diff --git "a/12034/metadata.json" "b/12034/metadata.json" new file mode 100644--- /dev/null +++ "b/12034/metadata.json" @@ -0,0 +1,29412 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "12034", + "quality_score": 0.8745, + "per_segment_quality_scores": [ + { + "start": 116.26, + "end": 122.14, + "probability": 0.0301 + }, + { + "start": 125.12, + "end": 125.2, + "probability": 0.0902 + }, + { + "start": 125.2, + "end": 125.2, + "probability": 0.0467 + }, + { + "start": 125.2, + "end": 125.8, + "probability": 0.0956 + }, + { + "start": 126.08, + "end": 126.08, + "probability": 0.2644 + }, + { + "start": 126.08, + "end": 126.5, + "probability": 0.5853 + }, + { + "start": 127.4, + "end": 128.72, + "probability": 0.7341 + }, + { + "start": 128.9, + "end": 130.68, + "probability": 0.7659 + }, + { + "start": 130.82, + "end": 132.48, + "probability": 0.6143 + }, + { + "start": 132.6, + "end": 134.96, + "probability": 0.7645 + }, + { + "start": 138.0, + "end": 140.0, + "probability": 0.625 + }, + { + "start": 140.0, + "end": 141.11, + "probability": 0.1164 + }, + { + "start": 141.94, + "end": 143.98, + "probability": 0.8146 + }, + { + "start": 144.26, + "end": 146.64, + "probability": 0.1421 + }, + { + "start": 146.92, + "end": 148.42, + "probability": 0.1682 + }, + { + "start": 149.26, + "end": 154.66, + "probability": 0.0807 + }, + { + "start": 157.06, + "end": 159.54, + "probability": 0.0345 + }, + { + "start": 160.18, + "end": 163.08, + "probability": 0.0252 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.16, + "end": 250.54, + "probability": 0.2332 + }, + { + "start": 251.34, + "end": 253.14, + "probability": 0.8548 + }, + { + "start": 255.76, + "end": 256.98, + "probability": 0.8095 + }, + { + "start": 257.36, + "end": 258.64, + "probability": 0.9629 + }, + { + "start": 258.74, + "end": 259.92, + "probability": 0.7175 + }, + { + "start": 260.7, + "end": 264.82, + "probability": 0.7833 + }, + { + "start": 265.0, + "end": 265.79, + "probability": 0.978 + }, + { + "start": 266.62, + "end": 270.02, + "probability": 0.9925 + }, + { + "start": 270.94, + "end": 272.2, + "probability": 0.752 + }, + { + "start": 273.62, + "end": 276.32, + "probability": 0.711 + }, + { + "start": 279.2, + "end": 283.04, + "probability": 0.9294 + }, + { + "start": 283.72, + "end": 287.12, + "probability": 0.9519 + }, + { + "start": 287.24, + "end": 289.32, + "probability": 0.9331 + }, + { + "start": 289.32, + "end": 291.86, + "probability": 0.8408 + }, + { + "start": 293.44, + "end": 296.56, + "probability": 0.9556 + }, + { + "start": 297.7, + "end": 299.0, + "probability": 0.756 + }, + { + "start": 299.54, + "end": 300.84, + "probability": 0.9283 + }, + { + "start": 301.32, + "end": 303.18, + "probability": 0.9849 + }, + { + "start": 305.4, + "end": 307.2, + "probability": 0.9301 + }, + { + "start": 307.58, + "end": 308.43, + "probability": 0.8656 + }, + { + "start": 308.82, + "end": 309.44, + "probability": 0.5141 + }, + { + "start": 310.56, + "end": 311.08, + "probability": 0.551 + }, + { + "start": 311.32, + "end": 313.68, + "probability": 0.9712 + }, + { + "start": 313.8, + "end": 315.06, + "probability": 0.655 + }, + { + "start": 315.46, + "end": 315.94, + "probability": 0.0762 + }, + { + "start": 316.08, + "end": 319.86, + "probability": 0.8057 + }, + { + "start": 320.54, + "end": 321.8, + "probability": 0.6542 + }, + { + "start": 323.14, + "end": 327.46, + "probability": 0.7432 + }, + { + "start": 328.48, + "end": 329.84, + "probability": 0.9773 + }, + { + "start": 329.86, + "end": 335.0, + "probability": 0.937 + }, + { + "start": 336.46, + "end": 337.98, + "probability": 0.894 + }, + { + "start": 337.98, + "end": 340.22, + "probability": 0.7903 + }, + { + "start": 340.22, + "end": 344.98, + "probability": 0.9946 + }, + { + "start": 345.02, + "end": 347.59, + "probability": 0.8289 + }, + { + "start": 348.18, + "end": 350.42, + "probability": 0.868 + }, + { + "start": 350.6, + "end": 352.16, + "probability": 0.9231 + }, + { + "start": 352.3, + "end": 353.56, + "probability": 0.6882 + }, + { + "start": 353.84, + "end": 358.4, + "probability": 0.8314 + }, + { + "start": 359.1, + "end": 360.66, + "probability": 0.6812 + }, + { + "start": 361.56, + "end": 362.9, + "probability": 0.6997 + }, + { + "start": 363.72, + "end": 364.28, + "probability": 0.832 + }, + { + "start": 364.32, + "end": 367.38, + "probability": 0.9421 + }, + { + "start": 367.48, + "end": 369.36, + "probability": 0.8934 + }, + { + "start": 369.64, + "end": 373.74, + "probability": 0.9155 + }, + { + "start": 374.66, + "end": 376.76, + "probability": 0.4244 + }, + { + "start": 378.16, + "end": 378.95, + "probability": 0.769 + }, + { + "start": 379.54, + "end": 380.39, + "probability": 0.9299 + }, + { + "start": 381.02, + "end": 381.96, + "probability": 0.9146 + }, + { + "start": 381.98, + "end": 383.89, + "probability": 0.9395 + }, + { + "start": 384.7, + "end": 386.14, + "probability": 0.9764 + }, + { + "start": 386.62, + "end": 388.96, + "probability": 0.7524 + }, + { + "start": 389.8, + "end": 390.9, + "probability": 0.6678 + }, + { + "start": 391.18, + "end": 393.12, + "probability": 0.8715 + }, + { + "start": 393.16, + "end": 395.84, + "probability": 0.9733 + }, + { + "start": 397.4, + "end": 397.62, + "probability": 0.4641 + }, + { + "start": 398.6, + "end": 399.48, + "probability": 0.0221 + }, + { + "start": 399.48, + "end": 399.48, + "probability": 0.3035 + }, + { + "start": 399.48, + "end": 403.02, + "probability": 0.8688 + }, + { + "start": 403.88, + "end": 407.8, + "probability": 0.894 + }, + { + "start": 408.82, + "end": 412.6, + "probability": 0.7576 + }, + { + "start": 412.76, + "end": 413.72, + "probability": 0.9666 + }, + { + "start": 414.04, + "end": 414.6, + "probability": 0.9436 + }, + { + "start": 414.62, + "end": 415.44, + "probability": 0.5577 + }, + { + "start": 416.34, + "end": 417.6, + "probability": 0.9786 + }, + { + "start": 417.7, + "end": 420.92, + "probability": 0.9564 + }, + { + "start": 422.54, + "end": 424.64, + "probability": 0.974 + }, + { + "start": 426.0, + "end": 431.92, + "probability": 0.6502 + }, + { + "start": 433.3, + "end": 438.64, + "probability": 0.6697 + }, + { + "start": 438.76, + "end": 440.81, + "probability": 0.7225 + }, + { + "start": 441.7, + "end": 444.0, + "probability": 0.8645 + }, + { + "start": 445.76, + "end": 446.58, + "probability": 0.9531 + }, + { + "start": 446.64, + "end": 447.16, + "probability": 0.6923 + }, + { + "start": 447.42, + "end": 447.74, + "probability": 0.2808 + }, + { + "start": 447.96, + "end": 449.3, + "probability": 0.9453 + }, + { + "start": 450.3, + "end": 451.2, + "probability": 0.808 + }, + { + "start": 453.64, + "end": 456.9, + "probability": 0.9187 + }, + { + "start": 457.28, + "end": 458.3, + "probability": 0.8674 + }, + { + "start": 459.68, + "end": 462.98, + "probability": 0.7863 + }, + { + "start": 464.2, + "end": 465.28, + "probability": 0.8771 + }, + { + "start": 465.5, + "end": 465.96, + "probability": 0.721 + }, + { + "start": 465.96, + "end": 466.56, + "probability": 0.7679 + }, + { + "start": 466.58, + "end": 467.06, + "probability": 0.8572 + }, + { + "start": 467.12, + "end": 467.86, + "probability": 0.6227 + }, + { + "start": 467.92, + "end": 468.74, + "probability": 0.795 + }, + { + "start": 469.58, + "end": 471.52, + "probability": 0.8195 + }, + { + "start": 471.58, + "end": 474.56, + "probability": 0.9526 + }, + { + "start": 474.8, + "end": 475.65, + "probability": 0.7952 + }, + { + "start": 476.16, + "end": 477.18, + "probability": 0.7009 + }, + { + "start": 477.28, + "end": 478.44, + "probability": 0.9331 + }, + { + "start": 480.32, + "end": 481.46, + "probability": 0.1532 + }, + { + "start": 481.46, + "end": 481.46, + "probability": 0.2574 + }, + { + "start": 481.46, + "end": 483.04, + "probability": 0.6094 + }, + { + "start": 483.14, + "end": 484.46, + "probability": 0.1942 + }, + { + "start": 485.22, + "end": 487.45, + "probability": 0.2374 + }, + { + "start": 487.94, + "end": 489.76, + "probability": 0.6318 + }, + { + "start": 489.86, + "end": 490.28, + "probability": 0.6939 + }, + { + "start": 490.52, + "end": 491.52, + "probability": 0.5641 + }, + { + "start": 491.88, + "end": 492.86, + "probability": 0.1275 + }, + { + "start": 493.12, + "end": 493.36, + "probability": 0.4805 + }, + { + "start": 493.46, + "end": 494.58, + "probability": 0.5039 + }, + { + "start": 494.64, + "end": 495.46, + "probability": 0.7483 + }, + { + "start": 495.46, + "end": 496.58, + "probability": 0.8267 + }, + { + "start": 496.98, + "end": 501.74, + "probability": 0.5763 + }, + { + "start": 502.28, + "end": 503.1, + "probability": 0.8873 + }, + { + "start": 503.42, + "end": 503.66, + "probability": 0.7273 + }, + { + "start": 503.72, + "end": 505.14, + "probability": 0.9624 + }, + { + "start": 505.8, + "end": 507.3, + "probability": 0.9385 + }, + { + "start": 507.8, + "end": 510.02, + "probability": 0.7853 + }, + { + "start": 510.28, + "end": 511.4, + "probability": 0.9273 + }, + { + "start": 511.5, + "end": 512.28, + "probability": 0.5164 + }, + { + "start": 512.48, + "end": 513.98, + "probability": 0.4939 + }, + { + "start": 514.04, + "end": 514.75, + "probability": 0.3281 + }, + { + "start": 515.36, + "end": 516.22, + "probability": 0.3587 + }, + { + "start": 516.42, + "end": 517.96, + "probability": 0.5576 + }, + { + "start": 518.08, + "end": 519.66, + "probability": 0.9539 + }, + { + "start": 519.8, + "end": 520.26, + "probability": 0.4584 + }, + { + "start": 520.34, + "end": 520.96, + "probability": 0.4156 + }, + { + "start": 522.3, + "end": 524.42, + "probability": 0.8757 + }, + { + "start": 524.46, + "end": 527.2, + "probability": 0.8722 + }, + { + "start": 527.64, + "end": 528.38, + "probability": 0.8245 + }, + { + "start": 528.44, + "end": 529.72, + "probability": 0.7064 + }, + { + "start": 530.2, + "end": 534.08, + "probability": 0.8331 + }, + { + "start": 535.16, + "end": 537.18, + "probability": 0.8723 + }, + { + "start": 537.48, + "end": 538.06, + "probability": 0.9473 + }, + { + "start": 538.32, + "end": 539.16, + "probability": 0.7838 + }, + { + "start": 539.66, + "end": 540.42, + "probability": 0.8153 + }, + { + "start": 540.82, + "end": 542.08, + "probability": 0.5699 + }, + { + "start": 542.18, + "end": 544.26, + "probability": 0.4967 + }, + { + "start": 544.32, + "end": 545.8, + "probability": 0.6148 + }, + { + "start": 545.9, + "end": 547.3, + "probability": 0.9192 + }, + { + "start": 547.46, + "end": 548.78, + "probability": 0.9536 + }, + { + "start": 549.38, + "end": 549.8, + "probability": 0.9277 + }, + { + "start": 549.86, + "end": 550.7, + "probability": 0.6906 + }, + { + "start": 551.54, + "end": 552.93, + "probability": 0.9762 + }, + { + "start": 553.32, + "end": 553.76, + "probability": 0.8851 + }, + { + "start": 553.96, + "end": 554.84, + "probability": 0.6761 + }, + { + "start": 555.0, + "end": 556.01, + "probability": 0.8877 + }, + { + "start": 556.38, + "end": 560.34, + "probability": 0.8857 + }, + { + "start": 560.4, + "end": 561.44, + "probability": 0.7361 + }, + { + "start": 561.74, + "end": 563.1, + "probability": 0.8523 + }, + { + "start": 563.2, + "end": 564.76, + "probability": 0.9808 + }, + { + "start": 565.06, + "end": 567.38, + "probability": 0.9374 + }, + { + "start": 567.8, + "end": 569.69, + "probability": 0.5465 + }, + { + "start": 569.98, + "end": 570.28, + "probability": 0.6439 + }, + { + "start": 570.48, + "end": 571.24, + "probability": 0.7765 + }, + { + "start": 571.26, + "end": 571.76, + "probability": 0.7721 + }, + { + "start": 571.92, + "end": 574.62, + "probability": 0.9917 + }, + { + "start": 574.76, + "end": 576.06, + "probability": 0.8955 + }, + { + "start": 576.34, + "end": 578.17, + "probability": 0.9795 + }, + { + "start": 578.34, + "end": 579.64, + "probability": 0.8862 + }, + { + "start": 579.86, + "end": 581.08, + "probability": 0.8885 + }, + { + "start": 581.6, + "end": 583.36, + "probability": 0.9706 + }, + { + "start": 583.8, + "end": 586.2, + "probability": 0.9385 + }, + { + "start": 586.38, + "end": 589.86, + "probability": 0.9227 + }, + { + "start": 591.4, + "end": 593.5, + "probability": 0.9478 + }, + { + "start": 593.62, + "end": 594.26, + "probability": 0.8709 + }, + { + "start": 594.4, + "end": 596.96, + "probability": 0.7665 + }, + { + "start": 597.82, + "end": 598.86, + "probability": 0.6525 + }, + { + "start": 601.8, + "end": 603.6, + "probability": 0.7215 + }, + { + "start": 603.92, + "end": 604.26, + "probability": 0.8619 + }, + { + "start": 604.38, + "end": 605.04, + "probability": 0.8082 + }, + { + "start": 605.16, + "end": 607.52, + "probability": 0.9839 + }, + { + "start": 608.04, + "end": 612.08, + "probability": 0.9899 + }, + { + "start": 612.62, + "end": 613.34, + "probability": 0.9512 + }, + { + "start": 613.92, + "end": 615.88, + "probability": 0.5901 + }, + { + "start": 616.14, + "end": 618.44, + "probability": 0.7544 + }, + { + "start": 618.72, + "end": 620.78, + "probability": 0.9412 + }, + { + "start": 621.12, + "end": 621.6, + "probability": 0.8796 + }, + { + "start": 621.68, + "end": 622.58, + "probability": 0.8485 + }, + { + "start": 622.68, + "end": 625.46, + "probability": 0.9928 + }, + { + "start": 625.86, + "end": 629.3, + "probability": 0.8467 + }, + { + "start": 629.44, + "end": 630.04, + "probability": 0.7931 + }, + { + "start": 630.18, + "end": 633.14, + "probability": 0.9546 + }, + { + "start": 637.66, + "end": 638.24, + "probability": 0.41 + }, + { + "start": 638.38, + "end": 639.3, + "probability": 0.4851 + }, + { + "start": 639.38, + "end": 640.44, + "probability": 0.585 + }, + { + "start": 640.7, + "end": 642.26, + "probability": 0.9712 + }, + { + "start": 643.28, + "end": 647.16, + "probability": 0.9698 + }, + { + "start": 647.16, + "end": 649.58, + "probability": 0.9673 + }, + { + "start": 650.08, + "end": 653.54, + "probability": 0.918 + }, + { + "start": 653.86, + "end": 655.4, + "probability": 0.9315 + }, + { + "start": 655.42, + "end": 655.72, + "probability": 0.6434 + }, + { + "start": 657.64, + "end": 661.04, + "probability": 0.8909 + }, + { + "start": 661.78, + "end": 665.8, + "probability": 0.9378 + }, + { + "start": 666.32, + "end": 671.22, + "probability": 0.8438 + }, + { + "start": 671.42, + "end": 673.04, + "probability": 0.6134 + }, + { + "start": 673.32, + "end": 674.42, + "probability": 0.8537 + }, + { + "start": 674.9, + "end": 676.73, + "probability": 0.9712 + }, + { + "start": 677.34, + "end": 678.08, + "probability": 0.7107 + }, + { + "start": 678.58, + "end": 679.5, + "probability": 0.2561 + }, + { + "start": 679.62, + "end": 681.78, + "probability": 0.8687 + }, + { + "start": 682.68, + "end": 684.44, + "probability": 0.896 + }, + { + "start": 684.8, + "end": 688.22, + "probability": 0.6411 + }, + { + "start": 688.68, + "end": 690.34, + "probability": 0.5601 + }, + { + "start": 690.98, + "end": 691.28, + "probability": 0.2574 + }, + { + "start": 691.98, + "end": 692.76, + "probability": 0.4239 + }, + { + "start": 692.8, + "end": 697.04, + "probability": 0.8585 + }, + { + "start": 697.52, + "end": 698.5, + "probability": 0.8073 + }, + { + "start": 699.22, + "end": 700.28, + "probability": 0.9911 + }, + { + "start": 701.3, + "end": 702.36, + "probability": 0.9448 + }, + { + "start": 702.46, + "end": 704.32, + "probability": 0.9967 + }, + { + "start": 704.7, + "end": 709.9, + "probability": 0.9756 + }, + { + "start": 710.38, + "end": 711.12, + "probability": 0.9011 + }, + { + "start": 711.28, + "end": 712.8, + "probability": 0.8912 + }, + { + "start": 712.96, + "end": 713.88, + "probability": 0.9045 + }, + { + "start": 713.92, + "end": 715.34, + "probability": 0.9818 + }, + { + "start": 718.35, + "end": 718.84, + "probability": 0.7441 + }, + { + "start": 718.84, + "end": 718.84, + "probability": 0.0651 + }, + { + "start": 718.84, + "end": 720.04, + "probability": 0.8088 + }, + { + "start": 720.8, + "end": 722.82, + "probability": 0.5803 + }, + { + "start": 723.0, + "end": 725.16, + "probability": 0.9954 + }, + { + "start": 725.24, + "end": 726.72, + "probability": 0.9636 + }, + { + "start": 726.94, + "end": 730.36, + "probability": 0.727 + }, + { + "start": 731.18, + "end": 731.86, + "probability": 0.3195 + }, + { + "start": 732.34, + "end": 734.23, + "probability": 0.8174 + }, + { + "start": 735.04, + "end": 736.5, + "probability": 0.9215 + }, + { + "start": 736.96, + "end": 738.82, + "probability": 0.9415 + }, + { + "start": 739.02, + "end": 740.12, + "probability": 0.9874 + }, + { + "start": 740.48, + "end": 742.44, + "probability": 0.7039 + }, + { + "start": 742.46, + "end": 744.14, + "probability": 0.8323 + }, + { + "start": 744.62, + "end": 745.68, + "probability": 0.8664 + }, + { + "start": 746.04, + "end": 748.32, + "probability": 0.6592 + }, + { + "start": 748.96, + "end": 749.68, + "probability": 0.4828 + }, + { + "start": 749.72, + "end": 750.34, + "probability": 0.7804 + }, + { + "start": 750.4, + "end": 751.48, + "probability": 0.9035 + }, + { + "start": 751.64, + "end": 754.4, + "probability": 0.8271 + }, + { + "start": 754.56, + "end": 756.7, + "probability": 0.8527 + }, + { + "start": 757.26, + "end": 758.58, + "probability": 0.74 + }, + { + "start": 758.72, + "end": 760.64, + "probability": 0.8994 + }, + { + "start": 760.86, + "end": 761.76, + "probability": 0.887 + }, + { + "start": 761.94, + "end": 764.74, + "probability": 0.9938 + }, + { + "start": 765.34, + "end": 767.68, + "probability": 0.985 + }, + { + "start": 768.06, + "end": 770.54, + "probability": 0.9175 + }, + { + "start": 771.14, + "end": 772.32, + "probability": 0.9021 + }, + { + "start": 773.18, + "end": 773.93, + "probability": 0.8511 + }, + { + "start": 774.22, + "end": 775.24, + "probability": 0.7678 + }, + { + "start": 775.54, + "end": 776.72, + "probability": 0.848 + }, + { + "start": 776.86, + "end": 779.08, + "probability": 0.8878 + }, + { + "start": 779.44, + "end": 780.36, + "probability": 0.861 + }, + { + "start": 780.42, + "end": 781.74, + "probability": 0.7394 + }, + { + "start": 781.98, + "end": 784.82, + "probability": 0.8986 + }, + { + "start": 785.5, + "end": 788.26, + "probability": 0.8864 + }, + { + "start": 788.32, + "end": 789.09, + "probability": 0.7666 + }, + { + "start": 789.58, + "end": 791.0, + "probability": 0.5788 + }, + { + "start": 791.52, + "end": 792.32, + "probability": 0.7941 + }, + { + "start": 792.36, + "end": 792.88, + "probability": 0.8901 + }, + { + "start": 793.02, + "end": 795.8, + "probability": 0.9514 + }, + { + "start": 796.54, + "end": 798.26, + "probability": 0.9419 + }, + { + "start": 798.32, + "end": 800.66, + "probability": 0.8747 + }, + { + "start": 801.0, + "end": 801.72, + "probability": 0.9509 + }, + { + "start": 802.3, + "end": 803.78, + "probability": 0.8515 + }, + { + "start": 804.04, + "end": 804.51, + "probability": 0.8551 + }, + { + "start": 805.62, + "end": 807.14, + "probability": 0.9907 + }, + { + "start": 807.44, + "end": 810.66, + "probability": 0.9385 + }, + { + "start": 810.92, + "end": 811.5, + "probability": 0.6864 + }, + { + "start": 812.08, + "end": 813.38, + "probability": 0.8275 + }, + { + "start": 813.6, + "end": 814.44, + "probability": 0.618 + }, + { + "start": 815.2, + "end": 815.34, + "probability": 0.4897 + }, + { + "start": 815.4, + "end": 816.06, + "probability": 0.7743 + }, + { + "start": 816.3, + "end": 816.89, + "probability": 0.9119 + }, + { + "start": 817.24, + "end": 819.22, + "probability": 0.8803 + }, + { + "start": 819.28, + "end": 819.9, + "probability": 0.8767 + }, + { + "start": 820.68, + "end": 821.92, + "probability": 0.7699 + }, + { + "start": 822.08, + "end": 825.49, + "probability": 0.7398 + }, + { + "start": 825.92, + "end": 826.62, + "probability": 0.7668 + }, + { + "start": 827.8, + "end": 828.7, + "probability": 0.2995 + }, + { + "start": 830.88, + "end": 832.14, + "probability": 0.8712 + }, + { + "start": 832.2, + "end": 833.08, + "probability": 0.3938 + }, + { + "start": 833.3, + "end": 835.58, + "probability": 0.4825 + }, + { + "start": 836.24, + "end": 837.9, + "probability": 0.7929 + }, + { + "start": 838.24, + "end": 839.02, + "probability": 0.9798 + }, + { + "start": 839.14, + "end": 840.26, + "probability": 0.6033 + }, + { + "start": 840.34, + "end": 841.08, + "probability": 0.9195 + }, + { + "start": 841.12, + "end": 841.72, + "probability": 0.9033 + }, + { + "start": 841.82, + "end": 842.4, + "probability": 0.9199 + }, + { + "start": 842.5, + "end": 843.46, + "probability": 0.9663 + }, + { + "start": 845.56, + "end": 846.52, + "probability": 0.9443 + }, + { + "start": 847.22, + "end": 850.68, + "probability": 0.7669 + }, + { + "start": 851.46, + "end": 851.98, + "probability": 0.8354 + }, + { + "start": 852.22, + "end": 854.08, + "probability": 0.6527 + }, + { + "start": 854.12, + "end": 857.84, + "probability": 0.9761 + }, + { + "start": 858.18, + "end": 858.86, + "probability": 0.7881 + }, + { + "start": 858.96, + "end": 860.66, + "probability": 0.7542 + }, + { + "start": 860.8, + "end": 861.52, + "probability": 0.0925 + }, + { + "start": 861.7, + "end": 867.08, + "probability": 0.7124 + }, + { + "start": 867.18, + "end": 867.86, + "probability": 0.3925 + }, + { + "start": 868.02, + "end": 869.04, + "probability": 0.6496 + }, + { + "start": 869.9, + "end": 873.22, + "probability": 0.0241 + }, + { + "start": 874.68, + "end": 874.88, + "probability": 0.1686 + }, + { + "start": 876.68, + "end": 877.42, + "probability": 0.1629 + }, + { + "start": 877.42, + "end": 877.52, + "probability": 0.297 + }, + { + "start": 877.52, + "end": 877.52, + "probability": 0.1709 + }, + { + "start": 877.52, + "end": 877.52, + "probability": 0.1911 + }, + { + "start": 877.52, + "end": 878.18, + "probability": 0.1728 + }, + { + "start": 878.2, + "end": 879.16, + "probability": 0.4731 + }, + { + "start": 879.22, + "end": 880.44, + "probability": 0.7613 + }, + { + "start": 880.62, + "end": 881.2, + "probability": 0.6569 + }, + { + "start": 881.44, + "end": 883.42, + "probability": 0.9453 + }, + { + "start": 884.72, + "end": 887.12, + "probability": 0.5123 + }, + { + "start": 887.34, + "end": 887.9, + "probability": 0.4142 + }, + { + "start": 888.06, + "end": 890.2, + "probability": 0.6793 + }, + { + "start": 890.36, + "end": 895.48, + "probability": 0.8359 + }, + { + "start": 895.62, + "end": 896.42, + "probability": 0.8809 + }, + { + "start": 896.96, + "end": 900.02, + "probability": 0.8442 + }, + { + "start": 900.86, + "end": 903.12, + "probability": 0.7686 + }, + { + "start": 904.1, + "end": 905.5, + "probability": 0.8177 + }, + { + "start": 905.98, + "end": 907.76, + "probability": 0.6679 + }, + { + "start": 907.8, + "end": 908.48, + "probability": 0.7136 + }, + { + "start": 908.98, + "end": 911.55, + "probability": 0.801 + }, + { + "start": 913.74, + "end": 914.8, + "probability": 0.0554 + }, + { + "start": 915.44, + "end": 916.5, + "probability": 0.7151 + }, + { + "start": 916.9, + "end": 920.22, + "probability": 0.9736 + }, + { + "start": 920.6, + "end": 922.09, + "probability": 0.9405 + }, + { + "start": 922.18, + "end": 923.58, + "probability": 0.724 + }, + { + "start": 923.94, + "end": 924.62, + "probability": 0.7338 + }, + { + "start": 925.18, + "end": 929.16, + "probability": 0.9571 + }, + { + "start": 930.02, + "end": 932.08, + "probability": 0.7671 + }, + { + "start": 932.08, + "end": 932.6, + "probability": 0.5404 + }, + { + "start": 932.66, + "end": 933.96, + "probability": 0.9624 + }, + { + "start": 934.32, + "end": 935.64, + "probability": 0.9763 + }, + { + "start": 935.94, + "end": 938.24, + "probability": 0.8418 + }, + { + "start": 938.26, + "end": 940.84, + "probability": 0.7819 + }, + { + "start": 941.34, + "end": 942.06, + "probability": 0.9458 + }, + { + "start": 942.84, + "end": 945.38, + "probability": 0.3073 + }, + { + "start": 945.92, + "end": 950.26, + "probability": 0.9614 + }, + { + "start": 950.3, + "end": 950.96, + "probability": 0.8484 + }, + { + "start": 951.12, + "end": 953.8, + "probability": 0.772 + }, + { + "start": 954.32, + "end": 956.68, + "probability": 0.9828 + }, + { + "start": 957.34, + "end": 959.02, + "probability": 0.795 + }, + { + "start": 959.76, + "end": 961.64, + "probability": 0.7952 + }, + { + "start": 976.8, + "end": 983.32, + "probability": 0.9805 + }, + { + "start": 983.92, + "end": 986.56, + "probability": 0.4923 + }, + { + "start": 986.58, + "end": 987.84, + "probability": 0.2696 + }, + { + "start": 988.58, + "end": 990.04, + "probability": 0.7612 + }, + { + "start": 990.04, + "end": 993.24, + "probability": 0.8513 + }, + { + "start": 993.52, + "end": 994.8, + "probability": 0.6739 + }, + { + "start": 996.91, + "end": 1005.3, + "probability": 0.9988 + }, + { + "start": 1006.0, + "end": 1007.34, + "probability": 0.8372 + }, + { + "start": 1007.92, + "end": 1009.3, + "probability": 0.9167 + }, + { + "start": 1009.96, + "end": 1012.7, + "probability": 0.9538 + }, + { + "start": 1014.08, + "end": 1014.96, + "probability": 0.8835 + }, + { + "start": 1015.4, + "end": 1021.36, + "probability": 0.9829 + }, + { + "start": 1022.38, + "end": 1023.37, + "probability": 0.9585 + }, + { + "start": 1023.72, + "end": 1026.28, + "probability": 0.7559 + }, + { + "start": 1027.14, + "end": 1029.74, + "probability": 0.9971 + }, + { + "start": 1031.36, + "end": 1033.76, + "probability": 0.9817 + }, + { + "start": 1034.96, + "end": 1038.4, + "probability": 0.8169 + }, + { + "start": 1038.52, + "end": 1039.88, + "probability": 0.9579 + }, + { + "start": 1040.18, + "end": 1041.31, + "probability": 0.937 + }, + { + "start": 1042.06, + "end": 1042.94, + "probability": 0.8628 + }, + { + "start": 1043.02, + "end": 1046.82, + "probability": 0.8719 + }, + { + "start": 1047.36, + "end": 1049.58, + "probability": 0.9775 + }, + { + "start": 1050.12, + "end": 1052.08, + "probability": 0.8945 + }, + { + "start": 1053.2, + "end": 1054.84, + "probability": 0.9946 + }, + { + "start": 1055.8, + "end": 1063.04, + "probability": 0.9361 + }, + { + "start": 1063.82, + "end": 1065.46, + "probability": 0.8877 + }, + { + "start": 1066.16, + "end": 1069.88, + "probability": 0.9774 + }, + { + "start": 1070.64, + "end": 1073.28, + "probability": 0.967 + }, + { + "start": 1073.86, + "end": 1075.22, + "probability": 0.8307 + }, + { + "start": 1075.44, + "end": 1080.0, + "probability": 0.9912 + }, + { + "start": 1080.2, + "end": 1081.68, + "probability": 0.8121 + }, + { + "start": 1082.22, + "end": 1084.46, + "probability": 0.5967 + }, + { + "start": 1084.98, + "end": 1087.88, + "probability": 0.6866 + }, + { + "start": 1088.36, + "end": 1089.4, + "probability": 0.734 + }, + { + "start": 1090.1, + "end": 1092.36, + "probability": 0.8654 + }, + { + "start": 1092.76, + "end": 1096.56, + "probability": 0.7942 + }, + { + "start": 1096.6, + "end": 1097.08, + "probability": 0.9606 + }, + { + "start": 1097.18, + "end": 1099.38, + "probability": 0.8723 + }, + { + "start": 1100.02, + "end": 1101.15, + "probability": 0.963 + }, + { + "start": 1101.8, + "end": 1106.74, + "probability": 0.9907 + }, + { + "start": 1107.3, + "end": 1108.62, + "probability": 0.5346 + }, + { + "start": 1108.78, + "end": 1110.05, + "probability": 0.998 + }, + { + "start": 1110.36, + "end": 1112.42, + "probability": 0.9904 + }, + { + "start": 1113.2, + "end": 1116.2, + "probability": 0.9778 + }, + { + "start": 1116.2, + "end": 1119.66, + "probability": 0.8746 + }, + { + "start": 1120.32, + "end": 1125.66, + "probability": 0.9465 + }, + { + "start": 1126.88, + "end": 1128.61, + "probability": 0.9873 + }, + { + "start": 1129.38, + "end": 1130.74, + "probability": 0.9224 + }, + { + "start": 1130.78, + "end": 1133.18, + "probability": 0.9845 + }, + { + "start": 1133.68, + "end": 1135.88, + "probability": 0.9925 + }, + { + "start": 1135.96, + "end": 1139.6, + "probability": 0.996 + }, + { + "start": 1140.58, + "end": 1141.98, + "probability": 0.9832 + }, + { + "start": 1142.3, + "end": 1146.52, + "probability": 0.9087 + }, + { + "start": 1147.24, + "end": 1149.96, + "probability": 0.9778 + }, + { + "start": 1150.38, + "end": 1153.62, + "probability": 0.9895 + }, + { + "start": 1153.76, + "end": 1155.02, + "probability": 0.8921 + }, + { + "start": 1155.22, + "end": 1159.68, + "probability": 0.9806 + }, + { + "start": 1160.5, + "end": 1161.86, + "probability": 0.8994 + }, + { + "start": 1162.0, + "end": 1162.56, + "probability": 0.778 + }, + { + "start": 1162.6, + "end": 1164.14, + "probability": 0.9727 + }, + { + "start": 1164.16, + "end": 1166.66, + "probability": 0.9939 + }, + { + "start": 1166.78, + "end": 1167.22, + "probability": 0.2987 + }, + { + "start": 1167.82, + "end": 1169.42, + "probability": 0.64 + }, + { + "start": 1170.26, + "end": 1171.33, + "probability": 0.6565 + }, + { + "start": 1172.5, + "end": 1175.82, + "probability": 0.9912 + }, + { + "start": 1175.96, + "end": 1178.8, + "probability": 0.9944 + }, + { + "start": 1178.8, + "end": 1181.22, + "probability": 0.9238 + }, + { + "start": 1181.64, + "end": 1183.22, + "probability": 0.8698 + }, + { + "start": 1183.88, + "end": 1185.5, + "probability": 0.6758 + }, + { + "start": 1186.56, + "end": 1191.66, + "probability": 0.9133 + }, + { + "start": 1191.66, + "end": 1195.54, + "probability": 0.9644 + }, + { + "start": 1196.36, + "end": 1197.18, + "probability": 0.7144 + }, + { + "start": 1198.54, + "end": 1200.14, + "probability": 0.9912 + }, + { + "start": 1200.74, + "end": 1202.84, + "probability": 0.9805 + }, + { + "start": 1203.02, + "end": 1204.44, + "probability": 0.9548 + }, + { + "start": 1205.08, + "end": 1207.36, + "probability": 0.9851 + }, + { + "start": 1208.28, + "end": 1211.24, + "probability": 0.9584 + }, + { + "start": 1211.58, + "end": 1214.26, + "probability": 0.9872 + }, + { + "start": 1214.34, + "end": 1216.06, + "probability": 0.9697 + }, + { + "start": 1216.62, + "end": 1217.81, + "probability": 0.9741 + }, + { + "start": 1218.36, + "end": 1218.76, + "probability": 0.7018 + }, + { + "start": 1218.98, + "end": 1219.08, + "probability": 0.1375 + }, + { + "start": 1219.1, + "end": 1222.26, + "probability": 0.9923 + }, + { + "start": 1223.34, + "end": 1224.96, + "probability": 0.9902 + }, + { + "start": 1225.1, + "end": 1225.94, + "probability": 0.9218 + }, + { + "start": 1226.96, + "end": 1227.78, + "probability": 0.269 + }, + { + "start": 1228.12, + "end": 1230.98, + "probability": 0.8015 + }, + { + "start": 1231.34, + "end": 1235.08, + "probability": 0.9873 + }, + { + "start": 1235.94, + "end": 1237.08, + "probability": 0.9587 + }, + { + "start": 1237.94, + "end": 1242.8, + "probability": 0.9888 + }, + { + "start": 1243.02, + "end": 1244.4, + "probability": 0.9592 + }, + { + "start": 1245.3, + "end": 1248.04, + "probability": 0.9933 + }, + { + "start": 1249.02, + "end": 1250.62, + "probability": 0.8429 + }, + { + "start": 1250.88, + "end": 1253.02, + "probability": 0.9852 + }, + { + "start": 1253.88, + "end": 1255.98, + "probability": 0.9329 + }, + { + "start": 1256.2, + "end": 1257.9, + "probability": 0.9893 + }, + { + "start": 1258.28, + "end": 1260.66, + "probability": 0.9882 + }, + { + "start": 1261.18, + "end": 1263.2, + "probability": 0.9662 + }, + { + "start": 1263.38, + "end": 1264.2, + "probability": 0.6304 + }, + { + "start": 1264.3, + "end": 1266.0, + "probability": 0.9614 + }, + { + "start": 1266.48, + "end": 1269.02, + "probability": 0.8964 + }, + { + "start": 1269.18, + "end": 1270.0, + "probability": 0.8413 + }, + { + "start": 1270.06, + "end": 1273.42, + "probability": 0.7459 + }, + { + "start": 1273.46, + "end": 1276.6, + "probability": 0.9688 + }, + { + "start": 1276.7, + "end": 1280.83, + "probability": 0.8485 + }, + { + "start": 1281.34, + "end": 1282.76, + "probability": 0.9734 + }, + { + "start": 1283.38, + "end": 1283.94, + "probability": 0.5065 + }, + { + "start": 1284.28, + "end": 1287.44, + "probability": 0.0718 + }, + { + "start": 1287.44, + "end": 1289.66, + "probability": 0.0972 + }, + { + "start": 1289.66, + "end": 1290.92, + "probability": 0.7234 + }, + { + "start": 1291.2, + "end": 1291.9, + "probability": 0.8682 + }, + { + "start": 1293.48, + "end": 1294.1, + "probability": 0.4418 + }, + { + "start": 1294.88, + "end": 1295.1, + "probability": 0.2642 + }, + { + "start": 1295.26, + "end": 1296.62, + "probability": 0.7148 + }, + { + "start": 1296.8, + "end": 1299.9, + "probability": 0.9921 + }, + { + "start": 1300.44, + "end": 1300.46, + "probability": 0.3885 + }, + { + "start": 1300.46, + "end": 1301.32, + "probability": 0.906 + }, + { + "start": 1301.94, + "end": 1302.24, + "probability": 0.4408 + }, + { + "start": 1302.82, + "end": 1306.36, + "probability": 0.4628 + }, + { + "start": 1306.44, + "end": 1308.1, + "probability": 0.6354 + }, + { + "start": 1308.32, + "end": 1309.78, + "probability": 0.6697 + }, + { + "start": 1309.94, + "end": 1311.94, + "probability": 0.8647 + }, + { + "start": 1311.96, + "end": 1316.92, + "probability": 0.6269 + }, + { + "start": 1317.14, + "end": 1317.8, + "probability": 0.4859 + }, + { + "start": 1318.82, + "end": 1320.12, + "probability": 0.8851 + }, + { + "start": 1320.36, + "end": 1321.74, + "probability": 0.937 + }, + { + "start": 1321.88, + "end": 1322.4, + "probability": 0.8475 + }, + { + "start": 1322.46, + "end": 1324.08, + "probability": 0.91 + }, + { + "start": 1324.3, + "end": 1327.42, + "probability": 0.2517 + }, + { + "start": 1328.1, + "end": 1331.44, + "probability": 0.9962 + }, + { + "start": 1331.44, + "end": 1333.94, + "probability": 0.9897 + }, + { + "start": 1334.14, + "end": 1334.88, + "probability": 0.6387 + }, + { + "start": 1335.38, + "end": 1336.28, + "probability": 0.9055 + }, + { + "start": 1336.78, + "end": 1337.8, + "probability": 0.7512 + }, + { + "start": 1337.92, + "end": 1341.34, + "probability": 0.9966 + }, + { + "start": 1341.34, + "end": 1342.58, + "probability": 0.9393 + }, + { + "start": 1342.68, + "end": 1343.0, + "probability": 0.2162 + }, + { + "start": 1343.06, + "end": 1345.48, + "probability": 0.7958 + }, + { + "start": 1345.68, + "end": 1348.96, + "probability": 0.9966 + }, + { + "start": 1349.34, + "end": 1353.48, + "probability": 0.9337 + }, + { + "start": 1354.28, + "end": 1356.58, + "probability": 0.9993 + }, + { + "start": 1357.22, + "end": 1360.78, + "probability": 0.9814 + }, + { + "start": 1360.82, + "end": 1362.79, + "probability": 0.928 + }, + { + "start": 1363.4, + "end": 1364.32, + "probability": 0.8925 + }, + { + "start": 1364.44, + "end": 1365.08, + "probability": 0.8739 + }, + { + "start": 1365.42, + "end": 1367.16, + "probability": 0.9896 + }, + { + "start": 1367.24, + "end": 1367.7, + "probability": 0.7593 + }, + { + "start": 1368.08, + "end": 1369.44, + "probability": 0.0661 + }, + { + "start": 1369.44, + "end": 1370.7, + "probability": 0.3089 + }, + { + "start": 1370.74, + "end": 1372.6, + "probability": 0.6217 + }, + { + "start": 1372.64, + "end": 1373.9, + "probability": 0.9313 + }, + { + "start": 1374.4, + "end": 1376.44, + "probability": 0.9481 + }, + { + "start": 1376.56, + "end": 1377.34, + "probability": 0.6812 + }, + { + "start": 1377.74, + "end": 1379.56, + "probability": 0.978 + }, + { + "start": 1380.22, + "end": 1381.34, + "probability": 0.8231 + }, + { + "start": 1382.12, + "end": 1383.12, + "probability": 0.8811 + }, + { + "start": 1383.92, + "end": 1386.78, + "probability": 0.5052 + }, + { + "start": 1387.38, + "end": 1391.26, + "probability": 0.9775 + }, + { + "start": 1391.42, + "end": 1392.64, + "probability": 0.9457 + }, + { + "start": 1392.92, + "end": 1395.36, + "probability": 0.9634 + }, + { + "start": 1395.98, + "end": 1397.3, + "probability": 0.9807 + }, + { + "start": 1397.5, + "end": 1399.32, + "probability": 0.761 + }, + { + "start": 1399.44, + "end": 1400.04, + "probability": 0.8606 + }, + { + "start": 1400.58, + "end": 1404.12, + "probability": 0.8173 + }, + { + "start": 1404.2, + "end": 1405.58, + "probability": 0.8809 + }, + { + "start": 1405.9, + "end": 1406.8, + "probability": 0.9813 + }, + { + "start": 1406.92, + "end": 1408.44, + "probability": 0.9595 + }, + { + "start": 1408.9, + "end": 1410.96, + "probability": 0.8052 + }, + { + "start": 1411.66, + "end": 1416.54, + "probability": 0.9821 + }, + { + "start": 1416.74, + "end": 1417.23, + "probability": 0.5232 + }, + { + "start": 1417.32, + "end": 1417.74, + "probability": 0.6815 + }, + { + "start": 1417.96, + "end": 1422.08, + "probability": 0.7865 + }, + { + "start": 1422.12, + "end": 1423.36, + "probability": 0.9493 + }, + { + "start": 1423.54, + "end": 1425.46, + "probability": 0.9664 + }, + { + "start": 1426.22, + "end": 1428.2, + "probability": 0.9528 + }, + { + "start": 1428.5, + "end": 1433.2, + "probability": 0.9854 + }, + { + "start": 1433.28, + "end": 1434.9, + "probability": 0.9971 + }, + { + "start": 1435.06, + "end": 1435.9, + "probability": 0.5281 + }, + { + "start": 1436.14, + "end": 1438.84, + "probability": 0.9119 + }, + { + "start": 1439.06, + "end": 1440.74, + "probability": 0.5011 + }, + { + "start": 1440.94, + "end": 1442.2, + "probability": 0.6503 + }, + { + "start": 1442.88, + "end": 1443.66, + "probability": 0.2868 + }, + { + "start": 1443.66, + "end": 1444.12, + "probability": 0.075 + }, + { + "start": 1444.16, + "end": 1444.92, + "probability": 0.2283 + }, + { + "start": 1445.28, + "end": 1446.26, + "probability": 0.8022 + }, + { + "start": 1446.28, + "end": 1447.12, + "probability": 0.2993 + }, + { + "start": 1447.2, + "end": 1448.38, + "probability": 0.8853 + }, + { + "start": 1448.58, + "end": 1450.1, + "probability": 0.7286 + }, + { + "start": 1450.18, + "end": 1450.92, + "probability": 0.389 + }, + { + "start": 1451.2, + "end": 1452.38, + "probability": 0.9956 + }, + { + "start": 1454.58, + "end": 1455.54, + "probability": 0.7635 + }, + { + "start": 1455.62, + "end": 1456.7, + "probability": 0.7159 + }, + { + "start": 1457.04, + "end": 1457.98, + "probability": 0.7607 + }, + { + "start": 1458.1, + "end": 1458.72, + "probability": 0.7174 + }, + { + "start": 1458.9, + "end": 1459.08, + "probability": 0.6439 + }, + { + "start": 1459.14, + "end": 1459.56, + "probability": 0.7531 + }, + { + "start": 1459.68, + "end": 1461.12, + "probability": 0.9053 + }, + { + "start": 1461.16, + "end": 1462.06, + "probability": 0.6541 + }, + { + "start": 1462.2, + "end": 1463.16, + "probability": 0.6623 + }, + { + "start": 1463.32, + "end": 1464.1, + "probability": 0.7366 + }, + { + "start": 1464.86, + "end": 1467.64, + "probability": 0.7993 + }, + { + "start": 1468.02, + "end": 1469.02, + "probability": 0.7406 + }, + { + "start": 1469.18, + "end": 1473.84, + "probability": 0.8966 + }, + { + "start": 1473.96, + "end": 1475.72, + "probability": 0.9309 + }, + { + "start": 1475.8, + "end": 1477.24, + "probability": 0.621 + }, + { + "start": 1477.28, + "end": 1480.38, + "probability": 0.9546 + }, + { + "start": 1480.64, + "end": 1482.5, + "probability": 0.8789 + }, + { + "start": 1483.26, + "end": 1484.24, + "probability": 0.1011 + }, + { + "start": 1484.84, + "end": 1485.62, + "probability": 0.5216 + }, + { + "start": 1485.8, + "end": 1488.5, + "probability": 0.6978 + }, + { + "start": 1489.04, + "end": 1491.58, + "probability": 0.9622 + }, + { + "start": 1491.8, + "end": 1492.54, + "probability": 0.681 + }, + { + "start": 1492.66, + "end": 1493.44, + "probability": 0.9155 + }, + { + "start": 1493.58, + "end": 1494.58, + "probability": 0.8062 + }, + { + "start": 1494.96, + "end": 1496.98, + "probability": 0.9708 + }, + { + "start": 1497.13, + "end": 1499.88, + "probability": 0.6044 + }, + { + "start": 1499.92, + "end": 1502.62, + "probability": 0.3869 + }, + { + "start": 1503.02, + "end": 1504.92, + "probability": 0.9154 + }, + { + "start": 1504.96, + "end": 1508.7, + "probability": 0.9634 + }, + { + "start": 1508.84, + "end": 1511.44, + "probability": 0.8447 + }, + { + "start": 1511.44, + "end": 1514.75, + "probability": 0.6669 + }, + { + "start": 1515.08, + "end": 1516.6, + "probability": 0.6095 + }, + { + "start": 1516.64, + "end": 1518.8, + "probability": 0.6047 + }, + { + "start": 1518.9, + "end": 1520.08, + "probability": 0.4038 + }, + { + "start": 1520.16, + "end": 1523.58, + "probability": 0.8493 + }, + { + "start": 1524.16, + "end": 1525.24, + "probability": 0.9715 + }, + { + "start": 1525.48, + "end": 1525.72, + "probability": 0.4636 + }, + { + "start": 1525.88, + "end": 1526.06, + "probability": 0.7189 + }, + { + "start": 1526.12, + "end": 1526.92, + "probability": 0.5643 + }, + { + "start": 1527.16, + "end": 1527.78, + "probability": 0.9631 + }, + { + "start": 1527.86, + "end": 1528.86, + "probability": 0.8871 + }, + { + "start": 1528.92, + "end": 1529.78, + "probability": 0.9907 + }, + { + "start": 1529.9, + "end": 1530.52, + "probability": 0.7425 + }, + { + "start": 1530.52, + "end": 1531.1, + "probability": 0.872 + }, + { + "start": 1532.8, + "end": 1536.0, + "probability": 0.9041 + }, + { + "start": 1536.14, + "end": 1536.88, + "probability": 0.5335 + }, + { + "start": 1537.0, + "end": 1538.32, + "probability": 0.7124 + }, + { + "start": 1539.38, + "end": 1540.42, + "probability": 0.6915 + }, + { + "start": 1540.52, + "end": 1541.48, + "probability": 0.9324 + }, + { + "start": 1541.72, + "end": 1542.7, + "probability": 0.7721 + }, + { + "start": 1542.96, + "end": 1546.94, + "probability": 0.9937 + }, + { + "start": 1547.06, + "end": 1548.24, + "probability": 0.8248 + }, + { + "start": 1548.76, + "end": 1550.88, + "probability": 0.7024 + }, + { + "start": 1551.26, + "end": 1554.86, + "probability": 0.9409 + }, + { + "start": 1555.42, + "end": 1557.76, + "probability": 0.9542 + }, + { + "start": 1557.84, + "end": 1559.7, + "probability": 0.3606 + }, + { + "start": 1560.76, + "end": 1562.14, + "probability": 0.9 + }, + { + "start": 1562.98, + "end": 1567.16, + "probability": 0.9969 + }, + { + "start": 1567.62, + "end": 1568.53, + "probability": 0.5015 + }, + { + "start": 1569.7, + "end": 1572.26, + "probability": 0.9675 + }, + { + "start": 1572.9, + "end": 1577.38, + "probability": 0.9294 + }, + { + "start": 1578.4, + "end": 1581.26, + "probability": 0.8981 + }, + { + "start": 1582.02, + "end": 1582.82, + "probability": 0.8014 + }, + { + "start": 1583.06, + "end": 1584.2, + "probability": 0.9956 + }, + { + "start": 1584.3, + "end": 1585.7, + "probability": 0.935 + }, + { + "start": 1585.86, + "end": 1587.22, + "probability": 0.947 + }, + { + "start": 1587.8, + "end": 1589.02, + "probability": 0.9602 + }, + { + "start": 1590.32, + "end": 1592.54, + "probability": 0.9822 + }, + { + "start": 1592.7, + "end": 1594.14, + "probability": 0.9865 + }, + { + "start": 1594.34, + "end": 1600.02, + "probability": 0.1316 + }, + { + "start": 1600.5, + "end": 1600.7, + "probability": 0.1288 + }, + { + "start": 1600.7, + "end": 1602.42, + "probability": 0.7161 + }, + { + "start": 1602.86, + "end": 1603.2, + "probability": 0.2874 + }, + { + "start": 1603.92, + "end": 1605.05, + "probability": 0.7139 + }, + { + "start": 1605.32, + "end": 1608.09, + "probability": 0.717 + }, + { + "start": 1608.66, + "end": 1610.62, + "probability": 0.9193 + }, + { + "start": 1610.88, + "end": 1611.49, + "probability": 0.7386 + }, + { + "start": 1612.4, + "end": 1615.16, + "probability": 0.9935 + }, + { + "start": 1615.24, + "end": 1616.12, + "probability": 0.4617 + }, + { + "start": 1616.26, + "end": 1620.62, + "probability": 0.6851 + }, + { + "start": 1620.8, + "end": 1625.02, + "probability": 0.6054 + }, + { + "start": 1625.71, + "end": 1627.95, + "probability": 0.9094 + }, + { + "start": 1628.54, + "end": 1630.2, + "probability": 0.8064 + }, + { + "start": 1631.38, + "end": 1631.7, + "probability": 0.4511 + }, + { + "start": 1632.12, + "end": 1634.44, + "probability": 0.9663 + }, + { + "start": 1634.64, + "end": 1635.24, + "probability": 0.6917 + }, + { + "start": 1635.28, + "end": 1635.4, + "probability": 0.8722 + }, + { + "start": 1635.48, + "end": 1636.14, + "probability": 0.904 + }, + { + "start": 1636.68, + "end": 1639.9, + "probability": 0.9875 + }, + { + "start": 1640.12, + "end": 1641.14, + "probability": 0.6307 + }, + { + "start": 1641.24, + "end": 1642.8, + "probability": 0.8408 + }, + { + "start": 1642.84, + "end": 1645.88, + "probability": 0.8538 + }, + { + "start": 1646.3, + "end": 1650.84, + "probability": 0.9544 + }, + { + "start": 1650.98, + "end": 1652.21, + "probability": 0.6115 + }, + { + "start": 1654.96, + "end": 1655.82, + "probability": 0.9697 + }, + { + "start": 1655.9, + "end": 1657.12, + "probability": 0.9906 + }, + { + "start": 1657.18, + "end": 1657.74, + "probability": 0.6162 + }, + { + "start": 1657.76, + "end": 1659.24, + "probability": 0.978 + }, + { + "start": 1659.34, + "end": 1660.82, + "probability": 0.9602 + }, + { + "start": 1661.12, + "end": 1662.04, + "probability": 0.9482 + }, + { + "start": 1662.16, + "end": 1663.6, + "probability": 0.9918 + }, + { + "start": 1663.66, + "end": 1665.94, + "probability": 0.8396 + }, + { + "start": 1666.14, + "end": 1668.53, + "probability": 0.0444 + }, + { + "start": 1669.26, + "end": 1670.24, + "probability": 0.7419 + }, + { + "start": 1670.56, + "end": 1671.65, + "probability": 0.1549 + }, + { + "start": 1672.12, + "end": 1673.3, + "probability": 0.2654 + }, + { + "start": 1673.38, + "end": 1674.48, + "probability": 0.4415 + }, + { + "start": 1675.27, + "end": 1680.03, + "probability": 0.9944 + }, + { + "start": 1681.02, + "end": 1682.48, + "probability": 0.8914 + }, + { + "start": 1683.52, + "end": 1685.98, + "probability": 0.9963 + }, + { + "start": 1686.3, + "end": 1687.88, + "probability": 0.9281 + }, + { + "start": 1687.96, + "end": 1690.4, + "probability": 0.9535 + }, + { + "start": 1690.6, + "end": 1692.9, + "probability": 0.8167 + }, + { + "start": 1693.12, + "end": 1694.1, + "probability": 0.6301 + }, + { + "start": 1694.28, + "end": 1694.64, + "probability": 0.9888 + }, + { + "start": 1695.16, + "end": 1696.92, + "probability": 0.9397 + }, + { + "start": 1697.36, + "end": 1698.16, + "probability": 0.6423 + }, + { + "start": 1698.24, + "end": 1699.42, + "probability": 0.8159 + }, + { + "start": 1699.48, + "end": 1702.6, + "probability": 0.9119 + }, + { + "start": 1702.74, + "end": 1704.78, + "probability": 0.7256 + }, + { + "start": 1704.9, + "end": 1707.84, + "probability": 0.929 + }, + { + "start": 1708.04, + "end": 1709.44, + "probability": 0.8765 + }, + { + "start": 1709.5, + "end": 1711.86, + "probability": 0.6657 + }, + { + "start": 1712.34, + "end": 1714.18, + "probability": 0.978 + }, + { + "start": 1714.3, + "end": 1715.7, + "probability": 0.7512 + }, + { + "start": 1715.96, + "end": 1716.96, + "probability": 0.741 + }, + { + "start": 1716.98, + "end": 1718.12, + "probability": 0.9321 + }, + { + "start": 1718.34, + "end": 1719.81, + "probability": 0.9825 + }, + { + "start": 1720.16, + "end": 1720.88, + "probability": 0.5039 + }, + { + "start": 1722.86, + "end": 1727.18, + "probability": 0.1574 + }, + { + "start": 1727.5, + "end": 1729.49, + "probability": 0.9727 + }, + { + "start": 1732.7, + "end": 1734.04, + "probability": 0.5827 + }, + { + "start": 1734.28, + "end": 1735.26, + "probability": 0.536 + }, + { + "start": 1735.42, + "end": 1738.1, + "probability": 0.749 + }, + { + "start": 1738.24, + "end": 1740.14, + "probability": 0.0648 + }, + { + "start": 1740.14, + "end": 1740.8, + "probability": 0.1342 + }, + { + "start": 1740.8, + "end": 1741.86, + "probability": 0.0278 + }, + { + "start": 1742.18, + "end": 1744.68, + "probability": 0.9932 + }, + { + "start": 1745.06, + "end": 1746.56, + "probability": 0.8604 + }, + { + "start": 1748.82, + "end": 1752.28, + "probability": 0.7055 + }, + { + "start": 1752.48, + "end": 1753.62, + "probability": 0.5713 + }, + { + "start": 1753.7, + "end": 1754.56, + "probability": 0.8361 + }, + { + "start": 1754.78, + "end": 1757.32, + "probability": 0.9878 + }, + { + "start": 1757.4, + "end": 1759.38, + "probability": 0.8737 + }, + { + "start": 1760.16, + "end": 1760.54, + "probability": 0.7924 + }, + { + "start": 1760.58, + "end": 1761.43, + "probability": 0.5311 + }, + { + "start": 1762.74, + "end": 1766.02, + "probability": 0.9913 + }, + { + "start": 1766.26, + "end": 1768.12, + "probability": 0.9888 + }, + { + "start": 1768.28, + "end": 1768.94, + "probability": 0.497 + }, + { + "start": 1769.02, + "end": 1770.66, + "probability": 0.9055 + }, + { + "start": 1771.02, + "end": 1773.92, + "probability": 0.9941 + }, + { + "start": 1774.0, + "end": 1774.54, + "probability": 0.8362 + }, + { + "start": 1774.7, + "end": 1775.18, + "probability": 0.8409 + }, + { + "start": 1775.28, + "end": 1776.19, + "probability": 0.8589 + }, + { + "start": 1776.26, + "end": 1777.22, + "probability": 0.9465 + }, + { + "start": 1777.38, + "end": 1778.04, + "probability": 0.7437 + }, + { + "start": 1778.1, + "end": 1778.82, + "probability": 0.9135 + }, + { + "start": 1779.24, + "end": 1783.66, + "probability": 0.9918 + }, + { + "start": 1784.0, + "end": 1784.32, + "probability": 0.5178 + }, + { + "start": 1784.46, + "end": 1784.67, + "probability": 0.9951 + }, + { + "start": 1784.98, + "end": 1785.44, + "probability": 0.7741 + }, + { + "start": 1786.18, + "end": 1787.82, + "probability": 0.8523 + }, + { + "start": 1787.94, + "end": 1788.72, + "probability": 0.7901 + }, + { + "start": 1789.0, + "end": 1789.52, + "probability": 0.7045 + }, + { + "start": 1789.6, + "end": 1790.58, + "probability": 0.6673 + }, + { + "start": 1790.66, + "end": 1794.38, + "probability": 0.9844 + }, + { + "start": 1794.64, + "end": 1796.38, + "probability": 0.9814 + }, + { + "start": 1796.44, + "end": 1797.54, + "probability": 0.8917 + }, + { + "start": 1798.32, + "end": 1802.42, + "probability": 0.9936 + }, + { + "start": 1802.98, + "end": 1805.16, + "probability": 0.9481 + }, + { + "start": 1805.48, + "end": 1808.46, + "probability": 0.9478 + }, + { + "start": 1808.72, + "end": 1811.14, + "probability": 0.834 + }, + { + "start": 1811.2, + "end": 1814.7, + "probability": 0.9399 + }, + { + "start": 1814.7, + "end": 1819.68, + "probability": 0.9685 + }, + { + "start": 1819.86, + "end": 1820.64, + "probability": 0.7603 + }, + { + "start": 1820.98, + "end": 1821.93, + "probability": 0.4953 + }, + { + "start": 1822.26, + "end": 1826.06, + "probability": 0.9419 + }, + { + "start": 1826.14, + "end": 1827.34, + "probability": 0.8476 + }, + { + "start": 1828.08, + "end": 1830.24, + "probability": 0.9925 + }, + { + "start": 1830.24, + "end": 1833.86, + "probability": 0.9957 + }, + { + "start": 1835.07, + "end": 1839.68, + "probability": 0.867 + }, + { + "start": 1839.96, + "end": 1841.4, + "probability": 0.5089 + }, + { + "start": 1841.4, + "end": 1841.54, + "probability": 0.1425 + }, + { + "start": 1841.54, + "end": 1841.82, + "probability": 0.1645 + }, + { + "start": 1842.42, + "end": 1843.16, + "probability": 0.8156 + }, + { + "start": 1843.36, + "end": 1844.68, + "probability": 0.8793 + }, + { + "start": 1845.12, + "end": 