + "end": 6816.38, + "probability": 0.9813 + }, + { + "start": 6817.16, + "end": 6818.7, + "probability": 0.9738 + }, + { + "start": 6819.34, + "end": 6819.94, + "probability": 0.6492 + }, + { + "start": 6820.46, + "end": 6823.04, + "probability": 0.9888 + }, + { + "start": 6823.28, + "end": 6823.8, + "probability": 0.923 + }, + { + "start": 6825.1, + "end": 6827.38, + "probability": 0.7369 + }, + { + "start": 6827.4, + "end": 6828.9, + "probability": 0.55 + }, + { + "start": 6829.0, + "end": 6830.26, + "probability": 0.6237 + }, + { + "start": 6835.0, + "end": 6837.16, + "probability": 0.8268 + }, + { + "start": 6840.3, + "end": 6840.98, + "probability": 0.74 + }, + { + "start": 6842.14, + "end": 6843.3, + "probability": 0.9738 + }, + { + "start": 6843.86, + "end": 6846.18, + "probability": 0.753 + }, + { + "start": 6855.04, + "end": 6857.5, + "probability": 0.777 + }, + { + "start": 6858.28, + "end": 6863.8, + "probability": 0.9688 + }, + { + "start": 6864.72, + "end": 6866.18, + "probability": 0.9963 + }, + { + "start": 6866.6, + "end": 6866.6, + "probability": 0.2569 + }, + { + "start": 6872.74, + "end": 6873.9, + "probability": 0.2026 + }, + { + "start": 6874.36, + "end": 6876.86, + "probability": 0.1673 + }, + { + "start": 6884.66, + "end": 6885.36, + "probability": 0.0242 + }, + { + "start": 6889.18, + "end": 6893.58, + "probability": 0.9221 + }, + { + "start": 6894.16, + "end": 6897.12, + "probability": 0.8207 + }, + { + "start": 6897.4, + "end": 6898.58, + "probability": 0.9686 + }, + { + "start": 6899.2, + "end": 6902.62, + "probability": 0.9822 + }, + { + "start": 6934.42, + "end": 6938.76, + "probability": 0.7893 + }, + { + "start": 6939.48, + "end": 6941.32, + "probability": 0.7524 + }, + { + "start": 6942.16, + "end": 6946.38, + "probability": 0.9739 + }, + { + "start": 6947.78, + "end": 6951.96, + "probability": 0.9779 + }, + { + "start": 6952.74, + "end": 6955.46, + "probability": 0.9017 + }, + { + "start": 6955.98, + "end": 6956.92, + "probability": 0.9881 + }, + { + "start": 6958.38, + "end": 6961.36, + "probability": 0.9879 + }, + { + "start": 6962.36, + "end": 6964.0, + "probability": 0.9377 + }, + { + "start": 6964.96, + "end": 6968.08, + "probability": 0.9913 + }, + { + "start": 6968.84, + "end": 6970.08, + "probability": 0.641 + }, + { + "start": 6970.26, + "end": 6970.96, + "probability": 0.8748 + }, + { + "start": 6971.04, + "end": 6975.0, + "probability": 0.9373 + }, + { + "start": 6975.0, + "end": 6978.36, + "probability": 0.9898 + }, + { + "start": 6979.46, + "end": 6981.89, + "probability": 0.9736 + }, + { + "start": 6982.02, + "end": 6986.42, + "probability": 0.995 + }, + { + "start": 6987.48, + "end": 6990.88, + "probability": 0.7816 + }, + { + "start": 6991.94, + "end": 6994.74, + "probability": 0.9977 + }, + { + "start": 6995.12, + "end": 6997.08, + "probability": 0.9539 + }, + { + "start": 6998.6, + "end": 6999.64, + "probability": 0.868 + }, + { + "start": 7000.2, + "end": 7002.34, + "probability": 0.9746 + }, + { + "start": 7002.6, + "end": 7004.88, + "probability": 0.947 + }, + { + "start": 7005.88, + "end": 7007.54, + "probability": 0.9954 + }, + { + "start": 7008.68, + "end": 7011.66, + "probability": 0.9788 + }, + { + "start": 7012.76, + "end": 7013.84, + "probability": 0.9185 + }, + { + "start": 7014.34, + "end": 7017.4, + "probability": 0.9789 + }, + { + "start": 7018.08, + "end": 7018.68, + "probability": 0.8807 + }, + { + "start": 7019.52, + "end": 7021.06, + "probability": 0.8171 + }, + { + "start": 7021.52, + "end": 7023.18, + "probability": 0.9937 + }, + { + "start": 7023.32, + "end": 7025.88, + "probability": 0.9951 + }, + { + "start": 7026.58, + "end": 7029.38, + "probability": 0.9943 + }, + { + "start": 7030.44, + "end": 7033.06, + "probability": 0.9873 + }, + { + "start": 7033.8, + "end": 7035.76, + "probability": 0.9905 + }, + { + "start": 7036.14, + "end": 7040.98, + "probability": 0.9875 + }, + { + "start": 7041.5, + "end": 7043.62, + "probability": 0.846 + }, + { + "start": 7044.7, + "end": 7045.4, + "probability": 0.554 + }, + { + "start": 7046.8, + "end": 7048.38, + "probability": 0.8582 + }, + { + "start": 7048.96, + "end": 7051.04, + "probability": 0.9868 + }, + { + "start": 7051.66, + "end": 7053.44, + "probability": 0.7422 + }, + { + "start": 7053.66, + "end": 7056.18, + "probability": 0.9905 + }, + { + "start": 7058.34, + "end": 7060.36, + "probability": 0.9281 + }, + { + "start": 7061.76, + "end": 7066.56, + "probability": 0.8488 + }, + { + "start": 7066.72, + "end": 7071.93, + "probability": 0.5352 + }, + { + "start": 7072.36, + "end": 7072.86, + "probability": 0.5242 + }, + { + "start": 7072.94, + "end": 7073.66, + "probability": 0.6907 + }, + { + "start": 7074.96, + "end": 7075.18, + "probability": 0.0056 + }, + { + "start": 7077.24, + "end": 7077.98, + "probability": 0.178 + }, + { + "start": 7095.1, + "end": 7096.58, + "probability": 0.0374 + }, + { + "start": 7096.58, + "end": 7099.02, + "probability": 0.5273 + }, + { + "start": 7099.7, + "end": 7102.98, + "probability": 0.6722 + }, + { + "start": 7103.54, + "end": 7104.76, + "probability": 0.932 + }, + { + "start": 7106.12, + "end": 7108.36, + "probability": 0.9963 + }, + { + "start": 7111.15, + "end": 7114.74, + "probability": 0.7345 + }, + { + "start": 7115.1, + "end": 7117.3, + "probability": 0.1259 + }, + { + "start": 7117.82, + "end": 7119.56, + "probability": 0.938 + }, + { + "start": 7119.7, + "end": 7122.92, + "probability": 0.968 + }, + { + "start": 7123.42, + "end": 7124.92, + "probability": 0.8073 + }, + { + "start": 7125.1, + "end": 7125.46, + "probability": 0.7654 + }, + { + "start": 7148.4, + "end": 7148.6, + "probability": 0.2959 + }, + { + "start": 7148.68, + "end": 7149.06, + "probability": 0.5422 + }, + { + "start": 7149.3, + "end": 7149.78, + "probability": 0.8123 + }, + { + "start": 7150.1, + "end": 7153.98, + "probability": 0.7073 + }, + { + "start": 7154.88, + "end": 7158.54, + "probability": 0.9595 + }, + { + "start": 7159.0, + "end": 7162.0, + "probability": 0.8875 + }, + { + "start": 7162.71, + "end": 7171.0, + "probability": 0.8671 + }, + { + "start": 7171.78, + "end": 7174.62, + "probability": 0.9565 + }, + { + "start": 7175.34, + "end": 7177.56, + "probability": 0.9977 + }, + { + "start": 7179.2, + "end": 7180.46, + "probability": 0.9766 + }, + { + "start": 7180.96, + "end": 7186.22, + "probability": 0.9717 + }, + { + "start": 7187.42, + "end": 7188.92, + "probability": 0.9458 + }, + { + "start": 7194.64, + "end": 7197.7, + "probability": 0.752 + }, + { + "start": 7199.38, + "end": 7205.6, + "probability": 0.9139 + }, + { + "start": 7205.66, + "end": 7206.9, + "probability": 0.853 + }, + { + "start": 7207.82, + "end": 7208.52, + "probability": 0.694 + }, + { + "start": 7209.04, + "end": 7210.12, + "probability": 0.9686 + }, + { + "start": 7210.36, + "end": 7211.0, + "probability": 0.6667 + }, + { + "start": 7211.26, + "end": 7216.4, + "probability": 0.9613 + }, + { + "start": 7216.46, + "end": 7220.31, + "probability": 0.9863 + }, + { + "start": 7220.78, + "end": 7221.38, + "probability": 0.7658 + }, + { + "start": 7221.9, + "end": 7224.56, + "probability": 0.9377 + }, + { + "start": 7225.56, + "end": 7228.1, + "probability": 0.998 + }, + { + "start": 7229.52, + "end": 7231.52, + "probability": 0.8775 + }, + { + "start": 7231.64, + "end": 7234.1, + "probability": 0.9639 + }, + { + "start": 7234.58, + "end": 7237.86, + "probability": 0.9235 + }, + { + "start": 7238.94, + "end": 7245.26, + "probability": 0.8525 + }, + { + "start": 7247.28, + "end": 7248.98, + "probability": 0.9804 + }, + { + "start": 7249.78, + "end": 7256.48, + "probability": 0.8854 + }, + { + "start": 7257.22, + "end": 7261.44, + "probability": 0.9841 + }, + { + "start": 7261.88, + "end": 7269.44, + "probability": 0.8752 + }, + { + "start": 7269.46, + "end": 7274.94, + "probability": 0.9141 + }, + { + "start": 7275.44, + "end": 7277.08, + "probability": 0.6668 + }, + { + "start": 7278.7, + "end": 7282.12, + "probability": 0.8797 + }, + { + "start": 7282.14, + "end": 7288.71, + "probability": 0.7747 + }, + { + "start": 7289.5, + "end": 7294.82, + "probability": 0.9832 + }, + { + "start": 7295.14, + "end": 7297.66, + "probability": 0.9557 + }, + { + "start": 7297.98, + "end": 7304.76, + "probability": 0.6023 + }, + { + "start": 7306.22, + "end": 7312.82, + "probability": 0.9575 + }, + { + "start": 7313.68, + "end": 7321.5, + "probability": 0.841 + }, + { + "start": 7321.88, + "end": 7327.14, + "probability": 0.9513 + }, + { + "start": 7328.08, + "end": 7329.34, + "probability": 0.8019 + }, + { + "start": 7329.84, + "end": 7331.8, + "probability": 0.9268 + }, + { + "start": 7332.12, + "end": 7341.04, + "probability": 0.8929 + }, + { + "start": 7341.15, + "end": 7354.4, + "probability": 0.9897 + }, + { + "start": 7355.6, + "end": 7359.16, + "probability": 0.7549 + }, + { + "start": 7359.96, + "end": 7367.6, + "probability": 0.9316 + }, + { + "start": 7368.28, + "end": 7372.96, + "probability": 0.9866 + }, + { + "start": 7373.0, + "end": 7373.82, + "probability": 0.8573 + }, + { + "start": 7374.5, + "end": 7380.36, + "probability": 0.9753 + }, + { + "start": 7380.88, + "end": 7381.28, + "probability": 0.6141 + }, + { + "start": 7381.52, + "end": 7383.46, + "probability": 0.7493 + }, + { + "start": 7383.54, + "end": 7385.04, + "probability": 0.8922 + }, + { + "start": 7385.18, + "end": 7387.24, + "probability": 0.7363 + }, + { + "start": 7387.32, + "end": 7387.82, + "probability": 0.7579 + }, + { + "start": 7388.4, + "end": 7390.8, + "probability": 0.9878 + }, + { + "start": 7391.72, + "end": 7394.3, + "probability": 0.909 + }, + { + "start": 7394.4, + "end": 7397.54, + "probability": 0.6942 + }, + { + "start": 7398.14, + "end": 7400.9, + "probability": 0.9768 + }, + { + "start": 7401.06, + "end": 7405.74, + "probability": 0.9943 + }, + { + "start": 7406.54, + "end": 7407.8, + "probability": 0.7291 + }, + { + "start": 7408.42, + "end": 7409.98, + "probability": 0.6735 + }, + { + "start": 7410.12, + "end": 7410.68, + "probability": 0.667 + }, + { + "start": 7411.08, + "end": 7413.38, + "probability": 0.6082 + }, + { + "start": 7413.6, + "end": 7413.7, + "probability": 0.0326 + }, + { + "start": 7413.7, + "end": 7414.68, + "probability": 0.2337 + }, + { + "start": 7415.74, + "end": 7416.63, + "probability": 0.8837 + }, + { + "start": 7417.12, + "end": 7423.22, + "probability": 0.9807 + }, + { + "start": 7424.08, + "end": 7425.7, + "probability": 0.848 + }, + { + "start": 7425.86, + "end": 7432.74, + "probability": 0.9823 + }, + { + "start": 7433.26, + "end": 7435.66, + "probability": 0.9435 + }, + { + "start": 7435.98, + "end": 7440.0, + "probability": 0.8553 + }, + { + "start": 7440.12, + "end": 7440.5, + "probability": 0.6734 + }, + { + "start": 7442.06, + "end": 7444.8, + "probability": 0.7801 + }, + { + "start": 7445.18, + "end": 7445.98, + "probability": 0.6684 + }, + { + "start": 7446.32, + "end": 7448.9, + "probability": 0.7009 + }, + { + "start": 7449.88, + "end": 7452.76, + "probability": 0.9406 + }, + { + "start": 7453.86, + "end": 7456.56, + "probability": 0.9598 + }, + { + "start": 7457.3, + "end": 7458.9, + "probability": 0.9823 + }, + { + "start": 7459.48, + "end": 7459.52, + "probability": 0.0032 + }, + { + "start": 7459.52, + "end": 7460.86, + "probability": 0.3856 + }, + { + "start": 7461.36, + "end": 7464.62, + "probability": 0.9616 + }, + { + "start": 7465.62, + "end": 7467.7, + "probability": 0.7949 + }, + { + "start": 7467.72, + "end": 7469.34, + "probability": 0.9327 + }, + { + "start": 7469.74, + "end": 7471.58, + "probability": 0.9878 + }, + { + "start": 7472.4, + "end": 7473.0, + "probability": 0.8654 + }, + { + "start": 7474.34, + "end": 7475.5, + "probability": 0.7071 + }, + { + "start": 7476.04, + "end": 7476.92, + "probability": 0.8118 + }, + { + "start": 7477.12, + "end": 7478.2, + "probability": 0.604 + }, + { + "start": 7478.72, + "end": 7481.28, + "probability": 0.8474 + }, + { + "start": 7485.9, + "end": 7486.14, + "probability": 0.2699 + }, + { + "start": 7486.3, + "end": 7487.66, + "probability": 0.4982 + }, + { + "start": 7487.76, + "end": 7489.52, + "probability": 0.7482 + }, + { + "start": 7489.96, + "end": 7490.38, + "probability": 0.6024 + }, + { + "start": 7490.44, + "end": 7490.8, + "probability": 0.5743 + }, + { + "start": 7491.22, + "end": 7496.88, + "probability": 0.9788 + }, + { + "start": 7497.4, + "end": 7498.54, + "probability": 0.9516 + }, + { + "start": 7499.64, + "end": 7503.46, + "probability": 0.9926 + }, + { + "start": 7505.78, + "end": 7505.88, + "probability": 0.3066 + }, + { + "start": 7505.88, + "end": 7507.36, + "probability": 0.7488 + }, + { + "start": 7507.96, + "end": 7511.5, + "probability": 0.9949 + }, + { + "start": 7512.0, + "end": 7512.42, + "probability": 0.6127 + }, + { + "start": 7512.62, + "end": 7513.14, + "probability": 0.5981 + }, + { + "start": 7513.14, + "end": 7513.6, + "probability": 0.6837 + }, + { + "start": 7513.62, + "end": 7514.06, + "probability": 0.4437 + }, + { + "start": 7514.44, + "end": 7514.78, + "probability": 0.8499 + }, + { + "start": 7515.92, + "end": 7516.22, + "probability": 0.8503 + }, + { + "start": 7516.28, + "end": 7517.76, + "probability": 0.8198 + }, + { + "start": 7517.84, + "end": 7520.62, + "probability": 0.9502 + }, + { + "start": 7520.74, + "end": 7525.72, + "probability": 0.9934 + }, + { + "start": 7525.72, + "end": 7529.1, + "probability": 0.9977 + }, + { + "start": 7529.7, + "end": 7531.56, + "probability": 0.8913 + }, + { + "start": 7532.1, + "end": 7533.72, + "probability": 0.8862 + }, + { + "start": 7534.42, + "end": 7536.78, + "probability": 0.9507 + }, + { + "start": 7538.0, + "end": 7541.7, + "probability": 0.9141 + }, + { + "start": 7541.88, + "end": 7543.44, + "probability": 0.9564 + }, + { + "start": 7543.58, + "end": 7545.46, + "probability": 0.8903 + }, + { + "start": 7545.48, + "end": 7548.76, + "probability": 0.7683 + }, + { + "start": 7548.94, + "end": 7550.08, + "probability": 0.5044 + }, + { + "start": 7550.12, + "end": 7554.78, + "probability": 0.9835 + }, + { + "start": 7555.4, + "end": 7556.92, + "probability": 0.9707 + }, + { + "start": 7557.76, + "end": 7558.42, + "probability": 0.7274 + }, + { + "start": 7558.46, + "end": 7562.2, + "probability": 0.8633 + }, + { + "start": 7562.38, + "end": 7564.1, + "probability": 0.8985 + }, + { + "start": 7564.98, + "end": 7568.06, + "probability": 0.9885 + }, + { + "start": 7568.62, + "end": 7571.58, + "probability": 0.9841 + }, + { + "start": 7572.18, + "end": 7575.86, + "probability": 0.9953 + }, + { + "start": 7576.4, + "end": 7580.54, + "probability": 0.9821 + }, + { + "start": 7580.56, + "end": 7580.88, + "probability": 0.8513 + }, + { + "start": 7582.06, + "end": 7585.98, + "probability": 0.9624 + }, + { + "start": 7586.08, + "end": 7589.14, + "probability": 0.9234 + }, + { + "start": 7590.5, + "end": 7593.06, + "probability": 0.8986 + }, + { + "start": 7593.26, + "end": 7596.74, + "probability": 0.9963 + }, + { + "start": 7596.8, + "end": 7599.06, + "probability": 0.9919 + }, + { + "start": 7599.96, + "end": 7601.26, + "probability": 0.9763 + }, + { + "start": 7602.26, + "end": 7603.02, + "probability": 0.8602 + }, + { + "start": 7603.6, + "end": 7604.06, + "probability": 0.4534 + }, + { + "start": 7604.16, + "end": 7604.86, + "probability": 0.9471 + }, + { + "start": 7604.94, + "end": 7608.86, + "probability": 0.8688 + }, + { + "start": 7609.82, + "end": 7612.5, + "probability": 0.9011 + }, + { + "start": 7613.28, + "end": 7618.08, + "probability": 0.991 + }, + { + "start": 7618.86, + "end": 7626.32, + "probability": 0.9966 + }, + { + "start": 7626.94, + "end": 7630.42, + "probability": 0.9989 + }, + { + "start": 7630.54, + "end": 7637.24, + "probability": 0.863 + }, + { + "start": 7637.7, + "end": 7638.52, + "probability": 0.7436 + }, + { + "start": 7639.52, + "end": 7641.8, + "probability": 0.806 + }, + { + "start": 7642.46, + "end": 7647.66, + "probability": 0.9963 + }, + { + "start": 7647.76, + "end": 7649.22, + "probability": 0.8914 + }, + { + "start": 7650.68, + "end": 7652.0, + "probability": 0.9912 + }, + { + "start": 7652.24, + "end": 7652.8, + "probability": 0.49 + }, + { + "start": 7652.98, + "end": 7654.36, + "probability": 0.9839 + }, + { + "start": 7654.42, + "end": 7656.03, + "probability": 0.9883 + }, + { + "start": 7656.3, + "end": 7657.14, + "probability": 0.7364 + }, + { + "start": 7657.86, + "end": 7659.99, + "probability": 0.9929 + }, + { + "start": 7660.78, + "end": 7668.12, + "probability": 0.9903 + }, + { + "start": 7668.24, + "end": 7669.84, + "probability": 0.9159 + }, + { + "start": 7670.0, + "end": 7670.53, + "probability": 0.908 + }, + { + "start": 7671.1, + "end": 7672.14, + "probability": 0.8442 + }, + { + "start": 7672.84, + "end": 7675.5, + "probability": 0.7596 + }, + { + "start": 7676.3, + "end": 7679.26, + "probability": 0.9932 + }, + { + "start": 7679.86, + "end": 7681.38, + "probability": 0.865 + }, + { + "start": 7682.24, + "end": 7685.82, + "probability": 0.9877 + }, + { + "start": 7687.52, + "end": 7691.4, + "probability": 0.9453 + }, + { + "start": 7692.08, + "end": 7692.9, + "probability": 0.4472 + }, + { + "start": 7693.12, + "end": 7696.98, + "probability": 0.972 + }, + { + "start": 7697.46, + "end": 7698.42, + "probability": 0.9132 + }, + { + "start": 7698.74, + "end": 7700.42, + "probability": 0.8645 + }, + { + "start": 7701.54, + "end": 7702.53, + "probability": 0.8447 + }, + { + "start": 7702.68, + "end": 7705.96, + "probability": 0.9885 + }, + { + "start": 7706.82, + "end": 7707.45, + "probability": 0.9354 + }, + { + "start": 7707.84, + "end": 7709.16, + "probability": 0.9697 + }, + { + "start": 7710.38, + "end": 7711.86, + "probability": 0.8884 + }, + { + "start": 7712.2, + "end": 7716.1, + "probability": 0.9901 + }, + { + "start": 7717.06, + "end": 7719.94, + "probability": 0.9924 + }, + { + "start": 7720.06, + "end": 7722.34, + "probability": 0.978 + }, + { + "start": 7723.26, + "end": 7725.9, + "probability": 0.9989 + }, + { + "start": 7725.9, + "end": 7729.34, + "probability": 0.9998 + }, + { + "start": 7729.44, + "end": 7732.84, + "probability": 0.8344 + }, + { + "start": 7734.98, + "end": 7737.02, + "probability": 0.9034 + }, + { + "start": 7737.68, + "end": 7738.2, + "probability": 0.6746 + }, + { + "start": 7738.96, + "end": 7739.6, + "probability": 0.7401 + }, + { + "start": 7739.78, + "end": 7742.66, + "probability": 0.9909 + }, + { + "start": 7743.14, + "end": 7747.44, + "probability": 0.9891 + }, + { + "start": 7747.92, + "end": 7750.62, + "probability": 0.9176 + }, + { + "start": 7751.06, + "end": 7751.84, + "probability": 0.6408 + }, + { + "start": 7752.2, + "end": 7754.8, + "probability": 0.6557 + }, + { + "start": 7755.72, + "end": 7755.72, + "probability": 0.0134 + }, + { + "start": 7755.72, + "end": 7760.88, + "probability": 0.9926 + }, + { + "start": 7760.88, + "end": 7766.9, + "probability": 0.9962 + }, + { + "start": 7768.28, + "end": 7771.9, + "probability": 0.6959 + }, + { + "start": 7772.58, + "end": 7774.36, + "probability": 0.9222 + }, + { + "start": 7774.74, + "end": 7777.62, + "probability": 0.9579 + }, + { + "start": 7777.74, + "end": 7779.66, + "probability": 0.6594 + }, + { + "start": 7780.28, + "end": 7781.34, + "probability": 0.9097 + }, + { + "start": 7781.6, + "end": 7782.66, + "probability": 0.9626 + }, + { + "start": 7783.42, + "end": 7785.65, + "probability": 0.9683 + }, + { + "start": 7786.54, + "end": 7790.68, + "probability": 0.9946 + }, + { + "start": 7792.0, + "end": 7794.68, + "probability": 0.9919 + }, + { + "start": 7795.14, + "end": 7796.36, + "probability": 0.9972 + }, + { + "start": 7797.04, + "end": 7799.76, + "probability": 0.9983 + }, + { + "start": 7800.44, + "end": 7805.66, + "probability": 0.9508 + }, + { + "start": 7805.66, + "end": 7808.08, + "probability": 0.973 + }, + { + "start": 7808.56, + "end": 7809.0, + "probability": 0.3653 + }, + { + "start": 7809.72, + "end": 7812.92, + "probability": 0.9958 + }, + { + "start": 7813.28, + "end": 7814.4, + "probability": 0.9878 + }, + { + "start": 7814.56, + "end": 7816.61, + "probability": 0.9414 + }, + { + "start": 7817.58, + "end": 7822.04, + "probability": 0.8804 + }, + { + "start": 7822.04, + "end": 7823.04, + "probability": 0.6922 + }, + { + "start": 7823.66, + "end": 7827.38, + "probability": 0.9932 + }, + { + "start": 7828.68, + "end": 7832.58, + "probability": 0.882 + }, + { + "start": 7833.1, + "end": 7835.46, + "probability": 0.995 + }, + { + "start": 7835.72, + "end": 7836.34, + "probability": 0.9063 + }, + { + "start": 7836.82, + "end": 7837.74, + "probability": 0.6864 + }, + { + "start": 7837.76, + "end": 7839.5, + "probability": 0.9824 + }, + { + "start": 7839.56, + "end": 7841.38, + "probability": 0.5904 + }, + { + "start": 7842.18, + "end": 7843.96, + "probability": 0.7931 + }, + { + "start": 7844.62, + "end": 7848.58, + "probability": 0.9886 + }, + { + "start": 7849.06, + "end": 7854.7, + "probability": 0.9673 + }, + { + "start": 7854.88, + "end": 7859.48, + "probability": 0.7934 + }, + { + "start": 7860.44, + "end": 7862.84, + "probability": 0.6632 + }, + { + "start": 7863.44, + "end": 7869.74, + "probability": 0.9894 + }, + { + "start": 7869.92, + "end": 7870.48, + "probability": 0.9355 + }, + { + "start": 7871.6, + "end": 7872.02, + "probability": 0.6055 + }, + { + "start": 7872.34, + "end": 7874.65, + "probability": 0.939 + }, + { + "start": 7874.78, + "end": 7879.06, + "probability": 0.9984 + }, + { + "start": 7879.7, + "end": 7883.1, + "probability": 0.9169 + }, + { + "start": 7884.18, + "end": 7887.16, + "probability": 0.9728 + }, + { + "start": 7887.84, + "end": 7890.06, + "probability": 0.9667 + }, + { + "start": 7890.62, + "end": 7893.3, + "probability": 0.9939 + }, + { + "start": 7893.82, + "end": 7895.08, + "probability": 0.8213 + }, + { + "start": 7896.14, + "end": 7899.22, + "probability": 0.7929 + }, + { + "start": 7899.8, + "end": 7902.68, + "probability": 0.8035 + }, + { + "start": 7903.48, + "end": 7904.38, + "probability": 0.8292 + }, + { + "start": 7904.92, + "end": 7909.2, + "probability": 0.8961 + }, + { + "start": 7909.72, + "end": 7913.02, + "probability": 0.9811 + }, + { + "start": 7913.88, + "end": 7915.38, + "probability": 0.907 + }, + { + "start": 7915.9, + "end": 7919.34, + "probability": 0.9902 + }, + { + "start": 7919.42, + "end": 7921.04, + "probability": 0.9846 + }, + { + "start": 7921.88, + "end": 7924.48, + "probability": 0.9605 + }, + { + "start": 7925.1, + "end": 7926.0, + "probability": 0.9667 + }, + { + "start": 7926.56, + "end": 7928.14, + "probability": 0.9466 + }, + { + "start": 7928.72, + "end": 7929.64, + "probability": 0.6807 + }, + { + "start": 7930.64, + "end": 7931.52, + "probability": 0.9722 + }, + { + "start": 7931.7, + "end": 7932.5, + "probability": 0.8682 + }, + { + "start": 7932.6, + "end": 7934.28, + "probability": 0.8483 + }, + { + "start": 7935.2, + "end": 7938.72, + "probability": 0.8772 + }, + { + "start": 7938.84, + "end": 7940.4, + "probability": 0.036 + }, + { + "start": 7940.4, + "end": 7940.86, + "probability": 0.4315 + }, + { + "start": 7941.48, + "end": 7944.76, + "probability": 0.7902 + }, + { + "start": 7945.62, + "end": 7947.8, + "probability": 0.9482 + }, + { + "start": 7948.52, + "end": 7950.28, + "probability": 0.9725 + }, + { + "start": 7950.74, + "end": 7953.24, + "probability": 0.9849 + }, + { + "start": 7953.82, + "end": 7954.46, + "probability": 0.8232 + }, + { + "start": 