diff --git "a/102413/metadata.json" "b/102413/metadata.json" new file mode 100644--- /dev/null +++ "b/102413/metadata.json" @@ -0,0 +1,70407 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "102413", + "quality_score": 0.8917, + "per_segment_quality_scores": [ + { + "start": 77.26, + "end": 77.26, + "probability": 0.3274 + }, + { + "start": 77.26, + "end": 80.32, + "probability": 0.6882 + }, + { + "start": 83.08, + "end": 87.26, + "probability": 0.9653 + }, + { + "start": 88.16, + "end": 92.3, + "probability": 0.8833 + }, + { + "start": 92.98, + "end": 97.92, + "probability": 0.9974 + }, + { + "start": 98.76, + "end": 99.44, + "probability": 0.7564 + }, + { + "start": 100.32, + "end": 101.7, + "probability": 0.7918 + }, + { + "start": 102.68, + "end": 105.14, + "probability": 0.8259 + }, + { + "start": 106.4, + "end": 109.42, + "probability": 0.9529 + }, + { + "start": 111.48, + "end": 113.3, + "probability": 0.8285 + }, + { + "start": 113.44, + "end": 114.4, + "probability": 0.7169 + }, + { + "start": 114.46, + "end": 116.9, + "probability": 0.917 + }, + { + "start": 117.16, + "end": 118.74, + "probability": 0.9705 + }, + { + "start": 133.1, + "end": 133.12, + "probability": 0.0866 + }, + { + "start": 133.14, + "end": 133.24, + "probability": 0.0315 + }, + { + "start": 133.24, + "end": 133.24, + "probability": 0.0332 + }, + { + "start": 133.24, + "end": 133.24, + "probability": 0.1062 + }, + { + "start": 133.24, + "end": 133.86, + "probability": 0.2475 + }, + { + "start": 134.78, + "end": 139.22, + "probability": 0.324 + }, + { + "start": 139.58, + "end": 140.4, + "probability": 0.4104 + }, + { + "start": 140.82, + "end": 142.26, + "probability": 0.7628 + }, + { + "start": 142.32, + "end": 142.66, + "probability": 0.9043 + }, + { + "start": 142.96, + "end": 145.76, + "probability": 0.9961 + }, + { + "start": 146.26, + "end": 150.06, + "probability": 0.9758 + }, + { + "start": 150.46, + "end": 153.28, + "probability": 0.9716 + }, + { + "start": 153.28, + "end": 156.7, + "probability": 0.9978 + }, + { + "start": 156.76, + "end": 157.22, + "probability": 0.8228 + }, + { + "start": 157.28, + "end": 159.64, + "probability": 0.7785 + }, + { + "start": 159.72, + "end": 164.72, + "probability": 0.9728 + }, + { + "start": 164.9, + "end": 165.82, + "probability": 0.8759 + }, + { + "start": 166.58, + "end": 169.94, + "probability": 0.9781 + }, + { + "start": 170.56, + "end": 175.92, + "probability": 0.9961 + }, + { + "start": 175.94, + "end": 179.56, + "probability": 0.991 + }, + { + "start": 180.1, + "end": 181.26, + "probability": 0.716 + }, + { + "start": 181.84, + "end": 184.28, + "probability": 0.99 + }, + { + "start": 185.2, + "end": 188.82, + "probability": 0.957 + }, + { + "start": 188.96, + "end": 191.62, + "probability": 0.8297 + }, + { + "start": 192.38, + "end": 196.48, + "probability": 0.9763 + }, + { + "start": 196.94, + "end": 199.82, + "probability": 0.993 + }, + { + "start": 199.92, + "end": 203.5, + "probability": 0.9575 + }, + { + "start": 203.74, + "end": 205.08, + "probability": 0.9887 + }, + { + "start": 205.16, + "end": 207.47, + "probability": 0.993 + }, + { + "start": 208.02, + "end": 210.3, + "probability": 0.9944 + }, + { + "start": 210.46, + "end": 216.18, + "probability": 0.9624 + }, + { + "start": 216.98, + "end": 217.78, + "probability": 0.7809 + }, + { + "start": 217.8, + "end": 218.02, + "probability": 0.8328 + }, + { + "start": 218.12, + "end": 219.72, + "probability": 0.9148 + }, + { + "start": 219.82, + "end": 220.83, + "probability": 0.9683 + }, + { + "start": 221.6, + "end": 222.54, + "probability": 0.8878 + }, + { + "start": 222.64, + "end": 225.4, + "probability": 0.9924 + }, + { + "start": 225.88, + "end": 227.52, + "probability": 0.7681 + }, + { + "start": 228.26, + "end": 231.2, + "probability": 0.6074 + }, + { + "start": 231.7, + "end": 232.3, + "probability": 0.2282 + }, + { + "start": 232.3, + "end": 237.74, + "probability": 0.8735 + }, + { + "start": 237.9, + "end": 238.82, + "probability": 0.9478 + }, + { + "start": 238.9, + "end": 239.3, + "probability": 0.944 + }, + { + "start": 239.84, + "end": 240.6, + "probability": 0.8667 + }, + { + "start": 241.38, + "end": 245.92, + "probability": 0.9928 + }, + { + "start": 246.56, + "end": 248.39, + "probability": 0.778 + }, + { + "start": 248.46, + "end": 250.64, + "probability": 0.9717 + }, + { + "start": 251.1, + "end": 255.1, + "probability": 0.8193 + }, + { + "start": 255.48, + "end": 258.1, + "probability": 0.985 + }, + { + "start": 258.16, + "end": 260.24, + "probability": 0.9764 + }, + { + "start": 260.72, + "end": 264.74, + "probability": 0.996 + }, + { + "start": 265.02, + "end": 265.52, + "probability": 0.749 + }, + { + "start": 266.44, + "end": 267.22, + "probability": 0.7547 + }, + { + "start": 267.36, + "end": 267.74, + "probability": 0.7065 + }, + { + "start": 268.0, + "end": 271.12, + "probability": 0.998 + }, + { + "start": 271.54, + "end": 271.94, + "probability": 0.7258 + }, + { + "start": 272.17, + "end": 274.82, + "probability": 0.9668 + }, + { + "start": 275.18, + "end": 277.36, + "probability": 0.988 + }, + { + "start": 277.58, + "end": 278.76, + "probability": 0.7036 + }, + { + "start": 278.84, + "end": 282.74, + "probability": 0.9902 + }, + { + "start": 283.12, + "end": 284.94, + "probability": 0.7561 + }, + { + "start": 285.12, + "end": 287.5, + "probability": 0.937 + }, + { + "start": 287.56, + "end": 289.38, + "probability": 0.8417 + }, + { + "start": 291.08, + "end": 291.18, + "probability": 0.262 + }, + { + "start": 291.18, + "end": 292.26, + "probability": 0.9891 + }, + { + "start": 292.32, + "end": 294.66, + "probability": 0.9961 + }, + { + "start": 295.34, + "end": 297.06, + "probability": 0.2396 + }, + { + "start": 297.16, + "end": 297.5, + "probability": 0.4169 + }, + { + "start": 297.72, + "end": 297.98, + "probability": 0.4633 + }, + { + "start": 298.12, + "end": 302.22, + "probability": 0.9956 + }, + { + "start": 302.92, + "end": 303.62, + "probability": 0.528 + }, + { + "start": 303.7, + "end": 308.0, + "probability": 0.9601 + }, + { + "start": 308.66, + "end": 310.84, + "probability": 0.8494 + }, + { + "start": 313.5, + "end": 315.82, + "probability": 0.6812 + }, + { + "start": 317.36, + "end": 320.81, + "probability": 0.8813 + }, + { + "start": 321.7, + "end": 322.94, + "probability": 0.9118 + }, + { + "start": 323.04, + "end": 325.82, + "probability": 0.9832 + }, + { + "start": 326.62, + "end": 329.1, + "probability": 0.8735 + }, + { + "start": 329.98, + "end": 332.02, + "probability": 0.9238 + }, + { + "start": 332.22, + "end": 333.74, + "probability": 0.7154 + }, + { + "start": 333.74, + "end": 335.3, + "probability": 0.9773 + }, + { + "start": 335.52, + "end": 341.02, + "probability": 0.7002 + }, + { + "start": 341.7, + "end": 344.33, + "probability": 0.9402 + }, + { + "start": 344.9, + "end": 348.34, + "probability": 0.9934 + }, + { + "start": 348.34, + "end": 348.34, + "probability": 0.5033 + }, + { + "start": 348.34, + "end": 351.76, + "probability": 0.1415 + }, + { + "start": 352.0, + "end": 354.9, + "probability": 0.8843 + }, + { + "start": 354.98, + "end": 355.36, + "probability": 0.8408 + }, + { + "start": 356.18, + "end": 356.78, + "probability": 0.8438 + }, + { + "start": 356.86, + "end": 359.24, + "probability": 0.832 + }, + { + "start": 359.56, + "end": 360.72, + "probability": 0.9233 + }, + { + "start": 360.8, + "end": 362.32, + "probability": 0.9844 + }, + { + "start": 362.32, + "end": 365.7, + "probability": 0.9908 + }, + { + "start": 365.7, + "end": 369.86, + "probability": 0.9954 + }, + { + "start": 370.5, + "end": 373.02, + "probability": 0.9982 + }, + { + "start": 373.66, + "end": 377.32, + "probability": 0.9916 + }, + { + "start": 377.5, + "end": 380.96, + "probability": 0.998 + }, + { + "start": 381.52, + "end": 385.56, + "probability": 0.9958 + }, + { + "start": 386.0, + "end": 388.72, + "probability": 0.9926 + }, + { + "start": 389.24, + "end": 390.3, + "probability": 0.8689 + }, + { + "start": 393.54, + "end": 397.04, + "probability": 0.5986 + }, + { + "start": 397.4, + "end": 399.98, + "probability": 0.9614 + }, + { + "start": 402.28, + "end": 402.8, + "probability": 0.8911 + }, + { + "start": 411.54, + "end": 412.24, + "probability": 0.7312 + }, + { + "start": 413.38, + "end": 414.68, + "probability": 0.9951 + }, + { + "start": 419.78, + "end": 422.26, + "probability": 0.9916 + }, + { + "start": 422.98, + "end": 425.54, + "probability": 0.9736 + }, + { + "start": 436.66, + "end": 440.1, + "probability": 0.0999 + }, + { + "start": 441.2, + "end": 441.2, + "probability": 0.0601 + }, + { + "start": 456.36, + "end": 456.76, + "probability": 0.0303 + }, + { + "start": 457.68, + "end": 460.64, + "probability": 0.1407 + }, + { + "start": 464.72, + "end": 471.68, + "probability": 0.0464 + }, + { + "start": 471.68, + "end": 475.02, + "probability": 0.0238 + }, + { + "start": 881.0, + "end": 881.0, + "probability": 0.0 + }, + { + "start": 881.0, + "end": 881.0, + "probability": 0.0 + }, + { + "start": 881.0, + "end": 881.0, + "probability": 0.0 + }, + { + "start": 881.0, + "end": 881.0, + "probability": 0.0 + }, + { + "start": 901.3, + "end": 903.66, + "probability": 0.1977 + }, + { + "start": 908.6, + "end": 910.76, + "probability": 0.0961 + }, + { + "start": 914.88, + "end": 916.34, + "probability": 0.2877 + }, + { + "start": 944.2, + "end": 945.02, + "probability": 0.4575 + }, + { + "start": 945.14, + "end": 945.4, + "probability": 0.7381 + }, + { + "start": 945.5, + "end": 946.02, + "probability": 0.6267 + }, + { + "start": 946.04, + "end": 947.92, + "probability": 0.9042 + }, + { + "start": 948.0, + "end": 956.48, + "probability": 0.8169 + }, + { + "start": 956.56, + "end": 959.5, + "probability": 0.9011 + }, + { + "start": 960.76, + "end": 963.52, + "probability": 0.9688 + }, + { + "start": 965.06, + "end": 968.06, + "probability": 0.5613 + }, + { + "start": 969.1, + "end": 971.82, + "probability": 0.9785 + }, + { + "start": 972.72, + "end": 976.13, + "probability": 0.9744 + }, + { + "start": 978.16, + "end": 980.68, + "probability": 0.8958 + }, + { + "start": 980.74, + "end": 982.92, + "probability": 0.9467 + }, + { + "start": 983.84, + "end": 984.68, + "probability": 0.6798 + }, + { + "start": 985.24, + "end": 991.12, + "probability": 0.8894 + }, + { + "start": 991.12, + "end": 993.84, + "probability": 0.9911 + }, + { + "start": 995.58, + "end": 996.08, + "probability": 0.7211 + }, + { + "start": 996.64, + "end": 997.1, + "probability": 0.7791 + }, + { + "start": 997.38, + "end": 998.36, + "probability": 0.8448 + }, + { + "start": 998.46, + "end": 999.24, + "probability": 0.6726 + }, + { + "start": 999.58, + "end": 1000.5, + "probability": 0.8837 + }, + { + "start": 1000.62, + "end": 1003.44, + "probability": 0.9477 + }, + { + "start": 1003.68, + "end": 1006.22, + "probability": 0.8849 + }, + { + "start": 1006.9, + "end": 1009.16, + "probability": 0.9807 + }, + { + "start": 1009.4, + "end": 1011.62, + "probability": 0.94 + }, + { + "start": 1012.48, + "end": 1016.88, + "probability": 0.8665 + }, + { + "start": 1017.98, + "end": 1019.98, + "probability": 0.9707 + }, + { + "start": 1020.24, + "end": 1022.64, + "probability": 0.9325 + }, + { + "start": 1023.36, + "end": 1024.88, + "probability": 0.9811 + }, + { + "start": 1026.96, + "end": 1033.46, + "probability": 0.9678 + }, + { + "start": 1034.38, + "end": 1038.68, + "probability": 0.9872 + }, + { + "start": 1040.38, + "end": 1044.48, + "probability": 0.95 + }, + { + "start": 1044.72, + "end": 1045.82, + "probability": 0.6972 + }, + { + "start": 1045.96, + "end": 1046.54, + "probability": 0.8443 + }, + { + "start": 1047.3, + "end": 1050.78, + "probability": 0.9624 + }, + { + "start": 1050.78, + "end": 1055.94, + "probability": 0.9959 + }, + { + "start": 1056.02, + "end": 1059.24, + "probability": 0.9914 + }, + { + "start": 1059.98, + "end": 1063.82, + "probability": 0.9968 + }, + { + "start": 1064.14, + "end": 1065.64, + "probability": 0.7564 + }, + { + "start": 1065.78, + "end": 1066.58, + "probability": 0.7947 + }, + { + "start": 1066.74, + "end": 1069.52, + "probability": 0.9211 + }, + { + "start": 1070.1, + "end": 1070.98, + "probability": 0.8409 + }, + { + "start": 1071.0, + "end": 1071.32, + "probability": 0.9612 + }, + { + "start": 1071.68, + "end": 1073.82, + "probability": 0.9809 + }, + { + "start": 1073.88, + "end": 1076.84, + "probability": 0.9316 + }, + { + "start": 1077.88, + "end": 1081.52, + "probability": 0.9992 + }, + { + "start": 1081.52, + "end": 1085.52, + "probability": 0.9997 + }, + { + "start": 1086.54, + "end": 1092.56, + "probability": 0.9352 + }, + { + "start": 1093.26, + "end": 1095.94, + "probability": 0.9646 + }, + { + "start": 1095.94, + "end": 1101.12, + "probability": 0.9993 + }, + { + "start": 1101.28, + "end": 1101.64, + "probability": 0.7751 + }, + { + "start": 1102.3, + "end": 1106.54, + "probability": 0.9792 + }, + { + "start": 1106.7, + "end": 1110.5, + "probability": 0.9745 + }, + { + "start": 1110.84, + "end": 1113.74, + "probability": 0.7943 + }, + { + "start": 1113.9, + "end": 1114.8, + "probability": 0.9904 + }, + { + "start": 1116.46, + "end": 1120.88, + "probability": 0.9879 + }, + { + "start": 1120.88, + "end": 1126.22, + "probability": 0.9368 + }, + { + "start": 1127.44, + "end": 1127.54, + "probability": 0.2761 + }, + { + "start": 1127.54, + "end": 1130.94, + "probability": 0.928 + }, + { + "start": 1131.22, + "end": 1137.94, + "probability": 0.9956 + }, + { + "start": 1137.94, + "end": 1145.78, + "probability": 0.9932 + }, + { + "start": 1146.5, + "end": 1150.22, + "probability": 0.9915 + }, + { + "start": 1150.28, + "end": 1156.06, + "probability": 0.9805 + }, + { + "start": 1156.3, + "end": 1160.71, + "probability": 0.9579 + }, + { + "start": 1161.42, + "end": 1166.28, + "probability": 0.9941 + }, + { + "start": 1167.1, + "end": 1167.38, + "probability": 0.7286 + }, + { + "start": 1168.52, + "end": 1169.52, + "probability": 0.9462 + }, + { + "start": 1169.58, + "end": 1174.02, + "probability": 0.9736 + }, + { + "start": 1174.66, + "end": 1178.92, + "probability": 0.96 + }, + { + "start": 1178.92, + "end": 1181.2, + "probability": 0.9446 + }, + { + "start": 1181.34, + "end": 1182.98, + "probability": 0.9963 + }, + { + "start": 1183.5, + "end": 1186.79, + "probability": 0.8408 + }, + { + "start": 1187.42, + "end": 1191.26, + "probability": 0.9268 + }, + { + "start": 1193.08, + "end": 1200.72, + "probability": 0.9427 + }, + { + "start": 1202.98, + "end": 1203.36, + "probability": 0.575 + }, + { + "start": 1203.96, + "end": 1205.68, + "probability": 0.9264 + }, + { + "start": 1206.8, + "end": 1208.96, + "probability": 0.8609 + }, + { + "start": 1209.62, + "end": 1216.8, + "probability": 0.942 + }, + { + "start": 1218.04, + "end": 1218.86, + "probability": 0.7864 + }, + { + "start": 1219.22, + "end": 1221.94, + "probability": 0.9977 + }, + { + "start": 1221.94, + "end": 1226.12, + "probability": 0.7551 + }, + { + "start": 1229.9, + "end": 1231.12, + "probability": 0.9016 + }, + { + "start": 1232.44, + "end": 1235.62, + "probability": 0.9585 + }, + { + "start": 1235.62, + "end": 1237.66, + "probability": 0.9044 + }, + { + "start": 1237.9, + "end": 1239.4, + "probability": 0.5852 + }, + { + "start": 1239.46, + "end": 1245.38, + "probability": 0.9958 + }, + { + "start": 1246.14, + "end": 1246.54, + "probability": 0.6416 + }, + { + "start": 1246.6, + "end": 1248.22, + "probability": 0.9473 + }, + { + "start": 1248.6, + "end": 1250.62, + "probability": 0.9711 + }, + { + "start": 1251.62, + "end": 1255.82, + "probability": 0.9887 + }, + { + "start": 1256.02, + "end": 1258.96, + "probability": 0.9159 + }, + { + "start": 1259.32, + "end": 1261.64, + "probability": 0.9992 + }, + { + "start": 1262.3, + "end": 1263.64, + "probability": 0.7015 + }, + { + "start": 1263.68, + "end": 1266.12, + "probability": 0.9007 + }, + { + "start": 1270.3, + "end": 1273.24, + "probability": 0.926 + }, + { + "start": 1274.18, + "end": 1275.78, + "probability": 0.8781 + }, + { + "start": 1277.6, + "end": 1280.84, + "probability": 0.6997 + }, + { + "start": 1283.68, + "end": 1284.58, + "probability": 0.9694 + }, + { + "start": 1284.7, + "end": 1285.73, + "probability": 0.998 + }, + { + "start": 1286.08, + "end": 1288.08, + "probability": 0.9948 + }, + { + "start": 1288.44, + "end": 1289.56, + "probability": 0.9485 + }, + { + "start": 1290.22, + "end": 1291.58, + "probability": 0.7766 + }, + { + "start": 1291.7, + "end": 1295.54, + "probability": 0.9866 + }, + { + "start": 1295.64, + "end": 1296.64, + "probability": 0.6791 + }, + { + "start": 1297.2, + "end": 1301.34, + "probability": 0.9477 + }, + { + "start": 1301.76, + "end": 1309.72, + "probability": 0.9306 + }, + { + "start": 1309.9, + "end": 1311.16, + "probability": 0.4397 + }, + { + "start": 1311.2, + "end": 1311.8, + "probability": 0.9196 + }, + { + "start": 1312.0, + "end": 1317.82, + "probability": 0.9714 + }, + { + "start": 1319.7, + "end": 1322.98, + "probability": 0.9922 + }, + { + "start": 1323.31, + "end": 1327.02, + "probability": 0.9968 + }, + { + "start": 1327.1, + "end": 1328.02, + "probability": 0.8286 + }, + { + "start": 1328.12, + "end": 1328.26, + "probability": 0.8779 + }, + { + "start": 1328.4, + "end": 1330.36, + "probability": 0.6511 + }, + { + "start": 1330.44, + "end": 1333.89, + "probability": 0.9783 + }, + { + "start": 1334.72, + "end": 1335.88, + "probability": 0.6918 + }, + { + "start": 1337.48, + "end": 1338.94, + "probability": 0.964 + }, + { + "start": 1339.1, + "end": 1341.08, + "probability": 0.9801 + }, + { + "start": 1341.18, + "end": 1342.2, + "probability": 0.588 + }, + { + "start": 1342.34, + "end": 1342.84, + "probability": 0.743 + }, + { + "start": 1343.02, + "end": 1345.26, + "probability": 0.6745 + }, + { + "start": 1345.38, + "end": 1347.12, + "probability": 0.9232 + }, + { + "start": 1348.6, + "end": 1355.04, + "probability": 0.9944 + }, + { + "start": 1356.34, + "end": 1357.38, + "probability": 0.5433 + }, + { + "start": 1358.08, + "end": 1363.9, + "probability": 0.9341 + }, + { + "start": 1365.42, + "end": 1365.62, + "probability": 0.0067 + }, + { + "start": 1365.88, + "end": 1368.06, + "probability": 0.9482 + }, + { + "start": 1368.22, + "end": 1368.56, + "probability": 0.1911 + }, + { + "start": 1368.56, + "end": 1371.88, + "probability": 0.998 + }, + { + "start": 1372.4, + "end": 1373.44, + "probability": 0.9232 + }, + { + "start": 1373.5, + "end": 1376.38, + "probability": 0.9049 + }, + { + "start": 1376.7, + "end": 1378.36, + "probability": 0.8317 + }, + { + "start": 1379.6, + "end": 1382.58, + "probability": 0.9602 + }, + { + "start": 1382.9, + "end": 1386.08, + "probability": 0.9548 + }, + { + "start": 1386.78, + "end": 1388.26, + "probability": 0.5722 + }, + { + "start": 1388.7, + "end": 1389.08, + "probability": 0.7319 + }, + { + "start": 1390.06, + "end": 1390.56, + "probability": 0.9407 + }, + { + "start": 1390.6, + "end": 1395.36, + "probability": 0.9019 + }, + { + "start": 1395.42, + "end": 1396.44, + "probability": 0.5196 + }, + { + "start": 1396.86, + "end": 1397.52, + "probability": 0.8777 + }, + { + "start": 1397.6, + "end": 1399.25, + "probability": 0.9454 + }, + { + "start": 1399.6, + "end": 1404.61, + "probability": 0.8574 + }, + { + "start": 1405.26, + "end": 1408.0, + "probability": 0.9976 + }, + { + "start": 1408.72, + "end": 1409.82, + "probability": 0.7473 + }, + { + "start": 1409.98, + "end": 1413.08, + "probability": 0.9653 + }, + { + "start": 1413.08, + "end": 1413.86, + "probability": 0.3884 + }, + { + "start": 1413.86, + "end": 1413.86, + "probability": 0.5833 + }, + { + "start": 1413.86, + "end": 1415.94, + "probability": 0.9915 + }, + { + "start": 1416.04, + "end": 1417.64, + "probability": 0.9912 + }, + { + "start": 1418.06, + "end": 1419.46, + "probability": 0.8697 + }, + { + "start": 1420.64, + "end": 1425.76, + "probability": 0.9929 + }, + { + "start": 1425.82, + "end": 1425.86, + "probability": 0.0875 + }, + { + "start": 1425.86, + "end": 1426.96, + "probability": 0.6996 + }, + { + "start": 1426.96, + "end": 1427.14, + "probability": 0.1311 + }, + { + "start": 1427.28, + "end": 1428.1, + "probability": 0.8655 + }, + { + "start": 1428.22, + "end": 1433.58, + "probability": 0.9587 + }, + { + "start": 1433.62, + "end": 1435.1, + "probability": 0.9287 + }, + { + "start": 1435.18, + "end": 1435.68, + "probability": 0.957 + }, + { + "start": 1435.86, + "end": 1436.54, + "probability": 0.7434 + }, + { + "start": 1436.68, + "end": 1437.48, + "probability": 0.6268 + }, + { + "start": 1437.58, + "end": 1441.36, + "probability": 0.8285 + }, + { + "start": 1441.42, + "end": 1442.36, + "probability": 0.9883 + }, + { + "start": 1442.94, + "end": 1443.78, + "probability": 0.62 + }, + { + "start": 1446.12, + "end": 1446.82, + "probability": 0.755 + }, + { + "start": 1446.88, + "end": 1448.94, + "probability": 0.9351 + }, + { + "start": 1459.5, + "end": 1462.48, + "probability": 0.7267 + }, + { + "start": 1463.58, + "end": 1465.92, + "probability": 0.6935 + }, + { + "start": 1467.24, + "end": 1473.86, + "probability": 0.9709 + }, + { + "start": 1474.42, + "end": 1478.18, + "probability": 0.886 + }, + { + "start": 1479.67, + "end": 1481.56, + "probability": 0.4196 + }, + { + "start": 1483.14, + "end": 1485.3, + "probability": 0.7488 + }, + { + "start": 1486.18, + "end": 1489.38, + "probability": 0.954 + }, + { + "start": 1490.78, + "end": 1493.72, + "probability": 0.8776 + }, + { + "start": 1494.7, + "end": 1498.38, + "probability": 0.8964 + }, + { + "start": 1499.4, + "end": 1502.24, + "probability": 0.9347 + }, + { + "start": 1502.24, + "end": 1507.36, + "probability": 0.8257 + }, + { + "start": 1508.22, + "end": 1511.76, + "probability": 0.6434 + }, + { + "start": 1512.68, + "end": 1515.08, + "probability": 0.1009 + }, + { + "start": 1515.08, + "end": 1515.54, + "probability": 0.4874 + }, + { + "start": 1516.05, + "end": 1521.94, + "probability": 0.7451 + }, + { + "start": 1523.63, + "end": 1526.82, + "probability": 0.6075 + }, + { + "start": 1527.34, + "end": 1527.98, + "probability": 0.8474 + }, + { + "start": 1528.18, + "end": 1528.98, + "probability": 0.5496 + }, + { + "start": 1529.14, + "end": 1529.9, + "probability": 0.8694 + }, + { + "start": 1530.04, + "end": 1530.84, + "probability": 0.2315 + }, + { + "start": 1531.12, + "end": 1531.54, + "probability": 0.5854 + }, + { + "start": 1532.08, + "end": 1533.4, + "probability": 0.7005 + }, + { + "start": 1534.2, + "end": 1538.7, + "probability": 0.9185 + }, + { + "start": 1538.86, + "end": 1539.86, + "probability": 0.875 + }, + { + "start": 1540.02, + "end": 1540.82, + "probability": 0.8158 + }, + { + "start": 1541.2, + "end": 1541.54, + "probability": 0.6616 + }, + { + "start": 1541.62, + "end": 1544.32, + "probability": 0.9899 + }, + { + "start": 1545.04, + "end": 1546.94, + "probability": 0.5473 + }, + { + "start": 1547.54, + "end": 1549.4, + "probability": 0.9736 + }, + { + "start": 1551.86, + "end": 1552.92, + "probability": 0.9678 + }, + { + "start": 1553.04, + "end": 1553.94, + "probability": 0.7962 + }, + { + "start": 1554.02, + "end": 1560.66, + "probability": 0.8274 + }, + { + "start": 1562.4, + "end": 1564.86, + "probability": 0.583 + }, + { + "start": 1565.5, + "end": 1568.86, + "probability": 0.9948 + }, + { + "start": 1569.36, + "end": 1570.36, + "probability": 0.9785 + }, + { + "start": 1571.52, + "end": 1573.5, + "probability": 0.7649 + }, + { + "start": 1573.5, + "end": 1576.0, + "probability": 0.9444 + }, + { + "start": 1576.2, + "end": 1577.74, + "probability": 0.9863 + }, + { + "start": 1578.32, + "end": 1580.98, + "probability": 0.9363 + }, + { + "start": 1581.58, + "end": 1586.08, + "probability": 0.6167 + }, + { + "start": 1586.3, + "end": 1589.0, + "probability": 0.6381 + }, + { + "start": 1592.02, + "end": 1596.76, + "probability": 0.9938 + }, + { + "start": 1596.8, + "end": 1598.7, + "probability": 0.7934 + }, + { + "start": 1599.18, + "end": 1599.66, + "probability": 0.0537 + }, + { + "start": 1601.16, + "end": 1602.72, + "probability": 0.4308 + }, + { + "start": 1604.6, + "end": 1607.5, + "probability": 0.542 + }, + { + "start": 1608.9, + "end": 1611.92, + "probability": 0.3577 + }, + { + "start": 1613.9, + "end": 1615.88, + "probability": 0.8635 + }, + { + "start": 1616.46, + "end": 1618.42, + "probability": 0.9278 + }, + { + "start": 1622.02, + "end": 1624.12, + "probability": 0.9974 + }, + { + "start": 1626.56, + "end": 1630.04, + "probability": 0.9746 + }, + { + "start": 1630.34, + "end": 1632.22, + "probability": 0.8421 + }, + { + "start": 1632.28, + "end": 1636.0, + "probability": 0.8618 + }, + { + "start": 1636.86, + "end": 1639.96, + "probability": 0.9679 + }, + { + "start": 1647.74, + "end": 1648.18, + "probability": 0.4883 + }, + { + "start": 1648.26, + "end": 1651.56, + "probability": 0.9161 + }, + { + "start": 1662.52, + "end": 1663.24, + "probability": 0.4819 + }, + { + "start": 1663.62, + "end": 1665.04, + "probability": 0.7705 + }, + { + "start": 1665.18, + "end": 1665.84, + "probability": 0.8497 + }, + { + "start": 1665.96, + "end": 1667.12, + "probability": 0.8501 + }, + { + "start": 1667.46, + "end": 1667.74, + "probability": 0.9539 + }, + { + "start": 1667.82, + "end": 1673.04, + "probability": 0.9944 + }, + { + "start": 1673.18, + "end": 1676.46, + "probability": 0.7927 + }, + { + "start": 1677.3, + "end": 1682.18, + "probability": 0.9746 + }, + { + "start": 1683.58, + "end": 1687.08, + "probability": 0.8568 + }, + { + "start": 1687.08, + "end": 1690.44, + "probability": 0.999 + }, + { + "start": 1691.04, + "end": 1693.9, + "probability": 0.9181 + }, + { + "start": 1694.78, + "end": 1698.92, + "probability": 0.824 + }, + { + "start": 1699.6, + "end": 1703.25, + "probability": 0.824 + }, + { + "start": 1704.06, + "end": 1706.58, + "probability": 0.835 + }, + { + "start": 1707.02, + "end": 1710.54, + "probability": 0.7098 + }, + { + "start": 1710.66, + "end": 1710.72, + "probability": 0.1308 + }, + { + "start": 1710.72, + "end": 1711.28, + "probability": 0.3981 + }, + { + "start": 1711.52, + "end": 1713.13, + "probability": 0.9849 + }, + { + "start": 1713.48, + "end": 1713.62, + "probability": 0.3301 + }, + { + "start": 1713.88, + "end": 1715.06, + "probability": 0.9723 + }, + { + "start": 1715.46, + "end": 1715.72, + "probability": 0.79 + }, + { + "start": 1716.24, + "end": 1718.44, + "probability": 0.7595 + }, + { + "start": 1719.44, + "end": 1720.84, + "probability": 0.5325 + }, + { + "start": 1721.18, + "end": 1721.68, + "probability": 0.4714 + }, + { + "start": 1721.7, + "end": 1723.96, + "probability": 0.9861 + }, + { + "start": 1724.14, + "end": 1725.62, + "probability": 0.8617 + }, + { + "start": 1725.68, + "end": 1727.8, + "probability": 0.9534 + }, + { + "start": 1729.12, + "end": 1733.2, + "probability": 0.9443 + }, + { + "start": 1733.6, + "end": 1734.44, + "probability": 0.3476 + }, + { + "start": 1734.7, + "end": 1735.82, + "probability": 0.8 + }, + { + "start": 1735.92, + "end": 1736.56, + "probability": 0.6881 + }, + { + "start": 1737.1, + "end": 1737.7, + "probability": 0.649 + }, + { + "start": 1737.8, + "end": 1738.56, + "probability": 0.7214 + }, + { + "start": 1738.62, + "end": 1739.22, + "probability": 0.7976 + }, + { + "start": 1739.68, + "end": 1740.38, + "probability": 0.9081 + }, + { + "start": 1740.88, + "end": 1742.44, + "probability": 0.7334 + }, + { + "start": 1742.58, + "end": 1742.94, + "probability": 0.2627 + }, + { + "start": 1743.08, + "end": 1743.6, + "probability": 0.8607 + }, + { + "start": 1743.72, + "end": 1746.7, + "probability": 0.8418 + }, + { + "start": 1746.84, + "end": 1747.32, + "probability": 0.3893 + }, + { + "start": 1747.46, + "end": 1749.92, + "probability": 0.8765 + }, + { + "start": 1750.1, + "end": 1751.46, + "probability": 0.9918 + }, + { + "start": 1752.58, + "end": 1753.22, + "probability": 0.6372 + }, + { + "start": 1753.62, + "end": 1755.0, + "probability": 0.6974 + }, + { + "start": 1755.1, + "end": 1756.46, + "probability": 0.5684 + }, + { + "start": 1757.44, + "end": 1760.92, + "probability": 0.8214 + }, + { + "start": 1761.16, + "end": 1761.92, + "probability": 0.7171 + }, + { + "start": 1762.56, + "end": 1763.52, + "probability": 0.6336 + }, + { + "start": 1763.6, + "end": 1764.36, + "probability": 0.4893 + }, + { + "start": 1764.36, + "end": 1764.72, + "probability": 0.7833 + }, + { + "start": 1764.86, + "end": 1765.8, + "probability": 0.9252 + }, + { + "start": 1766.14, + "end": 1767.04, + "probability": 0.9373 + }, + { + "start": 1767.6, + "end": 1774.72, + "probability": 0.945 + }, + { + "start": 1775.52, + "end": 1780.36, + "probability": 0.9275 + }, + { + "start": 1780.96, + "end": 1783.32, + "probability": 0.7813 + }, + { + "start": 1784.22, + "end": 1784.78, + "probability": 0.9842 + }, + { + "start": 1785.4, + "end": 1786.64, + "probability": 0.8937 + }, + { + "start": 1786.8, + "end": 1787.38, + "probability": 0.5277 + }, + { + "start": 1787.44, + "end": 1787.94, + "probability": 0.9797 + }, + { + "start": 1788.02, + "end": 1788.82, + "probability": 0.759 + }, + { + "start": 1788.86, + "end": 1789.36, + "probability": 0.9803 + }, + { + "start": 1789.48, + "end": 1790.92, + "probability": 0.7286 + }, + { + "start": 1792.36, + "end": 1792.88, + "probability": 0.725 + }, + { + "start": 1794.56, + "end": 1794.92, + "probability": 0.5738 + }, + { + "start": 1795.56, + "end": 1796.32, + "probability": 0.7802 + }, + { + "start": 1796.38, + "end": 1796.86, + "probability": 0.8117 + }, + { + "start": 1797.26, + "end": 1798.68, + "probability": 0.925 + }, + { + "start": 1798.84, + "end": 1799.72, + "probability": 0.9581 + }, + { + "start": 1800.28, + "end": 1801.42, + "probability": 0.8876 + }, + { + "start": 1802.22, + "end": 1802.52, + "probability": 0.6327 + }, + { + "start": 1803.34, + "end": 1803.84, + "probability": 0.7879 + }, + { + "start": 1804.0, + "end": 1805.02, + "probability": 0.6609 + }, + { + "start": 1805.26, + "end": 1806.18, + "probability": 0.8676 + }, + { + "start": 1806.64, + "end": 1807.56, + "probability": 0.8355 + }, + { + "start": 1807.66, + "end": 1808.16, + "probability": 0.679 + }, + { + "start": 1808.22, + "end": 1810.42, + "probability": 0.8962 + }, + { + "start": 1810.44, + "end": 1811.08, + "probability": 0.8835 + }, + { + "start": 1811.62, + "end": 1812.42, + "probability": 0.9573 + }, + { + "start": 1812.64, + "end": 1814.9, + "probability": 0.9683 + }, + { + "start": 1815.02, + "end": 1816.22, + "probability": 0.8113 + }, + { + "start": 1816.78, + "end": 1819.48, + "probability": 0.9093 + }, + { + "start": 1820.64, + "end": 1822.58, + "probability": 0.9495 + }, + { + "start": 1822.6, + "end": 1824.0, + "probability": 0.2934 + }, + { + "start": 1824.14, + "end": 1825.82, + "probability": 0.7859 + }, + { + "start": 1825.9, + "end": 1829.22, + "probability": 0.9126 + }, + { + "start": 1830.78, + "end": 1834.3, + "probability": 0.8289 + }, + { + "start": 1834.32, + "end": 1838.76, + "probability": 0.97 + }, + { + "start": 1838.8, + "end": 1839.0, + "probability": 0.8313 + }, + { + "start": 1839.1, + "end": 1839.48, + "probability": 0.7567 + }, + { + "start": 1839.56, + "end": 1844.29, + "probability": 0.9961 + }, + { + "start": 1844.78, + "end": 1845.2, + "probability": 0.7101 + }, + { + "start": 1845.36, + "end": 1847.86, + "probability": 0.8726 + }, + { + "start": 1848.58, + "end": 1849.9, + "probability": 0.6615 + }, + { + "start": 1850.38, + "end": 1851.18, + "probability": 0.1067 + }, + { + "start": 1851.18, + "end": 1853.52, + "probability": 0.4 + }, + { + "start": 1853.94, + "end": 1854.52, + "probability": 0.6168 + }, + { + "start": 1854.52, + "end": 1858.86, + "probability": 0.6566 + }, + { + "start": 1859.06, + "end": 1861.6, + "probability": 0.9737 + }, + { + "start": 1861.74, + "end": 1862.76, + "probability": 0.3335 + }, + { + "start": 1863.02, + "end": 1866.0, + "probability": 0.9844 + }, + { + "start": 1866.5, + "end": 1867.38, + "probability": 0.638 + }, + { + "start": 1867.4, + "end": 1868.72, + "probability": 0.4482 + }, + { + "start": 1869.2, + "end": 1869.46, + "probability": 0.4477 + }, + { + "start": 1869.46, + "end": 1872.28, + "probability": 0.6888 + }, + { + "start": 1873.14, + "end": 1875.14, + "probability": 0.4884 + }, + { + "start": 1875.38, + "end": 1876.64, + "probability": 0.1466 + }, + { + "start": 1876.86, + "end": 1879.42, + "probability": 0.5702 + }, + { + "start": 1880.34, + "end": 1882.04, + "probability": 0.4646 + }, + { + "start": 1882.04, + "end": 1882.72, + "probability": 0.0291 + }, + { + "start": 1882.72, + "end": 1884.26, + "probability": 0.8084 + }, + { + "start": 1884.28, + "end": 1886.04, + "probability": 0.9814 + }, + { + "start": 1886.36, + "end": 1887.1, + "probability": 0.6739 + }, + { + "start": 1888.12, + "end": 1891.06, + "probability": 0.3496 + }, + { + "start": 1891.18, + "end": 1891.74, + "probability": 0.9784 + }, + { + "start": 1892.22, + "end": 1894.08, + "probability": 0.1549 + }, + { + "start": 1894.86, + "end": 1895.82, + "probability": 0.085 + }, + { + "start": 1897.18, + "end": 1903.64, + "probability": 0.9495 + }, + { + "start": 1903.7, + "end": 1904.56, + "probability": 0.9105 + }, + { + "start": 1905.97, + "end": 1907.58, + "probability": 0.1979 + }, + { + "start": 1907.58, + "end": 1907.58, + "probability": 0.1067 + }, + { + "start": 1907.58, + "end": 1908.0, + "probability": 0.5387 + }, + { + "start": 1908.84, + "end": 1910.44, + "probability": 0.8159 + }, + { + "start": 1915.1, + "end": 1916.3, + "probability": 0.1654 + }, + { + "start": 1917.24, + "end": 1918.22, + "probability": 0.1377 + }, + { + "start": 1920.26, + "end": 1921.56, + "probability": 0.4585 + }, + { + "start": 1922.47, + "end": 1930.7, + "probability": 0.9829 + }, + { + "start": 1930.92, + "end": 1933.92, + "probability": 0.9004 + }, + { + "start": 1935.3, + "end": 1937.56, + "probability": 0.9946 + }, + { + "start": 1937.7, + "end": 1938.14, + "probability": 0.7464 + }, + { + "start": 1938.18, + "end": 1942.38, + "probability": 0.6647 + }, + { + "start": 1943.16, + "end": 1947.98, + "probability": 0.9629 + }, + { + "start": 1949.28, + "end": 1949.96, + "probability": 0.813 + }, + { + "start": 1950.28, + "end": 1954.08, + "probability": 0.9493 + }, + { + "start": 1954.66, + "end": 1958.64, + "probability": 0.9943 + }, + { + "start": 1960.36, + "end": 1962.18, + "probability": 0.7747 + }, + { + "start": 1967.34, + "end": 1967.58, + "probability": 0.0011 + }, + { + "start": 1968.54, + "end": 1970.0, + "probability": 0.0916 + }, + { + "start": 1971.4, + "end": 1974.94, + "probability": 0.7328 + }, + { + "start": 1975.52, + "end": 1979.06, + "probability": 0.7797 + }, + { + "start": 1979.44, + "end": 1980.68, + "probability": 0.9464 + }, + { + "start": 1982.56, + "end": 1985.8, + "probability": 0.9969 + }, + { + "start": 1986.02, + "end": 1988.8, + "probability": 0.9913 + }, + { + "start": 1988.8, + "end": 1991.78, + "probability": 0.9948 + }, + { + "start": 1992.12, + "end": 1998.7, + "probability": 0.9873 + }, + { + "start": 1998.92, + "end": 2001.34, + "probability": 0.7848 + }, + { + "start": 2002.12, + "end": 2004.96, + "probability": 0.9978 + }, + { + "start": 2005.7, + "end": 2011.68, + "probability": 0.9893 + }, + { + "start": 2012.32, + "end": 2016.12, + "probability": 0.9454 + }, + { + "start": 2016.22, + "end": 2016.64, + "probability": 0.8508 + }, + { + "start": 2016.64, + "end": 2020.3, + "probability": 0.946 + }, + { + "start": 2020.32, + "end": 2023.96, + "probability": 0.9849 + }, + { + "start": 2024.14, + "end": 2027.42, + "probability": 0.9834 + }, + { + "start": 2028.08, + "end": 2030.96, + "probability": 0.8942 + }, + { + "start": 2030.96, + "end": 2033.36, + "probability": 0.9789 + }, + { + "start": 2033.52, + "end": 2036.16, + "probability": 0.9094 + }, + { + "start": 2036.46, + "end": 2040.04, + "probability": 0.5156 + }, + { + "start": 2042.01, + "end": 2045.06, + "probability": 0.7964 + }, + { + "start": 2045.34, + "end": 2047.88, + "probability": 0.9541 + }, + { + "start": 2048.18, + "end": 2051.54, + "probability": 0.9886 + }, + { + "start": 2052.38, + "end": 2054.08, + "probability": 0.9019 + }, + { + "start": 2054.54, + "end": 2056.8, + "probability": 0.9979 + }, + { + "start": 2057.06, + "end": 2058.96, + "probability": 0.8385 + }, + { + "start": 2059.34, + "end": 2062.92, + "probability": 0.9879 + }, + { + "start": 2062.98, + "end": 2064.52, + "probability": 0.9086 + }, + { + "start": 2064.98, + "end": 2066.52, + "probability": 0.7516 + }, + { + "start": 2066.64, + "end": 2071.66, + "probability": 0.9796 + }, + { + "start": 2071.88, + "end": 2073.4, + "probability": 0.881 + }, + { + "start": 2084.24, + "end": 2085.0, + "probability": 0.6467 + }, + { + "start": 2085.0, + "end": 2087.94, + "probability": 0.6508 + }, + { + "start": 2087.94, + "end": 2087.94, + "probability": 0.1421 + }, + { + "start": 2087.94, + "end": 2087.94, + "probability": 0.1216 + }, + { + "start": 2087.94, + "end": 2087.94, + "probability": 0.3069 + }, + { + "start": 2087.94, + "end": 2088.53, + "probability": 0.1759 + }, + { + "start": 2089.08, + "end": 2090.88, + "probability": 0.9528 + }, + { + "start": 2090.9, + "end": 2091.64, + "probability": 0.9364 + }, + { + "start": 2092.2, + "end": 2094.68, + "probability": 0.2874 + }, + { + "start": 2095.5, + "end": 2096.08, + "probability": 0.0057 + }, + { + "start": 2096.08, + "end": 2096.08, + "probability": 0.4431 + }, + { + "start": 2096.08, + "end": 2097.98, + "probability": 0.5385 + }, + { + "start": 2098.22, + "end": 2099.88, + "probability": 0.5689 + }, + { + "start": 2099.88, + "end": 2101.8, + "probability": 0.3172 + }, + { + "start": 2101.8, + "end": 2102.16, + "probability": 0.0285 + }, + { + "start": 2102.16, + "end": 2102.43, + "probability": 0.5776 + }, + { + "start": 2103.1, + "end": 2105.0, + "probability": 0.9905 + }, + { + "start": 2105.06, + "end": 2105.52, + "probability": 0.8163 + }, + { + "start": 2105.6, + "end": 2105.88, + "probability": 0.9659 + }, + { + "start": 2106.82, + "end": 2108.58, + "probability": 0.5804 + }, + { + "start": 2108.78, + "end": 2110.02, + "probability": 0.8969 + }, + { + "start": 2110.06, + "end": 2110.54, + "probability": 0.9662 + }, + { + "start": 2111.9, + "end": 2112.28, + "probability": 0.2601 + }, + { + "start": 2112.32, + "end": 2112.98, + "probability": 0.3109 + }, + { + "start": 2113.3, + "end": 2115.18, + "probability": 0.9641 + }, + { + "start": 2115.28, + "end": 2116.02, + "probability": 0.9264 + }, + { + "start": 2116.22, + "end": 2118.3, + "probability": 0.8548 + }, + { + "start": 2120.14, + "end": 2121.44, + "probability": 0.3404 + }, + { + "start": 2121.66, + "end": 2121.7, + "probability": 0.4489 + }, + { + "start": 2121.7, + "end": 2122.3, + "probability": 0.2225 + }, + { + "start": 2122.5, + "end": 2123.58, + "probability": 0.8774 + }, + { + "start": 2123.7, + "end": 2125.06, + "probability": 0.8538 + }, + { + "start": 2125.36, + "end": 2127.74, + "probability": 0.9899 + }, + { + "start": 2127.94, + "end": 2127.94, + "probability": 0.6502 + }, + { + "start": 2128.02, + "end": 2129.16, + "probability": 0.763 + }, + { + "start": 2129.22, + "end": 2133.84, + "probability": 0.9902 + }, + { + "start": 2133.84, + "end": 2133.94, + "probability": 0.0397 + }, + { + "start": 2135.74, + "end": 2135.76, + "probability": 0.2693 + }, + { + "start": 2135.76, + "end": 2137.16, + "probability": 0.5817 + }, + { + "start": 2137.7, + "end": 2139.08, + "probability": 0.9795 + }, + { + "start": 2140.4, + "end": 2144.13, + "probability": 0.0322 + }, + { + "start": 2144.38, + "end": 2148.24, + "probability": 0.3109 + }, + { + "start": 2149.06, + "end": 2150.26, + "probability": 0.552 + }, + { + "start": 2151.04, + "end": 2152.66, + "probability": 0.7218 + }, + { + "start": 2152.76, + "end": 2153.56, + "probability": 0.4219 + }, + { + "start": 2153.72, + "end": 2156.36, + "probability": 0.7139 + }, + { + "start": 2156.66, + "end": 2159.02, + "probability": 0.7343 + }, + { + "start": 2159.54, + "end": 2161.72, + "probability": 0.8663 + }, + { + "start": 2162.78, + "end": 2166.2, + "probability": 0.743 + }, + { + "start": 2167.26, + "end": 2169.42, + "probability": 0.9972 + }, + { + "start": 2170.0, + "end": 2170.56, + "probability": 0.2122 + }, + { + "start": 2171.04, + "end": 2171.9, + "probability": 0.9421 + }, + { + "start": 2172.06, + "end": 2172.76, + "probability": 0.6952 + }, + { + "start": 2173.96, + "end": 2174.72, + "probability": 0.8097 + }, + { + "start": 2174.88, + "end": 2177.82, + "probability": 0.5452 + }, + { + "start": 2178.54, + "end": 2179.24, + "probability": 0.7217 + }, + { + "start": 2179.26, + "end": 2181.58, + "probability": 0.9574 + }, + { + "start": 2181.6, + "end": 2181.84, + "probability": 0.1207 + }, + { + "start": 2181.88, + "end": 2182.36, + "probability": 0.5797 + }, + { + "start": 2183.04, + "end": 2187.22, + "probability": 0.7746 + }, + { + "start": 2187.54, + "end": 2187.78, + "probability": 0.5629 + }, + { + "start": 2187.78, + "end": 2188.42, + "probability": 0.7273 + }, + { + "start": 2188.61, + "end": 2193.58, + "probability": 0.3958 + }, + { + "start": 2193.58, + "end": 2193.96, + "probability": 0.6187 + }, + { + "start": 2194.12, + "end": 2195.06, + "probability": 0.7913 + }, + { + "start": 2195.94, + "end": 2196.88, + "probability": 0.9503 + }, + { + "start": 2196.9, + "end": 2199.0, + "probability": 0.3668 + }, + { + "start": 2199.02, + "end": 2199.32, + "probability": 0.6175 + }, + { + "start": 2199.54, + "end": 2200.56, + "probability": 0.9191 + }, + { + "start": 2200.9, + "end": 2201.56, + "probability": 0.6602 + }, + { + "start": 2201.68, + "end": 2202.28, + "probability": 0.465 + }, + { + "start": 2202.78, + "end": 2206.08, + "probability": 0.5901 + }, + { + "start": 2206.2, + "end": 2206.78, + "probability": 0.9263 + }, + { + "start": 2208.32, + "end": 2210.79, + "probability": 0.8903 + }, + { + "start": 2212.75, + "end": 2214.86, + "probability": 0.6065 + }, + { + "start": 2216.32, + "end": 2217.38, + "probability": 0.5118 + }, + { + "start": 2217.44, + "end": 2218.16, + "probability": 0.9238 + }, + { + "start": 2218.3, + "end": 2220.64, + "probability": 0.7771 + }, + { + "start": 2221.83, + "end": 2226.28, + "probability": 0.9036 + }, + { + "start": 2227.1, + "end": 2229.14, + "probability": 0.9594 + }, + { + "start": 2229.36, + "end": 2229.74, + "probability": 0.6678 + }, + { + "start": 2229.84, + "end": 2231.06, + "probability": 0.9547 + }, + { + "start": 2231.22, + "end": 2234.72, + "probability": 0.8824 + }, + { + "start": 2235.0, + "end": 2237.26, + "probability": 0.9799 + }, + { + "start": 2237.62, + "end": 2239.64, + "probability": 0.5015 + }, + { + "start": 2239.7, + "end": 2242.92, + "probability": 0.9751 + }, + { + "start": 2243.06, + "end": 2244.56, + "probability": 0.6007 + }, + { + "start": 2245.36, + "end": 2246.1, + "probability": 0.8032 + }, + { + "start": 2246.46, + "end": 2247.46, + "probability": 0.6937 + }, + { + "start": 2247.88, + "end": 2251.06, + "probability": 0.9344 + }, + { + "start": 2251.88, + "end": 2254.88, + "probability": 0.7494 + }, + { + "start": 2254.94, + "end": 2256.06, + "probability": 0.8277 + }, + { + "start": 2256.16, + "end": 2257.58, + "probability": 0.9199 + }, + { + "start": 2257.86, + "end": 2259.98, + "probability": 0.9607 + }, + { + "start": 2260.38, + "end": 2263.9, + "probability": 0.9717 + }, + { + "start": 2264.4, + "end": 2268.16, + "probability": 0.9651 + }, + { + "start": 2268.88, + "end": 2269.1, + "probability": 0.9303 + }, + { + "start": 2272.66, + "end": 2273.06, + "probability": 0.4321 + }, + { + "start": 2277.34, + "end": 2278.48, + "probability": 0.5016 + }, + { + "start": 2278.62, + "end": 2283.52, + "probability": 0.9951 + }, + { + "start": 2284.04, + "end": 2288.58, + "probability": 0.9968 + }, + { + "start": 2289.08, + "end": 2292.36, + "probability": 0.986 + }, + { + "start": 2293.36, + "end": 2298.8, + "probability": 0.9562 + }, + { + "start": 2299.14, + "end": 2299.62, + "probability": 0.7967 + }, + { + "start": 2300.2, + "end": 2303.36, + "probability": 0.9653 + }, + { + "start": 2303.48, + "end": 2307.26, + "probability": 0.9954 + }, + { + "start": 2307.68, + "end": 2310.04, + "probability": 0.9982 + }, + { + "start": 2310.14, + "end": 2315.02, + "probability": 0.9983 + }, + { + "start": 2315.68, + "end": 2317.42, + "probability": 0.9156 + }, + { + "start": 2317.6, + "end": 2319.32, + "probability": 0.994 + }, + { + "start": 2319.54, + "end": 2319.96, + "probability": 0.0038 + }, + { + "start": 2320.62, + "end": 2321.92, + "probability": 0.6779 + }, + { + "start": 2324.72, + "end": 2328.76, + "probability": 0.9492 + }, + { + "start": 2328.82, + "end": 2333.02, + "probability": 0.9434 + }, + { + "start": 2333.08, + "end": 2338.0, + "probability": 0.9933 + }, + { + "start": 2338.06, + "end": 2338.46, + "probability": 0.8301 + }, + { + "start": 2338.6, + "end": 2340.25, + "probability": 0.9849 + }, + { + "start": 2340.7, + "end": 2343.6, + "probability": 0.9895 + }, + { + "start": 2344.12, + "end": 2348.34, + "probability": 0.9921 + }, + { + "start": 2348.4, + "end": 2353.16, + "probability": 0.9915 + }, + { + "start": 2353.22, + "end": 2358.72, + "probability": 0.9906 + }, + { + "start": 2359.92, + "end": 2364.16, + "probability": 0.9861 + }, + { + "start": 2364.22, + "end": 2367.44, + "probability": 0.9819 + }, + { + "start": 2367.84, + "end": 2370.3, + "probability": 0.9941 + }, + { + "start": 2371.4, + "end": 2374.36, + "probability": 0.7631 + }, + { + "start": 2376.48, + "end": 2378.48, + "probability": 0.5444 + }, + { + "start": 2378.5, + "end": 2379.68, + "probability": 0.9087 + }, + { + "start": 2379.78, + "end": 2383.04, + "probability": 0.9828 + }, + { + "start": 2383.42, + "end": 2384.84, + "probability": 0.9928 + }, + { + "start": 2385.04, + "end": 2391.96, + "probability": 0.9868 + }, + { + "start": 2392.28, + "end": 2394.66, + "probability": 0.9594 + }, + { + "start": 2394.72, + "end": 2395.46, + "probability": 0.7298 + }, + { + "start": 2396.18, + "end": 2397.4, + "probability": 0.7428 + }, + { + "start": 2398.18, + "end": 2399.36, + "probability": 0.7624 + }, + { + "start": 2399.42, + "end": 2401.38, + "probability": 0.9741 + }, + { + "start": 2401.6, + "end": 2406.02, + "probability": 0.9937 + }, + { + "start": 2406.98, + "end": 2409.68, + "probability": 0.8638 + }, + { + "start": 2409.84, + "end": 2410.48, + "probability": 0.9384 + }, + { + "start": 2410.66, + "end": 2411.38, + "probability": 0.991 + }, + { + "start": 2411.5, + "end": 2412.12, + "probability": 0.955 + }, + { + "start": 2412.84, + "end": 2415.16, + "probability": 0.9922 + }, + { + "start": 2415.26, + "end": 2417.96, + "probability": 0.8535 + }, + { + "start": 2418.22, + "end": 2419.5, + "probability": 0.9845 + }, + { + "start": 2420.18, + "end": 2422.28, + "probability": 0.9673 + }, + { + "start": 2422.64, + "end": 2428.56, + "probability": 0.978 + }, + { + "start": 2428.56, + "end": 2432.66, + "probability": 0.9996 + }, + { + "start": 2433.2, + "end": 2437.22, + "probability": 0.9922 + }, + { + "start": 2437.82, + "end": 2442.06, + "probability": 0.8643 + }, + { + "start": 2442.98, + "end": 2448.24, + "probability": 0.9838 + }, + { + "start": 2448.6, + "end": 2449.66, + "probability": 0.9014 + }, + { + "start": 2450.42, + "end": 2453.22, + "probability": 0.9977 + }, + { + "start": 2453.54, + "end": 2455.7, + "probability": 0.9949 + }, + { + "start": 2456.4, + "end": 2457.94, + "probability": 0.5849 + }, + { + "start": 2458.16, + "end": 2461.72, + "probability": 0.9927 + }, + { + "start": 2461.84, + "end": 2462.2, + "probability": 0.537 + }, + { + "start": 2462.34, + "end": 2463.92, + "probability": 0.7708 + }, + { + "start": 2464.58, + "end": 2470.08, + "probability": 0.9946 + }, + { + "start": 2471.82, + "end": 2472.6, + "probability": 0.6858 + }, + { + "start": 2473.66, + "end": 2474.7, + "probability": 0.8495 + }, + { + "start": 2474.7, + "end": 2475.64, + "probability": 0.6934 + }, + { + "start": 2476.24, + "end": 2477.24, + "probability": 0.8087 + }, + { + "start": 2477.34, + "end": 2478.68, + "probability": 0.9779 + }, + { + "start": 2478.72, + "end": 2483.28, + "probability": 0.9984 + }, + { + "start": 2484.64, + "end": 2484.64, + "probability": 0.2853 + }, + { + "start": 2484.64, + "end": 2484.92, + "probability": 0.4596 + }, + { + "start": 2484.96, + "end": 2489.24, + "probability": 0.8896 + }, + { + "start": 2489.54, + "end": 2493.5, + "probability": 0.9966 + }, + { + "start": 2494.06, + "end": 2494.72, + "probability": 0.7676 + }, + { + "start": 2495.82, + "end": 2497.52, + "probability": 0.8312 + }, + { + "start": 2497.88, + "end": 2499.66, + "probability": 0.6742 + }, + { + "start": 2499.72, + "end": 2499.82, + "probability": 0.6621 + }, + { + "start": 2499.82, + "end": 2504.3, + "probability": 0.6651 + }, + { + "start": 2504.86, + "end": 2506.78, + "probability": 0.9866 + }, + { + "start": 2506.94, + "end": 2508.58, + "probability": 0.969 + }, + { + "start": 2509.06, + "end": 2511.28, + "probability": 0.9642 + }, + { + "start": 2511.48, + "end": 2512.41, + "probability": 0.3872 + }, + { + "start": 2512.94, + "end": 2515.12, + "probability": 0.9883 + }, + { + "start": 2515.24, + "end": 2516.22, + "probability": 0.7861 + }, + { + "start": 2516.58, + "end": 2520.0, + "probability": 0.8709 + }, + { + "start": 2520.2, + "end": 2522.92, + "probability": 0.9976 + }, + { + "start": 2524.88, + "end": 2525.12, + "probability": 0.9554 + }, + { + "start": 2525.66, + "end": 2526.6, + "probability": 0.9491 + }, + { + "start": 2526.72, + "end": 2532.34, + "probability": 0.9625 + }, + { + "start": 2532.44, + "end": 2534.3, + "probability": 0.9301 + }, + { + "start": 2534.86, + "end": 2535.84, + "probability": 0.9291 + }, + { + "start": 2536.0, + "end": 2536.9, + "probability": 0.9579 + }, + { + "start": 2537.4, + "end": 2540.88, + "probability": 0.9504 + }, + { + "start": 2541.46, + "end": 2542.92, + "probability": 0.7691 + }, + { + "start": 2543.22, + "end": 2548.08, + "probability": 0.8455 + }, + { + "start": 2548.08, + "end": 2553.6, + "probability": 0.9779 + }, + { + "start": 2553.66, + "end": 2553.9, + "probability": 0.434 + }, + { + "start": 2553.96, + "end": 2554.06, + "probability": 0.7338 + }, + { + "start": 2554.54, + "end": 2558.72, + "probability": 0.7312 + }, + { + "start": 2559.12, + "end": 2561.1, + "probability": 0.6832 + }, + { + "start": 2561.16, + "end": 2563.12, + "probability": 0.7464 + }, + { + "start": 2563.12, + "end": 2563.62, + "probability": 0.138 + }, + { + "start": 2563.62, + "end": 2563.62, + "probability": 0.5465 + }, + { + "start": 2563.72, + "end": 2564.28, + "probability": 0.9736 + }, + { + "start": 2564.6, + "end": 2570.74, + "probability": 0.8975 + }, + { + "start": 2570.82, + "end": 2572.06, + "probability": 0.9716 + }, + { + "start": 2572.56, + "end": 2575.08, + "probability": 0.921 + }, + { + "start": 2575.26, + "end": 2576.8, + "probability": 0.9776 + }, + { + "start": 2576.98, + "end": 2580.82, + "probability": 0.873 + }, + { + "start": 2580.82, + "end": 2580.88, + "probability": 0.0017 + }, + { + "start": 2580.88, + "end": 2583.24, + "probability": 0.9422 + }, + { + "start": 2583.32, + "end": 2584.1, + "probability": 0.3392 + }, + { + "start": 2585.12, + "end": 2586.82, + "probability": 0.9369 + }, + { + "start": 2588.58, + "end": 2589.72, + "probability": 0.7562 + }, + { + "start": 2589.74, + "end": 2592.18, + "probability": 0.5872 + }, + { + "start": 2592.96, + "end": 2593.3, + "probability": 0.9612 + }, + { + "start": 2593.72, + "end": 2596.62, + "probability": 0.997 + }, + { + "start": 2596.98, + "end": 2599.14, + "probability": 0.9961 + }, + { + "start": 2600.12, + "end": 2601.92, + "probability": 0.6805 + }, + { + "start": 2602.1, + "end": 2603.7, + "probability": 0.5519 + }, + { + "start": 2603.94, + "end": 2604.68, + "probability": 0.7227 + }, + { + "start": 2604.7, + "end": 2605.28, + "probability": 0.726 + }, + { + "start": 2605.72, + "end": 2608.27, + "probability": 0.9724 + }, + { + "start": 2609.0, + "end": 2610.56, + "probability": 0.9778 + }, + { + "start": 2611.08, + "end": 2613.08, + "probability": 0.8892 + }, + { + "start": 2613.16, + "end": 2615.5, + "probability": 0.9753 + }, + { + "start": 2615.96, + "end": 2616.46, + "probability": 0.8915 + }, + { + "start": 2626.92, + "end": 2627.18, + "probability": 0.362 + }, + { + "start": 2627.54, + "end": 2628.1, + "probability": 0.5673 + }, + { + "start": 2628.2, + "end": 2631.14, + "probability": 0.802 + }, + { + "start": 2631.22, + "end": 2635.94, + "probability": 0.8657 + }, + { + "start": 2636.26, + "end": 2636.8, + "probability": 0.8708 + }, + { + "start": 2636.96, + "end": 2637.88, + "probability": 0.8358 + }, + { + "start": 2638.04, + "end": 2638.8, + "probability": 0.6776 + }, + { + "start": 2639.76, + "end": 2641.72, + "probability": 0.9887 + }, + { + "start": 2641.72, + "end": 2644.6, + "probability": 0.999 + }, + { + "start": 2645.32, + "end": 2649.62, + "probability": 0.928 + }, + { + "start": 2650.68, + "end": 2651.72, + "probability": 0.6548 + }, + { + "start": 2651.9, + "end": 2654.76, + "probability": 0.8017 + }, + { + "start": 2657.3, + "end": 2658.1, + "probability": 0.8252 + }, + { + "start": 2658.76, + "end": 2660.22, + "probability": 0.9062 + }, + { + "start": 2660.38, + "end": 2664.82, + "probability": 0.9624 + }, + { + "start": 2666.1, + "end": 2666.72, + "probability": 0.883 + }, + { + "start": 2667.46, + "end": 2668.38, + "probability": 0.9219 + }, + { + "start": 2668.48, + "end": 2670.82, + "probability": 0.9918 + }, + { + "start": 2670.9, + "end": 2671.42, + "probability": 0.9762 + }, + { + "start": 2671.5, + "end": 2672.24, + "probability": 0.9665 + }, + { + "start": 2672.52, + "end": 2679.08, + "probability": 0.998 + }, + { + "start": 2679.32, + "end": 2686.99, + "probability": 0.9893 + }, + { + "start": 2687.96, + "end": 2691.46, + "probability": 0.9709 + }, + { + "start": 2692.44, + "end": 2696.32, + "probability": 0.998 + }, + { + "start": 2696.78, + "end": 2700.66, + "probability": 0.9746 + }, + { + "start": 2700.76, + "end": 2701.68, + "probability": 0.9352 + }, + { + "start": 2702.08, + "end": 2703.02, + "probability": 0.9378 + }, + { + "start": 2703.26, + "end": 2704.26, + "probability": 0.9609 + }, + { + "start": 2705.04, + "end": 2705.68, + "probability": 0.4952 + }, + { + "start": 2708.42, + "end": 2709.5, + "probability": 0.0486 + }, + { + "start": 2710.04, + "end": 2710.94, + "probability": 0.6169 + }, + { + "start": 2711.98, + "end": 2713.34, + "probability": 0.6955 + }, + { + "start": 2713.84, + "end": 2716.2, + "probability": 0.8937 + }, + { + "start": 2716.74, + "end": 2718.1, + "probability": 0.8474 + }, + { + "start": 2718.14, + "end": 2719.18, + "probability": 0.7079 + }, + { + "start": 2720.86, + "end": 2721.26, + "probability": 0.0775 + }, + { + "start": 2722.42, + "end": 2723.38, + "probability": 0.6144 + }, + { + "start": 2723.66, + "end": 2724.34, + "probability": 0.7895 + }, + { + "start": 2724.42, + "end": 2729.82, + "probability": 0.9907 + }, + { + "start": 2730.52, + "end": 2732.22, + "probability": 0.4858 + }, + { + "start": 2732.34, + "end": 2732.78, + "probability": 0.582 + }, + { + "start": 2732.84, + "end": 2734.68, + "probability": 0.9948 + }, + { + "start": 2735.56, + "end": 2737.48, + "probability": 0.9709 + }, + { + "start": 2737.66, + "end": 2739.06, + "probability": 0.9307 + }, + { + "start": 2739.46, + "end": 2740.38, + "probability": 0.9833 + }, + { + "start": 2740.96, + "end": 2742.8, + "probability": 0.9652 + }, + { + "start": 2742.98, + "end": 2746.42, + "probability": 0.9702 + }, + { + "start": 2746.42, + "end": 2752.22, + "probability": 0.9935 + }, + { + "start": 2752.8, + "end": 2757.12, + "probability": 0.6974 + }, + { + "start": 2757.86, + "end": 2762.32, + "probability": 0.979 + }, + { + "start": 2762.52, + "end": 2763.18, + "probability": 0.7526 + }, + { + "start": 2763.6, + "end": 2767.14, + "probability": 0.9983 + }, + { + "start": 2767.66, + "end": 2769.8, + "probability": 0.998 + }, + { + "start": 2770.04, + "end": 2775.2, + "probability": 0.9976 + }, + { + "start": 2775.74, + "end": 2780.04, + "probability": 0.7861 + }, + { + "start": 2780.1, + "end": 2781.88, + "probability": 0.8519 + }, + { + "start": 2781.94, + "end": 2784.26, + "probability": 0.9924 + }, + { + "start": 2785.28, + "end": 2785.88, + "probability": 0.7751 + }, + { + "start": 2786.68, + "end": 2790.98, + "probability": 0.9957 + }, + { + "start": 2790.98, + "end": 2795.3, + "probability": 0.9993 + }, + { + "start": 2795.72, + "end": 2795.9, + "probability": 0.7363 + }, + { + "start": 2796.22, + "end": 2799.02, + "probability": 0.9956 + }, + { + "start": 2799.02, + "end": 2801.7, + "probability": 0.9974 + }, + { + "start": 2802.58, + "end": 2806.6, + "probability": 0.9415 + }, + { + "start": 2807.34, + "end": 2808.24, + "probability": 0.6332 + }, + { + "start": 2808.82, + "end": 2812.62, + "probability": 0.983 + }, + { + "start": 2813.0, + "end": 2815.42, + "probability": 0.9136 + }, + { + "start": 2816.5, + "end": 2818.5, + "probability": 0.8349 + }, + { + "start": 2818.64, + "end": 2820.6, + "probability": 0.9702 + }, + { + "start": 2821.02, + "end": 2824.12, + "probability": 0.9974 + }, + { + "start": 2824.76, + "end": 2828.9, + "probability": 0.9543 + }, + { + "start": 2829.5, + "end": 2833.14, + "probability": 0.9839 + }, + { + "start": 2834.45, + "end": 2836.54, + "probability": 0.9475 + }, + { + "start": 2837.3, + "end": 2837.7, + "probability": 0.7502 + }, + { + "start": 2837.78, + "end": 2838.42, + "probability": 0.6748 + }, + { + "start": 2838.76, + "end": 2843.43, + "probability": 0.9956 + }, + { + "start": 2844.22, + "end": 2845.42, + "probability": 0.9838 + }, + { + "start": 2846.0, + "end": 2848.32, + "probability": 0.9976 + }, + { + "start": 2848.32, + "end": 2850.9, + "probability": 0.9991 + }, + { + "start": 2851.18, + "end": 2851.6, + "probability": 0.7216 + }, + { + "start": 2851.74, + "end": 2857.06, + "probability": 0.9896 + }, + { + "start": 2857.18, + "end": 2857.92, + "probability": 0.7646 + }, + { + "start": 2858.44, + "end": 2862.18, + "probability": 0.9724 + }, + { + "start": 2862.82, + "end": 2866.04, + "probability": 0.9853 + }, + { + "start": 2866.2, + "end": 2870.12, + "probability": 0.9833 + }, + { + "start": 2870.4, + "end": 2871.5, + "probability": 0.835 + }, + { + "start": 2872.22, + "end": 2874.16, + "probability": 0.4999 + }, + { + "start": 2874.38, + "end": 2876.26, + "probability": 0.9912 + }, + { + "start": 2876.74, + "end": 2877.16, + "probability": 0.625 + }, + { + "start": 2877.7, + "end": 2879.82, + "probability": 0.9887 + }, + { + "start": 2879.88, + "end": 2881.56, + "probability": 0.9961 + }, + { + "start": 2883.06, + "end": 2883.7, + "probability": 0.6831 + }, + { + "start": 2883.86, + "end": 2888.26, + "probability": 0.9917 + }, + { + "start": 2888.44, + "end": 2891.46, + "probability": 0.9976 + }, + { + "start": 2891.46, + "end": 2892.94, + "probability": 0.8675 + }, + { + "start": 2892.94, + "end": 2892.94, + "probability": 0.6645 + }, + { + "start": 2892.94, + "end": 2892.94, + "probability": 0.7993 + }, + { + "start": 2893.02, + "end": 2895.48, + "probability": 0.852 + }, + { + "start": 2896.02, + "end": 2900.43, + "probability": 0.9401 + }, + { + "start": 2900.9, + "end": 2901.36, + "probability": 0.5696 + }, + { + "start": 2901.78, + "end": 2902.88, + "probability": 0.9829 + }, + { + "start": 2902.98, + "end": 2904.76, + "probability": 0.9166 + }, + { + "start": 2904.8, + "end": 2905.74, + "probability": 0.9014 + }, + { + "start": 2905.82, + "end": 2906.32, + "probability": 0.9407 + }, + { + "start": 2906.9, + "end": 2910.66, + "probability": 0.9375 + }, + { + "start": 2911.1, + "end": 2911.1, + "probability": 0.2196 + }, + { + "start": 2911.1, + "end": 2915.0, + "probability": 0.8376 + }, + { + "start": 2915.16, + "end": 2917.54, + "probability": 0.8683 + }, + { + "start": 2917.54, + "end": 2919.0, + "probability": 0.5313 + }, + { + "start": 2919.34, + "end": 2920.98, + "probability": 0.9252 + }, + { + "start": 2921.74, + "end": 2923.92, + "probability": 0.6302 + }, + { + "start": 2924.0, + "end": 2928.26, + "probability": 0.6054 + }, + { + "start": 2928.26, + "end": 2928.34, + "probability": 0.0431 + }, + { + "start": 2928.34, + "end": 2928.76, + "probability": 0.4507 + }, + { + "start": 2929.02, + "end": 2929.5, + "probability": 0.2873 + }, + { + "start": 2929.72, + "end": 2930.18, + "probability": 0.6365 + }, + { + "start": 2930.56, + "end": 2931.56, + "probability": 0.4078 + }, + { + "start": 2935.18, + "end": 2935.18, + "probability": 0.0636 + }, + { + "start": 2935.18, + "end": 2935.18, + "probability": 0.016 + }, + { + "start": 2935.18, + "end": 2938.46, + "probability": 0.9648 + }, + { + "start": 2939.56, + "end": 2940.34, + "probability": 0.9875 + }, + { + "start": 2941.76, + "end": 2943.3, + "probability": 0.7381 + }, + { + "start": 2943.3, + "end": 2943.3, + "probability": 0.3349 + }, + { + "start": 2943.3, + "end": 2945.34, + "probability": 0.4238 + }, + { + "start": 2945.96, + "end": 2946.94, + "probability": 0.9003 + }, + { + "start": 2947.0, + "end": 2948.63, + "probability": 0.7054 + }, + { + "start": 2951.72, + "end": 2953.04, + "probability": 0.2523 + }, + { + "start": 2953.36, + "end": 2953.46, + "probability": 0.0558 + }, + { + "start": 2953.46, + "end": 2953.64, + "probability": 0.0626 + }, + { + "start": 2953.64, + "end": 2953.64, + "probability": 0.0324 + }, + { + "start": 2953.64, + "end": 2958.78, + "probability": 0.9609 + }, + { + "start": 2958.78, + "end": 2963.96, + "probability": 0.9802 + }, + { + "start": 2964.0, + "end": 2965.94, + "probability": 0.6127 + }, + { + "start": 2966.46, + "end": 2967.24, + "probability": 0.9723 + }, + { + "start": 2967.36, + "end": 2968.0, + "probability": 0.9188 + }, + { + "start": 2968.22, + "end": 2968.84, + "probability": 0.3583 + }, + { + "start": 2969.02, + "end": 2971.96, + "probability": 0.864 + }, + { + "start": 2972.0, + "end": 2972.92, + "probability": 0.4881 + }, + { + "start": 2973.02, + "end": 2976.56, + "probability": 0.9957 + }, + { + "start": 2976.64, + "end": 2979.8, + "probability": 0.9025 + }, + { + "start": 2980.58, + "end": 2984.68, + "probability": 0.9792 + }, + { + "start": 2984.9, + "end": 2988.6, + "probability": 0.9741 + }, + { + "start": 2989.16, + "end": 2989.74, + "probability": 0.8522 + }, + { + "start": 2989.86, + "end": 2994.98, + "probability": 0.9836 + }, + { + "start": 2995.46, + "end": 2995.96, + "probability": 0.7147 + }, + { + "start": 2996.54, + "end": 3001.94, + "probability": 0.9964 + }, + { + "start": 3002.08, + "end": 3003.7, + "probability": 0.9826 + }, + { + "start": 3004.1, + "end": 3006.46, + "probability": 0.9873 + }, + { + "start": 3006.86, + "end": 3010.1, + "probability": 0.9987 + }, + { + "start": 3010.6, + "end": 3013.0, + "probability": 0.9882 + }, + { + "start": 3013.1, + "end": 3015.46, + "probability": 0.9449 + }, + { + "start": 3015.88, + "end": 3018.5, + "probability": 0.9928 + }, + { + "start": 3018.7, + "end": 3019.42, + "probability": 0.7134 + }, + { + "start": 3019.56, + "end": 3019.7, + "probability": 0.569 + }, + { + "start": 3020.16, + "end": 3022.64, + "probability": 0.9683 + }, + { + "start": 3023.16, + "end": 3027.7, + "probability": 0.9968 + }, + { + "start": 3027.76, + "end": 3031.28, + "probability": 0.9779 + }, + { + "start": 3031.98, + "end": 3034.66, + "probability": 0.999 + }, + { + "start": 3034.66, + "end": 3037.06, + "probability": 0.9986 + }, + { + "start": 3037.54, + "end": 3039.68, + "probability": 0.9288 + }, + { + "start": 3040.36, + "end": 3042.78, + "probability": 0.9774 + }, + { + "start": 3042.78, + "end": 3045.96, + "probability": 0.8633 + }, + { + "start": 3046.85, + "end": 3052.3, + "probability": 0.9354 + }, + { + "start": 3052.76, + "end": 3053.26, + "probability": 0.4015 + }, + { + "start": 3053.42, + "end": 3056.76, + "probability": 0.9912 + }, + { + "start": 3057.08, + "end": 3059.04, + "probability": 0.998 + }, + { + "start": 3059.34, + "end": 3061.38, + "probability": 0.9956 + }, + { + "start": 3062.24, + "end": 3062.6, + "probability": 0.9019 + }, + { + "start": 3062.78, + "end": 3063.12, + "probability": 0.4742 + }, + { + "start": 3063.18, + "end": 3064.56, + "probability": 0.8817 + }, + { + "start": 3064.66, + "end": 3065.78, + "probability": 0.6079 + }, + { + "start": 3065.88, + "end": 3066.44, + "probability": 0.6666 + }, + { + "start": 3066.76, + "end": 3067.6, + "probability": 0.9854 + }, + { + "start": 3069.66, + "end": 3070.66, + "probability": 0.677 + }, + { + "start": 3070.74, + "end": 3071.46, + "probability": 0.9811 + }, + { + "start": 3071.56, + "end": 3074.12, + "probability": 0.9919 + }, + { + "start": 3074.12, + "end": 3075.96, + "probability": 0.9897 + }, + { + "start": 3076.2, + "end": 3078.54, + "probability": 0.999 + }, + { + "start": 3078.54, + "end": 3081.08, + "probability": 0.9977 + }, + { + "start": 3081.2, + "end": 3083.12, + "probability": 0.885 + }, + { + "start": 3083.16, + "end": 3084.22, + "probability": 0.8679 + }, + { + "start": 3084.34, + "end": 3085.26, + "probability": 0.9618 + }, + { + "start": 3085.5, + "end": 3086.18, + "probability": 0.7188 + }, + { + "start": 3086.38, + "end": 3086.99, + "probability": 0.9707 + }, + { + "start": 3087.08, + "end": 3087.78, + "probability": 0.9766 + }, + { + "start": 3087.94, + "end": 3088.92, + "probability": 0.9626 + }, + { + "start": 3089.0, + "end": 3089.9, + "probability": 0.9306 + }, + { + "start": 3090.9, + "end": 3094.8, + "probability": 0.9396 + }, + { + "start": 3095.2, + "end": 3096.16, + "probability": 0.9698 + }, + { + "start": 3096.54, + "end": 3098.62, + "probability": 0.9932 + }, + { + "start": 3098.74, + "end": 3100.08, + "probability": 0.9756 + }, + { + "start": 3100.5, + "end": 3102.84, + "probability": 0.9851 + }, + { + "start": 3102.96, + "end": 3105.8, + "probability": 0.9822 + }, + { + "start": 3106.62, + "end": 3109.48, + "probability": 0.9928 + }, + { + "start": 3109.54, + "end": 3111.64, + "probability": 0.9733 + }, + { + "start": 3111.74, + "end": 3116.28, + "probability": 0.9912 + }, + { + "start": 3116.88, + "end": 3119.16, + "probability": 0.9706 + }, + { + "start": 3119.84, + "end": 3122.22, + "probability": 0.9963 + }, + { + "start": 3123.58, + "end": 3127.45, + "probability": 0.8336 + }, + { + "start": 3128.14, + "end": 3128.9, + "probability": 0.8514 + }, + { + "start": 3129.36, + "end": 3134.5, + "probability": 0.8083 + }, + { + "start": 3135.73, + "end": 3135.82, + "probability": 0.0649 + }, + { + "start": 3135.82, + "end": 3135.82, + "probability": 0.1534 + }, + { + "start": 3135.82, + "end": 3136.18, + "probability": 0.3453 + }, + { + "start": 3136.4, + "end": 3137.7, + "probability": 0.3126 + }, + { + "start": 3137.78, + "end": 3138.5, + "probability": 0.24 + }, + { + "start": 3138.52, + "end": 3140.82, + "probability": 0.9101 + }, + { + "start": 3140.88, + "end": 3143.0, + "probability": 0.7011 + }, + { + "start": 3143.34, + "end": 3146.2, + "probability": 0.9712 + }, + { + "start": 3146.66, + "end": 3147.3, + "probability": 0.6919 + }, + { + "start": 3147.72, + "end": 3148.24, + "probability": 0.502 + }, + { + "start": 3148.36, + "end": 3149.86, + "probability": 0.9891 + }, + { + "start": 3150.88, + "end": 3152.24, + "probability": 0.6967 + }, + { + "start": 3152.46, + "end": 3153.85, + "probability": 0.9087 + }, + { + "start": 3158.0, + "end": 3158.92, + "probability": 0.2134 + }, + { + "start": 3158.92, + "end": 3160.46, + "probability": 0.3783 + }, + { + "start": 3160.76, + "end": 3164.32, + "probability": 0.9927 + }, + { + "start": 3164.9, + "end": 3165.98, + "probability": 0.5231 + }, + { + "start": 3167.46, + "end": 3168.96, + "probability": 0.3059 + }, + { + "start": 3169.96, + "end": 3173.56, + "probability": 0.9871 + }, + { + "start": 3174.26, + "end": 3175.66, + "probability": 0.7857 + }, + { + "start": 3176.36, + "end": 3177.0, + "probability": 0.858 + }, + { + "start": 3191.06, + "end": 3191.06, + "probability": 0.164 + }, + { + "start": 3191.06, + "end": 3191.06, + "probability": 0.0381 + }, + { + "start": 3191.06, + "end": 3191.06, + "probability": 0.2074 + }, + { + "start": 3191.06, + "end": 3191.12, + "probability": 0.0184 + }, + { + "start": 3191.12, + "end": 3191.18, + "probability": 0.0249 + }, + { + "start": 3191.18, + "end": 3192.32, + "probability": 0.1338 + }, + { + "start": 3192.92, + "end": 3193.48, + "probability": 0.0316 + }, + { + "start": 3212.26, + "end": 3213.74, + "probability": 0.8556 + }, + { + "start": 3214.34, + "end": 3216.14, + "probability": 0.9563 + }, + { + "start": 3217.06, + "end": 3220.58, + "probability": 0.9897 + }, + { + "start": 3221.12, + "end": 3224.56, + "probability": 0.9761 + }, + { + "start": 3226.65, + "end": 3230.08, + "probability": 0.8565 + }, + { + "start": 3230.94, + "end": 3233.48, + "probability": 0.9965 + }, + { + "start": 3234.26, + "end": 3235.0, + "probability": 0.9785 + }, + { + "start": 3235.68, + "end": 3236.52, + "probability": 0.834 + }, + { + "start": 3237.08, + "end": 3238.26, + "probability": 0.8733 + }, + { + "start": 3239.32, + "end": 3240.26, + "probability": 0.9306 + }, + { + "start": 3240.9, + "end": 3246.06, + "probability": 0.9937 + }, + { + "start": 3246.3, + "end": 3247.92, + "probability": 0.9725 + }, + { + "start": 3248.44, + "end": 3249.5, + "probability": 0.9827 + }, + { + "start": 3250.84, + "end": 3251.38, + "probability": 0.9443 + }, + { + "start": 3251.96, + "end": 3252.58, + "probability": 0.8482 + }, + { + "start": 3253.1, + "end": 3255.28, + "probability": 0.9844 + }, + { + "start": 3256.84, + "end": 3260.76, + "probability": 0.9067 + }, + { + "start": 3261.6, + "end": 3263.7, + "probability": 0.9948 + }, + { + "start": 3264.84, + "end": 3266.6, + "probability": 0.9242 + }, + { + "start": 3267.18, + "end": 3271.96, + "probability": 0.9746 + }, + { + "start": 3272.52, + "end": 3273.08, + "probability": 0.8861 + }, + { + "start": 3274.02, + "end": 3275.26, + "probability": 0.9168 + }, + { + "start": 3275.66, + "end": 3277.9, + "probability": 0.9528 + }, + { + "start": 3278.4, + "end": 3279.44, + "probability": 0.964 + }, + { + "start": 3280.0, + "end": 3281.08, + "probability": 0.995 + }, + { + "start": 3281.76, + "end": 3282.66, + "probability": 0.9544 + }, + { + "start": 3283.38, + "end": 3286.4, + "probability": 0.9978 + }, + { + "start": 3287.04, + "end": 3287.84, + "probability": 0.5698 + }, + { + "start": 3288.1, + "end": 3289.5, + "probability": 0.4079 + }, + { + "start": 3289.6, + "end": 3292.5, + "probability": 0.8118 + }, + { + "start": 3293.64, + "end": 3294.72, + "probability": 0.9974 + }, + { + "start": 3295.42, + "end": 3298.08, + "probability": 0.9889 + }, + { + "start": 3298.72, + "end": 3305.68, + "probability": 0.993 + }, + { + "start": 3306.24, + "end": 3307.62, + "probability": 0.9746 + }, + { + "start": 3308.32, + "end": 3308.98, + "probability": 0.6533 + }, + { + "start": 3309.64, + "end": 3310.76, + "probability": 0.9643 + }, + { + "start": 3311.78, + "end": 3313.46, + "probability": 0.9292 + }, + { + "start": 3314.1, + "end": 3317.9, + "probability": 0.995 + }, + { + "start": 3318.5, + "end": 3319.42, + "probability": 0.9878 + }, + { + "start": 3320.02, + "end": 3327.32, + "probability": 0.9922 + }, + { + "start": 3327.9, + "end": 3334.24, + "probability": 0.9897 + }, + { + "start": 3335.18, + "end": 3337.88, + "probability": 0.9961 + }, + { + "start": 3338.96, + "end": 3343.52, + "probability": 0.9933 + }, + { + "start": 3344.32, + "end": 3346.62, + "probability": 0.9989 + }, + { + "start": 3347.16, + "end": 3351.08, + "probability": 0.8947 + }, + { + "start": 3351.28, + "end": 3352.16, + "probability": 0.9787 + }, + { + "start": 3352.52, + "end": 3353.14, + "probability": 0.7655 + }, + { + "start": 3353.26, + "end": 3353.88, + "probability": 0.9451 + }, + { + "start": 3354.5, + "end": 3355.06, + "probability": 0.9491 + }, + { + "start": 3355.82, + "end": 3356.46, + "probability": 0.8482 + }, + { + "start": 3357.08, + "end": 3360.38, + "probability": 0.9941 + }, + { + "start": 3361.38, + "end": 3361.68, + "probability": 0.4986 + }, + { + "start": 3362.46, + "end": 3363.94, + "probability": 0.9653 + }, + { + "start": 3364.46, + "end": 3368.36, + "probability": 0.9996 + }, + { + "start": 3369.86, + "end": 3373.14, + "probability": 0.7622 + }, + { + "start": 3373.72, + "end": 3374.62, + "probability": 0.9022 + }, + { + "start": 3375.16, + "end": 3380.36, + "probability": 0.9355 + }, + { + "start": 3381.36, + "end": 3382.92, + "probability": 0.9403 + }, + { + "start": 3383.66, + "end": 3388.58, + "probability": 0.6449 + }, + { + "start": 3389.24, + "end": 3391.96, + "probability": 0.9933 + }, + { + "start": 3392.52, + "end": 3395.82, + "probability": 0.9836 + }, + { + "start": 3396.0, + "end": 3397.24, + "probability": 0.86 + }, + { + "start": 3397.76, + "end": 3399.54, + "probability": 0.9474 + }, + { + "start": 3399.98, + "end": 3404.38, + "probability": 0.9927 + }, + { + "start": 3404.54, + "end": 3405.02, + "probability": 0.8937 + }, + { + "start": 3405.46, + "end": 3406.3, + "probability": 0.8729 + }, + { + "start": 3407.06, + "end": 3409.6, + "probability": 0.9847 + }, + { + "start": 3410.12, + "end": 3411.16, + "probability": 0.9454 + }, + { + "start": 3411.58, + "end": 3412.64, + "probability": 0.9877 + }, + { + "start": 3413.08, + "end": 3415.3, + "probability": 0.9899 + }, + { + "start": 3416.56, + "end": 3421.82, + "probability": 0.984 + }, + { + "start": 3421.92, + "end": 3425.46, + "probability": 0.9983 + }, + { + "start": 3425.94, + "end": 3427.24, + "probability": 0.6704 + }, + { + "start": 3427.86, + "end": 3430.82, + "probability": 0.5216 + }, + { + "start": 3431.22, + "end": 3431.99, + "probability": 0.4204 + }, + { + "start": 3433.58, + "end": 3436.4, + "probability": 0.5802 + }, + { + "start": 3437.12, + "end": 3439.42, + "probability": 0.9828 + }, + { + "start": 3440.32, + "end": 3447.68, + "probability": 0.9466 + }, + { + "start": 3448.38, + "end": 3449.02, + "probability": 0.8419 + }, + { + "start": 3449.52, + "end": 3454.76, + "probability": 0.9987 + }, + { + "start": 3455.44, + "end": 3458.48, + "probability": 0.9917 + }, + { + "start": 3458.96, + "end": 3462.34, + "probability": 0.9021 + }, + { + "start": 3463.0, + "end": 3464.82, + "probability": 0.771 + }, + { + "start": 3464.84, + "end": 3466.46, + "probability": 0.8296 + }, + { + "start": 3467.24, + "end": 3469.14, + "probability": 0.9979 + }, + { + "start": 3470.32, + "end": 3471.05, + "probability": 0.6777 + }, + { + "start": 3473.54, + "end": 3476.48, + "probability": 0.6424 + }, + { + "start": 3476.8, + "end": 3477.06, + "probability": 0.808 + }, + { + "start": 3477.18, + "end": 3477.64, + "probability": 0.567 + }, + { + "start": 3478.04, + "end": 3479.5, + "probability": 0.6078 + }, + { + "start": 3480.44, + "end": 3484.22, + "probability": 0.9548 + }, + { + "start": 3484.38, + "end": 3486.0, + "probability": 0.4863 + }, + { + "start": 3486.74, + "end": 3487.66, + "probability": 0.3948 + }, + { + "start": 3487.92, + "end": 3491.68, + "probability": 0.7322 + }, + { + "start": 3492.46, + "end": 3494.34, + "probability": 0.9893 + }, + { + "start": 3495.26, + "end": 3498.82, + "probability": 0.9667 + }, + { + "start": 3499.9, + "end": 3500.46, + "probability": 0.4624 + }, + { + "start": 3500.86, + "end": 3501.7, + "probability": 0.9415 + }, + { + "start": 3501.78, + "end": 3503.2, + "probability": 0.8935 + }, + { + "start": 3503.3, + "end": 3504.35, + "probability": 0.4971 + }, + { + "start": 3504.86, + "end": 3507.68, + "probability": 0.7964 + }, + { + "start": 3507.76, + "end": 3508.82, + "probability": 0.9092 + }, + { + "start": 3509.36, + "end": 3512.34, + "probability": 0.7744 + }, + { + "start": 3512.42, + "end": 3513.44, + "probability": 0.9721 + }, + { + "start": 3515.0, + "end": 3516.48, + "probability": 0.8997 + }, + { + "start": 3517.72, + "end": 3518.7, + "probability": 0.9845 + }, + { + "start": 3519.16, + "end": 3520.14, + "probability": 0.9785 + }, + { + "start": 3520.62, + "end": 3522.74, + "probability": 0.9914 + }, + { + "start": 3523.32, + "end": 3524.1, + "probability": 0.7508 + }, + { + "start": 3524.14, + "end": 3527.34, + "probability": 0.9812 + }, + { + "start": 3529.02, + "end": 3530.6, + "probability": 0.8219 + }, + { + "start": 3531.08, + "end": 3533.42, + "probability": 0.9591 + }, + { + "start": 3533.76, + "end": 3534.68, + "probability": 0.9062 + }, + { + "start": 3534.86, + "end": 3536.16, + "probability": 0.9823 + }, + { + "start": 3537.75, + "end": 3539.9, + "probability": 0.7037 + }, + { + "start": 3541.52, + "end": 3545.28, + "probability": 0.877 + }, + { + "start": 3545.8, + "end": 3549.16, + "probability": 0.9153 + }, + { + "start": 3549.16, + "end": 3553.86, + "probability": 0.9896 + }, + { + "start": 3554.42, + "end": 3555.34, + "probability": 0.8476 + }, + { + "start": 3555.88, + "end": 3556.9, + "probability": 0.9929 + }, + { + "start": 3558.5, + "end": 3564.26, + "probability": 0.8389 + }, + { + "start": 3564.32, + "end": 3564.64, + "probability": 0.8759 + }, + { + "start": 3564.7, + "end": 3565.06, + "probability": 0.8529 + }, + { + "start": 3565.64, + "end": 3568.4, + "probability": 0.9658 + }, + { + "start": 3569.42, + "end": 3572.24, + "probability": 0.8412 + }, + { + "start": 3572.78, + "end": 3576.5, + "probability": 0.9908 + }, + { + "start": 3576.5, + "end": 3580.98, + "probability": 0.98 + }, + { + "start": 3581.52, + "end": 3584.87, + "probability": 0.9863 + }, + { + "start": 3585.4, + "end": 3589.6, + "probability": 0.8552 + }, + { + "start": 3590.1, + "end": 3593.52, + "probability": 0.9769 + }, + { + "start": 3594.1, + "end": 3597.24, + "probability": 0.9221 + }, + { + "start": 3598.14, + "end": 3601.8, + "probability": 0.7167 + }, + { + "start": 3603.06, + "end": 3603.76, + "probability": 0.6904 + }, + { + "start": 3603.96, + "end": 3605.26, + "probability": 0.7012 + }, + { + "start": 3605.38, + "end": 3605.98, + "probability": 0.6947 + }, + { + "start": 3606.7, + "end": 3611.66, + "probability": 0.9643 + }, + { + "start": 3612.04, + "end": 3612.64, + "probability": 0.6265 + }, + { + "start": 3613.48, + "end": 3615.22, + "probability": 0.9517 + }, + { + "start": 3616.26, + "end": 3620.14, + "probability": 0.8608 + }, + { + "start": 3620.44, + "end": 3622.82, + "probability": 0.8459 + }, + { + "start": 3623.12, + "end": 3623.54, + "probability": 0.5724 + }, + { + "start": 3623.62, + "end": 3624.04, + "probability": 0.5754 + }, + { + "start": 3624.5, + "end": 3628.56, + "probability": 0.9873 + }, + { + "start": 3628.56, + "end": 3632.8, + "probability": 0.9976 + }, + { + "start": 3633.38, + "end": 3634.02, + "probability": 0.7092 + }, + { + "start": 3634.06, + "end": 3635.08, + "probability": 0.8403 + }, + { + "start": 3635.14, + "end": 3638.94, + "probability": 0.9745 + }, + { + "start": 3639.02, + "end": 3641.72, + "probability": 0.717 + }, + { + "start": 3642.36, + "end": 3644.94, + "probability": 0.9834 + }, + { + "start": 3644.94, + "end": 3647.38, + "probability": 0.9941 + }, + { + "start": 3647.62, + "end": 3648.32, + "probability": 0.8394 + }, + { + "start": 3648.44, + "end": 3649.24, + "probability": 0.9351 + }, + { + "start": 3650.04, + "end": 3652.46, + "probability": 0.9353 + }, + { + "start": 3652.94, + "end": 3654.48, + "probability": 0.9744 + }, + { + "start": 3655.2, + "end": 3658.32, + "probability": 0.7733 + }, + { + "start": 3658.86, + "end": 3661.09, + "probability": 0.9525 + }, + { + "start": 3661.48, + "end": 3661.82, + "probability": 0.4699 + }, + { + "start": 3662.3, + "end": 3664.2, + "probability": 0.9686 + }, + { + "start": 3664.22, + "end": 3665.34, + "probability": 0.6075 + }, + { + "start": 3665.84, + "end": 3668.72, + "probability": 0.9634 + }, + { + "start": 3669.18, + "end": 3670.16, + "probability": 0.7462 + }, + { + "start": 3670.48, + "end": 3671.54, + "probability": 0.4635 + }, + { + "start": 3671.66, + "end": 3672.74, + "probability": 0.7728 + }, + { + "start": 3673.36, + "end": 3674.98, + "probability": 0.9207 + }, + { + "start": 3675.48, + "end": 3677.52, + "probability": 0.9556 + }, + { + "start": 3678.08, + "end": 3678.72, + "probability": 0.9567 + }, + { + "start": 3679.62, + "end": 3681.82, + "probability": 0.9215 + }, + { + "start": 3682.42, + "end": 3684.14, + "probability": 0.838 + }, + { + "start": 3684.56, + "end": 3687.78, + "probability": 0.9858 + }, + { + "start": 3688.26, + "end": 3691.24, + "probability": 0.9862 + }, + { + "start": 3691.84, + "end": 3692.68, + "probability": 0.5026 + }, + { + "start": 3693.22, + "end": 3696.06, + "probability": 0.9724 + }, + { + "start": 3696.14, + "end": 3698.12, + "probability": 0.986 + }, + { + "start": 3698.12, + "end": 3701.06, + "probability": 0.9897 + }, + { + "start": 3701.46, + "end": 3702.64, + "probability": 0.7194 + }, + { + "start": 3702.98, + "end": 3703.46, + "probability": 0.9265 + }, + { + "start": 3703.52, + "end": 3704.86, + "probability": 0.6663 + }, + { + "start": 3705.48, + "end": 3707.18, + "probability": 0.681 + }, + { + "start": 3707.28, + "end": 3711.8, + "probability": 0.9753 + }, + { + "start": 3711.8, + "end": 3715.44, + "probability": 0.9799 + }, + { + "start": 3715.64, + "end": 3718.58, + "probability": 0.6326 + }, + { + "start": 3718.94, + "end": 3722.58, + "probability": 0.786 + }, + { + "start": 3722.58, + "end": 3724.42, + "probability": 0.8972 + }, + { + "start": 3724.94, + "end": 3728.64, + "probability": 0.9771 + }, + { + "start": 3728.7, + "end": 3730.1, + "probability": 0.9684 + }, + { + "start": 3730.68, + "end": 3732.08, + "probability": 0.9083 + }, + { + "start": 3732.6, + "end": 3733.9, + "probability": 0.8352 + }, + { + "start": 3734.04, + "end": 3737.86, + "probability": 0.9794 + }, + { + "start": 3738.58, + "end": 3740.44, + "probability": 0.9982 + }, + { + "start": 3740.56, + "end": 3744.62, + "probability": 0.9923 + }, + { + "start": 3745.14, + "end": 3747.0, + "probability": 0.9918 + }, + { + "start": 3747.52, + "end": 3749.4, + "probability": 0.9385 + }, + { + "start": 3750.06, + "end": 3750.5, + "probability": 0.6396 + }, + { + "start": 3750.98, + "end": 3753.42, + "probability": 0.9832 + }, + { + "start": 3753.46, + "end": 3754.76, + "probability": 0.9908 + }, + { + "start": 3755.38, + "end": 3760.24, + "probability": 0.962 + }, + { + "start": 3760.98, + "end": 3761.28, + "probability": 0.4583 + }, + { + "start": 3761.86, + "end": 3765.82, + "probability": 0.8503 + }, + { + "start": 3766.48, + "end": 3768.74, + "probability": 0.3517 + }, + { + "start": 3769.52, + "end": 3774.52, + "probability": 0.8857 + }, + { + "start": 3775.0, + "end": 3778.82, + "probability": 0.9762 + }, + { + "start": 3778.9, + "end": 3780.26, + "probability": 0.5045 + }, + { + "start": 3780.34, + "end": 3782.32, + "probability": 0.9779 + }, + { + "start": 3782.8, + "end": 3786.84, + "probability": 0.9904 + }, + { + "start": 3787.68, + "end": 3789.94, + "probability": 0.9834 + }, + { + "start": 3790.58, + "end": 3795.56, + "probability": 0.9944 + }, + { + "start": 3796.38, + "end": 3801.08, + "probability": 0.9966 + }, + { + "start": 3801.24, + "end": 3801.7, + "probability": 0.6442 + }, + { + "start": 3807.08, + "end": 3807.08, + "probability": 0.3095 + }, + { + "start": 3807.08, + "end": 3807.08, + "probability": 0.1228 + }, + { + "start": 3807.08, + "end": 3807.08, + "probability": 0.0017 + }, + { + "start": 3818.82, + "end": 3819.76, + "probability": 0.6597 + }, + { + "start": 3821.16, + "end": 3821.86, + "probability": 0.1598 + }, + { + "start": 3822.3, + "end": 3822.96, + "probability": 0.2584 + }, + { + "start": 3823.14, + "end": 3823.24, + "probability": 0.0297 + }, + { + "start": 3823.3, + "end": 3823.52, + "probability": 0.0147 + }, + { + "start": 3823.52, + "end": 3823.82, + "probability": 0.4256 + }, + { + "start": 3824.26, + "end": 3825.94, + "probability": 0.0913 + }, + { + "start": 3831.86, + "end": 3832.06, + "probability": 0.0228 + }, + { + "start": 3834.02, + "end": 3835.78, + "probability": 0.4218 + }, + { + "start": 3836.38, + "end": 3838.12, + "probability": 0.1336 + }, + { + "start": 3866.8, + "end": 3870.62, + "probability": 0.7439 + }, + { + "start": 3870.82, + "end": 3872.02, + "probability": 0.9902 + }, + { + "start": 3873.14, + "end": 3874.34, + "probability": 0.899 + }, + { + "start": 3875.86, + "end": 3877.98, + "probability": 0.9067 + }, + { + "start": 3878.08, + "end": 3879.78, + "probability": 0.9687 + }, + { + "start": 3880.34, + "end": 3881.26, + "probability": 0.7484 + }, + { + "start": 3882.16, + "end": 3884.68, + "probability": 0.9708 + }, + { + "start": 3885.6, + "end": 3888.66, + "probability": 0.9696 + }, + { + "start": 3889.42, + "end": 3890.74, + "probability": 0.9278 + }, + { + "start": 3891.74, + "end": 3893.28, + "probability": 0.9182 + }, + { + "start": 3893.84, + "end": 3898.16, + "probability": 0.9976 + }, + { + "start": 3899.58, + "end": 3904.02, + "probability": 0.9985 + }, + { + "start": 3904.96, + "end": 3906.04, + "probability": 0.753 + }, + { + "start": 3906.72, + "end": 3909.3, + "probability": 0.9988 + }, + { + "start": 3909.84, + "end": 3911.2, + "probability": 0.999 + }, + { + "start": 3911.92, + "end": 3913.28, + "probability": 0.8054 + }, + { + "start": 3913.92, + "end": 3916.08, + "probability": 0.9965 + }, + { + "start": 3916.68, + "end": 3917.7, + "probability": 0.7457 + }, + { + "start": 3918.64, + "end": 3923.46, + "probability": 0.8975 + }, + { + "start": 3923.68, + "end": 3927.44, + "probability": 0.9984 + }, + { + "start": 3928.28, + "end": 3930.76, + "probability": 0.8763 + }, + { + "start": 3931.82, + "end": 3936.36, + "probability": 0.912 + }, + { + "start": 3937.06, + "end": 3940.44, + "probability": 0.9787 + }, + { + "start": 3940.96, + "end": 3942.46, + "probability": 0.971 + }, + { + "start": 3943.06, + "end": 3944.38, + "probability": 0.9989 + }, + { + "start": 3945.16, + "end": 3946.62, + "probability": 0.9841 + }, + { + "start": 3947.24, + "end": 3951.76, + "probability": 0.9957 + }, + { + "start": 3953.16, + "end": 3954.26, + "probability": 0.7648 + }, + { + "start": 3955.04, + "end": 3956.24, + "probability": 0.9976 + }, + { + "start": 3956.86, + "end": 3958.4, + "probability": 0.9762 + }, + { + "start": 3959.28, + "end": 3960.78, + "probability": 0.8763 + }, + { + "start": 3961.38, + "end": 3964.16, + "probability": 0.7685 + }, + { + "start": 3964.84, + "end": 3967.35, + "probability": 0.9987 + }, + { + "start": 3968.1, + "end": 3968.88, + "probability": 0.9145 + }, + { + "start": 3969.68, + "end": 3971.22, + "probability": 0.9956 + }, + { + "start": 3971.74, + "end": 3973.1, + "probability": 0.7098 + }, + { + "start": 3981.0, + "end": 3983.0, + "probability": 0.9945 + }, + { + "start": 3984.3, + "end": 3989.84, + "probability": 0.9928 + }, + { + "start": 3990.54, + "end": 3994.64, + "probability": 0.9741 + }, + { + "start": 3995.24, + "end": 3997.74, + "probability": 0.9857 + }, + { + "start": 3998.5, + "end": 3999.34, + "probability": 0.9266 + }, + { + "start": 4000.22, + "end": 4001.32, + "probability": 0.8888 + }, + { + "start": 4002.0, + "end": 4003.98, + "probability": 0.9973 + }, + { + "start": 4004.68, + "end": 4007.98, + "probability": 0.9889 + }, + { + "start": 4009.18, + "end": 4009.94, + "probability": 0.889 + }, + { + "start": 4010.66, + "end": 4015.62, + "probability": 0.994 + }, + { + "start": 4016.24, + "end": 4017.62, + "probability": 0.9762 + }, + { + "start": 4018.2, + "end": 4018.5, + "probability": 0.7235 + }, + { + "start": 4020.44, + "end": 4023.16, + "probability": 0.5607 + }, + { + "start": 4023.28, + "end": 4026.39, + "probability": 0.972 + }, + { + "start": 4027.84, + "end": 4030.52, + "probability": 0.8132 + }, + { + "start": 4032.06, + "end": 4035.68, + "probability": 0.4944 + }, + { + "start": 4035.68, + "end": 4036.66, + "probability": 0.566 + }, + { + "start": 4043.62, + "end": 4044.9, + "probability": 0.6688 + }, + { + "start": 4045.04, + "end": 4046.22, + "probability": 0.9863 + }, + { + "start": 4046.98, + "end": 4048.38, + "probability": 0.9292 + }, + { + "start": 4050.42, + "end": 4050.42, + "probability": 0.5143 + }, + { + "start": 4055.8, + "end": 4056.08, + "probability": 0.7234 + }, + { + "start": 4057.1, + "end": 4057.93, + "probability": 0.7864 + }, + { + "start": 4058.1, + "end": 4060.96, + "probability": 0.993 + }, + { + "start": 4061.8, + "end": 4066.14, + "probability": 0.9769 + }, + { + "start": 4066.14, + "end": 4071.46, + "probability": 0.9953 + }, + { + "start": 4071.82, + "end": 4074.24, + "probability": 0.8254 + }, + { + "start": 4075.28, + "end": 4075.96, + "probability": 0.3607 + }, + { + "start": 4076.38, + "end": 4078.92, + "probability": 0.9756 + }, + { + "start": 4079.8, + "end": 4079.9, + "probability": 0.9647 + }, + { + "start": 4080.46, + "end": 4080.9, + "probability": 0.7642 + }, + { + "start": 4081.0, + "end": 4081.76, + "probability": 0.7688 + }, + { + "start": 4082.22, + "end": 4083.88, + "probability": 0.9868 + }, + { + "start": 4084.1, + "end": 4088.62, + "probability": 0.9634 + }, + { + "start": 4088.76, + "end": 4089.24, + "probability": 0.9528 + }, + { + "start": 4090.28, + "end": 4091.64, + "probability": 0.6416 + }, + { + "start": 4091.68, + "end": 4093.36, + "probability": 0.9486 + }, + { + "start": 4094.4, + "end": 4097.06, + "probability": 0.8535 + }, + { + "start": 4097.28, + "end": 4098.3, + "probability": 0.7683 + }, + { + "start": 4098.32, + "end": 4100.62, + "probability": 0.9798 + }, + { + "start": 4100.9, + "end": 4101.68, + "probability": 0.7345 + }, + { + "start": 4101.68, + "end": 4107.96, + "probability": 0.9565 + }, + { + "start": 4108.02, + "end": 4109.28, + "probability": 0.9963 + }, + { + "start": 4109.58, + "end": 4110.92, + "probability": 0.8972 + }, + { + "start": 4111.1, + "end": 4113.54, + "probability": 0.9897 + }, + { + "start": 4113.9, + "end": 4114.76, + "probability": 0.9661 + }, + { + "start": 4115.0, + "end": 4115.66, + "probability": 0.9916 + }, + { + "start": 4115.74, + "end": 4117.22, + "probability": 0.9766 + }, + { + "start": 4117.38, + "end": 4118.78, + "probability": 0.998 + }, + { + "start": 4119.6, + "end": 4121.78, + "probability": 0.9707 + }, + { + "start": 4122.34, + "end": 4126.32, + "probability": 0.9977 + }, + { + "start": 4126.74, + "end": 4129.3, + "probability": 0.9907 + }, + { + "start": 4129.48, + "end": 4131.52, + "probability": 0.7624 + }, + { + "start": 4131.9, + "end": 4133.74, + "probability": 0.9744 + }, + { + "start": 4133.76, + "end": 4135.26, + "probability": 0.9519 + }, + { + "start": 4135.26, + "end": 4138.28, + "probability": 0.9784 + }, + { + "start": 4139.02, + "end": 4142.96, + "probability": 0.9073 + }, + { + "start": 4143.04, + "end": 4144.6, + "probability": 0.845 + }, + { + "start": 4145.02, + "end": 4145.8, + "probability": 0.662 + }, + { + "start": 4145.9, + "end": 4146.86, + "probability": 0.7544 + }, + { + "start": 4147.12, + "end": 4150.24, + "probability": 0.9917 + }, + { + "start": 4150.24, + "end": 4153.62, + "probability": 0.954 + }, + { + "start": 4153.64, + "end": 4155.36, + "probability": 0.861 + }, + { + "start": 4155.44, + "end": 4156.5, + "probability": 0.9798 + }, + { + "start": 4156.58, + "end": 4157.56, + "probability": 0.9966 + }, + { + "start": 4158.48, + "end": 4162.36, + "probability": 0.8018 + }, + { + "start": 4163.04, + "end": 4167.62, + "probability": 0.9863 + }, + { + "start": 4167.72, + "end": 4170.2, + "probability": 0.7683 + }, + { + "start": 4170.96, + "end": 4173.36, + "probability": 0.9867 + }, + { + "start": 4173.56, + "end": 4175.26, + "probability": 0.7593 + }, + { + "start": 4175.66, + "end": 4178.62, + "probability": 0.9462 + }, + { + "start": 4178.7, + "end": 4180.42, + "probability": 0.8743 + }, + { + "start": 4180.48, + "end": 4181.88, + "probability": 0.9119 + }, + { + "start": 4181.92, + "end": 4185.74, + "probability": 0.7606 + }, + { + "start": 4186.16, + "end": 4186.84, + "probability": 0.8206 + }, + { + "start": 4186.84, + "end": 4189.3, + "probability": 0.9921 + }, + { + "start": 4190.22, + "end": 4193.42, + "probability": 0.581 + }, + { + "start": 4193.92, + "end": 4198.58, + "probability": 0.9932 + }, + { + "start": 4199.16, + "end": 4203.3, + "probability": 0.9973 + }, + { + "start": 4203.62, + "end": 4205.4, + "probability": 0.9531 + }, + { + "start": 4205.44, + "end": 4208.98, + "probability": 0.9828 + }, + { + "start": 4209.08, + "end": 4211.02, + "probability": 0.9377 + }, + { + "start": 4211.12, + "end": 4211.76, + "probability": 0.6749 + }, + { + "start": 4211.9, + "end": 4213.4, + "probability": 0.9263 + }, + { + "start": 4213.7, + "end": 4214.66, + "probability": 0.6909 + }, + { + "start": 4214.76, + "end": 4216.18, + "probability": 0.9504 + }, + { + "start": 4216.28, + "end": 4219.48, + "probability": 0.9961 + }, + { + "start": 4220.04, + "end": 4221.04, + "probability": 0.8199 + }, + { + "start": 4221.46, + "end": 4226.38, + "probability": 0.9945 + }, + { + "start": 4226.6, + "end": 4228.96, + "probability": 0.9447 + }, + { + "start": 4229.12, + "end": 4232.8, + "probability": 0.9978 + }, + { + "start": 4232.9, + "end": 4234.02, + "probability": 0.98 + }, + { + "start": 4234.6, + "end": 4235.76, + "probability": 0.7926 + }, + { + "start": 4236.18, + "end": 4236.34, + "probability": 0.4695 + }, + { + "start": 4236.44, + "end": 4236.72, + "probability": 0.4598 + }, + { + "start": 4237.06, + "end": 4238.78, + "probability": 0.9659 + }, + { + "start": 4239.12, + "end": 4240.96, + "probability": 0.9812 + }, + { + "start": 4241.58, + "end": 4247.08, + "probability": 0.9948 + }, + { + "start": 4247.1, + "end": 4251.16, + "probability": 0.9979 + }, + { + "start": 4251.3, + "end": 4252.42, + "probability": 0.8329 + }, + { + "start": 4252.52, + "end": 4258.66, + "probability": 0.9958 + }, + { + "start": 4259.1, + "end": 4260.48, + "probability": 0.8201 + }, + { + "start": 4260.62, + "end": 4263.86, + "probability": 0.761 + }, + { + "start": 4263.86, + "end": 4265.52, + "probability": 0.9587 + }, + { + "start": 4266.14, + "end": 4269.26, + "probability": 0.9313 + }, + { + "start": 4269.36, + "end": 4270.14, + "probability": 0.498 + }, + { + "start": 4270.34, + "end": 4271.22, + "probability": 0.5003 + }, + { + "start": 4271.32, + "end": 4272.14, + "probability": 0.7077 + }, + { + "start": 4272.18, + "end": 4273.78, + "probability": 0.8962 + }, + { + "start": 4273.94, + "end": 4275.52, + "probability": 0.9302 + }, + { + "start": 4276.02, + "end": 4277.64, + "probability": 0.7906 + }, + { + "start": 4278.16, + "end": 4280.2, + "probability": 0.6498 + }, + { + "start": 4280.5, + "end": 4282.16, + "probability": 0.8441 + }, + { + "start": 4282.44, + "end": 4284.96, + "probability": 0.8766 + }, + { + "start": 4285.3, + "end": 4285.72, + "probability": 0.8363 + }, + { + "start": 4285.76, + "end": 4286.84, + "probability": 0.7221 + }, + { + "start": 4287.08, + "end": 4289.5, + "probability": 0.8977 + }, + { + "start": 4289.58, + "end": 4291.22, + "probability": 0.7902 + }, + { + "start": 4291.24, + "end": 4293.18, + "probability": 0.7534 + }, + { + "start": 4293.26, + "end": 4293.26, + "probability": 0.5143 + }, + { + "start": 4293.26, + "end": 4294.08, + "probability": 0.8372 + }, + { + "start": 4294.4, + "end": 4298.3, + "probability": 0.968 + }, + { + "start": 4298.3, + "end": 4300.38, + "probability": 0.9966 + }, + { + "start": 4300.7, + "end": 4302.14, + "probability": 0.9938 + }, + { + "start": 4302.6, + "end": 4302.6, + "probability": 0.4549 + }, + { + "start": 4302.9, + "end": 4303.78, + "probability": 0.6697 + }, + { + "start": 4304.02, + "end": 4307.58, + "probability": 0.8262 + }, + { + "start": 4307.98, + "end": 4307.98, + "probability": 0.0009 + }, + { + "start": 4309.88, + "end": 4310.1, + "probability": 0.2616 + }, + { + "start": 4316.74, + "end": 4317.42, + "probability": 0.0124 + }, + { + "start": 4318.4, + "end": 4319.1, + "probability": 0.4122 + }, + { + "start": 4320.6, + "end": 4321.86, + "probability": 0.9637 + }, + { + "start": 4322.16, + "end": 4322.72, + "probability": 0.7473 + }, + { + "start": 4322.8, + "end": 4323.08, + "probability": 0.393 + }, + { + "start": 4324.33, + "end": 4329.83, + "probability": 0.9895 + }, + { + "start": 4330.53, + "end": 4333.5, + "probability": 0.981 + }, + { + "start": 4333.5, + "end": 4337.08, + "probability": 0.9456 + }, + { + "start": 4337.36, + "end": 4339.76, + "probability": 0.588 + }, + { + "start": 4339.8, + "end": 4345.86, + "probability": 0.9954 + }, + { + "start": 4346.56, + "end": 4347.66, + "probability": 0.9402 + }, + { + "start": 4347.86, + "end": 4350.32, + "probability": 0.9712 + }, + { + "start": 4350.34, + "end": 4353.48, + "probability": 0.9475 + }, + { + "start": 4353.62, + "end": 4354.66, + "probability": 0.9235 + }, + { + "start": 4354.66, + "end": 4355.38, + "probability": 0.4236 + }, + { + "start": 4355.72, + "end": 4357.12, + "probability": 0.7467 + }, + { + "start": 4357.14, + "end": 4357.96, + "probability": 0.7296 + }, + { + "start": 4358.18, + "end": 4359.68, + "probability": 0.7564 + }, + { + "start": 4359.68, + "end": 4361.1, + "probability": 0.9021 + }, + { + "start": 4361.22, + "end": 4366.24, + "probability": 0.9577 + }, + { + "start": 4366.44, + "end": 4373.44, + "probability": 0.9834 + }, + { + "start": 4374.26, + "end": 4379.88, + "probability": 0.9573 + }, + { + "start": 4379.94, + "end": 4380.96, + "probability": 0.5642 + }, + { + "start": 4381.02, + "end": 4382.82, + "probability": 0.9031 + }, + { + "start": 4383.7, + "end": 4384.88, + "probability": 0.5736 + }, + { + "start": 4385.14, + "end": 4388.0, + "probability": 0.9889 + }, + { + "start": 4388.54, + "end": 4392.04, + "probability": 0.8511 + }, + { + "start": 4392.18, + "end": 4393.72, + "probability": 0.988 + }, + { + "start": 4394.14, + "end": 4395.84, + "probability": 0.9834 + }, + { + "start": 4396.46, + "end": 4399.14, + "probability": 0.9862 + }, + { + "start": 4400.22, + "end": 4402.44, + "probability": 0.9816 + }, + { + "start": 4402.58, + "end": 4404.02, + "probability": 0.9761 + }, + { + "start": 4404.12, + "end": 4407.74, + "probability": 0.6905 + }, + { + "start": 4408.66, + "end": 4410.62, + "probability": 0.9906 + }, + { + "start": 4412.44, + "end": 4417.56, + "probability": 0.5256 + }, + { + "start": 4417.86, + "end": 4425.36, + "probability": 0.9958 + }, + { + "start": 4425.44, + "end": 4430.4, + "probability": 0.8169 + }, + { + "start": 4431.2, + "end": 4433.04, + "probability": 0.6793 + }, + { + "start": 4433.12, + "end": 4434.92, + "probability": 0.8399 + }, + { + "start": 4435.0, + "end": 4435.8, + "probability": 0.8231 + }, + { + "start": 4435.9, + "end": 4439.36, + "probability": 0.9429 + }, + { + "start": 4439.8, + "end": 4442.86, + "probability": 0.9009 + }, + { + "start": 4443.4, + "end": 4445.06, + "probability": 0.9109 + }, + { + "start": 4445.26, + "end": 4446.38, + "probability": 0.869 + }, + { + "start": 4446.8, + "end": 4448.04, + "probability": 0.9403 + }, + { + "start": 4448.34, + "end": 4450.16, + "probability": 0.959 + }, + { + "start": 4450.18, + "end": 4451.44, + "probability": 0.9642 + }, + { + "start": 4451.84, + "end": 4453.54, + "probability": 0.9976 + }, + { + "start": 4453.78, + "end": 4455.31, + "probability": 0.9927 + }, + { + "start": 4455.84, + "end": 4458.98, + "probability": 0.9686 + }, + { + "start": 4459.6, + "end": 4460.46, + "probability": 0.8944 + }, + { + "start": 4460.54, + "end": 4463.78, + "probability": 0.9935 + }, + { + "start": 4464.06, + "end": 4466.14, + "probability": 0.9962 + }, + { + "start": 4466.98, + "end": 4466.98, + "probability": 0.9258 + }, + { + "start": 4468.36, + "end": 4471.66, + "probability": 0.9978 + }, + { + "start": 4471.86, + "end": 4474.8, + "probability": 0.7995 + }, + { + "start": 4475.32, + "end": 4475.98, + "probability": 0.7526 + }, + { + "start": 4477.46, + "end": 4478.41, + "probability": 0.7045 + }, + { + "start": 4478.56, + "end": 4481.1, + "probability": 0.7812 + }, + { + "start": 4481.96, + "end": 4484.98, + "probability": 0.794 + }, + { + "start": 4485.06, + "end": 4485.58, + "probability": 0.6473 + }, + { + "start": 4486.02, + "end": 4487.02, + "probability": 0.4056 + }, + { + "start": 4487.22, + "end": 4490.5, + "probability": 0.9445 + }, + { + "start": 4491.32, + "end": 4493.86, + "probability": 0.1252 + }, + { + "start": 4494.18, + "end": 4495.14, + "probability": 0.5281 + }, + { + "start": 4495.64, + "end": 4500.96, + "probability": 0.5814 + }, + { + "start": 4501.1, + "end": 4501.22, + "probability": 0.2287 + }, + { + "start": 4502.12, + "end": 4502.12, + "probability": 0.2967 + }, + { + "start": 4502.12, + "end": 4502.6, + "probability": 0.6658 + }, + { + "start": 4503.54, + "end": 4507.18, + "probability": 0.9952 + }, + { + "start": 4507.28, + "end": 4507.48, + "probability": 0.4204 + }, + { + "start": 4511.93, + "end": 4515.14, + "probability": 0.4947 + }, + { + "start": 4515.14, + "end": 4515.72, + "probability": 0.3461 + }, + { + "start": 4515.72, + "end": 4516.04, + "probability": 0.6564 + }, + { + "start": 4516.12, + "end": 4519.64, + "probability": 0.9915 + }, + { + "start": 4520.02, + "end": 4521.4, + "probability": 0.9467 + }, + { + "start": 4521.48, + "end": 4523.08, + "probability": 0.404 + }, + { + "start": 4523.1, + "end": 4524.12, + "probability": 0.5342 + }, + { + "start": 4526.71, + "end": 4529.18, + "probability": 0.1878 + }, + { + "start": 4529.18, + "end": 4530.84, + "probability": 0.6569 + }, + { + "start": 4530.84, + "end": 4531.07, + "probability": 0.7555 + }, + { + "start": 4532.38, + "end": 4535.72, + "probability": 0.1442 + }, + { + "start": 4535.72, + "end": 4538.94, + "probability": 0.0232 + }, + { + "start": 4539.5, + "end": 4540.18, + "probability": 0.0489 + }, + { + "start": 4540.6, + "end": 4540.74, + "probability": 0.2092 + }, + { + "start": 4540.74, + "end": 4542.9, + "probability": 0.9848 + }, + { + "start": 4542.94, + "end": 4543.62, + "probability": 0.5523 + }, + { + "start": 4543.92, + "end": 4544.68, + "probability": 0.168 + }, + { + "start": 4545.52, + "end": 4549.56, + "probability": 0.059 + }, + { + "start": 4549.8, + "end": 4550.34, + "probability": 0.2367 + }, + { + "start": 4550.38, + "end": 4553.32, + "probability": 0.7415 + }, + { + "start": 4553.88, + "end": 4557.72, + "probability": 0.8406 + }, + { + "start": 4557.8, + "end": 4558.82, + "probability": 0.7845 + }, + { + "start": 4559.0, + "end": 4559.68, + "probability": 0.3136 + }, + { + "start": 4560.24, + "end": 4560.24, + "probability": 0.6634 + }, + { + "start": 4560.24, + "end": 4561.14, + "probability": 0.2709 + }, + { + "start": 4561.28, + "end": 4565.82, + "probability": 0.6857 + }, + { + "start": 4566.34, + "end": 4567.06, + "probability": 0.8789 + }, + { + "start": 4567.88, + "end": 4568.94, + "probability": 0.261 + }, + { + "start": 4569.5, + "end": 4570.08, + "probability": 0.7691 + }, + { + "start": 4571.48, + "end": 4572.34, + "probability": 0.7715 + }, + { + "start": 4573.0, + "end": 4573.64, + "probability": 0.9365 + }, + { + "start": 4574.84, + "end": 4576.6, + "probability": 0.9019 + }, + { + "start": 4577.28, + "end": 4578.3, + "probability": 0.6895 + }, + { + "start": 4579.52, + "end": 4582.36, + "probability": 0.9817 + }, + { + "start": 4583.1, + "end": 4585.78, + "probability": 0.959 + }, + { + "start": 4586.94, + "end": 4589.38, + "probability": 0.6798 + }, + { + "start": 4590.3, + "end": 4591.2, + "probability": 0.0375 + }, + { + "start": 4594.68, + "end": 4595.06, + "probability": 0.0154 + }, + { + "start": 4595.06, + "end": 4595.06, + "probability": 0.0485 + }, + { + "start": 4595.18, + "end": 4595.6, + "probability": 0.0921 + }, + { + "start": 4595.66, + "end": 4597.46, + "probability": 0.1751 + }, + { + "start": 4598.28, + "end": 4598.94, + "probability": 0.5966 + }, + { + "start": 4599.56, + "end": 4601.06, + "probability": 0.6057 + }, + { + "start": 4601.06, + "end": 4602.48, + "probability": 0.8573 + }, + { + "start": 4602.88, + "end": 4603.38, + "probability": 0.2238 + }, + { + "start": 4603.38, + "end": 4604.12, + "probability": 0.5601 + }, + { + "start": 4604.14, + "end": 4605.96, + "probability": 0.7 + }, + { + "start": 4606.64, + "end": 4607.14, + "probability": 0.4673 + }, + { + "start": 4608.0, + "end": 4609.52, + "probability": 0.6083 + }, + { + "start": 4610.08, + "end": 4610.48, + "probability": 0.7361 + }, + { + "start": 4611.68, + "end": 4612.46, + "probability": 0.0184 + }, + { + "start": 4612.48, + "end": 4614.3, + "probability": 0.4607 + }, + { + "start": 4615.02, + "end": 4617.18, + "probability": 0.8479 + }, + { + "start": 4618.3, + "end": 4618.74, + "probability": 0.9027 + }, + { + "start": 4619.92, + "end": 4620.76, + "probability": 0.8089 + }, + { + "start": 4621.62, + "end": 4621.9, + "probability": 0.8088 + }, + { + "start": 4622.96, + "end": 4623.84, + "probability": 0.9069 + }, + { + "start": 4626.44, + "end": 4626.98, + "probability": 0.959 + }, + { + "start": 4628.92, + "end": 4629.92, + "probability": 0.6546 + }, + { + "start": 4631.18, + "end": 4632.12, + "probability": 0.767 + }, + { + "start": 4632.94, + "end": 4633.9, + "probability": 0.7492 + }, + { + "start": 4635.7, + "end": 4636.5, + "probability": 0.9314 + }, + { + "start": 4637.04, + "end": 4637.94, + "probability": 0.8817 + }, + { + "start": 4638.72, + "end": 4640.48, + "probability": 0.9762 + }, + { + "start": 4641.92, + "end": 4642.4, + "probability": 0.9851 + }, + { + "start": 4643.12, + "end": 4643.84, + "probability": 0.988 + }, + { + "start": 4645.2, + "end": 4645.72, + "probability": 0.9714 + }, + { + "start": 4646.84, + "end": 4647.98, + "probability": 0.9867 + }, + { + "start": 4648.66, + "end": 4649.2, + "probability": 0.9777 + }, + { + "start": 4650.86, + "end": 4651.9, + "probability": 0.9616 + }, + { + "start": 4653.64, + "end": 4654.26, + "probability": 0.9904 + }, + { + "start": 4656.52, + "end": 4657.42, + "probability": 0.904 + }, + { + "start": 4658.72, + "end": 4661.88, + "probability": 0.6154 + }, + { + "start": 4663.94, + "end": 4666.88, + "probability": 0.7704 + }, + { + "start": 4667.72, + "end": 4669.76, + "probability": 0.8931 + }, + { + "start": 4670.94, + "end": 4673.8, + "probability": 0.9205 + }, + { + "start": 4675.44, + "end": 4676.58, + "probability": 0.96 + }, + { + "start": 4677.14, + "end": 4678.0, + "probability": 0.7843 + }, + { + "start": 4684.22, + "end": 4685.06, + "probability": 0.6718 + }, + { + "start": 4686.78, + "end": 4687.12, + "probability": 0.6959 + }, + { + "start": 4689.7, + "end": 4692.9, + "probability": 0.5982 + }, + { + "start": 4694.7, + "end": 4697.52, + "probability": 0.7892 + }, + { + "start": 4702.02, + "end": 4702.92, + "probability": 0.6855 + }, + { + "start": 4704.72, + "end": 4705.74, + "probability": 0.5153 + }, + { + "start": 4706.6, + "end": 4706.92, + "probability": 0.5876 + }, + { + "start": 4707.64, + "end": 4708.5, + "probability": 0.9176 + }, + { + "start": 4709.2, + "end": 4711.36, + "probability": 0.8445 + }, + { + "start": 4712.42, + "end": 4713.04, + "probability": 0.9868 + }, + { + "start": 4714.18, + "end": 4715.18, + "probability": 0.9386 + }, + { + "start": 4716.12, + "end": 4716.48, + "probability": 0.9856 + }, + { + "start": 4717.38, + "end": 4718.28, + "probability": 0.9849 + }, + { + "start": 4718.92, + "end": 4719.48, + "probability": 0.9525 + }, + { + "start": 4720.2, + "end": 4721.52, + "probability": 0.846 + }, + { + "start": 4722.22, + "end": 4724.06, + "probability": 0.349 + }, + { + "start": 4724.06, + "end": 4724.72, + "probability": 0.0276 + }, + { + "start": 4726.1, + "end": 4726.54, + "probability": 0.8927 + }, + { + "start": 4728.08, + "end": 4728.98, + "probability": 0.7764 + }, + { + "start": 4729.56, + "end": 4729.9, + "probability": 0.8945 + }, + { + "start": 4731.02, + "end": 4731.96, + "probability": 0.9016 + }, + { + "start": 4733.3, + "end": 4736.02, + "probability": 0.569 + }, + { + "start": 4737.22, + "end": 4737.5, + "probability": 0.7656 + }, + { + "start": 4738.56, + "end": 4739.78, + "probability": 0.8419 + }, + { + "start": 4742.14, + "end": 4742.74, + "probability": 0.9399 + }, + { + "start": 4744.72, + "end": 4746.82, + "probability": 0.7077 + }, + { + "start": 4747.74, + "end": 4749.1, + "probability": 0.6923 + }, + { + "start": 4750.98, + "end": 4753.86, + "probability": 0.7337 + }, + { + "start": 4757.12, + "end": 4757.58, + "probability": 0.9578 + }, + { + "start": 4758.42, + "end": 4759.18, + "probability": 0.3969 + }, + { + "start": 4760.02, + "end": 4761.84, + "probability": 0.9081 + }, + { + "start": 4762.82, + "end": 4763.08, + "probability": 0.9824 + }, + { + "start": 4763.98, + "end": 4764.86, + "probability": 0.7308 + }, + { + "start": 4766.52, + "end": 4766.88, + "probability": 0.9912 + }, + { + "start": 4768.68, + "end": 4769.52, + "probability": 0.9873 + }, + { + "start": 4770.58, + "end": 4772.72, + "probability": 0.9561 + }, + { + "start": 4774.18, + "end": 4774.72, + "probability": 0.575 + }, + { + "start": 4779.32, + "end": 4781.9, + "probability": 0.6244 + }, + { + "start": 4783.58, + "end": 4785.46, + "probability": 0.7852 + }, + { + "start": 4786.32, + "end": 4787.22, + "probability": 0.9021 + }, + { + "start": 4788.59, + "end": 4790.76, + "probability": 0.9898 + }, + { + "start": 4793.11, + "end": 4795.26, + "probability": 0.9524 + }, + { + "start": 4795.98, + "end": 4798.02, + "probability": 0.9612 + }, + { + "start": 4799.84, + "end": 4800.76, + "probability": 0.6843 + }, + { + "start": 4801.54, + "end": 4802.04, + "probability": 0.9652 + }, + { + "start": 4802.84, + "end": 4803.34, + "probability": 0.9756 + }, + { + "start": 4804.88, + "end": 4805.74, + "probability": 0.9467 + }, + { + "start": 4808.48, + "end": 4809.28, + "probability": 0.7049 + }, + { + "start": 4812.04, + "end": 4814.54, + "probability": 0.8433 + }, + { + "start": 4816.46, + "end": 4816.98, + "probability": 0.8521 + }, + { + "start": 4819.1, + "end": 4821.32, + "probability": 0.7695 + }, + { + "start": 4822.0, + "end": 4823.58, + "probability": 0.939 + }, + { + "start": 4824.38, + "end": 4825.5, + "probability": 0.9085 + }, + { + "start": 4827.7, + "end": 4829.18, + "probability": 0.9091 + }, + { + "start": 4830.3, + "end": 4831.14, + "probability": 0.9019 + }, + { + "start": 4832.94, + "end": 4834.98, + "probability": 0.2641 + }, + { + "start": 4838.54, + "end": 4839.56, + "probability": 0.5818 + }, + { + "start": 4840.38, + "end": 4840.78, + "probability": 0.7456 + }, + { + "start": 4841.38, + "end": 4842.34, + "probability": 0.8406 + }, + { + "start": 4843.89, + "end": 4845.84, + "probability": 0.8966 + }, + { + "start": 4847.43, + "end": 4849.98, + "probability": 0.9316 + }, + { + "start": 4850.62, + "end": 4852.98, + "probability": 0.8295 + }, + { + "start": 4856.84, + "end": 4858.98, + "probability": 0.7638 + }, + { + "start": 4861.54, + "end": 4862.74, + "probability": 0.4965 + }, + { + "start": 4864.86, + "end": 4866.24, + "probability": 0.4166 + }, + { + "start": 4866.82, + "end": 4869.06, + "probability": 0.5347 + }, + { + "start": 4870.96, + "end": 4871.52, + "probability": 0.9617 + }, + { + "start": 4872.5, + "end": 4873.56, + "probability": 0.7224 + }, + { + "start": 4874.6, + "end": 4874.9, + "probability": 0.9856 + }, + { + "start": 4875.88, + "end": 4877.04, + "probability": 0.8986 + }, + { + "start": 4879.76, + "end": 4880.3, + "probability": 0.953 + }, + { + "start": 4881.5, + "end": 4882.24, + "probability": 0.9245 + }, + { + "start": 4883.5, + "end": 4884.12, + "probability": 0.9901 + }, + { + "start": 4885.14, + "end": 4885.9, + "probability": 0.9059 + }, + { + "start": 4887.68, + "end": 4888.26, + "probability": 0.979 + }, + { + "start": 4889.26, + "end": 4890.58, + "probability": 0.607 + }, + { + "start": 4891.46, + "end": 4893.74, + "probability": 0.9803 + }, + { + "start": 4895.28, + "end": 4904.6, + "probability": 0.7389 + }, + { + "start": 4906.02, + "end": 4908.88, + "probability": 0.6642 + }, + { + "start": 4911.7, + "end": 4913.98, + "probability": 0.6782 + }, + { + "start": 4914.68, + "end": 4917.98, + "probability": 0.5739 + }, + { + "start": 4918.96, + "end": 4921.4, + "probability": 0.8533 + }, + { + "start": 4923.94, + "end": 4926.58, + "probability": 0.6724 + }, + { + "start": 4930.63, + "end": 4931.4, + "probability": 0.4377 + }, + { + "start": 4931.4, + "end": 4931.75, + "probability": 0.1126 + }, + { + "start": 4931.78, + "end": 4933.9, + "probability": 0.3829 + }, + { + "start": 4950.34, + "end": 4951.42, + "probability": 0.4323 + }, + { + "start": 4952.68, + "end": 4952.94, + "probability": 0.5055 + }, + { + "start": 4953.84, + "end": 4954.84, + "probability": 0.8664 + }, + { + "start": 4956.32, + "end": 4958.7, + "probability": 0.9044 + }, + { + "start": 4959.54, + "end": 4961.48, + "probability": 0.6316 + }, + { + "start": 4962.48, + "end": 4964.46, + "probability": 0.5285 + }, + { + "start": 4969.94, + "end": 4971.1, + "probability": 0.5628 + }, + { + "start": 4972.98, + "end": 4974.76, + "probability": 0.6223 + }, + { + "start": 4976.7, + "end": 4978.78, + "probability": 0.7103 + }, + { + "start": 4980.12, + "end": 4981.16, + "probability": 0.8572 + }, + { + "start": 4982.58, + "end": 4984.64, + "probability": 0.8548 + }, + { + "start": 4986.12, + "end": 4988.78, + "probability": 0.9186 + }, + { + "start": 4992.64, + "end": 4994.08, + "probability": 0.6198 + }, + { + "start": 4994.94, + "end": 4995.5, + "probability": 0.8133 + }, + { + "start": 4996.86, + "end": 4997.76, + "probability": 0.6378 + }, + { + "start": 5000.48, + "end": 5001.62, + "probability": 0.5957 + }, + { + "start": 5002.96, + "end": 5003.6, + "probability": 0.9914 + }, + { + "start": 5007.62, + "end": 5008.42, + "probability": 0.4274 + }, + { + "start": 5011.28, + "end": 5012.72, + "probability": 0.6749 + }, + { + "start": 5013.78, + "end": 5014.66, + "probability": 0.7746 + }, + { + "start": 5015.66, + "end": 5016.88, + "probability": 0.7294 + }, + { + "start": 5020.61, + "end": 5023.06, + "probability": 0.7468 + }, + { + "start": 5023.76, + "end": 5024.1, + "probability": 0.6287 + }, + { + "start": 5026.12, + "end": 5027.3, + "probability": 0.9437 + }, + { + "start": 5028.14, + "end": 5028.64, + "probability": 0.8525 + }, + { + "start": 5029.4, + "end": 5030.08, + "probability": 0.9324 + }, + { + "start": 5031.06, + "end": 5032.74, + "probability": 0.929 + }, + { + "start": 5038.3, + "end": 5040.06, + "probability": 0.4714 + }, + { + "start": 5041.64, + "end": 5042.98, + "probability": 0.4709 + }, + { + "start": 5044.34, + "end": 5044.88, + "probability": 0.64 + }, + { + "start": 5048.46, + "end": 5050.24, + "probability": 0.6924 + }, + { + "start": 5051.94, + "end": 5052.98, + "probability": 0.7139 + }, + { + "start": 5055.86, + "end": 5057.88, + "probability": 0.8589 + }, + { + "start": 5064.7, + "end": 5065.0, + "probability": 0.755 + }, + { + "start": 5065.62, + "end": 5066.32, + "probability": 0.5858 + }, + { + "start": 5067.89, + "end": 5070.32, + "probability": 0.8214 + }, + { + "start": 5071.02, + "end": 5071.54, + "probability": 0.5967 + }, + { + "start": 5072.36, + "end": 5073.4, + "probability": 0.7134 + }, + { + "start": 5079.5, + "end": 5081.12, + "probability": 0.5806 + }, + { + "start": 5082.2, + "end": 5083.24, + "probability": 0.6945 + }, + { + "start": 5084.52, + "end": 5086.72, + "probability": 0.8365 + }, + { + "start": 5088.3, + "end": 5090.64, + "probability": 0.9331 + }, + { + "start": 5091.86, + "end": 5092.42, + "probability": 0.9817 + }, + { + "start": 5094.06, + "end": 5097.26, + "probability": 0.8693 + }, + { + "start": 5099.0, + "end": 5099.9, + "probability": 0.9596 + }, + { + "start": 5102.1, + "end": 5103.84, + "probability": 0.8839 + }, + { + "start": 5104.98, + "end": 5105.66, + "probability": 0.1938 + }, + { + "start": 5106.82, + "end": 5107.4, + "probability": 0.9709 + }, + { + "start": 5111.24, + "end": 5113.32, + "probability": 0.4635 + }, + { + "start": 5113.96, + "end": 5114.98, + "probability": 0.7251 + }, + { + "start": 5117.78, + "end": 5121.28, + "probability": 0.9817 + }, + { + "start": 5123.16, + "end": 5123.94, + "probability": 0.927 + }, + { + "start": 5125.04, + "end": 5125.94, + "probability": 0.9872 + }, + { + "start": 5127.64, + "end": 5128.62, + "probability": 0.9599 + }, + { + "start": 5129.28, + "end": 5130.08, + "probability": 0.939 + }, + { + "start": 5131.46, + "end": 5132.26, + "probability": 0.9851 + }, + { + "start": 5132.9, + "end": 5134.52, + "probability": 0.9162 + }, + { + "start": 5136.48, + "end": 5137.4, + "probability": 0.9885 + }, + { + "start": 5138.18, + "end": 5139.31, + "probability": 0.785 + }, + { + "start": 5140.17, + "end": 5141.89, + "probability": 0.5049 + }, + { + "start": 5143.67, + "end": 5145.11, + "probability": 0.9202 + }, + { + "start": 5145.93, + "end": 5147.55, + "probability": 0.4986 + }, + { + "start": 5149.31, + "end": 5150.07, + "probability": 0.9906 + }, + { + "start": 5151.47, + "end": 5152.97, + "probability": 0.8962 + }, + { + "start": 5154.23, + "end": 5155.19, + "probability": 0.8663 + }, + { + "start": 5158.51, + "end": 5159.57, + "probability": 0.4131 + }, + { + "start": 5160.29, + "end": 5162.61, + "probability": 0.7643 + }, + { + "start": 5164.13, + "end": 5164.85, + "probability": 0.7175 + }, + { + "start": 5165.39, + "end": 5166.37, + "probability": 0.9232 + }, + { + "start": 5168.03, + "end": 5169.87, + "probability": 0.8694 + }, + { + "start": 5170.65, + "end": 5172.41, + "probability": 0.9716 + }, + { + "start": 5172.55, + "end": 5175.07, + "probability": 0.8508 + }, + { + "start": 5176.11, + "end": 5176.81, + "probability": 0.5718 + }, + { + "start": 5178.45, + "end": 5183.03, + "probability": 0.9698 + }, + { + "start": 5183.43, + "end": 5186.07, + "probability": 0.6304 + }, + { + "start": 5186.19, + "end": 5186.89, + "probability": 0.2453 + }, + { + "start": 5187.93, + "end": 5192.89, + "probability": 0.9756 + }, + { + "start": 5193.01, + "end": 5194.63, + "probability": 0.6241 + }, + { + "start": 5194.63, + "end": 5195.59, + "probability": 0.8809 + }, + { + "start": 5210.83, + "end": 5215.65, + "probability": 0.0643 + }, + { + "start": 5215.65, + "end": 5215.73, + "probability": 0.1208 + }, + { + "start": 5219.29, + "end": 5220.23, + "probability": 0.0264 + }, + { + "start": 5222.01, + "end": 5224.19, + "probability": 0.0184 + }, + { + "start": 5227.29, + "end": 5228.71, + "probability": 0.2557 + }, + { + "start": 5300.5, + "end": 5300.6, + "probability": 0.015 + }, + { + "start": 5300.6, + "end": 5306.7, + "probability": 0.7994 + }, + { + "start": 5306.82, + "end": 5308.24, + "probability": 0.2085 + }, + { + "start": 5308.52, + "end": 5309.71, + "probability": 0.0772 + }, + { + "start": 5310.14, + "end": 5310.46, + "probability": 0.1434 + }, + { + "start": 5310.46, + "end": 5312.14, + "probability": 0.9854 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.02, + "end": 5437.92, + "probability": 0.9278 + }, + { + "start": 5437.98, + "end": 5440.52, + "probability": 0.6603 + }, + { + "start": 5440.6, + "end": 5441.12, + "probability": 0.4635 + }, + { + "start": 5442.18, + "end": 5444.08, + "probability": 0.9758 + }, + { + "start": 5444.28, + "end": 5444.28, + "probability": 0.4315 + }, + { + "start": 5444.28, + "end": 5444.92, + "probability": 0.7407 + }, + { + "start": 5445.06, + "end": 5448.5, + "probability": 0.9917 + }, + { + "start": 5449.34, + "end": 5451.32, + "probability": 0.9597 + }, + { + "start": 5452.28, + "end": 5454.8, + "probability": 0.978 + }, + { + "start": 5455.64, + "end": 5460.18, + "probability": 0.9964 + }, + { + "start": 5461.3, + "end": 5464.4, + "probability": 0.9849 + }, + { + "start": 5465.24, + "end": 5468.68, + "probability": 0.988 + }, + { + "start": 5469.34, + "end": 5470.74, + "probability": 0.9692 + }, + { + "start": 5471.42, + "end": 5473.34, + "probability": 0.6189 + }, + { + "start": 5473.5, + "end": 5475.6, + "probability": 0.7534 + }, + { + "start": 5475.64, + "end": 5477.66, + "probability": 0.7513 + }, + { + "start": 5478.66, + "end": 5481.78, + "probability": 0.9424 + }, + { + "start": 5481.78, + "end": 5485.98, + "probability": 0.988 + }, + { + "start": 5486.48, + "end": 5489.94, + "probability": 0.8327 + }, + { + "start": 5490.26, + "end": 5492.12, + "probability": 0.7629 + }, + { + "start": 5493.18, + "end": 5494.64, + "probability": 0.9445 + }, + { + "start": 5495.2, + "end": 5497.6, + "probability": 0.959 + }, + { + "start": 5499.02, + "end": 5503.04, + "probability": 0.9952 + }, + { + "start": 5503.98, + "end": 5507.02, + "probability": 0.958 + }, + { + "start": 5508.02, + "end": 5509.5, + "probability": 0.9903 + }, + { + "start": 5510.18, + "end": 5510.86, + "probability": 0.4024 + }, + { + "start": 5511.88, + "end": 5518.24, + "probability": 0.776 + }, + { + "start": 5518.58, + "end": 5521.34, + "probability": 0.8157 + }, + { + "start": 5521.42, + "end": 5524.42, + "probability": 0.9947 + }, + { + "start": 5527.02, + "end": 5530.1, + "probability": 0.7614 + }, + { + "start": 5531.2, + "end": 5535.74, + "probability": 0.9846 + }, + { + "start": 5536.4, + "end": 5538.9, + "probability": 0.9779 + }, + { + "start": 5540.36, + "end": 5540.74, + "probability": 0.4945 + }, + { + "start": 5540.82, + "end": 5541.94, + "probability": 0.4125 + }, + { + "start": 5541.98, + "end": 5544.44, + "probability": 0.9937 + }, + { + "start": 5545.1, + "end": 5546.07, + "probability": 0.6558 + }, + { + "start": 5546.18, + "end": 5546.54, + "probability": 0.4081 + }, + { + "start": 5547.28, + "end": 5548.34, + "probability": 0.7778 + }, + { + "start": 5549.3, + "end": 5556.22, + "probability": 0.8079 + }, + { + "start": 5556.32, + "end": 5561.96, + "probability": 0.8199 + }, + { + "start": 5562.04, + "end": 5565.52, + "probability": 0.6404 + }, + { + "start": 5566.98, + "end": 5572.0, + "probability": 0.9976 + }, + { + "start": 5573.94, + "end": 5577.66, + "probability": 0.989 + }, + { + "start": 5577.8, + "end": 5580.64, + "probability": 0.9556 + }, + { + "start": 5580.68, + "end": 5582.68, + "probability": 0.9841 + }, + { + "start": 5582.78, + "end": 5583.36, + "probability": 0.3982 + }, + { + "start": 5584.14, + "end": 5587.42, + "probability": 0.9502 + }, + { + "start": 5588.04, + "end": 5589.94, + "probability": 0.9054 + }, + { + "start": 5591.24, + "end": 5593.94, + "probability": 0.8194 + }, + { + "start": 5594.94, + "end": 5595.76, + "probability": 0.9052 + }, + { + "start": 5596.64, + "end": 5602.32, + "probability": 0.9808 + }, + { + "start": 5602.94, + "end": 5604.96, + "probability": 0.9715 + }, + { + "start": 5605.58, + "end": 5606.68, + "probability": 0.6878 + }, + { + "start": 5607.32, + "end": 5610.88, + "probability": 0.7486 + }, + { + "start": 5611.8, + "end": 5615.78, + "probability": 0.9829 + }, + { + "start": 5616.62, + "end": 5619.86, + "probability": 0.998 + }, + { + "start": 5621.16, + "end": 5621.98, + "probability": 0.8358 + }, + { + "start": 5622.54, + "end": 5624.24, + "probability": 0.9897 + }, + { + "start": 5625.24, + "end": 5628.34, + "probability": 0.9973 + }, + { + "start": 5629.7, + "end": 5631.91, + "probability": 0.7305 + }, + { + "start": 5633.12, + "end": 5634.56, + "probability": 0.9719 + }, + { + "start": 5634.62, + "end": 5637.34, + "probability": 0.9985 + }, + { + "start": 5637.84, + "end": 5640.88, + "probability": 0.9341 + }, + { + "start": 5641.88, + "end": 5642.6, + "probability": 0.7505 + }, + { + "start": 5643.34, + "end": 5648.32, + "probability": 0.9705 + }, + { + "start": 5649.22, + "end": 5653.96, + "probability": 0.9288 + }, + { + "start": 5654.62, + "end": 5658.58, + "probability": 0.6341 + }, + { + "start": 5658.7, + "end": 5661.0, + "probability": 0.8439 + }, + { + "start": 5661.14, + "end": 5661.96, + "probability": 0.9557 + }, + { + "start": 5663.32, + "end": 5667.24, + "probability": 0.7943 + }, + { + "start": 5668.34, + "end": 5671.34, + "probability": 0.9935 + }, + { + "start": 5671.34, + "end": 5675.24, + "probability": 0.9911 + }, + { + "start": 5675.48, + "end": 5679.62, + "probability": 0.99 + }, + { + "start": 5682.44, + "end": 5685.64, + "probability": 0.9626 + }, + { + "start": 5687.08, + "end": 5689.33, + "probability": 0.9585 + }, + { + "start": 5689.44, + "end": 5689.46, + "probability": 0.8892 + }, + { + "start": 5692.94, + "end": 5693.74, + "probability": 0.4907 + }, + { + "start": 5694.7, + "end": 5694.7, + "probability": 0.3217 + }, + { + "start": 5694.7, + "end": 5695.54, + "probability": 0.6457 + }, + { + "start": 5696.36, + "end": 5697.79, + "probability": 0.9604 + }, + { + "start": 5699.88, + "end": 5702.52, + "probability": 0.7007 + }, + { + "start": 5703.2, + "end": 5706.58, + "probability": 0.9987 + }, + { + "start": 5707.52, + "end": 5710.3, + "probability": 0.9989 + }, + { + "start": 5710.96, + "end": 5712.02, + "probability": 0.9765 + }, + { + "start": 5712.1, + "end": 5714.86, + "probability": 0.984 + }, + { + "start": 5716.18, + "end": 5716.88, + "probability": 0.8373 + }, + { + "start": 5717.5, + "end": 5718.44, + "probability": 0.7393 + }, + { + "start": 5718.64, + "end": 5721.22, + "probability": 0.5319 + }, + { + "start": 5722.34, + "end": 5724.06, + "probability": 0.9863 + }, + { + "start": 5724.56, + "end": 5725.72, + "probability": 0.8843 + }, + { + "start": 5726.58, + "end": 5730.74, + "probability": 0.9834 + }, + { + "start": 5731.3, + "end": 5735.56, + "probability": 0.9943 + }, + { + "start": 5735.56, + "end": 5739.08, + "probability": 0.9995 + }, + { + "start": 5740.0, + "end": 5743.76, + "probability": 0.9937 + }, + { + "start": 5744.92, + "end": 5746.81, + "probability": 0.8923 + }, + { + "start": 5747.2, + "end": 5751.86, + "probability": 0.9681 + }, + { + "start": 5752.16, + "end": 5755.06, + "probability": 0.5987 + }, + { + "start": 5755.28, + "end": 5756.4, + "probability": 0.7802 + }, + { + "start": 5756.92, + "end": 5760.96, + "probability": 0.8439 + }, + { + "start": 5761.52, + "end": 5762.46, + "probability": 0.9924 + }, + { + "start": 5762.98, + "end": 5763.82, + "probability": 0.6833 + }, + { + "start": 5763.94, + "end": 5766.82, + "probability": 0.8962 + }, + { + "start": 5766.96, + "end": 5767.14, + "probability": 0.6874 + }, + { + "start": 5767.5, + "end": 5767.92, + "probability": 0.6744 + }, + { + "start": 5768.12, + "end": 5769.28, + "probability": 0.6923 + }, + { + "start": 5769.5, + "end": 5770.18, + "probability": 0.6701 + }, + { + "start": 5770.86, + "end": 5774.24, + "probability": 0.9927 + }, + { + "start": 5774.56, + "end": 5777.36, + "probability": 0.9911 + }, + { + "start": 5777.36, + "end": 5781.14, + "probability": 0.8005 + }, + { + "start": 5781.34, + "end": 5784.92, + "probability": 0.6992 + }, + { + "start": 5784.98, + "end": 5785.8, + "probability": 0.3196 + }, + { + "start": 5785.84, + "end": 5786.7, + "probability": 0.0002 + }, + { + "start": 5788.16, + "end": 5790.94, + "probability": 0.9375 + }, + { + "start": 5793.67, + "end": 5798.16, + "probability": 0.9694 + }, + { + "start": 5799.08, + "end": 5801.2, + "probability": 0.9542 + }, + { + "start": 5801.84, + "end": 5806.1, + "probability": 0.965 + }, + { + "start": 5806.32, + "end": 5809.66, + "probability": 0.9893 + }, + { + "start": 5809.74, + "end": 5812.06, + "probability": 0.7835 + }, + { + "start": 5812.76, + "end": 5817.78, + "probability": 0.9792 + }, + { + "start": 5817.96, + "end": 5824.06, + "probability": 0.997 + }, + { + "start": 5824.78, + "end": 5826.64, + "probability": 0.9942 + }, + { + "start": 5827.82, + "end": 5830.36, + "probability": 0.9974 + }, + { + "start": 5830.98, + "end": 5832.92, + "probability": 0.9699 + }, + { + "start": 5833.04, + "end": 5833.66, + "probability": 0.5889 + }, + { + "start": 5833.74, + "end": 5835.82, + "probability": 0.8581 + }, + { + "start": 5835.92, + "end": 5841.98, + "probability": 0.9391 + }, + { + "start": 5842.64, + "end": 5844.88, + "probability": 0.995 + }, + { + "start": 5845.9, + "end": 5846.7, + "probability": 0.7512 + }, + { + "start": 5846.88, + "end": 5847.42, + "probability": 0.9589 + }, + { + "start": 5847.92, + "end": 5849.94, + "probability": 0.9932 + }, + { + "start": 5850.28, + "end": 5852.88, + "probability": 0.9981 + }, + { + "start": 5852.88, + "end": 5857.58, + "probability": 0.9827 + }, + { + "start": 5858.14, + "end": 5858.92, + "probability": 0.9404 + }, + { + "start": 5859.32, + "end": 5859.92, + "probability": 0.6273 + }, + { + "start": 5860.06, + "end": 5863.12, + "probability": 0.9932 + }, + { + "start": 5863.18, + "end": 5864.38, + "probability": 0.963 + }, + { + "start": 5864.48, + "end": 5865.06, + "probability": 0.7473 + }, + { + "start": 5865.96, + "end": 5869.32, + "probability": 0.9751 + }, + { + "start": 5869.48, + "end": 5871.46, + "probability": 0.8608 + }, + { + "start": 5871.66, + "end": 5875.8, + "probability": 0.7391 + }, + { + "start": 5875.8, + "end": 5876.15, + "probability": 0.482 + }, + { + "start": 5877.1, + "end": 5878.32, + "probability": 0.447 + }, + { + "start": 5879.02, + "end": 5882.86, + "probability": 0.8125 + }, + { + "start": 5882.86, + "end": 5885.6, + "probability": 0.9936 + }, + { + "start": 5886.42, + "end": 5887.96, + "probability": 0.998 + }, + { + "start": 5889.1, + "end": 5892.0, + "probability": 0.9937 + }, + { + "start": 5892.06, + "end": 5894.0, + "probability": 0.9565 + }, + { + "start": 5894.36, + "end": 5895.16, + "probability": 0.7312 + }, + { + "start": 5895.76, + "end": 5896.56, + "probability": 0.8501 + }, + { + "start": 5897.1, + "end": 5898.4, + "probability": 0.8796 + }, + { + "start": 5898.68, + "end": 5900.8, + "probability": 0.831 + }, + { + "start": 5901.38, + "end": 5903.46, + "probability": 0.6847 + }, + { + "start": 5903.86, + "end": 5908.9, + "probability": 0.9177 + }, + { + "start": 5908.98, + "end": 5911.1, + "probability": 0.0292 + }, + { + "start": 5911.1, + "end": 5912.26, + "probability": 0.4366 + }, + { + "start": 5912.76, + "end": 5914.22, + "probability": 0.7891 + }, + { + "start": 5924.06, + "end": 5925.39, + "probability": 0.3397 + }, + { + "start": 5927.02, + "end": 5928.26, + "probability": 0.808 + }, + { + "start": 5928.28, + "end": 5930.24, + "probability": 0.6683 + }, + { + "start": 5930.5, + "end": 5932.6, + "probability": 0.6696 + }, + { + "start": 5933.12, + "end": 5933.64, + "probability": 0.7247 + }, + { + "start": 5934.12, + "end": 5934.86, + "probability": 0.8543 + }, + { + "start": 5940.11, + "end": 5941.24, + "probability": 0.7206 + }, + { + "start": 5942.58, + "end": 5943.16, + "probability": 0.4226 + }, + { + "start": 5943.2, + "end": 5945.68, + "probability": 0.7346 + }, + { + "start": 5948.44, + "end": 5949.7, + "probability": 0.9971 + }, + { + "start": 5951.64, + "end": 5955.02, + "probability": 0.9966 + }, + { + "start": 5955.64, + "end": 5962.14, + "probability": 0.9971 + }, + { + "start": 5962.84, + "end": 5964.0, + "probability": 0.995 + }, + { + "start": 5965.36, + "end": 5965.64, + "probability": 0.8673 + }, + { + "start": 5965.76, + "end": 5969.36, + "probability": 0.9891 + }, + { + "start": 5969.48, + "end": 5970.56, + "probability": 0.7653 + }, + { + "start": 5970.66, + "end": 5975.28, + "probability": 0.9904 + }, + { + "start": 5976.22, + "end": 5978.78, + "probability": 0.9963 + }, + { + "start": 5978.78, + "end": 5982.36, + "probability": 0.9874 + }, + { + "start": 5983.16, + "end": 5985.5, + "probability": 0.9788 + }, + { + "start": 5985.62, + "end": 5988.4, + "probability": 0.9931 + }, + { + "start": 5988.4, + "end": 5991.24, + "probability": 0.9946 + }, + { + "start": 5991.52, + "end": 5991.92, + "probability": 0.5013 + }, + { + "start": 5992.5, + "end": 5997.94, + "probability": 0.9951 + }, + { + "start": 5998.56, + "end": 6002.38, + "probability": 0.9961 + }, + { + "start": 6003.02, + "end": 6006.1, + "probability": 0.9401 + }, + { + "start": 6006.88, + "end": 6008.46, + "probability": 0.9378 + }, + { + "start": 6009.42, + "end": 6012.14, + "probability": 0.9289 + }, + { + "start": 6012.14, + "end": 6015.0, + "probability": 0.9962 + }, + { + "start": 6015.5, + "end": 6020.04, + "probability": 0.987 + }, + { + "start": 6021.08, + "end": 6026.52, + "probability": 0.8999 + }, + { + "start": 6026.52, + "end": 6030.58, + "probability": 0.9978 + }, + { + "start": 6030.76, + "end": 6031.94, + "probability": 0.9089 + }, + { + "start": 6032.12, + "end": 6035.62, + "probability": 0.9826 + }, + { + "start": 6035.62, + "end": 6039.8, + "probability": 0.9981 + }, + { + "start": 6040.96, + "end": 6044.78, + "probability": 0.9883 + }, + { + "start": 6045.72, + "end": 6048.96, + "probability": 0.9983 + }, + { + "start": 6048.96, + "end": 6052.26, + "probability": 0.9946 + }, + { + "start": 6052.82, + "end": 6054.34, + "probability": 0.9978 + }, + { + "start": 6055.08, + "end": 6057.98, + "probability": 0.9954 + }, + { + "start": 6057.98, + "end": 6062.24, + "probability": 0.9979 + }, + { + "start": 