1849.62, + "probability": 0.9868 + }, + { + "start": 1850.02, + "end": 1852.0, + "probability": 0.9746 + }, + { + "start": 1852.32, + "end": 1854.52, + "probability": 0.9982 + }, + { + "start": 1854.72, + "end": 1857.86, + "probability": 0.9854 + }, + { + "start": 1858.08, + "end": 1859.02, + "probability": 0.8453 + }, + { + "start": 1859.42, + "end": 1859.8, + "probability": 0.7826 + }, + { + "start": 1859.94, + "end": 1860.24, + "probability": 0.8993 + }, + { + "start": 1860.3, + "end": 1860.68, + "probability": 0.7943 + }, + { + "start": 1860.84, + "end": 1862.76, + "probability": 0.9399 + }, + { + "start": 1863.26, + "end": 1865.4, + "probability": 0.8092 + }, + { + "start": 1865.54, + "end": 1868.46, + "probability": 0.7523 + }, + { + "start": 1868.72, + "end": 1869.66, + "probability": 0.8648 + }, + { + "start": 1869.76, + "end": 1871.52, + "probability": 0.1059 + }, + { + "start": 1872.6, + "end": 1873.0, + "probability": 0.0087 + }, + { + "start": 1873.02, + "end": 1873.32, + "probability": 0.1552 + }, + { + "start": 1873.32, + "end": 1873.32, + "probability": 0.0926 + }, + { + "start": 1873.32, + "end": 1873.32, + "probability": 0.0281 + }, + { + "start": 1873.32, + "end": 1875.22, + "probability": 0.7505 + }, + { + "start": 1875.24, + "end": 1876.0, + "probability": 0.7212 + }, + { + "start": 1876.2, + "end": 1879.06, + "probability": 0.9521 + }, + { + "start": 1879.86, + "end": 1880.06, + "probability": 0.4653 + }, + { + "start": 1880.2, + "end": 1884.11, + "probability": 0.9925 + }, + { + "start": 1884.34, + "end": 1885.78, + "probability": 0.998 + }, + { + "start": 1886.48, + "end": 1889.7, + "probability": 0.9797 + }, + { + "start": 1889.8, + "end": 1890.86, + "probability": 0.9653 + }, + { + "start": 1891.4, + "end": 1894.56, + "probability": 0.9412 + }, + { + "start": 1894.94, + "end": 1896.5, + "probability": 0.9829 + }, + { + "start": 1896.62, + "end": 1900.32, + "probability": 0.9976 + }, + { + "start": 1900.54, + "end": 1904.12, + "probability": 0.9573 + }, + { + "start": 1904.26, + "end": 1906.32, + "probability": 0.6567 + }, + { + "start": 1906.44, + "end": 1907.48, + "probability": 0.95 + }, + { + "start": 1907.7, + "end": 1909.1, + "probability": 0.9663 + }, + { + "start": 1909.5, + "end": 1913.06, + "probability": 0.9512 + }, + { + "start": 1913.06, + "end": 1916.0, + "probability": 0.9948 + }, + { + "start": 1916.28, + "end": 1919.28, + "probability": 0.8214 + }, + { + "start": 1919.32, + "end": 1920.92, + "probability": 0.401 + }, + { + "start": 1921.78, + "end": 1923.3, + "probability": 0.9112 + }, + { + "start": 1923.88, + "end": 1927.44, + "probability": 0.9984 + }, + { + "start": 1927.52, + "end": 1928.64, + "probability": 0.6054 + }, + { + "start": 1928.82, + "end": 1929.1, + "probability": 0.4814 + }, + { + "start": 1929.38, + "end": 1931.0, + "probability": 0.5 + }, + { + "start": 1932.16, + "end": 1933.18, + "probability": 0.2439 + }, + { + "start": 1933.18, + "end": 1935.86, + "probability": 0.6254 + }, + { + "start": 1936.22, + "end": 1939.32, + "probability": 0.9912 + }, + { + "start": 1941.66, + "end": 1941.66, + "probability": 0.0464 + }, + { + "start": 1941.66, + "end": 1941.66, + "probability": 0.1203 + }, + { + "start": 1941.66, + "end": 1941.66, + "probability": 0.1522 + }, + { + "start": 1941.66, + "end": 1942.04, + "probability": 0.2948 + }, + { + "start": 1942.18, + "end": 1944.49, + "probability": 0.9512 + }, + { + "start": 1944.68, + "end": 1945.68, + "probability": 0.8284 + }, + { + "start": 1946.2, + "end": 1950.54, + "probability": 0.9496 + }, + { + "start": 1951.14, + "end": 1952.44, + "probability": 0.967 + }, + { + "start": 1953.32, + "end": 1955.76, + "probability": 0.9891 + }, + { + "start": 1955.84, + "end": 1956.84, + "probability": 0.7792 + }, + { + "start": 1957.02, + "end": 1958.08, + "probability": 0.8958 + }, + { + "start": 1958.26, + "end": 1959.0, + "probability": 0.8994 + }, + { + "start": 1959.04, + "end": 1959.82, + "probability": 0.954 + }, + { + "start": 1959.88, + "end": 1960.52, + "probability": 0.8721 + }, + { + "start": 1961.14, + "end": 1962.25, + "probability": 0.9547 + }, + { + "start": 1962.78, + "end": 1963.24, + "probability": 0.7844 + }, + { + "start": 1963.38, + "end": 1964.2, + "probability": 0.9879 + }, + { + "start": 1964.28, + "end": 1967.14, + "probability": 0.9973 + }, + { + "start": 1967.14, + "end": 1969.7, + "probability": 0.9952 + }, + { + "start": 1970.24, + "end": 1971.6, + "probability": 0.7294 + }, + { + "start": 1972.3, + "end": 1975.84, + "probability": 0.9146 + }, + { + "start": 1976.02, + "end": 1977.76, + "probability": 0.9522 + }, + { + "start": 1978.14, + "end": 1980.2, + "probability": 0.988 + }, + { + "start": 1980.38, + "end": 1984.62, + "probability": 0.7576 + }, + { + "start": 1984.96, + "end": 1986.7, + "probability": 0.928 + }, + { + "start": 1987.12, + "end": 1992.54, + "probability": 0.9904 + }, + { + "start": 1992.6, + "end": 1993.96, + "probability": 0.7733 + }, + { + "start": 1994.48, + "end": 1997.28, + "probability": 0.9351 + }, + { + "start": 1997.28, + "end": 1999.44, + "probability": 0.9995 + }, + { + "start": 1999.58, + "end": 2001.92, + "probability": 0.998 + }, + { + "start": 2002.42, + "end": 2004.0, + "probability": 0.9742 + }, + { + "start": 2004.24, + "end": 2006.9, + "probability": 0.7869 + }, + { + "start": 2007.16, + "end": 2014.2, + "probability": 0.9015 + }, + { + "start": 2014.56, + "end": 2016.92, + "probability": 0.836 + }, + { + "start": 2018.14, + "end": 2020.8, + "probability": 0.9907 + }, + { + "start": 2020.94, + "end": 2021.9, + "probability": 0.755 + }, + { + "start": 2022.84, + "end": 2024.12, + "probability": 0.5795 + }, + { + "start": 2024.36, + "end": 2028.22, + "probability": 0.9644 + }, + { + "start": 2028.32, + "end": 2029.14, + "probability": 0.7874 + }, + { + "start": 2029.92, + "end": 2035.06, + "probability": 0.9875 + }, + { + "start": 2035.16, + "end": 2035.7, + "probability": 0.977 + }, + { + "start": 2035.84, + "end": 2037.34, + "probability": 0.873 + }, + { + "start": 2037.88, + "end": 2037.88, + "probability": 0.1136 + }, + { + "start": 2037.88, + "end": 2042.32, + "probability": 0.9047 + }, + { + "start": 2042.72, + "end": 2045.86, + "probability": 0.9866 + }, + { + "start": 2045.86, + "end": 2049.66, + "probability": 0.9857 + }, + { + "start": 2049.84, + "end": 2051.6, + "probability": 0.8064 + }, + { + "start": 2051.6, + "end": 2053.7, + "probability": 0.9401 + }, + { + "start": 2054.08, + "end": 2056.82, + "probability": 0.8544 + }, + { + "start": 2058.1, + "end": 2059.6, + "probability": 0.9745 + }, + { + "start": 2060.0, + "end": 2061.24, + "probability": 0.946 + }, + { + "start": 2061.34, + "end": 2063.64, + "probability": 0.9843 + }, + { + "start": 2064.54, + "end": 2066.12, + "probability": 0.9506 + }, + { + "start": 2066.24, + "end": 2067.16, + "probability": 0.8627 + }, + { + "start": 2067.26, + "end": 2068.1, + "probability": 0.5885 + }, + { + "start": 2068.28, + "end": 2071.1, + "probability": 0.8997 + }, + { + "start": 2071.34, + "end": 2074.18, + "probability": 0.9869 + }, + { + "start": 2074.32, + "end": 2078.8, + "probability": 0.9764 + }, + { + "start": 2078.96, + "end": 2080.58, + "probability": 0.7899 + }, + { + "start": 2081.32, + "end": 2085.4, + "probability": 0.9291 + }, + { + "start": 2086.0, + "end": 2090.76, + "probability": 0.0929 + }, + { + "start": 2091.4, + "end": 2093.58, + "probability": 0.6704 + }, + { + "start": 2093.64, + "end": 2099.06, + "probability": 0.4879 + }, + { + "start": 2100.54, + "end": 2101.92, + "probability": 0.2004 + }, + { + "start": 2102.64, + "end": 2106.58, + "probability": 0.0969 + }, + { + "start": 2106.8, + "end": 2107.12, + "probability": 0.207 + }, + { + "start": 2107.48, + "end": 2109.02, + "probability": 0.3304 + }, + { + "start": 2109.16, + "end": 2113.04, + "probability": 0.8591 + }, + { + "start": 2114.18, + "end": 2117.24, + "probability": 0.0342 + }, + { + "start": 2119.66, + "end": 2119.96, + "probability": 0.0025 + }, + { + "start": 2119.98, + "end": 2120.66, + "probability": 0.0067 + }, + { + "start": 2120.74, + "end": 2121.48, + "probability": 0.1507 + }, + { + "start": 2121.48, + "end": 2121.52, + "probability": 0.1499 + }, + { + "start": 2121.52, + "end": 2123.1, + "probability": 0.6351 + }, + { + "start": 2123.5, + "end": 2124.96, + "probability": 0.7019 + }, + { + "start": 2126.94, + "end": 2126.94, + "probability": 0.0144 + }, + { + "start": 2126.94, + "end": 2127.58, + "probability": 0.0487 + }, + { + "start": 2127.58, + "end": 2127.6, + "probability": 0.3549 + }, + { + "start": 2127.64, + "end": 2129.76, + "probability": 0.738 + }, + { + "start": 2129.9, + "end": 2131.22, + "probability": 0.971 + }, + { + "start": 2131.46, + "end": 2132.42, + "probability": 0.6284 + }, + { + "start": 2132.5, + "end": 2133.88, + "probability": 0.0661 + }, + { + "start": 2134.08, + "end": 2137.78, + "probability": 0.1933 + }, + { + "start": 2139.36, + "end": 2140.02, + "probability": 0.2515 + }, + { + "start": 2140.02, + "end": 2140.02, + "probability": 0.0721 + }, + { + "start": 2140.02, + "end": 2140.02, + "probability": 0.2057 + }, + { + "start": 2140.02, + "end": 2140.02, + "probability": 0.0946 + }, + { + "start": 2140.02, + "end": 2145.84, + "probability": 0.6188 + }, + { + "start": 2146.4, + "end": 2153.18, + "probability": 0.464 + }, + { + "start": 2153.68, + "end": 2155.34, + "probability": 0.4694 + }, + { + "start": 2155.86, + "end": 2162.32, + "probability": 0.9337 + }, + { + "start": 2162.98, + "end": 2164.76, + "probability": 0.6146 + }, + { + "start": 2164.8, + "end": 2166.2, + "probability": 0.8902 + }, + { + "start": 2166.4, + "end": 2167.66, + "probability": 0.8667 + }, + { + "start": 2167.74, + "end": 2168.3, + "probability": 0.6706 + }, + { + "start": 2168.42, + "end": 2170.4, + "probability": 0.67 + }, + { + "start": 2171.1, + "end": 2178.34, + "probability": 0.9817 + }, + { + "start": 2178.62, + "end": 2178.94, + "probability": 0.7988 + }, + { + "start": 2179.04, + "end": 2184.98, + "probability": 0.7681 + }, + { + "start": 2185.78, + "end": 2188.28, + "probability": 0.7111 + }, + { + "start": 2188.48, + "end": 2190.42, + "probability": 0.9986 + }, + { + "start": 2190.5, + "end": 2190.5, + "probability": 0.1872 + }, + { + "start": 2190.5, + "end": 2191.78, + "probability": 0.7903 + }, + { + "start": 2192.04, + "end": 2197.16, + "probability": 0.967 + }, + { + "start": 2197.34, + "end": 2202.1, + "probability": 0.9611 + }, + { + "start": 2202.14, + "end": 2204.36, + "probability": 0.9607 + }, + { + "start": 2204.38, + "end": 2206.54, + "probability": 0.9894 + }, + { + "start": 2207.0, + "end": 2208.1, + "probability": 0.8911 + }, + { + "start": 2208.18, + "end": 2210.22, + "probability": 0.9432 + }, + { + "start": 2210.52, + "end": 2210.98, + "probability": 0.5728 + }, + { + "start": 2211.04, + "end": 2214.3, + "probability": 0.7002 + }, + { + "start": 2215.14, + "end": 2221.2, + "probability": 0.952 + }, + { + "start": 2221.38, + "end": 2222.48, + "probability": 0.9911 + }, + { + "start": 2222.68, + "end": 2223.62, + "probability": 0.0657 + }, + { + "start": 2223.86, + "end": 2226.36, + "probability": 0.4705 + }, + { + "start": 2226.36, + "end": 2227.48, + "probability": 0.561 + }, + { + "start": 2227.54, + "end": 2228.08, + "probability": 0.8236 + }, + { + "start": 2228.22, + "end": 2229.72, + "probability": 0.8522 + }, + { + "start": 2230.16, + "end": 2234.34, + "probability": 0.9902 + }, + { + "start": 2234.52, + "end": 2235.14, + "probability": 0.0714 + }, + { + "start": 2235.46, + "end": 2240.86, + "probability": 0.9661 + }, + { + "start": 2240.96, + "end": 2241.62, + "probability": 0.8368 + }, + { + "start": 2241.7, + "end": 2242.46, + "probability": 0.7589 + }, + { + "start": 2243.64, + "end": 2250.38, + "probability": 0.9929 + }, + { + "start": 2250.74, + "end": 2251.3, + "probability": 0.9753 + }, + { + "start": 2251.46, + "end": 2252.3, + "probability": 0.6609 + }, + { + "start": 2252.48, + "end": 2253.5, + "probability": 0.8338 + }, + { + "start": 2253.9, + "end": 2255.58, + "probability": 0.8253 + }, + { + "start": 2256.32, + "end": 2258.58, + "probability": 0.9373 + }, + { + "start": 2258.76, + "end": 2259.56, + "probability": 0.88 + }, + { + "start": 2259.64, + "end": 2260.64, + "probability": 0.9591 + }, + { + "start": 2260.68, + "end": 2261.5, + "probability": 0.9639 + }, + { + "start": 2263.28, + "end": 2269.8, + "probability": 0.9731 + }, + { + "start": 2270.54, + "end": 2271.6, + "probability": 0.6838 + }, + { + "start": 2272.5, + "end": 2279.18, + "probability": 0.9731 + }, + { + "start": 2279.34, + "end": 2282.74, + "probability": 0.8948 + }, + { + "start": 2284.66, + "end": 2289.36, + "probability": 0.9949 + }, + { + "start": 2289.36, + "end": 2293.3, + "probability": 0.99 + }, + { + "start": 2293.32, + "end": 2295.9, + "probability": 0.994 + }, + { + "start": 2296.22, + "end": 2300.06, + "probability": 0.9302 + }, + { + "start": 2300.74, + "end": 2306.12, + "probability": 0.9551 + }, + { + "start": 2306.2, + "end": 2306.82, + "probability": 0.8692 + }, + { + "start": 2306.92, + "end": 2307.64, + "probability": 0.7566 + }, + { + "start": 2308.08, + "end": 2311.96, + "probability": 0.9953 + }, + { + "start": 2312.1, + "end": 2318.78, + "probability": 0.9464 + }, + { + "start": 2318.9, + "end": 2321.72, + "probability": 0.7904 + }, + { + "start": 2322.34, + "end": 2324.88, + "probability": 0.9443 + }, + { + "start": 2326.46, + "end": 2330.34, + "probability": 0.9849 + }, + { + "start": 2330.82, + "end": 2332.16, + "probability": 0.9158 + }, + { + "start": 2332.22, + "end": 2334.0, + "probability": 0.9824 + }, + { + "start": 2334.62, + "end": 2335.1, + "probability": 0.2428 + }, + { + "start": 2335.34, + "end": 2336.3, + "probability": 0.6925 + }, + { + "start": 2336.54, + "end": 2338.58, + "probability": 0.7495 + }, + { + "start": 2338.9, + "end": 2339.98, + "probability": 0.4764 + }, + { + "start": 2341.12, + "end": 2343.72, + "probability": 0.3065 + }, + { + "start": 2344.06, + "end": 2347.06, + "probability": 0.2022 + }, + { + "start": 2347.36, + "end": 2348.42, + "probability": 0.0668 + }, + { + "start": 2348.42, + "end": 2349.87, + "probability": 0.3467 + }, + { + "start": 2353.18, + "end": 2354.3, + "probability": 0.1132 + }, + { + "start": 2354.84, + "end": 2355.54, + "probability": 0.0205 + }, + { + "start": 2355.54, + "end": 2355.75, + "probability": 0.1823 + }, + { + "start": 2355.86, + "end": 2355.86, + "probability": 0.0888 + }, + { + "start": 2355.86, + "end": 2357.41, + "probability": 0.3488 + }, + { + "start": 2358.44, + "end": 2359.2, + "probability": 0.4056 + }, + { + "start": 2360.08, + "end": 2361.94, + "probability": 0.4406 + }, + { + "start": 2362.18, + "end": 2362.34, + "probability": 0.5714 + }, + { + "start": 2362.42, + "end": 2364.14, + "probability": 0.8009 + }, + { + "start": 2364.28, + "end": 2365.5, + "probability": 0.6031 + }, + { + "start": 2365.5, + "end": 2366.92, + "probability": 0.9495 + }, + { + "start": 2367.04, + "end": 2367.68, + "probability": 0.8967 + }, + { + "start": 2367.88, + "end": 2372.14, + "probability": 0.9832 + }, + { + "start": 2372.4, + "end": 2373.96, + "probability": 0.9402 + }, + { + "start": 2374.04, + "end": 2375.42, + "probability": 0.9683 + }, + { + "start": 2375.52, + "end": 2380.3, + "probability": 0.7891 + }, + { + "start": 2382.28, + "end": 2383.94, + "probability": 0.7858 + }, + { + "start": 2384.62, + "end": 2386.92, + "probability": 0.9937 + }, + { + "start": 2387.22, + "end": 2394.14, + "probability": 0.9893 + }, + { + "start": 2395.1, + "end": 2397.32, + "probability": 0.9688 + }, + { + "start": 2397.62, + "end": 2402.06, + "probability": 0.9952 + }, + { + "start": 2402.52, + "end": 2404.62, + "probability": 0.8617 + }, + { + "start": 2405.08, + "end": 2406.83, + "probability": 0.8444 + }, + { + "start": 2407.72, + "end": 2408.46, + "probability": 0.4925 + }, + { + "start": 2409.08, + "end": 2415.34, + "probability": 0.823 + }, + { + "start": 2417.0, + "end": 2420.7, + "probability": 0.9082 + }, + { + "start": 2420.82, + "end": 2422.0, + "probability": 0.958 + }, + { + "start": 2422.08, + "end": 2423.42, + "probability": 0.8923 + }, + { + "start": 2423.52, + "end": 2429.14, + "probability": 0.8488 + }, + { + "start": 2430.5, + "end": 2430.94, + "probability": 0.4974 + }, + { + "start": 2431.22, + "end": 2433.63, + "probability": 0.3063 + }, + { + "start": 2437.98, + "end": 2442.44, + "probability": 0.9893 + }, + { + "start": 2442.44, + "end": 2447.46, + "probability": 0.9614 + }, + { + "start": 2447.6, + "end": 2450.44, + "probability": 0.8937 + }, + { + "start": 2450.66, + "end": 2454.8, + "probability": 0.9917 + }, + { + "start": 2454.8, + "end": 2459.26, + "probability": 0.9804 + }, + { + "start": 2460.6, + "end": 2465.3, + "probability": 0.9837 + }, + { + "start": 2467.18, + "end": 2468.24, + "probability": 0.791 + }, + { + "start": 2469.84, + "end": 2472.86, + "probability": 0.9442 + }, + { + "start": 2473.14, + "end": 2474.96, + "probability": 0.5606 + }, + { + "start": 2476.06, + "end": 2481.28, + "probability": 0.6593 + }, + { + "start": 2484.48, + "end": 2486.42, + "probability": 0.6591 + }, + { + "start": 2487.02, + "end": 2489.34, + "probability": 0.8658 + }, + { + "start": 2490.88, + "end": 2493.88, + "probability": 0.8785 + }, + { + "start": 2494.74, + "end": 2498.8, + "probability": 0.981 + }, + { + "start": 2500.08, + "end": 2507.74, + "probability": 0.9734 + }, + { + "start": 2508.26, + "end": 2509.65, + "probability": 0.8604 + }, + { + "start": 2512.7, + "end": 2517.72, + "probability": 0.9736 + }, + { + "start": 2518.36, + "end": 2520.3, + "probability": 0.8447 + }, + { + "start": 2521.06, + "end": 2521.74, + "probability": 0.6681 + }, + { + "start": 2521.84, + "end": 2523.82, + "probability": 0.5642 + }, + { + "start": 2525.04, + "end": 2525.66, + "probability": 0.7932 + }, + { + "start": 2525.78, + "end": 2526.74, + "probability": 0.863 + }, + { + "start": 2526.84, + "end": 2528.56, + "probability": 0.9011 + }, + { + "start": 2530.26, + "end": 2532.2, + "probability": 0.9961 + }, + { + "start": 2533.66, + "end": 2536.18, + "probability": 0.8188 + }, + { + "start": 2537.12, + "end": 2539.8, + "probability": 0.993 + }, + { + "start": 2539.94, + "end": 2541.22, + "probability": 0.9956 + }, + { + "start": 2542.84, + "end": 2544.2, + "probability": 0.466 + }, + { + "start": 2545.42, + "end": 2551.08, + "probability": 0.9658 + }, + { + "start": 2551.08, + "end": 2554.8, + "probability": 0.6746 + }, + { + "start": 2555.8, + "end": 2557.33, + "probability": 0.5388 + }, + { + "start": 2558.14, + "end": 2565.42, + "probability": 0.9921 + }, + { + "start": 2566.06, + "end": 2568.66, + "probability": 0.9941 + }, + { + "start": 2568.92, + "end": 2570.84, + "probability": 0.8492 + }, + { + "start": 2573.0, + "end": 2573.88, + "probability": 0.149 + }, + { + "start": 2574.62, + "end": 2575.8, + "probability": 0.2626 + }, + { + "start": 2576.55, + "end": 2581.62, + "probability": 0.9851 + }, + { + "start": 2582.68, + "end": 2583.74, + "probability": 0.9865 + }, + { + "start": 2586.8, + "end": 2588.66, + "probability": 0.8091 + }, + { + "start": 2590.26, + "end": 2593.48, + "probability": 0.9489 + }, + { + "start": 2594.96, + "end": 2598.3, + "probability": 0.9346 + }, + { + "start": 2598.58, + "end": 2601.58, + "probability": 0.7598 + }, + { + "start": 2601.72, + "end": 2602.84, + "probability": 0.6337 + }, + { + "start": 2603.54, + "end": 2604.58, + "probability": 0.9747 + }, + { + "start": 2606.84, + "end": 2609.02, + "probability": 0.8724 + }, + { + "start": 2609.94, + "end": 2611.98, + "probability": 0.9946 + }, + { + "start": 2612.1, + "end": 2614.18, + "probability": 0.9518 + }, + { + "start": 2614.66, + "end": 2619.54, + "probability": 0.9668 + }, + { + "start": 2620.6, + "end": 2622.02, + "probability": 0.9749 + }, + { + "start": 2622.52, + "end": 2623.36, + "probability": 0.4051 + }, + { + "start": 2623.5, + "end": 2624.96, + "probability": 0.9364 + }, + { + "start": 2625.92, + "end": 2630.75, + "probability": 0.9415 + }, + { + "start": 2631.18, + "end": 2632.04, + "probability": 0.6133 + }, + { + "start": 2632.08, + "end": 2632.68, + "probability": 0.5332 + }, + { + "start": 2634.76, + "end": 2637.03, + "probability": 0.6755 + }, + { + "start": 2638.2, + "end": 2638.94, + "probability": 0.6317 + }, + { + "start": 2639.34, + "end": 2644.42, + "probability": 0.9957 + }, + { + "start": 2645.9, + "end": 2649.0, + "probability": 0.9414 + }, + { + "start": 2649.54, + "end": 2653.72, + "probability": 0.8798 + }, + { + "start": 2653.8, + "end": 2655.82, + "probability": 0.978 + }, + { + "start": 2656.88, + "end": 2660.6, + "probability": 0.8965 + }, + { + "start": 2661.24, + "end": 2662.2, + "probability": 0.7751 + }, + { + "start": 2662.28, + "end": 2664.6, + "probability": 0.9253 + }, + { + "start": 2664.64, + "end": 2665.48, + "probability": 0.8352 + }, + { + "start": 2665.92, + "end": 2668.24, + "probability": 0.9392 + }, + { + "start": 2668.24, + "end": 2672.12, + "probability": 0.9721 + }, + { + "start": 2672.22, + "end": 2673.04, + "probability": 0.8736 + }, + { + "start": 2675.48, + "end": 2681.12, + "probability": 0.9497 + }, + { + "start": 2681.32, + "end": 2686.58, + "probability": 0.9947 + }, + { + "start": 2687.4, + "end": 2688.72, + "probability": 0.7006 + }, + { + "start": 2689.26, + "end": 2690.18, + "probability": 0.8457 + }, + { + "start": 2691.84, + "end": 2697.26, + "probability": 0.9309 + }, + { + "start": 2698.4, + "end": 2700.92, + "probability": 0.9977 + }, + { + "start": 2702.76, + "end": 2707.76, + "probability": 0.9139 + }, + { + "start": 2709.28, + "end": 2716.78, + "probability": 0.9847 + }, + { + "start": 2717.84, + "end": 2724.28, + "probability": 0.995 + }, + { + "start": 2725.82, + "end": 2727.0, + "probability": 0.9572 + }, + { + "start": 2728.38, + "end": 2729.22, + "probability": 0.9927 + }, + { + "start": 2729.76, + "end": 2731.68, + "probability": 0.992 + }, + { + "start": 2732.24, + "end": 2733.7, + "probability": 0.9971 + }, + { + "start": 2734.86, + "end": 2737.36, + "probability": 0.9274 + }, + { + "start": 2738.08, + "end": 2742.7, + "probability": 0.9812 + }, + { + "start": 2743.44, + "end": 2748.28, + "probability": 0.9738 + }, + { + "start": 2748.28, + "end": 2752.82, + "probability": 0.9938 + }, + { + "start": 2753.94, + "end": 2754.34, + "probability": 0.4742 + }, + { + "start": 2754.42, + "end": 2755.28, + "probability": 0.5987 + }, + { + "start": 2755.32, + "end": 2756.66, + "probability": 0.6114 + }, + { + "start": 2756.98, + "end": 2761.54, + "probability": 0.5942 + }, + { + "start": 2761.54, + "end": 2766.78, + "probability": 0.9694 + }, + { + "start": 2767.12, + "end": 2770.2, + "probability": 0.6517 + }, + { + "start": 2770.74, + "end": 2772.5, + "probability": 0.9878 + }, + { + "start": 2773.18, + "end": 2776.34, + "probability": 0.7262 + }, + { + "start": 2777.02, + "end": 2778.94, + "probability": 0.5535 + }, + { + "start": 2779.84, + "end": 2784.36, + "probability": 0.9456 + }, + { + "start": 2784.42, + "end": 2785.16, + "probability": 0.9155 + }, + { + "start": 2785.8, + "end": 2788.46, + "probability": 0.5327 + }, + { + "start": 2788.76, + "end": 2792.92, + "probability": 0.8161 + }, + { + "start": 2792.92, + "end": 2797.04, + "probability": 0.7469 + }, + { + "start": 2797.08, + "end": 2798.2, + "probability": 0.5617 + }, + { + "start": 2798.54, + "end": 2801.28, + "probability": 0.9783 + }, + { + "start": 2801.92, + "end": 2804.6, + "probability": 0.7376 + }, + { + "start": 2804.82, + "end": 2807.26, + "probability": 0.4287 + }, + { + "start": 2808.8, + "end": 2811.66, + "probability": 0.7767 + }, + { + "start": 2812.34, + "end": 2818.9, + "probability": 0.9593 + }, + { + "start": 2820.1, + "end": 2821.34, + "probability": 0.9303 + }, + { + "start": 2821.56, + "end": 2824.04, + "probability": 0.985 + }, + { + "start": 2824.2, + "end": 2825.86, + "probability": 0.874 + }, + { + "start": 2826.06, + "end": 2830.64, + "probability": 0.9671 + }, + { + "start": 2831.42, + "end": 2835.5, + "probability": 0.6825 + }, + { + "start": 2836.26, + "end": 2839.45, + "probability": 0.9836 + }, + { + "start": 2839.82, + "end": 2843.54, + "probability": 0.9968 + }, + { + "start": 2844.48, + "end": 2845.9, + "probability": 0.9039 + }, + { + "start": 2846.06, + "end": 2849.72, + "probability": 0.9966 + }, + { + "start": 2849.72, + "end": 2857.1, + "probability": 0.9976 + }, + { + "start": 2857.82, + "end": 2859.18, + "probability": 0.9062 + }, + { + "start": 2860.02, + "end": 2862.94, + "probability": 0.9893 + }, + { + "start": 2863.08, + "end": 2864.5, + "probability": 0.8122 + }, + { + "start": 2864.6, + "end": 2866.18, + "probability": 0.4321 + }, + { + "start": 2866.64, + "end": 2875.48, + "probability": 0.945 + }, + { + "start": 2875.66, + "end": 2886.72, + "probability": 0.9885 + }, + { + "start": 2886.92, + "end": 2887.71, + "probability": 0.9707 + }, + { + "start": 2888.0, + "end": 2889.51, + "probability": 0.9239 + }, + { + "start": 2890.32, + "end": 2895.06, + "probability": 0.997 + }, + { + "start": 2895.06, + "end": 2898.58, + "probability": 0.9848 + }, + { + "start": 2899.26, + "end": 2905.34, + "probability": 0.9972 + }, + { + "start": 2905.78, + "end": 2909.16, + "probability": 0.9821 + }, + { + "start": 2909.7, + "end": 2912.12, + "probability": 0.9578 + }, + { + "start": 2912.68, + "end": 2915.78, + "probability": 0.9946 + }, + { + "start": 2916.3, + "end": 2920.28, + "probability": 0.8217 + }, + { + "start": 2920.68, + "end": 2921.68, + "probability": 0.7364 + }, + { + "start": 2922.04, + "end": 2924.4, + "probability": 0.9592 + }, + { + "start": 2924.82, + "end": 2929.6, + "probability": 0.9158 + }, + { + "start": 2930.32, + "end": 2931.42, + "probability": 0.9591 + }, + { + "start": 2931.7, + "end": 2933.6, + "probability": 0.9753 + }, + { + "start": 2933.8, + "end": 2935.8, + "probability": 0.9865 + }, + { + "start": 2935.92, + "end": 2938.08, + "probability": 0.9774 + }, + { + "start": 2938.48, + "end": 2939.7, + "probability": 0.7916 + }, + { + "start": 2940.22, + "end": 2940.6, + "probability": 0.6794 + }, + { + "start": 2940.72, + "end": 2943.48, + "probability": 0.9818 + }, + { + "start": 2943.48, + "end": 2947.92, + "probability": 0.691 + }, + { + "start": 2948.56, + "end": 2951.64, + "probability": 0.8491 + }, + { + "start": 2951.82, + "end": 2952.28, + "probability": 0.9237 + }, + { + "start": 2952.32, + "end": 2955.9, + "probability": 0.9924 + }, + { + "start": 2955.9, + "end": 2959.68, + "probability": 0.986 + }, + { + "start": 2960.12, + "end": 2961.96, + "probability": 0.5798 + }, + { + "start": 2962.06, + "end": 2962.74, + "probability": 0.4398 + }, + { + "start": 2963.02, + "end": 2966.06, + "probability": 0.7989 + }, + { + "start": 2966.62, + "end": 2968.74, + "probability": 0.8481 + }, + { + "start": 2969.62, + "end": 2972.54, + "probability": 0.9697 + }, + { + "start": 2972.76, + "end": 2978.1, + "probability": 0.9593 + }, + { + "start": 2978.1, + "end": 2982.62, + "probability": 0.9988 + }, + { + "start": 2982.86, + "end": 2984.97, + "probability": 0.9728 + }, + { + "start": 2985.7, + "end": 2987.9, + "probability": 0.9323 + }, + { + "start": 2988.24, + "end": 2993.3, + "probability": 0.9938 + }, + { + "start": 2993.4, + "end": 2993.7, + "probability": 0.4934 + }, + { + "start": 2994.4, + "end": 3000.8, + "probability": 0.6948 + }, + { + "start": 3000.9, + "end": 3006.22, + "probability": 0.8479 + }, + { + "start": 3006.22, + "end": 3013.0, + "probability": 0.9688 + }, + { + "start": 3013.16, + "end": 3016.34, + "probability": 0.9971 + }, + { + "start": 3016.72, + "end": 3019.82, + "probability": 0.7441 + }, + { + "start": 3020.02, + "end": 3028.24, + "probability": 0.9965 + }, + { + "start": 3028.42, + "end": 3031.7, + "probability": 0.9862 + }, + { + "start": 3032.22, + "end": 3033.16, + "probability": 0.7167 + }, + { + "start": 3033.26, + "end": 3039.2, + "probability": 0.9817 + }, + { + "start": 3039.28, + "end": 3041.16, + "probability": 0.8884 + }, + { + "start": 3041.28, + "end": 3042.38, + "probability": 0.8964 + }, + { + "start": 3042.62, + "end": 3043.88, + "probability": 0.8022 + }, + { + "start": 3044.28, + "end": 3046.28, + "probability": 0.8958 + }, + { + "start": 3046.42, + "end": 3047.92, + "probability": 0.9279 + }, + { + "start": 3048.3, + "end": 3051.14, + "probability": 0.7523 + }, + { + "start": 3051.32, + "end": 3052.08, + "probability": 0.7506 + }, + { + "start": 3052.38, + "end": 3054.42, + "probability": 0.998 + }, + { + "start": 3054.78, + "end": 3055.88, + "probability": 0.7413 + }, + { + "start": 3055.94, + "end": 3061.94, + "probability": 0.9949 + }, + { + "start": 3062.32, + "end": 3065.85, + "probability": 0.9386 + }, + { + "start": 3066.22, + "end": 3068.84, + "probability": 0.8044 + }, + { + "start": 3069.06, + "end": 3070.46, + "probability": 0.7867 + }, + { + "start": 3070.8, + "end": 3073.1, + "probability": 0.6664 + }, + { + "start": 3073.12, + "end": 3074.3, + "probability": 0.7018 + }, + { + "start": 3074.46, + "end": 3076.02, + "probability": 0.7959 + }, + { + "start": 3076.54, + "end": 3079.04, + "probability": 0.9595 + }, + { + "start": 3079.38, + "end": 3083.12, + "probability": 0.8178 + }, + { + "start": 3083.26, + "end": 3084.9, + "probability": 0.9643 + }, + { + "start": 3085.86, + "end": 3090.06, + "probability": 0.9302 + }, + { + "start": 3090.24, + "end": 3094.76, + "probability": 0.9964 + }, + { + "start": 3095.26, + "end": 3096.46, + "probability": 0.6385 + }, + { + "start": 3096.82, + "end": 3101.68, + "probability": 0.959 + }, + { + "start": 3102.42, + "end": 3105.3, + "probability": 0.9474 + }, + { + "start": 3105.8, + "end": 3106.9, + "probability": 0.6809 + }, + { + "start": 3106.94, + "end": 3108.74, + "probability": 0.7796 + }, + { + "start": 3108.98, + "end": 3111.42, + "probability": 0.3757 + }, + { + "start": 3111.8, + "end": 3117.84, + "probability": 0.8701 + }, + { + "start": 3117.9, + "end": 3119.42, + "probability": 0.9578 + }, + { + "start": 3119.52, + "end": 3123.48, + "probability": 0.9694 + }, + { + "start": 3124.16, + "end": 3124.72, + "probability": 0.8978 + }, + { + "start": 3125.22, + "end": 3131.04, + "probability": 0.9583 + }, + { + "start": 3131.54, + "end": 3136.16, + "probability": 0.8675 + }, + { + "start": 3136.6, + "end": 3138.11, + "probability": 0.9518 + }, + { + "start": 3138.48, + "end": 3139.53, + "probability": 0.9775 + }, + { + "start": 3140.04, + "end": 3141.74, + "probability": 0.9697 + }, + { + "start": 3141.84, + "end": 3145.08, + "probability": 0.9898 + }, + { + "start": 3145.54, + "end": 3151.52, + "probability": 0.9814 + }, + { + "start": 3151.96, + "end": 3155.0, + "probability": 0.7734 + }, + { + "start": 3155.46, + "end": 3156.82, + "probability": 0.905 + }, + { + "start": 3157.26, + "end": 3159.32, + "probability": 0.9493 + }, + { + "start": 3159.52, + "end": 3166.9, + "probability": 0.992 + }, + { + "start": 3167.12, + "end": 3170.08, + "probability": 0.7831 + }, + { + "start": 3170.18, + "end": 3171.66, + "probability": 0.7492 + }, + { + "start": 3172.7, + "end": 3175.88, + "probability": 0.5228 + }, + { + "start": 3176.34, + "end": 3178.84, + "probability": 0.9314 + }, + { + "start": 3179.1, + "end": 3184.04, + "probability": 0.9524 + }, + { + "start": 3184.04, + "end": 3186.28, + "probability": 0.8823 + }, + { + "start": 3186.38, + "end": 3189.74, + "probability": 0.9921 + }, + { + "start": 3190.04, + "end": 3190.94, + "probability": 0.8659 + }, + { + "start": 3191.14, + "end": 3195.82, + "probability": 0.9849 + }, + { + "start": 3195.82, + "end": 3202.38, + "probability": 0.9966 + }, + { + "start": 3202.38, + "end": 3209.1, + "probability": 0.9458 + }, + { + "start": 3209.1, + "end": 3216.44, + "probability": 0.9395 + }, + { + "start": 3216.6, + "end": 3217.38, + "probability": 0.2465 + }, + { + "start": 3217.9, + "end": 3219.86, + "probability": 0.762 + }, + { + "start": 3220.12, + "end": 3221.28, + "probability": 0.6141 + }, + { + "start": 3222.72, + "end": 3223.18, + "probability": 0.1978 + }, + { + "start": 3223.28, + "end": 3224.92, + "probability": 0.7346 + }, + { + "start": 3226.08, + "end": 3232.52, + "probability": 0.9801 + }, + { + "start": 3232.58, + "end": 3238.08, + "probability": 0.9631 + }, + { + "start": 3238.08, + "end": 3241.58, + "probability": 0.9955 + }, + { + "start": 3242.18, + "end": 3242.18, + "probability": 0.011 + }, + { + "start": 3242.18, + "end": 3242.58, + "probability": 0.1415 + }, + { + "start": 3242.66, + "end": 3244.56, + "probability": 0.7213 + }, + { + "start": 3245.2, + "end": 3248.76, + "probability": 0.5084 + }, + { + "start": 3248.8, + "end": 3248.9, + "probability": 0.1634 + }, + { + "start": 3248.9, + "end": 3254.12, + "probability": 0.7623 + }, + { + "start": 3254.12, + "end": 3261.33, + "probability": 0.9996 + }, + { + "start": 3262.08, + "end": 3266.88, + "probability": 0.5076 + }, + { + "start": 3266.94, + "end": 3269.54, + "probability": 0.6731 + }, + { + "start": 3269.54, + "end": 3273.76, + "probability": 0.9982 + }, + { + "start": 3274.22, + "end": 3275.26, + "probability": 0.8892 + }, + { + "start": 3275.38, + "end": 3281.16, + "probability": 0.9723 + }, + { + "start": 3281.82, + "end": 3286.86, + "probability": 0.9864 + }, + { + "start": 3286.86, + "end": 3294.48, + "probability": 0.8212 + }, + { + "start": 3294.48, + "end": 3295.6, + "probability": 0.3322 + }, + { + "start": 3295.96, + "end": 3301.2, + "probability": 0.9155 + }, + { + "start": 3301.68, + "end": 3304.0, + "probability": 0.8621 + }, + { + "start": 3304.06, + "end": 3305.1, + "probability": 0.9688 + }, + { + "start": 3305.58, + "end": 3308.88, + "probability": 0.9929 + }, + { + "start": 3309.16, + "end": 3309.62, + "probability": 0.653 + }, + { + "start": 3309.62, + "end": 3313.6, + "probability": 0.8712 + }, + { + "start": 3313.78, + "end": 3314.64, + "probability": 0.4677 + }, + { + "start": 3314.7, + "end": 3316.05, + "probability": 0.6218 + }, + { + "start": 3316.32, + "end": 3318.14, + "probability": 0.9561 + }, + { + "start": 3318.3, + "end": 3318.44, + "probability": 0.4778 + }, + { + "start": 3318.5, + "end": 3321.56, + "probability": 0.9808 + }, + { + "start": 3321.56, + "end": 3324.76, + "probability": 0.9938 + }, + { + "start": 3324.84, + "end": 3325.46, + "probability": 0.5045 + }, + { + "start": 3325.54, + "end": 3328.76, + "probability": 0.458 + }, + { + "start": 3329.14, + "end": 3331.08, + "probability": 0.8612 + }, + { + "start": 3331.46, + "end": 3333.9, + "probability": 0.7754 + }, + { + "start": 3334.46, + "end": 3337.32, + "probability": 0.9661 + }, + { + "start": 3337.66, + "end": 3340.82, + "probability": 0.9141 + }, + { + "start": 3340.88, + "end": 3341.74, + "probability": 0.8691 + }, + { + "start": 3342.08, + "end": 3342.52, + "probability": 0.7317 + }, + { + "start": 3342.58, + "end": 3343.76, + "probability": 0.7068 + }, + { + "start": 3343.84, + "end": 3345.66, + "probability": 0.8868 + }, + { + "start": 3345.88, + "end": 3348.1, + "probability": 0.9622 + }, + { + "start": 3348.62, + "end": 3350.64, + "probability": 0.7133 + }, + { + "start": 3350.76, + "end": 3351.98, + "probability": 0.4059 + }, + { + "start": 3353.5, + "end": 3356.22, + "probability": 0.8409 + }, + { + "start": 3356.34, + "end": 3357.67, + "probability": 0.2136 + }, + { + "start": 3359.46, + "end": 3360.02, + "probability": 0.0148 + }, + { + "start": 3360.02, + "end": 3360.22, + "probability": 0.0429 + }, + { + "start": 3360.22, + "end": 3364.6, + "probability": 0.9423 + }, + { + "start": 3364.92, + "end": 3368.11, + "probability": 0.6413 + }, + { + "start": 3368.36, + "end": 3370.4, + "probability": 0.9729 + }, + { + "start": 3371.06, + "end": 3372.4, + "probability": 0.1822 + }, + { + "start": 3373.27, + "end": 3375.92, + "probability": 0.7842 + }, + { + "start": 3376.28, + "end": 3378.98, + "probability": 0.7803 + }, + { + "start": 3379.88, + "end": 3380.8, + "probability": 0.1586 + }, + { + "start": 3380.8, + "end": 3381.48, + "probability": 0.0806 + }, + { + "start": 3381.48, + "end": 3381.48, + "probability": 0.2262 + }, + { + "start": 3381.6, + "end": 3382.62, + "probability": 0.3954 + }, + { + "start": 3383.36, + "end": 3387.4, + "probability": 0.9549 + }, + { + "start": 3387.96, + "end": 3391.28, + "probability": 0.1523 + }, + { + "start": 3393.18, + "end": 3393.3, + "probability": 0.2461 + }, + { + "start": 3393.3, + "end": 3393.72, + "probability": 0.0643 + }, + { + "start": 3393.72, + "end": 3395.48, + "probability": 0.4263 + }, + { + "start": 3395.48, + "end": 3396.16, + "probability": 0.1337 + }, + { + "start": 3396.74, + "end": 3398.18, + "probability": 0.3765 + }, + { + "start": 3398.2, + "end": 3400.02, + "probability": 0.8591 + }, + { + "start": 3400.32, + "end": 3401.52, + "probability": 0.5902 + }, + { + "start": 3401.98, + "end": 3404.6, + "probability": 0.0906 + }, + { + "start": 3404.7, + "end": 3405.22, + "probability": 0.3399 + }, + { + "start": 3405.26, + "end": 3405.26, + "probability": 0.126 + }, + { + "start": 3405.26, + "end": 3408.18, + "probability": 0.9685 + }, + { + "start": 3408.74, + "end": 3410.25, + "probability": 0.8623 + }, + { + "start": 3410.94, + "end": 3412.47, + "probability": 0.9863 + }, + { + "start": 3413.1, + "end": 3414.61, + "probability": 0.9971 + }, + { + "start": 3415.08, + "end": 3416.06, + "probability": 0.8797 + }, + { + "start": 3416.78, + "end": 3418.4, + "probability": 0.5901 + }, + { + "start": 3419.24, + "end": 3423.4, + "probability": 0.9639 + }, + { + "start": 3423.56, + "end": 3426.2, + "probability": 0.9464 + }, + { + "start": 3426.3, + "end": 3427.18, + "probability": 0.9186 + }, + { + "start": 3427.28, + "end": 3430.76, + "probability": 0.933 + }, + { + "start": 3431.12, + "end": 3436.36, + "probability": 0.9917 + }, + { + "start": 3436.52, + "end": 3438.48, + "probability": 0.9342 + }, + { + "start": 3438.88, + "end": 3444.72, + "probability": 0.9951 + }, + { + "start": 3444.86, + "end": 3446.49, + "probability": 0.8568 + }, + { + "start": 3447.83, + "end": 3454.32, + "probability": 0.996 + }, + { + "start": 3454.32, + "end": 3459.84, + "probability": 0.9955 + }, + { + "start": 3460.54, + "end": 3464.72, + "probability": 0.9937 + }, + { + "start": 3464.72, + "end": 3468.68, + "probability": 0.9981 + }, + { + "start": 3468.72, + "end": 3470.36, + "probability": 0.9705 + }, + { + "start": 3470.82, + "end": 3472.56, + "probability": 0.9122 + }, + { + "start": 3472.8, + "end": 3476.36, + "probability": 0.9862 + }, + { + "start": 3477.52, + "end": 3482.1, + "probability": 0.4114 + }, + { + "start": 3482.44, + "end": 3487.08, + "probability": 0.9775 + }, + { + "start": 3487.26, + "end": 3488.18, + "probability": 0.7629 + }, + { + "start": 3488.36, + "end": 3489.65, + "probability": 0.936 + }, + { + "start": 3491.12, + "end": 3492.44, + "probability": 0.5037 + }, + { + "start": 3493.04, + "end": 3498.92, + "probability": 0.9849 + }, + { + "start": 3499.06, + "end": 3503.64, + "probability": 0.9901 + }, + { + "start": 3504.12, + "end": 3508.26, + "probability": 0.9802 + }, + { + "start": 3508.64, + "end": 3509.84, + "probability": 0.8571 + }, + { + "start": 3510.2, + "end": 3514.28, + "probability": 0.9863 + }, + { + "start": 3514.64, + "end": 3517.04, + "probability": 0.6049 + }, + { + "start": 3517.5, + "end": 3521.16, + "probability": 0.9547 + }, + { + "start": 3521.16, + "end": 3524.8, + "probability": 0.9502 + }, + { + "start": 3524.96, + "end": 3525.82, + "probability": 0.9219 + }, + { + "start": 3525.88, + "end": 3527.92, + "probability": 0.7409 + }, + { + "start": 3528.04, + "end": 3533.74, + "probability": 0.9819 + }, + { + "start": 3533.9, + "end": 3538.34, + "probability": 0.993 + }, + { + "start": 3538.62, + "end": 3545.8, + "probability": 0.9847 + }, + { + "start": 3545.92, + "end": 3552.34, + "probability": 0.9267 + }, + { + "start": 3553.0, + "end": 3557.86, + "probability": 0.9961 + }, + { + "start": 3558.22, + "end": 3561.2, + "probability": 0.8505 + }, + { + "start": 3561.64, + "end": 3564.98, + "probability": 0.9897 + }, + { + "start": 3564.98, + "end": 3569.9, + "probability": 0.9866 + }, + { + "start": 3570.52, + "end": 3574.53, + "probability": 0.995 + }, + { + "start": 3574.66, + "end": 3575.94, + "probability": 0.9064 + }, + { + "start": 3576.66, + "end": 3577.28, + "probability": 0.7199 + }, + { + "start": 3577.5, + "end": 3578.74, + "probability": 0.6679 + }, + { + "start": 3579.16, + "end": 3585.72, + "probability": 0.9536 + }, + { + "start": 3586.02, + "end": 3587.2, + "probability": 0.6699 + }, + { + "start": 3587.38, + "end": 3591.94, + "probability": 0.9851 + }, + { + "start": 3591.94, + "end": 3597.3, + "probability": 0.9978 + }, + { + "start": 3597.36, + "end": 3599.38, + "probability": 0.9986 + }, + { + "start": 3599.88, + "end": 3600.42, + "probability": 0.8207 + }, + { + "start": 3600.62, + "end": 3602.86, + "probability": 0.8547 + }, + { + "start": 3603.0, + "end": 3608.2, + "probability": 0.8251 + }, + { + "start": 3608.2, + "end": 3612.84, + "probability": 0.9677 + }, + { + "start": 3613.26, + "end": 3616.78, + "probability": 0.6938 + }, + { + "start": 3617.04, + "end": 3620.04, + "probability": 0.9914 + }, + { + "start": 3620.04, + "end": 3623.92, + "probability": 0.998 + }, + { + "start": 3624.04, + "end": 3625.82, + "probability": 0.9873 + }, + { + "start": 3626.06, + "end": 3630.34, + "probability": 0.9653 + }, + { + "start": 3630.82, + "end": 3634.38, + "probability": 0.9956 + }, + { + "start": 3634.38, + "end": 3638.18, + "probability": 0.8648 + }, + { + "start": 3638.2, + "end": 3640.26, + "probability": 0.594 + }, + { + "start": 3640.26, + "end": 3641.14, + "probability": 0.8853 + }, + { + "start": 3641.28, + "end": 3647.74, + "probability": 0.987 + }, + { + "start": 3648.2, + "end": 3649.22, + "probability": 0.6832 + }, + { + "start": 3649.32, + "end": 3653.84, + "probability": 0.9887 + }, + { + "start": 3653.84, + "end": 3657.52, + "probability": 0.998 + }, + { + "start": 3657.96, + "end": 3661.08, + "probability": 0.9484 + }, + { + "start": 3661.2, + "end": 3666.31, + "probability": 0.9939 + }, + { + "start": 3666.69, + "end": 3668.84, + "probability": 0.9731 + }, + { + "start": 3669.02, + "end": 3669.4, + "probability": 0.6676 + }, + { + "start": 3669.54, + "end": 3670.34, + "probability": 0.7049 + }, + { + "start": 3670.68, + "end": 3672.2, + "probability": 0.1814 + }, + { + "start": 3672.52, + "end": 3673.4, + "probability": 0.3489 + }, + { + "start": 3674.34, + "end": 3675.24, + "probability": 0.1866 + }, + { + "start": 3675.24, + "end": 3677.08, + "probability": 0.4403 + }, + { + "start": 3677.24, + "end": 3678.08, + "probability": 0.4848 + }, + { + "start": 3678.38, + "end": 3679.16, + "probability": 0.8515 + }, + { + "start": 3679.3, + "end": 3679.3, + "probability": 0.0735 + }, + { + "start": 3679.3, + "end": 3681.09, + "probability": 0.8452 + }, + { + "start": 3681.36, + "end": 3681.48, + "probability": 0.4434 + }, + { + "start": 3681.58, + "end": 3683.4, + "probability": 0.6565 + }, + { + "start": 3683.5, + "end": 3684.83, + "probability": 0.7283 + }, + { + "start": 3685.44, + "end": 3689.06, + "probability": 0.4935 + }, + { + "start": 3689.54, + "end": 3692.73, + "probability": 0.9981 + }, + { + "start": 3693.24, + "end": 3694.46, + "probability": 0.71 + }, + { + "start": 3694.56, + "end": 3697.93, + "probability": 0.9946 + }, + { + "start": 3698.5, + "end": 3700.62, + "probability": 0.514 + }, + { + "start": 3700.76, + "end": 3704.76, + "probability": 0.9863 + }, + { + "start": 3704.86, + "end": 3705.6, + "probability": 0.4429 + }, + { + "start": 3705.66, + "end": 3707.66, + "probability": 0.9688 + }, + { + "start": 3707.86, + "end": 3709.81, + "probability": 0.957 + }, + { + "start": 3710.64, + "end": 3710.8, + "probability": 0.621 + }, + { + "start": 3710.8, + "end": 3715.86, + "probability": 0.98 + }, + { + "start": 3716.3, + "end": 3720.68, + "probability": 0.9226 + }, + { + "start": 3720.72, + "end": 3721.44, + "probability": 0.8056 + }, + { + "start": 3721.78, + "end": 3724.04, + "probability": 0.9883 + }, + { + "start": 3724.22, + "end": 3728.7, + "probability": 0.9941 + }, + { + "start": 3728.92, + "end": 3729.68, + "probability": 0.7249 + }, + { + "start": 3729.98, + "end": 3735.14, + "probability": 0.9924 + }, + { + "start": 3735.38, + "end": 3735.94, + "probability": 0.5376 + }, + { + "start": 3736.16, + "end": 3737.24, + "probability": 0.888 + }, + { + "start": 3737.48, + "end": 3743.38, + "probability": 0.9811 + }, + { + "start": 3743.46, + "end": 3744.82, + "probability": 0.9232 + }, + { + "start": 3745.34, + "end": 3749.92, + "probability": 0.9577 + }, + { + "start": 3750.08, + "end": 3755.29, + "probability": 0.9871 + }, + { + "start": 3755.66, + "end": 3757.74, + "probability": 0.1015 + }, + { + "start": 3757.74, + "end": 3760.96, + "probability": 0.6113 + }, + { + "start": 3761.02, + "end": 3764.1, + "probability": 0.3786 + }, + { + "start": 3768.52, + "end": 3768.52, + "probability": 0.011 + }, + { + "start": 3768.52, + "end": 3768.52, + "probability": 0.0032 + }, + { + "start": 3768.52, + "end": 3769.48, + "probability": 0.6428 + }, + { + "start": 3769.7, + "end": 3772.02, + "probability": 0.9832 + }, + { + "start": 3772.34, + "end": 3773.48, + "probability": 0.7988 + }, + { + "start": 3774.02, + "end": 3777.23, + "probability": 0.9944 + }, + { + "start": 3777.44, + "end": 3778.88, + "probability": 0.7154 + }, + { + "start": 3778.96, + "end": 3780.44, + "probability": 0.9888 + }, + { + "start": 3780.74, + "end": 3781.4, + "probability": 0.6849 + }, + { + "start": 3782.42, + "end": 3784.48, + "probability": 0.9915 + }, + { + "start": 3785.08, + "end": 3790.04, + "probability": 0.9981 + }, + { + "start": 3790.2, + "end": 3791.26, + "probability": 0.9497 + }, + { + "start": 3791.4, + "end": 3792.48, + "probability": 0.897 + }, + { + "start": 3792.54, + "end": 3795.98, + "probability": 0.9789 + }, + { + "start": 3796.22, + "end": 3797.5, + "probability": 0.8573 + }, + { + "start": 3797.68, + "end": 3799.08, + "probability": 0.9648 + }, + { + "start": 3799.24, + "end": 3799.66, + "probability": 0.6537 + }, + { + "start": 3799.74, + "end": 3802.04, + "probability": 0.7986 + }, + { + "start": 3802.16, + "end": 3804.42, + "probability": 0.977 + }, + { + "start": 3804.94, + "end": 3806.04, + "probability": 0.9066 + }, + { + "start": 3806.14, + "end": 3806.62, + "probability": 0.9272 + }, + { + "start": 3806.7, + "end": 3808.52, + "probability": 0.8707 + }, + { + "start": 3808.58, + "end": 3814.02, + "probability": 0.9008 + }, + { + "start": 3814.44, + "end": 3814.64, + "probability": 0.0006 + }, + { + "start": 3815.82, + "end": 3817.8, + "probability": 0.1161 + }, + { + "start": 3817.96, + "end": 3819.76, + "probability": 0.9458 + }, + { + "start": 3819.84, + "end": 3821.88, + "probability": 0.8098 + }, + { + "start": 3822.06, + "end": 3825.68, + "probability": 0.9907 + }, + { + "start": 3825.96, + "end": 3826.94, + "probability": 0.7804 + }, + { + "start": 3827.18, + "end": 3827.86, + "probability": 0.8827 + }, + { + "start": 3827.92, + "end": 3830.18, + "probability": 0.7314 + }, + { + "start": 3830.62, + "end": 3834.57, + "probability": 0.9587 + }, + { + "start": 3835.02, + "end": 3836.12, + "probability": 0.9185 + }, + { + "start": 3836.38, + "end": 3837.92, + "probability": 0.9581 + }, + { + "start": 3838.28, + "end": 3839.0, + "probability": 0.7781 + }, + { + "start": 3839.52, + "end": 3841.06, + "probability": 0.9961 + }, + { + "start": 3841.64, + "end": 3843.84, + "probability": 0.8821 + }, + { + "start": 3844.16, + "end": 3845.9, + "probability": 0.9763 + }, + { + "start": 3846.1, + "end": 3851.2, + "probability": 0.9967 + }, + { + "start": 3851.54, + "end": 3852.46, + "probability": 0.7006 + }, + { + "start": 3852.62, + "end": 3853.6, + "probability": 0.698 + }, + { + "start": 3853.9, + "end": 3858.44, + "probability": 0.9404 + }, + { + "start": 3858.48, + "end": 3863.12, + "probability": 0.9745 + }, + { + "start": 3863.66, + "end": 3869.24, + "probability": 0.9992 + }, + { + "start": 3869.72, + "end": 3870.72, + "probability": 0.6287 + }, + { + "start": 3870.82, + "end": 3876.56, + "probability": 0.9872 + }, + { + "start": 3877.2, + "end": 3878.92, + "probability": 0.8934 + }, + { + "start": 3879.26, + "end": 3885.12, + "probability": 0.9648 + }, + { + "start": 3885.8, + "end": 3890.66, + "probability": 0.9534 + }, + { + "start": 3890.98, + "end": 3893.41, + "probability": 0.9883 + }, + { + "start": 3893.52, + "end": 3896.24, + "probability": 0.9634 + }, + { + "start": 3896.4, + "end": 3900.18, + "probability": 0.9666 + }, + { + "start": 3900.42, + "end": 3901.14, + "probability": 0.7 + }, + { + "start": 3901.28, + "end": 3903.16, + "probability": 0.8754 + }, + { + "start": 3903.38, + "end": 3905.42, + "probability": 0.9675 + }, + { + "start": 3905.7, + "end": 3910.38, + "probability": 0.9735 + }, + { + "start": 3910.52, + "end": 3915.2, + "probability": 0.7718 + }, + { + "start": 3915.26, + "end": 3918.73, + "probability": 0.9964 + }, + { + "start": 3919.08, + "end": 3919.96, + "probability": 0.9228 + }, + { + "start": 3920.12, + "end": 3921.0, + "probability": 0.4456 + }, + { + "start": 3921.2, + "end": 3921.56, + "probability": 0.749 + }, + { + "start": 3921.68, + "end": 3925.1, + "probability": 0.9592 + }, + { + "start": 3925.24, + "end": 3927.16, + "probability": 0.9351 + }, + { + "start": 3927.32, + "end": 3931.5, + "probability": 0.9961 + }, + { + "start": 3931.54, + "end": 3933.22, + "probability": 0.8494 + }, + { + "start": 3933.3, + "end": 3933.6, + "probability": 0.71 + }, + { + "start": 3933.74, + "end": 3934.4, + "probability": 0.6947 + }, + { + "start": 3934.64, + "end": 3938.38, + "probability": 0.4348 + }, + { + "start": 3938.6, + "end": 3940.4, + "probability": 0.9937 + }, + { + "start": 3940.94, + "end": 3941.74, + "probability": 0.0056 + }, + { + "start": 3941.74, + "end": 3946.18, + "probability": 0.9521 + }, + { + "start": 3946.4, + "end": 3948.24, + "probability": 0.5455 + }, + { + "start": 3948.74, + "end": 3952.68, + "probability": 0.6804 + }, + { + "start": 3953.06, + "end": 3954.52, + "probability": 0.4851 + }, + { + "start": 3955.02, + "end": 3959.76, + "probability": 0.5812 + }, + { + "start": 3965.18, + "end": 3970.92, + "probability": 0.8579 + }, + { + "start": 3974.52, + "end": 3974.54, + "probability": 0.4227 + }, + { + "start": 3975.0, + "end": 3978.04, + "probability": 0.9169 + }, + { + "start": 3978.68, + "end": 3980.38, + "probability": 0.7119 + }, + { + "start": 3980.48, + "end": 3982.1, + "probability": 0.8016 + }, + { + "start": 3985.52, + "end": 3986.76, + "probability": 0.5535 + }, + { + "start": 3986.82, + "end": 3988.3, + "probability": 0.8394 + }, + { + "start": 3988.36, + "end": 