diff --git "a/22942/metadata.json" "b/22942/metadata.json" new file mode 100644--- /dev/null +++ "b/22942/metadata.json" @@ -0,0 +1,16902 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "22942", + "quality_score": 0.9316, + "per_segment_quality_scores": [ + { + "start": 0.74, + "end": 1.62, + "probability": 0.1085 + }, + { + "start": 9.83, + "end": 12.48, + "probability": 0.0884 + }, + { + "start": 21.1, + "end": 22.38, + "probability": 0.0734 + }, + { + "start": 24.6, + "end": 26.32, + "probability": 0.2917 + }, + { + "start": 67.86, + "end": 68.82, + "probability": 0.472 + }, + { + "start": 68.82, + "end": 69.74, + "probability": 0.401 + }, + { + "start": 72.46, + "end": 72.74, + "probability": 0.5493 + }, + { + "start": 73.72, + "end": 75.12, + "probability": 0.7312 + }, + { + "start": 75.24, + "end": 76.27, + "probability": 0.6943 + }, + { + "start": 76.78, + "end": 79.74, + "probability": 0.9895 + }, + { + "start": 80.38, + "end": 84.16, + "probability": 0.9958 + }, + { + "start": 84.76, + "end": 84.96, + "probability": 0.2612 + }, + { + "start": 85.58, + "end": 85.98, + "probability": 0.5563 + }, + { + "start": 86.14, + "end": 87.76, + "probability": 0.9474 + }, + { + "start": 87.8, + "end": 89.92, + "probability": 0.9902 + }, + { + "start": 91.06, + "end": 95.5, + "probability": 0.8539 + }, + { + "start": 95.86, + "end": 98.26, + "probability": 0.6419 + }, + { + "start": 102.42, + "end": 105.55, + "probability": 0.8816 + }, + { + "start": 106.2, + "end": 108.58, + "probability": 0.7837 + }, + { + "start": 109.16, + "end": 109.16, + "probability": 0.7327 + }, + { + "start": 109.32, + "end": 111.5, + "probability": 0.7363 + }, + { + "start": 112.5, + "end": 113.4, + "probability": 0.8682 + }, + { + "start": 114.1, + "end": 118.94, + "probability": 0.8781 + }, + { + "start": 119.74, + "end": 123.56, + "probability": 0.9659 + }, + { + "start": 123.78, + "end": 125.54, + "probability": 0.5482 + }, + { + "start": 126.0, + "end": 126.8, + "probability": 0.8954 + }, + { + "start": 126.98, + "end": 127.58, + "probability": 0.8883 + }, + { + "start": 128.26, + "end": 131.76, + "probability": 0.7971 + }, + { + "start": 132.36, + "end": 133.72, + "probability": 0.8335 + }, + { + "start": 134.36, + "end": 137.7, + "probability": 0.8049 + }, + { + "start": 137.82, + "end": 141.24, + "probability": 0.9235 + }, + { + "start": 142.38, + "end": 143.02, + "probability": 0.4511 + }, + { + "start": 144.06, + "end": 147.06, + "probability": 0.9651 + }, + { + "start": 147.06, + "end": 150.6, + "probability": 0.8596 + }, + { + "start": 151.14, + "end": 154.34, + "probability": 0.9707 + }, + { + "start": 155.06, + "end": 155.64, + "probability": 0.8303 + }, + { + "start": 155.66, + "end": 156.42, + "probability": 0.6676 + }, + { + "start": 156.82, + "end": 158.2, + "probability": 0.9266 + }, + { + "start": 158.5, + "end": 161.04, + "probability": 0.843 + }, + { + "start": 162.52, + "end": 165.14, + "probability": 0.9771 + }, + { + "start": 165.18, + "end": 166.16, + "probability": 0.7974 + }, + { + "start": 166.5, + "end": 169.96, + "probability": 0.8981 + }, + { + "start": 170.64, + "end": 174.82, + "probability": 0.9731 + }, + { + "start": 175.32, + "end": 175.56, + "probability": 0.6557 + }, + { + "start": 176.1, + "end": 180.76, + "probability": 0.9948 + }, + { + "start": 181.44, + "end": 184.18, + "probability": 0.6898 + }, + { + "start": 186.38, + "end": 186.8, + "probability": 0.6403 + }, + { + "start": 186.9, + "end": 187.5, + "probability": 0.7122 + }, + { + "start": 187.74, + "end": 190.56, + "probability": 0.971 + }, + { + "start": 191.06, + "end": 192.48, + "probability": 0.9646 + }, + { + "start": 192.6, + "end": 194.2, + "probability": 0.9976 + }, + { + "start": 194.94, + "end": 197.6, + "probability": 0.9966 + }, + { + "start": 197.78, + "end": 198.46, + "probability": 0.7243 + }, + { + "start": 198.72, + "end": 204.7, + "probability": 0.9937 + }, + { + "start": 204.86, + "end": 205.84, + "probability": 0.9717 + }, + { + "start": 205.98, + "end": 207.22, + "probability": 0.9116 + }, + { + "start": 209.69, + "end": 212.3, + "probability": 0.6028 + }, + { + "start": 218.74, + "end": 220.21, + "probability": 0.7902 + }, + { + "start": 220.66, + "end": 223.64, + "probability": 0.9966 + }, + { + "start": 223.64, + "end": 225.52, + "probability": 0.847 + }, + { + "start": 226.04, + "end": 229.08, + "probability": 0.977 + }, + { + "start": 230.22, + "end": 230.68, + "probability": 0.4854 + }, + { + "start": 230.78, + "end": 231.8, + "probability": 0.6971 + }, + { + "start": 231.92, + "end": 235.2, + "probability": 0.9915 + }, + { + "start": 235.2, + "end": 238.84, + "probability": 0.9658 + }, + { + "start": 239.0, + "end": 241.46, + "probability": 0.9633 + }, + { + "start": 242.34, + "end": 245.02, + "probability": 0.9117 + }, + { + "start": 245.86, + "end": 248.1, + "probability": 0.8388 + }, + { + "start": 249.2, + "end": 252.0, + "probability": 0.8569 + }, + { + "start": 253.24, + "end": 254.66, + "probability": 0.6587 + }, + { + "start": 255.5, + "end": 257.6, + "probability": 0.8722 + }, + { + "start": 258.18, + "end": 263.96, + "probability": 0.9772 + }, + { + "start": 266.26, + "end": 270.1, + "probability": 0.5969 + }, + { + "start": 270.62, + "end": 277.0, + "probability": 0.9751 + }, + { + "start": 277.14, + "end": 283.06, + "probability": 0.9813 + }, + { + "start": 283.28, + "end": 284.24, + "probability": 0.9147 + }, + { + "start": 284.9, + "end": 290.92, + "probability": 0.9713 + }, + { + "start": 291.42, + "end": 296.82, + "probability": 0.9478 + }, + { + "start": 297.88, + "end": 301.18, + "probability": 0.9137 + }, + { + "start": 301.76, + "end": 306.0, + "probability": 0.9753 + }, + { + "start": 306.46, + "end": 310.14, + "probability": 0.8576 + }, + { + "start": 311.58, + "end": 312.64, + "probability": 0.9485 + }, + { + "start": 313.5, + "end": 318.36, + "probability": 0.9985 + }, + { + "start": 318.36, + "end": 321.98, + "probability": 0.9491 + }, + { + "start": 323.02, + "end": 329.32, + "probability": 0.9674 + }, + { + "start": 330.36, + "end": 332.4, + "probability": 0.9959 + }, + { + "start": 332.66, + "end": 333.1, + "probability": 0.7546 + }, + { + "start": 333.7, + "end": 335.58, + "probability": 0.9397 + }, + { + "start": 336.1, + "end": 336.4, + "probability": 0.1184 + }, + { + "start": 336.48, + "end": 340.54, + "probability": 0.5626 + }, + { + "start": 341.4, + "end": 342.28, + "probability": 0.6335 + }, + { + "start": 343.32, + "end": 344.24, + "probability": 0.9529 + }, + { + "start": 346.38, + "end": 347.9, + "probability": 0.5105 + }, + { + "start": 348.16, + "end": 350.44, + "probability": 0.6759 + }, + { + "start": 350.44, + "end": 353.92, + "probability": 0.9763 + }, + { + "start": 354.26, + "end": 355.64, + "probability": 0.7252 + }, + { + "start": 355.84, + "end": 358.42, + "probability": 0.7438 + }, + { + "start": 359.1, + "end": 368.42, + "probability": 0.9563 + }, + { + "start": 372.48, + "end": 376.2, + "probability": 0.7154 + }, + { + "start": 377.94, + "end": 381.66, + "probability": 0.8169 + }, + { + "start": 381.82, + "end": 385.12, + "probability": 0.9772 + }, + { + "start": 386.9, + "end": 388.92, + "probability": 0.5231 + }, + { + "start": 391.52, + "end": 397.82, + "probability": 0.7202 + }, + { + "start": 399.36, + "end": 399.64, + "probability": 0.4919 + }, + { + "start": 399.76, + "end": 402.48, + "probability": 0.9736 + }, + { + "start": 402.6, + "end": 404.54, + "probability": 0.9059 + }, + { + "start": 404.58, + "end": 411.1, + "probability": 0.9723 + }, + { + "start": 412.08, + "end": 413.1, + "probability": 0.7834 + }, + { + "start": 413.36, + "end": 416.48, + "probability": 0.998 + }, + { + "start": 416.66, + "end": 420.64, + "probability": 0.8728 + }, + { + "start": 420.64, + "end": 423.42, + "probability": 0.9973 + }, + { + "start": 424.06, + "end": 425.26, + "probability": 0.9514 + }, + { + "start": 425.78, + "end": 427.52, + "probability": 0.9946 + }, + { + "start": 427.6, + "end": 432.12, + "probability": 0.998 + }, + { + "start": 433.1, + "end": 435.08, + "probability": 0.8752 + }, + { + "start": 435.22, + "end": 440.26, + "probability": 0.9898 + }, + { + "start": 440.94, + "end": 442.16, + "probability": 0.6389 + }, + { + "start": 442.78, + "end": 445.88, + "probability": 0.6143 + }, + { + "start": 446.34, + "end": 453.26, + "probability": 0.9767 + }, + { + "start": 453.3, + "end": 455.88, + "probability": 0.9528 + }, + { + "start": 456.44, + "end": 458.22, + "probability": 0.7065 + }, + { + "start": 458.6, + "end": 460.64, + "probability": 0.6674 + }, + { + "start": 460.72, + "end": 463.48, + "probability": 0.8861 + }, + { + "start": 463.86, + "end": 470.04, + "probability": 0.9763 + }, + { + "start": 470.04, + "end": 475.3, + "probability": 0.9757 + }, + { + "start": 475.3, + "end": 482.44, + "probability": 0.9583 + }, + { + "start": 482.6, + "end": 484.96, + "probability": 0.9924 + }, + { + "start": 485.54, + "end": 486.82, + "probability": 0.8048 + }, + { + "start": 487.68, + "end": 490.74, + "probability": 0.8359 + }, + { + "start": 490.86, + "end": 495.03, + "probability": 0.9929 + }, + { + "start": 495.06, + "end": 498.04, + "probability": 0.9885 + }, + { + "start": 498.96, + "end": 502.82, + "probability": 0.9915 + }, + { + "start": 503.24, + "end": 505.08, + "probability": 0.7362 + }, + { + "start": 505.68, + "end": 506.6, + "probability": 0.5967 + }, + { + "start": 506.74, + "end": 510.02, + "probability": 0.7718 + }, + { + "start": 510.1, + "end": 510.46, + "probability": 0.6416 + }, + { + "start": 511.0, + "end": 514.44, + "probability": 0.8904 + }, + { + "start": 515.44, + "end": 516.18, + "probability": 0.8331 + }, + { + "start": 517.16, + "end": 517.16, + "probability": 0.4067 + }, + { + "start": 517.16, + "end": 518.26, + "probability": 0.219 + }, + { + "start": 519.32, + "end": 524.78, + "probability": 0.3022 + }, + { + "start": 525.72, + "end": 526.58, + "probability": 0.3925 + }, + { + "start": 527.06, + "end": 529.96, + "probability": 0.884 + }, + { + "start": 530.52, + "end": 535.22, + "probability": 0.987 + }, + { + "start": 535.38, + "end": 535.91, + "probability": 0.5776 + }, + { + "start": 537.29, + "end": 541.06, + "probability": 0.7723 + }, + { + "start": 541.18, + "end": 542.18, + "probability": 0.8064 + }, + { + "start": 542.36, + "end": 544.14, + "probability": 0.7834 + }, + { + "start": 544.24, + "end": 547.88, + "probability": 0.9945 + }, + { + "start": 549.3, + "end": 551.84, + "probability": 0.975 + }, + { + "start": 552.82, + "end": 557.18, + "probability": 0.4331 + }, + { + "start": 557.56, + "end": 561.9, + "probability": 0.9179 + }, + { + "start": 562.16, + "end": 562.82, + "probability": 0.5229 + }, + { + "start": 562.82, + "end": 563.2, + "probability": 0.793 + }, + { + "start": 563.5, + "end": 563.98, + "probability": 0.5832 + }, + { + "start": 564.04, + "end": 564.52, + "probability": 0.9087 + }, + { + "start": 564.66, + "end": 565.1, + "probability": 0.7502 + }, + { + "start": 565.82, + "end": 566.98, + "probability": 0.882 + }, + { + "start": 567.2, + "end": 569.0, + "probability": 0.9679 + }, + { + "start": 569.06, + "end": 569.06, + "probability": 0.5988 + }, + { + "start": 569.06, + "end": 569.4, + "probability": 0.3955 + }, + { + "start": 569.4, + "end": 570.4, + "probability": 0.5653 + }, + { + "start": 570.5, + "end": 574.6, + "probability": 0.9351 + }, + { + "start": 575.2, + "end": 578.14, + "probability": 0.9966 + }, + { + "start": 578.5, + "end": 580.02, + "probability": 0.697 + }, + { + "start": 580.1, + "end": 580.58, + "probability": 0.7754 + }, + { + "start": 580.76, + "end": 582.7, + "probability": 0.692 + }, + { + "start": 582.84, + "end": 585.58, + "probability": 0.9492 + }, + { + "start": 586.06, + "end": 588.74, + "probability": 0.9291 + }, + { + "start": 590.12, + "end": 594.94, + "probability": 0.873 + }, + { + "start": 595.04, + "end": 595.47, + "probability": 0.6729 + }, + { + "start": 596.92, + "end": 598.88, + "probability": 0.837 + }, + { + "start": 598.98, + "end": 599.18, + "probability": 0.7583 + }, + { + "start": 599.32, + "end": 599.74, + "probability": 0.7013 + }, + { + "start": 600.1, + "end": 603.8, + "probability": 0.8607 + }, + { + "start": 604.1, + "end": 605.08, + "probability": 0.9985 + }, + { + "start": 605.94, + "end": 608.98, + "probability": 0.9978 + }, + { + "start": 610.6, + "end": 613.52, + "probability": 0.9482 + }, + { + "start": 613.88, + "end": 615.9, + "probability": 0.5905 + }, + { + "start": 617.43, + "end": 623.48, + "probability": 0.9232 + }, + { + "start": 624.06, + "end": 625.28, + "probability": 0.891 + }, + { + "start": 625.72, + "end": 633.14, + "probability": 0.8693 + }, + { + "start": 633.48, + "end": 635.72, + "probability": 0.8597 + }, + { + "start": 636.12, + "end": 637.06, + "probability": 0.5396 + }, + { + "start": 637.14, + "end": 637.32, + "probability": 0.4789 + }, + { + "start": 637.38, + "end": 637.68, + "probability": 0.1533 + }, + { + "start": 637.8, + "end": 640.28, + "probability": 0.9364 + }, + { + "start": 643.84, + "end": 648.88, + "probability": 0.7041 + }, + { + "start": 650.04, + "end": 652.68, + "probability": 0.9565 + }, + { + "start": 654.06, + "end": 656.52, + "probability": 0.727 + }, + { + "start": 656.7, + "end": 660.48, + "probability": 0.9413 + }, + { + "start": 661.44, + "end": 665.12, + "probability": 0.8116 + }, + { + "start": 665.98, + "end": 670.32, + "probability": 0.709 + }, + { + "start": 671.06, + "end": 676.28, + "probability": 0.8304 + }, + { + "start": 677.02, + "end": 678.28, + "probability": 0.8762 + }, + { + "start": 678.86, + "end": 681.62, + "probability": 0.9907 + }, + { + "start": 682.0, + "end": 682.98, + "probability": 0.9252 + }, + { + "start": 683.64, + "end": 684.54, + "probability": 0.756 + }, + { + "start": 684.6, + "end": 688.64, + "probability": 0.8345 + }, + { + "start": 689.32, + "end": 692.58, + "probability": 0.5114 + }, + { + "start": 693.12, + "end": 693.82, + "probability": 0.0044 + }, + { + "start": 694.36, + "end": 695.36, + "probability": 0.9171 + }, + { + "start": 695.6, + "end": 696.32, + "probability": 0.6656 + }, + { + "start": 696.32, + "end": 701.26, + "probability": 0.9747 + }, + { + "start": 701.98, + "end": 703.16, + "probability": 0.8153 + }, + { + "start": 704.32, + "end": 707.3, + "probability": 0.8127 + }, + { + "start": 707.36, + "end": 708.54, + "probability": 0.9258 + }, + { + "start": 709.22, + "end": 710.74, + "probability": 0.5521 + }, + { + "start": 710.8, + "end": 716.32, + "probability": 0.9569 + }, + { + "start": 716.82, + "end": 720.96, + "probability": 0.9462 + }, + { + "start": 721.18, + "end": 721.98, + "probability": 0.9437 + }, + { + "start": 722.4, + "end": 723.62, + "probability": 0.7695 + }, + { + "start": 724.56, + "end": 728.34, + "probability": 0.8455 + }, + { + "start": 729.04, + "end": 730.05, + "probability": 0.7634 + }, + { + "start": 731.9, + "end": 736.56, + "probability": 0.9404 + }, + { + "start": 736.56, + "end": 739.28, + "probability": 0.9751 + }, + { + "start": 739.48, + "end": 741.7, + "probability": 0.9166 + }, + { + "start": 742.32, + "end": 742.98, + "probability": 0.5894 + }, + { + "start": 743.78, + "end": 745.5, + "probability": 0.9125 + }, + { + "start": 745.94, + "end": 746.5, + "probability": 0.7653 + }, + { + "start": 746.62, + "end": 747.9, + "probability": 0.9893 + }, + { + "start": 748.38, + "end": 749.64, + "probability": 0.9906 + }, + { + "start": 749.88, + "end": 750.64, + "probability": 0.9833 + }, + { + "start": 750.84, + "end": 751.34, + "probability": 0.9858 + }, + { + "start": 751.72, + "end": 754.14, + "probability": 0.8475 + }, + { + "start": 754.16, + "end": 756.58, + "probability": 0.8813 + }, + { + "start": 756.9, + "end": 759.11, + "probability": 0.957 + }, + { + "start": 759.88, + "end": 761.38, + "probability": 0.9976 + }, + { + "start": 761.72, + "end": 765.96, + "probability": 0.5815 + }, + { + "start": 766.46, + "end": 767.02, + "probability": 0.6585 + }, + { + "start": 767.2, + "end": 768.94, + "probability": 0.6685 + }, + { + "start": 769.1, + "end": 770.08, + "probability": 0.9531 + }, + { + "start": 770.28, + "end": 773.96, + "probability": 0.9688 + }, + { + "start": 775.66, + "end": 777.78, + "probability": 0.6481 + }, + { + "start": 778.54, + "end": 781.76, + "probability": 0.7275 + }, + { + "start": 781.8, + "end": 786.58, + "probability": 0.9826 + }, + { + "start": 787.5, + "end": 788.82, + "probability": 0.882 + }, + { + "start": 789.48, + "end": 792.48, + "probability": 0.7899 + }, + { + "start": 793.78, + "end": 794.6, + "probability": 0.7589 + }, + { + "start": 795.66, + "end": 798.64, + "probability": 0.7961 + }, + { + "start": 799.86, + "end": 800.89, + "probability": 0.8564 + }, + { + "start": 801.36, + "end": 801.92, + "probability": 0.4936 + }, + { + "start": 801.96, + "end": 802.74, + "probability": 0.9012 + }, + { + "start": 802.86, + "end": 803.34, + "probability": 0.8625 + }, + { + "start": 803.44, + "end": 804.12, + "probability": 0.8126 + }, + { + "start": 804.16, + "end": 806.93, + "probability": 0.9199 + }, + { + "start": 807.7, + "end": 814.48, + "probability": 0.9304 + }, + { + "start": 815.3, + "end": 820.76, + "probability": 0.9758 + }, + { + "start": 820.84, + "end": 821.56, + "probability": 0.9279 + }, + { + "start": 822.72, + "end": 826.66, + "probability": 0.9656 + }, + { + "start": 828.76, + "end": 833.1, + "probability": 0.9906 + }, + { + "start": 833.32, + "end": 836.24, + "probability": 0.9442 + }, + { + "start": 836.32, + "end": 837.24, + "probability": 0.9059 + }, + { + "start": 838.18, + "end": 841.46, + "probability": 0.9828 + }, + { + "start": 842.52, + "end": 843.2, + "probability": 0.8909 + }, + { + "start": 844.5, + "end": 851.5, + "probability": 0.9179 + }, + { + "start": 851.5, + "end": 857.26, + "probability": 0.8691 + }, + { + "start": 857.34, + "end": 860.98, + "probability": 0.77 + }, + { + "start": 860.98, + "end": 867.24, + "probability": 0.9968 + }, + { + "start": 868.92, + "end": 872.86, + "probability": 0.8384 + }, + { + "start": 872.98, + "end": 874.92, + "probability": 0.809 + }, + { + "start": 875.0, + "end": 879.66, + "probability": 0.8952 + }, + { + "start": 880.92, + "end": 882.78, + "probability": 0.9932 + }, + { + "start": 883.16, + "end": 884.72, + "probability": 0.7964 + }, + { + "start": 885.24, + "end": 886.24, + "probability": 0.6584 + }, + { + "start": 887.08, + "end": 891.9, + "probability": 0.9876 + }, + { + "start": 892.28, + "end": 895.76, + "probability": 0.9015 + }, + { + "start": 896.04, + "end": 897.22, + "probability": 0.8989 + }, + { + "start": 897.28, + "end": 901.62, + "probability": 0.9353 + }, + { + "start": 901.76, + "end": 902.1, + "probability": 0.8126 + }, + { + "start": 902.34, + "end": 902.68, + "probability": 0.3338 + }, + { + "start": 903.12, + "end": 903.5, + "probability": 0.0649 + }, + { + "start": 903.5, + "end": 904.32, + "probability": 0.8222 + }, + { + "start": 904.5, + "end": 905.61, + "probability": 0.8378 + }, + { + "start": 907.08, + "end": 908.92, + "probability": 0.9781 + }, + { + "start": 909.28, + "end": 911.5, + "probability": 0.5961 + }, + { + "start": 911.88, + "end": 915.9, + "probability": 0.913 + }, + { + "start": 917.0, + "end": 917.78, + "probability": 0.8553 + }, + { + "start": 918.44, + "end": 920.18, + "probability": 0.6901 + }, + { + "start": 920.24, + "end": 922.18, + "probability": 0.8715 + }, + { + "start": 922.68, + "end": 924.44, + "probability": 0.7412 + }, + { + "start": 924.58, + "end": 926.32, + "probability": 0.682 + }, + { + "start": 926.32, + "end": 927.21, + "probability": 0.948 + }, + { + "start": 927.62, + "end": 928.6, + "probability": 0.9043 + }, + { + "start": 928.62, + "end": 931.32, + "probability": 0.9568 + }, + { + "start": 931.6, + "end": 934.36, + "probability": 0.9916 + }, + { + "start": 934.66, + "end": 935.85, + "probability": 0.5454 + }, + { + "start": 936.1, + "end": 938.1, + "probability": 0.9537 + }, + { + "start": 938.58, + "end": 942.74, + "probability": 0.9259 + }, + { + "start": 942.74, + "end": 945.44, + "probability": 0.8953 + }, + { + "start": 946.48, + "end": 948.36, + "probability": 0.6227 + }, + { + "start": 948.6, + "end": 949.98, + "probability": 0.9871 + }, + { + "start": 950.46, + "end": 951.07, + "probability": 0.8723 + }, + { + "start": 951.88, + "end": 954.64, + "probability": 0.9075 + }, + { + "start": 955.12, + "end": 957.2, + "probability": 0.7718 + }, + { + "start": 959.9, + "end": 963.78, + "probability": 0.7803 + }, + { + "start": 968.68, + "end": 971.52, + "probability": 0.5638 + }, + { + "start": 972.04, + "end": 974.66, + "probability": 0.8643 + }, + { + "start": 975.08, + "end": 977.8, + "probability": 0.9944 + }, + { + "start": 977.8, + "end": 980.8, + "probability": 0.9952 + }, + { + "start": 981.0, + "end": 985.38, + "probability": 0.9568 + }, + { + "start": 985.8, + "end": 987.65, + "probability": 0.8151 + }, + { + "start": 988.38, + "end": 990.76, + "probability": 0.9941 + }, + { + "start": 990.82, + "end": 991.3, + "probability": 0.481 + }, + { + "start": 991.32, + "end": 994.08, + "probability": 0.7726 + }, + { + "start": 994.3, + "end": 999.14, + "probability": 0.9956 + }, + { + "start": 1000.56, + "end": 1003.3, + "probability": 0.9732 + }, + { + "start": 1004.06, + "end": 1008.15, + "probability": 0.9887 + }, + { + "start": 1008.36, + "end": 1012.26, + "probability": 0.9789 + }, + { + "start": 1013.02, + "end": 1015.54, + "probability": 0.9609 + }, + { + "start": 1016.22, + "end": 1017.22, + "probability": 0.7502 + }, + { + "start": 1017.68, + "end": 1020.86, + "probability": 0.9774 + }, + { + "start": 1021.4, + "end": 1022.74, + "probability": 0.9146 + }, + { + "start": 1023.2, + "end": 1029.36, + "probability": 0.9618 + }, + { + "start": 1029.78, + "end": 1031.12, + "probability": 0.7529 + }, + { + "start": 1031.92, + "end": 1033.26, + "probability": 0.7822 + }, + { + "start": 1033.48, + "end": 1034.48, + "probability": 0.9254 + }, + { + "start": 1034.62, + "end": 1041.02, + "probability": 0.7276 + }, + { + "start": 1041.28, + "end": 1043.5, + "probability": 0.8921 + }, + { + "start": 1043.9, + "end": 1045.46, + "probability": 0.8757 + }, + { + "start": 1045.78, + "end": 1048.54, + "probability": 0.9764 + }, + { + "start": 1049.1, + "end": 1053.06, + "probability": 0.9814 + }, + { + "start": 1053.76, + "end": 1056.08, + "probability": 0.9954 + }, + { + "start": 1056.6, + "end": 1057.84, + "probability": 0.8113 + }, + { + "start": 1058.56, + "end": 1061.6, + "probability": 0.8474 + }, + { + "start": 1062.06, + "end": 1063.9, + "probability": 0.7508 + }, + { + "start": 1064.24, + "end": 1069.3, + "probability": 0.9697 + }, + { + "start": 1069.88, + "end": 1073.66, + "probability": 0.7217 + }, + { + "start": 1074.12, + "end": 1075.4, + "probability": 0.9585 + }, + { + "start": 1075.7, + "end": 1075.96, + "probability": 0.6896 + }, + { + "start": 1076.2, + "end": 1077.9, + "probability": 0.7851 + }, + { + "start": 1078.72, + "end": 1079.64, + "probability": 0.9443 + }, + { + "start": 1079.82, + "end": 1082.52, + "probability": 0.9678 + }, + { + "start": 1082.52, + "end": 1085.86, + "probability": 0.8155 + }, + { + "start": 1086.06, + "end": 1087.96, + "probability": 0.7964 + }, + { + "start": 1088.36, + "end": 1089.58, + "probability": 0.9064 + }, + { + "start": 1089.9, + "end": 1092.06, + "probability": 0.8445 + }, + { + "start": 1092.78, + "end": 1093.62, + "probability": 0.372 + }, + { + "start": 1093.96, + "end": 1094.56, + "probability": 0.875 + }, + { + "start": 1094.74, + "end": 1096.36, + "probability": 0.9941 + }, + { + "start": 1096.44, + "end": 1097.3, + "probability": 0.7202 + }, + { + "start": 1097.54, + "end": 1099.78, + "probability": 0.9281 + }, + { + "start": 1100.32, + "end": 1101.88, + "probability": 0.4402 + }, + { + "start": 1102.0, + "end": 1103.16, + "probability": 0.5194 + }, + { + "start": 1103.2, + "end": 1104.1, + "probability": 0.9883 + }, + { + "start": 1104.22, + "end": 1106.15, + "probability": 0.9822 + }, + { + "start": 1108.34, + "end": 1110.9, + "probability": 0.8519 + }, + { + "start": 1111.38, + "end": 1113.3, + "probability": 0.8337 + }, + { + "start": 1114.04, + "end": 1118.44, + "probability": 0.9795 + }, + { + "start": 1119.52, + "end": 1119.52, + "probability": 0.1083 + }, + { + "start": 1119.52, + "end": 1119.52, + "probability": 0.5098 + }, + { + "start": 1119.52, + "end": 1121.22, + "probability": 0.5264 + }, + { + "start": 1121.34, + "end": 1123.7, + "probability": 0.9291 + }, + { + "start": 1124.0, + "end": 1125.94, + "probability": 0.497 + }, + { + "start": 1127.96, + "end": 1133.7, + "probability": 0.9797 + }, + { + "start": 1133.7, + "end": 1136.88, + "probability": 0.9943 + }, + { + "start": 1137.98, + "end": 1139.62, + "probability": 0.9706 + }, + { + "start": 1139.88, + "end": 1141.84, + "probability": 0.8502 + }, + { + "start": 1141.94, + "end": 1144.18, + "probability": 0.9609 + }, + { + "start": 1144.46, + "end": 1151.32, + "probability": 0.9979 + }, + { + "start": 1151.88, + "end": 1152.98, + "probability": 0.9551 + }, + { + "start": 1155.02, + "end": 1155.86, + "probability": 0.6245 + }, + { + "start": 1156.32, + "end": 1163.0, + "probability": 0.9262 + }, + { + "start": 1163.54, + "end": 1166.26, + "probability": 0.8873 + }, + { + "start": 1166.66, + "end": 1169.06, + "probability": 0.5486 + }, + { + "start": 1169.1, + "end": 1170.1, + "probability": 0.5349 + }, + { + "start": 1170.2, + "end": 1171.86, + "probability": 0.5981 + }, + { + "start": 1172.04, + "end": 1176.3, + "probability": 0.9277 + }, + { + "start": 1176.66, + "end": 1180.08, + "probability": 0.7532 + }, + { + "start": 1180.56, + "end": 1185.12, + "probability": 0.6435 + }, + { + "start": 1185.84, + "end": 1188.52, + "probability": 0.7173 + }, + { + "start": 1188.74, + "end": 1192.32, + "probability": 0.9764 + }, + { + "start": 1192.52, + "end": 1195.72, + "probability": 0.9818 + }, + { + "start": 1195.92, + "end": 1199.1, + "probability": 0.8502 + }, + { + "start": 1199.6, + "end": 1202.94, + "probability": 0.9122 + }, + { + "start": 1203.06, + "end": 1206.68, + "probability": 0.8781 + }, + { + "start": 1206.78, + "end": 1210.26, + "probability": 0.6006 + }, + { + "start": 1210.4, + "end": 1211.1, + "probability": 0.4059 + }, + { + "start": 1211.1, + "end": 1215.56, + "probability": 0.9672 + }, + { + "start": 1216.12, + "end": 1216.98, + "probability": 0.7864 + }, + { + "start": 1217.76, + "end": 1221.48, + "probability": 0.9753 + }, + { + "start": 1221.94, + "end": 1224.52, + "probability": 0.9498 + }, + { + "start": 1224.86, + "end": 1225.5, + "probability": 0.5583 + }, + { + "start": 1225.54, + "end": 1227.96, + "probability": 0.9023 + }, + { + "start": 1228.16, + "end": 1231.34, + "probability": 0.9229 + }, + { + "start": 1232.42, + "end": 1233.9, + "probability": 0.4615 + }, + { + "start": 1234.12, + "end": 1236.8, + "probability": 0.6282 + }, + { + "start": 1237.74, + "end": 1241.24, + "probability": 0.7905 + }, + { + "start": 1241.32, + "end": 1243.56, + "probability": 0.8441 + }, + { + "start": 1243.94, + "end": 1247.38, + "probability": 0.7337 + }, + { + "start": 1247.5, + "end": 1248.2, + "probability": 0.7015 + }, + { + "start": 1248.7, + "end": 1252.88, + "probability": 0.9852 + }, + { + "start": 1252.88, + "end": 1256.76, + "probability": 0.9475 + }, + { + "start": 1256.8, + "end": 1257.72, + "probability": 0.8442 + }, + { + "start": 1258.24, + "end": 1261.9, + "probability": 0.9809 + }, + { + "start": 1264.42, + "end": 1267.62, + "probability": 0.9159 + }, + { + "start": 1267.78, + "end": 1268.6, + "probability": 0.8252 + }, + { + "start": 1268.72, + "end": 1269.92, + "probability": 0.5934 + }, + { + "start": 1272.07, + "end": 1274.6, + "probability": 0.8488 + }, + { + "start": 1275.48, + "end": 1275.74, + "probability": 0.7687 + }, + { + "start": 1275.84, + "end": 1277.26, + "probability": 0.8505 + }, + { + "start": 1277.36, + "end": 1279.38, + "probability": 0.5774 + }, + { + "start": 1280.3, + "end": 1281.54, + "probability": 0.9659 + }, + { + "start": 1286.86, + "end": 1288.02, + "probability": 0.7422 + }, + { + "start": 1288.7, + "end": 1291.24, + "probability": 0.8896 + }, + { + "start": 1292.8, + "end": 1299.46, + "probability": 0.9979 + }, + { + "start": 1300.4, + "end": 1301.84, + "probability": 0.8948 + }, + { + "start": 1302.36, + "end": 1305.66, + "probability": 0.8608 + }, + { + "start": 1305.9, + "end": 1308.8, + "probability": 0.9923 + }, + { + "start": 1309.94, + "end": 1310.62, + "probability": 0.839 + }, + { + "start": 1311.36, + "end": 1315.1, + "probability": 0.9653 + }, + { + "start": 1315.32, + "end": 1316.96, + "probability": 0.9683 + }, + { + "start": 1317.08, + "end": 1320.08, + "probability": 0.8193 + }, + { + "start": 1320.44, + "end": 1323.7, + "probability": 0.9943 + }, + { + "start": 1324.58, + "end": 1325.6, + "probability": 0.7983 + }, + { + "start": 1326.68, + "end": 1329.06, + "probability": 0.9598 + }, + { + "start": 1330.9, + "end": 1332.36, + "probability": 0.6662 + }, + { + "start": 1332.82, + "end": 1335.52, + "probability": 0.9868 + }, + { + "start": 1336.08, + "end": 1336.98, + "probability": 0.9321 + }, + { + "start": 1337.78, + "end": 1340.72, + "probability": 0.9917 + }, + { + "start": 1341.66, + "end": 1344.28, + "probability": 0.9854 + }, + { + "start": 1345.42, + "end": 1348.52, + "probability": 0.9825 + }, + { + "start": 1349.32, + "end": 1350.92, + "probability": 0.8555 + }, + { + "start": 