diff --git "a/126564/metadata.json" "b/126564/metadata.json" new file mode 100644--- /dev/null +++ "b/126564/metadata.json" @@ -0,0 +1,14882 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "126564", + "quality_score": 0.9521, + "per_segment_quality_scores": [ + { + "start": 92.38, + "end": 100.26, + "probability": 0.114 + }, + { + "start": 113.54, + "end": 117.76, + "probability": 0.0117 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.0, + "probability": 0.0 + }, + { + "start": 124.0, + "end": 124.16, + "probability": 0.1804 + }, + { + "start": 124.16, + "end": 125.15, + "probability": 0.6134 + }, + { + "start": 125.94, + "end": 128.66, + "probability": 0.6698 + }, + { + "start": 129.74, + "end": 132.84, + "probability": 0.9778 + }, + { + "start": 132.84, + "end": 136.08, + "probability": 0.9493 + }, + { + "start": 136.82, + "end": 139.44, + "probability": 0.9911 + }, + { + "start": 139.44, + "end": 143.04, + "probability": 0.9784 + }, + { + "start": 143.88, + "end": 147.48, + "probability": 0.9759 + }, + { + "start": 147.48, + "end": 150.3, + "probability": 0.9985 + }, + { + "start": 151.26, + "end": 154.7, + "probability": 0.9912 + }, + { + "start": 155.2, + "end": 156.47, + "probability": 0.9633 + }, + { + "start": 156.82, + "end": 162.84, + "probability": 0.9819 + }, + { + "start": 162.84, + "end": 168.77, + "probability": 0.9831 + }, + { + "start": 169.6, + "end": 173.98, + "probability": 0.96 + }, + { + "start": 174.86, + "end": 175.82, + "probability": 0.7725 + }, + { + "start": 176.32, + "end": 177.72, + "probability": 0.5041 + }, + { + "start": 177.72, + "end": 179.16, + "probability": 0.7867 + }, + { + "start": 179.64, + "end": 183.44, + "probability": 0.9866 + }, + { + "start": 184.44, + "end": 189.76, + "probability": 0.9739 + }, + { + "start": 190.22, + "end": 191.5, + "probability": 0.8198 + }, + { + "start": 192.3, + "end": 196.94, + "probability": 0.9726 + }, + { + "start": 197.94, + "end": 200.32, + "probability": 0.9899 + }, + { + "start": 200.32, + "end": 203.44, + "probability": 0.9517 + }, + { + "start": 204.18, + "end": 207.82, + "probability": 0.8452 + }, + { + "start": 207.98, + "end": 209.92, + "probability": 0.8673 + }, + { + "start": 210.08, + "end": 212.14, + "probability": 0.9819 + }, + { + "start": 212.26, + "end": 214.54, + "probability": 0.9722 + }, + { + "start": 215.1, + "end": 219.28, + "probability": 0.9281 + }, + { + "start": 219.4, + "end": 223.9, + "probability": 0.9944 + }, + { + "start": 224.58, + "end": 225.42, + "probability": 0.759 + }, + { + "start": 225.44, + "end": 229.79, + "probability": 0.9312 + }, + { + "start": 230.08, + "end": 230.62, + "probability": 0.7271 + }, + { + "start": 231.04, + "end": 231.88, + "probability": 0.979 + }, + { + "start": 232.54, + "end": 235.48, + "probability": 0.9344 + }, + { + "start": 235.92, + "end": 238.28, + "probability": 0.8956 + }, + { + "start": 238.86, + "end": 242.84, + "probability": 0.9449 + }, + { + "start": 243.42, + "end": 243.96, + "probability": 0.9354 + }, + { + "start": 244.72, + "end": 245.72, + "probability": 0.9919 + }, + { + "start": 246.32, + "end": 248.16, + "probability": 0.9603 + }, + { + "start": 248.6, + "end": 249.88, + "probability": 0.8311 + }, + { + "start": 250.3, + "end": 254.8, + "probability": 0.9777 + }, + { + "start": 255.38, + "end": 257.93, + "probability": 0.9844 + }, + { + "start": 258.8, + "end": 259.57, + "probability": 0.335 + }, + { + "start": 261.08, + "end": 263.16, + "probability": 0.9034 + }, + { + "start": 263.24, + "end": 265.9, + "probability": 0.9972 + }, + { + "start": 266.82, + "end": 271.02, + "probability": 0.8973 + }, + { + "start": 271.36, + "end": 274.16, + "probability": 0.9692 + }, + { + "start": 274.18, + "end": 276.32, + "probability": 0.9945 + }, + { + "start": 276.84, + "end": 277.38, + "probability": 0.9354 + }, + { + "start": 278.06, + "end": 282.46, + "probability": 0.8762 + }, + { + "start": 282.8, + "end": 283.22, + "probability": 0.7396 + }, + { + "start": 283.98, + "end": 285.42, + "probability": 0.7858 + }, + { + "start": 285.5, + "end": 287.0, + "probability": 0.9412 + }, + { + "start": 287.14, + "end": 287.72, + "probability": 0.636 + }, + { + "start": 287.9, + "end": 289.28, + "probability": 0.9634 + }, + { + "start": 301.28, + "end": 304.06, + "probability": 0.9852 + }, + { + "start": 304.82, + "end": 305.84, + "probability": 0.8975 + }, + { + "start": 306.52, + "end": 307.68, + "probability": 0.9902 + }, + { + "start": 308.26, + "end": 311.2, + "probability": 0.9578 + }, + { + "start": 312.4, + "end": 315.94, + "probability": 0.8641 + }, + { + "start": 316.72, + "end": 317.72, + "probability": 0.6004 + }, + { + "start": 317.9, + "end": 319.2, + "probability": 0.8945 + }, + { + "start": 319.3, + "end": 322.76, + "probability": 0.942 + }, + { + "start": 323.58, + "end": 326.38, + "probability": 0.9639 + }, + { + "start": 326.86, + "end": 329.34, + "probability": 0.9995 + }, + { + "start": 329.44, + "end": 329.54, + "probability": 0.9581 + }, + { + "start": 330.76, + "end": 331.3, + "probability": 0.9374 + }, + { + "start": 332.1, + "end": 335.2, + "probability": 0.9722 + }, + { + "start": 336.06, + "end": 336.86, + "probability": 0.6387 + }, + { + "start": 337.58, + "end": 339.84, + "probability": 0.9579 + }, + { + "start": 340.46, + "end": 342.68, + "probability": 0.9019 + }, + { + "start": 343.7, + "end": 344.68, + "probability": 0.6561 + }, + { + "start": 344.78, + "end": 348.16, + "probability": 0.9834 + }, + { + "start": 349.66, + "end": 355.7, + "probability": 0.9813 + }, + { + "start": 355.78, + "end": 360.76, + "probability": 0.9984 + }, + { + "start": 362.56, + "end": 362.86, + "probability": 0.6452 + }, + { + "start": 362.94, + "end": 366.54, + "probability": 0.9856 + }, + { + "start": 366.78, + "end": 370.08, + "probability": 0.9869 + }, + { + "start": 370.3, + "end": 370.74, + "probability": 0.8875 + }, + { + "start": 371.68, + "end": 372.81, + "probability": 0.9372 + }, + { + "start": 373.8, + "end": 375.04, + "probability": 0.8638 + }, + { + "start": 375.52, + "end": 378.06, + "probability": 0.9807 + }, + { + "start": 378.48, + "end": 382.28, + "probability": 0.9924 + }, + { + "start": 383.66, + "end": 385.66, + "probability": 0.8313 + }, + { + "start": 386.68, + "end": 387.1, + "probability": 0.5982 + }, + { + "start": 387.22, + "end": 388.52, + "probability": 0.8052 + }, + { + "start": 388.58, + "end": 389.18, + "probability": 0.4703 + }, + { + "start": 389.18, + "end": 390.78, + "probability": 0.8611 + }, + { + "start": 393.42, + "end": 395.18, + "probability": 0.7925 + }, + { + "start": 395.96, + "end": 398.13, + "probability": 0.8717 + }, + { + "start": 399.04, + "end": 400.52, + "probability": 0.9537 + }, + { + "start": 401.16, + "end": 404.72, + "probability": 0.8317 + }, + { + "start": 405.38, + "end": 408.78, + "probability": 0.8691 + }, + { + "start": 408.84, + "end": 412.0, + "probability": 0.9837 + }, + { + "start": 412.86, + "end": 415.82, + "probability": 0.985 + }, + { + "start": 416.38, + "end": 417.2, + "probability": 0.9758 + }, + { + "start": 418.04, + "end": 422.88, + "probability": 0.942 + }, + { + "start": 423.34, + "end": 425.5, + "probability": 0.9177 + }, + { + "start": 426.66, + "end": 429.72, + "probability": 0.9145 + }, + { + "start": 430.72, + "end": 433.94, + "probability": 0.9858 + }, + { + "start": 434.8, + "end": 438.0, + "probability": 0.9757 + }, + { + "start": 438.6, + "end": 443.28, + "probability": 0.9985 + }, + { + "start": 443.84, + "end": 449.4, + "probability": 0.9896 + }, + { + "start": 450.06, + "end": 450.98, + "probability": 0.7344 + }, + { + "start": 451.42, + "end": 454.36, + "probability": 0.9453 + }, + { + "start": 455.62, + "end": 456.12, + "probability": 0.5947 + }, + { + "start": 456.18, + "end": 460.12, + "probability": 0.9639 + }, + { + "start": 462.04, + "end": 464.94, + "probability": 0.7759 + }, + { + "start": 466.82, + "end": 468.68, + "probability": 0.9411 + }, + { + "start": 468.86, + "end": 474.48, + "probability": 0.8655 + }, + { + "start": 474.52, + "end": 475.04, + "probability": 0.8511 + }, + { + "start": 477.1, + "end": 481.68, + "probability": 0.9592 + }, + { + "start": 482.54, + "end": 484.84, + "probability": 0.9108 + }, + { + "start": 485.18, + "end": 486.02, + "probability": 0.5155 + }, + { + "start": 487.44, + "end": 488.46, + "probability": 0.5773 + }, + { + "start": 489.36, + "end": 493.34, + "probability": 0.7836 + }, + { + "start": 493.4, + "end": 494.56, + "probability": 0.853 + }, + { + "start": 495.52, + "end": 496.66, + "probability": 0.8503 + }, + { + "start": 497.4, + "end": 498.92, + "probability": 0.7634 + }, + { + "start": 499.52, + "end": 504.4, + "probability": 0.9227 + }, + { + "start": 505.62, + "end": 506.54, + "probability": 0.8048 + }, + { + "start": 507.22, + "end": 511.9, + "probability": 0.9355 + }, + { + "start": 511.9, + "end": 516.18, + "probability": 0.9641 + }, + { + "start": 516.74, + "end": 518.77, + "probability": 0.8662 + }, + { + "start": 519.42, + "end": 521.28, + "probability": 0.8556 + }, + { + "start": 521.88, + "end": 522.32, + "probability": 0.6598 + }, + { + "start": 523.48, + "end": 527.92, + "probability": 0.775 + }, + { + "start": 528.54, + "end": 530.62, + "probability": 0.9702 + }, + { + "start": 531.06, + "end": 533.22, + "probability": 0.9937 + }, + { + "start": 533.56, + "end": 537.48, + "probability": 0.9926 + }, + { + "start": 537.86, + "end": 538.84, + "probability": 0.6842 + }, + { + "start": 539.54, + "end": 540.7, + "probability": 0.4629 + }, + { + "start": 540.92, + "end": 542.86, + "probability": 0.9899 + }, + { + "start": 543.34, + "end": 546.1, + "probability": 0.8333 + }, + { + "start": 546.54, + "end": 547.74, + "probability": 0.9753 + }, + { + "start": 548.12, + "end": 549.33, + "probability": 0.9929 + }, + { + "start": 549.86, + "end": 552.72, + "probability": 0.7782 + }, + { + "start": 552.9, + "end": 555.46, + "probability": 0.831 + }, + { + "start": 567.28, + "end": 567.7, + "probability": 0.0585 + }, + { + "start": 567.7, + "end": 567.7, + "probability": 0.3441 + }, + { + "start": 567.7, + "end": 567.7, + "probability": 0.0275 + }, + { + "start": 567.7, + "end": 567.7, + "probability": 0.1925 + }, + { + "start": 567.7, + "end": 567.7, + "probability": 0.0601 + }, + { + "start": 567.7, + "end": 568.19, + "probability": 0.4095 + }, + { + "start": 569.46, + "end": 571.92, + "probability": 0.6362 + }, + { + "start": 572.64, + "end": 574.08, + "probability": 0.9467 + }, + { + "start": 575.18, + "end": 576.86, + "probability": 0.9968 + }, + { + "start": 577.52, + "end": 580.4, + "probability": 0.9957 + }, + { + "start": 580.94, + "end": 583.76, + "probability": 0.9842 + }, + { + "start": 584.4, + "end": 587.6, + "probability": 0.8686 + }, + { + "start": 588.68, + "end": 590.14, + "probability": 0.9125 + }, + { + "start": 590.92, + "end": 593.02, + "probability": 0.9382 + }, + { + "start": 593.88, + "end": 598.9, + "probability": 0.9986 + }, + { + "start": 599.84, + "end": 600.12, + "probability": 0.4821 + }, + { + "start": 600.3, + "end": 601.28, + "probability": 0.8016 + }, + { + "start": 601.36, + "end": 604.18, + "probability": 0.984 + }, + { + "start": 605.1, + "end": 606.44, + "probability": 0.7072 + }, + { + "start": 606.92, + "end": 610.1, + "probability": 0.9713 + }, + { + "start": 610.1, + "end": 612.98, + "probability": 0.9976 + }, + { + "start": 613.88, + "end": 614.88, + "probability": 0.5721 + }, + { + "start": 615.3, + "end": 618.7, + "probability": 0.9401 + }, + { + "start": 619.64, + "end": 625.82, + "probability": 0.9979 + }, + { + "start": 626.36, + "end": 628.2, + "probability": 0.9864 + }, + { + "start": 629.26, + "end": 632.96, + "probability": 0.9969 + }, + { + "start": 632.96, + "end": 636.46, + "probability": 0.9957 + }, + { + "start": 637.06, + "end": 641.84, + "probability": 0.9956 + }, + { + "start": 642.52, + "end": 648.02, + "probability": 0.9827 + }, + { + "start": 649.34, + "end": 649.7, + "probability": 0.6496 + }, + { + "start": 650.04, + "end": 650.7, + "probability": 0.7507 + }, + { + "start": 650.76, + "end": 652.38, + "probability": 0.9438 + }, + { + "start": 652.46, + "end": 655.32, + "probability": 0.865 + }, + { + "start": 657.8, + "end": 659.44, + "probability": 0.7397 + }, + { + "start": 660.34, + "end": 665.7, + "probability": 0.9926 + }, + { + "start": 666.4, + "end": 668.88, + "probability": 0.9132 + }, + { + "start": 669.52, + "end": 670.24, + "probability": 0.9246 + }, + { + "start": 671.02, + "end": 672.8, + "probability": 0.7815 + }, + { + "start": 672.9, + "end": 674.38, + "probability": 0.7991 + }, + { + "start": 674.88, + "end": 675.76, + "probability": 0.5433 + }, + { + "start": 676.36, + "end": 678.56, + "probability": 0.7539 + }, + { + "start": 679.52, + "end": 682.68, + "probability": 0.8696 + }, + { + "start": 683.28, + "end": 686.66, + "probability": 0.9572 + }, + { + "start": 687.64, + "end": 689.0, + "probability": 0.9412 + }, + { + "start": 690.34, + "end": 693.68, + "probability": 0.9671 + }, + { + "start": 693.76, + "end": 696.54, + "probability": 0.9236 + }, + { + "start": 697.16, + "end": 700.85, + "probability": 0.9648 + }, + { + "start": 701.58, + "end": 703.8, + "probability": 0.9683 + }, + { + "start": 704.76, + "end": 708.54, + "probability": 0.9875 + }, + { + "start": 709.06, + "end": 713.26, + "probability": 0.9214 + }, + { + "start": 713.26, + "end": 716.22, + "probability": 0.9668 + }, + { + "start": 717.12, + "end": 720.24, + "probability": 0.9976 + }, + { + "start": 720.8, + "end": 722.44, + "probability": 0.9733 + }, + { + "start": 722.96, + "end": 724.96, + "probability": 0.8694 + }, + { + "start": 725.62, + "end": 727.24, + "probability": 0.9701 + }, + { + "start": 728.14, + "end": 730.9, + "probability": 0.9531 + }, + { + "start": 731.5, + "end": 735.64, + "probability": 0.9768 + }, + { + "start": 736.76, + "end": 740.72, + "probability": 0.9934 + }, + { + "start": 741.16, + "end": 744.2, + "probability": 0.9837 + }, + { + "start": 744.86, + "end": 745.2, + "probability": 0.7072 + }, + { + "start": 745.76, + "end": 750.56, + "probability": 0.9927 + }, + { + "start": 751.04, + "end": 752.24, + "probability": 0.548 + }, + { + "start": 752.72, + "end": 754.8, + "probability": 0.97 + }, + { + "start": 755.28, + "end": 757.36, + "probability": 0.9328 + }, + { + "start": 757.94, + "end": 759.96, + "probability": 0.9483 + }, + { + "start": 760.52, + "end": 761.94, + "probability": 0.9367 + }, + { + "start": 762.34, + "end": 763.5, + "probability": 0.752 + }, + { + "start": 764.06, + "end": 765.1, + "probability": 0.8992 + }, + { + "start": 765.74, + "end": 768.98, + "probability": 0.9792 + }, + { + "start": 769.58, + "end": 773.58, + "probability": 0.9595 + }, + { + "start": 774.16, + "end": 775.44, + "probability": 0.9919 + }, + { + "start": 776.0, + "end": 776.5, + "probability": 0.886 + }, + { + "start": 777.32, + "end": 779.2, + "probability": 0.5812 + }, + { + "start": 779.26, + "end": 779.8, + "probability": 0.5689 + }, + { + "start": 779.82, + "end": 781.38, + "probability": 0.9536 + }, + { + "start": 782.56, + "end": 784.48, + "probability": 0.569 + }, + { + "start": 785.78, + "end": 786.7, + "probability": 0.7841 + }, + { + "start": 787.24, + "end": 789.38, + "probability": 0.7863 + }, + { + "start": 790.18, + "end": 793.1, + "probability": 0.9907 + }, + { + "start": 793.98, + "end": 796.82, + "probability": 0.9983 + }, + { + "start": 796.82, + "end": 799.68, + "probability": 0.9914 + }, + { + "start": 800.96, + "end": 802.72, + "probability": 0.7862 + }, + { + "start": 803.32, + "end": 806.52, + "probability": 0.8394 + }, + { + "start": 807.74, + "end": 811.86, + "probability": 0.9694 + }, + { + "start": 812.88, + "end": 815.04, + "probability": 0.6609 + }, + { + "start": 815.56, + "end": 816.34, + "probability": 0.9632 + }, + { + "start": 818.24, + "end": 820.78, + "probability": 0.9811 + }, + { + "start": 821.14, + "end": 823.08, + "probability": 0.9932 + }, + { + "start": 823.18, + "end": 824.82, + "probability": 0.9948 + }, + { + "start": 825.26, + "end": 829.34, + "probability": 0.9951 + }, + { + "start": 830.2, + "end": 831.92, + "probability": 0.977 + }, + { + "start": 832.66, + "end": 835.24, + "probability": 0.9948 + }, + { + "start": 836.1, + "end": 837.21, + "probability": 0.252 + }, + { + "start": 838.32, + "end": 842.14, + "probability": 0.9882 + }, + { + "start": 842.82, + "end": 843.26, + "probability": 0.818 + }, + { + "start": 843.86, + "end": 844.74, + "probability": 0.9228 + }, + { + "start": 845.2, + "end": 846.48, + "probability": 0.9938 + }, + { + "start": 846.94, + "end": 848.8, + "probability": 0.9924 + }, + { + "start": 849.56, + "end": 851.98, + "probability": 0.8882 + }, + { + "start": 852.84, + "end": 853.76, + "probability": 0.9286 + }, + { + "start": 854.34, + "end": 855.56, + "probability": 0.9836 + }, + { + "start": 856.46, + "end": 858.32, + "probability": 0.8548 + }, + { + "start": 859.44, + "end": 862.28, + "probability": 0.9071 + }, + { + "start": 862.7, + "end": 865.34, + "probability": 0.9277 + }, + { + "start": 866.04, + "end": 868.38, + "probability": 0.8799 + }, + { + "start": 873.36, + "end": 874.8, + "probability": 0.8986 + }, + { + "start": 875.02, + "end": 878.52, + "probability": 0.8625 + }, + { + "start": 880.6, + "end": 884.62, + "probability": 0.9972 + }, + { + "start": 884.9, + "end": 886.78, + "probability": 0.8945 + }, + { + "start": 887.44, + "end": 891.62, + "probability": 0.9737 + }, + { + "start": 893.42, + "end": 895.28, + "probability": 0.9922 + }, + { + "start": 895.76, + "end": 897.12, + "probability": 0.9553 + }, + { + "start": 897.62, + "end": 898.98, + "probability": 0.8962 + }, + { + "start": 899.14, + "end": 900.8, + "probability": 0.9728 + }, + { + "start": 901.18, + "end": 904.96, + "probability": 0.9255 + }, + { + "start": 906.22, + "end": 908.48, + "probability": 0.9924 + }, + { + "start": 909.02, + "end": 914.0, + "probability": 0.9961 + }, + { + "start": 915.1, + "end": 916.46, + "probability": 0.98 + }, + { + "start": 916.54, + "end": 917.28, + "probability": 0.8263 + }, + { + "start": 917.72, + "end": 918.6, + "probability": 0.9479 + }, + { + "start": 918.72, + "end": 919.22, + "probability": 0.8646 + }, + { + "start": 919.28, + "end": 919.82, + "probability": 0.7914 + }, + { + "start": 920.76, + "end": 924.02, + "probability": 0.9392 + }, + { + "start": 924.54, + "end": 927.1, + "probability": 0.9904 + }, + { + "start": 927.34, + "end": 929.18, + "probability": 0.9838 + }, + { + "start": 930.88, + "end": 933.84, + "probability": 0.9888 + }, + { + "start": 934.02, + "end": 936.22, + "probability": 0.8908 + }, + { + "start": 936.68, + "end": 940.78, + "probability": 0.9611 + }, + { + "start": 941.78, + "end": 942.5, + "probability": 0.8697 + }, + { + "start": 943.68, + "end": 946.0, + "probability": 0.882 + }, + { + "start": 946.8, + "end": 948.16, + "probability": 0.7261 + }, + { + "start": 950.26, + "end": 951.14, + "probability": 0.8207 + }, + { + "start": 951.96, + "end": 954.82, + "probability": 0.9803 + }, + { + "start": 955.74, + "end": 958.1, + "probability": 0.9971 + }, + { + "start": 959.4, + "end": 964.8, + "probability": 0.9954 + }, + { + "start": 966.0, + "end": 967.2, + "probability": 0.6194 + }, + { + "start": 967.28, + "end": 970.4, + "probability": 0.9327 + }, + { + "start": 971.22, + "end": 976.02, + "probability": 0.9863 + }, + { + "start": 976.14, + "end": 976.78, + "probability": 0.6031 + }, + { + "start": 977.44, + "end": 981.92, + "probability": 0.9331 + }, + { + "start": 982.94, + "end": 986.06, + "probability": 0.9955 + }, + { + "start": 986.78, + "end": 992.2, + "probability": 0.9985 + }, + { + "start": 993.12, + "end": 997.0, + "probability": 0.9919 + }, + { + "start": 998.16, + "end": 1000.28, + "probability": 0.9966 + }, + { + "start": 1001.06, + "end": 1005.44, + "probability": 0.7386 + }, + { + "start": 1005.74, + "end": 1009.4, + "probability": 0.988 + }, + { + "start": 1009.4, + "end": 1012.86, + "probability": 0.9944 + }, + { + "start": 1013.88, + "end": 1016.52, + "probability": 0.9611 + }, + { + "start": 1016.92, + "end": 1020.44, + "probability": 0.9974 + }, + { + "start": 1020.96, + "end": 1021.58, + "probability": 0.8915 + }, + { + "start": 1022.7, + "end": 1027.32, + "probability": 0.9897 + }, + { + "start": 1028.08, + "end": 1031.08, + "probability": 0.999 + }, + { + "start": 1031.62, + "end": 1032.62, + "probability": 0.9722 + }, + { + "start": 1033.06, + "end": 1036.46, + "probability": 0.9988 + }, + { + "start": 1037.02, + "end": 1037.7, + "probability": 0.838 + }, + { + "start": 1039.66, + "end": 1040.32, + "probability": 0.546 + }, + { + "start": 1040.56, + "end": 1041.54, + "probability": 0.7717 + }, + { + "start": 1042.76, + "end": 1046.57, + "probability": 0.7727 + }, + { + "start": 1046.86, + "end": 1049.66, + "probability": 0.8286 + }, + { + "start": 1050.2, + "end": 1051.78, + "probability": 0.841 + }, + { + "start": 1052.68, + "end": 1055.14, + "probability": 0.8235 + }, + { + "start": 1056.06, + "end": 1060.24, + "probability": 0.9951 + }, + { + "start": 1060.52, + "end": 1062.46, + "probability": 0.9904 + }, + { + "start": 1063.04, + "end": 1065.6, + "probability": 0.9899 + }, + { + "start": 1066.12, + "end": 1071.02, + "probability": 0.982 + }, + { + "start": 1071.86, + "end": 1073.04, + "probability": 0.9966 + }, + { + "start": 1073.12, + "end": 1075.02, + "probability": 0.98 + }, + { + "start": 1075.5, + "end": 1080.64, + "probability": 0.9851 + }, + { + "start": 1081.58, + "end": 1084.72, + "probability": 0.9983 + }, + { + "start": 1085.44, + "end": 1087.9, + "probability": 0.9917 + }, + { + "start": 1088.74, + "end": 1092.46, + "probability": 0.9945 + }, + { + "start": 1092.46, + "end": 1096.44, + "probability": 0.9995 + }, + { + "start": 1097.64, + "end": 1099.36, + "probability": 0.8846 + }, + { + "start": 1100.7, + "end": 1102.86, + "probability": 0.9881 + }, + { + "start": 1103.94, + "end": 1108.64, + "probability": 0.9967 + }, + { + "start": 1109.56, + "end": 1112.9, + "probability": 0.9668 + }, + { + "start": 1113.44, + "end": 1116.08, + "probability": 0.9514 + }, + { + "start": 1116.48, + "end": 1120.58, + "probability": 0.9211 + }, + { + "start": 1121.08, + "end": 1122.12, + "probability": 0.8663 + }, + { + "start": 1122.24, + "end": 1123.64, + "probability": 0.9847 + }, + { + "start": 1124.28, + "end": 1126.32, + "probability": 0.7727 + }, + { + "start": 1126.36, + "end": 1128.1, + "probability": 0.9608 + }, + { + "start": 1128.18, + "end": 1128.86, + "probability": 0.8188 + }, + { + "start": 1129.56, + "end": 1134.86, + "probability": 0.9863 + }, + { + "start": 1135.76, + "end": 1141.64, + "probability": 0.9954 + }, + { + "start": 1141.72, + "end": 1147.52, + "probability": 0.9997 + }, + { + "start": 1148.42, + "end": 1151.86, + "probability": 0.9617 + }, + { + "start": 1152.58, + "end": 1155.98, + "probability": 0.8598 + }, + { + "start": 1157.04, + "end": 1159.4, + "probability": 0.9961 + }, + { + "start": 1160.34, + "end": 1162.73, + "probability": 0.9412 + }, + { + "start": 1164.02, + "end": 1165.08, + "probability": 0.9137 + }, + { + "start": 1165.74, + "end": 1166.22, + "probability": 0.9644 + }, + { + "start": 1166.88, + "end": 1171.0, + "probability": 0.7668 + }, + { + "start": 1171.84, + "end": 1172.7, + "probability": 0.9738 + }, + { + "start": 1173.42, + "end": 1177.02, + "probability": 0.9943 + }, + { + "start": 1177.84, + "end": 1181.22, + "probability": 0.9756 + }, + { + "start": 1182.26, + "end": 1185.74, + "probability": 0.9979 + }, + { + "start": 1186.28, + "end": 1188.5, + "probability": 0.9298 + }, + { + "start": 1188.94, + "end": 1189.56, + "probability": 0.7058 + }, + { + "start": 1189.94, + "end": 1190.52, + "probability": 0.9113 + }, + { + "start": 1190.98, + "end": 1191.92, + "probability": 0.961 + }, + { + "start": 1192.36, + "end": 1193.06, + "probability": 0.9721 + }, + { + "start": 1194.7, + "end": 1201.96, + "probability": 0.9182 + }, + { + "start": 1202.5, + "end": 1208.36, + "probability": 0.992 + }, + { + "start": 1209.06, + "end": 1210.76, + "probability": 0.8604 + }, + { + "start": 1210.9, + "end": 1213.08, + "probability": 0.9917 + }, + { + "start": 1213.7, + "end": 1215.62, + "probability": 0.9792 + }, + { + "start": 1216.76, + "end": 1219.42, + "probability": 0.9968 + }, + { + "start": 1219.42, + "end": 1223.36, + "probability": 0.9961 + }, + { + "start": 1224.18, + "end": 1227.64, + "probability": 0.9482 + }, + { + "start": 1227.64, + "end": 1231.18, + "probability": 0.9985 + }, + { + "start": 1231.82, + "end": 1234.72, + "probability": 0.9138 + }, + { + "start": 1235.44, + "end": 1236.86, + "probability": 0.9567 + }, + { + "start": 1237.72, + "end": 1240.34, + "probability": 0.9879 + }, + { + "start": 1241.08, + "end": 1243.14, + "probability": 0.7592 + }, + { + "start": 1244.32, + "end": 1246.82, + "probability": 0.9922 + }, + { + "start": 1247.74, + "end": 1250.58, + "probability": 0.9844 + }, + { + "start": 1250.68, + "end": 1252.34, + "probability": 0.9878 + }, + { + "start": 1253.22, + "end": 1253.54, + "probability": 0.9828 + }, + { + "start": 1286.04, + "end": 1287.62, + "probability": 0.565 + }, + { + "start": 1287.7, + "end": 1288.16, + "probability": 0.7361 + }, + { + "start": 1288.24, + "end": 1290.14, + "probability": 0.7565 + }, + { + "start": 1291.12, + "end": 1297.42, + "probability": 0.9924 + }, + { + "start": 1298.3, + "end": 1299.84, + "probability": 0.8909 + }, + { + "start": 1299.98, + "end": 1303.22, + "probability": 0.9702 + }, + { + "start": 1304.42, + "end": 1307.48, + "probability": 0.8669 + }, + { + "start": 1308.7, + "end": 