7954.98, + "end": 7955.54, + "probability": 0.6525 + }, + { + "start": 7955.66, + "end": 7955.92, + "probability": 0.5514 + }, + { + "start": 7955.94, + "end": 7956.64, + "probability": 0.9548 + }, + { + "start": 7956.68, + "end": 7957.34, + "probability": 0.8725 + }, + { + "start": 7957.48, + "end": 7960.56, + "probability": 0.9692 + }, + { + "start": 7960.66, + "end": 7962.26, + "probability": 0.97 + }, + { + "start": 7963.02, + "end": 7966.16, + "probability": 0.9702 + }, + { + "start": 7966.32, + "end": 7967.44, + "probability": 0.9218 + }, + { + "start": 7968.56, + "end": 7970.38, + "probability": 0.8358 + }, + { + "start": 7970.94, + "end": 7971.4, + "probability": 0.8205 + }, + { + "start": 7971.54, + "end": 7975.96, + "probability": 0.9213 + }, + { + "start": 7975.96, + "end": 7979.16, + "probability": 0.683 + }, + { + "start": 7979.88, + "end": 7980.1, + "probability": 0.5616 + }, + { + "start": 7981.86, + "end": 7984.33, + "probability": 0.9053 + }, + { + "start": 7984.58, + "end": 7985.21, + "probability": 0.9531 + }, + { + "start": 7985.46, + "end": 7986.6, + "probability": 0.4751 + }, + { + "start": 7986.66, + "end": 7986.98, + "probability": 0.7728 + }, + { + "start": 7987.6, + "end": 7989.1, + "probability": 0.8333 + }, + { + "start": 7990.42, + "end": 7991.2, + "probability": 0.8486 + }, + { + "start": 7991.3, + "end": 7991.98, + "probability": 0.9866 + }, + { + "start": 7992.02, + "end": 7993.8, + "probability": 0.8442 + }, + { + "start": 7994.06, + "end": 7995.39, + "probability": 0.9536 + }, + { + "start": 7995.46, + "end": 7996.12, + "probability": 0.9764 + }, + { + "start": 7997.1, + "end": 7998.56, + "probability": 0.4163 + }, + { + "start": 7999.08, + "end": 7999.54, + "probability": 0.9933 + }, + { + "start": 8000.24, + "end": 8002.68, + "probability": 0.7753 + }, + { + "start": 8003.8, + "end": 8005.56, + "probability": 0.5537 + }, + { + "start": 8005.58, + "end": 8009.56, + "probability": 0.9315 + }, + { + "start": 8009.7, + "end": 8011.34, + "probability": 0.908 + }, + { + "start": 8012.12, + "end": 8013.78, + "probability": 0.9974 + }, + { + "start": 8014.56, + "end": 8016.6, + "probability": 0.9714 + }, + { + "start": 8016.74, + "end": 8020.26, + "probability": 0.9977 + }, + { + "start": 8020.92, + "end": 8022.2, + "probability": 0.6273 + }, + { + "start": 8022.96, + "end": 8025.24, + "probability": 0.7785 + }, + { + "start": 8025.46, + "end": 8027.06, + "probability": 0.9495 + }, + { + "start": 8027.52, + "end": 8031.92, + "probability": 0.9965 + }, + { + "start": 8032.0, + "end": 8033.52, + "probability": 0.7893 + }, + { + "start": 8033.68, + "end": 8036.06, + "probability": 0.9686 + }, + { + "start": 8036.74, + "end": 8039.98, + "probability": 0.9869 + }, + { + "start": 8040.62, + "end": 8042.84, + "probability": 0.8097 + }, + { + "start": 8043.68, + "end": 8044.96, + "probability": 0.8188 + }, + { + "start": 8045.5, + "end": 8046.96, + "probability": 0.9969 + }, + { + "start": 8047.82, + "end": 8049.14, + "probability": 0.9995 + }, + { + "start": 8049.86, + "end": 8053.68, + "probability": 0.9696 + }, + { + "start": 8054.4, + "end": 8057.94, + "probability": 0.9985 + }, + { + "start": 8058.5, + "end": 8062.04, + "probability": 0.6801 + }, + { + "start": 8062.82, + "end": 8064.34, + "probability": 0.8633 + }, + { + "start": 8064.98, + "end": 8068.28, + "probability": 0.8394 + }, + { + "start": 8069.14, + "end": 8071.28, + "probability": 0.9913 + }, + { + "start": 8071.42, + "end": 8074.16, + "probability": 0.9731 + }, + { + "start": 8074.98, + "end": 8081.22, + "probability": 0.9841 + }, + { + "start": 8081.36, + "end": 8083.1, + "probability": 0.8071 + }, + { + "start": 8083.62, + "end": 8084.42, + "probability": 0.5533 + }, + { + "start": 8084.52, + "end": 8086.28, + "probability": 0.7222 + }, + { + "start": 8086.36, + "end": 8087.04, + "probability": 0.7964 + }, + { + "start": 8087.56, + "end": 8089.32, + "probability": 0.9338 + }, + { + "start": 8089.98, + "end": 8090.12, + "probability": 0.7227 + }, + { + "start": 8091.06, + "end": 8091.72, + "probability": 0.8325 + }, + { + "start": 8092.02, + "end": 8092.92, + "probability": 0.8499 + }, + { + "start": 8093.78, + "end": 8094.12, + "probability": 0.6964 + }, + { + "start": 8094.22, + "end": 8096.84, + "probability": 0.972 + }, + { + "start": 8097.12, + "end": 8099.4, + "probability": 0.913 + }, + { + "start": 8099.54, + "end": 8100.08, + "probability": 0.8709 + }, + { + "start": 8100.18, + "end": 8101.72, + "probability": 0.7068 + }, + { + "start": 8101.9, + "end": 8103.93, + "probability": 0.8381 + }, + { + "start": 8104.74, + "end": 8106.48, + "probability": 0.9677 + }, + { + "start": 8107.38, + "end": 8110.06, + "probability": 0.9573 + }, + { + "start": 8110.7, + "end": 8113.78, + "probability": 0.9834 + }, + { + "start": 8114.36, + "end": 8118.46, + "probability": 0.9847 + }, + { + "start": 8119.4, + "end": 8122.36, + "probability": 0.9949 + }, + { + "start": 8123.06, + "end": 8126.94, + "probability": 0.9926 + }, + { + "start": 8126.98, + "end": 8128.32, + "probability": 0.9995 + }, + { + "start": 8129.06, + "end": 8134.24, + "probability": 0.9909 + }, + { + "start": 8134.82, + "end": 8136.24, + "probability": 0.9841 + }, + { + "start": 8136.36, + "end": 8140.56, + "probability": 0.9968 + }, + { + "start": 8141.12, + "end": 8142.92, + "probability": 0.9888 + }, + { + "start": 8143.68, + "end": 8146.42, + "probability": 0.9722 + }, + { + "start": 8147.38, + "end": 8148.14, + "probability": 0.6223 + }, + { + "start": 8148.94, + "end": 8150.24, + "probability": 0.9883 + }, + { + "start": 8150.76, + "end": 8152.34, + "probability": 0.7506 + }, + { + "start": 8153.4, + "end": 8155.38, + "probability": 0.8299 + }, + { + "start": 8155.44, + "end": 8156.08, + "probability": 0.8733 + }, + { + "start": 8156.84, + "end": 8157.82, + "probability": 0.98 + }, + { + "start": 8158.54, + "end": 8159.32, + "probability": 0.9202 + }, + { + "start": 8159.52, + "end": 8162.2, + "probability": 0.8311 + }, + { + "start": 8162.64, + "end": 8163.76, + "probability": 0.8775 + }, + { + "start": 8164.32, + "end": 8165.74, + "probability": 0.9492 + }, + { + "start": 8166.26, + "end": 8169.16, + "probability": 0.9958 + }, + { + "start": 8169.86, + "end": 8171.08, + "probability": 0.9719 + }, + { + "start": 8172.7, + "end": 8173.56, + "probability": 0.663 + }, + { + "start": 8173.72, + "end": 8176.36, + "probability": 0.9548 + }, + { + "start": 8176.9, + "end": 8178.3, + "probability": 0.9847 + }, + { + "start": 8178.7, + "end": 8186.56, + "probability": 0.843 + }, + { + "start": 8188.06, + "end": 8190.76, + "probability": 0.9737 + }, + { + "start": 8191.12, + "end": 8197.36, + "probability": 0.998 + }, + { + "start": 8198.16, + "end": 8203.24, + "probability": 0.9966 + }, + { + "start": 8203.88, + "end": 8206.84, + "probability": 0.9781 + }, + { + "start": 8207.14, + "end": 8207.4, + "probability": 0.7769 + }, + { + "start": 8208.3, + "end": 8210.44, + "probability": 0.8487 + }, + { + "start": 8210.52, + "end": 8211.82, + "probability": 0.8881 + }, + { + "start": 8211.88, + "end": 8211.98, + "probability": 0.733 + }, + { + "start": 8212.46, + "end": 8214.62, + "probability": 0.9099 + }, + { + "start": 8216.38, + "end": 8218.2, + "probability": 0.6613 + }, + { + "start": 8234.02, + "end": 8238.8, + "probability": 0.8041 + }, + { + "start": 8239.94, + "end": 8245.92, + "probability": 0.9801 + }, + { + "start": 8246.52, + "end": 8249.12, + "probability": 0.6455 + }, + { + "start": 8249.88, + "end": 8251.12, + "probability": 0.855 + }, + { + "start": 8251.76, + "end": 8258.8, + "probability": 0.7667 + }, + { + "start": 8259.4, + "end": 8262.04, + "probability": 0.9889 + }, + { + "start": 8262.52, + "end": 8266.04, + "probability": 0.7024 + }, + { + "start": 8266.64, + "end": 8270.52, + "probability": 0.746 + }, + { + "start": 8271.34, + "end": 8276.74, + "probability": 0.6712 + }, + { + "start": 8277.84, + "end": 8278.7, + "probability": 0.7745 + }, + { + "start": 8279.3, + "end": 8281.5, + "probability": 0.9755 + }, + { + "start": 8281.5, + "end": 8281.84, + "probability": 0.7921 + }, + { + "start": 8282.06, + "end": 8285.76, + "probability": 0.8677 + }, + { + "start": 8286.34, + "end": 8294.06, + "probability": 0.989 + }, + { + "start": 8294.5, + "end": 8295.4, + "probability": 0.9421 + }, + { + "start": 8295.76, + "end": 8301.84, + "probability": 0.9385 + }, + { + "start": 8302.38, + "end": 8303.06, + "probability": 0.6059 + }, + { + "start": 8303.1, + "end": 8303.68, + "probability": 0.7735 + }, + { + "start": 8304.0, + "end": 8305.36, + "probability": 0.8145 + }, + { + "start": 8305.78, + "end": 8307.86, + "probability": 0.9448 + }, + { + "start": 8308.34, + "end": 8314.26, + "probability": 0.979 + }, + { + "start": 8314.26, + "end": 8320.3, + "probability": 0.9936 + }, + { + "start": 8320.92, + "end": 8322.58, + "probability": 0.0138 + }, + { + "start": 8325.4, + "end": 8326.8, + "probability": 0.6263 + }, + { + "start": 8327.54, + "end": 8331.06, + "probability": 0.9768 + }, + { + "start": 8331.06, + "end": 8333.84, + "probability": 0.9937 + }, + { + "start": 8334.54, + "end": 8337.74, + "probability": 0.9938 + }, + { + "start": 8338.42, + "end": 8343.06, + "probability": 0.9982 + }, + { + "start": 8343.1, + "end": 8345.92, + "probability": 0.9879 + }, + { + "start": 8346.96, + "end": 8352.28, + "probability": 0.786 + }, + { + "start": 8352.78, + "end": 8354.58, + "probability": 0.8657 + }, + { + "start": 8354.88, + "end": 8357.2, + "probability": 0.9915 + }, + { + "start": 8357.68, + "end": 8364.66, + "probability": 0.9883 + }, + { + "start": 8365.44, + "end": 8367.4, + "probability": 0.302 + }, + { + "start": 8368.8, + "end": 8369.52, + "probability": 0.271 + }, + { + "start": 8370.16, + "end": 8372.78, + "probability": 0.9972 + }, + { + "start": 8373.18, + "end": 8373.82, + "probability": 0.8195 + }, + { + "start": 8374.44, + "end": 8379.86, + "probability": 0.9746 + }, + { + "start": 8379.94, + "end": 8386.48, + "probability": 0.9775 + }, + { + "start": 8386.48, + "end": 8389.54, + "probability": 0.9889 + }, + { + "start": 8390.62, + "end": 8392.58, + "probability": 0.883 + }, + { + "start": 8393.22, + "end": 8395.58, + "probability": 0.858 + }, + { + "start": 8396.28, + "end": 8397.86, + "probability": 0.963 + }, + { + "start": 8413.86, + "end": 8415.8, + "probability": 0.6602 + }, + { + "start": 8415.8, + "end": 8416.78, + "probability": 0.7898 + }, + { + "start": 8417.08, + "end": 8418.06, + "probability": 0.0956 + }, + { + "start": 8419.32, + "end": 8419.48, + "probability": 0.4219 + }, + { + "start": 8419.84, + "end": 8420.86, + "probability": 0.9543 + }, + { + "start": 8421.1, + "end": 8424.78, + "probability": 0.7124 + }, + { + "start": 8424.98, + "end": 8426.91, + "probability": 0.9855 + }, + { + "start": 8427.24, + "end": 8428.08, + "probability": 0.8074 + }, + { + "start": 8428.66, + "end": 8429.34, + "probability": 0.9573 + }, + { + "start": 8430.18, + "end": 8435.32, + "probability": 0.6645 + }, + { + "start": 8435.92, + "end": 8437.86, + "probability": 0.9601 + }, + { + "start": 8438.06, + "end": 8440.56, + "probability": 0.9889 + }, + { + "start": 8442.44, + "end": 8446.26, + "probability": 0.7628 + }, + { + "start": 8447.2, + "end": 8448.36, + "probability": 0.5013 + }, + { + "start": 8451.68, + "end": 8455.72, + "probability": 0.9614 + }, + { + "start": 8456.32, + "end": 8461.6, + "probability": 0.9531 + }, + { + "start": 8463.88, + "end": 8466.82, + "probability": 0.6872 + }, + { + "start": 8468.16, + "end": 8471.34, + "probability": 0.8687 + }, + { + "start": 8473.18, + "end": 8477.88, + "probability": 0.9058 + }, + { + "start": 8478.28, + "end": 8480.1, + "probability": 0.7542 + }, + { + "start": 8480.84, + "end": 8482.08, + "probability": 0.915 + }, + { + "start": 8482.96, + "end": 8484.2, + "probability": 0.9028 + }, + { + "start": 8484.76, + "end": 8485.58, + "probability": 0.9727 + }, + { + "start": 8486.58, + "end": 8489.4, + "probability": 0.456 + }, + { + "start": 8490.98, + "end": 8493.22, + "probability": 0.6448 + }, + { + "start": 8495.36, + "end": 8497.98, + "probability": 0.3796 + }, + { + "start": 8499.28, + "end": 8500.84, + "probability": 0.6618 + }, + { + "start": 8501.88, + "end": 8508.08, + "probability": 0.9922 + }, + { + "start": 8509.08, + "end": 8509.56, + "probability": 0.7682 + }, + { + "start": 8510.18, + "end": 8511.3, + "probability": 0.8722 + }, + { + "start": 8511.88, + "end": 8512.28, + "probability": 0.9863 + }, + { + "start": 8513.12, + "end": 8517.82, + "probability": 0.7366 + }, + { + "start": 8518.58, + "end": 8520.72, + "probability": 0.7332 + }, + { + "start": 8521.54, + "end": 8524.08, + "probability": 0.9788 + }, + { + "start": 8528.16, + "end": 8529.62, + "probability": 0.6696 + }, + { + "start": 8530.66, + "end": 8531.2, + "probability": 0.8401 + }, + { + "start": 8532.28, + "end": 8534.8, + "probability": 0.9291 + }, + { + "start": 8535.44, + "end": 8539.6, + "probability": 0.7998 + }, + { + "start": 8540.16, + "end": 8541.2, + "probability": 0.635 + }, + { + "start": 8542.96, + "end": 8543.68, + "probability": 0.7544 + }, + { + "start": 8544.68, + "end": 8548.3, + "probability": 0.8727 + }, + { + "start": 8549.0, + "end": 8551.72, + "probability": 0.6316 + }, + { + "start": 8553.64, + "end": 8557.14, + "probability": 0.932 + }, + { + "start": 8558.1, + "end": 8559.24, + "probability": 0.9922 + }, + { + "start": 8559.8, + "end": 8561.3, + "probability": 0.8917 + }, + { + "start": 8562.12, + "end": 8563.94, + "probability": 0.9059 + }, + { + "start": 8564.54, + "end": 8565.41, + "probability": 0.0443 + }, + { + "start": 8566.28, + "end": 8569.0, + "probability": 0.5052 + }, + { + "start": 8570.42, + "end": 8573.64, + "probability": 0.9032 + }, + { + "start": 8574.38, + "end": 8575.82, + "probability": 0.7758 + }, + { + "start": 8577.3, + "end": 8579.5, + "probability": 0.9694 + }, + { + "start": 8580.76, + "end": 8585.56, + "probability": 0.8986 + }, + { + "start": 8586.32, + "end": 8590.22, + "probability": 0.9565 + }, + { + "start": 8591.42, + "end": 8593.1, + "probability": 0.5199 + }, + { + "start": 8594.06, + "end": 8597.32, + "probability": 0.9233 + }, + { + "start": 8598.2, + "end": 8602.8, + "probability": 0.9573 + }, + { + "start": 8603.58, + "end": 8604.72, + "probability": 0.7574 + }, + { + "start": 8605.8, + "end": 8606.52, + "probability": 0.7067 + }, + { + "start": 8608.72, + "end": 8617.16, + "probability": 0.9696 + }, + { + "start": 8617.44, + "end": 8618.78, + "probability": 0.9834 + }, + { + "start": 8619.5, + "end": 8624.04, + "probability": 0.9901 + }, + { + "start": 8625.48, + "end": 8626.68, + "probability": 0.531 + }, + { + "start": 8626.8, + "end": 8628.66, + "probability": 0.6478 + }, + { + "start": 8628.74, + "end": 8631.52, + "probability": 0.3681 + }, + { + "start": 8631.52, + "end": 8632.78, + "probability": 0.964 + }, + { + "start": 8633.92, + "end": 8634.1, + "probability": 0.5444 + }, + { + "start": 8634.18, + "end": 8636.04, + "probability": 0.1648 + }, + { + "start": 8637.12, + "end": 8637.12, + "probability": 0.5061 + }, + { + "start": 8637.12, + "end": 8637.16, + "probability": 0.0244 + }, + { + "start": 8637.16, + "end": 8637.66, + "probability": 0.1172 + }, + { + "start": 8637.66, + "end": 8638.5, + "probability": 0.6231 + }, + { + "start": 8638.72, + "end": 8639.16, + "probability": 0.2284 + }, + { + "start": 8639.4, + "end": 8640.6, + "probability": 0.968 + }, + { + "start": 8642.06, + "end": 8643.04, + "probability": 0.4442 + }, + { + "start": 8643.36, + "end": 8643.36, + "probability": 0.7663 + }, + { + "start": 8643.68, + "end": 8646.34, + "probability": 0.6812 + }, + { + "start": 8646.84, + "end": 8649.12, + "probability": 0.814 + }, + { + "start": 8649.24, + "end": 8650.84, + "probability": 0.9656 + }, + { + "start": 8651.44, + "end": 8652.92, + "probability": 0.989 + }, + { + "start": 8653.26, + "end": 8653.86, + "probability": 0.5399 + }, + { + "start": 8654.04, + "end": 8655.54, + "probability": 0.5049 + }, + { + "start": 8656.12, + "end": 8657.74, + "probability": 0.8437 + }, + { + "start": 8658.72, + "end": 8660.74, + "probability": 0.8731 + }, + { + "start": 8662.14, + "end": 8664.7, + "probability": 0.4003 + }, + { + "start": 8665.28, + "end": 8668.24, + "probability": 0.9397 + }, + { + "start": 8668.51, + "end": 8671.68, + "probability": 0.99 + }, + { + "start": 8671.96, + "end": 8672.24, + "probability": 0.1415 + }, + { + "start": 8672.36, + "end": 8674.02, + "probability": 0.7002 + }, + { + "start": 8674.48, + "end": 8676.56, + "probability": 0.7447 + }, + { + "start": 8676.82, + "end": 8680.72, + "probability": 0.5618 + }, + { + "start": 8681.2, + "end": 8681.96, + "probability": 0.4904 + }, + { + "start": 8682.72, + "end": 8685.34, + "probability": 0.9338 + }, + { + "start": 8686.39, + "end": 8689.96, + "probability": 0.5194 + }, + { + "start": 8690.56, + "end": 8694.56, + "probability": 0.9199 + }, + { + "start": 8695.16, + "end": 8698.18, + "probability": 0.9058 + }, + { + "start": 8698.36, + "end": 8700.96, + "probability": 0.0553 + }, + { + "start": 8701.18, + "end": 8702.06, + "probability": 0.6844 + }, + { + "start": 8702.24, + "end": 8702.78, + "probability": 0.1148 + }, + { + "start": 8702.78, + "end": 8703.96, + "probability": 0.7661 + }, + { + "start": 8704.34, + "end": 8706.53, + "probability": 0.5662 + }, + { + "start": 8707.74, + "end": 8714.08, + "probability": 0.9274 + }, + { + "start": 8714.84, + "end": 8717.06, + "probability": 0.9522 + }, + { + "start": 8717.86, + "end": 8719.86, + "probability": 0.7662 + }, + { + "start": 8719.94, + "end": 8721.07, + "probability": 0.4755 + }, + { + "start": 8721.48, + "end": 8723.72, + "probability": 0.8069 + }, + { + "start": 8723.96, + "end": 8727.5, + "probability": 0.9902 + }, + { + "start": 8728.04, + "end": 8729.14, + "probability": 0.1691 + }, + { + "start": 8729.88, + "end": 8730.96, + "probability": 0.8509 + }, + { + "start": 8732.66, + "end": 8733.52, + "probability": 0.039 + }, + { + "start": 8735.38, + "end": 8735.62, + "probability": 0.1208 + }, + { + "start": 8736.88, + "end": 8736.9, + "probability": 0.0059 + }, + { + "start": 8738.36, + "end": 8738.56, + "probability": 0.2374 + }, + { + "start": 8738.92, + "end": 8740.52, + "probability": 0.3176 + }, + { + "start": 8741.28, + "end": 8741.9, + "probability": 0.0382 + }, + { + "start": 8743.5, + "end": 8743.88, + "probability": 0.3954 + }, + { + "start": 8745.14, + "end": 8746.58, + "probability": 0.0403 + }, + { + "start": 8749.78, + "end": 8750.58, + "probability": 0.0174 + }, + { + "start": 8756.98, + "end": 8757.48, + "probability": 0.3137 + }, + { + "start": 8764.94, + "end": 8767.34, + "probability": 0.1338 + }, + { + "start": 8767.34, + "end": 8768.72, + "probability": 0.0281 + }, + { + "start": 8768.72, + "end": 8771.5, + "probability": 0.0428 + }, + { + "start": 8772.34, + "end": 8772.34, + "probability": 0.0091 + }, + { + "start": 8788.7, + "end": 8789.74, + "probability": 0.7776 + }, + { + "start": 8789.76, + "end": 8791.34, + "probability": 0.9633 + }, + { + "start": 8791.4, + "end": 8791.58, + "probability": 0.0331 + }, + { + "start": 8791.58, + "end": 8792.59, + "probability": 0.649 + }, + { + "start": 8793.0, + "end": 8793.62, + "probability": 0.5189 + }, + { + "start": 8793.64, + "end": 8796.68, + "probability": 0.9642 + }, + { + "start": 8796.78, + "end": 8799.4, + "probability": 0.5709 + }, + { + "start": 8799.54, + "end": 8799.8, + "probability": 0.3825 + }, + { + "start": 8799.98, + "end": 8802.1, + "probability": 0.7186 + }, + { + "start": 8802.74, + "end": 8803.54, + "probability": 0.2739 + }, + { + "start": 8803.54, + "end": 8804.04, + "probability": 0.5237 + }, + { + "start": 8804.1, + "end": 8809.22, + "probability": 0.696 + }, + { + "start": 8809.96, + "end": 8810.3, + "probability": 0.1487 + }, + { + "start": 8810.3, + "end": 8810.3, + "probability": 0.1696 + }, + { + "start": 8810.3, + "end": 8813.24, + "probability": 0.9181 + }, + { + "start": 8813.8, + "end": 8816.92, + "probability": 0.9847 + }, + { + "start": 8819.5, + "end": 8819.72, + "probability": 0.7716 + }, + { + "start": 8819.78, + "end": 8820.36, + "probability": 0.9249 + }, + { + "start": 8820.82, + "end": 8821.46, + "probability": 0.8346 + }, + { + "start": 8821.54, + "end": 8822.76, + "probability": 0.9245 + }, + { + "start": 8823.06, + "end": 8824.3, + "probability": 0.8648 + }, + { + "start": 8825.86, + "end": 8827.7, + "probability": 0.6181 + }, + { + "start": 8829.24, + "end": 8829.76, + "probability": 0.9727 + }, + { + "start": 8829.88, + "end": 8830.66, + "probability": 0.907 + }, + { + "start": 8830.9, + "end": 8832.46, + "probability": 0.9652 + }, + { + "start": 8832.6, + "end": 8833.06, + "probability": 0.9475 + }, + { + "start": 8834.06, + "end": 8835.52, + "probability": 0.9055 + }, + { + "start": 8836.12, + "end": 8837.98, + "probability": 0.7744 + }, + { + "start": 8838.42, + "end": 8842.7, + "probability": 0.9887 + }, + { + "start": 8843.24, + "end": 8844.32, + "probability": 0.2158 + }, + { + "start": 8845.38, + "end": 8847.4, + "probability": 0.9818 + }, + { + "start": 8847.54, + "end": 8850.44, + "probability": 0.8417 + }, + { + "start": 8852.16, + "end": 8853.38, + "probability": 0.9063 + }, + { + "start": 8854.58, + "end": 8858.96, + "probability": 0.8549 + }, + { + "start": 8859.06, + "end": 8859.48, + "probability": 0.7574 + }, + { + "start": 8859.52, + "end": 8860.7, + "probability": 0.5044 + }, + { + "start": 8860.78, + "end": 8862.16, + "probability": 0.6392 + }, + { + "start": 8862.26, + "end": 8863.28, + "probability": 0.7108 + }, + { + "start": 8863.36, + "end": 8863.86, + "probability": 0.9062 + }, + { + "start": 8864.36, + "end": 8865.48, + "probability": 0.9188 + }, + { + "start": 8866.78, + "end": 8867.16, + "probability": 0.5003 + }, + { + "start": 8867.26, + "end": 8872.6, + "probability": 0.7599 + }, + { + "start": 8874.24, + "end": 8876.6, + "probability": 0.6089 + }, + { + "start": 8877.48, + "end": 8879.8, + "probability": 0.9922 + }, + { + "start": 8881.14, + "end": 8882.58, + "probability": 0.9308 + }, + { + "start": 8884.4, + "end": 8888.56, + "probability": 0.9814 + }, + { + "start": 8889.62, + "end": 8891.44, + "probability": 0.7635 + }, + { + "start": 8891.54, + "end": 8893.46, + "probability": 0.9605 + }, + { + "start": 8894.8, + "end": 8896.0, + "probability": 0.7104 + }, + { + "start": 8896.12, + "end": 8897.28, + "probability": 0.9009 + }, + { + "start": 8897.34, + "end": 8898.14, + "probability": 0.9129 + }, + { + "start": 8898.56, + "end": 8900.36, + "probability": 0.8339 + }, + { + "start": 8900.66, + "end": 8901.18, + "probability": 0.8481 + }, + { + "start": 8901.26, + "end": 8902.28, + "probability": 0.703 + }, + { + "start": 8903.06, + "end": 8905.32, + "probability": 0.7873 + }, + { + "start": 8906.3, + "end": 8910.48, + "probability": 0.7315 + }, + { + "start": 8911.06, + "end": 8913.02, + "probability": 0.9258 + }, + { + "start": 8913.82, + "end": 8914.68, + "probability": 0.906 + }, + { + "start": 8916.3, + "end": 8922.16, + "probability": 0.9717 + }, + { + "start": 8922.78, + "end": 8925.04, + "probability": 0.9927 + }, + { + "start": 8925.1, + "end": 8925.94, + "probability": 0.799 + }, + { + "start": 8926.82, + "end": 8928.24, + "probability": 0.9909 + }, + { + "start": 8929.46, + "end": 8930.34, + "probability": 0.9081 + }, + { + "start": 8931.28, + "end": 8931.56, + "probability": 0.6339 + }, + { + "start": 8932.43, + "end": 8936.04, + "probability": 