1351.58, + "end": 1354.56, + "probability": 0.9768 + }, + { + "start": 1355.1, + "end": 1358.34, + "probability": 0.6678 + }, + { + "start": 1358.62, + "end": 1359.54, + "probability": 0.4739 + }, + { + "start": 1359.64, + "end": 1361.94, + "probability": 0.9684 + }, + { + "start": 1362.62, + "end": 1364.36, + "probability": 0.7996 + }, + { + "start": 1364.92, + "end": 1366.56, + "probability": 0.9887 + }, + { + "start": 1368.0, + "end": 1370.88, + "probability": 0.987 + }, + { + "start": 1371.66, + "end": 1373.38, + "probability": 0.8955 + }, + { + "start": 1374.22, + "end": 1376.34, + "probability": 0.8612 + }, + { + "start": 1377.0, + "end": 1378.66, + "probability": 0.9655 + }, + { + "start": 1378.76, + "end": 1379.56, + "probability": 0.8378 + }, + { + "start": 1379.98, + "end": 1381.18, + "probability": 0.9885 + }, + { + "start": 1381.22, + "end": 1382.48, + "probability": 0.7844 + }, + { + "start": 1382.74, + "end": 1384.32, + "probability": 0.9679 + }, + { + "start": 1384.42, + "end": 1385.36, + "probability": 0.8293 + }, + { + "start": 1385.78, + "end": 1388.12, + "probability": 0.6528 + }, + { + "start": 1388.66, + "end": 1391.56, + "probability": 0.7791 + }, + { + "start": 1391.9, + "end": 1393.2, + "probability": 0.9839 + }, + { + "start": 1393.7, + "end": 1395.2, + "probability": 0.7976 + }, + { + "start": 1395.38, + "end": 1397.34, + "probability": 0.9403 + }, + { + "start": 1397.68, + "end": 1400.02, + "probability": 0.9177 + }, + { + "start": 1400.54, + "end": 1400.74, + "probability": 0.5588 + }, + { + "start": 1401.52, + "end": 1402.9, + "probability": 0.855 + }, + { + "start": 1403.12, + "end": 1407.74, + "probability": 0.8444 + }, + { + "start": 1408.22, + "end": 1409.34, + "probability": 0.8945 + }, + { + "start": 1410.44, + "end": 1410.94, + "probability": 0.6387 + }, + { + "start": 1411.5, + "end": 1412.96, + "probability": 0.7037 + }, + { + "start": 1413.52, + "end": 1414.02, + "probability": 0.7244 + }, + { + "start": 1414.68, + "end": 1415.68, + "probability": 0.7302 + }, + { + "start": 1415.8, + "end": 1418.58, + "probability": 0.6655 + }, + { + "start": 1418.68, + "end": 1422.42, + "probability": 0.9432 + }, + { + "start": 1423.88, + "end": 1428.32, + "probability": 0.9026 + }, + { + "start": 1428.36, + "end": 1431.4, + "probability": 0.9639 + }, + { + "start": 1431.8, + "end": 1434.02, + "probability": 0.8209 + }, + { + "start": 1434.24, + "end": 1437.5, + "probability": 0.6702 + }, + { + "start": 1437.76, + "end": 1442.22, + "probability": 0.9459 + }, + { + "start": 1442.44, + "end": 1445.3, + "probability": 0.9452 + }, + { + "start": 1445.64, + "end": 1446.76, + "probability": 0.9379 + }, + { + "start": 1446.98, + "end": 1449.54, + "probability": 0.5301 + }, + { + "start": 1449.58, + "end": 1450.48, + "probability": 0.8939 + }, + { + "start": 1450.6, + "end": 1451.26, + "probability": 0.8757 + }, + { + "start": 1451.3, + "end": 1453.96, + "probability": 0.9834 + }, + { + "start": 1454.56, + "end": 1455.32, + "probability": 0.7944 + }, + { + "start": 1456.1, + "end": 1458.1, + "probability": 0.9323 + }, + { + "start": 1458.82, + "end": 1462.6, + "probability": 0.9312 + }, + { + "start": 1462.74, + "end": 1464.68, + "probability": 0.7953 + }, + { + "start": 1464.72, + "end": 1470.6, + "probability": 0.9122 + }, + { + "start": 1471.16, + "end": 1473.72, + "probability": 0.8721 + }, + { + "start": 1474.66, + "end": 1476.16, + "probability": 0.971 + }, + { + "start": 1476.26, + "end": 1477.92, + "probability": 0.6798 + }, + { + "start": 1478.14, + "end": 1481.4, + "probability": 0.889 + }, + { + "start": 1482.42, + "end": 1488.9, + "probability": 0.9699 + }, + { + "start": 1489.54, + "end": 1493.34, + "probability": 0.8002 + }, + { + "start": 1493.86, + "end": 1497.52, + "probability": 0.9938 + }, + { + "start": 1497.9, + "end": 1501.32, + "probability": 0.9979 + }, + { + "start": 1502.0, + "end": 1503.6, + "probability": 0.7168 + }, + { + "start": 1503.9, + "end": 1505.22, + "probability": 0.955 + }, + { + "start": 1505.34, + "end": 1508.84, + "probability": 0.9762 + }, + { + "start": 1509.28, + "end": 1512.76, + "probability": 0.5578 + }, + { + "start": 1513.14, + "end": 1517.66, + "probability": 0.9964 + }, + { + "start": 1517.66, + "end": 1521.36, + "probability": 0.999 + }, + { + "start": 1521.72, + "end": 1522.14, + "probability": 0.9734 + }, + { + "start": 1522.74, + "end": 1524.32, + "probability": 0.8926 + }, + { + "start": 1524.62, + "end": 1527.48, + "probability": 0.6409 + }, + { + "start": 1529.22, + "end": 1531.52, + "probability": 0.9089 + }, + { + "start": 1531.74, + "end": 1533.2, + "probability": 0.4919 + }, + { + "start": 1533.48, + "end": 1534.1, + "probability": 0.5155 + }, + { + "start": 1534.74, + "end": 1535.62, + "probability": 0.5866 + }, + { + "start": 1536.72, + "end": 1542.88, + "probability": 0.9182 + }, + { + "start": 1542.98, + "end": 1544.28, + "probability": 0.972 + }, + { + "start": 1544.8, + "end": 1545.86, + "probability": 0.5658 + }, + { + "start": 1546.14, + "end": 1552.0, + "probability": 0.9568 + }, + { + "start": 1552.1, + "end": 1555.34, + "probability": 0.9372 + }, + { + "start": 1555.48, + "end": 1558.36, + "probability": 0.9192 + }, + { + "start": 1558.92, + "end": 1561.26, + "probability": 0.9153 + }, + { + "start": 1561.26, + "end": 1566.29, + "probability": 0.9715 + }, + { + "start": 1566.58, + "end": 1567.8, + "probability": 0.737 + }, + { + "start": 1568.26, + "end": 1569.44, + "probability": 0.9893 + }, + { + "start": 1570.76, + "end": 1572.62, + "probability": 0.8375 + }, + { + "start": 1573.44, + "end": 1578.32, + "probability": 0.9894 + }, + { + "start": 1579.34, + "end": 1583.72, + "probability": 0.9384 + }, + { + "start": 1584.12, + "end": 1587.86, + "probability": 0.9872 + }, + { + "start": 1587.86, + "end": 1592.5, + "probability": 0.9879 + }, + { + "start": 1593.14, + "end": 1597.62, + "probability": 0.9832 + }, + { + "start": 1597.94, + "end": 1600.88, + "probability": 0.9791 + }, + { + "start": 1601.7, + "end": 1603.28, + "probability": 0.9234 + }, + { + "start": 1603.94, + "end": 1608.04, + "probability": 0.8508 + }, + { + "start": 1608.08, + "end": 1609.96, + "probability": 0.9945 + }, + { + "start": 1610.38, + "end": 1610.86, + "probability": 0.3389 + }, + { + "start": 1610.9, + "end": 1613.15, + "probability": 0.6537 + }, + { + "start": 1613.22, + "end": 1614.6, + "probability": 0.0199 + }, + { + "start": 1615.78, + "end": 1616.74, + "probability": 0.861 + }, + { + "start": 1616.88, + "end": 1616.88, + "probability": 0.0814 + }, + { + "start": 1616.88, + "end": 1620.24, + "probability": 0.9172 + }, + { + "start": 1620.36, + "end": 1624.88, + "probability": 0.9316 + }, + { + "start": 1624.9, + "end": 1625.24, + "probability": 0.0709 + }, + { + "start": 1625.24, + "end": 1627.46, + "probability": 0.7761 + }, + { + "start": 1627.82, + "end": 1629.28, + "probability": 0.947 + }, + { + "start": 1630.32, + "end": 1632.08, + "probability": 0.9363 + }, + { + "start": 1632.98, + "end": 1633.86, + "probability": 0.8262 + }, + { + "start": 1633.98, + "end": 1634.48, + "probability": 0.7002 + }, + { + "start": 1634.64, + "end": 1636.02, + "probability": 0.9096 + }, + { + "start": 1636.82, + "end": 1638.64, + "probability": 0.9574 + }, + { + "start": 1638.72, + "end": 1640.3, + "probability": 0.8642 + }, + { + "start": 1640.36, + "end": 1640.54, + "probability": 0.6206 + }, + { + "start": 1641.18, + "end": 1642.76, + "probability": 0.8853 + }, + { + "start": 1642.96, + "end": 1644.22, + "probability": 0.6719 + }, + { + "start": 1644.62, + "end": 1647.08, + "probability": 0.8752 + }, + { + "start": 1649.3, + "end": 1649.92, + "probability": 0.6384 + }, + { + "start": 1650.32, + "end": 1651.34, + "probability": 0.6373 + }, + { + "start": 1651.54, + "end": 1655.3, + "probability": 0.886 + }, + { + "start": 1656.24, + "end": 1657.88, + "probability": 0.9132 + }, + { + "start": 1658.8, + "end": 1660.64, + "probability": 0.6397 + }, + { + "start": 1661.54, + "end": 1662.82, + "probability": 0.9479 + }, + { + "start": 1663.0, + "end": 1665.02, + "probability": 0.9597 + }, + { + "start": 1665.22, + "end": 1667.92, + "probability": 0.7482 + }, + { + "start": 1668.34, + "end": 1671.6, + "probability": 0.8652 + }, + { + "start": 1672.22, + "end": 1674.72, + "probability": 0.5244 + }, + { + "start": 1675.3, + "end": 1676.28, + "probability": 0.889 + }, + { + "start": 1676.9, + "end": 1678.52, + "probability": 0.9751 + }, + { + "start": 1678.76, + "end": 1679.54, + "probability": 0.6749 + }, + { + "start": 1679.76, + "end": 1684.4, + "probability": 0.8473 + }, + { + "start": 1684.5, + "end": 1686.26, + "probability": 0.7645 + }, + { + "start": 1686.88, + "end": 1690.94, + "probability": 0.7898 + }, + { + "start": 1691.6, + "end": 1693.92, + "probability": 0.9722 + }, + { + "start": 1694.0, + "end": 1694.5, + "probability": 0.944 + }, + { + "start": 1694.7, + "end": 1697.5, + "probability": 0.9757 + }, + { + "start": 1697.72, + "end": 1699.88, + "probability": 0.9935 + }, + { + "start": 1700.34, + "end": 1701.08, + "probability": 0.5354 + }, + { + "start": 1701.8, + "end": 1702.92, + "probability": 0.9722 + }, + { + "start": 1703.06, + "end": 1704.14, + "probability": 0.9036 + }, + { + "start": 1704.48, + "end": 1705.88, + "probability": 0.7345 + }, + { + "start": 1706.3, + "end": 1708.02, + "probability": 0.9314 + }, + { + "start": 1708.06, + "end": 1711.12, + "probability": 0.9927 + }, + { + "start": 1711.18, + "end": 1713.26, + "probability": 0.7317 + }, + { + "start": 1713.56, + "end": 1714.72, + "probability": 0.9951 + }, + { + "start": 1714.92, + "end": 1718.14, + "probability": 0.5792 + }, + { + "start": 1718.22, + "end": 1720.37, + "probability": 0.9645 + }, + { + "start": 1720.56, + "end": 1723.66, + "probability": 0.9618 + }, + { + "start": 1724.38, + "end": 1727.88, + "probability": 0.8105 + }, + { + "start": 1728.0, + "end": 1729.5, + "probability": 0.8352 + }, + { + "start": 1730.06, + "end": 1731.46, + "probability": 0.9885 + }, + { + "start": 1731.62, + "end": 1733.68, + "probability": 0.9298 + }, + { + "start": 1734.16, + "end": 1734.76, + "probability": 0.8825 + }, + { + "start": 1734.96, + "end": 1737.11, + "probability": 0.9893 + }, + { + "start": 1737.66, + "end": 1738.82, + "probability": 0.9499 + }, + { + "start": 1739.56, + "end": 1740.62, + "probability": 0.9418 + }, + { + "start": 1740.88, + "end": 1741.54, + "probability": 0.8899 + }, + { + "start": 1741.58, + "end": 1742.46, + "probability": 0.8167 + }, + { + "start": 1743.22, + "end": 1747.24, + "probability": 0.9787 + }, + { + "start": 1747.4, + "end": 1748.08, + "probability": 0.9716 + }, + { + "start": 1748.84, + "end": 1750.8, + "probability": 0.9858 + }, + { + "start": 1751.04, + "end": 1751.92, + "probability": 0.9639 + }, + { + "start": 1752.26, + "end": 1753.4, + "probability": 0.9563 + }, + { + "start": 1753.58, + "end": 1757.82, + "probability": 0.9971 + }, + { + "start": 1758.12, + "end": 1760.75, + "probability": 0.825 + }, + { + "start": 1761.18, + "end": 1764.86, + "probability": 0.9585 + }, + { + "start": 1765.3, + "end": 1765.98, + "probability": 0.9877 + }, + { + "start": 1766.36, + "end": 1766.54, + "probability": 0.8092 + }, + { + "start": 1767.02, + "end": 1767.64, + "probability": 0.3064 + }, + { + "start": 1768.06, + "end": 1769.2, + "probability": 0.8976 + }, + { + "start": 1769.28, + "end": 1769.62, + "probability": 0.6755 + }, + { + "start": 1769.7, + "end": 1770.4, + "probability": 0.6359 + }, + { + "start": 1770.66, + "end": 1771.18, + "probability": 0.3188 + }, + { + "start": 1771.28, + "end": 1772.72, + "probability": 0.835 + }, + { + "start": 1772.96, + "end": 1773.4, + "probability": 0.5326 + }, + { + "start": 1773.48, + "end": 1773.8, + "probability": 0.6154 + }, + { + "start": 1775.6, + "end": 1776.24, + "probability": 0.825 + }, + { + "start": 1776.34, + "end": 1777.28, + "probability": 0.7849 + }, + { + "start": 1777.42, + "end": 1780.16, + "probability": 0.875 + }, + { + "start": 1780.32, + "end": 1781.18, + "probability": 0.7588 + }, + { + "start": 1781.24, + "end": 1782.06, + "probability": 0.9728 + }, + { + "start": 1784.14, + "end": 1784.48, + "probability": 0.8988 + }, + { + "start": 1784.86, + "end": 1787.42, + "probability": 0.9691 + }, + { + "start": 1789.28, + "end": 1791.92, + "probability": 0.9258 + }, + { + "start": 1792.06, + "end": 1792.5, + "probability": 0.5785 + }, + { + "start": 1792.76, + "end": 1793.22, + "probability": 0.8278 + }, + { + "start": 1795.69, + "end": 1796.36, + "probability": 0.0339 + }, + { + "start": 1796.36, + "end": 1796.36, + "probability": 0.004 + }, + { + "start": 1796.36, + "end": 1799.32, + "probability": 0.9714 + }, + { + "start": 1799.76, + "end": 1799.94, + "probability": 0.8733 + }, + { + "start": 1800.22, + "end": 1800.74, + "probability": 0.7286 + }, + { + "start": 1800.82, + "end": 1804.98, + "probability": 0.9568 + }, + { + "start": 1805.42, + "end": 1805.86, + "probability": 0.9489 + }, + { + "start": 1806.5, + "end": 1808.5, + "probability": 0.9297 + }, + { + "start": 1809.24, + "end": 1809.5, + "probability": 0.4839 + }, + { + "start": 1810.34, + "end": 1810.92, + "probability": 0.9048 + }, + { + "start": 1810.96, + "end": 1811.84, + "probability": 0.9404 + }, + { + "start": 1811.94, + "end": 1814.64, + "probability": 0.9597 + }, + { + "start": 1814.98, + "end": 1815.3, + "probability": 0.8574 + }, + { + "start": 1815.96, + "end": 1817.36, + "probability": 0.9802 + }, + { + "start": 1818.12, + "end": 1819.22, + "probability": 0.7047 + }, + { + "start": 1820.32, + "end": 1822.46, + "probability": 0.9246 + }, + { + "start": 1822.46, + "end": 1824.26, + "probability": 0.9232 + }, + { + "start": 1824.78, + "end": 1828.28, + "probability": 0.9961 + }, + { + "start": 1829.06, + "end": 1830.3, + "probability": 0.848 + }, + { + "start": 1831.04, + "end": 1831.64, + "probability": 0.2519 + }, + { + "start": 1832.58, + "end": 1837.76, + "probability": 0.7542 + }, + { + "start": 1839.38, + "end": 1840.1, + "probability": 0.9189 + }, + { + "start": 1841.02, + "end": 1841.72, + "probability": 0.3874 + }, + { + "start": 1842.0, + "end": 1844.78, + "probability": 0.8981 + }, + { + "start": 1845.12, + "end": 1847.84, + "probability": 0.9635 + }, + { + "start": 1848.4, + "end": 1851.32, + "probability": 0.9748 + }, + { + "start": 1852.14, + "end": 1854.74, + "probability": 0.8862 + }, + { + "start": 1855.5, + "end": 1856.66, + "probability": 0.7723 + }, + { + "start": 1856.86, + "end": 1858.92, + "probability": 0.9163 + }, + { + "start": 1859.22, + "end": 1860.94, + "probability": 0.7733 + }, + { + "start": 1861.68, + "end": 1867.26, + "probability": 0.9561 + }, + { + "start": 1868.98, + "end": 1870.74, + "probability": 0.8346 + }, + { + "start": 1871.34, + "end": 1873.08, + "probability": 0.6841 + }, + { + "start": 1875.2, + "end": 1877.02, + "probability": 0.8134 + }, + { + "start": 1878.3, + "end": 1878.72, + "probability": 0.7241 + }, + { + "start": 1878.82, + "end": 1881.98, + "probability": 0.9771 + }, + { + "start": 1883.02, + "end": 1884.0, + "probability": 0.9162 + }, + { + "start": 1884.26, + "end": 1888.08, + "probability": 0.9731 + }, + { + "start": 1888.96, + "end": 1891.4, + "probability": 0.9958 + }, + { + "start": 1892.5, + "end": 1894.46, + "probability": 0.9941 + }, + { + "start": 1895.56, + "end": 1897.6, + "probability": 0.8167 + }, + { + "start": 1898.26, + "end": 1900.26, + "probability": 0.9757 + }, + { + "start": 1901.16, + "end": 1902.4, + "probability": 0.9578 + }, + { + "start": 1903.88, + "end": 1907.94, + "probability": 0.8667 + }, + { + "start": 1908.22, + "end": 1910.24, + "probability": 0.8565 + }, + { + "start": 1910.46, + "end": 1913.02, + "probability": 0.9516 + }, + { + "start": 1913.52, + "end": 1914.58, + "probability": 0.9168 + }, + { + "start": 1914.66, + "end": 1915.46, + "probability": 0.8455 + }, + { + "start": 1916.2, + "end": 1917.54, + "probability": 0.9897 + }, + { + "start": 1917.64, + "end": 1919.12, + "probability": 0.995 + }, + { + "start": 1919.56, + "end": 1920.72, + "probability": 0.983 + }, + { + "start": 1921.54, + "end": 1922.48, + "probability": 0.893 + }, + { + "start": 1922.52, + "end": 1923.68, + "probability": 0.7106 + }, + { + "start": 1923.84, + "end": 1924.62, + "probability": 0.7712 + }, + { + "start": 1924.82, + "end": 1925.02, + "probability": 0.7614 + }, + { + "start": 1925.56, + "end": 1929.3, + "probability": 0.9912 + }, + { + "start": 1929.84, + "end": 1933.58, + "probability": 0.8323 + }, + { + "start": 1934.62, + "end": 1935.28, + "probability": 0.8896 + }, + { + "start": 1935.42, + "end": 1936.1, + "probability": 0.611 + }, + { + "start": 1936.34, + "end": 1937.02, + "probability": 0.8387 + }, + { + "start": 1937.26, + "end": 1942.9, + "probability": 0.9163 + }, + { + "start": 1944.36, + "end": 1944.72, + "probability": 0.3546 + }, + { + "start": 1944.72, + "end": 1945.72, + "probability": 0.4455 + }, + { + "start": 1945.9, + "end": 1947.28, + "probability": 0.9722 + }, + { + "start": 1947.46, + "end": 1948.84, + "probability": 0.5461 + }, + { + "start": 1949.14, + "end": 1950.42, + "probability": 0.9194 + }, + { + "start": 1950.98, + "end": 1957.26, + "probability": 0.9902 + }, + { + "start": 1957.32, + "end": 1960.92, + "probability": 0.9985 + }, + { + "start": 1961.3, + "end": 1963.44, + "probability": 0.9304 + }, + { + "start": 1964.2, + "end": 1964.44, + "probability": 0.8375 + }, + { + "start": 1964.48, + "end": 1965.42, + "probability": 0.9966 + }, + { + "start": 1967.9, + "end": 1971.22, + "probability": 0.9976 + }, + { + "start": 1971.92, + "end": 1975.86, + "probability": 0.969 + }, + { + "start": 1976.38, + "end": 1978.18, + "probability": 0.9915 + }, + { + "start": 1978.86, + "end": 1980.86, + "probability": 0.9919 + }, + { + "start": 1980.94, + "end": 1982.98, + "probability": 0.9701 + }, + { + "start": 1983.2, + "end": 1987.42, + "probability": 0.7958 + }, + { + "start": 1995.14, + "end": 1996.34, + "probability": 0.7354 + }, + { + "start": 1997.22, + "end": 1997.74, + "probability": 0.6888 + }, + { + "start": 1997.84, + "end": 1999.08, + "probability": 0.8378 + }, + { + "start": 1999.4, + "end": 2001.78, + "probability": 0.5728 + }, + { + "start": 2001.9, + "end": 2002.62, + "probability": 0.7916 + }, + { + "start": 2002.72, + "end": 2007.08, + "probability": 0.9824 + }, + { + "start": 2007.08, + "end": 2010.02, + "probability": 0.9357 + }, + { + "start": 2011.04, + "end": 2016.92, + "probability": 0.9901 + }, + { + "start": 2017.74, + "end": 2021.54, + "probability": 0.9958 + }, + { + "start": 2021.54, + "end": 2024.86, + "probability": 0.9707 + }, + { + "start": 2026.26, + "end": 2027.22, + "probability": 0.602 + }, + { + "start": 2027.46, + "end": 2031.23, + "probability": 0.9797 + }, + { + "start": 2031.98, + "end": 2036.56, + "probability": 0.9587 + }, + { + "start": 2036.72, + "end": 2039.76, + "probability": 0.9861 + }, + { + "start": 2039.76, + "end": 2042.78, + "probability": 0.9777 + }, + { + "start": 2043.38, + "end": 2044.24, + "probability": 0.7635 + }, + { + "start": 2044.42, + "end": 2044.52, + "probability": 0.4487 + }, + { + "start": 2044.96, + "end": 2047.28, + "probability": 0.9401 + }, + { + "start": 2047.8, + "end": 2049.0, + "probability": 0.9254 + }, + { + "start": 2049.72, + "end": 2052.54, + "probability": 0.8024 + }, + { + "start": 2053.32, + "end": 2054.14, + "probability": 0.9652 + }, + { + "start": 2054.6, + "end": 2054.9, + "probability": 0.6084 + }, + { + "start": 2055.04, + "end": 2057.74, + "probability": 0.933 + }, + { + "start": 2058.08, + "end": 2058.08, + "probability": 0.02 + }, + { + "start": 2058.14, + "end": 2060.56, + "probability": 0.9474 + }, + { + "start": 2060.96, + "end": 2062.4, + "probability": 0.7716 + }, + { + "start": 2062.7, + "end": 2063.78, + "probability": 0.8978 + }, + { + "start": 2064.26, + "end": 2066.42, + "probability": 0.8685 + }, + { + "start": 2066.48, + "end": 2069.7, + "probability": 0.975 + }, + { + "start": 2070.18, + "end": 2070.83, + "probability": 0.8999 + }, + { + "start": 2071.44, + "end": 2072.3, + "probability": 0.9423 + }, + { + "start": 2072.36, + "end": 2075.71, + "probability": 0.9817 + }, + { + "start": 2076.38, + "end": 2081.44, + "probability": 0.8326 + }, + { + "start": 2081.72, + "end": 2081.96, + "probability": 0.3616 + }, + { + "start": 2081.96, + "end": 2083.88, + "probability": 0.7849 + }, + { + "start": 2084.66, + "end": 2089.8, + "probability": 0.76 + }, + { + "start": 2097.88, + "end": 2098.68, + "probability": 0.6234 + }, + { + "start": 2098.74, + "end": 2099.86, + "probability": 0.8605 + }, + { + "start": 2100.1, + "end": 2105.26, + "probability": 0.9609 + }, + { + "start": 2106.2, + "end": 2113.5, + "probability": 0.9255 + }, + { + "start": 2113.96, + "end": 2114.88, + "probability": 0.9366 + }, + { + "start": 2115.06, + "end": 2116.62, + "probability": 0.6124 + }, + { + "start": 2117.62, + "end": 2120.48, + "probability": 0.8846 + }, + { + "start": 2121.34, + "end": 2125.06, + "probability": 0.9297 + }, + { + "start": 2125.24, + "end": 2130.32, + "probability": 0.9647 + }, + { + "start": 2130.38, + "end": 2131.1, + "probability": 0.7957 + }, + { + "start": 2131.52, + "end": 2137.0, + "probability": 0.9586 + }, + { + "start": 2137.82, + "end": 2142.3, + "probability": 0.9456 + }, + { + "start": 2143.2, + "end": 2150.18, + "probability": 0.9938 + }, + { + "start": 2150.62, + "end": 2151.46, + "probability": 0.7636 + }, + { + "start": 2151.6, + "end": 2153.92, + "probability": 0.9089 + }, + { + "start": 2154.28, + "end": 2157.34, + "probability": 0.9937 + }, + { + "start": 2157.34, + "end": 2161.1, + "probability": 0.9895 + }, + { + "start": 2161.78, + "end": 2163.14, + "probability": 0.9878 + }, + { + "start": 2163.4, + "end": 2165.92, + "probability": 0.9948 + }, + { + "start": 2165.98, + "end": 2169.28, + "probability": 0.999 + }, + { + "start": 2169.3, + "end": 2171.34, + "probability": 0.6607 + }, + { + "start": 2171.8, + "end": 2173.5, + "probability": 0.8014 + }, + { + "start": 2174.32, + "end": 2178.98, + "probability": 0.6448 + }, + { + "start": 2179.2, + "end": 2184.24, + "probability": 0.9736 + }, + { + "start": 2184.56, + "end": 2188.28, + "probability": 0.7974 + }, + { + "start": 2188.5, + "end": 2190.04, + "probability": 0.9549 + }, + { + "start": 2190.16, + "end": 2190.78, + "probability": 0.8144 + }, + { + "start": 2190.92, + "end": 2195.94, + "probability": 0.9556 + }, + { + "start": 2196.1, + "end": 2200.92, + "probability": 0.9857 + }, + { + "start": 2201.68, + "end": 2206.4, + "probability": 0.9662 + }, + { + "start": 2207.3, + "end": 2212.68, + "probability": 0.9932 + }, + { + "start": 2212.72, + "end": 2217.46, + "probability": 0.9976 + }, + { + "start": 2217.94, + "end": 2219.76, + "probability": 0.7769 + }, + { + "start": 2220.38, + "end": 2224.08, + "probability": 0.9844 + }, + { + "start": 2224.4, + "end": 2227.18, + "probability": 0.972 + }, + { + "start": 2227.34, + "end": 2227.88, + "probability": 0.7398 + }, + { + "start": 2227.94, + "end": 2228.62, + "probability": 0.6213 + }, + { + "start": 2228.9, + "end": 2229.7, + "probability": 0.4829 + }, + { + "start": 2229.8, + "end": 2231.06, + "probability": 0.788 + }, + { + "start": 2231.22, + "end": 2232.16, + "probability": 0.9922 + }, + { + "start": 2232.3, + "end": 2232.79, + "probability": 0.7547 + }, + { + "start": 2233.0, + "end": 2233.34, + "probability": 0.73 + }, + { + "start": 2235.3, + "end": 2237.32, + "probability": 0.5717 + }, + { + "start": 2237.58, + "end": 2240.84, + "probability": 0.8696 + }, + { + "start": 2241.4, + "end": 2243.84, + "probability": 0.986 + }, + { + "start": 2244.3, + "end": 2245.26, + "probability": 0.8697 + }, + { + "start": 2245.48, + "end": 2246.96, + "probability": 0.9575 + }, + { + "start": 2247.7, + "end": 2250.0, + "probability": 0.1296 + }, + { + "start": 2250.48, + "end": 2252.16, + "probability": 0.7889 + }, + { + "start": 2252.36, + "end": 2253.06, + "probability": 0.8286 + }, + { + "start": 2253.38, + "end": 2253.82, + "probability": 0.2543 + }, + { + "start": 2253.88, + "end": 2257.86, + "probability": 0.9462 + }, + { + "start": 2258.26, + "end": 2258.62, + "probability": 0.5888 + }, + { + "start": 2258.78, + "end": 2259.5, + "probability": 0.8202 + }, + { + "start": 2259.54, + "end": 2259.68, + "probability": 0.3633 + }, + { + "start": 2260.0, + "end": 2262.16, + "probability": 0.8748 + }, + { + "start": 2262.16, + "end": 2264.58, + "probability": 0.379 + }, + { + "start": 2264.72, + "end": 2267.08, + "probability": 0.806 + }, + { + "start": 2267.22, + "end": 2267.6, + "probability": 0.8634 + }, + { + "start": 2267.86, + "end": 2267.98, + "probability": 0.6902 + }, + { + "start": 2268.42, + "end": 2269.86, + "probability": 0.8457 + }, + { + "start": 2270.36, + "end": 2271.76, + "probability": 0.7652 + }, + { + "start": 2272.08, + "end": 2272.96, + "probability": 0.615 + }, + { + "start": 2273.06, + "end": 2274.42, + "probability": 0.9722 + }, + { + "start": 2274.62, + "end": 2278.88, + "probability": 0.9766 + }, + { + "start": 2279.26, + "end": 2279.78, + "probability": 0.9677 + }, + { + "start": 2279.94, + "end": 2280.66, + "probability": 0.9223 + }, + { + "start": 2281.64, + "end": 2284.78, + "probability": 0.7236 + }, + { + "start": 2285.84, + "end": 2287.88, + "probability": 0.9567 + }, + { + "start": 2289.06, + "end": 2291.4, + "probability": 0.8044 + }, + { + "start": 2293.22, + "end": 2298.94, + "probability": 0.9812 + }, + { + "start": 2299.14, + "end": 2299.72, + "probability": 0.9272 + }, + { + "start": 2302.26, + "end": 2304.98, + "probability": 0.9768 + }, + { + "start": 2305.66, + "end": 2308.64, + "probability": 0.9773 + }, + { + "start": 2310.5, + "end": 2313.12, + "probability": 0.9874 + }, + { + "start": 2314.92, + "end": 2322.98, + "probability": 0.8962 + }, + { + "start": 2323.2, + "end": 2323.82, + "probability": 0.7664 + }, + { + "start": 2323.94, + "end": 2324.74, + "probability": 0.7267 + }, + { + "start": 2324.78, + "end": 2328.46, + "probability": 0.8055 + }, + { + "start": 2329.2, + "end": 2330.72, + "probability": 0.7297 + }, + { + "start": 2331.94, + "end": 2333.2, + "probability": 0.7501 + }, + { + "start": 2334.48, + "end": 2335.02, + "probability": 0.6361 + }, + { + "start": 2335.88, + "end": 2338.74, + "probability": 0.9823 + }, + { + "start": 2340.24, + "end": 2340.88, + "probability": 0.8228 + }, + { + "start": 2341.58, + "end": 2343.18, + "probability": 0.9028 + }, + { + "start": 2345.2, + "end": 2348.66, + "probability": 0.9792 + }, + { + "start": 2349.4, + "end": 2351.84, + "probability": 0.9641 + }, + { + "start": 2352.86, + "end": 2355.98, + "probability": 0.9758 + }, + { + "start": 2356.56, + "end": 2357.34, + "probability": 0.9837 + }, + { + "start": 2358.04, + "end": 2358.96, + "probability": 0.9596 + }, + { + "start": 2359.64, + "end": 2361.5, + "probability": 0.7118 + }, + { + "start": 2362.14, + "end": 2363.0, + "probability": 0.4296 + }, + { + "start": 2363.52, + "end": 2364.94, + "probability": 0.8633 + }, + { + "start": 2365.24, + "end": 2365.48, + "probability": 0.7886 + }, + { + "start": 2365.64, + "end": 2366.22, + "probability": 0.5945 + }, + { + "start": 2366.72, + "end": 2368.9, + "probability": 0.9501 + }, + { + "start": 2369.16, + "end": 2371.46, + "probability": 0.9731 + }, + { + "start": 2372.64, + "end": 2376.32, + "probability": 0.6477 + }, + { + "start": 2377.88, + "end": 2378.9, + "probability": 0.9785 + }, + { + "start": 2380.94, + "end": 2383.18, + "probability": 0.5125 + }, + { + "start": 2383.64, + "end": 2383.68, + "probability": 0.7109 + }, + { + "start": 2383.68, + "end": 2387.5, + "probability": 0.9785 + }, + { + "start": 2388.64, + "end": 2395.18, + "probability": 0.9958 + }, + { + "start": 2396.2, + "end": 2402.02, + "probability": 0.998 + }, + { + "start": 2402.58, + "end": 2405.28, + "probability": 0.9995 + }, + { + "start": 2406.4, + "end": 2408.26, + "probability": 0.9387 + }, + { + "start": 2408.34, + "end": 2412.22, + "probability": 0.9575 + }, + { + "start": 2412.28, + "end": 2413.02, + "probability": 0.7896 + }, + { + "start": 2414.06, + "end": 2415.38, + "probability": 0.9778 + }, + { + "start": 2415.54, + "end": 2418.4, + "probability": 0.9863 + }, + { + "start": 2420.02, + "end": 2420.12, + "probability": 0.8314 + }, + { + "start": 2420.94, + "end": 2425.92, + "probability": 0.9236 + }, + { + "start": 2426.48, + "end": 2428.1, + "probability": 0.9664 + }, + { + "start": 2428.5, + "end": 2430.62, + "probability": 0.9194 + }, + { + "start": 2430.72, + "end": 2433.38, + "probability": 0.8259 + }, + { + "start": 2433.44, + "end": 2435.5, + "probability": 0.7912 + }, + { + "start": 2436.26, + "end": 2440.72, + "probability": 0.9949 + }, + { + "start": 2440.84, + "end": 2443.94, + "probability": 0.9922 + }, + { + "start": 2444.3, + "end": 2446.06, + "probability": 0.8389 + }, + { + "start": 2446.82, + "end": 2451.48, + "probability": 0.8976 + }, + { + "start": 2451.56, + "end": 2453.82, + "probability": 0.9928 + }, + { + "start": 2453.96, + "end": 2454.44, + "probability": 0.644 + }, + { + "start": 2454.52, + "end": 2455.84, + "probability": 0.9868 + }, + { + "start": 2455.96, + "end": 2458.16, + "probability": 0.9517 + }, + { + "start": 2458.56, + "end": 2461.04, + "probability": 0.9946 + }, + { + "start": 2461.5, + "end": 2463.12, + "probability": 0.9865 + }, + { + "start": 2463.56, + "end": 2465.7, + "probability": 0.9321 + }, + { + "start": 2466.22, + "end": 2469.26, + "probability": 