1315.48, + "probability": 0.9967 + }, + { + "start": 1316.38, + "end": 1317.42, + "probability": 0.5529 + }, + { + "start": 1318.12, + "end": 1319.72, + "probability": 0.9843 + }, + { + "start": 1320.68, + "end": 1321.72, + "probability": 0.9967 + }, + { + "start": 1323.14, + "end": 1327.7, + "probability": 0.9936 + }, + { + "start": 1328.76, + "end": 1333.18, + "probability": 0.9363 + }, + { + "start": 1334.32, + "end": 1337.72, + "probability": 0.9874 + }, + { + "start": 1338.52, + "end": 1341.66, + "probability": 0.9703 + }, + { + "start": 1342.1, + "end": 1346.16, + "probability": 0.9927 + }, + { + "start": 1346.98, + "end": 1349.9, + "probability": 0.9792 + }, + { + "start": 1350.96, + "end": 1352.3, + "probability": 0.646 + }, + { + "start": 1353.42, + "end": 1356.32, + "probability": 0.9907 + }, + { + "start": 1357.24, + "end": 1357.64, + "probability": 0.8558 + }, + { + "start": 1358.62, + "end": 1360.4, + "probability": 0.9532 + }, + { + "start": 1360.94, + "end": 1362.52, + "probability": 0.9828 + }, + { + "start": 1364.46, + "end": 1365.1, + "probability": 0.9921 + }, + { + "start": 1365.94, + "end": 1369.84, + "probability": 0.9988 + }, + { + "start": 1370.66, + "end": 1372.58, + "probability": 0.9773 + }, + { + "start": 1373.06, + "end": 1374.94, + "probability": 0.9878 + }, + { + "start": 1375.4, + "end": 1376.48, + "probability": 0.989 + }, + { + "start": 1376.9, + "end": 1378.1, + "probability": 0.9795 + }, + { + "start": 1378.56, + "end": 1381.16, + "probability": 0.9443 + }, + { + "start": 1382.32, + "end": 1386.22, + "probability": 0.983 + }, + { + "start": 1386.94, + "end": 1388.36, + "probability": 0.886 + }, + { + "start": 1389.0, + "end": 1392.78, + "probability": 0.9559 + }, + { + "start": 1393.96, + "end": 1401.16, + "probability": 0.9976 + }, + { + "start": 1401.8, + "end": 1402.74, + "probability": 0.9798 + }, + { + "start": 1403.62, + "end": 1407.5, + "probability": 0.985 + }, + { + "start": 1408.32, + "end": 1412.24, + "probability": 0.9971 + }, + { + "start": 1412.9, + "end": 1416.3, + "probability": 0.6294 + }, + { + "start": 1417.34, + "end": 1420.3, + "probability": 0.9907 + }, + { + "start": 1421.66, + "end": 1422.34, + "probability": 0.5864 + }, + { + "start": 1423.54, + "end": 1424.98, + "probability": 0.9971 + }, + { + "start": 1425.96, + "end": 1426.72, + "probability": 0.5053 + }, + { + "start": 1427.38, + "end": 1429.54, + "probability": 0.7844 + }, + { + "start": 1431.76, + "end": 1432.94, + "probability": 0.9601 + }, + { + "start": 1435.34, + "end": 1436.54, + "probability": 0.2223 + }, + { + "start": 1437.64, + "end": 1442.0, + "probability": 0.9239 + }, + { + "start": 1442.86, + "end": 1444.7, + "probability": 0.7459 + }, + { + "start": 1445.34, + "end": 1446.14, + "probability": 0.6239 + }, + { + "start": 1447.16, + "end": 1448.22, + "probability": 0.8486 + }, + { + "start": 1449.08, + "end": 1452.6, + "probability": 0.9909 + }, + { + "start": 1453.38, + "end": 1458.36, + "probability": 0.8631 + }, + { + "start": 1459.84, + "end": 1465.44, + "probability": 0.9954 + }, + { + "start": 1466.32, + "end": 1468.0, + "probability": 0.9187 + }, + { + "start": 1469.46, + "end": 1471.26, + "probability": 0.9421 + }, + { + "start": 1472.38, + "end": 1474.5, + "probability": 0.9639 + }, + { + "start": 1475.16, + "end": 1476.09, + "probability": 0.9756 + }, + { + "start": 1476.26, + "end": 1480.36, + "probability": 0.9932 + }, + { + "start": 1481.02, + "end": 1482.88, + "probability": 0.8538 + }, + { + "start": 1483.94, + "end": 1485.88, + "probability": 0.9871 + }, + { + "start": 1486.58, + "end": 1487.5, + "probability": 0.6387 + }, + { + "start": 1488.72, + "end": 1489.88, + "probability": 0.5986 + }, + { + "start": 1491.18, + "end": 1500.0, + "probability": 0.994 + }, + { + "start": 1500.02, + "end": 1500.56, + "probability": 0.6566 + }, + { + "start": 1502.02, + "end": 1506.8, + "probability": 0.9831 + }, + { + "start": 1506.9, + "end": 1507.6, + "probability": 0.3404 + }, + { + "start": 1508.3, + "end": 1510.88, + "probability": 0.9895 + }, + { + "start": 1511.72, + "end": 1513.0, + "probability": 0.7857 + }, + { + "start": 1513.9, + "end": 1518.24, + "probability": 0.9945 + }, + { + "start": 1518.84, + "end": 1520.72, + "probability": 0.9703 + }, + { + "start": 1520.92, + "end": 1524.9, + "probability": 0.9702 + }, + { + "start": 1525.58, + "end": 1526.44, + "probability": 0.9942 + }, + { + "start": 1528.0, + "end": 1530.24, + "probability": 0.7856 + }, + { + "start": 1531.04, + "end": 1532.56, + "probability": 0.984 + }, + { + "start": 1533.32, + "end": 1536.14, + "probability": 0.5168 + }, + { + "start": 1537.26, + "end": 1537.86, + "probability": 0.9828 + }, + { + "start": 1538.7, + "end": 1544.26, + "probability": 0.9836 + }, + { + "start": 1544.92, + "end": 1547.76, + "probability": 0.9813 + }, + { + "start": 1548.46, + "end": 1551.58, + "probability": 0.9928 + }, + { + "start": 1552.46, + "end": 1552.88, + "probability": 0.7585 + }, + { + "start": 1553.48, + "end": 1555.24, + "probability": 0.588 + }, + { + "start": 1555.54, + "end": 1558.32, + "probability": 0.9824 + }, + { + "start": 1558.44, + "end": 1561.58, + "probability": 0.9482 + }, + { + "start": 1562.18, + "end": 1562.78, + "probability": 0.9431 + }, + { + "start": 1566.44, + "end": 1570.0, + "probability": 0.9575 + }, + { + "start": 1577.8, + "end": 1578.58, + "probability": 0.6295 + }, + { + "start": 1578.68, + "end": 1580.0, + "probability": 0.9167 + }, + { + "start": 1584.55, + "end": 1588.9, + "probability": 0.7538 + }, + { + "start": 1589.72, + "end": 1591.0, + "probability": 0.7913 + }, + { + "start": 1592.68, + "end": 1595.7, + "probability": 0.9774 + }, + { + "start": 1596.4, + "end": 1597.62, + "probability": 0.7495 + }, + { + "start": 1599.22, + "end": 1601.66, + "probability": 0.9891 + }, + { + "start": 1602.38, + "end": 1604.26, + "probability": 0.9325 + }, + { + "start": 1605.44, + "end": 1608.96, + "probability": 0.9609 + }, + { + "start": 1609.96, + "end": 1612.14, + "probability": 0.9902 + }, + { + "start": 1612.9, + "end": 1614.55, + "probability": 0.9493 + }, + { + "start": 1615.48, + "end": 1618.5, + "probability": 0.9902 + }, + { + "start": 1619.6, + "end": 1623.8, + "probability": 0.9573 + }, + { + "start": 1625.48, + "end": 1629.22, + "probability": 0.7079 + }, + { + "start": 1629.98, + "end": 1636.62, + "probability": 0.9728 + }, + { + "start": 1637.66, + "end": 1641.58, + "probability": 0.996 + }, + { + "start": 1642.16, + "end": 1644.02, + "probability": 0.9891 + }, + { + "start": 1645.06, + "end": 1647.0, + "probability": 0.9487 + }, + { + "start": 1647.5, + "end": 1649.88, + "probability": 0.9764 + }, + { + "start": 1650.42, + "end": 1651.28, + "probability": 0.9457 + }, + { + "start": 1652.46, + "end": 1655.08, + "probability": 0.9951 + }, + { + "start": 1656.2, + "end": 1659.09, + "probability": 0.9133 + }, + { + "start": 1660.46, + "end": 1661.92, + "probability": 0.9257 + }, + { + "start": 1662.62, + "end": 1664.34, + "probability": 0.8715 + }, + { + "start": 1665.2, + "end": 1669.2, + "probability": 0.8851 + }, + { + "start": 1669.92, + "end": 1670.5, + "probability": 0.9937 + }, + { + "start": 1671.02, + "end": 1675.8, + "probability": 0.8727 + }, + { + "start": 1676.64, + "end": 1678.9, + "probability": 0.9221 + }, + { + "start": 1680.64, + "end": 1681.86, + "probability": 0.8581 + }, + { + "start": 1682.82, + "end": 1686.56, + "probability": 0.9866 + }, + { + "start": 1687.28, + "end": 1688.88, + "probability": 0.9585 + }, + { + "start": 1690.84, + "end": 1693.66, + "probability": 0.9629 + }, + { + "start": 1694.26, + "end": 1697.96, + "probability": 0.9564 + }, + { + "start": 1698.38, + "end": 1700.92, + "probability": 0.806 + }, + { + "start": 1702.0, + "end": 1703.26, + "probability": 0.981 + }, + { + "start": 1704.18, + "end": 1705.96, + "probability": 0.8121 + }, + { + "start": 1706.36, + "end": 1709.0, + "probability": 0.9603 + }, + { + "start": 1709.76, + "end": 1711.28, + "probability": 0.984 + }, + { + "start": 1711.74, + "end": 1715.22, + "probability": 0.9803 + }, + { + "start": 1716.38, + "end": 1717.8, + "probability": 0.9869 + }, + { + "start": 1718.38, + "end": 1721.54, + "probability": 0.7946 + }, + { + "start": 1722.22, + "end": 1723.44, + "probability": 0.997 + }, + { + "start": 1723.96, + "end": 1730.02, + "probability": 0.9668 + }, + { + "start": 1731.96, + "end": 1735.12, + "probability": 0.6553 + }, + { + "start": 1735.7, + "end": 1736.86, + "probability": 0.9702 + }, + { + "start": 1738.0, + "end": 1741.58, + "probability": 0.9595 + }, + { + "start": 1742.08, + "end": 1742.5, + "probability": 0.9012 + }, + { + "start": 1742.92, + "end": 1744.36, + "probability": 0.9905 + }, + { + "start": 1745.3, + "end": 1747.54, + "probability": 0.6728 + }, + { + "start": 1748.9, + "end": 1749.74, + "probability": 0.6145 + }, + { + "start": 1749.76, + "end": 1750.36, + "probability": 0.5518 + }, + { + "start": 1750.86, + "end": 1751.58, + "probability": 0.6915 + }, + { + "start": 1752.06, + "end": 1753.14, + "probability": 0.841 + }, + { + "start": 1753.2, + "end": 1754.0, + "probability": 0.862 + }, + { + "start": 1754.74, + "end": 1755.54, + "probability": 0.5254 + }, + { + "start": 1756.14, + "end": 1757.54, + "probability": 0.9758 + }, + { + "start": 1758.5, + "end": 1761.32, + "probability": 0.8525 + }, + { + "start": 1761.92, + "end": 1762.7, + "probability": 0.7858 + }, + { + "start": 1762.78, + "end": 1766.42, + "probability": 0.9695 + }, + { + "start": 1767.32, + "end": 1768.48, + "probability": 0.5204 + }, + { + "start": 1768.68, + "end": 1770.72, + "probability": 0.8639 + }, + { + "start": 1771.58, + "end": 1773.44, + "probability": 0.8654 + }, + { + "start": 1774.06, + "end": 1778.86, + "probability": 0.8827 + }, + { + "start": 1779.98, + "end": 1783.0, + "probability": 0.8645 + }, + { + "start": 1783.54, + "end": 1785.8, + "probability": 0.9245 + }, + { + "start": 1785.8, + "end": 1789.02, + "probability": 0.9148 + }, + { + "start": 1790.68, + "end": 1792.08, + "probability": 0.8536 + }, + { + "start": 1792.34, + "end": 1796.66, + "probability": 0.848 + }, + { + "start": 1796.84, + "end": 1798.36, + "probability": 0.8466 + }, + { + "start": 1798.92, + "end": 1801.9, + "probability": 0.9109 + }, + { + "start": 1802.94, + "end": 1806.0, + "probability": 0.7033 + }, + { + "start": 1807.5, + "end": 1809.4, + "probability": 0.5493 + }, + { + "start": 1809.86, + "end": 1813.3, + "probability": 0.9687 + }, + { + "start": 1813.3, + "end": 1816.0, + "probability": 0.9828 + }, + { + "start": 1817.54, + "end": 1818.16, + "probability": 0.6569 + }, + { + "start": 1818.66, + "end": 1819.88, + "probability": 0.7908 + }, + { + "start": 1820.48, + "end": 1821.22, + "probability": 0.7666 + }, + { + "start": 1821.98, + "end": 1823.14, + "probability": 0.8709 + }, + { + "start": 1823.76, + "end": 1824.38, + "probability": 0.8371 + }, + { + "start": 1825.06, + "end": 1825.42, + "probability": 0.8438 + }, + { + "start": 1826.06, + "end": 1826.78, + "probability": 0.6931 + }, + { + "start": 1827.26, + "end": 1827.94, + "probability": 0.9016 + }, + { + "start": 1828.2, + "end": 1832.38, + "probability": 0.9907 + }, + { + "start": 1833.42, + "end": 1835.6, + "probability": 0.9961 + }, + { + "start": 1836.38, + "end": 1838.1, + "probability": 0.9746 + }, + { + "start": 1838.84, + "end": 1840.48, + "probability": 0.8774 + }, + { + "start": 1841.14, + "end": 1842.5, + "probability": 0.9581 + }, + { + "start": 1842.94, + "end": 1846.34, + "probability": 0.986 + }, + { + "start": 1846.84, + "end": 1850.82, + "probability": 0.9114 + }, + { + "start": 1851.32, + "end": 1851.62, + "probability": 0.7144 + }, + { + "start": 1851.66, + "end": 1851.94, + "probability": 0.4599 + }, + { + "start": 1853.34, + "end": 1854.92, + "probability": 0.8872 + }, + { + "start": 1855.38, + "end": 1857.16, + "probability": 0.9037 + }, + { + "start": 1857.6, + "end": 1858.86, + "probability": 0.9746 + }, + { + "start": 1859.68, + "end": 1860.52, + "probability": 0.8526 + }, + { + "start": 1861.02, + "end": 1863.44, + "probability": 0.9718 + }, + { + "start": 1863.98, + "end": 1866.56, + "probability": 0.9173 + }, + { + "start": 1867.4, + "end": 1871.12, + "probability": 0.9159 + }, + { + "start": 1872.22, + "end": 1876.86, + "probability": 0.7988 + }, + { + "start": 1878.02, + "end": 1879.14, + "probability": 0.9912 + }, + { + "start": 1879.46, + "end": 1880.88, + "probability": 0.9352 + }, + { + "start": 1881.32, + "end": 1882.38, + "probability": 0.9314 + }, + { + "start": 1882.8, + "end": 1884.66, + "probability": 0.9767 + }, + { + "start": 1885.2, + "end": 1885.76, + "probability": 0.6918 + }, + { + "start": 1886.86, + "end": 1889.94, + "probability": 0.7152 + }, + { + "start": 1890.2, + "end": 1895.66, + "probability": 0.9272 + }, + { + "start": 1896.28, + "end": 1897.44, + "probability": 0.8334 + }, + { + "start": 1897.6, + "end": 1898.04, + "probability": 0.947 + }, + { + "start": 1898.7, + "end": 1901.34, + "probability": 0.9083 + }, + { + "start": 1901.34, + "end": 1902.23, + "probability": 0.7715 + }, + { + "start": 1905.58, + "end": 1906.06, + "probability": 0.6004 + }, + { + "start": 1907.0, + "end": 1909.92, + "probability": 0.9585 + }, + { + "start": 1910.08, + "end": 1912.46, + "probability": 0.5647 + }, + { + "start": 1914.74, + "end": 1915.28, + "probability": 0.7484 + }, + { + "start": 1933.58, + "end": 1933.9, + "probability": 0.6983 + }, + { + "start": 1933.9, + "end": 1935.54, + "probability": 0.4009 + }, + { + "start": 1940.94, + "end": 1944.06, + "probability": 0.9036 + }, + { + "start": 1944.72, + "end": 1949.86, + "probability": 0.8967 + }, + { + "start": 1949.86, + "end": 1954.82, + "probability": 0.9745 + }, + { + "start": 1955.42, + "end": 1957.64, + "probability": 0.6866 + }, + { + "start": 1958.74, + "end": 1959.54, + "probability": 0.8718 + }, + { + "start": 1960.1, + "end": 1960.9, + "probability": 0.9172 + }, + { + "start": 1961.86, + "end": 1963.36, + "probability": 0.8433 + }, + { + "start": 1964.26, + "end": 1967.08, + "probability": 0.9613 + }, + { + "start": 1967.08, + "end": 1969.38, + "probability": 0.9927 + }, + { + "start": 1970.22, + "end": 1974.5, + "probability": 0.9746 + }, + { + "start": 1975.32, + "end": 1975.76, + "probability": 0.723 + }, + { + "start": 1976.54, + "end": 1982.32, + "probability": 0.9832 + }, + { + "start": 1983.28, + "end": 1988.58, + "probability": 0.9656 + }, + { + "start": 1989.36, + "end": 1989.76, + "probability": 0.7259 + }, + { + "start": 1990.32, + "end": 1991.54, + "probability": 0.7167 + }, + { + "start": 1992.36, + "end": 1995.66, + "probability": 0.9578 + }, + { + "start": 1997.28, + "end": 1999.22, + "probability": 0.97 + }, + { + "start": 1999.94, + "end": 2002.44, + "probability": 0.9821 + }, + { + "start": 2003.32, + "end": 2003.98, + "probability": 0.4052 + }, + { + "start": 2004.16, + "end": 2004.82, + "probability": 0.8239 + }, + { + "start": 2005.3, + "end": 2008.02, + "probability": 0.9732 + }, + { + "start": 2009.04, + "end": 2009.8, + "probability": 0.9774 + }, + { + "start": 2010.34, + "end": 2015.5, + "probability": 0.9884 + }, + { + "start": 2016.6, + "end": 2019.26, + "probability": 0.9691 + }, + { + "start": 2020.02, + "end": 2021.04, + "probability": 0.7374 + }, + { + "start": 2021.98, + "end": 2025.66, + "probability": 0.9928 + }, + { + "start": 2026.68, + "end": 2029.34, + "probability": 0.9803 + }, + { + "start": 2029.42, + "end": 2031.02, + "probability": 0.9556 + }, + { + "start": 2032.04, + "end": 2034.24, + "probability": 0.9755 + }, + { + "start": 2034.88, + "end": 2037.54, + "probability": 0.8935 + }, + { + "start": 2038.26, + "end": 2041.86, + "probability": 0.9914 + }, + { + "start": 2042.9, + "end": 2044.44, + "probability": 0.9152 + }, + { + "start": 2045.14, + "end": 2046.99, + "probability": 0.9731 + }, + { + "start": 2048.82, + "end": 2051.36, + "probability": 0.9648 + }, + { + "start": 2052.1, + "end": 2054.6, + "probability": 0.8965 + }, + { + "start": 2055.62, + "end": 2058.22, + "probability": 0.9991 + }, + { + "start": 2059.16, + "end": 2062.12, + "probability": 0.949 + }, + { + "start": 2062.64, + "end": 2064.36, + "probability": 0.9872 + }, + { + "start": 2064.52, + "end": 2066.66, + "probability": 0.992 + }, + { + "start": 2067.66, + "end": 2071.47, + "probability": 0.8374 + }, + { + "start": 2071.9, + "end": 2072.9, + "probability": 0.8804 + }, + { + "start": 2073.56, + "end": 2073.78, + "probability": 0.9655 + }, + { + "start": 2074.46, + "end": 2075.2, + "probability": 0.8177 + }, + { + "start": 2075.32, + "end": 2077.22, + "probability": 0.9738 + }, + { + "start": 2077.7, + "end": 2079.76, + "probability": 0.9969 + }, + { + "start": 2080.42, + "end": 2083.06, + "probability": 0.9621 + }, + { + "start": 2084.1, + "end": 2087.06, + "probability": 0.9966 + }, + { + "start": 2087.24, + "end": 2088.62, + "probability": 0.7382 + }, + { + "start": 2089.0, + "end": 2089.96, + "probability": 0.902 + }, + { + "start": 2091.62, + "end": 2096.26, + "probability": 0.9929 + }, + { + "start": 2097.12, + "end": 2097.96, + "probability": 0.959 + }, + { + "start": 2098.68, + "end": 2099.46, + "probability": 0.6652 + }, + { + "start": 2099.66, + "end": 2104.24, + "probability": 0.9676 + }, + { + "start": 2104.98, + "end": 2107.46, + "probability": 0.925 + }, + { + "start": 2107.9, + "end": 2109.58, + "probability": 0.9976 + }, + { + "start": 2109.72, + "end": 2112.88, + "probability": 0.9365 + }, + { + "start": 2113.7, + "end": 2117.98, + "probability": 0.9878 + }, + { + "start": 2118.44, + "end": 2120.5, + "probability": 0.3542 + }, + { + "start": 2121.62, + "end": 2124.58, + "probability": 0.9944 + }, + { + "start": 2124.8, + "end": 2127.28, + "probability": 0.9983 + }, + { + "start": 2127.28, + "end": 2130.2, + "probability": 0.903 + }, + { + "start": 2130.66, + "end": 2136.58, + "probability": 0.9026 + }, + { + "start": 2137.42, + "end": 2139.82, + "probability": 0.9944 + }, + { + "start": 2140.14, + "end": 2141.54, + "probability": 0.9787 + }, + { + "start": 2141.64, + "end": 2142.54, + "probability": 0.9221 + }, + { + "start": 2143.24, + "end": 2147.08, + "probability": 0.9614 + }, + { + "start": 2147.52, + "end": 2151.62, + "probability": 0.951 + }, + { + "start": 2152.5, + "end": 2155.78, + "probability": 0.9944 + }, + { + "start": 2156.38, + "end": 2157.66, + "probability": 0.9783 + }, + { + "start": 2158.68, + "end": 2159.78, + "probability": 0.8598 + }, + { + "start": 2159.88, + "end": 2162.06, + "probability": 0.8588 + }, + { + "start": 2162.9, + "end": 2165.7, + "probability": 0.998 + }, + { + "start": 2166.74, + "end": 2169.3, + "probability": 0.991 + }, + { + "start": 2170.34, + "end": 2171.52, + "probability": 0.9026 + }, + { + "start": 2172.54, + "end": 2174.76, + "probability": 0.9738 + }, + { + "start": 2175.56, + "end": 2177.0, + "probability": 0.5627 + }, + { + "start": 2177.68, + "end": 2178.7, + "probability": 0.8515 + }, + { + "start": 2179.16, + "end": 2181.7, + "probability": 0.9346 + }, + { + "start": 2182.44, + "end": 2185.8, + "probability": 0.9337 + }, + { + "start": 2186.36, + "end": 2188.0, + "probability": 0.9772 + }, + { + "start": 2188.62, + "end": 2191.08, + "probability": 0.9547 + }, + { + "start": 2191.94, + "end": 2192.78, + "probability": 0.6621 + }, + { + "start": 2192.88, + "end": 2194.84, + "probability": 0.6648 + }, + { + "start": 2194.94, + "end": 2195.58, + "probability": 0.9709 + }, + { + "start": 2195.66, + "end": 2198.09, + "probability": 0.989 + }, + { + "start": 2198.12, + "end": 2201.12, + "probability": 0.9204 + }, + { + "start": 2201.92, + "end": 2202.48, + "probability": 0.7381 + }, + { + "start": 2203.28, + "end": 2204.8, + "probability": 0.8593 + }, + { + "start": 2205.66, + "end": 2207.28, + "probability": 0.9721 + }, + { + "start": 2208.44, + "end": 2210.74, + "probability": 0.8767 + }, + { + "start": 2211.18, + "end": 2213.16, + "probability": 0.911 + }, + { + "start": 2213.62, + "end": 2217.7, + "probability": 0.9919 + }, + { + "start": 2218.04, + "end": 2221.94, + "probability": 0.8447 + }, + { + "start": 2222.48, + "end": 2223.74, + "probability": 0.9421 + }, + { + "start": 2227.8, + "end": 2230.0, + "probability": 0.9933 + }, + { + "start": 2230.34, + "end": 2233.08, + "probability": 0.9967 + }, + { + "start": 2233.8, + "end": 2235.34, + "probability": 0.8706 + }, + { + "start": 2236.12, + "end": 2237.08, + "probability": 0.9574 + }, + { + "start": 2237.78, + "end": 2240.82, + "probability": 0.9982 + }, + { + "start": 2241.38, + "end": 2243.06, + "probability": 0.8669 + }, + { + "start": 2243.16, + "end": 2243.54, + "probability": 0.672 + }, + { + "start": 2243.96, + "end": 2245.9, + "probability": 0.9902 + }, + { + "start": 2245.94, + "end": 2246.98, + "probability": 0.9867 + }, + { + "start": 2247.72, + "end": 2248.8, + "probability": 0.9585 + }, + { + "start": 2249.3, + "end": 2251.56, + "probability": 0.8159 + }, + { + "start": 2251.56, + "end": 2254.18, + "probability": 0.9616 + }, + { + "start": 2254.52, + "end": 2255.01, + "probability": 0.9772 + }, + { + "start": 2255.8, + "end": 2257.7, + "probability": 0.9883 + }, + { + "start": 2258.64, + "end": 2259.73, + "probability": 0.7565 + }, + { + "start": 2260.58, + "end": 2264.88, + "probability": 0.9814 + }, + { + "start": 2265.9, + "end": 2268.68, + "probability": 0.8954 + }, + { + "start": 2268.76, + "end": 2269.98, + "probability": 0.9878 + }, + { + "start": 2270.74, + "end": 2271.08, + "probability": 0.7382 + }, + { + "start": 2271.14, + "end": 2271.46, + "probability": 0.7292 + }, + { + "start": 2271.52, + "end": 2276.3, + "probability": 0.9891 + }, + { + "start": 2276.72, + "end": 2282.16, + "probability": 0.986 + }, + { + "start": 2283.08, + "end": 2285.74, + "probability": 0.693 + }, + { + "start": 2286.1, + "end": 2288.0, + "probability": 0.862 + }, + { + "start": 2288.4, + "end": 2290.8, + "probability": 0.9946 + }, + { + "start": 2291.34, + "end": 2292.5, + "probability": 0.801 + }, + { + "start": 2293.3, + "end": 2296.3, + "probability": 0.7923 + }, + { + "start": 2297.18, + "end": 2298.48, + "probability": 0.5884 + }, + { + "start": 2299.16, + "end": 2302.38, + "probability": 0.8915 + }, + { + "start": 2302.96, + "end": 2304.0, + "probability": 0.9215 + }, + { + "start": 2304.76, + "end": 2305.16, + "probability": 0.8387 + }, + { + "start": 2306.72, + "end": 2308.52, + "probability": 0.7182 + }, + { + "start": 2308.74, + "end": 2310.74, + "probability": 0.7643 + }, + { + "start": 2317.92, + "end": 2317.92, + "probability": 0.4095 + }, + { + "start": 2317.92, + "end": 2317.92, + "probability": 0.0986 + }, + { + "start": 2317.92, + "end": 2317.92, + "probability": 0.2166 + }, + { + "start": 2317.92, + "end": 2317.92, + "probability": 0.2018 + }, + { + "start": 2317.92, + "end": 2317.92, + "probability": 0.0809 + }, + { + "start": 2317.92, + "end": 2317.92, + "probability": 0.0597 + }, + { + "start": 2317.92, + "end": 2317.94, + "probability": 0.0379 + }, + { + "start": 2336.12, + "end": 2336.64, + "probability": 0.5892 + }, + { + "start": 2337.74, + "end": 2338.76, + "probability": 0.9985 + }, + { + "start": 2340.42, + "end": 2341.32, + "probability": 0.8162 + }, + { + "start": 2341.94, + "end": 2343.14, + "probability": 0.9946 + }, + { + "start": 2343.68, + "end": 2346.62, + "probability": 0.9858 + }, + { + "start": 2347.46, + "end": 2348.8, + "probability": 0.8164 + }, + { + "start": 2349.86, + "end": 2351.54, + "probability": 0.9934 + }, + { + "start": 2351.62, + "end": 2354.86, + "probability": 0.9729 + }, + { + "start": 2356.0, + "end": 2361.46, + "probability": 0.978 + }, + { + "start": 2361.58, + "end": 2363.04, + "probability": 0.9105 + }, + { + "start": 2363.54, + "end": 2366.98, + "probability": 0.8559 + }, + { + "start": 2367.82, + "end": 2372.46, + "probability": 0.9337 + }, + { + "start": 2373.92, + "end": 2379.94, + "probability": 0.9663 + }, + { + "start": 2380.88, + "end": 2384.16, + "probability": 0.998 + }, + { + "start": 2385.06, + "end": 2388.6, + "probability": 0.998 + }, + { + "start": 2390.04, + "end": 2390.9, + "probability": 0.5489 + }, + { + "start": 2391.52, + "end": 2394.66, + "probability": 0.9976 + }, + { + "start": 2394.78, + "end": 2395.5, + "probability": 0.9434 + }, + { + "start": 2395.56, + "end": 2396.84, + "probability": 0.9958 + }, + { + "start": 2396.88, + "end": 2397.68, + "probability": 0.9844 + }, + { + "start": 2398.16, + "end": 2399.5, + "probability": 0.9645 + }, + { + "start": 2399.5, + "end": 2403.06, + "probability": 0.9978 + }, + { + "start": 2404.2, + "end": 2408.06, + "probability": 0.6483 + }, + { + "start": 2408.64, + "end": 2412.38, + "probability": 0.9941 + }, + { + "start": 2413.8, + "end": 2415.64, + "probability": 0.9964 + }, + { + "start": 2415.7, + "end": 2418.04, + "probability": 0.9985 + }, + { + "start": 2418.44, + "end": 2418.94, + "probability": 0.8672 + }, + { + "start": 2419.92, + "end": 2422.74, + "probability": 0.9982 + }, + { + "start": 2423.56, + "end": 2425.72, + "probability": 0.9975 + }, + { + "start": 2426.44, + "end": 2430.5, + "probability": 0.9991 + }, + { + "start": 2430.76, + "end": 2432.56, + "probability": 0.9761 + }, + { + "start": 2433.98, + "end": 2436.56, + "probability": 0.9248 + }, + { + "start": 2437.18, + "end": 2439.54, + "probability": 0.7983 + }, + { + "start": 2440.12, + "end": 2440.58, + "probability": 0.8126 + }, + { + "start": 2440.78, + "end": 2441.54, + "probability": 0.9756 + }, + { + "start": 2441.74, + "end": 2446.46, + "probability": 0.7231 + }, + { + "start": 2447.04, + "end": 2451.3, + "probability": 0.996 + }, + { + "start": 2451.36, + "end": 2452.9, + "probability": 0.985 + }, + { + "start": 