6062.24, + "end": 6066.5, + "probability": 0.9967 + }, + { + "start": 6068.44, + "end": 6072.76, + "probability": 0.992 + }, + { + "start": 6072.76, + "end": 6078.5, + "probability": 0.9971 + }, + { + "start": 6078.66, + "end": 6080.94, + "probability": 0.9839 + }, + { + "start": 6081.74, + "end": 6082.2, + "probability": 0.8443 + }, + { + "start": 6082.96, + "end": 6084.34, + "probability": 0.9899 + }, + { + "start": 6085.18, + "end": 6089.32, + "probability": 0.9734 + }, + { + "start": 6090.14, + "end": 6092.06, + "probability": 0.9424 + }, + { + "start": 6092.58, + "end": 6096.04, + "probability": 0.9862 + }, + { + "start": 6098.12, + "end": 6098.9, + "probability": 0.7758 + }, + { + "start": 6099.12, + "end": 6104.22, + "probability": 0.9539 + }, + { + "start": 6104.4, + "end": 6105.2, + "probability": 0.7789 + }, + { + "start": 6106.18, + "end": 6108.0, + "probability": 0.9863 + }, + { + "start": 6108.74, + "end": 6112.7, + "probability": 0.9814 + }, + { + "start": 6112.7, + "end": 6116.26, + "probability": 0.9544 + }, + { + "start": 6116.7, + "end": 6121.0, + "probability": 0.9615 + }, + { + "start": 6121.18, + "end": 6123.96, + "probability": 0.9923 + }, + { + "start": 6125.96, + "end": 6130.89, + "probability": 0.8988 + }, + { + "start": 6133.0, + "end": 6137.1, + "probability": 0.9508 + }, + { + "start": 6139.28, + "end": 6140.64, + "probability": 0.9486 + }, + { + "start": 6141.54, + "end": 6145.68, + "probability": 0.9819 + }, + { + "start": 6147.02, + "end": 6147.84, + "probability": 0.8707 + }, + { + "start": 6150.88, + "end": 6152.32, + "probability": 0.8806 + }, + { + "start": 6152.38, + "end": 6154.52, + "probability": 0.8744 + }, + { + "start": 6154.7, + "end": 6159.06, + "probability": 0.9939 + }, + { + "start": 6159.92, + "end": 6161.82, + "probability": 0.9805 + }, + { + "start": 6162.06, + "end": 6165.72, + "probability": 0.9251 + }, + { + "start": 6166.56, + "end": 6171.38, + "probability": 0.9959 + }, + { + "start": 6172.08, + "end": 6175.6, + "probability": 0.9989 + }, + { + "start": 6176.48, + "end": 6177.62, + "probability": 0.746 + }, + { + "start": 6177.94, + "end": 6180.74, + "probability": 0.9141 + }, + { + "start": 6180.82, + "end": 6182.44, + "probability": 0.9365 + }, + { + "start": 6183.34, + "end": 6185.52, + "probability": 0.9949 + }, + { + "start": 6185.52, + "end": 6188.36, + "probability": 0.9935 + }, + { + "start": 6189.26, + "end": 6192.32, + "probability": 0.9904 + }, + { + "start": 6193.54, + "end": 6197.4, + "probability": 0.9764 + }, + { + "start": 6197.4, + "end": 6201.54, + "probability": 0.8425 + }, + { + "start": 6201.64, + "end": 6202.42, + "probability": 0.6884 + }, + { + "start": 6203.32, + "end": 6203.92, + "probability": 0.6156 + }, + { + "start": 6204.04, + "end": 6207.94, + "probability": 0.998 + }, + { + "start": 6208.88, + "end": 6209.68, + "probability": 0.412 + }, + { + "start": 6209.96, + "end": 6211.82, + "probability": 0.6458 + }, + { + "start": 6211.9, + "end": 6215.08, + "probability": 0.9802 + }, + { + "start": 6216.08, + "end": 6217.14, + "probability": 0.8202 + }, + { + "start": 6217.4, + "end": 6218.5, + "probability": 0.8293 + }, + { + "start": 6218.62, + "end": 6221.92, + "probability": 0.9964 + }, + { + "start": 6222.9, + "end": 6225.78, + "probability": 0.8163 + }, + { + "start": 6226.3, + "end": 6229.8, + "probability": 0.7803 + }, + { + "start": 6229.96, + "end": 6231.36, + "probability": 0.8875 + }, + { + "start": 6232.46, + "end": 6234.54, + "probability": 0.9624 + }, + { + "start": 6235.24, + "end": 6238.24, + "probability": 0.9773 + }, + { + "start": 6240.3, + "end": 6243.2, + "probability": 0.9985 + }, + { + "start": 6243.7, + "end": 6248.0, + "probability": 0.9782 + }, + { + "start": 6249.36, + "end": 6252.8, + "probability": 0.7583 + }, + { + "start": 6253.5, + "end": 6256.46, + "probability": 0.977 + }, + { + "start": 6256.46, + "end": 6259.42, + "probability": 0.9985 + }, + { + "start": 6260.06, + "end": 6262.34, + "probability": 0.9555 + }, + { + "start": 6263.12, + "end": 6263.5, + "probability": 0.8328 + }, + { + "start": 6264.22, + "end": 6269.24, + "probability": 0.9958 + }, + { + "start": 6270.26, + "end": 6271.06, + "probability": 0.8535 + }, + { + "start": 6271.8, + "end": 6274.62, + "probability": 0.9966 + }, + { + "start": 6275.2, + "end": 6277.34, + "probability": 0.7217 + }, + { + "start": 6277.44, + "end": 6279.7, + "probability": 0.9321 + }, + { + "start": 6280.56, + "end": 6287.12, + "probability": 0.9856 + }, + { + "start": 6288.2, + "end": 6290.64, + "probability": 0.8218 + }, + { + "start": 6291.2, + "end": 6292.56, + "probability": 0.9409 + }, + { + "start": 6293.4, + "end": 6296.8, + "probability": 0.9979 + }, + { + "start": 6297.54, + "end": 6299.26, + "probability": 0.969 + }, + { + "start": 6299.74, + "end": 6303.44, + "probability": 0.9927 + }, + { + "start": 6304.0, + "end": 6305.78, + "probability": 0.9897 + }, + { + "start": 6306.22, + "end": 6309.7, + "probability": 0.998 + }, + { + "start": 6309.7, + "end": 6313.34, + "probability": 0.9866 + }, + { + "start": 6314.2, + "end": 6317.88, + "probability": 0.9873 + }, + { + "start": 6318.66, + "end": 6321.28, + "probability": 0.9879 + }, + { + "start": 6321.96, + "end": 6325.5, + "probability": 0.9899 + }, + { + "start": 6326.34, + "end": 6328.84, + "probability": 0.9988 + }, + { + "start": 6329.6, + "end": 6331.81, + "probability": 0.9851 + }, + { + "start": 6333.74, + "end": 6335.38, + "probability": 0.9969 + }, + { + "start": 6335.66, + "end": 6336.5, + "probability": 0.7953 + }, + { + "start": 6336.66, + "end": 6337.6, + "probability": 0.9199 + }, + { + "start": 6338.86, + "end": 6339.5, + "probability": 0.9773 + }, + { + "start": 6340.58, + "end": 6342.32, + "probability": 0.9565 + }, + { + "start": 6343.76, + "end": 6346.84, + "probability": 0.998 + }, + { + "start": 6349.88, + "end": 6351.32, + "probability": 0.7107 + }, + { + "start": 6352.74, + "end": 6354.74, + "probability": 0.6617 + }, + { + "start": 6356.51, + "end": 6361.98, + "probability": 0.9984 + }, + { + "start": 6362.16, + "end": 6362.48, + "probability": 0.5605 + }, + { + "start": 6362.52, + "end": 6363.3, + "probability": 0.7875 + }, + { + "start": 6364.7, + "end": 6369.6, + "probability": 0.9877 + }, + { + "start": 6370.54, + "end": 6371.7, + "probability": 0.4922 + }, + { + "start": 6372.28, + "end": 6373.42, + "probability": 0.7478 + }, + { + "start": 6374.5, + "end": 6376.16, + "probability": 0.9372 + }, + { + "start": 6377.36, + "end": 6381.88, + "probability": 0.9901 + }, + { + "start": 6383.06, + "end": 6383.18, + "probability": 0.0345 + }, + { + "start": 6383.18, + "end": 6383.18, + "probability": 0.112 + }, + { + "start": 6383.18, + "end": 6383.4, + "probability": 0.5139 + }, + { + "start": 6384.32, + "end": 6385.48, + "probability": 0.806 + }, + { + "start": 6387.13, + "end": 6387.72, + "probability": 0.0669 + }, + { + "start": 6387.72, + "end": 6388.78, + "probability": 0.8815 + }, + { + "start": 6389.9, + "end": 6393.48, + "probability": 0.9781 + }, + { + "start": 6393.66, + "end": 6398.3, + "probability": 0.9641 + }, + { + "start": 6398.42, + "end": 6401.04, + "probability": 0.5609 + }, + { + "start": 6401.04, + "end": 6402.84, + "probability": 0.9385 + }, + { + "start": 6403.56, + "end": 6404.38, + "probability": 0.8197 + }, + { + "start": 6405.08, + "end": 6406.2, + "probability": 0.8534 + }, + { + "start": 6406.28, + "end": 6407.53, + "probability": 0.915 + }, + { + "start": 6408.48, + "end": 6412.4, + "probability": 0.9653 + }, + { + "start": 6413.62, + "end": 6414.34, + "probability": 0.9121 + }, + { + "start": 6415.12, + "end": 6416.46, + "probability": 0.9943 + }, + { + "start": 6417.82, + "end": 6422.1, + "probability": 0.9454 + }, + { + "start": 6422.4, + "end": 6423.5, + "probability": 0.8148 + }, + { + "start": 6425.4, + "end": 6425.68, + "probability": 0.1618 + }, + { + "start": 6425.68, + "end": 6425.98, + "probability": 0.8083 + }, + { + "start": 6426.68, + "end": 6427.22, + "probability": 0.293 + }, + { + "start": 6428.52, + "end": 6429.48, + "probability": 0.7607 + }, + { + "start": 6430.36, + "end": 6431.42, + "probability": 0.7871 + }, + { + "start": 6433.48, + "end": 6434.26, + "probability": 0.8039 + }, + { + "start": 6434.26, + "end": 6434.28, + "probability": 0.6419 + }, + { + "start": 6434.36, + "end": 6435.52, + "probability": 0.9526 + }, + { + "start": 6436.1, + "end": 6437.7, + "probability": 0.9944 + }, + { + "start": 6438.02, + "end": 6440.02, + "probability": 0.9951 + }, + { + "start": 6440.42, + "end": 6443.26, + "probability": 0.9964 + }, + { + "start": 6443.92, + "end": 6446.46, + "probability": 0.8323 + }, + { + "start": 6447.64, + "end": 6449.92, + "probability": 0.3271 + }, + { + "start": 6450.82, + "end": 6451.4, + "probability": 0.4195 + }, + { + "start": 6451.5, + "end": 6452.62, + "probability": 0.7846 + }, + { + "start": 6452.74, + "end": 6455.81, + "probability": 0.1754 + }, + { + "start": 6456.4, + "end": 6456.6, + "probability": 0.0636 + }, + { + "start": 6456.64, + "end": 6456.64, + "probability": 0.3713 + }, + { + "start": 6456.64, + "end": 6457.45, + "probability": 0.2316 + }, + { + "start": 6457.76, + "end": 6458.94, + "probability": 0.3042 + }, + { + "start": 6459.54, + "end": 6462.44, + "probability": 0.9789 + }, + { + "start": 6463.22, + "end": 6464.56, + "probability": 0.8794 + }, + { + "start": 6465.36, + "end": 6467.52, + "probability": 0.9979 + }, + { + "start": 6468.46, + "end": 6471.64, + "probability": 0.9785 + }, + { + "start": 6472.36, + "end": 6474.96, + "probability": 0.9876 + }, + { + "start": 6475.04, + "end": 6475.52, + "probability": 0.8455 + }, + { + "start": 6476.58, + "end": 6478.22, + "probability": 0.9051 + }, + { + "start": 6478.86, + "end": 6481.84, + "probability": 0.7284 + }, + { + "start": 6482.58, + "end": 6483.3, + "probability": 0.8802 + }, + { + "start": 6483.88, + "end": 6484.68, + "probability": 0.8179 + }, + { + "start": 6485.54, + "end": 6487.6, + "probability": 0.9949 + }, + { + "start": 6487.62, + "end": 6488.02, + "probability": 0.8491 + }, + { + "start": 6488.16, + "end": 6488.82, + "probability": 0.7484 + }, + { + "start": 6501.78, + "end": 6503.66, + "probability": 0.8119 + }, + { + "start": 6504.74, + "end": 6505.7, + "probability": 0.8145 + }, + { + "start": 6508.42, + "end": 6509.22, + "probability": 0.9367 + }, + { + "start": 6510.38, + "end": 6514.54, + "probability": 0.9629 + }, + { + "start": 6515.12, + "end": 6516.04, + "probability": 0.937 + }, + { + "start": 6517.12, + "end": 6519.1, + "probability": 0.4231 + }, + { + "start": 6520.68, + "end": 6524.14, + "probability": 0.8906 + }, + { + "start": 6524.9, + "end": 6525.96, + "probability": 0.9082 + }, + { + "start": 6526.04, + "end": 6527.1, + "probability": 0.8811 + }, + { + "start": 6527.36, + "end": 6528.58, + "probability": 0.7847 + }, + { + "start": 6529.3, + "end": 6529.7, + "probability": 0.8123 + }, + { + "start": 6529.9, + "end": 6530.6, + "probability": 0.7048 + }, + { + "start": 6530.6, + "end": 6532.7, + "probability": 0.9086 + }, + { + "start": 6535.68, + "end": 6538.26, + "probability": 0.9117 + }, + { + "start": 6538.46, + "end": 6539.9, + "probability": 0.9961 + }, + { + "start": 6540.58, + "end": 6542.28, + "probability": 0.1531 + }, + { + "start": 6543.46, + "end": 6544.48, + "probability": 0.5532 + }, + { + "start": 6545.76, + "end": 6547.04, + "probability": 0.6322 + }, + { + "start": 6547.36, + "end": 6549.2, + "probability": 0.8461 + }, + { + "start": 6550.24, + "end": 6551.88, + "probability": 0.9929 + }, + { + "start": 6552.96, + "end": 6554.72, + "probability": 0.9814 + }, + { + "start": 6555.46, + "end": 6558.82, + "probability": 0.9819 + }, + { + "start": 6559.09, + "end": 6562.5, + "probability": 0.9902 + }, + { + "start": 6562.98, + "end": 6563.41, + "probability": 0.4988 + }, + { + "start": 6563.86, + "end": 6568.3, + "probability": 0.9956 + }, + { + "start": 6568.4, + "end": 6573.4, + "probability": 0.998 + }, + { + "start": 6574.02, + "end": 6574.64, + "probability": 0.8175 + }, + { + "start": 6575.58, + "end": 6580.92, + "probability": 0.9807 + }, + { + "start": 6581.54, + "end": 6583.2, + "probability": 0.9559 + }, + { + "start": 6583.44, + "end": 6584.48, + "probability": 0.5861 + }, + { + "start": 6584.82, + "end": 6587.88, + "probability": 0.8983 + }, + { + "start": 6588.64, + "end": 6590.48, + "probability": 0.9717 + }, + { + "start": 6591.24, + "end": 6593.96, + "probability": 0.9537 + }, + { + "start": 6594.2, + "end": 6597.68, + "probability": 0.7209 + }, + { + "start": 6599.2, + "end": 6601.74, + "probability": 0.7075 + }, + { + "start": 6602.48, + "end": 6605.72, + "probability": 0.9969 + }, + { + "start": 6606.52, + "end": 6611.88, + "probability": 0.9426 + }, + { + "start": 6612.54, + "end": 6615.6, + "probability": 0.9346 + }, + { + "start": 6618.03, + "end": 6620.72, + "probability": 0.9812 + }, + { + "start": 6620.72, + "end": 6621.24, + "probability": 0.1477 + }, + { + "start": 6621.3, + "end": 6622.0, + "probability": 0.6038 + }, + { + "start": 6623.17, + "end": 6626.98, + "probability": 0.9843 + }, + { + "start": 6628.62, + "end": 6631.5, + "probability": 0.92 + }, + { + "start": 6632.58, + "end": 6633.64, + "probability": 0.5832 + }, + { + "start": 6633.76, + "end": 6634.86, + "probability": 0.8297 + }, + { + "start": 6634.9, + "end": 6635.98, + "probability": 0.7162 + }, + { + "start": 6636.1, + "end": 6637.54, + "probability": 0.9653 + }, + { + "start": 6638.14, + "end": 6642.65, + "probability": 0.9731 + }, + { + "start": 6642.88, + "end": 6646.24, + "probability": 0.9857 + }, + { + "start": 6646.98, + "end": 6650.8, + "probability": 0.9866 + }, + { + "start": 6650.86, + "end": 6652.4, + "probability": 0.9299 + }, + { + "start": 6653.02, + "end": 6658.06, + "probability": 0.7566 + }, + { + "start": 6659.12, + "end": 6662.1, + "probability": 0.9028 + }, + { + "start": 6662.2, + "end": 6664.8, + "probability": 0.8833 + }, + { + "start": 6665.42, + "end": 6666.36, + "probability": 0.7792 + }, + { + "start": 6667.26, + "end": 6670.98, + "probability": 0.9003 + }, + { + "start": 6671.68, + "end": 6675.86, + "probability": 0.9759 + }, + { + "start": 6676.44, + "end": 6679.08, + "probability": 0.9564 + }, + { + "start": 6680.06, + "end": 6682.84, + "probability": 0.9775 + }, + { + "start": 6683.72, + "end": 6684.16, + "probability": 0.5688 + }, + { + "start": 6684.66, + "end": 6686.56, + "probability": 0.9604 + }, + { + "start": 6686.96, + "end": 6688.31, + "probability": 0.9907 + }, + { + "start": 6689.26, + "end": 6690.76, + "probability": 0.9199 + }, + { + "start": 6692.02, + "end": 6693.04, + "probability": 0.9826 + }, + { + "start": 6694.3, + "end": 6696.04, + "probability": 0.9063 + }, + { + "start": 6698.74, + "end": 6699.96, + "probability": 0.8623 + }, + { + "start": 6700.14, + "end": 6703.9, + "probability": 0.9798 + }, + { + "start": 6704.74, + "end": 6708.1, + "probability": 0.9968 + }, + { + "start": 6708.86, + "end": 6710.1, + "probability": 0.9621 + }, + { + "start": 6711.02, + "end": 6711.98, + "probability": 0.998 + }, + { + "start": 6712.08, + "end": 6713.81, + "probability": 0.9858 + }, + { + "start": 6714.68, + "end": 6717.18, + "probability": 0.9813 + }, + { + "start": 6717.26, + "end": 6717.78, + "probability": 0.9756 + }, + { + "start": 6718.08, + "end": 6720.14, + "probability": 0.9871 + }, + { + "start": 6720.16, + "end": 6720.4, + "probability": 0.6671 + }, + { + "start": 6721.14, + "end": 6722.12, + "probability": 0.5669 + }, + { + "start": 6722.84, + "end": 6724.36, + "probability": 0.79 + }, + { + "start": 6724.56, + "end": 6726.5, + "probability": 0.9749 + }, + { + "start": 6726.6, + "end": 6727.92, + "probability": 0.9026 + }, + { + "start": 6728.58, + "end": 6733.24, + "probability": 0.9886 + }, + { + "start": 6733.4, + "end": 6734.32, + "probability": 0.9917 + }, + { + "start": 6735.4, + "end": 6737.32, + "probability": 0.9971 + }, + { + "start": 6738.9, + "end": 6739.96, + "probability": 0.5225 + }, + { + "start": 6741.04, + "end": 6744.86, + "probability": 0.776 + }, + { + "start": 6745.1, + "end": 6745.54, + "probability": 0.3873 + }, + { + "start": 6746.08, + "end": 6746.56, + "probability": 0.5516 + }, + { + "start": 6746.7, + "end": 6748.68, + "probability": 0.9929 + }, + { + "start": 6748.76, + "end": 6749.08, + "probability": 0.9521 + }, + { + "start": 6749.76, + "end": 6754.02, + "probability": 0.9902 + }, + { + "start": 6754.34, + "end": 6754.8, + "probability": 0.9515 + }, + { + "start": 6755.56, + "end": 6756.16, + "probability": 0.6657 + }, + { + "start": 6756.68, + "end": 6759.24, + "probability": 0.8099 + }, + { + "start": 6759.68, + "end": 6761.92, + "probability": 0.981 + }, + { + "start": 6762.9, + "end": 6763.78, + "probability": 0.7576 + }, + { + "start": 6765.2, + "end": 6767.2, + "probability": 0.4309 + }, + { + "start": 6770.3, + "end": 6772.04, + "probability": 0.4051 + }, + { + "start": 6772.78, + "end": 6773.94, + "probability": 0.724 + }, + { + "start": 6774.67, + "end": 6775.96, + "probability": 0.7724 + }, + { + "start": 6794.14, + "end": 6796.52, + "probability": 0.6918 + }, + { + "start": 6797.44, + "end": 6798.68, + "probability": 0.6047 + }, + { + "start": 6799.66, + "end": 6801.18, + "probability": 0.958 + }, + { + "start": 6802.26, + "end": 6803.04, + "probability": 0.9606 + }, + { + "start": 6805.34, + "end": 6809.04, + "probability": 0.998 + }, + { + "start": 6809.04, + "end": 6812.68, + "probability": 0.9978 + }, + { + "start": 6813.5, + "end": 6816.72, + "probability": 0.9873 + }, + { + "start": 6816.72, + "end": 6819.66, + "probability": 0.9983 + }, + { + "start": 6821.14, + "end": 6823.64, + "probability": 0.8675 + }, + { + "start": 6824.24, + "end": 6826.22, + "probability": 0.9805 + }, + { + "start": 6826.74, + "end": 6830.56, + "probability": 0.9423 + }, + { + "start": 6831.16, + "end": 6834.5, + "probability": 0.9991 + }, + { + "start": 6835.1, + "end": 6836.06, + "probability": 0.7617 + }, + { + "start": 6836.6, + "end": 6838.26, + "probability": 0.9647 + }, + { + "start": 6839.58, + "end": 6840.48, + "probability": 0.8931 + }, + { + "start": 6841.16, + "end": 6842.84, + "probability": 0.9756 + }, + { + "start": 6843.54, + "end": 6845.38, + "probability": 0.9547 + }, + { + "start": 6846.2, + "end": 6852.1, + "probability": 0.9934 + }, + { + "start": 6852.68, + "end": 6853.6, + "probability": 0.9872 + }, + { + "start": 6854.74, + "end": 6856.1, + "probability": 0.7584 + }, + { + "start": 6856.8, + "end": 6860.42, + "probability": 0.9993 + }, + { + "start": 6860.9, + "end": 6865.4, + "probability": 0.9993 + }, + { + "start": 6866.52, + "end": 6869.18, + "probability": 0.9988 + }, + { + "start": 6869.9, + "end": 6874.54, + "probability": 0.9595 + }, + { + "start": 6875.22, + "end": 6876.18, + "probability": 0.9922 + }, + { + "start": 6877.78, + "end": 6882.1, + "probability": 0.9929 + }, + { + "start": 6882.64, + "end": 6885.1, + "probability": 0.9995 + }, + { + "start": 6885.74, + "end": 6889.86, + "probability": 0.9534 + }, + { + "start": 6890.56, + "end": 6893.54, + "probability": 0.9963 + }, + { + "start": 6893.69, + "end": 6897.49, + "probability": 0.9996 + }, + { + "start": 6898.4, + "end": 6901.02, + "probability": 0.9888 + }, + { + "start": 6901.94, + "end": 6903.04, + "probability": 0.8892 + }, + { + "start": 6903.7, + "end": 6905.4, + "probability": 0.9872 + }, + { + "start": 6906.06, + "end": 6911.72, + "probability": 0.7437 + }, + { + "start": 6912.96, + "end": 6914.18, + "probability": 0.5378 + }, + { + "start": 6914.46, + "end": 6914.92, + "probability": 0.0173 + }, + { + "start": 6915.02, + "end": 6915.44, + "probability": 0.2466 + }, + { + "start": 6915.44, + "end": 6917.74, + "probability": 0.4725 + }, + { + "start": 6917.92, + "end": 6919.4, + "probability": 0.7308 + }, + { + "start": 6920.9, + "end": 6923.42, + "probability": 0.2135 + }, + { + "start": 6924.98, + "end": 6925.02, + "probability": 0.0691 + }, + { + "start": 6925.02, + "end": 6925.92, + "probability": 0.2597 + }, + { + "start": 6926.7, + "end": 6928.64, + "probability": 0.7709 + }, + { + "start": 6929.34, + "end": 6931.44, + "probability": 0.917 + }, + { + "start": 6933.6, + "end": 6934.24, + "probability": 0.7648 + }, + { + "start": 6937.12, + "end": 6937.12, + "probability": 0.0115 + }, + { + "start": 6937.12, + "end": 6937.12, + "probability": 0.2251 + }, + { + "start": 6937.12, + "end": 6939.02, + "probability": 0.5359 + }, + { + "start": 6939.18, + "end": 6939.46, + "probability": 0.9115 + }, + { + "start": 6940.46, + "end": 6941.8, + "probability": 0.0141 + }, + { + "start": 6941.8, + "end": 6943.56, + "probability": 0.7992 + }, + { + "start": 6945.0, + "end": 6945.48, + "probability": 0.4228 + }, + { + "start": 6947.02, + "end": 6950.64, + "probability": 0.997 + }, + { + "start": 6951.5, + "end": 6953.78, + "probability": 0.9752 + }, + { + "start": 6954.56, + "end": 6956.48, + "probability": 0.8792 + }, + { + "start": 6957.32, + "end": 6960.34, + "probability": 0.999 + }, + { + "start": 6961.04, + "end": 6961.24, + "probability": 0.9372 + }, + { + "start": 6962.96, + "end": 6964.5, + "probability": 0.7812 + }, + { + "start": 6965.18, + "end": 6966.6, + "probability": 0.5595 + }, + { + "start": 6967.2, + "end": 6968.8, + "probability": 0.9021 + }, + { + "start": 6969.76, + "end": 6970.56, + "probability": 0.9256 + }, + { + "start": 6971.4, + "end": 6975.56, + "probability": 0.9485 + }, + { + "start": 6976.42, + "end": 6978.24, + "probability": 0.9909 + }, + { + "start": 6979.56, + "end": 6979.82, + "probability": 0.7816 + }, + { + "start": 6980.88, + "end": 6982.92, + "probability": 0.1438 + }, + { + "start": 6983.4, + "end": 6986.56, + "probability": 0.2078 + }, + { + "start": 6987.0, + "end": 6989.32, + "probability": 0.134 + }, + { + "start": 6990.02, + "end": 6991.98, + "probability": 0.6878 + }, + { + "start": 6991.98, + "end": 6993.26, + "probability": 0.241 + }, + { + "start": 6993.3, + "end": 6995.96, + "probability": 0.7187 + }, + { + "start": 6996.04, + "end": 6996.5, + "probability": 0.1919 + }, + { + "start": 6996.5, + "end": 7000.12, + "probability": 0.5186 + }, + { + "start": 7000.3, + "end": 7002.18, + "probability": 0.6578 + }, + { + "start": 7002.78, + "end": 7003.84, + "probability": 0.7516 + }, + { + "start": 7004.36, + "end": 7005.72, + "probability": 0.0815 + }, + { + "start": 7007.0, + "end": 7008.26, + "probability": 0.0788 + }, + { + "start": 7008.26, + "end": 7011.05, + "probability": 0.0325 + }, + { + "start": 7011.72, + "end": 7013.24, + "probability": 0.0818 + }, + { + "start": 7013.42, + "end": 7014.26, + "probability": 0.0119 + }, + { + "start": 7014.26, + "end": 7014.34, + "probability": 0.0877 + }, + { + "start": 7014.34, + "end": 7014.34, + "probability": 0.0105 + }, + { + "start": 7014.34, + "end": 7015.82, + "probability": 0.1569 + }, + { + "start": 7016.66, + "end": 7018.46, + "probability": 0.287 + }, + { + "start": 7018.46, + "end": 7018.46, + "probability": 0.1906 + }, + { + "start": 7018.46, + "end": 7019.8, + "probability": 0.6222 + }, + { + "start": 7019.8, + "end": 7027.24, + "probability": 0.981 + }, + { + "start": 7028.3, + "end": 7032.46, + "probability": 0.9985 + }, + { + "start": 7033.78, + "end": 7033.9, + "probability": 0.013 + }, + { + "start": 7033.9, + "end": 7035.28, + "probability": 0.9451 + }, + { + "start": 7035.85, + "end": 7036.18, + "probability": 0.2583 + }, + { + "start": 7036.2, + "end": 7036.96, + "probability": 0.8696 + }, + { + "start": 7037.0, + "end": 7038.76, + "probability": 0.4217 + }, + { + "start": 7039.12, + "end": 7043.3, + "probability": 0.6875 + }, + { + "start": 7043.46, + "end": 7043.74, + "probability": 0.5341 + }, + { + "start": 7044.32, + "end": 7044.84, + "probability": 0.8358 + }, + { + "start": 7045.26, + "end": 7046.18, + "probability": 0.4817 + }, + { + "start": 7046.58, + "end": 7047.58, + "probability": 0.8793 + }, + { + "start": 7047.7, + "end": 7049.38, + "probability": 0.2402 + }, + { + "start": 7049.88, + "end": 7051.32, + "probability": 0.5485 + }, + { + "start": 7051.92, + "end": 7054.0, + "probability": 0.9408 + }, + { + "start": 7056.68, + "end": 7057.98, + "probability": 0.9034 + }, + { + "start": 7060.92, + "end": 7061.92, + "probability": 0.6299 + }, + { + "start": 7070.38, + "end": 7073.32, + "probability": 0.6785 + }, + { + "start": 7074.54, + "end": 7077.2, + "probability": 0.7625 + }, + { + "start": 7078.97, + "end": 7082.54, + "probability": 0.9251 + }, + { + "start": 7083.3, + "end": 7085.6, + "probability": 0.7492 + }, + { + "start": 7086.6, + "end": 7088.9, + "probability": 0.8241 + }, + { + "start": 7089.7, + "end": 7090.77, + "probability": 0.9116 + }, + { + "start": 7093.36, + "end": 7095.84, + "probability": 0.747 + }, + { + "start": 7104.72, + "end": 7106.9, + "probability": 0.7354 + }, + { + "start": 7108.25, + "end": 7111.42, + "probability": 0.8256 + }, + { + "start": 7111.86, + "end": 7113.64, + "probability": 0.8084 + }, + { + "start": 7114.3, + "end": 7117.84, + "probability": 0.9745 + }, + { + "start": 7118.44, + "end": 7123.9, + "probability": 0.9724 + }, + { + "start": 7124.7, + "end": 7129.34, + "probability": 0.9971 + }, + { + "start": 7129.42, + "end": 7139.14, + "probability": 0.9506 + }, + { + "start": 7139.24, + "end": 7140.1, + "probability": 0.946 + }, + { + "start": 7141.18, + "end": 7143.26, + "probability": 0.9654 + }, + { + "start": 7143.48, + "end": 7144.84, + "probability": 0.9434 + }, + { + "start": 7145.36, + "end": 7149.0, + "probability": 0.8241 + }, + { + "start": 7150.6, + "end": 7153.28, + "probability": 0.8853 + }, + { + "start": 7154.04, + "end": 7155.0, + "probability": 0.7618 + }, + { + "start": 7157.24, + "end": 7160.18, + "probability": 0.9964 + }, + { + "start": 7161.16, + "end": 7164.51, + "probability": 0.981 + }, + { + "start": 7165.82, + "end": 7170.3, + "probability": 0.9988 + }, + { + "start": 7170.88, + "end": 7172.24, + "probability": 0.9876 + }, + { + "start": 7172.48, + "end": 7174.42, + "probability": 0.9986 + }, + { + "start": 7174.64, + "end": 7176.16, + "probability": 0.4298 + }, + { + "start": 7177.62, + "end": 7177.94, + "probability": 0.8254 + }, + { + "start": 7178.94, + "end": 7180.68, + "probability": 0.7388 + }, + { + "start": 7182.08, + "end": 7182.98, + "probability": 0.8917 + }, + { + "start": 7183.44, + "end": 7184.52, + "probability": 0.1478 + }, + { + "start": 7184.8, + "end": 7185.5, + "probability": 0.7451 + }, + { + "start": 7185.5, + "end": 7187.8, + "probability": 0.9644 + }, + { + "start": 7188.42, + "end": 7189.48, + "probability": 0.9528 + }, + { + "start": 7190.3, + "end": 7190.34, + "probability": 0.6172 + }, + { + "start": 7190.34, + "end": 7191.26, + "probability": 0.8553 + }, + { + "start": 7191.28, + "end": 7191.98, + "probability": 0.3747 + }, + { + "start": 7192.14, + "end": 7196.42, + "probability": 0.9647 + }, + { + "start": 7196.48, + "end": 7197.32, + "probability": 0.8547 + }, + { + "start": 7197.44, + "end": 7199.48, + "probability": 0.9974 + }, + { + "start": 7200.16, + "end": 7201.96, + "probability": 0.9757 + }, + { + "start": 7202.82, + "end": 7206.1, + "probability": 0.9742 + }, + { + "start": 7206.72, + "end": 7208.18, + "probability": 0.7407 + }, + { + "start": 7208.3, + "end": 7209.55, + "probability": 0.6591 + }, + { + "start": 7210.52, + "end": 7212.08, + "probability": 0.9618 + }, + { + "start": 7212.66, + "end": 7213.92, + "probability": 0.6229 + }, + { + "start": 7214.62, + "end": 7218.1, + "probability": 0.7817 + }, + { + "start": 7218.12, + "end": 7218.52, + "probability": 0.8109 + }, + { + "start": 7219.02, + "end": 7222.66, + "probability": 0.2123 + }, + { + "start": 7224.72, + "end": 7225.6, + "probability": 0.8839 + }, + { + "start": 7227.12, + "end": 7228.2, + "probability": 0.7823 + }, + { + "start": 7229.94, + "end": 7232.06, + "probability": 0.8756 + }, + { + "start": 7232.84, + "end": 7233.32, + "probability": 0.9365 + }, + { + "start": 7234.58, + "end": 7235.46, + "probability": 0.8656 + }, + { + "start": 7235.98, + "end": 7236.38, + "probability": 0.9763 + }, + { + "start": 7236.94, + "end": 7237.64, + "probability": 0.8711 + }, + { + "start": 7239.26, + "end": 7239.84, + "probability": 0.985 + }, + { + "start": 7240.96, + "end": 7242.02, + "probability": 0.43 + }, + { + "start": 7243.1, + "end": 7245.52, + "probability": 0.572 + }, + { + "start": 7246.3, + "end": 7246.64, + "probability": 0.9839 + }, + { + "start": 7247.26, + "end": 7248.28, + "probability": 0.808 + }, + { + "start": 7251.54, + "end": 7252.08, + "probability": 0.9917 + }, + { + "start": 7252.82, + "end": 7253.7, + "probability": 0.9083 + }, + { + "start": 7254.64, + "end": 7254.94, + "probability": 0.9885 + }, + { + "start": 7255.86, + "end": 7256.74, + "probability": 0.9103 + }, + { + "start": 7257.88, + "end": 7260.02, + "probability": 0.9937 + }, + { + "start": 7260.64, + "end": 7263.2, + "probability": 0.9837 + }, + { + "start": 7264.04, + "end": 7270.08, + "probability": 0.9014 + }, + { + "start": 7271.06, + "end": 7271.48, + "probability": 0.7125 + }, + { + "start": 7272.78, + "end": 7273.66, + "probability": 0.762 + }, + { + "start": 7274.44, + "end": 7276.96, + "probability": 0.8317 + }, + { + "start": 7277.62, + "end": 7280.36, + "probability": 0.8768 + }, + { + "start": 7282.68, + "end": 7284.22, + "probability": 0.7131 + }, + { + "start": 7285.16, + "end": 7286.28, + "probability": 0.8867 + }, + { + "start": 7293.1, + "end": 7293.82, + "probability": 0.6539 + }, + { + "start": 7294.82, + "end": 7296.26, + "probability": 0.9328 + }, + { + "start": 7297.06, + "end": 7297.64, + "probability": 0.9857 + }, + { + "start": 7298.28, + "end": 7299.38, + "probability": 0.9688 + }, + { + "start": 7300.8, + "end": 7301.54, + "probability": 0.8457 + }, + { + "start": 7305.22, + "end": 7306.02, + "probability": 0.5706 + }, + { + "start": 7307.16, + "end": 7307.64, + "probability": 0.6437 + }, + { + "start": 7309.44, + "end": 7310.24, + "probability": 0.8797 + }, + { + "start": 7310.98, + "end": 7311.72, + "probability": 0.8064 + }, + { + "start": 7312.64, + "end": 7313.78, + "probability": 0.6046 + }, + { + "start": 7315.5, + "end": 7316.08, + "probability": 0.988 + }, + { + "start": 7317.52, + "end": 7318.2, + "probability": 0.9725 + }, + { + "start": 7319.26, + "end": 7319.74, + "probability": 0.9731 + }, + { + "start": 7320.46, + "end": 7321.4, + "probability": 0.9397 + }, + { + "start": 7322.66, + "end": 7324.76, + "probability": 0.9329 + }, + { + "start": 7325.98, + "end": 7326.56, + "probability": 0.9943 + }, + { + "start": 7329.08, + "end": 7329.9, + "probability": 0.8153 + }, + { + "start": 7330.66, + "end": 7330.86, + "probability": 0.2897 + }, + { + "start": 7335.72, + "end": 7337.88, + "probability": 0.4585 + }, + { + "start": 7338.92, + "end": 7339.9, + "probability": 0.7887 + }, + { + "start": 7340.74, + "end": 7341.66, + "probability": 0.7495 + }, + { + "start": 7345.3, + "end": 7346.1, + "probability": 0.5493 + }, + { + "start": 7347.52, + "end": 7348.02, + "probability": 0.6901 + }, + { + "start": 7348.84, + "end": 7349.88, + "probability": 0.6951 + }, + { + "start": 7350.58, + "end": 7351.16, + "probability": 0.9123 + }, + { + "start": 7351.8, + "end": 7352.64, + "probability": 0.9364 + }, + { + "start": 7353.98, + "end": 7354.84, + "probability": 0.7789 + }, + { + "start": 7355.72, + "end": 7356.6, + "probability": 0.9118 + }, + { + "start": 7357.32, + "end": 7357.88, + "probability": 0.9851 + }, + { + "start": 7362.82, + "end": 7363.72, + "probability": 0.5342 + }, + { + "start": 7364.34, + "end": 7364.86, + "probability": 0.8372 + }, + { + "start": 7366.0, + "end": 7366.76, + "probability": 0.8316 + }, + { + "start": 7367.56, + "end": 7368.04, + "probability": 0.9871 + }, + { + "start": 7369.02, + "end": 7370.22, + "probability": 0.8182 + }, + { + "start": 7370.84, + "end": 7373.08, + "probability": 0.9695 + }, + { + "start": 7375.12, + "end": 7377.42, + "probability": 0.9874 + }, + { + "start": 7378.08, + "end": 7378.66, + "probability": 0.9826 + }, + { + "start": 7379.58, + "end": 7380.44, + "probability": 0.9396 + }, + { + "start": 7381.08, + "end": 7381.68, + "probability": 0.9927 + }, + { + "start": 7382.44, + "end": 7382.96, + "probability": 0.6182 + }, + { + "start": 7384.12, + "end": 7384.74, + "probability": 0.9714 + }, + { + "start": 7385.26, + "end": 7386.34, + "probability": 0.6629 + }, + { + "start": 7387.9, + "end": 7390.44, + "probability": 0.7354 + }, + { + "start": 7391.32, + "end": 7391.88, + "probability": 0.957 + }, + { + "start": 7393.0, + "end": 7394.01, + "probability": 0.6953 + }, + { + "start": 7394.72, + "end": 7395.26, + "probability": 0.9731 + }, + { + "start": 7396.04, + "end": 7397.24, + "probability": 0.7297 + }, + { + "start": 7400.0, + "end": 7402.06, + "probability": 0.4949 + }, + { + "start": 7403.14, + "end": 7403.72, + "probability": 0.988 + }, + { + "start": 7406.06, + "end": 7407.14, + "probability": 0.8955 + }, + { + "start": 7408.08, + "end": 7408.6, + "probability": 0.9888 + }, + { + "start": 7409.4, + "end": 7410.5, + "probability": 0.7812 + }, + { + "start": 7411.46, + "end": 7412.08, + "probability": 0.9967 + }, + { + "start": 7413.02, + "end": 7413.82, + "probability": 0.6797 + }, + { + "start": 7416.1, + "end": 7417.96, + "probability": 0.7267 + }, + { + "start": 7419.16, + "end": 7420.16, + "probability": 0.9215 + }, + { + "start": 7420.7, + "end": 7422.04, + "probability": 0.7739 + }, + { + "start": 7422.64, + "end": 7423.18, + "probability": 0.7257 + }, + { + "start": 7424.84, + "end": 7426.02, + "probability": 0.8945 + }, + { + "start": 7426.76, + "end": 7427.22, + "probability": 0.9601 + }, + { + "start": 7428.22, + "end": 7429.14, + "probability": 0.8494 + }, + { + "start": 7430.94, + "end": 7431.2, + "probability": 0.5095 + }, + { + "start": 7434.32, + "end": 7434.46, + "probability": 0.5045 + }, + { + "start": 7437.52, + "end": 7439.76, + "probability": 0.4961 + }, + { + "start": 7441.38, + "end": 7442.66, + "probability": 0.8225 + }, + { + "start": 7443.56, + "end": 7444.02, + "probability": 0.9543 + }, + { + "start": 7444.96, + "end": 7445.68, + "probability": 0.8688 + }, + { + "start": 7446.32, + "end": 7448.52, + "probability": 0.8784 + }, + { + "start": 7449.6, + "end": 7450.1, + "probability": 0.6015 + }, + { + "start": 7451.34, + "end": 7451.96, + "probability": 0.9609 + }, + { + "start": 7453.62, + "end": 7454.18, + "probability": 0.9839 + }, + { + "start": 7455.06, + "end": 7455.84, + "probability": 0.983 + }, + { + "start": 7457.52, + "end": 7457.82, + "probability": 0.9802 + }, + { + "start": 7458.52, + "end": 7459.1, + "probability": 0.9669 + }, + { + "start": 7460.28, + "end": 7460.8, + "probability": 0.9701 + }, + { + "start": 7462.42, + "end": 7463.64, + "probability": 0.6929 + }, + { + "start": 7464.78, + "end": 7465.02, + "probability": 0.6704 + }, + { + "start": 7467.52, + "end": 7468.26, + "probability": 0.6087 + }, + { + "start": 7472.32, + "end": 7472.94, + "probability": 0.818 + }, + { + "start": 7474.08, + "end": 7475.26, + "probability": 0.7976 + }, + { + "start": 7476.42, + "end": 7478.56, + "probability": 0.8711 + }, + { + "start": 7480.44, + "end": 7481.0, + "probability": 0.8162 + }, + { + "start": 7483.04, + "end": 7484.02, + "probability": 0.9058 + }, + { + "start": 7486.22, + "end": 7487.14, + "probability": 0.866 + }, + { + "start": 7487.86, + "end": 7488.9, + "probability": 0.9732 + }, + { + "start": 7489.44, + "end": 7489.96, + "probability": 0.9678 + }, + { + "start": 7490.8, + "end": 7491.7, + "probability": 0.9751 + }, + { + "start": 7492.6, + "end": 7493.1, + "probability": 0.9902 + }, + { + "start": 7494.52, + "end": 7495.2, + "probability": 0.672 + }, + { + "start": 7496.2, + "end": 7496.58, + "probability": 0.7345 + }, + { + "start": 7497.46, + "end": 7498.64, + "probability": 0.9775 + }, + { + "start": 7499.26, + "end": 7500.08, + "probability": 0.9771 + }, + { + "start": 7500.72, + "end": 7501.78, + "probability": 0.7767 + }, + { + "start": 7502.5, + "end": 7503.76, + "probability": 0.6835 + }, + { + "start": 7504.7, + "end": 7505.56, + "probability": 0.7973 + }, + { + "start": 7506.36, + "end": 7508.52, + "probability": 0.8372 + }, + { + "start": 7509.28, + "end": 7509.86, + "probability": 0.9725 + }, + { + "start": 7510.5, + "end": 7511.44, + "probability": 0.6798 + }, + { + "start": 7514.08, + "end": 7514.68, + "probability": 0.9919 + }, + { + "start": 7515.72, + "end": 7517.7, + "probability": 0.9874 + }, + { + "start": 7518.64, + "end": 7519.68, + "probability": 0.6881 + }, + { + "start": 7520.74, + "end": 7521.18, + "probability": 0.527 + }, + { + "start": 7521.92, + "end": 7522.68, + "probability": 0.7345 + }, + { + "start": 7526.62, + "end": 7527.8, + "probability": 0.9519 + }, + { + "start": 7529.12, + "end": 7529.96, + "probability": 0.9087 + }, + { + "start": 7531.22, + "end": 7533.7, + "probability": 0.766 + }, + { + "start": 7534.32, + "end": 7534.88, + "probability": 0.9751 + }, + { + "start": 7535.76, + "end": 7536.74, + "probability": 0.9624 + }, + { + "start": 7537.48, + "end": 7538.86, + "probability": 0.9773 + }, + { + "start": 7539.76, + "end": 7540.64, + "probability": 0.927 + }, + { + "start": 7543.76, + "end": 7543.98, + "probability": 0.7033 + }, + { + "start": 7544.66, + "end": 7547.36, + "probability": 0.6292 + }, + { + "start": 7548.34, + "end": 7548.86, + "probability": 0.7922 + }, + { + "start": 7549.96, + "end": 7550.86, + "probability": 0.6617 + }, + { + "start": 7551.64, + "end": 7552.22, + "probability": 0.9857 + }, + { + "start": 7552.86, + "end": 7555.4, + "probability": 0.7763 + }, + { + "start": 7556.4, + "end": 7557.38, + "probability": 0.756 + }, + { + "start": 7560.22, + "end": 7564.94, + "probability": 0.4245 + }, + { + "start": 7566.66, + "end": 7567.28, + "probability": 0.8638 + }, + { + "start": 7568.42, + "end": 7569.34, + "probability": 0.9311 + }, + { + "start": 7570.44, + "end": 7570.98, + "probability": 0.9899 + }, + { + "start": 7572.46, + "end": 7573.28, + "probability": 0.2837 + }, + { + "start": 7574.66, + "end": 7575.16, + "probability": 0.9728 + }, + { + "start": 7576.42, + "end": 7577.42, + "probability": 0.7209 + }, + { + "start": 7579.02, + "end": 7582.14, + "probability": 0.6048 + }, + { + "start": 7584.48, + "end": 7585.42, + "probability": 0.972 + }, + { + "start": 7586.64, + "end": 7587.48, + "probability": 0.8807 + }, + { + "start": 7589.76, + "end": 7590.32, + "probability": 0.9933 + }, + { + "start": 7592.44, + "end": 7593.3, + "probability": 0.892 + }, + { + "start": 7595.7, + "end": 7597.84, + "probability": 0.7077 + }, + { + "start": 7598.88, + "end": 7600.54, + "probability": 0.1047 + }, + { + "start": 7602.86, + "end": 7604.32, + "probability": 0.5667 + }, + { + "start": 7605.26, + "end": 7606.24, + "probability": 0.6583 + }, + { + "start": 7607.08, + "end": 7607.92, + "probability": 0.5338 + }, + { + "start": 7608.98, + "end": 7609.84, + "probability": 0.6449 + }, + { + "start": 7610.98, + "end": 7613.04, + "probability": 0.9202 + }, + { + "start": 7614.54, + "end": 7615.1, + "probability": 0.937 + }, + { + "start": 7615.86, + "end": 7616.7, + "probability": 0.8517 + }, + { + "start": 7619.86, + "end": 7620.42, + "probability": 0.9897 + }, + { + "start": 7621.5, + "end": 7622.26, + "probability": 0.8623 + }, + { + "start": 7624.22, + "end": 7626.34, + "probability": 0.9074 + }, + { + "start": 7627.88, + "end": 7628.36, + "probability": 0.9795 + }, + { + "start": 7629.88, + "end": 7630.7, + "probability": 0.8185 + }, + { + "start": 7631.84, + "end": 7633.84, + "probability": 0.1321 + }, + { + "start": 7635.68, + "end": 7636.18, + "probability": 0.5584 + }, + { + "start": 7637.16, + "end": 7637.9, + "probability": 0.6783 + }, + { + "start": 7639.26, + "end": 7641.48, + "probability": 0.848 + }, + { + "start": 7647.46, + "end": 7647.94, + "probability": 0.7829 + }, + { + "start": 7648.98, + "end": 7649.92, + "probability": 0.7985 + }, + { + "start": 7651.52, + "end": 7653.24, + "probability": 0.9336 + }, + { + "start": 7653.8, + "end": 7654.3, + "probability": 0.9757 + }, + { + "start": 7655.04, + "end": 7656.26, + "probability": 0.9521 + }, + { + "start": 7657.36, + "end": 7657.98, + "probability": 0.9897 + }, + { + "start": 7658.78, + "end": 7659.64, + "probability": 0.9438 + }, + { + "start": 7660.44, + "end": 7660.9, + "probability": 0.9907 + }, + { + "start": 7661.78, + "end": 7663.16, + "probability": 0.801 + }, + { + "start": 7664.14, + "end": 7669.76, + "probability": 0.8374 + }, + { + "start": 7670.58, + "end": 7671.76, + "probability": 0.8934 + }, + { + "start": 7675.2, + "end": 7678.48, + "probability": 0.7321 + }, + { + "start": 7681.72, + "end": 7684.32, + "probability": 0.7686 + }, + { + "start": 7685.18, + "end": 7687.84, + "probability": 0.8064 + }, + { + "start": 7690.72, + "end": 7691.64, + "probability": 0.9734 + }, + { + "start": 7693.08, + "end": 7694.06, + "probability": 0.6871 + }, + { + "start": 7694.94, + "end": 7698.66, + "probability": 0.7318 + }, + { + "start": 7703.94, + "end": 7704.52, + "probability": 0.7515 + }, + { + "start": 7706.04, + "end": 7707.08, + "probability": 0.802 + }, + { + "start": 7707.62, + "end": 7710.96, + "probability": 0.7642 + }, + { + "start": 7712.7, + "end": 7713.78, + "probability": 0.9583 + }, + { + "start": 7715.22, + "end": 7716.06, + "probability": 0.8011 + }, + { + "start": 7716.87, + "end": 7718.98, + "probability": 0.8803 + }, + { + "start": 7719.56, + "end": 7721.68, + "probability": 0.8561 + }, + { + "start": 7722.54, + "end": 7723.4, + "probability": 0.7429 + }, + { + "start": 7724.38, + "end": 7726.47, + "probability": 0.552 + }, + { + "start": 7727.52, + "end": 7728.07, + "probability": 0.2544 + }, + { + "start": 7729.64, + "end": 7730.16, + "probability": 0.7727 + }, + { + "start": 7733.0, + "end": 7733.99, + "probability": 0.6658 + }, + { + "start": 7735.78, + "end": 7736.56, + "probability": 0.8627 + }, + { + "start": 7738.04, + "end": 7739.04, + "probability": 0.6779 + }, + { + "start": 7739.76, + "end": 7740.72, + "probability": 0.977 + }, + { + "start": 7741.5, + "end": 7742.56, + "probability": 0.9678 + }, + { + "start": 7743.36, + "end": 7743.88, + "probability": 0.9307 + }, + { + "start": 7745.88, + "end": 7746.62, + "probability": 0.9513 + }, + { + "start": 7747.56, + "end": 7748.32, + "probability": 0.7591 + }, + { + "start": 7748.96, + "end": 7749.88, + "probability": 0.5043 + }, + { + "start": 7750.86, + "end": 7753.94, + "probability": 0.9648 + }, + { + "start": 7755.04, + "end": 7756.88, + "probability": 0.9684 + }, + { + "start": 7758.0, + "end": 7758.76, + "probability": 0.9814 + }, + { + "start": 7759.38, + "end": 7760.6, + "probability": 0.7834 + }, + { + "start": 7762.52, + "end": 7764.26, + "probability": 0.9834 + }, + { + "start": 7765.86, + "end": 7767.88, + "probability": 0.9816 + }, + { + "start": 7768.88, + "end": 7770.92, + "probability": 0.9839 + }, + { + "start": 7772.42, + "end": 7775.48, + "probability": 0.7316 + }, + { + "start": 7776.8, + "end": 7777.74, + "probability": 0.9711 + }, + { + "start": 7778.6, + "end": 7779.46, + "probability": 0.4536 + }, + { + "start": 7780.26, + "end": 7780.86, + "probability": 0.9564 + }, + { + "start": 7784.64, + "end": 7785.52, + "probability": 0.5714 + }, + { + "start": 7787.04, + "end": 7789.02, + "probability": 0.8258 + }, + { + "start": 7790.4, + "end": 7791.24, + "probability": 0.9141 + }, + { + "start": 7792.22, + "end": 7793.18, + "probability": 0.9224 + }, + { + "start": 7794.0, + "end": 7794.92, + "probability": 0.9285 + }, + { + "start": 7796.46, + "end": 7797.38, + "probability": 0.8593 + }, + { + "start": 7799.0, + "end": 7801.1, + "probability": 0.9662 + }, + { + "start": 7802.46, + "end": 7804.44, + "probability": 0.9537 + }, + { + "start": 7808.04, + "end": 7810.52, + "probability": 0.6604 + }, + { + "start": 7812.72, + "end": 7814.48, + "probability": 0.8414 + }, + { + "start": 7815.32, + "end": 7817.24, + "probability": 0.7841 + }, + { + "start": 7818.1, + "end": 7821.68, + "probability": 0.8367 + }, + { + "start": 7822.4, + "end": 7824.06, + "probability": 0.5677 + }, + { + "start": 7824.78, + "end": 7826.84, + "probability": 0.0044 + }, + { + "start": 7829.32, + "end": 7831.54, + "probability": 0.4929 + }, + { + "start": 7831.98, + "end": 7833.16, + "probability": 0.8137 + }, + { + "start": 7872.12, + "end": 7873.1, + "probability": 0.024 + }, + { + "start": 7925.58, + "end": 7928.22, + "probability": 0.4696 + }, + { + "start": 7928.7, + "end": 7929.58, + "probability": 0.5858 + }, + { + "start": 7929.7, + "end": 7929.96, + "probability": 0.7344 + }, + { + "start": 7930.0, + "end": 7930.66, + "probability": 0.9146 + }, + { + "start": 7930.84, + "end": 7931.36, + "probability": 0.5544 + }, + { + "start": 7931.44, + "end": 7933.59, + "probability": 0.9342 + }, + { + "start": 7934.14, + "end": 7936.56, + "probability": 0.9753 + }, + { + "start": 7936.56, + "end": 7940.14, + "probability": 0.8486 + }, + { + "start": 7940.78, + "end": 7942.8, + "probability": 0.102 + }, + { + "start": 7942.8, + "end": 7942.8, + "probability": 0.0161 + }, + { + "start": 7942.8, + "end": 7942.8, + "probability": 0.0134 + }, + { + "start": 7942.8, + "end": 7943.84, + "probability": 0.4344 + }, + { + "start": 7943.84, + "end": 7943.96, + "probability": 0.2864 + }, + { + "start": 7947.84, + "end": 7948.52, + "probability": 0.3038 + }, + { + "start": 7950.52, + "end": 7951.42, + "probability": 0.1843 + }, + { + "start": 7951.42, + "end": 7952.16, + "probability": 0.1872 + }, + { + "start": 7952.7, + "end": 7954.16, + "probability": 0.1605 + }, + { + "start": 7957.54, + "end": 7962.0, + "probability": 0.0204 + }, + { + "start": 7962.9, + "end": 7962.9, + "probability": 0.0346 + }, + { + "start": 7962.9, + "end": 7966.42, + "probability": 0.5129 + }, + { + "start": 7966.56, + "end": 7969.46, + "probability": 0.9734 + }, + { + "start": 7969.94, + "end": 7971.52, + "probability": 0.8189 + }, + { + "start": 7972.12, + "end": 7973.78, + "probability": 0.6615 + }, + { + "start": 7974.16, + "end": 7977.48, + "probability": 0.8558 + }, + { + "start": 7978.16, + "end": 7978.26, + "probability": 0.0687 + }, + { + "start": 7978.26, + "end": 7979.76, + "probability": 0.4788 + }, + { + "start": 7979.88, + "end": 7981.66, + "probability": 0.9767 + }, + { + "start": 7982.06, + "end": 7984.38, + "probability": 0.6888 + }, + { + "start": 7998.28, + "end": 8000.06, + "probability": 0.544 + }, + { + "start": 8000.5, + "end": 8000.96, + "probability": 0.5945 + }, + { + "start": 8001.02, + "end": 8003.8, + "probability": 0.7216 + }, + { + "start": 8006.28, + "end": 8010.28, + "probability": 0.9692 + }, + { + "start": 8011.3, + "end": 8012.78, + "probability": 0.6423 + }, + { + "start": 8015.24, + "end": 8016.28, + "probability": 0.4806 + }, + { + "start": 8016.28, + "end": 8016.68, + "probability": 0.389 + }, + { + "start": 8019.96, + "end": 8022.48, + "probability": 0.8436 + }, + { + "start": 8024.04, + "end": 8026.86, + "probability": 0.8201 + }, + { + "start": 8027.78, + "end": 8029.12, + "probability": 0.8692 + }, + { + "start": 8030.64, + "end": 8034.76, + "probability": 0.8309 + }, + { + "start": 8034.76, + "end": 8038.42, + "probability": 0.9808 + }, + { + "start": 8039.64, + "end": 8040.38, + "probability": 0.8576 + }, + { + "start": 8040.94, + "end": 8042.78, + "probability": 0.9719 + }, + { + "start": 8043.38, + "end": 8044.1, + "probability": 0.5084 + }, + { + "start": 8044.76, + "end": 8046.92, + "probability": 0.5689 + }, + { + "start": 8048.05, + "end": 8049.9, + "probability": 0.8928 + }, + { + "start": 8049.96, + "end": 8050.84, + "probability": 0.8869 + }, + { + "start": 8051.36, + "end": 8052.52, + "probability": 0.9881 + }, + { + "start": 8052.6, + "end": 8053.72, + "probability": 0.9972 + }, + { + "start": 8054.52, + "end": 8055.68, + "probability": 0.4406 + }, + { + "start": 8056.82, + "end": 8059.22, + "probability": 0.8428 + }, + { + "start": 8059.88, + "end": 8061.4, + "probability": 0.6442 + }, + { + "start": 8062.3, + "end": 8063.22, + "probability": 0.7835 + }, + { + "start": 8065.3, + "end": 8067.01, + "probability": 0.8802 + }, + { + "start": 8067.92, + "end": 8069.92, + "probability": 0.991 + }, + { + "start": 8070.64, + "end": 8072.86, + "probability": 0.2073 + }, + { + "start": 8073.74, + "end": 8074.36, + "probability": 0.6631 + }, + { + "start": 8074.44, + "end": 8076.52, + "probability": 0.3257 + }, + { + "start": 8076.7, + "end": 8076.98, + "probability": 0.9003 + }, + { + "start": 8077.44, + "end": 8078.62, + "probability": 0.8423 + }, + { + "start": 8079.34, + "end": 8081.22, + "probability": 0.3963 + }, + { + "start": 8081.72, + "end": 8086.64, + "probability": 0.9728 + }, + { + "start": 8087.16, + "end": 8088.8, + "probability": 0.9727 + }, + { + "start": 8089.4, + "end": 8091.0, + "probability": 0.9888 + }, + { + "start": 8091.92, + "end": 8093.71, + "probability": 0.7754 + }, + { + "start": 8094.2, + "end": 8096.04, + "probability": 0.9719 + }, + { + "start": 8096.1, + "end": 8096.94, + "probability": 0.5924 + }, + { + "start": 8097.68, + "end": 8099.64, + "probability": 0.976 + }, + { + "start": 8100.26, + "end": 8101.58, + "probability": 0.9771 + }, + { + "start": 8102.16, + "end": 8103.42, + "probability": 0.8577 + }, + { + "start": 8104.18, + "end": 8106.86, + "probability": 0.9043 + }, + { + "start": 8107.52, + "end": 8108.61, + "probability": 0.7461 + }, + { + "start": 8109.62, + "end": 8110.24, + "probability": 0.6804 + }, + { + "start": 8110.24, + "end": 8112.02, + "probability": 0.9455 + }, + { + "start": 8112.28, + "end": 8113.84, + "probability": 0.9632 + }, + { + "start": 8114.42, + "end": 8116.22, + "probability": 0.7241 + }, + { + "start": 8116.9, + "end": 8119.18, + "probability": 0.5327 + }, + { + "start": 8120.28, + "end": 8123.38, + "probability": 0.9814 + }, + { + "start": 8124.34, + "end": 8125.84, + "probability": 0.6303 + }, + { + "start": 8126.98, + "end": 8128.26, + "probability": 0.988 + }, + { + "start": 8128.38, + "end": 8129.68, + "probability": 0.9978 + }, + { + "start": 8130.46, + "end": 8132.02, + "probability": 0.953 + }, + { + "start": 8132.64, + "end": 8135.34, + "probability": 0.9915 + }, + { + "start": 8135.62, + "end": 8135.64, + "probability": 0.3139 + }, + { + "start": 8135.8, + "end": 8137.18, + "probability": 0.7775 + }, + { + "start": 8137.84, + "end": 8142.86, + "probability": 0.9934 + }, + { + "start": 8143.52, + "end": 8146.92, + "probability": 0.9979 + }, + { + "start": 8147.6, + "end": 8148.26, + "probability": 0.6673 + }, + { + "start": 8148.74, + "end": 8150.14, + "probability": 0.9886 + }, + { + "start": 8150.5, + "end": 8151.36, + "probability": 0.9961 + }, + { + "start": 8152.46, + "end": 8154.24, + "probability": 0.992 + }, + { + "start": 8154.92, + "end": 8160.22, + "probability": 0.9731 + }, + { + "start": 8160.32, + "end": 8161.08, + "probability": 0.6466 + }, + { + "start": 8162.0, + "end": 8164.16, + "probability": 0.979 + }, + { + "start": 8165.02, + "end": 8169.04, + "probability": 0.8535 + }, + { + "start": 8169.76, + "end": 8171.85, + "probability": 0.9704 + }, + { + "start": 8172.68, + "end": 8176.98, + "probability": 0.9746 + }, + { + "start": 8177.36, + "end": 8179.46, + "probability": 0.131 + }, + { + "start": 8179.46, + "end": 8181.24, + "probability": 0.854 + }, + { + "start": 8181.36, + "end": 8184.12, + "probability": 0.9883 + }, + { + "start": 8185.12, + "end": 8186.42, + "probability": 0.9788 + }, + { + "start": 8187.34, + "end": 8188.0, + "probability": 0.8498 + }, + { + "start": 8188.72, + "end": 8191.56, + "probability": 0.9922 + }, + { + "start": 8192.28, + "end": 8193.6, + "probability": 0.7393 + }, + { + "start": 8194.28, + "end": 8195.92, + "probability": 0.9995 + }, + { + "start": 8196.44, + "end": 8197.18, + "probability": 0.8301 + }, + { + "start": 8197.68, + "end": 8202.72, + "probability": 0.9237 + }, + { + "start": 8203.1, + "end": 8203.5, + "probability": 0.388 + }, + { + "start": 8203.66, + "end": 8204.84, + "probability": 0.6827 + }, + { + "start": 8205.86, + "end": 8208.1, + "probability": 0.9906 + }, + { + "start": 8208.92, + "end": 8209.94, + "probability": 0.6235 + }, + { + "start": 8210.0, + "end": 8213.96, + "probability": 0.937 + }, + { + "start": 8214.62, + "end": 8216.72, + "probability": 0.9912 + }, + { + "start": 8217.6, + "end": 8220.2, + "probability": 0.9238 + }, + { + "start": 8220.52, + "end": 8221.5, + "probability": 0.9087 + }, + { + "start": 8223.1, + "end": 8230.22, + "probability": 0.9717 + }, + { + "start": 8230.28, + "end": 8231.31, + "probability": 0.9696 + }, + { + "start": 8231.72, + "end": 8231.92, + "probability": 0.3192 + }, + { + "start": 8232.68, + "end": 8234.54, + "probability": 0.9185 + }, + { + "start": 8235.3, + "end": 8238.36, + "probability": 0.8406 + }, + { + "start": 8239.04, + "end": 8241.36, + "probability": 0.662 + }, + { + "start": 8242.06, + "end": 8243.98, + "probability": 0.7649 + }, + { + "start": 8244.58, + "end": 8245.24, + "probability": 0.9772 + }, + { + "start": 8245.68, + "end": 8248.14, + "probability": 0.7689 + }, + { + "start": 8248.56, + "end": 8249.78, + "probability": 0.9929 + }, + { + "start": 8250.64, + "end": 8251.54, + "probability": 0.8374 + }, + { + "start": 8251.64, + "end": 8253.72, + "probability": 0.8736 + }, + { + "start": 8255.03, + "end": 8257.25, + "probability": 0.7227 + }, + { + "start": 8258.06, + "end": 8260.86, + "probability": 0.9039 + }, + { + "start": 8262.44, + "end": 8263.84, + "probability": 0.939 + }, + { + "start": 8264.56, + "end": 8264.98, + "probability": 0.8421 + }, + { + "start": 8265.56, + "end": 8270.82, + "probability": 0.9749 + }, + { + "start": 8271.32, + "end": 8272.1, + "probability": 0.2584 + }, + { + "start": 8272.7, + "end": 8276.74, + "probability": 0.9885 + }, + { + "start": 8276.96, + "end": 8280.0, + "probability": 0.732 + }, + { + "start": 8280.08, + "end": 8281.44, + "probability": 0.8014 + }, + { + "start": 8282.0, + "end": 8286.38, + "probability": 0.95 + }, + { + "start": 8287.28, + "end": 8289.76, + "probability": 0.9912 + }, + { + "start": 8289.76, + "end": 8293.86, + "probability": 0.9795 + }, + { + "start": 8294.6, + "end": 8295.3, + "probability": 0.659 + }, + { + "start": 8295.32, + "end": 8295.54, + "probability": 0.7812 + }, + { + "start": 8295.88, + "end": 8299.44, + "probability": 0.9339 + }, + { + "start": 8300.0, + "end": 8303.4, + "probability": 0.8561 + }, + { + "start": 8303.8, + "end": 8304.94, + "probability": 0.8499 + }, + { + "start": 8305.58, + "end": 8307.52, + "probability": 0.9613 + }, + { + "start": 8308.74, + "end": 8313.46, + "probability": 0.9463 + }, + { + "start": 8313.88, + "end": 8314.48, + "probability": 0.9326 + }, + { + "start": 8315.14, + "end": 8316.12, + "probability": 0.7856 + }, + { + "start": 8316.74, + "end": 8317.66, + "probability": 0.9782 + }, + { + "start": 8318.0, + "end": 8319.0, + "probability": 0.9306 + }, + { + "start": 8319.28, + "end": 8323.78, + "probability": 0.7328 + }, + { + "start": 8324.32, + "end": 8325.7, + "probability": 0.9451 + }, + { + "start": 8326.44, + "end": 8328.18, + "probability": 0.9868 + }, + { + "start": 8328.26, + "end": 8329.16, + "probability": 0.6831 + }, + { + "start": 8329.88, + "end": 8333.48, + "probability": 0.9932 + }, + { + "start": 8333.68, + "end": 8334.94, + "probability": 0.7579 + }, + { + "start": 8335.66, + "end": 8338.2, + "probability": 0.8242 + }, + { + "start": 8338.56, + "end": 8339.9, + "probability": 0.9163 + }, + { + "start": 8340.76, + "end": 8342.06, + "probability": 0.825 + }, + { + "start": 8342.62, + "end": 8344.98, + "probability": 0.7913 + }, + { + "start": 8345.36, + "end": 8347.52, + "probability": 0.7014 + }, + { + "start": 8348.78, + "end": 8349.36, + "probability": 0.6947 + }, + { + "start": 8349.52, + "end": 8353.0, + "probability": 0.9907 + }, + { + "start": 8353.1, + "end": 8356.24, + "probability": 0.8272 + }, + { + "start": 8356.36, + "end": 8356.76, + "probability": 0.2718 + }, + { + "start": 8357.42, + "end": 8358.62, + "probability": 0.9912 + }, + { + "start": 8358.72, + "end": 8363.14, + "probability": 0.9802 + }, + { + "start": 8363.22, + "end": 8363.94, + "probability": 0.9479 + }, + { + "start": 8364.52, + "end": 8366.56, + "probability": 0.991 + }, + { + "start": 8367.2, + "end": 8370.44, + "probability": 0.9724 + }, + { + "start": 8371.0, + "end": 8371.76, + "probability": 0.5408 + }, + { + "start": 8372.12, + "end": 8374.3, + "probability": 0.8378 + }, + { + "start": 8375.28, + "end": 8375.88, + "probability": 0.9634 + }, + { + "start": 8376.06, + "end": 8376.5, + "probability": 0.2749 + }, + { + "start": 8376.58, + "end": 8378.42, + "probability": 0.9372 + }, + { + "start": 8378.84, + "end": 8379.8, + "probability": 0.6921 + }, + { + "start": 8380.32, + "end": 8384.5, + "probability": 0.897 + }, + { + "start": 8385.36, + "end": 8385.8, + "probability": 0.9254 + }, + { + "start": 8385.84, + "end": 8387.5, + "probability": 0.7887 + }, + { + "start": 8387.98, + "end": 8390.88, + "probability": 0.8164 + }, + { + "start": 8391.7, + "end": 8395.48, + "probability": 0.997 + }, + { + "start": 8395.62, + "end": 8396.9, + "probability": 0.8975 + }, + { + "start": 8396.98, + "end": 8399.1, + "probability": 0.995 + }, + { + "start": 8399.72, + "end": 8401.19, + "probability": 0.6807 + }, + { + "start": 8402.88, + "end": 8403.42, + "probability": 0.916 + }, + { + "start": 8403.56, + "end": 8405.83, + "probability": 0.937 + }, + { + "start": 8406.7, + "end": 8407.8, + "probability": 0.7243 + }, + { + "start": 8408.64, + "end": 8414.3, + "probability": 0.9766 + }, + { + "start": 8414.42, + "end": 8415.56, + "probability": 0.8621 + }, + { + "start": 8416.19, + "end": 8419.66, + "probability": 0.9536 + }, + { + "start": 8420.8, + "end": 8428.42, + "probability": 0.9868 + }, + { + "start": 8428.42, + "end": 8434.84, + "probability": 0.9929 + }, + { + "start": 8435.2, + "end": 8436.08, + "probability": 0.4897 + }, + { + "start": 8436.28, + "end": 8437.04, + "probability": 0.953 + }, + { + "start": 8437.56, + "end": 8439.14, + "probability": 0.9968 + }, + { + "start": 8439.7, + "end": 8439.78, + "probability": 0.8223 + }, + { + "start": 8439.92, + "end": 8442.22, + "probability": 0.5812 + }, + { + "start": 8442.72, + "end": 8444.2, + "probability": 0.6781 + }, + { + "start": 8444.24, + "end": 8446.54, + "probability": 0.9619 + }, + { + "start": 8446.84, + "end": 8447.7, + "probability": 0.9729 + }, + { + "start": 8448.44, + "end": 8451.0, + "probability": 0.8105 + }, + { + "start": 8451.76, + "end": 8452.26, + "probability": 0.8124 + }, + { + "start": 8452.36, + "end": 8457.06, + "probability": 0.9707 + }, + { + "start": 8457.9, + "end": 8460.22, + "probability": 0.9102 + }, + { + "start": 8460.3, + "end": 8461.1, + "probability": 0.9309 + }, + { + "start": 8461.92, + "end": 8462.5, + "probability": 0.9309 + }, + { + "start": 8463.02, + "end": 8463.34, + "probability": 0.6583 + }, + { + "start": 8463.92, + "end": 8465.88, + "probability": 0.9818 + }, + { + "start": 8466.44, + "end": 8469.92, + "probability": 0.9045 + }, + { + "start": 8471.73, + "end": 8474.14, + "probability": 0.9648 + }, + { + "start": 8474.52, + "end": 8476.92, + "probability": 0.9922 + }, + { + "start": 8477.5, + "end": 8478.96, + "probability": 0.6461 + }, + { + "start": 8479.12, + "end": 8483.28, + "probability": 0.9949 + }, + { + "start": 8483.88, + "end": 8483.88, + "probability": 0.4005 + }, + { + "start": 8484.12, + "end": 8484.32, + "probability": 0.4467 + }, + { + "start": 8484.38, + "end": 8485.52, + "probability": 0.7314 + }, + { + "start": 8485.58, + "end": 8487.3, + "probability": 0.9633 + }, + { + "start": 8487.62, + "end": 8488.8, + "probability": 0.9907 + }, + { + "start": 8489.94, + "end": 8491.28, + "probability": 0.9873 + }, + { + "start": 8491.62, + "end": 8493.46, + "probability": 0.9237 + }, + { + "start": 8493.98, + "end": 8496.02, + "probability": 0.9978 + }, + { + "start": 8497.36, + "end": 8498.34, + "probability": 0.6657 + }, + { + "start": 8498.92, + "end": 8501.62, + "probability": 0.9934 + }, + { + "start": 8502.58, + "end": 8503.52, + "probability": 0.7189 + }, + { + "start": 8503.78, + "end": 8505.5, + "probability": 0.7672 + }, + { + "start": 8505.88, + "end": 8507.56, + "probability": 0.9194 + }, + { + "start": 8508.1, + "end": 8510.08, + "probability": 0.9567 + }, + { + "start": 8510.18, + "end": 8511.16, + "probability": 0.865 + }, + { + "start": 8511.64, + "end": 8513.18, + "probability": 0.7287 + }, + { + "start": 8513.96, + "end": 8514.66, + "probability": 0.9072 + }, + { + "start": 8515.14, + "end": 8517.38, + "probability": 0.9683 + }, + { + "start": 8517.82, + "end": 8518.18, + "probability": 0.339 + }, + { + "start": 8518.37, + "end": 8520.24, + "probability": 0.9524 + }, + { + "start": 8520.3, + "end": 8521.38, + "probability": 0.9158 + }, + { + "start": 8521.6, + "end": 8523.12, + "probability": 0.9612 + }, + { + "start": 8523.58, + "end": 8528.02, + "probability": 0.9926 + }, + { + "start": 8528.6, + "end": 8529.96, + "probability": 0.4458 + }, + { + "start": 8531.82, + "end": 8533.38, + "probability": 0.8664 + }, + { + "start": 8533.48, + "end": 8535.02, + "probability": 0.8735 + }, + { + "start": 8535.46, + "end": 8536.62, + "probability": 0.7992 + }, + { + "start": 8537.22, + "end": 8540.42, + "probability": 0.9935 + }, + { + "start": 8540.56, + "end": 8541.46, + "probability": 0.824 + }, + { + "start": 8542.06, + "end": 8544.74, + "probability": 0.9833 + }, + { + "start": 8545.1, + "end": 8547.88, + "probability": 0.6579 + }, + { + "start": 8548.42, + "end": 8552.42, + "probability": 0.7835 + }, + { + "start": 8552.82, + "end": 8554.24, + "probability": 0.7917 + }, + { + "start": 8554.34, + "end": 8555.02, + "probability": 0.9579 + }, + { + "start": 8555.4, + "end": 8557.66, + "probability": 0.8801 + }, + { + "start": 8558.24, + "end": 8558.88, + "probability": 0.8538 + }, + { + "start": 8559.16, + "end": 8560.7, + "probability": 0.5879 + }, + { + "start": 8561.06, + "end": 8562.9, + "probability": 0.8273 + }, + { + "start": 8563.04, + "end": 8563.8, + "probability": 0.8947 + }, + { + "start": 8564.36, + "end": 8566.84, + "probability": 0.9796 + }, + { + "start": 8567.36, + "end": 8569.4, + "probability": 0.9255 + }, + { + "start": 8569.92, + "end": 8572.22, + "probability": 0.9763 + }, + { + "start": 8572.68, + "end": 8575.98, + "probability": 0.9972 + }, + { + "start": 8575.98, + "end": 8578.78, + "probability": 0.9956 + }, + { + "start": 8579.14, + "end": 8580.76, + "probability": 0.9895 + }, + { + "start": 8581.2, + "end": 8582.96, + "probability": 0.999 + }, + { + "start": 8583.5, + "end": 8585.14, + "probability": 0.5963 + }, + { + "start": 8585.72, + "end": 8590.18, + "probability": 0.8102 + }, + { + "start": 8590.66, + "end": 8593.1, + "probability": 0.7744 + }, + { + "start": 8594.8, + "end": 8599.78, + "probability": 0.9521 + }, + { + "start": 8599.8, + "end": 8601.16, + "probability": 0.6101 + }, + { + "start": 8601.28, + "end": 8601.8, + "probability": 0.9014 + }, + { + "start": 8601.8, + "end": 8607.28, + "probability": 0.9602 + }, + { + "start": 8607.34, + "end": 8607.76, + "probability": 0.5667 + }, + { + "start": 8607.94, + "end": 8608.5, + "probability": 0.7548 + }, + { + "start": 8608.58, + "end": 8609.52, + "probability": 0.9497 + }, + { + "start": 8609.82, + "end": 8615.14, + "probability": 0.9965 + }, + { + "start": 8615.66, + "end": 8618.16, + "probability": 0.9982 + }, + { + "start": 8618.7, + "end": 8620.44, + "probability": 0.6659 + }, + { + "start": 8620.8, + "end": 8624.66, + "probability": 0.922 + }, + { + "start": 8624.8, + "end": 8624.92, + "probability": 0.6696 + }, + { + "start": 8625.18, + "end": 8629.6, + "probability": 0.8331 + }, + { + "start": 8630.06, + "end": 8631.36, + "probability": 0.7929 + }, + { + "start": 8632.0, + "end": 8634.86, + "probability": 0.9465 + }, + { + "start": 8635.14, + "end": 8635.84, + "probability": 0.7641 + }, + { + "start": 8636.8, + "end": 8637.48, + "probability": 0.51 + }, + { + "start": 8637.48, + "end": 8639.02, + "probability": 0.599 + }, + { + "start": 8639.52, + "end": 8640.31, + "probability": 0.3424 + }, + { + "start": 8640.56, + "end": 8643.56, + "probability": 0.8298 + }, + { + "start": 8643.96, + "end": 8646.36, + "probability": 0.7338 + }, + { + "start": 8646.46, + "end": 8647.4, + "probability": 0.4641 + }, + { + "start": 8647.72, + "end": 8650.64, + "probability": 0.9715 + }, + { + "start": 8650.94, + "end": 8651.7, + "probability": 0.9727 + }, + { + "start": 8652.04, + "end": 8653.2, + "probability": 0.8964 + }, + { + "start": 8653.24, + "end": 8653.9, + "probability": 0.4326 + }, + { + "start": 8654.4, + "end": 8655.2, + "probability": 0.8632 + }, + { + "start": 8656.36, + "end": 8663.1, + "probability": 0.5712 + }, + { + "start": 8675.84, + "end": 8676.02, + "probability": 0.0222 + }, + { + "start": 8676.02, + "end": 8676.48, + "probability": 0.4766 + }, + { + "start": 8677.1, + "end": 8677.72, + "probability": 0.959 + }, + { + "start": 8680.6, + "end": 8681.92, + "probability": 0.7061 + }, + { + "start": 8682.22, + "end": 8683.3, + "probability": 0.8194 + }, + { + "start": 8683.56, + "end": 8686.74, + "probability": 0.997 + }, + { + "start": 8686.88, + "end": 8693.64, + "probability": 0.9254 + }, + { + "start": 8694.08, + "end": 8697.94, + "probability": 0.9956 + }, + { + "start": 8697.94, + "end": 8700.9, + "probability": 0.8995 + }, + { + "start": 8701.0, + "end": 8702.88, + "probability": 0.9922 + }, + { + "start": 8703.94, + "end": 8708.22, + "probability": 0.9866 + }, + { + "start": 8709.04, + "end": 8714.16, + "probability": 0.9891 + }, + { + "start": 8715.28, + "end": 8718.6, + "probability": 0.9939 + }, + { + "start": 8719.14, + "end": 8720.78, + "probability": 0.771 + }, + { + "start": 8721.34, + "end": 8721.86, + "probability": 0.5048 + }, + { + "start": 8722.48, + "end": 8722.48, + "probability": 0.3792 + }, + { + "start": 8724.59, + "end": 8725.36, + "probability": 0.6316 + }, + { + "start": 8726.26, + "end": 8727.3, + "probability": 0.2035 + }, + { + "start": 8727.44, + "end": 8733.96, + "probability": 0.9271 + }, + { + "start": 8734.22, + "end": 8734.8, + "probability": 0.0702 + }, + { + "start": 8735.1, + "end": 8735.16, + "probability": 0.2131 + }, + { + "start": 8735.16, + "end": 