0.9526 + }, + { + "start": 2469.66, + "end": 2469.84, + "probability": 0.5787 + }, + { + "start": 2469.94, + "end": 2470.48, + "probability": 0.7825 + }, + { + "start": 2477.54, + "end": 2480.02, + "probability": 0.0805 + }, + { + "start": 2482.52, + "end": 2485.62, + "probability": 0.4604 + }, + { + "start": 2491.56, + "end": 2493.08, + "probability": 0.6198 + }, + { + "start": 2493.82, + "end": 2494.02, + "probability": 0.0008 + }, + { + "start": 2496.28, + "end": 2498.08, + "probability": 0.0403 + }, + { + "start": 2498.88, + "end": 2499.04, + "probability": 0.146 + }, + { + "start": 2499.92, + "end": 2500.68, + "probability": 0.1356 + }, + { + "start": 2511.36, + "end": 2511.88, + "probability": 0.8334 + }, + { + "start": 2515.7, + "end": 2521.26, + "probability": 0.0168 + }, + { + "start": 2521.26, + "end": 2522.4, + "probability": 0.0542 + }, + { + "start": 2522.98, + "end": 2523.82, + "probability": 0.0547 + }, + { + "start": 2524.86, + "end": 2526.62, + "probability": 0.299 + }, + { + "start": 2529.04, + "end": 2531.24, + "probability": 0.0112 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.0, + "end": 2569.0, + "probability": 0.0 + }, + { + "start": 2569.24, + "end": 2572.38, + "probability": 0.8866 + }, + { + "start": 2572.92, + "end": 2575.28, + "probability": 0.9814 + }, + { + "start": 2576.12, + "end": 2576.76, + "probability": 0.9218 + }, + { + "start": 2577.52, + "end": 2578.4, + "probability": 0.7473 + }, + { + "start": 2578.4, + "end": 2582.72, + "probability": 0.9652 + }, + { + "start": 2583.5, + "end": 2586.44, + "probability": 0.9316 + }, + { + "start": 2587.36, + "end": 2591.5, + "probability": 0.8154 + }, + { + "start": 2591.98, + "end": 2594.2, + "probability": 0.9694 + }, + { + "start": 2595.24, + "end": 2596.48, + "probability": 0.973 + }, + { + "start": 2597.4, + "end": 2598.32, + "probability": 0.843 + }, + { + "start": 2599.2, + "end": 2601.56, + "probability": 0.9815 + }, + { + "start": 2602.26, + "end": 2603.4, + "probability": 0.992 + }, + { + "start": 2604.08, + "end": 2605.88, + "probability": 0.8841 + }, + { + "start": 2605.98, + "end": 2607.36, + "probability": 0.862 + }, + { + "start": 2607.48, + "end": 2608.46, + "probability": 0.8325 + }, + { + "start": 2609.74, + "end": 2611.24, + "probability": 0.687 + }, + { + "start": 2611.76, + "end": 2613.08, + "probability": 0.9841 + }, + { + "start": 2614.1, + "end": 2616.7, + "probability": 0.9902 + }, + { + "start": 2616.7, + "end": 2620.38, + "probability": 0.996 + }, + { + "start": 2621.54, + "end": 2623.4, + "probability": 0.9888 + }, + { + "start": 2624.26, + "end": 2625.28, + "probability": 0.723 + }, + { + "start": 2626.18, + "end": 2631.3, + "probability": 0.9941 + }, + { + "start": 2631.5, + "end": 2632.32, + "probability": 0.8797 + }, + { + "start": 2632.9, + "end": 2634.64, + "probability": 0.9883 + }, + { + "start": 2635.7, + "end": 2638.26, + "probability": 0.9872 + }, + { + "start": 2638.94, + "end": 2639.98, + "probability": 0.9851 + }, + { + "start": 2640.72, + "end": 2642.98, + "probability": 0.9188 + }, + { + "start": 2643.52, + "end": 2644.44, + "probability": 0.7317 + }, + { + "start": 2645.46, + "end": 2646.35, + "probability": 0.7886 + }, + { + "start": 2647.26, + "end": 2651.1, + "probability": 0.9525 + }, + { + "start": 2651.98, + "end": 2653.58, + "probability": 0.9836 + }, + { + "start": 2654.1, + "end": 2656.08, + "probability": 0.9683 + }, + { + "start": 2656.46, + "end": 2660.02, + "probability": 0.9968 + }, + { + "start": 2660.02, + "end": 2663.9, + "probability": 0.9933 + }, + { + "start": 2665.0, + "end": 2670.36, + "probability": 0.7966 + }, + { + "start": 2671.46, + "end": 2674.8, + "probability": 0.8151 + }, + { + "start": 2675.6, + "end": 2677.56, + "probability": 0.988 + }, + { + "start": 2678.08, + "end": 2680.44, + "probability": 0.8217 + }, + { + "start": 2681.14, + "end": 2683.06, + "probability": 0.5635 + }, + { + "start": 2683.42, + "end": 2683.42, + "probability": 0.1213 + }, + { + "start": 2683.8, + "end": 2687.22, + "probability": 0.7522 + }, + { + "start": 2687.28, + "end": 2688.22, + "probability": 0.9419 + }, + { + "start": 2689.28, + "end": 2693.08, + "probability": 0.9847 + }, + { + "start": 2693.52, + "end": 2694.64, + "probability": 0.5186 + }, + { + "start": 2695.14, + "end": 2696.56, + "probability": 0.9669 + }, + { + "start": 2697.24, + "end": 2700.66, + "probability": 0.9935 + }, + { + "start": 2701.42, + "end": 2702.5, + "probability": 0.8018 + }, + { + "start": 2702.96, + "end": 2704.14, + "probability": 0.7342 + }, + { + "start": 2704.64, + "end": 2706.58, + "probability": 0.9513 + }, + { + "start": 2706.98, + "end": 2708.04, + "probability": 0.8559 + }, + { + "start": 2708.08, + "end": 2710.96, + "probability": 0.959 + }, + { + "start": 2713.58, + "end": 2719.1, + "probability": 0.9599 + }, + { + "start": 2719.38, + "end": 2720.88, + "probability": 0.71 + }, + { + "start": 2722.54, + "end": 2724.0, + "probability": 0.9403 + }, + { + "start": 2724.44, + "end": 2725.18, + "probability": 0.758 + }, + { + "start": 2725.7, + "end": 2727.82, + "probability": 0.9928 + }, + { + "start": 2728.16, + "end": 2731.46, + "probability": 0.6751 + }, + { + "start": 2732.18, + "end": 2733.98, + "probability": 0.7157 + }, + { + "start": 2734.32, + "end": 2738.62, + "probability": 0.9206 + }, + { + "start": 2739.26, + "end": 2739.92, + "probability": 0.6088 + }, + { + "start": 2741.06, + "end": 2743.18, + "probability": 0.9004 + }, + { + "start": 2743.3, + "end": 2745.0, + "probability": 0.9426 + }, + { + "start": 2745.7, + "end": 2746.18, + "probability": 0.9122 + }, + { + "start": 2746.32, + "end": 2753.14, + "probability": 0.9882 + }, + { + "start": 2753.16, + "end": 2753.82, + "probability": 0.0339 + }, + { + "start": 2754.66, + "end": 2756.86, + "probability": 0.9417 + }, + { + "start": 2757.6, + "end": 2757.96, + "probability": 0.4617 + }, + { + "start": 2758.16, + "end": 2760.96, + "probability": 0.991 + }, + { + "start": 2762.04, + "end": 2762.47, + "probability": 0.9478 + }, + { + "start": 2763.62, + "end": 2764.32, + "probability": 0.9851 + }, + { + "start": 2764.96, + "end": 2767.68, + "probability": 0.9901 + }, + { + "start": 2768.4, + "end": 2771.26, + "probability": 0.9263 + }, + { + "start": 2771.86, + "end": 2772.94, + "probability": 0.9902 + }, + { + "start": 2773.58, + "end": 2775.88, + "probability": 0.9985 + }, + { + "start": 2776.74, + "end": 2778.56, + "probability": 0.8857 + }, + { + "start": 2780.02, + "end": 2782.0, + "probability": 0.999 + }, + { + "start": 2782.42, + "end": 2783.14, + "probability": 0.7143 + }, + { + "start": 2783.26, + "end": 2784.56, + "probability": 0.9486 + }, + { + "start": 2785.32, + "end": 2786.12, + "probability": 0.654 + }, + { + "start": 2787.12, + "end": 2790.84, + "probability": 0.4774 + }, + { + "start": 2791.12, + "end": 2791.68, + "probability": 0.6144 + }, + { + "start": 2791.86, + "end": 2792.56, + "probability": 0.6185 + }, + { + "start": 2793.08, + "end": 2796.14, + "probability": 0.9363 + }, + { + "start": 2797.04, + "end": 2798.02, + "probability": 0.9658 + }, + { + "start": 2798.54, + "end": 2800.68, + "probability": 0.7614 + }, + { + "start": 2801.56, + "end": 2802.48, + "probability": 0.9894 + }, + { + "start": 2803.02, + "end": 2804.84, + "probability": 0.849 + }, + { + "start": 2805.76, + "end": 2811.8, + "probability": 0.9482 + }, + { + "start": 2812.36, + "end": 2815.34, + "probability": 0.7696 + }, + { + "start": 2815.96, + "end": 2816.56, + "probability": 0.8586 + }, + { + "start": 2817.24, + "end": 2819.5, + "probability": 0.8324 + }, + { + "start": 2820.04, + "end": 2823.12, + "probability": 0.9588 + }, + { + "start": 2823.86, + "end": 2824.32, + "probability": 0.847 + }, + { + "start": 2824.38, + "end": 2827.1, + "probability": 0.9727 + }, + { + "start": 2827.56, + "end": 2828.58, + "probability": 0.874 + }, + { + "start": 2828.6, + "end": 2831.48, + "probability": 0.9496 + }, + { + "start": 2832.6, + "end": 2834.1, + "probability": 0.6918 + }, + { + "start": 2834.42, + "end": 2836.14, + "probability": 0.8152 + }, + { + "start": 2836.28, + "end": 2842.74, + "probability": 0.9384 + }, + { + "start": 2843.32, + "end": 2844.72, + "probability": 0.9502 + }, + { + "start": 2845.34, + "end": 2850.14, + "probability": 0.8608 + }, + { + "start": 2851.08, + "end": 2851.88, + "probability": 0.2638 + }, + { + "start": 2852.54, + "end": 2854.38, + "probability": 0.9417 + }, + { + "start": 2854.96, + "end": 2856.46, + "probability": 0.9971 + }, + { + "start": 2857.04, + "end": 2860.78, + "probability": 0.8347 + }, + { + "start": 2861.62, + "end": 2865.0, + "probability": 0.9912 + }, + { + "start": 2865.98, + "end": 2867.24, + "probability": 0.854 + }, + { + "start": 2867.34, + "end": 2869.14, + "probability": 0.918 + }, + { + "start": 2871.88, + "end": 2873.24, + "probability": 0.6283 + }, + { + "start": 2873.24, + "end": 2873.24, + "probability": 0.0279 + }, + { + "start": 2873.24, + "end": 2875.68, + "probability": 0.8687 + }, + { + "start": 2876.7, + "end": 2879.86, + "probability": 0.9525 + }, + { + "start": 2880.06, + "end": 2882.58, + "probability": 0.9564 + }, + { + "start": 2883.98, + "end": 2885.1, + "probability": 0.9629 + }, + { + "start": 2885.22, + "end": 2886.58, + "probability": 0.9058 + }, + { + "start": 2886.66, + "end": 2887.44, + "probability": 0.7303 + }, + { + "start": 2888.12, + "end": 2891.26, + "probability": 0.553 + }, + { + "start": 2891.88, + "end": 2894.38, + "probability": 0.9135 + }, + { + "start": 2894.86, + "end": 2896.36, + "probability": 0.9917 + }, + { + "start": 2896.74, + "end": 2898.72, + "probability": 0.8383 + }, + { + "start": 2899.32, + "end": 2902.9, + "probability": 0.8264 + }, + { + "start": 2903.14, + "end": 2904.76, + "probability": 0.5161 + }, + { + "start": 2905.4, + "end": 2908.2, + "probability": 0.9388 + }, + { + "start": 2908.68, + "end": 2909.82, + "probability": 0.9767 + }, + { + "start": 2910.2, + "end": 2912.1, + "probability": 0.8354 + }, + { + "start": 2912.14, + "end": 2915.22, + "probability": 0.4289 + }, + { + "start": 2915.74, + "end": 2919.84, + "probability": 0.8203 + }, + { + "start": 2920.32, + "end": 2921.96, + "probability": 0.9591 + }, + { + "start": 2922.34, + "end": 2924.86, + "probability": 0.8781 + }, + { + "start": 2925.28, + "end": 2926.46, + "probability": 0.4236 + }, + { + "start": 2927.32, + "end": 2928.78, + "probability": 0.7604 + }, + { + "start": 2929.64, + "end": 2931.84, + "probability": 0.9821 + }, + { + "start": 2932.7, + "end": 2933.88, + "probability": 0.9421 + }, + { + "start": 2934.6, + "end": 2935.36, + "probability": 0.9385 + }, + { + "start": 2936.02, + "end": 2937.52, + "probability": 0.9438 + }, + { + "start": 2937.62, + "end": 2939.98, + "probability": 0.9474 + }, + { + "start": 2940.54, + "end": 2941.83, + "probability": 0.9644 + }, + { + "start": 2942.22, + "end": 2943.52, + "probability": 0.9678 + }, + { + "start": 2943.7, + "end": 2947.14, + "probability": 0.985 + }, + { + "start": 2947.6, + "end": 2950.56, + "probability": 0.8013 + }, + { + "start": 2950.98, + "end": 2953.74, + "probability": 0.9945 + }, + { + "start": 2954.02, + "end": 2955.94, + "probability": 0.952 + }, + { + "start": 2956.48, + "end": 2958.0, + "probability": 0.9093 + }, + { + "start": 2958.24, + "end": 2959.88, + "probability": 0.9966 + }, + { + "start": 2960.02, + "end": 2960.54, + "probability": 0.3577 + }, + { + "start": 2961.06, + "end": 2963.76, + "probability": 0.7383 + }, + { + "start": 2963.84, + "end": 2964.64, + "probability": 0.7708 + }, + { + "start": 2965.06, + "end": 2968.68, + "probability": 0.9846 + }, + { + "start": 2969.12, + "end": 2969.38, + "probability": 0.365 + }, + { + "start": 2969.42, + "end": 2970.34, + "probability": 0.942 + }, + { + "start": 2970.72, + "end": 2975.1, + "probability": 0.9878 + }, + { + "start": 2976.14, + "end": 2976.94, + "probability": 0.7365 + }, + { + "start": 2977.06, + "end": 2977.7, + "probability": 0.6888 + }, + { + "start": 2977.78, + "end": 2981.04, + "probability": 0.9554 + }, + { + "start": 2981.16, + "end": 2981.98, + "probability": 0.925 + }, + { + "start": 2982.72, + "end": 2986.26, + "probability": 0.959 + }, + { + "start": 2987.04, + "end": 2988.18, + "probability": 0.738 + }, + { + "start": 2988.7, + "end": 2989.88, + "probability": 0.9908 + }, + { + "start": 2990.06, + "end": 2994.52, + "probability": 0.9942 + }, + { + "start": 2994.94, + "end": 2996.64, + "probability": 0.9873 + }, + { + "start": 2997.02, + "end": 2997.86, + "probability": 0.9586 + }, + { + "start": 2998.42, + "end": 2999.9, + "probability": 0.7337 + }, + { + "start": 3000.96, + "end": 3002.6, + "probability": 0.8856 + }, + { + "start": 3002.62, + "end": 3008.28, + "probability": 0.9683 + }, + { + "start": 3008.84, + "end": 3010.78, + "probability": 0.5884 + }, + { + "start": 3010.82, + "end": 3012.9, + "probability": 0.7459 + }, + { + "start": 3013.16, + "end": 3014.9, + "probability": 0.8333 + }, + { + "start": 3015.58, + "end": 3016.7, + "probability": 0.5447 + }, + { + "start": 3016.84, + "end": 3018.6, + "probability": 0.9553 + }, + { + "start": 3018.72, + "end": 3019.1, + "probability": 0.8283 + }, + { + "start": 3019.4, + "end": 3020.46, + "probability": 0.9622 + }, + { + "start": 3021.12, + "end": 3022.52, + "probability": 0.4716 + }, + { + "start": 3022.96, + "end": 3024.02, + "probability": 0.7321 + }, + { + "start": 3024.44, + "end": 3025.18, + "probability": 0.8256 + }, + { + "start": 3025.28, + "end": 3026.34, + "probability": 0.8039 + }, + { + "start": 3026.94, + "end": 3027.84, + "probability": 0.632 + }, + { + "start": 3027.98, + "end": 3028.84, + "probability": 0.9696 + }, + { + "start": 3029.24, + "end": 3032.24, + "probability": 0.8152 + }, + { + "start": 3033.8, + "end": 3038.36, + "probability": 0.929 + }, + { + "start": 3038.36, + "end": 3041.88, + "probability": 0.9561 + }, + { + "start": 3042.56, + "end": 3044.56, + "probability": 0.574 + }, + { + "start": 3045.14, + "end": 3046.38, + "probability": 0.6416 + }, + { + "start": 3046.96, + "end": 3052.56, + "probability": 0.7243 + }, + { + "start": 3053.04, + "end": 3054.82, + "probability": 0.4181 + }, + { + "start": 3055.48, + "end": 3058.84, + "probability": 0.6477 + }, + { + "start": 3058.94, + "end": 3059.59, + "probability": 0.98 + }, + { + "start": 3060.22, + "end": 3060.78, + "probability": 0.7278 + }, + { + "start": 3061.3, + "end": 3062.8, + "probability": 0.9001 + }, + { + "start": 3063.06, + "end": 3066.94, + "probability": 0.9857 + }, + { + "start": 3067.36, + "end": 3069.3, + "probability": 0.8802 + }, + { + "start": 3069.72, + "end": 3070.42, + "probability": 0.4266 + }, + { + "start": 3070.46, + "end": 3072.78, + "probability": 0.9251 + }, + { + "start": 3087.04, + "end": 3088.18, + "probability": 0.4546 + }, + { + "start": 3088.26, + "end": 3089.84, + "probability": 0.6217 + }, + { + "start": 3089.84, + "end": 3090.78, + "probability": 0.8984 + }, + { + "start": 3090.9, + "end": 3091.92, + "probability": 0.658 + }, + { + "start": 3092.58, + "end": 3093.19, + "probability": 0.7048 + }, + { + "start": 3094.1, + "end": 3096.74, + "probability": 0.9309 + }, + { + "start": 3097.76, + "end": 3104.3, + "probability": 0.7412 + }, + { + "start": 3104.4, + "end": 3105.86, + "probability": 0.9818 + }, + { + "start": 3106.38, + "end": 3110.52, + "probability": 0.9631 + }, + { + "start": 3110.52, + "end": 3115.56, + "probability": 0.8285 + }, + { + "start": 3116.12, + "end": 3117.42, + "probability": 0.71 + }, + { + "start": 3117.74, + "end": 3123.0, + "probability": 0.957 + }, + { + "start": 3123.1, + "end": 3124.43, + "probability": 0.9067 + }, + { + "start": 3124.86, + "end": 3127.02, + "probability": 0.8868 + }, + { + "start": 3127.1, + "end": 3127.58, + "probability": 0.4252 + }, + { + "start": 3127.68, + "end": 3128.02, + "probability": 0.8008 + }, + { + "start": 3128.16, + "end": 3132.28, + "probability": 0.8038 + }, + { + "start": 3132.6, + "end": 3139.92, + "probability": 0.8387 + }, + { + "start": 3140.0, + "end": 3141.08, + "probability": 0.5788 + }, + { + "start": 3141.52, + "end": 3144.72, + "probability": 0.5077 + }, + { + "start": 3144.74, + "end": 3146.54, + "probability": 0.6954 + }, + { + "start": 3147.04, + "end": 3150.56, + "probability": 0.959 + }, + { + "start": 3150.78, + "end": 3154.98, + "probability": 0.9832 + }, + { + "start": 3154.98, + "end": 3158.28, + "probability": 0.9903 + }, + { + "start": 3158.78, + "end": 3159.94, + "probability": 0.9895 + }, + { + "start": 3160.24, + "end": 3161.42, + "probability": 0.8221 + }, + { + "start": 3161.9, + "end": 3165.78, + "probability": 0.9935 + }, + { + "start": 3165.86, + "end": 3171.86, + "probability": 0.9345 + }, + { + "start": 3172.34, + "end": 3173.61, + "probability": 0.9944 + }, + { + "start": 3173.78, + "end": 3176.78, + "probability": 0.9721 + }, + { + "start": 3176.9, + "end": 3179.58, + "probability": 0.8422 + }, + { + "start": 3180.18, + "end": 3182.3, + "probability": 0.8147 + }, + { + "start": 3182.84, + "end": 3184.46, + "probability": 0.8801 + }, + { + "start": 3184.9, + "end": 3187.96, + "probability": 0.9338 + }, + { + "start": 3188.16, + "end": 3193.86, + "probability": 0.9264 + }, + { + "start": 3193.86, + "end": 3198.2, + "probability": 0.7829 + }, + { + "start": 3198.32, + "end": 3198.9, + "probability": 0.5536 + }, + { + "start": 3199.3, + "end": 3202.26, + "probability": 0.9828 + }, + { + "start": 3202.34, + "end": 3207.72, + "probability": 0.9735 + }, + { + "start": 3208.34, + "end": 3215.52, + "probability": 0.9697 + }, + { + "start": 3215.86, + "end": 3220.96, + "probability": 0.7595 + }, + { + "start": 3221.06, + "end": 3224.58, + "probability": 0.9583 + }, + { + "start": 3225.04, + "end": 3228.56, + "probability": 0.9518 + }, + { + "start": 3228.92, + "end": 3234.0, + "probability": 0.996 + }, + { + "start": 3234.0, + "end": 3239.04, + "probability": 0.8765 + }, + { + "start": 3239.94, + "end": 3241.3, + "probability": 0.9067 + }, + { + "start": 3241.66, + "end": 3243.0, + "probability": 0.7596 + }, + { + "start": 3243.22, + "end": 3247.56, + "probability": 0.9929 + }, + { + "start": 3247.56, + "end": 3251.28, + "probability": 0.991 + }, + { + "start": 3251.28, + "end": 3256.58, + "probability": 0.9751 + }, + { + "start": 3257.12, + "end": 3260.26, + "probability": 0.8979 + }, + { + "start": 3260.76, + "end": 3269.2, + "probability": 0.9264 + }, + { + "start": 3269.38, + "end": 3272.05, + "probability": 0.9171 + }, + { + "start": 3272.18, + "end": 3274.08, + "probability": 0.957 + }, + { + "start": 3274.54, + "end": 3276.96, + "probability": 0.3558 + }, + { + "start": 3276.98, + "end": 3277.45, + "probability": 0.6227 + }, + { + "start": 3277.8, + "end": 3278.34, + "probability": 0.3971 + }, + { + "start": 3279.21, + "end": 3284.44, + "probability": 0.8314 + }, + { + "start": 3284.78, + "end": 3285.46, + "probability": 0.8027 + }, + { + "start": 3285.86, + "end": 3291.32, + "probability": 0.9897 + }, + { + "start": 3291.9, + "end": 3294.98, + "probability": 0.948 + }, + { + "start": 3295.6, + "end": 3297.2, + "probability": 0.958 + }, + { + "start": 3297.32, + "end": 3301.18, + "probability": 0.9863 + }, + { + "start": 3301.6, + "end": 3308.94, + "probability": 0.9026 + }, + { + "start": 3309.96, + "end": 3313.02, + "probability": 0.471 + }, + { + "start": 3313.14, + "end": 3314.98, + "probability": 0.9497 + }, + { + "start": 3315.18, + "end": 3317.44, + "probability": 0.7594 + }, + { + "start": 3317.74, + "end": 3318.94, + "probability": 0.9818 + }, + { + "start": 3319.36, + "end": 3321.2, + "probability": 0.9542 + }, + { + "start": 3321.58, + "end": 3324.52, + "probability": 0.9952 + }, + { + "start": 3324.52, + "end": 3327.26, + "probability": 0.9744 + }, + { + "start": 3327.58, + "end": 3332.84, + "probability": 0.991 + }, + { + "start": 3333.2, + "end": 3334.0, + "probability": 0.8862 + }, + { + "start": 3334.12, + "end": 3336.84, + "probability": 0.9834 + }, + { + "start": 3336.94, + "end": 3338.34, + "probability": 0.7678 + }, + { + "start": 3338.58, + "end": 3339.88, + "probability": 0.9619 + }, + { + "start": 3339.98, + "end": 3342.36, + "probability": 0.8719 + }, + { + "start": 3342.56, + "end": 3344.63, + "probability": 0.6702 + }, + { + "start": 3346.56, + "end": 3348.46, + "probability": 0.7598 + }, + { + "start": 3348.58, + "end": 3349.66, + "probability": 0.9644 + }, + { + "start": 3349.72, + "end": 3350.58, + "probability": 0.9049 + }, + { + "start": 3350.68, + "end": 3354.22, + "probability": 0.9868 + }, + { + "start": 3354.34, + "end": 3357.42, + "probability": 0.7691 + }, + { + "start": 3357.68, + "end": 3359.9, + "probability": 0.9704 + }, + { + "start": 3359.98, + "end": 3362.44, + "probability": 0.9795 + }, + { + "start": 3362.58, + "end": 3367.68, + "probability": 0.9751 + }, + { + "start": 3368.22, + "end": 3370.52, + "probability": 0.8271 + }, + { + "start": 3370.84, + "end": 3373.42, + "probability": 0.99 + }, + { + "start": 3373.42, + "end": 3376.84, + "probability": 0.7694 + }, + { + "start": 3377.04, + "end": 3379.9, + "probability": 0.9364 + }, + { + "start": 3379.96, + "end": 3386.74, + "probability": 0.9559 + }, + { + "start": 3386.84, + "end": 3391.16, + "probability": 0.9976 + }, + { + "start": 3391.16, + "end": 3398.22, + "probability": 0.7847 + }, + { + "start": 3398.56, + "end": 3399.96, + "probability": 0.832 + }, + { + "start": 3400.38, + "end": 3404.28, + "probability": 0.897 + }, + { + "start": 3405.12, + "end": 3409.04, + "probability": 0.9856 + }, + { + "start": 3409.04, + "end": 3412.92, + "probability": 0.9602 + }, + { + "start": 3413.34, + "end": 3416.86, + "probability": 0.9893 + }, + { + "start": 3417.84, + "end": 3420.22, + "probability": 0.8331 + }, + { + "start": 3420.32, + "end": 3420.9, + "probability": 0.6523 + }, + { + "start": 3421.06, + "end": 3423.88, + "probability": 0.9596 + }, + { + "start": 3424.72, + "end": 3428.86, + "probability": 0.9422 + }, + { + "start": 3428.96, + "end": 3431.96, + "probability": 0.956 + }, + { + "start": 3432.02, + "end": 3432.76, + "probability": 0.5674 + }, + { + "start": 3433.62, + "end": 3437.38, + "probability": 0.9666 + }, + { + "start": 3437.86, + "end": 3439.5, + "probability": 0.9212 + }, + { + "start": 3439.56, + "end": 3440.96, + "probability": 0.5549 + }, + { + "start": 3441.36, + "end": 3442.4, + "probability": 0.6879 + }, + { + "start": 3443.25, + "end": 3445.5, + "probability": 0.5414 + }, + { + "start": 3446.48, + "end": 3448.56, + "probability": 0.6616 + }, + { + "start": 3448.68, + "end": 3453.5, + "probability": 0.6276 + }, + { + "start": 3453.58, + "end": 3457.86, + "probability": 0.9313 + }, + { + "start": 3457.86, + "end": 3461.12, + "probability": 0.7651 + }, + { + "start": 3461.56, + "end": 3461.7, + "probability": 0.6256 + }, + { + "start": 3462.06, + "end": 3465.25, + "probability": 0.9833 + }, + { + "start": 3465.36, + "end": 3469.92, + "probability": 0.8767 + }, + { + "start": 3470.98, + "end": 3473.6, + "probability": 0.9788 + }, + { + "start": 3473.78, + "end": 3476.42, + "probability": 0.8559 + }, + { + "start": 3477.0, + "end": 3477.58, + "probability": 0.8979 + }, + { + "start": 3477.98, + "end": 3480.28, + "probability": 0.9088 + }, + { + "start": 3480.4, + "end": 3482.94, + "probability": 0.9988 + }, + { + "start": 3483.56, + "end": 3485.82, + "probability": 0.9959 + }, + { + "start": 3486.36, + "end": 3488.6, + "probability": 0.8681 + }, + { + "start": 3489.62, + "end": 3494.5, + "probability": 0.9819 + }, + { + "start": 3495.32, + "end": 3498.34, + "probability": 0.6022 + }, + { + "start": 3498.72, + "end": 3500.68, + "probability": 0.9701 + }, + { + "start": 3501.24, + "end": 3503.74, + "probability": 0.9902 + }, + { + "start": 3504.18, + "end": 3505.83, + "probability": 0.9948 + }, + { + "start": 3506.86, + "end": 3510.52, + "probability": 0.9929 + }, + { + "start": 3510.56, + "end": 3514.36, + "probability": 0.9922 + }, + { + "start": 3514.56, + "end": 3517.64, + "probability": 0.9097 + }, + { + "start": 3518.68, + "end": 3522.94, + "probability": 0.9735 + }, + { + "start": 3523.02, + "end": 3523.82, + "probability": 0.5646 + }, + { + "start": 3524.02, + "end": 3526.28, + "probability": 0.7812 + }, + { + "start": 3526.62, + "end": 3530.2, + "probability": 0.9025 + }, + { + "start": 3530.3, + "end": 3531.98, + "probability": 0.7216 + }, + { + "start": 3532.14, + "end": 3533.42, + "probability": 0.9327 + }, + { + "start": 3533.5, + "end": 3533.84, + "probability": 0.7778 + }, + { + "start": 3534.12, + "end": 3535.02, + "probability": 0.5061 + }, + { + "start": 3535.34, + "end": 3537.62, + "probability": 0.9628 + }, + { + "start": 3537.78, + "end": 3538.74, + "probability": 0.8321 + }, + { + "start": 3539.02, + "end": 3539.78, + "probability": 0.6287 + }, + { + "start": 3541.96, + "end": 3545.82, + "probability": 0.8983 + }, + { + "start": 3546.14, + "end": 3546.5, + "probability": 0.7896 + }, + { + "start": 3548.32, + "end": 3548.85, + "probability": 0.8118 + }, + { + "start": 3549.46, + "end": 3550.38, + "probability": 0.9971 + }, + { + "start": 3550.52, + "end": 3551.16, + "probability": 0.5826 + }, + { + "start": 3552.96, + "end": 3553.78, + "probability": 0.847 + }, + { + "start": 3554.94, + "end": 3556.14, + "probability": 0.661 + }, + { + "start": 3557.78, + "end": 3559.52, + "probability": 0.907 + }, + { + "start": 3559.6, + "end": 3560.02, + "probability": 0.7226 + }, + { + "start": 3560.64, + "end": 3566.32, + "probability": 0.9969 + }, + { + "start": 3567.34, + "end": 3573.8, + "probability": 0.9935 + }, + { + "start": 3574.9, + "end": 3576.26, + "probability": 0.6145 + }, + { + "start": 3576.54, + "end": 3579.36, + "probability": 0.896 + }, + { + "start": 3580.1, + "end": 3582.48, + "probability": 0.8871 + }, + { + "start": 3583.8, + "end": 3585.66, + "probability": 0.8657 + }, + { + "start": 3585.7, + "end": 3588.48, + "probability": 0.9396 + }, + { + "start": 3589.22, + "end": 3590.34, + "probability": 0.709 + }, + { + "start": 3590.76, + "end": 3592.68, + "probability": 0.7968 + }, + { + "start": 3594.18, + "end": 3596.22, + "probability": 0.9897 + }, + { + "start": 3596.56, + "end": 3600.3, + "probability": 0.937 + }, + { + "start": 3601.34, + "end": 3602.6, + "probability": 0.9824 + }, + { + "start": 3603.46, + "end": 3604.76, + "probability": 0.9141 + }, + { + "start": 3605.96, + "end": 3609.28, + "probability": 0.9928 + }, + { + "start": 3610.6, + "end": 3611.58, + "probability": 0.8024 + }, + { + "start": 3612.68, + "end": 3616.1, + "probability": 0.8904 + }, + { + "start": 3617.24, + "end": 3618.46, + "probability": 0.7102 + }, + { + "start": 3619.48, + "end": 3622.04, + "probability": 0.7337 + }, + { + "start": 3622.76, + "end": 3624.68, + "probability": 0.9233 + }, + { + "start": 3625.88, + "end": 3626.76, + "probability": 0.9477 + }, + { + "start": 3627.66, + "end": 3628.38, + "probability": 0.7341 + }, + { + "start": 3629.5, + "end": 3631.7, + "probability": 0.7476 + }, + { + "start": 3632.22, + "end": 3634.24, + "probability": 0.74 + }, + { + "start": 3634.44, + "end": 3635.46, + "probability": 0.7938 + }, + { + "start": 3636.1, + "end": 3639.96, + "probability": 0.9901 + }, + { + "start": 3640.7, + "end": 3641.92, + "probability": 0.9902 + }, + { + "start": 3642.52, + "end": 3643.56, + "probability": 0.9373 + }, + { + "start": 3643.56, + "end": 3643.66, + "probability": 0.8833 + }, + { + "start": 3644.0, + "end": 3644.84, + "probability": 0.9715 + }, + { + "start": 3644.98, + "end": 3646.16, + "probability": 0.9906 + }, + { + "start": 3646.72, + "end": 3647.38, + "probability": 0.3326 + }, + { + "start": 3647.52, + "end": 3651.12, + "probability": 0.9682 + }, + { + "start": 3651.68, + "end": 3653.02, + "probability": 0.8579 + }, + { + "start": 3653.18, + "end": 3654.3, + "probability": 0.7669 + }, + { + "start": 3654.34, + "end": 3655.32, + "probability": 0.6469 + }, + { + "start": 3656.02, + "end": 3658.92, + "probability": 0.9976 + }, + { + "start": 3659.86, + "end": 3660.48, + "probability": 0.8193 + }, + { + "start": 3662.16, + "end": 3664.4, + "probability": 0.9694 + }, + { + "start": 3665.32, + "end": 3667.5, + "probability": 0.9941 + }, + { + "start": 3668.46, + "end": 3669.92, + "probability": 0.9973 + }, + { + "start": 3670.76, + "end": 3671.52, + "probability": 0.9072 + }, + { + "start": 3672.84, + "end": 3673.9, + "probability": 0.7817 + }, + { + "start": 3673.96, + "end": 3675.93, + "probability": 0.9716 + }, + { + "start": 3676.36, + "end": 3679.06, + "probability": 0.9912 + }, + { + "start": 3679.18, + "end": 3679.68, + "probability": 0.6945 + }, + { + "start": 3680.3, + "end": 3682.54, + "probability": 0.9814 + }, + { + "start": 3682.72, + "end": 3683.42, + "probability": 0.7717 + }, + { + "start": 3683.46, + "end": 3687.58, + "probability": 0.9679 + }, + { + "start": 3688.34, + "end": 3689.92, + "probability": 0.9596 + }, + { + "start": 3690.84, + "end": 3692.14, + "probability": 0.98 + }, + { + "start": 3693.5, + "end": 3696.68, + "probability": 0.9435 + }, + { + "start": 3697.26, + "end": 3698.46, + "probability": 0.9525 + }, + { + "start": 3699.56, + "end": 3701.04, + "probability": 0.9743 + }, + { + "start": 3701.26, + "end": 3703.08, + "probability": 0.9023 + }, + { + "start": 3703.94, + "end": 3704.88, + "probability": 0.7447 + }, + { + "start": 3706.62, + "end": 3708.96, + "probability": 0.9534 + }, + { + "start": 3709.54, + "end": 3713.44, + "probability": 0.9989 + }, + { + "start": 3714.32, + "end": 3716.34, + "probability": 