2453.34, + "end": 2454.82, + "probability": 0.9795 + }, + { + "start": 2454.88, + "end": 2458.18, + "probability": 0.9755 + }, + { + "start": 2458.36, + "end": 2458.84, + "probability": 0.6151 + }, + { + "start": 2459.56, + "end": 2460.36, + "probability": 0.9506 + }, + { + "start": 2460.86, + "end": 2462.16, + "probability": 0.482 + }, + { + "start": 2462.44, + "end": 2465.68, + "probability": 0.9862 + }, + { + "start": 2466.76, + "end": 2469.46, + "probability": 0.9957 + }, + { + "start": 2470.24, + "end": 2472.76, + "probability": 0.8755 + }, + { + "start": 2473.38, + "end": 2474.7, + "probability": 0.987 + }, + { + "start": 2475.12, + "end": 2477.08, + "probability": 0.9923 + }, + { + "start": 2477.12, + "end": 2479.42, + "probability": 0.9966 + }, + { + "start": 2480.22, + "end": 2482.56, + "probability": 0.9918 + }, + { + "start": 2483.64, + "end": 2483.82, + "probability": 0.7898 + }, + { + "start": 2484.2, + "end": 2484.72, + "probability": 0.5284 + }, + { + "start": 2484.82, + "end": 2485.08, + "probability": 0.8658 + }, + { + "start": 2485.78, + "end": 2486.9, + "probability": 0.9802 + }, + { + "start": 2487.54, + "end": 2490.4, + "probability": 0.9177 + }, + { + "start": 2490.52, + "end": 2491.2, + "probability": 0.9081 + }, + { + "start": 2492.3, + "end": 2497.18, + "probability": 0.9941 + }, + { + "start": 2498.54, + "end": 2503.86, + "probability": 0.9951 + }, + { + "start": 2504.66, + "end": 2508.02, + "probability": 0.9987 + }, + { + "start": 2508.94, + "end": 2512.1, + "probability": 0.9973 + }, + { + "start": 2512.24, + "end": 2514.76, + "probability": 0.9992 + }, + { + "start": 2515.48, + "end": 2517.62, + "probability": 0.8924 + }, + { + "start": 2517.7, + "end": 2518.9, + "probability": 0.9863 + }, + { + "start": 2519.78, + "end": 2522.04, + "probability": 0.8428 + }, + { + "start": 2522.18, + "end": 2522.68, + "probability": 0.9387 + }, + { + "start": 2522.74, + "end": 2523.43, + "probability": 0.7822 + }, + { + "start": 2524.82, + "end": 2527.16, + "probability": 0.9967 + }, + { + "start": 2527.84, + "end": 2531.04, + "probability": 0.9989 + }, + { + "start": 2531.56, + "end": 2535.48, + "probability": 0.9937 + }, + { + "start": 2536.3, + "end": 2537.1, + "probability": 0.8899 + }, + { + "start": 2537.36, + "end": 2540.04, + "probability": 0.8828 + }, + { + "start": 2540.1, + "end": 2541.24, + "probability": 0.9541 + }, + { + "start": 2541.98, + "end": 2544.52, + "probability": 0.9956 + }, + { + "start": 2544.6, + "end": 2546.32, + "probability": 0.9061 + }, + { + "start": 2546.86, + "end": 2548.72, + "probability": 0.9756 + }, + { + "start": 2549.44, + "end": 2551.72, + "probability": 0.9653 + }, + { + "start": 2552.34, + "end": 2554.6, + "probability": 0.9944 + }, + { + "start": 2555.88, + "end": 2556.64, + "probability": 0.7288 + }, + { + "start": 2556.68, + "end": 2557.96, + "probability": 0.9637 + }, + { + "start": 2558.04, + "end": 2562.62, + "probability": 0.9979 + }, + { + "start": 2563.86, + "end": 2564.92, + "probability": 0.8799 + }, + { + "start": 2565.44, + "end": 2566.28, + "probability": 0.6548 + }, + { + "start": 2566.54, + "end": 2567.08, + "probability": 0.8164 + }, + { + "start": 2567.22, + "end": 2568.18, + "probability": 0.9867 + }, + { + "start": 2568.32, + "end": 2571.34, + "probability": 0.9933 + }, + { + "start": 2571.8, + "end": 2573.76, + "probability": 0.9943 + }, + { + "start": 2574.18, + "end": 2575.74, + "probability": 0.999 + }, + { + "start": 2576.62, + "end": 2578.56, + "probability": 0.9696 + }, + { + "start": 2579.04, + "end": 2581.84, + "probability": 0.9899 + }, + { + "start": 2582.8, + "end": 2586.3, + "probability": 0.9739 + }, + { + "start": 2586.38, + "end": 2588.04, + "probability": 0.9924 + }, + { + "start": 2588.64, + "end": 2590.34, + "probability": 0.9956 + }, + { + "start": 2590.9, + "end": 2594.08, + "probability": 0.9586 + }, + { + "start": 2594.44, + "end": 2594.62, + "probability": 0.9191 + }, + { + "start": 2594.7, + "end": 2595.84, + "probability": 0.9889 + }, + { + "start": 2595.88, + "end": 2598.1, + "probability": 0.9931 + }, + { + "start": 2599.42, + "end": 2602.36, + "probability": 0.9993 + }, + { + "start": 2602.98, + "end": 2605.12, + "probability": 0.993 + }, + { + "start": 2605.38, + "end": 2606.26, + "probability": 0.7129 + }, + { + "start": 2606.94, + "end": 2607.62, + "probability": 0.7107 + }, + { + "start": 2607.7, + "end": 2608.76, + "probability": 0.9409 + }, + { + "start": 2608.9, + "end": 2609.84, + "probability": 0.9595 + }, + { + "start": 2609.92, + "end": 2611.24, + "probability": 0.9952 + }, + { + "start": 2611.8, + "end": 2616.3, + "probability": 0.9884 + }, + { + "start": 2617.0, + "end": 2618.32, + "probability": 0.9617 + }, + { + "start": 2618.48, + "end": 2620.96, + "probability": 0.8898 + }, + { + "start": 2621.46, + "end": 2624.1, + "probability": 0.999 + }, + { + "start": 2624.34, + "end": 2626.42, + "probability": 0.9769 + }, + { + "start": 2626.98, + "end": 2627.68, + "probability": 0.988 + }, + { + "start": 2628.5, + "end": 2630.66, + "probability": 0.8756 + }, + { + "start": 2631.0, + "end": 2633.5, + "probability": 0.9387 + }, + { + "start": 2634.74, + "end": 2635.88, + "probability": 0.9293 + }, + { + "start": 2636.16, + "end": 2637.92, + "probability": 0.9709 + }, + { + "start": 2638.08, + "end": 2641.88, + "probability": 0.9901 + }, + { + "start": 2642.36, + "end": 2643.68, + "probability": 0.9912 + }, + { + "start": 2643.78, + "end": 2644.24, + "probability": 0.8967 + }, + { + "start": 2644.34, + "end": 2644.72, + "probability": 0.3576 + }, + { + "start": 2644.84, + "end": 2645.66, + "probability": 0.736 + }, + { + "start": 2646.32, + "end": 2646.86, + "probability": 0.7857 + }, + { + "start": 2647.4, + "end": 2650.04, + "probability": 0.9097 + }, + { + "start": 2650.42, + "end": 2652.12, + "probability": 0.9174 + }, + { + "start": 2652.72, + "end": 2654.56, + "probability": 0.9899 + }, + { + "start": 2654.72, + "end": 2655.62, + "probability": 0.9536 + }, + { + "start": 2656.14, + "end": 2657.94, + "probability": 0.9561 + }, + { + "start": 2658.08, + "end": 2659.14, + "probability": 0.8704 + }, + { + "start": 2659.26, + "end": 2660.56, + "probability": 0.9697 + }, + { + "start": 2661.04, + "end": 2664.42, + "probability": 0.9902 + }, + { + "start": 2665.1, + "end": 2667.78, + "probability": 0.9856 + }, + { + "start": 2668.26, + "end": 2670.53, + "probability": 0.9988 + }, + { + "start": 2670.72, + "end": 2671.94, + "probability": 0.9897 + }, + { + "start": 2672.56, + "end": 2675.0, + "probability": 0.9977 + }, + { + "start": 2675.08, + "end": 2678.26, + "probability": 0.9534 + }, + { + "start": 2678.64, + "end": 2681.36, + "probability": 0.9985 + }, + { + "start": 2681.78, + "end": 2684.28, + "probability": 0.9976 + }, + { + "start": 2685.08, + "end": 2687.32, + "probability": 0.9977 + }, + { + "start": 2687.52, + "end": 2690.08, + "probability": 0.999 + }, + { + "start": 2690.68, + "end": 2693.48, + "probability": 0.9906 + }, + { + "start": 2693.58, + "end": 2694.0, + "probability": 0.7671 + }, + { + "start": 2694.02, + "end": 2695.36, + "probability": 0.9536 + }, + { + "start": 2695.58, + "end": 2696.12, + "probability": 0.9769 + }, + { + "start": 2696.32, + "end": 2699.8, + "probability": 0.9935 + }, + { + "start": 2700.42, + "end": 2700.76, + "probability": 0.8271 + }, + { + "start": 2701.52, + "end": 2701.82, + "probability": 0.6896 + }, + { + "start": 2702.16, + "end": 2703.62, + "probability": 0.9582 + }, + { + "start": 2704.22, + "end": 2705.52, + "probability": 0.9884 + }, + { + "start": 2721.62, + "end": 2722.48, + "probability": 0.7151 + }, + { + "start": 2724.22, + "end": 2727.44, + "probability": 0.7195 + }, + { + "start": 2729.0, + "end": 2732.06, + "probability": 0.9841 + }, + { + "start": 2733.18, + "end": 2736.34, + "probability": 0.9803 + }, + { + "start": 2736.4, + "end": 2737.9, + "probability": 0.9886 + }, + { + "start": 2737.98, + "end": 2738.6, + "probability": 0.6142 + }, + { + "start": 2738.7, + "end": 2739.18, + "probability": 0.9125 + }, + { + "start": 2739.42, + "end": 2740.26, + "probability": 0.5196 + }, + { + "start": 2740.3, + "end": 2740.78, + "probability": 0.7961 + }, + { + "start": 2741.88, + "end": 2745.5, + "probability": 0.8843 + }, + { + "start": 2746.74, + "end": 2747.86, + "probability": 0.9835 + }, + { + "start": 2748.6, + "end": 2749.5, + "probability": 0.9912 + }, + { + "start": 2750.78, + "end": 2755.9, + "probability": 0.9888 + }, + { + "start": 2756.7, + "end": 2760.2, + "probability": 0.9814 + }, + { + "start": 2761.14, + "end": 2763.82, + "probability": 0.9327 + }, + { + "start": 2764.58, + "end": 2767.64, + "probability": 0.9828 + }, + { + "start": 2769.14, + "end": 2771.18, + "probability": 0.968 + }, + { + "start": 2772.64, + "end": 2779.3, + "probability": 0.9766 + }, + { + "start": 2780.42, + "end": 2784.86, + "probability": 0.9726 + }, + { + "start": 2785.96, + "end": 2786.89, + "probability": 0.6377 + }, + { + "start": 2788.02, + "end": 2792.3, + "probability": 0.9973 + }, + { + "start": 2793.3, + "end": 2799.06, + "probability": 0.9092 + }, + { + "start": 2799.06, + "end": 2804.48, + "probability": 0.999 + }, + { + "start": 2805.14, + "end": 2805.9, + "probability": 0.9284 + }, + { + "start": 2807.62, + "end": 2808.66, + "probability": 0.8955 + }, + { + "start": 2809.32, + "end": 2812.04, + "probability": 0.9971 + }, + { + "start": 2812.88, + "end": 2817.38, + "probability": 0.9954 + }, + { + "start": 2819.12, + "end": 2822.6, + "probability": 0.9907 + }, + { + "start": 2823.64, + "end": 2824.62, + "probability": 0.7962 + }, + { + "start": 2825.4, + "end": 2826.52, + "probability": 0.9881 + }, + { + "start": 2827.46, + "end": 2828.38, + "probability": 0.9527 + }, + { + "start": 2829.0, + "end": 2832.84, + "probability": 0.9961 + }, + { + "start": 2834.04, + "end": 2834.82, + "probability": 0.9275 + }, + { + "start": 2834.92, + "end": 2835.92, + "probability": 0.9747 + }, + { + "start": 2836.12, + "end": 2836.4, + "probability": 0.9853 + }, + { + "start": 2836.48, + "end": 2837.06, + "probability": 0.9592 + }, + { + "start": 2837.38, + "end": 2840.54, + "probability": 0.8964 + }, + { + "start": 2841.3, + "end": 2844.5, + "probability": 0.9967 + }, + { + "start": 2846.18, + "end": 2846.88, + "probability": 0.9155 + }, + { + "start": 2847.54, + "end": 2850.24, + "probability": 0.9359 + }, + { + "start": 2851.06, + "end": 2854.0, + "probability": 0.9946 + }, + { + "start": 2854.0, + "end": 2857.12, + "probability": 0.9615 + }, + { + "start": 2858.02, + "end": 2860.24, + "probability": 0.6472 + }, + { + "start": 2860.36, + "end": 2861.64, + "probability": 0.9375 + }, + { + "start": 2861.8, + "end": 2864.28, + "probability": 0.9749 + }, + { + "start": 2865.22, + "end": 2866.26, + "probability": 0.9967 + }, + { + "start": 2867.52, + "end": 2871.54, + "probability": 0.9725 + }, + { + "start": 2872.74, + "end": 2873.66, + "probability": 0.9871 + }, + { + "start": 2874.2, + "end": 2874.9, + "probability": 0.9438 + }, + { + "start": 2876.06, + "end": 2877.34, + "probability": 0.9187 + }, + { + "start": 2877.98, + "end": 2878.42, + "probability": 0.8796 + }, + { + "start": 2879.52, + "end": 2880.14, + "probability": 0.8055 + }, + { + "start": 2880.84, + "end": 2883.26, + "probability": 0.9937 + }, + { + "start": 2884.68, + "end": 2886.84, + "probability": 0.9924 + }, + { + "start": 2887.44, + "end": 2889.2, + "probability": 0.8926 + }, + { + "start": 2889.36, + "end": 2889.84, + "probability": 0.9508 + }, + { + "start": 2890.06, + "end": 2892.56, + "probability": 0.9635 + }, + { + "start": 2893.74, + "end": 2895.12, + "probability": 0.9647 + }, + { + "start": 2895.86, + "end": 2897.82, + "probability": 0.9514 + }, + { + "start": 2898.2, + "end": 2899.18, + "probability": 0.963 + }, + { + "start": 2899.94, + "end": 2903.6, + "probability": 0.9182 + }, + { + "start": 2906.06, + "end": 2907.96, + "probability": 0.9556 + }, + { + "start": 2908.96, + "end": 2913.32, + "probability": 0.762 + }, + { + "start": 2914.5, + "end": 2918.18, + "probability": 0.9927 + }, + { + "start": 2918.42, + "end": 2918.82, + "probability": 0.7456 + }, + { + "start": 2919.42, + "end": 2924.26, + "probability": 0.9898 + }, + { + "start": 2925.58, + "end": 2926.9, + "probability": 0.9424 + }, + { + "start": 2927.68, + "end": 2929.16, + "probability": 0.6226 + }, + { + "start": 2930.22, + "end": 2931.92, + "probability": 0.8072 + }, + { + "start": 2932.7, + "end": 2934.08, + "probability": 0.9619 + }, + { + "start": 2934.46, + "end": 2940.96, + "probability": 0.9605 + }, + { + "start": 2941.94, + "end": 2944.48, + "probability": 0.997 + }, + { + "start": 2945.44, + "end": 2947.64, + "probability": 0.9995 + }, + { + "start": 2947.96, + "end": 2948.48, + "probability": 0.8473 + }, + { + "start": 2948.56, + "end": 2951.04, + "probability": 0.9714 + }, + { + "start": 2952.36, + "end": 2953.8, + "probability": 0.9933 + }, + { + "start": 2954.46, + "end": 2956.42, + "probability": 0.8058 + }, + { + "start": 2957.36, + "end": 2958.8, + "probability": 0.9862 + }, + { + "start": 2959.34, + "end": 2962.9, + "probability": 0.9866 + }, + { + "start": 2963.16, + "end": 2965.12, + "probability": 0.7309 + }, + { + "start": 2966.54, + "end": 2967.92, + "probability": 0.9978 + }, + { + "start": 2969.16, + "end": 2971.08, + "probability": 0.9924 + }, + { + "start": 2972.7, + "end": 2977.04, + "probability": 0.9946 + }, + { + "start": 2977.24, + "end": 2978.76, + "probability": 0.8316 + }, + { + "start": 2979.94, + "end": 2984.18, + "probability": 0.9967 + }, + { + "start": 2985.64, + "end": 2991.92, + "probability": 0.9961 + }, + { + "start": 2992.96, + "end": 2994.74, + "probability": 0.7554 + }, + { + "start": 2995.88, + "end": 2997.38, + "probability": 0.9957 + }, + { + "start": 2998.22, + "end": 2999.72, + "probability": 0.9349 + }, + { + "start": 3000.64, + "end": 3002.4, + "probability": 0.9626 + }, + { + "start": 3003.38, + "end": 3004.44, + "probability": 0.9611 + }, + { + "start": 3005.46, + "end": 3006.63, + "probability": 0.9849 + }, + { + "start": 3008.4, + "end": 3010.66, + "probability": 0.959 + }, + { + "start": 3011.5, + "end": 3015.86, + "probability": 0.9902 + }, + { + "start": 3016.1, + "end": 3017.18, + "probability": 0.6318 + }, + { + "start": 3017.2, + "end": 3018.06, + "probability": 0.9715 + }, + { + "start": 3018.64, + "end": 3019.38, + "probability": 0.6506 + }, + { + "start": 3020.68, + "end": 3021.78, + "probability": 0.5943 + }, + { + "start": 3022.22, + "end": 3022.42, + "probability": 0.7733 + }, + { + "start": 3022.5, + "end": 3023.24, + "probability": 0.8745 + }, + { + "start": 3023.52, + "end": 3023.96, + "probability": 0.8571 + }, + { + "start": 3023.98, + "end": 3024.64, + "probability": 0.9525 + }, + { + "start": 3025.3, + "end": 3027.62, + "probability": 0.9227 + }, + { + "start": 3028.34, + "end": 3029.62, + "probability": 0.8903 + }, + { + "start": 3030.24, + "end": 3030.52, + "probability": 0.7448 + }, + { + "start": 3052.28, + "end": 3053.0, + "probability": 0.6734 + }, + { + "start": 3054.88, + "end": 3058.28, + "probability": 0.8231 + }, + { + "start": 3060.1, + "end": 3062.44, + "probability": 0.8995 + }, + { + "start": 3062.64, + "end": 3064.62, + "probability": 0.5749 + }, + { + "start": 3065.1, + "end": 3067.14, + "probability": 0.9902 + }, + { + "start": 3067.76, + "end": 3069.76, + "probability": 0.7653 + }, + { + "start": 3070.62, + "end": 3074.34, + "probability": 0.9457 + }, + { + "start": 3074.38, + "end": 3075.46, + "probability": 0.753 + }, + { + "start": 3078.3, + "end": 3080.88, + "probability": 0.9856 + }, + { + "start": 3080.94, + "end": 3082.7, + "probability": 0.995 + }, + { + "start": 3082.94, + "end": 3085.4, + "probability": 0.9839 + }, + { + "start": 3088.54, + "end": 3091.26, + "probability": 0.9907 + }, + { + "start": 3092.78, + "end": 3093.78, + "probability": 0.8688 + }, + { + "start": 3095.16, + "end": 3095.64, + "probability": 0.9928 + }, + { + "start": 3096.24, + "end": 3096.64, + "probability": 0.9882 + }, + { + "start": 3097.26, + "end": 3099.36, + "probability": 0.9907 + }, + { + "start": 3100.66, + "end": 3102.68, + "probability": 0.9914 + }, + { + "start": 3103.36, + "end": 3105.18, + "probability": 0.9756 + }, + { + "start": 3105.8, + "end": 3111.16, + "probability": 0.9987 + }, + { + "start": 3111.16, + "end": 3116.42, + "probability": 0.9731 + }, + { + "start": 3116.42, + "end": 3123.34, + "probability": 0.9991 + }, + { + "start": 3123.58, + "end": 3124.38, + "probability": 0.9622 + }, + { + "start": 3125.7, + "end": 3127.1, + "probability": 0.9684 + }, + { + "start": 3128.78, + "end": 3133.4, + "probability": 0.8839 + }, + { + "start": 3135.48, + "end": 3140.36, + "probability": 0.9871 + }, + { + "start": 3141.18, + "end": 3144.32, + "probability": 0.9941 + }, + { + "start": 3145.0, + "end": 3146.0, + "probability": 0.8866 + }, + { + "start": 3147.74, + "end": 3148.28, + "probability": 0.7125 + }, + { + "start": 3148.42, + "end": 3149.02, + "probability": 0.624 + }, + { + "start": 3149.89, + "end": 3152.46, + "probability": 0.9952 + }, + { + "start": 3153.3, + "end": 3154.46, + "probability": 0.9792 + }, + { + "start": 3154.64, + "end": 3156.64, + "probability": 0.9845 + }, + { + "start": 3158.42, + "end": 3163.02, + "probability": 0.8857 + }, + { + "start": 3163.02, + "end": 3167.04, + "probability": 0.9993 + }, + { + "start": 3168.24, + "end": 3169.46, + "probability": 0.8637 + }, + { + "start": 3169.62, + "end": 3170.14, + "probability": 0.8039 + }, + { + "start": 3170.24, + "end": 3171.24, + "probability": 0.969 + }, + { + "start": 3171.38, + "end": 3174.14, + "probability": 0.9763 + }, + { + "start": 3174.2, + "end": 3174.98, + "probability": 0.9883 + }, + { + "start": 3175.48, + "end": 3177.4, + "probability": 0.7369 + }, + { + "start": 3177.4, + "end": 3177.96, + "probability": 0.5053 + }, + { + "start": 3178.12, + "end": 3180.96, + "probability": 0.9087 + }, + { + "start": 3181.52, + "end": 3182.76, + "probability": 0.9946 + }, + { + "start": 3182.84, + "end": 3183.94, + "probability": 0.9712 + }, + { + "start": 3184.1, + "end": 3185.82, + "probability": 0.9342 + }, + { + "start": 3186.56, + "end": 3188.32, + "probability": 0.9842 + }, + { + "start": 3188.78, + "end": 3192.2, + "probability": 0.9949 + }, + { + "start": 3192.28, + "end": 3194.34, + "probability": 0.9965 + }, + { + "start": 3194.4, + "end": 3197.8, + "probability": 0.9971 + }, + { + "start": 3198.18, + "end": 3199.84, + "probability": 0.8322 + }, + { + "start": 3200.08, + "end": 3201.44, + "probability": 0.9861 + }, + { + "start": 3201.9, + "end": 3202.3, + "probability": 0.8366 + }, + { + "start": 3203.14, + "end": 3204.52, + "probability": 0.98 + }, + { + "start": 3205.82, + "end": 3208.66, + "probability": 0.8867 + }, + { + "start": 3209.84, + "end": 3212.34, + "probability": 0.7502 + }, + { + "start": 3213.0, + "end": 3214.4, + "probability": 0.9699 + }, + { + "start": 3215.36, + "end": 3216.62, + "probability": 0.9862 + }, + { + "start": 3217.72, + "end": 3219.54, + "probability": 0.9912 + }, + { + "start": 3220.6, + "end": 3223.12, + "probability": 0.9924 + }, + { + "start": 3223.66, + "end": 3225.7, + "probability": 0.9927 + }, + { + "start": 3227.18, + "end": 3229.24, + "probability": 0.7858 + }, + { + "start": 3230.8, + "end": 3232.46, + "probability": 0.8363 + }, + { + "start": 3233.64, + "end": 3237.24, + "probability": 0.9751 + }, + { + "start": 3237.34, + "end": 3242.5, + "probability": 0.9926 + }, + { + "start": 3243.12, + "end": 3243.58, + "probability": 0.5266 + }, + { + "start": 3244.9, + "end": 3248.9, + "probability": 0.9849 + }, + { + "start": 3249.04, + "end": 3254.04, + "probability": 0.7216 + }, + { + "start": 3254.04, + "end": 3259.74, + "probability": 0.771 + }, + { + "start": 3260.24, + "end": 3262.02, + "probability": 0.8017 + }, + { + "start": 3262.46, + "end": 3266.04, + "probability": 0.9907 + }, + { + "start": 3266.22, + "end": 3267.0, + "probability": 0.4024 + }, + { + "start": 3267.18, + "end": 3268.32, + "probability": 0.6864 + }, + { + "start": 3271.02, + "end": 3271.72, + "probability": 0.8845 + }, + { + "start": 3273.34, + "end": 3275.24, + "probability": 0.9976 + }, + { + "start": 3275.8, + "end": 3277.22, + "probability": 0.5731 + }, + { + "start": 3277.36, + "end": 3278.92, + "probability": 0.9803 + }, + { + "start": 3279.56, + "end": 3281.8, + "probability": 0.9067 + }, + { + "start": 3282.72, + "end": 3285.22, + "probability": 0.9543 + }, + { + "start": 3285.34, + "end": 3285.9, + "probability": 0.9026 + }, + { + "start": 3286.02, + "end": 3286.42, + "probability": 0.6532 + }, + { + "start": 3286.48, + "end": 3290.1, + "probability": 0.9761 + }, + { + "start": 3291.0, + "end": 3292.9, + "probability": 0.9717 + }, + { + "start": 3294.68, + "end": 3297.2, + "probability": 0.9834 + }, + { + "start": 3298.64, + "end": 3302.21, + "probability": 0.9806 + }, + { + "start": 3302.62, + "end": 3305.66, + "probability": 0.9986 + }, + { + "start": 3306.16, + "end": 3307.92, + "probability": 0.9897 + }, + { + "start": 3308.76, + "end": 3310.88, + "probability": 0.9618 + }, + { + "start": 3314.5, + "end": 3318.0, + "probability": 0.7791 + }, + { + "start": 3318.12, + "end": 3318.86, + "probability": 0.0154 + }, + { + "start": 3320.78, + "end": 3321.82, + "probability": 0.9755 + }, + { + "start": 3322.76, + "end": 3324.12, + "probability": 0.989 + }, + { + "start": 3325.36, + "end": 3328.4, + "probability": 0.9636 + }, + { + "start": 3328.44, + "end": 3329.12, + "probability": 0.8815 + }, + { + "start": 3329.26, + "end": 3330.79, + "probability": 0.9512 + }, + { + "start": 3331.4, + "end": 3332.66, + "probability": 0.9964 + }, + { + "start": 3333.2, + "end": 3337.3, + "probability": 0.9482 + }, + { + "start": 3338.02, + "end": 3338.18, + "probability": 0.6433 + }, + { + "start": 3338.62, + "end": 3342.08, + "probability": 0.9937 + }, + { + "start": 3342.72, + "end": 3346.26, + "probability": 0.9925 + }, + { + "start": 3346.36, + "end": 3347.16, + "probability": 0.8119 + }, + { + "start": 3347.24, + "end": 3348.4, + "probability": 0.7346 + }, + { + "start": 3348.54, + "end": 3349.6, + "probability": 0.8069 + }, + { + "start": 3349.74, + "end": 3351.38, + "probability": 0.9968 + }, + { + "start": 3351.52, + "end": 3351.92, + "probability": 0.3344 + }, + { + "start": 3352.04, + "end": 3352.34, + "probability": 0.894 + }, + { + "start": 3353.32, + "end": 3354.28, + "probability": 0.9634 + }, + { + "start": 3354.36, + "end": 3354.5, + "probability": 0.9414 + }, + { + "start": 3354.56, + "end": 3354.98, + "probability": 0.8353 + }, + { + "start": 3355.04, + "end": 3356.24, + "probability": 0.9937 + }, + { + "start": 3357.24, + "end": 3360.44, + "probability": 0.9455 + }, + { + "start": 3361.06, + "end": 3363.24, + "probability": 0.9819 + }, + { + "start": 3363.88, + "end": 3368.0, + "probability": 0.8988 + }, + { + "start": 3369.46, + "end": 3375.92, + "probability": 0.9852 + }, + { + "start": 3375.92, + "end": 3381.42, + "probability": 0.859 + }, + { + "start": 3381.46, + "end": 3382.7, + "probability": 0.1881 + }, + { + "start": 3383.02, + "end": 3385.32, + "probability": 0.9937 + }, + { + "start": 3385.42, + "end": 3386.96, + "probability": 0.9807 + }, + { + "start": 3387.54, + "end": 3391.84, + "probability": 0.8083 + }, + { + "start": 3391.84, + "end": 3395.72, + "probability": 0.6888 + }, + { + "start": 3396.28, + "end": 3397.88, + "probability": 0.9976 + }, + { + "start": 3398.32, + "end": 3399.13, + "probability": 0.9937 + }, + { + "start": 3399.58, + "end": 3400.58, + "probability": 0.9945 + }, + { + "start": 3401.34, + "end": 3402.6, + "probability": 0.9676 + }, + { + "start": 3403.34, + "end": 3407.62, + "probability": 0.9946 + }, + { + "start": 3408.62, + "end": 3410.66, + "probability": 0.993 + }, + { + "start": 3410.74, + "end": 3413.08, + "probability": 0.871 + }, + { + "start": 3413.98, + "end": 3415.68, + "probability": 0.7708 + }, + { + "start": 3415.82, + "end": 3419.88, + "probability": 0.9899 + }, + { + "start": 3420.2, + "end": 3421.92, + "probability": 0.9985 + }, + { + "start": 3422.34, + "end": 3424.72, + "probability": 0.9878 + }, + { + "start": 3424.76, + "end": 3425.76, + "probability": 0.6801 + }, + { + "start": 3426.56, + "end": 3430.46, + "probability": 0.9967 + }, + { + "start": 3430.7, + "end": 3431.25, + "probability": 0.8735 + }, + { + "start": 3431.62, + "end": 3434.18, + "probability": 0.9424 + }, + { + "start": 3434.6, + "end": 3436.8, + "probability": 0.9634 + }, + { + "start": 3436.92, + "end": 3437.4, + "probability": 0.8683 + }, + { + "start": 3438.08, + "end": 3438.52, + "probability": 0.7953 + }, + { + "start": 3438.6, + "end": 3439.96, + "probability": 0.9865 + }, + { + "start": 3440.3, + "end": 3440.92, + "probability": 0.4743 + }, + { + "start": 3440.94, + "end": 3442.36, + "probability": 0.9366 + }, + { + "start": 3458.06, + "end": 3461.0, + "probability": 0.7733 + }, + { + "start": 3462.92, + "end": 3468.86, + "probability": 0.9355 + }, + { + "start": 3469.24, + "end": 3469.86, + "probability": 0.5445 + }, + { + "start": 3469.9, + "end": 3471.56, + "probability": 0.9938 + }, + { + "start": 3471.82, + "end": 3471.92, + "probability": 0.627 + }, + { + "start": 3473.0, + "end": 3474.08, + "probability": 0.9938 + }, + { + "start": 3475.0, + "end": 3476.76, + "probability": 0.8608 + }, + { + "start": 3478.8, + "end": 3481.94, + "probability": 0.98 + }, + { + "start": 3485.1, + "end": 3485.78, + "probability": 0.4692 + }, + { + "start": 3486.58, + "end": 3493.34, + "probability": 0.9893 + }, + { + "start": 3494.36, + "end": 3496.26, + "probability": 0.9911 + }, + { + "start": 3498.32, + "end": 