0.9857 + }, + { + "start": 8936.24, + "end": 8941.22, + "probability": 0.883 + }, + { + "start": 8942.12, + "end": 8944.58, + "probability": 0.9988 + }, + { + "start": 8945.62, + "end": 8953.74, + "probability": 0.8953 + }, + { + "start": 8954.74, + "end": 8955.8, + "probability": 0.8733 + }, + { + "start": 8956.6, + "end": 8957.2, + "probability": 0.9147 + }, + { + "start": 8958.08, + "end": 8964.42, + "probability": 0.9912 + }, + { + "start": 8964.86, + "end": 8966.38, + "probability": 0.8333 + }, + { + "start": 8967.48, + "end": 8971.84, + "probability": 0.8892 + }, + { + "start": 8972.44, + "end": 8978.32, + "probability": 0.967 + }, + { + "start": 8979.34, + "end": 8983.44, + "probability": 0.9871 + }, + { + "start": 8984.08, + "end": 8986.28, + "probability": 0.696 + }, + { + "start": 8987.3, + "end": 8991.24, + "probability": 0.9515 + }, + { + "start": 8991.88, + "end": 8996.4, + "probability": 0.6142 + }, + { + "start": 8997.54, + "end": 9001.22, + "probability": 0.994 + }, + { + "start": 9001.88, + "end": 9003.04, + "probability": 0.5865 + }, + { + "start": 9003.94, + "end": 9006.58, + "probability": 0.8036 + }, + { + "start": 9007.1, + "end": 9013.72, + "probability": 0.9469 + }, + { + "start": 9014.26, + "end": 9016.24, + "probability": 0.9504 + }, + { + "start": 9016.64, + "end": 9019.62, + "probability": 0.8488 + }, + { + "start": 9019.96, + "end": 9021.14, + "probability": 0.527 + }, + { + "start": 9021.88, + "end": 9026.36, + "probability": 0.9091 + }, + { + "start": 9026.48, + "end": 9028.0, + "probability": 0.7546 + }, + { + "start": 9028.06, + "end": 9029.66, + "probability": 0.9934 + }, + { + "start": 9030.26, + "end": 9032.8, + "probability": 0.9851 + }, + { + "start": 9034.86, + "end": 9037.14, + "probability": 0.6663 + }, + { + "start": 9037.22, + "end": 9039.14, + "probability": 0.8078 + }, + { + "start": 9039.64, + "end": 9040.94, + "probability": 0.5854 + }, + { + "start": 9040.94, + "end": 9044.0, + "probability": 0.9428 + }, + { + "start": 9044.26, + "end": 9047.82, + "probability": 0.9436 + }, + { + "start": 9048.6, + "end": 9051.92, + "probability": 0.987 + }, + { + "start": 9052.86, + "end": 9053.72, + "probability": 0.7405 + }, + { + "start": 9054.88, + "end": 9056.86, + "probability": 0.6266 + }, + { + "start": 9060.74, + "end": 9066.38, + "probability": 0.8418 + }, + { + "start": 9068.56, + "end": 9070.62, + "probability": 0.7467 + }, + { + "start": 9070.76, + "end": 9074.42, + "probability": 0.9886 + }, + { + "start": 9075.32, + "end": 9077.04, + "probability": 0.9189 + }, + { + "start": 9078.08, + "end": 9079.58, + "probability": 0.8875 + }, + { + "start": 9081.14, + "end": 9083.2, + "probability": 0.9727 + }, + { + "start": 9084.88, + "end": 9087.58, + "probability": 0.9963 + }, + { + "start": 9088.52, + "end": 9088.88, + "probability": 0.2792 + }, + { + "start": 9089.04, + "end": 9096.38, + "probability": 0.9878 + }, + { + "start": 9096.52, + "end": 9097.68, + "probability": 0.8284 + }, + { + "start": 9098.04, + "end": 9099.74, + "probability": 0.8962 + }, + { + "start": 9100.44, + "end": 9101.56, + "probability": 0.986 + }, + { + "start": 9102.5, + "end": 9106.78, + "probability": 0.9475 + }, + { + "start": 9107.42, + "end": 9112.18, + "probability": 0.7122 + }, + { + "start": 9112.64, + "end": 9114.6, + "probability": 0.8864 + }, + { + "start": 9114.7, + "end": 9116.38, + "probability": 0.8537 + }, + { + "start": 9117.44, + "end": 9121.76, + "probability": 0.9879 + }, + { + "start": 9122.12, + "end": 9123.0, + "probability": 0.794 + }, + { + "start": 9123.18, + "end": 9123.54, + "probability": 0.7731 + }, + { + "start": 9124.84, + "end": 9127.52, + "probability": 0.9732 + }, + { + "start": 9127.98, + "end": 9131.88, + "probability": 0.6519 + }, + { + "start": 9132.22, + "end": 9133.64, + "probability": 0.9449 + }, + { + "start": 9134.34, + "end": 9137.0, + "probability": 0.9874 + }, + { + "start": 9138.11, + "end": 9142.6, + "probability": 0.9833 + }, + { + "start": 9143.38, + "end": 9145.6, + "probability": 0.9042 + }, + { + "start": 9146.42, + "end": 9152.08, + "probability": 0.9772 + }, + { + "start": 9152.76, + "end": 9154.0, + "probability": 0.7588 + }, + { + "start": 9154.16, + "end": 9163.02, + "probability": 0.8319 + }, + { + "start": 9163.14, + "end": 9163.98, + "probability": 0.9764 + }, + { + "start": 9164.44, + "end": 9164.94, + "probability": 0.7024 + }, + { + "start": 9166.16, + "end": 9171.84, + "probability": 0.8833 + }, + { + "start": 9172.66, + "end": 9174.94, + "probability": 0.9341 + }, + { + "start": 9175.58, + "end": 9176.46, + "probability": 0.5084 + }, + { + "start": 9177.06, + "end": 9177.74, + "probability": 0.922 + }, + { + "start": 9177.94, + "end": 9181.56, + "probability": 0.6376 + }, + { + "start": 9181.6, + "end": 9184.62, + "probability": 0.9888 + }, + { + "start": 9184.64, + "end": 9186.94, + "probability": 0.9651 + }, + { + "start": 9187.04, + "end": 9189.78, + "probability": 0.9457 + }, + { + "start": 9190.32, + "end": 9192.62, + "probability": 0.9276 + }, + { + "start": 9193.26, + "end": 9197.44, + "probability": 0.9917 + }, + { + "start": 9197.44, + "end": 9203.02, + "probability": 0.942 + }, + { + "start": 9203.74, + "end": 9204.68, + "probability": 0.999 + }, + { + "start": 9205.24, + "end": 9209.4, + "probability": 0.9705 + }, + { + "start": 9209.86, + "end": 9211.34, + "probability": 0.9541 + }, + { + "start": 9212.02, + "end": 9212.72, + "probability": 0.9046 + }, + { + "start": 9212.92, + "end": 9217.48, + "probability": 0.9585 + }, + { + "start": 9217.48, + "end": 9220.38, + "probability": 0.9829 + }, + { + "start": 9220.4, + "end": 9225.62, + "probability": 0.9962 + }, + { + "start": 9225.7, + "end": 9229.66, + "probability": 0.9943 + }, + { + "start": 9229.78, + "end": 9231.5, + "probability": 0.7842 + }, + { + "start": 9232.04, + "end": 9233.06, + "probability": 0.9731 + }, + { + "start": 9234.34, + "end": 9236.12, + "probability": 0.9619 + }, + { + "start": 9237.88, + "end": 9238.36, + "probability": 0.563 + }, + { + "start": 9239.42, + "end": 9246.6, + "probability": 0.9688 + }, + { + "start": 9247.5, + "end": 9249.08, + "probability": 0.9686 + }, + { + "start": 9249.64, + "end": 9251.06, + "probability": 0.9983 + }, + { + "start": 9253.54, + "end": 9255.56, + "probability": 0.0624 + }, + { + "start": 9255.64, + "end": 9259.62, + "probability": 0.8133 + }, + { + "start": 9259.78, + "end": 9262.64, + "probability": 0.2545 + }, + { + "start": 9262.64, + "end": 9265.52, + "probability": 0.6539 + }, + { + "start": 9266.04, + "end": 9266.38, + "probability": 0.3752 + }, + { + "start": 9266.48, + "end": 9268.05, + "probability": 0.844 + }, + { + "start": 9268.64, + "end": 9270.53, + "probability": 0.9478 + }, + { + "start": 9271.54, + "end": 9275.0, + "probability": 0.2265 + }, + { + "start": 9276.22, + "end": 9276.56, + "probability": 0.716 + }, + { + "start": 9277.63, + "end": 9278.64, + "probability": 0.0074 + }, + { + "start": 9278.64, + "end": 9278.64, + "probability": 0.0245 + }, + { + "start": 9278.64, + "end": 9280.26, + "probability": 0.5664 + }, + { + "start": 9280.32, + "end": 9281.38, + "probability": 0.967 + }, + { + "start": 9281.48, + "end": 9282.3, + "probability": 0.9619 + }, + { + "start": 9282.54, + "end": 9282.94, + "probability": 0.9839 + }, + { + "start": 9284.7, + "end": 9286.38, + "probability": 0.0761 + }, + { + "start": 9292.78, + "end": 9292.86, + "probability": 0.127 + }, + { + "start": 9292.86, + "end": 9292.86, + "probability": 0.0587 + }, + { + "start": 9292.86, + "end": 9295.72, + "probability": 0.6788 + }, + { + "start": 9295.86, + "end": 9296.56, + "probability": 0.6968 + }, + { + "start": 9298.52, + "end": 9300.75, + "probability": 0.0556 + }, + { + "start": 9301.84, + "end": 9305.92, + "probability": 0.9766 + }, + { + "start": 9306.12, + "end": 9306.88, + "probability": 0.8449 + }, + { + "start": 9308.78, + "end": 9309.06, + "probability": 0.8561 + }, + { + "start": 9309.1, + "end": 9314.18, + "probability": 0.7769 + }, + { + "start": 9314.58, + "end": 9315.71, + "probability": 0.6062 + }, + { + "start": 9315.78, + "end": 9323.7, + "probability": 0.9869 + }, + { + "start": 9323.98, + "end": 9324.93, + "probability": 0.9951 + }, + { + "start": 9325.56, + "end": 9327.02, + "probability": 0.8729 + }, + { + "start": 9327.42, + "end": 9328.99, + "probability": 0.9769 + }, + { + "start": 9329.36, + "end": 9329.98, + "probability": 0.9281 + }, + { + "start": 9330.02, + "end": 9332.54, + "probability": 0.9788 + }, + { + "start": 9332.9, + "end": 9335.5, + "probability": 0.8262 + }, + { + "start": 9336.18, + "end": 9336.56, + "probability": 0.9377 + }, + { + "start": 9337.0, + "end": 9342.78, + "probability": 0.7439 + }, + { + "start": 9343.1, + "end": 9346.75, + "probability": 0.9805 + }, + { + "start": 9347.72, + "end": 9349.78, + "probability": 0.9893 + }, + { + "start": 9350.7, + "end": 9353.44, + "probability": 0.744 + }, + { + "start": 9354.22, + "end": 9357.04, + "probability": 0.8701 + }, + { + "start": 9358.21, + "end": 9361.83, + "probability": 0.8191 + }, + { + "start": 9362.88, + "end": 9363.7, + "probability": 0.3712 + }, + { + "start": 9367.54, + "end": 9371.72, + "probability": 0.6665 + }, + { + "start": 9371.86, + "end": 9372.62, + "probability": 0.7591 + }, + { + "start": 9373.66, + "end": 9375.68, + "probability": 0.8953 + }, + { + "start": 9376.04, + "end": 9376.6, + "probability": 0.8877 + }, + { + "start": 9376.72, + "end": 9377.72, + "probability": 0.9873 + }, + { + "start": 9378.3, + "end": 9380.88, + "probability": 0.9165 + }, + { + "start": 9381.08, + "end": 9384.7, + "probability": 0.7225 + }, + { + "start": 9385.78, + "end": 9385.78, + "probability": 0.0379 + }, + { + "start": 9385.78, + "end": 9388.62, + "probability": 0.7065 + }, + { + "start": 9388.74, + "end": 9389.96, + "probability": 0.9521 + }, + { + "start": 9390.4, + "end": 9392.12, + "probability": 0.9902 + }, + { + "start": 9392.62, + "end": 9393.6, + "probability": 0.9506 + }, + { + "start": 9395.1, + "end": 9395.36, + "probability": 0.4302 + }, + { + "start": 9397.24, + "end": 9397.64, + "probability": 0.0029 + }, + { + "start": 9397.86, + "end": 9399.5, + "probability": 0.5216 + }, + { + "start": 9399.72, + "end": 9401.94, + "probability": 0.5898 + }, + { + "start": 9402.28, + "end": 9404.82, + "probability": 0.985 + }, + { + "start": 9404.86, + "end": 9405.43, + "probability": 0.8103 + }, + { + "start": 9406.36, + "end": 9406.7, + "probability": 0.0651 + }, + { + "start": 9408.22, + "end": 9408.6, + "probability": 0.3549 + }, + { + "start": 9408.92, + "end": 9409.22, + "probability": 0.7324 + }, + { + "start": 9409.38, + "end": 9409.7, + "probability": 0.6262 + }, + { + "start": 9409.74, + "end": 9409.94, + "probability": 0.1141 + }, + { + "start": 9409.94, + "end": 9410.46, + "probability": 0.4951 + }, + { + "start": 9410.96, + "end": 9412.2, + "probability": 0.6322 + }, + { + "start": 9412.2, + "end": 9412.78, + "probability": 0.0804 + }, + { + "start": 9413.5, + "end": 9415.32, + "probability": 0.2069 + }, + { + "start": 9415.44, + "end": 9419.26, + "probability": 0.9795 + }, + { + "start": 9419.54, + "end": 9422.32, + "probability": 0.9885 + }, + { + "start": 9422.4, + "end": 9425.4, + "probability": 0.9767 + }, + { + "start": 9425.54, + "end": 9426.68, + "probability": 0.8551 + }, + { + "start": 9427.46, + "end": 9428.08, + "probability": 0.5614 + }, + { + "start": 9428.24, + "end": 9432.1, + "probability": 0.5667 + }, + { + "start": 9433.04, + "end": 9434.34, + "probability": 0.9382 + }, + { + "start": 9434.88, + "end": 9441.94, + "probability": 0.9831 + }, + { + "start": 9442.84, + "end": 9444.5, + "probability": 0.9583 + }, + { + "start": 9445.38, + "end": 9448.86, + "probability": 0.9418 + }, + { + "start": 9449.4, + "end": 9454.86, + "probability": 0.9478 + }, + { + "start": 9454.86, + "end": 9456.36, + "probability": 0.6927 + }, + { + "start": 9456.64, + "end": 9459.16, + "probability": 0.9656 + }, + { + "start": 9460.12, + "end": 9462.6, + "probability": 0.96 + }, + { + "start": 9462.6, + "end": 9466.62, + "probability": 0.8809 + }, + { + "start": 9467.22, + "end": 9470.18, + "probability": 0.9847 + }, + { + "start": 9470.18, + "end": 9474.54, + "probability": 0.9988 + }, + { + "start": 9475.34, + "end": 9475.52, + "probability": 0.3048 + }, + { + "start": 9475.54, + "end": 9476.0, + "probability": 0.6892 + }, + { + "start": 9476.04, + "end": 9479.1, + "probability": 0.919 + }, + { + "start": 9479.72, + "end": 9485.5, + "probability": 0.6999 + }, + { + "start": 9486.92, + "end": 9489.68, + "probability": 0.979 + }, + { + "start": 9489.84, + "end": 9492.44, + "probability": 0.6514 + }, + { + "start": 9492.84, + "end": 9493.72, + "probability": 0.6996 + }, + { + "start": 9494.16, + "end": 9498.8, + "probability": 0.9357 + }, + { + "start": 9499.36, + "end": 9500.78, + "probability": 0.9949 + }, + { + "start": 9501.42, + "end": 9502.96, + "probability": 0.7527 + }, + { + "start": 9503.24, + "end": 9506.42, + "probability": 0.9539 + }, + { + "start": 9506.74, + "end": 9507.5, + "probability": 0.9984 + }, + { + "start": 9508.16, + "end": 9510.34, + "probability": 0.9974 + }, + { + "start": 9511.12, + "end": 9513.68, + "probability": 0.9844 + }, + { + "start": 9513.76, + "end": 9516.84, + "probability": 0.9956 + }, + { + "start": 9516.94, + "end": 9517.43, + "probability": 0.7647 + }, + { + "start": 9518.1, + "end": 9519.2, + "probability": 0.9937 + }, + { + "start": 9520.06, + "end": 9525.78, + "probability": 0.9647 + }, + { + "start": 9525.82, + "end": 9527.38, + "probability": 0.9749 + }, + { + "start": 9528.06, + "end": 9529.06, + "probability": 0.974 + }, + { + "start": 9529.52, + "end": 9532.28, + "probability": 0.8584 + }, + { + "start": 9532.54, + "end": 9533.74, + "probability": 0.989 + }, + { + "start": 9533.94, + "end": 9536.5, + "probability": 0.1668 + }, + { + "start": 9536.5, + "end": 9538.68, + "probability": 0.4786 + }, + { + "start": 9539.16, + "end": 9540.44, + "probability": 0.5812 + }, + { + "start": 9540.9, + "end": 9542.68, + "probability": 0.836 + }, + { + "start": 9543.38, + "end": 9546.0, + "probability": 0.893 + }, + { + "start": 9546.56, + "end": 9547.5, + "probability": 0.7793 + }, + { + "start": 9548.24, + "end": 9549.1, + "probability": 0.1149 + }, + { + "start": 9550.32, + "end": 9552.08, + "probability": 0.4265 + }, + { + "start": 9552.12, + "end": 9555.42, + "probability": 0.411 + }, + { + "start": 9555.66, + "end": 9556.62, + "probability": 0.9683 + }, + { + "start": 9556.72, + "end": 9557.6, + "probability": 0.7826 + }, + { + "start": 9557.68, + "end": 9560.92, + "probability": 0.9937 + }, + { + "start": 9561.0, + "end": 9561.64, + "probability": 0.9862 + }, + { + "start": 9561.76, + "end": 9562.42, + "probability": 0.4178 + }, + { + "start": 9562.96, + "end": 9563.16, + "probability": 0.5338 + }, + { + "start": 9563.18, + "end": 9564.0, + "probability": 0.9811 + }, + { + "start": 9564.5, + "end": 9567.26, + "probability": 0.8756 + }, + { + "start": 9567.3, + "end": 9568.0, + "probability": 0.834 + }, + { + "start": 9569.06, + "end": 9575.48, + "probability": 0.9885 + }, + { + "start": 9575.92, + "end": 9576.68, + "probability": 0.878 + }, + { + "start": 9577.08, + "end": 9579.9, + "probability": 0.9737 + }, + { + "start": 9580.42, + "end": 9582.72, + "probability": 0.8904 + }, + { + "start": 9587.3, + "end": 9588.08, + "probability": 0.6657 + }, + { + "start": 9588.66, + "end": 9589.28, + "probability": 0.3352 + }, + { + "start": 9589.48, + "end": 9594.62, + "probability": 0.8047 + }, + { + "start": 9594.66, + "end": 9596.0, + "probability": 0.9814 + }, + { + "start": 9596.98, + "end": 9599.6, + "probability": 0.7381 + }, + { + "start": 9600.26, + "end": 9602.92, + "probability": 0.9824 + }, + { + "start": 9603.38, + "end": 9604.24, + "probability": 0.8053 + }, + { + "start": 9604.36, + "end": 9604.87, + "probability": 0.9932 + }, + { + "start": 9605.7, + "end": 9608.38, + "probability": 0.9966 + }, + { + "start": 9609.12, + "end": 9610.16, + "probability": 0.9971 + }, + { + "start": 9610.26, + "end": 9611.72, + "probability": 0.9098 + }, + { + "start": 9612.18, + "end": 9615.01, + "probability": 0.9636 + }, + { + "start": 9615.84, + "end": 9618.28, + "probability": 0.9877 + }, + { + "start": 9618.42, + "end": 9618.88, + "probability": 0.3927 + }, + { + "start": 9618.96, + "end": 9619.8, + "probability": 0.9623 + }, + { + "start": 9620.4, + "end": 9620.58, + "probability": 0.3215 + }, + { + "start": 9620.72, + "end": 9621.42, + "probability": 0.0578 + }, + { + "start": 9621.9, + "end": 9626.87, + "probability": 0.1066 + }, + { + "start": 9627.54, + "end": 9628.08, + "probability": 0.0045 + }, + { + "start": 9628.84, + "end": 9630.24, + "probability": 0.1806 + }, + { + "start": 9631.25, + "end": 9635.54, + "probability": 0.3851 + }, + { + "start": 9636.18, + "end": 9637.61, + "probability": 0.0066 + }, + { + "start": 9638.56, + "end": 9639.0, + "probability": 0.1478 + }, + { + "start": 9639.0, + "end": 9641.66, + "probability": 0.0259 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.0, + "end": 9728.0, + "probability": 0.0 + }, + { + "start": 9728.06, + "end": 9730.06, + "probability": 0.5488 + }, + { + "start": 9730.08, + "end": 9731.08, + "probability": 0.4663 + }, + { + "start": 9731.66, + "end": 9732.6, + "probability": 0.7003 + }, + { + "start": 9733.14, + "end": 9734.86, + "probability": 0.0834 + }, + { + "start": 9734.86, + "end": 9739.68, + "probability": 0.1682 + }, + { + "start": 9748.84, + "end": 9750.76, + "probability": 0.6136 + }, + { + "start": 9751.5, + "end": 9753.0, + "probability": 0.8035 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.0, + "end": 9861.0, + "probability": 0.0 + }, + { + "start": 9861.42, + "end": 9862.96, + "probability": 0.0324 + }, + { + "start": 9862.96, + "end": 9864.92, + "probability": 0.0247 + }, + { + "start": 9866.88, + "end": 9866.98, + "probability": 0.012 + }, + { + "start": 9867.5, + "end": 9868.94, + "probability": 0.3711 + }, + { + "start": 9869.14, + "end": 9873.94, + "probability": 0.2247 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9987.0, + "end": 9987.0, + "probability": 0.0 + }, + { + "start": 9988.12, + "end": 9990.97, + "probability": 0.5895 + }, + { + "start": 9993.32, + "end": 9998.66, + "probability": 0.8959 + }, + { + "start": 10000.32, + "end": 10004.02, + "probability": 0.958 + }, + { + "start": 10004.02, + "end": 10010.32, + "probability": 0.9858 + }, + { + "start": 10011.2, + "end": 10014.4, + "probability": 0.9883 + }, + { + "start": 10014.4, + "end": 10018.14, + "probability": 0.9972 + }, + { + "start": 10019.06, + "end": 10025.42, + "probability": 0.9939 + }, + { + "start": 10026.68, + "end": 10027.46, + "probability": 0.5668 + }, + { + "start": 10027.46, + "end": 10030.14, + "probability": 0.7315 + }, + { + "start": 10030.14, + "end": 10033.98, + "probability": 0.9963 + }, + { + "start": 10035.28, + "end": 10035.74, + "probability": 0.5036 + }, + { + "start": 10036.34, + "end": 10041.2, + "probability": 0.9757 + }, + { + "start": 10042.88, + "end": 10045.7, + "probability": 0.7868 + }, + { + "start": 10045.72, + "end": 10046.26, + "probability": 0.3745 + }, + { + "start": 10046.82, + "end": 10050.56, + "probability": 0.9963 + }, + { + "start": 10051.76, + "end": 10055.72, + "probability": 0.957 + }, + { + "start": 10055.78, + "end": 10058.42, + "probability": 0.9481 + }, + { + "start": 10059.38, + "end": 10062.1, + "probability": 0.8324 + }, + { + "start": 10062.5, + "end": 10062.88, + "probability": 0.7485 + }, + { + "start": 10063.76, + "end": 10066.1, + "probability": 0.8037 + }, + { + "start": 10066.94, + "end": 10070.24, + "probability": 0.9231 + }, + { + "start": 10070.3, + "end": 10072.74, + "probability": 0.822 + }, + { + "start": 10073.44, + "end": 10075.88, + "probability": 0.7792 + }, + { + "start": 10076.78, + "end": 10078.98, + "probability": 0.7047 + }, + { + "start": 10079.7, + "end": 10082.49, + "probability": 0.8442 + }, + { + "start": 10083.16, + "end": 10083.92, + "probability": 0.7425 + }, + { + "start": 10084.02, + "end": 10086.26, + "probability": 0.9307 + }, + { + "start": 10088.75, + "end": 10091.4, + "probability": 0.5486 + }, + { + "start": 10091.82, + "end": 10093.88, + "probability": 0.1918 + }, + { + "start": 10094.0, + "end": 10094.36, + "probability": 0.1388 + }, + { + "start": 10094.46, + "end": 10095.98, + "probability": 0.1511 + }, + { + "start": 10095.98, + "end": 10096.0, + "probability": 0.0204 + }, + { + "start": 10096.84, + "end": 10099.76, + "probability": 0.5694 + }, + { + "start": 10099.76, + "end": 10099.84, + "probability": 0.288 + }, + { + "start": 10100.62, + "end": 10100.64, + "probability": 0.0009 + }, + { + "start": 10129.14, + "end": 10129.74, + "probability": 0.9203 + }, + { + "start": 10131.54, + "end": 10134.9, + "probability": 0.9349 + }, + { + "start": 10136.12, + "end": 10138.26, + "probability": 0.9469 + }, + { + "start": 10139.5, + "end": 10140.52, + "probability": 0.9985 + }, + { + "start": 10141.56, + "end": 10144.0, + "probability": 0.7304 + }, + { + "start": 10144.66, + "end": 10145.38, + "probability": 0.8868 + }, + { + "start": 10146.58, + "end": 10148.64, + "probability": 0.9871 + }, + { + "start": 10149.82, + "end": 10151.58, + "probability": 0.8774 + }, + { + "start": 10152.7, + "end": 10153.42, + "probability": 0.0001 + }, + { + "start": 10155.32, + "end": 10155.5, + "probability": 0.03 + }, + { + "start": 10155.5, + "end": 10156.8, + "probability": 0.1763 + }, + { + "start": 10157.66, + "end": 10157.66, + "probability": 0.1482 + }, + { + "start": 10157.66, + "end": 10161.04, + "probability": 0.2746 + }, + { + "start": 10161.2, + "end": 10163.4, + "probability": 0.535 + }, + { + "start": 10163.46, + "end": 10165.18, + "probability": 0.4855 + }, + { + "start": 10165.24, + "end": 10168.04, + "probability": 0.7397 + }, + { + "start": 10168.99, + "end": 10171.34, + "probability": 0.2718 + }, + { + "start": 10172.04, + "end": 10174.65, + "probability": 0.3535 + }, + { + "start": 10174.86, + "end": 10174.92, + "probability": 0.1227 + }, + { + "start": 10174.92, + "end": 10178.48, + "probability": 0.8056 + }, + { + "start": 10179.0, + "end": 10183.36, + "probability": 0.9938 + }, + { + "start": 10183.52, + "end": 10184.03, + "probability": 0.8506 + }, + { + "start": 10184.8, + "end": 10189.12, + "probability": 0.2884 + }, + { + "start": 10189.12, + "end": 10189.12, + "probability": 0.3866 + }, + { + "start": 10189.12, + "end": 10191.34, + "probability": 0.6128 + }, + { + "start": 10191.76, + "end": 10193.74, + "probability": 0.8513 + }, + { + "start": 10193.88, + "end": 10194.88, + "probability": 0.9175 + }, + { + "start": 10195.0, + "end": 10195.92, + "probability": 0.8062 + }, + { + "start": 10196.0, + "end": 10196.6, + "probability": 0.5416 + }, + { + "start": 10197.56, + "end": 10200.04, + "probability": 0.9142 + }, + { + "start": 10200.16, + "end": 10202.7, + "probability": 0.9554 + }, + { + "start": 10202.78, + "end": 10204.47, + "probability": 0.744 + }, + { + "start": 10205.66, + "end": 10208.62, + "probability": 0.9704 + }, + { + "start": 10209.04, + "end": 10212.88, + "probability": 0.9917 + }, + { + "start": 10213.82, + "end": 10214.6, + "probability": 0.9512 + }, + { + "start": 10215.0, + "end": 10215.74, + "probability": 0.8497 + }, + { + "start": 10217.82, + "end": 10219.56, + "probability": 0.7588 + }, + { + "start": 10220.88, + "end": 10226.92, + "probability": 0.9927 + }, + { + "start": 