3991.26, + "probability": 0.9929 + }, + { + "start": 3992.54, + "end": 3995.56, + "probability": 0.9412 + }, + { + "start": 3996.78, + "end": 3997.08, + "probability": 0.0508 + }, + { + "start": 3997.18, + "end": 3997.84, + "probability": 0.9517 + }, + { + "start": 3998.62, + "end": 3999.82, + "probability": 0.6537 + }, + { + "start": 4000.12, + "end": 4000.34, + "probability": 0.4786 + }, + { + "start": 4000.86, + "end": 4002.88, + "probability": 0.2384 + }, + { + "start": 4003.04, + "end": 4003.42, + "probability": 0.0915 + }, + { + "start": 4004.62, + "end": 4006.96, + "probability": 0.3046 + }, + { + "start": 4007.02, + "end": 4009.22, + "probability": 0.2024 + }, + { + "start": 4009.9, + "end": 4012.92, + "probability": 0.6568 + }, + { + "start": 4013.08, + "end": 4015.0, + "probability": 0.8159 + }, + { + "start": 4015.78, + "end": 4016.63, + "probability": 0.6572 + }, + { + "start": 4018.56, + "end": 4018.56, + "probability": 0.1648 + }, + { + "start": 4018.56, + "end": 4018.56, + "probability": 0.3253 + }, + { + "start": 4018.56, + "end": 4018.68, + "probability": 0.0644 + }, + { + "start": 4018.68, + "end": 4018.88, + "probability": 0.2507 + }, + { + "start": 4018.88, + "end": 4021.46, + "probability": 0.3399 + }, + { + "start": 4022.66, + "end": 4024.36, + "probability": 0.1238 + }, + { + "start": 4024.94, + "end": 4028.34, + "probability": 0.1608 + }, + { + "start": 4028.4, + "end": 4030.27, + "probability": 0.7474 + }, + { + "start": 4030.44, + "end": 4032.42, + "probability": 0.9633 + }, + { + "start": 4033.22, + "end": 4034.98, + "probability": 0.9888 + }, + { + "start": 4035.2, + "end": 4036.36, + "probability": 0.7503 + }, + { + "start": 4036.48, + "end": 4038.13, + "probability": 0.9651 + }, + { + "start": 4038.26, + "end": 4039.07, + "probability": 0.8456 + }, + { + "start": 4039.84, + "end": 4040.18, + "probability": 0.5432 + }, + { + "start": 4042.1, + "end": 4043.84, + "probability": 0.9089 + }, + { + "start": 4044.12, + "end": 4045.04, + "probability": 0.8567 + }, + { + "start": 4045.08, + "end": 4051.2, + "probability": 0.9797 + }, + { + "start": 4051.48, + "end": 4058.4, + "probability": 0.9265 + }, + { + "start": 4059.64, + "end": 4062.34, + "probability": 0.9598 + }, + { + "start": 4063.26, + "end": 4065.74, + "probability": 0.9928 + }, + { + "start": 4069.96, + "end": 4070.52, + "probability": 0.7829 + }, + { + "start": 4072.7, + "end": 4080.8, + "probability": 0.9928 + }, + { + "start": 4081.52, + "end": 4083.14, + "probability": 0.7192 + }, + { + "start": 4083.98, + "end": 4086.0, + "probability": 0.5163 + }, + { + "start": 4093.44, + "end": 4096.28, + "probability": 0.9879 + }, + { + "start": 4096.32, + "end": 4102.5, + "probability": 0.8377 + }, + { + "start": 4103.64, + "end": 4108.76, + "probability": 0.994 + }, + { + "start": 4109.82, + "end": 4114.68, + "probability": 0.7581 + }, + { + "start": 4118.18, + "end": 4120.66, + "probability": 0.7444 + }, + { + "start": 4120.66, + "end": 4124.66, + "probability": 0.9818 + }, + { + "start": 4130.56, + "end": 4131.54, + "probability": 0.805 + }, + { + "start": 4131.8, + "end": 4132.84, + "probability": 0.9921 + }, + { + "start": 4132.94, + "end": 4138.29, + "probability": 0.978 + }, + { + "start": 4139.32, + "end": 4146.82, + "probability": 0.9778 + }, + { + "start": 4147.2, + "end": 4147.44, + "probability": 0.882 + }, + { + "start": 4147.7, + "end": 4148.64, + "probability": 0.5283 + }, + { + "start": 4148.76, + "end": 4149.18, + "probability": 0.9015 + }, + { + "start": 4150.46, + "end": 4153.84, + "probability": 0.8856 + }, + { + "start": 4154.42, + "end": 4155.0, + "probability": 0.7923 + }, + { + "start": 4155.12, + "end": 4155.54, + "probability": 0.0152 + }, + { + "start": 4155.86, + "end": 4158.06, + "probability": 0.9313 + }, + { + "start": 4160.96, + "end": 4161.2, + "probability": 0.6445 + }, + { + "start": 4161.22, + "end": 4161.68, + "probability": 0.4457 + }, + { + "start": 4161.78, + "end": 4162.6, + "probability": 0.9288 + }, + { + "start": 4162.64, + "end": 4166.86, + "probability": 0.9429 + }, + { + "start": 4167.0, + "end": 4168.76, + "probability": 0.9912 + }, + { + "start": 4168.78, + "end": 4169.9, + "probability": 0.9271 + }, + { + "start": 4169.94, + "end": 4171.96, + "probability": 0.9961 + }, + { + "start": 4172.72, + "end": 4175.58, + "probability": 0.9409 + }, + { + "start": 4177.54, + "end": 4180.62, + "probability": 0.9853 + }, + { + "start": 4182.08, + "end": 4184.7, + "probability": 0.9873 + }, + { + "start": 4185.52, + "end": 4187.58, + "probability": 0.6959 + }, + { + "start": 4189.84, + "end": 4190.98, + "probability": 0.3332 + }, + { + "start": 4192.18, + "end": 4195.68, + "probability": 0.9236 + }, + { + "start": 4196.87, + "end": 4198.72, + "probability": 0.7702 + }, + { + "start": 4198.94, + "end": 4208.33, + "probability": 0.9372 + }, + { + "start": 4210.62, + "end": 4212.6, + "probability": 0.5187 + }, + { + "start": 4217.2, + "end": 4219.46, + "probability": 0.9718 + }, + { + "start": 4220.02, + "end": 4222.07, + "probability": 0.5101 + }, + { + "start": 4222.38, + "end": 4222.86, + "probability": 0.6722 + }, + { + "start": 4223.7, + "end": 4225.26, + "probability": 0.2432 + }, + { + "start": 4225.26, + "end": 4225.78, + "probability": 0.024 + }, + { + "start": 4227.48, + "end": 4229.5, + "probability": 0.8332 + }, + { + "start": 4230.38, + "end": 4233.92, + "probability": 0.1762 + }, + { + "start": 4236.74, + "end": 4240.68, + "probability": 0.4547 + }, + { + "start": 4240.7, + "end": 4246.88, + "probability": 0.9941 + }, + { + "start": 4246.88, + "end": 4251.7, + "probability": 0.9929 + }, + { + "start": 4254.48, + "end": 4255.54, + "probability": 0.4831 + }, + { + "start": 4256.88, + "end": 4258.82, + "probability": 0.9101 + }, + { + "start": 4258.88, + "end": 4264.92, + "probability": 0.9908 + }, + { + "start": 4269.92, + "end": 4277.86, + "probability": 0.9891 + }, + { + "start": 4280.9, + "end": 4283.04, + "probability": 0.9139 + }, + { + "start": 4284.98, + "end": 4286.16, + "probability": 0.7031 + }, + { + "start": 4288.12, + "end": 4288.94, + "probability": 0.6824 + }, + { + "start": 4288.98, + "end": 4289.77, + "probability": 0.9451 + }, + { + "start": 4290.38, + "end": 4291.62, + "probability": 0.8936 + }, + { + "start": 4291.78, + "end": 4292.94, + "probability": 0.8384 + }, + { + "start": 4294.9, + "end": 4299.18, + "probability": 0.9912 + }, + { + "start": 4300.16, + "end": 4307.69, + "probability": 0.9922 + }, + { + "start": 4308.42, + "end": 4313.66, + "probability": 0.8505 + }, + { + "start": 4315.24, + "end": 4315.92, + "probability": 0.8055 + }, + { + "start": 4318.18, + "end": 4321.24, + "probability": 0.6798 + }, + { + "start": 4321.48, + "end": 4322.58, + "probability": 0.9929 + }, + { + "start": 4323.04, + "end": 4324.12, + "probability": 0.6645 + }, + { + "start": 4324.66, + "end": 4327.3, + "probability": 0.922 + }, + { + "start": 4329.08, + "end": 4329.85, + "probability": 0.7559 + }, + { + "start": 4331.36, + "end": 4335.96, + "probability": 0.8899 + }, + { + "start": 4336.48, + "end": 4337.3, + "probability": 0.926 + }, + { + "start": 4338.36, + "end": 4338.87, + "probability": 0.9595 + }, + { + "start": 4340.56, + "end": 4343.86, + "probability": 0.9919 + }, + { + "start": 4345.42, + "end": 4346.28, + "probability": 0.967 + }, + { + "start": 4351.16, + "end": 4353.8, + "probability": 0.9215 + }, + { + "start": 4353.9, + "end": 4357.24, + "probability": 0.9385 + }, + { + "start": 4360.28, + "end": 4360.84, + "probability": 0.682 + }, + { + "start": 4362.3, + "end": 4362.8, + "probability": 0.892 + }, + { + "start": 4368.72, + "end": 4372.4, + "probability": 0.8491 + }, + { + "start": 4374.76, + "end": 4381.84, + "probability": 0.9917 + }, + { + "start": 4383.66, + "end": 4386.22, + "probability": 0.9963 + }, + { + "start": 4388.02, + "end": 4390.6, + "probability": 0.9947 + }, + { + "start": 4390.6, + "end": 4396.16, + "probability": 0.9823 + }, + { + "start": 4396.24, + "end": 4397.54, + "probability": 0.7588 + }, + { + "start": 4399.62, + "end": 4402.3, + "probability": 0.5374 + }, + { + "start": 4403.94, + "end": 4406.16, + "probability": 0.9955 + }, + { + "start": 4408.92, + "end": 4412.92, + "probability": 0.7458 + }, + { + "start": 4413.02, + "end": 4414.14, + "probability": 0.8397 + }, + { + "start": 4414.14, + "end": 4416.52, + "probability": 0.959 + }, + { + "start": 4416.88, + "end": 4418.1, + "probability": 0.7119 + }, + { + "start": 4418.26, + "end": 4419.1, + "probability": 0.6111 + }, + { + "start": 4419.98, + "end": 4420.47, + "probability": 0.3704 + }, + { + "start": 4422.18, + "end": 4427.49, + "probability": 0.7554 + }, + { + "start": 4429.04, + "end": 4434.68, + "probability": 0.9219 + }, + { + "start": 4436.48, + "end": 4438.64, + "probability": 0.9644 + }, + { + "start": 4438.8, + "end": 4440.44, + "probability": 0.8545 + }, + { + "start": 4440.72, + "end": 4441.42, + "probability": 0.6926 + }, + { + "start": 4441.6, + "end": 4444.74, + "probability": 0.9722 + }, + { + "start": 4447.1, + "end": 4454.36, + "probability": 0.7079 + }, + { + "start": 4454.74, + "end": 4455.36, + "probability": 0.4146 + }, + { + "start": 4455.48, + "end": 4457.42, + "probability": 0.9971 + }, + { + "start": 4457.92, + "end": 4459.74, + "probability": 0.9775 + }, + { + "start": 4461.24, + "end": 4463.98, + "probability": 0.1167 + }, + { + "start": 4464.99, + "end": 4466.96, + "probability": 0.1887 + }, + { + "start": 4467.11, + "end": 4469.24, + "probability": 0.7905 + }, + { + "start": 4475.2, + "end": 4476.46, + "probability": 0.6662 + }, + { + "start": 4478.26, + "end": 4482.96, + "probability": 0.9861 + }, + { + "start": 4484.16, + "end": 4485.18, + "probability": 0.7836 + }, + { + "start": 4486.38, + "end": 4487.26, + "probability": 0.8091 + }, + { + "start": 4488.66, + "end": 4494.34, + "probability": 0.7707 + }, + { + "start": 4495.78, + "end": 4496.48, + "probability": 0.8535 + }, + { + "start": 4497.14, + "end": 4501.78, + "probability": 0.8212 + }, + { + "start": 4501.94, + "end": 4503.04, + "probability": 0.6218 + }, + { + "start": 4503.12, + "end": 4508.26, + "probability": 0.8669 + }, + { + "start": 4508.92, + "end": 4510.7, + "probability": 0.8124 + }, + { + "start": 4512.02, + "end": 4518.94, + "probability": 0.7832 + }, + { + "start": 4519.3, + "end": 4519.84, + "probability": 0.659 + }, + { + "start": 4520.32, + "end": 4521.84, + "probability": 0.8189 + }, + { + "start": 4521.96, + "end": 4525.14, + "probability": 0.7911 + }, + { + "start": 4525.42, + "end": 4531.06, + "probability": 0.977 + }, + { + "start": 4531.16, + "end": 4532.36, + "probability": 0.7607 + }, + { + "start": 4532.42, + "end": 4537.58, + "probability": 0.9709 + }, + { + "start": 4537.76, + "end": 4538.72, + "probability": 0.9216 + }, + { + "start": 4539.48, + "end": 4541.26, + "probability": 0.9489 + }, + { + "start": 4542.64, + "end": 4543.96, + "probability": 0.985 + }, + { + "start": 4548.68, + "end": 4551.34, + "probability": 0.9732 + }, + { + "start": 4551.86, + "end": 4553.12, + "probability": 0.8251 + }, + { + "start": 4555.2, + "end": 4556.06, + "probability": 0.9471 + }, + { + "start": 4557.9, + "end": 4558.3, + "probability": 0.482 + }, + { + "start": 4558.38, + "end": 4560.86, + "probability": 0.6497 + }, + { + "start": 4561.32, + "end": 4562.1, + "probability": 0.6218 + }, + { + "start": 4562.12, + "end": 4566.66, + "probability": 0.9941 + }, + { + "start": 4569.46, + "end": 4570.64, + "probability": 0.7812 + }, + { + "start": 4570.82, + "end": 4573.02, + "probability": 0.744 + }, + { + "start": 4573.02, + "end": 4576.58, + "probability": 0.9901 + }, + { + "start": 4576.96, + "end": 4578.86, + "probability": 0.6672 + }, + { + "start": 4579.36, + "end": 4579.66, + "probability": 0.3111 + }, + { + "start": 4579.68, + "end": 4580.92, + "probability": 0.874 + }, + { + "start": 4580.92, + "end": 4583.04, + "probability": 0.4146 + }, + { + "start": 4583.32, + "end": 4586.18, + "probability": 0.642 + }, + { + "start": 4586.8, + "end": 4588.28, + "probability": 0.7673 + }, + { + "start": 4588.38, + "end": 4590.08, + "probability": 0.6781 + }, + { + "start": 4590.84, + "end": 4591.46, + "probability": 0.1236 + }, + { + "start": 4591.94, + "end": 4592.68, + "probability": 0.7664 + }, + { + "start": 4593.17, + "end": 4595.0, + "probability": 0.8648 + }, + { + "start": 4595.16, + "end": 4596.04, + "probability": 0.539 + }, + { + "start": 4596.56, + "end": 4597.86, + "probability": 0.2355 + }, + { + "start": 4598.76, + "end": 4602.48, + "probability": 0.8855 + }, + { + "start": 4603.26, + "end": 4604.46, + "probability": 0.8097 + }, + { + "start": 4607.78, + "end": 4610.22, + "probability": 0.6427 + }, + { + "start": 4610.5, + "end": 4611.32, + "probability": 0.6007 + }, + { + "start": 4611.44, + "end": 4613.38, + "probability": 0.7223 + }, + { + "start": 4614.12, + "end": 4615.65, + "probability": 0.462 + }, + { + "start": 4615.74, + "end": 4618.4, + "probability": 0.6628 + }, + { + "start": 4618.56, + "end": 4619.9, + "probability": 0.7695 + }, + { + "start": 4619.96, + "end": 4620.94, + "probability": 0.8898 + }, + { + "start": 4621.14, + "end": 4623.74, + "probability": 0.8694 + }, + { + "start": 4623.82, + "end": 4625.04, + "probability": 0.6146 + }, + { + "start": 4625.04, + "end": 4625.56, + "probability": 0.5662 + }, + { + "start": 4626.02, + "end": 4629.64, + "probability": 0.9928 + }, + { + "start": 4630.22, + "end": 4631.2, + "probability": 0.9316 + }, + { + "start": 4631.84, + "end": 4634.8, + "probability": 0.3906 + }, + { + "start": 4634.98, + "end": 4636.66, + "probability": 0.5877 + }, + { + "start": 4636.66, + "end": 4637.54, + "probability": 0.9302 + }, + { + "start": 4637.62, + "end": 4639.16, + "probability": 0.5161 + }, + { + "start": 4639.16, + "end": 4639.78, + "probability": 0.2726 + }, + { + "start": 4640.6, + "end": 4643.3, + "probability": 0.8781 + }, + { + "start": 4643.3, + "end": 4643.6, + "probability": 0.3911 + }, + { + "start": 4643.6, + "end": 4644.06, + "probability": 0.714 + }, + { + "start": 4644.16, + "end": 4644.46, + "probability": 0.5018 + }, + { + "start": 4644.56, + "end": 4645.82, + "probability": 0.8611 + }, + { + "start": 4646.18, + "end": 4653.62, + "probability": 0.9856 + }, + { + "start": 4653.98, + "end": 4657.4, + "probability": 0.5859 + }, + { + "start": 4658.94, + "end": 4663.29, + "probability": 0.9883 + }, + { + "start": 4663.72, + "end": 4665.04, + "probability": 0.7676 + }, + { + "start": 4665.14, + "end": 4666.76, + "probability": 0.6289 + }, + { + "start": 4667.24, + "end": 4668.58, + "probability": 0.8929 + }, + { + "start": 4668.76, + "end": 4675.38, + "probability": 0.9907 + }, + { + "start": 4675.38, + "end": 4682.04, + "probability": 0.9535 + }, + { + "start": 4682.18, + "end": 4683.44, + "probability": 0.8214 + }, + { + "start": 4685.84, + "end": 4688.84, + "probability": 0.8394 + }, + { + "start": 4689.72, + "end": 4695.28, + "probability": 0.8334 + }, + { + "start": 4695.42, + "end": 4696.22, + "probability": 0.7097 + }, + { + "start": 4696.36, + "end": 4697.64, + "probability": 0.7918 + }, + { + "start": 4698.92, + "end": 4699.64, + "probability": 0.3333 + }, + { + "start": 4700.56, + "end": 4709.5, + "probability": 0.8553 + }, + { + "start": 4710.98, + "end": 4715.58, + "probability": 0.9556 + }, + { + "start": 4715.7, + "end": 4716.08, + "probability": 0.723 + }, + { + "start": 4716.18, + "end": 4719.46, + "probability": 0.9884 + }, + { + "start": 4721.52, + "end": 4724.28, + "probability": 0.7294 + }, + { + "start": 4724.64, + "end": 4725.86, + "probability": 0.97 + }, + { + "start": 4726.92, + "end": 4732.3, + "probability": 0.9919 + }, + { + "start": 4732.6, + "end": 4733.86, + "probability": 0.8206 + }, + { + "start": 4733.98, + "end": 4734.2, + "probability": 0.4566 + }, + { + "start": 4734.2, + "end": 4735.04, + "probability": 0.649 + }, + { + "start": 4736.6, + "end": 4738.34, + "probability": 0.6871 + }, + { + "start": 4738.46, + "end": 4744.02, + "probability": 0.8048 + }, + { + "start": 4745.2, + "end": 4748.62, + "probability": 0.6276 + }, + { + "start": 4748.62, + "end": 4751.24, + "probability": 0.6671 + }, + { + "start": 4751.64, + "end": 4751.8, + "probability": 0.2367 + }, + { + "start": 4751.84, + "end": 4757.4, + "probability": 0.6483 + }, + { + "start": 4757.48, + "end": 4759.36, + "probability": 0.7895 + }, + { + "start": 4759.62, + "end": 4772.1, + "probability": 0.993 + }, + { + "start": 4772.18, + "end": 4775.0, + "probability": 0.7622 + }, + { + "start": 4775.14, + "end": 4780.9, + "probability": 0.9796 + }, + { + "start": 4780.94, + "end": 4781.96, + "probability": 0.7874 + }, + { + "start": 4784.08, + "end": 4784.22, + "probability": 0.1827 + }, + { + "start": 4784.22, + "end": 4784.74, + "probability": 0.0651 + }, + { + "start": 4784.76, + "end": 4785.64, + "probability": 0.8098 + }, + { + "start": 4785.74, + "end": 4788.9, + "probability": 0.9144 + }, + { + "start": 4789.08, + "end": 4792.22, + "probability": 0.9408 + }, + { + "start": 4812.8, + "end": 4813.5, + "probability": 0.6372 + }, + { + "start": 4813.66, + "end": 4814.68, + "probability": 0.6086 + }, + { + "start": 4814.94, + "end": 4816.41, + "probability": 0.6294 + }, + { + "start": 4817.56, + "end": 4820.8, + "probability": 0.6579 + }, + { + "start": 4821.26, + "end": 4825.42, + "probability": 0.9688 + }, + { + "start": 4826.96, + "end": 4828.38, + "probability": 0.9359 + }, + { + "start": 4829.76, + "end": 4836.64, + "probability": 0.9716 + }, + { + "start": 4836.99, + "end": 4844.28, + "probability": 0.885 + }, + { + "start": 4845.7, + "end": 4846.34, + "probability": 0.7492 + }, + { + "start": 4846.46, + "end": 4847.76, + "probability": 0.4981 + }, + { + "start": 4847.96, + "end": 4849.22, + "probability": 0.6667 + }, + { + "start": 4849.3, + "end": 4853.74, + "probability": 0.7755 + }, + { + "start": 4853.86, + "end": 4854.48, + "probability": 0.7318 + }, + { + "start": 4857.46, + "end": 4858.94, + "probability": 0.6212 + }, + { + "start": 4859.0, + "end": 4860.78, + "probability": 0.4248 + }, + { + "start": 4860.9, + "end": 4863.42, + "probability": 0.8538 + }, + { + "start": 4863.96, + "end": 4867.28, + "probability": 0.6703 + }, + { + "start": 4868.08, + "end": 4872.26, + "probability": 0.9121 + }, + { + "start": 4872.4, + "end": 4874.14, + "probability": 0.7834 + }, + { + "start": 4874.18, + "end": 4876.38, + "probability": 0.5908 + }, + { + "start": 4876.5, + "end": 4879.54, + "probability": 0.8305 + }, + { + "start": 4879.92, + "end": 4880.71, + "probability": 0.1418 + }, + { + "start": 4881.8, + "end": 4884.3, + "probability": 0.4383 + }, + { + "start": 4884.54, + "end": 4885.98, + "probability": 0.5917 + }, + { + "start": 4886.02, + "end": 4888.26, + "probability": 0.48 + }, + { + "start": 4888.34, + "end": 4889.2, + "probability": 0.0061 + }, + { + "start": 4889.26, + "end": 4893.0, + "probability": 0.9728 + }, + { + "start": 4893.18, + "end": 4895.52, + "probability": 0.7498 + }, + { + "start": 4896.14, + "end": 4896.9, + "probability": 0.6084 + }, + { + "start": 4897.1, + "end": 4897.2, + "probability": 0.5179 + }, + { + "start": 4897.48, + "end": 4898.2, + "probability": 0.0089 + }, + { + "start": 4898.36, + "end": 4902.0, + "probability": 0.7262 + }, + { + "start": 4902.34, + "end": 4903.06, + "probability": 0.4164 + }, + { + "start": 4903.16, + "end": 4904.6, + "probability": 0.7719 + }, + { + "start": 4908.8, + "end": 4909.26, + "probability": 0.553 + }, + { + "start": 4909.46, + "end": 4910.34, + "probability": 0.5962 + }, + { + "start": 4910.46, + "end": 4911.02, + "probability": 0.5314 + }, + { + "start": 4911.02, + "end": 4914.12, + "probability": 0.8179 + }, + { + "start": 4914.14, + "end": 4916.2, + "probability": 0.7634 + }, + { + "start": 4916.28, + "end": 4917.54, + "probability": 0.6182 + }, + { + "start": 4918.66, + "end": 4923.7, + "probability": 0.4321 + }, + { + "start": 4923.7, + "end": 4925.05, + "probability": 0.1646 + }, + { + "start": 4926.98, + "end": 4929.22, + "probability": 0.6367 + }, + { + "start": 4929.38, + "end": 4929.62, + "probability": 0.8309 + }, + { + "start": 4929.74, + "end": 4933.42, + "probability": 0.9448 + }, + { + "start": 4933.42, + "end": 4936.72, + "probability": 0.826 + }, + { + "start": 4937.32, + "end": 4939.0, + "probability": 0.6591 + }, + { + "start": 4939.1, + "end": 4939.68, + "probability": 0.7477 + }, + { + "start": 4939.8, + "end": 4940.64, + "probability": 0.7365 + }, + { + "start": 4941.3, + "end": 4944.4, + "probability": 0.9717 + }, + { + "start": 4945.22, + "end": 4947.84, + "probability": 0.9602 + }, + { + "start": 4948.56, + "end": 4951.28, + "probability": 0.9961 + }, + { + "start": 4951.8, + "end": 4953.62, + "probability": 0.9054 + }, + { + "start": 4954.3, + "end": 4958.63, + "probability": 0.8471 + }, + { + "start": 4960.26, + "end": 4962.02, + "probability": 0.5538 + }, + { + "start": 4962.8, + "end": 4963.38, + "probability": 0.7636 + }, + { + "start": 4963.96, + "end": 4966.26, + "probability": 0.9875 + }, + { + "start": 4966.26, + "end": 4968.58, + "probability": 0.6555 + }, + { + "start": 4969.46, + "end": 4970.32, + "probability": 0.4017 + }, + { + "start": 4971.58, + "end": 4975.66, + "probability": 0.978 + }, + { + "start": 4978.58, + "end": 4980.58, + "probability": 0.9415 + }, + { + "start": 4982.68, + "end": 4982.88, + "probability": 0.7769 + }, + { + "start": 4983.0, + "end": 4984.06, + "probability": 0.7667 + }, + { + "start": 4984.24, + "end": 4984.62, + "probability": 0.6042 + }, + { + "start": 4985.0, + "end": 4987.68, + "probability": 0.9124 + }, + { + "start": 4988.62, + "end": 4991.54, + "probability": 0.8844 + }, + { + "start": 4992.3, + "end": 4994.06, + "probability": 0.9274 + }, + { + "start": 4994.06, + "end": 4997.1, + "probability": 0.794 + }, + { + "start": 4997.54, + "end": 4999.44, + "probability": 0.572 + }, + { + "start": 4999.44, + "end": 5002.0, + "probability": 0.815 + }, + { + "start": 5002.54, + "end": 5007.12, + "probability": 0.916 + }, + { + "start": 5008.9, + "end": 5009.42, + "probability": 0.76 + }, + { + "start": 5010.3, + "end": 5010.84, + "probability": 0.323 + }, + { + "start": 5014.31, + "end": 5018.44, + "probability": 0.5881 + }, + { + "start": 5018.5, + "end": 5019.69, + "probability": 0.1033 + }, + { + "start": 5020.12, + "end": 5021.06, + "probability": 0.1218 + }, + { + "start": 5022.66, + "end": 5024.52, + "probability": 0.0234 + }, + { + "start": 5027.04, + "end": 5029.44, + "probability": 0.2675 + }, + { + "start": 5029.44, + "end": 5030.06, + "probability": 0.0695 + }, + { + "start": 5030.32, + "end": 5031.32, + "probability": 0.4629 + }, + { + "start": 5031.46, + "end": 5031.84, + "probability": 0.6426 + }, + { + "start": 5032.16, + "end": 5035.34, + "probability": 0.0527 + }, + { + "start": 5035.34, + "end": 5035.34, + "probability": 0.0694 + }, + { + "start": 5035.34, + "end": 5036.72, + "probability": 0.0971 + }, + { + "start": 5036.84, + "end": 5037.36, + "probability": 0.1432 + }, + { + "start": 5037.38, + "end": 5038.45, + "probability": 0.1629 + }, + { + "start": 5041.24, + "end": 5043.3, + "probability": 0.0454 + }, + { + "start": 5043.58, + "end": 5044.48, + "probability": 0.6858 + }, + { + "start": 5044.58, + "end": 5045.26, + "probability": 0.7275 + }, + { + "start": 5045.36, + "end": 5045.92, + "probability": 0.7852 + }, + { + "start": 5046.14, + "end": 5047.98, + "probability": 0.873 + }, + { + "start": 5048.34, + "end": 5049.24, + "probability": 0.3794 + }, + { + "start": 5049.36, + "end": 5051.98, + "probability": 0.7654 + }, + { + "start": 5052.14, + "end": 5054.5, + "probability": 0.8931 + }, + { + "start": 5055.57, + "end": 5058.32, + "probability": 0.6919 + }, + { + "start": 5058.68, + "end": 5062.4, + "probability": 0.9084 + }, + { + "start": 5063.02, + "end": 5065.78, + "probability": 0.8972 + }, + { + "start": 5067.06, + "end": 5069.76, + "probability": 0.7305 + }, + { + "start": 5070.3, + "end": 5070.86, + "probability": 0.7827 + }, + { + "start": 5070.96, + "end": 5071.2, + "probability": 0.7957 + }, + { + "start": 5071.28, + "end": 5073.72, + "probability": 0.7603 + }, + { + "start": 5074.24, + "end": 5076.24, + "probability": 0.7718 + }, + { + "start": 5076.24, + "end": 5079.16, + "probability": 0.9793 + }, + { + "start": 5079.88, + "end": 5082.54, + "probability": 0.9562 + }, + { + "start": 5082.72, + "end": 5083.38, + "probability": 0.6057 + }, + { + "start": 5083.74, + "end": 5087.72, + "probability": 0.7243 + }, + { + "start": 5088.3, + "end": 5090.24, + "probability": 0.6446 + }, + { + "start": 5090.96, + "end": 5094.06, + "probability": 0.5518 + }, + { + "start": 5094.34, + "end": 5094.94, + "probability": 0.7636 + }, + { + "start": 5095.02, + "end": 5095.86, + "probability": 0.9028 + }, + { + "start": 5096.04, + "end": 5099.44, + "probability": 0.814 + }, + { + "start": 5099.54, + "end": 5099.78, + "probability": 0.2164 + }, + { + "start": 5099.88, + "end": 5102.56, + "probability": 0.9975 + }, + { + "start": 5103.06, + "end": 5103.94, + "probability": 0.5679 + }, + { + "start": 5104.48, + "end": 5107.92, + "probability": 0.8867 + }, + { + "start": 5108.48, + "end": 5110.48, + "probability": 0.6274 + }, + { + "start": 5110.66, + "end": 5112.3, + "probability": 0.9916 + }, + { + "start": 5112.8, + "end": 5117.42, + "probability": 0.9658 + }, + { + "start": 5118.2, + "end": 5119.42, + "probability": 0.9512 + }, + { + "start": 5120.94, + "end": 5123.34, + "probability": 0.9247 + }, + { + "start": 5124.06, + "end": 5127.16, + "probability": 0.9795 + }, + { + "start": 5127.44, + "end": 5127.78, + "probability": 0.4584 + }, + { + "start": 5129.5, + "end": 5134.24, + "probability": 0.7887 + }, + { + "start": 5134.52, + "end": 5135.62, + "probability": 0.7169 + }, + { + "start": 5136.8, + "end": 5138.5, + "probability": 0.9003 + }, + { + "start": 5140.98, + "end": 5141.28, + "probability": 0.8859 + }, + { + "start": 5141.86, + "end": 5142.94, + "probability": 0.8536 + }, + { + "start": 5143.12, + "end": 5144.58, + "probability": 0.6868 + }, + { + "start": 5144.7, + "end": 5149.28, + "probability": 0.7852 + }, + { + "start": 5149.64, + "end": 5154.0, + "probability": 0.9453 + }, + { + "start": 5155.3, + "end": 5160.28, + "probability": 0.9552 + }, + { + "start": 5160.48, + "end": 5166.92, + "probability": 0.9837 + }, + { + "start": 5167.62, + "end": 5172.3, + "probability": 0.9673 + }, + { + "start": 5172.96, + "end": 5174.72, + "probability": 0.7372 + }, + { + "start": 5175.8, + "end": 5182.34, + "probability": 0.7769 + }, + { + "start": 5182.38, + "end": 5183.08, + "probability": 0.5941 + }, + { + "start": 5184.24, + "end": 5188.72, + "probability": 0.7346 + }, + { + "start": 5189.22, + "end": 5191.9, + "probability": 0.7279 + }, + { + "start": 5192.64, + "end": 5193.38, + "probability": 0.5619 + }, + { + "start": 5193.78, + "end": 5200.35, + "probability": 0.9573 + }, + { + "start": 5200.62, + "end": 5208.76, + "probability": 0.861 + }, + { + "start": 5209.22, + "end": 5211.92, + "probability": 0.6679 + }, + { + "start": 5211.96, + "end": 5212.26, + "probability": 0.6726 + }, + { + "start": 5212.76, + "end": 5214.62, + "probability": 0.8706 + }, + { + "start": 5214.78, + "end": 5217.44, + "probability": 0.9744 + }, + { + "start": 5218.76, + "end": 5220.2, + "probability": 0.7395 + }, + { + "start": 5220.58, + "end": 5227.02, + "probability": 0.9121 + }, + { + "start": 5227.84, + "end": 5231.64, + "probability": 0.9058 + }, + { + "start": 5232.28, + "end": 5238.54, + "probability": 0.8459 + }, + { + "start": 5239.06, + "end": 5241.14, + "probability": 0.9692 + }, + { + "start": 5241.54, + "end": 5245.34, + "probability": 0.9777 + }, + { + "start": 5246.1, + "end": 5246.86, + "probability": 0.2633 + }, + { + "start": 5247.08, + "end": 5247.56, + "probability": 0.4695 + }, + { + "start": 5247.58, + "end": 5248.36, + "probability": 0.5941 + }, + { + "start": 5248.76, + "end": 5252.16, + "probability": 0.9836 + }, + { + "start": 5252.78, + "end": 5259.0, + "probability": 0.959 + }, + { + "start": 5259.72, + "end": 5264.66, + "probability": 0.9758 + }, + { + "start": 5265.32, + "end": 5270.9, + "probability": 0.9341 + }, + { + "start": 5271.46, + "end": 5276.94, + "probability": 0.9858 + }, + { + "start": 5276.94, + "end": 5281.7, + "probability": 0.8184 + }, + { + "start": 5282.6, + "end": 5290.96, + "probability": 0.9076 + }, + { + "start": 5291.22, + "end": 5297.12, + "probability": 0.7939 + }, + { + "start": 5297.32, + "end": 5298.12, + "probability": 0.8692 + }, + { + "start": 5298.56, + "end": 5301.84, + "probability": 0.9766 + }, + { + "start": 5302.64, + "end": 5308.16, + "probability": 0.795 + }, + { + "start": 5308.16, + "end": 5314.12, + "probability": 0.9775 + }, + { + "start": 5314.12, + "end": 5321.2, + "probability": 0.9259 + }, + { + "start": 5321.9, + "end": 5329.92, + "probability": 0.7965 + }, + { + "start": 5330.54, + "end": 5335.32, + "probability": 0.9561 + }, + { + "start": 5335.52, + "end": 5336.1, + "probability": 0.7072 + }, + { + "start": 5336.1, + "end": 5337.94, + "probability": 0.8485 + }, + { + "start": 5338.56, + "end": 5343.8, + "probability": 0.6397 + }, + { + "start": 5344.84, + "end": 5344.84, + "probability": 0.1826 + }, + { + "start": 5347.22, + "end": 5348.02, + "probability": 0.8216 + }, + { + "start": 5348.74, + "end": 5353.02, + "probability": 0.9264 + }, + { + "start": 5353.02, + "end": 5358.88, + "probability": 0.8319 + }, + { + "start": 5359.56, + "end": 5365.4, + "probability": 0.7416 + }, + { + "start": 5366.0, + "end": 5371.14, + "probability": 0.957 + }, + { + "start": 5371.5, + "end": 5374.22, + "probability": 0.9763 + }, + { + "start": 5374.68, + "end": 5380.46, + "probability": 0.8701 + }, + { + "start": 5380.46, + "end": 5384.92, + "probability": 0.9595 + }, + { + "start": 5385.32, + "end": 5388.95, + "probability": 0.523 + }, + { + "start": 5390.48, + "end": 5392.36, + "probability": 0.7213 + }, + { + "start": 5392.66, + "end": 5393.1, + "probability": 0.3654 + }, + { + "start": 5393.22, + "end": 5395.02, + "probability": 0.8731 + }, + { + "start": 5397.5, + "end": 5402.44, + "probability": 0.8253 + }, + { + "start": 5402.9, + "end": 5404.02, + "probability": 0.5594 + }, + { + "start": 5404.08, + "end": 5406.6, + "probability": 0.9634 + }, + { + "start": 5411.46, + "end": 5412.64, + "probability": 0.3751 + }, + { + "start": 5412.86, + "end": 5416.06, + "probability": 0.7939 + }, + { + "start": 5416.56, + "end": 5421.54, + "probability": 0.9922 + }, + { + "start": 5421.76, + "end": 5422.68, + "probability": 0.8979 + }, + { + "start": 5422.76, + "end": 5423.1, + "probability": 0.972 + }, + { + "start": 5423.2, + "end": 5424.26, + "probability": 0.8503 + }, + { + "start": 5424.68, + "end": 5425.92, + "probability": 0.9499 + }, + { + "start": 5426.08, + "end": 5426.98, + "probability": 0.7809 + }, + { + "start": 5427.42, + "end": 5428.66, + "probability": 0.9783 + }, + { + "start": 5430.18, + "end": 5430.46, + "probability": 0.3891 + }, + { + "start": 5430.46, + "end": 5432.68, + "probability": 0.7015 + }, + { + "start": 5432.74, + "end": 5434.16, + "probability": 0.8968 + }, + { + "start": 5434.24, + "end": 5435.62, + "probability": 0.3882 + }, + { + "start": 5435.62, + "end": 5435.7, + "probability": 0.7059 + }, + { + "start": 5435.8, + "end": 5437.4, + "probability": 0.8714 + }, + { + "start": 5437.52, + "end": 5440.76, + "probability": 0.8582 + }, + { + "start": 5457.14, + "end": 5459.56, + "probability": 0.6778 + }, + { + "start": 5459.64, + "end": 5460.12, + "probability": 0.7298 + }, + { + "start": 5460.3, + "end": 5461.14, + "probability": 0.8287 + }, + { + "start": 5462.0, + "end": 5464.18, + "probability": 0.7606 + }, + { + "start": 5465.32, + "end": 5467.58, + "probability": 0.8506 + }, + { + "start": 5468.02, + "end": 5469.63, + "probability": 0.9107 + }, + { + "start": 5469.85, + "end": 5473.78, + "probability": 0.9417 + }, + { + "start": 5475.0, + "end": 5483.52, + "probability": 0.9791 + }, + { + "start": 5484.98, + "end": 5488.04, + "probability": 0.9492 + }, + { + "start": 5489.94, + "end": 5494.28, + "probability": 0.9731 + }, + { + "start": 5495.3, + "end": 5499.8, + "probability": 0.996 + }, + { + "start": 5501.52, + "end": 5502.8, + "probability": 0.6539 + }, + { + "start": 5503.46, + "end": 5504.94, + "probability": 0.9452 + }, + { + "start": 5505.1, + "end": 5511.12, + "probability": 0.9486 + }, + { + "start": 5511.92, + "end": 5511.92, + "probability": 0.0302 + }, + { + "start": 5511.92, + "end": 5515.94, + "probability": 0.9399 + }, + { + "start": 5516.76, + "end": 5521.24, + "probability": 0.9957 + }, + { + "start": 5521.66, + "end": 5526.34, + "probability": 0.9799 + }, + { + "start": 5526.6, + "end": 5528.14, + "probability": 0.6289 + }, + { + "start": 5528.2, + "end": 5530.64, + "probability": 0.8844 + }, + { + "start": 5530.76, + "end": 5530.76, + "probability": 0.1777 + }, + { + "start": 5530.98, + "end": 5530.98, + "probability": 0.5671 + }, + { + "start": 5531.0, + "end": 5533.1, + "probability": 0.7596 + }, + { + "start": 5533.16, + "end": 5533.16, + "probability": 0.3338 + }, + { + "start": 5533.22, + "end": 5534.84, + "probability": 0.9045 + }, + { + "start": 5535.0, + "end": 5535.48, + "probability": 0.6476 + }, + { + "start": 5535.52, + "end": 5535.9, + "probability": 0.7585 + }, + { + "start": 5536.02, + "end": 5536.72, + "probability": 0.502 + }, + { + "start": 5536.72, + "end": 5540.3, + "probability": 0.6106 + }, + { + "start": 5540.46, + "end": 5542.48, + "probability": 0.5686 + }, + { + "start": 5543.12, + "end": 5545.11, + "probability": 0.9863 + }, + { + "start": 5545.6, + "end": 5546.76, + "probability": 0.5665 + }, + { + "start": 5546.76, + "end": 5547.93, + "probability": 0.9531 + }, + { + "start": 5548.4, + "end": 5550.26, + "probability": 0.7393 + }, + { + "start": 5550.4, + "end": 5553.34, + "probability": 0.9505 + }, + { + "start": 5553.34, + "end": 5556.66, + "probability": 0.9982 + }, + { + "start": 5557.76, + "end": 5559.52, + "probability": 0.6821 + }, + { + "start": 5560.2, + "end": 5563.3, + "probability": 0.6843 + }, + { + "start": 5563.4, + "end": 5564.64, + "probability": 0.7876 + }, + { + "start": 5564.74, + "end": 5565.32, + "probability": 0.2514 + }, + { + "start": 5565.54, + "end": 5569.68, + "probability": 0.977 + }, + { + "start": 5570.62, + "end": 5574.66, + "probability": 0.9797 + }, + { + "start": 5576.26, + "end": 5581.62, + "probability": 0.7581 + }, + { + "start": 5581.84, + "end": 5583.4, + "probability": 0.5468 + }, + { + "start": 5583.62, + "end": 5584.88, + "probability": 0.8674 + }, + { + "start": 5585.08, + "end": 5586.24, + "probability": 0.7434 + }, + { + "start": 5586.52, + "end": 5587.76, + "probability": 0.9921 + }, + { + "start": 5588.02, + "end": 5589.24, + "probability": 0.9678 + }, + { + "start": 5589.38, + "end": 5591.66, + "probability": 0.9561 + }, + { + "start": 5592.66, + "end": 5594.66, + "probability": 0.9875 + }, + { + "start": 5595.24, + "end": 5599.66, + "probability": 0.9607 + }, + { + "start": 5600.28, + "end": 5605.76, + "probability": 0.9756 + }, + { + "start": 5605.76, + "end": 5610.38, + "probability": 0.9831 + }, + { + "start": 5610.38, + "end": 5615.9, + "probability": 0.9944 + }, + { + "start": 5616.5, + "end": 5619.44, + "probability": 0.8131 + }, + { + "start": 5619.44, + "end": 5619.62, + "probability": 0.3277 + }, + { + "start": 5619.86, + "end": 5620.59, + "probability": 0.3081 + }, + { + "start": 5621.2, + "end": 5621.6, + "probability": 0.6535 + }, + { + "start": 5621.72, + "end": 5622.16, + "probability": 0.5948 + }, + { + "start": 5622.68, + "end": 5622.96, + "probability": 0.5664 + }, + { + "start": 5623.86, + "end": 5626.12, + "probability": 0.2455 + }, + { + "start": 5626.26, + "end": 5628.16, + "probability": 0.0655 + }, + { + "start": 5628.16, + "end": 5631.94, + "probability": 0.8032 + }, + { + "start": 5632.14, + "end": 5633.11, + "probability": 0.9551 + }, + { + "start": 5633.3, + "end": 5635.74, + "probability": 0.8105 + }, + { + "start": 5635.88, + "end": 5638.0, + "probability": 0.8981 + }, + { + "start": 5638.26, + "end": 5641.74, + "probability": 0.9696 + }, + { + "start": 5642.52, + "end": 5646.3, + "probability": 0.9653 + }, + { + "start": 5647.82, + "end": 5647.92, + "probability": 0.7478 + }, + { + "start": 5648.08, + "end": 5649.86, + "probability": 0.9757 + }, + { + "start": 5650.32, + "end": 5651.92, + "probability": 0.9878 + }, + { + "start": 5654.35, + "end": 5656.36, + "probability": 0.1852 + }, + { + "start": 5656.36, + "end": 5657.94, + "probability": 0.9531 + }, + { + "start": 5658.42, + "end": 5660.06, + "probability": 0.7165 + }, + { + "start": 5660.06, + "end": 5661.96, + "probability": 0.7989 + }, + { + "start": 5661.98, + "end": 5663.09, + "probability": 0.8896 + }, + { + "start": 5663.4, + "end": 5665.04, + "probability": 0.9395 + }, + { + "start": 5666.14, + "end": 5669.02, + "probability": 0.9576 + }, + { + "start": 5669.66, + "end": 5673.74, + "probability": 0.9935 + }, + { + "start": 5675.6, + "end": 5677.84, + "probability": 0.4063 + }, + { + "start": 5678.08, + "end": 5680.7, + "probability": 0.878 + }, + { + "start": 5681.62, + "end": 5682.89, + "probability": 0.9751 + }, + { + "start": 5683.5, + "end": 5685.48, + "probability": 0.8056 + }, + { + "start": 5686.2, + "end": 5688.16, + "probability": 0.9739 + }, + { + "start": 5688.56, + "end": 5689.86, + "probability": 0.9031 + }, + { + "start": 5690.98, + "end": 5695.42, + "probability": 0.9888 + }, + { + "start": 5695.54, + "end": 5696.58, + "probability": 0.9685 + }, + { + "start": 5696.94, + "end": 5698.52, + "probability": 0.6683 + }, + { + "start": 5699.42, + "end": 5700.46, + "probability": 0.8438 + }, + { + "start": 5700.54, + "end": 5701.6, + "probability": 0.8365 + }, + { + "start": 5701.94, + "end": 5704.36, + "probability": 0.9813 + }, + { + "start": 5704.66, + "end": 5708.48, + "probability": 0.9793 + }, + { + "start": 5708.48, + "end": 5712.26, + "probability": 0.6932 + }, + { + "start": 5712.74, + "end": 5714.56, + "probability": 0.0207 + }, + { + "start": 5714.76, + "end": 5714.76, + "probability": 0.0782 + }, + { + "start": 5714.82, + "end": 5716.84, + "probability": 0.0921 + }, + { + "start": 5716.84, + "end": 5718.18, + "probability": 0.3294 + }, + { + "start": 5718.28, + "end": 5718.82, + "probability": 0.7275 + }, + { + "start": 5718.96, + "end": 5719.18, + "probability": 0.1395 + }, + { + "start": 5719.18, + "end": 5720.44, + "probability": 0.2975 + }, + { + "start": 5720.58, + "end": 5722.12, + "probability": 0.1908 + }, + { + "start": 5725.0, + "end": 5725.56, + "probability": 0.2547 + }, + { + "start": 5728.26, + "end": 5729.46, + "probability": 0.2891 + }, + { + "start": 5729.46, + "end": 5729.46, + "probability": 0.1655 + }, + { + "start": 5729.46, + "end": 5729.72, + "probability": 0.1548 + }, + { + "start": 5729.72, + "end": 5731.66, + "probability": 0.4485 + }, + { + "start": 5731.7, + "end": 5732.76, + "probability": 0.4982 + }, + { + "start": 5732.76, + "end": 5733.22, + "probability": 0.1471 + }, + { + "start": 5733.22, + "end": 5734.54, + "probability": 0.6332 + }, + { + "start": 5734.64, + "end": 5736.12, + "probability": 0.763 + }, + { + "start": 5736.2, + "end": 5738.64, + "probability": 0.5838 + }, + { + "start": 5738.76, + "end": 5739.42, + "probability": 0.2704 + }, + { + "start": 5739.5, + "end": 5739.84, + "probability": 0.725 + }, + { + "start": 5739.98, + "end": 5744.82, + "probability": 0.6008 + }, + { + "start": 5744.86, + "end": 5745.85, + "probability": 0.8721 + }, + { + "start": 5746.18, + "end": 5747.96, + "probability": 0.8754 + }, + { + "start": 5749.08, + "end": 5751.04, + "probability": 0.2269 + }, + { + "start": 5751.14, + "end": 5755.08, + "probability": 0.7738 + }, + { + "start": 5755.24, + "end": 5756.34, + "probability": 0.7987 + }, + { + "start": 5756.48, + "end": 5759.88, + "probability": 0.7786 + }, + { + "start": 5759.96, + "end": 5760.62, + "probability": 0.5659 + }, + { + "start": 5761.06, + "end": 5761.64, + "probability": 0.2637 + }, + { + "start": 5761.76, + "end": 5762.45, + "probability": 0.3797 + }, + { + "start": 5763.2, + "end": 5764.56, + "probability": 0.4049 + }, + { + "start": 5765.34, + "end": 5768.18, + "probability": 0.0193 + }, + { + "start": 5768.18, + "end": 5768.32, + "probability": 0.0602 + }, + { + "start": 5768.32, + "end": 5770.84, + "probability": 0.417 + }, + { + "start": 5770.88, + "end": 5771.84, + "probability": 0.181 + }, + { + "start": 5771.98, + "end": 5773.58, + "probability": 0.5699 + }, + { + "start": 5773.66, + "end": 5774.52, + "probability": 0.6065 + }, + { + "start": 5774.66, + "end": 5775.56, + "probability": 0.8163 + }, + { + "start": 5775.7, + "end": 5776.52, + "probability": 0.8338 + }, + { + "start": 5776.64, + "end": 5778.66, + "probability": 0.9832 + }, + { + "start": 5779.42, + "end": 5782.3, + "probability": 0.9902 + }, + { + "start": 5783.54, + "end": 5784.94, + "probability": 0.6638 + }, + { + "start": 5786.36, + "end": 5791.5, + "probability": 0.9563 + }, + { + "start": 5793.2, + "end": 5798.82, + "probability": 0.9742 + }, + { + "start": 5800.0, + "end": 5804.5, + "probability": 0.8887 + }, + { + "start": 5805.04, + "end": 5806.06, + "probability": 0.9363 + }, + { + "start": 5807.2, + "end": 5810.44, + "probability": 0.9669 + }, + { + "start": 5811.06, + "end": 5813.62, + "probability": 0.5872 + }, + { + "start": 5813.72, + "end": 5815.84, + "probability": 0.8892 + }, + { + "start": 5816.02, + "end": 5820.56, + "probability": 0.8658 + }, + { + "start": 5821.06, + "end": 5823.5, + "probability": 0.9779 + }, + { + "start": 5823.6, + "end": 5824.42, + "probability": 0.814 + }, + { + "start": 5826.04, + "end": 5828.32, + "probability": 0.8553 + }, + { + "start": 5829.22, + "end": 5834.12, + "probability": 0.4984 + }, + { + "start": 5834.9, + "end": 5840.36, + "probability": 0.8933 + }, + { + "start": 5840.96, + "end": 5843.32, + "probability": 0.8555 + }, + { + "start": 5844.24, + "end": 5844.62, + "probability": 0.4009 + }, + { + "start": 5844.68, + "end": 5848.14, + "probability": 0.7957 + }, + { + "start": 5848.94, + "end": 5853.98, + "probability": 0.6549 + }, + { + "start": 5854.42, + "end": 5856.58, + "probability": 0.8861 + }, + { + "start": 5857.28, + "end": 5864.64, + "probability": 0.946 + }, + { + "start": 5865.34, + "end": 5872.82, + "probability": 0.7993 + }, + { + "start": 5873.4, + "end": 5877.12, + "probability": 0.9758 + }, + { + "start": 5878.16, + "end": 5883.32, + "probability": 0.9821 + }, + { + "start": 5884.1, + "end": 5889.92, + "probability": 0.8702 + }, + { + "start": 5889.92, + "end": 5893.42, + "probability": 0.9989 + }, + { + "start": 5894.68, + "end": 5896.2, + "probability": 0.6779 + }, + { + "start": 5896.48, + "end": 5898.12, + "probability": 0.9755 + }, + { + "start": 5899.3, + "end": 5900.67, + "probability": 0.9545 + }, + { + "start": 5900.76, + "end": 5905.04, + "probability": 0.9893 + }, + { + "start": 5905.04, + "end": 5908.68, + "probability": 0.774 + }, + { + "start": 5909.66, + "end": 5910.82, + "probability": 0.3368 + }, + { + "start": 5910.9, + "end": 5915.68, + "probability": 0.9902 + }, + { + "start": 5916.16, + "end": 5922.8, + "probability": 0.9904 + }, + { + "start": 5923.08, + "end": 5927.52, + "probability": 0.9675 + }, + { + "start": 5927.92, + "end": 5928.8, + "probability": 0.9276 + }, + { + "start": 5929.26, + "end": 5933.56, + "probability": 0.9375 + }, + { + "start": 5934.38, + "end": 5936.5, + "probability": 0.8176 + }, + { + "start": 5937.24, + "end": 5941.0, + "probability": 0.9154 + }, + { + "start": 5941.46, + "end": 5943.2, + "probability": 0.9804 + }, + { + "start": 5943.64, + "end": 5947.76, + "probability": 0.9953 + }, + { + "start": 5948.02, + "end": 5951.7, + "probability": 0.9562 + }, + { + "start": 5952.2, + "end": 5953.84, + "probability": 0.4408 + }, + { + "start": 5953.86, + "end": 5954.94, + "probability": 0.85 + }, + { + "start": 5955.1, + "end": 5955.1, + "probability": 0.0503 + }, + { + "start": 5955.6, + "end": 5956.86, + "probability": 0.9177 + }, + { + "start": 5957.04, + "end": 5957.32, + "probability": 0.4093 + }, + { + "start": 5957.68, + "end": 5959.43, + "probability": 0.927 + }, + { + "start": 5960.22, + "end": 5963.14, + "probability": 0.8935 + }, + { + "start": 5963.34, + "end": 5966.5, + "probability": 0.924 + }, + { + "start": 5966.8, + "end": 5967.16, + "probability": 0.4994 + }, + { + "start": 5967.2, + "end": 5972.32, + "probability": 0.9662 + }, + { + "start": 5972.36, + "end": 5973.4, + "probability": 0.9361 + }, + { + "start": 5973.7, + "end": 5976.2, + "probability": 0.77 + }, + { + "start": 5976.64, + "end": 5978.82, + "probability": 0.7319 + }, + { + "start": 5978.86, + "end": 5979.48, + "probability": 0.9697 + }, + { + "start": 5980.14, + "end": 5981.54, + "probability": 0.8626 + }, + { + "start": 5981.84, + "end": 5983.78, + "probability": 0.7739 + }, + { + "start": 5983.86, + "end": 5984.69, + "probability": 0.6113 + }, + { + "start": 5985.04, + "end": 5985.78, + "probability": 0.8447 + }, + { + "start": 5986.28, + "end": 5988.7, + "probability": 0.9868 + }, + { + "start": 5989.04, + "end": 5991.94, + "probability": 0.96 + }, + { + "start": 5991.94, + "end": 5997.06, + "probability": 0.8374 + }, + { + "start": 5998.04, + "end": 6001.9, + "probability": 0.7189 + }, + { + "start": 6002.02, + "end": 6003.68, + "probability": 0.8065 + }, + { + "start": 6003.9, + "end": 6004.12, + "probability": 0.6202 + }, + { + "start": 6004.18, + "end": 6005.52, + "probability": 0.8876 + }, + { + "start": 6005.66, + "end": 6006.68, + "probability": 0.6755 + }, + { + "start": 6006.84, + "end": 6008.58, + "probability": 0.9714 + }, + { + "start": 6008.76, + "end": 6010.03, + "probability": 0.8901 + }, + { + "start": 6010.9, + "end": 6014.83, + "probability": 0.894 + }, + { + "start": 6015.72, + "end": 6019.5, + "probability": 0.9089 + }, + { + "start": 6020.14, + "end": 6021.7, + "probability": 0.8437 + }, + { + "start": 6022.2, + "end": 6024.78, + "probability": 0.8081 + }, + { + "start": 6024.92, + "end": 6028.36, + "probability": 0.8274 + }, + { + "start": 6028.66, + "end": 6031.36, + "probability": 0.8798 + }, + { + "start": 6031.86, + "end": 6032.7, + "probability": 0.9651 + }, + { + "start": 6032.8, + "end": 6033.52, + "probability": 0.7461 + }, + { + "start": 6033.84, + "end": 6035.38, + "probability": 0.9753 + }, + { + "start": 6035.84, + "end": 6038.9, + "probability": 0.9863 + }, + { + "start": 6039.6, + "end": 6040.26, + "probability": 0.9567 + }, + { + "start": 6040.38, + "end": 6044.7, + "probability": 0.8034 + }, + { + "start": 6044.94, + "end": 6048.07, + "probability": 0.9457 + }, + { + "start": 6048.36, + "end": 6052.82, + "probability": 0.97 + }, + { + "start": 6053.18, + "end": 6055.2, + "probability": 0.9888 + }, + { + "start": 6055.48, + "end": 6057.28, + "probability": 0.709 + }, + { + "start": 6057.46, + "end": 6059.91, + "probability": 0.773 + }, + { + "start": 6061.0, + "end": 6064.82, + "probability": 0.8758 + }, + { + "start": 6065.44, + "end": 6066.56, + "probability": 0.4769 + }, + { + "start": 6066.56, + "end": 6067.38, + "probability": 0.3976 + }, + { + "start": 6067.44, + "end": 6069.08, + "probability": 0.4762 + }, + { + "start": 6069.16, + "end": 6073.44, + "probability": 0.6673 + }, + { + "start": 6073.54, + "end": 6075.26, + "probability": 0.099 + }, + { + "start": 6075.42, + "end": 6076.32, + "probability": 0.4348 + }, + { + "start": 6076.4, + "end": 6077.38, + "probability": 0.3118 + }, + { + "start": 6077.66, + "end": 6082.54, + "probability": 0.6985 + }, + { + "start": 6082.62, + "end": 6084.6, + "probability": 0.1495 + }, + { + "start": 6084.7, + "end": 6087.74, + "probability": 0.9435 + }, + { + "start": 6087.74, + "end": 6090.16, + "probability": 0.8616 + }, + { + "start": 6090.38, + "end": 6092.24, + "probability": 0.7735 + }, + { + "start": 6094.7, + "end": 6094.78, + "probability": 0.1377 + }, + { + "start": 6094.78, + "end": 6097.66, + "probability": 0.5425 + }, + { + "start": 6097.8, + "end": 6099.06, + "probability": 0.3394 + }, + { + "start": 6099.78, + "end": 6102.88, + "probability": 0.646 + }, + { + "start": 6102.96, + "end": 6108.0, + "probability": 0.6991 + }, + { + "start": 6108.2, + "end": 6109.98, + "probability": 0.1711 + }, + { + "start": 6109.98, + "end": 6110.12, + "probability": 0.1844 + }, + { + "start": 6110.12, + "end": 6112.73, + "probability": 0.84 + }, + { + "start": 6112.96, + "end": 6113.96, + "probability": 0.9527 + }, + { + "start": 6114.16, + "end": 6116.06, + "probability": 0.8137 + }, + { + "start": 6116.38, + "end": 6119.27, + "probability": 0.7254 + }, + { + "start": 6120.06, + "end": 6122.5, + "probability": 0.6666 + }, + { + "start": 6123.38, + "end": 6124.22, + "probability": 0.7497 + }, + { + "start": 6125.76, + "end": 6125.76, + "probability": 0.3339 + }, + { + "start": 6125.76, + "end": 6126.52, + "probability": 0.656 + }, + { + "start": 6126.84, + "end": 6127.92, + "probability": 0.7285 + }, + { + "start": 6127.98, + "end": 6129.9, + "probability": 0.8298 + }, + { + "start": 6130.02, + "end": 6130.26, + "probability": 0.7896 + }, + { + "start": 6131.04, + "end": 6133.31, + "probability": 0.9834 + }, + { + "start": 6133.42, + "end": 6137.81, + "probability": 0.9884 + }, + { + "start": 6138.4, + "end": 6140.38, + "probability": 0.5332 + }, + { + "start": 6140.46, + "end": 6141.44, + "probability": 0.7918 + }, + { + "start": 6141.58, + "end": 6143.18, + "probability": 0.9458 + }, + { + "start": 6143.6, + "end": 6147.26, + "probability": 0.9584 + }, + { + "start": 6148.0, + "end": 6157.02, + "probability": 0.9688 + }, + { + "start": 6157.24, + "end": 6160.0, + "probability": 0.7669 + }, + { + "start": 6160.08, + "end": 6162.02, + "probability": 0.6691 + }, + { + "start": 6162.1, + "end": 6162.88, + "probability": 0.8678 + }, + { + "start": 6163.24, + "end": 6166.52, + "probability": 0.9852 + }, + { + "start": 6167.38, + "end": 6169.42, + "probability": 0.7672 + }, + { + "start": 6169.98, + "end": 6174.16, + "probability": 0.8674 + }, + { + "start": 6174.64, + "end": 6182.1, + "probability": 0.7871 + }, + { + "start": 6182.2, + "end": 6185.74, + "probability": 0.9677 + }, + { + "start": 6186.08, + "end": 6188.0, + "probability": 0.6955 + }, + { + "start": 6189.16, + "end": 6189.82, + "probability": 0.4926 + }, + { + "start": 6189.92, + "end": 6190.56, + "probability": 0.7415 + }, + { + "start": 6190.7, + "end": 6196.88, + "probability": 0.8051 + }, + { + "start": 6197.26, + "end": 6198.72, + "probability": 0.8807 + }, + { + "start": 6198.86, + "end": 6201.1, + "probability": 0.9422 + }, + { + "start": 6201.7, + "end": 6210.02, + "probability": 0.9486 + }, + { + "start": 6210.1, + "end": 6212.88, + "probability": 