3499.66, + "probability": 0.9222 + }, + { + "start": 3501.32, + "end": 3508.4, + "probability": 0.9878 + }, + { + "start": 3509.46, + "end": 3510.86, + "probability": 0.9934 + }, + { + "start": 3511.86, + "end": 3515.96, + "probability": 0.9912 + }, + { + "start": 3516.56, + "end": 3518.19, + "probability": 0.8844 + }, + { + "start": 3519.0, + "end": 3520.52, + "probability": 0.9939 + }, + { + "start": 3524.58, + "end": 3525.54, + "probability": 0.9651 + }, + { + "start": 3526.72, + "end": 3527.36, + "probability": 0.9807 + }, + { + "start": 3529.98, + "end": 3533.84, + "probability": 0.9929 + }, + { + "start": 3536.6, + "end": 3538.38, + "probability": 0.9956 + }, + { + "start": 3540.8, + "end": 3541.56, + "probability": 0.8677 + }, + { + "start": 3546.72, + "end": 3551.24, + "probability": 0.9915 + }, + { + "start": 3555.86, + "end": 3556.86, + "probability": 0.8721 + }, + { + "start": 3559.1, + "end": 3564.32, + "probability": 0.8024 + }, + { + "start": 3565.63, + "end": 3567.22, + "probability": 0.7224 + }, + { + "start": 3568.62, + "end": 3569.46, + "probability": 0.813 + }, + { + "start": 3570.26, + "end": 3570.88, + "probability": 0.925 + }, + { + "start": 3571.6, + "end": 3573.76, + "probability": 0.8217 + }, + { + "start": 3575.14, + "end": 3576.6, + "probability": 0.9155 + }, + { + "start": 3577.66, + "end": 3579.8, + "probability": 0.6758 + }, + { + "start": 3581.5, + "end": 3583.48, + "probability": 0.9301 + }, + { + "start": 3583.5, + "end": 3584.22, + "probability": 0.7946 + }, + { + "start": 3584.78, + "end": 3585.68, + "probability": 0.9822 + }, + { + "start": 3587.44, + "end": 3589.36, + "probability": 0.9902 + }, + { + "start": 3590.15, + "end": 3596.56, + "probability": 0.9883 + }, + { + "start": 3607.86, + "end": 3608.48, + "probability": 0.957 + }, + { + "start": 3611.18, + "end": 3612.12, + "probability": 0.2867 + }, + { + "start": 3613.86, + "end": 3614.46, + "probability": 0.0861 + }, + { + "start": 3614.48, + "end": 3615.04, + "probability": 0.0047 + }, + { + "start": 3616.94, + "end": 3617.24, + "probability": 0.0529 + }, + { + "start": 3617.24, + "end": 3617.24, + "probability": 0.0976 + }, + { + "start": 3617.24, + "end": 3617.24, + "probability": 0.1387 + }, + { + "start": 3617.24, + "end": 3617.24, + "probability": 0.0875 + }, + { + "start": 3617.24, + "end": 3617.24, + "probability": 0.0835 + }, + { + "start": 3617.24, + "end": 3618.42, + "probability": 0.6385 + }, + { + "start": 3618.96, + "end": 3619.5, + "probability": 0.2699 + }, + { + "start": 3621.68, + "end": 3626.22, + "probability": 0.9324 + }, + { + "start": 3626.84, + "end": 3627.86, + "probability": 0.746 + }, + { + "start": 3628.52, + "end": 3630.5, + "probability": 0.9316 + }, + { + "start": 3632.32, + "end": 3634.22, + "probability": 0.9943 + }, + { + "start": 3636.86, + "end": 3638.3, + "probability": 0.7452 + }, + { + "start": 3640.86, + "end": 3641.66, + "probability": 0.9955 + }, + { + "start": 3643.96, + "end": 3649.44, + "probability": 0.9985 + }, + { + "start": 3650.96, + "end": 3651.78, + "probability": 0.7514 + }, + { + "start": 3652.78, + "end": 3654.16, + "probability": 0.8986 + }, + { + "start": 3654.92, + "end": 3655.86, + "probability": 0.8917 + }, + { + "start": 3656.88, + "end": 3657.48, + "probability": 0.9299 + }, + { + "start": 3658.14, + "end": 3658.92, + "probability": 0.9877 + }, + { + "start": 3659.92, + "end": 3660.56, + "probability": 0.9841 + }, + { + "start": 3661.98, + "end": 3662.66, + "probability": 0.8761 + }, + { + "start": 3663.5, + "end": 3664.26, + "probability": 0.806 + }, + { + "start": 3665.14, + "end": 3666.48, + "probability": 0.8415 + }, + { + "start": 3668.88, + "end": 3670.12, + "probability": 0.9995 + }, + { + "start": 3670.82, + "end": 3673.6, + "probability": 0.9792 + }, + { + "start": 3674.56, + "end": 3676.08, + "probability": 0.999 + }, + { + "start": 3676.8, + "end": 3677.06, + "probability": 0.8192 + }, + { + "start": 3678.42, + "end": 3680.52, + "probability": 0.7562 + }, + { + "start": 3682.0, + "end": 3683.04, + "probability": 0.9925 + }, + { + "start": 3684.1, + "end": 3685.02, + "probability": 0.9885 + }, + { + "start": 3687.8, + "end": 3689.02, + "probability": 0.2816 + }, + { + "start": 3689.24, + "end": 3689.98, + "probability": 0.7035 + }, + { + "start": 3690.7, + "end": 3691.16, + "probability": 0.9766 + }, + { + "start": 3692.2, + "end": 3694.72, + "probability": 0.9937 + }, + { + "start": 3695.34, + "end": 3695.78, + "probability": 0.835 + }, + { + "start": 3696.88, + "end": 3697.84, + "probability": 0.9995 + }, + { + "start": 3699.04, + "end": 3701.2, + "probability": 0.9895 + }, + { + "start": 3701.72, + "end": 3702.74, + "probability": 0.8928 + }, + { + "start": 3703.54, + "end": 3706.62, + "probability": 0.97 + }, + { + "start": 3707.38, + "end": 3709.32, + "probability": 0.908 + }, + { + "start": 3711.34, + "end": 3716.3, + "probability": 0.9944 + }, + { + "start": 3717.84, + "end": 3723.6, + "probability": 0.9973 + }, + { + "start": 3723.74, + "end": 3725.78, + "probability": 0.9822 + }, + { + "start": 3728.22, + "end": 3730.82, + "probability": 0.8464 + }, + { + "start": 3731.64, + "end": 3732.22, + "probability": 0.7572 + }, + { + "start": 3732.42, + "end": 3735.3, + "probability": 0.9714 + }, + { + "start": 3735.56, + "end": 3736.82, + "probability": 0.8911 + }, + { + "start": 3737.26, + "end": 3738.26, + "probability": 0.9541 + }, + { + "start": 3738.36, + "end": 3739.42, + "probability": 0.9844 + }, + { + "start": 3740.14, + "end": 3741.03, + "probability": 0.9246 + }, + { + "start": 3741.82, + "end": 3742.96, + "probability": 0.744 + }, + { + "start": 3743.46, + "end": 3744.44, + "probability": 0.9731 + }, + { + "start": 3744.98, + "end": 3745.67, + "probability": 0.9905 + }, + { + "start": 3746.32, + "end": 3746.96, + "probability": 0.9919 + }, + { + "start": 3747.5, + "end": 3748.08, + "probability": 0.9917 + }, + { + "start": 3748.72, + "end": 3749.45, + "probability": 0.9293 + }, + { + "start": 3750.16, + "end": 3751.08, + "probability": 0.9119 + }, + { + "start": 3751.44, + "end": 3754.7, + "probability": 0.9915 + }, + { + "start": 3755.72, + "end": 3756.08, + "probability": 0.7183 + }, + { + "start": 3756.14, + "end": 3756.62, + "probability": 0.7242 + }, + { + "start": 3756.72, + "end": 3761.42, + "probability": 0.9556 + }, + { + "start": 3763.08, + "end": 3763.62, + "probability": 0.8967 + }, + { + "start": 3764.7, + "end": 3766.1, + "probability": 0.9351 + }, + { + "start": 3767.18, + "end": 3769.94, + "probability": 0.9941 + }, + { + "start": 3770.88, + "end": 3772.52, + "probability": 0.8609 + }, + { + "start": 3773.18, + "end": 3775.01, + "probability": 0.999 + }, + { + "start": 3776.46, + "end": 3777.72, + "probability": 0.9896 + }, + { + "start": 3778.28, + "end": 3778.92, + "probability": 0.6276 + }, + { + "start": 3779.06, + "end": 3782.32, + "probability": 0.7308 + }, + { + "start": 3782.4, + "end": 3785.62, + "probability": 0.9788 + }, + { + "start": 3785.66, + "end": 3787.5, + "probability": 0.8906 + }, + { + "start": 3788.44, + "end": 3790.96, + "probability": 0.976 + }, + { + "start": 3791.62, + "end": 3792.48, + "probability": 0.4259 + }, + { + "start": 3792.52, + "end": 3793.88, + "probability": 0.7339 + }, + { + "start": 3794.16, + "end": 3795.1, + "probability": 0.8599 + }, + { + "start": 3795.14, + "end": 3796.02, + "probability": 0.9019 + }, + { + "start": 3796.5, + "end": 3797.22, + "probability": 0.9927 + }, + { + "start": 3797.62, + "end": 3800.52, + "probability": 0.8978 + }, + { + "start": 3800.8, + "end": 3802.6, + "probability": 0.995 + }, + { + "start": 3803.52, + "end": 3808.24, + "probability": 0.9882 + }, + { + "start": 3808.54, + "end": 3809.54, + "probability": 0.9893 + }, + { + "start": 3809.9, + "end": 3810.76, + "probability": 0.7357 + }, + { + "start": 3810.88, + "end": 3811.54, + "probability": 0.8557 + }, + { + "start": 3812.59, + "end": 3814.92, + "probability": 0.8977 + }, + { + "start": 3815.62, + "end": 3816.22, + "probability": 0.519 + }, + { + "start": 3816.6, + "end": 3819.26, + "probability": 0.9591 + }, + { + "start": 3819.6, + "end": 3821.74, + "probability": 0.9817 + }, + { + "start": 3823.62, + "end": 3824.9, + "probability": 0.8969 + }, + { + "start": 3825.34, + "end": 3825.86, + "probability": 0.523 + }, + { + "start": 3825.86, + "end": 3827.44, + "probability": 0.9451 + }, + { + "start": 3846.96, + "end": 3847.94, + "probability": 0.6836 + }, + { + "start": 3851.88, + "end": 3853.2, + "probability": 0.7361 + }, + { + "start": 3853.74, + "end": 3854.84, + "probability": 0.7713 + }, + { + "start": 3856.72, + "end": 3864.68, + "probability": 0.9916 + }, + { + "start": 3865.12, + "end": 3866.36, + "probability": 0.9315 + }, + { + "start": 3866.86, + "end": 3870.84, + "probability": 0.9717 + }, + { + "start": 3871.48, + "end": 3874.04, + "probability": 0.9138 + }, + { + "start": 3875.14, + "end": 3881.32, + "probability": 0.9917 + }, + { + "start": 3882.8, + "end": 3890.24, + "probability": 0.9942 + }, + { + "start": 3890.86, + "end": 3896.4, + "probability": 0.9976 + }, + { + "start": 3896.82, + "end": 3897.78, + "probability": 0.5969 + }, + { + "start": 3898.42, + "end": 3900.48, + "probability": 0.9908 + }, + { + "start": 3901.54, + "end": 3907.64, + "probability": 0.9929 + }, + { + "start": 3908.1, + "end": 3910.34, + "probability": 0.9011 + }, + { + "start": 3910.34, + "end": 3913.96, + "probability": 0.9741 + }, + { + "start": 3915.92, + "end": 3919.76, + "probability": 0.9067 + }, + { + "start": 3921.14, + "end": 3922.46, + "probability": 0.9972 + }, + { + "start": 3922.86, + "end": 3923.92, + "probability": 0.9324 + }, + { + "start": 3924.0, + "end": 3925.08, + "probability": 0.9274 + }, + { + "start": 3925.56, + "end": 3930.3, + "probability": 0.9968 + }, + { + "start": 3931.42, + "end": 3932.72, + "probability": 0.9573 + }, + { + "start": 3933.46, + "end": 3940.46, + "probability": 0.9527 + }, + { + "start": 3940.46, + "end": 3947.42, + "probability": 0.9922 + }, + { + "start": 3948.06, + "end": 3951.42, + "probability": 0.9672 + }, + { + "start": 3952.08, + "end": 3954.24, + "probability": 0.9393 + }, + { + "start": 3955.04, + "end": 3960.7, + "probability": 0.9963 + }, + { + "start": 3960.7, + "end": 3966.68, + "probability": 0.9618 + }, + { + "start": 3966.72, + "end": 3968.32, + "probability": 0.8301 + }, + { + "start": 3969.16, + "end": 3974.58, + "probability": 0.9932 + }, + { + "start": 3975.24, + "end": 3977.58, + "probability": 0.9453 + }, + { + "start": 3978.12, + "end": 3980.32, + "probability": 0.9464 + }, + { + "start": 3980.82, + "end": 3986.68, + "probability": 0.9595 + }, + { + "start": 3987.34, + "end": 3990.7, + "probability": 0.8341 + }, + { + "start": 3991.4, + "end": 3992.4, + "probability": 0.968 + }, + { + "start": 3993.3, + "end": 3995.08, + "probability": 0.9575 + }, + { + "start": 3996.56, + "end": 4001.4, + "probability": 0.9974 + }, + { + "start": 4002.22, + "end": 4003.64, + "probability": 0.9709 + }, + { + "start": 4004.16, + "end": 4006.46, + "probability": 0.9932 + }, + { + "start": 4007.0, + "end": 4010.22, + "probability": 0.9932 + }, + { + "start": 4010.74, + "end": 4015.7, + "probability": 0.9919 + }, + { + "start": 4016.74, + "end": 4020.04, + "probability": 0.8701 + }, + { + "start": 4020.66, + "end": 4024.74, + "probability": 0.9654 + }, + { + "start": 4025.2, + "end": 4027.64, + "probability": 0.9935 + }, + { + "start": 4028.7, + "end": 4029.72, + "probability": 0.9451 + }, + { + "start": 4030.08, + "end": 4035.16, + "probability": 0.9961 + }, + { + "start": 4035.86, + "end": 4041.58, + "probability": 0.7848 + }, + { + "start": 4042.24, + "end": 4043.32, + "probability": 0.7418 + }, + { + "start": 4044.04, + "end": 4049.14, + "probability": 0.9862 + }, + { + "start": 4049.14, + "end": 4055.02, + "probability": 0.9966 + }, + { + "start": 4055.96, + "end": 4061.06, + "probability": 0.9958 + }, + { + "start": 4062.04, + "end": 4063.72, + "probability": 0.9984 + }, + { + "start": 4064.6, + "end": 4065.56, + "probability": 0.9557 + }, + { + "start": 4066.08, + "end": 4071.94, + "probability": 0.9929 + }, + { + "start": 4071.94, + "end": 4077.12, + "probability": 0.997 + }, + { + "start": 4078.28, + "end": 4083.22, + "probability": 0.9974 + }, + { + "start": 4083.7, + "end": 4086.13, + "probability": 0.9985 + }, + { + "start": 4086.2, + "end": 4087.36, + "probability": 0.7969 + }, + { + "start": 4088.06, + "end": 4088.18, + "probability": 0.98 + }, + { + "start": 4088.76, + "end": 4094.2, + "probability": 0.9985 + }, + { + "start": 4094.98, + "end": 4098.36, + "probability": 0.9993 + }, + { + "start": 4098.9, + "end": 4100.06, + "probability": 0.9427 + }, + { + "start": 4101.08, + "end": 4105.9, + "probability": 0.9797 + }, + { + "start": 4106.74, + "end": 4111.06, + "probability": 0.9988 + }, + { + "start": 4111.84, + "end": 4115.56, + "probability": 0.9953 + }, + { + "start": 4115.56, + "end": 4118.64, + "probability": 0.9976 + }, + { + "start": 4119.56, + "end": 4123.06, + "probability": 0.9722 + }, + { + "start": 4123.88, + "end": 4124.76, + "probability": 0.9663 + }, + { + "start": 4125.3, + "end": 4126.4, + "probability": 0.7636 + }, + { + "start": 4127.34, + "end": 4132.44, + "probability": 0.9947 + }, + { + "start": 4133.02, + "end": 4138.5, + "probability": 0.999 + }, + { + "start": 4139.08, + "end": 4143.62, + "probability": 0.9798 + }, + { + "start": 4144.18, + "end": 4148.82, + "probability": 0.9951 + }, + { + "start": 4148.82, + "end": 4152.44, + "probability": 0.9936 + }, + { + "start": 4153.22, + "end": 4158.52, + "probability": 0.9965 + }, + { + "start": 4160.42, + "end": 4161.02, + "probability": 0.7934 + }, + { + "start": 4162.12, + "end": 4163.32, + "probability": 0.9587 + }, + { + "start": 4183.96, + "end": 4184.88, + "probability": 0.7181 + }, + { + "start": 4185.4, + "end": 4186.9, + "probability": 0.7802 + }, + { + "start": 4188.48, + "end": 4191.0, + "probability": 0.983 + }, + { + "start": 4192.34, + "end": 4193.78, + "probability": 0.9971 + }, + { + "start": 4195.36, + "end": 4197.44, + "probability": 0.9937 + }, + { + "start": 4198.2, + "end": 4202.16, + "probability": 0.9956 + }, + { + "start": 4203.42, + "end": 4204.76, + "probability": 0.9977 + }, + { + "start": 4205.82, + "end": 4207.06, + "probability": 0.9906 + }, + { + "start": 4208.34, + "end": 4209.82, + "probability": 0.9101 + }, + { + "start": 4210.24, + "end": 4211.38, + "probability": 0.9446 + }, + { + "start": 4211.84, + "end": 4212.32, + "probability": 0.5004 + }, + { + "start": 4212.32, + "end": 4212.88, + "probability": 0.7866 + }, + { + "start": 4214.18, + "end": 4214.44, + "probability": 0.5341 + }, + { + "start": 4215.84, + "end": 4219.18, + "probability": 0.9543 + }, + { + "start": 4220.78, + "end": 4224.36, + "probability": 0.9894 + }, + { + "start": 4225.34, + "end": 4226.22, + "probability": 0.7506 + }, + { + "start": 4227.82, + "end": 4232.24, + "probability": 0.9921 + }, + { + "start": 4233.48, + "end": 4237.1, + "probability": 0.9867 + }, + { + "start": 4238.36, + "end": 4240.14, + "probability": 0.9854 + }, + { + "start": 4241.68, + "end": 4243.82, + "probability": 0.9934 + }, + { + "start": 4245.2, + "end": 4248.4, + "probability": 0.9932 + }, + { + "start": 4250.28, + "end": 4255.14, + "probability": 0.9704 + }, + { + "start": 4256.52, + "end": 4258.12, + "probability": 0.9699 + }, + { + "start": 4259.02, + "end": 4261.44, + "probability": 0.9961 + }, + { + "start": 4262.28, + "end": 4264.9, + "probability": 0.9788 + }, + { + "start": 4265.74, + "end": 4267.76, + "probability": 0.9663 + }, + { + "start": 4268.36, + "end": 4270.92, + "probability": 0.9917 + }, + { + "start": 4272.36, + "end": 4275.78, + "probability": 0.994 + }, + { + "start": 4276.54, + "end": 4279.52, + "probability": 0.9656 + }, + { + "start": 4280.3, + "end": 4281.72, + "probability": 0.8768 + }, + { + "start": 4282.78, + "end": 4285.9, + "probability": 0.9678 + }, + { + "start": 4286.9, + "end": 4291.12, + "probability": 0.6451 + }, + { + "start": 4292.78, + "end": 4298.6, + "probability": 0.9622 + }, + { + "start": 4299.06, + "end": 4299.99, + "probability": 0.8146 + }, + { + "start": 4300.9, + "end": 4302.4, + "probability": 0.3562 + }, + { + "start": 4302.98, + "end": 4306.34, + "probability": 0.7827 + }, + { + "start": 4307.5, + "end": 4308.1, + "probability": 0.3337 + }, + { + "start": 4312.1, + "end": 4315.52, + "probability": 0.8896 + }, + { + "start": 4316.36, + "end": 4318.48, + "probability": 0.8151 + }, + { + "start": 4319.82, + "end": 4320.42, + "probability": 0.8079 + }, + { + "start": 4322.16, + "end": 4324.96, + "probability": 0.8923 + }, + { + "start": 4326.2, + "end": 4328.0, + "probability": 0.8292 + }, + { + "start": 4329.32, + "end": 4331.08, + "probability": 0.462 + }, + { + "start": 4331.18, + "end": 4332.86, + "probability": 0.5867 + }, + { + "start": 4333.34, + "end": 4334.14, + "probability": 0.6002 + }, + { + "start": 4334.52, + "end": 4335.54, + "probability": 0.9646 + }, + { + "start": 4335.6, + "end": 4339.08, + "probability": 0.8898 + }, + { + "start": 4340.74, + "end": 4342.06, + "probability": 0.861 + }, + { + "start": 4342.78, + "end": 4344.3, + "probability": 0.9909 + }, + { + "start": 4344.76, + "end": 4346.48, + "probability": 0.9406 + }, + { + "start": 4346.86, + "end": 4347.96, + "probability": 0.8425 + }, + { + "start": 4348.42, + "end": 4349.38, + "probability": 0.7805 + }, + { + "start": 4351.0, + "end": 4352.72, + "probability": 0.8911 + }, + { + "start": 4353.96, + "end": 4358.12, + "probability": 0.9855 + }, + { + "start": 4358.8, + "end": 4361.44, + "probability": 0.9662 + }, + { + "start": 4362.22, + "end": 4363.6, + "probability": 0.9866 + }, + { + "start": 4364.66, + "end": 4371.22, + "probability": 0.9857 + }, + { + "start": 4372.04, + "end": 4375.06, + "probability": 0.9525 + }, + { + "start": 4375.66, + "end": 4381.52, + "probability": 0.981 + }, + { + "start": 4382.48, + "end": 4386.0, + "probability": 0.9928 + }, + { + "start": 4386.94, + "end": 4388.82, + "probability": 0.9365 + }, + { + "start": 4389.94, + "end": 4392.2, + "probability": 0.9869 + }, + { + "start": 4393.3, + "end": 4398.98, + "probability": 0.9925 + }, + { + "start": 4399.96, + "end": 4402.94, + "probability": 0.9548 + }, + { + "start": 4404.32, + "end": 4407.3, + "probability": 0.9919 + }, + { + "start": 4408.2, + "end": 4409.82, + "probability": 0.9827 + }, + { + "start": 4410.56, + "end": 4412.98, + "probability": 0.9908 + }, + { + "start": 4414.16, + "end": 4419.98, + "probability": 0.9896 + }, + { + "start": 4420.92, + "end": 4421.96, + "probability": 0.9878 + }, + { + "start": 4423.34, + "end": 4424.72, + "probability": 0.7422 + }, + { + "start": 4425.32, + "end": 4428.32, + "probability": 0.985 + }, + { + "start": 4429.16, + "end": 4430.8, + "probability": 0.9747 + }, + { + "start": 4431.52, + "end": 4435.86, + "probability": 0.9758 + }, + { + "start": 4437.12, + "end": 4438.28, + "probability": 0.6717 + }, + { + "start": 4439.24, + "end": 4440.84, + "probability": 0.8034 + }, + { + "start": 4442.38, + "end": 4443.58, + "probability": 0.8837 + }, + { + "start": 4443.68, + "end": 4444.9, + "probability": 0.9956 + }, + { + "start": 4445.04, + "end": 4447.46, + "probability": 0.9927 + }, + { + "start": 4448.42, + "end": 4450.28, + "probability": 0.9453 + }, + { + "start": 4450.66, + "end": 4452.82, + "probability": 0.937 + }, + { + "start": 4454.12, + "end": 4456.44, + "probability": 0.6139 + }, + { + "start": 4457.28, + "end": 4458.9, + "probability": 0.9956 + }, + { + "start": 4459.42, + "end": 4461.42, + "probability": 0.9985 + }, + { + "start": 4461.98, + "end": 4464.74, + "probability": 0.9786 + }, + { + "start": 4465.52, + "end": 4467.04, + "probability": 0.979 + }, + { + "start": 4467.6, + "end": 4469.28, + "probability": 0.9719 + }, + { + "start": 4469.94, + "end": 4471.7, + "probability": 0.9509 + }, + { + "start": 4471.9, + "end": 4472.34, + "probability": 0.4109 + }, + { + "start": 4472.38, + "end": 4474.02, + "probability": 0.9534 + }, + { + "start": 4475.56, + "end": 4477.7, + "probability": 0.7819 + }, + { + "start": 4478.58, + "end": 4482.4, + "probability": 0.9258 + }, + { + "start": 4482.68, + "end": 4482.98, + "probability": 0.3156 + }, + { + "start": 4483.0, + "end": 4483.3, + "probability": 0.7517 + }, + { + "start": 4483.3, + "end": 4484.18, + "probability": 0.7346 + }, + { + "start": 4484.22, + "end": 4485.34, + "probability": 0.6183 + }, + { + "start": 4485.91, + "end": 4487.12, + "probability": 0.5046 + }, + { + "start": 4487.12, + "end": 4489.34, + "probability": 0.9225 + }, + { + "start": 4489.36, + "end": 4492.44, + "probability": 0.9641 + }, + { + "start": 4492.76, + "end": 4494.46, + "probability": 0.8471 + }, + { + "start": 4494.94, + "end": 4497.88, + "probability": 0.9933 + }, + { + "start": 4498.32, + "end": 4498.76, + "probability": 0.3503 + }, + { + "start": 4499.48, + "end": 4504.98, + "probability": 0.9928 + }, + { + "start": 4505.96, + "end": 4508.16, + "probability": 0.843 + }, + { + "start": 4508.94, + "end": 4512.48, + "probability": 0.99 + }, + { + "start": 4512.56, + "end": 4515.14, + "probability": 0.8297 + }, + { + "start": 4515.66, + "end": 4517.62, + "probability": 0.9723 + }, + { + "start": 4518.46, + "end": 4523.78, + "probability": 0.9751 + }, + { + "start": 4524.74, + "end": 4526.8, + "probability": 0.8445 + }, + { + "start": 4527.7, + "end": 4530.24, + "probability": 0.9295 + }, + { + "start": 4530.88, + "end": 4534.16, + "probability": 0.9976 + }, + { + "start": 4534.8, + "end": 4535.51, + "probability": 0.9836 + }, + { + "start": 4542.52, + "end": 4545.02, + "probability": 0.9536 + }, + { + "start": 4545.02, + "end": 4547.36, + "probability": 0.9889 + }, + { + "start": 4547.5, + "end": 4548.62, + "probability": 0.9897 + }, + { + "start": 4548.82, + "end": 4550.48, + "probability": 0.9111 + }, + { + "start": 4550.96, + "end": 4552.54, + "probability": 0.9778 + }, + { + "start": 4553.0, + "end": 4554.34, + "probability": 0.6587 + }, + { + "start": 4554.98, + "end": 4556.94, + "probability": 0.3248 + }, + { + "start": 4557.12, + "end": 4560.7, + "probability": 0.3315 + }, + { + "start": 4561.46, + "end": 4561.78, + "probability": 0.1127 + }, + { + "start": 4561.78, + "end": 4563.77, + "probability": 0.0865 + }, + { + "start": 4564.52, + "end": 4565.56, + "probability": 0.4406 + }, + { + "start": 4568.02, + "end": 4570.16, + "probability": 0.9106 + }, + { + "start": 4570.56, + "end": 4573.06, + "probability": 0.7808 + }, + { + "start": 4575.06, + "end": 4578.9, + "probability": 0.1229 + }, + { + "start": 4578.9, + "end": 4579.08, + "probability": 0.2808 + }, + { + "start": 4579.08, + "end": 4582.96, + "probability": 0.4995 + }, + { + "start": 4583.1, + "end": 4583.1, + "probability": 0.8043 + }, + { + "start": 4583.18, + "end": 4585.34, + "probability": 0.2379 + }, + { + "start": 4585.34, + "end": 4585.84, + "probability": 0.097 + }, + { + "start": 4586.1, + "end": 4587.5, + "probability": 0.318 + }, + { + "start": 4587.66, + "end": 4588.46, + "probability": 0.3329 + }, + { + "start": 4589.08, + "end": 4591.24, + "probability": 0.424 + }, + { + "start": 4591.4, + "end": 4592.36, + "probability": 0.2153 + }, + { + "start": 4592.72, + "end": 4594.66, + "probability": 0.3896 + }, + { + "start": 4594.66, + "end": 4595.92, + "probability": 0.7288 + }, + { + "start": 4596.56, + "end": 4597.24, + "probability": 0.8921 + }, + { + "start": 4597.84, + "end": 4598.34, + "probability": 0.4676 + }, + { + "start": 4598.34, + "end": 4598.64, + "probability": 0.4517 + }, + { + "start": 4598.64, + "end": 4599.12, + "probability": 0.5079 + }, + { + "start": 4599.28, + "end": 4600.49, + "probability": 0.7801 + }, + { + "start": 4601.04, + "end": 4605.24, + "probability": 0.8795 + }, + { + "start": 4605.84, + "end": 4608.86, + "probability": 0.9243 + }, + { + "start": 4609.84, + "end": 4615.7, + "probability": 0.975 + }, + { + "start": 4616.58, + "end": 4621.34, + "probability": 0.9326 + }, + { + "start": 4621.48, + "end": 4625.72, + "probability": 0.8997 + }, + { + "start": 4626.44, + "end": 4631.28, + "probability": 0.9799 + }, + { + "start": 4631.44, + "end": 4631.66, + "probability": 0.8107 + }, + { + "start": 4631.68, + "end": 4637.2, + "probability": 0.9059 + }, + { + "start": 4638.32, + "end": 4639.38, + "probability": 0.9492 + }, + { + "start": 4639.52, + "end": 4643.5, + "probability": 0.995 + }, + { + "start": 4643.92, + "end": 4647.36, + "probability": 0.9837 + }, + { + "start": 4648.26, + "end": 4648.6, + "probability": 0.4792 + }, + { + "start": 4648.6, + "end": 4649.45, + "probability": 0.9001 + }, + { + "start": 4649.6, + "end": 4652.64, + "probability": 0.7169 + }, + { + "start": 4653.08, + "end": 4655.1, + "probability": 0.757 + }, + { + "start": 4655.9, + "end": 4659.88, + "probability": 0.9003 + }, + { + "start": 4660.56, + "end": 4665.1, + "probability": 0.9471 + }, + { + "start": 4665.78, + "end": 4670.4, + "probability": 0.898 + }, + { + "start": 4671.26, + "end": 4676.6, + "probability": 0.9658 + }, + { + "start": 4677.5, + "end": 4683.14, + "probability": 0.986 + }, + { + "start": 4683.3, + "end": 4685.94, + "probability": 0.926 + }, + { + "start": 4686.02, + "end": 4688.26, + "probability": 0.7589 + }, + { + "start": 4688.68, + "end": 4692.24, + "probability": 0.9261 + }, + { + "start": 4692.64, + "end": 4696.98, + "probability": 0.9958 + }, + { + "start": 4697.52, + "end": 4699.78, + "probability": 0.9983 + }, + { + "start": 4700.34, + "end": 4702.88, + "probability": 0.7607 + }, + { + "start": 4703.08, + "end": 4704.32, + "probability": 0.9294 + }, + { + "start": 4704.52, + "end": 4705.99, + "probability": 0.7236 + }, + { + "start": 4706.58, + "end": 4713.45, + "probability": 0.9427 + }, + { + "start": 4715.16, + "end": 4720.3, + "probability": 0.9632 + }, + { + "start": 4720.9, + "end": 4722.24, + "probability": 0.7256 + }, + { + "start": 4722.38, + "end": 4723.4, + "probability": 0.7269 + }, + { + "start": 4723.52, + "end": 4726.16, + "probability": 0.9772 + }, + { + "start": 4726.28, + "end": 4727.8, + "probability": 0.7979 + }, + { + "start": 4727.84, + "end": 4730.0, + "probability": 0.593 + }, + { + "start": 4730.22, + "end": 4735.08, + "probability": 0.9749 + }, + { + "start": 4735.16, + "end": 4735.58, + "probability": 0.6686 + }, + { + "start": 4735.62, + "end": 4739.24, + "probability": 0.8769 + }, + { + "start": 4740.62, + "end": 4741.88, + "probability": 0.9994 + }, + { + "start": 4744.2, + "end": 4746.96, + "probability": 0.4942 + }, + { + "start": 4747.64, + "end": 4752.74, + "probability": 0.9604 + }, + { + "start": 4753.06, + "end": 4755.76, + "probability": 0.9248 + }, + { + "start": 4755.9, + "end": 4762.04, + "probability": 0.9644 + }, + { + "start": 4762.56, + "end": 4764.28, + "probability": 0.3428 + }, + { + "start": 4764.5, + "end": 4765.55, + "probability": 0.8173 + }, + { + "start": 4766.06, + "end": 4769.94, + "probability": 0.9871 + }, + { + "start": 4770.14, + "end": 4772.24, + "probability": 0.788 + }, + { + "start": 4772.26, + "end": 4773.14, + "probability": 0.4864 + }, + { + "start": 4773.26, + "end": 4773.82, + "probability": 0.9521 + }, + { + "start": 4773.94, + "end": 4779.88, + "probability": 0.991 + }, + { + "start": 4780.28, + "end": 4781.76, + "probability": 0.7183 + }, + { + "start": 4781.82, + "end": 4783.38, + "probability": 0.9584 + }, + { + "start": 4783.44, + "end": 4790.9, + "probability": 0.9473 + }, + { + "start": 4791.8, + "end": 4793.48, + "probability": 0.5393 + }, + { + "start": 4794.08, + "end": 4797.32, + "probability": 0.9728 + }, + { + "start": 4797.4, + "end": 4798.66, + "probability": 0.0162 + }, + { + "start": 4799.88, + "end": 4800.09, + "probability": 0.3579 + }, + { + "start": 4800.72, + "end": 4801.6, + "probability": 0.6161 + }, + { + "start": 4802.68, + "end": 4805.12, + "probability": 0.9973 + }, + { + "start": 4805.12, + "end": 4808.86, + "probability": 0.9854 + }, + { + "start": 4809.44, + "end": 4813.32, + "probability": 0.8295 + }, + { + "start": 4815.0, + "end": 4817.52, + "probability": 0.9663 + }, + { + "start": 4818.6, + "end": 4819.76, + "probability": 0.9365 + }, + { + "start": 4819.84, + "end": 4820.68, + "probability": 0.7686 + }, + { + "start": 4820.74, + "end": 4821.94, + "probability": 0.9637 + }, + { + "start": 4822.78, + "end": 4826.4, + "probability": 0.9903 + }, + { + "start": 4827.28, + "end": 4830.82, + "probability": 0.9784 + }, + { + "start": 4831.58, + "end": 4833.62, + "probability": 0.9755 + }, + { + "start": 4834.72, + "end": 4835.74, + "probability": 0.7993 + }, + { + "start": 4836.34, + "end": 4845.32, + "probability": 0.9758 + }, + { + "start": 4846.42, + "end": 4847.86, + "probability": 0.9138 + }, + { + "start": 4848.5, + "end": 4851.94, + "probability": 0.9893 + }, + { + "start": 4851.94, + "end": 4855.68, + "probability": 0.7118 + }, + { + "start": 4856.52, + "end": 4858.02, + "probability": 0.1925 + }, + { + "start": 4858.36, + "end": 4860.42, + "probability": 0.7256 + }, + { + "start": 4860.8, + "end": 4862.52, + "probability": 0.8848 + }, + { + "start": 4862.6, + "end": 4863.78, + "probability": 0.766 + }, + { + "start": 4864.28, + "end": 4866.06, + "probability": 0.9042 + }, + { + "start": 4866.42, + "end": 4867.8, + "probability": 0.9702 + }, + { + "start": 4868.84, + "end": 4870.2, + "probability": 0.9081 + }, + { + "start": 4870.32, + "end": 4871.58, + "probability": 0.8164 + }, + { + "start": 4871.68, + "end": 4875.46, + "probability": 0.9955 + }, + { + "start": 4875.58, + "end": 4880.2, + "probability": 0.9888 + }, + { + "start": 4880.2, + "end": 4885.82, + "probability": 0.9969 + }, + { + "start": 4886.6, + "end": 4887.96, + "probability": 0.6098 + }, + { + "start": 4888.04, + "end": 4892.88, + "probability": 0.9489 + }, + { + "start": 4892.94, + "end": 4893.72, + "probability": 0.8761 + }, + { + "start": 4894.64, + "end": 4894.96, + "probability": 0.9019 + }, + { + "start": 4896.32, + "end": 4899.7, + "probability": 0.9512 + }, + { + "start": 4901.76, + "end": 4903.94, + "probability": 0.9489 + }, + { + "start": 4904.16, + "end": 4906.68, + "probability": 0.9937 + }, + { + "start": 4907.38, + "end": 4908.02, + "probability": 0.9822 + }, + { + "start": 4908.22, + "end": 4909.0, + "probability": 0.9844 + }, + { + "start": 4909.04, + "end": 4911.7, + "probability": 0.9582 + }, + { + "start": 4912.16, + "end": 4913.37, + "probability": 0.5859 + }, + { + "start": 4913.86, + "end": 4914.62, + "probability": 0.7813 + }, + { + "start": 4914.8, + "end": 4915.76, + "probability": 0.8901 + }, + { + "start": 4916.0, + "end": 4919.38, + "probability": 0.9971 + }, + { + "start": 4919.48, + "end": 4921.44, + "probability": 0.9294 + }, + { + "start": 4921.92, + "end": 4922.76, + "probability": 0.5524 + }, + { + "start": 4922.92, + "end": 4924.62, + "probability": 0.6868 + }, + { + "start": 4925.38, + "end": 4931.18, + "probability": 0.9125 + }, + { + "start": 4931.18, + "end": 4937.66, + "probability": 0.9855 + }, + { + "start": 4938.62, + "end": 4941.72, + "probability": 0.8553 + }, + { + "start": 4942.4, + "end": 4942.9, + "probability": 0.4555 + }, + { + "start": 4943.28, + "end": 4943.65, + "probability": 0.5208 + }, + { + "start": 4944.7, + "end": 4947.68, + "probability": 0.4408 + }, + { + "start": 4948.34, + "end": 4952.42, + "probability": 0.8983 + }, + { + "start": 4952.84, + "end": 4955.56, + "probability": 0.5019 + }, + { + "start": 4956.7, + "end": 4958.8, + "probability": 0.7548 + }, + { + "start": 4958.96, + "end": 4959.98, + "probability": 0.7677 + }, + { + "start": 4960.22, + "end": 4961.12, + "probability": 0.9172 + }, + { + "start": 4961.94, + "end": 4966.24, + "probability": 0.9528 + }, + { + "start": 4966.84, + "end": 4973.2, + "probability": 0.9971 + }, + { + "start": 4973.36, + "end": 4973.82, + "probability": 0.7548 + }, + { + "start": 4974.6, + "end": 4975.24, + "probability": 0.5468 + }, + { + "start": 4975.28, + "end": 4977.94, + "probability": 0.8785 + }, + { + "start": 4979.1, + "end": 4984.68, + "probability": 0.452 + }, + { + "start": 4985.96, + "end": 4986.82, + "probability": 0.0151 + }, + { + "start": 4988.2, + "end": 4988.86, + "probability": 0.0323 + }, + { + "start": 5019.92, + "end": 5021.42, + "probability": 0.5956 + }, + { + "start": 5021.98, + "end": 5022.87, + "probability": 0.9804 + }, + { + "start": 5023.04, + "end": 5025.72, + "probability": 0.7311 + }, + { + "start": 5025.94, + "end": 5027.26, + "probability": 0.5092 + }, + { + "start": 5027.34, + "end": 5029.82, + "probability": 0.9725 + }, + { + "start": 5030.0, + "end": 5030.58, + "probability": 0.8684 + }, + { + "start": 5030.66, + "end": 5033.76, + "probability": 0.9844 + }, + { + "start": 5033.92, + "end": 5034.54, + "probability": 0.8137 + }, + { + "start": 5035.92, + "end": 5038.78, + "probability": 0.9914 + }, + { + "start": 5038.78, + "end": 5041.48, + "probability": 0.9966 + }, + { + "start": 5043.66, + "end": 5047.11, + "probability": 0.9974 + }, + { + "start": 5047.62, + "end": 5049.32, + "probability": 0.9774 + }, + { + "start": 5049.76, + "end": 5053.5, + "probability": 0.9877 + }, + { + "start": 5055.56, + "end": 5059.64, + "probability": 0.9017 + }, + { + "start": 5060.26, + "end": 5064.5, + "probability": 0.9568 + }, + { + "start": 5067.78, + "end": 5070.58, + "probability": 0.9778 + }, + { + "start": 5071.5, + "end": 5076.02, + "probability": 0.916 + }, + { + "start": 5076.92, + "end": 5078.54, + "probability": 0.8217 + }, + { + "start": 5080.04, + "end": 5082.56, + "probability": 0.9021 + }, + { + "start": 5082.82, + "end": 5083.8, + "probability": 0.7313 + }, + { + "start": 5083.88, + "end": 5085.04, + "probability": 0.9548 + }, + { + "start": 5085.48, + "end": 5087.18, + "probability": 0.9813 + }, + { + "start": 5088.36, + "end": 5092.82, + "probability": 0.9261 + }, + { + "start": 5093.6, + "end": 5097.8, + "probability": 0.9806 + }, + { + "start": 5098.56, + "end": 5098.96, + "probability": 0.9959 + }, + { + "start": 5099.7, + "end": 5101.64, + "probability": 0.9653 + }, + { + "start": 5104.1, + "end": 5109.8, + "probability": 0.9889 + }, + { + "start": 5110.26, + "end": 5112.88, + "probability": 0.9951 + }, + { + "start": 5113.82, + "end": 5117.98, + "probability": 0.9716 + }, + { + "start": 5118.6, + "end": 5121.94, + "probability": 0.9659 + }, + { + "start": 5122.76, + "end": 5127.92, + "probability": 0.9932 + }, + { + "start": 5128.32, + "end": 5130.3, + "probability": 0.9531 + }, + { + "start": 5131.1, + "end": 5136.36, + "probability": 0.998 + }, + { + "start": 5136.5, + "end": 5140.72, + "probability": 0.9984 + }, + { + "start": 5141.42, + "end": 5144.12, + "probability": 0.9983 + }, + { + "start": 5144.12, + "end": 5147.72, + "probability": 0.998 + }, + { + "start": 5148.38, + "end": 5150.92, + "probability": 0.9918 + }, + { + "start": 5150.92, + "end": 5154.12, + "probability": 0.9972 + }, + { + "start": 5155.14, + "end": 5159.52, + "probability": 0.9953 + }, + { + "start": 5159.62, + "end": 5163.82, + "probability": 0.9849 + }, + { + "start": 5165.12, + "end": 5170.9, + "probability": 0.9965 + }, + { + "start": 5171.6, + "end": 5175.44, + "probability": 0.987 + }, + { + "start": 5177.92, + "end": 5181.6, + "probability": 0.9902 + }, + { + "start": 5182.04, + "end": 5183.4, + "probability": 0.9632 + }, + { + "start": 5183.5, + "end": 5185.32, + "probability": 0.919 + }, + { + "start": 5185.42, + "end": 5187.48, + "probability": 0.9738 + }, + { + "start": 5188.48, + "end": 5190.44, + "probability": 0.9869 + }, + { + "start": 5190.58, + "end": 5194.32, + "probability": 0.9775 + }, + { + "start": 5194.32, + "end": 5198.9, + "probability": 0.9974 + }, + { + "start": 5199.88, + "end": 5200.37, + "probability": 0.5155 + }, + { + "start": 5202.62, + "end": 5204.34, + "probability": 0.64 + }, + { + "start": 5205.12, + "end": 5206.22, + "probability": 0.9259 + }, + { + "start": 5206.38, + "end": 5207.5, + "probability": 0.7662 + }, + { + "start": 5207.72, + "end": 5210.08, + "probability": 0.988 + }, + { + "start": 5210.48, + "end": 5210.88, + "probability": 0.4278 + }, + { + "start": 5210.98, + "end": 5212.22, + "probability": 0.9654 + }, + { + "start": 5212.9, + "end": 5214.88, + "probability": 0.9811 + }, + { + "start": 5215.34, + "end": 5216.36, + "probability": 0.9658 + }, + { + "start": 5216.46, + "end": 5217.56, + "probability": 0.9541 + }, + { + "start": 5218.14, + "end": 5219.8, + "probability": 0.9676 + }, + { + "start": 5220.64, + "end": 5225.64, + "probability": 0.9924 + }, + { + "start": 5226.22, + "end": 5231.42, + "probability": 0.9919 + }, + { + "start": 5232.84, + "end": 5238.52, + "probability": 0.9782 + }, + { + "start": 5239.68, + "end": 5244.34, + "probability": 0.9838 + }, + { + "start": 5245.08, + "end": 5247.12, + "probability": 0.9971 + }, + { + "start": 5247.68, + "end": 5250.9, + "probability": 0.9983 + }, + { + "start": 5251.02, + "end": 5255.04, + "probability": 0.9993 + }, + { + "start": 5256.3, + "end": 5259.94, + "probability": 0.9972 + }, + { + "start": 5259.94, + "end": 5262.98, + "probability": 0.8644 + }, + { + "start": 5263.44, + "end": 5266.28, + "probability": 0.8725 + }, + { + "start": 5267.68, + "end": 5269.26, + "probability": 0.5936 + }, + { + "start": 5269.44, + "end": 5271.64, + "probability": 0.9086 + }, + { + "start": 5272.16, + "end": 5274.8, + "probability": 0.7043 + }, + { + "start": 5275.18, + "end": 5281.78, + "probability": 0.9902 + }, + { + "start": 5284.38, + "end": 5288.92, + "probability": 0.9983 + }, + { + "start": 5289.58, + "end": 5291.58, + "probability": 0.8645 + }, + { + "start": 5292.04, + "end": 5293.16, + "probability": 0.994 + }, + { + "start": 5293.46, + "end": 5296.5, + "probability": 0.9745 + }, + { + "start": 5297.14, + "end": 5300.96, + "probability": 0.9965 + }, + { + "start": 5303.06, + "end": 5307.62, + "probability": 0.9983 + }, + { + "start": 5307.96, + "end": 5313.02, + "probability": 0.9898 + }, + { + "start": 5313.98, + "end": 5318.38, + "probability": 0.9973 + }, + { + "start": 5318.38, + "end": 5323.92, + "probability": 0.9995 + }, + { + "start": 5324.82, + "end": 5325.44, + "probability": 0.5592 + }, + { + "start": 5326.08, + "end": 5326.98, + "probability": 0.8937 + }, + { + "start": 5327.82, + "end": 5332.94, + "probability": 0.9642 + }, + { + "start": 5333.8, + "end": 5334.38, + "probability": 0.9017 + }, + { + "start": 5335.72, + "end": 5336.28, + "probability": 0.6398 + }, + { + "start": 5336.28, + "end": 5338.3, + "probability": 0.9722 + }, + { + "start": 5346.44, + "end": 5346.48, + "probability": 0.054 + }, + { + "start": 5346.48, + "end": 5346.48, + "probability": 0.0361 + }, + { + "start": 5346.48, + "end": 5346.48, + "probability": 0.0418 + }, + { + "start": 5382.66, + "end": 5383.42, + "probability": 0.1366 + }, + { + "start": 5385.56, + "end": 5387.78, + "probability": 0.6145 + }, + { + "start": 5388.76, + "end": 5390.7, + "probability": 0.9506 + }, + { + "start": 5390.8, + "end": 5394.8, + "probability": 0.9972 + }, + { + "start": 5394.8, + "end": 5398.98, + "probability": 0.9932 + }, + { + "start": 5400.02, + "end": 5402.18, + "probability": 0.7586 + }, + { + "start": 5404.0, + "end": 5404.54, + "probability": 0.4191 + }, + { + "start": 5407.76, + "end": 5411.3, + "probability": 0.8604 + }, + { + "start": 5412.12, + "end": 5413.52, + "probability": 0.8509 + }, + { + "start": 5414.16, + "end": 5414.92, + "probability": 0.8382 + }, + { + "start": 5416.3, + "end": 5417.96, + "probability": 0.9987 + }, + { + "start": 5418.84, + "end": 5422.24, + "probability": 0.9904 + }, + { + "start": 5423.14, + "end": 5426.14, + "probability": 0.9735 + }, + { + "start": 5426.96, + "end": 5430.42, + "probability": 0.9988 + }, + { + "start": 5430.82, + "end": 5434.18, + "probability": 0.9976 + }, + { + "start": 5435.48, + "end": 5435.78, + "probability": 0.3 + }, + { + "start": 5435.88, + "end": 5437.32, + "probability": 0.7818 + }, + { + "start": 5437.52, + "end": 5440.98, + "probability": 0.9482 + }, + { + "start": 5441.22, + "end": 5441.6, + "probability": 0.9301 + }, + { + "start": 5442.44, + "end": 5446.2, + "probability": 0.9957 + }, + { + "start": 5447.34, + "end": 5451.74, + "probability": 0.9722 + }, + { + "start": 5452.82, + "end": 5456.28, + "probability": 0.7975 + }, + { + "start": 5458.04, + "end": 5461.68, + "probability": 0.7781 + }, + { + "start": 5462.22, + "end": 5464.5, + "probability": 0.9824 + }, + { + "start": 5465.26, + "end": 5467.32, + "probability": 0.9749 + }, + { + "start": 5467.84, + "end": 5469.5, + "probability": 0.994 + }, + { + "start": 5470.7, + "end": 5473.98, + "probability": 0.9673 + }, + { + "start": 5473.98, + "end": 5478.34, + "probability": 0.9993 + }, + { + "start": 5479.1, + "end": 5481.8, + "probability": 0.9921 + }, + { + "start": 5482.42, + "end": 5485.36, + "probability": 0.9894 + }, + { + "start": 5486.32, + "end": 5490.04, + "probability": 0.9741 + }, + { + "start": 5490.26, + "end": 5491.08, + "probability": 0.5255 + }, + { + "start": 5491.82, + "end": 5496.36, + "probability": 0.9907 + }, + { + "start": 5497.24, + "end": 5498.94, + "probability": 0.7155 + }, + { + "start": 5499.68, + "end": 5500.76, + "probability": 0.8504 + }, + { + "start": 5501.0, + "end": 5505.14, + "probability": 0.9779 + }, + { + "start": 5505.96, + "end": 5507.26, + "probability": 0.8407 + }, + { + "start": 5508.06, + "end": 5510.34, + "probability": 0.9682 + }, + { + "start": 5510.48, + "end": 5513.44, + "probability": 0.9891 + }, + { + "start": 5514.44, + "end": 5519.4, + "probability": 0.9984 + }, + { + "start": 5520.74, + "end": 5523.58, + "probability": 0.7705 + }, + { + "start": 5524.12, + "end": 5526.96, + "probability": 0.9956 + }, + { + "start": 5527.74, + "end": 5530.42, + "probability": 0.5852 + }, + { + "start": 5531.24, + "end": 5537.8, + "probability": 0.9951 + }, + { + "start": 5538.56, + "end": 5540.02, + "probability": 0.906 + }, + { + "start": 5540.68, + "end": 5542.02, + "probability": 0.9393 + }, + { + "start": 5542.6, + "end": 5544.19, + "probability": 0.8331 + }, + { + "start": 5545.06, + "end": 5549.88, + "probability": 0.9948 + }, + { + "start": 5550.76, + "end": 5553.7, + "probability": 0.9919 + }, + { + "start": 5554.4, + "end": 5556.86, + "probability": 0.9884 + }, + { + "start": 5557.52, + "end": 5561.5, + "probability": 0.984 + }, + { + "start": 5562.18, + "end": 5563.72, + "probability": 0.9777 + }, + { + "start": 5565.56, + "end": 5568.36, + "probability": 0.9985 + }, + { + "start": 5568.36, + "end": 5573.54, + "probability": 0.9751 + }, + { + "start": 5574.5, + "end": 5578.36, + "probability": 0.996 + }, + { + "start": 5579.04, + "end": 5580.88, + "probability": 0.9966 + }, + { + "start": 5581.5, + "end": 5582.52, + "probability": 0.7359 + }, + { + "start": 5582.68, + "end": 5585.26, + "probability": 0.9946 + }, + { + "start": 5585.26, + "end": 5588.68, + "probability": 0.9894 + }, + { + "start": 5589.28, + "end": 5593.38, + "probability": 0.9932 + }, + { + "start": 5593.54, + "end": 5596.9, + "probability": 0.9629 + }, + { + "start": 5597.56, + "end": 5602.08, + "probability": 0.8322 + }, + { + "start": 5602.82, + "end": 5605.12, + "probability": 0.9951 + }, + { + "start": 5605.58, + "end": 5607.38, + "probability": 0.8804 + }, + { + "start": 5607.48, + "end": 5609.4, + "probability": 0.9607 + }, + { + "start": 5610.3, + "end": 5611.78, + "probability": 0.9431 + }, + { + "start": 5612.42, + "end": 5615.62, + "probability": 0.9946 + }, + { + "start": 5616.34, + "end": 5618.16, + "probability": 0.9888 + }, + { + "start": 5619.84, + "end": 5624.44, + "probability": 0.9825 + }, + { + "start": 5624.7, + "end": 5626.06, + "probability": 0.8934 + }, + { + "start": 5626.74, + "end": 5628.84, + "probability": 0.9956 + }, + { + "start": 5629.64, + "end": 5633.08, + "probability": 0.9948 + }, + { + "start": 5633.08, + "end": 5636.96, + "probability": 0.826 + }, + { + "start": 5637.8, + "end": 5641.88, + "probability": 0.9819 + }, + { + "start": 5642.7, + "end": 5647.54, + "probability": 0.999 + }, + { + "start": 5647.54, + "end": 5652.42, + "probability": 0.9379 + }, + { + "start": 5653.38, + "end": 5654.86, + "probability": 0.7787 + }, + { + "start": 5656.1, + "end": 5656.76, + "probability": 0.6265 + }, + { + "start": 5656.86, + "end": 5660.82, + "probability": 0.9767 + }, + { + "start": 5662.04, + "end": 5662.88, + "probability": 0.9405 + }, + { + "start": 5666.38, + "end": 5671.04, + "probability": 0.994 + }, + { + "start": 5671.2, + "end": 5671.88, + "probability": 0.9642 + }, + { + "start": 5674.34, + "end": 5676.72, + "probability": 0.1574 + }, + { + "start": 5679.26, + "end": 5682.52, + "probability": 0.1877 + }, + { + "start": 5691.98, + "end": 5693.76, + "probability": 0.6871 + }, + { + "start": 5694.6, + "end": 5696.8, + "probability": 0.762 + }, + { + "start": 5697.7, + "end": 5699.16, + "probability": 0.7433 + }, + { + "start": 5699.52, + "end": 5700.04, + "probability": 0.6198 + }, + { + "start": 5700.24, + "end": 5701.42, + "probability": 0.6526 + }, + { + "start": 5702.16, + "end": 5703.62, + "probability": 0.6481 + }, + { + "start": 5704.86, + "end": 5705.2, + "probability": 0.8865 + }, + { + "start": 5705.24, + "end": 5707.9, + "probability": 0.9973 + }, + { + "start": 5711.22, + "end": 5715.74, + "probability": 0.9316 + }, + { + "start": 5716.6, + "end": 5720.4, + "probability": 0.9797 + }, + { + "start": 5721.34, + "end": 5726.34, + "probability": 0.9973 + }, + { + "start": 5726.5, + "end": 5728.14, + "probability": 0.998 + }, + { + "start": 5729.1, + "end": 5729.94, + "probability": 0.5413 + }, + { + "start": 5730.02, + "end": 5731.03, + "probability": 0.99 + }, + { + "start": 5731.44, + "end": 5731.98, + "probability": 0.7182 + }, + { + "start": 5732.12, + "end": 5733.06, + "probability": 0.6934 + }, + { + "start": 5734.96, + "end": 5737.48, + "probability": 0.8748 + }, + { + "start": 5737.5, + "end": 5740.82, + "probability": 0.8892 + }, + { + "start": 5742.24, + "end": 5746.7, + "probability": 0.9862 + }, + { + "start": 5747.62, + "end": 5748.86, + "probability": 0.8507 + }, + { + "start": 5750.04, + "end": 5752.2, + "probability": 0.7508 + }, + { + "start": 5752.76, + "end": 5755.6, + "probability": 0.9516 + }, + { + "start": 5756.84, + "end": 5761.29, + "probability": 0.9673 + }, + { + "start": 5762.14, + "end": 5763.68, + "probability": 0.8946 + }, + { + "start": 5764.92, + "end": 5773.2, + "probability": 0.9891 + }, + { + "start": 5773.2, + "end": 5777.64, + "probability": 0.9974 + }, + { + "start": 5778.68, + "end": 5780.32, + "probability": 0.9185 + }, + { + "start": 5782.56, + "end": 5785.94, + "probability": 0.9958 + }, + { + "start": 5786.54, + "end": 5789.37, + "probability": 0.9956 + }, + { + "start": 5790.1, + "end": 5793.28, + "probability": 0.999 + }, + { + "start": 5794.44, + "end": 5795.24, + "probability": 0.993 + }, + { + "start": 5796.08, + "end": 5799.66, + "probability": 0.9118 + }, + { + "start": 5800.24, + "end": 5806.42, + "probability": 0.9543 + }, + { + "start": 5808.16, + "end": 5818.18, + "probability": 0.995 + }, + { + "start": 5818.86, + "end": 5824.96, + "probability": 0.9721 + }, + { + "start": 5825.86, + "end": 5832.0, + "probability": 0.979 + }, + { + "start": 5832.82, + "end": 5836.92, + "probability": 0.8961 + }, + { + "start": 5837.62, + "end": 5840.1, + "probability": 0.9959 + }, + { + "start": 5840.28, + "end": 5841.88, + "probability": 0.9228 + }, + { + "start": 5844.52, + "end": 5850.04, + "probability": 0.9909 + }, + { + "start": 5851.3, + "end": 5858.02, + "probability": 0.9721 + }, + { + "start": 5858.76, + "end": 5863.42, + "probability": 0.9803 + }, + { + "start": 5863.92, + "end": 5868.74, + "probability": 0.1925 + }, + { + "start": 5868.74, + "end": 5868.76, + "probability": 0.3473 + }, + { + "start": 5869.4, + "end": 5873.58, + "probability": 0.7099 + }, + { + "start": 5875.52, + "end": 5880.12, + "probability": 0.985 + }, + { + "start": 5881.48, + "end": 5884.04, + "probability": 0.9886 + }, + { + "start": 5884.38, + "end": 5885.1, + "probability": 0.97 + }, + { + "start": 5885.22, + "end": 5886.04, + "probability": 0.976 + }, + { + "start": 5886.88, + "end": 5890.02, + "probability": 0.9937 + }, + { + "start": 5890.86, + "end": 5896.62, + "probability": 0.9928 + }, + { + "start": 5897.72, + "end": 5899.38, + "probability": 0.999 + }, + { + "start": 5900.94, + "end": 5905.88, + "probability": 0.9884 + }, + { + "start": 5906.04, + "end": 5908.84, + "probability": 0.8846 + }, + { + "start": 5909.08, + "end": 5910.54, + "probability": 0.8472 + }, + { + "start": 5911.5, + "end": 5914.04, + "probability": 0.8695 + }, + { + "start": 5914.6, + "end": 5918.02, + "probability": 0.9936 + }, + { + "start": 5919.0, + "end": 5921.44, + "probability": 0.9793 + }, + { + "start": 5922.12, + "end": 5927.22, + "probability": 0.989 + }, + { + "start": 5927.22, + "end": 5932.64, + "probability": 0.9778 + }, + { + "start": 5933.16, + "end": 5939.5, + "probability": 0.9928 + }, + { + "start": 5940.44, + "end": 5943.68, + "probability": 0.9846 + }, + { + "start": 5944.98, + "end": 5949.84, + "probability": 0.9886 + }, + { + "start": 5950.28, + "end": 5953.46, + "probability": 0.9398 + }, + { + "start": 5954.36, + "end": 5958.08, + "probability": 0.9756 + }, + { + "start": 5958.08, + "end": 5963.44, + "probability": 0.9896 + }, + { + "start": 5964.36, + "end": 5967.14, + "probability": 0.9528 + }, + { + "start": 5967.26, + "end": 5970.38, + "probability": 0.9929 + }, + { + "start": 5970.98, + "end": 5973.06, + "probability": 0.9973 + }, + { + "start": 5973.76, + "end": 5977.96, + "probability": 0.9987 + }, + { + "start": 5977.96, + "end": 5982.96, + "probability": 0.9968 + }, + { + "start": 5983.92, + "end": 5987.06, + "probability": 0.9821 + }, + { + "start": 5987.82, + "end": 5990.14, + "probability": 0.4564 + }, + { + "start": 5991.06, + "end": 5994.2, + "probability": 0.9621 + }, + { + "start": 5994.8, + "end": 5995.68, + "probability": 0.8911 + }, + { + "start": 5996.7, + "end": 5998.88, + "probability": 0.9768 + }, + { + "start": 5998.98, + "end": 5999.84, + "probability": 0.9722 + }, + { + "start": 6000.02, + "end": 6005.28, + "probability": 0.9133 + }, + { + "start": 6007.46, + "end": 6013.78, + "probability": 0.9977 + }, + { + "start": 6013.78, + "end": 6019.62, + "probability": 0.9701 + }, + { + "start": 6020.0, + "end": 6022.96, + "probability": 0.9252 + }, + { + "start": 6023.92, + "end": 6026.96, + "probability": 0.8503 + }, + { + "start": 6027.6, + "end": 6032.92, + "probability": 0.8891 + }, + { + "start": 6032.92, + "end": 6037.14, + "probability": 0.9362 + }, + { + "start": 6037.28, + "end": 6040.08, + "probability": 0.9645 + }, + { + "start": 6040.08, + "end": 6045.52, + "probability": 0.995 + }, + { + "start": 6046.48, + "end": 6046.68, + "probability": 0.6524 + }, + { + "start": 6048.8, + "end": 6049.28, + "probability": 0.658 + }, + { + "start": 6049.36, + "end": 6052.22, + "probability": 0.6426 + }, + { + "start": 6053.22, + "end": 6054.02, + "probability": 0.4795 + }, + { + "start": 6055.4, + "end": 6056.24, + "probability": 0.6642 + }, + { + "start": 6056.36, + "end": 6057.32, + "probability": 0.5741 + }, + { + "start": 6057.34, + "end": 6058.7, + "probability": 0.8446 + }, + { + "start": 6058.82, + "end": 6059.98, + "probability": 0.9513 + }, + { + "start": 6060.62, + "end": 6062.58, + "probability": 0.9856 + }, + { + "start": 6062.58, + "end": 