10227.06, + "end": 10228.8, + "probability": 0.7569 + }, + { + "start": 10229.3, + "end": 10230.02, + "probability": 0.9682 + }, + { + "start": 10230.1, + "end": 10230.72, + "probability": 0.8019 + }, + { + "start": 10231.56, + "end": 10233.72, + "probability": 0.7905 + }, + { + "start": 10234.52, + "end": 10237.16, + "probability": 0.9826 + }, + { + "start": 10237.48, + "end": 10241.56, + "probability": 0.9659 + }, + { + "start": 10241.96, + "end": 10243.18, + "probability": 0.9773 + }, + { + "start": 10243.5, + "end": 10248.88, + "probability": 0.9948 + }, + { + "start": 10249.82, + "end": 10251.08, + "probability": 0.5475 + }, + { + "start": 10251.28, + "end": 10253.34, + "probability": 0.9958 + }, + { + "start": 10254.08, + "end": 10256.36, + "probability": 0.9619 + }, + { + "start": 10256.88, + "end": 10259.52, + "probability": 0.905 + }, + { + "start": 10259.92, + "end": 10265.02, + "probability": 0.9093 + }, + { + "start": 10265.36, + "end": 10267.7, + "probability": 0.5046 + }, + { + "start": 10268.26, + "end": 10268.84, + "probability": 0.5005 + }, + { + "start": 10269.08, + "end": 10274.3, + "probability": 0.9013 + }, + { + "start": 10274.64, + "end": 10275.56, + "probability": 0.8127 + }, + { + "start": 10275.96, + "end": 10277.34, + "probability": 0.8935 + }, + { + "start": 10277.48, + "end": 10280.3, + "probability": 0.9962 + }, + { + "start": 10280.3, + "end": 10283.06, + "probability": 0.9971 + }, + { + "start": 10283.4, + "end": 10288.1, + "probability": 0.9944 + }, + { + "start": 10288.52, + "end": 10288.96, + "probability": 0.7476 + }, + { + "start": 10289.14, + "end": 10290.88, + "probability": 0.4429 + }, + { + "start": 10291.3, + "end": 10291.72, + "probability": 0.8468 + }, + { + "start": 10291.98, + "end": 10294.34, + "probability": 0.9792 + }, + { + "start": 10294.74, + "end": 10295.16, + "probability": 0.8371 + }, + { + "start": 10295.66, + "end": 10297.52, + "probability": 0.9966 + }, + { + "start": 10298.08, + "end": 10301.46, + "probability": 0.9689 + }, + { + "start": 10301.98, + "end": 10303.02, + "probability": 0.9379 + }, + { + "start": 10303.76, + "end": 10304.5, + "probability": 0.917 + }, + { + "start": 10304.58, + "end": 10308.26, + "probability": 0.905 + }, + { + "start": 10308.36, + "end": 10308.36, + "probability": 0.3262 + }, + { + "start": 10308.36, + "end": 10312.24, + "probability": 0.9736 + }, + { + "start": 10312.64, + "end": 10313.2, + "probability": 0.5036 + }, + { + "start": 10313.88, + "end": 10315.98, + "probability": 0.7334 + }, + { + "start": 10316.16, + "end": 10317.78, + "probability": 0.8449 + }, + { + "start": 10318.58, + "end": 10319.28, + "probability": 0.8534 + }, + { + "start": 10319.46, + "end": 10321.32, + "probability": 0.989 + }, + { + "start": 10322.0, + "end": 10322.64, + "probability": 0.4287 + }, + { + "start": 10322.64, + "end": 10324.42, + "probability": 0.5147 + }, + { + "start": 10327.1, + "end": 10327.8, + "probability": 0.696 + }, + { + "start": 10327.92, + "end": 10328.4, + "probability": 0.791 + }, + { + "start": 10328.56, + "end": 10329.8, + "probability": 0.9613 + }, + { + "start": 10329.8, + "end": 10330.26, + "probability": 0.5269 + }, + { + "start": 10330.66, + "end": 10330.8, + "probability": 0.9539 + }, + { + "start": 10350.08, + "end": 10351.4, + "probability": 0.8714 + }, + { + "start": 10352.5, + "end": 10353.86, + "probability": 0.7376 + }, + { + "start": 10357.18, + "end": 10359.5, + "probability": 0.9453 + }, + { + "start": 10360.08, + "end": 10363.16, + "probability": 0.9812 + }, + { + "start": 10363.18, + "end": 10364.96, + "probability": 0.8978 + }, + { + "start": 10365.04, + "end": 10367.52, + "probability": 0.821 + }, + { + "start": 10368.7, + "end": 10373.56, + "probability": 0.9708 + }, + { + "start": 10374.26, + "end": 10375.24, + "probability": 0.8804 + }, + { + "start": 10376.06, + "end": 10379.7, + "probability": 0.9471 + }, + { + "start": 10379.7, + "end": 10384.88, + "probability": 0.9807 + }, + { + "start": 10385.6, + "end": 10386.9, + "probability": 0.7587 + }, + { + "start": 10389.0, + "end": 10393.58, + "probability": 0.943 + }, + { + "start": 10393.64, + "end": 10393.94, + "probability": 0.4751 + }, + { + "start": 10394.1, + "end": 10398.6, + "probability": 0.946 + }, + { + "start": 10399.9, + "end": 10402.48, + "probability": 0.9961 + }, + { + "start": 10403.76, + "end": 10405.9, + "probability": 0.9217 + }, + { + "start": 10407.18, + "end": 10410.54, + "probability": 0.7888 + }, + { + "start": 10411.44, + "end": 10412.5, + "probability": 0.9528 + }, + { + "start": 10413.4, + "end": 10415.38, + "probability": 0.9797 + }, + { + "start": 10415.6, + "end": 10420.2, + "probability": 0.9441 + }, + { + "start": 10420.28, + "end": 10423.68, + "probability": 0.8831 + }, + { + "start": 10424.13, + "end": 10428.18, + "probability": 0.7533 + }, + { + "start": 10428.24, + "end": 10429.64, + "probability": 0.5795 + }, + { + "start": 10429.68, + "end": 10430.0, + "probability": 0.8305 + }, + { + "start": 10430.12, + "end": 10433.3, + "probability": 0.9103 + }, + { + "start": 10434.42, + "end": 10435.12, + "probability": 0.9907 + }, + { + "start": 10435.36, + "end": 10435.6, + "probability": 0.3738 + }, + { + "start": 10435.6, + "end": 10437.1, + "probability": 0.7417 + }, + { + "start": 10438.48, + "end": 10441.46, + "probability": 0.9858 + }, + { + "start": 10441.54, + "end": 10442.04, + "probability": 0.6485 + }, + { + "start": 10443.46, + "end": 10450.52, + "probability": 0.9958 + }, + { + "start": 10450.82, + "end": 10451.84, + "probability": 0.8234 + }, + { + "start": 10451.9, + "end": 10454.4, + "probability": 0.9927 + }, + { + "start": 10454.5, + "end": 10455.48, + "probability": 0.5499 + }, + { + "start": 10456.68, + "end": 10458.02, + "probability": 0.8148 + }, + { + "start": 10458.58, + "end": 10463.34, + "probability": 0.9781 + }, + { + "start": 10465.52, + "end": 10467.82, + "probability": 0.5731 + }, + { + "start": 10468.98, + "end": 10471.08, + "probability": 0.9712 + }, + { + "start": 10472.74, + "end": 10474.16, + "probability": 0.5122 + }, + { + "start": 10474.36, + "end": 10479.96, + "probability": 0.9802 + }, + { + "start": 10480.06, + "end": 10480.86, + "probability": 0.8711 + }, + { + "start": 10482.22, + "end": 10484.95, + "probability": 0.9362 + }, + { + "start": 10485.62, + "end": 10486.24, + "probability": 0.5214 + }, + { + "start": 10486.54, + "end": 10492.0, + "probability": 0.6786 + }, + { + "start": 10492.14, + "end": 10492.74, + "probability": 0.9946 + }, + { + "start": 10493.34, + "end": 10498.84, + "probability": 0.5563 + }, + { + "start": 10499.66, + "end": 10500.2, + "probability": 0.7463 + }, + { + "start": 10501.26, + "end": 10501.66, + "probability": 0.6769 + }, + { + "start": 10502.9, + "end": 10503.56, + "probability": 0.5488 + }, + { + "start": 10504.36, + "end": 10505.12, + "probability": 0.3772 + }, + { + "start": 10506.46, + "end": 10512.16, + "probability": 0.9849 + }, + { + "start": 10514.1, + "end": 10518.4, + "probability": 0.9971 + }, + { + "start": 10519.38, + "end": 10521.26, + "probability": 0.8186 + }, + { + "start": 10521.34, + "end": 10522.74, + "probability": 0.942 + }, + { + "start": 10522.96, + "end": 10525.6, + "probability": 0.9876 + }, + { + "start": 10527.48, + "end": 10529.96, + "probability": 0.9907 + }, + { + "start": 10529.96, + "end": 10533.44, + "probability": 0.9445 + }, + { + "start": 10535.32, + "end": 10535.9, + "probability": 0.7014 + }, + { + "start": 10536.04, + "end": 10536.14, + "probability": 0.0845 + }, + { + "start": 10536.16, + "end": 10536.46, + "probability": 0.6662 + }, + { + "start": 10536.54, + "end": 10538.76, + "probability": 0.9527 + }, + { + "start": 10538.96, + "end": 10540.86, + "probability": 0.9085 + }, + { + "start": 10541.04, + "end": 10541.2, + "probability": 0.8748 + }, + { + "start": 10541.36, + "end": 10542.34, + "probability": 0.8707 + }, + { + "start": 10542.66, + "end": 10543.02, + "probability": 0.5543 + }, + { + "start": 10543.08, + "end": 10543.26, + "probability": 0.4695 + }, + { + "start": 10543.72, + "end": 10545.0, + "probability": 0.9302 + }, + { + "start": 10545.72, + "end": 10547.52, + "probability": 0.9919 + }, + { + "start": 10548.7, + "end": 10549.5, + "probability": 0.9843 + }, + { + "start": 10550.46, + "end": 10553.74, + "probability": 0.7827 + }, + { + "start": 10559.56, + "end": 10559.64, + "probability": 0.0881 + }, + { + "start": 10559.64, + "end": 10559.64, + "probability": 0.0157 + }, + { + "start": 10560.08, + "end": 10560.4, + "probability": 0.214 + }, + { + "start": 10560.54, + "end": 10561.98, + "probability": 0.0183 + }, + { + "start": 10561.98, + "end": 10563.4, + "probability": 0.1804 + }, + { + "start": 10563.4, + "end": 10565.26, + "probability": 0.0411 + }, + { + "start": 10574.7, + "end": 10578.38, + "probability": 0.0137 + }, + { + "start": 10578.54, + "end": 10581.2, + "probability": 0.0996 + }, + { + "start": 10586.76, + "end": 10587.52, + "probability": 0.0689 + }, + { + "start": 10589.66, + "end": 10593.28, + "probability": 0.0243 + }, + { + "start": 10594.12, + "end": 10595.34, + "probability": 0.1145 + }, + { + "start": 10595.34, + "end": 10595.78, + "probability": 0.0586 + }, + { + "start": 10596.86, + "end": 10597.52, + "probability": 0.2213 + }, + { + "start": 10598.26, + "end": 10599.64, + "probability": 0.0929 + }, + { + "start": 10600.5, + "end": 10601.52, + "probability": 0.2745 + }, + { + "start": 10601.52, + "end": 10602.42, + "probability": 0.1447 + }, + { + "start": 10605.52, + "end": 10606.26, + "probability": 0.0262 + }, + { + "start": 10606.26, + "end": 10608.48, + "probability": 0.1779 + }, + { + "start": 10608.48, + "end": 10608.48, + "probability": 0.1127 + }, + { + "start": 10608.48, + "end": 10611.22, + "probability": 0.0743 + }, + { + "start": 10611.22, + "end": 10611.29, + "probability": 0.0733 + }, + { + "start": 10611.48, + "end": 10611.48, + "probability": 0.0445 + }, + { + "start": 10611.48, + "end": 10611.94, + "probability": 0.1155 + }, + { + "start": 10612.7, + "end": 10612.7, + "probability": 0.0097 + }, + { + "start": 10612.7, + "end": 10612.7, + "probability": 0.0363 + }, + { + "start": 10612.7, + "end": 10615.68, + "probability": 0.9393 + }, + { + "start": 10616.04, + "end": 10621.72, + "probability": 0.9359 + }, + { + "start": 10622.3, + "end": 10623.84, + "probability": 0.9436 + }, + { + "start": 10624.62, + "end": 10628.28, + "probability": 0.9651 + }, + { + "start": 10628.7, + "end": 10631.8, + "probability": 0.9584 + }, + { + "start": 10633.0, + "end": 10637.3, + "probability": 0.9368 + }, + { + "start": 10637.92, + "end": 10643.08, + "probability": 0.9901 + }, + { + "start": 10643.64, + "end": 10647.5, + "probability": 0.9409 + }, + { + "start": 10647.9, + "end": 10653.24, + "probability": 0.9878 + }, + { + "start": 10653.78, + "end": 10656.02, + "probability": 0.6465 + }, + { + "start": 10656.58, + "end": 10659.64, + "probability": 0.9215 + }, + { + "start": 10659.78, + "end": 10661.68, + "probability": 0.7813 + }, + { + "start": 10662.1, + "end": 10666.3, + "probability": 0.968 + }, + { + "start": 10667.0, + "end": 10667.96, + "probability": 0.9893 + }, + { + "start": 10669.36, + "end": 10672.24, + "probability": 0.9963 + }, + { + "start": 10672.74, + "end": 10675.82, + "probability": 0.8728 + }, + { + "start": 10675.98, + "end": 10678.06, + "probability": 0.998 + }, + { + "start": 10678.68, + "end": 10681.3, + "probability": 0.9633 + }, + { + "start": 10681.74, + "end": 10683.7, + "probability": 0.9692 + }, + { + "start": 10684.28, + "end": 10686.02, + "probability": 0.7551 + }, + { + "start": 10686.62, + "end": 10687.36, + "probability": 0.8679 + }, + { + "start": 10687.54, + "end": 10689.6, + "probability": 0.9906 + }, + { + "start": 10689.98, + "end": 10692.14, + "probability": 0.9272 + }, + { + "start": 10692.66, + "end": 10697.34, + "probability": 0.9916 + }, + { + "start": 10697.44, + "end": 10698.58, + "probability": 0.7707 + }, + { + "start": 10699.4, + "end": 10700.34, + "probability": 0.9889 + }, + { + "start": 10700.76, + "end": 10702.83, + "probability": 0.9526 + }, + { + "start": 10703.44, + "end": 10707.66, + "probability": 0.9293 + }, + { + "start": 10707.66, + "end": 10711.5, + "probability": 0.9963 + }, + { + "start": 10712.08, + "end": 10713.36, + "probability": 0.9966 + }, + { + "start": 10713.48, + "end": 10715.08, + "probability": 0.8194 + }, + { + "start": 10715.38, + "end": 10717.04, + "probability": 0.9927 + }, + { + "start": 10717.12, + "end": 10719.63, + "probability": 0.7928 + }, + { + "start": 10720.08, + "end": 10724.44, + "probability": 0.9868 + }, + { + "start": 10724.44, + "end": 10728.36, + "probability": 0.9924 + }, + { + "start": 10728.8, + "end": 10732.66, + "probability": 0.9968 + }, + { + "start": 10733.32, + "end": 10734.86, + "probability": 0.8234 + }, + { + "start": 10735.06, + "end": 10738.8, + "probability": 0.9874 + }, + { + "start": 10738.8, + "end": 10742.48, + "probability": 0.9871 + }, + { + "start": 10743.08, + "end": 10747.98, + "probability": 0.9753 + }, + { + "start": 10748.14, + "end": 10749.68, + "probability": 0.8496 + }, + { + "start": 10749.84, + "end": 10750.86, + "probability": 0.5499 + }, + { + "start": 10750.92, + "end": 10754.1, + "probability": 0.9956 + }, + { + "start": 10754.7, + "end": 10755.58, + "probability": 0.8777 + }, + { + "start": 10755.72, + "end": 10759.12, + "probability": 0.9915 + }, + { + "start": 10759.48, + "end": 10761.98, + "probability": 0.9646 + }, + { + "start": 10762.06, + "end": 10763.06, + "probability": 0.8095 + }, + { + "start": 10763.3, + "end": 10765.6, + "probability": 0.9988 + }, + { + "start": 10766.02, + "end": 10767.86, + "probability": 0.9673 + }, + { + "start": 10768.38, + "end": 10770.9, + "probability": 0.4348 + }, + { + "start": 10771.04, + "end": 10776.98, + "probability": 0.9816 + }, + { + "start": 10777.42, + "end": 10780.78, + "probability": 0.886 + }, + { + "start": 10781.48, + "end": 10782.16, + "probability": 0.194 + }, + { + "start": 10782.22, + "end": 10785.38, + "probability": 0.9152 + }, + { + "start": 10785.38, + "end": 10788.86, + "probability": 0.9813 + }, + { + "start": 10789.14, + "end": 10789.92, + "probability": 0.5717 + }, + { + "start": 10790.0, + "end": 10792.0, + "probability": 0.9607 + }, + { + "start": 10792.14, + "end": 10794.56, + "probability": 0.8796 + }, + { + "start": 10795.8, + "end": 10797.18, + "probability": 0.7234 + }, + { + "start": 10802.0, + "end": 10802.3, + "probability": 0.4194 + }, + { + "start": 10807.24, + "end": 10807.86, + "probability": 0.5985 + }, + { + "start": 10807.92, + "end": 10809.25, + "probability": 0.9417 + }, + { + "start": 10815.02, + "end": 10816.56, + "probability": 0.4434 + }, + { + "start": 10818.1, + "end": 10819.96, + "probability": 0.9974 + }, + { + "start": 10820.94, + "end": 10821.56, + "probability": 0.7405 + }, + { + "start": 10823.82, + "end": 10827.86, + "probability": 0.9326 + }, + { + "start": 10829.6, + "end": 10831.44, + "probability": 0.8379 + }, + { + "start": 10835.6, + "end": 10837.4, + "probability": 0.9941 + }, + { + "start": 10837.94, + "end": 10839.3, + "probability": 0.9339 + }, + { + "start": 10840.32, + "end": 10842.28, + "probability": 0.974 + }, + { + "start": 10843.46, + "end": 10846.34, + "probability": 0.8347 + }, + { + "start": 10847.52, + "end": 10848.28, + "probability": 0.8806 + }, + { + "start": 10851.82, + "end": 10854.54, + "probability": 0.626 + }, + { + "start": 10856.12, + "end": 10859.36, + "probability": 0.9893 + }, + { + "start": 10860.58, + "end": 10865.6, + "probability": 0.9893 + }, + { + "start": 10867.16, + "end": 10871.28, + "probability": 0.9513 + }, + { + "start": 10873.18, + "end": 10880.8, + "probability": 0.994 + }, + { + "start": 10881.54, + "end": 10884.98, + "probability": 0.9822 + }, + { + "start": 10887.3, + "end": 10887.86, + "probability": 0.491 + }, + { + "start": 10888.96, + "end": 10891.56, + "probability": 0.9616 + }, + { + "start": 10891.8, + "end": 10893.9, + "probability": 0.9294 + }, + { + "start": 10894.82, + "end": 10898.66, + "probability": 0.9114 + }, + { + "start": 10898.8, + "end": 10901.3, + "probability": 0.937 + }, + { + "start": 10902.4, + "end": 10906.56, + "probability": 0.8678 + }, + { + "start": 10907.48, + "end": 10908.72, + "probability": 0.9756 + }, + { + "start": 10908.9, + "end": 10913.24, + "probability": 0.981 + }, + { + "start": 10914.3, + "end": 10915.67, + "probability": 0.9274 + }, + { + "start": 10916.8, + "end": 10918.02, + "probability": 0.8398 + }, + { + "start": 10918.82, + "end": 10920.42, + "probability": 0.9636 + }, + { + "start": 10921.06, + "end": 10922.78, + "probability": 0.97 + }, + { + "start": 10924.06, + "end": 10927.2, + "probability": 0.8032 + }, + { + "start": 10927.9, + "end": 10929.7, + "probability": 0.8811 + }, + { + "start": 10930.44, + "end": 10931.56, + "probability": 0.8703 + }, + { + "start": 10932.44, + "end": 10933.4, + "probability": 0.7262 + }, + { + "start": 10933.4, + "end": 10938.8, + "probability": 0.9048 + }, + { + "start": 10938.8, + "end": 10941.9, + "probability": 0.9946 + }, + { + "start": 10942.52, + "end": 10944.04, + "probability": 0.9914 + }, + { + "start": 10945.8, + "end": 10949.84, + "probability": 0.9475 + }, + { + "start": 10950.52, + "end": 10951.56, + "probability": 0.6904 + }, + { + "start": 10952.24, + "end": 10952.44, + "probability": 0.8804 + }, + { + "start": 10952.52, + "end": 10953.04, + "probability": 0.9524 + }, + { + "start": 10953.74, + "end": 10954.94, + "probability": 0.9985 + }, + { + "start": 10956.9, + "end": 10959.1, + "probability": 0.9929 + }, + { + "start": 10959.9, + "end": 10963.86, + "probability": 0.8753 + }, + { + "start": 10965.0, + "end": 10966.88, + "probability": 0.9695 + }, + { + "start": 10967.6, + "end": 10971.0, + "probability": 0.8574 + }, + { + "start": 10971.56, + "end": 10972.62, + "probability": 0.3277 + }, + { + "start": 10974.22, + "end": 10976.0, + "probability": 0.5993 + }, + { + "start": 10976.94, + "end": 10977.58, + "probability": 0.9788 + }, + { + "start": 10978.44, + "end": 10979.26, + "probability": 0.8439 + }, + { + "start": 10980.1, + "end": 10984.0, + "probability": 0.8462 + }, + { + "start": 10984.6, + "end": 10986.92, + "probability": 0.9409 + }, + { + "start": 10987.66, + "end": 10988.2, + "probability": 0.8184 + }, + { + "start": 10988.52, + "end": 10989.66, + "probability": 0.9089 + }, + { + "start": 10990.14, + "end": 10992.78, + "probability": 0.9824 + }, + { + "start": 10993.26, + "end": 10996.8, + "probability": 0.9849 + }, + { + "start": 10996.82, + "end": 10997.42, + "probability": 0.6277 + }, + { + "start": 10998.06, + "end": 10998.76, + "probability": 0.4811 + }, + { + "start": 10999.42, + "end": 10999.78, + "probability": 0.8128 + }, + { + "start": 11000.82, + "end": 11002.34, + "probability": 0.3295 + }, + { + "start": 11002.84, + "end": 11004.58, + "probability": 0.9082 + }, + { + "start": 11004.94, + "end": 11005.56, + "probability": 0.8318 + }, + { + "start": 11006.12, + "end": 11006.7, + "probability": 0.4572 + }, + { + "start": 11006.7, + "end": 11006.88, + "probability": 0.4113 + }, + { + "start": 11006.88, + "end": 11008.1, + "probability": 0.6823 + }, + { + "start": 11008.22, + "end": 11013.26, + "probability": 0.9553 + }, + { + "start": 11013.34, + "end": 11014.24, + "probability": 0.6299 + }, + { + "start": 11014.76, + "end": 11017.6, + "probability": 0.9771 + }, + { + "start": 11019.54, + "end": 11021.8, + "probability": 0.9958 + }, + { + "start": 11021.8, + "end": 11026.76, + "probability": 0.9842 + }, + { + "start": 11026.76, + "end": 11028.18, + "probability": 0.4922 + }, + { + "start": 11028.28, + "end": 11034.26, + "probability": 0.9908 + }, + { + "start": 11034.54, + "end": 11036.04, + "probability": 0.9685 + }, + { + "start": 11036.38, + "end": 11040.36, + "probability": 0.8872 + }, + { + "start": 11040.36, + "end": 11043.62, + "probability": 0.9967 + }, + { + "start": 11044.08, + "end": 11044.08, + "probability": 0.3867 + }, + { + "start": 11044.08, + "end": 11045.42, + "probability": 0.45 + }, + { + "start": 11045.56, + "end": 11046.56, + "probability": 0.8591 + }, + { + "start": 11046.66, + "end": 11048.3, + "probability": 0.7381 + }, + { + "start": 11048.3, + "end": 11048.4, + "probability": 0.4961 + }, + { + "start": 11048.4, + "end": 11050.04, + "probability": 0.3032 + }, + { + "start": 11050.08, + "end": 11052.66, + "probability": 0.6465 + }, + { + "start": 11052.98, + "end": 11054.32, + "probability": 0.608 + }, + { + "start": 11054.32, + "end": 11057.34, + "probability": 0.771 + }, + { + "start": 11057.46, + "end": 11057.6, + "probability": 0.6867 + }, + { + "start": 11057.62, + "end": 11058.64, + "probability": 0.7006 + }, + { + "start": 11058.98, + "end": 11063.14, + "probability": 0.9876 + }, + { + "start": 11063.6, + "end": 11065.16, + "probability": 0.8443 + }, + { + "start": 11066.02, + "end": 11066.24, + "probability": 0.0992 + }, + { + "start": 11066.24, + "end": 11070.42, + "probability": 0.9288 + }, + { + "start": 11071.22, + "end": 11073.07, + "probability": 0.7109 + }, + { + "start": 11073.94, + "end": 11075.7, + "probability": 0.3963 + }, + { + "start": 11075.8, + "end": 11076.54, + "probability": 0.6559 + }, + { + "start": 11076.56, + "end": 11079.22, + "probability": 0.5389 + }, + { + "start": 11079.82, + "end": 11080.6, + "probability": 0.6457 + }, + { + "start": 11080.6, + "end": 11082.0, + "probability": 0.9568 + }, + { + "start": 11082.06, + "end": 11082.52, + "probability": 0.657 + }, + { + "start": 11082.74, + "end": 11084.24, + "probability": 0.9124 + }, + { + "start": 11084.58, + "end": 11085.42, + "probability": 0.7424 + }, + { + "start": 11086.48, + "end": 11088.4, + "probability": 0.6023 + }, + { + "start": 11089.06, + "end": 11090.1, + "probability": 0.9695 + }, + { + "start": 11090.44, + "end": 11094.08, + "probability": 0.8027 + }, + { + "start": 11094.64, + "end": 11097.04, + "probability": 0.8502 + }, + { + "start": 11098.24, + "end": 11099.18, + "probability": 0.8485 + }, + { + "start": 11100.41, + "end": 11102.22, + "probability": 0.2668 + }, + { + "start": 11102.22, + "end": 11102.22, + "probability": 0.0864 + }, + { + "start": 11102.22, + "end": 11102.22, + "probability": 0.0124 + }, + { + "start": 11102.22, + "end": 11102.22, + "probability": 0.179 + }, + { + "start": 11102.22, + "end": 11102.8, + "probability": 0.028 + }, + { + "start": 11103.02, + "end": 11104.1, + "probability": 0.8156 + }, + { + "start": 11104.92, + "end": 11105.28, + "probability": 0.5594 + }, + { + "start": 11105.44, + "end": 11108.48, + "probability": 0.9002 + }, + { + "start": 11108.58, + "end": 11109.74, + "probability": 0.9562 + }, + { + "start": 11110.26, + "end": 11110.52, + "probability": 0.4195 + }, + { + "start": 11111.6, + "end": 11113.53, + "probability": 0.6662 + }, + { + "start": 11114.31, + "end": 11118.06, + "probability": 0.8123 + }, + { + "start": 11118.06, + "end": 11120.9, + "probability": 0.3092 + }, + { + "start": 11121.84, + "end": 11122.04, + "probability": 0.605 + }, + { + "start": 11122.96, + "end": 11125.4, + "probability": 0.628 + }, + { + "start": 11126.28, + "end": 11127.02, + "probability": 0.7392 + }, + { + "start": 11127.64, + "end": 11130.43, + "probability": 0.8216 + }, + { + "start": 11131.22, + "end": 11133.42, + "probability": 0.8537 + }, + { + "start": 11134.14, + "end": 11136.68, + "probability": 0.9741 + }, + { + "start": 11137.78, + "end": 11139.74, + "probability": 0.8899 + }, + { + "start": 11139.76, + "end": 11140.24, + "probability": 0.903 + }, + { + "start": 11140.44, + "end": 11141.74, + "probability": 0.9739 + }, + { + "start": 11143.63, + "end": 11147.62, + "probability": 0.9807 + }, + { + "start": 11148.64, + "end": 11149.66, + "probability": 0.8734 + }, + { + "start": 11149.8, + "end": 11150.86, + "probability": 0.8439 + }, + { + "start": 11151.0, + "end": 11152.34, + "probability": 0.9958 + }, + { + "start": 11152.38, + "end": 11153.48, + "probability": 0.7533 + }, + { + "start": 11154.62, + "end": 11158.32, + "probability": 0.652 + }, + { + "start": 11159.5, + "end": 11162.56, + "probability": 0.9961 + }, + { + "start": 11162.72, + "end": 11163.66, + "probability": 0.9885 + }, + { + "start": 11164.48, + "end": 11167.8, + "probability": 0.9517 + }, + { + "start": 11168.32, + "end": 11170.12, + "probability": 0.5892 + }, + { + "start": 11170.88, + "end": 11172.36, + "probability": 0.5602 + }, + { + "start": 11172.96, + "end": 11175.76, + "probability": 0.9878 + }, + { + "start": 11176.04, + "end": 11176.74, + "probability": 0.772 + }, + { + "start": 11177.32, + "end": 11177.88, + "probability": 0.5825 + }, + { + "start": 11177.9, + "end": 11181.0, + "probability": 0.9453 + }, + { + "start": 11181.26, + "end": 11182.52, + "probability": 0.7578 + }, + { + "start": 11183.0, + "end": 11183.82, + "probability": 0.5112 + }, + { + "start": 11184.12, + "end": 11184.76, + "probability": 0.4992 + }, + { + "start": 11184.88, + "end": 11186.92, + "probability": 0.7828 + }, + { + "start": 11187.34, + "end": 11191.96, + "probability": 0.9937 + }, + { + "start": 11192.52, + "end": 11194.14, + "probability": 0.7222 + }, + { + "start": 11194.24, + "end": 11195.06, + "probability": 0.6085 + }, + { + "start": 11195.6, + "end": 11196.44, + "probability": 0.7254 + }, + { + "start": 11197.06, + "end": 11199.03, + "probability": 0.9667 + }, + { + "start": 11200.6, + "end": 11201.46, + "probability": 0.4884 + }, + { + "start": 11201.62, + "end": 11202.52, + "probability": 0.7545 + }, + { + "start": 11202.66, + "end": 11205.02, + "probability": 0.9812 + }, + { + "start": 11205.24, + "end": 11206.4, + "probability": 0.8374 + }, + { + "start": 11206.52, + "end": 11207.5, + "probability": 0.6647 + }, + { + "start": 11207.6, + "end": 11208.62, + "probability": 0.7988 + }, + { + "start": 11208.82, + "end": 11210.36, + "probability": 0.5581 + }, + { + "start": 11210.6, + "end": 11211.88, + "probability": 0.9905 + }, + { + "start": 11212.66, + "end": 11213.3, + "probability": 0.7376 + }, + { + "start": 11213.4, + "end": 11214.14, + "probability": 0.8347 + }, + { + "start": 11214.2, + "end": 11217.32, + "probability": 0.9753 + }, + { + "start": 11217.78, + "end": 11218.16, + "probability": 0.319 + }, + { + "start": 11218.26, + "end": 11219.32, + "probability": 0.0019 + }, + { + "start": 11221.28, + "end": 11224.36, + "probability": 0.2513 + }, + { + "start": 11224.66, + "end": 11224.66, + "probability": 0.2104 + }, + { + "start": 11224.66, + "end": 11224.66, + "probability": 0.0875 + }, + { + "start": 11224.66, + "end": 11224.66, + "probability": 0.1326 + }, + { + "start": 11224.66, + "end": 11224.66, + "probability": 0.2529 + }, + { + "start": 11224.66, + "end": 11228.46, + "probability": 0.3179 + }, + { + "start": 11228.82, + "end": 11230.06, + "probability": 0.9332 + }, + { + "start": 11230.3, + "end": 11230.86, + "probability": 0.9474 + }, + { + "start": 11231.36, + "end": 11233.58, + "probability": 0.9677 + }, + { + "start": 11233.8, + "end": 11235.56, + "probability": 0.3454 + }, + { + "start": 11235.84, + "end": 11239.33, + "probability": 0.6357 + }, + { + "start": 11239.78, + "end": 11240.26, + "probability": 0.9689 + }, + { + "start": 11240.9, + "end": 11243.96, + "probability": 0.0281 + }, + { + "start": 11244.36, + "end": 11244.54, + "probability": 0.0379 + }, + { + "start": 11244.54, + "end": 11247.88, + "probability": 0.4289 + }, + { + "start": 11248.4, + "end": 11249.65, + "probability": 0.7795 + }, + { + "start": 11250.02, + "end": 11253.2, + "probability": 0.5043 + }, + { + "start": 11253.46, + "end": 11254.28, + "probability": 0.6937 + }, + { + "start": 11254.92, + "end": 11256.38, + "probability": 0.5143 + }, + { + "start": 11256.5, + "end": 11257.06, + "probability": 0.2084 + }, + { + "start": 11257.28, + "end": 11259.34, + "probability": 0.4691 + }, + { + "start": 11260.14, + "end": 11263.74, + "probability": 0.1009 + }, + { + "start": 11273.52, + "end": 11274.34, + "probability": 0.0223 + }, + { + "start": 11274.52, + "end": 11277.84, + "probability": 0.0611 + }, + { + "start": 11278.98, + "end": 11279.96, + "probability": 0.1157 + }, + { + "start": 11280.2, + "end": 11282.08, + "probability": 0.2216 + }, + { + "start": 11283.74, + "end": 11284.5, + "probability": 0.0681 + }, + { + "start": 11284.72, + "end": 11287.52, + "probability": 0.0642 + }, + { + "start": 11287.52, + "end": 11289.35, + "probability": 0.0907 + }, + { + "start": 11289.94, + "end": 11296.56, + "probability": 0.0672 + }, + { + "start": 11298.07, + "end": 11298.52, + "probability": 0.0428 + }, + { + "start": 11298.52, + "end": 11299.5, + "probability": 0.0363 + }, + { + "start": 11299.5, + "end": 11299.5, + "probability": 0.1609 + }, + { + "start": 11299.5, + "end": 11300.02, + "probability": 0.1926 + }, + { + "start": 11303.94, + "end": 11307.96, + "probability": 0.0793 + }, + { + "start": 11308.8, + "end": 11311.98, + "probability": 0.2837 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.0, + "end": 11312.0, + "probability": 0.0 + }, + { + "start": 11312.28, + "end": 11313.9, + "probability": 0.4488 + }, + { + "start": 11315.84, + "end": 11317.3, + "probability": 0.6543 + }, + { + "start": 11318.26, + "end": 11319.33, + "probability": 0.3884 + }, + { + "start": 11319.96, + "end": 11320.4, + "probability": 0.4456 + }, + { + "start": 11320.4, + "end": 11324.72, + "probability": 0.775 + }, + { + "start": 11325.76, + "end": 11333.16, + "probability": 0.9985 + }, + { + "start": 11333.16, + "end": 11337.9, + "probability": 0.9992 + }, + { + "start": 11338.92, + "end": 11340.96, + "probability": 0.9961 + }, + { + "start": 11341.96, + "end": 11344.18, + "probability": 0.9821 + }, + { + "start": 11344.9, + "end": 11347.12, + "probability": 0.9985 + }, + { + "start": 11347.68, + "end": 11350.0, + "probability": 0.9987 + }, + { + "start": 11350.68, + "end": 11352.7, + "probability": 0.8071 + }, + { + "start": 11352.78, + "end": 11355.06, + "probability": 0.8976 + }, + { + "start": 11355.8, + "end": 11356.64, + "probability": 0.6932 + }, + { + "start": 11357.36, + "end": 11361.86, + "probability": 0.9988 + }, + { + "start": 11361.86, + "end": 11367.96, + "probability": 0.9486 + }, + { + "start": 11368.4, + "end": 11371.18, + "probability": 0.9729 + }, + { + "start": 11372.52, + "end": 11373.86, + "probability": 0.8429 + }, + { + "start": 11374.38, + "end": 11377.96, + "probability": 0.9805 + }, + { + "start": 11378.88, + "end": 11383.67, + "probability": 0.9871 + }, + { + "start": 11383.8, + "end": 11384.88, + "probability": 0.9681 + }, + { + "start": 11385.24, + "end": 11389.54, + "probability": 0.9624 + }, + { + "start": 11390.6, + "end": 11391.88, + "probability": 0.9817 + }, + { + "start": 11392.72, + "end": 11396.82, + "probability": 0.9525 + }, + { + "start": 11397.64, + "end": 11401.06, + "probability": 0.9945 + }, + { + "start": 11401.06, + "end": 11406.7, + "probability": 0.8449 + }, + { + "start": 11407.42, + "end": 11410.24, + "probability": 0.9174 + }, + { + "start": 11411.9, + "end": 11413.18, + "probability": 0.7569 + }, + { + "start": 11414.32, + "end": 11423.42, + "probability": 0.9966 + }, + { + "start": 11424.72, + "end": 11431.72, + "probability": 0.9987 + }, + { + "start": 11431.72, + "end": 11436.56, + "probability": 0.9991 + }, + { + "start": 11437.4, + "end": 11442.42, + "probability": 0.9978 + }, + { + "start": 11443.54, + "end": 11448.5, + "probability": 0.9946 + }, + { + "start": 11449.28, + "end": 11453.44, + "probability": 0.9979 + }, + { + "start": 11453.94, + "end": 11460.74, + "probability": 0.9893 + }, + { + "start": 11461.26, + "end": 11464.16, + "probability": 0.9265 + }, + { + "start": 11465.0, + "end": 11466.98, + "probability": 0.9946 + }, + { + "start": 11467.08, + "end": 11468.14, + "probability": 0.9735 + }, + { + "start": 11468.26, + "end": 11469.7, + "probability": 0.9941 + }, + { + "start": 11470.3, + "end": 11474.16, + "probability": 0.9055 + }, + { + "start": 11474.22, + "end": 11476.54, + "probability": 0.9769 + }, + { + "start": 11477.38, + "end": 11482.5, + "probability": 0.9991 + }, + { + "start": 11482.5, + "end": 11488.96, + "probability": 0.9873 + }, + { + "start": 11489.7, + "end": 11494.0, + "probability": 0.9863 + }, + { + "start": 11494.1, + "end": 11495.16, + "probability": 0.8327 + }, + { + "start": 11495.3, + "end": 11500.45, + "probability": 0.9924 + }, + { + "start": 11501.18, + "end": 11502.9, + "probability": 0.8418 + }, + { + "start": 11504.04, + "end": 11505.56, + "probability": 0.6951 + }, + { + "start": 11505.68, + "end": 11507.82, + "probability": 0.9203 + }, + { + "start": 11507.86, + "end": 11508.54, + "probability": 0.2727 + }, + { + "start": 11508.6, + "end": 11511.02, + "probability": 0.998 + }, + { + "start": 11511.66, + "end": 11516.2, + "probability": 0.941 + }, + { + "start": 11516.7, + "end": 11519.14, + "probability": 0.6772 + }, + { + "start": 11519.64, + "end": 11521.92, + "probability": 0.9407 + }, + { + "start": 11522.64, + "end": 11523.12, + "probability": 0.8911 + }, + { + "start": 11524.06, + "end": 11527.14, + "probability": 0.5708 + }, + { + "start": 11530.64, + "end": 11532.1, + "probability": 0.8589 + }, + { + "start": 11533.18, + "end": 11535.82, + "probability": 0.8826 + }, + { + "start": 11540.94, + "end": 11541.68, + "probability": 0.7557 + }, + { + "start": 11542.86, + "end": 11543.3, + "probability": 0.2613 + }, + { + "start": 11543.38, + "end": 11545.5, + "probability": 0.7228 + }, + { + "start": 11546.1, + "end": 11549.3, + "probability": 0.9893 + }, + { + "start": 11550.34, + "end": 11554.88, + "probability": 0.994 + }, + { + "start": 11555.42, + "end": 11558.47, + "probability": 0.9922 + }, + { + "start": 11560.18, + "end": 11562.56, + "probability": 0.6615 + }, + { + "start": 11563.16, + "end": 11566.18, + "probability": 0.9741 + }, + { + "start": 11566.18, + "end": 11567.94, + "probability": 0.7603 + }, + { + "start": 11568.68, + "end": 11572.82, + "probability": 0.9985 + }, + { + "start": 11572.82, + "end": 11578.04, + "probability": 0.9968 + }, + { + "start": 11579.38, + "end": 11580.82, + "probability": 0.6934 + }, + { + "start": 11581.56, + "end": 11583.64, + "probability": 0.9775 + }, + { + "start": 11584.2, + "end": 11585.22, + "probability": 0.9049 + }, + { + "start": 11585.86, + "end": 11586.4, + "probability": 0.8036 + }, + { + "start": 11586.66, + "end": 11587.96, + "probability": 0.9905 + }, + { + "start": 11588.36, + "end": 11589.24, + "probability": 0.9775 + }, + { + "start": 11589.94, + "end": 11591.84, + "probability": 0.7549 + }, + { + "start": 11592.24, + "end": 11595.5, + "probability": 0.9837 + }, + { + "start": 11595.94, + "end": 11598.72, + "probability": 0.996 + }, + { + "start": 11598.72, + "end": 11602.36, + "probability": 0.9518 + }, + { + "start": 11602.86, + "end": 11603.44, + "probability": 0.8981 + }, + { + "start": 11604.3, + "end": 11606.64, + "probability": 0.9634 + }, + { + "start": 11607.38, + "end": 11610.84, + "probability": 0.9577 + }, + { + "start": 11610.96, + "end": 11615.44, + "probability": 0.9741 + }, + { + "start": 11616.0, + "end": 11618.58, + "probability": 0.9971 + }, + { + "start": 11619.42, + "end": 11622.28, + "probability": 0.9283 + }, + { + "start": 11622.9, + "end": 11628.02, + "probability": 0.9866 + }, + { + "start": 11628.84, + "end": 11630.92, + "probability": 0.9069 + }, + { + "start": 11631.1, + "end": 11634.82, + "probability": 0.9681 + }, + { + "start": 11635.44, + "end": 11638.98, + "probability": 0.8389 + }, + { + "start": 11639.14, + "end": 11641.26, + "probability": 0.9382 + }, + { + "start": 11642.04, + "end": 11646.3, + "probability": 0.9404 + }, + { + "start": 11647.94, + "end": 11652.58, + "probability": 0.9595 + }, + { + "start": 11653.14, + "end": 11655.76, + "probability": 0.9858 + }, + { + "start": 11655.86, + "end": 11657.46, + "probability": 0.9971 + }, + { + "start": 11658.74, + "end": 11659.9, + "probability": 0.9951 + }, + { + "start": 11660.94, + "end": 11661.16, + "probability": 0.5526 + }, + { + "start": 11661.8, + "end": 11664.02, + "probability": 0.9822 + }, + { + "start": 11664.08, + "end": 11665.38, + "probability": 0.9775 + }, + { + "start": 11665.82, + "end": 11667.7, + "probability": 0.8249 + }, + { + "start": 11669.12, + "end": 11670.2, + "probability": 0.814 + }, + { + "start": 11671.38, + "end": 11672.42, + "probability": 0.925 + }, + { + "start": 11672.62, + "end": 11674.12, + "probability": 0.7228 + }, + { + "start": 11674.26, + "end": 11675.28, + "probability": 0.8774 + }, + { + "start": 11676.24, + "end": 11677.52, + "probability": 0.9184 + }, + { + "start": 11678.84, + "end": 11680.68, + "probability": 0.9801 + }, + { + "start": 11681.62, + "end": 11687.76, + "probability": 0.9773 + }, + { + "start": 11687.94, + "end": 11689.28, + "probability": 0.6094 + }, + { + "start": 11689.76, + "end": 11691.96, + "probability": 0.9825 + }, + { + "start": 11692.04, + "end": 11695.28, + "probability": 0.9843 + }, + { + "start": 11695.84, + "end": 11700.68, + "probability": 0.7998 + }, + { + "start": 11701.42, + "end": 11704.38, + "probability": 0.9434 + }, + { + "start": 11705.16, + "end": 11708.72, + "probability": 0.8286 + }, + { + "start": 11709.9, + "end": 11711.37, + "probability": 0.9976 + }, + { + "start": 11712.18, + "end": 11716.34, + "probability": 0.9952 + }, + { + "start": 11716.92, + "end": 11718.24, + "probability": 0.9883 + }, + { + "start": 11718.74, + "end": 11722.84, + "probability": 0.9033 + }, + { + "start": 11722.88, + "end": 11725.96, + "probability": 0.7079 + }, + { + "start": 11726.9, + "end": 11728.28, + "probability": 0.9963 + }, + { + "start": 11728.88, + "end": 11730.36, + "probability": 0.9933 + }, + { + "start": 11730.4, + "end": 11732.84, + "probability": 0.9932 + }, + { + "start": 11733.28, + "end": 11734.4, + "probability": 0.9615 + }, + { + "start": 11734.84, + "end": 11735.76, + "probability": 0.8853 + }, + { + "start": 11736.22, + "end": 11737.98, + "probability": 0.927 + }, + { + "start": 11738.18, + "end": 11738.78, + "probability": 0.3221 + }, + { + "start": 11739.14, + "end": 11739.6, + "probability": 0.8487 + }, + { + "start": 11740.08, + "end": 11743.24, + "probability": 0.6177 + }, + { + "start": 11743.34, + "end": 11746.1, + "probability": 0.6794 + }, + { + "start": 11746.88, + "end": 11751.34, + "probability": 0.5858 + }, + { + "start": 11752.14, + "end": 11754.38, + "probability": 0.5453 + }, + { + "start": 11754.92, + "end": 11757.9, + "probability": 0.6074 + }, + { + "start": 11758.58, + "end": 11759.22, + "probability": 0.5939 + }, + { + "start": 11759.58, + "end": 11760.18, + "probability": 0.4005 + }, + { + "start": 11760.34, + "end": 11760.88, + "probability": 0.7993 + }, + { + "start": 11761.38, + "end": 11763.18, + "probability": 0.5861 + }, + { + "start": 11763.24, + "end": 11763.8, + "probability": 0.9705 + }, + { + "start": 11763.88, + "end": 11765.16, + "probability": 0.5958 + }, + { + "start": 11765.26, + "end": 11765.66, + "probability": 0.4415 + }, + { + "start": 11766.2, + "end": 11769.72, + "probability": 0.7892 + }, + { + "start": 11769.72, + "end": 11770.58, + "probability": 0.8179 + }, + { + "start": 11772.3, + "end": 11773.72, + "probability": 0.808 + }, + { + "start": 11773.86, + "end": 11775.92, + "probability": 0.9482 + }, + { + "start": 11783.46, + "end": 11784.22, + "probability": 0.7964 + }, + { + "start": 11784.84, + "end": 11785.18, + "probability": 0.6253 + }, + { + "start": 11786.1, + "end": 11787.08, + "probability": 0.9097 + }, + { + "start": 11787.9, + "end": 11789.7, + "probability": 0.1686 + }, + { + "start": 11790.36, + "end": 11792.86, + "probability": 0.83 + }, + { + "start": 11794.8, + "end": 11797.92, + "probability": 0.9923 + }, + { + "start": 11799.0, + "end": 11799.08, + "probability": 0.1098 + }, + { + "start": 11799.1, + "end": 11800.62, + "probability": 0.9419 + }, + { + "start": 11800.76, + "end": 11801.66, + "probability": 0.7603 + }, + { + "start": 11801.74, + "end": 11802.0, + "probability": 0.6176 + }, + { + "start": 11802.76, + "end": 11804.34, + "probability": 0.777 + }, + { + "start": 11805.36, + "end": 11806.68, + "probability": 0.9673 + }, + { + "start": 11807.48, + "end": 11809.88, + "probability": 0.8377 + }, + { + "start": 11810.98, + "end": 11812.72, + "probability": 0.979 + }, + { + "start": 11813.96, + "end": 11817.3, + "probability": 0.9944 + }, + { + "start": 11818.98, + "end": 11820.24, + "probability": 0.9209 + }, + { + "start": 11821.5, + "end": 11822.98, + "probability": 0.8493 + }, + { + "start": 11824.4, + "end": 11825.8, + "probability": 0.9933 + }, + { + "start": 11827.8, + "end": 11829.48, + "probability": 0.8434 + }, + { + "start": 11829.74, + "end": 11830.88, + "probability": 0.8018 + }, + { + "start": 11831.04, + "end": 11831.9, + "probability": 0.926 + }, + { + "start": 11832.84, + "end": 11835.62, + "probability": 0.9961 + }, + { + "start": 11837.72, + "end": 11838.58, + "probability": 0.8333 + }, + { + "start": 11839.32, + "end": 11840.64, + "probability": 0.9988 + }, + { + "start": 11842.68, + "end": 11845.62, + "probability": 0.9543 + }, + { + "start": 11845.72, + "end": 11848.08, + "probability": 0.885 + }, + { + "start": 11849.42, + "end": 11851.74, + "probability": 0.9628 + }, + { + "start": 11851.74, + "end": 11854.2, + "probability": 0.7183 + }, + { + "start": 11854.52, + "end": 11857.45, + "probability": 0.5694 + }, + { + "start": 11858.36, + "end": 11859.54, + "probability": 0.717 + }, + { + "start": 11859.54, + "end": 11860.53, + "probability": 0.6006 + }, + { + "start": 11860.94, + "end": 11863.0, + "probability": 0.9647 + }, + { + "start": 11864.04, + "end": 11865.0, + "probability": 0.9131 + }, + { + "start": 11865.12, + "end": 11866.27, + "probability": 0.9574 + }, + { + "start": 11866.7, + "end": 11867.6, + "probability": 0.9779 + }, + { + "start": 11867.68, + "end": 11868.54, + "probability": 0.9686 + }, + { + "start": 11869.2, + "end": 11871.32, + "probability": 0.9487 + }, + { + "start": 11872.08, + "end": 11872.58, + "probability": 0.9893 + }, + { + "start": 11875.04, + "end": 11875.92, + "probability": 0.6386 + }, + { + "start": 11877.02, + "end": 11877.5, + "probability": 0.6237 + }, + { + "start": 11877.6, + "end": 11877.64, + "probability": 0.0288 + }, + { + "start": 11877.64, + "end": 11878.34, + "probability": 0.796 + }, + { + "start": 11879.88, + "end": 11882.82, + "probability": 0.4172 + }, + { + "start": 11883.2, + "end": 11884.82, + "probability": 0.8794 + }, + { + "start": 11886.24, + "end": 11888.64, + "probability": 0.9698 + }, + { + "start": 11889.42, + "end": 11894.32, + "probability": 0.9945 + }, + { + "start": 11895.0, + "end": 11898.44, + "probability": 0.9801 + }, + { + "start": 11899.74, + "end": 11902.82, + "probability": 0.9448 + }, + { + "start": 11904.16, + "end": 11906.62, + "probability": 0.9762 + }, + { + "start": 11907.82, + "end": 11912.24, + "probability": 0.8417 + }, + { + "start": 11912.5, + "end": 11915.18, + "probability": 0.6527 + }, + { + "start": 11916.38, + "end": 11917.36, + "probability": 0.9907 + }, + { + "start": 11918.8, + "end": 11920.74, + "probability": 0.9979 + }, + { + "start": 11921.82, + "end": 11922.86, + "probability": 0.7367 + }, + { + "start": 11923.24, + "end": 11924.64, + "probability": 0.6702 + }, + { + "start": 11924.78, + "end": 11924.92, + "probability": 0.6695 + }, + { + "start": 11925.0, + "end": 11925.62, + "probability": 0.9304 + }, + { + "start": 11926.02, + "end": 11927.32, + "probability": 0.9922 + }, + { + "start": 11928.5, + "end": 11932.82, + "probability": 0.7904 + }, + { + "start": 11933.86, + "end": 11934.4, + "probability": 0.292 + }, + { + "start": 11935.72, + "end": 11937.92, + "probability": 0.9408 + }, + { + "start": 11938.5, + "end": 11940.91, + "probability": 0.9961 + }, + { + "start": 11941.76, + "end": 11947.58, + "probability": 0.9759 + }, + { + "start": 11948.02, + "end": 11952.62, + "probability": 0.9658 + }, + { + "start": 11952.96, + "end": 11955.56, + "probability": 0.9521 + }, + { + "start": 11955.68, + "end": 11956.26, + "probability": 0.5714 + }, + { + "start": 11956.48, + "end": 11958.64, + "probability": 0.6131 + }, + { + "start": 11959.18, + "end": 11961.92, + "probability": 0.6764 + }, + { + "start": 11962.72, + "end": 11965.46, + "probability": 0.5702 + }, + { + "start": 11965.78, + "end": 11968.7, + "probability": 0.8387 + }, + { + "start": 11968.98, + "end": 11970.98, + "probability": 0.822 + }, + { + "start": 11977.16, + "end": 11979.64, + "probability": 0.5757 + }, + { + "start": 11980.74, + "end": 11981.34, + "probability": 0.9021 + }, + { + "start": 11995.0, + "end": 11996.06, + "probability": 0.7152 + }, + { + "start": 11997.04, + "end": 11999.08, + "probability": 0.8934 + }, + { + "start": 11999.78, + "end": 12001.88, + "probability": 0.9736 + }, + { + "start": 12002.04, + "end": 12005.52, + "probability": 0.9655 + }, + { + "start": 12005.52, + "end": 12008.6, + "probability": 0.9502 + }, + { + "start": 12010.38, + "end": 12011.1, + "probability": 0.334 + }, + { + "start": 12013.38, + "end": 12017.86, + "probability": 0.7848 + }, + { + "start": 12020.26, + "end": 12022.4, + "probability": 0.7813 + }, + { + "start": 12023.32, + "end": 12025.24, + "probability": 0.7961 + }, + { + "start": 12027.38, + "end": 12028.68, + "probability": 0.9902 + }, + { + "start": 12030.94, + "end": 12033.2, + "probability": 0.7295 + }, + { + "start": 12034.92, + "end": 12038.72, + "probability": 0.9753 + }, + { + "start": 12039.48, + "end": 12040.54, + "probability": 0.9756 + }, + { + "start": 12041.5, + "end": 12045.96, + "probability": 0.9629 + }, + { + "start": 12046.92, + "end": 12048.96, + "probability": 0.972 + }, + { + "start": 12049.92, + "end": 12050.8, + "probability": 0.9946 + }, + { + "start": 12051.72, + "end": 12056.96, + "probability": 0.9993 + }, + { + "start": 12058.36, + "end": 12061.17, + "probability": 0.9761 + }, + { + "start": 12062.62, + "end": 12064.0, + "probability": 0.7611 + }, + { + "start": 12066.3, + "end": 12072.5, + "probability": 0.9971 + }, + { + "start": 12075.18, + "end": 12075.86, + "probability": 0.4815 + }, + { + "start": 12076.92, + "end": 12079.54, + "probability": 0.9934 + }, + { + "start": 12080.48, + "end": 12085.3, + "probability": 0.9751 + }, + { + "start": 12086.06, + "end": 12087.16, + "probability": 0.9668 + }, + { + "start": 12088.58, + "end": 12091.4, + "probability": 0.9823 + }, + { + "start": 12091.52, + "end": 12093.86, + "probability": 0.874 + }, + { + "start": 12093.94, + "end": 12095.56, + "probability": 0.2194 + }, + { + "start": 12096.78, + "end": 12099.52, + "probability": 0.8465 + }, + { + "start": 12100.44, + "end": 12102.84, + "probability": 0.9608 + }, + { + "start": 12103.72, + "end": 12108.32, + "probability": 0.9916 + }, + { + "start": 12110.24, + "end": 12113.92, + "probability": 0.977 + }, + { + "start": 12115.36, + "end": 12117.58, + "probability": 0.9939 + }, + { + "start": 12120.04, + "end": 12125.5, + "probability": 0.9978 + }, + { + "start": 12126.08, + "end": 12126.9, + "probability": 0.4602 + }, + { + "start": 12128.02, + "end": 12128.52, + "probability": 0.9336 + }, + { + "start": 12130.6, + "end": 12131.66, + "probability": 0.9132 + }, + { + "start": 12132.68, + "end": 12137.18, + "probability": 0.9933 + }, + { + "start": 12137.98, + "end": 12138.98, + "probability": 0.9976 + }, + { + "start": 12140.34, + "end": 12143.32, + "probability": 0.9385 + }, + { + "start": 12144.18, + "end": 12145.62, + "probability": 0.9588 + }, + { + "start": 12146.26, + "end": 12151.3, + "probability": 0.9749 + }, + { + "start": 12152.98, + "end": 12155.53, + "probability": 0.8495 + }, + { + "start": 12157.64, + "end": 12159.88, + "probability": 0.9235 + }, + { + "start": 12160.4, + "end": 12161.16, + "probability": 0.8719 + }, + { + "start": 12161.54, + "end": 12163.04, + "probability": 0.9124 + }, + { + "start": 12163.44, + "end": 12164.57, + "probability": 0.998 + }, + { + "start": 12165.84, + "end": 12166.74, + "probability": 0.9216 + }, + { + "start": 12167.6, + "end": 12171.86, + "probability": 0.999 + }, + { + "start": 12172.46, + "end": 12174.38, + "probability": 0.9995 + }, + { + "start": 12175.08, + "end": 12175.3, + "probability": 0.8561 + }, + { + "start": 12176.3, + "end": 12178.8, + "probability": 0.8004 + }, + { + "start": 12179.38, + "end": 12181.06, + "probability": 0.9731 + }, + { + "start": 12181.6, + "end": 12182.64, + "probability": 0.9954 + }, + { + "start": 12183.14, + "end": 12186.66, + "probability": 0.9363 + }, + { + "start": 12187.22, + "end": 12189.84, + "probability": 0.9346 + }, + { + "start": 12190.6, + "end": 12193.16, + "probability": 0.9585 + }, + { + "start": 12193.54, + "end": 12193.98, + "probability": 0.9615 + }, + { + "start": 12194.2, + "end": 12194.9, + "probability": 0.9888 + }, + { + "start": 12195.5, + "end": 12197.02, + "probability": 0.5917 + }, + { + "start": 12197.88, + "end": 12199.06, + "probability": 0.7498 + }, + { + "start": 12200.1, + "end": 12201.62, + "probability": 0.9941 + }, + { + "start": 12202.42, + "end": 12204.08, + "probability": 0.9482 + }, + { + "start": 12204.52, + "end": 12207.78, + "probability": 0.9938 + }, + { + "start": 12209.0, + "end": 12209.82, + "probability": 0.7722 + }, + { + "start": 12210.46, + "end": 12214.14, + "probability": 0.9858 + }, + { + "start": 12214.91, + "end": 12215.24, + "probability": 0.0411 + }, + { + "start": 12215.38, + "end": 12220.64, + "probability": 0.949 + }, + { + "start": 12220.72, + "end": 12221.8, + "probability": 0.7725 + }, + { + "start": 12222.16, + "end": 12223.48, + "probability": 0.988 + }, + { + "start": 12223.54, + "end": 12226.15, + "probability": 0.9419 + }, + { + "start": 12226.3, + "end": 12226.3, + "probability": 0.1093 + }, + { + "start": 12226.3, + "end": 12227.91, + "probability": 0.7422 + }, + { + "start": 12228.7, + "end": 12231.02, + "probability": 0.9199 + }, + { + "start": 12231.44, + "end": 12234.24, + "probability": 0.9593 + }, + { + "start": 12234.74, + "end": 12236.6, + "probability": 0.9724 + }, + { + "start": 12237.1, + "end": 12237.96, + "probability": 0.635 + }, + { + "start": 12238.52, + "end": 12241.16, + "probability": 0.9917 + }, + { + "start": 12241.7, + "end": 12242.3, + "probability": 0.6477 + }, + { + "start": 12242.7, + "end": 12242.76, + "probability": 0.4624 + }, + { + "start": 12242.88, + "end": 12243.64, + "probability": 0.7069 + }, + { + "start": 12244.06, + "end": 12249.54, + "probability": 0.9477 + }, + { + "start": 12250.0, + "end": 12250.74, + "probability": 0.6796 + }, + { + "start": 12250.86, + "end": 12251.8, + "probability": 0.854 + }, + { + "start": 12252.2, + "end": 12252.68, + "probability": 0.8221 + }, + { + "start": 12252.8, + "end": 12253.26, + "probability": 0.7133 + }, + { + "start": 12253.88, + "end": 12255.52, + "probability": 0.9493 + }, + { + "start": 12255.64, + "end": 12256.14, + "probability": 0.5856 + }, + { + "start": 12256.38, + "end": 12259.0, + "probability": 0.8325 + }, + { + "start": 12259.32, + "end": 12262.56, + "probability": 0.6327 + }, + { + "start": 12265.44, + "end": 12266.88, + "probability": 0.3207 + }, + { + "start": 12267.58, + "end": 12268.06, + "probability": 0.2349 + }, + { + "start": 12268.82, + "end": 12270.16, + "probability": 0.6878 + }, + { + "start": 12270.16, + "end": 12270.16, + "probability": 0.8861 + }, + { + "start": 12270.16, + "end": 12271.06, + "probability": 0.7171 + }, + { + "start": 12271.14, + "end": 12271.82, + "probability": 0.4999 + }, + { + "start": 12272.16, + "end": 12273.0, + "probability": 0.8342 + }, + { + "start": 12273.86, + "end": 12274.76, + "probability": 0.7388 + }, + { + "start": 12275.28, + "end": 12276.3, + "probability": 0.4722 + }, + { + "start": 12277.46, + "end": 12278.46, + "probability": 0.8004 + }, + { + "start": 12279.54, + "end": 12280.66, + "probability": 0.7712 + }, + { + "start": 12289.15, + "end": 12290.66, + "probability": 0.749 + }, + { + "start": 12292.06, + "end": 12294.17, + "probability": 0.8691 + }, + { + "start": 12295.32, + "end": 12297.14, + "probability": 0.9126 + }, + { + "start": 12297.32, + "end": 12302.26, + "probability": 0.9969 + }, + { + "start": 12303.62, + "end": 12308.78, + "probability": 0.9775 + }, + { + "start": 12308.9, + "end": 12312.74, + "probability": 0.6192 + }, + { + "start": 12313.65, + "end": 12317.46, + "probability": 0.9934 + }, + { + "start": 12318.06, + "end": 12321.9, + "probability": 0.9243 + }, + { + "start": 12322.88, + "end": 12322.88, + "probability": 0.0786 + }, + { + "start": 12322.88, + "end": 12325.2, + "probability": 0.9927 + }, + { + "start": 12326.18, + "end": 12328.5, + "probability": 0.7423 + }, + { + "start": 12329.36, + "end": 12330.24, + "probability": 0.9812 + }, + { + "start": 12330.76, + "end": 12333.2, + "probability": 0.9567 + }, + { + "start": 12333.32, + "end": 12337.16, + "probability": 0.6767 + }, + { + "start": 12337.76, + "end": 12341.32, + "probability": 0.9731 + }, + { + "start": 12345.04, + "end": 12346.0, + "probability": 0.8164 + }, + { + "start": 12346.76, + "end": 12347.7, + "probability": 0.6107 + }, + { + "start": 12350.98, + "end": 12353.04, + "probability": 0.5699 + }, + { + "start": 12353.94, + "end": 12355.16, + "probability": 0.9309 + }, + { + "start": 12355.8, + "end": 12356.76, + "probability": 0.4032 + }, + { + "start": 12357.0, + "end": 12358.36, + "probability": 0.8657 + }, + { + "start": 12360.18, + "end": 12362.48, + "probability": 0.9561 + }, + { + "start": 12363.91, + "end": 12366.14, + "probability": 0.9416 + }, + { + "start": 12367.2, + "end": 12372.44, + "probability": 0.9397 + }, + { + "start": 12373.5, + "end": 12375.74, + "probability": 0.9951 + }, + { + "start": 12376.42, + "end": 12378.8, + "probability": 0.9886 + }, + { + "start": 12379.38, + "end": 12384.4, + "probability": 0.9821 + }, + { + "start": 12384.96, + "end": 12389.52, + "probability": 0.9976 + }, + { + "start": 12390.12, + "end": 12393.72, + "probability": 0.9917 + }, + { + "start": 12394.56, + "end": 12396.4, + "probability": 0.994 + }, + { + "start": 12397.0, + "end": 12398.19, + "probability": 0.9961 + }, + { + "start": 12399.26, + "end": 12402.52, + "probability": 0.9785 + }, + { + "start": 12405.34, + "end": 12406.9, + "probability": 0.8328 + }, + { + "start": 12407.86, + "end": 12410.58, + "probability": 0.7778 + }, + { + "start": 12411.12, + "end": 12412.4, + "probability": 0.8886 + }, + { + "start": 12412.94, + "end": 12416.78, + "probability": 0.9625 + }, + { + "start": 12417.7, + "end": 12418.72, + "probability": 0.9015 + }, + { + "start": 12419.5, + "end": 12423.74, + "probability": 0.9073 + }, + { + "start": 12424.52, + "end": 12427.5, + "probability": 0.8597 + }, + { + "start": 12427.66, + "end": 12429.18, + "probability": 0.9787 + }, + { + "start": 12429.92, + "end": 12431.88, + "probability": 0.965 + }, + { + "start": 12432.34, + "end": 12432.64, + "probability": 0.6315 + }, + { + "start": 12432.74, + "end": 12433.72, + "probability": 0.9656 + }, + { + "start": 12434.2, + "end": 12435.76, + "probability": 0.9781 + }, + { + "start": 12436.74, + "end": 12439.12, + "probability": 0.9968 + }, + { + "start": 12439.5, + "end": 12440.82, + "probability": 0.7377 + }, + { + "start": 12441.8, + "end": 12443.52, + "probability": 0.9913 + }, + { + "start": 12444.04, + "end": 12446.82, + "probability": 0.951 + }, + { + "start": 12447.26, + "end": 12451.18, + "probability": 0.9731 + }, + { + "start": 12451.88, + "end": 12455.12, + "probability": 0.9973 + }, + { + "start": 12455.58, + "end": 12458.74, + "probability": 0.9797 + }, + { + "start": 12459.42, + "end": 12463.84, + "probability": 0.7632 + }, + { + "start": 12464.52, + "end": 12466.2, + "probability": 0.9686 + }, + { + "start": 12466.8, + "end": 12469.88, + "probability": 0.9956 + }, + { + "start": 12470.54, + "end": 12473.59, + "probability": 0.9941 + }, + { + "start": 12474.16, + "end": 12478.03, + "probability": 0.9946 + }, + { + "start": 12478.18, + "end": 12479.4, + "probability": 0.9146 + }, + { + "start": 12479.5, + "end": 12480.28, + "probability": 0.9667 + }, + { + "start": 12480.9, + "end": 12484.78, + "probability": 0.8627 + }, + { + "start": 12485.68, + "end": 12488.36, + "probability": 0.8403 + }, + { + "start": 12488.48, + "end": 12489.64, + "probability": 0.8196 + }, + { + "start": 12489.74, + "end": 12490.94, + "probability": 0.9507 + }, + { + "start": 12491.04, + "end": 12493.36, + "probability": 0.968 + }, + { + "start": 12493.7, + "end": 12495.46, + "probability": 0.8278 + }, + { + "start": 12495.78, + "end": 12497.02, + "probability": 0.799 + }, + { + "start": 12497.12, + "end": 12498.72, + "probability": 0.898 + }, + { + "start": 12498.86, + "end": 12499.0, + "probability": 0.66 + }, + { + "start": 12499.1, + "end": 12501.78, + "probability": 0.8889 + }, + { + "start": 12501.92, + "end": 12503.3, + "probability": 0.916 + }, + { + "start": 12503.84, + "end": 12506.44, + "probability": 0.9924 + }, + { + "start": 12515.72, + "end": 12516.2, + "probability": 0.6117 + }, + { + "start": 12516.72, + "end": 12519.64, + "probability": 0.9288 + }, + { + "start": 12520.34, + "end": 12521.76, + "probability": 0.7286 + }, + { + "start": 12523.4, + "end": 12524.48, + "probability": 0.9576 + }, + { + "start": 12525.7, + "end": 12529.26, + "probability": 0.9974 + }, + { + "start": 12530.16, + "end": 12532.69, + "probability": 0.9866 + }, + { + "start": 12533.88, + "end": 12535.2, + "probability": 0.9842 + }, + { + "start": 12535.9, + "end": 12540.3, + "probability": 0.9817 + }, + { + "start": 12541.6, + "end": 12542.16, + "probability": 0.7925 + }, + { + "start": 12542.86, + "end": 12545.44, + "probability": 0.9796 + }, + { + "start": 12545.96, + "end": 12550.14, + "probability": 0.9956 + }, + { + "start": 12550.68, + "end": 12554.02, + "probability": 0.9762 + }, + { + "start": 12555.86, + "end": 12558.86, + "probability": 0.9713 + }, + { + "start": 12559.6, + "end": 12561.3, + "probability": 0.7053 + }, + { + "start": 12561.88, + "end": 12566.87, + "probability": 0.9983 + }, + { + "start": 12567.02, + "end": 12567.8, + "probability": 0.8661 + }, + { + "start": 12568.26, + "end": 12573.28, + "probability": 0.945 + }, + { + "start": 12574.62, + "end": 12577.76, + "probability": 0.9674 + }, + { + "start": 12578.94, + "end": 12581.06, + "probability": 0.9647 + }, + { + "start": 12581.88, + "end": 12584.4, + "probability": 0.9964 + }, + { + "start": 12585.6, + "end": 12586.88, + "probability": 0.9826 + }, + { + "start": 12587.4, + "end": 12590.4, + "probability": 0.9603 + }, + { + "start": 12590.86, + "end": 12593.14, + "probability": 0.971 + }, + { + "start": 12593.76, + "end": 12596.06, + "probability": 0.7086 + }, + { + "start": 12596.28, + "end": 12600.36, + "probability": 0.7981 + }, + { + "start": 12600.82, + "end": 12604.78, + "probability": 0.9977 + }, + { + "start": 12605.18, + "end": 12608.98, + "probability": 0.9922 + }, + { + "start": 12610.5, + "end": 12611.24, + "probability": 0.8597 + }, + { + "start": 12611.42, + "end": 12615.72, + "probability": 0.8949 + }, + { + "start": 12616.66, + "end": 12620.48, + "probability": 0.993 + }, + { + "start": 12621.0, + "end": 12622.54, + "probability": 0.998 + }, + { + "start": 12623.34, + "end": 12628.18, + "probability": 0.9929 + }, + { + "start": 12629.78, + "end": 12633.32, + "probability": 0.7374 + }, + { + "start": 12634.02, + "end": 12637.2, + "probability": 0.8478 + }, + { + "start": 12637.98, + "end": 12639.36, + "probability": 0.998 + }, + { + "start": 12639.92, + "end": 12646.12, + "probability": 0.9987 + }, + { + "start": 12646.64, + "end": 12650.58, + "probability": 0.5844 + }, + { + "start": 12651.14, + "end": 12653.98, + "probability": 0.9893 + }, + { + "start": 12654.82, + "end": 12655.62, + "probability": 0.8119 + }, + { + "start": 12656.22, + "end": 12659.96, + "probability": 0.9984 + }, + { + "start": 12660.8, + "end": 12667.5, + "probability": 0.9959 + }, + { + "start": 12668.26, + "end": 12670.66, + "probability": 0.9913 + }, + { + "start": 12671.36, + "end": 12675.3, + "probability": 0.994 + }, + { + "start": 12675.3, + "end": 12679.6, + "probability": 0.9857 + }, + { + "start": 12680.44, + "end": 12684.14, + "probability": 0.9241 + }, + { + "start": 12685.04, + "end": 12686.76, + "probability": 0.9857 + }, + { + "start": 12687.18, + "end": 12689.74, + "probability": 0.985 + }, + { + "start": 12690.36, + "end": 12694.8, + "probability": 0.9624 + }, + { + "start": 12695.5, + "end": 12699.22, + "probability": 0.8316 + }, + { + "start": 12699.68, + "end": 12701.3, + "probability": 0.4836 + }, + { + "start": 12701.88, + "end": 12706.14, + "probability": 0.9453 + }, + { + "start": 12706.86, + "end": 12707.22, + "probability": 0.6645 + }, + { + "start": 12707.9, + "end": 12710.98, + "probability": 0.5945 + }, + { + "start": 12711.08, + "end": 12712.0, + "probability": 0.8217 + }, + { + "start": 12712.78, + "end": 12714.42, + "probability": 0.8844 + }, + { + "start": 12715.56, + "end": 12716.22, + "probability": 0.9845 + }, + { + "start": 12716.82, + "end": 12721.04, + "probability": 0.8747 + }, + { + "start": 12721.06, + "end": 12722.98, + "probability": 0.9082 + }, + { + "start": 12723.1, + "end": 12725.0, + "probability": 0.578 + }, + { + "start": 12725.68, + "end": 12727.1, + "probability": 0.5653 + }, + { + "start": 12727.1, + "end": 12727.7, + "probability": 0.3691 + }, + { + "start": 12727.7, + "end": 12728.32, + "probability": 0.6395 + }, + { + "start": 12752.2, + "end": 12754.26, + "probability": 0.1606 + }, + { + "start": 12754.26, + "end": 12754.56, + "probability": 0.0504 + }, + { + "start": 12755.4, + "end": 12756.18, + "probability": 0.0509 + }, + { + "start": 12756.56, + "end": 12756.68, + "probability": 0.2547 + }, + { + "start": 12756.68, + "end": 12757.74, + "probability": 0.7353 + }, + { + "start": 12757.92, + "end": 12758.72, + "probability": 0.5538 + }, + { + "start": 12766.0, + "end": 12767.1, + "probability": 0.0415 + }, + { + "start": 12767.14, + "end": 12769.48, + "probability": 0.0499 + }, + { + "start": 12769.74, + "end": 12773.88, + "probability": 0.1682 + }, + { + "start": 12786.5, + "end": 12786.9, + "probability": 0.1019 + }, + { + "start": 12790.92, + "end": 12796.74, + "probability": 0.0738 + }, + { + "start": 12797.28, + "end": 12801.14, + "probability": 0.9881 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.0, + "end": 12831.0, + "probability": 0.0 + }, + { + "start": 12831.24, + "end": 12831.44, + "probability": 0.072 + }, + { + "start": 12831.44, + "end": 12831.44, + "probability": 0.1257 + }, + { + "start": 12831.44, + "end": 12831.44, + "probability": 0.1642 + }, + { + "start": 12831.44, + "end": 12831.44, + "probability": 0.4101 + }, + { + "start": 12831.44, + "end": 12833.72, + "probability": 0.3247 + }, + { + "start": 12834.48, + "end": 12839.8, + "probability": 0.9344 + }, + { + "start": 12841.34, + "end": 12842.76, + "probability": 0.5026 + }, + { + "start": 12842.88, + "end": 12844.02, + "probability": 0.9157 + }, + { + "start": 12844.06, + "end": 12845.16, + "probability": 0.751 + }, + { + "start": 12845.66, + "end": 12847.1, + "probability": 0.9966 + }, + { + "start": 12848.2, + "end": 12853.4, + "probability": 0.9833 + }, + { + "start": 12854.0, + "end": 12861.52, + "probability": 0.9779 + }, + { + "start": 12862.48, + "end": 12870.46, + "probability": 0.9813 + }, + { + "start": 12871.24, + "end": 12874.68, + "probability": 0.9972 + }, + { + "start": 12875.24, + "end": 12879.56, + "probability": 0.8972 + }, + { + "start": 12880.56, + "end": 12886.38, + "probability": 0.9839 + }, + { + "start": 12886.94, + "end": 12890.04, + "probability": 0.9981 + }, + { + "start": 12890.98, + "end": 12895.44, + "probability": 0.9941 + }, + { + "start": 12895.98, + "end": 12899.02, + "probability": 0.9643 + }, + { + "start": 12899.86, + "end": 12902.14, + "probability": 0.8506 + }, + { + "start": 12902.68, + "end": 12910.94, + "probability": 0.9948 + }, + { + "start": 12911.9, + "end": 12917.22, + "probability": 0.9945 + }, + { + "start": 12917.44, + "end": 12922.26, + "probability": 0.9844 + }, + { + "start": 12922.92, + "end": 12924.98, + "probability": 0.9805 + }, + { + "start": 12925.2, + "end": 12929.9, + "probability": 0.9875 + }, + { + "start": 12930.8, + "end": 12931.34, + "probability": 0.4714 + }, + { + "start": 12931.8, + "end": 12932.32, + "probability": 0.6969 + }, + { + "start": 12932.36, + "end": 12933.62, + "probability": 0.7299 + }, + { + "start": 12934.1, + "end": 12936.9, + "probability": 0.9825 + }, + { + "start": 12937.74, + "end": 12941.94, + "probability": 0.9914 + }, + { + "start": 12941.94, + "end": 12945.72, + "probability": 0.9989 + }, + { + "start": 12946.4, + "end": 12948.58, + "probability": 0.9669 + }, + { + "start": 12948.8, + "end": 12950.48, + "probability": 0.9834 + }, + { + "start": 12951.02, + "end": 12955.0, + "probability": 0.999 + }, + { + "start": 12955.0, + "end": 12959.08, + "probability": 0.9977 + }, + { + "start": 12959.18, + "end": 12960.68, + "probability": 0.9357 + }, + { + "start": 12961.06, + "end": 12962.46, + "probability": 0.9531 + }, + { + "start": 12962.86, + "end": 12970.3, + "probability": 0.9868 + }, + { + "start": 12970.82, + "end": 12971.52, + "probability": 0.5735 + }, + { + "start": 12972.16, + "end": 12975.96, + "probability": 0.9893 + }, + { + "start": 12975.96, + "end": 12979.84, + "probability": 0.9007 + }, + { + "start": 12980.2, + "end": 12983.16, + "probability": 0.8882 + }, + { + "start": 12983.48, + "end": 12987.28, + "probability": 0.9917 + }, + { + "start": 12988.12, + "end": 12989.08, + "probability": 0.5771 + }, + { + "start": 12989.26, + "end": 12990.4, + "probability": 0.9593 + }, + { + "start": 12990.48, + "end": 12994.8, + "probability": 0.7596 + }, + { + "start": 12996.06, + "end": 13002.95, + "probability": 0.9779 + }, + { + "start": 13003.78, + "end": 13007.48, + "probability": 0.9918 + }, + { + "start": 13007.68, + "end": 13014.12, + "probability": 0.9989 + }, + { + "start": 13014.6, + "end": 13018.64, + "probability": 0.9929 + }, + { + "start": 13018.8, + "end": 13023.36, + "probability": 0.9977 + }, + { + "start": 13023.8, + "end": 13027.24, + "probability": 0.9952 + }, + { + "start": 13027.76, + "end": 13035.44, + "probability": 0.9862 + }, + { + "start": 13035.44, + "end": 13041.3, + "probability": 0.9995 + }, + { + "start": 13041.74, + "end": 13045.74, + "probability": 0.939 + }, + { + "start": 13046.34, + "end": 13048.66, + "probability": 0.9954 + }, + { + "start": 13049.22, + "end": 13052.72, + "probability": 0.987 + }, + { + "start": 13053.48, + "end": 13057.4, + "probability": 0.9463 + }, + { + "start": 13057.48, + "end": 13058.14, + "probability": 0.8504 + }, + { + "start": 13058.76, + "end": 13062.52, + "probability": 0.9707 + }, + { + "start": 13062.66, + "end": 13066.28, + "probability": 0.7489 + }, + { + "start": 13067.06, + "end": 13071.14, + "probability": 0.9827 + }, + { + "start": 13071.72, + "end": 13077.04, + "probability": 0.988 + }, + { + "start": 13077.22, + "end": 13078.24, + "probability": 0.8274 + }, + { + "start": 13078.64, + "end": 13079.86, + "probability": 0.9425 + }, + { + "start": 13080.48, + "end": 13084.34, + "probability": 0.9406 + }, + { + "start": 13084.8, + "end": 13088.22, + "probability": 0.701 + }, + { + "start": 13088.86, + "end": 13091.6, + "probability": 0.9615 + }, + { + "start": 13092.2, + "end": 13095.54, + "probability": 0.9394 + }, + { + "start": 13095.66, + "end": 13102.28, + "probability": 0.988 + }, + { + "start": 13102.46, + "end": 13105.34, + "probability": 0.964 + }, + { + "start": 13105.64, + "end": 13105.84, + "probability": 0.6669 + }, + { + "start": 13106.0, + "end": 13109.28, + "probability": 0.5808 + }, + { + "start": 13110.34, + "end": 13114.34, + "probability": 0.8477 + }, + { + "start": 13114.94, + "end": 13116.56, + "probability": 0.9972 + }, + { + "start": 13116.66, + "end": 13117.46, + "probability": 0.8754 + }, + { + "start": 13117.5, + "end": 13118.78, + "probability": 0.8139 + }, + { + "start": 13118.94, + "end": 13119.3, + "probability": 0.567 + }, + { + "start": 13119.72, + "end": 13120.38, + "probability": 0.0881 + }, + { + "start": 13120.46, + "end": 13120.72, + "probability": 0.7474 + }, + { + "start": 13120.8, + "end": 13123.0, + "probability": 0.7326 + }, + { + "start": 13123.06, + "end": 13123.42, + "probability": 0.778 + }, + { + "start": 13124.36, + "end": 13127.62, + "probability": 0.7416 + }, + { + "start": 13129.74, + "end": 13130.44, + "probability": 0.4882 + }, + { + "start": 13131.4, + "end": 13133.24, + "probability": 0.6293 + }, + { + "start": 13133.84, + "end": 13134.54, + "probability": 0.4443 + }, + { + "start": 13135.08, + "end": 13138.22, + "probability": 0.8349 + }, + { + "start": 13139.48, + "end": 13140.86, + "probability": 0.8396 + }, + { + "start": 13141.14, + "end": 13141.72, + "probability": 0.9249 + }, + { + "start": 13141.82, + "end": 13142.84, + "probability": 0.5542 + }, + { + "start": 13144.02, + "end": 13146.78, + "probability": 0.8696 + }, + { + "start": 13146.94, + "end": 13147.54, + "probability": 0.4335 + }, + { + "start": 13148.18, + "end": 13149.42, + "probability": 0.6701 + }, + { + "start": 13149.68, + "end": 13150.1, + "probability": 0.7122 + }, + { + "start": 13150.54, + "end": 13151.6, + "probability": 0.563 + }, + { + "start": 13151.66, + "end": 13152.2, + "probability": 0.7541 + }, + { + "start": 13152.54, + "end": 13153.18, + "probability": 0.648 + }, + { + "start": 13153.32, + "end": 13153.52, + "probability": 0.6021 + }, + { + "start": 13153.6, + "end": 13154.16, + "probability": 0.5182 + }, + { + "start": 13154.36, + "end": 13154.58, + "probability": 0.9132 + }, + { + "start": 13154.66, + "end": 13155.26, + "probability": 0.8184 + }, + { + "start": 13155.42, + "end": 13156.58, + "probability": 0.908 + }, + { + "start": 13156.66, + "end": 13157.54, + "probability": 0.7685 + }, + { + "start": 13157.62, + "end": 13158.22, + "probability": 0.9145 + }, + { + "start": 13158.24, + "end": 13159.28, + "probability": 0.6599 + }, + { + "start": 13159.92, + "end": 13162.6, + "probability": 0.3006 + }, + { + "start": 13163.82, + "end": 13165.82, + "probability": 0.6594 + }, + { + "start": 13166.64, + "end": 13167.78, + "probability": 0.6614 + }, + { + "start": 13168.62, + "end": 13170.91, + "probability": 0.5679 + }, + { + "start": 13171.56, + "end": 13174.32, + "probability": 0.7371 + }, + { + "start": 13174.98, + "end": 13176.22, + "probability": 0.0809 + }, + { + "start": 13176.22, + "end": 