diff --git "a/119378/metadata.json" "b/119378/metadata.json" new file mode 100644--- /dev/null +++ "b/119378/metadata.json" @@ -0,0 +1,50342 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "119378", + "quality_score": 0.877, + "per_segment_quality_scores": [ + { + "start": 47.82, + "end": 48.38, + "probability": 0.3934 + }, + { + "start": 49.08, + "end": 51.58, + "probability": 0.6521 + }, + { + "start": 51.72, + "end": 55.54, + "probability": 0.8069 + }, + { + "start": 55.54, + "end": 58.34, + "probability": 0.9451 + }, + { + "start": 58.44, + "end": 62.16, + "probability": 0.998 + }, + { + "start": 62.86, + "end": 66.46, + "probability": 0.9961 + }, + { + "start": 66.52, + "end": 72.54, + "probability": 0.985 + }, + { + "start": 73.06, + "end": 73.76, + "probability": 0.9722 + }, + { + "start": 74.5, + "end": 75.02, + "probability": 0.9338 + }, + { + "start": 85.26, + "end": 86.06, + "probability": 0.8868 + }, + { + "start": 89.12, + "end": 91.34, + "probability": 0.7413 + }, + { + "start": 93.32, + "end": 95.28, + "probability": 0.948 + }, + { + "start": 96.32, + "end": 102.16, + "probability": 0.8781 + }, + { + "start": 102.18, + "end": 108.04, + "probability": 0.9558 + }, + { + "start": 108.68, + "end": 115.34, + "probability": 0.9481 + }, + { + "start": 115.34, + "end": 122.24, + "probability": 0.9961 + }, + { + "start": 122.34, + "end": 122.94, + "probability": 0.7218 + }, + { + "start": 123.48, + "end": 125.68, + "probability": 0.8525 + }, + { + "start": 126.28, + "end": 127.54, + "probability": 0.5411 + }, + { + "start": 128.06, + "end": 132.06, + "probability": 0.9707 + }, + { + "start": 132.66, + "end": 134.12, + "probability": 0.9703 + }, + { + "start": 135.14, + "end": 135.66, + "probability": 0.7336 + }, + { + "start": 135.74, + "end": 136.37, + "probability": 0.7184 + }, + { + "start": 136.4, + "end": 138.28, + "probability": 0.9131 + }, + { + "start": 138.38, + "end": 140.86, + "probability": 0.9937 + }, + { + "start": 141.52, + "end": 143.58, + "probability": 0.1475 + }, + { + "start": 144.56, + "end": 144.88, + "probability": 0.8219 + }, + { + "start": 145.56, + "end": 147.86, + "probability": 0.9385 + }, + { + "start": 148.58, + "end": 151.14, + "probability": 0.6679 + }, + { + "start": 151.64, + "end": 153.06, + "probability": 0.9634 + }, + { + "start": 153.58, + "end": 157.0, + "probability": 0.9709 + }, + { + "start": 158.12, + "end": 161.08, + "probability": 0.8231 + }, + { + "start": 162.37, + "end": 163.1, + "probability": 0.6091 + }, + { + "start": 163.6, + "end": 168.26, + "probability": 0.6738 + }, + { + "start": 168.36, + "end": 170.58, + "probability": 0.9585 + }, + { + "start": 171.22, + "end": 173.12, + "probability": 0.971 + }, + { + "start": 173.3, + "end": 178.32, + "probability": 0.9099 + }, + { + "start": 178.32, + "end": 178.36, + "probability": 0.0359 + }, + { + "start": 178.5, + "end": 179.24, + "probability": 0.6154 + }, + { + "start": 179.28, + "end": 180.24, + "probability": 0.5104 + }, + { + "start": 180.3, + "end": 184.74, + "probability": 0.992 + }, + { + "start": 185.3, + "end": 186.02, + "probability": 0.7064 + }, + { + "start": 186.52, + "end": 188.04, + "probability": 0.6038 + }, + { + "start": 188.18, + "end": 191.44, + "probability": 0.9993 + }, + { + "start": 195.42, + "end": 197.4, + "probability": 0.9731 + }, + { + "start": 197.52, + "end": 200.22, + "probability": 0.791 + }, + { + "start": 200.92, + "end": 204.16, + "probability": 0.9959 + }, + { + "start": 204.78, + "end": 208.92, + "probability": 0.9211 + }, + { + "start": 209.1, + "end": 211.92, + "probability": 0.9924 + }, + { + "start": 211.98, + "end": 215.64, + "probability": 0.9976 + }, + { + "start": 216.02, + "end": 218.08, + "probability": 0.9519 + }, + { + "start": 218.52, + "end": 219.44, + "probability": 0.898 + }, + { + "start": 219.66, + "end": 220.34, + "probability": 0.9395 + }, + { + "start": 220.66, + "end": 222.44, + "probability": 0.9963 + }, + { + "start": 222.56, + "end": 223.56, + "probability": 0.938 + }, + { + "start": 224.0, + "end": 225.86, + "probability": 0.8985 + }, + { + "start": 226.72, + "end": 227.08, + "probability": 0.407 + }, + { + "start": 228.16, + "end": 231.26, + "probability": 0.995 + }, + { + "start": 231.26, + "end": 235.48, + "probability": 0.9987 + }, + { + "start": 235.48, + "end": 240.16, + "probability": 0.9995 + }, + { + "start": 240.66, + "end": 241.94, + "probability": 0.5754 + }, + { + "start": 242.4, + "end": 243.34, + "probability": 0.7662 + }, + { + "start": 243.5, + "end": 245.64, + "probability": 0.9854 + }, + { + "start": 245.98, + "end": 247.3, + "probability": 0.8267 + }, + { + "start": 247.72, + "end": 249.42, + "probability": 0.9944 + }, + { + "start": 249.96, + "end": 251.52, + "probability": 0.9705 + }, + { + "start": 252.28, + "end": 253.24, + "probability": 0.8417 + }, + { + "start": 253.74, + "end": 255.72, + "probability": 0.9989 + }, + { + "start": 256.38, + "end": 258.84, + "probability": 0.9257 + }, + { + "start": 259.14, + "end": 261.72, + "probability": 0.6575 + }, + { + "start": 262.12, + "end": 264.84, + "probability": 0.9866 + }, + { + "start": 265.16, + "end": 266.8, + "probability": 0.9972 + }, + { + "start": 267.24, + "end": 267.6, + "probability": 0.7279 + }, + { + "start": 267.76, + "end": 268.46, + "probability": 0.9764 + }, + { + "start": 268.74, + "end": 270.78, + "probability": 0.9803 + }, + { + "start": 271.5, + "end": 273.52, + "probability": 0.8826 + }, + { + "start": 274.0, + "end": 276.36, + "probability": 0.972 + }, + { + "start": 276.4, + "end": 279.8, + "probability": 0.999 + }, + { + "start": 280.2, + "end": 282.94, + "probability": 0.9965 + }, + { + "start": 283.64, + "end": 286.44, + "probability": 0.9976 + }, + { + "start": 287.16, + "end": 289.62, + "probability": 0.9968 + }, + { + "start": 289.62, + "end": 291.62, + "probability": 0.9984 + }, + { + "start": 292.26, + "end": 295.2, + "probability": 0.9987 + }, + { + "start": 295.2, + "end": 298.64, + "probability": 0.9978 + }, + { + "start": 298.8, + "end": 299.96, + "probability": 0.9943 + }, + { + "start": 300.44, + "end": 301.8, + "probability": 0.9355 + }, + { + "start": 302.3, + "end": 304.46, + "probability": 0.9797 + }, + { + "start": 305.2, + "end": 309.24, + "probability": 0.9714 + }, + { + "start": 309.84, + "end": 313.32, + "probability": 0.9848 + }, + { + "start": 313.9, + "end": 314.72, + "probability": 0.6016 + }, + { + "start": 314.78, + "end": 315.32, + "probability": 0.8837 + }, + { + "start": 315.42, + "end": 317.22, + "probability": 0.998 + }, + { + "start": 317.84, + "end": 324.62, + "probability": 0.9586 + }, + { + "start": 324.74, + "end": 328.0, + "probability": 0.6662 + }, + { + "start": 328.56, + "end": 329.46, + "probability": 0.7927 + }, + { + "start": 329.5, + "end": 330.52, + "probability": 0.9812 + }, + { + "start": 331.16, + "end": 332.14, + "probability": 0.756 + }, + { + "start": 332.26, + "end": 332.44, + "probability": 0.6111 + }, + { + "start": 332.5, + "end": 335.26, + "probability": 0.9834 + }, + { + "start": 335.34, + "end": 335.9, + "probability": 0.6663 + }, + { + "start": 336.0, + "end": 337.16, + "probability": 0.851 + }, + { + "start": 337.56, + "end": 338.12, + "probability": 0.822 + }, + { + "start": 338.44, + "end": 339.36, + "probability": 0.7057 + }, + { + "start": 339.5, + "end": 340.32, + "probability": 0.895 + }, + { + "start": 340.78, + "end": 341.5, + "probability": 0.8625 + }, + { + "start": 341.58, + "end": 342.32, + "probability": 0.7749 + }, + { + "start": 342.84, + "end": 344.91, + "probability": 0.9419 + }, + { + "start": 345.58, + "end": 348.68, + "probability": 0.9681 + }, + { + "start": 349.26, + "end": 349.26, + "probability": 0.2888 + }, + { + "start": 349.26, + "end": 351.28, + "probability": 0.961 + }, + { + "start": 351.42, + "end": 351.42, + "probability": 0.7456 + }, + { + "start": 351.42, + "end": 351.96, + "probability": 0.2748 + }, + { + "start": 351.96, + "end": 352.88, + "probability": 0.2711 + }, + { + "start": 352.98, + "end": 353.99, + "probability": 0.9832 + }, + { + "start": 354.96, + "end": 356.74, + "probability": 0.9849 + }, + { + "start": 357.08, + "end": 359.8, + "probability": 0.8798 + }, + { + "start": 360.54, + "end": 363.36, + "probability": 0.988 + }, + { + "start": 363.36, + "end": 367.22, + "probability": 0.9976 + }, + { + "start": 367.38, + "end": 369.9, + "probability": 0.9757 + }, + { + "start": 369.9, + "end": 372.64, + "probability": 0.9973 + }, + { + "start": 373.2, + "end": 373.92, + "probability": 0.577 + }, + { + "start": 374.2, + "end": 374.94, + "probability": 0.9501 + }, + { + "start": 375.02, + "end": 375.4, + "probability": 0.673 + }, + { + "start": 375.4, + "end": 376.38, + "probability": 0.4961 + }, + { + "start": 376.48, + "end": 377.22, + "probability": 0.8509 + }, + { + "start": 377.28, + "end": 377.94, + "probability": 0.8837 + }, + { + "start": 381.04, + "end": 386.26, + "probability": 0.9935 + }, + { + "start": 386.92, + "end": 389.06, + "probability": 0.9701 + }, + { + "start": 389.74, + "end": 394.98, + "probability": 0.9983 + }, + { + "start": 395.56, + "end": 400.8, + "probability": 0.993 + }, + { + "start": 402.66, + "end": 406.32, + "probability": 0.9712 + }, + { + "start": 406.42, + "end": 407.36, + "probability": 0.6603 + }, + { + "start": 407.68, + "end": 408.58, + "probability": 0.7235 + }, + { + "start": 408.94, + "end": 411.32, + "probability": 0.965 + }, + { + "start": 411.78, + "end": 413.74, + "probability": 0.925 + }, + { + "start": 414.04, + "end": 415.88, + "probability": 0.9316 + }, + { + "start": 416.48, + "end": 419.12, + "probability": 0.628 + }, + { + "start": 419.32, + "end": 420.5, + "probability": 0.8981 + }, + { + "start": 420.9, + "end": 423.0, + "probability": 0.9736 + }, + { + "start": 423.12, + "end": 426.54, + "probability": 0.9753 + }, + { + "start": 427.28, + "end": 431.34, + "probability": 0.916 + }, + { + "start": 432.0, + "end": 436.9, + "probability": 0.9656 + }, + { + "start": 436.9, + "end": 441.74, + "probability": 0.9944 + }, + { + "start": 442.44, + "end": 448.54, + "probability": 0.9876 + }, + { + "start": 449.08, + "end": 450.32, + "probability": 0.7798 + }, + { + "start": 450.6, + "end": 455.28, + "probability": 0.9491 + }, + { + "start": 456.12, + "end": 458.0, + "probability": 0.7982 + }, + { + "start": 459.02, + "end": 463.7, + "probability": 0.988 + }, + { + "start": 463.7, + "end": 468.12, + "probability": 0.9964 + }, + { + "start": 468.56, + "end": 469.28, + "probability": 0.4677 + }, + { + "start": 469.36, + "end": 470.2, + "probability": 0.625 + }, + { + "start": 470.32, + "end": 470.76, + "probability": 0.6996 + }, + { + "start": 471.18, + "end": 475.94, + "probability": 0.9958 + }, + { + "start": 476.76, + "end": 478.38, + "probability": 0.9995 + }, + { + "start": 478.38, + "end": 481.66, + "probability": 0.8544 + }, + { + "start": 482.06, + "end": 485.66, + "probability": 0.9971 + }, + { + "start": 485.72, + "end": 491.64, + "probability": 0.6468 + }, + { + "start": 491.76, + "end": 493.96, + "probability": 0.7225 + }, + { + "start": 494.5, + "end": 498.76, + "probability": 0.7277 + }, + { + "start": 499.86, + "end": 500.3, + "probability": 0.0826 + }, + { + "start": 500.62, + "end": 500.68, + "probability": 0.6396 + }, + { + "start": 500.68, + "end": 503.34, + "probability": 0.9626 + }, + { + "start": 503.34, + "end": 506.0, + "probability": 0.9808 + }, + { + "start": 506.34, + "end": 507.12, + "probability": 0.5532 + }, + { + "start": 507.32, + "end": 508.4, + "probability": 0.7753 + }, + { + "start": 509.24, + "end": 510.92, + "probability": 0.8481 + }, + { + "start": 510.98, + "end": 513.74, + "probability": 0.7302 + }, + { + "start": 513.78, + "end": 516.12, + "probability": 0.8337 + }, + { + "start": 516.6, + "end": 517.82, + "probability": 0.3863 + }, + { + "start": 517.88, + "end": 518.98, + "probability": 0.4413 + }, + { + "start": 519.78, + "end": 522.9, + "probability": 0.9048 + }, + { + "start": 523.92, + "end": 523.92, + "probability": 0.471 + }, + { + "start": 523.92, + "end": 525.72, + "probability": 0.9707 + }, + { + "start": 525.86, + "end": 527.08, + "probability": 0.7481 + }, + { + "start": 527.72, + "end": 531.15, + "probability": 0.8608 + }, + { + "start": 532.1, + "end": 533.8, + "probability": 0.371 + }, + { + "start": 534.16, + "end": 538.06, + "probability": 0.0547 + }, + { + "start": 538.26, + "end": 539.7, + "probability": 0.8882 + }, + { + "start": 540.18, + "end": 543.84, + "probability": 0.8376 + }, + { + "start": 543.84, + "end": 545.6, + "probability": 0.924 + }, + { + "start": 545.99, + "end": 549.16, + "probability": 0.7282 + }, + { + "start": 549.16, + "end": 550.54, + "probability": 0.7688 + }, + { + "start": 551.04, + "end": 552.96, + "probability": 0.9961 + }, + { + "start": 552.96, + "end": 553.2, + "probability": 0.2496 + }, + { + "start": 553.2, + "end": 553.72, + "probability": 0.5748 + }, + { + "start": 553.84, + "end": 554.62, + "probability": 0.3731 + }, + { + "start": 554.74, + "end": 556.36, + "probability": 0.75 + }, + { + "start": 556.48, + "end": 557.72, + "probability": 0.7305 + }, + { + "start": 558.06, + "end": 558.3, + "probability": 0.6795 + }, + { + "start": 558.4, + "end": 559.08, + "probability": 0.6268 + }, + { + "start": 559.38, + "end": 559.82, + "probability": 0.3822 + }, + { + "start": 559.86, + "end": 561.3, + "probability": 0.907 + }, + { + "start": 561.34, + "end": 561.54, + "probability": 0.8761 + }, + { + "start": 561.64, + "end": 562.7, + "probability": 0.7703 + }, + { + "start": 563.3, + "end": 564.46, + "probability": 0.8707 + }, + { + "start": 564.76, + "end": 565.4, + "probability": 0.4733 + }, + { + "start": 566.52, + "end": 567.6, + "probability": 0.6501 + }, + { + "start": 567.68, + "end": 568.48, + "probability": 0.7774 + }, + { + "start": 568.54, + "end": 570.4, + "probability": 0.9727 + }, + { + "start": 570.46, + "end": 572.04, + "probability": 0.9356 + }, + { + "start": 572.48, + "end": 574.72, + "probability": 0.9722 + }, + { + "start": 575.24, + "end": 581.04, + "probability": 0.9967 + }, + { + "start": 581.04, + "end": 588.3, + "probability": 0.9788 + }, + { + "start": 588.94, + "end": 589.22, + "probability": 0.0409 + }, + { + "start": 589.22, + "end": 590.9, + "probability": 0.9538 + }, + { + "start": 591.5, + "end": 595.08, + "probability": 0.999 + }, + { + "start": 595.52, + "end": 597.38, + "probability": 0.9751 + }, + { + "start": 598.02, + "end": 599.38, + "probability": 0.9337 + }, + { + "start": 600.24, + "end": 601.46, + "probability": 0.7558 + }, + { + "start": 601.64, + "end": 602.66, + "probability": 0.5292 + }, + { + "start": 603.47, + "end": 606.3, + "probability": 0.9922 + }, + { + "start": 606.3, + "end": 609.08, + "probability": 0.9856 + }, + { + "start": 609.18, + "end": 609.46, + "probability": 0.5382 + }, + { + "start": 609.46, + "end": 611.74, + "probability": 0.7047 + }, + { + "start": 611.86, + "end": 612.3, + "probability": 0.8202 + }, + { + "start": 620.96, + "end": 621.7, + "probability": 0.7073 + }, + { + "start": 622.62, + "end": 630.14, + "probability": 0.9507 + }, + { + "start": 630.14, + "end": 636.68, + "probability": 0.9953 + }, + { + "start": 636.92, + "end": 638.3, + "probability": 0.6553 + }, + { + "start": 638.98, + "end": 639.46, + "probability": 0.1339 + }, + { + "start": 640.02, + "end": 643.26, + "probability": 0.9988 + }, + { + "start": 643.4, + "end": 643.58, + "probability": 0.0067 + }, + { + "start": 643.7, + "end": 644.68, + "probability": 0.9845 + }, + { + "start": 645.06, + "end": 645.3, + "probability": 0.8094 + }, + { + "start": 645.75, + "end": 646.44, + "probability": 0.8815 + }, + { + "start": 646.78, + "end": 648.74, + "probability": 0.7182 + }, + { + "start": 649.32, + "end": 649.6, + "probability": 0.8738 + }, + { + "start": 649.66, + "end": 653.68, + "probability": 0.9973 + }, + { + "start": 654.32, + "end": 659.12, + "probability": 0.9724 + }, + { + "start": 659.68, + "end": 661.44, + "probability": 0.8896 + }, + { + "start": 661.66, + "end": 663.12, + "probability": 0.9882 + }, + { + "start": 663.28, + "end": 666.44, + "probability": 0.9658 + }, + { + "start": 666.94, + "end": 669.72, + "probability": 0.9356 + }, + { + "start": 670.44, + "end": 672.48, + "probability": 0.9355 + }, + { + "start": 672.66, + "end": 673.24, + "probability": 0.9391 + }, + { + "start": 673.64, + "end": 674.45, + "probability": 0.8349 + }, + { + "start": 674.96, + "end": 676.48, + "probability": 0.993 + }, + { + "start": 677.24, + "end": 679.48, + "probability": 0.9263 + }, + { + "start": 680.18, + "end": 680.28, + "probability": 0.9438 + }, + { + "start": 680.8, + "end": 680.8, + "probability": 0.3936 + }, + { + "start": 680.8, + "end": 680.88, + "probability": 0.7527 + }, + { + "start": 680.98, + "end": 682.94, + "probability": 0.9578 + }, + { + "start": 682.99, + "end": 685.06, + "probability": 0.98 + }, + { + "start": 685.42, + "end": 687.6, + "probability": 0.7477 + }, + { + "start": 687.84, + "end": 691.22, + "probability": 0.9597 + }, + { + "start": 691.96, + "end": 696.46, + "probability": 0.5467 + }, + { + "start": 696.58, + "end": 697.92, + "probability": 0.9707 + }, + { + "start": 697.96, + "end": 699.36, + "probability": 0.2467 + }, + { + "start": 699.44, + "end": 699.56, + "probability": 0.1476 + }, + { + "start": 699.56, + "end": 705.5, + "probability": 0.9884 + }, + { + "start": 705.52, + "end": 706.68, + "probability": 0.9055 + }, + { + "start": 706.74, + "end": 706.98, + "probability": 0.0466 + }, + { + "start": 707.18, + "end": 709.94, + "probability": 0.9623 + }, + { + "start": 710.24, + "end": 716.62, + "probability": 0.9013 + }, + { + "start": 716.8, + "end": 717.32, + "probability": 0.5766 + }, + { + "start": 717.38, + "end": 719.97, + "probability": 0.9868 + }, + { + "start": 720.56, + "end": 722.38, + "probability": 0.9825 + }, + { + "start": 722.96, + "end": 723.98, + "probability": 0.8187 + }, + { + "start": 724.04, + "end": 724.52, + "probability": 0.8037 + }, + { + "start": 724.58, + "end": 727.94, + "probability": 0.9617 + }, + { + "start": 728.48, + "end": 731.34, + "probability": 0.9683 + }, + { + "start": 731.94, + "end": 733.08, + "probability": 0.5013 + }, + { + "start": 733.3, + "end": 733.52, + "probability": 0.8963 + }, + { + "start": 733.94, + "end": 735.2, + "probability": 0.9307 + }, + { + "start": 735.3, + "end": 738.12, + "probability": 0.999 + }, + { + "start": 738.12, + "end": 741.1, + "probability": 0.9937 + }, + { + "start": 741.22, + "end": 742.28, + "probability": 0.9969 + }, + { + "start": 742.7, + "end": 744.56, + "probability": 0.652 + }, + { + "start": 746.52, + "end": 747.9, + "probability": 0.5168 + }, + { + "start": 748.02, + "end": 750.04, + "probability": 0.9534 + }, + { + "start": 750.36, + "end": 751.7, + "probability": 0.9443 + }, + { + "start": 751.74, + "end": 755.06, + "probability": 0.9588 + }, + { + "start": 756.26, + "end": 757.2, + "probability": 0.9399 + }, + { + "start": 757.54, + "end": 758.42, + "probability": 0.9935 + }, + { + "start": 758.78, + "end": 759.84, + "probability": 0.926 + }, + { + "start": 759.98, + "end": 760.92, + "probability": 0.9949 + }, + { + "start": 761.26, + "end": 762.32, + "probability": 0.8534 + }, + { + "start": 762.42, + "end": 762.88, + "probability": 0.4724 + }, + { + "start": 763.4, + "end": 766.38, + "probability": 0.7896 + }, + { + "start": 767.1, + "end": 771.8, + "probability": 0.9937 + }, + { + "start": 772.12, + "end": 772.68, + "probability": 0.9776 + }, + { + "start": 773.34, + "end": 776.7, + "probability": 0.999 + }, + { + "start": 777.04, + "end": 777.34, + "probability": 0.7371 + }, + { + "start": 778.14, + "end": 781.06, + "probability": 0.862 + }, + { + "start": 781.06, + "end": 782.96, + "probability": 0.9691 + }, + { + "start": 783.32, + "end": 784.22, + "probability": 0.6628 + }, + { + "start": 785.06, + "end": 785.44, + "probability": 0.9511 + }, + { + "start": 786.26, + "end": 790.08, + "probability": 0.6447 + }, + { + "start": 790.22, + "end": 791.0, + "probability": 0.8659 + }, + { + "start": 792.14, + "end": 793.5, + "probability": 0.7627 + }, + { + "start": 794.2, + "end": 797.3, + "probability": 0.7928 + }, + { + "start": 798.24, + "end": 799.12, + "probability": 0.9044 + }, + { + "start": 799.18, + "end": 799.28, + "probability": 0.744 + }, + { + "start": 799.44, + "end": 803.56, + "probability": 0.9946 + }, + { + "start": 803.7, + "end": 805.6, + "probability": 0.6738 + }, + { + "start": 805.66, + "end": 806.16, + "probability": 0.7791 + }, + { + "start": 807.08, + "end": 808.24, + "probability": 0.8679 + }, + { + "start": 808.46, + "end": 809.3, + "probability": 0.44 + }, + { + "start": 809.3, + "end": 810.16, + "probability": 0.9253 + }, + { + "start": 810.46, + "end": 810.7, + "probability": 0.3557 + }, + { + "start": 810.8, + "end": 810.9, + "probability": 0.9617 + }, + { + "start": 810.9, + "end": 813.32, + "probability": 0.9429 + }, + { + "start": 813.46, + "end": 814.9, + "probability": 0.575 + }, + { + "start": 814.98, + "end": 817.88, + "probability": 0.9526 + }, + { + "start": 818.16, + "end": 818.88, + "probability": 0.4847 + }, + { + "start": 820.08, + "end": 822.12, + "probability": 0.5525 + }, + { + "start": 822.78, + "end": 824.88, + "probability": 0.9006 + }, + { + "start": 825.46, + "end": 827.26, + "probability": 0.9341 + }, + { + "start": 827.34, + "end": 830.12, + "probability": 0.9216 + }, + { + "start": 830.88, + "end": 832.98, + "probability": 0.8518 + }, + { + "start": 833.9, + "end": 837.38, + "probability": 0.9189 + }, + { + "start": 838.32, + "end": 840.68, + "probability": 0.8853 + }, + { + "start": 841.24, + "end": 842.04, + "probability": 0.6793 + }, + { + "start": 842.3, + "end": 845.44, + "probability": 0.9871 + }, + { + "start": 845.56, + "end": 846.76, + "probability": 0.9974 + }, + { + "start": 846.88, + "end": 850.56, + "probability": 0.6067 + }, + { + "start": 850.64, + "end": 855.28, + "probability": 0.8071 + }, + { + "start": 856.66, + "end": 858.66, + "probability": 0.8753 + }, + { + "start": 858.66, + "end": 860.46, + "probability": 0.9548 + }, + { + "start": 860.54, + "end": 862.48, + "probability": 0.6971 + }, + { + "start": 862.62, + "end": 864.48, + "probability": 0.9304 + }, + { + "start": 864.54, + "end": 864.64, + "probability": 0.5818 + }, + { + "start": 864.64, + "end": 865.18, + "probability": 0.4864 + }, + { + "start": 865.58, + "end": 867.5, + "probability": 0.7676 + }, + { + "start": 868.38, + "end": 871.28, + "probability": 0.9893 + }, + { + "start": 872.18, + "end": 876.52, + "probability": 0.9982 + }, + { + "start": 876.68, + "end": 878.5, + "probability": 0.9651 + }, + { + "start": 878.64, + "end": 880.42, + "probability": 0.9974 + }, + { + "start": 880.7, + "end": 883.02, + "probability": 0.8615 + }, + { + "start": 883.02, + "end": 885.02, + "probability": 0.9985 + }, + { + "start": 885.94, + "end": 887.02, + "probability": 0.9985 + }, + { + "start": 887.82, + "end": 888.46, + "probability": 0.7482 + }, + { + "start": 889.16, + "end": 890.18, + "probability": 0.9616 + }, + { + "start": 890.22, + "end": 892.46, + "probability": 0.9346 + }, + { + "start": 892.94, + "end": 894.72, + "probability": 0.9296 + }, + { + "start": 894.72, + "end": 895.86, + "probability": 0.5333 + }, + { + "start": 896.08, + "end": 897.18, + "probability": 0.5642 + }, + { + "start": 897.4, + "end": 897.64, + "probability": 0.0544 + }, + { + "start": 897.64, + "end": 898.02, + "probability": 0.5735 + }, + { + "start": 898.22, + "end": 901.22, + "probability": 0.9588 + }, + { + "start": 901.34, + "end": 904.18, + "probability": 0.8029 + }, + { + "start": 904.2, + "end": 907.26, + "probability": 0.8598 + }, + { + "start": 907.26, + "end": 909.4, + "probability": 0.9772 + }, + { + "start": 910.1, + "end": 910.18, + "probability": 0.4036 + }, + { + "start": 910.18, + "end": 910.2, + "probability": 0.0483 + }, + { + "start": 910.34, + "end": 910.84, + "probability": 0.4407 + }, + { + "start": 910.84, + "end": 913.12, + "probability": 0.7708 + }, + { + "start": 914.02, + "end": 915.9, + "probability": 0.9722 + }, + { + "start": 916.22, + "end": 916.72, + "probability": 0.8183 + }, + { + "start": 916.72, + "end": 918.68, + "probability": 0.8208 + }, + { + "start": 919.06, + "end": 920.84, + "probability": 0.6778 + }, + { + "start": 921.3, + "end": 922.08, + "probability": 0.9658 + }, + { + "start": 922.4, + "end": 926.78, + "probability": 0.8708 + }, + { + "start": 927.36, + "end": 931.16, + "probability": 0.9763 + }, + { + "start": 931.9, + "end": 935.22, + "probability": 0.9899 + }, + { + "start": 936.16, + "end": 939.06, + "probability": 0.9529 + }, + { + "start": 939.06, + "end": 942.84, + "probability": 0.9979 + }, + { + "start": 943.38, + "end": 945.06, + "probability": 0.9336 + }, + { + "start": 945.48, + "end": 950.7, + "probability": 0.997 + }, + { + "start": 950.76, + "end": 951.56, + "probability": 0.9792 + }, + { + "start": 952.16, + "end": 954.28, + "probability": 0.9668 + }, + { + "start": 954.28, + "end": 958.1, + "probability": 0.9834 + }, + { + "start": 958.66, + "end": 960.36, + "probability": 0.9821 + }, + { + "start": 960.84, + "end": 962.26, + "probability": 0.9795 + }, + { + "start": 962.3, + "end": 967.26, + "probability": 0.8501 + }, + { + "start": 967.56, + "end": 970.48, + "probability": 0.9402 + }, + { + "start": 972.1, + "end": 975.54, + "probability": 0.9759 + }, + { + "start": 976.24, + "end": 978.1, + "probability": 0.59 + }, + { + "start": 979.34, + "end": 980.58, + "probability": 0.6767 + }, + { + "start": 980.82, + "end": 983.04, + "probability": 0.999 + }, + { + "start": 983.04, + "end": 985.02, + "probability": 0.7803 + }, + { + "start": 985.48, + "end": 987.78, + "probability": 0.9885 + }, + { + "start": 987.78, + "end": 990.74, + "probability": 0.9976 + }, + { + "start": 991.5, + "end": 993.76, + "probability": 0.9899 + }, + { + "start": 993.76, + "end": 994.54, + "probability": 0.5627 + }, + { + "start": 994.66, + "end": 996.04, + "probability": 0.7811 + }, + { + "start": 996.44, + "end": 1002.44, + "probability": 0.9733 + }, + { + "start": 1002.98, + "end": 1009.88, + "probability": 0.9635 + }, + { + "start": 1011.66, + "end": 1018.0, + "probability": 0.8017 + }, + { + "start": 1018.7, + "end": 1019.02, + "probability": 0.7542 + }, + { + "start": 1019.16, + "end": 1019.76, + "probability": 0.585 + }, + { + "start": 1019.82, + "end": 1022.18, + "probability": 0.9893 + }, + { + "start": 1022.18, + "end": 1025.1, + "probability": 0.9968 + }, + { + "start": 1025.64, + "end": 1030.26, + "probability": 0.9521 + }, + { + "start": 1030.84, + "end": 1031.84, + "probability": 0.5005 + }, + { + "start": 1033.16, + "end": 1035.16, + "probability": 0.9938 + }, + { + "start": 1035.16, + "end": 1038.78, + "probability": 0.9893 + }, + { + "start": 1038.92, + "end": 1040.85, + "probability": 0.998 + }, + { + "start": 1041.52, + "end": 1043.56, + "probability": 0.9647 + }, + { + "start": 1044.98, + "end": 1045.52, + "probability": 0.8542 + }, + { + "start": 1046.26, + "end": 1049.32, + "probability": 0.7205 + }, + { + "start": 1049.82, + "end": 1054.52, + "probability": 0.937 + }, + { + "start": 1054.88, + "end": 1055.66, + "probability": 0.5238 + }, + { + "start": 1055.72, + "end": 1056.52, + "probability": 0.2224 + }, + { + "start": 1056.62, + "end": 1057.12, + "probability": 0.8554 + }, + { + "start": 1057.2, + "end": 1057.78, + "probability": 0.9548 + }, + { + "start": 1057.86, + "end": 1058.52, + "probability": 0.8162 + }, + { + "start": 1058.8, + "end": 1060.88, + "probability": 0.9862 + }, + { + "start": 1061.42, + "end": 1062.02, + "probability": 0.7119 + }, + { + "start": 1062.18, + "end": 1065.26, + "probability": 0.958 + }, + { + "start": 1065.72, + "end": 1069.88, + "probability": 0.9963 + }, + { + "start": 1069.92, + "end": 1070.84, + "probability": 0.7017 + }, + { + "start": 1071.16, + "end": 1073.88, + "probability": 0.9756 + }, + { + "start": 1074.62, + "end": 1074.62, + "probability": 0.0054 + }, + { + "start": 1074.8, + "end": 1074.9, + "probability": 0.7841 + }, + { + "start": 1074.9, + "end": 1080.28, + "probability": 0.9268 + }, + { + "start": 1080.74, + "end": 1084.7, + "probability": 0.9938 + }, + { + "start": 1084.92, + "end": 1086.7, + "probability": 0.9927 + }, + { + "start": 1087.32, + "end": 1091.04, + "probability": 0.868 + }, + { + "start": 1091.04, + "end": 1094.78, + "probability": 0.9965 + }, + { + "start": 1095.4, + "end": 1098.04, + "probability": 0.5938 + }, + { + "start": 1098.62, + "end": 1101.5, + "probability": 0.9376 + }, + { + "start": 1102.5, + "end": 1108.24, + "probability": 0.9609 + }, + { + "start": 1108.62, + "end": 1109.72, + "probability": 0.6015 + }, + { + "start": 1109.92, + "end": 1111.42, + "probability": 0.8994 + }, + { + "start": 1112.0, + "end": 1114.2, + "probability": 0.9685 + }, + { + "start": 1114.8, + "end": 1120.62, + "probability": 0.9814 + }, + { + "start": 1121.3, + "end": 1124.1, + "probability": 0.9131 + }, + { + "start": 1124.72, + "end": 1126.8, + "probability": 0.9903 + }, + { + "start": 1127.38, + "end": 1129.92, + "probability": 0.8145 + }, + { + "start": 1130.69, + "end": 1135.38, + "probability": 0.9886 + }, + { + "start": 1136.06, + "end": 1140.46, + "probability": 0.8994 + }, + { + "start": 1141.34, + "end": 1146.4, + "probability": 0.9965 + }, + { + "start": 1146.84, + "end": 1147.8, + "probability": 0.9806 + }, + { + "start": 1147.92, + "end": 1148.26, + "probability": 0.6726 + }, + { + "start": 1149.7, + "end": 1149.7, + "probability": 0.0342 + }, + { + "start": 1150.14, + "end": 1150.34, + "probability": 0.6969 + }, + { + "start": 1150.34, + "end": 1155.74, + "probability": 0.9762 + }, + { + "start": 1156.28, + "end": 1159.52, + "probability": 0.9973 + }, + { + "start": 1160.16, + "end": 1161.98, + "probability": 0.9832 + }, + { + "start": 1162.44, + "end": 1164.46, + "probability": 0.9646 + }, + { + "start": 1164.88, + "end": 1166.34, + "probability": 0.8273 + }, + { + "start": 1166.44, + "end": 1170.98, + "probability": 0.9671 + }, + { + "start": 1171.16, + "end": 1172.27, + "probability": 0.9958 + }, + { + "start": 1174.52, + "end": 1176.73, + "probability": 0.4942 + }, + { + "start": 1177.18, + "end": 1177.84, + "probability": 0.7696 + }, + { + "start": 1178.08, + "end": 1180.06, + "probability": 0.8963 + }, + { + "start": 1180.12, + "end": 1182.38, + "probability": 0.9839 + }, + { + "start": 1182.82, + "end": 1184.06, + "probability": 0.8921 + }, + { + "start": 1184.6, + "end": 1189.02, + "probability": 0.7451 + }, + { + "start": 1189.15, + "end": 1190.12, + "probability": 0.8396 + }, + { + "start": 1190.12, + "end": 1191.0, + "probability": 0.8764 + }, + { + "start": 1191.56, + "end": 1192.06, + "probability": 0.6196 + }, + { + "start": 1192.72, + "end": 1193.92, + "probability": 0.9463 + }, + { + "start": 1193.96, + "end": 1199.1, + "probability": 0.9856 + }, + { + "start": 1199.4, + "end": 1200.84, + "probability": 0.9202 + }, + { + "start": 1201.4, + "end": 1202.42, + "probability": 0.6158 + }, + { + "start": 1202.5, + "end": 1204.78, + "probability": 0.9963 + }, + { + "start": 1205.22, + "end": 1207.78, + "probability": 0.9797 + }, + { + "start": 1208.32, + "end": 1211.36, + "probability": 0.977 + }, + { + "start": 1212.42, + "end": 1212.66, + "probability": 0.4834 + }, + { + "start": 1212.72, + "end": 1215.44, + "probability": 0.9807 + }, + { + "start": 1216.24, + "end": 1217.5, + "probability": 0.6513 + }, + { + "start": 1217.52, + "end": 1218.16, + "probability": 0.8024 + }, + { + "start": 1218.2, + "end": 1219.28, + "probability": 0.8542 + }, + { + "start": 1219.44, + "end": 1220.52, + "probability": 0.9311 + }, + { + "start": 1220.74, + "end": 1221.94, + "probability": 0.9365 + }, + { + "start": 1222.08, + "end": 1223.21, + "probability": 0.9893 + }, + { + "start": 1223.78, + "end": 1227.58, + "probability": 0.9681 + }, + { + "start": 1228.12, + "end": 1230.32, + "probability": 0.9766 + }, + { + "start": 1230.38, + "end": 1231.08, + "probability": 0.8031 + }, + { + "start": 1231.32, + "end": 1232.54, + "probability": 0.6865 + }, + { + "start": 1233.1, + "end": 1235.74, + "probability": 0.8538 + }, + { + "start": 1236.04, + "end": 1236.06, + "probability": 0.689 + }, + { + "start": 1236.22, + "end": 1237.98, + "probability": 0.5702 + }, + { + "start": 1238.24, + "end": 1238.72, + "probability": 0.4715 + }, + { + "start": 1238.78, + "end": 1239.48, + "probability": 0.9236 + }, + { + "start": 1239.64, + "end": 1241.58, + "probability": 0.9084 + }, + { + "start": 1242.2, + "end": 1246.48, + "probability": 0.9395 + }, + { + "start": 1247.56, + "end": 1251.86, + "probability": 0.9959 + }, + { + "start": 1252.62, + "end": 1256.66, + "probability": 0.9983 + }, + { + "start": 1257.24, + "end": 1259.04, + "probability": 0.9976 + }, + { + "start": 1260.56, + "end": 1263.58, + "probability": 0.9796 + }, + { + "start": 1263.62, + "end": 1266.2, + "probability": 0.831 + }, + { + "start": 1266.84, + "end": 1269.16, + "probability": 0.9973 + }, + { + "start": 1269.16, + "end": 1272.44, + "probability": 0.9404 + }, + { + "start": 1273.3, + "end": 1274.48, + "probability": 0.9971 + }, + { + "start": 1275.04, + "end": 1276.66, + "probability": 0.9956 + }, + { + "start": 1276.98, + "end": 1280.18, + "probability": 0.9904 + }, + { + "start": 1280.92, + "end": 1283.4, + "probability": 0.9986 + }, + { + "start": 1283.94, + "end": 1288.24, + "probability": 0.9961 + }, + { + "start": 1289.16, + "end": 1292.9, + "probability": 0.9736 + }, + { + "start": 1292.9, + "end": 1299.58, + "probability": 0.9738 + }, + { + "start": 1300.2, + "end": 1302.86, + "probability": 0.9961 + }, + { + "start": 1302.96, + "end": 1304.8, + "probability": 0.6603 + }, + { + "start": 1311.24, + "end": 1311.46, + "probability": 0.7254 + }, + { + "start": 1312.88, + "end": 1315.8, + "probability": 0.9262 + }, + { + "start": 1316.02, + "end": 1316.48, + "probability": 0.8387 + }, + { + "start": 1316.52, + "end": 1320.9, + "probability": 0.9411 + }, + { + "start": 1321.64, + "end": 1325.12, + "probability": 0.9924 + }, + { + "start": 1326.34, + "end": 1329.24, + "probability": 0.9961 + }, + { + "start": 1329.9, + "end": 1331.1, + "probability": 0.987 + }, + { + "start": 1331.34, + "end": 1335.36, + "probability": 0.981 + }, + { + "start": 1335.98, + "end": 1342.74, + "probability": 0.9642 + }, + { + "start": 1343.32, + "end": 1345.4, + "probability": 0.9962 + }, + { + "start": 1346.04, + "end": 1350.2, + "probability": 0.994 + }, + { + "start": 1350.9, + "end": 1354.9, + "probability": 0.948 + }, + { + "start": 1355.14, + "end": 1355.54, + "probability": 0.9311 + }, + { + "start": 1356.46, + "end": 1358.16, + "probability": 0.9538 + }, + { + "start": 1358.3, + "end": 1360.28, + "probability": 0.7828 + }, + { + "start": 1360.94, + "end": 1363.52, + "probability": 0.9867 + }, + { + "start": 1363.92, + "end": 1365.42, + "probability": 0.9828 + }, + { + "start": 1366.9, + "end": 1368.7, + "probability": 0.9703 + }, + { + "start": 1369.36, + "end": 1372.5, + "probability": 0.9784 + }, + { + "start": 1373.08, + "end": 1374.82, + "probability": 0.7944 + }, + { + "start": 1375.02, + "end": 1377.66, + "probability": 0.9766 + }, + { + "start": 1378.36, + "end": 1381.2, + "probability": 0.9255 + }, + { + "start": 1381.32, + "end": 1383.4, + "probability": 0.8516 + }, + { + "start": 1384.0, + "end": 1384.48, + "probability": 0.6604 + }, + { + "start": 1384.54, + "end": 1385.68, + "probability": 0.9966 + }, + { + "start": 1385.84, + "end": 1391.3, + "probability": 0.9876 + }, + { + "start": 1392.16, + "end": 1395.94, + "probability": 0.9954 + }, + { + "start": 1396.74, + "end": 1401.18, + "probability": 0.9655 + }, + { + "start": 1402.16, + "end": 1405.86, + "probability": 0.8019 + }, + { + "start": 1406.44, + "end": 1406.76, + "probability": 0.89 + }, + { + "start": 1408.14, + "end": 1409.82, + "probability": 0.971 + }, + { + "start": 1410.64, + "end": 1414.06, + "probability": 0.9943 + }, + { + "start": 1414.3, + "end": 1414.4, + "probability": 0.2982 + }, + { + "start": 1415.26, + "end": 1417.26, + "probability": 0.9921 + }, + { + "start": 1417.98, + "end": 1419.8, + "probability": 0.9809 + }, + { + "start": 1420.64, + "end": 1423.1, + "probability": 0.937 + }, + { + "start": 1423.64, + "end": 1425.04, + "probability": 0.9263 + }, + { + "start": 1425.56, + "end": 1428.58, + "probability": 0.9931 + }, + { + "start": 1429.78, + "end": 1429.78, + "probability": 0.1093 + }, + { + "start": 1429.78, + "end": 1430.84, + "probability": 0.6975 + }, + { + "start": 1430.9, + "end": 1433.52, + "probability": 0.8089 + }, + { + "start": 1433.52, + "end": 1437.64, + "probability": 0.9973 + }, + { + "start": 1438.2, + "end": 1440.36, + "probability": 0.9889 + }, + { + "start": 1441.12, + "end": 1446.9, + "probability": 0.9692 + }, + { + "start": 1447.9, + "end": 1449.94, + "probability": 0.7026 + }, + { + "start": 1450.48, + "end": 1453.38, + "probability": 0.9957 + }, + { + "start": 1453.66, + "end": 1457.4, + "probability": 0.9951 + }, + { + "start": 1458.42, + "end": 1461.94, + "probability": 0.9945 + }, + { + "start": 1462.62, + "end": 1466.26, + "probability": 0.5281 + }, + { + "start": 1467.16, + "end": 1472.58, + "probability": 0.9727 + }, + { + "start": 1473.22, + "end": 1479.48, + "probability": 0.9775 + }, + { + "start": 1481.34, + "end": 1482.16, + "probability": 0.7992 + }, + { + "start": 1482.2, + "end": 1483.92, + "probability": 0.9871 + }, + { + "start": 1484.18, + "end": 1490.14, + "probability": 0.996 + }, + { + "start": 1490.74, + "end": 1493.34, + "probability": 0.9949 + }, + { + "start": 1493.5, + "end": 1496.58, + "probability": 0.9438 + }, + { + "start": 1497.3, + "end": 1500.92, + "probability": 0.9683 + }, + { + "start": 1500.92, + "end": 1507.1, + "probability": 0.9852 + }, + { + "start": 1507.94, + "end": 1509.08, + "probability": 0.918 + }, + { + "start": 1510.14, + "end": 1513.98, + "probability": 0.9976 + }, + { + "start": 1514.54, + "end": 1520.22, + "probability": 0.9729 + }, + { + "start": 1520.86, + "end": 1523.45, + "probability": 0.9812 + }, + { + "start": 1524.06, + "end": 1530.72, + "probability": 0.992 + }, + { + "start": 1531.46, + "end": 1537.2, + "probability": 0.9179 + }, + { + "start": 1537.66, + "end": 1538.66, + "probability": 0.9459 + }, + { + "start": 1539.22, + "end": 1542.28, + "probability": 0.9902 + }, + { + "start": 1542.64, + "end": 1545.4, + "probability": 0.9967 + }, + { + "start": 1546.06, + "end": 1550.16, + "probability": 0.9435 + }, + { + "start": 1551.22, + "end": 1553.88, + "probability": 0.9959 + }, + { + "start": 1554.62, + "end": 1558.92, + "probability": 0.9957 + }, + { + "start": 1560.22, + "end": 1561.74, + "probability": 0.9299 + }, + { + "start": 1562.22, + "end": 1563.92, + "probability": 0.6275 + }, + { + "start": 1564.34, + "end": 1566.78, + "probability": 0.9152 + }, + { + "start": 1567.22, + "end": 1569.74, + "probability": 0.973 + }, + { + "start": 1570.34, + "end": 1575.46, + "probability": 0.9181 + }, + { + "start": 1576.02, + "end": 1577.18, + "probability": 0.9708 + }, + { + "start": 1578.06, + "end": 1579.5, + "probability": 0.9553 + }, + { + "start": 1581.52, + "end": 1587.62, + "probability": 0.2189 + }, + { + "start": 1589.14, + "end": 1590.5, + "probability": 0.0535 + }, + { + "start": 1644.22, + "end": 1645.48, + "probability": 0.382 + }, + { + "start": 1648.14, + "end": 1648.52, + "probability": 0.355 + }, + { + "start": 1648.56, + "end": 1649.14, + "probability": 0.7519 + }, + { + "start": 1650.08, + "end": 1651.16, + "probability": 0.9375 + }, + { + "start": 1651.88, + "end": 1652.9, + "probability": 0.5205 + }, + { + "start": 1653.04, + "end": 1657.19, + "probability": 0.9742 + }, + { + "start": 1659.1, + "end": 1660.9, + "probability": 0.9246 + }, + { + "start": 1661.04, + "end": 1663.86, + "probability": 0.8929 + }, + { + "start": 1664.94, + "end": 1667.04, + "probability": 0.378 + }, + { + "start": 1668.12, + "end": 1668.86, + "probability": 0.5463 + }, + { + "start": 1671.08, + "end": 1673.78, + "probability": 0.082 + }, + { + "start": 1719.12, + "end": 1722.19, + "probability": 0.0209 + }, + { + "start": 1723.0, + "end": 1727.46, + "probability": 0.0198 + }, + { + "start": 1732.2, + "end": 1734.98, + "probability": 0.1964 + }, + { + "start": 1735.36, + "end": 1735.72, + "probability": 0.043 + }, + { + "start": 1738.12, + "end": 1738.66, + "probability": 0.251 + }, + { + "start": 1739.12, + "end": 1740.58, + "probability": 0.0733 + }, + { + "start": 1740.58, + "end": 1743.34, + "probability": 0.1185 + }, + { + "start": 1743.34, + "end": 1745.86, + "probability": 0.0828 + }, + { + "start": 1746.2, + "end": 1746.82, + "probability": 0.2714 + }, + { + "start": 1747.64, + "end": 1747.64, + "probability": 0.0417 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5231.0, + "end": 5231.0, + "probability": 0.0 + }, + { + "start": 5246.86, + "end": 5247.64, + "probability": 0.0303 + }, + { + "start": 5250.59, + "end": 5251.12, + "probability": 0.0093 + }, + { + "start": 5255.59, + "end": 5259.2, + "probability": 0.0696 + }, + { + "start": 5262.23, + "end": 5263.34, + "probability": 0.212 + }, + { + "start": 5283.3, + "end": 5284.36, + "probability": 0.0086 + }, + { + "start": 5286.8, + "end": 5288.32, + "probability": 0.0755 + }, + { + "start": 5289.54, + "end": 5291.98, + "probability": 0.215 + }, + { + "start": 5292.06, + "end": 5292.2, + "probability": 0.0476 + }, + { + "start": 5292.2, + "end": 5293.18, + "probability": 0.1846 + }, + { + "start": 5295.14, + "end": 5296.5, + "probability": 0.1887 + }, + { + "start": 5297.18, + "end": 5297.24, + "probability": 0.3354 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6755.0, + "end": 6755.0, + "probability": 0.0 + }, + { + "start": 6760.18, + "end": 6761.4, + "probability": 0.0156 + }, + { + "start": 6762.12, + "end": 6762.24, + "probability": 0.0525 + }, + { + "start": 6762.24, + "end": 6762.44, + "probability": 0.0292 + }, + { + "start": 6762.44, + "end": 6762.44, + "probability": 0.1642 + }, + { + "start": 6762.44, + "end": 6763.12, + "probability": 0.0554 + }, + { + "start": 6765.46, + "end": 6766.4, + "probability": 0.0466 + }, + { + "start": 6766.96, + "end": 6772.7, + "probability": 0.0255 + }, + { + "start": 6774.14, + "end": 6778.3, + "probability": 0.0667 + }, + { + "start": 6780.26, + "end": 6782.26, + "probability": 0.1101 + }, + { + "start": 6783.6, + "end": 6783.88, + "probability": 0.0496 + }, + { + "start": 6792.88, + "end": 6794.1, + "probability": 0.1519 + }, + { + "start": 8095.0, + "end": 8095.0, + "probability": 0.0 + }, + { + "start": 8095.0, + "end": 8095.0, + "probability": 0.0 + }, + { + "start": 8095.0, + "end": 8095.0, + "probability": 0.0 + }, + { + "start": 8095.0, + "end": 8095.0, + "probability": 0.0 + }, + { + "start": 8095.0, + "end": 8095.0, + "probability": 0.0 + }, + { + "start": 8101.7, + "end": 8102.86, + "probability": 0.0827 + }, + { + "start": 8103.96, + "end": 8104.3, + "probability": 0.1746 + }, + { + "start": 8106.7, + "end": 8107.38, + "probability": 0.2042 + }, + { + "start": 8109.3, + "end": 8109.3, + "probability": 0.0503 + }, + { + "start": 8110.22, + "end": 8113.32, + "probability": 0.1936 + }, + { + "start": 8117.88, + "end": 8119.46, + "probability": 0.1331 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9054.0, + "end": 9054.0, + "probability": 0.0 + }, + { + "start": 9076.92, + "end": 9079.04, + "probability": 0.9894 + }, + { + "start": 9081.48, + "end": 9082.3, + "probability": 0.7794 + }, + { + "start": 9084.42, + "end": 9086.52, + "probability": 0.0087 + }, + { + "start": 9088.94, + "end": 9089.64, + "probability": 0.9283 + }, + { + "start": 9103.04, + "end": 9104.5, + "probability": 0.8118 + }, + { + "start": 9104.56, + "end": 9106.6, + "probability": 0.71 + }, + { + "start": 9129.6, + "end": 9134.06, + "probability": 0.9948 + }, + { + "start": 9134.4, + "end": 9135.32, + "probability": 0.0903 + }, + { + "start": 9136.38, + "end": 9136.7, + "probability": 0.885 + }, + { + "start": 9137.26, + "end": 9137.46, + "probability": 0.6821 + }, + { + "start": 9140.43, + "end": 9145.12, + "probability": 0.8365 + }, + { + "start": 9145.36, + "end": 9147.26, + "probability": 0.9344 + }, + { + "start": 9147.64, + "end": 9149.06, + "probability": 0.4794 + }, + { + "start": 9149.84, + "end": 9151.06, + "probability": 0.9465 + }, + { + "start": 9151.86, + "end": 9152.58, + "probability": 0.6592 + }, + { + "start": 9153.76, + "end": 9156.05, + "probability": 0.9265 + }, + { + "start": 9156.88, + "end": 9162.08, + "probability": 0.9927 + }, + { + "start": 9162.84, + "end": 9164.4, + "probability": 0.9889 + }, + { + "start": 9165.0, + "end": 9167.8, + "probability": 0.9924 + }, + { + "start": 9168.08, + "end": 9169.38, + "probability": 0.6257 + }, + { + "start": 9170.1, + "end": 9172.48, + "probability": 0.9908 + }, + { + "start": 9178.62, + "end": 9179.54, + "probability": 0.3029 + }, + { + "start": 9181.14, + "end": 9183.58, + "probability": 0.7294 + }, + { + "start": 9183.78, + "end": 9185.58, + "probability": 0.8272 + }, + { + "start": 9185.58, + "end": 9187.28, + "probability": 0.4258 + }, + { + "start": 9187.4, + "end": 9189.23, + "probability": 0.771 + }, + { + "start": 9189.82, + "end": 9191.56, + "probability": 0.6853 + }, + { + "start": 9192.62, + "end": 9194.6, + "probability": 0.9554 + }, + { + "start": 9194.88, + "end": 9197.88, + "probability": 0.3914 + }, + { + "start": 9223.3, + "end": 9225.34, + "probability": 0.1219 + }, + { + "start": 9229.2, + "end": 9229.87, + "probability": 0.0198 + }, + { + "start": 9230.88, + "end": 9231.76, + "probability": 0.3131 + }, + { + "start": 9232.2, + "end": 9232.84, + "probability": 0.0629 + }, + { + "start": 9232.84, + "end": 9232.84, + "probability": 0.1298 + }, + { + "start": 9234.46, + "end": 9234.9, + "probability": 0.0842 + }, + { + "start": 9234.92, + "end": 9234.96, + "probability": 0.0707 + }, + { + "start": 9281.54, + "end": 9282.42, + "probability": 0.728 + }, + { + "start": 9282.78, + "end": 9284.34, + "probability": 0.5769 + }, + { + "start": 9285.14, + "end": 9287.64, + "probability": 0.8075 + }, + { + "start": 9288.58, + "end": 9294.14, + "probability": 0.764 + }, + { + "start": 9294.88, + "end": 9296.28, + "probability": 0.9946 + }, + { + "start": 9297.12, + "end": 9303.18, + "probability": 0.6628 + }, + { + "start": 9303.76, + "end": 9305.54, + "probability": 0.4832 + }, + { + "start": 9306.84, + "end": 9307.39, + "probability": 0.2254 + }, + { + "start": 9309.4, + "end": 9311.48, + "probability": 0.4247 + }, + { + "start": 9312.78, + "end": 9315.24, + "probability": 0.5223 + }, + { + "start": 9316.02, + "end": 9317.14, + "probability": 0.7561 + }, + { + "start": 9318.04, + "end": 9319.44, + "probability": 0.8633 + }, + { + "start": 9319.48, + "end": 9320.24, + "probability": 0.5848 + }, + { + "start": 9320.32, + "end": 9321.44, + "probability": 0.4082 + }, + { + "start": 9322.04, + "end": 9323.86, + "probability": 0.7682 + }, + { + "start": 9323.9, + "end": 9326.32, + "probability": 0.991 + }, + { + "start": 9326.44, + "end": 9327.88, + "probability": 0.9916 + }, + { + "start": 9328.68, + "end": 9330.8, + "probability": 0.7261 + }, + { + "start": 9330.98, + "end": 9336.18, + "probability": 0.8639 + }, + { + "start": 9336.66, + "end": 9341.16, + "probability": 0.8958 + }, + { + "start": 9341.9, + "end": 9344.48, + "probability": 0.9817 + }, + { + "start": 9344.88, + "end": 9347.02, + "probability": 0.5972 + }, + { + "start": 9347.22, + "end": 9349.26, + "probability": 0.7144 + }, + { + "start": 9349.34, + "end": 9350.5, + "probability": 0.9917 + }, + { + "start": 9351.02, + "end": 9354.3, + "probability": 0.5684 + }, + { + "start": 9354.66, + "end": 9355.9, + "probability": 0.7281 + }, + { + "start": 9356.26, + "end": 9356.75, + "probability": 0.398 + }, + { + "start": 9356.98, + "end": 9358.56, + "probability": 0.95 + }, + { + "start": 9358.86, + "end": 9359.9, + "probability": 0.9569 + }, + { + "start": 9359.94, + "end": 9363.24, + "probability": 0.8541 + }, + { + "start": 9363.42, + "end": 9363.98, + "probability": 0.194 + }, + { + "start": 9364.06, + "end": 9365.48, + "probability": 0.9699 + }, + { + "start": 9365.76, + "end": 9366.96, + "probability": 0.9416 + }, + { + "start": 9367.36, + "end": 9368.48, + "probability": 0.5067 + }, + { + "start": 9369.24, + "end": 9379.08, + "probability": 0.5865 + }, + { + "start": 9379.24, + "end": 9380.04, + "probability": 0.5523 + }, + { + "start": 9380.18, + "end": 9381.82, + "probability": 0.6708 + }, + { + "start": 9382.38, + "end": 9383.04, + "probability": 0.4843 + }, + { + "start": 9383.46, + "end": 9387.76, + "probability": 0.7724 + }, + { + "start": 9387.78, + "end": 9388.48, + "probability": 0.8125 + }, + { + "start": 9389.02, + "end": 9391.0, + "probability": 0.834 + }, + { + "start": 9391.72, + "end": 9393.34, + "probability": 0.3302 + }, + { + "start": 9394.18, + "end": 9395.82, + "probability": 0.6675 + }, + { + "start": 9396.36, + "end": 9396.38, + "probability": 0.2439 + }, + { + "start": 9396.4, + "end": 9399.04, + "probability": 0.7627 + }, + { + "start": 9399.1, + "end": 9401.12, + "probability": 0.9875 + }, + { + "start": 9401.22, + "end": 9401.58, + "probability": 0.7433 + }, + { + "start": 9402.04, + "end": 9402.56, + "probability": 0.5142 + }, + { + "start": 9402.64, + "end": 9405.22, + "probability": 0.7491 + }, + { + "start": 9405.26, + "end": 9406.64, + "probability": 0.5691 + }, + { + "start": 9407.22, + "end": 9407.96, + "probability": 0.8034 + }, + { + "start": 9408.28, + "end": 9409.98, + "probability": 0.7191 + }, + { + "start": 9411.56, + "end": 9411.62, + "probability": 0.0458 + }, + { + "start": 9411.62, + "end": 9412.24, + "probability": 0.6447 + }, + { + "start": 9412.46, + "end": 9413.41, + "probability": 0.6676 + }, + { + "start": 9413.88, + "end": 9417.43, + "probability": 0.4771 + }, + { + "start": 9417.94, + "end": 9419.52, + "probability": 0.7791 + }, + { + "start": 9419.68, + "end": 9421.08, + "probability": 0.7895 + }, + { + "start": 9421.1, + "end": 9422.1, + "probability": 0.933 + }, + { + "start": 9422.98, + "end": 9424.44, + "probability": 0.8615 + }, + { + "start": 9424.5, + "end": 9426.02, + "probability": 0.7605 + }, + { + "start": 9426.4, + "end": 9427.06, + "probability": 0.8525 + }, + { + "start": 9427.12, + "end": 9427.54, + "probability": 0.7589 + }, + { + "start": 9427.56, + "end": 9428.24, + "probability": 0.7153 + }, + { + "start": 9428.7, + "end": 9430.8, + "probability": 0.9542 + }, + { + "start": 9431.04, + "end": 9431.04, + "probability": 0.1188 + }, + { + "start": 9431.04, + "end": 9431.6, + "probability": 0.3359 + }, + { + "start": 9432.24, + "end": 9434.4, + "probability": 0.8294 + }, + { + "start": 9434.92, + "end": 9435.66, + "probability": 0.7812 + }, + { + "start": 9435.7, + "end": 9436.22, + "probability": 0.836 + }, + { + "start": 9438.1, + "end": 9439.74, + "probability": 0.9346 + }, + { + "start": 9439.82, + "end": 9443.0, + "probability": 0.7438 + }, + { + "start": 9443.2, + "end": 9444.38, + "probability": 0.6534 + }, + { + "start": 9445.01, + "end": 9449.86, + "probability": 0.9981 + }, + { + "start": 9449.86, + "end": 9454.6, + "probability": 0.9948 + }, + { + "start": 9455.4, + "end": 9460.22, + "probability": 0.9921 + }, + { + "start": 9460.88, + "end": 9463.98, + "probability": 0.9917 + }, + { + "start": 9464.52, + "end": 9466.46, + "probability": 0.9712 + }, + { + "start": 9467.0, + "end": 9470.6, + "probability": 0.9871 + }, + { + "start": 9471.46, + "end": 9477.58, + "probability": 0.8722 + }, + { + "start": 9478.06, + "end": 9483.16, + "probability": 0.9832 + }, + { + "start": 9483.76, + "end": 9488.34, + "probability": 0.9947 + }, + { + "start": 9488.34, + "end": 9493.22, + "probability": 0.9967 + }, + { + "start": 9494.06, + "end": 9496.72, + "probability": 0.9378 + }, + { + "start": 9497.34, + "end": 9501.9, + "probability": 0.9987 + }, + { + "start": 9502.56, + "end": 9505.52, + "probability": 0.9969 + }, + { + "start": 9506.2, + "end": 9508.34, + "probability": 0.9953 + }, + { + "start": 9508.34, + "end": 9511.12, + "probability": 0.9946 + }, + { + "start": 9511.9, + "end": 9515.48, + "probability": 0.9392 + }, + { + "start": 9515.48, + "end": 9518.92, + "probability": 0.9931 + }, + { + "start": 9519.12, + "end": 9520.1, + "probability": 0.8792 + }, + { + "start": 9520.28, + "end": 9520.58, + "probability": 0.7711 + }, + { + "start": 9521.62, + "end": 9522.12, + "probability": 0.623 + }, + { + "start": 9522.24, + "end": 9522.74, + "probability": 0.8073 + }, + { + "start": 9522.76, + "end": 9527.36, + "probability": 0.9609 + }, + { + "start": 9527.9, + "end": 9529.32, + "probability": 0.885 + }, + { + "start": 9529.36, + "end": 9532.14, + "probability": 0.9979 + }, + { + "start": 9532.88, + "end": 9533.39, + "probability": 0.1696 + }, + { + "start": 9533.76, + "end": 9535.48, + "probability": 0.2291 + }, + { + "start": 9535.68, + "end": 9537.37, + "probability": 0.3805 + }, + { + "start": 9538.24, + "end": 9539.28, + "probability": 0.2025 + }, + { + "start": 9539.28, + "end": 9541.22, + "probability": 0.722 + }, + { + "start": 9541.4, + "end": 9543.42, + "probability": 0.3869 + }, + { + "start": 9543.58, + "end": 9546.86, + "probability": 0.1285 + }, + { + "start": 9548.04, + "end": 9548.54, + "probability": 0.1371 + }, + { + "start": 9549.68, + "end": 9556.72, + "probability": 0.6009 + }, + { + "start": 9556.86, + "end": 9558.44, + "probability": 0.7997 + }, + { + "start": 9558.44, + "end": 9559.04, + "probability": 0.4135 + }, + { + "start": 9559.67, + "end": 9562.27, + "probability": 0.0126 + }, + { + "start": 9565.24, + "end": 9565.94, + "probability": 0.016 + }, + { + "start": 9565.94, + "end": 9569.76, + "probability": 0.1061 + }, + { + "start": 9569.76, + "end": 9570.82, + "probability": 0.0811 + }, + { + "start": 9570.82, + "end": 9570.82, + "probability": 0.2008 + }, + { + "start": 9570.82, + "end": 9571.36, + "probability": 0.0861 + }, + { + "start": 9573.64, + "end": 9574.64, + "probability": 0.1292 + }, + { + "start": 9577.34, + "end": 9580.28, + "probability": 0.0398 + }, + { + "start": 9589.84, + "end": 9590.14, + "probability": 0.0933 + }, + { + "start": 9591.38, + "end": 9594.12, + "probability": 0.6017 + }, + { + "start": 9594.2, + "end": 9597.12, + "probability": 0.6906 + }, + { + "start": 9597.28, + "end": 9598.82, + "probability": 0.096 + }, + { + "start": 9599.12, + "end": 9600.58, + "probability": 0.1912 + }, + { + "start": 9602.2, + "end": 9602.3, + "probability": 0.0021 + }, + { + "start": 9605.24, + "end": 9613.42, + "probability": 0.0499 + }, + { + "start": 9613.42, + "end": 9614.34, + "probability": 0.3224 + }, + { + "start": 9616.2, + "end": 9616.26, + "probability": 0.1307 + }, + { + "start": 9616.26, + "end": 9616.26, + "probability": 0.0661 + }, + { + "start": 9616.26, + "end": 9616.28, + "probability": 0.0497 + }, + { + "start": 9616.28, + "end": 9619.18, + "probability": 0.0943 + }, + { + "start": 9620.56, + "end": 9621.52, + "probability": 0.0332 + }, + { + "start": 9621.52, + "end": 9621.6, + "probability": 0.2163 + }, + { + "start": 9621.6, + "end": 9621.84, + "probability": 0.058 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.0, + "end": 9622.0, + "probability": 0.0 + }, + { + "start": 9622.22, + "end": 9622.22, + "probability": 0.0093 + }, + { + "start": 9622.22, + "end": 9622.22, + "probability": 0.0615 + }, + { + "start": 9622.22, + "end": 9622.22, + "probability": 0.1161 + }, + { + "start": 9622.22, + "end": 9622.22, + "probability": 0.0983 + }, + { + "start": 9622.22, + "end": 9622.38, + "probability": 0.0874 + }, + { + "start": 9622.64, + "end": 9623.34, + "probability": 0.2134 + }, + { + "start": 9626.02, + "end": 9628.52, + "probability": 0.6145 + }, + { + "start": 9628.72, + "end": 9630.1, + "probability": 0.5063 + }, + { + "start": 9630.56, + "end": 9632.88, + "probability": 0.9637 + }, + { + "start": 9633.6, + "end": 9634.44, + "probability": 0.7129 + }, + { + "start": 9634.98, + "end": 9636.04, + "probability": 0.7045 + }, + { + "start": 9636.46, + "end": 9637.08, + "probability": 0.7924 + }, + { + "start": 9637.8, + "end": 9638.02, + "probability": 0.832 + }, + { + "start": 9639.1, + "end": 9641.31, + "probability": 0.8242 + }, + { + "start": 9642.3, + "end": 9646.1, + "probability": 0.995 + }, + { + "start": 9646.53, + "end": 9651.2, + "probability": 0.9384 + }, + { + "start": 9651.4, + "end": 9653.04, + "probability": 0.9014 + }, + { + "start": 9653.32, + "end": 9656.38, + "probability": 0.923 + }, + { + "start": 9657.18, + "end": 9661.34, + "probability": 0.9895 + }, + { + "start": 9661.88, + "end": 9662.78, + "probability": 0.9362 + }, + { + "start": 9663.39, + "end": 9665.46, + "probability": 0.9335 + }, + { + "start": 9665.94, + "end": 9666.82, + "probability": 0.9597 + }, + { + "start": 9667.26, + "end": 9667.54, + "probability": 0.9526 + }, + { + "start": 9667.62, + "end": 9669.82, + "probability": 0.8232 + }, + { + "start": 9669.9, + "end": 9670.18, + "probability": 0.847 + }, + { + "start": 9670.52, + "end": 9672.3, + "probability": 0.8778 + }, + { + "start": 9672.78, + "end": 9675.3, + "probability": 0.9817 + }, + { + "start": 9675.76, + "end": 9679.18, + "probability": 0.9945 + }, + { + "start": 9679.7, + "end": 9681.8, + "probability": 0.8081 + }, + { + "start": 9682.32, + "end": 9686.3, + "probability": 0.9967 + }, + { + "start": 9686.3, + "end": 9689.68, + "probability": 0.995 + }, + { + "start": 9691.26, + "end": 9696.12, + "probability": 0.9652 + }, + { + "start": 9696.52, + "end": 9700.62, + "probability": 0.9718 + }, + { + "start": 9701.3, + "end": 9705.54, + "probability": 0.9961 + }, + { + "start": 9705.54, + "end": 9709.16, + "probability": 0.9995 + }, + { + "start": 9709.84, + "end": 9710.56, + "probability": 0.5477 + }, + { + "start": 9710.64, + "end": 9716.74, + "probability": 0.9668 + }, + { + "start": 9717.46, + "end": 9721.2, + "probability": 0.7797 + }, + { + "start": 9721.96, + "end": 9724.92, + "probability": 0.9249 + }, + { + "start": 9725.8, + "end": 9731.96, + "probability": 0.8656 + }, + { + "start": 9732.48, + "end": 9733.18, + "probability": 0.8781 + }, + { + "start": 9733.98, + "end": 9734.42, + "probability": 0.0315 + }, + { + "start": 9734.42, + "end": 9734.66, + "probability": 0.3647 + }, + { + "start": 9734.72, + "end": 9736.38, + "probability": 0.7566 + }, + { + "start": 9736.52, + "end": 9738.68, + "probability": 0.9917 + }, + { + "start": 9739.04, + "end": 9741.72, + "probability": 0.8457 + }, + { + "start": 9741.84, + "end": 9746.02, + "probability": 0.9897 + }, + { + "start": 9746.46, + "end": 9746.56, + "probability": 0.8951 + }, + { + "start": 9747.29, + "end": 9752.7, + "probability": 0.9966 + }, + { + "start": 9752.8, + "end": 9756.64, + "probability": 0.9919 + }, + { + "start": 9756.78, + "end": 9758.96, + "probability": 0.9134 + }, + { + "start": 9758.98, + "end": 9759.8, + "probability": 0.9666 + }, + { + "start": 9760.34, + "end": 9764.18, + "probability": 0.8077 + }, + { + "start": 9764.78, + "end": 9766.36, + "probability": 0.6353 + }, + { + "start": 9767.82, + "end": 9768.94, + "probability": 0.4758 + }, + { + "start": 9769.22, + "end": 9772.08, + "probability": 0.8311 + }, + { + "start": 9772.58, + "end": 9774.32, + "probability": 0.7042 + }, + { + "start": 9774.88, + "end": 9777.82, + "probability": 0.6319 + }, + { + "start": 9778.38, + "end": 9779.28, + "probability": 0.9345 + }, + { + "start": 9780.53, + "end": 9784.26, + "probability": 0.9919 + }, + { + "start": 9784.82, + "end": 9786.82, + "probability": 0.9987 + }, + { + "start": 9786.9, + "end": 9790.34, + "probability": 0.9968 + }, + { + "start": 9792.99, + "end": 9793.48, + "probability": 0.3825 + }, + { + "start": 9793.48, + "end": 9793.74, + "probability": 0.3707 + }, + { + "start": 9793.84, + "end": 9797.46, + "probability": 0.9886 + }, + { + "start": 9798.84, + "end": 9801.44, + "probability": 0.7764 + }, + { + "start": 9801.8, + "end": 9802.96, + "probability": 0.9178 + }, + { + "start": 9803.4, + "end": 9804.23, + "probability": 0.8232 + }, + { + "start": 9805.22, + "end": 9808.56, + "probability": 0.9591 + }, + { + "start": 9809.18, + "end": 9814.0, + "probability": 0.842 + }, + { + "start": 9814.06, + "end": 9815.16, + "probability": 0.9995 + }, + { + "start": 9815.8, + "end": 9821.46, + "probability": 0.999 + }, + { + "start": 9822.24, + "end": 9822.88, + "probability": 0.9266 + }, + { + "start": 9823.54, + "end": 9825.08, + "probability": 0.8481 + }, + { + "start": 9825.08, + "end": 9825.68, + "probability": 0.7321 + }, + { + "start": 9825.78, + "end": 9827.0, + "probability": 0.8923 + }, + { + "start": 9827.16, + "end": 9830.06, + "probability": 0.7569 + }, + { + "start": 9830.43, + "end": 9834.38, + "probability": 0.4999 + }, + { + "start": 9834.38, + "end": 9835.22, + "probability": 0.4059 + }, + { + "start": 9835.66, + "end": 9838.48, + "probability": 0.7207 + }, + { + "start": 9838.84, + "end": 9841.32, + "probability": 0.9119 + }, + { + "start": 9842.32, + "end": 9842.42, + "probability": 0.0087 + }, + { + "start": 9844.18, + "end": 9844.98, + "probability": 0.4048 + }, + { + "start": 9844.98, + "end": 9845.68, + "probability": 0.6372 + }, + { + "start": 9847.94, + "end": 9850.54, + "probability": 0.4607 + }, + { + "start": 9850.54, + "end": 9851.14, + "probability": 0.7152 + }, + { + "start": 9851.28, + "end": 9854.36, + "probability": 0.9431 + }, + { + "start": 9855.22, + "end": 9856.28, + "probability": 0.985 + }, + { + "start": 9856.44, + "end": 9856.82, + "probability": 0.1203 + }, + { + "start": 9856.82, + "end": 9857.56, + "probability": 0.4914 + }, + { + "start": 9857.74, + "end": 9861.02, + "probability": 0.9915 + }, + { + "start": 9862.26, + "end": 9863.58, + "probability": 0.6164 + }, + { + "start": 9863.58, + "end": 9864.8, + "probability": 0.9956 + }, + { + "start": 9866.4, + "end": 9873.4, + "probability": 0.8979 + }, + { + "start": 9875.24, + "end": 9877.64, + "probability": 0.4016 + }, + { + "start": 9879.33, + "end": 9881.82, + "probability": 0.9844 + }, + { + "start": 9881.92, + "end": 9883.88, + "probability": 0.9023 + }, + { + "start": 9885.28, + "end": 9889.24, + "probability": 0.9176 + }, + { + "start": 9889.7, + "end": 9891.08, + "probability": 0.9246 + }, + { + "start": 9891.28, + "end": 9891.92, + "probability": 0.5336 + }, + { + "start": 9892.76, + "end": 9894.16, + "probability": 0.9224 + }, + { + "start": 9895.22, + "end": 9896.78, + "probability": 0.8023 + }, + { + "start": 9897.12, + "end": 9899.2, + "probability": 0.7333 + }, + { + "start": 9899.3, + "end": 9902.12, + "probability": 0.9172 + }, + { + "start": 9902.86, + "end": 9904.53, + "probability": 0.9106 + }, + { + "start": 9905.82, + "end": 9910.08, + "probability": 0.9496 + }, + { + "start": 9911.0, + "end": 9911.96, + "probability": 0.9716 + }, + { + "start": 9912.84, + "end": 9915.14, + "probability": 0.9833 + }, + { + "start": 9915.88, + "end": 9917.44, + "probability": 0.18 + }, + { + "start": 9917.54, + "end": 9918.68, + "probability": 0.9683 + }, + { + "start": 9920.1, + "end": 9923.7, + "probability": 0.8999 + }, + { + "start": 9923.78, + "end": 9924.86, + "probability": 0.9747 + }, + { + "start": 9926.98, + "end": 9927.56, + "probability": 0.9567 + }, + { + "start": 9927.56, + "end": 9927.7, + "probability": 0.7248 + }, + { + "start": 9927.8, + "end": 9930.64, + "probability": 0.9858 + }, + { + "start": 9930.64, + "end": 9931.84, + "probability": 0.7156 + }, + { + "start": 9932.34, + "end": 9933.18, + "probability": 0.7359 + }, + { + "start": 9933.28, + "end": 9933.7, + "probability": 0.9093 + }, + { + "start": 9934.38, + "end": 9936.08, + "probability": 0.4559 + }, + { + "start": 9936.08, + "end": 9936.42, + "probability": 0.2734 + }, + { + "start": 9936.5, + "end": 9939.76, + "probability": 0.9887 + }, + { + "start": 9939.82, + "end": 9941.82, + "probability": 0.6669 + }, + { + "start": 9942.16, + "end": 9942.64, + "probability": 0.2671 + }, + { + "start": 9942.64, + "end": 9944.58, + "probability": 0.8029 + }, + { + "start": 9944.78, + "end": 9945.06, + "probability": 0.0532 + }, + { + "start": 9945.1, + "end": 9945.86, + "probability": 0.679 + }, + { + "start": 9946.16, + "end": 9947.14, + "probability": 0.9591 + }, + { + "start": 9947.48, + "end": 9947.86, + "probability": 0.0657 + }, + { + "start": 9947.92, + "end": 9952.34, + "probability": 0.7756 + }, + { + "start": 9952.96, + "end": 9956.68, + "probability": 0.9907 + }, + { + "start": 9956.94, + "end": 9959.32, + "probability": 0.832 + }, + { + "start": 9959.44, + "end": 9962.04, + "probability": 0.9709 + }, + { + "start": 9962.24, + "end": 9965.6, + "probability": 0.9951 + }, + { + "start": 9965.66, + "end": 9965.98, + "probability": 0.8716 + }, + { + "start": 9966.06, + "end": 9969.56, + "probability": 0.9634 + }, + { + "start": 9970.12, + "end": 9971.88, + "probability": 0.7417 + }, + { + "start": 9972.48, + "end": 9974.66, + "probability": 0.938 + }, + { + "start": 9975.78, + "end": 9976.58, + "probability": 0.875 + }, + { + "start": 9977.5, + "end": 9981.04, + "probability": 0.9732 + }, + { + "start": 9981.56, + "end": 9984.46, + "probability": 0.9108 + }, + { + "start": 9984.76, + "end": 9986.22, + "probability": 0.8975 + }, + { + "start": 9987.28, + "end": 9989.86, + "probability": 0.8257 + }, + { + "start": 9989.94, + "end": 9991.1, + "probability": 0.677 + }, + { + "start": 9991.62, + "end": 9992.58, + "probability": 0.9004 + }, + { + "start": 9993.02, + "end": 9994.62, + "probability": 0.943 + }, + { + "start": 9995.76, + "end": 9996.66, + "probability": 0.9399 + }, + { + "start": 9997.5, + "end": 10001.34, + "probability": 0.8263 + }, + { + "start": 10002.28, + "end": 10003.04, + "probability": 0.2813 + }, + { + "start": 10004.0, + "end": 10005.86, + "probability": 0.599 + }, + { + "start": 10005.98, + "end": 10008.04, + "probability": 0.8715 + }, + { + "start": 10008.1, + "end": 10008.66, + "probability": 0.4902 + }, + { + "start": 10009.48, + "end": 10011.28, + "probability": 0.9699 + }, + { + "start": 10011.7, + "end": 10012.72, + "probability": 0.9146 + }, + { + "start": 10013.56, + "end": 10015.1, + "probability": 0.879 + }, + { + "start": 10015.56, + "end": 10016.78, + "probability": 0.9905 + }, + { + "start": 10017.5, + "end": 10018.8, + "probability": 0.4574 + }, + { + "start": 10019.1, + "end": 10020.88, + "probability": 0.8308 + }, + { + "start": 10021.12, + "end": 10022.52, + "probability": 0.8867 + }, + { + "start": 10022.96, + "end": 10023.12, + "probability": 0.1716 + }, + { + "start": 10023.12, + "end": 10023.16, + "probability": 0.2069 + }, + { + "start": 10023.16, + "end": 10023.92, + "probability": 0.7483 + }, + { + "start": 10024.4, + "end": 10024.84, + "probability": 0.2072 + }, + { + "start": 10024.84, + "end": 10024.84, + "probability": 0.2673 + }, + { + "start": 10024.84, + "end": 10025.7, + "probability": 0.6625 + }, + { + "start": 10025.76, + "end": 10026.42, + "probability": 0.7865 + }, + { + "start": 10026.5, + "end": 10026.85, + "probability": 0.7754 + }, + { + "start": 10027.22, + "end": 10028.34, + "probability": 0.9378 + }, + { + "start": 10029.12, + "end": 10029.16, + "probability": 0.1185 + }, + { + "start": 10029.16, + "end": 10029.76, + "probability": 0.0417 + }, + { + "start": 10029.76, + "end": 10030.12, + "probability": 0.2231 + }, + { + "start": 10030.14, + "end": 10033.76, + "probability": 0.3828 + }, + { + "start": 10033.82, + "end": 10034.48, + "probability": 0.5026 + }, + { + "start": 10034.66, + "end": 10036.56, + "probability": 0.8595 + }, + { + "start": 10036.66, + "end": 10040.56, + "probability": 0.2167 + }, + { + "start": 10041.14, + "end": 10042.31, + "probability": 0.2406 + }, + { + "start": 10042.74, + "end": 10043.44, + "probability": 0.3787 + }, + { + "start": 10043.62, + "end": 10044.54, + "probability": 0.336 + }, + { + "start": 10045.19, + "end": 10046.21, + "probability": 0.2051 + }, + { + "start": 10046.22, + "end": 10046.89, + "probability": 0.2521 + }, + { + "start": 10047.02, + "end": 10047.14, + "probability": 0.731 + }, + { + "start": 10047.2, + "end": 10048.62, + "probability": 0.1775 + }, + { + "start": 10048.62, + "end": 10048.78, + "probability": 0.4701 + }, + { + "start": 10048.9, + "end": 10051.28, + "probability": 0.9663 + }, + { + "start": 10051.58, + "end": 10052.07, + "probability": 0.3843 + }, + { + "start": 10052.42, + "end": 10053.18, + "probability": 0.8258 + }, + { + "start": 10053.64, + "end": 10055.42, + "probability": 0.9847 + }, + { + "start": 10055.5, + "end": 10057.14, + "probability": 0.9683 + }, + { + "start": 10057.84, + "end": 10059.9, + "probability": 0.98 + }, + { + "start": 10059.96, + "end": 10061.58, + "probability": 0.974 + }, + { + "start": 10062.02, + "end": 10066.8, + "probability": 0.9888 + }, + { + "start": 10067.22, + "end": 10068.52, + "probability": 0.7249 + }, + { + "start": 10069.48, + "end": 10071.78, + "probability": 0.9843 + }, + { + "start": 10071.94, + "end": 10073.07, + "probability": 0.9126 + }, + { + "start": 10074.04, + "end": 10079.4, + "probability": 0.921 + }, + { + "start": 10080.14, + "end": 10081.32, + "probability": 0.7489 + }, + { + "start": 10082.04, + "end": 10083.99, + "probability": 0.7764 + }, + { + "start": 10084.64, + "end": 10087.88, + "probability": 0.9904 + }, + { + "start": 10089.44, + "end": 10090.79, + "probability": 0.9481 + }, + { + "start": 10091.62, + "end": 10092.74, + "probability": 0.9096 + }, + { + "start": 10092.82, + "end": 10094.78, + "probability": 0.7614 + }, + { + "start": 10095.2, + "end": 10096.61, + "probability": 0.7814 + }, + { + "start": 10097.24, + "end": 10099.3, + "probability": 0.9697 + }, + { + "start": 10100.44, + "end": 10101.04, + "probability": 0.9526 + }, + { + "start": 10101.76, + "end": 10103.28, + "probability": 0.9159 + }, + { + "start": 10104.78, + "end": 10107.88, + "probability": 0.9714 + }, + { + "start": 10108.42, + "end": 10109.96, + "probability": 0.6581 + }, + { + "start": 10110.36, + "end": 10111.04, + "probability": 0.7914 + }, + { + "start": 10112.0, + "end": 10112.64, + "probability": 0.628 + }, + { + "start": 10112.7, + "end": 10113.33, + "probability": 0.9877 + }, + { + "start": 10114.86, + "end": 10115.46, + "probability": 0.865 + }, + { + "start": 10115.58, + "end": 10116.16, + "probability": 0.6248 + }, + { + "start": 10116.34, + "end": 10119.18, + "probability": 0.9533 + }, + { + "start": 10120.36, + "end": 10121.14, + "probability": 0.7653 + }, + { + "start": 10121.22, + "end": 10124.18, + "probability": 0.8623 + }, + { + "start": 10124.52, + "end": 10127.16, + "probability": 0.8349 + }, + { + "start": 10127.74, + "end": 10129.22, + "probability": 0.7537 + }, + { + "start": 10129.84, + "end": 10135.1, + "probability": 0.7813 + }, + { + "start": 10135.88, + "end": 10137.84, + "probability": 0.9106 + }, + { + "start": 10138.48, + "end": 10141.28, + "probability": 0.9226 + }, + { + "start": 10141.7, + "end": 10142.79, + "probability": 0.7555 + }, + { + "start": 10143.66, + "end": 10143.88, + "probability": 0.0819 + }, + { + "start": 10143.98, + "end": 10146.56, + "probability": 0.9802 + }, + { + "start": 10146.94, + "end": 10147.9, + "probability": 0.8586 + }, + { + "start": 10148.42, + "end": 10150.04, + "probability": 0.9943 + }, + { + "start": 10150.46, + "end": 10153.48, + "probability": 0.9316 + }, + { + "start": 10154.06, + "end": 10155.84, + "probability": 0.5272 + }, + { + "start": 10156.46, + "end": 10156.66, + "probability": 0.747 + }, + { + "start": 10156.76, + "end": 10159.38, + "probability": 0.9058 + }, + { + "start": 10159.6, + "end": 10159.98, + "probability": 0.0268 + }, + { + "start": 10160.12, + "end": 10160.16, + "probability": 0.0843 + }, + { + "start": 10160.16, + "end": 10161.02, + "probability": 0.9084 + }, + { + "start": 10161.1, + "end": 10163.1, + "probability": 0.8439 + }, + { + "start": 10163.8, + "end": 10166.98, + "probability": 0.9624 + }, + { + "start": 10167.78, + "end": 10170.92, + "probability": 0.9438 + }, + { + "start": 10172.98, + "end": 10175.06, + "probability": 0.7123 + }, + { + "start": 10175.14, + "end": 10178.32, + "probability": 0.6758 + }, + { + "start": 10179.42, + "end": 10181.14, + "probability": 0.3953 + }, + { + "start": 10181.62, + "end": 10183.84, + "probability": 0.7302 + }, + { + "start": 10198.26, + "end": 10198.34, + "probability": 0.0041 + }, + { + "start": 10198.34, + "end": 10198.62, + "probability": 0.82 + }, + { + "start": 10198.66, + "end": 10200.31, + "probability": 0.7272 + }, + { + "start": 10200.7, + "end": 10203.88, + "probability": 0.9871 + }, + { + "start": 10204.88, + "end": 10205.98, + "probability": 0.6641 + }, + { + "start": 10206.34, + "end": 10206.78, + "probability": 0.943 + }, + { + "start": 10206.9, + "end": 10210.66, + "probability": 0.9819 + }, + { + "start": 10210.84, + "end": 10217.24, + "probability": 0.998 + }, + { + "start": 10217.24, + "end": 10224.44, + "probability": 0.8052 + }, + { + "start": 10224.52, + "end": 10229.54, + "probability": 0.8867 + }, + { + "start": 10231.38, + "end": 10232.71, + "probability": 0.2622 + }, + { + "start": 10233.48, + "end": 10239.61, + "probability": 0.9873 + }, + { + "start": 10242.12, + "end": 10248.48, + "probability": 0.8956 + }, + { + "start": 10248.48, + "end": 10254.04, + "probability": 0.996 + }, + { + "start": 10254.42, + "end": 10258.38, + "probability": 0.7471 + }, + { + "start": 10258.88, + "end": 10259.51, + "probability": 0.8149 + }, + { + "start": 10260.28, + "end": 10263.44, + "probability": 0.9697 + }, + { + "start": 10263.52, + "end": 10268.26, + "probability": 0.5733 + }, + { + "start": 10268.82, + "end": 10276.6, + "probability": 0.868 + }, + { + "start": 10277.28, + "end": 10280.8, + "probability": 0.9912 + }, + { + "start": 10281.3, + "end": 10282.12, + "probability": 0.6142 + }, + { + "start": 10282.44, + "end": 10285.64, + "probability": 0.9266 + }, + { + "start": 10286.2, + "end": 10286.68, + "probability": 0.5066 + }, + { + "start": 10286.8, + "end": 10290.22, + "probability": 0.9772 + }, + { + "start": 10290.86, + "end": 10292.64, + "probability": 0.9761 + }, + { + "start": 10292.7, + "end": 10295.62, + "probability": 0.9967 + }, + { + "start": 10296.14, + "end": 10298.4, + "probability": 0.9969 + }, + { + "start": 10299.36, + "end": 10299.72, + "probability": 0.7051 + }, + { + "start": 10300.68, + "end": 10304.46, + "probability": 0.9171 + }, + { + "start": 10304.56, + "end": 10307.96, + "probability": 0.8786 + }, + { + "start": 10307.96, + "end": 10310.38, + "probability": 0.565 + }, + { + "start": 10310.48, + "end": 10312.16, + "probability": 0.3733 + }, + { + "start": 10314.78, + "end": 10315.88, + "probability": 0.871 + }, + { + "start": 10316.06, + "end": 10318.58, + "probability": 0.8779 + }, + { + "start": 10319.04, + "end": 10319.9, + "probability": 0.4118 + }, + { + "start": 10319.96, + "end": 10321.42, + "probability": 0.8838 + }, + { + "start": 10321.5, + "end": 10326.24, + "probability": 0.7363 + }, + { + "start": 10326.36, + "end": 10330.36, + "probability": 0.973 + }, + { + "start": 10330.44, + "end": 10334.44, + "probability": 0.7183 + }, + { + "start": 10334.86, + "end": 10336.26, + "probability": 0.7861 + }, + { + "start": 10336.74, + "end": 10339.42, + "probability": 0.6154 + }, + { + "start": 10339.82, + "end": 10341.72, + "probability": 0.9453 + }, + { + "start": 10341.72, + "end": 10344.22, + "probability": 0.9471 + }, + { + "start": 10344.88, + "end": 10345.62, + "probability": 0.4651 + }, + { + "start": 10346.24, + "end": 10346.78, + "probability": 0.821 + }, + { + "start": 10346.9, + "end": 10348.23, + "probability": 0.9873 + }, + { + "start": 10348.44, + "end": 10350.52, + "probability": 0.9707 + }, + { + "start": 10351.04, + "end": 10354.56, + "probability": 0.9799 + }, + { + "start": 10354.84, + "end": 10356.28, + "probability": 0.9958 + }, + { + "start": 10356.54, + "end": 10360.86, + "probability": 0.9899 + }, + { + "start": 10361.38, + "end": 10363.74, + "probability": 0.9939 + }, + { + "start": 10364.5, + "end": 10370.74, + "probability": 0.9563 + }, + { + "start": 10371.2, + "end": 10371.2, + "probability": 0.751 + }, + { + "start": 10371.2, + "end": 10371.2, + "probability": 0.753 + }, + { + "start": 10371.52, + "end": 10374.76, + "probability": 0.8316 + }, + { + "start": 10375.72, + "end": 10376.68, + "probability": 0.3796 + }, + { + "start": 10376.8, + "end": 10378.06, + "probability": 0.571 + }, + { + "start": 10378.48, + "end": 10380.0, + "probability": 0.8579 + }, + { + "start": 10380.66, + "end": 10382.28, + "probability": 0.782 + }, + { + "start": 10383.02, + "end": 10384.96, + "probability": 0.9848 + }, + { + "start": 10386.38, + "end": 10388.68, + "probability": 0.9565 + }, + { + "start": 10389.04, + "end": 10392.16, + "probability": 0.9939 + }, + { + "start": 10392.2, + "end": 10392.52, + "probability": 0.3646 + }, + { + "start": 10392.54, + "end": 10395.04, + "probability": 0.398 + }, + { + "start": 10395.7, + "end": 10397.1, + "probability": 0.7327 + }, + { + "start": 10397.92, + "end": 10400.3, + "probability": 0.598 + }, + { + "start": 10400.3, + "end": 10400.52, + "probability": 0.802 + }, + { + "start": 10404.94, + "end": 10405.42, + "probability": 0.0355 + }, + { + "start": 10407.32, + "end": 10407.74, + "probability": 0.0984 + }, + { + "start": 10411.0, + "end": 10414.1, + "probability": 0.5063 + }, + { + "start": 10414.16, + "end": 10416.18, + "probability": 0.9673 + }, + { + "start": 10416.38, + "end": 10417.58, + "probability": 0.7399 + }, + { + "start": 10417.78, + "end": 10419.1, + "probability": 0.9875 + }, + { + "start": 10419.9, + "end": 10421.08, + "probability": 0.9526 + }, + { + "start": 10421.88, + "end": 10422.68, + "probability": 0.7445 + }, + { + "start": 10423.48, + "end": 10429.34, + "probability": 0.9964 + }, + { + "start": 10430.44, + "end": 10432.52, + "probability": 0.985 + }, + { + "start": 10433.34, + "end": 10434.98, + "probability": 0.9065 + }, + { + "start": 10435.74, + "end": 10436.24, + "probability": 0.8966 + }, + { + "start": 10436.3, + "end": 10437.74, + "probability": 0.9963 + }, + { + "start": 10437.86, + "end": 10438.26, + "probability": 0.9613 + }, + { + "start": 10438.38, + "end": 10438.62, + "probability": 0.8671 + }, + { + "start": 10438.7, + "end": 10439.08, + "probability": 0.5515 + }, + { + "start": 10439.64, + "end": 10446.04, + "probability": 0.9957 + }, + { + "start": 10446.94, + "end": 10447.02, + "probability": 0.0283 + }, + { + "start": 10447.02, + "end": 10448.0, + "probability": 0.8595 + }, + { + "start": 10449.7, + "end": 10450.74, + "probability": 0.8612 + }, + { + "start": 10450.84, + "end": 10452.48, + "probability": 0.9961 + }, + { + "start": 10453.1, + "end": 10453.9, + "probability": 0.9333 + }, + { + "start": 10454.5, + "end": 10455.12, + "probability": 0.7675 + }, + { + "start": 10457.32, + "end": 10462.42, + "probability": 0.9714 + }, + { + "start": 10462.56, + "end": 10469.26, + "probability": 0.9944 + }, + { + "start": 10469.92, + "end": 10471.16, + "probability": 0.6771 + }, + { + "start": 10473.91, + "end": 10476.08, + "probability": 0.5102 + }, + { + "start": 10476.08, + "end": 10478.76, + "probability": 0.3186 + }, + { + "start": 10478.98, + "end": 10482.94, + "probability": 0.459 + }, + { + "start": 10482.94, + "end": 10484.06, + "probability": 0.6046 + }, + { + "start": 10484.5, + "end": 10490.34, + "probability": 0.082 + }, + { + "start": 10490.66, + "end": 10492.32, + "probability": 0.0217 + }, + { + "start": 10492.32, + "end": 10492.6, + "probability": 0.4044 + }, + { + "start": 10492.6, + "end": 10492.6, + "probability": 0.1338 + }, + { + "start": 10492.6, + "end": 10492.6, + "probability": 0.0484 + }, + { + "start": 10492.6, + "end": 10492.6, + "probability": 0.1047 + }, + { + "start": 10492.6, + "end": 10493.0, + "probability": 0.4167 + }, + { + "start": 10493.4, + "end": 10496.12, + "probability": 0.8243 + }, + { + "start": 10496.7, + "end": 10498.36, + "probability": 0.8384 + }, + { + "start": 10498.66, + "end": 10504.92, + "probability": 0.8624 + }, + { + "start": 10504.94, + "end": 10507.64, + "probability": 0.8618 + }, + { + "start": 10508.04, + "end": 10510.28, + "probability": 0.8683 + }, + { + "start": 10510.6, + "end": 10515.0, + "probability": 0.6921 + }, + { + "start": 10515.42, + "end": 10517.38, + "probability": 0.5074 + }, + { + "start": 10517.84, + "end": 10519.32, + "probability": 0.7905 + }, + { + "start": 10519.58, + "end": 10521.98, + "probability": 0.3515 + }, + { + "start": 10522.3, + "end": 10524.26, + "probability": 0.9271 + }, + { + "start": 10524.58, + "end": 10525.86, + "probability": 0.5513 + }, + { + "start": 10525.88, + "end": 10527.02, + "probability": 0.6985 + }, + { + "start": 10527.08, + "end": 10528.96, + "probability": 0.641 + }, + { + "start": 10529.36, + "end": 10532.26, + "probability": 0.8755 + }, + { + "start": 10532.67, + "end": 10532.85, + "probability": 0.4132 + }, + { + "start": 10533.32, + "end": 10536.76, + "probability": 0.6782 + }, + { + "start": 10537.04, + "end": 10539.98, + "probability": 0.7048 + }, + { + "start": 10541.32, + "end": 10542.36, + "probability": 0.2663 + }, + { + "start": 10542.36, + "end": 10542.84, + "probability": 0.2363 + }, + { + "start": 10544.22, + "end": 10548.6, + "probability": 0.9657 + }, + { + "start": 10548.82, + "end": 10551.18, + "probability": 0.6178 + }, + { + "start": 10551.5, + "end": 10553.18, + "probability": 0.5222 + }, + { + "start": 10553.7, + "end": 10554.88, + "probability": 0.9111 + }, + { + "start": 10555.68, + "end": 10555.68, + "probability": 0.0039 + }, + { + "start": 10555.68, + "end": 10555.68, + "probability": 0.0463 + }, + { + "start": 10555.68, + "end": 10556.72, + "probability": 0.3827 + }, + { + "start": 10556.8, + "end": 10559.26, + "probability": 0.8183 + }, + { + "start": 10559.36, + "end": 10560.96, + "probability": 0.736 + }, + { + "start": 10560.96, + "end": 10561.22, + "probability": 0.1038 + }, + { + "start": 10565.51, + "end": 10566.8, + "probability": 0.0486 + }, + { + "start": 10566.84, + "end": 10567.82, + "probability": 0.0231 + }, + { + "start": 10568.0, + "end": 10569.3, + "probability": 0.5467 + }, + { + "start": 10569.3, + "end": 10569.36, + "probability": 0.0825 + }, + { + "start": 10569.36, + "end": 10569.54, + "probability": 0.5662 + }, + { + "start": 10569.54, + "end": 10570.4, + "probability": 0.4839 + }, + { + "start": 10570.4, + "end": 10571.1, + "probability": 0.4106 + }, + { + "start": 10571.48, + "end": 10573.02, + "probability": 0.314 + }, + { + "start": 10573.18, + "end": 10574.84, + "probability": 0.4123 + }, + { + "start": 10574.84, + "end": 10576.18, + "probability": 0.4704 + }, + { + "start": 10576.68, + "end": 10578.49, + "probability": 0.0107 + }, + { + "start": 10582.1, + "end": 10584.18, + "probability": 0.4336 + }, + { + "start": 10584.86, + "end": 10587.54, + "probability": 0.5018 + }, + { + "start": 10587.62, + "end": 10589.8, + "probability": 0.1921 + }, + { + "start": 10589.8, + "end": 10593.32, + "probability": 0.2118 + }, + { + "start": 10593.6, + "end": 10597.88, + "probability": 0.137 + }, + { + "start": 10597.88, + "end": 10602.26, + "probability": 0.4847 + }, + { + "start": 10603.88, + "end": 10607.36, + "probability": 0.0648 + }, + { + "start": 10608.26, + "end": 10609.62, + "probability": 0.0289 + }, + { + "start": 10609.62, + "end": 10613.16, + "probability": 0.0423 + }, + { + "start": 10613.62, + "end": 10614.76, + "probability": 0.2371 + }, + { + "start": 10614.98, + "end": 10616.1, + "probability": 0.0784 + }, + { + "start": 10616.8, + "end": 10617.32, + "probability": 0.1517 + }, + { + "start": 10617.92, + "end": 10619.2, + "probability": 0.1063 + }, + { + "start": 10619.26, + "end": 10627.32, + "probability": 0.5088 + }, + { + "start": 10628.94, + "end": 10629.42, + "probability": 0.0586 + }, + { + "start": 10630.12, + "end": 10630.74, + "probability": 0.0593 + }, + { + "start": 10630.74, + "end": 10631.58, + "probability": 0.1171 + }, + { + "start": 10631.73, + "end": 10636.16, + "probability": 0.1003 + }, + { + "start": 10636.22, + "end": 10637.98, + "probability": 0.2881 + }, + { + "start": 10638.0, + "end": 10638.0, + "probability": 0.0 + }, + { + "start": 10638.0, + "end": 10638.0, + "probability": 0.0 + }, + { + "start": 10638.0, + "end": 10638.0, + "probability": 0.0 + }, + { + "start": 10638.16, + "end": 10638.3, + "probability": 0.0017 + }, + { + "start": 10638.3, + "end": 10638.3, + "probability": 0.1327 + }, + { + "start": 10638.3, + "end": 10638.3, + "probability": 0.1184 + }, + { + "start": 10638.3, + "end": 10639.32, + "probability": 0.0632 + }, + { + "start": 10639.68, + "end": 10639.9, + "probability": 0.6283 + }, + { + "start": 10639.9, + "end": 10641.94, + "probability": 0.9077 + }, + { + "start": 10642.48, + "end": 10645.91, + "probability": 0.8609 + }, + { + "start": 10646.22, + "end": 10647.86, + "probability": 0.9436 + }, + { + "start": 10648.24, + "end": 10649.91, + "probability": 0.979 + }, + { + "start": 10650.58, + "end": 10652.24, + "probability": 0.8585 + }, + { + "start": 10652.48, + "end": 10652.48, + "probability": 0.0307 + }, + { + "start": 10652.48, + "end": 10658.54, + "probability": 0.9414 + }, + { + "start": 10658.58, + "end": 10661.92, + "probability": 0.6863 + }, + { + "start": 10662.24, + "end": 10663.12, + "probability": 0.845 + }, + { + "start": 10664.08, + "end": 10672.02, + "probability": 0.6466 + }, + { + "start": 10672.18, + "end": 10672.8, + "probability": 0.0511 + }, + { + "start": 10672.86, + "end": 10676.68, + "probability": 0.8083 + }, + { + "start": 10677.22, + "end": 10683.0, + "probability": 0.9419 + }, + { + "start": 10683.26, + "end": 10683.44, + "probability": 0.3533 + }, + { + "start": 10683.44, + "end": 10683.48, + "probability": 0.0539 + }, + { + "start": 10683.48, + "end": 10683.48, + "probability": 0.2836 + }, + { + "start": 10683.48, + "end": 10685.02, + "probability": 0.6594 + }, + { + "start": 10685.44, + "end": 10686.26, + "probability": 0.7486 + }, + { + "start": 10686.82, + "end": 10688.78, + "probability": 0.6675 + }, + { + "start": 10688.98, + "end": 10692.58, + "probability": 0.579 + }, + { + "start": 10692.64, + "end": 10693.41, + "probability": 0.6214 + }, + { + "start": 10694.1, + "end": 10697.1, + "probability": 0.611 + }, + { + "start": 10697.48, + "end": 10701.4, + "probability": 0.7512 + }, + { + "start": 10701.7, + "end": 10704.88, + "probability": 0.3144 + }, + { + "start": 10705.22, + "end": 10707.1, + "probability": 0.5952 + }, + { + "start": 10707.62, + "end": 10709.58, + "probability": 0.7617 + }, + { + "start": 10709.86, + "end": 10710.76, + "probability": 0.4171 + }, + { + "start": 10711.2, + "end": 10714.1, + "probability": 0.5278 + }, + { + "start": 10714.4, + "end": 10718.3, + "probability": 0.277 + }, + { + "start": 10718.4, + "end": 10721.66, + "probability": 0.4258 + }, + { + "start": 10724.2, + "end": 10730.48, + "probability": 0.8344 + }, + { + "start": 10730.56, + "end": 10733.56, + "probability": 0.8794 + }, + { + "start": 10733.83, + "end": 10740.32, + "probability": 0.995 + }, + { + "start": 10740.74, + "end": 10743.08, + "probability": 0.9683 + }, + { + "start": 10743.22, + "end": 10746.2, + "probability": 0.9262 + }, + { + "start": 10746.64, + "end": 10754.76, + "probability": 0.9965 + }, + { + "start": 10755.48, + "end": 10758.38, + "probability": 0.9224 + }, + { + "start": 10759.0, + "end": 10760.64, + "probability": 0.68 + }, + { + "start": 10761.26, + "end": 10761.62, + "probability": 0.2774 + }, + { + "start": 10761.68, + "end": 10763.46, + "probability": 0.3055 + }, + { + "start": 10763.62, + "end": 10768.68, + "probability": 0.6754 + }, + { + "start": 10769.28, + "end": 10772.58, + "probability": 0.5643 + }, + { + "start": 10772.82, + "end": 10775.26, + "probability": 0.7933 + }, + { + "start": 10775.32, + "end": 10780.98, + "probability": 0.9229 + }, + { + "start": 10781.46, + "end": 10783.61, + "probability": 0.4491 + }, + { + "start": 10783.92, + "end": 10786.0, + "probability": 0.6703 + }, + { + "start": 10787.2, + "end": 10792.46, + "probability": 0.8794 + }, + { + "start": 10792.7, + "end": 10798.22, + "probability": 0.7416 + }, + { + "start": 10798.28, + "end": 10800.26, + "probability": 0.8959 + }, + { + "start": 10801.88, + "end": 10803.36, + "probability": 0.042 + }, + { + "start": 10803.5, + "end": 10804.7, + "probability": 0.053 + }, + { + "start": 10804.7, + "end": 10805.18, + "probability": 0.3876 + }, + { + "start": 10805.18, + "end": 10805.18, + "probability": 0.3441 + }, + { + "start": 10805.18, + "end": 10810.48, + "probability": 0.903 + }, + { + "start": 10810.48, + "end": 10812.52, + "probability": 0.6798 + }, + { + "start": 10812.8, + "end": 10814.34, + "probability": 0.8611 + }, + { + "start": 10814.36, + "end": 10816.48, + "probability": 0.9183 + }, + { + "start": 10816.62, + "end": 10818.5, + "probability": 0.9234 + }, + { + "start": 10818.76, + "end": 10820.76, + "probability": 0.4968 + }, + { + "start": 10821.0, + "end": 10822.34, + "probability": 0.4479 + }, + { + "start": 10822.88, + "end": 10822.98, + "probability": 0.0112 + }, + { + "start": 10822.98, + "end": 10824.6, + "probability": 0.6197 + }, + { + "start": 10824.68, + "end": 10827.0, + "probability": 0.98 + }, + { + "start": 10827.38, + "end": 10834.44, + "probability": 0.9456 + }, + { + "start": 10834.62, + "end": 10835.76, + "probability": 0.105 + }, + { + "start": 10835.76, + "end": 10836.9, + "probability": 0.3357 + }, + { + "start": 10837.22, + "end": 10838.56, + "probability": 0.6288 + }, + { + "start": 10838.88, + "end": 10839.96, + "probability": 0.1742 + }, + { + "start": 10842.19, + "end": 10844.38, + "probability": 0.2189 + }, + { + "start": 10844.74, + "end": 10844.74, + "probability": 0.066 + }, + { + "start": 10844.74, + "end": 10845.74, + "probability": 0.0934 + }, + { + "start": 10846.4, + "end": 10847.44, + "probability": 0.7482 + }, + { + "start": 10847.62, + "end": 10847.68, + "probability": 0.1542 + }, + { + "start": 10847.68, + "end": 10849.58, + "probability": 0.2822 + }, + { + "start": 10849.72, + "end": 10850.62, + "probability": 0.2698 + }, + { + "start": 10851.96, + "end": 10852.66, + "probability": 0.1491 + }, + { + "start": 10853.6, + "end": 10853.66, + "probability": 0.0023 + }, + { + "start": 10853.66, + "end": 10853.66, + "probability": 0.0501 + }, + { + "start": 10853.66, + "end": 10853.66, + "probability": 0.1206 + }, + { + "start": 10853.66, + "end": 10853.66, + "probability": 0.2226 + }, + { + "start": 10853.66, + "end": 10854.68, + "probability": 0.447 + }, + { + "start": 10854.72, + "end": 10856.3, + "probability": 0.957 + }, + { + "start": 10856.54, + "end": 10859.36, + "probability": 0.9656 + }, + { + "start": 10859.8, + "end": 10863.06, + "probability": 0.7407 + }, + { + "start": 10863.16, + "end": 10866.02, + "probability": 0.9791 + }, + { + "start": 10866.42, + "end": 10868.84, + "probability": 0.8269 + }, + { + "start": 10869.34, + "end": 10870.28, + "probability": 0.9154 + }, + { + "start": 10870.72, + "end": 10872.06, + "probability": 0.029 + }, + { + "start": 10872.06, + "end": 10872.44, + "probability": 0.0185 + }, + { + "start": 10872.44, + "end": 10878.28, + "probability": 0.9192 + }, + { + "start": 10878.74, + "end": 10880.04, + "probability": 0.7295 + }, + { + "start": 10880.38, + "end": 10880.6, + "probability": 0.9884 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.0, + "end": 10921.0, + "probability": 0.0 + }, + { + "start": 10921.14, + "end": 10922.58, + "probability": 0.139 + }, + { + "start": 10923.2, + "end": 10923.98, + "probability": 0.5055 + }, + { + "start": 10923.98, + "end": 10925.49, + "probability": 0.9937 + }, + { + "start": 10931.58, + "end": 10931.94, + "probability": 0.1916 + }, + { + "start": 10931.94, + "end": 10932.06, + "probability": 0.0224 + }, + { + "start": 10932.06, + "end": 10932.3, + "probability": 0.1857 + }, + { + "start": 10932.3, + "end": 10932.3, + "probability": 0.0656 + }, + { + "start": 10932.3, + "end": 10932.3, + "probability": 0.0771 + }, + { + "start": 10932.3, + "end": 10932.3, + "probability": 0.1585 + }, + { + "start": 10932.3, + "end": 10933.23, + "probability": 0.6346 + }, + { + "start": 10934.22, + "end": 10935.9, + "probability": 0.9778 + }, + { + "start": 10936.82, + "end": 10937.26, + "probability": 0.4816 + }, + { + "start": 10937.48, + "end": 10938.78, + "probability": 0.642 + }, + { + "start": 10938.8, + "end": 10939.1, + "probability": 0.0075 + }, + { + "start": 10939.16, + "end": 10939.28, + "probability": 0.0047 + }, + { + "start": 10939.28, + "end": 10939.28, + "probability": 0.1246 + }, + { + "start": 10939.28, + "end": 10939.54, + "probability": 0.1873 + }, + { + "start": 10939.54, + "end": 10939.54, + "probability": 0.45 + }, + { + "start": 10939.54, + "end": 10941.06, + "probability": 0.9063 + }, + { + "start": 10941.36, + "end": 10941.56, + "probability": 0.1576 + }, + { + "start": 10942.28, + "end": 10942.28, + "probability": 0.2342 + }, + { + "start": 10942.3, + "end": 10945.5, + "probability": 0.7313 + }, + { + "start": 10945.54, + "end": 10954.9, + "probability": 0.926 + }, + { + "start": 10955.46, + "end": 10956.12, + "probability": 0.5439 + }, + { + "start": 10956.92, + "end": 10959.51, + "probability": 0.9562 + }, + { + "start": 10960.0, + "end": 10960.0, + "probability": 0.0015 + }, + { + "start": 10960.0, + "end": 10961.2, + "probability": 0.7202 + }, + { + "start": 10961.68, + "end": 10963.3, + "probability": 0.8989 + }, + { + "start": 10963.58, + "end": 10965.34, + "probability": 0.8568 + }, + { + "start": 10965.54, + "end": 10966.5, + "probability": 0.7821 + }, + { + "start": 10966.8, + "end": 10967.96, + "probability": 0.996 + }, + { + "start": 10971.84, + "end": 10973.98, + "probability": 0.7483 + }, + { + "start": 10974.36, + "end": 10976.14, + "probability": 0.7004 + }, + { + "start": 10976.96, + "end": 10980.94, + "probability": 0.9697 + }, + { + "start": 10981.16, + "end": 10982.12, + "probability": 0.5236 + }, + { + "start": 10982.56, + "end": 10983.92, + "probability": 0.749 + }, + { + "start": 10984.2, + "end": 10989.24, + "probability": 0.9339 + }, + { + "start": 10989.86, + "end": 10991.06, + "probability": 0.8137 + }, + { + "start": 10991.46, + "end": 10997.3, + "probability": 0.7689 + }, + { + "start": 10997.44, + "end": 10997.98, + "probability": 0.8506 + }, + { + "start": 10998.22, + "end": 11000.02, + "probability": 0.7563 + }, + { + "start": 11000.2, + "end": 11002.28, + "probability": 0.8807 + }, + { + "start": 11002.32, + "end": 11002.44, + "probability": 0.7159 + }, + { + "start": 11002.64, + "end": 11006.12, + "probability": 0.7687 + }, + { + "start": 11006.48, + "end": 11008.12, + "probability": 0.7425 + }, + { + "start": 11008.74, + "end": 11010.0, + "probability": 0.0119 + }, + { + "start": 11010.88, + "end": 11011.16, + "probability": 0.5296 + }, + { + "start": 11011.16, + "end": 11013.36, + "probability": 0.7554 + }, + { + "start": 11013.62, + "end": 11015.94, + "probability": 0.6356 + }, + { + "start": 11016.06, + "end": 11016.78, + "probability": 0.3619 + }, + { + "start": 11016.78, + "end": 11017.5, + "probability": 0.1549 + }, + { + "start": 11017.5, + "end": 11019.5, + "probability": 0.8197 + }, + { + "start": 11019.58, + "end": 11021.48, + "probability": 0.6933 + }, + { + "start": 11021.56, + "end": 11023.34, + "probability": 0.8423 + }, + { + "start": 11023.58, + "end": 11027.74, + "probability": 0.9553 + }, + { + "start": 11029.9, + "end": 11032.24, + "probability": 0.3987 + }, + { + "start": 11033.26, + "end": 11036.9, + "probability": 0.8402 + }, + { + "start": 11037.2, + "end": 11039.86, + "probability": 0.9334 + }, + { + "start": 11040.12, + "end": 11044.82, + "probability": 0.9324 + }, + { + "start": 11045.24, + "end": 11048.16, + "probability": 0.978 + }, + { + "start": 11049.01, + "end": 11052.54, + "probability": 0.4701 + }, + { + "start": 11052.95, + "end": 11053.8, + "probability": 0.3506 + }, + { + "start": 11053.8, + "end": 11056.64, + "probability": 0.4187 + }, + { + "start": 11056.82, + "end": 11058.52, + "probability": 0.0647 + }, + { + "start": 11058.54, + "end": 11061.72, + "probability": 0.3645 + }, + { + "start": 11061.96, + "end": 11063.98, + "probability": 0.8437 + }, + { + "start": 11064.36, + "end": 11065.46, + "probability": 0.5801 + }, + { + "start": 11065.54, + "end": 11066.52, + "probability": 0.6004 + }, + { + "start": 11066.7, + "end": 11068.04, + "probability": 0.9402 + }, + { + "start": 11068.54, + "end": 11069.79, + "probability": 0.7303 + }, + { + "start": 11070.48, + "end": 11071.52, + "probability": 0.4478 + }, + { + "start": 11071.52, + "end": 11071.88, + "probability": 0.6334 + }, + { + "start": 11072.64, + "end": 11073.16, + "probability": 0.0413 + }, + { + "start": 11073.16, + "end": 11073.16, + "probability": 0.118 + }, + { + "start": 11073.16, + "end": 11073.44, + "probability": 0.3813 + }, + { + "start": 11073.6, + "end": 11077.54, + "probability": 0.8979 + }, + { + "start": 11078.12, + "end": 11082.14, + "probability": 0.9053 + }, + { + "start": 11084.28, + "end": 11084.38, + "probability": 0.0391 + }, + { + "start": 11084.38, + "end": 11089.7, + "probability": 0.3406 + }, + { + "start": 11090.43, + "end": 11090.96, + "probability": 0.194 + }, + { + "start": 11090.96, + "end": 11091.32, + "probability": 0.1113 + }, + { + "start": 11091.38, + "end": 11092.2, + "probability": 0.5814 + }, + { + "start": 11092.5, + "end": 11094.8, + "probability": 0.1558 + }, + { + "start": 11095.72, + "end": 11096.64, + "probability": 0.2934 + }, + { + "start": 11096.64, + "end": 11097.8, + "probability": 0.596 + }, + { + "start": 11098.2, + "end": 11100.64, + "probability": 0.051 + }, + { + "start": 11101.02, + "end": 11101.54, + "probability": 0.0245 + }, + { + "start": 11102.8, + "end": 11105.64, + "probability": 0.0298 + }, + { + "start": 11106.82, + "end": 11114.88, + "probability": 0.1534 + }, + { + "start": 11114.88, + "end": 11116.16, + "probability": 0.0445 + }, + { + "start": 11116.16, + "end": 11117.2, + "probability": 0.036 + }, + { + "start": 11119.16, + "end": 11121.82, + "probability": 0.0678 + }, + { + "start": 11122.02, + "end": 11122.54, + "probability": 0.1677 + }, + { + "start": 11122.54, + "end": 11122.58, + "probability": 0.1367 + }, + { + "start": 11122.84, + "end": 11122.84, + "probability": 0.3399 + }, + { + "start": 11122.84, + "end": 11122.92, + "probability": 0.3726 + }, + { + "start": 11122.92, + "end": 11127.42, + "probability": 0.1673 + }, + { + "start": 11127.48, + "end": 11127.48, + "probability": 0.0547 + }, + { + "start": 11128.34, + "end": 11129.22, + "probability": 0.5176 + }, + { + "start": 11131.5, + "end": 11131.62, + "probability": 0.0076 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.0, + "end": 11140.0, + "probability": 0.0 + }, + { + "start": 11140.84, + "end": 11141.08, + "probability": 0.0217 + }, + { + "start": 11143.22, + "end": 11143.54, + "probability": 0.4434 + }, + { + "start": 11143.54, + "end": 11146.37, + "probability": 0.0494 + }, + { + "start": 11146.44, + "end": 11146.44, + "probability": 0.055 + }, + { + "start": 11146.72, + "end": 11148.68, + "probability": 0.0108 + }, + { + "start": 11149.62, + "end": 11152.08, + "probability": 0.2287 + }, + { + "start": 11152.2, + "end": 11153.28, + "probability": 0.2871 + }, + { + "start": 11153.58, + "end": 11153.7, + "probability": 0.4748 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.0, + "end": 11265.0, + "probability": 0.0 + }, + { + "start": 11265.6, + "end": 11265.6, + "probability": 0.0771 + }, + { + "start": 11265.6, + "end": 11265.6, + "probability": 0.0099 + }, + { + "start": 11265.6, + "end": 11265.96, + "probability": 0.147 + }, + { + "start": 11266.48, + "end": 11268.32, + "probability": 0.7155 + }, + { + "start": 11268.68, + "end": 11270.22, + "probability": 0.3146 + }, + { + "start": 11270.76, + "end": 11271.7, + "probability": 0.3112 + }, + { + "start": 11271.78, + "end": 11274.12, + "probability": 0.7843 + }, + { + "start": 11274.12, + "end": 11276.14, + "probability": 0.6663 + }, + { + "start": 11276.58, + "end": 11279.66, + "probability": 0.7376 + }, + { + "start": 11279.78, + "end": 11281.08, + "probability": 0.3096 + }, + { + "start": 11281.16, + "end": 11281.22, + "probability": 0.0501 + }, + { + "start": 11281.22, + "end": 11283.12, + "probability": 0.7502 + }, + { + "start": 11283.38, + "end": 11284.52, + "probability": 0.5567 + }, + { + "start": 11286.8, + "end": 11286.9, + "probability": 0.2204 + }, + { + "start": 11297.98, + "end": 11303.28, + "probability": 0.2291 + }, + { + "start": 11303.34, + "end": 11305.04, + "probability": 0.2523 + }, + { + "start": 11306.56, + "end": 11307.98, + "probability": 0.361 + }, + { + "start": 11308.1, + "end": 11313.96, + "probability": 0.7106 + }, + { + "start": 11313.96, + "end": 11314.1, + "probability": 0.4009 + }, + { + "start": 11314.38, + "end": 11314.54, + "probability": 0.0065 + }, + { + "start": 11314.54, + "end": 11315.64, + "probability": 0.2259 + }, + { + "start": 11315.64, + "end": 11316.04, + "probability": 0.1232 + }, + { + "start": 11316.2, + "end": 11317.02, + "probability": 0.31 + }, + { + "start": 11317.46, + "end": 11318.84, + "probability": 0.7231 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.0, + "end": 11385.0, + "probability": 0.0 + }, + { + "start": 11385.16, + "end": 11385.16, + "probability": 0.2555 + }, + { + "start": 11385.16, + "end": 11386.42, + "probability": 0.3441 + }, + { + "start": 11387.3, + "end": 11392.56, + "probability": 0.9893 + }, + { + "start": 11392.8, + "end": 11397.84, + "probability": 0.996 + }, + { + "start": 11398.24, + "end": 11400.12, + "probability": 0.9958 + }, + { + "start": 11400.26, + "end": 11400.34, + "probability": 0.4879 + }, + { + "start": 11400.4, + "end": 11401.1, + "probability": 0.946 + }, + { + "start": 11401.2, + "end": 11402.74, + "probability": 0.8756 + }, + { + "start": 11402.88, + "end": 11405.8, + "probability": 0.9883 + }, + { + "start": 11406.22, + "end": 11409.82, + "probability": 0.9941 + }, + { + "start": 11410.54, + "end": 11411.86, + "probability": 0.9137 + }, + { + "start": 11412.6, + "end": 11414.96, + "probability": 0.7982 + }, + { + "start": 11415.62, + "end": 11419.42, + "probability": 0.9919 + }, + { + "start": 11419.92, + "end": 11421.46, + "probability": 0.9345 + }, + { + "start": 11422.0, + "end": 11422.32, + "probability": 0.821 + }, + { + "start": 11423.64, + "end": 11427.48, + "probability": 0.9865 + }, + { + "start": 11428.08, + "end": 11433.94, + "probability": 0.9585 + }, + { + "start": 11434.2, + "end": 11434.62, + "probability": 0.0103 + }, + { + "start": 11434.78, + "end": 11442.72, + "probability": 0.9958 + }, + { + "start": 11443.72, + "end": 11445.5, + "probability": 0.6379 + }, + { + "start": 11445.84, + "end": 11446.64, + "probability": 0.3877 + }, + { + "start": 11447.0, + "end": 11448.91, + "probability": 0.7291 + }, + { + "start": 11449.32, + "end": 11449.79, + "probability": 0.754 + }, + { + "start": 11449.92, + "end": 11450.58, + "probability": 0.6275 + }, + { + "start": 11450.68, + "end": 11450.92, + "probability": 0.3837 + }, + { + "start": 11450.94, + "end": 11451.82, + "probability": 0.8779 + }, + { + "start": 11452.16, + "end": 11453.54, + "probability": 0.8769 + }, + { + "start": 11454.14, + "end": 11455.3, + "probability": 0.8551 + }, + { + "start": 11455.56, + "end": 11458.54, + "probability": 0.7966 + }, + { + "start": 11458.72, + "end": 11459.14, + "probability": 0.766 + }, + { + "start": 11459.16, + "end": 11461.03, + "probability": 0.3881 + }, + { + "start": 11461.18, + "end": 11463.3, + "probability": 0.8228 + }, + { + "start": 11463.36, + "end": 11465.27, + "probability": 0.8252 + }, + { + "start": 11465.32, + "end": 11466.09, + "probability": 0.2131 + }, + { + "start": 11466.48, + "end": 11467.38, + "probability": 0.3843 + }, + { + "start": 11468.99, + "end": 11471.24, + "probability": 0.3659 + }, + { + "start": 11471.26, + "end": 11473.86, + "probability": 0.5729 + }, + { + "start": 11473.88, + "end": 11475.23, + "probability": 0.7422 + }, + { + "start": 11475.5, + "end": 11476.48, + "probability": 0.788 + }, + { + "start": 11476.88, + "end": 11479.04, + "probability": 0.908 + }, + { + "start": 11479.98, + "end": 11480.72, + "probability": 0.1555 + }, + { + "start": 11480.72, + "end": 11480.72, + "probability": 0.0479 + }, + { + "start": 11480.72, + "end": 11480.72, + "probability": 0.0881 + }, + { + "start": 11480.72, + "end": 11481.83, + "probability": 0.4563 + }, + { + "start": 11482.42, + "end": 11483.12, + "probability": 0.6389 + }, + { + "start": 11483.6, + "end": 11483.8, + "probability": 0.7473 + }, + { + "start": 11483.98, + "end": 11486.54, + "probability": 0.7349 + }, + { + "start": 11486.62, + "end": 11487.12, + "probability": 0.8633 + }, + { + "start": 11487.73, + "end": 11489.0, + "probability": 0.3072 + }, + { + "start": 11489.0, + "end": 11489.04, + "probability": 0.7523 + }, + { + "start": 11489.18, + "end": 11489.28, + "probability": 0.1691 + }, + { + "start": 11489.36, + "end": 11489.63, + "probability": 0.0231 + }, + { + "start": 11489.76, + "end": 11491.98, + "probability": 0.8188 + }, + { + "start": 11492.2, + "end": 11493.2, + "probability": 0.1703 + }, + { + "start": 11493.32, + "end": 11493.78, + "probability": 0.8811 + }, + { + "start": 11494.7, + "end": 11496.84, + "probability": 0.929 + }, + { + "start": 11498.24, + "end": 11500.52, + "probability": 0.9265 + }, + { + "start": 11500.7, + "end": 11505.88, + "probability": 0.9867 + }, + { + "start": 11506.16, + "end": 11507.08, + "probability": 0.8244 + }, + { + "start": 11507.14, + "end": 11507.88, + "probability": 0.8438 + }, + { + "start": 11508.08, + "end": 11508.1, + "probability": 0.0123 + }, + { + "start": 11508.1, + "end": 11508.76, + "probability": 0.8076 + }, + { + "start": 11508.92, + "end": 11509.9, + "probability": 0.9087 + }, + { + "start": 11510.18, + "end": 11510.9, + "probability": 0.9746 + }, + { + "start": 11510.92, + "end": 11511.6, + "probability": 0.988 + }, + { + "start": 11511.7, + "end": 11513.22, + "probability": 0.8896 + }, + { + "start": 11513.72, + "end": 11515.08, + "probability": 0.8824 + }, + { + "start": 11515.28, + "end": 11516.12, + "probability": 0.9169 + }, + { + "start": 11516.4, + "end": 11521.2, + "probability": 0.9912 + }, + { + "start": 11524.36, + "end": 11525.4, + "probability": 0.8913 + }, + { + "start": 11525.54, + "end": 11526.9, + "probability": 0.8621 + }, + { + "start": 11529.1, + "end": 11530.9, + "probability": 0.449 + }, + { + "start": 11531.3, + "end": 11534.28, + "probability": 0.9312 + }, + { + "start": 11534.28, + "end": 11535.74, + "probability": 0.9864 + }, + { + "start": 11536.08, + "end": 11537.94, + "probability": 0.8147 + }, + { + "start": 11538.06, + "end": 11540.62, + "probability": 0.6964 + }, + { + "start": 11541.08, + "end": 11541.7, + "probability": 0.4395 + }, + { + "start": 11541.82, + "end": 11542.9, + "probability": 0.6227 + }, + { + "start": 11546.8, + "end": 11548.08, + "probability": 0.7485 + }, + { + "start": 11548.96, + "end": 11555.0, + "probability": 0.9906 + }, + { + "start": 11555.28, + "end": 11559.52, + "probability": 0.9941 + }, + { + "start": 11559.52, + "end": 11566.02, + "probability": 0.9945 + }, + { + "start": 11566.48, + "end": 11572.38, + "probability": 0.9992 + }, + { + "start": 11572.56, + "end": 11573.5, + "probability": 0.7137 + }, + { + "start": 11573.84, + "end": 11574.94, + "probability": 0.9526 + }, + { + "start": 11575.1, + "end": 11576.52, + "probability": 0.8589 + }, + { + "start": 11576.58, + "end": 11577.04, + "probability": 0.8855 + }, + { + "start": 11577.24, + "end": 11577.86, + "probability": 0.9473 + }, + { + "start": 11578.86, + "end": 11581.28, + "probability": 0.9661 + }, + { + "start": 11581.66, + "end": 11582.76, + "probability": 0.6235 + }, + { + "start": 11582.88, + "end": 11586.4, + "probability": 0.6867 + }, + { + "start": 11586.4, + "end": 11586.74, + "probability": 0.4534 + }, + { + "start": 11586.86, + "end": 11587.58, + "probability": 0.8517 + }, + { + "start": 11587.92, + "end": 11589.68, + "probability": 0.7953 + }, + { + "start": 11589.82, + "end": 11591.6, + "probability": 0.9976 + }, + { + "start": 11592.02, + "end": 11592.84, + "probability": 0.8473 + }, + { + "start": 11592.92, + "end": 11596.16, + "probability": 0.9979 + }, + { + "start": 11596.16, + "end": 11601.7, + "probability": 0.9712 + }, + { + "start": 11601.7, + "end": 11607.3, + "probability": 0.9296 + }, + { + "start": 11607.64, + "end": 11609.5, + "probability": 0.2107 + }, + { + "start": 11609.68, + "end": 11610.34, + "probability": 0.5501 + }, + { + "start": 11610.44, + "end": 11610.76, + "probability": 0.6086 + }, + { + "start": 11611.02, + "end": 11612.04, + "probability": 0.5222 + }, + { + "start": 11612.28, + "end": 11613.1, + "probability": 0.252 + }, + { + "start": 11613.36, + "end": 11614.38, + "probability": 0.2634 + }, + { + "start": 11614.52, + "end": 11614.86, + "probability": 0.5344 + }, + { + "start": 11614.86, + "end": 11615.4, + "probability": 0.0954 + }, + { + "start": 11615.7, + "end": 11618.6, + "probability": 0.5903 + }, + { + "start": 11618.86, + "end": 11621.6, + "probability": 0.1315 + }, + { + "start": 11621.7, + "end": 11622.3, + "probability": 0.2554 + }, + { + "start": 11623.2, + "end": 11624.54, + "probability": 0.7104 + }, + { + "start": 11625.1, + "end": 11628.72, + "probability": 0.8848 + }, + { + "start": 11628.72, + "end": 11633.0, + "probability": 0.9056 + }, + { + "start": 11633.42, + "end": 11637.66, + "probability": 0.9843 + }, + { + "start": 11637.92, + "end": 11639.0, + "probability": 0.9167 + }, + { + "start": 11639.36, + "end": 11640.42, + "probability": 0.9891 + }, + { + "start": 11640.76, + "end": 11642.52, + "probability": 0.9663 + }, + { + "start": 11642.94, + "end": 11645.56, + "probability": 0.9834 + }, + { + "start": 11646.14, + "end": 11651.24, + "probability": 0.9316 + }, + { + "start": 11651.34, + "end": 11651.72, + "probability": 0.81 + }, + { + "start": 11652.6, + "end": 11657.02, + "probability": 0.8384 + }, + { + "start": 11657.02, + "end": 11661.16, + "probability": 0.9797 + }, + { + "start": 11661.74, + "end": 11667.2, + "probability": 0.9961 + }, + { + "start": 11667.72, + "end": 11668.48, + "probability": 0.962 + }, + { + "start": 11669.32, + "end": 11670.76, + "probability": 0.8875 + }, + { + "start": 11671.42, + "end": 11675.1, + "probability": 0.9907 + }, + { + "start": 11675.72, + "end": 11676.42, + "probability": 0.7614 + }, + { + "start": 11677.1, + "end": 11681.28, + "probability": 0.9971 + }, + { + "start": 11681.48, + "end": 11683.47, + "probability": 0.9775 + }, + { + "start": 11685.86, + "end": 11688.66, + "probability": 0.3192 + }, + { + "start": 11688.66, + "end": 11689.16, + "probability": 0.8557 + }, + { + "start": 11689.88, + "end": 11692.2, + "probability": 0.9761 + }, + { + "start": 11692.9, + "end": 11694.7, + "probability": 0.8934 + }, + { + "start": 11694.78, + "end": 11699.7, + "probability": 0.8297 + }, + { + "start": 11699.82, + "end": 11703.36, + "probability": 0.9775 + }, + { + "start": 11704.34, + "end": 11707.9, + "probability": 0.6738 + }, + { + "start": 11709.23, + "end": 11712.98, + "probability": 0.8237 + }, + { + "start": 11713.1, + "end": 11719.82, + "probability": 0.9991 + }, + { + "start": 11719.92, + "end": 11724.3, + "probability": 0.9907 + }, + { + "start": 11724.3, + "end": 11728.48, + "probability": 0.9965 + }, + { + "start": 11728.6, + "end": 11730.62, + "probability": 0.4347 + }, + { + "start": 11730.92, + "end": 11734.64, + "probability": 0.9558 + }, + { + "start": 11735.2, + "end": 11738.76, + "probability": 0.5654 + }, + { + "start": 11744.82, + "end": 11744.9, + "probability": 0.2342 + }, + { + "start": 11744.9, + "end": 11746.24, + "probability": 0.9941 + }, + { + "start": 11747.0, + "end": 11747.46, + "probability": 0.5116 + }, + { + "start": 11747.5, + "end": 11749.22, + "probability": 0.5425 + }, + { + "start": 11749.58, + "end": 11750.46, + "probability": 0.5463 + }, + { + "start": 11750.82, + "end": 11750.98, + "probability": 0.2934 + }, + { + "start": 11751.36, + "end": 11754.24, + "probability": 0.646 + }, + { + "start": 11754.32, + "end": 11754.72, + "probability": 0.4951 + }, + { + "start": 11756.84, + "end": 11759.68, + "probability": 0.3794 + }, + { + "start": 11759.82, + "end": 11761.66, + "probability": 0.558 + }, + { + "start": 11761.7, + "end": 11762.88, + "probability": 0.5882 + }, + { + "start": 11764.9, + "end": 11767.42, + "probability": 0.5253 + }, + { + "start": 11767.86, + "end": 11768.54, + "probability": 0.725 + }, + { + "start": 11768.66, + "end": 11770.2, + "probability": 0.3513 + }, + { + "start": 11770.72, + "end": 11770.96, + "probability": 0.6148 + }, + { + "start": 11771.08, + "end": 11771.08, + "probability": 0.1817 + }, + { + "start": 11771.08, + "end": 11771.08, + "probability": 0.3077 + }, + { + "start": 11771.08, + "end": 11775.48, + "probability": 0.7067 + }, + { + "start": 11775.66, + "end": 11777.54, + "probability": 0.9597 + }, + { + "start": 11777.74, + "end": 11778.32, + "probability": 0.6731 + }, + { + "start": 11778.86, + "end": 11782.06, + "probability": 0.9848 + }, + { + "start": 11782.28, + "end": 11784.36, + "probability": 0.8364 + }, + { + "start": 11784.48, + "end": 11786.0, + "probability": 0.9384 + }, + { + "start": 11786.2, + "end": 11789.82, + "probability": 0.8279 + }, + { + "start": 11790.26, + "end": 11793.76, + "probability": 0.7204 + }, + { + "start": 11793.78, + "end": 11793.84, + "probability": 0.5068 + }, + { + "start": 11793.84, + "end": 11794.36, + "probability": 0.8248 + }, + { + "start": 11794.56, + "end": 11795.1, + "probability": 0.9384 + }, + { + "start": 11795.18, + "end": 11797.22, + "probability": 0.6998 + }, + { + "start": 11797.6, + "end": 11799.56, + "probability": 0.951 + }, + { + "start": 11800.12, + "end": 11803.18, + "probability": 0.9645 + }, + { + "start": 11803.56, + "end": 11809.8, + "probability": 0.989 + }, + { + "start": 11810.2, + "end": 11810.22, + "probability": 0.3373 + }, + { + "start": 11810.22, + "end": 11812.14, + "probability": 0.9272 + }, + { + "start": 11812.82, + "end": 11814.66, + "probability": 0.1791 + }, + { + "start": 11815.22, + "end": 11817.38, + "probability": 0.1831 + }, + { + "start": 11817.92, + "end": 11819.0, + "probability": 0.0064 + }, + { + "start": 11819.0, + "end": 11820.7, + "probability": 0.5225 + }, + { + "start": 11820.7, + "end": 11822.1, + "probability": 0.5679 + }, + { + "start": 11822.22, + "end": 11823.49, + "probability": 0.9285 + }, + { + "start": 11823.76, + "end": 11824.84, + "probability": 0.8853 + }, + { + "start": 11826.16, + "end": 11827.48, + "probability": 0.1597 + }, + { + "start": 11827.48, + "end": 11828.3, + "probability": 0.093 + }, + { + "start": 11828.42, + "end": 11829.03, + "probability": 0.2567 + }, + { + "start": 11829.34, + "end": 11830.16, + "probability": 0.4742 + }, + { + "start": 11830.56, + "end": 11833.44, + "probability": 0.9775 + }, + { + "start": 11834.02, + "end": 11834.12, + "probability": 0.0629 + }, + { + "start": 11834.12, + "end": 11837.26, + "probability": 0.9498 + }, + { + "start": 11837.32, + "end": 11838.22, + "probability": 0.7898 + }, + { + "start": 11838.38, + "end": 11839.36, + "probability": 0.9645 + }, + { + "start": 11839.44, + "end": 11840.1, + "probability": 0.6225 + }, + { + "start": 11840.18, + "end": 11840.3, + "probability": 0.2191 + }, + { + "start": 11840.46, + "end": 11842.88, + "probability": 0.5957 + }, + { + "start": 11843.14, + "end": 11845.04, + "probability": 0.659 + }, + { + "start": 11845.04, + "end": 11847.04, + "probability": 0.2589 + }, + { + "start": 11847.34, + "end": 11847.82, + "probability": 0.1583 + }, + { + "start": 11848.98, + "end": 11850.44, + "probability": 0.9419 + }, + { + "start": 11850.5, + "end": 11851.56, + "probability": 0.656 + }, + { + "start": 11851.68, + "end": 11852.2, + "probability": 0.6404 + }, + { + "start": 11853.1, + "end": 11854.32, + "probability": 0.8213 + }, + { + "start": 11854.94, + "end": 11857.02, + "probability": 0.268 + }, + { + "start": 11857.02, + "end": 11859.82, + "probability": 0.3522 + }, + { + "start": 11862.22, + "end": 11865.98, + "probability": 0.5824 + }, + { + "start": 11866.08, + "end": 11867.26, + "probability": 0.7826 + }, + { + "start": 11867.42, + "end": 11868.8, + "probability": 0.8447 + }, + { + "start": 11868.8, + "end": 11869.22, + "probability": 0.9401 + }, + { + "start": 11869.22, + "end": 11873.12, + "probability": 0.5391 + }, + { + "start": 11873.68, + "end": 11875.7, + "probability": 0.0489 + }, + { + "start": 11877.6, + "end": 11879.8, + "probability": 0.7506 + }, + { + "start": 11879.86, + "end": 11881.16, + "probability": 0.7047 + }, + { + "start": 11881.58, + "end": 11882.52, + "probability": 0.3305 + }, + { + "start": 11884.24, + "end": 11892.34, + "probability": 0.6273 + }, + { + "start": 11897.42, + "end": 11900.86, + "probability": 0.3564 + }, + { + "start": 11900.96, + "end": 11901.64, + "probability": 0.6978 + }, + { + "start": 11901.9, + "end": 11903.06, + "probability": 0.3101 + }, + { + "start": 11903.6, + "end": 11904.26, + "probability": 0.3698 + }, + { + "start": 11904.26, + "end": 11904.26, + "probability": 0.5843 + }, + { + "start": 11904.36, + "end": 11908.18, + "probability": 0.9893 + }, + { + "start": 11908.62, + "end": 11910.58, + "probability": 0.6692 + }, + { + "start": 11910.74, + "end": 11911.3, + "probability": 0.8816 + }, + { + "start": 11911.56, + "end": 11912.53, + "probability": 0.9551 + }, + { + "start": 11912.62, + "end": 11913.92, + "probability": 0.9979 + }, + { + "start": 11914.04, + "end": 11915.8, + "probability": 0.947 + }, + { + "start": 11915.8, + "end": 11918.28, + "probability": 0.9709 + }, + { + "start": 11919.04, + "end": 11919.52, + "probability": 0.7707 + }, + { + "start": 11919.58, + "end": 11920.43, + "probability": 0.0985 + }, + { + "start": 11920.82, + "end": 11922.96, + "probability": 0.7865 + }, + { + "start": 11923.18, + "end": 11923.46, + "probability": 0.4921 + }, + { + "start": 11923.8, + "end": 11926.7, + "probability": 0.5234 + }, + { + "start": 11927.18, + "end": 11930.22, + "probability": 0.9946 + }, + { + "start": 11930.22, + "end": 11933.32, + "probability": 0.9914 + }, + { + "start": 11933.76, + "end": 11937.64, + "probability": 0.9697 + }, + { + "start": 11937.64, + "end": 11942.3, + "probability": 0.9978 + }, + { + "start": 11942.8, + "end": 11945.56, + "probability": 0.9856 + }, + { + "start": 11945.96, + "end": 11948.64, + "probability": 0.9475 + }, + { + "start": 11948.64, + "end": 11951.96, + "probability": 0.9935 + }, + { + "start": 11952.12, + "end": 11953.3, + "probability": 0.8271 + }, + { + "start": 11953.62, + "end": 11954.96, + "probability": 0.8482 + }, + { + "start": 11955.28, + "end": 11957.06, + "probability": 0.7512 + }, + { + "start": 11957.46, + "end": 11964.12, + "probability": 0.9581 + }, + { + "start": 11965.06, + "end": 11966.58, + "probability": 0.6024 + }, + { + "start": 11967.22, + "end": 11967.98, + "probability": 0.6901 + }, + { + "start": 11968.94, + "end": 11972.22, + "probability": 0.9914 + }, + { + "start": 11972.7, + "end": 11977.9, + "probability": 0.9702 + }, + { + "start": 11977.9, + "end": 11982.3, + "probability": 0.9976 + }, + { + "start": 11982.3, + "end": 11986.86, + "probability": 0.9996 + }, + { + "start": 11987.36, + "end": 11989.42, + "probability": 0.8612 + }, + { + "start": 11989.9, + "end": 11991.06, + "probability": 0.8394 + }, + { + "start": 11991.52, + "end": 11992.98, + "probability": 0.9546 + }, + { + "start": 11993.34, + "end": 11996.68, + "probability": 0.9968 + }, + { + "start": 11996.68, + "end": 12001.7, + "probability": 0.9915 + }, + { + "start": 12001.8, + "end": 12002.32, + "probability": 0.9857 + }, + { + "start": 12002.48, + "end": 12003.54, + "probability": 0.989 + }, + { + "start": 12004.02, + "end": 12005.02, + "probability": 0.8946 + }, + { + "start": 12005.12, + "end": 12006.24, + "probability": 0.9561 + }, + { + "start": 12006.48, + "end": 12007.84, + "probability": 0.9234 + }, + { + "start": 12008.3, + "end": 12008.98, + "probability": 0.6243 + }, + { + "start": 12009.18, + "end": 12013.08, + "probability": 0.9739 + }, + { + "start": 12013.26, + "end": 12016.46, + "probability": 0.9588 + }, + { + "start": 12016.84, + "end": 12022.44, + "probability": 0.9634 + }, + { + "start": 12023.2, + "end": 12025.78, + "probability": 0.9359 + }, + { + "start": 12025.92, + "end": 12026.82, + "probability": 0.6036 + }, + { + "start": 12026.92, + "end": 12031.44, + "probability": 0.8926 + }, + { + "start": 12032.02, + "end": 12036.98, + "probability": 0.9979 + }, + { + "start": 12037.5, + "end": 12038.18, + "probability": 0.7093 + }, + { + "start": 12038.54, + "end": 12045.24, + "probability": 0.9556 + }, + { + "start": 12045.7, + "end": 12046.74, + "probability": 0.8123 + }, + { + "start": 12047.28, + "end": 12049.46, + "probability": 0.9004 + }, + { + "start": 12049.98, + "end": 12052.74, + "probability": 0.9508 + }, + { + "start": 12052.9, + "end": 12054.8, + "probability": 0.9446 + }, + { + "start": 12054.92, + "end": 12056.9, + "probability": 0.8639 + }, + { + "start": 12058.62, + "end": 12059.5, + "probability": 0.8031 + }, + { + "start": 12059.98, + "end": 12063.94, + "probability": 0.98 + }, + { + "start": 12063.94, + "end": 12068.18, + "probability": 0.9958 + }, + { + "start": 12068.72, + "end": 12073.36, + "probability": 0.999 + }, + { + "start": 12073.36, + "end": 12078.56, + "probability": 0.9944 + }, + { + "start": 12083.58, + "end": 12088.54, + "probability": 0.8836 + }, + { + "start": 12088.62, + "end": 12090.88, + "probability": 0.8752 + }, + { + "start": 12091.82, + "end": 12096.86, + "probability": 0.9903 + }, + { + "start": 12096.86, + "end": 12101.9, + "probability": 0.9404 + }, + { + "start": 12102.38, + "end": 12103.52, + "probability": 0.9219 + }, + { + "start": 12103.98, + "end": 12106.92, + "probability": 0.9978 + }, + { + "start": 12106.92, + "end": 12110.84, + "probability": 0.9943 + }, + { + "start": 12111.3, + "end": 12112.12, + "probability": 0.9227 + }, + { + "start": 12112.6, + "end": 12114.4, + "probability": 0.9936 + }, + { + "start": 12115.6, + "end": 12119.78, + "probability": 0.9988 + }, + { + "start": 12120.2, + "end": 12122.66, + "probability": 0.9907 + }, + { + "start": 12122.9, + "end": 12124.4, + "probability": 0.9329 + }, + { + "start": 12132.94, + "end": 12133.34, + "probability": 0.6345 + }, + { + "start": 12133.58, + "end": 12136.76, + "probability": 0.9954 + }, + { + "start": 12136.76, + "end": 12141.32, + "probability": 0.9952 + }, + { + "start": 12141.96, + "end": 12146.66, + "probability": 0.995 + }, + { + "start": 12147.18, + "end": 12149.14, + "probability": 0.9285 + }, + { + "start": 12149.64, + "end": 12152.18, + "probability": 0.8912 + }, + { + "start": 12152.28, + "end": 12156.4, + "probability": 0.9345 + }, + { + "start": 12156.64, + "end": 12157.78, + "probability": 0.3566 + }, + { + "start": 12158.02, + "end": 12158.48, + "probability": 0.9114 + }, + { + "start": 12158.6, + "end": 12159.6, + "probability": 0.8915 + }, + { + "start": 12159.84, + "end": 12160.74, + "probability": 0.9529 + }, + { + "start": 12160.78, + "end": 12161.72, + "probability": 0.9803 + }, + { + "start": 12161.8, + "end": 12162.94, + "probability": 0.9759 + }, + { + "start": 12163.02, + "end": 12163.72, + "probability": 0.7984 + }, + { + "start": 12164.02, + "end": 12169.28, + "probability": 0.9662 + }, + { + "start": 12169.4, + "end": 12170.32, + "probability": 0.5487 + }, + { + "start": 12170.38, + "end": 12171.48, + "probability": 0.5634 + }, + { + "start": 12171.92, + "end": 12173.82, + "probability": 0.5782 + }, + { + "start": 12174.9, + "end": 12175.44, + "probability": 0.5908 + }, + { + "start": 12175.52, + "end": 12177.18, + "probability": 0.9646 + }, + { + "start": 12177.3, + "end": 12180.24, + "probability": 0.8428 + }, + { + "start": 12180.4, + "end": 12181.56, + "probability": 0.6345 + }, + { + "start": 12181.66, + "end": 12182.02, + "probability": 0.8667 + }, + { + "start": 12182.94, + "end": 12183.84, + "probability": 0.7015 + }, + { + "start": 12183.86, + "end": 12186.26, + "probability": 0.9386 + }, + { + "start": 12186.58, + "end": 12187.77, + "probability": 0.1361 + }, + { + "start": 12187.96, + "end": 12188.76, + "probability": 0.0328 + }, + { + "start": 12188.76, + "end": 12189.2, + "probability": 0.3043 + }, + { + "start": 12189.4, + "end": 12190.12, + "probability": 0.8273 + }, + { + "start": 12190.4, + "end": 12191.2, + "probability": 0.874 + }, + { + "start": 12192.16, + "end": 12193.24, + "probability": 0.7319 + }, + { + "start": 12193.62, + "end": 12194.34, + "probability": 0.3203 + }, + { + "start": 12195.4, + "end": 12195.56, + "probability": 0.0354 + }, + { + "start": 12195.56, + "end": 12197.41, + "probability": 0.1536 + }, + { + "start": 12197.48, + "end": 12198.14, + "probability": 0.3798 + }, + { + "start": 12198.14, + "end": 12198.14, + "probability": 0.0314 + }, + { + "start": 12198.32, + "end": 12199.48, + "probability": 0.1053 + }, + { + "start": 12199.82, + "end": 12201.44, + "probability": 0.4229 + }, + { + "start": 12203.46, + "end": 12204.38, + "probability": 0.023 + }, + { + "start": 12211.14, + "end": 12212.9, + "probability": 0.2228 + }, + { + "start": 12214.48, + "end": 12215.58, + "probability": 0.7501 + }, + { + "start": 12229.22, + "end": 12230.94, + "probability": 0.3682 + }, + { + "start": 12231.0, + "end": 12231.08, + "probability": 0.1825 + }, + { + "start": 12231.38, + "end": 12234.04, + "probability": 0.0285 + }, + { + "start": 12234.04, + "end": 12236.52, + "probability": 0.0429 + }, + { + "start": 12262.74, + "end": 12269.4, + "probability": 0.9906 + }, + { + "start": 12270.22, + "end": 12271.98, + "probability": 0.8101 + }, + { + "start": 12272.7, + "end": 12273.92, + "probability": 0.9839 + }, + { + "start": 12275.12, + "end": 12276.42, + "probability": 0.981 + }, + { + "start": 12277.04, + "end": 12282.62, + "probability": 0.7858 + }, + { + "start": 12283.56, + "end": 12284.64, + "probability": 0.9309 + }, + { + "start": 12285.66, + "end": 12286.46, + "probability": 0.7351 + }, + { + "start": 12287.34, + "end": 12291.48, + "probability": 0.9775 + }, + { + "start": 12291.68, + "end": 12294.44, + "probability": 0.8943 + }, + { + "start": 12295.26, + "end": 12298.94, + "probability": 0.9722 + }, + { + "start": 12299.56, + "end": 12300.44, + "probability": 0.9811 + }, + { + "start": 12300.6, + "end": 12304.56, + "probability": 0.9303 + }, + { + "start": 12304.98, + "end": 12305.86, + "probability": 0.912 + }, + { + "start": 12306.28, + "end": 12307.3, + "probability": 0.8729 + }, + { + "start": 12307.38, + "end": 12308.94, + "probability": 0.71 + }, + { + "start": 12308.96, + "end": 12310.08, + "probability": 0.9736 + }, + { + "start": 12310.14, + "end": 12312.48, + "probability": 0.9814 + }, + { + "start": 12312.72, + "end": 12315.3, + "probability": 0.9706 + }, + { + "start": 12316.1, + "end": 12320.42, + "probability": 0.9932 + }, + { + "start": 12320.54, + "end": 12322.98, + "probability": 0.7144 + }, + { + "start": 12323.54, + "end": 12325.2, + "probability": 0.882 + }, + { + "start": 12325.6, + "end": 12326.32, + "probability": 0.677 + }, + { + "start": 12326.44, + "end": 12326.82, + "probability": 0.7964 + }, + { + "start": 12326.92, + "end": 12327.44, + "probability": 0.5889 + }, + { + "start": 12327.6, + "end": 12328.12, + "probability": 0.5185 + }, + { + "start": 12328.12, + "end": 12329.66, + "probability": 0.8435 + }, + { + "start": 12329.92, + "end": 12330.38, + "probability": 0.6852 + }, + { + "start": 12330.44, + "end": 12331.8, + "probability": 0.9832 + }, + { + "start": 12332.24, + "end": 12334.32, + "probability": 0.9263 + }, + { + "start": 12334.66, + "end": 12335.5, + "probability": 0.8723 + }, + { + "start": 12335.64, + "end": 12337.0, + "probability": 0.9822 + }, + { + "start": 12337.48, + "end": 12338.26, + "probability": 0.7715 + }, + { + "start": 12338.7, + "end": 12339.14, + "probability": 0.0208 + }, + { + "start": 12339.3, + "end": 12339.84, + "probability": 0.0633 + }, + { + "start": 12340.32, + "end": 12341.34, + "probability": 0.6928 + }, + { + "start": 12341.84, + "end": 12343.24, + "probability": 0.8452 + }, + { + "start": 12343.64, + "end": 12344.16, + "probability": 0.5372 + }, + { + "start": 12344.58, + "end": 12345.56, + "probability": 0.325 + }, + { + "start": 12345.56, + "end": 12346.78, + "probability": 0.1234 + }, + { + "start": 12357.54, + "end": 12358.4, + "probability": 0.0343 + }, + { + "start": 12358.62, + "end": 12360.56, + "probability": 0.1289 + }, + { + "start": 12360.74, + "end": 12360.74, + "probability": 0.1741 + }, + { + "start": 12360.8, + "end": 12362.19, + "probability": 0.041 + }, + { + "start": 12363.36, + "end": 12363.78, + "probability": 0.4348 + }, + { + "start": 12363.78, + "end": 12363.78, + "probability": 0.2653 + }, + { + "start": 12363.78, + "end": 12363.78, + "probability": 0.3939 + }, + { + "start": 12363.92, + "end": 12364.88, + "probability": 0.1435 + }, + { + "start": 12364.88, + "end": 12365.58, + "probability": 0.088 + }, + { + "start": 12365.66, + "end": 12368.66, + "probability": 0.0221 + }, + { + "start": 12369.42, + "end": 12374.66, + "probability": 0.0405 + }, + { + "start": 12374.66, + "end": 12374.66, + "probability": 0.0657 + }, + { + "start": 12374.66, + "end": 12375.12, + "probability": 0.0159 + }, + { + "start": 12375.66, + "end": 12379.12, + "probability": 0.0747 + }, + { + "start": 12379.34, + "end": 12380.67, + "probability": 0.0303 + }, + { + "start": 12381.7, + "end": 12383.76, + "probability": 0.0262 + }, + { + "start": 12383.76, + "end": 12383.96, + "probability": 0.0664 + }, + { + "start": 12398.92, + "end": 12399.4, + "probability": 0.0155 + }, + { + "start": 12400.94, + "end": 12403.28, + "probability": 0.0705 + }, + { + "start": 12403.98, + "end": 12404.12, + "probability": 0.1285 + }, + { + "start": 12404.12, + "end": 12407.02, + "probability": 0.3591 + }, + { + "start": 12407.32, + "end": 12408.04, + "probability": 0.142 + }, + { + "start": 12408.04, + "end": 12408.18, + "probability": 0.1275 + }, + { + "start": 12408.44, + "end": 12408.94, + "probability": 0.0364 + }, + { + "start": 12411.42, + "end": 12411.92, + "probability": 0.0186 + }, + { + "start": 12412.44, + "end": 12418.36, + "probability": 0.1675 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.0, + "end": 12420.0, + "probability": 0.0 + }, + { + "start": 12420.18, + "end": 12420.62, + "probability": 0.015 + }, + { + "start": 12421.06, + "end": 12422.1, + "probability": 0.948 + }, + { + "start": 12422.14, + "end": 12423.56, + "probability": 0.8717 + }, + { + "start": 12424.2, + "end": 12426.1, + "probability": 0.8425 + }, + { + "start": 12426.26, + "end": 12427.12, + "probability": 0.5976 + }, + { + "start": 12427.18, + "end": 12428.72, + "probability": 0.8415 + }, + { + "start": 12429.02, + "end": 12429.54, + "probability": 0.9267 + }, + { + "start": 12430.06, + "end": 12431.98, + "probability": 0.9764 + }, + { + "start": 12432.16, + "end": 12432.36, + "probability": 0.6816 + }, + { + "start": 12432.86, + "end": 12435.92, + "probability": 0.8906 + }, + { + "start": 12436.18, + "end": 12438.3, + "probability": 0.9731 + }, + { + "start": 12438.9, + "end": 12440.34, + "probability": 0.7598 + }, + { + "start": 12440.4, + "end": 12441.44, + "probability": 0.9623 + }, + { + "start": 12441.78, + "end": 12444.1, + "probability": 0.9953 + }, + { + "start": 12444.58, + "end": 12446.12, + "probability": 0.9644 + }, + { + "start": 12446.36, + "end": 12449.22, + "probability": 0.9946 + }, + { + "start": 12449.52, + "end": 12452.36, + "probability": 0.6777 + }, + { + "start": 12452.8, + "end": 12455.58, + "probability": 0.9656 + }, + { + "start": 12455.74, + "end": 12455.94, + "probability": 0.7014 + }, + { + "start": 12456.3, + "end": 12457.66, + "probability": 0.8802 + }, + { + "start": 12457.92, + "end": 12460.26, + "probability": 0.9784 + }, + { + "start": 12460.88, + "end": 12461.83, + "probability": 0.9679 + }, + { + "start": 12462.36, + "end": 12463.26, + "probability": 0.8187 + }, + { + "start": 12463.34, + "end": 12464.14, + "probability": 0.864 + }, + { + "start": 12464.46, + "end": 12465.3, + "probability": 0.6763 + }, + { + "start": 12465.34, + "end": 12466.24, + "probability": 0.7084 + }, + { + "start": 12466.52, + "end": 12469.74, + "probability": 0.989 + }, + { + "start": 12470.0, + "end": 12471.52, + "probability": 0.9793 + }, + { + "start": 12471.78, + "end": 12472.32, + "probability": 0.8356 + }, + { + "start": 12472.58, + "end": 12472.6, + "probability": 0.463 + }, + { + "start": 12472.6, + "end": 12473.22, + "probability": 0.5691 + }, + { + "start": 12473.4, + "end": 12473.74, + "probability": 0.3952 + }, + { + "start": 12473.84, + "end": 12474.52, + "probability": 0.9341 + }, + { + "start": 12475.28, + "end": 12478.12, + "probability": 0.46 + }, + { + "start": 12478.44, + "end": 12481.96, + "probability": 0.9695 + }, + { + "start": 12482.2, + "end": 12482.5, + "probability": 0.8608 + }, + { + "start": 12482.54, + "end": 12483.28, + "probability": 0.8929 + }, + { + "start": 12483.36, + "end": 12484.06, + "probability": 0.7623 + }, + { + "start": 12484.34, + "end": 12485.48, + "probability": 0.8419 + }, + { + "start": 12485.6, + "end": 12486.6, + "probability": 0.96 + }, + { + "start": 12486.98, + "end": 12488.76, + "probability": 0.5407 + }, + { + "start": 12489.36, + "end": 12489.36, + "probability": 0.8901 + }, + { + "start": 12489.94, + "end": 12494.38, + "probability": 0.971 + }, + { + "start": 12495.0, + "end": 12499.18, + "probability": 0.9637 + }, + { + "start": 12499.54, + "end": 12500.96, + "probability": 0.6504 + }, + { + "start": 12501.26, + "end": 12504.24, + "probability": 0.9977 + }, + { + "start": 12504.54, + "end": 12506.56, + "probability": 0.9751 + }, + { + "start": 12506.9, + "end": 12509.72, + "probability": 0.7877 + }, + { + "start": 12510.24, + "end": 12512.0, + "probability": 0.4581 + }, + { + "start": 12512.9, + "end": 12514.2, + "probability": 0.7592 + }, + { + "start": 12514.2, + "end": 12517.06, + "probability": 0.9502 + }, + { + "start": 12517.94, + "end": 12520.44, + "probability": 0.802 + }, + { + "start": 12522.63, + "end": 12523.24, + "probability": 0.1447 + }, + { + "start": 12524.24, + "end": 12525.42, + "probability": 0.905 + }, + { + "start": 12525.46, + "end": 12527.66, + "probability": 0.9874 + }, + { + "start": 12528.12, + "end": 12529.02, + "probability": 0.9848 + }, + { + "start": 12529.22, + "end": 12529.94, + "probability": 0.9871 + }, + { + "start": 12530.1, + "end": 12530.82, + "probability": 0.9517 + }, + { + "start": 12530.94, + "end": 12532.06, + "probability": 0.9653 + }, + { + "start": 12532.44, + "end": 12533.04, + "probability": 0.6198 + }, + { + "start": 12533.5, + "end": 12538.5, + "probability": 0.9878 + }, + { + "start": 12539.12, + "end": 12539.24, + "probability": 0.6846 + }, + { + "start": 12539.42, + "end": 12539.72, + "probability": 0.8315 + }, + { + "start": 12540.18, + "end": 12541.46, + "probability": 0.7744 + }, + { + "start": 12541.58, + "end": 12546.72, + "probability": 0.9934 + }, + { + "start": 12547.1, + "end": 12547.36, + "probability": 0.3562 + }, + { + "start": 12547.4, + "end": 12547.68, + "probability": 0.6273 + }, + { + "start": 12547.7, + "end": 12548.78, + "probability": 0.9008 + }, + { + "start": 12548.88, + "end": 12549.28, + "probability": 0.8288 + }, + { + "start": 12549.64, + "end": 12549.78, + "probability": 0.5418 + }, + { + "start": 12549.8, + "end": 12550.52, + "probability": 0.7787 + }, + { + "start": 12550.62, + "end": 12553.02, + "probability": 0.9158 + }, + { + "start": 12553.4, + "end": 12558.64, + "probability": 0.9888 + }, + { + "start": 12559.4, + "end": 12563.34, + "probability": 0.8997 + }, + { + "start": 12563.92, + "end": 12568.4, + "probability": 0.9974 + }, + { + "start": 12568.86, + "end": 12575.5, + "probability": 0.9967 + }, + { + "start": 12575.82, + "end": 12579.38, + "probability": 0.9551 + }, + { + "start": 12579.62, + "end": 12580.3, + "probability": 0.5337 + }, + { + "start": 12580.62, + "end": 12582.08, + "probability": 0.9531 + }, + { + "start": 12593.42, + "end": 12594.0, + "probability": 0.6963 + }, + { + "start": 12594.58, + "end": 12594.94, + "probability": 0.4832 + }, + { + "start": 12596.04, + "end": 12597.36, + "probability": 0.9382 + }, + { + "start": 12597.44, + "end": 12597.84, + "probability": 0.7579 + }, + { + "start": 12597.92, + "end": 12600.92, + "probability": 0.9971 + }, + { + "start": 12600.92, + "end": 12603.68, + "probability": 0.9972 + }, + { + "start": 12604.04, + "end": 12608.66, + "probability": 0.9417 + }, + { + "start": 12609.3, + "end": 12610.86, + "probability": 0.7698 + }, + { + "start": 12610.96, + "end": 12614.2, + "probability": 0.9848 + }, + { + "start": 12614.58, + "end": 12619.42, + "probability": 0.9578 + }, + { + "start": 12619.82, + "end": 12623.68, + "probability": 0.968 + }, + { + "start": 12624.06, + "end": 12625.68, + "probability": 0.9643 + }, + { + "start": 12626.4, + "end": 12627.78, + "probability": 0.7266 + }, + { + "start": 12628.3, + "end": 12631.04, + "probability": 0.9408 + }, + { + "start": 12631.14, + "end": 12631.8, + "probability": 0.9478 + }, + { + "start": 12632.42, + "end": 12635.28, + "probability": 0.8845 + }, + { + "start": 12635.86, + "end": 12638.98, + "probability": 0.991 + }, + { + "start": 12638.98, + "end": 12641.66, + "probability": 0.9979 + }, + { + "start": 12642.14, + "end": 12648.2, + "probability": 0.9956 + }, + { + "start": 12648.36, + "end": 12648.86, + "probability": 0.7627 + }, + { + "start": 12649.3, + "end": 12651.1, + "probability": 0.974 + }, + { + "start": 12651.64, + "end": 12657.42, + "probability": 0.9092 + }, + { + "start": 12657.64, + "end": 12657.74, + "probability": 0.468 + }, + { + "start": 12657.86, + "end": 12658.42, + "probability": 0.9406 + }, + { + "start": 12659.28, + "end": 12660.4, + "probability": 0.7358 + }, + { + "start": 12660.96, + "end": 12662.44, + "probability": 0.9841 + }, + { + "start": 12663.02, + "end": 12666.86, + "probability": 0.958 + }, + { + "start": 12667.3, + "end": 12669.32, + "probability": 0.9944 + }, + { + "start": 12669.66, + "end": 12671.42, + "probability": 0.9941 + }, + { + "start": 12671.74, + "end": 12673.08, + "probability": 0.9771 + }, + { + "start": 12673.18, + "end": 12674.3, + "probability": 0.7895 + }, + { + "start": 12674.62, + "end": 12676.5, + "probability": 0.9873 + }, + { + "start": 12676.82, + "end": 12677.0, + "probability": 0.7781 + }, + { + "start": 12677.16, + "end": 12682.48, + "probability": 0.9907 + }, + { + "start": 12683.0, + "end": 12684.46, + "probability": 0.8485 + }, + { + "start": 12685.06, + "end": 12685.44, + "probability": 0.9337 + }, + { + "start": 12686.3, + "end": 12689.32, + "probability": 0.9922 + }, + { + "start": 12690.08, + "end": 12692.63, + "probability": 0.9872 + }, + { + "start": 12693.16, + "end": 12695.46, + "probability": 0.9983 + }, + { + "start": 12695.94, + "end": 12698.22, + "probability": 0.9193 + }, + { + "start": 12698.58, + "end": 12701.18, + "probability": 0.9779 + }, + { + "start": 12701.52, + "end": 12702.44, + "probability": 0.9197 + }, + { + "start": 12702.7, + "end": 12704.34, + "probability": 0.9905 + }, + { + "start": 12704.44, + "end": 12705.4, + "probability": 0.9556 + }, + { + "start": 12705.94, + "end": 12706.88, + "probability": 0.9336 + }, + { + "start": 12707.12, + "end": 12707.52, + "probability": 0.7402 + }, + { + "start": 12707.68, + "end": 12712.08, + "probability": 0.9904 + }, + { + "start": 12712.22, + "end": 12712.8, + "probability": 0.8934 + }, + { + "start": 12712.98, + "end": 12714.68, + "probability": 0.9436 + }, + { + "start": 12718.94, + "end": 12719.7, + "probability": 0.1535 + }, + { + "start": 12720.7, + "end": 12722.66, + "probability": 0.9583 + }, + { + "start": 12722.74, + "end": 12723.16, + "probability": 0.5144 + }, + { + "start": 12723.5, + "end": 12724.22, + "probability": 0.8643 + }, + { + "start": 12725.46, + "end": 12726.92, + "probability": 0.4745 + }, + { + "start": 12727.18, + "end": 12727.58, + "probability": 0.9485 + }, + { + "start": 12727.94, + "end": 12730.8, + "probability": 0.8521 + }, + { + "start": 12731.38, + "end": 12733.2, + "probability": 0.9746 + }, + { + "start": 12734.08, + "end": 12735.84, + "probability": 0.9949 + }, + { + "start": 12735.96, + "end": 12739.88, + "probability": 0.9637 + }, + { + "start": 12739.88, + "end": 12743.24, + "probability": 0.9892 + }, + { + "start": 12743.62, + "end": 12745.56, + "probability": 0.7889 + }, + { + "start": 12745.9, + "end": 12749.2, + "probability": 0.9822 + }, + { + "start": 12749.2, + "end": 12752.3, + "probability": 0.9074 + }, + { + "start": 12752.36, + "end": 12753.18, + "probability": 0.6639 + }, + { + "start": 12753.74, + "end": 12755.22, + "probability": 0.9488 + }, + { + "start": 12755.22, + "end": 12755.82, + "probability": 0.7791 + }, + { + "start": 12755.9, + "end": 12756.66, + "probability": 0.9117 + }, + { + "start": 12757.2, + "end": 12758.86, + "probability": 0.9225 + }, + { + "start": 12759.72, + "end": 12762.2, + "probability": 0.7716 + }, + { + "start": 12762.56, + "end": 12765.46, + "probability": 0.9717 + }, + { + "start": 12765.5, + "end": 12766.08, + "probability": 0.7963 + }, + { + "start": 12766.22, + "end": 12769.44, + "probability": 0.9927 + }, + { + "start": 12769.52, + "end": 12770.04, + "probability": 0.8858 + }, + { + "start": 12770.54, + "end": 12771.08, + "probability": 0.9463 + }, + { + "start": 12771.56, + "end": 12771.66, + "probability": 0.5483 + }, + { + "start": 12772.42, + "end": 12773.62, + "probability": 0.2915 + }, + { + "start": 12773.98, + "end": 12775.42, + "probability": 0.9765 + }, + { + "start": 12775.86, + "end": 12778.3, + "probability": 0.9106 + }, + { + "start": 12778.76, + "end": 12780.36, + "probability": 0.7129 + }, + { + "start": 12780.76, + "end": 12781.86, + "probability": 0.6643 + }, + { + "start": 12782.02, + "end": 12782.82, + "probability": 0.9455 + }, + { + "start": 12783.24, + "end": 12784.08, + "probability": 0.903 + }, + { + "start": 12784.88, + "end": 12785.3, + "probability": 0.6834 + }, + { + "start": 12785.68, + "end": 12787.88, + "probability": 0.9925 + }, + { + "start": 12787.9, + "end": 12790.06, + "probability": 0.8255 + }, + { + "start": 12790.26, + "end": 12791.19, + "probability": 0.4409 + }, + { + "start": 12792.28, + "end": 12795.0, + "probability": 0.9738 + }, + { + "start": 12796.24, + "end": 12801.4, + "probability": 0.9215 + }, + { + "start": 12802.0, + "end": 12806.62, + "probability": 0.9816 + }, + { + "start": 12807.22, + "end": 12808.56, + "probability": 0.9073 + }, + { + "start": 12808.58, + "end": 12811.52, + "probability": 0.814 + }, + { + "start": 12812.26, + "end": 12813.48, + "probability": 0.8696 + }, + { + "start": 12814.04, + "end": 12814.8, + "probability": 0.9862 + }, + { + "start": 12815.48, + "end": 12816.96, + "probability": 0.8823 + }, + { + "start": 12817.64, + "end": 12817.74, + "probability": 0.5542 + }, + { + "start": 12818.16, + "end": 12818.16, + "probability": 0.0156 + }, + { + "start": 12818.16, + "end": 12819.06, + "probability": 0.6084 + }, + { + "start": 12819.7, + "end": 12822.46, + "probability": 0.7891 + }, + { + "start": 12823.02, + "end": 12825.78, + "probability": 0.7698 + }, + { + "start": 12826.58, + "end": 12828.41, + "probability": 0.9857 + }, + { + "start": 12829.76, + "end": 12834.62, + "probability": 0.964 + }, + { + "start": 12835.04, + "end": 12840.2, + "probability": 0.9822 + }, + { + "start": 12840.84, + "end": 12842.56, + "probability": 0.9377 + }, + { + "start": 12842.78, + "end": 12842.96, + "probability": 0.1311 + }, + { + "start": 12842.96, + "end": 12844.34, + "probability": 0.9408 + }, + { + "start": 12844.42, + "end": 12846.34, + "probability": 0.9899 + }, + { + "start": 12847.48, + "end": 12847.84, + "probability": 0.2266 + }, + { + "start": 12847.84, + "end": 12848.48, + "probability": 0.2142 + }, + { + "start": 12848.96, + "end": 12852.22, + "probability": 0.9355 + }, + { + "start": 12852.58, + "end": 12853.94, + "probability": 0.987 + }, + { + "start": 12854.22, + "end": 12855.26, + "probability": 0.9885 + }, + { + "start": 12855.52, + "end": 12856.64, + "probability": 0.7216 + }, + { + "start": 12856.76, + "end": 12857.86, + "probability": 0.6583 + }, + { + "start": 12857.96, + "end": 12858.2, + "probability": 0.6048 + }, + { + "start": 12858.88, + "end": 12863.4, + "probability": 0.9548 + }, + { + "start": 12864.24, + "end": 12868.76, + "probability": 0.9812 + }, + { + "start": 12869.1, + "end": 12869.72, + "probability": 0.8466 + }, + { + "start": 12869.92, + "end": 12870.98, + "probability": 0.9341 + }, + { + "start": 12871.54, + "end": 12874.32, + "probability": 0.9546 + }, + { + "start": 12875.12, + "end": 12880.28, + "probability": 0.9824 + }, + { + "start": 12880.64, + "end": 12883.3, + "probability": 0.9521 + }, + { + "start": 12883.3, + "end": 12886.5, + "probability": 0.9977 + }, + { + "start": 12886.86, + "end": 12887.18, + "probability": 0.4852 + }, + { + "start": 12887.26, + "end": 12887.44, + "probability": 0.6466 + }, + { + "start": 12887.52, + "end": 12888.56, + "probability": 0.827 + }, + { + "start": 12889.04, + "end": 12892.18, + "probability": 0.7746 + }, + { + "start": 12892.8, + "end": 12897.98, + "probability": 0.956 + }, + { + "start": 12898.32, + "end": 12898.72, + "probability": 0.8396 + }, + { + "start": 12899.0, + "end": 12900.58, + "probability": 0.9197 + }, + { + "start": 12900.98, + "end": 12902.58, + "probability": 0.9528 + }, + { + "start": 12902.94, + "end": 12903.86, + "probability": 0.7873 + }, + { + "start": 12904.08, + "end": 12904.68, + "probability": 0.3014 + }, + { + "start": 12904.72, + "end": 12905.4, + "probability": 0.8298 + }, + { + "start": 12906.04, + "end": 12908.98, + "probability": 0.9441 + }, + { + "start": 12909.96, + "end": 12913.98, + "probability": 0.9797 + }, + { + "start": 12914.36, + "end": 12915.34, + "probability": 0.5967 + }, + { + "start": 12915.46, + "end": 12916.1, + "probability": 0.7694 + }, + { + "start": 12916.54, + "end": 12918.64, + "probability": 0.9206 + }, + { + "start": 12918.76, + "end": 12919.04, + "probability": 0.6554 + }, + { + "start": 12919.04, + "end": 12920.52, + "probability": 0.9663 + }, + { + "start": 12921.82, + "end": 12922.3, + "probability": 0.9141 + }, + { + "start": 12923.16, + "end": 12926.16, + "probability": 0.9972 + }, + { + "start": 12926.7, + "end": 12928.06, + "probability": 0.9945 + }, + { + "start": 12928.48, + "end": 12931.8, + "probability": 0.9817 + }, + { + "start": 12931.92, + "end": 12932.66, + "probability": 0.7315 + }, + { + "start": 12932.88, + "end": 12933.44, + "probability": 0.6324 + }, + { + "start": 12933.86, + "end": 12935.9, + "probability": 0.8495 + }, + { + "start": 12936.1, + "end": 12936.36, + "probability": 0.8813 + }, + { + "start": 12936.92, + "end": 12937.18, + "probability": 0.4541 + }, + { + "start": 12937.18, + "end": 12939.2, + "probability": 0.7838 + }, + { + "start": 12940.14, + "end": 12942.9, + "probability": 0.7991 + }, + { + "start": 12943.42, + "end": 12946.86, + "probability": 0.8074 + }, + { + "start": 12947.02, + "end": 12947.74, + "probability": 0.4283 + }, + { + "start": 12948.12, + "end": 12948.72, + "probability": 0.741 + }, + { + "start": 12949.36, + "end": 12950.08, + "probability": 0.9745 + }, + { + "start": 12950.08, + "end": 12953.72, + "probability": 0.9546 + }, + { + "start": 12954.3, + "end": 12957.08, + "probability": 0.9092 + }, + { + "start": 12957.56, + "end": 12958.08, + "probability": 0.5425 + }, + { + "start": 12958.5, + "end": 12959.42, + "probability": 0.9217 + }, + { + "start": 12959.74, + "end": 12960.44, + "probability": 0.864 + }, + { + "start": 12960.54, + "end": 12962.1, + "probability": 0.9753 + }, + { + "start": 12962.12, + "end": 12963.1, + "probability": 0.8835 + }, + { + "start": 12963.72, + "end": 12964.24, + "probability": 0.8618 + }, + { + "start": 12964.58, + "end": 12966.58, + "probability": 0.9824 + }, + { + "start": 12966.9, + "end": 12969.38, + "probability": 0.9912 + }, + { + "start": 12969.58, + "end": 12970.3, + "probability": 0.9915 + }, + { + "start": 12970.7, + "end": 12974.08, + "probability": 0.9294 + }, + { + "start": 12974.54, + "end": 12977.28, + "probability": 0.997 + }, + { + "start": 12977.9, + "end": 12981.54, + "probability": 0.995 + }, + { + "start": 12982.08, + "end": 12985.56, + "probability": 0.987 + }, + { + "start": 12986.02, + "end": 12990.18, + "probability": 0.9647 + }, + { + "start": 12990.44, + "end": 12990.82, + "probability": 0.4395 + }, + { + "start": 12991.14, + "end": 12992.64, + "probability": 0.8592 + }, + { + "start": 12992.96, + "end": 12996.02, + "probability": 0.9961 + }, + { + "start": 12996.46, + "end": 13000.32, + "probability": 0.8848 + }, + { + "start": 13000.86, + "end": 13003.86, + "probability": 0.8948 + }, + { + "start": 13004.44, + "end": 13004.6, + "probability": 0.481 + }, + { + "start": 13004.6, + "end": 13006.74, + "probability": 0.9348 + }, + { + "start": 13007.22, + "end": 13009.9, + "probability": 0.8248 + }, + { + "start": 13010.06, + "end": 13010.16, + "probability": 0.2877 + }, + { + "start": 13010.24, + "end": 13010.48, + "probability": 0.7326 + }, + { + "start": 13010.68, + "end": 13012.4, + "probability": 0.9487 + }, + { + "start": 13013.1, + "end": 13015.38, + "probability": 0.9949 + }, + { + "start": 13015.54, + "end": 13015.54, + "probability": 0.6804 + }, + { + "start": 13015.54, + "end": 13017.44, + "probability": 0.7778 + }, + { + "start": 13017.68, + "end": 13022.04, + "probability": 0.9574 + }, + { + "start": 13022.24, + "end": 13026.36, + "probability": 0.979 + }, + { + "start": 13030.78, + "end": 13032.2, + "probability": 0.884 + }, + { + "start": 13032.86, + "end": 13034.03, + "probability": 0.9795 + }, + { + "start": 13035.38, + "end": 13037.18, + "probability": 0.9678 + }, + { + "start": 13037.48, + "end": 13038.64, + "probability": 0.9796 + }, + { + "start": 13039.2, + "end": 13041.39, + "probability": 0.5511 + }, + { + "start": 13041.82, + "end": 13043.12, + "probability": 0.08 + }, + { + "start": 13043.7, + "end": 13043.74, + "probability": 0.072 + }, + { + "start": 13043.74, + "end": 13044.68, + "probability": 0.7509 + }, + { + "start": 13044.8, + "end": 13050.0, + "probability": 0.6605 + }, + { + "start": 13050.16, + "end": 13051.62, + "probability": 0.538 + }, + { + "start": 13051.72, + "end": 13051.96, + "probability": 0.5052 + }, + { + "start": 13052.42, + "end": 13053.84, + "probability": 0.6281 + }, + { + "start": 13055.08, + "end": 13055.96, + "probability": 0.7414 + }, + { + "start": 13056.12, + "end": 13057.8, + "probability": 0.6144 + }, + { + "start": 13058.26, + "end": 13058.26, + "probability": 0.5672 + }, + { + "start": 13058.26, + "end": 13060.12, + "probability": 0.5464 + }, + { + "start": 13060.26, + "end": 13061.82, + "probability": 0.7681 + }, + { + "start": 13061.82, + "end": 13064.52, + "probability": 0.8763 + }, + { + "start": 13064.56, + "end": 13064.82, + "probability": 0.531 + }, + { + "start": 13065.04, + "end": 13065.98, + "probability": 0.7813 + }, + { + "start": 13067.28, + "end": 13067.92, + "probability": 0.6188 + }, + { + "start": 13068.04, + "end": 13068.74, + "probability": 0.6413 + }, + { + "start": 13068.8, + "end": 13070.82, + "probability": 0.9797 + }, + { + "start": 13070.9, + "end": 13075.46, + "probability": 0.9951 + }, + { + "start": 13075.9, + "end": 13077.68, + "probability": 0.6328 + }, + { + "start": 13077.82, + "end": 13079.34, + "probability": 0.734 + }, + { + "start": 13079.46, + "end": 13080.52, + "probability": 0.806 + }, + { + "start": 13081.44, + "end": 13083.6, + "probability": 0.9551 + }, + { + "start": 13083.6, + "end": 13083.8, + "probability": 0.244 + }, + { + "start": 13083.84, + "end": 13084.62, + "probability": 0.41 + }, + { + "start": 13085.2, + "end": 13086.28, + "probability": 0.6846 + }, + { + "start": 13086.82, + "end": 13089.08, + "probability": 0.5035 + }, + { + "start": 13089.3, + "end": 13091.26, + "probability": 0.9822 + }, + { + "start": 13092.68, + "end": 13094.92, + "probability": 0.9672 + }, + { + "start": 13095.36, + "end": 13098.76, + "probability": 0.9929 + }, + { + "start": 13099.86, + "end": 13099.86, + "probability": 0.0241 + }, + { + "start": 13099.86, + "end": 13104.77, + "probability": 0.9449 + }, + { + "start": 13105.76, + "end": 13106.98, + "probability": 0.4324 + }, + { + "start": 13106.98, + "end": 13109.04, + "probability": 0.3578 + }, + { + "start": 13109.94, + "end": 13110.55, + "probability": 0.6147 + }, + { + "start": 13111.78, + "end": 13111.9, + "probability": 0.0578 + }, + { + "start": 13112.0, + "end": 13114.18, + "probability": 0.0625 + }, + { + "start": 13114.18, + "end": 13114.78, + "probability": 0.2947 + }, + { + "start": 13114.92, + "end": 13118.72, + "probability": 0.0219 + }, + { + "start": 13121.02, + "end": 13125.36, + "probability": 0.1844 + }, + { + "start": 13125.88, + "end": 13125.95, + "probability": 0.0693 + }, + { + "start": 13128.14, + "end": 13129.38, + "probability": 0.0043 + }, + { + "start": 13129.5, + "end": 13130.19, + "probability": 0.0619 + }, + { + "start": 13130.76, + "end": 13131.14, + "probability": 0.0493 + }, + { + "start": 13131.14, + "end": 13132.66, + "probability": 0.3629 + }, + { + "start": 13133.2, + "end": 13133.78, + "probability": 0.1342 + }, + { + "start": 13134.56, + "end": 13135.96, + "probability": 0.1546 + }, + { + "start": 13136.16, + "end": 13136.8, + "probability": 0.1185 + }, + { + "start": 13143.94, + "end": 13148.46, + "probability": 0.0688 + }, + { + "start": 13148.99, + "end": 13149.96, + "probability": 0.0329 + }, + { + "start": 13154.54, + "end": 13154.54, + "probability": 0.0003 + }, + { + "start": 13157.72, + "end": 13164.88, + "probability": 0.1473 + }, + { + "start": 13164.88, + "end": 13166.76, + "probability": 0.0215 + }, + { + "start": 13168.06, + "end": 13169.2, + "probability": 0.0134 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13193.9, + "end": 13197.16, + "probability": 0.7491 + }, + { + "start": 13198.1, + "end": 13200.34, + "probability": 0.9699 + }, + { + "start": 13200.68, + "end": 13202.94, + "probability": 0.4591 + }, + { + "start": 13202.94, + "end": 13204.48, + "probability": 0.897 + }, + { + "start": 13204.78, + "end": 13206.98, + "probability": 0.9119 + }, + { + "start": 13207.2, + "end": 13207.28, + "probability": 0.3045 + }, + { + "start": 13207.28, + "end": 13209.31, + "probability": 0.3617 + }, + { + "start": 13209.94, + "end": 13212.78, + "probability": 0.7649 + }, + { + "start": 13213.0, + "end": 13216.06, + "probability": 0.9429 + }, + { + "start": 13216.34, + "end": 13221.46, + "probability": 0.9148 + }, + { + "start": 13221.54, + "end": 13222.76, + "probability": 0.1017 + }, + { + "start": 13222.76, + "end": 13224.02, + "probability": 0.05 + }, + { + "start": 13225.14, + "end": 13231.08, + "probability": 0.8942 + }, + { + "start": 13231.48, + "end": 13232.65, + "probability": 0.5158 + }, + { + "start": 13234.16, + "end": 13235.72, + "probability": 0.7727 + }, + { + "start": 13235.88, + "end": 13237.86, + "probability": 0.5357 + }, + { + "start": 13238.94, + "end": 13238.94, + "probability": 0.2689 + }, + { + "start": 13238.94, + "end": 13243.44, + "probability": 0.6824 + }, + { + "start": 13243.68, + "end": 13244.68, + "probability": 0.0017 + }, + { + "start": 13245.36, + "end": 13246.26, + "probability": 0.5274 + }, + { + "start": 13246.28, + "end": 13250.1, + "probability": 0.57 + }, + { + "start": 13250.1, + "end": 13253.64, + "probability": 0.9191 + }, + { + "start": 13255.68, + "end": 13256.28, + "probability": 0.5717 + }, + { + "start": 13258.12, + "end": 13261.9, + "probability": 0.4736 + }, + { + "start": 13261.9, + "end": 13262.38, + "probability": 0.2749 + }, + { + "start": 13262.38, + "end": 13262.38, + "probability": 0.5704 + }, + { + "start": 13262.38, + "end": 13263.84, + "probability": 0.7624 + }, + { + "start": 13265.72, + "end": 13268.15, + "probability": 0.5977 + }, + { + "start": 13269.4, + "end": 13269.4, + "probability": 0.0012 + }, + { + "start": 13271.76, + "end": 13273.84, + "probability": 0.0935 + }, + { + "start": 13274.08, + "end": 13275.94, + "probability": 0.1571 + }, + { + "start": 13280.13, + "end": 13283.68, + "probability": 0.6516 + }, + { + "start": 13284.0, + "end": 13287.98, + "probability": 0.7324 + }, + { + "start": 13288.54, + "end": 13290.5, + "probability": 0.4947 + }, + { + "start": 13290.78, + "end": 13292.56, + "probability": 0.1816 + }, + { + "start": 13294.91, + "end": 13300.2, + "probability": 0.7044 + }, + { + "start": 13300.32, + "end": 13302.34, + "probability": 0.6514 + }, + { + "start": 13303.56, + "end": 13310.28, + "probability": 0.4841 + }, + { + "start": 13310.38, + "end": 13313.22, + "probability": 0.5716 + }, + { + "start": 13314.06, + "end": 13318.76, + "probability": 0.6325 + }, + { + "start": 13322.74, + "end": 13323.12, + "probability": 0.6591 + }, + { + "start": 13326.95, + "end": 13331.37, + "probability": 0.9885 + }, + { + "start": 13332.06, + "end": 13332.98, + "probability": 0.9491 + }, + { + "start": 13333.06, + "end": 13335.92, + "probability": 0.828 + }, + { + "start": 13336.06, + "end": 13336.64, + "probability": 0.8427 + }, + { + "start": 13336.64, + "end": 13336.64, + "probability": 0.0649 + }, + { + "start": 13336.64, + "end": 13337.86, + "probability": 0.1567 + }, + { + "start": 13338.76, + "end": 13342.06, + "probability": 0.9507 + }, + { + "start": 13342.06, + "end": 13344.62, + "probability": 0.959 + }, + { + "start": 13345.3, + "end": 13345.34, + "probability": 0.4862 + }, + { + "start": 13345.34, + "end": 13346.12, + "probability": 0.1846 + }, + { + "start": 13346.72, + "end": 13348.08, + "probability": 0.0914 + }, + { + "start": 13348.08, + "end": 13348.1, + "probability": 0.1294 + }, + { + "start": 13349.27, + "end": 13349.93, + "probability": 0.2433 + }, + { + "start": 13351.08, + "end": 13351.72, + "probability": 0.376 + }, + { + "start": 13352.48, + "end": 13357.9, + "probability": 0.4784 + }, + { + "start": 13358.04, + "end": 13359.42, + "probability": 0.2771 + }, + { + "start": 13359.54, + "end": 13359.96, + "probability": 0.115 + }, + { + "start": 13359.96, + "end": 13361.22, + "probability": 0.927 + }, + { + "start": 13361.4, + "end": 13363.8, + "probability": 0.6809 + }, + { + "start": 13363.98, + "end": 13366.32, + "probability": 0.9755 + }, + { + "start": 13366.48, + "end": 13368.72, + "probability": 0.9609 + }, + { + "start": 13368.86, + "end": 13370.04, + "probability": 0.7844 + }, + { + "start": 13370.58, + "end": 13371.5, + "probability": 0.1541 + }, + { + "start": 13371.5, + "end": 13372.5, + "probability": 0.3892 + }, + { + "start": 13374.14, + "end": 13374.86, + "probability": 0.4316 + }, + { + "start": 13374.96, + "end": 13375.38, + "probability": 0.6631 + }, + { + "start": 13375.9, + "end": 13377.15, + "probability": 0.8435 + }, + { + "start": 13377.48, + "end": 13378.34, + "probability": 0.0462 + }, + { + "start": 13378.34, + "end": 13378.4, + "probability": 0.0461 + }, + { + "start": 13378.4, + "end": 13381.26, + "probability": 0.8564 + }, + { + "start": 13384.42, + "end": 13386.72, + "probability": 0.0875 + }, + { + "start": 13387.04, + "end": 13389.14, + "probability": 0.6607 + }, + { + "start": 13389.14, + "end": 13390.42, + "probability": 0.7897 + }, + { + "start": 13390.5, + "end": 13392.48, + "probability": 0.9943 + }, + { + "start": 13393.12, + "end": 13397.06, + "probability": 0.9837 + }, + { + "start": 13397.28, + "end": 13398.9, + "probability": 0.8706 + }, + { + "start": 13399.12, + "end": 13399.86, + "probability": 0.4914 + }, + { + "start": 13399.86, + "end": 13400.4, + "probability": 0.9946 + }, + { + "start": 13402.94, + "end": 13406.74, + "probability": 0.7155 + }, + { + "start": 13407.24, + "end": 13407.68, + "probability": 0.2296 + }, + { + "start": 13407.68, + "end": 13414.0, + "probability": 0.6571 + }, + { + "start": 13414.08, + "end": 13414.82, + "probability": 0.311 + }, + { + "start": 13415.0, + "end": 13416.24, + "probability": 0.5928 + }, + { + "start": 13417.18, + "end": 13418.69, + "probability": 0.0771 + }, + { + "start": 13429.8, + "end": 13429.84, + "probability": 0.0125 + }, + { + "start": 13430.98, + "end": 13432.0, + "probability": 0.0405 + }, + { + "start": 13432.89, + "end": 13434.82, + "probability": 0.0477 + }, + { + "start": 13435.06, + "end": 13436.28, + "probability": 0.0498 + }, + { + "start": 13436.98, + "end": 13438.82, + "probability": 0.1883 + }, + { + "start": 13438.82, + "end": 13438.9, + "probability": 0.2323 + }, + { + "start": 13439.02, + "end": 13440.9, + "probability": 0.1947 + }, + { + "start": 13441.96, + "end": 13442.44, + "probability": 0.0097 + }, + { + "start": 13442.44, + "end": 13444.02, + "probability": 0.1212 + }, + { + "start": 13444.56, + "end": 13445.0, + "probability": 0.2569 + }, + { + "start": 13445.34, + "end": 13445.36, + "probability": 0.118 + }, + { + "start": 13446.3, + "end": 13447.62, + "probability": 0.1835 + }, + { + "start": 13448.46, + "end": 13448.78, + "probability": 0.5232 + }, + { + "start": 13449.82, + "end": 13450.4, + "probability": 0.4593 + }, + { + "start": 13450.4, + "end": 13450.74, + "probability": 0.064 + }, + { + "start": 13452.7, + "end": 13453.02, + "probability": 0.0362 + }, + { + "start": 13453.02, + "end": 13453.02, + "probability": 0.005 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.0, + "end": 13508.0, + "probability": 0.0 + }, + { + "start": 13508.18, + "end": 13508.22, + "probability": 0.0328 + }, + { + "start": 13508.22, + "end": 13508.22, + "probability": 0.1177 + }, + { + "start": 13508.22, + "end": 13508.22, + "probability": 0.0767 + }, + { + "start": 13508.22, + "end": 13508.22, + "probability": 0.0713 + }, + { + "start": 13508.22, + "end": 13510.42, + "probability": 0.425 + }, + { + "start": 13510.88, + "end": 13512.96, + "probability": 0.8052 + }, + { + "start": 13513.26, + "end": 13513.96, + "probability": 0.9268 + }, + { + "start": 13514.7, + "end": 13514.8, + "probability": 0.0104 + }, + { + "start": 13516.1, + "end": 13516.42, + "probability": 0.0456 + }, + { + "start": 13516.42, + "end": 13520.6, + "probability": 0.968 + }, + { + "start": 13520.64, + "end": 13527.34, + "probability": 0.9713 + }, + { + "start": 13527.8, + "end": 13528.96, + "probability": 0.6622 + }, + { + "start": 13529.36, + "end": 13530.46, + "probability": 0.0494 + }, + { + "start": 13530.66, + "end": 13531.23, + "probability": 0.2109 + }, + { + "start": 13531.74, + "end": 13532.8, + "probability": 0.659 + }, + { + "start": 13533.22, + "end": 13533.46, + "probability": 0.0451 + }, + { + "start": 13533.46, + "end": 13535.09, + "probability": 0.0612 + }, + { + "start": 13535.9, + "end": 13539.84, + "probability": 0.8376 + }, + { + "start": 13540.26, + "end": 13543.28, + "probability": 0.8058 + }, + { + "start": 13543.76, + "end": 13544.54, + "probability": 0.9546 + }, + { + "start": 13544.8, + "end": 13545.42, + "probability": 0.8871 + }, + { + "start": 13546.23, + "end": 13547.28, + "probability": 0.8838 + }, + { + "start": 13547.28, + "end": 13547.56, + "probability": 0.1052 + }, + { + "start": 13547.84, + "end": 13548.1, + "probability": 0.2197 + }, + { + "start": 13548.1, + "end": 13549.67, + "probability": 0.3227 + }, + { + "start": 13550.66, + "end": 13550.76, + "probability": 0.1006 + }, + { + "start": 13550.76, + "end": 13551.18, + "probability": 0.5629 + }, + { + "start": 13551.28, + "end": 13551.76, + "probability": 0.4873 + }, + { + "start": 13551.94, + "end": 13553.19, + "probability": 0.6022 + }, + { + "start": 13554.52, + "end": 13558.28, + "probability": 0.6664 + }, + { + "start": 13558.44, + "end": 13559.58, + "probability": 0.7599 + }, + { + "start": 13559.76, + "end": 13561.3, + "probability": 0.2911 + }, + { + "start": 13563.24, + "end": 13566.34, + "probability": 0.0904 + }, + { + "start": 13566.82, + "end": 13571.61, + "probability": 0.6654 + }, + { + "start": 13574.4, + "end": 13574.88, + "probability": 0.1491 + }, + { + "start": 13575.84, + "end": 13578.0, + "probability": 0.5028 + }, + { + "start": 13581.46, + "end": 13585.16, + "probability": 0.6466 + }, + { + "start": 13585.48, + "end": 13586.9, + "probability": 0.5993 + }, + { + "start": 13587.0, + "end": 13588.21, + "probability": 0.5095 + }, + { + "start": 13591.58, + "end": 13592.42, + "probability": 0.2817 + }, + { + "start": 13593.22, + "end": 13595.08, + "probability": 0.7793 + }, + { + "start": 13595.68, + "end": 13599.32, + "probability": 0.7201 + }, + { + "start": 13599.82, + "end": 13600.3, + "probability": 0.6501 + }, + { + "start": 13600.94, + "end": 13604.96, + "probability": 0.0884 + }, + { + "start": 13611.16, + "end": 13613.62, + "probability": 0.5783 + }, + { + "start": 13614.52, + "end": 13617.54, + "probability": 0.2282 + }, + { + "start": 13617.54, + "end": 13617.54, + "probability": 0.0531 + }, + { + "start": 13617.54, + "end": 13617.86, + "probability": 0.1458 + }, + { + "start": 13617.86, + "end": 13618.72, + "probability": 0.1442 + }, + { + "start": 13619.32, + "end": 13620.32, + "probability": 0.4784 + }, + { + "start": 13620.42, + "end": 13623.32, + "probability": 0.5442 + }, + { + "start": 13623.32, + "end": 13626.82, + "probability": 0.7811 + }, + { + "start": 13626.82, + "end": 13631.94, + "probability": 0.9828 + }, + { + "start": 13632.76, + "end": 13637.4, + "probability": 0.2622 + }, + { + "start": 13637.7, + "end": 13638.72, + "probability": 0.5872 + }, + { + "start": 13639.44, + "end": 13639.85, + "probability": 0.3 + }, + { + "start": 13640.4, + "end": 13641.84, + "probability": 0.715 + }, + { + "start": 13643.32, + "end": 13649.06, + "probability": 0.9939 + }, + { + "start": 13650.16, + "end": 13651.56, + "probability": 0.8438 + }, + { + "start": 13654.5, + "end": 13655.64, + "probability": 0.8371 + }, + { + "start": 13656.74, + "end": 13659.26, + "probability": 0.7516 + }, + { + "start": 13659.82, + "end": 13662.58, + "probability": 0.8197 + }, + { + "start": 13664.24, + "end": 13666.18, + "probability": 0.4645 + }, + { + "start": 13666.3, + "end": 13667.84, + "probability": 0.8641 + }, + { + "start": 13668.04, + "end": 13669.26, + "probability": 0.6488 + }, + { + "start": 13669.54, + "end": 13671.88, + "probability": 0.0816 + }, + { + "start": 13671.88, + "end": 13675.28, + "probability": 0.7872 + }, + { + "start": 13676.42, + "end": 13677.21, + "probability": 0.3853 + }, + { + "start": 13680.48, + "end": 13681.8, + "probability": 0.7916 + }, + { + "start": 13693.2, + "end": 13700.38, + "probability": 0.7031 + }, + { + "start": 13704.32, + "end": 13706.22, + "probability": 0.3894 + }, + { + "start": 13707.82, + "end": 13710.1, + "probability": 0.3206 + }, + { + "start": 13710.72, + "end": 13711.64, + "probability": 0.6967 + }, + { + "start": 13711.88, + "end": 13713.18, + "probability": 0.6279 + }, + { + "start": 13714.18, + "end": 13715.4, + "probability": 0.9536 + }, + { + "start": 13715.84, + "end": 13717.17, + "probability": 0.7834 + }, + { + "start": 13717.5, + "end": 13719.62, + "probability": 0.6414 + }, + { + "start": 13720.0, + "end": 13723.1, + "probability": 0.4859 + }, + { + "start": 13723.62, + "end": 13728.12, + "probability": 0.9283 + }, + { + "start": 13728.18, + "end": 13729.8, + "probability": 0.5803 + }, + { + "start": 13729.84, + "end": 13731.22, + "probability": 0.5406 + }, + { + "start": 13731.3, + "end": 13732.08, + "probability": 0.8595 + }, + { + "start": 13732.92, + "end": 13738.78, + "probability": 0.8089 + }, + { + "start": 13739.5, + "end": 13744.24, + "probability": 0.9324 + }, + { + "start": 13745.18, + "end": 13746.78, + "probability": 0.8443 + }, + { + "start": 13746.92, + "end": 13747.26, + "probability": 0.7731 + }, + { + "start": 13749.82, + "end": 13750.5, + "probability": 0.0229 + }, + { + "start": 13751.46, + "end": 13753.16, + "probability": 0.0781 + }, + { + "start": 13753.16, + "end": 13757.52, + "probability": 0.6628 + }, + { + "start": 13758.1, + "end": 13759.38, + "probability": 0.8203 + }, + { + "start": 13760.72, + "end": 13763.38, + "probability": 0.9477 + }, + { + "start": 13763.4, + "end": 13764.24, + "probability": 0.8951 + }, + { + "start": 13764.62, + "end": 13767.4, + "probability": 0.9025 + }, + { + "start": 13767.84, + "end": 13768.1, + "probability": 0.91 + }, + { + "start": 13768.26, + "end": 13769.6, + "probability": 0.2515 + }, + { + "start": 13769.8, + "end": 13770.5, + "probability": 0.3295 + }, + { + "start": 13771.06, + "end": 13773.58, + "probability": 0.9036 + }, + { + "start": 13773.92, + "end": 13774.34, + "probability": 0.3305 + }, + { + "start": 13774.34, + "end": 13775.5, + "probability": 0.2506 + }, + { + "start": 13775.56, + "end": 13777.66, + "probability": 0.994 + }, + { + "start": 13777.86, + "end": 13779.12, + "probability": 0.9401 + }, + { + "start": 13779.79, + "end": 13782.86, + "probability": 0.7436 + }, + { + "start": 13785.9, + "end": 13787.16, + "probability": 0.5684 + }, + { + "start": 13787.22, + "end": 13787.64, + "probability": 0.696 + }, + { + "start": 13787.74, + "end": 13789.36, + "probability": 0.8647 + }, + { + "start": 13789.38, + "end": 13791.85, + "probability": 0.5496 + }, + { + "start": 13792.21, + "end": 13796.14, + "probability": 0.036 + }, + { + "start": 13796.96, + "end": 13797.44, + "probability": 0.4578 + }, + { + "start": 13797.7, + "end": 13799.98, + "probability": 0.9908 + }, + { + "start": 13799.98, + "end": 13801.69, + "probability": 0.9852 + }, + { + "start": 13801.98, + "end": 13804.34, + "probability": 0.5913 + }, + { + "start": 13804.42, + "end": 13805.76, + "probability": 0.4269 + }, + { + "start": 13806.8, + "end": 13808.14, + "probability": 0.7818 + }, + { + "start": 13808.26, + "end": 13809.86, + "probability": 0.8965 + }, + { + "start": 13810.48, + "end": 13813.7, + "probability": 0.9911 + }, + { + "start": 13813.8, + "end": 13814.76, + "probability": 0.979 + }, + { + "start": 