8736.27, + "probability": 0.5584 + }, + { + "start": 8737.26, + "end": 8738.63, + "probability": 0.7752 + }, + { + "start": 8740.7, + "end": 8746.9, + "probability": 0.7778 + }, + { + "start": 8747.3, + "end": 8749.01, + "probability": 0.9307 + }, + { + "start": 8750.29, + "end": 8754.71, + "probability": 0.8773 + }, + { + "start": 8755.17, + "end": 8759.03, + "probability": 0.9472 + }, + { + "start": 8759.13, + "end": 8763.79, + "probability": 0.6787 + }, + { + "start": 8763.79, + "end": 8765.93, + "probability": 0.5371 + }, + { + "start": 8765.93, + "end": 8766.25, + "probability": 0.2435 + }, + { + "start": 8766.45, + "end": 8768.19, + "probability": 0.2835 + }, + { + "start": 8769.35, + "end": 8774.11, + "probability": 0.1148 + }, + { + "start": 8778.51, + "end": 8778.79, + "probability": 0.3528 + }, + { + "start": 8780.95, + "end": 8780.95, + "probability": 0.0015 + }, + { + "start": 8799.24, + "end": 8802.27, + "probability": 0.1211 + }, + { + "start": 8802.29, + "end": 8804.45, + "probability": 0.0793 + }, + { + "start": 8806.65, + "end": 8807.29, + "probability": 0.3 + }, + { + "start": 8812.26, + "end": 8814.2, + "probability": 0.1179 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8872.14, + "end": 8872.22, + "probability": 0.1182 + }, + { + "start": 8872.22, + "end": 8873.46, + "probability": 0.1217 + }, + { + "start": 8873.54, + "end": 8875.8, + "probability": 0.9017 + }, + { + "start": 8876.16, + "end": 8879.6, + "probability": 0.5726 + }, + { + "start": 8880.12, + "end": 8882.5, + "probability": 0.1949 + }, + { + "start": 8883.14, + "end": 8884.08, + "probability": 0.1016 + }, + { + "start": 8884.26, + "end": 8885.26, + "probability": 0.587 + }, + { + "start": 8885.4, + "end": 8886.38, + "probability": 0.5248 + }, + { + "start": 8886.69, + "end": 8889.08, + "probability": 0.9849 + }, + { + "start": 8889.34, + "end": 8890.98, + "probability": 0.9724 + }, + { + "start": 8891.1, + "end": 8895.52, + "probability": 0.4915 + }, + { + "start": 8895.58, + "end": 8896.86, + "probability": 0.4735 + }, + { + "start": 8897.52, + "end": 8897.64, + "probability": 0.0006 + }, + { + "start": 8897.64, + "end": 8899.71, + "probability": 0.4244 + }, + { + "start": 8900.08, + "end": 8902.8, + "probability": 0.8852 + }, + { + "start": 8902.86, + "end": 8904.3, + "probability": 0.8231 + }, + { + "start": 8904.52, + "end": 8910.47, + "probability": 0.9795 + }, + { + "start": 8911.82, + "end": 8912.04, + "probability": 0.1734 + }, + { + "start": 8912.04, + "end": 8912.24, + "probability": 0.025 + }, + { + "start": 8912.46, + "end": 8916.74, + "probability": 0.6697 + }, + { + "start": 8916.74, + "end": 8919.29, + "probability": 0.8549 + }, + { + "start": 8920.3, + "end": 8921.21, + "probability": 0.8387 + }, + { + "start": 8923.74, + "end": 8927.87, + "probability": 0.8322 + }, + { + "start": 8928.0, + "end": 8930.72, + "probability": 0.1527 + }, + { + "start": 8931.15, + "end": 8931.22, + "probability": 0.3089 + }, + { + "start": 8931.22, + "end": 8934.74, + "probability": 0.9465 + }, + { + "start": 8935.88, + "end": 8937.0, + "probability": 0.4944 + }, + { + "start": 8937.0, + "end": 8937.0, + "probability": 0.634 + }, + { + "start": 8937.04, + "end": 8938.34, + "probability": 0.9639 + }, + { + "start": 8938.66, + "end": 8941.1, + "probability": 0.9744 + }, + { + "start": 8941.2, + "end": 8945.32, + "probability": 0.9919 + }, + { + "start": 8945.92, + "end": 8946.58, + "probability": 0.8094 + }, + { + "start": 8948.32, + "end": 8952.86, + "probability": 0.6547 + }, + { + "start": 8952.98, + "end": 8955.78, + "probability": 0.0267 + }, + { + "start": 8956.72, + "end": 8957.78, + "probability": 0.3382 + }, + { + "start": 8957.82, + "end": 8957.88, + "probability": 0.0692 + }, + { + "start": 8958.84, + "end": 8961.84, + "probability": 0.2519 + }, + { + "start": 8962.44, + "end": 8964.52, + "probability": 0.3188 + }, + { + "start": 8964.98, + "end": 8964.98, + "probability": 0.0263 + }, + { + "start": 8964.98, + "end": 8965.7, + "probability": 0.5726 + }, + { + "start": 8965.7, + "end": 8965.98, + "probability": 0.6576 + }, + { + "start": 8966.38, + "end": 8969.2, + "probability": 0.4068 + }, + { + "start": 8969.68, + "end": 8970.66, + "probability": 0.4621 + }, + { + "start": 8970.88, + "end": 8971.37, + "probability": 0.3224 + }, + { + "start": 8972.44, + "end": 8976.1, + "probability": 0.7724 + }, + { + "start": 8976.48, + "end": 8981.38, + "probability": 0.9771 + }, + { + "start": 8982.0, + "end": 8985.57, + "probability": 0.8525 + }, + { + "start": 8985.76, + "end": 8986.46, + "probability": 0.9927 + }, + { + "start": 8987.74, + "end": 8988.48, + "probability": 0.0323 + }, + { + "start": 8988.48, + "end": 8989.76, + "probability": 0.2298 + }, + { + "start": 8989.94, + "end": 8990.06, + "probability": 0.0081 + }, + { + "start": 8991.68, + "end": 8994.6, + "probability": 0.4311 + }, + { + "start": 8994.98, + "end": 8995.92, + "probability": 0.7584 + }, + { + "start": 8996.02, + "end": 8997.02, + "probability": 0.5013 + }, + { + "start": 8997.42, + "end": 8999.38, + "probability": 0.6266 + }, + { + "start": 8999.62, + "end": 9000.38, + "probability": 0.3458 + }, + { + "start": 9000.66, + "end": 9001.04, + "probability": 0.6458 + }, + { + "start": 9001.42, + "end": 9004.5, + "probability": 0.3811 + }, + { + "start": 9004.5, + "end": 9007.3, + "probability": 0.7647 + }, + { + "start": 9007.68, + "end": 9009.96, + "probability": 0.5664 + }, + { + "start": 9011.64, + "end": 9012.6, + "probability": 0.2166 + }, + { + "start": 9012.6, + "end": 9013.64, + "probability": 0.0514 + }, + { + "start": 9014.48, + "end": 9015.16, + "probability": 0.2617 + }, + { + "start": 9015.64, + "end": 9016.7, + "probability": 0.7693 + }, + { + "start": 9016.86, + "end": 9020.94, + "probability": 0.9933 + }, + { + "start": 9023.72, + "end": 9023.72, + "probability": 0.026 + }, + { + "start": 9023.72, + "end": 9024.86, + "probability": 0.719 + }, + { + "start": 9024.96, + "end": 9026.2, + "probability": 0.8465 + }, + { + "start": 9026.62, + "end": 9027.66, + "probability": 0.7275 + }, + { + "start": 9028.0, + "end": 9029.34, + "probability": 0.8662 + }, + { + "start": 9029.34, + "end": 9029.68, + "probability": 0.0776 + }, + { + "start": 9030.0, + "end": 9032.46, + "probability": 0.7167 + }, + { + "start": 9033.6, + "end": 9040.9, + "probability": 0.9253 + }, + { + "start": 9041.32, + "end": 9043.54, + "probability": 0.8174 + }, + { + "start": 9046.9, + "end": 9050.88, + "probability": 0.8731 + }, + { + "start": 9052.0, + "end": 9054.38, + "probability": 0.9427 + }, + { + "start": 9054.64, + "end": 9056.29, + "probability": 0.9963 + }, + { + "start": 9057.82, + "end": 9063.2, + "probability": 0.9982 + }, + { + "start": 9063.78, + "end": 9065.6, + "probability": 0.9411 + }, + { + "start": 9066.26, + "end": 9069.98, + "probability": 0.8324 + }, + { + "start": 9070.54, + "end": 9073.26, + "probability": 0.9351 + }, + { + "start": 9074.54, + "end": 9075.12, + "probability": 0.7019 + }, + { + "start": 9075.44, + "end": 9080.88, + "probability": 0.9677 + }, + { + "start": 9081.72, + "end": 9082.49, + "probability": 0.9775 + }, + { + "start": 9083.34, + "end": 9085.84, + "probability": 0.9931 + }, + { + "start": 9086.26, + "end": 9086.5, + "probability": 0.6747 + }, + { + "start": 9088.16, + "end": 9089.88, + "probability": 0.9794 + }, + { + "start": 9091.64, + "end": 9093.07, + "probability": 0.9875 + }, + { + "start": 9094.2, + "end": 9095.08, + "probability": 0.7393 + }, + { + "start": 9096.36, + "end": 9101.66, + "probability": 0.9958 + }, + { + "start": 9103.22, + "end": 9107.28, + "probability": 0.9594 + }, + { + "start": 9107.44, + "end": 9110.3, + "probability": 0.9774 + }, + { + "start": 9110.86, + "end": 9115.58, + "probability": 0.9951 + }, + { + "start": 9123.32, + "end": 9126.44, + "probability": 0.8127 + }, + { + "start": 9127.38, + "end": 9128.32, + "probability": 0.925 + }, + { + "start": 9128.42, + "end": 9135.64, + "probability": 0.9336 + }, + { + "start": 9136.34, + "end": 9136.43, + "probability": 0.0373 + }, + { + "start": 9136.5, + "end": 9136.64, + "probability": 0.2122 + }, + { + "start": 9136.64, + "end": 9141.7, + "probability": 0.7882 + }, + { + "start": 9142.5, + "end": 9142.6, + "probability": 0.1462 + }, + { + "start": 9142.62, + "end": 9146.34, + "probability": 0.9902 + }, + { + "start": 9146.52, + "end": 9149.12, + "probability": 0.7535 + }, + { + "start": 9149.24, + "end": 9149.36, + "probability": 0.1126 + }, + { + "start": 9149.36, + "end": 9150.4, + "probability": 0.7822 + }, + { + "start": 9151.18, + "end": 9152.56, + "probability": 0.4927 + }, + { + "start": 9153.36, + "end": 9153.36, + "probability": 0.0153 + }, + { + "start": 9154.57, + "end": 9155.5, + "probability": 0.2844 + }, + { + "start": 9155.58, + "end": 9155.58, + "probability": 0.4692 + }, + { + "start": 9155.64, + "end": 9157.08, + "probability": 0.0783 + }, + { + "start": 9157.74, + "end": 9157.74, + "probability": 0.2094 + }, + { + "start": 9157.74, + "end": 9159.82, + "probability": 0.7155 + }, + { + "start": 9161.12, + "end": 9164.56, + "probability": 0.9941 + }, + { + "start": 9165.28, + "end": 9167.86, + "probability": 0.959 + }, + { + "start": 9168.46, + "end": 9169.16, + "probability": 0.9796 + }, + { + "start": 9170.5, + "end": 9171.64, + "probability": 0.8855 + }, + { + "start": 9172.58, + "end": 9177.48, + "probability": 0.9383 + }, + { + "start": 9178.1, + "end": 9180.64, + "probability": 0.9985 + }, + { + "start": 9181.4, + "end": 9182.96, + "probability": 0.9941 + }, + { + "start": 9184.8, + "end": 9186.68, + "probability": 0.7425 + }, + { + "start": 9187.28, + "end": 9190.62, + "probability": 0.9971 + }, + { + "start": 9191.44, + "end": 9194.9, + "probability": 0.9956 + }, + { + "start": 9195.28, + "end": 9201.44, + "probability": 0.9606 + }, + { + "start": 9202.2, + "end": 9204.82, + "probability": 0.9593 + }, + { + "start": 9210.12, + "end": 9210.64, + "probability": 0.225 + }, + { + "start": 9213.4, + "end": 9214.26, + "probability": 0.5815 + }, + { + "start": 9220.46, + "end": 9225.04, + "probability": 0.9795 + }, + { + "start": 9225.16, + "end": 9226.93, + "probability": 0.9734 + }, + { + "start": 9227.68, + "end": 9230.76, + "probability": 0.9958 + }, + { + "start": 9231.3, + "end": 9233.6, + "probability": 0.9702 + }, + { + "start": 9234.16, + "end": 9234.78, + "probability": 0.9277 + }, + { + "start": 9235.34, + "end": 9236.3, + "probability": 0.7753 + }, + { + "start": 9236.48, + "end": 9239.32, + "probability": 0.9942 + }, + { + "start": 9240.04, + "end": 9240.52, + "probability": 0.7481 + }, + { + "start": 9241.12, + "end": 9241.88, + "probability": 0.6475 + }, + { + "start": 9242.16, + "end": 9243.5, + "probability": 0.7551 + }, + { + "start": 9251.68, + "end": 9251.78, + "probability": 0.282 + }, + { + "start": 9251.78, + "end": 9251.9, + "probability": 0.3066 + }, + { + "start": 9251.9, + "end": 9251.9, + "probability": 0.3599 + }, + { + "start": 9251.9, + "end": 9251.9, + "probability": 0.1419 + }, + { + "start": 9251.9, + "end": 9252.94, + "probability": 0.0594 + }, + { + "start": 9253.56, + "end": 9254.22, + "probability": 0.0742 + }, + { + "start": 9254.22, + "end": 9254.22, + "probability": 0.1061 + }, + { + "start": 9254.22, + "end": 9258.04, + "probability": 0.015 + }, + { + "start": 9258.16, + "end": 9258.16, + "probability": 0.0032 + }, + { + "start": 9264.84, + "end": 9265.2, + "probability": 0.0325 + }, + { + "start": 9265.6, + "end": 9265.88, + "probability": 0.139 + }, + { + "start": 9266.06, + "end": 9266.26, + "probability": 0.0387 + }, + { + "start": 9266.26, + "end": 9266.26, + "probability": 0.5612 + }, + { + "start": 9266.26, + "end": 9266.26, + "probability": 0.0427 + }, + { + "start": 9266.26, + "end": 9266.26, + "probability": 0.2318 + }, + { + "start": 9266.92, + "end": 9267.18, + "probability": 0.0562 + }, + { + "start": 9267.18, + "end": 9267.48, + "probability": 0.1377 + }, + { + "start": 9274.0, + "end": 9274.02, + "probability": 0.2725 + }, + { + "start": 9282.1, + "end": 9283.04, + "probability": 0.2258 + }, + { + "start": 9302.66, + "end": 9306.82, + "probability": 0.3543 + }, + { + "start": 9307.58, + "end": 9310.3, + "probability": 0.6982 + }, + { + "start": 9310.92, + "end": 9311.68, + "probability": 0.9404 + }, + { + "start": 9312.1, + "end": 9316.2, + "probability": 0.8111 + }, + { + "start": 9317.78, + "end": 9317.96, + "probability": 0.2661 + }, + { + "start": 9318.44, + "end": 9319.64, + "probability": 0.9907 + }, + { + "start": 9320.38, + "end": 9321.02, + "probability": 0.4612 + }, + { + "start": 9321.02, + "end": 9321.02, + "probability": 0.3902 + }, + { + "start": 9321.02, + "end": 9322.63, + "probability": 0.8584 + }, + { + "start": 9322.9, + "end": 9325.42, + "probability": 0.7279 + }, + { + "start": 9326.1, + "end": 9329.08, + "probability": 0.9285 + }, + { + "start": 9329.2, + "end": 9329.74, + "probability": 0.7678 + }, + { + "start": 9330.71, + "end": 9332.32, + "probability": 0.8097 + }, + { + "start": 9332.42, + "end": 9333.4, + "probability": 0.756 + }, + { + "start": 9333.82, + "end": 9335.26, + "probability": 0.9418 + }, + { + "start": 9335.82, + "end": 9338.4, + "probability": 0.9655 + }, + { + "start": 9338.6, + "end": 9342.62, + "probability": 0.9866 + }, + { + "start": 9343.4, + "end": 9344.78, + "probability": 0.9818 + }, + { + "start": 9345.38, + "end": 9349.92, + "probability": 0.8477 + }, + { + "start": 9350.48, + "end": 9352.0, + "probability": 0.9077 + }, + { + "start": 9352.56, + "end": 9355.66, + "probability": 0.8702 + }, + { + "start": 9356.32, + "end": 9360.06, + "probability": 0.9426 + }, + { + "start": 9361.08, + "end": 9364.74, + "probability": 0.9691 + }, + { + "start": 9365.58, + "end": 9366.26, + "probability": 0.5877 + }, + { + "start": 9366.38, + "end": 9367.15, + "probability": 0.8684 + }, + { + "start": 9367.56, + "end": 9367.7, + "probability": 0.1847 + }, + { + "start": 9367.88, + "end": 9370.78, + "probability": 0.809 + }, + { + "start": 9371.3, + "end": 9374.08, + "probability": 0.7184 + }, + { + "start": 9374.16, + "end": 9374.86, + "probability": 0.7515 + }, + { + "start": 9375.7, + "end": 9380.74, + "probability": 0.9675 + }, + { + "start": 9381.38, + "end": 9384.16, + "probability": 0.6286 + }, + { + "start": 9384.88, + "end": 9386.22, + "probability": 0.8669 + }, + { + "start": 9386.32, + "end": 9386.78, + "probability": 0.9018 + }, + { + "start": 9387.2, + "end": 9391.32, + "probability": 0.9402 + }, + { + "start": 9391.58, + "end": 9392.5, + "probability": 0.9521 + }, + { + "start": 9393.46, + "end": 9396.82, + "probability": 0.9453 + }, + { + "start": 9397.34, + "end": 9399.2, + "probability": 0.9979 + }, + { + "start": 9400.04, + "end": 9404.32, + "probability": 0.875 + }, + { + "start": 9404.7, + "end": 9405.26, + "probability": 0.9323 + }, + { + "start": 9405.66, + "end": 9406.68, + "probability": 0.993 + }, + { + "start": 9407.08, + "end": 9409.66, + "probability": 0.9704 + }, + { + "start": 9410.12, + "end": 9411.88, + "probability": 0.9856 + }, + { + "start": 9412.26, + "end": 9414.04, + "probability": 0.9773 + }, + { + "start": 9414.5, + "end": 9415.13, + "probability": 0.7488 + }, + { + "start": 9415.6, + "end": 9416.34, + "probability": 0.8188 + }, + { + "start": 9416.74, + "end": 9419.12, + "probability": 0.9728 + }, + { + "start": 9419.44, + "end": 9420.54, + "probability": 0.7994 + }, + { + "start": 9420.88, + "end": 9422.52, + "probability": 0.9915 + }, + { + "start": 9422.98, + "end": 9424.6, + "probability": 0.9971 + }, + { + "start": 9425.14, + "end": 9426.6, + "probability": 0.8577 + }, + { + "start": 9427.12, + "end": 9429.78, + "probability": 0.3862 + }, + { + "start": 9429.78, + "end": 9430.68, + "probability": 0.5621 + }, + { + "start": 9431.08, + "end": 9433.64, + "probability": 0.9076 + }, + { + "start": 9433.82, + "end": 9436.22, + "probability": 0.925 + }, + { + "start": 9436.62, + "end": 9438.5, + "probability": 0.9557 + }, + { + "start": 9438.94, + "end": 9440.66, + "probability": 0.985 + }, + { + "start": 9441.06, + "end": 9441.9, + "probability": 0.9932 + }, + { + "start": 9442.22, + "end": 9443.06, + "probability": 0.8252 + }, + { + "start": 9443.54, + "end": 9448.7, + "probability": 0.9827 + }, + { + "start": 9449.32, + "end": 9452.56, + "probability": 0.9671 + }, + { + "start": 9453.6, + "end": 9456.38, + "probability": 0.8783 + }, + { + "start": 9456.46, + "end": 9457.95, + "probability": 0.7518 + }, + { + "start": 9459.16, + "end": 9460.66, + "probability": 0.9746 + }, + { + "start": 9460.88, + "end": 9461.99, + "probability": 0.4195 + }, + { + "start": 9463.28, + "end": 9465.86, + "probability": 0.9046 + }, + { + "start": 9465.98, + "end": 9467.92, + "probability": 0.5577 + }, + { + "start": 9468.04, + "end": 9468.66, + "probability": 0.5652 + }, + { + "start": 9469.02, + "end": 9469.92, + "probability": 0.7016 + }, + { + "start": 9470.12, + "end": 9470.66, + "probability": 0.5042 + }, + { + "start": 9485.13, + "end": 9486.91, + "probability": 0.0842 + }, + { + "start": 9487.6, + "end": 9488.34, + "probability": 0.0289 + }, + { + "start": 9489.32, + "end": 9489.32, + "probability": 0.0344 + }, + { + "start": 9489.32, + "end": 9489.92, + "probability": 0.2841 + }, + { + "start": 9493.02, + "end": 9493.82, + "probability": 0.4157 + }, + { + "start": 9493.94, + "end": 9494.26, + "probability": 0.4262 + }, + { + "start": 9494.44, + "end": 9498.24, + "probability": 0.8997 + }, + { + "start": 9498.8, + "end": 9501.42, + "probability": 0.8707 + }, + { + "start": 9502.3, + "end": 9503.48, + "probability": 0.1959 + }, + { + "start": 9503.66, + "end": 9505.81, + "probability": 0.5324 + }, + { + "start": 9506.22, + "end": 9506.5, + "probability": 0.3169 + }, + { + "start": 9506.5, + "end": 9507.34, + "probability": 0.6541 + }, + { + "start": 9507.46, + "end": 9508.2, + "probability": 0.6622 + }, + { + "start": 9508.3, + "end": 9509.72, + "probability": 0.9182 + }, + { + "start": 9510.1, + "end": 9513.6, + "probability": 0.0751 + }, + { + "start": 9514.44, + "end": 9515.46, + "probability": 0.0014 + }, + { + "start": 9515.46, + "end": 9515.46, + "probability": 0.0663 + }, + { + "start": 9515.46, + "end": 9515.52, + "probability": 0.1645 + }, + { + "start": 9515.52, + "end": 9517.14, + "probability": 0.0286 + }, + { + "start": 9517.24, + "end": 9518.4, + "probability": 0.6351 + }, + { + "start": 9518.84, + "end": 9519.7, + "probability": 0.7368 + }, + { + "start": 9540.88, + "end": 9542.04, + "probability": 0.9038 + }, + { + "start": 9548.74, + "end": 9550.38, + "probability": 0.7031 + }, + { + "start": 9553.06, + "end": 9555.36, + "probability": 0.7982 + }, + { + "start": 9556.68, + "end": 9560.74, + "probability": 0.8994 + }, + { + "start": 9562.1, + "end": 9565.5, + "probability": 0.8716 + }, + { + "start": 9566.38, + "end": 9568.3, + "probability": 0.8417 + }, + { + "start": 9568.8, + "end": 9569.62, + "probability": 0.9561 + }, + { + "start": 9569.74, + "end": 9570.36, + "probability": 0.9099 + }, + { + "start": 9571.14, + "end": 9572.1, + "probability": 0.8222 + }, + { + "start": 9573.7, + "end": 9574.34, + "probability": 0.7964 + }, + { + "start": 9577.36, + "end": 9577.98, + "probability": 0.7915 + }, + { + "start": 9578.5, + "end": 9583.44, + "probability": 0.9896 + }, + { + "start": 9583.5, + "end": 9583.76, + "probability": 0.8864 + }, + { + "start": 9584.1, + "end": 9585.52, + "probability": 0.4333 + }, + { + "start": 9585.52, + "end": 9590.06, + "probability": 0.9154 + }, + { + "start": 9590.74, + "end": 9596.12, + "probability": 0.9502 + }, + { + "start": 9597.24, + "end": 9598.64, + "probability": 0.9561 + }, + { + "start": 9604.06, + "end": 9605.78, + "probability": 0.8841 + }, + { + "start": 9606.9, + "end": 9608.68, + "probability": 0.8434 + }, + { + "start": 9608.8, + "end": 9610.38, + "probability": 0.6901 + }, + { + "start": 9611.04, + "end": 9617.12, + "probability": 0.9909 + }, + { + "start": 9617.96, + "end": 9621.16, + "probability": 0.9553 + }, + { + "start": 9623.92, + "end": 9629.56, + "probability": 0.984 + }, + { + "start": 9631.08, + "end": 9632.24, + "probability": 0.9192 + }, + { + "start": 9633.44, + "end": 9636.74, + "probability": 0.8983 + }, + { + "start": 9637.4, + "end": 9638.7, + "probability": 0.6321 + }, + { + "start": 9639.74, + "end": 9644.18, + "probability": 0.9913 + }, + { + "start": 9645.58, + "end": 9651.0, + "probability": 0.9988 + }, + { + "start": 9651.18, + "end": 9654.58, + "probability": 0.9969 + }, + { + "start": 9655.44, + "end": 9662.54, + "probability": 0.9973 + }, + { + "start": 9663.2, + "end": 9666.04, + "probability": 0.993 + }, + { + "start": 9666.58, + "end": 9668.82, + "probability": 0.9847 + }, + { + "start": 9669.4, + "end": 9672.44, + "probability": 0.992 + }, + { + "start": 9673.16, + "end": 9674.8, + "probability": 0.9431 + }, + { + "start": 9675.82, + "end": 9677.71, + "probability": 0.897 + }, + { + "start": 9680.84, + "end": 9681.72, + "probability": 0.9552 + }, + { + "start": 9682.46, + "end": 9684.0, + "probability": 0.998 + }, + { + "start": 9684.72, + "end": 9688.24, + "probability": 0.7896 + }, + { + "start": 9689.82, + "end": 9694.42, + "probability": 0.9779 + }, + { + "start": 9696.02, + "end": 9698.94, + "probability": 0.8783 + }, + { + "start": 9700.4, + "end": 9701.58, + "probability": 0.9985 + }, + { + "start": 9702.8, + "end": 9709.36, + "probability": 0.8875 + }, + { + "start": 9710.2, + "end": 9712.38, + "probability": 0.8896 + }, + { + "start": 9713.32, + "end": 9717.54, + "probability": 0.8743 + }, + { + "start": 9718.38, + "end": 9721.12, + "probability": 0.8874 + }, + { + "start": 9723.68, + "end": 9728.86, + "probability": 0.8391 + }, + { + "start": 9729.8, + "end": 9735.48, + "probability": 0.9961 + }, + { + "start": 9736.44, + "end": 9740.36, + "probability": 0.8693 + }, + { + "start": 9741.2, + "end": 9741.88, + "probability": 0.576 + }, + { + "start": 9742.4, + "end": 9748.2, + "probability": 0.9889 + }, + { + "start": 9749.02, + "end": 9750.74, + "probability": 0.9506 + }, + { + "start": 9751.76, + "end": 9755.66, + "probability": 0.996 + }, + { + "start": 9756.02, + "end": 9757.0, + "probability": 0.9925 + }, + { + "start": 9757.44, + "end": 9759.06, + "probability": 0.9899 + }, + { + "start": 9759.62, + "end": 9761.24, + "probability": 0.9921 + }, + { + "start": 9761.78, + "end": 9762.94, + "probability": 0.9881 + }, + { + "start": 9764.24, + "end": 9766.26, + "probability": 0.9995 + }, + { + "start": 9767.06, + "end": 9768.12, + "probability": 0.8849 + }, + { + "start": 9768.96, + "end": 9769.54, + "probability": 0.9046 + }, + { + "start": 9770.12, + "end": 9774.34, + "probability": 0.9817 + }, + { + "start": 9774.86, + "end": 9776.46, + "probability": 0.9795 + }, + { + "start": 9777.2, + "end": 9778.62, + "probability": 0.6903 + }, + { + "start": 9779.36, + "end": 9782.52, + "probability": 0.9688 + }, + { + "start": 9783.6, + "end": 9787.36, + "probability": 0.8831 + }, + { + "start": 9788.14, + "end": 9789.46, + "probability": 0.9785 + }, + { + "start": 9790.12, + "end": 9792.2, + "probability": 0.8711 + }, + { + "start": 9793.08, + "end": 9796.74, + "probability": 0.9935 + }, + { + "start": 9796.82, + "end": 9798.74, + "probability": 0.9763 + }, + { + "start": 9799.46, + "end": 9803.6, + "probability": 0.8605 + }, + { + "start": 9805.2, + "end": 9808.08, + "probability": 0.9956 + }, + { + "start": 9808.8, + "end": 9809.9, + "probability": 0.6001 + }, + { + "start": 9810.1, + "end": 9812.18, + "probability": 0.9175 + }, + { + "start": 9812.64, + "end": 9816.12, + "probability": 0.9536 + }, + { + "start": 9817.1, + "end": 9820.72, + "probability": 0.8758 + }, + { + "start": 9821.32, + "end": 9823.9, + "probability": 0.9839 + }, + { + "start": 9824.92, + "end": 9825.36, + "probability": 0.7176 + }, + { + "start": 9828.94, + "end": 9831.32, + "probability": 0.9108 + }, + { + "start": 9831.94, + "end": 9832.8, + "probability": 0.8469 + }, + { + "start": 9833.54, + "end": 9835.96, + "probability": 0.9868 + }, + { + "start": 9837.0, + "end": 9839.9, + "probability": 0.8826 + }, + { + "start": 9841.74, + "end": 9843.32, + "probability": 0.862 + }, + { + "start": 9845.06, + "end": 9846.26, + "probability": 0.9982 + }, + { + "start": 9847.48, + "end": 9851.54, + "probability": 0.9434 + }, + { + "start": 9852.2, + "end": 9853.64, + "probability": 0.8234 + }, + { + "start": 9854.48, + "end": 9857.38, + "probability": 0.8142 + }, + { + "start": 9858.0, + "end": 9858.94, + "probability": 0.9211 + }, + { + "start": 9859.1, + "end": 9862.42, + "probability": 0.9946 + }, + { + "start": 9863.54, + "end": 9867.08, + "probability": 0.9919 + }, + { + "start": 9867.08, + "end": 9871.1, + "probability": 0.9763 + }, + { + "start": 9871.34, + "end": 9877.54, + "probability": 0.9891 + }, + { + "start": 9878.38, + "end": 9882.12, + "probability": 0.9814 + }, + { + "start": 9882.18, + "end": 9885.14, + "probability": 0.9998 + }, + { + "start": 9886.1, + "end": 9887.26, + "probability": 0.8457 + }, + { + "start": 9887.8, + "end": 9889.82, + "probability": 0.9924 + }, + { + "start": 9891.3, + "end": 9892.78, + "probability": 0.899 + }, + { + "start": 9893.42, + "end": 9894.18, + "probability": 0.9794 + }, + { + "start": 9895.36, + "end": 9900.46, + "probability": 0.9879 + }, + { + "start": 9900.46, + "end": 9904.28, + "probability": 0.9081 + }, + { + "start": 9905.24, + "end": 9906.39, + "probability": 0.7447 + }, + { + "start": 9906.66, + "end": 9908.62, + "probability": 0.9976 + }, + { + "start": 9909.8, + "end": 9911.1, + "probability": 0.9329 + }, + { + "start": 9912.16, + "end": 9913.34, + "probability": 0.9802 + }, + { + "start": 9915.78, + "end": 9919.42, + "probability": 0.8558 + }, + { + "start": 9920.12, + "end": 9922.18, + "probability": 0.8193 + }, + { + "start": 9922.3, + "end": 9923.96, + "probability": 0.6619 + }, + { + "start": 9924.64, + "end": 9927.46, + "probability": 0.9472 + }, + { + "start": 9928.88, + "end": 9932.36, + "probability": 0.9863 + }, + { + "start": 9932.36, + "end": 9936.98, + "probability": 0.9021 + }, + { + "start": 9937.96, + "end": 9942.3, + "probability": 0.973 + }, + { + "start": 9944.42, + "end": 9945.44, + "probability": 0.5931 + }, + { + "start": 9946.18, + "end": 9949.62, + "probability": 0.9134 + }, + { + "start": 9949.62, + "end": 9954.14, + "probability": 0.889 + }, + { + "start": 9955.6, + "end": 9957.74, + "probability": 0.9231 + }, + { + "start": 9958.12, + "end": 9959.17, + "probability": 0.9568 + }, + { + "start": 9959.3, + "end": 9962.0, + "probability": 0.8583 + }, + { + "start": 9962.66, + "end": 9965.98, + "probability": 0.8947 + }, + { + "start": 9966.76, + "end": 9967.9, + "probability": 0.9407 + }, + { + "start": 9969.44, + "end": 9970.32, + "probability": 0.4998 + }, + { + "start": 9972.26, + "end": 9973.83, + "probability": 0.6618 + }, + { + "start": 9974.02, + "end": 9976.82, + "probability": 0.9882 + }, + { + "start": 9977.98, + "end": 9979.26, + "probability": 0.5779 + }, + { + "start": 9980.54, + "end": 9981.52, + "probability": 0.9159 + }, + { + "start": 9982.32, + "end": 9983.88, + "probability": 0.9709 + }, + { + "start": 9984.0, + "end": 9985.46, + "probability": 0.9133 + }, + { + "start": 9985.5, + "end": 9986.74, + "probability": 0.7826 + }, + { + "start": 9989.12, + "end": 9991.66, + "probability": 0.9819 + }, + { + "start": 9992.66, + "end": 9993.86, + "probability": 0.9263 + }, + { + "start": 9995.32, + "end": 9996.34, + "probability": 0.9158 + }, + { + "start": 9997.42, + "end": 9998.96, + "probability": 0.6783 + }, + { + "start": 9999.5, + "end": 10001.8, + "probability": 0.5611 + }, + { + "start": 10002.86, + "end": 10004.58, + "probability": 0.6925 + }, + { + "start": 10005.14, + "end": 10007.56, + "probability": 0.8715 + }, + { + "start": 10008.08, + "end": 10011.88, + "probability": 0.98 + }, + { + "start": 10012.1, + "end": 10013.02, + "probability": 0.8998 + }, + { + "start": 10013.1, + "end": 10014.37, + "probability": 0.9871 + }, + { + "start": 10015.6, + "end": 10016.32, + "probability": 0.9811 + }, + { + "start": 10016.42, + "end": 10019.26, + "probability": 0.9468 + }, + { + "start": 10019.72, + "end": 10021.1, + "probability": 0.8011 + }, + { + "start": 10021.2, + "end": 10023.23, + "probability": 0.9566 + }, + { + "start": 10023.4, + "end": 10026.14, + "probability": 0.8766 + }, + { + "start": 10026.98, + "end": 10030.2, + "probability": 0.8268 + }, + { + "start": 10031.02, + "end": 10032.14, + "probability": 0.7758 + }, + { + "start": 10033.32, + "end": 10033.74, + "probability": 0.865 + }, + { + "start": 10033.86, + "end": 10034.7, + "probability": 0.9459 + }, + { + "start": 10035.1, + "end": 10035.48, + "probability": 0.5428 + }, + { + "start": 10035.82, + "end": 10035.88, + "probability": 0.028 + }, + { + "start": 10035.88, + "end": 10037.06, + "probability": 0.0485 + }, + { + "start": 10037.24, + "end": 10038.48, + "probability": 0.8839 + }, + { + "start": 10041.41, + "end": 10045.72, + "probability": 0.0897 + }, + { + "start": 10046.24, + "end": 10048.72, + "probability": 0.7536 + }, + { + "start": 10049.12, + "end": 10050.65, + "probability": 0.8972 + }, + { + "start": 10050.84, + "end": 10054.02, + "probability": 0.6206 + }, + { + "start": 10054.12, + "end": 10055.56, + "probability": 0.4988 + }, + { + "start": 10056.52, + "end": 10059.48, + "probability": 0.7351 + }, + { + "start": 10059.72, + "end": 10060.38, + "probability": 0.1355 + }, + { + "start": 10061.78, + "end": 10064.52, + "probability": 0.7444 + }, + { + "start": 10064.58, + "end": 10067.76, + "probability": 0.8939 + }, + { + "start": 10068.16, + "end": 10071.4, + "probability": 0.1203 + }, + { + "start": 10071.66, + "end": 10076.26, + "probability": 0.2287 + }, + { + "start": 10076.26, + "end": 10079.08, + "probability": 0.2099 + }, + { + "start": 10079.22, + "end": 10081.06, + "probability": 0.8449 + }, + { + "start": 10081.62, + "end": 10083.3, + "probability": 0.9224 + }, + { + "start": 10084.06, + "end": 10087.02, + "probability": 0.9927 + }, + { + "start": 10087.66, + "end": 10090.32, + "probability": 0.998 + }, + { + "start": 10090.48, + "end": 10091.2, + "probability": 0.8989 + }, + { + "start": 10091.58, + "end": 10092.98, + "probability": 0.8711 + }, + { + "start": 10093.86, + "end": 10097.08, + "probability": 0.8724 + }, + { + "start": 10097.66, + "end": 10098.58, + "probability": 0.9845 + }, + { + "start": 10099.42, + "end": 10099.74, + "probability": 0.9661 + }, + { + "start": 10100.88, + "end": 10102.44, + "probability": 0.8255 + }, + { + "start": 10103.44, + "end": 10105.66, + "probability": 0.9681 + }, + { + "start": 10106.64, + "end": 10110.02, + "probability": 0.9674 + }, + { + "start": 10110.88, + "end": 10115.94, + "probability": 0.9684 + }, + { + "start": 10117.64, + "end": 10119.32, + "probability": 0.9982 + }, + { + "start": 10120.94, + "end": 10122.25, + "probability": 0.5124 + }, + { + "start": 10122.48, + "end": 10123.56, + "probability": 0.5801 + }, + { + "start": 10124.66, + "end": 10127.38, + "probability": 0.942 + }, + { + "start": 10128.38, + "end": 10130.96, + "probability": 0.9949 + }, + { + "start": 10131.8, + "end": 10135.8, + "probability": 0.9678 + }, + { + "start": 10135.94, + "end": 10136.7, + "probability": 0.9487 + }, + { + "start": 10137.54, + "end": 10140.64, + "probability": 0.0139 + }, + { + "start": 10140.64, + "end": 10141.24, + "probability": 0.227 + }, + { + "start": 10141.82, + "end": 10143.34, + "probability": 0.8591 + }, + { + "start": 10143.44, + "end": 10144.26, + "probability": 0.635 + }, + { + "start": 10144.56, + "end": 10146.94, + "probability": 0.9944 + }, + { + "start": 10147.06, + "end": 10148.12, + "probability": 0.7699 + }, + { + "start": 10149.14, + "end": 10151.44, + "probability": 0.9823 + }, + { + "start": 10152.8, + "end": 10155.9, + "probability": 0.9958 + }, + { + "start": 10156.94, + "end": 10159.3, + "probability": 0.9561 + }, + { + "start": 10160.2, + "end": 10163.04, + "probability": 0.9945 + }, + { + "start": 10165.58, + "end": 10166.68, + "probability": 0.9225 + }, + { + "start": 10167.9, + "end": 10168.22, + "probability": 0.8939 + }, + { + "start": 10168.92, + "end": 10171.7, + "probability": 0.8156 + }, + { + "start": 10172.22, + "end": 10175.47, + "probability": 0.9722 + }, + { + "start": 10176.48, + "end": 10179.38, + "probability": 0.9375 + }, + { + "start": 10179.38, + "end": 10182.78, + "probability": 0.9974 + }, + { + "start": 10182.92, + "end": 10183.52, + "probability": 0.8936 + }, + { + "start": 10183.64, + "end": 10184.42, + "probability": 0.9159 + }, + { + "start": 10186.24, + "end": 10187.26, + "probability": 0.9144 + }, + { + "start": 10187.92, + "end": 10192.78, + "probability": 0.9299 + }, + { + "start": 10192.9, + "end": 10194.36, + "probability": 0.6201 + }, + { + "start": 10194.98, + "end": 10198.68, + "probability": 0.9926 + }, + { + "start": 10200.08, + "end": 10202.4, + "probability": 0.9982 + }, + { + "start": 10202.96, + "end": 10204.74, + "probability": 0.8931 + }, + { + "start": 10206.44, + "end": 10206.82, + "probability": 0.8004 + }, + { + "start": 10206.86, + "end": 10208.52, + "probability": 0.9238 + }, + { + "start": 10208.72, + "end": 10213.14, + "probability": 0.9816 + }, + { + "start": 10214.48, + "end": 10217.88, + "probability": 0.9806 + }, + { + "start": 10219.74, + "end": 10222.0, + "probability": 0.7559 + }, + { + "start": 10222.62, + "end": 10225.24, + "probability": 0.9957 + }, + { + "start": 10225.8, + "end": 10226.42, + "probability": 0.6299 + }, + { + "start": 10227.08, + "end": 10230.88, + "probability": 0.9946 + }, + { + "start": 10231.62, + "end": 10233.06, + "probability": 0.8395 + }, + { + "start": 10234.06, + "end": 10236.5, + "probability": 0.9507 + }, + { + "start": 10236.6, + "end": 10237.1, + "probability": 0.7853 + }, + { + "start": 10238.02, + "end": 10239.59, + "probability": 0.9546 + }, + { + "start": 10240.3, + "end": 10244.18, + "probability": 0.9822 + }, + { + "start": 10245.24, + "end": 10249.54, + "probability": 0.9938 + }, + { + "start": 10250.9, + "end": 10255.74, + "probability": 0.9604 + }, + { + "start": 10256.8, + "end": 10259.44, + "probability": 0.9995 + }, + { + "start": 10262.3, + "end": 10264.48, + "probability": 0.9952 + }, + { + "start": 10265.12, + "end": 10267.72, + "probability": 0.8672 + }, + { + "start": 10268.28, + "end": 10271.36, + "probability": 0.4019 + }, + { + "start": 10272.16, + "end": 10272.22, + "probability": 0.0607 + }, + { + "start": 10272.22, + "end": 10275.9, + "probability": 0.9742 + }, + { + "start": 10275.9, + "end": 10278.82, + "probability": 0.9913 + }, + { + "start": 10279.92, + "end": 10284.24, + "probability": 0.996 + }, + { + "start": 10284.84, + "end": 10287.4, + "probability": 0.9807 + }, + { + "start": 10288.06, + "end": 10290.5, + "probability": 0.9075 + }, + { + "start": 10290.72, + "end": 10291.24, + "probability": 0.7648 + }, + { + "start": 10291.42, + "end": 10293.16, + "probability": 0.5964 + }, + { + "start": 10293.38, + "end": 10295.44, + "probability": 0.8426 + }, + { + "start": 10296.88, + "end": 10297.64, + "probability": 0.5613 + }, + { + "start": 10300.6, + "end": 10302.88, + "probability": 0.7073 + }, + { + "start": 10303.62, + "end": 10304.68, + "probability": 0.7826 + }, + { + "start": 10307.66, + "end": 10308.52, + "probability": 0.5055 + }, + { + "start": 10316.82, + "end": 10317.76, + "probability": 0.4444 + }, + { + "start": 10318.76, + "end": 10320.9, + "probability": 0.5747 + }, + { + "start": 10320.92, + "end": 10324.16, + "probability": 0.8232 + }, + { + "start": 10324.24, + "end": 10324.34, + "probability": 0.7472 + }, + { + "start": 10324.86, + "end": 10326.28, + "probability": 0.9711 + }, + { + "start": 10326.44, + "end": 10326.8, + "probability": 0.4063 + }, + { + "start": 10326.98, + "end": 10327.34, + "probability": 0.8911 + }, + { + "start": 10327.42, + "end": 10329.1, + "probability": 0.9554 + }, + { + "start": 10329.28, + "end": 10331.08, + "probability": 0.9822 + }, + { + "start": 10331.76, + "end": 10333.76, + "probability": 0.9619 + }, + { + "start": 10333.76, + "end": 10333.9, + "probability": 0.074 + }, + { + "start": 10333.98, + "end": 10334.36, + "probability": 0.1571 + }, + { + "start": 10334.54, + "end": 10337.15, + "probability": 0.6964 + }, + { + "start": 10337.86, + "end": 10341.42, + "probability": 0.8459 + }, + { + "start": 10341.54, + "end": 10344.78, + "probability": 0.3835 + }, + { + "start": 10345.26, + "end": 10347.2, + "probability": 0.9064 + }, + { + "start": 10347.64, + "end": 10350.28, + "probability": 0.9347 + }, + { + "start": 10350.3, + "end": 10351.24, + "probability": 0.7229 + }, + { + "start": 10354.45, + "end": 10355.92, + "probability": 0.0262 + }, + { + "start": 10367.68, + "end": 10367.8, + "probability": 0.0412 + }, + { + "start": 10367.92, + "end": 10368.62, + "probability": 0.7487 + }, + { + "start": 10372.5, + "end": 10374.88, + "probability": 0.6187 + }, + { + "start": 10375.84, + "end": 10376.1, + "probability": 0.0765 + }, + { + "start": 10376.1, + "end": 10376.24, + "probability": 0.1215 + }, + { + "start": 10376.24, + "end": 10376.24, + "probability": 0.0819 + }, + { + "start": 10376.24, + "end": 10376.24, + "probability": 0.2095 + }, + { + "start": 10376.24, + "end": 10376.24, + "probability": 0.0043 + }, + { + "start": 10384.58, + "end": 10386.82, + "probability": 0.2338 + }, + { + "start": 10390.28, + "end": 10391.88, + "probability": 0.4074 + }, + { + "start": 10391.88, + "end": 10392.96, + "probability": 0.6538 + }, + { + "start": 10393.98, + "end": 10397.02, + "probability": 0.6241 + }, + { + "start": 10397.12, + "end": 10397.92, + "probability": 0.7727 + }, + { + "start": 10400.59, + "end": 10403.44, + "probability": 0.993 + }, + { + "start": 10403.68, + "end": 10405.14, + "probability": 0.8816 + }, + { + "start": 10406.08, + "end": 10410.7, + "probability": 0.9253 + }, + { + "start": 10412.58, + "end": 10417.94, + "probability": 0.9966 + }, + { + "start": 10417.94, + "end": 10422.12, + "probability": 0.9769 + }, + { + "start": 10422.48, + "end": 10426.14, + "probability": 0.9967 + }, + { + "start": 10427.1, + "end": 10429.34, + "probability": 0.7398 + }, + { + "start": 10430.52, + "end": 10432.8, + "probability": 0.9561 + }, + { + "start": 10433.68, + "end": 10435.92, + "probability": 0.9818 + }, + { + "start": 10436.96, + "end": 10441.72, + "probability": 0.9878 + }, + { + "start": 10443.1, + "end": 10443.78, + "probability": 0.8918 + }, + { + "start": 10444.86, + "end": 10449.38, + "probability": 0.9739 + }, + { + "start": 10450.18, + "end": 10456.76, + "probability": 0.9944 + }, + { + "start": 10457.5, + "end": 10459.26, + "probability": 0.9906 + }, + { + "start": 10461.5, + "end": 10462.98, + "probability": 0.7475 + }, + { + "start": 10465.56, + "end": 10472.46, + "probability": 0.9927 + }, + { + "start": 10473.32, + "end": 10475.02, + "probability": 0.8221 + }, + { + "start": 10475.82, + "end": 10479.38, + "probability": 0.998 + }, + { + "start": 10480.22, + "end": 10480.68, + "probability": 0.6563 + }, + { + "start": 10481.48, + "end": 10483.24, + "probability": 0.7609 + }, + { + "start": 10484.16, + "end": 10487.64, + "probability": 0.9756 + }, + { + "start": 10488.6, + "end": 10490.34, + "probability": 0.9694 + }, + { + "start": 10491.32, + "end": 10493.42, + "probability": 0.9344 + }, + { + "start": 10493.62, + "end": 10495.62, + "probability": 0.9457 + }, + { + "start": 10496.2, + "end": 10497.94, + "probability": 0.899 + }, + { + "start": 10498.96, + "end": 10499.88, + "probability": 0.9085 + }, + { + "start": 10501.76, + "end": 10505.46, + "probability": 0.706 + }, + { + "start": 10508.52, + "end": 10514.16, + "probability": 0.9478 + }, + { + "start": 10517.54, + "end": 10519.78, + "probability": 0.6994 + }, + { + "start": 10522.02, + "end": 10526.88, + "probability": 0.8135 + }, + { + "start": 10527.72, + "end": 10533.08, + "probability": 0.9619 + }, + { + "start": 10534.02, + "end": 10538.74, + "probability": 0.7449 + }, + { + "start": 10539.8, + "end": 10544.96, + "probability": 0.8131 + }, + { + "start": 10546.99, + "end": 10550.15, + "probability": 0.8824 + }, + { + "start": 10551.96, + "end": 10554.44, + "probability": 0.5719 + }, + { + "start": 10554.66, + "end": 10558.1, + "probability": 0.96 + }, + { + "start": 10558.3, + "end": 10563.84, + "probability": 0.9821 + }, + { + "start": 10565.74, + "end": 10566.9, + "probability": 0.9867 + }, + { + "start": 10567.0, + "end": 10569.26, + "probability": 0.8052 + }, + { + "start": 10570.42, + "end": 10573.41, + "probability": 0.9946 + }, + { + "start": 10575.26, + "end": 10579.56, + "probability": 0.9518 + }, + { + "start": 10580.36, + "end": 10581.54, + "probability": 0.8665 + }, + { + "start": 10583.0, + "end": 10584.14, + "probability": 0.8454 + }, + { + "start": 10585.06, + "end": 10591.56, + "probability": 0.9475 + }, + { + "start": 10591.72, + "end": 10592.58, + "probability": 0.776 + }, + { + "start": 10593.3, + "end": 10594.6, + "probability": 0.9575 + }, + { + "start": 10595.18, + "end": 10601.38, + "probability": 0.9835 + }, + { + "start": 10602.74, + "end": 10604.94, + "probability": 0.9958 + }, + { + "start": 10605.08, + "end": 10606.62, + "probability": 0.9788 + }, + { + "start": 10608.38, + "end": 10609.6, + "probability": 0.9497 + }, + { + "start": 10610.56, + "end": 10613.82, + "probability": 0.9963 + }, + { + "start": 10614.68, + "end": 10617.26, + "probability": 0.9818 + }, + { + "start": 10617.34, + "end": 10620.6, + "probability": 0.9907 + }, + { + "start": 10622.5, + "end": 10625.96, + "probability": 0.9972 + }, + { + "start": 10627.04, + "end": 10631.42, + "probability": 0.8508 + }, + { + "start": 10631.88, + "end": 10633.04, + "probability": 0.9168 + }, + { + "start": 10633.14, + "end": 10633.62, + "probability": 0.5921 + }, + { + "start": 10633.92, + "end": 10637.98, + "probability": 0.9981 + }, + { + "start": 10639.64, + "end": 10642.54, + "probability": 0.9575 + }, + { + "start": 10643.52, + "end": 10653.52, + "probability": 0.9811 + }, + { + "start": 10655.02, + "end": 10657.26, + "probability": 0.9818 + }, + { + "start": 10657.42, + "end": 10658.38, + "probability": 0.8856 + }, + { + "start": 10658.5, + "end": 10662.3, + "probability": 0.9847 + }, + { + "start": 10663.52, + "end": 10667.68, + "probability": 0.9617 + }, + { + "start": 10668.38, + "end": 10672.12, + "probability": 0.9288 + }, + { + "start": 10672.48, + "end": 10674.8, + "probability": 0.7618 + }, + { + "start": 10675.62, + "end": 10679.2, + "probability": 0.9967 + }, + { + "start": 10679.44, + "end": 10681.06, + "probability": 0.9917 + }, + { + "start": 10681.32, + "end": 10681.85, + "probability": 0.9564 + }, + { + "start": 10682.16, + "end": 10683.08, + "probability": 0.5678 + }, + { + "start": 10683.52, + "end": 10684.28, + "probability": 0.9563 + }, + { + "start": 10684.42, + "end": 10687.94, + "probability": 0.7939 + }, + { + "start": 10692.47, + "end": 10695.41, + "probability": 0.9965 + }, + { + "start": 10698.6, + "end": 10701.46, + "probability": 0.9759 + }, + { + "start": 10701.98, + "end": 10704.94, + "probability": 0.9943 + }, + { + "start": 10706.76, + "end": 10711.28, + "probability": 0.9959 + }, + { + "start": 10711.28, + "end": 10716.56, + "probability": 0.9198 + }, + { + "start": 10717.68, + "end": 10722.46, + "probability": 0.9926 + }, + { + "start": 10723.82, + "end": 10726.48, + "probability": 0.9504 + }, + { + "start": 10727.64, + "end": 10728.68, + "probability": 0.9961 + }, + { + "start": 10729.46, + "end": 10733.32, + "probability": 0.9904 + }, + { + "start": 10733.32, + "end": 10737.9, + "probability": 0.9984 + }, + { + "start": 10738.12, + "end": 10742.84, + "probability": 0.9859 + }, + { + "start": 10742.96, + "end": 10744.86, + "probability": 0.9051 + }, + { + "start": 10744.94, + "end": 10745.44, + "probability": 0.478 + }, + { + "start": 10745.96, + "end": 10748.98, + "probability": 0.9574 + }, + { + "start": 10748.98, + "end": 10752.62, + "probability": 0.8811 + }, + { + "start": 10753.0, + "end": 10755.68, + "probability": 0.9251 + }, + { + "start": 10757.42, + "end": 10761.6, + "probability": 0.9988 + }, + { + "start": 10761.6, + "end": 10764.88, + "probability": 0.9978 + }, + { + "start": 10765.7, + "end": 10770.34, + "probability": 0.9375 + }, + { + "start": 10770.34, + "end": 10774.36, + "probability": 0.9875 + }, + { + "start": 10774.36, + "end": 10777.52, + "probability": 0.9947 + }, + { + "start": 10778.98, + "end": 10785.9, + "probability": 0.9578 + }, + { + "start": 10788.28, + "end": 10790.8, + "probability": 0.8297 + }, + { + "start": 10792.16, + "end": 10792.9, + "probability": 0.8239 + }, + { + "start": 10793.06, + "end": 10797.68, + "probability": 0.7639 + }, + { + "start": 10800.36, + "end": 10803.74, + "probability": 0.9931 + }, + { + "start": 10803.74, + "end": 10806.8, + "probability": 0.965 + }, + { + "start": 10807.34, + "end": 10810.56, + "probability": 0.9237 + }, + { + "start": 10811.38, + "end": 10812.82, + "probability": 0.884 + }, + { + "start": 10814.34, + "end": 10816.92, + "probability": 0.5158 + }, + { + "start": 10817.96, + "end": 10819.46, + "probability": 0.9993 + }, + { + "start": 10820.08, + "end": 10821.34, + "probability": 0.9904 + }, + { + "start": 10822.84, + "end": 10824.0, + "probability": 0.9039 + }, + { + "start": 10824.96, + "end": 10829.96, + "probability": 0.814 + }, + { + "start": 10830.08, + "end": 10831.46, + "probability": 0.9904 + }, + { + "start": 10831.46, + "end": 10832.34, + "probability": 0.3621 + }, + { + "start": 10834.47, + "end": 10837.94, + "probability": 0.9515 + }, + { + "start": 10838.78, + "end": 10839.58, + "probability": 0.9599 + }, + { + "start": 10840.16, + "end": 10841.32, + "probability": 0.7657 + }, + { + "start": 10843.64, + "end": 10844.48, + "probability": 0.42 + }, + { + "start": 10845.68, + "end": 10846.3, + "probability": 0.7052 + }, + { + "start": 10846.32, + "end": 10847.3, + "probability": 0.7465 + }, + { + "start": 10847.4, + "end": 10850.12, + "probability": 0.6899 + }, + { + "start": 10850.3, + "end": 10851.36, + "probability": 0.6786 + }, + { + "start": 10851.58, + "end": 10853.02, + "probability": 0.536 + }, + { + "start": 10856.35, + "end": 10859.55, + "probability": 0.7644 + }, + { + "start": 10860.24, + "end": 10864.2, + "probability": 0.995 + }, + { + "start": 10864.74, + "end": 10868.56, + "probability": 0.9668 + }, + { + "start": 10868.64, + "end": 10870.27, + "probability": 0.8468 + }, + { + "start": 10871.3, + "end": 10872.44, + "probability": 0.9732 + }, + { + "start": 10872.78, + "end": 10877.18, + "probability": 0.9667 + }, + { + "start": 10877.7, + "end": 10883.92, + "probability": 0.9985 + }, + { + "start": 10884.12, + "end": 10885.17, + "probability": 0.5848 + }, + { + "start": 10885.92, + "end": 10886.54, + "probability": 0.6973 + }, + { + "start": 10887.12, + "end": 10887.79, + "probability": 0.8652 + }, + { + "start": 10888.48, + "end": 10890.32, + "probability": 0.9418 + }, + { + "start": 10893.4, + "end": 10895.32, + "probability": 0.7405 + }, + { + "start": 10896.02, + "end": 10899.86, + "probability": 0.936 + }, + { + "start": 10900.1, + "end": 10905.86, + "probability": 0.9867 + }, + { + "start": 10907.14, + "end": 10909.52, + "probability": 0.8361 + }, + { + "start": 10909.54, + "end": 10915.74, + "probability": 0.996 + }, + { + "start": 10916.02, + "end": 10916.66, + "probability": 0.411 + }, + { + "start": 10917.4, + "end": 10919.78, + "probability": 0.9618 + }, + { + "start": 10920.42, + "end": 10926.18, + "probability": 0.9939 + }, + { + "start": 10926.92, + "end": 10930.0, + "probability": 0.9942 + }, + { + "start": 10930.8, + "end": 10932.94, + "probability": 0.5348 + }, + { + "start": 10933.02, + "end": 10933.7, + "probability": 0.0128 + }, + { + "start": 10934.02, + "end": 10934.84, + "probability": 0.9797 + }, + { + "start": 10934.9, + "end": 10935.52, + "probability": 0.5308 + }, + { + "start": 10935.54, + "end": 10936.22, + "probability": 0.4028 + }, + { + "start": 10936.34, + "end": 10937.96, + "probability": 0.9902 + }, + { + "start": 10938.44, + "end": 10941.08, + "probability": 0.8543 + }, + { + "start": 10942.24, + "end": 10943.3, + "probability": 0.9792 + }, + { + "start": 10943.78, + "end": 10945.24, + "probability": 0.9877 + }, + { + "start": 10946.76, + "end": 10947.55, + "probability": 0.9783 + }, + { + "start": 10949.28, + "end": 10953.94, + "probability": 0.9971 + }, + { + "start": 10954.68, + "end": 10955.68, + "probability": 0.5612 + }, + { + "start": 10956.72, + "end": 10957.54, + "probability": 0.5733 + }, + { + "start": 10958.32, + "end": 10959.78, + "probability": 0.6473 + }, + { + "start": 10959.96, + "end": 10961.64, + "probability": 0.8213 + }, + { + "start": 10961.74, + "end": 10963.54, + "probability": 0.9772 + }, + { + "start": 10963.92, + "end": 10965.74, + "probability": 0.9355 + }, + { + "start": 10965.8, + "end": 10966.96, + "probability": 0.7877 + }, + { + "start": 10967.54, + "end": 10968.26, + "probability": 0.8828 + }, + { + "start": 10968.38, + "end": 10971.32, + "probability": 0.9894 + }, + { + "start": 10972.62, + "end": 10976.02, + "probability": 0.8851 + }, + { + "start": 10976.54, + "end": 10980.4, + "probability": 0.9907 + }, + { + "start": 10980.98, + "end": 10984.0, + "probability": 0.9944 + }, + { + "start": 10984.96, + "end": 10987.1, + "probability": 0.8436 + }, + { + "start": 10987.62, + "end": 10988.8, + "probability": 0.9712 + }, + { + "start": 10989.52, + "end": 10992.36, + "probability": 0.9971 + }, + { + "start": 10992.92, + "end": 10995.76, + "probability": 0.9973 + }, + { + "start": 10997.72, + "end": 11004.1, + "probability": 0.9825 + }, + { + "start": 11004.62, + "end": 11006.16, + "probability": 0.9911 + }, + { + "start": 11006.92, + "end": 11010.62, + "probability": 0.719 + }, + { + "start": 11011.18, + "end": 11014.12, + "probability": 0.9775 + }, + { + "start": 11014.4, + "end": 11016.22, + "probability": 0.9512 + }, + { + "start": 11016.8, + "end": 11019.92, + "probability": 0.9747 + }, + { + "start": 11020.52, + "end": 11021.55, + "probability": 0.8567 + }, + { + "start": 11022.38, + "end": 11024.2, + "probability": 0.9984 + }, + { + "start": 11024.48, + "end": 11025.22, + "probability": 0.9335 + }, + { + "start": 11025.66, + "end": 11027.48, + "probability": 0.9133 + }, + { + "start": 11027.88, + "end": 11032.16, + "probability": 0.9713 + }, + { + "start": 11032.44, + "end": 11032.98, + "probability": 0.6857 + }, + { + "start": 11033.36, + "end": 11034.98, + "probability": 0.7897 + }, + { + "start": 11036.32, + "end": 11039.12, + "probability": 0.7856 + }, + { + "start": 11041.1, + "end": 11042.34, + "probability": 0.2996 + }, + { + "start": 11042.62, + "end": 11045.34, + "probability": 0.0435 + }, + { + "start": 11047.0, + "end": 11048.46, + "probability": 0.1962 + }, + { + "start": 11052.08, + "end": 11052.1, + "probability": 0.0279 + }, + { + "start": 11057.02, + "end": 11059.1, + "probability": 0.276 + }, + { + "start": 11062.96, + "end": 11064.2, + "probability": 0.0909 + }, + { + "start": 11066.3, + "end": 11069.26, + "probability": 0.0294 + }, + { + "start": 11102.58, + "end": 11107.28, + "probability": 0.9613 + }, + { + "start": 11107.68, + "end": 11109.24, + "probability": 0.4254 + }, + { + "start": 11109.82, + "end": 11112.42, + "probability": 0.987 + }, + { + "start": 11113.46, + "end": 11115.92, + "probability": 0.7147 + }, + { + "start": 11116.54, + "end": 11117.74, + "probability": 0.5178 + }, + { + "start": 11118.64, + "end": 11119.86, + "probability": 0.5374 + }, + { + "start": 11120.06, + "end": 11124.12, + "probability": 0.4835 + }, + { + "start": 11125.29, + "end": 11126.6, + "probability": 0.8001 + }, + { + "start": 11129.43, + "end": 11133.08, + "probability": 0.9422 + }, + { + "start": 11133.2, + "end": 11135.1, + "probability": 0.9091 + }, + { + "start": 11135.68, + "end": 11137.92, + "probability": 0.4392 + }, + { + "start": 11138.48, + "end": 11140.9, + "probability": 0.9561 + }, + { + "start": 11141.62, + "end": 11144.48, + "probability": 0.9647 + }, + { + "start": 11144.76, + "end": 11146.2, + "probability": 0.3603 + }, + { + "start": 11146.44, + "end": 11146.72, + "probability": 0.6996 + }, + { + "start": 11147.24, + "end": 11150.68, + "probability": 0.9715 + }, + { + "start": 11151.3, + "end": 11152.94, + "probability": 0.9941 + }, + { + "start": 11153.84, + "end": 11155.72, + "probability": 0.9326 + }, + { + "start": 11156.28, + "end": 11158.42, + "probability": 0.9569 + }, + { + "start": 11159.34, + "end": 11159.8, + "probability": 0.5883 + }, + { + "start": 11159.82, + "end": 11162.5, + "probability": 0.9736 + }, + { + "start": 11162.5, + "end": 11166.04, + "probability": 0.9923 + }, + { + "start": 11166.64, + "end": 11167.18, + "probability": 0.1818 + }, + { + "start": 11167.34, + "end": 11167.89, + "probability": 0.9225 + }, + { + "start": 11168.66, + "end": 11170.06, + "probability": 0.8411 + }, + { + "start": 11171.5, + "end": 11172.12, + "probability": 0.4888 + }, + { + "start": 11173.21, + "end": 11174.99, + "probability": 0.4269 + }, + { + "start": 11175.26, + "end": 11175.94, + "probability": 0.3606 + }, + { + "start": 11175.98, + "end": 11178.17, + "probability": 0.2901 + }, + { + "start": 11179.06, + "end": 11182.0, + "probability": 0.2205 + }, + { + "start": 11183.72, + "end": 11184.3, + "probability": 0.1099 + }, + { + "start": 11184.3, + "end": 11185.12, + "probability": 0.0707 + }, + { + "start": 11185.12, + "end": 11188.04, + "probability": 0.3391 + }, + { + "start": 11190.94, + "end": 11192.3, + "probability": 0.7676 + }, + { + "start": 11194.0, + "end": 11197.04, + "probability": 0.2339 + }, + { + "start": 11197.7, + "end": 11199.33, + "probability": 0.469 + }, + { + "start": 11200.94, + "end": 11201.1, + "probability": 0.0213 + }, + { + "start": 11202.8, + "end": 11203.64, + "probability": 0.2087 + }, + { + "start": 11203.86, + "end": 11203.96, + "probability": 0.0213 + }, + { + "start": 11203.96, + "end": 11204.28, + "probability": 0.532 + }, + { + "start": 11205.62, + "end": 11206.32, + "probability": 0.4255 + }, + { + "start": 11207.32, + "end": 11208.08, + "probability": 0.5764 + }, + { + "start": 11208.14, + "end": 11209.04, + "probability": 0.8676 + }, + { + "start": 11209.62, + "end": 11210.14, + "probability": 0.9139 + }, + { + "start": 11210.64, + "end": 11211.58, + "probability": 0.5156 + }, + { + "start": 11213.2, + "end": 11215.86, + "probability": 0.9846 + }, + { + "start": 11217.82, + "end": 11220.58, + "probability": 0.8899 + }, + { + "start": 11220.98, + "end": 11223.92, + "probability": 0.7621 + }, + { + "start": 11230.7, + "end": 11234.62, + "probability": 0.8458 + }, + { + "start": 11234.62, + "end": 11237.32, + "probability": 0.9491 + }, + { + "start": 11238.42, + "end": 11239.32, + "probability": 0.8912 + }, + { + "start": 11240.24, + "end": 11241.56, + "probability": 0.9991 + }, + { + "start": 11242.08, + "end": 11244.76, + "probability": 0.985 + }, + { + "start": 11245.64, + "end": 11249.86, + "probability": 0.9767 + }, + { + "start": 11249.86, + "end": 11255.42, + "probability": 0.9984 + }, + { + "start": 11255.82, + "end": 11260.28, + "probability": 0.8285 + }, + { + "start": 11261.48, + "end": 11261.84, + "probability": 0.5348 + }, + { + "start": 11262.04, + "end": 11262.6, + "probability": 0.7016 + }, + { + "start": 11262.78, + "end": 11266.16, + "probability": 0.7007 + }, + { + "start": 11266.16, + "end": 11268.7, + "probability": 0.9813 + }, + { + "start": 11269.24, + "end": 11272.94, + "probability": 0.9923 + }, + { + "start": 11273.4, + "end": 11274.22, + "probability": 0.8855 + }, + { + "start": 11286.62, + "end": 11287.26, + "probability": 0.0369 + }, + { + "start": 11287.26, + "end": 11287.26, + "probability": 0.114 + }, + { + "start": 11287.26, + "end": 11288.74, + "probability": 0.0396 + }, + { + "start": 11288.74, + "end": 11294.56, + "probability": 0.8831 + }, + { + "start": 11294.72, + "end": 11296.38, + "probability": 0.9779 + }, + { + "start": 11297.0, + "end": 11298.16, + "probability": 0.7373 + }, + { + "start": 11301.58, + "end": 11304.04, + "probability": 0.9948 + }, + { + "start": 11304.92, + "end": 11305.02, + "probability": 0.9027 + }, + { + "start": 11306.12, + "end": 11306.38, + "probability": 0.5871 + }, + { + "start": 11306.94, + "end": 11309.04, + "probability": 0.8853 + }, + { + "start": 11309.1, + "end": 11314.1, + "probability": 0.962 + }, + { + "start": 11315.64, + "end": 11316.38, + "probability": 0.822 + }, + { + "start": 11316.86, + "end": 11317.0, + "probability": 0.032 + }, + { + "start": 11317.0, + "end": 11317.93, + "probability": 0.3162 + }, + { + "start": 11318.2, + "end": 11318.42, + "probability": 0.1331 + }, + { + "start": 11318.42, + "end": 11318.96, + "probability": 0.6409 + }, + { + "start": 11319.6, + "end": 11323.62, + "probability": 0.9929 + }, + { + "start": 11323.92, + "end": 11325.28, + "probability": 0.9162 + }, + { + "start": 11326.06, + "end": 11329.98, + "probability": 0.9618 + }, + { + "start": 11330.48, + "end": 11333.28, + "probability": 0.9108 + }, + { + "start": 11333.8, + "end": 11334.42, + "probability": 0.736 + }, + { + "start": 11334.68, + "end": 11338.42, + "probability": 0.9966 + }, + { + "start": 11338.42, + "end": 11342.56, + "probability": 0.9794 + }, + { + "start": 11343.32, + "end": 11345.06, + "probability": 0.9993 + }, + { + "start": 11346.28, + "end": 11350.12, + "probability": 0.9752 + }, + { + "start": 11350.12, + "end": 11354.54, + "probability": 0.9985 + }, + { + "start": 11355.24, + "end": 11355.4, + "probability": 0.2943 + }, + { + "start": 11355.52, + "end": 11360.3, + "probability": 0.9866 + }, + { + "start": 11361.8, + "end": 11365.72, + "probability": 0.9584 + }, + { + "start": 11365.72, + "end": 11370.84, + "probability": 0.9989 + }, + { + "start": 11372.06, + "end": 11379.06, + "probability": 0.9972 + }, + { + "start": 11379.06, + "end": 11382.6, + "probability": 0.9987 + }, + { + "start": 11382.66, + "end": 11385.12, + "probability": 0.8605 + }, + { + "start": 11386.12, + "end": 11388.38, + "probability": 0.8799 + }, + { + "start": 11388.76, + "end": 11392.6, + "probability": 0.9905 + }, + { + "start": 11392.6, + "end": 11396.26, + "probability": 0.9968 + }, + { + "start": 11397.22, + "end": 11400.18, + "probability": 0.9453 + }, + { + "start": 11401.14, + "end": 11403.12, + "probability": 0.9587 + }, + { + "start": 11403.7, + "end": 11406.38, + "probability": 0.9951 + }, + { + "start": 11407.12, + "end": 11408.9, + "probability": 0.7484 + }, + { + "start": 11409.6, + "end": 11415.26, + "probability": 0.9863 + }, + { + "start": 11416.7, + "end": 11417.25, + "probability": 0.9039 + }, + { + "start": 11422.04, + "end": 11423.93, + "probability": 0.9871 + }, + { + "start": 11424.36, + "end": 11425.84, + "probability": 0.3117 + }, + { + "start": 11426.28, + "end": 11429.46, + "probability": 0.2905 + }, + { + "start": 11429.6, + "end": 11429.74, + "probability": 0.1758 + }, + { + "start": 11430.08, + "end": 11432.42, + "probability": 0.4265 + }, + { + "start": 11432.48, + "end": 11434.84, + "probability": 0.8986 + }, + { + "start": 11435.5, + "end": 11438.02, + "probability": 0.7388 + }, + { + "start": 11438.38, + "end": 11440.1, + "probability": 0.6249 + }, + { + "start": 11441.15, + "end": 11443.1, + "probability": 0.7302 + }, + { + "start": 11443.14, + "end": 11445.1, + "probability": 0.4993 + }, + { + "start": 11446.04, + "end": 11447.74, + "probability": 0.8677 + }, + { + "start": 11448.32, + "end": 11451.1, + "probability": 0.4864 + }, + { + "start": 11451.24, + "end": 11452.42, + "probability": 0.6242 + }, + { + "start": 11452.91, + "end": 11454.6, + "probability": 0.5184 + }, + { + "start": 11455.12, + "end": 11458.08, + "probability": 0.5883 + }, + { + "start": 11458.2, + "end": 11461.9, + "probability": 0.9976 + }, + { + "start": 11462.52, + "end": 11462.88, + "probability": 0.2635 + }, + { + "start": 11462.88, + "end": 11464.0, + "probability": 0.7041 + }, + { + "start": 11464.48, + "end": 11464.9, + "probability": 0.392 + }, + { + "start": 11465.0, + "end": 11465.2, + "probability": 0.4866 + }, + { + "start": 11465.2, + "end": 11467.64, + "probability": 0.7798 + }, + { + "start": 11467.7, + "end": 11468.32, + "probability": 0.1805 + }, + { + "start": 11468.52, + "end": 11469.28, + "probability": 0.8254 + }, + { + "start": 11469.44, + "end": 11472.24, + "probability": 0.2395 + }, + { + "start": 11472.44, + "end": 11472.93, + "probability": 0.1285 + }, + { + "start": 11473.34, + "end": 11474.0, + "probability": 0.9664 + }, + { + "start": 11474.72, + "end": 11475.0, + "probability": 0.7972 + }, + { + "start": 11475.06, + "end": 11477.5, + "probability": 0.9934 + }, + { + "start": 11477.68, + "end": 11477.82, + "probability": 0.0411 + }, + { + "start": 11477.82, + "end": 11478.22, + "probability": 0.2956 + }, + { + "start": 11478.3, + "end": 11479.54, + "probability": 0.2211 + }, + { + "start": 11479.54, + "end": 11479.62, + "probability": 0.0334 + }, + { + "start": 11479.62, + "end": 11480.48, + "probability": 0.2757 + }, + { + "start": 11480.5, + "end": 11481.1, + "probability": 0.6103 + }, + { + "start": 11481.1, + "end": 11482.58, + "probability": 0.5311 + }, + { + "start": 11482.92, + "end": 11488.34, + "probability": 0.9312 + }, + { + "start": 11488.98, + "end": 11490.94, + "probability": 0.998 + }, + { + "start": 11491.62, + "end": 11494.74, + "probability": 0.6276 + }, + { + "start": 11494.82, + "end": 11498.72, + "probability": 0.9955 + }, + { + "start": 11499.74, + "end": 11503.42, + "probability": 0.9003 + }, + { + "start": 11503.58, + "end": 11504.39, + "probability": 0.9285 + }, + { + "start": 11504.68, + "end": 11507.86, + "probability": 0.9884 + }, + { + "start": 11508.94, + "end": 11511.5, + "probability": 0.6509 + }, + { + "start": 11511.64, + "end": 11512.5, + "probability": 0.7982 + }, + { + "start": 11512.64, + "end": 11516.98, + "probability": 0.9375 + }, + { + "start": 11517.26, + "end": 11518.88, + "probability": 0.9766 + }, + { + "start": 11521.04, + "end": 11521.98, + "probability": 0.5274 + }, + { + "start": 11522.4, + "end": 11524.5, + "probability": 0.2691 + }, + { + "start": 11524.76, + "end": 11525.76, + "probability": 0.564 + }, + { + "start": 11525.9, + "end": 11526.04, + "probability": 0.2666 + }, + { + "start": 11526.1, + "end": 11528.12, + "probability": 0.8075 + }, + { + "start": 11528.48, + "end": 11532.3, + "probability": 0.0391 + }, + { + "start": 11532.3, + "end": 11532.88, + "probability": 0.1202 + }, + { + "start": 11532.92, + "end": 11534.46, + "probability": 0.4979 + }, + { + "start": 11535.18, + "end": 11536.72, + "probability": 0.1007 + }, + { + "start": 11538.18, + "end": 11539.46, + "probability": 0.7241 + }, + { + "start": 11540.02, + "end": 11542.06, + "probability": 0.8927 + }, + { + "start": 11542.76, + "end": 11543.62, + "probability": 0.6169 + }, + { + "start": 11544.0, + "end": 11545.54, + "probability": 0.922 + }, + { + "start": 11545.84, + "end": 11549.46, + "probability": 0.4609 + }, + { + "start": 11549.46, + "end": 11551.04, + "probability": 0.4837 + }, + { + "start": 11551.16, + "end": 11555.76, + "probability": 0.3011 + }, + { + "start": 11556.14, + "end": 11557.12, + "probability": 0.1936 + }, + { + "start": 11557.12, + "end": 11557.12, + "probability": 0.0925 + }, + { + "start": 11557.12, + "end": 11557.12, + "probability": 0.2603 + }, + { + "start": 11557.12, + "end": 11558.42, + "probability": 0.9047 + }, + { + "start": 11559.5, + "end": 11561.62, + "probability": 0.9312 + }, + { + "start": 11562.75, + "end": 11567.52, + "probability": 0.8912 + }, + { + "start": 11567.66, + "end": 11568.44, + "probability": 0.7021 + }, + { + "start": 11568.74, + "end": 11575.84, + "probability": 0.7503 + }, + { + "start": 11576.66, + "end": 11578.28, + "probability": 0.9453 + }, + { + "start": 11578.34, + "end": 11580.12, + "probability": 0.8944 + }, + { + "start": 11580.24, + "end": 11581.08, + "probability": 0.8447 + }, + { + "start": 11581.84, + "end": 11582.77, + "probability": 0.863 + }, + { + "start": 11584.36, + "end": 11588.88, + "probability": 0.9879 + }, + { + "start": 11589.62, + "end": 11592.14, + "probability": 0.9648 + }, + { + "start": 11592.34, + "end": 11592.94, + "probability": 0.7728 + }, + { + "start": 11593.36, + "end": 11593.94, + "probability": 0.8816 + }, + { + "start": 11594.48, + "end": 11596.76, + "probability": 0.9951 + }, + { + "start": 11598.02, + "end": 11601.16, + "probability": 0.995 + }, + { + "start": 11601.68, + "end": 11602.6, + "probability": 0.9832 + }, + { + "start": 11603.32, + "end": 11604.4, + "probability": 0.4999 + }, + { + "start": 11605.04, + "end": 11608.72, + "probability": 0.9295 + }, + { + "start": 11609.32, + "end": 11610.64, + "probability": 0.9231 + }, + { + "start": 11610.94, + "end": 11613.46, + "probability": 0.9958 + }, + { + "start": 11614.44, + "end": 11618.06, + "probability": 0.9934 + }, + { + "start": 11618.92, + "end": 11620.1, + "probability": 0.9902 + }, + { + "start": 11621.02, + "end": 11621.86, + "probability": 0.6694 + }, + { + "start": 11622.8, + "end": 11629.34, + "probability": 0.9977 + }, + { + "start": 11629.88, + "end": 11632.0, + "probability": 0.999 + }, + { + "start": 11635.52, + "end": 11636.32, + "probability": 0.6762 + }, + { + "start": 11636.7, + "end": 11637.78, + "probability": 0.609 + }, + { + "start": 11637.86, + "end": 11638.96, + "probability": 0.7453 + }, + { + "start": 11639.1, + "end": 11639.58, + "probability": 0.0391 + }, + { + "start": 11640.04, + "end": 11643.08, + "probability": 0.9456 + }, + { + "start": 11643.12, + "end": 11646.98, + "probability": 0.8647 + }, + { + "start": 11647.08, + "end": 11647.7, + "probability": 0.1227 + }, + { + "start": 11647.7, + "end": 11648.3, + "probability": 0.0028 + }, + { + "start": 11648.3, + "end": 11653.6, + "probability": 0.7773 + }, + { + "start": 11653.84, + "end": 11654.7, + "probability": 0.5905 + }, + { + "start": 11655.38, + "end": 11655.38, + "probability": 0.0962 + }, + { + "start": 11655.38, + "end": 11656.5, + "probability": 0.7194 + }, + { + "start": 11656.82, + "end": 11658.6, + "probability": 0.4956 + }, + { + "start": 11659.76, + "end": 11662.12, + "probability": 0.4539 + }, + { + "start": 11663.2, + "end": 11664.2, + "probability": 0.2011 + }, + { + "start": 11664.44, + "end": 