0.761 + }, + { + "start": 6212.9, + "end": 6213.62, + "probability": 0.8649 + }, + { + "start": 6213.72, + "end": 6214.26, + "probability": 0.7157 + }, + { + "start": 6214.4, + "end": 6218.08, + "probability": 0.9624 + }, + { + "start": 6218.5, + "end": 6219.18, + "probability": 0.9004 + }, + { + "start": 6219.28, + "end": 6221.02, + "probability": 0.8969 + }, + { + "start": 6221.18, + "end": 6227.02, + "probability": 0.9893 + }, + { + "start": 6227.52, + "end": 6229.1, + "probability": 0.9168 + }, + { + "start": 6229.36, + "end": 6231.18, + "probability": 0.7744 + }, + { + "start": 6233.21, + "end": 6237.72, + "probability": 0.8556 + }, + { + "start": 6238.4, + "end": 6243.28, + "probability": 0.924 + }, + { + "start": 6243.62, + "end": 6244.2, + "probability": 0.9845 + }, + { + "start": 6244.3, + "end": 6249.27, + "probability": 0.9826 + }, + { + "start": 6249.86, + "end": 6251.52, + "probability": 0.652 + }, + { + "start": 6251.8, + "end": 6256.46, + "probability": 0.9886 + }, + { + "start": 6256.46, + "end": 6261.76, + "probability": 0.9771 + }, + { + "start": 6262.26, + "end": 6264.74, + "probability": 0.9448 + }, + { + "start": 6264.84, + "end": 6266.11, + "probability": 0.8809 + }, + { + "start": 6266.5, + "end": 6269.62, + "probability": 0.8934 + }, + { + "start": 6269.64, + "end": 6270.52, + "probability": 0.7599 + }, + { + "start": 6270.66, + "end": 6271.82, + "probability": 0.9434 + }, + { + "start": 6272.08, + "end": 6273.46, + "probability": 0.8702 + }, + { + "start": 6274.34, + "end": 6276.54, + "probability": 0.8366 + }, + { + "start": 6276.74, + "end": 6278.4, + "probability": 0.9374 + }, + { + "start": 6278.52, + "end": 6282.07, + "probability": 0.9951 + }, + { + "start": 6282.48, + "end": 6283.62, + "probability": 0.6333 + }, + { + "start": 6283.84, + "end": 6287.46, + "probability": 0.9853 + }, + { + "start": 6287.86, + "end": 6289.42, + "probability": 0.7928 + }, + { + "start": 6289.62, + "end": 6291.88, + "probability": 0.9819 + }, + { + "start": 6293.78, + "end": 6293.9, + "probability": 0.6129 + }, + { + "start": 6294.08, + "end": 6294.84, + "probability": 0.8237 + }, + { + "start": 6295.24, + "end": 6296.24, + "probability": 0.9688 + }, + { + "start": 6296.36, + "end": 6297.72, + "probability": 0.9572 + }, + { + "start": 6298.0, + "end": 6300.76, + "probability": 0.9917 + }, + { + "start": 6300.88, + "end": 6305.72, + "probability": 0.9929 + }, + { + "start": 6305.9, + "end": 6307.8, + "probability": 0.9216 + }, + { + "start": 6308.18, + "end": 6309.68, + "probability": 0.778 + }, + { + "start": 6309.86, + "end": 6310.52, + "probability": 0.9352 + }, + { + "start": 6310.94, + "end": 6314.1, + "probability": 0.9828 + }, + { + "start": 6314.14, + "end": 6315.04, + "probability": 0.836 + }, + { + "start": 6315.16, + "end": 6317.28, + "probability": 0.9722 + }, + { + "start": 6317.5, + "end": 6319.06, + "probability": 0.9782 + }, + { + "start": 6319.48, + "end": 6321.3, + "probability": 0.9187 + }, + { + "start": 6322.14, + "end": 6325.16, + "probability": 0.8836 + }, + { + "start": 6325.82, + "end": 6327.78, + "probability": 0.9649 + }, + { + "start": 6327.88, + "end": 6329.7, + "probability": 0.7686 + }, + { + "start": 6329.96, + "end": 6331.54, + "probability": 0.9016 + }, + { + "start": 6331.92, + "end": 6333.12, + "probability": 0.9751 + }, + { + "start": 6333.24, + "end": 6335.1, + "probability": 0.9575 + }, + { + "start": 6335.34, + "end": 6336.04, + "probability": 0.7782 + }, + { + "start": 6336.26, + "end": 6337.76, + "probability": 0.8835 + }, + { + "start": 6337.88, + "end": 6340.26, + "probability": 0.9148 + }, + { + "start": 6341.32, + "end": 6341.56, + "probability": 0.4346 + }, + { + "start": 6341.74, + "end": 6342.32, + "probability": 0.362 + }, + { + "start": 6342.32, + "end": 6342.9, + "probability": 0.4208 + }, + { + "start": 6342.96, + "end": 6343.28, + "probability": 0.7191 + }, + { + "start": 6343.38, + "end": 6344.02, + "probability": 0.5907 + }, + { + "start": 6344.06, + "end": 6347.54, + "probability": 0.8595 + }, + { + "start": 6347.66, + "end": 6350.16, + "probability": 0.721 + }, + { + "start": 6350.36, + "end": 6352.52, + "probability": 0.9028 + }, + { + "start": 6352.9, + "end": 6356.84, + "probability": 0.7862 + }, + { + "start": 6357.0, + "end": 6360.94, + "probability": 0.9464 + }, + { + "start": 6361.08, + "end": 6364.38, + "probability": 0.9902 + }, + { + "start": 6365.04, + "end": 6365.8, + "probability": 0.73 + }, + { + "start": 6365.86, + "end": 6367.04, + "probability": 0.9005 + }, + { + "start": 6367.18, + "end": 6368.14, + "probability": 0.736 + }, + { + "start": 6368.24, + "end": 6374.02, + "probability": 0.9849 + }, + { + "start": 6374.1, + "end": 6374.76, + "probability": 0.8676 + }, + { + "start": 6374.94, + "end": 6377.08, + "probability": 0.7544 + }, + { + "start": 6377.12, + "end": 6378.76, + "probability": 0.8895 + }, + { + "start": 6379.26, + "end": 6380.92, + "probability": 0.9746 + }, + { + "start": 6381.0, + "end": 6382.2, + "probability": 0.9285 + }, + { + "start": 6400.64, + "end": 6402.58, + "probability": 0.3791 + }, + { + "start": 6402.58, + "end": 6403.36, + "probability": 0.5761 + }, + { + "start": 6404.62, + "end": 6405.08, + "probability": 0.2476 + }, + { + "start": 6409.32, + "end": 6410.74, + "probability": 0.339 + }, + { + "start": 6410.74, + "end": 6413.84, + "probability": 0.6102 + }, + { + "start": 6414.04, + "end": 6415.66, + "probability": 0.3794 + }, + { + "start": 6415.74, + "end": 6416.66, + "probability": 0.7887 + }, + { + "start": 6416.74, + "end": 6421.36, + "probability": 0.8569 + }, + { + "start": 6421.66, + "end": 6425.14, + "probability": 0.9976 + }, + { + "start": 6425.14, + "end": 6429.46, + "probability": 0.9963 + }, + { + "start": 6430.4, + "end": 6434.9, + "probability": 0.9868 + }, + { + "start": 6436.72, + "end": 6444.37, + "probability": 0.9965 + }, + { + "start": 6444.74, + "end": 6452.34, + "probability": 0.9788 + }, + { + "start": 6452.66, + "end": 6454.96, + "probability": 0.9421 + }, + { + "start": 6456.04, + "end": 6457.27, + "probability": 0.7786 + }, + { + "start": 6457.36, + "end": 6461.24, + "probability": 0.9888 + }, + { + "start": 6461.46, + "end": 6464.5, + "probability": 0.9943 + }, + { + "start": 6465.2, + "end": 6468.18, + "probability": 0.9938 + }, + { + "start": 6468.34, + "end": 6471.38, + "probability": 0.9996 + }, + { + "start": 6472.44, + "end": 6476.36, + "probability": 0.9524 + }, + { + "start": 6477.02, + "end": 6480.54, + "probability": 0.9885 + }, + { + "start": 6481.32, + "end": 6488.38, + "probability": 0.9841 + }, + { + "start": 6488.88, + "end": 6490.78, + "probability": 0.9926 + }, + { + "start": 6490.84, + "end": 6494.88, + "probability": 0.9293 + }, + { + "start": 6494.88, + "end": 6498.58, + "probability": 0.9922 + }, + { + "start": 6499.98, + "end": 6500.46, + "probability": 0.9041 + }, + { + "start": 6500.62, + "end": 6507.28, + "probability": 0.9883 + }, + { + "start": 6508.08, + "end": 6509.67, + "probability": 0.9961 + }, + { + "start": 6510.28, + "end": 6511.05, + "probability": 0.9087 + }, + { + "start": 6512.78, + "end": 6516.5, + "probability": 0.9855 + }, + { + "start": 6516.68, + "end": 6517.7, + "probability": 0.9045 + }, + { + "start": 6517.84, + "end": 6518.44, + "probability": 0.9896 + }, + { + "start": 6518.5, + "end": 6519.36, + "probability": 0.9434 + }, + { + "start": 6519.82, + "end": 6522.94, + "probability": 0.9849 + }, + { + "start": 6523.02, + "end": 6525.54, + "probability": 0.9631 + }, + { + "start": 6526.32, + "end": 6528.3, + "probability": 0.9986 + }, + { + "start": 6528.3, + "end": 6532.6, + "probability": 0.9084 + }, + { + "start": 6533.04, + "end": 6536.2, + "probability": 0.9998 + }, + { + "start": 6537.78, + "end": 6541.94, + "probability": 0.9917 + }, + { + "start": 6542.66, + "end": 6543.5, + "probability": 0.888 + }, + { + "start": 6543.68, + "end": 6545.32, + "probability": 0.9531 + }, + { + "start": 6546.08, + "end": 6548.71, + "probability": 0.9915 + }, + { + "start": 6549.24, + "end": 6551.28, + "probability": 0.9572 + }, + { + "start": 6551.98, + "end": 6554.3, + "probability": 0.991 + }, + { + "start": 6555.06, + "end": 6557.9, + "probability": 0.9831 + }, + { + "start": 6558.2, + "end": 6560.38, + "probability": 0.9803 + }, + { + "start": 6561.1, + "end": 6563.22, + "probability": 0.9935 + }, + { + "start": 6563.52, + "end": 6563.52, + "probability": 0.4915 + }, + { + "start": 6563.8, + "end": 6567.04, + "probability": 0.4996 + }, + { + "start": 6567.04, + "end": 6567.04, + "probability": 0.0718 + }, + { + "start": 6567.04, + "end": 6567.74, + "probability": 0.0632 + }, + { + "start": 6568.8, + "end": 6569.34, + "probability": 0.5287 + }, + { + "start": 6569.4, + "end": 6570.84, + "probability": 0.7343 + }, + { + "start": 6570.98, + "end": 6572.04, + "probability": 0.9128 + }, + { + "start": 6572.2, + "end": 6575.48, + "probability": 0.8961 + }, + { + "start": 6576.34, + "end": 6577.46, + "probability": 0.8383 + }, + { + "start": 6577.68, + "end": 6581.26, + "probability": 0.9907 + }, + { + "start": 6582.22, + "end": 6583.32, + "probability": 0.8214 + }, + { + "start": 6583.46, + "end": 6586.46, + "probability": 0.994 + }, + { + "start": 6586.86, + "end": 6590.98, + "probability": 0.992 + }, + { + "start": 6591.32, + "end": 6593.14, + "probability": 0.8989 + }, + { + "start": 6593.48, + "end": 6595.86, + "probability": 0.9843 + }, + { + "start": 6596.52, + "end": 6597.66, + "probability": 0.898 + }, + { + "start": 6597.78, + "end": 6598.48, + "probability": 0.9481 + }, + { + "start": 6598.56, + "end": 6601.38, + "probability": 0.9966 + }, + { + "start": 6601.42, + "end": 6604.5, + "probability": 0.998 + }, + { + "start": 6604.72, + "end": 6606.5, + "probability": 0.9792 + }, + { + "start": 6607.24, + "end": 6608.82, + "probability": 0.9922 + }, + { + "start": 6608.9, + "end": 6612.36, + "probability": 0.9871 + }, + { + "start": 6612.46, + "end": 6617.58, + "probability": 0.9907 + }, + { + "start": 6618.08, + "end": 6619.96, + "probability": 0.965 + }, + { + "start": 6620.02, + "end": 6622.46, + "probability": 0.9964 + }, + { + "start": 6622.8, + "end": 6623.24, + "probability": 0.8344 + }, + { + "start": 6623.44, + "end": 6625.74, + "probability": 0.7958 + }, + { + "start": 6626.2, + "end": 6628.02, + "probability": 0.8825 + }, + { + "start": 6639.0, + "end": 6639.84, + "probability": 0.273 + }, + { + "start": 6639.92, + "end": 6641.48, + "probability": 0.2908 + }, + { + "start": 6641.48, + "end": 6643.96, + "probability": 0.9016 + }, + { + "start": 6643.96, + "end": 6644.58, + "probability": 0.1362 + }, + { + "start": 6644.74, + "end": 6645.24, + "probability": 0.3281 + }, + { + "start": 6646.16, + "end": 6648.12, + "probability": 0.3981 + }, + { + "start": 6650.0, + "end": 6650.2, + "probability": 0.4982 + }, + { + "start": 6675.34, + "end": 6678.28, + "probability": 0.7489 + }, + { + "start": 6679.48, + "end": 6688.44, + "probability": 0.9574 + }, + { + "start": 6690.22, + "end": 6697.94, + "probability": 0.962 + }, + { + "start": 6700.54, + "end": 6703.68, + "probability": 0.9712 + }, + { + "start": 6706.05, + "end": 6708.28, + "probability": 0.8334 + }, + { + "start": 6708.44, + "end": 6708.72, + "probability": 0.8472 + }, + { + "start": 6708.78, + "end": 6709.82, + "probability": 0.8994 + }, + { + "start": 6710.92, + "end": 6712.5, + "probability": 0.9858 + }, + { + "start": 6713.64, + "end": 6713.96, + "probability": 0.0504 + }, + { + "start": 6714.8, + "end": 6715.57, + "probability": 0.7816 + }, + { + "start": 6716.5, + "end": 6718.16, + "probability": 0.6586 + }, + { + "start": 6718.52, + "end": 6720.62, + "probability": 0.4708 + }, + { + "start": 6720.62, + "end": 6720.98, + "probability": 0.2247 + }, + { + "start": 6720.98, + "end": 6721.52, + "probability": 0.3526 + }, + { + "start": 6721.64, + "end": 6722.07, + "probability": 0.5373 + }, + { + "start": 6722.3, + "end": 6723.4, + "probability": 0.9495 + }, + { + "start": 6725.52, + "end": 6726.96, + "probability": 0.8548 + }, + { + "start": 6727.12, + "end": 6727.68, + "probability": 0.6184 + }, + { + "start": 6727.72, + "end": 6729.62, + "probability": 0.6523 + }, + { + "start": 6729.82, + "end": 6732.14, + "probability": 0.9521 + }, + { + "start": 6734.64, + "end": 6739.12, + "probability": 0.9764 + }, + { + "start": 6739.28, + "end": 6741.28, + "probability": 0.9497 + }, + { + "start": 6742.04, + "end": 6743.66, + "probability": 0.9365 + }, + { + "start": 6743.84, + "end": 6748.5, + "probability": 0.9863 + }, + { + "start": 6751.76, + "end": 6758.82, + "probability": 0.9962 + }, + { + "start": 6760.72, + "end": 6761.22, + "probability": 0.712 + }, + { + "start": 6764.06, + "end": 6765.82, + "probability": 0.8694 + }, + { + "start": 6766.44, + "end": 6768.16, + "probability": 0.3506 + }, + { + "start": 6768.96, + "end": 6771.3, + "probability": 0.9682 + }, + { + "start": 6773.72, + "end": 6775.22, + "probability": 0.9491 + }, + { + "start": 6775.78, + "end": 6778.3, + "probability": 0.8123 + }, + { + "start": 6780.38, + "end": 6787.74, + "probability": 0.9376 + }, + { + "start": 6788.84, + "end": 6791.52, + "probability": 0.8237 + }, + { + "start": 6792.92, + "end": 6797.16, + "probability": 0.0082 + }, + { + "start": 6797.3, + "end": 6798.07, + "probability": 0.2688 + }, + { + "start": 6798.22, + "end": 6800.18, + "probability": 0.2693 + }, + { + "start": 6800.86, + "end": 6806.34, + "probability": 0.1311 + }, + { + "start": 6806.64, + "end": 6806.64, + "probability": 0.0466 + }, + { + "start": 6806.64, + "end": 6809.86, + "probability": 0.2979 + }, + { + "start": 6816.44, + "end": 6821.2, + "probability": 0.9916 + }, + { + "start": 6821.56, + "end": 6822.96, + "probability": 0.9259 + }, + { + "start": 6823.1, + "end": 6823.56, + "probability": 0.8076 + }, + { + "start": 6823.66, + "end": 6824.12, + "probability": 0.395 + }, + { + "start": 6824.46, + "end": 6828.22, + "probability": 0.9532 + }, + { + "start": 6828.24, + "end": 6830.26, + "probability": 0.9434 + }, + { + "start": 6830.72, + "end": 6832.56, + "probability": 0.9427 + }, + { + "start": 6832.76, + "end": 6836.8, + "probability": 0.9928 + }, + { + "start": 6837.22, + "end": 6838.3, + "probability": 0.9153 + }, + { + "start": 6838.42, + "end": 6840.52, + "probability": 0.8642 + }, + { + "start": 6841.32, + "end": 6842.06, + "probability": 0.7661 + }, + { + "start": 6844.98, + "end": 6845.5, + "probability": 0.3852 + }, + { + "start": 6845.62, + "end": 6851.74, + "probability": 0.8481 + }, + { + "start": 6852.32, + "end": 6852.82, + "probability": 0.6609 + }, + { + "start": 6852.92, + "end": 6857.4, + "probability": 0.7723 + }, + { + "start": 6857.52, + "end": 6859.33, + "probability": 0.6636 + }, + { + "start": 6860.98, + "end": 6865.74, + "probability": 0.8713 + }, + { + "start": 6866.22, + "end": 6866.9, + "probability": 0.6419 + }, + { + "start": 6867.0, + "end": 6868.84, + "probability": 0.5685 + }, + { + "start": 6869.28, + "end": 6871.8, + "probability": 0.9241 + }, + { + "start": 6872.02, + "end": 6872.78, + "probability": 0.7066 + }, + { + "start": 6872.86, + "end": 6873.88, + "probability": 0.833 + }, + { + "start": 6874.22, + "end": 6878.68, + "probability": 0.9552 + }, + { + "start": 6879.3, + "end": 6881.3, + "probability": 0.9237 + }, + { + "start": 6881.4, + "end": 6883.42, + "probability": 0.5785 + }, + { + "start": 6883.56, + "end": 6887.42, + "probability": 0.8434 + }, + { + "start": 6887.86, + "end": 6895.46, + "probability": 0.9751 + }, + { + "start": 6896.3, + "end": 6899.7, + "probability": 0.8686 + }, + { + "start": 6899.7, + "end": 6908.58, + "probability": 0.977 + }, + { + "start": 6909.02, + "end": 6909.84, + "probability": 0.6565 + }, + { + "start": 6910.42, + "end": 6910.96, + "probability": 0.441 + }, + { + "start": 6911.0, + "end": 6916.24, + "probability": 0.9601 + }, + { + "start": 6916.54, + "end": 6917.9, + "probability": 0.7078 + }, + { + "start": 6918.08, + "end": 6918.9, + "probability": 0.788 + }, + { + "start": 6919.1, + "end": 6923.74, + "probability": 0.9885 + }, + { + "start": 6924.04, + "end": 6926.36, + "probability": 0.9858 + }, + { + "start": 6926.58, + "end": 6928.62, + "probability": 0.9963 + }, + { + "start": 6929.02, + "end": 6931.94, + "probability": 0.7828 + }, + { + "start": 6932.18, + "end": 6932.64, + "probability": 0.4981 + }, + { + "start": 6932.64, + "end": 6933.34, + "probability": 0.7752 + }, + { + "start": 6934.44, + "end": 6936.86, + "probability": 0.7567 + }, + { + "start": 6937.42, + "end": 6937.96, + "probability": 0.7643 + }, + { + "start": 6938.58, + "end": 6943.14, + "probability": 0.9917 + }, + { + "start": 6943.36, + "end": 6943.88, + "probability": 0.5911 + }, + { + "start": 6944.04, + "end": 6944.32, + "probability": 0.7541 + }, + { + "start": 6944.34, + "end": 6944.96, + "probability": 0.7482 + }, + { + "start": 6945.2, + "end": 6945.58, + "probability": 0.6833 + }, + { + "start": 6945.66, + "end": 6947.16, + "probability": 0.3771 + }, + { + "start": 6947.38, + "end": 6949.5, + "probability": 0.7342 + }, + { + "start": 6949.76, + "end": 6951.02, + "probability": 0.2077 + }, + { + "start": 6951.48, + "end": 6952.62, + "probability": 0.6332 + }, + { + "start": 6952.94, + "end": 6955.12, + "probability": 0.6049 + }, + { + "start": 6955.36, + "end": 6955.8, + "probability": 0.7195 + }, + { + "start": 6956.52, + "end": 6956.95, + "probability": 0.4312 + }, + { + "start": 6957.56, + "end": 6960.42, + "probability": 0.5825 + }, + { + "start": 6960.42, + "end": 6961.04, + "probability": 0.3285 + }, + { + "start": 6961.04, + "end": 6961.24, + "probability": 0.8206 + }, + { + "start": 6961.36, + "end": 6962.22, + "probability": 0.5336 + }, + { + "start": 6963.54, + "end": 6967.02, + "probability": 0.9073 + }, + { + "start": 6967.06, + "end": 6968.5, + "probability": 0.7152 + }, + { + "start": 6968.72, + "end": 6971.08, + "probability": 0.6154 + }, + { + "start": 6971.1, + "end": 6972.24, + "probability": 0.6961 + }, + { + "start": 6972.52, + "end": 6979.24, + "probability": 0.9375 + }, + { + "start": 6979.96, + "end": 6981.16, + "probability": 0.5699 + }, + { + "start": 6981.36, + "end": 6984.1, + "probability": 0.9775 + }, + { + "start": 6984.34, + "end": 6985.3, + "probability": 0.9448 + }, + { + "start": 6985.9, + "end": 6988.04, + "probability": 0.2003 + }, + { + "start": 6988.44, + "end": 6989.12, + "probability": 0.008 + }, + { + "start": 6989.88, + "end": 6993.36, + "probability": 0.3258 + }, + { + "start": 6993.88, + "end": 6995.94, + "probability": 0.8059 + }, + { + "start": 6996.3, + "end": 6999.36, + "probability": 0.7451 + }, + { + "start": 6999.42, + "end": 7002.26, + "probability": 0.2128 + }, + { + "start": 7002.68, + "end": 7003.54, + "probability": 0.0093 + }, + { + "start": 7003.54, + "end": 7003.54, + "probability": 0.0228 + }, + { + "start": 7003.54, + "end": 7005.21, + "probability": 0.6007 + }, + { + "start": 7006.76, + "end": 7008.0, + "probability": 0.8138 + }, + { + "start": 7008.04, + "end": 7009.46, + "probability": 0.9355 + }, + { + "start": 7009.56, + "end": 7011.24, + "probability": 0.9752 + }, + { + "start": 7011.32, + "end": 7013.98, + "probability": 0.9822 + }, + { + "start": 7014.14, + "end": 7019.5, + "probability": 0.9981 + }, + { + "start": 7019.52, + "end": 7019.52, + "probability": 0.2855 + }, + { + "start": 7019.56, + "end": 7020.94, + "probability": 0.8507 + }, + { + "start": 7020.98, + "end": 7023.18, + "probability": 0.3901 + }, + { + "start": 7023.26, + "end": 7023.54, + "probability": 0.7085 + }, + { + "start": 7023.54, + "end": 7023.86, + "probability": 0.5731 + }, + { + "start": 7023.92, + "end": 7028.02, + "probability": 0.9547 + }, + { + "start": 7028.14, + "end": 7029.16, + "probability": 0.0793 + }, + { + "start": 7029.36, + "end": 7030.72, + "probability": 0.5567 + }, + { + "start": 7031.39, + "end": 7034.46, + "probability": 0.9541 + }, + { + "start": 7034.56, + "end": 7035.14, + "probability": 0.0829 + }, + { + "start": 7035.18, + "end": 7037.34, + "probability": 0.7757 + }, + { + "start": 7037.58, + "end": 7041.74, + "probability": 0.7809 + }, + { + "start": 7043.04, + "end": 7046.48, + "probability": 0.9543 + }, + { + "start": 7047.1, + "end": 7050.6, + "probability": 0.96 + }, + { + "start": 7051.1, + "end": 7053.72, + "probability": 0.3751 + }, + { + "start": 7053.96, + "end": 7055.92, + "probability": 0.8062 + }, + { + "start": 7057.08, + "end": 7058.6, + "probability": 0.1762 + }, + { + "start": 7059.7, + "end": 7059.78, + "probability": 0.0735 + }, + { + "start": 7059.78, + "end": 7060.1, + "probability": 0.1691 + }, + { + "start": 7060.1, + "end": 7065.04, + "probability": 0.9086 + }, + { + "start": 7066.76, + "end": 7069.08, + "probability": 0.5883 + }, + { + "start": 7069.08, + "end": 7073.14, + "probability": 0.9921 + }, + { + "start": 7073.52, + "end": 7076.42, + "probability": 0.8802 + }, + { + "start": 7076.58, + "end": 7079.32, + "probability": 0.7695 + }, + { + "start": 7079.32, + "end": 7081.6, + "probability": 0.9775 + }, + { + "start": 7081.84, + "end": 7082.6, + "probability": 0.597 + }, + { + "start": 7082.6, + "end": 7083.7, + "probability": 0.6606 + }, + { + "start": 7083.78, + "end": 7086.6, + "probability": 0.9368 + }, + { + "start": 7086.6, + "end": 7087.54, + "probability": 0.7061 + }, + { + "start": 7087.64, + "end": 7088.94, + "probability": 0.7512 + }, + { + "start": 7088.98, + "end": 7089.74, + "probability": 0.8005 + }, + { + "start": 7089.78, + "end": 7089.78, + "probability": 0.6772 + }, + { + "start": 7089.92, + "end": 7091.92, + "probability": 0.8189 + }, + { + "start": 7091.96, + "end": 7092.22, + "probability": 0.4275 + }, + { + "start": 7092.38, + "end": 7099.68, + "probability": 0.8682 + }, + { + "start": 7100.66, + "end": 7106.14, + "probability": 0.9834 + }, + { + "start": 7106.5, + "end": 7107.78, + "probability": 0.9185 + }, + { + "start": 7108.08, + "end": 7109.54, + "probability": 0.8882 + }, + { + "start": 7110.14, + "end": 7116.3, + "probability": 0.9449 + }, + { + "start": 7116.48, + "end": 7117.4, + "probability": 0.5007 + }, + { + "start": 7117.68, + "end": 7117.94, + "probability": 0.2407 + }, + { + "start": 7117.94, + "end": 7119.78, + "probability": 0.745 + }, + { + "start": 7119.88, + "end": 7120.38, + "probability": 0.565 + }, + { + "start": 7120.48, + "end": 7121.2, + "probability": 0.7798 + }, + { + "start": 7121.26, + "end": 7122.12, + "probability": 0.8051 + }, + { + "start": 7122.48, + "end": 7123.24, + "probability": 0.8499 + }, + { + "start": 7123.38, + "end": 7124.1, + "probability": 0.8943 + }, + { + "start": 7124.38, + "end": 7128.62, + "probability": 0.9521 + }, + { + "start": 7129.8, + "end": 7130.3, + "probability": 0.5177 + }, + { + "start": 7130.36, + "end": 7131.38, + "probability": 0.6964 + }, + { + "start": 7131.4, + "end": 7131.88, + "probability": 0.7343 + }, + { + "start": 7131.88, + "end": 7132.44, + "probability": 0.8042 + }, + { + "start": 7132.56, + "end": 7135.7, + "probability": 0.8271 + }, + { + "start": 7136.86, + "end": 7137.9, + "probability": 0.9826 + }, + { + "start": 7141.86, + "end": 7145.58, + "probability": 0.7381 + }, + { + "start": 7146.22, + "end": 7147.54, + "probability": 0.6454 + }, + { + "start": 7147.6, + "end": 7148.24, + "probability": 0.4224 + }, + { + "start": 7149.42, + "end": 7150.56, + "probability": 0.0892 + }, + { + "start": 7155.56, + "end": 7158.28, + "probability": 0.4409 + }, + { + "start": 7159.02, + "end": 7163.2, + "probability": 0.7454 + }, + { + "start": 7164.3, + "end": 7166.2, + "probability": 0.8152 + }, + { + "start": 7166.32, + "end": 7167.04, + "probability": 0.7532 + }, + { + "start": 7167.24, + "end": 7167.7, + "probability": 0.6855 + }, + { + "start": 7167.8, + "end": 7168.4, + "probability": 0.7406 + }, + { + "start": 7168.6, + "end": 7169.0, + "probability": 0.7451 + }, + { + "start": 7169.12, + "end": 7169.96, + "probability": 0.5251 + }, + { + "start": 7170.08, + "end": 7172.94, + "probability": 0.8733 + }, + { + "start": 7173.02, + "end": 7175.24, + "probability": 0.1277 + }, + { + "start": 7175.38, + "end": 7177.5, + "probability": 0.9158 + }, + { + "start": 7178.5, + "end": 7179.87, + "probability": 0.7718 + }, + { + "start": 7181.76, + "end": 7184.44, + "probability": 0.9836 + }, + { + "start": 7185.4, + "end": 7189.2, + "probability": 0.9775 + }, + { + "start": 7190.14, + "end": 7192.81, + "probability": 0.7929 + }, + { + "start": 7193.54, + "end": 7198.76, + "probability": 0.8076 + }, + { + "start": 7199.38, + "end": 7201.42, + "probability": 0.5274 + }, + { + "start": 7201.42, + "end": 7204.18, + "probability": 0.9126 + }, + { + "start": 7204.18, + "end": 7206.94, + "probability": 0.8001 + }, + { + "start": 7207.18, + "end": 7207.26, + "probability": 0.4071 + }, + { + "start": 7207.34, + "end": 7208.12, + "probability": 0.6532 + }, + { + "start": 7208.24, + "end": 7209.97, + "probability": 0.8787 + }, + { + "start": 7210.62, + "end": 7211.88, + "probability": 0.7551 + }, + { + "start": 7212.1, + "end": 7213.86, + "probability": 0.8703 + }, + { + "start": 7215.06, + "end": 7217.9, + "probability": 0.9316 + }, + { + "start": 7217.98, + "end": 7218.54, + "probability": 0.7038 + }, + { + "start": 7218.64, + "end": 7219.6, + "probability": 0.9427 + }, + { + "start": 7219.62, + "end": 7221.88, + "probability": 0.6265 + }, + { + "start": 7222.24, + "end": 7224.62, + "probability": 0.987 + }, + { + "start": 7224.66, + "end": 7227.68, + "probability": 0.978 + }, + { + "start": 7227.9, + "end": 7228.9, + "probability": 0.7382 + }, + { + "start": 7229.68, + "end": 7230.16, + "probability": 0.6895 + }, + { + "start": 7230.32, + "end": 7231.08, + "probability": 0.7401 + }, + { + "start": 7231.18, + "end": 7234.28, + "probability": 0.8532 + }, + { + "start": 7234.7, + "end": 7236.54, + "probability": 0.9188 + }, + { + "start": 7236.94, + "end": 7240.1, + "probability": 0.9683 + }, + { + "start": 7240.84, + "end": 7247.18, + "probability": 0.9766 + }, + { + "start": 7248.04, + "end": 7249.96, + "probability": 0.5986 + }, + { + "start": 7250.04, + "end": 7250.94, + "probability": 0.6999 + }, + { + "start": 7251.22, + "end": 7255.78, + "probability": 0.9668 + }, + { + "start": 7256.72, + "end": 7259.92, + "probability": 0.9535 + }, + { + "start": 7261.42, + "end": 7263.06, + "probability": 0.9958 + }, + { + "start": 7264.42, + "end": 7266.7, + "probability": 0.9861 + }, + { + "start": 7266.98, + "end": 7268.4, + "probability": 0.9702 + }, + { + "start": 7269.44, + "end": 7271.6, + "probability": 0.8155 + }, + { + "start": 7271.6, + "end": 7274.46, + "probability": 0.8496 + }, + { + "start": 7274.84, + "end": 7277.3, + "probability": 0.9174 + }, + { + "start": 7278.22, + "end": 7279.88, + "probability": 0.9963 + }, + { + "start": 7281.12, + "end": 7281.2, + "probability": 0.722 + }, + { + "start": 7281.4, + "end": 7282.78, + "probability": 0.9858 + }, + { + "start": 7282.94, + "end": 7285.32, + "probability": 0.8401 + }, + { + "start": 7285.68, + "end": 7287.7, + "probability": 0.9734 + }, + { + "start": 7288.56, + "end": 7290.14, + "probability": 0.9983 + }, + { + "start": 7291.36, + "end": 7292.72, + "probability": 0.9535 + }, + { + "start": 7293.38, + "end": 7294.82, + "probability": 0.9258 + }, + { + "start": 7295.22, + "end": 7295.98, + "probability": 0.9346 + }, + { + "start": 7296.18, + "end": 7299.04, + "probability": 0.932 + }, + { + "start": 7300.16, + "end": 7302.16, + "probability": 0.9297 + }, + { + "start": 7304.92, + "end": 7307.18, + "probability": 0.9619 + }, + { + "start": 7307.92, + "end": 7311.72, + "probability": 0.8341 + }, + { + "start": 7312.9, + "end": 7318.66, + "probability": 0.7212 + }, + { + "start": 7319.78, + "end": 7320.9, + "probability": 0.853 + }, + { + "start": 7321.08, + "end": 7321.9, + "probability": 0.8895 + }, + { + "start": 7322.4, + "end": 7326.36, + "probability": 0.9916 + }, + { + "start": 7326.5, + "end": 7327.56, + "probability": 0.9388 + }, + { + "start": 7329.42, + "end": 7330.52, + "probability": 0.2869 + }, + { + "start": 7330.52, + "end": 7331.0, + "probability": 0.3451 + }, + { + "start": 7331.04, + "end": 7331.14, + "probability": 0.0114 + }, + { + "start": 7331.14, + "end": 7331.14, + "probability": 0.0789 + }, + { + "start": 7331.14, + "end": 7331.46, + "probability": 0.5172 + }, + { + "start": 7331.62, + "end": 7331.9, + "probability": 0.6362 + }, + { + "start": 7332.42, + "end": 7333.32, + "probability": 0.8414 + }, + { + "start": 7333.4, + "end": 7335.12, + "probability": 0.934 + }, + { + "start": 7335.34, + "end": 7337.34, + "probability": 0.6026 + }, + { + "start": 7337.66, + "end": 7338.34, + "probability": 0.2976 + }, + { + "start": 7339.56, + "end": 7340.36, + "probability": 0.5903 + }, + { + "start": 7340.56, + "end": 7342.52, + "probability": 0.6234 + }, + { + "start": 7342.52, + "end": 7342.62, + "probability": 0.4112 + }, + { + "start": 7342.66, + "end": 7346.76, + "probability": 0.96 + }, + { + "start": 7346.98, + "end": 7348.85, + "probability": 0.9844 + }, + { + "start": 7349.04, + "end": 7349.46, + "probability": 0.7698 + }, + { + "start": 7350.0, + "end": 7353.62, + "probability": 0.5269 + }, + { + "start": 7353.9, + "end": 7354.52, + "probability": 0.7795 + }, + { + "start": 7354.7, + "end": 7356.3, + "probability": 0.8853 + }, + { + "start": 7356.5, + "end": 7360.7, + "probability": 0.9971 + }, + { + "start": 7361.26, + "end": 7364.24, + "probability": 0.999 + }, + { + "start": 7364.24, + "end": 7368.04, + "probability": 0.9882 + }, + { + "start": 7368.64, + "end": 7369.14, + "probability": 0.7498 + }, + { + "start": 7369.26, + "end": 7370.78, + "probability": 0.9966 + }, + { + "start": 7371.02, + "end": 7373.28, + "probability": 0.9883 + }, + { + "start": 7373.62, + "end": 7376.64, + "probability": 0.9875 + }, + { + "start": 7377.0, + "end": 7380.26, + "probability": 0.7567 + }, + { + "start": 7380.38, + "end": 7383.15, + "probability": 0.75 + }, + { + "start": 7383.8, + "end": 7386.54, + "probability": 0.9584 + }, + { + "start": 7387.62, + "end": 7387.78, + "probability": 0.3689 + }, + { + "start": 7387.78, + "end": 7393.52, + "probability": 0.9884 + }, + { + "start": 7393.98, + "end": 7395.94, + "probability": 0.6806 + }, + { + "start": 7396.68, + "end": 7402.44, + "probability": 0.8754 + }, + { + "start": 7402.58, + "end": 7406.28, + "probability": 0.7111 + }, + { + "start": 7406.38, + "end": 7410.7, + "probability": 0.9595 + }, + { + "start": 7412.46, + "end": 7415.82, + "probability": 0.8639 + }, + { + "start": 7415.96, + "end": 7416.57, + "probability": 0.9485 + }, + { + "start": 7416.88, + "end": 7418.82, + "probability": 0.9933 + }, + { + "start": 7418.98, + "end": 7420.14, + "probability": 0.6977 + }, + { + "start": 7420.26, + "end": 7425.06, + "probability": 0.6818 + }, + { + "start": 7426.3, + "end": 7433.38, + "probability": 0.9625 + }, + { + "start": 7433.54, + "end": 7434.12, + "probability": 0.8794 + }, + { + "start": 7434.68, + "end": 7436.22, + "probability": 0.951 + }, + { + "start": 7436.4, + "end": 7438.43, + "probability": 0.8309 + }, + { + "start": 7439.18, + "end": 7442.06, + "probability": 0.4667 + }, + { + "start": 7442.74, + "end": 7445.34, + "probability": 0.593 + }, + { + "start": 7445.56, + "end": 7445.88, + "probability": 0.5218 + }, + { + "start": 7446.18, + "end": 7447.88, + "probability": 0.6603 + }, + { + "start": 7448.28, + "end": 7449.98, + "probability": 0.7361 + }, + { + "start": 7450.54, + "end": 7452.08, + "probability": 0.8533 + }, + { + "start": 7452.86, + "end": 7455.42, + "probability": 0.7384 + }, + { + "start": 7455.54, + "end": 7458.46, + "probability": 0.9407 + }, + { + "start": 7458.64, + "end": 7462.22, + "probability": 0.998 + }, + { + "start": 7462.41, + "end": 7466.08, + "probability": 0.9944 + }, + { + "start": 7466.36, + "end": 7466.74, + "probability": 0.7318 + }, + { + "start": 7466.84, + "end": 7467.52, + "probability": 0.4029 + }, + { + "start": 7467.68, + "end": 7469.2, + "probability": 0.9229 + }, + { + "start": 7469.3, + "end": 7470.92, + "probability": 0.8898 + }, + { + "start": 7472.72, + "end": 7476.54, + "probability": 0.8569 + }, + { + "start": 7477.16, + "end": 7478.44, + "probability": 0.663 + }, + { + "start": 7478.5, + "end": 7480.0, + "probability": 0.8258 + }, + { + "start": 7480.76, + "end": 7483.34, + "probability": 0.9263 + }, + { + "start": 7483.4, + "end": 7484.44, + "probability": 0.9318 + }, + { + "start": 7484.54, + "end": 7485.58, + "probability": 0.8413 + }, + { + "start": 7486.8, + "end": 7488.98, + "probability": 0.7593 + }, + { + "start": 7488.98, + "end": 7489.5, + "probability": 0.4769 + }, + { + "start": 7490.2, + "end": 7490.3, + "probability": 0.6895 + }, + { + "start": 7490.82, + "end": 7491.08, + "probability": 0.011 + }, + { + "start": 7491.08, + "end": 7491.36, + "probability": 0.3052 + }, + { + "start": 7491.36, + "end": 7491.36, + "probability": 0.4154 + }, + { + "start": 7491.36, + "end": 7493.32, + "probability": 0.7373 + }, + { + "start": 7493.32, + "end": 7498.58, + "probability": 0.9595 + }, + { + "start": 7499.36, + "end": 7500.12, + "probability": 0.5525 + }, + { + "start": 7500.12, + "end": 7505.44, + "probability": 0.8801 + }, + { + "start": 7505.98, + "end": 7506.62, + "probability": 0.7985 + }, + { + "start": 7507.32, + "end": 7507.82, + "probability": 0.5163 + }, + { + "start": 7507.92, + "end": 7508.14, + "probability": 0.6784 + }, + { + "start": 7508.3, + "end": 7509.24, + "probability": 0.1974 + }, + { + "start": 7509.4, + "end": 7511.68, + "probability": 0.7719 + }, + { + "start": 7512.24, + "end": 7514.66, + "probability": 0.7945 + }, + { + "start": 7515.34, + "end": 7519.28, + "probability": 0.9791 + }, + { + "start": 7520.3, + "end": 7520.97, + "probability": 0.9424 + }, + { + "start": 7522.24, + "end": 7522.48, + "probability": 0.0003 + }, + { + "start": 7524.53, + "end": 7526.86, + "probability": 0.0417 + }, + { + "start": 7526.86, + "end": 7528.44, + "probability": 0.5145 + }, + { + "start": 7528.54, + "end": 7529.3, + "probability": 0.6872 + }, + { + "start": 7529.5, + "end": 7534.04, + "probability": 0.9137 + }, + { + "start": 7534.4, + "end": 7535.86, + "probability": 0.6585 + }, + { + "start": 7536.3, + "end": 7542.0, + "probability": 0.7726 + }, + { + "start": 7542.36, + "end": 7544.14, + "probability": 0.6138 + }, + { + "start": 7544.24, + "end": 7545.24, + "probability": 0.7984 + }, + { + "start": 7545.4, + "end": 7546.46, + "probability": 0.6725 + }, + { + "start": 7547.06, + "end": 7550.16, + "probability": 0.9082 + }, + { + "start": 7550.48, + "end": 7551.7, + "probability": 0.9793 + }, + { + "start": 7552.38, + "end": 7555.16, + "probability": 0.8048 + }, + { + "start": 7555.54, + "end": 7555.76, + "probability": 0.8825 + }, + { + "start": 7555.88, + "end": 7557.33, + "probability": 0.7614 + }, + { + "start": 7557.44, + "end": 7558.69, + "probability": 0.6569 + }, + { + "start": 7560.22, + "end": 7563.42, + "probability": 0.824 + }, + { + "start": 7563.52, + "end": 7566.44, + "probability": 0.8145 + }, + { + "start": 7566.9, + "end": 7569.34, + "probability": 0.8613 + }, + { + "start": 7569.42, + "end": 7571.1, + "probability": 0.9434 + }, + { + "start": 7571.2, + "end": 7572.14, + "probability": 0.7574 + }, + { + "start": 7572.36, + "end": 7573.3, + "probability": 0.5601 + }, + { + "start": 7573.48, + "end": 7575.18, + "probability": 0.1246 + }, + { + "start": 7576.36, + "end": 7577.2, + "probability": 0.4735 + }, + { + "start": 7577.5, + "end": 7579.42, + "probability": 0.5777 + }, + { + "start": 7579.5, + "end": 7582.36, + "probability": 0.7313 + }, + { + "start": 7582.74, + "end": 7583.78, + "probability": 0.7326 + }, + { + "start": 7584.5, + "end": 7588.66, + "probability": 0.9265 + }, + { + "start": 7588.9, + "end": 7589.98, + "probability": 0.7395 + }, + { + "start": 7590.36, + "end": 7593.26, + "probability": 0.8564 + }, + { + "start": 7593.46, + "end": 7595.7, + "probability": 0.9071 + }, + { + "start": 7595.8, + "end": 7598.55, + "probability": 0.8722 + }, + { + "start": 7599.14, + "end": 7604.66, + "probability": 0.9003 + }, + { + "start": 7605.24, + "end": 7606.42, + "probability": 0.8833 + }, + { + "start": 7606.6, + "end": 7609.68, + "probability": 0.8076 + }, + { + "start": 7609.8, + "end": 7610.92, + "probability": 0.6538 + }, + { + "start": 7611.6, + "end": 7616.7, + "probability": 0.9281 + }, + { + "start": 7616.84, + "end": 7620.62, + "probability": 0.9648 + }, + { + "start": 7620.72, + "end": 7621.51, + "probability": 0.9937 + }, + { + "start": 7622.86, + "end": 7627.94, + "probability": 0.6764 + }, + { + "start": 7628.02, + "end": 7628.66, + "probability": 0.8983 + }, + { + "start": 7628.74, + "end": 7629.56, + "probability": 0.8707 + }, + { + "start": 7630.02, + "end": 7631.6, + "probability": 0.9492 + }, + { + "start": 7631.66, + "end": 7632.48, + "probability": 0.9442 + }, + { + "start": 7632.58, + "end": 7633.2, + "probability": 0.7177 + }, + { + "start": 7633.3, + "end": 7634.18, + "probability": 0.5779 + }, + { + "start": 7634.34, + "end": 7636.84, + "probability": 0.8305 + }, + { + "start": 7636.92, + "end": 7637.6, + "probability": 0.7795 + }, + { + "start": 7637.74, + "end": 7639.06, + "probability": 0.51 + }, + { + "start": 7639.06, + "end": 7643.86, + "probability": 0.8901 + }, + { + "start": 7645.2, + "end": 7647.38, + "probability": 0.7891 + }, + { + "start": 7647.38, + "end": 7648.14, + "probability": 0.7424 + }, + { + "start": 7648.24, + "end": 7652.56, + "probability": 0.8374 + }, + { + "start": 7652.9, + "end": 7654.8, + "probability": 0.943 + }, + { + "start": 7655.76, + "end": 7659.08, + "probability": 0.9971 + }, + { + "start": 7659.08, + "end": 7664.7, + "probability": 0.9657 + }, + { + "start": 7666.0, + "end": 7668.76, + "probability": 0.7377 + }, + { + "start": 7670.18, + "end": 7671.48, + "probability": 0.7325 + }, + { + "start": 7671.68, + "end": 7673.46, + "probability": 0.8913 + }, + { + "start": 7673.74, + "end": 7673.78, + "probability": 0.0119 + }, + { + "start": 7674.12, + "end": 7675.68, + "probability": 0.9368 + }, + { + "start": 7675.76, + "end": 7678.31, + "probability": 0.9287 + }, + { + "start": 7679.18, + "end": 7686.8, + "probability": 0.9517 + }, + { + "start": 7687.32, + "end": 7696.08, + "probability": 0.9987 + }, + { + "start": 7697.06, + "end": 7699.22, + "probability": 0.6224 + }, + { + "start": 7700.02, + "end": 7702.36, + "probability": 0.9519 + }, + { + "start": 7702.5, + "end": 7704.42, + "probability": 0.7692 + }, + { + "start": 7704.56, + "end": 7709.04, + "probability": 0.907 + }, + { + "start": 7709.56, + "end": 7713.22, + "probability": 0.9878 + }, + { + "start": 7714.44, + "end": 7717.74, + "probability": 0.9451 + }, + { + "start": 7717.82, + "end": 7722.54, + "probability": 0.9686 + }, + { + "start": 7722.96, + "end": 7723.74, + "probability": 0.9174 + }, + { + "start": 7723.86, + "end": 7725.5, + "probability": 0.9701 + }, + { + "start": 7725.56, + "end": 7729.7, + "probability": 0.9985 + }, + { + "start": 7729.86, + "end": 7736.88, + "probability": 0.9633 + }, + { + "start": 7737.32, + "end": 7738.46, + "probability": 0.8425 + }, + { + "start": 7739.3, + "end": 7740.56, + "probability": 0.1845 + }, + { + "start": 7740.62, + "end": 7740.64, + "probability": 0.0183 + }, + { + "start": 7740.64, + "end": 7740.82, + "probability": 0.1604 + }, + { + "start": 7741.1, + "end": 7744.04, + "probability": 0.2336 + }, + { + "start": 7744.22, + "end": 7745.0, + "probability": 0.4915 + }, + { + "start": 7745.0, + "end": 7745.0, + "probability": 0.1955 + }, + { + "start": 7745.0, + "end": 7746.14, + "probability": 0.8909 + }, + { + "start": 7747.44, + "end": 7751.78, + "probability": 0.6651 + }, + { + "start": 7752.2, + "end": 7753.6, + "probability": 0.6649 + }, + { + "start": 7753.82, + "end": 7756.56, + "probability": 0.6282 + }, + { + "start": 7760.18, + "end": 7763.34, + "probability": 0.0171 + }, + { + "start": 7764.02, + "end": 7764.02, + "probability": 0.057 + }, + { + "start": 7764.02, + "end": 7764.02, + "probability": 0.2524 + }, + { + "start": 7764.02, + "end": 7770.94, + "probability": 0.4027 + }, + { + "start": 7771.5, + "end": 7773.12, + "probability": 0.2904 + }, + { + "start": 7773.78, + "end": 7773.78, + "probability": 0.0649 + }, + { + "start": 7773.78, + "end": 7773.78, + "probability": 0.0268 + }, + { + "start": 7773.78, + "end": 7776.08, + "probability": 0.2385 + }, + { + "start": 7776.52, + "end": 7777.7, + "probability": 0.2083 + }, + { + "start": 7777.7, + "end": 7778.4, + "probability": 0.4628 + }, + { + "start": 7779.76, + "end": 7783.79, + "probability": 0.7225 + }, + { + "start": 7784.4, + "end": 7787.86, + "probability": 0.9282 + }, + { + "start": 7788.52, + "end": 7792.42, + "probability": 0.7735 + }, + { + "start": 7792.8, + "end": 7795.76, + "probability": 0.7807 + }, + { + "start": 7796.28, + "end": 7799.76, + "probability": 0.9412 + }, + { + "start": 7800.12, + "end": 7803.86, + "probability": 0.9756 + }, + { + "start": 7805.0, + "end": 7811.66, + "probability": 0.9978 + }, + { + "start": 7811.66, + "end": 7816.58, + "probability": 0.9827 + }, + { + "start": 7817.46, + "end": 7818.4, + "probability": 0.8425 + }, + { + "start": 7818.84, + "end": 7824.7, + "probability": 0.9918 + }, + { + "start": 7825.22, + "end": 7829.64, + "probability": 0.9862 + }, + { + "start": 7831.1, + "end": 7835.26, + "probability": 0.9249 + }, + { + "start": 7835.54, + "end": 7835.94, + "probability": 0.0884 + }, + { + "start": 7835.94, + "end": 7836.82, + "probability": 0.8198 + }, + { + "start": 7836.98, + "end": 7838.62, + "probability": 0.5074 + }, + { + "start": 7839.38, + "end": 7841.48, + "probability": 0.6399 + }, + { + "start": 7842.62, + "end": 7844.71, + "probability": 0.4686 + }, + { + "start": 7846.34, + "end": 7848.86, + "probability": 0.834 + }, + { + "start": 7849.42, + "end": 7850.1, + "probability": 0.5322 + }, + { + "start": 7850.14, + "end": 7850.32, + "probability": 0.1067 + }, + { + "start": 7850.5, + "end": 7853.0, + "probability": 0.6131 + }, + { + "start": 7853.1, + "end": 7854.5, + "probability": 0.8945 + }, + { + "start": 7854.72, + "end": 7855.3, + "probability": 0.9604 + }, + { + "start": 7855.4, + "end": 7856.98, + "probability": 0.9961 + }, + { + "start": 7857.52, + "end": 7858.9, + "probability": 0.4843 + }, + { + "start": 7859.42, + "end": 7863.4, + "probability": 0.1435 + }, + { + "start": 7864.42, + "end": 7868.52, + "probability": 0.2891 + }, + { + "start": 7868.54, + "end": 7873.3, + "probability": 0.5288 + }, + { + "start": 7873.3, + "end": 7877.6, + "probability": 0.9131 + }, + { + "start": 7877.68, + "end": 7877.7, + "probability": 0.2448 + }, + { + "start": 7877.7, + "end": 7879.64, + "probability": 0.6313 + }, + { + "start": 7880.0, + "end": 7882.14, + "probability": 0.9546 + }, + { + "start": 7882.48, + "end": 7883.52, + "probability": 0.9214 + }, + { + "start": 7883.72, + "end": 7885.98, + "probability": 0.9644 + }, + { + "start": 7886.82, + "end": 7889.9, + "probability": 0.7569 + }, + { + "start": 7890.36, + "end": 7890.46, + "probability": 0.5162 + }, + { + "start": 7890.5, + "end": 7890.84, + "probability": 0.39 + }, + { + "start": 7890.88, + "end": 7891.54, + "probability": 0.813 + }, + { + "start": 7891.78, + "end": 7893.22, + "probability": 0.647 + }, + { + "start": 7893.42, + "end": 7894.6, + "probability": 0.7182 + }, + { + "start": 7895.64, + "end": 7897.18, + "probability": 0.7541 + }, + { + "start": 7897.38, + "end": 7899.02, + "probability": 0.8757 + }, + { + "start": 7899.12, + "end": 7906.0, + "probability": 0.9287 + }, + { + "start": 7908.08, + "end": 7915.19, + "probability": 0.9126 + }, + { + "start": 7915.54, + "end": 7924.04, + "probability": 0.9988 + }, + { + "start": 7925.42, + "end": 7926.58, + "probability": 0.7804 + }, + { + "start": 7928.14, + "end": 7928.77, + "probability": 0.6854 + }, + { + "start": 7929.68, + "end": 7930.78, + "probability": 0.7964 + }, + { + "start": 7930.82, + "end": 7937.66, + "probability": 0.9827 + }, + { + "start": 7939.1, + "end": 7941.74, + "probability": 0.6759 + }, + { + "start": 7942.92, + "end": 7948.84, + "probability": 0.5959 + }, + { + "start": 7948.84, + "end": 7955.34, + "probability": 0.9728 + }, + { + "start": 7956.56, + "end": 7960.46, + "probability": 0.9946 + }, + { + "start": 7960.46, + "end": 7966.04, + "probability": 0.8752 + }, + { + "start": 7966.3, + "end": 7969.44, + "probability": 0.8816 + }, + { + "start": 7970.72, + "end": 7974.79, + "probability": 0.9958 + }, + { + "start": 7976.04, + "end": 7978.02, + "probability": 0.9628 + }, + { + "start": 7978.7, + "end": 7980.04, + "probability": 0.7923 + }, + { + "start": 7980.6, + "end": 7982.62, + "probability": 0.9267 + }, + { + "start": 7983.6, + "end": 7990.0, + "probability": 0.9709 + }, + { + "start": 7990.0, + "end": 7995.2, + "probability": 0.9845 + }, + { + "start": 7995.26, + "end": 7996.42, + "probability": 0.7539 + }, + { + "start": 7997.08, + "end": 7998.28, + "probability": 0.9008 + }, + { + "start": 7999.0, + "end": 8007.12, + "probability": 0.9877 + }, + { + "start": 8007.78, + "end": 8009.54, + "probability": 0.8136 + }, + { + "start": 8010.34, + "end": 8012.87, + "probability": 0.9795 + }, + { + "start": 8014.08, + "end": 8019.94, + "probability": 0.8805 + }, + { + "start": 8020.5, + "end": 8022.68, + "probability": 0.9229 + }, + { + "start": 8023.34, + "end": 8025.28, + "probability": 0.9647 + }, + { + "start": 8025.88, + "end": 8026.66, + "probability": 0.871 + }, + { + "start": 8027.8, + "end": 8029.38, + "probability": 0.9932 + }, + { + "start": 8029.9, + "end": 8031.4, + "probability": 0.9186 + }, + { + "start": 8031.72, + "end": 8032.76, + "probability": 0.8171 + }, + { + "start": 8033.24, + "end": 8038.14, + "probability": 0.9792 + }, + { + "start": 8038.92, + "end": 8041.06, + "probability": 0.9972 + }, + { + "start": 8042.4, + "end": 8049.0, + "probability": 0.9986 + }, + { + "start": 8049.74, + "end": 8053.46, + "probability": 0.9917 + }, + { + "start": 8054.68, + "end": 8057.06, + "probability": 0.9554 + }, + { + "start": 8058.42, + "end": 8060.9, + "probability": 0.9897 + }, + { + "start": 8062.48, + "end": 8064.68, + "probability": 0.9814 + }, + { + "start": 8065.58, + "end": 8069.58, + "probability": 0.9083 + }, + { + "start": 8070.86, + "end": 8074.44, + "probability": 0.9616 + }, + { + "start": 8075.02, + "end": 8077.44, + "probability": 0.9907 + }, + { + "start": 8078.44, + "end": 8082.66, + "probability": 0.9908 + }, + { + "start": 8083.64, + "end": 8086.2, + "probability": 0.9824 + }, + { + "start": 8086.88, + "end": 8088.28, + "probability": 0.932 + }, + { + "start": 8089.44, + "end": 8093.6, + "probability": 0.8599 + }, + { + "start": 8094.24, + "end": 8097.96, + "probability": 0.8984 + }, + { + "start": 8098.42, + "end": 8100.74, + "probability": 0.9735 + }, + { + "start": 8101.08, + "end": 8104.88, + "probability": 0.8414 + }, + { + "start": 8105.06, + "end": 8107.64, + "probability": 0.8189 + }, + { + "start": 8108.28, + "end": 8112.72, + "probability": 0.9913 + }, + { + "start": 8113.44, + "end": 8117.04, + "probability": 0.9094 + }, + { + "start": 8119.1, + "end": 8119.12, + "probability": 0.0296 + }, + { + "start": 8119.12, + "end": 8127.08, + "probability": 0.9784 + }, + { + "start": 8127.62, + "end": 8131.72, + "probability": 0.9959 + }, + { + "start": 8131.78, + "end": 8132.34, + "probability": 0.5093 + }, + { + "start": 8132.34, + "end": 8134.02, + "probability": 0.818 + }, + { + "start": 8134.34, + "end": 8135.65, + "probability": 0.8169 + }, + { + "start": 8137.07, + "end": 8140.52, + "probability": 0.7268 + }, + { + "start": 8140.58, + "end": 8147.0, + "probability": 0.6954 + }, + { + "start": 8147.56, + "end": 8150.12, + "probability": 0.2126 + }, + { + "start": 8150.12, + "end": 8152.23, + "probability": 0.9541 + }, + { + "start": 8152.52, + "end": 8154.74, + "probability": 0.8977 + }, + { + "start": 8161.76, + "end": 8165.82, + "probability": 0.3177 + }, + { + "start": 8166.96, + "end": 8167.8, + "probability": 0.5109 + }, + { + "start": 8167.96, + "end": 8169.32, + "probability": 0.8759 + }, + { + "start": 8169.7, + "end": 8171.16, + "probability": 0.8326 + }, + { + "start": 8171.26, + "end": 8172.12, + "probability": 0.89 + }, + { + "start": 8172.85, + "end": 8177.86, + "probability": 0.933 + }, + { + "start": 8177.94, + "end": 8179.64, + "probability": 0.9028 + }, + { + "start": 8180.14, + "end": 8180.62, + "probability": 0.7412 + }, + { + "start": 8180.72, + "end": 8181.65, + "probability": 0.9343 + }, + { + "start": 8182.02, + "end": 8183.38, + "probability": 0.877 + }, + { + "start": 8183.54, + "end": 8184.9, + "probability": 0.8181 + }, + { + "start": 8184.94, + "end": 8185.36, + "probability": 0.277 + }, + { + "start": 8185.48, + "end": 8186.2, + "probability": 0.7564 + }, + { + "start": 8186.3, + "end": 8189.66, + "probability": 0.8962 + }, + { + "start": 8189.82, + "end": 8190.94, + "probability": 0.7506 + }, + { + "start": 8191.64, + "end": 8192.36, + "probability": 0.8439 + }, + { + "start": 8192.48, + "end": 8193.32, + "probability": 0.9155 + }, + { + "start": 8193.42, + "end": 8194.5, + "probability": 0.9307 + }, + { + "start": 8194.98, + "end": 8196.42, + "probability": 0.5436 + }, + { + "start": 8197.16, + "end": 8200.85, + "probability": 0.9948 + }, + { + "start": 8202.34, + "end": 8206.64, + "probability": 0.9891 + }, + { + "start": 8207.9, + "end": 8210.04, + "probability": 0.6165 + }, + { + "start": 8210.42, + "end": 8212.66, + "probability": 0.9753 + }, + { + "start": 8213.0, + "end": 8215.0, + "probability": 0.9953 + }, + { + "start": 8215.0, + "end": 8220.78, + "probability": 0.9818 + }, + { + "start": 8220.9, + "end": 8221.36, + "probability": 0.7341 + }, + { + "start": 8221.5, + "end": 8222.8, + "probability": 0.9868 + }, + { + "start": 8223.32, + "end": 8225.34, + "probability": 0.8113 + }, + { + "start": 8225.36, + "end": 8227.26, + "probability": 0.9983 + }, + { + "start": 8227.3, + "end": 8229.98, + "probability": 0.9916 + }, + { + "start": 8230.06, + "end": 8232.28, + "probability": 0.9814 + }, + { + "start": 8233.88, + "end": 8238.02, + "probability": 0.9329 + }, + { + "start": 8238.14, + "end": 8240.19, + "probability": 0.6643 + }, + { + "start": 8241.14, + "end": 8243.02, + "probability": 0.8869 + }, + { + "start": 8243.86, + "end": 8247.48, + "probability": 0.9717 + }, + { + "start": 8247.92, + "end": 8250.04, + "probability": 0.7609 + }, + { + "start": 8250.8, + "end": 8253.18, + "probability": 0.8598 + }, + { + "start": 8253.52, + "end": 8258.34, + "probability": 0.9818 + }, + { + "start": 8258.74, + "end": 8261.8, + "probability": 0.9891 + }, + { + "start": 8262.1, + "end": 8267.08, + "probability": 0.9384 + }, + { + "start": 8268.32, + "end": 8274.24, + "probability": 0.9692 + }, + { + "start": 8274.56, + "end": 