13815.12, + "end": 13816.96, + "probability": 0.9955 + }, + { + "start": 13817.52, + "end": 13821.36, + "probability": 0.991 + }, + { + "start": 13821.46, + "end": 13821.96, + "probability": 0.7023 + }, + { + "start": 13822.04, + "end": 13826.6, + "probability": 0.9468 + }, + { + "start": 13826.98, + "end": 13828.9, + "probability": 0.9943 + }, + { + "start": 13829.4, + "end": 13829.91, + "probability": 0.7188 + }, + { + "start": 13830.66, + "end": 13832.76, + "probability": 0.6085 + }, + { + "start": 13832.76, + "end": 13833.84, + "probability": 0.1982 + }, + { + "start": 13833.94, + "end": 13835.68, + "probability": 0.7093 + }, + { + "start": 13835.7, + "end": 13836.02, + "probability": 0.0173 + }, + { + "start": 13836.82, + "end": 13838.18, + "probability": 0.5791 + }, + { + "start": 13838.74, + "end": 13840.66, + "probability": 0.0163 + }, + { + "start": 13840.76, + "end": 13840.76, + "probability": 0.3679 + }, + { + "start": 13841.3, + "end": 13842.22, + "probability": 0.0607 + }, + { + "start": 13842.22, + "end": 13842.22, + "probability": 0.0161 + }, + { + "start": 13842.22, + "end": 13842.22, + "probability": 0.623 + }, + { + "start": 13842.22, + "end": 13842.42, + "probability": 0.2659 + }, + { + "start": 13842.56, + "end": 13843.72, + "probability": 0.5253 + }, + { + "start": 13843.8, + "end": 13844.34, + "probability": 0.5945 + }, + { + "start": 13844.36, + "end": 13846.08, + "probability": 0.7164 + }, + { + "start": 13846.34, + "end": 13847.66, + "probability": 0.4751 + }, + { + "start": 13847.7, + "end": 13848.68, + "probability": 0.6615 + }, + { + "start": 13848.74, + "end": 13848.94, + "probability": 0.7331 + }, + { + "start": 13848.96, + "end": 13850.68, + "probability": 0.6525 + }, + { + "start": 13850.8, + "end": 13852.16, + "probability": 0.1769 + }, + { + "start": 13852.44, + "end": 13853.08, + "probability": 0.6706 + }, + { + "start": 13853.08, + "end": 13854.6, + "probability": 0.7495 + }, + { + "start": 13854.82, + "end": 13858.36, + "probability": 0.8781 + }, + { + "start": 13858.42, + "end": 13859.94, + "probability": 0.8207 + }, + { + "start": 13860.04, + "end": 13860.24, + "probability": 0.6881 + }, + { + "start": 13860.36, + "end": 13861.24, + "probability": 0.6473 + }, + { + "start": 13861.82, + "end": 13863.42, + "probability": 0.8493 + }, + { + "start": 13863.88, + "end": 13865.7, + "probability": 0.9878 + }, + { + "start": 13865.9, + "end": 13871.4, + "probability": 0.9791 + }, + { + "start": 13871.48, + "end": 13871.84, + "probability": 0.8298 + }, + { + "start": 13872.26, + "end": 13872.9, + "probability": 0.8671 + }, + { + "start": 13874.57, + "end": 13878.68, + "probability": 0.9079 + }, + { + "start": 13879.48, + "end": 13882.38, + "probability": 0.9925 + }, + { + "start": 13883.28, + "end": 13885.12, + "probability": 0.9832 + }, + { + "start": 13886.06, + "end": 13887.8, + "probability": 0.9896 + }, + { + "start": 13887.98, + "end": 13889.7, + "probability": 0.9125 + }, + { + "start": 13890.38, + "end": 13893.5, + "probability": 0.9716 + }, + { + "start": 13894.12, + "end": 13897.36, + "probability": 0.9935 + }, + { + "start": 13897.96, + "end": 13901.8, + "probability": 0.9933 + }, + { + "start": 13902.94, + "end": 13904.24, + "probability": 0.9504 + }, + { + "start": 13904.4, + "end": 13906.14, + "probability": 0.9893 + }, + { + "start": 13907.06, + "end": 13908.28, + "probability": 0.9878 + }, + { + "start": 13908.42, + "end": 13911.76, + "probability": 0.9912 + }, + { + "start": 13911.88, + "end": 13912.16, + "probability": 0.437 + }, + { + "start": 13912.22, + "end": 13913.2, + "probability": 0.8945 + }, + { + "start": 13913.96, + "end": 13917.52, + "probability": 0.7943 + }, + { + "start": 13918.08, + "end": 13919.31, + "probability": 0.9937 + }, + { + "start": 13920.16, + "end": 13923.28, + "probability": 0.9926 + }, + { + "start": 13924.34, + "end": 13927.9, + "probability": 0.9753 + }, + { + "start": 13928.14, + "end": 13929.48, + "probability": 0.5596 + }, + { + "start": 13930.2, + "end": 13931.64, + "probability": 0.7875 + }, + { + "start": 13932.28, + "end": 13936.38, + "probability": 0.9943 + }, + { + "start": 13936.84, + "end": 13938.26, + "probability": 0.9258 + }, + { + "start": 13938.78, + "end": 13942.06, + "probability": 0.9442 + }, + { + "start": 13942.8, + "end": 13943.56, + "probability": 0.6875 + }, + { + "start": 13944.91, + "end": 13946.41, + "probability": 0.1299 + }, + { + "start": 13946.72, + "end": 13948.7, + "probability": 0.5454 + }, + { + "start": 13949.3, + "end": 13949.3, + "probability": 0.0451 + }, + { + "start": 13949.3, + "end": 13953.92, + "probability": 0.7667 + }, + { + "start": 13954.28, + "end": 13955.82, + "probability": 0.9041 + }, + { + "start": 13956.38, + "end": 13959.86, + "probability": 0.9895 + }, + { + "start": 13960.06, + "end": 13961.0, + "probability": 0.9875 + }, + { + "start": 13962.18, + "end": 13962.68, + "probability": 0.9651 + }, + { + "start": 13963.44, + "end": 13965.66, + "probability": 0.7469 + }, + { + "start": 13966.26, + "end": 13968.56, + "probability": 0.9164 + }, + { + "start": 13969.2, + "end": 13970.58, + "probability": 0.9635 + }, + { + "start": 13970.68, + "end": 13971.67, + "probability": 0.9812 + }, + { + "start": 13972.16, + "end": 13976.12, + "probability": 0.9949 + }, + { + "start": 13976.72, + "end": 13977.84, + "probability": 0.823 + }, + { + "start": 13978.3, + "end": 13979.1, + "probability": 0.401 + }, + { + "start": 13979.4, + "end": 13982.82, + "probability": 0.8967 + }, + { + "start": 13982.92, + "end": 13984.48, + "probability": 0.8484 + }, + { + "start": 13985.04, + "end": 13988.98, + "probability": 0.8767 + }, + { + "start": 13988.98, + "end": 13993.12, + "probability": 0.7166 + }, + { + "start": 13993.3, + "end": 13996.04, + "probability": 0.176 + }, + { + "start": 13996.04, + "end": 13999.66, + "probability": 0.9778 + }, + { + "start": 14000.16, + "end": 14003.32, + "probability": 0.9846 + }, + { + "start": 14003.82, + "end": 14008.56, + "probability": 0.9951 + }, + { + "start": 14009.06, + "end": 14012.36, + "probability": 0.9932 + }, + { + "start": 14012.8, + "end": 14014.42, + "probability": 0.9774 + }, + { + "start": 14014.52, + "end": 14015.84, + "probability": 0.9648 + }, + { + "start": 14016.44, + "end": 14017.88, + "probability": 0.8992 + }, + { + "start": 14018.4, + "end": 14021.14, + "probability": 0.5514 + }, + { + "start": 14021.2, + "end": 14024.2, + "probability": 0.7743 + }, + { + "start": 14024.28, + "end": 14026.1, + "probability": 0.2869 + }, + { + "start": 14026.28, + "end": 14026.76, + "probability": 0.383 + }, + { + "start": 14027.3, + "end": 14028.54, + "probability": 0.1733 + }, + { + "start": 14028.62, + "end": 14029.04, + "probability": 0.0706 + }, + { + "start": 14029.04, + "end": 14029.7, + "probability": 0.3893 + }, + { + "start": 14029.74, + "end": 14030.64, + "probability": 0.8675 + }, + { + "start": 14030.72, + "end": 14039.16, + "probability": 0.8755 + }, + { + "start": 14039.32, + "end": 14040.16, + "probability": 0.1499 + }, + { + "start": 14041.74, + "end": 14042.86, + "probability": 0.0041 + }, + { + "start": 14043.6, + "end": 14043.82, + "probability": 0.0389 + }, + { + "start": 14043.82, + "end": 14044.56, + "probability": 0.2964 + }, + { + "start": 14044.56, + "end": 14045.0, + "probability": 0.2042 + }, + { + "start": 14045.18, + "end": 14046.76, + "probability": 0.8217 + }, + { + "start": 14047.18, + "end": 14049.3, + "probability": 0.4572 + }, + { + "start": 14052.96, + "end": 14056.02, + "probability": 0.0406 + }, + { + "start": 14057.1, + "end": 14058.46, + "probability": 0.0237 + }, + { + "start": 14058.54, + "end": 14058.54, + "probability": 0.0227 + }, + { + "start": 14058.54, + "end": 14058.58, + "probability": 0.1175 + }, + { + "start": 14058.58, + "end": 14058.58, + "probability": 0.2394 + }, + { + "start": 14058.58, + "end": 14059.8, + "probability": 0.322 + }, + { + "start": 14059.96, + "end": 14060.72, + "probability": 0.3582 + }, + { + "start": 14061.34, + "end": 14065.8, + "probability": 0.7218 + }, + { + "start": 14065.8, + "end": 14067.06, + "probability": 0.6345 + }, + { + "start": 14067.28, + "end": 14069.36, + "probability": 0.6604 + }, + { + "start": 14069.78, + "end": 14070.6, + "probability": 0.4468 + }, + { + "start": 14070.66, + "end": 14071.6, + "probability": 0.7543 + }, + { + "start": 14072.18, + "end": 14075.82, + "probability": 0.6492 + }, + { + "start": 14076.36, + "end": 14077.76, + "probability": 0.3622 + }, + { + "start": 14077.88, + "end": 14080.14, + "probability": 0.3697 + }, + { + "start": 14080.24, + "end": 14083.84, + "probability": 0.5152 + }, + { + "start": 14084.04, + "end": 14084.94, + "probability": 0.3464 + }, + { + "start": 14084.94, + "end": 14089.76, + "probability": 0.1181 + }, + { + "start": 14089.76, + "end": 14092.9, + "probability": 0.407 + }, + { + "start": 14093.62, + "end": 14094.32, + "probability": 0.1474 + }, + { + "start": 14094.32, + "end": 14095.06, + "probability": 0.0614 + }, + { + "start": 14095.34, + "end": 14098.42, + "probability": 0.6818 + }, + { + "start": 14098.58, + "end": 14104.46, + "probability": 0.9006 + }, + { + "start": 14104.64, + "end": 14106.12, + "probability": 0.6608 + }, + { + "start": 14106.34, + "end": 14107.38, + "probability": 0.2173 + }, + { + "start": 14107.54, + "end": 14110.26, + "probability": 0.5291 + }, + { + "start": 14110.34, + "end": 14111.1, + "probability": 0.915 + }, + { + "start": 14111.2, + "end": 14112.14, + "probability": 0.8106 + }, + { + "start": 14112.18, + "end": 14114.5, + "probability": 0.9705 + }, + { + "start": 14114.68, + "end": 14118.34, + "probability": 0.9732 + }, + { + "start": 14118.34, + "end": 14121.2, + "probability": 0.9402 + }, + { + "start": 14121.34, + "end": 14121.74, + "probability": 0.4102 + }, + { + "start": 14122.04, + "end": 14123.26, + "probability": 0.9372 + }, + { + "start": 14123.68, + "end": 14125.0, + "probability": 0.9854 + }, + { + "start": 14125.36, + "end": 14126.24, + "probability": 0.9219 + }, + { + "start": 14126.52, + "end": 14127.58, + "probability": 0.9443 + }, + { + "start": 14128.06, + "end": 14129.14, + "probability": 0.9668 + }, + { + "start": 14129.52, + "end": 14130.86, + "probability": 0.9409 + }, + { + "start": 14131.4, + "end": 14132.37, + "probability": 0.963 + }, + { + "start": 14133.1, + "end": 14134.94, + "probability": 0.9133 + }, + { + "start": 14135.06, + "end": 14135.42, + "probability": 0.6567 + }, + { + "start": 14135.78, + "end": 14138.04, + "probability": 0.7877 + }, + { + "start": 14138.38, + "end": 14142.6, + "probability": 0.9961 + }, + { + "start": 14142.98, + "end": 14146.9, + "probability": 0.9991 + }, + { + "start": 14147.44, + "end": 14149.5, + "probability": 0.9089 + }, + { + "start": 14150.04, + "end": 14152.66, + "probability": 0.9932 + }, + { + "start": 14153.18, + "end": 14156.7, + "probability": 0.884 + }, + { + "start": 14157.72, + "end": 14160.2, + "probability": 0.9944 + }, + { + "start": 14160.76, + "end": 14165.48, + "probability": 0.9941 + }, + { + "start": 14166.08, + "end": 14168.2, + "probability": 0.9949 + }, + { + "start": 14168.8, + "end": 14170.2, + "probability": 0.9802 + }, + { + "start": 14170.3, + "end": 14171.22, + "probability": 0.8915 + }, + { + "start": 14171.5, + "end": 14173.5, + "probability": 0.9338 + }, + { + "start": 14173.66, + "end": 14174.94, + "probability": 0.9912 + }, + { + "start": 14174.94, + "end": 14177.46, + "probability": 0.9852 + }, + { + "start": 14177.76, + "end": 14179.27, + "probability": 0.9613 + }, + { + "start": 14180.96, + "end": 14180.96, + "probability": 0.0929 + }, + { + "start": 14180.96, + "end": 14184.42, + "probability": 0.982 + }, + { + "start": 14185.62, + "end": 14187.48, + "probability": 0.9944 + }, + { + "start": 14187.54, + "end": 14188.36, + "probability": 0.8951 + }, + { + "start": 14188.78, + "end": 14189.7, + "probability": 0.9248 + }, + { + "start": 14190.08, + "end": 14190.92, + "probability": 0.4969 + }, + { + "start": 14191.36, + "end": 14193.68, + "probability": 0.9384 + }, + { + "start": 14193.9, + "end": 14194.72, + "probability": 0.5628 + }, + { + "start": 14195.24, + "end": 14196.34, + "probability": 0.8056 + }, + { + "start": 14196.94, + "end": 14198.74, + "probability": 0.9896 + }, + { + "start": 14199.22, + "end": 14200.22, + "probability": 0.656 + }, + { + "start": 14200.48, + "end": 14201.6, + "probability": 0.972 + }, + { + "start": 14202.18, + "end": 14205.4, + "probability": 0.7257 + }, + { + "start": 14205.68, + "end": 14206.26, + "probability": 0.6252 + }, + { + "start": 14206.48, + "end": 14210.2, + "probability": 0.9197 + }, + { + "start": 14210.66, + "end": 14213.78, + "probability": 0.9926 + }, + { + "start": 14214.3, + "end": 14215.82, + "probability": 0.998 + }, + { + "start": 14217.04, + "end": 14219.36, + "probability": 0.9954 + }, + { + "start": 14219.88, + "end": 14222.32, + "probability": 0.9924 + }, + { + "start": 14222.44, + "end": 14222.74, + "probability": 0.8703 + }, + { + "start": 14222.84, + "end": 14225.66, + "probability": 0.9589 + }, + { + "start": 14226.02, + "end": 14229.1, + "probability": 0.9968 + }, + { + "start": 14229.52, + "end": 14232.92, + "probability": 0.9859 + }, + { + "start": 14233.42, + "end": 14234.1, + "probability": 0.8832 + }, + { + "start": 14234.62, + "end": 14235.4, + "probability": 0.9896 + }, + { + "start": 14235.76, + "end": 14237.02, + "probability": 0.936 + }, + { + "start": 14237.12, + "end": 14239.96, + "probability": 0.9766 + }, + { + "start": 14240.36, + "end": 14243.8, + "probability": 0.9619 + }, + { + "start": 14243.84, + "end": 14244.3, + "probability": 0.4778 + }, + { + "start": 14244.34, + "end": 14245.68, + "probability": 0.8998 + }, + { + "start": 14245.78, + "end": 14246.9, + "probability": 0.4412 + }, + { + "start": 14248.4, + "end": 14250.96, + "probability": 0.4462 + }, + { + "start": 14251.1, + "end": 14252.01, + "probability": 0.4253 + }, + { + "start": 14252.38, + "end": 14254.0, + "probability": 0.9559 + }, + { + "start": 14254.24, + "end": 14255.68, + "probability": 0.528 + }, + { + "start": 14255.76, + "end": 14257.14, + "probability": 0.7008 + }, + { + "start": 14257.78, + "end": 14260.96, + "probability": 0.9908 + }, + { + "start": 14260.96, + "end": 14264.3, + "probability": 0.9669 + }, + { + "start": 14264.86, + "end": 14266.88, + "probability": 0.8674 + }, + { + "start": 14267.36, + "end": 14269.06, + "probability": 0.8722 + }, + { + "start": 14269.44, + "end": 14271.72, + "probability": 0.9891 + }, + { + "start": 14272.1, + "end": 14274.32, + "probability": 0.9243 + }, + { + "start": 14274.84, + "end": 14276.48, + "probability": 0.6843 + }, + { + "start": 14276.48, + "end": 14277.14, + "probability": 0.7863 + }, + { + "start": 14277.74, + "end": 14278.98, + "probability": 0.8361 + }, + { + "start": 14279.42, + "end": 14280.78, + "probability": 0.9874 + }, + { + "start": 14280.94, + "end": 14283.7, + "probability": 0.9619 + }, + { + "start": 14284.4, + "end": 14285.06, + "probability": 0.5694 + }, + { + "start": 14285.78, + "end": 14286.74, + "probability": 0.7729 + }, + { + "start": 14286.88, + "end": 14289.3, + "probability": 0.6831 + }, + { + "start": 14289.54, + "end": 14291.3, + "probability": 0.9622 + }, + { + "start": 14291.54, + "end": 14292.46, + "probability": 0.6929 + }, + { + "start": 14292.84, + "end": 14293.9, + "probability": 0.6204 + }, + { + "start": 14294.33, + "end": 14295.69, + "probability": 0.9858 + }, + { + "start": 14296.96, + "end": 14298.04, + "probability": 0.9167 + }, + { + "start": 14298.18, + "end": 14300.28, + "probability": 0.995 + }, + { + "start": 14300.86, + "end": 14302.96, + "probability": 0.9998 + }, + { + "start": 14303.22, + "end": 14304.08, + "probability": 0.834 + }, + { + "start": 14304.6, + "end": 14305.5, + "probability": 0.8027 + }, + { + "start": 14306.04, + "end": 14309.0, + "probability": 0.9899 + }, + { + "start": 14309.0, + "end": 14312.04, + "probability": 0.9944 + }, + { + "start": 14312.54, + "end": 14314.82, + "probability": 0.9958 + }, + { + "start": 14315.48, + "end": 14317.84, + "probability": 0.939 + }, + { + "start": 14318.3, + "end": 14319.16, + "probability": 0.6152 + }, + { + "start": 14319.2, + "end": 14320.04, + "probability": 0.9844 + }, + { + "start": 14320.46, + "end": 14325.28, + "probability": 0.951 + }, + { + "start": 14325.7, + "end": 14326.64, + "probability": 0.8963 + }, + { + "start": 14326.84, + "end": 14329.42, + "probability": 0.9884 + }, + { + "start": 14329.58, + "end": 14329.78, + "probability": 0.3676 + }, + { + "start": 14331.56, + "end": 14333.4, + "probability": 0.5318 + }, + { + "start": 14334.04, + "end": 14336.9, + "probability": 0.9949 + }, + { + "start": 14337.44, + "end": 14340.98, + "probability": 0.9749 + }, + { + "start": 14343.94, + "end": 14348.94, + "probability": 0.7562 + }, + { + "start": 14350.98, + "end": 14353.74, + "probability": 0.3067 + }, + { + "start": 14353.74, + "end": 14358.68, + "probability": 0.7789 + }, + { + "start": 14358.68, + "end": 14359.88, + "probability": 0.2074 + }, + { + "start": 14360.06, + "end": 14363.78, + "probability": 0.5391 + }, + { + "start": 14363.86, + "end": 14367.5, + "probability": 0.7002 + }, + { + "start": 14368.2, + "end": 14368.62, + "probability": 0.3688 + }, + { + "start": 14368.62, + "end": 14368.78, + "probability": 0.2628 + }, + { + "start": 14368.94, + "end": 14372.24, + "probability": 0.2289 + }, + { + "start": 14372.96, + "end": 14374.8, + "probability": 0.1994 + }, + { + "start": 14379.58, + "end": 14380.92, + "probability": 0.1672 + }, + { + "start": 14380.94, + "end": 14382.4, + "probability": 0.0588 + }, + { + "start": 14382.6, + "end": 14383.62, + "probability": 0.7249 + }, + { + "start": 14383.78, + "end": 14385.04, + "probability": 0.7322 + }, + { + "start": 14385.06, + "end": 14388.44, + "probability": 0.6663 + }, + { + "start": 14389.04, + "end": 14393.44, + "probability": 0.0438 + }, + { + "start": 14393.82, + "end": 14394.78, + "probability": 0.4616 + }, + { + "start": 14394.88, + "end": 14398.46, + "probability": 0.7725 + }, + { + "start": 14398.46, + "end": 14400.44, + "probability": 0.8299 + }, + { + "start": 14400.86, + "end": 14402.42, + "probability": 0.8132 + }, + { + "start": 14403.24, + "end": 14405.6, + "probability": 0.9232 + }, + { + "start": 14408.13, + "end": 14410.74, + "probability": 0.5054 + }, + { + "start": 14411.44, + "end": 14413.98, + "probability": 0.9736 + }, + { + "start": 14414.54, + "end": 14415.8, + "probability": 0.9873 + }, + { + "start": 14416.74, + "end": 14418.58, + "probability": 0.951 + }, + { + "start": 14418.68, + "end": 14419.8, + "probability": 0.9439 + }, + { + "start": 14420.28, + "end": 14426.06, + "probability": 0.8624 + }, + { + "start": 14426.06, + "end": 14427.34, + "probability": 0.1923 + }, + { + "start": 14427.9, + "end": 14430.88, + "probability": 0.8079 + }, + { + "start": 14431.48, + "end": 14434.32, + "probability": 0.854 + }, + { + "start": 14435.08, + "end": 14436.04, + "probability": 0.6716 + }, + { + "start": 14436.58, + "end": 14440.1, + "probability": 0.8584 + }, + { + "start": 14440.44, + "end": 14441.32, + "probability": 0.868 + }, + { + "start": 14442.34, + "end": 14444.46, + "probability": 0.9897 + }, + { + "start": 14445.36, + "end": 14447.9, + "probability": 0.7115 + }, + { + "start": 14448.64, + "end": 14451.94, + "probability": 0.8765 + }, + { + "start": 14452.24, + "end": 14452.96, + "probability": 0.4492 + }, + { + "start": 14452.96, + "end": 14453.9, + "probability": 0.2627 + }, + { + "start": 14454.5, + "end": 14456.08, + "probability": 0.9217 + }, + { + "start": 14456.78, + "end": 14461.72, + "probability": 0.8962 + }, + { + "start": 14462.54, + "end": 14466.08, + "probability": 0.9967 + }, + { + "start": 14466.52, + "end": 14467.24, + "probability": 0.9028 + }, + { + "start": 14467.66, + "end": 14471.04, + "probability": 0.9399 + }, + { + "start": 14471.12, + "end": 14473.25, + "probability": 0.9796 + }, + { + "start": 14473.72, + "end": 14474.88, + "probability": 0.9761 + }, + { + "start": 14475.3, + "end": 14475.58, + "probability": 0.6995 + }, + { + "start": 14475.6, + "end": 14476.58, + "probability": 0.9753 + }, + { + "start": 14476.64, + "end": 14477.7, + "probability": 0.901 + }, + { + "start": 14477.86, + "end": 14478.88, + "probability": 0.9551 + }, + { + "start": 14479.08, + "end": 14479.78, + "probability": 0.501 + }, + { + "start": 14479.78, + "end": 14480.52, + "probability": 0.2533 + }, + { + "start": 14480.64, + "end": 14481.56, + "probability": 0.4346 + }, + { + "start": 14481.84, + "end": 14483.2, + "probability": 0.3111 + }, + { + "start": 14483.46, + "end": 14484.3, + "probability": 0.1214 + }, + { + "start": 14484.3, + "end": 14485.86, + "probability": 0.2396 + }, + { + "start": 14488.54, + "end": 14490.02, + "probability": 0.8172 + }, + { + "start": 14490.08, + "end": 14493.36, + "probability": 0.4984 + }, + { + "start": 14493.46, + "end": 14493.62, + "probability": 0.6606 + }, + { + "start": 14493.68, + "end": 14495.76, + "probability": 0.7748 + }, + { + "start": 14495.76, + "end": 14497.92, + "probability": 0.9068 + }, + { + "start": 14498.18, + "end": 14501.72, + "probability": 0.9797 + }, + { + "start": 14501.88, + "end": 14502.72, + "probability": 0.509 + }, + { + "start": 14503.2, + "end": 14507.9, + "probability": 0.8527 + }, + { + "start": 14508.38, + "end": 14509.16, + "probability": 0.8607 + }, + { + "start": 14509.6, + "end": 14511.52, + "probability": 0.984 + }, + { + "start": 14512.02, + "end": 14514.2, + "probability": 0.9983 + }, + { + "start": 14514.8, + "end": 14515.84, + "probability": 0.8923 + }, + { + "start": 14516.8, + "end": 14520.44, + "probability": 0.9904 + }, + { + "start": 14520.88, + "end": 14523.02, + "probability": 0.3036 + }, + { + "start": 14524.26, + "end": 14525.28, + "probability": 0.1869 + }, + { + "start": 14525.72, + "end": 14526.62, + "probability": 0.1276 + }, + { + "start": 14526.62, + "end": 14526.62, + "probability": 0.2556 + }, + { + "start": 14526.62, + "end": 14529.3, + "probability": 0.4331 + }, + { + "start": 14529.48, + "end": 14530.96, + "probability": 0.3838 + }, + { + "start": 14531.1, + "end": 14531.24, + "probability": 0.0015 + }, + { + "start": 14532.0, + "end": 14532.36, + "probability": 0.084 + }, + { + "start": 14532.36, + "end": 14532.36, + "probability": 0.4797 + }, + { + "start": 14532.36, + "end": 14532.46, + "probability": 0.0979 + }, + { + "start": 14533.0, + "end": 14534.64, + "probability": 0.9321 + }, + { + "start": 14535.14, + "end": 14538.52, + "probability": 0.9043 + }, + { + "start": 14538.66, + "end": 14540.2, + "probability": 0.8282 + }, + { + "start": 14540.84, + "end": 14541.24, + "probability": 0.4582 + }, + { + "start": 14541.48, + "end": 14541.96, + "probability": 0.4065 + }, + { + "start": 14541.96, + "end": 14542.26, + "probability": 0.2476 + }, + { + "start": 14542.34, + "end": 14547.44, + "probability": 0.3193 + }, + { + "start": 14547.72, + "end": 14550.42, + "probability": 0.5411 + }, + { + "start": 14550.52, + "end": 14550.6, + "probability": 0.0002 + }, + { + "start": 14551.28, + "end": 14552.16, + "probability": 0.0824 + }, + { + "start": 14552.16, + "end": 14552.16, + "probability": 0.1158 + }, + { + "start": 14552.16, + "end": 14552.16, + "probability": 0.0332 + }, + { + "start": 14552.16, + "end": 14555.66, + "probability": 0.8904 + }, + { + "start": 14555.96, + "end": 14556.56, + "probability": 0.5203 + }, + { + "start": 14556.66, + "end": 14557.56, + "probability": 0.8615 + }, + { + "start": 14558.06, + "end": 14560.86, + "probability": 0.9621 + }, + { + "start": 14561.06, + "end": 14562.04, + "probability": 0.9634 + }, + { + "start": 14562.42, + "end": 14562.85, + "probability": 0.727 + }, + { + "start": 14563.14, + "end": 14564.0, + "probability": 0.6679 + }, + { + "start": 14564.2, + "end": 14565.56, + "probability": 0.5224 + }, + { + "start": 14566.06, + "end": 14568.22, + "probability": 0.9674 + }, + { + "start": 14568.58, + "end": 14570.38, + "probability": 0.6941 + }, + { + "start": 14570.78, + "end": 14570.9, + "probability": 0.0765 + }, + { + "start": 14570.9, + "end": 14573.34, + "probability": 0.7219 + }, + { + "start": 14573.92, + "end": 14574.8, + "probability": 0.8623 + }, + { + "start": 14575.18, + "end": 14576.94, + "probability": 0.9736 + }, + { + "start": 14577.1, + "end": 14578.4, + "probability": 0.9762 + }, + { + "start": 14578.82, + "end": 14580.3, + "probability": 0.9875 + }, + { + "start": 14580.78, + "end": 14582.32, + "probability": 0.9955 + }, + { + "start": 14582.8, + "end": 14583.01, + "probability": 0.3535 + }, + { + "start": 14583.5, + "end": 14584.26, + "probability": 0.5033 + }, + { + "start": 14584.38, + "end": 14586.78, + "probability": 0.9231 + }, + { + "start": 14586.84, + "end": 14587.86, + "probability": 0.6556 + }, + { + "start": 14588.18, + "end": 14593.02, + "probability": 0.9102 + }, + { + "start": 14593.06, + "end": 14594.46, + "probability": 0.7703 + }, + { + "start": 14594.7, + "end": 14594.7, + "probability": 0.0311 + }, + { + "start": 14594.7, + "end": 14595.6, + "probability": 0.6962 + }, + { + "start": 14596.02, + "end": 14598.26, + "probability": 0.6488 + }, + { + "start": 14598.36, + "end": 14600.14, + "probability": 0.6602 + }, + { + "start": 14600.14, + "end": 14602.72, + "probability": 0.7816 + }, + { + "start": 14602.98, + "end": 14603.52, + "probability": 0.6717 + }, + { + "start": 14603.54, + "end": 14605.08, + "probability": 0.965 + }, + { + "start": 14605.28, + "end": 14606.96, + "probability": 0.979 + }, + { + "start": 14606.96, + "end": 14607.12, + "probability": 0.094 + }, + { + "start": 14607.12, + "end": 14608.5, + "probability": 0.5064 + }, + { + "start": 14608.88, + "end": 14609.3, + "probability": 0.1915 + }, + { + "start": 14609.36, + "end": 14612.7, + "probability": 0.5642 + }, + { + "start": 14612.9, + "end": 14612.9, + "probability": 0.0343 + }, + { + "start": 14612.9, + "end": 14612.9, + "probability": 0.0982 + }, + { + "start": 14612.9, + "end": 14614.26, + "probability": 0.5159 + }, + { + "start": 14614.3, + "end": 14615.37, + "probability": 0.6595 + }, + { + "start": 14615.64, + "end": 14619.1, + "probability": 0.563 + }, + { + "start": 14619.18, + "end": 14620.4, + "probability": 0.6348 + }, + { + "start": 14620.7, + "end": 14622.82, + "probability": 0.556 + }, + { + "start": 14623.62, + "end": 14624.28, + "probability": 0.228 + }, + { + "start": 14624.44, + "end": 14625.14, + "probability": 0.4104 + }, + { + "start": 14625.48, + "end": 14625.88, + "probability": 0.0672 + }, + { + "start": 14625.88, + "end": 14627.26, + "probability": 0.0834 + }, + { + "start": 14627.54, + "end": 14629.84, + "probability": 0.7202 + }, + { + "start": 14629.92, + "end": 14630.52, + "probability": 0.1932 + }, + { + "start": 14630.9, + "end": 14632.5, + "probability": 0.9551 + }, + { + "start": 14632.82, + "end": 14634.28, + "probability": 0.7274 + }, + { + "start": 14634.5, + "end": 14635.7, + "probability": 0.8238 + }, + { + "start": 14635.82, + "end": 14636.26, + "probability": 0.6641 + }, + { + "start": 14636.58, + "end": 14637.28, + "probability": 0.7242 + }, + { + "start": 14637.36, + "end": 14638.22, + "probability": 0.5093 + }, + { + "start": 14638.36, + "end": 14639.36, + "probability": 0.7068 + }, + { + "start": 14639.44, + "end": 14640.3, + "probability": 0.6544 + }, + { + "start": 14640.54, + "end": 14644.28, + "probability": 0.7791 + }, + { + "start": 14645.16, + "end": 14647.9, + "probability": 0.9569 + }, + { + "start": 14648.7, + "end": 14651.92, + "probability": 0.9337 + }, + { + "start": 14652.14, + "end": 14653.28, + "probability": 0.8783 + }, + { + "start": 14653.44, + "end": 14656.28, + "probability": 0.9548 + }, + { + "start": 14657.53, + "end": 14659.68, + "probability": 0.9201 + }, + { + "start": 14660.3, + "end": 14660.96, + "probability": 0.6202 + }, + { + "start": 14661.4, + "end": 14663.66, + "probability": 0.9941 + }, + { + "start": 14664.18, + "end": 14664.68, + "probability": 0.4528 + }, + { + "start": 14664.74, + "end": 14665.48, + "probability": 0.9193 + }, + { + "start": 14665.58, + "end": 14668.8, + "probability": 0.9959 + }, + { + "start": 14668.8, + "end": 14672.76, + "probability": 0.984 + }, + { + "start": 14673.5, + "end": 14679.22, + "probability": 0.9227 + }, + { + "start": 14679.94, + "end": 14682.52, + "probability": 0.85 + }, + { + "start": 14682.98, + "end": 14683.76, + "probability": 0.774 + }, + { + "start": 14684.3, + "end": 14685.22, + "probability": 0.7611 + }, + { + "start": 14685.68, + "end": 14685.94, + "probability": 0.792 + }, + { + "start": 14686.36, + "end": 14687.16, + "probability": 0.5959 + }, + { + "start": 14687.16, + "end": 14688.62, + "probability": 0.9346 + }, + { + "start": 14688.74, + "end": 14689.98, + "probability": 0.8656 + }, + { + "start": 14690.06, + "end": 14690.54, + "probability": 0.3939 + }, + { + "start": 14690.64, + "end": 14691.08, + "probability": 0.4152 + }, + { + "start": 14691.4, + "end": 14691.4, + "probability": 0.0004 + }, + { + "start": 14694.4, + "end": 14694.6, + "probability": 0.0661 + }, + { + "start": 14694.6, + "end": 14695.14, + "probability": 0.41 + }, + { + "start": 14695.54, + "end": 14696.47, + "probability": 0.9329 + }, + { + "start": 14697.26, + "end": 14699.14, + "probability": 0.9476 + }, + { + "start": 14699.22, + "end": 14704.5, + "probability": 0.897 + }, + { + "start": 14704.5, + "end": 14706.47, + "probability": 0.0982 + }, + { + "start": 14707.0, + "end": 14708.24, + "probability": 0.9131 + }, + { + "start": 14708.6, + "end": 14710.16, + "probability": 0.4358 + }, + { + "start": 14710.22, + "end": 14710.42, + "probability": 0.6168 + }, + { + "start": 14710.64, + "end": 14712.88, + "probability": 0.7075 + }, + { + "start": 14713.04, + "end": 14713.18, + "probability": 0.0104 + }, + { + "start": 14713.26, + "end": 14715.36, + "probability": 0.3752 + }, + { + "start": 14715.76, + "end": 14719.54, + "probability": 0.9632 + }, + { + "start": 14720.32, + "end": 14720.42, + "probability": 0.2545 + }, + { + "start": 14720.7, + "end": 14725.54, + "probability": 0.9837 + }, + { + "start": 14726.08, + "end": 14728.24, + "probability": 0.988 + }, + { + "start": 14728.24, + "end": 14731.46, + "probability": 0.9969 + }, + { + "start": 14732.0, + "end": 14734.6, + "probability": 0.9966 + }, + { + "start": 14735.6, + "end": 14738.62, + "probability": 0.5202 + }, + { + "start": 14739.2, + "end": 14743.56, + "probability": 0.921 + }, + { + "start": 14744.42, + "end": 14745.86, + "probability": 0.9631 + }, + { + "start": 14746.92, + "end": 14749.42, + "probability": 0.9668 + }, + { + "start": 14749.74, + "end": 14749.98, + "probability": 0.9013 + }, + { + "start": 14750.68, + "end": 14752.4, + "probability": 0.9681 + }, + { + "start": 14753.0, + "end": 14756.9, + "probability": 0.9448 + }, + { + "start": 14757.02, + "end": 14757.52, + "probability": 0.8713 + }, + { + "start": 14757.7, + "end": 14758.12, + "probability": 0.5202 + }, + { + "start": 14758.84, + "end": 14759.88, + "probability": 0.9895 + }, + { + "start": 14760.54, + "end": 14762.38, + "probability": 0.9827 + }, + { + "start": 14763.02, + "end": 14764.22, + "probability": 0.9432 + }, + { + "start": 14764.22, + "end": 14766.66, + "probability": 0.9872 + }, + { + "start": 14766.78, + "end": 14768.3, + "probability": 0.9263 + }, + { + "start": 14768.5, + "end": 14769.16, + "probability": 0.8872 + }, + { + "start": 14769.8, + "end": 14772.08, + "probability": 0.8651 + }, + { + "start": 14772.9, + "end": 14773.65, + "probability": 0.9805 + }, + { + "start": 14774.58, + "end": 14777.84, + "probability": 0.9674 + }, + { + "start": 14778.54, + "end": 14779.54, + "probability": 0.9113 + }, + { + "start": 14779.92, + "end": 14780.76, + "probability": 0.7688 + }, + { + "start": 14780.82, + "end": 14781.94, + "probability": 0.979 + }, + { + "start": 14783.64, + "end": 14788.02, + "probability": 0.9965 + }, + { + "start": 14788.78, + "end": 14791.3, + "probability": 0.8326 + }, + { + "start": 14791.8, + "end": 14794.18, + "probability": 0.9257 + }, + { + "start": 14794.92, + "end": 14797.88, + "probability": 0.9944 + }, + { + "start": 14798.54, + "end": 14799.98, + "probability": 0.9741 + }, + { + "start": 14800.82, + "end": 14803.3, + "probability": 0.625 + }, + { + "start": 14804.44, + "end": 14805.84, + "probability": 0.7872 + }, + { + "start": 14806.14, + "end": 14806.6, + "probability": 0.9478 + }, + { + "start": 14807.1, + "end": 14807.72, + "probability": 0.6862 + }, + { + "start": 14808.36, + "end": 14811.5, + "probability": 0.9833 + }, + { + "start": 14811.96, + "end": 14817.14, + "probability": 0.9624 + }, + { + "start": 14817.68, + "end": 14820.8, + "probability": 0.999 + }, + { + "start": 14821.14, + "end": 14822.34, + "probability": 0.9477 + }, + { + "start": 14823.18, + "end": 14826.4, + "probability": 0.6694 + }, + { + "start": 14826.96, + "end": 14828.16, + "probability": 0.6052 + }, + { + "start": 14828.88, + "end": 14831.68, + "probability": 0.9946 + }, + { + "start": 14832.06, + "end": 14835.74, + "probability": 0.9775 + }, + { + "start": 14836.4, + "end": 14839.14, + "probability": 0.8181 + }, + { + "start": 14839.68, + "end": 14842.0, + "probability": 0.8167 + }, + { + "start": 14844.24, + "end": 14845.5, + "probability": 0.429 + }, + { + "start": 14846.34, + "end": 14846.88, + "probability": 0.4268 + }, + { + "start": 14847.04, + "end": 14849.22, + "probability": 0.9414 + }, + { + "start": 14849.36, + "end": 14850.62, + "probability": 0.9819 + }, + { + "start": 14851.14, + "end": 14851.82, + "probability": 0.5154 + }, + { + "start": 14851.92, + "end": 14853.9, + "probability": 0.764 + }, + { + "start": 14854.06, + "end": 14856.16, + "probability": 0.6844 + }, + { + "start": 14856.32, + "end": 14857.3, + "probability": 0.6262 + }, + { + "start": 14857.78, + "end": 14861.48, + "probability": 0.9854 + }, + { + "start": 14862.24, + "end": 14863.04, + "probability": 0.7321 + }, + { + "start": 14863.52, + "end": 14864.44, + "probability": 0.984 + }, + { + "start": 14865.16, + "end": 14868.32, + "probability": 0.7807 + }, + { + "start": 14869.16, + "end": 14874.62, + "probability": 0.9854 + }, + { + "start": 14875.4, + "end": 14876.76, + "probability": 0.854 + }, + { + "start": 14877.5, + "end": 14878.82, + "probability": 0.5913 + }, + { + "start": 14879.06, + "end": 14879.66, + "probability": 0.6566 + }, + { + "start": 14879.74, + "end": 14881.54, + "probability": 0.9795 + }, + { + "start": 14881.62, + "end": 14882.66, + "probability": 0.899 + }, + { + "start": 14883.2, + "end": 14884.46, + "probability": 0.8826 + }, + { + "start": 14885.84, + "end": 14890.72, + "probability": 0.6661 + }, + { + "start": 14890.96, + "end": 14893.86, + "probability": 0.884 + }, + { + "start": 14894.02, + "end": 14900.88, + "probability": 0.7221 + }, + { + "start": 14903.78, + "end": 14906.74, + "probability": 0.8939 + }, + { + "start": 14907.02, + "end": 14908.02, + "probability": 0.5413 + }, + { + "start": 14908.12, + "end": 14908.96, + "probability": 0.614 + }, + { + "start": 14910.32, + "end": 14914.58, + "probability": 0.9759 + }, + { + "start": 14914.82, + "end": 14922.04, + "probability": 0.9763 + }, + { + "start": 14922.08, + "end": 14922.88, + "probability": 0.6702 + }, + { + "start": 14923.58, + "end": 14926.94, + "probability": 0.9397 + }, + { + "start": 14926.94, + "end": 14933.42, + "probability": 0.7401 + }, + { + "start": 14934.25, + "end": 14936.66, + "probability": 0.9429 + }, + { + "start": 14936.72, + "end": 14937.62, + "probability": 0.6993 + }, + { + "start": 14937.76, + "end": 14939.32, + "probability": 0.9988 + }, + { + "start": 14939.32, + "end": 14939.74, + "probability": 0.4783 + }, + { + "start": 14939.92, + "end": 14943.04, + "probability": 0.9719 + }, + { + "start": 14944.18, + "end": 14948.98, + "probability": 0.9962 + }, + { + "start": 14949.86, + "end": 14955.8, + "probability": 0.8071 + }, + { + "start": 14956.16, + "end": 14960.56, + "probability": 0.7865 + }, + { + "start": 14961.14, + "end": 14962.94, + "probability": 0.9974 + }, + { + "start": 14962.94, + "end": 14964.32, + "probability": 0.6695 + }, + { + "start": 14964.34, + "end": 14964.58, + "probability": 0.7668 + }, + { + "start": 14964.74, + "end": 14967.72, + "probability": 0.7691 + }, + { + "start": 14967.86, + "end": 14968.92, + "probability": 0.9186 + }, + { + "start": 14968.96, + "end": 14969.2, + "probability": 0.8718 + }, + { + "start": 14969.3, + "end": 14973.42, + "probability": 0.9559 + }, + { + "start": 14973.56, + "end": 14977.96, + "probability": 0.9139 + }, + { + "start": 14979.4, + "end": 14981.34, + "probability": 0.957 + }, + { + "start": 14981.34, + "end": 14985.58, + "probability": 0.6533 + }, + { + "start": 14985.7, + "end": 14989.56, + "probability": 0.7098 + }, + { + "start": 14989.78, + "end": 14990.44, + "probability": 0.4722 + }, + { + "start": 14990.82, + "end": 14991.24, + "probability": 0.7194 + }, + { + "start": 14991.24, + "end": 14991.76, + "probability": 0.8175 + }, + { + "start": 14992.62, + "end": 14996.5, + "probability": 0.662 + }, + { + "start": 14996.64, + "end": 15000.3, + "probability": 0.9415 + }, + { + "start": 15000.4, + "end": 15003.6, + "probability": 0.4279 + }, + { + "start": 15003.96, + "end": 15005.08, + "probability": 0.8332 + }, + { + "start": 15005.46, + "end": 15010.42, + "probability": 0.8452 + }, + { + "start": 15012.85, + "end": 15016.74, + "probability": 0.9124 + }, + { + "start": 15017.44, + "end": 15021.32, + "probability": 0.9907 + }, + { + "start": 15022.9, + "end": 15024.7, + "probability": 0.9735 + }, + { + "start": 15025.4, + "end": 15027.62, + "probability": 0.8558 + }, + { + "start": 15028.7, + "end": 15029.94, + "probability": 0.9193 + }, + { + "start": 15029.94, + "end": 15032.6, + "probability": 0.8307 + }, + { + "start": 15032.96, + "end": 15035.44, + "probability": 0.5987 + }, + { + "start": 15036.3, + "end": 15039.3, + "probability": 0.7622 + }, + { + "start": 15040.4, + "end": 15041.64, + "probability": 0.6894 + }, + { + "start": 15042.86, + "end": 15044.2, + "probability": 0.9703 + }, + { + "start": 15048.25, + "end": 15051.0, + "probability": 0.7158 + }, + { + "start": 15051.28, + "end": 15052.4, + "probability": 0.6021 + }, + { + "start": 15053.56, + "end": 15055.08, + "probability": 0.9591 + }, + { + "start": 15055.76, + "end": 15056.04, + "probability": 0.882 + }, + { + "start": 15056.06, + "end": 15057.08, + "probability": 0.9794 + }, + { + "start": 15057.58, + "end": 15059.6, + "probability": 0.6872 + }, + { + "start": 15059.92, + "end": 15061.4, + "probability": 0.9437 + }, + { + "start": 15062.44, + "end": 15063.72, + "probability": 0.9719 + }, + { + "start": 15064.94, + "end": 15067.16, + "probability": 0.9535 + }, + { + "start": 15068.48, + "end": 15071.36, + "probability": 0.9976 + }, + { + "start": 15071.62, + "end": 15071.9, + "probability": 0.8011 + }, + { + "start": 15072.54, + "end": 15072.8, + "probability": 0.9246 + }, + { + "start": 15073.44, + "end": 15075.55, + "probability": 0.9375 + }, + { + "start": 15076.14, + "end": 15078.3, + "probability": 0.8232 + }, + { + "start": 15079.26, + "end": 15081.44, + "probability": 0.8279 + }, + { + "start": 15082.04, + "end": 15084.7, + "probability": 0.8486 + }, + { + "start": 15086.38, + "end": 15089.36, + "probability": 0.9934 + }, + { + "start": 15089.86, + "end": 15091.28, + "probability": 0.7815 + }, + { + "start": 15091.78, + "end": 15092.4, + "probability": 0.8408 + }, + { + "start": 15092.54, + "end": 15093.3, + "probability": 0.6888 + }, + { + "start": 15093.76, + "end": 15096.64, + "probability": 0.7808 + }, + { + "start": 15097.02, + "end": 15098.65, + "probability": 0.8184 + }, + { + "start": 15099.52, + "end": 15099.73, + "probability": 0.2053 + }, + { + "start": 15100.97, + "end": 15105.26, + "probability": 0.5604 + }, + { + "start": 15108.16, + "end": 15108.4, + "probability": 0.2097 + }, + { + "start": 15109.5, + "end": 15110.06, + "probability": 0.0781 + }, + { + "start": 15110.06, + "end": 15110.06, + "probability": 0.2545 + }, + { + "start": 15110.06, + "end": 15110.54, + "probability": 0.2377 + }, + { + "start": 15110.56, + "end": 15113.84, + "probability": 0.9783 + }, + { + "start": 15115.08, + "end": 15118.8, + "probability": 0.8049 + }, + { + "start": 15119.58, + "end": 15123.12, + "probability": 0.9575 + }, + { + "start": 15123.12, + "end": 15124.96, + "probability": 0.6936 + }, + { + "start": 15125.16, + "end": 15128.12, + "probability": 0.854 + }, + { + "start": 15128.7, + "end": 15130.34, + "probability": 0.8392 + }, + { + "start": 15130.36, + "end": 15133.52, + "probability": 0.961 + }, + { + "start": 15133.72, + "end": 15134.16, + "probability": 0.7768 + }, + { + "start": 15135.46, + "end": 15137.68, + "probability": 0.9536 + }, + { + "start": 15138.76, + "end": 15139.06, + "probability": 0.1923 + }, + { + "start": 15139.06, + "end": 15140.24, + "probability": 0.4862 + }, + { + "start": 15140.67, + "end": 15142.78, + "probability": 0.9677 + }, + { + "start": 15146.0, + "end": 15146.56, + "probability": 0.846 + }, + { + "start": 15146.56, + "end": 15149.34, + "probability": 0.7794 + }, + { + "start": 15149.48, + "end": 15150.04, + "probability": 0.5569 + }, + { + "start": 15150.14, + "end": 15150.66, + "probability": 0.551 + }, + { + "start": 15151.06, + "end": 15151.56, + "probability": 0.6345 + }, + { + "start": 15151.8, + "end": 15154.92, + "probability": 0.9871 + }, + { + "start": 15156.63, + "end": 15156.87, + "probability": 0.2466 + }, + { + "start": 15157.12, + "end": 15158.9, + "probability": 0.9454 + }, + { + "start": 15159.7, + "end": 15159.7, + "probability": 0.161 + }, + { + "start": 15159.86, + "end": 15160.98, + "probability": 0.8691 + }, + { + "start": 15161.16, + "end": 15163.04, + "probability": 0.9569 + }, + { + "start": 15163.36, + "end": 15165.7, + "probability": 0.8776 + }, + { + "start": 15165.78, + "end": 15167.52, + "probability": 0.9631 + }, + { + "start": 15167.52, + "end": 15168.57, + "probability": 0.588 + }, + { + "start": 15168.98, + "end": 15170.02, + "probability": 0.0671 + }, + { + "start": 15170.02, + "end": 15173.48, + "probability": 0.9922 + }, + { + "start": 15173.63, + "end": 15177.18, + "probability": 0.9287 + }, + { + "start": 15177.8, + "end": 15181.18, + "probability": 0.7402 + }, + { + "start": 15188.32, + "end": 15190.76, + "probability": 0.7673 + }, + { + "start": 15190.94, + "end": 15191.72, + "probability": 0.7302 + }, + { + "start": 15191.8, + "end": 15193.1, + "probability": 0.9886 + }, + { + "start": 15193.12, + "end": 15194.08, + "probability": 0.6944 + }, + { + "start": 15195.06, + "end": 15196.32, + "probability": 0.8142 + }, + { + "start": 15197.3, + "end": 15198.08, + "probability": 0.8709 + }, + { + "start": 15198.46, + "end": 15202.66, + "probability": 0.9843 + }, + { + "start": 15203.98, + "end": 15205.54, + "probability": 0.8252 + }, + { + "start": 15206.38, + "end": 15207.08, + "probability": 0.6454 + }, + { + "start": 15207.16, + "end": 15210.82, + "probability": 0.906 + }, + { + "start": 15211.38, + "end": 15213.7, + "probability": 0.9869 + }, + { + "start": 15214.04, + "end": 15214.98, + "probability": 0.9818 + }, + { + "start": 15214.98, + "end": 15216.04, + "probability": 0.8145 + }, + { + "start": 15217.06, + "end": 15218.6, + "probability": 0.9166 + }, + { + "start": 15218.74, + "end": 15219.74, + "probability": 0.9939 + }, + { + "start": 15219.88, + "end": 15223.56, + "probability": 0.9764 + }, + { + "start": 15223.92, + "end": 15227.34, + "probability": 0.9432 + }, + { + "start": 15228.1, + "end": 15229.3, + "probability": 0.9415 + }, + { + "start": 15229.96, + "end": 15231.0, + "probability": 0.8235 + }, + { + "start": 15231.64, + "end": 15233.32, + "probability": 0.9808 + }, + { + "start": 15233.8, + "end": 15236.88, + "probability": 0.6891 + }, + { + "start": 15237.3, + "end": 15238.48, + "probability": 0.9634 + }, + { + "start": 15238.54, + "end": 15238.84, + "probability": 0.4445 + }, + { + "start": 15239.3, + "end": 15244.14, + "probability": 0.8992 + }, + { + "start": 15244.2, + "end": 15244.99, + "probability": 0.0757 + }, + { + "start": 15245.78, + "end": 15248.82, + "probability": 0.996 + }, + { + "start": 15249.5, + "end": 15250.74, + "probability": 0.5431 + }, + { + "start": 15250.86, + "end": 15252.82, + "probability": 0.5912 + }, + { + "start": 15253.24, + "end": 15254.64, + "probability": 0.6709 + }, + { + "start": 15254.86, + "end": 15255.94, + "probability": 0.9813 + }, + { + "start": 15256.22, + "end": 15257.76, + "probability": 0.9816 + }, + { + "start": 15257.84, + "end": 15259.06, + "probability": 0.6039 + }, + { + "start": 15259.8, + "end": 15260.64, + "probability": 0.9372 + }, + { + "start": 15260.74, + "end": 15266.42, + "probability": 0.9862 + }, + { + "start": 15266.5, + "end": 15267.46, + "probability": 0.8142 + }, + { + "start": 15267.78, + "end": 15269.14, + "probability": 0.9141 + }, + { + "start": 15269.56, + "end": 15270.6, + "probability": 0.9755 + }, + { + "start": 15270.98, + "end": 15272.0, + "probability": 0.8994 + }, + { + "start": 15272.1, + "end": 15273.06, + "probability": 0.7277 + }, + { + "start": 15273.26, + "end": 15275.53, + "probability": 0.9624 + }, + { + "start": 15275.78, + "end": 15276.68, + "probability": 0.7614 + }, + { + "start": 15277.3, + "end": 15277.81, + "probability": 0.9619 + }, + { + "start": 15278.58, + "end": 15280.94, + "probability": 0.9348 + }, + { + "start": 15281.08, + "end": 15282.02, + "probability": 0.9482 + }, + { + "start": 15282.44, + "end": 15283.2, + "probability": 0.5403 + }, + { + "start": 15283.54, + "end": 15284.6, + "probability": 0.9323 + }, + { + "start": 15285.12, + "end": 15287.74, + "probability": 0.9808 + }, + { + "start": 15288.18, + "end": 15291.34, + "probability": 0.9752 + }, + { + "start": 15291.44, + "end": 15293.38, + "probability": 0.9677 + }, + { + "start": 15293.84, + "end": 15297.3, + "probability": 0.9915 + }, + { + "start": 15297.38, + "end": 15298.46, + "probability": 0.9961 + }, + { + "start": 15298.72, + "end": 15300.12, + "probability": 0.8703 + }, + { + "start": 15300.36, + "end": 15300.56, + "probability": 0.4541 + }, + { + "start": 15302.0, + "end": 15304.46, + "probability": 0.7828 + }, + { + "start": 15304.78, + "end": 15312.3, + "probability": 0.9723 + }, + { + "start": 15312.76, + "end": 15315.22, + "probability": 0.9846 + }, + { + "start": 15315.62, + "end": 15317.68, + "probability": 0.8255 + }, + { + "start": 15317.76, + "end": 15322.0, + "probability": 0.8399 + }, + { + "start": 15322.04, + "end": 15323.36, + "probability": 0.4823 + }, + { + "start": 15323.7, + "end": 15324.42, + "probability": 0.6347 + }, + { + "start": 15324.52, + "end": 15325.12, + "probability": 0.7431 + }, + { + "start": 15325.12, + "end": 15325.98, + "probability": 0.7558 + }, + { + "start": 15333.32, + "end": 15335.36, + "probability": 0.291 + }, + { + "start": 15336.86, + "end": 15342.9, + "probability": 0.0536 + }, + { + "start": 15342.94, + "end": 15342.94, + "probability": 0.0102 + }, + { + "start": 15343.18, + "end": 15343.5, + "probability": 0.0468 + }, + { + "start": 15343.5, + "end": 15343.5, + "probability": 0.1788 + }, + { + "start": 15343.5, + "end": 15346.76, + "probability": 0.6824 + }, + { + "start": 15347.02, + "end": 15349.96, + "probability": 0.7859 + }, + { + "start": 15356.4, + "end": 15358.82, + "probability": 0.845 + }, + { + "start": 15371.56, + "end": 15372.28, + "probability": 0.8593 + }, + { + "start": 15372.54, + "end": 15375.32, + "probability": 0.9094 + }, + { + "start": 15375.32, + "end": 15381.8, + "probability": 0.9621 + }, + { + "start": 15382.5, + "end": 15384.36, + "probability": 0.7969 + }, + { + "start": 15384.52, + "end": 15384.52, + "probability": 0.5386 + }, + { + "start": 15384.72, + "end": 15388.62, + "probability": 0.9951 + }, + { + "start": 15388.62, + "end": 15392.0, + "probability": 0.9551 + }, + { + "start": 15392.7, + "end": 15395.66, + "probability": 0.998 + }, + { + "start": 15396.06, + "end": 15396.56, + "probability": 0.9612 + }, + { + "start": 15396.84, + "end": 15402.24, + "probability": 0.8928 + }, + { + "start": 15402.5, + "end": 15405.66, + "probability": 0.7779 + }, + { + "start": 15406.0, + "end": 15408.38, + "probability": 0.8411 + }, + { + "start": 15408.86, + "end": 15411.56, + "probability": 0.9855 + }, + { + "start": 15412.44, + "end": 15413.32, + "probability": 0.8843 + }, + { + "start": 15413.48, + "end": 15414.6, + "probability": 0.9352 + }, + { + "start": 15415.04, + "end": 15416.68, + "probability": 0.9814 + }, + { + "start": 15417.22, + "end": 15418.72, + "probability": 0.9809 + }, + { + "start": 15418.88, + "end": 15419.58, + "probability": 0.8062 + }, + { + "start": 15419.68, + "end": 15421.02, + "probability": 0.939 + }, + { + "start": 15421.1, + "end": 15421.68, + "probability": 0.8982 + }, + { + "start": 15421.7, + "end": 15422.38, + "probability": 0.9874 + }, + { + "start": 15422.46, + "end": 15423.06, + "probability": 0.8888 + }, + { + "start": 15423.94, + "end": 15427.14, + "probability": 0.8217 + }, + { + "start": 15427.88, + "end": 15428.58, + "probability": 0.9828 + }, + { + "start": 15428.8, + "end": 15430.34, + "probability": 0.9562 + }, + { + "start": 15430.48, + "end": 15431.66, + "probability": 0.9583 + }, + { + "start": 15431.82, + "end": 15433.18, + "probability": 0.4103 + }, + { + "start": 15433.72, + "end": 15435.32, + "probability": 0.9154 + }, + { + "start": 15435.4, + "end": 15437.09, + "probability": 0.9785 + }, + { + "start": 15437.62, + "end": 15439.41, + "probability": 0.9799 + }, + { + "start": 15439.74, + "end": 15446.04, + "probability": 0.9536 + }, + { + "start": 15446.44, + "end": 15449.06, + "probability": 0.9829 + }, + { + "start": 15449.2, + "end": 15449.66, + "probability": 0.7169 + }, + { + "start": 15450.06, + "end": 15451.34, + "probability": 0.9212 + }, + { + "start": 15451.74, + "end": 15454.26, + "probability": 0.8527 + }, + { + "start": 15454.4, + "end": 15456.04, + "probability": 0.9148 + }, + { + "start": 15456.14, + "end": 15458.9, + "probability": 0.9784 + }, + { + "start": 15459.12, + "end": 15459.28, + "probability": 0.2648 + }, + { + "start": 15459.74, + "end": 15460.77, + "probability": 0.9976 + }, + { + "start": 15460.96, + "end": 15461.86, + "probability": 0.3358 + }, + { + "start": 15462.76, + "end": 15463.42, + "probability": 0.5338 + }, + { + "start": 15464.22, + "end": 15466.1, + "probability": 0.805 + }, + { + "start": 15466.38, + "end": 15468.46, + "probability": 0.8835 + }, + { + "start": 15469.1, + "end": 15471.16, + "probability": 0.8534 + }, + { + "start": 15471.2, + "end": 15471.88, + "probability": 0.6543 + }, + { + "start": 15471.98, + "end": 15473.98, + "probability": 0.8482 + }, + { + "start": 15474.1, + "end": 15474.84, + "probability": 0.8027 + }, + { + "start": 15475.0, + "end": 15477.5, + "probability": 0.9855 + }, + { + "start": 15477.84, + "end": 15478.72, + "probability": 0.8794 + }, + { + "start": 15479.0, + "end": 15479.82, + "probability": 0.806 + }, + { + "start": 15479.92, + "end": 15480.34, + "probability": 0.4493 + }, + { + "start": 15480.34, + "end": 15483.66, + "probability": 0.9877 + }, + { + "start": 15483.66, + "end": 15484.0, + "probability": 0.2697 + }, + { + "start": 15484.32, + "end": 15487.22, + "probability": 0.9219 + }, + { + "start": 15487.24, + "end": 15489.08, + "probability": 0.725 + }, + { + "start": 15489.26, + "end": 15491.34, + "probability": 0.9702 + }, + { + "start": 15491.8, + "end": 15495.64, + "probability": 0.7517 + }, + { + "start": 15496.2, + "end": 15497.36, + "probability": 0.0892 + }, + { + "start": 15497.52, + "end": 15498.8, + "probability": 0.6828 + }, + { + "start": 15498.84, + "end": 15501.86, + "probability": 0.81 + }, + { + "start": 15501.98, + "end": 15504.72, + "probability": 0.7871 + }, + { + "start": 15505.28, + "end": 15509.66, + "probability": 0.9976 + }, + { + "start": 15509.94, + "end": 15511.56, + "probability": 0.7917 + }, + { + "start": 15511.62, + "end": 15512.67, + "probability": 0.9946 + }, + { + "start": 15513.0, + "end": 15514.6, + "probability": 0.9532 + }, + { + "start": 15514.68, + "end": 15516.04, + "probability": 0.9121 + }, + { + "start": 15516.5, + "end": 15517.9, + "probability": 0.1343 + }, + { + "start": 15518.14, + "end": 15518.68, + "probability": 0.637 + }, + { + "start": 15518.72, + "end": 15519.68, + "probability": 0.5715 + }, + { + "start": 15520.02, + "end": 15521.3, + "probability": 0.1993 + }, + { + "start": 15521.36, + "end": 15522.16, + "probability": 0.5329 + }, + { + "start": 15522.24, + "end": 15522.6, + "probability": 0.02 + }, + { + "start": 15523.04, + "end": 15525.04, + "probability": 0.9893 + }, + { + "start": 15525.14, + "end": 15525.86, + "probability": 0.4406 + }, + { + "start": 15526.02, + "end": 15527.72, + "probability": 0.8232 + }, + { + "start": 15527.82, + "end": 15528.1, + "probability": 0.2092 + }, + { + "start": 15528.48, + "end": 15532.72, + "probability": 0.8912 + }, + { + "start": 15532.98, + "end": 15535.84, + "probability": 0.7595 + }, + { + "start": 15536.0, + "end": 15536.8, + "probability": 0.9038 + }, + { + "start": 15537.42, + "end": 15538.08, + "probability": 0.8151 + }, + { + "start": 15538.12, + "end": 15539.3, + "probability": 0.6958 + }, + { + "start": 15539.3, + "end": 15540.84, + "probability": 0.1846 + }, + { + "start": 15540.98, + "end": 15543.74, + "probability": 0.7141 + }, + { + "start": 15543.82, + "end": 15546.04, + "probability": 0.9172 + }, + { + "start": 15546.04, + "end": 15551.5, + "probability": 0.8798 + }, + { + "start": 15551.68, + "end": 15554.54, + "probability": 0.9969 + }, + { + "start": 15554.74, + "end": 15557.4, + "probability": 0.9832 + }, + { + "start": 15557.52, + "end": 15560.72, + "probability": 0.6543 + }, + { + "start": 15560.88, + "end": 15561.34, + "probability": 0.8285 + }, + { + "start": 15561.66, + "end": 15563.19, + "probability": 0.9539 + }, + { + "start": 15563.38, + "end": 15566.62, + "probability": 0.9644 + }, + { + "start": 15566.78, + "end": 15567.74, + "probability": 0.9954 + }, + { + "start": 15568.18, + "end": 15568.92, + "probability": 0.9026 + }, + { + "start": 15569.36, + "end": 15569.9, + "probability": 0.9523 + }, + { + "start": 15570.42, + "end": 15573.9, + "probability": 0.9669 + }, + { + "start": 15573.9, + "end": 15577.09, + "probability": 0.9807 + }, + { + "start": 15581.04, + "end": 15584.38, + "probability": 0.9167 + }, + { + "start": 15584.44, + "end": 15589.7, + "probability": 0.6062 + }, + { + "start": 15589.96, + "end": 15591.28, + "probability": 0.5176 + }, + { + "start": 15591.7, + "end": 15592.42, + "probability": 0.8895 + }, + { + "start": 15592.78, + "end": 15594.9, + "probability": 0.8337 + }, + { + "start": 15595.1, + "end": 15596.22, + "probability": 0.942 + }, + { + "start": 15596.24, + "end": 15598.06, + "probability": 0.7651 + }, + { + "start": 15598.16, + "end": 15600.22, + "probability": 0.791 + }, + { + "start": 15600.48, + "end": 15602.98, + "probability": 0.9029 + }, + { + "start": 15603.32, + "end": 15606.76, + "probability": 0.9785 + }, + { + "start": 15607.0, + "end": 15609.96, + "probability": 0.9759 + }, + { + "start": 15610.48, + "end": 15612.16, + "probability": 0.9864 + }, + { + "start": 15612.5, + "end": 15612.94, + "probability": 0.9727 + }, + { + "start": 15613.04, + "end": 15613.68, + "probability": 0.9697 + }, + { + "start": 15614.2, + "end": 15616.8, + "probability": 0.9855 + }, + { + "start": 15617.28, + "end": 15619.14, + "probability": 0.9596 + }, + { + "start": 15619.14, + "end": 15621.46, + "probability": 0.916 + }, + { + "start": 15621.58, + "end": 15624.26, + "probability": 0.9784 + }, + { + "start": 15624.64, + "end": 15626.26, + "probability": 0.9068 + }, + { + "start": 15626.46, + "end": 15627.46, + "probability": 0.8095 + }, + { + "start": 15627.62, + "end": 15627.92, + "probability": 0.7412 + }, + { + "start": 15628.02, + "end": 15629.2, + "probability": 0.9562 + }, + { + "start": 15629.5, + "end": 15631.78, + "probability": 0.9787 + }, + { + "start": 15632.04, + "end": 15632.6, + "probability": 0.2439 + }, + { + "start": 15635.0, + "end": 15635.92, + "probability": 0.0017 + }, + { + "start": 15636.02, + "end": 15636.34, + "probability": 0.0212 + }, + { + "start": 15636.34, + "end": 15638.18, + "probability": 0.8004 + }, + { + "start": 15638.18, + "end": 15638.54, + "probability": 0.0069 + }, + { + "start": 15638.74, + "end": 15642.1, + "probability": 0.4737 + }, + { + "start": 15642.1, + "end": 15642.66, + "probability": 0.1938 + }, + { + "start": 15642.76, + "end": 15644.1, + "probability": 0.1966 + }, + { + "start": 15645.38, + "end": 15649.98, + "probability": 0.9884 + }, + { + "start": 15650.12, + "end": 15653.8, + "probability": 0.7527 + }, + { + "start": 15653.96, + "end": 15654.9, + "probability": 0.9624 + }, + { + "start": 15655.1, + "end": 15655.78, + "probability": 0.1071 + }, + { + "start": 15655.96, + "end": 15657.06, + "probability": 0.2848 + }, + { + "start": 15659.6, + "end": 15660.66, + "probability": 0.258 + }, + { + "start": 15661.52, + "end": 15662.34, + "probability": 0.0931 + }, + { + "start": 15662.34, + "end": 15664.46, + "probability": 0.9785 + }, + { + "start": 15664.7, + "end": 15666.06, + "probability": 0.0463 + }, + { + "start": 15666.06, + "end": 15666.44, + "probability": 0.019 + }, + { + "start": 15666.6, + "end": 15668.6, + "probability": 0.9003 + }, + { + "start": 15668.86, + "end": 15669.14, + "probability": 0.3807 + }, + { + "start": 15669.26, + "end": 15670.8, + "probability": 0.8109 + }, + { + "start": 15670.92, + "end": 15672.32, + "probability": 0.9961 + }, + { + "start": 15672.71, + "end": 15675.04, + "probability": 0.1523 + }, + { + "start": 15675.34, + "end": 15676.78, + "probability": 0.9705 + }, + { + "start": 15676.84, + "end": 15678.3, + "probability": 0.744 + }, + { + "start": 15678.4, + "end": 15678.88, + "probability": 0.0008 + }, + { + "start": 15678.88, + "end": 15678.88, + "probability": 0.0627 + }, + { + "start": 15678.88, + "end": 15679.73, + "probability": 0.7436 + }, + { + "start": 15680.28, + "end": 15681.9, + "probability": 0.6623 + }, + { + "start": 15681.9, + "end": 15684.88, + "probability": 0.7912 + }, + { + "start": 15685.04, + "end": 15685.04, + "probability": 0.3038 + }, + { + "start": 15685.04, + "end": 15685.3, + "probability": 0.2425 + }, + { + "start": 15685.3, + "end": 15688.0, + "probability": 0.8587 + }, + { + "start": 15688.14, + "end": 15688.6, + "probability": 0.3574 + }, + { + "start": 15688.62, + "end": 15689.72, + "probability": 0.4466 + }, + { + "start": 15690.4, + "end": 15690.48, + "probability": 0.0015 + }, + { + "start": 15690.48, + "end": 15695.7, + "probability": 0.8151 + }, + { + "start": 15695.7, + "end": 15696.96, + "probability": 0.5619 + }, + { + "start": 15697.14, + "end": 15701.12, + "probability": 0.9423 + }, + { + "start": 15701.6, + "end": 15701.88, + "probability": 0.0981 + }, + { + "start": 15701.88, + "end": 15701.88, + "probability": 0.0388 + }, + { + "start": 15701.88, + "end": 15702.8, + "probability": 0.3114 + }, + { + "start": 15702.98, + "end": 15705.57, + "probability": 0.2987 + }, + { + "start": 15706.34, + "end": 15707.78, + "probability": 0.2364 + }, + { + "start": 15707.78, + "end": 15707.78, + "probability": 0.0871 + }, + { + "start": 15707.78, + "end": 15710.4, + "probability": 0.4203 + }, + { + "start": 15712.38, + "end": 15712.48, + "probability": 0.0918 + }, + { + "start": 15712.5, + "end": 15713.84, + "probability": 0.9343 + }, + { + "start": 15714.66, + "end": 15715.76, + "probability": 0.3144 + }, + { + "start": 15716.22, + "end": 15717.6, + "probability": 0.9299 + }, + { + "start": 15717.96, + "end": 15720.02, + "probability": 0.8028 + }, + { + "start": 15722.83, + "end": 15725.2, + "probability": 0.6621 + }, + { + "start": 15725.38, + "end": 15731.42, + "probability": 0.9665 + }, + { + "start": 15732.0, + "end": 15733.38, + "probability": 0.5014 + }, + { + "start": 15733.6, + "end": 15737.1, + "probability": 0.954 + }, + { + "start": 15738.46, + "end": 15741.92, + "probability": 0.9966 + }, + { + "start": 15742.88, + "end": 15746.02, + "probability": 0.9892 + }, + { + "start": 15746.58, + "end": 15748.9, + "probability": 0.9455 + }, + { + "start": 15749.5, + "end": 15750.48, + "probability": 0.9937 + }, + { + "start": 15751.0, + "end": 15752.74, + "probability": 0.6434 + }, + { + "start": 15752.76, + "end": 15753.32, + "probability": 0.83 + }, + { + "start": 15753.4, + "end": 15754.24, + "probability": 0.5096 + }, + { + "start": 15754.7, + "end": 15757.42, + "probability": 0.5042 + }, + { + "start": 15757.54, + "end": 15758.44, + "probability": 0.8497 + }, + { + "start": 15758.6, + "end": 15760.72, + "probability": 0.8774 + }, + { + "start": 15760.72, + "end": 15763.48, + "probability": 0.9857 + }, + { + "start": 15763.58, + "end": 15765.76, + "probability": 0.9657 + }, + { + "start": 15766.3, + "end": 15768.2, + "probability": 0.998 + }, + { + "start": 15768.72, + "end": 15769.46, + "probability": 0.8634 + }, + { + "start": 15770.12, + "end": 15774.38, + "probability": 0.9928 + }, + { + "start": 15774.38, + "end": 15778.12, + "probability": 0.9822 + }, + { + "start": 15778.56, + "end": 15779.96, + "probability": 0.8349 + }, + { + "start": 15780.64, + "end": 15780.98, + "probability": 0.276 + }, + { + "start": 15781.0, + "end": 15785.2, + "probability": 0.9907 + }, + { + "start": 15785.92, + "end": 15789.02, + "probability": 0.811 + }, + { + "start": 15790.22, + "end": 15790.36, + "probability": 0.7749 + }, + { + "start": 15791.58, + "end": 15793.58, + "probability": 0.8524 + }, + { + "start": 15793.9, + "end": 15796.06, + "probability": 0.9409 + }, + { + "start": 15796.5, + "end": 15798.78, + "probability": 0.8913 + }, + { + "start": 15799.64, + "end": 15802.54, + "probability": 0.9237 + }, + { + "start": 15803.68, + "end": 15805.58, + "probability": 0.8841 + }, + { + "start": 15805.66, + "end": 15806.86, + "probability": 0.8267 + }, + { + "start": 15807.0, + "end": 15808.11, + "probability": 0.9371 + }, + { + "start": 15809.46, + "end": 15811.58, + "probability": 0.7218 + }, + { + "start": 15811.7, + "end": 15814.44, + "probability": 0.9943 + }, + { + "start": 15814.72, + "end": 15816.0, + "probability": 0.9947 + }, + { + "start": 15816.7, + "end": 15820.66, + "probability": 0.8441 + }, + { + "start": 15821.2, + "end": 15822.14, + "probability": 0.6874 + }, + { + "start": 15822.28, + "end": 15823.54, + "probability": 0.993 + }, + { + "start": 15823.66, + "end": 15826.68, + "probability": 0.9985 + }, + { + "start": 15826.72, + "end": 15827.7, + "probability": 0.4105 + }, + { + "start": 15828.38, + "end": 15829.96, + "probability": 0.9808 + }, + { + "start": 15830.5, + "end": 15833.34, + "probability": 0.9878 + }, + { + "start": 15833.4, + "end": 15834.84, + "probability": 0.7981 + }, + { + "start": 15835.14, + "end": 15836.9, + "probability": 0.9551 + }, + { + "start": 15837.47, + "end": 15838.47, + "probability": 0.9849 + }, + { + "start": 15839.86, + "end": 15843.0, + "probability": 0.9979 + }, + { + "start": 15843.16, + "end": 15843.68, + "probability": 0.6602 + }, + { + "start": 15843.72, + "end": 15846.04, + "probability": 0.9713 + }, + { + "start": 15846.6, + "end": 15847.72, + "probability": 0.9851 + }, + { + "start": 15848.72, + "end": 15852.58, + "probability": 0.8586 + }, + { + "start": 15852.64, + "end": 15855.0, + "probability": 0.9937 + }, + { + "start": 15855.08, + "end": 15856.42, + "probability": 0.8314 + }, + { + "start": 15858.34, + "end": 15860.56, + "probability": 0.0112 + }, + { + "start": 15860.56, + "end": 15861.62, + "probability": 0.1665 + }, + { + "start": 15861.62, + "end": 15861.62, + "probability": 0.3214 + }, + { + "start": 15861.62, + "end": 15861.62, + "probability": 0.2899 + }, + { + "start": 15861.62, + "end": 15863.96, + "probability": 0.472 + }, + { + "start": 15864.92, + "end": 15865.12, + "probability": 0.0943 + }, + { + "start": 15865.12, + "end": 15865.12, + "probability": 0.114 + }, + { + "start": 15865.12, + "end": 15865.97, + "probability": 0.3339 + }, + { + "start": 15867.04, + "end": 15869.8, + "probability": 0.536 + }, + { + "start": 15870.08, + "end": 15870.18, + "probability": 0.0256 + }, + { + "start": 15870.18, + "end": 15870.18, + "probability": 0.017 + }, + { + "start": 15870.18, + "end": 15870.18, + "probability": 0.0153 + }, + { + "start": 15870.18, + "end": 15870.18, + "probability": 0.1426 + }, + { + "start": 15870.18, + "end": 15870.2, + "probability": 0.028 + }, + { + "start": 15870.2, + "end": 15871.78, + "probability": 0.3888 + }, + { + "start": 15872.0, + "end": 15873.04, + "probability": 0.4848 + }, + { + "start": 15873.82, + "end": 15874.52, + "probability": 0.4663 + }, + { + "start": 15874.62, + "end": 15875.28, + "probability": 0.9103 + }, + { + "start": 15875.4, + "end": 15877.5, + "probability": 0.8574 + }, + { + "start": 15880.62, + "end": 15881.18, + "probability": 0.4641 + }, + { + "start": 15881.32, + "end": 15883.64, + "probability": 0.4443 + }, + { + "start": 15884.52, + "end": 15886.32, + "probability": 0.6761 + }, + { + "start": 15888.06, + "end": 15889.24, + "probability": 0.774 + }, + { + "start": 15890.42, + "end": 15890.96, + "probability": 0.7764 + }, + { + "start": 15891.08, + "end": 15894.02, + "probability": 0.8172 + }, + { + "start": 15894.02, + "end": 15899.26, + "probability": 0.9927 + }, + { + "start": 15899.94, + "end": 15904.02, + "probability": 0.9944 + }, + { + "start": 15904.76, + "end": 15908.76, + "probability": 0.957 + }, + { + "start": 15909.02, + "end": 15913.8, + "probability": 0.95 + }, + { + "start": 15914.26, + "end": 15919.86, + "probability": 0.9759 + }, + { + "start": 15921.22, + "end": 15922.18, + "probability": 0.971 + }, + { + "start": 15923.34, + "end": 15927.82, + "probability": 0.942 + }, + { + "start": 15928.9, + "end": 15931.44, + "probability": 0.9318 + }, + { + "start": 15931.5, + "end": 15933.26, + "probability": 0.8726 + }, + { + "start": 15933.36, + "end": 15933.86, + "probability": 0.8626 + }, + { + "start": 15933.94, + "end": 15935.38, + "probability": 0.9815 + }, + { + "start": 15935.68, + "end": 15936.18, + "probability": 0.7132 + }, + { + "start": 15937.1, + "end": 15941.28, + "probability": 0.9548 + }, + { + "start": 15943.08, + "end": 15943.08, + "probability": 0.0284 + }, + { + "start": 15943.08, + "end": 15943.08, + "probability": 0.0338 + }, + { + "start": 15943.08, + "end": 15945.82, + "probability": 0.8439 + }, + { + "start": 15945.82, + "end": 15948.44, + "probability": 0.7888 + }, + { + "start": 15950.0, + "end": 15956.08, + "probability": 0.9146 + }, + { + "start": 15957.12, + "end": 15964.96, + "probability": 0.9373 + }, + { + "start": 15968.02, + "end": 15968.22, + "probability": 0.0083 + }, + { + "start": 15968.22, + "end": 15968.22, + "probability": 0.0591 + }, + { + "start": 15968.22, + "end": 15970.82, + "probability": 0.7572 + }, + { + "start": 15971.42, + "end": 15973.86, + "probability": 0.9611 + }, + { + "start": 15974.38, + "end": 15975.68, + "probability": 0.9394 + }, + { + "start": 15975.86, + "end": 15976.18, + "probability": 0.83 + }, + { + "start": 15976.26, + "end": 15977.82, + "probability": 0.8712 + }, + { + "start": 15977.92, + "end": 15979.34, + "probability": 0.936 + }, + { + "start": 15980.44, + "end": 15984.6, + "probability": 0.9912 + }, + { + "start": 15985.28, + "end": 15989.64, + "probability": 0.9718 + }, + { + "start": 15991.06, + "end": 15994.18, + "probability": 0.9951 + }, + { + "start": 15994.32, + "end": 15998.86, + "probability": 0.9841 + }, + { + "start": 16000.74, + "end": 16003.19, + "probability": 0.7877 + }, + { + "start": 16003.46, + "end": 16006.32, + "probability": 0.9701 + }, + { + "start": 16007.38, + "end": 16010.18, + "probability": 0.9797 + }, + { + "start": 16010.26, + "end": 16012.72, + "probability": 0.94 + }, + { + "start": 16013.5, + "end": 16014.26, + "probability": 0.8415 + }, + { + "start": 16015.14, + "end": 16016.68, + "probability": 0.8809 + }, + { + "start": 16016.8, + "end": 16021.48, + "probability": 0.8033 + }, + { + "start": 16021.64, + "end": 16025.36, + "probability": 0.8989 + }, + { + "start": 16026.04, + "end": 16028.54, + "probability": 0.965 + }, + { + "start": 16029.11, + "end": 16032.26, + "probability": 0.9201 + }, + { + "start": 16032.92, + "end": 16037.38, + "probability": 0.9733 + }, + { + "start": 16038.32, + "end": 16038.54, + "probability": 0.9106 + }, + { + "start": 16038.8, + "end": 16044.32, + "probability": 0.9244 + }, + { + "start": 16045.4, + "end": 16049.3, + "probability": 0.9946 + }, + { + "start": 16049.3, + "end": 16053.64, + "probability": 0.9922 + }, + { + "start": 16054.7, + "end": 16059.12, + "probability": 0.8452 + }, + { + "start": 16059.14, + "end": 16062.42, + "probability": 0.9594 + }, + { + "start": 16067.1, + "end": 16067.48, + "probability": 0.6354 + }, + { + "start": 16067.6, + "end": 16070.86, + "probability": 0.9535 + }, + { + "start": 16070.86, + "end": 16075.38, + "probability": 0.9968 + }, + { + "start": 16075.56, + "end": 16077.74, + "probability": 0.9902 + }, + { + "start": 16078.52, + "end": 16078.9, + "probability": 0.696 + }, + { + "start": 16079.84, + "end": 16082.26, + "probability": 0.9724 + }, + { + "start": 16082.26, + "end": 16085.12, + "probability": 0.7396 + }, + { + "start": 16085.7, + "end": 16089.28, + "probability": 0.9642 + }, + { + "start": 16089.86, + "end": 16093.44, + "probability": 0.9954 + }, + { + "start": 16093.9, + "end": 16096.68, + "probability": 0.9742 + }, + { + "start": 16097.72, + "end": 16100.96, + "probability": 0.9937 + }, + { + "start": 16100.96, + "end": 16103.38, + "probability": 0.8702 + }, + { + "start": 16104.26, + "end": 16106.5, + "probability": 0.8304 + }, + { + "start": 16107.48, + "end": 16111.2, + "probability": 0.9774 + }, + { + "start": 16111.2, + "end": 16114.38, + "probability": 0.9309 + }, + { + "start": 16115.02, + "end": 16116.68, + "probability": 0.8627 + }, + { + "start": 16116.74, + "end": 16120.1, + "probability": 0.9093 + }, + { + "start": 16120.28, + "end": 16120.54, + "probability": 0.5654 + }, + { + "start": 16121.42, + "end": 16123.7, + "probability": 0.869 + }, + { + "start": 16124.38, + "end": 16127.56, + "probability": 0.9887 + }, + { + "start": 16128.42, + "end": 16131.02, + "probability": 0.7497 + }, + { + "start": 16131.88, + "end": 16134.38, + "probability": 0.738 + }, + { + "start": 16135.14, + "end": 16137.0, + "probability": 0.9432 + }, + { + "start": 16137.06, + "end": 16138.7, + "probability": 0.9015 + }, + { + "start": 16139.42, + "end": 16141.18, + "probability": 0.7244 + }, + { + "start": 16141.26, + "end": 16142.44, + "probability": 0.8743 + }, + { + "start": 16142.5, + "end": 16143.36, + "probability": 0.8638 + }, + { + "start": 16143.78, + "end": 16147.98, + "probability": 0.9427 + }, + { + "start": 16148.1, + "end": 16150.74, + "probability": 0.8639 + }, + { + "start": 16151.66, + "end": 16152.54, + "probability": 0.975 + }, + { + "start": 16156.22, + "end": 16159.76, + "probability": 0.73 + }, + { + "start": 16162.92, + "end": 16166.52, + "probability": 0.9265 + }, + { + "start": 16169.36, + "end": 16169.94, + "probability": 0.8614 + }, + { + "start": 16170.04, + "end": 16170.92, + "probability": 0.9088 + }, + { + "start": 16171.0, + "end": 16171.66, + "probability": 0.6444 + }, + { + "start": 16171.76, + "end": 16173.26, + "probability": 0.9487 + }, + { + "start": 16175.58, + "end": 16175.74, + "probability": 0.0353 + }, + { + "start": 16175.74, + "end": 16179.44, + "probability": 0.7767 + }, + { + "start": 16180.98, + "end": 16188.22, + "probability": 0.7849 + }, + { + "start": 16193.36, + "end": 16195.52, + "probability": 0.9121 + }, + { + "start": 16195.6, + "end": 16197.02, + "probability": 0.4956 + }, + { + "start": 16198.06, + "end": 16199.5, + "probability": 0.9871 + }, + { + "start": 16201.36, + "end": 16202.0, + "probability": 0.6516 + }, + { + "start": 16203.26, + "end": 16205.92, + "probability": 0.7967 + }, + { + "start": 16206.54, + "end": 16208.46, + "probability": 0.8571 + }, + { + "start": 16209.4, + "end": 16210.76, + "probability": 0.8916 + }, + { + "start": 16210.82, + "end": 16212.66, + "probability": 0.896 + }, + { + "start": 16212.78, + "end": 16214.52, + "probability": 0.9978 + }, + { + "start": 16215.88, + "end": 16217.42, + "probability": 0.8773 + }, + { + "start": 16217.66, + "end": 16218.74, + "probability": 0.5297 + }, + { + "start": 16218.86, + "end": 16220.2, + "probability": 0.3216 + }, + { + "start": 16221.2, + "end": 16221.36, + "probability": 0.5525 + }, + { + "start": 16221.88, + "end": 16225.3, + "probability": 0.8423 + }, + { + "start": 16227.0, + "end": 16228.86, + "probability": 0.9981 + }, + { + "start": 16230.34, + "end": 16232.04, + "probability": 0.8801 + }, + { + "start": 16232.2, + "end": 16233.22, + "probability": 0.7544 + }, + { + "start": 16233.54, + "end": 16234.82, + "probability": 0.9763 + }, + { + "start": 16236.16, + "end": 16236.54, + "probability": 0.9541 + }, + { + "start": 16237.12, + "end": 16239.42, + "probability": 0.8102 + }, + { + "start": 16242.54, + "end": 16243.28, + "probability": 0.9951 + }, + { + "start": 16244.56, + "end": 16246.36, + "probability": 0.6426 + }, + { + "start": 16246.7, + "end": 16247.38, + "probability": 0.3038 + }, + { + "start": 16247.72, + "end": 16248.32, + "probability": 0.8069 + }, + { + "start": 16248.81, + "end": 16251.32, + "probability": 0.9854 + }, + { + "start": 16251.44, + "end": 16254.27, + "probability": 0.4868 + }, + { + "start": 16255.22, + "end": 16257.36, + "probability": 0.6081 + }, + { + "start": 16258.4, + "end": 16260.01, + "probability": 0.9435 + }, + { + "start": 16262.29, + "end": 16263.28, + "probability": 0.0415 + }, + { + "start": 16263.28, + "end": 16263.98, + "probability": 0.4063 + }, + { + "start": 16264.2, + "end": 16264.6, + "probability": 0.819 + }, + { + "start": 16264.74, + "end": 16267.81, + "probability": 0.9602 + }, + { + "start": 16268.0, + "end": 16268.32, + "probability": 0.2485 + }, + { + "start": 16268.54, + "end": 16271.2, + "probability": 0.9411 + }, + { + "start": 16271.44, + "end": 16272.98, + "probability": 0.996 + }, + { + "start": 16273.18, + "end": 16274.36, + "probability": 0.7852 + }, + { + "start": 16274.42, + "end": 16277.18, + "probability": 0.5379 + }, + { + "start": 16277.22, + "end": 16277.56, + "probability": 0.173 + }, + { + "start": 16277.56, + "end": 16277.63, + "probability": 0.7213 + }, + { + "start": 16278.12, + "end": 16278.7, + "probability": 0.6404 + }, + { + "start": 16279.04, + "end": 16280.0, + "probability": 0.7781 + }, + { + "start": 16280.1, + "end": 16282.72, + "probability": 0.7239 + }, + { + "start": 16282.76, + "end": 16283.54, + "probability": 0.5007 + }, + { + "start": 16285.14, + "end": 16285.56, + "probability": 0.0895 + }, + { + "start": 16285.56, + "end": 16286.19, + "probability": 0.6421 + }, + { + "start": 16286.24, + "end": 16288.04, + "probability": 0.5725 + }, + { + "start": 16288.2, + "end": 16288.81, + "probability": 0.7881 + }, + { + "start": 16289.4, + "end": 16292.1, + "probability": 0.5167 + }, + { + "start": 16292.26, + "end": 16293.26, + "probability": 0.4692 + }, + { + "start": 16293.58, + "end": 16294.44, + "probability": 0.0813 + }, + { + "start": 16294.44, + "end": 16294.62, + "probability": 0.3365 + }, + { + "start": 16294.76, + "end": 16296.5, + "probability": 0.8635 + }, + { + "start": 16297.14, + "end": 16299.52, + "probability": 0.5576 + }, + { + "start": 16300.32, + "end": 16301.04, + "probability": 0.814 + }, + { + "start": 16301.14, + "end": 16304.8, + "probability": 0.9782 + }, + { + "start": 16305.72, + "end": 16306.32, + "probability": 0.9282 + }, + { + "start": 16307.52, + "end": 16309.06, + "probability": 0.9263 + }, + { + "start": 16310.42, + "end": 16311.6, + "probability": 0.7515 + }, + { + "start": 16312.4, + "end": 16314.72, + "probability": 0.9855 + }, + { + "start": 16315.58, + "end": 16318.14, + "probability": 0.789 + }, + { + "start": 16319.16, + "end": 16320.04, + "probability": 0.6537 + }, + { + "start": 16320.94, + "end": 16323.24, + "probability": 0.8257 + }, + { + "start": 16323.28, + "end": 16326.36, + "probability": 0.9976 + }, + { + "start": 16326.48, + "end": 16327.62, + "probability": 0.8402 + }, + { + "start": 16327.8, + "end": 16328.44, + "probability": 0.8815 + }, + { + "start": 16329.3, + "end": 16332.62, + "probability": 0.9966 + }, + { + "start": 16333.34, + "end": 16339.86, + "probability": 0.8609 + }, + { + "start": 16340.52, + "end": 16341.62, + "probability": 0.8828 + }, + { + "start": 16342.02, + "end": 16346.4, + "probability": 0.9967 + }, + { + "start": 16347.38, + "end": 16349.12, + "probability": 0.9489 + }, + { + "start": 16349.48, + "end": 16352.64, + "probability": 0.9562 + }, + { + "start": 16353.26, + "end": 16354.12, + "probability": 0.9775 + }, + { + "start": 16355.54, + "end": 16357.02, + "probability": 0.8511 + }, + { + "start": 16357.26, + "end": 16361.82, + "probability": 0.917 + }, + { + "start": 16363.04, + "end": 16365.36, + "probability": 0.9977 + }, + { + "start": 16365.8, + "end": 16368.08, + "probability": 0.9856 + }, + { + "start": 16368.08, + "end": 16369.28, + "probability": 0.3098 + }, + { + "start": 16370.18, + "end": 16371.62, + "probability": 0.9559 + }, + { + "start": 16372.44, + "end": 16374.94, + "probability": 0.9336 + }, + { + "start": 16375.66, + "end": 16376.43, + "probability": 0.9863 + }, + { + "start": 16377.54, + "end": 16379.04, + "probability": 0.8835 + }, + { + "start": 16379.96, + "end": 16381.06, + "probability": 0.9373 + }, + { + "start": 16381.76, + "end": 16384.22, + "probability": 0.8512 + }, + { + "start": 16384.54, + "end": 16385.26, + "probability": 0.9028 + }, + { + "start": 16387.56, + "end": 16391.0, + "probability": 0.9521 + }, + { + "start": 16391.28, + "end": 16392.14, + "probability": 0.9628 + }, + { + "start": 16392.46, + "end": 16393.27, + "probability": 0.8846 + }, + { + "start": 16393.58, + "end": 16395.08, + "probability": 0.8162 + }, + { + "start": 16395.64, + "end": 16399.08, + "probability": 0.4957 + }, + { + "start": 16399.2, + "end": 16401.18, + "probability": 0.7157 + }, + { + "start": 16401.34, + "end": 16403.24, + "probability": 0.9813 + }, + { + "start": 16403.46, + "end": 16403.8, + "probability": 0.1479 + }, + { + "start": 16403.84, + "end": 16405.6, + "probability": 0.8962 + }, + { + "start": 16405.86, + "end": 16409.1, + "probability": 0.8809 + }, + { + "start": 16409.55, + "end": 16412.02, + "probability": 0.8839 + }, + { + "start": 16412.84, + "end": 16416.36, + "probability": 0.7183 + }, + { + "start": 16416.86, + "end": 16418.1, + "probability": 0.7035 + }, + { + "start": 16418.52, + "end": 16426.06, + "probability": 0.9802 + }, + { + "start": 16426.48, + "end": 16428.12, + "probability": 0.2404 + }, + { + "start": 16428.12, + "end": 16430.56, + "probability": 0.5779 + }, + { + "start": 16430.7, + "end": 16434.74, + "probability": 0.8996 + }, + { + "start": 16435.97, + "end": 16438.74, + "probability": 0.8646 + }, + { + "start": 16439.38, + "end": 16442.07, + "probability": 0.8999 + }, + { + "start": 16442.42, + "end": 16443.28, + "probability": 0.6358 + }, + { + "start": 16443.44, + "end": 16444.68, + "probability": 0.946 + }, + { + "start": 16445.38, + "end": 16447.02, + "probability": 0.9408 + }, + { + "start": 16447.08, + "end": 16448.08, + "probability": 0.9733 + }, + { + "start": 16448.44, + "end": 16450.74, + "probability": 0.746 + }, + { + "start": 16451.6, + "end": 16452.46, + "probability": 0.1138 + }, + { + "start": 16452.46, + "end": 16453.22, + "probability": 0.07 + }, + { + "start": 16453.98, + "end": 16456.18, + "probability": 0.7597 + }, + { + "start": 16456.2, + "end": 16456.2, + "probability": 0.4888 + }, + { + "start": 16456.32, + "end": 16456.6, + "probability": 0.2606 + }, + { + "start": 16456.6, + "end": 16456.72, + "probability": 0.3529 + }, + { + "start": 16456.94, + "end": 16457.78, + "probability": 0.9281 + }, + { + "start": 16457.9, + "end": 16458.8, + "probability": 0.179 + }, + { + "start": 16458.8, + "end": 16459.52, + "probability": 0.3612 + }, + { + "start": 16459.8, + "end": 16461.5, + "probability": 0.4518 + }, + { + "start": 16461.5, + "end": 16461.74, + "probability": 0.142 + }, + { + "start": 16461.87, + "end": 16464.3, + "probability": 0.6519 + }, + { + "start": 16464.34, + "end": 16465.44, + "probability": 0.8545 + }, + { + "start": 16465.7, + "end": 16466.28, + "probability": 0.9638 + }, + { + "start": 16466.32, + "end": 16467.82, + "probability": 0.1315 + }, + { + "start": 16467.96, + "end": 16469.18, + "probability": 0.8999 + }, + { + "start": 16469.28, + "end": 16471.26, + "probability": 0.234 + }, + { + "start": 16471.46, + "end": 16471.86, + "probability": 0.5953 + }, + { + "start": 16472.44, + "end": 16473.0, + "probability": 0.543 + }, + { + "start": 16473.18, + "end": 16473.94, + "probability": 0.5172 + }, + { + "start": 16473.96, + "end": 16475.14, + "probability": 0.1595 + }, + { + "start": 16475.18, + "end": 16475.7, + "probability": 0.1336 + }, + { + "start": 16475.88, + "end": 16477.32, + "probability": 0.1176 + }, + { + "start": 16477.32, + "end": 16481.36, + "probability": 0.052 + }, + { + "start": 16481.88, + "end": 16482.26, + "probability": 0.0938 + }, + { + "start": 16482.26, + "end": 16482.26, + "probability": 0.1068 + }, + { + "start": 16482.26, + "end": 16482.26, + "probability": 0.2311 + }, + { + "start": 16482.26, + "end": 16482.7, + "probability": 0.7298 + }, + { + "start": 16482.92, + "end": 16485.92, + "probability": 0.8833 + }, + { + "start": 16486.42, + "end": 16487.6, + "probability": 0.4255 + }, + { + "start": 16488.06, + "end": 16488.84, + "probability": 0.0168 + }, + { + "start": 16488.84, + "end": 16489.62, + "probability": 0.2289 + }, + { + "start": 16489.64, + "end": 16491.54, + "probability": 0.0531 + }, + { + "start": 16491.78, + "end": 16493.1, + "probability": 0.6108 + }, + { + "start": 16493.5, + "end": 16494.76, + "probability": 0.625 + }, + { + "start": 16495.14, + "end": 16496.28, + "probability": 0.3592 + }, + { + "start": 16496.54, + "end": 16499.18, + "probability": 0.973 + }, + { + "start": 16499.62, + "end": 16500.14, + "probability": 0.9215 + }, + { + "start": 16500.4, + "end": 16502.09, + "probability": 0.9946 + }, + { + "start": 16502.42, + "end": 16503.84, + "probability": 0.8532 + }, + { + "start": 16504.18, + "end": 16505.2, + "probability": 0.8907 + }, + { + "start": 16505.56, + "end": 16507.22, + "probability": 0.8871 + }, + { + "start": 16507.58, + "end": 16510.42, + "probability": 0.9043 + }, + { + "start": 16510.78, + "end": 16511.36, + "probability": 0.509 + }, + { + "start": 16512.12, + "end": 16512.24, + "probability": 0.0376 + }, + { + "start": 16512.24, + "end": 16514.12, + "probability": 0.7984 + }, + { + "start": 16514.42, + "end": 16515.7, + "probability": 0.6264 + }, + { + "start": 16515.72, + "end": 16518.48, + "probability": 0.7584 + }, + { + "start": 16518.54, + "end": 16520.52, + "probability": 0.9152 + }, + { + "start": 16520.74, + "end": 16525.34, + "probability": 0.9043 + }, + { + "start": 16525.86, + "end": 16528.9, + "probability": 0.9988 + }, + { + "start": 16529.16, + "end": 16532.75, + "probability": 0.9012 + }, + { + "start": 16533.14, + "end": 16533.14, + "probability": 0.0394 + }, + { + "start": 16533.14, + "end": 16535.26, + "probability": 0.9751 + }, + { + "start": 16535.64, + "end": 16536.58, + "probability": 0.7665 + }, + { + "start": 16536.62, + "end": 16538.15, + "probability": 0.6683 + }, + { + "start": 16538.62, + "end": 16538.74, + "probability": 0.037 + }, + { + "start": 16538.74, + "end": 16539.98, + "probability": 0.7423 + }, + { + "start": 16540.2, + "end": 16541.8, + "probability": 0.7772 + }, + { + "start": 16542.46, + "end": 16544.68, + "probability": 0.9689 + }, + { + "start": 16544.82, + "end": 16545.92, + "probability": 0.9615 + }, + { + "start": 16546.2, + "end": 16548.52, + "probability": 0.9061 + }, + { + "start": 16548.92, + "end": 16550.8, + "probability": 0.9805 + }, + { + "start": 16551.04, + "end": 16552.4, + "probability": 0.9212 + }, + { + "start": 16552.46, + "end": 16554.1, + "probability": 0.9714 + }, + { + "start": 16554.62, + "end": 16555.3, + "probability": 0.6738 + }, + { + "start": 16555.6, + "end": 16556.66, + "probability": 0.7846 + }, + { + "start": 16556.76, + "end": 16557.42, + "probability": 0.7926 + }, + { + "start": 16557.56, + "end": 16559.11, + "probability": 0.984 + }, + { + "start": 16559.64, + "end": 16560.86, + "probability": 0.9915 + }, + { + "start": 16560.96, + "end": 16563.6, + "probability": 0.9581 + }, + { + "start": 16563.98, + "end": 16567.28, + "probability": 0.9287 + }, + { + "start": 16567.28, + "end": 16569.38, + "probability": 0.9985 + }, + { + "start": 16569.44, + "end": 16569.72, + "probability": 0.8062 + }, + { + "start": 16570.74, + "end": 16571.5, + "probability": 0.7028 + }, + { + "start": 16571.86, + "end": 16572.64, + "probability": 0.9528 + }, + { + "start": 16575.6, + "end": 16577.94, + "probability": 0.9775 + }, + { + "start": 16580.82, + "end": 16584.52, + "probability": 0.7788 + }, + { + "start": 16584.52, + "end": 16585.52, + "probability": 0.6222 + }, + { + "start": 16585.94, + "end": 16587.86, + "probability": 0.9409 + }, + { + "start": 16588.64, + "end": 16589.52, + "probability": 0.4861 + }, + { + "start": 16589.52, + "end": 16590.06, + "probability": 0.6506 + }, + { + "start": 16590.18, + "end": 16590.7, + "probability": 0.7313 + }, + { + "start": 16590.72, + "end": 16591.9, + "probability": 0.8392 + }, + { + "start": 16600.16, + "end": 16600.62, + "probability": 0.153 + }, + { + "start": 16600.66, + "end": 16602.4, + "probability": 0.0204 + }, + { + "start": 16602.4, + "end": 16603.52, + "probability": 0.1298 + }, + { + "start": 16604.48, + "end": 16606.1, + "probability": 0.0539 + }, + { + "start": 16606.84, + "end": 16609.36, + "probability": 0.7321 + }, + { + "start": 16609.86, + "end": 16611.18, + "probability": 0.96 + }, + { + "start": 16611.8, + "end": 16614.02, + "probability": 0.9789 + }, + { + "start": 16614.32, + "end": 16616.18, + "probability": 0.8843 + }, + { + "start": 16616.72, + "end": 16620.5, + "probability": 0.9595 + }, + { + "start": 16621.12, + "end": 16624.8, + "probability": 0.9797 + }, + { + "start": 16628.64, + "end": 16630.1, + "probability": 0.8916 + }, + { + "start": 16647.2, + "end": 16648.9, + "probability": 0.4779 + }, + { + "start": 16649.08, + "end": 16650.9, + "probability": 0.6881 + }, + { + "start": 16651.73, + "end": 16654.2, + "probability": 0.9941 + }, + { + "start": 16654.2, + "end": 16654.86, + "probability": 0.7189 + }, + { + "start": 16654.86, + "end": 16656.48, + "probability": 0.7875 + }, + { + "start": 16656.52, + "end": 16658.06, + "probability": 0.9599 + }, + { + "start": 16658.1, + "end": 16659.18, + "probability": 0.9441 + }, + { + "start": 16660.08, + "end": 16662.86, + "probability": 0.979 + }, + { + "start": 16666.06, + "end": 16667.42, + "probability": 0.9584 + }, + { + "start": 16667.96, + "end": 16668.6, + "probability": 0.748 + }, + { + "start": 16669.18, + "end": 16670.16, + "probability": 0.633 + }, + { + "start": 16670.2, + "end": 16671.6, + "probability": 0.6323 + }, + { + "start": 16671.6, + "end": 16672.34, + "probability": 0.3341 + }, + { + "start": 16672.44, + "end": 16675.28, + "probability": 0.9917 + }, + { + "start": 16676.76, + "end": 16679.04, + "probability": 0.9992 + }, + { + "start": 16681.5, + "end": 16686.42, + "probability": 0.7678 + }, + { + "start": 16687.02, + "end": 16687.7, + "probability": 0.605 + }, + { + "start": 16688.34, + "end": 16689.4, + "probability": 0.8364 + }, + { + "start": 16690.32, + "end": 16694.3, + "probability": 0.9469 + }, + { + "start": 16695.3, + "end": 16695.92, + "probability": 0.3624 + }, + { + "start": 16695.96, + "end": 16703.16, + "probability": 0.9551 + }, + { + "start": 16704.0, + "end": 16708.8, + "probability": 0.9976 + }, + { + "start": 16708.92, + "end": 16711.88, + "probability": 0.9823 + }, + { + "start": 16712.4, + "end": 16714.12, + "probability": 0.9962 + }, + { + "start": 16714.84, + "end": 16719.22, + "probability": 0.9939 + }, + { + "start": 16725.18, + "end": 16726.08, + "probability": 0.7387 + }, + { + "start": 16726.38, + "end": 16733.06, + "probability": 0.992 + }, + { + "start": 16733.8, + "end": 16737.2, + "probability": 0.9921 + }, + { + "start": 16738.22, + "end": 16740.24, + "probability": 0.9773 + }, + { + "start": 16741.18, + "end": 16743.02, + "probability": 0.5618 + }, + { + "start": 16743.1, + "end": 16743.58, + "probability": 0.6752 + }, + { + "start": 16743.86, + "end": 16745.25, + "probability": 0.8081 + }, + { + "start": 16745.9, + "end": 16747.46, + "probability": 0.9976 + }, + { + "start": 16748.2, + "end": 16749.24, + "probability": 0.7537 + }, + { + "start": 16751.18, + "end": 16753.3, + "probability": 0.9888 + }, + { + "start": 16753.34, + "end": 16753.84, + "probability": 0.6053 + }, + { + "start": 16753.86, + "end": 16756.0, + "probability": 0.9808 + }, + { + "start": 16756.7, + "end": 16758.62, + "probability": 0.9846 + }, + { + "start": 16759.68, + "end": 16760.42, + "probability": 0.7678 + }, + { + "start": 16760.96, + "end": 16763.8, + "probability": 0.9942 + }, + { + "start": 16764.76, + "end": 16766.26, + "probability": 0.9998 + }, + { + "start": 16768.0, + "end": 16772.12, + "probability": 0.8008 + }, + { + "start": 16772.74, + "end": 16773.82, + "probability": 0.9021 + }, + { + "start": 16775.78, + "end": 16779.8, + "probability": 0.8823 + }, + { + "start": 16779.8, + "end": 16784.2, + "probability": 0.8347 + }, + { + "start": 16786.04, + "end": 16786.3, + "probability": 0.6809 + }, + { + "start": 16786.38, + "end": 16787.91, + "probability": 0.9557 + }, + { + "start": 16788.32, + "end": 16788.91, + "probability": 0.803 + }, + { + "start": 16790.44, + "end": 16793.56, + "probability": 0.8582 + }, + { + "start": 16794.62, + "end": 16795.22, + "probability": 0.8696 + }, + { + "start": 16796.96, + "end": 16799.2, + "probability": 0.9837 + }, + { + "start": 16799.78, + "end": 16801.92, + "probability": 0.994 + }, + { + "start": 16802.98, + "end": 16807.86, + "probability": 0.9572 + }, + { + "start": 16808.3, + "end": 16811.74, + "probability": 0.46 + }, + { + "start": 16812.22, + "end": 16818.26, + "probability": 0.995 + }, + { + "start": 16818.64, + "end": 16820.68, + "probability": 0.9298 + }, + { + "start": 16821.26, + "end": 16821.44, + "probability": 0.5358 + }, + { + "start": 16821.5, + "end": 16824.42, + "probability": 0.9924 + }, + { + "start": 16825.42, + "end": 16827.14, + "probability": 0.9921 + }, + { + "start": 16827.8, + "end": 16829.0, + "probability": 0.9648 + }, + { + "start": 16829.82, + "end": 16832.14, + "probability": 0.9263 + }, + { + "start": 16834.12, + "end": 16836.82, + "probability": 0.9821 + }, + { + "start": 16837.42, + "end": 16842.26, + "probability": 0.9963 + }, + { + "start": 16842.3, + "end": 16843.19, + "probability": 0.8531 + }, + { + "start": 16843.98, + "end": 16844.96, + "probability": 0.6912 + }, + { + "start": 16845.48, + "end": 16847.66, + "probability": 0.999 + }, + { + "start": 16848.58, + "end": 16852.24, + "probability": 0.9995 + }, + { + "start": 16853.34, + "end": 16854.82, + "probability": 0.986 + }, + { + "start": 16854.88, + "end": 16856.96, + "probability": 0.979 + }, + { + "start": 16857.2, + "end": 16858.68, + "probability": 0.9481 + }, + { + "start": 16859.48, + "end": 16864.46, + "probability": 0.9557 + }, + { + "start": 16865.32, + "end": 16867.84, + "probability": 0.9985 + }, + { + "start": 16868.46, + "end": 16872.46, + "probability": 0.9749 + }, + { + "start": 16875.28, + "end": 16876.8, + "probability": 0.8369 + }, + { + "start": 16876.94, + "end": 16879.98, + "probability": 0.9058 + }, + { + "start": 16880.16, + "end": 16882.2, + "probability": 0.7491 + }, + { + "start": 16882.36, + "end": 16885.38, + "probability": 0.998 + }, + { + "start": 16886.64, + "end": 16888.46, + "probability": 0.984 + }, + { + "start": 16889.38, + "end": 16891.18, + "probability": 0.9448 + }, + { + "start": 16891.62, + "end": 16894.0, + "probability": 0.9769 + }, + { + "start": 16894.1, + "end": 16898.84, + "probability": 0.9904 + }, + { + "start": 16899.34, + "end": 16901.14, + "probability": 0.5186 + }, + { + "start": 16901.34, + "end": 16902.35, + "probability": 0.9989 + }, + { + "start": 16903.44, + "end": 16905.78, + "probability": 0.9976 + }, + { + "start": 16905.86, + "end": 16907.89, + "probability": 0.9976 + }, + { + "start": 16908.7, + "end": 16912.8, + "probability": 0.9987 + }, + { + "start": 16913.04, + "end": 16916.7, + "probability": 0.9971 + }, + { + "start": 16917.08, + "end": 16921.84, + "probability": 0.9718 + }, + { + "start": 16922.32, + "end": 16923.3, + "probability": 0.8926 + }, + { + "start": 16923.36, + "end": 16925.52, + "probability": 0.9733 + }, + { + "start": 16926.1, + "end": 16927.04, + "probability": 0.767 + }, + { + "start": 16927.56, + "end": 16929.76, + "probability": 0.9808 + }, + { + "start": 16930.46, + "end": 16933.16, + "probability": 0.9417 + }, + { + "start": 16933.3, + "end": 16939.74, + "probability": 0.9829 + }, + { + "start": 16940.34, + "end": 16944.3, + "probability": 0.9985 + }, + { + "start": 16944.94, + "end": 16946.76, + "probability": 0.9543 + }, + { + "start": 16947.34, + "end": 16949.94, + "probability": 0.9727 + }, + { + "start": 16949.96, + "end": 16950.78, + "probability": 0.9832 + }, + { + "start": 16950.88, + "end": 16953.28, + "probability": 0.984 + }, + { + "start": 16953.84, + "end": 16954.94, + "probability": 0.9855 + }, + { + "start": 16955.24, + "end": 16955.44, + "probability": 0.5474 + }, + { + "start": 16956.16, + "end": 16958.68, + "probability": 0.8036 + }, + { + "start": 16958.76, + "end": 16960.4, + "probability": 0.578 + }, + { + "start": 16961.94, + "end": 16966.5, + "probability": 0.9089 + }, + { + "start": 16967.17, + "end": 16968.03, + "probability": 0.2883 + }, + { + "start": 16969.0, + "end": 16969.44, + "probability": 0.4057 + }, + { + "start": 16982.64, + "end": 16982.64, + "probability": 0.0405 + }, + { + "start": 16983.04, + "end": 16984.3, + "probability": 0.5553 + }, + { + "start": 16984.48, + "end": 16985.62, + "probability": 0.6852 + }, + { + "start": 16987.5, + "end": 16988.46, + "probability": 0.7227 + }, + { + "start": 16989.64, + "end": 16994.5, + "probability": 0.993 + }, + { + "start": 16995.08, + "end": 16999.46, + "probability": 0.7035 + }, + { + "start": 17002.3, + "end": 17004.22, + "probability": 0.973 + }, + { + "start": 17005.16, + "end": 17009.28, + "probability": 0.9552 + }, + { + "start": 17010.1, + "end": 17013.14, + "probability": 0.9699 + }, + { + "start": 17013.48, + "end": 17014.72, + "probability": 0.7948 + }, + { + "start": 17015.14, + "end": 17015.88, + "probability": 0.6041 + }, + { + "start": 17016.42, + "end": 17017.32, + "probability": 0.6329 + }, + { + "start": 17017.92, + "end": 17018.98, + "probability": 0.8346 + }, + { + "start": 17020.08, + "end": 17021.64, + "probability": 0.9535 + }, + { + "start": 17024.52, + "end": 17028.78, + "probability": 0.997 + }, + { + "start": 17028.78, + "end": 17031.98, + "probability": 0.9925 + }, + { + "start": 17032.86, + "end": 17037.74, + "probability": 0.995 + }, + { + "start": 17039.18, + "end": 17040.04, + "probability": 0.9124 + }, + { + "start": 17041.38, + "end": 17046.88, + "probability": 0.9869 + }, + { + "start": 17048.06, + "end": 17048.6, + "probability": 0.6449 + }, + { + "start": 17048.7, + "end": 17049.34, + "probability": 0.5079 + }, + { + "start": 17049.84, + "end": 17055.22, + "probability": 0.9159 + }, + { + "start": 17055.72, + "end": 17059.24, + "probability": 0.99 + }, + { + "start": 17059.76, + "end": 17061.44, + "probability": 0.8325 + }, + { + "start": 17062.6, + "end": 17067.08, + "probability": 0.9775 + }, + { + "start": 17067.6, + "end": 17070.76, + "probability": 0.9085 + }, + { + "start": 17071.24, + "end": 17073.02, + "probability": 0.8379 + }, + { + "start": 17073.46, + "end": 17075.46, + "probability": 0.9906 + }, + { + "start": 17076.18, + "end": 17076.64, + "probability": 0.6738 + }, + { + "start": 17077.72, + "end": 17081.76, + "probability": 0.935 + }, + { + "start": 17082.3, + "end": 17084.0, + "probability": 0.9957 + }, + { + "start": 17084.56, + "end": 17086.02, + "probability": 0.998 + }, + { + "start": 17086.56, + "end": 17088.28, + "probability": 0.9733 + }, + { + "start": 17089.5, + "end": 17090.42, + "probability": 0.8062 + }, + { + "start": 17090.96, + "end": 17098.84, + "probability": 0.973 + }, + { + "start": 17099.32, + "end": 17104.3, + "probability": 0.9972 + }, + { + "start": 17104.86, + "end": 17106.06, + "probability": 0.9982 + }, + { + "start": 17108.12, + "end": 17112.16, + "probability": 0.9968 + }, + { + "start": 17112.16, + "end": 17115.98, + "probability": 0.9853 + }, + { + "start": 17117.42, + "end": 17117.88, + "probability": 0.72 + }, + { + "start": 17118.46, + "end": 17123.7, + "probability": 0.924 + }, + { + "start": 17124.46, + "end": 17127.1, + "probability": 0.6053 + }, + { + "start": 17128.0, + "end": 17129.8, + "probability": 0.8682 + }, + { + "start": 17130.34, + "end": 17131.12, + "probability": 0.875 + }, + { + "start": 17132.2, + "end": 17136.16, + "probability": 0.8628 + }, + { + "start": 17136.16, + "end": 17140.34, + "probability": 0.9893 + }, + { + "start": 17141.66, + "end": 17146.9, + "probability": 0.9868 + }, + { + "start": 17147.48, + "end": 17148.58, + "probability": 0.995 + }, + { + "start": 17149.24, + "end": 17152.88, + "probability": 0.989 + }, + { + "start": 17153.48, + "end": 17156.56, + "probability": 0.9917 + }, + { + "start": 17158.26, + "end": 17162.82, + "probability": 0.9648 + }, + { + "start": 17163.36, + "end": 17168.96, + "probability": 0.9798 + }, + { + "start": 17169.74, + "end": 17172.86, + "probability": 0.9818 + }, + { + "start": 17174.78, + "end": 17175.34, + "probability": 0.7383 + }, + { + "start": 17175.4, + "end": 17175.72, + "probability": 0.9075 + }, + { + "start": 17175.84, + "end": 17177.9, + "probability": 0.9865 + }, + { + "start": 17177.94, + "end": 17179.8, + "probability": 0.8008 + }, + { + "start": 17180.42, + "end": 17182.72, + "probability": 0.985 + }, + { + "start": 17184.1, + "end": 17188.58, + "probability": 0.9979 + }, + { + "start": 17188.66, + "end": 17194.22, + "probability": 0.9855 + }, + { + "start": 17195.56, + "end": 17195.98, + "probability": 0.7268 + }, + { + "start": 17196.92, + "end": 17199.56, + "probability": 0.9865 + }, + { + "start": 17200.64, + "end": 17203.58, + "probability": 0.9482 + }, + { + "start": 17203.76, + "end": 17205.9, + "probability": 0.7082 + }, + { + "start": 17206.52, + "end": 17208.04, + "probability": 0.9734 + }, + { + "start": 17208.58, + "end": 17208.98, + "probability": 0.9301 + }, + { + "start": 17209.76, + "end": 17213.36, + "probability": 0.8024 + }, + { + "start": 17214.52, + "end": 17215.9, + "probability": 0.3984 + }, + { + "start": 17216.54, + "end": 17217.74, + "probability": 0.7476 + }, + { + "start": 17218.52, + "end": 17219.4, + "probability": 0.7096 + }, + { + "start": 17220.72, + "end": 17227.2, + "probability": 0.9846 + }, + { + "start": 17227.56, + "end": 17229.98, + "probability": 0.891 + }, + { + "start": 17230.84, + "end": 17233.62, + "probability": 0.993 + }, + { + "start": 17236.8, + "end": 17239.82, + "probability": 0.7357 + }, + { + "start": 17239.84, + "end": 17244.58, + "probability": 0.7584 + }, + { + "start": 17244.58, + "end": 17249.16, + "probability": 0.9833 + }, + { + "start": 17250.16, + "end": 17254.3, + "probability": 0.8813 + }, + { + "start": 17255.04, + "end": 17259.06, + "probability": 0.7197 + }, + { + "start": 17259.7, + "end": 17263.8, + "probability": 0.9899 + }, + { + "start": 17265.4, + "end": 17266.22, + "probability": 0.6305 + }, + { + "start": 17266.9, + "end": 17270.6, + "probability": 0.9915 + }, + { + "start": 17271.24, + "end": 17272.86, + "probability": 0.9919 + }, + { + "start": 17273.48, + "end": 17276.34, + "probability": 0.998 + }, + { + "start": 17276.9, + "end": 17277.32, + "probability": 0.9951 + }, + { + "start": 17278.3, + "end": 17278.78, + "probability": 0.8305 + }, + { + "start": 17280.0, + "end": 17281.42, + "probability": 0.9519 + }, + { + "start": 17282.26, + "end": 17286.42, + "probability": 0.986 + }, + { + "start": 17286.6, + "end": 17287.84, + "probability": 0.5921 + }, + { + "start": 17288.78, + "end": 17291.24, + "probability": 0.9246 + }, + { + "start": 17291.94, + "end": 17294.2, + "probability": 0.9733 + }, + { + "start": 17295.68, + "end": 17301.28, + "probability": 0.9702 + }, + { + "start": 17301.28, + "end": 17307.98, + "probability": 0.9876 + }, + { + "start": 17307.98, + "end": 17316.14, + "probability": 0.9722 + }, + { + "start": 17317.08, + "end": 17322.72, + "probability": 0.8389 + }, + { + "start": 17323.68, + "end": 17323.96, + "probability": 0.8845 + }, + { + "start": 17325.18, + "end": 17328.82, + "probability": 0.9958 + }, + { + "start": 17328.82, + "end": 17331.34, + "probability": 0.9598 + }, + { + "start": 17333.22, + "end": 17337.56, + "probability": 0.7555 + }, + { + "start": 17338.26, + "end": 17342.5, + "probability": 0.8882 + }, + { + "start": 17343.04, + "end": 17348.32, + "probability": 0.9751 + }, + { + "start": 17349.84, + "end": 17351.1, + "probability": 0.9705 + }, + { + "start": 17352.86, + "end": 17354.02, + "probability": 0.9595 + }, + { + "start": 17355.46, + "end": 17357.76, + "probability": 0.9589 + }, + { + "start": 17358.34, + "end": 17361.06, + "probability": 0.9563 + }, + { + "start": 17362.0, + "end": 17362.56, + "probability": 0.9695 + }, + { + "start": 17363.1, + "end": 17365.04, + "probability": 0.9871 + }, + { + "start": 17366.06, + "end": 17367.94, + "probability": 0.9354 + }, + { + "start": 17368.56, + "end": 17370.3, + "probability": 0.9969 + }, + { + "start": 17372.26, + "end": 17380.46, + "probability": 0.9465 + }, + { + "start": 17381.18, + "end": 17383.22, + "probability": 0.9966 + }, + { + "start": 17384.16, + "end": 17385.58, + "probability": 0.832 + }, + { + "start": 17386.3, + "end": 17391.2, + "probability": 0.9954 + }, + { + "start": 17391.24, + "end": 17392.48, + "probability": 0.4117 + }, + { + "start": 17394.2, + "end": 17399.08, + "probability": 0.8274 + }, + { + "start": 17399.7, + "end": 17402.3, + "probability": 0.938 + }, + { + "start": 17403.18, + "end": 17406.86, + "probability": 0.9673 + }, + { + "start": 17407.6, + "end": 17413.42, + "probability": 0.9565 + }, + { + "start": 17414.68, + "end": 17416.46, + "probability": 0.9812 + }, + { + "start": 17418.8, + "end": 17420.34, + "probability": 0.929 + }, + { + "start": 17421.0, + "end": 17422.68, + "probability": 0.9894 + }, + { + "start": 17423.64, + "end": 17425.68, + "probability": 0.887 + }, + { + "start": 17426.52, + "end": 17428.96, + "probability": 0.9648 + }, + { + "start": 17429.76, + "end": 17432.3, + "probability": 0.9552 + }, + { + "start": 17432.92, + "end": 17435.62, + "probability": 0.9629 + }, + { + "start": 17436.68, + "end": 17437.7, + "probability": 0.8902 + }, + { + "start": 17438.92, + "end": 17440.86, + "probability": 0.9698 + }, + { + "start": 17441.54, + "end": 17444.24, + "probability": 0.9791 + }, + { + "start": 17444.84, + "end": 17445.94, + "probability": 0.9915 + }, + { + "start": 17446.72, + "end": 17447.74, + "probability": 0.7171 + }, + { + "start": 17448.5, + "end": 17452.37, + "probability": 0.8217 + }, + { + "start": 17453.06, + "end": 17455.94, + "probability": 0.981 + }, + { + "start": 17457.1, + "end": 17461.96, + "probability": 0.9941 + }, + { + "start": 17462.9, + "end": 17466.8, + "probability": 0.9843 + }, + { + "start": 17467.34, + "end": 17470.46, + "probability": 0.8081 + }, + { + "start": 17471.96, + "end": 17472.64, + "probability": 0.6214 + }, + { + "start": 17473.8, + "end": 17477.22, + "probability": 0.9946 + }, + { + "start": 17477.9, + "end": 17479.94, + "probability": 0.9235 + }, + { + "start": 17481.06, + "end": 17484.4, + "probability": 0.9352 + }, + { + "start": 17485.22, + "end": 17486.9, + "probability": 0.7543 + }, + { + "start": 17487.04, + "end": 17491.42, + "probability": 0.9607 + }, + { + "start": 17493.46, + "end": 17499.08, + "probability": 0.9841 + }, + { + "start": 17500.5, + "end": 17503.74, + "probability": 0.9146 + }, + { + "start": 17504.78, + "end": 17505.54, + "probability": 0.8627 + }, + { + "start": 17506.4, + "end": 17508.14, + "probability": 0.8872 + }, + { + "start": 17508.8, + "end": 17513.5, + "probability": 0.995 + }, + { + "start": 17514.18, + "end": 17515.1, + "probability": 0.9264 + }, + { + "start": 17516.54, + "end": 17517.09, + "probability": 0.6917 + }, + { + "start": 17517.24, + "end": 17521.48, + "probability": 0.9928 + }, + { + "start": 17522.8, + "end": 17524.54, + "probability": 0.9049 + }, + { + "start": 17525.22, + "end": 17528.32, + "probability": 0.9855 + }, + { + "start": 17529.12, + "end": 17530.28, + "probability": 0.9848 + }, + { + "start": 17530.82, + "end": 17532.48, + "probability": 0.9924 + }, + { + "start": 17533.04, + "end": 17533.9, + "probability": 0.9869 + }, + { + "start": 17534.4, + "end": 17536.9, + "probability": 0.9946 + }, + { + "start": 17537.82, + "end": 17540.42, + "probability": 0.7585 + }, + { + "start": 17541.32, + "end": 17543.36, + "probability": 0.9806 + }, + { + "start": 17544.3, + "end": 17544.64, + "probability": 0.8627 + }, + { + "start": 17548.44, + "end": 17549.3, + "probability": 0.6595 + }, + { + "start": 17549.92, + "end": 17551.66, + "probability": 0.9297 + }, + { + "start": 17552.3, + "end": 17555.86, + "probability": 0.784 + }, + { + "start": 17577.34, + "end": 17578.04, + "probability": 0.5128 + }, + { + "start": 17578.92, + "end": 17581.12, + "probability": 0.8752 + }, + { + "start": 17581.94, + "end": 17583.16, + "probability": 0.8336 + }, + { + "start": 17585.64, + "end": 17588.42, + "probability": 0.9854 + }, + { + "start": 17588.42, + "end": 17593.14, + "probability": 0.9963 + }, + { + "start": 17594.18, + "end": 17594.82, + "probability": 0.7861 + }, + { + "start": 17595.42, + "end": 17596.56, + "probability": 0.39 + }, + { + "start": 17597.32, + "end": 17600.38, + "probability": 0.9753 + }, + { + "start": 17601.2, + "end": 17601.74, + "probability": 0.7114 + }, + { + "start": 17602.24, + "end": 17606.48, + "probability": 0.9949 + }, + { + "start": 17607.28, + "end": 17608.54, + "probability": 0.8862 + }, + { + "start": 17609.3, + "end": 17610.64, + "probability": 0.7592 + }, + { + "start": 17611.54, + "end": 17615.02, + "probability": 0.9734 + }, + { + "start": 17615.66, + "end": 17616.62, + "probability": 0.6296 + }, + { + "start": 17617.26, + "end": 17620.12, + "probability": 0.9438 + }, + { + "start": 17620.71, + "end": 17622.82, + "probability": 0.9521 + }, + { + "start": 17624.28, + "end": 17626.94, + "probability": 0.9892 + }, + { + "start": 17627.44, + "end": 17630.6, + "probability": 0.9933 + }, + { + "start": 17630.6, + "end": 17633.36, + "probability": 0.9982 + }, + { + "start": 17634.17, + "end": 17634.38, + "probability": 0.0153 + }, + { + "start": 17634.38, + "end": 17635.08, + "probability": 0.3154 + }, + { + "start": 17635.78, + "end": 17638.54, + "probability": 0.9863 + }, + { + "start": 17639.1, + "end": 17644.18, + "probability": 0.9964 + }, + { + "start": 17644.76, + "end": 17648.18, + "probability": 0.9766 + }, + { + "start": 17648.64, + "end": 17649.22, + "probability": 0.7092 + }, + { + "start": 17649.36, + "end": 17649.72, + "probability": 0.8116 + }, + { + "start": 17649.82, + "end": 17651.0, + "probability": 0.9764 + }, + { + "start": 17651.5, + "end": 17652.2, + "probability": 0.0609 + }, + { + "start": 17652.2, + "end": 17652.2, + "probability": 0.1063 + }, + { + "start": 17652.2, + "end": 17652.52, + "probability": 0.1421 + }, + { + "start": 17653.12, + "end": 17654.7, + "probability": 0.832 + }, + { + "start": 17655.42, + "end": 17656.72, + "probability": 0.5355 + }, + { + "start": 17658.36, + "end": 17658.85, + "probability": 0.4525 + }, + { + "start": 17659.66, + "end": 17665.06, + "probability": 0.9846 + }, + { + "start": 17666.44, + "end": 17666.48, + "probability": 0.1413 + }, + { + "start": 17666.84, + "end": 17668.12, + "probability": 0.0151 + }, + { + "start": 17668.12, + "end": 17669.8, + "probability": 0.6016 + }, + { + "start": 17669.82, + "end": 17671.94, + "probability": 0.233 + }, + { + "start": 17671.94, + "end": 17673.1, + "probability": 0.6614 + }, + { + "start": 17673.12, + "end": 17673.66, + "probability": 0.7233 + }, + { + "start": 17674.0, + "end": 17674.79, + "probability": 0.3586 + }, + { + "start": 17674.94, + "end": 17676.82, + "probability": 0.8411 + }, + { + "start": 17677.34, + "end": 17683.18, + "probability": 0.94 + }, + { + "start": 17683.66, + "end": 17683.92, + "probability": 0.772 + }, + { + "start": 17684.38, + "end": 17684.42, + "probability": 0.11 + }, + { + "start": 17684.42, + "end": 17686.28, + "probability": 0.8182 + }, + { + "start": 17686.82, + "end": 17687.64, + "probability": 0.9663 + }, + { + "start": 17687.68, + "end": 17688.51, + "probability": 0.9805 + }, + { + "start": 17689.08, + "end": 17690.38, + "probability": 0.9467 + }, + { + "start": 17690.56, + "end": 17690.8, + "probability": 0.8763 + }, + { + "start": 17691.28, + "end": 17693.8, + "probability": 0.6673 + }, + { + "start": 17694.18, + "end": 17695.24, + "probability": 0.7331 + }, + { + "start": 17695.6, + "end": 17698.67, + "probability": 0.9204 + }, + { + "start": 17699.26, + "end": 17701.0, + "probability": 0.9775 + }, + { + "start": 17701.06, + "end": 17702.02, + "probability": 0.864 + }, + { + "start": 17702.3, + "end": 17704.5, + "probability": 0.9976 + }, + { + "start": 17705.02, + "end": 17706.18, + "probability": 0.027 + }, + { + "start": 17706.18, + "end": 17708.14, + "probability": 0.6502 + }, + { + "start": 17708.82, + "end": 17708.92, + "probability": 0.1773 + }, + { + "start": 17708.92, + "end": 17708.92, + "probability": 0.0681 + }, + { + "start": 17708.92, + "end": 17709.54, + "probability": 0.6646 + }, + { + "start": 17709.7, + "end": 17712.64, + "probability": 0.9151 + }, + { + "start": 17712.64, + "end": 17715.24, + "probability": 0.9896 + }, + { + "start": 17715.76, + "end": 17716.72, + "probability": 0.4907 + }, + { + "start": 17717.62, + "end": 17720.2, + "probability": 0.8306 + }, + { + "start": 17720.64, + "end": 17723.48, + "probability": 0.9708 + }, + { + "start": 17723.88, + "end": 17725.18, + "probability": 0.9185 + }, + { + "start": 17725.42, + "end": 17726.6, + "probability": 0.9909 + }, + { + "start": 17727.06, + "end": 17727.34, + "probability": 0.8148 + }, + { + "start": 17727.64, + "end": 17731.28, + "probability": 0.9775 + }, + { + "start": 17731.64, + "end": 17732.54, + "probability": 0.9871 + }, + { + "start": 17733.42, + "end": 17733.68, + "probability": 0.0091 + }, + { + "start": 17733.68, + "end": 17733.68, + "probability": 0.3933 + }, + { + "start": 17733.68, + "end": 17734.34, + "probability": 0.5198 + }, + { + "start": 17734.82, + "end": 17739.48, + "probability": 0.9919 + }, + { + "start": 17739.86, + "end": 17739.9, + "probability": 0.0819 + }, + { + "start": 17739.9, + "end": 17741.84, + "probability": 0.9634 + }, + { + "start": 17742.38, + "end": 17745.88, + "probability": 0.8 + }, + { + "start": 17746.28, + "end": 17747.0, + "probability": 0.4156 + }, + { + "start": 17748.53, + "end": 17750.93, + "probability": 0.8767 + }, + { + "start": 17751.58, + "end": 17753.5, + "probability": 0.9534 + }, + { + "start": 17754.42, + "end": 17759.98, + "probability": 0.8304 + }, + { + "start": 17760.9, + "end": 17761.98, + "probability": 0.723 + }, + { + "start": 17762.42, + "end": 17763.62, + "probability": 0.9261 + }, + { + "start": 17763.7, + "end": 17766.82, + "probability": 0.9363 + }, + { + "start": 17767.3, + "end": 17768.32, + "probability": 0.9001 + }, + { + "start": 17769.06, + "end": 17770.14, + "probability": 0.8153 + }, + { + "start": 17770.28, + "end": 17774.34, + "probability": 0.9897 + }, + { + "start": 17774.98, + "end": 17778.16, + "probability": 0.839 + }, + { + "start": 17778.78, + "end": 17781.38, + "probability": 0.9717 + }, + { + "start": 17781.86, + "end": 17784.02, + "probability": 0.9305 + }, + { + "start": 17784.48, + "end": 17784.82, + "probability": 0.9765 + }, + { + "start": 17785.38, + "end": 17785.8, + "probability": 0.8079 + }, + { + "start": 17786.24, + "end": 17790.44, + "probability": 0.9836 + }, + { + "start": 17791.44, + "end": 17791.88, + "probability": 0.1691 + }, + { + "start": 17791.88, + "end": 17797.94, + "probability": 0.9479 + }, + { + "start": 17798.56, + "end": 17798.72, + "probability": 0.0881 + }, + { + "start": 17798.72, + "end": 17799.38, + "probability": 0.3513 + }, + { + "start": 17800.04, + "end": 17800.48, + "probability": 0.624 + }, + { + "start": 17800.68, + "end": 17803.06, + "probability": 0.9515 + }, + { + "start": 17803.44, + "end": 17803.44, + "probability": 0.3088 + }, + { + "start": 17803.46, + "end": 17807.72, + "probability": 0.9908 + }, + { + "start": 17808.1, + "end": 17809.32, + "probability": 0.9765 + }, + { + "start": 17810.54, + "end": 17811.16, + "probability": 0.9173 + }, + { + "start": 17811.36, + "end": 17813.8, + "probability": 0.9702 + }, + { + "start": 17813.8, + "end": 17816.88, + "probability": 0.9979 + }, + { + "start": 17817.98, + "end": 17818.24, + "probability": 0.1136 + }, + { + "start": 17818.46, + "end": 17820.6, + "probability": 0.9948 + }, + { + "start": 17821.08, + "end": 17822.76, + "probability": 0.982 + }, + { + "start": 17823.14, + "end": 17824.04, + "probability": 0.9004 + }, + { + "start": 17824.66, + "end": 17825.08, + "probability": 0.784 + }, + { + "start": 17825.5, + "end": 17826.58, + "probability": 0.9683 + }, + { + "start": 17827.08, + "end": 17830.98, + "probability": 0.9894 + }, + { + "start": 17831.4, + "end": 17832.11, + "probability": 0.8312 + }, + { + "start": 17832.6, + "end": 17837.04, + "probability": 0.9495 + }, + { + "start": 17837.08, + "end": 17841.08, + "probability": 0.9979 + }, + { + "start": 17841.72, + "end": 17843.64, + "probability": 0.8922 + }, + { + "start": 17844.38, + "end": 17846.94, + "probability": 0.9718 + }, + { + "start": 17847.02, + "end": 17847.68, + "probability": 0.7268 + }, + { + "start": 17848.32, + "end": 17852.16, + "probability": 0.9631 + }, + { + "start": 17852.86, + "end": 17855.96, + "probability": 0.9742 + }, + { + "start": 17856.88, + "end": 17857.92, + "probability": 0.5682 + }, + { + "start": 17858.78, + "end": 17863.36, + "probability": 0.9805 + }, + { + "start": 17863.36, + "end": 17868.32, + "probability": 0.9883 + }, + { + "start": 17868.8, + "end": 17871.0, + "probability": 0.8557 + }, + { + "start": 17871.58, + "end": 17873.12, + "probability": 0.9763 + }, + { + "start": 17874.14, + "end": 17876.34, + "probability": 0.866 + }, + { + "start": 17876.92, + "end": 17879.0, + "probability": 0.9717 + }, + { + "start": 17879.78, + "end": 17880.2, + "probability": 0.7604 + }, + { + "start": 17881.62, + "end": 17883.96, + "probability": 0.869 + }, + { + "start": 17884.78, + "end": 17885.28, + "probability": 0.0748 + }, + { + "start": 17885.8, + "end": 17890.38, + "probability": 0.9156 + }, + { + "start": 17890.38, + "end": 17892.94, + "probability": 0.9951 + }, + { + "start": 17893.5, + "end": 17895.68, + "probability": 0.9747 + }, + { + "start": 17896.34, + "end": 17899.12, + "probability": 0.8633 + }, + { + "start": 17899.12, + "end": 17901.74, + "probability": 0.979 + }, + { + "start": 17902.24, + "end": 17905.64, + "probability": 0.9912 + }, + { + "start": 17906.8, + "end": 17907.43, + "probability": 0.9808 + }, + { + "start": 17908.24, + "end": 17909.14, + "probability": 0.9634 + }, + { + "start": 17909.84, + "end": 17910.44, + "probability": 0.6261 + }, + { + "start": 17911.66, + "end": 17914.48, + "probability": 0.9346 + }, + { + "start": 17914.48, + "end": 17917.42, + "probability": 0.9877 + }, + { + "start": 17918.32, + "end": 17918.8, + "probability": 0.8397 + }, + { + "start": 17919.4, + "end": 17920.48, + "probability": 0.7448 + }, + { + "start": 17920.92, + "end": 17926.1, + "probability": 0.981 + }, + { + "start": 17927.2, + "end": 17929.93, + "probability": 0.9897 + }, + { + "start": 17930.78, + "end": 17933.3, + "probability": 0.9773 + }, + { + "start": 17934.32, + "end": 17935.04, + "probability": 0.605 + }, + { + "start": 17935.7, + "end": 17940.52, + "probability": 0.9707 + }, + { + "start": 17940.94, + "end": 17944.42, + "probability": 0.9937 + }, + { + "start": 17944.88, + "end": 17946.68, + "probability": 0.9873 + }, + { + "start": 17947.16, + "end": 17949.17, + "probability": 0.6797 + }, + { + "start": 17951.18, + "end": 17951.28, + "probability": 0.2499 + }, + { + "start": 17951.28, + "end": 17953.98, + "probability": 0.9839 + }, + { + "start": 17954.1, + "end": 17955.16, + "probability": 0.1221 + }, + { + "start": 17955.16, + "end": 17955.46, + "probability": 0.613 + }, + { + "start": 17956.72, + "end": 17959.53, + "probability": 0.9941 + }, + { + "start": 17960.12, + "end": 17961.38, + "probability": 0.9261 + }, + { + "start": 17962.38, + "end": 17964.68, + "probability": 0.835 + }, + { + "start": 17965.22, + "end": 17969.08, + "probability": 0.7936 + }, + { + "start": 17969.58, + "end": 17970.52, + "probability": 0.6098 + }, + { + "start": 17970.98, + "end": 17972.84, + "probability": 0.8761 + }, + { + "start": 17973.38, + "end": 17974.82, + "probability": 0.9941 + }, + { + "start": 17975.18, + "end": 17975.86, + "probability": 0.9443 + }, + { + "start": 17976.3, + "end": 17978.22, + "probability": 0.9697 + }, + { + "start": 17979.48, + "end": 17980.84, + "probability": 0.1756 + }, + { + "start": 17980.84, + "end": 17980.84, + "probability": 0.4928 + }, + { + "start": 17980.84, + "end": 17981.8, + "probability": 0.2826 + }, + { + "start": 17981.9, + "end": 17982.32, + "probability": 0.5459 + }, + { + "start": 17982.38, + "end": 17986.48, + "probability": 0.9511 + }, + { + "start": 17986.98, + "end": 17987.9, + "probability": 0.8808 + }, + { + "start": 17987.9, + "end": 17988.48, + "probability": 0.7109 + }, + { + "start": 17988.54, + "end": 17993.94, + "probability": 0.9851 + }, + { + "start": 17994.08, + "end": 17996.84, + "probability": 0.999 + }, + { + "start": 17997.18, + "end": 17997.5, + "probability": 0.7916 + }, + { + "start": 17997.6, + "end": 17997.8, + "probability": 0.8568 + }, + { + "start": 17997.8, + "end": 17998.34, + "probability": 0.7043 + }, + { + "start": 17998.98, + "end": 18000.54, + "probability": 0.9905 + }, + { + "start": 18000.66, + "end": 18001.18, + "probability": 0.9273 + }, + { + "start": 18001.48, + "end": 18002.4, + "probability": 0.889 + }, + { + "start": 18002.68, + "end": 18004.9, + "probability": 0.8791 + }, + { + "start": 18005.3, + "end": 18005.3, + "probability": 0.2441 + }, + { + "start": 18005.82, + "end": 18005.92, + "probability": 0.1305 + }, + { + "start": 18005.92, + "end": 18007.36, + "probability": 0.5612 + }, + { + "start": 18007.76, + "end": 18008.12, + "probability": 0.5253 + }, + { + "start": 18008.3, + "end": 18009.66, + "probability": 0.456 + }, + { + "start": 18009.7, + "end": 18012.26, + "probability": 0.9032 + }, + { + "start": 18012.42, + "end": 18016.24, + "probability": 0.5902 + }, + { + "start": 18016.46, + "end": 18017.26, + "probability": 0.7436 + }, + { + "start": 18017.36, + "end": 18017.7, + "probability": 0.0323 + }, + { + "start": 18017.7, + "end": 18017.7, + "probability": 0.4693 + }, + { + "start": 18017.7, + "end": 18017.7, + "probability": 0.3844 + }, + { + "start": 18017.7, + "end": 18018.52, + "probability": 0.0671 + }, + { + "start": 18018.9, + "end": 18022.5, + "probability": 0.8578 + }, + { + "start": 18022.5, + "end": 18022.5, + "probability": 0.221 + }, + { + "start": 18022.58, + "end": 18022.8, + "probability": 0.4453 + }, + { + "start": 18022.88, + "end": 18025.04, + "probability": 0.6189 + }, + { + "start": 18025.38, + "end": 18026.26, + "probability": 0.332 + }, + { + "start": 18026.26, + "end": 18028.5, + "probability": 0.7883 + }, + { + "start": 18028.68, + "end": 18029.98, + "probability": 0.9094 + }, + { + "start": 18030.04, + "end": 18030.68, + "probability": 0.0834 + }, + { + "start": 18030.68, + "end": 18032.28, + "probability": 0.5118 + }, + { + "start": 18032.28, + "end": 18034.14, + "probability": 0.5068 + }, + { + "start": 18034.22, + "end": 18041.7, + "probability": 0.9539 + }, + { + "start": 18042.16, + "end": 18048.45, + "probability": 0.975 + }, + { + "start": 18048.62, + "end": 18049.82, + "probability": 0.9771 + }, + { + "start": 18049.92, + "end": 18051.12, + "probability": 0.6631 + }, + { + "start": 18051.46, + "end": 18052.4, + "probability": 0.4994 + }, + { + "start": 18052.4, + "end": 18054.62, + "probability": 0.6287 + }, + { + "start": 18054.82, + "end": 18055.52, + "probability": 0.1389 + }, + { + "start": 18055.52, + "end": 18058.24, + "probability": 0.5797 + }, + { + "start": 18058.34, + "end": 18060.18, + "probability": 0.9734 + }, + { + "start": 18060.68, + "end": 18062.86, + "probability": 0.945 + }, + { + "start": 18064.2, + "end": 18064.82, + "probability": 0.092 + }, + { + "start": 18065.92, + "end": 18065.92, + "probability": 0.1455 + }, + { + "start": 18065.92, + "end": 18067.59, + "probability": 0.746 + }, + { + "start": 18067.86, + "end": 18075.2, + "probability": 0.7385 + }, + { + "start": 18075.42, + "end": 18079.08, + "probability": 0.983 + }, + { + "start": 18080.38, + "end": 18081.24, + "probability": 0.8054 + }, + { + "start": 18081.42, + "end": 18084.26, + "probability": 0.9958 + }, + { + "start": 18084.26, + "end": 18087.78, + "probability": 0.9985 + }, + { + "start": 18087.96, + "end": 18088.76, + "probability": 0.6509 + }, + { + "start": 18089.2, + "end": 18090.34, + "probability": 0.8834 + }, + { + "start": 18090.6, + "end": 18090.74, + "probability": 0.0893 + }, + { + "start": 18090.74, + "end": 18092.34, + "probability": 0.8525 + }, + { + "start": 18092.72, + "end": 18094.4, + "probability": 0.9766 + }, + { + "start": 18094.72, + "end": 18096.74, + "probability": 0.9441 + }, + { + "start": 18097.16, + "end": 18098.82, + "probability": 0.9333 + }, + { + "start": 18099.18, + "end": 18102.04, + "probability": 0.757 + }, + { + "start": 18102.38, + "end": 18103.1, + "probability": 0.9777 + }, + { + "start": 18103.5, + "end": 18105.24, + "probability": 0.8994 + }, + { + "start": 18105.34, + "end": 18106.4, + "probability": 0.9753 + }, + { + "start": 18106.44, + "end": 18106.97, + "probability": 0.5219 + }, + { + "start": 18107.2, + "end": 18109.76, + "probability": 0.5763 + }, + { + "start": 18110.06, + "end": 18112.68, + "probability": 0.995 + }, + { + "start": 18113.06, + "end": 18116.54, + "probability": 0.9828 + }, + { + "start": 18116.68, + "end": 18117.62, + "probability": 0.6816 + }, + { + "start": 18120.86, + "end": 18121.56, + "probability": 0.2115 + }, + { + "start": 18121.56, + "end": 18122.96, + "probability": 0.2474 + }, + { + "start": 18124.08, + "end": 18127.14, + "probability": 0.8816 + }, + { + "start": 18128.5, + "end": 18130.52, + "probability": 0.9681 + }, + { + "start": 18131.76, + "end": 18133.18, + "probability": 0.9705 + }, + { + "start": 18135.3, + "end": 18135.48, + "probability": 0.1632 + }, + { + "start": 18135.48, + "end": 18139.04, + "probability": 0.9905 + }, + { + "start": 18139.4, + "end": 18139.68, + "probability": 0.3414 + }, + { + "start": 18139.96, + "end": 18140.72, + "probability": 0.86 + }, + { + "start": 18140.88, + "end": 18142.24, + "probability": 0.9575 + }, + { + "start": 18142.44, + "end": 18147.56, + "probability": 0.9773 + }, + { + "start": 18147.96, + "end": 18147.98, + "probability": 0.2298 + }, + { + "start": 18147.98, + "end": 18151.96, + "probability": 0.9904 + }, + { + "start": 18152.36, + "end": 18156.0, + "probability": 0.7417 + }, + { + "start": 18156.44, + "end": 18159.06, + "probability": 0.989 + }, + { + "start": 18159.46, + "end": 18161.72, + "probability": 0.8706 + }, + { + "start": 18162.08, + "end": 18164.76, + "probability": 0.9857 + }, + { + "start": 18164.76, + "end": 18167.4, + "probability": 0.9619 + }, + { + "start": 18167.8, + "end": 18168.54, + "probability": 0.7191 + }, + { + "start": 18169.0, + "end": 18171.04, + "probability": 0.9929 + }, + { + "start": 18171.4, + "end": 18172.3, + "probability": 0.9957 + }, + { + "start": 18173.0, + "end": 18173.76, + "probability": 0.9966 + }, + { + "start": 18174.58, + "end": 18175.3, + "probability": 0.7937 + }, + { + "start": 18175.42, + "end": 18176.28, + "probability": 0.8917 + }, + { + "start": 18176.44, + "end": 18176.8, + "probability": 0.8268 + }, + { + "start": 18176.84, + "end": 18177.44, + "probability": 0.978 + }, + { + "start": 18177.86, + "end": 18178.76, + "probability": 0.968 + }, + { + "start": 18179.54, + "end": 18181.52, + "probability": 0.79 + }, + { + "start": 18182.46, + "end": 18186.98, + "probability": 0.9744 + }, + { + "start": 18187.58, + "end": 18189.84, + "probability": 0.9446 + }, + { + "start": 18190.3, + "end": 18190.8, + "probability": 0.0441 + }, + { + "start": 18190.8, + "end": 18200.88, + "probability": 0.0878 + }, + { + "start": 18201.7, + "end": 18202.06, + "probability": 0.5351 + }, + { + "start": 18202.06, + "end": 18203.68, + "probability": 0.0338 + }, + { + "start": 18204.25, + "end": 18205.57, + "probability": 0.2591 + }, + { + "start": 18205.92, + "end": 18207.24, + "probability": 0.1472 + }, + { + "start": 18208.52, + "end": 18212.58, + "probability": 0.1865 + }, + { + "start": 18214.36, + "end": 18214.62, + "probability": 0.0015 + }, + { + "start": 18214.62, + "end": 18214.96, + "probability": 0.0817 + }, + { + "start": 18215.04, + "end": 18215.28, + "probability": 0.1482 + }, + { + "start": 18215.28, + "end": 18215.32, + "probability": 0.0372 + }, + { + "start": 18215.32, + "end": 18215.94, + "probability": 0.059 + }, + { + "start": 18216.72, + "end": 18217.5, + "probability": 0.3286 + }, + { + "start": 18217.72, + "end": 18218.06, + "probability": 0.33 + }, + { + "start": 18218.62, + "end": 18219.58, + "probability": 0.0601 + }, + { + "start": 18221.64, + "end": 18222.12, + "probability": 0.4585 + }, + { + "start": 18222.32, + "end": 18224.82, + "probability": 0.7275 + }, + { + "start": 18225.92, + "end": 18227.38, + "probability": 0.698 + }, + { + "start": 18227.66, + "end": 18229.18, + "probability": 0.7128 + }, + { + "start": 18229.18, + "end": 18229.52, + "probability": 0.8011 + }, + { + "start": 18229.52, + "end": 18229.62, + "probability": 0.8055 + }, + { + "start": 18229.62, + "end": 18231.12, + "probability": 0.0657 + }, + { + "start": 18235.43, + "end": 18238.78, + "probability": 0.1048 + }, + { + "start": 18239.83, + "end": 18240.9, + "probability": 0.5548 + }, + { + "start": 18241.0, + "end": 18241.3, + "probability": 0.7688 + }, + { + "start": 18241.3, + "end": 18242.18, + "probability": 0.1093 + }, + { + "start": 18242.18, + "end": 18242.7, + "probability": 0.1619 + }, + { + "start": 18242.78, + "end": 18246.0, + "probability": 0.0606 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.0, + "end": 18284.0, + "probability": 0.0 + }, + { + "start": 18284.64, + "end": 18285.38, + "probability": 0.4656 + }, + { + "start": 18285.38, + "end": 18286.82, + "probability": 0.9429 + }, + { + "start": 18287.24, + "end": 18288.62, + "probability": 0.5289 + }, + { + "start": 18288.62, + "end": 18291.06, + "probability": 0.0288 + }, + { + "start": 18291.06, + "end": 18292.66, + "probability": 0.113 + }, + { + "start": 18292.66, + "end": 18293.53, + "probability": 0.0455 + }, + { + "start": 18294.66, + "end": 18294.84, + "probability": 0.1682 + }, + { + "start": 18296.06, + "end": 18298.02, + "probability": 0.2485 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.0, + "end": 18406.0, + "probability": 0.0 + }, + { + "start": 18406.2, + "end": 18406.28, + "probability": 0.0381 + }, + { + "start": 18406.28, + "end": 18406.96, + "probability": 0.225 + }, + { + "start": 18410.36, + "end": 18414.34, + "probability": 0.925 + }, + { + "start": 18415.0, + "end": 18416.48, + "probability": 0.785 + }, + { + "start": 18420.32, + "end": 18423.16, + "probability": 0.9976 + }, + { + "start": 18424.88, + "end": 18425.52, + "probability": 0.007 + }, + { + "start": 18426.66, + "end": 18427.42, + "probability": 0.9773 + }, + { + "start": 18427.98, + "end": 18429.18, + "probability": 0.828 + }, + { + "start": 18431.76, + "end": 18434.38, + "probability": 0.9922 + }, + { + "start": 18435.58, + "end": 18438.12, + "probability": 0.9131 + }, + { + "start": 18438.72, + "end": 18443.06, + "probability": 0.9723 + }, + { + "start": 18445.0, + "end": 18448.75, + "probability": 0.9929 + }, + { + "start": 18450.0, + "end": 18451.46, + "probability": 0.9256 + }, + { + "start": 18452.24, + "end": 18456.12, + "probability": 0.9473 + }, + { + "start": 18456.98, + "end": 18458.52, + "probability": 0.9788 + }, + { + "start": 18460.16, + "end": 18460.28, + "probability": 0.3597 + }, + { + "start": 18461.54, + "end": 18462.96, + "probability": 0.8579 + }, + { + "start": 18463.64, + "end": 18466.62, + "probability": 0.9418 + }, + { + "start": 18467.5, + "end": 18469.74, + "probability": 0.9172 + }, + { + "start": 18470.28, + "end": 18471.68, + "probability": 0.9975 + }, + { + "start": 18472.32, + "end": 18474.08, + "probability": 0.9291 + }, + { + "start": 18474.8, + "end": 18475.88, + "probability": 0.9551 + }, + { + "start": 18477.22, + "end": 18478.74, + "probability": 0.8402 + }, + { + "start": 18479.7, + "end": 18480.72, + "probability": 0.5227 + }, + { + "start": 18482.08, + "end": 18484.66, + "probability": 0.8923 + }, + { + "start": 18485.56, + "end": 18488.66, + "probability": 0.9795 + }, + { + "start": 18489.58, + "end": 18489.58, + "probability": 0.2619 + }, + { + "start": 18489.58, + "end": 18493.16, + "probability": 0.9548 + }, + { + "start": 18494.22, + "end": 18495.42, + "probability": 0.7982 + }, + { + "start": 18495.56, + "end": 18497.4, + "probability": 0.734 + }, + { + "start": 18497.6, + "end": 18499.52, + "probability": 0.9883 + }, + { + "start": 18500.18, + "end": 18503.62, + "probability": 0.9898 + }, + { + "start": 18504.28, + "end": 18507.9, + "probability": 0.9501 + }, + { + "start": 18508.22, + "end": 18512.12, + "probability": 0.9761 + }, + { + "start": 18512.64, + "end": 18515.72, + "probability": 0.8896 + }, + { + "start": 18516.92, + "end": 18519.26, + "probability": 0.9592 + }, + { + "start": 18519.26, + "end": 18522.32, + "probability": 0.9883 + }, + { + "start": 18523.42, + "end": 18525.1, + "probability": 0.9784 + }, + { + "start": 18525.48, + "end": 18529.52, + "probability": 0.975 + }, + { + "start": 18529.86, + "end": 18531.92, + "probability": 0.9805 + }, + { + "start": 18532.36, + "end": 18533.56, + "probability": 0.8955 + }, + { + "start": 18533.68, + "end": 18534.16, + "probability": 0.9469 + }, + { + "start": 18535.28, + "end": 18535.9, + "probability": 0.8081 + }, + { + "start": 18536.04, + "end": 18536.66, + "probability": 0.9111 + }, + { + "start": 18536.72, + "end": 18540.68, + "probability": 0.9585 + }, + { + "start": 18541.22, + "end": 18543.54, + "probability": 0.8282 + }, + { + "start": 18547.14, + "end": 18547.78, + "probability": 0.6765 + }, + { + "start": 18547.9, + "end": 18549.06, + "probability": 0.9073 + }, + { + "start": 18550.83, + "end": 18553.94, + "probability": 0.9395 + }, + { + "start": 18554.04, + "end": 18554.91, + "probability": 0.9584 + }, + { + "start": 18557.08, + "end": 18558.44, + "probability": 0.5959 + }, + { + "start": 18559.3, + "end": 18559.64, + "probability": 0.3507 + }, + { + "start": 18559.64, + "end": 18559.64, + "probability": 0.0011 + }, + { + "start": 18560.32, + "end": 18562.36, + "probability": 0.0072 + }, + { + "start": 18577.62, + "end": 18579.34, + "probability": 0.4808 + }, + { + "start": 18580.66, + "end": 18586.28, + "probability": 0.9857 + }, + { + "start": 18586.36, + "end": 18586.92, + "probability": 0.7019 + }, + { + "start": 18586.96, + "end": 18587.58, + "probability": 0.8942 + }, + { + "start": 18588.52, + "end": 18589.16, + "probability": 0.1946 + }, + { + "start": 18592.7, + "end": 18598.56, + "probability": 0.0742 + }, + { + "start": 18598.56, + "end": 18600.5, + "probability": 0.0753 + }, + { + "start": 18601.02, + "end": 18601.64, + "probability": 0.0598 + }, + { + "start": 18601.64, + "end": 18603.44, + "probability": 0.5731 + }, + { + "start": 18603.44, + "end": 18605.62, + "probability": 0.839 + }, + { + "start": 18606.84, + "end": 18608.48, + "probability": 0.8465 + }, + { + "start": 18609.68, + "end": 18612.3, + "probability": 0.4264 + }, + { + "start": 18613.2, + "end": 18616.3, + "probability": 0.9717 + }, + { + "start": 18616.3, + "end": 18619.38, + "probability": 0.7705 + }, + { + "start": 18620.02, + "end": 18622.22, + "probability": 0.9572 + }, + { + "start": 18622.34, + "end": 18625.35, + "probability": 0.7871 + }, + { + "start": 18626.26, + "end": 18626.36, + "probability": 0.2848 + }, + { + "start": 18629.38, + "end": 18629.62, + "probability": 0.6382 + }, + { + "start": 18630.4, + "end": 18630.4, + "probability": 0.501 + }, + { + "start": 18638.32, + "end": 18638.6, + "probability": 0.0037 + }, + { + "start": 18640.08, + "end": 18640.66, + "probability": 0.1404 + }, + { + "start": 18640.66, + "end": 18640.66, + "probability": 0.1313 + }, + { + "start": 18641.12, + "end": 18641.22, + "probability": 0.1073 + }, + { + "start": 18667.28, + "end": 18670.1, + "probability": 0.506 + }, + { + "start": 18671.24, + "end": 18671.9, + "probability": 0.5609 + }, + { + "start": 18674.04, + "end": 18675.1, + "probability": 0.6283 + }, + { + "start": 18675.1, + "end": 18675.2, + "probability": 0.0039 + }, + { + "start": 18676.12, + "end": 18677.48, + "probability": 0.0276 + }, + { + "start": 18679.14, + "end": 18681.74, + "probability": 0.8606 + }, + { + "start": 18682.46, + "end": 18685.46, + "probability": 0.9951 + }, + { + "start": 18685.74, + "end": 18691.8, + "probability": 0.9965 + }, + { + "start": 18691.9, + "end": 18693.82, + "probability": 0.9425 + }, + { + "start": 18693.98, + "end": 18694.94, + "probability": 0.823 + }, + { + "start": 18696.67, + "end": 18700.94, + "probability": 0.6665 + }, + { + "start": 18702.0, + "end": 18705.78, + "probability": 0.998 + }, + { + "start": 18705.96, + "end": 18706.24, + "probability": 0.6994 + }, + { + "start": 18706.38, + "end": 18707.8, + "probability": 0.808 + }, + { + "start": 18707.86, + "end": 18713.64, + "probability": 0.9817 + }, + { + "start": 18713.64, + "end": 18718.84, + "probability": 0.9919 + }, + { + "start": 18719.94, + "end": 18722.1, + "probability": 0.6694 + }, + { + "start": 18722.52, + "end": 18725.4, + "probability": 0.9066 + }, + { + "start": 18725.88, + "end": 18726.46, + "probability": 0.7439 + }, + { + "start": 18726.6, + "end": 18727.12, + "probability": 0.645 + }, + { + "start": 18727.4, + "end": 18727.84, + "probability": 0.7565 + }, + { + "start": 18728.28, + "end": 18730.04, + "probability": 0.4401 + }, + { + "start": 18730.06, + "end": 18730.94, + "probability": 0.4308 + }, + { + "start": 18731.04, + "end": 18731.66, + "probability": 0.8323 + }, + { + "start": 18731.74, + "end": 18734.48, + "probability": 0.8251 + }, + { + "start": 18734.98, + "end": 18736.1, + "probability": 0.9338 + }, + { + "start": 18737.06, + "end": 18738.78, + "probability": 0.1843 + }, + { + "start": 18738.88, + "end": 18741.92, + "probability": 0.1595 + }, + { + "start": 18741.98, + "end": 18742.42, + "probability": 0.3616 + }, + { + "start": 18742.42, + "end": 18742.42, + "probability": 0.1023 + }, + { + "start": 18742.42, + "end": 18742.42, + "probability": 0.1886 + }, + { + "start": 18742.42, + "end": 18742.42, + "probability": 0.138 + }, + { + "start": 18742.42, + "end": 18742.5, + "probability": 0.4124 + }, + { + "start": 18743.06, + "end": 18746.3, + "probability": 0.8616 + }, + { + "start": 18746.96, + "end": 18747.72, + "probability": 0.6664 + }, + { + "start": 18747.8, + "end": 18753.32, + "probability": 0.9644 + }, + { + "start": 18753.46, + "end": 18757.94, + "probability": 0.9749 + }, + { + "start": 18757.94, + "end": 18763.3, + "probability": 0.986 + }, + { + "start": 18763.72, + "end": 18765.58, + "probability": 0.9995 + }, + { + "start": 18766.2, + "end": 18768.38, + "probability": 0.629 + }, + { + "start": 18769.32, + "end": 18774.8, + "probability": 0.9924 + }, + { + "start": 18775.72, + "end": 18776.14, + "probability": 0.0361 + }, + { + "start": 18776.58, + "end": 18777.14, + "probability": 0.1703 + }, + { + "start": 18777.76, + "end": 18777.86, + "probability": 0.3205 + }, + { + "start": 18777.86, + "end": 18782.66, + "probability": 0.9382 + }, + { + "start": 18782.72, + "end": 18783.42, + "probability": 0.824 + }, + { + "start": 18783.54, + "end": 18784.34, + "probability": 0.8343 + }, + { + "start": 18785.22, + "end": 18786.24, + "probability": 0.4705 + }, + { + "start": 18786.4, + "end": 18789.54, + "probability": 0.8901 + }, + { + "start": 18790.38, + "end": 18793.66, + "probability": 0.957 + }, + { + "start": 18793.66, + "end": 18797.39, + "probability": 0.8605 + }, + { + "start": 18799.04, + "end": 18799.76, + "probability": 0.5752 + }, + { + "start": 18799.88, + "end": 18803.44, + "probability": 0.9718 + }, + { + "start": 18803.74, + "end": 18804.06, + "probability": 0.5155 + }, + { + "start": 18804.1, + "end": 18805.26, + "probability": 0.5996 + }, + { + "start": 18805.3, + "end": 18806.75, + "probability": 0.9938 + }, + { + "start": 18807.52, + "end": 18808.48, + "probability": 0.6833 + }, + { + "start": 18808.9, + "end": 18811.04, + "probability": 0.9827 + }, + { + "start": 18811.38, + "end": 18812.84, + "probability": 0.9025 + }, + { + "start": 18813.2, + "end": 18816.04, + "probability": 0.9395 + }, + { + "start": 18816.68, + "end": 18816.88, + "probability": 0.8871 + }, + { + "start": 18816.9, + "end": 18818.88, + "probability": 0.9927 + }, + { + "start": 18818.96, + "end": 18819.92, + "probability": 0.9521 + }, + { + "start": 18820.48, + "end": 18822.82, + "probability": 0.9581 + }, + { + "start": 18823.08, + "end": 18826.8, + "probability": 0.4195 + }, + { + "start": 18826.8, + "end": 18827.44, + "probability": 0.6426 + }, + { + "start": 18827.62, + "end": 18828.62, + "probability": 0.939 + }, + { + "start": 18828.74, + "end": 18830.08, + "probability": 0.9653 + }, + { + "start": 18830.7, + "end": 18831.33, + "probability": 0.4993 + }, + { + "start": 18831.78, + "end": 18833.34, + "probability": 0.5524 + }, + { + "start": 18833.5, + "end": 18834.66, + "probability": 0.8419 + }, + { + "start": 18835.0, + "end": 18837.08, + "probability": 0.6643 + }, + { + "start": 18838.18, + "end": 18841.52, + "probability": 0.8932 + }, + { + "start": 18842.16, + "end": 18843.18, + "probability": 0.9255 + }, + { + "start": 18843.92, + "end": 18846.72, + "probability": 0.99 + }, + { + "start": 18846.74, + "end": 18849.52, + "probability": 0.9976 + }, + { + "start": 18849.6, + "end": 18851.19, + "probability": 0.8272 + }, + { + "start": 18851.3, + "end": 18852.92, + "probability": 0.6353 + }, + { + "start": 18853.2, + "end": 18854.72, + "probability": 0.9521 + }, + { + "start": 18855.84, + "end": 18856.36, + "probability": 0.4061 + }, + { + "start": 18856.88, + "end": 18859.06, + "probability": 0.2641 + }, + { + "start": 18859.08, + "end": 18859.6, + "probability": 0.7072 + }, + { + "start": 18859.74, + "end": 18860.92, + "probability": 0.6259 + }, + { + "start": 18860.98, + "end": 18861.56, + "probability": 0.7059 + }, + { + "start": 18862.08, + "end": 18863.32, + "probability": 0.9504 + }, + { + "start": 18863.42, + "end": 18865.11, + "probability": 0.9646 + }, + { + "start": 18865.32, + "end": 18868.52, + "probability": 0.7065 + }, + { + "start": 18869.02, + "end": 18870.14, + "probability": 0.7617 + }, + { + "start": 18871.02, + "end": 18872.14, + "probability": 0.7983 + }, + { + "start": 18872.98, + "end": 18873.0, + "probability": 0.0057 + }, + { + "start": 18873.0, + "end": 18873.7, + "probability": 0.9209 + }, + { + "start": 18874.06, + "end": 18875.54, + "probability": 0.9162 + }, + { + "start": 18875.7, + "end": 18877.04, + "probability": 0.967 + }, + { + "start": 18877.08, + "end": 18878.36, + "probability": 0.736 + }, + { + "start": 18878.48, + "end": 18879.98, + "probability": 0.7333 + }, + { + "start": 18880.4, + "end": 18881.55, + "probability": 0.8555 + }, + { + "start": 18882.32, + "end": 18885.62, + "probability": 0.9567 + }, + { + "start": 18886.02, + "end": 18889.67, + "probability": 0.8591 + }, + { + "start": 18889.78, + "end": 18890.84, + "probability": 0.9673 + }, + { + "start": 18890.94, + "end": 18892.12, + "probability": 0.9939 + }, + { + "start": 18893.16, + "end": 18894.12, + "probability": 0.8486 + }, + { + "start": 18894.22, + "end": 18894.78, + "probability": 0.8216 + }, + { + "start": 18895.0, + "end": 18897.48, + "probability": 0.9576 + }, + { + "start": 18897.6, + "end": 18899.24, + "probability": 0.9962 + }, + { + "start": 18899.96, + "end": 18901.59, + "probability": 0.986 + }, + { + "start": 18902.0, + "end": 18902.96, + "probability": 0.8629 + }, + { + "start": 18903.04, + "end": 18903.44, + "probability": 0.7273 + }, + { + "start": 18905.16, + "end": 18905.9, + "probability": 0.7028 + }, + { + "start": 18906.54, + "end": 18908.68, + "probability": 0.9566 + }, + { + "start": 18909.32, + "end": 18912.22, + "probability": 0.9124 + }, + { + "start": 18912.38, + "end": 18914.66, + "probability": 0.8967 + }, + { + "start": 18915.82, + "end": 18919.02, + "probability": 0.8754 + }, + { + "start": 18922.16, + "end": 18922.56, + "probability": 0.0011 + }, + { + "start": 18927.2, + "end": 18935.32, + "probability": 0.0378 + }, + { + "start": 18935.94, + "end": 18939.12, + "probability": 0.0144 + }, + { + "start": 18940.16, + "end": 18942.28, + "probability": 0.0408 + }, + { + "start": 18943.14, + "end": 18948.82, + "probability": 0.0088 + }, + { + "start": 18950.24, + "end": 18955.0, + "probability": 0.1026 + }, + { + "start": 18956.7, + "end": 18957.44, + "probability": 0.0694 + }, + { + "start": 18957.44, + "end": 18959.88, + "probability": 0.0801 + }, + { + "start": 18974.23, + "end": 18975.26, + "probability": 0.1329 + }, + { + "start": 18976.86, + "end": 18978.46, + "probability": 0.0715 + }, + { + "start": 18980.54, + "end": 18981.26, + "probability": 0.0599 + }, + { + "start": 18983.46, + "end": 18986.08, + "probability": 0.0655 + }, + { + "start": 18986.08, + "end": 18986.52, + "probability": 0.0312 + }, + { + "start": 18986.72, + "end": 18987.28, + "probability": 0.3912 + }, + { + "start": 18987.28, + "end": 18987.82, + "probability": 0.1876 + }, + { + "start": 18987.82, + "end": 18987.98, + "probability": 0.0799 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.0, + "end": 18988.0, + "probability": 0.0 + }, + { + "start": 18988.76, + "end": 18989.08, + "probability": 0.0277 + }, + { + "start": 18989.08, + "end": 18989.08, + "probability": 0.0854 + }, + { + "start": 18989.08, + "end": 18989.08, + "probability": 0.0928 + }, + { + "start": 18989.08, + "end": 18989.08, + "probability": 0.0516 + }, + { + "start": 18989.08, + "end": 18989.96, + "probability": 0.8739 + }, + { + "start": 18989.96, + "end": 18992.82, + "probability": 0.9617 + }, + { + "start": 18993.12, + "end": 18993.96, + "probability": 0.6093 + }, + { + "start": 18994.96, + "end": 18997.18, + "probability": 0.8426 + }, + { + "start": 18997.5, + "end": 18999.38, + "probability": 0.9082 + }, + { + "start": 19009.24, + "end": 19011.54, + "probability": 0.7842 + }, + { + "start": 19012.28, + "end": 19013.46, + "probability": 0.9071 + }, + { + "start": 19014.72, + "end": 19015.06, + "probability": 0.4816 + }, + { + "start": 19015.22, + "end": 19019.18, + "probability": 0.9845 + }, + { + "start": 19019.34, + "end": 19020.48, + "probability": 0.9042 + }, + { + "start": 19020.7, + "end": 19021.38, + "probability": 0.3503 + }, + { + "start": 19022.14, + "end": 19025.16, + "probability": 0.8916 + }, + { + "start": 19025.72, + "end": 19026.86, + "probability": 0.0413 + }, + { + "start": 19026.86, + "end": 19027.27, + "probability": 0.0706 + }, + { + "start": 19027.42, + "end": 19028.38, + "probability": 0.6353 + }, + { + "start": 19029.56, + "end": 19031.7, + "probability": 0.4578 + }, + { + "start": 19031.82, + "end": 19032.16, + "probability": 0.3534 + }, + { + "start": 19032.22, + "end": 19032.52, + "probability": 0.8827 + }, + { + "start": 19032.52, + "end": 19034.18, + "probability": 0.9197 + }, + { + "start": 19034.28, + "end": 19035.44, + "probability": 0.9775 + }, + { + "start": 19036.06, + "end": 19037.55, + "probability": 0.8684 + }, + { + "start": 19038.92, + "end": 19039.3, + "probability": 0.6968 + }, + { + "start": 19039.46, + "end": 19039.46, + "probability": 0.0393 + }, + { + "start": 19039.46, + "end": 19040.5, + "probability": 0.7133 + }, + { + "start": 19041.18, + "end": 19045.14, + "probability": 0.9448 + }, + { + "start": 19045.94, + "end": 19046.24, + "probability": 0.5587 + }, + { + "start": 19047.4, + "end": 19048.62, + "probability": 0.9888 + }, + { + "start": 19049.2, + "end": 19051.7, + "probability": 0.9676 + }, + { + "start": 19052.26, + "end": 19052.74, + "probability": 0.7945 + }, + { + "start": 19053.18, + "end": 19055.53, + "probability": 0.9866 + }, + { + "start": 19055.76, + "end": 19055.84, + "probability": 0.044 + }, + { + "start": 19055.98, + "end": 19057.66, + "probability": 0.9166 + }, + { + "start": 19058.56, + "end": 19060.12, + "probability": 0.8076 + }, + { + "start": 19060.28, + "end": 19062.66, + "probability": 0.9919 + }, + { + "start": 19062.66, + "end": 19064.42, + "probability": 0.5798 + }, + { + "start": 19064.86, + "end": 19065.74, + "probability": 0.8882 + }, + { + "start": 19066.62, + "end": 19069.88, + "probability": 0.821 + }, + { + "start": 19070.08, + "end": 19070.58, + "probability": 0.8018 + }, + { + "start": 19070.66, + "end": 19074.7, + "probability": 0.9299 + }, + { + "start": 19075.26, + "end": 19075.8, + "probability": 0.9692 + }, + { + "start": 19076.96, + "end": 19079.8, + "probability": 0.9949 + }, + { + "start": 19079.84, + "end": 19080.36, + "probability": 0.8482 + }, + { + "start": 19080.44, + "end": 19081.22, + "probability": 0.9927 + }, + { + "start": 19081.36, + "end": 19082.72, + "probability": 0.9191 + }, + { + "start": 19082.88, + "end": 19083.14, + "probability": 0.8503 + }, + { + "start": 19083.22, + "end": 19083.88, + "probability": 0.9202 + }, + { + "start": 19084.52, + "end": 19087.28, + "probability": 0.8257 + }, + { + "start": 19088.64, + "end": 19089.82, + "probability": 0.9146 + }, + { + "start": 19089.84, + "end": 19090.4, + "probability": 0.9248 + }, + { + "start": 19090.48, + "end": 19091.5, + "probability": 0.9961 + }, + { + "start": 19091.58, + "end": 19093.85, + "probability": 0.6348 + }, + { + "start": 19095.14, + "end": 19100.06, + "probability": 0.9857 + }, + { + "start": 19101.18, + "end": 19102.38, + "probability": 0.9595 + }, + { + "start": 19103.2, + "end": 19106.12, + "probability": 0.9877 + }, + { + "start": 19106.78, + "end": 19107.1, + "probability": 0.4144 + }, + { + "start": 19107.2, + "end": 19108.64, + "probability": 0.9231 + }, + { + "start": 19108.76, + "end": 19109.6, + "probability": 0.9878 + }, + { + "start": 19109.66, + "end": 19111.5, + "probability": 0.8068 + }, + { + "start": 19111.98, + "end": 19113.24, + "probability": 0.9976 + }, + { + "start": 19113.32, + "end": 19114.26, + "probability": 0.8965 + }, + { + "start": 19114.4, + "end": 19115.36, + "probability": 0.6095 + }, + { + "start": 19115.52, + "end": 19116.76, + "probability": 0.6704 + }, + { + "start": 19118.66, + "end": 19120.62, + "probability": 0.9953 + }, + { + "start": 19121.77, + "end": 19122.2, + "probability": 0.7687 + }, + { + "start": 19122.32, + "end": 19123.14, + "probability": 0.8862 + }, + { + "start": 19123.72, + "end": 19126.52, + "probability": 0.9637 + }, + { + "start": 19126.94, + "end": 19129.38, + "probability": 0.9966 + }, + { + "start": 19129.5, + "end": 19130.78, + "probability": 0.9299 + }, + { + "start": 19131.42, + "end": 19132.22, + "probability": 0.6828 + }, + { + "start": 19132.68, + "end": 19134.18, + "probability": 0.9429 + }, + { + "start": 19134.64, + "end": 19136.69, + "probability": 0.8799 + }, + { + "start": 19137.08, + "end": 19137.1, + "probability": 0.4842 + }, + { + "start": 19137.1, + "end": 19138.06, + "probability": 0.8257 + }, + { + "start": 19139.82, + "end": 19141.26, + "probability": 0.8628 + }, + { + "start": 19142.58, + "end": 19143.42, + "probability": 0.9263 + }, + { + "start": 19143.56, + "end": 19144.3, + "probability": 0.8311 + }, + { + "start": 19144.64, + "end": 19146.24, + "probability": 0.9976 + }, + { + "start": 19146.88, + "end": 19150.37, + "probability": 0.9922 + }, + { + "start": 19151.44, + "end": 19152.22, + "probability": 0.7505 + }, + { + "start": 19153.5, + "end": 19154.0, + "probability": 0.9517 + }, + { + "start": 19154.58, + "end": 19161.38, + "probability": 0.995 + }, + { + "start": 19161.84, + "end": 19167.17, + "probability": 0.9697 + }, + { + "start": 19167.54, + "end": 19168.04, + "probability": 0.564 + }, + { + "start": 19168.12, + "end": 19168.65, + "probability": 0.95 + }, + { + "start": 19169.62, + "end": 19170.9, + "probability": 0.9448 + }, + { + "start": 19171.12, + "end": 19172.2, + "probability": 0.99 + }, + { + "start": 19172.28, + "end": 19172.76, + "probability": 0.9146 + }, + { + "start": 19172.86, + "end": 19173.94, + "probability": 0.9972 + }, + { + "start": 19174.52, + "end": 19176.16, + "probability": 0.9617 + }, + { + "start": 19176.44, + "end": 19180.28, + "probability": 0.9761 + }, + { + "start": 19181.36, + "end": 19183.56, + "probability": 0.8525 + }, + { + "start": 19184.74, + "end": 19185.36, + "probability": 0.5702 + }, + { + "start": 19185.4, + "end": 19185.56, + "probability": 0.0003 + }, + { + "start": 19185.56, + "end": 19185.62, + "probability": 0.3146 + }, + { + "start": 19185.62, + "end": 19186.34, + "probability": 0.774 + }, + { + "start": 19186.44, + "end": 19188.84, + "probability": 0.9917 + }, + { + "start": 19189.52, + "end": 19194.46, + "probability": 0.9506 + }, + { + "start": 19198.02, + "end": 19200.64, + "probability": 0.821 + }, + { + "start": 19219.62, + "end": 19220.54, + "probability": 0.193 + }, + { + "start": 19220.54, + "end": 19221.22, + "probability": 0.1349 + }, + { + "start": 19221.22, + "end": 19221.42, + "probability": 0.019 + }, + { + "start": 19221.42, + "end": 19221.42, + "probability": 0.0232 + }, + { + "start": 19221.42, + "end": 19221.72, + "probability": 0.0297 + }, + { + "start": 19221.72, + "end": 19221.79, + "probability": 0.1808 + }, + { + "start": 19227.92, + "end": 19228.04, + "probability": 0.0752 + }, + { + "start": 19228.08, + "end": 19228.18, + "probability": 0.491 + }, + { + "start": 19228.18, + "end": 19228.18, + "probability": 0.0908 + }, + { + "start": 19228.18, + "end": 19228.26, + "probability": 0.0397 + }, + { + "start": 19231.82, + "end": 19231.82, + "probability": 0.0068 + }, + { + "start": 19237.78, + "end": 19238.46, + "probability": 0.0078 + }, + { + "start": 19238.46, + "end": 19239.3, + "probability": 0.4315 + }, + { + "start": 19241.46, + "end": 19241.56, + "probability": 0.9316 + }, + { + "start": 19241.56, + "end": 19242.9, + "probability": 0.857 + }, + { + "start": 19243.18, + "end": 19244.3, + "probability": 0.9104 + }, + { + "start": 19244.56, + "end": 19247.2, + "probability": 0.0127 + }, + { + "start": 19248.04, + "end": 19250.6, + "probability": 0.0251 + }, + { + "start": 19251.86, + "end": 19254.68, + "probability": 0.201 + }, + { + "start": 19256.34, + "end": 19260.67, + "probability": 0.3553 + }, + { + "start": 19279.7, + "end": 19280.4, + "probability": 0.1788 + }, + { + "start": 19282.01, + "end": 19285.98, + "probability": 0.5776 + }, + { + "start": 19286.84, + "end": 19287.64, + "probability": 0.5855 + }, + { + "start": 19288.98, + "end": 19293.42, + "probability": 0.9874 + }, + { + "start": 19293.42, + "end": 19297.56, + "probability": 0.9707 + }, + { + "start": 19298.48, + "end": 19302.28, + "probability": 0.9652 + }, + { + "start": 19302.28, + "end": 19306.36, + "probability": 0.9877 + }, + { + "start": 19307.62, + "end": 19310.76, + "probability": 0.9939 + }, + { + "start": 19310.76, + "end": 19313.98, + "probability": 0.9876 + }, + { + "start": 19314.04, + "end": 19315.28, + "probability": 0.8662 + }, + { + "start": 19315.36, + "end": 19316.4, + "probability": 0.8165 + }, + { + "start": 19317.3, + "end": 19319.2, + "probability": 0.9793 + }, + { + "start": 19319.9, + "end": 19323.2, + "probability": 0.9585 + }, + { + "start": 19324.26, + "end": 19325.5, + "probability": 0.9447 + }, + { + "start": 19325.74, + "end": 19328.04, + "probability": 0.9984 + }, + { + "start": 19328.12, + "end": 19332.94, + "probability": 0.981 + }, + { + "start": 19332.94, + "end": 19335.08, + "probability": 0.9315 + }, + { + "start": 19335.58, + "end": 19338.44, + "probability": 0.9642 + }, + { + "start": 19340.24, + "end": 19341.87, + "probability": 0.797 + }, + { + "start": 19342.32, + "end": 19342.46, + "probability": 0.0081 + }, + { + "start": 19345.3, + "end": 19347.25, + "probability": 0.0409 + }, + { + "start": 19348.04, + "end": 19349.8, + "probability": 0.7921 + }, + { + "start": 19350.16, + "end": 19351.4, + "probability": 0.2952 + }, + { + "start": 19351.64, + "end": 19352.62, + "probability": 0.0888 + }, + { + "start": 19353.9, + "end": 19356.12, + "probability": 0.242 + }, + { + "start": 19361.04, + "end": 19362.88, + "probability": 0.0456 + }, + { + "start": 19363.06, + "end": 19363.06, + "probability": 0.101 + }, + { + "start": 19363.06, + "end": 19363.62, + "probability": 0.5773 + }, + { + "start": 19364.28, + "end": 19364.64, + "probability": 0.9447 + }, + { + "start": 19365.28, + "end": 19365.9, + "probability": 0.6214 + }, + { + "start": 19366.64, + "end": 19367.06, + "probability": 0.2329 + }, + { + "start": 19367.26, + "end": 19370.18, + "probability": 0.6203 + }, + { + "start": 19370.28, + "end": 19373.14, + "probability": 0.6545 + }, + { + "start": 19373.24, + "end": 19376.12, + "probability": 0.988 + }, + { + "start": 19376.42, + "end": 19377.88, + "probability": 0.7989 + }, + { + "start": 19378.04, + "end": 19379.04, + "probability": 0.5852 + }, + { + "start": 19379.28, + "end": 19381.76, + "probability": 0.8236 + }, + { + "start": 19381.84, + "end": 19383.03, + "probability": 0.0674 + }, + { + "start": 19386.0, + "end": 19387.22, + "probability": 0.695 + }, + { + "start": 19389.25, + "end": 19391.84, + "probability": 0.3332 + }, + { + "start": 19393.1, + "end": 19395.76, + "probability": 0.7012 + }, + { + "start": 19395.92, + "end": 19397.55, + "probability": 0.9756 + }, + { + "start": 19398.96, + "end": 19402.06, + "probability": 0.7201 + }, + { + "start": 19402.24, + "end": 19405.87, + "probability": 0.2078 + }, + { + "start": 19408.02, + "end": 19410.54, + "probability": 0.9471 + }, + { + "start": 19413.08, + "end": 19414.7, + "probability": 0.9142 + }, + { + "start": 19415.84, + "end": 19416.5, + "probability": 0.72 + }, + { + "start": 19416.98, + "end": 19419.06, + "probability": 0.8661 + }, + { + "start": 19419.24, + "end": 19422.32, + "probability": 0.9902 + }, + { + "start": 19422.32, + "end": 19428.98, + "probability": 0.9803 + }, + { + "start": 19429.16, + "end": 19432.04, + "probability": 0.9951 + }, + { + "start": 19432.42, + "end": 19436.48, + "probability": 0.9975 + }, + { + "start": 19437.44, + "end": 19440.47, + "probability": 0.9277 + }, + { + "start": 19442.52, + "end": 19445.06, + "probability": 0.4555 + }, + { + "start": 19445.66, + "end": 19447.08, + "probability": 0.8833 + }, + { + "start": 19448.04, + "end": 19451.7, + "probability": 0.9541 + }, + { + "start": 19452.38, + "end": 19456.02, + "probability": 0.7419 + }, + { + "start": 19456.06, + "end": 19456.58, + "probability": 0.7543 + }, + { + "start": 19457.88, + "end": 19459.8, + "probability": 0.972 + }, + { + "start": 19463.54, + "end": 19465.96, + "probability": 0.7458 + }, + { + "start": 19467.08, + "end": 19472.28, + "probability": 0.9727 + }, + { + "start": 19473.06, + "end": 19477.26, + "probability": 0.9956 + }, + { + "start": 19477.26, + "end": 19483.66, + "probability": 0.9985 + }, + { + "start": 19484.3, + "end": 19486.68, + "probability": 0.9172 + }, + { + "start": 19486.74, + "end": 19487.78, + "probability": 0.7844 + }, + { + "start": 19487.86, + "end": 19489.04, + "probability": 0.8584 + }, + { + "start": 19489.14, + "end": 19493.36, + "probability": 0.9757 + }, + { + "start": 19494.64, + "end": 19496.78, + "probability": 0.9556 + }, + { + "start": 19497.78, + "end": 19504.08, + "probability": 0.9278 + }, + { + "start": 19504.14, + "end": 19504.84, + "probability": 0.927 + }, + { + "start": 19504.98, + "end": 19508.68, + "probability": 0.8577 + }, + { + "start": 19510.36, + "end": 19515.34, + "probability": 0.6136 + }, + { + "start": 19517.08, + "end": 19517.96, + "probability": 0.7318 + }, + { + "start": 19518.66, + "end": 19525.96, + "probability": 0.9749 + }, + { + "start": 19528.74, + "end": 19529.38, + "probability": 0.7717 + }, + { + "start": 19529.71, + "end": 19533.64, + "probability": 0.9979 + }, + { + "start": 19533.92, + "end": 19534.42, + "probability": 0.3627 + }, + { + "start": 19534.58, + "end": 19536.0, + "probability": 0.7309 + }, + { + "start": 19536.68, + "end": 19540.42, + "probability": 0.9744 + }, + { + "start": 19541.02, + "end": 19542.14, + "probability": 0.8987 + }, + { + "start": 19542.76, + "end": 19543.3, + "probability": 0.9819 + }, + { + "start": 19543.82, + "end": 19547.34, + "probability": 0.9886 + }, + { + "start": 19547.72, + "end": 19548.14, + "probability": 0.8146 + }, + { + "start": 19548.72, + "end": 19553.22, + "probability": 0.9972 + }, + { + "start": 19553.86, + "end": 19556.02, + "probability": 0.9608 + }, + { + "start": 19556.74, + "end": 19560.06, + "probability": 0.9946 + }, + { + "start": 19562.54, + "end": 19565.72, + "probability": 0.9993 + }, + { + "start": 19566.36, + "end": 19568.9, + "probability": 0.9098 + }, + { + "start": 19569.48, + "end": 19570.94, + "probability": 0.9553 + }, + { + "start": 19571.48, + "end": 19574.0, + "probability": 0.9933 + }, + { + "start": 19574.58, + "end": 19577.4, + "probability": 0.9886 + }, + { + "start": 19578.6, + "end": 19579.51, + "probability": 0.8934 + }, + { + "start": 19580.28, + "end": 19585.18, + "probability": 0.9987 + }, + { + "start": 19585.76, + "end": 19588.9, + "probability": 0.9963 + }, + { + "start": 19589.6, + "end": 19590.72, + "probability": 0.7562 + }, + { + "start": 19590.88, + "end": 19591.59, + "probability": 0.8901 + }, + { + "start": 19592.12, + "end": 19593.32, + "probability": 0.9832 + }, + { + "start": 19594.12, + "end": 19599.5, + "probability": 0.8423 + }, + { + "start": 19602.74, + "end": 19605.82, + "probability": 0.8216 + }, + { + "start": 19605.92, + "end": 19606.66, + "probability": 0.4366 + }, + { + "start": 19606.92, + "end": 19608.82, + "probability": 0.8243 + }, + { + "start": 19609.48, + "end": 19611.66, + "probability": 0.4906 + }, + { + "start": 19611.8, + "end": 19612.51, + "probability": 0.5884 + }, + { + "start": 19613.36, + "end": 19613.36, + "probability": 0.0063 + }, + { + "start": 19613.36, + "end": 19616.76, + "probability": 0.1516 + }, + { + "start": 19617.04, + "end": 19619.56, + "probability": 0.5866 + }, + { + "start": 19619.68, + "end": 19620.54, + "probability": 0.4936 + }, + { + "start": 19620.76, + "end": 19625.66, + "probability": 0.95 + }, + { + "start": 19626.34, + "end": 19629.66, + "probability": 0.8106 + }, + { + "start": 19629.7, + "end": 19630.58, + "probability": 0.5031 + }, + { + "start": 19631.08, + "end": 19632.18, + "probability": 0.8262 + }, + { + "start": 19632.28, + "end": 19634.42, + "probability": 0.8382 + }, + { + "start": 19634.76, + "end": 19638.42, + "probability": 0.8042 + }, + { + "start": 19639.95, + "end": 19644.88, + "probability": 0.8632 + }, + { + "start": 19645.58, + "end": 19646.66, + "probability": 0.9927 + }, + { + "start": 19648.06, + "end": 19649.28, + "probability": 0.8039 + }, + { + "start": 19649.66, + "end": 19652.28, + "probability": 0.9986 + }, + { + "start": 19652.78, + "end": 19656.68, + "probability": 0.5969 + }, + { + "start": 19656.9, + "end": 19656.9, + "probability": 0.6471 + }, + { + "start": 19656.94, + "end": 19659.46, + "probability": 0.994 + }, + { + "start": 19659.46, + "end": 19662.06, + "probability": 0.9808 + }, + { + "start": 19662.2, + "end": 19664.36, + "probability": 0.9206 + }, + { + "start": 19664.88, + "end": 19667.62, + "probability": 0.9753 + }, + { + "start": 19668.32, + "end": 19671.72, + "probability": 0.3834 + }, + { + "start": 19671.72, + "end": 19672.15, + "probability": 0.781 + }, + { + "start": 19673.52, + "end": 19675.68, + "probability": 0.9957 + }, + { + "start": 19676.42, + "end": 19680.22, + "probability": 0.9763 + }, + { + "start": 19680.22, + "end": 19681.91, + "probability": 0.641 + }, + { + "start": 19682.52, + "end": 19682.84, + "probability": 0.0507 + }, + { + "start": 19682.99, + "end": 19685.1, + "probability": 0.7808 + }, + { + "start": 19685.12, + "end": 19685.5, + "probability": 0.9462 + }, + { + "start": 19685.6, + "end": 19688.24, + "probability": 0.9852 + }, + { + "start": 19688.92, + "end": 19692.13, + "probability": 0.7523 + }, + { + "start": 19693.12, + "end": 19696.94, + "probability": 0.9338 + }, + { + "start": 19699.4, + "end": 19701.48, + "probability": 0.7055 + }, + { + "start": 19702.28, + "end": 19704.9, + "probability": 0.7811 + }, + { + "start": 19705.02, + "end": 19707.36, + "probability": 0.5501 + }, + { + "start": 19707.8, + "end": 19709.58, + "probability": 0.5973 + }, + { + "start": 19710.2, + "end": 19713.22, + "probability": 0.8084 + }, + { + "start": 19714.62, + "end": 19718.18, + "probability": 0.8654 + }, + { + "start": 19718.18, + "end": 19721.18, + "probability": 0.5325 + }, + { + "start": 19721.46, + "end": 19722.98, + "probability": 0.3414 + }, + { + "start": 19723.9, + "end": 19724.1, + "probability": 0.2376 + }, + { + "start": 19724.3, + "end": 19730.76, + "probability": 0.8636 + }, + { + "start": 19730.76, + "end": 19737.98, + "probability": 0.9968 + }, + { + "start": 19737.98, + "end": 19741.2, + "probability": 0.9951 + }, + { + "start": 19742.12, + "end": 19746.44, + "probability": 0.6743 + }, + { + "start": 19746.44, + "end": 19749.52, + "probability": 0.5784 + }, + { + "start": 19749.7, + "end": 19750.48, + "probability": 0.7735 + }, + { + "start": 19751.08, + "end": 19753.42, + "probability": 0.913 + }, + { + "start": 19753.5, + "end": 19754.18, + "probability": 0.8838 + }, + { + "start": 19754.22, + "end": 19755.7, + "probability": 0.97 + }, + { + "start": 19755.78, + "end": 19759.18, + "probability": 0.9498 + }, + { + "start": 19759.86, + "end": 19762.22, + "probability": 0.9824 + }, + { + "start": 19762.72, + "end": 19769.02, + "probability": 0.7596 + }, + { + "start": 19769.24, + "end": 19773.94, + "probability": 0.9355 + }, + { + "start": 19775.02, + "end": 19778.0, + "probability": 0.9888 + }, + { + "start": 19779.84, + "end": 19784.0, + "probability": 0.9724 + }, + { + "start": 19784.12, + "end": 19785.86, + "probability": 0.8753 + }, + { + "start": 19786.92, + "end": 19791.73, + "probability": 0.9678 + }, + { + "start": 19793.42, + "end": 19799.06, + "probability": 0.9129 + }, + { + "start": 19799.74, + "end": 19804.06, + "probability": 0.9751 + }, + { + "start": 19804.82, + "end": 19807.38, + "probability": 0.8341 + }, + { + "start": 19808.4, + "end": 19811.28, + "probability": 0.9349 + }, + { + "start": 19811.58, + "end": 19813.32, + "probability": 0.6055 + }, + { + "start": 19813.44, + "end": 19814.22, + "probability": 0.5033 + }, + { + "start": 19814.8, + "end": 19817.82, + "probability": 0.6768 + }, + { + "start": 19818.46, + "end": 19819.58, + "probability": 0.9958 + }, + { + "start": 19819.6, + "end": 19821.64, + "probability": 0.7559 + }, + { + "start": 19822.52, + "end": 19826.64, + "probability": 0.6236 + }, + { + "start": 19827.38, + "end": 19830.36, + "probability": 0.9512 + }, + { + "start": 19830.92, + "end": 19834.92, + "probability": 0.988 + }, + { + "start": 19835.72, + "end": 19836.94, + "probability": 0.929 + }, + { + "start": 19837.64, + "end": 19842.06, + "probability": 0.9849 + }, + { + "start": 19842.76, + "end": 19845.96, + "probability": 0.988 + }, + { + "start": 19846.4, + "end": 19850.48, + "probability": 0.9756 + }, + { + "start": 19851.04, + "end": 19854.17, + "probability": 0.8422 + }, + { + "start": 19855.4, + "end": 19857.76, + "probability": 0.8296 + }, + { + "start": 19858.36, + "end": 19863.38, + "probability": 0.9722 + }, + { + "start": 19864.1, + "end": 19865.3, + "probability": 0.7737 + }, + { + "start": 19865.86, + "end": 19867.78, + "probability": 0.98 + }, + { + "start": 19868.34, + "end": 19875.16, + "probability": 0.9833 + }, + { + "start": 19875.82, + "end": 19879.78, + "probability": 0.9134 + }, + { + "start": 19881.34, + "end": 19883.44, + "probability": 0.9981 + }, + { + "start": 19884.12, + "end": 19886.96, + "probability": 0.5947 + }, + { + "start": 19887.74, + "end": 19891.04, + "probability": 0.9552 + }, + { + "start": 19891.4, + "end": 19895.7, + "probability": 0.9839 + }, + { + "start": 19896.0, + "end": 19896.96, + "probability": 0.7975 + }, + { + "start": 19897.0, + "end": 19898.98, + "probability": 0.9961 + }, + { + "start": 19899.04, + "end": 19900.78, + "probability": 0.9936 + }, + { + "start": 19901.92, + "end": 19908.42, + "probability": 0.9988 + }, + { + "start": 19909.02, + "end": 19909.66, + "probability": 0.4573 + }, + { + "start": 19909.9, + "end": 19911.18, + "probability": 0.9408 + }, + { + "start": 19911.26, + "end": 19913.9, + "probability": 0.9837 + }, + { + "start": 19914.56, + "end": 19917.38, + "probability": 0.9888 + }, + { + "start": 19917.88, + "end": 19918.48, + "probability": 0.7727 + }, + { + "start": 19919.0, + "end": 19919.68, + "probability": 0.8043 + }, + { + "start": 19920.34, + "end": 19920.74, + "probability": 0.8908 + }, + { + "start": 19921.52, + "end": 19923.1, + "probability": 0.7474 + }, + { + "start": 19923.72, + "end": 19926.88, + "probability": 0.9628 + }, + { + "start": 19927.2, + "end": 19932.98, + "probability": 0.984 + }, + { + "start": 19933.54, + "end": 19936.58, + "probability": 0.9399 + }, + { + "start": 19937.28, + "end": 19938.9, + "probability": 0.6691 + }, + { + "start": 19939.68, + "end": 19940.24, + "probability": 0.8924 + }, + { + "start": 19941.14, + "end": 19943.6, + "probability": 0.7612 + }, + { + "start": 19943.72, + "end": 19946.36, + "probability": 0.8338 + }, + { + "start": 19946.36, + "end": 19947.78, + "probability": 0.9397 + }, + { + "start": 19948.88, + "end": 19951.42, + "probability": 0.4122 + }, + { + "start": 19959.24, + "end": 19961.21, + "probability": 0.6984 + }, + { + "start": 19961.52, + "end": 19963.36, + "probability": 0.9985 + }, + { + "start": 19964.2, + "end": 19967.14, + "probability": 0.8319 + }, + { + "start": 19967.73, + "end": 19972.2, + "probability": 0.9974 + }, + { + "start": 19972.32, + "end": 19973.06, + "probability": 0.9676 + }, + { + "start": 19973.16, + "end": 19974.76, + "probability": 0.916 + }, + { + "start": 19975.22, + "end": 19977.3, + "probability": 0.768 + }, + { + "start": 19977.88, + "end": 19980.0, + "probability": 0.9673 + }, + { + "start": 19982.96, + "end": 19985.06, + "probability": 0.919 + }, + { + "start": 19985.92, + "end": 19990.46, + "probability": 0.9783 + }, + { + "start": 19990.46, + "end": 19993.42, + "probability": 0.9984 + }, + { + "start": 19994.0, + "end": 19995.88, + "probability": 0.8442 + }, + { + "start": 19997.1, + "end": 19998.73, + "probability": 0.7562 + }, + { + "start": 20000.64, + "end": 20001.3, + "probability": 0.8509 + }, + { + "start": 20001.44, + "end": 20002.43, + "probability": 0.9399 + }, + { + "start": 20002.7, + "end": 20005.48, + "probability": 0.9985 + }, + { + "start": 20005.48, + "end": 20010.42, + "probability": 0.9888 + }, + { + "start": 20010.58, + "end": 20014.32, + "probability": 0.9932 + }, + { + "start": 20014.32, + "end": 20018.06, + "probability": 0.9961 + }, + { + "start": 20018.38, + "end": 20019.32, + "probability": 0.951 + }, + { + "start": 20019.38, + "end": 20020.52, + "probability": 0.4677 + }, + { + "start": 20021.42, + "end": 20022.82, + "probability": 0.8539 + }, + { + "start": 20024.68, + "end": 20027.64, + "probability": 0.9971 + }, + { + "start": 20027.72, + "end": 20028.68, + "probability": 0.9391 + }, + { + "start": 20028.88, + "end": 20031.22, + "probability": 0.9812 + }, + { + "start": 20031.58, + "end": 20033.4, + "probability": 0.8462 + }, + { + "start": 20033.54, + "end": 20035.98, + "probability": 0.9884 + }, + { + "start": 20036.5, + "end": 20039.16, + "probability": 0.9805 + }, + { + "start": 20039.96, + "end": 20044.7, + "probability": 0.9688 + }, + { + "start": 20044.88, + "end": 20044.88, + "probability": 0.9517 + }, + { + "start": 20046.14, + "end": 20047.46, + "probability": 0.8461 + }, + { + "start": 20048.18, + "end": 20052.3, + "probability": 0.9943 + }, + { + "start": 20052.44, + "end": 20053.36, + "probability": 0.7544 + }, + { + "start": 20053.92, + "end": 20054.36, + "probability": 0.7509 + }, + { + "start": 20056.52, + "end": 20059.76, + "probability": 0.5794 + }, + { + "start": 20060.34, + "end": 20061.22, + "probability": 0.9495 + }, + { + "start": 20062.18, + "end": 20064.6, + "probability": 0.9988 + }, + { + "start": 20064.84, + "end": 20065.96, + "probability": 0.9677 + }, + { + "start": 20066.86, + "end": 20067.06, + "probability": 0.6482 + }, + { + "start": 20067.12, + "end": 20068.87, + "probability": 0.8478 + }, + { + "start": 20069.36, + "end": 20071.88, + "probability": 0.9414 + }, + { + "start": 20072.28, + "end": 20073.84, + "probability": 0.942 + }, + { + "start": 20073.94, + "end": 20076.12, + "probability": 0.5231 + }, + { + "start": 20076.28, + "end": 20076.73, + "probability": 0.6646 + }, + { + "start": 20081.1, + "end": 20082.86, + "probability": 0.7268 + }, + { + "start": 20083.0, + "end": 