11664.66, + "probability": 0.036 + }, + { + "start": 11664.66, + "end": 11670.14, + "probability": 0.9872 + }, + { + "start": 11670.14, + "end": 11676.06, + "probability": 0.995 + }, + { + "start": 11676.66, + "end": 11680.64, + "probability": 0.9974 + }, + { + "start": 11681.1, + "end": 11685.04, + "probability": 0.9855 + }, + { + "start": 11686.1, + "end": 11687.0, + "probability": 0.9292 + }, + { + "start": 11687.06, + "end": 11692.16, + "probability": 0.9444 + }, + { + "start": 11692.68, + "end": 11695.28, + "probability": 0.9104 + }, + { + "start": 11695.3, + "end": 11699.16, + "probability": 0.8147 + }, + { + "start": 11700.14, + "end": 11701.78, + "probability": 0.527 + }, + { + "start": 11701.78, + "end": 11704.12, + "probability": 0.5859 + }, + { + "start": 11704.5, + "end": 11704.62, + "probability": 0.821 + }, + { + "start": 11704.7, + "end": 11704.94, + "probability": 0.8095 + }, + { + "start": 11705.0, + "end": 11708.9, + "probability": 0.9872 + }, + { + "start": 11709.58, + "end": 11713.3, + "probability": 0.9971 + }, + { + "start": 11713.86, + "end": 11715.58, + "probability": 0.9507 + }, + { + "start": 11716.12, + "end": 11720.72, + "probability": 0.9907 + }, + { + "start": 11720.72, + "end": 11723.68, + "probability": 0.9827 + }, + { + "start": 11724.54, + "end": 11726.84, + "probability": 0.9851 + }, + { + "start": 11727.5, + "end": 11734.66, + "probability": 0.994 + }, + { + "start": 11734.66, + "end": 11740.1, + "probability": 0.9912 + }, + { + "start": 11741.46, + "end": 11744.96, + "probability": 0.6497 + }, + { + "start": 11746.31, + "end": 11748.1, + "probability": 0.0937 + }, + { + "start": 11748.34, + "end": 11748.44, + "probability": 0.1941 + }, + { + "start": 11748.73, + "end": 11751.0, + "probability": 0.0164 + }, + { + "start": 11751.04, + "end": 11754.86, + "probability": 0.0341 + }, + { + "start": 11765.44, + "end": 11769.56, + "probability": 0.1855 + }, + { + "start": 11769.56, + "end": 11774.07, + "probability": 0.0288 + }, + { + "start": 11776.85, + "end": 11778.12, + "probability": 0.0604 + }, + { + "start": 11779.72, + "end": 11780.34, + "probability": 0.1166 + }, + { + "start": 11780.92, + "end": 11786.28, + "probability": 0.0397 + }, + { + "start": 11786.7, + "end": 11789.28, + "probability": 0.0764 + }, + { + "start": 11793.64, + "end": 11795.44, + "probability": 0.0269 + }, + { + "start": 11801.21, + "end": 11801.84, + "probability": 0.0286 + }, + { + "start": 11801.84, + "end": 11805.3, + "probability": 0.0532 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.0, + "end": 11828.0, + "probability": 0.0 + }, + { + "start": 11828.24, + "end": 11828.66, + "probability": 0.1066 + }, + { + "start": 11828.66, + "end": 11828.66, + "probability": 0.0294 + }, + { + "start": 11828.66, + "end": 11828.66, + "probability": 0.1628 + }, + { + "start": 11828.66, + "end": 11828.66, + "probability": 0.0319 + }, + { + "start": 11828.66, + "end": 11828.66, + "probability": 0.0913 + }, + { + "start": 11828.66, + "end": 11829.04, + "probability": 0.2546 + }, + { + "start": 11829.14, + "end": 11831.18, + "probability": 0.8049 + }, + { + "start": 11831.68, + "end": 11833.82, + "probability": 0.7918 + }, + { + "start": 11834.34, + "end": 11836.97, + "probability": 0.8462 + }, + { + "start": 11837.08, + "end": 11837.52, + "probability": 0.4863 + }, + { + "start": 11837.52, + "end": 11838.12, + "probability": 0.8485 + }, + { + "start": 11838.2, + "end": 11841.06, + "probability": 0.9692 + }, + { + "start": 11841.44, + "end": 11842.3, + "probability": 0.8814 + }, + { + "start": 11842.86, + "end": 11845.52, + "probability": 0.9749 + }, + { + "start": 11845.62, + "end": 11847.27, + "probability": 0.9625 + }, + { + "start": 11847.78, + "end": 11848.44, + "probability": 0.8748 + }, + { + "start": 11849.04, + "end": 11850.78, + "probability": 0.9719 + }, + { + "start": 11851.0, + "end": 11851.4, + "probability": 0.7923 + }, + { + "start": 11851.52, + "end": 11852.26, + "probability": 0.8442 + }, + { + "start": 11853.38, + "end": 11854.64, + "probability": 0.6335 + }, + { + "start": 11854.74, + "end": 11858.44, + "probability": 0.9736 + }, + { + "start": 11859.02, + "end": 11860.26, + "probability": 0.9593 + }, + { + "start": 11860.54, + "end": 11864.98, + "probability": 0.9852 + }, + { + "start": 11865.42, + "end": 11867.44, + "probability": 0.8948 + }, + { + "start": 11867.44, + "end": 11870.12, + "probability": 0.7367 + }, + { + "start": 11870.2, + "end": 11872.84, + "probability": 0.9617 + }, + { + "start": 11872.94, + "end": 11877.07, + "probability": 0.9518 + }, + { + "start": 11877.12, + "end": 11879.92, + "probability": 0.8548 + }, + { + "start": 11880.38, + "end": 11883.7, + "probability": 0.97 + }, + { + "start": 11883.7, + "end": 11887.28, + "probability": 0.999 + }, + { + "start": 11887.6, + "end": 11888.5, + "probability": 0.663 + }, + { + "start": 11889.06, + "end": 11893.64, + "probability": 0.9701 + }, + { + "start": 11894.1, + "end": 11895.32, + "probability": 0.8187 + }, + { + "start": 11895.88, + "end": 11898.6, + "probability": 0.999 + }, + { + "start": 11899.12, + "end": 11901.96, + "probability": 0.8713 + }, + { + "start": 11902.36, + "end": 11904.32, + "probability": 0.9771 + }, + { + "start": 11905.1, + "end": 11909.86, + "probability": 0.9854 + }, + { + "start": 11910.08, + "end": 11912.88, + "probability": 0.9982 + }, + { + "start": 11913.34, + "end": 11914.72, + "probability": 0.9946 + }, + { + "start": 11915.14, + "end": 11920.44, + "probability": 0.9963 + }, + { + "start": 11920.9, + "end": 11925.92, + "probability": 0.9944 + }, + { + "start": 11926.54, + "end": 11930.92, + "probability": 0.9839 + }, + { + "start": 11930.92, + "end": 11934.64, + "probability": 0.9655 + }, + { + "start": 11934.88, + "end": 11939.84, + "probability": 0.7786 + }, + { + "start": 11939.84, + "end": 11939.84, + "probability": 0.1926 + }, + { + "start": 11939.84, + "end": 11943.58, + "probability": 0.9783 + }, + { + "start": 11943.92, + "end": 11947.36, + "probability": 0.9924 + }, + { + "start": 11947.86, + "end": 11948.24, + "probability": 0.8692 + }, + { + "start": 11948.5, + "end": 11950.9, + "probability": 0.9511 + }, + { + "start": 11951.82, + "end": 11954.2, + "probability": 0.9904 + }, + { + "start": 11954.28, + "end": 11957.8, + "probability": 0.9888 + }, + { + "start": 11958.24, + "end": 11963.18, + "probability": 0.9885 + }, + { + "start": 11963.8, + "end": 11967.14, + "probability": 0.9153 + }, + { + "start": 11967.48, + "end": 11971.18, + "probability": 0.9966 + }, + { + "start": 11973.96, + "end": 11978.38, + "probability": 0.8007 + }, + { + "start": 11978.6, + "end": 11980.0, + "probability": 0.6055 + }, + { + "start": 11980.22, + "end": 11983.64, + "probability": 0.9132 + }, + { + "start": 11983.9, + "end": 11985.4, + "probability": 0.9985 + }, + { + "start": 11985.46, + "end": 11991.32, + "probability": 0.9857 + }, + { + "start": 11991.78, + "end": 11994.44, + "probability": 0.7649 + }, + { + "start": 11994.82, + "end": 11995.74, + "probability": 0.9341 + }, + { + "start": 11996.06, + "end": 11997.72, + "probability": 0.8529 + }, + { + "start": 11998.28, + "end": 11999.0, + "probability": 0.943 + }, + { + "start": 11999.14, + "end": 12000.42, + "probability": 0.9321 + }, + { + "start": 12000.56, + "end": 12002.55, + "probability": 0.8998 + }, + { + "start": 12003.04, + "end": 12005.22, + "probability": 0.8782 + }, + { + "start": 12008.3, + "end": 12012.26, + "probability": 0.3046 + }, + { + "start": 12012.34, + "end": 12014.2, + "probability": 0.3395 + }, + { + "start": 12014.2, + "end": 12015.5, + "probability": 0.1758 + }, + { + "start": 12018.82, + "end": 12020.9, + "probability": 0.1186 + }, + { + "start": 12024.6, + "end": 12027.52, + "probability": 0.0377 + }, + { + "start": 12027.52, + "end": 12030.72, + "probability": 0.5508 + }, + { + "start": 12030.8, + "end": 12032.02, + "probability": 0.9395 + }, + { + "start": 12032.54, + "end": 12033.24, + "probability": 0.8938 + }, + { + "start": 12033.92, + "end": 12036.52, + "probability": 0.5581 + }, + { + "start": 12037.08, + "end": 12040.18, + "probability": 0.8674 + }, + { + "start": 12040.26, + "end": 12040.84, + "probability": 0.8745 + }, + { + "start": 12045.68, + "end": 12046.14, + "probability": 0.38 + }, + { + "start": 12046.18, + "end": 12048.02, + "probability": 0.9054 + }, + { + "start": 12048.64, + "end": 12050.14, + "probability": 0.8603 + }, + { + "start": 12056.46, + "end": 12056.84, + "probability": 0.5952 + }, + { + "start": 12057.14, + "end": 12064.46, + "probability": 0.9595 + }, + { + "start": 12064.88, + "end": 12065.6, + "probability": 0.8527 + }, + { + "start": 12065.96, + "end": 12066.8, + "probability": 0.8781 + }, + { + "start": 12067.06, + "end": 12068.74, + "probability": 0.7184 + }, + { + "start": 12069.12, + "end": 12073.12, + "probability": 0.9955 + }, + { + "start": 12073.12, + "end": 12075.64, + "probability": 0.7394 + }, + { + "start": 12076.48, + "end": 12078.3, + "probability": 0.9822 + }, + { + "start": 12078.6, + "end": 12079.22, + "probability": 0.7019 + }, + { + "start": 12079.84, + "end": 12082.02, + "probability": 0.7576 + }, + { + "start": 12082.9, + "end": 12088.32, + "probability": 0.9899 + }, + { + "start": 12089.0, + "end": 12091.4, + "probability": 0.9993 + }, + { + "start": 12092.4, + "end": 12096.02, + "probability": 0.9991 + }, + { + "start": 12097.14, + "end": 12103.12, + "probability": 0.9639 + }, + { + "start": 12103.7, + "end": 12107.24, + "probability": 0.9823 + }, + { + "start": 12108.12, + "end": 12109.54, + "probability": 0.999 + }, + { + "start": 12110.62, + "end": 12113.44, + "probability": 0.9927 + }, + { + "start": 12114.46, + "end": 12121.0, + "probability": 0.9937 + }, + { + "start": 12122.08, + "end": 12123.2, + "probability": 0.9731 + }, + { + "start": 12124.18, + "end": 12127.7, + "probability": 0.9982 + }, + { + "start": 12128.86, + "end": 12134.96, + "probability": 0.9919 + }, + { + "start": 12136.0, + "end": 12139.92, + "probability": 0.9094 + }, + { + "start": 12140.44, + "end": 12145.04, + "probability": 0.9781 + }, + { + "start": 12146.72, + "end": 12149.42, + "probability": 0.9753 + }, + { + "start": 12150.34, + "end": 12154.18, + "probability": 0.9971 + }, + { + "start": 12154.92, + "end": 12156.0, + "probability": 0.8772 + }, + { + "start": 12156.56, + "end": 12163.96, + "probability": 0.985 + }, + { + "start": 12165.06, + "end": 12168.72, + "probability": 0.9882 + }, + { + "start": 12169.24, + "end": 12173.02, + "probability": 0.9995 + }, + { + "start": 12173.54, + "end": 12174.8, + "probability": 0.7467 + }, + { + "start": 12175.92, + "end": 12177.86, + "probability": 0.9985 + }, + { + "start": 12177.88, + "end": 12180.58, + "probability": 0.9871 + }, + { + "start": 12180.98, + "end": 12183.0, + "probability": 0.9812 + }, + { + "start": 12184.0, + "end": 12186.0, + "probability": 0.8921 + }, + { + "start": 12186.62, + "end": 12190.82, + "probability": 0.9954 + }, + { + "start": 12191.36, + "end": 12192.8, + "probability": 0.9872 + }, + { + "start": 12194.2, + "end": 12194.8, + "probability": 0.6603 + }, + { + "start": 12195.36, + "end": 12198.32, + "probability": 0.9954 + }, + { + "start": 12198.96, + "end": 12200.0, + "probability": 0.9544 + }, + { + "start": 12200.82, + "end": 12201.16, + "probability": 0.6224 + }, + { + "start": 12201.68, + "end": 12205.68, + "probability": 0.9582 + }, + { + "start": 12206.4, + "end": 12207.36, + "probability": 0.1856 + }, + { + "start": 12207.96, + "end": 12209.4, + "probability": 0.9702 + }, + { + "start": 12210.92, + "end": 12212.92, + "probability": 0.9758 + }, + { + "start": 12213.52, + "end": 12216.26, + "probability": 0.9928 + }, + { + "start": 12216.8, + "end": 12219.36, + "probability": 0.9529 + }, + { + "start": 12219.96, + "end": 12221.18, + "probability": 0.6661 + }, + { + "start": 12222.18, + "end": 12223.0, + "probability": 0.9679 + }, + { + "start": 12224.32, + "end": 12225.52, + "probability": 0.6696 + }, + { + "start": 12225.58, + "end": 12226.52, + "probability": 0.8331 + }, + { + "start": 12226.9, + "end": 12228.87, + "probability": 0.9902 + }, + { + "start": 12229.54, + "end": 12231.74, + "probability": 0.9883 + }, + { + "start": 12232.3, + "end": 12235.72, + "probability": 0.9784 + }, + { + "start": 12237.22, + "end": 12240.54, + "probability": 0.9764 + }, + { + "start": 12241.5, + "end": 12244.54, + "probability": 0.9974 + }, + { + "start": 12245.1, + "end": 12246.34, + "probability": 0.604 + }, + { + "start": 12246.78, + "end": 12247.88, + "probability": 0.9504 + }, + { + "start": 12248.4, + "end": 12251.72, + "probability": 0.9871 + }, + { + "start": 12252.32, + "end": 12254.9, + "probability": 0.9944 + }, + { + "start": 12255.92, + "end": 12256.58, + "probability": 0.7509 + }, + { + "start": 12257.14, + "end": 12261.5, + "probability": 0.9519 + }, + { + "start": 12262.16, + "end": 12263.26, + "probability": 0.8408 + }, + { + "start": 12265.34, + "end": 12269.2, + "probability": 0.9816 + }, + { + "start": 12269.68, + "end": 12271.24, + "probability": 0.9897 + }, + { + "start": 12271.6, + "end": 12273.22, + "probability": 0.995 + }, + { + "start": 12274.38, + "end": 12275.72, + "probability": 0.6148 + }, + { + "start": 12276.26, + "end": 12280.86, + "probability": 0.9941 + }, + { + "start": 12281.68, + "end": 12288.48, + "probability": 0.9864 + }, + { + "start": 12289.0, + "end": 12292.7, + "probability": 0.9553 + }, + { + "start": 12293.14, + "end": 12294.76, + "probability": 0.8611 + }, + { + "start": 12296.8, + "end": 12298.2, + "probability": 0.9552 + }, + { + "start": 12299.02, + "end": 12301.23, + "probability": 0.998 + }, + { + "start": 12302.04, + "end": 12303.9, + "probability": 0.9961 + }, + { + "start": 12304.52, + "end": 12305.26, + "probability": 0.6318 + }, + { + "start": 12305.4, + "end": 12306.72, + "probability": 0.991 + }, + { + "start": 12307.56, + "end": 12310.66, + "probability": 0.9932 + }, + { + "start": 12311.54, + "end": 12313.44, + "probability": 0.509 + }, + { + "start": 12314.12, + "end": 12318.64, + "probability": 0.9744 + }, + { + "start": 12319.5, + "end": 12324.0, + "probability": 0.7821 + }, + { + "start": 12324.78, + "end": 12325.2, + "probability": 0.8987 + }, + { + "start": 12325.92, + "end": 12329.82, + "probability": 0.973 + }, + { + "start": 12330.42, + "end": 12331.34, + "probability": 0.8248 + }, + { + "start": 12331.9, + "end": 12336.54, + "probability": 0.991 + }, + { + "start": 12337.16, + "end": 12338.6, + "probability": 0.6606 + }, + { + "start": 12338.72, + "end": 12344.44, + "probability": 0.9976 + }, + { + "start": 12344.9, + "end": 12346.64, + "probability": 0.9937 + }, + { + "start": 12347.56, + "end": 12351.6, + "probability": 0.9959 + }, + { + "start": 12353.78, + "end": 12354.62, + "probability": 0.7057 + }, + { + "start": 12355.42, + "end": 12358.76, + "probability": 0.9916 + }, + { + "start": 12359.3, + "end": 12359.64, + "probability": 0.8617 + }, + { + "start": 12360.2, + "end": 12361.88, + "probability": 0.9934 + }, + { + "start": 12363.2, + "end": 12366.26, + "probability": 0.9926 + }, + { + "start": 12366.82, + "end": 12367.52, + "probability": 0.9919 + }, + { + "start": 12368.06, + "end": 12368.94, + "probability": 0.9195 + }, + { + "start": 12369.54, + "end": 12371.4, + "probability": 0.9947 + }, + { + "start": 12371.88, + "end": 12374.94, + "probability": 0.9967 + }, + { + "start": 12375.5, + "end": 12376.6, + "probability": 0.8116 + }, + { + "start": 12377.08, + "end": 12381.82, + "probability": 0.999 + }, + { + "start": 12382.28, + "end": 12386.5, + "probability": 0.999 + }, + { + "start": 12389.82, + "end": 12390.26, + "probability": 0.5194 + }, + { + "start": 12391.24, + "end": 12394.06, + "probability": 0.9767 + }, + { + "start": 12395.64, + "end": 12398.86, + "probability": 0.9307 + }, + { + "start": 12400.04, + "end": 12405.54, + "probability": 0.9888 + }, + { + "start": 12407.8, + "end": 12410.82, + "probability": 0.9984 + }, + { + "start": 12411.5, + "end": 12412.85, + "probability": 0.6094 + }, + { + "start": 12413.12, + "end": 12417.44, + "probability": 0.5795 + }, + { + "start": 12418.18, + "end": 12422.88, + "probability": 0.9764 + }, + { + "start": 12423.52, + "end": 12425.08, + "probability": 0.9973 + }, + { + "start": 12425.58, + "end": 12428.54, + "probability": 0.9536 + }, + { + "start": 12429.62, + "end": 12431.52, + "probability": 0.8784 + }, + { + "start": 12432.12, + "end": 12435.18, + "probability": 0.9965 + }, + { + "start": 12435.26, + "end": 12439.2, + "probability": 0.5481 + }, + { + "start": 12439.74, + "end": 12442.04, + "probability": 0.9497 + }, + { + "start": 12442.44, + "end": 12444.08, + "probability": 0.993 + }, + { + "start": 12444.68, + "end": 12449.84, + "probability": 0.9954 + }, + { + "start": 12450.26, + "end": 12450.86, + "probability": 0.7544 + }, + { + "start": 12451.3, + "end": 12456.68, + "probability": 0.964 + }, + { + "start": 12457.02, + "end": 12459.08, + "probability": 0.9966 + }, + { + "start": 12461.29, + "end": 12462.46, + "probability": 0.8984 + }, + { + "start": 12462.46, + "end": 12463.03, + "probability": 0.8006 + }, + { + "start": 12463.76, + "end": 12465.09, + "probability": 0.8661 + }, + { + "start": 12465.96, + "end": 12467.28, + "probability": 0.9434 + }, + { + "start": 12467.7, + "end": 12472.94, + "probability": 0.9884 + }, + { + "start": 12473.5, + "end": 12477.3, + "probability": 0.9686 + }, + { + "start": 12477.38, + "end": 12479.08, + "probability": 0.9462 + }, + { + "start": 12479.66, + "end": 12483.42, + "probability": 0.9633 + }, + { + "start": 12483.98, + "end": 12487.22, + "probability": 0.7386 + }, + { + "start": 12487.7, + "end": 12490.8, + "probability": 0.9912 + }, + { + "start": 12491.24, + "end": 12495.72, + "probability": 0.9991 + }, + { + "start": 12496.24, + "end": 12498.7, + "probability": 0.9969 + }, + { + "start": 12498.88, + "end": 12499.52, + "probability": 0.6624 + }, + { + "start": 12499.94, + "end": 12503.12, + "probability": 0.9779 + }, + { + "start": 12503.62, + "end": 12504.56, + "probability": 0.8071 + }, + { + "start": 12504.86, + "end": 12508.98, + "probability": 0.9899 + }, + { + "start": 12509.42, + "end": 12510.16, + "probability": 0.6769 + }, + { + "start": 12510.16, + "end": 12511.9, + "probability": 0.9771 + }, + { + "start": 12513.56, + "end": 12521.04, + "probability": 0.955 + }, + { + "start": 12521.88, + "end": 12522.56, + "probability": 0.9158 + }, + { + "start": 12523.1, + "end": 12524.8, + "probability": 0.8794 + }, + { + "start": 12525.38, + "end": 12529.22, + "probability": 0.9274 + }, + { + "start": 12529.72, + "end": 12531.54, + "probability": 0.9867 + }, + { + "start": 12533.44, + "end": 12534.5, + "probability": 0.8374 + }, + { + "start": 12535.14, + "end": 12539.18, + "probability": 0.9856 + }, + { + "start": 12539.18, + "end": 12543.18, + "probability": 0.9963 + }, + { + "start": 12543.9, + "end": 12546.78, + "probability": 0.9882 + }, + { + "start": 12547.5, + "end": 12550.98, + "probability": 0.9594 + }, + { + "start": 12551.54, + "end": 12552.8, + "probability": 0.7476 + }, + { + "start": 12553.38, + "end": 12556.24, + "probability": 0.6785 + }, + { + "start": 12557.12, + "end": 12562.6, + "probability": 0.9899 + }, + { + "start": 12563.48, + "end": 12567.05, + "probability": 0.8979 + }, + { + "start": 12567.62, + "end": 12571.72, + "probability": 0.9658 + }, + { + "start": 12572.02, + "end": 12575.28, + "probability": 0.9851 + }, + { + "start": 12577.18, + "end": 12581.42, + "probability": 0.9303 + }, + { + "start": 12582.1, + "end": 12585.44, + "probability": 0.9476 + }, + { + "start": 12585.96, + "end": 12591.66, + "probability": 0.9849 + }, + { + "start": 12592.66, + "end": 12596.76, + "probability": 0.9128 + }, + { + "start": 12597.56, + "end": 12600.34, + "probability": 0.9709 + }, + { + "start": 12601.2, + "end": 12605.12, + "probability": 0.9928 + }, + { + "start": 12605.78, + "end": 12609.72, + "probability": 0.9934 + }, + { + "start": 12609.72, + "end": 12613.62, + "probability": 0.9963 + }, + { + "start": 12614.14, + "end": 12616.2, + "probability": 0.9922 + }, + { + "start": 12616.72, + "end": 12618.32, + "probability": 0.9028 + }, + { + "start": 12618.92, + "end": 12620.74, + "probability": 0.9767 + }, + { + "start": 12620.86, + "end": 12622.06, + "probability": 0.9799 + }, + { + "start": 12623.7, + "end": 12625.92, + "probability": 0.9889 + }, + { + "start": 12626.32, + "end": 12629.18, + "probability": 0.9331 + }, + { + "start": 12629.74, + "end": 12632.26, + "probability": 0.9763 + }, + { + "start": 12632.8, + "end": 12638.4, + "probability": 0.9972 + }, + { + "start": 12639.37, + "end": 12641.08, + "probability": 0.5541 + }, + { + "start": 12641.44, + "end": 12645.74, + "probability": 0.9893 + }, + { + "start": 12646.18, + "end": 12646.54, + "probability": 0.5663 + }, + { + "start": 12647.14, + "end": 12648.06, + "probability": 0.5872 + }, + { + "start": 12648.54, + "end": 12653.02, + "probability": 0.9946 + }, + { + "start": 12653.34, + "end": 12655.66, + "probability": 0.9976 + }, + { + "start": 12656.48, + "end": 12659.66, + "probability": 0.9951 + }, + { + "start": 12660.94, + "end": 12663.82, + "probability": 0.8193 + }, + { + "start": 12664.36, + "end": 12668.1, + "probability": 0.9771 + }, + { + "start": 12669.02, + "end": 12674.08, + "probability": 0.9866 + }, + { + "start": 12674.66, + "end": 12678.41, + "probability": 0.9897 + }, + { + "start": 12678.64, + "end": 12682.2, + "probability": 0.9723 + }, + { + "start": 12682.56, + "end": 12685.92, + "probability": 0.9952 + }, + { + "start": 12686.52, + "end": 12688.94, + "probability": 0.94 + }, + { + "start": 12689.38, + "end": 12691.24, + "probability": 0.9617 + }, + { + "start": 12691.6, + "end": 12694.84, + "probability": 0.9956 + }, + { + "start": 12695.16, + "end": 12697.7, + "probability": 0.9976 + }, + { + "start": 12699.84, + "end": 12701.88, + "probability": 0.7254 + }, + { + "start": 12702.5, + "end": 12704.1, + "probability": 0.9395 + }, + { + "start": 12704.84, + "end": 12708.16, + "probability": 0.9045 + }, + { + "start": 12708.44, + "end": 12709.58, + "probability": 0.311 + }, + { + "start": 12717.86, + "end": 12718.46, + "probability": 0.0544 + }, + { + "start": 12738.08, + "end": 12738.66, + "probability": 0.5501 + }, + { + "start": 12738.66, + "end": 12739.7, + "probability": 0.9215 + }, + { + "start": 12740.06, + "end": 12741.06, + "probability": 0.7895 + }, + { + "start": 12742.74, + "end": 12746.02, + "probability": 0.7988 + }, + { + "start": 12747.38, + "end": 12750.98, + "probability": 0.8898 + }, + { + "start": 12752.12, + "end": 12755.98, + "probability": 0.9939 + }, + { + "start": 12755.98, + "end": 12759.16, + "probability": 0.9971 + }, + { + "start": 12759.92, + "end": 12762.3, + "probability": 0.9929 + }, + { + "start": 12763.64, + "end": 12767.15, + "probability": 0.999 + }, + { + "start": 12768.02, + "end": 12768.02, + "probability": 0.099 + }, + { + "start": 12768.02, + "end": 12768.9, + "probability": 0.5598 + }, + { + "start": 12769.36, + "end": 12769.94, + "probability": 0.6998 + }, + { + "start": 12771.08, + "end": 12771.1, + "probability": 0.039 + }, + { + "start": 12771.1, + "end": 12771.1, + "probability": 0.0466 + }, + { + "start": 12771.1, + "end": 12771.46, + "probability": 0.0671 + }, + { + "start": 12771.84, + "end": 12772.26, + "probability": 0.0061 + }, + { + "start": 12773.3, + "end": 12773.3, + "probability": 0.104 + }, + { + "start": 12773.38, + "end": 12775.66, + "probability": 0.8874 + }, + { + "start": 12776.02, + "end": 12779.48, + "probability": 0.1844 + }, + { + "start": 12779.86, + "end": 12780.18, + "probability": 0.0267 + }, + { + "start": 12780.98, + "end": 12783.24, + "probability": 0.5996 + }, + { + "start": 12783.26, + "end": 12784.22, + "probability": 0.6018 + }, + { + "start": 12784.93, + "end": 12786.92, + "probability": 0.8087 + }, + { + "start": 12787.36, + "end": 12789.04, + "probability": 0.9537 + }, + { + "start": 12789.34, + "end": 12790.3, + "probability": 0.8916 + }, + { + "start": 12790.44, + "end": 12792.98, + "probability": 0.4736 + }, + { + "start": 12793.22, + "end": 12793.78, + "probability": 0.5002 + }, + { + "start": 12794.16, + "end": 12794.7, + "probability": 0.8289 + }, + { + "start": 12794.92, + "end": 12796.05, + "probability": 0.0844 + }, + { + "start": 12796.6, + "end": 12800.16, + "probability": 0.7511 + }, + { + "start": 12800.56, + "end": 12801.98, + "probability": 0.6376 + }, + { + "start": 12802.04, + "end": 12804.84, + "probability": 0.9239 + }, + { + "start": 12805.04, + "end": 12808.52, + "probability": 0.5836 + }, + { + "start": 12808.86, + "end": 12809.44, + "probability": 0.0435 + }, + { + "start": 12810.28, + "end": 12812.68, + "probability": 0.4263 + }, + { + "start": 12812.78, + "end": 12814.46, + "probability": 0.3298 + }, + { + "start": 12815.54, + "end": 12823.92, + "probability": 0.7894 + }, + { + "start": 12824.54, + "end": 12826.38, + "probability": 0.9738 + }, + { + "start": 12826.38, + "end": 12828.32, + "probability": 0.606 + }, + { + "start": 12828.46, + "end": 12830.54, + "probability": 0.9861 + }, + { + "start": 12831.04, + "end": 12833.44, + "probability": 0.9595 + }, + { + "start": 12833.88, + "end": 12834.49, + "probability": 0.9001 + }, + { + "start": 12835.12, + "end": 12840.2, + "probability": 0.9878 + }, + { + "start": 12840.3, + "end": 12842.62, + "probability": 0.9238 + }, + { + "start": 12845.06, + "end": 12845.26, + "probability": 0.0513 + }, + { + "start": 12845.26, + "end": 12845.74, + "probability": 0.7147 + }, + { + "start": 12846.24, + "end": 12850.62, + "probability": 0.9678 + }, + { + "start": 12850.84, + "end": 12852.44, + "probability": 0.8284 + }, + { + "start": 12852.56, + "end": 12854.26, + "probability": 0.9587 + }, + { + "start": 12854.82, + "end": 12856.64, + "probability": 0.9902 + }, + { + "start": 12857.22, + "end": 12857.98, + "probability": 0.5757 + }, + { + "start": 12858.86, + "end": 12861.4, + "probability": 0.2988 + }, + { + "start": 12862.0, + "end": 12863.88, + "probability": 0.6693 + }, + { + "start": 12865.02, + "end": 12865.86, + "probability": 0.8901 + }, + { + "start": 12866.04, + "end": 12867.54, + "probability": 0.8623 + }, + { + "start": 12867.72, + "end": 12871.26, + "probability": 0.9967 + }, + { + "start": 12871.42, + "end": 12871.52, + "probability": 0.3808 + }, + { + "start": 12871.98, + "end": 12872.92, + "probability": 0.9215 + }, + { + "start": 12873.3, + "end": 12877.84, + "probability": 0.9819 + }, + { + "start": 12878.08, + "end": 12880.48, + "probability": 0.7607 + }, + { + "start": 12881.0, + "end": 12882.19, + "probability": 0.9667 + }, + { + "start": 12882.88, + "end": 12884.8, + "probability": 0.9835 + }, + { + "start": 12884.9, + "end": 12885.74, + "probability": 0.969 + }, + { + "start": 12886.06, + "end": 12890.0, + "probability": 0.9873 + }, + { + "start": 12890.52, + "end": 12892.02, + "probability": 0.6659 + }, + { + "start": 12892.16, + "end": 12895.18, + "probability": 0.9186 + }, + { + "start": 12896.12, + "end": 12898.34, + "probability": 0.7236 + }, + { + "start": 12899.18, + "end": 12901.18, + "probability": 0.9108 + }, + { + "start": 12902.02, + "end": 12904.2, + "probability": 0.9438 + }, + { + "start": 12904.86, + "end": 12906.5, + "probability": 0.9894 + }, + { + "start": 12907.12, + "end": 12910.76, + "probability": 0.897 + }, + { + "start": 12911.18, + "end": 12914.04, + "probability": 0.9462 + }, + { + "start": 12914.64, + "end": 12919.14, + "probability": 0.9014 + }, + { + "start": 12919.96, + "end": 12922.82, + "probability": 0.9961 + }, + { + "start": 12923.01, + "end": 12926.45, + "probability": 0.9985 + }, + { + "start": 12926.66, + "end": 12927.06, + "probability": 0.4212 + }, + { + "start": 12928.44, + "end": 12929.96, + "probability": 0.7628 + }, + { + "start": 12931.24, + "end": 12933.44, + "probability": 0.0114 + }, + { + "start": 12933.44, + "end": 12936.12, + "probability": 0.7184 + }, + { + "start": 12936.88, + "end": 12943.06, + "probability": 0.9647 + }, + { + "start": 12943.58, + "end": 12948.28, + "probability": 0.9683 + }, + { + "start": 12949.16, + "end": 12950.24, + "probability": 0.8491 + }, + { + "start": 12951.52, + "end": 12956.92, + "probability": 0.9818 + }, + { + "start": 12957.06, + "end": 12957.79, + "probability": 0.9563 + }, + { + "start": 12960.96, + "end": 12961.88, + "probability": 0.5895 + }, + { + "start": 12962.28, + "end": 12962.7, + "probability": 0.3732 + }, + { + "start": 12962.7, + "end": 12963.24, + "probability": 0.1369 + }, + { + "start": 12963.4, + "end": 12966.48, + "probability": 0.9187 + }, + { + "start": 12966.86, + "end": 12971.36, + "probability": 0.9686 + }, + { + "start": 12971.4, + "end": 12972.8, + "probability": 0.7592 + }, + { + "start": 12972.94, + "end": 12974.46, + "probability": 0.957 + }, + { + "start": 12974.96, + "end": 12977.26, + "probability": 0.9485 + }, + { + "start": 12977.8, + "end": 12977.82, + "probability": 0.3472 + }, + { + "start": 12977.82, + "end": 12980.44, + "probability": 0.9189 + }, + { + "start": 12981.96, + "end": 12981.96, + "probability": 0.2203 + }, + { + "start": 12981.96, + "end": 12984.36, + "probability": 0.7158 + }, + { + "start": 12984.44, + "end": 12985.56, + "probability": 0.6245 + }, + { + "start": 12985.82, + "end": 12988.54, + "probability": 0.9191 + }, + { + "start": 12988.68, + "end": 12989.97, + "probability": 0.0835 + }, + { + "start": 12993.42, + "end": 12993.42, + "probability": 0.0968 + }, + { + "start": 12993.42, + "end": 12993.42, + "probability": 0.038 + }, + { + "start": 12993.42, + "end": 12993.42, + "probability": 0.1586 + }, + { + "start": 12993.42, + "end": 12995.18, + "probability": 0.8557 + }, + { + "start": 12995.26, + "end": 12997.58, + "probability": 0.5027 + }, + { + "start": 12998.18, + "end": 12999.48, + "probability": 0.8472 + }, + { + "start": 13000.78, + "end": 13002.2, + "probability": 0.733 + }, + { + "start": 13002.76, + "end": 13002.86, + "probability": 0.3545 + }, + { + "start": 13003.48, + "end": 13005.52, + "probability": 0.9956 + }, + { + "start": 13005.52, + "end": 13009.2, + "probability": 0.996 + }, + { + "start": 13009.3, + "end": 13010.32, + "probability": 0.6429 + }, + { + "start": 13011.38, + "end": 13014.92, + "probability": 0.9078 + }, + { + "start": 13015.16, + "end": 13018.07, + "probability": 0.9805 + }, + { + "start": 13019.06, + "end": 13021.2, + "probability": 0.8823 + }, + { + "start": 13021.36, + "end": 13021.36, + "probability": 0.236 + }, + { + "start": 13021.5, + "end": 13022.68, + "probability": 0.4934 + }, + { + "start": 13022.96, + "end": 13024.14, + "probability": 0.5425 + }, + { + "start": 13024.44, + "end": 13025.02, + "probability": 0.0611 + }, + { + "start": 13025.04, + "end": 13025.32, + "probability": 0.032 + }, + { + "start": 13025.32, + "end": 13028.5, + "probability": 0.8602 + }, + { + "start": 13028.62, + "end": 13031.32, + "probability": 0.6816 + }, + { + "start": 13031.32, + "end": 13031.6, + "probability": 0.0272 + }, + { + "start": 13031.6, + "end": 13032.18, + "probability": 0.4971 + }, + { + "start": 13032.78, + "end": 13034.9, + "probability": 0.9633 + }, + { + "start": 13034.9, + "end": 13037.9, + "probability": 0.9264 + }, + { + "start": 13038.32, + "end": 13039.14, + "probability": 0.0381 + }, + { + "start": 13040.18, + "end": 13040.52, + "probability": 0.001 + }, + { + "start": 13040.52, + "end": 13040.52, + "probability": 0.05 + }, + { + "start": 13040.52, + "end": 13042.06, + "probability": 0.0346 + }, + { + "start": 13042.54, + "end": 13043.5, + "probability": 0.7013 + }, + { + "start": 13043.5, + "end": 13044.02, + "probability": 0.6447 + }, + { + "start": 13044.08, + "end": 13045.18, + "probability": 0.8373 + }, + { + "start": 13045.24, + "end": 13048.78, + "probability": 0.9946 + }, + { + "start": 13049.38, + "end": 13049.94, + "probability": 0.8291 + }, + { + "start": 13049.94, + "end": 13051.66, + "probability": 0.9927 + }, + { + "start": 13051.84, + "end": 13053.9, + "probability": 0.9614 + }, + { + "start": 13054.12, + "end": 13054.54, + "probability": 0.6029 + }, + { + "start": 13054.88, + "end": 13056.58, + "probability": 0.8159 + }, + { + "start": 13056.78, + "end": 13059.66, + "probability": 0.3769 + }, + { + "start": 13061.8, + "end": 13061.8, + "probability": 0.6395 + }, + { + "start": 13061.8, + "end": 13061.8, + "probability": 0.0284 + }, + { + "start": 13061.8, + "end": 13061.8, + "probability": 0.3967 + }, + { + "start": 13061.8, + "end": 13064.14, + "probability": 0.7656 + }, + { + "start": 13064.26, + "end": 13067.44, + "probability": 0.9092 + }, + { + "start": 13067.9, + "end": 13070.14, + "probability": 0.8651 + }, + { + "start": 13070.38, + "end": 13073.24, + "probability": 0.9963 + }, + { + "start": 13073.62, + "end": 13075.44, + "probability": 0.121 + }, + { + "start": 13076.39, + "end": 13079.26, + "probability": 0.7702 + }, + { + "start": 13079.36, + "end": 13084.02, + "probability": 0.6092 + }, + { + "start": 13085.21, + "end": 13088.84, + "probability": 0.8464 + }, + { + "start": 13089.72, + "end": 13090.58, + "probability": 0.5166 + }, + { + "start": 13091.4, + "end": 13094.18, + "probability": 0.1351 + }, + { + "start": 13094.3, + "end": 13096.6, + "probability": 0.0069 + }, + { + "start": 13097.2, + "end": 13098.98, + "probability": 0.1796 + }, + { + "start": 13099.66, + "end": 13103.96, + "probability": 0.8611 + }, + { + "start": 13104.08, + "end": 13105.76, + "probability": 0.9022 + }, + { + "start": 13106.02, + "end": 13107.39, + "probability": 0.1219 + }, + { + "start": 13107.86, + "end": 13108.53, + "probability": 0.2533 + }, + { + "start": 13108.64, + "end": 13109.08, + "probability": 0.2294 + }, + { + "start": 13109.08, + "end": 13111.0, + "probability": 0.0932 + }, + { + "start": 13111.0, + "end": 13111.94, + "probability": 0.0785 + }, + { + "start": 13112.08, + "end": 13112.82, + "probability": 0.8191 + }, + { + "start": 13112.86, + "end": 13114.0, + "probability": 0.9552 + }, + { + "start": 13114.38, + "end": 13117.96, + "probability": 0.9318 + }, + { + "start": 13118.54, + "end": 13121.68, + "probability": 0.9711 + }, + { + "start": 13122.04, + "end": 13125.3, + "probability": 0.9897 + }, + { + "start": 13125.92, + "end": 13128.44, + "probability": 0.9318 + }, + { + "start": 13128.62, + "end": 13129.14, + "probability": 0.822 + }, + { + "start": 13129.34, + "end": 13130.28, + "probability": 0.2585 + }, + { + "start": 13130.8, + "end": 13133.54, + "probability": 0.013 + }, + { + "start": 13139.48, + "end": 13139.64, + "probability": 0.53 + }, + { + "start": 13140.54, + "end": 13143.12, + "probability": 0.9951 + }, + { + "start": 13143.2, + "end": 13144.43, + "probability": 0.9259 + }, + { + "start": 13145.16, + "end": 13147.2, + "probability": 0.0723 + }, + { + "start": 13147.22, + "end": 13147.74, + "probability": 0.1512 + }, + { + "start": 13147.84, + "end": 13149.94, + "probability": 0.6359 + }, + { + "start": 13150.04, + "end": 13152.49, + "probability": 0.7524 + }, + { + "start": 13152.56, + "end": 13153.48, + "probability": 0.0027 + }, + { + "start": 13153.48, + "end": 13153.58, + "probability": 0.2653 + }, + { + "start": 13153.94, + "end": 13156.74, + "probability": 0.812 + }, + { + "start": 13156.74, + "end": 13158.38, + "probability": 0.626 + }, + { + "start": 13158.68, + "end": 13158.84, + "probability": 0.4538 + }, + { + "start": 13158.84, + "end": 13160.58, + "probability": 0.3965 + }, + { + "start": 13160.8, + "end": 13161.56, + "probability": 0.6272 + }, + { + "start": 13161.84, + "end": 13163.06, + "probability": 0.7788 + }, + { + "start": 13163.44, + "end": 13165.39, + "probability": 0.9883 + }, + { + "start": 13165.54, + "end": 13166.78, + "probability": 0.978 + }, + { + "start": 13167.56, + "end": 13170.26, + "probability": 0.8007 + }, + { + "start": 13171.62, + "end": 13173.58, + "probability": 0.95 + }, + { + "start": 13174.6, + "end": 13177.54, + "probability": 0.8976 + }, + { + "start": 13178.68, + "end": 13178.78, + "probability": 0.2474 + }, + { + "start": 13178.78, + "end": 13179.82, + "probability": 0.8898 + }, + { + "start": 13180.22, + "end": 13182.44, + "probability": 0.9248 + }, + { + "start": 13183.4, + "end": 13186.0, + "probability": 0.5817 + }, + { + "start": 13186.14, + "end": 13188.34, + "probability": 0.9283 + }, + { + "start": 13188.44, + "end": 13189.42, + "probability": 0.9702 + }, + { + "start": 13190.08, + "end": 13192.6, + "probability": 0.9853 + }, + { + "start": 13192.6, + "end": 13195.46, + "probability": 0.9964 + }, + { + "start": 13196.14, + "end": 13198.04, + "probability": 0.9927 + }, + { + "start": 13199.14, + "end": 13202.38, + "probability": 0.9712 + }, + { + "start": 13203.38, + "end": 13206.36, + "probability": 0.973 + }, + { + "start": 13207.52, + "end": 13211.0, + "probability": 0.9954 + }, + { + "start": 13212.0, + "end": 13215.96, + "probability": 0.9823 + }, + { + "start": 13215.96, + "end": 13219.82, + "probability": 0.9964 + }, + { + "start": 13220.28, + "end": 13220.46, + "probability": 0.7824 + }, + { + "start": 13220.54, + "end": 13222.96, + "probability": 0.9914 + }, + { + "start": 13223.46, + "end": 13226.7, + "probability": 0.9659 + }, + { + "start": 13228.7, + "end": 13231.16, + "probability": 0.5277 + }, + { + "start": 13231.84, + "end": 13233.86, + "probability": 0.5849 + }, + { + "start": 13234.3, + "end": 13235.52, + "probability": 0.8445 + }, + { + "start": 13236.62, + "end": 13238.34, + "probability": 0.7306 + }, + { + "start": 13239.52, + "end": 13243.12, + "probability": 0.9253 + }, + { + "start": 13243.7, + "end": 13245.54, + "probability": 0.4003 + }, + { + "start": 13245.58, + "end": 13248.4, + "probability": 0.45 + }, + { + "start": 13248.96, + "end": 13250.14, + "probability": 0.4089 + }, + { + "start": 13251.53, + "end": 13256.92, + "probability": 0.9939 + }, + { + "start": 13257.02, + "end": 13258.6, + "probability": 0.9985 + }, + { + "start": 13259.0, + "end": 13262.84, + "probability": 0.9511 + }, + { + "start": 13263.52, + "end": 13264.0, + "probability": 0.4958 + }, + { + "start": 13264.02, + "end": 13269.08, + "probability": 0.978 + }, + { + "start": 13269.1, + "end": 13271.34, + "probability": 0.9985 + }, + { + "start": 13272.44, + "end": 13274.54, + "probability": 0.9677 + }, + { + "start": 13274.88, + "end": 13277.38, + "probability": 0.8992 + }, + { + "start": 13278.48, + "end": 13284.1, + "probability": 0.9585 + }, + { + "start": 13284.82, + "end": 13288.04, + "probability": 0.972 + }, + { + "start": 13288.74, + "end": 13291.76, + "probability": 0.9782 + }, + { + "start": 13293.96, + "end": 13297.76, + "probability": 0.9557 + }, + { + "start": 13298.18, + "end": 13300.9, + "probability": 0.958 + }, + { + "start": 13301.04, + "end": 13303.6, + "probability": 0.9725 + }, + { + "start": 13303.9, + "end": 13304.46, + "probability": 0.5714 + }, + { + "start": 13305.2, + "end": 13306.06, + "probability": 0.7004 + }, + { + "start": 13306.18, + "end": 13307.62, + "probability": 0.9946 + }, + { + "start": 13307.74, + "end": 13308.56, + "probability": 0.8669 + }, + { + "start": 13308.9, + "end": 13311.16, + "probability": 0.9015 + }, + { + "start": 13311.28, + "end": 13314.95, + "probability": 0.9915 + }, + { + "start": 13316.06, + "end": 13318.98, + "probability": 0.9696 + }, + { + "start": 13319.16, + "end": 13321.0, + "probability": 0.9869 + }, + { + "start": 13321.1, + "end": 13321.68, + "probability": 0.4763 + }, + { + "start": 13322.46, + "end": 13325.2, + "probability": 0.6405 + }, + { + "start": 13326.42, + "end": 13328.9, + "probability": 0.9909 + }, + { + "start": 13329.22, + "end": 13332.5, + "probability": 0.871 + }, + { + "start": 13333.04, + "end": 13335.26, + "probability": 0.9597 + }, + { + "start": 13335.96, + "end": 13340.4, + "probability": 0.9663 + }, + { + "start": 13340.96, + "end": 13343.34, + "probability": 0.9944 + }, + { + "start": 13344.8, + "end": 13348.72, + "probability": 0.9901 + }, + { + "start": 13348.8, + "end": 13351.38, + "probability": 0.9661 + }, + { + "start": 13351.9, + "end": 13352.56, + "probability": 0.7493 + }, + { + "start": 13355.72, + "end": 13358.16, + "probability": 0.8188 + }, + { + "start": 13358.34, + "end": 13361.74, + "probability": 0.9614 + }, + { + "start": 13362.66, + "end": 13363.8, + "probability": 0.7108 + }, + { + "start": 13363.86, + "end": 13368.38, + "probability": 0.9941 + }, + { + "start": 13368.62, + "end": 13368.62, + "probability": 0.267 + }, + { + "start": 13370.84, + "end": 13370.94, + "probability": 0.4593 + }, + { + "start": 13371.42, + "end": 13374.36, + "probability": 0.3232 + }, + { + "start": 13374.5, + "end": 13377.34, + "probability": 0.9168 + }, + { + "start": 13377.86, + "end": 13381.06, + "probability": 0.895 + }, + { + "start": 13381.64, + "end": 13384.4, + "probability": 0.8905 + }, + { + "start": 13384.76, + "end": 13386.28, + "probability": 0.8459 + }, + { + "start": 13386.3, + "end": 13389.14, + "probability": 0.9155 + }, + { + "start": 13389.14, + "end": 13393.5, + "probability": 0.992 + }, + { + "start": 13394.14, + "end": 13396.08, + "probability": 0.5738 + }, + { + "start": 13396.36, + "end": 13398.88, + "probability": 0.8357 + }, + { + "start": 13399.4, + "end": 13400.06, + "probability": 0.7663 + }, + { + "start": 13400.42, + "end": 13405.02, + "probability": 0.8438 + }, + { + "start": 13405.34, + "end": 13405.88, + "probability": 0.0481 + }, + { + "start": 13405.88, + "end": 13408.34, + "probability": 0.9787 + }, + { + "start": 13408.48, + "end": 13409.08, + "probability": 0.0035 + }, + { + "start": 13409.6, + "end": 13410.3, + "probability": 0.1458 + }, + { + "start": 13410.84, + "end": 13411.91, + "probability": 0.3249 + }, + { + "start": 13414.14, + "end": 13415.28, + "probability": 0.5773 + }, + { + "start": 13415.82, + "end": 13416.66, + "probability": 0.2725 + }, + { + "start": 13417.62, + "end": 13422.0, + "probability": 0.7796 + }, + { + "start": 13422.76, + "end": 13423.86, + "probability": 0.8213 + }, + { + "start": 13424.34, + "end": 13426.9, + "probability": 0.9637 + }, + { + "start": 13427.54, + "end": 13434.24, + "probability": 0.996 + }, + { + "start": 13434.24, + "end": 13439.06, + "probability": 0.9995 + }, + { + "start": 13439.72, + "end": 13442.42, + "probability": 0.9976 + }, + { + "start": 13442.72, + "end": 13445.38, + "probability": 0.9477 + }, + { + "start": 13445.5, + "end": 13447.6, + "probability": 0.9111 + }, + { + "start": 13447.64, + "end": 13448.7, + "probability": 0.9119 + }, + { + "start": 13449.06, + "end": 13451.76, + "probability": 0.9878 + }, + { + "start": 13451.96, + "end": 13454.12, + "probability": 0.9538 + }, + { + "start": 13454.6, + "end": 13455.46, + "probability": 0.9873 + }, + { + "start": 13455.58, + "end": 13459.76, + "probability": 0.9903 + }, + { + "start": 13460.06, + "end": 13460.42, + "probability": 0.8048 + }, + { + "start": 13460.72, + "end": 13463.32, + "probability": 0.78 + }, + { + "start": 13463.62, + "end": 13464.96, + "probability": 0.3705 + }, + { + "start": 13466.32, + "end": 13467.72, + "probability": 0.7814 + }, + { + "start": 13474.94, + "end": 13474.94, + "probability": 0.0543 + }, + { + "start": 13474.94, + "end": 13474.94, + "probability": 0.0542 + }, + { + "start": 13474.94, + "end": 13474.98, + "probability": 0.0713 + }, + { + "start": 13474.98, + "end": 13474.98, + "probability": 0.0218 + }, + { + "start": 13492.42, + "end": 13493.78, + "probability": 0.7627 + }, + { + "start": 13494.4, + "end": 13497.44, + "probability": 0.9888 + }, + { + "start": 13498.02, + "end": 13500.84, + "probability": 0.995 + }, + { + "start": 13501.5, + "end": 13502.96, + "probability": 0.9099 + }, + { + "start": 13502.96, + "end": 13504.66, + "probability": 0.9521 + }, + { + "start": 13504.74, + "end": 13504.86, + "probability": 0.1131 + }, + { + "start": 13504.86, + "end": 13504.88, + "probability": 0.1275 + }, + { + "start": 13508.68, + "end": 13512.4, + "probability": 0.9985 + }, + { + "start": 13512.84, + "end": 13514.32, + "probability": 0.689 + }, + { + "start": 13514.88, + "end": 13517.88, + "probability": 0.9945 + }, + { + "start": 13518.38, + "end": 13519.18, + "probability": 0.7362 + }, + { + "start": 13519.64, + "end": 13520.92, + "probability": 0.9022 + }, + { + "start": 13521.26, + "end": 13525.02, + "probability": 0.9913 + }, + { + "start": 13525.42, + "end": 13528.24, + "probability": 0.9888 + }, + { + "start": 13528.4, + "end": 13529.72, + "probability": 0.618 + }, + { + "start": 13530.24, + "end": 13531.72, + "probability": 0.9671 + }, + { + "start": 13532.14, + "end": 13534.24, + "probability": 0.9526 + }, + { + "start": 13534.76, + "end": 13536.06, + "probability": 0.9744 + }, + { + "start": 13536.1, + "end": 13537.64, + "probability": 0.7263 + }, + { + "start": 13538.08, + "end": 13541.74, + "probability": 0.9585 + }, + { + "start": 13541.74, + "end": 13544.76, + "probability": 0.9978 + }, + { + "start": 13545.06, + "end": 13547.32, + "probability": 0.882 + }, + { + "start": 13547.9, + "end": 13549.16, + "probability": 0.8727 + }, + { + "start": 13549.9, + "end": 13551.1, + "probability": 0.9392 + }, + { + "start": 13552.76, + "end": 13554.21, + "probability": 0.9713 + }, + { + "start": 13554.86, + "end": 13557.42, + "probability": 0.9735 + }, + { + "start": 13557.86, + "end": 13558.8, + "probability": 0.9451 + }, + { + "start": 13559.12, + "end": 13560.92, + "probability": 0.9825 + }, + { + "start": 13561.28, + "end": 13562.88, + "probability": 0.7697 + }, + { + "start": 13563.0, + "end": 13563.9, + "probability": 0.8713 + }, + { + "start": 13564.28, + "end": 13566.44, + "probability": 0.9536 + }, + { + "start": 13566.76, + "end": 13567.92, + "probability": 0.9931 + }, + { + "start": 13568.64, + "end": 13571.92, + "probability": 0.9216 + }, + { + "start": 13572.2, + "end": 13573.18, + "probability": 0.6748 + }, + { + "start": 13573.54, + "end": 13575.02, + "probability": 0.9832 + }, + { + "start": 13575.42, + "end": 13576.5, + "probability": 0.9528 + }, + { + "start": 13576.98, + "end": 13578.62, + "probability": 0.9751 + }, + { + "start": 13579.14, + "end": 13582.46, + "probability": 0.9974 + }, + { + "start": 13583.0, + "end": 13586.0, + "probability": 0.9957 + }, + { + "start": 13586.04, + "end": 13587.4, + "probability": 0.8709 + }, + { + "start": 13587.8, + "end": 13590.6, + "probability": 0.9689 + }, + { + "start": 13591.06, + "end": 13593.22, + "probability": 0.9912 + }, + { + "start": 13593.58, + "end": 13593.88, + "probability": 0.8791 + }, + { + "start": 13593.94, + "end": 13594.58, + "probability": 0.8682 + }, + { + "start": 13594.84, + "end": 13595.5, + "probability": 0.7189 + }, + { + "start": 13595.54, + "end": 13597.98, + "probability": 0.8615 + }, + { + "start": 13598.78, + "end": 13601.32, + "probability": 0.8098 + }, + { + "start": 13601.8, + "end": 13605.16, + "probability": 0.9683 + }, + { + "start": 13605.48, + "end": 13607.18, + "probability": 0.9851 + }, + { + "start": 13607.56, + "end": 13609.06, + "probability": 0.9688 + }, + { + "start": 13609.38, + "end": 13611.18, + "probability": 0.9424 + }, + { + "start": 13611.5, + "end": 13616.57, + "probability": 0.9961 + }, + { + "start": 13618.86, + "end": 13619.66, + "probability": 0.3823 + }, + { + "start": 13619.9, + "end": 13621.52, + "probability": 0.9509 + }, + { + "start": 13621.54, + "end": 13623.22, + "probability": 0.9058 + }, + { + "start": 13623.52, + "end": 13625.5, + "probability": 0.9736 + }, + { + "start": 13625.82, + "end": 13627.7, + "probability": 0.8789 + }, + { + "start": 13628.14, + "end": 13630.28, + "probability": 0.6508 + }, + { + "start": 13630.58, + "end": 13635.84, + "probability": 0.9924 + }, + { + "start": 13636.42, + "end": 13639.34, + "probability": 0.7261 + }, + { + "start": 13639.4, + "end": 13639.58, + "probability": 0.3997 + }, + { + "start": 13639.66, + "end": 13641.16, + "probability": 0.9018 + }, + { + "start": 13641.26, + "end": 13642.96, + "probability": 0.9985 + }, + { + "start": 13643.3, + "end": 13645.4, + "probability": 0.9647 + }, + { + "start": 13646.08, + "end": 13650.78, + "probability": 0.8849 + }, + { + "start": 13651.2, + "end": 13652.96, + "probability": 0.9961 + }, + { + "start": 13653.46, + "end": 13655.46, + "probability": 0.9985 + }, + { + "start": 13655.86, + "end": 13656.42, + "probability": 0.7122 + }, + { + "start": 13657.2, + "end": 13659.92, + "probability": 0.9971 + }, + { + "start": 13660.28, + "end": 13660.78, + "probability": 0.9265 + }, + { + "start": 13660.82, + "end": 13662.5, + "probability": 0.9955 + }, + { + "start": 13662.72, + "end": 13664.76, + "probability": 0.9827 + }, + { + "start": 13665.16, + "end": 13666.06, + "probability": 0.9566 + }, + { + "start": 13666.6, + "end": 13671.5, + "probability": 0.9966 + }, + { + "start": 13671.9, + "end": 13677.06, + "probability": 0.9984 + }, + { + "start": 13677.6, + "end": 13681.56, + "probability": 0.9982 + }, + { + "start": 13681.56, + "end": 13685.0, + "probability": 0.9932 + }, + { + "start": 13685.34, + "end": 13687.62, + "probability": 0.9988 + }, + { + "start": 13687.98, + "end": 13690.46, + "probability": 0.9947 + }, + { + "start": 13690.8, + "end": 13695.0, + "probability": 0.9706 + }, + { + "start": 13695.16, + "end": 13698.6, + "probability": 0.7012 + }, + { + "start": 13698.66, + "end": 13699.36, + "probability": 0.7626 + }, + { + "start": 13699.48, + "end": 13699.48, + "probability": 0.3426 + }, + { + "start": 13699.74, + "end": 13700.78, + "probability": 0.9174 + }, + { + "start": 13700.98, + "end": 13702.5, + "probability": 0.9243 + }, + { + "start": 13703.06, + "end": 13703.95, + "probability": 0.4744 + }, + { + "start": 13704.62, + "end": 13712.3, + "probability": 0.6325 + }, + { + "start": 13712.88, + "end": 13713.6, + "probability": 0.5018 + }, + { + "start": 13713.88, + "end": 13714.44, + "probability": 0.5476 + }, + { + "start": 13714.94, + "end": 13715.5, + "probability": 0.3833 + }, + { + "start": 13733.98, + "end": 13739.22, + "probability": 0.1096 + }, + { + "start": 13739.3, + "end": 13741.0, + "probability": 0.7833 + }, + { + "start": 13741.7, + "end": 13745.2, + "probability": 0.6062 + }, + { + "start": 13745.22, + "end": 13746.84, + "probability": 0.7227 + }, + { + "start": 13747.46, + "end": 13748.59, + "probability": 0.3857 + }, + { + "start": 13748.78, + "end": 13751.84, + "probability": 0.8909 + }, + { + "start": 13771.74, + "end": 13773.24, + "probability": 0.8509 + }, + { + "start": 13774.06, + "end": 13777.64, + "probability": 0.8682 + }, + { + "start": 13778.88, + "end": 13782.9, + "probability": 0.9929 + }, + { + "start": 13783.52, + "end": 13784.46, + "probability": 0.9904 + }, + { + "start": 13785.56, + "end": 13789.94, + "probability": 0.9857 + }, + { + "start": 13790.84, + "end": 13792.04, + "probability": 0.8846 + }, + { + "start": 13792.68, + "end": 13797.22, + "probability": 0.9514 + }, + { + "start": 13798.6, + "end": 13802.12, + "probability": 0.9832 + }, + { + "start": 13802.22, + "end": 13805.64, + "probability": 0.9985 + }, + { + "start": 13805.64, + "end": 13809.78, + "probability": 0.9978 + }, + { + "start": 13810.22, + "end": 13813.12, + "probability": 0.9595 + }, + { + "start": 13813.26, + "end": 13816.8, + "probability": 0.9984 + }, + { + "start": 13817.34, + "end": 13821.22, + "probability": 0.9603 + }, + { + "start": 13822.18, + "end": 13822.99, + "probability": 0.9715 + }, + { + "start": 13823.8, + "end": 13826.54, + "probability": 0.9272 + }, + { + "start": 13826.88, + "end": 13829.02, + "probability": 0.9753 + }, + { + "start": 13829.98, + "end": 13835.06, + "probability": 0.9946 + }, + { + "start": 13835.86, + "end": 13838.0, + "probability": 0.9157 + }, + { + "start": 13838.88, + "end": 13841.56, + "probability": 0.9819 + }, + { + "start": 13842.48, + "end": 13843.92, + "probability": 0.9892 + }, + { + "start": 13844.6, + "end": 13848.18, + "probability": 0.9956 + }, + { + "start": 13848.78, + "end": 13854.14, + "probability": 0.8639 + }, + { + "start": 13854.68, + "end": 13856.54, + "probability": 0.9201 + }, + { + "start": 13857.24, + "end": 13860.2, + "probability": 0.9941 + }, + { + "start": 13860.76, + "end": 13861.92, + "probability": 0.8939 + }, + { + "start": 13862.06, + "end": 13864.36, + "probability": 0.9569 + }, + { + "start": 13864.9, + "end": 13865.78, + "probability": 0.9244 + }, + { + "start": 13867.16, + "end": 13870.76, + "probability": 0.8142 + }, + { + "start": 13871.36, + "end": 13873.02, + "probability": 0.9183 + }, + { + "start": 13873.68, + "end": 13878.16, + "probability": 0.9833 + }, + { + "start": 13878.96, + "end": 13882.72, + "probability": 0.9966 + }, + { + "start": 13883.44, + "end": 13884.46, + "probability": 0.9497 + }, + { + "start": 13885.78, + "end": 13891.96, + "probability": 0.9919 + }, + { + "start": 13894.18, + "end": 13896.38, + "probability": 0.9852 + }, + { + "start": 13896.54, + "end": 13896.8, + "probability": 0.8148 + }, + { + "start": 13897.0, + "end": 13897.78, + "probability": 0.704 + }, + { + "start": 13897.8, + "end": 13902.42, + "probability": 0.8969 + }, + { + "start": 13902.5, + "end": 13903.24, + "probability": 0.6958 + }, + { + "start": 13903.28, + "end": 13904.42, + "probability": 0.8117 + }, + { + "start": 13904.7, + "end": 13905.72, + "probability": 0.7184 + }, + { + "start": 13906.62, + "end": 13908.8, + "probability": 0.8823 + }, + { + "start": 13909.56, + "end": 13914.42, + "probability": 0.9813 + }, + { + "start": 13915.62, + "end": 13916.44, + "probability": 0.8216 + }, + { + "start": 13916.5, + "end": 13919.16, + "probability": 0.9473 + }, + { + "start": 13920.02, + "end": 13924.74, + "probability": 0.9948 + }, + { + "start": 13924.84, + "end": 13927.8, + "probability": 0.6954 + }, + { + "start": 13928.42, + "end": 13929.98, + "probability": 0.9098 + }, + { + "start": 13930.78, + "end": 13934.84, + "probability": 0.9885 + }, + { + "start": 13935.98, + "end": 13940.86, + "probability": 0.9914 + }, + { + "start": 13940.86, + "end": 13945.28, + "probability": 0.998 + }, + { + "start": 13945.86, + "end": 13946.92, + "probability": 0.8099 + }, + { + "start": 13947.98, + "end": 13951.3, + "probability": 0.8753 + }, + { + "start": 13951.88, + "end": 13953.88, + "probability": 0.9155 + }, + { + "start": 13954.62, + "end": 13958.02, + "probability": 0.9811 + }, + { + "start": 13958.58, + "end": 13959.66, + "probability": 0.9769 + }, + { + "start": 13960.64, + "end": 13963.78, + "probability": 0.9473 + }, + { + "start": 13964.46, + "end": 13968.44, + "probability": 0.8195 + }, + { + "start": 13969.34, + "end": 13971.56, + "probability": 0.7159 + }, + { + "start": 13971.62, + "end": 13973.8, + "probability": 0.9933 + }, + { + "start": 13973.94, + "end": 13974.74, + "probability": 0.8643 + }, + { + "start": 13975.68, + "end": 13980.66, + "probability": 0.9897 + }, + { + "start": 13981.06, + "end": 13982.38, + "probability": 0.9338 + }, + { + "start": 13982.5, + "end": 13983.73, + "probability": 0.7426 + }, + { + "start": 13984.64, + "end": 13985.44, + "probability": 0.9897 + }, + { + "start": 13985.96, + "end": 13989.86, + "probability": 0.957 + }, + { + "start": 13989.86, + "end": 13993.9, + "probability": 0.9885 + }, + { + "start": 13994.4, + "end": 13995.8, + "probability": 0.7934 + }, + { + "start": 13995.92, + "end": 13997.84, + "probability": 0.9871 + }, + { + "start": 13998.52, + "end": 14000.86, + "probability": 0.8237 + }, + { + "start": 14001.44, + "end": 14005.94, + "probability": 0.6374 + }, + { + "start": 14006.32, + "end": 14009.54, + "probability": 0.9019 + }, + { + "start": 14009.66, + "end": 14012.96, + "probability": 0.7928 + }, + { + "start": 14012.98, + "end": 14013.39, + "probability": 0.6357 + }, + { + "start": 14014.52, + "end": 14015.72, + "probability": 0.916 + }, + { + "start": 14016.2, + "end": 14016.78, + "probability": 0.6778 + }, + { + "start": 14016.86, + "end": 14019.42, + "probability": 0.9634 + }, + { + "start": 14020.08, + "end": 14021.88, + "probability": 0.8483 + }, + { + "start": 14022.26, + "end": 14025.38, + "probability": 0.9968 + }, + { + "start": 14025.74, + "end": 14027.68, + "probability": 0.9743 + }, + { + "start": 14028.06, + "end": 14030.5, + "probability": 0.9982 + }, + { + "start": 14030.84, + "end": 14032.7, + "probability": 0.939 + }, + { + "start": 14033.24, + "end": 14034.98, + "probability": 0.9863 + }, + { + "start": 14036.0, + "end": 14037.44, + "probability": 0.929 + }, + { + "start": 14038.13, + "end": 14039.39, + "probability": 0.7049 + }, + { + "start": 14039.78, + "end": 14045.91, + "probability": 0.9963 + }, + { + "start": 14046.28, + "end": 14047.87, + "probability": 0.4873 + }, + { + "start": 14048.74, + "end": 14051.68, + "probability": 0.8809 + }, + { + "start": 14052.3, + "end": 14053.6, + "probability": 0.9822 + }, + { + "start": 14053.94, + "end": 14056.86, + "probability": 0.9862 + }, + { + "start": 14057.96, + "end": 14062.4, + "probability": 0.9893 + }, + { + "start": 14063.32, + "end": 14064.52, + "probability": 0.7808 + }, + { + "start": 14064.72, + "end": 14065.68, + "probability": 0.6761 + }, + { + "start": 14066.08, + "end": 14068.2, + "probability": 0.8857 + }, + { + "start": 14068.6, + "end": 14069.7, + "probability": 0.9531 + }, + { + "start": 14070.1, + "end": 14071.5, + "probability": 0.793 + }, + { + "start": 14072.12, + "end": 14076.28, + "probability": 0.9855 + }, + { + "start": 14076.4, + "end": 14077.78, + "probability": 0.8066 + }, + { + "start": 14078.34, + "end": 14081.9, + "probability": 0.8893 + }, + { + "start": 14082.38, + "end": 14083.74, + "probability": 0.7546 + }, + { + "start": 14084.26, + "end": 14087.15, + "probability": 0.8484 + }, + { + "start": 14087.24, + "end": 14089.42, + "probability": 0.9937 + }, + { + "start": 14090.1, + "end": 14092.88, + "probability": 0.7523 + }, + { + "start": 14093.44, + "end": 14097.34, + "probability": 0.8965 + }, + { + "start": 14097.5, + "end": 14098.46, + "probability": 0.7836 + }, + { + "start": 14098.6, + "end": 14098.9, + "probability": 0.7967 + }, + { + "start": 14099.06, + "end": 14100.06, + "probability": 0.5154 + }, + { + "start": 14100.46, + "end": 14103.74, + "probability": 0.9966 + }, + { + "start": 14104.32, + "end": 14105.04, + "probability": 0.7012 + }, + { + "start": 14105.36, + "end": 14108.0, + "probability": 0.9963 + }, + { + "start": 14108.22, + "end": 14109.84, + "probability": 0.0418 + }, + { + "start": 14110.08, + "end": 14110.82, + "probability": 0.0191 + }, + { + "start": 14110.82, + "end": 14112.88, + "probability": 0.7548 + }, + { + "start": 14113.18, + "end": 14114.22, + "probability": 0.9595 + }, + { + "start": 14114.62, + "end": 14117.64, + "probability": 0.9757 + }, + { + "start": 14117.96, + "end": 14121.32, + "probability": 0.0175 + }, + { + "start": 14121.46, + "end": 14121.56, + "probability": 0.0624 + }, + { + "start": 14121.56, + "end": 14121.56, + "probability": 0.0643 + }, + { + "start": 14121.56, + "end": 14121.56, + "probability": 0.2789 + }, + { + "start": 14121.56, + "end": 14123.05, + "probability": 0.2557 + }, + { + "start": 14123.42, + "end": 14126.74, + "probability": 0.4898 + }, + { + "start": 14127.04, + "end": 14128.58, + "probability": 0.4926 + }, + { + "start": 14128.58, + "end": 14129.6, + "probability": 0.6549 + }, + { + "start": 14130.0, + "end": 14133.04, + "probability": 0.5461 + }, + { + "start": 14133.36, + "end": 14134.34, + "probability": 0.9913 + }, + { + "start": 14134.88, + "end": 14135.54, + "probability": 0.9517 + }, + { + "start": 14136.38, + "end": 14139.24, + "probability": 0.9763 + }, + { + "start": 14139.34, + "end": 14140.8, + "probability": 0.8554 + }, + { + "start": 14141.42, + "end": 14144.78, + "probability": 0.9239 + }, + { + "start": 14145.58, + "end": 14148.88, + "probability": 0.9882 + }, + { + "start": 14148.94, + "end": 14150.13, + "probability": 0.9043 + }, + { + "start": 14150.66, + "end": 14153.62, + "probability": 0.6073 + }, + { + "start": 14153.72, + "end": 14153.98, + "probability": 0.0185 + }, + { + "start": 14153.98, + "end": 14153.98, + "probability": 0.1171 + }, + { + "start": 14153.98, + "end": 14153.98, + "probability": 0.2251 + }, + { + "start": 14153.98, + "end": 14159.38, + "probability": 0.9665 + }, + { + "start": 14159.56, + "end": 14160.24, + "probability": 0.994 + }, + { + "start": 14160.48, + "end": 14161.48, + "probability": 0.5951 + }, + { + "start": 14161.84, + "end": 14166.24, + "probability": 0.9104 + }, + { + "start": 14166.5, + "end": 14168.57, + "probability": 0.9824 + }, + { + "start": 14168.94, + "end": 14170.8, + "probability": 0.9902 + }, + { + "start": 14171.3, + "end": 14173.48, + "probability": 0.9868 + }, + { + "start": 14173.54, + "end": 14174.42, + "probability": 0.6211 + }, + { + "start": 14175.02, + "end": 14175.42, + "probability": 0.6093 + }, + { + "start": 14176.82, + "end": 14179.66, + "probability": 0.7957 + }, + { + "start": 14179.92, + "end": 14181.48, + "probability": 0.6633 + }, + { + "start": 14182.28, + "end": 14182.8, + "probability": 0.0908 + }, + { + "start": 14184.98, + "end": 14186.8, + "probability": 0.7396 + }, + { + "start": 14186.86, + "end": 14187.36, + "probability": 0.8844 + }, + { + "start": 14188.72, + "end": 14191.26, + "probability": 0.8286 + }, + { + "start": 14191.96, + "end": 14194.06, + "probability": 0.4542 + }, + { + "start": 14194.66, + "end": 14195.64, + "probability": 0.8304 + }, + { + "start": 14196.1, + "end": 14196.48, + "probability": 0.0769 + }, + { + "start": 14197.48, + "end": 14198.48, + "probability": 0.2296 + }, + { + "start": 14198.54, + "end": 14199.76, + "probability": 0.3471 + }, + { + "start": 14200.31, + "end": 14203.34, + "probability": 0.3692 + }, + { + "start": 14223.12, + "end": 14224.46, + "probability": 0.6497 + }, + { + "start": 14224.78, + "end": 14226.4, + "probability": 0.4716 + }, + { + "start": 14226.54, + "end": 14229.36, + "probability": 0.7549 + }, + { + "start": 14231.12, + "end": 14231.12, + "probability": 0.0746 + }, + { + "start": 14231.12, + "end": 14231.32, + "probability": 0.6511 + }, + { + "start": 14231.98, + "end": 14232.44, + "probability": 0.8086 + }, + { + "start": 14232.6, + "end": 14234.1, + "probability": 0.935 + }, + { + "start": 14234.42, + "end": 14235.34, + "probability": 0.345 + }, + { + "start": 14235.78, + "end": 14236.04, + "probability": 0.5983 + }, + { + "start": 14236.54, + "end": 14238.2, + "probability": 0.579 + }, + { + "start": 14238.46, + "end": 14239.08, + "probability": 0.9505 + }, + { + "start": 14240.16, + "end": 14242.52, + "probability": 0.7047 + }, + { + "start": 14244.54, + "end": 14247.82, + "probability": 0.9805 + }, + { + "start": 14247.9, + "end": 14250.2, + "probability": 0.8225 + }, + { + "start": 14251.32, + "end": 14254.7, + "probability": 0.875 + }, + { + "start": 14255.8, + "end": 14261.2, + "probability": 0.9593 + }, + { + "start": 14262.52, + "end": 14266.24, + "probability": 0.9881 + }, + { + "start": 14267.84, + "end": 14272.7, + "probability": 0.9914 + }, + { + "start": 14273.48, + "end": 14275.22, + "probability": 0.9247 + }, + { + "start": 14275.82, + "end": 14276.38, + "probability": 0.9755 + }, + { + "start": 14277.56, + "end": 14282.4, + "probability": 0.9812 + }, + { + "start": 14282.4, + "end": 14288.8, + "probability": 0.9382 + }, + { + "start": 14289.04, + "end": 14294.06, + "probability": 0.997 + }, + { + "start": 14296.16, + "end": 14300.66, + "probability": 0.9966 + }, + { + "start": 14300.72, + "end": 14305.46, + "probability": 0.9941 + }, + { + "start": 14306.7, + "end": 14309.16, + "probability": 0.7656 + }, + { + "start": 14309.72, + "end": 14310.4, + "probability": 0.5187 + }, + { + "start": 14316.6, + "end": 14319.72, + "probability": 0.7587 + }, + { + "start": 14320.36, + "end": 14322.52, + "probability": 0.9849 + }, + { + "start": 14323.3, + "end": 14326.28, + "probability": 0.9506 + }, + { + "start": 14327.0, + "end": 14328.6, + "probability": 0.9133 + }, + { + "start": 14329.42, + "end": 14334.34, + "probability": 0.9831 + }, + { + "start": 14335.16, + "end": 14337.22, + "probability": 0.9357 + }, + { + "start": 14338.36, + "end": 14341.74, + "probability": 0.9749 + }, + { + "start": 14342.56, + "end": 14343.26, + "probability": 0.6407 + }, + { + "start": 14343.52, + "end": 14346.62, + "probability": 0.9392 + }, + { + "start": 14347.44, + "end": 14348.28, + "probability": 0.8194 + }, + { + "start": 14348.76, + "end": 14352.82, + "probability": 0.9397 + }, + { + "start": 14353.32, + "end": 14356.14, + "probability": 0.9447 + }, + { + "start": 14356.7, + "end": 14358.36, + "probability": 0.9748 + }, + { + "start": 14358.86, + "end": 14363.22, + "probability": 0.978 + }, + { + "start": 14363.22, + "end": 14365.78, + "probability": 0.9932 + }, + { + "start": 14367.12, + "end": 14368.32, + "probability": 0.9672 + }, + { + "start": 14369.02, + "end": 14374.56, + "probability": 0.9608 + }, + { + "start": 14375.62, + "end": 14375.96, + "probability": 0.7996 + }, + { + "start": 14377.06, + "end": 14379.32, + "probability": 0.922 + }, + { + "start": 14380.06, + "end": 14382.99, + "probability": 0.9878 + }, + { + "start": 14384.4, + "end": 14386.78, + "probability": 0.9715 + }, + { + "start": 14387.3, + "end": 14388.7, + "probability": 0.9817 + }, + { + "start": 14389.28, + "end": 14390.5, + "probability": 0.7036 + }, + { + "start": 14391.68, + "end": 14394.7, + "probability": 0.9838 + }, + { + "start": 14395.76, + "end": 14398.12, + "probability": 0.8809 + }, + { + "start": 14399.76, + "end": 14402.8, + "probability": 0.9643 + }, + { + "start": 14404.1, + "end": 14409.34, + "probability": 0.9453 + }, + { + "start": 14410.76, + "end": 14412.98, + "probability": 0.9976 + }, + { + "start": 14413.02, + "end": 14416.74, + "probability": 0.9309 + }, + { + "start": 14417.3, + "end": 14421.54, + "probability": 0.9476 + }, + { + "start": 14423.06, + "end": 14426.46, + "probability": 0.8683 + }, + { + "start": 14426.48, + "end": 14427.78, + "probability": 0.8632 + }, + { + "start": 14428.9, + "end": 14431.64, + "probability": 0.8979 + }, + { + "start": 14432.46, + "end": 14433.88, + "probability": 0.9799 + }, + { + "start": 14434.58, + "end": 14438.24, + "probability": 0.9984 + }, + { + "start": 14439.18, + "end": 14440.76, + "probability": 0.931 + }, + { + "start": 14441.34, + "end": 14443.96, + "probability": 0.8409 + }, + { + "start": 14444.66, + "end": 14450.26, + "probability": 0.9628 + }, + { + "start": 14450.94, + "end": 