8275.64, + "probability": 0.5822 + }, + { + "start": 8275.68, + "end": 8278.12, + "probability": 0.9754 + }, + { + "start": 8278.52, + "end": 8280.68, + "probability": 0.8802 + }, + { + "start": 8281.14, + "end": 8283.54, + "probability": 0.9424 + }, + { + "start": 8284.0, + "end": 8287.22, + "probability": 0.9867 + }, + { + "start": 8287.22, + "end": 8290.98, + "probability": 0.9962 + }, + { + "start": 8291.82, + "end": 8295.38, + "probability": 0.9737 + }, + { + "start": 8295.72, + "end": 8297.32, + "probability": 0.8352 + }, + { + "start": 8297.88, + "end": 8300.18, + "probability": 0.7388 + }, + { + "start": 8300.28, + "end": 8302.34, + "probability": 0.6714 + }, + { + "start": 8302.6, + "end": 8304.08, + "probability": 0.8999 + }, + { + "start": 8304.3, + "end": 8306.6, + "probability": 0.9001 + }, + { + "start": 8307.24, + "end": 8311.06, + "probability": 0.9548 + }, + { + "start": 8311.08, + "end": 8312.24, + "probability": 0.9624 + }, + { + "start": 8312.84, + "end": 8315.54, + "probability": 0.8783 + }, + { + "start": 8316.12, + "end": 8319.64, + "probability": 0.9722 + }, + { + "start": 8319.76, + "end": 8321.73, + "probability": 0.9966 + }, + { + "start": 8322.22, + "end": 8323.44, + "probability": 0.9744 + }, + { + "start": 8323.56, + "end": 8324.76, + "probability": 0.7903 + }, + { + "start": 8325.32, + "end": 8330.44, + "probability": 0.9948 + }, + { + "start": 8330.72, + "end": 8331.49, + "probability": 0.5067 + }, + { + "start": 8331.58, + "end": 8332.06, + "probability": 0.3115 + }, + { + "start": 8332.12, + "end": 8336.54, + "probability": 0.9297 + }, + { + "start": 8336.8, + "end": 8339.24, + "probability": 0.9607 + }, + { + "start": 8339.34, + "end": 8342.76, + "probability": 0.9089 + }, + { + "start": 8343.38, + "end": 8346.98, + "probability": 0.7795 + }, + { + "start": 8347.94, + "end": 8350.66, + "probability": 0.9043 + }, + { + "start": 8350.66, + "end": 8353.92, + "probability": 0.9215 + }, + { + "start": 8354.14, + "end": 8355.49, + "probability": 0.6709 + }, + { + "start": 8355.76, + "end": 8357.34, + "probability": 0.9383 + }, + { + "start": 8357.56, + "end": 8358.62, + "probability": 0.4396 + }, + { + "start": 8359.04, + "end": 8364.66, + "probability": 0.9057 + }, + { + "start": 8364.84, + "end": 8368.52, + "probability": 0.8666 + }, + { + "start": 8369.06, + "end": 8374.06, + "probability": 0.9537 + }, + { + "start": 8374.22, + "end": 8374.72, + "probability": 0.6486 + }, + { + "start": 8375.06, + "end": 8378.02, + "probability": 0.9978 + }, + { + "start": 8379.58, + "end": 8381.12, + "probability": 0.5955 + }, + { + "start": 8381.48, + "end": 8382.14, + "probability": 0.6542 + }, + { + "start": 8382.28, + "end": 8385.76, + "probability": 0.9664 + }, + { + "start": 8385.82, + "end": 8386.58, + "probability": 0.5658 + }, + { + "start": 8386.74, + "end": 8390.24, + "probability": 0.9799 + }, + { + "start": 8390.34, + "end": 8391.98, + "probability": 0.7919 + }, + { + "start": 8392.12, + "end": 8394.9, + "probability": 0.6382 + }, + { + "start": 8395.82, + "end": 8398.94, + "probability": 0.96 + }, + { + "start": 8399.62, + "end": 8402.6, + "probability": 0.9941 + }, + { + "start": 8402.64, + "end": 8407.78, + "probability": 0.9616 + }, + { + "start": 8407.78, + "end": 8411.4, + "probability": 0.8515 + }, + { + "start": 8413.12, + "end": 8415.82, + "probability": 0.5512 + }, + { + "start": 8415.96, + "end": 8416.92, + "probability": 0.6654 + }, + { + "start": 8417.02, + "end": 8418.16, + "probability": 0.9308 + }, + { + "start": 8418.5, + "end": 8420.34, + "probability": 0.9202 + }, + { + "start": 8420.58, + "end": 8422.38, + "probability": 0.8478 + }, + { + "start": 8423.02, + "end": 8423.69, + "probability": 0.9232 + }, + { + "start": 8424.54, + "end": 8428.98, + "probability": 0.9932 + }, + { + "start": 8428.98, + "end": 8432.98, + "probability": 0.9963 + }, + { + "start": 8433.5, + "end": 8436.55, + "probability": 0.9995 + }, + { + "start": 8437.8, + "end": 8439.42, + "probability": 0.9543 + }, + { + "start": 8440.04, + "end": 8441.96, + "probability": 0.998 + }, + { + "start": 8442.18, + "end": 8444.16, + "probability": 0.9889 + }, + { + "start": 8444.46, + "end": 8447.46, + "probability": 0.8178 + }, + { + "start": 8447.68, + "end": 8449.0, + "probability": 0.7764 + }, + { + "start": 8449.14, + "end": 8450.44, + "probability": 0.6509 + }, + { + "start": 8450.64, + "end": 8451.56, + "probability": 0.9609 + }, + { + "start": 8452.2, + "end": 8454.68, + "probability": 0.9974 + }, + { + "start": 8454.68, + "end": 8458.5, + "probability": 0.9312 + }, + { + "start": 8458.5, + "end": 8460.38, + "probability": 0.9212 + }, + { + "start": 8460.56, + "end": 8463.36, + "probability": 0.9595 + }, + { + "start": 8464.4, + "end": 8467.74, + "probability": 0.8794 + }, + { + "start": 8467.8, + "end": 8469.76, + "probability": 0.746 + }, + { + "start": 8469.76, + "end": 8472.46, + "probability": 0.9827 + }, + { + "start": 8473.04, + "end": 8474.98, + "probability": 0.9065 + }, + { + "start": 8476.0, + "end": 8477.26, + "probability": 0.9141 + }, + { + "start": 8477.88, + "end": 8480.62, + "probability": 0.0357 + }, + { + "start": 8480.62, + "end": 8481.64, + "probability": 0.1481 + }, + { + "start": 8482.04, + "end": 8483.74, + "probability": 0.8398 + }, + { + "start": 8484.56, + "end": 8488.66, + "probability": 0.8818 + }, + { + "start": 8489.54, + "end": 8490.6, + "probability": 0.7597 + }, + { + "start": 8491.08, + "end": 8494.12, + "probability": 0.9116 + }, + { + "start": 8497.28, + "end": 8497.3, + "probability": 0.0057 + }, + { + "start": 8497.3, + "end": 8497.3, + "probability": 0.061 + }, + { + "start": 8497.3, + "end": 8501.59, + "probability": 0.3372 + }, + { + "start": 8502.5, + "end": 8502.56, + "probability": 0.0419 + }, + { + "start": 8502.56, + "end": 8506.72, + "probability": 0.9873 + }, + { + "start": 8506.72, + "end": 8511.58, + "probability": 0.9951 + }, + { + "start": 8512.0, + "end": 8514.08, + "probability": 0.058 + }, + { + "start": 8514.36, + "end": 8516.6, + "probability": 0.9064 + }, + { + "start": 8516.78, + "end": 8517.84, + "probability": 0.7695 + }, + { + "start": 8518.08, + "end": 8522.06, + "probability": 0.8953 + }, + { + "start": 8522.16, + "end": 8529.06, + "probability": 0.9771 + }, + { + "start": 8529.64, + "end": 8530.8, + "probability": 0.4268 + }, + { + "start": 8531.12, + "end": 8532.86, + "probability": 0.107 + }, + { + "start": 8533.02, + "end": 8536.54, + "probability": 0.9696 + }, + { + "start": 8536.6, + "end": 8538.07, + "probability": 0.9831 + }, + { + "start": 8538.54, + "end": 8539.32, + "probability": 0.8859 + }, + { + "start": 8540.16, + "end": 8544.5, + "probability": 0.9519 + }, + { + "start": 8545.48, + "end": 8549.68, + "probability": 0.9804 + }, + { + "start": 8549.68, + "end": 8552.6, + "probability": 0.9875 + }, + { + "start": 8552.94, + "end": 8555.16, + "probability": 0.9655 + }, + { + "start": 8555.62, + "end": 8559.34, + "probability": 0.9961 + }, + { + "start": 8559.98, + "end": 8564.2, + "probability": 0.9947 + }, + { + "start": 8564.64, + "end": 8568.64, + "probability": 0.9809 + }, + { + "start": 8568.86, + "end": 8571.12, + "probability": 0.7462 + }, + { + "start": 8571.54, + "end": 8572.28, + "probability": 0.7953 + }, + { + "start": 8572.66, + "end": 8577.24, + "probability": 0.9888 + }, + { + "start": 8577.98, + "end": 8579.79, + "probability": 0.998 + }, + { + "start": 8580.72, + "end": 8584.0, + "probability": 0.9525 + }, + { + "start": 8584.76, + "end": 8588.18, + "probability": 0.9365 + }, + { + "start": 8588.98, + "end": 8592.42, + "probability": 0.9304 + }, + { + "start": 8592.8, + "end": 8596.14, + "probability": 0.9759 + }, + { + "start": 8596.68, + "end": 8599.6, + "probability": 0.9479 + }, + { + "start": 8600.4, + "end": 8601.78, + "probability": 0.6013 + }, + { + "start": 8602.5, + "end": 8605.68, + "probability": 0.3007 + }, + { + "start": 8605.68, + "end": 8607.02, + "probability": 0.4763 + }, + { + "start": 8607.38, + "end": 8608.1, + "probability": 0.5001 + }, + { + "start": 8608.2, + "end": 8609.62, + "probability": 0.4005 + }, + { + "start": 8609.62, + "end": 8609.68, + "probability": 0.5997 + }, + { + "start": 8609.68, + "end": 8612.6, + "probability": 0.8125 + }, + { + "start": 8612.96, + "end": 8614.06, + "probability": 0.4109 + }, + { + "start": 8614.06, + "end": 8618.12, + "probability": 0.877 + }, + { + "start": 8618.54, + "end": 8622.02, + "probability": 0.6237 + }, + { + "start": 8622.72, + "end": 8623.88, + "probability": 0.8364 + }, + { + "start": 8624.68, + "end": 8626.36, + "probability": 0.9843 + }, + { + "start": 8626.48, + "end": 8628.32, + "probability": 0.891 + }, + { + "start": 8628.66, + "end": 8630.52, + "probability": 0.9951 + }, + { + "start": 8631.12, + "end": 8635.04, + "probability": 0.8864 + }, + { + "start": 8635.14, + "end": 8635.78, + "probability": 0.6935 + }, + { + "start": 8636.06, + "end": 8638.34, + "probability": 0.9639 + }, + { + "start": 8639.78, + "end": 8643.2, + "probability": 0.8972 + }, + { + "start": 8643.32, + "end": 8644.4, + "probability": 0.5133 + }, + { + "start": 8644.8, + "end": 8646.74, + "probability": 0.9277 + }, + { + "start": 8647.32, + "end": 8651.64, + "probability": 0.7735 + }, + { + "start": 8652.52, + "end": 8655.02, + "probability": 0.8076 + }, + { + "start": 8656.5, + "end": 8657.46, + "probability": 0.9213 + }, + { + "start": 8657.7, + "end": 8660.82, + "probability": 0.8182 + }, + { + "start": 8661.12, + "end": 8664.48, + "probability": 0.975 + }, + { + "start": 8664.6, + "end": 8667.66, + "probability": 0.9858 + }, + { + "start": 8667.92, + "end": 8671.34, + "probability": 0.8438 + }, + { + "start": 8672.74, + "end": 8678.22, + "probability": 0.9888 + }, + { + "start": 8678.74, + "end": 8682.68, + "probability": 0.5191 + }, + { + "start": 8684.26, + "end": 8686.64, + "probability": 0.8979 + }, + { + "start": 8687.08, + "end": 8688.02, + "probability": 0.7572 + }, + { + "start": 8688.14, + "end": 8689.84, + "probability": 0.7578 + }, + { + "start": 8690.18, + "end": 8691.28, + "probability": 0.7913 + }, + { + "start": 8692.46, + "end": 8694.58, + "probability": 0.8441 + }, + { + "start": 8695.12, + "end": 8697.66, + "probability": 0.6911 + }, + { + "start": 8698.62, + "end": 8702.92, + "probability": 0.9673 + }, + { + "start": 8703.64, + "end": 8708.39, + "probability": 0.9819 + }, + { + "start": 8709.92, + "end": 8714.44, + "probability": 0.9835 + }, + { + "start": 8714.84, + "end": 8717.3, + "probability": 0.9026 + }, + { + "start": 8718.18, + "end": 8719.46, + "probability": 0.8673 + }, + { + "start": 8720.2, + "end": 8728.68, + "probability": 0.9933 + }, + { + "start": 8729.6, + "end": 8731.64, + "probability": 0.7891 + }, + { + "start": 8732.36, + "end": 8736.28, + "probability": 0.9528 + }, + { + "start": 8737.28, + "end": 8741.56, + "probability": 0.8289 + }, + { + "start": 8742.26, + "end": 8743.88, + "probability": 0.8861 + }, + { + "start": 8744.32, + "end": 8745.38, + "probability": 0.8816 + }, + { + "start": 8745.56, + "end": 8749.26, + "probability": 0.9591 + }, + { + "start": 8749.78, + "end": 8751.32, + "probability": 0.7866 + }, + { + "start": 8751.5, + "end": 8753.5, + "probability": 0.9583 + }, + { + "start": 8753.94, + "end": 8755.66, + "probability": 0.9425 + }, + { + "start": 8756.46, + "end": 8758.38, + "probability": 0.7452 + }, + { + "start": 8758.52, + "end": 8761.76, + "probability": 0.8875 + }, + { + "start": 8762.1, + "end": 8764.18, + "probability": 0.8739 + }, + { + "start": 8764.6, + "end": 8766.84, + "probability": 0.9538 + }, + { + "start": 8768.28, + "end": 8770.1, + "probability": 0.7317 + }, + { + "start": 8770.74, + "end": 8774.74, + "probability": 0.981 + }, + { + "start": 8775.08, + "end": 8781.2, + "probability": 0.9507 + }, + { + "start": 8782.66, + "end": 8788.46, + "probability": 0.9569 + }, + { + "start": 8789.16, + "end": 8792.64, + "probability": 0.9608 + }, + { + "start": 8792.64, + "end": 8796.52, + "probability": 0.9971 + }, + { + "start": 8797.48, + "end": 8804.88, + "probability": 0.9968 + }, + { + "start": 8805.9, + "end": 8806.96, + "probability": 0.8428 + }, + { + "start": 8807.68, + "end": 8812.18, + "probability": 0.9913 + }, + { + "start": 8812.18, + "end": 8816.62, + "probability": 0.9908 + }, + { + "start": 8817.2, + "end": 8819.52, + "probability": 0.9933 + }, + { + "start": 8820.14, + "end": 8826.1, + "probability": 0.9833 + }, + { + "start": 8826.82, + "end": 8831.26, + "probability": 0.9775 + }, + { + "start": 8831.26, + "end": 8835.86, + "probability": 0.9872 + }, + { + "start": 8836.32, + "end": 8840.16, + "probability": 0.9946 + }, + { + "start": 8840.16, + "end": 8846.44, + "probability": 0.9392 + }, + { + "start": 8847.36, + "end": 8849.98, + "probability": 0.918 + }, + { + "start": 8850.56, + "end": 8851.32, + "probability": 0.7037 + }, + { + "start": 8852.16, + "end": 8853.16, + "probability": 0.611 + }, + { + "start": 8853.34, + "end": 8854.08, + "probability": 0.7037 + }, + { + "start": 8854.44, + "end": 8859.9, + "probability": 0.9709 + }, + { + "start": 8860.82, + "end": 8861.48, + "probability": 0.6209 + }, + { + "start": 8864.24, + "end": 8864.66, + "probability": 0.5881 + }, + { + "start": 8865.26, + "end": 8866.8, + "probability": 0.7947 + }, + { + "start": 8867.24, + "end": 8870.8, + "probability": 0.9968 + }, + { + "start": 8870.8, + "end": 8874.86, + "probability": 0.9827 + }, + { + "start": 8875.8, + "end": 8879.82, + "probability": 0.9972 + }, + { + "start": 8879.82, + "end": 8883.76, + "probability": 0.9874 + }, + { + "start": 8884.84, + "end": 8887.64, + "probability": 0.9947 + }, + { + "start": 8888.54, + "end": 8894.22, + "probability": 0.9804 + }, + { + "start": 8894.22, + "end": 8900.7, + "probability": 0.9517 + }, + { + "start": 8901.66, + "end": 8907.12, + "probability": 0.998 + }, + { + "start": 8907.12, + "end": 8911.1, + "probability": 0.9998 + }, + { + "start": 8911.82, + "end": 8914.34, + "probability": 0.9878 + }, + { + "start": 8915.0, + "end": 8915.42, + "probability": 0.6891 + }, + { + "start": 8915.48, + "end": 8916.12, + "probability": 0.725 + }, + { + "start": 8916.38, + "end": 8920.6, + "probability": 0.9968 + }, + { + "start": 8921.42, + "end": 8926.9, + "probability": 0.9946 + }, + { + "start": 8926.9, + "end": 8934.26, + "probability": 0.988 + }, + { + "start": 8935.04, + "end": 8937.32, + "probability": 0.8322 + }, + { + "start": 8939.57, + "end": 8943.62, + "probability": 0.9275 + }, + { + "start": 8944.92, + "end": 8946.4, + "probability": 0.5554 + }, + { + "start": 8947.04, + "end": 8947.97, + "probability": 0.4482 + }, + { + "start": 8948.86, + "end": 8950.08, + "probability": 0.7192 + }, + { + "start": 8950.12, + "end": 8951.59, + "probability": 0.6245 + }, + { + "start": 8951.9, + "end": 8953.7, + "probability": 0.0044 + }, + { + "start": 8954.0, + "end": 8954.76, + "probability": 0.8156 + }, + { + "start": 8955.94, + "end": 8956.82, + "probability": 0.392 + }, + { + "start": 8973.84, + "end": 8974.52, + "probability": 0.0534 + }, + { + "start": 8977.57, + "end": 8979.5, + "probability": 0.1735 + }, + { + "start": 8979.5, + "end": 8980.84, + "probability": 0.0183 + }, + { + "start": 8982.56, + "end": 8983.42, + "probability": 0.1228 + }, + { + "start": 8983.42, + "end": 8983.42, + "probability": 0.0229 + }, + { + "start": 8983.42, + "end": 8983.42, + "probability": 0.0035 + }, + { + "start": 8984.34, + "end": 8985.78, + "probability": 0.035 + }, + { + "start": 9006.36, + "end": 9008.68, + "probability": 0.0369 + }, + { + "start": 9014.72, + "end": 9023.34, + "probability": 0.7454 + }, + { + "start": 9023.34, + "end": 9025.36, + "probability": 0.638 + }, + { + "start": 9026.18, + "end": 9028.04, + "probability": 0.6798 + }, + { + "start": 9028.04, + "end": 9031.2, + "probability": 0.8516 + }, + { + "start": 9034.06, + "end": 9035.52, + "probability": 0.564 + }, + { + "start": 9035.62, + "end": 9038.62, + "probability": 0.879 + }, + { + "start": 9039.02, + "end": 9040.3, + "probability": 0.5062 + }, + { + "start": 9040.76, + "end": 9042.94, + "probability": 0.8337 + }, + { + "start": 9043.2, + "end": 9049.14, + "probability": 0.8306 + }, + { + "start": 9051.54, + "end": 9054.52, + "probability": 0.8747 + }, + { + "start": 9055.18, + "end": 9060.68, + "probability": 0.8176 + }, + { + "start": 9061.32, + "end": 9065.16, + "probability": 0.8538 + }, + { + "start": 9065.54, + "end": 9070.06, + "probability": 0.4843 + }, + { + "start": 9070.38, + "end": 9072.72, + "probability": 0.9819 + }, + { + "start": 9073.16, + "end": 9074.74, + "probability": 0.9564 + }, + { + "start": 9074.94, + "end": 9077.04, + "probability": 0.5124 + }, + { + "start": 9077.54, + "end": 9080.57, + "probability": 0.8893 + }, + { + "start": 9081.28, + "end": 9086.26, + "probability": 0.8925 + }, + { + "start": 9086.72, + "end": 9089.04, + "probability": 0.646 + }, + { + "start": 9089.44, + "end": 9090.24, + "probability": 0.8379 + }, + { + "start": 9090.36, + "end": 9091.14, + "probability": 0.9246 + }, + { + "start": 9091.22, + "end": 9092.1, + "probability": 0.6595 + }, + { + "start": 9092.74, + "end": 9093.8, + "probability": 0.9832 + }, + { + "start": 9093.98, + "end": 9097.58, + "probability": 0.9744 + }, + { + "start": 9097.84, + "end": 9099.64, + "probability": 0.9802 + }, + { + "start": 9100.08, + "end": 9102.54, + "probability": 0.9286 + }, + { + "start": 9103.26, + "end": 9111.26, + "probability": 0.9777 + }, + { + "start": 9112.56, + "end": 9113.26, + "probability": 0.8309 + }, + { + "start": 9113.66, + "end": 9114.06, + "probability": 0.5655 + }, + { + "start": 9114.24, + "end": 9115.8, + "probability": 0.9707 + }, + { + "start": 9116.12, + "end": 9118.14, + "probability": 0.9751 + }, + { + "start": 9118.42, + "end": 9120.26, + "probability": 0.5012 + }, + { + "start": 9120.36, + "end": 9121.3, + "probability": 0.7083 + }, + { + "start": 9121.68, + "end": 9122.66, + "probability": 0.8191 + }, + { + "start": 9122.8, + "end": 9124.74, + "probability": 0.4183 + }, + { + "start": 9124.8, + "end": 9126.98, + "probability": 0.6323 + }, + { + "start": 9126.98, + "end": 9133.18, + "probability": 0.9899 + }, + { + "start": 9133.26, + "end": 9134.48, + "probability": 0.4583 + }, + { + "start": 9135.16, + "end": 9136.31, + "probability": 0.9619 + }, + { + "start": 9137.1, + "end": 9141.16, + "probability": 0.9368 + }, + { + "start": 9142.5, + "end": 9145.72, + "probability": 0.9691 + }, + { + "start": 9145.72, + "end": 9149.44, + "probability": 0.9793 + }, + { + "start": 9150.22, + "end": 9154.86, + "probability": 0.9889 + }, + { + "start": 9155.36, + "end": 9158.57, + "probability": 0.7731 + }, + { + "start": 9158.86, + "end": 9161.0, + "probability": 0.9019 + }, + { + "start": 9161.44, + "end": 9164.32, + "probability": 0.9927 + }, + { + "start": 9164.32, + "end": 9168.7, + "probability": 0.9958 + }, + { + "start": 9169.36, + "end": 9171.04, + "probability": 0.8643 + }, + { + "start": 9172.4, + "end": 9176.02, + "probability": 0.9814 + }, + { + "start": 9176.18, + "end": 9183.24, + "probability": 0.9934 + }, + { + "start": 9184.92, + "end": 9189.54, + "probability": 0.9718 + }, + { + "start": 9189.54, + "end": 9193.12, + "probability": 0.9973 + }, + { + "start": 9193.78, + "end": 9197.82, + "probability": 0.9893 + }, + { + "start": 9198.64, + "end": 9201.08, + "probability": 0.7184 + }, + { + "start": 9202.02, + "end": 9204.2, + "probability": 0.9686 + }, + { + "start": 9204.38, + "end": 9210.64, + "probability": 0.7906 + }, + { + "start": 9211.58, + "end": 9212.88, + "probability": 0.621 + }, + { + "start": 9213.1, + "end": 9213.94, + "probability": 0.6732 + }, + { + "start": 9214.12, + "end": 9214.38, + "probability": 0.3753 + }, + { + "start": 9214.48, + "end": 9215.84, + "probability": 0.8768 + }, + { + "start": 9216.02, + "end": 9217.21, + "probability": 0.9656 + }, + { + "start": 9217.8, + "end": 9221.8, + "probability": 0.9546 + }, + { + "start": 9223.68, + "end": 9226.02, + "probability": 0.8853 + }, + { + "start": 9226.36, + "end": 9227.74, + "probability": 0.9628 + }, + { + "start": 9228.38, + "end": 9233.34, + "probability": 0.996 + }, + { + "start": 9233.8, + "end": 9236.62, + "probability": 0.9194 + }, + { + "start": 9236.62, + "end": 9241.04, + "probability": 0.8735 + }, + { + "start": 9241.66, + "end": 9244.76, + "probability": 0.9636 + }, + { + "start": 9244.76, + "end": 9247.18, + "probability": 0.9792 + }, + { + "start": 9248.12, + "end": 9250.06, + "probability": 0.9897 + }, + { + "start": 9250.06, + "end": 9252.92, + "probability": 0.9892 + }, + { + "start": 9253.42, + "end": 9255.88, + "probability": 0.9867 + }, + { + "start": 9255.94, + "end": 9256.96, + "probability": 0.7917 + }, + { + "start": 9257.86, + "end": 9262.4, + "probability": 0.9679 + }, + { + "start": 9262.94, + "end": 9264.06, + "probability": 0.8573 + }, + { + "start": 9264.26, + "end": 9268.92, + "probability": 0.9951 + }, + { + "start": 9268.92, + "end": 9274.46, + "probability": 0.9385 + }, + { + "start": 9275.12, + "end": 9279.46, + "probability": 0.8178 + }, + { + "start": 9279.7, + "end": 9283.46, + "probability": 0.5295 + }, + { + "start": 9284.06, + "end": 9287.24, + "probability": 0.9816 + }, + { + "start": 9287.36, + "end": 9291.98, + "probability": 0.9954 + }, + { + "start": 9292.38, + "end": 9296.04, + "probability": 0.9566 + }, + { + "start": 9296.58, + "end": 9299.08, + "probability": 0.9282 + }, + { + "start": 9299.08, + "end": 9301.66, + "probability": 0.9832 + }, + { + "start": 9302.22, + "end": 9309.28, + "probability": 0.9743 + }, + { + "start": 9309.7, + "end": 9312.24, + "probability": 0.837 + }, + { + "start": 9312.4, + "end": 9316.4, + "probability": 0.9246 + }, + { + "start": 9316.86, + "end": 9319.76, + "probability": 0.8792 + }, + { + "start": 9319.76, + "end": 9323.8, + "probability": 0.9753 + }, + { + "start": 9324.19, + "end": 9326.18, + "probability": 0.2322 + }, + { + "start": 9326.18, + "end": 9328.06, + "probability": 0.8276 + }, + { + "start": 9328.34, + "end": 9330.08, + "probability": 0.9693 + }, + { + "start": 9330.42, + "end": 9330.96, + "probability": 0.7435 + }, + { + "start": 9331.46, + "end": 9332.78, + "probability": 0.4155 + }, + { + "start": 9332.82, + "end": 9334.64, + "probability": 0.7161 + }, + { + "start": 9336.44, + "end": 9345.76, + "probability": 0.9374 + }, + { + "start": 9345.92, + "end": 9347.72, + "probability": 0.8003 + }, + { + "start": 9348.22, + "end": 9350.58, + "probability": 0.7469 + }, + { + "start": 9350.9, + "end": 9351.08, + "probability": 0.0201 + }, + { + "start": 9439.12, + "end": 9439.88, + "probability": 0.1277 + }, + { + "start": 9439.88, + "end": 9439.88, + "probability": 0.2544 + }, + { + "start": 9439.88, + "end": 9439.88, + "probability": 0.1946 + }, + { + "start": 9439.88, + "end": 9439.88, + "probability": 0.3451 + }, + { + "start": 9439.88, + "end": 9439.88, + "probability": 0.6817 + }, + { + "start": 9439.88, + "end": 9440.7, + "probability": 0.3327 + }, + { + "start": 9441.04, + "end": 9444.4, + "probability": 0.9705 + }, + { + "start": 9444.64, + "end": 9445.91, + "probability": 0.8752 + }, + { + "start": 9447.59, + "end": 9451.0, + "probability": 0.7528 + }, + { + "start": 9451.66, + "end": 9454.34, + "probability": 0.9022 + }, + { + "start": 9454.78, + "end": 9458.14, + "probability": 0.9535 + }, + { + "start": 9458.3, + "end": 9461.65, + "probability": 0.8527 + }, + { + "start": 9463.9, + "end": 9465.1, + "probability": 0.4945 + }, + { + "start": 9465.7, + "end": 9467.62, + "probability": 0.6502 + }, + { + "start": 9467.68, + "end": 9469.84, + "probability": 0.9311 + }, + { + "start": 9469.98, + "end": 9474.82, + "probability": 0.843 + }, + { + "start": 9475.48, + "end": 9479.24, + "probability": 0.9899 + }, + { + "start": 9479.24, + "end": 9484.3, + "probability": 0.9653 + }, + { + "start": 9484.84, + "end": 9488.12, + "probability": 0.5123 + }, + { + "start": 9488.56, + "end": 9493.22, + "probability": 0.755 + }, + { + "start": 9493.52, + "end": 9497.36, + "probability": 0.51 + }, + { + "start": 9497.88, + "end": 9499.14, + "probability": 0.7838 + }, + { + "start": 9499.6, + "end": 9500.42, + "probability": 0.1255 + }, + { + "start": 9500.66, + "end": 9501.44, + "probability": 0.5563 + }, + { + "start": 9501.46, + "end": 9502.28, + "probability": 0.6609 + }, + { + "start": 9502.56, + "end": 9503.44, + "probability": 0.5081 + }, + { + "start": 9505.12, + "end": 9505.68, + "probability": 0.0481 + }, + { + "start": 9510.52, + "end": 9519.46, + "probability": 0.0682 + }, + { + "start": 9520.06, + "end": 9521.28, + "probability": 0.4068 + }, + { + "start": 9521.86, + "end": 9524.5, + "probability": 0.7084 + }, + { + "start": 9524.82, + "end": 9526.58, + "probability": 0.7619 + }, + { + "start": 9527.24, + "end": 9530.9, + "probability": 0.6094 + }, + { + "start": 9531.02, + "end": 9534.4, + "probability": 0.8478 + }, + { + "start": 9534.56, + "end": 9535.34, + "probability": 0.7951 + }, + { + "start": 9536.12, + "end": 9540.64, + "probability": 0.7322 + }, + { + "start": 9541.0, + "end": 9545.24, + "probability": 0.8037 + }, + { + "start": 9545.74, + "end": 9552.08, + "probability": 0.9734 + }, + { + "start": 9552.56, + "end": 9553.26, + "probability": 0.7188 + }, + { + "start": 9553.5, + "end": 9554.72, + "probability": 0.3962 + }, + { + "start": 9554.72, + "end": 9555.06, + "probability": 0.1641 + }, + { + "start": 9555.14, + "end": 9555.98, + "probability": 0.2731 + }, + { + "start": 9565.46, + "end": 9573.12, + "probability": 0.1953 + }, + { + "start": 9573.12, + "end": 9576.82, + "probability": 0.4121 + }, + { + "start": 9577.24, + "end": 9582.32, + "probability": 0.7997 + }, + { + "start": 9583.22, + "end": 9588.16, + "probability": 0.7325 + }, + { + "start": 9588.66, + "end": 9592.64, + "probability": 0.9045 + }, + { + "start": 9593.06, + "end": 9596.54, + "probability": 0.6872 + }, + { + "start": 9596.78, + "end": 9600.78, + "probability": 0.6197 + }, + { + "start": 9600.78, + "end": 9602.1, + "probability": 0.5314 + }, + { + "start": 9602.42, + "end": 9603.32, + "probability": 0.6288 + }, + { + "start": 9603.5, + "end": 9604.46, + "probability": 0.8632 + }, + { + "start": 9604.54, + "end": 9605.08, + "probability": 0.8742 + }, + { + "start": 9605.1, + "end": 9606.16, + "probability": 0.6801 + }, + { + "start": 9606.5, + "end": 9606.7, + "probability": 0.0157 + }, + { + "start": 9614.82, + "end": 9617.52, + "probability": 0.2329 + }, + { + "start": 9618.0, + "end": 9619.9, + "probability": 0.4198 + }, + { + "start": 9620.54, + "end": 9622.7, + "probability": 0.5708 + }, + { + "start": 9622.9, + "end": 9627.56, + "probability": 0.9555 + }, + { + "start": 9627.7, + "end": 9630.94, + "probability": 0.7969 + }, + { + "start": 9631.4, + "end": 9632.1, + "probability": 0.6748 + }, + { + "start": 9632.7, + "end": 9633.72, + "probability": 0.7618 + }, + { + "start": 9633.8, + "end": 9637.78, + "probability": 0.8638 + }, + { + "start": 9638.36, + "end": 9641.24, + "probability": 0.2999 + }, + { + "start": 9641.7, + "end": 9649.56, + "probability": 0.9561 + }, + { + "start": 9651.69, + "end": 9657.84, + "probability": 0.1065 + }, + { + "start": 9662.28, + "end": 9664.08, + "probability": 0.0971 + }, + { + "start": 9665.88, + "end": 9667.02, + "probability": 0.1371 + }, + { + "start": 9668.76, + "end": 9669.54, + "probability": 0.1145 + }, + { + "start": 9673.42, + "end": 9674.02, + "probability": 0.0016 + }, + { + "start": 9718.86, + "end": 9718.92, + "probability": 0.1568 + }, + { + "start": 9718.94, + "end": 9718.96, + "probability": 0.0001 + }, + { + "start": 9719.1, + "end": 9719.24, + "probability": 0.2312 + }, + { + "start": 9719.24, + "end": 9719.24, + "probability": 0.6592 + }, + { + "start": 9719.24, + "end": 9720.36, + "probability": 0.504 + }, + { + "start": 9720.64, + "end": 9722.94, + "probability": 0.7738 + }, + { + "start": 9723.1, + "end": 9724.84, + "probability": 0.7835 + }, + { + "start": 9727.22, + "end": 9731.25, + "probability": 0.9954 + }, + { + "start": 9732.24, + "end": 9740.94, + "probability": 0.9404 + }, + { + "start": 9741.18, + "end": 9745.48, + "probability": 0.9927 + }, + { + "start": 9746.2, + "end": 9747.98, + "probability": 0.9589 + }, + { + "start": 9748.62, + "end": 9750.82, + "probability": 0.8853 + }, + { + "start": 9751.9, + "end": 9752.88, + "probability": 0.8062 + }, + { + "start": 9753.18, + "end": 9754.72, + "probability": 0.9824 + }, + { + "start": 9754.78, + "end": 9758.88, + "probability": 0.9737 + }, + { + "start": 9759.8, + "end": 9760.9, + "probability": 0.8896 + }, + { + "start": 9761.78, + "end": 9763.92, + "probability": 0.9656 + }, + { + "start": 9764.9, + "end": 9766.04, + "probability": 0.7243 + }, + { + "start": 9766.94, + "end": 9768.54, + "probability": 0.2141 + }, + { + "start": 9768.54, + "end": 9769.04, + "probability": 0.4404 + }, + { + "start": 9769.38, + "end": 9770.89, + "probability": 0.6664 + }, + { + "start": 9771.55, + "end": 9775.04, + "probability": 0.9989 + }, + { + "start": 9775.04, + "end": 9776.2, + "probability": 0.3021 + }, + { + "start": 9776.68, + "end": 9780.02, + "probability": 0.9897 + }, + { + "start": 9780.14, + "end": 9782.96, + "probability": 0.4265 + }, + { + "start": 9783.1, + "end": 9785.86, + "probability": 0.5986 + }, + { + "start": 9786.04, + "end": 9786.8, + "probability": 0.5469 + }, + { + "start": 9788.56, + "end": 9789.38, + "probability": 0.6917 + }, + { + "start": 9789.48, + "end": 9790.32, + "probability": 0.9095 + }, + { + "start": 9790.38, + "end": 9791.76, + "probability": 0.545 + }, + { + "start": 9792.2, + "end": 9796.04, + "probability": 0.3412 + }, + { + "start": 9796.2, + "end": 9797.9, + "probability": 0.9282 + }, + { + "start": 9798.42, + "end": 9798.96, + "probability": 0.8281 + }, + { + "start": 9799.04, + "end": 9800.85, + "probability": 0.9932 + }, + { + "start": 9801.16, + "end": 9802.3, + "probability": 0.9053 + }, + { + "start": 9802.38, + "end": 9803.54, + "probability": 0.9478 + }, + { + "start": 9808.12, + "end": 9808.72, + "probability": 0.9343 + }, + { + "start": 9809.0, + "end": 9812.68, + "probability": 0.9783 + }, + { + "start": 9813.55, + "end": 9821.16, + "probability": 0.9762 + }, + { + "start": 9821.18, + "end": 9822.52, + "probability": 0.7671 + }, + { + "start": 9823.28, + "end": 9828.13, + "probability": 0.8642 + }, + { + "start": 9829.66, + "end": 9829.66, + "probability": 0.0468 + }, + { + "start": 9829.66, + "end": 9837.92, + "probability": 0.9531 + }, + { + "start": 9838.64, + "end": 9840.46, + "probability": 0.7956 + }, + { + "start": 9841.12, + "end": 9847.7, + "probability": 0.9987 + }, + { + "start": 9849.74, + "end": 9850.4, + "probability": 0.7297 + }, + { + "start": 9850.5, + "end": 9851.38, + "probability": 0.9266 + }, + { + "start": 9851.48, + "end": 9852.47, + "probability": 0.9124 + }, + { + "start": 9853.5, + "end": 9855.24, + "probability": 0.7926 + }, + { + "start": 9856.34, + "end": 9857.06, + "probability": 0.9507 + }, + { + "start": 9858.0, + "end": 9863.72, + "probability": 0.9886 + }, + { + "start": 9865.76, + "end": 9872.98, + "probability": 0.9647 + }, + { + "start": 9872.98, + "end": 9878.1, + "probability": 0.9552 + }, + { + "start": 9878.92, + "end": 9880.8, + "probability": 0.8711 + }, + { + "start": 9881.78, + "end": 9885.58, + "probability": 0.9548 + }, + { + "start": 9887.4, + "end": 9893.98, + "probability": 0.9987 + }, + { + "start": 9895.0, + "end": 9903.4, + "probability": 0.9952 + }, + { + "start": 9904.14, + "end": 9904.76, + "probability": 0.8422 + }, + { + "start": 9905.5, + "end": 9908.46, + "probability": 0.9258 + }, + { + "start": 9909.26, + "end": 9910.34, + "probability": 0.8525 + }, + { + "start": 9911.66, + "end": 9914.58, + "probability": 0.9943 + }, + { + "start": 9915.72, + "end": 9920.5, + "probability": 0.665 + }, + { + "start": 9921.6, + "end": 9924.54, + "probability": 0.9912 + }, + { + "start": 9925.52, + "end": 9927.48, + "probability": 0.9015 + }, + { + "start": 9930.72, + "end": 9937.08, + "probability": 0.6348 + }, + { + "start": 9938.66, + "end": 9940.28, + "probability": 0.9531 + }, + { + "start": 9942.82, + "end": 9947.56, + "probability": 0.9004 + }, + { + "start": 9947.82, + "end": 9948.2, + "probability": 0.6631 + }, + { + "start": 9948.2, + "end": 9949.38, + "probability": 0.9448 + }, + { + "start": 9950.12, + "end": 9952.06, + "probability": 0.9917 + }, + { + "start": 9952.86, + "end": 9953.59, + "probability": 0.8941 + }, + { + "start": 9959.16, + "end": 9961.62, + "probability": 0.8563 + }, + { + "start": 9962.64, + "end": 9963.61, + "probability": 0.7544 + }, + { + "start": 9965.22, + "end": 9972.4, + "probability": 0.9673 + }, + { + "start": 9972.62, + "end": 9975.62, + "probability": 0.8331 + }, + { + "start": 9978.36, + "end": 9980.26, + "probability": 0.9161 + }, + { + "start": 9981.42, + "end": 9983.0, + "probability": 0.9067 + }, + { + "start": 9984.28, + "end": 9988.96, + "probability": 0.9649 + }, + { + "start": 9990.3, + "end": 9993.54, + "probability": 0.7937 + }, + { + "start": 9994.44, + "end": 9997.42, + "probability": 0.943 + }, + { + "start": 9998.12, + "end": 9999.34, + "probability": 0.6512 + }, + { + "start": 10000.4, + "end": 10002.72, + "probability": 0.8165 + }, + { + "start": 10003.7, + "end": 10010.22, + "probability": 0.6549 + }, + { + "start": 10010.32, + "end": 10012.78, + "probability": 0.8398 + }, + { + "start": 10013.58, + "end": 10021.5, + "probability": 0.9744 + }, + { + "start": 10022.38, + "end": 10023.26, + "probability": 0.9726 + }, + { + "start": 10023.8, + "end": 10026.52, + "probability": 0.9966 + }, + { + "start": 10026.96, + "end": 10032.04, + "probability": 0.9633 + }, + { + "start": 10036.8, + "end": 10041.42, + "probability": 0.9875 + }, + { + "start": 10041.42, + "end": 10046.22, + "probability": 0.9771 + }, + { + "start": 10046.78, + "end": 10048.9, + "probability": 0.8536 + }, + { + "start": 10053.2, + "end": 10055.52, + "probability": 0.7508 + }, + { + "start": 10057.96, + "end": 10060.88, + "probability": 0.6576 + }, + { + "start": 10061.48, + "end": 10062.78, + "probability": 0.6861 + }, + { + "start": 10063.6, + "end": 10064.52, + "probability": 0.9316 + }, + { + "start": 10064.74, + "end": 10066.18, + "probability": 0.9188 + }, + { + "start": 10066.18, + "end": 10069.42, + "probability": 0.8894 + }, + { + "start": 10070.54, + "end": 10072.64, + "probability": 0.897 + }, + { + "start": 10073.16, + "end": 10076.28, + "probability": 0.9703 + }, + { + "start": 10076.84, + "end": 10078.18, + "probability": 0.7181 + }, + { + "start": 10078.68, + "end": 10082.2, + "probability": 0.9922 + }, + { + "start": 10082.58, + "end": 10084.5, + "probability": 0.8658 + }, + { + "start": 10086.12, + "end": 10089.28, + "probability": 0.9891 + }, + { + "start": 10089.76, + "end": 10090.54, + "probability": 0.8179 + }, + { + "start": 10090.68, + "end": 10091.6, + "probability": 0.9628 + }, + { + "start": 10092.0, + "end": 10093.42, + "probability": 0.9785 + }, + { + "start": 10093.98, + "end": 10097.02, + "probability": 0.9807 + }, + { + "start": 10097.38, + "end": 10098.34, + "probability": 0.7172 + }, + { + "start": 10098.44, + "end": 10099.0, + "probability": 0.2138 + }, + { + "start": 10099.22, + "end": 10101.56, + "probability": 0.9518 + }, + { + "start": 10102.52, + "end": 10106.76, + "probability": 0.9054 + }, + { + "start": 10107.1, + "end": 10109.04, + "probability": 0.9221 + }, + { + "start": 10109.84, + "end": 10113.14, + "probability": 0.8979 + }, + { + "start": 10113.58, + "end": 10114.94, + "probability": 0.8501 + }, + { + "start": 10115.08, + "end": 10118.58, + "probability": 0.9315 + }, + { + "start": 10119.92, + "end": 10121.86, + "probability": 0.8011 + }, + { + "start": 10122.4, + "end": 10126.4, + "probability": 0.951 + }, + { + "start": 10126.88, + "end": 10130.04, + "probability": 0.9455 + }, + { + "start": 10133.22, + "end": 10136.44, + "probability": 0.7631 + }, + { + "start": 10137.1, + "end": 10145.28, + "probability": 0.8905 + }, + { + "start": 10146.88, + "end": 10151.92, + "probability": 0.9587 + }, + { + "start": 10153.16, + "end": 10154.32, + "probability": 0.9302 + }, + { + "start": 10154.46, + "end": 10157.12, + "probability": 0.9585 + }, + { + "start": 10157.34, + "end": 10162.14, + "probability": 0.9562 + }, + { + "start": 10162.76, + "end": 10165.16, + "probability": 0.9713 + }, + { + "start": 10166.28, + "end": 10167.44, + "probability": 0.9882 + }, + { + "start": 10168.48, + "end": 10171.78, + "probability": 0.9668 + }, + { + "start": 10172.34, + "end": 10177.32, + "probability": 0.9932 + }, + { + "start": 10177.38, + "end": 10178.58, + "probability": 0.847 + }, + { + "start": 10179.02, + "end": 10180.66, + "probability": 0.8413 + }, + { + "start": 10180.92, + "end": 10182.12, + "probability": 0.8846 + }, + { + "start": 10182.32, + "end": 10184.56, + "probability": 0.9963 + }, + { + "start": 10185.3, + "end": 10189.56, + "probability": 0.9943 + }, + { + "start": 10190.04, + "end": 10192.4, + "probability": 0.6532 + }, + { + "start": 10193.34, + "end": 10196.02, + "probability": 0.9813 + }, + { + "start": 10196.38, + "end": 10199.48, + "probability": 0.9908 + }, + { + "start": 10199.74, + "end": 10202.36, + "probability": 0.9529 + }, + { + "start": 10203.16, + "end": 10211.24, + "probability": 0.9909 + }, + { + "start": 10211.24, + "end": 10218.94, + "probability": 0.9896 + }, + { + "start": 10219.14, + "end": 10220.62, + "probability": 0.9788 + }, + { + "start": 10221.74, + "end": 10224.38, + "probability": 0.8823 + }, + { + "start": 10224.98, + "end": 10229.4, + "probability": 0.9268 + }, + { + "start": 10229.74, + "end": 10231.82, + "probability": 0.9756 + }, + { + "start": 10232.34, + "end": 10236.76, + "probability": 0.9916 + }, + { + "start": 10236.76, + "end": 10242.96, + "probability": 0.9964 + }, + { + "start": 10244.16, + "end": 10246.96, + "probability": 0.9482 + }, + { + "start": 10247.44, + "end": 10250.98, + "probability": 0.96 + }, + { + "start": 10251.26, + "end": 10253.72, + "probability": 0.9893 + }, + { + "start": 10254.52, + "end": 10255.56, + "probability": 0.8748 + }, + { + "start": 10256.7, + "end": 10263.38, + "probability": 0.9971 + }, + { + "start": 10263.88, + "end": 10266.7, + "probability": 0.8723 + }, + { + "start": 10267.52, + "end": 10271.98, + "probability": 0.9857 + }, + { + "start": 10272.42, + "end": 10275.32, + "probability": 0.9382 + }, + { + "start": 10276.28, + "end": 10280.52, + "probability": 0.9858 + }, + { + "start": 10281.1, + "end": 10287.84, + "probability": 0.9977 + }, + { + "start": 10288.62, + "end": 10293.71, + "probability": 0.9828 + }, + { + "start": 10293.86, + "end": 10300.44, + "probability": 0.9924 + }, + { + "start": 10301.22, + "end": 10302.94, + "probability": 0.9034 + }, + { + "start": 10303.4, + "end": 10307.5, + "probability": 0.9816 + }, + { + "start": 10309.36, + "end": 10315.64, + "probability": 0.9147 + }, + { + "start": 10316.14, + "end": 10320.96, + "probability": 0.992 + }, + { + "start": 10321.82, + "end": 10328.2, + "probability": 0.9951 + }, + { + "start": 10328.8, + "end": 10334.58, + "probability": 0.9854 + }, + { + "start": 10335.44, + "end": 10338.88, + "probability": 0.9922 + }, + { + "start": 10338.88, + "end": 10343.38, + "probability": 0.9836 + }, + { + "start": 10343.74, + "end": 10346.72, + "probability": 0.969 + }, + { + "start": 10347.38, + "end": 10354.22, + "probability": 0.9937 + }, + { + "start": 10354.22, + "end": 10359.02, + "probability": 0.9969 + }, + { + "start": 10359.84, + "end": 10365.92, + "probability": 0.9958 + }, + { + "start": 10366.54, + "end": 10371.7, + "probability": 0.9775 + }, + { + "start": 10372.0, + "end": 10376.9, + "probability": 0.9955 + }, + { + "start": 10377.76, + "end": 10382.0, + "probability": 0.9774 + }, + { + "start": 10382.72, + "end": 10384.54, + "probability": 0.9292 + }, + { + "start": 10384.68, + "end": 10385.21, + "probability": 0.9545 + }, + { + "start": 10386.4, + "end": 10394.36, + "probability": 0.9835 + }, + { + "start": 10394.48, + "end": 10395.86, + "probability": 0.8828 + }, + { + "start": 10396.72, + "end": 10398.9, + "probability": 0.9964 + }, + { + "start": 10399.14, + "end": 10402.74, + "probability": 0.9453 + }, + { + "start": 10402.9, + "end": 10407.98, + "probability": 0.9473 + }, + { + "start": 10408.08, + "end": 10408.62, + "probability": 0.7729 + }, + { + "start": 10408.76, + "end": 10411.76, + "probability": 0.9693 + }, + { + "start": 10412.1, + "end": 10413.56, + "probability": 0.8467 + }, + { + "start": 10413.7, + "end": 10415.35, + "probability": 0.6289 + }, + { + "start": 10416.32, + "end": 10418.07, + "probability": 0.9899 + }, + { + "start": 10418.52, + "end": 10423.02, + "probability": 0.9678 + }, + { + "start": 10423.02, + "end": 10427.9, + "probability": 0.9723 + }, + { + "start": 10428.46, + "end": 10431.82, + "probability": 0.5528 + }, + { + "start": 10432.0, + "end": 10434.4, + "probability": 0.8148 + }, + { + "start": 10434.54, + "end": 10438.74, + "probability": 0.9965 + }, + { + "start": 10439.28, + "end": 10441.84, + "probability": 0.9238 + }, + { + "start": 10442.6, + "end": 10443.9, + "probability": 0.9332 + }, + { + "start": 10443.96, + "end": 10445.66, + "probability": 0.9924 + }, + { + "start": 10446.14, + "end": 10450.34, + "probability": 0.9326 + }, + { + "start": 10451.38, + "end": 10452.26, + "probability": 0.8742 + }, + { + "start": 10452.42, + "end": 10455.04, + "probability": 0.9108 + }, + { + "start": 10456.26, + "end": 10457.8, + "probability": 0.9915 + }, + { + "start": 10458.66, + "end": 10463.84, + "probability": 0.9888 + }, + { + "start": 10463.86, + "end": 10465.3, + "probability": 0.9797 + }, + { + "start": 10465.42, + "end": 10469.22, + "probability": 0.869 + }, + { + "start": 10469.72, + "end": 10473.58, + "probability": 0.9934 + }, + { + "start": 10474.02, + "end": 10478.66, + "probability": 0.9592 + }, + { + "start": 10478.72, + "end": 10479.52, + "probability": 0.8481 + }, + { + "start": 10480.34, + "end": 10484.94, + "probability": 0.9937 + }, + { + "start": 10485.44, + "end": 10485.82, + "probability": 0.4455 + }, + { + "start": 10485.9, + "end": 10486.84, + "probability": 0.745 + }, + { + "start": 10487.46, + "end": 10493.18, + "probability": 0.9494 + }, + { + "start": 10494.24, + "end": 10495.5, + "probability": 0.6113 + }, + { + "start": 10495.52, + "end": 10496.5, + "probability": 0.714 + }, + { + "start": 10496.58, + "end": 10496.98, + "probability": 0.93 + }, + { + "start": 10497.04, + "end": 10498.83, + "probability": 0.9173 + }, + { + "start": 10498.98, + "end": 10503.36, + "probability": 0.8823 + }, + { + "start": 10504.0, + "end": 10506.28, + "probability": 0.6611 + }, + { + "start": 10507.12, + "end": 10511.58, + "probability": 0.7388 + }, + { + "start": 10512.6, + "end": 10520.36, + "probability": 0.2964 + }, + { + "start": 10520.7, + "end": 10527.74, + "probability": 0.0429 + }, + { + "start": 10529.24, + "end": 10530.42, + "probability": 0.0842 + }, + { + "start": 10532.08, + "end": 10534.62, + "probability": 0.2485 + }, + { + "start": 10534.76, + "end": 10536.4, + "probability": 0.1537 + }, + { + "start": 10537.1, + "end": 10540.24, + "probability": 0.9788 + }, + { + "start": 10540.32, + "end": 10546.56, + "probability": 0.9368 + }, + { + "start": 10548.14, + "end": 10550.9, + "probability": 0.2579 + }, + { + "start": 10551.78, + "end": 10552.6, + "probability": 0.1537 + }, + { + "start": 10552.84, + "end": 10554.96, + "probability": 0.1709 + }, + { + "start": 10555.12, + "end": 10559.2, + "probability": 0.6377 + }, + { + "start": 10559.34, + "end": 10560.58, + "probability": 0.2443 + }, + { + "start": 10560.58, + "end": 10562.44, + "probability": 0.0419 + }, + { + "start": 10563.85, + "end": 10570.26, + "probability": 0.9792 + }, + { + "start": 10570.5, + "end": 10571.53, + "probability": 0.9824 + }, + { + "start": 10572.52, + "end": 10573.08, + "probability": 0.7123 + }, + { + "start": 10573.1, + "end": 10576.0, + "probability": 0.993 + }, + { + "start": 10576.44, + "end": 10583.08, + "probability": 0.9647 + }, + { + "start": 10583.58, + "end": 10585.4, + "probability": 0.4711 + }, + { + "start": 10585.66, + "end": 10589.68, + "probability": 0.6395 + }, + { + "start": 10589.68, + "end": 10595.14, + "probability": 0.635 + }, + { + "start": 10595.62, + "end": 10598.06, + "probability": 0.2087 + }, + { + "start": 10598.42, + "end": 10600.58, + "probability": 0.7922 + }, + { + "start": 10600.9, + "end": 10602.78, + "probability": 0.9488 + }, + { + "start": 10602.96, + "end": 10604.8, + "probability": 0.8446 + }, + { + "start": 10605.1, + "end": 10606.84, + "probability": 0.8386 + }, + { + "start": 10606.9, + "end": 10610.74, + "probability": 0.9443 + }, + { + "start": 10610.74, + "end": 10611.38, + "probability": 0.5123 + }, + { + "start": 10611.72, + "end": 10612.46, + "probability": 0.7759 + }, + { + "start": 10612.78, + "end": 10615.96, + "probability": 0.7386 + }, + { + "start": 10616.58, + "end": 10617.36, + "probability": 0.7741 + }, + { + "start": 10618.24, + "end": 10620.5, + "probability": 0.9964 + }, + { + "start": 10620.5, + "end": 10624.3, + "probability": 0.6523 + }, + { + "start": 10624.5, + "end": 10628.02, + "probability": 0.5008 + }, + { + "start": 10628.06, + "end": 10632.3, + "probability": 0.9914 + }, + { + "start": 10632.3, + "end": 10637.36, + "probability": 0.6256 + }, + { + "start": 10637.72, + "end": 10642.86, + "probability": 0.7774 + }, + { + "start": 10642.86, + "end": 10647.46, + "probability": 0.9976 + }, + { + "start": 10648.14, + "end": 10650.34, + "probability": 0.9976 + }, + { + "start": 10650.34, + "end": 10653.76, + "probability": 0.9735 + }, + { + "start": 10654.26, + "end": 10657.84, + "probability": 0.994 + }, + { + "start": 10657.84, + "end": 10661.36, + "probability": 0.9908 + }, + { + "start": 10661.76, + "end": 10666.72, + "probability": 0.7925 + }, + { + "start": 10666.72, + "end": 10670.8, + "probability": 0.9515 + }, + { + "start": 10671.48, + "end": 10672.26, + "probability": 0.6916 + }, + { + "start": 10672.4, + "end": 10673.66, + "probability": 0.8182 + }, + { + "start": 10673.78, + "end": 10674.82, + "probability": 0.8511 + }, + { + "start": 10674.86, + "end": 10678.16, + "probability": 0.9824 + }, + { + "start": 10678.76, + "end": 10683.94, + "probability": 0.998 + }, + { + "start": 10683.94, + "end": 10688.06, + "probability": 0.9821 + }, + { + "start": 10688.24, + "end": 10689.68, + "probability": 0.9002 + }, + { + "start": 10689.84, + "end": 10690.68, + "probability": 0.7491 + }, + { + "start": 10691.06, + "end": 10695.64, + "probability": 0.9941 + }, + { + "start": 10695.98, + "end": 10696.48, + "probability": 0.93 + }, + { + "start": 10696.52, + "end": 10697.84, + "probability": 0.9606 + }, + { + "start": 10698.06, + "end": 10698.46, + "probability": 0.4856 + }, + { + "start": 10698.56, + "end": 10704.02, + "probability": 0.9073 + }, + { + "start": 10704.52, + "end": 10706.92, + "probability": 0.9689 + }, + { + "start": 10707.06, + "end": 10709.1, + "probability": 0.7324 + }, + { + "start": 10709.16, + "end": 10713.64, + "probability": 0.9644 + }, + { + "start": 10714.86, + "end": 10716.7, + "probability": 0.9233 + }, + { + "start": 10716.78, + "end": 10718.36, + "probability": 0.9736 + }, + { + "start": 10718.68, + "end": 10719.22, + "probability": 0.5351 + }, + { + "start": 10719.24, + "end": 10721.15, + "probability": 0.9875 + }, + { + "start": 10721.68, + "end": 10724.42, + "probability": 0.9909 + }, + { + "start": 10724.42, + "end": 10727.48, + "probability": 0.9154 + }, + { + "start": 10727.92, + "end": 10729.28, + "probability": 0.9835 + }, + { + "start": 10729.54, + "end": 10732.5, + "probability": 0.5751 + }, + { + "start": 10732.72, + "end": 10736.08, + "probability": 0.9953 + }, + { + "start": 10736.08, + "end": 10740.84, + "probability": 0.928 + }, + { + "start": 10741.92, + "end": 10742.54, + "probability": 0.5209 + }, + { + "start": 10742.54, + "end": 10742.78, + "probability": 0.7817 + }, + { + "start": 10742.88, + "end": 10746.34, + "probability": 0.9969 + }, + { + "start": 10746.9, + "end": 10749.74, + "probability": 0.9942 + }, + { + "start": 10749.74, + "end": 10754.04, + "probability": 0.9993 + }, + { + "start": 10755.02, + "end": 10756.26, + "probability": 0.8687 + }, + { + "start": 10756.88, + "end": 10760.12, + "probability": 0.9917 + }, + { + "start": 10760.12, + "end": 10763.06, + "probability": 0.9937 + }, + { + "start": 10763.48, + "end": 10763.94, + "probability": 0.6117 + }, + { + "start": 10764.12, + "end": 10764.34, + "probability": 0.3619 + }, + { + "start": 10764.4, + "end": 10768.96, + "probability": 0.97 + }, + { + "start": 10768.96, + "end": 10773.44, + "probability": 0.9976 + }, + { + "start": 10774.24, + "end": 10776.92, + "probability": 0.9976 + }, + { + "start": 10776.92, + "end": 10781.04, + "probability": 0.9984 + }, + { + "start": 10781.64, + "end": 10782.3, + "probability": 0.6165 + }, + { + "start": 10782.66, + "end": 10784.0, + "probability": 0.9535 + }, + { + "start": 10784.1, + "end": 10785.78, + "probability": 0.6672 + }, + { + "start": 10786.08, + "end": 10788.58, + "probability": 0.9878 + }, + { + "start": 10788.58, + "end": 10793.68, + "probability": 0.9642 + }, + { + "start": 10793.72, + "end": 10795.96, + "probability": 0.7381 + }, + { + "start": 10796.46, + "end": 10797.32, + "probability": 0.7831 + }, + { + "start": 10797.4, + "end": 10800.76, + "probability": 0.9839 + }, + { + "start": 10801.28, + "end": 10801.44, + "probability": 0.3875 + }, + { + "start": 10801.54, + "end": 10805.16, + "probability": 0.9698 + }, + { + "start": 10805.16, + "end": 10808.28, + "probability": 0.9185 + }, + { + "start": 10808.86, + "end": 10812.86, + "probability": 0.9423 + }, + { + "start": 10812.96, + "end": 10815.58, + "probability": 0.7354 + }, + { + "start": 10815.76, + "end": 10817.9, + "probability": 0.9835 + }, + { + "start": 10818.34, + "end": 10819.5, + "probability": 0.552 + }, + { + "start": 10820.02, + "end": 10820.98, + "probability": 0.7684 + }, + { + "start": 10821.1, + "end": 10823.1, + "probability": 0.9073 + }, + { + "start": 10823.48, + "end": 10827.94, + "probability": 0.8901 + }, + { + "start": 10827.94, + "end": 10831.2, + "probability": 0.9928 + }, + { + "start": 10831.3, + "end": 10832.04, + "probability": 0.9048 + }, + { + "start": 10832.36, + "end": 10836.64, + "probability": 0.9858 + }, + { + "start": 10837.16, + "end": 10837.62, + "probability": 0.3957 + }, + { + "start": 10837.66, + "end": 10838.26, + "probability": 0.6287 + }, + { + "start": 10838.46, + "end": 10840.76, + "probability": 0.8623 + }, + { + "start": 10844.76, + "end": 10845.42, + "probability": 0.8947 + }, + { + "start": 10845.84, + "end": 10847.04, + "probability": 0.7538 + }, + { + "start": 10847.1, + "end": 