20086.26, + "probability": 0.9968 + }, + { + "start": 20086.5, + "end": 20087.0, + "probability": 0.9463 + }, + { + "start": 20087.14, + "end": 20088.7, + "probability": 0.9941 + }, + { + "start": 20089.39, + "end": 20090.92, + "probability": 0.8999 + }, + { + "start": 20091.16, + "end": 20091.16, + "probability": 0.9858 + }, + { + "start": 20091.88, + "end": 20095.96, + "probability": 0.9909 + }, + { + "start": 20096.5, + "end": 20101.54, + "probability": 0.999 + }, + { + "start": 20101.82, + "end": 20103.64, + "probability": 0.7867 + }, + { + "start": 20104.24, + "end": 20107.04, + "probability": 0.995 + }, + { + "start": 20107.7, + "end": 20108.86, + "probability": 0.984 + }, + { + "start": 20111.61, + "end": 20113.96, + "probability": 0.8118 + }, + { + "start": 20114.88, + "end": 20117.28, + "probability": 0.9487 + }, + { + "start": 20117.38, + "end": 20121.18, + "probability": 0.9897 + }, + { + "start": 20121.74, + "end": 20124.8, + "probability": 0.9972 + }, + { + "start": 20125.88, + "end": 20129.44, + "probability": 0.994 + }, + { + "start": 20129.76, + "end": 20130.96, + "probability": 0.9993 + }, + { + "start": 20131.96, + "end": 20136.2, + "probability": 0.8477 + }, + { + "start": 20137.46, + "end": 20140.9, + "probability": 0.9962 + }, + { + "start": 20140.9, + "end": 20143.36, + "probability": 0.9915 + }, + { + "start": 20143.74, + "end": 20146.2, + "probability": 0.9586 + }, + { + "start": 20146.86, + "end": 20147.68, + "probability": 0.6658 + }, + { + "start": 20148.34, + "end": 20150.02, + "probability": 0.8209 + }, + { + "start": 20150.94, + "end": 20153.78, + "probability": 0.9408 + }, + { + "start": 20155.43, + "end": 20159.62, + "probability": 0.8558 + }, + { + "start": 20159.72, + "end": 20163.84, + "probability": 0.9124 + }, + { + "start": 20165.26, + "end": 20166.06, + "probability": 0.6849 + }, + { + "start": 20170.36, + "end": 20171.4, + "probability": 0.0009 + }, + { + "start": 20179.8, + "end": 20180.32, + "probability": 0.0447 + }, + { + "start": 20183.11, + "end": 20184.87, + "probability": 0.096 + }, + { + "start": 20184.94, + "end": 20186.1, + "probability": 0.0274 + }, + { + "start": 20186.4, + "end": 20187.0, + "probability": 0.0453 + }, + { + "start": 20187.0, + "end": 20187.68, + "probability": 0.1909 + }, + { + "start": 20188.64, + "end": 20192.58, + "probability": 0.0772 + }, + { + "start": 20192.58, + "end": 20192.64, + "probability": 0.055 + }, + { + "start": 20192.64, + "end": 20192.64, + "probability": 0.0279 + }, + { + "start": 20192.64, + "end": 20194.07, + "probability": 0.3368 + }, + { + "start": 20197.08, + "end": 20198.47, + "probability": 0.5386 + }, + { + "start": 20199.38, + "end": 20201.62, + "probability": 0.987 + }, + { + "start": 20201.62, + "end": 20202.66, + "probability": 0.3678 + }, + { + "start": 20203.18, + "end": 20206.06, + "probability": 0.9204 + }, + { + "start": 20206.64, + "end": 20208.62, + "probability": 0.9528 + }, + { + "start": 20218.78, + "end": 20221.32, + "probability": 0.7358 + }, + { + "start": 20225.66, + "end": 20226.88, + "probability": 0.7041 + }, + { + "start": 20227.88, + "end": 20228.96, + "probability": 0.7229 + }, + { + "start": 20229.72, + "end": 20235.48, + "probability": 0.6277 + }, + { + "start": 20235.6, + "end": 20238.54, + "probability": 0.9563 + }, + { + "start": 20239.0, + "end": 20241.52, + "probability": 0.6207 + }, + { + "start": 20242.3, + "end": 20244.3, + "probability": 0.9683 + }, + { + "start": 20245.3, + "end": 20246.48, + "probability": 0.9208 + }, + { + "start": 20247.54, + "end": 20251.24, + "probability": 0.9933 + }, + { + "start": 20252.1, + "end": 20253.64, + "probability": 0.8184 + }, + { + "start": 20254.76, + "end": 20259.18, + "probability": 0.9641 + }, + { + "start": 20260.3, + "end": 20266.76, + "probability": 0.9621 + }, + { + "start": 20267.96, + "end": 20268.98, + "probability": 0.9982 + }, + { + "start": 20269.9, + "end": 20274.96, + "probability": 0.9728 + }, + { + "start": 20275.76, + "end": 20275.82, + "probability": 0.5623 + }, + { + "start": 20275.94, + "end": 20276.84, + "probability": 0.6147 + }, + { + "start": 20276.9, + "end": 20279.83, + "probability": 0.9773 + }, + { + "start": 20280.4, + "end": 20281.78, + "probability": 0.9171 + }, + { + "start": 20282.52, + "end": 20285.06, + "probability": 0.9467 + }, + { + "start": 20285.6, + "end": 20289.22, + "probability": 0.9927 + }, + { + "start": 20290.26, + "end": 20291.68, + "probability": 0.9133 + }, + { + "start": 20293.0, + "end": 20295.46, + "probability": 0.5664 + }, + { + "start": 20296.66, + "end": 20296.92, + "probability": 0.0032 + }, + { + "start": 20296.92, + "end": 20297.52, + "probability": 0.3391 + }, + { + "start": 20297.66, + "end": 20301.6, + "probability": 0.8347 + }, + { + "start": 20301.94, + "end": 20302.14, + "probability": 0.5003 + }, + { + "start": 20302.22, + "end": 20303.0, + "probability": 0.95 + }, + { + "start": 20303.1, + "end": 20304.42, + "probability": 0.8879 + }, + { + "start": 20304.5, + "end": 20306.04, + "probability": 0.9843 + }, + { + "start": 20306.42, + "end": 20307.66, + "probability": 0.8555 + }, + { + "start": 20307.82, + "end": 20308.46, + "probability": 0.6484 + }, + { + "start": 20310.82, + "end": 20311.76, + "probability": 0.6316 + }, + { + "start": 20311.88, + "end": 20318.0, + "probability": 0.9855 + }, + { + "start": 20319.16, + "end": 20321.92, + "probability": 0.9667 + }, + { + "start": 20322.66, + "end": 20325.08, + "probability": 0.8966 + }, + { + "start": 20325.76, + "end": 20327.94, + "probability": 0.9546 + }, + { + "start": 20329.34, + "end": 20332.0, + "probability": 0.6259 + }, + { + "start": 20332.82, + "end": 20335.94, + "probability": 0.9901 + }, + { + "start": 20335.94, + "end": 20338.8, + "probability": 0.9923 + }, + { + "start": 20339.7, + "end": 20341.98, + "probability": 0.7849 + }, + { + "start": 20342.9, + "end": 20345.56, + "probability": 0.985 + }, + { + "start": 20345.64, + "end": 20350.88, + "probability": 0.9767 + }, + { + "start": 20350.92, + "end": 20357.56, + "probability": 0.815 + }, + { + "start": 20357.95, + "end": 20360.92, + "probability": 0.6583 + }, + { + "start": 20361.7, + "end": 20365.72, + "probability": 0.9662 + }, + { + "start": 20366.78, + "end": 20367.5, + "probability": 0.8501 + }, + { + "start": 20368.7, + "end": 20371.72, + "probability": 0.9295 + }, + { + "start": 20372.68, + "end": 20373.76, + "probability": 0.9579 + }, + { + "start": 20374.74, + "end": 20379.7, + "probability": 0.8912 + }, + { + "start": 20379.9, + "end": 20380.96, + "probability": 0.889 + }, + { + "start": 20381.06, + "end": 20383.4, + "probability": 0.872 + }, + { + "start": 20384.74, + "end": 20387.94, + "probability": 0.9953 + }, + { + "start": 20388.62, + "end": 20393.58, + "probability": 0.9906 + }, + { + "start": 20394.12, + "end": 20395.42, + "probability": 0.9766 + }, + { + "start": 20395.6, + "end": 20396.38, + "probability": 0.9944 + }, + { + "start": 20397.8, + "end": 20398.76, + "probability": 0.54 + }, + { + "start": 20399.42, + "end": 20401.46, + "probability": 0.763 + }, + { + "start": 20401.7, + "end": 20405.16, + "probability": 0.7359 + }, + { + "start": 20405.22, + "end": 20406.64, + "probability": 0.8027 + }, + { + "start": 20406.78, + "end": 20407.6, + "probability": 0.6597 + }, + { + "start": 20407.72, + "end": 20408.14, + "probability": 0.5654 + }, + { + "start": 20408.46, + "end": 20408.7, + "probability": 0.3878 + }, + { + "start": 20409.28, + "end": 20410.02, + "probability": 0.2304 + }, + { + "start": 20410.66, + "end": 20413.68, + "probability": 0.3489 + }, + { + "start": 20413.72, + "end": 20416.0, + "probability": 0.6749 + }, + { + "start": 20416.56, + "end": 20416.56, + "probability": 0.085 + }, + { + "start": 20416.56, + "end": 20424.42, + "probability": 0.9917 + }, + { + "start": 20424.56, + "end": 20426.38, + "probability": 0.9029 + }, + { + "start": 20427.02, + "end": 20427.92, + "probability": 0.6328 + }, + { + "start": 20428.68, + "end": 20432.78, + "probability": 0.9097 + }, + { + "start": 20433.78, + "end": 20436.82, + "probability": 0.8759 + }, + { + "start": 20437.62, + "end": 20440.14, + "probability": 0.9025 + }, + { + "start": 20440.66, + "end": 20442.98, + "probability": 0.9698 + }, + { + "start": 20443.74, + "end": 20446.19, + "probability": 0.9023 + }, + { + "start": 20447.44, + "end": 20453.02, + "probability": 0.7787 + }, + { + "start": 20454.26, + "end": 20460.76, + "probability": 0.9541 + }, + { + "start": 20461.46, + "end": 20469.06, + "probability": 0.8694 + }, + { + "start": 20470.16, + "end": 20471.14, + "probability": 0.8715 + }, + { + "start": 20472.02, + "end": 20476.81, + "probability": 0.9082 + }, + { + "start": 20477.5, + "end": 20482.56, + "probability": 0.9678 + }, + { + "start": 20483.84, + "end": 20491.06, + "probability": 0.9829 + }, + { + "start": 20491.66, + "end": 20493.18, + "probability": 0.7864 + }, + { + "start": 20494.06, + "end": 20495.4, + "probability": 0.9344 + }, + { + "start": 20496.2, + "end": 20498.31, + "probability": 0.9993 + }, + { + "start": 20498.78, + "end": 20501.84, + "probability": 0.9719 + }, + { + "start": 20502.32, + "end": 20507.02, + "probability": 0.9948 + }, + { + "start": 20507.52, + "end": 20512.8, + "probability": 0.5126 + }, + { + "start": 20513.16, + "end": 20515.96, + "probability": 0.9529 + }, + { + "start": 20515.96, + "end": 20517.9, + "probability": 0.9149 + }, + { + "start": 20518.18, + "end": 20519.16, + "probability": 0.9745 + }, + { + "start": 20520.02, + "end": 20520.81, + "probability": 0.9619 + }, + { + "start": 20520.96, + "end": 20522.46, + "probability": 0.9953 + }, + { + "start": 20523.24, + "end": 20525.94, + "probability": 0.9384 + }, + { + "start": 20526.74, + "end": 20528.98, + "probability": 0.7207 + }, + { + "start": 20529.96, + "end": 20530.9, + "probability": 0.6631 + }, + { + "start": 20531.62, + "end": 20534.32, + "probability": 0.9875 + }, + { + "start": 20534.92, + "end": 20536.1, + "probability": 0.8882 + }, + { + "start": 20536.72, + "end": 20537.66, + "probability": 0.9734 + }, + { + "start": 20538.48, + "end": 20539.54, + "probability": 0.2194 + }, + { + "start": 20539.56, + "end": 20543.74, + "probability": 0.9529 + }, + { + "start": 20544.78, + "end": 20545.88, + "probability": 0.9861 + }, + { + "start": 20546.62, + "end": 20549.74, + "probability": 0.9072 + }, + { + "start": 20550.36, + "end": 20554.36, + "probability": 0.9956 + }, + { + "start": 20554.66, + "end": 20557.0, + "probability": 0.8621 + }, + { + "start": 20557.56, + "end": 20559.34, + "probability": 0.9915 + }, + { + "start": 20560.08, + "end": 20562.36, + "probability": 0.9718 + }, + { + "start": 20563.96, + "end": 20568.68, + "probability": 0.9949 + }, + { + "start": 20569.82, + "end": 20572.86, + "probability": 0.9854 + }, + { + "start": 20573.62, + "end": 20575.63, + "probability": 0.9839 + }, + { + "start": 20576.88, + "end": 20582.78, + "probability": 0.9602 + }, + { + "start": 20583.52, + "end": 20584.6, + "probability": 0.8895 + }, + { + "start": 20584.78, + "end": 20585.5, + "probability": 0.8201 + }, + { + "start": 20586.68, + "end": 20588.59, + "probability": 0.9973 + }, + { + "start": 20589.5, + "end": 20590.34, + "probability": 0.837 + }, + { + "start": 20590.38, + "end": 20591.46, + "probability": 0.7709 + }, + { + "start": 20591.64, + "end": 20592.94, + "probability": 0.7985 + }, + { + "start": 20593.42, + "end": 20595.92, + "probability": 0.8586 + }, + { + "start": 20597.26, + "end": 20599.86, + "probability": 0.8372 + }, + { + "start": 20600.38, + "end": 20603.92, + "probability": 0.8348 + }, + { + "start": 20604.96, + "end": 20608.62, + "probability": 0.9958 + }, + { + "start": 20609.62, + "end": 20612.72, + "probability": 0.8036 + }, + { + "start": 20613.5, + "end": 20615.52, + "probability": 0.9829 + }, + { + "start": 20616.52, + "end": 20618.12, + "probability": 0.9349 + }, + { + "start": 20618.66, + "end": 20620.3, + "probability": 0.9586 + }, + { + "start": 20621.3, + "end": 20624.1, + "probability": 0.9377 + }, + { + "start": 20624.82, + "end": 20628.18, + "probability": 0.8514 + }, + { + "start": 20628.8, + "end": 20630.96, + "probability": 0.9594 + }, + { + "start": 20631.4, + "end": 20633.54, + "probability": 0.9966 + }, + { + "start": 20633.94, + "end": 20636.32, + "probability": 0.9858 + }, + { + "start": 20636.6, + "end": 20640.34, + "probability": 0.7928 + }, + { + "start": 20641.34, + "end": 20643.06, + "probability": 0.9268 + }, + { + "start": 20643.74, + "end": 20645.22, + "probability": 0.9941 + }, + { + "start": 20645.82, + "end": 20647.38, + "probability": 0.971 + }, + { + "start": 20648.02, + "end": 20652.46, + "probability": 0.671 + }, + { + "start": 20653.04, + "end": 20655.48, + "probability": 0.7228 + }, + { + "start": 20656.36, + "end": 20657.32, + "probability": 0.7291 + }, + { + "start": 20657.4, + "end": 20660.38, + "probability": 0.9842 + }, + { + "start": 20662.84, + "end": 20665.4, + "probability": 0.9551 + }, + { + "start": 20666.34, + "end": 20668.08, + "probability": 0.963 + }, + { + "start": 20668.94, + "end": 20671.84, + "probability": 0.9292 + }, + { + "start": 20672.44, + "end": 20674.7, + "probability": 0.9288 + }, + { + "start": 20675.22, + "end": 20679.42, + "probability": 0.9974 + }, + { + "start": 20680.0, + "end": 20683.98, + "probability": 0.9742 + }, + { + "start": 20685.04, + "end": 20687.98, + "probability": 0.9952 + }, + { + "start": 20689.1, + "end": 20693.0, + "probability": 0.6584 + }, + { + "start": 20693.78, + "end": 20695.18, + "probability": 0.9556 + }, + { + "start": 20695.52, + "end": 20699.62, + "probability": 0.779 + }, + { + "start": 20700.2, + "end": 20703.96, + "probability": 0.9888 + }, + { + "start": 20704.56, + "end": 20705.57, + "probability": 0.9534 + }, + { + "start": 20706.76, + "end": 20709.68, + "probability": 0.9365 + }, + { + "start": 20712.52, + "end": 20716.0, + "probability": 0.811 + }, + { + "start": 20716.04, + "end": 20717.14, + "probability": 0.9575 + }, + { + "start": 20717.28, + "end": 20720.16, + "probability": 0.9199 + }, + { + "start": 20720.62, + "end": 20721.56, + "probability": 0.832 + }, + { + "start": 20721.66, + "end": 20722.56, + "probability": 0.8042 + }, + { + "start": 20723.36, + "end": 20726.38, + "probability": 0.9084 + }, + { + "start": 20726.98, + "end": 20728.02, + "probability": 0.9873 + }, + { + "start": 20728.1, + "end": 20730.76, + "probability": 0.9753 + }, + { + "start": 20730.78, + "end": 20732.12, + "probability": 0.6919 + }, + { + "start": 20732.76, + "end": 20733.74, + "probability": 0.7725 + }, + { + "start": 20735.5, + "end": 20739.46, + "probability": 0.7601 + }, + { + "start": 20745.42, + "end": 20747.18, + "probability": 0.4018 + }, + { + "start": 20747.4, + "end": 20749.58, + "probability": 0.3488 + }, + { + "start": 20749.66, + "end": 20750.18, + "probability": 0.4397 + }, + { + "start": 20750.18, + "end": 20751.86, + "probability": 0.7332 + }, + { + "start": 20751.9, + "end": 20752.78, + "probability": 0.3151 + }, + { + "start": 20754.34, + "end": 20755.12, + "probability": 0.6318 + }, + { + "start": 20756.14, + "end": 20759.0, + "probability": 0.3607 + }, + { + "start": 20759.0, + "end": 20759.64, + "probability": 0.1121 + }, + { + "start": 20761.0, + "end": 20762.68, + "probability": 0.8923 + }, + { + "start": 20763.04, + "end": 20763.44, + "probability": 0.6091 + }, + { + "start": 20763.44, + "end": 20766.22, + "probability": 0.8768 + }, + { + "start": 20767.38, + "end": 20771.76, + "probability": 0.7559 + }, + { + "start": 20771.88, + "end": 20773.72, + "probability": 0.537 + }, + { + "start": 20773.8, + "end": 20774.8, + "probability": 0.7423 + }, + { + "start": 20775.02, + "end": 20775.54, + "probability": 0.4724 + }, + { + "start": 20775.62, + "end": 20776.67, + "probability": 0.6004 + }, + { + "start": 20776.96, + "end": 20779.28, + "probability": 0.704 + }, + { + "start": 20779.58, + "end": 20783.04, + "probability": 0.9186 + }, + { + "start": 20783.18, + "end": 20784.58, + "probability": 0.9687 + }, + { + "start": 20785.1, + "end": 20787.16, + "probability": 0.3237 + }, + { + "start": 20788.56, + "end": 20789.28, + "probability": 0.4376 + }, + { + "start": 20789.56, + "end": 20790.02, + "probability": 0.4997 + }, + { + "start": 20790.58, + "end": 20791.86, + "probability": 0.8465 + }, + { + "start": 20791.86, + "end": 20791.86, + "probability": 0.7746 + }, + { + "start": 20792.0, + "end": 20796.64, + "probability": 0.7628 + }, + { + "start": 20797.3, + "end": 20800.28, + "probability": 0.9539 + }, + { + "start": 20801.08, + "end": 20803.82, + "probability": 0.75 + }, + { + "start": 20804.7, + "end": 20806.92, + "probability": 0.9602 + }, + { + "start": 20807.7, + "end": 20809.0, + "probability": 0.9643 + }, + { + "start": 20809.68, + "end": 20812.92, + "probability": 0.9487 + }, + { + "start": 20813.92, + "end": 20820.8, + "probability": 0.9803 + }, + { + "start": 20821.44, + "end": 20822.0, + "probability": 0.6924 + }, + { + "start": 20822.1, + "end": 20822.76, + "probability": 0.9819 + }, + { + "start": 20822.8, + "end": 20822.86, + "probability": 0.4718 + }, + { + "start": 20823.02, + "end": 20825.3, + "probability": 0.8376 + }, + { + "start": 20825.8, + "end": 20830.04, + "probability": 0.1724 + }, + { + "start": 20830.38, + "end": 20830.8, + "probability": 0.4118 + }, + { + "start": 20830.98, + "end": 20831.26, + "probability": 0.1642 + }, + { + "start": 20831.62, + "end": 20833.68, + "probability": 0.9507 + }, + { + "start": 20833.92, + "end": 20836.54, + "probability": 0.9575 + }, + { + "start": 20837.06, + "end": 20837.44, + "probability": 0.8823 + }, + { + "start": 20837.54, + "end": 20838.86, + "probability": 0.877 + }, + { + "start": 20838.96, + "end": 20840.04, + "probability": 0.6697 + }, + { + "start": 20840.2, + "end": 20840.54, + "probability": 0.7902 + }, + { + "start": 20841.02, + "end": 20841.59, + "probability": 0.83 + }, + { + "start": 20841.74, + "end": 20842.32, + "probability": 0.922 + }, + { + "start": 20842.74, + "end": 20845.5, + "probability": 0.9004 + }, + { + "start": 20846.14, + "end": 20849.01, + "probability": 0.9047 + }, + { + "start": 20849.2, + "end": 20850.54, + "probability": 0.8375 + }, + { + "start": 20850.58, + "end": 20851.68, + "probability": 0.742 + }, + { + "start": 20851.8, + "end": 20855.74, + "probability": 0.9102 + }, + { + "start": 20856.08, + "end": 20858.54, + "probability": 0.9661 + }, + { + "start": 20858.78, + "end": 20859.53, + "probability": 0.971 + }, + { + "start": 20859.92, + "end": 20860.62, + "probability": 0.8081 + }, + { + "start": 20860.66, + "end": 20861.12, + "probability": 0.7622 + }, + { + "start": 20861.28, + "end": 20861.86, + "probability": 0.3117 + }, + { + "start": 20861.98, + "end": 20863.08, + "probability": 0.9786 + }, + { + "start": 20863.24, + "end": 20864.58, + "probability": 0.3819 + }, + { + "start": 20865.17, + "end": 20865.56, + "probability": 0.1405 + }, + { + "start": 20865.56, + "end": 20866.22, + "probability": 0.3521 + }, + { + "start": 20866.8, + "end": 20868.62, + "probability": 0.2433 + }, + { + "start": 20868.78, + "end": 20871.0, + "probability": 0.6665 + }, + { + "start": 20871.57, + "end": 20873.26, + "probability": 0.5751 + }, + { + "start": 20873.56, + "end": 20875.84, + "probability": 0.8538 + }, + { + "start": 20875.9, + "end": 20876.5, + "probability": 0.9226 + }, + { + "start": 20877.88, + "end": 20879.58, + "probability": 0.8797 + }, + { + "start": 20880.52, + "end": 20883.58, + "probability": 0.6284 + }, + { + "start": 20883.74, + "end": 20884.34, + "probability": 0.8738 + }, + { + "start": 20884.86, + "end": 20885.5, + "probability": 0.8777 + }, + { + "start": 20885.72, + "end": 20887.58, + "probability": 0.4509 + }, + { + "start": 20887.6, + "end": 20889.36, + "probability": 0.6727 + }, + { + "start": 20889.36, + "end": 20889.84, + "probability": 0.0135 + }, + { + "start": 20889.86, + "end": 20889.86, + "probability": 0.0169 + }, + { + "start": 20890.2, + "end": 20892.42, + "probability": 0.972 + }, + { + "start": 20892.82, + "end": 20893.34, + "probability": 0.8719 + }, + { + "start": 20893.68, + "end": 20895.0, + "probability": 0.9557 + }, + { + "start": 20895.4, + "end": 20896.14, + "probability": 0.973 + }, + { + "start": 20896.2, + "end": 20899.86, + "probability": 0.6798 + }, + { + "start": 20899.96, + "end": 20901.4, + "probability": 0.2852 + }, + { + "start": 20901.6, + "end": 20903.18, + "probability": 0.277 + }, + { + "start": 20903.26, + "end": 20904.86, + "probability": 0.6947 + }, + { + "start": 20905.02, + "end": 20909.16, + "probability": 0.6401 + }, + { + "start": 20909.16, + "end": 20912.26, + "probability": 0.472 + }, + { + "start": 20913.08, + "end": 20915.5, + "probability": 0.8881 + }, + { + "start": 20915.6, + "end": 20918.28, + "probability": 0.7075 + }, + { + "start": 20918.28, + "end": 20918.78, + "probability": 0.2303 + }, + { + "start": 20919.7, + "end": 20921.5, + "probability": 0.2933 + }, + { + "start": 20921.74, + "end": 20922.82, + "probability": 0.7358 + }, + { + "start": 20922.9, + "end": 20925.38, + "probability": 0.8133 + }, + { + "start": 20925.66, + "end": 20926.92, + "probability": 0.9298 + }, + { + "start": 20927.42, + "end": 20927.7, + "probability": 0.223 + }, + { + "start": 20927.7, + "end": 20928.48, + "probability": 0.8046 + }, + { + "start": 20929.02, + "end": 20929.32, + "probability": 0.7949 + }, + { + "start": 20929.4, + "end": 20930.06, + "probability": 0.481 + }, + { + "start": 20930.08, + "end": 20930.78, + "probability": 0.9424 + }, + { + "start": 20931.26, + "end": 20932.96, + "probability": 0.9038 + }, + { + "start": 20933.76, + "end": 20935.52, + "probability": 0.9171 + }, + { + "start": 20936.04, + "end": 20937.54, + "probability": 0.7836 + }, + { + "start": 20938.06, + "end": 20940.02, + "probability": 0.8401 + }, + { + "start": 20940.08, + "end": 20940.62, + "probability": 0.9023 + }, + { + "start": 20940.76, + "end": 20941.12, + "probability": 0.4235 + }, + { + "start": 20941.18, + "end": 20941.78, + "probability": 0.7285 + }, + { + "start": 20941.86, + "end": 20942.92, + "probability": 0.9912 + }, + { + "start": 20943.06, + "end": 20943.12, + "probability": 0.4372 + }, + { + "start": 20943.2, + "end": 20943.69, + "probability": 0.1877 + }, + { + "start": 20943.76, + "end": 20944.72, + "probability": 0.9163 + }, + { + "start": 20944.76, + "end": 20945.8, + "probability": 0.6743 + }, + { + "start": 20945.84, + "end": 20947.46, + "probability": 0.9771 + }, + { + "start": 20947.76, + "end": 20950.02, + "probability": 0.3513 + }, + { + "start": 20950.54, + "end": 20952.48, + "probability": 0.0953 + }, + { + "start": 20952.94, + "end": 20953.98, + "probability": 0.8028 + }, + { + "start": 20954.32, + "end": 20955.26, + "probability": 0.3445 + }, + { + "start": 20955.46, + "end": 20956.68, + "probability": 0.9131 + }, + { + "start": 20956.82, + "end": 20961.08, + "probability": 0.984 + }, + { + "start": 20961.46, + "end": 20962.51, + "probability": 0.9617 + }, + { + "start": 20962.84, + "end": 20963.62, + "probability": 0.7008 + }, + { + "start": 20964.24, + "end": 20966.96, + "probability": 0.8042 + }, + { + "start": 20967.62, + "end": 20968.82, + "probability": 0.1922 + }, + { + "start": 20968.84, + "end": 20970.8, + "probability": 0.4133 + }, + { + "start": 20970.84, + "end": 20971.7, + "probability": 0.6769 + }, + { + "start": 20972.2, + "end": 20974.6, + "probability": 0.947 + }, + { + "start": 20974.96, + "end": 20978.86, + "probability": 0.9697 + }, + { + "start": 20978.86, + "end": 20979.94, + "probability": 0.8406 + }, + { + "start": 20979.94, + "end": 20980.7, + "probability": 0.5308 + }, + { + "start": 20981.14, + "end": 20983.74, + "probability": 0.2919 + }, + { + "start": 20984.04, + "end": 20985.6, + "probability": 0.1417 + }, + { + "start": 20985.72, + "end": 20987.0, + "probability": 0.8024 + }, + { + "start": 20987.22, + "end": 20988.04, + "probability": 0.5788 + }, + { + "start": 20988.04, + "end": 20989.6, + "probability": 0.9052 + }, + { + "start": 20990.06, + "end": 20991.03, + "probability": 0.9282 + }, + { + "start": 20991.48, + "end": 20992.93, + "probability": 0.951 + }, + { + "start": 20995.55, + "end": 20998.74, + "probability": 0.8141 + }, + { + "start": 20998.86, + "end": 21000.54, + "probability": 0.8367 + }, + { + "start": 21001.12, + "end": 21005.62, + "probability": 0.9917 + }, + { + "start": 21005.96, + "end": 21006.9, + "probability": 0.8515 + }, + { + "start": 21006.94, + "end": 21008.08, + "probability": 0.7176 + }, + { + "start": 21008.08, + "end": 21012.38, + "probability": 0.936 + }, + { + "start": 21012.86, + "end": 21014.42, + "probability": 0.1122 + }, + { + "start": 21014.6, + "end": 21015.5, + "probability": 0.4761 + }, + { + "start": 21015.52, + "end": 21017.16, + "probability": 0.2546 + }, + { + "start": 21017.2, + "end": 21017.54, + "probability": 0.459 + }, + { + "start": 21017.56, + "end": 21019.4, + "probability": 0.5816 + }, + { + "start": 21019.4, + "end": 21021.08, + "probability": 0.349 + }, + { + "start": 21021.2, + "end": 21022.74, + "probability": 0.6245 + }, + { + "start": 21022.92, + "end": 21026.34, + "probability": 0.9893 + }, + { + "start": 21026.38, + "end": 21029.82, + "probability": 0.8727 + }, + { + "start": 21029.94, + "end": 21032.6, + "probability": 0.2497 + }, + { + "start": 21033.8, + "end": 21034.6, + "probability": 0.4531 + }, + { + "start": 21034.78, + "end": 21038.2, + "probability": 0.5528 + }, + { + "start": 21038.32, + "end": 21039.62, + "probability": 0.949 + }, + { + "start": 21039.66, + "end": 21040.48, + "probability": 0.7557 + }, + { + "start": 21040.68, + "end": 21041.66, + "probability": 0.7612 + }, + { + "start": 21041.74, + "end": 21046.6, + "probability": 0.9198 + }, + { + "start": 21046.7, + "end": 21048.66, + "probability": 0.7665 + }, + { + "start": 21048.8, + "end": 21048.82, + "probability": 0.0077 + }, + { + "start": 21048.82, + "end": 21048.82, + "probability": 0.1135 + }, + { + "start": 21048.82, + "end": 21049.4, + "probability": 0.4571 + }, + { + "start": 21049.68, + "end": 21050.76, + "probability": 0.4564 + }, + { + "start": 21051.28, + "end": 21055.06, + "probability": 0.9956 + }, + { + "start": 21055.52, + "end": 21059.02, + "probability": 0.9662 + }, + { + "start": 21059.36, + "end": 21060.9, + "probability": 0.8468 + }, + { + "start": 21061.2, + "end": 21062.42, + "probability": 0.6882 + }, + { + "start": 21062.62, + "end": 21063.14, + "probability": 0.8454 + }, + { + "start": 21063.78, + "end": 21065.42, + "probability": 0.9781 + }, + { + "start": 21065.98, + "end": 21065.98, + "probability": 0.0901 + }, + { + "start": 21065.98, + "end": 21073.38, + "probability": 0.9092 + }, + { + "start": 21073.78, + "end": 21077.06, + "probability": 0.991 + }, + { + "start": 21077.06, + "end": 21078.44, + "probability": 0.4828 + }, + { + "start": 21078.44, + "end": 21078.44, + "probability": 0.0199 + }, + { + "start": 21078.56, + "end": 21082.66, + "probability": 0.9947 + }, + { + "start": 21082.84, + "end": 21083.32, + "probability": 0.1233 + }, + { + "start": 21083.56, + "end": 21084.94, + "probability": 0.5672 + }, + { + "start": 21085.14, + "end": 21086.22, + "probability": 0.3314 + }, + { + "start": 21088.66, + "end": 21088.9, + "probability": 0.4469 + }, + { + "start": 21089.7, + "end": 21090.88, + "probability": 0.0068 + }, + { + "start": 21090.88, + "end": 21091.0, + "probability": 0.1546 + }, + { + "start": 21091.06, + "end": 21093.2, + "probability": 0.0541 + }, + { + "start": 21093.2, + "end": 21093.32, + "probability": 0.1372 + }, + { + "start": 21093.32, + "end": 21093.88, + "probability": 0.2926 + }, + { + "start": 21094.74, + "end": 21099.36, + "probability": 0.0256 + }, + { + "start": 21100.08, + "end": 21100.72, + "probability": 0.2835 + }, + { + "start": 21100.78, + "end": 21101.22, + "probability": 0.1273 + }, + { + "start": 21101.38, + "end": 21102.12, + "probability": 0.0765 + }, + { + "start": 21102.12, + "end": 21102.2, + "probability": 0.2877 + }, + { + "start": 21102.2, + "end": 21102.2, + "probability": 0.1973 + }, + { + "start": 21102.2, + "end": 21104.51, + "probability": 0.0441 + }, + { + "start": 21104.96, + "end": 21105.12, + "probability": 0.1524 + }, + { + "start": 21105.14, + "end": 21106.36, + "probability": 0.3142 + }, + { + "start": 21106.58, + "end": 21107.1, + "probability": 0.0659 + }, + { + "start": 21107.26, + "end": 21109.36, + "probability": 0.0893 + }, + { + "start": 21109.6, + "end": 21109.6, + "probability": 0.0676 + }, + { + "start": 21110.26, + "end": 21111.54, + "probability": 0.0531 + }, + { + "start": 21111.66, + "end": 21111.66, + "probability": 0.0663 + }, + { + "start": 21111.66, + "end": 21111.66, + "probability": 0.0232 + }, + { + "start": 21111.66, + "end": 21111.66, + "probability": 0.16 + }, + { + "start": 21111.66, + "end": 21111.66, + "probability": 0.1098 + }, + { + "start": 21111.66, + "end": 21111.66, + "probability": 0.1807 + }, + { + "start": 21111.66, + "end": 21111.66, + "probability": 0.0308 + }, + { + "start": 21111.66, + "end": 21111.8, + "probability": 0.0541 + }, + { + "start": 21111.98, + "end": 21116.62, + "probability": 0.5859 + }, + { + "start": 21122.0, + "end": 21122.0, + "probability": 0.0 + }, + { + "start": 21122.12, + "end": 21123.4, + "probability": 0.0666 + }, + { + "start": 21124.42, + "end": 21124.52, + "probability": 0.0424 + }, + { + "start": 21124.52, + "end": 21125.02, + "probability": 0.468 + }, + { + "start": 21125.18, + "end": 21127.48, + "probability": 0.35 + }, + { + "start": 21127.78, + "end": 21128.34, + "probability": 0.9754 + }, + { + "start": 21128.6, + "end": 21128.94, + "probability": 0.6124 + }, + { + "start": 21129.28, + "end": 21129.72, + "probability": 0.0918 + }, + { + "start": 21129.78, + "end": 21130.97, + "probability": 0.4498 + }, + { + "start": 21133.12, + "end": 21133.58, + "probability": 0.3358 + }, + { + "start": 21142.24, + "end": 21143.1, + "probability": 0.691 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.0, + "end": 21243.0, + "probability": 0.0 + }, + { + "start": 21243.46, + "end": 21243.64, + "probability": 0.1481 + }, + { + "start": 21243.64, + "end": 21245.42, + "probability": 0.708 + }, + { + "start": 21245.52, + "end": 21247.16, + "probability": 0.4286 + }, + { + "start": 21247.36, + "end": 21247.58, + "probability": 0.0493 + }, + { + "start": 21247.94, + "end": 21250.26, + "probability": 0.769 + }, + { + "start": 21250.7, + "end": 21251.94, + "probability": 0.9432 + }, + { + "start": 21252.2, + "end": 21255.38, + "probability": 0.9397 + }, + { + "start": 21255.44, + "end": 21256.0, + "probability": 0.7458 + }, + { + "start": 21257.0, + "end": 21264.12, + "probability": 0.9057 + }, + { + "start": 21264.78, + "end": 21266.6, + "probability": 0.5808 + }, + { + "start": 21267.12, + "end": 21271.1, + "probability": 0.1202 + }, + { + "start": 21271.1, + "end": 21275.9, + "probability": 0.5875 + }, + { + "start": 21275.9, + "end": 21277.02, + "probability": 0.0468 + }, + { + "start": 21277.24, + "end": 21279.18, + "probability": 0.3618 + }, + { + "start": 21279.26, + "end": 21281.26, + "probability": 0.3604 + }, + { + "start": 21281.78, + "end": 21282.78, + "probability": 0.0501 + }, + { + "start": 21283.32, + "end": 21284.38, + "probability": 0.0181 + }, + { + "start": 21284.4, + "end": 21286.98, + "probability": 0.0172 + }, + { + "start": 21286.98, + "end": 21289.36, + "probability": 0.0363 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.0, + "end": 21365.0, + "probability": 0.0 + }, + { + "start": 21365.5, + "end": 21365.82, + "probability": 0.163 + }, + { + "start": 21365.92, + "end": 21367.46, + "probability": 0.6749 + }, + { + "start": 21367.48, + "end": 21368.34, + "probability": 0.0602 + }, + { + "start": 21368.48, + "end": 21369.6, + "probability": 0.9038 + }, + { + "start": 21370.34, + "end": 21373.56, + "probability": 0.0544 + }, + { + "start": 21374.14, + "end": 21375.48, + "probability": 0.316 + }, + { + "start": 21376.1, + "end": 21377.34, + "probability": 0.4537 + }, + { + "start": 21378.68, + "end": 21383.34, + "probability": 0.0081 + }, + { + "start": 21384.88, + "end": 21385.72, + "probability": 0.0475 + }, + { + "start": 21388.86, + "end": 21389.1, + "probability": 0.2334 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.0, + "end": 21486.0, + "probability": 0.0 + }, + { + "start": 21486.16, + "end": 21489.16, + "probability": 0.7455 + }, + { + "start": 21489.9, + "end": 21492.06, + "probability": 0.929 + }, + { + "start": 21492.58, + "end": 21495.04, + "probability": 0.9831 + }, + { + "start": 21495.16, + "end": 21498.64, + "probability": 0.9215 + }, + { + "start": 21499.4, + "end": 21501.2, + "probability": 0.981 + }, + { + "start": 21501.36, + "end": 21503.82, + "probability": 0.7146 + }, + { + "start": 21504.46, + "end": 21512.02, + "probability": 0.9565 + }, + { + "start": 21512.37, + "end": 21517.84, + "probability": 0.9675 + }, + { + "start": 21518.0, + "end": 21519.46, + "probability": 0.9473 + }, + { + "start": 21519.9, + "end": 21525.04, + "probability": 0.9345 + }, + { + "start": 21525.4, + "end": 21526.1, + "probability": 0.6294 + }, + { + "start": 21526.76, + "end": 21527.42, + "probability": 0.5006 + }, + { + "start": 21527.56, + "end": 21528.62, + "probability": 0.1565 + }, + { + "start": 21528.84, + "end": 21531.81, + "probability": 0.8682 + }, + { + "start": 21532.44, + "end": 21534.56, + "probability": 0.4988 + }, + { + "start": 21534.64, + "end": 21536.0, + "probability": 0.725 + }, + { + "start": 21536.06, + "end": 21537.06, + "probability": 0.4081 + }, + { + "start": 21537.2, + "end": 21541.9, + "probability": 0.9847 + }, + { + "start": 21542.28, + "end": 21544.36, + "probability": 0.9712 + }, + { + "start": 21544.72, + "end": 21547.88, + "probability": 0.8998 + }, + { + "start": 21548.42, + "end": 21551.12, + "probability": 0.6769 + }, + { + "start": 21551.96, + "end": 21557.22, + "probability": 0.5776 + }, + { + "start": 21557.78, + "end": 21560.02, + "probability": 0.4501 + }, + { + "start": 21560.1, + "end": 21562.92, + "probability": 0.8962 + }, + { + "start": 21563.52, + "end": 21565.04, + "probability": 0.9517 + }, + { + "start": 21566.04, + "end": 21568.74, + "probability": 0.9363 + }, + { + "start": 21568.88, + "end": 21569.64, + "probability": 0.662 + }, + { + "start": 21570.72, + "end": 21572.28, + "probability": 0.8711 + }, + { + "start": 21572.94, + "end": 21575.2, + "probability": 0.9448 + }, + { + "start": 21575.76, + "end": 21576.12, + "probability": 0.2303 + }, + { + "start": 21576.26, + "end": 21576.82, + "probability": 0.8504 + }, + { + "start": 21577.52, + "end": 21579.38, + "probability": 0.9871 + }, + { + "start": 21580.46, + "end": 21584.32, + "probability": 0.8734 + }, + { + "start": 21584.96, + "end": 21591.04, + "probability": 0.7775 + }, + { + "start": 21591.13, + "end": 21597.7, + "probability": 0.984 + }, + { + "start": 21598.3, + "end": 21599.2, + "probability": 0.6019 + }, + { + "start": 21599.84, + "end": 21605.5, + "probability": 0.9941 + }, + { + "start": 21605.6, + "end": 21607.26, + "probability": 0.7956 + }, + { + "start": 21607.64, + "end": 21609.24, + "probability": 0.9908 + }, + { + "start": 21609.92, + "end": 21610.32, + "probability": 0.7147 + }, + { + "start": 21611.16, + "end": 21611.98, + "probability": 0.3422 + }, + { + "start": 21612.48, + "end": 21613.62, + "probability": 0.9418 + }, + { + "start": 21613.76, + "end": 21615.62, + "probability": 0.9413 + }, + { + "start": 21616.06, + "end": 21622.04, + "probability": 0.9687 + }, + { + "start": 21622.04, + "end": 21626.42, + "probability": 0.993 + }, + { + "start": 21627.24, + "end": 21631.88, + "probability": 0.9462 + }, + { + "start": 21632.6, + "end": 21636.62, + "probability": 0.9906 + }, + { + "start": 21636.74, + "end": 21638.7, + "probability": 0.9104 + }, + { + "start": 21639.42, + "end": 21642.94, + "probability": 0.9259 + }, + { + "start": 21643.32, + "end": 21646.34, + "probability": 0.4853 + }, + { + "start": 21646.88, + "end": 21648.74, + "probability": 0.8245 + }, + { + "start": 21649.3, + "end": 21654.76, + "probability": 0.9831 + }, + { + "start": 21654.82, + "end": 21657.72, + "probability": 0.5265 + }, + { + "start": 21657.92, + "end": 21662.56, + "probability": 0.9875 + }, + { + "start": 21663.3, + "end": 21665.76, + "probability": 0.8563 + }, + { + "start": 21666.22, + "end": 21666.22, + "probability": 0.6205 + }, + { + "start": 21666.24, + "end": 21669.16, + "probability": 0.8439 + }, + { + "start": 21670.34, + "end": 21672.64, + "probability": 0.9881 + }, + { + "start": 21672.98, + "end": 21674.2, + "probability": 0.4932 + }, + { + "start": 21674.38, + "end": 21678.04, + "probability": 0.9988 + }, + { + "start": 21678.7, + "end": 21679.0, + "probability": 0.0865 + }, + { + "start": 21679.1, + "end": 21679.32, + "probability": 0.119 + }, + { + "start": 21679.47, + "end": 21682.04, + "probability": 0.3325 + }, + { + "start": 21682.66, + "end": 21683.82, + "probability": 0.8901 + }, + { + "start": 21684.04, + "end": 21688.54, + "probability": 0.9407 + }, + { + "start": 21688.72, + "end": 21689.49, + "probability": 0.7808 + }, + { + "start": 21689.84, + "end": 21690.76, + "probability": 0.8684 + }, + { + "start": 21690.84, + "end": 21693.44, + "probability": 0.9186 + }, + { + "start": 21693.5, + "end": 21696.92, + "probability": 0.359 + }, + { + "start": 21696.92, + "end": 21699.28, + "probability": 0.5403 + }, + { + "start": 21701.68, + "end": 21706.12, + "probability": 0.9141 + }, + { + "start": 21706.12, + "end": 21709.64, + "probability": 0.9977 + }, + { + "start": 21710.34, + "end": 21711.39, + "probability": 0.9759 + }, + { + "start": 21711.78, + "end": 21716.82, + "probability": 0.989 + }, + { + "start": 21717.08, + "end": 21722.3, + "probability": 0.9107 + }, + { + "start": 21722.76, + "end": 21724.08, + "probability": 0.3283 + }, + { + "start": 21724.42, + "end": 21728.22, + "probability": 0.9894 + }, + { + "start": 21728.36, + "end": 21733.0, + "probability": 0.992 + }, + { + "start": 21733.1, + "end": 21736.98, + "probability": 0.9743 + }, + { + "start": 21737.14, + "end": 21740.5, + "probability": 0.9271 + }, + { + "start": 21740.58, + "end": 21745.7, + "probability": 0.9237 + }, + { + "start": 21745.9, + "end": 21748.95, + "probability": 0.9246 + }, + { + "start": 21749.48, + "end": 21752.7, + "probability": 0.9716 + }, + { + "start": 21752.7, + "end": 21755.22, + "probability": 0.9238 + }, + { + "start": 21755.72, + "end": 21758.48, + "probability": 0.8372 + }, + { + "start": 21758.56, + "end": 21760.22, + "probability": 0.3598 + }, + { + "start": 21760.52, + "end": 21762.8, + "probability": 0.955 + }, + { + "start": 21763.14, + "end": 21767.78, + "probability": 0.8882 + }, + { + "start": 21767.86, + "end": 21769.36, + "probability": 0.6968 + }, + { + "start": 21769.48, + "end": 21770.04, + "probability": 0.3178 + }, + { + "start": 21770.04, + "end": 21770.42, + "probability": 0.5923 + }, + { + "start": 21770.42, + "end": 21771.38, + "probability": 0.5618 + }, + { + "start": 21775.6, + "end": 21777.48, + "probability": 0.1892 + }, + { + "start": 21779.82, + "end": 21784.48, + "probability": 0.0651 + }, + { + "start": 21785.42, + "end": 21785.8, + "probability": 0.0786 + }, + { + "start": 21785.8, + "end": 21785.8, + "probability": 0.0598 + }, + { + "start": 21785.8, + "end": 21785.8, + "probability": 0.4458 + }, + { + "start": 21785.8, + "end": 21785.8, + "probability": 0.024 + }, + { + "start": 21785.8, + "end": 21788.0, + "probability": 0.6635 + }, + { + "start": 21788.22, + "end": 21790.04, + "probability": 0.7126 + }, + { + "start": 21790.58, + "end": 21793.24, + "probability": 0.8396 + }, + { + "start": 21793.24, + "end": 21793.8, + "probability": 0.0383 + }, + { + "start": 21793.8, + "end": 21794.5, + "probability": 0.1797 + }, + { + "start": 21795.5, + "end": 21797.86, + "probability": 0.168 + }, + { + "start": 21798.9, + "end": 21801.66, + "probability": 0.0576 + }, + { + "start": 21813.24, + "end": 21816.06, + "probability": 0.0928 + }, + { + "start": 21816.36, + "end": 21817.54, + "probability": 0.0334 + }, + { + "start": 21819.14, + "end": 21821.48, + "probability": 0.0531 + }, + { + "start": 21829.36, + "end": 21829.42, + "probability": 0.0304 + }, + { + "start": 21829.42, + "end": 21829.42, + "probability": 0.3603 + }, + { + "start": 21829.42, + "end": 21830.72, + "probability": 0.77 + }, + { + "start": 21830.98, + "end": 21832.1, + "probability": 0.2409 + }, + { + "start": 21833.46, + "end": 21834.86, + "probability": 0.9086 + }, + { + "start": 21834.86, + "end": 21836.0, + "probability": 0.8288 + }, + { + "start": 21838.26, + "end": 21839.46, + "probability": 0.7092 + }, + { + "start": 21866.0, + "end": 21866.0, + "probability": 0.0 + }, + { + "start": 21866.0, + "end": 21866.0, + "probability": 0.0 + }, + { + "start": 21866.0, + "end": 21866.0, + "probability": 0.0 + }, + { + "start": 21866.0, + "end": 21866.0, + "probability": 0.0 + }, + { + "start": 21866.0, + "end": 21866.0, + "probability": 0.0 + }, + { + "start": 21866.0, + "end": 21866.0, + "probability": 0.0 + }, + { + "start": 21866.22, + "end": 21866.36, + "probability": 0.0453 + }, + { + "start": 21867.3, + "end": 21872.04, + "probability": 0.9592 + }, + { + "start": 21872.04, + "end": 21877.06, + "probability": 0.9983 + }, + { + "start": 21877.8, + "end": 21881.64, + "probability": 0.9995 + }, + { + "start": 21882.3, + "end": 21886.66, + "probability": 0.9978 + }, + { + "start": 21888.1, + "end": 21891.2, + "probability": 0.8337 + }, + { + "start": 21891.86, + "end": 21897.52, + "probability": 0.9956 + }, + { + "start": 21898.74, + "end": 21899.58, + "probability": 0.7686 + }, + { + "start": 21900.12, + "end": 21903.26, + "probability": 0.9577 + }, + { + "start": 21903.86, + "end": 21904.44, + "probability": 0.8425 + }, + { + "start": 21906.42, + "end": 21910.9, + "probability": 0.9965 + }, + { + "start": 21910.9, + "end": 21916.5, + "probability": 0.9885 + }, + { + "start": 21917.94, + "end": 21923.06, + "probability": 0.9968 + }, + { + "start": 21923.06, + "end": 21928.76, + "probability": 0.999 + }, + { + "start": 21929.74, + "end": 21932.56, + "probability": 0.9105 + }, + { + "start": 21933.08, + "end": 21935.06, + "probability": 0.8975 + }, + { + "start": 21935.62, + "end": 21939.68, + "probability": 0.9987 + }, + { + "start": 21939.68, + "end": 21942.86, + "probability": 0.9799 + }, + { + "start": 21942.94, + "end": 21948.14, + "probability": 0.9932 + }, + { + "start": 21948.14, + "end": 21954.34, + "probability": 0.7844 + }, + { + "start": 21955.98, + "end": 21958.16, + "probability": 0.9985 + }, + { + "start": 21958.84, + "end": 21960.92, + "probability": 0.9972 + }, + { + "start": 21961.42, + "end": 21962.38, + "probability": 0.9241 + }, + { + "start": 21962.44, + "end": 21964.2, + "probability": 0.931 + }, + { + "start": 21964.96, + "end": 21968.5, + "probability": 0.9927 + }, + { + "start": 21969.7, + "end": 21973.32, + "probability": 0.9035 + }, + { + "start": 21973.94, + "end": 21979.54, + "probability": 0.9941 + }, + { + "start": 21980.32, + "end": 21980.96, + "probability": 0.4073 + }, + { + "start": 21981.44, + "end": 21984.86, + "probability": 0.9925 + }, + { + "start": 21984.86, + "end": 21988.58, + "probability": 0.998 + }, + { + "start": 21990.16, + "end": 21994.1, + "probability": 0.9993 + }, + { + "start": 21995.06, + "end": 22000.2, + "probability": 0.9339 + }, + { + "start": 22000.94, + "end": 22003.52, + "probability": 0.9529 + }, + { + "start": 22003.6, + "end": 22007.08, + "probability": 0.9944 + }, + { + "start": 22007.9, + "end": 22009.58, + "probability": 0.9938 + }, + { + "start": 22009.76, + "end": 22010.36, + "probability": 0.8961 + }, + { + "start": 22010.52, + "end": 22011.08, + "probability": 0.7672 + }, + { + "start": 22011.26, + "end": 22013.0, + "probability": 0.9932 + }, + { + "start": 22014.22, + "end": 22017.98, + "probability": 0.9753 + }, + { + "start": 22017.98, + "end": 22022.12, + "probability": 0.9981 + }, + { + "start": 22023.06, + "end": 22027.46, + "probability": 0.9859 + }, + { + "start": 22027.46, + "end": 22033.36, + "probability": 0.9989 + }, + { + "start": 22034.06, + "end": 22035.6, + "probability": 0.7719 + }, + { + "start": 22035.76, + "end": 22036.54, + "probability": 0.6455 + }, + { + "start": 22036.58, + "end": 22038.01, + "probability": 0.923 + }, + { + "start": 22039.36, + "end": 22040.14, + "probability": 0.9582 + }, + { + "start": 22040.72, + "end": 22042.14, + "probability": 0.9565 + }, + { + "start": 22042.84, + "end": 22048.74, + "probability": 0.9986 + }, + { + "start": 22048.76, + "end": 22054.14, + "probability": 0.9996 + }, + { + "start": 22055.66, + "end": 22056.68, + "probability": 0.9856 + }, + { + "start": 22057.56, + "end": 22058.66, + "probability": 0.9956 + }, + { + "start": 22059.6, + "end": 22063.58, + "probability": 0.9985 + }, + { + "start": 22064.1, + "end": 22066.5, + "probability": 0.9962 + }, + { + "start": 22067.22, + "end": 22071.4, + "probability": 0.9382 + }, + { + "start": 22072.34, + "end": 22075.4, + "probability": 0.9657 + }, + { + "start": 22075.4, + "end": 22079.26, + "probability": 0.9954 + }, + { + "start": 22079.44, + "end": 22081.4, + "probability": 0.994 + }, + { + "start": 22082.16, + "end": 22085.17, + "probability": 0.9787 + }, + { + "start": 22087.12, + "end": 22088.18, + "probability": 0.8501 + }, + { + "start": 22088.98, + "end": 22094.58, + "probability": 0.9973 + }, + { + "start": 22095.52, + "end": 22099.0, + "probability": 0.9886 + }, + { + "start": 22099.22, + "end": 22100.27, + "probability": 0.8962 + }, + { + "start": 22101.76, + "end": 22105.02, + "probability": 0.9575 + }, + { + "start": 22105.02, + "end": 22108.36, + "probability": 0.9965 + }, + { + "start": 22108.86, + "end": 22112.9, + "probability": 0.9731 + }, + { + "start": 22113.42, + "end": 22116.56, + "probability": 0.9983 + }, + { + "start": 22117.8, + "end": 22122.1, + "probability": 0.9563 + }, + { + "start": 22122.1, + "end": 22126.54, + "probability": 0.9983 + }, + { + "start": 22126.66, + "end": 22131.64, + "probability": 0.9799 + }, + { + "start": 22132.4, + "end": 22136.48, + "probability": 0.9483 + }, + { + "start": 22137.42, + "end": 22143.74, + "probability": 0.9895 + }, + { + "start": 22143.88, + "end": 22144.66, + "probability": 0.9341 + }, + { + "start": 22144.7, + "end": 22149.26, + "probability": 0.9963 + }, + { + "start": 22150.06, + "end": 22152.7, + "probability": 0.9932 + }, + { + "start": 22153.32, + "end": 22154.02, + "probability": 0.6613 + }, + { + "start": 22154.68, + "end": 22156.18, + "probability": 0.9907 + }, + { + "start": 22156.78, + "end": 22157.4, + "probability": 0.5996 + }, + { + "start": 22158.02, + "end": 22160.7, + "probability": 0.7412 + }, + { + "start": 22161.32, + "end": 22164.58, + "probability": 0.9978 + }, + { + "start": 22164.8, + "end": 22165.18, + "probability": 0.9832 + }, + { + "start": 22165.2, + "end": 22167.48, + "probability": 0.9494 + }, + { + "start": 22167.94, + "end": 22170.36, + "probability": 0.9915 + }, + { + "start": 22171.34, + "end": 22176.04, + "probability": 0.9969 + }, + { + "start": 22177.68, + "end": 22179.74, + "probability": 0.4977 + }, + { + "start": 22179.9, + "end": 22180.6, + "probability": 0.4797 + }, + { + "start": 22180.64, + "end": 22181.64, + "probability": 0.683 + }, + { + "start": 22181.7, + "end": 22182.14, + "probability": 0.6308 + }, + { + "start": 22182.24, + "end": 22184.7, + "probability": 0.9776 + }, + { + "start": 22185.5, + "end": 22189.62, + "probability": 0.9818 + }, + { + "start": 22190.82, + "end": 22195.2, + "probability": 0.9963 + }, + { + "start": 22195.2, + "end": 22198.84, + "probability": 0.999 + }, + { + "start": 22199.66, + "end": 22200.8, + "probability": 0.9351 + }, + { + "start": 22201.22, + "end": 22205.5, + "probability": 0.9971 + }, + { + "start": 22205.5, + "end": 22209.6, + "probability": 0.9986 + }, + { + "start": 22210.52, + "end": 22212.82, + "probability": 0.9822 + }, + { + "start": 22213.42, + "end": 22214.72, + "probability": 0.9346 + }, + { + "start": 22216.34, + "end": 22219.0, + "probability": 0.7306 + }, + { + "start": 22219.56, + "end": 22221.44, + "probability": 0.9961 + }, + { + "start": 22221.58, + "end": 22223.2, + "probability": 0.985 + }, + { + "start": 22224.46, + "end": 22225.3, + "probability": 0.9532 + }, + { + "start": 22225.46, + "end": 22227.44, + "probability": 0.9661 + }, + { + "start": 22227.56, + "end": 22229.24, + "probability": 0.9642 + }, + { + "start": 22229.4, + "end": 22232.2, + "probability": 0.9967 + }, + { + "start": 22233.22, + "end": 22235.04, + "probability": 0.5451 + }, + { + "start": 22235.66, + "end": 22240.02, + "probability": 0.9968 + }, + { + "start": 22240.02, + "end": 22243.58, + "probability": 0.9995 + }, + { + "start": 22244.48, + "end": 22248.6, + "probability": 0.994 + }, + { + "start": 22249.02, + "end": 22249.78, + "probability": 0.6567 + }, + { + "start": 22250.34, + "end": 22254.64, + "probability": 0.998 + }, + { + "start": 22255.2, + "end": 22258.68, + "probability": 0.9867 + }, + { + "start": 22259.22, + "end": 22262.62, + "probability": 0.988 + }, + { + "start": 22263.02, + "end": 22266.04, + "probability": 0.8125 + }, + { + "start": 22266.5, + "end": 22268.7, + "probability": 0.7701 + }, + { + "start": 22269.34, + "end": 22270.74, + "probability": 0.9341 + }, + { + "start": 22270.86, + "end": 22273.06, + "probability": 0.5214 + }, + { + "start": 22273.52, + "end": 22274.9, + "probability": 0.9885 + }, + { + "start": 22276.16, + "end": 22277.74, + "probability": 0.9609 + }, + { + "start": 22278.1, + "end": 22282.58, + "probability": 0.9985 + }, + { + "start": 22282.58, + "end": 22287.98, + "probability": 0.9999 + }, + { + "start": 22288.76, + "end": 22291.98, + "probability": 0.9982 + }, + { + "start": 22292.32, + "end": 22292.9, + "probability": 0.7799 + }, + { + "start": 22294.3, + "end": 22295.02, + "probability": 0.6594 + }, + { + "start": 22295.3, + "end": 22299.68, + "probability": 0.6796 + }, + { + "start": 22300.8, + "end": 22301.38, + "probability": 0.4804 + }, + { + "start": 22302.44, + "end": 22303.2, + "probability": 0.9366 + }, + { + "start": 22313.34, + "end": 22314.26, + "probability": 0.7037 + }, + { + "start": 22314.36, + "end": 22315.72, + "probability": 0.8862 + }, + { + "start": 22316.02, + "end": 22318.42, + "probability": 0.4907 + }, + { + "start": 22319.48, + "end": 22320.82, + "probability": 0.9858 + }, + { + "start": 22321.02, + "end": 22322.1, + "probability": 0.9178 + }, + { + "start": 22322.6, + "end": 22323.86, + "probability": 0.9916 + }, + { + "start": 22324.3, + "end": 22325.5, + "probability": 0.9593 + }, + { + "start": 22326.74, + "end": 22329.04, + "probability": 0.9175 + }, + { + "start": 22329.58, + "end": 22331.66, + "probability": 0.9945 + }, + { + "start": 22331.74, + "end": 22335.52, + "probability": 0.9783 + }, + { + "start": 22335.6, + "end": 22337.04, + "probability": 0.8351 + }, + { + "start": 22337.94, + "end": 22343.34, + "probability": 0.998 + }, + { + "start": 22343.92, + "end": 22347.74, + "probability": 0.9955 + }, + { + "start": 22348.46, + "end": 22353.12, + "probability": 0.9951 + }, + { + "start": 22353.58, + "end": 22354.48, + "probability": 0.5002 + }, + { + "start": 22355.66, + "end": 22360.22, + "probability": 0.9495 + }, + { + "start": 22361.0, + "end": 22364.08, + "probability": 0.9916 + }, + { + "start": 22365.04, + "end": 22365.6, + "probability": 0.6371 + }, + { + "start": 22365.84, + "end": 22368.58, + "probability": 0.7424 + }, + { + "start": 22369.04, + "end": 22370.52, + "probability": 0.9769 + }, + { + "start": 22370.86, + "end": 22372.64, + "probability": 0.9472 + }, + { + "start": 22373.34, + "end": 22377.52, + "probability": 0.9733 + }, + { + "start": 22378.64, + "end": 22379.92, + "probability": 0.9297 + }, + { + "start": 22380.68, + "end": 22385.46, + "probability": 0.8835 + }, + { + "start": 22386.2, + "end": 22387.56, + "probability": 0.9748 + }, + { + "start": 22388.5, + "end": 22390.74, + "probability": 0.9906 + }, + { + "start": 22390.84, + "end": 22391.9, + "probability": 0.2014 + }, + { + "start": 22392.36, + "end": 22392.88, + "probability": 0.933 + }, + { + "start": 22393.98, + "end": 22396.42, + "probability": 0.6486 + }, + { + "start": 22397.04, + "end": 22398.72, + "probability": 0.993 + }, + { + "start": 22399.78, + "end": 22402.6, + "probability": 0.9793 + }, + { + "start": 22402.6, + "end": 22405.26, + "probability": 0.9895 + }, + { + "start": 22405.88, + "end": 22411.72, + "probability": 0.9861 + }, + { + "start": 22412.22, + "end": 22412.82, + "probability": 0.7012 + }, + { + "start": 22413.58, + "end": 22414.11, + "probability": 0.9277 + }, + { + "start": 22414.56, + "end": 22414.94, + "probability": 0.807 + }, + { + "start": 22415.52, + "end": 22416.36, + "probability": 0.894 + }, + { + "start": 22416.5, + "end": 22417.1, + "probability": 0.8056 + }, + { + "start": 22417.8, + "end": 22419.86, + "probability": 0.9526 + }, + { + "start": 22420.44, + "end": 22424.58, + "probability": 0.9769 + }, + { + "start": 22425.12, + "end": 22428.98, + "probability": 0.9835 + }, + { + "start": 22428.98, + "end": 22435.16, + "probability": 0.9636 + }, + { + "start": 22435.54, + "end": 22436.58, + "probability": 0.613 + }, + { + "start": 22437.22, + "end": 22440.38, + "probability": 0.9901 + }, + { + "start": 22440.88, + "end": 22445.14, + "probability": 0.785 + }, + { + "start": 22445.9, + "end": 22448.26, + "probability": 0.9941 + }, + { + "start": 22448.82, + "end": 22449.84, + "probability": 0.8482 + }, + { + "start": 22450.22, + "end": 22452.56, + "probability": 0.9462 + }, + { + "start": 22453.04, + "end": 22459.08, + "probability": 0.9983 + }, + { + "start": 22459.12, + "end": 22462.88, + "probability": 0.9149 + }, + { + "start": 22463.36, + "end": 22464.38, + "probability": 0.9893 + }, + { + "start": 22464.68, + "end": 22467.72, + "probability": 0.9699 + }, + { + "start": 22468.14, + "end": 22470.4, + "probability": 0.9629 + }, + { + "start": 22471.36, + "end": 22472.32, + "probability": 0.6669 + }, + { + "start": 22472.36, + "end": 22473.44, + "probability": 0.7875 + }, + { + "start": 22474.62, + "end": 22477.34, + "probability": 0.9917 + }, + { + "start": 22477.84, + "end": 22478.98, + "probability": 0.9183 + }, + { + "start": 22479.36, + "end": 22481.06, + "probability": 0.9769 + }, + { + "start": 22481.22, + "end": 22482.94, + "probability": 0.9875 + }, + { + "start": 22483.56, + "end": 22487.54, + "probability": 0.9248 + }, + { + "start": 22488.06, + "end": 22489.9, + "probability": 0.9849 + }, + { + "start": 22490.2, + "end": 22493.22, + "probability": 0.9736 + }, + { + "start": 22493.22, + "end": 22495.86, + "probability": 0.9966 + }, + { + "start": 22496.8, + "end": 22499.1, + "probability": 0.6668 + }, + { + "start": 22499.42, + "end": 22504.06, + "probability": 0.9865 + }, + { + "start": 22504.24, + "end": 22505.88, + "probability": 0.9927 + }, + { + "start": 22506.34, + "end": 22507.72, + "probability": 0.9307 + }, + { + "start": 22508.12, + "end": 22511.24, + "probability": 0.8301 + }, + { + "start": 22511.82, + "end": 22513.1, + "probability": 0.6276 + }, + { + "start": 22513.58, + "end": 22514.6, + "probability": 0.8695 + }, + { + "start": 22515.0, + "end": 22515.72, + "probability": 0.9431 + }, + { + "start": 22516.02, + "end": 22516.56, + "probability": 0.9693 + }, + { + "start": 22516.84, + "end": 22517.06, + "probability": 0.8201 + }, + { + "start": 22518.0, + "end": 22518.66, + "probability": 0.6218 + }, + { + "start": 22518.9, + "end": 22521.16, + "probability": 0.7567 + }, + { + "start": 22521.76, + "end": 22525.86, + "probability": 0.9722 + }, + { + "start": 22525.92, + "end": 22527.08, + "probability": 0.5649 + }, + { + "start": 22527.62, + "end": 22529.2, + "probability": 0.9502 + }, + { + "start": 22536.88, + "end": 22536.88, + "probability": 0.1502 + }, + { + "start": 22536.88, + "end": 22536.88, + "probability": 0.1864 + }, + { + "start": 22536.88, + "end": 22536.88, + "probability": 0.0528 + }, + { + "start": 22536.88, + "end": 22536.9, + "probability": 0.0731 + }, + { + "start": 22536.9, + "end": 22536.96, + "probability": 0.0157 + }, + { + "start": 22536.96, + "end": 22536.98, + "probability": 0.0271 + }, + { + "start": 22562.78, + "end": 22565.44, + "probability": 0.4364 + }, + { + "start": 22566.04, + "end": 22569.82, + "probability": 0.9622 + }, + { + "start": 22570.24, + "end": 22577.54, + "probability": 0.8088 + }, + { + "start": 22577.66, + "end": 22579.02, + "probability": 0.774 + }, + { + "start": 22580.84, + "end": 22581.74, + "probability": 0.9684 + }, + { + "start": 22582.74, + "end": 22584.3, + "probability": 0.9422 + }, + { + "start": 22585.0, + "end": 22587.46, + "probability": 0.9301 + }, + { + "start": 22588.94, + "end": 22590.0, + "probability": 0.9413 + }, + { + "start": 22590.26, + "end": 22591.4, + "probability": 0.6924 + }, + { + "start": 22591.82, + "end": 22594.76, + "probability": 0.8326 + }, + { + "start": 22595.44, + "end": 22595.66, + "probability": 0.4958 + }, + { + "start": 22595.78, + "end": 22597.06, + "probability": 0.9598 + }, + { + "start": 22597.46, + "end": 22597.64, + "probability": 0.7539 + }, + { + "start": 22597.66, + "end": 22598.74, + "probability": 0.9322 + }, + { + "start": 22599.08, + "end": 22603.86, + "probability": 0.9852 + }, + { + "start": 22604.98, + "end": 22609.92, + "probability": 0.9971 + }, + { + "start": 22611.38, + "end": 22613.0, + "probability": 0.7798 + }, + { + "start": 22613.42, + "end": 22614.88, + "probability": 0.9548 + }, + { + "start": 22615.04, + "end": 22616.34, + "probability": 0.9336 + }, + { + "start": 22617.0, + "end": 22618.42, + "probability": 0.8933 + }, + { + "start": 22619.0, + "end": 22624.92, + "probability": 0.9116 + }, + { + "start": 22625.3, + "end": 22627.74, + "probability": 0.9861 + }, + { + "start": 22627.78, + "end": 22628.36, + "probability": 0.7714 + }, + { + "start": 22628.46, + "end": 22629.42, + "probability": 0.9526 + }, + { + "start": 22630.2, + "end": 22633.82, + "probability": 0.951 + }, + { + "start": 22634.16, + "end": 22635.64, + "probability": 0.9127 + }, + { + "start": 22635.72, + "end": 22637.38, + "probability": 0.8394 + }, + { + "start": 22637.48, + "end": 22638.06, + "probability": 0.8611 + }, + { + "start": 22638.44, + "end": 22639.74, + "probability": 0.8954 + }, + { + "start": 22640.56, + "end": 22644.2, + "probability": 0.9307 + }, + { + "start": 22645.2, + "end": 22649.54, + "probability": 0.9946 + }, + { + "start": 22650.04, + "end": 22650.04, + "probability": 0.3744 + }, + { + "start": 22650.04, + "end": 22653.34, + "probability": 0.7473 + }, + { + "start": 22653.56, + "end": 22654.46, + "probability": 0.843 + }, + { + "start": 22655.88, + "end": 22658.98, + "probability": 0.9635 + }, + { + "start": 22661.52, + "end": 22662.94, + "probability": 0.9515 + }, + { + "start": 22663.32, + "end": 22663.7, + "probability": 0.5137 + }, + { + "start": 22663.78, + "end": 22664.56, + "probability": 0.9634 + }, + { + "start": 22664.7, + "end": 22667.44, + "probability": 0.9736 + }, + { + "start": 22668.2, + "end": 22673.46, + "probability": 0.9509 + }, + { + "start": 22673.46, + "end": 22677.32, + "probability": 0.9955 + }, + { + "start": 22677.32, + "end": 22680.84, + "probability": 0.9951 + }, + { + "start": 22681.06, + "end": 22683.92, + "probability": 0.9912 + }, + { + "start": 22685.52, + "end": 22691.5, + "probability": 0.9962 + }, + { + "start": 22691.58, + "end": 22696.16, + "probability": 0.8722 + }, + { + "start": 22696.96, + "end": 22698.16, + "probability": 0.9468 + }, + { + "start": 22698.32, + "end": 22700.74, + "probability": 0.9451 + }, + { + "start": 22700.74, + "end": 22704.58, + "probability": 0.9802 + }, + { + "start": 22705.08, + "end": 22709.74, + "probability": 0.9726 + }, + { + "start": 22710.08, + "end": 22710.6, + "probability": 0.9172 + }, + { + "start": 22710.96, + "end": 22712.32, + "probability": 0.9707 + }, + { + "start": 22712.44, + "end": 22714.6, + "probability": 0.9971 + }, + { + "start": 22715.08, + "end": 22717.5, + "probability": 0.9736 + }, + { + "start": 22718.08, + "end": 22719.11, + "probability": 0.7695 + }, + { + "start": 22719.98, + "end": 22722.35, + "probability": 0.8628 + }, + { + "start": 22722.74, + "end": 22723.74, + "probability": 0.8025 + }, + { + "start": 22723.9, + "end": 22724.78, + "probability": 0.9263 + }, + { + "start": 22725.48, + "end": 22726.08, + "probability": 0.6352 + }, + { + "start": 22726.54, + "end": 22732.4, + "probability": 0.9797 + }, + { + "start": 22732.52, + "end": 22733.06, + "probability": 0.969 + }, + { + "start": 22733.2, + "end": 22734.0, + "probability": 0.4317 + }, + { + "start": 22734.42, + "end": 22737.24, + "probability": 0.9918 + }, + { + "start": 22738.52, + "end": 22741.36, + "probability": 0.9631 + }, + { + "start": 22741.9, + "end": 22746.18, + "probability": 0.9895 + }, + { + "start": 22746.2, + "end": 22750.42, + "probability": 0.9983 + }, + { + "start": 22750.82, + "end": 22754.62, + "probability": 0.9884 + }, + { + "start": 22755.68, + "end": 22756.36, + "probability": 0.8363 + }, + { + "start": 22756.94, + "end": 22761.68, + "probability": 0.9703 + }, + { + "start": 22762.24, + "end": 22766.92, + "probability": 0.9836 + }, + { + "start": 22767.66, + "end": 22768.5, + "probability": 0.7519 + }, + { + "start": 22769.14, + "end": 22772.76, + "probability": 0.9619 + }, + { + "start": 22773.78, + "end": 22776.92, + "probability": 0.9972 + }, + { + "start": 22777.4, + "end": 22780.74, + "probability": 0.9224 + }, + { + "start": 22781.92, + "end": 22784.14, + "probability": 0.9907 + }, + { + "start": 22784.74, + "end": 22785.4, + "probability": 0.7625 + }, + { + "start": 22785.9, + "end": 22791.5, + "probability": 0.9961 + }, + { + "start": 22792.5, + "end": 22795.4, + "probability": 0.786 + }, + { + "start": 22795.96, + "end": 22795.96, + "probability": 0.0264 + }, + { + "start": 22795.96, + "end": 22796.32, + "probability": 0.0302 + }, + { + "start": 22796.38, + "end": 22797.04, + "probability": 0.6824 + }, + { + "start": 22797.18, + "end": 22798.0, + "probability": 0.4115 + }, + { + "start": 22798.46, + "end": 22801.4, + "probability": 0.9351 + }, + { + "start": 22801.62, + "end": 22804.84, + "probability": 0.9482 + }, + { + "start": 22804.92, + "end": 22806.1, + "probability": 0.4447 + }, + { + "start": 22806.18, + "end": 22806.18, + "probability": 0.269 + }, + { + "start": 22806.18, + "end": 22806.36, + "probability": 0.0319 + }, + { + "start": 22806.36, + "end": 22806.78, + "probability": 0.9372 + }, + { + "start": 22807.42, + "end": 22810.62, + "probability": 0.9141 + }, + { + "start": 22810.84, + "end": 22812.3, + "probability": 0.8163 + }, + { + "start": 22812.54, + "end": 22814.6, + "probability": 0.9731 + }, + { + "start": 22814.64, + "end": 22815.78, + "probability": 0.7248 + }, + { + "start": 22815.86, + "end": 22817.01, + "probability": 0.7314 + }, + { + "start": 22817.5, + "end": 22819.64, + "probability": 0.7062 + }, + { + "start": 22819.7, + "end": 22821.02, + "probability": 0.4067 + }, + { + "start": 22821.14, + "end": 22821.88, + "probability": 0.6378 + }, + { + "start": 22821.98, + "end": 22823.1, + "probability": 0.9235 + }, + { + "start": 22823.1, + "end": 22823.34, + "probability": 0.5241 + }, + { + "start": 22823.34, + "end": 22824.3, + "probability": 0.0222 + }, + { + "start": 22824.3, + "end": 22824.3, + "probability": 0.3326 + }, + { + "start": 22824.3, + "end": 22826.32, + "probability": 0.9436 + }, + { + "start": 22826.36, + "end": 22828.16, + "probability": 0.735 + }, + { + "start": 22829.44, + "end": 22830.22, + "probability": 0.6476 + }, + { + "start": 22830.22, + "end": 22831.02, + "probability": 0.6201 + }, + { + "start": 22831.06, + "end": 22834.14, + "probability": 0.5864 + }, + { + "start": 22834.24, + "end": 22836.26, + "probability": 0.7014 + }, + { + "start": 22836.38, + "end": 22837.04, + "probability": 0.1976 + }, + { + "start": 22837.04, + "end": 22837.04, + "probability": 0.0176 + }, + { + "start": 22837.22, + "end": 22838.56, + "probability": 0.4086 + }, + { + "start": 22838.64, + "end": 22841.3, + "probability": 0.95 + }, + { + "start": 22841.34, + "end": 22841.83, + "probability": 0.9849 + }, + { + "start": 22844.14, + "end": 22845.68, + "probability": 0.0772 + }, + { + "start": 22845.68, + "end": 22845.68, + "probability": 0.0455 + }, + { + "start": 22845.68, + "end": 22846.34, + "probability": 0.1713 + }, + { + "start": 22846.58, + "end": 22849.4, + "probability": 0.9614 + }, + { + "start": 22849.56, + "end": 22850.27, + "probability": 0.3331 + }, + { + "start": 22850.56, + "end": 22851.54, + "probability": 0.5523 + }, + { + "start": 22852.0, + "end": 22855.32, + "probability": 0.9846 + }, + { + "start": 22855.58, + "end": 22859.0, + "probability": 0.9579 + }, + { + "start": 22859.34, + "end": 22859.42, + "probability": 0.0294 + }, + { + "start": 22859.42, + "end": 22859.42, + "probability": 0.1601 + }, + { + "start": 22859.42, + "end": 22862.34, + "probability": 0.9824 + }, + { + "start": 22862.52, + "end": 22863.06, + "probability": 0.1071 + }, + { + "start": 22863.88, + "end": 22864.18, + "probability": 0.1186 + }, + { + "start": 22864.46, + "end": 22867.18, + "probability": 0.9549 + }, + { + "start": 22867.58, + "end": 22867.58, + "probability": 0.0169 + }, + { + "start": 22867.58, + "end": 22867.84, + "probability": 0.3044 + }, + { + "start": 22867.9, + "end": 22872.82, + "probability": 0.8439 + }, + { + "start": 22872.84, + "end": 22874.26, + "probability": 0.769 + }, + { + "start": 22874.36, + "end": 22874.88, + "probability": 0.968 + }, + { + "start": 22875.36, + "end": 22876.72, + "probability": 0.0599 + }, + { + "start": 22876.92, + "end": 22878.78, + "probability": 0.8238 + }, + { + "start": 22879.62, + "end": 22880.66, + "probability": 0.2033 + }, + { + "start": 22880.66, + "end": 22880.66, + "probability": 0.1823 + }, + { + "start": 22880.82, + "end": 22881.99, + "probability": 0.9907 + }, + { + "start": 22882.58, + "end": 22883.84, + "probability": 0.9949 + }, + { + "start": 22883.84, + "end": 22885.32, + "probability": 0.4167 + }, + { + "start": 22885.46, + "end": 22887.05, + "probability": 0.9971 + }, + { + "start": 22888.06, + "end": 22892.58, + "probability": 0.9332 + }, + { + "start": 22893.24, + "end": 22899.9, + "probability": 0.993 + }, + { + "start": 22899.9, + "end": 22904.52, + "probability": 0.9966 + }, + { + "start": 22905.36, + "end": 22907.22, + "probability": 0.9708 + }, + { + "start": 22907.48, + "end": 22908.98, + "probability": 0.9347 + }, + { + "start": 22909.4, + "end": 22909.6, + "probability": 0.286 + }, + { + "start": 22909.62, + "end": 22910.58, + "probability": 0.6808 + }, + { + "start": 22910.68, + "end": 22913.16, + "probability": 0.9958 + }, + { + "start": 22913.48, + "end": 22914.42, + "probability": 0.9966 + }, + { + "start": 22914.48, + "end": 22916.24, + "probability": 0.9706 + }, + { + "start": 22917.08, + "end": 22922.24, + "probability": 0.9912 + }, + { + "start": 22922.38, + "end": 22926.28, + "probability": 0.9992 + }, + { + "start": 22926.78, + "end": 22933.42, + "probability": 0.993 + }, + { + "start": 22933.42, + "end": 22940.98, + "probability": 0.998 + }, + { + "start": 22941.16, + "end": 22942.52, + "probability": 0.7702 + }, + { + "start": 22943.3, + "end": 22945.96, + "probability": 0.7437 + }, + { + "start": 22946.26, + "end": 22948.16, + "probability": 0.7197 + }, + { + "start": 22948.36, + "end": 22951.04, + "probability": 0.744 + }, + { + "start": 22951.38, + "end": 22954.14, + "probability": 0.8686 + }, + { + "start": 22954.52, + "end": 22956.38, + "probability": 0.976 + }, + { + "start": 22956.74, + "end": 22957.56, + "probability": 0.8058 + }, + { + "start": 22957.68, + "end": 22961.1, + "probability": 0.9915 + }, + { + "start": 22961.26, + "end": 22963.6, + "probability": 0.6401 + }, + { + "start": 22964.26, + "end": 22966.02, + "probability": 0.5898 + }, + { + "start": 22966.56, + "end": 22967.52, + "probability": 0.4995 + }, + { + "start": 22967.74, + "end": 22968.78, + "probability": 0.9695 + }, + { + "start": 22969.4, + "end": 22971.8, + "probability": 0.988 + }, + { + "start": 22972.12, + "end": 22975.14, + "probability": 0.987 + }, + { + "start": 22975.56, + "end": 22976.05, + "probability": 0.9233 + }, + { + "start": 22976.32, + "end": 22979.96, + "probability": 0.9211 + }, + { + "start": 22980.46, + "end": 22983.36, + "probability": 0.9636 + }, + { + "start": 22983.88, + "end": 22984.97, + "probability": 0.602 + }, + { + "start": 22985.34, + "end": 22985.9, + "probability": 0.5773 + }, + { + "start": 22986.1, + "end": 22987.82, + "probability": 0.8937 + }, + { + "start": 22988.1, + "end": 22990.26, + "probability": 0.9948 + }, + { + "start": 22990.34, + "end": 22990.85, + "probability": 0.9663 + }, + { + "start": 22991.26, + "end": 22992.68, + "probability": 0.9877 + }, + { + "start": 22993.98, + "end": 22997.76, + "probability": 0.974 + }, + { + "start": 22998.38, + "end": 22998.96, + "probability": 0.845 + }, + { + "start": 22999.7, + "end": 23007.06, + "probability": 0.9918 + }, + { + "start": 23007.46, + "end": 23008.68, + "probability": 0.8047 + }, + { + "start": 23008.78, + "end": 23010.76, + "probability": 0.8824 + }, + { + "start": 23010.88, + "end": 23015.26, + "probability": 0.9891 + }, + { + "start": 23015.26, + "end": 23021.32, + "probability": 0.9991 + }, + { + "start": 23022.56, + "end": 23023.8, + "probability": 0.9303 + }, + { + "start": 23024.42, + "end": 23028.82, + "probability": 0.9886 + }, + { + "start": 23029.18, + "end": 23030.18, + "probability": 0.963 + }, + { + "start": 23030.62, + "end": 23031.82, + "probability": 0.9536 + }, + { + "start": 23032.26, + "end": 23035.04, + "probability": 0.9722 + }, + { + "start": 23035.42, + "end": 23036.54, + "probability": 0.9917 + }, + { + "start": 23036.92, + "end": 23037.88, + "probability": 0.9927 + }, + { + "start": 23038.22, + "end": 23039.06, + "probability": 0.9597 + }, + { + "start": 23039.14, + "end": 23040.72, + "probability": 0.901 + }, + { + "start": 23041.02, + "end": 23041.88, + "probability": 0.788 + }, + { + "start": 23041.96, + "end": 23042.54, + "probability": 0.8347 + }, + { + "start": 23042.98, + "end": 23044.67, + "probability": 0.6825 + }, + { + "start": 23045.22, + "end": 23047.76, + "probability": 0.8701 + }, + { + "start": 23048.86, + "end": 23050.38, + "probability": 0.9763 + }, + { + "start": 23050.56, + "end": 23053.86, + "probability": 0.9803 + }, + { + "start": 23059.3, + "end": 23060.44, + "probability": 0.7023 + }, + { + "start": 23061.18, + "end": 23065.88, + "probability": 0.9795 + }, + { + "start": 23065.98, + "end": 23071.82, + "probability": 0.9939 + }, + { + "start": 23072.24, + "end": 23073.32, + "probability": 0.7467 + }, + { + "start": 23074.26, + "end": 23076.44, + "probability": 0.0277 + }, + { + "start": 23076.44, + "end": 23077.5, + "probability": 0.2397 + }, + { + "start": 23077.56, + "end": 23078.34, + "probability": 0.1118 + }, + { + "start": 23078.34, + "end": 23084.24, + "probability": 0.0419 + }, + { + "start": 23084.24, + "end": 23084.24, + "probability": 0.0468 + }, + { + "start": 23084.24, + "end": 23084.24, + "probability": 0.0227 + }, + { + "start": 23084.24, + "end": 23087.34, + "probability": 0.9372 + }, + { + "start": 23087.52, + "end": 23091.0, + "probability": 0.7316 + }, + { + "start": 23091.4, + "end": 23091.94, + "probability": 0.0168 + }, + { + "start": 23096.84, + "end": 23096.84, + "probability": 0.3025 + }, + { + "start": 23098.8, + "end": 23098.98, + "probability": 0.0058 + }, + { + "start": 23098.98, + "end": 23099.24, + "probability": 0.0707 + }, + { + "start": 23099.24, + "end": 23099.24, + "probability": 0.0988 + }, + { + "start": 23099.24, + "end": 23099.36, + "probability": 0.1843 + }, + { + "start": 23099.92, + "end": 23100.86, + "probability": 0.595 + }, + { + "start": 23100.98, + "end": 23102.62, + "probability": 0.8485 + }, + { + "start": 23102.88, + "end": 23103.38, + "probability": 0.7167 + }, + { + "start": 23103.64, + "end": 23105.34, + "probability": 0.9789 + }, + { + "start": 23106.1, + "end": 23107.66, + "probability": 0.9896 + }, + { + "start": 23108.28, + "end": 23111.96, + "probability": 0.9935 + }, + { + "start": 23112.1, + "end": 23112.86, + "probability": 0.1562 + }, + { + "start": 23113.06, + "end": 23114.14, + "probability": 0.8977 + }, + { + "start": 23114.34, + "end": 23120.22, + "probability": 0.9841 + }, + { + "start": 23120.6, + "end": 23121.4, + "probability": 0.9855 + }, + { + "start": 23121.6, + "end": 23124.4, + "probability": 0.0255 + }, + { + "start": 23124.4, + "end": 23125.02, + "probability": 0.9072 + }, + { + "start": 23125.1, + "end": 23125.2, + "probability": 0.0205 + }, + { + "start": 23125.2, + "end": 23125.82, + "probability": 0.1318 + }, + { + "start": 23125.94, + "end": 23127.12, + "probability": 0.7341 + }, + { + "start": 23127.44, + "end": 23131.2, + "probability": 0.9008 + }, + { + "start": 23131.92, + "end": 23133.1, + "probability": 0.6564 + }, + { + "start": 23134.44, + "end": 23135.62, + "probability": 0.9985 + }, + { + "start": 23135.64, + "end": 23136.12, + "probability": 0.0859 + }, + { + "start": 23136.38, + "end": 23138.89, + "probability": 0.7734 + }, + { + "start": 23139.46, + "end": 23140.34, + "probability": 0.6095 + }, + { + "start": 23140.5, + "end": 23141.72, + "probability": 0.9836 + }, + { + "start": 23142.24, + "end": 23145.96, + "probability": 0.9982 + }, + { + "start": 23146.2, + "end": 23151.36, + "probability": 0.9956 + }, + { + "start": 23151.62, + "end": 23156.64, + "probability": 0.9976 + }, + { + "start": 23156.78, + "end": 23157.02, + "probability": 0.2715 + }, + { + "start": 23157.16, + "end": 23157.52, + "probability": 0.3527 + }, + { + "start": 23157.52, + "end": 23159.05, + "probability": 0.6002 + }, + { + "start": 23159.48, + "end": 23165.64, + "probability": 0.7925 + }, + { + "start": 23166.74, + "end": 23167.62, + "probability": 0.0829 + }, + { + "start": 23171.2, + "end": 23174.66, + "probability": 0.0441 + }, + { + "start": 23178.0, + "end": 23178.68, + "probability": 0.325 + }, + { + "start": 23191.72, + "end": 23192.6, + "probability": 0.1661 + }, + { + "start": 23192.62, + "end": 23194.36, + "probability": 0.7694 + }, + { + "start": 23194.76, + "end": 23198.04, + "probability": 0.9902 + }, + { + "start": 23198.06, + "end": 23201.28, + "probability": 0.8798 + }, + { + "start": 23201.72, + "end": 23204.66, + "probability": 0.9425 + }, + { + "start": 23205.12, + "end": 23208.36, + "probability": 0.9964 + }, + { + "start": 23208.96, + "end": 23209.88, + "probability": 0.6299 + }, + { + "start": 23210.66, + "end": 23211.12, + "probability": 0.6716 + }, + { + "start": 23211.16, + "end": 23214.26, + "probability": 0.9653 + }, + { + "start": 23214.4, + "end": 23216.3, + "probability": 0.9973 + }, + { + "start": 23216.68, + "end": 23219.69, + "probability": 0.9656 + }, + { + "start": 23220.62, + "end": 23221.54, + "probability": 0.745 + }, + { + "start": 23222.0, + "end": 23224.64, + "probability": 0.8997 + }, + { + "start": 23225.12, + "end": 23228.78, + "probability": 0.6768 + }, + { + "start": 23229.3, + "end": 23230.0, + "probability": 0.7793 + }, + { + "start": 23230.94, + "end": 23233.04, + "probability": 0.9483 + }, + { + "start": 23233.16, + "end": 23235.38, + "probability": 0.8328 + }, + { + "start": 23235.64, + "end": 23237.52, + "probability": 0.894 + }, + { + "start": 23237.74, + "end": 23241.08, + "probability": 0.9102 + }, + { + "start": 23241.18, + "end": 23245.18, + "probability": 0.9834 + }, + { + "start": 23245.86, + "end": 23247.48, + "probability": 0.9442 + }, + { + "start": 23248.06, + "end": 23252.56, + "probability": 0.983 + }, + { + "start": 23252.92, + "end": 23254.24, + "probability": 0.567 + }, + { + "start": 23254.52, + "end": 23257.42, + "probability": 0.995 + }, + { + "start": 23257.42, + "end": 23262.34, + "probability": 0.9776 + }, + { + "start": 23262.86, + "end": 23267.26, + "probability": 0.995 + }, + { + "start": 23268.04, + "end": 23271.16, + "probability": 0.8834 + }, + { + "start": 23274.34, + "end": 23274.6, + "probability": 0.1637 + }, + { + "start": 23274.6, + "end": 23274.6, + "probability": 0.5232 + }, + { + "start": 23274.6, + "end": 23275.56, + "probability": 0.261 + }, + { + "start": 23276.06, + "end": 23283.18, + "probability": 0.95 + }, + { + "start": 23284.52, + "end": 23286.9, + "probability": 0.9654 + }, + { + "start": 23287.6, + "end": 23293.34, + "probability": 0.867 + }, + { + "start": 23293.4, + "end": 23295.02, + "probability": 0.6954 + }, + { + "start": 23295.28, + "end": 23298.04, + "probability": 0.9834 + }, + { + "start": 23298.6, + "end": 23299.28, + "probability": 0.8846 + }, + { + "start": 23299.62, + "end": 23301.56, + "probability": 0.7096 + }, + { + "start": 23301.58, + "end": 23305.86, + "probability": 0.9949 + }, + { + "start": 23306.22, + "end": 23307.64, + "probability": 0.9737 + }, + { + "start": 23307.96, + "end": 23309.46, + "probability": 0.637 + }, + { + "start": 23309.84, + "end": 23313.74, + "probability": 0.9906 + }, + { + "start": 23313.74, + "end": 23318.13, + "probability": 0.9966 + }, + { + "start": 23318.68, + "end": 23319.26, + "probability": 0.9745 + }, + { + "start": 23319.34, + "end": 23320.18, + "probability": 0.6763 + }, + { + "start": 23321.12, + "end": 23323.66, + "probability": 0.7349 + }, + { + "start": 23324.3, + "end": 23329.1, + "probability": 0.8589 + }, + { + "start": 23329.36, + "end": 23330.9, + "probability": 0.2833 + }, + { + "start": 23331.48, + "end": 23336.16, + "probability": 0.9523 + }, + { + "start": 23336.64, + "end": 23338.12, + "probability": 0.8923 + }, + { + "start": 23338.34, + "end": 23339.26, + "probability": 0.7255 + }, + { + "start": 23339.44, + "end": 23342.82, + "probability": 0.9926 + }, + { + "start": 23343.44, + "end": 23348.88, + "probability": 0.7041 + }, + { + "start": 23349.0, + "end": 23350.4, + "probability": 0.7115 + }, + { + "start": 23350.74, + "end": 23351.98, + "probability": 0.7909 + }, + { + "start": 23352.48, + "end": 23353.94, + "probability": 0.249 + }, + { + "start": 23354.16, + "end": 23355.06, + "probability": 0.2515 + }, + { + "start": 23355.72, + "end": 23358.92, + "probability": 0.7036 + }, + { + "start": 23359.22, + "end": 23363.16, + "probability": 0.5515 + }, + { + "start": 23371.4, + "end": 23371.92, + "probability": 0.5838 + }, + { + "start": 23371.98, + "end": 23374.38, + "probability": 0.6595 + }, + { + "start": 23374.4, + "end": 23375.0, + "probability": 0.5551 + }, + { + "start": 23375.06, + "end": 23376.52, + "probability": 0.9973 + }, + { + "start": 23376.54, + "end": 23382.2, + "probability": 0.62 + }, + { + "start": 23382.62, + "end": 23382.76, + "probability": 0.5641 + }, + { + "start": 23382.78, + "end": 23383.97, + "probability": 0.9937 + }, + { + "start": 23384.26, + "end": 23387.4, + "probability": 0.9705 + }, + { + "start": 23387.88, + "end": 23388.84, + "probability": 0.8979 + }, + { + "start": 23389.02, + "end": 23391.62, + "probability": 0.8224 + }, + { + "start": 23391.96, + "end": 23393.74, + "probability": 0.7891 + }, + { + "start": 23393.92, + "end": 23394.95, + "probability": 0.9854 + }, + { + "start": 23395.52, + "end": 23397.75, + "probability": 0.9883 + }, + { + "start": 23398.22, + "end": 23398.88, + "probability": 0.4479 + }, + { + "start": 23398.98, + "end": 23399.98, + "probability": 0.9692 + }, + { + "start": 23400.4, + "end": 23402.98, + "probability": 0.9839 + }, + { + "start": 23403.22, + "end": 23404.5, + "probability": 0.9823 + }, + { + "start": 23404.6, + "end": 23405.84, + "probability": 0.5341 + }, + { + "start": 23405.98, + "end": 23406.55, + "probability": 0.4644 + }, + { + "start": 23407.1, + "end": 23410.68, + "probability": 0.9576 + }, + { + "start": 23410.68, + "end": 23412.76, + "probability": 0.79 + }, + { + "start": 23412.76, + "end": 23413.32, + "probability": 0.0371 + }, + { + "start": 23415.14, + "end": 23416.22, + "probability": 0.0138 + }, + { + "start": 23416.24, + "end": 23416.24, + "probability": 0.0795 + }, + { + "start": 23416.24, + "end": 23416.24, + "probability": 0.0338 + }, + { + "start": 23416.24, + "end": 23419.06, + "probability": 0.6157 + }, + { + "start": 23419.06, + "end": 23420.32, + "probability": 0.7981 + }, + { + "start": 23420.86, + "end": 23423.9, + "probability": 0.902 + }, + { + "start": 23424.22, + "end": 23426.34, + "probability": 0.9414 + }, + { + "start": 23427.48, + "end": 23428.32, + "probability": 0.5881 + }, + { + "start": 23429.08, + "end": 23432.52, + "probability": 0.9874 + }, + { + "start": 23433.04, + "end": 23438.02, + "probability": 0.8909 + }, + { + "start": 23438.28, + "end": 23440.34, + "probability": 0.9545 + }, + { + "start": 23440.6, + "end": 23441.5, + "probability": 0.7812 + }, + { + "start": 23441.94, + "end": 23445.02, + "probability": 0.9876 + }, + { + "start": 23445.12, + "end": 23445.4, + "probability": 0.5396 + }, + { + "start": 23445.42, + "end": 23446.24, + "probability": 0.606 + }, + { + "start": 23446.36, + "end": 23447.66, + "probability": 0.6589 + }, + { + "start": 23447.76, + "end": 23448.34, + "probability": 0.5406 + }, + { + "start": 23448.34, + "end": 23451.8, + "probability": 0.8097 + }, + { + "start": 23451.92, + "end": 23454.34, + "probability": 0.9916 + }, + { + "start": 23454.46, + "end": 23456.86, + "probability": 0.9097 + }, + { + "start": 23457.14, + "end": 23457.98, + "probability": 0.8198 + }, + { + "start": 23458.1, + "end": 23462.52, + "probability": 0.9975 + }, + { + "start": 23462.78, + "end": 23463.56, + "probability": 0.4919 + }, + { + "start": 23463.92, + "end": 23466.64, + "probability": 0.9938 + }, + { + "start": 23467.2, + "end": 23468.28, + "probability": 0.7556 + }, + { + "start": 23468.36, + "end": 23470.14, + "probability": 0.8954 + }, + { + "start": 23470.38, + "end": 23472.68, + "probability": 0.0546 + }, + { + "start": 23472.86, + "end": 23474.96, + "probability": 0.0838 + }, + { + "start": 23475.63, + "end": 23475.7, + "probability": 0.2031 + }, + { + "start": 23475.7, + "end": 23477.49, + "probability": 0.829 + }, + { + "start": 23477.98, + "end": 23479.3, + "probability": 0.9832 + }, + { + "start": 23479.5, + "end": 23481.24, + "probability": 0.8025 + }, + { + "start": 23481.48, + "end": 23484.04, + "probability": 0.7646 + }, + { + "start": 23484.6, + "end": 23488.78, + "probability": 0.7039 + }, + { + "start": 23489.12, + "end": 23489.48, + "probability": 0.0951 + }, + { + "start": 23490.82, + "end": 23492.06, + "probability": 0.1172 + }, + { + "start": 23492.42, + "end": 23493.36, + "probability": 0.222 + }, + { + "start": 23494.0, + "end": 23494.68, + "probability": 0.5397 + }, + { + "start": 23495.42, + "end": 23496.58, + "probability": 0.1192 + }, + { + "start": 23499.69, + "end": 23501.86, + "probability": 0.0804 + }, + { + "start": 23502.06, + "end": 23503.56, + "probability": 0.2246 + }, + { + "start": 23503.56, + "end": 23504.64, + "probability": 0.129 + }, + { + "start": 23504.7, + "end": 23506.56, + "probability": 0.2266 + }, + { + "start": 23508.52, + "end": 23509.88, + "probability": 0.6333 + }, + { + "start": 23510.28, + "end": 23510.6, + "probability": 0.4216 + }, + { + "start": 23510.76, + "end": 23511.6, + "probability": 0.0691 + }, + { + "start": 23512.14, + "end": 23512.4, + "probability": 0.0469 + }, + { + "start": 23512.4, + "end": 23512.4, + "probability": 0.0503 + }, + { + "start": 23512.4, + "end": 23514.78, + "probability": 0.7767 + }, + { + "start": 23514.98, + "end": 23515.54, + "probability": 0.7065 + }, + { + "start": 23515.68, + "end": 23516.02, + "probability": 0.7272 + }, + { + "start": 23516.14, + "end": 23516.84, + "probability": 0.8423 + }, + { + "start": 23516.96, + "end": 23520.32, + "probability": 0.984 + }, + { + "start": 23521.34, + "end": 23522.62, + "probability": 0.8661 + }, + { + "start": 23523.2, + "end": 23524.84, + "probability": 0.6838 + }, + { + "start": 23525.48, + "end": 23532.04, + "probability": 0.9418 + }, + { + "start": 23532.2, + "end": 23533.02, + "probability": 0.974 + }, + { + "start": 23533.22, + "end": 23534.4, + "probability": 0.9979 + }, + { + "start": 23534.56, + "end": 23535.3, + "probability": 0.6241 + }, + { + "start": 23535.56, + "end": 23537.56, + "probability": 0.5799 + }, + { + "start": 23537.9, + "end": 23538.46, + "probability": 0.7781 + }, + { + "start": 23538.98, + "end": 23540.4, + "probability": 0.918 + }, + { + "start": 23540.62, + "end": 23543.44, + "probability": 0.9193 + }, + { + "start": 23543.44, + "end": 23543.84, + "probability": 0.8914 + }, + { + "start": 23544.54, + "end": 23544.98, + "probability": 0.6749 + }, + { + "start": 23545.08, + "end": 23550.94, + "probability": 0.7594 + }, + { + "start": 23551.8, + "end": 23555.38, + "probability": 0.7073 + }, + { + "start": 23556.1, + "end": 23558.1, + "probability": 0.5732 + }, + { + "start": 23558.14, + "end": 23558.6, + "probability": 0.5731 + }, + { + "start": 23558.64, + "end": 23559.06, + "probability": 0.5084 + }, + { + "start": 23559.08, + "end": 