14451.26, + "probability": 0.8229 + }, + { + "start": 14452.6, + "end": 14455.5, + "probability": 0.6959 + }, + { + "start": 14455.98, + "end": 14456.92, + "probability": 0.7574 + }, + { + "start": 14457.46, + "end": 14459.52, + "probability": 0.8875 + }, + { + "start": 14460.44, + "end": 14461.48, + "probability": 0.7143 + }, + { + "start": 14483.98, + "end": 14485.56, + "probability": 0.6461 + }, + { + "start": 14486.16, + "end": 14487.52, + "probability": 0.8896 + }, + { + "start": 14488.5, + "end": 14491.26, + "probability": 0.3027 + }, + { + "start": 14494.26, + "end": 14496.66, + "probability": 0.5863 + }, + { + "start": 14497.54, + "end": 14498.56, + "probability": 0.9766 + }, + { + "start": 14501.02, + "end": 14505.3, + "probability": 0.9933 + }, + { + "start": 14506.14, + "end": 14507.82, + "probability": 0.8907 + }, + { + "start": 14508.8, + "end": 14512.24, + "probability": 0.987 + }, + { + "start": 14513.6, + "end": 14514.34, + "probability": 0.8777 + }, + { + "start": 14515.06, + "end": 14516.96, + "probability": 0.9594 + }, + { + "start": 14517.8, + "end": 14520.64, + "probability": 0.9856 + }, + { + "start": 14521.64, + "end": 14523.58, + "probability": 0.7905 + }, + { + "start": 14524.62, + "end": 14529.34, + "probability": 0.8473 + }, + { + "start": 14529.64, + "end": 14531.14, + "probability": 0.998 + }, + { + "start": 14533.2, + "end": 14535.24, + "probability": 0.8927 + }, + { + "start": 14536.72, + "end": 14538.34, + "probability": 0.9712 + }, + { + "start": 14539.24, + "end": 14544.84, + "probability": 0.8896 + }, + { + "start": 14546.32, + "end": 14549.06, + "probability": 0.9932 + }, + { + "start": 14549.88, + "end": 14551.7, + "probability": 0.9605 + }, + { + "start": 14552.44, + "end": 14554.98, + "probability": 0.9979 + }, + { + "start": 14555.4, + "end": 14563.0, + "probability": 0.9546 + }, + { + "start": 14564.28, + "end": 14567.52, + "probability": 0.9379 + }, + { + "start": 14567.74, + "end": 14569.56, + "probability": 0.9954 + }, + { + "start": 14570.6, + "end": 14576.06, + "probability": 0.9933 + }, + { + "start": 14576.16, + "end": 14577.4, + "probability": 0.7792 + }, + { + "start": 14577.62, + "end": 14580.34, + "probability": 0.8853 + }, + { + "start": 14580.84, + "end": 14583.44, + "probability": 0.9954 + }, + { + "start": 14587.18, + "end": 14592.3, + "probability": 0.9966 + }, + { + "start": 14593.22, + "end": 14598.96, + "probability": 0.999 + }, + { + "start": 14600.0, + "end": 14601.0, + "probability": 0.8745 + }, + { + "start": 14602.06, + "end": 14605.22, + "probability": 0.9843 + }, + { + "start": 14605.66, + "end": 14610.46, + "probability": 0.7519 + }, + { + "start": 14611.68, + "end": 14613.98, + "probability": 0.911 + }, + { + "start": 14615.02, + "end": 14621.18, + "probability": 0.8414 + }, + { + "start": 14623.38, + "end": 14626.06, + "probability": 0.9448 + }, + { + "start": 14626.9, + "end": 14631.48, + "probability": 0.9864 + }, + { + "start": 14632.06, + "end": 14634.74, + "probability": 0.7831 + }, + { + "start": 14636.22, + "end": 14636.9, + "probability": 0.6659 + }, + { + "start": 14637.62, + "end": 14641.78, + "probability": 0.9236 + }, + { + "start": 14642.32, + "end": 14644.48, + "probability": 0.9937 + }, + { + "start": 14645.18, + "end": 14648.64, + "probability": 0.9584 + }, + { + "start": 14650.22, + "end": 14655.22, + "probability": 0.9845 + }, + { + "start": 14655.48, + "end": 14656.16, + "probability": 0.6412 + }, + { + "start": 14657.3, + "end": 14662.47, + "probability": 0.9953 + }, + { + "start": 14662.9, + "end": 14663.61, + "probability": 0.9358 + }, + { + "start": 14666.22, + "end": 14672.36, + "probability": 0.9971 + }, + { + "start": 14674.22, + "end": 14682.7, + "probability": 0.9951 + }, + { + "start": 14683.76, + "end": 14685.9, + "probability": 0.8237 + }, + { + "start": 14687.3, + "end": 14688.44, + "probability": 0.833 + }, + { + "start": 14688.6, + "end": 14693.24, + "probability": 0.97 + }, + { + "start": 14693.24, + "end": 14698.8, + "probability": 0.9949 + }, + { + "start": 14698.88, + "end": 14699.82, + "probability": 0.6349 + }, + { + "start": 14700.58, + "end": 14701.34, + "probability": 0.6094 + }, + { + "start": 14703.14, + "end": 14703.8, + "probability": 0.5705 + }, + { + "start": 14706.2, + "end": 14709.92, + "probability": 0.9758 + }, + { + "start": 14710.7, + "end": 14712.34, + "probability": 0.9966 + }, + { + "start": 14712.44, + "end": 14716.06, + "probability": 0.9895 + }, + { + "start": 14717.32, + "end": 14719.12, + "probability": 0.9868 + }, + { + "start": 14720.42, + "end": 14724.46, + "probability": 0.9919 + }, + { + "start": 14725.18, + "end": 14727.38, + "probability": 0.7123 + }, + { + "start": 14727.46, + "end": 14731.14, + "probability": 0.8761 + }, + { + "start": 14731.84, + "end": 14737.18, + "probability": 0.9851 + }, + { + "start": 14738.36, + "end": 14738.62, + "probability": 0.0193 + }, + { + "start": 14740.72, + "end": 14746.46, + "probability": 0.8407 + }, + { + "start": 14747.16, + "end": 14753.84, + "probability": 0.9932 + }, + { + "start": 14754.04, + "end": 14754.48, + "probability": 0.8328 + }, + { + "start": 14754.58, + "end": 14755.34, + "probability": 0.9134 + }, + { + "start": 14756.18, + "end": 14760.24, + "probability": 0.9962 + }, + { + "start": 14761.16, + "end": 14762.64, + "probability": 0.6101 + }, + { + "start": 14763.36, + "end": 14768.0, + "probability": 0.9906 + }, + { + "start": 14770.53, + "end": 14773.38, + "probability": 0.999 + }, + { + "start": 14774.04, + "end": 14778.6, + "probability": 0.9414 + }, + { + "start": 14778.62, + "end": 14782.8, + "probability": 0.9951 + }, + { + "start": 14783.96, + "end": 14786.16, + "probability": 0.8546 + }, + { + "start": 14786.92, + "end": 14790.72, + "probability": 0.9672 + }, + { + "start": 14791.48, + "end": 14797.8, + "probability": 0.9876 + }, + { + "start": 14797.8, + "end": 14802.28, + "probability": 0.9842 + }, + { + "start": 14803.66, + "end": 14811.1, + "probability": 0.9899 + }, + { + "start": 14812.0, + "end": 14815.14, + "probability": 0.9927 + }, + { + "start": 14815.82, + "end": 14818.26, + "probability": 0.9958 + }, + { + "start": 14818.26, + "end": 14821.84, + "probability": 0.9773 + }, + { + "start": 14822.22, + "end": 14823.64, + "probability": 0.9849 + }, + { + "start": 14824.72, + "end": 14825.14, + "probability": 0.8231 + }, + { + "start": 14826.54, + "end": 14828.02, + "probability": 0.939 + }, + { + "start": 14828.88, + "end": 14834.7, + "probability": 0.9074 + }, + { + "start": 14835.46, + "end": 14842.26, + "probability": 0.9556 + }, + { + "start": 14843.82, + "end": 14844.08, + "probability": 0.6244 + }, + { + "start": 14845.08, + "end": 14846.9, + "probability": 0.9212 + }, + { + "start": 14847.52, + "end": 14850.3, + "probability": 0.9836 + }, + { + "start": 14851.0, + "end": 14853.42, + "probability": 0.9915 + }, + { + "start": 14854.42, + "end": 14855.8, + "probability": 0.9684 + }, + { + "start": 14856.74, + "end": 14860.84, + "probability": 0.9407 + }, + { + "start": 14861.02, + "end": 14864.0, + "probability": 0.9539 + }, + { + "start": 14864.92, + "end": 14867.76, + "probability": 0.9896 + }, + { + "start": 14868.62, + "end": 14869.7, + "probability": 0.6771 + }, + { + "start": 14870.88, + "end": 14873.4, + "probability": 0.5735 + }, + { + "start": 14873.72, + "end": 14876.06, + "probability": 0.8242 + }, + { + "start": 14876.28, + "end": 14877.14, + "probability": 0.9889 + }, + { + "start": 14877.38, + "end": 14878.42, + "probability": 0.8053 + }, + { + "start": 14879.36, + "end": 14881.34, + "probability": 0.9719 + }, + { + "start": 14882.4, + "end": 14885.0, + "probability": 0.9395 + }, + { + "start": 14885.48, + "end": 14887.4, + "probability": 0.9919 + }, + { + "start": 14887.64, + "end": 14890.56, + "probability": 0.8571 + }, + { + "start": 14891.58, + "end": 14894.75, + "probability": 0.8663 + }, + { + "start": 14895.56, + "end": 14897.02, + "probability": 0.9958 + }, + { + "start": 14897.72, + "end": 14900.2, + "probability": 0.9015 + }, + { + "start": 14900.74, + "end": 14902.58, + "probability": 0.9498 + }, + { + "start": 14903.36, + "end": 14907.88, + "probability": 0.9438 + }, + { + "start": 14908.04, + "end": 14909.12, + "probability": 0.7941 + }, + { + "start": 14910.32, + "end": 14910.44, + "probability": 0.44 + }, + { + "start": 14910.76, + "end": 14911.22, + "probability": 0.9303 + }, + { + "start": 14911.6, + "end": 14912.62, + "probability": 0.9963 + }, + { + "start": 14913.84, + "end": 14916.4, + "probability": 0.9996 + }, + { + "start": 14918.02, + "end": 14920.76, + "probability": 0.9731 + }, + { + "start": 14921.68, + "end": 14926.44, + "probability": 0.9939 + }, + { + "start": 14927.64, + "end": 14929.54, + "probability": 0.9985 + }, + { + "start": 14930.38, + "end": 14933.98, + "probability": 0.8893 + }, + { + "start": 14934.1, + "end": 14937.06, + "probability": 0.9948 + }, + { + "start": 14937.74, + "end": 14941.08, + "probability": 0.8896 + }, + { + "start": 14942.1, + "end": 14943.5, + "probability": 0.985 + }, + { + "start": 14944.12, + "end": 14945.0, + "probability": 0.8474 + }, + { + "start": 14945.18, + "end": 14946.8, + "probability": 0.9915 + }, + { + "start": 14947.28, + "end": 14948.22, + "probability": 0.7299 + }, + { + "start": 14948.4, + "end": 14951.32, + "probability": 0.9878 + }, + { + "start": 14951.96, + "end": 14953.44, + "probability": 0.9845 + }, + { + "start": 14954.44, + "end": 14955.44, + "probability": 0.8354 + }, + { + "start": 14956.1, + "end": 14959.28, + "probability": 0.9904 + }, + { + "start": 14960.72, + "end": 14962.24, + "probability": 0.9832 + }, + { + "start": 14962.4, + "end": 14964.3, + "probability": 0.9984 + }, + { + "start": 14964.36, + "end": 14965.67, + "probability": 0.9854 + }, + { + "start": 14966.24, + "end": 14966.84, + "probability": 0.9403 + }, + { + "start": 14968.8, + "end": 14974.84, + "probability": 0.9837 + }, + { + "start": 14975.62, + "end": 14978.28, + "probability": 0.9836 + }, + { + "start": 14979.7, + "end": 14980.8, + "probability": 0.9551 + }, + { + "start": 14981.72, + "end": 14983.16, + "probability": 0.7484 + }, + { + "start": 14984.46, + "end": 14984.94, + "probability": 0.7437 + }, + { + "start": 14985.64, + "end": 14988.62, + "probability": 0.9844 + }, + { + "start": 14988.78, + "end": 14991.18, + "probability": 0.9728 + }, + { + "start": 14992.28, + "end": 14994.98, + "probability": 0.9632 + }, + { + "start": 14995.96, + "end": 15003.18, + "probability": 0.7226 + }, + { + "start": 15004.02, + "end": 15006.88, + "probability": 0.9988 + }, + { + "start": 15006.88, + "end": 15011.58, + "probability": 0.9995 + }, + { + "start": 15012.68, + "end": 15016.12, + "probability": 0.6682 + }, + { + "start": 15016.74, + "end": 15019.02, + "probability": 0.9888 + }, + { + "start": 15019.64, + "end": 15022.74, + "probability": 0.982 + }, + { + "start": 15023.38, + "end": 15024.68, + "probability": 0.9316 + }, + { + "start": 15026.04, + "end": 15027.02, + "probability": 0.9509 + }, + { + "start": 15028.58, + "end": 15030.72, + "probability": 0.9107 + }, + { + "start": 15032.5, + "end": 15037.84, + "probability": 0.9945 + }, + { + "start": 15038.32, + "end": 15040.98, + "probability": 0.9542 + }, + { + "start": 15041.66, + "end": 15042.88, + "probability": 0.8563 + }, + { + "start": 15043.64, + "end": 15044.42, + "probability": 0.8607 + }, + { + "start": 15045.34, + "end": 15047.2, + "probability": 0.9782 + }, + { + "start": 15047.84, + "end": 15053.92, + "probability": 0.988 + }, + { + "start": 15054.46, + "end": 15056.46, + "probability": 0.7957 + }, + { + "start": 15057.16, + "end": 15059.74, + "probability": 0.99 + }, + { + "start": 15060.42, + "end": 15062.3, + "probability": 0.9311 + }, + { + "start": 15063.06, + "end": 15065.38, + "probability": 0.8059 + }, + { + "start": 15065.8, + "end": 15066.04, + "probability": 0.8698 + }, + { + "start": 15066.24, + "end": 15066.66, + "probability": 0.925 + }, + { + "start": 15066.84, + "end": 15071.98, + "probability": 0.9872 + }, + { + "start": 15073.38, + "end": 15073.72, + "probability": 0.0268 + }, + { + "start": 15073.72, + "end": 15074.7, + "probability": 0.9442 + }, + { + "start": 15075.32, + "end": 15078.52, + "probability": 0.7562 + }, + { + "start": 15079.66, + "end": 15082.14, + "probability": 0.8828 + }, + { + "start": 15082.66, + "end": 15085.5, + "probability": 0.993 + }, + { + "start": 15087.1, + "end": 15087.38, + "probability": 0.7852 + }, + { + "start": 15087.8, + "end": 15089.94, + "probability": 0.8926 + }, + { + "start": 15090.18, + "end": 15092.46, + "probability": 0.9968 + }, + { + "start": 15092.88, + "end": 15093.0, + "probability": 0.2894 + }, + { + "start": 15093.08, + "end": 15094.56, + "probability": 0.8172 + }, + { + "start": 15095.02, + "end": 15097.0, + "probability": 0.9281 + }, + { + "start": 15097.58, + "end": 15100.7, + "probability": 0.8219 + }, + { + "start": 15101.26, + "end": 15103.1, + "probability": 0.9676 + }, + { + "start": 15103.26, + "end": 15104.52, + "probability": 0.8459 + }, + { + "start": 15104.88, + "end": 15106.06, + "probability": 0.8726 + }, + { + "start": 15106.18, + "end": 15107.18, + "probability": 0.5444 + }, + { + "start": 15120.04, + "end": 15120.78, + "probability": 0.5922 + }, + { + "start": 15121.48, + "end": 15121.62, + "probability": 0.45 + }, + { + "start": 15121.62, + "end": 15123.96, + "probability": 0.8428 + }, + { + "start": 15127.9, + "end": 15128.78, + "probability": 0.7966 + }, + { + "start": 15128.9, + "end": 15129.86, + "probability": 0.9589 + }, + { + "start": 15130.02, + "end": 15133.01, + "probability": 0.8478 + }, + { + "start": 15134.62, + "end": 15135.34, + "probability": 0.9908 + }, + { + "start": 15136.36, + "end": 15137.76, + "probability": 0.7733 + }, + { + "start": 15139.22, + "end": 15143.04, + "probability": 0.9993 + }, + { + "start": 15143.98, + "end": 15147.36, + "probability": 0.9993 + }, + { + "start": 15148.46, + "end": 15150.62, + "probability": 0.98 + }, + { + "start": 15152.04, + "end": 15154.36, + "probability": 0.772 + }, + { + "start": 15155.6, + "end": 15158.1, + "probability": 0.9993 + }, + { + "start": 15158.8, + "end": 15163.76, + "probability": 0.5142 + }, + { + "start": 15163.78, + "end": 15164.56, + "probability": 0.0364 + }, + { + "start": 15164.58, + "end": 15164.82, + "probability": 0.0595 + }, + { + "start": 15165.7, + "end": 15165.7, + "probability": 0.1305 + }, + { + "start": 15165.7, + "end": 15166.44, + "probability": 0.2393 + }, + { + "start": 15166.44, + "end": 15167.62, + "probability": 0.3079 + }, + { + "start": 15167.78, + "end": 15167.78, + "probability": 0.1724 + }, + { + "start": 15167.78, + "end": 15167.78, + "probability": 0.0299 + }, + { + "start": 15167.78, + "end": 15170.0, + "probability": 0.7199 + }, + { + "start": 15171.1, + "end": 15171.64, + "probability": 0.4685 + }, + { + "start": 15173.32, + "end": 15174.7, + "probability": 0.0087 + }, + { + "start": 15174.7, + "end": 15178.88, + "probability": 0.8559 + }, + { + "start": 15179.7, + "end": 15180.64, + "probability": 0.1665 + }, + { + "start": 15180.64, + "end": 15181.84, + "probability": 0.7487 + }, + { + "start": 15182.04, + "end": 15182.68, + "probability": 0.7753 + }, + { + "start": 15183.06, + "end": 15184.42, + "probability": 0.7722 + }, + { + "start": 15184.48, + "end": 15185.24, + "probability": 0.2558 + }, + { + "start": 15185.26, + "end": 15187.3, + "probability": 0.681 + }, + { + "start": 15187.38, + "end": 15187.48, + "probability": 0.0272 + }, + { + "start": 15187.54, + "end": 15188.0, + "probability": 0.5941 + }, + { + "start": 15188.06, + "end": 15188.14, + "probability": 0.0622 + }, + { + "start": 15188.14, + "end": 15189.5, + "probability": 0.7621 + }, + { + "start": 15190.3, + "end": 15196.26, + "probability": 0.9578 + }, + { + "start": 15197.16, + "end": 15197.68, + "probability": 0.9016 + }, + { + "start": 15198.38, + "end": 15200.72, + "probability": 0.8991 + }, + { + "start": 15201.08, + "end": 15203.58, + "probability": 0.0088 + }, + { + "start": 15203.62, + "end": 15203.72, + "probability": 0.0483 + }, + { + "start": 15203.72, + "end": 15203.72, + "probability": 0.2215 + }, + { + "start": 15203.72, + "end": 15203.72, + "probability": 0.3023 + }, + { + "start": 15203.72, + "end": 15203.84, + "probability": 0.1759 + }, + { + "start": 15203.84, + "end": 15204.5, + "probability": 0.5244 + }, + { + "start": 15204.6, + "end": 15205.16, + "probability": 0.5339 + }, + { + "start": 15205.3, + "end": 15207.29, + "probability": 0.2792 + }, + { + "start": 15207.84, + "end": 15210.7, + "probability": 0.6451 + }, + { + "start": 15213.42, + "end": 15213.78, + "probability": 0.2551 + }, + { + "start": 15213.78, + "end": 15216.64, + "probability": 0.2174 + }, + { + "start": 15216.78, + "end": 15217.56, + "probability": 0.0019 + }, + { + "start": 15217.56, + "end": 15218.1, + "probability": 0.1553 + }, + { + "start": 15220.94, + "end": 15223.12, + "probability": 0.0043 + }, + { + "start": 15223.12, + "end": 15223.18, + "probability": 0.0652 + }, + { + "start": 15223.98, + "end": 15225.7, + "probability": 0.2021 + }, + { + "start": 15225.78, + "end": 15227.22, + "probability": 0.015 + }, + { + "start": 15229.2, + "end": 15232.72, + "probability": 0.0826 + }, + { + "start": 15232.72, + "end": 15234.83, + "probability": 0.1908 + }, + { + "start": 15236.2, + "end": 15239.2, + "probability": 0.4971 + }, + { + "start": 15239.6, + "end": 15242.78, + "probability": 0.2465 + }, + { + "start": 15242.78, + "end": 15247.44, + "probability": 0.1789 + }, + { + "start": 15248.48, + "end": 15250.68, + "probability": 0.3024 + }, + { + "start": 15251.49, + "end": 15254.14, + "probability": 0.0622 + }, + { + "start": 15254.22, + "end": 15254.22, + "probability": 0.0432 + }, + { + "start": 15254.22, + "end": 15257.86, + "probability": 0.0963 + }, + { + "start": 15258.9, + "end": 15260.46, + "probability": 0.1141 + }, + { + "start": 15260.46, + "end": 15261.1, + "probability": 0.1926 + }, + { + "start": 15261.1, + "end": 15261.1, + "probability": 0.2911 + }, + { + "start": 15261.33, + "end": 15262.22, + "probability": 0.1055 + }, + { + "start": 15262.22, + "end": 15263.36, + "probability": 0.2483 + }, + { + "start": 15263.62, + "end": 15264.6, + "probability": 0.0115 + }, + { + "start": 15264.6, + "end": 15265.38, + "probability": 0.0758 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.0, + "end": 15268.0, + "probability": 0.0 + }, + { + "start": 15268.14, + "end": 15268.16, + "probability": 0.3817 + }, + { + "start": 15268.16, + "end": 15268.16, + "probability": 0.1482 + }, + { + "start": 15268.16, + "end": 15270.02, + "probability": 0.8567 + }, + { + "start": 15270.06, + "end": 15272.44, + "probability": 0.8794 + }, + { + "start": 15273.02, + "end": 15273.32, + "probability": 0.0676 + }, + { + "start": 15273.42, + "end": 15274.8, + "probability": 0.717 + }, + { + "start": 15275.38, + "end": 15277.26, + "probability": 0.7085 + }, + { + "start": 15277.26, + "end": 15277.98, + "probability": 0.0179 + }, + { + "start": 15278.06, + "end": 15279.62, + "probability": 0.5799 + }, + { + "start": 15280.82, + "end": 15282.6, + "probability": 0.7962 + }, + { + "start": 15283.0, + "end": 15285.34, + "probability": 0.9746 + }, + { + "start": 15285.68, + "end": 15287.26, + "probability": 0.9702 + }, + { + "start": 15287.92, + "end": 15288.82, + "probability": 0.3496 + }, + { + "start": 15289.36, + "end": 15289.56, + "probability": 0.5478 + }, + { + "start": 15290.42, + "end": 15291.28, + "probability": 0.3216 + }, + { + "start": 15291.82, + "end": 15292.22, + "probability": 0.4181 + }, + { + "start": 15292.98, + "end": 15294.84, + "probability": 0.3209 + }, + { + "start": 15294.92, + "end": 15296.12, + "probability": 0.075 + }, + { + "start": 15296.26, + "end": 15297.34, + "probability": 0.4592 + }, + { + "start": 15297.44, + "end": 15298.04, + "probability": 0.4449 + }, + { + "start": 15298.12, + "end": 15299.66, + "probability": 0.798 + }, + { + "start": 15300.8, + "end": 15301.44, + "probability": 0.2917 + }, + { + "start": 15303.16, + "end": 15303.4, + "probability": 0.4561 + }, + { + "start": 15304.08, + "end": 15309.28, + "probability": 0.4936 + }, + { + "start": 15309.74, + "end": 15310.06, + "probability": 0.4933 + }, + { + "start": 15310.06, + "end": 15312.08, + "probability": 0.7282 + }, + { + "start": 15313.24, + "end": 15313.72, + "probability": 0.8428 + }, + { + "start": 15313.94, + "end": 15314.42, + "probability": 0.0246 + }, + { + "start": 15315.96, + "end": 15316.58, + "probability": 0.1817 + }, + { + "start": 15316.66, + "end": 15318.72, + "probability": 0.5853 + }, + { + "start": 15318.96, + "end": 15319.98, + "probability": 0.5972 + }, + { + "start": 15320.8, + "end": 15323.3, + "probability": 0.9702 + }, + { + "start": 15323.58, + "end": 15326.46, + "probability": 0.8631 + }, + { + "start": 15326.46, + "end": 15328.58, + "probability": 0.5693 + }, + { + "start": 15328.72, + "end": 15329.56, + "probability": 0.211 + }, + { + "start": 15329.56, + "end": 15331.82, + "probability": 0.4676 + }, + { + "start": 15333.36, + "end": 15334.58, + "probability": 0.9974 + }, + { + "start": 15335.54, + "end": 15336.3, + "probability": 0.7737 + }, + { + "start": 15337.52, + "end": 15340.12, + "probability": 0.994 + }, + { + "start": 15340.92, + "end": 15342.12, + "probability": 0.8867 + }, + { + "start": 15343.22, + "end": 15343.84, + "probability": 0.9276 + }, + { + "start": 15344.84, + "end": 15348.0, + "probability": 0.9785 + }, + { + "start": 15348.24, + "end": 15352.86, + "probability": 0.7932 + }, + { + "start": 15353.54, + "end": 15355.36, + "probability": 0.4383 + }, + { + "start": 15355.88, + "end": 15355.95, + "probability": 0.3859 + }, + { + "start": 15357.34, + "end": 15361.5, + "probability": 0.9887 + }, + { + "start": 15362.38, + "end": 15362.44, + "probability": 0.0787 + }, + { + "start": 15362.44, + "end": 15364.04, + "probability": 0.9894 + }, + { + "start": 15364.64, + "end": 15365.36, + "probability": 0.867 + }, + { + "start": 15365.98, + "end": 15368.24, + "probability": 0.9895 + }, + { + "start": 15369.06, + "end": 15370.98, + "probability": 0.9991 + }, + { + "start": 15372.0, + "end": 15376.48, + "probability": 0.9966 + }, + { + "start": 15377.82, + "end": 15383.94, + "probability": 0.9977 + }, + { + "start": 15384.08, + "end": 15387.28, + "probability": 0.9387 + }, + { + "start": 15387.8, + "end": 15388.72, + "probability": 0.965 + }, + { + "start": 15389.14, + "end": 15389.9, + "probability": 0.8552 + }, + { + "start": 15391.64, + "end": 15392.42, + "probability": 0.6838 + }, + { + "start": 15392.46, + "end": 15393.34, + "probability": 0.8837 + }, + { + "start": 15393.76, + "end": 15394.14, + "probability": 0.6436 + }, + { + "start": 15394.22, + "end": 15394.82, + "probability": 0.994 + }, + { + "start": 15394.84, + "end": 15396.08, + "probability": 0.9413 + }, + { + "start": 15396.74, + "end": 15399.25, + "probability": 0.7727 + }, + { + "start": 15400.52, + "end": 15401.94, + "probability": 0.9883 + }, + { + "start": 15402.02, + "end": 15403.66, + "probability": 0.2589 + }, + { + "start": 15403.98, + "end": 15406.76, + "probability": 0.6079 + }, + { + "start": 15407.36, + "end": 15409.26, + "probability": 0.8248 + }, + { + "start": 15409.66, + "end": 15410.3, + "probability": 0.0756 + }, + { + "start": 15410.48, + "end": 15411.42, + "probability": 0.6923 + }, + { + "start": 15411.56, + "end": 15413.52, + "probability": 0.7827 + }, + { + "start": 15414.16, + "end": 15416.06, + "probability": 0.8164 + }, + { + "start": 15416.7, + "end": 15417.68, + "probability": 0.7741 + }, + { + "start": 15418.54, + "end": 15419.82, + "probability": 0.9687 + }, + { + "start": 15420.62, + "end": 15426.14, + "probability": 0.9549 + }, + { + "start": 15426.24, + "end": 15427.22, + "probability": 0.5339 + }, + { + "start": 15427.42, + "end": 15428.72, + "probability": 0.2837 + }, + { + "start": 15428.78, + "end": 15428.96, + "probability": 0.5269 + }, + { + "start": 15429.06, + "end": 15431.02, + "probability": 0.9771 + }, + { + "start": 15431.24, + "end": 15431.48, + "probability": 0.1541 + }, + { + "start": 15431.48, + "end": 15436.36, + "probability": 0.9936 + }, + { + "start": 15436.36, + "end": 15436.8, + "probability": 0.2972 + }, + { + "start": 15436.86, + "end": 15437.46, + "probability": 0.2898 + }, + { + "start": 15437.5, + "end": 15437.66, + "probability": 0.5747 + }, + { + "start": 15437.8, + "end": 15438.86, + "probability": 0.8306 + }, + { + "start": 15439.6, + "end": 15442.66, + "probability": 0.9968 + }, + { + "start": 15443.48, + "end": 15448.36, + "probability": 0.9995 + }, + { + "start": 15449.22, + "end": 15451.56, + "probability": 0.9824 + }, + { + "start": 15451.66, + "end": 15452.16, + "probability": 0.543 + }, + { + "start": 15452.42, + "end": 15453.4, + "probability": 0.9554 + }, + { + "start": 15454.14, + "end": 15458.24, + "probability": 0.9956 + }, + { + "start": 15458.82, + "end": 15461.86, + "probability": 0.9483 + }, + { + "start": 15462.72, + "end": 15466.66, + "probability": 0.94 + }, + { + "start": 15467.1, + "end": 15470.36, + "probability": 0.8376 + }, + { + "start": 15470.48, + "end": 15470.68, + "probability": 0.5503 + }, + { + "start": 15470.76, + "end": 15473.1, + "probability": 0.9589 + }, + { + "start": 15473.82, + "end": 15474.32, + "probability": 0.3192 + }, + { + "start": 15474.38, + "end": 15475.26, + "probability": 0.9767 + }, + { + "start": 15475.86, + "end": 15477.56, + "probability": 0.9608 + }, + { + "start": 15478.68, + "end": 15480.2, + "probability": 0.5165 + }, + { + "start": 15480.6, + "end": 15482.86, + "probability": 0.9753 + }, + { + "start": 15483.32, + "end": 15486.74, + "probability": 0.9845 + }, + { + "start": 15487.16, + "end": 15489.12, + "probability": 0.7519 + }, + { + "start": 15489.14, + "end": 15489.8, + "probability": 0.7597 + }, + { + "start": 15489.96, + "end": 15490.38, + "probability": 0.7426 + }, + { + "start": 15490.94, + "end": 15490.94, + "probability": 0.0199 + }, + { + "start": 15490.94, + "end": 15493.54, + "probability": 0.4281 + }, + { + "start": 15493.54, + "end": 15498.26, + "probability": 0.3637 + }, + { + "start": 15500.62, + "end": 15501.6, + "probability": 0.0217 + }, + { + "start": 15505.42, + "end": 15509.7, + "probability": 0.0762 + }, + { + "start": 15511.04, + "end": 15512.24, + "probability": 0.0416 + }, + { + "start": 15515.78, + "end": 15521.18, + "probability": 0.8429 + }, + { + "start": 15521.52, + "end": 15522.88, + "probability": 0.5899 + }, + { + "start": 15523.0, + "end": 15525.44, + "probability": 0.4962 + }, + { + "start": 15525.74, + "end": 15529.6, + "probability": 0.7758 + }, + { + "start": 15530.06, + "end": 15534.38, + "probability": 0.9161 + }, + { + "start": 15534.38, + "end": 15534.66, + "probability": 0.1529 + }, + { + "start": 15534.74, + "end": 15536.12, + "probability": 0.0326 + }, + { + "start": 15536.12, + "end": 15537.06, + "probability": 0.3502 + }, + { + "start": 15537.18, + "end": 15538.54, + "probability": 0.5886 + }, + { + "start": 15538.74, + "end": 15540.48, + "probability": 0.6945 + }, + { + "start": 15540.56, + "end": 15541.54, + "probability": 0.3912 + }, + { + "start": 15541.68, + "end": 15545.72, + "probability": 0.5038 + }, + { + "start": 15545.8, + "end": 15547.46, + "probability": 0.7487 + }, + { + "start": 15547.78, + "end": 15552.16, + "probability": 0.6842 + }, + { + "start": 15552.44, + "end": 15555.4, + "probability": 0.9452 + }, + { + "start": 15555.68, + "end": 15556.12, + "probability": 0.8586 + }, + { + "start": 15556.78, + "end": 15557.3, + "probability": 0.9664 + }, + { + "start": 15557.54, + "end": 15558.06, + "probability": 0.9827 + }, + { + "start": 15558.4, + "end": 15559.32, + "probability": 0.906 + }, + { + "start": 15559.32, + "end": 15560.52, + "probability": 0.6299 + }, + { + "start": 15560.62, + "end": 15562.4, + "probability": 0.9629 + }, + { + "start": 15563.36, + "end": 15566.12, + "probability": 0.9397 + }, + { + "start": 15566.24, + "end": 15568.08, + "probability": 0.9606 + }, + { + "start": 15568.2, + "end": 15570.18, + "probability": 0.8796 + }, + { + "start": 15570.3, + "end": 15572.56, + "probability": 0.934 + }, + { + "start": 15572.9, + "end": 15574.33, + "probability": 0.6504 + }, + { + "start": 15575.36, + "end": 15578.26, + "probability": 0.7236 + }, + { + "start": 15578.26, + "end": 15579.76, + "probability": 0.3209 + }, + { + "start": 15579.76, + "end": 15581.66, + "probability": 0.8632 + }, + { + "start": 15581.84, + "end": 15584.74, + "probability": 0.947 + }, + { + "start": 15585.3, + "end": 15590.32, + "probability": 0.9563 + }, + { + "start": 15590.42, + "end": 15591.9, + "probability": 0.7985 + }, + { + "start": 15592.56, + "end": 15592.76, + "probability": 0.5653 + }, + { + "start": 15592.9, + "end": 15593.69, + "probability": 0.5663 + }, + { + "start": 15594.3, + "end": 15595.14, + "probability": 0.637 + }, + { + "start": 15595.24, + "end": 15596.87, + "probability": 0.9489 + }, + { + "start": 15597.32, + "end": 15600.4, + "probability": 0.7443 + }, + { + "start": 15600.82, + "end": 15606.02, + "probability": 0.9852 + }, + { + "start": 15606.58, + "end": 15607.16, + "probability": 0.6852 + }, + { + "start": 15607.9, + "end": 15612.3, + "probability": 0.953 + }, + { + "start": 15613.04, + "end": 15613.54, + "probability": 0.7971 + }, + { + "start": 15613.9, + "end": 15614.9, + "probability": 0.8486 + }, + { + "start": 15615.82, + "end": 15617.32, + "probability": 0.9806 + }, + { + "start": 15617.98, + "end": 15621.48, + "probability": 0.9373 + }, + { + "start": 15622.14, + "end": 15623.08, + "probability": 0.7052 + }, + { + "start": 15624.26, + "end": 15629.3, + "probability": 0.9832 + }, + { + "start": 15629.88, + "end": 15630.76, + "probability": 0.8861 + }, + { + "start": 15631.52, + "end": 15634.47, + "probability": 0.9067 + }, + { + "start": 15635.5, + "end": 15636.41, + "probability": 0.4842 + }, + { + "start": 15637.3, + "end": 15639.56, + "probability": 0.9465 + }, + { + "start": 15640.62, + "end": 15642.96, + "probability": 0.952 + }, + { + "start": 15643.08, + "end": 15644.16, + "probability": 0.5577 + }, + { + "start": 15644.28, + "end": 15645.12, + "probability": 0.5815 + }, + { + "start": 15646.06, + "end": 15646.06, + "probability": 0.017 + }, + { + "start": 15646.06, + "end": 15646.84, + "probability": 0.918 + }, + { + "start": 15647.02, + "end": 15649.51, + "probability": 0.9486 + }, + { + "start": 15650.12, + "end": 15651.37, + "probability": 0.8413 + }, + { + "start": 15651.92, + "end": 15654.98, + "probability": 0.9772 + }, + { + "start": 15654.98, + "end": 15657.1, + "probability": 0.9888 + }, + { + "start": 15657.84, + "end": 15658.68, + "probability": 0.937 + }, + { + "start": 15659.14, + "end": 15659.78, + "probability": 0.8297 + }, + { + "start": 15659.86, + "end": 15660.84, + "probability": 0.7868 + }, + { + "start": 15661.34, + "end": 15663.26, + "probability": 0.985 + }, + { + "start": 15663.42, + "end": 15664.16, + "probability": 0.6794 + }, + { + "start": 15664.74, + "end": 15666.92, + "probability": 0.9556 + }, + { + "start": 15667.26, + "end": 15668.04, + "probability": 0.9541 + }, + { + "start": 15668.64, + "end": 15671.84, + "probability": 0.9606 + }, + { + "start": 15671.84, + "end": 15674.0, + "probability": 0.7945 + }, + { + "start": 15674.74, + "end": 15676.78, + "probability": 0.8973 + }, + { + "start": 15677.54, + "end": 15678.05, + "probability": 0.9381 + }, + { + "start": 15678.88, + "end": 15679.88, + "probability": 0.9167 + }, + { + "start": 15680.14, + "end": 15682.98, + "probability": 0.987 + }, + { + "start": 15683.04, + "end": 15683.62, + "probability": 0.8918 + }, + { + "start": 15684.32, + "end": 15685.12, + "probability": 0.8518 + }, + { + "start": 15685.8, + "end": 15686.22, + "probability": 0.2105 + }, + { + "start": 15686.62, + "end": 15688.22, + "probability": 0.9727 + }, + { + "start": 15688.36, + "end": 15690.58, + "probability": 0.9961 + }, + { + "start": 15691.18, + "end": 15694.42, + "probability": 0.8716 + }, + { + "start": 15695.42, + "end": 15698.7, + "probability": 0.986 + }, + { + "start": 15698.82, + "end": 15699.62, + "probability": 0.7365 + }, + { + "start": 15700.2, + "end": 15702.86, + "probability": 0.9437 + }, + { + "start": 15702.96, + "end": 15703.0, + "probability": 0.7505 + }, + { + "start": 15703.22, + "end": 15708.02, + "probability": 0.9813 + }, + { + "start": 15708.2, + "end": 15711.7, + "probability": 0.867 + }, + { + "start": 15711.72, + "end": 15712.2, + "probability": 0.7813 + }, + { + "start": 15712.56, + "end": 15713.12, + "probability": 0.8452 + }, + { + "start": 15714.32, + "end": 15714.42, + "probability": 0.193 + }, + { + "start": 15714.42, + "end": 15719.18, + "probability": 0.791 + }, + { + "start": 15719.94, + "end": 15722.06, + "probability": 0.9715 + }, + { + "start": 15722.76, + "end": 15726.32, + "probability": 0.6828 + }, + { + "start": 15726.78, + "end": 15728.98, + "probability": 0.4466 + }, + { + "start": 15729.06, + "end": 15729.6, + "probability": 0.5678 + }, + { + "start": 15729.64, + "end": 15730.12, + "probability": 0.6013 + }, + { + "start": 15730.2, + "end": 15730.82, + "probability": 0.7744 + }, + { + "start": 15738.9, + "end": 15740.14, + "probability": 0.22 + }, + { + "start": 15740.32, + "end": 15741.52, + "probability": 0.2737 + }, + { + "start": 15741.54, + "end": 15741.99, + "probability": 0.7358 + }, + { + "start": 15746.02, + "end": 15747.83, + "probability": 0.0642 + }, + { + "start": 15749.24, + "end": 15751.02, + "probability": 0.0057 + }, + { + "start": 15751.02, + "end": 15751.02, + "probability": 0.0434 + }, + { + "start": 15751.02, + "end": 15751.02, + "probability": 0.0357 + }, + { + "start": 15751.02, + "end": 15751.02, + "probability": 0.1223 + }, + { + "start": 15751.02, + "end": 15753.56, + "probability": 0.5566 + }, + { + "start": 15753.7, + "end": 15755.32, + "probability": 0.5961 + }, + { + "start": 15757.16, + "end": 15762.6, + "probability": 0.9334 + }, + { + "start": 15762.82, + "end": 15765.6, + "probability": 0.6797 + }, + { + "start": 15766.62, + "end": 15767.32, + "probability": 0.7237 + }, + { + "start": 15767.6, + "end": 15768.4, + "probability": 0.822 + }, + { + "start": 15768.68, + "end": 15769.48, + "probability": 0.7829 + }, + { + "start": 15770.0, + "end": 15774.36, + "probability": 0.1432 + }, + { + "start": 15779.64, + "end": 15783.66, + "probability": 0.0167 + }, + { + "start": 15789.04, + "end": 15790.44, + "probability": 0.0057 + }, + { + "start": 15790.44, + "end": 15790.94, + "probability": 0.0185 + }, + { + "start": 15791.3, + "end": 15791.42, + "probability": 0.0448 + }, + { + "start": 15791.6, + "end": 15792.78, + "probability": 0.513 + }, + { + "start": 15793.22, + "end": 15794.48, + "probability": 0.1579 + }, + { + "start": 15795.0, + "end": 15797.04, + "probability": 0.5288 + }, + { + "start": 15797.22, + "end": 15799.68, + "probability": 0.905 + }, + { + "start": 15801.46, + "end": 15806.22, + "probability": 0.974 + }, + { + "start": 15807.28, + "end": 15808.62, + "probability": 0.8692 + }, + { + "start": 15808.78, + "end": 15811.16, + "probability": 0.7045 + }, + { + "start": 15812.62, + "end": 15812.96, + "probability": 0.037 + }, + { + "start": 15812.96, + "end": 15814.06, + "probability": 0.3686 + }, + { + "start": 15814.76, + "end": 15815.98, + "probability": 0.6477 + }, + { + "start": 15826.86, + "end": 15829.1, + "probability": 0.782 + }, + { + "start": 15830.24, + "end": 15833.18, + "probability": 0.9871 + }, + { + "start": 15833.46, + "end": 15835.84, + "probability": 0.6716 + }, + { + "start": 15837.74, + "end": 15837.74, + "probability": 0.0293 + }, + { + "start": 15837.92, + "end": 15840.2, + "probability": 0.9717 + }, + { + "start": 15840.52, + "end": 15843.0, + "probability": 0.9967 + }, + { + "start": 15843.9, + "end": 15846.4, + "probability": 0.999 + }, + { + "start": 15846.4, + "end": 15848.9, + "probability": 0.9988 + }, + { + "start": 15850.12, + "end": 15852.54, + "probability": 0.5508 + }, + { + "start": 15852.68, + "end": 15853.72, + "probability": 0.7431 + }, + { + "start": 15853.9, + "end": 15854.8, + "probability": 0.8931 + }, + { + "start": 15855.56, + "end": 15857.06, + "probability": 0.816 + }, + { + "start": 15857.22, + "end": 15859.98, + "probability": 0.9897 + }, + { + "start": 15861.7, + "end": 15865.46, + "probability": 0.9927 + }, + { + "start": 15866.46, + "end": 15869.36, + "probability": 0.9876 + }, + { + "start": 15870.24, + "end": 15871.0, + "probability": 0.8224 + }, + { + "start": 15871.66, + "end": 15873.84, + "probability": 0.9694 + }, + { + "start": 15874.56, + "end": 15877.46, + "probability": 0.9984 + }, + { + "start": 15878.16, + "end": 15880.18, + "probability": 0.9762 + }, + { + "start": 15881.78, + "end": 15886.02, + "probability": 0.9995 + }, + { + "start": 15886.48, + "end": 15888.22, + "probability": 0.7573 + }, + { + "start": 15889.12, + "end": 15892.6, + "probability": 0.9417 + }, + { + "start": 15893.84, + "end": 15897.8, + "probability": 0.987 + }, + { + "start": 15898.44, + "end": 15900.8, + "probability": 0.9333 + }, + { + "start": 15902.0, + "end": 15906.26, + "probability": 0.9971 + }, + { + "start": 15906.84, + "end": 15907.88, + "probability": 0.9247 + }, + { + "start": 15908.5, + "end": 15910.76, + "probability": 0.9525 + }, + { + "start": 15911.3, + "end": 15917.38, + "probability": 0.9891 + }, + { + "start": 15918.2, + "end": 15922.14, + "probability": 0.9819 + }, + { + "start": 15922.98, + "end": 15923.58, + "probability": 0.6451 + }, + { + "start": 15924.22, + "end": 15930.04, + "probability": 0.9874 + }, + { + "start": 15931.72, + "end": 15935.66, + "probability": 0.9972 + }, + { + "start": 15936.18, + "end": 15940.78, + "probability": 0.998 + }, + { + "start": 15941.66, + "end": 15946.54, + "probability": 0.9918 + }, + { + "start": 15947.2, + "end": 15950.7, + "probability": 0.9894 + }, + { + "start": 15950.92, + "end": 15952.22, + "probability": 0.7782 + }, + { + "start": 15952.9, + "end": 15957.88, + "probability": 0.9856 + }, + { + "start": 15958.42, + "end": 15960.94, + "probability": 0.8522 + }, + { + "start": 15962.3, + "end": 15965.22, + "probability": 0.9396 + }, + { + "start": 15965.22, + "end": 15968.58, + "probability": 0.9986 + }, + { + "start": 15969.42, + "end": 15972.3, + "probability": 0.9979 + }, + { + "start": 15972.3, + "end": 15976.46, + "probability": 0.9956 + }, + { + "start": 15977.24, + "end": 15981.28, + "probability": 0.9985 + }, + { + "start": 15981.28, + "end": 15984.9, + "probability": 0.9995 + }, + { + "start": 15986.1, + "end": 15990.2, + "probability": 0.9985 + }, + { + "start": 15990.94, + "end": 15996.86, + "probability": 0.9935 + }, + { + "start": 15996.96, + "end": 16002.54, + "probability": 0.9556 + }, + { + "start": 16003.26, + "end": 16006.9, + "probability": 0.9146 + }, + { + "start": 16007.4, + "end": 16009.18, + "probability": 0.9975 + }, + { + "start": 16010.28, + "end": 16011.76, + "probability": 0.9614 + }, + { + "start": 16012.28, + "end": 16013.46, + "probability": 0.87 + }, + { + "start": 16016.1, + "end": 16017.16, + "probability": 0.9614 + }, + { + "start": 16017.82, + "end": 16021.12, + "probability": 0.9745 + }, + { + "start": 16021.74, + "end": 16026.42, + "probability": 0.9905 + }, + { + "start": 16027.32, + "end": 16029.48, + "probability": 0.9937 + }, + { + "start": 16030.26, + "end": 16031.94, + "probability": 0.9688 + }, + { + "start": 16032.56, + "end": 16033.82, + "probability": 0.8749 + }, + { + "start": 16035.58, + "end": 16039.2, + "probability": 0.9941 + }, + { + "start": 16039.88, + "end": 16042.62, + "probability": 0.868 + }, + { + "start": 16043.82, + "end": 16049.06, + "probability": 0.9843 + }, + { + "start": 16049.86, + "end": 16053.14, + "probability": 0.9706 + }, + { + "start": 16054.08, + "end": 16054.7, + "probability": 0.8754 + }, + { + "start": 16055.4, + "end": 16056.18, + "probability": 0.9698 + }, + { + "start": 16056.96, + "end": 16058.59, + "probability": 0.992 + }, + { + "start": 16059.7, + "end": 16062.26, + "probability": 0.9766 + }, + { + "start": 16063.36, + "end": 16065.2, + "probability": 0.9126 + }, + { + "start": 16065.5, + "end": 16068.5, + "probability": 0.9933 + }, + { + "start": 16069.76, + "end": 16072.48, + "probability": 0.9427 + }, + { + "start": 16072.84, + "end": 16075.98, + "probability": 0.9111 + }, + { + "start": 16076.66, + "end": 16077.16, + "probability": 0.8597 + }, + { + "start": 16077.28, + "end": 16078.12, + "probability": 0.979 + }, + { + "start": 16078.26, + "end": 16080.7, + "probability": 0.9907 + }, + { + "start": 16081.54, + "end": 16084.18, + "probability": 0.991 + }, + { + "start": 16085.21, + "end": 16087.18, + "probability": 0.6012 + }, + { + "start": 16089.04, + "end": 16092.04, + "probability": 0.9702 + }, + { + "start": 16092.9, + "end": 16096.54, + "probability": 0.8871 + }, + { + "start": 16097.6, + "end": 16103.14, + "probability": 0.9735 + }, + { + "start": 16104.18, + "end": 16108.26, + "probability": 0.9395 + }, + { + "start": 16108.48, + "end": 16110.46, + "probability": 0.9847 + }, + { + "start": 16111.56, + "end": 16115.4, + "probability": 0.9747 + }, + { + "start": 16116.2, + "end": 16118.82, + "probability": 0.9888 + }, + { + "start": 16119.02, + "end": 16122.92, + "probability": 0.9984 + }, + { + "start": 16123.58, + "end": 16124.07, + "probability": 0.9226 + }, + { + "start": 16124.94, + "end": 16125.68, + "probability": 0.9163 + }, + { + "start": 16125.84, + "end": 16129.26, + "probability": 0.9912 + }, + { + "start": 16129.98, + "end": 16133.82, + "probability": 0.9734 + }, + { + "start": 16134.62, + "end": 16136.08, + "probability": 0.9868 + }, + { + "start": 16137.42, + "end": 16138.64, + "probability": 0.9658 + }, + { + "start": 16138.82, + "end": 16139.66, + "probability": 0.5909 + }, + { + "start": 16139.78, + "end": 16141.9, + "probability": 0.815 + }, + { + "start": 16143.34, + "end": 16151.06, + "probability": 0.8823 + }, + { + "start": 16151.74, + "end": 16155.88, + "probability": 0.932 + }, + { + "start": 16156.5, + "end": 16157.62, + "probability": 0.7001 + }, + { + "start": 16158.3, + "end": 16160.5, + "probability": 0.9795 + }, + { + "start": 16161.02, + "end": 16163.8, + "probability": 0.9976 + }, + { + "start": 16164.42, + "end": 16166.88, + "probability": 0.998 + }, + { + "start": 16168.72, + "end": 16171.36, + "probability": 0.9304 + }, + { + "start": 16171.94, + "end": 16173.4, + "probability": 0.876 + }, + { + "start": 16174.1, + "end": 16177.6, + "probability": 0.8993 + }, + { + "start": 16178.34, + "end": 16180.6, + "probability": 0.9694 + }, + { + "start": 16181.6, + "end": 16183.68, + "probability": 0.9753 + }, + { + "start": 16185.12, + "end": 16187.78, + "probability": 0.9673 + }, + { + "start": 16189.32, + "end": 16190.6, + "probability": 0.7053 + }, + { + "start": 16191.2, + "end": 16192.46, + "probability": 0.5916 + }, + { + "start": 16193.37, + "end": 16197.76, + "probability": 0.9666 + }, + { + "start": 16197.88, + "end": 16200.94, + "probability": 0.9606 + }, + { + "start": 16201.56, + "end": 16206.34, + "probability": 0.9904 + }, + { + "start": 16207.56, + "end": 16210.48, + "probability": 0.9912 + }, + { + "start": 16210.68, + "end": 16214.04, + "probability": 0.672 + }, + { + "start": 16214.04, + "end": 16216.88, + "probability": 0.9912 + }, + { + "start": 16217.74, + "end": 16218.7, + "probability": 0.9487 + }, + { + "start": 16219.12, + "end": 16219.86, + "probability": 0.4824 + }, + { + "start": 16219.92, + "end": 16224.04, + "probability": 0.8457 + }, + { + "start": 16224.58, + "end": 16229.14, + "probability": 0.9396 + }, + { + "start": 16229.96, + "end": 16231.88, + "probability": 0.8835 + }, + { + "start": 16232.4, + "end": 16235.96, + "probability": 0.9924 + }, + { + "start": 16236.62, + "end": 16237.76, + "probability": 0.9946 + }, + { + "start": 16238.02, + "end": 16239.72, + "probability": 0.9162 + }, + { + "start": 16240.32, + "end": 16244.08, + "probability": 0.9615 + }, + { + "start": 16244.78, + "end": 16247.24, + "probability": 0.9846 + }, + { + "start": 16247.68, + "end": 16251.82, + "probability": 0.9941 + }, + { + "start": 16252.06, + "end": 16252.5, + "probability": 0.6388 + }, + { + "start": 16253.9, + "end": 16256.06, + "probability": 0.9753 + }, + { + "start": 16257.06, + "end": 16258.6, + "probability": 0.801 + }, + { + "start": 16259.28, + "end": 16259.56, + "probability": 0.8494 + }, + { + "start": 16262.62, + "end": 16265.56, + "probability": 0.1156 + }, + { + "start": 16267.61, + "end": 16271.1, + "probability": 0.1462 + }, + { + "start": 16280.54, + "end": 16280.78, + "probability": 0.1464 + }, + { + "start": 16289.7, + "end": 16293.1, + "probability": 0.98 + }, + { + "start": 16294.04, + "end": 16294.72, + "probability": 0.3943 + }, + { + "start": 16296.06, + "end": 16296.54, + "probability": 0.7263 + }, + { + "start": 16296.68, + "end": 16301.12, + "probability": 0.9308 + }, + { + "start": 16302.46, + "end": 16304.46, + "probability": 0.5753 + }, + { + "start": 16304.52, + "end": 16305.76, + "probability": 0.7977 + }, + { + "start": 16305.9, + "end": 16310.26, + "probability": 0.939 + }, + { + "start": 16310.6, + "end": 16314.26, + "probability": 0.7896 + }, + { + "start": 16315.06, + "end": 16316.1, + "probability": 0.5239 + }, + { + "start": 16317.0, + "end": 16322.38, + "probability": 0.986 + }, + { + "start": 16324.02, + "end": 16325.28, + "probability": 0.9792 + }, + { + "start": 16326.1, + "end": 16329.79, + "probability": 0.9932 + }, + { + "start": 16330.2, + "end": 16330.78, + "probability": 0.7525 + }, + { + "start": 16330.84, + "end": 16332.08, + "probability": 0.9231 + }, + { + "start": 16332.6, + "end": 16337.64, + "probability": 0.9773 + }, + { + "start": 16338.96, + "end": 16342.78, + "probability": 0.9753 + }, + { + "start": 16342.86, + "end": 16344.1, + "probability": 0.7993 + }, + { + "start": 16345.06, + "end": 16347.94, + "probability": 0.9884 + }, + { + "start": 16348.72, + "end": 16353.24, + "probability": 0.9922 + }, + { + "start": 16353.24, + "end": 16358.2, + "probability": 0.9968 + }, + { + "start": 16359.58, + "end": 16367.06, + "probability": 0.9847 + }, + { + "start": 16369.04, + "end": 16376.1, + "probability": 0.9948 + }, + { + "start": 16377.0, + "end": 16378.38, + "probability": 0.9291 + }, + { + "start": 16379.16, + "end": 16381.94, + "probability": 0.8825 + }, + { + "start": 16383.5, + "end": 16386.64, + "probability": 0.9596 + }, + { + "start": 16387.78, + "end": 16392.18, + "probability": 0.9961 + }, + { + "start": 16392.94, + "end": 16399.49, + "probability": 0.9972 + }, + { + "start": 16400.76, + "end": 16403.88, + "probability": 0.9749 + }, + { + "start": 16404.36, + "end": 16407.68, + "probability": 0.9665 + }, + { + "start": 16408.45, + "end": 16408.9, + "probability": 0.8494 + }, + { + "start": 16409.44, + "end": 16410.56, + "probability": 0.8218 + }, + { + "start": 16410.82, + "end": 16412.14, + "probability": 0.9693 + }, + { + "start": 16412.24, + "end": 16414.48, + "probability": 0.9872 + }, + { + "start": 16415.38, + "end": 16419.66, + "probability": 0.8416 + }, + { + "start": 16419.66, + "end": 16422.42, + "probability": 0.9925 + }, + { + "start": 16422.92, + "end": 16425.24, + "probability": 0.901 + }, + { + "start": 16426.36, + "end": 16429.74, + "probability": 0.9866 + }, + { + "start": 16429.74, + "end": 16434.86, + "probability": 0.9879 + }, + { + "start": 16435.1, + "end": 16437.84, + "probability": 0.8668 + }, + { + "start": 16438.74, + "end": 16442.52, + "probability": 0.9508 + }, + { + "start": 16443.2, + "end": 16446.26, + "probability": 0.9778 + }, + { + "start": 16447.08, + "end": 16447.82, + "probability": 0.7983 + }, + { + "start": 16448.04, + "end": 16451.6, + "probability": 0.9824 + }, + { + "start": 16452.61, + "end": 16456.02, + "probability": 0.9924 + }, + { + "start": 16456.96, + "end": 16460.06, + "probability": 0.9842 + }, + { + "start": 16460.7, + "end": 16461.74, + "probability": 0.8073 + }, + { + "start": 16462.36, + "end": 16464.02, + "probability": 0.9956 + }, + { + "start": 16464.96, + "end": 16467.26, + "probability": 0.8062 + }, + { + "start": 16467.82, + "end": 16468.64, + "probability": 0.5757 + }, + { + "start": 16469.2, + "end": 16475.07, + "probability": 0.9961 + }, + { + "start": 16476.7, + "end": 16483.54, + "probability": 0.8481 + }, + { + "start": 16484.68, + "end": 16486.99, + "probability": 0.7991 + }, + { + "start": 16488.58, + "end": 16492.46, + "probability": 0.9941 + }, + { + "start": 16493.22, + "end": 16495.16, + "probability": 0.9953 + }, + { + "start": 16495.8, + "end": 16498.18, + "probability": 0.9087 + }, + { + "start": 16498.7, + "end": 16502.24, + "probability": 0.9984 + }, + { + "start": 16502.36, + "end": 16502.56, + "probability": 0.4246 + }, + { + "start": 16502.64, + "end": 16504.98, + "probability": 0.9985 + }, + { + "start": 16506.08, + "end": 16508.96, + "probability": 0.9486 + }, + { + "start": 16511.3, + "end": 16513.9, + "probability": 0.9908 + }, + { + "start": 16514.5, + "end": 16515.96, + "probability": 0.9888 + }, + { + "start": 16516.74, + "end": 16519.34, + "probability": 0.9958 + }, + { + "start": 16520.08, + "end": 16520.96, + "probability": 0.9839 + }, + { + "start": 16523.44, + "end": 16531.54, + "probability": 0.9248 + }, + { + "start": 16531.86, + "end": 16532.84, + "probability": 0.8751 + }, + { + "start": 16533.98, + "end": 16535.0, + "probability": 0.5267 + }, + { + "start": 16535.14, + "end": 16535.38, + "probability": 0.9002 + }, + { + "start": 16535.42, + "end": 16537.96, + "probability": 0.9661 + }, + { + "start": 16538.18, + "end": 16542.64, + "probability": 0.9951 + }, + { + "start": 16544.14, + "end": 16545.58, + "probability": 0.9861 + }, + { + "start": 16546.28, + "end": 16547.2, + "probability": 0.9705 + }, + { + "start": 16548.02, + "end": 16555.42, + "probability": 0.9716 + }, + { + "start": 16557.28, + "end": 16558.98, + "probability": 0.9937 + }, + { + "start": 16559.3, + "end": 16559.62, + "probability": 0.9254 + }, + { + "start": 16559.76, + "end": 16561.08, + "probability": 0.8851 + }, + { + "start": 16561.72, + "end": 16562.56, + "probability": 0.8016 + }, + { + "start": 16564.76, + "end": 16569.0, + "probability": 0.9891 + }, + { + "start": 16569.06, + "end": 16569.82, + "probability": 0.745 + }, + { + "start": 16570.58, + "end": 16572.66, + "probability": 0.854 + }, + { + "start": 16573.38, + "end": 16577.7, + "probability": 0.9836 + }, + { + "start": 16578.32, + "end": 16579.78, + "probability": 0.9688 + }, + { + "start": 16580.48, + "end": 16581.06, + "probability": 0.9672 + }, + { + "start": 16581.12, + "end": 16584.36, + "probability": 0.9282 + }, + { + "start": 16584.86, + "end": 16585.52, + "probability": 0.9239 + }, + { + "start": 16585.64, + "end": 16587.04, + "probability": 0.9517 + }, + { + "start": 16587.62, + "end": 16590.02, + "probability": 0.7875 + }, + { + "start": 16590.56, + "end": 16593.1, + "probability": 0.8434 + }, + { + "start": 16593.46, + "end": 16595.4, + "probability": 0.7374 + }, + { + "start": 16595.44, + "end": 16595.58, + "probability": 0.3641 + }, + { + "start": 16595.76, + "end": 16597.09, + "probability": 0.4326 + }, + { + "start": 16597.78, + "end": 16599.68, + "probability": 0.7826 + }, + { + "start": 16599.78, + "end": 16599.88, + "probability": 0.5533 + }, + { + "start": 16600.32, + "end": 16601.35, + "probability": 0.4804 + }, + { + "start": 16609.02, + "end": 16609.2, + "probability": 0.0288 + }, + { + "start": 16616.28, + "end": 16616.58, + "probability": 0.7043 + }, + { + "start": 16616.98, + "end": 16618.28, + "probability": 0.5952 + }, + { + "start": 16618.34, + "end": 16619.04, + "probability": 0.9604 + }, + { + "start": 16619.44, + "end": 16619.74, + "probability": 0.595 + }, + { + "start": 16619.82, + "end": 16621.54, + "probability": 0.7952 + }, + { + "start": 16621.62, + "end": 16622.6, + "probability": 0.5444 + }, + { + "start": 16623.22, + "end": 16624.26, + "probability": 0.9309 + }, + { + "start": 16626.46, + "end": 16628.68, + "probability": 0.6549 + }, + { + "start": 16630.88, + "end": 16631.94, + "probability": 0.6415 + }, + { + "start": 16631.98, + "end": 16632.34, + "probability": 0.8162 + }, + { + "start": 16632.7, + "end": 16635.0, + "probability": 0.7742 + }, + { + "start": 16636.52, + "end": 16639.94, + "probability": 0.9738 + }, + { + "start": 16640.94, + "end": 16641.84, + "probability": 0.8593 + }, + { + "start": 16643.6, + "end": 16646.06, + "probability": 0.9951 + }, + { + "start": 16646.84, + "end": 16650.84, + "probability": 0.9824 + }, + { + "start": 16650.98, + "end": 16654.28, + "probability": 0.9875 + }, + { + "start": 16655.9, + "end": 16657.12, + "probability": 0.7494 + }, + { + "start": 16657.12, + "end": 16659.01, + "probability": 0.5965 + }, + { + "start": 16659.22, + "end": 16660.08, + "probability": 0.3419 + }, + { + "start": 16660.12, + "end": 16661.53, + "probability": 0.9634 + }, + { + "start": 16661.7, + "end": 16662.74, + "probability": 0.5053 + }, + { + "start": 16662.74, + "end": 16664.48, + "probability": 0.8551 + }, + { + "start": 16664.54, + "end": 16665.3, + "probability": 0.9619 + }, + { + "start": 16665.52, + "end": 16666.02, + "probability": 0.5541 + }, + { + "start": 16666.1, + "end": 16671.76, + "probability": 0.8622 + }, + { + "start": 16671.82, + "end": 16672.1, + "probability": 0.7691 + }, + { + "start": 16672.14, + "end": 16673.82, + "probability": 0.9783 + }, + { + "start": 16674.02, + "end": 16674.56, + "probability": 0.1647 + }, + { + "start": 16674.56, + "end": 16674.92, + "probability": 0.0589 + }, + { + "start": 16674.92, + "end": 16675.26, + "probability": 0.2589 + }, + { + "start": 16675.4, + "end": 16677.62, + "probability": 0.4544 + }, + { + "start": 16677.64, + "end": 16678.06, + "probability": 0.4915 + }, + { + "start": 16678.06, + "end": 16679.15, + "probability": 0.7888 + }, + { + "start": 16679.3, + "end": 16680.04, + "probability": 0.8965 + }, + { + "start": 16681.12, + "end": 16686.5, + "probability": 0.0295 + }, + { + "start": 16686.7, + "end": 16689.04, + "probability": 0.2323 + }, + { + "start": 16689.46, + "end": 16689.6, + "probability": 0.221 + }, + { + "start": 16689.68, + "end": 16690.18, + "probability": 0.0773 + }, + { + "start": 16690.46, + "end": 16691.72, + "probability": 0.0283 + }, + { + "start": 16692.13, + "end": 16693.36, + "probability": 0.0295 + }, + { + "start": 16693.36, + "end": 16695.34, + "probability": 0.1622 + }, + { + "start": 16695.52, + "end": 16698.04, + "probability": 0.1761 + }, + { + "start": 16698.04, + "end": 16699.48, + "probability": 0.2281 + }, + { + "start": 16702.28, + "end": 16703.34, + "probability": 0.0244 + }, + { + "start": 16703.42, + "end": 16705.62, + "probability": 0.2615 + }, + { + "start": 16709.1, + "end": 16711.0, + "probability": 0.1336 + }, + { + "start": 16711.82, + "end": 16713.46, + "probability": 0.0752 + }, + { + "start": 16714.3, + "end": 16714.44, + "probability": 0.0287 + }, + { + "start": 16716.64, + "end": 16717.68, + "probability": 0.083 + }, + { + "start": 16717.96, + "end": 16718.7, + "probability": 0.0611 + }, + { + "start": 16720.09, + "end": 16721.0, + "probability": 0.1986 + }, + { + "start": 16721.0, + "end": 16721.0, + "probability": 0.1132 + }, + { + "start": 16721.0, + "end": 16721.88, + "probability": 0.0935 + }, + { + "start": 16722.26, + "end": 16723.79, + "probability": 0.0714 + }, + { + "start": 16723.98, + "end": 16723.98, + "probability": 0.0204 + }, + { + "start": 16723.98, + "end": 16723.98, + "probability": 0.1325 + }, + { + "start": 16725.1, + "end": 16725.66, + "probability": 0.0123 + }, + { + "start": 16725.68, + "end": 16726.6, + "probability": 0.3428 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.0, + "end": 16740.0, + "probability": 0.0 + }, + { + "start": 16740.24, + "end": 16741.0, + "probability": 0.1322 + }, + { + "start": 16741.86, + "end": 16743.92, + "probability": 0.9095 + }, + { + "start": 16744.0, + "end": 16748.1, + "probability": 0.8463 + }, + { + "start": 16748.96, + "end": 16749.98, + "probability": 0.9556 + }, + { + "start": 16750.16, + "end": 16752.86, + "probability": 0.7125 + }, + { + "start": 16753.74, + "end": 16755.33, + "probability": 0.7308 + }, + { + "start": 16756.56, + "end": 16757.14, + "probability": 0.8364 + }, + { + "start": 16758.04, + "end": 16759.24, + "probability": 0.8984 + }, + { + "start": 16759.84, + "end": 16761.94, + "probability": 0.978 + }, + { + "start": 16762.66, + "end": 16762.92, + "probability": 0.9125 + }, + { + "start": 16763.0, + "end": 16765.59, + "probability": 0.9984 + }, + { + "start": 16766.2, + "end": 16770.28, + "probability": 0.9979 + }, + { + "start": 16771.74, + "end": 16773.7, + "probability": 0.8882 + }, + { + "start": 16774.28, + "end": 16776.52, + "probability": 0.9388 + }, + { + "start": 16777.02, + "end": 16780.98, + "probability": 0.9817 + }, + { + "start": 16781.08, + "end": 16782.14, + "probability": 0.5107 + }, + { + "start": 16782.28, + "end": 16783.48, + "probability": 0.8828 + }, + { + "start": 16784.04, + "end": 16786.16, + "probability": 0.9983 + }, + { + "start": 16786.78, + "end": 16788.4, + "probability": 0.987 + }, + { + "start": 16788.84, + "end": 16790.26, + "probability": 0.9585 + }, + { + "start": 16790.6, + "end": 16792.18, + "probability": 0.9055 + }, + { + "start": 16792.68, + "end": 16793.6, + "probability": 0.9084 + }, + { + "start": 16793.78, + "end": 16795.92, + "probability": 0.9943 + }, + { + "start": 16796.56, + "end": 16797.08, + "probability": 0.5649 + }, + { + "start": 16797.5, + "end": 16800.2, + "probability": 0.8688 + }, + { + "start": 16800.84, + "end": 16801.47, + "probability": 0.932 + }, + { + "start": 16802.06, + "end": 16803.02, + "probability": 0.8813 + }, + { + "start": 16803.4, + "end": 16805.26, + "probability": 0.964 + }, + { + "start": 16805.64, + "end": 16807.56, + "probability": 0.9753 + }, + { + "start": 16807.96, + "end": 16813.18, + "probability": 0.9019 + }, + { + "start": 16813.6, + "end": 16814.6, + "probability": 0.8933 + }, + { + "start": 16814.98, + "end": 16816.36, + "probability": 0.9822 + }, + { + "start": 16816.72, + "end": 16817.26, + "probability": 0.7496 + }, + { + "start": 16818.08, + "end": 16819.14, + "probability": 0.8577 + }, + { + "start": 16819.22, + "end": 16820.94, + "probability": 0.4415 + }, + { + "start": 16821.96, + "end": 16825.68, + "probability": 0.3091 + }, + { + "start": 16825.94, + "end": 16828.17, + "probability": 0.3534 + }, + { + "start": 16828.38, + "end": 16828.88, + "probability": 0.3702 + }, + { + "start": 16831.2, + "end": 16831.38, + "probability": 0.3789 + }, + { + "start": 16840.94, + "end": 16844.14, + "probability": 0.2088 + }, + { + "start": 16846.42, + "end": 16846.42, + "probability": 0.2342 + }, + { + "start": 16846.42, + "end": 16849.14, + "probability": 0.3528 + }, + { + "start": 16849.3, + "end": 16850.92, + "probability": 0.8112 + }, + { + "start": 16851.58, + "end": 16854.76, + "probability": 0.9925 + }, + { + "start": 16855.98, + "end": 16857.34, + "probability": 0.5887 + }, + { + "start": 16857.5, + "end": 16860.38, + "probability": 0.9569 + }, + { + "start": 16860.92, + "end": 16864.04, + "probability": 0.6095 + }, + { + "start": 16864.68, + "end": 16866.4, + "probability": 0.6341 + }, + { + "start": 16893.56, + "end": 16899.24, + "probability": 0.676 + }, + { + "start": 16899.7, + "end": 16901.58, + "probability": 0.7573 + }, + { + "start": 16902.66, + "end": 16903.94, + "probability": 0.7315 + }, + { + "start": 16905.72, + "end": 16910.62, + "probability": 0.9976 + }, + { + "start": 16911.54, + "end": 16912.8, + "probability": 0.8153 + }, + { + "start": 16913.86, + "end": 16918.22, + "probability": 0.9587 + }, + { + "start": 16918.5, + "end": 16919.46, + "probability": 0.8268 + }, + { + "start": 16919.94, + "end": 16920.64, + "probability": 0.9838 + }, + { + "start": 16920.82, + "end": 16922.52, + "probability": 0.9364 + }, + { + "start": 16923.64, + "end": 16927.96, + "probability": 0.9977 + }, + { + "start": 16928.86, + "end": 16934.12, + "probability": 0.9945 + }, + { + "start": 16935.28, + "end": 16936.52, + "probability": 0.9629 + }, + { + "start": 16937.06, + "end": 16938.0, + "probability": 0.9958 + }, + { + "start": 16938.62, + "end": 16939.78, + "probability": 0.7474 + }, + { + "start": 16939.9, + "end": 16945.58, + "probability": 0.9373 + }, + { + "start": 16946.28, + "end": 16948.04, + "probability": 0.983 + }, + { + "start": 16949.12, + "end": 16952.94, + "probability": 0.9313 + }, + { + "start": 16954.12, + "end": 16959.12, + "probability": 0.9785 + }, + { + "start": 16959.72, + "end": 16960.68, + "probability": 0.8684 + }, + { + "start": 16961.12, + "end": 16966.3, + "probability": 0.9705 + }, + { + "start": 16966.3, + "end": 16971.12, + "probability": 0.9948 + }, + { + "start": 16971.9, + "end": 16973.56, + "probability": 0.8796 + }, + { + "start": 16974.22, + "end": 16977.16, + "probability": 0.7673 + }, + { + "start": 16977.94, + "end": 16979.1, + "probability": 0.957 + }, + { + "start": 16980.36, + "end": 16985.5, + "probability": 0.9929 + }, + { + "start": 16986.46, + "end": 16989.32, + "probability": 0.9438 + }, + { + "start": 16989.84, + "end": 16996.46, + "probability": 0.951 + }, + { + "start": 16997.1, + "end": 17000.18, + "probability": 0.9752 + }, + { + "start": 17001.4, + "end": 17008.0, + "probability": 0.9844 + }, + { + "start": 17008.78, + "end": 17010.26, + "probability": 0.9832 + }, + { + "start": 17010.86, + "end": 17013.14, + "probability": 0.9995 + }, + { + "start": 17014.18, + "end": 17016.82, + "probability": 0.941 + }, + { + "start": 17018.56, + "end": 17022.49, + "probability": 0.9529 + }, + { + "start": 17022.62, + "end": 17026.34, + "probability": 0.9956 + }, + { + "start": 17027.46, + "end": 17030.98, + "probability": 0.9969 + }, + { + "start": 17031.62, + "end": 17035.16, + "probability": 0.9972 + }, + { + "start": 17035.98, + "end": 17038.5, + "probability": 0.8222 + }, + { + "start": 17039.22, + "end": 17042.22, + "probability": 0.9802 + }, + { + "start": 17043.04, + "end": 17050.1, + "probability": 0.9502 + }, + { + "start": 17051.26, + "end": 17054.86, + "probability": 0.9571 + }, + { + "start": 17055.4, + "end": 17060.8, + "probability": 0.9984 + }, + { + "start": 17062.02, + "end": 17064.66, + "probability": 0.996 + }, + { + "start": 17064.66, + "end": 17070.08, + "probability": 0.9947 + }, + { + "start": 17072.16, + "end": 17075.22, + "probability": 0.8401 + }, + { + "start": 17076.72, + "end": 17080.72, + "probability": 0.8217 + }, + { + "start": 17081.7, + "end": 17089.04, + "probability": 0.9925 + }, + { + "start": 17089.62, + "end": 17093.18, + "probability": 0.9888 + }, + { + "start": 17094.7, + "end": 17100.32, + "probability": 0.9301 + }, + { + "start": 17100.92, + "end": 17102.94, + "probability": 0.9753 + }, + { + "start": 17103.76, + "end": 17107.32, + "probability": 0.9966 + }, + { + "start": 17107.32, + "end": 17112.24, + "probability": 0.9916 + }, + { + "start": 17113.38, + "end": 17115.0, + "probability": 0.8734 + }, + { + "start": 17115.64, + "end": 17117.74, + "probability": 0.8142 + }, + { + "start": 17118.42, + "end": 17125.34, + "probability": 0.9729 + }, + { + "start": 17126.02, + "end": 17127.64, + "probability": 0.6326 + }, + { + "start": 17128.2, + "end": 17130.76, + "probability": 0.9419 + }, + { + "start": 17131.52, + "end": 17134.8, + "probability": 0.9543 + }, + { + "start": 17135.84, + "end": 17141.06, + "probability": 0.9458 + }, + { + "start": 17141.6, + "end": 17145.88, + "probability": 0.9614 + }, + { + "start": 17147.06, + "end": 17148.62, + "probability": 0.8405 + }, + { + "start": 17149.26, + "end": 17156.6, + "probability": 0.9678 + }, + { + "start": 17157.42, + "end": 17159.4, + "probability": 0.7511 + }, + { + "start": 17159.9, + "end": 17163.54, + "probability": 0.9885 + }, + { + "start": 17164.18, + "end": 17172.36, + "probability": 0.9849 + }, + { + "start": 17172.96, + "end": 17178.5, + "probability": 0.9904 + }, + { + "start": 17179.9, + "end": 17183.08, + "probability": 0.9933 + }, + { + "start": 17183.8, + "end": 17192.38, + "probability": 0.9946 + }, + { + "start": 17193.12, + "end": 17197.28, + "probability": 0.8814 + }, + { + "start": 17198.34, + "end": 17199.46, + "probability": 0.7128 + }, + { + "start": 17200.08, + "end": 17201.74, + "probability": 0.9004 + }, + { + "start": 17202.12, + "end": 17207.26, + "probability": 0.8948 + }, + { + "start": 17208.44, + "end": 17210.02, + "probability": 0.5538 + }, + { + "start": 17210.7, + "end": 17214.12, + "probability": 0.5776 + }, + { + "start": 17214.72, + "end": 17215.78, + "probability": 0.9095 + }, + { + "start": 17216.46, + "end": 17218.28, + "probability": 0.9858 + }, + { + "start": 17221.7, + "end": 17225.08, + "probability": 0.9336 + }, + { + "start": 17225.88, + "end": 17229.3, + "probability": 0.9322 + }, + { + "start": 17230.42, + "end": 17233.42, + "probability": 0.9814 + }, + { + "start": 17234.52, + "end": 17235.6, + "probability": 0.9556 + }, + { + "start": 17236.14, + "end": 17238.58, + "probability": 0.9834 + }, + { + "start": 17239.16, + "end": 17240.98, + "probability": 0.7922 + }, + { + "start": 17241.58, + "end": 17246.16, + "probability": 0.9862 + }, + { + "start": 17246.16, + "end": 17252.34, + "probability": 0.8706 + }, + { + "start": 17253.46, + "end": 17261.3, + "probability": 0.9869 + }, + { + "start": 17262.28, + "end": 17263.18, + "probability": 0.5408 + }, + { + "start": 17263.96, + "end": 17265.18, + "probability": 0.8274 + }, + { + "start": 17265.96, + "end": 17267.98, + "probability": 0.9759 + }, + { + "start": 17269.4, + "end": 17270.94, + "probability": 0.9336 + }, + { + "start": 17272.1, + "end": 17276.52, + "probability": 0.9466 + }, + { + "start": 17277.28, + "end": 17281.16, + "probability": 0.9109 + }, + { + "start": 17281.74, + "end": 17288.66, + "probability": 0.9941 + }, + { + "start": 17289.32, + "end": 17292.88, + "probability": 0.8291 + }, + { + "start": 17293.44, + "end": 17295.8, + "probability": 0.994 + }, + { + "start": 17296.4, + "end": 17296.98, + "probability": 0.85 + }, + { + "start": 17298.16, + "end": 17300.74, + "probability": 0.663 + }, + { + "start": 17301.4, + "end": 17303.6, + "probability": 0.6915 + }, + { + "start": 17304.32, + "end": 17305.84, + "probability": 