0.9998 + }, + { + "start": 3716.98, + "end": 3720.14, + "probability": 0.9849 + }, + { + "start": 3720.88, + "end": 3722.42, + "probability": 0.9583 + }, + { + "start": 3723.36, + "end": 3725.58, + "probability": 0.9919 + }, + { + "start": 3725.74, + "end": 3727.22, + "probability": 0.9969 + }, + { + "start": 3727.56, + "end": 3728.81, + "probability": 0.9819 + }, + { + "start": 3729.8, + "end": 3730.7, + "probability": 0.8993 + }, + { + "start": 3731.72, + "end": 3734.02, + "probability": 0.9859 + }, + { + "start": 3735.38, + "end": 3736.26, + "probability": 0.8018 + }, + { + "start": 3737.32, + "end": 3738.0, + "probability": 0.9414 + }, + { + "start": 3738.46, + "end": 3739.42, + "probability": 0.9458 + }, + { + "start": 3739.54, + "end": 3743.94, + "probability": 0.9855 + }, + { + "start": 3744.42, + "end": 3746.06, + "probability": 0.9318 + }, + { + "start": 3747.7, + "end": 3748.3, + "probability": 0.3635 + }, + { + "start": 3749.16, + "end": 3751.86, + "probability": 0.8862 + }, + { + "start": 3752.4, + "end": 3754.22, + "probability": 0.923 + }, + { + "start": 3755.08, + "end": 3758.14, + "probability": 0.6475 + }, + { + "start": 3758.72, + "end": 3761.5, + "probability": 0.9496 + }, + { + "start": 3762.24, + "end": 3763.7, + "probability": 0.9681 + }, + { + "start": 3764.4, + "end": 3766.28, + "probability": 0.9997 + }, + { + "start": 3767.02, + "end": 3768.42, + "probability": 0.9502 + }, + { + "start": 3769.16, + "end": 3770.4, + "probability": 0.9741 + }, + { + "start": 3772.2, + "end": 3773.64, + "probability": 0.9411 + }, + { + "start": 3773.8, + "end": 3776.44, + "probability": 0.9923 + }, + { + "start": 3777.04, + "end": 3781.32, + "probability": 0.9962 + }, + { + "start": 3781.78, + "end": 3785.36, + "probability": 0.9783 + }, + { + "start": 3786.48, + "end": 3788.9, + "probability": 0.9852 + }, + { + "start": 3789.1, + "end": 3789.8, + "probability": 0.7545 + }, + { + "start": 3790.68, + "end": 3793.1, + "probability": 0.9665 + }, + { + "start": 3794.36, + "end": 3795.8, + "probability": 0.9472 + }, + { + "start": 3796.06, + "end": 3796.42, + "probability": 0.4418 + }, + { + "start": 3796.74, + "end": 3799.66, + "probability": 0.8921 + }, + { + "start": 3801.26, + "end": 3805.86, + "probability": 0.9908 + }, + { + "start": 3806.92, + "end": 3808.36, + "probability": 0.9982 + }, + { + "start": 3809.08, + "end": 3811.1, + "probability": 0.9727 + }, + { + "start": 3811.7, + "end": 3813.4, + "probability": 0.9345 + }, + { + "start": 3814.24, + "end": 3815.87, + "probability": 0.9985 + }, + { + "start": 3816.78, + "end": 3818.42, + "probability": 0.7953 + }, + { + "start": 3818.92, + "end": 3821.47, + "probability": 0.6613 + }, + { + "start": 3821.74, + "end": 3822.32, + "probability": 0.5037 + }, + { + "start": 3822.42, + "end": 3823.12, + "probability": 0.6268 + }, + { + "start": 3823.42, + "end": 3824.26, + "probability": 0.9044 + }, + { + "start": 3824.8, + "end": 3830.08, + "probability": 0.9844 + }, + { + "start": 3830.88, + "end": 3831.36, + "probability": 0.6786 + }, + { + "start": 3832.08, + "end": 3834.88, + "probability": 0.9941 + }, + { + "start": 3835.62, + "end": 3837.2, + "probability": 0.9226 + }, + { + "start": 3837.88, + "end": 3841.54, + "probability": 0.9526 + }, + { + "start": 3842.42, + "end": 3844.96, + "probability": 0.9827 + }, + { + "start": 3845.06, + "end": 3846.56, + "probability": 0.696 + }, + { + "start": 3846.72, + "end": 3847.9, + "probability": 0.8653 + }, + { + "start": 3848.47, + "end": 3848.88, + "probability": 0.8145 + }, + { + "start": 3849.98, + "end": 3852.6, + "probability": 0.4992 + }, + { + "start": 3853.5, + "end": 3857.28, + "probability": 0.9447 + }, + { + "start": 3857.94, + "end": 3859.44, + "probability": 0.9678 + }, + { + "start": 3860.44, + "end": 3864.96, + "probability": 0.9775 + }, + { + "start": 3865.02, + "end": 3866.18, + "probability": 0.902 + }, + { + "start": 3867.38, + "end": 3868.48, + "probability": 0.9667 + }, + { + "start": 3869.18, + "end": 3870.72, + "probability": 0.9597 + }, + { + "start": 3871.5, + "end": 3874.52, + "probability": 0.9412 + }, + { + "start": 3875.4, + "end": 3878.96, + "probability": 0.9642 + }, + { + "start": 3879.9, + "end": 3882.28, + "probability": 0.8794 + }, + { + "start": 3883.08, + "end": 3884.4, + "probability": 0.8916 + }, + { + "start": 3885.2, + "end": 3887.08, + "probability": 0.6907 + }, + { + "start": 3887.2, + "end": 3888.54, + "probability": 0.9546 + }, + { + "start": 3888.84, + "end": 3890.22, + "probability": 0.9717 + }, + { + "start": 3891.34, + "end": 3892.92, + "probability": 0.9821 + }, + { + "start": 3893.94, + "end": 3896.18, + "probability": 0.9951 + }, + { + "start": 3896.82, + "end": 3897.38, + "probability": 0.9714 + }, + { + "start": 3898.12, + "end": 3900.5, + "probability": 0.9924 + }, + { + "start": 3901.52, + "end": 3903.34, + "probability": 0.9931 + }, + { + "start": 3904.22, + "end": 3906.1, + "probability": 0.9232 + }, + { + "start": 3906.1, + "end": 3908.32, + "probability": 0.9995 + }, + { + "start": 3909.14, + "end": 3911.5, + "probability": 0.7524 + }, + { + "start": 3912.02, + "end": 3912.98, + "probability": 0.6635 + }, + { + "start": 3913.7, + "end": 3914.36, + "probability": 0.9629 + }, + { + "start": 3914.48, + "end": 3916.26, + "probability": 0.998 + }, + { + "start": 3916.32, + "end": 3916.92, + "probability": 0.5667 + }, + { + "start": 3917.98, + "end": 3919.62, + "probability": 0.9859 + }, + { + "start": 3919.72, + "end": 3920.48, + "probability": 0.9149 + }, + { + "start": 3920.76, + "end": 3922.02, + "probability": 0.9009 + }, + { + "start": 3922.92, + "end": 3923.48, + "probability": 0.6446 + }, + { + "start": 3923.54, + "end": 3924.58, + "probability": 0.6939 + }, + { + "start": 3924.8, + "end": 3926.1, + "probability": 0.9816 + }, + { + "start": 3926.5, + "end": 3930.6, + "probability": 0.9617 + }, + { + "start": 3931.22, + "end": 3933.24, + "probability": 0.9919 + }, + { + "start": 3933.86, + "end": 3938.28, + "probability": 0.9907 + }, + { + "start": 3938.64, + "end": 3939.72, + "probability": 0.957 + }, + { + "start": 3940.2, + "end": 3943.2, + "probability": 0.9889 + }, + { + "start": 3943.76, + "end": 3944.44, + "probability": 0.7699 + }, + { + "start": 3945.2, + "end": 3948.44, + "probability": 0.8394 + }, + { + "start": 3948.64, + "end": 3950.26, + "probability": 0.9678 + }, + { + "start": 3950.9, + "end": 3951.74, + "probability": 0.9511 + }, + { + "start": 3952.38, + "end": 3955.3, + "probability": 0.9683 + }, + { + "start": 3956.24, + "end": 3957.94, + "probability": 0.8243 + }, + { + "start": 3958.72, + "end": 3962.54, + "probability": 0.8947 + }, + { + "start": 3963.34, + "end": 3964.98, + "probability": 0.8854 + }, + { + "start": 3965.72, + "end": 3967.82, + "probability": 0.9575 + }, + { + "start": 3968.72, + "end": 3969.86, + "probability": 0.9706 + }, + { + "start": 3970.26, + "end": 3970.52, + "probability": 0.8879 + }, + { + "start": 3970.72, + "end": 3971.98, + "probability": 0.7488 + }, + { + "start": 3972.54, + "end": 3974.48, + "probability": 0.8682 + }, + { + "start": 3975.0, + "end": 3976.58, + "probability": 0.7364 + }, + { + "start": 3978.24, + "end": 3981.68, + "probability": 0.6076 + }, + { + "start": 3982.5, + "end": 3983.06, + "probability": 0.5573 + }, + { + "start": 3983.22, + "end": 3983.9, + "probability": 0.552 + }, + { + "start": 3983.98, + "end": 3984.46, + "probability": 0.7236 + }, + { + "start": 3984.54, + "end": 3985.1, + "probability": 0.7535 + }, + { + "start": 3985.28, + "end": 3986.5, + "probability": 0.8295 + }, + { + "start": 3986.68, + "end": 3987.58, + "probability": 0.6427 + }, + { + "start": 3988.04, + "end": 3989.04, + "probability": 0.6968 + }, + { + "start": 3991.1, + "end": 3992.94, + "probability": 0.9182 + }, + { + "start": 3993.68, + "end": 3995.22, + "probability": 0.6915 + }, + { + "start": 3995.22, + "end": 3996.84, + "probability": 0.8403 + }, + { + "start": 3997.26, + "end": 3998.12, + "probability": 0.9569 + }, + { + "start": 3998.24, + "end": 3999.46, + "probability": 0.8947 + }, + { + "start": 3999.98, + "end": 4001.94, + "probability": 0.983 + }, + { + "start": 4002.66, + "end": 4004.5, + "probability": 0.8548 + }, + { + "start": 4005.84, + "end": 4006.58, + "probability": 0.3286 + }, + { + "start": 4007.66, + "end": 4008.6, + "probability": 0.6701 + }, + { + "start": 4010.16, + "end": 4010.38, + "probability": 0.0422 + }, + { + "start": 4011.3, + "end": 4015.46, + "probability": 0.8896 + }, + { + "start": 4015.54, + "end": 4017.9, + "probability": 0.7817 + }, + { + "start": 4018.4, + "end": 4019.7, + "probability": 0.7277 + }, + { + "start": 4020.88, + "end": 4025.74, + "probability": 0.9948 + }, + { + "start": 4026.28, + "end": 4029.74, + "probability": 0.9954 + }, + { + "start": 4030.84, + "end": 4034.04, + "probability": 0.6776 + }, + { + "start": 4034.7, + "end": 4037.78, + "probability": 0.8415 + }, + { + "start": 4038.08, + "end": 4039.68, + "probability": 0.9793 + }, + { + "start": 4040.08, + "end": 4042.52, + "probability": 0.9091 + }, + { + "start": 4043.62, + "end": 4047.18, + "probability": 0.9839 + }, + { + "start": 4047.9, + "end": 4049.72, + "probability": 0.9545 + }, + { + "start": 4050.68, + "end": 4052.49, + "probability": 0.9819 + }, + { + "start": 4053.88, + "end": 4058.7, + "probability": 0.9014 + }, + { + "start": 4059.2, + "end": 4059.6, + "probability": 0.6423 + }, + { + "start": 4062.4, + "end": 4065.08, + "probability": 0.7943 + }, + { + "start": 4065.5, + "end": 4068.62, + "probability": 0.9678 + }, + { + "start": 4068.62, + "end": 4072.6, + "probability": 0.9123 + }, + { + "start": 4072.94, + "end": 4073.46, + "probability": 0.8101 + }, + { + "start": 4073.74, + "end": 4074.84, + "probability": 0.8335 + }, + { + "start": 4075.76, + "end": 4077.34, + "probability": 0.9894 + }, + { + "start": 4078.52, + "end": 4081.94, + "probability": 0.9803 + }, + { + "start": 4083.57, + "end": 4087.99, + "probability": 0.8403 + }, + { + "start": 4090.34, + "end": 4091.34, + "probability": 0.6021 + }, + { + "start": 4092.06, + "end": 4094.14, + "probability": 0.7783 + }, + { + "start": 4094.84, + "end": 4098.54, + "probability": 0.8815 + }, + { + "start": 4099.0, + "end": 4104.38, + "probability": 0.8591 + }, + { + "start": 4104.46, + "end": 4108.16, + "probability": 0.9894 + }, + { + "start": 4109.08, + "end": 4110.59, + "probability": 0.9927 + }, + { + "start": 4110.92, + "end": 4111.02, + "probability": 0.5336 + }, + { + "start": 4111.16, + "end": 4112.34, + "probability": 0.7679 + }, + { + "start": 4112.46, + "end": 4112.76, + "probability": 0.8101 + }, + { + "start": 4113.22, + "end": 4114.56, + "probability": 0.9388 + }, + { + "start": 4115.16, + "end": 4118.26, + "probability": 0.9847 + }, + { + "start": 4118.26, + "end": 4121.5, + "probability": 0.9945 + }, + { + "start": 4122.1, + "end": 4124.32, + "probability": 0.691 + }, + { + "start": 4124.7, + "end": 4128.16, + "probability": 0.9717 + }, + { + "start": 4128.28, + "end": 4132.58, + "probability": 0.914 + }, + { + "start": 4133.54, + "end": 4138.88, + "probability": 0.9937 + }, + { + "start": 4139.3, + "end": 4141.1, + "probability": 0.9246 + }, + { + "start": 4141.64, + "end": 4146.22, + "probability": 0.9978 + }, + { + "start": 4146.66, + "end": 4148.82, + "probability": 0.9534 + }, + { + "start": 4150.06, + "end": 4153.4, + "probability": 0.9911 + }, + { + "start": 4154.08, + "end": 4155.2, + "probability": 0.3391 + }, + { + "start": 4156.1, + "end": 4162.36, + "probability": 0.9659 + }, + { + "start": 4162.36, + "end": 4168.22, + "probability": 0.9972 + }, + { + "start": 4169.22, + "end": 4174.68, + "probability": 0.9774 + }, + { + "start": 4175.77, + "end": 4178.08, + "probability": 0.9956 + }, + { + "start": 4178.22, + "end": 4183.1, + "probability": 0.9878 + }, + { + "start": 4183.1, + "end": 4186.28, + "probability": 0.9048 + }, + { + "start": 4186.72, + "end": 4190.26, + "probability": 0.9986 + }, + { + "start": 4191.12, + "end": 4196.46, + "probability": 0.9955 + }, + { + "start": 4197.66, + "end": 4197.88, + "probability": 0.051 + }, + { + "start": 4197.88, + "end": 4201.2, + "probability": 0.9644 + }, + { + "start": 4201.2, + "end": 4205.24, + "probability": 0.9709 + }, + { + "start": 4205.34, + "end": 4206.34, + "probability": 0.723 + }, + { + "start": 4207.04, + "end": 4209.54, + "probability": 0.9946 + }, + { + "start": 4210.06, + "end": 4214.2, + "probability": 0.936 + }, + { + "start": 4214.42, + "end": 4216.46, + "probability": 0.9977 + }, + { + "start": 4216.6, + "end": 4220.64, + "probability": 0.9937 + }, + { + "start": 4220.64, + "end": 4223.54, + "probability": 0.9937 + }, + { + "start": 4224.46, + "end": 4225.0, + "probability": 0.9126 + }, + { + "start": 4225.64, + "end": 4228.6, + "probability": 0.9957 + }, + { + "start": 4228.66, + "end": 4232.58, + "probability": 0.9771 + }, + { + "start": 4233.24, + "end": 4239.7, + "probability": 0.9922 + }, + { + "start": 4240.1, + "end": 4244.32, + "probability": 0.9978 + }, + { + "start": 4244.38, + "end": 4246.52, + "probability": 0.7949 + }, + { + "start": 4246.9, + "end": 4250.54, + "probability": 0.9951 + }, + { + "start": 4250.66, + "end": 4251.14, + "probability": 0.8256 + }, + { + "start": 4251.86, + "end": 4252.42, + "probability": 0.7069 + }, + { + "start": 4253.0, + "end": 4258.28, + "probability": 0.9789 + }, + { + "start": 4259.18, + "end": 4260.18, + "probability": 0.6558 + }, + { + "start": 4260.22, + "end": 4263.44, + "probability": 0.9902 + }, + { + "start": 4263.92, + "end": 4266.76, + "probability": 0.9961 + }, + { + "start": 4267.32, + "end": 4271.06, + "probability": 0.9938 + }, + { + "start": 4271.92, + "end": 4273.36, + "probability": 0.7076 + }, + { + "start": 4273.52, + "end": 4278.02, + "probability": 0.9921 + }, + { + "start": 4278.38, + "end": 4281.54, + "probability": 0.9747 + }, + { + "start": 4282.04, + "end": 4286.9, + "probability": 0.9956 + }, + { + "start": 4287.48, + "end": 4287.92, + "probability": 0.7576 + }, + { + "start": 4288.44, + "end": 4294.06, + "probability": 0.9902 + }, + { + "start": 4294.16, + "end": 4294.8, + "probability": 0.7527 + }, + { + "start": 4295.44, + "end": 4296.18, + "probability": 0.8324 + }, + { + "start": 4296.48, + "end": 4296.86, + "probability": 0.7642 + }, + { + "start": 4297.42, + "end": 4298.24, + "probability": 0.5837 + }, + { + "start": 4298.32, + "end": 4299.54, + "probability": 0.6929 + }, + { + "start": 4300.18, + "end": 4301.34, + "probability": 0.4638 + }, + { + "start": 4301.76, + "end": 4304.59, + "probability": 0.9705 + }, + { + "start": 4305.1, + "end": 4305.62, + "probability": 0.4428 + }, + { + "start": 4305.82, + "end": 4306.24, + "probability": 0.4556 + }, + { + "start": 4306.3, + "end": 4307.76, + "probability": 0.8131 + }, + { + "start": 4309.54, + "end": 4310.2, + "probability": 0.5494 + }, + { + "start": 4317.84, + "end": 4317.94, + "probability": 0.2634 + }, + { + "start": 4317.94, + "end": 4317.94, + "probability": 0.0989 + }, + { + "start": 4317.94, + "end": 4318.09, + "probability": 0.0756 + }, + { + "start": 4330.46, + "end": 4334.1, + "probability": 0.5412 + }, + { + "start": 4335.62, + "end": 4340.24, + "probability": 0.7971 + }, + { + "start": 4340.64, + "end": 4344.14, + "probability": 0.9498 + }, + { + "start": 4344.98, + "end": 4351.58, + "probability": 0.9906 + }, + { + "start": 4352.32, + "end": 4353.71, + "probability": 0.0477 + }, + { + "start": 4355.76, + "end": 4355.82, + "probability": 0.0498 + }, + { + "start": 4355.82, + "end": 4356.8, + "probability": 0.8049 + }, + { + "start": 4357.16, + "end": 4359.2, + "probability": 0.9656 + }, + { + "start": 4359.36, + "end": 4361.73, + "probability": 0.9658 + }, + { + "start": 4362.46, + "end": 4368.96, + "probability": 0.9861 + }, + { + "start": 4370.6, + "end": 4374.62, + "probability": 0.9041 + }, + { + "start": 4375.01, + "end": 4378.92, + "probability": 0.9878 + }, + { + "start": 4379.42, + "end": 4382.08, + "probability": 0.9963 + }, + { + "start": 4382.12, + "end": 4386.48, + "probability": 0.998 + }, + { + "start": 4387.34, + "end": 4393.24, + "probability": 0.9399 + }, + { + "start": 4395.04, + "end": 4399.5, + "probability": 0.9958 + }, + { + "start": 4399.5, + "end": 4402.81, + "probability": 0.9906 + }, + { + "start": 4403.22, + "end": 4408.0, + "probability": 0.9939 + }, + { + "start": 4408.0, + "end": 4412.56, + "probability": 0.995 + }, + { + "start": 4414.88, + "end": 4416.0, + "probability": 0.435 + }, + { + "start": 4417.12, + "end": 4420.02, + "probability": 0.5471 + }, + { + "start": 4421.1, + "end": 4423.24, + "probability": 0.7784 + }, + { + "start": 4424.0, + "end": 4427.04, + "probability": 0.928 + }, + { + "start": 4427.58, + "end": 4430.42, + "probability": 0.9849 + }, + { + "start": 4431.42, + "end": 4436.34, + "probability": 0.7973 + }, + { + "start": 4437.08, + "end": 4437.14, + "probability": 0.0988 + }, + { + "start": 4437.14, + "end": 4437.86, + "probability": 0.8613 + }, + { + "start": 4438.18, + "end": 4439.18, + "probability": 0.9694 + }, + { + "start": 4439.28, + "end": 4439.81, + "probability": 0.84 + }, + { + "start": 4440.7, + "end": 4441.88, + "probability": 0.9246 + }, + { + "start": 4442.0, + "end": 4445.34, + "probability": 0.8407 + }, + { + "start": 4446.54, + "end": 4451.72, + "probability": 0.9792 + }, + { + "start": 4452.09, + "end": 4455.22, + "probability": 0.6445 + }, + { + "start": 4456.18, + "end": 4463.4, + "probability": 0.9483 + }, + { + "start": 4463.86, + "end": 4464.92, + "probability": 0.9893 + }, + { + "start": 4467.08, + "end": 4472.54, + "probability": 0.2467 + }, + { + "start": 4473.94, + "end": 4473.94, + "probability": 0.0814 + }, + { + "start": 4473.94, + "end": 4473.94, + "probability": 0.2875 + }, + { + "start": 4473.94, + "end": 4478.9, + "probability": 0.9717 + }, + { + "start": 4479.48, + "end": 4480.06, + "probability": 0.3445 + }, + { + "start": 4480.06, + "end": 4481.4, + "probability": 0.8806 + }, + { + "start": 4482.08, + "end": 4487.5, + "probability": 0.9949 + }, + { + "start": 4488.48, + "end": 4493.44, + "probability": 0.5852 + }, + { + "start": 4495.34, + "end": 4496.46, + "probability": 0.5052 + }, + { + "start": 4497.04, + "end": 4501.08, + "probability": 0.9885 + }, + { + "start": 4501.08, + "end": 4506.96, + "probability": 0.9944 + }, + { + "start": 4507.06, + "end": 4509.48, + "probability": 0.92 + }, + { + "start": 4510.0, + "end": 4510.84, + "probability": 0.621 + }, + { + "start": 4511.44, + "end": 4513.68, + "probability": 0.6214 + }, + { + "start": 4513.76, + "end": 4516.38, + "probability": 0.9857 + }, + { + "start": 4516.48, + "end": 4516.86, + "probability": 0.8167 + }, + { + "start": 4518.08, + "end": 4521.2, + "probability": 0.9602 + }, + { + "start": 4522.56, + "end": 4532.84, + "probability": 0.9358 + }, + { + "start": 4533.62, + "end": 4540.56, + "probability": 0.9855 + }, + { + "start": 4541.78, + "end": 4543.18, + "probability": 0.2635 + }, + { + "start": 4544.32, + "end": 4546.34, + "probability": 0.9109 + }, + { + "start": 4547.0, + "end": 4549.04, + "probability": 0.9912 + }, + { + "start": 4551.45, + "end": 4558.34, + "probability": 0.9895 + }, + { + "start": 4558.34, + "end": 4566.22, + "probability": 0.9833 + }, + { + "start": 4566.84, + "end": 4570.0, + "probability": 0.9845 + }, + { + "start": 4570.76, + "end": 4574.18, + "probability": 0.8138 + }, + { + "start": 4574.26, + "end": 4576.08, + "probability": 0.8066 + }, + { + "start": 4576.24, + "end": 4577.94, + "probability": 0.7857 + }, + { + "start": 4578.26, + "end": 4585.58, + "probability": 0.8687 + }, + { + "start": 4586.12, + "end": 4589.98, + "probability": 0.9905 + }, + { + "start": 4589.98, + "end": 4596.56, + "probability": 0.9656 + }, + { + "start": 4598.01, + "end": 4601.1, + "probability": 0.9958 + }, + { + "start": 4601.1, + "end": 4606.18, + "probability": 0.9989 + }, + { + "start": 4607.0, + "end": 4611.56, + "probability": 0.9548 + }, + { + "start": 4612.5, + "end": 4615.76, + "probability": 0.9979 + }, + { + "start": 4616.92, + "end": 4617.78, + "probability": 0.5901 + }, + { + "start": 4618.28, + "end": 4618.74, + "probability": 0.9147 + }, + { + "start": 4618.84, + "end": 4622.52, + "probability": 0.9881 + }, + { + "start": 4622.56, + "end": 4625.48, + "probability": 0.9814 + }, + { + "start": 4626.1, + "end": 4629.82, + "probability": 0.9823 + }, + { + "start": 4629.82, + "end": 4634.46, + "probability": 0.9836 + }, + { + "start": 4634.84, + "end": 4641.6, + "probability": 0.9767 + }, + { + "start": 4642.2, + "end": 4647.38, + "probability": 0.6669 + }, + { + "start": 4647.38, + "end": 4651.0, + "probability": 0.9425 + }, + { + "start": 4651.42, + "end": 4652.18, + "probability": 0.5665 + }, + { + "start": 4652.2, + "end": 4653.08, + "probability": 0.5612 + }, + { + "start": 4653.58, + "end": 4656.12, + "probability": 0.892 + }, + { + "start": 4656.74, + "end": 4659.54, + "probability": 0.8514 + }, + { + "start": 4660.48, + "end": 4664.52, + "probability": 0.9607 + }, + { + "start": 4664.78, + "end": 4665.52, + "probability": 0.3105 + }, + { + "start": 4666.32, + "end": 4668.42, + "probability": 0.3099 + }, + { + "start": 4669.48, + "end": 4670.66, + "probability": 0.8007 + }, + { + "start": 4671.76, + "end": 4672.94, + "probability": 0.3661 + }, + { + "start": 4673.14, + "end": 4673.84, + "probability": 0.5843 + }, + { + "start": 4674.08, + "end": 4674.64, + "probability": 0.6685 + }, + { + "start": 4675.4, + "end": 4676.96, + "probability": 0.7893 + }, + { + "start": 4677.04, + "end": 4677.86, + "probability": 0.6126 + }, + { + "start": 4679.96, + "end": 4680.52, + "probability": 0.2803 + }, + { + "start": 4680.76, + "end": 4684.72, + "probability": 0.6888 + }, + { + "start": 4686.22, + "end": 4687.32, + "probability": 0.6464 + }, + { + "start": 4688.46, + "end": 4691.46, + "probability": 0.8944 + }, + { + "start": 4691.58, + "end": 4694.82, + "probability": 0.9918 + }, + { + "start": 4695.16, + "end": 4696.78, + "probability": 0.8648 + }, + { + "start": 4698.08, + "end": 4699.24, + "probability": 0.461 + }, + { + "start": 4699.32, + "end": 4700.3, + "probability": 0.4283 + }, + { + "start": 4700.56, + "end": 4700.9, + "probability": 0.7396 + }, + { + "start": 4702.06, + "end": 4704.38, + "probability": 0.457 + }, + { + "start": 4705.54, + "end": 4705.86, + "probability": 0.5782 + }, + { + "start": 4705.86, + "end": 4709.2, + "probability": 0.9196 + }, + { + "start": 4710.5, + "end": 4714.04, + "probability": 0.9796 + }, + { + "start": 4715.14, + "end": 4716.68, + "probability": 0.8577 + }, + { + "start": 4717.82, + "end": 4720.04, + "probability": 0.9227 + }, + { + "start": 4721.0, + "end": 4722.3, + "probability": 0.6283 + }, + { + "start": 4723.14, + "end": 4725.96, + "probability": 0.8221 + }, + { + "start": 4727.06, + "end": 4733.8, + "probability": 0.9893 + }, + { + "start": 4736.72, + "end": 4738.82, + "probability": 0.9655 + }, + { + "start": 4738.9, + "end": 4739.58, + "probability": 0.5924 + }, + { + "start": 4739.9, + "end": 4740.56, + "probability": 0.7408 + }, + { + "start": 4740.62, + "end": 4743.28, + "probability": 0.9017 + }, + { + "start": 4743.4, + "end": 4745.94, + "probability": 0.7764 + }, + { + "start": 4746.5, + "end": 4750.38, + "probability": 0.9947 + }, + { + "start": 4751.0, + "end": 4752.5, + "probability": 0.756 + }, + { + "start": 4753.62, + "end": 4756.4, + "probability": 0.7207 + }, + { + "start": 4757.48, + "end": 4757.94, + "probability": 0.853 + }, + { + "start": 4758.76, + "end": 4759.64, + "probability": 0.9292 + }, + { + "start": 4760.82, + "end": 4761.56, + "probability": 0.8802 + }, + { + "start": 4762.14, + "end": 4763.7, + "probability": 0.9778 + }, + { + "start": 4764.64, + "end": 4769.88, + "probability": 0.9117 + }, + { + "start": 4772.1, + "end": 4774.42, + "probability": 0.7563 + }, + { + "start": 4774.98, + "end": 4779.14, + "probability": 0.9351 + }, + { + "start": 4779.88, + "end": 4782.16, + "probability": 0.8401 + }, + { + "start": 4782.72, + "end": 4785.28, + "probability": 0.8936 + }, + { + "start": 4786.1, + "end": 4786.72, + "probability": 0.6835 + }, + { + "start": 4787.82, + "end": 4791.18, + "probability": 0.9706 + }, + { + "start": 4791.72, + "end": 4793.04, + "probability": 0.4416 + }, + { + "start": 4793.52, + "end": 4794.84, + "probability": 0.9228 + }, + { + "start": 4795.42, + "end": 4796.2, + "probability": 0.6349 + }, + { + "start": 4796.54, + "end": 4799.74, + "probability": 0.9906 + }, + { + "start": 4800.68, + "end": 4803.9, + "probability": 0.7559 + }, + { + "start": 4803.98, + "end": 4809.3, + "probability": 0.9903 + }, + { + "start": 4810.02, + "end": 4816.04, + "probability": 0.9966 + }, + { + "start": 4816.04, + "end": 4821.96, + "probability": 0.9928 + }, + { + "start": 4822.18, + "end": 4822.58, + "probability": 0.0956 + }, + { + "start": 4823.44, + "end": 4825.82, + "probability": 0.437 + }, + { + "start": 4825.98, + "end": 4826.18, + "probability": 0.4193 + }, + { + "start": 4826.28, + "end": 4827.56, + "probability": 0.9215 + }, + { + "start": 4827.62, + "end": 4827.62, + "probability": 0.3444 + }, + { + "start": 4827.62, + "end": 4828.83, + "probability": 0.8407 + }, + { + "start": 4829.64, + "end": 4831.46, + "probability": 0.948 + }, + { + "start": 4831.74, + "end": 4833.22, + "probability": 0.6894 + }, + { + "start": 4833.36, + "end": 4835.1, + "probability": 0.7817 + }, + { + "start": 4836.24, + "end": 4837.62, + "probability": 0.7069 + }, + { + "start": 4837.7, + "end": 4838.92, + "probability": 0.8894 + }, + { + "start": 4839.42, + "end": 4840.58, + "probability": 0.929 + }, + { + "start": 4840.86, + "end": 4841.3, + "probability": 0.1705 + }, + { + "start": 4842.05, + "end": 4843.52, + "probability": 0.8737 + }, + { + "start": 4843.64, + "end": 4845.6, + "probability": 0.9819 + }, + { + "start": 4846.02, + "end": 4847.82, + "probability": 0.5279 + }, + { + "start": 4848.14, + "end": 4848.16, + "probability": 0.5048 + }, + { + "start": 4848.16, + "end": 4851.3, + "probability": 0.7608 + }, + { + "start": 4851.36, + "end": 4854.61, + "probability": 0.793 + }, + { + "start": 4855.02, + "end": 4855.68, + "probability": 0.512 + }, + { + "start": 4855.68, + "end": 4856.44, + "probability": 0.1717 + }, + { + "start": 4856.5, + "end": 4857.42, + "probability": 0.8898 + }, + { + "start": 4858.08, + "end": 4858.76, + "probability": 0.7388 + }, + { + "start": 4858.86, + "end": 4861.52, + "probability": 0.9263 + }, + { + "start": 4861.98, + "end": 4862.3, + "probability": 0.4875 + }, + { + "start": 4862.64, + "end": 4863.16, + "probability": 0.96 + }, + { + "start": 4864.24, + "end": 4866.49, + "probability": 0.8511 + }, + { + "start": 4866.6, + "end": 4867.06, + "probability": 0.1915 + }, + { + "start": 4867.46, + "end": 4868.0, + "probability": 0.8599 + }, + { + "start": 4869.46, + "end": 4873.46, + "probability": 0.9603 + }, + { + "start": 4874.08, + "end": 4875.68, + "probability": 0.9441 + }, + { + "start": 4876.4, + "end": 4880.84, + "probability": 0.9379 + }, + { + "start": 4881.48, + "end": 4882.2, + "probability": 0.5233 + }, + { + "start": 4882.48, + "end": 4883.98, + "probability": 0.7689 + }, + { + "start": 4884.68, + "end": 4891.5, + "probability": 0.9125 + }, + { + "start": 4892.02, + "end": 4893.32, + "probability": 0.828 + }, + { + "start": 4893.62, + "end": 4894.26, + "probability": 0.9106 + }, + { + "start": 4894.64, + "end": 4895.24, + "probability": 0.7693 + }, + { + "start": 4895.74, + "end": 4896.32, + "probability": 0.6622 + }, + { + "start": 4896.42, + "end": 4898.48, + "probability": 0.9926 + }, + { + "start": 4898.48, + "end": 4901.58, + "probability": 0.9063 + }, + { + "start": 4902.16, + "end": 4904.78, + "probability": 0.8076 + }, + { + "start": 4905.32, + "end": 4906.6, + "probability": 0.9026 + }, + { + "start": 4907.14, + "end": 4911.96, + "probability": 0.9071 + }, + { + "start": 4912.52, + "end": 4915.28, + "probability": 0.8444 + }, + { + "start": 4915.54, + "end": 4920.52, + "probability": 0.9893 + }, + { + "start": 4921.46, + "end": 4923.86, + "probability": 0.9937 + }, + { + "start": 4924.96, + "end": 4924.96, + "probability": 0.2649 + }, + { + "start": 4924.96, + "end": 4925.78, + "probability": 0.6928 + }, + { + "start": 4926.2, + "end": 4929.42, + "probability": 0.7909 + }, + { + "start": 4929.52, + "end": 4930.04, + "probability": 0.8341 + }, + { + "start": 4931.2, + "end": 4933.64, + "probability": 0.9518 + }, + { + "start": 4933.98, + "end": 4934.92, + "probability": 0.9839 + }, + { + "start": 4935.38, + "end": 4942.42, + "probability": 0.8669 + }, + { + "start": 4943.24, + "end": 4943.6, + "probability": 0.8989 + }, + { + "start": 4945.2, + "end": 4946.18, + "probability": 0.6721 + }, + { + "start": 4946.7, + "end": 4947.34, + "probability": 0.7486 + }, + { + "start": 4947.98, + "end": 4948.48, + "probability": 0.8594 + }, + { + "start": 4949.82, + "end": 4955.26, + "probability": 0.9385 + }, + { + "start": 4955.86, + "end": 4960.26, + "probability": 0.7288 + }, + { + "start": 4960.4, + "end": 4962.82, + "probability": 0.8756 + }, + { + "start": 4962.86, + "end": 4963.68, + "probability": 0.7065 + }, + { + "start": 4964.42, + "end": 4969.04, + "probability": 0.8333 + }, + { + "start": 4969.5, + "end": 4969.99, + "probability": 0.9752 + }, + { + "start": 4970.44, + "end": 4970.9, + "probability": 0.978 + }, + { + "start": 4971.94, + "end": 4972.76, + "probability": 0.9646 + }, + { + "start": 4973.22, + "end": 4973.7, + "probability": 0.5596 + }, + { + "start": 