10847.84, + "probability": 0.8593 + }, + { + "start": 10848.04, + "end": 10849.66, + "probability": 0.6639 + }, + { + "start": 10849.8, + "end": 10850.06, + "probability": 0.4551 + }, + { + "start": 10850.08, + "end": 10850.86, + "probability": 0.831 + }, + { + "start": 10850.92, + "end": 10852.24, + "probability": 0.8331 + }, + { + "start": 10852.56, + "end": 10856.1, + "probability": 0.9845 + }, + { + "start": 10856.1, + "end": 10859.4, + "probability": 0.9922 + }, + { + "start": 10859.46, + "end": 10862.88, + "probability": 0.9963 + }, + { + "start": 10863.18, + "end": 10866.8, + "probability": 0.9945 + }, + { + "start": 10866.8, + "end": 10870.07, + "probability": 0.9995 + }, + { + "start": 10870.78, + "end": 10873.73, + "probability": 0.8143 + }, + { + "start": 10874.32, + "end": 10876.49, + "probability": 0.9875 + }, + { + "start": 10877.02, + "end": 10879.36, + "probability": 0.792 + }, + { + "start": 10879.36, + "end": 10880.02, + "probability": 0.7509 + }, + { + "start": 10880.16, + "end": 10882.4, + "probability": 0.8857 + }, + { + "start": 10882.56, + "end": 10883.86, + "probability": 0.9914 + }, + { + "start": 10884.2, + "end": 10886.44, + "probability": 0.9832 + }, + { + "start": 10886.82, + "end": 10888.92, + "probability": 0.9585 + }, + { + "start": 10889.28, + "end": 10895.0, + "probability": 0.9561 + }, + { + "start": 10895.0, + "end": 10900.14, + "probability": 0.9534 + }, + { + "start": 10900.26, + "end": 10903.14, + "probability": 0.9668 + }, + { + "start": 10903.22, + "end": 10909.04, + "probability": 0.9165 + }, + { + "start": 10909.54, + "end": 10910.62, + "probability": 0.9473 + }, + { + "start": 10911.04, + "end": 10915.16, + "probability": 0.8413 + }, + { + "start": 10915.76, + "end": 10916.6, + "probability": 0.6103 + }, + { + "start": 10916.68, + "end": 10917.04, + "probability": 0.3638 + }, + { + "start": 10917.3, + "end": 10919.8, + "probability": 0.7917 + }, + { + "start": 10920.12, + "end": 10923.44, + "probability": 0.9728 + }, + { + "start": 10924.26, + "end": 10927.16, + "probability": 0.9766 + }, + { + "start": 10927.16, + "end": 10930.82, + "probability": 0.9695 + }, + { + "start": 10931.18, + "end": 10933.66, + "probability": 0.9542 + }, + { + "start": 10933.66, + "end": 10937.14, + "probability": 0.9714 + }, + { + "start": 10937.6, + "end": 10941.48, + "probability": 0.9849 + }, + { + "start": 10941.9, + "end": 10944.34, + "probability": 0.9382 + }, + { + "start": 10944.88, + "end": 10948.56, + "probability": 0.9933 + }, + { + "start": 10948.56, + "end": 10953.56, + "probability": 0.9857 + }, + { + "start": 10953.62, + "end": 10957.38, + "probability": 0.9889 + }, + { + "start": 10957.96, + "end": 10960.32, + "probability": 0.7832 + }, + { + "start": 10960.64, + "end": 10963.66, + "probability": 0.8929 + }, + { + "start": 10963.66, + "end": 10966.5, + "probability": 0.9939 + }, + { + "start": 10966.84, + "end": 10968.6, + "probability": 0.6745 + }, + { + "start": 10968.7, + "end": 10970.02, + "probability": 0.9199 + }, + { + "start": 10970.46, + "end": 10973.36, + "probability": 0.9941 + }, + { + "start": 10973.74, + "end": 10975.36, + "probability": 0.9761 + }, + { + "start": 10976.28, + "end": 10978.06, + "probability": 0.7312 + }, + { + "start": 10978.58, + "end": 10983.1, + "probability": 0.9531 + }, + { + "start": 10983.1, + "end": 10987.36, + "probability": 0.9962 + }, + { + "start": 10987.48, + "end": 10988.9, + "probability": 0.6762 + }, + { + "start": 10989.26, + "end": 10990.43, + "probability": 0.8345 + }, + { + "start": 10991.0, + "end": 10994.26, + "probability": 0.9849 + }, + { + "start": 10994.58, + "end": 10999.18, + "probability": 0.9696 + }, + { + "start": 10999.76, + "end": 11004.64, + "probability": 0.5973 + }, + { + "start": 11004.92, + "end": 11007.95, + "probability": 0.976 + }, + { + "start": 11008.28, + "end": 11012.08, + "probability": 0.9764 + }, + { + "start": 11012.96, + "end": 11013.94, + "probability": 0.8922 + }, + { + "start": 11014.48, + "end": 11014.9, + "probability": 0.4783 + }, + { + "start": 11015.54, + "end": 11019.1, + "probability": 0.9927 + }, + { + "start": 11019.52, + "end": 11024.86, + "probability": 0.9941 + }, + { + "start": 11024.86, + "end": 11028.72, + "probability": 0.9924 + }, + { + "start": 11029.62, + "end": 11033.24, + "probability": 0.9971 + }, + { + "start": 11033.24, + "end": 11036.04, + "probability": 0.9985 + }, + { + "start": 11036.4, + "end": 11040.0, + "probability": 0.9968 + }, + { + "start": 11040.38, + "end": 11040.92, + "probability": 0.4322 + }, + { + "start": 11041.66, + "end": 11044.4, + "probability": 0.8008 + }, + { + "start": 11045.04, + "end": 11045.74, + "probability": 0.7177 + }, + { + "start": 11045.9, + "end": 11048.66, + "probability": 0.9938 + }, + { + "start": 11048.66, + "end": 11053.54, + "probability": 0.9929 + }, + { + "start": 11053.54, + "end": 11057.52, + "probability": 0.9689 + }, + { + "start": 11058.04, + "end": 11058.24, + "probability": 0.4064 + }, + { + "start": 11058.26, + "end": 11059.45, + "probability": 0.5381 + }, + { + "start": 11059.54, + "end": 11060.82, + "probability": 0.8882 + }, + { + "start": 11060.86, + "end": 11061.28, + "probability": 0.5291 + }, + { + "start": 11061.4, + "end": 11063.86, + "probability": 0.9127 + }, + { + "start": 11063.98, + "end": 11065.38, + "probability": 0.6401 + }, + { + "start": 11065.54, + "end": 11067.38, + "probability": 0.9915 + }, + { + "start": 11067.78, + "end": 11068.16, + "probability": 0.787 + }, + { + "start": 11068.18, + "end": 11073.2, + "probability": 0.9944 + }, + { + "start": 11073.64, + "end": 11074.62, + "probability": 0.8447 + }, + { + "start": 11074.72, + "end": 11076.86, + "probability": 0.7492 + }, + { + "start": 11077.0, + "end": 11081.5, + "probability": 0.929 + }, + { + "start": 11081.98, + "end": 11083.12, + "probability": 0.9731 + }, + { + "start": 11083.46, + "end": 11083.62, + "probability": 0.3323 + }, + { + "start": 11083.72, + "end": 11084.16, + "probability": 0.4751 + }, + { + "start": 11084.2, + "end": 11085.86, + "probability": 0.8389 + }, + { + "start": 11086.22, + "end": 11087.13, + "probability": 0.856 + }, + { + "start": 11088.18, + "end": 11092.5, + "probability": 0.9075 + }, + { + "start": 11092.68, + "end": 11093.02, + "probability": 0.7431 + }, + { + "start": 11093.06, + "end": 11093.3, + "probability": 0.8575 + }, + { + "start": 11093.3, + "end": 11095.14, + "probability": 0.9245 + }, + { + "start": 11095.22, + "end": 11098.5, + "probability": 0.9401 + }, + { + "start": 11099.18, + "end": 11101.44, + "probability": 0.2438 + }, + { + "start": 11106.14, + "end": 11110.15, + "probability": 0.8818 + }, + { + "start": 11111.36, + "end": 11114.48, + "probability": 0.2005 + }, + { + "start": 11114.7, + "end": 11115.64, + "probability": 0.1661 + }, + { + "start": 11116.28, + "end": 11117.58, + "probability": 0.4254 + }, + { + "start": 11117.7, + "end": 11120.66, + "probability": 0.143 + }, + { + "start": 11120.9, + "end": 11122.42, + "probability": 0.5225 + }, + { + "start": 11122.56, + "end": 11123.98, + "probability": 0.9921 + }, + { + "start": 11125.73, + "end": 11130.48, + "probability": 0.6912 + }, + { + "start": 11131.26, + "end": 11133.28, + "probability": 0.9782 + }, + { + "start": 11133.28, + "end": 11136.26, + "probability": 0.9062 + }, + { + "start": 11136.56, + "end": 11137.46, + "probability": 0.8084 + }, + { + "start": 11137.7, + "end": 11138.18, + "probability": 0.7896 + }, + { + "start": 11138.42, + "end": 11141.38, + "probability": 0.7762 + }, + { + "start": 11141.38, + "end": 11145.94, + "probability": 0.9968 + }, + { + "start": 11145.94, + "end": 11152.38, + "probability": 0.9902 + }, + { + "start": 11152.76, + "end": 11153.58, + "probability": 0.3209 + }, + { + "start": 11153.74, + "end": 11154.04, + "probability": 0.4107 + }, + { + "start": 11154.04, + "end": 11155.02, + "probability": 0.83 + }, + { + "start": 11155.24, + "end": 11155.68, + "probability": 0.4089 + }, + { + "start": 11155.76, + "end": 11157.96, + "probability": 0.8212 + }, + { + "start": 11158.12, + "end": 11158.54, + "probability": 0.8992 + }, + { + "start": 11158.8, + "end": 11159.72, + "probability": 0.8193 + }, + { + "start": 11159.94, + "end": 11160.89, + "probability": 0.7881 + }, + { + "start": 11161.0, + "end": 11162.07, + "probability": 0.8837 + }, + { + "start": 11162.9, + "end": 11163.18, + "probability": 0.7219 + }, + { + "start": 11163.2, + "end": 11169.04, + "probability": 0.9224 + }, + { + "start": 11169.22, + "end": 11170.28, + "probability": 0.4135 + }, + { + "start": 11170.7, + "end": 11175.3, + "probability": 0.9829 + }, + { + "start": 11175.78, + "end": 11176.42, + "probability": 0.6324 + }, + { + "start": 11176.92, + "end": 11177.9, + "probability": 0.8912 + }, + { + "start": 11177.98, + "end": 11180.34, + "probability": 0.8472 + }, + { + "start": 11180.36, + "end": 11180.84, + "probability": 0.864 + }, + { + "start": 11181.08, + "end": 11182.74, + "probability": 0.9652 + }, + { + "start": 11182.96, + "end": 11187.64, + "probability": 0.3378 + }, + { + "start": 11187.64, + "end": 11188.86, + "probability": 0.4891 + }, + { + "start": 11189.28, + "end": 11191.0, + "probability": 0.6931 + }, + { + "start": 11191.1, + "end": 11192.18, + "probability": 0.7283 + }, + { + "start": 11192.3, + "end": 11194.86, + "probability": 0.844 + }, + { + "start": 11195.08, + "end": 11196.6, + "probability": 0.7742 + }, + { + "start": 11196.64, + "end": 11198.5, + "probability": 0.9971 + }, + { + "start": 11198.6, + "end": 11200.06, + "probability": 0.8407 + }, + { + "start": 11200.4, + "end": 11201.24, + "probability": 0.7959 + }, + { + "start": 11202.28, + "end": 11207.46, + "probability": 0.7794 + }, + { + "start": 11207.76, + "end": 11210.66, + "probability": 0.744 + }, + { + "start": 11210.66, + "end": 11211.14, + "probability": 0.5474 + }, + { + "start": 11212.18, + "end": 11219.02, + "probability": 0.9818 + }, + { + "start": 11219.36, + "end": 11219.62, + "probability": 0.6975 + }, + { + "start": 11219.66, + "end": 11220.1, + "probability": 0.6323 + }, + { + "start": 11220.1, + "end": 11220.8, + "probability": 0.8853 + }, + { + "start": 11220.86, + "end": 11221.5, + "probability": 0.6891 + }, + { + "start": 11221.62, + "end": 11224.04, + "probability": 0.4447 + }, + { + "start": 11224.08, + "end": 11225.7, + "probability": 0.8166 + }, + { + "start": 11225.74, + "end": 11226.52, + "probability": 0.8788 + }, + { + "start": 11226.56, + "end": 11230.36, + "probability": 0.9587 + }, + { + "start": 11230.46, + "end": 11232.02, + "probability": 0.981 + }, + { + "start": 11233.12, + "end": 11235.98, + "probability": 0.9393 + }, + { + "start": 11235.98, + "end": 11240.12, + "probability": 0.9976 + }, + { + "start": 11240.2, + "end": 11243.84, + "probability": 0.9326 + }, + { + "start": 11243.84, + "end": 11248.04, + "probability": 0.9824 + }, + { + "start": 11248.26, + "end": 11249.47, + "probability": 0.7218 + }, + { + "start": 11250.02, + "end": 11252.68, + "probability": 0.9137 + }, + { + "start": 11252.8, + "end": 11253.74, + "probability": 0.8039 + }, + { + "start": 11253.86, + "end": 11255.56, + "probability": 0.903 + }, + { + "start": 11255.98, + "end": 11256.43, + "probability": 0.3582 + }, + { + "start": 11257.04, + "end": 11257.96, + "probability": 0.7894 + }, + { + "start": 11258.06, + "end": 11259.04, + "probability": 0.8622 + }, + { + "start": 11259.28, + "end": 11264.78, + "probability": 0.9757 + }, + { + "start": 11264.78, + "end": 11270.72, + "probability": 0.998 + }, + { + "start": 11271.04, + "end": 11271.9, + "probability": 0.7092 + }, + { + "start": 11272.16, + "end": 11274.7, + "probability": 0.9366 + }, + { + "start": 11274.88, + "end": 11275.52, + "probability": 0.6274 + }, + { + "start": 11275.62, + "end": 11276.6, + "probability": 0.719 + }, + { + "start": 11276.88, + "end": 11277.4, + "probability": 0.6841 + }, + { + "start": 11277.56, + "end": 11283.42, + "probability": 0.9004 + }, + { + "start": 11283.48, + "end": 11283.8, + "probability": 0.5244 + }, + { + "start": 11283.9, + "end": 11284.64, + "probability": 0.5055 + }, + { + "start": 11284.72, + "end": 11286.22, + "probability": 0.9282 + }, + { + "start": 11286.62, + "end": 11287.9, + "probability": 0.074 + }, + { + "start": 11288.68, + "end": 11290.54, + "probability": 0.7921 + }, + { + "start": 11291.76, + "end": 11294.4, + "probability": 0.0338 + }, + { + "start": 11294.7, + "end": 11297.12, + "probability": 0.2422 + }, + { + "start": 11297.12, + "end": 11300.15, + "probability": 0.79 + }, + { + "start": 11300.56, + "end": 11302.08, + "probability": 0.9665 + }, + { + "start": 11302.2, + "end": 11302.44, + "probability": 0.2941 + }, + { + "start": 11302.56, + "end": 11304.46, + "probability": 0.8501 + }, + { + "start": 11304.5, + "end": 11305.58, + "probability": 0.7437 + }, + { + "start": 11305.82, + "end": 11307.58, + "probability": 0.8029 + }, + { + "start": 11308.14, + "end": 11308.52, + "probability": 0.9514 + }, + { + "start": 11308.54, + "end": 11309.6, + "probability": 0.7268 + }, + { + "start": 11309.66, + "end": 11313.56, + "probability": 0.9644 + }, + { + "start": 11313.56, + "end": 11318.28, + "probability": 0.9907 + }, + { + "start": 11318.34, + "end": 11322.1, + "probability": 0.9812 + }, + { + "start": 11322.1, + "end": 11326.4, + "probability": 0.9964 + }, + { + "start": 11326.82, + "end": 11331.0, + "probability": 0.9919 + }, + { + "start": 11331.36, + "end": 11333.02, + "probability": 0.9661 + }, + { + "start": 11333.4, + "end": 11334.62, + "probability": 0.9834 + }, + { + "start": 11334.74, + "end": 11340.32, + "probability": 0.9644 + }, + { + "start": 11341.16, + "end": 11341.78, + "probability": 0.7232 + }, + { + "start": 11341.86, + "end": 11345.24, + "probability": 0.9475 + }, + { + "start": 11345.3, + "end": 11348.78, + "probability": 0.8933 + }, + { + "start": 11348.78, + "end": 11353.44, + "probability": 0.9777 + }, + { + "start": 11354.9, + "end": 11356.6, + "probability": 0.5564 + }, + { + "start": 11356.88, + "end": 11359.28, + "probability": 0.9458 + }, + { + "start": 11359.56, + "end": 11361.64, + "probability": 0.9977 + }, + { + "start": 11361.64, + "end": 11365.44, + "probability": 0.9948 + }, + { + "start": 11366.06, + "end": 11370.08, + "probability": 0.9751 + }, + { + "start": 11370.08, + "end": 11374.92, + "probability": 0.9968 + }, + { + "start": 11374.92, + "end": 11379.26, + "probability": 0.9963 + }, + { + "start": 11379.32, + "end": 11384.0, + "probability": 0.9589 + }, + { + "start": 11384.34, + "end": 11390.46, + "probability": 0.9772 + }, + { + "start": 11390.7, + "end": 11393.38, + "probability": 0.9888 + }, + { + "start": 11393.38, + "end": 11395.86, + "probability": 0.9904 + }, + { + "start": 11396.28, + "end": 11401.38, + "probability": 0.9941 + }, + { + "start": 11402.74, + "end": 11404.4, + "probability": 0.6493 + }, + { + "start": 11406.0, + "end": 11407.26, + "probability": 0.6926 + }, + { + "start": 11407.34, + "end": 11408.66, + "probability": 0.8811 + }, + { + "start": 11409.0, + "end": 11410.2, + "probability": 0.8927 + }, + { + "start": 11410.4, + "end": 11414.0, + "probability": 0.9611 + }, + { + "start": 11414.7, + "end": 11415.8, + "probability": 0.0935 + }, + { + "start": 11415.96, + "end": 11416.72, + "probability": 0.5997 + }, + { + "start": 11416.82, + "end": 11417.8, + "probability": 0.4513 + }, + { + "start": 11418.02, + "end": 11420.28, + "probability": 0.6018 + }, + { + "start": 11420.38, + "end": 11421.26, + "probability": 0.8473 + }, + { + "start": 11421.36, + "end": 11422.1, + "probability": 0.8303 + }, + { + "start": 11422.26, + "end": 11424.88, + "probability": 0.9611 + }, + { + "start": 11425.02, + "end": 11425.46, + "probability": 0.5678 + }, + { + "start": 11425.54, + "end": 11426.54, + "probability": 0.567 + }, + { + "start": 11426.9, + "end": 11431.1, + "probability": 0.1617 + }, + { + "start": 11431.85, + "end": 11432.45, + "probability": 0.1191 + }, + { + "start": 11433.84, + "end": 11434.26, + "probability": 0.0058 + }, + { + "start": 11434.26, + "end": 11434.98, + "probability": 0.8978 + }, + { + "start": 11435.68, + "end": 11437.3, + "probability": 0.5258 + }, + { + "start": 11437.36, + "end": 11438.22, + "probability": 0.2976 + }, + { + "start": 11438.56, + "end": 11441.46, + "probability": 0.5154 + }, + { + "start": 11441.5, + "end": 11441.72, + "probability": 0.6362 + }, + { + "start": 11442.26, + "end": 11444.62, + "probability": 0.8148 + }, + { + "start": 11444.98, + "end": 11448.42, + "probability": 0.9811 + }, + { + "start": 11448.52, + "end": 11449.26, + "probability": 0.8063 + }, + { + "start": 11449.54, + "end": 11451.6, + "probability": 0.9777 + }, + { + "start": 11451.7, + "end": 11452.42, + "probability": 0.6679 + }, + { + "start": 11452.58, + "end": 11454.14, + "probability": 0.9351 + }, + { + "start": 11454.24, + "end": 11457.32, + "probability": 0.9804 + }, + { + "start": 11457.7, + "end": 11459.26, + "probability": 0.9155 + }, + { + "start": 11459.81, + "end": 11462.4, + "probability": 0.9954 + }, + { + "start": 11462.48, + "end": 11467.1, + "probability": 0.9818 + }, + { + "start": 11468.28, + "end": 11468.3, + "probability": 0.1828 + }, + { + "start": 11468.3, + "end": 11469.28, + "probability": 0.0161 + }, + { + "start": 11469.34, + "end": 11470.75, + "probability": 0.697 + }, + { + "start": 11470.96, + "end": 11472.64, + "probability": 0.777 + }, + { + "start": 11472.66, + "end": 11473.1, + "probability": 0.391 + }, + { + "start": 11473.1, + "end": 11473.1, + "probability": 0.4227 + }, + { + "start": 11473.1, + "end": 11476.4, + "probability": 0.8845 + }, + { + "start": 11476.64, + "end": 11477.46, + "probability": 0.6474 + }, + { + "start": 11477.58, + "end": 11478.3, + "probability": 0.8251 + }, + { + "start": 11478.38, + "end": 11479.94, + "probability": 0.7625 + }, + { + "start": 11480.1, + "end": 11482.86, + "probability": 0.8533 + }, + { + "start": 11483.24, + "end": 11486.54, + "probability": 0.4598 + }, + { + "start": 11486.54, + "end": 11489.66, + "probability": 0.991 + }, + { + "start": 11489.82, + "end": 11492.56, + "probability": 0.9504 + }, + { + "start": 11492.56, + "end": 11496.02, + "probability": 0.834 + }, + { + "start": 11496.34, + "end": 11500.68, + "probability": 0.6385 + }, + { + "start": 11500.84, + "end": 11504.88, + "probability": 0.8242 + }, + { + "start": 11505.58, + "end": 11506.56, + "probability": 0.612 + }, + { + "start": 11506.58, + "end": 11512.2, + "probability": 0.9724 + }, + { + "start": 11512.38, + "end": 11515.74, + "probability": 0.9651 + }, + { + "start": 11515.74, + "end": 11519.6, + "probability": 0.8473 + }, + { + "start": 11520.12, + "end": 11525.64, + "probability": 0.991 + }, + { + "start": 11526.46, + "end": 11526.78, + "probability": 0.326 + }, + { + "start": 11526.78, + "end": 11529.28, + "probability": 0.9738 + }, + { + "start": 11529.28, + "end": 11533.0, + "probability": 0.8075 + }, + { + "start": 11533.1, + "end": 11534.08, + "probability": 0.7029 + }, + { + "start": 11534.44, + "end": 11536.66, + "probability": 0.7594 + }, + { + "start": 11537.04, + "end": 11540.92, + "probability": 0.9941 + }, + { + "start": 11540.92, + "end": 11545.32, + "probability": 0.9491 + }, + { + "start": 11545.74, + "end": 11547.82, + "probability": 0.6752 + }, + { + "start": 11548.22, + "end": 11550.82, + "probability": 0.9497 + }, + { + "start": 11551.24, + "end": 11552.9, + "probability": 0.9775 + }, + { + "start": 11553.12, + "end": 11553.64, + "probability": 0.8255 + }, + { + "start": 11554.26, + "end": 11556.42, + "probability": 0.9548 + }, + { + "start": 11557.3, + "end": 11557.72, + "probability": 0.7344 + }, + { + "start": 11557.92, + "end": 11560.89, + "probability": 0.9921 + }, + { + "start": 11561.4, + "end": 11562.96, + "probability": 0.6735 + }, + { + "start": 11563.18, + "end": 11564.3, + "probability": 0.904 + }, + { + "start": 11564.5, + "end": 11566.29, + "probability": 0.9731 + }, + { + "start": 11566.86, + "end": 11571.0, + "probability": 0.9856 + }, + { + "start": 11571.5, + "end": 11571.86, + "probability": 0.662 + }, + { + "start": 11571.94, + "end": 11573.59, + "probability": 0.8602 + }, + { + "start": 11574.56, + "end": 11575.29, + "probability": 0.9932 + }, + { + "start": 11575.6, + "end": 11576.06, + "probability": 0.4792 + }, + { + "start": 11578.34, + "end": 11578.34, + "probability": 0.0074 + }, + { + "start": 11580.56, + "end": 11581.74, + "probability": 0.0823 + }, + { + "start": 11582.04, + "end": 11583.38, + "probability": 0.0477 + }, + { + "start": 11583.38, + "end": 11584.16, + "probability": 0.0983 + }, + { + "start": 11584.16, + "end": 11585.82, + "probability": 0.4338 + }, + { + "start": 11585.86, + "end": 11588.08, + "probability": 0.9331 + }, + { + "start": 11588.48, + "end": 11590.26, + "probability": 0.9434 + }, + { + "start": 11590.36, + "end": 11591.4, + "probability": 0.8665 + }, + { + "start": 11591.48, + "end": 11592.42, + "probability": 0.8232 + }, + { + "start": 11592.52, + "end": 11593.42, + "probability": 0.4869 + }, + { + "start": 11593.72, + "end": 11595.22, + "probability": 0.4518 + }, + { + "start": 11598.0, + "end": 11600.64, + "probability": 0.9351 + }, + { + "start": 11600.76, + "end": 11604.26, + "probability": 0.348 + }, + { + "start": 11605.02, + "end": 11605.02, + "probability": 0.1036 + }, + { + "start": 11605.02, + "end": 11605.02, + "probability": 0.0502 + }, + { + "start": 11605.02, + "end": 11605.12, + "probability": 0.6027 + }, + { + "start": 11605.22, + "end": 11609.25, + "probability": 0.9738 + }, + { + "start": 11609.7, + "end": 11610.22, + "probability": 0.8101 + }, + { + "start": 11610.32, + "end": 11611.04, + "probability": 0.5379 + }, + { + "start": 11616.68, + "end": 11619.42, + "probability": 0.7499 + }, + { + "start": 11620.34, + "end": 11623.18, + "probability": 0.5979 + }, + { + "start": 11623.46, + "end": 11624.94, + "probability": 0.3072 + }, + { + "start": 11625.18, + "end": 11627.68, + "probability": 0.6656 + }, + { + "start": 11628.58, + "end": 11629.56, + "probability": 0.3524 + }, + { + "start": 11629.62, + "end": 11630.62, + "probability": 0.8335 + }, + { + "start": 11630.82, + "end": 11635.12, + "probability": 0.9866 + }, + { + "start": 11635.3, + "end": 11636.5, + "probability": 0.7168 + }, + { + "start": 11636.64, + "end": 11640.62, + "probability": 0.822 + }, + { + "start": 11641.06, + "end": 11643.9, + "probability": 0.7786 + }, + { + "start": 11644.0, + "end": 11644.54, + "probability": 0.4557 + }, + { + "start": 11644.54, + "end": 11645.02, + "probability": 0.3123 + }, + { + "start": 11645.08, + "end": 11645.96, + "probability": 0.6498 + }, + { + "start": 11646.06, + "end": 11647.9, + "probability": 0.7476 + }, + { + "start": 11648.32, + "end": 11649.78, + "probability": 0.8672 + }, + { + "start": 11649.78, + "end": 11650.84, + "probability": 0.0719 + }, + { + "start": 11650.92, + "end": 11651.4, + "probability": 0.6011 + }, + { + "start": 11651.46, + "end": 11652.52, + "probability": 0.7189 + }, + { + "start": 11653.02, + "end": 11655.36, + "probability": 0.6165 + }, + { + "start": 11655.42, + "end": 11655.88, + "probability": 0.6242 + }, + { + "start": 11655.94, + "end": 11659.14, + "probability": 0.9949 + }, + { + "start": 11659.54, + "end": 11660.16, + "probability": 0.5439 + }, + { + "start": 11660.3, + "end": 11664.38, + "probability": 0.8657 + }, + { + "start": 11664.66, + "end": 11665.54, + "probability": 0.8039 + }, + { + "start": 11665.58, + "end": 11668.5, + "probability": 0.9648 + }, + { + "start": 11668.5, + "end": 11672.36, + "probability": 0.9445 + }, + { + "start": 11673.54, + "end": 11675.04, + "probability": 0.6693 + }, + { + "start": 11675.22, + "end": 11678.46, + "probability": 0.8434 + }, + { + "start": 11678.56, + "end": 11679.26, + "probability": 0.7217 + }, + { + "start": 11679.52, + "end": 11680.66, + "probability": 0.8093 + }, + { + "start": 11680.7, + "end": 11682.38, + "probability": 0.9468 + }, + { + "start": 11682.54, + "end": 11684.48, + "probability": 0.8053 + }, + { + "start": 11684.76, + "end": 11685.62, + "probability": 0.599 + }, + { + "start": 11686.0, + "end": 11686.42, + "probability": 0.5862 + }, + { + "start": 11686.48, + "end": 11687.48, + "probability": 0.8086 + }, + { + "start": 11687.92, + "end": 11688.9, + "probability": 0.5772 + }, + { + "start": 11688.96, + "end": 11690.56, + "probability": 0.9526 + }, + { + "start": 11691.0, + "end": 11692.6, + "probability": 0.8934 + }, + { + "start": 11692.78, + "end": 11694.32, + "probability": 0.9036 + }, + { + "start": 11694.4, + "end": 11696.06, + "probability": 0.776 + }, + { + "start": 11696.12, + "end": 11696.66, + "probability": 0.5833 + }, + { + "start": 11696.8, + "end": 11697.5, + "probability": 0.5716 + }, + { + "start": 11697.6, + "end": 11698.92, + "probability": 0.8887 + }, + { + "start": 11699.02, + "end": 11702.66, + "probability": 0.8685 + }, + { + "start": 11703.49, + "end": 11706.04, + "probability": 0.8667 + }, + { + "start": 11706.06, + "end": 11707.02, + "probability": 0.8373 + }, + { + "start": 11707.18, + "end": 11709.56, + "probability": 0.4866 + }, + { + "start": 11709.62, + "end": 11713.58, + "probability": 0.8691 + }, + { + "start": 11713.66, + "end": 11714.64, + "probability": 0.7924 + }, + { + "start": 11714.88, + "end": 11718.46, + "probability": 0.8357 + }, + { + "start": 11718.74, + "end": 11719.26, + "probability": 0.8293 + }, + { + "start": 11719.38, + "end": 11720.49, + "probability": 0.9861 + }, + { + "start": 11720.58, + "end": 11720.88, + "probability": 0.4146 + }, + { + "start": 11721.24, + "end": 11723.42, + "probability": 0.8254 + }, + { + "start": 11723.6, + "end": 11724.98, + "probability": 0.7726 + }, + { + "start": 11725.04, + "end": 11727.8, + "probability": 0.9302 + }, + { + "start": 11728.53, + "end": 11733.3, + "probability": 0.9897 + }, + { + "start": 11733.52, + "end": 11734.62, + "probability": 0.8749 + }, + { + "start": 11735.04, + "end": 11736.02, + "probability": 0.9882 + }, + { + "start": 11736.32, + "end": 11739.22, + "probability": 0.8804 + }, + { + "start": 11739.68, + "end": 11740.9, + "probability": 0.6245 + }, + { + "start": 11740.96, + "end": 11743.3, + "probability": 0.8345 + }, + { + "start": 11743.74, + "end": 11750.46, + "probability": 0.7009 + }, + { + "start": 11752.35, + "end": 11755.48, + "probability": 0.9095 + }, + { + "start": 11755.54, + "end": 11756.68, + "probability": 0.2539 + }, + { + "start": 11757.98, + "end": 11759.52, + "probability": 0.3653 + }, + { + "start": 11760.68, + "end": 11761.38, + "probability": 0.3093 + }, + { + "start": 11761.38, + "end": 11765.52, + "probability": 0.8358 + }, + { + "start": 11765.94, + "end": 11766.38, + "probability": 0.6918 + }, + { + "start": 11767.35, + "end": 11769.44, + "probability": 0.4409 + }, + { + "start": 11769.44, + "end": 11769.98, + "probability": 0.4072 + }, + { + "start": 11770.02, + "end": 11775.3, + "probability": 0.8824 + }, + { + "start": 11784.1, + "end": 11784.54, + "probability": 0.5063 + }, + { + "start": 11785.78, + "end": 11786.96, + "probability": 0.0677 + }, + { + "start": 11787.38, + "end": 11788.02, + "probability": 0.2615 + }, + { + "start": 11788.72, + "end": 11789.4, + "probability": 0.1038 + }, + { + "start": 11790.64, + "end": 11791.94, + "probability": 0.2887 + }, + { + "start": 11792.54, + "end": 11797.98, + "probability": 0.0383 + }, + { + "start": 11800.9, + "end": 11803.76, + "probability": 0.6749 + }, + { + "start": 11806.4, + "end": 11807.16, + "probability": 0.5743 + }, + { + "start": 11807.22, + "end": 11808.43, + "probability": 0.8483 + }, + { + "start": 11809.1, + "end": 11811.46, + "probability": 0.6276 + }, + { + "start": 11811.78, + "end": 11816.92, + "probability": 0.9441 + }, + { + "start": 11817.16, + "end": 11821.18, + "probability": 0.9055 + }, + { + "start": 11821.64, + "end": 11823.41, + "probability": 0.9438 + }, + { + "start": 11824.12, + "end": 11825.44, + "probability": 0.8604 + }, + { + "start": 11825.54, + "end": 11826.9, + "probability": 0.6848 + }, + { + "start": 11827.7, + "end": 11827.76, + "probability": 0.451 + }, + { + "start": 11828.1, + "end": 11829.54, + "probability": 0.9725 + }, + { + "start": 11829.72, + "end": 11830.88, + "probability": 0.5353 + }, + { + "start": 11831.22, + "end": 11836.16, + "probability": 0.854 + }, + { + "start": 11836.38, + "end": 11839.44, + "probability": 0.8847 + }, + { + "start": 11839.52, + "end": 11839.98, + "probability": 0.8446 + }, + { + "start": 11840.12, + "end": 11841.92, + "probability": 0.9894 + }, + { + "start": 11842.48, + "end": 11849.7, + "probability": 0.7973 + }, + { + "start": 11854.22, + "end": 11859.44, + "probability": 0.9943 + }, + { + "start": 11863.22, + "end": 11868.76, + "probability": 0.9946 + }, + { + "start": 11869.88, + "end": 11871.41, + "probability": 0.7169 + }, + { + "start": 11872.06, + "end": 11875.0, + "probability": 0.967 + }, + { + "start": 11875.68, + "end": 11878.24, + "probability": 0.9865 + }, + { + "start": 11878.68, + "end": 11879.54, + "probability": 0.8525 + }, + { + "start": 11879.84, + "end": 11883.25, + "probability": 0.981 + }, + { + "start": 11883.44, + "end": 11889.2, + "probability": 0.9152 + }, + { + "start": 11890.02, + "end": 11892.66, + "probability": 0.9915 + }, + { + "start": 11892.72, + "end": 11893.56, + "probability": 0.7617 + }, + { + "start": 11894.94, + "end": 11897.08, + "probability": 0.9854 + }, + { + "start": 11897.1, + "end": 11897.8, + "probability": 0.6143 + }, + { + "start": 11899.68, + "end": 11900.7, + "probability": 0.7444 + }, + { + "start": 11901.96, + "end": 11903.93, + "probability": 0.5567 + }, + { + "start": 11906.46, + "end": 11908.76, + "probability": 0.4924 + }, + { + "start": 11908.76, + "end": 11910.68, + "probability": 0.7976 + }, + { + "start": 11913.88, + "end": 11915.16, + "probability": 0.1619 + }, + { + "start": 11915.26, + "end": 11916.98, + "probability": 0.8641 + }, + { + "start": 11917.04, + "end": 11919.8, + "probability": 0.9792 + }, + { + "start": 11920.66, + "end": 11922.26, + "probability": 0.7638 + }, + { + "start": 11922.86, + "end": 11924.34, + "probability": 0.1585 + }, + { + "start": 11924.46, + "end": 11926.17, + "probability": 0.3619 + }, + { + "start": 11927.0, + "end": 11929.86, + "probability": 0.1818 + }, + { + "start": 11929.86, + "end": 11929.96, + "probability": 0.4647 + }, + { + "start": 11929.96, + "end": 11930.6, + "probability": 0.4062 + }, + { + "start": 11930.8, + "end": 11933.1, + "probability": 0.731 + }, + { + "start": 11933.16, + "end": 11934.08, + "probability": 0.3736 + }, + { + "start": 11934.08, + "end": 11936.14, + "probability": 0.6976 + }, + { + "start": 11936.2, + "end": 11936.98, + "probability": 0.8698 + }, + { + "start": 11937.62, + "end": 11940.4, + "probability": 0.7243 + }, + { + "start": 11940.54, + "end": 11941.44, + "probability": 0.454 + }, + { + "start": 11941.44, + "end": 11943.08, + "probability": 0.731 + }, + { + "start": 11944.58, + "end": 11947.3, + "probability": 0.7845 + }, + { + "start": 11947.82, + "end": 11950.14, + "probability": 0.9837 + }, + { + "start": 11950.48, + "end": 11951.74, + "probability": 0.9714 + }, + { + "start": 11952.26, + "end": 11953.86, + "probability": 0.9213 + }, + { + "start": 11954.1, + "end": 11955.82, + "probability": 0.9757 + }, + { + "start": 11956.24, + "end": 11957.86, + "probability": 0.9896 + }, + { + "start": 11958.24, + "end": 11960.76, + "probability": 0.7252 + }, + { + "start": 11961.4, + "end": 11963.66, + "probability": 0.9468 + }, + { + "start": 11964.1, + "end": 11966.12, + "probability": 0.8987 + }, + { + "start": 11966.46, + "end": 11967.48, + "probability": 0.5192 + }, + { + "start": 11967.56, + "end": 11973.06, + "probability": 0.9399 + }, + { + "start": 11974.38, + "end": 11980.66, + "probability": 0.932 + }, + { + "start": 11980.66, + "end": 11985.44, + "probability": 0.9933 + }, + { + "start": 11985.94, + "end": 11987.9, + "probability": 0.7896 + }, + { + "start": 11988.34, + "end": 11989.86, + "probability": 0.832 + }, + { + "start": 11990.08, + "end": 11992.88, + "probability": 0.5854 + }, + { + "start": 11993.26, + "end": 11995.44, + "probability": 0.2581 + }, + { + "start": 11995.5, + "end": 11998.5, + "probability": 0.7506 + }, + { + "start": 11999.26, + "end": 12001.9, + "probability": 0.6764 + }, + { + "start": 12002.0, + "end": 12003.04, + "probability": 0.5392 + }, + { + "start": 12003.04, + "end": 12004.48, + "probability": 0.9875 + }, + { + "start": 12006.53, + "end": 12013.32, + "probability": 0.9052 + }, + { + "start": 12013.32, + "end": 12017.98, + "probability": 0.9938 + }, + { + "start": 12018.38, + "end": 12023.54, + "probability": 0.9455 + }, + { + "start": 12023.6, + "end": 12023.9, + "probability": 0.8096 + }, + { + "start": 12024.02, + "end": 12025.3, + "probability": 0.7971 + }, + { + "start": 12025.74, + "end": 12026.28, + "probability": 0.7686 + }, + { + "start": 12029.16, + "end": 12037.42, + "probability": 0.9136 + }, + { + "start": 12038.0, + "end": 12045.08, + "probability": 0.958 + }, + { + "start": 12046.46, + "end": 12048.88, + "probability": 0.767 + }, + { + "start": 12049.7, + "end": 12054.26, + "probability": 0.8615 + }, + { + "start": 12054.32, + "end": 12060.64, + "probability": 0.9852 + }, + { + "start": 12060.78, + "end": 12061.56, + "probability": 0.6806 + }, + { + "start": 12061.62, + "end": 12064.42, + "probability": 0.9948 + }, + { + "start": 12064.42, + "end": 12067.68, + "probability": 0.9917 + }, + { + "start": 12068.48, + "end": 12070.62, + "probability": 0.9517 + }, + { + "start": 12073.25, + "end": 12076.42, + "probability": 0.8895 + }, + { + "start": 12076.44, + "end": 12076.92, + "probability": 0.7747 + }, + { + "start": 12077.06, + "end": 12080.55, + "probability": 0.9131 + }, + { + "start": 12082.3, + "end": 12086.48, + "probability": 0.9932 + }, + { + "start": 12087.1, + "end": 12088.17, + "probability": 0.5422 + }, + { + "start": 12101.12, + "end": 12102.66, + "probability": 0.6521 + }, + { + "start": 12102.96, + "end": 12104.44, + "probability": 0.0319 + }, + { + "start": 12105.22, + "end": 12105.98, + "probability": 0.2854 + }, + { + "start": 12106.72, + "end": 12108.16, + "probability": 0.6162 + }, + { + "start": 12108.16, + "end": 12112.02, + "probability": 0.8215 + }, + { + "start": 12112.74, + "end": 12114.02, + "probability": 0.8751 + }, + { + "start": 12114.22, + "end": 12115.66, + "probability": 0.9142 + }, + { + "start": 12118.16, + "end": 12119.12, + "probability": 0.6522 + }, + { + "start": 12119.3, + "end": 12120.56, + "probability": 0.6408 + }, + { + "start": 12120.92, + "end": 12126.4, + "probability": 0.9363 + }, + { + "start": 12127.1, + "end": 12128.16, + "probability": 0.8593 + }, + { + "start": 12128.88, + "end": 12130.34, + "probability": 0.6546 + }, + { + "start": 12131.36, + "end": 12136.28, + "probability": 0.9764 + }, + { + "start": 12136.5, + "end": 12141.76, + "probability": 0.9766 + }, + { + "start": 12142.06, + "end": 12143.46, + "probability": 0.6321 + }, + { + "start": 12143.94, + "end": 12144.9, + "probability": 0.8422 + }, + { + "start": 12145.16, + "end": 12149.6, + "probability": 0.9522 + }, + { + "start": 12150.24, + "end": 12154.96, + "probability": 0.9659 + }, + { + "start": 12155.4, + "end": 12156.24, + "probability": 0.9526 + }, + { + "start": 12156.92, + "end": 12160.32, + "probability": 0.9329 + }, + { + "start": 12160.9, + "end": 12163.0, + "probability": 0.9168 + }, + { + "start": 12163.54, + "end": 12167.48, + "probability": 0.9935 + }, + { + "start": 12167.58, + "end": 12168.93, + "probability": 0.9983 + }, + { + "start": 12169.58, + "end": 12172.16, + "probability": 0.8784 + }, + { + "start": 12172.62, + "end": 12173.76, + "probability": 0.9058 + }, + { + "start": 12174.28, + "end": 12176.86, + "probability": 0.9922 + }, + { + "start": 12176.86, + "end": 12179.92, + "probability": 0.9921 + }, + { + "start": 12180.0, + "end": 12181.26, + "probability": 0.9871 + }, + { + "start": 12182.02, + "end": 12186.04, + "probability": 0.9879 + }, + { + "start": 12186.04, + "end": 12188.44, + "probability": 0.9953 + }, + { + "start": 12188.62, + "end": 12190.12, + "probability": 0.9961 + }, + { + "start": 12190.7, + "end": 12192.26, + "probability": 0.9127 + }, + { + "start": 12192.8, + "end": 12193.68, + "probability": 0.7734 + }, + { + "start": 12194.1, + "end": 12196.66, + "probability": 0.9819 + }, + { + "start": 12196.76, + "end": 12197.67, + "probability": 0.8823 + }, + { + "start": 12198.28, + "end": 12200.18, + "probability": 0.8308 + }, + { + "start": 12200.6, + "end": 12204.22, + "probability": 0.8642 + }, + { + "start": 12204.62, + "end": 12206.64, + "probability": 0.9802 + }, + { + "start": 12206.8, + "end": 12207.94, + "probability": 0.9836 + }, + { + "start": 12208.54, + "end": 12212.92, + "probability": 0.9227 + }, + { + "start": 12213.2, + "end": 12217.16, + "probability": 0.9935 + }, + { + "start": 12217.62, + "end": 12218.04, + "probability": 0.9026 + }, + { + "start": 12218.52, + "end": 12227.02, + "probability": 0.9832 + }, + { + "start": 12227.28, + "end": 12228.3, + "probability": 0.8354 + }, + { + "start": 12228.42, + "end": 12229.14, + "probability": 0.7368 + }, + { + "start": 12229.4, + "end": 12231.54, + "probability": 0.9328 + }, + { + "start": 12231.94, + "end": 12233.06, + "probability": 0.8461 + }, + { + "start": 12233.52, + "end": 12239.84, + "probability": 0.9695 + }, + { + "start": 12241.0, + "end": 12246.4, + "probability": 0.9983 + }, + { + "start": 12246.4, + "end": 12249.22, + "probability": 0.7699 + }, + { + "start": 12249.38, + "end": 12250.68, + "probability": 0.9886 + }, + { + "start": 12250.92, + "end": 12253.4, + "probability": 0.97 + }, + { + "start": 12253.48, + "end": 12256.7, + "probability": 0.9966 + }, + { + "start": 12257.0, + "end": 12260.74, + "probability": 0.9966 + }, + { + "start": 12262.08, + "end": 12264.24, + "probability": 0.8529 + }, + { + "start": 12264.28, + "end": 12264.98, + "probability": 0.4892 + }, + { + "start": 12265.1, + "end": 12268.18, + "probability": 0.8977 + }, + { + "start": 12268.28, + "end": 12270.38, + "probability": 0.9622 + }, + { + "start": 12270.4, + "end": 12272.52, + "probability": 0.9199 + }, + { + "start": 12272.94, + "end": 12275.36, + "probability": 0.9751 + }, + { + "start": 12275.68, + "end": 12278.72, + "probability": 0.9575 + }, + { + "start": 12279.12, + "end": 12281.86, + "probability": 0.845 + }, + { + "start": 12282.34, + "end": 12284.06, + "probability": 0.7013 + }, + { + "start": 12284.12, + "end": 12285.44, + "probability": 0.9713 + }, + { + "start": 12285.5, + "end": 12289.16, + "probability": 0.9896 + }, + { + "start": 12289.78, + "end": 12295.05, + "probability": 0.9877 + }, + { + "start": 12295.24, + "end": 12297.44, + "probability": 0.8661 + }, + { + "start": 12297.52, + "end": 12299.02, + "probability": 0.6952 + }, + { + "start": 12299.56, + "end": 12300.06, + "probability": 0.6842 + }, + { + "start": 12300.28, + "end": 12301.46, + "probability": 0.6573 + }, + { + "start": 12301.86, + "end": 12304.54, + "probability": 0.6638 + }, + { + "start": 12305.23, + "end": 12308.08, + "probability": 0.8899 + }, + { + "start": 12308.62, + "end": 12309.08, + "probability": 0.5026 + }, + { + "start": 12309.18, + "end": 12310.0, + "probability": 0.9884 + }, + { + "start": 12310.14, + "end": 12311.35, + "probability": 0.7978 + }, + { + "start": 12311.8, + "end": 12313.52, + "probability": 0.983 + }, + { + "start": 12313.78, + "end": 12317.82, + "probability": 0.9399 + }, + { + "start": 12317.9, + "end": 12318.4, + "probability": 0.8106 + }, + { + "start": 12318.5, + "end": 12320.58, + "probability": 0.9761 + }, + { + "start": 12320.78, + "end": 12322.09, + "probability": 0.6514 + }, + { + "start": 12322.88, + "end": 12324.92, + "probability": 0.9854 + }, + { + "start": 12325.02, + "end": 12329.92, + "probability": 0.969 + }, + { + "start": 12330.08, + "end": 12332.88, + "probability": 0.7354 + }, + { + "start": 12332.96, + "end": 12335.12, + "probability": 0.6112 + }, + { + "start": 12335.5, + "end": 12339.48, + "probability": 0.9985 + }, + { + "start": 12340.0, + "end": 12344.12, + "probability": 0.9889 + }, + { + "start": 12344.12, + "end": 12347.92, + "probability": 0.9101 + }, + { + "start": 12348.36, + "end": 12348.82, + "probability": 0.8181 + }, + { + "start": 12348.92, + "end": 12352.2, + "probability": 0.994 + }, + { + "start": 12352.42, + "end": 12353.7, + "probability": 0.957 + }, + { + "start": 12354.04, + "end": 12355.42, + "probability": 0.8208 + }, + { + "start": 12355.6, + "end": 12360.13, + "probability": 0.9907 + }, + { + "start": 12360.84, + "end": 12364.06, + "probability": 0.9871 + }, + { + "start": 12364.06, + "end": 12366.28, + "probability": 0.9944 + }, + { + "start": 12366.42, + "end": 12369.1, + "probability": 0.8273 + }, + { + "start": 12369.6, + "end": 12372.86, + "probability": 0.9937 + }, + { + "start": 12373.2, + "end": 12374.84, + "probability": 0.9804 + }, + { + "start": 12375.02, + "end": 12377.5, + "probability": 0.9532 + }, + { + "start": 12377.58, + "end": 12378.26, + "probability": 0.7884 + }, + { + "start": 12378.48, + "end": 12381.22, + "probability": 0.9587 + }, + { + "start": 12381.56, + "end": 12381.78, + "probability": 0.5128 + }, + { + "start": 12381.88, + "end": 12383.1, + "probability": 0.9915 + }, + { + "start": 12383.5, + "end": 12385.08, + "probability": 0.8554 + }, + { + "start": 12385.94, + "end": 12387.72, + "probability": 0.9934 + }, + { + "start": 12387.76, + "end": 12389.04, + "probability": 0.9794 + }, + { + "start": 12389.38, + "end": 12391.22, + "probability": 0.9933 + }, + { + "start": 12392.4, + "end": 12394.68, + "probability": 0.8091 + }, + { + "start": 12395.72, + "end": 12398.66, + "probability": 0.9836 + }, + { + "start": 12398.88, + "end": 12401.0, + "probability": 0.5906 + }, + { + "start": 12401.14, + "end": 12403.42, + "probability": 0.9373 + }, + { + "start": 12403.56, + "end": 12409.4, + "probability": 0.9899 + }, + { + "start": 12410.04, + "end": 12411.98, + "probability": 0.9385 + }, + { + "start": 12412.06, + "end": 12414.08, + "probability": 0.9659 + }, + { + "start": 12414.4, + "end": 12416.42, + "probability": 0.9286 + }, + { + "start": 12416.52, + "end": 12417.43, + "probability": 0.9601 + }, + { + "start": 12418.6, + "end": 12421.98, + "probability": 0.8923 + }, + { + "start": 12422.56, + "end": 12425.0, + "probability": 0.9354 + }, + { + "start": 12425.46, + "end": 12428.98, + "probability": 0.8396 + }, + { + "start": 12429.06, + "end": 12429.72, + "probability": 0.3611 + }, + { + "start": 12430.18, + "end": 12430.86, + "probability": 0.9832 + }, + { + "start": 12430.98, + "end": 12436.22, + "probability": 0.975 + }, + { + "start": 12436.82, + "end": 12441.06, + "probability": 0.8654 + }, + { + "start": 12441.18, + "end": 12441.92, + "probability": 0.7869 + }, + { + "start": 12442.02, + "end": 12442.3, + "probability": 0.8099 + }, + { + "start": 12442.4, + "end": 12444.68, + "probability": 0.9453 + }, + { + "start": 12444.7, + "end": 12445.48, + "probability": 0.5919 + }, + { + "start": 12445.56, + "end": 12448.8, + "probability": 0.9636 + }, + { + "start": 12449.24, + "end": 12452.9, + "probability": 0.9815 + }, + { + "start": 12453.1, + "end": 12454.18, + "probability": 0.8882 + }, + { + "start": 12454.3, + "end": 12458.34, + "probability": 0.9905 + }, + { + "start": 12458.48, + "end": 12462.36, + "probability": 0.9124 + }, + { + "start": 12462.74, + "end": 12464.84, + "probability": 0.8479 + }, + { + "start": 12464.96, + "end": 12468.38, + "probability": 0.9775 + }, + { + "start": 12469.84, + "end": 12476.16, + "probability": 0.9732 + }, + { + "start": 12476.3, + "end": 12484.64, + "probability": 0.9823 + }, + { + "start": 12484.7, + "end": 12487.06, + "probability": 0.9323 + }, + { + "start": 12487.66, + "end": 12491.84, + "probability": 0.956 + }, + { + "start": 12491.84, + "end": 12495.58, + "probability": 0.9697 + }, + { + "start": 12495.92, + "end": 12497.32, + "probability": 0.8882 + }, + { + "start": 12498.06, + "end": 12500.54, + "probability": 0.987 + }, + { + "start": 12500.62, + "end": 12502.06, + "probability": 0.8181 + }, + { + "start": 12502.12, + "end": 12506.12, + "probability": 0.928 + }, + { + "start": 12506.12, + "end": 12508.5, + "probability": 0.9967 + }, + { + "start": 12508.58, + "end": 12509.44, + "probability": 0.7183 + }, + { + "start": 12510.04, + "end": 12511.41, + "probability": 0.9385 + }, + { + "start": 12511.78, + "end": 12514.8, + "probability": 0.853 + }, + { + "start": 12514.84, + "end": 12516.1, + "probability": 0.9894 + }, + { + "start": 12516.22, + "end": 12520.22, + "probability": 0.885 + }, + { + "start": 12520.38, + "end": 12525.86, + "probability": 0.8462 + }, + { + "start": 12526.32, + "end": 12531.9, + "probability": 0.9917 + }, + { + "start": 12532.0, + "end": 12532.94, + "probability": 0.5078 + }, + { + "start": 12533.14, + "end": 12534.98, + "probability": 0.7815 + }, + { + "start": 12535.02, + "end": 12537.42, + "probability": 0.9878 + }, + { + "start": 12539.53, + "end": 12540.3, + "probability": 0.177 + }, + { + "start": 12540.3, + "end": 12543.22, + "probability": 0.7171 + }, + { + "start": 12543.28, + "end": 12547.0, + "probability": 0.9624 + }, + { + "start": 12547.2, + "end": 12548.42, + "probability": 0.9649 + }, + { + "start": 12548.76, + "end": 12551.2, + "probability": 0.226 + }, + { + "start": 12551.2, + "end": 12555.06, + "probability": 0.8218 + }, + { + "start": 12555.74, + "end": 12560.96, + "probability": 0.9854 + }, + { + "start": 12561.0, + "end": 12564.92, + "probability": 0.9937 + }, + { + "start": 12564.98, + "end": 12566.34, + "probability": 0.8579 + }, + { + "start": 12566.82, + "end": 12568.08, + "probability": 0.9969 + }, + { + "start": 12568.14, + "end": 12570.52, + "probability": 0.9551 + }, + { + "start": 12570.82, + "end": 12574.08, + "probability": 0.9979 + }, + { + "start": 12574.22, + "end": 12575.16, + "probability": 0.7788 + }, + { + "start": 12575.16, + "end": 12578.34, + "probability": 0.8599 + }, + { + "start": 12578.4, + "end": 12582.58, + "probability": 0.9498 + }, + { + "start": 12582.6, + "end": 12583.14, + "probability": 0.7469 + }, + { + "start": 12583.5, + "end": 12586.72, + "probability": 0.9969 + }, + { + "start": 12586.98, + "end": 12588.74, + "probability": 0.8757 + }, + { + "start": 12588.88, + "end": 12591.18, + "probability": 0.9136 + }, + { + "start": 12591.48, + "end": 12596.32, + "probability": 0.8961 + }, + { + "start": 12596.52, + "end": 12597.8, + "probability": 0.9695 + }, + { + "start": 12597.92, + "end": 12600.92, + "probability": 0.9795 + }, + { + "start": 12603.02, + "end": 12604.58, + "probability": 0.9274 + }, + { + "start": 12604.7, + "end": 12606.24, + "probability": 0.918 + }, + { + "start": 12606.36, + "end": 12609.62, + "probability": 0.9779 + }, + { + "start": 12610.0, + "end": 12612.6, + "probability": 0.9546 + }, + { + "start": 12612.7, + "end": 12615.06, + "probability": 0.9871 + }, + { + "start": 12615.08, + "end": 12616.78, + "probability": 0.8593 + }, + { + "start": 12617.06, + "end": 12619.6, + "probability": 0.9585 + }, + { + "start": 12619.68, + "end": 12623.62, + "probability": 0.9984 + }, + { + "start": 12623.86, + "end": 12626.88, + "probability": 0.9941 + }, + { + "start": 12627.18, + "end": 12627.78, + "probability": 0.9976 + }, + { + "start": 12628.06, + "end": 12628.62, + "probability": 0.9976 + }, + { + "start": 12629.28, + "end": 12630.3, + "probability": 0.9982 + }, + { + "start": 12630.46, + "end": 12631.42, + "probability": 0.9911 + }, + { + "start": 12631.78, + "end": 12632.78, + "probability": 0.8746 + }, + { + "start": 12633.18, + "end": 12635.36, + "probability": 0.9197 + }, + { + "start": 12635.6, + "end": 12636.0, + "probability": 0.7924 + }, + { + "start": 12636.56, + "end": 12638.8, + "probability": 0.8295 + }, + { + "start": 12639.48, + "end": 12644.88, + "probability": 0.7259 + }, + { + "start": 12645.34, + "end": 12647.83, + "probability": 0.9907 + }, + { + "start": 12651.02, + "end": 12651.94, + "probability": 0.634 + }, + { + "start": 12652.02, + "end": 12658.04, + "probability": 0.9251 + }, + { + "start": 12658.48, + "end": 12660.7, + "probability": 0.6541 + }, + { + "start": 12660.78, + "end": 12662.86, + "probability": 0.6026 + }, + { + "start": 12664.43, + "end": 12668.7, + "probability": 0.9132 + }, + { + "start": 12668.76, + "end": 12669.66, + "probability": 0.8263 + }, + { + "start": 12670.9, + "end": 12672.74, + "probability": 0.7391 + }, + { + "start": 12673.3, + "end": 12676.3, + "probability": 0.9541 + }, + { + "start": 12676.3, + "end": 12680.76, + "probability": 0.6706 + }, + { + "start": 12680.86, + "end": 12681.88, + "probability": 0.743 + }, + { + "start": 12682.48, + "end": 12685.1, + "probability": 0.4787 + }, + { + "start": 12685.62, + "end": 12687.7, + "probability": 0.9494 + }, + { + "start": 12688.14, + "end": 12690.84, + "probability": 0.9492 + }, + { + "start": 12691.06, + "end": 12692.56, + "probability": 0.8318 + }, + { + "start": 12693.24, + "end": 12699.48, + "probability": 0.9577 + }, + { + "start": 12699.48, + "end": 12707.54, + "probability": 0.7974 + }, + { + "start": 12708.66, + "end": 12709.98, + "probability": 0.4453 + }, + { + "start": 12710.16, + "end": 12710.88, + "probability": 0.738 + }, + { + "start": 12711.02, + "end": 12716.36, + "probability": 0.9618 + }, + { + "start": 12716.44, + "end": 12717.78, + "probability": 0.9189 + }, + { + "start": 12718.22, + "end": 12719.98, + "probability": 0.9878 + }, + { + "start": 12720.8, + "end": 12723.46, + "probability": 0.939 + }, + { + "start": 12723.5, + "end": 12724.78, + "probability": 0.9324 + }, + { + "start": 12724.96, + "end": 12728.76, + "probability": 0.9583 + }, + { + "start": 12728.84, + "end": 12730.12, + "probability": 0.8825 + }, + { + "start": 12730.7, + "end": 12733.48, + "probability": 0.8838 + }, + { + "start": 12733.94, + "end": 12735.98, + "probability": 0.632 + }, + { + "start": 12736.02, + "end": 12736.82, + "probability": 0.9652 + }, + { + "start": 12737.1, + "end": 12738.98, + "probability": 0.6491 + }, + { + "start": 12739.12, + "end": 12741.06, + "probability": 0.8342 + }, + { + "start": 12741.16, + "end": 12742.06, + "probability": 0.8795 + }, + { + "start": 12742.22, + "end": 12744.56, + "probability": 0.8457 + }, + { + "start": 12744.92, + "end": 12748.18, + "probability": 0.5579 + }, + { + "start": 12748.2, + "end": 12748.4, + "probability": 0.2725 + }, + { + "start": 12748.4, + "end": 12754.97, + "probability": 0.8525 + }, + { + "start": 12755.56, + "end": 12758.08, + "probability": 0.9582 + }, + { + "start": 12758.54, + "end": 12759.28, + "probability": 0.8561 + }, + { + "start": 12759.36, + "end": 12761.04, + "probability": 0.9624 + }, + { + "start": 12761.96, + "end": 