0.9524 + }, + { + "start": 17332.5, + "end": 17333.26, + "probability": 0.806 + }, + { + "start": 17333.88, + "end": 17334.22, + "probability": 0.8489 + }, + { + "start": 17334.66, + "end": 17334.7, + "probability": 0.8866 + }, + { + "start": 17334.7, + "end": 17335.14, + "probability": 0.7462 + }, + { + "start": 17336.32, + "end": 17337.44, + "probability": 0.7902 + }, + { + "start": 17341.89, + "end": 17349.02, + "probability": 0.9868 + }, + { + "start": 17349.5, + "end": 17351.48, + "probability": 0.7612 + }, + { + "start": 17351.48, + "end": 17352.94, + "probability": 0.7659 + }, + { + "start": 17353.14, + "end": 17354.37, + "probability": 0.6362 + }, + { + "start": 17356.12, + "end": 17360.32, + "probability": 0.8384 + }, + { + "start": 17361.0, + "end": 17363.72, + "probability": 0.7318 + }, + { + "start": 17364.28, + "end": 17365.66, + "probability": 0.8552 + }, + { + "start": 17365.74, + "end": 17369.84, + "probability": 0.9878 + }, + { + "start": 17370.92, + "end": 17375.14, + "probability": 0.9268 + }, + { + "start": 17375.84, + "end": 17378.14, + "probability": 0.514 + }, + { + "start": 17378.24, + "end": 17380.96, + "probability": 0.9582 + }, + { + "start": 17381.6, + "end": 17384.3, + "probability": 0.956 + }, + { + "start": 17384.9, + "end": 17386.62, + "probability": 0.991 + }, + { + "start": 17386.62, + "end": 17389.42, + "probability": 0.9799 + }, + { + "start": 17390.24, + "end": 17391.02, + "probability": 0.6744 + }, + { + "start": 17391.1, + "end": 17391.5, + "probability": 0.9326 + }, + { + "start": 17391.62, + "end": 17394.24, + "probability": 0.9834 + }, + { + "start": 17394.24, + "end": 17397.88, + "probability": 0.8505 + }, + { + "start": 17398.48, + "end": 17401.76, + "probability": 0.9969 + }, + { + "start": 17402.52, + "end": 17403.84, + "probability": 0.9978 + }, + { + "start": 17403.96, + "end": 17407.32, + "probability": 0.9954 + }, + { + "start": 17408.02, + "end": 17410.94, + "probability": 0.963 + }, + { + "start": 17411.54, + "end": 17412.02, + "probability": 0.9594 + }, + { + "start": 17412.58, + "end": 17414.88, + "probability": 0.9945 + }, + { + "start": 17415.62, + "end": 17417.74, + "probability": 0.7699 + }, + { + "start": 17418.4, + "end": 17420.5, + "probability": 0.9968 + }, + { + "start": 17420.5, + "end": 17422.74, + "probability": 0.9844 + }, + { + "start": 17423.16, + "end": 17426.6, + "probability": 0.9809 + }, + { + "start": 17426.74, + "end": 17429.38, + "probability": 0.9326 + }, + { + "start": 17429.44, + "end": 17432.56, + "probability": 0.9698 + }, + { + "start": 17433.44, + "end": 17433.8, + "probability": 0.6615 + }, + { + "start": 17434.38, + "end": 17438.2, + "probability": 0.9813 + }, + { + "start": 17438.26, + "end": 17441.34, + "probability": 0.9961 + }, + { + "start": 17441.7, + "end": 17445.76, + "probability": 0.9693 + }, + { + "start": 17445.9, + "end": 17446.06, + "probability": 0.5085 + }, + { + "start": 17446.16, + "end": 17446.62, + "probability": 0.8499 + }, + { + "start": 17447.02, + "end": 17451.48, + "probability": 0.9805 + }, + { + "start": 17451.48, + "end": 17455.98, + "probability": 0.8394 + }, + { + "start": 17456.84, + "end": 17458.56, + "probability": 0.4581 + }, + { + "start": 17458.6, + "end": 17463.98, + "probability": 0.9564 + }, + { + "start": 17465.0, + "end": 17467.52, + "probability": 0.9102 + }, + { + "start": 17471.42, + "end": 17473.5, + "probability": 0.6743 + }, + { + "start": 17474.06, + "end": 17474.98, + "probability": 0.7006 + }, + { + "start": 17475.76, + "end": 17475.82, + "probability": 0.027 + }, + { + "start": 17476.06, + "end": 17478.36, + "probability": 0.9935 + }, + { + "start": 17478.62, + "end": 17481.5, + "probability": 0.977 + }, + { + "start": 17481.72, + "end": 17484.04, + "probability": 0.9811 + }, + { + "start": 17484.48, + "end": 17488.32, + "probability": 0.9494 + }, + { + "start": 17488.32, + "end": 17491.84, + "probability": 0.9772 + }, + { + "start": 17492.36, + "end": 17494.84, + "probability": 0.9927 + }, + { + "start": 17495.28, + "end": 17496.78, + "probability": 0.7459 + }, + { + "start": 17497.9, + "end": 17498.29, + "probability": 0.8634 + }, + { + "start": 17499.32, + "end": 17501.46, + "probability": 0.5002 + }, + { + "start": 17501.54, + "end": 17502.62, + "probability": 0.0564 + }, + { + "start": 17502.84, + "end": 17504.9, + "probability": 0.3743 + }, + { + "start": 17506.7, + "end": 17510.08, + "probability": 0.9266 + }, + { + "start": 17510.7, + "end": 17513.29, + "probability": 0.9965 + }, + { + "start": 17513.52, + "end": 17514.16, + "probability": 0.3237 + }, + { + "start": 17514.68, + "end": 17515.52, + "probability": 0.9067 + }, + { + "start": 17515.66, + "end": 17519.92, + "probability": 0.9704 + }, + { + "start": 17519.92, + "end": 17520.78, + "probability": 0.7788 + }, + { + "start": 17521.36, + "end": 17523.3, + "probability": 0.4325 + }, + { + "start": 17523.54, + "end": 17525.02, + "probability": 0.4431 + }, + { + "start": 17525.08, + "end": 17525.52, + "probability": 0.8477 + }, + { + "start": 17525.94, + "end": 17531.24, + "probability": 0.8712 + }, + { + "start": 17531.78, + "end": 17536.38, + "probability": 0.9947 + }, + { + "start": 17536.98, + "end": 17541.56, + "probability": 0.952 + }, + { + "start": 17541.58, + "end": 17542.5, + "probability": 0.6031 + }, + { + "start": 17542.56, + "end": 17544.52, + "probability": 0.8854 + }, + { + "start": 17545.36, + "end": 17545.5, + "probability": 0.9843 + }, + { + "start": 17546.02, + "end": 17548.02, + "probability": 0.7673 + }, + { + "start": 17548.02, + "end": 17550.8, + "probability": 0.8568 + }, + { + "start": 17567.28, + "end": 17569.54, + "probability": 0.4563 + }, + { + "start": 17569.54, + "end": 17569.72, + "probability": 0.0888 + }, + { + "start": 17569.72, + "end": 17570.04, + "probability": 0.1421 + }, + { + "start": 17570.04, + "end": 17570.54, + "probability": 0.0451 + }, + { + "start": 17571.14, + "end": 17571.66, + "probability": 0.2679 + }, + { + "start": 17600.2, + "end": 17601.38, + "probability": 0.7255 + }, + { + "start": 17602.16, + "end": 17602.72, + "probability": 0.8373 + }, + { + "start": 17602.88, + "end": 17603.64, + "probability": 0.8101 + }, + { + "start": 17603.9, + "end": 17605.06, + "probability": 0.8921 + }, + { + "start": 17605.24, + "end": 17607.64, + "probability": 0.9852 + }, + { + "start": 17608.04, + "end": 17608.86, + "probability": 0.7822 + }, + { + "start": 17609.46, + "end": 17610.34, + "probability": 0.6915 + }, + { + "start": 17611.34, + "end": 17611.72, + "probability": 0.7319 + }, + { + "start": 17612.28, + "end": 17614.41, + "probability": 0.9658 + }, + { + "start": 17616.82, + "end": 17617.4, + "probability": 0.8661 + }, + { + "start": 17618.2, + "end": 17619.16, + "probability": 0.8696 + }, + { + "start": 17619.9, + "end": 17621.24, + "probability": 0.6776 + }, + { + "start": 17623.28, + "end": 17624.12, + "probability": 0.7527 + }, + { + "start": 17624.12, + "end": 17624.46, + "probability": 0.6457 + }, + { + "start": 17626.78, + "end": 17628.92, + "probability": 0.8628 + }, + { + "start": 17629.6, + "end": 17631.08, + "probability": 0.6461 + }, + { + "start": 17631.86, + "end": 17632.74, + "probability": 0.8038 + }, + { + "start": 17633.34, + "end": 17634.44, + "probability": 0.7874 + }, + { + "start": 17635.28, + "end": 17637.32, + "probability": 0.9627 + }, + { + "start": 17638.94, + "end": 17639.1, + "probability": 0.1802 + }, + { + "start": 17639.7, + "end": 17640.32, + "probability": 0.7009 + }, + { + "start": 17640.64, + "end": 17641.6, + "probability": 0.5797 + }, + { + "start": 17641.7, + "end": 17643.34, + "probability": 0.8268 + }, + { + "start": 17643.9, + "end": 17645.68, + "probability": 0.7322 + }, + { + "start": 17645.68, + "end": 17646.16, + "probability": 0.6581 + }, + { + "start": 17646.32, + "end": 17648.86, + "probability": 0.7641 + }, + { + "start": 17648.94, + "end": 17650.72, + "probability": 0.6949 + }, + { + "start": 17651.54, + "end": 17651.75, + "probability": 0.0565 + }, + { + "start": 17652.38, + "end": 17653.1, + "probability": 0.3655 + }, + { + "start": 17654.0, + "end": 17656.8, + "probability": 0.3735 + }, + { + "start": 17657.42, + "end": 17657.54, + "probability": 0.0073 + }, + { + "start": 17657.62, + "end": 17658.3, + "probability": 0.5469 + }, + { + "start": 17658.4, + "end": 17661.08, + "probability": 0.5752 + }, + { + "start": 17661.34, + "end": 17663.14, + "probability": 0.2269 + }, + { + "start": 17663.36, + "end": 17666.18, + "probability": 0.8478 + }, + { + "start": 17666.76, + "end": 17669.28, + "probability": 0.9715 + }, + { + "start": 17669.8, + "end": 17671.1, + "probability": 0.2491 + }, + { + "start": 17671.22, + "end": 17672.0, + "probability": 0.7281 + }, + { + "start": 17672.06, + "end": 17677.2, + "probability": 0.8416 + }, + { + "start": 17677.38, + "end": 17677.72, + "probability": 0.7376 + }, + { + "start": 17677.78, + "end": 17678.12, + "probability": 0.7476 + }, + { + "start": 17678.22, + "end": 17678.42, + "probability": 0.302 + }, + { + "start": 17678.44, + "end": 17679.34, + "probability": 0.7208 + }, + { + "start": 17679.4, + "end": 17680.68, + "probability": 0.6598 + }, + { + "start": 17680.82, + "end": 17681.2, + "probability": 0.6861 + }, + { + "start": 17681.78, + "end": 17682.2, + "probability": 0.2231 + }, + { + "start": 17682.2, + "end": 17682.52, + "probability": 0.384 + }, + { + "start": 17682.6, + "end": 17683.13, + "probability": 0.8001 + }, + { + "start": 17684.54, + "end": 17685.48, + "probability": 0.899 + }, + { + "start": 17685.52, + "end": 17686.06, + "probability": 0.7652 + }, + { + "start": 17686.14, + "end": 17686.82, + "probability": 0.8518 + }, + { + "start": 17687.04, + "end": 17687.4, + "probability": 0.7564 + }, + { + "start": 17687.86, + "end": 17688.26, + "probability": 0.0243 + }, + { + "start": 17688.26, + "end": 17690.08, + "probability": 0.9854 + }, + { + "start": 17690.58, + "end": 17692.1, + "probability": 0.9437 + }, + { + "start": 17692.68, + "end": 17694.2, + "probability": 0.9771 + }, + { + "start": 17694.68, + "end": 17695.64, + "probability": 0.8679 + }, + { + "start": 17695.76, + "end": 17696.42, + "probability": 0.5987 + }, + { + "start": 17696.44, + "end": 17701.2, + "probability": 0.9829 + }, + { + "start": 17701.62, + "end": 17703.94, + "probability": 0.9831 + }, + { + "start": 17704.42, + "end": 17707.92, + "probability": 0.9834 + }, + { + "start": 17708.06, + "end": 17710.26, + "probability": 0.9327 + }, + { + "start": 17710.8, + "end": 17711.7, + "probability": 0.6938 + }, + { + "start": 17712.08, + "end": 17712.08, + "probability": 0.0281 + }, + { + "start": 17712.08, + "end": 17718.54, + "probability": 0.9851 + }, + { + "start": 17718.74, + "end": 17719.7, + "probability": 0.8796 + }, + { + "start": 17720.22, + "end": 17720.22, + "probability": 0.4126 + }, + { + "start": 17720.3, + "end": 17721.01, + "probability": 0.9431 + }, + { + "start": 17721.92, + "end": 17726.8, + "probability": 0.9917 + }, + { + "start": 17727.06, + "end": 17727.98, + "probability": 0.6809 + }, + { + "start": 17728.4, + "end": 17729.78, + "probability": 0.7675 + }, + { + "start": 17730.76, + "end": 17732.74, + "probability": 0.3002 + }, + { + "start": 17732.74, + "end": 17732.98, + "probability": 0.4928 + }, + { + "start": 17732.98, + "end": 17733.3, + "probability": 0.7313 + }, + { + "start": 17733.32, + "end": 17735.68, + "probability": 0.96 + }, + { + "start": 17736.02, + "end": 17736.74, + "probability": 0.8842 + }, + { + "start": 17738.16, + "end": 17739.98, + "probability": 0.947 + }, + { + "start": 17740.06, + "end": 17742.02, + "probability": 0.6772 + }, + { + "start": 17742.2, + "end": 17742.36, + "probability": 0.4703 + }, + { + "start": 17742.56, + "end": 17743.4, + "probability": 0.7611 + }, + { + "start": 17743.64, + "end": 17745.98, + "probability": 0.699 + }, + { + "start": 17746.94, + "end": 17747.76, + "probability": 0.2415 + }, + { + "start": 17748.0, + "end": 17750.48, + "probability": 0.3942 + }, + { + "start": 17751.22, + "end": 17751.79, + "probability": 0.1412 + }, + { + "start": 17752.82, + "end": 17754.92, + "probability": 0.9475 + }, + { + "start": 17754.92, + "end": 17757.28, + "probability": 0.1551 + }, + { + "start": 17757.84, + "end": 17760.16, + "probability": 0.6455 + }, + { + "start": 17760.32, + "end": 17761.32, + "probability": 0.9685 + }, + { + "start": 17761.38, + "end": 17763.18, + "probability": 0.9858 + }, + { + "start": 17763.5, + "end": 17767.04, + "probability": 0.7344 + }, + { + "start": 17768.08, + "end": 17771.16, + "probability": 0.2231 + }, + { + "start": 17772.46, + "end": 17773.2, + "probability": 0.5049 + }, + { + "start": 17779.98, + "end": 17780.64, + "probability": 0.8515 + }, + { + "start": 17780.9, + "end": 17782.94, + "probability": 0.8766 + }, + { + "start": 17784.18, + "end": 17787.36, + "probability": 0.7995 + }, + { + "start": 17788.68, + "end": 17789.66, + "probability": 0.7759 + }, + { + "start": 17789.7, + "end": 17792.08, + "probability": 0.7419 + }, + { + "start": 17792.26, + "end": 17793.0, + "probability": 0.9022 + }, + { + "start": 17793.98, + "end": 17796.38, + "probability": 0.9944 + }, + { + "start": 17798.2, + "end": 17799.16, + "probability": 0.6012 + }, + { + "start": 17799.32, + "end": 17801.86, + "probability": 0.9678 + }, + { + "start": 17803.06, + "end": 17804.76, + "probability": 0.1217 + }, + { + "start": 17804.76, + "end": 17804.76, + "probability": 0.0205 + }, + { + "start": 17804.76, + "end": 17804.76, + "probability": 0.426 + }, + { + "start": 17805.66, + "end": 17805.66, + "probability": 0.2564 + }, + { + "start": 17805.66, + "end": 17807.02, + "probability": 0.8932 + }, + { + "start": 17808.3, + "end": 17810.24, + "probability": 0.941 + }, + { + "start": 17811.24, + "end": 17811.58, + "probability": 0.4399 + }, + { + "start": 17811.58, + "end": 17814.1, + "probability": 0.9857 + }, + { + "start": 17814.74, + "end": 17815.4, + "probability": 0.4902 + }, + { + "start": 17815.56, + "end": 17816.22, + "probability": 0.9395 + }, + { + "start": 17817.36, + "end": 17818.02, + "probability": 0.8931 + }, + { + "start": 17818.16, + "end": 17819.88, + "probability": 0.95 + }, + { + "start": 17820.82, + "end": 17822.66, + "probability": 0.9968 + }, + { + "start": 17823.28, + "end": 17824.9, + "probability": 0.673 + }, + { + "start": 17825.06, + "end": 17827.87, + "probability": 0.7126 + }, + { + "start": 17828.36, + "end": 17831.12, + "probability": 0.9319 + }, + { + "start": 17831.22, + "end": 17832.4, + "probability": 0.7282 + }, + { + "start": 17833.38, + "end": 17838.98, + "probability": 0.924 + }, + { + "start": 17841.22, + "end": 17849.82, + "probability": 0.096 + }, + { + "start": 17851.4, + "end": 17851.9, + "probability": 0.1673 + }, + { + "start": 17851.9, + "end": 17853.16, + "probability": 0.3172 + }, + { + "start": 17853.26, + "end": 17853.46, + "probability": 0.0533 + }, + { + "start": 17853.46, + "end": 17855.58, + "probability": 0.052 + }, + { + "start": 17857.08, + "end": 17859.88, + "probability": 0.3267 + }, + { + "start": 17860.64, + "end": 17861.85, + "probability": 0.0547 + }, + { + "start": 17862.68, + "end": 17865.28, + "probability": 0.2535 + }, + { + "start": 17866.12, + "end": 17866.82, + "probability": 0.2661 + }, + { + "start": 17867.04, + "end": 17868.85, + "probability": 0.3138 + }, + { + "start": 17868.9, + "end": 17870.28, + "probability": 0.8442 + }, + { + "start": 17870.94, + "end": 17872.78, + "probability": 0.8501 + }, + { + "start": 17872.8, + "end": 17874.24, + "probability": 0.9658 + }, + { + "start": 17875.04, + "end": 17878.72, + "probability": 0.9646 + }, + { + "start": 17879.34, + "end": 17880.22, + "probability": 0.5197 + }, + { + "start": 17880.9, + "end": 17884.94, + "probability": 0.9717 + }, + { + "start": 17885.84, + "end": 17890.5, + "probability": 0.988 + }, + { + "start": 17896.1, + "end": 17896.64, + "probability": 0.4281 + }, + { + "start": 17900.07, + "end": 17902.48, + "probability": 0.9535 + }, + { + "start": 17904.82, + "end": 17906.1, + "probability": 0.63 + }, + { + "start": 17907.8, + "end": 17907.98, + "probability": 0.4466 + }, + { + "start": 17907.98, + "end": 17908.5, + "probability": 0.6272 + }, + { + "start": 17908.6, + "end": 17908.96, + "probability": 0.9266 + }, + { + "start": 17909.12, + "end": 17911.44, + "probability": 0.842 + }, + { + "start": 17911.76, + "end": 17912.42, + "probability": 0.792 + }, + { + "start": 17913.96, + "end": 17916.42, + "probability": 0.7107 + }, + { + "start": 17918.36, + "end": 17919.18, + "probability": 0.6382 + }, + { + "start": 17919.34, + "end": 17920.04, + "probability": 0.7414 + }, + { + "start": 17920.38, + "end": 17920.94, + "probability": 0.5603 + }, + { + "start": 17936.29, + "end": 17937.42, + "probability": 0.3006 + }, + { + "start": 17937.42, + "end": 17938.42, + "probability": 0.0248 + }, + { + "start": 17939.04, + "end": 17939.04, + "probability": 0.1799 + }, + { + "start": 17939.04, + "end": 17942.32, + "probability": 0.5759 + }, + { + "start": 17942.88, + "end": 17948.06, + "probability": 0.8887 + }, + { + "start": 17948.06, + "end": 17949.16, + "probability": 0.1155 + }, + { + "start": 17949.3, + "end": 17951.94, + "probability": 0.4514 + }, + { + "start": 17952.48, + "end": 17953.64, + "probability": 0.5476 + }, + { + "start": 17953.64, + "end": 17954.58, + "probability": 0.3791 + }, + { + "start": 17954.58, + "end": 17954.68, + "probability": 0.1237 + }, + { + "start": 17955.46, + "end": 17955.94, + "probability": 0.2159 + }, + { + "start": 17956.14, + "end": 17956.14, + "probability": 0.1838 + }, + { + "start": 17956.14, + "end": 17957.2, + "probability": 0.4408 + }, + { + "start": 17957.34, + "end": 17961.14, + "probability": 0.5397 + }, + { + "start": 17962.76, + "end": 17968.9, + "probability": 0.981 + }, + { + "start": 17969.6, + "end": 17971.32, + "probability": 0.9509 + }, + { + "start": 17972.02, + "end": 17974.66, + "probability": 0.9072 + }, + { + "start": 17975.1, + "end": 17977.57, + "probability": 0.7245 + }, + { + "start": 17978.38, + "end": 17980.54, + "probability": 0.3764 + }, + { + "start": 17982.82, + "end": 17984.44, + "probability": 0.5717 + }, + { + "start": 17984.48, + "end": 17984.6, + "probability": 0.0144 + }, + { + "start": 17989.12, + "end": 17989.96, + "probability": 0.0598 + }, + { + "start": 17994.82, + "end": 17999.99, + "probability": 0.9792 + }, + { + "start": 18001.08, + "end": 18003.78, + "probability": 0.1996 + }, + { + "start": 18003.86, + "end": 18004.42, + "probability": 0.5024 + }, + { + "start": 18004.6, + "end": 18004.88, + "probability": 0.3406 + }, + { + "start": 18005.44, + "end": 18007.82, + "probability": 0.9698 + }, + { + "start": 18008.08, + "end": 18008.72, + "probability": 0.2743 + }, + { + "start": 18013.5, + "end": 18014.9, + "probability": 0.3556 + }, + { + "start": 18016.6, + "end": 18019.43, + "probability": 0.988 + }, + { + "start": 18020.38, + "end": 18022.78, + "probability": 0.9249 + }, + { + "start": 18023.38, + "end": 18027.12, + "probability": 0.8677 + }, + { + "start": 18028.0, + "end": 18029.74, + "probability": 0.9718 + }, + { + "start": 18030.72, + "end": 18031.66, + "probability": 0.4755 + }, + { + "start": 18032.5, + "end": 18034.6, + "probability": 0.5852 + }, + { + "start": 18036.16, + "end": 18037.83, + "probability": 0.9933 + }, + { + "start": 18040.1, + "end": 18041.48, + "probability": 0.8132 + }, + { + "start": 18042.9, + "end": 18045.1, + "probability": 0.8551 + }, + { + "start": 18046.34, + "end": 18049.7, + "probability": 0.9966 + }, + { + "start": 18050.6, + "end": 18052.46, + "probability": 0.9633 + }, + { + "start": 18053.64, + "end": 18058.98, + "probability": 0.925 + }, + { + "start": 18060.12, + "end": 18062.9, + "probability": 0.9983 + }, + { + "start": 18063.66, + "end": 18065.22, + "probability": 0.9142 + }, + { + "start": 18065.9, + "end": 18069.76, + "probability": 0.9866 + }, + { + "start": 18071.5, + "end": 18076.6, + "probability": 0.9792 + }, + { + "start": 18078.04, + "end": 18079.84, + "probability": 0.5418 + }, + { + "start": 18080.98, + "end": 18082.02, + "probability": 0.7462 + }, + { + "start": 18083.08, + "end": 18083.82, + "probability": 0.938 + }, + { + "start": 18084.48, + "end": 18086.48, + "probability": 0.9941 + }, + { + "start": 18087.18, + "end": 18090.4, + "probability": 0.9781 + }, + { + "start": 18090.64, + "end": 18096.54, + "probability": 0.986 + }, + { + "start": 18097.86, + "end": 18099.14, + "probability": 0.9952 + }, + { + "start": 18099.86, + "end": 18102.2, + "probability": 0.9805 + }, + { + "start": 18102.9, + "end": 18104.58, + "probability": 0.9592 + }, + { + "start": 18105.12, + "end": 18105.8, + "probability": 0.9766 + }, + { + "start": 18106.98, + "end": 18107.3, + "probability": 0.6221 + }, + { + "start": 18108.06, + "end": 18114.0, + "probability": 0.9619 + }, + { + "start": 18114.0, + "end": 18119.56, + "probability": 0.9922 + }, + { + "start": 18119.82, + "end": 18120.24, + "probability": 0.8103 + }, + { + "start": 18120.7, + "end": 18123.12, + "probability": 0.8965 + }, + { + "start": 18123.62, + "end": 18125.2, + "probability": 0.9919 + }, + { + "start": 18127.48, + "end": 18128.34, + "probability": 0.9187 + }, + { + "start": 18129.02, + "end": 18133.46, + "probability": 0.8781 + }, + { + "start": 18134.8, + "end": 18135.54, + "probability": 0.7287 + }, + { + "start": 18135.7, + "end": 18138.44, + "probability": 0.9932 + }, + { + "start": 18140.2, + "end": 18145.6, + "probability": 0.9179 + }, + { + "start": 18146.28, + "end": 18152.0, + "probability": 0.9965 + }, + { + "start": 18153.46, + "end": 18157.94, + "probability": 0.9928 + }, + { + "start": 18158.62, + "end": 18162.66, + "probability": 0.984 + }, + { + "start": 18164.48, + "end": 18166.58, + "probability": 0.8352 + }, + { + "start": 18167.78, + "end": 18169.54, + "probability": 0.9482 + }, + { + "start": 18170.06, + "end": 18174.88, + "probability": 0.7516 + }, + { + "start": 18176.26, + "end": 18177.46, + "probability": 0.8521 + }, + { + "start": 18178.86, + "end": 18180.74, + "probability": 0.916 + }, + { + "start": 18182.02, + "end": 18186.4, + "probability": 0.9951 + }, + { + "start": 18187.6, + "end": 18190.82, + "probability": 0.989 + }, + { + "start": 18192.46, + "end": 18193.82, + "probability": 0.6098 + }, + { + "start": 18194.52, + "end": 18198.18, + "probability": 0.97 + }, + { + "start": 18198.18, + "end": 18200.96, + "probability": 0.9931 + }, + { + "start": 18201.94, + "end": 18202.44, + "probability": 0.8108 + }, + { + "start": 18203.5, + "end": 18207.2, + "probability": 0.9688 + }, + { + "start": 18208.0, + "end": 18209.46, + "probability": 0.6873 + }, + { + "start": 18210.84, + "end": 18211.98, + "probability": 0.978 + }, + { + "start": 18213.04, + "end": 18217.66, + "probability": 0.9619 + }, + { + "start": 18218.34, + "end": 18222.52, + "probability": 0.9857 + }, + { + "start": 18225.14, + "end": 18226.08, + "probability": 0.8485 + }, + { + "start": 18227.0, + "end": 18230.7, + "probability": 0.9307 + }, + { + "start": 18231.34, + "end": 18236.96, + "probability": 0.9844 + }, + { + "start": 18238.04, + "end": 18239.7, + "probability": 0.9581 + }, + { + "start": 18240.24, + "end": 18241.14, + "probability": 0.7642 + }, + { + "start": 18241.74, + "end": 18242.24, + "probability": 0.601 + }, + { + "start": 18242.8, + "end": 18250.68, + "probability": 0.6608 + }, + { + "start": 18251.77, + "end": 18253.52, + "probability": 0.7349 + }, + { + "start": 18255.06, + "end": 18257.72, + "probability": 0.9663 + }, + { + "start": 18257.76, + "end": 18263.2, + "probability": 0.9426 + }, + { + "start": 18264.46, + "end": 18268.52, + "probability": 0.9634 + }, + { + "start": 18269.04, + "end": 18269.46, + "probability": 0.9565 + }, + { + "start": 18270.0, + "end": 18272.34, + "probability": 0.9878 + }, + { + "start": 18274.6, + "end": 18274.6, + "probability": 0.3991 + }, + { + "start": 18274.6, + "end": 18278.96, + "probability": 0.988 + }, + { + "start": 18279.96, + "end": 18283.24, + "probability": 0.9795 + }, + { + "start": 18284.66, + "end": 18286.86, + "probability": 0.8775 + }, + { + "start": 18287.68, + "end": 18288.96, + "probability": 0.8425 + }, + { + "start": 18290.68, + "end": 18293.24, + "probability": 0.9641 + }, + { + "start": 18293.9, + "end": 18298.06, + "probability": 0.9619 + }, + { + "start": 18298.56, + "end": 18303.42, + "probability": 0.9095 + }, + { + "start": 18304.42, + "end": 18304.7, + "probability": 0.4677 + }, + { + "start": 18305.58, + "end": 18308.5, + "probability": 0.8567 + }, + { + "start": 18308.96, + "end": 18311.74, + "probability": 0.917 + }, + { + "start": 18312.72, + "end": 18316.66, + "probability": 0.9937 + }, + { + "start": 18317.24, + "end": 18318.26, + "probability": 0.3486 + }, + { + "start": 18318.86, + "end": 18321.1, + "probability": 0.6838 + }, + { + "start": 18321.9, + "end": 18325.3, + "probability": 0.7626 + }, + { + "start": 18326.3, + "end": 18329.9, + "probability": 0.9756 + }, + { + "start": 18330.58, + "end": 18336.72, + "probability": 0.9945 + }, + { + "start": 18337.34, + "end": 18338.36, + "probability": 0.8633 + }, + { + "start": 18339.62, + "end": 18340.8, + "probability": 0.8954 + }, + { + "start": 18341.44, + "end": 18342.6, + "probability": 0.8583 + }, + { + "start": 18343.36, + "end": 18345.0, + "probability": 0.965 + }, + { + "start": 18345.94, + "end": 18348.12, + "probability": 0.9814 + }, + { + "start": 18348.66, + "end": 18350.82, + "probability": 0.988 + }, + { + "start": 18353.24, + "end": 18356.94, + "probability": 0.966 + }, + { + "start": 18357.6, + "end": 18359.68, + "probability": 0.9316 + }, + { + "start": 18360.5, + "end": 18361.2, + "probability": 0.8511 + }, + { + "start": 18362.24, + "end": 18364.86, + "probability": 0.6846 + }, + { + "start": 18365.74, + "end": 18368.63, + "probability": 0.9419 + }, + { + "start": 18369.6, + "end": 18372.14, + "probability": 0.9532 + }, + { + "start": 18372.88, + "end": 18373.86, + "probability": 0.9102 + }, + { + "start": 18374.62, + "end": 18376.04, + "probability": 0.975 + }, + { + "start": 18376.76, + "end": 18378.48, + "probability": 0.9845 + }, + { + "start": 18379.54, + "end": 18382.46, + "probability": 0.9104 + }, + { + "start": 18383.14, + "end": 18385.18, + "probability": 0.9692 + }, + { + "start": 18386.82, + "end": 18387.38, + "probability": 0.8366 + }, + { + "start": 18388.1, + "end": 18389.9, + "probability": 0.9983 + }, + { + "start": 18390.78, + "end": 18391.62, + "probability": 0.9096 + }, + { + "start": 18391.8, + "end": 18395.16, + "probability": 0.9902 + }, + { + "start": 18396.24, + "end": 18397.44, + "probability": 0.8945 + }, + { + "start": 18398.58, + "end": 18401.42, + "probability": 0.9619 + }, + { + "start": 18401.6, + "end": 18403.16, + "probability": 0.8711 + }, + { + "start": 18404.26, + "end": 18406.86, + "probability": 0.9421 + }, + { + "start": 18407.46, + "end": 18408.46, + "probability": 0.9738 + }, + { + "start": 18410.24, + "end": 18414.74, + "probability": 0.9021 + }, + { + "start": 18415.48, + "end": 18416.96, + "probability": 0.8624 + }, + { + "start": 18417.6, + "end": 18419.16, + "probability": 0.8132 + }, + { + "start": 18420.56, + "end": 18424.86, + "probability": 0.4426 + }, + { + "start": 18426.36, + "end": 18428.52, + "probability": 0.514 + }, + { + "start": 18429.4, + "end": 18432.42, + "probability": 0.8278 + }, + { + "start": 18432.78, + "end": 18435.94, + "probability": 0.9946 + }, + { + "start": 18436.46, + "end": 18440.32, + "probability": 0.9777 + }, + { + "start": 18443.26, + "end": 18444.48, + "probability": 0.8825 + }, + { + "start": 18445.24, + "end": 18446.8, + "probability": 0.8856 + }, + { + "start": 18447.36, + "end": 18448.46, + "probability": 0.859 + }, + { + "start": 18448.98, + "end": 18450.16, + "probability": 0.9991 + }, + { + "start": 18450.7, + "end": 18451.68, + "probability": 0.9992 + }, + { + "start": 18452.76, + "end": 18455.54, + "probability": 0.998 + }, + { + "start": 18456.14, + "end": 18459.86, + "probability": 0.967 + }, + { + "start": 18461.3, + "end": 18465.8, + "probability": 0.9773 + }, + { + "start": 18466.92, + "end": 18470.72, + "probability": 0.9346 + }, + { + "start": 18470.72, + "end": 18474.64, + "probability": 0.9989 + }, + { + "start": 18475.96, + "end": 18480.29, + "probability": 0.9048 + }, + { + "start": 18480.58, + "end": 18483.28, + "probability": 0.9395 + }, + { + "start": 18484.3, + "end": 18488.76, + "probability": 0.9727 + }, + { + "start": 18489.04, + "end": 18490.56, + "probability": 0.9985 + }, + { + "start": 18491.26, + "end": 18492.62, + "probability": 0.895 + }, + { + "start": 18493.48, + "end": 18496.76, + "probability": 0.9875 + }, + { + "start": 18497.36, + "end": 18502.06, + "probability": 0.9847 + }, + { + "start": 18502.54, + "end": 18502.74, + "probability": 0.7379 + }, + { + "start": 18504.54, + "end": 18509.04, + "probability": 0.6735 + }, + { + "start": 18511.86, + "end": 18512.86, + "probability": 0.325 + }, + { + "start": 18513.44, + "end": 18513.86, + "probability": 0.0967 + }, + { + "start": 18514.94, + "end": 18516.75, + "probability": 0.442 + }, + { + "start": 18517.48, + "end": 18518.7, + "probability": 0.6113 + }, + { + "start": 18521.2, + "end": 18523.15, + "probability": 0.9222 + }, + { + "start": 18523.68, + "end": 18524.36, + "probability": 0.751 + }, + { + "start": 18524.9, + "end": 18528.44, + "probability": 0.9959 + }, + { + "start": 18529.02, + "end": 18531.7, + "probability": 0.7912 + }, + { + "start": 18532.1, + "end": 18533.32, + "probability": 0.8053 + }, + { + "start": 18533.84, + "end": 18538.14, + "probability": 0.9637 + }, + { + "start": 18538.74, + "end": 18539.26, + "probability": 0.8068 + }, + { + "start": 18539.88, + "end": 18540.78, + "probability": 0.7036 + }, + { + "start": 18541.66, + "end": 18542.4, + "probability": 0.9369 + }, + { + "start": 18544.1, + "end": 18547.38, + "probability": 0.642 + }, + { + "start": 18549.3, + "end": 18555.0, + "probability": 0.9922 + }, + { + "start": 18555.18, + "end": 18559.4, + "probability": 0.996 + }, + { + "start": 18559.92, + "end": 18560.8, + "probability": 0.7878 + }, + { + "start": 18563.0, + "end": 18567.0, + "probability": 0.4611 + }, + { + "start": 18567.24, + "end": 18570.02, + "probability": 0.6061 + }, + { + "start": 18570.08, + "end": 18573.12, + "probability": 0.7575 + }, + { + "start": 18573.34, + "end": 18581.5, + "probability": 0.8738 + }, + { + "start": 18582.16, + "end": 18583.5, + "probability": 0.6992 + }, + { + "start": 18583.74, + "end": 18586.16, + "probability": 0.8359 + }, + { + "start": 18586.22, + "end": 18589.54, + "probability": 0.938 + }, + { + "start": 18590.14, + "end": 18591.68, + "probability": 0.9734 + }, + { + "start": 18592.06, + "end": 18597.16, + "probability": 0.7486 + }, + { + "start": 18597.78, + "end": 18601.7, + "probability": 0.9263 + }, + { + "start": 18601.98, + "end": 18607.8, + "probability": 0.9406 + }, + { + "start": 18608.66, + "end": 18614.74, + "probability": 0.7524 + }, + { + "start": 18614.98, + "end": 18616.68, + "probability": 0.9985 + }, + { + "start": 18617.34, + "end": 18621.42, + "probability": 0.9831 + }, + { + "start": 18621.98, + "end": 18630.52, + "probability": 0.9976 + }, + { + "start": 18631.1, + "end": 18635.52, + "probability": 0.9651 + }, + { + "start": 18635.8, + "end": 18645.2, + "probability": 0.9895 + }, + { + "start": 18645.72, + "end": 18648.4, + "probability": 0.7931 + }, + { + "start": 18648.64, + "end": 18653.7, + "probability": 0.9736 + }, + { + "start": 18654.56, + "end": 18659.4, + "probability": 0.9155 + }, + { + "start": 18659.66, + "end": 18663.06, + "probability": 0.9794 + }, + { + "start": 18663.28, + "end": 18664.08, + "probability": 0.3945 + }, + { + "start": 18664.34, + "end": 18665.62, + "probability": 0.915 + }, + { + "start": 18666.16, + "end": 18672.4, + "probability": 0.9852 + }, + { + "start": 18672.46, + "end": 18677.9, + "probability": 0.9482 + }, + { + "start": 18677.92, + "end": 18683.64, + "probability": 0.989 + }, + { + "start": 18684.04, + "end": 18686.14, + "probability": 0.7349 + }, + { + "start": 18686.74, + "end": 18688.24, + "probability": 0.9326 + }, + { + "start": 18688.44, + "end": 18690.74, + "probability": 0.9517 + }, + { + "start": 18691.24, + "end": 18698.2, + "probability": 0.9497 + }, + { + "start": 18698.82, + "end": 18700.7, + "probability": 0.9977 + }, + { + "start": 18701.66, + "end": 18705.16, + "probability": 0.9985 + }, + { + "start": 18705.24, + "end": 18708.7, + "probability": 0.8599 + }, + { + "start": 18709.1, + "end": 18711.48, + "probability": 0.683 + }, + { + "start": 18711.66, + "end": 18713.34, + "probability": 0.8386 + }, + { + "start": 18713.6, + "end": 18715.44, + "probability": 0.9378 + }, + { + "start": 18716.1, + "end": 18719.28, + "probability": 0.5476 + }, + { + "start": 18720.22, + "end": 18724.42, + "probability": 0.9801 + }, + { + "start": 18724.64, + "end": 18729.58, + "probability": 0.9799 + }, + { + "start": 18729.58, + "end": 18734.14, + "probability": 0.9933 + }, + { + "start": 18734.72, + "end": 18738.86, + "probability": 0.9376 + }, + { + "start": 18738.88, + "end": 18738.88, + "probability": 0.3255 + }, + { + "start": 18738.88, + "end": 18745.74, + "probability": 0.9886 + }, + { + "start": 18745.94, + "end": 18746.24, + "probability": 0.8243 + }, + { + "start": 18746.38, + "end": 18748.98, + "probability": 0.7625 + }, + { + "start": 18749.54, + "end": 18752.77, + "probability": 0.7232 + }, + { + "start": 18754.61, + "end": 18755.34, + "probability": 0.1574 + }, + { + "start": 18755.34, + "end": 18756.2, + "probability": 0.2339 + }, + { + "start": 18756.26, + "end": 18756.36, + "probability": 0.875 + }, + { + "start": 18756.88, + "end": 18757.24, + "probability": 0.8011 + }, + { + "start": 18777.06, + "end": 18777.32, + "probability": 0.2093 + }, + { + "start": 18786.92, + "end": 18787.96, + "probability": 0.527 + }, + { + "start": 18788.16, + "end": 18791.86, + "probability": 0.7487 + }, + { + "start": 18793.28, + "end": 18797.84, + "probability": 0.9779 + }, + { + "start": 18798.78, + "end": 18803.18, + "probability": 0.9957 + }, + { + "start": 18803.8, + "end": 18805.68, + "probability": 0.8512 + }, + { + "start": 18806.72, + "end": 18809.42, + "probability": 0.9884 + }, + { + "start": 18810.48, + "end": 18814.16, + "probability": 0.9434 + }, + { + "start": 18815.34, + "end": 18818.74, + "probability": 0.9324 + }, + { + "start": 18819.34, + "end": 18823.52, + "probability": 0.911 + }, + { + "start": 18824.56, + "end": 18827.84, + "probability": 0.9322 + }, + { + "start": 18828.48, + "end": 18831.14, + "probability": 0.9563 + }, + { + "start": 18831.8, + "end": 18832.76, + "probability": 0.7816 + }, + { + "start": 18833.22, + "end": 18837.92, + "probability": 0.9775 + }, + { + "start": 18838.44, + "end": 18839.08, + "probability": 0.9359 + }, + { + "start": 18839.82, + "end": 18843.2, + "probability": 0.8563 + }, + { + "start": 18843.84, + "end": 18844.36, + "probability": 0.6364 + }, + { + "start": 18846.78, + "end": 18850.34, + "probability": 0.9969 + }, + { + "start": 18851.14, + "end": 18852.22, + "probability": 0.9303 + }, + { + "start": 18853.06, + "end": 18860.14, + "probability": 0.9901 + }, + { + "start": 18862.26, + "end": 18864.62, + "probability": 0.9974 + }, + { + "start": 18866.02, + "end": 18872.28, + "probability": 0.9744 + }, + { + "start": 18873.86, + "end": 18880.28, + "probability": 0.9248 + }, + { + "start": 18880.8, + "end": 18885.66, + "probability": 0.8563 + }, + { + "start": 18887.52, + "end": 18892.22, + "probability": 0.9851 + }, + { + "start": 18893.16, + "end": 18895.98, + "probability": 0.9924 + }, + { + "start": 18897.22, + "end": 18900.8, + "probability": 0.9958 + }, + { + "start": 18901.32, + "end": 18902.36, + "probability": 0.7225 + }, + { + "start": 18903.06, + "end": 18905.62, + "probability": 0.9817 + }, + { + "start": 18906.62, + "end": 18908.82, + "probability": 0.9766 + }, + { + "start": 18910.5, + "end": 18913.78, + "probability": 0.9479 + }, + { + "start": 18914.74, + "end": 18918.66, + "probability": 0.9409 + }, + { + "start": 18918.66, + "end": 18923.32, + "probability": 0.9744 + }, + { + "start": 18923.82, + "end": 18924.7, + "probability": 0.6361 + }, + { + "start": 18925.68, + "end": 18927.86, + "probability": 0.932 + }, + { + "start": 18929.0, + "end": 18931.94, + "probability": 0.8079 + }, + { + "start": 18932.62, + "end": 18938.58, + "probability": 0.756 + }, + { + "start": 18939.3, + "end": 18942.98, + "probability": 0.9946 + }, + { + "start": 18942.98, + "end": 18948.78, + "probability": 0.9729 + }, + { + "start": 18949.22, + "end": 18957.2, + "probability": 0.9651 + }, + { + "start": 18957.34, + "end": 18957.68, + "probability": 0.7726 + }, + { + "start": 18961.92, + "end": 18962.7, + "probability": 0.7304 + }, + { + "start": 18964.14, + "end": 18966.76, + "probability": 0.7654 + }, + { + "start": 18968.48, + "end": 18969.56, + "probability": 0.3449 + }, + { + "start": 18970.44, + "end": 18972.58, + "probability": 0.0778 + }, + { + "start": 18975.26, + "end": 18976.66, + "probability": 0.2459 + }, + { + "start": 19003.06, + "end": 19003.84, + "probability": 0.105 + }, + { + "start": 19004.44, + "end": 19007.62, + "probability": 0.5013 + }, + { + "start": 19007.84, + "end": 19011.18, + "probability": 0.9269 + }, + { + "start": 19011.9, + "end": 19013.32, + "probability": 0.8661 + }, + { + "start": 19013.9, + "end": 19018.14, + "probability": 0.9907 + }, + { + "start": 19018.22, + "end": 19020.7, + "probability": 0.9951 + }, + { + "start": 19021.66, + "end": 19024.66, + "probability": 0.7736 + }, + { + "start": 19025.28, + "end": 19029.18, + "probability": 0.8723 + }, + { + "start": 19029.62, + "end": 19031.34, + "probability": 0.6966 + }, + { + "start": 19032.22, + "end": 19036.06, + "probability": 0.9534 + }, + { + "start": 19036.2, + "end": 19036.64, + "probability": 0.9406 + }, + { + "start": 19037.24, + "end": 19038.79, + "probability": 0.9971 + }, + { + "start": 19039.88, + "end": 19041.86, + "probability": 0.9949 + }, + { + "start": 19042.5, + "end": 19045.78, + "probability": 0.9915 + }, + { + "start": 19046.52, + "end": 19051.3, + "probability": 0.7844 + }, + { + "start": 19052.52, + "end": 19052.68, + "probability": 0.1922 + }, + { + "start": 19052.68, + "end": 19054.72, + "probability": 0.6257 + }, + { + "start": 19055.24, + "end": 19059.16, + "probability": 0.994 + }, + { + "start": 19059.8, + "end": 19060.94, + "probability": 0.8583 + }, + { + "start": 19061.18, + "end": 19062.36, + "probability": 0.9657 + }, + { + "start": 19063.46, + "end": 19065.3, + "probability": 0.8151 + }, + { + "start": 19065.34, + "end": 19068.56, + "probability": 0.9887 + }, + { + "start": 19069.06, + "end": 19069.34, + "probability": 0.8145 + }, + { + "start": 19069.58, + "end": 19069.88, + "probability": 0.5973 + }, + { + "start": 19070.18, + "end": 19071.24, + "probability": 0.7437 + }, + { + "start": 19071.78, + "end": 19072.9, + "probability": 0.9385 + }, + { + "start": 19073.04, + "end": 19074.64, + "probability": 0.9864 + }, + { + "start": 19074.72, + "end": 19075.54, + "probability": 0.9932 + }, + { + "start": 19075.98, + "end": 19076.1, + "probability": 0.7888 + }, + { + "start": 19076.64, + "end": 19079.92, + "probability": 0.9948 + }, + { + "start": 19080.7, + "end": 19082.6, + "probability": 0.8504 + }, + { + "start": 19083.08, + "end": 19086.0, + "probability": 0.9771 + }, + { + "start": 19086.24, + "end": 19088.34, + "probability": 0.9901 + }, + { + "start": 19088.72, + "end": 19090.88, + "probability": 0.9777 + }, + { + "start": 19090.94, + "end": 19092.02, + "probability": 0.8848 + }, + { + "start": 19092.12, + "end": 19092.82, + "probability": 0.8066 + }, + { + "start": 19093.3, + "end": 19095.06, + "probability": 0.9552 + }, + { + "start": 19097.33, + "end": 19097.82, + "probability": 0.0039 + }, + { + "start": 19097.82, + "end": 19098.06, + "probability": 0.1227 + }, + { + "start": 19098.06, + "end": 19098.62, + "probability": 0.7332 + }, + { + "start": 19099.72, + "end": 19100.2, + "probability": 0.0713 + }, + { + "start": 19100.98, + "end": 19101.08, + "probability": 0.1823 + }, + { + "start": 19101.08, + "end": 19101.08, + "probability": 0.0471 + }, + { + "start": 19101.08, + "end": 19101.42, + "probability": 0.2061 + }, + { + "start": 19101.56, + "end": 19102.98, + "probability": 0.24 + }, + { + "start": 19103.36, + "end": 19107.88, + "probability": 0.5074 + }, + { + "start": 19109.36, + "end": 19115.62, + "probability": 0.9801 + }, + { + "start": 19117.1, + "end": 19117.5, + "probability": 0.4586 + }, + { + "start": 19117.74, + "end": 19120.34, + "probability": 0.9645 + }, + { + "start": 19120.98, + "end": 19122.46, + "probability": 0.918 + }, + { + "start": 19123.04, + "end": 19124.42, + "probability": 0.9779 + }, + { + "start": 19125.06, + "end": 19125.16, + "probability": 0.0002 + }, + { + "start": 19126.72, + "end": 19127.14, + "probability": 0.0712 + }, + { + "start": 19127.14, + "end": 19132.0, + "probability": 0.6643 + }, + { + "start": 19134.74, + "end": 19137.38, + "probability": 0.9122 + }, + { + "start": 19137.58, + "end": 19138.98, + "probability": 0.6888 + }, + { + "start": 19139.08, + "end": 19140.42, + "probability": 0.9283 + }, + { + "start": 19141.28, + "end": 19142.34, + "probability": 0.9344 + }, + { + "start": 19142.4, + "end": 19143.34, + "probability": 0.9342 + }, + { + "start": 19143.5, + "end": 19144.44, + "probability": 0.9639 + }, + { + "start": 19145.3, + "end": 19147.04, + "probability": 0.939 + }, + { + "start": 19147.18, + "end": 19148.68, + "probability": 0.9901 + }, + { + "start": 19148.78, + "end": 19150.04, + "probability": 0.996 + }, + { + "start": 19150.98, + "end": 19152.34, + "probability": 0.9449 + }, + { + "start": 19152.54, + "end": 19154.06, + "probability": 0.9053 + }, + { + "start": 19154.06, + "end": 19157.44, + "probability": 0.8929 + }, + { + "start": 19157.54, + "end": 19159.8, + "probability": 0.9973 + }, + { + "start": 19160.58, + "end": 19165.42, + "probability": 0.9883 + }, + { + "start": 19166.18, + "end": 19166.72, + "probability": 0.4355 + }, + { + "start": 19167.72, + "end": 19170.8, + "probability": 0.8852 + }, + { + "start": 19170.88, + "end": 19171.9, + "probability": 0.9487 + }, + { + "start": 19172.16, + "end": 19173.2, + "probability": 0.9819 + }, + { + "start": 19173.76, + "end": 19175.18, + "probability": 0.9901 + }, + { + "start": 19175.84, + "end": 19179.08, + "probability": 0.9095 + }, + { + "start": 19180.12, + "end": 19182.84, + "probability": 0.9917 + }, + { + "start": 19184.3, + "end": 19187.38, + "probability": 0.9022 + }, + { + "start": 19187.52, + "end": 19189.07, + "probability": 0.8627 + }, + { + "start": 19190.26, + "end": 19191.96, + "probability": 0.9805 + }, + { + "start": 19192.58, + "end": 19196.22, + "probability": 0.999 + }, + { + "start": 19196.44, + "end": 19197.38, + "probability": 0.8678 + }, + { + "start": 19198.54, + "end": 19200.52, + "probability": 0.7423 + }, + { + "start": 19201.16, + "end": 19205.3, + "probability": 0.9836 + }, + { + "start": 19205.38, + "end": 19205.78, + "probability": 0.7479 + }, + { + "start": 19206.38, + "end": 19207.67, + "probability": 0.6724 + }, + { + "start": 19208.22, + "end": 19209.16, + "probability": 0.8424 + }, + { + "start": 19211.34, + "end": 19213.74, + "probability": 0.633 + }, + { + "start": 19213.78, + "end": 19214.4, + "probability": 0.8659 + }, + { + "start": 19214.7, + "end": 19216.24, + "probability": 0.1805 + }, + { + "start": 19238.94, + "end": 19239.04, + "probability": 0.0029 + }, + { + "start": 19239.04, + "end": 19241.18, + "probability": 0.7407 + }, + { + "start": 19242.34, + "end": 19243.02, + "probability": 0.5981 + }, + { + "start": 19244.5, + "end": 19247.32, + "probability": 0.9965 + }, + { + "start": 19248.12, + "end": 19252.52, + "probability": 0.9517 + }, + { + "start": 19253.18, + "end": 19256.08, + "probability": 0.9866 + }, + { + "start": 19256.52, + "end": 19257.18, + "probability": 0.8132 + }, + { + "start": 19257.66, + "end": 19259.22, + "probability": 0.9205 + }, + { + "start": 19260.22, + "end": 19261.12, + "probability": 0.6392 + }, + { + "start": 19261.8, + "end": 19264.21, + "probability": 0.7638 + }, + { + "start": 19265.94, + "end": 19266.7, + "probability": 0.998 + }, + { + "start": 19267.76, + "end": 19269.01, + "probability": 0.8562 + }, + { + "start": 19269.36, + "end": 19271.43, + "probability": 0.9604 + }, + { + "start": 19272.68, + "end": 19273.36, + "probability": 0.9781 + }, + { + "start": 19274.56, + "end": 19276.94, + "probability": 0.9937 + }, + { + "start": 19277.58, + "end": 19278.98, + "probability": 0.9999 + }, + { + "start": 19279.94, + "end": 19280.74, + "probability": 0.957 + }, + { + "start": 19281.42, + "end": 19282.66, + "probability": 0.9985 + }, + { + "start": 19282.84, + "end": 19286.04, + "probability": 0.9966 + }, + { + "start": 19286.04, + "end": 19288.8, + "probability": 0.9973 + }, + { + "start": 19289.5, + "end": 19293.04, + "probability": 0.9808 + }, + { + "start": 19293.7, + "end": 19296.74, + "probability": 0.8971 + }, + { + "start": 19297.38, + "end": 19301.84, + "probability": 0.9355 + }, + { + "start": 19306.58, + "end": 19307.74, + "probability": 0.8029 + }, + { + "start": 19308.24, + "end": 19310.78, + "probability": 0.5895 + }, + { + "start": 19310.86, + "end": 19311.8, + "probability": 0.9085 + }, + { + "start": 19312.7, + "end": 19314.74, + "probability": 0.8063 + }, + { + "start": 19315.94, + "end": 19321.24, + "probability": 0.9966 + }, + { + "start": 19321.32, + "end": 19323.96, + "probability": 0.999 + }, + { + "start": 19325.12, + "end": 19327.94, + "probability": 0.9976 + }, + { + "start": 19329.2, + "end": 19331.48, + "probability": 0.8393 + }, + { + "start": 19331.68, + "end": 19335.7, + "probability": 0.9922 + }, + { + "start": 19336.2, + "end": 19336.56, + "probability": 0.517 + }, + { + "start": 19336.66, + "end": 19337.32, + "probability": 0.847 + }, + { + "start": 19337.4, + "end": 19339.08, + "probability": 0.8515 + }, + { + "start": 19339.94, + "end": 19343.46, + "probability": 0.8598 + }, + { + "start": 19344.76, + "end": 19346.76, + "probability": 0.6279 + }, + { + "start": 19348.46, + "end": 19353.34, + "probability": 0.941 + }, + { + "start": 19354.7, + "end": 19356.18, + "probability": 0.9032 + }, + { + "start": 19357.14, + "end": 19359.3, + "probability": 0.9752 + }, + { + "start": 19359.86, + "end": 19363.04, + "probability": 0.9553 + }, + { + "start": 19364.26, + "end": 19366.72, + "probability": 0.9839 + }, + { + "start": 19367.38, + "end": 19369.33, + "probability": 0.984 + }, + { + "start": 19370.46, + "end": 19372.9, + "probability": 0.9328 + }, + { + "start": 19373.42, + "end": 19375.2, + "probability": 0.4228 + }, + { + "start": 19375.7, + "end": 19376.3, + "probability": 0.0919 + }, + { + "start": 19376.3, + "end": 19376.9, + "probability": 0.0121 + }, + { + "start": 19377.6, + "end": 19377.6, + "probability": 0.0178 + }, + { + "start": 19377.6, + "end": 19378.94, + "probability": 0.6078 + }, + { + "start": 19380.21, + "end": 19381.84, + "probability": 0.8254 + }, + { + "start": 19382.12, + "end": 19384.94, + "probability": 0.7565 + }, + { + "start": 19385.1, + "end": 19388.12, + "probability": 0.9608 + }, + { + "start": 19388.16, + "end": 19389.36, + "probability": 0.9242 + }, + { + "start": 19389.56, + "end": 19393.96, + "probability": 0.9341 + }, + { + "start": 19394.46, + "end": 19399.34, + "probability": 0.9989 + }, + { + "start": 19399.44, + "end": 19400.16, + "probability": 0.8771 + }, + { + "start": 19400.94, + "end": 19401.58, + "probability": 0.8879 + }, + { + "start": 19402.06, + "end": 19406.28, + "probability": 0.9583 + }, + { + "start": 19407.4, + "end": 19408.44, + "probability": 0.9336 + }, + { + "start": 19409.88, + "end": 19412.69, + "probability": 0.9908 + }, + { + "start": 19413.08, + "end": 19415.3, + "probability": 0.6369 + }, + { + "start": 19416.28, + "end": 19417.72, + "probability": 0.9343 + }, + { + "start": 19420.0, + "end": 19421.18, + "probability": 0.3892 + }, + { + "start": 19421.3, + "end": 19422.06, + "probability": 0.9011 + }, + { + "start": 19422.84, + "end": 19423.98, + "probability": 0.8403 + }, + { + "start": 19424.8, + "end": 19427.68, + "probability": 0.8868 + }, + { + "start": 19427.94, + "end": 19432.22, + "probability": 0.8958 + }, + { + "start": 19432.22, + "end": 19432.94, + "probability": 0.7271 + }, + { + "start": 19432.96, + "end": 19434.94, + "probability": 0.7591 + }, + { + "start": 19435.2, + "end": 19435.8, + "probability": 0.909 + }, + { + "start": 19436.04, + "end": 19436.04, + "probability": 0.2398 + }, + { + "start": 19436.12, + "end": 19436.8, + "probability": 0.6291 + }, + { + "start": 19437.72, + "end": 19437.92, + "probability": 0.8521 + }, + { + "start": 19439.04, + "end": 19442.12, + "probability": 0.8337 + }, + { + "start": 19442.62, + "end": 19443.72, + "probability": 0.9941 + }, + { + "start": 19444.2, + "end": 19445.38, + "probability": 0.9951 + }, + { + "start": 19446.48, + "end": 19451.26, + "probability": 0.9831 + }, + { + "start": 19451.86, + "end": 19453.54, + "probability": 0.5047 + }, + { + "start": 19453.84, + "end": 19454.28, + "probability": 0.7326 + }, + { + "start": 19456.24, + "end": 19456.86, + "probability": 0.8903 + }, + { + "start": 19458.94, + "end": 19460.12, + "probability": 0.1035 + }, + { + "start": 19462.74, + "end": 19463.8, + "probability": 0.521 + }, + { + "start": 19464.78, + "end": 19465.06, + "probability": 0.6736 + }, + { + "start": 19468.16, + "end": 19468.36, + "probability": 0.2181 + }, + { + "start": 19471.48, + "end": 19472.02, + "probability": 0.0032 + }, + { + "start": 19473.96, + "end": 19476.58, + "probability": 0.6526 + }, + { + "start": 19478.28, + "end": 19480.22, + "probability": 0.9985 + }, + { + "start": 19480.86, + "end": 19484.88, + "probability": 0.9818 + }, + { + "start": 19484.96, + "end": 19486.02, + "probability": 0.96 + }, + { + "start": 19486.24, + "end": 19486.84, + "probability": 0.8957 + }, + { + "start": 19486.94, + "end": 19487.64, + "probability": 0.9398 + }, + { + "start": 19487.68, + "end": 19488.38, + "probability": 0.9336 + }, + { + "start": 19488.4, + "end": 19488.92, + "probability": 0.7289 + }, + { + "start": 19490.0, + "end": 19496.14, + "probability": 0.995 + }, + { + "start": 19496.6, + "end": 19497.32, + "probability": 0.7278 + }, + { + "start": 19498.28, + "end": 19499.06, + "probability": 0.741 + }, + { + "start": 19499.72, + "end": 19502.84, + "probability": 0.909 + }, + { + "start": 19503.66, + "end": 19504.18, + "probability": 0.7512 + }, + { + "start": 19504.24, + "end": 19505.3, + "probability": 0.9004 + }, + { + "start": 19505.48, + "end": 19508.56, + "probability": 0.9609 + }, + { + "start": 19509.26, + "end": 19511.8, + "probability": 0.9965 + }, + { + "start": 19511.9, + "end": 19512.82, + "probability": 0.9796 + }, + { + "start": 19513.84, + "end": 19518.26, + "probability": 0.9958 + }, + { + "start": 19519.7, + "end": 19520.92, + "probability": 0.9979 + }, + { + "start": 19521.7, + "end": 19524.67, + "probability": 0.9671 + }, + { + "start": 19524.86, + "end": 19526.94, + "probability": 0.9964 + }, + { + "start": 19527.38, + "end": 19530.48, + "probability": 0.8443 + }, + { + "start": 19531.14, + "end": 19532.24, + "probability": 0.6014 + }, + { + "start": 19532.4, + "end": 19533.92, + "probability": 0.8735 + }, + { + "start": 19534.88, + "end": 19539.52, + "probability": 0.9595 + }, + { + "start": 19539.64, + "end": 19540.7, + "probability": 0.988 + }, + { + "start": 19541.1, + "end": 19544.58, + "probability": 0.9124 + }, + { + "start": 19545.26, + "end": 19546.68, + "probability": 0.9881 + }, + { + "start": 19547.36, + "end": 19548.65, + "probability": 0.5271 + }, + { + "start": 19549.3, + "end": 19553.34, + "probability": 0.9788 + }, + { + "start": 19553.34, + "end": 19558.64, + "probability": 0.9957 + }, + { + "start": 19559.18, + "end": 19561.42, + "probability": 0.9818 + }, + { + "start": 19562.18, + "end": 19568.96, + "probability": 0.975 + }, + { + "start": 19569.08, + "end": 19572.68, + "probability": 0.884 + }, + { + "start": 19572.88, + "end": 19573.04, + "probability": 0.4739 + }, + { + "start": 19573.16, + "end": 19574.6, + "probability": 0.7186 + }, + { + "start": 19574.62, + "end": 19575.86, + "probability": 0.2566 + }, + { + "start": 19576.34, + "end": 19580.9, + "probability": 0.4513 + }, + { + "start": 19580.96, + "end": 19581.9, + "probability": 0.505 + }, + { + "start": 19581.9, + "end": 19582.32, + "probability": 0.807 + }, + { + "start": 19582.62, + "end": 19583.0, + "probability": 0.5301 + }, + { + "start": 19583.0, + "end": 19583.34, + "probability": 0.7012 + }, + { + "start": 19583.34, + "end": 19583.34, + "probability": 0.0018 + }, + { + "start": 19583.34, + "end": 19583.64, + "probability": 0.3168 + }, + { + "start": 19583.64, + "end": 19584.06, + "probability": 0.5629 + }, + { + "start": 19584.22, + "end": 19589.86, + "probability": 0.9294 + }, + { + "start": 19590.1, + "end": 19592.24, + "probability": 0.6019 + }, + { + "start": 19592.46, + "end": 19594.38, + "probability": 0.7006 + }, + { + "start": 19594.56, + "end": 19594.6, + "probability": 0.3099 + }, + { + "start": 19594.6, + "end": 19594.64, + "probability": 0.3784 + }, + { + "start": 19594.7, + "end": 19596.76, + "probability": 0.9756 + }, + { + "start": 19597.12, + "end": 19599.56, + "probability": 0.9903 + }, + { + "start": 19599.56, + "end": 19600.72, + "probability": 0.8098 + }, + { + "start": 19600.78, + "end": 19602.85, + "probability": 0.8585 + }, + { + "start": 19603.14, + "end": 19607.76, + "probability": 0.9982 + }, + { + "start": 19607.9, + "end": 19611.68, + "probability": 0.5878 + }, + { + "start": 19612.1, + "end": 19612.56, + "probability": 0.1099 + }, + { + "start": 19612.66, + "end": 19613.08, + "probability": 0.0347 + }, + { + "start": 19613.08, + "end": 19613.92, + "probability": 0.0994 + }, + { + "start": 19615.5, + "end": 19615.66, + "probability": 0.0282 + }, + { + "start": 19615.66, + "end": 19618.82, + "probability": 0.437 + }, + { + "start": 19619.22, + "end": 19621.38, + "probability": 0.2431 + }, + { + "start": 19621.38, + "end": 19622.76, + "probability": 0.0554 + }, + { + "start": 19648.7, + "end": 19651.24, + "probability": 0.4126 + }, + { + "start": 19651.34, + "end": 19651.76, + "probability": 0.0691 + }, + { + "start": 19652.84, + "end": 19657.36, + "probability": 0.0459 + }, + { + "start": 19657.38, + "end": 19657.44, + "probability": 0.0962 + }, + { + "start": 19657.44, + "end": 19657.64, + "probability": 0.0543 + }, + { + "start": 19657.64, + "end": 19658.3, + "probability": 0.158 + }, + { + "start": 19658.3, + "end": 19660.12, + "probability": 0.1492 + }, + { + "start": 19660.12, + "end": 19667.76, + "probability": 0.0556 + }, + { + "start": 19667.89, + "end": 19668.56, + "probability": 0.1452 + }, + { + "start": 19668.99, + "end": 19671.54, + "probability": 0.0351 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.0, + "end": 19720.0, + "probability": 0.0 + }, + { + "start": 19720.04, + "end": 19720.57, + "probability": 0.5451 + }, + { + "start": 19721.68, + "end": 19723.04, + "probability": 0.2005 + }, + { + "start": 19723.38, + "end": 19725.64, + "probability": 0.8732 + }, + { + "start": 19726.04, + "end": 19726.98, + "probability": 0.0973 + }, + { + "start": 19726.98, + "end": 19727.66, + "probability": 0.1275 + }, + { + "start": 19728.14, + "end": 19730.6, + "probability": 0.758 + }, + { + "start": 19731.56, + "end": 19734.66, + "probability": 0.8167 + }, + { + "start": 19735.72, + "end": 19736.76, + "probability": 0.6066 + }, + { + "start": 19737.2, + "end": 19737.74, + "probability": 0.5446 + }, + { + "start": 19738.3, + "end": 19740.73, + "probability": 0.5054 + }, + { + "start": 19741.02, + "end": 19742.96, + "probability": 0.7769 + }, + { + "start": 19743.26, + "end": 19744.48, + "probability": 0.1463 + }, + { + "start": 19744.84, + "end": 19746.38, + "probability": 0.1521 + }, + { + "start": 19747.4, + "end": 19748.7, + "probability": 0.4935 + }, + { + "start": 19750.74, + "end": 19751.96, + "probability": 0.3001 + }, + { + "start": 19754.3, + "end": 19755.28, + "probability": 0.0722 + }, + { + "start": 19756.04, + "end": 19760.34, + "probability": 0.8069 + }, + { + "start": 19760.56, + "end": 19762.66, + "probability": 0.866 + }, + { + "start": 19763.42, + "end": 19765.94, + "probability": 0.819 + }, + { + "start": 19767.3, + "end": 19768.42, + "probability": 0.8486 + }, + { + "start": 19769.32, + "end": 19771.02, + "probability": 0.7458 + }, + { + "start": 19771.04, + "end": 19774.98, + "probability": 0.9381 + }, + { + "start": 19775.34, + "end": 19781.64, + "probability": 0.9968 + }, + { + "start": 19781.82, + "end": 19782.98, + "probability": 0.98 + }, + { + "start": 19783.14, + "end": 19785.52, + "probability": 0.9642 + }, + { + "start": 19786.4, + "end": 19787.2, + "probability": 0.9839 + }, + { + "start": 19788.39, + "end": 19789.46, + "probability": 0.8247 + }, + { + "start": 19790.54, + "end": 19794.38, + "probability": 0.9285 + }, + { + "start": 19794.48, + "end": 19795.4, + "probability": 0.96 + }, + { + "start": 19796.46, + "end": 19797.32, + "probability": 0.6103 + }, + { + "start": 19798.52, + "end": 19801.16, + "probability": 0.9523 + }, + { + "start": 19802.78, + "end": 19804.26, + "probability": 0.9781 + }, + { + "start": 19804.8, + "end": 19805.38, + "probability": 0.3903 + }, + { + "start": 19806.36, + "end": 19807.12, + "probability": 0.7647 + }, + { + "start": 19807.22, + "end": 19808.22, + "probability": 0.9971 + }, + { + "start": 19808.95, + "end": 19811.06, + "probability": 0.9884 + }, + { + "start": 19811.42, + "end": 19814.78, + "probability": 0.8767 + }, + { + "start": 19815.96, + "end": 19816.68, + "probability": 0.9282 + }, + { + "start": 19817.44, + "end": 19818.08, + "probability": 0.8029 + }, + { + "start": 19819.4, + "end": 19819.62, + "probability": 0.2512 + }, + { + "start": 19819.62, + "end": 19821.02, + "probability": 0.7214 + }, + { + "start": 19821.18, + "end": 19821.56, + "probability": 0.1011 + }, + { + "start": 19822.02, + "end": 19822.76, + "probability": 0.3135 + }, + { + "start": 19822.88, + "end": 19824.68, + "probability": 0.3673 + }, + { + "start": 19825.08, + "end": 19826.1, + "probability": 0.396 + }, + { + "start": 19826.1, + "end": 19826.62, + "probability": 0.6115 + }, + { + "start": 19827.16, + "end": 19828.26, + "probability": 0.1334 + }, + { + "start": 19829.22, + "end": 19829.32, + "probability": 0.0328 + }, + { + "start": 19829.32, + "end": 19829.32, + "probability": 0.1894 + }, + { + "start": 19829.32, + "end": 19829.89, + "probability": 0.2524 + }, + { + "start": 19830.1, + "end": 19830.1, + "probability": 0.219 + }, + { + "start": 19830.1, + "end": 19830.98, + "probability": 0.7382 + }, + { + "start": 19831.5, + "end": 19831.7, + "probability": 0.1048 + }, + { + "start": 19831.7, + "end": 19831.77, + "probability": 0.3155 + }, + { + "start": 19831.96, + "end": 19832.26, + "probability": 0.4229 + }, + { + "start": 19832.62, + "end": 19833.6, + "probability": 0.7691 + }, + { + "start": 19833.6, + "end": 19834.1, + "probability": 0.6952 + }, + { + "start": 19834.18, + "end": 19835.58, + "probability": 0.947 + }, + { + "start": 19836.12, + "end": 19837.3, + "probability": 0.8698 + }, + { + "start": 19837.92, + "end": 19839.02, + "probability": 0.1512 + }, + { + "start": 19839.76, + "end": 19840.22, + "probability": 0.2469 + }, + { + "start": 19840.22, + "end": 19840.22, + "probability": 0.3363 + }, + { + "start": 19840.22, + "end": 19840.22, + "probability": 0.0708 + }, + { + "start": 19840.22, + "end": 19840.22, + "probability": 0.0669 + }, + { + "start": 19840.22, + "end": 19841.6, + "probability": 0.4878 + }, + { + "start": 19842.0, + "end": 19842.0, + "probability": 0.6846 + }, + { + "start": 19842.0, + "end": 19844.82, + "probability": 0.4384 + }, + { + "start": 19845.8, + "end": 19846.24, + "probability": 0.133 + }, + { + "start": 19854.78, + "end": 19856.44, + "probability": 0.6178 + }, + { + "start": 19857.0, + "end": 19857.26, + "probability": 0.0352 + }, + { + "start": 19857.44, + "end": 19862.1, + "probability": 0.0613 + }, + { + "start": 19862.22, + "end": 19864.32, + "probability": 0.5154 + }, + { + "start": 19865.04, + "end": 19865.1, + "probability": 0.0928 + }, + { + "start": 19865.1, + "end": 19866.24, + "probability": 0.0257 + }, + { + "start": 19866.4, + "end": 19868.94, + "probability": 0.2233 + }, + { + "start": 19878.34, + "end": 19878.98, + "probability": 0.1138 + }, + { + "start": 19880.22, + "end": 19880.72, + "probability": 0.2959 + }, + { + "start": 19880.94, + "end": 19882.34, + "probability": 0.6851 + }, + { + "start": 19883.74, + "end": 19884.4, + "probability": 0.2568 + }, + { + "start": 19884.4, + "end": 19885.28, + "probability": 0.5344 + }, + { + "start": 19885.28, + "end": 19885.28, + "probability": 0.11 + }, + { + "start": 19886.22, + "end": 19887.81, + "probability": 0.3414 + }, + { + "start": 19889.08, + "end": 19889.76, + "probability": 0.1453 + }, + { + "start": 19889.88, + "end": 19891.16, + "probability": 0.2026 + }, + { + "start": 19891.66, + "end": 19893.82, + "probability": 0.0518 + }, + { + "start": 19894.34, + "end": 19895.66, + "probability": 0.2079 + }, + { + "start": 19896.52, + "end": 19897.22, + "probability": 0.2012 + }, + { + "start": 19897.22, + "end": 19898.86, + "probability": 0.3009 + }, + { + "start": 19900.3, + "end": 19900.58, + "probability": 0.3467 + }, + { + "start": 19900.58, + "end": 19902.84, + "probability": 0.1895 + }, + { + "start": 19903.56, + "end": 19903.84, + "probability": 0.5227 + }, + { + "start": 19904.12, + "end": 19904.8, + "probability": 0.1734 + }, + { + "start": 19905.18, + "end": 19906.98, + "probability": 0.6131 + }, + { + "start": 19908.32, + "end": 19909.44, + "probability": 0.4995 + }, + { + "start": 19909.53, + "end": 19909.67, + "probability": 0.0401 + }, + { + "start": 19909.84, + "end": 19910.12, + "probability": 0.2186 + }, + { + "start": 19910.12, + "end": 19910.12, + "probability": 0.6057 + }, + { + "start": 19910.12, + "end": 19910.28, + "probability": 0.1705 + }, + { + "start": 19910.38, + "end": 19910.38, + "probability": 0.399 + }, + { + "start": 19910.38, + "end": 19911.76, + "probability": 0.1013 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.0, + "end": 19912.0, + "probability": 0.0 + }, + { + "start": 19912.12, + "end": 19912.28, + "probability": 0.0 + }, + { + "start": 19913.36, + "end": 19914.42, + "probability": 0.7049 + }, + { + "start": 19927.56, + "end": 19929.68, + "probability": 0.7065 + }, + { + "start": 19930.44, + "end": 19931.48, + "probability": 0.787 + }, + { + "start": 19932.2, + "end": 19932.92, + "probability": 0.624 + }, + { + "start": 19934.67, + "end": 19939.94, + "probability": 0.8804 + }, + { + "start": 19941.26, + "end": 19943.36, + "probability": 0.8856 + }, + { + "start": 19944.72, + "end": 19948.56, + "probability": 0.9031 + }, + { + "start": 19949.36, + "end": 19950.44, + "probability": 0.4288 + }, + { + "start": 19950.68, + "end": 19952.43, + "probability": 0.7617 + }, + { + "start": 19953.34, + "end": 19957.62, + "probability": 0.9636 + }, + { + "start": 19958.64, + "end": 19961.72, + "probability": 0.7608 + }, + { + "start": 19962.3, + "end": 19963.76, + "probability": 0.7923 + }, + { + "start": 19964.2, + "end": 19965.38, + "probability": 0.8378 + }, + { + "start": 19966.06, + "end": 19968.24, + "probability": 0.9406 + }, + { + "start": 19968.38, + "end": 19969.83, + "probability": 0.8762 + }, + { + "start": 19970.1, + "end": 19970.48, + "probability": 0.4579 + }, + { + "start": 19970.76, + "end": 19972.4, + "probability": 0.9673 + }, + { + "start": 19972.54, + "end": 19974.3, + "probability": 0.7861 + }, + { + "start": 19974.48, + "end": 19974.8, + "probability": 0.5834 + }, + { + "start": 19975.0, + "end": 19975.74, + "probability": 0.4794 + }, + { + "start": 19976.42, + "end": 19979.68, + "probability": 0.0918 + }, + { + "start": 19979.72, + "end": 19981.0, + "probability": 0.6332 + }, + { + "start": 19983.86, + "end": 19984.84, + "probability": 0.4135 + }, + { + "start": 19985.2, + "end": 19985.2, + "probability": 0.1624 + }, + { + "start": 19985.2, + "end": 19986.86, + "probability": 0.3553 + }, + { + "start": 19988.83, + "end": 19990.64, + "probability": 0.5778 + }, + { + "start": 19990.64, + "end": 19990.74, + "probability": 0.2551 + }, + { + "start": 19995.44, + "end": 19996.14, + "probability": 0.4586 + }, + { + "start": 19996.5, + "end": 19996.94, + "probability": 0.5138 + }, + { + "start": 19997.5, + "end": 19997.9, + "probability": 0.1685 + }, + { + "start": 19997.9, + "end": 19997.9, + "probability": 0.3455 + }, + { + "start": 19997.9, + "end": 19997.9, + "probability": 0.195 + }, + { + "start": 19997.9, + "end": 19997.9, + "probability": 0.3263 + }, + { + "start": 19997.9, + "end": 19997.9, + "probability": 0.0879 + }, + { + "start": 19997.9, + "end": 19998.2, + "probability": 0.0136 + }, + { + "start": 19998.2, + "end": 19998.2, + "probability": 0.4103 + }, + { + "start": 19998.2, + "end": 19998.2, + "probability": 0.1227 + }, + { + "start": 19998.2, + "end": 19998.2, + "probability": 0.1873 + }, + { + "start": 19998.2, + "end": 20001.19, + "probability": 0.1565 + }, + { + "start": 20002.9, + "end": 20003.9, + "probability": 0.6703 + }, + { + "start": 20003.9, + "end": 20005.5, + "probability": 0.0981 + }, + { + "start": 20005.52, + "end": 20005.52, + "probability": 0.0633 + }, + { + "start": 20005.62, + "end": 20005.76, + "probability": 0.0103 + }, + { + "start": 20005.76, + "end": 20007.28, + "probability": 0.7769 + }, + { + "start": 20007.42, + "end": 20008.2, + "probability": 0.1713 + }, + { + "start": 20008.64, + "end": 20010.08, + "probability": 0.5865 + }, + { + "start": 20010.08, + "end": 20010.22, + "probability": 0.0684 + }, + { + "start": 20010.64, + "end": 20012.19, + "probability": 0.92 + }, + { + "start": 20012.84, + "end": 20014.78, + "probability": 0.9683 + }, + { + "start": 20015.12, + "end": 20016.54, + "probability": 0.6548 + }, + { + "start": 20017.04, + "end": 20019.26, + "probability": 0.937 + }, + { + "start": 20020.38, + "end": 20021.26, + "probability": 0.908 + }, + { + "start": 20022.12, + "end": 20023.84, + "probability": 