4974.28, + "end": 4977.12, + "probability": 0.9864 + }, + { + "start": 4977.16, + "end": 4978.12, + "probability": 0.8186 + }, + { + "start": 4979.28, + "end": 4979.9, + "probability": 0.8786 + }, + { + "start": 4979.98, + "end": 4981.38, + "probability": 0.94 + }, + { + "start": 4981.48, + "end": 4982.1, + "probability": 0.7012 + }, + { + "start": 4982.44, + "end": 4983.02, + "probability": 0.6823 + }, + { + "start": 4983.72, + "end": 4985.6, + "probability": 0.981 + }, + { + "start": 4985.64, + "end": 4986.48, + "probability": 0.9709 + }, + { + "start": 4987.28, + "end": 4993.06, + "probability": 0.9844 + }, + { + "start": 4994.8, + "end": 4997.3, + "probability": 0.9639 + }, + { + "start": 4998.08, + "end": 4998.44, + "probability": 0.7593 + }, + { + "start": 4999.02, + "end": 5000.46, + "probability": 0.8115 + }, + { + "start": 5001.72, + "end": 5004.42, + "probability": 0.9941 + }, + { + "start": 5005.7, + "end": 5006.68, + "probability": 0.8955 + }, + { + "start": 5007.14, + "end": 5011.07, + "probability": 0.9326 + }, + { + "start": 5011.32, + "end": 5012.46, + "probability": 0.8984 + }, + { + "start": 5013.56, + "end": 5014.92, + "probability": 0.795 + }, + { + "start": 5015.02, + "end": 5015.66, + "probability": 0.7307 + }, + { + "start": 5015.96, + "end": 5016.92, + "probability": 0.9402 + }, + { + "start": 5017.28, + "end": 5020.68, + "probability": 0.9725 + }, + { + "start": 5021.4, + "end": 5022.0, + "probability": 0.9759 + }, + { + "start": 5022.44, + "end": 5022.98, + "probability": 0.7289 + }, + { + "start": 5023.34, + "end": 5025.62, + "probability": 0.9801 + }, + { + "start": 5026.12, + "end": 5027.0, + "probability": 0.5201 + }, + { + "start": 5027.28, + "end": 5029.82, + "probability": 0.9927 + }, + { + "start": 5029.82, + "end": 5033.16, + "probability": 0.9936 + }, + { + "start": 5033.68, + "end": 5034.04, + "probability": 0.821 + }, + { + "start": 5035.1, + "end": 5036.1, + "probability": 0.6875 + }, + { + "start": 5036.52, + "end": 5040.64, + "probability": 0.9524 + }, + { + "start": 5041.16, + "end": 5047.02, + "probability": 0.9868 + }, + { + "start": 5047.02, + "end": 5051.04, + "probability": 0.9875 + }, + { + "start": 5051.36, + "end": 5056.26, + "probability": 0.8651 + }, + { + "start": 5056.58, + "end": 5058.86, + "probability": 0.9004 + }, + { + "start": 5059.38, + "end": 5059.84, + "probability": 0.4803 + }, + { + "start": 5060.1, + "end": 5061.02, + "probability": 0.5785 + }, + { + "start": 5061.84, + "end": 5064.28, + "probability": 0.9194 + }, + { + "start": 5065.4, + "end": 5067.26, + "probability": 0.8624 + }, + { + "start": 5076.24, + "end": 5077.46, + "probability": 0.7651 + }, + { + "start": 5080.24, + "end": 5082.2, + "probability": 0.9098 + }, + { + "start": 5084.94, + "end": 5089.34, + "probability": 0.7457 + }, + { + "start": 5090.52, + "end": 5092.28, + "probability": 0.8193 + }, + { + "start": 5093.74, + "end": 5097.84, + "probability": 0.9609 + }, + { + "start": 5098.76, + "end": 5101.52, + "probability": 0.954 + }, + { + "start": 5102.74, + "end": 5104.8, + "probability": 0.9597 + }, + { + "start": 5105.7, + "end": 5107.58, + "probability": 0.8833 + }, + { + "start": 5108.28, + "end": 5109.94, + "probability": 0.9886 + }, + { + "start": 5110.86, + "end": 5113.02, + "probability": 0.8002 + }, + { + "start": 5114.24, + "end": 5114.78, + "probability": 0.7574 + }, + { + "start": 5114.86, + "end": 5115.72, + "probability": 0.9639 + }, + { + "start": 5115.9, + "end": 5119.5, + "probability": 0.9841 + }, + { + "start": 5120.52, + "end": 5122.46, + "probability": 0.9608 + }, + { + "start": 5123.16, + "end": 5124.26, + "probability": 0.998 + }, + { + "start": 5125.3, + "end": 5128.86, + "probability": 0.9879 + }, + { + "start": 5130.06, + "end": 5132.28, + "probability": 0.9772 + }, + { + "start": 5132.86, + "end": 5136.5, + "probability": 0.9866 + }, + { + "start": 5137.94, + "end": 5139.88, + "probability": 0.9945 + }, + { + "start": 5141.3, + "end": 5147.22, + "probability": 0.9906 + }, + { + "start": 5148.1, + "end": 5149.86, + "probability": 0.9061 + }, + { + "start": 5150.56, + "end": 5151.92, + "probability": 0.8676 + }, + { + "start": 5152.96, + "end": 5154.54, + "probability": 0.8657 + }, + { + "start": 5154.62, + "end": 5155.7, + "probability": 0.9502 + }, + { + "start": 5155.84, + "end": 5156.61, + "probability": 0.9854 + }, + { + "start": 5156.8, + "end": 5157.43, + "probability": 0.976 + }, + { + "start": 5158.3, + "end": 5158.93, + "probability": 0.9912 + }, + { + "start": 5159.98, + "end": 5163.13, + "probability": 0.9917 + }, + { + "start": 5165.76, + "end": 5167.22, + "probability": 0.8964 + }, + { + "start": 5167.88, + "end": 5170.94, + "probability": 0.992 + }, + { + "start": 5171.5, + "end": 5175.74, + "probability": 0.998 + }, + { + "start": 5175.84, + "end": 5179.28, + "probability": 0.9932 + }, + { + "start": 5179.84, + "end": 5182.24, + "probability": 0.9995 + }, + { + "start": 5183.0, + "end": 5185.94, + "probability": 0.999 + }, + { + "start": 5185.94, + "end": 5189.04, + "probability": 0.9688 + }, + { + "start": 5190.88, + "end": 5198.24, + "probability": 0.9883 + }, + { + "start": 5198.76, + "end": 5199.1, + "probability": 0.9973 + }, + { + "start": 5199.88, + "end": 5201.58, + "probability": 0.9972 + }, + { + "start": 5202.38, + "end": 5205.18, + "probability": 0.8253 + }, + { + "start": 5205.74, + "end": 5208.38, + "probability": 0.9965 + }, + { + "start": 5209.04, + "end": 5213.36, + "probability": 0.8703 + }, + { + "start": 5214.4, + "end": 5214.74, + "probability": 0.7783 + }, + { + "start": 5215.46, + "end": 5218.48, + "probability": 0.9954 + }, + { + "start": 5219.38, + "end": 5222.62, + "probability": 0.9931 + }, + { + "start": 5222.62, + "end": 5225.34, + "probability": 0.9912 + }, + { + "start": 5225.98, + "end": 5227.68, + "probability": 0.9895 + }, + { + "start": 5228.32, + "end": 5231.78, + "probability": 0.959 + }, + { + "start": 5232.08, + "end": 5233.42, + "probability": 0.9507 + }, + { + "start": 5233.52, + "end": 5236.78, + "probability": 0.9797 + }, + { + "start": 5238.58, + "end": 5240.42, + "probability": 0.7554 + }, + { + "start": 5241.72, + "end": 5242.7, + "probability": 0.805 + }, + { + "start": 5244.22, + "end": 5246.88, + "probability": 0.9638 + }, + { + "start": 5247.36, + "end": 5248.42, + "probability": 0.9199 + }, + { + "start": 5248.52, + "end": 5249.78, + "probability": 0.7378 + }, + { + "start": 5251.46, + "end": 5257.92, + "probability": 0.9033 + }, + { + "start": 5258.86, + "end": 5261.8, + "probability": 0.9987 + }, + { + "start": 5262.54, + "end": 5264.76, + "probability": 0.9974 + }, + { + "start": 5265.48, + "end": 5267.42, + "probability": 0.9792 + }, + { + "start": 5268.28, + "end": 5272.3, + "probability": 0.996 + }, + { + "start": 5273.34, + "end": 5274.58, + "probability": 0.9478 + }, + { + "start": 5275.1, + "end": 5279.9, + "probability": 0.9868 + }, + { + "start": 5279.9, + "end": 5287.3, + "probability": 0.9984 + }, + { + "start": 5288.06, + "end": 5293.56, + "probability": 0.995 + }, + { + "start": 5293.82, + "end": 5296.5, + "probability": 0.9364 + }, + { + "start": 5297.88, + "end": 5300.74, + "probability": 0.9922 + }, + { + "start": 5300.98, + "end": 5301.65, + "probability": 0.9871 + }, + { + "start": 5302.56, + "end": 5303.18, + "probability": 0.8894 + }, + { + "start": 5303.66, + "end": 5306.16, + "probability": 0.8382 + }, + { + "start": 5307.0, + "end": 5309.14, + "probability": 0.9893 + }, + { + "start": 5310.1, + "end": 5312.96, + "probability": 0.9974 + }, + { + "start": 5312.96, + "end": 5317.22, + "probability": 0.9936 + }, + { + "start": 5317.66, + "end": 5322.0, + "probability": 0.9898 + }, + { + "start": 5323.92, + "end": 5326.54, + "probability": 0.9808 + }, + { + "start": 5326.54, + "end": 5331.7, + "probability": 0.9963 + }, + { + "start": 5332.24, + "end": 5334.64, + "probability": 0.921 + }, + { + "start": 5335.22, + "end": 5338.18, + "probability": 0.9985 + }, + { + "start": 5339.06, + "end": 5341.46, + "probability": 0.7721 + }, + { + "start": 5342.28, + "end": 5348.6, + "probability": 0.9739 + }, + { + "start": 5350.52, + "end": 5351.5, + "probability": 0.8948 + }, + { + "start": 5352.06, + "end": 5353.06, + "probability": 0.7135 + }, + { + "start": 5354.4, + "end": 5355.4, + "probability": 0.7874 + }, + { + "start": 5356.88, + "end": 5360.86, + "probability": 0.9877 + }, + { + "start": 5361.78, + "end": 5365.22, + "probability": 0.9574 + }, + { + "start": 5365.22, + "end": 5368.74, + "probability": 0.9899 + }, + { + "start": 5370.42, + "end": 5373.5, + "probability": 0.998 + }, + { + "start": 5373.5, + "end": 5376.68, + "probability": 0.9902 + }, + { + "start": 5378.06, + "end": 5382.06, + "probability": 0.9991 + }, + { + "start": 5382.28, + "end": 5383.34, + "probability": 0.556 + }, + { + "start": 5384.14, + "end": 5389.22, + "probability": 0.9644 + }, + { + "start": 5390.38, + "end": 5392.86, + "probability": 0.99 + }, + { + "start": 5394.46, + "end": 5396.88, + "probability": 0.9983 + }, + { + "start": 5398.14, + "end": 5399.48, + "probability": 0.8647 + }, + { + "start": 5400.4, + "end": 5401.7, + "probability": 0.991 + }, + { + "start": 5402.32, + "end": 5406.46, + "probability": 0.9824 + }, + { + "start": 5406.46, + "end": 5411.72, + "probability": 0.9919 + }, + { + "start": 5412.44, + "end": 5413.06, + "probability": 0.5739 + }, + { + "start": 5413.58, + "end": 5418.62, + "probability": 0.9648 + }, + { + "start": 5419.06, + "end": 5424.42, + "probability": 0.9985 + }, + { + "start": 5425.1, + "end": 5427.42, + "probability": 0.7096 + }, + { + "start": 5427.6, + "end": 5431.16, + "probability": 0.9678 + }, + { + "start": 5432.5, + "end": 5435.26, + "probability": 0.9834 + }, + { + "start": 5435.32, + "end": 5437.52, + "probability": 0.9592 + }, + { + "start": 5437.58, + "end": 5439.38, + "probability": 0.9946 + }, + { + "start": 5440.08, + "end": 5443.1, + "probability": 0.9995 + }, + { + "start": 5443.88, + "end": 5447.64, + "probability": 0.9968 + }, + { + "start": 5447.64, + "end": 5452.68, + "probability": 0.9985 + }, + { + "start": 5453.28, + "end": 5457.68, + "probability": 0.9985 + }, + { + "start": 5458.32, + "end": 5459.5, + "probability": 0.8651 + }, + { + "start": 5460.0, + "end": 5461.16, + "probability": 0.8679 + }, + { + "start": 5461.28, + "end": 5461.88, + "probability": 0.6718 + }, + { + "start": 5461.92, + "end": 5464.48, + "probability": 0.9968 + }, + { + "start": 5464.48, + "end": 5470.64, + "probability": 0.9808 + }, + { + "start": 5470.94, + "end": 5471.52, + "probability": 0.7055 + }, + { + "start": 5471.82, + "end": 5473.68, + "probability": 0.9487 + }, + { + "start": 5473.74, + "end": 5477.72, + "probability": 0.9953 + }, + { + "start": 5478.24, + "end": 5481.64, + "probability": 0.9827 + }, + { + "start": 5481.68, + "end": 5484.8, + "probability": 0.998 + }, + { + "start": 5485.0, + "end": 5485.38, + "probability": 0.7523 + }, + { + "start": 5485.72, + "end": 5487.02, + "probability": 0.5455 + }, + { + "start": 5488.16, + "end": 5492.43, + "probability": 0.7793 + }, + { + "start": 5492.82, + "end": 5497.6, + "probability": 0.7023 + }, + { + "start": 5501.46, + "end": 5502.7, + "probability": 0.5865 + }, + { + "start": 5502.96, + "end": 5503.26, + "probability": 0.785 + }, + { + "start": 5503.92, + "end": 5504.2, + "probability": 0.6479 + }, + { + "start": 5505.18, + "end": 5506.94, + "probability": 0.7496 + }, + { + "start": 5507.54, + "end": 5507.74, + "probability": 0.934 + }, + { + "start": 5509.78, + "end": 5510.66, + "probability": 0.4582 + }, + { + "start": 5510.74, + "end": 5512.12, + "probability": 0.9183 + }, + { + "start": 5513.94, + "end": 5516.0, + "probability": 0.7465 + }, + { + "start": 5516.58, + "end": 5517.86, + "probability": 0.9102 + }, + { + "start": 5519.0, + "end": 5523.9, + "probability": 0.8528 + }, + { + "start": 5523.9, + "end": 5526.18, + "probability": 0.9797 + }, + { + "start": 5527.14, + "end": 5528.8, + "probability": 0.9358 + }, + { + "start": 5529.06, + "end": 5530.26, + "probability": 0.8146 + }, + { + "start": 5530.4, + "end": 5531.2, + "probability": 0.6615 + }, + { + "start": 5532.06, + "end": 5533.5, + "probability": 0.6994 + }, + { + "start": 5534.22, + "end": 5535.32, + "probability": 0.8259 + }, + { + "start": 5536.16, + "end": 5538.28, + "probability": 0.4864 + }, + { + "start": 5539.28, + "end": 5545.14, + "probability": 0.9707 + }, + { + "start": 5545.94, + "end": 5547.58, + "probability": 0.9717 + }, + { + "start": 5548.34, + "end": 5552.98, + "probability": 0.9784 + }, + { + "start": 5553.74, + "end": 5555.46, + "probability": 0.9431 + }, + { + "start": 5555.5, + "end": 5556.54, + "probability": 0.8709 + }, + { + "start": 5556.78, + "end": 5562.42, + "probability": 0.9922 + }, + { + "start": 5562.92, + "end": 5564.9, + "probability": 0.9463 + }, + { + "start": 5566.28, + "end": 5571.7, + "probability": 0.9922 + }, + { + "start": 5574.28, + "end": 5575.6, + "probability": 0.0696 + }, + { + "start": 5576.48, + "end": 5580.46, + "probability": 0.9907 + }, + { + "start": 5580.48, + "end": 5585.86, + "probability": 0.9875 + }, + { + "start": 5586.82, + "end": 5588.04, + "probability": 0.6076 + }, + { + "start": 5588.68, + "end": 5591.18, + "probability": 0.9614 + }, + { + "start": 5592.04, + "end": 5592.82, + "probability": 0.7521 + }, + { + "start": 5593.6, + "end": 5597.18, + "probability": 0.9692 + }, + { + "start": 5598.0, + "end": 5600.9, + "probability": 0.7661 + }, + { + "start": 5601.48, + "end": 5604.74, + "probability": 0.9484 + }, + { + "start": 5605.52, + "end": 5607.0, + "probability": 0.958 + }, + { + "start": 5607.6, + "end": 5612.46, + "probability": 0.9202 + }, + { + "start": 5613.3, + "end": 5615.36, + "probability": 0.9797 + }, + { + "start": 5616.94, + "end": 5621.66, + "probability": 0.9897 + }, + { + "start": 5622.6, + "end": 5626.28, + "probability": 0.9946 + }, + { + "start": 5626.28, + "end": 5630.24, + "probability": 0.9875 + }, + { + "start": 5631.2, + "end": 5633.02, + "probability": 0.9817 + }, + { + "start": 5633.6, + "end": 5633.94, + "probability": 0.7029 + }, + { + "start": 5634.52, + "end": 5637.28, + "probability": 0.9577 + }, + { + "start": 5638.52, + "end": 5641.74, + "probability": 0.9483 + }, + { + "start": 5641.74, + "end": 5644.94, + "probability": 0.9941 + }, + { + "start": 5645.52, + "end": 5648.5, + "probability": 0.9588 + }, + { + "start": 5649.28, + "end": 5653.66, + "probability": 0.9934 + }, + { + "start": 5654.46, + "end": 5657.62, + "probability": 0.9699 + }, + { + "start": 5657.62, + "end": 5660.66, + "probability": 0.9825 + }, + { + "start": 5661.52, + "end": 5665.36, + "probability": 0.9724 + }, + { + "start": 5665.5, + "end": 5670.1, + "probability": 0.996 + }, + { + "start": 5670.16, + "end": 5674.96, + "probability": 0.9882 + }, + { + "start": 5674.96, + "end": 5678.94, + "probability": 0.9136 + }, + { + "start": 5679.74, + "end": 5681.08, + "probability": 0.9833 + }, + { + "start": 5681.46, + "end": 5682.48, + "probability": 0.9701 + }, + { + "start": 5682.6, + "end": 5683.46, + "probability": 0.9674 + }, + { + "start": 5684.04, + "end": 5686.6, + "probability": 0.9707 + }, + { + "start": 5687.14, + "end": 5691.28, + "probability": 0.9856 + }, + { + "start": 5691.98, + "end": 5695.84, + "probability": 0.8159 + }, + { + "start": 5695.84, + "end": 5701.02, + "probability": 0.9936 + }, + { + "start": 5701.44, + "end": 5701.98, + "probability": 0.4466 + }, + { + "start": 5702.24, + "end": 5703.06, + "probability": 0.8984 + }, + { + "start": 5703.6, + "end": 5704.96, + "probability": 0.955 + }, + { + "start": 5705.46, + "end": 5708.48, + "probability": 0.9866 + }, + { + "start": 5708.62, + "end": 5710.4, + "probability": 0.0328 + }, + { + "start": 5710.4, + "end": 5715.54, + "probability": 0.9285 + }, + { + "start": 5716.98, + "end": 5719.26, + "probability": 0.8908 + }, + { + "start": 5719.8, + "end": 5725.24, + "probability": 0.9873 + }, + { + "start": 5725.98, + "end": 5730.82, + "probability": 0.9984 + }, + { + "start": 5730.82, + "end": 5735.44, + "probability": 0.9982 + }, + { + "start": 5736.18, + "end": 5738.5, + "probability": 0.8563 + }, + { + "start": 5739.28, + "end": 5741.1, + "probability": 0.9836 + }, + { + "start": 5741.52, + "end": 5742.44, + "probability": 0.9481 + }, + { + "start": 5742.92, + "end": 5745.08, + "probability": 0.9554 + }, + { + "start": 5746.4, + "end": 5750.96, + "probability": 0.9854 + }, + { + "start": 5751.1, + "end": 5751.62, + "probability": 0.7229 + }, + { + "start": 5751.82, + "end": 5755.22, + "probability": 0.949 + }, + { + "start": 5755.68, + "end": 5758.0, + "probability": 0.9613 + }, + { + "start": 5758.34, + "end": 5760.38, + "probability": 0.756 + }, + { + "start": 5760.94, + "end": 5766.22, + "probability": 0.8884 + }, + { + "start": 5766.32, + "end": 5767.4, + "probability": 0.8798 + }, + { + "start": 5767.44, + "end": 5768.52, + "probability": 0.9204 + }, + { + "start": 5768.64, + "end": 5771.16, + "probability": 0.8824 + }, + { + "start": 5771.6, + "end": 5773.34, + "probability": 0.9897 + }, + { + "start": 5774.28, + "end": 5774.28, + "probability": 0.0418 + }, + { + "start": 5774.28, + "end": 5775.86, + "probability": 0.6124 + }, + { + "start": 5776.02, + "end": 5777.68, + "probability": 0.7501 + }, + { + "start": 5778.46, + "end": 5779.88, + "probability": 0.8328 + }, + { + "start": 5780.48, + "end": 5783.88, + "probability": 0.9297 + }, + { + "start": 5783.9, + "end": 5785.32, + "probability": 0.6517 + }, + { + "start": 5785.58, + "end": 5785.58, + "probability": 0.4209 + }, + { + "start": 5785.74, + "end": 5788.86, + "probability": 0.9648 + }, + { + "start": 5790.46, + "end": 5796.12, + "probability": 0.9373 + }, + { + "start": 5796.12, + "end": 5802.1, + "probability": 0.9879 + }, + { + "start": 5802.1, + "end": 5806.64, + "probability": 0.9863 + }, + { + "start": 5807.28, + "end": 5811.82, + "probability": 0.9942 + }, + { + "start": 5812.42, + "end": 5816.46, + "probability": 0.9824 + }, + { + "start": 5817.36, + "end": 5818.04, + "probability": 0.8625 + }, + { + "start": 5818.3, + "end": 5823.3, + "probability": 0.8507 + }, + { + "start": 5823.3, + "end": 5827.22, + "probability": 0.9979 + }, + { + "start": 5827.22, + "end": 5831.92, + "probability": 0.9982 + }, + { + "start": 5832.74, + "end": 5837.3, + "probability": 0.9237 + }, + { + "start": 5840.74, + "end": 5845.16, + "probability": 0.9124 + }, + { + "start": 5845.84, + "end": 5850.34, + "probability": 0.9207 + }, + { + "start": 5850.76, + "end": 5854.22, + "probability": 0.9525 + }, + { + "start": 5855.42, + "end": 5859.68, + "probability": 0.8265 + }, + { + "start": 5860.24, + "end": 5862.44, + "probability": 0.997 + }, + { + "start": 5862.98, + "end": 5866.08, + "probability": 0.8415 + }, + { + "start": 5866.54, + "end": 5867.24, + "probability": 0.3395 + }, + { + "start": 5868.04, + "end": 5870.62, + "probability": 0.9951 + }, + { + "start": 5870.62, + "end": 5873.78, + "probability": 0.9989 + }, + { + "start": 5874.34, + "end": 5877.54, + "probability": 0.9504 + }, + { + "start": 5878.82, + "end": 5885.84, + "probability": 0.9658 + }, + { + "start": 5886.38, + "end": 5890.26, + "probability": 0.9469 + }, + { + "start": 5890.9, + "end": 5897.22, + "probability": 0.9956 + }, + { + "start": 5897.94, + "end": 5902.3, + "probability": 0.7886 + }, + { + "start": 5902.3, + "end": 5907.26, + "probability": 0.9927 + }, + { + "start": 5908.4, + "end": 5915.83, + "probability": 0.8361 + }, + { + "start": 5918.07, + "end": 5922.16, + "probability": 0.8741 + }, + { + "start": 5922.46, + "end": 5923.26, + "probability": 0.8141 + }, + { + "start": 5923.84, + "end": 5924.7, + "probability": 0.971 + }, + { + "start": 5925.58, + "end": 5929.41, + "probability": 0.9972 + }, + { + "start": 5929.6, + "end": 5934.5, + "probability": 0.9871 + }, + { + "start": 5935.38, + "end": 5936.02, + "probability": 0.779 + }, + { + "start": 5936.66, + "end": 5940.6, + "probability": 0.9577 + }, + { + "start": 5940.6, + "end": 5945.02, + "probability": 0.9932 + }, + { + "start": 5947.74, + "end": 5950.0, + "probability": 0.934 + }, + { + "start": 5950.22, + "end": 5952.3, + "probability": 0.7727 + }, + { + "start": 5952.54, + "end": 5956.4, + "probability": 0.9844 + }, + { + "start": 5958.5, + "end": 5962.46, + "probability": 0.9087 + }, + { + "start": 5962.48, + "end": 5964.76, + "probability": 0.9894 + }, + { + "start": 5966.87, + "end": 5969.58, + "probability": 0.8935 + }, + { + "start": 5970.12, + "end": 5972.08, + "probability": 0.9974 + }, + { + "start": 5972.62, + "end": 5975.18, + "probability": 0.9934 + }, + { + "start": 5975.82, + "end": 5979.06, + "probability": 0.9932 + }, + { + "start": 5979.06, + "end": 5983.08, + "probability": 0.9722 + }, + { + "start": 5983.64, + "end": 5984.1, + "probability": 0.981 + }, + { + "start": 5984.9, + "end": 5989.56, + "probability": 0.8929 + }, + { + "start": 5989.7, + "end": 5993.1, + "probability": 0.997 + }, + { + "start": 5993.1, + "end": 5998.18, + "probability": 0.9897 + }, + { + "start": 5999.12, + "end": 6000.52, + "probability": 0.9626 + }, + { + "start": 6000.98, + "end": 6002.08, + "probability": 0.8875 + }, + { + "start": 6002.48, + "end": 6003.82, + "probability": 0.9945 + }, + { + "start": 6004.36, + "end": 6005.92, + "probability": 0.9789 + }, + { + "start": 6006.4, + "end": 6010.08, + "probability": 0.9871 + }, + { + "start": 6011.9, + "end": 6012.78, + "probability": 0.9486 + }, + { + "start": 6012.92, + "end": 6013.82, + "probability": 0.653 + }, + { + "start": 6014.04, + "end": 6014.74, + "probability": 0.862 + }, + { + "start": 6015.06, + "end": 6017.48, + "probability": 0.9957 + }, + { + "start": 6017.64, + "end": 6020.94, + "probability": 0.9952 + }, + { + "start": 6021.6, + "end": 6028.98, + "probability": 0.9546 + }, + { + "start": 6028.98, + "end": 6034.08, + "probability": 0.9988 + }, + { + "start": 6035.58, + "end": 6040.0, + "probability": 0.986 + }, + { + "start": 6040.28, + "end": 6045.3, + "probability": 0.9856 + }, + { + "start": 6045.74, + "end": 6048.76, + "probability": 0.8153 + }, + { + "start": 6049.64, + "end": 6053.22, + "probability": 0.9171 + }, + { + "start": 6056.52, + "end": 6058.98, + "probability": 0.8994 + }, + { + "start": 6060.4, + "end": 6063.84, + "probability": 0.9658 + }, + { + "start": 6065.68, + "end": 6067.76, + "probability": 0.183 + }, + { + "start": 6069.04, + "end": 6069.63, + "probability": 0.8756 + }, + { + "start": 6070.22, + "end": 6070.92, + "probability": 0.7167 + }, + { + "start": 6071.1, + "end": 6075.07, + "probability": 0.7153 + }, + { + "start": 6077.24, + "end": 6077.97, + "probability": 0.344 + }, + { + "start": 6080.66, + "end": 6089.22, + "probability": 0.8238 + }, + { + "start": 6089.3, + "end": 6090.26, + "probability": 0.8517 + }, + { + "start": 6091.0, + "end": 6095.3, + "probability": 0.995 + }, + { + "start": 6096.5, + "end": 6097.26, + "probability": 0.6191 + }, + { + "start": 6098.5, + "end": 6100.14, + "probability": 0.0339 + }, + { + "start": 6100.5, + "end": 6103.02, + "probability": 0.7532 + }, + { + "start": 6103.7, + "end": 6106.3, + "probability": 0.9079 + }, + { + "start": 6107.32, + "end": 6108.96, + "probability": 0.9314 + }, + { + "start": 6109.08, + "end": 6118.1, + "probability": 0.8997 + }, + { + "start": 6118.72, + "end": 6119.86, + "probability": 0.8216 + }, + { + "start": 6120.7, + "end": 6122.48, + "probability": 0.8918 + }, + { + "start": 6123.0, + "end": 6123.76, + "probability": 0.5915 + }, + { + "start": 6123.92, + "end": 6125.23, + "probability": 0.9648 + }, + { + "start": 6126.38, + "end": 6129.16, + "probability": 0.8931 + }, + { + "start": 6129.62, + "end": 6133.52, + "probability": 0.666 + }, + { + "start": 6134.32, + "end": 6140.12, + "probability": 0.9922 + }, + { + "start": 6140.12, + "end": 6144.94, + "probability": 0.9964 + }, + { + "start": 6144.94, + "end": 6149.02, + "probability": 0.9884 + }, + { + "start": 6149.6, + "end": 6151.13, + "probability": 0.7749 + }, + { + "start": 6151.72, + "end": 6155.1, + "probability": 0.9851 + }, + { + "start": 6155.58, + "end": 6158.9, + "probability": 0.8486 + }, + { + "start": 6160.08, + "end": 6163.94, + "probability": 0.9827 + }, + { + "start": 6164.78, + "end": 6166.3, + "probability": 0.8269 + }, + { + "start": 6166.46, + "end": 6169.05, + "probability": 0.9879 + }, + { + "start": 6169.62, + "end": 6171.48, + "probability": 0.6528 + }, + { + "start": 6173.28, + "end": 6174.72, + "probability": 0.7505 + }, + { + "start": 6175.04, + "end": 6179.26, + "probability": 0.9873 + }, + { + "start": 6180.24, + "end": 6184.02, + "probability": 0.9922 + }, + { + "start": 6184.6, + "end": 6184.92, + "probability": 0.9169 + }, + { + "start": 6185.7, + "end": 6187.18, + "probability": 0.8186 + }, + { + "start": 6187.62, + "end": 6189.98, + "probability": 0.9951 + }, + { + "start": 6189.98, + "end": 6192.9, + "probability": 0.9958 + }, + { + "start": 6194.42, + "end": 6196.84, + "probability": 0.8911 + }, + { + "start": 6196.86, + "end": 6200.46, + "probability": 0.8513 + }, + { + "start": 6201.08, + "end": 6201.62, + "probability": 0.2066 + }, + { + "start": 6201.72, + "end": 6203.64, + "probability": 0.9109 + }, + { + "start": 6203.74, + "end": 6206.66, + "probability": 0.7145 + }, + { + "start": 6207.38, + "end": 6211.07, + "probability": 0.9634 + }, + { + "start": 6211.18, + "end": 6213.9, + "probability": 0.991 + }, + { + "start": 6214.96, + "end": 6217.5, + "probability": 0.6656 + }, + { + "start": 6218.16, + "end": 6221.32, + "probability": 0.9335 + }, + { + "start": 6222.04, + "end": 6222.34, + "probability": 0.9558 + }, + { + "start": 6222.42, + "end": 6225.36, + "probability": 0.9746 + }, + { + "start": 6225.44, + "end": 6229.52, + "probability": 0.9908 + }, + { + "start": 6229.96, + "end": 6230.8, + "probability": 0.7533 + }, + { + "start": 6231.6, + "end": 6235.32, + "probability": 0.9938 + }, + { + "start": 6235.32, + "end": 6239.18, + "probability": 0.9957 + }, + { + "start": 6239.4, + "end": 6242.12, + "probability": 0.8131 + }, + { + "start": 6242.22, + "end": 6245.04, + "probability": 0.8275 + }, + { + "start": 6245.98, + "end": 6247.42, + "probability": 0.9854 + }, + { + "start": 6248.51, + "end": 6251.62, + "probability": 0.9531 + }, + { + "start": 6251.7, + "end": 6256.62, + "probability": 0.9589 + }, + { + "start": 6257.3, + "end": 6257.3, + "probability": 0.6391 + }, + { + "start": 6257.3, + "end": 6258.92, + "probability": 0.9857 + }, + { + "start": 6259.44, + "end": 6261.54, + "probability": 0.949 + }, + { + "start": 6261.62, + "end": 6262.68, + "probability": 0.8835 + }, + { + "start": 6263.0, + "end": 6263.86, + "probability": 0.7553 + }, + { + "start": 6264.44, + "end": 6265.68, + "probability": 0.9457 + }, + { + "start": 6266.56, + "end": 6270.12, + "probability": 0.9891 + }, + { + "start": 6270.54, + "end": 6274.78, + "probability": 0.8593 + }, + { + "start": 6274.86, + "end": 6276.78, + "probability": 0.4881 + }, + { + "start": 6276.88, + "end": 6278.73, + "probability": 0.9645 + }, + { + "start": 6279.28, + "end": 6281.46, + "probability": 0.8023 + }, + { + "start": 6281.62, + "end": 6283.5, + "probability": 0.9731 + }, + { + "start": 6283.98, + "end": 6286.58, + "probability": 0.921 + }, + { + "start": 6287.08, + "end": 6287.48, + "probability": 0.3864 + }, + { + "start": 6287.6, + "end": 6293.36, + "probability": 0.7091 + }, + { + "start": 6293.7, + "end": 6296.9, + "probability": 0.9393 + }, + { + "start": 6297.72, + "end": 6300.6, + "probability": 0.9619 + }, + { + "start": 6301.56, + "end": 6303.9, + "probability": 0.8745 + }, + { + "start": 6303.9, + "end": 6310.82, + "probability": 0.952 + }, + { + "start": 6310.98, + "end": 6312.44, + "probability": 0.686 + }, + { + "start": 6313.14, + "end": 6316.06, + "probability": 0.6245 + }, + { + "start": 6317.48, + "end": 6323.0, + "probability": 0.8582 + }, + { + "start": 6323.5, + "end": 6325.24, + "probability": 0.9084 + }, + { + "start": 6325.4, + "end": 6328.88, + "probability": 0.8748 + }, + { + "start": 6330.46, + "end": 6331.48, + "probability": 0.6841 + }, + { + "start": 6332.18, + "end": 6332.98, + "probability": 0.6821 + }, + { + "start": 6334.06, + "end": 6336.9, + "probability": 0.7885 + }, + { + "start": 6337.38, + "end": 6338.0, + "probability": 0.8542 + }, + { + "start": 6338.4, + "end": 6340.04, + "probability": 0.9468 + }, + { + "start": 6340.22, + "end": 6340.93, + "probability": 0.8552 + }, + { + "start": 6341.82, + "end": 6344.46, + "probability": 0.9584 + }, + { + "start": 6344.68, + "end": 6347.32, + "probability": 0.8169 + }, + { + "start": 6347.84, + "end": 6352.42, + "probability": 0.7317 + }, + { + "start": 6353.02, + "end": 6354.66, + "probability": 0.7639 + }, + { + "start": 6355.66, + "end": 6358.6, + "probability": 0.9261 + }, + { + "start": 6358.96, + "end": 6364.34, + "probability": 0.9866 + }, + { + "start": 6364.52, + "end": 6366.72, + "probability": 0.8154 + }, + { + "start": 6366.82, + "end": 6370.29, + "probability": 0.9893 + }, + { + "start": 6370.54, + "end": 6380.76, + "probability": 0.9328 + }, + { + "start": 6381.0, + "end": 6381.32, + "probability": 0.4254 + }, + { + "start": 6381.9, + "end": 6384.76, + "probability": 0.1986 + }, + { + "start": 6385.64, + "end": 6386.32, + "probability": 0.5109 + }, + { + "start": 6386.64, + "end": 6391.62, + "probability": 0.9565 + }, + { + "start": 6392.2, + "end": 6397.74, + "probability": 0.9822 + }, + { + "start": 6397.74, + "end": 6401.84, + "probability": 0.9911 + }, + { + "start": 6402.72, + "end": 6407.32, + "probability": 0.8096 + }, + { + "start": 6407.62, + "end": 6408.44, + "probability": 0.629 + }, + { + "start": 6409.52, + "end": 6411.22, + "probability": 0.4182 + }, + { + "start": 6411.82, + "end": 6414.32, + "probability": 0.9259 + }, + { + "start": 6414.84, + "end": 6418.62, + "probability": 0.9893 + }, + { + "start": 6419.32, + "end": 6421.94, + "probability": 0.6659 + }, + { + "start": 6422.04, + "end": 6425.26, + "probability": 0.9864 + }, + { + "start": 6426.16, + "end": 6429.54, + "probability": 0.9587 + }, + { + "start": 6430.0, + "end": 6432.24, + "probability": 0.9898 + }, + { + "start": 6432.96, + "end": 6436.6, + "probability": 0.8132 + }, + { + "start": 6436.8, + "end": 6443.5, + "probability": 0.9891 + }, + { + "start": 6444.06, + "end": 6444.41, + "probability": 0.5146 + }, + { + "start": 6445.48, + "end": 6446.54, + "probability": 0.9722 + }, + { + "start": 6446.74, + "end": 6449.02, + "probability": 0.9506 + }, + { + "start": 6449.42, + "end": 6452.4, + "probability": 0.8296 + }, + { + "start": 6452.94, + "end": 6453.08, + "probability": 0.2819 + }, + { + "start": 6453.08, + "end": 6458.06, + "probability": 0.9604 + }, + { + "start": 6458.76, + "end": 6461.24, + "probability": 0.7095 + }, + { + "start": 6461.32, + "end": 6465.34, + "probability": 0.9806 + }, + { + "start": 6465.56, + "end": 6467.36, + "probability": 0.795 + }, + { + "start": 6467.36, + "end": 6468.16, + "probability": 0.5348 + }, + { + "start": 6468.7, + "end": 6471.52, + "probability": 0.9966 + }, + { + "start": 6472.94, + "end": 6475.16, + "probability": 0.9882 + }, + { + "start": 6476.42, + "end": 6478.02, + "probability": 0.8824 + }, + { + "start": 6478.66, + "end": 6482.4, + "probability": 0.9944 + }, + { + "start": 6482.4, + "end": 6486.34, + "probability": 0.9873 + }, + { + "start": 6486.6, + "end": 6490.32, + "probability": 0.9484 + }, + { + "start": 6490.84, + "end": 6492.24, + "probability": 0.8178 + }, + { + "start": 6492.28, + "end": 6494.58, + "probability": 0.9484 + }, + { + "start": 6494.9, + "end": 6495.86, + "probability": 0.8501 + }, + { + "start": 6496.5, + "end": 6500.3, + "probability": 0.9836 + }, + { + "start": 6500.48, + "end": 6500.72, + "probability": 0.3669 + }, + { + "start": 6501.94, + "end": 6503.27, + "probability": 0.6646 + }, + { + "start": 6503.54, + "end": 6509.64, + "probability": 0.9343 + }, + { + "start": 6509.74, + "end": 6517.46, + "probability": 0.9863 + }, + { + "start": 6517.6, + "end": 6518.8, + "probability": 0.763 + }, + { + "start": 6518.86, + "end": 6521.74, + "probability": 0.9621 + }, + { + "start": 6522.58, + "end": 6523.0, + "probability": 0.1878 + }, + { + "start": 6526.3, + "end": 6527.0, + "probability": 0.3009 + }, + { + "start": 6528.02, + "end": 6529.84, + "probability": 0.4404 + }, + { + "start": 6529.98, + "end": 6530.88, + "probability": 0.4644 + }, + { + "start": 6531.64, + "end": 6532.2, + "probability": 0.7623 + }, + { + "start": 6532.4, + "end": 6536.18, + "probability": 0.4626 + }, + { + "start": 6537.08, + "end": 6538.16, + "probability": 0.8865 + }, + { + "start": 6538.74, + "end": 6542.0, + "probability": 0.8125 + }, + { + "start": 6542.0, + "end": 6542.86, + "probability": 0.4143 + }, + { + "start": 6542.88, + "end": 6543.5, + "probability": 0.8629 + }, + { + "start": 6544.5, + "end": 6545.16, + "probability": 0.4121 + }, + { + "start": 6548.8, + "end": 6549.22, + "probability": 0.7246 + }, + { + "start": 6553.58, + "end": 6554.12, + "probability": 0.2766 + }, + { + "start": 6554.12, + "end": 6557.38, + "probability": 0.1637 + }, + { + "start": 6559.46, + "end": 6562.22, + "probability": 0.5785 + }, + { + "start": 6562.4, + "end": 6568.36, + "probability": 0.9744 + }, + { + "start": 6569.22, + "end": 6570.58, + "probability": 0.5689 + }, + { + "start": 6570.76, + "end": 6573.34, + "probability": 0.8542 + }, + { + "start": 6574.08, + "end": 6576.46, + "probability": 0.9545 + }, + { + "start": 6576.56, + "end": 6577.6, + "probability": 0.903 + }, + { + "start": 6577.6, + "end": 6579.12, + "probability": 0.959 + }, + { + "start": 6579.18, + "end": 6582.2, + "probability": 0.7396 + }, + { + "start": 6582.94, + "end": 6585.06, + "probability": 0.1317 + }, + { + "start": 6585.34, + "end": 6586.49, + "probability": 0.9296 + }, + { + "start": 6587.06, + "end": 6589.98, + "probability": 0.8197 + }, + { + "start": 6590.24, + "end": 6590.68, + "probability": 0.8022 + }, + { + "start": 6591.28, + "end": 6591.96, + "probability": 0.6697 + }, + { + "start": 6592.14, + "end": 6593.14, + "probability": 0.7506 + }, + { + "start": 6593.2, + "end": 6594.63, + "probability": 0.6851 + }, + { + "start": 6596.86, + "end": 6597.94, + "probability": 0.8102 + }, + { + "start": 6598.14, + "end": 6601.78, + "probability": 0.9034 + }, + { + "start": 6602.5, + "end": 6604.74, + "probability": 0.7028 + }, + { + "start": 6605.52, + "end": 6607.76, + "probability": 0.7537 + }, + { + "start": 6607.84, + "end": 6608.44, + "probability": 0.951 + }, + { + "start": 6608.54, + "end": 6610.9, + "probability": 0.9916 + }, + { + "start": 6610.9, + "end": 6615.04, + "probability": 0.9974 + }, + { + "start": 6615.12, + "end": 6615.7, + "probability": 0.8262 + }, + { + "start": 6615.78, + "end": 6616.38, + "probability": 0.8358 + }, + { + "start": 6616.48, + "end": 6617.22, + "probability": 0.7852 + }, + { + "start": 6617.3, + "end": 6618.0, + "probability": 0.5651 + }, + { + "start": 6618.16, + "end": 6619.22, + "probability": 0.9616 + }, + { + "start": 6619.42, + "end": 6620.12, + "probability": 0.439 + }, + { + "start": 6620.2, + "end": 6621.28, + "probability": 0.8119 + }, + { + "start": 6622.0, + "end": 6622.88, + "probability": 0.5845 + }, + { + "start": 6622.9, + "end": 6623.64, + "probability": 0.8044 + }, + { + "start": 6623.64, + "end": 6625.52, + "probability": 0.7123 + }, + { + "start": 6626.36, + "end": 6626.94, + "probability": 0.8322 + }, + { + "start": 6628.12, + "end": 6630.84, + "probability": 0.9254 + }, + { + "start": 6631.32, + "end": 6632.04, + "probability": 0.7072 + }, + { + "start": 6632.16, + "end": 6633.46, + "probability": 0.8252 + }, + { + "start": 6633.52, + "end": 6635.9, + "probability": 0.9907 + }, + { + "start": 6636.04, + "end": 6638.82, + "probability": 0.7957 + }, + { + "start": 6639.62, + "end": 6641.94, + "probability": 0.9872 + }, + { + "start": 6641.94, + "end": 6644.34, + "probability": 0.9891 + }, + { + "start": 6645.2, + "end": 6647.68, + "probability": 0.9785 + }, + { + "start": 6648.16, + "end": 6649.86, + "probability": 0.9663 + }, + { + "start": 6650.04, + "end": 6655.48, + "probability": 0.9725 + }, + { + "start": 6655.62, + "end": 6655.88, + "probability": 0.8412 + }, + { + "start": 6656.9, + "end": 6659.84, + "probability": 0.9888 + }, + { + "start": 6659.84, + "end": 6663.0, + "probability": 0.9965 + }, + { + "start": 6663.54, + "end": 6668.96, + "probability": 0.9536 + }, + { + "start": 6669.62, + "end": 6671.96, + "probability": 0.9817 + }, + { + "start": 6672.64, + "end": 6673.1, + "probability": 0.9047 + }, + { + "start": 6673.36, + "end": 6674.14, + "probability": 0.8962 + }, + { + "start": 6674.64, + "end": 6676.78, + "probability": 0.9976 + }, + { + "start": 6679.56, + "end": 6683.24, + "probability": 0.9839 + }, + { + "start": 6683.48, + "end": 6685.9, + "probability": 0.9927 + }, + { + "start": 6686.54, + "end": 6688.36, + "probability": 0.9373 + }, + { + "start": 6688.44, + "end": 6690.02, + "probability": 0.9147 + }, + { + "start": 6690.1, + "end": 6691.1, + "probability": 0.9788 + }, + { + "start": 6693.6, + "end": 6695.98, + "probability": 0.981 + }, + { + "start": 6695.98, + "end": 6699.06, + "probability": 0.9956 + }, + { + "start": 6699.08, + "end": 6701.44, + "probability": 0.9816 + }, + { + "start": 6701.44, + "end": 6704.68, + "probability": 0.9827 + }, + { + "start": 6705.66, + "end": 6707.47, + "probability": 0.9949 + }, + { + "start": 6708.02, + "end": 6711.7, + "probability": 0.9722 + }, + { + "start": 6712.22, + "end": 6713.62, + "probability": 0.9697 + }, + { + "start": 6714.16, + "end": 6715.04, + "probability": 0.9976 + }, + { + "start": 6715.84, + "end": 6720.3, + "probability": 0.9586 + }, + { + "start": 6720.34, + "end": 6722.36, + "probability": 0.7848 + }, + { + "start": 6722.72, + "end": 6724.82, + "probability": 0.9948 + }, + { + "start": 6725.58, + "end": 6726.38, + "probability": 0.9626 + }, + { + "start": 6726.42, + "end": 6727.98, + "probability": 0.9961 + }, + { + "start": 6728.22, + "end": 6729.88, + "probability": 0.972 + }, + { + "start": 6730.0, + "end": 6732.32, + "probability": 0.9744 + }, + { + "start": 6733.26, + "end": 6733.6, + "probability": 0.8905 + }, + { + "start": 6734.78, + "end": 6735.64, + "probability": 0.7859 + }, + { + "start": 6735.92, + "end": 6740.28, + "probability": 0.9423 + }, + { + "start": 6740.4, + "end": 6741.78, + "probability": 0.7445 + }, + { + "start": 6742.66, + "end": 6744.04, + "probability": 0.8949 + }, + { + "start": 6744.94, + "end": 6748.06, + "probability": 0.8182 + }, + { + "start": 6749.4, + "end": 6751.64, + "probability": 0.9483 + }, + { + "start": 6751.8, + "end": 6753.46, + "probability": 0.8115 + }, + { + "start": 6753.58, + "end": 6755.7, + "probability": 0.7852 + }, + { + "start": 6755.8, + "end": 6756.72, + "probability": 0.5758 + }, + { + "start": 6768.28, + "end": 6769.18, + "probability": 0.2056 + }, + { + "start": 6769.18, + "end": 6769.5, + "probability": 0.6874 + }, + { + "start": 6772.52, + "end": 6775.38, + "probability": 0.0047 + }, + { + "start": 6783.46, + "end": 6783.64, + "probability": 0.0459 + }, + { + "start": 6783.64, + "end": 6785.72, + "probability": 0.2663 + }, + { + "start": 6785.88, + "end": 6787.44, + "probability": 0.7039 + }, + { + "start": 6788.14, + "end": 6790.58, + "probability": 0.2489 + }, + { + "start": 6791.16, + "end": 6792.56, + "probability": 0.9875 + }, + { + "start": 6792.7, + "end": 6794.22, + "probability": 0.9162 + }, + { + "start": 6794.36, + "end": 6794.46, + "probability": 0.5451 + }, + { + "start": 6795.1, + "end": 6795.92, + "probability": 0.91 + }, + { + "start": 6804.29, + "end": 6808.22, + "probability": 0.1329 + }, + { + "start": 6816.12, + "end": 6817.98, + "probability": 0.1605 + }, + { + "start": 6818.04, + "end": 6819.38, + "probability": 0.5036 + }, + { + "start": 6819.98, + "end": 6820.06, + "probability": 0.1103 + }, + { + "start": 6820.14, + "end": 6821.96, + "probability": 0.435 + }, + { + "start": 6822.12, + "end": 6826.66, + "probability": 0.9092 + }, + { + "start": 6827.7, + "end": 6830.32, + "probability": 0.9359 + }, + { + "start": 6830.36, + "end": 6831.44, + "probability": 0.7037 + }, + { + "start": 6831.66, + "end": 6832.56, + "probability": 0.8309 + }, + { + "start": 6840.42, + "end": 6841.2, + "probability": 0.7073 + }, + { + "start": 6841.6, + "end": 6842.76, + "probability": 0.8707 + }, + { + "start": 6843.0, + "end": 6851.62, + "probability": 0.9229 + }, + { + "start": 6851.72, + "end": 6853.4, + "probability": 0.9653 + }, + { + "start": 6853.62, + "end": 6855.46, + "probability": 0.998 + }, + { + "start": 6856.34, + "end": 6858.38, + "probability": 0.9654 + }, + { + "start": 6858.9, + "end": 6861.26, + "probability": 0.9953 + }, + { + "start": 6862.38, + "end": 6864.5, + "probability": 0.9957 + }, + { + "start": 6864.72, + "end": 6866.88, + "probability": 0.7137 + }, + { + "start": 6866.9, + "end": 6867.94, + "probability": 0.9778 + }, + { + "start": 6868.12, + "end": 6869.66, + "probability": 0.72 + }, + { + "start": 6869.74, + "end": 6872.8, + "probability": 0.991 + }, + { + "start": 6873.94, + "end": 6876.56, + "probability": 0.4786 + }, + { + "start": 6876.56, + "end": 6876.66, + "probability": 0.1523 + }, + { + "start": 6876.94, + "end": 6883.38, + "probability": 0.9541 + }, + { + "start": 6883.56, + "end": 6887.74, + "probability": 0.9933 + }, + { + "start": 6887.82, + "end": 6894.1, + "probability": 0.9896 + }, + { + "start": 6894.34, + "end": 6897.52, + "probability": 0.9884 + }, + { + "start": 6898.06, + "end": 6899.54, + "probability": 0.9974 + }, + { + "start": 6899.6, + "end": 6903.8, + "probability": 0.9421 + }, + { + "start": 6903.86, + "end": 6907.38, + "probability": 0.9738 + }, + { + "start": 6907.38, + "end": 6910.26, + "probability": 0.9494 + }, + { + "start": 6910.34, + "end": 6915.62, + "probability": 0.9713 + }, + { + "start": 6917.1, + "end": 6921.5, + "probability": 0.8375 + }, + { + "start": 6922.52, + "end": 6924.68, + "probability": 0.81 + }, + { + "start": 6924.86, + "end": 6927.12, + "probability": 0.9841 + }, + { + "start": 6927.54, + "end": 6929.62, + "probability": 0.973 + }, + { + "start": 6930.26, + "end": 6931.52, + "probability": 0.6278 + }, + { + "start": 6931.64, + "end": 6933.38, + "probability": 0.8953 + }, + { + "start": 6933.8, + "end": 6936.32, + "probability": 0.8503 + }, + { + "start": 6936.42, + "end": 6936.72, + "probability": 0.8919 + }, + { + "start": 6937.14, + "end": 6938.14, + "probability": 0.8586 + }, + { + "start": 6938.2, + "end": 6939.0, + "probability": 0.5726 + }, + { + "start": 6939.08, + "end": 6940.02, + "probability": 0.9224 + }, + { + "start": 6940.18, + "end": 6940.7, + "probability": 0.2842 + }, + { + "start": 6940.78, + "end": 6941.32, + "probability": 0.7967 + }, + { + "start": 6941.4, + "end": 6942.12, + "probability": 0.654 + }, + { + "start": 6942.16, + "end": 6942.78, + "probability": 0.9007 + }, + { + "start": 6943.14, + "end": 6944.94, + "probability": 0.8273 + }, + { + "start": 6945.78, + "end": 6950.0, + "probability": 0.7789 + }, + { + "start": 6950.08, + "end": 6952.94, + "probability": 0.9609 + }, + { + "start": 6953.58, + "end": 6955.36, + "probability": 0.9972 + }, + { + "start": 6955.88, + "end": 6958.0, + "probability": 0.9911 + }, + { + "start": 6958.0, + "end": 6959.22, + "probability": 0.6913 + }, + { + "start": 6959.98, + "end": 6961.36, + "probability": 0.8926 + }, + { + "start": 6961.7, + "end": 6963.3, + "probability": 0.97 + }, + { + "start": 6964.04, + "end": 6969.84, + "probability": 0.7578 + }, + { + "start": 6970.68, + "end": 6971.78, + "probability": 0.1847 + }, + { + "start": 6972.36, + "end": 6975.98, + "probability": 0.953 + }, + { + "start": 6976.74, + "end": 6979.72, + "probability": 0.2062 + }, + { + "start": 6980.3, + "end": 6983.74, + "probability": 0.6222 + }, + { + "start": 6983.74, + "end": 6987.26, + "probability": 0.7275 + }, + { + "start": 6987.42, + "end": 6987.9, + "probability": 0.743 + }, + { + "start": 6987.94, + "end": 6988.38, + "probability": 0.4377 + }, + { + "start": 6989.24, + "end": 6992.86, + "probability": 0.6826 + }, + { + "start": 6994.84, + "end": 6996.24, + "probability": 0.5331 + }, + { + "start": 6997.38, + "end": 7001.1, + "probability": 0.908 + }, + { + "start": 7007.42, + "end": 7010.28, + "probability": 0.616 + }, + { + "start": 7011.36, + "end": 7012.36, + "probability": 0.7854 + }, + { + "start": 7013.72, + "end": 7017.4, + "probability": 0.9818 + }, + { + "start": 7018.0, + "end": 7021.92, + "probability": 0.6226 + }, + { + "start": 7022.68, + "end": 7027.22, + "probability": 0.9716 + }, + { + "start": 7028.4, + "end": 7032.76, + "probability": 0.8304 + }, + { + "start": 7033.06, + "end": 7034.64, + "probability": 0.0906 + }, + { + "start": 7035.64, + "end": 7042.94, + "probability": 0.9373 + }, + { + "start": 7042.94, + "end": 7046.98, + "probability": 0.9299 + }, + { + "start": 7047.66, + "end": 7050.1, + "probability": 0.9967 + }, + { + "start": 7050.24, + "end": 7056.94, + "probability": 0.7611 + }, + { + "start": 7057.86, + "end": 7061.16, + "probability": 0.9562 + }, + { + "start": 7061.42, + "end": 7062.78, + "probability": 0.947 + }, + { + "start": 7063.52, + "end": 7065.46, + "probability": 0.9824 + }, + { + "start": 7066.38, + "end": 7068.1, + "probability": 0.7794 + }, + { + "start": 7068.72, + "end": 7070.44, + "probability": 0.8926 + }, + { + "start": 7071.1, + "end": 7072.06, + "probability": 0.9667 + }, + { + "start": 7072.98, + "end": 7075.71, + "probability": 0.9619 + }, + { + "start": 7076.46, + "end": 7078.62, + "probability": 0.965 + }, + { + "start": 7079.26, + "end": 7082.4, + "probability": 0.8813 + }, + { + "start": 7082.54, + "end": 7085.14, + "probability": 0.842 + }, + { + "start": 7085.9, + "end": 7087.72, + "probability": 0.7624 + }, + { + "start": 7088.38, + "end": 7091.5, + "probability": 0.972 + }, + { + "start": 7092.48, + "end": 7098.48, + "probability": 0.9908 + }, + { + "start": 7099.48, + "end": 7102.36, + "probability": 0.9067 + }, + { + "start": 7102.7, + "end": 7103.54, + "probability": 0.4546 + }, + { + "start": 7103.68, + "end": 7106.8, + "probability": 0.9917 + }, + { + "start": 7106.8, + "end": 7111.2, + "probability": 0.9873 + }, + { + "start": 7111.78, + "end": 7112.18, + "probability": 0.6943 + }, + { + "start": 7112.32, + "end": 7117.73, + "probability": 0.989 + }, + { + "start": 7118.86, + "end": 7120.7, + "probability": 0.889 + }, + { + "start": 7121.28, + "end": 7124.8, + "probability": 0.8279 + }, + { + "start": 7125.24, + "end": 7125.68, + "probability": 0.6852 + }, + { + "start": 7125.78, + "end": 7127.6, + "probability": 0.8425 + }, + { + "start": 7128.02, + "end": 7131.24, + "probability": 0.937 + }, + { + "start": 7131.42, + "end": 7131.8, + "probability": 0.6757 + }, + { + "start": 7132.28, + "end": 7133.22, + "probability": 0.706 + }, + { + "start": 7133.38, + "end": 7133.48, + "probability": 0.2265 + }, + { + "start": 7133.56, + "end": 7134.36, + "probability": 0.5653 + }, + { + "start": 7134.4, + "end": 7134.68, + "probability": 0.7399 + }, + { + "start": 7134.76, + "end": 7136.44, + "probability": 0.6924 + }, + { + "start": 7137.12, + "end": 7138.96, + "probability": 0.2392 + }, + { + "start": 7139.28, + "end": 7141.42, + "probability": 0.2513 + }, + { + "start": 7142.2, + "end": 7143.22, + "probability": 0.4033 + }, + { + "start": 7144.23, + "end": 7144.68, + "probability": 0.6675 + }, + { + "start": 7144.76, + "end": 7145.1, + "probability": 0.674 + }, + { + "start": 7145.72, + "end": 7146.1, + "probability": 0.4874 + }, + { + "start": 7149.54, + "end": 7150.8, + "probability": 0.2902 + }, + { + "start": 7150.8, + "end": 7152.26, + "probability": 0.6891 + }, + { + "start": 7153.08, + "end": 7155.24, + "probability": 0.9665 + }, + { + "start": 7155.98, + "end": 7159.14, + "probability": 0.9792 + }, + { + "start": 7160.0, + "end": 7160.92, + "probability": 0.8806 + }, + { + "start": 7162.16, + "end": 7163.56, + "probability": 0.9484 + }, + { + "start": 7164.76, + "end": 7168.64, + "probability": 0.9812 + }, + { + "start": 7169.32, + "end": 7172.36, + "probability": 0.9805 + }, + { + "start": 7173.12, + "end": 7178.56, + "probability": 0.9933 + }, + { + "start": 7179.58, + "end": 7184.44, + "probability": 0.9956 + }, + { + "start": 7185.12, + "end": 7186.82, + "probability": 0.8004 + }, + { + "start": 7187.0, + "end": 7187.59, + "probability": 0.9963 + }, + { + "start": 7188.96, + "end": 7192.92, + "probability": 0.995 + }, + { + "start": 7193.78, + "end": 7196.32, + "probability": 0.9297 + }, + { + "start": 7196.54, + "end": 7200.0, + "probability": 0.9742 + }, + { + "start": 7200.12, + "end": 7201.64, + "probability": 0.9562 + }, + { + "start": 7202.34, + "end": 7205.64, + "probability": 0.0186 + }, + { + "start": 7205.64, + "end": 7206.46, + "probability": 0.896 + }, + { + "start": 7206.76, + "end": 7208.8, + "probability": 0.8461 + }, + { + "start": 7209.0, + "end": 7211.28, + "probability": 0.95 + }, + { + "start": 7211.88, + "end": 7215.68, + "probability": 0.9946 + }, + { + "start": 7215.84, + "end": 7217.68, + "probability": 0.8942 + }, + { + "start": 7218.28, + "end": 7219.82, + "probability": 0.5632 + }, + { + "start": 7220.06, + "end": 7223.06, + "probability": 0.9688 + }, + { + "start": 7224.66, + "end": 7229.44, + "probability": 0.9242 + }, + { + "start": 7229.68, + "end": 7230.68, + "probability": 0.7443 + }, + { + "start": 7230.9, + "end": 7232.08, + "probability": 0.9668 + }, + { + "start": 7233.02, + "end": 7234.98, + "probability": 0.9967 + }, + { + "start": 7236.42, + "end": 7237.54, + "probability": 0.9049 + }, + { + "start": 7237.74, + "end": 7239.62, + "probability": 0.9664 + }, + { + "start": 7239.74, + "end": 7242.14, + "probability": 0.9932 + }, + { + "start": 7242.82, + "end": 7244.62, + "probability": 0.9997 + }, + { + "start": 7244.86, + "end": 7248.28, + "probability": 0.9663 + }, + { + "start": 7248.8, + "end": 7250.98, + "probability": 0.9937 + }, + { + "start": 7250.98, + "end": 7254.34, + "probability": 0.9841 + }, + { + "start": 7254.5, + "end": 7260.04, + "probability": 0.3757 + }, + { + "start": 7260.22, + "end": 7262.03, + "probability": 0.897 + }, + { + "start": 7262.64, + "end": 7267.5, + "probability": 0.9956 + }, + { + "start": 7267.5, + "end": 7271.58, + "probability": 0.9901 + }, + { + "start": 7272.22, + "end": 7276.6, + "probability": 0.9972 + }, + { + "start": 7277.46, + "end": 7278.38, + "probability": 0.8323 + }, + { + "start": 7278.58, + "end": 7279.65, + "probability": 0.9309 + }, + { + "start": 7280.36, + "end": 7284.04, + "probability": 0.983 + }, + { + "start": 7284.14, + "end": 7288.54, + "probability": 0.8038 + }, + { + "start": 7289.16, + "end": 7291.0, + "probability": 0.9974 + }, + { + "start": 7291.26, + "end": 7292.78, + "probability": 0.9635 + }, + { + "start": 7293.0, + "end": 7293.6, + "probability": 0.8605 + }, + { + "start": 7294.12, + "end": 7294.6, + "probability": 0.9655 + }, + { + "start": 7295.22, + "end": 7301.7, + "probability": 0.9695 + }, + { + "start": 7301.7, + "end": 7306.64, + "probability": 0.4952 + }, + { + "start": 7306.64, + "end": 7308.36, + "probability": 0.9876 + }, + { + "start": 7309.26, + "end": 7311.0, + "probability": 0.8709 + }, + { + "start": 7311.8, + "end": 7313.66, + "probability": 0.9362 + }, + { + "start": 7314.88, + "end": 7315.56, + "probability": 0.8512 + }, + { + "start": 7315.7, + "end": 7318.14, + "probability": 0.9778 + }, + { + "start": 7318.32, + "end": 7320.56, + "probability": 0.9921 + }, + { + "start": 7320.88, + "end": 7321.78, + "probability": 0.707 + }, + { + "start": 7323.14, + "end": 7326.02, + "probability": 0.7547 + }, + { + "start": 7326.62, + "end": 7328.3, + "probability": 0.9919 + }, + { + "start": 7329.08, + "end": 7329.76, + "probability": 0.4999 + }, + { + "start": 7330.36, + "end": 7331.68, + "probability": 0.6747 + }, + { + "start": 7332.48, + "end": 7335.96, + "probability": 0.986 + }, + { + "start": 7336.26, + "end": 7339.69, + "probability": 0.8472 + }, + { + "start": 7340.74, + "end": 7341.06, + "probability": 0.9414 + }, + { + "start": 7341.46, + "end": 7343.1, + "probability": 0.882 + }, + { + "start": 7343.4, + "end": 7345.66, + "probability": 0.6293 + }, + { + "start": 7346.04, + "end": 7349.36, + "probability": 0.2588 + }, + { + "start": 7349.36, + "end": 7352.24, + "probability": 0.4248 + }, + { + "start": 7352.32, + "end": 7352.92, + "probability": 0.8452 + }, + { + "start": 7353.0, + "end": 7355.08, + "probability": 0.9944 + }, + { + "start": 7355.22, + "end": 7356.52, + "probability": 0.7506 + }, + { + "start": 7357.1, + "end": 7357.82, + "probability": 0.8883 + }, + { + "start": 7358.34, + "end": 7362.36, + "probability": 0.9575 + }, + { + "start": 7363.3, + "end": 7368.1, + "probability": 0.91 + }, + { + "start": 7368.82, + "end": 7369.78, + "probability": 0.988 + }, + { + "start": 7370.44, + "end": 7371.52, + "probability": 0.9525 + }, + { + "start": 7372.86, + "end": 7376.8, + "probability": 0.9977 + }, + { + "start": 7376.98, + "end": 7377.7, + "probability": 0.9835 + }, + { + "start": 7378.8, + "end": 7378.94, + "probability": 0.03 + }, + { + "start": 7378.94, + "end": 7383.14, + "probability": 0.8817 + }, + { + "start": 7384.24, + "end": 7386.62, + "probability": 0.989 + }, + { + "start": 7386.84, + "end": 7387.36, + "probability": 0.8434 + }, + { + "start": 7387.68, + "end": 7388.57, + "probability": 0.8934 + }, + { + "start": 7388.94, + "end": 7391.98, + "probability": 0.9761 + }, + { + "start": 7392.76, + "end": 7396.82, + "probability": 0.9592 + }, + { + "start": 7397.46, + "end": 7401.85, + "probability": 0.9766 + }, + { + "start": 7402.6, + "end": 7407.04, + "probability": 0.9516 + }, + { + "start": 7407.7, + "end": 7411.72, + "probability": 0.7684 + }, + { + "start": 7413.84, + "end": 7417.08, + "probability": 0.5836 + }, + { + "start": 7418.22, + "end": 7424.02, + "probability": 0.994 + }, + { + "start": 7424.64, + "end": 7425.8, + "probability": 0.8872 + }, + { + "start": 7425.98, + "end": 7428.16, + "probability": 0.8862 + }, + { + "start": 7428.84, + "end": 7430.44, + "probability": 0.9848 + }, + { + "start": 7431.32, + "end": 7435.0, + "probability": 0.9456 + }, + { + "start": 7435.88, + "end": 7442.06, + "probability": 0.9893 + }, + { + "start": 7442.12, + "end": 7446.34, + "probability": 0.7742 + }, + { + "start": 7446.34, + "end": 7450.16, + "probability": 0.9754 + }, + { + "start": 7450.36, + "end": 7453.64, + "probability": 0.9921 + }, + { + "start": 7453.88, + "end": 7454.14, + "probability": 0.4182 + }, + { + "start": 7454.22, + "end": 7455.2, + "probability": 0.843 + }, + { + "start": 7456.24, + "end": 7457.22, + "probability": 0.9948 + }, + { + "start": 7457.58, + "end": 7459.0, + "probability": 0.8688 + }, + { + "start": 7459.76, + "end": 7463.0, + "probability": 0.9809 + }, + { + "start": 7463.26, + "end": 7465.9, + "probability": 0.7343 + }, + { + "start": 7465.9, + "end": 7467.02, + "probability": 0.2457 + }, + { + "start": 7467.12, + "end": 7470.4, + "probability": 0.9897 + }, + { + "start": 7470.58, + "end": 7471.64, + "probability": 0.9071 + }, + { + "start": 7471.68, + "end": 7472.6, + "probability": 0.9728 + }, + { + "start": 7472.8, + "end": 7472.92, + "probability": 0.767 + }, + { + "start": 7473.54, + "end": 7474.4, + "probability": 0.6949 + }, + { + "start": 7474.54, + "end": 7476.43, + "probability": 0.6766 + }, + { + "start": 7476.82, + "end": 7477.8, + "probability": 0.9241 + }, + { + "start": 7477.92, + "end": 7481.63, + "probability": 0.882 + }, + { + "start": 7482.76, + "end": 7483.5, + "probability": 0.1993 + }, + { + "start": 7483.5, + "end": 7487.25, + "probability": 0.5728 + }, + { + "start": 7488.0, + "end": 7491.88, + "probability": 0.5808 + }, + { + "start": 7492.06, + "end": 7493.56, + "probability": 0.9907 + }, + { + "start": 7493.78, + "end": 7494.16, + "probability": 0.2657 + }, + { + "start": 7494.24, + "end": 7494.3, + "probability": 0.4852 + }, + { + "start": 7494.3, + "end": 7494.44, + "probability": 0.5845 + }, + { + "start": 7494.48, + "end": 7495.54, + "probability": 0.8191 + }, + { + "start": 7496.76, + "end": 7497.32, + "probability": 0.964 + }, + { + "start": 7498.26, + "end": 7498.8, + "probability": 0.4682 + }, + { + "start": 7499.2, + "end": 7501.02, + "probability": 0.9032 + }, + { + "start": 7501.64, + "end": 7502.12, + "probability": 0.6213 + }, + { + "start": 7503.28, + "end": 7504.22, + "probability": 0.6711 + }, + { + "start": 7505.12, + "end": 7507.26, + "probability": 0.7491 + }, + { + "start": 7512.2, + "end": 7513.02, + "probability": 0.6586 + }, + { + "start": 7513.26, + "end": 7514.04, + "probability": 0.8558 + }, + { + "start": 7514.26, + "end": 7518.08, + "probability": 0.8854 + }, + { + "start": 7518.32, + "end": 7519.8, + "probability": 0.9103 + }, + { + "start": 7519.86, + "end": 7521.78, + "probability": 0.9829 + }, + { + "start": 7522.46, + "end": 7524.68, + "probability": 0.9973 + }, + { + "start": 7525.2, + "end": 7528.4, + "probability": 0.9946 + }, + { + "start": 7528.4, + "end": 7531.92, + "probability": 0.8778 + }, + { + "start": 7532.14, + "end": 7533.38, + "probability": 0.8845 + }, + { + "start": 7534.18, + "end": 7535.74, + "probability": 0.9683 + }, + { + "start": 7536.6, + "end": 7539.44, + "probability": 0.6935 + }, + { + "start": 7540.0, + "end": 7543.94, + "probability": 0.979 + }, + { + "start": 7544.56, + "end": 7544.7, + "probability": 0.1277 + }, + { + "start": 7544.88, + "end": 7545.28, + "probability": 0.937 + }, + { + "start": 7545.46, + "end": 7546.08, + "probability": 0.8477 + }, + { + "start": 7546.16, + "end": 7550.18, + "probability": 0.8623 + }, + { + "start": 7550.64, + "end": 7552.92, + "probability": 0.6845 + }, + { + "start": 7553.66, + "end": 7554.16, + "probability": 0.8735 + }, + { + "start": 7554.3, + "end": 7554.74, + "probability": 0.9503 + }, + { + "start": 7554.86, + "end": 7556.5, + "probability": 0.8577 + }, + { + "start": 7556.7, + "end": 7561.08, + "probability": 0.9535 + }, + { + "start": 7562.6, + "end": 7567.26, + "probability": 0.9888 + }, + { + "start": 7567.82, + "end": 7570.78, + "probability": 0.7929 + }, + { + "start": 7571.64, + "end": 7573.82, + "probability": 0.9404 + }, + { + "start": 7574.74, + "end": 7576.22, + "probability": 0.8346 + }, + { + "start": 7577.28, + "end": 7578.78, + "probability": 0.7369 + }, + { + "start": 7580.26, + "end": 7583.08, + "probability": 0.8684 + }, + { + "start": 7583.36, + "end": 7584.2, + "probability": 0.751 + }, + { + "start": 7584.4, + "end": 7585.68, + "probability": 0.9262 + }, + { + "start": 7586.06, + "end": 7588.12, + "probability": 0.709 + }, + { + "start": 7588.94, + "end": 7590.3, + "probability": 0.8447 + }, + { + "start": 7590.88, + "end": 7593.08, + "probability": 0.8887 + }, + { + "start": 7593.28, + "end": 7594.0, + "probability": 0.9417 + }, + { + "start": 7594.58, + "end": 7595.2, + "probability": 0.3332 + }, + { + "start": 7595.8, + "end": 7599.96, + "probability": 0.8984 + }, + { + "start": 7600.02, + "end": 7600.98, + "probability": 0.9235 + }, + { + "start": 7601.42, + "end": 7605.1, + "probability": 0.8025 + }, + { + "start": 7605.62, + "end": 7607.86, + "probability": 0.7553 + }, + { + "start": 7608.58, + "end": 7611.72, + "probability": 0.9924 + }, + { + "start": 7612.04, + "end": 7612.7, + "probability": 0.8211 + }, + { + "start": 7613.26, + "end": 7615.46, + "probability": 0.8433 + }, + { + "start": 7615.56, + "end": 7618.72, + "probability": 0.7675 + }, + { + "start": 7619.54, + "end": 7621.36, + "probability": 0.9744 + }, + { + "start": 7621.46, + "end": 7625.22, + "probability": 0.8824 + }, + { + "start": 7625.86, + "end": 7628.34, + "probability": 0.8636 + }, + { + "start": 7628.52, + "end": 7630.5, + "probability": 0.9707 + }, + { + "start": 7630.92, + "end": 7632.72, + "probability": 0.9963 + }, + { + "start": 7633.7, + "end": 7636.12, + "probability": 0.5549 + }, + { + "start": 7636.76, + "end": 7639.32, + "probability": 0.89 + }, + { + "start": 7639.32, + "end": 7641.62, + "probability": 0.9226 + }, + { + "start": 7641.86, + "end": 7643.0, + "probability": 0.8825 + }, + { + "start": 7643.74, + "end": 7644.58, + "probability": 0.6288 + }, + { + "start": 7645.7, + "end": 7650.02, + "probability": 0.738 + }, + { + "start": 7650.64, + "end": 7652.38, + "probability": 0.8633 + }, + { + "start": 7652.78, + "end": 7653.5, + "probability": 0.8094 + }, + { + "start": 7653.64, + "end": 7655.8, + "probability": 0.894 + }, + { + "start": 7656.28, + "end": 7658.51, + "probability": 0.9429 + }, + { + "start": 7659.36, + "end": 7662.88, + "probability": 0.8618 + }, + { + "start": 7663.2, + "end": 7665.78, + "probability": 0.8579 + }, + { + "start": 7666.22, + "end": 7669.44, + "probability": 0.9045 + }, + { + "start": 7669.8, + "end": 7671.04, + "probability": 0.6373 + }, + { + "start": 7671.58, + "end": 7672.44, + "probability": 0.5969 + }, + { + "start": 7673.06, + "end": 7676.56, + "probability": 0.9722 + }, + { + "start": 7676.82, + "end": 7678.6, + "probability": 0.8107 + }, + { + "start": 7678.94, + "end": 7683.34, + "probability": 0.9565 + }, + { + "start": 7684.32, + "end": 7685.48, + "probability": 0.9915 + }, + { + "start": 7686.0, + "end": 7687.83, + "probability": 0.9932 + }, + { + "start": 7688.1, + "end": 7692.36, + "probability": 0.9565 + }, + { + "start": 7692.66, + "end": 7693.46, + "probability": 0.8878 + }, + { + "start": 7693.72, + "end": 7694.96, + "probability": 0.7608 + }, + { + "start": 7695.4, + "end": 7696.98, + "probability": 0.946 + }, + { + "start": 7697.38, + "end": 7697.68, + "probability": 0.8285 + }, + { + "start": 7698.3, + "end": 7699.29, + "probability": 0.5433 + }, + { + "start": 7699.74, + "end": 7702.72, + "probability": 0.803 + }, + { + "start": 7710.0, + "end": 7710.22, + "probability": 0.2514 + }, + { + "start": 7710.22, + "end": 7711.48, + "probability": 0.5492 + }, + { + "start": 7712.16, + "end": 7715.49, + "probability": 0.9225 + }, + { + "start": 7716.32, + "end": 7718.22, + "probability": 0.6727 + }, + { + "start": 7725.4, + "end": 7727.34, + "probability": 0.7593 + }, + { + "start": 7730.64, + "end": 7731.98, + "probability": 0.736 + }, + { + "start": 7735.54, + "end": 7736.96, + "probability": 0.2519 + }, + { + "start": 7737.02, + "end": 7737.86, + "probability": 0.685 + }, + { + "start": 7737.94, + "end": 7739.6, + "probability": 0.5337 + }, + { + "start": 7741.04, + "end": 7743.08, + "probability": 0.9777 + }, + { + "start": 7744.14, + "end": 7745.27, + "probability": 0.9813 + }, + { + "start": 7746.58, + "end": 7749.74, + "probability": 0.9564 + }, + { + "start": 7750.54, + "end": 7752.34, + "probability": 0.7522 + }, + { + "start": 7753.84, + "end": 7757.5, + "probability": 0.7153 + }, + { + "start": 7758.1, + "end": 7759.0, + "probability": 0.8002 + }, + { + "start": 7759.58, + "end": 7763.5, + "probability": 0.9159 + }, + { + "start": 7764.32, + "end": 7765.42, + "probability": 0.9283 + }, + { + "start": 7766.32, + "end": 7769.8, + "probability": 0.6737 + }, + { + "start": 7770.6, + "end": 7773.61, + "probability": 0.9489 + }, + { + "start": 7774.84, + "end": 7776.82, + "probability": 0.6663 + }, + { + "start": 7777.52, + "end": 7780.06, + "probability": 0.6409 + }, + { + "start": 7781.08, + "end": 7788.72, + "probability": 0.9529 + }, + { + "start": 7789.62, + "end": 7790.84, + "probability": 0.6713 + }, + { + "start": 7791.44, + "end": 7792.64, + "probability": 0.9525 + }, + { + "start": 7793.08, + "end": 7795.83, + "probability": 0.8948 + }, + { + "start": 7797.24, + "end": 7798.0, + "probability": 0.8506 + }, + { + "start": 7798.9, + "end": 7804.24, + "probability": 0.6181 + }, + { + "start": 7804.3, + "end": 7805.06, + "probability": 0.9673 + }, + { + "start": 7805.94, + "end": 7808.08, + "probability": 0.9513 + }, + { + "start": 7808.18, + "end": 7811.12, + "probability": 0.9165 + }, + { + "start": 7812.22, + "end": 7814.54, + "probability": 0.9745 + }, + { + "start": 7815.14, + "end": 7816.34, + "probability": 0.8646 + }, + { + "start": 7816.46, + "end": 7817.4, + "probability": 0.4989 + }, + { + "start": 7817.54, + "end": 7818.14, + "probability": 0.4968 + }, + { + "start": 7818.16, + "end": 7820.56, + "probability": 0.6094 + }, + { + "start": 7821.42, + "end": 7823.4, + "probability": 0.907 + }, + { + "start": 7824.08, + "end": 7828.68, + "probability": 0.9526 + }, + { + "start": 7830.08, + "end": 7832.1, + "probability": 0.5769 + }, + { + "start": 7833.04, + "end": 7833.84, + "probability": 0.6382 + }, + { + "start": 7834.52, + "end": 7834.74, + "probability": 0.7408 + }, + { + "start": 7835.26, + "end": 7837.76, + "probability": 0.8168 + }, + { + "start": 7838.28, + "end": 7839.48, + "probability": 0.7284 + }, + { + "start": 7840.88, + "end": 7843.08, + "probability": 0.9218 + }, + { + "start": 7844.06, + "end": 7848.66, + "probability": 0.9937 + }, + { + "start": 7849.16, + "end": 7850.18, + "probability": 0.9313 + }, + { + "start": 7851.62, + "end": 7851.62, + "probability": 0.8291 + }, + { + "start": 7853.06, + "end": 7854.28, + "probability": 0.7797 + }, + { + "start": 7855.28, + "end": 7856.78, + "probability": 0.6724 + }, + { + "start": 7858.04, + "end": 7862.24, + "probability": 0.9751 + }, + { + "start": 7863.26, + "end": 7864.18, + "probability": 0.0298 + }, + { + "start": 7864.3, + "end": 7865.68, + "probability": 0.6698 + }, + { + "start": 7865.82, + "end": 7869.12, + "probability": 0.9451 + }, + { + "start": 7870.6, + "end": 7870.6, + "probability": 0.1976 + }, + { + "start": 7870.6, + "end": 7870.86, + "probability": 0.3675 + }, + { + "start": 7871.04, + "end": 7873.92, + "probability": 0.7358 + }, + { + "start": 7874.14, + "end": 7878.98, + "probability": 0.7876 + }, + { + "start": 7879.32, + "end": 7880.58, + "probability": 0.7474 + }, + { + "start": 7881.58, + "end": 7882.52, + "probability": 0.7505 + }, + { + "start": 7882.54, + "end": 7883.78, + "probability": 0.4131 + }, + { + "start": 7884.18, + "end": 7886.66, + "probability": 0.9529 + }, + { + "start": 7887.76, + "end": 7889.06, + "probability": 0.861 + }, + { + "start": 7889.96, + "end": 7891.2, + "probability": 0.0237 + }, + { + "start": 7891.48, + "end": 7892.72, + "probability": 0.6545 + }, + { + "start": 7894.0, + "end": 7896.0, + "probability": 0.5729 + }, + { + "start": 7896.22, + "end": 7903.8, + "probability": 0.8921 + }, + { + "start": 7904.48, + "end": 7905.2, + "probability": 0.857 + }, + { + "start": 7905.92, + "end": 7910.74, + "probability": 0.9906 + }, + { + "start": 7911.12, + "end": 7912.54, + "probability": 0.5682 + }, + { + "start": 7913.06, + "end": 7914.46, + "probability": 0.7983 + }, + { + "start": 7915.0, + "end": 7918.48, + "probability": 0.9296 + }, + { + "start": 7918.62, + "end": 7925.4, + "probability": 0.824 + }, + { + "start": 7925.4, + "end": 7930.44, + "probability": 0.9899 + }, + { + "start": 7930.7, + "end": 7931.98, + "probability": 0.675 + }, + { + "start": 7933.73, + "end": 7937.16, + "probability": 0.9591 + }, + { + "start": 7938.04, + "end": 7941.0, + "probability": 0.9409 + }, + { + "start": 7941.56, + "end": 7943.88, + "probability": 0.9028 + }, + { + "start": 7944.04, + "end": 7944.72, + "probability": 0.6134 + }, + { + "start": 7948.02, + "end": 7948.52, + "probability": 0.4391 + }, + { + "start": 7948.72, + "end": 7950.74, + "probability": 0.839 + }, + { + "start": 7950.86, + "end": 7952.68, + "probability": 0.9927 + }, + { + "start": 7953.48, + "end": 7954.42, + "probability": 0.7203 + }, + { + "start": 7954.62, + "end": 7955.74, + "probability": 0.6298 + }, + { + "start": 7958.08, + "end": 7960.08, + "probability": 0.7764 + }, + { + "start": 7961.34, + "end": 7964.74, + "probability": 0.921 + }, + { + "start": 7965.2, + "end": 7969.84, + "probability": 0.9989 + }, + { + "start": 7970.12, + "end": 7973.92, + "probability": 0.8468 + }, + { + "start": 7974.04, + "end": 7975.64, + "probability": 0.9385 + }, + { + "start": 7976.04, + "end": 7977.34, + "probability": 0.8427 + }, + { + "start": 7978.68, + "end": 7984.14, + "probability": 0.7302 + }, + { + "start": 7985.96, + "end": 7987.92, + "probability": 0.8823 + }, + { + "start": 7988.14, + "end": 7989.08, + "probability": 0.5401 + }, + { + "start": 7989.1, + "end": 7992.59, + "probability": 0.8669 + }, + { + "start": 7993.42, + "end": 7996.44, + "probability": 0.9514 + }, + { + "start": 7996.84, + "end": 8000.22, + "probability": 0.8692 + }, + { + "start": 8000.83, + "end": 8003.62, + "probability": 0.9951 + }, + { + "start": 8004.42, + "end": 8008.46, + "probability": 0.987 + }, + { + "start": 8009.06, + "end": 8013.72, + "probability": 0.9919 + }, + { + "start": 8014.3, + "end": 8017.54, + "probability": 0.8964 + }, + { + "start": 8018.88, + "end": 8019.38, + "probability": 0.4154 + }, + { + "start": 8019.54, + "end": 8020.54, + "probability": 0.8773 + }, + { + "start": 8020.78, + "end": 8028.52, + "probability": 0.9857 + }, + { + "start": 8029.78, + "end": 8030.94, + "probability": 0.9941 + }, + { + "start": 8031.58, + "end": 8034.34, + "probability": 0.8365 + }, + { + "start": 8035.22, + "end": 8036.24, + "probability": 0.8825 + }, + { + "start": 8037.54, + "end": 8038.74, + "probability": 0.5631 + }, + { + "start": 8039.8, + "end": 8043.92, + "probability": 0.9733 + }, + { + "start": 8044.0, + "end": 8047.36, + "probability": 0.8438 + }, + { + "start": 8047.88, + "end": 8050.1, + "probability": 0.7371 + }, + { + "start": 8050.12, + "end": 8050.6, + "probability": 0.7549 + }, + { + "start": 8050.68, + "end": 8054.29, + "probability": 0.9351 + }, + { + "start": 8057.38, + "end": 8059.12, + "probability": 0.7126 + }, + { + "start": 8059.16, + "end": 8059.53, + "probability": 0.7892 + }, + { + "start": 8060.67, + "end": 8063.02, + "probability": 0.5267 + }, + { + "start": 8063.82, + "end": 8063.92, + "probability": 0.362 + }, + { + "start": 8064.16, + "end": 8065.1, + "probability": 0.8031 + }, + { + "start": 8066.16, + "end": 8070.84, + "probability": 0.7936 + }, + { + "start": 8071.52, + "end": 8078.3, + "probability": 0.9407 + }, + { + "start": 8078.86, + "end": 8085.02, + "probability": 0.5044 + }, + { + "start": 8085.74, + "end": 8088.56, + "probability": 0.8687 + }, + { + "start": 8089.44, + "end": 8092.92, + "probability": 0.979 + }, + { + "start": 8094.0, + "end": 8096.7, + "probability": 0.9857 + }, + { + "start": 8098.04, + "end": 8101.54, + "probability": 0.9951 + }, + { + "start": 8102.04, + "end": 8103.78, + "probability": 0.9971 + }, + { + "start": 8104.42, + "end": 8107.46, + "probability": 0.9229 + }, + { + "start": 8107.98, + "end": 8111.32, + "probability": 0.9944 + }, + { + "start": 8111.4, + "end": 8113.5, + "probability": 0.9348 + }, + { + "start": 8114.3, + "end": 8117.94, + "probability": 0.9835 + }, + { + "start": 8120.32, + "end": 8122.46, + "probability": 0.682 + }, + { + "start": 8123.02, + "end": 8125.32, + "probability": 0.8713 + }, + { + "start": 8125.76, + "end": 8126.56, + "probability": 0.6883 + }, + { + "start": 8126.72, + "end": 8127.9, + "probability": 0.7446 + }, + { + "start": 8129.22, + "end": 8132.38, + "probability": 0.9404 + }, + { + "start": 8132.58, + "end": 8138.64, + "probability": 0.9917 + }, + { + "start": 8139.36, + "end": 8144.9, + "probability": 0.9575 + }, + { + "start": 8145.56, + "end": 8147.5, + "probability": 0.9891 + }, + { + "start": 8148.5, + "end": 8148.6, + "probability": 0.6677 + }, + { + "start": 8149.1, + "end": 8152.32, + "probability": 0.9916 + }, + { + "start": 8152.32, + "end": 8155.92, + "probability": 0.8436 + }, + { + "start": 8156.94, + "end": 8158.82, + "probability": 0.7938 + }, + { + "start": 8159.4, + "end": 8162.34, + "probability": 0.9439 + }, + { + "start": 8162.76, + "end": 8164.26, + "probability": 0.9458 + }, + { + "start": 8164.86, + "end": 8165.1, + "probability": 0.7352 + }, + { + "start": 8165.12, + "end": 8166.08, + "probability": 0.4469 + }, + { + "start": 8166.5, + "end": 8169.48, + "probability": 0.9151 + }, + { + "start": 8170.76, + "end": 8173.28, + "probability": 0.918 + }, + { + "start": 8174.04, + "end": 8176.24, + "probability": 0.9327 + }, + { + "start": 8176.64, + "end": 8180.31, + "probability": 0.5682 + }, + { + "start": 8182.62, + "end": 8182.68, + "probability": 0.0683 + }, + { + "start": 8186.46, + "end": 8188.4, + "probability": 0.7361 + }, + { + "start": 8189.18, + "end": 8190.0, + "probability": 0.6964 + }, + { + "start": 8190.42, + "end": 8192.92, + "probability": 0.6842 + }, + { + "start": 8193.78, + "end": 8195.41, + "probability": 0.5235 + }, + { + "start": 8195.88, + "end": 8196.88, + "probability": 0.7314 + }, + { + "start": 8197.22, + "end": 8201.0, + "probability": 0.7311 + }, + { + "start": 8204.04, + "end": 8204.54, + "probability": 0.1319 + }, + { + "start": 8205.32, + "end": 8207.68, + "probability": 0.8868 + }, + { + "start": 8209.1, + "end": 8211.94, + "probability": 0.9793 + }, + { + "start": 8212.06, + "end": 8217.68, + "probability": 0.9756 + }, + { + "start": 8217.76, + "end": 8222.04, + "probability": 0.9966 + }, + { + "start": 8222.32, + "end": 8223.21, + "probability": 0.8893 + }, + { + "start": 8223.68, + "end": 8225.22, + "probability": 0.7093 + }, + { + "start": 8225.92, + "end": 8228.62, + "probability": 0.6032 + }, + { + "start": 8229.66, + "end": 8232.64, + "probability": 0.8489 + }, + { + "start": 8233.94, + "end": 8235.57, + "probability": 0.7214 + }, + { + "start": 8237.28, + "end": 8238.4, + "probability": 0.6612 + }, + { + "start": 8238.5, + "end": 8239.03, + "probability": 0.8052 + }, + { + "start": 8239.34, + "end": 8240.22, + "probability": 0.9415 + }, + { + "start": 8240.48, + "end": 8242.16, + "probability": 0.9298 + }, + { + "start": 8243.62, + "end": 8243.72, + "probability": 0.718 + }, + { + "start": 8244.22, + "end": 8244.92, + "probability": 0.7215 + }, + { + "start": 8245.24, + "end": 8251.62, + "probability": 0.9475 + }, + { + "start": 8251.74, + "end": 8254.16, + "probability": 0.8529 + }, + { + "start": 8254.88, + "end": 8258.78, + "probability": 0.9591 + }, + { + "start": 8258.94, + "end": 8259.37, + "probability": 0.6756 + }, + { + "start": 8260.06, + "end": 8262.82, + "probability": 0.6559 + }, + { + "start": 8263.54, + "end": 8270.24, + "probability": 0.9794 + }, + { + "start": 8270.32, + "end": 8274.37, + "probability": 0.2523 + }, + { + "start": 8275.38, + "end": 8279.22, + "probability": 0.9886 + }, + { + "start": 8279.76, + "end": 8281.38, + "probability": 0.9948 + }, + { + "start": 8281.44, + "end": 8282.08, + "probability": 0.6803 + }, + { + "start": 8283.02, + "end": 8286.4, + "probability": 0.7463 + }, + { + "start": 8287.04, + "end": 8294.18, + "probability": 0.9696 + }, + { + "start": 8294.54, + "end": 8297.92, + "probability": 0.9602 + }, + { + "start": 8297.92, + "end": 8300.78, + "probability": 0.9997 + }, + { + "start": 8300.96, + "end": 8301.18, + "probability": 0.6893 + }, + { + "start": 8301.38, + "end": 8306.74, + "probability": 0.7969 + }, + { + "start": 8306.98, + "end": 8308.3, + "probability": 0.9766 + }, + { + "start": 8308.38, + "end": 8308.99, + "probability": 0.5735 + }, + { + "start": 8309.56, + "end": 8310.58, + "probability": 0.9556 + }, + { + "start": 8310.66, + "end": 8311.27, + "probability": 0.7172 + }, + { + "start": 8311.46, + "end": 8312.0, + "probability": 0.0117 + }, + { + "start": 8312.64, + "end": 8314.88, + "probability": 0.9954 + }, + { + "start": 8315.56, + "end": 8320.8, + "probability": 0.9529 + }, + { + "start": 8321.74, + "end": 8323.56, + "probability": 0.884 + }, + { + "start": 8323.72, + "end": 8325.96, + "probability": 0.9851 + }, + { + "start": 8326.78, + "end": 8327.86, + "probability": 0.7386 + }, + { + "start": 8328.62, + "end": 8332.2, + "probability": 0.9932 + }, + { + "start": 8332.38, + "end": 8334.45, + "probability": 0.7246 + }, + { + "start": 8334.92, + "end": 8335.96, + "probability": 0.9731 + }, + { + "start": 8336.82, + "end": 8339.84, + "probability": 0.9634 + }, + { + "start": 8340.08, + "end": 8347.78, + "probability": 0.9918 + }, + { + "start": 8347.78, + "end": 8351.9, + "probability": 0.9946 + }, + { + "start": 8352.54, + "end": 8353.12, + "probability": 0.7173 + }, + { + "start": 8353.26, + "end": 8354.12, + "probability": 0.6976 + }, + { + "start": 8354.54, + "end": 8357.3, + "probability": 0.8648 + }, + { + "start": 8357.92, + "end": 8359.7, + "probability": 0.9739 + }, + { + "start": 8359.8, + "end": 8364.74, + "probability": 0.9967 + }, + { + "start": 8365.14, + "end": 8369.16, + "probability": 0.8287 + }, + { + "start": 8370.17, + "end": 8371.68, + "probability": 0.7788 + }, + { + "start": 8371.76, + "end": 8373.08, + "probability": 0.9932 + }, + { + "start": 8373.62, + "end": 8377.54, + "probability": 0.9824 + }, + { + "start": 8377.64, + "end": 8378.28, + "probability": 0.594 + }, + { + "start": 8379.28, + "end": 8384.6, + "probability": 0.9565 + }, + { + "start": 8384.99, + "end": 8388.38, + "probability": 0.8167 + }, + { + "start": 8388.7, + "end": 8389.36, + "probability": 0.6842 + }, + { + "start": 8389.46, + "end": 8393.4, + "probability": 0.9944 + }, + { + "start": 8393.46, + "end": 8394.56, + "probability": 0.9941 + }, + { + "start": 8395.14, + "end": 8395.44, + "probability": 0.224 + }, + { + "start": 8395.44, + "end": 8396.38, + "probability": 0.5677 + }, + { + "start": 8396.38, + "end": 8397.22, + "probability": 0.545 + }, + { + "start": 8397.32, + "end": 8401.51, + "probability": 0.7907 + }, + { + "start": 8407.44, + "end": 8408.96, + "probability": 0.4808 + }, + { + "start": 8409.46, + "end": 8410.68, + "probability": 0.6871 + }, + { + "start": 8411.06, + "end": 8411.98, + "probability": 0.7083 + }, + { + "start": 8427.76, + "end": 8432.32, + "probability": 0.3731 + }, + { + "start": 8432.4, + "end": 8435.36, + "probability": 0.6075 + }, + { + "start": 8435.88, + "end": 8440.86, + "probability": 0.7415 + }, + { + "start": 8444.36, + "end": 8446.88, + "probability": 0.6476 + }, + { + "start": 8448.36, + "end": 8449.26, + "probability": 0.0302 + }, + { + "start": 8450.02, + "end": 8450.48, + "probability": 0.0653 + }, + { + "start": 8450.48, + "end": 8450.48, + "probability": 0.0278 + }, + { + "start": 8451.58, + "end": 8451.58, + "probability": 0.0019 + }, + { + "start": 8470.6, + "end": 8472.5, + "probability": 0.0586 + }, + { + "start": 8485.28, + "end": 8489.24, + "probability": 0.1077 + }, + { + "start": 8489.24, + "end": 8491.26, + "probability": 0.0248 + }, + { + "start": 8491.26, + "end": 8491.26, + "probability": 0.1082 + }, + { + "start": 8491.62, + "end": 8495.2, + "probability": 0.0291 + }, + { + "start": 8507.6, + "end": 8509.66, + "probability": 0.0503 + }, + { + "start": 8510.2, + "end": 8513.02, + "probability": 0.1637 + }, + { + "start": 8514.04, + "end": 8515.62, + "probability": 0.2126 + }, + { + "start": 8515.62, + "end": 8516.53, + "probability": 0.0606 + }, + { + "start": 8517.22, + "end": 8517.5, + "probability": 0.1508 + }, + { + "start": 8517.54, + "end": 8519.66, + "probability": 0.115 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.0, + "end": 8521.0, + "probability": 0.0 + }, + { + "start": 8521.14, + "end": 8522.06, + "probability": 0.0472 + }, + { + "start": 8523.2, + "end": 8525.9, + "probability": 0.6871 + }, + { + "start": 8525.96, + "end": 8527.08, + "probability": 0.9232 + }, + { + "start": 8527.54, + "end": 8529.7, + "probability": 0.9937 + }, + { + "start": 8530.56, + "end": 8534.36, + "probability": 0.9944 + }, + { + "start": 8534.68, + "end": 8536.96, + "probability": 0.8657 + }, + { + "start": 8538.4, + "end": 8543.54, + "probability": 0.9783 + }, + { + "start": 8544.34, + "end": 8551.38, + "probability": 0.9782 + }, + { + "start": 8552.14, + "end": 8559.22, + "probability": 0.9226 + }, + { + "start": 8559.64, + "end": 8562.56, + "probability": 0.9194 + }, + { + "start": 8562.56, + "end": 8566.02, + "probability": 0.9958 + }, + { + "start": 8567.18, + "end": 8568.58, + "probability": 0.9992 + }, + { + "start": 8569.16, + "end": 8571.54, + "probability": 0.9675 + }, + { + "start": 8572.42, + "end": 8575.86, + "probability": 0.9706 + }, + { + "start": 8576.82, + "end": 8579.24, + "probability": 0.9737 + }, + { + "start": 8579.82, + "end": 8581.88, + "probability": 0.984 + }, + { + "start": 8582.22, + "end": 8583.44, + "probability": 0.7672 + }, + { + "start": 8583.94, + "end": 8586.3, + "probability": 0.9241 + }, + { + "start": 8587.56, + "end": 8594.74, + "probability": 0.944 + }, + { + "start": 8595.76, + "end": 8599.24, + "probability": 0.8287 + }, + { + "start": 8599.76, + "end": 8601.5, + "probability": 0.9699 + }, + { + "start": 8603.26, + "end": 8607.7, + "probability": 0.9551 + }, + { + "start": 8608.36, + "end": 8613.96, + "probability": 0.9976 + }, + { + "start": 8614.84, + "end": 8618.28, + "probability": 0.8659 + }, + { + "start": 8619.0, + "end": 8619.46, + "probability": 0.4314 + }, + { + "start": 8620.1, + "end": 8624.08, + "probability": 0.8656 + }, + { + "start": 8625.3, + "end": 8627.02, + "probability": 0.445 + }, + { + "start": 8627.66, + "end": 8629.16, + "probability": 0.7081 + }, + { + "start": 8630.66, + "end": 8634.08, + "probability": 0.9161 + }, + { + "start": 8634.76, + "end": 8636.0, + "probability": 0.9397 + }, + { + "start": 8637.32, + "end": 8640.64, + "probability": 0.9707 + }, + { + "start": 8641.5, + "end": 8643.34, + "probability": 0.8503 + }, + { + "start": 8644.12, + "end": 8646.51, + "probability": 0.912 + }, + { + "start": 8648.1, + "end": 8650.52, + "probability": 0.9974 + }, + { + "start": 8651.34, + "end": 8655.4, + "probability": 0.9977 + }, + { + "start": 8656.68, + "end": 8659.38, + "probability": 0.9973 + }, + { + "start": 8660.02, + "end": 8661.3, + "probability": 0.9084 + }, + { + "start": 8661.74, + "end": 8664.6, + "probability": 0.9917 + }, + { + "start": 8665.52, + "end": 8666.26, + "probability": 0.967 + }, + { + "start": 8666.92, + "end": 8670.18, + "probability": 0.9957 + }, + { + "start": 8670.82, + "end": 8673.34, + "probability": 0.4983 + }, + { + "start": 8673.66, + "end": 8676.8, + "probability": 0.907 + }, + { + "start": 8678.1, + "end": 8681.86, + "probability": 0.9804 + }, + { + "start": 8682.66, + "end": 8684.14, + "probability": 0.9977 + }, + { + "start": 8684.88, + "end": 8685.84, + "probability": 0.7768 + }, + { + "start": 8686.66, + "end": 8688.28, + "probability": 0.6622 + }, + { + "start": 8688.9, + "end": 8693.54, + "probability": 0.957 + }, + { + "start": 8693.8, + "end": 8695.84, + "probability": 0.9079 + }, + { + "start": 8696.92, + "end": 8699.28, + "probability": 0.8892 + }, + { + "start": 8699.98, + "end": 8704.66, + "probability": 0.9815 + }, + { + "start": 8705.22, + "end": 8705.42, + "probability": 0.3261 + }, + { + "start": 8705.5, + "end": 8707.08, + "probability": 0.8759 + }, + { + "start": 8707.32, + "end": 8708.26, + "probability": 0.9465 + }, + { + "start": 8708.58, + "end": 8710.5, + "probability": 0.9557 + }, + { + "start": 8710.9, + "end": 8713.2, + "probability": 0.9764 + }, + { + "start": 8714.32, + "end": 8714.46, + "probability": 0.5542 + }, + { + "start": 8718.74, + "end": 8723.06, + "probability": 0.9729 + }, + { + "start": 8723.92, + "end": 8727.64, + "probability": 0.9582 + }, + { + "start": 8728.2, + "end": 8729.04, + "probability": 0.7722 + }, + { + "start": 8733.22, + "end": 8737.96, + "probability": 0.9412 + }, + { + "start": 8739.36, + "end": 8744.48, + "probability": 0.8987 + }, + { + "start": 8745.4, + "end": 8750.1, + "probability": 0.9953 + }, + { + "start": 8750.82, + "end": 8751.6, + "probability": 0.3705 + }, + { + "start": 8751.74, + "end": 8756.3, + "probability": 0.8625 + }, + { + "start": 8757.62, + "end": 8763.0, + "probability": 0.9852 + }, + { + "start": 8763.66, + "end": 8767.34, + "probability": 0.9937 + }, + { + "start": 8768.98, + "end": 8773.56, + "probability": 0.9151 + }, + { + "start": 8774.02, + "end": 8778.9, + "probability": 0.9734 + }, + { + "start": 8779.24, + "end": 8780.38, + "probability": 0.9249 + }, + { + "start": 8781.0, + "end": 8783.72, + "probability": 0.7635 + }, + { + "start": 8783.78, + "end": 8785.12, + "probability": 0.7375 + }, + { + "start": 8785.18, + "end": 8786.92, + "probability": 0.6749 + }, + { + "start": 8786.96, + "end": 8788.46, + "probability": 0.7305 + }, + { + "start": 8789.42, + "end": 8797.24, + "probability": 0.7479 + }, + { + "start": 8797.8, + "end": 8799.04, + "probability": 0.916 + }, + { + "start": 8800.16, + "end": 8800.8, + "probability": 0.3908 + }, + { + "start": 8801.2, + "end": 8801.62, + "probability": 0.7544 + }, + { + "start": 8802.68, + "end": 8803.18, + "probability": 0.58 + }, + { + "start": 8803.26, + "end": 8803.96, + "probability": 0.6194 + }, + { + "start": 8804.06, + "end": 8806.4, + "probability": 0.9034 + }, + { + "start": 8807.48, + "end": 8807.84, + "probability": 0.9279 + }, + { + "start": 8808.06, + "end": 8812.24, + "probability": 0.9832 + }, + { + "start": 8812.94, + "end": 8816.54, + "probability": 0.9916 + }, + { + "start": 8817.56, + "end": 8819.6, + "probability": 0.9315 + }, + { + "start": 8820.74, + "end": 8821.92, + "probability": 0.9195 + }, + { + "start": 8822.22, + "end": 8828.07, + "probability": 0.9648 + }, + { + "start": 8828.7, + "end": 8829.5, + "probability": 0.8251 + }, + { + "start": 8830.24, + "end": 8832.04, + "probability": 0.9163 + }, + { + "start": 8833.28, + "end": 8834.1, + "probability": 0.4903 + }, + { + "start": 8834.2, + "end": 8835.34, + "probability": 0.9019 + }, + { + "start": 8835.44, + "end": 8840.02, + "probability": 0.9946 + }, + { + "start": 8840.28, + "end": 8844.14, + "probability": 0.983 + }, + { + "start": 8844.74, + "end": 8848.74, + "probability": 0.8623 + }, + { + "start": 8849.38, + "end": 8852.72, + "probability": 0.9296 + }, + { + "start": 8853.74, + "end": 8858.5, + "probability": 0.9827 + }, + { + "start": 8859.04, + "end": 8859.7, + "probability": 0.7928 + }, + { + "start": 8860.62, + "end": 8870.94, + "probability": 0.9874 + }, + { + "start": 8871.12, + "end": 8873.6, + "probability": 0.8451 + }, + { + "start": 8873.98, + "end": 8874.36, + "probability": 0.8721 + }, + { + "start": 8875.14, + "end": 8876.92, + "probability": 0.8743 + }, + { + "start": 8877.64, + "end": 8881.1, + "probability": 0.9906 + }, + { + "start": 8881.76, + "end": 8885.52, + "probability": 0.9414 + }, + { + "start": 8886.9, + "end": 8889.56, + "probability": 0.9897 + }, + { + "start": 8889.74, + "end": 8896.66, + "probability": 0.992 + }, + { + "start": 8897.78, + "end": 8899.98, + "probability": 0.9595 + }, + { + "start": 8900.32, + "end": 8905.52, + "probability": 0.9767 + }, + { + "start": 8905.52, + "end": 8911.82, + "probability": 0.9838 + }, + { + "start": 8912.46, + "end": 8913.78, + "probability": 0.5405 + }, + { + "start": 8913.9, + "end": 8915.78, + "probability": 0.9416 + }, + { + "start": 8916.44, + "end": 8923.28, + "probability": 0.9822 + }, + { + "start": 8924.02, + "end": 8925.24, + "probability": 0.7068 + }, + { + "start": 8925.44, + "end": 8930.28, + "probability": 0.9655 + }, + { + "start": 8930.42, + "end": 8931.22, + "probability": 0.7975 + }, + { + "start": 8931.28, + "end": 8931.86, + "probability": 0.4405 + }, + { + "start": 8931.96, + "end": 8933.04, + "probability": 0.9741 + }, + { + "start": 8933.18, + "end": 8936.2, + "probability": 0.7528 + }, + { + "start": 8936.82, + "end": 8939.36, + "probability": 0.9452 + }, + { + "start": 8939.66, + "end": 8945.24, + "probability": 0.9934 + }, + { + "start": 8945.92, + "end": 8948.64, + "probability": 0.961 + }, + { + "start": 8949.88, + "end": 8950.74, + "probability": 0.602 + }, + { + "start": 8950.74, + "end": 8955.24, + "probability": 0.9741 + }, + { + "start": 8956.06, + "end": 8960.18, + "probability": 0.924 + }, + { + "start": 8961.02, + "end": 8963.12, + "probability": 0.8918 + }, + { + "start": 8963.58, + "end": 8964.94, + "probability": 0.9693 + }, + { + "start": 8964.98, + "end": 8965.96, + "probability": 0.9595 + }, + { + "start": 8966.08, + "end": 8969.68, + "probability": 0.992 + }, + { + "start": 8970.1, + "end": 8971.7, + "probability": 0.9325 + }, + { + "start": 8971.98, + "end": 8972.86, + "probability": 0.788 + }, + { + "start": 8973.04, + "end": 8976.36, + "probability": 0.9363 + }, + { + "start": 8976.36, + "end": 8979.36, + "probability": 0.9833 + }, + { + "start": 8980.44, + "end": 8980.96, + "probability": 0.8494 + }, + { + "start": 8981.0, + "end": 8983.44, + "probability": 0.9045 + }, + { + "start": 8983.52, + "end": 8985.16, + "probability": 0.7682 + }, + { + "start": 8985.74, + "end": 8989.92, + "probability": 