12765.8, + "probability": 0.7879 + }, + { + "start": 12766.42, + "end": 12770.43, + "probability": 0.8228 + }, + { + "start": 12771.12, + "end": 12773.06, + "probability": 0.7145 + }, + { + "start": 12773.24, + "end": 12774.81, + "probability": 0.8071 + }, + { + "start": 12775.74, + "end": 12779.42, + "probability": 0.9688 + }, + { + "start": 12779.5, + "end": 12780.56, + "probability": 0.7062 + }, + { + "start": 12782.22, + "end": 12784.68, + "probability": 0.7483 + }, + { + "start": 12785.26, + "end": 12788.76, + "probability": 0.4222 + }, + { + "start": 12789.36, + "end": 12793.72, + "probability": 0.7545 + }, + { + "start": 12794.84, + "end": 12798.58, + "probability": 0.4074 + }, + { + "start": 12799.02, + "end": 12800.24, + "probability": 0.7731 + }, + { + "start": 12800.44, + "end": 12802.77, + "probability": 0.7547 + }, + { + "start": 12803.1, + "end": 12809.25, + "probability": 0.9227 + }, + { + "start": 12809.48, + "end": 12816.26, + "probability": 0.8694 + }, + { + "start": 12816.34, + "end": 12819.64, + "probability": 0.7348 + }, + { + "start": 12819.64, + "end": 12823.72, + "probability": 0.9836 + }, + { + "start": 12823.96, + "end": 12824.38, + "probability": 0.6589 + }, + { + "start": 12824.5, + "end": 12825.14, + "probability": 0.8792 + }, + { + "start": 12825.28, + "end": 12826.06, + "probability": 0.7281 + }, + { + "start": 12826.26, + "end": 12829.04, + "probability": 0.8789 + }, + { + "start": 12829.2, + "end": 12829.94, + "probability": 0.5304 + }, + { + "start": 12830.0, + "end": 12830.98, + "probability": 0.6295 + }, + { + "start": 12831.08, + "end": 12834.57, + "probability": 0.99 + }, + { + "start": 12834.9, + "end": 12840.92, + "probability": 0.9784 + }, + { + "start": 12841.32, + "end": 12843.86, + "probability": 0.9805 + }, + { + "start": 12844.24, + "end": 12847.5, + "probability": 0.9327 + }, + { + "start": 12847.88, + "end": 12848.76, + "probability": 0.7817 + }, + { + "start": 12848.76, + "end": 12850.02, + "probability": 0.5105 + }, + { + "start": 12850.02, + "end": 12854.08, + "probability": 0.9693 + }, + { + "start": 12854.4, + "end": 12859.16, + "probability": 0.9336 + }, + { + "start": 12859.42, + "end": 12863.3, + "probability": 0.9897 + }, + { + "start": 12863.3, + "end": 12864.02, + "probability": 0.7693 + }, + { + "start": 12864.12, + "end": 12865.32, + "probability": 0.8199 + }, + { + "start": 12865.44, + "end": 12865.48, + "probability": 0.2301 + }, + { + "start": 12865.56, + "end": 12865.82, + "probability": 0.2154 + }, + { + "start": 12865.9, + "end": 12870.64, + "probability": 0.8145 + }, + { + "start": 12871.3, + "end": 12872.26, + "probability": 0.7917 + }, + { + "start": 12872.26, + "end": 12872.26, + "probability": 0.3002 + }, + { + "start": 12872.26, + "end": 12873.44, + "probability": 0.1124 + }, + { + "start": 12873.56, + "end": 12874.86, + "probability": 0.6945 + }, + { + "start": 12875.04, + "end": 12875.72, + "probability": 0.7427 + }, + { + "start": 12875.86, + "end": 12878.18, + "probability": 0.8103 + }, + { + "start": 12878.54, + "end": 12881.2, + "probability": 0.9292 + }, + { + "start": 12881.2, + "end": 12883.66, + "probability": 0.8008 + }, + { + "start": 12883.7, + "end": 12884.56, + "probability": 0.6005 + }, + { + "start": 12884.64, + "end": 12884.76, + "probability": 0.6973 + }, + { + "start": 12884.86, + "end": 12886.02, + "probability": 0.8257 + }, + { + "start": 12886.06, + "end": 12889.54, + "probability": 0.9581 + }, + { + "start": 12889.8, + "end": 12892.14, + "probability": 0.9111 + }, + { + "start": 12892.54, + "end": 12893.54, + "probability": 0.8237 + }, + { + "start": 12894.0, + "end": 12895.16, + "probability": 0.9076 + }, + { + "start": 12895.26, + "end": 12899.08, + "probability": 0.8381 + }, + { + "start": 12899.2, + "end": 12902.68, + "probability": 0.9204 + }, + { + "start": 12903.16, + "end": 12904.72, + "probability": 0.9668 + }, + { + "start": 12905.02, + "end": 12906.56, + "probability": 0.9186 + }, + { + "start": 12906.7, + "end": 12907.98, + "probability": 0.9256 + }, + { + "start": 12908.4, + "end": 12909.58, + "probability": 0.6909 + }, + { + "start": 12910.46, + "end": 12912.78, + "probability": 0.5882 + }, + { + "start": 12913.92, + "end": 12917.76, + "probability": 0.7888 + }, + { + "start": 12917.78, + "end": 12921.33, + "probability": 0.8882 + }, + { + "start": 12922.16, + "end": 12926.56, + "probability": 0.8083 + }, + { + "start": 12926.88, + "end": 12927.28, + "probability": 0.5128 + }, + { + "start": 12929.48, + "end": 12934.38, + "probability": 0.3883 + }, + { + "start": 12937.43, + "end": 12939.36, + "probability": 0.4736 + }, + { + "start": 12939.52, + "end": 12940.88, + "probability": 0.544 + }, + { + "start": 12940.98, + "end": 12941.61, + "probability": 0.7152 + }, + { + "start": 12941.86, + "end": 12943.46, + "probability": 0.4821 + }, + { + "start": 12943.6, + "end": 12948.78, + "probability": 0.9842 + }, + { + "start": 12948.92, + "end": 12951.04, + "probability": 0.4023 + }, + { + "start": 12953.74, + "end": 12954.98, + "probability": 0.9015 + }, + { + "start": 12955.14, + "end": 12957.02, + "probability": 0.6886 + }, + { + "start": 12957.26, + "end": 12959.44, + "probability": 0.9629 + }, + { + "start": 12959.68, + "end": 12961.84, + "probability": 0.9736 + }, + { + "start": 12969.48, + "end": 12969.58, + "probability": 0.055 + }, + { + "start": 12969.68, + "end": 12970.99, + "probability": 0.6829 + }, + { + "start": 12972.5, + "end": 12975.3, + "probability": 0.4493 + }, + { + "start": 12977.15, + "end": 12982.94, + "probability": 0.1231 + }, + { + "start": 12983.24, + "end": 12984.58, + "probability": 0.1137 + }, + { + "start": 12986.92, + "end": 12986.98, + "probability": 0.0157 + }, + { + "start": 13005.64, + "end": 13007.92, + "probability": 0.847 + }, + { + "start": 13008.88, + "end": 13009.46, + "probability": 0.3082 + }, + { + "start": 13009.54, + "end": 13010.66, + "probability": 0.6761 + }, + { + "start": 13010.76, + "end": 13013.82, + "probability": 0.8822 + }, + { + "start": 13014.22, + "end": 13016.97, + "probability": 0.8071 + }, + { + "start": 13017.16, + "end": 13017.46, + "probability": 0.0821 + }, + { + "start": 13036.52, + "end": 13037.42, + "probability": 0.1904 + }, + { + "start": 13042.5, + "end": 13044.2, + "probability": 0.2189 + }, + { + "start": 13044.38, + "end": 13047.78, + "probability": 0.8862 + }, + { + "start": 13048.1, + "end": 13050.93, + "probability": 0.7671 + }, + { + "start": 13051.9, + "end": 13052.74, + "probability": 0.4771 + }, + { + "start": 13054.08, + "end": 13055.08, + "probability": 0.7305 + }, + { + "start": 13055.08, + "end": 13056.08, + "probability": 0.3518 + }, + { + "start": 13057.3, + "end": 13058.94, + "probability": 0.3217 + }, + { + "start": 13058.98, + "end": 13059.86, + "probability": 0.4378 + }, + { + "start": 13060.06, + "end": 13064.94, + "probability": 0.4432 + }, + { + "start": 13065.08, + "end": 13068.16, + "probability": 0.8865 + }, + { + "start": 13068.58, + "end": 13070.6, + "probability": 0.0096 + }, + { + "start": 13072.18, + "end": 13074.64, + "probability": 0.0149 + }, + { + "start": 13077.82, + "end": 13077.82, + "probability": 0.7969 + }, + { + "start": 13091.26, + "end": 13091.28, + "probability": 0.1916 + }, + { + "start": 13091.28, + "end": 13091.52, + "probability": 0.079 + }, + { + "start": 13091.58, + "end": 13092.44, + "probability": 0.1983 + }, + { + "start": 13092.8, + "end": 13093.14, + "probability": 0.8223 + }, + { + "start": 13093.14, + "end": 13094.78, + "probability": 0.6259 + }, + { + "start": 13094.92, + "end": 13097.54, + "probability": 0.9064 + }, + { + "start": 13097.62, + "end": 13098.46, + "probability": 0.3928 + }, + { + "start": 13098.6, + "end": 13100.1, + "probability": 0.4872 + }, + { + "start": 13100.16, + "end": 13101.6, + "probability": 0.9586 + }, + { + "start": 13101.88, + "end": 13102.76, + "probability": 0.3733 + }, + { + "start": 13103.26, + "end": 13104.18, + "probability": 0.6648 + }, + { + "start": 13104.24, + "end": 13105.02, + "probability": 0.8334 + }, + { + "start": 13105.08, + "end": 13106.78, + "probability": 0.6777 + }, + { + "start": 13107.04, + "end": 13109.78, + "probability": 0.963 + }, + { + "start": 13109.96, + "end": 13110.98, + "probability": 0.6847 + }, + { + "start": 13111.46, + "end": 13113.4, + "probability": 0.2884 + }, + { + "start": 13114.74, + "end": 13115.58, + "probability": 0.6762 + }, + { + "start": 13115.68, + "end": 13116.42, + "probability": 0.7261 + }, + { + "start": 13117.3, + "end": 13117.58, + "probability": 0.2476 + }, + { + "start": 13117.58, + "end": 13119.16, + "probability": 0.0208 + }, + { + "start": 13119.52, + "end": 13124.82, + "probability": 0.2902 + }, + { + "start": 13124.92, + "end": 13127.84, + "probability": 0.781 + }, + { + "start": 13128.14, + "end": 13128.76, + "probability": 0.3025 + }, + { + "start": 13129.12, + "end": 13129.12, + "probability": 0.1754 + }, + { + "start": 13129.12, + "end": 13131.18, + "probability": 0.3351 + }, + { + "start": 13131.26, + "end": 13134.54, + "probability": 0.8581 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.0, + "end": 13222.0, + "probability": 0.0 + }, + { + "start": 13222.18, + "end": 13223.76, + "probability": 0.3995 + }, + { + "start": 13223.92, + "end": 13229.84, + "probability": 0.6553 + }, + { + "start": 13243.56, + "end": 13244.26, + "probability": 0.0694 + }, + { + "start": 13244.62, + "end": 13249.9, + "probability": 0.7128 + }, + { + "start": 13250.76, + "end": 13254.36, + "probability": 0.8196 + }, + { + "start": 13254.84, + "end": 13255.88, + "probability": 0.6605 + }, + { + "start": 13255.98, + "end": 13257.5, + "probability": 0.7802 + }, + { + "start": 13257.72, + "end": 13258.78, + "probability": 0.5646 + }, + { + "start": 13258.86, + "end": 13259.64, + "probability": 0.2627 + }, + { + "start": 13263.18, + "end": 13263.6, + "probability": 0.0085 + }, + { + "start": 13263.64, + "end": 13264.96, + "probability": 0.5062 + }, + { + "start": 13265.06, + "end": 13265.26, + "probability": 0.0837 + }, + { + "start": 13268.08, + "end": 13269.44, + "probability": 0.0592 + }, + { + "start": 13269.44, + "end": 13271.54, + "probability": 0.6328 + }, + { + "start": 13271.94, + "end": 13275.02, + "probability": 0.9932 + }, + { + "start": 13275.08, + "end": 13275.92, + "probability": 0.8896 + }, + { + "start": 13276.16, + "end": 13278.24, + "probability": 0.8267 + }, + { + "start": 13278.3, + "end": 13287.48, + "probability": 0.8333 + }, + { + "start": 13288.18, + "end": 13290.22, + "probability": 0.7226 + }, + { + "start": 13291.32, + "end": 13293.02, + "probability": 0.8084 + }, + { + "start": 13294.96, + "end": 13298.42, + "probability": 0.019 + }, + { + "start": 13311.4, + "end": 13313.2, + "probability": 0.0573 + }, + { + "start": 13314.1, + "end": 13314.36, + "probability": 0.1906 + }, + { + "start": 13314.68, + "end": 13315.12, + "probability": 0.5775 + }, + { + "start": 13315.3, + "end": 13316.44, + "probability": 0.603 + }, + { + "start": 13316.6, + "end": 13317.08, + "probability": 0.6923 + }, + { + "start": 13317.18, + "end": 13318.59, + "probability": 0.8405 + }, + { + "start": 13318.88, + "end": 13320.14, + "probability": 0.4228 + }, + { + "start": 13324.28, + "end": 13328.5, + "probability": 0.7959 + }, + { + "start": 13329.0, + "end": 13332.12, + "probability": 0.8563 + }, + { + "start": 13336.36, + "end": 13337.06, + "probability": 0.7814 + }, + { + "start": 13337.24, + "end": 13338.29, + "probability": 0.845 + }, + { + "start": 13340.34, + "end": 13344.14, + "probability": 0.9255 + }, + { + "start": 13344.66, + "end": 13345.6, + "probability": 0.8149 + }, + { + "start": 13345.82, + "end": 13346.32, + "probability": 0.1987 + }, + { + "start": 13346.52, + "end": 13347.08, + "probability": 0.903 + }, + { + "start": 13349.22, + "end": 13355.88, + "probability": 0.2107 + }, + { + "start": 13356.44, + "end": 13359.52, + "probability": 0.5679 + }, + { + "start": 13359.78, + "end": 13365.45, + "probability": 0.3154 + }, + { + "start": 13367.34, + "end": 13367.66, + "probability": 0.0728 + }, + { + "start": 13370.0, + "end": 13372.76, + "probability": 0.1693 + }, + { + "start": 13373.22, + "end": 13375.3, + "probability": 0.2227 + }, + { + "start": 13381.56, + "end": 13382.46, + "probability": 0.193 + }, + { + "start": 13382.46, + "end": 13383.7, + "probability": 0.3753 + }, + { + "start": 13384.6, + "end": 13387.98, + "probability": 0.9373 + }, + { + "start": 13388.3, + "end": 13393.2, + "probability": 0.5002 + }, + { + "start": 13393.7, + "end": 13394.94, + "probability": 0.0192 + }, + { + "start": 13395.18, + "end": 13396.38, + "probability": 0.4449 + }, + { + "start": 13396.96, + "end": 13397.24, + "probability": 0.0346 + }, + { + "start": 13398.18, + "end": 13398.5, + "probability": 0.1084 + }, + { + "start": 13398.56, + "end": 13398.88, + "probability": 0.3717 + }, + { + "start": 13398.92, + "end": 13400.5, + "probability": 0.0448 + }, + { + "start": 13400.88, + "end": 13408.35, + "probability": 0.9431 + }, + { + "start": 13410.22, + "end": 13411.2, + "probability": 0.6123 + }, + { + "start": 13411.42, + "end": 13418.02, + "probability": 0.9478 + }, + { + "start": 13418.22, + "end": 13419.2, + "probability": 0.0661 + }, + { + "start": 13420.66, + "end": 13423.22, + "probability": 0.9548 + }, + { + "start": 13423.36, + "end": 13426.62, + "probability": 0.8573 + }, + { + "start": 13426.92, + "end": 13429.3, + "probability": 0.8633 + }, + { + "start": 13429.78, + "end": 13431.08, + "probability": 0.8221 + }, + { + "start": 13438.67, + "end": 13439.29, + "probability": 0.0734 + }, + { + "start": 13445.48, + "end": 13446.24, + "probability": 0.0017 + }, + { + "start": 13447.98, + "end": 13451.4, + "probability": 0.1703 + }, + { + "start": 13451.4, + "end": 13455.52, + "probability": 0.4743 + }, + { + "start": 13456.06, + "end": 13456.96, + "probability": 0.8184 + }, + { + "start": 13457.86, + "end": 13461.36, + "probability": 0.8884 + }, + { + "start": 13461.56, + "end": 13462.64, + "probability": 0.774 + }, + { + "start": 13462.76, + "end": 13465.82, + "probability": 0.8032 + }, + { + "start": 13467.9, + "end": 13470.38, + "probability": 0.4573 + }, + { + "start": 13471.36, + "end": 13475.5, + "probability": 0.6451 + }, + { + "start": 13475.74, + "end": 13476.72, + "probability": 0.5943 + }, + { + "start": 13477.14, + "end": 13477.78, + "probability": 0.7966 + }, + { + "start": 13478.64, + "end": 13484.48, + "probability": 0.8367 + }, + { + "start": 13484.62, + "end": 13486.08, + "probability": 0.8512 + }, + { + "start": 13504.94, + "end": 13505.6, + "probability": 0.812 + }, + { + "start": 13505.6, + "end": 13505.6, + "probability": 0.031 + }, + { + "start": 13505.6, + "end": 13505.6, + "probability": 0.0824 + }, + { + "start": 13505.6, + "end": 13505.9, + "probability": 0.2564 + }, + { + "start": 13505.9, + "end": 13507.24, + "probability": 0.2008 + }, + { + "start": 13507.36, + "end": 13512.1, + "probability": 0.9491 + }, + { + "start": 13512.56, + "end": 13514.78, + "probability": 0.6973 + }, + { + "start": 13515.52, + "end": 13520.9, + "probability": 0.6749 + }, + { + "start": 13521.36, + "end": 13522.48, + "probability": 0.6599 + }, + { + "start": 13522.58, + "end": 13523.68, + "probability": 0.6609 + }, + { + "start": 13523.68, + "end": 13525.92, + "probability": 0.5705 + }, + { + "start": 13538.36, + "end": 13544.32, + "probability": 0.2905 + }, + { + "start": 13544.32, + "end": 13549.44, + "probability": 0.5371 + }, + { + "start": 13553.22, + "end": 13556.64, + "probability": 0.1016 + }, + { + "start": 13557.44, + "end": 13557.88, + "probability": 0.256 + }, + { + "start": 13558.1, + "end": 13558.86, + "probability": 0.5733 + }, + { + "start": 13558.88, + "end": 13559.98, + "probability": 0.6808 + }, + { + "start": 13561.49, + "end": 13564.04, + "probability": 0.8051 + }, + { + "start": 13564.72, + "end": 13568.46, + "probability": 0.8459 + }, + { + "start": 13568.46, + "end": 13570.46, + "probability": 0.9749 + }, + { + "start": 13573.61, + "end": 13574.52, + "probability": 0.6894 + }, + { + "start": 13581.4, + "end": 13586.52, + "probability": 0.8176 + }, + { + "start": 13588.86, + "end": 13590.74, + "probability": 0.3509 + }, + { + "start": 13590.9, + "end": 13591.36, + "probability": 0.0795 + }, + { + "start": 13591.58, + "end": 13592.1, + "probability": 0.1355 + }, + { + "start": 13592.6, + "end": 13593.06, + "probability": 0.8461 + }, + { + "start": 13593.44, + "end": 13594.94, + "probability": 0.6111 + }, + { + "start": 13594.96, + "end": 13601.47, + "probability": 0.9597 + }, + { + "start": 13602.44, + "end": 13603.4, + "probability": 0.7197 + }, + { + "start": 13603.4, + "end": 13605.66, + "probability": 0.7628 + }, + { + "start": 13605.72, + "end": 13606.88, + "probability": 0.8671 + }, + { + "start": 13607.2, + "end": 13611.56, + "probability": 0.6134 + }, + { + "start": 13611.94, + "end": 13614.26, + "probability": 0.6359 + }, + { + "start": 13618.65, + "end": 13619.98, + "probability": 0.0711 + }, + { + "start": 13624.64, + "end": 13627.66, + "probability": 0.5458 + }, + { + "start": 13628.06, + "end": 13628.24, + "probability": 0.0445 + }, + { + "start": 13629.82, + "end": 13636.36, + "probability": 0.2464 + }, + { + "start": 13646.48, + "end": 13650.68, + "probability": 0.654 + }, + { + "start": 13650.94, + "end": 13652.06, + "probability": 0.7263 + }, + { + "start": 13653.12, + "end": 13653.62, + "probability": 0.4917 + }, + { + "start": 13653.72, + "end": 13655.72, + "probability": 0.9009 + }, + { + "start": 13655.9, + "end": 13657.18, + "probability": 0.9609 + }, + { + "start": 13657.5, + "end": 13658.18, + "probability": 0.6132 + }, + { + "start": 13658.46, + "end": 13659.9, + "probability": 0.9156 + }, + { + "start": 13660.48, + "end": 13661.32, + "probability": 0.9395 + }, + { + "start": 13661.68, + "end": 13661.68, + "probability": 0.3214 + }, + { + "start": 13663.94, + "end": 13664.92, + "probability": 0.2409 + }, + { + "start": 13666.76, + "end": 13667.78, + "probability": 0.2232 + }, + { + "start": 13668.0, + "end": 13672.46, + "probability": 0.8498 + }, + { + "start": 13672.84, + "end": 13677.76, + "probability": 0.9892 + }, + { + "start": 13677.76, + "end": 13685.56, + "probability": 0.7655 + }, + { + "start": 13694.24, + "end": 13695.8, + "probability": 0.2094 + }, + { + "start": 13698.52, + "end": 13699.36, + "probability": 0.0013 + }, + { + "start": 13704.08, + "end": 13705.22, + "probability": 0.3744 + }, + { + "start": 13708.64, + "end": 13709.4, + "probability": 0.0666 + }, + { + "start": 13709.6, + "end": 13710.2, + "probability": 0.5666 + }, + { + "start": 13710.22, + "end": 13710.9, + "probability": 0.3068 + }, + { + "start": 13711.0, + "end": 13711.48, + "probability": 0.8558 + }, + { + "start": 13711.96, + "end": 13713.75, + "probability": 0.7162 + }, + { + "start": 13714.02, + "end": 13718.46, + "probability": 0.9523 + }, + { + "start": 13719.16, + "end": 13720.9, + "probability": 0.7432 + }, + { + "start": 13722.02, + "end": 13723.9, + "probability": 0.8176 + }, + { + "start": 13724.12, + "end": 13724.96, + "probability": 0.9504 + }, + { + "start": 13725.36, + "end": 13726.5, + "probability": 0.5576 + }, + { + "start": 13726.92, + "end": 13727.72, + "probability": 0.0394 + }, + { + "start": 13732.6, + "end": 13734.52, + "probability": 0.5942 + }, + { + "start": 13738.36, + "end": 13742.66, + "probability": 0.1467 + }, + { + "start": 13757.96, + "end": 13758.58, + "probability": 0.1039 + }, + { + "start": 13758.62, + "end": 13760.3, + "probability": 0.3618 + }, + { + "start": 13760.38, + "end": 13760.94, + "probability": 0.3265 + }, + { + "start": 13760.96, + "end": 13761.34, + "probability": 0.5804 + }, + { + "start": 13761.42, + "end": 13762.52, + "probability": 0.3438 + }, + { + "start": 13762.6, + "end": 13768.04, + "probability": 0.8141 + }, + { + "start": 13768.28, + "end": 13769.64, + "probability": 0.7192 + }, + { + "start": 13770.06, + "end": 13771.48, + "probability": 0.8555 + }, + { + "start": 13771.82, + "end": 13773.02, + "probability": 0.986 + }, + { + "start": 13773.56, + "end": 13779.86, + "probability": 0.8051 + }, + { + "start": 13779.86, + "end": 13780.64, + "probability": 0.7942 + }, + { + "start": 13783.14, + "end": 13783.64, + "probability": 0.7778 + }, + { + "start": 13784.56, + "end": 13787.6, + "probability": 0.022 + }, + { + "start": 13789.3, + "end": 13789.4, + "probability": 0.0185 + }, + { + "start": 13792.24, + "end": 13793.0, + "probability": 0.3349 + }, + { + "start": 13802.66, + "end": 13802.66, + "probability": 0.0971 + }, + { + "start": 13802.66, + "end": 13806.1, + "probability": 0.4638 + }, + { + "start": 13813.9, + "end": 13819.64, + "probability": 0.8059 + }, + { + "start": 13821.38, + "end": 13822.6, + "probability": 0.7642 + }, + { + "start": 13823.64, + "end": 13827.52, + "probability": 0.9876 + }, + { + "start": 13828.52, + "end": 13829.3, + "probability": 0.3774 + }, + { + "start": 13839.26, + "end": 13840.01, + "probability": 0.6029 + }, + { + "start": 13845.0, + "end": 13849.44, + "probability": 0.7036 + }, + { + "start": 13849.62, + "end": 13850.32, + "probability": 0.4835 + }, + { + "start": 13851.42, + "end": 13854.42, + "probability": 0.6867 + }, + { + "start": 13854.88, + "end": 13855.84, + "probability": 0.2816 + }, + { + "start": 13856.26, + "end": 13859.94, + "probability": 0.5442 + }, + { + "start": 13862.44, + "end": 13864.16, + "probability": 0.6007 + }, + { + "start": 13864.32, + "end": 13865.52, + "probability": 0.4515 + }, + { + "start": 13874.53, + "end": 13876.44, + "probability": 0.7154 + }, + { + "start": 13876.46, + "end": 13877.2, + "probability": 0.353 + }, + { + "start": 13877.96, + "end": 13879.26, + "probability": 0.6664 + }, + { + "start": 13880.56, + "end": 13882.43, + "probability": 0.603 + }, + { + "start": 13883.02, + "end": 13883.88, + "probability": 0.6357 + }, + { + "start": 13884.15, + "end": 13887.72, + "probability": 0.7932 + }, + { + "start": 13887.74, + "end": 13888.58, + "probability": 0.7295 + }, + { + "start": 13888.6, + "end": 13889.74, + "probability": 0.8367 + }, + { + "start": 13890.48, + "end": 13891.52, + "probability": 0.6333 + }, + { + "start": 13891.7, + "end": 13893.56, + "probability": 0.9393 + }, + { + "start": 13893.82, + "end": 13894.34, + "probability": 0.7413 + }, + { + "start": 13894.38, + "end": 13894.84, + "probability": 0.6709 + }, + { + "start": 13894.94, + "end": 13896.42, + "probability": 0.9146 + }, + { + "start": 13896.52, + "end": 13898.28, + "probability": 0.9321 + }, + { + "start": 13898.52, + "end": 13900.22, + "probability": 0.1706 + }, + { + "start": 13901.14, + "end": 13901.16, + "probability": 0.3107 + }, + { + "start": 13901.16, + "end": 13901.52, + "probability": 0.8818 + }, + { + "start": 13902.58, + "end": 13906.76, + "probability": 0.8009 + }, + { + "start": 13906.96, + "end": 13908.18, + "probability": 0.9036 + }, + { + "start": 13908.4, + "end": 13909.54, + "probability": 0.6624 + }, + { + "start": 13909.68, + "end": 13914.18, + "probability": 0.4585 + }, + { + "start": 13915.58, + "end": 13916.49, + "probability": 0.7418 + }, + { + "start": 13919.2, + "end": 13920.42, + "probability": 0.029 + }, + { + "start": 13921.54, + "end": 13924.66, + "probability": 0.0233 + }, + { + "start": 13925.24, + "end": 13926.05, + "probability": 0.0091 + }, + { + "start": 13929.44, + "end": 13930.6, + "probability": 0.0391 + }, + { + "start": 13939.5, + "end": 13940.36, + "probability": 0.3625 + }, + { + "start": 13940.46, + "end": 13941.46, + "probability": 0.4315 + }, + { + "start": 13941.92, + "end": 13943.74, + "probability": 0.8649 + }, + { + "start": 13943.76, + "end": 13947.9, + "probability": 0.9951 + }, + { + "start": 13948.52, + "end": 13949.8, + "probability": 0.7582 + }, + { + "start": 13949.96, + "end": 13950.66, + "probability": 0.9097 + }, + { + "start": 13950.8, + "end": 13951.2, + "probability": 0.7205 + }, + { + "start": 13951.22, + "end": 13953.54, + "probability": 0.714 + }, + { + "start": 13953.9, + "end": 13956.48, + "probability": 0.8167 + }, + { + "start": 13961.7, + "end": 13965.78, + "probability": 0.7345 + }, + { + "start": 13966.46, + "end": 13972.78, + "probability": 0.9419 + }, + { + "start": 13972.78, + "end": 13976.41, + "probability": 0.9723 + }, + { + "start": 13978.36, + "end": 13980.32, + "probability": 0.9645 + }, + { + "start": 13981.78, + "end": 13988.28, + "probability": 0.9756 + }, + { + "start": 13988.68, + "end": 13989.72, + "probability": 0.516 + }, + { + "start": 13990.76, + "end": 13991.84, + "probability": 0.7305 + }, + { + "start": 13991.86, + "end": 13995.22, + "probability": 0.9393 + }, + { + "start": 13995.3, + "end": 13997.0, + "probability": 0.9746 + }, + { + "start": 13997.44, + "end": 14000.86, + "probability": 0.8802 + }, + { + "start": 14001.2, + "end": 14003.26, + "probability": 0.796 + }, + { + "start": 14003.74, + "end": 14005.25, + "probability": 0.9918 + }, + { + "start": 14005.44, + "end": 14006.78, + "probability": 0.9904 + }, + { + "start": 14007.64, + "end": 14009.36, + "probability": 0.9734 + }, + { + "start": 14010.18, + "end": 14011.62, + "probability": 0.0353 + }, + { + "start": 14012.5, + "end": 14014.14, + "probability": 0.6859 + }, + { + "start": 14014.52, + "end": 14015.93, + "probability": 0.7075 + }, + { + "start": 14018.92, + "end": 14022.2, + "probability": 0.0904 + }, + { + "start": 14023.96, + "end": 14024.14, + "probability": 0.0162 + }, + { + "start": 14024.14, + "end": 14024.14, + "probability": 0.0278 + }, + { + "start": 14024.14, + "end": 14024.14, + "probability": 0.0116 + }, + { + "start": 14024.14, + "end": 14024.14, + "probability": 0.0484 + }, + { + "start": 14024.14, + "end": 14024.14, + "probability": 0.092 + }, + { + "start": 14024.14, + "end": 14025.54, + "probability": 0.5696 + }, + { + "start": 14026.8, + "end": 14027.3, + "probability": 0.7486 + }, + { + "start": 14027.44, + "end": 14029.16, + "probability": 0.8159 + }, + { + "start": 14029.34, + "end": 14030.04, + "probability": 0.7396 + }, + { + "start": 14030.2, + "end": 14030.74, + "probability": 0.7474 + }, + { + "start": 14031.06, + "end": 14034.48, + "probability": 0.6384 + }, + { + "start": 14034.66, + "end": 14037.56, + "probability": 0.7634 + }, + { + "start": 14038.28, + "end": 14040.02, + "probability": 0.9073 + }, + { + "start": 14040.4, + "end": 14040.98, + "probability": 0.7458 + }, + { + "start": 14041.06, + "end": 14042.7, + "probability": 0.9414 + }, + { + "start": 14043.26, + "end": 14044.18, + "probability": 0.8654 + }, + { + "start": 14044.56, + "end": 14045.2, + "probability": 0.9478 + }, + { + "start": 14046.3, + "end": 14053.08, + "probability": 0.8851 + }, + { + "start": 14053.4, + "end": 14055.4, + "probability": 0.7803 + }, + { + "start": 14056.38, + "end": 14059.22, + "probability": 0.9885 + }, + { + "start": 14059.92, + "end": 14066.1, + "probability": 0.8177 + }, + { + "start": 14066.18, + "end": 14066.6, + "probability": 0.8833 + }, + { + "start": 14067.02, + "end": 14067.7, + "probability": 0.3075 + }, + { + "start": 14068.84, + "end": 14073.0, + "probability": 0.9951 + }, + { + "start": 14073.16, + "end": 14074.48, + "probability": 0.9458 + }, + { + "start": 14075.74, + "end": 14078.58, + "probability": 0.9702 + }, + { + "start": 14079.6, + "end": 14082.48, + "probability": 0.9789 + }, + { + "start": 14082.92, + "end": 14083.34, + "probability": 0.2838 + }, + { + "start": 14083.46, + "end": 14084.1, + "probability": 0.5441 + }, + { + "start": 14084.24, + "end": 14087.3, + "probability": 0.9183 + }, + { + "start": 14087.38, + "end": 14087.64, + "probability": 0.6375 + }, + { + "start": 14087.7, + "end": 14088.46, + "probability": 0.6586 + }, + { + "start": 14088.66, + "end": 14089.66, + "probability": 0.8062 + }, + { + "start": 14090.22, + "end": 14091.58, + "probability": 0.9399 + }, + { + "start": 14091.66, + "end": 14093.22, + "probability": 0.7657 + }, + { + "start": 14093.42, + "end": 14094.96, + "probability": 0.4779 + }, + { + "start": 14095.64, + "end": 14100.14, + "probability": 0.873 + }, + { + "start": 14101.18, + "end": 14104.28, + "probability": 0.9263 + }, + { + "start": 14105.04, + "end": 14106.44, + "probability": 0.9166 + }, + { + "start": 14107.0, + "end": 14109.56, + "probability": 0.8571 + }, + { + "start": 14110.06, + "end": 14111.56, + "probability": 0.865 + }, + { + "start": 14111.88, + "end": 14113.98, + "probability": 0.9263 + }, + { + "start": 14114.08, + "end": 14115.32, + "probability": 0.8501 + }, + { + "start": 14115.66, + "end": 14116.98, + "probability": 0.7239 + }, + { + "start": 14117.68, + "end": 14119.25, + "probability": 0.8211 + }, + { + "start": 14119.6, + "end": 14121.3, + "probability": 0.959 + }, + { + "start": 14121.52, + "end": 14124.1, + "probability": 0.9593 + }, + { + "start": 14124.2, + "end": 14124.62, + "probability": 0.5386 + }, + { + "start": 14125.18, + "end": 14127.2, + "probability": 0.8942 + }, + { + "start": 14127.88, + "end": 14128.82, + "probability": 0.6133 + }, + { + "start": 14128.9, + "end": 14129.4, + "probability": 0.5038 + }, + { + "start": 14129.48, + "end": 14133.32, + "probability": 0.8388 + }, + { + "start": 14133.46, + "end": 14133.9, + "probability": 0.1522 + }, + { + "start": 14134.65, + "end": 14135.01, + "probability": 0.4625 + }, + { + "start": 14138.72, + "end": 14139.88, + "probability": 0.4239 + }, + { + "start": 14139.88, + "end": 14140.76, + "probability": 0.0881 + }, + { + "start": 14141.92, + "end": 14143.82, + "probability": 0.5491 + }, + { + "start": 14144.18, + "end": 14147.55, + "probability": 0.963 + }, + { + "start": 14148.36, + "end": 14149.08, + "probability": 0.61 + }, + { + "start": 14149.14, + "end": 14149.88, + "probability": 0.8456 + }, + { + "start": 14150.16, + "end": 14151.1, + "probability": 0.689 + }, + { + "start": 14151.24, + "end": 14154.04, + "probability": 0.9125 + }, + { + "start": 14154.6, + "end": 14155.52, + "probability": 0.8174 + }, + { + "start": 14155.52, + "end": 14157.1, + "probability": 0.6361 + }, + { + "start": 14157.24, + "end": 14158.69, + "probability": 0.8813 + }, + { + "start": 14159.64, + "end": 14161.44, + "probability": 0.6789 + }, + { + "start": 14162.32, + "end": 14162.94, + "probability": 0.0018 + }, + { + "start": 14162.94, + "end": 14164.7, + "probability": 0.6853 + }, + { + "start": 14167.02, + "end": 14168.64, + "probability": 0.518 + }, + { + "start": 14168.68, + "end": 14169.89, + "probability": 0.7517 + }, + { + "start": 14170.3, + "end": 14172.66, + "probability": 0.7276 + }, + { + "start": 14172.82, + "end": 14175.4, + "probability": 0.8282 + }, + { + "start": 14176.22, + "end": 14179.18, + "probability": 0.993 + }, + { + "start": 14179.18, + "end": 14182.04, + "probability": 0.6971 + }, + { + "start": 14182.12, + "end": 14184.04, + "probability": 0.2175 + }, + { + "start": 14184.46, + "end": 14185.36, + "probability": 0.6777 + }, + { + "start": 14185.68, + "end": 14187.96, + "probability": 0.8746 + }, + { + "start": 14188.34, + "end": 14190.68, + "probability": 0.6009 + }, + { + "start": 14190.78, + "end": 14191.48, + "probability": 0.576 + }, + { + "start": 14191.58, + "end": 14192.52, + "probability": 0.7779 + }, + { + "start": 14192.76, + "end": 14196.1, + "probability": 0.9912 + }, + { + "start": 14196.14, + "end": 14197.33, + "probability": 0.9621 + }, + { + "start": 14198.62, + "end": 14202.88, + "probability": 0.9443 + }, + { + "start": 14202.98, + "end": 14204.18, + "probability": 0.9095 + }, + { + "start": 14206.48, + "end": 14208.44, + "probability": 0.9833 + }, + { + "start": 14209.0, + "end": 14213.08, + "probability": 0.9899 + }, + { + "start": 14213.08, + "end": 14215.72, + "probability": 0.9963 + }, + { + "start": 14216.28, + "end": 14217.71, + "probability": 0.9514 + }, + { + "start": 14218.38, + "end": 14220.84, + "probability": 0.9022 + }, + { + "start": 14221.04, + "end": 14222.54, + "probability": 0.8052 + }, + { + "start": 14222.65, + "end": 14225.52, + "probability": 0.9945 + }, + { + "start": 14225.82, + "end": 14229.7, + "probability": 0.9826 + }, + { + "start": 14230.08, + "end": 14234.13, + "probability": 0.9971 + }, + { + "start": 14234.27, + "end": 14238.06, + "probability": 0.9408 + }, + { + "start": 14238.18, + "end": 14240.98, + "probability": 0.9984 + }, + { + "start": 14242.3, + "end": 14245.96, + "probability": 0.994 + }, + { + "start": 14245.96, + "end": 14248.86, + "probability": 0.9945 + }, + { + "start": 14249.94, + "end": 14256.3, + "probability": 0.9926 + }, + { + "start": 14257.12, + "end": 14257.6, + "probability": 0.5294 + }, + { + "start": 14257.8, + "end": 14260.48, + "probability": 0.908 + }, + { + "start": 14261.14, + "end": 14263.6, + "probability": 0.9806 + }, + { + "start": 14264.2, + "end": 14266.87, + "probability": 0.9927 + }, + { + "start": 14267.54, + "end": 14270.02, + "probability": 0.9687 + }, + { + "start": 14270.26, + "end": 14271.1, + "probability": 0.8746 + }, + { + "start": 14271.84, + "end": 14272.76, + "probability": 0.3967 + }, + { + "start": 14272.9, + "end": 14275.42, + "probability": 0.8516 + }, + { + "start": 14275.48, + "end": 14278.96, + "probability": 0.9858 + }, + { + "start": 14281.7, + "end": 14283.52, + "probability": 0.7693 + }, + { + "start": 14283.82, + "end": 14286.32, + "probability": 0.8165 + }, + { + "start": 14286.82, + "end": 14288.92, + "probability": 0.9923 + }, + { + "start": 14289.34, + "end": 14290.94, + "probability": 0.988 + }, + { + "start": 14291.5, + "end": 14295.8, + "probability": 0.9842 + }, + { + "start": 14295.8, + "end": 14299.38, + "probability": 0.9842 + }, + { + "start": 14299.38, + "end": 14299.7, + "probability": 0.6405 + }, + { + "start": 14300.38, + "end": 14302.16, + "probability": 0.8114 + }, + { + "start": 14302.5, + "end": 14303.54, + "probability": 0.7532 + }, + { + "start": 14304.21, + "end": 14308.41, + "probability": 0.7985 + }, + { + "start": 14309.72, + "end": 14312.24, + "probability": 0.9609 + }, + { + "start": 14313.56, + "end": 14315.0, + "probability": 0.9594 + }, + { + "start": 14315.22, + "end": 14316.6, + "probability": 0.9222 + }, + { + "start": 14316.68, + "end": 14320.46, + "probability": 0.9377 + }, + { + "start": 14320.68, + "end": 14323.6, + "probability": 0.9955 + }, + { + "start": 14324.52, + "end": 14327.44, + "probability": 0.9966 + }, + { + "start": 14328.98, + "end": 14332.7, + "probability": 0.0587 + }, + { + "start": 14333.52, + "end": 14335.46, + "probability": 0.4428 + }, + { + "start": 14335.46, + "end": 14337.74, + "probability": 0.8732 + }, + { + "start": 14337.84, + "end": 14338.82, + "probability": 0.7606 + }, + { + "start": 14339.12, + "end": 14340.58, + "probability": 0.7505 + }, + { + "start": 14340.7, + "end": 14342.64, + "probability": 0.9849 + }, + { + "start": 14343.16, + "end": 14346.64, + "probability": 0.9009 + }, + { + "start": 14347.54, + "end": 14349.92, + "probability": 0.2308 + }, + { + "start": 14349.92, + "end": 14351.74, + "probability": 0.179 + }, + { + "start": 14352.56, + "end": 14353.06, + "probability": 0.029 + }, + { + "start": 14355.04, + "end": 14356.24, + "probability": 0.1525 + }, + { + "start": 14364.44, + "end": 14365.42, + "probability": 0.3334 + }, + { + "start": 14366.12, + "end": 14367.58, + "probability": 0.391 + }, + { + "start": 14369.46, + "end": 14370.18, + "probability": 0.8437 + }, + { + "start": 14373.0, + "end": 14378.38, + "probability": 0.7941 + }, + { + "start": 14378.52, + "end": 14380.5, + "probability": 0.2651 + }, + { + "start": 14380.68, + "end": 14381.9, + "probability": 0.9059 + }, + { + "start": 14382.12, + "end": 14385.38, + "probability": 0.909 + }, + { + "start": 14386.38, + "end": 14390.4, + "probability": 0.878 + }, + { + "start": 14391.08, + "end": 14391.92, + "probability": 0.7957 + }, + { + "start": 14392.14, + "end": 14397.16, + "probability": 0.979 + }, + { + "start": 14397.96, + "end": 14398.94, + "probability": 0.4422 + }, + { + "start": 14403.11, + "end": 14409.6, + "probability": 0.6994 + }, + { + "start": 14411.16, + "end": 14413.12, + "probability": 0.2843 + }, + { + "start": 14416.38, + "end": 14419.68, + "probability": 0.9585 + }, + { + "start": 14419.86, + "end": 14421.76, + "probability": 0.7635 + }, + { + "start": 14424.06, + "end": 14427.28, + "probability": 0.1522 + }, + { + "start": 14431.56, + "end": 14436.84, + "probability": 0.0335 + }, + { + "start": 14438.98, + "end": 14442.6, + "probability": 0.0364 + }, + { + "start": 14443.3, + "end": 14449.12, + "probability": 0.6153 + }, + { + "start": 14478.24, + "end": 14478.96, + "probability": 0.6918 + }, + { + "start": 14479.1, + "end": 14483.38, + "probability": 0.9576 + }, + { + "start": 14483.72, + "end": 14485.66, + "probability": 0.9497 + }, + { + "start": 14486.22, + "end": 14491.42, + "probability": 0.9665 + }, + { + "start": 14491.86, + "end": 14496.84, + "probability": 0.8936 + }, + { + "start": 14497.9, + "end": 14499.83, + "probability": 0.8101 + }, + { + "start": 14500.38, + "end": 14505.92, + "probability": 0.9429 + }, + { + "start": 14506.34, + "end": 14508.86, + "probability": 0.877 + }, + { + "start": 14509.3, + "end": 14511.92, + "probability": 0.8063 + }, + { + "start": 14512.06, + "end": 14515.66, + "probability": 0.8304 + }, + { + "start": 14515.66, + "end": 14517.62, + "probability": 0.8575 + }, + { + "start": 14517.74, + "end": 14520.26, + "probability": 0.9415 + }, + { + "start": 14520.72, + "end": 14523.58, + "probability": 0.9817 + }, + { + "start": 14524.12, + "end": 14528.84, + "probability": 0.973 + }, + { + "start": 14529.02, + "end": 14530.22, + "probability": 0.9254 + }, + { + "start": 14530.68, + "end": 14533.56, + "probability": 0.9834 + }, + { + "start": 14533.56, + "end": 14535.8, + "probability": 0.6753 + }, + { + "start": 14536.26, + "end": 14542.94, + "probability": 0.9614 + }, + { + "start": 14543.3, + "end": 14545.52, + "probability": 0.9406 + }, + { + "start": 14545.52, + "end": 14550.0, + "probability": 0.994 + }, + { + "start": 14550.52, + "end": 14553.58, + "probability": 0.9677 + }, + { + "start": 14553.64, + "end": 14556.14, + "probability": 0.9054 + }, + { + "start": 14556.14, + "end": 14560.0, + "probability": 0.8574 + }, + { + "start": 14560.5, + "end": 14561.02, + "probability": 0.497 + }, + { + "start": 14561.2, + "end": 14562.22, + "probability": 0.6858 + }, + { + "start": 14562.32, + "end": 14563.4, + "probability": 0.7675 + }, + { + "start": 14563.72, + "end": 14567.8, + "probability": 0.9785 + }, + { + "start": 14567.8, + "end": 14570.9, + "probability": 0.8582 + }, + { + "start": 14571.22, + "end": 14573.1, + "probability": 0.9136 + }, + { + "start": 14573.42, + "end": 14575.04, + "probability": 0.6644 + }, + { + "start": 14575.48, + "end": 14576.86, + "probability": 0.9702 + }, + { + "start": 14577.0, + "end": 14582.24, + "probability": 0.9644 + }, + { + "start": 14582.54, + "end": 14588.49, + "probability": 0.8696 + }, + { + "start": 14588.88, + "end": 14592.28, + "probability": 0.6201 + }, + { + "start": 14592.6, + "end": 14594.32, + "probability": 0.9128 + }, + { + "start": 14594.32, + "end": 14594.66, + "probability": 0.4336 + }, + { + "start": 14594.76, + "end": 14596.84, + "probability": 0.7564 + }, + { + "start": 14596.92, + "end": 14599.74, + "probability": 0.7222 + }, + { + "start": 14600.08, + "end": 14605.24, + "probability": 0.9288 + }, + { + "start": 14605.46, + "end": 14608.52, + "probability": 0.3841 + }, + { + "start": 14608.52, + "end": 14609.26, + "probability": 0.5324 + }, + { + "start": 14610.34, + "end": 14614.7, + "probability": 0.8965 + }, + { + "start": 14618.06, + "end": 14621.44, + "probability": 0.6662 + }, + { + "start": 14621.54, + "end": 14622.48, + "probability": 0.1138 + }, + { + "start": 14623.06, + "end": 14624.94, + "probability": 0.8707 + }, + { + "start": 14626.1, + "end": 14626.94, + "probability": 0.399 + }, + { + "start": 14627.02, + "end": 14628.5, + "probability": 0.8521 + }, + { + "start": 14628.58, + "end": 14629.84, + "probability": 0.5364 + }, + { + "start": 14629.94, + "end": 14631.74, + "probability": 0.8532 + }, + { + "start": 14644.74, + "end": 14646.2, + "probability": 0.0067 + }, + { + "start": 14648.98, + "end": 14649.72, + "probability": 0.0001 + }, + { + "start": 14656.4, + "end": 14657.58, + "probability": 0.0925 + }, + { + "start": 14660.04, + "end": 14661.6, + "probability": 0.3044 + }, + { + "start": 14662.34, + "end": 14663.9, + "probability": 0.8231 + }, + { + "start": 14665.16, + "end": 14668.0, + "probability": 0.9886 + }, + { + "start": 14668.04, + "end": 14672.22, + "probability": 0.98 + }, + { + "start": 14680.1, + "end": 14682.98, + "probability": 0.2884 + }, + { + "start": 14722.26, + "end": 14729.36, + "probability": 0.0633 + }, + { + "start": 14729.4, + "end": 14732.12, + "probability": 0.0384 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.0, + "end": 14759.0, + "probability": 0.0 + }, + { + "start": 14759.3, + "end": 14759.56, + "probability": 0.2401 + }, + { + "start": 14759.56, + "end": 14759.56, + "probability": 0.0345 + }, + { + "start": 14759.56, + "end": 14766.34, + "probability": 0.7546 + }, + { + "start": 14767.7, + "end": 14772.16, + "probability": 0.9445 + }, + { + "start": 14772.16, + "end": 14776.86, + "probability": 0.8131 + }, + { + "start": 14776.86, + "end": 14780.72, + "probability": 0.9937 + }, + { + "start": 14781.68, + "end": 14785.26, + "probability": 0.9329 + }, + { + "start": 14785.98, + "end": 14788.5, + "probability": 0.8 + }, + { + "start": 14789.22, + "end": 14790.7, + "probability": 0.7917 + }, + { + "start": 14790.78, + "end": 14791.66, + "probability": 0.9805 + }, + { + "start": 14791.8, + "end": 14792.86, + "probability": 0.6974 + }, + { + "start": 14792.96, + "end": 14793.48, + "probability": 0.604 + }, + { + "start": 14793.78, + "end": 14796.5, + "probability": 0.5879 + }, + { + "start": 14796.94, + "end": 14800.66, + "probability": 0.8992 + }, + { + "start": 14800.8, + "end": 14803.1, + "probability": 0.8973 + }, + { + "start": 14803.18, + "end": 14803.8, + "probability": 0.532 + }, + { + "start": 14803.82, + "end": 14805.9, + "probability": 0.9237 + }, + { + "start": 14805.98, + "end": 14810.38, + "probability": 0.8922 + }, + { + "start": 14810.94, + "end": 14812.08, + "probability": 0.8426 + }, + { + "start": 14812.14, + "end": 14813.72, + "probability": 0.9309 + }, + { + "start": 14814.28, + "end": 14816.18, + "probability": 0.7714 + }, + { + "start": 14816.26, + "end": 14820.28, + "probability": 0.9609 + }, + { + "start": 14820.56, + "end": 14821.3, + "probability": 0.5869 + }, + { + "start": 14821.36, + "end": 14822.34, + "probability": 0.7492 + }, + { + "start": 14823.14, + "end": 14824.96, + "probability": 0.7259 + }, + { + "start": 14825.08, + "end": 14827.6, + "probability": 0.7542 + }, + { + "start": 14828.08, + "end": 14829.54, + "probability": 0.4131 + }, + { + "start": 14830.72, + "end": 14831.8, + "probability": 0.6181 + }, + { + "start": 14832.04, + "end": 14832.04, + "probability": 0.0665 + }, + { + "start": 14832.04, + "end": 14838.32, + "probability": 0.9459 + }, + { + "start": 14838.42, + "end": 14839.68, + "probability": 0.9889 + }, + { + "start": 14840.26, + "end": 14842.4, + "probability": 0.7437 + }, + { + "start": 14842.82, + "end": 14845.36, + "probability": 0.9673 + }, + { + "start": 14845.54, + "end": 14847.9, + "probability": 0.5091 + }, + { + "start": 14848.08, + "end": 14848.97, + "probability": 0.4203 + }, + { + "start": 14850.42, + "end": 14851.18, + "probability": 0.6382 + }, + { + "start": 14851.2, + "end": 14853.48, + "probability": 0.8434 + }, + { + "start": 14853.7, + "end": 14854.28, + "probability": 0.7514 + }, + { + "start": 14854.74, + "end": 14856.64, + "probability": 0.5457 + }, + { + "start": 14856.72, + "end": 14857.68, + "probability": 0.5511 + }, + { + "start": 14857.94, + "end": 14861.52, + "probability": 0.7765 + }, + { + "start": 14861.68, + "end": 14864.04, + "probability": 0.761 + }, + { + "start": 14864.1, + "end": 14867.76, + "probability": 0.9572 + }, + { + "start": 14867.76, + "end": 14870.38, + "probability": 0.8997 + }, + { + "start": 14870.9, + "end": 14875.2, + "probability": 0.9932 + }, + { + "start": 14875.2, + "end": 14877.82, + "probability": 0.4996 + }, + { + "start": 14879.04, + "end": 14881.94, + "probability": 0.7953 + }, + { + "start": 14882.46, + "end": 14884.52, + "probability": 0.476 + }, + { + "start": 14885.14, + "end": 14886.7, + "probability": 0.7485 + }, + { + "start": 14886.7, + "end": 14888.81, + "probability": 0.468 + }, + { + "start": 14889.9, + "end": 14893.92, + "probability": 0.992 + }, + { + "start": 14894.26, + "end": 14896.62, + "probability": 0.7087 + }, + { + "start": 14897.32, + "end": 14899.38, + "probability": 0.8385 + }, + { + "start": 14899.86, + "end": 14900.88, + "probability": 0.8875 + }, + { + "start": 14901.04, + "end": 14901.9, + "probability": 0.7665 + }, + { + "start": 14902.04, + "end": 14902.8, + "probability": 0.5192 + }, + { + "start": 14902.96, + "end": 14904.34, + "probability": 0.9815 + }, + { + "start": 14904.54, + "end": 14906.3, + "probability": 0.03 + }, + { + "start": 14908.16, + "end": 14909.77, + "probability": 0.0956 + }, + { + "start": 14911.68, + "end": 14912.74, + "probability": 0.0349 + }, + { + "start": 14912.74, + "end": 14918.16, + "probability": 0.3679 + }, + { + "start": 14918.16, + "end": 14925.01, + "probability": 0.7927 + }, + { + "start": 14944.64, + "end": 14945.18, + "probability": 0.0399 + }, + { + "start": 14950.42, + "end": 14954.74, + "probability": 0.4843 + }, + { + "start": 14954.92, + "end": 14959.08, + "probability": 0.758 + }, + { + "start": 14963.03, + "end": 14965.54, + "probability": 0.9707 + }, + { + "start": 14966.32, + "end": 14969.26, + "probability": 0.0076 + }, + { + "start": 14971.22, + "end": 14973.4, + "probability": 0.0401 + }, + { + "start": 14973.98, + "end": 14974.96, + "probability": 0.0457 + }, + { + "start": 14974.96, + "end": 14978.16, + "probability": 0.0362 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.0, + "end": 15017.0, + "probability": 0.0 + }, + { + "start": 15017.34, + "end": 15020.16, + "probability": 0.0444 + }, + { + "start": 15020.16, + "end": 15020.16, + "probability": 0.2978 + }, + { + "start": 15020.16, + "end": 15020.16, + "probability": 0.2629 + }, + { + "start": 15020.16, + "end": 15020.16, + "probability": 0.0109 + }, + { + "start": 15020.16, + "end": 15021.18, + "probability": 0.3025 + }, + { + "start": 15021.38, + "end": 15024.06, + "probability": 0.6371 + }, + { + "start": 15024.86, + "end": 15028.04, + "probability": 0.7588 + }, + { + "start": 15028.26, + "end": 15033.28, + "probability": 0.9576 + }, + { + "start": 15033.96, + "end": 15038.26, + "probability": 0.9653 + }, + { + "start": 15038.38, + "end": 15039.2, + "probability": 0.8858 + }, + { + "start": 15039.34, + "end": 15041.86, + "probability": 0.9751 + }, + { + "start": 15041.94, + "end": 15042.34, + "probability": 0.9625 + }, + { + "start": 15042.38, + "end": 15042.78, + "probability": 0.9066 + }, + { + "start": 15042.8, + "end": 15043.44, + "probability": 0.7931 + }, + { + "start": 15043.46, + "end": 15044.1, + "probability": 0.9819 + }, + { + "start": 15044.16, + "end": 15045.46, + "probability": 0.9902 + }, + { + "start": 15045.52, + "end": 15046.58, + "probability": 0.7861 + }, + { + "start": 15047.2, + "end": 15050.28, + "probability": 0.9797 + }, + { + "start": 15050.36, + "end": 15052.24, + "probability": 0.9211 + }, + { + "start": 15053.14, + "end": 15054.22, + "probability": 0.7384 + }, + { + "start": 15054.4, + "end": 15055.41, + "probability": 0.9808 + }, + { + "start": 15055.96, + "end": 15057.92, + "probability": 0.9837 + }, + { + "start": 15058.22, + "end": 15060.6, + "probability": 0.9922 + }, + { + "start": 15061.18, + "end": 15065.52, + "probability": 0.9946 + }, + { + "start": 15065.52, + "end": 15070.3, + "probability": 0.9968 + }, + { + "start": 15071.3, + "end": 15072.08, + "probability": 0.4828 + }, + { + "start": 15072.14, + "end": 15072.5, + "probability": 0.9327 + }, + { + "start": 15072.64, + "end": 15075.9, + "probability": 0.9873 + }, + { + "start": 15075.9, + "end": 15079.7, + "probability": 0.9724 + }, + { + "start": 15080.0, + "end": 15083.34, + "probability": 0.8097 + }, + { + "start": 15084.28, + "end": 15088.74, + "probability": 0.8484 + }, + { + "start": 15089.42, + "end": 15093.54, + "probability": 0.9641 + }, + { + "start": 15093.64, + "end": 15098.26, + "probability": 0.9493 + }, + { + "start": 15098.34, + "end": 15099.04, + "probability": 0.8245 + }, + { + "start": 15099.14, + "end": 15100.0, + "probability": 0.834 + }, + { + "start": 15100.1, + "end": 15101.26, + "probability": 0.5225 + }, + { + "start": 15101.96, + "end": 15106.48, + "probability": 0.9923 + }, + { + "start": 15106.48, + "end": 15110.0, + "probability": 0.997 + }, + { + "start": 15110.46, + "end": 15117.16, + "probability": 0.992 + }, + { + "start": 15117.36, + "end": 15118.68, + "probability": 0.8835 + }, + { + "start": 15119.28, + "end": 15123.22, + "probability": 0.9775 + }, + { + "start": 15123.92, + "end": 15127.28, + "probability": 0.7703 + }, + { + "start": 15127.8, + "end": 15130.6, + "probability": 0.9036 + }, + { + "start": 15130.68, + "end": 15132.25, + "probability": 0.9814 + }, + { + "start": 15132.8, + "end": 15133.84, + "probability": 0.9436 + }, + { + "start": 15134.2, + "end": 15137.15, + "probability": 0.9976 + }, + { + "start": 15137.32, + "end": 15137.94, + "probability": 0.8084 + }, + { + "start": 15138.04, + "end": 15147.26, + "probability": 0.971 + }, + { + "start": 15148.42, + "end": 15148.78, + "probability": 0.4996 + }, + { + "start": 15148.9, + "end": 15157.34, + "probability": 0.9717 + }, + { + "start": 15158.0, + "end": 15158.92, + "probability": 0.8677 + }, + { + "start": 15159.14, + "end": 15163.56, + "probability": 0.8036 + }, + { + "start": 15163.56, + "end": 15171.18, + "probability": 0.9071 + }, + { + "start": 15171.36, + "end": 15175.14, + "probability": 0.8129 + }, + { + "start": 15175.64, + "end": 15180.48, + "probability": 0.9 + }, + { + "start": 15181.63, + "end": 15186.82, + "probability": 0.7779 + }, + { + "start": 15187.08, + "end": 15189.28, + "probability": 0.9767 + }, + { + "start": 15189.3, + "end": 15189.8, + "probability": 0.8277 + }, + { + "start": 15190.22, + "end": 15192.74, + "probability": 0.881 + }, + { + "start": 15193.84, + "end": 15197.76, + "probability": 0.6176 + }, + { + "start": 15198.38, + "end": 15203.16, + "probability": 0.8625 + }, + { + "start": 15203.16, + "end": 15204.64, + "probability": 0.9695 + }, + { + "start": 15204.82, + "end": 15205.86, + "probability": 0.9219 + }, + { + "start": 15206.26, + "end": 15212.44, + "probability": 0.9861 + }, + { + "start": 15212.94, + "end": 15220.74, + "probability": 0.9928 + }, + { + "start": 