6064.58, + "probability": 0.989 + }, + { + "start": 6065.16, + "end": 6067.86, + "probability": 0.963 + }, + { + "start": 6067.96, + "end": 6068.18, + "probability": 0.7328 + }, + { + "start": 6069.66, + "end": 6070.34, + "probability": 0.7889 + }, + { + "start": 6070.48, + "end": 6071.3, + "probability": 0.8686 + }, + { + "start": 6071.46, + "end": 6073.5, + "probability": 0.9976 + }, + { + "start": 6073.5, + "end": 6075.9, + "probability": 0.9786 + }, + { + "start": 6076.24, + "end": 6084.77, + "probability": 0.7313 + }, + { + "start": 6086.12, + "end": 6086.86, + "probability": 0.8702 + }, + { + "start": 6088.28, + "end": 6088.38, + "probability": 0.5052 + }, + { + "start": 6089.28, + "end": 6090.98, + "probability": 0.1893 + }, + { + "start": 6092.06, + "end": 6093.52, + "probability": 0.1967 + }, + { + "start": 6096.91, + "end": 6099.08, + "probability": 0.0152 + }, + { + "start": 6099.08, + "end": 6101.62, + "probability": 0.0726 + }, + { + "start": 6119.04, + "end": 6120.74, + "probability": 0.0405 + }, + { + "start": 6123.0, + "end": 6134.84, + "probability": 0.3199 + }, + { + "start": 6135.22, + "end": 6141.14, + "probability": 0.1687 + }, + { + "start": 6141.48, + "end": 6145.06, + "probability": 0.9571 + }, + { + "start": 6146.0, + "end": 6148.06, + "probability": 0.8937 + }, + { + "start": 6149.46, + "end": 6153.02, + "probability": 0.9427 + }, + { + "start": 6154.02, + "end": 6154.84, + "probability": 0.66 + }, + { + "start": 6155.0, + "end": 6157.9, + "probability": 0.9331 + }, + { + "start": 6157.96, + "end": 6160.72, + "probability": 0.9983 + }, + { + "start": 6162.84, + "end": 6164.58, + "probability": 0.898 + }, + { + "start": 6165.72, + "end": 6166.8, + "probability": 0.0216 + }, + { + "start": 6167.7, + "end": 6170.96, + "probability": 0.7914 + }, + { + "start": 6171.88, + "end": 6175.9, + "probability": 0.9926 + }, + { + "start": 6175.9, + "end": 6178.84, + "probability": 0.9956 + }, + { + "start": 6181.18, + "end": 6185.66, + "probability": 0.9875 + }, + { + "start": 6186.32, + "end": 6188.18, + "probability": 0.6415 + }, + { + "start": 6189.22, + "end": 6192.02, + "probability": 0.9701 + }, + { + "start": 6192.72, + "end": 6198.12, + "probability": 0.9813 + }, + { + "start": 6198.68, + "end": 6200.56, + "probability": 0.8597 + }, + { + "start": 6202.28, + "end": 6204.34, + "probability": 0.633 + }, + { + "start": 6205.48, + "end": 6207.66, + "probability": 0.8989 + }, + { + "start": 6208.5, + "end": 6212.96, + "probability": 0.9976 + }, + { + "start": 6212.96, + "end": 6221.46, + "probability": 0.7595 + }, + { + "start": 6221.46, + "end": 6225.1, + "probability": 0.9995 + }, + { + "start": 6225.72, + "end": 6228.84, + "probability": 0.9587 + }, + { + "start": 6229.86, + "end": 6235.24, + "probability": 0.9565 + }, + { + "start": 6236.16, + "end": 6238.94, + "probability": 0.9538 + }, + { + "start": 6239.74, + "end": 6242.84, + "probability": 0.9844 + }, + { + "start": 6243.46, + "end": 6246.68, + "probability": 0.9972 + }, + { + "start": 6246.68, + "end": 6250.0, + "probability": 0.997 + }, + { + "start": 6252.08, + "end": 6255.48, + "probability": 0.9324 + }, + { + "start": 6255.48, + "end": 6260.24, + "probability": 0.9796 + }, + { + "start": 6260.24, + "end": 6265.06, + "probability": 0.9984 + }, + { + "start": 6265.62, + "end": 6267.38, + "probability": 0.6946 + }, + { + "start": 6268.98, + "end": 6270.58, + "probability": 0.8619 + }, + { + "start": 6271.14, + "end": 6274.62, + "probability": 0.992 + }, + { + "start": 6275.52, + "end": 6276.42, + "probability": 0.7505 + }, + { + "start": 6278.14, + "end": 6279.28, + "probability": 0.7531 + }, + { + "start": 6279.38, + "end": 6281.62, + "probability": 0.8275 + }, + { + "start": 6282.26, + "end": 6284.14, + "probability": 0.9886 + }, + { + "start": 6285.46, + "end": 6287.8, + "probability": 0.9727 + }, + { + "start": 6288.64, + "end": 6291.0, + "probability": 0.9746 + }, + { + "start": 6291.0, + "end": 6294.04, + "probability": 0.9893 + }, + { + "start": 6295.2, + "end": 6299.42, + "probability": 0.9346 + }, + { + "start": 6300.04, + "end": 6302.58, + "probability": 0.973 + }, + { + "start": 6303.2, + "end": 6303.68, + "probability": 0.7272 + }, + { + "start": 6304.22, + "end": 6307.06, + "probability": 0.9861 + }, + { + "start": 6307.92, + "end": 6311.88, + "probability": 0.9379 + }, + { + "start": 6312.54, + "end": 6315.74, + "probability": 0.9592 + }, + { + "start": 6316.32, + "end": 6321.0, + "probability": 0.9603 + }, + { + "start": 6321.0, + "end": 6324.1, + "probability": 0.973 + }, + { + "start": 6324.7, + "end": 6326.7, + "probability": 0.7508 + }, + { + "start": 6327.34, + "end": 6330.1, + "probability": 0.7013 + }, + { + "start": 6330.76, + "end": 6333.9, + "probability": 0.9715 + }, + { + "start": 6336.24, + "end": 6340.48, + "probability": 0.9633 + }, + { + "start": 6340.48, + "end": 6343.94, + "probability": 0.9993 + }, + { + "start": 6345.8, + "end": 6349.56, + "probability": 0.9526 + }, + { + "start": 6349.56, + "end": 6352.7, + "probability": 0.9982 + }, + { + "start": 6353.32, + "end": 6353.82, + "probability": 0.9755 + }, + { + "start": 6356.94, + "end": 6360.36, + "probability": 0.8499 + }, + { + "start": 6360.48, + "end": 6362.66, + "probability": 0.9876 + }, + { + "start": 6363.28, + "end": 6364.56, + "probability": 0.7834 + }, + { + "start": 6365.68, + "end": 6367.8, + "probability": 0.9921 + }, + { + "start": 6368.48, + "end": 6371.46, + "probability": 0.9987 + }, + { + "start": 6371.48, + "end": 6374.22, + "probability": 0.9929 + }, + { + "start": 6374.38, + "end": 6375.3, + "probability": 0.821 + }, + { + "start": 6376.54, + "end": 6379.56, + "probability": 0.9917 + }, + { + "start": 6380.24, + "end": 6384.72, + "probability": 0.9861 + }, + { + "start": 6386.32, + "end": 6388.58, + "probability": 0.9535 + }, + { + "start": 6388.58, + "end": 6392.12, + "probability": 0.9984 + }, + { + "start": 6393.92, + "end": 6394.8, + "probability": 0.7453 + }, + { + "start": 6395.78, + "end": 6400.08, + "probability": 0.7096 + }, + { + "start": 6400.08, + "end": 6404.96, + "probability": 0.9457 + }, + { + "start": 6405.92, + "end": 6408.24, + "probability": 0.9294 + }, + { + "start": 6408.24, + "end": 6411.42, + "probability": 0.9019 + }, + { + "start": 6412.34, + "end": 6415.16, + "probability": 0.9939 + }, + { + "start": 6415.38, + "end": 6417.0, + "probability": 0.9223 + }, + { + "start": 6417.0, + "end": 6419.92, + "probability": 0.8139 + }, + { + "start": 6420.46, + "end": 6422.96, + "probability": 0.9937 + }, + { + "start": 6429.72, + "end": 6432.82, + "probability": 0.8809 + }, + { + "start": 6432.98, + "end": 6435.18, + "probability": 0.6032 + }, + { + "start": 6435.3, + "end": 6436.88, + "probability": 0.9939 + }, + { + "start": 6437.44, + "end": 6441.22, + "probability": 0.959 + }, + { + "start": 6441.54, + "end": 6444.98, + "probability": 0.9923 + }, + { + "start": 6445.3, + "end": 6445.42, + "probability": 0.288 + }, + { + "start": 6445.56, + "end": 6448.86, + "probability": 0.7756 + }, + { + "start": 6449.5, + "end": 6453.66, + "probability": 0.952 + }, + { + "start": 6454.16, + "end": 6455.34, + "probability": 0.8944 + }, + { + "start": 6455.86, + "end": 6460.64, + "probability": 0.9853 + }, + { + "start": 6461.34, + "end": 6463.86, + "probability": 0.9935 + }, + { + "start": 6466.56, + "end": 6468.88, + "probability": 0.8066 + }, + { + "start": 6468.88, + "end": 6471.36, + "probability": 0.9863 + }, + { + "start": 6472.02, + "end": 6476.96, + "probability": 0.9915 + }, + { + "start": 6477.74, + "end": 6480.52, + "probability": 0.8124 + }, + { + "start": 6481.38, + "end": 6485.64, + "probability": 0.8689 + }, + { + "start": 6486.2, + "end": 6487.18, + "probability": 0.6108 + }, + { + "start": 6487.3, + "end": 6488.66, + "probability": 0.9942 + }, + { + "start": 6489.06, + "end": 6491.44, + "probability": 0.694 + }, + { + "start": 6491.44, + "end": 6494.38, + "probability": 0.9685 + }, + { + "start": 6494.94, + "end": 6496.62, + "probability": 0.7559 + }, + { + "start": 6497.16, + "end": 6499.78, + "probability": 0.7552 + }, + { + "start": 6501.16, + "end": 6504.54, + "probability": 0.6509 + }, + { + "start": 6504.54, + "end": 6508.94, + "probability": 0.9186 + }, + { + "start": 6509.12, + "end": 6510.86, + "probability": 0.9308 + }, + { + "start": 6511.38, + "end": 6515.62, + "probability": 0.9297 + }, + { + "start": 6516.4, + "end": 6518.46, + "probability": 0.5284 + }, + { + "start": 6518.46, + "end": 6520.52, + "probability": 0.9921 + }, + { + "start": 6520.98, + "end": 6523.8, + "probability": 0.8799 + }, + { + "start": 6524.38, + "end": 6526.18, + "probability": 0.8055 + }, + { + "start": 6526.68, + "end": 6528.14, + "probability": 0.9832 + }, + { + "start": 6528.72, + "end": 6531.44, + "probability": 0.9905 + }, + { + "start": 6531.92, + "end": 6535.66, + "probability": 0.938 + }, + { + "start": 6537.06, + "end": 6537.54, + "probability": 0.7437 + }, + { + "start": 6538.32, + "end": 6540.52, + "probability": 0.9738 + }, + { + "start": 6540.52, + "end": 6543.06, + "probability": 0.9935 + }, + { + "start": 6543.64, + "end": 6546.3, + "probability": 0.9895 + }, + { + "start": 6547.1, + "end": 6551.36, + "probability": 0.9426 + }, + { + "start": 6552.16, + "end": 6553.0, + "probability": 0.7757 + }, + { + "start": 6553.24, + "end": 6554.3, + "probability": 0.3883 + }, + { + "start": 6554.36, + "end": 6557.14, + "probability": 0.9566 + }, + { + "start": 6559.06, + "end": 6562.18, + "probability": 0.9829 + }, + { + "start": 6562.18, + "end": 6566.88, + "probability": 0.9674 + }, + { + "start": 6567.54, + "end": 6570.58, + "probability": 0.8912 + }, + { + "start": 6570.58, + "end": 6575.12, + "probability": 0.8547 + }, + { + "start": 6576.02, + "end": 6576.68, + "probability": 0.4953 + }, + { + "start": 6577.62, + "end": 6579.62, + "probability": 0.8694 + }, + { + "start": 6580.04, + "end": 6584.08, + "probability": 0.9816 + }, + { + "start": 6584.68, + "end": 6586.96, + "probability": 0.9531 + }, + { + "start": 6588.64, + "end": 6591.46, + "probability": 0.7684 + }, + { + "start": 6592.28, + "end": 6594.32, + "probability": 0.788 + }, + { + "start": 6595.14, + "end": 6600.24, + "probability": 0.9797 + }, + { + "start": 6601.06, + "end": 6604.82, + "probability": 0.9886 + }, + { + "start": 6605.74, + "end": 6611.38, + "probability": 0.7141 + }, + { + "start": 6612.14, + "end": 6616.2, + "probability": 0.9878 + }, + { + "start": 6617.24, + "end": 6618.36, + "probability": 0.7402 + }, + { + "start": 6618.88, + "end": 6621.54, + "probability": 0.7388 + }, + { + "start": 6622.14, + "end": 6625.46, + "probability": 0.9546 + }, + { + "start": 6625.92, + "end": 6625.92, + "probability": 0.4211 + }, + { + "start": 6626.04, + "end": 6626.44, + "probability": 0.8575 + }, + { + "start": 6627.1, + "end": 6630.7, + "probability": 0.7945 + }, + { + "start": 6630.7, + "end": 6631.2, + "probability": 0.9019 + }, + { + "start": 6650.06, + "end": 6652.36, + "probability": 0.6672 + }, + { + "start": 6653.84, + "end": 6659.76, + "probability": 0.9856 + }, + { + "start": 6660.68, + "end": 6662.64, + "probability": 0.9879 + }, + { + "start": 6663.54, + "end": 6668.58, + "probability": 0.8826 + }, + { + "start": 6668.74, + "end": 6670.86, + "probability": 0.9856 + }, + { + "start": 6672.1, + "end": 6679.34, + "probability": 0.9829 + }, + { + "start": 6679.66, + "end": 6680.98, + "probability": 0.7943 + }, + { + "start": 6682.34, + "end": 6687.63, + "probability": 0.9333 + }, + { + "start": 6688.8, + "end": 6693.22, + "probability": 0.982 + }, + { + "start": 6694.22, + "end": 6694.94, + "probability": 0.8197 + }, + { + "start": 6695.76, + "end": 6700.78, + "probability": 0.9146 + }, + { + "start": 6701.84, + "end": 6702.92, + "probability": 0.9563 + }, + { + "start": 6703.56, + "end": 6705.28, + "probability": 0.5001 + }, + { + "start": 6706.3, + "end": 6712.44, + "probability": 0.9521 + }, + { + "start": 6713.28, + "end": 6716.34, + "probability": 0.9902 + }, + { + "start": 6716.9, + "end": 6718.64, + "probability": 0.9966 + }, + { + "start": 6719.44, + "end": 6722.42, + "probability": 0.586 + }, + { + "start": 6723.04, + "end": 6726.14, + "probability": 0.9463 + }, + { + "start": 6726.74, + "end": 6729.82, + "probability": 0.6698 + }, + { + "start": 6730.96, + "end": 6731.72, + "probability": 0.6599 + }, + { + "start": 6732.42, + "end": 6734.84, + "probability": 0.4763 + }, + { + "start": 6735.54, + "end": 6736.6, + "probability": 0.9653 + }, + { + "start": 6738.76, + "end": 6742.94, + "probability": 0.9736 + }, + { + "start": 6743.48, + "end": 6746.46, + "probability": 0.4506 + }, + { + "start": 6746.78, + "end": 6749.4, + "probability": 0.3638 + }, + { + "start": 6749.64, + "end": 6751.0, + "probability": 0.8137 + }, + { + "start": 6752.14, + "end": 6757.92, + "probability": 0.9749 + }, + { + "start": 6758.36, + "end": 6758.88, + "probability": 0.4994 + }, + { + "start": 6759.7, + "end": 6762.4, + "probability": 0.9525 + }, + { + "start": 6762.92, + "end": 6766.66, + "probability": 0.9884 + }, + { + "start": 6768.18, + "end": 6773.92, + "probability": 0.9951 + }, + { + "start": 6774.18, + "end": 6777.38, + "probability": 0.919 + }, + { + "start": 6778.32, + "end": 6781.22, + "probability": 0.8888 + }, + { + "start": 6781.9, + "end": 6784.32, + "probability": 0.9845 + }, + { + "start": 6784.32, + "end": 6788.46, + "probability": 0.8296 + }, + { + "start": 6788.84, + "end": 6789.86, + "probability": 0.8871 + }, + { + "start": 6791.16, + "end": 6793.44, + "probability": 0.9963 + }, + { + "start": 6793.44, + "end": 6797.04, + "probability": 0.9644 + }, + { + "start": 6797.48, + "end": 6798.78, + "probability": 0.9564 + }, + { + "start": 6799.34, + "end": 6800.7, + "probability": 0.9215 + }, + { + "start": 6800.92, + "end": 6801.76, + "probability": 0.958 + }, + { + "start": 6801.86, + "end": 6804.12, + "probability": 0.9743 + }, + { + "start": 6805.2, + "end": 6809.2, + "probability": 0.9736 + }, + { + "start": 6809.54, + "end": 6811.4, + "probability": 0.9255 + }, + { + "start": 6812.32, + "end": 6814.2, + "probability": 0.9685 + }, + { + "start": 6814.8, + "end": 6819.96, + "probability": 0.9839 + }, + { + "start": 6820.62, + "end": 6821.5, + "probability": 0.8381 + }, + { + "start": 6822.58, + "end": 6824.46, + "probability": 0.8018 + }, + { + "start": 6825.56, + "end": 6827.34, + "probability": 0.9927 + }, + { + "start": 6828.3, + "end": 6831.78, + "probability": 0.9976 + }, + { + "start": 6832.17, + "end": 6835.48, + "probability": 0.9989 + }, + { + "start": 6836.62, + "end": 6838.62, + "probability": 0.9995 + }, + { + "start": 6840.06, + "end": 6842.68, + "probability": 0.9525 + }, + { + "start": 6843.22, + "end": 6846.08, + "probability": 0.7645 + }, + { + "start": 6847.38, + "end": 6849.5, + "probability": 0.8932 + }, + { + "start": 6850.18, + "end": 6853.51, + "probability": 0.9671 + }, + { + "start": 6855.18, + "end": 6858.54, + "probability": 0.8011 + }, + { + "start": 6859.2, + "end": 6861.64, + "probability": 0.7742 + }, + { + "start": 6862.54, + "end": 6866.9, + "probability": 0.873 + }, + { + "start": 6867.16, + "end": 6868.72, + "probability": 0.8372 + }, + { + "start": 6869.52, + "end": 6872.36, + "probability": 0.9492 + }, + { + "start": 6873.94, + "end": 6875.08, + "probability": 0.8023 + }, + { + "start": 6875.3, + "end": 6877.44, + "probability": 0.9569 + }, + { + "start": 6877.98, + "end": 6881.02, + "probability": 0.7534 + }, + { + "start": 6881.6, + "end": 6887.62, + "probability": 0.9915 + }, + { + "start": 6888.58, + "end": 6894.26, + "probability": 0.988 + }, + { + "start": 6894.92, + "end": 6896.52, + "probability": 0.8548 + }, + { + "start": 6897.0, + "end": 6899.4, + "probability": 0.9041 + }, + { + "start": 6900.14, + "end": 6903.54, + "probability": 0.9616 + }, + { + "start": 6904.34, + "end": 6904.92, + "probability": 0.824 + }, + { + "start": 6905.86, + "end": 6911.46, + "probability": 0.9846 + }, + { + "start": 6915.32, + "end": 6916.08, + "probability": 0.5581 + }, + { + "start": 6916.88, + "end": 6918.42, + "probability": 0.5623 + }, + { + "start": 6918.46, + "end": 6920.06, + "probability": 0.3079 + }, + { + "start": 6920.8, + "end": 6921.04, + "probability": 0.2729 + }, + { + "start": 6921.04, + "end": 6922.8, + "probability": 0.6885 + }, + { + "start": 6923.34, + "end": 6925.18, + "probability": 0.6596 + }, + { + "start": 6926.56, + "end": 6930.12, + "probability": 0.9824 + }, + { + "start": 6930.24, + "end": 6933.94, + "probability": 0.6563 + }, + { + "start": 6934.78, + "end": 6936.94, + "probability": 0.4976 + }, + { + "start": 6937.1, + "end": 6940.08, + "probability": 0.5675 + }, + { + "start": 6940.26, + "end": 6940.82, + "probability": 0.9322 + }, + { + "start": 6941.02, + "end": 6945.11, + "probability": 0.7439 + }, + { + "start": 6946.48, + "end": 6950.92, + "probability": 0.6452 + }, + { + "start": 6951.6, + "end": 6956.28, + "probability": 0.9339 + }, + { + "start": 6956.9, + "end": 6957.54, + "probability": 0.783 + }, + { + "start": 6958.2, + "end": 6963.88, + "probability": 0.984 + }, + { + "start": 6965.78, + "end": 6968.42, + "probability": 0.9955 + }, + { + "start": 6969.14, + "end": 6971.64, + "probability": 0.656 + }, + { + "start": 6972.63, + "end": 6975.28, + "probability": 0.8687 + }, + { + "start": 6975.74, + "end": 6977.3, + "probability": 0.9969 + }, + { + "start": 6977.46, + "end": 6979.42, + "probability": 0.938 + }, + { + "start": 6979.98, + "end": 6982.92, + "probability": 0.9982 + }, + { + "start": 6982.92, + "end": 6986.48, + "probability": 0.6526 + }, + { + "start": 6987.06, + "end": 6988.16, + "probability": 0.5372 + }, + { + "start": 6988.84, + "end": 6991.44, + "probability": 0.8063 + }, + { + "start": 6992.16, + "end": 6993.44, + "probability": 0.9083 + }, + { + "start": 6993.86, + "end": 6998.52, + "probability": 0.9576 + }, + { + "start": 6999.24, + "end": 7000.48, + "probability": 0.7603 + }, + { + "start": 7000.58, + "end": 7002.02, + "probability": 0.5414 + }, + { + "start": 7002.44, + "end": 7003.34, + "probability": 0.8176 + }, + { + "start": 7004.48, + "end": 7008.58, + "probability": 0.8242 + }, + { + "start": 7009.38, + "end": 7012.18, + "probability": 0.8059 + }, + { + "start": 7013.06, + "end": 7014.8, + "probability": 0.9364 + }, + { + "start": 7015.74, + "end": 7017.66, + "probability": 0.9351 + }, + { + "start": 7018.62, + "end": 7020.9, + "probability": 0.9937 + }, + { + "start": 7021.68, + "end": 7022.5, + "probability": 0.772 + }, + { + "start": 7023.34, + "end": 7023.86, + "probability": 0.9711 + }, + { + "start": 7024.2, + "end": 7024.78, + "probability": 0.8237 + }, + { + "start": 7024.9, + "end": 7028.1, + "probability": 0.9886 + }, + { + "start": 7029.66, + "end": 7033.9, + "probability": 0.6674 + }, + { + "start": 7034.54, + "end": 7037.12, + "probability": 0.9702 + }, + { + "start": 7037.12, + "end": 7040.74, + "probability": 0.9382 + }, + { + "start": 7041.84, + "end": 7043.09, + "probability": 0.6515 + }, + { + "start": 7044.14, + "end": 7044.46, + "probability": 0.9666 + }, + { + "start": 7046.38, + "end": 7051.88, + "probability": 0.9875 + }, + { + "start": 7051.98, + "end": 7054.94, + "probability": 0.7169 + }, + { + "start": 7056.02, + "end": 7057.54, + "probability": 0.9609 + }, + { + "start": 7058.66, + "end": 7062.08, + "probability": 0.989 + }, + { + "start": 7062.08, + "end": 7064.36, + "probability": 0.9427 + }, + { + "start": 7065.14, + "end": 7067.15, + "probability": 0.9775 + }, + { + "start": 7068.54, + "end": 7071.26, + "probability": 0.9027 + }, + { + "start": 7071.9, + "end": 7075.56, + "probability": 0.929 + }, + { + "start": 7076.54, + "end": 7080.12, + "probability": 0.9624 + }, + { + "start": 7081.36, + "end": 7082.62, + "probability": 0.8052 + }, + { + "start": 7082.84, + "end": 7083.64, + "probability": 0.9746 + }, + { + "start": 7083.76, + "end": 7085.54, + "probability": 0.8126 + }, + { + "start": 7086.74, + "end": 7087.52, + "probability": 0.9364 + }, + { + "start": 7088.42, + "end": 7090.48, + "probability": 0.9818 + }, + { + "start": 7091.22, + "end": 7092.18, + "probability": 0.8375 + }, + { + "start": 7092.74, + "end": 7098.56, + "probability": 0.8001 + }, + { + "start": 7098.66, + "end": 7102.24, + "probability": 0.8527 + }, + { + "start": 7102.9, + "end": 7106.64, + "probability": 0.9306 + }, + { + "start": 7107.22, + "end": 7108.74, + "probability": 0.9288 + }, + { + "start": 7109.66, + "end": 7113.18, + "probability": 0.6459 + }, + { + "start": 7114.04, + "end": 7117.4, + "probability": 0.9377 + }, + { + "start": 7118.52, + "end": 7121.84, + "probability": 0.9609 + }, + { + "start": 7122.64, + "end": 7125.7, + "probability": 0.9236 + }, + { + "start": 7126.5, + "end": 7127.94, + "probability": 0.5344 + }, + { + "start": 7128.58, + "end": 7129.36, + "probability": 0.4364 + }, + { + "start": 7129.76, + "end": 7131.18, + "probability": 0.6846 + }, + { + "start": 7131.8, + "end": 7132.16, + "probability": 0.9338 + }, + { + "start": 7133.3, + "end": 7137.48, + "probability": 0.8936 + }, + { + "start": 7137.62, + "end": 7140.92, + "probability": 0.9926 + }, + { + "start": 7141.94, + "end": 7145.0, + "probability": 0.9918 + }, + { + "start": 7145.36, + "end": 7149.16, + "probability": 0.9475 + }, + { + "start": 7149.72, + "end": 7150.86, + "probability": 0.7913 + }, + { + "start": 7151.56, + "end": 7155.14, + "probability": 0.9866 + }, + { + "start": 7155.2, + "end": 7156.18, + "probability": 0.7928 + }, + { + "start": 7157.18, + "end": 7157.68, + "probability": 0.621 + }, + { + "start": 7157.76, + "end": 7163.2, + "probability": 0.8096 + }, + { + "start": 7164.12, + "end": 7166.56, + "probability": 0.861 + }, + { + "start": 7167.16, + "end": 7169.38, + "probability": 0.917 + }, + { + "start": 7170.0, + "end": 7171.64, + "probability": 0.7803 + }, + { + "start": 7171.64, + "end": 7173.34, + "probability": 0.8849 + }, + { + "start": 7173.42, + "end": 7174.36, + "probability": 0.5266 + }, + { + "start": 7174.5, + "end": 7174.92, + "probability": 0.451 + }, + { + "start": 7175.46, + "end": 7177.78, + "probability": 0.8851 + }, + { + "start": 7178.22, + "end": 7178.85, + "probability": 0.9672 + }, + { + "start": 7178.98, + "end": 7180.18, + "probability": 0.9006 + }, + { + "start": 7180.34, + "end": 7185.3, + "probability": 0.9697 + }, + { + "start": 7186.38, + "end": 7189.38, + "probability": 0.8567 + }, + { + "start": 7189.48, + "end": 7192.32, + "probability": 0.7229 + }, + { + "start": 7193.12, + "end": 7196.32, + "probability": 0.9717 + }, + { + "start": 7196.32, + "end": 7199.06, + "probability": 0.9783 + }, + { + "start": 7199.52, + "end": 7200.82, + "probability": 0.9622 + }, + { + "start": 7200.96, + "end": 7204.58, + "probability": 0.8633 + }, + { + "start": 7205.4, + "end": 7207.42, + "probability": 0.5362 + }, + { + "start": 7208.08, + "end": 7210.14, + "probability": 0.7031 + }, + { + "start": 7210.2, + "end": 7211.88, + "probability": 0.8044 + }, + { + "start": 7212.38, + "end": 7213.48, + "probability": 0.9186 + }, + { + "start": 7214.08, + "end": 7218.92, + "probability": 0.8932 + }, + { + "start": 7218.92, + "end": 7223.34, + "probability": 0.9047 + }, + { + "start": 7224.22, + "end": 7228.88, + "probability": 0.7509 + }, + { + "start": 7229.54, + "end": 7233.0, + "probability": 0.9028 + }, + { + "start": 7233.6, + "end": 7237.6, + "probability": 0.9303 + }, + { + "start": 7237.94, + "end": 7239.8, + "probability": 0.9381 + }, + { + "start": 7239.98, + "end": 7242.8, + "probability": 0.8735 + }, + { + "start": 7242.84, + "end": 7243.88, + "probability": 0.5604 + }, + { + "start": 7245.2, + "end": 7247.04, + "probability": 0.724 + }, + { + "start": 7247.64, + "end": 7250.0, + "probability": 0.277 + }, + { + "start": 7250.7, + "end": 7252.92, + "probability": 0.8671 + }, + { + "start": 7253.68, + "end": 7254.82, + "probability": 0.9122 + }, + { + "start": 7255.34, + "end": 7258.38, + "probability": 0.8052 + }, + { + "start": 7259.5, + "end": 7261.0, + "probability": 0.8297 + }, + { + "start": 7261.56, + "end": 7263.0, + "probability": 0.7985 + }, + { + "start": 7263.68, + "end": 7266.72, + "probability": 0.8692 + }, + { + "start": 7267.32, + "end": 7269.0, + "probability": 0.978 + }, + { + "start": 7269.54, + "end": 7271.42, + "probability": 0.9855 + }, + { + "start": 7271.52, + "end": 7272.84, + "probability": 0.7163 + }, + { + "start": 7273.98, + "end": 7276.6, + "probability": 0.7059 + }, + { + "start": 7277.14, + "end": 7278.72, + "probability": 0.8758 + }, + { + "start": 7279.38, + "end": 7280.56, + "probability": 0.6652 + }, + { + "start": 7281.08, + "end": 7285.72, + "probability": 0.6584 + }, + { + "start": 7286.32, + "end": 7288.56, + "probability": 0.8062 + }, + { + "start": 7288.56, + "end": 7293.0, + "probability": 0.9626 + }, + { + "start": 7293.66, + "end": 7296.02, + "probability": 0.8936 + }, + { + "start": 7296.6, + "end": 7298.96, + "probability": 0.7981 + }, + { + "start": 7298.96, + "end": 7301.94, + "probability": 0.7562 + }, + { + "start": 7302.58, + "end": 7305.54, + "probability": 0.815 + }, + { + "start": 7306.06, + "end": 7308.04, + "probability": 0.9346 + }, + { + "start": 7308.7, + "end": 7309.6, + "probability": 0.8523 + }, + { + "start": 7310.54, + "end": 7315.42, + "probability": 0.6526 + }, + { + "start": 7315.94, + "end": 7320.48, + "probability": 0.9677 + }, + { + "start": 7321.34, + "end": 7323.36, + "probability": 0.977 + }, + { + "start": 7323.9, + "end": 7326.8, + "probability": 0.7983 + }, + { + "start": 7327.12, + "end": 7328.88, + "probability": 0.9918 + }, + { + "start": 7329.54, + "end": 7330.02, + "probability": 0.7389 + }, + { + "start": 7330.66, + "end": 