0.9884 + }, + { + "start": 8989.94, + "end": 8991.0, + "probability": 0.8468 + }, + { + "start": 8991.18, + "end": 8991.4, + "probability": 0.273 + }, + { + "start": 8991.66, + "end": 8993.94, + "probability": 0.8993 + }, + { + "start": 8994.74, + "end": 8996.88, + "probability": 0.9966 + }, + { + "start": 8997.33, + "end": 9003.32, + "probability": 0.9875 + }, + { + "start": 9004.54, + "end": 9012.58, + "probability": 0.7852 + }, + { + "start": 9013.04, + "end": 9015.7, + "probability": 0.7654 + }, + { + "start": 9015.88, + "end": 9017.72, + "probability": 0.9663 + }, + { + "start": 9018.0, + "end": 9021.62, + "probability": 0.9886 + }, + { + "start": 9021.68, + "end": 9022.84, + "probability": 0.9255 + }, + { + "start": 9022.94, + "end": 9023.96, + "probability": 0.9594 + }, + { + "start": 9024.66, + "end": 9030.44, + "probability": 0.8975 + }, + { + "start": 9030.7, + "end": 9033.06, + "probability": 0.8404 + }, + { + "start": 9033.18, + "end": 9036.3, + "probability": 0.9604 + }, + { + "start": 9036.48, + "end": 9040.34, + "probability": 0.8528 + }, + { + "start": 9040.9, + "end": 9041.83, + "probability": 0.8938 + }, + { + "start": 9042.3, + "end": 9047.68, + "probability": 0.9728 + }, + { + "start": 9048.08, + "end": 9049.54, + "probability": 0.9294 + }, + { + "start": 9052.82, + "end": 9055.72, + "probability": 0.9637 + }, + { + "start": 9058.64, + "end": 9060.92, + "probability": 0.9478 + }, + { + "start": 9061.1, + "end": 9062.03, + "probability": 0.9388 + }, + { + "start": 9062.4, + "end": 9064.16, + "probability": 0.8962 + }, + { + "start": 9064.2, + "end": 9065.46, + "probability": 0.8716 + }, + { + "start": 9072.04, + "end": 9076.56, + "probability": 0.9962 + }, + { + "start": 9077.5, + "end": 9080.86, + "probability": 0.9633 + }, + { + "start": 9081.46, + "end": 9083.98, + "probability": 0.9981 + }, + { + "start": 9083.98, + "end": 9087.48, + "probability": 0.9909 + }, + { + "start": 9088.1, + "end": 9090.47, + "probability": 0.9811 + }, + { + "start": 9091.0, + "end": 9092.26, + "probability": 0.9874 + }, + { + "start": 9092.4, + "end": 9093.26, + "probability": 0.961 + }, + { + "start": 9093.38, + "end": 9094.34, + "probability": 0.9375 + }, + { + "start": 9095.12, + "end": 9097.06, + "probability": 0.8265 + }, + { + "start": 9097.56, + "end": 9102.76, + "probability": 0.9867 + }, + { + "start": 9102.96, + "end": 9107.64, + "probability": 0.9946 + }, + { + "start": 9107.74, + "end": 9112.26, + "probability": 0.9922 + }, + { + "start": 9112.64, + "end": 9113.44, + "probability": 0.6833 + }, + { + "start": 9114.58, + "end": 9122.52, + "probability": 0.947 + }, + { + "start": 9122.9, + "end": 9123.72, + "probability": 0.3736 + }, + { + "start": 9123.82, + "end": 9123.98, + "probability": 0.6594 + }, + { + "start": 9124.7, + "end": 9126.76, + "probability": 0.8069 + }, + { + "start": 9127.5, + "end": 9130.12, + "probability": 0.998 + }, + { + "start": 9130.68, + "end": 9135.56, + "probability": 0.9943 + }, + { + "start": 9136.0, + "end": 9138.46, + "probability": 0.9974 + }, + { + "start": 9138.52, + "end": 9139.18, + "probability": 0.4839 + }, + { + "start": 9139.78, + "end": 9141.78, + "probability": 0.9938 + }, + { + "start": 9142.86, + "end": 9144.22, + "probability": 0.9744 + }, + { + "start": 9144.92, + "end": 9146.02, + "probability": 0.6725 + }, + { + "start": 9146.56, + "end": 9151.52, + "probability": 0.9341 + }, + { + "start": 9152.54, + "end": 9159.42, + "probability": 0.9928 + }, + { + "start": 9159.52, + "end": 9161.6, + "probability": 0.9126 + }, + { + "start": 9161.66, + "end": 9162.38, + "probability": 0.7288 + }, + { + "start": 9163.28, + "end": 9166.28, + "probability": 0.9138 + }, + { + "start": 9167.0, + "end": 9168.36, + "probability": 0.8298 + }, + { + "start": 9169.08, + "end": 9174.26, + "probability": 0.9844 + }, + { + "start": 9175.32, + "end": 9179.56, + "probability": 0.9326 + }, + { + "start": 9180.26, + "end": 9181.16, + "probability": 0.6944 + }, + { + "start": 9182.16, + "end": 9183.68, + "probability": 0.9442 + }, + { + "start": 9183.76, + "end": 9185.18, + "probability": 0.9972 + }, + { + "start": 9186.28, + "end": 9190.2, + "probability": 0.9465 + }, + { + "start": 9191.1, + "end": 9193.56, + "probability": 0.7025 + }, + { + "start": 9194.06, + "end": 9197.02, + "probability": 0.9852 + }, + { + "start": 9197.26, + "end": 9198.38, + "probability": 0.944 + }, + { + "start": 9199.1, + "end": 9204.9, + "probability": 0.9913 + }, + { + "start": 9205.58, + "end": 9206.62, + "probability": 0.7405 + }, + { + "start": 9207.46, + "end": 9209.46, + "probability": 0.9458 + }, + { + "start": 9209.98, + "end": 9213.84, + "probability": 0.947 + }, + { + "start": 9214.58, + "end": 9216.94, + "probability": 0.7834 + }, + { + "start": 9217.56, + "end": 9221.12, + "probability": 0.7662 + }, + { + "start": 9223.02, + "end": 9226.9, + "probability": 0.9877 + }, + { + "start": 9227.46, + "end": 9230.6, + "probability": 0.9446 + }, + { + "start": 9231.72, + "end": 9237.82, + "probability": 0.9889 + }, + { + "start": 9238.18, + "end": 9239.56, + "probability": 0.9286 + }, + { + "start": 9241.0, + "end": 9244.62, + "probability": 0.7842 + }, + { + "start": 9245.4, + "end": 9246.82, + "probability": 0.9688 + }, + { + "start": 9247.94, + "end": 9253.06, + "probability": 0.7666 + }, + { + "start": 9253.72, + "end": 9259.08, + "probability": 0.991 + }, + { + "start": 9259.74, + "end": 9266.52, + "probability": 0.9931 + }, + { + "start": 9267.06, + "end": 9268.58, + "probability": 0.9529 + }, + { + "start": 9268.78, + "end": 9271.18, + "probability": 0.9298 + }, + { + "start": 9271.88, + "end": 9272.86, + "probability": 0.738 + }, + { + "start": 9273.1, + "end": 9273.54, + "probability": 0.9728 + }, + { + "start": 9274.28, + "end": 9277.58, + "probability": 0.8865 + }, + { + "start": 9278.16, + "end": 9281.01, + "probability": 0.9761 + }, + { + "start": 9282.48, + "end": 9283.86, + "probability": 0.7886 + }, + { + "start": 9284.64, + "end": 9289.6, + "probability": 0.9697 + }, + { + "start": 9289.64, + "end": 9290.48, + "probability": 0.5847 + }, + { + "start": 9290.82, + "end": 9293.88, + "probability": 0.9749 + }, + { + "start": 9294.22, + "end": 9298.5, + "probability": 0.7827 + }, + { + "start": 9299.26, + "end": 9303.26, + "probability": 0.9396 + }, + { + "start": 9303.32, + "end": 9306.18, + "probability": 0.9678 + }, + { + "start": 9307.0, + "end": 9308.36, + "probability": 0.9819 + }, + { + "start": 9309.14, + "end": 9313.48, + "probability": 0.9823 + }, + { + "start": 9313.72, + "end": 9316.42, + "probability": 0.9971 + }, + { + "start": 9317.04, + "end": 9322.01, + "probability": 0.9865 + }, + { + "start": 9322.48, + "end": 9325.08, + "probability": 0.9431 + }, + { + "start": 9325.08, + "end": 9330.02, + "probability": 0.9452 + }, + { + "start": 9330.6, + "end": 9334.02, + "probability": 0.8892 + }, + { + "start": 9334.5, + "end": 9336.32, + "probability": 0.9823 + }, + { + "start": 9336.62, + "end": 9337.92, + "probability": 0.8962 + }, + { + "start": 9338.76, + "end": 9342.0, + "probability": 0.9959 + }, + { + "start": 9342.1, + "end": 9346.88, + "probability": 0.9932 + }, + { + "start": 9347.54, + "end": 9349.32, + "probability": 0.7389 + }, + { + "start": 9349.42, + "end": 9355.78, + "probability": 0.9512 + }, + { + "start": 9356.06, + "end": 9359.58, + "probability": 0.9478 + }, + { + "start": 9359.84, + "end": 9363.16, + "probability": 0.7101 + }, + { + "start": 9363.62, + "end": 9364.32, + "probability": 0.4796 + }, + { + "start": 9364.54, + "end": 9366.42, + "probability": 0.8831 + }, + { + "start": 9366.92, + "end": 9369.46, + "probability": 0.9753 + }, + { + "start": 9370.4, + "end": 9377.52, + "probability": 0.859 + }, + { + "start": 9377.86, + "end": 9378.16, + "probability": 0.6247 + }, + { + "start": 9378.3, + "end": 9378.94, + "probability": 0.3394 + }, + { + "start": 9379.6, + "end": 9381.32, + "probability": 0.9016 + }, + { + "start": 9381.52, + "end": 9384.1, + "probability": 0.7588 + }, + { + "start": 9384.68, + "end": 9385.46, + "probability": 0.9297 + }, + { + "start": 9386.58, + "end": 9391.62, + "probability": 0.7523 + }, + { + "start": 9392.06, + "end": 9393.1, + "probability": 0.6961 + }, + { + "start": 9394.28, + "end": 9394.98, + "probability": 0.8141 + }, + { + "start": 9395.08, + "end": 9396.78, + "probability": 0.9561 + }, + { + "start": 9397.24, + "end": 9399.64, + "probability": 0.9022 + }, + { + "start": 9401.2, + "end": 9403.72, + "probability": 0.8891 + }, + { + "start": 9404.8, + "end": 9405.68, + "probability": 0.9633 + }, + { + "start": 9406.52, + "end": 9407.64, + "probability": 0.9065 + }, + { + "start": 9408.58, + "end": 9410.17, + "probability": 0.9531 + }, + { + "start": 9410.92, + "end": 9413.33, + "probability": 0.9389 + }, + { + "start": 9414.02, + "end": 9416.64, + "probability": 0.9152 + }, + { + "start": 9416.7, + "end": 9421.06, + "probability": 0.9312 + }, + { + "start": 9421.84, + "end": 9423.98, + "probability": 0.8406 + }, + { + "start": 9424.9, + "end": 9427.8, + "probability": 0.8987 + }, + { + "start": 9428.6, + "end": 9431.28, + "probability": 0.9316 + }, + { + "start": 9431.96, + "end": 9433.78, + "probability": 0.9014 + }, + { + "start": 9433.94, + "end": 9436.98, + "probability": 0.9919 + }, + { + "start": 9437.16, + "end": 9439.58, + "probability": 0.9531 + }, + { + "start": 9440.14, + "end": 9443.22, + "probability": 0.9036 + }, + { + "start": 9443.36, + "end": 9445.73, + "probability": 0.717 + }, + { + "start": 9446.38, + "end": 9450.52, + "probability": 0.8833 + }, + { + "start": 9451.02, + "end": 9453.52, + "probability": 0.8877 + }, + { + "start": 9453.6, + "end": 9454.9, + "probability": 0.9569 + }, + { + "start": 9454.98, + "end": 9457.26, + "probability": 0.984 + }, + { + "start": 9457.98, + "end": 9458.38, + "probability": 0.9636 + }, + { + "start": 9458.96, + "end": 9459.86, + "probability": 0.7236 + }, + { + "start": 9459.86, + "end": 9461.0, + "probability": 0.5869 + }, + { + "start": 9461.16, + "end": 9462.14, + "probability": 0.6157 + }, + { + "start": 9462.22, + "end": 9465.32, + "probability": 0.9863 + }, + { + "start": 9465.54, + "end": 9467.28, + "probability": 0.9504 + }, + { + "start": 9468.18, + "end": 9471.57, + "probability": 0.8875 + }, + { + "start": 9471.72, + "end": 9471.84, + "probability": 0.5111 + }, + { + "start": 9471.86, + "end": 9475.88, + "probability": 0.8052 + }, + { + "start": 9476.22, + "end": 9480.76, + "probability": 0.8187 + }, + { + "start": 9481.38, + "end": 9481.6, + "probability": 0.5194 + }, + { + "start": 9481.66, + "end": 9485.54, + "probability": 0.6048 + }, + { + "start": 9485.64, + "end": 9487.78, + "probability": 0.6633 + }, + { + "start": 9488.74, + "end": 9491.08, + "probability": 0.5232 + }, + { + "start": 9491.82, + "end": 9493.02, + "probability": 0.9691 + }, + { + "start": 9494.38, + "end": 9497.64, + "probability": 0.9787 + }, + { + "start": 9499.04, + "end": 9503.46, + "probability": 0.9946 + }, + { + "start": 9504.42, + "end": 9504.74, + "probability": 0.7149 + }, + { + "start": 9505.56, + "end": 9508.4, + "probability": 0.8733 + }, + { + "start": 9508.4, + "end": 9510.9, + "probability": 0.9846 + }, + { + "start": 9511.38, + "end": 9516.3, + "probability": 0.9149 + }, + { + "start": 9516.86, + "end": 9518.98, + "probability": 0.992 + }, + { + "start": 9519.9, + "end": 9522.66, + "probability": 0.8156 + }, + { + "start": 9524.08, + "end": 9525.68, + "probability": 0.9956 + }, + { + "start": 9527.06, + "end": 9527.92, + "probability": 0.8118 + }, + { + "start": 9528.82, + "end": 9531.76, + "probability": 0.9669 + }, + { + "start": 9532.2, + "end": 9537.66, + "probability": 0.9458 + }, + { + "start": 9537.68, + "end": 9538.2, + "probability": 0.8153 + }, + { + "start": 9539.5, + "end": 9540.6, + "probability": 0.8398 + }, + { + "start": 9541.86, + "end": 9543.36, + "probability": 0.7014 + }, + { + "start": 9544.06, + "end": 9548.24, + "probability": 0.9258 + }, + { + "start": 9548.58, + "end": 9549.04, + "probability": 0.7851 + }, + { + "start": 9549.1, + "end": 9551.54, + "probability": 0.9651 + }, + { + "start": 9552.32, + "end": 9553.98, + "probability": 0.9837 + }, + { + "start": 9554.52, + "end": 9555.32, + "probability": 0.7406 + }, + { + "start": 9556.08, + "end": 9557.26, + "probability": 0.9481 + }, + { + "start": 9558.08, + "end": 9562.36, + "probability": 0.9802 + }, + { + "start": 9563.68, + "end": 9566.8, + "probability": 0.969 + }, + { + "start": 9568.48, + "end": 9568.82, + "probability": 0.6483 + }, + { + "start": 9569.36, + "end": 9572.52, + "probability": 0.9092 + }, + { + "start": 9573.1, + "end": 9574.38, + "probability": 0.8819 + }, + { + "start": 9575.06, + "end": 9576.78, + "probability": 0.7672 + }, + { + "start": 9578.34, + "end": 9578.74, + "probability": 0.8486 + }, + { + "start": 9579.4, + "end": 9582.4, + "probability": 0.9871 + }, + { + "start": 9583.06, + "end": 9585.5, + "probability": 0.9736 + }, + { + "start": 9586.44, + "end": 9589.1, + "probability": 0.9905 + }, + { + "start": 9589.56, + "end": 9590.84, + "probability": 0.8443 + }, + { + "start": 9591.6, + "end": 9595.12, + "probability": 0.9182 + }, + { + "start": 9595.72, + "end": 9598.58, + "probability": 0.9908 + }, + { + "start": 9599.64, + "end": 9603.94, + "probability": 0.9961 + }, + { + "start": 9605.12, + "end": 9608.02, + "probability": 0.9561 + }, + { + "start": 9608.88, + "end": 9609.44, + "probability": 0.9435 + }, + { + "start": 9610.2, + "end": 9612.28, + "probability": 0.7948 + }, + { + "start": 9613.12, + "end": 9617.46, + "probability": 0.9845 + }, + { + "start": 9617.68, + "end": 9622.34, + "probability": 0.8998 + }, + { + "start": 9623.02, + "end": 9625.22, + "probability": 0.9722 + }, + { + "start": 9625.84, + "end": 9626.54, + "probability": 0.9807 + }, + { + "start": 9627.5, + "end": 9629.7, + "probability": 0.9719 + }, + { + "start": 9630.48, + "end": 9632.28, + "probability": 0.7566 + }, + { + "start": 9632.96, + "end": 9637.9, + "probability": 0.8997 + }, + { + "start": 9638.62, + "end": 9639.98, + "probability": 0.874 + }, + { + "start": 9640.72, + "end": 9641.98, + "probability": 0.9053 + }, + { + "start": 9642.8, + "end": 9646.18, + "probability": 0.9846 + }, + { + "start": 9646.92, + "end": 9647.44, + "probability": 0.6339 + }, + { + "start": 9648.02, + "end": 9649.96, + "probability": 0.8236 + }, + { + "start": 9650.44, + "end": 9652.06, + "probability": 0.9697 + }, + { + "start": 9652.64, + "end": 9654.22, + "probability": 0.8469 + }, + { + "start": 9655.16, + "end": 9655.72, + "probability": 0.854 + }, + { + "start": 9656.72, + "end": 9660.68, + "probability": 0.9395 + }, + { + "start": 9661.58, + "end": 9665.4, + "probability": 0.9688 + }, + { + "start": 9666.14, + "end": 9669.62, + "probability": 0.8657 + }, + { + "start": 9670.26, + "end": 9671.74, + "probability": 0.7925 + }, + { + "start": 9672.32, + "end": 9673.32, + "probability": 0.7043 + }, + { + "start": 9674.02, + "end": 9676.02, + "probability": 0.9789 + }, + { + "start": 9676.12, + "end": 9676.72, + "probability": 0.7504 + }, + { + "start": 9676.88, + "end": 9680.72, + "probability": 0.9668 + }, + { + "start": 9681.44, + "end": 9682.18, + "probability": 0.9895 + }, + { + "start": 9683.46, + "end": 9683.72, + "probability": 0.8181 + }, + { + "start": 9684.54, + "end": 9685.84, + "probability": 0.9678 + }, + { + "start": 9686.88, + "end": 9691.96, + "probability": 0.9697 + }, + { + "start": 9692.5, + "end": 9694.74, + "probability": 0.9824 + }, + { + "start": 9695.32, + "end": 9697.42, + "probability": 0.985 + }, + { + "start": 9698.58, + "end": 9701.22, + "probability": 0.8036 + }, + { + "start": 9702.48, + "end": 9705.26, + "probability": 0.9606 + }, + { + "start": 9706.0, + "end": 9708.58, + "probability": 0.9289 + }, + { + "start": 9709.88, + "end": 9712.04, + "probability": 0.9821 + }, + { + "start": 9712.98, + "end": 9715.3, + "probability": 0.9951 + }, + { + "start": 9716.42, + "end": 9717.76, + "probability": 0.9604 + }, + { + "start": 9718.54, + "end": 9719.12, + "probability": 0.3398 + }, + { + "start": 9719.92, + "end": 9722.58, + "probability": 0.9038 + }, + { + "start": 9722.76, + "end": 9723.42, + "probability": 0.6454 + }, + { + "start": 9723.88, + "end": 9725.86, + "probability": 0.8469 + }, + { + "start": 9726.2, + "end": 9726.62, + "probability": 0.7549 + }, + { + "start": 9726.84, + "end": 9729.12, + "probability": 0.9475 + }, + { + "start": 9729.72, + "end": 9733.28, + "probability": 0.9826 + }, + { + "start": 9734.92, + "end": 9737.3, + "probability": 0.968 + }, + { + "start": 9738.5, + "end": 9742.16, + "probability": 0.9677 + }, + { + "start": 9743.86, + "end": 9747.72, + "probability": 0.9952 + }, + { + "start": 9747.72, + "end": 9751.99, + "probability": 0.9912 + }, + { + "start": 9753.39, + "end": 9753.98, + "probability": 0.638 + }, + { + "start": 9755.22, + "end": 9755.88, + "probability": 0.9691 + }, + { + "start": 9757.7, + "end": 9758.62, + "probability": 0.9329 + }, + { + "start": 9759.06, + "end": 9763.34, + "probability": 0.9077 + }, + { + "start": 9763.78, + "end": 9764.72, + "probability": 0.8774 + }, + { + "start": 9764.94, + "end": 9766.1, + "probability": 0.9215 + }, + { + "start": 9766.16, + "end": 9768.52, + "probability": 0.7352 + }, + { + "start": 9768.54, + "end": 9772.82, + "probability": 0.8304 + }, + { + "start": 9773.44, + "end": 9775.6, + "probability": 0.9902 + }, + { + "start": 9776.54, + "end": 9781.0, + "probability": 0.9512 + }, + { + "start": 9781.0, + "end": 9784.18, + "probability": 0.9703 + }, + { + "start": 9785.22, + "end": 9785.42, + "probability": 0.7169 + }, + { + "start": 9786.06, + "end": 9787.8, + "probability": 0.9951 + }, + { + "start": 9788.52, + "end": 9791.38, + "probability": 0.9403 + }, + { + "start": 9792.26, + "end": 9793.74, + "probability": 0.9893 + }, + { + "start": 9794.48, + "end": 9795.3, + "probability": 0.9064 + }, + { + "start": 9796.2, + "end": 9796.52, + "probability": 0.3698 + }, + { + "start": 9796.52, + "end": 9798.38, + "probability": 0.6671 + }, + { + "start": 9798.44, + "end": 9799.86, + "probability": 0.9515 + }, + { + "start": 9800.1, + "end": 9802.16, + "probability": 0.9453 + }, + { + "start": 9802.82, + "end": 9804.16, + "probability": 0.9753 + }, + { + "start": 9805.78, + "end": 9808.22, + "probability": 0.9921 + }, + { + "start": 9808.62, + "end": 9810.92, + "probability": 0.9006 + }, + { + "start": 9811.92, + "end": 9812.72, + "probability": 0.9404 + }, + { + "start": 9813.54, + "end": 9815.88, + "probability": 0.9883 + }, + { + "start": 9815.88, + "end": 9818.32, + "probability": 0.9971 + }, + { + "start": 9818.86, + "end": 9820.86, + "probability": 0.9677 + }, + { + "start": 9821.96, + "end": 9827.2, + "probability": 0.9832 + }, + { + "start": 9827.86, + "end": 9830.76, + "probability": 0.855 + }, + { + "start": 9831.48, + "end": 9832.18, + "probability": 0.4618 + }, + { + "start": 9832.36, + "end": 9834.24, + "probability": 0.9856 + }, + { + "start": 9834.6, + "end": 9835.46, + "probability": 0.7853 + }, + { + "start": 9835.8, + "end": 9837.62, + "probability": 0.9546 + }, + { + "start": 9838.3, + "end": 9838.92, + "probability": 0.7714 + }, + { + "start": 9839.72, + "end": 9840.34, + "probability": 0.727 + }, + { + "start": 9841.14, + "end": 9841.62, + "probability": 0.7407 + }, + { + "start": 9842.2, + "end": 9843.08, + "probability": 0.9684 + }, + { + "start": 9844.14, + "end": 9845.92, + "probability": 0.9426 + }, + { + "start": 9845.92, + "end": 9847.78, + "probability": 0.9343 + }, + { + "start": 9848.68, + "end": 9849.26, + "probability": 0.739 + }, + { + "start": 9850.2, + "end": 9852.32, + "probability": 0.7573 + }, + { + "start": 9853.02, + "end": 9853.64, + "probability": 0.8991 + }, + { + "start": 9854.48, + "end": 9856.62, + "probability": 0.9237 + }, + { + "start": 9857.8, + "end": 9860.42, + "probability": 0.8978 + }, + { + "start": 9860.98, + "end": 9861.82, + "probability": 0.4311 + }, + { + "start": 9862.7, + "end": 9863.42, + "probability": 0.6682 + }, + { + "start": 9863.78, + "end": 9866.14, + "probability": 0.8684 + }, + { + "start": 9866.2, + "end": 9866.74, + "probability": 0.7273 + }, + { + "start": 9867.46, + "end": 9870.48, + "probability": 0.9773 + }, + { + "start": 9870.66, + "end": 9871.6, + "probability": 0.7675 + }, + { + "start": 9871.66, + "end": 9872.1, + "probability": 0.5386 + }, + { + "start": 9872.64, + "end": 9874.72, + "probability": 0.7265 + }, + { + "start": 9875.6, + "end": 9877.56, + "probability": 0.5417 + }, + { + "start": 9878.62, + "end": 9880.42, + "probability": 0.7916 + }, + { + "start": 9881.46, + "end": 9882.18, + "probability": 0.5836 + }, + { + "start": 9883.02, + "end": 9883.64, + "probability": 0.3968 + }, + { + "start": 9884.42, + "end": 9884.64, + "probability": 0.9365 + }, + { + "start": 9885.58, + "end": 9888.14, + "probability": 0.9192 + }, + { + "start": 9888.14, + "end": 9891.92, + "probability": 0.988 + }, + { + "start": 9892.84, + "end": 9895.0, + "probability": 0.9919 + }, + { + "start": 9895.09, + "end": 9898.88, + "probability": 0.9542 + }, + { + "start": 9899.6, + "end": 9899.94, + "probability": 0.6049 + }, + { + "start": 9900.72, + "end": 9902.56, + "probability": 0.9944 + }, + { + "start": 9903.4, + "end": 9906.56, + "probability": 0.9824 + }, + { + "start": 9907.28, + "end": 9909.38, + "probability": 0.9648 + }, + { + "start": 9910.42, + "end": 9910.7, + "probability": 0.6595 + }, + { + "start": 9911.22, + "end": 9911.7, + "probability": 0.9179 + }, + { + "start": 9912.58, + "end": 9913.25, + "probability": 0.9556 + }, + { + "start": 9914.22, + "end": 9915.66, + "probability": 0.9343 + }, + { + "start": 9918.14, + "end": 9920.1, + "probability": 0.9715 + }, + { + "start": 9920.22, + "end": 9921.91, + "probability": 0.9993 + }, + { + "start": 9922.5, + "end": 9925.14, + "probability": 0.9983 + }, + { + "start": 9926.04, + "end": 9927.34, + "probability": 0.9164 + }, + { + "start": 9929.58, + "end": 9931.58, + "probability": 0.6735 + }, + { + "start": 9932.26, + "end": 9934.86, + "probability": 0.7838 + }, + { + "start": 9935.68, + "end": 9940.56, + "probability": 0.984 + }, + { + "start": 9941.24, + "end": 9942.6, + "probability": 0.9856 + }, + { + "start": 9943.38, + "end": 9945.72, + "probability": 0.9873 + }, + { + "start": 9946.4, + "end": 9947.7, + "probability": 0.9834 + }, + { + "start": 9948.8, + "end": 9952.3, + "probability": 0.9902 + }, + { + "start": 9953.78, + "end": 9954.2, + "probability": 0.7131 + }, + { + "start": 9955.06, + "end": 9956.76, + "probability": 0.9612 + }, + { + "start": 9956.9, + "end": 9959.64, + "probability": 0.9137 + }, + { + "start": 9962.42, + "end": 9963.26, + "probability": 0.423 + }, + { + "start": 9963.78, + "end": 9965.38, + "probability": 0.6572 + }, + { + "start": 9965.64, + "end": 9968.41, + "probability": 0.9846 + }, + { + "start": 9970.12, + "end": 9970.94, + "probability": 0.976 + }, + { + "start": 9971.68, + "end": 9972.32, + "probability": 0.8313 + }, + { + "start": 9972.86, + "end": 9973.44, + "probability": 0.9966 + }, + { + "start": 9973.76, + "end": 9974.16, + "probability": 0.4589 + }, + { + "start": 9974.32, + "end": 9975.78, + "probability": 0.9385 + }, + { + "start": 9976.3, + "end": 9978.34, + "probability": 0.9095 + }, + { + "start": 9979.2, + "end": 9982.51, + "probability": 0.9859 + }, + { + "start": 9983.74, + "end": 9985.7, + "probability": 0.9145 + }, + { + "start": 9985.96, + "end": 9987.08, + "probability": 0.7627 + }, + { + "start": 9987.62, + "end": 9989.08, + "probability": 0.8511 + }, + { + "start": 9989.62, + "end": 9991.86, + "probability": 0.76 + }, + { + "start": 9992.22, + "end": 9992.72, + "probability": 0.8964 + }, + { + "start": 9993.12, + "end": 9994.72, + "probability": 0.9701 + }, + { + "start": 9995.28, + "end": 9996.26, + "probability": 0.9513 + }, + { + "start": 9996.96, + "end": 10001.18, + "probability": 0.953 + }, + { + "start": 10001.94, + "end": 10004.9, + "probability": 0.9854 + }, + { + "start": 10005.2, + "end": 10005.34, + "probability": 0.6505 + }, + { + "start": 10005.48, + "end": 10006.08, + "probability": 0.6878 + }, + { + "start": 10006.18, + "end": 10011.44, + "probability": 0.9897 + }, + { + "start": 10014.1, + "end": 10017.52, + "probability": 0.98 + }, + { + "start": 10018.38, + "end": 10022.12, + "probability": 0.9985 + }, + { + "start": 10022.26, + "end": 10024.96, + "probability": 0.995 + }, + { + "start": 10024.96, + "end": 10025.58, + "probability": 0.7694 + }, + { + "start": 10025.92, + "end": 10028.41, + "probability": 0.9945 + }, + { + "start": 10028.58, + "end": 10029.82, + "probability": 0.9832 + }, + { + "start": 10030.36, + "end": 10033.3, + "probability": 0.8096 + }, + { + "start": 10034.06, + "end": 10035.12, + "probability": 0.4725 + }, + { + "start": 10035.24, + "end": 10036.62, + "probability": 0.7938 + }, + { + "start": 10036.78, + "end": 10037.92, + "probability": 0.9323 + }, + { + "start": 10038.04, + "end": 10039.84, + "probability": 0.874 + }, + { + "start": 10040.4, + "end": 10042.1, + "probability": 0.9916 + }, + { + "start": 10042.36, + "end": 10043.12, + "probability": 0.859 + }, + { + "start": 10043.32, + "end": 10046.48, + "probability": 0.9715 + }, + { + "start": 10047.16, + "end": 10047.86, + "probability": 0.6968 + }, + { + "start": 10048.5, + "end": 10051.08, + "probability": 0.8546 + }, + { + "start": 10051.14, + "end": 10052.26, + "probability": 0.7347 + }, + { + "start": 10052.92, + "end": 10056.14, + "probability": 0.9956 + }, + { + "start": 10056.38, + "end": 10057.54, + "probability": 0.9679 + }, + { + "start": 10058.48, + "end": 10060.3, + "probability": 0.8878 + }, + { + "start": 10061.08, + "end": 10062.48, + "probability": 0.5076 + }, + { + "start": 10062.62, + "end": 10063.12, + "probability": 0.5419 + }, + { + "start": 10063.7, + "end": 10066.38, + "probability": 0.8893 + }, + { + "start": 10066.78, + "end": 10068.64, + "probability": 0.5857 + }, + { + "start": 10068.64, + "end": 10069.06, + "probability": 0.6366 + }, + { + "start": 10069.06, + "end": 10069.34, + "probability": 0.795 + }, + { + "start": 10069.46, + "end": 10072.52, + "probability": 0.6797 + }, + { + "start": 10073.82, + "end": 10074.44, + "probability": 0.8888 + }, + { + "start": 10074.52, + "end": 10078.12, + "probability": 0.8814 + }, + { + "start": 10078.46, + "end": 10079.52, + "probability": 0.5684 + }, + { + "start": 10079.78, + "end": 10080.52, + "probability": 0.3584 + }, + { + "start": 10081.18, + "end": 10083.08, + "probability": 0.5439 + }, + { + "start": 10084.4, + "end": 10087.82, + "probability": 0.5843 + }, + { + "start": 10088.34, + "end": 10088.69, + "probability": 0.994 + }, + { + "start": 10091.2, + "end": 10093.7, + "probability": 0.798 + }, + { + "start": 10093.82, + "end": 10095.6, + "probability": 0.8374 + }, + { + "start": 10095.72, + "end": 10096.14, + "probability": 0.1676 + }, + { + "start": 10097.46, + "end": 10097.86, + "probability": 0.4363 + }, + { + "start": 10097.88, + "end": 10098.44, + "probability": 0.7091 + }, + { + "start": 10099.76, + "end": 10103.26, + "probability": 0.9592 + }, + { + "start": 10104.28, + "end": 10106.96, + "probability": 0.9471 + }, + { + "start": 10108.28, + "end": 10110.42, + "probability": 0.9982 + }, + { + "start": 10111.34, + "end": 10112.8, + "probability": 0.7038 + }, + { + "start": 10113.68, + "end": 10113.94, + "probability": 0.7769 + }, + { + "start": 10114.14, + "end": 10115.0, + "probability": 0.9912 + }, + { + "start": 10115.1, + "end": 10115.7, + "probability": 0.7449 + }, + { + "start": 10115.9, + "end": 10116.94, + "probability": 0.9961 + }, + { + "start": 10117.72, + "end": 10120.08, + "probability": 0.9987 + }, + { + "start": 10120.92, + "end": 10123.08, + "probability": 0.989 + }, + { + "start": 10123.82, + "end": 10125.1, + "probability": 0.7679 + }, + { + "start": 10125.66, + "end": 10126.08, + "probability": 0.9005 + }, + { + "start": 10127.28, + "end": 10128.24, + "probability": 0.5257 + }, + { + "start": 10128.94, + "end": 10130.68, + "probability": 0.9279 + }, + { + "start": 10131.42, + "end": 10132.78, + "probability": 0.7133 + }, + { + "start": 10133.5, + "end": 10134.96, + "probability": 0.76 + }, + { + "start": 10135.66, + "end": 10138.28, + "probability": 0.9182 + }, + { + "start": 10139.24, + "end": 10141.49, + "probability": 0.9599 + }, + { + "start": 10142.32, + "end": 10144.02, + "probability": 0.7545 + }, + { + "start": 10144.54, + "end": 10146.66, + "probability": 0.9073 + }, + { + "start": 10147.14, + "end": 10149.82, + "probability": 0.9745 + }, + { + "start": 10150.36, + "end": 10151.72, + "probability": 0.9885 + }, + { + "start": 10152.22, + "end": 10153.76, + "probability": 0.9268 + }, + { + "start": 10154.52, + "end": 10156.4, + "probability": 0.9724 + }, + { + "start": 10157.1, + "end": 10157.58, + "probability": 0.818 + }, + { + "start": 10158.6, + "end": 10161.92, + "probability": 0.9951 + }, + { + "start": 10162.62, + "end": 10167.7, + "probability": 0.9855 + }, + { + "start": 10168.3, + "end": 10169.66, + "probability": 0.6568 + }, + { + "start": 10170.22, + "end": 10173.66, + "probability": 0.9706 + }, + { + "start": 10173.72, + "end": 10174.1, + "probability": 0.0049 + } + ], + "segments_count": 3377, + "words_count": 17327, + "avg_words_per_segment": 5.1309, + "avg_segment_duration": 2.3331, + "avg_words_per_minute": 101.8019, + "plenum_id": "22942", + "duration": 10212.19, + "title": null, + "plenum_date": "2012-05-22" +} \ No newline at end of file