15221.5, + "end": 15222.6, + "probability": 0.8173 + }, + { + "start": 15222.76, + "end": 15223.82, + "probability": 0.9385 + }, + { + "start": 15224.04, + "end": 15227.08, + "probability": 0.9663 + }, + { + "start": 15227.46, + "end": 15229.28, + "probability": 0.9764 + }, + { + "start": 15230.38, + "end": 15234.2, + "probability": 0.9764 + }, + { + "start": 15234.2, + "end": 15238.45, + "probability": 0.9705 + }, + { + "start": 15240.66, + "end": 15244.88, + "probability": 0.9917 + }, + { + "start": 15244.88, + "end": 15248.62, + "probability": 0.9982 + }, + { + "start": 15249.66, + "end": 15250.92, + "probability": 0.7964 + }, + { + "start": 15251.76, + "end": 15252.16, + "probability": 0.5931 + }, + { + "start": 15252.7, + "end": 15254.14, + "probability": 0.8466 + }, + { + "start": 15254.24, + "end": 15256.92, + "probability": 0.8773 + }, + { + "start": 15257.5, + "end": 15257.76, + "probability": 0.4939 + }, + { + "start": 15257.84, + "end": 15260.14, + "probability": 0.8992 + }, + { + "start": 15260.24, + "end": 15261.12, + "probability": 0.9279 + }, + { + "start": 15261.18, + "end": 15264.72, + "probability": 0.9907 + }, + { + "start": 15265.34, + "end": 15269.0, + "probability": 0.9921 + }, + { + "start": 15269.0, + "end": 15274.92, + "probability": 0.7899 + }, + { + "start": 15275.46, + "end": 15279.26, + "probability": 0.9874 + }, + { + "start": 15279.64, + "end": 15280.68, + "probability": 0.814 + }, + { + "start": 15281.18, + "end": 15283.8, + "probability": 0.9847 + }, + { + "start": 15283.8, + "end": 15287.2, + "probability": 0.9909 + }, + { + "start": 15287.28, + "end": 15289.22, + "probability": 0.9267 + }, + { + "start": 15289.28, + "end": 15294.12, + "probability": 0.9622 + }, + { + "start": 15294.12, + "end": 15298.98, + "probability": 0.9924 + }, + { + "start": 15299.6, + "end": 15303.68, + "probability": 0.9202 + }, + { + "start": 15303.68, + "end": 15307.74, + "probability": 0.9882 + }, + { + "start": 15308.42, + "end": 15309.38, + "probability": 0.7286 + }, + { + "start": 15310.02, + "end": 15312.72, + "probability": 0.7826 + }, + { + "start": 15313.4, + "end": 15317.4, + "probability": 0.9855 + }, + { + "start": 15317.68, + "end": 15320.5, + "probability": 0.8194 + }, + { + "start": 15320.5, + "end": 15325.44, + "probability": 0.8432 + }, + { + "start": 15325.76, + "end": 15328.7, + "probability": 0.8566 + }, + { + "start": 15328.78, + "end": 15329.12, + "probability": 0.8075 + }, + { + "start": 15329.2, + "end": 15333.48, + "probability": 0.9492 + }, + { + "start": 15333.48, + "end": 15340.28, + "probability": 0.9592 + }, + { + "start": 15340.34, + "end": 15342.06, + "probability": 0.9274 + }, + { + "start": 15342.58, + "end": 15342.88, + "probability": 0.4378 + }, + { + "start": 15342.94, + "end": 15343.74, + "probability": 0.7319 + }, + { + "start": 15343.8, + "end": 15346.96, + "probability": 0.8862 + }, + { + "start": 15347.18, + "end": 15348.48, + "probability": 0.8733 + }, + { + "start": 15348.84, + "end": 15353.24, + "probability": 0.9805 + }, + { + "start": 15353.38, + "end": 15359.72, + "probability": 0.9819 + }, + { + "start": 15360.08, + "end": 15360.58, + "probability": 0.693 + }, + { + "start": 15360.7, + "end": 15361.48, + "probability": 0.828 + }, + { + "start": 15361.6, + "end": 15365.16, + "probability": 0.9726 + }, + { + "start": 15365.22, + "end": 15366.02, + "probability": 0.7762 + }, + { + "start": 15366.16, + "end": 15368.34, + "probability": 0.9738 + }, + { + "start": 15369.64, + "end": 15375.39, + "probability": 0.93 + }, + { + "start": 15376.42, + "end": 15376.74, + "probability": 0.4019 + }, + { + "start": 15377.4, + "end": 15379.54, + "probability": 0.7931 + }, + { + "start": 15380.2, + "end": 15381.78, + "probability": 0.748 + }, + { + "start": 15382.44, + "end": 15388.27, + "probability": 0.9302 + }, + { + "start": 15389.4, + "end": 15389.7, + "probability": 0.7476 + }, + { + "start": 15392.48, + "end": 15396.28, + "probability": 0.9743 + }, + { + "start": 15396.28, + "end": 15401.14, + "probability": 0.9055 + }, + { + "start": 15401.76, + "end": 15404.66, + "probability": 0.8943 + }, + { + "start": 15404.66, + "end": 15408.98, + "probability": 0.9685 + }, + { + "start": 15409.5, + "end": 15411.66, + "probability": 0.7036 + }, + { + "start": 15411.82, + "end": 15417.24, + "probability": 0.9429 + }, + { + "start": 15417.78, + "end": 15420.67, + "probability": 0.9076 + }, + { + "start": 15421.2, + "end": 15424.98, + "probability": 0.9496 + }, + { + "start": 15425.58, + "end": 15429.06, + "probability": 0.8393 + }, + { + "start": 15434.72, + "end": 15437.84, + "probability": 0.5918 + }, + { + "start": 15438.56, + "end": 15444.14, + "probability": 0.7762 + }, + { + "start": 15444.66, + "end": 15446.74, + "probability": 0.9574 + }, + { + "start": 15447.72, + "end": 15453.66, + "probability": 0.9937 + }, + { + "start": 15454.18, + "end": 15455.94, + "probability": 0.5674 + }, + { + "start": 15456.7, + "end": 15457.7, + "probability": 0.3516 + }, + { + "start": 15457.9, + "end": 15462.16, + "probability": 0.8538 + }, + { + "start": 15462.6, + "end": 15464.66, + "probability": 0.6705 + }, + { + "start": 15465.14, + "end": 15466.02, + "probability": 0.7989 + }, + { + "start": 15466.18, + "end": 15470.84, + "probability": 0.9784 + }, + { + "start": 15471.34, + "end": 15473.92, + "probability": 0.9233 + }, + { + "start": 15473.92, + "end": 15478.58, + "probability": 0.9756 + }, + { + "start": 15480.1, + "end": 15480.46, + "probability": 0.4034 + }, + { + "start": 15480.48, + "end": 15480.84, + "probability": 0.7708 + }, + { + "start": 15481.02, + "end": 15482.16, + "probability": 0.9728 + }, + { + "start": 15482.72, + "end": 15484.56, + "probability": 0.9515 + }, + { + "start": 15484.94, + "end": 15487.2, + "probability": 0.9594 + }, + { + "start": 15487.22, + "end": 15492.56, + "probability": 0.5922 + }, + { + "start": 15493.66, + "end": 15497.9, + "probability": 0.895 + }, + { + "start": 15497.9, + "end": 15501.06, + "probability": 0.8153 + }, + { + "start": 15501.42, + "end": 15502.99, + "probability": 0.8678 + }, + { + "start": 15503.34, + "end": 15506.14, + "probability": 0.9961 + }, + { + "start": 15506.14, + "end": 15510.14, + "probability": 0.9811 + }, + { + "start": 15510.46, + "end": 15511.02, + "probability": 0.5607 + }, + { + "start": 15511.06, + "end": 15511.86, + "probability": 0.8007 + }, + { + "start": 15512.04, + "end": 15514.04, + "probability": 0.767 + }, + { + "start": 15514.22, + "end": 15514.7, + "probability": 0.7925 + }, + { + "start": 15515.1, + "end": 15518.92, + "probability": 0.9886 + }, + { + "start": 15519.72, + "end": 15525.83, + "probability": 0.8371 + }, + { + "start": 15526.22, + "end": 15527.5, + "probability": 0.6306 + }, + { + "start": 15527.96, + "end": 15529.86, + "probability": 0.9585 + }, + { + "start": 15529.96, + "end": 15533.3, + "probability": 0.9938 + }, + { + "start": 15533.88, + "end": 15534.28, + "probability": 0.3553 + }, + { + "start": 15534.48, + "end": 15538.92, + "probability": 0.9684 + }, + { + "start": 15538.92, + "end": 15542.44, + "probability": 0.9987 + }, + { + "start": 15543.18, + "end": 15545.99, + "probability": 0.9855 + }, + { + "start": 15546.14, + "end": 15549.7, + "probability": 0.4156 + }, + { + "start": 15549.9, + "end": 15551.33, + "probability": 0.8088 + }, + { + "start": 15551.64, + "end": 15555.64, + "probability": 0.9219 + }, + { + "start": 15556.22, + "end": 15556.84, + "probability": 0.7113 + }, + { + "start": 15556.94, + "end": 15558.16, + "probability": 0.9523 + }, + { + "start": 15558.44, + "end": 15566.4, + "probability": 0.9906 + }, + { + "start": 15566.54, + "end": 15572.48, + "probability": 0.8742 + }, + { + "start": 15572.82, + "end": 15575.56, + "probability": 0.8371 + }, + { + "start": 15575.68, + "end": 15577.28, + "probability": 0.9327 + }, + { + "start": 15577.46, + "end": 15579.04, + "probability": 0.9929 + }, + { + "start": 15579.22, + "end": 15579.94, + "probability": 0.844 + }, + { + "start": 15581.02, + "end": 15583.6, + "probability": 0.9288 + }, + { + "start": 15584.26, + "end": 15586.46, + "probability": 0.7641 + }, + { + "start": 15586.56, + "end": 15589.04, + "probability": 0.9325 + }, + { + "start": 15589.7, + "end": 15592.76, + "probability": 0.6567 + }, + { + "start": 15593.5, + "end": 15598.3, + "probability": 0.8813 + }, + { + "start": 15601.4, + "end": 15601.4, + "probability": 0.1982 + }, + { + "start": 15623.44, + "end": 15625.44, + "probability": 0.0004 + }, + { + "start": 15629.32, + "end": 15630.82, + "probability": 0.0345 + }, + { + "start": 15632.68, + "end": 15635.1, + "probability": 0.5739 + }, + { + "start": 15636.02, + "end": 15643.62, + "probability": 0.3817 + }, + { + "start": 15643.62, + "end": 15645.86, + "probability": 0.0724 + }, + { + "start": 15646.9, + "end": 15648.02, + "probability": 0.497 + }, + { + "start": 15650.28, + "end": 15653.26, + "probability": 0.4989 + }, + { + "start": 15654.42, + "end": 15655.12, + "probability": 0.0003 + }, + { + "start": 15655.8, + "end": 15662.26, + "probability": 0.0561 + }, + { + "start": 15666.68, + "end": 15669.3, + "probability": 0.0793 + }, + { + "start": 15669.3, + "end": 15669.3, + "probability": 0.0455 + }, + { + "start": 15669.38, + "end": 15669.78, + "probability": 0.035 + }, + { + "start": 15670.04, + "end": 15670.04, + "probability": 0.2487 + }, + { + "start": 15670.52, + "end": 15670.52, + "probability": 0.1052 + }, + { + "start": 15675.12, + "end": 15675.7, + "probability": 0.0639 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.0, + "end": 15703.0, + "probability": 0.0 + }, + { + "start": 15703.08, + "end": 15703.12, + "probability": 0.0685 + }, + { + "start": 15703.12, + "end": 15705.4, + "probability": 0.6994 + }, + { + "start": 15705.4, + "end": 15708.76, + "probability": 0.9934 + }, + { + "start": 15709.66, + "end": 15711.74, + "probability": 0.9094 + }, + { + "start": 15712.32, + "end": 15716.34, + "probability": 0.9667 + }, + { + "start": 15717.7, + "end": 15720.86, + "probability": 0.8301 + }, + { + "start": 15720.86, + "end": 15724.48, + "probability": 0.8214 + }, + { + "start": 15725.22, + "end": 15729.22, + "probability": 0.988 + }, + { + "start": 15729.86, + "end": 15731.76, + "probability": 0.8832 + }, + { + "start": 15732.44, + "end": 15734.7, + "probability": 0.8633 + }, + { + "start": 15734.8, + "end": 15735.76, + "probability": 0.9149 + }, + { + "start": 15736.28, + "end": 15739.4, + "probability": 0.7129 + }, + { + "start": 15740.08, + "end": 15741.24, + "probability": 0.9387 + }, + { + "start": 15742.0, + "end": 15745.16, + "probability": 0.9491 + }, + { + "start": 15746.3, + "end": 15750.7, + "probability": 0.9748 + }, + { + "start": 15751.22, + "end": 15754.26, + "probability": 0.9318 + }, + { + "start": 15754.26, + "end": 15757.6, + "probability": 0.9863 + }, + { + "start": 15758.88, + "end": 15760.46, + "probability": 0.9486 + }, + { + "start": 15762.42, + "end": 15766.38, + "probability": 0.6379 + }, + { + "start": 15766.54, + "end": 15772.66, + "probability": 0.6585 + }, + { + "start": 15772.66, + "end": 15775.5, + "probability": 0.992 + }, + { + "start": 15776.48, + "end": 15778.62, + "probability": 0.9969 + }, + { + "start": 15779.1, + "end": 15781.22, + "probability": 0.9967 + }, + { + "start": 15781.22, + "end": 15783.96, + "probability": 0.9192 + }, + { + "start": 15785.52, + "end": 15789.62, + "probability": 0.8818 + }, + { + "start": 15790.32, + "end": 15791.28, + "probability": 0.891 + }, + { + "start": 15792.04, + "end": 15795.3, + "probability": 0.7493 + }, + { + "start": 15796.04, + "end": 15799.72, + "probability": 0.7267 + }, + { + "start": 15800.34, + "end": 15802.74, + "probability": 0.8835 + }, + { + "start": 15803.56, + "end": 15804.74, + "probability": 0.8038 + }, + { + "start": 15812.86, + "end": 15815.8, + "probability": 0.9157 + }, + { + "start": 15816.52, + "end": 15819.08, + "probability": 0.9709 + }, + { + "start": 15819.82, + "end": 15822.22, + "probability": 0.9387 + }, + { + "start": 15825.0, + "end": 15825.9, + "probability": 0.4225 + }, + { + "start": 15826.14, + "end": 15827.06, + "probability": 0.604 + }, + { + "start": 15827.18, + "end": 15830.26, + "probability": 0.6835 + }, + { + "start": 15831.14, + "end": 15835.14, + "probability": 0.9741 + }, + { + "start": 15835.6, + "end": 15836.76, + "probability": 0.9181 + }, + { + "start": 15838.72, + "end": 15841.2, + "probability": 0.9738 + }, + { + "start": 15841.47, + "end": 15845.47, + "probability": 0.6223 + }, + { + "start": 15845.88, + "end": 15850.88, + "probability": 0.68 + }, + { + "start": 15851.04, + "end": 15852.02, + "probability": 0.8629 + }, + { + "start": 15852.14, + "end": 15852.6, + "probability": 0.9069 + }, + { + "start": 15852.6, + "end": 15853.84, + "probability": 0.8447 + }, + { + "start": 15855.04, + "end": 15858.38, + "probability": 0.8568 + }, + { + "start": 15858.48, + "end": 15861.7, + "probability": 0.8579 + }, + { + "start": 15861.94, + "end": 15864.26, + "probability": 0.8401 + }, + { + "start": 15865.34, + "end": 15866.88, + "probability": 0.7163 + }, + { + "start": 15867.08, + "end": 15868.12, + "probability": 0.784 + }, + { + "start": 15868.68, + "end": 15871.22, + "probability": 0.7943 + }, + { + "start": 15871.32, + "end": 15881.08, + "probability": 0.9841 + }, + { + "start": 15881.26, + "end": 15881.84, + "probability": 0.9192 + }, + { + "start": 15882.6, + "end": 15884.58, + "probability": 0.9958 + }, + { + "start": 15884.96, + "end": 15887.56, + "probability": 0.9199 + }, + { + "start": 15888.1, + "end": 15888.4, + "probability": 0.8731 + }, + { + "start": 15888.5, + "end": 15890.4, + "probability": 0.9755 + }, + { + "start": 15890.82, + "end": 15891.36, + "probability": 0.9746 + }, + { + "start": 15891.4, + "end": 15892.08, + "probability": 0.7936 + }, + { + "start": 15892.24, + "end": 15895.34, + "probability": 0.9292 + }, + { + "start": 15896.04, + "end": 15896.74, + "probability": 0.6798 + }, + { + "start": 15897.08, + "end": 15897.56, + "probability": 0.8878 + }, + { + "start": 15897.6, + "end": 15898.82, + "probability": 0.7362 + }, + { + "start": 15899.0, + "end": 15901.56, + "probability": 0.946 + }, + { + "start": 15901.98, + "end": 15902.4, + "probability": 0.9388 + }, + { + "start": 15902.46, + "end": 15904.18, + "probability": 0.8516 + }, + { + "start": 15904.34, + "end": 15904.9, + "probability": 0.5373 + }, + { + "start": 15905.24, + "end": 15906.83, + "probability": 0.9706 + }, + { + "start": 15907.42, + "end": 15908.98, + "probability": 0.8574 + }, + { + "start": 15910.28, + "end": 15912.78, + "probability": 0.9186 + }, + { + "start": 15913.2, + "end": 15917.4, + "probability": 0.9881 + }, + { + "start": 15917.74, + "end": 15919.06, + "probability": 0.9928 + }, + { + "start": 15919.28, + "end": 15923.82, + "probability": 0.9004 + }, + { + "start": 15924.02, + "end": 15927.32, + "probability": 0.9832 + }, + { + "start": 15927.32, + "end": 15929.94, + "probability": 0.9399 + }, + { + "start": 15930.02, + "end": 15930.32, + "probability": 0.1441 + }, + { + "start": 15930.32, + "end": 15930.85, + "probability": 0.7933 + }, + { + "start": 15930.92, + "end": 15932.5, + "probability": 0.9966 + }, + { + "start": 15932.6, + "end": 15933.34, + "probability": 0.7888 + }, + { + "start": 15933.4, + "end": 15934.34, + "probability": 0.7413 + }, + { + "start": 15934.66, + "end": 15938.16, + "probability": 0.7871 + }, + { + "start": 15938.32, + "end": 15941.76, + "probability": 0.8012 + }, + { + "start": 15941.9, + "end": 15942.8, + "probability": 0.2664 + }, + { + "start": 15942.94, + "end": 15945.98, + "probability": 0.6579 + }, + { + "start": 15946.1, + "end": 15947.02, + "probability": 0.675 + }, + { + "start": 15947.32, + "end": 15949.02, + "probability": 0.9159 + }, + { + "start": 15949.06, + "end": 15949.54, + "probability": 0.7578 + }, + { + "start": 15950.36, + "end": 15956.16, + "probability": 0.9109 + }, + { + "start": 15956.44, + "end": 15958.56, + "probability": 0.869 + }, + { + "start": 15959.22, + "end": 15964.12, + "probability": 0.9663 + }, + { + "start": 15964.96, + "end": 15969.74, + "probability": 0.9907 + }, + { + "start": 15970.04, + "end": 15972.16, + "probability": 0.9922 + }, + { + "start": 15972.98, + "end": 15974.35, + "probability": 0.9967 + }, + { + "start": 15974.9, + "end": 15977.48, + "probability": 0.7473 + }, + { + "start": 15978.0, + "end": 15978.18, + "probability": 0.5491 + }, + { + "start": 15978.3, + "end": 15983.14, + "probability": 0.8515 + }, + { + "start": 15983.4, + "end": 15985.06, + "probability": 0.7996 + }, + { + "start": 15985.4, + "end": 15989.06, + "probability": 0.9687 + }, + { + "start": 15989.32, + "end": 15990.02, + "probability": 0.9077 + }, + { + "start": 15990.3, + "end": 15992.98, + "probability": 0.7731 + }, + { + "start": 15993.5, + "end": 15998.58, + "probability": 0.7874 + }, + { + "start": 15998.96, + "end": 16000.64, + "probability": 0.7861 + }, + { + "start": 16001.08, + "end": 16004.14, + "probability": 0.9622 + }, + { + "start": 16004.4, + "end": 16005.48, + "probability": 0.9817 + }, + { + "start": 16005.64, + "end": 16010.8, + "probability": 0.9766 + }, + { + "start": 16011.16, + "end": 16015.48, + "probability": 0.967 + }, + { + "start": 16015.56, + "end": 16016.64, + "probability": 0.974 + }, + { + "start": 16016.76, + "end": 16017.86, + "probability": 0.8395 + }, + { + "start": 16018.04, + "end": 16019.3, + "probability": 0.9188 + }, + { + "start": 16019.68, + "end": 16020.4, + "probability": 0.4791 + }, + { + "start": 16020.52, + "end": 16027.16, + "probability": 0.9702 + }, + { + "start": 16028.74, + "end": 16029.36, + "probability": 0.1138 + }, + { + "start": 16029.64, + "end": 16030.3, + "probability": 0.5838 + }, + { + "start": 16030.38, + "end": 16031.44, + "probability": 0.6807 + }, + { + "start": 16031.64, + "end": 16033.24, + "probability": 0.6192 + }, + { + "start": 16033.52, + "end": 16038.3, + "probability": 0.9882 + }, + { + "start": 16039.2, + "end": 16039.82, + "probability": 0.9207 + }, + { + "start": 16039.92, + "end": 16040.76, + "probability": 0.8874 + }, + { + "start": 16040.9, + "end": 16045.66, + "probability": 0.9724 + }, + { + "start": 16046.12, + "end": 16046.3, + "probability": 0.4525 + }, + { + "start": 16057.38, + "end": 16057.73, + "probability": 0.1205 + }, + { + "start": 16058.02, + "end": 16059.64, + "probability": 0.0933 + }, + { + "start": 16059.64, + "end": 16059.64, + "probability": 0.0511 + }, + { + "start": 16059.64, + "end": 16059.64, + "probability": 0.2101 + }, + { + "start": 16059.64, + "end": 16059.64, + "probability": 0.0357 + }, + { + "start": 16059.64, + "end": 16059.64, + "probability": 0.2815 + }, + { + "start": 16059.64, + "end": 16063.94, + "probability": 0.213 + }, + { + "start": 16064.34, + "end": 16064.8, + "probability": 0.6028 + }, + { + "start": 16065.18, + "end": 16065.6, + "probability": 0.9403 + }, + { + "start": 16065.92, + "end": 16066.44, + "probability": 0.856 + }, + { + "start": 16067.38, + "end": 16067.92, + "probability": 0.7579 + }, + { + "start": 16068.08, + "end": 16069.74, + "probability": 0.9379 + }, + { + "start": 16069.98, + "end": 16072.4, + "probability": 0.9229 + }, + { + "start": 16072.74, + "end": 16073.46, + "probability": 0.9445 + }, + { + "start": 16073.5, + "end": 16074.12, + "probability": 0.8711 + }, + { + "start": 16074.18, + "end": 16077.2, + "probability": 0.9741 + }, + { + "start": 16077.4, + "end": 16084.02, + "probability": 0.7654 + }, + { + "start": 16084.34, + "end": 16087.6, + "probability": 0.8457 + }, + { + "start": 16087.94, + "end": 16090.74, + "probability": 0.7822 + }, + { + "start": 16090.9, + "end": 16093.84, + "probability": 0.9932 + }, + { + "start": 16094.12, + "end": 16100.25, + "probability": 0.9886 + }, + { + "start": 16101.3, + "end": 16103.6, + "probability": 0.9749 + }, + { + "start": 16104.78, + "end": 16106.54, + "probability": 0.6496 + }, + { + "start": 16107.12, + "end": 16109.18, + "probability": 0.9971 + }, + { + "start": 16109.66, + "end": 16111.26, + "probability": 0.956 + }, + { + "start": 16111.42, + "end": 16112.16, + "probability": 0.8039 + }, + { + "start": 16112.7, + "end": 16114.84, + "probability": 0.9724 + }, + { + "start": 16114.88, + "end": 16115.66, + "probability": 0.9851 + }, + { + "start": 16115.82, + "end": 16116.4, + "probability": 0.8409 + }, + { + "start": 16121.74, + "end": 16122.16, + "probability": 0.4766 + }, + { + "start": 16123.88, + "end": 16124.74, + "probability": 0.4901 + }, + { + "start": 16126.8, + "end": 16127.6, + "probability": 0.6122 + }, + { + "start": 16127.68, + "end": 16128.76, + "probability": 0.812 + }, + { + "start": 16128.88, + "end": 16131.06, + "probability": 0.737 + }, + { + "start": 16131.2, + "end": 16132.25, + "probability": 0.6412 + }, + { + "start": 16132.74, + "end": 16133.9, + "probability": 0.8587 + }, + { + "start": 16134.8, + "end": 16135.82, + "probability": 0.5259 + }, + { + "start": 16136.16, + "end": 16140.89, + "probability": 0.8674 + }, + { + "start": 16141.24, + "end": 16144.34, + "probability": 0.978 + }, + { + "start": 16145.04, + "end": 16149.22, + "probability": 0.7383 + }, + { + "start": 16150.18, + "end": 16150.3, + "probability": 0.4426 + }, + { + "start": 16150.54, + "end": 16153.6, + "probability": 0.909 + }, + { + "start": 16153.74, + "end": 16154.34, + "probability": 0.9289 + }, + { + "start": 16154.56, + "end": 16155.05, + "probability": 0.726 + }, + { + "start": 16156.38, + "end": 16157.46, + "probability": 0.5108 + }, + { + "start": 16157.66, + "end": 16158.64, + "probability": 0.7061 + }, + { + "start": 16158.72, + "end": 16160.68, + "probability": 0.7942 + }, + { + "start": 16161.54, + "end": 16165.6, + "probability": 0.9264 + }, + { + "start": 16166.44, + "end": 16169.75, + "probability": 0.9894 + }, + { + "start": 16170.64, + "end": 16171.86, + "probability": 0.9691 + }, + { + "start": 16172.64, + "end": 16174.74, + "probability": 0.9966 + }, + { + "start": 16175.62, + "end": 16177.84, + "probability": 0.9318 + }, + { + "start": 16177.98, + "end": 16178.58, + "probability": 0.7997 + }, + { + "start": 16178.84, + "end": 16180.42, + "probability": 0.9795 + }, + { + "start": 16180.84, + "end": 16181.51, + "probability": 0.8608 + }, + { + "start": 16181.72, + "end": 16184.98, + "probability": 0.8204 + }, + { + "start": 16185.48, + "end": 16186.45, + "probability": 0.769 + }, + { + "start": 16187.26, + "end": 16191.74, + "probability": 0.9784 + }, + { + "start": 16192.38, + "end": 16195.8, + "probability": 0.9436 + }, + { + "start": 16197.86, + "end": 16203.54, + "probability": 0.9678 + }, + { + "start": 16203.54, + "end": 16207.98, + "probability": 0.9858 + }, + { + "start": 16208.22, + "end": 16209.3, + "probability": 0.9541 + }, + { + "start": 16210.56, + "end": 16216.34, + "probability": 0.8352 + }, + { + "start": 16217.02, + "end": 16217.86, + "probability": 0.7993 + }, + { + "start": 16218.2, + "end": 16220.9, + "probability": 0.9619 + }, + { + "start": 16221.06, + "end": 16223.0, + "probability": 0.9683 + }, + { + "start": 16223.34, + "end": 16224.06, + "probability": 0.7866 + }, + { + "start": 16224.46, + "end": 16227.56, + "probability": 0.9928 + }, + { + "start": 16227.64, + "end": 16228.18, + "probability": 0.9327 + }, + { + "start": 16228.84, + "end": 16230.62, + "probability": 0.6817 + }, + { + "start": 16231.26, + "end": 16232.34, + "probability": 0.8747 + }, + { + "start": 16232.54, + "end": 16235.12, + "probability": 0.6201 + }, + { + "start": 16235.12, + "end": 16239.66, + "probability": 0.9088 + }, + { + "start": 16239.76, + "end": 16243.94, + "probability": 0.1283 + }, + { + "start": 16261.87, + "end": 16263.64, + "probability": 0.1734 + }, + { + "start": 16264.26, + "end": 16264.72, + "probability": 0.0122 + }, + { + "start": 16264.72, + "end": 16264.72, + "probability": 0.0397 + }, + { + "start": 16264.9, + "end": 16267.56, + "probability": 0.0607 + }, + { + "start": 16268.82, + "end": 16272.36, + "probability": 0.7974 + }, + { + "start": 16272.74, + "end": 16272.98, + "probability": 0.6402 + }, + { + "start": 16273.08, + "end": 16277.06, + "probability": 0.9946 + }, + { + "start": 16277.14, + "end": 16277.32, + "probability": 0.0345 + }, + { + "start": 16277.32, + "end": 16282.84, + "probability": 0.8345 + }, + { + "start": 16282.84, + "end": 16285.84, + "probability": 0.9604 + }, + { + "start": 16286.54, + "end": 16289.02, + "probability": 0.6267 + }, + { + "start": 16290.48, + "end": 16293.46, + "probability": 0.624 + }, + { + "start": 16294.1, + "end": 16297.7, + "probability": 0.4822 + }, + { + "start": 16298.46, + "end": 16299.36, + "probability": 0.6081 + }, + { + "start": 16300.8, + "end": 16304.88, + "probability": 0.664 + }, + { + "start": 16304.98, + "end": 16306.32, + "probability": 0.4056 + }, + { + "start": 16307.0, + "end": 16307.6, + "probability": 0.7708 + }, + { + "start": 16311.42, + "end": 16312.68, + "probability": 0.5843 + }, + { + "start": 16312.78, + "end": 16314.38, + "probability": 0.9266 + }, + { + "start": 16314.5, + "end": 16316.19, + "probability": 0.7358 + }, + { + "start": 16316.5, + "end": 16319.68, + "probability": 0.974 + }, + { + "start": 16319.68, + "end": 16323.36, + "probability": 0.4812 + }, + { + "start": 16323.54, + "end": 16332.18, + "probability": 0.6403 + }, + { + "start": 16332.36, + "end": 16333.52, + "probability": 0.8966 + }, + { + "start": 16333.6, + "end": 16336.52, + "probability": 0.7302 + }, + { + "start": 16337.24, + "end": 16341.0, + "probability": 0.9274 + }, + { + "start": 16341.0, + "end": 16346.04, + "probability": 0.8848 + }, + { + "start": 16346.52, + "end": 16351.28, + "probability": 0.9907 + }, + { + "start": 16351.38, + "end": 16354.04, + "probability": 0.8943 + }, + { + "start": 16354.62, + "end": 16356.96, + "probability": 0.9766 + }, + { + "start": 16357.9, + "end": 16360.51, + "probability": 0.9941 + }, + { + "start": 16361.14, + "end": 16364.06, + "probability": 0.9784 + }, + { + "start": 16364.84, + "end": 16369.98, + "probability": 0.9622 + }, + { + "start": 16370.58, + "end": 16374.68, + "probability": 0.6582 + }, + { + "start": 16374.88, + "end": 16377.42, + "probability": 0.984 + }, + { + "start": 16378.54, + "end": 16382.3, + "probability": 0.9307 + }, + { + "start": 16384.04, + "end": 16384.74, + "probability": 0.6374 + }, + { + "start": 16384.78, + "end": 16390.6, + "probability": 0.844 + }, + { + "start": 16390.6, + "end": 16395.52, + "probability": 0.9587 + }, + { + "start": 16395.52, + "end": 16399.2, + "probability": 0.9881 + }, + { + "start": 16399.28, + "end": 16401.6, + "probability": 0.8834 + }, + { + "start": 16402.02, + "end": 16403.34, + "probability": 0.8735 + }, + { + "start": 16403.52, + "end": 16405.32, + "probability": 0.6583 + }, + { + "start": 16405.4, + "end": 16410.78, + "probability": 0.8156 + }, + { + "start": 16410.78, + "end": 16413.74, + "probability": 0.9463 + }, + { + "start": 16413.92, + "end": 16415.42, + "probability": 0.9026 + }, + { + "start": 16416.04, + "end": 16418.36, + "probability": 0.9629 + }, + { + "start": 16418.36, + "end": 16420.7, + "probability": 0.6728 + }, + { + "start": 16420.88, + "end": 16423.92, + "probability": 0.9081 + }, + { + "start": 16425.5, + "end": 16429.42, + "probability": 0.9902 + }, + { + "start": 16429.84, + "end": 16430.28, + "probability": 0.5793 + }, + { + "start": 16430.3, + "end": 16434.26, + "probability": 0.9907 + }, + { + "start": 16434.26, + "end": 16438.72, + "probability": 0.9 + }, + { + "start": 16439.5, + "end": 16439.82, + "probability": 0.6147 + }, + { + "start": 16439.94, + "end": 16444.27, + "probability": 0.9934 + }, + { + "start": 16444.64, + "end": 16448.96, + "probability": 0.9957 + }, + { + "start": 16449.56, + "end": 16454.02, + "probability": 0.9272 + }, + { + "start": 16454.12, + "end": 16458.44, + "probability": 0.9076 + }, + { + "start": 16458.84, + "end": 16459.12, + "probability": 0.4347 + }, + { + "start": 16459.26, + "end": 16463.52, + "probability": 0.9716 + }, + { + "start": 16463.66, + "end": 16463.96, + "probability": 0.7707 + }, + { + "start": 16465.92, + "end": 16468.34, + "probability": 0.8335 + }, + { + "start": 16469.08, + "end": 16470.96, + "probability": 0.793 + }, + { + "start": 16471.92, + "end": 16472.24, + "probability": 0.1366 + }, + { + "start": 16472.76, + "end": 16476.4, + "probability": 0.1181 + }, + { + "start": 16476.94, + "end": 16479.18, + "probability": 0.7111 + }, + { + "start": 16479.48, + "end": 16480.36, + "probability": 0.9295 + }, + { + "start": 16480.5, + "end": 16482.34, + "probability": 0.7409 + }, + { + "start": 16482.38, + "end": 16486.5, + "probability": 0.8977 + }, + { + "start": 16487.06, + "end": 16488.38, + "probability": 0.679 + }, + { + "start": 16488.92, + "end": 16489.9, + "probability": 0.4329 + }, + { + "start": 16490.0, + "end": 16492.24, + "probability": 0.8167 + }, + { + "start": 16492.42, + "end": 16494.2, + "probability": 0.7026 + }, + { + "start": 16494.42, + "end": 16495.24, + "probability": 0.7415 + }, + { + "start": 16495.3, + "end": 16501.36, + "probability": 0.7897 + }, + { + "start": 16501.5, + "end": 16505.32, + "probability": 0.8499 + }, + { + "start": 16511.74, + "end": 16513.3, + "probability": 0.8717 + }, + { + "start": 16515.88, + "end": 16516.36, + "probability": 0.2429 + }, + { + "start": 16519.92, + "end": 16521.82, + "probability": 0.1128 + }, + { + "start": 16523.06, + "end": 16528.58, + "probability": 0.4537 + }, + { + "start": 16529.1, + "end": 16533.8, + "probability": 0.2997 + }, + { + "start": 16535.1, + "end": 16535.1, + "probability": 0.0619 + }, + { + "start": 16535.1, + "end": 16538.62, + "probability": 0.4458 + }, + { + "start": 16538.9, + "end": 16539.26, + "probability": 0.7595 + }, + { + "start": 16539.42, + "end": 16546.72, + "probability": 0.5006 + }, + { + "start": 16546.78, + "end": 16547.78, + "probability": 0.0707 + }, + { + "start": 16548.02, + "end": 16549.42, + "probability": 0.8241 + }, + { + "start": 16549.9, + "end": 16554.84, + "probability": 0.8215 + }, + { + "start": 16555.5, + "end": 16556.58, + "probability": 0.6474 + }, + { + "start": 16556.94, + "end": 16563.12, + "probability": 0.6993 + }, + { + "start": 16563.24, + "end": 16564.78, + "probability": 0.9171 + }, + { + "start": 16570.7, + "end": 16571.26, + "probability": 0.6502 + }, + { + "start": 16579.08, + "end": 16579.4, + "probability": 0.1753 + }, + { + "start": 16580.44, + "end": 16586.76, + "probability": 0.9041 + }, + { + "start": 16586.88, + "end": 16587.4, + "probability": 0.5918 + }, + { + "start": 16587.48, + "end": 16588.72, + "probability": 0.9305 + }, + { + "start": 16588.8, + "end": 16590.85, + "probability": 0.9282 + }, + { + "start": 16595.6, + "end": 16596.82, + "probability": 0.3204 + }, + { + "start": 16597.24, + "end": 16599.34, + "probability": 0.5003 + }, + { + "start": 16600.86, + "end": 16602.8, + "probability": 0.7283 + }, + { + "start": 16603.9, + "end": 16606.34, + "probability": 0.2744 + }, + { + "start": 16606.88, + "end": 16612.34, + "probability": 0.884 + }, + { + "start": 16613.0, + "end": 16615.78, + "probability": 0.5526 + }, + { + "start": 16615.78, + "end": 16620.18, + "probability": 0.9871 + }, + { + "start": 16620.78, + "end": 16621.6, + "probability": 0.2805 + }, + { + "start": 16622.36, + "end": 16625.52, + "probability": 0.9638 + }, + { + "start": 16626.24, + "end": 16629.7, + "probability": 0.9858 + }, + { + "start": 16630.02, + "end": 16633.34, + "probability": 0.9406 + }, + { + "start": 16633.58, + "end": 16633.84, + "probability": 0.5783 + }, + { + "start": 16635.12, + "end": 16637.0, + "probability": 0.6273 + }, + { + "start": 16637.38, + "end": 16638.6, + "probability": 0.6007 + }, + { + "start": 16638.92, + "end": 16644.78, + "probability": 0.816 + }, + { + "start": 16645.18, + "end": 16646.6, + "probability": 0.7539 + }, + { + "start": 16647.56, + "end": 16648.4, + "probability": 0.9219 + }, + { + "start": 16648.5, + "end": 16650.1, + "probability": 0.7643 + }, + { + "start": 16650.16, + "end": 16651.18, + "probability": 0.9807 + }, + { + "start": 16651.44, + "end": 16656.58, + "probability": 0.7985 + }, + { + "start": 16656.7, + "end": 16657.34, + "probability": 0.7896 + }, + { + "start": 16657.44, + "end": 16658.22, + "probability": 0.9778 + }, + { + "start": 16658.28, + "end": 16659.18, + "probability": 0.4925 + }, + { + "start": 16659.48, + "end": 16660.2, + "probability": 0.9287 + }, + { + "start": 16660.48, + "end": 16667.36, + "probability": 0.7979 + }, + { + "start": 16667.46, + "end": 16668.28, + "probability": 0.749 + }, + { + "start": 16668.32, + "end": 16669.22, + "probability": 0.9272 + }, + { + "start": 16669.54, + "end": 16670.1, + "probability": 0.495 + }, + { + "start": 16670.58, + "end": 16671.42, + "probability": 0.9685 + }, + { + "start": 16671.86, + "end": 16675.54, + "probability": 0.9153 + }, + { + "start": 16675.72, + "end": 16676.56, + "probability": 0.6436 + }, + { + "start": 16677.36, + "end": 16678.68, + "probability": 0.7498 + }, + { + "start": 16679.54, + "end": 16681.84, + "probability": 0.8864 + }, + { + "start": 16682.0, + "end": 16683.78, + "probability": 0.7693 + }, + { + "start": 16684.22, + "end": 16686.16, + "probability": 0.1234 + }, + { + "start": 16686.96, + "end": 16691.02, + "probability": 0.6284 + }, + { + "start": 16691.2, + "end": 16694.14, + "probability": 0.7573 + }, + { + "start": 16694.66, + "end": 16694.8, + "probability": 0.7195 + }, + { + "start": 16694.94, + "end": 16699.02, + "probability": 0.7233 + }, + { + "start": 16699.42, + "end": 16701.92, + "probability": 0.9635 + }, + { + "start": 16702.5, + "end": 16702.76, + "probability": 0.4938 + }, + { + "start": 16702.88, + "end": 16706.84, + "probability": 0.9161 + }, + { + "start": 16706.98, + "end": 16710.38, + "probability": 0.8748 + }, + { + "start": 16710.64, + "end": 16714.84, + "probability": 0.7024 + }, + { + "start": 16714.96, + "end": 16717.56, + "probability": 0.6354 + }, + { + "start": 16718.34, + "end": 16719.4, + "probability": 0.772 + }, + { + "start": 16719.4, + "end": 16720.52, + "probability": 0.973 + }, + { + "start": 16720.58, + "end": 16722.52, + "probability": 0.7092 + }, + { + "start": 16723.66, + "end": 16725.12, + "probability": 0.1402 + }, + { + "start": 16725.12, + "end": 16726.46, + "probability": 0.1265 + }, + { + "start": 16726.66, + "end": 16727.34, + "probability": 0.4451 + }, + { + "start": 16727.88, + "end": 16735.42, + "probability": 0.7409 + }, + { + "start": 16735.42, + "end": 16736.5, + "probability": 0.2654 + }, + { + "start": 16736.5, + "end": 16738.02, + "probability": 0.9106 + }, + { + "start": 16741.18, + "end": 16745.16, + "probability": 0.6801 + }, + { + "start": 16746.04, + "end": 16748.28, + "probability": 0.9713 + }, + { + "start": 16749.36, + "end": 16749.66, + "probability": 0.8372 + }, + { + "start": 16749.8, + "end": 16751.08, + "probability": 0.3073 + }, + { + "start": 16751.3, + "end": 16754.6, + "probability": 0.8683 + }, + { + "start": 16754.66, + "end": 16756.88, + "probability": 0.9505 + }, + { + "start": 16757.72, + "end": 16761.18, + "probability": 0.9502 + }, + { + "start": 16761.96, + "end": 16766.06, + "probability": 0.7384 + }, + { + "start": 16767.2, + "end": 16767.82, + "probability": 0.8752 + }, + { + "start": 16770.18, + "end": 16773.36, + "probability": 0.6262 + }, + { + "start": 16773.52, + "end": 16773.74, + "probability": 0.5446 + }, + { + "start": 16773.74, + "end": 16776.7, + "probability": 0.7758 + }, + { + "start": 16776.84, + "end": 16779.86, + "probability": 0.9278 + }, + { + "start": 16779.86, + "end": 16787.1, + "probability": 0.969 + }, + { + "start": 16787.34, + "end": 16790.86, + "probability": 0.9968 + }, + { + "start": 16792.66, + "end": 16796.86, + "probability": 0.668 + }, + { + "start": 16797.76, + "end": 16802.26, + "probability": 0.8611 + }, + { + "start": 16802.7, + "end": 16803.12, + "probability": 0.5425 + }, + { + "start": 16804.12, + "end": 16807.36, + "probability": 0.8986 + }, + { + "start": 16807.52, + "end": 16811.88, + "probability": 0.9645 + }, + { + "start": 16811.96, + "end": 16813.94, + "probability": 0.7221 + }, + { + "start": 16814.9, + "end": 16815.42, + "probability": 0.7001 + }, + { + "start": 16815.5, + "end": 16817.38, + "probability": 0.8361 + }, + { + "start": 16817.42, + "end": 16818.49, + "probability": 0.9345 + }, + { + "start": 16819.1, + "end": 16821.74, + "probability": 0.8283 + }, + { + "start": 16821.84, + "end": 16826.92, + "probability": 0.7453 + }, + { + "start": 16827.1, + "end": 16830.8, + "probability": 0.7229 + }, + { + "start": 16830.88, + "end": 16832.22, + "probability": 0.8282 + }, + { + "start": 16833.16, + "end": 16835.92, + "probability": 0.867 + }, + { + "start": 16835.92, + "end": 16838.64, + "probability": 0.7678 + }, + { + "start": 16838.7, + "end": 16840.9, + "probability": 0.965 + }, + { + "start": 16841.48, + "end": 16845.84, + "probability": 0.8151 + }, + { + "start": 16847.62, + "end": 16850.22, + "probability": 0.933 + }, + { + "start": 16853.27, + "end": 16856.74, + "probability": 0.782 + }, + { + "start": 16856.86, + "end": 16861.66, + "probability": 0.9893 + }, + { + "start": 16862.26, + "end": 16865.64, + "probability": 0.9795 + }, + { + "start": 16866.06, + "end": 16870.46, + "probability": 0.8979 + }, + { + "start": 16870.46, + "end": 16872.94, + "probability": 0.9986 + }, + { + "start": 16873.6, + "end": 16874.0, + "probability": 0.6985 + }, + { + "start": 16874.16, + "end": 16877.98, + "probability": 0.994 + }, + { + "start": 16878.1, + "end": 16881.21, + "probability": 0.9426 + }, + { + "start": 16881.54, + "end": 16884.79, + "probability": 0.8127 + }, + { + "start": 16885.92, + "end": 16889.42, + "probability": 0.9971 + }, + { + "start": 16890.24, + "end": 16896.02, + "probability": 0.9893 + }, + { + "start": 16896.26, + "end": 16896.5, + "probability": 0.695 + }, + { + "start": 16898.1, + "end": 16899.72, + "probability": 0.6253 + }, + { + "start": 16899.86, + "end": 16903.96, + "probability": 0.8514 + }, + { + "start": 16906.32, + "end": 16908.46, + "probability": 0.9553 + }, + { + "start": 16909.2, + "end": 16914.22, + "probability": 0.7039 + }, + { + "start": 16915.73, + "end": 16918.44, + "probability": 0.7616 + }, + { + "start": 16918.86, + "end": 16923.98, + "probability": 0.9355 + }, + { + "start": 16925.94, + "end": 16929.32, + "probability": 0.6637 + }, + { + "start": 16930.3, + "end": 16936.22, + "probability": 0.9536 + }, + { + "start": 16936.78, + "end": 16938.17, + "probability": 0.719 + }, + { + "start": 16939.22, + "end": 16942.34, + "probability": 0.5634 + }, + { + "start": 16942.62, + "end": 16944.84, + "probability": 0.8749 + }, + { + "start": 16946.15, + "end": 16951.3, + "probability": 0.5857 + }, + { + "start": 16951.48, + "end": 16954.98, + "probability": 0.9772 + }, + { + "start": 16955.8, + "end": 16958.26, + "probability": 0.5691 + }, + { + "start": 16961.17, + "end": 16963.46, + "probability": 0.9575 + }, + { + "start": 16964.52, + "end": 16968.02, + "probability": 0.3418 + }, + { + "start": 16968.02, + "end": 16973.86, + "probability": 0.9838 + }, + { + "start": 16975.22, + "end": 16978.76, + "probability": 0.7687 + }, + { + "start": 16978.94, + "end": 16980.6, + "probability": 0.9727 + }, + { + "start": 16981.32, + "end": 16981.8, + "probability": 0.3772 + }, + { + "start": 16983.06, + "end": 16986.18, + "probability": 0.1731 + }, + { + "start": 16986.42, + "end": 16986.72, + "probability": 0.3485 + }, + { + "start": 16986.72, + "end": 16990.04, + "probability": 0.9823 + }, + { + "start": 16990.92, + "end": 16994.58, + "probability": 0.9881 + }, + { + "start": 16994.66, + "end": 16996.24, + "probability": 0.7713 + }, + { + "start": 16996.62, + "end": 16997.06, + "probability": 0.2364 + }, + { + "start": 16997.3, + "end": 16999.12, + "probability": 0.927 + }, + { + "start": 16999.84, + "end": 16999.84, + "probability": 0.04 + }, + { + "start": 16999.84, + "end": 17001.44, + "probability": 0.5705 + }, + { + "start": 17001.56, + "end": 17002.4, + "probability": 0.8583 + }, + { + "start": 17002.5, + "end": 17003.1, + "probability": 0.6497 + }, + { + "start": 17005.26, + "end": 17006.16, + "probability": 0.2491 + }, + { + "start": 17006.16, + "end": 17009.34, + "probability": 0.6059 + }, + { + "start": 17009.86, + "end": 17016.88, + "probability": 0.9639 + }, + { + "start": 17017.7, + "end": 17020.6, + "probability": 0.8124 + }, + { + "start": 17020.94, + "end": 17025.62, + "probability": 0.9875 + }, + { + "start": 17025.72, + "end": 17030.72, + "probability": 0.7266 + }, + { + "start": 17031.36, + "end": 17032.42, + "probability": 0.7298 + }, + { + "start": 17033.28, + "end": 17035.86, + "probability": 0.8827 + }, + { + "start": 17036.76, + "end": 17040.1, + "probability": 0.8376 + }, + { + "start": 17040.18, + "end": 17040.48, + "probability": 0.6864 + }, + { + "start": 17041.78, + "end": 17044.82, + "probability": 0.7285 + }, + { + "start": 17045.96, + "end": 17050.72, + "probability": 0.6408 + }, + { + "start": 17050.82, + "end": 17057.0, + "probability": 0.9338 + }, + { + "start": 17057.64, + "end": 17059.98, + "probability": 0.9224 + }, + { + "start": 17060.86, + "end": 17061.28, + "probability": 0.5072 + }, + { + "start": 17061.34, + "end": 17064.38, + "probability": 0.954 + }, + { + "start": 17064.38, + "end": 17067.22, + "probability": 0.5466 + }, + { + "start": 17067.94, + "end": 17069.76, + "probability": 0.9597 + }, + { + "start": 17069.94, + "end": 17070.32, + "probability": 0.427 + }, + { + "start": 17070.36, + "end": 17074.9, + "probability": 0.9084 + }, + { + "start": 17074.9, + "end": 17078.76, + "probability": 0.9087 + }, + { + "start": 17079.22, + "end": 17079.86, + "probability": 0.5842 + }, + { + "start": 17079.96, + "end": 17083.44, + "probability": 0.846 + }, + { + "start": 17083.44, + "end": 17087.44, + "probability": 0.8934 + }, + { + "start": 17087.44, + "end": 17092.02, + "probability": 0.8366 + }, + { + "start": 17093.18, + "end": 17095.66, + "probability": 0.6709 + }, + { + "start": 17095.86, + "end": 17098.74, + "probability": 0.9885 + }, + { + "start": 17099.72, + "end": 17101.07, + "probability": 0.9366 + }, + { + "start": 17103.1, + "end": 17103.78, + "probability": 0.408 + }, + { + "start": 17104.26, + "end": 17108.74, + "probability": 0.9795 + }, + { + "start": 17109.9, + "end": 17112.6, + "probability": 0.2525 + }, + { + "start": 17113.44, + "end": 17116.24, + "probability": 0.4039 + }, + { + "start": 17118.46, + "end": 17119.2, + "probability": 0.0253 + }, + { + "start": 17119.2, + "end": 17119.22, + "probability": 0.4612 + }, + { + "start": 17119.22, + "end": 17120.04, + "probability": 0.1031 + }, + { + "start": 17120.04, + "end": 17122.76, + "probability": 0.4996 + }, + { + "start": 17124.9, + "end": 17129.16, + "probability": 0.719 + }, + { + "start": 17129.72, + "end": 17130.74, + "probability": 0.9246 + }, + { + "start": 17132.18, + "end": 17132.32, + "probability": 0.3771 + }, + { + "start": 17132.32, + "end": 17133.41, + "probability": 0.4772 + }, + { + "start": 17133.68, + "end": 17134.78, + "probability": 0.498 + }, + { + "start": 17136.35, + "end": 17139.18, + "probability": 0.7638 + }, + { + "start": 17139.46, + "end": 17141.7, + "probability": 0.9495 + }, + { + "start": 17143.07, + "end": 17146.44, + "probability": 0.6126 + }, + { + "start": 17147.06, + "end": 17151.42, + "probability": 0.8863 + }, + { + "start": 17151.96, + "end": 17154.18, + "probability": 0.6797 + }, + { + "start": 17154.18, + "end": 17156.34, + "probability": 0.92 + }, + { + "start": 17157.0, + "end": 17158.88, + "probability": 0.6408 + }, + { + "start": 17160.34, + "end": 17162.76, + "probability": 0.2121 + }, + { + "start": 17164.38, + "end": 17166.08, + "probability": 0.5987 + }, + { + "start": 17166.12, + "end": 17167.34, + "probability": 0.6677 + }, + { + "start": 17167.5, + "end": 17171.46, + "probability": 0.9132 + }, + { + "start": 17171.46, + "end": 17175.9, + "probability": 0.7761 + }, + { + "start": 17176.32, + "end": 17177.12, + "probability": 0.6226 + }, + { + "start": 17177.26, + "end": 17181.02, + "probability": 0.9777 + }, + { + "start": 17181.02, + "end": 17185.36, + "probability": 0.747 + }, + { + "start": 17185.92, + "end": 17190.42, + "probability": 0.9705 + }, + { + "start": 17190.94, + "end": 17193.44, + "probability": 0.8966 + }, + { + "start": 17193.44, + "end": 17195.91, + "probability": 0.9979 + }, + { + "start": 17196.76, + "end": 17201.06, + "probability": 0.8958 + }, + { + "start": 17201.24, + "end": 17205.7, + "probability": 0.9708 + }, + { + "start": 17207.24, + "end": 17209.52, + "probability": 0.9832 + }, + { + "start": 17209.52, + "end": 17212.32, + "probability": 0.9813 + }, + { + "start": 17212.76, + "end": 17215.1, + "probability": 0.8724 + }, + { + "start": 17215.8, + "end": 17218.1, + "probability": 0.6632 + }, + { + "start": 17218.2, + "end": 17218.64, + "probability": 0.4558 + }, + { + "start": 17218.82, + "end": 17219.18, + "probability": 0.8415 + }, + { + "start": 17219.4, + "end": 17222.28, + "probability": 0.4087 + }, + { + "start": 17222.28, + "end": 17224.02, + "probability": 0.7285 + }, + { + "start": 17224.04, + "end": 17226.08, + "probability": 0.9334 + }, + { + "start": 17226.2, + "end": 17226.64, + "probability": 0.8393 + }, + { + "start": 17227.24, + "end": 17231.76, + "probability": 0.967 + }, + { + "start": 17232.4, + "end": 17233.04, + "probability": 0.8252 + }, + { + "start": 17233.44, + "end": 17234.66, + "probability": 0.578 + }, + { + "start": 17234.86, + "end": 17240.42, + "probability": 0.9046 + }, + { + "start": 17240.42, + "end": 17240.98, + "probability": 0.5709 + }, + { + "start": 17241.12, + "end": 17241.74, + "probability": 0.6693 + }, + { + "start": 17242.24, + "end": 17244.28, + "probability": 0.8338 + }, + { + "start": 17244.4, + "end": 17248.86, + "probability": 0.9625 + }, + { + "start": 17249.76, + "end": 17253.88, + "probability": 0.77 + }, + { + "start": 17254.22, + "end": 17259.46, + "probability": 0.6518 + }, + { + "start": 17259.92, + "end": 17262.9, + "probability": 0.984 + }, + { + "start": 17262.9, + "end": 17265.88, + "probability": 0.9214 + }, + { + "start": 17266.66, + "end": 17268.04, + "probability": 0.6855 + }, + { + "start": 17268.2, + "end": 17271.18, + "probability": 0.9106 + }, + { + "start": 17271.64, + "end": 17272.6, + "probability": 0.7851 + }, + { + "start": 17272.72, + "end": 17274.4, + "probability": 0.8809 + }, + { + "start": 17275.1, + "end": 17280.36, + "probability": 0.8617 + }, + { + "start": 17280.76, + "end": 17280.94, + "probability": 0.833 + }, + { + "start": 17281.68, + "end": 17282.7, + "probability": 0.4897 + }, + { + "start": 17282.7, + "end": 17284.82, + "probability": 0.8533 + }, + { + "start": 17284.94, + "end": 17286.4, + "probability": 0.222 + }, + { + "start": 17286.62, + "end": 17287.56, + "probability": 0.8225 + }, + { + "start": 17287.68, + "end": 17288.08, + "probability": 0.4576 + }, + { + "start": 17288.12, + "end": 17290.58, + "probability": 0.9855 + }, + { + "start": 17291.14, + "end": 17291.82, + "probability": 0.8892 + }, + { + "start": 17292.56, + "end": 17295.48, + "probability": 0.6862 + }, + { + "start": 17297.0, + "end": 17300.68, + "probability": 0.9604 + }, + { + "start": 17300.68, + "end": 17304.76, + "probability": 0.8396 + }, + { + "start": 17305.24, + "end": 17305.38, + "probability": 0.1899 + }, + { + "start": 17307.08, + "end": 17311.62, + "probability": 0.8059 + }, + { + "start": 17312.22, + "end": 17318.08, + "probability": 0.9804 + }, + { + "start": 17318.08, + "end": 17326.76, + "probability": 0.741 + }, + { + "start": 17328.93, + "end": 17330.36, + "probability": 0.561 + }, + { + "start": 17330.44, + "end": 17331.36, + "probability": 0.8181 + }, + { + "start": 17331.66, + "end": 17335.78, + "probability": 0.9917 + }, + { + "start": 17336.18, + "end": 17337.8, + "probability": 0.9974 + }, + { + "start": 17338.22, + "end": 17339.5, + "probability": 0.6894 + }, + { + "start": 17339.7, + "end": 17341.7, + "probability": 0.9501 + }, + { + "start": 17341.82, + "end": 17342.86, + "probability": 0.952 + }, + { + "start": 17343.44, + "end": 17344.76, + "probability": 0.9547 + }, + { + "start": 17345.06, + "end": 17345.56, + "probability": 0.502 + }, + { + "start": 17345.64, + "end": 17347.22, + "probability": 0.9857 + }, + { + "start": 17347.7, + "end": 17351.54, + "probability": 0.9771 + }, + { + "start": 17351.58, + "end": 17351.84, + "probability": 0.6898 + }, + { + "start": 17352.3, + "end": 17353.2, + "probability": 0.4385 + }, + { + "start": 17353.24, + "end": 17356.08, + "probability": 0.9851 + }, + { + "start": 17356.64, + "end": 17359.42, + "probability": 0.9148 + }, + { + "start": 17359.54, + "end": 17361.4, + "probability": 0.9216 + }, + { + "start": 17361.52, + "end": 17362.36, + "probability": 0.889 + }, + { + "start": 17362.92, + "end": 17367.82, + "probability": 0.9546 + }, + { + "start": 17368.56, + "end": 17369.08, + "probability": 0.8868 + }, + { + "start": 17369.28, + "end": 17370.66, + "probability": 0.972 + }, + { + "start": 17370.78, + "end": 17372.34, + "probability": 0.8555 + }, + { + "start": 17372.94, + "end": 17374.0, + "probability": 0.9841 + }, + { + "start": 17374.54, + "end": 17375.68, + "probability": 0.9932 + }, + { + "start": 17376.58, + "end": 17379.76, + "probability": 0.9561 + }, + { + "start": 17380.08, + "end": 17382.77, + "probability": 0.9806 + }, + { + "start": 17383.32, + "end": 17387.82, + "probability": 0.9851 + }, + { + "start": 17389.1, + "end": 17389.94, + "probability": 0.2625 + }, + { + "start": 17390.14, + "end": 17391.2, + "probability": 0.5026 + }, + { + "start": 17391.64, + "end": 17393.04, + "probability": 0.9072 + }, + { + "start": 17393.44, + "end": 17397.28, + "probability": 0.7822 + }, + { + "start": 17397.44, + "end": 17399.03, + "probability": 0.9683 + }, + { + "start": 17399.1, + "end": 17399.82, + "probability": 0.8677 + }, + { + "start": 17399.98, + "end": 17405.4, + "probability": 0.9612 + }, + { + "start": 17405.4, + "end": 17406.72, + "probability": 0.9509 + }, + { + "start": 17407.02, + "end": 17408.3, + "probability": 0.2986 + }, + { + "start": 17408.74, + "end": 17410.94, + "probability": 0.6252 + }, + { + "start": 17411.38, + "end": 17412.08, + "probability": 0.8729 + }, + { + "start": 17412.12, + "end": 17414.2, + "probability": 0.8846 + }, + { + "start": 17414.64, + "end": 17416.74, + "probability": 0.8629 + }, + { + "start": 17417.58, + "end": 17417.62, + "probability": 0.0009 + } + ], + "segments_count": 5879, + "words_count": 28824, + "avg_words_per_segment": 4.9029, + "avg_segment_duration": 2.2784, + "avg_words_per_minute": 97.7687, + "plenum_id": "12034", + "duration": 17689.1, + "title": null, + "plenum_date": "2011-02-07" +} \ No newline at end of file