7332.42, + "probability": 0.9819 + }, + { + "start": 7332.98, + "end": 7335.06, + "probability": 0.7749 + }, + { + "start": 7335.94, + "end": 7337.86, + "probability": 0.9961 + }, + { + "start": 7338.58, + "end": 7339.66, + "probability": 0.7292 + }, + { + "start": 7341.48, + "end": 7344.56, + "probability": 0.9297 + }, + { + "start": 7344.74, + "end": 7348.98, + "probability": 0.9943 + }, + { + "start": 7349.98, + "end": 7352.03, + "probability": 0.9852 + }, + { + "start": 7353.4, + "end": 7356.42, + "probability": 0.792 + }, + { + "start": 7357.08, + "end": 7360.2, + "probability": 0.9985 + }, + { + "start": 7360.66, + "end": 7361.55, + "probability": 0.5104 + }, + { + "start": 7361.96, + "end": 7362.74, + "probability": 0.56 + }, + { + "start": 7363.94, + "end": 7365.8, + "probability": 0.725 + }, + { + "start": 7365.98, + "end": 7369.54, + "probability": 0.9079 + }, + { + "start": 7370.32, + "end": 7373.74, + "probability": 0.9199 + }, + { + "start": 7374.26, + "end": 7377.86, + "probability": 0.9502 + }, + { + "start": 7378.42, + "end": 7380.1, + "probability": 0.5123 + }, + { + "start": 7380.6, + "end": 7381.64, + "probability": 0.7666 + }, + { + "start": 7381.66, + "end": 7382.08, + "probability": 0.4816 + }, + { + "start": 7382.6, + "end": 7385.52, + "probability": 0.8169 + }, + { + "start": 7385.52, + "end": 7389.92, + "probability": 0.9692 + }, + { + "start": 7389.92, + "end": 7395.3, + "probability": 0.8859 + }, + { + "start": 7395.44, + "end": 7396.12, + "probability": 0.7411 + }, + { + "start": 7396.8, + "end": 7397.38, + "probability": 0.7224 + }, + { + "start": 7397.56, + "end": 7398.5, + "probability": 0.936 + }, + { + "start": 7398.6, + "end": 7402.06, + "probability": 0.9678 + }, + { + "start": 7402.18, + "end": 7403.94, + "probability": 0.9419 + }, + { + "start": 7405.1, + "end": 7407.42, + "probability": 0.9578 + }, + { + "start": 7411.06, + "end": 7412.06, + "probability": 0.8009 + }, + { + "start": 7423.12, + "end": 7424.3, + "probability": 0.5444 + }, + { + "start": 7428.92, + "end": 7431.62, + "probability": 0.8785 + }, + { + "start": 7432.9, + "end": 7437.02, + "probability": 0.9206 + }, + { + "start": 7437.72, + "end": 7438.68, + "probability": 0.8499 + }, + { + "start": 7440.28, + "end": 7442.7, + "probability": 0.9946 + }, + { + "start": 7443.48, + "end": 7446.42, + "probability": 0.7769 + }, + { + "start": 7447.54, + "end": 7448.76, + "probability": 0.9502 + }, + { + "start": 7449.0, + "end": 7449.98, + "probability": 0.8113 + }, + { + "start": 7450.42, + "end": 7451.8, + "probability": 0.585 + }, + { + "start": 7451.92, + "end": 7452.82, + "probability": 0.8313 + }, + { + "start": 7453.78, + "end": 7457.7, + "probability": 0.9785 + }, + { + "start": 7458.62, + "end": 7463.84, + "probability": 0.9616 + }, + { + "start": 7464.72, + "end": 7465.82, + "probability": 0.4947 + }, + { + "start": 7466.38, + "end": 7467.82, + "probability": 0.998 + }, + { + "start": 7469.24, + "end": 7470.3, + "probability": 0.6614 + }, + { + "start": 7470.98, + "end": 7473.96, + "probability": 0.9958 + }, + { + "start": 7475.56, + "end": 7479.12, + "probability": 0.8767 + }, + { + "start": 7480.76, + "end": 7482.0, + "probability": 0.8271 + }, + { + "start": 7482.62, + "end": 7485.3, + "probability": 0.8717 + }, + { + "start": 7487.98, + "end": 7491.32, + "probability": 0.9807 + }, + { + "start": 7492.18, + "end": 7493.32, + "probability": 0.9821 + }, + { + "start": 7493.6, + "end": 7495.62, + "probability": 0.8364 + }, + { + "start": 7496.54, + "end": 7498.22, + "probability": 0.9951 + }, + { + "start": 7498.74, + "end": 7501.22, + "probability": 0.8889 + }, + { + "start": 7502.26, + "end": 7508.34, + "probability": 0.9873 + }, + { + "start": 7508.98, + "end": 7512.38, + "probability": 0.9415 + }, + { + "start": 7513.46, + "end": 7514.54, + "probability": 0.8233 + }, + { + "start": 7514.7, + "end": 7517.56, + "probability": 0.9928 + }, + { + "start": 7517.6, + "end": 7518.97, + "probability": 0.9856 + }, + { + "start": 7521.22, + "end": 7527.16, + "probability": 0.9792 + }, + { + "start": 7527.92, + "end": 7530.48, + "probability": 0.8992 + }, + { + "start": 7531.24, + "end": 7535.08, + "probability": 0.9642 + }, + { + "start": 7536.26, + "end": 7540.78, + "probability": 0.9796 + }, + { + "start": 7542.32, + "end": 7546.56, + "probability": 0.7919 + }, + { + "start": 7549.34, + "end": 7552.2, + "probability": 0.9481 + }, + { + "start": 7553.02, + "end": 7555.08, + "probability": 0.9775 + }, + { + "start": 7556.04, + "end": 7559.26, + "probability": 0.9951 + }, + { + "start": 7560.62, + "end": 7563.34, + "probability": 0.9347 + }, + { + "start": 7564.2, + "end": 7568.5, + "probability": 0.9214 + }, + { + "start": 7569.02, + "end": 7570.44, + "probability": 0.9731 + }, + { + "start": 7574.94, + "end": 7576.42, + "probability": 0.778 + }, + { + "start": 7577.34, + "end": 7579.86, + "probability": 0.9165 + }, + { + "start": 7584.2, + "end": 7584.94, + "probability": 0.9863 + }, + { + "start": 7586.74, + "end": 7589.58, + "probability": 0.9907 + }, + { + "start": 7591.16, + "end": 7591.8, + "probability": 0.5915 + }, + { + "start": 7591.92, + "end": 7599.12, + "probability": 0.9398 + }, + { + "start": 7599.28, + "end": 7599.84, + "probability": 0.9897 + }, + { + "start": 7599.94, + "end": 7601.56, + "probability": 0.9764 + }, + { + "start": 7603.16, + "end": 7606.5, + "probability": 0.9775 + }, + { + "start": 7607.24, + "end": 7608.8, + "probability": 0.9062 + }, + { + "start": 7612.08, + "end": 7615.11, + "probability": 0.8286 + }, + { + "start": 7616.28, + "end": 7618.96, + "probability": 0.9402 + }, + { + "start": 7620.3, + "end": 7626.6, + "probability": 0.9213 + }, + { + "start": 7628.02, + "end": 7629.24, + "probability": 0.9829 + }, + { + "start": 7630.08, + "end": 7631.13, + "probability": 0.6656 + }, + { + "start": 7632.0, + "end": 7634.38, + "probability": 0.9234 + }, + { + "start": 7634.88, + "end": 7636.6, + "probability": 0.9741 + }, + { + "start": 7637.78, + "end": 7639.14, + "probability": 0.7301 + }, + { + "start": 7640.36, + "end": 7645.22, + "probability": 0.9593 + }, + { + "start": 7647.86, + "end": 7648.76, + "probability": 0.5392 + }, + { + "start": 7649.36, + "end": 7651.46, + "probability": 0.9509 + }, + { + "start": 7652.18, + "end": 7653.22, + "probability": 0.5031 + }, + { + "start": 7654.02, + "end": 7657.9, + "probability": 0.9875 + }, + { + "start": 7657.94, + "end": 7658.48, + "probability": 0.839 + }, + { + "start": 7659.62, + "end": 7660.2, + "probability": 0.5214 + }, + { + "start": 7661.46, + "end": 7663.7, + "probability": 0.9119 + }, + { + "start": 7676.8, + "end": 7677.9, + "probability": 0.5921 + }, + { + "start": 7678.02, + "end": 7679.0, + "probability": 0.5408 + }, + { + "start": 7679.2, + "end": 7681.68, + "probability": 0.871 + }, + { + "start": 7681.68, + "end": 7687.66, + "probability": 0.7998 + }, + { + "start": 7689.26, + "end": 7692.02, + "probability": 0.9943 + }, + { + "start": 7692.36, + "end": 7693.68, + "probability": 0.8914 + }, + { + "start": 7694.58, + "end": 7698.6, + "probability": 0.974 + }, + { + "start": 7699.28, + "end": 7703.5, + "probability": 0.9984 + }, + { + "start": 7703.5, + "end": 7707.22, + "probability": 0.9563 + }, + { + "start": 7708.42, + "end": 7712.86, + "probability": 0.9733 + }, + { + "start": 7712.86, + "end": 7717.3, + "probability": 0.9868 + }, + { + "start": 7717.96, + "end": 7722.56, + "probability": 0.9932 + }, + { + "start": 7724.02, + "end": 7725.48, + "probability": 0.4602 + }, + { + "start": 7727.28, + "end": 7727.82, + "probability": 0.7764 + }, + { + "start": 7728.16, + "end": 7733.14, + "probability": 0.9789 + }, + { + "start": 7733.38, + "end": 7736.72, + "probability": 0.938 + }, + { + "start": 7736.72, + "end": 7739.85, + "probability": 0.9962 + }, + { + "start": 7741.0, + "end": 7743.68, + "probability": 0.8549 + }, + { + "start": 7744.12, + "end": 7746.16, + "probability": 0.7625 + }, + { + "start": 7746.42, + "end": 7751.42, + "probability": 0.8501 + }, + { + "start": 7752.36, + "end": 7754.66, + "probability": 0.6879 + }, + { + "start": 7755.78, + "end": 7758.11, + "probability": 0.3349 + }, + { + "start": 7758.54, + "end": 7759.61, + "probability": 0.9956 + }, + { + "start": 7760.66, + "end": 7766.9, + "probability": 0.6314 + }, + { + "start": 7767.44, + "end": 7770.62, + "probability": 0.9087 + }, + { + "start": 7771.86, + "end": 7772.36, + "probability": 0.7514 + }, + { + "start": 7772.82, + "end": 7780.94, + "probability": 0.9711 + }, + { + "start": 7782.96, + "end": 7783.86, + "probability": 0.6734 + }, + { + "start": 7785.12, + "end": 7787.88, + "probability": 0.9943 + }, + { + "start": 7788.56, + "end": 7793.22, + "probability": 0.8144 + }, + { + "start": 7793.36, + "end": 7793.98, + "probability": 0.8819 + }, + { + "start": 7794.8, + "end": 7795.4, + "probability": 0.7044 + }, + { + "start": 7795.7, + "end": 7799.76, + "probability": 0.9229 + }, + { + "start": 7800.56, + "end": 7803.0, + "probability": 0.9985 + }, + { + "start": 7804.0, + "end": 7805.14, + "probability": 0.9976 + }, + { + "start": 7805.22, + "end": 7808.62, + "probability": 0.9956 + }, + { + "start": 7810.26, + "end": 7818.24, + "probability": 0.9875 + }, + { + "start": 7819.24, + "end": 7821.7, + "probability": 0.9487 + }, + { + "start": 7823.18, + "end": 7828.78, + "probability": 0.9767 + }, + { + "start": 7829.96, + "end": 7831.7, + "probability": 0.8452 + }, + { + "start": 7832.06, + "end": 7833.8, + "probability": 0.9357 + }, + { + "start": 7834.3, + "end": 7835.36, + "probability": 0.441 + }, + { + "start": 7835.44, + "end": 7836.48, + "probability": 0.7255 + }, + { + "start": 7837.0, + "end": 7838.0, + "probability": 0.8096 + }, + { + "start": 7838.84, + "end": 7841.18, + "probability": 0.9193 + }, + { + "start": 7842.02, + "end": 7842.34, + "probability": 0.5 + }, + { + "start": 7843.26, + "end": 7846.26, + "probability": 0.9923 + }, + { + "start": 7847.62, + "end": 7850.84, + "probability": 0.6516 + }, + { + "start": 7851.82, + "end": 7853.76, + "probability": 0.9464 + }, + { + "start": 7854.56, + "end": 7859.5, + "probability": 0.9876 + }, + { + "start": 7859.66, + "end": 7863.46, + "probability": 0.9874 + }, + { + "start": 7864.06, + "end": 7867.86, + "probability": 0.9698 + }, + { + "start": 7867.86, + "end": 7870.84, + "probability": 0.9972 + }, + { + "start": 7871.88, + "end": 7877.6, + "probability": 0.9692 + }, + { + "start": 7878.2, + "end": 7880.1, + "probability": 0.9993 + }, + { + "start": 7880.62, + "end": 7882.44, + "probability": 0.9596 + }, + { + "start": 7883.96, + "end": 7884.66, + "probability": 0.8451 + }, + { + "start": 7885.48, + "end": 7891.1, + "probability": 0.9966 + }, + { + "start": 7891.28, + "end": 7895.06, + "probability": 0.991 + }, + { + "start": 7895.58, + "end": 7897.44, + "probability": 0.9855 + }, + { + "start": 7898.0, + "end": 7898.98, + "probability": 0.998 + }, + { + "start": 7899.98, + "end": 7900.78, + "probability": 0.8229 + }, + { + "start": 7901.38, + "end": 7903.38, + "probability": 0.921 + }, + { + "start": 7904.2, + "end": 7905.3, + "probability": 0.9985 + }, + { + "start": 7906.14, + "end": 7907.58, + "probability": 0.9338 + }, + { + "start": 7907.64, + "end": 7909.36, + "probability": 0.9198 + }, + { + "start": 7909.9, + "end": 7916.86, + "probability": 0.983 + }, + { + "start": 7917.48, + "end": 7920.36, + "probability": 0.9946 + }, + { + "start": 7920.46, + "end": 7920.88, + "probability": 0.6916 + }, + { + "start": 7922.18, + "end": 7922.66, + "probability": 0.7696 + }, + { + "start": 7922.68, + "end": 7924.64, + "probability": 0.9433 + }, + { + "start": 7941.82, + "end": 7941.82, + "probability": 0.8533 + }, + { + "start": 7941.82, + "end": 7943.66, + "probability": 0.6725 + }, + { + "start": 7944.04, + "end": 7945.12, + "probability": 0.6763 + }, + { + "start": 7946.44, + "end": 7946.9, + "probability": 0.6848 + }, + { + "start": 7948.44, + "end": 7951.5, + "probability": 0.9009 + }, + { + "start": 7951.58, + "end": 7959.06, + "probability": 0.9644 + }, + { + "start": 7959.94, + "end": 7963.78, + "probability": 0.9678 + }, + { + "start": 7964.7, + "end": 7969.14, + "probability": 0.9164 + }, + { + "start": 7969.14, + "end": 7974.1, + "probability": 0.833 + }, + { + "start": 7974.86, + "end": 7979.98, + "probability": 0.9788 + }, + { + "start": 7980.92, + "end": 7982.88, + "probability": 0.9763 + }, + { + "start": 7984.26, + "end": 7986.56, + "probability": 0.9727 + }, + { + "start": 7987.16, + "end": 7989.98, + "probability": 0.9873 + }, + { + "start": 7990.86, + "end": 7994.2, + "probability": 0.9869 + }, + { + "start": 7995.32, + "end": 7999.8, + "probability": 0.9593 + }, + { + "start": 7999.88, + "end": 8002.24, + "probability": 0.841 + }, + { + "start": 8002.78, + "end": 8005.96, + "probability": 0.9556 + }, + { + "start": 8006.78, + "end": 8009.1, + "probability": 0.7579 + }, + { + "start": 8009.84, + "end": 8011.54, + "probability": 0.9716 + }, + { + "start": 8012.82, + "end": 8018.68, + "probability": 0.9616 + }, + { + "start": 8019.56, + "end": 8024.06, + "probability": 0.8369 + }, + { + "start": 8026.22, + "end": 8030.82, + "probability": 0.7993 + }, + { + "start": 8030.82, + "end": 8035.96, + "probability": 0.9491 + }, + { + "start": 8037.48, + "end": 8039.36, + "probability": 0.8938 + }, + { + "start": 8040.04, + "end": 8040.8, + "probability": 0.8687 + }, + { + "start": 8042.26, + "end": 8047.14, + "probability": 0.748 + }, + { + "start": 8051.64, + "end": 8052.22, + "probability": 0.7508 + }, + { + "start": 8055.22, + "end": 8055.58, + "probability": 0.6578 + }, + { + "start": 8059.8, + "end": 8062.32, + "probability": 0.7925 + }, + { + "start": 8062.36, + "end": 8064.7, + "probability": 0.9438 + }, + { + "start": 8065.1, + "end": 8070.36, + "probability": 0.7665 + }, + { + "start": 8071.36, + "end": 8072.43, + "probability": 0.9327 + }, + { + "start": 8078.8, + "end": 8079.64, + "probability": 0.6998 + }, + { + "start": 8082.22, + "end": 8082.9, + "probability": 0.0051 + }, + { + "start": 8083.71, + "end": 8086.58, + "probability": 0.0003 + }, + { + "start": 8087.0, + "end": 8087.86, + "probability": 0.2067 + }, + { + "start": 8088.7, + "end": 8090.46, + "probability": 0.0228 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.0, + "end": 8190.0, + "probability": 0.0 + }, + { + "start": 8190.04, + "end": 8190.28, + "probability": 0.2325 + }, + { + "start": 8190.28, + "end": 8190.72, + "probability": 0.045 + }, + { + "start": 8190.8, + "end": 8195.16, + "probability": 0.9382 + }, + { + "start": 8196.7, + "end": 8199.38, + "probability": 0.7164 + }, + { + "start": 8202.52, + "end": 8204.54, + "probability": 0.9094 + }, + { + "start": 8204.6, + "end": 8207.5, + "probability": 0.8094 + }, + { + "start": 8207.68, + "end": 8210.06, + "probability": 0.7637 + }, + { + "start": 8210.42, + "end": 8212.8, + "probability": 0.7243 + }, + { + "start": 8212.8, + "end": 8214.82, + "probability": 0.9564 + }, + { + "start": 8215.36, + "end": 8216.84, + "probability": 0.8281 + }, + { + "start": 8217.36, + "end": 8218.6, + "probability": 0.8207 + }, + { + "start": 8218.62, + "end": 8221.0, + "probability": 0.6752 + }, + { + "start": 8221.04, + "end": 8222.48, + "probability": 0.7756 + }, + { + "start": 8222.52, + "end": 8225.7, + "probability": 0.9817 + }, + { + "start": 8226.08, + "end": 8230.52, + "probability": 0.9819 + }, + { + "start": 8230.52, + "end": 8234.16, + "probability": 0.9961 + }, + { + "start": 8234.72, + "end": 8236.76, + "probability": 0.9976 + }, + { + "start": 8236.86, + "end": 8239.94, + "probability": 0.9919 + }, + { + "start": 8240.72, + "end": 8241.42, + "probability": 0.7688 + }, + { + "start": 8242.26, + "end": 8245.22, + "probability": 0.9471 + }, + { + "start": 8245.36, + "end": 8246.52, + "probability": 0.9076 + }, + { + "start": 8247.06, + "end": 8250.26, + "probability": 0.9941 + }, + { + "start": 8250.26, + "end": 8252.3, + "probability": 0.9944 + }, + { + "start": 8252.88, + "end": 8255.62, + "probability": 0.9954 + }, + { + "start": 8255.66, + "end": 8256.68, + "probability": 0.9602 + }, + { + "start": 8257.28, + "end": 8259.56, + "probability": 0.9976 + }, + { + "start": 8259.88, + "end": 8260.26, + "probability": 0.6329 + }, + { + "start": 8261.56, + "end": 8265.58, + "probability": 0.9636 + }, + { + "start": 8265.58, + "end": 8271.66, + "probability": 0.9486 + }, + { + "start": 8272.2, + "end": 8274.02, + "probability": 0.9623 + }, + { + "start": 8274.02, + "end": 8277.16, + "probability": 0.9955 + }, + { + "start": 8277.51, + "end": 8281.44, + "probability": 0.8914 + }, + { + "start": 8281.48, + "end": 8284.72, + "probability": 0.9412 + }, + { + "start": 8285.16, + "end": 8289.62, + "probability": 0.9447 + }, + { + "start": 8289.62, + "end": 8293.7, + "probability": 0.9893 + }, + { + "start": 8293.84, + "end": 8298.32, + "probability": 0.9959 + }, + { + "start": 8298.76, + "end": 8302.7, + "probability": 0.9963 + }, + { + "start": 8302.94, + "end": 8306.08, + "probability": 0.9902 + }, + { + "start": 8306.08, + "end": 8310.02, + "probability": 0.9914 + }, + { + "start": 8310.02, + "end": 8312.94, + "probability": 0.9552 + }, + { + "start": 8313.08, + "end": 8313.54, + "probability": 0.8585 + }, + { + "start": 8314.16, + "end": 8317.98, + "probability": 0.9948 + }, + { + "start": 8318.44, + "end": 8319.56, + "probability": 0.9961 + }, + { + "start": 8320.5, + "end": 8323.44, + "probability": 0.9921 + }, + { + "start": 8323.54, + "end": 8324.22, + "probability": 0.5269 + }, + { + "start": 8324.34, + "end": 8325.84, + "probability": 0.8197 + }, + { + "start": 8326.14, + "end": 8327.68, + "probability": 0.793 + }, + { + "start": 8327.82, + "end": 8329.43, + "probability": 0.8817 + }, + { + "start": 8329.62, + "end": 8333.04, + "probability": 0.9667 + }, + { + "start": 8333.04, + "end": 8336.5, + "probability": 0.891 + }, + { + "start": 8337.44, + "end": 8340.5, + "probability": 0.9862 + }, + { + "start": 8340.5, + "end": 8344.79, + "probability": 0.9884 + }, + { + "start": 8344.94, + "end": 8350.26, + "probability": 0.974 + }, + { + "start": 8350.52, + "end": 8354.38, + "probability": 0.991 + }, + { + "start": 8354.84, + "end": 8356.52, + "probability": 0.9812 + }, + { + "start": 8356.52, + "end": 8358.82, + "probability": 0.9736 + }, + { + "start": 8359.22, + "end": 8359.5, + "probability": 0.4349 + }, + { + "start": 8359.6, + "end": 8359.92, + "probability": 0.9485 + }, + { + "start": 8360.04, + "end": 8361.88, + "probability": 0.988 + }, + { + "start": 8362.26, + "end": 8364.98, + "probability": 0.98 + }, + { + "start": 8365.78, + "end": 8366.38, + "probability": 0.6792 + }, + { + "start": 8367.6, + "end": 8371.04, + "probability": 0.9641 + }, + { + "start": 8371.14, + "end": 8371.86, + "probability": 0.823 + }, + { + "start": 8372.08, + "end": 8373.02, + "probability": 0.9305 + }, + { + "start": 8373.04, + "end": 8373.4, + "probability": 0.6111 + }, + { + "start": 8373.42, + "end": 8377.32, + "probability": 0.967 + }, + { + "start": 8377.78, + "end": 8380.88, + "probability": 0.9725 + }, + { + "start": 8380.96, + "end": 8382.58, + "probability": 0.9113 + }, + { + "start": 8382.86, + "end": 8382.88, + "probability": 0.2485 + }, + { + "start": 8383.14, + "end": 8383.72, + "probability": 0.7894 + }, + { + "start": 8384.14, + "end": 8386.56, + "probability": 0.8801 + }, + { + "start": 8386.56, + "end": 8388.16, + "probability": 0.9915 + }, + { + "start": 8388.38, + "end": 8390.3, + "probability": 0.9972 + }, + { + "start": 8390.72, + "end": 8393.24, + "probability": 0.9544 + }, + { + "start": 8393.32, + "end": 8395.8, + "probability": 0.8806 + }, + { + "start": 8396.12, + "end": 8398.04, + "probability": 0.9578 + }, + { + "start": 8398.76, + "end": 8399.12, + "probability": 0.9278 + }, + { + "start": 8399.28, + "end": 8401.54, + "probability": 0.9497 + }, + { + "start": 8401.94, + "end": 8403.66, + "probability": 0.9528 + }, + { + "start": 8403.66, + "end": 8406.06, + "probability": 0.9495 + }, + { + "start": 8406.72, + "end": 8409.0, + "probability": 0.8504 + }, + { + "start": 8409.16, + "end": 8409.68, + "probability": 0.7692 + }, + { + "start": 8410.28, + "end": 8412.98, + "probability": 0.9922 + }, + { + "start": 8413.16, + "end": 8415.86, + "probability": 0.9102 + }, + { + "start": 8416.0, + "end": 8416.66, + "probability": 0.7255 + }, + { + "start": 8417.3, + "end": 8420.9, + "probability": 0.9403 + }, + { + "start": 8421.86, + "end": 8423.68, + "probability": 0.6631 + }, + { + "start": 8424.12, + "end": 8426.1, + "probability": 0.9504 + }, + { + "start": 8426.46, + "end": 8429.8, + "probability": 0.9893 + }, + { + "start": 8431.12, + "end": 8433.58, + "probability": 0.9675 + }, + { + "start": 8433.58, + "end": 8435.9, + "probability": 0.9873 + }, + { + "start": 8436.02, + "end": 8436.74, + "probability": 0.5099 + }, + { + "start": 8437.26, + "end": 8439.58, + "probability": 0.8992 + }, + { + "start": 8439.8, + "end": 8441.9, + "probability": 0.9875 + }, + { + "start": 8442.34, + "end": 8444.1, + "probability": 0.9917 + }, + { + "start": 8444.1, + "end": 8446.2, + "probability": 0.93 + }, + { + "start": 8446.54, + "end": 8452.36, + "probability": 0.8935 + }, + { + "start": 8452.36, + "end": 8457.02, + "probability": 0.97 + }, + { + "start": 8457.52, + "end": 8460.1, + "probability": 0.9935 + }, + { + "start": 8460.1, + "end": 8463.08, + "probability": 0.9665 + }, + { + "start": 8463.14, + "end": 8465.62, + "probability": 0.8668 + }, + { + "start": 8466.04, + "end": 8469.44, + "probability": 0.9677 + }, + { + "start": 8469.44, + "end": 8472.2, + "probability": 0.9464 + }, + { + "start": 8472.74, + "end": 8474.78, + "probability": 0.9921 + }, + { + "start": 8475.44, + "end": 8476.22, + "probability": 0.8965 + }, + { + "start": 8476.76, + "end": 8478.22, + "probability": 0.998 + }, + { + "start": 8478.86, + "end": 8481.18, + "probability": 0.9925 + }, + { + "start": 8481.96, + "end": 8487.14, + "probability": 0.9948 + }, + { + "start": 8487.62, + "end": 8490.78, + "probability": 0.9614 + }, + { + "start": 8491.26, + "end": 8495.64, + "probability": 0.8712 + }, + { + "start": 8495.74, + "end": 8498.86, + "probability": 0.8535 + }, + { + "start": 8499.52, + "end": 8501.34, + "probability": 0.8664 + }, + { + "start": 8501.92, + "end": 8504.58, + "probability": 0.9423 + }, + { + "start": 8504.7, + "end": 8504.82, + "probability": 0.4476 + }, + { + "start": 8504.9, + "end": 8507.12, + "probability": 0.9874 + }, + { + "start": 8507.16, + "end": 8507.52, + "probability": 0.7482 + }, + { + "start": 8509.34, + "end": 8510.04, + "probability": 0.817 + }, + { + "start": 8510.86, + "end": 8514.04, + "probability": 0.9786 + }, + { + "start": 8514.14, + "end": 8516.9, + "probability": 0.584 + }, + { + "start": 8516.9, + "end": 8526.12, + "probability": 0.7982 + }, + { + "start": 8526.64, + "end": 8531.22, + "probability": 0.0002 + }, + { + "start": 8547.38, + "end": 8547.5, + "probability": 0.0431 + }, + { + "start": 8547.5, + "end": 8548.92, + "probability": 0.6478 + }, + { + "start": 8549.0, + "end": 8553.04, + "probability": 0.7874 + }, + { + "start": 8553.04, + "end": 8554.06, + "probability": 0.704 + }, + { + "start": 8554.4, + "end": 8555.26, + "probability": 0.6528 + }, + { + "start": 8555.32, + "end": 8556.46, + "probability": 0.8947 + }, + { + "start": 8557.22, + "end": 8557.98, + "probability": 0.8182 + }, + { + "start": 8559.34, + "end": 8559.76, + "probability": 0.7036 + }, + { + "start": 8560.22, + "end": 8565.2, + "probability": 0.431 + }, + { + "start": 8565.2, + "end": 8566.5, + "probability": 0.6524 + }, + { + "start": 8566.64, + "end": 8568.26, + "probability": 0.115 + }, + { + "start": 8574.06, + "end": 8575.44, + "probability": 0.7516 + }, + { + "start": 8575.6, + "end": 8579.08, + "probability": 0.8694 + }, + { + "start": 8579.1, + "end": 8580.14, + "probability": 0.5581 + }, + { + "start": 8580.5, + "end": 8584.22, + "probability": 0.9888 + }, + { + "start": 8586.36, + "end": 8590.08, + "probability": 0.7911 + }, + { + "start": 8591.4, + "end": 8593.26, + "probability": 0.9757 + }, + { + "start": 8593.26, + "end": 8595.93, + "probability": 0.4975 + }, + { + "start": 8597.04, + "end": 8598.14, + "probability": 0.6709 + }, + { + "start": 8598.24, + "end": 8599.14, + "probability": 0.3918 + }, + { + "start": 8599.48, + "end": 8602.68, + "probability": 0.8838 + }, + { + "start": 8603.42, + "end": 8605.8, + "probability": 0.6694 + }, + { + "start": 8606.16, + "end": 8608.06, + "probability": 0.8546 + }, + { + "start": 8608.28, + "end": 8610.24, + "probability": 0.6407 + }, + { + "start": 8611.44, + "end": 8616.96, + "probability": 0.8506 + }, + { + "start": 8617.68, + "end": 8618.96, + "probability": 0.9885 + }, + { + "start": 8619.94, + "end": 8621.86, + "probability": 0.9734 + }, + { + "start": 8622.46, + "end": 8627.12, + "probability": 0.9984 + }, + { + "start": 8627.92, + "end": 8630.04, + "probability": 0.8943 + }, + { + "start": 8631.04, + "end": 8632.56, + "probability": 0.8939 + }, + { + "start": 8633.2, + "end": 8637.06, + "probability": 0.9956 + }, + { + "start": 8637.64, + "end": 8641.22, + "probability": 0.9859 + }, + { + "start": 8641.22, + "end": 8644.48, + "probability": 0.9534 + }, + { + "start": 8645.24, + "end": 8649.4, + "probability": 0.9849 + }, + { + "start": 8650.64, + "end": 8655.08, + "probability": 0.9946 + }, + { + "start": 8655.08, + "end": 8660.04, + "probability": 0.895 + }, + { + "start": 8660.1, + "end": 8664.68, + "probability": 0.9963 + }, + { + "start": 8665.28, + "end": 8665.92, + "probability": 0.5317 + }, + { + "start": 8665.94, + "end": 8670.4, + "probability": 0.9902 + }, + { + "start": 8670.98, + "end": 8677.48, + "probability": 