23560.08, + "probability": 0.7631 + }, + { + "start": 23563.88, + "end": 23564.08, + "probability": 0.4599 + }, + { + "start": 23570.32, + "end": 23572.56, + "probability": 0.1356 + }, + { + "start": 23572.56, + "end": 23573.44, + "probability": 0.0385 + }, + { + "start": 23573.44, + "end": 23573.58, + "probability": 0.0646 + }, + { + "start": 23573.58, + "end": 23573.58, + "probability": 0.0447 + }, + { + "start": 23573.58, + "end": 23575.78, + "probability": 0.2858 + }, + { + "start": 23575.94, + "end": 23578.38, + "probability": 0.5659 + }, + { + "start": 23578.84, + "end": 23584.22, + "probability": 0.9546 + }, + { + "start": 23584.92, + "end": 23586.7, + "probability": 0.5882 + }, + { + "start": 23587.16, + "end": 23587.82, + "probability": 0.6643 + }, + { + "start": 23587.94, + "end": 23588.46, + "probability": 0.7219 + }, + { + "start": 23588.46, + "end": 23589.32, + "probability": 0.7487 + }, + { + "start": 23595.9, + "end": 23597.78, + "probability": 0.0302 + }, + { + "start": 23598.72, + "end": 23603.94, + "probability": 0.0496 + }, + { + "start": 23603.94, + "end": 23604.06, + "probability": 0.0805 + }, + { + "start": 23604.06, + "end": 23604.06, + "probability": 0.2236 + }, + { + "start": 23604.06, + "end": 23606.32, + "probability": 0.3739 + }, + { + "start": 23606.86, + "end": 23610.06, + "probability": 0.6712 + }, + { + "start": 23615.92, + "end": 23619.7, + "probability": 0.9748 + }, + { + "start": 23619.7, + "end": 23625.1, + "probability": 0.6955 + }, + { + "start": 23627.47, + "end": 23630.0, + "probability": 0.855 + }, + { + "start": 23630.08, + "end": 23631.32, + "probability": 0.6377 + }, + { + "start": 23631.48, + "end": 23633.22, + "probability": 0.7675 + }, + { + "start": 23634.86, + "end": 23637.52, + "probability": 0.7316 + }, + { + "start": 23637.68, + "end": 23640.6, + "probability": 0.8294 + }, + { + "start": 23640.6, + "end": 23644.52, + "probability": 0.5993 + }, + { + "start": 23645.22, + "end": 23646.34, + "probability": 0.8264 + }, + { + "start": 23647.0, + "end": 23648.94, + "probability": 0.9209 + }, + { + "start": 23650.04, + "end": 23651.68, + "probability": 0.6994 + }, + { + "start": 23652.44, + "end": 23655.74, + "probability": 0.1116 + }, + { + "start": 23662.06, + "end": 23665.16, + "probability": 0.5284 + }, + { + "start": 23665.98, + "end": 23667.24, + "probability": 0.9891 + }, + { + "start": 23667.36, + "end": 23670.02, + "probability": 0.8571 + }, + { + "start": 23670.42, + "end": 23671.48, + "probability": 0.8932 + }, + { + "start": 23672.2, + "end": 23675.26, + "probability": 0.9949 + }, + { + "start": 23676.06, + "end": 23678.68, + "probability": 0.8565 + }, + { + "start": 23679.3, + "end": 23682.14, + "probability": 0.9636 + }, + { + "start": 23682.68, + "end": 23686.1, + "probability": 0.965 + }, + { + "start": 23686.6, + "end": 23690.01, + "probability": 0.9953 + }, + { + "start": 23690.72, + "end": 23692.34, + "probability": 0.9263 + }, + { + "start": 23692.98, + "end": 23695.66, + "probability": 0.884 + }, + { + "start": 23695.7, + "end": 23696.26, + "probability": 0.8125 + }, + { + "start": 23696.42, + "end": 23699.46, + "probability": 0.9692 + }, + { + "start": 23700.24, + "end": 23706.2, + "probability": 0.9973 + }, + { + "start": 23706.7, + "end": 23709.08, + "probability": 0.9736 + }, + { + "start": 23710.2, + "end": 23714.88, + "probability": 0.9116 + }, + { + "start": 23714.88, + "end": 23720.72, + "probability": 0.9978 + }, + { + "start": 23720.72, + "end": 23726.02, + "probability": 0.9968 + }, + { + "start": 23726.34, + "end": 23727.94, + "probability": 0.9689 + }, + { + "start": 23728.86, + "end": 23731.06, + "probability": 0.8147 + }, + { + "start": 23731.92, + "end": 23731.92, + "probability": 0.0088 + }, + { + "start": 23731.92, + "end": 23733.94, + "probability": 0.9613 + }, + { + "start": 23733.98, + "end": 23735.76, + "probability": 0.8468 + }, + { + "start": 23736.16, + "end": 23743.32, + "probability": 0.9619 + }, + { + "start": 23743.32, + "end": 23748.0, + "probability": 0.9736 + }, + { + "start": 23748.2, + "end": 23749.36, + "probability": 0.1022 + }, + { + "start": 23749.36, + "end": 23751.75, + "probability": 0.9834 + }, + { + "start": 23752.0, + "end": 23757.12, + "probability": 0.995 + }, + { + "start": 23757.58, + "end": 23758.54, + "probability": 0.8013 + }, + { + "start": 23758.66, + "end": 23759.14, + "probability": 0.4192 + }, + { + "start": 23759.34, + "end": 23760.58, + "probability": 0.7581 + }, + { + "start": 23760.58, + "end": 23764.7, + "probability": 0.9377 + }, + { + "start": 23764.82, + "end": 23765.78, + "probability": 0.9265 + }, + { + "start": 23766.22, + "end": 23769.42, + "probability": 0.9907 + }, + { + "start": 23769.42, + "end": 23772.16, + "probability": 0.9991 + }, + { + "start": 23772.5, + "end": 23772.5, + "probability": 0.0708 + }, + { + "start": 23772.5, + "end": 23773.49, + "probability": 0.5299 + }, + { + "start": 23777.16, + "end": 23779.3, + "probability": 0.9731 + }, + { + "start": 23779.78, + "end": 23783.36, + "probability": 0.9492 + }, + { + "start": 23783.48, + "end": 23784.33, + "probability": 0.1961 + }, + { + "start": 23784.96, + "end": 23785.3, + "probability": 0.4462 + }, + { + "start": 23785.34, + "end": 23785.52, + "probability": 0.429 + }, + { + "start": 23785.54, + "end": 23786.12, + "probability": 0.7706 + }, + { + "start": 23786.24, + "end": 23789.92, + "probability": 0.9393 + }, + { + "start": 23790.36, + "end": 23792.62, + "probability": 0.564 + }, + { + "start": 23792.8, + "end": 23793.72, + "probability": 0.7635 + }, + { + "start": 23794.04, + "end": 23795.28, + "probability": 0.9868 + }, + { + "start": 23795.36, + "end": 23795.92, + "probability": 0.8788 + }, + { + "start": 23795.96, + "end": 23799.12, + "probability": 0.9922 + }, + { + "start": 23799.44, + "end": 23800.64, + "probability": 0.6612 + }, + { + "start": 23800.74, + "end": 23803.16, + "probability": 0.9985 + }, + { + "start": 23803.16, + "end": 23804.74, + "probability": 0.9977 + }, + { + "start": 23804.78, + "end": 23805.98, + "probability": 0.8295 + }, + { + "start": 23806.24, + "end": 23808.23, + "probability": 0.9897 + }, + { + "start": 23808.84, + "end": 23811.64, + "probability": 0.9799 + }, + { + "start": 23811.64, + "end": 23814.26, + "probability": 0.9998 + }, + { + "start": 23814.64, + "end": 23815.9, + "probability": 0.8714 + }, + { + "start": 23816.22, + "end": 23818.56, + "probability": 0.9938 + }, + { + "start": 23818.82, + "end": 23820.65, + "probability": 0.9473 + }, + { + "start": 23820.84, + "end": 23821.3, + "probability": 0.7431 + }, + { + "start": 23821.38, + "end": 23822.64, + "probability": 0.9063 + }, + { + "start": 23822.9, + "end": 23824.06, + "probability": 0.9941 + }, + { + "start": 23824.34, + "end": 23827.8, + "probability": 0.9834 + }, + { + "start": 23828.1, + "end": 23829.68, + "probability": 0.6207 + }, + { + "start": 23831.22, + "end": 23833.32, + "probability": 0.9618 + }, + { + "start": 23833.32, + "end": 23834.9, + "probability": 0.8227 + }, + { + "start": 23835.02, + "end": 23836.28, + "probability": 0.935 + }, + { + "start": 23836.64, + "end": 23839.58, + "probability": 0.978 + }, + { + "start": 23839.68, + "end": 23841.4, + "probability": 0.7575 + }, + { + "start": 23842.08, + "end": 23844.12, + "probability": 0.7924 + }, + { + "start": 23846.67, + "end": 23847.88, + "probability": 0.0309 + }, + { + "start": 23847.94, + "end": 23848.28, + "probability": 0.0582 + }, + { + "start": 23848.28, + "end": 23848.28, + "probability": 0.2284 + }, + { + "start": 23848.28, + "end": 23850.04, + "probability": 0.7199 + }, + { + "start": 23850.22, + "end": 23853.18, + "probability": 0.9934 + }, + { + "start": 23853.32, + "end": 23855.08, + "probability": 0.549 + }, + { + "start": 23855.64, + "end": 23855.64, + "probability": 0.7292 + }, + { + "start": 23855.92, + "end": 23856.06, + "probability": 0.0076 + }, + { + "start": 23856.06, + "end": 23857.56, + "probability": 0.9185 + }, + { + "start": 23857.96, + "end": 23860.94, + "probability": 0.9767 + }, + { + "start": 23861.02, + "end": 23866.28, + "probability": 0.9485 + }, + { + "start": 23866.66, + "end": 23867.28, + "probability": 0.875 + }, + { + "start": 23867.3, + "end": 23868.58, + "probability": 0.7713 + }, + { + "start": 23869.28, + "end": 23872.2, + "probability": 0.9921 + }, + { + "start": 23872.36, + "end": 23873.84, + "probability": 0.9684 + }, + { + "start": 23873.98, + "end": 23876.92, + "probability": 0.9883 + }, + { + "start": 23877.02, + "end": 23877.68, + "probability": 0.4675 + }, + { + "start": 23877.92, + "end": 23879.54, + "probability": 0.978 + }, + { + "start": 23880.34, + "end": 23883.08, + "probability": 0.0599 + }, + { + "start": 23883.08, + "end": 23883.08, + "probability": 0.2775 + }, + { + "start": 23883.08, + "end": 23884.86, + "probability": 0.3198 + }, + { + "start": 23885.02, + "end": 23886.92, + "probability": 0.7822 + }, + { + "start": 23887.46, + "end": 23890.38, + "probability": 0.9913 + }, + { + "start": 23891.08, + "end": 23891.42, + "probability": 0.4581 + }, + { + "start": 23891.74, + "end": 23892.58, + "probability": 0.9114 + }, + { + "start": 23892.72, + "end": 23896.58, + "probability": 0.9822 + }, + { + "start": 23896.72, + "end": 23898.08, + "probability": 0.9269 + }, + { + "start": 23898.36, + "end": 23901.4, + "probability": 0.9935 + }, + { + "start": 23901.5, + "end": 23905.48, + "probability": 0.9862 + }, + { + "start": 23905.6, + "end": 23908.52, + "probability": 0.995 + }, + { + "start": 23908.98, + "end": 23908.98, + "probability": 0.1243 + }, + { + "start": 23908.98, + "end": 23911.8, + "probability": 0.9834 + }, + { + "start": 23912.18, + "end": 23915.1, + "probability": 0.7237 + }, + { + "start": 23915.3, + "end": 23916.04, + "probability": 0.9719 + }, + { + "start": 23916.38, + "end": 23916.92, + "probability": 0.8608 + }, + { + "start": 23917.14, + "end": 23918.46, + "probability": 0.8298 + }, + { + "start": 23918.76, + "end": 23922.4, + "probability": 0.9806 + }, + { + "start": 23922.46, + "end": 23922.96, + "probability": 0.9581 + }, + { + "start": 23923.06, + "end": 23925.26, + "probability": 0.6605 + }, + { + "start": 23925.86, + "end": 23928.26, + "probability": 0.9992 + }, + { + "start": 23928.34, + "end": 23930.06, + "probability": 0.9968 + }, + { + "start": 23930.38, + "end": 23931.74, + "probability": 0.341 + }, + { + "start": 23932.1, + "end": 23935.56, + "probability": 0.9874 + }, + { + "start": 23935.62, + "end": 23936.1, + "probability": 0.7488 + }, + { + "start": 23936.48, + "end": 23938.62, + "probability": 0.3293 + }, + { + "start": 23939.0, + "end": 23940.12, + "probability": 0.0728 + }, + { + "start": 23940.12, + "end": 23941.72, + "probability": 0.3063 + }, + { + "start": 23941.84, + "end": 23943.88, + "probability": 0.9415 + }, + { + "start": 23944.7, + "end": 23947.48, + "probability": 0.7295 + }, + { + "start": 23947.58, + "end": 23948.14, + "probability": 0.6147 + }, + { + "start": 23948.8, + "end": 23949.74, + "probability": 0.7017 + }, + { + "start": 23949.84, + "end": 23950.78, + "probability": 0.473 + }, + { + "start": 23950.86, + "end": 23952.08, + "probability": 0.8439 + }, + { + "start": 23952.2, + "end": 23955.52, + "probability": 0.7921 + }, + { + "start": 23956.18, + "end": 23959.18, + "probability": 0.8503 + }, + { + "start": 23959.74, + "end": 23960.2, + "probability": 0.6614 + }, + { + "start": 23960.32, + "end": 23964.06, + "probability": 0.829 + }, + { + "start": 23964.42, + "end": 23967.96, + "probability": 0.8156 + }, + { + "start": 23968.68, + "end": 23969.82, + "probability": 0.6318 + }, + { + "start": 23969.92, + "end": 23973.04, + "probability": 0.9565 + }, + { + "start": 23973.7, + "end": 23975.92, + "probability": 0.9673 + }, + { + "start": 23976.02, + "end": 23977.8, + "probability": 0.7017 + }, + { + "start": 23981.54, + "end": 23984.26, + "probability": 0.6627 + }, + { + "start": 23984.36, + "end": 23986.22, + "probability": 0.9628 + }, + { + "start": 23987.14, + "end": 23988.18, + "probability": 0.0853 + }, + { + "start": 23988.28, + "end": 23992.14, + "probability": 0.2475 + }, + { + "start": 23992.28, + "end": 23992.78, + "probability": 0.854 + }, + { + "start": 23992.88, + "end": 23993.54, + "probability": 0.7908 + }, + { + "start": 23993.66, + "end": 23996.14, + "probability": 0.4504 + }, + { + "start": 23996.14, + "end": 23996.14, + "probability": 0.0857 + }, + { + "start": 23996.14, + "end": 23996.14, + "probability": 0.3693 + }, + { + "start": 23996.26, + "end": 23999.26, + "probability": 0.9675 + }, + { + "start": 24002.34, + "end": 24005.52, + "probability": 0.7987 + }, + { + "start": 24005.66, + "end": 24007.1, + "probability": 0.1436 + }, + { + "start": 24007.1, + "end": 24007.1, + "probability": 0.7013 + }, + { + "start": 24007.1, + "end": 24007.22, + "probability": 0.2807 + }, + { + "start": 24008.18, + "end": 24008.84, + "probability": 0.7222 + }, + { + "start": 24009.0, + "end": 24012.92, + "probability": 0.8405 + }, + { + "start": 24012.92, + "end": 24016.5, + "probability": 0.7262 + }, + { + "start": 24016.92, + "end": 24017.66, + "probability": 0.8128 + }, + { + "start": 24018.24, + "end": 24019.26, + "probability": 0.8095 + }, + { + "start": 24024.88, + "end": 24028.18, + "probability": 0.8114 + }, + { + "start": 24029.32, + "end": 24030.36, + "probability": 0.6105 + }, + { + "start": 24031.1, + "end": 24034.6, + "probability": 0.9862 + }, + { + "start": 24034.6, + "end": 24038.06, + "probability": 0.9953 + }, + { + "start": 24039.38, + "end": 24044.3, + "probability": 0.9521 + }, + { + "start": 24044.58, + "end": 24046.28, + "probability": 0.998 + }, + { + "start": 24047.33, + "end": 24049.08, + "probability": 0.9817 + }, + { + "start": 24049.66, + "end": 24052.92, + "probability": 0.8589 + }, + { + "start": 24052.92, + "end": 24055.92, + "probability": 0.9962 + }, + { + "start": 24056.86, + "end": 24059.76, + "probability": 0.89 + }, + { + "start": 24060.96, + "end": 24065.02, + "probability": 0.8675 + }, + { + "start": 24065.78, + "end": 24068.86, + "probability": 0.9827 + }, + { + "start": 24069.76, + "end": 24073.24, + "probability": 0.8295 + }, + { + "start": 24073.78, + "end": 24076.94, + "probability": 0.9824 + }, + { + "start": 24077.82, + "end": 24079.02, + "probability": 0.9844 + }, + { + "start": 24079.54, + "end": 24084.68, + "probability": 0.961 + }, + { + "start": 24084.78, + "end": 24085.88, + "probability": 0.8562 + }, + { + "start": 24086.26, + "end": 24088.06, + "probability": 0.9318 + }, + { + "start": 24088.22, + "end": 24092.24, + "probability": 0.9659 + }, + { + "start": 24093.0, + "end": 24095.12, + "probability": 0.9856 + }, + { + "start": 24095.36, + "end": 24095.94, + "probability": 0.6776 + }, + { + "start": 24096.16, + "end": 24097.64, + "probability": 0.9297 + }, + { + "start": 24098.22, + "end": 24105.22, + "probability": 0.9848 + }, + { + "start": 24105.74, + "end": 24106.34, + "probability": 0.7704 + }, + { + "start": 24106.42, + "end": 24107.72, + "probability": 0.929 + }, + { + "start": 24108.14, + "end": 24111.08, + "probability": 0.9956 + }, + { + "start": 24111.82, + "end": 24112.42, + "probability": 0.6822 + }, + { + "start": 24113.1, + "end": 24117.54, + "probability": 0.9923 + }, + { + "start": 24117.68, + "end": 24119.78, + "probability": 0.7639 + }, + { + "start": 24120.03, + "end": 24122.58, + "probability": 0.9984 + }, + { + "start": 24125.4, + "end": 24129.1, + "probability": 0.9873 + }, + { + "start": 24129.68, + "end": 24136.28, + "probability": 0.9951 + }, + { + "start": 24137.56, + "end": 24139.78, + "probability": 0.8237 + }, + { + "start": 24140.4, + "end": 24142.64, + "probability": 0.9959 + }, + { + "start": 24142.64, + "end": 24144.88, + "probability": 0.9994 + }, + { + "start": 24145.46, + "end": 24147.73, + "probability": 0.9907 + }, + { + "start": 24149.3, + "end": 24152.04, + "probability": 0.8748 + }, + { + "start": 24153.1, + "end": 24159.26, + "probability": 0.9938 + }, + { + "start": 24160.3, + "end": 24166.3, + "probability": 0.6356 + }, + { + "start": 24166.3, + "end": 24170.94, + "probability": 0.9865 + }, + { + "start": 24171.3, + "end": 24174.48, + "probability": 0.9717 + }, + { + "start": 24175.86, + "end": 24179.29, + "probability": 0.9532 + }, + { + "start": 24179.68, + "end": 24182.88, + "probability": 0.9367 + }, + { + "start": 24183.48, + "end": 24189.02, + "probability": 0.9212 + }, + { + "start": 24189.6, + "end": 24193.5, + "probability": 0.9844 + }, + { + "start": 24194.38, + "end": 24199.52, + "probability": 0.9954 + }, + { + "start": 24199.52, + "end": 24206.98, + "probability": 0.9827 + }, + { + "start": 24207.04, + "end": 24211.48, + "probability": 0.9208 + }, + { + "start": 24212.22, + "end": 24215.66, + "probability": 0.7854 + }, + { + "start": 24215.82, + "end": 24216.16, + "probability": 0.7005 + }, + { + "start": 24216.18, + "end": 24217.79, + "probability": 0.9444 + }, + { + "start": 24219.6, + "end": 24224.28, + "probability": 0.8946 + }, + { + "start": 24224.6, + "end": 24230.48, + "probability": 0.9902 + }, + { + "start": 24231.06, + "end": 24236.46, + "probability": 0.9795 + }, + { + "start": 24237.46, + "end": 24241.86, + "probability": 0.9836 + }, + { + "start": 24241.86, + "end": 24246.18, + "probability": 0.9938 + }, + { + "start": 24247.28, + "end": 24250.92, + "probability": 0.9792 + }, + { + "start": 24251.4, + "end": 24255.88, + "probability": 0.9969 + }, + { + "start": 24255.88, + "end": 24260.36, + "probability": 0.9977 + }, + { + "start": 24260.78, + "end": 24265.32, + "probability": 0.9947 + }, + { + "start": 24265.86, + "end": 24269.22, + "probability": 0.9614 + }, + { + "start": 24269.22, + "end": 24272.66, + "probability": 0.7865 + }, + { + "start": 24272.74, + "end": 24274.34, + "probability": 0.9856 + }, + { + "start": 24275.08, + "end": 24275.52, + "probability": 0.852 + }, + { + "start": 24275.62, + "end": 24276.22, + "probability": 0.7485 + }, + { + "start": 24276.48, + "end": 24280.66, + "probability": 0.9902 + }, + { + "start": 24282.22, + "end": 24288.24, + "probability": 0.9767 + }, + { + "start": 24288.24, + "end": 24292.58, + "probability": 0.9692 + }, + { + "start": 24293.28, + "end": 24297.36, + "probability": 0.9915 + }, + { + "start": 24297.8, + "end": 24299.99, + "probability": 0.6652 + }, + { + "start": 24301.27, + "end": 24304.34, + "probability": 0.9407 + }, + { + "start": 24304.94, + "end": 24307.48, + "probability": 0.9974 + }, + { + "start": 24307.48, + "end": 24310.38, + "probability": 0.9985 + }, + { + "start": 24310.86, + "end": 24313.54, + "probability": 0.9238 + }, + { + "start": 24314.14, + "end": 24316.46, + "probability": 0.9797 + }, + { + "start": 24317.74, + "end": 24321.24, + "probability": 0.9781 + }, + { + "start": 24321.24, + "end": 24325.9, + "probability": 0.9951 + }, + { + "start": 24326.34, + "end": 24329.94, + "probability": 0.9893 + }, + { + "start": 24330.54, + "end": 24331.38, + "probability": 0.7798 + }, + { + "start": 24331.44, + "end": 24331.76, + "probability": 0.8612 + }, + { + "start": 24331.84, + "end": 24335.28, + "probability": 0.9377 + }, + { + "start": 24335.44, + "end": 24337.5, + "probability": 0.8718 + }, + { + "start": 24337.88, + "end": 24340.07, + "probability": 0.4945 + }, + { + "start": 24341.18, + "end": 24341.63, + "probability": 0.9165 + }, + { + "start": 24341.88, + "end": 24343.5, + "probability": 0.9323 + }, + { + "start": 24343.76, + "end": 24346.4, + "probability": 0.7793 + }, + { + "start": 24347.32, + "end": 24349.6, + "probability": 0.3256 + }, + { + "start": 24349.84, + "end": 24350.82, + "probability": 0.5992 + }, + { + "start": 24351.14, + "end": 24352.48, + "probability": 0.7083 + }, + { + "start": 24352.62, + "end": 24353.72, + "probability": 0.86 + }, + { + "start": 24353.82, + "end": 24359.68, + "probability": 0.8234 + }, + { + "start": 24361.96, + "end": 24362.68, + "probability": 0.4779 + }, + { + "start": 24362.72, + "end": 24364.02, + "probability": 0.7914 + }, + { + "start": 24364.18, + "end": 24366.12, + "probability": 0.6553 + }, + { + "start": 24366.38, + "end": 24366.74, + "probability": 0.2658 + }, + { + "start": 24366.84, + "end": 24368.32, + "probability": 0.763 + }, + { + "start": 24368.46, + "end": 24370.98, + "probability": 0.618 + }, + { + "start": 24371.56, + "end": 24373.51, + "probability": 0.8219 + }, + { + "start": 24373.68, + "end": 24375.36, + "probability": 0.713 + }, + { + "start": 24375.44, + "end": 24375.54, + "probability": 0.7933 + }, + { + "start": 24375.54, + "end": 24376.58, + "probability": 0.8752 + }, + { + "start": 24379.86, + "end": 24382.72, + "probability": 0.6637 + }, + { + "start": 24382.72, + "end": 24384.35, + "probability": 0.7551 + }, + { + "start": 24384.7, + "end": 24386.0, + "probability": 0.6631 + }, + { + "start": 24386.6, + "end": 24390.46, + "probability": 0.9604 + }, + { + "start": 24390.52, + "end": 24394.44, + "probability": 0.9648 + }, + { + "start": 24394.82, + "end": 24395.72, + "probability": 0.8717 + }, + { + "start": 24395.8, + "end": 24396.82, + "probability": 0.8655 + }, + { + "start": 24397.38, + "end": 24399.42, + "probability": 0.9391 + }, + { + "start": 24399.76, + "end": 24403.52, + "probability": 0.9755 + }, + { + "start": 24404.86, + "end": 24405.96, + "probability": 0.7783 + }, + { + "start": 24406.06, + "end": 24406.44, + "probability": 0.5656 + }, + { + "start": 24406.74, + "end": 24411.36, + "probability": 0.7385 + }, + { + "start": 24412.82, + "end": 24417.63, + "probability": 0.2783 + }, + { + "start": 24425.16, + "end": 24425.96, + "probability": 0.7697 + }, + { + "start": 24430.78, + "end": 24432.02, + "probability": 0.6391 + }, + { + "start": 24432.22, + "end": 24433.78, + "probability": 0.8425 + }, + { + "start": 24435.09, + "end": 24439.18, + "probability": 0.939 + }, + { + "start": 24439.96, + "end": 24442.32, + "probability": 0.9919 + }, + { + "start": 24442.4, + "end": 24443.5, + "probability": 0.9951 + }, + { + "start": 24444.3, + "end": 24449.46, + "probability": 0.9482 + }, + { + "start": 24450.16, + "end": 24451.38, + "probability": 0.8176 + }, + { + "start": 24451.9, + "end": 24456.54, + "probability": 0.9009 + }, + { + "start": 24456.54, + "end": 24456.84, + "probability": 0.19 + }, + { + "start": 24456.84, + "end": 24457.38, + "probability": 0.2979 + }, + { + "start": 24458.4, + "end": 24461.8, + "probability": 0.9273 + }, + { + "start": 24462.4, + "end": 24464.22, + "probability": 0.1904 + }, + { + "start": 24466.41, + "end": 24470.26, + "probability": 0.3331 + }, + { + "start": 24470.26, + "end": 24473.64, + "probability": 0.4571 + }, + { + "start": 24473.76, + "end": 24474.24, + "probability": 0.4467 + }, + { + "start": 24477.52, + "end": 24480.16, + "probability": 0.8689 + }, + { + "start": 24481.36, + "end": 24484.9, + "probability": 0.9002 + }, + { + "start": 24484.98, + "end": 24485.9, + "probability": 0.7059 + }, + { + "start": 24486.0, + "end": 24489.51, + "probability": 0.5964 + }, + { + "start": 24491.32, + "end": 24494.2, + "probability": 0.2749 + }, + { + "start": 24496.44, + "end": 24496.68, + "probability": 0.1546 + }, + { + "start": 24497.06, + "end": 24499.34, + "probability": 0.0176 + }, + { + "start": 24499.57, + "end": 24502.02, + "probability": 0.0406 + }, + { + "start": 24502.26, + "end": 24502.36, + "probability": 0.5345 + }, + { + "start": 24503.82, + "end": 24506.48, + "probability": 0.8319 + }, + { + "start": 24507.8, + "end": 24509.42, + "probability": 0.7809 + }, + { + "start": 24510.95, + "end": 24514.28, + "probability": 0.7818 + }, + { + "start": 24515.56, + "end": 24518.16, + "probability": 0.8511 + }, + { + "start": 24518.92, + "end": 24521.38, + "probability": 0.9481 + }, + { + "start": 24522.12, + "end": 24522.74, + "probability": 0.5214 + }, + { + "start": 24522.84, + "end": 24524.46, + "probability": 0.544 + }, + { + "start": 24524.86, + "end": 24528.14, + "probability": 0.7328 + }, + { + "start": 24529.18, + "end": 24531.9, + "probability": 0.9953 + }, + { + "start": 24532.7, + "end": 24533.42, + "probability": 0.6746 + }, + { + "start": 24534.4, + "end": 24536.16, + "probability": 0.9312 + }, + { + "start": 24538.04, + "end": 24538.72, + "probability": 0.8711 + }, + { + "start": 24539.84, + "end": 24540.68, + "probability": 0.9468 + }, + { + "start": 24541.46, + "end": 24548.48, + "probability": 0.7905 + }, + { + "start": 24548.52, + "end": 24550.0, + "probability": 0.9922 + }, + { + "start": 24551.45, + "end": 24555.0, + "probability": 0.9221 + }, + { + "start": 24556.06, + "end": 24556.22, + "probability": 0.0722 + }, + { + "start": 24556.22, + "end": 24556.22, + "probability": 0.0211 + }, + { + "start": 24556.22, + "end": 24556.94, + "probability": 0.7929 + }, + { + "start": 24558.56, + "end": 24561.16, + "probability": 0.8411 + }, + { + "start": 24562.36, + "end": 24563.15, + "probability": 0.9925 + }, + { + "start": 24563.88, + "end": 24567.02, + "probability": 0.9834 + }, + { + "start": 24569.34, + "end": 24569.41, + "probability": 0.0387 + }, + { + "start": 24570.66, + "end": 24572.12, + "probability": 0.9828 + }, + { + "start": 24572.64, + "end": 24573.78, + "probability": 0.6173 + }, + { + "start": 24574.44, + "end": 24577.64, + "probability": 0.9602 + }, + { + "start": 24578.58, + "end": 24580.4, + "probability": 0.8983 + }, + { + "start": 24581.1, + "end": 24584.26, + "probability": 0.9407 + }, + { + "start": 24584.38, + "end": 24585.6, + "probability": 0.5303 + }, + { + "start": 24586.22, + "end": 24587.26, + "probability": 0.8878 + }, + { + "start": 24588.26, + "end": 24590.18, + "probability": 0.9966 + }, + { + "start": 24590.74, + "end": 24593.84, + "probability": 0.9924 + }, + { + "start": 24595.42, + "end": 24599.86, + "probability": 0.9992 + }, + { + "start": 24600.84, + "end": 24601.14, + "probability": 0.5055 + }, + { + "start": 24601.78, + "end": 24602.96, + "probability": 0.8079 + }, + { + "start": 24603.52, + "end": 24604.38, + "probability": 0.667 + }, + { + "start": 24605.08, + "end": 24607.66, + "probability": 0.9441 + }, + { + "start": 24608.36, + "end": 24610.54, + "probability": 0.8728 + }, + { + "start": 24611.24, + "end": 24613.18, + "probability": 0.8952 + }, + { + "start": 24614.96, + "end": 24615.06, + "probability": 0.3326 + }, + { + "start": 24615.82, + "end": 24618.88, + "probability": 0.948 + }, + { + "start": 24619.02, + "end": 24619.34, + "probability": 0.6951 + }, + { + "start": 24619.4, + "end": 24622.34, + "probability": 0.7811 + }, + { + "start": 24622.62, + "end": 24625.32, + "probability": 0.8917 + }, + { + "start": 24626.12, + "end": 24629.08, + "probability": 0.8271 + }, + { + "start": 24629.14, + "end": 24630.22, + "probability": 0.6919 + }, + { + "start": 24630.32, + "end": 24634.2, + "probability": 0.8627 + }, + { + "start": 24634.3, + "end": 24634.64, + "probability": 0.9371 + }, + { + "start": 24635.32, + "end": 24636.28, + "probability": 0.5931 + }, + { + "start": 24636.76, + "end": 24640.1, + "probability": 0.6878 + }, + { + "start": 24640.82, + "end": 24642.79, + "probability": 0.663 + }, + { + "start": 24643.36, + "end": 24646.3, + "probability": 0.9968 + }, + { + "start": 24647.2, + "end": 24647.66, + "probability": 0.6488 + }, + { + "start": 24648.18, + "end": 24648.9, + "probability": 0.6325 + }, + { + "start": 24649.46, + "end": 24650.15, + "probability": 0.1235 + }, + { + "start": 24651.04, + "end": 24653.92, + "probability": 0.2759 + }, + { + "start": 24653.92, + "end": 24657.26, + "probability": 0.7597 + }, + { + "start": 24657.86, + "end": 24657.86, + "probability": 0.1234 + }, + { + "start": 24658.86, + "end": 24659.28, + "probability": 0.3529 + }, + { + "start": 24659.62, + "end": 24661.14, + "probability": 0.3961 + }, + { + "start": 24661.14, + "end": 24661.44, + "probability": 0.1712 + }, + { + "start": 24661.46, + "end": 24662.36, + "probability": 0.5734 + }, + { + "start": 24662.48, + "end": 24663.07, + "probability": 0.6748 + }, + { + "start": 24663.76, + "end": 24665.6, + "probability": 0.063 + }, + { + "start": 24666.0, + "end": 24670.1, + "probability": 0.9268 + }, + { + "start": 24670.22, + "end": 24670.8, + "probability": 0.3516 + }, + { + "start": 24670.9, + "end": 24672.34, + "probability": 0.6802 + }, + { + "start": 24672.46, + "end": 24673.2, + "probability": 0.0828 + }, + { + "start": 24673.28, + "end": 24675.9, + "probability": 0.978 + }, + { + "start": 24676.4, + "end": 24678.38, + "probability": 0.9738 + }, + { + "start": 24678.46, + "end": 24679.16, + "probability": 0.6142 + }, + { + "start": 24679.88, + "end": 24679.88, + "probability": 0.3163 + }, + { + "start": 24679.88, + "end": 24680.41, + "probability": 0.2462 + }, + { + "start": 24680.76, + "end": 24682.44, + "probability": 0.9762 + }, + { + "start": 24682.8, + "end": 24682.94, + "probability": 0.0624 + }, + { + "start": 24684.32, + "end": 24685.25, + "probability": 0.0455 + }, + { + "start": 24685.52, + "end": 24686.08, + "probability": 0.675 + }, + { + "start": 24686.28, + "end": 24687.46, + "probability": 0.4483 + }, + { + "start": 24687.56, + "end": 24687.64, + "probability": 0.2143 + }, + { + "start": 24687.64, + "end": 24688.6, + "probability": 0.295 + }, + { + "start": 24689.72, + "end": 24690.96, + "probability": 0.9604 + }, + { + "start": 24691.02, + "end": 24691.86, + "probability": 0.7744 + }, + { + "start": 24692.2, + "end": 24693.28, + "probability": 0.2567 + }, + { + "start": 24693.4, + "end": 24694.0, + "probability": 0.4456 + }, + { + "start": 24694.1, + "end": 24694.34, + "probability": 0.3039 + }, + { + "start": 24694.34, + "end": 24695.04, + "probability": 0.6491 + }, + { + "start": 24695.16, + "end": 24696.12, + "probability": 0.2554 + }, + { + "start": 24696.12, + "end": 24698.16, + "probability": 0.4915 + }, + { + "start": 24699.02, + "end": 24699.34, + "probability": 0.0233 + }, + { + "start": 24699.62, + "end": 24700.16, + "probability": 0.0122 + }, + { + "start": 24700.86, + "end": 24701.16, + "probability": 0.2269 + }, + { + "start": 24701.16, + "end": 24702.54, + "probability": 0.3347 + }, + { + "start": 24704.44, + "end": 24706.9, + "probability": 0.3607 + }, + { + "start": 24707.1, + "end": 24708.82, + "probability": 0.6721 + }, + { + "start": 24709.02, + "end": 24709.58, + "probability": 0.5896 + }, + { + "start": 24709.76, + "end": 24710.98, + "probability": 0.7009 + }, + { + "start": 24711.06, + "end": 24712.68, + "probability": 0.3674 + }, + { + "start": 24712.98, + "end": 24715.52, + "probability": 0.4804 + }, + { + "start": 24715.78, + "end": 24716.82, + "probability": 0.7477 + }, + { + "start": 24717.16, + "end": 24717.24, + "probability": 0.0996 + }, + { + "start": 24717.24, + "end": 24718.2, + "probability": 0.6993 + }, + { + "start": 24718.4, + "end": 24719.08, + "probability": 0.29 + }, + { + "start": 24719.5, + "end": 24719.56, + "probability": 0.127 + }, + { + "start": 24719.56, + "end": 24720.12, + "probability": 0.6422 + }, + { + "start": 24721.3, + "end": 24723.1, + "probability": 0.2029 + }, + { + "start": 24723.1, + "end": 24727.52, + "probability": 0.9875 + }, + { + "start": 24727.52, + "end": 24727.96, + "probability": 0.8965 + }, + { + "start": 24729.06, + "end": 24730.82, + "probability": 0.5423 + }, + { + "start": 24731.6, + "end": 24732.02, + "probability": 0.371 + }, + { + "start": 24732.16, + "end": 24733.12, + "probability": 0.3907 + }, + { + "start": 24733.68, + "end": 24735.54, + "probability": 0.8397 + }, + { + "start": 24735.86, + "end": 24737.66, + "probability": 0.8843 + }, + { + "start": 24738.02, + "end": 24740.46, + "probability": 0.9915 + }, + { + "start": 24740.66, + "end": 24741.02, + "probability": 0.1314 + }, + { + "start": 24741.58, + "end": 24742.44, + "probability": 0.5022 + }, + { + "start": 24745.32, + "end": 24745.34, + "probability": 0.0018 + }, + { + "start": 24746.3, + "end": 24746.54, + "probability": 0.0003 + }, + { + "start": 24746.54, + "end": 24747.4, + "probability": 0.4094 + }, + { + "start": 24747.5, + "end": 24747.74, + "probability": 0.232 + }, + { + "start": 24747.84, + "end": 24752.03, + "probability": 0.839 + }, + { + "start": 24752.18, + "end": 24753.08, + "probability": 0.7579 + }, + { + "start": 24753.28, + "end": 24753.42, + "probability": 0.2331 + }, + { + "start": 24753.66, + "end": 24754.28, + "probability": 0.5773 + }, + { + "start": 24754.4, + "end": 24756.3, + "probability": 0.2921 + }, + { + "start": 24756.78, + "end": 24758.0, + "probability": 0.4909 + }, + { + "start": 24758.36, + "end": 24758.36, + "probability": 0.0012 + }, + { + "start": 24758.6, + "end": 24759.21, + "probability": 0.329 + }, + { + "start": 24759.74, + "end": 24762.18, + "probability": 0.267 + }, + { + "start": 24762.18, + "end": 24762.18, + "probability": 0.3589 + }, + { + "start": 24762.22, + "end": 24763.62, + "probability": 0.8627 + }, + { + "start": 24763.8, + "end": 24764.21, + "probability": 0.9351 + }, + { + "start": 24765.06, + "end": 24765.18, + "probability": 0.25 + }, + { + "start": 24765.22, + "end": 24766.9, + "probability": 0.2938 + }, + { + "start": 24767.14, + "end": 24767.3, + "probability": 0.0393 + }, + { + "start": 24767.32, + "end": 24769.18, + "probability": 0.7307 + }, + { + "start": 24769.56, + "end": 24770.92, + "probability": 0.9377 + }, + { + "start": 24771.2, + "end": 24771.3, + "probability": 0.0372 + }, + { + "start": 24771.3, + "end": 24771.3, + "probability": 0.2006 + }, + { + "start": 24771.3, + "end": 24773.62, + "probability": 0.6529 + }, + { + "start": 24773.72, + "end": 24774.26, + "probability": 0.8159 + }, + { + "start": 24774.58, + "end": 24776.7, + "probability": 0.5344 + }, + { + "start": 24776.76, + "end": 24780.88, + "probability": 0.4803 + }, + { + "start": 24781.32, + "end": 24781.5, + "probability": 0.0767 + }, + { + "start": 24781.5, + "end": 24781.5, + "probability": 0.4302 + }, + { + "start": 24781.5, + "end": 24783.8, + "probability": 0.1834 + }, + { + "start": 24783.84, + "end": 24784.48, + "probability": 0.0208 + }, + { + "start": 24784.54, + "end": 24787.36, + "probability": 0.5785 + }, + { + "start": 24787.74, + "end": 24788.7, + "probability": 0.285 + }, + { + "start": 24788.8, + "end": 24789.34, + "probability": 0.3027 + }, + { + "start": 24789.36, + "end": 24791.8, + "probability": 0.0684 + }, + { + "start": 24791.8, + "end": 24792.2, + "probability": 0.1354 + }, + { + "start": 24792.2, + "end": 24792.2, + "probability": 0.1206 + }, + { + "start": 24792.2, + "end": 24792.52, + "probability": 0.1197 + }, + { + "start": 24792.52, + "end": 24793.64, + "probability": 0.3979 + }, + { + "start": 24793.92, + "end": 24793.92, + "probability": 0.2388 + }, + { + "start": 24793.98, + "end": 24795.46, + "probability": 0.2214 + }, + { + "start": 24795.9, + "end": 24799.16, + "probability": 0.9274 + }, + { + "start": 24799.4, + "end": 24800.22, + "probability": 0.5716 + }, + { + "start": 24800.4, + "end": 24800.86, + "probability": 0.6837 + }, + { + "start": 24801.3, + "end": 24804.2, + "probability": 0.2272 + }, + { + "start": 24804.2, + "end": 24805.78, + "probability": 0.2274 + }, + { + "start": 24806.5, + "end": 24807.22, + "probability": 0.2876 + }, + { + "start": 24809.22, + "end": 24814.02, + "probability": 0.8423 + }, + { + "start": 24814.64, + "end": 24819.62, + "probability": 0.9805 + }, + { + "start": 24820.02, + "end": 24823.78, + "probability": 0.7668 + }, + { + "start": 24824.64, + "end": 24830.56, + "probability": 0.6477 + }, + { + "start": 24831.58, + "end": 24836.28, + "probability": 0.7759 + }, + { + "start": 24836.92, + "end": 24837.5, + "probability": 0.998 + }, + { + "start": 24840.26, + "end": 24845.54, + "probability": 0.6146 + }, + { + "start": 24846.7, + "end": 24848.88, + "probability": 0.7069 + }, + { + "start": 24850.06, + "end": 24851.7, + "probability": 0.1787 + }, + { + "start": 24852.52, + "end": 24854.24, + "probability": 0.2312 + }, + { + "start": 24854.5, + "end": 24856.3, + "probability": 0.3811 + }, + { + "start": 24856.3, + "end": 24860.44, + "probability": 0.6331 + }, + { + "start": 24860.44, + "end": 24864.56, + "probability": 0.711 + }, + { + "start": 24864.6, + "end": 24866.18, + "probability": 0.2508 + }, + { + "start": 24866.24, + "end": 24867.5, + "probability": 0.4312 + }, + { + "start": 24868.02, + "end": 24869.68, + "probability": 0.4047 + }, + { + "start": 24869.68, + "end": 24869.68, + "probability": 0.6812 + }, + { + "start": 24869.7, + "end": 24874.9, + "probability": 0.9016 + }, + { + "start": 24877.62, + "end": 24886.14, + "probability": 0.8647 + }, + { + "start": 24887.88, + "end": 24889.92, + "probability": 0.4588 + }, + { + "start": 24890.82, + "end": 24894.54, + "probability": 0.8302 + }, + { + "start": 24894.64, + "end": 24895.32, + "probability": 0.5146 + }, + { + "start": 24895.8, + "end": 24896.56, + "probability": 0.938 + }, + { + "start": 24897.18, + "end": 24904.54, + "probability": 0.8405 + }, + { + "start": 24905.94, + "end": 24908.44, + "probability": 0.8227 + }, + { + "start": 24908.92, + "end": 24914.02, + "probability": 0.9513 + }, + { + "start": 24914.36, + "end": 24916.72, + "probability": 0.6013 + }, + { + "start": 24916.84, + "end": 24918.14, + "probability": 0.9171 + }, + { + "start": 24918.36, + "end": 24919.96, + "probability": 0.4473 + }, + { + "start": 24920.46, + "end": 24921.56, + "probability": 0.9137 + }, + { + "start": 24922.88, + "end": 24923.86, + "probability": 0.9844 + }, + { + "start": 24924.0, + "end": 24925.84, + "probability": 0.1299 + }, + { + "start": 24925.96, + "end": 24928.22, + "probability": 0.2554 + }, + { + "start": 24928.34, + "end": 24929.86, + "probability": 0.0568 + }, + { + "start": 24929.86, + "end": 24930.46, + "probability": 0.4997 + }, + { + "start": 24930.82, + "end": 24931.18, + "probability": 0.3549 + }, + { + "start": 24931.52, + "end": 24933.38, + "probability": 0.5012 + }, + { + "start": 24933.38, + "end": 24935.96, + "probability": 0.8805 + }, + { + "start": 24936.02, + "end": 24936.78, + "probability": 0.0453 + }, + { + "start": 24937.96, + "end": 24941.74, + "probability": 0.4424 + }, + { + "start": 24942.0, + "end": 24943.13, + "probability": 0.2489 + }, + { + "start": 24944.53, + "end": 24947.8, + "probability": 0.7326 + }, + { + "start": 24951.92, + "end": 24952.64, + "probability": 0.0004 + }, + { + "start": 24953.94, + "end": 24953.94, + "probability": 0.0282 + }, + { + "start": 24954.06, + "end": 24957.72, + "probability": 0.0483 + }, + { + "start": 24957.72, + "end": 24959.34, + "probability": 0.1694 + }, + { + "start": 24960.78, + "end": 24961.4, + "probability": 0.0681 + }, + { + "start": 24961.58, + "end": 24962.2, + "probability": 0.6601 + }, + { + "start": 24962.58, + "end": 24962.92, + "probability": 0.3519 + }, + { + "start": 24963.3, + "end": 24966.45, + "probability": 0.7368 + }, + { + "start": 24967.1, + "end": 24967.1, + "probability": 0.1603 + }, + { + "start": 24967.1, + "end": 24968.72, + "probability": 0.13 + }, + { + "start": 24968.72, + "end": 24970.12, + "probability": 0.6716 + }, + { + "start": 24970.48, + "end": 24973.26, + "probability": 0.5009 + }, + { + "start": 24973.46, + "end": 24975.76, + "probability": 0.4893 + }, + { + "start": 24976.0, + "end": 24979.68, + "probability": 0.9932 + }, + { + "start": 24980.2, + "end": 24983.74, + "probability": 0.7602 + }, + { + "start": 24984.22, + "end": 24986.48, + "probability": 0.9514 + }, + { + "start": 24986.48, + "end": 24989.42, + "probability": 0.706 + }, + { + "start": 24989.74, + "end": 24990.6, + "probability": 0.1437 + }, + { + "start": 24991.8, + "end": 24992.43, + "probability": 0.6121 + }, + { + "start": 24992.8, + "end": 24993.34, + "probability": 0.4571 + }, + { + "start": 24993.38, + "end": 24993.86, + "probability": 0.1841 + }, + { + "start": 24993.88, + "end": 24993.92, + "probability": 0.5913 + }, + { + "start": 24994.0, + "end": 24995.63, + "probability": 0.6774 + }, + { + "start": 24995.74, + "end": 24997.84, + "probability": 0.174 + }, + { + "start": 24999.18, + "end": 25002.96, + "probability": 0.8184 + }, + { + "start": 25003.26, + "end": 25005.88, + "probability": 0.6099 + }, + { + "start": 25006.02, + "end": 25008.14, + "probability": 0.3664 + }, + { + "start": 25008.14, + "end": 25008.28, + "probability": 0.1825 + }, + { + "start": 25008.28, + "end": 25009.4, + "probability": 0.7764 + }, + { + "start": 25009.52, + "end": 25010.0, + "probability": 0.4422 + }, + { + "start": 25010.28, + "end": 25011.22, + "probability": 0.8457 + }, + { + "start": 25011.28, + "end": 25012.18, + "probability": 0.5628 + }, + { + "start": 25012.18, + "end": 25013.38, + "probability": 0.6584 + }, + { + "start": 25013.56, + "end": 25014.16, + "probability": 0.8486 + }, + { + "start": 25014.18, + "end": 25014.64, + "probability": 0.3626 + }, + { + "start": 25014.72, + "end": 25014.96, + "probability": 0.6785 + }, + { + "start": 25015.04, + "end": 25018.96, + "probability": 0.9961 + }, + { + "start": 25019.26, + "end": 25020.02, + "probability": 0.7727 + }, + { + "start": 25020.08, + "end": 25020.66, + "probability": 0.3988 + }, + { + "start": 25020.68, + "end": 25020.98, + "probability": 0.2388 + }, + { + "start": 25021.3, + "end": 25022.14, + "probability": 0.5759 + }, + { + "start": 25022.36, + "end": 25022.84, + "probability": 0.1111 + }, + { + "start": 25022.9, + "end": 25025.66, + "probability": 0.3405 + }, + { + "start": 25025.7, + "end": 25025.86, + "probability": 0.0306 + }, + { + "start": 25026.42, + "end": 25026.84, + "probability": 0.0222 + }, + { + "start": 25026.96, + "end": 25027.7, + "probability": 0.4119 + }, + { + "start": 25027.9, + "end": 25028.54, + "probability": 0.5155 + }, + { + "start": 25028.54, + "end": 25029.28, + "probability": 0.4184 + }, + { + "start": 25029.3, + "end": 25029.46, + "probability": 0.5146 + }, + { + "start": 25030.3, + "end": 25031.53, + "probability": 0.634 + }, + { + "start": 25032.16, + "end": 25035.62, + "probability": 0.7158 + }, + { + "start": 25035.62, + "end": 25037.54, + "probability": 0.4645 + }, + { + "start": 25038.14, + "end": 25039.14, + "probability": 0.0405 + }, + { + "start": 25039.14, + "end": 25040.78, + "probability": 0.5565 + }, + { + "start": 25041.42, + "end": 25042.26, + "probability": 0.2996 + }, + { + "start": 25042.26, + "end": 25043.2, + "probability": 0.6272 + }, + { + "start": 25043.36, + "end": 25043.96, + "probability": 0.7147 + }, + { + "start": 25044.1, + "end": 25045.16, + "probability": 0.9928 + }, + { + "start": 25045.5, + "end": 25047.24, + "probability": 0.9144 + }, + { + "start": 25048.1, + "end": 25048.8, + "probability": 0.1644 + }, + { + "start": 25049.38, + "end": 25050.52, + "probability": 0.8926 + }, + { + "start": 25051.12, + "end": 25052.36, + "probability": 0.9625 + }, + { + "start": 25052.82, + "end": 25054.45, + "probability": 0.9155 + }, + { + "start": 25055.02, + "end": 25055.12, + "probability": 0.0641 + }, + { + "start": 25055.12, + "end": 25056.78, + "probability": 0.1185 + }, + { + "start": 25057.12, + "end": 25058.3, + "probability": 0.2976 + }, + { + "start": 25058.42, + "end": 25058.6, + "probability": 0.3137 + }, + { + "start": 25058.72, + "end": 25062.14, + "probability": 0.7641 + }, + { + "start": 25062.5, + "end": 25065.74, + "probability": 0.8384 + }, + { + "start": 25066.24, + "end": 25068.32, + "probability": 0.8181 + }, + { + "start": 25068.96, + "end": 25069.4, + "probability": 0.2188 + }, + { + "start": 25069.48, + "end": 25069.48, + "probability": 0.6096 + }, + { + "start": 25069.48, + "end": 25071.58, + "probability": 0.735 + }, + { + "start": 25071.86, + "end": 25073.34, + "probability": 0.8572 + }, + { + "start": 25074.1, + "end": 25076.48, + "probability": 0.6487 + }, + { + "start": 25076.62, + "end": 25077.48, + "probability": 0.1632 + }, + { + "start": 25077.82, + "end": 25078.46, + "probability": 0.0017 + }, + { + "start": 25079.28, + "end": 25080.2, + "probability": 0.2152 + }, + { + "start": 25080.22, + "end": 25082.12, + "probability": 0.4827 + }, + { + "start": 25082.12, + "end": 25082.64, + "probability": 0.1429 + }, + { + "start": 25085.82, + "end": 25085.94, + "probability": 0.0538 + }, + { + "start": 25085.94, + "end": 25087.54, + "probability": 0.2331 + }, + { + "start": 25087.54, + "end": 25088.73, + "probability": 0.6393 + }, + { + "start": 25091.28, + "end": 25094.8, + "probability": 0.8755 + }, + { + "start": 25095.42, + "end": 25096.0, + "probability": 0.6841 + }, + { + "start": 25097.8, + "end": 25105.74, + "probability": 0.5995 + }, + { + "start": 25109.86, + "end": 25110.6, + "probability": 0.7702 + }, + { + "start": 25113.76, + "end": 25115.32, + "probability": 0.8966 + }, + { + "start": 25118.14, + "end": 25118.68, + "probability": 0.908 + }, + { + "start": 25119.78, + "end": 25120.46, + "probability": 0.1943 + }, + { + "start": 25121.7, + "end": 25124.4, + "probability": 0.5995 + }, + { + "start": 25124.96, + "end": 25127.68, + "probability": 0.1731 + }, + { + "start": 25128.59, + "end": 25130.81, + "probability": 0.7732 + }, + { + "start": 25131.14, + "end": 25133.96, + "probability": 0.8055 + }, + { + "start": 25134.84, + "end": 25136.68, + "probability": 0.9653 + }, + { + "start": 25137.16, + "end": 25139.22, + "probability": 0.9732 + }, + { + "start": 25140.7, + "end": 25143.82, + "probability": 0.9521 + }, + { + "start": 25148.25, + "end": 25150.44, + "probability": 0.7393 + }, + { + "start": 25150.88, + "end": 25152.74, + "probability": 0.9051 + }, + { + "start": 25153.1, + "end": 25154.22, + "probability": 0.9802 + }, + { + "start": 25155.04, + "end": 25156.7, + "probability": 0.9699 + }, + { + "start": 25156.8, + "end": 25161.02, + "probability": 0.7784 + }, + { + "start": 25161.46, + "end": 25164.3, + "probability": 0.9815 + }, + { + "start": 25164.34, + "end": 25165.86, + "probability": 0.602 + }, + { + "start": 25166.02, + "end": 25167.28, + "probability": 0.9805 + }, + { + "start": 25168.1, + "end": 25171.28, + "probability": 0.958 + }, + { + "start": 25173.64, + "end": 25175.28, + "probability": 0.9401 + }, + { + "start": 25176.6, + "end": 25177.66, + "probability": 0.804 + }, + { + "start": 25178.36, + "end": 25178.94, + "probability": 0.4204 + }, + { + "start": 25178.94, + "end": 25179.68, + "probability": 0.8828 + }, + { + "start": 25180.06, + "end": 25182.24, + "probability": 0.9622 + }, + { + "start": 25182.46, + "end": 25182.9, + "probability": 0.5775 + }, + { + "start": 25182.98, + "end": 25183.74, + "probability": 0.8631 + }, + { + "start": 25183.94, + "end": 25185.04, + "probability": 0.9712 + }, + { + "start": 25185.3, + "end": 25186.08, + "probability": 0.9456 + }, + { + "start": 25186.48, + "end": 25187.42, + "probability": 0.9331 + }, + { + "start": 25187.44, + "end": 25189.08, + "probability": 0.7824 + }, + { + "start": 25189.32, + "end": 25192.37, + "probability": 0.9722 + }, + { + "start": 25193.36, + "end": 25194.06, + "probability": 0.9268 + }, + { + "start": 25194.16, + "end": 25194.58, + "probability": 0.6598 + }, + { + "start": 25194.72, + "end": 25195.87, + "probability": 0.9964 + }, + { + "start": 25196.6, + "end": 25200.92, + "probability": 0.991 + }, + { + "start": 25201.02, + "end": 25202.12, + "probability": 0.9259 + }, + { + "start": 25202.62, + "end": 25204.9, + "probability": 0.9614 + }, + { + "start": 25205.42, + "end": 25206.06, + "probability": 0.9397 + }, + { + "start": 25206.1, + "end": 25211.0, + "probability": 0.8986 + }, + { + "start": 25211.36, + "end": 25212.08, + "probability": 0.8283 + }, + { + "start": 25212.32, + "end": 25215.53, + "probability": 0.9089 + }, + { + "start": 25216.06, + "end": 25217.24, + "probability": 0.9722 + }, + { + "start": 25217.38, + "end": 25217.92, + "probability": 0.8715 + }, + { + "start": 25218.26, + "end": 25220.92, + "probability": 0.9951 + }, + { + "start": 25220.98, + "end": 25221.82, + "probability": 0.8604 + }, + { + "start": 25222.1, + "end": 25222.86, + "probability": 0.5841 + }, + { + "start": 25222.9, + "end": 25224.36, + "probability": 0.9964 + }, + { + "start": 25224.8, + "end": 25225.06, + "probability": 0.1147 + }, + { + "start": 25226.12, + "end": 25226.78, + "probability": 0.0938 + }, + { + "start": 25226.78, + "end": 25228.36, + "probability": 0.9352 + }, + { + "start": 25228.42, + "end": 25229.32, + "probability": 0.7571 + }, + { + "start": 25230.28, + "end": 25234.44, + "probability": 0.9629 + }, + { + "start": 25235.14, + "end": 25238.92, + "probability": 0.9584 + }, + { + "start": 25239.54, + "end": 25242.14, + "probability": 0.9484 + }, + { + "start": 25242.76, + "end": 25245.3, + "probability": 0.9626 + }, + { + "start": 25245.34, + "end": 25247.16, + "probability": 0.8819 + }, + { + "start": 25247.26, + "end": 25247.56, + "probability": 0.9171 + }, + { + "start": 25247.66, + "end": 25249.16, + "probability": 0.8143 + }, + { + "start": 25249.5, + "end": 25251.06, + "probability": 0.9248 + }, + { + "start": 25251.36, + "end": 25253.18, + "probability": 0.7334 + }, + { + "start": 25253.5, + "end": 25257.76, + "probability": 0.9873 + }, + { + "start": 25257.84, + "end": 25259.08, + "probability": 0.5031 + }, + { + "start": 25259.5, + "end": 25262.2, + "probability": 0.9962 + }, + { + "start": 25262.64, + "end": 25263.82, + "probability": 0.8758 + }, + { + "start": 25263.86, + "end": 25265.38, + "probability": 0.8495 + }, + { + "start": 25265.78, + "end": 25266.18, + "probability": 0.7493 + }, + { + "start": 25266.24, + "end": 25266.6, + "probability": 0.4853 + }, + { + "start": 25266.62, + "end": 25267.14, + "probability": 0.868 + }, + { + "start": 25267.58, + "end": 25270.1, + "probability": 0.9426 + }, + { + "start": 25270.62, + "end": 25273.74, + "probability": 0.9492 + }, + { + "start": 25273.78, + "end": 25277.78, + "probability": 0.9873 + }, + { + "start": 25278.64, + "end": 25279.44, + "probability": 0.7493 + }, + { + "start": 25280.32, + "end": 25283.04, + "probability": 0.9922 + }, + { + "start": 25283.1, + "end": 25285.32, + "probability": 0.5763 + }, + { + "start": 25285.64, + "end": 25286.92, + "probability": 0.4992 + }, + { + "start": 25287.04, + "end": 25290.68, + "probability": 0.9622 + }, + { + "start": 25291.34, + "end": 25293.46, + "probability": 0.7508 + }, + { + "start": 25294.14, + "end": 25295.46, + "probability": 0.6562 + }, + { + "start": 25296.0, + "end": 25301.28, + "probability": 0.9798 + }, + { + "start": 25301.8, + "end": 25302.46, + "probability": 0.5134 + }, + { + "start": 25302.5, + "end": 25303.2, + "probability": 0.8718 + }, + { + "start": 25306.47, + "end": 25309.21, + "probability": 0.1229 + }, + { + "start": 25315.28, + "end": 25315.42, + "probability": 0.0189 + }, + { + "start": 25321.08, + "end": 25321.22, + "probability": 0.0695 + }, + { + "start": 25321.22, + "end": 25323.74, + "probability": 0.7548 + }, + { + "start": 25324.12, + "end": 25326.31, + "probability": 0.9522 + }, + { + "start": 25327.04, + "end": 25327.28, + "probability": 0.0006 + }, + { + "start": 25333.18, + "end": 25334.52, + "probability": 0.9649 + }, + { + "start": 25334.64, + "end": 25336.42, + "probability": 0.897 + }, + { + "start": 25336.42, + "end": 25338.76, + "probability": 0.9743 + }, + { + "start": 25339.4, + "end": 25341.02, + "probability": 0.4896 + }, + { + "start": 25341.1, + "end": 25344.12, + "probability": 0.8501 + }, + { + "start": 25344.12, + "end": 25345.18, + "probability": 0.7362 + }, + { + "start": 25351.12, + "end": 25355.36, + "probability": 0.6387 + }, + { + "start": 25355.5, + "end": 25357.18, + "probability": 0.7695 + }, + { + "start": 25358.74, + "end": 25363.0, + "probability": 0.9838 + }, + { + "start": 25363.94, + "end": 25368.18, + "probability": 0.9989 + }, + { + "start": 25368.18, + "end": 25372.46, + "probability": 0.9852 + }, + { + "start": 25373.76, + "end": 25378.34, + "probability": 0.9956 + }, + { + "start": 25379.46, + "end": 25381.68, + "probability": 0.9766 + }, + { + "start": 25382.46, + "end": 25386.7, + "probability": 0.9878 + }, + { + "start": 25386.7, + "end": 25389.92, + "probability": 0.978 + }, + { + "start": 25391.64, + "end": 25392.0, + "probability": 0.9059 + }, + { + "start": 25392.02, + "end": 25396.34, + "probability": 0.999 + }, + { + "start": 25396.34, + "end": 25400.96, + "probability": 0.9922 + }, + { + "start": 25401.86, + "end": 25404.74, + "probability": 0.9803 + }, + { + "start": 25405.88, + "end": 25407.68, + "probability": 0.8901 + }, + { + "start": 25407.88, + "end": 25410.38, + "probability": 0.9938 + }, + { + "start": 25411.66, + "end": 25415.16, + "probability": 0.9893 + }, + { + "start": 25415.18, + "end": 25419.1, + "probability": 0.9972 + }, + { + "start": 25419.3, + "end": 25420.56, + "probability": 0.6777 + }, + { + "start": 25421.34, + "end": 25426.48, + "probability": 0.9928 + }, + { + "start": 25427.2, + "end": 25429.72, + "probability": 0.5363 + }, + { + "start": 25430.5, + "end": 25435.36, + "probability": 0.953 + }, + { + "start": 25436.54, + "end": 25442.34, + "probability": 0.8814 + }, + { + "start": 25442.94, + "end": 25445.44, + "probability": 0.9564 + }, + { + "start": 25446.32, + "end": 25451.5, + "probability": 0.9781 + }, + { + "start": 25452.02, + "end": 25453.94, + "probability": 0.6244 + }, + { + "start": 25455.46, + "end": 25457.52, + "probability": 0.7326 + }, + { + "start": 25458.68, + "end": 25460.3, + "probability": 0.9989 + }, + { + "start": 25461.12, + "end": 25464.94, + "probability": 0.9975 + }, + { + "start": 25464.94, + "end": 25469.62, + "probability": 0.999 + }, + { + "start": 25470.4, + "end": 25476.28, + "probability": 0.9978 + }, + { + "start": 25476.28, + "end": 25480.04, + "probability": 0.9849 + }, + { + "start": 25480.94, + "end": 25485.56, + "probability": 0.9827 + }, + { + "start": 25486.4, + "end": 25488.26, + "probability": 0.9987 + }, + { + "start": 25488.94, + "end": 25490.88, + "probability": 0.7788 + }, + { + "start": 25491.76, + "end": 25493.45, + "probability": 0.9686 + }, + { + "start": 25493.56, + "end": 25498.62, + "probability": 0.9402 + }, + { + "start": 25499.34, + "end": 25502.84, + "probability": 0.9988 + }, + { + "start": 25503.02, + "end": 25506.2, + "probability": 0.9675 + }, + { + "start": 25506.34, + "end": 25510.18, + "probability": 0.9968 + }, + { + "start": 25510.54, + "end": 25515.86, + "probability": 0.9523 + }, + { + "start": 25516.42, + "end": 25517.34, + "probability": 0.9473 + }, + { + "start": 25519.02, + "end": 25523.0, + "probability": 0.9911 + }, + { + "start": 25523.14, + "end": 25527.92, + "probability": 0.9964 + }, + { + "start": 25528.08, + "end": 25533.06, + "probability": 0.9763 + }, + { + "start": 25533.06, + "end": 25537.56, + "probability": 0.9204 + }, + { + "start": 25538.3, + "end": 25540.22, + "probability": 0.9242 + }, + { + "start": 25541.56, + "end": 25543.42, + "probability": 0.9036 + }, + { + "start": 25544.3, + "end": 25546.46, + "probability": 0.9481 + }, + { + "start": 25547.18, + "end": 25549.7, + "probability": 0.9445 + }, + { + "start": 25549.78, + "end": 25550.94, + "probability": 0.5786 + }, + { + "start": 25551.94, + "end": 25554.9, + "probability": 0.9696 + }, + { + "start": 25555.4, + "end": 25556.84, + "probability": 0.4551 + }, + { + "start": 25556.94, + "end": 25557.96, + "probability": 0.9574 + }, + { + "start": 25559.14, + "end": 25562.32, + "probability": 0.9746 + }, + { + "start": 25562.32, + "end": 25566.8, + "probability": 0.9716 + }, + { + "start": 25567.84, + "end": 25573.3, + "probability": 0.9196 + }, + { + "start": 25574.06, + "end": 25575.8, + "probability": 0.989 + }, + { + "start": 25575.94, + "end": 25579.06, + "probability": 0.722 + }, + { + "start": 25579.76, + "end": 25582.82, + "probability": 0.942 + }, + { + "start": 25583.44, + "end": 25586.54, + "probability": 0.9598 + }, + { + "start": 25586.66, + "end": 25589.12, + "probability": 0.878 + }, + { + "start": 25589.96, + "end": 25590.9, + "probability": 0.874 + }, + { + "start": 25592.06, + "end": 25594.44, + "probability": 0.9696 + }, + { + "start": 25595.08, + "end": 25597.32, + "probability": 0.9961 + }, + { + "start": 25598.06, + "end": 25599.64, + "probability": 0.8783 + }, + { + "start": 25601.16, + "end": 25602.3, + "probability": 0.8944 + }, + { + "start": 25602.4, + "end": 25605.3, + "probability": 0.9844 + }, + { + "start": 25605.98, + "end": 25608.64, + "probability": 0.9464 + }, + { + "start": 25609.28, + "end": 25612.0, + "probability": 0.997 + }, + { + "start": 25612.0, + "end": 25615.48, + "probability": 0.9966 + }, + { + "start": 25616.9, + "end": 25620.52, + "probability": 0.9894 + }, + { + "start": 25621.4, + "end": 25621.9, + "probability": 0.9799 + }, + { + "start": 25622.02, + "end": 25622.7, + "probability": 0.9353 + }, + { + "start": 25622.74, + "end": 25626.12, + "probability": 0.9821 + }, + { + "start": 25626.12, + "end": 25629.28, + "probability": 0.9847 + }, + { + "start": 25629.7, + "end": 25631.48, + "probability": 0.905 + }, + { + "start": 25631.68, + "end": 25632.54, + "probability": 0.9016 + }, + { + "start": 25633.16, + "end": 25636.5, + "probability": 0.9839 + }, + { + "start": 25637.38, + "end": 25641.46, + "probability": 0.981 + }, + { + "start": 25643.04, + "end": 25645.58, + "probability": 0.9883 + }, + { + "start": 25646.14, + "end": 25648.04, + "probability": 0.6982 + }, + { + "start": 25649.12, + "end": 25650.08, + "probability": 0.8879 + }, + { + "start": 25650.66, + "end": 25654.6, + "probability": 0.9609 + }, + { + "start": 25654.6, + "end": 25658.58, + "probability": 0.9919 + }, + { + "start": 25659.42, + "end": 25662.68, + "probability": 0.9774 + }, + { + "start": 25663.98, + "end": 25665.52, + "probability": 0.9639 + }, + { + "start": 25667.06, + "end": 25669.7, + "probability": 0.9662 + }, + { + "start": 25670.28, + "end": 25673.52, + "probability": 0.9979 + }, + { + "start": 25674.14, + "end": 25678.34, + "probability": 0.9113 + }, + { + "start": 25678.42, + "end": 25679.2, + "probability": 0.9096 + }, + { + "start": 25679.52, + "end": 25680.42, + "probability": 0.8291 + }, + { + "start": 25681.18, + "end": 25684.48, + "probability": 0.9971 + }, + { + "start": 25685.3, + "end": 25689.62, + "probability": 0.998 + }, + { + "start": 25690.74, + "end": 25692.02, + "probability": 0.4465 + }, + { + "start": 25693.74, + "end": 25694.82, + "probability": 0.9291 + }, + { + "start": 25694.88, + "end": 25695.64, + "probability": 0.7175 + }, + { + "start": 25695.8, + "end": 25697.94, + "probability": 0.9902 + }, + { + "start": 25698.16, + "end": 25699.44, + "probability": 0.9734 + }, + { + "start": 25700.22, + "end": 25702.14, + "probability": 0.7022 + }, + { + "start": 25703.94, + "end": 25709.5, + "probability": 0.9955 + }, + { + "start": 25709.5, + "end": 25715.06, + "probability": 0.8529 + }, + { + "start": 25715.64, + "end": 25716.78, + "probability": 0.8865 + }, + { + "start": 25717.44, + "end": 25722.18, + "probability": 0.9943 + }, + { + "start": 25722.28, + "end": 25722.68, + "probability": 0.7546 + }, + { + "start": 25723.86, + "end": 25724.26, + "probability": 0.7913 + }, + { + "start": 25724.38, + "end": 25727.3, + "probability": 0.6492 + }, + { + "start": 25755.66, + "end": 25759.34, + "probability": 0.5794 + }, + { + "start": 25761.34, + "end": 25766.24, + "probability": 0.9606 + }, + { + "start": 25766.92, + "end": 25769.52, + "probability": 0.995 + }, + { + "start": 25769.66, + "end": 25772.2, + "probability": 0.9978 + }, + { + "start": 25772.72, + "end": 25776.8, + "probability": 0.714 + }, + { + "start": 25777.44, + "end": 25778.4, + "probability": 0.9432 + }, + { + "start": 25778.5, + "end": 25779.0, + "probability": 0.3733 + }, + { + "start": 25779.18, + "end": 25782.82, + "probability": 0.9877 + }, + { + "start": 25782.92, + "end": 25787.26, + "probability": 0.9805 + }, + { + "start": 25787.26, + "end": 25791.06, + "probability": 0.9954 + }, + { + "start": 25791.58, + "end": 25793.82, + "probability": 0.9973 + }, + { + "start": 25793.86, + "end": 25794.94, + "probability": 0.9971 + }, + { + "start": 25795.24, + "end": 25798.58, + "probability": 0.9948 + }, + { + "start": 25800.08, + "end": 25803.6, + "probability": 0.9949 + }, + { + "start": 25803.6, + "end": 25806.06, + "probability": 0.9982 + }, + { + "start": 25806.16, + "end": 25809.86, + "probability": 0.9946 + }, + { + "start": 25810.58, + "end": 25814.14, + "probability": 0.4742 + }, + { + "start": 25814.54, + "end": 25816.18, + "probability": 0.6183 + }, + { + "start": 25816.34, + "end": 25816.34, + "probability": 0.701 + }, + { + "start": 25816.46, + "end": 25817.48, + "probability": 0.9956 + }, + { + "start": 25818.12, + "end": 25820.98, + "probability": 0.995 + }, + { + "start": 25821.04, + "end": 25822.52, + "probability": 0.998 + }, + { + "start": 25823.3, + "end": 25825.94, + "probability": 0.9948 + }, + { + "start": 25825.94, + "end": 25829.66, + "probability": 0.9979 + }, + { + "start": 25830.16, + "end": 25832.95, + "probability": 0.9978 + }, + { + "start": 25833.44, + "end": 25836.1, + "probability": 0.9981 + }, + { + "start": 25836.26, + "end": 25836.98, + "probability": 0.739 + }, + { + "start": 25837.98, + "end": 25843.62, + "probability": 0.9976 + }, + { + "start": 25843.9, + "end": 25845.06, + "probability": 0.96 + }, + { + "start": 25845.54, + "end": 25847.74, + "probability": 0.8983 + }, + { + "start": 25848.22, + "end": 25851.42, + "probability": 0.9139 + }, + { + "start": 25851.42, + "end": 25854.96, + "probability": 0.9987 + }, + { + "start": 25855.32, + "end": 25858.42, + "probability": 0.9988 + }, + { + "start": 25858.84, + "end": 25862.22, + "probability": 0.9871 + }, + { + "start": 25863.34, + "end": 25865.88, + "probability": 0.9902 + }, + { + "start": 25865.88, + "end": 25869.3, + "probability": 0.9993 + }, + { + "start": 25870.4, + "end": 25871.56, + "probability": 0.6464 + }, + { + "start": 25872.32, + "end": 25873.7, + "probability": 0.7327 + }, + { + "start": 25876.64, + "end": 25881.2, + "probability": 0.9902 + }, + { + "start": 25881.7, + "end": 25883.72, + "probability": 0.9346 + }, + { + "start": 25883.78, + "end": 25887.02, + "probability": 0.9777 + }, + { + "start": 25887.6, + "end": 25891.32, + "probability": 0.9577 + }, + { + "start": 25891.32, + "end": 25894.88, + "probability": 0.9891 + }, + { + "start": 25895.02, + "end": 25895.24, + "probability": 0.6933 + }, + { + "start": 25896.76, + "end": 25897.51, + "probability": 0.7271 + }, + { + "start": 25898.18, + "end": 25899.0, + "probability": 0.6887 + }, + { + "start": 25900.16, + "end": 25903.86, + "probability": 0.8856 + }, + { + "start": 25913.5, + "end": 25915.46, + "probability": 0.6464 + }, + { + "start": 25927.06, + "end": 25930.0, + "probability": 0.7539 + }, + { + "start": 25931.74, + "end": 25934.56, + "probability": 0.975 + }, + { + "start": 25935.52, + "end": 25937.16, + "probability": 0.7529 + }, + { + "start": 25940.28, + "end": 25943.44, + "probability": 0.9404 + }, + { + "start": 25945.14, + "end": 25946.4, + "probability": 0.1335 + }, + { + "start": 25948.64, + "end": 25952.56, + "probability": 0.6218 + }, + { + "start": 25953.38, + "end": 25954.4, + "probability": 0.9302 + }, + { + "start": 25960.72, + "end": 25964.14, + "probability": 0.5582 + }, + { + "start": 25964.2, + "end": 25965.84, + "probability": 0.7048 + }, + { + "start": 25966.16, + "end": 25967.36, + "probability": 0.8346 + }, + { + "start": 25968.76, + "end": 25970.02, + "probability": 0.7695 + }, + { + "start": 25970.38, + "end": 25970.86, + "probability": 0.6487 + }, + { + "start": 25970.86, + "end": 25971.86, + "probability": 0.9238 + }, + { + "start": 25972.48, + "end": 25975.22, + "probability": 0.9512 + }, + { + "start": 25976.38, + "end": 25979.98, + "probability": 0.6705 + }, + { + "start": 25980.62, + "end": 25982.1, + "probability": 0.9894 + }, + { + "start": 25983.2, + "end": 25985.6, + "probability": 0.8396 + }, + { + "start": 25986.58, + "end": 25991.84, + "probability": 0.9854 + }, + { + "start": 25992.28, + "end": 25994.1, + "probability": 0.9203 + }, + { + "start": 25994.6, + "end": 25997.22, + "probability": 0.8969 + }, + { + "start": 25998.96, + "end": 26003.38, + "probability": 0.9591 + }, + { + "start": 26004.92, + "end": 26005.86, + "probability": 0.8439 + }, + { + "start": 26007.26, + "end": 26009.22, + "probability": 0.7024 + }, + { + "start": 26009.82, + "end": 26011.84, + "probability": 0.9149 + }, + { + "start": 26012.56, + "end": 26016.5, + "probability": 0.9549 + }, + { + "start": 26016.88, + "end": 26017.34, + "probability": 0.951 + }, + { + "start": 26018.18, + "end": 26021.22, + "probability": 0.9441 + }, + { + "start": 26023.22, + "end": 26027.58, + "probability": 0.9774 + }, + { + "start": 26029.46, + "end": 26031.08, + "probability": 0.8525 + }, + { + "start": 26031.46, + "end": 26032.04, + "probability": 0.8267 + }, + { + "start": 26033.52, + "end": 26037.12, + "probability": 0.9794 + }, + { + "start": 26038.36, + "end": 26039.7, + "probability": 0.9895 + }, + { + "start": 26040.22, + "end": 26045.64, + "probability": 0.9201 + }, + { + "start": 26047.76, + "end": 26049.18, + "probability": 0.8831 + }, + { + "start": 26050.56, + "end": 26052.42, + "probability": 0.9724 + }, + { + "start": 26053.54, + "end": 26054.24, + "probability": 0.5341 + }, + { + "start": 26054.88, + "end": 26056.72, + "probability": 0.9795 + }, + { + "start": 26059.0, + "end": 26062.0, + "probability": 0.9491 + }, + { + "start": 26063.02, + "end": 26066.98, + "probability": 0.9108 + }, + { + "start": 26067.9, + "end": 26074.04, + "probability": 0.9527 + }, + { + "start": 26074.2, + "end": 26074.48, + "probability": 0.3291 + }, + { + "start": 26074.74, + "end": 26077.06, + "probability": 0.022 + }, + { + "start": 26077.56, + "end": 26079.68, + "probability": 0.4735 + }, + { + "start": 26081.6, + "end": 26083.06, + "probability": 0.7794 + }, + { + "start": 26083.28, + "end": 26087.18, + "probability": 0.9904 + }, + { + "start": 26087.56, + "end": 26088.1, + "probability": 0.9771 + }, + { + "start": 26089.6, + "end": 26090.28, + "probability": 0.8292 + }, + { + "start": 26091.28, + "end": 26092.86, + "probability": 0.972 + }, + { + "start": 26093.54, + "end": 26097.54, + "probability": 0.9812 + }, + { + "start": 26098.88, + "end": 26100.58, + "probability": 0.9141 + }, + { + "start": 26101.38, + "end": 26105.72, + "probability": 0.1397 + }, + { + "start": 26109.04, + "end": 26110.18, + "probability": 0.1952 + }, + { + "start": 26110.18, + "end": 26111.2, + "probability": 0.0206 + }, + { + "start": 26111.2, + "end": 26111.2, + "probability": 0.1152 + }, + { + "start": 26111.2, + "end": 26111.2, + "probability": 0.1346 + }, + { + "start": 26111.2, + "end": 26114.26, + "probability": 0.6566 + }, + { + "start": 26114.46, + "end": 26118.0, + "probability": 0.6777 + }, + { + "start": 26118.12, + "end": 26118.52, + "probability": 0.701 + }, + { + "start": 26119.36, + "end": 26120.74, + "probability": 0.7758 + }, + { + "start": 26121.04, + "end": 26122.58, + "probability": 0.5186 + }, + { + "start": 26123.36, + "end": 26125.6, + "probability": 0.6604 + }, + { + "start": 26125.98, + "end": 26126.47, + "probability": 0.1024 + }, + { + "start": 26127.2, + "end": 26128.56, + "probability": 0.4171 + }, + { + "start": 26128.58, + "end": 26131.26, + "probability": 0.1781 + }, + { + "start": 26131.52, + "end": 26133.3, + "probability": 0.2106 + }, + { + "start": 26133.54, + "end": 26135.34, + "probability": 0.3981 + }, + { + "start": 26135.68, + "end": 26137.66, + "probability": 0.0778 + }, + { + "start": 26137.94, + "end": 26137.94, + "probability": 0.2515 + }, + { + "start": 26137.94, + "end": 26140.72, + "probability": 0.436 + }, + { + "start": 26140.86, + "end": 26142.69, + "probability": 0.5857 + }, + { + "start": 26142.74, + "end": 26143.94, + "probability": 0.4197 + }, + { + "start": 26144.0, + "end": 26145.7, + "probability": 0.54 + }, + { + "start": 26147.08, + "end": 26148.84, + "probability": 0.3843 + }, + { + "start": 26149.02, + "end": 26150.76, + "probability": 0.2291 + }, + { + "start": 26150.76, + "end": 26151.28, + "probability": 0.3851 + }, + { + "start": 26151.76, + "end": 26151.84, + "probability": 0.1924 + }, + { + "start": 26151.84, + "end": 26151.84, + "probability": 0.3548 + }, + { + "start": 26151.84, + "end": 26151.84, + "probability": 0.0307 + }, + { + "start": 26151.84, + "end": 26154.84, + "probability": 0.8874 + }, + { + "start": 26154.84, + "end": 26161.38, + "probability": 0.8945 + }, + { + "start": 26161.42, + "end": 26162.78, + "probability": 0.6826 + }, + { + "start": 26162.98, + "end": 26164.66, + "probability": 0.3417 + }, + { + "start": 26164.72, + "end": 26164.78, + "probability": 0.0422 + }, + { + "start": 26164.78, + "end": 26164.78, + "probability": 0.6121 + }, + { + "start": 26164.78, + "end": 26169.08, + "probability": 0.7081 + }, + { + "start": 26169.94, + "end": 26171.74, + "probability": 0.842 + }, + { + "start": 26172.2, + "end": 26174.24, + "probability": 0.6238 + }, + { + "start": 26174.38, + "end": 26174.44, + "probability": 0.0648 + }, + { + "start": 26174.6, + "end": 26176.44, + "probability": 0.8525 + }, + { + "start": 26177.48, + "end": 26182.62, + "probability": 0.9327 + }, + { + "start": 26183.14, + "end": 26184.12, + "probability": 0.8625 + }, + { + "start": 26184.18, + "end": 26184.72, + "probability": 0.1384 + }, + { + "start": 26185.42, + "end": 26188.08, + "probability": 0.8867 + }, + { + "start": 26188.88, + "end": 26191.66, + "probability": 0.5298 + }, + { + "start": 26191.8, + "end": 26192.98, + "probability": 0.9829 + }, + { + "start": 26194.02, + "end": 26194.54, + "probability": 0.6379 + }, + { + "start": 26194.62, + "end": 26195.3, + "probability": 0.9066 + }, + { + "start": 26195.42, + "end": 26197.28, + "probability": 0.8983 + }, + { + "start": 26197.64, + "end": 26201.28, + "probability": 0.7326 + }, + { + "start": 26201.36, + "end": 26202.18, + "probability": 0.976 + }, + { + "start": 26203.12, + "end": 26206.22, + "probability": 0.9981 + }, + { + "start": 26206.24, + "end": 26206.24, + "probability": 0.0265 + }, + { + "start": 26206.66, + "end": 26207.0, + "probability": 0.1208 + }, + { + "start": 26207.18, + "end": 26208.44, + "probability": 0.4741 + }, + { + "start": 26208.52, + "end": 26211.42, + "probability": 0.9254 + }, + { + "start": 26211.86, + "end": 26213.44, + "probability": 0.8354 + }, + { + "start": 26213.82, + "end": 26215.86, + "probability": 0.9399 + }, + { + "start": 26215.96, + "end": 26216.4, + "probability": 0.7554 + }, + { + "start": 26217.52, + "end": 26218.54, + "probability": 0.892 + }, + { + "start": 26218.88, + "end": 26220.51, + "probability": 0.8677 + }, + { + "start": 26221.47, + "end": 26223.66, + "probability": 0.7061 + }, + { + "start": 26223.68, + "end": 26224.46, + "probability": 0.7429 + }, + { + "start": 26224.74, + "end": 26225.52, + "probability": 0.9761 + }, + { + "start": 26225.54, + "end": 26225.62, + "probability": 0.4673 + }, + { + "start": 26226.3, + "end": 26227.14, + "probability": 0.4972 + }, + { + "start": 26228.08, + "end": 26230.14, + "probability": 0.2598 + }, + { + "start": 26232.78, + "end": 26235.38, + "probability": 0.725 + }, + { + "start": 26236.3, + "end": 26240.08, + "probability": 0.0132 + }, + { + "start": 26242.18, + "end": 26244.54, + "probability": 0.278 + }, + { + "start": 26249.5, + "end": 26250.94, + "probability": 0.0002 + }, + { + "start": 26252.16, + "end": 26255.86, + "probability": 0.2796 + }, + { + "start": 26258.73, + "end": 26260.92, + "probability": 0.1123 + }, + { + "start": 26260.92, + "end": 26261.76, + "probability": 0.0603 + }, + { + "start": 26263.04, + "end": 26263.44, + "probability": 0.0148 + }, + { + "start": 26264.22, + "end": 26267.66, + "probability": 0.5537 + }, + { + "start": 26267.8, + "end": 26269.68, + "probability": 0.2546 + }, + { + "start": 26270.11, + "end": 26270.54, + "probability": 0.0601 + }, + { + "start": 26270.54, + "end": 26273.82, + "probability": 0.1119 + }, + { + "start": 26274.72, + "end": 26276.14, + "probability": 0.1381 + }, + { + "start": 26279.02, + "end": 26284.96, + "probability": 0.1177 + }, + { + "start": 26286.38, + "end": 26286.38, + "probability": 0.092 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26322.0, + "end": 26322.0, + "probability": 0.0 + }, + { + "start": 26323.41, + "end": 26326.18, + "probability": 0.5431 + }, + { + "start": 26327.12, + "end": 26330.24, + "probability": 0.957 + }, + { + "start": 26331.18, + "end": 26333.19, + "probability": 0.9917 + }, + { + "start": 26333.92, + "end": 26335.8, + "probability": 0.7494 + }, + { + "start": 26336.42, + "end": 26340.5, + "probability": 0.9826 + }, + { + "start": 26341.8, + "end": 26344.98, + "probability": 0.9864 + }, + { + "start": 26346.44, + "end": 26350.0, + "probability": 0.825 + }, + { + "start": 26350.92, + "end": 26351.56, + "probability": 0.8496 + }, + { + "start": 26352.32, + "end": 26353.48, + "probability": 0.9249 + }, + { + "start": 26354.26, + "end": 26358.82, + "probability": 0.9945 + }, + { + "start": 26358.82, + "end": 26365.1, + "probability": 0.9636 + }, + { + "start": 26365.82, + "end": 26368.76, + "probability": 0.6855 + }, + { + "start": 26369.62, + "end": 26374.84, + "probability": 0.956 + }, + { + "start": 26376.02, + "end": 26378.84, + "probability": 0.9882 + }, + { + "start": 26379.9, + "end": 26380.86, + "probability": 0.7737 + }, + { + "start": 26381.9, + "end": 26384.76, + "probability": 0.997 + }, + { + "start": 26385.8, + "end": 26387.44, + "probability": 0.937 + }, + { + "start": 26388.4, + "end": 26391.14, + "probability": 0.9785 + }, + { + "start": 26391.28, + "end": 26391.96, + "probability": 0.9609 + }, + { + "start": 26393.44, + "end": 26397.1, + "probability": 0.9349 + }, + { + "start": 26398.18, + "end": 26398.46, + "probability": 0.7391 + }, + { + "start": 26398.66, + "end": 26399.25, + "probability": 0.9832 + }, + { + "start": 26399.58, + "end": 26401.52, + "probability": 0.9723 + }, + { + "start": 26401.6, + "end": 26403.44, + "probability": 0.9529 + }, + { + "start": 26404.22, + "end": 26406.8, + "probability": 0.994 + }, + { + "start": 26408.46, + "end": 26410.58, + "probability": 0.8306 + }, + { + "start": 26411.72, + "end": 26412.5, + "probability": 0.9767 + }, + { + "start": 26413.16, + "end": 26415.43, + "probability": 0.9076 + }, + { + "start": 26416.74, + "end": 26417.48, + "probability": 0.9565 + }, + { + "start": 26418.26, + "end": 26419.78, + "probability": 0.9583 + }, + { + "start": 26421.26, + "end": 26423.9, + "probability": 0.9559 + }, + { + "start": 26425.36, + "end": 26428.38, + "probability": 0.98 + }, + { + "start": 26428.88, + "end": 26431.74, + "probability": 0.8734 + }, + { + "start": 26432.38, + "end": 26433.76, + "probability": 0.9917 + }, + { + "start": 26434.32, + "end": 26437.7, + "probability": 0.9881 + }, + { + "start": 26439.16, + "end": 26443.77, + "probability": 0.958 + }, + { + "start": 26444.22, + "end": 26450.24, + "probability": 0.9884 + }, + { + "start": 26451.88, + "end": 26455.4, + "probability": 0.998 + }, + { + "start": 26455.4, + "end": 26458.92, + "probability": 0.9974 + }, + { + "start": 26460.62, + "end": 26461.26, + "probability": 0.7931 + }, + { + "start": 26462.32, + "end": 26468.4, + "probability": 0.9958 + }, + { + "start": 26469.06, + "end": 26471.2, + "probability": 0.9053 + }, + { + "start": 26471.78, + "end": 26473.04, + "probability": 0.8684 + }, + { + "start": 26474.06, + "end": 26477.08, + "probability": 0.9731 + }, + { + "start": 26477.08, + "end": 26479.9, + "probability": 0.9948 + }, + { + "start": 26480.44, + "end": 26484.28, + "probability": 0.9962 + }, + { + "start": 26484.28, + "end": 26488.6, + "probability": 0.9993 + }, + { + "start": 26489.84, + "end": 26492.32, + "probability": 0.9426 + }, + { + "start": 26493.52, + "end": 26499.1, + "probability": 0.9932 + }, + { + "start": 26499.1, + "end": 26505.8, + "probability": 0.9909 + }, + { + "start": 26506.8, + "end": 26510.94, + "probability": 0.9937 + }, + { + "start": 26511.64, + "end": 26514.22, + "probability": 0.9978 + }, + { + "start": 26514.8, + "end": 26518.78, + "probability": 0.956 + }, + { + "start": 26520.26, + "end": 26524.18, + "probability": 0.9601 + }, + { + "start": 26526.34, + "end": 26527.56, + "probability": 0.7859 + }, + { + "start": 26527.78, + "end": 26528.3, + "probability": 0.6077 + }, + { + "start": 26528.48, + "end": 26532.32, + "probability": 0.8919 + }, + { + "start": 26532.32, + "end": 26536.58, + "probability": 0.9833 + }, + { + "start": 26536.58, + "end": 26541.48, + "probability": 0.8818 + }, + { + "start": 26542.1, + "end": 26543.08, + "probability": 0.8815 + }, + { + "start": 26543.72, + "end": 26544.94, + "probability": 0.9649 + }, + { + "start": 26545.86, + "end": 26549.28, + "probability": 0.9806 + }, + { + "start": 26550.52, + "end": 26551.68, + "probability": 0.997 + }, + { + "start": 26552.4, + "end": 26558.9, + "probability": 0.9867 + }, + { + "start": 26559.0, + "end": 26559.68, + "probability": 0.8167 + }, + { + "start": 26559.8, + "end": 26561.4, + "probability": 0.7081 + }, + { + "start": 26561.86, + "end": 26564.02, + "probability": 0.9912 + }, + { + "start": 26564.68, + "end": 26566.34, + "probability": 0.9565 + }, + { + "start": 26567.46, + "end": 26574.86, + "probability": 0.9552 + }, + { + "start": 26576.14, + "end": 26580.16, + "probability": 0.8831 + }, + { + "start": 26580.94, + "end": 26585.52, + "probability": 0.9919 + }, + { + "start": 26585.52, + "end": 26589.94, + "probability": 0.9989 + }, + { + "start": 26591.56, + "end": 26595.32, + "probability": 0.9993 + }, + { + "start": 26595.32, + "end": 26599.68, + "probability": 0.9786 + }, + { + "start": 26600.64, + "end": 26605.4, + "probability": 0.9905 + }, + { + "start": 26606.36, + "end": 26607.58, + "probability": 0.9948 + }, + { + "start": 26608.68, + "end": 26612.86, + "probability": 0.9957 + }, + { + "start": 26612.86, + "end": 26617.68, + "probability": 0.9969 + }, + { + "start": 26618.72, + "end": 26620.28, + "probability": 0.9979 + }, + { + "start": 26621.02, + "end": 26626.29, + "probability": 0.9861 + }, + { + "start": 26626.64, + "end": 26628.08, + "probability": 0.9368 + }, + { + "start": 26628.72, + "end": 26632.14, + "probability": 0.9536 + }, + { + "start": 26632.2, + "end": 26640.02, + "probability": 0.9865 + }, + { + "start": 26640.02, + "end": 26646.84, + "probability": 0.9961 + }, + { + "start": 26648.2, + "end": 26648.32, + "probability": 0.7915 + }, + { + "start": 26648.4, + "end": 26652.1, + "probability": 0.8792 + }, + { + "start": 26652.5, + "end": 26653.28, + "probability": 0.8098 + }, + { + "start": 26653.36, + "end": 26656.2, + "probability": 0.9868 + }, + { + "start": 26656.76, + "end": 26659.7, + "probability": 0.9048 + }, + { + "start": 26660.58, + "end": 26661.35, + "probability": 0.9465 + }, + { + "start": 26661.96, + "end": 26666.44, + "probability": 0.9978 + }, + { + "start": 26666.44, + "end": 26670.84, + "probability": 0.9995 + }, + { + "start": 26670.98, + "end": 26672.0, + "probability": 0.9634 + }, + { + "start": 26672.3, + "end": 26673.2, + "probability": 0.624 + }, + { + "start": 26673.34, + "end": 26674.92, + "probability": 0.8334 + }, + { + "start": 26675.46, + "end": 26680.58, + "probability": 0.9902 + }, + { + "start": 26681.44, + "end": 26685.06, + "probability": 0.9885 + }, + { + "start": 26685.18, + "end": 26689.08, + "probability": 0.973 + }, + { + "start": 26689.24, + "end": 26695.16, + "probability": 0.9941 + }, + { + "start": 26695.32, + "end": 26695.96, + "probability": 0.6117 + }, + { + "start": 26696.44, + "end": 26696.96, + "probability": 0.6644 + }, + { + "start": 26697.02, + "end": 26699.78, + "probability": 0.5649 + }, + { + "start": 26718.54, + "end": 26720.48, + "probability": 0.7217 + }, + { + "start": 26721.18, + "end": 26724.86, + "probability": 0.9932 + }, + { + "start": 26725.04, + "end": 26729.46, + "probability": 0.9541 + }, + { + "start": 26730.0, + "end": 26732.24, + "probability": 0.9281 + }, + { + "start": 26732.24, + "end": 26734.26, + "probability": 0.9976 + }, + { + "start": 26734.34, + "end": 26734.84, + "probability": 0.656 + }, + { + "start": 26735.24, + "end": 26738.7, + "probability": 0.9267 + }, + { + "start": 26738.82, + "end": 26739.3, + "probability": 0.5077 + }, + { + "start": 26739.78, + "end": 26740.5, + "probability": 0.9878 + }, + { + "start": 26740.7, + "end": 26741.6, + "probability": 0.4225 + }, + { + "start": 26742.02, + "end": 26742.72, + "probability": 0.5897 + }, + { + "start": 26743.68, + "end": 26744.8, + "probability": 0.9327 + }, + { + "start": 26744.84, + "end": 26748.02, + "probability": 0.7528 + }, + { + "start": 26748.56, + "end": 26749.1, + "probability": 0.613 + }, + { + "start": 26749.18, + "end": 26749.78, + "probability": 0.8961 + }, + { + "start": 26750.1, + "end": 26753.6, + "probability": 0.9907 + }, + { + "start": 26753.74, + "end": 26754.96, + "probability": 0.837 + }, + { + "start": 26754.98, + "end": 26757.52, + "probability": 0.7093 + }, + { + "start": 26757.6, + "end": 26763.22, + "probability": 0.9273 + }, + { + "start": 26764.24, + "end": 26765.48, + "probability": 0.945 + }, + { + "start": 26766.1, + "end": 26770.2, + "probability": 0.9151 + }, + { + "start": 26770.54, + "end": 26771.3, + "probability": 0.5543 + }, + { + "start": 26771.36, + "end": 26772.86, + "probability": 0.8884 + }, + { + "start": 26773.1, + "end": 26774.96, + "probability": 0.9798 + }, + { + "start": 26775.24, + "end": 26775.82, + "probability": 0.8211 + }, + { + "start": 26775.9, + "end": 26777.98, + "probability": 0.9212 + }, + { + "start": 26778.7, + "end": 26779.48, + "probability": 0.9844 + }, + { + "start": 26780.16, + "end": 26783.62, + "probability": 0.9656 + }, + { + "start": 26784.36, + "end": 26787.24, + "probability": 0.9841 + }, + { + "start": 26787.58, + "end": 26790.82, + "probability": 0.9967 + }, + { + "start": 26791.28, + "end": 26794.08, + "probability": 0.9664 + }, + { + "start": 26794.64, + "end": 26796.78, + "probability": 0.9355 + }, + { + "start": 26797.36, + "end": 26801.24, + "probability": 0.9482 + }, + { + "start": 26801.4, + "end": 26803.4, + "probability": 0.8207 + }, + { + "start": 26804.02, + "end": 26806.64, + "probability": 0.9922 + }, + { + "start": 26806.64, + "end": 26809.68, + "probability": 0.988 + }, + { + "start": 26810.42, + "end": 26811.32, + "probability": 0.877 + }, + { + "start": 26811.76, + "end": 26814.62, + "probability": 0.9186 + }, + { + "start": 26814.74, + "end": 26815.58, + "probability": 0.8749 + }, + { + "start": 26816.3, + "end": 26816.44, + "probability": 0.4512 + }, + { + "start": 26816.46, + "end": 26822.96, + "probability": 0.9644 + }, + { + "start": 26823.56, + "end": 26828.74, + "probability": 0.9951 + }, + { + "start": 26829.18, + "end": 26833.42, + "probability": 0.9932 + }, + { + "start": 26833.44, + "end": 26833.84, + "probability": 0.6152 + }, + { + "start": 26834.76, + "end": 26836.12, + "probability": 0.9772 + }, + { + "start": 26836.24, + "end": 26837.66, + "probability": 0.8097 + }, + { + "start": 26837.78, + "end": 26838.52, + "probability": 0.9082 + }, + { + "start": 26838.68, + "end": 26839.48, + "probability": 0.889 + }, + { + "start": 26840.02, + "end": 26844.1, + "probability": 0.9919 + }, + { + "start": 26844.56, + "end": 26847.18, + "probability": 0.9854 + }, + { + "start": 26847.74, + "end": 26850.34, + "probability": 0.9805 + }, + { + "start": 26850.86, + "end": 26856.62, + "probability": 0.9174 + }, + { + "start": 26857.18, + "end": 26857.54, + "probability": 0.795 + }, + { + "start": 26858.02, + "end": 26863.4, + "probability": 0.9947 + }, + { + "start": 26863.86, + "end": 26866.9, + "probability": 0.9528 + }, + { + "start": 26867.4, + "end": 26870.43, + "probability": 0.9946 + }, + { + "start": 26870.58, + "end": 26871.62, + "probability": 0.9268 + }, + { + "start": 26871.7, + "end": 26873.26, + "probability": 0.9857 + }, + { + "start": 26874.1, + "end": 26877.34, + "probability": 0.9298 + }, + { + "start": 26877.48, + "end": 26883.82, + "probability": 0.9773 + }, + { + "start": 26883.82, + "end": 26889.56, + "probability": 0.9978 + }, + { + "start": 26890.06, + "end": 26893.58, + "probability": 0.9889 + }, + { + "start": 26893.84, + "end": 26895.38, + "probability": 0.9081 + }, + { + "start": 26896.12, + "end": 26900.8, + "probability": 0.6576 + }, + { + "start": 26901.24, + "end": 26903.3, + "probability": 0.8466 + }, + { + "start": 26903.74, + "end": 26906.04, + "probability": 0.9851 + }, + { + "start": 26906.12, + "end": 26908.24, + "probability": 0.9464 + }, + { + "start": 26908.64, + "end": 26911.5, + "probability": 0.999 + }, + { + "start": 26912.02, + "end": 26913.76, + "probability": 0.8803 + }, + { + "start": 26913.94, + "end": 26915.46, + "probability": 0.8463 + }, + { + "start": 26916.48, + "end": 26919.18, + "probability": 0.9551 + }, + { + "start": 26919.58, + "end": 26922.14, + "probability": 0.9647 + }, + { + "start": 26922.6, + "end": 26923.26, + "probability": 0.9763 + }, + { + "start": 26923.6, + "end": 26924.22, + "probability": 0.9701 + }, + { + "start": 26924.54, + "end": 26925.28, + "probability": 0.7079 + }, + { + "start": 26925.78, + "end": 26927.24, + "probability": 0.9911 + }, + { + "start": 26927.3, + "end": 26930.34, + "probability": 0.9766 + }, + { + "start": 26930.44, + "end": 26932.12, + "probability": 0.979 + }, + { + "start": 26932.58, + "end": 26935.92, + "probability": 0.9329 + }, + { + "start": 26936.24, + "end": 26939.1, + "probability": 0.9839 + }, + { + "start": 26939.1, + "end": 26942.84, + "probability": 0.8682 + }, + { + "start": 26943.14, + "end": 26944.52, + "probability": 0.9972 + }, + { + "start": 26945.02, + "end": 26945.9, + "probability": 0.8838 + }, + { + "start": 26946.04, + "end": 26946.64, + "probability": 0.9062 + }, + { + "start": 26946.76, + "end": 26948.02, + "probability": 0.9674 + }, + { + "start": 26948.56, + "end": 26949.73, + "probability": 0.9766 + }, + { + "start": 26950.2, + "end": 26956.06, + "probability": 0.9796 + }, + { + "start": 26956.6, + "end": 26959.6, + "probability": 0.9666 + }, + { + "start": 26960.16, + "end": 26964.18, + "probability": 0.9922 + }, + { + "start": 26964.32, + "end": 26965.22, + "probability": 0.8769 + }, + { + "start": 26965.64, + "end": 26966.64, + "probability": 0.6778 + }, + { + "start": 26966.74, + "end": 26968.46, + "probability": 0.1329 + }, + { + "start": 26969.02, + "end": 26970.86, + "probability": 0.8737 + }, + { + "start": 26970.92, + "end": 26973.78, + "probability": 0.9802 + }, + { + "start": 26975.06, + "end": 26976.94, + "probability": 0.9583 + }, + { + "start": 26977.58, + "end": 26978.82, + "probability": 0.96 + }, + { + "start": 26979.3, + "end": 26983.06, + "probability": 0.9584 + }, + { + "start": 26983.68, + "end": 26985.34, + "probability": 0.9969 + }, + { + "start": 26985.48, + "end": 26986.5, + "probability": 0.9917 + }, + { + "start": 26986.64, + "end": 26989.86, + "probability": 0.5683 + }, + { + "start": 26991.14, + "end": 26991.52, + "probability": 0.1255 + }, + { + "start": 26991.52, + "end": 26994.18, + "probability": 0.5503 + }, + { + "start": 26995.58, + "end": 26998.24, + "probability": 0.7454 + }, + { + "start": 26998.98, + "end": 27001.2, + "probability": 0.6873 + }, + { + "start": 27001.5, + "end": 27004.7, + "probability": 0.9868 + }, + { + "start": 27004.84, + "end": 27006.14, + "probability": 0.933 + }, + { + "start": 27006.18, + "end": 27010.96, + "probability": 0.9927 + }, + { + "start": 27011.28, + "end": 27013.78, + "probability": 0.9983 + }, + { + "start": 27013.86, + "end": 27014.64, + "probability": 0.7688 + }, + { + "start": 27014.64, + "end": 27015.6, + "probability": 0.072 + }, + { + "start": 27015.84, + "end": 27015.84, + "probability": 0.1205 + }, + { + "start": 27015.84, + "end": 27016.28, + "probability": 0.4974 + }, + { + "start": 27016.38, + "end": 27017.76, + "probability": 0.5083 + }, + { + "start": 27018.82, + "end": 27023.38, + "probability": 0.9294 + }, + { + "start": 27038.1, + "end": 27038.58, + "probability": 0.2171 + }, + { + "start": 27046.8, + "end": 27047.24, + "probability": 0.1055 + }, + { + "start": 27051.56, + "end": 27053.8, + "probability": 0.8704 + }, + { + "start": 27053.86, + "end": 27054.08, + "probability": 0.2282 + }, + { + "start": 27054.14, + "end": 27055.22, + "probability": 0.9688 + }, + { + "start": 27055.44, + "end": 27055.78, + "probability": 0.7402 + }, + { + "start": 27056.92, + "end": 27060.26, + "probability": 0.7002 + }, + { + "start": 27060.98, + "end": 27064.58, + "probability": 0.8331 + }, + { + "start": 27065.12, + "end": 27065.82, + "probability": 0.9671 + }, + { + "start": 27066.89, + "end": 27070.15, + "probability": 0.3023 + }, + { + "start": 27070.58, + "end": 27071.0, + "probability": 0.6974 + }, + { + "start": 27071.62, + "end": 27072.54, + "probability": 0.7476 + }, + { + "start": 27074.2, + "end": 27076.04, + "probability": 0.2989 + }, + { + "start": 27076.78, + "end": 27077.06, + "probability": 0.8552 + }, + { + "start": 27077.8, + "end": 27078.58, + "probability": 0.5641 + }, + { + "start": 27078.58, + "end": 27078.74, + "probability": 0.4166 + }, + { + "start": 27079.94, + "end": 27080.42, + "probability": 0.5325 + }, + { + "start": 27080.48, + "end": 27081.24, + "probability": 0.9542 + }, + { + "start": 27081.26, + "end": 27084.62, + "probability": 0.9331 + }, + { + "start": 27085.92, + "end": 27087.86, + "probability": 0.9966 + }, + { + "start": 27088.06, + "end": 27093.84, + "probability": 0.9897 + }, + { + "start": 27093.84, + "end": 27098.72, + "probability": 0.9895 + }, + { + "start": 27099.16, + "end": 27103.1, + "probability": 0.9644 + }, + { + "start": 27103.56, + "end": 27106.76, + "probability": 0.9567 + }, + { + "start": 27107.28, + "end": 27110.32, + "probability": 0.9893 + }, + { + "start": 27110.78, + "end": 27115.36, + "probability": 0.9321 + }, + { + "start": 27115.56, + "end": 27115.64, + "probability": 0.7341 + }, + { + "start": 27115.7, + "end": 27116.65, + "probability": 0.9775 + }, + { + "start": 27116.78, + "end": 27117.52, + "probability": 0.7401 + }, + { + "start": 27118.04, + "end": 27120.35, + "probability": 0.9982 + }, + { + "start": 27121.24, + "end": 27124.06, + "probability": 0.9565 + }, + { + "start": 27125.74, + "end": 27127.1, + "probability": 0.4701 + }, + { + "start": 27128.02, + "end": 27133.72, + "probability": 0.9741 + }, + { + "start": 27134.66, + "end": 27136.34, + "probability": 0.9721 + }, + { + "start": 27136.92, + "end": 27139.62, + "probability": 0.9911 + }, + { + "start": 27141.9, + "end": 27143.62, + "probability": 0.7405 + }, + { + "start": 27144.0, + "end": 27145.74, + "probability": 0.9781 + }, + { + "start": 27146.14, + "end": 27149.02, + "probability": 0.9965 + }, + { + "start": 27149.44, + "end": 27149.82, + "probability": 0.2337 + }, + { + "start": 27150.22, + "end": 27151.76, + "probability": 0.9367 + }, + { + "start": 27152.44, + "end": 27155.22, + "probability": 0.9989 + }, + { + "start": 27156.16, + "end": 27157.62, + "probability": 0.8445 + }, + { + "start": 27158.28, + "end": 27163.34, + "probability": 0.9906 + }, + { + "start": 27163.66, + "end": 27166.8, + "probability": 0.9967 + }, + { + "start": 27166.8, + "end": 27172.62, + "probability": 0.9963 + }, + { + "start": 27172.74, + "end": 27173.14, + "probability": 0.96 + }, + { + "start": 27173.54, + "end": 27176.04, + "probability": 0.9976 + }, + { + "start": 27176.8, + "end": 27178.26, + "probability": 0.7362 + }, + { + "start": 27178.82, + "end": 27181.04, + "probability": 0.9941 + }, + { + "start": 27181.86, + "end": 27188.66, + "probability": 0.9438 + }, + { + "start": 27189.94, + "end": 27193.58, + "probability": 0.9711 + }, + { + "start": 27198.42, + "end": 27200.3, + "probability": 0.7996 + }, + { + "start": 27201.58, + "end": 27204.22, + "probability": 0.8118 + }, + { + "start": 27205.26, + "end": 27207.18, + "probability": 0.998 + }, + { + "start": 27208.6, + "end": 27210.02, + "probability": 0.8749 + }, + { + "start": 27210.56, + "end": 27210.68, + "probability": 0.0959 + }, + { + "start": 27210.68, + "end": 27211.04, + "probability": 0.9338 + }, + { + "start": 27211.14, + "end": 27214.96, + "probability": 0.9356 + }, + { + "start": 27215.84, + "end": 27218.46, + "probability": 0.8799 + }, + { + "start": 27219.1, + "end": 27223.74, + "probability": 0.9878 + }, + { + "start": 27223.98, + "end": 27229.08, + "probability": 0.9564 + }, + { + "start": 27229.16, + "end": 27230.06, + "probability": 0.6159 + }, + { + "start": 27230.48, + "end": 27231.52, + "probability": 0.6987 + }, + { + "start": 27231.68, + "end": 27233.96, + "probability": 0.9484 + }, + { + "start": 27234.8, + "end": 27237.4, + "probability": 0.7932 + }, + { + "start": 27238.56, + "end": 27241.4, + "probability": 0.7998 + }, + { + "start": 27242.8, + "end": 27244.5, + "probability": 0.7218 + }, + { + "start": 27245.04, + "end": 27251.2, + "probability": 0.8312 + }, + { + "start": 27251.2, + "end": 27251.48, + "probability": 0.5076 + }, + { + "start": 27252.36, + "end": 27253.9, + "probability": 0.6841 + }, + { + "start": 27255.18, + "end": 27258.06, + "probability": 0.8947 + }, + { + "start": 27258.26, + "end": 27259.8, + "probability": 0.695 + }, + { + "start": 27260.44, + "end": 27263.42, + "probability": 0.6415 + }, + { + "start": 27263.6, + "end": 27263.96, + "probability": 0.1491 + }, + { + "start": 27265.0, + "end": 27265.9, + "probability": 0.6987 + }, + { + "start": 27265.94, + "end": 27269.68, + "probability": 0.6894 + }, + { + "start": 27269.78, + "end": 27270.75, + "probability": 0.8041 + }, + { + "start": 27270.84, + "end": 27273.04, + "probability": 0.8546 + }, + { + "start": 27273.1, + "end": 27275.84, + "probability": 0.8298 + }, + { + "start": 27276.0, + "end": 27277.62, + "probability": 0.5237 + }, + { + "start": 27277.66, + "end": 27281.18, + "probability": 0.9902 + }, + { + "start": 27281.28, + "end": 27281.62, + "probability": 0.3663 + }, + { + "start": 27281.74, + "end": 27282.5, + "probability": 0.9853 + }, + { + "start": 27286.32, + "end": 27286.94, + "probability": 0.1253 + }, + { + "start": 27286.94, + "end": 27287.74, + "probability": 0.0097 + }, + { + "start": 27288.78, + "end": 27290.18, + "probability": 0.9768 + }, + { + "start": 27290.26, + "end": 27291.7, + "probability": 0.8936 + }, + { + "start": 27291.84, + "end": 27294.4, + "probability": 0.499 + }, + { + "start": 27294.86, + "end": 27295.4, + "probability": 0.9593 + }, + { + "start": 27295.44, + "end": 27297.68, + "probability": 0.7722 + }, + { + "start": 27298.12, + "end": 27301.58, + "probability": 0.9736 + }, + { + "start": 27302.02, + "end": 27302.82, + "probability": 0.5517 + }, + { + "start": 27302.84, + "end": 27303.98, + "probability": 0.4828 + }, + { + "start": 27307.12, + "end": 27309.14, + "probability": 0.6226 + }, + { + "start": 27309.9, + "end": 27311.01, + "probability": 0.1002 + }, + { + "start": 27319.36, + "end": 27320.44, + "probability": 0.5548 + }, + { + "start": 27321.16, + "end": 27324.24, + "probability": 0.6448 + }, + { + "start": 27325.9, + "end": 27329.04, + "probability": 0.3224 + }, + { + "start": 27329.22, + "end": 27332.24, + "probability": 0.3365 + }, + { + "start": 27332.74, + "end": 27337.72, + "probability": 0.8558 + }, + { + "start": 27337.84, + "end": 27338.9, + "probability": 0.5978 + }, + { + "start": 27339.62, + "end": 27342.02, + "probability": 0.9717 + }, + { + "start": 27342.98, + "end": 27345.84, + "probability": 0.8759 + }, + { + "start": 27347.8, + "end": 27348.7, + "probability": 0.3082 + }, + { + "start": 27348.7, + "end": 27348.7, + "probability": 0.0354 + }, + { + "start": 27348.7, + "end": 27349.4, + "probability": 0.0765 + }, + { + "start": 27349.68, + "end": 27350.48, + "probability": 0.6656 + }, + { + "start": 27350.86, + "end": 27352.18, + "probability": 0.711 + }, + { + "start": 27352.28, + "end": 27353.74, + "probability": 0.9635 + }, + { + "start": 27354.58, + "end": 27356.04, + "probability": 0.9943 + }, + { + "start": 27357.58, + "end": 27358.42, + "probability": 0.1415 + }, + { + "start": 27374.3, + "end": 27374.67, + "probability": 0.0696 + }, + { + "start": 27376.78, + "end": 27380.4, + "probability": 0.7743 + }, + { + "start": 27381.52, + "end": 27383.56, + "probability": 0.8734 + }, + { + "start": 27384.3, + "end": 27389.84, + "probability": 0.8706 + }, + { + "start": 27390.5, + "end": 27392.66, + "probability": 0.9927 + }, + { + "start": 27393.16, + "end": 27395.96, + "probability": 0.9043 + }, + { + "start": 27397.18, + "end": 27399.28, + "probability": 0.534 + }, + { + "start": 27399.84, + "end": 27403.84, + "probability": 0.9708 + }, + { + "start": 27404.7, + "end": 27406.88, + "probability": 0.8563 + }, + { + "start": 27407.56, + "end": 27408.76, + "probability": 0.7281 + }, + { + "start": 27409.42, + "end": 27410.8, + "probability": 0.9006 + }, + { + "start": 27411.74, + "end": 27413.0, + "probability": 0.9622 + }, + { + "start": 27413.56, + "end": 27418.76, + "probability": 0.995 + }, + { + "start": 27419.42, + "end": 27421.82, + "probability": 0.9932 + }, + { + "start": 27422.42, + "end": 27425.94, + "probability": 0.9987 + }, + { + "start": 27426.72, + "end": 27429.52, + "probability": 0.8867 + }, + { + "start": 27430.58, + "end": 27432.2, + "probability": 0.7208 + }, + { + "start": 27434.1, + "end": 27435.68, + "probability": 0.7212 + }, + { + "start": 27436.28, + "end": 27440.48, + "probability": 0.9691 + }, + { + "start": 27441.38, + "end": 27447.42, + "probability": 0.7466 + }, + { + "start": 27448.28, + "end": 27449.32, + "probability": 0.7402 + }, + { + "start": 27449.88, + "end": 27451.22, + "probability": 0.7626 + }, + { + "start": 27451.32, + "end": 27457.6, + "probability": 0.7571 + }, + { + "start": 27458.54, + "end": 27459.78, + "probability": 0.9919 + }, + { + "start": 27460.34, + "end": 27461.59, + "probability": 0.9722 + }, + { + "start": 27462.36, + "end": 27465.56, + "probability": 0.9891 + }, + { + "start": 27467.66, + "end": 27469.58, + "probability": 0.989 + }, + { + "start": 27470.64, + "end": 27470.88, + "probability": 0.7412 + }, + { + "start": 27471.0, + "end": 27471.6, + "probability": 0.7793 + }, + { + "start": 27471.8, + "end": 27472.18, + "probability": 0.8624 + }, + { + "start": 27472.3, + "end": 27475.56, + "probability": 0.8999 + }, + { + "start": 27476.26, + "end": 27480.74, + "probability": 0.9937 + }, + { + "start": 27481.48, + "end": 27483.98, + "probability": 0.9378 + }, + { + "start": 27484.88, + "end": 27487.68, + "probability": 0.9819 + }, + { + "start": 27488.66, + "end": 27489.42, + "probability": 0.808 + }, + { + "start": 27489.94, + "end": 27491.28, + "probability": 0.9351 + }, + { + "start": 27492.0, + "end": 27492.72, + "probability": 0.7345 + }, + { + "start": 27492.8, + "end": 27493.42, + "probability": 0.896 + }, + { + "start": 27493.96, + "end": 27497.28, + "probability": 0.3969 + }, + { + "start": 27497.3, + "end": 27501.6, + "probability": 0.736 + }, + { + "start": 27502.54, + "end": 27504.51, + "probability": 0.952 + }, + { + "start": 27505.7, + "end": 27507.9, + "probability": 0.6542 + }, + { + "start": 27508.44, + "end": 27510.72, + "probability": 0.9831 + }, + { + "start": 27511.24, + "end": 27514.03, + "probability": 0.9839 + }, + { + "start": 27515.62, + "end": 27517.36, + "probability": 0.9976 + }, + { + "start": 27517.96, + "end": 27518.98, + "probability": 0.868 + }, + { + "start": 27519.58, + "end": 27524.04, + "probability": 0.9829 + }, + { + "start": 27525.43, + "end": 27529.82, + "probability": 0.9478 + }, + { + "start": 27530.68, + "end": 27532.6, + "probability": 0.6114 + }, + { + "start": 27533.0, + "end": 27539.32, + "probability": 0.996 + }, + { + "start": 27540.42, + "end": 27544.96, + "probability": 0.9988 + }, + { + "start": 27545.95, + "end": 27549.28, + "probability": 0.6919 + }, + { + "start": 27549.94, + "end": 27552.62, + "probability": 0.896 + }, + { + "start": 27553.16, + "end": 27555.88, + "probability": 0.99 + }, + { + "start": 27556.5, + "end": 27559.99, + "probability": 0.992 + }, + { + "start": 27560.6, + "end": 27562.86, + "probability": 0.9329 + }, + { + "start": 27563.46, + "end": 27563.96, + "probability": 0.4361 + }, + { + "start": 27564.88, + "end": 27569.5, + "probability": 0.9586 + }, + { + "start": 27569.5, + "end": 27573.86, + "probability": 0.9877 + }, + { + "start": 27573.96, + "end": 27574.34, + "probability": 0.7646 + }, + { + "start": 27574.96, + "end": 27576.11, + "probability": 0.9922 + }, + { + "start": 27576.64, + "end": 27578.12, + "probability": 0.9929 + }, + { + "start": 27578.64, + "end": 27581.82, + "probability": 0.9963 + }, + { + "start": 27582.2, + "end": 27586.62, + "probability": 0.9731 + }, + { + "start": 27588.14, + "end": 27590.52, + "probability": 0.9863 + }, + { + "start": 27591.16, + "end": 27595.5, + "probability": 0.5111 + }, + { + "start": 27595.5, + "end": 27601.34, + "probability": 0.9635 + }, + { + "start": 27602.52, + "end": 27605.84, + "probability": 0.9827 + }, + { + "start": 27606.38, + "end": 27607.68, + "probability": 0.9608 + }, + { + "start": 27608.2, + "end": 27610.28, + "probability": 0.9915 + }, + { + "start": 27610.76, + "end": 27612.3, + "probability": 0.9961 + }, + { + "start": 27612.86, + "end": 27614.21, + "probability": 0.8996 + }, + { + "start": 27615.08, + "end": 27617.42, + "probability": 0.9865 + }, + { + "start": 27617.84, + "end": 27619.44, + "probability": 0.9917 + }, + { + "start": 27619.82, + "end": 27622.44, + "probability": 0.98 + }, + { + "start": 27622.58, + "end": 27622.96, + "probability": 0.9051 + }, + { + "start": 27624.68, + "end": 27625.26, + "probability": 0.8057 + }, + { + "start": 27626.1, + "end": 27628.28, + "probability": 0.9431 + }, + { + "start": 27645.08, + "end": 27647.22, + "probability": 0.634 + }, + { + "start": 27647.38, + "end": 27649.3, + "probability": 0.8436 + }, + { + "start": 27650.23, + "end": 27655.18, + "probability": 0.9694 + }, + { + "start": 27656.24, + "end": 27660.92, + "probability": 0.9875 + }, + { + "start": 27660.92, + "end": 27664.84, + "probability": 0.9807 + }, + { + "start": 27666.36, + "end": 27667.98, + "probability": 0.55 + }, + { + "start": 27668.1, + "end": 27670.94, + "probability": 0.8636 + }, + { + "start": 27671.74, + "end": 27673.84, + "probability": 0.6212 + }, + { + "start": 27674.22, + "end": 27677.96, + "probability": 0.9794 + }, + { + "start": 27678.52, + "end": 27681.98, + "probability": 0.9075 + }, + { + "start": 27682.12, + "end": 27682.7, + "probability": 0.6764 + }, + { + "start": 27682.84, + "end": 27683.86, + "probability": 0.5612 + }, + { + "start": 27685.06, + "end": 27685.82, + "probability": 0.909 + }, + { + "start": 27686.86, + "end": 27689.74, + "probability": 0.7055 + }, + { + "start": 27691.22, + "end": 27694.3, + "probability": 0.7844 + }, + { + "start": 27694.4, + "end": 27696.18, + "probability": 0.9961 + }, + { + "start": 27697.34, + "end": 27702.08, + "probability": 0.9861 + }, + { + "start": 27702.78, + "end": 27708.62, + "probability": 0.9968 + }, + { + "start": 27709.42, + "end": 27709.9, + "probability": 0.7867 + }, + { + "start": 27710.28, + "end": 27710.56, + "probability": 0.7623 + }, + { + "start": 27711.96, + "end": 27712.36, + "probability": 0.9189 + }, + { + "start": 27712.36, + "end": 27715.83, + "probability": 0.7818 + }, + { + "start": 27716.66, + "end": 27716.66, + "probability": 0.1241 + }, + { + "start": 27716.66, + "end": 27717.18, + "probability": 0.609 + }, + { + "start": 27718.95, + "end": 27721.9, + "probability": 0.4582 + }, + { + "start": 27722.5, + "end": 27724.58, + "probability": 0.811 + }, + { + "start": 27740.2, + "end": 27741.74, + "probability": 0.6569 + }, + { + "start": 27742.02, + "end": 27745.36, + "probability": 0.9106 + }, + { + "start": 27746.24, + "end": 27747.0, + "probability": 0.5346 + }, + { + "start": 27748.22, + "end": 27749.0, + "probability": 0.5672 + }, + { + "start": 27749.88, + "end": 27751.46, + "probability": 0.9067 + }, + { + "start": 27752.46, + "end": 27752.48, + "probability": 0.0034 + }, + { + "start": 27752.48, + "end": 27754.98, + "probability": 0.9577 + }, + { + "start": 27755.12, + "end": 27755.88, + "probability": 0.9119 + }, + { + "start": 27756.12, + "end": 27757.08, + "probability": 0.8687 + }, + { + "start": 27758.08, + "end": 27759.76, + "probability": 0.6717 + }, + { + "start": 27761.01, + "end": 27764.62, + "probability": 0.9613 + }, + { + "start": 27764.78, + "end": 27768.12, + "probability": 0.9319 + }, + { + "start": 27768.12, + "end": 27771.04, + "probability": 0.913 + }, + { + "start": 27771.78, + "end": 27772.92, + "probability": 0.7102 + }, + { + "start": 27774.32, + "end": 27777.7, + "probability": 0.966 + }, + { + "start": 27778.7, + "end": 27780.98, + "probability": 0.9525 + }, + { + "start": 27781.7, + "end": 27783.46, + "probability": 0.9922 + }, + { + "start": 27784.34, + "end": 27789.44, + "probability": 0.9722 + }, + { + "start": 27790.1, + "end": 27793.56, + "probability": 0.9978 + }, + { + "start": 27793.86, + "end": 27796.6, + "probability": 0.9995 + }, + { + "start": 27797.18, + "end": 27799.58, + "probability": 0.893 + }, + { + "start": 27799.92, + "end": 27801.08, + "probability": 0.7468 + }, + { + "start": 27801.34, + "end": 27802.88, + "probability": 0.9083 + }, + { + "start": 27803.7, + "end": 27804.68, + "probability": 0.8274 + }, + { + "start": 27804.94, + "end": 27809.88, + "probability": 0.9861 + }, + { + "start": 27809.88, + "end": 27815.72, + "probability": 0.9934 + }, + { + "start": 27816.36, + "end": 27817.5, + "probability": 0.4208 + }, + { + "start": 27819.48, + "end": 27821.46, + "probability": 0.7993 + }, + { + "start": 27822.48, + "end": 27823.96, + "probability": 0.9554 + }, + { + "start": 27825.1, + "end": 27827.34, + "probability": 0.1435 + }, + { + "start": 27828.72, + "end": 27830.16, + "probability": 0.0866 + }, + { + "start": 27830.7, + "end": 27830.7, + "probability": 0.0161 + }, + { + "start": 27830.7, + "end": 27830.7, + "probability": 0.3016 + }, + { + "start": 27830.7, + "end": 27830.7, + "probability": 0.1325 + }, + { + "start": 27830.7, + "end": 27830.7, + "probability": 0.0369 + }, + { + "start": 27830.7, + "end": 27832.08, + "probability": 0.3826 + }, + { + "start": 27832.42, + "end": 27833.12, + "probability": 0.4881 + }, + { + "start": 27833.12, + "end": 27834.56, + "probability": 0.4452 + }, + { + "start": 27834.7, + "end": 27835.86, + "probability": 0.7123 + }, + { + "start": 27835.88, + "end": 27836.64, + "probability": 0.6818 + }, + { + "start": 27836.86, + "end": 27837.21, + "probability": 0.3754 + }, + { + "start": 27838.68, + "end": 27842.78, + "probability": 0.9862 + }, + { + "start": 27843.12, + "end": 27843.82, + "probability": 0.8094 + }, + { + "start": 27844.14, + "end": 27849.82, + "probability": 0.9007 + }, + { + "start": 27850.5, + "end": 27851.32, + "probability": 0.9584 + }, + { + "start": 27851.32, + "end": 27854.0, + "probability": 0.9849 + }, + { + "start": 27854.32, + "end": 27856.78, + "probability": 0.9237 + }, + { + "start": 27857.58, + "end": 27859.58, + "probability": 0.783 + }, + { + "start": 27860.42, + "end": 27860.68, + "probability": 0.0137 + }, + { + "start": 27860.68, + "end": 27860.68, + "probability": 0.192 + }, + { + "start": 27860.68, + "end": 27865.34, + "probability": 0.6765 + }, + { + "start": 27865.94, + "end": 27867.22, + "probability": 0.9824 + }, + { + "start": 27867.3, + "end": 27867.84, + "probability": 0.8672 + }, + { + "start": 27868.14, + "end": 27869.58, + "probability": 0.9137 + }, + { + "start": 27869.72, + "end": 27871.42, + "probability": 0.9367 + }, + { + "start": 27871.8, + "end": 27873.68, + "probability": 0.7618 + }, + { + "start": 27873.8, + "end": 27874.28, + "probability": 0.7642 + }, + { + "start": 27874.5, + "end": 27877.2, + "probability": 0.9147 + }, + { + "start": 27877.68, + "end": 27879.1, + "probability": 0.9062 + }, + { + "start": 27879.46, + "end": 27879.46, + "probability": 0.0323 + }, + { + "start": 27879.46, + "end": 27879.46, + "probability": 0.191 + }, + { + "start": 27879.46, + "end": 27880.37, + "probability": 0.7023 + }, + { + "start": 27881.24, + "end": 27883.52, + "probability": 0.9787 + }, + { + "start": 27883.94, + "end": 27884.56, + "probability": 0.9804 + }, + { + "start": 27884.84, + "end": 27885.3, + "probability": 0.7513 + }, + { + "start": 27885.56, + "end": 27886.76, + "probability": 0.8867 + }, + { + "start": 27887.5, + "end": 27889.8, + "probability": 0.9619 + }, + { + "start": 27890.08, + "end": 27890.36, + "probability": 0.0622 + }, + { + "start": 27890.36, + "end": 27890.36, + "probability": 0.0626 + }, + { + "start": 27890.36, + "end": 27892.78, + "probability": 0.285 + }, + { + "start": 27893.38, + "end": 27895.6, + "probability": 0.8098 + }, + { + "start": 27895.64, + "end": 27895.84, + "probability": 0.1817 + }, + { + "start": 27896.04, + "end": 27896.62, + "probability": 0.8545 + }, + { + "start": 27897.05, + "end": 27897.12, + "probability": 0.1335 + }, + { + "start": 27897.12, + "end": 27898.12, + "probability": 0.8474 + }, + { + "start": 27898.32, + "end": 27901.18, + "probability": 0.93 + }, + { + "start": 27901.96, + "end": 27903.4, + "probability": 0.1088 + }, + { + "start": 27903.4, + "end": 27903.8, + "probability": 0.1645 + }, + { + "start": 27903.8, + "end": 27903.8, + "probability": 0.081 + }, + { + "start": 27903.8, + "end": 27903.8, + "probability": 0.0248 + }, + { + "start": 27903.8, + "end": 27906.3, + "probability": 0.1401 + }, + { + "start": 27906.48, + "end": 27907.72, + "probability": 0.343 + }, + { + "start": 27907.84, + "end": 27910.52, + "probability": 0.6116 + }, + { + "start": 27912.22, + "end": 27913.1, + "probability": 0.0444 + }, + { + "start": 27913.8, + "end": 27917.62, + "probability": 0.8132 + }, + { + "start": 27918.16, + "end": 27920.76, + "probability": 0.0567 + }, + { + "start": 27922.26, + "end": 27923.02, + "probability": 0.0355 + }, + { + "start": 27923.24, + "end": 27923.38, + "probability": 0.0706 + }, + { + "start": 27923.38, + "end": 27923.87, + "probability": 0.1966 + }, + { + "start": 27924.22, + "end": 27925.74, + "probability": 0.0984 + }, + { + "start": 27925.86, + "end": 27926.68, + "probability": 0.3982 + }, + { + "start": 27926.74, + "end": 27926.74, + "probability": 0.3877 + }, + { + "start": 27926.74, + "end": 27928.3, + "probability": 0.7633 + }, + { + "start": 27928.5, + "end": 27929.64, + "probability": 0.3113 + }, + { + "start": 27929.7, + "end": 27930.39, + "probability": 0.443 + }, + { + "start": 27931.53, + "end": 27934.52, + "probability": 0.8954 + }, + { + "start": 27934.9, + "end": 27938.78, + "probability": 0.3972 + }, + { + "start": 27938.9, + "end": 27940.1, + "probability": 0.6892 + }, + { + "start": 27940.22, + "end": 27941.44, + "probability": 0.9232 + }, + { + "start": 27941.62, + "end": 27942.84, + "probability": 0.9273 + }, + { + "start": 27943.32, + "end": 27944.2, + "probability": 0.6156 + }, + { + "start": 27944.2, + "end": 27945.32, + "probability": 0.8566 + }, + { + "start": 27945.48, + "end": 27946.98, + "probability": 0.6423 + }, + { + "start": 27947.2, + "end": 27951.06, + "probability": 0.7921 + }, + { + "start": 27951.58, + "end": 27952.46, + "probability": 0.7198 + }, + { + "start": 27952.86, + "end": 27952.86, + "probability": 0.1071 + }, + { + "start": 27952.86, + "end": 27953.76, + "probability": 0.2871 + }, + { + "start": 27953.76, + "end": 27955.82, + "probability": 0.9731 + }, + { + "start": 27956.04, + "end": 27957.54, + "probability": 0.9517 + }, + { + "start": 27957.56, + "end": 27958.6, + "probability": 0.716 + }, + { + "start": 27958.72, + "end": 27959.24, + "probability": 0.7324 + }, + { + "start": 27959.66, + "end": 27961.32, + "probability": 0.7328 + }, + { + "start": 27961.52, + "end": 27963.08, + "probability": 0.65 + }, + { + "start": 27963.46, + "end": 27965.74, + "probability": 0.9646 + }, + { + "start": 27965.9, + "end": 27968.04, + "probability": 0.9177 + }, + { + "start": 27968.2, + "end": 27969.58, + "probability": 0.0021 + }, + { + "start": 27970.52, + "end": 27970.56, + "probability": 0.0053 + }, + { + "start": 27971.12, + "end": 27971.58, + "probability": 0.2442 + }, + { + "start": 27971.58, + "end": 27971.58, + "probability": 0.3291 + }, + { + "start": 27971.58, + "end": 27972.2, + "probability": 0.0567 + }, + { + "start": 27972.28, + "end": 27973.58, + "probability": 0.5326 + }, + { + "start": 27973.7, + "end": 27976.88, + "probability": 0.3317 + }, + { + "start": 27979.56, + "end": 27980.1, + "probability": 0.6658 + }, + { + "start": 27980.1, + "end": 27982.92, + "probability": 0.6108 + }, + { + "start": 27983.54, + "end": 27984.48, + "probability": 0.9436 + }, + { + "start": 27985.6, + "end": 27986.36, + "probability": 0.2808 + }, + { + "start": 27986.62, + "end": 27987.08, + "probability": 0.2984 + }, + { + "start": 27987.08, + "end": 27987.92, + "probability": 0.7299 + }, + { + "start": 27988.42, + "end": 27991.64, + "probability": 0.2056 + }, + { + "start": 27995.84, + "end": 28001.52, + "probability": 0.361 + }, + { + "start": 28002.12, + "end": 28003.06, + "probability": 0.5914 + }, + { + "start": 28007.38, + "end": 28007.96, + "probability": 0.3921 + }, + { + "start": 28008.7, + "end": 28010.5, + "probability": 0.115 + }, + { + "start": 28010.5, + "end": 28011.42, + "probability": 0.0172 + }, + { + "start": 28011.42, + "end": 28013.64, + "probability": 0.0199 + }, + { + "start": 28017.58, + "end": 28021.96, + "probability": 0.0719 + }, + { + "start": 28022.94, + "end": 28029.24, + "probability": 0.0555 + }, + { + "start": 28029.86, + "end": 28031.04, + "probability": 0.1826 + }, + { + "start": 28033.08, + "end": 28033.08, + "probability": 0.0201 + }, + { + "start": 28033.08, + "end": 28033.14, + "probability": 0.1457 + }, + { + "start": 28033.14, + "end": 28034.7, + "probability": 0.2603 + }, + { + "start": 28034.78, + "end": 28037.32, + "probability": 0.0274 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.0, + "end": 28067.0, + "probability": 0.0 + }, + { + "start": 28067.12, + "end": 28068.06, + "probability": 0.152 + }, + { + "start": 28068.54, + "end": 28069.38, + "probability": 0.5909 + }, + { + "start": 28069.72, + "end": 28074.28, + "probability": 0.7926 + }, + { + "start": 28076.94, + "end": 28080.64, + "probability": 0.9582 + }, + { + "start": 28087.6, + "end": 28088.08, + "probability": 0.7955 + }, + { + "start": 28093.42, + "end": 28095.46, + "probability": 0.6651 + }, + { + "start": 28095.72, + "end": 28096.58, + "probability": 0.7713 + }, + { + "start": 28097.84, + "end": 28099.26, + "probability": 0.8735 + }, + { + "start": 28099.48, + "end": 28100.9, + "probability": 0.9359 + }, + { + "start": 28100.94, + "end": 28101.84, + "probability": 0.7163 + }, + { + "start": 28102.0, + "end": 28102.4, + "probability": 0.9648 + }, + { + "start": 28103.76, + "end": 28104.74, + "probability": 0.9739 + }, + { + "start": 28104.8, + "end": 28105.84, + "probability": 0.9778 + }, + { + "start": 28105.88, + "end": 28106.96, + "probability": 0.9456 + }, + { + "start": 28107.02, + "end": 28109.7, + "probability": 0.9949 + }, + { + "start": 28110.36, + "end": 28115.62, + "probability": 0.9954 + }, + { + "start": 28116.1, + "end": 28120.08, + "probability": 0.9788 + }, + { + "start": 28120.14, + "end": 28124.18, + "probability": 0.9673 + }, + { + "start": 28124.72, + "end": 28129.04, + "probability": 0.9202 + }, + { + "start": 28129.12, + "end": 28131.0, + "probability": 0.9921 + }, + { + "start": 28131.34, + "end": 28133.82, + "probability": 0.8823 + }, + { + "start": 28134.52, + "end": 28138.48, + "probability": 0.9946 + }, + { + "start": 28139.14, + "end": 28142.12, + "probability": 0.9754 + }, + { + "start": 28142.12, + "end": 28144.54, + "probability": 0.986 + }, + { + "start": 28145.16, + "end": 28146.58, + "probability": 0.9877 + }, + { + "start": 28146.76, + "end": 28148.38, + "probability": 0.9587 + }, + { + "start": 28148.52, + "end": 28149.04, + "probability": 0.9821 + }, + { + "start": 28149.12, + "end": 28149.62, + "probability": 0.9592 + }, + { + "start": 28149.68, + "end": 28149.78, + "probability": 0.8897 + }, + { + "start": 28150.7, + "end": 28151.86, + "probability": 0.299 + }, + { + "start": 28152.18, + "end": 28152.9, + "probability": 0.9884 + }, + { + "start": 28153.84, + "end": 28155.94, + "probability": 0.9354 + }, + { + "start": 28156.06, + "end": 28158.06, + "probability": 0.9871 + }, + { + "start": 28159.14, + "end": 28162.02, + "probability": 0.9973 + }, + { + "start": 28162.86, + "end": 28165.34, + "probability": 0.9822 + }, + { + "start": 28165.9, + "end": 28168.28, + "probability": 0.9768 + }, + { + "start": 28169.02, + "end": 28172.92, + "probability": 0.9719 + }, + { + "start": 28173.38, + "end": 28175.88, + "probability": 0.9959 + }, + { + "start": 28175.88, + "end": 28180.04, + "probability": 0.8658 + }, + { + "start": 28181.14, + "end": 28182.34, + "probability": 0.7885 + }, + { + "start": 28182.46, + "end": 28184.44, + "probability": 0.9951 + }, + { + "start": 28184.6, + "end": 28187.94, + "probability": 0.9932 + }, + { + "start": 28187.94, + "end": 28191.72, + "probability": 0.9856 + }, + { + "start": 28191.72, + "end": 28194.98, + "probability": 0.9824 + }, + { + "start": 28195.78, + "end": 28198.1, + "probability": 0.9884 + }, + { + "start": 28198.1, + "end": 28201.0, + "probability": 0.8795 + }, + { + "start": 28201.72, + "end": 28204.82, + "probability": 0.9979 + }, + { + "start": 28205.4, + "end": 28207.18, + "probability": 0.9848 + }, + { + "start": 28207.52, + "end": 28210.62, + "probability": 0.2831 + }, + { + "start": 28210.62, + "end": 28211.24, + "probability": 0.1979 + }, + { + "start": 28211.72, + "end": 28214.52, + "probability": 0.9952 + }, + { + "start": 28215.12, + "end": 28217.3, + "probability": 0.9985 + }, + { + "start": 28217.44, + "end": 28218.94, + "probability": 0.9819 + }, + { + "start": 28219.68, + "end": 28224.08, + "probability": 0.9932 + }, + { + "start": 28224.7, + "end": 28226.6, + "probability": 0.8899 + }, + { + "start": 28227.12, + "end": 28229.12, + "probability": 0.9775 + }, + { + "start": 28229.32, + "end": 28231.16, + "probability": 0.9883 + }, + { + "start": 28231.88, + "end": 28232.28, + "probability": 0.8564 + }, + { + "start": 28232.44, + "end": 28237.12, + "probability": 0.9924 + }, + { + "start": 28237.72, + "end": 28240.6, + "probability": 0.9956 + }, + { + "start": 28241.78, + "end": 28245.86, + "probability": 0.9972 + }, + { + "start": 28246.02, + "end": 28251.24, + "probability": 0.9886 + }, + { + "start": 28251.64, + "end": 28253.6, + "probability": 0.9287 + }, + { + "start": 28254.48, + "end": 28257.32, + "probability": 0.9629 + }, + { + "start": 28257.92, + "end": 28260.5, + "probability": 0.9868 + }, + { + "start": 28260.68, + "end": 28263.14, + "probability": 0.9787 + }, + { + "start": 28265.42, + "end": 28268.02, + "probability": 0.9967 + }, + { + "start": 28268.02, + "end": 28271.14, + "probability": 0.884 + }, + { + "start": 28271.54, + "end": 28275.02, + "probability": 0.785 + }, + { + "start": 28275.44, + "end": 28276.34, + "probability": 0.9562 + }, + { + "start": 28277.0, + "end": 28277.4, + "probability": 0.7787 + }, + { + "start": 28277.54, + "end": 28279.82, + "probability": 0.9961 + }, + { + "start": 28279.82, + "end": 28282.68, + "probability": 0.9972 + }, + { + "start": 28282.88, + "end": 28283.96, + "probability": 0.9773 + }, + { + "start": 28284.5, + "end": 28286.2, + "probability": 0.9507 + }, + { + "start": 28286.3, + "end": 28287.8, + "probability": 0.897 + }, + { + "start": 28287.88, + "end": 28289.72, + "probability": 0.9958 + }, + { + "start": 28290.62, + "end": 28295.2, + "probability": 0.9951 + }, + { + "start": 28295.58, + "end": 28298.92, + "probability": 0.9877 + }, + { + "start": 28299.94, + "end": 28303.3, + "probability": 0.8799 + }, + { + "start": 28303.79, + "end": 28307.34, + "probability": 0.9968 + }, + { + "start": 28307.74, + "end": 28310.04, + "probability": 0.976 + }, + { + "start": 28310.04, + "end": 28312.6, + "probability": 0.9944 + }, + { + "start": 28313.44, + "end": 28318.68, + "probability": 0.999 + }, + { + "start": 28319.02, + "end": 28321.02, + "probability": 0.9787 + }, + { + "start": 28321.18, + "end": 28321.82, + "probability": 0.6539 + }, + { + "start": 28322.12, + "end": 28323.56, + "probability": 0.948 + }, + { + "start": 28324.22, + "end": 28325.72, + "probability": 0.8639 + }, + { + "start": 28325.9, + "end": 28331.04, + "probability": 0.8927 + }, + { + "start": 28331.04, + "end": 28333.58, + "probability": 0.9964 + }, + { + "start": 28334.26, + "end": 28335.3, + "probability": 0.9585 + }, + { + "start": 28336.88, + "end": 28338.18, + "probability": 0.7966 + }, + { + "start": 28338.8, + "end": 28341.72, + "probability": 0.882 + }, + { + "start": 28341.72, + "end": 28344.88, + "probability": 0.9854 + }, + { + "start": 28345.16, + "end": 28348.69, + "probability": 0.9902 + }, + { + "start": 28349.66, + "end": 28351.88, + "probability": 0.9979 + }, + { + "start": 28351.88, + "end": 28354.68, + "probability": 0.9874 + }, + { + "start": 28354.76, + "end": 28356.18, + "probability": 0.9071 + }, + { + "start": 28356.62, + "end": 28360.66, + "probability": 0.9585 + }, + { + "start": 28360.66, + "end": 28363.25, + "probability": 0.9979 + }, + { + "start": 28363.92, + "end": 28367.06, + "probability": 0.975 + }, + { + "start": 28367.52, + "end": 28371.36, + "probability": 0.9949 + }, + { + "start": 28372.08, + "end": 28374.58, + "probability": 0.917 + }, + { + "start": 28374.84, + "end": 28377.5, + "probability": 0.7913 + }, + { + "start": 28378.16, + "end": 28380.2, + "probability": 0.9624 + }, + { + "start": 28380.9, + "end": 28383.78, + "probability": 0.9933 + }, + { + "start": 28384.14, + "end": 28384.76, + "probability": 0.5837 + }, + { + "start": 28384.78, + "end": 28385.56, + "probability": 0.7183 + }, + { + "start": 28385.62, + "end": 28387.86, + "probability": 0.9644 + }, + { + "start": 28388.56, + "end": 28389.04, + "probability": 0.8147 + }, + { + "start": 28389.44, + "end": 28391.72, + "probability": 0.9898 + }, + { + "start": 28391.82, + "end": 28392.68, + "probability": 0.9236 + }, + { + "start": 28393.0, + "end": 28396.36, + "probability": 0.9954 + }, + { + "start": 28396.7, + "end": 28398.04, + "probability": 0.9922 + }, + { + "start": 28398.82, + "end": 28402.02, + "probability": 0.9766 + }, + { + "start": 28402.7, + "end": 28403.2, + "probability": 0.7964 + }, + { + "start": 28404.6, + "end": 28407.5, + "probability": 0.995 + }, + { + "start": 28407.5, + "end": 28409.82, + "probability": 0.9981 + }, + { + "start": 28410.14, + "end": 28412.74, + "probability": 0.99 + }, + { + "start": 28412.74, + "end": 28415.46, + "probability": 0.9639 + }, + { + "start": 28416.24, + "end": 28417.06, + "probability": 0.507 + }, + { + "start": 28417.66, + "end": 28422.42, + "probability": 0.9911 + }, + { + "start": 28422.82, + "end": 28424.48, + "probability": 0.9971 + }, + { + "start": 28424.6, + "end": 28428.28, + "probability": 0.9972 + }, + { + "start": 28429.44, + "end": 28433.58, + "probability": 0.9924 + }, + { + "start": 28433.58, + "end": 28437.38, + "probability": 0.9974 + }, + { + "start": 28437.94, + "end": 28438.78, + "probability": 0.8412 + }, + { + "start": 28439.02, + "end": 28442.08, + "probability": 0.9784 + }, + { + "start": 28443.02, + "end": 28446.2, + "probability": 0.6804 + }, + { + "start": 28446.72, + "end": 28449.86, + "probability": 0.9939 + }, + { + "start": 28450.6, + "end": 28454.56, + "probability": 0.9951 + }, + { + "start": 28455.34, + "end": 28456.8, + "probability": 0.7945 + }, + { + "start": 28456.92, + "end": 28459.62, + "probability": 0.9182 + }, + { + "start": 28459.62, + "end": 28462.52, + "probability": 0.8942 + }, + { + "start": 28462.92, + "end": 28468.0, + "probability": 0.991 + }, + { + "start": 28468.4, + "end": 28471.62, + "probability": 0.9969 + }, + { + "start": 28471.62, + "end": 28475.42, + "probability": 0.995 + }, + { + "start": 28476.32, + "end": 28479.98, + "probability": 0.9065 + }, + { + "start": 28480.14, + "end": 28481.92, + "probability": 0.9951 + }, + { + "start": 28482.1, + "end": 28482.34, + "probability": 0.3919 + }, + { + "start": 28482.42, + "end": 28482.76, + "probability": 0.5381 + }, + { + "start": 28483.53, + "end": 28485.88, + "probability": 0.9913 + }, + { + "start": 28486.52, + "end": 28487.58, + "probability": 0.8755 + }, + { + "start": 28487.72, + "end": 28490.26, + "probability": 0.9958 + }, + { + "start": 28490.26, + "end": 28494.96, + "probability": 0.9957 + }, + { + "start": 28494.96, + "end": 28497.96, + "probability": 0.9621 + }, + { + "start": 28498.86, + "end": 28502.5, + "probability": 0.978 + }, + { + "start": 28502.5, + "end": 28506.94, + "probability": 0.9996 + }, + { + "start": 28507.1, + "end": 28508.34, + "probability": 0.953 + }, + { + "start": 28509.06, + "end": 28513.5, + "probability": 0.9989 + }, + { + "start": 28514.1, + "end": 28517.56, + "probability": 0.8707 + }, + { + "start": 28518.2, + "end": 28521.04, + "probability": 0.9819 + }, + { + "start": 28521.28, + "end": 28521.88, + "probability": 0.8733 + }, + { + "start": 28522.4, + "end": 28523.12, + "probability": 0.981 + }, + { + "start": 28523.5, + "end": 28523.96, + "probability": 0.8279 + }, + { + "start": 28525.88, + "end": 28526.28, + "probability": 0.5899 + }, + { + "start": 28526.34, + "end": 28529.28, + "probability": 0.9725 + }, + { + "start": 28529.58, + "end": 28530.54, + "probability": 0.6841 + }, + { + "start": 28530.6, + "end": 28532.44, + "probability": 0.924 + }, + { + "start": 28533.48, + "end": 28536.5, + "probability": 0.985 + }, + { + "start": 28564.58, + "end": 28565.86, + "probability": 0.9724 + }, + { + "start": 28576.18, + "end": 28577.61, + "probability": 0.6132 + }, + { + "start": 28578.8, + "end": 28580.28, + "probability": 0.5446 + }, + { + "start": 28580.44, + "end": 28584.2, + "probability": 0.8906 + }, + { + "start": 28584.26, + "end": 28585.76, + "probability": 0.9528 + }, + { + "start": 28586.1, + "end": 28590.38, + "probability": 0.9673 + }, + { + "start": 28591.24, + "end": 28594.52, + "probability": 0.8167 + }, + { + "start": 28595.46, + "end": 28599.12, + "probability": 0.791 + }, + { + "start": 28599.92, + "end": 28600.86, + "probability": 0.9595 + }, + { + "start": 28601.4, + "end": 28606.38, + "probability": 0.9144 + }, + { + "start": 28606.94, + "end": 28610.71, + "probability": 0.9686 + }, + { + "start": 28611.1, + "end": 28615.22, + "probability": 0.9808 + }, + { + "start": 28615.22, + "end": 28621.3, + "probability": 0.9914 + }, + { + "start": 28621.4, + "end": 28623.16, + "probability": 0.9612 + }, + { + "start": 28623.24, + "end": 28626.56, + "probability": 0.9826 + }, + { + "start": 28626.8, + "end": 28627.14, + "probability": 0.403 + }, + { + "start": 28627.62, + "end": 28631.26, + "probability": 0.9843 + }, + { + "start": 28631.5, + "end": 28634.22, + "probability": 0.9291 + }, + { + "start": 28634.86, + "end": 28637.06, + "probability": 0.9949 + }, + { + "start": 28637.06, + "end": 28641.63, + "probability": 0.9916 + }, + { + "start": 28642.06, + "end": 28643.62, + "probability": 0.9925 + }, + { + "start": 28643.68, + "end": 28648.2, + "probability": 0.9839 + }, + { + "start": 28648.8, + "end": 28650.38, + "probability": 0.9982 + }, + { + "start": 28651.68, + "end": 28658.45, + "probability": 0.9976 + }, + { + "start": 28658.9, + "end": 28664.6, + "probability": 0.9983 + }, + { + "start": 28664.74, + "end": 28665.42, + "probability": 0.5544 + }, + { + "start": 28665.54, + "end": 28668.86, + "probability": 0.9683 + }, + { + "start": 28669.44, + "end": 28674.38, + "probability": 0.998 + }, + { + "start": 28674.42, + "end": 28678.0, + "probability": 0.9803 + }, + { + "start": 28678.98, + "end": 28682.72, + "probability": 0.9933 + }, + { + "start": 28682.84, + "end": 28686.76, + "probability": 0.9949 + }, + { + "start": 28687.5, + "end": 28691.62, + "probability": 0.9404 + }, + { + "start": 28691.86, + "end": 28692.4, + "probability": 0.9566 + }, + { + "start": 28692.4, + "end": 28693.12, + "probability": 0.8433 + }, + { + "start": 28693.74, + "end": 28697.64, + "probability": 0.9938 + }, + { + "start": 28699.46, + "end": 28701.82, + "probability": 0.9878 + }, + { + "start": 28701.82, + "end": 28704.42, + "probability": 0.9933 + }, + { + "start": 28704.7, + "end": 28705.42, + "probability": 0.887 + }, + { + "start": 28705.54, + "end": 28706.44, + "probability": 0.9912 + }, + { + "start": 28706.56, + "end": 28707.44, + "probability": 0.7251 + }, + { + "start": 28707.52, + "end": 28708.22, + "probability": 0.9772 + }, + { + "start": 28709.37, + "end": 28711.26, + "probability": 0.8401 + }, + { + "start": 28711.42, + "end": 28712.62, + "probability": 0.9814 + }, + { + "start": 28712.84, + "end": 28716.84, + "probability": 0.9955 + }, + { + "start": 28718.46, + "end": 28724.04, + "probability": 0.9783 + }, + { + "start": 28724.64, + "end": 28727.32, + "probability": 0.9959 + }, + { + "start": 28727.4, + "end": 28730.05, + "probability": 0.9927 + }, + { + "start": 28731.1, + "end": 28731.96, + "probability": 0.8584 + }, + { + "start": 28732.68, + "end": 28735.66, + "probability": 0.9862 + }, + { + "start": 28735.66, + "end": 28739.68, + "probability": 0.9922 + }, + { + "start": 28740.08, + "end": 28743.96, + "probability": 0.9988 + }, + { + "start": 28744.56, + "end": 28745.86, + "probability": 0.9832 + }, + { + "start": 28746.0, + "end": 28749.58, + "probability": 0.9985 + }, + { + "start": 28749.7, + "end": 28751.24, + "probability": 0.7019 + }, + { + "start": 28753.22, + "end": 28755.4, + "probability": 0.9153 + }, + { + "start": 28755.56, + "end": 28758.98, + "probability": 0.9587 + }, + { + "start": 28759.4, + "end": 28761.78, + "probability": 0.968 + }, + { + "start": 28761.82, + "end": 28762.0, + "probability": 0.5399 + }, + { + "start": 28762.02, + "end": 28764.68, + "probability": 0.9798 + }, + { + "start": 28765.24, + "end": 28767.72, + "probability": 0.9986 + }, + { + "start": 28768.04, + "end": 28770.42, + "probability": 0.99 + }, + { + "start": 28770.42, + "end": 28773.0, + "probability": 0.9977 + }, + { + "start": 28775.74, + "end": 28778.24, + "probability": 0.7142 + }, + { + "start": 28801.7, + "end": 28803.68, + "probability": 0.7056 + }, + { + "start": 28803.72, + "end": 28805.1, + "probability": 0.8049 + }, + { + "start": 28805.62, + "end": 28814.02, + "probability": 0.9912 + }, + { + "start": 28814.28, + "end": 28816.06, + "probability": 0.5429 + }, + { + "start": 28818.08, + "end": 28818.92, + "probability": 0.2447 + }, + { + "start": 28819.52, + "end": 28820.56, + "probability": 0.7225 + }, + { + "start": 28821.3, + "end": 28823.12, + "probability": 0.9928 + }, + { + "start": 28823.24, + "end": 28825.08, + "probability": 0.7307 + }, + { + "start": 28825.24, + "end": 28826.6, + "probability": 0.8655 + }, + { + "start": 28827.58, + "end": 28830.16, + "probability": 0.936 + }, + { + "start": 28831.62, + "end": 28836.36, + "probability": 0.9802 + }, + { + "start": 28836.36, + "end": 28838.8, + "probability": 0.9207 + }, + { + "start": 28839.9, + "end": 28843.0, + "probability": 0.9932 + }, + { + "start": 28844.46, + "end": 28849.04, + "probability": 0.9976 + }, + { + "start": 28849.98, + "end": 28852.08, + "probability": 0.6255 + }, + { + "start": 28852.92, + "end": 28857.28, + "probability": 0.9788 + }, + { + "start": 28858.22, + "end": 28862.7, + "probability": 0.9883 + }, + { + "start": 28862.72, + "end": 28863.48, + "probability": 0.2661 + }, + { + "start": 28863.7, + "end": 28865.8, + "probability": 0.9387 + }, + { + "start": 28865.88, + "end": 28868.48, + "probability": 0.9865 + }, + { + "start": 28868.48, + "end": 28870.44, + "probability": 0.8724 + }, + { + "start": 28871.44, + "end": 28877.18, + "probability": 0.9885 + }, + { + "start": 28877.4, + "end": 28877.7, + "probability": 0.8126 + }, + { + "start": 28877.82, + "end": 28878.5, + "probability": 0.8251 + }, + { + "start": 28878.52, + "end": 28879.6, + "probability": 0.9011 + }, + { + "start": 28879.76, + "end": 28886.72, + "probability": 0.9619 + }, + { + "start": 28887.46, + "end": 28888.3, + "probability": 0.2317 + }, + { + "start": 28888.32, + "end": 28888.32, + "probability": 0.2385 + }, + { + "start": 28888.52, + "end": 28891.48, + "probability": 0.1427 + }, + { + "start": 28891.66, + "end": 28891.66, + "probability": 0.1223 + }, + { + "start": 28892.22, + "end": 28892.24, + "probability": 0.359 + }, + { + "start": 28892.64, + "end": 28895.76, + "probability": 0.674 + }, + { + "start": 28897.3, + "end": 28897.3, + "probability": 0.0501 + }, + { + "start": 28897.3, + "end": 28897.3, + "probability": 0.06 + }, + { + "start": 28897.3, + "end": 28897.92, + "probability": 0.0461 + }, + { + "start": 28898.02, + "end": 28899.56, + "probability": 0.6112 + }, + { + "start": 28900.04, + "end": 28900.79, + "probability": 0.6035 + }, + { + "start": 28901.54, + "end": 28905.36, + "probability": 0.8489 + }, + { + "start": 28905.84, + "end": 28910.18, + "probability": 0.8011 + }, + { + "start": 28910.78, + "end": 28913.42, + "probability": 0.7264 + }, + { + "start": 28913.58, + "end": 28916.0, + "probability": 0.9937 + }, + { + "start": 28916.44, + "end": 28920.0, + "probability": 0.866 + }, + { + "start": 28920.52, + "end": 28922.12, + "probability": 0.6283 + }, + { + "start": 28922.96, + "end": 28928.2, + "probability": 0.6884 + }, + { + "start": 28928.58, + "end": 28930.84, + "probability": 0.7126 + }, + { + "start": 28931.38, + "end": 28931.7, + "probability": 0.7903 + }, + { + "start": 28931.76, + "end": 28937.08, + "probability": 0.9878 + }, + { + "start": 28937.28, + "end": 28939.0, + "probability": 0.9971 + }, + { + "start": 28939.42, + "end": 28944.24, + "probability": 0.9905 + }, + { + "start": 28945.08, + "end": 28945.52, + "probability": 0.9727 + }, + { + "start": 28945.96, + "end": 28947.26, + "probability": 0.9909 + }, + { + "start": 28947.36, + "end": 28948.84, + "probability": 0.9976 + }, + { + "start": 28949.84, + "end": 28954.66, + "probability": 0.9565 + }, + { + "start": 28954.66, + "end": 28958.44, + "probability": 0.9956 + }, + { + "start": 28958.54, + "end": 28962.6, + "probability": 0.9733 + }, + { + "start": 28962.6, + "end": 28967.16, + "probability": 0.992 + }, + { + "start": 28968.34, + "end": 28974.4, + "probability": 0.9917 + }, + { + "start": 28974.44, + "end": 28980.2, + "probability": 0.9891 + }, + { + "start": 28980.28, + "end": 28982.28, + "probability": 0.9619 + }, + { + "start": 28982.38, + "end": 28982.82, + "probability": 0.9406 + }, + { + "start": 28982.9, + "end": 28984.56, + "probability": 0.9855 + }, + { + "start": 28984.98, + "end": 28986.0, + "probability": 0.7365 + }, + { + "start": 28986.92, + "end": 28989.52, + "probability": 0.9917 + }, + { + "start": 28989.6, + "end": 28991.24, + "probability": 0.8721 + }, + { + "start": 28991.26, + "end": 28993.34, + "probability": 0.8926 + }, + { + "start": 28993.52, + "end": 28995.54, + "probability": 0.9818 + }, + { + "start": 28996.02, + "end": 28996.72, + "probability": 0.7471 + }, + { + "start": 28996.86, + "end": 28998.06, + "probability": 0.9767 + }, + { + "start": 28998.98, + "end": 29001.44, + "probability": 0.9598 + }, + { + "start": 29001.5, + "end": 29004.32, + "probability": 0.9841 + }, + { + "start": 29005.12, + "end": 29006.62, + "probability": 0.8638 + }, + { + "start": 29007.38, + "end": 29008.72, + "probability": 0.9635 + }, + { + "start": 29008.86, + "end": 29009.48, + "probability": 0.8844 + }, + { + "start": 29009.54, + "end": 29012.28, + "probability": 0.9416 + }, + { + "start": 29012.86, + "end": 29016.78, + "probability": 0.7842 + }, + { + "start": 29017.04, + "end": 29018.44, + "probability": 0.8386 + }, + { + "start": 29019.14, + "end": 29023.28, + "probability": 0.9744 + }, + { + "start": 29023.28, + "end": 29027.44, + "probability": 0.9987 + }, + { + "start": 29027.6, + "end": 29028.8, + "probability": 0.9966 + }, + { + "start": 29029.4, + "end": 29032.5, + "probability": 0.9638 + }, + { + "start": 29032.66, + "end": 29034.36, + "probability": 0.996 + }, + { + "start": 29034.46, + "end": 29036.94, + "probability": 0.9946 + }, + { + "start": 29036.94, + "end": 29042.02, + "probability": 0.971 + }, + { + "start": 29042.76, + "end": 29045.9, + "probability": 0.7029 + }, + { + "start": 29046.16, + "end": 29048.12, + "probability": 0.7768 + }, + { + "start": 29049.3, + "end": 29051.94, + "probability": 0.9921 + }, + { + "start": 29051.94, + "end": 29053.72, + "probability": 0.9937 + }, + { + "start": 29054.18, + "end": 29054.86, + "probability": 0.9214 + }, + { + "start": 29054.94, + "end": 29059.06, + "probability": 0.8685 + }, + { + "start": 29059.32, + "end": 29061.72, + "probability": 0.9981 + }, + { + "start": 29062.64, + "end": 29063.72, + "probability": 0.975 + }, + { + "start": 29064.42, + "end": 29066.5, + "probability": 0.9987 + }, + { + "start": 29066.72, + "end": 29067.72, + "probability": 0.8151 + }, + { + "start": 29067.76, + "end": 29068.54, + "probability": 0.9407 + }, + { + "start": 29068.62, + "end": 29068.88, + "probability": 0.8145 + }, + { + "start": 29069.16, + "end": 29069.52, + "probability": 0.5362 + }, + { + "start": 29069.58, + "end": 29070.71, + "probability": 0.9598 + }, + { + "start": 29071.4, + "end": 29071.86, + "probability": 0.7894 + }, + { + "start": 29071.9, + "end": 29076.0, + "probability": 0.8053 + }, + { + "start": 29076.18, + "end": 29078.88, + "probability": 0.7323 + }, + { + "start": 29079.0, + "end": 29080.22, + "probability": 0.6889 + }, + { + "start": 29081.06, + "end": 29081.92, + "probability": 0.8717 + }, + { + "start": 29082.42, + "end": 29082.78, + "probability": 0.6424 + }, + { + "start": 29084.72, + "end": 29084.96, + "probability": 0.3748 + }, + { + "start": 29085.88, + "end": 29092.04, + "probability": 0.0396 + }, + { + "start": 29094.99, + "end": 29096.27, + "probability": 0.0568 + }, + { + "start": 29097.2, + "end": 29097.84, + "probability": 0.0535 + }, + { + "start": 29097.84, + "end": 29097.84, + "probability": 0.6738 + }, + { + "start": 29097.84, + "end": 29098.58, + "probability": 0.1797 + }, + { + "start": 29098.64, + "end": 29100.26, + "probability": 0.9828 + }, + { + "start": 29100.4, + "end": 29104.32, + "probability": 0.9705 + }, + { + "start": 29105.92, + "end": 29107.58, + "probability": 0.6071 + }, + { + "start": 29107.62, + "end": 29110.66, + "probability": 0.9877 + }, + { + "start": 29111.08, + "end": 29112.16, + "probability": 0.6612 + }, + { + "start": 29112.24, + "end": 29112.62, + "probability": 0.4481 + }, + { + "start": 29113.48, + "end": 29114.1, + "probability": 0.6197 + }, + { + "start": 29114.14, + "end": 29116.64, + "probability": 0.9605 + }, + { + "start": 29116.72, + "end": 29117.52, + "probability": 0.7056 + }, + { + "start": 29118.4, + "end": 29120.64, + "probability": 0.5978 + }, + { + "start": 29122.04, + "end": 29124.5, + "probability": 0.3501 + }, + { + "start": 29125.3, + "end": 29125.4, + "probability": 0.0121 + }, + { + "start": 29136.76, + "end": 29139.12, + "probability": 0.771 + }, + { + "start": 29139.26, + "end": 29144.66, + "probability": 0.7029 + }, + { + "start": 29144.78, + "end": 29145.8, + "probability": 0.63 + }, + { + "start": 29146.82, + "end": 29150.94, + "probability": 0.9526 + }, + { + "start": 29153.1, + "end": 29153.2, + "probability": 0.0837 + }, + { + "start": 29153.44, + "end": 29153.74, + "probability": 0.0535 + }, + { + "start": 29153.74, + "end": 29155.44, + "probability": 0.0481 + }, + { + "start": 29156.24, + "end": 29162.2, + "probability": 0.0502 + }, + { + "start": 29162.84, + "end": 29166.84, + "probability": 0.0804 + }, + { + "start": 29174.44, + "end": 29175.06, + "probability": 0.2626 + }, + { + "start": 29175.34, + "end": 29176.27, + "probability": 0.0206 + }, + { + "start": 29178.08, + "end": 29180.38, + "probability": 0.1102 + }, + { + "start": 29181.14, + "end": 29184.08, + "probability": 0.6531 + }, + { + "start": 29184.94, + "end": 29185.2, + "probability": 0.0395 + }, + { + "start": 29206.7, + "end": 29207.34, + "probability": 0.574 + }, + { + "start": 29207.98, + "end": 29211.38, + "probability": 0.0396 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.0, + "end": 29227.0, + "probability": 0.0 + }, + { + "start": 29227.2, + "end": 29227.34, + "probability": 0.6505 + }, + { + "start": 29227.9, + "end": 29231.68, + "probability": 0.9748 + }, + { + "start": 29231.86, + "end": 29235.84, + "probability": 0.9884 + }, + { + "start": 29235.94, + "end": 29236.34, + "probability": 0.9836 + }, + { + "start": 29236.54, + "end": 29237.24, + "probability": 0.8107 + }, + { + "start": 29237.74, + "end": 29243.9, + "probability": 0.7509 + }, + { + "start": 29244.5, + "end": 29246.3, + "probability": 0.7338 + }, + { + "start": 29246.96, + "end": 29250.72, + "probability": 0.9919 + }, + { + "start": 29250.72, + "end": 29254.28, + "probability": 0.9839 + }, + { + "start": 29255.0, + "end": 29257.96, + "probability": 0.98 + }, + { + "start": 29257.96, + "end": 29258.34, + "probability": 0.7744 + }, + { + "start": 29262.2, + "end": 29262.72, + "probability": 0.5368 + }, + { + "start": 29263.08, + "end": 29264.98, + "probability": 0.8046 + }, + { + "start": 29269.2, + "end": 29271.64, + "probability": 0.9004 + }, + { + "start": 29280.96, + "end": 29283.04, + "probability": 0.8028 + }, + { + "start": 29283.64, + "end": 29285.72, + "probability": 0.9342 + }, + { + "start": 29285.98, + "end": 29287.44, + "probability": 0.9535 + }, + { + "start": 29287.86, + "end": 29291.4, + "probability": 0.748 + }, + { + "start": 29291.68, + "end": 29294.96, + "probability": 0.9848 + }, + { + "start": 29295.62, + "end": 29299.3, + "probability": 0.9947 + }, + { + "start": 29299.72, + "end": 29300.96, + "probability": 0.7856 + }, + { + "start": 29301.44, + "end": 29304.16, + "probability": 0.9902 + }, + { + "start": 29304.36, + "end": 29304.6, + "probability": 0.8745 + }, + { + "start": 29305.8, + "end": 29306.18, + "probability": 0.6554 + }, + { + "start": 29306.26, + "end": 29307.26, + "probability": 0.9106 + }, + { + "start": 29311.5, + "end": 29314.2, + "probability": 0.9877 + }, + { + "start": 29314.28, + "end": 29315.46, + "probability": 0.7653 + }, + { + "start": 29316.04, + "end": 29318.98, + "probability": 0.8375 + }, + { + "start": 29319.52, + "end": 29319.86, + "probability": 0.7456 + }, + { + "start": 29321.56, + "end": 29321.72, + "probability": 0.301 + }, + { + "start": 29322.8, + "end": 29327.42, + "probability": 0.2274 + }, + { + "start": 29328.08, + "end": 29329.2, + "probability": 0.0889 + }, + { + "start": 29331.62, + "end": 29333.56, + "probability": 0.0417 + }, + { + "start": 29334.08, + "end": 29334.46, + "probability": 0.3519 + }, + { + "start": 29334.72, + "end": 29334.96, + "probability": 0.2918 + }, + { + "start": 29334.96, + "end": 29334.96, + "probability": 0.4797 + }, + { + "start": 29334.96, + "end": 29336.78, + "probability": 0.6626 + }, + { + "start": 29336.92, + "end": 29341.74, + "probability": 0.9263 + }, + { + "start": 29343.56, + "end": 29344.3, + "probability": 0.6866 + }, + { + "start": 29345.0, + "end": 29347.66, + "probability": 0.9842 + }, + { + "start": 29347.78, + "end": 29349.14, + "probability": 0.8322 + }, + { + "start": 29349.24, + "end": 29350.42, + "probability": 0.7632 + }, + { + "start": 29351.16, + "end": 29353.2, + "probability": 0.853 + }, + { + "start": 29354.06, + "end": 29355.62, + "probability": 0.9977 + }, + { + "start": 29374.36, + "end": 29374.56, + "probability": 0.2379 + }, + { + "start": 29376.52, + "end": 29380.0, + "probability": 0.5716 + }, + { + "start": 29380.08, + "end": 29381.38, + "probability": 0.8771 + }, + { + "start": 29381.84, + "end": 29388.0, + "probability": 0.9974 + }, + { + "start": 29388.74, + "end": 29391.42, + "probability": 0.6415 + }, + { + "start": 29392.0, + "end": 29395.88, + "probability": 0.9868 + }, + { + "start": 29400.6, + "end": 29403.22, + "probability": 0.9836 + }, + { + "start": 29403.28, + "end": 29406.14, + "probability": 0.9942 + }, + { + "start": 29406.26, + "end": 29407.0, + "probability": 0.9014 + }, + { + "start": 29407.12, + "end": 29407.94, + "probability": 0.9133 + }, + { + "start": 29408.06, + "end": 29408.3, + "probability": 0.9263 + }, + { + "start": 29408.38, + "end": 29409.14, + "probability": 0.9297 + }, + { + "start": 29412.08, + "end": 29419.52, + "probability": 0.9954 + }, + { + "start": 29419.62, + "end": 29423.6, + "probability": 0.9937 + }, + { + "start": 29424.32, + "end": 29427.64, + "probability": 0.9932 + }, + { + "start": 29427.64, + "end": 29434.64, + "probability": 0.995 + }, + { + "start": 29435.02, + "end": 29437.7, + "probability": 0.9551 + }, + { + "start": 29438.12, + "end": 29440.84, + "probability": 0.9808 + }, + { + "start": 29441.02, + "end": 29444.62, + "probability": 0.79 + }, + { + "start": 29446.14, + "end": 29448.74, + "probability": 0.8238 + }, + { + "start": 29449.88, + "end": 29452.66, + "probability": 0.9702 + }, + { + "start": 29453.64, + "end": 29459.8, + "probability": 0.9941 + }, + { + "start": 29460.38, + "end": 29462.76, + "probability": 0.9661 + }, + { + "start": 29462.88, + "end": 29464.1, + "probability": 0.6743 + }, + { + "start": 29464.54, + "end": 29471.24, + "probability": 0.9943 + }, + { + "start": 29471.46, + "end": 29476.54, + "probability": 0.9967 + }, + { + "start": 29477.22, + "end": 29480.2, + "probability": 0.8899 + }, + { + "start": 29480.78, + "end": 29481.88, + "probability": 0.8533 + }, + { + "start": 29481.88, + "end": 29485.32, + "probability": 0.9391 + }, + { + "start": 29485.9, + "end": 29486.64, + "probability": 0.5771 + }, + { + "start": 29486.76, + "end": 29488.3, + "probability": 0.9648 + }, + { + "start": 29488.44, + "end": 29492.5, + "probability": 0.9012 + }, + { + "start": 29493.08, + "end": 29496.34, + "probability": 0.9226 + }, + { + "start": 29497.08, + "end": 29500.34, + "probability": 0.9384 + }, + { + "start": 29500.98, + "end": 29504.52, + "probability": 0.8883 + }, + { + "start": 29504.52, + "end": 29507.6, + "probability": 0.9715 + }, + { + "start": 29507.66, + "end": 29509.26, + "probability": 0.6904 + }, + { + "start": 29509.6, + "end": 29512.46, + "probability": 0.9727 + }, + { + "start": 29512.6, + "end": 29513.81, + "probability": 0.6699 + }, + { + "start": 29514.78, + "end": 29519.85, + "probability": 0.8807 + }, + { + "start": 29520.48, + "end": 29528.68, + "probability": 0.9736 + }, + { + "start": 29529.34, + "end": 29531.42, + "probability": 0.855 + }, + { + "start": 29531.52, + "end": 29537.06, + "probability": 0.9858 + }, + { + "start": 29537.08, + "end": 29544.18, + "probability": 0.9924 + }, + { + "start": 29544.18, + "end": 29551.08, + "probability": 0.9686 + }, + { + "start": 29552.04, + "end": 29555.38, + "probability": 0.9426 + }, + { + "start": 29556.16, + "end": 29560.08, + "probability": 0.9876 + }, + { + "start": 29561.3, + "end": 29563.96, + "probability": 0.9966 + }, + { + "start": 29564.12, + "end": 29569.98, + "probability": 0.9889 + }, + { + "start": 29569.98, + "end": 29576.98, + "probability": 0.9893 + }, + { + "start": 29577.64, + "end": 29580.62, + "probability": 0.9504 + }, + { + "start": 29581.34, + "end": 29588.9, + "probability": 0.9917 + }, + { + "start": 29589.84, + "end": 29596.46, + "probability": 0.9677 + }, + { + "start": 29596.6, + "end": 29602.44, + "probability": 0.995 + }, + { + "start": 29602.68, + "end": 29603.98, + "probability": 0.5065 + }, + { + "start": 29604.68, + "end": 29608.94, + "probability": 0.9766 + }, + { + "start": 29610.36, + "end": 29613.16, + "probability": 0.9983 + }, + { + "start": 29614.2, + "end": 29616.16, + "probability": 0.3441 + }, + { + "start": 29617.56, + "end": 29619.34, + "probability": 0.9971 + }, + { + "start": 29620.08, + "end": 29621.52, + "probability": 0.938 + }, + { + "start": 29622.62, + "end": 29624.25, + "probability": 0.9822 + }, + { + "start": 29625.3, + "end": 29627.8, + "probability": 0.8738 + }, + { + "start": 29629.12, + "end": 29631.68, + "probability": 0.9043 + }, + { + "start": 29632.82, + "end": 29637.56, + "probability": 0.9487 + }, + { + "start": 29638.54, + "end": 29643.64, + "probability": 0.9696 + }, + { + "start": 29644.64, + "end": 29646.16, + "probability": 0.981 + }, + { + "start": 29646.92, + "end": 29650.22, + "probability": 0.9961 + }, + { + "start": 29650.22, + "end": 29654.62, + "probability": 0.9985 + }, + { + "start": 29655.18, + "end": 29655.91, + "probability": 0.9695 + }, + { + "start": 29656.02, + "end": 29656.75, + "probability": 0.9622 + }, + { + "start": 29657.18, + "end": 29659.26, + "probability": 0.7776 + }, + { + "start": 29659.44, + "end": 29660.86, + "probability": 0.9784 + }, + { + "start": 29661.36, + "end": 29663.84, + "probability": 0.995 + }, + { + "start": 29664.58, + "end": 29666.08, + "probability": 0.8721 + }, + { + "start": 29667.12, + "end": 29671.4, + "probability": 0.99 + }, + { + "start": 29672.1, + "end": 29673.9, + "probability": 0.8188 + }, + { + "start": 29674.1, + "end": 29681.62, + "probability": 0.9918 + }, + { + "start": 29682.66, + "end": 29686.58, + "probability": 0.9874 + }, + { + "start": 29687.44, + "end": 29689.52, + "probability": 0.9962 + }, + { + "start": 29690.44, + "end": 29695.68, + "probability": 0.9845 + }, + { + "start": 29696.24, + "end": 29699.38, + "probability": 0.9585 + }, + { + "start": 29699.94, + "end": 29701.92, + "probability": 0.8334 + }, + { + "start": 29702.32, + "end": 29706.64, + "probability": 0.9734 + }, + { + "start": 29707.12, + "end": 29713.62, + "probability": 0.9898 + }, + { + "start": 29714.8, + "end": 29721.46, + "probability": 0.9907 + }, + { + "start": 29722.28, + "end": 29728.96, + "probability": 0.9986 + }, + { + "start": 29729.5, + "end": 29731.6, + "probability": 0.924 + }, + { + "start": 29732.22, + "end": 29737.38, + "probability": 0.8569 + }, + { + "start": 29737.94, + "end": 29746.2, + "probability": 0.9972 + }, + { + "start": 29749.18, + "end": 29750.12, + "probability": 0.4462 + }, + { + "start": 29752.02, + "end": 29756.7, + "probability": 0.9799 + }, + { + "start": 29756.7, + "end": 29760.52, + "probability": 0.9902 + }, + { + "start": 29761.16, + "end": 29762.56, + "probability": 0.9253 + }, + { + "start": 29764.68, + "end": 29766.78, + "probability": 0.7148 + }, + { + "start": 29767.62, + "end": 29770.6, + "probability": 0.6169 + }, + { + "start": 29770.6, + "end": 29772.0, + "probability": 0.4864 + }, + { + "start": 29772.08, + "end": 29773.86, + "probability": 0.9297 + }, + { + "start": 29773.88, + "end": 29774.44, + "probability": 0.8991 + }, + { + "start": 29797.48, + "end": 29800.8, + "probability": 0.7454 + }, + { + "start": 29803.3, + "end": 29805.38, + "probability": 0.9792 + }, + { + "start": 29805.58, + "end": 29809.82, + "probability": 0.9464 + }, + { + "start": 29810.42, + "end": 29810.62, + "probability": 0.946 + }, + { + "start": 29812.38, + "end": 29815.74, + "probability": 0.9885 + }, + { + "start": 29817.68, + "end": 29824.35, + "probability": 0.7332 + }, + { + "start": 29825.22, + "end": 29826.28, + "probability": 0.8417 + }, + { + "start": 29828.16, + "end": 29836.46, + "probability": 0.96 + }, + { + "start": 29837.16, + "end": 29840.86, + "probability": 0.9886 + }, + { + "start": 29843.18, + "end": 29844.3, + "probability": 0.8051 + }, + { + "start": 29844.52, + "end": 29846.34, + "probability": 0.7789 + }, + { + "start": 29846.7, + "end": 29849.24, + "probability": 0.897 + }, + { + "start": 29849.88, + "end": 29852.54, + "probability": 0.9657 + }, + { + "start": 29853.3, + "end": 29860.92, + "probability": 0.9787 + }, + { + "start": 29862.26, + "end": 29867.66, + "probability": 0.9922 + }, + { + "start": 29868.62, + "end": 29873.16, + "probability": 0.997 + }, + { + "start": 29874.48, + "end": 29879.72, + "probability": 0.9355 + }, + { + "start": 29881.68, + "end": 29888.64, + "probability": 0.9668 + }, + { + "start": 29889.86, + "end": 29893.08, + "probability": 0.8917 + }, + { + "start": 29893.14, + "end": 29895.74, + "probability": 0.9851 + }, + { + "start": 29895.74, + "end": 29899.15, + "probability": 0.9673 + }, + { + "start": 29899.88, + "end": 29907.77, + "probability": 0.9446 + }, + { + "start": 29909.82, + "end": 29910.74, + "probability": 0.8523 + }, + { + "start": 29911.58, + "end": 29916.68, + "probability": 0.9127 + }, + { + "start": 29916.74, + "end": 29917.28, + "probability": 0.8862 + }, + { + "start": 29917.94, + "end": 29922.62, + "probability": 0.9814 + }, + { + "start": 29922.62, + "end": 29925.16, + "probability": 0.6842 + }, + { + "start": 29925.62, + "end": 29929.28, + "probability": 0.9654 + }, + { + "start": 29930.08, + "end": 29932.92, + "probability": 0.8911 + }, + { + "start": 29934.12, + "end": 29935.14, + "probability": 0.7549 + }, + { + "start": 29935.28, + "end": 29937.02, + "probability": 0.9493 + }, + { + "start": 29937.92, + "end": 29940.86, + "probability": 0.974 + }, + { + "start": 29941.52, + "end": 29941.82, + "probability": 0.0573 + }, + { + "start": 29941.82, + "end": 29942.88, + "probability": 0.7864 + }, + { + "start": 29943.02, + "end": 29944.98, + "probability": 0.9854 + }, + { + "start": 29959.36, + "end": 29961.56, + "probability": 0.7234 + }, + { + "start": 29962.68, + "end": 29967.02, + "probability": 0.9878 + }, + { + "start": 29967.2, + "end": 29968.08, + "probability": 0.9656 + }, + { + "start": 29968.78, + "end": 29971.68, + "probability": 0.868 + }, + { + "start": 29971.76, + "end": 29978.22, + "probability": 0.9828 + }, + { + "start": 29978.4, + "end": 29984.04, + "probability": 0.9919 + }, + { + "start": 29984.62, + "end": 29986.94, + "probability": 0.792 + }, + { + "start": 29987.5, + "end": 29988.4, + "probability": 0.9537 + }, + { + "start": 29988.98, + "end": 29991.76, + "probability": 0.8088 + }, + { + "start": 29992.58, + "end": 29996.88, + "probability": 0.9876 + }, + { + "start": 29997.8, + "end": 30002.47, + "probability": 0.6663 + }, + { + "start": 30003.04, + "end": 30004.83, + "probability": 0.9792 + }, + { + "start": 30005.58, + "end": 30006.32, + "probability": 0.5064 + }, + { + "start": 30006.84, + "end": 30013.2, + "probability": 0.9985 + }, + { + "start": 30013.84, + "end": 30014.5, + "probability": 0.4922 + }, + { + "start": 30015.0, + "end": 30018.98, + "probability": 0.9917 + }, + { + "start": 30019.6, + "end": 30025.52, + "probability": 0.9816 + }, + { + "start": 30026.32, + "end": 30032.06, + "probability": 0.9622 + }, + { + "start": 30032.72, + "end": 30032.74, + "probability": 0.0207 + }, + { + "start": 30033.04, + "end": 30033.24, + "probability": 0.6002 + }, + { + "start": 30033.32, + "end": 30035.04, + "probability": 0.962 + }, + { + "start": 30035.14, + "end": 30037.44, + "probability": 0.9464 + }, + { + "start": 30037.84, + "end": 30039.16, + "probability": 0.9625 + }, + { + "start": 30039.3, + "end": 30040.72, + "probability": 0.9824 + }, + { + "start": 30040.78, + "end": 30042.56, + "probability": 0.967 + }, + { + "start": 30043.38, + "end": 30046.28, + "probability": 0.9983 + }, + { + "start": 30046.94, + "end": 30048.92, + "probability": 0.9912 + }, + { + "start": 30049.16, + "end": 30050.36, + "probability": 0.9343 + }, + { + "start": 30050.4, + "end": 30053.32, + "probability": 0.9143 + }, + { + "start": 30053.94, + "end": 30055.92, + "probability": 0.9707 + }, + { + "start": 30056.72, + "end": 30061.14, + "probability": 0.9475 + }, + { + "start": 30061.24, + "end": 30064.42, + "probability": 0.9997 + }, + { + "start": 30064.52, + "end": 30068.2, + "probability": 0.998 + }, + { + "start": 30068.84, + "end": 30070.12, + "probability": 0.5999 + }, + { + "start": 30070.48, + "end": 30073.4, + "probability": 0.9029 + }, + { + "start": 30073.88, + "end": 30080.62, + "probability": 0.9916 + }, + { + "start": 30081.78, + "end": 30089.16, + "probability": 0.9957 + }, + { + "start": 30089.32, + "end": 30090.68, + "probability": 0.9799 + }, + { + "start": 30090.84, + "end": 30092.38, + "probability": 0.9977 + }, + { + "start": 30092.9, + "end": 30094.68, + "probability": 0.9854 + }, + { + "start": 30095.76, + "end": 30097.32, + "probability": 0.9881 + }, + { + "start": 30097.62, + "end": 30099.04, + "probability": 0.8387 + }, + { + "start": 30099.16, + "end": 30100.68, + "probability": 0.9713 + }, + { + "start": 30101.28, + "end": 30104.72, + "probability": 0.9741 + }, + { + "start": 30104.74, + "end": 30105.48, + "probability": 0.7008 + }, + { + "start": 30105.54, + "end": 30109.78, + "probability": 0.9932 + }, + { + "start": 30110.44, + "end": 30114.74, + "probability": 0.9974 + }, + { + "start": 30114.9, + "end": 30115.32, + "probability": 0.7515 + }, + { + "start": 30116.62, + "end": 30117.24, + "probability": 0.6453 + }, + { + "start": 30117.38, + "end": 30119.14, + "probability": 0.5871 + }, + { + "start": 30120.3, + "end": 30121.56, + "probability": 0.666 + }, + { + "start": 30122.18, + "end": 30124.16, + "probability": 0.8456 + }, + { + "start": 30126.16, + "end": 30127.18, + "probability": 0.9525 + }, + { + "start": 30127.88, + "end": 30129.54, + "probability": 0.6672 + }, + { + "start": 30132.6, + "end": 30134.02, + "probability": 0.8021 + }, + { + "start": 30135.56, + "end": 30138.2, + "probability": 0.7011 + }, + { + "start": 30139.94, + "end": 30143.08, + "probability": 0.8349 + }, + { + "start": 30143.68, + "end": 30147.54, + "probability": 0.9869 + }, + { + "start": 30147.54, + "end": 30151.22, + "probability": 0.7263 + }, + { + "start": 30151.58, + "end": 30155.2, + "probability": 0.9858 + }, + { + "start": 30155.28, + "end": 30155.88, + "probability": 0.7266 + }, + { + "start": 30155.96, + "end": 30157.28, + "probability": 0.1884 + }, + { + "start": 30157.36, + "end": 30157.86, + "probability": 0.2532 + }, + { + "start": 30157.86, + "end": 30158.68, + "probability": 0.9082 + }, + { + "start": 30158.78, + "end": 30160.56, + "probability": 0.9703 + }, + { + "start": 30160.58, + "end": 30160.9, + "probability": 0.3616 + }, + { + "start": 30161.78, + "end": 30162.08, + "probability": 0.8564 + }, + { + "start": 30162.32, + "end": 30170.81, + "probability": 0.9943 + }, + { + "start": 30172.18, + "end": 30173.48, + "probability": 0.6663 + }, + { + "start": 30174.82, + "end": 30176.5, + "probability": 0.844 + }, + { + "start": 30177.42, + "end": 30179.0, + "probability": 0.8148 + }, + { + "start": 30179.18, + "end": 30181.58, + "probability": 0.4546 + }, + { + "start": 30182.06, + "end": 30184.44, + "probability": 0.7954 + }, + { + "start": 30185.12, + "end": 30188.22, + "probability": 0.939 + }, + { + "start": 30188.22, + "end": 30191.94, + "probability": 0.9897 + }, + { + "start": 30193.38, + "end": 30194.22, + "probability": 0.8357 + }, + { + "start": 30194.68, + "end": 30195.1, + "probability": 0.4459 + }, + { + "start": 30195.12, + "end": 30199.1, + "probability": 0.87 + }, + { + "start": 30199.16, + "end": 30199.9, + "probability": 0.6954 + }, + { + "start": 30200.36, + "end": 30202.76, + "probability": 0.8573 + }, + { + "start": 30203.6, + "end": 30205.28, + "probability": 0.9625 + }, + { + "start": 30205.86, + "end": 30210.66, + "probability": 0.9984 + }, + { + "start": 30211.3, + "end": 30216.5, + "probability": 0.9956 + }, + { + "start": 30216.86, + "end": 30221.6, + "probability": 0.9766 + }, + { + "start": 30223.1, + "end": 30227.08, + "probability": 0.9682 + }, + { + "start": 30227.08, + "end": 30230.98, + "probability": 0.9949 + }, + { + "start": 30231.6, + "end": 30235.42, + "probability": 0.9911 + }, + { + "start": 30236.06, + "end": 30240.26, + "probability": 0.9703 + }, + { + "start": 30240.26, + "end": 30243.98, + "probability": 0.994 + }, + { + "start": 30244.98, + "end": 30250.76, + "probability": 0.988 + }, + { + "start": 30250.76, + "end": 30256.28, + "probability": 0.9971 + }, + { + "start": 30257.46, + "end": 30262.74, + "probability": 0.995 + }, + { + "start": 30262.78, + "end": 30268.98, + "probability": 0.9991 + }, + { + "start": 30269.78, + "end": 30271.64, + "probability": 0.8055 + }, + { + "start": 30272.58, + "end": 30276.56, + "probability": 0.9956 + }, + { + "start": 30276.56, + "end": 30280.42, + "probability": 0.9871 + }, + { + "start": 30280.84, + "end": 30281.24, + "probability": 0.5134 + }, + { + "start": 30281.76, + "end": 30285.68, + "probability": 0.926 + }, + { + "start": 30286.22, + "end": 30288.24, + "probability": 0.8068 + }, + { + "start": 30288.76, + "end": 30292.04, + "probability": 0.9851 + }, + { + "start": 30292.42, + "end": 30295.16, + "probability": 0.9937 + }, + { + "start": 30296.6, + "end": 30297.75, + "probability": 0.7423 + }, + { + "start": 30298.24, + "end": 30304.8, + "probability": 0.9797 + }, + { + "start": 30305.8, + "end": 30309.76, + "probability": 0.9783 + }, + { + "start": 30310.82, + "end": 30313.14, + "probability": 0.9906 + }, + { + "start": 30313.14, + "end": 30316.56, + "probability": 0.9872 + }, + { + "start": 30317.04, + "end": 30317.46, + "probability": 0.7681 + }, + { + "start": 30317.6, + "end": 30321.4, + "probability": 0.9891 + }, + { + "start": 30321.4, + "end": 30327.42, + "probability": 0.9867 + }, + { + "start": 30328.12, + "end": 30330.88, + "probability": 0.8325 + }, + { + "start": 30331.42, + "end": 30338.58, + "probability": 0.9276 + }, + { + "start": 30338.58, + "end": 30346.32, + "probability": 0.9601 + }, + { + "start": 30346.68, + "end": 30350.6, + "probability": 0.733 + }, + { + "start": 30351.0, + "end": 30353.48, + "probability": 0.3302 + }, + { + "start": 30353.96, + "end": 30359.68, + "probability": 0.9958 + }, + { + "start": 30360.28, + "end": 30365.88, + "probability": 0.9215 + }, + { + "start": 30366.48, + "end": 30370.92, + "probability": 0.9842 + }, + { + "start": 30371.3, + "end": 30375.82, + "probability": 0.8156 + }, + { + "start": 30376.12, + "end": 30381.34, + "probability": 0.9922 + }, + { + "start": 30381.84, + "end": 30388.34, + "probability": 0.9821 + }, + { + "start": 30388.9, + "end": 30390.28, + "probability": 0.5869 + }, + { + "start": 30390.84, + "end": 30392.72, + "probability": 0.7817 + }, + { + "start": 30392.88, + "end": 30393.46, + "probability": 0.5453 + }, + { + "start": 30393.88, + "end": 30395.28, + "probability": 0.9752 + }, + { + "start": 30395.5, + "end": 30396.04, + "probability": 0.7559 + }, + { + "start": 30397.14, + "end": 30397.88, + "probability": 0.7509 + }, + { + "start": 30398.76, + "end": 30403.08, + "probability": 0.7652 + }, + { + "start": 30403.24, + "end": 30406.42, + "probability": 0.7371 + }, + { + "start": 30406.54, + "end": 30408.38, + "probability": 0.8763 + }, + { + "start": 30408.5, + "end": 30410.82, + "probability": 0.7309 + }, + { + "start": 30410.94, + "end": 30413.36, + "probability": 0.818 + }, + { + "start": 30415.36, + "end": 30416.34, + "probability": 0.9436 + }, + { + "start": 30416.92, + "end": 30417.28, + "probability": 0.6605 + }, + { + "start": 30419.8, + "end": 30420.1, + "probability": 0.0942 + }, + { + "start": 30427.24, + "end": 30430.8, + "probability": 0.1394 + }, + { + "start": 30431.04, + "end": 30432.06, + "probability": 0.0331 + }, + { + "start": 30432.24, + "end": 30432.42, + "probability": 0.0612 + }, + { + "start": 30432.42, + "end": 30432.58, + "probability": 0.3639 + }, + { + "start": 30432.58, + "end": 30433.98, + "probability": 0.5305 + }, + { + "start": 30434.57, + "end": 30436.88, + "probability": 0.6963 + }, + { + "start": 30437.32, + "end": 30437.8, + "probability": 0.2153 + }, + { + "start": 30437.94, + "end": 30438.08, + "probability": 0.496 + }, + { + "start": 30438.6, + "end": 30438.94, + "probability": 0.0077 + }, + { + "start": 30438.94, + "end": 30439.15, + "probability": 0.4983 + }, + { + "start": 30440.06, + "end": 30441.86, + "probability": 0.4619 + }, + { + "start": 30442.5, + "end": 30444.0, + "probability": 0.9069 + }, + { + "start": 30444.94, + "end": 30447.6, + "probability": 0.6321 + }, + { + "start": 30447.64, + "end": 30450.44, + "probability": 0.911 + }, + { + "start": 30450.7, + "end": 30452.45, + "probability": 0.8151 + }, + { + "start": 30453.46, + "end": 30455.34, + "probability": 0.6364 + }, + { + "start": 30466.18, + "end": 30466.9, + "probability": 0.4392 + }, + { + "start": 30472.76, + "end": 30473.98, + "probability": 0.1659 + }, + { + "start": 30475.54, + "end": 30476.9, + "probability": 0.0164 + }, + { + "start": 30476.9, + "end": 30477.38, + "probability": 0.044 + }, + { + "start": 30477.56, + "end": 30477.62, + "probability": 0.0786 + }, + { + "start": 30478.82, + "end": 30479.44, + "probability": 0.6153 + }, + { + "start": 30480.6, + "end": 30483.36, + "probability": 0.6014 + }, + { + "start": 30484.1, + "end": 30487.5, + "probability": 0.7244 + }, + { + "start": 30488.38, + "end": 30490.58, + "probability": 0.8085 + }, + { + "start": 30490.58, + "end": 30493.64, + "probability": 0.7744 + }, + { + "start": 30497.74, + "end": 30500.44, + "probability": 0.5945 + }, + { + "start": 30501.48, + "end": 30504.88, + "probability": 0.1283 + }, + { + "start": 30505.18, + "end": 30505.66, + "probability": 0.03 + }, + { + "start": 30509.96, + "end": 30510.44, + "probability": 0.0844 + }, + { + "start": 30511.02, + "end": 30512.18, + "probability": 0.5703 + }, + { + "start": 30512.46, + "end": 30514.44, + "probability": 0.6651 + }, + { + "start": 30514.52, + "end": 30518.42, + "probability": 0.9825 + }, + { + "start": 30519.56, + "end": 30523.0, + "probability": 0.8118 + }, + { + "start": 30523.92, + "end": 30526.46, + "probability": 0.6659 + }, + { + "start": 30526.58, + "end": 30531.52, + "probability": 0.8566 + }, + { + "start": 30531.56, + "end": 30534.24, + "probability": 0.8396 + }, + { + "start": 30534.52, + "end": 30536.52, + "probability": 0.1683 + }, + { + "start": 30553.04, + "end": 30554.42, + "probability": 0.2098 + }, + { + "start": 30554.64, + "end": 30555.8, + "probability": 0.5547 + }, + { + "start": 30557.12, + "end": 30563.2, + "probability": 0.9959 + }, + { + "start": 30564.41, + "end": 30566.38, + "probability": 0.035 + }, + { + "start": 30566.38, + "end": 30566.38, + "probability": 0.0737 + }, + { + "start": 30566.38, + "end": 30566.42, + "probability": 0.0604 + }, + { + "start": 30567.32, + "end": 30568.76, + "probability": 0.0121 + }, + { + "start": 30572.98, + "end": 30573.74, + "probability": 0.6912 + }, + { + "start": 30574.72, + "end": 30577.1, + "probability": 0.8037 + }, + { + "start": 30578.4, + "end": 30581.6, + "probability": 0.9958 + }, + { + "start": 30581.6, + "end": 30584.86, + "probability": 0.9943 + }, + { + "start": 30584.96, + "end": 30588.58, + "probability": 0.9583 + }, + { + "start": 30588.58, + "end": 30593.02, + "probability": 0.9873 + }, + { + "start": 30593.24, + "end": 30597.88, + "probability": 0.9888 + }, + { + "start": 30597.88, + "end": 30601.72, + "probability": 0.9709 + }, + { + "start": 30602.48, + "end": 30605.96, + "probability": 0.9928 + }, + { + "start": 30606.4, + "end": 30608.58, + "probability": 0.9822 + }, + { + "start": 30609.14, + "end": 30613.58, + "probability": 0.9829 + }, + { + "start": 30613.82, + "end": 30617.2, + "probability": 0.9914 + }, + { + "start": 30618.28, + "end": 30619.36, + "probability": 0.9009 + }, + { + "start": 30620.08, + "end": 30623.28, + "probability": 0.9901 + }, + { + "start": 30623.66, + "end": 30625.4, + "probability": 0.9436 + }, + { + "start": 30626.1, + "end": 30628.94, + "probability": 0.9971 + }, + { + "start": 30629.34, + "end": 30630.46, + "probability": 0.7092 + }, + { + "start": 30631.0, + "end": 30633.8, + "probability": 0.9271 + }, + { + "start": 30633.8, + "end": 30636.4, + "probability": 0.9655 + }, + { + "start": 30636.98, + "end": 30640.14, + "probability": 0.9965 + }, + { + "start": 30640.8, + "end": 30641.18, + "probability": 0.4915 + }, + { + "start": 30641.44, + "end": 30645.36, + "probability": 0.962 + }, + { + "start": 30645.88, + "end": 30648.96, + "probability": 0.9834 + }, + { + "start": 30650.0, + "end": 30652.36, + "probability": 0.9946 + }, + { + "start": 30652.36, + "end": 30655.8, + "probability": 0.9846 + }, + { + "start": 30656.72, + "end": 30662.06, + "probability": 0.8993 + }, + { + "start": 30662.54, + "end": 30664.36, + "probability": 0.9404 + }, + { + "start": 30664.84, + "end": 30667.62, + "probability": 0.9951 + }, + { + "start": 30667.62, + "end": 30670.51, + "probability": 0.9951 + }, + { + "start": 30671.26, + "end": 30678.0, + "probability": 0.8204 + }, + { + "start": 30678.62, + "end": 30682.3, + "probability": 0.995 + }, + { + "start": 30683.14, + "end": 30684.12, + "probability": 0.7174 + }, + { + "start": 30684.36, + "end": 30688.9, + "probability": 0.9922 + }, + { + "start": 30688.9, + "end": 30694.04, + "probability": 0.9983 + }, + { + "start": 30694.5, + "end": 30696.5, + "probability": 0.9989 + }, + { + "start": 30697.04, + "end": 30699.52, + "probability": 0.9491 + }, + { + "start": 30700.16, + "end": 30702.6, + "probability": 0.9681 + }, + { + "start": 30702.7, + "end": 30709.0, + "probability": 0.9827 + }, + { + "start": 30709.6, + "end": 30711.86, + "probability": 0.9863 + }, + { + "start": 30711.86, + "end": 30714.04, + "probability": 0.9946 + }, + { + "start": 30714.7, + "end": 30715.32, + "probability": 0.748 + }, + { + "start": 30716.18, + "end": 30717.92, + "probability": 0.9004 + }, + { + "start": 30718.22, + "end": 30721.4, + "probability": 0.9717 + }, + { + "start": 30723.92, + "end": 30726.0, + "probability": 0.9863 + }, + { + "start": 30726.54, + "end": 30729.06, + "probability": 0.981 + }, + { + "start": 30729.94, + "end": 30730.22, + "probability": 0.7124 + }, + { + "start": 30730.3, + "end": 30732.28, + "probability": 0.95 + }, + { + "start": 30732.6, + "end": 30735.52, + "probability": 0.7703 + }, + { + "start": 30736.12, + "end": 30737.56, + "probability": 0.9993 + }, + { + "start": 30737.68, + "end": 30739.1, + "probability": 0.9854 + }, + { + "start": 30739.6, + "end": 30743.82, + "probability": 0.9878 + }, + { + "start": 30744.4, + "end": 30744.8, + "probability": 0.5446 + }, + { + "start": 30745.0, + "end": 30749.32, + "probability": 0.9891 + }, + { + "start": 30749.76, + "end": 30751.14, + "probability": 0.9368 + }, + { + "start": 30751.66, + "end": 30755.82, + "probability": 0.8515 + }, + { + "start": 30756.26, + "end": 30758.02, + "probability": 0.5004 + }, + { + "start": 30758.08, + "end": 30758.6, + "probability": 0.8656 + }, + { + "start": 30759.26, + "end": 30762.9, + "probability": 0.9088 + }, + { + "start": 30763.6, + "end": 30767.14, + "probability": 0.9929 + }, + { + "start": 30767.8, + "end": 30770.42, + "probability": 0.9733 + }, + { + "start": 30770.92, + "end": 30773.82, + "probability": 0.966 + }, + { + "start": 30774.26, + "end": 30776.12, + "probability": 0.9045 + }, + { + "start": 30776.64, + "end": 30783.14, + "probability": 0.993 + }, + { + "start": 30784.04, + "end": 30785.9, + "probability": 0.9963 + }, + { + "start": 30786.48, + "end": 30789.6, + "probability": 0.8028 + }, + { + "start": 30790.26, + "end": 30793.36, + "probability": 0.9969 + }, + { + "start": 30793.9, + "end": 30794.64, + "probability": 0.605 + }, + { + "start": 30795.3, + "end": 30797.6, + "probability": 0.7682 + }, + { + "start": 30798.28, + "end": 30800.36, + "probability": 0.9858 + }, + { + "start": 30800.36, + "end": 30802.14, + "probability": 0.7977 + }, + { + "start": 30802.9, + "end": 30804.04, + "probability": 0.9316 + }, + { + "start": 30804.1, + "end": 30806.46, + "probability": 0.8576 + }, + { + "start": 30807.24, + "end": 30808.98, + "probability": 0.9891 + }, + { + "start": 30809.38, + "end": 30811.1, + "probability": 0.9563 + }, + { + "start": 30811.14, + "end": 30811.76, + "probability": 0.6958 + }, + { + "start": 30811.8, + "end": 30813.22, + "probability": 0.9873 + }, + { + "start": 30813.6, + "end": 30813.88, + "probability": 0.7351 + }, + { + "start": 30814.5, + "end": 30814.6, + "probability": 0.0579 + }, + { + "start": 30814.6, + "end": 30814.9, + "probability": 0.1 + }, + { + "start": 30815.08, + "end": 30816.76, + "probability": 0.9463 + }, + { + "start": 30817.24, + "end": 30820.76, + "probability": 0.9924 + }, + { + "start": 30821.4, + "end": 30825.26, + "probability": 0.9392 + }, + { + "start": 30825.64, + "end": 30827.32, + "probability": 0.7247 + }, + { + "start": 30827.72, + "end": 30829.24, + "probability": 0.9761 + }, + { + "start": 30830.2, + "end": 30830.58, + "probability": 0.7119 + }, + { + "start": 30830.66, + "end": 30831.36, + "probability": 0.7317 + }, + { + "start": 30831.7, + "end": 30832.26, + "probability": 0.4214 + }, + { + "start": 30832.42, + "end": 30834.38, + "probability": 0.85 + }, + { + "start": 30834.82, + "end": 30835.34, + "probability": 0.944 + }, + { + "start": 30835.62, + "end": 30836.54, + "probability": 0.5835 + }, + { + "start": 30837.12, + "end": 30839.28, + "probability": 0.6935 + }, + { + "start": 30839.28, + "end": 30842.6, + "probability": 0.9431 + }, + { + "start": 30843.18, + "end": 30843.84, + "probability": 0.9528 + }, + { + "start": 30844.36, + "end": 30846.16, + "probability": 0.983 + }, + { + "start": 30846.42, + "end": 30846.82, + "probability": 0.9591 + }, + { + "start": 30846.88, + "end": 30847.32, + "probability": 0.9455 + }, + { + "start": 30847.38, + "end": 30847.84, + "probability": 0.5396 + }, + { + "start": 30848.14, + "end": 30851.48, + "probability": 0.9935 + }, + { + "start": 30852.12, + "end": 30855.36, + "probability": 0.9885 + }, + { + "start": 30855.9, + "end": 30860.0, + "probability": 0.9935 + }, + { + "start": 30860.64, + "end": 30861.2, + "probability": 0.4959 + }, + { + "start": 30861.48, + "end": 30866.44, + "probability": 0.9801 + }, + { + "start": 30866.6, + "end": 30867.58, + "probability": 0.6547 + }, + { + "start": 30868.04, + "end": 30869.08, + "probability": 0.8694 + }, + { + "start": 30869.28, + "end": 30869.62, + "probability": 0.9589 + }, + { + "start": 30869.68, + "end": 30871.28, + "probability": 0.5137 + }, + { + "start": 30871.64, + "end": 30872.88, + "probability": 0.8052 + }, + { + "start": 30873.44, + "end": 30880.03, + "probability": 0.9749 + }, + { + "start": 30880.8, + "end": 30881.48, + "probability": 0.9392 + }, + { + "start": 30881.54, + "end": 30884.22, + "probability": 0.9882 + }, + { + "start": 30885.41, + "end": 30887.61, + "probability": 0.6282 + }, + { + "start": 30888.24, + "end": 30890.82, + "probability": 0.9821 + }, + { + "start": 30891.54, + "end": 30894.84, + "probability": 0.9917 + }, + { + "start": 30895.36, + "end": 30897.02, + "probability": 0.9965 + }, + { + "start": 30897.56, + "end": 30901.2, + "probability": 0.998 + }, + { + "start": 30901.4, + "end": 30901.62, + "probability": 0.7845 + }, + { + "start": 30905.36, + "end": 30905.5, + "probability": 0.1661 + }, + { + "start": 30905.56, + "end": 30906.94, + "probability": 0.8506 + }, + { + "start": 30907.04, + "end": 30909.44, + "probability": 0.9762 + }, + { + "start": 30914.3, + "end": 30915.68, + "probability": 0.8373 + }, + { + "start": 30916.0, + "end": 30917.72, + "probability": 0.6204 + }, + { + "start": 30918.7, + "end": 30919.28, + "probability": 0.0031 + }, + { + "start": 30921.46, + "end": 30923.9, + "probability": 0.0216 + }, + { + "start": 30931.34, + "end": 30933.36, + "probability": 0.7074 + }, + { + "start": 30935.88, + "end": 30938.32, + "probability": 0.2465 + }, + { + "start": 30938.46, + "end": 30939.68, + "probability": 0.7607 + }, + { + "start": 30940.48, + "end": 30941.68, + "probability": 0.9402 + }, + { + "start": 30945.74, + "end": 30947.06, + "probability": 0.5119 + }, + { + "start": 30947.6, + "end": 30948.16, + "probability": 0.0268 + }, + { + "start": 30949.78, + "end": 30954.14, + "probability": 0.0473 + }, + { + "start": 30956.58, + "end": 30958.32, + "probability": 0.128 + }, + { + "start": 30960.02, + "end": 30961.24, + "probability": 0.619 + }, + { + "start": 30961.36, + "end": 30964.18, + "probability": 0.9555 + }, + { + "start": 30964.24, + "end": 30965.88, + "probability": 0.9326 + }, + { + "start": 30966.94, + "end": 30967.5, + "probability": 0.7387 + }, + { + "start": 30973.04, + "end": 30976.7, + "probability": 0.7683 + }, + { + "start": 30976.92, + "end": 30980.2, + "probability": 0.9167 + }, + { + "start": 30981.04, + "end": 30982.84, + "probability": 0.923 + }, + { + "start": 30982.96, + "end": 30984.66, + "probability": 0.7675 + }, + { + "start": 30984.84, + "end": 30985.48, + "probability": 0.5325 + }, + { + "start": 30986.36, + "end": 30988.28, + "probability": 0.7614 + }, + { + "start": 30992.5, + "end": 30998.84, + "probability": 0.9529 + }, + { + "start": 31000.1, + "end": 31001.56, + "probability": 0.6366 + }, + { + "start": 31001.9, + "end": 31003.16, + "probability": 0.649 + }, + { + "start": 31003.2, + "end": 31005.27, + "probability": 0.6351 + }, + { + "start": 31005.98, + "end": 31006.96, + "probability": 0.3812 + }, + { + "start": 31007.02, + "end": 31007.4, + "probability": 0.7371 + }, + { + "start": 31007.48, + "end": 31010.94, + "probability": 0.901 + }, + { + "start": 31012.04, + "end": 31013.92, + "probability": 0.936 + }, + { + "start": 31014.18, + "end": 31018.06, + "probability": 0.9943 + }, + { + "start": 31018.82, + "end": 31019.68, + "probability": 0.739 + }, + { + "start": 31020.54, + "end": 31021.26, + "probability": 0.9724 + }, + { + "start": 31022.34, + "end": 31024.62, + "probability": 0.9691 + }, + { + "start": 31025.56, + "end": 31028.12, + "probability": 0.9962 + }, + { + "start": 31029.02, + "end": 31034.05, + "probability": 0.991 + }, + { + "start": 31035.02, + "end": 31037.86, + "probability": 0.8469 + }, + { + "start": 31039.38, + "end": 31042.06, + "probability": 0.9953 + }, + { + "start": 31042.8, + "end": 31048.82, + "probability": 0.9824 + }, + { + "start": 31049.64, + "end": 31057.02, + "probability": 0.9699 + }, + { + "start": 31058.48, + "end": 31062.62, + "probability": 0.9978 + }, + { + "start": 31063.42, + "end": 31067.62, + "probability": 0.9128 + }, + { + "start": 31068.74, + "end": 31070.2, + "probability": 0.9978 + }, + { + "start": 31070.72, + "end": 31072.08, + "probability": 0.976 + }, + { + "start": 31072.74, + "end": 31075.14, + "probability": 0.7345 + }, + { + "start": 31076.72, + "end": 31077.88, + "probability": 0.9092 + }, + { + "start": 31079.44, + "end": 31080.5, + "probability": 0.9989 + }, + { + "start": 31081.06, + "end": 31083.94, + "probability": 0.9542 + }, + { + "start": 31084.36, + "end": 31086.2, + "probability": 0.9092 + }, + { + "start": 31086.82, + "end": 31088.84, + "probability": 0.9706 + }, + { + "start": 31089.68, + "end": 31091.0, + "probability": 0.8057 + }, + { + "start": 31091.54, + "end": 31092.28, + "probability": 0.3762 + }, + { + "start": 31093.56, + "end": 31093.94, + "probability": 0.7403 + }, + { + "start": 31094.84, + "end": 31097.22, + "probability": 0.6989 + }, + { + "start": 31099.94, + "end": 31101.5, + "probability": 0.936 + }, + { + "start": 31102.68, + "end": 31103.66, + "probability": 0.7393 + }, + { + "start": 31104.3, + "end": 31106.38, + "probability": 0.901 + }, + { + "start": 31106.92, + "end": 31108.08, + "probability": 0.9865 + }, + { + "start": 31109.24, + "end": 31110.38, + "probability": 0.8281 + }, + { + "start": 31111.16, + "end": 31112.9, + "probability": 0.9272 + }, + { + "start": 31113.46, + "end": 31118.34, + "probability": 0.9873 + }, + { + "start": 31118.46, + "end": 31122.32, + "probability": 0.942 + }, + { + "start": 31122.32, + "end": 31126.52, + "probability": 0.9985 + }, + { + "start": 31127.42, + "end": 31131.46, + "probability": 0.8884 + }, + { + "start": 31132.08, + "end": 31138.67, + "probability": 0.9928 + }, + { + "start": 31139.32, + "end": 31142.3, + "probability": 0.9962 + }, + { + "start": 31143.72, + "end": 31146.04, + "probability": 0.9258 + }, + { + "start": 31146.86, + "end": 31148.12, + "probability": 0.9888 + }, + { + "start": 31148.76, + "end": 31152.16, + "probability": 0.991 + }, + { + "start": 31153.34, + "end": 31153.48, + "probability": 0.9885 + }, + { + "start": 31154.3, + "end": 31155.98, + "probability": 0.967 + }, + { + "start": 31156.34, + "end": 31164.84, + "probability": 0.9738 + }, + { + "start": 31165.82, + "end": 31166.74, + "probability": 0.9213 + }, + { + "start": 31170.44, + "end": 31173.88, + "probability": 0.897 + }, + { + "start": 31174.64, + "end": 31177.62, + "probability": 0.9425 + }, + { + "start": 31178.4, + "end": 31183.78, + "probability": 0.9909 + }, + { + "start": 31185.5, + "end": 31188.84, + "probability": 0.9485 + }, + { + "start": 31189.78, + "end": 31190.68, + "probability": 0.9903 + }, + { + "start": 31192.14, + "end": 31196.04, + "probability": 0.9536 + }, + { + "start": 31196.66, + "end": 31198.86, + "probability": 0.999 + }, + { + "start": 31199.6, + "end": 31203.22, + "probability": 0.9901 + }, + { + "start": 31204.44, + "end": 31205.07, + "probability": 0.5047 + }, + { + "start": 31206.14, + "end": 31207.86, + "probability": 0.9594 + }, + { + "start": 31208.56, + "end": 31210.0, + "probability": 0.975 + }, + { + "start": 31210.82, + "end": 31213.28, + "probability": 0.9941 + }, + { + "start": 31213.88, + "end": 31214.64, + "probability": 0.7596 + }, + { + "start": 31215.28, + "end": 31216.64, + "probability": 0.1388 + }, + { + "start": 31216.72, + "end": 31218.2, + "probability": 0.732 + }, + { + "start": 31223.5, + "end": 31224.6, + "probability": 0.7756 + }, + { + "start": 31224.98, + "end": 31225.2, + "probability": 0.5311 + }, + { + "start": 31227.36, + "end": 31231.96, + "probability": 0.9954 + }, + { + "start": 31231.96, + "end": 31237.44, + "probability": 0.9985 + }, + { + "start": 31239.04, + "end": 31245.84, + "probability": 0.9952 + }, + { + "start": 31246.04, + "end": 31248.34, + "probability": 0.993 + }, + { + "start": 31248.54, + "end": 31250.46, + "probability": 0.9525 + }, + { + "start": 31250.56, + "end": 31250.82, + "probability": 0.7579 + }, + { + "start": 31251.78, + "end": 31252.28, + "probability": 0.6918 + }, + { + "start": 31252.42, + "end": 31254.34, + "probability": 0.8418 + }, + { + "start": 31256.36, + "end": 31258.88, + "probability": 0.5229 + }, + { + "start": 31258.88, + "end": 31259.3, + "probability": 0.8495 + }, + { + "start": 31259.58, + "end": 31259.88, + "probability": 0.6717 + }, + { + "start": 31260.18, + "end": 31261.08, + "probability": 0.6097 + }, + { + "start": 31261.14, + "end": 31262.4, + "probability": 0.3052 + }, + { + "start": 31262.56, + "end": 31264.38, + "probability": 0.986 + }, + { + "start": 31264.5, + "end": 31267.4, + "probability": 0.7788 + }, + { + "start": 31267.64, + "end": 31270.64, + "probability": 0.6865 + }, + { + "start": 31270.94, + "end": 31270.94, + "probability": 0.8308 + }, + { + "start": 31270.94, + "end": 31273.24, + "probability": 0.5106 + }, + { + "start": 31273.24, + "end": 31274.62, + "probability": 0.6748 + }, + { + "start": 31275.22, + "end": 31276.46, + "probability": 0.9848 + }, + { + "start": 31276.98, + "end": 31279.92, + "probability": 0.9929 + }, + { + "start": 31280.24, + "end": 31283.8, + "probability": 0.9932 + }, + { + "start": 31284.3, + "end": 31285.44, + "probability": 0.95 + }, + { + "start": 31285.6, + "end": 31285.82, + "probability": 0.7581 + }, + { + "start": 31287.5, + "end": 31288.14, + "probability": 0.8144 + }, + { + "start": 31288.32, + "end": 31289.66, + "probability": 0.681 + }, + { + "start": 31295.14, + "end": 31296.69, + "probability": 0.685 + }, + { + "start": 31298.2, + "end": 31299.32, + "probability": 0.66 + }, + { + "start": 31303.96, + "end": 31304.98, + "probability": 0.5659 + }, + { + "start": 31305.0, + "end": 31305.9, + "probability": 0.7701 + }, + { + "start": 31306.0, + "end": 31310.12, + "probability": 0.771 + }, + { + "start": 31310.22, + "end": 31311.12, + "probability": 0.9175 + }, + { + "start": 31312.64, + "end": 31312.84, + "probability": 0.6422 + }, + { + "start": 31312.86, + "end": 31314.48, + "probability": 0.9545 + }, + { + "start": 31314.7, + "end": 31316.34, + "probability": 0.9946 + }, + { + "start": 31316.48, + "end": 31317.88, + "probability": 0.8072 + }, + { + "start": 31319.54, + "end": 31321.74, + "probability": 0.91 + }, + { + "start": 31323.7, + "end": 31325.42, + "probability": 0.9963 + }, + { + "start": 31326.58, + "end": 31327.26, + "probability": 0.7109 + }, + { + "start": 31327.32, + "end": 31328.35, + "probability": 0.8868 + }, + { + "start": 31328.74, + "end": 31331.44, + "probability": 0.9363 + }, + { + "start": 31332.68, + "end": 31337.38, + "probability": 0.9902 + }, + { + "start": 31338.48, + "end": 31342.5, + "probability": 0.8637 + }, + { + "start": 31344.16, + "end": 31345.1, + "probability": 0.6218 + }, + { + "start": 31345.96, + "end": 31347.15, + "probability": 0.9982 + }, + { + "start": 31348.28, + "end": 31350.62, + "probability": 0.9203 + }, + { + "start": 31351.54, + "end": 31355.38, + "probability": 0.8859 + }, + { + "start": 31356.88, + "end": 31357.8, + "probability": 0.9819 + }, + { + "start": 31358.46, + "end": 31360.61, + "probability": 0.8139 + }, + { + "start": 31362.38, + "end": 31363.94, + "probability": 0.9967 + }, + { + "start": 31364.12, + "end": 31365.5, + "probability": 0.9902 + }, + { + "start": 31366.16, + "end": 31370.48, + "probability": 0.9691 + }, + { + "start": 31370.5, + "end": 31372.0, + "probability": 0.7402 + }, + { + "start": 31372.64, + "end": 31373.8, + "probability": 0.9722 + }, + { + "start": 31374.06, + "end": 31375.02, + "probability": 0.9717 + }, + { + "start": 31375.3, + "end": 31376.16, + "probability": 0.9878 + }, + { + "start": 31376.56, + "end": 31377.82, + "probability": 0.9464 + }, + { + "start": 31378.62, + "end": 31379.34, + "probability": 0.9666 + }, + { + "start": 31380.6, + "end": 31381.3, + "probability": 0.7269 + }, + { + "start": 31383.0, + "end": 31384.6, + "probability": 0.7217 + }, + { + "start": 31386.2, + "end": 31388.45, + "probability": 0.986 + }, + { + "start": 31390.4, + "end": 31394.38, + "probability": 0.979 + }, + { + "start": 31395.46, + "end": 31398.46, + "probability": 0.9612 + }, + { + "start": 31398.54, + "end": 31399.92, + "probability": 0.9808 + }, + { + "start": 31400.68, + "end": 31402.64, + "probability": 0.9897 + }, + { + "start": 31402.68, + "end": 31403.96, + "probability": 0.9309 + }, + { + "start": 31404.04, + "end": 31405.25, + "probability": 0.7068 + }, + { + "start": 31405.4, + "end": 31408.46, + "probability": 0.8832 + }, + { + "start": 31410.18, + "end": 31412.06, + "probability": 0.8059 + }, + { + "start": 31412.52, + "end": 31415.56, + "probability": 0.5064 + }, + { + "start": 31417.6, + "end": 31419.08, + "probability": 0.9964 + }, + { + "start": 31419.6, + "end": 31422.26, + "probability": 0.9979 + }, + { + "start": 31423.24, + "end": 31429.52, + "probability": 0.9905 + }, + { + "start": 31431.14, + "end": 31432.46, + "probability": 0.8897 + }, + { + "start": 31433.06, + "end": 31434.78, + "probability": 0.7198 + }, + { + "start": 31435.46, + "end": 31436.14, + "probability": 0.6827 + }, + { + "start": 31436.42, + "end": 31437.68, + "probability": 0.6002 + }, + { + "start": 31438.32, + "end": 31441.44, + "probability": 0.7822 + }, + { + "start": 31443.04, + "end": 31444.48, + "probability": 0.9714 + }, + { + "start": 31444.88, + "end": 31445.35, + "probability": 0.7768 + }, + { + "start": 31445.58, + "end": 31448.58, + "probability": 0.0951 + }, + { + "start": 31448.58, + "end": 31449.86, + "probability": 0.6956 + }, + { + "start": 31451.22, + "end": 31454.08, + "probability": 0.9303 + }, + { + "start": 31454.74, + "end": 31456.5, + "probability": 0.9571 + }, + { + "start": 31457.58, + "end": 31460.92, + "probability": 0.9917 + }, + { + "start": 31462.64, + "end": 31464.42, + "probability": 0.9888 + }, + { + "start": 31465.92, + "end": 31467.72, + "probability": 0.8865 + }, + { + "start": 31468.62, + "end": 31469.48, + "probability": 0.777 + }, + { + "start": 31470.18, + "end": 31471.52, + "probability": 0.9195 + }, + { + "start": 31472.68, + "end": 31473.42, + "probability": 0.9605 + }, + { + "start": 31473.5, + "end": 31474.55, + "probability": 0.9714 + }, + { + "start": 31475.28, + "end": 31478.16, + "probability": 0.4541 + }, + { + "start": 31478.84, + "end": 31479.78, + "probability": 0.9195 + }, + { + "start": 31479.94, + "end": 31480.34, + "probability": 0.7721 + }, + { + "start": 31480.46, + "end": 31480.76, + "probability": 0.5218 + }, + { + "start": 31480.84, + "end": 31482.68, + "probability": 0.9735 + }, + { + "start": 31482.76, + "end": 31483.26, + "probability": 0.7521 + }, + { + "start": 31483.32, + "end": 31484.28, + "probability": 0.4891 + }, + { + "start": 31484.28, + "end": 31485.36, + "probability": 0.6927 + }, + { + "start": 31485.82, + "end": 31487.5, + "probability": 0.7201 + }, + { + "start": 31487.54, + "end": 31488.92, + "probability": 0.9751 + }, + { + "start": 31489.16, + "end": 31490.66, + "probability": 0.9819 + }, + { + "start": 31491.14, + "end": 31492.38, + "probability": 0.6001 + }, + { + "start": 31492.68, + "end": 31494.16, + "probability": 0.3229 + }, + { + "start": 31494.4, + "end": 31495.32, + "probability": 0.761 + }, + { + "start": 31495.42, + "end": 31495.42, + "probability": 0.0568 + }, + { + "start": 31495.76, + "end": 31498.06, + "probability": 0.6641 + }, + { + "start": 31498.14, + "end": 31498.9, + "probability": 0.7454 + }, + { + "start": 31499.12, + "end": 31501.22, + "probability": 0.8185 + }, + { + "start": 31503.16, + "end": 31507.14, + "probability": 0.8678 + }, + { + "start": 31507.6, + "end": 31509.2, + "probability": 0.7698 + }, + { + "start": 31509.3, + "end": 31510.22, + "probability": 0.6695 + }, + { + "start": 31511.04, + "end": 31512.76, + "probability": 0.9158 + }, + { + "start": 31512.8, + "end": 31513.64, + "probability": 0.9303 + }, + { + "start": 31513.72, + "end": 31514.06, + "probability": 0.7108 + }, + { + "start": 31514.08, + "end": 31515.24, + "probability": 0.8766 + }, + { + "start": 31515.84, + "end": 31518.76, + "probability": 0.9834 + }, + { + "start": 31518.84, + "end": 31519.64, + "probability": 0.7759 + }, + { + "start": 31520.04, + "end": 31520.64, + "probability": 0.5323 + }, + { + "start": 31521.02, + "end": 31524.78, + "probability": 0.8402 + }, + { + "start": 31525.12, + "end": 31525.56, + "probability": 0.8914 + }, + { + "start": 31526.0, + "end": 31526.5, + "probability": 0.8422 + }, + { + "start": 31528.74, + "end": 31530.24, + "probability": 0.9807 + }, + { + "start": 31556.08, + "end": 31557.56, + "probability": 0.7823 + }, + { + "start": 31558.08, + "end": 31559.46, + "probability": 0.6982 + }, + { + "start": 31559.58, + "end": 31562.12, + "probability": 0.6169 + }, + { + "start": 31562.42, + "end": 31565.46, + "probability": 0.9388 + }, + { + "start": 31565.46, + "end": 31567.82, + "probability": 0.9919 + }, + { + "start": 31569.4, + "end": 31570.6, + "probability": 0.998 + }, + { + "start": 31570.88, + "end": 31573.24, + "probability": 0.9343 + }, + { + "start": 31575.24, + "end": 31578.02, + "probability": 0.9778 + }, + { + "start": 31578.78, + "end": 31579.54, + "probability": 0.9004 + }, + { + "start": 31580.5, + "end": 31583.94, + "probability": 0.9956 + }, + { + "start": 31584.46, + "end": 31589.62, + "probability": 0.9126 + }, + { + "start": 31590.76, + "end": 31592.8, + "probability": 0.9907 + }, + { + "start": 31593.06, + "end": 31594.94, + "probability": 0.9971 + }, + { + "start": 31595.64, + "end": 31597.34, + "probability": 0.8395 + }, + { + "start": 31598.5, + "end": 31600.5, + "probability": 0.9009 + }, + { + "start": 31601.12, + "end": 31603.2, + "probability": 0.9946 + }, + { + "start": 31603.7, + "end": 31605.42, + "probability": 0.9528 + }, + { + "start": 31607.08, + "end": 31611.24, + "probability": 0.9944 + }, + { + "start": 31611.92, + "end": 31612.3, + "probability": 0.7596 + }, + { + "start": 31613.08, + "end": 31614.54, + "probability": 0.9807 + }, + { + "start": 31615.5, + "end": 31617.58, + "probability": 0.9968 + }, + { + "start": 31617.58, + "end": 31621.7, + "probability": 0.9365 + }, + { + "start": 31622.28, + "end": 31622.82, + "probability": 0.6327 + }, + { + "start": 31623.98, + "end": 31625.44, + "probability": 0.9461 + }, + { + "start": 31625.54, + "end": 31626.22, + "probability": 0.8708 + }, + { + "start": 31626.56, + "end": 31627.56, + "probability": 0.9765 + }, + { + "start": 31628.32, + "end": 31633.74, + "probability": 0.9933 + }, + { + "start": 31635.16, + "end": 31635.2, + "probability": 0.3273 + }, + { + "start": 31635.2, + "end": 31636.56, + "probability": 0.969 + }, + { + "start": 31637.62, + "end": 31640.56, + "probability": 0.985 + }, + { + "start": 31641.48, + "end": 31645.36, + "probability": 0.989 + }, + { + "start": 31646.34, + "end": 31648.22, + "probability": 0.9452 + }, + { + "start": 31649.46, + "end": 31653.84, + "probability": 0.9942 + }, + { + "start": 31654.44, + "end": 31657.14, + "probability": 0.9209 + }, + { + "start": 31657.14, + "end": 31659.8, + "probability": 0.9704 + }, + { + "start": 31661.0, + "end": 31663.5, + "probability": 0.9951 + }, + { + "start": 31664.56, + "end": 31667.6, + "probability": 0.998 + }, + { + "start": 31668.26, + "end": 31671.64, + "probability": 0.95 + }, + { + "start": 31672.58, + "end": 31677.36, + "probability": 0.9863 + }, + { + "start": 31677.7, + "end": 31679.45, + "probability": 0.9943 + }, + { + "start": 31680.36, + "end": 31683.84, + "probability": 0.7522 + }, + { + "start": 31685.18, + "end": 31687.54, + "probability": 0.9351 + }, + { + "start": 31687.88, + "end": 31689.62, + "probability": 0.8622 + }, + { + "start": 31692.48, + "end": 31694.12, + "probability": 0.9678 + }, + { + "start": 31694.52, + "end": 31694.86, + "probability": 0.8557 + }, + { + "start": 31695.26, + "end": 31695.96, + "probability": 0.9729 + }, + { + "start": 31696.82, + "end": 31697.82, + "probability": 0.989 + }, + { + "start": 31698.5, + "end": 31702.52, + "probability": 0.9712 + }, + { + "start": 31703.2, + "end": 31706.42, + "probability": 0.9978 + }, + { + "start": 31707.3, + "end": 31709.14, + "probability": 0.994 + }, + { + "start": 31710.18, + "end": 31711.2, + "probability": 0.5038 + }, + { + "start": 31712.26, + "end": 31715.8, + "probability": 0.9927 + }, + { + "start": 31716.34, + "end": 31717.8, + "probability": 0.8169 + }, + { + "start": 31718.68, + "end": 31723.24, + "probability": 0.9989 + }, + { + "start": 31723.24, + "end": 31727.82, + "probability": 0.9956 + }, + { + "start": 31728.94, + "end": 31731.89, + "probability": 0.9922 + }, + { + "start": 31733.12, + "end": 31735.42, + "probability": 0.9874 + }, + { + "start": 31735.98, + "end": 31739.82, + "probability": 0.9983 + }, + { + "start": 31739.82, + "end": 31744.34, + "probability": 0.9841 + }, + { + "start": 31745.42, + "end": 31745.88, + "probability": 0.4734 + }, + { + "start": 31747.28, + "end": 31749.18, + "probability": 0.9822 + }, + { + "start": 31750.04, + "end": 31753.44, + "probability": 0.999 + }, + { + "start": 31754.04, + "end": 31757.54, + "probability": 0.9493 + }, + { + "start": 31757.54, + "end": 31760.58, + "probability": 0.9943 + }, + { + "start": 31760.66, + "end": 31765.42, + "probability": 0.8587 + }, + { + "start": 31766.2, + "end": 31768.62, + "probability": 0.9894 + }, + { + "start": 31769.36, + "end": 31770.38, + "probability": 0.7072 + }, + { + "start": 31771.18, + "end": 31774.9, + "probability": 0.9944 + }, + { + "start": 31774.9, + "end": 31778.42, + "probability": 0.9901 + }, + { + "start": 31779.32, + "end": 31783.32, + "probability": 0.9807 + }, + { + "start": 31784.3, + "end": 31787.44, + "probability": 0.9965 + }, + { + "start": 31787.92, + "end": 31789.12, + "probability": 0.9884 + }, + { + "start": 31790.14, + "end": 31792.1, + "probability": 0.9585 + }, + { + "start": 31792.54, + "end": 31796.56, + "probability": 0.9521 + }, + { + "start": 31797.26, + "end": 31800.74, + "probability": 0.999 + }, + { + "start": 31801.92, + "end": 31802.78, + "probability": 0.9704 + }, + { + "start": 31804.42, + "end": 31807.4, + "probability": 0.8475 + }, + { + "start": 31807.94, + "end": 31809.56, + "probability": 0.9589 + }, + { + "start": 31810.12, + "end": 31811.76, + "probability": 0.8308 + }, + { + "start": 31812.78, + "end": 31816.42, + "probability": 0.9956 + }, + { + "start": 31817.3, + "end": 31819.76, + "probability": 0.6329 + }, + { + "start": 31821.14, + "end": 31822.08, + "probability": 0.6735 + }, + { + "start": 31823.52, + "end": 31825.06, + "probability": 0.6632 + }, + { + "start": 31825.52, + "end": 31832.78, + "probability": 0.8641 + }, + { + "start": 31832.94, + "end": 31834.26, + "probability": 0.9971 + }, + { + "start": 31834.7, + "end": 31835.2, + "probability": 0.9198 + }, + { + "start": 31836.48, + "end": 31837.02, + "probability": 0.7006 + }, + { + "start": 31837.98, + "end": 31840.36, + "probability": 0.8669 + }, + { + "start": 31841.22, + "end": 31842.44, + "probability": 0.6485 + }, + { + "start": 31843.18, + "end": 31846.22, + "probability": 0.3112 + }, + { + "start": 31846.82, + "end": 31847.24, + "probability": 0.528 + }, + { + "start": 31848.18, + "end": 31848.72, + "probability": 0.5924 + }, + { + "start": 31849.18, + "end": 31850.46, + "probability": 0.7078 + }, + { + "start": 31850.78, + "end": 31851.94, + "probability": 0.9274 + }, + { + "start": 31854.26, + "end": 31854.86, + "probability": 0.236 + }, + { + "start": 31854.9, + "end": 31856.12, + "probability": 0.9458 + }, + { + "start": 31857.84, + "end": 31858.46, + "probability": 0.4998 + }, + { + "start": 31859.08, + "end": 31860.38, + "probability": 0.1478 + }, + { + "start": 31860.52, + "end": 31860.52, + "probability": 0.2321 + }, + { + "start": 31860.56, + "end": 31863.62, + "probability": 0.9681 + }, + { + "start": 31863.98, + "end": 31865.4, + "probability": 0.7375 + }, + { + "start": 31865.9, + "end": 31867.32, + "probability": 0.7952 + }, + { + "start": 31869.46, + "end": 31871.9, + "probability": 0.5234 + }, + { + "start": 31872.42, + "end": 31874.68, + "probability": 0.9303 + }, + { + "start": 31875.78, + "end": 31877.16, + "probability": 0.9434 + }, + { + "start": 31877.9, + "end": 31878.92, + "probability": 0.348 + }, + { + "start": 31879.02, + "end": 31881.82, + "probability": 0.6268 + }, + { + "start": 31882.34, + "end": 31883.44, + "probability": 0.7798 + }, + { + "start": 31884.18, + "end": 31888.65, + "probability": 0.9833 + }, + { + "start": 31889.5, + "end": 31893.4, + "probability": 0.6746 + }, + { + "start": 31894.26, + "end": 31896.8, + "probability": 0.7352 + }, + { + "start": 31897.57, + "end": 31900.1, + "probability": 0.8362 + }, + { + "start": 31900.26, + "end": 31902.66, + "probability": 0.9833 + }, + { + "start": 31903.64, + "end": 31905.36, + "probability": 0.8839 + }, + { + "start": 31906.16, + "end": 31907.12, + "probability": 0.6304 + }, + { + "start": 31907.26, + "end": 31911.38, + "probability": 0.9968 + }, + { + "start": 31911.96, + "end": 31914.64, + "probability": 0.9917 + }, + { + "start": 31915.04, + "end": 31917.14, + "probability": 0.9905 + }, + { + "start": 31917.42, + "end": 31921.76, + "probability": 0.9302 + }, + { + "start": 31921.76, + "end": 31925.44, + "probability": 0.9757 + }, + { + "start": 31925.94, + "end": 31926.62, + "probability": 0.989 + }, + { + "start": 31927.78, + "end": 31931.68, + "probability": 0.9971 + }, + { + "start": 31932.5, + "end": 31936.68, + "probability": 0.9987 + }, + { + "start": 31937.54, + "end": 31938.12, + "probability": 0.5941 + }, + { + "start": 31938.64, + "end": 31941.78, + "probability": 0.9939 + }, + { + "start": 31943.16, + "end": 31945.66, + "probability": 0.9939 + }, + { + "start": 31946.3, + "end": 31948.6, + "probability": 0.9883 + }, + { + "start": 31949.62, + "end": 31952.18, + "probability": 0.998 + }, + { + "start": 31952.7, + "end": 31955.9, + "probability": 0.9896 + }, + { + "start": 31956.8, + "end": 31959.5, + "probability": 0.9989 + }, + { + "start": 31959.5, + "end": 31961.32, + "probability": 0.9962 + }, + { + "start": 31961.92, + "end": 31966.74, + "probability": 0.9357 + }, + { + "start": 31967.74, + "end": 31970.84, + "probability": 0.9901 + }, + { + "start": 31970.84, + "end": 31973.76, + "probability": 0.9923 + }, + { + "start": 31974.4, + "end": 31976.28, + "probability": 0.9636 + }, + { + "start": 31976.76, + "end": 31978.48, + "probability": 0.6924 + }, + { + "start": 31978.84, + "end": 31982.0, + "probability": 0.9946 + }, + { + "start": 31982.94, + "end": 31985.94, + "probability": 0.9609 + }, + { + "start": 32008.32, + "end": 32011.16, + "probability": 0.7787 + }, + { + "start": 32011.26, + "end": 32013.64, + "probability": 0.9604 + }, + { + "start": 32013.82, + "end": 32015.08, + "probability": 0.9767 + }, + { + "start": 32015.4, + "end": 32015.92, + "probability": 0.1265 + }, + { + "start": 32019.72, + "end": 32020.94, + "probability": 0.4517 + }, + { + "start": 32021.34, + "end": 32022.02, + "probability": 0.586 + }, + { + "start": 32022.16, + "end": 32024.94, + "probability": 0.9683 + }, + { + "start": 32025.88, + "end": 32027.04, + "probability": 0.8685 + }, + { + "start": 32027.22, + "end": 32031.4, + "probability": 0.981 + }, + { + "start": 32032.38, + "end": 32035.52, + "probability": 0.9783 + }, + { + "start": 32035.6, + "end": 32038.98, + "probability": 0.9998 + }, + { + "start": 32040.28, + "end": 32043.4, + "probability": 0.9969 + }, + { + "start": 32044.02, + "end": 32046.95, + "probability": 0.9971 + }, + { + "start": 32048.44, + "end": 32051.52, + "probability": 0.9924 + }, + { + "start": 32052.34, + "end": 32055.0, + "probability": 0.9691 + }, + { + "start": 32055.56, + "end": 32057.1, + "probability": 0.9821 + }, + { + "start": 32058.1, + "end": 32062.52, + "probability": 0.9702 + }, + { + "start": 32062.52, + "end": 32068.58, + "probability": 0.9981 + }, + { + "start": 32070.24, + "end": 32075.92, + "probability": 0.9932 + }, + { + "start": 32076.46, + "end": 32078.8, + "probability": 0.9987 + }, + { + "start": 32079.58, + "end": 32083.78, + "probability": 0.9962 + }, + { + "start": 32084.28, + "end": 32086.22, + "probability": 0.9976 + }, + { + "start": 32086.86, + "end": 32088.86, + "probability": 0.973 + }, + { + "start": 32089.72, + "end": 32093.86, + "probability": 0.9796 + }, + { + "start": 32094.64, + "end": 32097.28, + "probability": 0.9987 + }, + { + "start": 32097.28, + "end": 32099.92, + "probability": 0.999 + }, + { + "start": 32100.74, + "end": 32102.0, + "probability": 0.9835 + }, + { + "start": 32102.08, + "end": 32105.18, + "probability": 0.9782 + }, + { + "start": 32105.78, + "end": 32109.74, + "probability": 0.9961 + }, + { + "start": 32110.54, + "end": 32113.08, + "probability": 0.9808 + }, + { + "start": 32113.08, + "end": 32117.56, + "probability": 0.9368 + }, + { + "start": 32118.44, + "end": 32124.92, + "probability": 0.8952 + }, + { + "start": 32125.32, + "end": 32127.42, + "probability": 0.9983 + }, + { + "start": 32127.92, + "end": 32133.24, + "probability": 0.974 + }, + { + "start": 32135.6, + "end": 32137.34, + "probability": 0.6661 + }, + { + "start": 32137.82, + "end": 32139.16, + "probability": 0.7395 + }, + { + "start": 32140.12, + "end": 32141.5, + "probability": 0.5103 + }, + { + "start": 32141.58, + "end": 32143.76, + "probability": 0.9517 + }, + { + "start": 32144.9, + "end": 32148.6, + "probability": 0.5417 + }, + { + "start": 32149.64, + "end": 32150.74, + "probability": 0.122 + }, + { + "start": 32150.74, + "end": 32153.1, + "probability": 0.9932 + }, + { + "start": 32153.18, + "end": 32155.62, + "probability": 0.3539 + }, + { + "start": 32157.5, + "end": 32159.9, + "probability": 0.1596 + }, + { + "start": 32159.96, + "end": 32161.94, + "probability": 0.987 + }, + { + "start": 32162.14, + "end": 32165.72, + "probability": 0.4892 + }, + { + "start": 32169.84, + "end": 32170.1, + "probability": 0.3285 + }, + { + "start": 32176.04, + "end": 32181.04, + "probability": 0.4893 + }, + { + "start": 32181.16, + "end": 32181.84, + "probability": 0.5629 + }, + { + "start": 32183.64, + "end": 32184.48, + "probability": 0.5728 + }, + { + "start": 32184.48, + "end": 32187.1, + "probability": 0.6643 + }, + { + "start": 32188.56, + "end": 32189.5, + "probability": 0.7388 + }, + { + "start": 32189.56, + "end": 32191.57, + "probability": 0.9941 + }, + { + "start": 32191.7, + "end": 32193.32, + "probability": 0.2975 + }, + { + "start": 32195.2, + "end": 32196.72, + "probability": 0.3426 + }, + { + "start": 32196.88, + "end": 32197.82, + "probability": 0.9706 + }, + { + "start": 32197.88, + "end": 32200.38, + "probability": 0.9805 + }, + { + "start": 32200.5, + "end": 32203.1, + "probability": 0.6746 + }, + { + "start": 32206.32, + "end": 32212.1, + "probability": 0.5896 + }, + { + "start": 32212.32, + "end": 32213.54, + "probability": 0.5677 + }, + { + "start": 32214.26, + "end": 32215.9, + "probability": 0.7769 + }, + { + "start": 32215.92, + "end": 32219.91, + "probability": 0.9245 + }, + { + "start": 32220.24, + "end": 32221.89, + "probability": 0.0972 + }, + { + "start": 32222.08, + "end": 32226.16, + "probability": 0.01 + }, + { + "start": 32226.3, + "end": 32226.36, + "probability": 0.006 + }, + { + "start": 32244.98, + "end": 32251.96, + "probability": 0.9319 + }, + { + "start": 32258.4, + "end": 32261.34, + "probability": 0.7631 + }, + { + "start": 32262.66, + "end": 32268.06, + "probability": 0.967 + }, + { + "start": 32268.92, + "end": 32274.42, + "probability": 0.9765 + }, + { + "start": 32274.46, + "end": 32276.02, + "probability": 0.6858 + }, + { + "start": 32277.46, + "end": 32279.68, + "probability": 0.7983 + }, + { + "start": 32280.68, + "end": 32283.48, + "probability": 0.777 + }, + { + "start": 32284.46, + "end": 32286.16, + "probability": 0.8405 + }, + { + "start": 32287.86, + "end": 32288.4, + "probability": 0.4554 + }, + { + "start": 32288.7, + "end": 32291.18, + "probability": 0.8749 + }, + { + "start": 32291.34, + "end": 32296.66, + "probability": 0.9393 + }, + { + "start": 32297.3, + "end": 32300.26, + "probability": 0.9323 + }, + { + "start": 32301.54, + "end": 32302.32, + "probability": 0.7449 + }, + { + "start": 32302.42, + "end": 32307.54, + "probability": 0.9812 + }, + { + "start": 32308.28, + "end": 32311.24, + "probability": 0.9729 + }, + { + "start": 32312.12, + "end": 32315.58, + "probability": 0.9741 + }, + { + "start": 32316.86, + "end": 32317.84, + "probability": 0.7505 + }, + { + "start": 32319.36, + "end": 32324.68, + "probability": 0.9889 + }, + { + "start": 32324.68, + "end": 32331.44, + "probability": 0.9881 + }, + { + "start": 32331.54, + "end": 32335.04, + "probability": 0.9097 + }, + { + "start": 32335.12, + "end": 32339.34, + "probability": 0.9913 + }, + { + "start": 32340.62, + "end": 32345.06, + "probability": 0.9945 + }, + { + "start": 32345.22, + "end": 32345.7, + "probability": 0.8828 + }, + { + "start": 32346.3, + "end": 32353.86, + "probability": 0.9896 + }, + { + "start": 32355.4, + "end": 32358.68, + "probability": 0.7324 + }, + { + "start": 32358.9, + "end": 32359.12, + "probability": 0.3676 + }, + { + "start": 32359.22, + "end": 32359.82, + "probability": 0.9301 + }, + { + "start": 32359.98, + "end": 32360.74, + "probability": 0.8754 + }, + { + "start": 32361.06, + "end": 32361.78, + "probability": 0.8437 + }, + { + "start": 32362.34, + "end": 32366.98, + "probability": 0.7132 + }, + { + "start": 32369.02, + "end": 32372.46, + "probability": 0.9947 + }, + { + "start": 32373.58, + "end": 32377.28, + "probability": 0.7043 + }, + { + "start": 32378.86, + "end": 32385.42, + "probability": 0.9834 + }, + { + "start": 32386.22, + "end": 32389.36, + "probability": 0.8031 + }, + { + "start": 32390.02, + "end": 32394.04, + "probability": 0.9824 + }, + { + "start": 32394.18, + "end": 32395.44, + "probability": 0.8374 + }, + { + "start": 32396.24, + "end": 32397.22, + "probability": 0.9811 + }, + { + "start": 32397.36, + "end": 32398.96, + "probability": 0.9967 + }, + { + "start": 32399.2, + "end": 32402.94, + "probability": 0.9903 + }, + { + "start": 32403.06, + "end": 32403.82, + "probability": 0.8958 + }, + { + "start": 32405.1, + "end": 32408.72, + "probability": 0.9875 + }, + { + "start": 32410.26, + "end": 32411.74, + "probability": 0.8423 + }, + { + "start": 32412.3, + "end": 32414.26, + "probability": 0.8726 + }, + { + "start": 32415.04, + "end": 32417.48, + "probability": 0.9692 + }, + { + "start": 32418.5, + "end": 32419.46, + "probability": 0.7253 + }, + { + "start": 32420.46, + "end": 32424.54, + "probability": 0.993 + }, + { + "start": 32425.74, + "end": 32429.76, + "probability": 0.9762 + }, + { + "start": 32430.5, + "end": 32433.86, + "probability": 0.9956 + }, + { + "start": 32434.64, + "end": 32435.82, + "probability": 0.795 + }, + { + "start": 32436.34, + "end": 32437.58, + "probability": 0.9775 + }, + { + "start": 32437.76, + "end": 32438.52, + "probability": 0.9269 + }, + { + "start": 32438.78, + "end": 32439.42, + "probability": 0.906 + }, + { + "start": 32439.52, + "end": 32440.18, + "probability": 0.9842 + }, + { + "start": 32440.64, + "end": 32441.58, + "probability": 0.9852 + }, + { + "start": 32441.62, + "end": 32442.52, + "probability": 0.913 + }, + { + "start": 32442.88, + "end": 32443.4, + "probability": 0.988 + }, + { + "start": 32443.42, + "end": 32444.64, + "probability": 0.9943 + }, + { + "start": 32445.14, + "end": 32451.04, + "probability": 0.988 + }, + { + "start": 32451.94, + "end": 32452.48, + "probability": 0.82 + }, + { + "start": 32453.48, + "end": 32460.64, + "probability": 0.9847 + }, + { + "start": 32461.38, + "end": 32463.54, + "probability": 0.8175 + }, + { + "start": 32464.22, + "end": 32465.1, + "probability": 0.696 + }, + { + "start": 32465.72, + "end": 32467.2, + "probability": 0.9781 + }, + { + "start": 32467.48, + "end": 32469.64, + "probability": 0.5769 + }, + { + "start": 32470.36, + "end": 32474.46, + "probability": 0.9869 + }, + { + "start": 32475.2, + "end": 32480.66, + "probability": 0.9972 + }, + { + "start": 32480.66, + "end": 32486.32, + "probability": 0.9962 + }, + { + "start": 32487.26, + "end": 32487.94, + "probability": 0.8303 + }, + { + "start": 32488.62, + "end": 32491.5, + "probability": 0.9178 + }, + { + "start": 32492.12, + "end": 32496.02, + "probability": 0.9945 + }, + { + "start": 32496.1, + "end": 32496.7, + "probability": 0.9416 + }, + { + "start": 32496.78, + "end": 32497.44, + "probability": 0.7768 + }, + { + "start": 32497.62, + "end": 32500.96, + "probability": 0.9863 + }, + { + "start": 32502.08, + "end": 32504.26, + "probability": 0.9888 + }, + { + "start": 32504.38, + "end": 32506.24, + "probability": 0.9976 + }, + { + "start": 32506.76, + "end": 32508.02, + "probability": 0.808 + }, + { + "start": 32508.28, + "end": 32511.54, + "probability": 0.608 + }, + { + "start": 32511.54, + "end": 32511.94, + "probability": 0.6265 + }, + { + "start": 32512.02, + "end": 32512.66, + "probability": 0.8242 + }, + { + "start": 32512.9, + "end": 32517.08, + "probability": 0.9771 + }, + { + "start": 32517.08, + "end": 32523.24, + "probability": 0.8771 + }, + { + "start": 32523.92, + "end": 32524.38, + "probability": 0.8205 + }, + { + "start": 32524.5, + "end": 32528.6, + "probability": 0.9729 + }, + { + "start": 32528.84, + "end": 32529.12, + "probability": 0.7564 + }, + { + "start": 32530.94, + "end": 32532.18, + "probability": 0.6908 + }, + { + "start": 32532.4, + "end": 32534.58, + "probability": 0.7718 + }, + { + "start": 32535.4, + "end": 32536.7, + "probability": 0.5943 + }, + { + "start": 32536.76, + "end": 32538.38, + "probability": 0.9881 + }, + { + "start": 32538.76, + "end": 32540.06, + "probability": 0.6327 + }, + { + "start": 32540.54, + "end": 32540.7, + "probability": 0.0541 + }, + { + "start": 32540.7, + "end": 32544.18, + "probability": 0.2408 + }, + { + "start": 32544.34, + "end": 32544.54, + "probability": 0.4254 + }, + { + "start": 32544.74, + "end": 32545.75, + "probability": 0.1953 + }, + { + "start": 32547.74, + "end": 32547.84, + "probability": 0.0152 + }, + { + "start": 32547.84, + "end": 32547.84, + "probability": 0.102 + }, + { + "start": 32547.84, + "end": 32548.12, + "probability": 0.1199 + }, + { + "start": 32548.26, + "end": 32548.74, + "probability": 0.6635 + }, + { + "start": 32549.54, + "end": 32549.94, + "probability": 0.8456 + }, + { + "start": 32549.94, + "end": 32551.46, + "probability": 0.3761 + }, + { + "start": 32551.8, + "end": 32553.02, + "probability": 0.7905 + }, + { + "start": 32553.94, + "end": 32554.25, + "probability": 0.2172 + }, + { + "start": 32555.02, + "end": 32557.52, + "probability": 0.5299 + }, + { + "start": 32560.62, + "end": 32562.56, + "probability": 0.6437 + }, + { + "start": 32565.66, + "end": 32567.56, + "probability": 0.8378 + }, + { + "start": 32567.98, + "end": 32569.22, + "probability": 0.8888 + }, + { + "start": 32571.46, + "end": 32571.98, + "probability": 0.0091 + }, + { + "start": 32575.44, + "end": 32577.02, + "probability": 0.7931 + }, + { + "start": 32577.42, + "end": 32577.75, + "probability": 0.589 + }, + { + "start": 32577.88, + "end": 32581.26, + "probability": 0.6704 + }, + { + "start": 32582.02, + "end": 32582.62, + "probability": 0.2916 + }, + { + "start": 32582.72, + "end": 32583.5, + "probability": 0.9827 + }, + { + "start": 32584.9, + "end": 32585.24, + "probability": 0.9683 + }, + { + "start": 32587.88, + "end": 32589.38, + "probability": 0.3227 + }, + { + "start": 32590.5, + "end": 32591.54, + "probability": 0.0977 + }, + { + "start": 32591.54, + "end": 32593.76, + "probability": 0.7087 + }, + { + "start": 32593.76, + "end": 32595.22, + "probability": 0.4173 + }, + { + "start": 32596.58, + "end": 32598.82, + "probability": 0.2866 + }, + { + "start": 32600.8, + "end": 32605.36, + "probability": 0.4917 + }, + { + "start": 32605.82, + "end": 32608.6, + "probability": 0.8318 + }, + { + "start": 32610.38, + "end": 32611.74, + "probability": 0.77 + }, + { + "start": 32611.74, + "end": 32612.4, + "probability": 0.7993 + }, + { + "start": 32612.5, + "end": 32613.62, + "probability": 0.5608 + }, + { + "start": 32614.14, + "end": 32614.3, + "probability": 0.561 + }, + { + "start": 32614.96, + "end": 32616.66, + "probability": 0.7478 + }, + { + "start": 32616.72, + "end": 32617.88, + "probability": 0.883 + }, + { + "start": 32618.12, + "end": 32622.6, + "probability": 0.8478 + }, + { + "start": 32624.38, + "end": 32625.16, + "probability": 0.7992 + }, + { + "start": 32625.98, + "end": 32627.36, + "probability": 0.3955 + }, + { + "start": 32628.18, + "end": 32632.72, + "probability": 0.9557 + }, + { + "start": 32633.18, + "end": 32635.7, + "probability": 0.791 + }, + { + "start": 32635.8, + "end": 32636.69, + "probability": 0.5155 + }, + { + "start": 32636.9, + "end": 32638.2, + "probability": 0.3399 + }, + { + "start": 32639.98, + "end": 32640.52, + "probability": 0.5177 + }, + { + "start": 32640.54, + "end": 32642.02, + "probability": 0.5827 + }, + { + "start": 32642.14, + "end": 32642.91, + "probability": 0.9899 + }, + { + "start": 32644.5, + "end": 32644.62, + "probability": 0.4524 + }, + { + "start": 32644.62, + "end": 32645.74, + "probability": 0.7876 + }, + { + "start": 32645.82, + "end": 32646.28, + "probability": 0.7648 + }, + { + "start": 32647.36, + "end": 32648.54, + "probability": 0.1345 + }, + { + "start": 32648.54, + "end": 32651.36, + "probability": 0.7977 + }, + { + "start": 32651.36, + "end": 32657.2, + "probability": 0.9332 + }, + { + "start": 32657.34, + "end": 32659.2, + "probability": 0.8504 + }, + { + "start": 32660.32, + "end": 32661.02, + "probability": 0.7651 + }, + { + "start": 32661.18, + "end": 32661.68, + "probability": 0.9126 + }, + { + "start": 32661.8, + "end": 32662.4, + "probability": 0.9602 + }, + { + "start": 32662.48, + "end": 32663.18, + "probability": 0.9516 + }, + { + "start": 32663.28, + "end": 32664.04, + "probability": 0.8462 + }, + { + "start": 32664.66, + "end": 32665.88, + "probability": 0.9329 + }, + { + "start": 32666.06, + "end": 32671.22, + "probability": 0.9867 + }, + { + "start": 32690.26, + "end": 32690.26, + "probability": 0.0636 + }, + { + "start": 32690.26, + "end": 32690.26, + "probability": 0.0697 + }, + { + "start": 32690.26, + "end": 32690.26, + "probability": 0.0616 + }, + { + "start": 32690.26, + "end": 32690.26, + "probability": 0.1241 + }, + { + "start": 32690.26, + "end": 32691.36, + "probability": 0.7393 + }, + { + "start": 32691.52, + "end": 32691.66, + "probability": 0.5551 + }, + { + "start": 32703.48, + "end": 32704.46, + "probability": 0.7719 + }, + { + "start": 32705.5, + "end": 32706.34, + "probability": 0.832 + }, + { + "start": 32707.08, + "end": 32708.01, + "probability": 0.6938 + }, + { + "start": 32708.5, + "end": 32712.44, + "probability": 0.9933 + }, + { + "start": 32713.18, + "end": 32714.68, + "probability": 0.9648 + }, + { + "start": 32714.76, + "end": 32716.28, + "probability": 0.8857 + }, + { + "start": 32717.16, + "end": 32721.74, + "probability": 0.9504 + }, + { + "start": 32721.92, + "end": 32723.28, + "probability": 0.7923 + }, + { + "start": 32723.38, + "end": 32725.9, + "probability": 0.6764 + }, + { + "start": 32726.67, + "end": 32728.5, + "probability": 0.7468 + }, + { + "start": 32729.22, + "end": 32730.88, + "probability": 0.8932 + }, + { + "start": 32730.94, + "end": 32732.02, + "probability": 0.8298 + }, + { + "start": 32732.86, + "end": 32733.46, + "probability": 0.7948 + }, + { + "start": 32733.56, + "end": 32737.44, + "probability": 0.6926 + }, + { + "start": 32738.8, + "end": 32739.66, + "probability": 0.9255 + }, + { + "start": 32739.72, + "end": 32741.08, + "probability": 0.6533 + }, + { + "start": 32741.64, + "end": 32742.64, + "probability": 0.8941 + }, + { + "start": 32743.44, + "end": 32744.32, + "probability": 0.8613 + }, + { + "start": 32744.36, + "end": 32744.8, + "probability": 0.9765 + }, + { + "start": 32744.94, + "end": 32746.3, + "probability": 0.664 + }, + { + "start": 32746.86, + "end": 32747.46, + "probability": 0.5935 + }, + { + "start": 32747.6, + "end": 32748.17, + "probability": 0.8581 + }, + { + "start": 32749.1, + "end": 32749.86, + "probability": 0.947 + }, + { + "start": 32751.14, + "end": 32752.24, + "probability": 0.9768 + }, + { + "start": 32752.82, + "end": 32755.96, + "probability": 0.9131 + }, + { + "start": 32756.68, + "end": 32759.04, + "probability": 0.9319 + }, + { + "start": 32759.76, + "end": 32761.42, + "probability": 0.7326 + }, + { + "start": 32761.66, + "end": 32763.64, + "probability": 0.9497 + }, + { + "start": 32764.6, + "end": 32765.44, + "probability": 0.9048 + }, + { + "start": 32765.56, + "end": 32766.72, + "probability": 0.9633 + }, + { + "start": 32766.82, + "end": 32767.38, + "probability": 0.6283 + }, + { + "start": 32767.42, + "end": 32770.28, + "probability": 0.9913 + }, + { + "start": 32770.76, + "end": 32774.98, + "probability": 0.8175 + }, + { + "start": 32774.98, + "end": 32775.04, + "probability": 0.5209 + }, + { + "start": 32775.04, + "end": 32775.34, + "probability": 0.8829 + }, + { + "start": 32775.46, + "end": 32776.14, + "probability": 0.9748 + }, + { + "start": 32776.22, + "end": 32777.0, + "probability": 0.9583 + }, + { + "start": 32777.52, + "end": 32778.46, + "probability": 0.8934 + }, + { + "start": 32780.4, + "end": 32782.12, + "probability": 0.9838 + }, + { + "start": 32782.57, + "end": 32784.81, + "probability": 0.9832 + }, + { + "start": 32785.42, + "end": 32787.54, + "probability": 0.9892 + }, + { + "start": 32787.62, + "end": 32788.18, + "probability": 0.9819 + }, + { + "start": 32788.26, + "end": 32789.8, + "probability": 0.9935 + }, + { + "start": 32790.42, + "end": 32790.74, + "probability": 0.8764 + }, + { + "start": 32790.78, + "end": 32791.7, + "probability": 0.783 + }, + { + "start": 32791.92, + "end": 32793.16, + "probability": 0.9863 + }, + { + "start": 32793.64, + "end": 32794.64, + "probability": 0.953 + }, + { + "start": 32794.96, + "end": 32796.0, + "probability": 0.8766 + }, + { + "start": 32796.36, + "end": 32797.52, + "probability": 0.9429 + }, + { + "start": 32798.04, + "end": 32799.66, + "probability": 0.9925 + }, + { + "start": 32800.62, + "end": 32803.58, + "probability": 0.9772 + }, + { + "start": 32804.12, + "end": 32806.24, + "probability": 0.8729 + }, + { + "start": 32807.58, + "end": 32814.32, + "probability": 0.9479 + }, + { + "start": 32816.68, + "end": 32819.56, + "probability": 0.9958 + }, + { + "start": 32820.02, + "end": 32822.44, + "probability": 0.9917 + }, + { + "start": 32822.92, + "end": 32825.42, + "probability": 0.8633 + }, + { + "start": 32825.42, + "end": 32826.38, + "probability": 0.4613 + }, + { + "start": 32826.98, + "end": 32828.1, + "probability": 0.9785 + }, + { + "start": 32829.92, + "end": 32831.74, + "probability": 0.7671 + }, + { + "start": 32831.84, + "end": 32832.12, + "probability": 0.9064 + }, + { + "start": 32832.46, + "end": 32833.16, + "probability": 0.9475 + }, + { + "start": 32833.22, + "end": 32835.16, + "probability": 0.9326 + }, + { + "start": 32835.62, + "end": 32841.76, + "probability": 0.9797 + }, + { + "start": 32841.84, + "end": 32842.66, + "probability": 0.6079 + }, + { + "start": 32843.18, + "end": 32844.48, + "probability": 0.8737 + }, + { + "start": 32845.8, + "end": 32850.14, + "probability": 0.955 + }, + { + "start": 32850.58, + "end": 32851.19, + "probability": 0.516 + }, + { + "start": 32851.24, + "end": 32854.17, + "probability": 0.8774 + }, + { + "start": 32854.8, + "end": 32855.41, + "probability": 0.6489 + }, + { + "start": 32855.72, + "end": 32857.38, + "probability": 0.4281 + }, + { + "start": 32857.72, + "end": 32858.36, + "probability": 0.9614 + }, + { + "start": 32860.16, + "end": 32863.44, + "probability": 0.9469 + }, + { + "start": 32863.74, + "end": 32865.66, + "probability": 0.8307 + }, + { + "start": 32866.52, + "end": 32868.38, + "probability": 0.986 + }, + { + "start": 32868.38, + "end": 32870.14, + "probability": 0.9926 + }, + { + "start": 32870.88, + "end": 32872.82, + "probability": 0.9965 + }, + { + "start": 32872.82, + "end": 32875.54, + "probability": 0.9529 + }, + { + "start": 32877.42, + "end": 32881.34, + "probability": 0.9241 + }, + { + "start": 32881.34, + "end": 32884.44, + "probability": 0.9972 + }, + { + "start": 32884.44, + "end": 32888.48, + "probability": 0.9501 + }, + { + "start": 32889.52, + "end": 32889.8, + "probability": 0.7226 + }, + { + "start": 32890.3, + "end": 32894.4, + "probability": 0.9871 + }, + { + "start": 32894.78, + "end": 32897.88, + "probability": 0.9879 + }, + { + "start": 32898.4, + "end": 32901.2, + "probability": 0.9932 + }, + { + "start": 32901.2, + "end": 32903.58, + "probability": 0.9978 + }, + { + "start": 32905.58, + "end": 32907.28, + "probability": 0.9827 + }, + { + "start": 32907.76, + "end": 32908.42, + "probability": 0.9858 + }, + { + "start": 32908.6, + "end": 32909.2, + "probability": 0.8244 + }, + { + "start": 32909.26, + "end": 32909.84, + "probability": 0.9617 + }, + { + "start": 32910.38, + "end": 32912.96, + "probability": 0.9963 + }, + { + "start": 32912.96, + "end": 32917.7, + "probability": 0.9993 + }, + { + "start": 32919.02, + "end": 32920.46, + "probability": 0.7979 + }, + { + "start": 32920.72, + "end": 32922.44, + "probability": 0.9858 + }, + { + "start": 32922.86, + "end": 32923.78, + "probability": 0.796 + }, + { + "start": 32924.64, + "end": 32929.8, + "probability": 0.9743 + }, + { + "start": 32929.8, + "end": 32936.3, + "probability": 0.5823 + }, + { + "start": 32937.36, + "end": 32941.73, + "probability": 0.9053 + }, + { + "start": 32942.46, + "end": 32944.5, + "probability": 0.973 + }, + { + "start": 32944.58, + "end": 32946.1, + "probability": 0.9928 + }, + { + "start": 32946.1, + "end": 32946.52, + "probability": 0.7527 + }, + { + "start": 32946.72, + "end": 32947.1, + "probability": 0.7385 + }, + { + "start": 32948.2, + "end": 32950.56, + "probability": 0.8769 + }, + { + "start": 32970.74, + "end": 32971.64, + "probability": 0.9912 + }, + { + "start": 32971.86, + "end": 32972.9, + "probability": 0.8728 + }, + { + "start": 32977.8, + "end": 32978.24, + "probability": 0.7107 + }, + { + "start": 32980.36, + "end": 32981.22, + "probability": 0.7727 + }, + { + "start": 32982.98, + "end": 32985.96, + "probability": 0.9044 + }, + { + "start": 32988.74, + "end": 32994.6, + "probability": 0.9655 + }, + { + "start": 32995.66, + "end": 32997.4, + "probability": 0.9672 + }, + { + "start": 32998.08, + "end": 33002.9, + "probability": 0.9521 + }, + { + "start": 33004.04, + "end": 33004.7, + "probability": 0.7625 + }, + { + "start": 33005.24, + "end": 33005.9, + "probability": 0.957 + }, + { + "start": 33007.32, + "end": 33008.54, + "probability": 0.9771 + }, + { + "start": 33008.98, + "end": 33011.04, + "probability": 0.9685 + }, + { + "start": 33011.66, + "end": 33014.04, + "probability": 0.989 + }, + { + "start": 33015.64, + "end": 33017.34, + "probability": 0.9285 + }, + { + "start": 33018.4, + "end": 33021.76, + "probability": 0.7638 + }, + { + "start": 33021.88, + "end": 33021.98, + "probability": 0.2189 + }, + { + "start": 33022.6, + "end": 33027.89, + "probability": 0.8485 + }, + { + "start": 33030.0, + "end": 33030.88, + "probability": 0.7467 + }, + { + "start": 33031.78, + "end": 33032.5, + "probability": 0.7411 + }, + { + "start": 33033.9, + "end": 33038.76, + "probability": 0.9922 + }, + { + "start": 33039.7, + "end": 33040.68, + "probability": 0.7731 + }, + { + "start": 33041.2, + "end": 33041.76, + "probability": 0.9105 + }, + { + "start": 33042.84, + "end": 33043.98, + "probability": 0.9392 + }, + { + "start": 33044.96, + "end": 33045.6, + "probability": 0.9286 + }, + { + "start": 33046.62, + "end": 33050.82, + "probability": 0.9443 + }, + { + "start": 33051.66, + "end": 33054.76, + "probability": 0.8881 + }, + { + "start": 33056.36, + "end": 33058.04, + "probability": 0.9766 + }, + { + "start": 33058.78, + "end": 33060.52, + "probability": 0.5343 + }, + { + "start": 33060.62, + "end": 33066.2, + "probability": 0.7854 + }, + { + "start": 33067.46, + "end": 33068.74, + "probability": 0.7961 + }, + { + "start": 33069.56, + "end": 33071.5, + "probability": 0.4831 + }, + { + "start": 33072.12, + "end": 33072.94, + "probability": 0.7139 + }, + { + "start": 33073.56, + "end": 33075.36, + "probability": 0.7495 + }, + { + "start": 33076.04, + "end": 33080.5, + "probability": 0.8953 + }, + { + "start": 33082.28, + "end": 33082.94, + "probability": 0.6431 + }, + { + "start": 33083.76, + "end": 33084.76, + "probability": 0.9526 + }, + { + "start": 33085.52, + "end": 33090.6, + "probability": 0.9865 + }, + { + "start": 33092.02, + "end": 33093.06, + "probability": 0.8092 + }, + { + "start": 33094.16, + "end": 33096.68, + "probability": 0.9828 + }, + { + "start": 33096.68, + "end": 33100.04, + "probability": 0.9626 + }, + { + "start": 33101.06, + "end": 33103.16, + "probability": 0.9902 + }, + { + "start": 33103.16, + "end": 33106.38, + "probability": 0.8924 + }, + { + "start": 33107.1, + "end": 33111.22, + "probability": 0.8246 + }, + { + "start": 33111.64, + "end": 33118.32, + "probability": 0.9675 + }, + { + "start": 33119.7, + "end": 33121.72, + "probability": 0.7207 + }, + { + "start": 33123.12, + "end": 33125.26, + "probability": 0.9368 + }, + { + "start": 33125.82, + "end": 33126.98, + "probability": 0.939 + }, + { + "start": 33128.28, + "end": 33133.28, + "probability": 0.9953 + }, + { + "start": 33133.84, + "end": 33135.56, + "probability": 0.9146 + }, + { + "start": 33137.1, + "end": 33142.96, + "probability": 0.7949 + }, + { + "start": 33144.78, + "end": 33145.38, + "probability": 0.807 + }, + { + "start": 33146.36, + "end": 33148.02, + "probability": 0.7902 + }, + { + "start": 33148.58, + "end": 33151.78, + "probability": 0.9868 + }, + { + "start": 33152.98, + "end": 33155.4, + "probability": 0.7764 + }, + { + "start": 33156.72, + "end": 33157.7, + "probability": 0.7906 + }, + { + "start": 33158.28, + "end": 33159.82, + "probability": 0.9535 + }, + { + "start": 33160.76, + "end": 33161.58, + "probability": 0.679 + }, + { + "start": 33162.66, + "end": 33165.08, + "probability": 0.1425 + }, + { + "start": 33165.44, + "end": 33165.44, + "probability": 0.708 + }, + { + "start": 33165.72, + "end": 33165.82, + "probability": 0.0025 + }, + { + "start": 33166.02, + "end": 33168.06, + "probability": 0.8887 + }, + { + "start": 33168.38, + "end": 33168.88, + "probability": 0.5802 + }, + { + "start": 33169.54, + "end": 33170.04, + "probability": 0.337 + }, + { + "start": 33171.72, + "end": 33172.38, + "probability": 0.8775 + }, + { + "start": 33173.14, + "end": 33174.82, + "probability": 0.9817 + }, + { + "start": 33176.1, + "end": 33177.62, + "probability": 0.8595 + }, + { + "start": 33178.36, + "end": 33179.54, + "probability": 0.9924 + }, + { + "start": 33179.8, + "end": 33180.84, + "probability": 0.9625 + }, + { + "start": 33181.74, + "end": 33182.4, + "probability": 0.8522 + }, + { + "start": 33182.66, + "end": 33183.02, + "probability": 0.4776 + }, + { + "start": 33194.6, + "end": 33195.64, + "probability": 0.5676 + }, + { + "start": 33195.64, + "end": 33196.24, + "probability": 0.1966 + }, + { + "start": 33196.24, + "end": 33196.64, + "probability": 0.1249 + }, + { + "start": 33197.58, + "end": 33197.58, + "probability": 0.0465 + }, + { + "start": 33197.58, + "end": 33197.58, + "probability": 0.1166 + }, + { + "start": 33197.58, + "end": 33200.16, + "probability": 0.8423 + }, + { + "start": 33200.92, + "end": 33202.56, + "probability": 0.598 + }, + { + "start": 33203.8, + "end": 33204.86, + "probability": 0.9727 + }, + { + "start": 33205.46, + "end": 33207.68, + "probability": 0.9303 + }, + { + "start": 33208.7, + "end": 33210.08, + "probability": 0.5063 + }, + { + "start": 33210.9, + "end": 33215.68, + "probability": 0.8943 + }, + { + "start": 33216.86, + "end": 33218.74, + "probability": 0.97 + }, + { + "start": 33218.98, + "end": 33219.68, + "probability": 0.7509 + }, + { + "start": 33220.08, + "end": 33220.72, + "probability": 0.6296 + }, + { + "start": 33221.48, + "end": 33222.66, + "probability": 0.8636 + }, + { + "start": 33223.28, + "end": 33225.88, + "probability": 0.8773 + }, + { + "start": 33226.58, + "end": 33229.32, + "probability": 0.9126 + }, + { + "start": 33229.78, + "end": 33230.2, + "probability": 0.8145 + }, + { + "start": 33230.92, + "end": 33235.1, + "probability": 0.9651 + }, + { + "start": 33235.64, + "end": 33237.54, + "probability": 0.789 + }, + { + "start": 33238.0, + "end": 33238.28, + "probability": 0.814 + }, + { + "start": 33239.26, + "end": 33239.66, + "probability": 0.7979 + }, + { + "start": 33239.74, + "end": 33241.72, + "probability": 0.8818 + }, + { + "start": 33259.4, + "end": 33260.88, + "probability": 0.4673 + }, + { + "start": 33262.04, + "end": 33265.9, + "probability": 0.6498 + }, + { + "start": 33266.6, + "end": 33269.88, + "probability": 0.9623 + }, + { + "start": 33270.6, + "end": 33271.36, + "probability": 0.9548 + }, + { + "start": 33271.5, + "end": 33275.68, + "probability": 0.9071 + }, + { + "start": 33276.82, + "end": 33282.04, + "probability": 0.5824 + }, + { + "start": 33282.88, + "end": 33283.42, + "probability": 0.304 + }, + { + "start": 33284.06, + "end": 33284.7, + "probability": 0.8819 + }, + { + "start": 33285.78, + "end": 33289.96, + "probability": 0.9611 + }, + { + "start": 33290.7, + "end": 33293.1, + "probability": 0.991 + }, + { + "start": 33293.99, + "end": 33297.2, + "probability": 0.98 + }, + { + "start": 33297.28, + "end": 33298.76, + "probability": 0.843 + }, + { + "start": 33299.74, + "end": 33303.14, + "probability": 0.5004 + }, + { + "start": 33303.7, + "end": 33308.72, + "probability": 0.9642 + }, + { + "start": 33310.48, + "end": 33313.74, + "probability": 0.8192 + }, + { + "start": 33314.92, + "end": 33320.04, + "probability": 0.8073 + }, + { + "start": 33320.68, + "end": 33322.08, + "probability": 0.8174 + }, + { + "start": 33323.14, + "end": 33324.38, + "probability": 0.8986 + }, + { + "start": 33325.0, + "end": 33326.58, + "probability": 0.5717 + }, + { + "start": 33327.04, + "end": 33330.22, + "probability": 0.9985 + }, + { + "start": 33330.22, + "end": 33334.32, + "probability": 0.9859 + }, + { + "start": 33335.8, + "end": 33338.24, + "probability": 0.9608 + }, + { + "start": 33339.08, + "end": 33341.98, + "probability": 0.9354 + }, + { + "start": 33341.98, + "end": 33345.78, + "probability": 0.999 + }, + { + "start": 33346.58, + "end": 33347.21, + "probability": 0.5772 + }, + { + "start": 33347.34, + "end": 33348.12, + "probability": 0.5439 + }, + { + "start": 33348.52, + "end": 33349.42, + "probability": 0.082 + }, + { + "start": 33349.64, + "end": 33350.14, + "probability": 0.1155 + }, + { + "start": 33350.77, + "end": 33353.18, + "probability": 0.701 + }, + { + "start": 33353.54, + "end": 33354.24, + "probability": 0.9184 + }, + { + "start": 33354.96, + "end": 33357.96, + "probability": 0.9898 + }, + { + "start": 33358.14, + "end": 33361.98, + "probability": 0.8851 + }, + { + "start": 33362.46, + "end": 33364.08, + "probability": 0.9418 + }, + { + "start": 33364.66, + "end": 33367.94, + "probability": 0.9697 + }, + { + "start": 33368.56, + "end": 33372.28, + "probability": 0.9543 + }, + { + "start": 33372.76, + "end": 33375.7, + "probability": 0.9403 + }, + { + "start": 33376.04, + "end": 33376.52, + "probability": 0.7575 + }, + { + "start": 33377.48, + "end": 33378.0, + "probability": 0.7775 + }, + { + "start": 33379.1, + "end": 33380.72, + "probability": 0.7656 + }, + { + "start": 33381.62, + "end": 33382.88, + "probability": 0.9827 + }, + { + "start": 33383.4, + "end": 33383.96, + "probability": 0.734 + }, + { + "start": 33384.84, + "end": 33387.21, + "probability": 0.6913 + }, + { + "start": 33391.32, + "end": 33393.38, + "probability": 0.8342 + }, + { + "start": 33414.82, + "end": 33417.84, + "probability": 0.4192 + }, + { + "start": 33418.56, + "end": 33419.52, + "probability": 0.8708 + }, + { + "start": 33420.68, + "end": 33424.52, + "probability": 0.9181 + }, + { + "start": 33425.62, + "end": 33431.28, + "probability": 0.9478 + }, + { + "start": 33431.42, + "end": 33433.14, + "probability": 0.8494 + }, + { + "start": 33433.8, + "end": 33435.38, + "probability": 0.9771 + }, + { + "start": 33436.5, + "end": 33438.32, + "probability": 0.9178 + }, + { + "start": 33439.04, + "end": 33439.46, + "probability": 0.9826 + }, + { + "start": 33440.04, + "end": 33443.76, + "probability": 0.6691 + }, + { + "start": 33444.34, + "end": 33444.9, + "probability": 0.9846 + }, + { + "start": 33445.46, + "end": 33446.16, + "probability": 0.7349 + }, + { + "start": 33446.24, + "end": 33447.49, + "probability": 0.5225 + }, + { + "start": 33447.78, + "end": 33448.52, + "probability": 0.983 + }, + { + "start": 33449.08, + "end": 33450.22, + "probability": 0.7463 + }, + { + "start": 33450.66, + "end": 33451.3, + "probability": 0.1708 + }, + { + "start": 33452.64, + "end": 33458.2, + "probability": 0.7654 + }, + { + "start": 33459.12, + "end": 33462.36, + "probability": 0.955 + }, + { + "start": 33462.8, + "end": 33465.44, + "probability": 0.9989 + }, + { + "start": 33465.9, + "end": 33468.7, + "probability": 0.6895 + }, + { + "start": 33469.36, + "end": 33470.34, + "probability": 0.3933 + }, + { + "start": 33471.1, + "end": 33474.06, + "probability": 0.9849 + }, + { + "start": 33474.74, + "end": 33475.08, + "probability": 0.4731 + }, + { + "start": 33477.48, + "end": 33479.14, + "probability": 0.5613 + }, + { + "start": 33480.96, + "end": 33481.82, + "probability": 0.5889 + }, + { + "start": 33481.92, + "end": 33489.78, + "probability": 0.8302 + }, + { + "start": 33489.91, + "end": 33494.14, + "probability": 0.973 + }, + { + "start": 33495.64, + "end": 33497.96, + "probability": 0.5469 + }, + { + "start": 33498.32, + "end": 33499.44, + "probability": 0.8407 + }, + { + "start": 33499.78, + "end": 33500.18, + "probability": 0.7528 + }, + { + "start": 33501.04, + "end": 33501.92, + "probability": 0.8564 + }, + { + "start": 33502.68, + "end": 33504.98, + "probability": 0.6392 + }, + { + "start": 33505.84, + "end": 33511.44, + "probability": 0.9471 + }, + { + "start": 33512.14, + "end": 33514.5, + "probability": 0.9575 + }, + { + "start": 33514.56, + "end": 33515.12, + "probability": 0.5619 + }, + { + "start": 33516.12, + "end": 33517.78, + "probability": 0.7215 + }, + { + "start": 33518.66, + "end": 33520.1, + "probability": 0.9808 + }, + { + "start": 33520.16, + "end": 33524.86, + "probability": 0.8276 + }, + { + "start": 33525.7, + "end": 33527.6, + "probability": 0.8955 + }, + { + "start": 33529.82, + "end": 33532.32, + "probability": 0.9479 + }, + { + "start": 33532.5, + "end": 33533.42, + "probability": 0.6785 + }, + { + "start": 33533.76, + "end": 33534.98, + "probability": 0.7485 + }, + { + "start": 33536.06, + "end": 33537.2, + "probability": 0.9178 + }, + { + "start": 33537.34, + "end": 33538.16, + "probability": 0.6508 + }, + { + "start": 33538.62, + "end": 33540.06, + "probability": 0.7118 + }, + { + "start": 33540.14, + "end": 33541.82, + "probability": 0.8599 + }, + { + "start": 33542.22, + "end": 33544.8, + "probability": 0.9531 + }, + { + "start": 33545.58, + "end": 33546.06, + "probability": 0.6133 + }, + { + "start": 33546.24, + "end": 33550.56, + "probability": 0.9725 + }, + { + "start": 33550.78, + "end": 33551.44, + "probability": 0.6692 + }, + { + "start": 33551.56, + "end": 33557.22, + "probability": 0.8398 + }, + { + "start": 33559.32, + "end": 33563.12, + "probability": 0.9294 + }, + { + "start": 33563.86, + "end": 33566.04, + "probability": 0.8141 + }, + { + "start": 33566.16, + "end": 33568.09, + "probability": 0.9181 + }, + { + "start": 33569.3, + "end": 33572.62, + "probability": 0.9217 + }, + { + "start": 33573.16, + "end": 33576.62, + "probability": 0.9973 + }, + { + "start": 33576.62, + "end": 33582.04, + "probability": 0.6938 + }, + { + "start": 33582.72, + "end": 33583.24, + "probability": 0.2568 + }, + { + "start": 33583.36, + "end": 33585.86, + "probability": 0.7456 + }, + { + "start": 33586.68, + "end": 33590.38, + "probability": 0.9774 + }, + { + "start": 33590.96, + "end": 33594.56, + "probability": 0.8842 + }, + { + "start": 33594.96, + "end": 33595.16, + "probability": 0.7826 + }, + { + "start": 33596.62, + "end": 33597.2, + "probability": 0.7708 + }, + { + "start": 33599.96, + "end": 33600.06, + "probability": 0.5897 + }, + { + "start": 33603.04, + "end": 33603.14, + "probability": 0.4657 + }, + { + "start": 33603.98, + "end": 33605.86, + "probability": 0.74 + }, + { + "start": 33608.62, + "end": 33609.38, + "probability": 0.7274 + }, + { + "start": 33613.58, + "end": 33615.16, + "probability": 0.9805 + }, + { + "start": 33615.66, + "end": 33616.04, + "probability": 0.2345 + }, + { + "start": 33617.8, + "end": 33618.82, + "probability": 0.2424 + }, + { + "start": 33618.98, + "end": 33619.0, + "probability": 0.0171 + }, + { + "start": 33619.0, + "end": 33619.0, + "probability": 0.1384 + }, + { + "start": 33619.0, + "end": 33619.3, + "probability": 0.6347 + }, + { + "start": 33619.42, + "end": 33621.74, + "probability": 0.7209 + }, + { + "start": 33621.9, + "end": 33622.46, + "probability": 0.85 + }, + { + "start": 33624.34, + "end": 33626.82, + "probability": 0.8923 + }, + { + "start": 33627.34, + "end": 33627.44, + "probability": 0.5203 + }, + { + "start": 33628.8, + "end": 33628.9, + "probability": 0.9364 + }, + { + "start": 33635.48, + "end": 33635.5, + "probability": 0.0324 + }, + { + "start": 33635.5, + "end": 33635.5, + "probability": 0.1104 + }, + { + "start": 33635.5, + "end": 33635.5, + "probability": 0.1025 + }, + { + "start": 33642.52, + "end": 33644.0, + "probability": 0.6261 + }, + { + "start": 33646.26, + "end": 33650.08, + "probability": 0.6726 + }, + { + "start": 33655.74, + "end": 33656.48, + "probability": 0.217 + }, + { + "start": 33656.82, + "end": 33658.3, + "probability": 0.6082 + }, + { + "start": 33658.7, + "end": 33660.06, + "probability": 0.958 + }, + { + "start": 33660.58, + "end": 33661.94, + "probability": 0.9773 + }, + { + "start": 33662.56, + "end": 33665.72, + "probability": 0.9295 + }, + { + "start": 33666.92, + "end": 33668.12, + "probability": 0.4601 + }, + { + "start": 33668.62, + "end": 33669.62, + "probability": 0.9191 + }, + { + "start": 33670.08, + "end": 33670.64, + "probability": 0.5245 + }, + { + "start": 33670.64, + "end": 33671.12, + "probability": 0.8221 + }, + { + "start": 33671.9, + "end": 33676.16, + "probability": 0.9301 + }, + { + "start": 33676.78, + "end": 33682.98, + "probability": 0.9932 + }, + { + "start": 33682.98, + "end": 33684.96, + "probability": 0.8123 + }, + { + "start": 33686.1, + "end": 33688.06, + "probability": 0.4965 + }, + { + "start": 33689.96, + "end": 33692.04, + "probability": 0.9121 + }, + { + "start": 33693.26, + "end": 33696.08, + "probability": 0.994 + }, + { + "start": 33696.34, + "end": 33696.98, + "probability": 0.5921 + }, + { + "start": 33697.04, + "end": 33697.3, + "probability": 0.7872 + }, + { + "start": 33698.16, + "end": 33698.62, + "probability": 0.8897 + }, + { + "start": 33699.92, + "end": 33701.63, + "probability": 0.9644 + }, + { + "start": 33702.88, + "end": 33704.3, + "probability": 0.3873 + }, + { + "start": 33706.56, + "end": 33712.52, + "probability": 0.9229 + }, + { + "start": 33713.74, + "end": 33717.06, + "probability": 0.6038 + }, + { + "start": 33717.66, + "end": 33721.98, + "probability": 0.9924 + }, + { + "start": 33722.4, + "end": 33723.66, + "probability": 0.9938 + }, + { + "start": 33724.2, + "end": 33725.08, + "probability": 0.9536 + }, + { + "start": 33725.76, + "end": 33731.5, + "probability": 0.6777 + }, + { + "start": 33733.36, + "end": 33738.56, + "probability": 0.9701 + }, + { + "start": 33739.5, + "end": 33742.96, + "probability": 0.9812 + }, + { + "start": 33742.96, + "end": 33746.36, + "probability": 0.8492 + }, + { + "start": 33747.16, + "end": 33748.4, + "probability": 0.8572 + }, + { + "start": 33750.3, + "end": 33754.5, + "probability": 0.9951 + }, + { + "start": 33755.08, + "end": 33759.46, + "probability": 0.9239 + }, + { + "start": 33759.92, + "end": 33761.94, + "probability": 0.9536 + }, + { + "start": 33762.12, + "end": 33764.88, + "probability": 0.9734 + }, + { + "start": 33765.2, + "end": 33768.88, + "probability": 0.521 + }, + { + "start": 33769.7, + "end": 33770.6, + "probability": 0.9816 + }, + { + "start": 33771.92, + "end": 33774.7, + "probability": 0.8002 + }, + { + "start": 33775.34, + "end": 33776.84, + "probability": 0.8918 + }, + { + "start": 33777.36, + "end": 33777.96, + "probability": 0.9742 + }, + { + "start": 33778.48, + "end": 33779.54, + "probability": 0.9329 + }, + { + "start": 33780.04, + "end": 33785.64, + "probability": 0.9716 + }, + { + "start": 33786.12, + "end": 33788.22, + "probability": 0.9983 + }, + { + "start": 33788.78, + "end": 33791.44, + "probability": 0.4981 + }, + { + "start": 33794.44, + "end": 33797.98, + "probability": 0.9395 + }, + { + "start": 33797.98, + "end": 33801.14, + "probability": 0.9927 + }, + { + "start": 33801.52, + "end": 33803.58, + "probability": 0.999 + }, + { + "start": 33804.0, + "end": 33810.14, + "probability": 0.9785 + }, + { + "start": 33810.7, + "end": 33811.76, + "probability": 0.8856 + }, + { + "start": 33812.4, + "end": 33817.54, + "probability": 0.9896 + }, + { + "start": 33818.9, + "end": 33821.98, + "probability": 0.9988 + }, + { + "start": 33823.12, + "end": 33825.84, + "probability": 0.9916 + }, + { + "start": 33826.92, + "end": 33830.66, + "probability": 0.9982 + }, + { + "start": 33831.04, + "end": 33834.8, + "probability": 0.9975 + }, + { + "start": 33835.44, + "end": 33835.98, + "probability": 0.8745 + }, + { + "start": 33836.7, + "end": 33841.56, + "probability": 0.9973 + }, + { + "start": 33841.66, + "end": 33846.06, + "probability": 0.9653 + }, + { + "start": 33846.6, + "end": 33853.02, + "probability": 0.997 + }, + { + "start": 33853.4, + "end": 33856.58, + "probability": 0.9935 + }, + { + "start": 33857.14, + "end": 33857.84, + "probability": 0.671 + }, + { + "start": 33858.58, + "end": 33862.54, + "probability": 0.8565 + }, + { + "start": 33863.02, + "end": 33863.6, + "probability": 0.2974 + }, + { + "start": 33863.84, + "end": 33865.68, + "probability": 0.852 + }, + { + "start": 33866.04, + "end": 33868.62, + "probability": 0.983 + }, + { + "start": 33868.94, + "end": 33870.72, + "probability": 0.8066 + }, + { + "start": 33870.82, + "end": 33871.99, + "probability": 0.7372 + }, + { + "start": 33872.62, + "end": 33876.94, + "probability": 0.5131 + }, + { + "start": 33877.76, + "end": 33879.44, + "probability": 0.9651 + }, + { + "start": 33880.22, + "end": 33884.66, + "probability": 0.8677 + }, + { + "start": 33886.24, + "end": 33890.5, + "probability": 0.8634 + }, + { + "start": 33890.96, + "end": 33891.94, + "probability": 0.9234 + }, + { + "start": 33893.22, + "end": 33897.24, + "probability": 0.6948 + }, + { + "start": 33897.24, + "end": 33900.68, + "probability": 0.9984 + }, + { + "start": 33901.08, + "end": 33903.9, + "probability": 0.9766 + }, + { + "start": 33904.32, + "end": 33907.62, + "probability": 0.9447 + }, + { + "start": 33908.24, + "end": 33911.92, + "probability": 0.8612 + }, + { + "start": 33914.0, + "end": 33917.78, + "probability": 0.9292 + }, + { + "start": 33919.08, + "end": 33922.56, + "probability": 0.9656 + }, + { + "start": 33922.56, + "end": 33927.26, + "probability": 0.9663 + }, + { + "start": 33927.26, + "end": 33932.26, + "probability": 0.9992 + }, + { + "start": 33932.7, + "end": 33934.68, + "probability": 0.907 + }, + { + "start": 33935.16, + "end": 33938.96, + "probability": 0.9711 + }, + { + "start": 33939.46, + "end": 33943.54, + "probability": 0.9958 + }, + { + "start": 33944.4, + "end": 33950.38, + "probability": 0.9863 + }, + { + "start": 33951.36, + "end": 33955.38, + "probability": 0.9989 + }, + { + "start": 33955.38, + "end": 33959.36, + "probability": 0.9774 + }, + { + "start": 33961.08, + "end": 33966.54, + "probability": 0.581 + }, + { + "start": 33966.6, + "end": 33967.56, + "probability": 0.8114 + }, + { + "start": 33968.96, + "end": 33969.3, + "probability": 0.8645 + }, + { + "start": 33970.86, + "end": 33971.28, + "probability": 0.8073 + }, + { + "start": 33973.1, + "end": 33975.38, + "probability": 0.9817 + }, + { + "start": 33976.56, + "end": 33979.74, + "probability": 0.8096 + }, + { + "start": 33980.92, + "end": 33982.24, + "probability": 0.1065 + }, + { + "start": 33982.42, + "end": 33982.42, + "probability": 0.5839 + }, + { + "start": 33982.6, + "end": 33987.98, + "probability": 0.8901 + }, + { + "start": 33988.4, + "end": 33989.02, + "probability": 0.9471 + }, + { + "start": 33989.98, + "end": 33990.7, + "probability": 0.9648 + }, + { + "start": 33990.76, + "end": 33994.72, + "probability": 0.9641 + }, + { + "start": 33995.4, + "end": 33996.82, + "probability": 0.0238 + }, + { + "start": 33997.34, + "end": 33997.34, + "probability": 0.004 + }, + { + "start": 33997.96, + "end": 33998.98, + "probability": 0.4835 + }, + { + "start": 33999.84, + "end": 34000.8, + "probability": 0.4698 + }, + { + "start": 34001.98, + "end": 34006.28, + "probability": 0.8185 + }, + { + "start": 34006.7, + "end": 34010.66, + "probability": 0.9867 + }, + { + "start": 34011.6, + "end": 34016.54, + "probability": 0.6782 + }, + { + "start": 34016.56, + "end": 34017.44, + "probability": 0.5347 + }, + { + "start": 34017.6, + "end": 34017.94, + "probability": 0.3141 + }, + { + "start": 34018.0, + "end": 34018.92, + "probability": 0.7014 + }, + { + "start": 34019.18, + "end": 34020.16, + "probability": 0.7334 + }, + { + "start": 34020.48, + "end": 34020.64, + "probability": 0.7425 + }, + { + "start": 34020.64, + "end": 34023.04, + "probability": 0.6645 + }, + { + "start": 34024.44, + "end": 34026.22, + "probability": 0.9618 + }, + { + "start": 34026.38, + "end": 34029.12, + "probability": 0.5026 + }, + { + "start": 34033.56, + "end": 34036.18, + "probability": 0.6707 + }, + { + "start": 34037.24, + "end": 34039.51, + "probability": 0.4842 + }, + { + "start": 34040.22, + "end": 34043.0, + "probability": 0.8318 + }, + { + "start": 34045.74, + "end": 34048.02, + "probability": 0.9846 + }, + { + "start": 34048.56, + "end": 34050.38, + "probability": 0.9961 + }, + { + "start": 34050.7, + "end": 34052.25, + "probability": 0.9956 + }, + { + "start": 34052.88, + "end": 34054.48, + "probability": 0.5339 + }, + { + "start": 34054.54, + "end": 34055.42, + "probability": 0.9662 + }, + { + "start": 34056.18, + "end": 34056.18, + "probability": 0.1301 + }, + { + "start": 34056.18, + "end": 34057.7, + "probability": 0.5081 + }, + { + "start": 34058.1, + "end": 34060.26, + "probability": 0.8434 + }, + { + "start": 34060.68, + "end": 34062.48, + "probability": 0.9044 + }, + { + "start": 34063.15, + "end": 34065.18, + "probability": 0.9889 + }, + { + "start": 34065.92, + "end": 34068.12, + "probability": 0.2704 + }, + { + "start": 34070.86, + "end": 34070.94, + "probability": 0.2905 + }, + { + "start": 34070.94, + "end": 34070.94, + "probability": 0.3684 + }, + { + "start": 34070.94, + "end": 34072.94, + "probability": 0.6072 + }, + { + "start": 34073.46, + "end": 34075.75, + "probability": 0.4717 + }, + { + "start": 34076.66, + "end": 34077.14, + "probability": 0.4931 + }, + { + "start": 34077.24, + "end": 34078.98, + "probability": 0.8446 + }, + { + "start": 34080.24, + "end": 34081.48, + "probability": 0.5977 + }, + { + "start": 34083.68, + "end": 34086.58, + "probability": 0.9071 + }, + { + "start": 34087.38, + "end": 34087.9, + "probability": 0.7507 + }, + { + "start": 34090.02, + "end": 34092.9, + "probability": 0.9668 + }, + { + "start": 34093.16, + "end": 34095.82, + "probability": 0.9488 + }, + { + "start": 34097.14, + "end": 34100.2, + "probability": 0.9979 + }, + { + "start": 34100.2, + "end": 34106.62, + "probability": 0.5707 + }, + { + "start": 34106.62, + "end": 34110.35, + "probability": 0.9837 + }, + { + "start": 34111.52, + "end": 34115.92, + "probability": 0.9963 + }, + { + "start": 34116.74, + "end": 34118.5, + "probability": 0.9785 + }, + { + "start": 34118.76, + "end": 34123.96, + "probability": 0.8753 + }, + { + "start": 34124.48, + "end": 34129.4, + "probability": 0.9613 + }, + { + "start": 34130.16, + "end": 34131.5, + "probability": 0.7373 + }, + { + "start": 34132.58, + "end": 34133.86, + "probability": 0.9861 + }, + { + "start": 34134.8, + "end": 34136.74, + "probability": 0.9553 + }, + { + "start": 34137.58, + "end": 34138.42, + "probability": 0.7975 + }, + { + "start": 34138.98, + "end": 34139.38, + "probability": 0.8562 + }, + { + "start": 34140.92, + "end": 34142.66, + "probability": 0.9465 + }, + { + "start": 34143.38, + "end": 34148.76, + "probability": 0.7922 + }, + { + "start": 34150.38, + "end": 34153.9, + "probability": 0.9742 + }, + { + "start": 34153.9, + "end": 34158.86, + "probability": 0.9674 + }, + { + "start": 34158.94, + "end": 34163.46, + "probability": 0.9976 + }, + { + "start": 34163.9, + "end": 34164.96, + "probability": 0.8983 + }, + { + "start": 34165.48, + "end": 34166.24, + "probability": 0.8914 + }, + { + "start": 34166.44, + "end": 34169.32, + "probability": 0.9252 + }, + { + "start": 34169.42, + "end": 34171.12, + "probability": 0.9136 + }, + { + "start": 34171.84, + "end": 34174.44, + "probability": 0.9907 + }, + { + "start": 34175.68, + "end": 34181.9, + "probability": 0.9802 + }, + { + "start": 34183.16, + "end": 34186.44, + "probability": 0.9871 + }, + { + "start": 34187.62, + "end": 34189.88, + "probability": 0.9933 + }, + { + "start": 34190.56, + "end": 34192.12, + "probability": 0.5078 + }, + { + "start": 34192.3, + "end": 34195.88, + "probability": 0.9918 + }, + { + "start": 34196.8, + "end": 34197.94, + "probability": 0.993 + }, + { + "start": 34198.36, + "end": 34203.88, + "probability": 0.9762 + }, + { + "start": 34203.9, + "end": 34204.22, + "probability": 0.506 + }, + { + "start": 34205.98, + "end": 34207.44, + "probability": 0.8175 + }, + { + "start": 34208.34, + "end": 34212.62, + "probability": 0.6721 + }, + { + "start": 34213.54, + "end": 34213.84, + "probability": 0.5741 + }, + { + "start": 34214.4, + "end": 34215.18, + "probability": 0.8975 + }, + { + "start": 34216.3, + "end": 34217.94, + "probability": 0.6391 + }, + { + "start": 34218.48, + "end": 34219.14, + "probability": 0.9692 + }, + { + "start": 34220.02, + "end": 34223.44, + "probability": 0.8351 + }, + { + "start": 34223.66, + "end": 34224.06, + "probability": 0.4539 + }, + { + "start": 34224.1, + "end": 34225.52, + "probability": 0.9101 + }, + { + "start": 34226.38, + "end": 34228.08, + "probability": 0.8739 + }, + { + "start": 34229.48, + "end": 34230.58, + "probability": 0.9207 + }, + { + "start": 34233.64, + "end": 34238.22, + "probability": 0.9788 + }, + { + "start": 34239.78, + "end": 34241.86, + "probability": 0.9424 + }, + { + "start": 34243.88, + "end": 34244.04, + "probability": 0.5527 + }, + { + "start": 34244.72, + "end": 34249.82, + "probability": 0.823 + }, + { + "start": 34251.58, + "end": 34255.34, + "probability": 0.6561 + }, + { + "start": 34256.26, + "end": 34257.8, + "probability": 0.9966 + }, + { + "start": 34258.48, + "end": 34259.78, + "probability": 0.9802 + }, + { + "start": 34262.54, + "end": 34264.08, + "probability": 0.6532 + }, + { + "start": 34264.88, + "end": 34268.08, + "probability": 0.9604 + }, + { + "start": 34268.66, + "end": 34271.8, + "probability": 0.9973 + }, + { + "start": 34271.8, + "end": 34276.38, + "probability": 0.9255 + }, + { + "start": 34276.96, + "end": 34278.56, + "probability": 0.9918 + }, + { + "start": 34279.7, + "end": 34280.19, + "probability": 0.0581 + }, + { + "start": 34280.36, + "end": 34280.66, + "probability": 0.9604 + }, + { + "start": 34282.84, + "end": 34286.3, + "probability": 0.937 + }, + { + "start": 34286.42, + "end": 34287.28, + "probability": 0.6395 + }, + { + "start": 34287.74, + "end": 34288.46, + "probability": 0.4991 + }, + { + "start": 34289.96, + "end": 34292.3, + "probability": 0.8688 + }, + { + "start": 34292.64, + "end": 34294.54, + "probability": 0.8828 + }, + { + "start": 34294.6, + "end": 34294.82, + "probability": 0.5985 + }, + { + "start": 34294.84, + "end": 34296.12, + "probability": 0.9817 + }, + { + "start": 34296.12, + "end": 34297.16, + "probability": 0.8346 + }, + { + "start": 34297.32, + "end": 34301.68, + "probability": 0.2428 + }, + { + "start": 34302.06, + "end": 34302.06, + "probability": 0.1367 + }, + { + "start": 34302.06, + "end": 34302.06, + "probability": 0.0384 + }, + { + "start": 34302.06, + "end": 34303.24, + "probability": 0.5055 + }, + { + "start": 34303.96, + "end": 34305.34, + "probability": 0.5285 + }, + { + "start": 34305.36, + "end": 34305.9, + "probability": 0.7697 + }, + { + "start": 34306.44, + "end": 34307.6, + "probability": 0.8852 + }, + { + "start": 34308.68, + "end": 34309.25, + "probability": 0.9854 + }, + { + "start": 34310.72, + "end": 34315.1, + "probability": 0.5513 + }, + { + "start": 34322.21, + "end": 34323.36, + "probability": 0.484 + }, + { + "start": 34323.44, + "end": 34324.42, + "probability": 0.8049 + }, + { + "start": 34324.8, + "end": 34327.26, + "probability": 0.975 + }, + { + "start": 34327.32, + "end": 34328.48, + "probability": 0.2867 + }, + { + "start": 34329.58, + "end": 34330.76, + "probability": 0.9608 + }, + { + "start": 34334.0, + "end": 34335.74, + "probability": 0.3448 + }, + { + "start": 34335.78, + "end": 34336.78, + "probability": 0.8077 + }, + { + "start": 34336.9, + "end": 34337.84, + "probability": 0.8635 + }, + { + "start": 34338.88, + "end": 34339.83, + "probability": 0.0016 + } + ], + "segments_count": 10065, + "words_count": 49589, + "avg_words_per_segment": 4.9269, + "avg_segment_duration": 1.9539, + "avg_words_per_minute": 86.5213, + "plenum_id": "119378", + "duration": 34388.54, + "title": null, + "plenum_date": "2023-07-12" +} \ No newline at end of file