13177.12, + "probability": 0.1414 + }, + { + "start": 13177.8, + "end": 13178.64, + "probability": 0.0244 + }, + { + "start": 13178.64, + "end": 13178.66, + "probability": 0.1303 + }, + { + "start": 13178.66, + "end": 13180.3, + "probability": 0.4878 + }, + { + "start": 13180.44, + "end": 13182.04, + "probability": 0.5909 + }, + { + "start": 13184.74, + "end": 13189.34, + "probability": 0.0337 + }, + { + "start": 13191.24, + "end": 13191.24, + "probability": 0.1855 + }, + { + "start": 13191.48, + "end": 13192.56, + "probability": 0.1436 + }, + { + "start": 13192.84, + "end": 13192.88, + "probability": 0.0735 + }, + { + "start": 13192.88, + "end": 13193.42, + "probability": 0.1477 + }, + { + "start": 13193.58, + "end": 13198.84, + "probability": 0.3775 + }, + { + "start": 13199.1, + "end": 13201.62, + "probability": 0.1796 + }, + { + "start": 13206.1, + "end": 13208.17, + "probability": 0.5519 + }, + { + "start": 13211.82, + "end": 13212.44, + "probability": 0.0165 + }, + { + "start": 13212.8, + "end": 13219.14, + "probability": 0.4803 + }, + { + "start": 13219.82, + "end": 13221.74, + "probability": 0.5762 + }, + { + "start": 13222.36, + "end": 13224.44, + "probability": 0.8109 + }, + { + "start": 13224.5, + "end": 13226.32, + "probability": 0.5344 + }, + { + "start": 13227.2, + "end": 13230.02, + "probability": 0.6628 + }, + { + "start": 13231.68, + "end": 13234.82, + "probability": 0.7913 + }, + { + "start": 13234.84, + "end": 13235.46, + "probability": 0.5067 + }, + { + "start": 13235.58, + "end": 13241.34, + "probability": 0.9386 + }, + { + "start": 13244.04, + "end": 13244.42, + "probability": 0.4755 + }, + { + "start": 13244.62, + "end": 13245.46, + "probability": 0.7127 + }, + { + "start": 13245.7, + "end": 13249.1, + "probability": 0.9001 + }, + { + "start": 13249.26, + "end": 13251.74, + "probability": 0.7049 + }, + { + "start": 13251.74, + "end": 13252.7, + "probability": 0.5003 + }, + { + "start": 13252.7, + "end": 13253.9, + "probability": 0.6017 + }, + { + "start": 13255.14, + "end": 13261.52, + "probability": 0.7376 + }, + { + "start": 13261.54, + "end": 13264.86, + "probability": 0.978 + }, + { + "start": 13265.86, + "end": 13269.46, + "probability": 0.9776 + }, + { + "start": 13269.5, + "end": 13270.44, + "probability": 0.8785 + }, + { + "start": 13270.58, + "end": 13271.52, + "probability": 0.7497 + }, + { + "start": 13272.34, + "end": 13273.54, + "probability": 0.6766 + }, + { + "start": 13274.94, + "end": 13275.98, + "probability": 0.925 + }, + { + "start": 13276.16, + "end": 13280.28, + "probability": 0.9619 + }, + { + "start": 13280.28, + "end": 13288.1, + "probability": 0.8306 + }, + { + "start": 13288.4, + "end": 13289.78, + "probability": 0.799 + }, + { + "start": 13290.2, + "end": 13291.44, + "probability": 0.9788 + }, + { + "start": 13292.36, + "end": 13296.1, + "probability": 0.9846 + }, + { + "start": 13296.28, + "end": 13296.56, + "probability": 0.7393 + }, + { + "start": 13296.84, + "end": 13297.62, + "probability": 0.5049 + }, + { + "start": 13297.72, + "end": 13302.56, + "probability": 0.8324 + }, + { + "start": 13303.08, + "end": 13306.44, + "probability": 0.8213 + }, + { + "start": 13306.86, + "end": 13310.38, + "probability": 0.8837 + }, + { + "start": 13311.38, + "end": 13315.92, + "probability": 0.8987 + }, + { + "start": 13315.98, + "end": 13318.52, + "probability": 0.6911 + }, + { + "start": 13318.58, + "end": 13319.42, + "probability": 0.6174 + }, + { + "start": 13319.88, + "end": 13320.48, + "probability": 0.458 + }, + { + "start": 13320.72, + "end": 13321.46, + "probability": 0.4542 + }, + { + "start": 13321.66, + "end": 13322.42, + "probability": 0.5474 + }, + { + "start": 13322.56, + "end": 13323.44, + "probability": 0.3521 + }, + { + "start": 13323.74, + "end": 13325.2, + "probability": 0.518 + }, + { + "start": 13325.48, + "end": 13325.48, + "probability": 0.0733 + }, + { + "start": 13325.48, + "end": 13325.48, + "probability": 0.4066 + }, + { + "start": 13325.48, + "end": 13325.88, + "probability": 0.1004 + }, + { + "start": 13326.22, + "end": 13326.8, + "probability": 0.4082 + }, + { + "start": 13326.84, + "end": 13328.29, + "probability": 0.341 + }, + { + "start": 13328.48, + "end": 13328.88, + "probability": 0.1735 + }, + { + "start": 13328.88, + "end": 13329.38, + "probability": 0.3741 + }, + { + "start": 13329.84, + "end": 13330.72, + "probability": 0.2295 + }, + { + "start": 13331.06, + "end": 13331.4, + "probability": 0.5756 + }, + { + "start": 13331.86, + "end": 13332.32, + "probability": 0.4219 + }, + { + "start": 13332.94, + "end": 13335.82, + "probability": 0.2686 + }, + { + "start": 13337.66, + "end": 13338.14, + "probability": 0.0215 + }, + { + "start": 13338.14, + "end": 13338.14, + "probability": 0.2698 + }, + { + "start": 13338.14, + "end": 13338.64, + "probability": 0.27 + }, + { + "start": 13338.86, + "end": 13339.4, + "probability": 0.8183 + }, + { + "start": 13339.52, + "end": 13341.6, + "probability": 0.9093 + }, + { + "start": 13341.96, + "end": 13343.77, + "probability": 0.6471 + }, + { + "start": 13344.36, + "end": 13346.14, + "probability": 0.5067 + }, + { + "start": 13346.14, + "end": 13350.66, + "probability": 0.4715 + }, + { + "start": 13350.88, + "end": 13351.45, + "probability": 0.0742 + }, + { + "start": 13354.94, + "end": 13356.7, + "probability": 0.4664 + }, + { + "start": 13357.96, + "end": 13358.68, + "probability": 0.4708 + }, + { + "start": 13359.64, + "end": 13362.5, + "probability": 0.0304 + }, + { + "start": 13362.94, + "end": 13364.42, + "probability": 0.2479 + }, + { + "start": 13364.96, + "end": 13366.92, + "probability": 0.522 + }, + { + "start": 13369.28, + "end": 13373.0, + "probability": 0.5996 + }, + { + "start": 13373.66, + "end": 13376.32, + "probability": 0.6667 + }, + { + "start": 13376.9, + "end": 13383.6, + "probability": 0.9512 + }, + { + "start": 13384.56, + "end": 13389.4, + "probability": 0.9849 + }, + { + "start": 13390.04, + "end": 13392.74, + "probability": 0.821 + }, + { + "start": 13393.72, + "end": 13395.24, + "probability": 0.999 + }, + { + "start": 13395.98, + "end": 13396.44, + "probability": 0.176 + }, + { + "start": 13396.44, + "end": 13396.46, + "probability": 0.1286 + }, + { + "start": 13396.46, + "end": 13401.07, + "probability": 0.6452 + }, + { + "start": 13403.24, + "end": 13409.42, + "probability": 0.6312 + }, + { + "start": 13409.66, + "end": 13410.58, + "probability": 0.798 + }, + { + "start": 13410.7, + "end": 13417.78, + "probability": 0.957 + }, + { + "start": 13418.06, + "end": 13419.1, + "probability": 0.5789 + }, + { + "start": 13419.48, + "end": 13420.38, + "probability": 0.822 + }, + { + "start": 13420.7, + "end": 13422.52, + "probability": 0.9912 + }, + { + "start": 13422.54, + "end": 13426.22, + "probability": 0.7821 + }, + { + "start": 13426.58, + "end": 13426.58, + "probability": 0.6514 + }, + { + "start": 13426.58, + "end": 13430.04, + "probability": 0.7169 + }, + { + "start": 13430.44, + "end": 13431.18, + "probability": 0.3395 + }, + { + "start": 13431.18, + "end": 13432.68, + "probability": 0.5537 + }, + { + "start": 13432.68, + "end": 13433.98, + "probability": 0.5048 + }, + { + "start": 13434.26, + "end": 13435.12, + "probability": 0.7539 + }, + { + "start": 13435.18, + "end": 13439.46, + "probability": 0.9006 + }, + { + "start": 13439.48, + "end": 13440.44, + "probability": 0.8933 + }, + { + "start": 13440.82, + "end": 13441.16, + "probability": 0.6458 + }, + { + "start": 13442.5, + "end": 13444.5, + "probability": 0.9312 + }, + { + "start": 13444.62, + "end": 13447.26, + "probability": 0.8182 + }, + { + "start": 13454.56, + "end": 13456.48, + "probability": 0.8755 + }, + { + "start": 13457.22, + "end": 13458.48, + "probability": 0.8078 + }, + { + "start": 13458.56, + "end": 13459.28, + "probability": 0.7891 + }, + { + "start": 13459.42, + "end": 13459.85, + "probability": 0.7788 + }, + { + "start": 13460.3, + "end": 13460.98, + "probability": 0.2308 + }, + { + "start": 13461.2, + "end": 13462.1, + "probability": 0.9214 + }, + { + "start": 13463.5, + "end": 13468.84, + "probability": 0.9739 + }, + { + "start": 13468.96, + "end": 13469.49, + "probability": 0.5129 + }, + { + "start": 13471.18, + "end": 13474.38, + "probability": 0.9438 + }, + { + "start": 13474.48, + "end": 13475.76, + "probability": 0.8987 + }, + { + "start": 13476.58, + "end": 13478.86, + "probability": 0.9971 + }, + { + "start": 13479.88, + "end": 13483.12, + "probability": 0.8002 + }, + { + "start": 13484.22, + "end": 13489.68, + "probability": 0.9537 + }, + { + "start": 13489.68, + "end": 13493.52, + "probability": 0.9973 + }, + { + "start": 13494.66, + "end": 13496.52, + "probability": 0.7782 + }, + { + "start": 13497.18, + "end": 13498.92, + "probability": 0.9134 + }, + { + "start": 13499.3, + "end": 13506.66, + "probability": 0.9538 + }, + { + "start": 13508.56, + "end": 13511.36, + "probability": 0.9175 + }, + { + "start": 13512.18, + "end": 13515.94, + "probability": 0.9967 + }, + { + "start": 13516.7, + "end": 13521.86, + "probability": 0.9727 + }, + { + "start": 13522.58, + "end": 13523.1, + "probability": 0.7294 + }, + { + "start": 13523.3, + "end": 13528.96, + "probability": 0.9708 + }, + { + "start": 13529.14, + "end": 13531.26, + "probability": 0.96 + }, + { + "start": 13531.8, + "end": 13534.24, + "probability": 0.9712 + }, + { + "start": 13535.24, + "end": 13536.04, + "probability": 0.5391 + }, + { + "start": 13536.32, + "end": 13541.98, + "probability": 0.9931 + }, + { + "start": 13542.5, + "end": 13543.16, + "probability": 0.7545 + }, + { + "start": 13543.32, + "end": 13544.3, + "probability": 0.918 + }, + { + "start": 13544.4, + "end": 13548.66, + "probability": 0.9612 + }, + { + "start": 13549.04, + "end": 13553.8, + "probability": 0.9941 + }, + { + "start": 13554.4, + "end": 13555.74, + "probability": 0.922 + }, + { + "start": 13556.3, + "end": 13560.66, + "probability": 0.9569 + }, + { + "start": 13561.22, + "end": 13567.02, + "probability": 0.4432 + }, + { + "start": 13569.66, + "end": 13571.34, + "probability": 0.5833 + }, + { + "start": 13572.1, + "end": 13573.74, + "probability": 0.6779 + }, + { + "start": 13574.38, + "end": 13578.38, + "probability": 0.6841 + }, + { + "start": 13579.32, + "end": 13582.3, + "probability": 0.9146 + }, + { + "start": 13582.86, + "end": 13585.22, + "probability": 0.981 + }, + { + "start": 13585.86, + "end": 13586.78, + "probability": 0.511 + }, + { + "start": 13587.5, + "end": 13590.1, + "probability": 0.9462 + }, + { + "start": 13590.82, + "end": 13593.78, + "probability": 0.9985 + }, + { + "start": 13594.42, + "end": 13595.68, + "probability": 0.8882 + }, + { + "start": 13596.22, + "end": 13597.44, + "probability": 0.7508 + }, + { + "start": 13597.94, + "end": 13600.64, + "probability": 0.9971 + }, + { + "start": 13601.14, + "end": 13602.36, + "probability": 0.9678 + }, + { + "start": 13602.9, + "end": 13604.64, + "probability": 0.9748 + }, + { + "start": 13606.3, + "end": 13608.94, + "probability": 0.8501 + }, + { + "start": 13609.26, + "end": 13610.38, + "probability": 0.9712 + }, + { + "start": 13611.48, + "end": 13613.84, + "probability": 0.99 + }, + { + "start": 13614.42, + "end": 13616.2, + "probability": 0.984 + }, + { + "start": 13616.2, + "end": 13618.3, + "probability": 0.288 + }, + { + "start": 13618.46, + "end": 13619.42, + "probability": 0.4753 + }, + { + "start": 13619.42, + "end": 13620.08, + "probability": 0.2755 + }, + { + "start": 13620.1, + "end": 13621.14, + "probability": 0.6046 + }, + { + "start": 13628.66, + "end": 13630.92, + "probability": 0.0615 + }, + { + "start": 13630.92, + "end": 13631.18, + "probability": 0.0452 + }, + { + "start": 13632.84, + "end": 13637.46, + "probability": 0.3132 + }, + { + "start": 13638.36, + "end": 13641.82, + "probability": 0.3525 + }, + { + "start": 13641.94, + "end": 13646.78, + "probability": 0.8393 + }, + { + "start": 13646.9, + "end": 13649.6, + "probability": 0.8892 + }, + { + "start": 13650.32, + "end": 13652.08, + "probability": 0.6631 + }, + { + "start": 13652.76, + "end": 13653.96, + "probability": 0.8564 + }, + { + "start": 13654.1, + "end": 13656.64, + "probability": 0.9535 + }, + { + "start": 13656.96, + "end": 13657.94, + "probability": 0.8096 + }, + { + "start": 13658.46, + "end": 13660.3, + "probability": 0.9686 + }, + { + "start": 13660.88, + "end": 13664.02, + "probability": 0.8958 + }, + { + "start": 13664.7, + "end": 13667.2, + "probability": 0.9603 + }, + { + "start": 13669.02, + "end": 13669.38, + "probability": 0.8797 + }, + { + "start": 13671.38, + "end": 13673.28, + "probability": 0.4357 + }, + { + "start": 13673.6, + "end": 13674.74, + "probability": 0.0126 + }, + { + "start": 13676.0, + "end": 13678.56, + "probability": 0.6095 + }, + { + "start": 13679.8, + "end": 13681.38, + "probability": 0.6406 + }, + { + "start": 13681.86, + "end": 13683.96, + "probability": 0.5794 + }, + { + "start": 13685.04, + "end": 13685.54, + "probability": 0.6673 + }, + { + "start": 13686.5, + "end": 13688.26, + "probability": 0.4644 + }, + { + "start": 13688.54, + "end": 13690.31, + "probability": 0.623 + }, + { + "start": 13691.44, + "end": 13695.8, + "probability": 0.9763 + }, + { + "start": 13696.46, + "end": 13702.72, + "probability": 0.9863 + }, + { + "start": 13703.86, + "end": 13704.62, + "probability": 0.5687 + }, + { + "start": 13704.7, + "end": 13705.76, + "probability": 0.8672 + }, + { + "start": 13705.96, + "end": 13707.54, + "probability": 0.9927 + }, + { + "start": 13707.68, + "end": 13710.18, + "probability": 0.9582 + }, + { + "start": 13710.8, + "end": 13714.54, + "probability": 0.9858 + }, + { + "start": 13715.3, + "end": 13718.2, + "probability": 0.9375 + }, + { + "start": 13718.64, + "end": 13722.4, + "probability": 0.97 + }, + { + "start": 13723.2, + "end": 13730.64, + "probability": 0.9822 + }, + { + "start": 13731.18, + "end": 13731.48, + "probability": 0.3164 + }, + { + "start": 13731.64, + "end": 13737.66, + "probability": 0.972 + }, + { + "start": 13738.14, + "end": 13739.52, + "probability": 0.6272 + }, + { + "start": 13739.6, + "end": 13739.6, + "probability": 0.4395 + }, + { + "start": 13739.6, + "end": 13742.72, + "probability": 0.9836 + }, + { + "start": 13742.72, + "end": 13745.66, + "probability": 0.8991 + }, + { + "start": 13746.52, + "end": 13753.6, + "probability": 0.9877 + }, + { + "start": 13754.14, + "end": 13761.0, + "probability": 0.9894 + }, + { + "start": 13762.12, + "end": 13767.4, + "probability": 0.9568 + }, + { + "start": 13767.4, + "end": 13773.44, + "probability": 0.9988 + }, + { + "start": 13774.16, + "end": 13780.94, + "probability": 0.8984 + }, + { + "start": 13781.06, + "end": 13784.86, + "probability": 0.9927 + }, + { + "start": 13785.78, + "end": 13793.28, + "probability": 0.9987 + }, + { + "start": 13793.88, + "end": 13798.94, + "probability": 0.9957 + }, + { + "start": 13800.06, + "end": 13804.5, + "probability": 0.9795 + }, + { + "start": 13804.5, + "end": 13809.28, + "probability": 0.998 + }, + { + "start": 13810.24, + "end": 13816.0, + "probability": 0.9399 + }, + { + "start": 13816.48, + "end": 13824.32, + "probability": 0.996 + }, + { + "start": 13825.4, + "end": 13831.8, + "probability": 0.9974 + }, + { + "start": 13832.56, + "end": 13838.04, + "probability": 0.9955 + }, + { + "start": 13838.04, + "end": 13844.42, + "probability": 0.9625 + }, + { + "start": 13844.88, + "end": 13850.08, + "probability": 0.9694 + }, + { + "start": 13851.02, + "end": 13857.2, + "probability": 0.9458 + }, + { + "start": 13858.14, + "end": 13862.04, + "probability": 0.9975 + }, + { + "start": 13862.04, + "end": 13867.12, + "probability": 0.9858 + }, + { + "start": 13867.9, + "end": 13871.72, + "probability": 0.9946 + }, + { + "start": 13872.96, + "end": 13881.24, + "probability": 0.8683 + }, + { + "start": 13881.24, + "end": 13887.32, + "probability": 0.9548 + }, + { + "start": 13888.2, + "end": 13895.02, + "probability": 0.9502 + }, + { + "start": 13895.44, + "end": 13895.98, + "probability": 0.7343 + }, + { + "start": 13896.52, + "end": 13898.6, + "probability": 0.7296 + }, + { + "start": 13898.76, + "end": 13901.44, + "probability": 0.8833 + }, + { + "start": 13901.98, + "end": 13906.66, + "probability": 0.9686 + }, + { + "start": 13907.08, + "end": 13908.64, + "probability": 0.8643 + }, + { + "start": 13909.18, + "end": 13910.68, + "probability": 0.7855 + }, + { + "start": 13914.8, + "end": 13915.5, + "probability": 0.8379 + }, + { + "start": 13926.07, + "end": 13926.54, + "probability": 0.0198 + }, + { + "start": 13926.54, + "end": 13928.12, + "probability": 0.4006 + }, + { + "start": 13928.22, + "end": 13928.56, + "probability": 0.7111 + }, + { + "start": 13928.64, + "end": 13931.3, + "probability": 0.8702 + }, + { + "start": 13934.2, + "end": 13937.4, + "probability": 0.8686 + }, + { + "start": 13938.12, + "end": 13939.26, + "probability": 0.3143 + }, + { + "start": 13940.38, + "end": 13943.42, + "probability": 0.8198 + }, + { + "start": 13943.86, + "end": 13947.36, + "probability": 0.372 + }, + { + "start": 13947.84, + "end": 13949.24, + "probability": 0.5614 + }, + { + "start": 13949.38, + "end": 13950.12, + "probability": 0.5745 + }, + { + "start": 13950.52, + "end": 13951.98, + "probability": 0.8765 + }, + { + "start": 13952.2, + "end": 13953.76, + "probability": 0.675 + }, + { + "start": 13954.32, + "end": 13956.1, + "probability": 0.9753 + }, + { + "start": 13956.66, + "end": 13958.0, + "probability": 0.9646 + }, + { + "start": 13958.76, + "end": 13959.68, + "probability": 0.7713 + }, + { + "start": 13961.82, + "end": 13962.72, + "probability": 0.866 + }, + { + "start": 13964.14, + "end": 13966.9, + "probability": 0.9396 + }, + { + "start": 13968.34, + "end": 13969.49, + "probability": 0.8455 + }, + { + "start": 13979.38, + "end": 13980.62, + "probability": 0.9451 + }, + { + "start": 13982.08, + "end": 13983.38, + "probability": 0.6619 + }, + { + "start": 13983.76, + "end": 13986.3, + "probability": 0.9834 + }, + { + "start": 13986.42, + "end": 13988.02, + "probability": 0.7705 + }, + { + "start": 13988.22, + "end": 13989.64, + "probability": 0.6817 + }, + { + "start": 13990.64, + "end": 13995.82, + "probability": 0.6639 + }, + { + "start": 13995.98, + "end": 13998.44, + "probability": 0.9995 + }, + { + "start": 13999.4, + "end": 14000.1, + "probability": 0.9424 + }, + { + "start": 14000.7, + "end": 14001.08, + "probability": 0.8513 + }, + { + "start": 14001.44, + "end": 14002.47, + "probability": 0.96 + }, + { + "start": 14002.7, + "end": 14005.12, + "probability": 0.9893 + }, + { + "start": 14005.24, + "end": 14009.22, + "probability": 0.9727 + }, + { + "start": 14010.5, + "end": 14011.47, + "probability": 0.7832 + }, + { + "start": 14011.6, + "end": 14012.62, + "probability": 0.9438 + }, + { + "start": 14012.68, + "end": 14015.14, + "probability": 0.934 + }, + { + "start": 14015.36, + "end": 14018.84, + "probability": 0.9957 + }, + { + "start": 14018.84, + "end": 14022.4, + "probability": 0.9884 + }, + { + "start": 14022.58, + "end": 14025.4, + "probability": 0.8887 + }, + { + "start": 14025.96, + "end": 14031.1, + "probability": 0.9836 + }, + { + "start": 14031.12, + "end": 14031.68, + "probability": 0.6808 + }, + { + "start": 14031.78, + "end": 14035.72, + "probability": 0.9761 + }, + { + "start": 14036.32, + "end": 14037.02, + "probability": 0.6744 + }, + { + "start": 14037.02, + "end": 14040.36, + "probability": 0.9465 + }, + { + "start": 14040.6, + "end": 14047.16, + "probability": 0.9922 + }, + { + "start": 14048.2, + "end": 14051.0, + "probability": 0.9956 + }, + { + "start": 14051.7, + "end": 14056.48, + "probability": 0.9973 + }, + { + "start": 14056.48, + "end": 14061.86, + "probability": 0.9922 + }, + { + "start": 14061.98, + "end": 14063.16, + "probability": 0.6215 + }, + { + "start": 14063.58, + "end": 14067.84, + "probability": 0.9659 + }, + { + "start": 14069.1, + "end": 14070.22, + "probability": 0.88 + }, + { + "start": 14070.54, + "end": 14073.18, + "probability": 0.9349 + }, + { + "start": 14073.18, + "end": 14075.96, + "probability": 0.941 + }, + { + "start": 14076.48, + "end": 14079.32, + "probability": 0.7925 + }, + { + "start": 14079.84, + "end": 14083.6, + "probability": 0.9332 + }, + { + "start": 14083.6, + "end": 14086.76, + "probability": 0.9941 + }, + { + "start": 14087.4, + "end": 14091.92, + "probability": 0.9653 + }, + { + "start": 14093.8, + "end": 14097.52, + "probability": 0.949 + }, + { + "start": 14097.84, + "end": 14101.06, + "probability": 0.5183 + }, + { + "start": 14101.42, + "end": 14106.14, + "probability": 0.9744 + }, + { + "start": 14106.94, + "end": 14109.68, + "probability": 0.7784 + }, + { + "start": 14110.58, + "end": 14113.74, + "probability": 0.9268 + }, + { + "start": 14114.66, + "end": 14118.52, + "probability": 0.9771 + }, + { + "start": 14119.38, + "end": 14124.56, + "probability": 0.9973 + }, + { + "start": 14124.56, + "end": 14128.82, + "probability": 0.9987 + }, + { + "start": 14129.3, + "end": 14132.84, + "probability": 0.8137 + }, + { + "start": 14132.96, + "end": 14133.46, + "probability": 0.8009 + }, + { + "start": 14134.1, + "end": 14137.32, + "probability": 0.961 + }, + { + "start": 14137.44, + "end": 14139.52, + "probability": 0.9401 + }, + { + "start": 14139.88, + "end": 14141.16, + "probability": 0.8836 + }, + { + "start": 14141.7, + "end": 14144.7, + "probability": 0.996 + }, + { + "start": 14145.24, + "end": 14147.54, + "probability": 0.9559 + }, + { + "start": 14148.0, + "end": 14150.58, + "probability": 0.8556 + }, + { + "start": 14151.04, + "end": 14157.6, + "probability": 0.9854 + }, + { + "start": 14157.6, + "end": 14162.72, + "probability": 0.9369 + }, + { + "start": 14163.4, + "end": 14164.36, + "probability": 0.7121 + }, + { + "start": 14164.5, + "end": 14168.28, + "probability": 0.9932 + }, + { + "start": 14168.94, + "end": 14172.98, + "probability": 0.9897 + }, + { + "start": 14173.22, + "end": 14174.5, + "probability": 0.8944 + }, + { + "start": 14175.68, + "end": 14181.22, + "probability": 0.9948 + }, + { + "start": 14181.62, + "end": 14183.94, + "probability": 0.9956 + }, + { + "start": 14184.08, + "end": 14187.38, + "probability": 0.9959 + }, + { + "start": 14187.4, + "end": 14190.66, + "probability": 0.9434 + }, + { + "start": 14190.8, + "end": 14191.68, + "probability": 0.8659 + }, + { + "start": 14191.78, + "end": 14192.08, + "probability": 0.7137 + }, + { + "start": 14192.46, + "end": 14194.18, + "probability": 0.5364 + }, + { + "start": 14195.02, + "end": 14197.26, + "probability": 0.858 + }, + { + "start": 14197.32, + "end": 14199.08, + "probability": 0.8332 + }, + { + "start": 14199.82, + "end": 14200.8, + "probability": 0.8231 + }, + { + "start": 14203.36, + "end": 14210.04, + "probability": 0.9641 + }, + { + "start": 14210.6, + "end": 14210.92, + "probability": 0.6702 + }, + { + "start": 14211.52, + "end": 14214.32, + "probability": 0.734 + }, + { + "start": 14214.42, + "end": 14215.7, + "probability": 0.7656 + }, + { + "start": 14223.36, + "end": 14224.94, + "probability": 0.3237 + }, + { + "start": 14226.7, + "end": 14230.5, + "probability": 0.7599 + }, + { + "start": 14231.92, + "end": 14232.02, + "probability": 0.8286 + }, + { + "start": 14233.02, + "end": 14234.81, + "probability": 0.8486 + }, + { + "start": 14235.9, + "end": 14239.3, + "probability": 0.7983 + }, + { + "start": 14239.98, + "end": 14247.04, + "probability": 0.6758 + }, + { + "start": 14247.04, + "end": 14249.4, + "probability": 0.844 + }, + { + "start": 