0.9922 + }, + { + "start": 8677.48, + "end": 8683.68, + "probability": 0.9925 + }, + { + "start": 8684.28, + "end": 8686.38, + "probability": 0.9802 + }, + { + "start": 8686.9, + "end": 8691.52, + "probability": 0.9939 + }, + { + "start": 8692.18, + "end": 8694.48, + "probability": 0.9966 + }, + { + "start": 8695.06, + "end": 8698.08, + "probability": 0.9775 + }, + { + "start": 8698.6, + "end": 8700.9, + "probability": 0.8714 + }, + { + "start": 8701.52, + "end": 8702.44, + "probability": 0.8825 + }, + { + "start": 8703.08, + "end": 8705.08, + "probability": 0.9684 + }, + { + "start": 8705.64, + "end": 8707.7, + "probability": 0.9937 + }, + { + "start": 8708.24, + "end": 8711.36, + "probability": 0.9968 + }, + { + "start": 8711.92, + "end": 8712.34, + "probability": 0.7769 + }, + { + "start": 8713.44, + "end": 8714.12, + "probability": 0.826 + }, + { + "start": 8716.34, + "end": 8717.96, + "probability": 0.969 + }, + { + "start": 8749.74, + "end": 8750.24, + "probability": 0.3952 + }, + { + "start": 8752.42, + "end": 8753.93, + "probability": 0.7636 + }, + { + "start": 8754.82, + "end": 8757.56, + "probability": 0.8986 + }, + { + "start": 8758.64, + "end": 8763.64, + "probability": 0.7347 + }, + { + "start": 8764.26, + "end": 8765.68, + "probability": 0.8427 + }, + { + "start": 8765.84, + "end": 8771.6, + "probability": 0.9003 + }, + { + "start": 8773.02, + "end": 8773.72, + "probability": 0.8213 + }, + { + "start": 8774.44, + "end": 8775.1, + "probability": 0.9838 + }, + { + "start": 8775.96, + "end": 8776.76, + "probability": 0.8444 + }, + { + "start": 8778.34, + "end": 8780.04, + "probability": 0.9907 + }, + { + "start": 8781.6, + "end": 8782.34, + "probability": 0.9843 + }, + { + "start": 8782.66, + "end": 8783.4, + "probability": 0.9931 + }, + { + "start": 8783.6, + "end": 8791.56, + "probability": 0.989 + }, + { + "start": 8792.94, + "end": 8796.4, + "probability": 0.9133 + }, + { + "start": 8797.18, + "end": 8801.04, + "probability": 0.98 + }, + { + "start": 8801.62, + "end": 8802.14, + "probability": 0.7507 + }, + { + "start": 8804.26, + "end": 8807.04, + "probability": 0.9907 + }, + { + "start": 8807.6, + "end": 8809.44, + "probability": 0.9801 + }, + { + "start": 8811.78, + "end": 8815.72, + "probability": 0.9632 + }, + { + "start": 8815.78, + "end": 8816.58, + "probability": 0.8634 + }, + { + "start": 8816.76, + "end": 8817.78, + "probability": 0.6262 + }, + { + "start": 8819.58, + "end": 8823.42, + "probability": 0.9706 + }, + { + "start": 8824.56, + "end": 8827.02, + "probability": 0.9342 + }, + { + "start": 8828.2, + "end": 8834.14, + "probability": 0.9765 + }, + { + "start": 8835.38, + "end": 8837.28, + "probability": 0.9912 + }, + { + "start": 8838.98, + "end": 8840.78, + "probability": 0.649 + }, + { + "start": 8842.92, + "end": 8848.18, + "probability": 0.9359 + }, + { + "start": 8849.58, + "end": 8855.02, + "probability": 0.9888 + }, + { + "start": 8855.78, + "end": 8857.66, + "probability": 0.8757 + }, + { + "start": 8858.48, + "end": 8859.7, + "probability": 0.9728 + }, + { + "start": 8861.84, + "end": 8867.46, + "probability": 0.8978 + }, + { + "start": 8867.46, + "end": 8870.98, + "probability": 0.9933 + }, + { + "start": 8871.24, + "end": 8872.32, + "probability": 0.9658 + }, + { + "start": 8873.84, + "end": 8875.21, + "probability": 0.8835 + }, + { + "start": 8876.58, + "end": 8877.72, + "probability": 0.8616 + }, + { + "start": 8879.84, + "end": 8881.0, + "probability": 0.556 + }, + { + "start": 8883.22, + "end": 8883.65, + "probability": 0.9124 + }, + { + "start": 8884.52, + "end": 8886.9, + "probability": 0.8995 + }, + { + "start": 8887.1, + "end": 8888.14, + "probability": 0.7815 + }, + { + "start": 8889.66, + "end": 8889.74, + "probability": 0.0 + }, + { + "start": 8890.4, + "end": 8893.04, + "probability": 0.9526 + }, + { + "start": 8896.08, + "end": 8897.7, + "probability": 0.056 + }, + { + "start": 8897.7, + "end": 8898.0, + "probability": 0.0762 + }, + { + "start": 8899.25, + "end": 8901.72, + "probability": 0.9907 + }, + { + "start": 8902.98, + "end": 8903.36, + "probability": 0.9684 + }, + { + "start": 8906.96, + "end": 8910.14, + "probability": 0.9978 + }, + { + "start": 8910.68, + "end": 8912.64, + "probability": 0.9917 + }, + { + "start": 8916.72, + "end": 8919.5, + "probability": 0.9747 + }, + { + "start": 8919.92, + "end": 8921.18, + "probability": 0.8219 + }, + { + "start": 8921.94, + "end": 8923.48, + "probability": 0.9229 + }, + { + "start": 8923.58, + "end": 8927.46, + "probability": 0.9639 + }, + { + "start": 8928.02, + "end": 8932.0, + "probability": 0.978 + }, + { + "start": 8932.0, + "end": 8936.42, + "probability": 0.9959 + }, + { + "start": 8936.98, + "end": 8940.06, + "probability": 0.9744 + }, + { + "start": 8941.56, + "end": 8944.76, + "probability": 0.7982 + }, + { + "start": 8945.08, + "end": 8948.52, + "probability": 0.837 + }, + { + "start": 8948.52, + "end": 8951.54, + "probability": 0.9947 + }, + { + "start": 8952.38, + "end": 8955.14, + "probability": 0.9792 + }, + { + "start": 8956.26, + "end": 8956.76, + "probability": 0.8578 + }, + { + "start": 8957.72, + "end": 8958.68, + "probability": 0.8843 + }, + { + "start": 8960.12, + "end": 8962.24, + "probability": 0.9607 + }, + { + "start": 8962.92, + "end": 8966.66, + "probability": 0.9725 + }, + { + "start": 8967.4, + "end": 8971.48, + "probability": 0.998 + }, + { + "start": 8972.62, + "end": 8973.54, + "probability": 0.9009 + }, + { + "start": 8973.66, + "end": 8974.36, + "probability": 0.6928 + }, + { + "start": 8974.4, + "end": 8979.06, + "probability": 0.9869 + }, + { + "start": 8979.92, + "end": 8985.06, + "probability": 0.8658 + }, + { + "start": 8985.06, + "end": 8989.06, + "probability": 0.8454 + }, + { + "start": 8990.2, + "end": 8996.04, + "probability": 0.946 + }, + { + "start": 8997.06, + "end": 9000.16, + "probability": 0.9951 + }, + { + "start": 9000.16, + "end": 9007.3, + "probability": 0.9717 + }, + { + "start": 9009.36, + "end": 9010.1, + "probability": 0.9435 + }, + { + "start": 9010.76, + "end": 9013.84, + "probability": 0.813 + }, + { + "start": 9015.38, + "end": 9017.56, + "probability": 0.9038 + }, + { + "start": 9018.08, + "end": 9020.38, + "probability": 0.9653 + }, + { + "start": 9021.3, + "end": 9022.12, + "probability": 0.9874 + }, + { + "start": 9022.92, + "end": 9023.94, + "probability": 0.9526 + }, + { + "start": 9024.64, + "end": 9027.28, + "probability": 0.9923 + }, + { + "start": 9028.76, + "end": 9031.36, + "probability": 0.9906 + }, + { + "start": 9032.44, + "end": 9037.28, + "probability": 0.9146 + }, + { + "start": 9037.9, + "end": 9038.92, + "probability": 0.9473 + }, + { + "start": 9041.52, + "end": 9042.78, + "probability": 0.9733 + }, + { + "start": 9042.86, + "end": 9043.58, + "probability": 0.7633 + }, + { + "start": 9043.76, + "end": 9048.56, + "probability": 0.9696 + }, + { + "start": 9049.14, + "end": 9049.6, + "probability": 0.7946 + }, + { + "start": 9050.98, + "end": 9051.64, + "probability": 0.8702 + }, + { + "start": 9053.28, + "end": 9054.46, + "probability": 0.8671 + }, + { + "start": 9054.82, + "end": 9055.48, + "probability": 0.7689 + }, + { + "start": 9055.9, + "end": 9057.28, + "probability": 0.7265 + }, + { + "start": 9057.28, + "end": 9060.12, + "probability": 0.7654 + }, + { + "start": 9061.02, + "end": 9062.88, + "probability": 0.1712 + }, + { + "start": 9071.86, + "end": 9077.8, + "probability": 0.1663 + }, + { + "start": 9081.89, + "end": 9084.05, + "probability": 0.0486 + }, + { + "start": 9086.18, + "end": 9088.18, + "probability": 0.7086 + }, + { + "start": 9089.55, + "end": 9090.25, + "probability": 0.7494 + }, + { + "start": 9090.39, + "end": 9091.28, + "probability": 0.564 + }, + { + "start": 9091.41, + "end": 9093.07, + "probability": 0.9638 + }, + { + "start": 9093.29, + "end": 9093.95, + "probability": 0.5428 + }, + { + "start": 9093.95, + "end": 9097.79, + "probability": 0.9854 + }, + { + "start": 9098.33, + "end": 9100.98, + "probability": 0.9143 + }, + { + "start": 9102.59, + "end": 9103.29, + "probability": 0.4741 + }, + { + "start": 9103.45, + "end": 9104.95, + "probability": 0.9771 + }, + { + "start": 9105.05, + "end": 9106.69, + "probability": 0.9954 + }, + { + "start": 9106.83, + "end": 9108.07, + "probability": 0.9956 + }, + { + "start": 9108.17, + "end": 9109.41, + "probability": 0.9948 + }, + { + "start": 9109.51, + "end": 9110.67, + "probability": 0.9986 + }, + { + "start": 9111.29, + "end": 9113.49, + "probability": 0.9893 + }, + { + "start": 9114.01, + "end": 9120.01, + "probability": 0.9772 + }, + { + "start": 9120.57, + "end": 9121.57, + "probability": 0.6022 + }, + { + "start": 9121.87, + "end": 9123.75, + "probability": 0.9888 + }, + { + "start": 9124.01, + "end": 9126.13, + "probability": 0.9652 + }, + { + "start": 9126.71, + "end": 9132.47, + "probability": 0.9832 + }, + { + "start": 9133.37, + "end": 9135.18, + "probability": 0.9919 + }, + { + "start": 9135.41, + "end": 9136.12, + "probability": 0.5294 + }, + { + "start": 9137.17, + "end": 9140.61, + "probability": 0.9702 + }, + { + "start": 9141.03, + "end": 9143.42, + "probability": 0.9531 + }, + { + "start": 9144.23, + "end": 9147.57, + "probability": 0.9528 + }, + { + "start": 9148.09, + "end": 9151.71, + "probability": 0.9472 + }, + { + "start": 9152.71, + "end": 9156.73, + "probability": 0.9948 + }, + { + "start": 9156.73, + "end": 9161.53, + "probability": 0.9989 + }, + { + "start": 9162.11, + "end": 9164.45, + "probability": 0.9927 + }, + { + "start": 9164.59, + "end": 9164.99, + "probability": 0.6715 + }, + { + "start": 9165.13, + "end": 9165.81, + "probability": 0.9775 + }, + { + "start": 9165.95, + "end": 9166.53, + "probability": 0.933 + }, + { + "start": 9166.57, + "end": 9167.99, + "probability": 0.8774 + }, + { + "start": 9168.87, + "end": 9172.44, + "probability": 0.958 + }, + { + "start": 9172.95, + "end": 9175.37, + "probability": 0.9943 + }, + { + "start": 9175.37, + "end": 9179.27, + "probability": 0.9767 + }, + { + "start": 9179.37, + "end": 9179.75, + "probability": 0.824 + }, + { + "start": 9179.97, + "end": 9180.93, + "probability": 0.7718 + }, + { + "start": 9181.41, + "end": 9186.31, + "probability": 0.9924 + }, + { + "start": 9186.97, + "end": 9188.83, + "probability": 0.8409 + }, + { + "start": 9188.89, + "end": 9190.55, + "probability": 0.615 + }, + { + "start": 9190.61, + "end": 9193.83, + "probability": 0.9426 + }, + { + "start": 9194.47, + "end": 9195.57, + "probability": 0.9968 + }, + { + "start": 9196.07, + "end": 9196.99, + "probability": 0.526 + }, + { + "start": 9197.31, + "end": 9203.67, + "probability": 0.992 + }, + { + "start": 9204.57, + "end": 9206.75, + "probability": 0.9976 + }, + { + "start": 9207.77, + "end": 9212.05, + "probability": 0.9973 + }, + { + "start": 9212.05, + "end": 9216.53, + "probability": 0.9993 + }, + { + "start": 9217.07, + "end": 9222.99, + "probability": 0.9903 + }, + { + "start": 9223.55, + "end": 9226.65, + "probability": 0.9888 + }, + { + "start": 9227.15, + "end": 9229.71, + "probability": 0.9974 + }, + { + "start": 9230.07, + "end": 9232.81, + "probability": 0.9886 + }, + { + "start": 9233.29, + "end": 9236.85, + "probability": 0.9873 + }, + { + "start": 9237.87, + "end": 9240.33, + "probability": 0.9604 + }, + { + "start": 9240.75, + "end": 9242.83, + "probability": 0.9785 + }, + { + "start": 9243.45, + "end": 9246.13, + "probability": 0.9875 + }, + { + "start": 9246.77, + "end": 9248.01, + "probability": 0.9602 + }, + { + "start": 9248.61, + "end": 9251.05, + "probability": 0.9893 + }, + { + "start": 9251.13, + "end": 9251.99, + "probability": 0.8666 + }, + { + "start": 9252.43, + "end": 9256.67, + "probability": 0.9987 + }, + { + "start": 9257.19, + "end": 9259.05, + "probability": 0.8097 + }, + { + "start": 9259.67, + "end": 9261.77, + "probability": 0.9889 + }, + { + "start": 9262.69, + "end": 9267.19, + "probability": 0.997 + }, + { + "start": 9267.19, + "end": 9271.97, + "probability": 0.9556 + }, + { + "start": 9272.31, + "end": 9275.51, + "probability": 0.9743 + }, + { + "start": 9276.09, + "end": 9277.63, + "probability": 0.9033 + }, + { + "start": 9277.99, + "end": 9282.49, + "probability": 0.9881 + }, + { + "start": 9282.65, + "end": 9283.87, + "probability": 0.9452 + }, + { + "start": 9284.53, + "end": 9285.81, + "probability": 0.9933 + }, + { + "start": 9286.49, + "end": 9289.53, + "probability": 0.9954 + }, + { + "start": 9289.53, + "end": 9291.93, + "probability": 0.9918 + }, + { + "start": 9292.37, + "end": 9294.19, + "probability": 0.8444 + }, + { + "start": 9294.73, + "end": 9298.03, + "probability": 0.9792 + }, + { + "start": 9298.55, + "end": 9299.57, + "probability": 0.9305 + }, + { + "start": 9300.39, + "end": 9302.08, + "probability": 0.9722 + }, + { + "start": 9302.87, + "end": 9305.55, + "probability": 0.9377 + }, + { + "start": 9306.05, + "end": 9306.49, + "probability": 0.9216 + }, + { + "start": 9306.87, + "end": 9308.11, + "probability": 0.7481 + }, + { + "start": 9308.31, + "end": 9310.39, + "probability": 0.7864 + }, + { + "start": 9311.01, + "end": 9314.01, + "probability": 0.9932 + }, + { + "start": 9314.01, + "end": 9318.37, + "probability": 0.9973 + }, + { + "start": 9318.91, + "end": 9323.01, + "probability": 0.9944 + }, + { + "start": 9323.01, + "end": 9327.45, + "probability": 0.999 + }, + { + "start": 9328.01, + "end": 9334.51, + "probability": 0.9954 + }, + { + "start": 9334.51, + "end": 9335.29, + "probability": 0.6427 + }, + { + "start": 9335.29, + "end": 9335.67, + "probability": 0.7694 + }, + { + "start": 9337.47, + "end": 9339.19, + "probability": 0.9714 + }, + { + "start": 9341.93, + "end": 9343.02, + "probability": 0.802 + }, + { + "start": 9343.25, + "end": 9343.87, + "probability": 0.5903 + }, + { + "start": 9344.31, + "end": 9345.95, + "probability": 0.9717 + }, + { + "start": 9345.95, + "end": 9346.63, + "probability": 0.6121 + }, + { + "start": 9347.05, + "end": 9348.59, + "probability": 0.9965 + }, + { + "start": 9349.33, + "end": 9351.41, + "probability": 0.8323 + }, + { + "start": 9352.29, + "end": 9353.05, + "probability": 0.345 + }, + { + "start": 9353.05, + "end": 9353.05, + "probability": 0.174 + }, + { + "start": 9353.05, + "end": 9353.61, + "probability": 0.6773 + }, + { + "start": 9355.01, + "end": 9355.67, + "probability": 0.2142 + }, + { + "start": 9355.69, + "end": 9356.73, + "probability": 0.7291 + }, + { + "start": 9379.29, + "end": 9380.17, + "probability": 0.5653 + }, + { + "start": 9380.17, + "end": 9380.33, + "probability": 0.5418 + }, + { + "start": 9381.63, + "end": 9383.99, + "probability": 0.8296 + }, + { + "start": 9386.51, + "end": 9394.63, + "probability": 0.939 + }, + { + "start": 9395.83, + "end": 9399.87, + "probability": 0.7456 + }, + { + "start": 9400.81, + "end": 9402.47, + "probability": 0.6263 + }, + { + "start": 9403.01, + "end": 9404.95, + "probability": 0.2715 + }, + { + "start": 9406.93, + "end": 9411.91, + "probability": 0.8885 + }, + { + "start": 9412.31, + "end": 9413.63, + "probability": 0.7858 + }, + { + "start": 9414.93, + "end": 9417.48, + "probability": 0.8865 + }, + { + "start": 9417.61, + "end": 9418.51, + "probability": 0.6066 + }, + { + "start": 9418.53, + "end": 9422.97, + "probability": 0.7213 + }, + { + "start": 9424.29, + "end": 9429.25, + "probability": 0.9241 + }, + { + "start": 9430.65, + "end": 9432.93, + "probability": 0.9488 + }, + { + "start": 9434.39, + "end": 9437.49, + "probability": 0.9818 + }, + { + "start": 9437.49, + "end": 9442.29, + "probability": 0.9238 + }, + { + "start": 9446.11, + "end": 9450.37, + "probability": 0.9886 + }, + { + "start": 9451.13, + "end": 9458.27, + "probability": 0.9473 + }, + { + "start": 9459.65, + "end": 9465.99, + "probability": 0.9218 + }, + { + "start": 9466.73, + "end": 9471.01, + "probability": 0.9612 + }, + { + "start": 9471.99, + "end": 9472.47, + "probability": 0.6019 + }, + { + "start": 9473.73, + "end": 9478.41, + "probability": 0.7794 + }, + { + "start": 9480.25, + "end": 9484.45, + "probability": 0.9969 + }, + { + "start": 9485.49, + "end": 9489.77, + "probability": 0.8169 + }, + { + "start": 9490.75, + "end": 9494.31, + "probability": 0.9109 + }, + { + "start": 9497.37, + "end": 9498.27, + "probability": 0.8863 + }, + { + "start": 9499.19, + "end": 9502.51, + "probability": 0.7902 + }, + { + "start": 9502.99, + "end": 9507.09, + "probability": 0.8841 + }, + { + "start": 9508.11, + "end": 9513.37, + "probability": 0.7185 + }, + { + "start": 9515.29, + "end": 9521.81, + "probability": 0.95 + }, + { + "start": 9523.01, + "end": 9525.25, + "probability": 0.6777 + }, + { + "start": 9526.25, + "end": 9527.01, + "probability": 0.8955 + }, + { + "start": 9528.73, + "end": 9530.15, + "probability": 0.9868 + }, + { + "start": 9531.89, + "end": 9538.11, + "probability": 0.9148 + }, + { + "start": 9538.11, + "end": 9543.35, + "probability": 0.9385 + }, + { + "start": 9543.97, + "end": 9547.49, + "probability": 0.9795 + }, + { + "start": 9549.13, + "end": 9550.73, + "probability": 0.9759 + }, + { + "start": 9551.91, + "end": 9555.43, + "probability": 0.8774 + }, + { + "start": 9556.11, + "end": 9557.25, + "probability": 0.9879 + }, + { + "start": 9558.79, + "end": 9562.83, + "probability": 0.8344 + }, + { + "start": 9563.73, + "end": 9565.29, + "probability": 0.9972 + }, + { + "start": 9565.87, + "end": 9570.57, + "probability": 0.8359 + }, + { + "start": 9574.51, + "end": 9578.57, + "probability": 0.9141 + }, + { + "start": 9579.41, + "end": 9580.89, + "probability": 0.7365 + }, + { + "start": 9582.21, + "end": 9583.25, + "probability": 0.8047 + }, + { + "start": 9583.43, + "end": 9583.95, + "probability": 0.957 + }, + { + "start": 9584.97, + "end": 9588.97, + "probability": 0.6734 + }, + { + "start": 9589.61, + "end": 9590.95, + "probability": 0.8594 + }, + { + "start": 9591.69, + "end": 9593.89, + "probability": 0.8173 + }, + { + "start": 9594.63, + "end": 9596.05, + "probability": 0.916 + }, + { + "start": 9596.81, + "end": 9597.09, + "probability": 0.4944 + }, + { + "start": 9597.31, + "end": 9598.47, + "probability": 0.9302 + }, + { + "start": 9598.95, + "end": 9602.31, + "probability": 0.9896 + }, + { + "start": 9602.51, + "end": 9602.75, + "probability": 0.9316 + }, + { + "start": 9603.63, + "end": 9606.39, + "probability": 0.8154 + }, + { + "start": 9608.77, + "end": 9614.55, + "probability": 0.9752 + }, + { + "start": 9616.21, + "end": 9621.59, + "probability": 0.6393 + }, + { + "start": 9621.79, + "end": 9622.79, + "probability": 0.7121 + }, + { + "start": 9624.13, + "end": 9625.73, + "probability": 0.6953 + }, + { + "start": 9626.49, + "end": 9628.17, + "probability": 0.89 + }, + { + "start": 9628.79, + "end": 9630.37, + "probability": 0.633 + }, + { + "start": 9631.41, + "end": 9633.13, + "probability": 0.9794 + }, + { + "start": 9633.79, + "end": 9635.89, + "probability": 0.6912 + }, + { + "start": 9636.47, + "end": 9638.27, + "probability": 0.9457 + }, + { + "start": 9638.85, + "end": 9644.43, + "probability": 0.8248 + }, + { + "start": 9645.03, + "end": 9646.71, + "probability": 0.9425 + }, + { + "start": 9647.83, + "end": 9649.97, + "probability": 0.636 + }, + { + "start": 9650.53, + "end": 9654.83, + "probability": 0.7235 + }, + { + "start": 9655.77, + "end": 9656.91, + "probability": 0.8147 + }, + { + "start": 9657.77, + "end": 9660.89, + "probability": 0.8192 + }, + { + "start": 9662.11, + "end": 9666.73, + "probability": 0.8407 + }, + { + "start": 9667.43, + "end": 9669.27, + "probability": 0.5636 + }, + { + "start": 9670.95, + "end": 9672.17, + "probability": 0.7111 + }, + { + "start": 9675.29, + "end": 9676.11, + "probability": 0.5097 + }, + { + "start": 9677.11, + "end": 9677.93, + "probability": 0.9081 + }, + { + "start": 9678.57, + "end": 9680.75, + "probability": 0.7042 + }, + { + "start": 9681.25, + "end": 9684.93, + "probability": 0.7549 + }, + { + "start": 9685.43, + "end": 9688.25, + "probability": 0.8352 + }, + { + "start": 9688.53, + "end": 9689.81, + "probability": 0.7977 + }, + { + "start": 9691.77, + "end": 9693.53, + "probability": 0.3819 + }, + { + "start": 9694.17, + "end": 9698.57, + "probability": 0.5647 + }, + { + "start": 9698.65, + "end": 9700.57, + "probability": 0.7996 + }, + { + "start": 9700.99, + "end": 9702.97, + "probability": 0.959 + }, + { + "start": 9704.73, + "end": 9705.85, + "probability": 0.7963 + }, + { + "start": 9706.99, + "end": 9711.23, + "probability": 0.978 + }, + { + "start": 9712.37, + "end": 9715.86, + "probability": 0.3869 + }, + { + "start": 9717.35, + "end": 9721.11, + "probability": 0.7672 + }, + { + "start": 9721.19, + "end": 9723.28, + "probability": 0.959 + }, + { + "start": 9723.53, + "end": 9724.33, + "probability": 0.8677 + }, + { + "start": 9724.97, + "end": 9728.05, + "probability": 0.7263 + }, + { + "start": 9729.77, + "end": 9730.07, + "probability": 0.3092 + }, + { + "start": 9730.15, + "end": 9731.83, + "probability": 0.9306 + }, + { + "start": 9731.95, + "end": 9734.75, + "probability": 0.6429 + }, + { + "start": 9734.81, + "end": 9734.81, + "probability": 0.5628 + }, + { + "start": 9734.81, + "end": 9734.81, + "probability": 0.6002 + }, + { + "start": 9734.81, + "end": 9735.13, + "probability": 0.2017 + }, + { + "start": 9735.13, + "end": 9735.95, + "probability": 0.7896 + }, + { + "start": 9736.01, + "end": 9738.37, + "probability": 0.8029 + }, + { + "start": 9738.69, + "end": 9738.85, + "probability": 0.2968 + }, + { + "start": 9739.33, + "end": 9739.79, + "probability": 0.6802 + }, + { + "start": 9740.13, + "end": 9741.21, + "probability": 0.3119 + }, + { + "start": 9741.21, + "end": 9742.63, + "probability": 0.6133 + }, + { + "start": 9743.67, + "end": 9749.43, + "probability": 0.9883 + }, + { + "start": 9751.07, + "end": 9752.75, + "probability": 0.4443 + }, + { + "start": 9752.91, + "end": 9758.46, + "probability": 0.7924 + }, + { + "start": 9759.91, + "end": 9761.97, + "probability": 0.845 + }, + { + "start": 9762.15, + "end": 9765.17, + "probability": 0.7078 + }, + { + "start": 9766.19, + "end": 9767.07, + "probability": 0.3668 + }, + { + "start": 9767.25, + "end": 9771.05, + "probability": 0.701 + }, + { + "start": 9771.51, + "end": 9775.59, + "probability": 0.9077 + }, + { + "start": 9776.59, + "end": 9778.09, + "probability": 0.8923 + }, + { + "start": 9778.65, + "end": 9779.03, + "probability": 0.1671 + }, + { + "start": 9779.13, + "end": 9780.63, + "probability": 0.8174 + }, + { + "start": 9780.97, + "end": 9782.15, + "probability": 0.8352 + }, + { + "start": 9782.53, + "end": 9784.83, + "probability": 0.6747 + }, + { + "start": 9785.39, + "end": 9786.83, + "probability": 0.937 + }, + { + "start": 9786.93, + "end": 9789.85, + "probability": 0.899 + }, + { + "start": 9789.95, + "end": 9791.31, + "probability": 0.9644 + }, + { + "start": 9792.57, + "end": 9793.85, + "probability": 0.4178 + }, + { + "start": 9794.49, + "end": 9795.23, + "probability": 0.8909 + }, + { + "start": 9797.15, + "end": 9797.51, + "probability": 0.8339 + }, + { + "start": 9797.73, + "end": 9798.21, + "probability": 0.8818 + }, + { + "start": 9798.65, + "end": 9801.49, + "probability": 0.8164 + }, + { + "start": 9801.99, + "end": 9806.63, + "probability": 0.797 + }, + { + "start": 9806.95, + "end": 9810.23, + "probability": 0.5469 + }, + { + "start": 9810.35, + "end": 9811.37, + "probability": 0.5388 + }, + { + "start": 9811.91, + "end": 9814.19, + "probability": 0.7225 + }, + { + "start": 9814.99, + "end": 9815.91, + "probability": 0.8691 + }, + { + "start": 9820.22, + "end": 9824.71, + "probability": 0.7938 + }, + { + "start": 9829.99, + "end": 9830.39, + "probability": 0.6655 + }, + { + "start": 9837.11, + "end": 9837.23, + "probability": 0.1582 + }, + { + "start": 9837.23, + "end": 9837.29, + "probability": 0.0131 + }, + { + "start": 9853.61, + "end": 9853.89, + "probability": 0.6687 + }, + { + "start": 9856.97, + "end": 9859.51, + "probability": 0.3745 + }, + { + "start": 9862.31, + "end": 9862.49, + "probability": 0.0188 + }, + { + "start": 9863.17, + "end": 9863.21, + "probability": 0.1274 + }, + { + "start": 9863.21, + "end": 9863.31, + "probability": 0.1095 + }, + { + "start": 9863.53, + "end": 9864.57, + "probability": 0.0503 + }, + { + "start": 9865.35, + "end": 9865.35, + "probability": 0.0067 + }, + { + "start": 9867.03, + "end": 9867.03, + "probability": 0.0668 + }, + { + "start": 9867.03, + "end": 9868.51, + "probability": 0.273 + }, + { + "start": 9872.65, + "end": 9878.17, + "probability": 0.1393 + }, + { + "start": 9878.81, + "end": 9879.65, + "probability": 0.0817 + }, + { + "start": 9879.65, + "end": 9881.35, + "probability": 0.3842 + }, + { + "start": 9910.93, + "end": 9912.65, + "probability": 0.0476 + }, + { + "start": 9912.99, + "end": 9913.65, + "probability": 0.2189 + }, + { + "start": 9913.65, + "end": 9915.37, + "probability": 0.1118 + }, + { + "start": 9915.68, + "end": 9916.83, + "probability": 0.1067 + }, + { + "start": 9916.87, + "end": 9919.07, + "probability": 0.1505 + }, + { + "start": 9919.87, + "end": 9922.91, + "probability": 0.0313 + }, + { + "start": 9923.15, + "end": 9924.65, + "probability": 0.1246 + }, + { + "start": 9929.59, + "end": 9930.456, + "probability": 0.221 + }, + { + "start": 9930.456, + "end": 9930.456, + "probability": 0.0 + }, + { + "start": 9930.456, + "end": 9930.456, + "probability": 0.0 + }, + { + "start": 9930.456, + "end": 9930.456, + "probability": 0.0 + } + ], + "segments_count": 2973, + "words_count": 16133, + "avg_words_per_segment": 5.4265, + "avg_segment_duration": 2.384, + "avg_words_per_minute": 97.476, + "plenum_id": "126564", + "duration": 9930.44, + "title": null, + "plenum_date": "2024-05-21" +} \ No newline at end of file