14249.8, + "end": 14252.76, + "probability": 0.8599 + }, + { + "start": 14254.1, + "end": 14256.92, + "probability": 0.9179 + }, + { + "start": 14256.96, + "end": 14261.12, + "probability": 0.9533 + }, + { + "start": 14262.42, + "end": 14269.64, + "probability": 0.9185 + }, + { + "start": 14270.22, + "end": 14271.66, + "probability": 0.795 + }, + { + "start": 14272.22, + "end": 14274.0, + "probability": 0.6846 + }, + { + "start": 14274.56, + "end": 14275.96, + "probability": 0.9868 + }, + { + "start": 14276.84, + "end": 14279.4, + "probability": 0.7572 + }, + { + "start": 14279.72, + "end": 14280.1, + "probability": 0.3791 + }, + { + "start": 14280.38, + "end": 14280.58, + "probability": 0.5884 + }, + { + "start": 14280.74, + "end": 14281.26, + "probability": 0.9118 + }, + { + "start": 14281.76, + "end": 14282.76, + "probability": 0.7088 + }, + { + "start": 14282.76, + "end": 14283.16, + "probability": 0.1616 + }, + { + "start": 14283.54, + "end": 14284.95, + "probability": 0.4414 + }, + { + "start": 14285.74, + "end": 14293.24, + "probability": 0.9909 + }, + { + "start": 14294.22, + "end": 14295.08, + "probability": 0.7464 + }, + { + "start": 14295.16, + "end": 14303.04, + "probability": 0.9918 + }, + { + "start": 14303.5, + "end": 14307.44, + "probability": 0.9686 + }, + { + "start": 14308.22, + "end": 14311.29, + "probability": 0.8129 + }, + { + "start": 14312.62, + "end": 14315.74, + "probability": 0.9891 + }, + { + "start": 14316.22, + "end": 14318.06, + "probability": 0.9943 + }, + { + "start": 14318.56, + "end": 14322.12, + "probability": 0.9968 + }, + { + "start": 14322.68, + "end": 14323.66, + "probability": 0.9733 + }, + { + "start": 14324.84, + "end": 14326.34, + "probability": 0.8485 + }, + { + "start": 14326.42, + "end": 14327.1, + "probability": 0.6212 + }, + { + "start": 14327.2, + "end": 14329.06, + "probability": 0.9825 + }, + { + "start": 14329.5, + "end": 14333.68, + "probability": 0.8938 + }, + { + "start": 14334.76, + "end": 14335.88, + "probability": 0.5871 + }, + { + "start": 14336.38, + "end": 14338.64, + "probability": 0.986 + }, + { + "start": 14338.74, + "end": 14339.0, + "probability": 0.4213 + }, + { + "start": 14339.1, + "end": 14340.9, + "probability": 0.9508 + }, + { + "start": 14341.3, + "end": 14346.12, + "probability": 0.7626 + }, + { + "start": 14346.8, + "end": 14347.08, + "probability": 0.0195 + }, + { + "start": 14349.74, + "end": 14349.78, + "probability": 0.0221 + }, + { + "start": 14349.78, + "end": 14349.78, + "probability": 0.0563 + }, + { + "start": 14349.78, + "end": 14350.68, + "probability": 0.4269 + }, + { + "start": 14350.82, + "end": 14351.14, + "probability": 0.3267 + }, + { + "start": 14351.14, + "end": 14351.8, + "probability": 0.4657 + }, + { + "start": 14352.2, + "end": 14352.32, + "probability": 0.7261 + }, + { + "start": 14352.32, + "end": 14354.4, + "probability": 0.3261 + }, + { + "start": 14354.56, + "end": 14354.9, + "probability": 0.7524 + }, + { + "start": 14354.9, + "end": 14355.7, + "probability": 0.6396 + }, + { + "start": 14356.14, + "end": 14356.76, + "probability": 0.6787 + }, + { + "start": 14357.38, + "end": 14358.31, + "probability": 0.463 + }, + { + "start": 14358.48, + "end": 14358.84, + "probability": 0.8519 + }, + { + "start": 14358.94, + "end": 14359.64, + "probability": 0.2768 + }, + { + "start": 14359.7, + "end": 14360.0, + "probability": 0.6425 + }, + { + "start": 14360.06, + "end": 14360.58, + "probability": 0.5087 + }, + { + "start": 14360.72, + "end": 14361.06, + "probability": 0.6263 + }, + { + "start": 14361.12, + "end": 14361.94, + "probability": 0.7452 + }, + { + "start": 14362.32, + "end": 14363.04, + "probability": 0.8925 + }, + { + "start": 14363.44, + "end": 14364.08, + "probability": 0.5086 + }, + { + "start": 14364.26, + "end": 14364.84, + "probability": 0.8997 + }, + { + "start": 14364.9, + "end": 14365.86, + "probability": 0.6785 + }, + { + "start": 14366.74, + "end": 14368.44, + "probability": 0.9452 + }, + { + "start": 14368.98, + "end": 14371.6, + "probability": 0.6775 + }, + { + "start": 14372.16, + "end": 14373.28, + "probability": 0.3176 + }, + { + "start": 14373.56, + "end": 14377.48, + "probability": 0.8623 + }, + { + "start": 14377.66, + "end": 14378.18, + "probability": 0.4212 + }, + { + "start": 14378.4, + "end": 14378.78, + "probability": 0.7236 + }, + { + "start": 14379.4, + "end": 14380.08, + "probability": 0.5447 + }, + { + "start": 14380.98, + "end": 14382.88, + "probability": 0.7528 + }, + { + "start": 14383.42, + "end": 14384.26, + "probability": 0.7301 + }, + { + "start": 14385.51, + "end": 14388.66, + "probability": 0.2108 + }, + { + "start": 14389.78, + "end": 14391.72, + "probability": 0.4806 + }, + { + "start": 14392.56, + "end": 14393.06, + "probability": 0.7083 + }, + { + "start": 14393.7, + "end": 14394.9, + "probability": 0.5973 + }, + { + "start": 14395.32, + "end": 14395.94, + "probability": 0.5551 + }, + { + "start": 14396.1, + "end": 14396.52, + "probability": 0.8177 + }, + { + "start": 14396.78, + "end": 14398.18, + "probability": 0.7003 + }, + { + "start": 14401.18, + "end": 14401.74, + "probability": 0.0869 + }, + { + "start": 14403.48, + "end": 14403.96, + "probability": 0.1072 + }, + { + "start": 14403.96, + "end": 14403.96, + "probability": 0.0865 + }, + { + "start": 14404.08, + "end": 14404.08, + "probability": 0.2383 + }, + { + "start": 14404.08, + "end": 14405.78, + "probability": 0.7424 + }, + { + "start": 14405.88, + "end": 14406.24, + "probability": 0.4519 + }, + { + "start": 14406.32, + "end": 14406.88, + "probability": 0.6063 + }, + { + "start": 14407.0, + "end": 14407.5, + "probability": 0.5947 + }, + { + "start": 14407.5, + "end": 14408.2, + "probability": 0.5066 + }, + { + "start": 14408.68, + "end": 14409.86, + "probability": 0.8778 + }, + { + "start": 14410.34, + "end": 14411.2, + "probability": 0.8287 + }, + { + "start": 14411.58, + "end": 14412.22, + "probability": 0.8839 + }, + { + "start": 14412.84, + "end": 14414.32, + "probability": 0.7082 + }, + { + "start": 14414.94, + "end": 14417.28, + "probability": 0.5168 + }, + { + "start": 14417.84, + "end": 14418.44, + "probability": 0.5688 + }, + { + "start": 14420.38, + "end": 14421.56, + "probability": 0.0859 + }, + { + "start": 14421.62, + "end": 14422.76, + "probability": 0.2684 + }, + { + "start": 14422.76, + "end": 14422.76, + "probability": 0.445 + }, + { + "start": 14422.76, + "end": 14426.4, + "probability": 0.5167 + }, + { + "start": 14427.06, + "end": 14428.56, + "probability": 0.5301 + }, + { + "start": 14429.54, + "end": 14430.82, + "probability": 0.6914 + }, + { + "start": 14432.06, + "end": 14433.1, + "probability": 0.6627 + }, + { + "start": 14433.32, + "end": 14433.56, + "probability": 0.8372 + }, + { + "start": 14434.06, + "end": 14434.64, + "probability": 0.9084 + }, + { + "start": 14435.16, + "end": 14435.62, + "probability": 0.3367 + }, + { + "start": 14435.66, + "end": 14436.9, + "probability": 0.649 + }, + { + "start": 14437.12, + "end": 14438.38, + "probability": 0.9458 + }, + { + "start": 14438.64, + "end": 14439.56, + "probability": 0.6382 + }, + { + "start": 14439.88, + "end": 14440.44, + "probability": 0.5981 + }, + { + "start": 14441.44, + "end": 14441.54, + "probability": 0.7917 + }, + { + "start": 14443.53, + "end": 14445.02, + "probability": 0.1877 + }, + { + "start": 14446.84, + "end": 14448.37, + "probability": 0.6668 + }, + { + "start": 14449.68, + "end": 14451.9, + "probability": 0.9895 + }, + { + "start": 14452.04, + "end": 14454.12, + "probability": 0.9414 + }, + { + "start": 14455.24, + "end": 14455.3, + "probability": 0.1723 + }, + { + "start": 14455.76, + "end": 14455.82, + "probability": 0.1999 + }, + { + "start": 14455.82, + "end": 14457.28, + "probability": 0.9976 + }, + { + "start": 14458.48, + "end": 14464.24, + "probability": 0.9938 + }, + { + "start": 14465.02, + "end": 14466.34, + "probability": 0.9998 + }, + { + "start": 14467.22, + "end": 14467.54, + "probability": 0.7403 + }, + { + "start": 14467.64, + "end": 14468.96, + "probability": 0.9585 + }, + { + "start": 14470.84, + "end": 14472.5, + "probability": 0.9985 + }, + { + "start": 14473.28, + "end": 14475.9, + "probability": 0.9709 + }, + { + "start": 14475.9, + "end": 14479.56, + "probability": 0.9946 + }, + { + "start": 14479.92, + "end": 14480.7, + "probability": 0.8092 + }, + { + "start": 14481.0, + "end": 14482.32, + "probability": 0.979 + }, + { + "start": 14483.0, + "end": 14485.34, + "probability": 0.5597 + }, + { + "start": 14485.42, + "end": 14488.06, + "probability": 0.9888 + }, + { + "start": 14488.24, + "end": 14489.25, + "probability": 0.9082 + }, + { + "start": 14489.94, + "end": 14490.78, + "probability": 0.5323 + }, + { + "start": 14495.98, + "end": 14496.42, + "probability": 0.0468 + }, + { + "start": 14496.42, + "end": 14501.3, + "probability": 0.6232 + }, + { + "start": 14501.44, + "end": 14504.5, + "probability": 0.8295 + }, + { + "start": 14504.96, + "end": 14510.74, + "probability": 0.9956 + }, + { + "start": 14512.22, + "end": 14513.44, + "probability": 0.296 + }, + { + "start": 14513.54, + "end": 14513.54, + "probability": 0.4018 + }, + { + "start": 14513.56, + "end": 14515.86, + "probability": 0.7729 + }, + { + "start": 14516.38, + "end": 14519.86, + "probability": 0.978 + }, + { + "start": 14520.24, + "end": 14522.16, + "probability": 0.9895 + }, + { + "start": 14522.62, + "end": 14524.16, + "probability": 0.7979 + }, + { + "start": 14524.18, + "end": 14528.22, + "probability": 0.9809 + }, + { + "start": 14528.76, + "end": 14529.98, + "probability": 0.9948 + }, + { + "start": 14530.14, + "end": 14530.52, + "probability": 0.7486 + }, + { + "start": 14530.88, + "end": 14532.98, + "probability": 0.9271 + }, + { + "start": 14533.22, + "end": 14535.53, + "probability": 0.8849 + }, + { + "start": 14535.76, + "end": 14538.98, + "probability": 0.9168 + }, + { + "start": 14538.98, + "end": 14541.74, + "probability": 0.4596 + }, + { + "start": 14542.8, + "end": 14546.34, + "probability": 0.7918 + }, + { + "start": 14546.88, + "end": 14550.82, + "probability": 0.7249 + }, + { + "start": 14551.72, + "end": 14554.6, + "probability": 0.7447 + }, + { + "start": 14554.76, + "end": 14555.14, + "probability": 0.3928 + }, + { + "start": 14555.18, + "end": 14556.02, + "probability": 0.6063 + }, + { + "start": 14557.18, + "end": 14559.78, + "probability": 0.1975 + }, + { + "start": 14575.42, + "end": 14577.7, + "probability": 0.1081 + }, + { + "start": 14578.8, + "end": 14579.04, + "probability": 0.0293 + }, + { + "start": 14579.04, + "end": 14579.06, + "probability": 0.0295 + }, + { + "start": 14579.06, + "end": 14580.14, + "probability": 0.476 + }, + { + "start": 14583.02, + "end": 14584.32, + "probability": 0.7173 + }, + { + "start": 14590.94, + "end": 14591.82, + "probability": 0.0225 + }, + { + "start": 14591.82, + "end": 14594.4, + "probability": 0.0001 + }, + { + "start": 14596.76, + "end": 14597.08, + "probability": 0.0119 + }, + { + "start": 14597.68, + "end": 14602.1, + "probability": 0.1383 + }, + { + "start": 14611.72, + "end": 14613.86, + "probability": 0.0553 + }, + { + "start": 14614.08, + "end": 14615.28, + "probability": 0.0367 + }, + { + "start": 14616.34, + "end": 14617.92, + "probability": 0.0592 + }, + { + "start": 14617.92, + "end": 14619.78, + "probability": 0.1094 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14632.0, + "end": 14632.0, + "probability": 0.0 + }, + { + "start": 14636.76, + "end": 14638.29, + "probability": 0.5881 + }, + { + "start": 14639.1, + "end": 14640.38, + "probability": 0.6461 + }, + { + "start": 14641.62, + "end": 14646.17, + "probability": 0.9606 + }, + { + "start": 14646.28, + "end": 14650.04, + "probability": 0.8686 + }, + { + "start": 14651.16, + "end": 14653.88, + "probability": 0.9722 + }, + { + "start": 14654.46, + "end": 14657.0, + "probability": 0.935 + }, + { + "start": 14657.88, + "end": 14659.32, + "probability": 0.7863 + }, + { + "start": 14659.9, + "end": 14662.9, + "probability": 0.9888 + }, + { + "start": 14663.32, + "end": 14666.14, + "probability": 0.8343 + }, + { + "start": 14666.88, + "end": 14669.3, + "probability": 0.9868 + }, + { + "start": 14670.4, + "end": 14673.08, + "probability": 0.6068 + }, + { + "start": 14673.74, + "end": 14675.06, + "probability": 0.9465 + }, + { + "start": 14676.3, + "end": 14678.24, + "probability": 0.9329 + }, + { + "start": 14678.28, + "end": 14680.08, + "probability": 0.7142 + }, + { + "start": 14681.26, + "end": 14682.22, + "probability": 0.7749 + }, + { + "start": 14683.78, + "end": 14685.9, + "probability": 0.8496 + }, + { + "start": 14687.74, + "end": 14691.88, + "probability": 0.9956 + }, + { + "start": 14691.88, + "end": 14698.1, + "probability": 0.972 + }, + { + "start": 14699.24, + "end": 14699.92, + "probability": 0.5094 + }, + { + "start": 14700.38, + "end": 14700.62, + "probability": 0.7587 + }, + { + "start": 14700.7, + "end": 14701.42, + "probability": 0.7133 + }, + { + "start": 14701.56, + "end": 14702.16, + "probability": 0.8028 + }, + { + "start": 14702.34, + "end": 14706.22, + "probability": 0.8793 + }, + { + "start": 14706.96, + "end": 14711.88, + "probability": 0.9614 + }, + { + "start": 14711.88, + "end": 14716.86, + "probability": 0.9612 + }, + { + "start": 14717.48, + "end": 14719.98, + "probability": 0.753 + }, + { + "start": 14720.82, + "end": 14723.42, + "probability": 0.9702 + }, + { + "start": 14724.68, + "end": 14728.38, + "probability": 0.8469 + }, + { + "start": 14728.38, + "end": 14733.42, + "probability": 0.8618 + }, + { + "start": 14733.64, + "end": 14737.26, + "probability": 0.7662 + }, + { + "start": 14738.42, + "end": 14739.56, + "probability": 0.9508 + }, + { + "start": 14739.78, + "end": 14740.38, + "probability": 0.3824 + }, + { + "start": 14740.78, + "end": 14744.92, + "probability": 0.9851 + }, + { + "start": 14745.54, + "end": 14747.82, + "probability": 0.6123 + }, + { + "start": 14749.5, + "end": 14753.9, + "probability": 0.9858 + }, + { + "start": 14754.68, + "end": 14756.8, + "probability": 0.9941 + }, + { + "start": 14757.14, + "end": 14761.3, + "probability": 0.8334 + }, + { + "start": 14761.42, + "end": 14762.22, + "probability": 0.9146 + }, + { + "start": 14762.88, + "end": 14763.8, + "probability": 0.9917 + }, + { + "start": 14765.58, + "end": 14767.88, + "probability": 0.9854 + }, + { + "start": 14768.22, + "end": 14773.26, + "probability": 0.9803 + }, + { + "start": 14775.82, + "end": 14776.18, + "probability": 0.5428 + }, + { + "start": 14776.8, + "end": 14777.64, + "probability": 0.4867 + }, + { + "start": 14777.66, + "end": 14781.65, + "probability": 0.6222 + }, + { + "start": 14786.88, + "end": 14787.42, + "probability": 0.8174 + }, + { + "start": 14787.48, + "end": 14789.64, + "probability": 0.9597 + }, + { + "start": 14789.88, + "end": 14794.12, + "probability": 0.9819 + }, + { + "start": 14795.42, + "end": 14798.26, + "probability": 0.9932 + }, + { + "start": 14798.26, + "end": 14800.96, + "probability": 0.8521 + }, + { + "start": 14801.34, + "end": 14801.62, + "probability": 0.7393 + }, + { + "start": 14802.26, + "end": 14803.0, + "probability": 0.7609 + }, + { + "start": 14803.86, + "end": 14804.5, + "probability": 0.936 + }, + { + "start": 14805.02, + "end": 14809.96, + "probability": 0.9819 + }, + { + "start": 14810.52, + "end": 14811.7, + "probability": 0.8293 + }, + { + "start": 14812.16, + "end": 14818.4, + "probability": 0.9934 + }, + { + "start": 14818.84, + "end": 14822.22, + "probability": 0.9918 + }, + { + "start": 14822.22, + "end": 14826.06, + "probability": 0.8052 + }, + { + "start": 14826.96, + "end": 14828.84, + "probability": 0.7196 + }, + { + "start": 14829.86, + "end": 14830.66, + "probability": 0.9802 + }, + { + "start": 14831.8, + "end": 14834.9, + "probability": 0.9967 + }, + { + "start": 14835.06, + "end": 14837.44, + "probability": 0.9913 + }, + { + "start": 14837.8, + "end": 14839.34, + "probability": 0.9949 + }, + { + "start": 14839.96, + "end": 14841.06, + "probability": 0.8207 + }, + { + "start": 14841.76, + "end": 14842.72, + "probability": 0.8405 + }, + { + "start": 14843.5, + "end": 14846.84, + "probability": 0.8701 + }, + { + "start": 14847.14, + "end": 14850.46, + "probability": 0.9928 + }, + { + "start": 14851.04, + "end": 14851.46, + "probability": 0.9902 + }, + { + "start": 14852.96, + "end": 14853.5, + "probability": 0.7364 + }, + { + "start": 14854.9, + "end": 14856.0, + "probability": 0.6459 + }, + { + "start": 14859.92, + "end": 14861.98, + "probability": 0.9281 + }, + { + "start": 14863.22, + "end": 14865.08, + "probability": 0.9617 + }, + { + "start": 14866.22, + "end": 14867.46, + "probability": 0.7462 + }, + { + "start": 14868.42, + "end": 14870.02, + "probability": 0.7923 + }, + { + "start": 14870.62, + "end": 14873.58, + "probability": 0.7245 + }, + { + "start": 14874.08, + "end": 14876.86, + "probability": 0.8094 + }, + { + "start": 14878.08, + "end": 14879.26, + "probability": 0.5099 + }, + { + "start": 14880.06, + "end": 14881.38, + "probability": 0.8494 + }, + { + "start": 14882.04, + "end": 14882.2, + "probability": 0.5667 + }, + { + "start": 14882.44, + "end": 14884.84, + "probability": 0.8988 + }, + { + "start": 14884.94, + "end": 14888.96, + "probability": 0.9855 + }, + { + "start": 14889.62, + "end": 14891.32, + "probability": 0.877 + }, + { + "start": 14891.78, + "end": 14892.84, + "probability": 0.8209 + }, + { + "start": 14893.04, + "end": 14894.82, + "probability": 0.8735 + }, + { + "start": 14896.0, + "end": 14898.64, + "probability": 0.9714 + }, + { + "start": 14898.8, + "end": 14899.6, + "probability": 0.6619 + }, + { + "start": 14899.72, + "end": 14900.2, + "probability": 0.6805 + }, + { + "start": 14900.36, + "end": 14901.38, + "probability": 0.8516 + }, + { + "start": 14902.44, + "end": 14904.22, + "probability": 0.9011 + }, + { + "start": 14905.06, + "end": 14906.2, + "probability": 0.9884 + }, + { + "start": 14906.3, + "end": 14907.0, + "probability": 0.9099 + }, + { + "start": 14907.46, + "end": 14911.26, + "probability": 0.8493 + }, + { + "start": 14911.46, + "end": 14915.72, + "probability": 0.9712 + }, + { + "start": 14916.08, + "end": 14916.86, + "probability": 0.9565 + }, + { + "start": 14916.94, + "end": 14919.65, + "probability": 0.7319 + }, + { + "start": 14920.38, + "end": 14920.74, + "probability": 0.414 + }, + { + "start": 14920.74, + "end": 14925.56, + "probability": 0.833 + }, + { + "start": 14926.88, + "end": 14929.56, + "probability": 0.9543 + }, + { + "start": 14930.64, + "end": 14930.96, + "probability": 0.8484 + }, + { + "start": 14931.1, + "end": 14934.4, + "probability": 0.7767 + }, + { + "start": 14934.5, + "end": 14935.51, + "probability": 0.8069 + }, + { + "start": 14936.86, + "end": 14938.54, + "probability": 0.9392 + }, + { + "start": 14939.56, + "end": 14943.06, + "probability": 0.9086 + }, + { + "start": 14943.82, + "end": 14944.8, + "probability": 0.728 + }, + { + "start": 14945.04, + "end": 14947.24, + "probability": 0.9674 + }, + { + "start": 14947.34, + "end": 14948.02, + "probability": 0.7245 + }, + { + "start": 14948.24, + "end": 14950.0, + "probability": 0.6416 + }, + { + "start": 14950.24, + "end": 14953.04, + "probability": 0.9946 + }, + { + "start": 14953.5, + "end": 14953.5, + "probability": 0.0191 + }, + { + "start": 14953.5, + "end": 14954.36, + "probability": 0.7116 + }, + { + "start": 14954.54, + "end": 14955.22, + "probability": 0.9576 + }, + { + "start": 14955.46, + "end": 14957.92, + "probability": 0.8288 + }, + { + "start": 14958.2, + "end": 14959.76, + "probability": 0.9205 + }, + { + "start": 14959.8, + "end": 14960.54, + "probability": 0.8442 + }, + { + "start": 14961.46, + "end": 14962.61, + "probability": 0.9941 + }, + { + "start": 14963.6, + "end": 14966.62, + "probability": 0.9084 + }, + { + "start": 14967.86, + "end": 14970.06, + "probability": 0.9268 + }, + { + "start": 14970.26, + "end": 14971.78, + "probability": 0.7109 + }, + { + "start": 14972.56, + "end": 14975.86, + "probability": 0.7448 + }, + { + "start": 14975.96, + "end": 14976.68, + "probability": 0.8553 + }, + { + "start": 14977.42, + "end": 14978.24, + "probability": 0.8591 + }, + { + "start": 14978.3, + "end": 14978.76, + "probability": 0.8872 + }, + { + "start": 14978.88, + "end": 14979.72, + "probability": 0.8999 + }, + { + "start": 14979.98, + "end": 14980.4, + "probability": 0.2084 + }, + { + "start": 14980.46, + "end": 14981.62, + "probability": 0.9238 + }, + { + "start": 14981.76, + "end": 14982.73, + "probability": 0.7722 + }, + { + "start": 14983.66, + "end": 14984.64, + "probability": 0.8695 + }, + { + "start": 14984.76, + "end": 14985.52, + "probability": 0.7347 + }, + { + "start": 14986.52, + "end": 14987.08, + "probability": 0.724 + }, + { + "start": 14988.9, + "end": 14989.02, + "probability": 0.1379 + }, + { + "start": 14989.02, + "end": 14991.21, + "probability": 0.9819 + }, + { + "start": 14991.48, + "end": 14992.88, + "probability": 0.9712 + }, + { + "start": 14994.44, + "end": 14995.44, + "probability": 0.4591 + }, + { + "start": 14995.74, + "end": 14995.74, + "probability": 0.0918 + }, + { + "start": 14995.74, + "end": 14996.08, + "probability": 0.1628 + }, + { + "start": 14996.34, + "end": 14996.92, + "probability": 0.7485 + }, + { + "start": 14996.98, + "end": 14999.1, + "probability": 0.6816 + }, + { + "start": 14999.2, + "end": 14999.74, + "probability": 0.7801 + }, + { + "start": 14999.8, + "end": 15003.92, + "probability": 0.98 + }, + { + "start": 15003.98, + "end": 15005.64, + "probability": 0.8183 + }, + { + "start": 15005.84, + "end": 15006.12, + "probability": 0.148 + }, + { + "start": 15006.18, + "end": 15009.24, + "probability": 0.9487 + }, + { + "start": 15009.3, + "end": 15010.14, + "probability": 0.7451 + }, + { + "start": 15010.16, + "end": 15011.86, + "probability": 0.9652 + }, + { + "start": 15011.98, + "end": 15015.22, + "probability": 0.8704 + }, + { + "start": 15015.78, + "end": 15016.08, + "probability": 0.7938 + }, + { + "start": 15016.18, + "end": 15021.02, + "probability": 0.7651 + }, + { + "start": 15021.34, + "end": 15023.62, + "probability": 0.9726 + }, + { + "start": 15024.0, + "end": 15025.14, + "probability": 0.7355 + }, + { + "start": 15025.2, + "end": 15026.24, + "probability": 0.6886 + }, + { + "start": 15026.36, + "end": 15028.02, + "probability": 0.8827 + }, + { + "start": 15028.66, + "end": 15029.44, + "probability": 0.4847 + }, + { + "start": 15029.5, + "end": 15032.22, + "probability": 0.8351 + }, + { + "start": 15032.22, + "end": 15034.86, + "probability": 0.7712 + }, + { + "start": 15037.0, + "end": 15038.88, + "probability": 0.118 + }, + { + "start": 15040.06, + "end": 15041.44, + "probability": 0.7753 + }, + { + "start": 15041.46, + "end": 15042.16, + "probability": 0.7024 + }, + { + "start": 15042.68, + "end": 15043.58, + "probability": 0.3573 + }, + { + "start": 15044.06, + "end": 15045.6, + "probability": 0.9181 + }, + { + "start": 15045.62, + "end": 15046.1, + "probability": 0.6443 + }, + { + "start": 15046.18, + "end": 15047.94, + "probability": 0.5251 + }, + { + "start": 15048.82, + "end": 15051.54, + "probability": 0.8504 + }, + { + "start": 15178.5, + "end": 15181.447, + "probability": 0.0 + } + ], + "segments_count": 5002, + "words_count": 24269, + "avg_words_per_segment": 4.8519, + "avg_segment_duration": 2.1118, + "avg_words_per_minute": 95.9158, + "plenum_id": "64583", + "duration": 15181.44, + "title": null, + "plenum_date": "2017-06-12" +} \ No newline at end of file