0.7732 + }, + { + "start": 20024.68, + "end": 20028.66, + "probability": 0.9889 + }, + { + "start": 20029.32, + "end": 20032.24, + "probability": 0.2938 + }, + { + "start": 20032.54, + "end": 20034.92, + "probability": 0.5232 + }, + { + "start": 20037.3, + "end": 20040.4, + "probability": 0.4464 + }, + { + "start": 20040.4, + "end": 20040.4, + "probability": 0.1997 + }, + { + "start": 20040.4, + "end": 20041.29, + "probability": 0.1724 + }, + { + "start": 20041.8, + "end": 20043.6, + "probability": 0.5292 + }, + { + "start": 20044.78, + "end": 20045.9, + "probability": 0.7458 + }, + { + "start": 20045.96, + "end": 20048.66, + "probability": 0.9818 + }, + { + "start": 20049.3, + "end": 20050.22, + "probability": 0.5256 + }, + { + "start": 20050.22, + "end": 20051.0, + "probability": 0.0427 + }, + { + "start": 20051.22, + "end": 20051.56, + "probability": 0.4865 + }, + { + "start": 20051.58, + "end": 20054.36, + "probability": 0.4432 + }, + { + "start": 20054.86, + "end": 20055.8, + "probability": 0.7251 + }, + { + "start": 20056.78, + "end": 20057.24, + "probability": 0.2863 + }, + { + "start": 20057.4, + "end": 20058.36, + "probability": 0.3885 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.0, + "end": 20082.0, + "probability": 0.0 + }, + { + "start": 20082.52, + "end": 20088.32, + "probability": 0.725 + }, + { + "start": 20088.4, + "end": 20089.72, + "probability": 0.4215 + }, + { + "start": 20089.72, + "end": 20091.01, + "probability": 0.2952 + }, + { + "start": 20093.04, + "end": 20094.66, + "probability": 0.3127 + }, + { + "start": 20095.24, + "end": 20096.28, + "probability": 0.4985 + }, + { + "start": 20096.82, + "end": 20098.18, + "probability": 0.5014 + }, + { + "start": 20098.9, + "end": 20099.78, + "probability": 0.203 + }, + { + "start": 20099.78, + "end": 20100.0, + "probability": 0.8481 + }, + { + "start": 20100.22, + "end": 20101.22, + "probability": 0.6638 + }, + { + "start": 20101.26, + "end": 20102.02, + "probability": 0.7742 + }, + { + "start": 20102.02, + "end": 20103.46, + "probability": 0.9148 + }, + { + "start": 20104.26, + "end": 20107.74, + "probability": 0.8737 + }, + { + "start": 20108.98, + "end": 20112.58, + "probability": 0.9932 + }, + { + "start": 20113.86, + "end": 20115.98, + "probability": 0.6654 + }, + { + "start": 20117.12, + "end": 20119.23, + "probability": 0.9956 + }, + { + "start": 20120.68, + "end": 20121.34, + "probability": 0.61 + }, + { + "start": 20121.88, + "end": 20125.26, + "probability": 0.9395 + }, + { + "start": 20126.91, + "end": 20127.34, + "probability": 0.1798 + }, + { + "start": 20127.36, + "end": 20128.98, + "probability": 0.74 + }, + { + "start": 20130.14, + "end": 20132.78, + "probability": 0.991 + }, + { + "start": 20133.48, + "end": 20134.9, + "probability": 0.8358 + }, + { + "start": 20136.04, + "end": 20138.52, + "probability": 0.8735 + }, + { + "start": 20139.4, + "end": 20141.59, + "probability": 0.8638 + }, + { + "start": 20141.78, + "end": 20143.08, + "probability": 0.7769 + }, + { + "start": 20143.62, + "end": 20144.6, + "probability": 0.9312 + }, + { + "start": 20145.07, + "end": 20147.18, + "probability": 0.8418 + }, + { + "start": 20148.2, + "end": 20150.29, + "probability": 0.9961 + }, + { + "start": 20151.01, + "end": 20152.24, + "probability": 0.9971 + }, + { + "start": 20154.22, + "end": 20155.01, + "probability": 0.5244 + }, + { + "start": 20156.4, + "end": 20159.04, + "probability": 0.9888 + }, + { + "start": 20160.48, + "end": 20162.2, + "probability": 0.9601 + }, + { + "start": 20163.0, + "end": 20163.88, + "probability": 0.9456 + }, + { + "start": 20164.32, + "end": 20166.22, + "probability": 0.9864 + }, + { + "start": 20166.64, + "end": 20168.42, + "probability": 0.5621 + }, + { + "start": 20168.62, + "end": 20168.98, + "probability": 0.6077 + }, + { + "start": 20169.48, + "end": 20171.76, + "probability": 0.9836 + }, + { + "start": 20172.46, + "end": 20173.42, + "probability": 0.9839 + }, + { + "start": 20174.18, + "end": 20175.64, + "probability": 0.9891 + }, + { + "start": 20176.6, + "end": 20178.12, + "probability": 0.9984 + }, + { + "start": 20178.74, + "end": 20180.18, + "probability": 0.9878 + }, + { + "start": 20181.32, + "end": 20183.84, + "probability": 0.862 + }, + { + "start": 20184.54, + "end": 20186.38, + "probability": 0.9116 + }, + { + "start": 20186.92, + "end": 20192.42, + "probability": 0.9779 + }, + { + "start": 20193.34, + "end": 20196.5, + "probability": 0.9969 + }, + { + "start": 20197.18, + "end": 20198.26, + "probability": 0.9797 + }, + { + "start": 20198.34, + "end": 20198.74, + "probability": 0.8932 + }, + { + "start": 20198.96, + "end": 20201.28, + "probability": 0.8988 + }, + { + "start": 20201.28, + "end": 20204.31, + "probability": 0.3162 + }, + { + "start": 20204.65, + "end": 20210.2, + "probability": 0.2396 + }, + { + "start": 20210.44, + "end": 20210.44, + "probability": 0.3496 + }, + { + "start": 20220.22, + "end": 20221.38, + "probability": 0.1853 + }, + { + "start": 20222.5, + "end": 20224.18, + "probability": 0.7441 + }, + { + "start": 20228.06, + "end": 20228.86, + "probability": 0.4318 + }, + { + "start": 20229.47, + "end": 20230.64, + "probability": 0.0257 + }, + { + "start": 20231.18, + "end": 20234.8, + "probability": 0.0214 + }, + { + "start": 20236.47, + "end": 20239.12, + "probability": 0.0725 + }, + { + "start": 20239.12, + "end": 20239.92, + "probability": 0.1456 + }, + { + "start": 20240.7, + "end": 20242.8, + "probability": 0.1762 + }, + { + "start": 20242.96, + "end": 20242.96, + "probability": 0.296 + }, + { + "start": 20242.96, + "end": 20242.96, + "probability": 0.2382 + }, + { + "start": 20245.3, + "end": 20245.3, + "probability": 0.4212 + }, + { + "start": 20245.3, + "end": 20245.3, + "probability": 0.2756 + }, + { + "start": 20245.3, + "end": 20245.3, + "probability": 0.4886 + }, + { + "start": 20245.3, + "end": 20246.54, + "probability": 0.0552 + }, + { + "start": 20273.46, + "end": 20273.46, + "probability": 0.0114 + }, + { + "start": 20273.98, + "end": 20275.46, + "probability": 0.0215 + }, + { + "start": 20276.08, + "end": 20277.1, + "probability": 0.0944 + }, + { + "start": 20278.86, + "end": 20279.48, + "probability": 0.0412 + }, + { + "start": 20281.64, + "end": 20284.54, + "probability": 0.029 + }, + { + "start": 20284.58, + "end": 20284.64, + "probability": 0.0675 + }, + { + "start": 20284.72, + "end": 20287.72, + "probability": 0.1524 + }, + { + "start": 20287.72, + "end": 20287.86, + "probability": 0.3223 + }, + { + "start": 20287.92, + "end": 20287.92, + "probability": 0.2005 + }, + { + "start": 20287.92, + "end": 20287.92, + "probability": 0.102 + }, + { + "start": 20287.92, + "end": 20287.92, + "probability": 0.0639 + }, + { + "start": 20287.92, + "end": 20287.92, + "probability": 0.0391 + }, + { + "start": 20287.92, + "end": 20287.92, + "probability": 0.0304 + }, + { + "start": 20287.92, + "end": 20287.92, + "probability": 0.4137 + }, + { + "start": 20287.92, + "end": 20287.94, + "probability": 0.095 + }, + { + "start": 20288.0, + "end": 20288.0, + "probability": 0.0 + }, + { + "start": 20288.0, + "end": 20288.0, + "probability": 0.0 + }, + { + "start": 20288.0, + "end": 20288.0, + "probability": 0.0 + }, + { + "start": 20288.0, + "end": 20288.0, + "probability": 0.0 + }, + { + "start": 20288.0, + "end": 20288.0, + "probability": 0.0 + }, + { + "start": 20288.44, + "end": 20288.76, + "probability": 0.0965 + }, + { + "start": 20288.76, + "end": 20288.76, + "probability": 0.1126 + }, + { + "start": 20288.76, + "end": 20290.12, + "probability": 0.3874 + }, + { + "start": 20310.02, + "end": 20311.46, + "probability": 0.5501 + }, + { + "start": 20311.54, + "end": 20319.54, + "probability": 0.3555 + }, + { + "start": 20319.74, + "end": 20321.74, + "probability": 0.012 + }, + { + "start": 20322.96, + "end": 20325.36, + "probability": 0.0407 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.0, + "end": 20432.0, + "probability": 0.0 + }, + { + "start": 20432.16, + "end": 20434.7, + "probability": 0.6003 + }, + { + "start": 20435.52, + "end": 20438.0, + "probability": 0.8913 + }, + { + "start": 20458.3, + "end": 20458.3, + "probability": 0.0832 + }, + { + "start": 20458.3, + "end": 20458.86, + "probability": 0.3661 + }, + { + "start": 20458.86, + "end": 20460.06, + "probability": 0.9224 + }, + { + "start": 20460.18, + "end": 20461.42, + "probability": 0.9771 + }, + { + "start": 20462.04, + "end": 20464.48, + "probability": 0.8109 + }, + { + "start": 20468.38, + "end": 20469.82, + "probability": 0.5775 + }, + { + "start": 20482.0, + "end": 20483.14, + "probability": 0.5591 + }, + { + "start": 20486.0, + "end": 20487.17, + "probability": 0.7064 + }, + { + "start": 20487.68, + "end": 20490.7, + "probability": 0.8519 + }, + { + "start": 20491.24, + "end": 20493.18, + "probability": 0.9174 + }, + { + "start": 20493.52, + "end": 20495.28, + "probability": 0.6843 + }, + { + "start": 20495.94, + "end": 20499.92, + "probability": 0.8792 + }, + { + "start": 20499.92, + "end": 20503.28, + "probability": 0.9957 + }, + { + "start": 20503.8, + "end": 20509.3, + "probability": 0.969 + }, + { + "start": 20510.08, + "end": 20513.6, + "probability": 0.917 + }, + { + "start": 20514.14, + "end": 20516.36, + "probability": 0.9687 + }, + { + "start": 20517.14, + "end": 20518.5, + "probability": 0.9771 + }, + { + "start": 20518.96, + "end": 20524.06, + "probability": 0.9714 + }, + { + "start": 20524.22, + "end": 20525.88, + "probability": 0.9958 + }, + { + "start": 20526.48, + "end": 20528.06, + "probability": 0.959 + }, + { + "start": 20528.72, + "end": 20531.74, + "probability": 0.9075 + }, + { + "start": 20532.06, + "end": 20532.62, + "probability": 0.8907 + }, + { + "start": 20533.04, + "end": 20537.02, + "probability": 0.9819 + }, + { + "start": 20537.94, + "end": 20540.42, + "probability": 0.7785 + }, + { + "start": 20541.02, + "end": 20541.76, + "probability": 0.7138 + }, + { + "start": 20542.24, + "end": 20546.04, + "probability": 0.9902 + }, + { + "start": 20546.72, + "end": 20548.06, + "probability": 0.9653 + }, + { + "start": 20548.14, + "end": 20551.18, + "probability": 0.943 + }, + { + "start": 20551.18, + "end": 20555.0, + "probability": 0.982 + }, + { + "start": 20555.4, + "end": 20556.5, + "probability": 0.8325 + }, + { + "start": 20556.64, + "end": 20559.06, + "probability": 0.9814 + }, + { + "start": 20559.1, + "end": 20560.37, + "probability": 0.5911 + }, + { + "start": 20561.14, + "end": 20563.24, + "probability": 0.8374 + }, + { + "start": 20563.7, + "end": 20565.28, + "probability": 0.9795 + }, + { + "start": 20565.5, + "end": 20566.42, + "probability": 0.8474 + }, + { + "start": 20566.74, + "end": 20567.42, + "probability": 0.984 + }, + { + "start": 20567.98, + "end": 20569.26, + "probability": 0.7613 + }, + { + "start": 20569.38, + "end": 20574.24, + "probability": 0.9949 + }, + { + "start": 20574.44, + "end": 20575.38, + "probability": 0.6629 + }, + { + "start": 20575.44, + "end": 20576.72, + "probability": 0.9805 + }, + { + "start": 20577.44, + "end": 20578.64, + "probability": 0.5942 + }, + { + "start": 20579.46, + "end": 20580.48, + "probability": 0.9734 + }, + { + "start": 20581.1, + "end": 20583.0, + "probability": 0.9875 + }, + { + "start": 20583.08, + "end": 20583.6, + "probability": 0.8566 + }, + { + "start": 20583.64, + "end": 20584.22, + "probability": 0.6551 + }, + { + "start": 20584.38, + "end": 20585.66, + "probability": 0.8634 + }, + { + "start": 20585.74, + "end": 20589.75, + "probability": 0.7434 + }, + { + "start": 20590.68, + "end": 20592.56, + "probability": 0.8562 + }, + { + "start": 20593.25, + "end": 20595.53, + "probability": 0.915 + }, + { + "start": 20595.92, + "end": 20599.08, + "probability": 0.0825 + }, + { + "start": 20599.08, + "end": 20600.38, + "probability": 0.5867 + }, + { + "start": 20625.18, + "end": 20628.72, + "probability": 0.7489 + }, + { + "start": 20630.83, + "end": 20634.88, + "probability": 0.9875 + }, + { + "start": 20635.04, + "end": 20635.86, + "probability": 0.8965 + }, + { + "start": 20636.18, + "end": 20639.38, + "probability": 0.9517 + }, + { + "start": 20639.38, + "end": 20641.74, + "probability": 0.998 + }, + { + "start": 20642.5, + "end": 20644.31, + "probability": 0.9982 + }, + { + "start": 20646.72, + "end": 20646.9, + "probability": 0.0304 + }, + { + "start": 20646.9, + "end": 20647.06, + "probability": 0.1462 + }, + { + "start": 20647.06, + "end": 20647.48, + "probability": 0.0336 + }, + { + "start": 20648.2, + "end": 20649.9, + "probability": 0.1391 + }, + { + "start": 20651.84, + "end": 20651.84, + "probability": 0.2102 + }, + { + "start": 20651.84, + "end": 20652.08, + "probability": 0.5272 + }, + { + "start": 20652.22, + "end": 20652.8, + "probability": 0.4983 + }, + { + "start": 20652.96, + "end": 20653.72, + "probability": 0.5349 + }, + { + "start": 20653.72, + "end": 20655.33, + "probability": 0.3532 + }, + { + "start": 20656.5, + "end": 20657.22, + "probability": 0.0601 + }, + { + "start": 20657.44, + "end": 20658.48, + "probability": 0.2578 + }, + { + "start": 20660.68, + "end": 20663.94, + "probability": 0.8732 + }, + { + "start": 20664.88, + "end": 20667.56, + "probability": 0.9764 + }, + { + "start": 20668.26, + "end": 20671.9, + "probability": 0.4235 + }, + { + "start": 20672.62, + "end": 20673.54, + "probability": 0.5819 + }, + { + "start": 20674.02, + "end": 20676.22, + "probability": 0.9683 + }, + { + "start": 20676.3, + "end": 20679.72, + "probability": 0.0188 + }, + { + "start": 20679.92, + "end": 20679.92, + "probability": 0.0794 + }, + { + "start": 20679.92, + "end": 20681.42, + "probability": 0.5525 + }, + { + "start": 20682.62, + "end": 20682.92, + "probability": 0.1391 + }, + { + "start": 20685.98, + "end": 20691.08, + "probability": 0.194 + }, + { + "start": 20691.28, + "end": 20691.96, + "probability": 0.0474 + }, + { + "start": 20692.74, + "end": 20693.24, + "probability": 0.0621 + }, + { + "start": 20693.34, + "end": 20694.62, + "probability": 0.4857 + }, + { + "start": 20695.54, + "end": 20695.6, + "probability": 0.0549 + }, + { + "start": 20695.6, + "end": 20695.6, + "probability": 0.0999 + }, + { + "start": 20695.6, + "end": 20695.6, + "probability": 0.0121 + }, + { + "start": 20695.6, + "end": 20695.6, + "probability": 0.278 + }, + { + "start": 20695.6, + "end": 20697.46, + "probability": 0.5549 + }, + { + "start": 20697.64, + "end": 20699.4, + "probability": 0.788 + }, + { + "start": 20699.66, + "end": 20699.82, + "probability": 0.3888 + }, + { + "start": 20699.86, + "end": 20699.96, + "probability": 0.6557 + }, + { + "start": 20700.68, + "end": 20701.06, + "probability": 0.5667 + }, + { + "start": 20702.04, + "end": 20703.32, + "probability": 0.6154 + }, + { + "start": 20703.38, + "end": 20703.94, + "probability": 0.7974 + }, + { + "start": 20704.02, + "end": 20705.14, + "probability": 0.6554 + }, + { + "start": 20705.24, + "end": 20705.62, + "probability": 0.6352 + }, + { + "start": 20706.7, + "end": 20708.14, + "probability": 0.8066 + }, + { + "start": 20708.78, + "end": 20711.0, + "probability": 0.9563 + }, + { + "start": 20711.94, + "end": 20712.5, + "probability": 0.9691 + }, + { + "start": 20712.88, + "end": 20714.04, + "probability": 0.7233 + }, + { + "start": 20714.14, + "end": 20714.42, + "probability": 0.9189 + }, + { + "start": 20715.14, + "end": 20716.62, + "probability": 0.7592 + }, + { + "start": 20716.64, + "end": 20719.82, + "probability": 0.7621 + }, + { + "start": 20720.34, + "end": 20725.84, + "probability": 0.9236 + }, + { + "start": 20726.8, + "end": 20728.32, + "probability": 0.9045 + }, + { + "start": 20728.64, + "end": 20729.86, + "probability": 0.9531 + }, + { + "start": 20730.18, + "end": 20731.48, + "probability": 0.5181 + }, + { + "start": 20732.34, + "end": 20734.96, + "probability": 0.8352 + }, + { + "start": 20735.06, + "end": 20736.1, + "probability": 0.5669 + }, + { + "start": 20736.22, + "end": 20739.96, + "probability": 0.9753 + }, + { + "start": 20740.42, + "end": 20744.05, + "probability": 0.714 + }, + { + "start": 20744.34, + "end": 20746.06, + "probability": 0.8741 + }, + { + "start": 20746.9, + "end": 20749.35, + "probability": 0.1328 + }, + { + "start": 20749.36, + "end": 20750.58, + "probability": 0.2058 + }, + { + "start": 20750.8, + "end": 20750.96, + "probability": 0.027 + }, + { + "start": 20751.72, + "end": 20753.58, + "probability": 0.8231 + }, + { + "start": 20753.82, + "end": 20759.9, + "probability": 0.9531 + }, + { + "start": 20760.44, + "end": 20761.42, + "probability": 0.5053 + }, + { + "start": 20761.46, + "end": 20761.6, + "probability": 0.4985 + }, + { + "start": 20761.76, + "end": 20762.44, + "probability": 0.5708 + }, + { + "start": 20762.62, + "end": 20763.94, + "probability": 0.8779 + }, + { + "start": 20764.32, + "end": 20767.78, + "probability": 0.9014 + }, + { + "start": 20767.88, + "end": 20770.4, + "probability": 0.9359 + }, + { + "start": 20772.3, + "end": 20773.98, + "probability": 0.5995 + }, + { + "start": 20774.0, + "end": 20774.94, + "probability": 0.2149 + }, + { + "start": 20775.26, + "end": 20776.26, + "probability": 0.7675 + }, + { + "start": 20776.26, + "end": 20778.34, + "probability": 0.7401 + }, + { + "start": 20778.4, + "end": 20779.98, + "probability": 0.9093 + }, + { + "start": 20779.98, + "end": 20780.48, + "probability": 0.4143 + }, + { + "start": 20780.48, + "end": 20781.24, + "probability": 0.6639 + }, + { + "start": 20781.8, + "end": 20782.5, + "probability": 0.6991 + }, + { + "start": 20782.7, + "end": 20783.3, + "probability": 0.7004 + }, + { + "start": 20783.3, + "end": 20784.5, + "probability": 0.9331 + }, + { + "start": 20784.72, + "end": 20787.28, + "probability": 0.8262 + }, + { + "start": 20788.26, + "end": 20790.06, + "probability": 0.8829 + }, + { + "start": 20790.24, + "end": 20791.36, + "probability": 0.9534 + }, + { + "start": 20792.12, + "end": 20795.87, + "probability": 0.4199 + }, + { + "start": 20796.12, + "end": 20797.74, + "probability": 0.8499 + }, + { + "start": 20799.28, + "end": 20799.58, + "probability": 0.5193 + }, + { + "start": 20799.58, + "end": 20802.54, + "probability": 0.8499 + }, + { + "start": 20802.66, + "end": 20803.01, + "probability": 0.844 + }, + { + "start": 20803.52, + "end": 20807.8, + "probability": 0.8687 + }, + { + "start": 20807.86, + "end": 20810.6, + "probability": 0.9971 + }, + { + "start": 20811.52, + "end": 20812.16, + "probability": 0.374 + }, + { + "start": 20815.68, + "end": 20817.09, + "probability": 0.1375 + }, + { + "start": 20818.7, + "end": 20823.88, + "probability": 0.0768 + }, + { + "start": 20824.46, + "end": 20825.96, + "probability": 0.1425 + }, + { + "start": 20826.02, + "end": 20826.96, + "probability": 0.1127 + }, + { + "start": 20828.24, + "end": 20830.12, + "probability": 0.0802 + }, + { + "start": 20830.6, + "end": 20833.62, + "probability": 0.675 + }, + { + "start": 20833.74, + "end": 20835.04, + "probability": 0.433 + }, + { + "start": 20835.94, + "end": 20838.6, + "probability": 0.1334 + }, + { + "start": 20838.98, + "end": 20840.58, + "probability": 0.5557 + }, + { + "start": 20840.72, + "end": 20840.72, + "probability": 0.0814 + }, + { + "start": 20840.96, + "end": 20842.43, + "probability": 0.2236 + }, + { + "start": 20842.78, + "end": 20843.72, + "probability": 0.3018 + }, + { + "start": 20844.58, + "end": 20844.94, + "probability": 0.0252 + }, + { + "start": 20844.94, + "end": 20845.43, + "probability": 0.2789 + }, + { + "start": 20845.78, + "end": 20846.96, + "probability": 0.4518 + }, + { + "start": 20846.96, + "end": 20847.86, + "probability": 0.4439 + }, + { + "start": 20848.1, + "end": 20848.1, + "probability": 0.0602 + }, + { + "start": 20848.1, + "end": 20848.1, + "probability": 0.1724 + }, + { + "start": 20848.1, + "end": 20850.04, + "probability": 0.1715 + }, + { + "start": 20851.56, + "end": 20851.56, + "probability": 0.0241 + }, + { + "start": 20851.56, + "end": 20852.04, + "probability": 0.3803 + }, + { + "start": 20852.76, + "end": 20854.56, + "probability": 0.1364 + }, + { + "start": 20855.17, + "end": 20857.76, + "probability": 0.1233 + }, + { + "start": 20858.02, + "end": 20858.6, + "probability": 0.6893 + }, + { + "start": 20859.72, + "end": 20862.48, + "probability": 0.3224 + }, + { + "start": 20862.48, + "end": 20863.62, + "probability": 0.3226 + }, + { + "start": 20865.88, + "end": 20866.38, + "probability": 0.0395 + }, + { + "start": 20866.38, + "end": 20867.84, + "probability": 0.3075 + }, + { + "start": 20868.92, + "end": 20869.44, + "probability": 0.5692 + }, + { + "start": 20869.8, + "end": 20870.68, + "probability": 0.374 + }, + { + "start": 20873.32, + "end": 20873.48, + "probability": 0.6417 + }, + { + "start": 20873.6, + "end": 20875.59, + "probability": 0.8352 + }, + { + "start": 20876.44, + "end": 20876.8, + "probability": 0.5986 + }, + { + "start": 20877.02, + "end": 20880.82, + "probability": 0.9746 + }, + { + "start": 20880.96, + "end": 20882.44, + "probability": 0.667 + }, + { + "start": 20882.54, + "end": 20883.86, + "probability": 0.9705 + }, + { + "start": 20884.6, + "end": 20887.72, + "probability": 0.9927 + }, + { + "start": 20887.84, + "end": 20889.86, + "probability": 0.8698 + }, + { + "start": 20890.06, + "end": 20891.64, + "probability": 0.5908 + }, + { + "start": 20892.24, + "end": 20893.12, + "probability": 0.8407 + }, + { + "start": 20893.32, + "end": 20895.1, + "probability": 0.9588 + }, + { + "start": 20895.12, + "end": 20898.92, + "probability": 0.9932 + }, + { + "start": 20899.48, + "end": 20902.86, + "probability": 0.9262 + }, + { + "start": 20903.4, + "end": 20907.18, + "probability": 0.9889 + }, + { + "start": 20915.12, + "end": 20917.4, + "probability": 0.7648 + }, + { + "start": 20917.92, + "end": 20921.96, + "probability": 0.943 + }, + { + "start": 20922.52, + "end": 20926.1, + "probability": 0.9821 + }, + { + "start": 20926.16, + "end": 20926.97, + "probability": 0.521 + }, + { + "start": 20927.8, + "end": 20928.12, + "probability": 0.5031 + }, + { + "start": 20928.18, + "end": 20929.0, + "probability": 0.9004 + }, + { + "start": 20929.56, + "end": 20932.54, + "probability": 0.9951 + }, + { + "start": 20933.32, + "end": 20934.66, + "probability": 0.7653 + }, + { + "start": 20935.28, + "end": 20939.44, + "probability": 0.9917 + }, + { + "start": 20939.98, + "end": 20943.72, + "probability": 0.9796 + }, + { + "start": 20944.88, + "end": 20948.84, + "probability": 0.8564 + }, + { + "start": 20949.54, + "end": 20954.96, + "probability": 0.9714 + }, + { + "start": 20955.02, + "end": 20956.3, + "probability": 0.9856 + }, + { + "start": 20956.82, + "end": 20961.41, + "probability": 0.9933 + }, + { + "start": 20962.18, + "end": 20963.4, + "probability": 0.6447 + }, + { + "start": 20964.24, + "end": 20966.54, + "probability": 0.9951 + }, + { + "start": 20966.54, + "end": 20968.86, + "probability": 0.9978 + }, + { + "start": 20969.86, + "end": 20970.74, + "probability": 0.8603 + }, + { + "start": 20971.12, + "end": 20975.66, + "probability": 0.9666 + }, + { + "start": 20976.16, + "end": 20978.84, + "probability": 0.9723 + }, + { + "start": 20978.88, + "end": 20980.52, + "probability": 0.9685 + }, + { + "start": 20980.72, + "end": 20981.34, + "probability": 0.9735 + }, + { + "start": 20982.36, + "end": 20984.7, + "probability": 0.7561 + }, + { + "start": 20984.78, + "end": 20988.3, + "probability": 0.991 + }, + { + "start": 20988.36, + "end": 20996.48, + "probability": 0.9819 + }, + { + "start": 20996.56, + "end": 20998.56, + "probability": 0.9375 + }, + { + "start": 20998.76, + "end": 20999.22, + "probability": 0.7399 + }, + { + "start": 20999.3, + "end": 21003.8, + "probability": 0.9756 + }, + { + "start": 21003.98, + "end": 21005.14, + "probability": 0.9152 + }, + { + "start": 21005.82, + "end": 21007.08, + "probability": 0.9301 + }, + { + "start": 21007.3, + "end": 21007.5, + "probability": 0.9006 + }, + { + "start": 21007.76, + "end": 21008.58, + "probability": 0.8725 + }, + { + "start": 21008.86, + "end": 21010.28, + "probability": 0.8911 + }, + { + "start": 21010.52, + "end": 21012.54, + "probability": 0.5087 + }, + { + "start": 21013.98, + "end": 21017.34, + "probability": 0.857 + }, + { + "start": 21017.52, + "end": 21021.88, + "probability": 0.9457 + }, + { + "start": 21022.3, + "end": 21024.86, + "probability": 0.9756 + }, + { + "start": 21024.86, + "end": 21027.3, + "probability": 0.9331 + }, + { + "start": 21027.5, + "end": 21029.02, + "probability": 0.998 + }, + { + "start": 21029.8, + "end": 21034.5, + "probability": 0.9979 + }, + { + "start": 21035.44, + "end": 21036.36, + "probability": 0.6656 + }, + { + "start": 21039.66, + "end": 21041.92, + "probability": 0.6927 + }, + { + "start": 21042.36, + "end": 21043.78, + "probability": 0.906 + }, + { + "start": 21044.0, + "end": 21044.91, + "probability": 0.6851 + }, + { + "start": 21045.96, + "end": 21050.3, + "probability": 0.9971 + }, + { + "start": 21050.76, + "end": 21055.08, + "probability": 0.9763 + }, + { + "start": 21055.24, + "end": 21056.82, + "probability": 0.9932 + }, + { + "start": 21057.52, + "end": 21058.08, + "probability": 0.0582 + }, + { + "start": 21060.66, + "end": 21060.84, + "probability": 0.0235 + }, + { + "start": 21060.84, + "end": 21064.18, + "probability": 0.6921 + }, + { + "start": 21064.42, + "end": 21068.24, + "probability": 0.9429 + }, + { + "start": 21068.24, + "end": 21072.34, + "probability": 0.8503 + }, + { + "start": 21073.08, + "end": 21075.92, + "probability": 0.967 + }, + { + "start": 21076.32, + "end": 21077.78, + "probability": 0.287 + }, + { + "start": 21079.84, + "end": 21080.34, + "probability": 0.5942 + }, + { + "start": 21080.54, + "end": 21083.22, + "probability": 0.9415 + }, + { + "start": 21083.28, + "end": 21083.48, + "probability": 0.8267 + }, + { + "start": 21083.9, + "end": 21085.06, + "probability": 0.6215 + }, + { + "start": 21085.52, + "end": 21088.46, + "probability": 0.9088 + }, + { + "start": 21088.46, + "end": 21089.76, + "probability": 0.9629 + }, + { + "start": 21093.76, + "end": 21094.4, + "probability": 0.3358 + }, + { + "start": 21095.3, + "end": 21095.92, + "probability": 0.5499 + }, + { + "start": 21098.44, + "end": 21100.14, + "probability": 0.0779 + }, + { + "start": 21100.14, + "end": 21102.22, + "probability": 0.0715 + }, + { + "start": 21112.58, + "end": 21113.5, + "probability": 0.0003 + }, + { + "start": 21114.34, + "end": 21114.34, + "probability": 0.0871 + }, + { + "start": 21114.34, + "end": 21115.58, + "probability": 0.3146 + }, + { + "start": 21116.9, + "end": 21117.78, + "probability": 0.7465 + }, + { + "start": 21118.2, + "end": 21125.99, + "probability": 0.9875 + }, + { + "start": 21127.78, + "end": 21131.34, + "probability": 0.9596 + }, + { + "start": 21132.52, + "end": 21133.74, + "probability": 0.6735 + }, + { + "start": 21135.02, + "end": 21136.82, + "probability": 0.8234 + }, + { + "start": 21137.08, + "end": 21138.06, + "probability": 0.6833 + }, + { + "start": 21145.22, + "end": 21146.36, + "probability": 0.6737 + }, + { + "start": 21148.28, + "end": 21151.36, + "probability": 0.9227 + }, + { + "start": 21157.98, + "end": 21157.98, + "probability": 0.0788 + }, + { + "start": 21157.98, + "end": 21157.98, + "probability": 0.1483 + }, + { + "start": 21157.98, + "end": 21157.98, + "probability": 0.2338 + }, + { + "start": 21157.98, + "end": 21157.98, + "probability": 0.0266 + }, + { + "start": 21157.98, + "end": 21157.98, + "probability": 0.0129 + }, + { + "start": 21157.98, + "end": 21157.98, + "probability": 0.123 + }, + { + "start": 21157.98, + "end": 21158.04, + "probability": 0.1018 + }, + { + "start": 21182.98, + "end": 21183.82, + "probability": 0.4851 + }, + { + "start": 21185.2, + "end": 21188.64, + "probability": 0.9063 + }, + { + "start": 21189.46, + "end": 21191.24, + "probability": 0.7264 + }, + { + "start": 21191.34, + "end": 21194.9, + "probability": 0.8007 + }, + { + "start": 21196.18, + "end": 21198.34, + "probability": 0.8781 + }, + { + "start": 21199.22, + "end": 21200.63, + "probability": 0.7775 + }, + { + "start": 21201.7, + "end": 21205.52, + "probability": 0.9897 + }, + { + "start": 21206.78, + "end": 21207.24, + "probability": 0.7942 + }, + { + "start": 21208.2, + "end": 21209.08, + "probability": 0.8111 + }, + { + "start": 21210.18, + "end": 21212.18, + "probability": 0.9967 + }, + { + "start": 21213.86, + "end": 21215.96, + "probability": 0.98 + }, + { + "start": 21216.34, + "end": 21217.64, + "probability": 0.8556 + }, + { + "start": 21218.66, + "end": 21219.68, + "probability": 0.8904 + }, + { + "start": 21220.42, + "end": 21221.54, + "probability": 0.5557 + }, + { + "start": 21223.26, + "end": 21224.08, + "probability": 0.9866 + }, + { + "start": 21224.98, + "end": 21229.96, + "probability": 0.9067 + }, + { + "start": 21230.28, + "end": 21230.9, + "probability": 0.9951 + }, + { + "start": 21231.76, + "end": 21232.5, + "probability": 0.6045 + }, + { + "start": 21233.46, + "end": 21234.0, + "probability": 0.8684 + }, + { + "start": 21234.4, + "end": 21237.28, + "probability": 0.9266 + }, + { + "start": 21238.3, + "end": 21239.06, + "probability": 0.813 + }, + { + "start": 21239.16, + "end": 21240.36, + "probability": 0.9741 + }, + { + "start": 21240.52, + "end": 21241.98, + "probability": 0.7313 + }, + { + "start": 21242.1, + "end": 21242.5, + "probability": 0.8804 + }, + { + "start": 21243.76, + "end": 21245.4, + "probability": 0.9285 + }, + { + "start": 21245.56, + "end": 21245.94, + "probability": 0.8253 + }, + { + "start": 21246.08, + "end": 21247.7, + "probability": 0.928 + }, + { + "start": 21247.76, + "end": 21248.2, + "probability": 0.7948 + }, + { + "start": 21249.74, + "end": 21250.46, + "probability": 0.9152 + }, + { + "start": 21250.52, + "end": 21250.88, + "probability": 0.7581 + }, + { + "start": 21250.92, + "end": 21251.18, + "probability": 0.7408 + }, + { + "start": 21251.28, + "end": 21252.16, + "probability": 0.2648 + }, + { + "start": 21252.16, + "end": 21252.72, + "probability": 0.6517 + }, + { + "start": 21252.78, + "end": 21254.72, + "probability": 0.8656 + }, + { + "start": 21256.22, + "end": 21257.9, + "probability": 0.5635 + }, + { + "start": 21258.0, + "end": 21260.32, + "probability": 0.9146 + }, + { + "start": 21261.72, + "end": 21263.72, + "probability": 0.9746 + }, + { + "start": 21265.36, + "end": 21267.6, + "probability": 0.5738 + }, + { + "start": 21268.8, + "end": 21269.62, + "probability": 0.4585 + }, + { + "start": 21269.84, + "end": 21270.64, + "probability": 0.6215 + }, + { + "start": 21271.76, + "end": 21272.22, + "probability": 0.4205 + }, + { + "start": 21273.46, + "end": 21274.96, + "probability": 0.9739 + }, + { + "start": 21275.84, + "end": 21276.26, + "probability": 0.8265 + }, + { + "start": 21277.3, + "end": 21279.88, + "probability": 0.8486 + }, + { + "start": 21280.84, + "end": 21282.28, + "probability": 0.8363 + }, + { + "start": 21282.7, + "end": 21283.68, + "probability": 0.7563 + }, + { + "start": 21284.64, + "end": 21286.32, + "probability": 0.4312 + }, + { + "start": 21286.54, + "end": 21287.86, + "probability": 0.8837 + }, + { + "start": 21288.42, + "end": 21289.54, + "probability": 0.5162 + }, + { + "start": 21289.54, + "end": 21290.1, + "probability": 0.297 + }, + { + "start": 21290.2, + "end": 21290.6, + "probability": 0.865 + }, + { + "start": 21298.52, + "end": 21300.06, + "probability": 0.9628 + }, + { + "start": 21300.68, + "end": 21303.4, + "probability": 0.7488 + }, + { + "start": 21304.4, + "end": 21306.08, + "probability": 0.9808 + }, + { + "start": 21307.56, + "end": 21307.72, + "probability": 0.5471 + }, + { + "start": 21307.74, + "end": 21308.96, + "probability": 0.9156 + }, + { + "start": 21309.06, + "end": 21311.02, + "probability": 0.9814 + }, + { + "start": 21311.08, + "end": 21312.82, + "probability": 0.6629 + }, + { + "start": 21313.9, + "end": 21314.9, + "probability": 0.8409 + }, + { + "start": 21315.74, + "end": 21317.62, + "probability": 0.9227 + }, + { + "start": 21317.72, + "end": 21318.24, + "probability": 0.5532 + }, + { + "start": 21318.46, + "end": 21318.94, + "probability": 0.8086 + }, + { + "start": 21319.02, + "end": 21320.44, + "probability": 0.6307 + }, + { + "start": 21321.22, + "end": 21323.46, + "probability": 0.8462 + }, + { + "start": 21323.82, + "end": 21325.5, + "probability": 0.9294 + }, + { + "start": 21326.48, + "end": 21327.74, + "probability": 0.7543 + }, + { + "start": 21328.74, + "end": 21330.12, + "probability": 0.9912 + }, + { + "start": 21330.2, + "end": 21332.63, + "probability": 0.9576 + }, + { + "start": 21333.5, + "end": 21336.1, + "probability": 0.9482 + }, + { + "start": 21337.28, + "end": 21338.34, + "probability": 0.9257 + }, + { + "start": 21338.78, + "end": 21341.1, + "probability": 0.9835 + }, + { + "start": 21342.26, + "end": 21343.1, + "probability": 0.4802 + }, + { + "start": 21344.14, + "end": 21347.26, + "probability": 0.9327 + }, + { + "start": 21347.34, + "end": 21348.52, + "probability": 0.9735 + }, + { + "start": 21348.66, + "end": 21349.08, + "probability": 0.3774 + }, + { + "start": 21349.94, + "end": 21351.38, + "probability": 0.9307 + }, + { + "start": 21351.4, + "end": 21352.98, + "probability": 0.9877 + }, + { + "start": 21353.22, + "end": 21354.6, + "probability": 0.9756 + }, + { + "start": 21354.64, + "end": 21355.08, + "probability": 0.9736 + }, + { + "start": 21355.12, + "end": 21355.54, + "probability": 0.8963 + }, + { + "start": 21356.16, + "end": 21357.16, + "probability": 0.7457 + }, + { + "start": 21357.24, + "end": 21357.94, + "probability": 0.9907 + }, + { + "start": 21357.98, + "end": 21359.06, + "probability": 0.9172 + }, + { + "start": 21359.74, + "end": 21360.6, + "probability": 0.9675 + }, + { + "start": 21361.12, + "end": 21363.24, + "probability": 0.9762 + }, + { + "start": 21363.26, + "end": 21364.08, + "probability": 0.9541 + }, + { + "start": 21365.08, + "end": 21365.9, + "probability": 0.9819 + }, + { + "start": 21366.62, + "end": 21368.28, + "probability": 0.9852 + }, + { + "start": 21369.0, + "end": 21371.28, + "probability": 0.757 + }, + { + "start": 21371.54, + "end": 21372.14, + "probability": 0.943 + }, + { + "start": 21372.48, + "end": 21373.8, + "probability": 0.9147 + }, + { + "start": 21374.14, + "end": 21375.3, + "probability": 0.8289 + }, + { + "start": 21375.8, + "end": 21377.32, + "probability": 0.958 + }, + { + "start": 21378.16, + "end": 21378.9, + "probability": 0.9123 + }, + { + "start": 21380.36, + "end": 21380.36, + "probability": 0.0229 + }, + { + "start": 21380.36, + "end": 21381.7, + "probability": 0.9822 + }, + { + "start": 21381.9, + "end": 21384.78, + "probability": 0.9476 + }, + { + "start": 21385.54, + "end": 21386.5, + "probability": 0.9567 + }, + { + "start": 21386.56, + "end": 21388.0, + "probability": 0.967 + }, + { + "start": 21388.12, + "end": 21389.92, + "probability": 0.8913 + }, + { + "start": 21390.24, + "end": 21390.65, + "probability": 0.873 + }, + { + "start": 21390.82, + "end": 21391.24, + "probability": 0.6718 + }, + { + "start": 21392.4, + "end": 21392.9, + "probability": 0.9408 + }, + { + "start": 21394.32, + "end": 21397.76, + "probability": 0.9496 + }, + { + "start": 21397.92, + "end": 21398.7, + "probability": 0.7893 + }, + { + "start": 21398.88, + "end": 21400.98, + "probability": 0.9008 + }, + { + "start": 21401.74, + "end": 21403.66, + "probability": 0.8849 + }, + { + "start": 21404.64, + "end": 21405.1, + "probability": 0.5838 + }, + { + "start": 21405.4, + "end": 21405.88, + "probability": 0.7115 + }, + { + "start": 21406.76, + "end": 21408.38, + "probability": 0.966 + }, + { + "start": 21409.42, + "end": 21411.74, + "probability": 0.7353 + }, + { + "start": 21413.66, + "end": 21415.28, + "probability": 0.7558 + }, + { + "start": 21415.6, + "end": 21416.74, + "probability": 0.9793 + }, + { + "start": 21417.66, + "end": 21417.66, + "probability": 0.0129 + }, + { + "start": 21417.66, + "end": 21417.66, + "probability": 0.2869 + }, + { + "start": 21417.66, + "end": 21417.98, + "probability": 0.4353 + }, + { + "start": 21418.22, + "end": 21418.74, + "probability": 0.5416 + }, + { + "start": 21418.84, + "end": 21420.28, + "probability": 0.5033 + }, + { + "start": 21420.88, + "end": 21421.6, + "probability": 0.403 + }, + { + "start": 21422.1, + "end": 21422.64, + "probability": 0.5311 + }, + { + "start": 21422.64, + "end": 21422.64, + "probability": 0.2442 + }, + { + "start": 21422.64, + "end": 21424.08, + "probability": 0.0185 + }, + { + "start": 21424.22, + "end": 21424.66, + "probability": 0.1847 + }, + { + "start": 21427.93, + "end": 21430.48, + "probability": 0.1207 + }, + { + "start": 21430.9, + "end": 21431.52, + "probability": 0.1101 + }, + { + "start": 21431.7, + "end": 21431.94, + "probability": 0.0225 + }, + { + "start": 21431.94, + "end": 21431.98, + "probability": 0.0804 + }, + { + "start": 21431.98, + "end": 21431.98, + "probability": 0.0893 + }, + { + "start": 21431.98, + "end": 21432.24, + "probability": 0.342 + }, + { + "start": 21432.24, + "end": 21433.06, + "probability": 0.9092 + }, + { + "start": 21434.3, + "end": 21436.57, + "probability": 0.8135 + }, + { + "start": 21436.7, + "end": 21437.71, + "probability": 0.98 + }, + { + "start": 21439.26, + "end": 21439.64, + "probability": 0.7932 + }, + { + "start": 21439.64, + "end": 21441.8, + "probability": 0.9379 + }, + { + "start": 21441.98, + "end": 21442.53, + "probability": 0.8992 + }, + { + "start": 21443.0, + "end": 21446.11, + "probability": 0.7205 + }, + { + "start": 21446.22, + "end": 21446.78, + "probability": 0.7321 + }, + { + "start": 21446.82, + "end": 21447.1, + "probability": 0.0728 + }, + { + "start": 21447.1, + "end": 21447.42, + "probability": 0.1991 + }, + { + "start": 21447.62, + "end": 21447.86, + "probability": 0.5611 + }, + { + "start": 21447.94, + "end": 21448.66, + "probability": 0.9541 + }, + { + "start": 21449.04, + "end": 21449.94, + "probability": 0.4586 + }, + { + "start": 21450.08, + "end": 21450.36, + "probability": 0.1482 + }, + { + "start": 21450.48, + "end": 21452.92, + "probability": 0.691 + }, + { + "start": 21453.12, + "end": 21453.54, + "probability": 0.8229 + }, + { + "start": 21453.58, + "end": 21454.41, + "probability": 0.8884 + }, + { + "start": 21454.68, + "end": 21455.44, + "probability": 0.9221 + }, + { + "start": 21455.72, + "end": 21456.16, + "probability": 0.7027 + }, + { + "start": 21456.22, + "end": 21457.74, + "probability": 0.6124 + }, + { + "start": 21457.92, + "end": 21458.06, + "probability": 0.1307 + }, + { + "start": 21458.06, + "end": 21459.82, + "probability": 0.572 + }, + { + "start": 21460.52, + "end": 21461.28, + "probability": 0.8882 + }, + { + "start": 21461.42, + "end": 21463.16, + "probability": 0.7537 + }, + { + "start": 21463.94, + "end": 21467.4, + "probability": 0.1247 + }, + { + "start": 21469.56, + "end": 21469.78, + "probability": 0.1949 + }, + { + "start": 21469.78, + "end": 21470.28, + "probability": 0.0296 + }, + { + "start": 21474.12, + "end": 21476.04, + "probability": 0.027 + }, + { + "start": 21476.04, + "end": 21476.68, + "probability": 0.1129 + }, + { + "start": 21476.7, + "end": 21477.06, + "probability": 0.0699 + }, + { + "start": 21477.08, + "end": 21477.32, + "probability": 0.1189 + }, + { + "start": 21478.38, + "end": 21479.68, + "probability": 0.1816 + }, + { + "start": 21482.74, + "end": 21486.12, + "probability": 0.6494 + }, + { + "start": 21487.82, + "end": 21493.37, + "probability": 0.9415 + }, + { + "start": 21493.74, + "end": 21494.62, + "probability": 0.4713 + }, + { + "start": 21494.62, + "end": 21494.62, + "probability": 0.3026 + }, + { + "start": 21494.62, + "end": 21495.97, + "probability": 0.048 + }, + { + "start": 21497.84, + "end": 21498.28, + "probability": 0.0638 + }, + { + "start": 21498.28, + "end": 21498.42, + "probability": 0.0358 + }, + { + "start": 21498.98, + "end": 21499.54, + "probability": 0.1657 + }, + { + "start": 21502.72, + "end": 21503.89, + "probability": 0.1302 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.0, + "end": 21595.0, + "probability": 0.0 + }, + { + "start": 21595.32, + "end": 21597.24, + "probability": 0.4628 + }, + { + "start": 21597.62, + "end": 21598.66, + "probability": 0.4547 + }, + { + "start": 21598.66, + "end": 21598.9, + "probability": 0.0567 + }, + { + "start": 21598.9, + "end": 21599.68, + "probability": 0.6224 + }, + { + "start": 21599.68, + "end": 21602.36, + "probability": 0.7936 + }, + { + "start": 21603.08, + "end": 21603.08, + "probability": 0.2657 + }, + { + "start": 21603.08, + "end": 21605.74, + "probability": 0.6203 + }, + { + "start": 21606.06, + "end": 21608.9, + "probability": 0.9863 + }, + { + "start": 21609.28, + "end": 21610.72, + "probability": 0.7331 + }, + { + "start": 21610.92, + "end": 21611.2, + "probability": 0.8918 + }, + { + "start": 21611.2, + "end": 21612.86, + "probability": 0.8083 + }, + { + "start": 21612.96, + "end": 21614.58, + "probability": 0.5599 + }, + { + "start": 21614.66, + "end": 21616.32, + "probability": 0.5867 + }, + { + "start": 21616.56, + "end": 21619.79, + "probability": 0.992 + }, + { + "start": 21620.48, + "end": 21621.5, + "probability": 0.7998 + }, + { + "start": 21622.14, + "end": 21622.32, + "probability": 0.1397 + }, + { + "start": 21622.44, + "end": 21624.11, + "probability": 0.258 + }, + { + "start": 21624.46, + "end": 21627.19, + "probability": 0.6121 + }, + { + "start": 21631.26, + "end": 21631.74, + "probability": 0.4371 + }, + { + "start": 21631.82, + "end": 21632.84, + "probability": 0.0113 + }, + { + "start": 21633.9, + "end": 21634.56, + "probability": 0.6324 + }, + { + "start": 21634.7, + "end": 21635.72, + "probability": 0.31 + }, + { + "start": 21635.74, + "end": 21636.12, + "probability": 0.6698 + }, + { + "start": 21636.26, + "end": 21638.58, + "probability": 0.5379 + }, + { + "start": 21639.06, + "end": 21641.18, + "probability": 0.1078 + }, + { + "start": 21641.18, + "end": 21641.98, + "probability": 0.116 + }, + { + "start": 21642.88, + "end": 21644.9, + "probability": 0.5003 + }, + { + "start": 21645.6, + "end": 21647.24, + "probability": 0.3914 + }, + { + "start": 21648.24, + "end": 21649.2, + "probability": 0.2463 + }, + { + "start": 21649.2, + "end": 21650.64, + "probability": 0.0396 + }, + { + "start": 21653.7, + "end": 21656.18, + "probability": 0.0031 + }, + { + "start": 21657.7, + "end": 21659.94, + "probability": 0.0302 + }, + { + "start": 21660.44, + "end": 21661.72, + "probability": 0.0401 + }, + { + "start": 21663.58, + "end": 21663.68, + "probability": 0.6578 + }, + { + "start": 21664.98, + "end": 21666.18, + "probability": 0.1276 + }, + { + "start": 21677.58, + "end": 21678.42, + "probability": 0.0616 + }, + { + "start": 21678.42, + "end": 21678.78, + "probability": 0.0879 + }, + { + "start": 21678.78, + "end": 21679.26, + "probability": 0.0046 + }, + { + "start": 21679.48, + "end": 21680.66, + "probability": 0.3735 + }, + { + "start": 21680.74, + "end": 21681.18, + "probability": 0.039 + }, + { + "start": 21684.62, + "end": 21686.41, + "probability": 0.1473 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.0, + "end": 21715.0, + "probability": 0.0 + }, + { + "start": 21715.18, + "end": 21715.64, + "probability": 0.0076 + }, + { + "start": 21715.8, + "end": 21715.8, + "probability": 0.0577 + }, + { + "start": 21715.8, + "end": 21715.96, + "probability": 0.0688 + }, + { + "start": 21715.96, + "end": 21715.96, + "probability": 0.0169 + }, + { + "start": 21715.96, + "end": 21716.16, + "probability": 0.3278 + }, + { + "start": 21716.16, + "end": 21716.26, + "probability": 0.6258 + }, + { + "start": 21716.54, + "end": 21716.82, + "probability": 0.6429 + }, + { + "start": 21717.32, + "end": 21717.95, + "probability": 0.4952 + }, + { + "start": 21718.44, + "end": 21720.08, + "probability": 0.9541 + }, + { + "start": 21720.74, + "end": 21721.62, + "probability": 0.7254 + }, + { + "start": 21723.38, + "end": 21725.18, + "probability": 0.991 + }, + { + "start": 21725.26, + "end": 21725.84, + "probability": 0.6673 + }, + { + "start": 21725.9, + "end": 21726.48, + "probability": 0.8239 + }, + { + "start": 21739.68, + "end": 21740.6, + "probability": 0.7953 + }, + { + "start": 21742.22, + "end": 21742.94, + "probability": 0.6133 + }, + { + "start": 21744.38, + "end": 21746.2, + "probability": 0.7659 + }, + { + "start": 21747.06, + "end": 21747.24, + "probability": 0.4867 + }, + { + "start": 21747.24, + "end": 21749.24, + "probability": 0.8783 + }, + { + "start": 21749.6, + "end": 21750.8, + "probability": 0.9702 + }, + { + "start": 21751.14, + "end": 21751.52, + "probability": 0.9491 + }, + { + "start": 21752.62, + "end": 21752.96, + "probability": 0.9792 + }, + { + "start": 21754.52, + "end": 21755.52, + "probability": 0.7729 + }, + { + "start": 21756.54, + "end": 21759.06, + "probability": 0.256 + }, + { + "start": 21759.62, + "end": 21761.7, + "probability": 0.7513 + }, + { + "start": 21761.8, + "end": 21762.46, + "probability": 0.6388 + }, + { + "start": 21762.66, + "end": 21763.18, + "probability": 0.8105 + }, + { + "start": 21763.34, + "end": 21764.28, + "probability": 0.7069 + }, + { + "start": 21769.34, + "end": 21772.86, + "probability": 0.6641 + }, + { + "start": 21772.98, + "end": 21773.5, + "probability": 0.7732 + }, + { + "start": 21774.54, + "end": 21775.48, + "probability": 0.6105 + }, + { + "start": 21775.62, + "end": 21776.55, + "probability": 0.822 + }, + { + "start": 21777.1, + "end": 21779.22, + "probability": 0.6686 + }, + { + "start": 21779.68, + "end": 21780.18, + "probability": 0.0632 + }, + { + "start": 21781.18, + "end": 21781.38, + "probability": 0.1509 + }, + { + "start": 21783.14, + "end": 21784.2, + "probability": 0.8579 + }, + { + "start": 21785.35, + "end": 21786.36, + "probability": 0.5631 + }, + { + "start": 21787.04, + "end": 21788.5, + "probability": 0.8189 + }, + { + "start": 21790.12, + "end": 21791.46, + "probability": 0.8798 + }, + { + "start": 21792.08, + "end": 21796.74, + "probability": 0.5998 + }, + { + "start": 21798.68, + "end": 21799.86, + "probability": 0.1561 + }, + { + "start": 21799.92, + "end": 21802.62, + "probability": 0.6106 + }, + { + "start": 21802.62, + "end": 21805.34, + "probability": 0.1354 + }, + { + "start": 21807.06, + "end": 21814.46, + "probability": 0.7286 + }, + { + "start": 21816.5, + "end": 21818.24, + "probability": 0.768 + }, + { + "start": 21818.46, + "end": 21819.08, + "probability": 0.7161 + }, + { + "start": 21821.68, + "end": 21822.3, + "probability": 0.9331 + }, + { + "start": 21823.34, + "end": 21825.83, + "probability": 0.6938 + }, + { + "start": 21827.14, + "end": 21827.62, + "probability": 0.9614 + }, + { + "start": 21828.56, + "end": 21829.1, + "probability": 0.3947 + }, + { + "start": 21829.82, + "end": 21830.56, + "probability": 0.602 + }, + { + "start": 21831.06, + "end": 21833.46, + "probability": 0.667 + }, + { + "start": 21833.7, + "end": 21835.32, + "probability": 0.7251 + }, + { + "start": 21835.64, + "end": 21836.64, + "probability": 0.9176 + }, + { + "start": 21837.04, + "end": 21841.4, + "probability": 0.7403 + }, + { + "start": 21842.14, + "end": 21843.78, + "probability": 0.7234 + }, + { + "start": 21849.88, + "end": 21850.08, + "probability": 0.2977 + }, + { + "start": 21850.58, + "end": 21853.18, + "probability": 0.7836 + }, + { + "start": 21853.24, + "end": 21853.84, + "probability": 0.8505 + }, + { + "start": 21854.82, + "end": 21856.68, + "probability": 0.9007 + }, + { + "start": 21857.36, + "end": 21858.54, + "probability": 0.0566 + }, + { + "start": 21858.74, + "end": 21861.12, + "probability": 0.842 + }, + { + "start": 21861.3, + "end": 21864.4, + "probability": 0.8761 + }, + { + "start": 21865.0, + "end": 21865.16, + "probability": 0.0961 + }, + { + "start": 21865.16, + "end": 21866.85, + "probability": 0.9656 + }, + { + "start": 21866.96, + "end": 21868.06, + "probability": 0.6587 + }, + { + "start": 21868.6, + "end": 21869.74, + "probability": 0.813 + }, + { + "start": 21870.2, + "end": 21871.36, + "probability": 0.135 + }, + { + "start": 21871.75, + "end": 21874.36, + "probability": 0.8971 + }, + { + "start": 21877.78, + "end": 21878.96, + "probability": 0.6083 + }, + { + "start": 21879.5, + "end": 21880.9, + "probability": 0.5343 + }, + { + "start": 21880.92, + "end": 21883.12, + "probability": 0.5214 + }, + { + "start": 21883.22, + "end": 21883.78, + "probability": 0.4586 + }, + { + "start": 21884.68, + "end": 21885.76, + "probability": 0.6467 + }, + { + "start": 21885.86, + "end": 21888.04, + "probability": 0.9944 + }, + { + "start": 21888.3, + "end": 21889.64, + "probability": 0.6947 + }, + { + "start": 21889.88, + "end": 21904.08, + "probability": 0.0642 + }, + { + "start": 21904.08, + "end": 21905.18, + "probability": 0.166 + }, + { + "start": 21906.32, + "end": 21906.9, + "probability": 0.1223 + }, + { + "start": 21906.9, + "end": 21907.72, + "probability": 0.3282 + }, + { + "start": 21907.76, + "end": 21913.54, + "probability": 0.5722 + }, + { + "start": 21914.54, + "end": 21918.92, + "probability": 0.983 + }, + { + "start": 21919.32, + "end": 21921.48, + "probability": 0.9501 + }, + { + "start": 21921.86, + "end": 21923.16, + "probability": 0.9167 + }, + { + "start": 21923.7, + "end": 21925.68, + "probability": 0.8901 + }, + { + "start": 21926.02, + "end": 21927.76, + "probability": 0.7871 + }, + { + "start": 21928.96, + "end": 21931.84, + "probability": 0.6663 + }, + { + "start": 21932.0, + "end": 21934.38, + "probability": 0.5941 + }, + { + "start": 21935.02, + "end": 21935.56, + "probability": 0.962 + }, + { + "start": 21937.48, + "end": 21937.78, + "probability": 0.476 + }, + { + "start": 21938.08, + "end": 21940.84, + "probability": 0.9306 + }, + { + "start": 21940.84, + "end": 21943.94, + "probability": 0.9831 + }, + { + "start": 21945.1, + "end": 21947.5, + "probability": 0.7424 + }, + { + "start": 21947.5, + "end": 21950.66, + "probability": 0.7927 + }, + { + "start": 21951.36, + "end": 21953.52, + "probability": 0.8828 + }, + { + "start": 21954.1, + "end": 21957.44, + "probability": 0.5539 + }, + { + "start": 21957.88, + "end": 21958.38, + "probability": 0.9073 + }, + { + "start": 21958.56, + "end": 21959.32, + "probability": 0.9163 + }, + { + "start": 21959.4, + "end": 21963.98, + "probability": 0.9078 + }, + { + "start": 21965.28, + "end": 21966.08, + "probability": 0.9436 + }, + { + "start": 21967.0, + "end": 21967.54, + "probability": 0.5309 + }, + { + "start": 21969.56, + "end": 21971.64, + "probability": 0.8945 + }, + { + "start": 21972.32, + "end": 21973.36, + "probability": 0.6942 + }, + { + "start": 21974.64, + "end": 21975.34, + "probability": 0.9403 + }, + { + "start": 21976.2, + "end": 21977.14, + "probability": 0.6827 + }, + { + "start": 21978.06, + "end": 21980.6, + "probability": 0.9946 + }, + { + "start": 21980.78, + "end": 21981.34, + "probability": 0.727 + }, + { + "start": 21981.62, + "end": 21982.88, + "probability": 0.8362 + }, + { + "start": 21983.04, + "end": 21983.57, + "probability": 0.5854 + }, + { + "start": 21984.04, + "end": 21986.56, + "probability": 0.7465 + }, + { + "start": 21986.6, + "end": 21989.3, + "probability": 0.8781 + }, + { + "start": 21990.04, + "end": 21993.66, + "probability": 0.7767 + }, + { + "start": 21994.8, + "end": 21998.04, + "probability": 0.6416 + }, + { + "start": 21998.12, + "end": 21998.68, + "probability": 0.7708 + }, + { + "start": 21998.72, + "end": 21999.5, + "probability": 0.9763 + }, + { + "start": 21999.54, + "end": 22000.3, + "probability": 0.7026 + }, + { + "start": 22000.52, + "end": 22001.78, + "probability": 0.6052 + }, + { + "start": 22002.58, + "end": 22004.8, + "probability": 0.7589 + }, + { + "start": 22005.08, + "end": 22005.74, + "probability": 0.8556 + }, + { + "start": 22005.94, + "end": 22007.28, + "probability": 0.552 + }, + { + "start": 22007.34, + "end": 22008.66, + "probability": 0.9458 + }, + { + "start": 22009.32, + "end": 22010.58, + "probability": 0.6423 + }, + { + "start": 22011.36, + "end": 22016.78, + "probability": 0.6415 + }, + { + "start": 22016.84, + "end": 22018.22, + "probability": 0.9923 + }, + { + "start": 22018.32, + "end": 22018.62, + "probability": 0.7512 + }, + { + "start": 22019.88, + "end": 22023.38, + "probability": 0.9653 + }, + { + "start": 22024.4, + "end": 22027.4, + "probability": 0.901 + }, + { + "start": 22028.08, + "end": 22028.78, + "probability": 0.4299 + }, + { + "start": 22029.56, + "end": 22032.98, + "probability": 0.877 + }, + { + "start": 22034.52, + "end": 22036.2, + "probability": 0.9943 + }, + { + "start": 22036.92, + "end": 22037.62, + "probability": 0.9695 + }, + { + "start": 22038.62, + "end": 22042.16, + "probability": 0.9866 + }, + { + "start": 22042.62, + "end": 22043.82, + "probability": 0.9631 + }, + { + "start": 22044.76, + "end": 22047.02, + "probability": 0.9919 + }, + { + "start": 22047.72, + "end": 22050.1, + "probability": 0.7121 + }, + { + "start": 22051.5, + "end": 22053.86, + "probability": 0.9644 + }, + { + "start": 22054.52, + "end": 22056.2, + "probability": 0.8708 + }, + { + "start": 22057.1, + "end": 22060.9, + "probability": 0.9741 + }, + { + "start": 22062.26, + "end": 22062.82, + "probability": 0.623 + }, + { + "start": 22062.9, + "end": 22066.1, + "probability": 0.7655 + }, + { + "start": 22066.22, + "end": 22066.52, + "probability": 0.523 + }, + { + "start": 22066.6, + "end": 22068.02, + "probability": 0.8492 + }, + { + "start": 22068.06, + "end": 22069.55, + "probability": 0.9795 + }, + { + "start": 22070.66, + "end": 22073.5, + "probability": 0.7409 + }, + { + "start": 22073.5, + "end": 22075.11, + "probability": 0.5926 + }, + { + "start": 22076.3, + "end": 22079.08, + "probability": 0.7417 + }, + { + "start": 22079.24, + "end": 22082.36, + "probability": 0.7959 + }, + { + "start": 22083.2, + "end": 22086.36, + "probability": 0.97 + }, + { + "start": 22087.66, + "end": 22089.36, + "probability": 0.4561 + }, + { + "start": 22090.1, + "end": 22092.26, + "probability": 0.9363 + }, + { + "start": 22093.38, + "end": 22095.64, + "probability": 0.6692 + }, + { + "start": 22095.8, + "end": 22098.32, + "probability": 0.8085 + }, + { + "start": 22099.76, + "end": 22102.38, + "probability": 0.9741 + }, + { + "start": 22104.06, + "end": 22104.8, + "probability": 0.9736 + }, + { + "start": 22105.58, + "end": 22108.1, + "probability": 0.9767 + }, + { + "start": 22109.28, + "end": 22112.88, + "probability": 0.9467 + }, + { + "start": 22112.9, + "end": 22113.41, + "probability": 0.7067 + }, + { + "start": 22113.64, + "end": 22114.46, + "probability": 0.9847 + }, + { + "start": 22114.84, + "end": 22116.62, + "probability": 0.9637 + }, + { + "start": 22117.58, + "end": 22118.86, + "probability": 0.9854 + }, + { + "start": 22119.4, + "end": 22121.14, + "probability": 0.9897 + }, + { + "start": 22121.9, + "end": 22123.36, + "probability": 0.764 + }, + { + "start": 22126.38, + "end": 22128.34, + "probability": 0.7134 + }, + { + "start": 22129.06, + "end": 22132.78, + "probability": 0.9954 + }, + { + "start": 22133.8, + "end": 22135.78, + "probability": 0.9875 + }, + { + "start": 22136.04, + "end": 22138.84, + "probability": 0.9192 + }, + { + "start": 22139.64, + "end": 22141.1, + "probability": 0.9865 + }, + { + "start": 22143.02, + "end": 22145.52, + "probability": 0.998 + }, + { + "start": 22146.44, + "end": 22146.98, + "probability": 0.6185 + }, + { + "start": 22147.86, + "end": 22148.52, + "probability": 0.9454 + }, + { + "start": 22149.22, + "end": 22151.14, + "probability": 0.9767 + }, + { + "start": 22152.96, + "end": 22154.54, + "probability": 0.6907 + }, + { + "start": 22154.66, + "end": 22155.26, + "probability": 0.6557 + }, + { + "start": 22155.26, + "end": 22157.1, + "probability": 0.7142 + }, + { + "start": 22157.28, + "end": 22158.14, + "probability": 0.1809 + }, + { + "start": 22158.28, + "end": 22160.62, + "probability": 0.9674 + }, + { + "start": 22161.24, + "end": 22161.62, + "probability": 0.1567 + }, + { + "start": 22162.4, + "end": 22164.66, + "probability": 0.8617 + }, + { + "start": 22165.84, + "end": 22167.04, + "probability": 0.4202 + }, + { + "start": 22168.32, + "end": 22169.08, + "probability": 0.5058 + }, + { + "start": 22169.5, + "end": 22170.54, + "probability": 0.9238 + }, + { + "start": 22170.74, + "end": 22170.9, + "probability": 0.2351 + }, + { + "start": 22173.48, + "end": 22174.26, + "probability": 0.7241 + }, + { + "start": 22174.94, + "end": 22176.04, + "probability": 0.7421 + }, + { + "start": 22176.08, + "end": 22177.98, + "probability": 0.5952 + }, + { + "start": 22178.08, + "end": 22179.26, + "probability": 0.7965 + }, + { + "start": 22179.3, + "end": 22180.82, + "probability": 0.5527 + }, + { + "start": 22181.34, + "end": 22182.94, + "probability": 0.9497 + }, + { + "start": 22183.56, + "end": 22186.66, + "probability": 0.9556 + }, + { + "start": 22187.16, + "end": 22188.58, + "probability": 0.9941 + }, + { + "start": 22189.2, + "end": 22191.58, + "probability": 0.7393 + }, + { + "start": 22192.06, + "end": 22193.04, + "probability": 0.875 + }, + { + "start": 22193.92, + "end": 22196.24, + "probability": 0.767 + }, + { + "start": 22197.22, + "end": 22198.58, + "probability": 0.5195 + }, + { + "start": 22199.64, + "end": 22203.16, + "probability": 0.7376 + }, + { + "start": 22203.84, + "end": 22204.58, + "probability": 0.4082 + }, + { + "start": 22205.68, + "end": 22206.26, + "probability": 0.6691 + }, + { + "start": 22206.96, + "end": 22211.67, + "probability": 0.7385 + }, + { + "start": 22211.96, + "end": 22212.75, + "probability": 0.8077 + }, + { + "start": 22213.68, + "end": 22215.24, + "probability": 0.9882 + }, + { + "start": 22215.64, + "end": 22217.84, + "probability": 0.7416 + }, + { + "start": 22218.62, + "end": 22219.86, + "probability": 0.2756 + }, + { + "start": 22220.66, + "end": 22223.2, + "probability": 0.9971 + }, + { + "start": 22223.82, + "end": 22224.9, + "probability": 0.9624 + }, + { + "start": 22225.52, + "end": 22228.26, + "probability": 0.7534 + }, + { + "start": 22229.6, + "end": 22233.52, + "probability": 0.7324 + }, + { + "start": 22234.38, + "end": 22237.14, + "probability": 0.6122 + }, + { + "start": 22238.14, + "end": 22240.1, + "probability": 0.9355 + }, + { + "start": 22240.94, + "end": 22244.88, + "probability": 0.8082 + }, + { + "start": 22244.88, + "end": 22245.44, + "probability": 0.5015 + }, + { + "start": 22245.48, + "end": 22246.14, + "probability": 0.828 + }, + { + "start": 22246.98, + "end": 22247.92, + "probability": 0.958 + }, + { + "start": 22248.84, + "end": 22251.44, + "probability": 0.7173 + }, + { + "start": 22252.18, + "end": 22253.14, + "probability": 0.7916 + }, + { + "start": 22253.88, + "end": 22255.8, + "probability": 0.9772 + }, + { + "start": 22256.6, + "end": 22258.78, + "probability": 0.4889 + }, + { + "start": 22259.16, + "end": 22260.68, + "probability": 0.909 + }, + { + "start": 22260.88, + "end": 22263.9, + "probability": 0.9971 + }, + { + "start": 22264.56, + "end": 22266.6, + "probability": 0.9894 + }, + { + "start": 22267.14, + "end": 22268.32, + "probability": 0.8363 + }, + { + "start": 22268.36, + "end": 22269.1, + "probability": 0.6375 + }, + { + "start": 22269.1, + "end": 22270.54, + "probability": 0.7524 + }, + { + "start": 22270.62, + "end": 22271.5, + "probability": 0.8032 + }, + { + "start": 22271.6, + "end": 22272.48, + "probability": 0.6609 + }, + { + "start": 22273.16, + "end": 22274.24, + "probability": 0.5365 + }, + { + "start": 22274.76, + "end": 22275.48, + "probability": 0.7392 + }, + { + "start": 22275.56, + "end": 22276.91, + "probability": 0.9209 + }, + { + "start": 22277.08, + "end": 22279.08, + "probability": 0.9817 + }, + { + "start": 22279.66, + "end": 22281.06, + "probability": 0.7213 + }, + { + "start": 22281.1, + "end": 22281.4, + "probability": 0.9456 + }, + { + "start": 22281.5, + "end": 22282.59, + "probability": 0.9072 + }, + { + "start": 22283.4, + "end": 22284.55, + "probability": 0.8629 + }, + { + "start": 22285.22, + "end": 22286.08, + "probability": 0.8207 + }, + { + "start": 22286.12, + "end": 22287.66, + "probability": 0.8034 + }, + { + "start": 22287.82, + "end": 22288.46, + "probability": 0.8015 + }, + { + "start": 22288.8, + "end": 22290.88, + "probability": 0.6916 + }, + { + "start": 22291.08, + "end": 22292.2, + "probability": 0.9482 + }, + { + "start": 22294.36, + "end": 22294.94, + "probability": 0.6696 + }, + { + "start": 22295.8, + "end": 22299.04, + "probability": 0.5074 + }, + { + "start": 22318.08, + "end": 22322.38, + "probability": 0.8689 + }, + { + "start": 22322.84, + "end": 22326.16, + "probability": 0.9301 + }, + { + "start": 22326.84, + "end": 22330.66, + "probability": 0.9574 + }, + { + "start": 22330.98, + "end": 22335.18, + "probability": 0.9956 + }, + { + "start": 22336.62, + "end": 22343.7, + "probability": 0.9924 + }, + { + "start": 22344.2, + "end": 22348.08, + "probability": 0.9941 + }, + { + "start": 22348.36, + "end": 22349.15, + "probability": 0.9772 + }, + { + "start": 22349.38, + "end": 22350.22, + "probability": 0.674 + }, + { + "start": 22350.62, + "end": 22352.74, + "probability": 0.9821 + }, + { + "start": 22352.88, + "end": 22354.14, + "probability": 0.8113 + }, + { + "start": 22354.2, + "end": 22355.58, + "probability": 0.3223 + }, + { + "start": 22356.06, + "end": 22357.28, + "probability": 0.9665 + }, + { + "start": 22357.4, + "end": 22358.36, + "probability": 0.8833 + }, + { + "start": 22358.76, + "end": 22360.68, + "probability": 0.9611 + }, + { + "start": 22361.0, + "end": 22361.92, + "probability": 0.9202 + }, + { + "start": 22362.76, + "end": 22366.84, + "probability": 0.9927 + }, + { + "start": 22366.88, + "end": 22370.42, + "probability": 0.9928 + }, + { + "start": 22371.0, + "end": 22372.56, + "probability": 0.7782 + }, + { + "start": 22372.74, + "end": 22375.68, + "probability": 0.8222 + }, + { + "start": 22376.48, + "end": 22379.6, + "probability": 0.9974 + }, + { + "start": 22379.6, + "end": 22382.76, + "probability": 0.9984 + }, + { + "start": 22383.98, + "end": 22386.58, + "probability": 0.9297 + }, + { + "start": 22386.72, + "end": 22387.27, + "probability": 0.4781 + }, + { + "start": 22388.16, + "end": 22391.56, + "probability": 0.9949 + }, + { + "start": 22391.6, + "end": 22393.1, + "probability": 0.8844 + }, + { + "start": 22393.68, + "end": 22395.96, + "probability": 0.9962 + }, + { + "start": 22396.12, + "end": 22400.8, + "probability": 0.9946 + }, + { + "start": 22402.18, + "end": 22404.26, + "probability": 0.9778 + }, + { + "start": 22404.6, + "end": 22405.28, + "probability": 0.9689 + }, + { + "start": 22405.44, + "end": 22408.96, + "probability": 0.9354 + }, + { + "start": 22409.56, + "end": 22410.4, + "probability": 0.7786 + }, + { + "start": 22411.74, + "end": 22414.14, + "probability": 0.9968 + }, + { + "start": 22414.22, + "end": 22418.44, + "probability": 0.995 + }, + { + "start": 22418.9, + "end": 22419.9, + "probability": 0.9932 + }, + { + "start": 22421.0, + "end": 22426.98, + "probability": 0.9948 + }, + { + "start": 22427.94, + "end": 22428.76, + "probability": 0.6333 + }, + { + "start": 22428.96, + "end": 22435.6, + "probability": 0.9094 + }, + { + "start": 22436.14, + "end": 22436.48, + "probability": 0.9538 + }, + { + "start": 22437.54, + "end": 22439.18, + "probability": 0.6145 + }, + { + "start": 22439.64, + "end": 22441.16, + "probability": 0.9296 + }, + { + "start": 22441.22, + "end": 22444.52, + "probability": 0.9919 + }, + { + "start": 22445.22, + "end": 22446.25, + "probability": 0.1219 + }, + { + "start": 22448.14, + "end": 22451.54, + "probability": 0.9033 + }, + { + "start": 22451.56, + "end": 22456.52, + "probability": 0.888 + }, + { + "start": 22456.96, + "end": 22458.54, + "probability": 0.9775 + }, + { + "start": 22458.58, + "end": 22461.38, + "probability": 0.9723 + }, + { + "start": 22461.82, + "end": 22463.48, + "probability": 0.9967 + }, + { + "start": 22463.72, + "end": 22464.8, + "probability": 0.7527 + }, + { + "start": 22465.16, + "end": 22466.72, + "probability": 0.9973 + }, + { + "start": 22467.5, + "end": 22471.02, + "probability": 0.937 + }, + { + "start": 22471.58, + "end": 22473.54, + "probability": 0.8909 + }, + { + "start": 22474.58, + "end": 22479.12, + "probability": 0.9939 + }, + { + "start": 22479.32, + "end": 22480.44, + "probability": 0.5672 + }, + { + "start": 22480.94, + "end": 22482.32, + "probability": 0.9717 + }, + { + "start": 22482.8, + "end": 22484.1, + "probability": 0.9277 + }, + { + "start": 22484.72, + "end": 22488.84, + "probability": 0.9918 + }, + { + "start": 22489.58, + "end": 22492.22, + "probability": 0.9617 + }, + { + "start": 22493.0, + "end": 22500.74, + "probability": 0.9805 + }, + { + "start": 22501.26, + "end": 22505.1, + "probability": 0.9352 + }, + { + "start": 22506.22, + "end": 22510.6, + "probability": 0.9943 + }, + { + "start": 22510.8, + "end": 22512.84, + "probability": 0.7392 + }, + { + "start": 22513.4, + "end": 22515.2, + "probability": 0.9907 + }, + { + "start": 22516.06, + "end": 22521.75, + "probability": 0.9973 + }, + { + "start": 22522.22, + "end": 22522.74, + "probability": 0.3708 + }, + { + "start": 22522.88, + "end": 22526.36, + "probability": 0.9824 + }, + { + "start": 22526.7, + "end": 22529.48, + "probability": 0.9867 + }, + { + "start": 22529.68, + "end": 22530.94, + "probability": 0.9407 + }, + { + "start": 22531.5, + "end": 22532.18, + "probability": 0.9852 + }, + { + "start": 22533.4, + "end": 22538.96, + "probability": 0.9966 + }, + { + "start": 22539.8, + "end": 22543.32, + "probability": 0.9697 + }, + { + "start": 22543.96, + "end": 22546.96, + "probability": 0.8553 + }, + { + "start": 22548.72, + "end": 22552.8, + "probability": 0.9878 + }, + { + "start": 22552.9, + "end": 22557.36, + "probability": 0.9942 + }, + { + "start": 22557.36, + "end": 22560.7, + "probability": 0.9985 + }, + { + "start": 22561.48, + "end": 22564.8, + "probability": 0.9989 + }, + { + "start": 22565.46, + "end": 22566.94, + "probability": 0.6946 + }, + { + "start": 22567.72, + "end": 22570.08, + "probability": 0.9988 + }, + { + "start": 22570.08, + "end": 22573.38, + "probability": 0.9846 + }, + { + "start": 22573.68, + "end": 22574.78, + "probability": 0.7327 + }, + { + "start": 22574.88, + "end": 22575.7, + "probability": 0.9521 + }, + { + "start": 22576.36, + "end": 22578.22, + "probability": 0.8429 + }, + { + "start": 22578.38, + "end": 22578.74, + "probability": 0.8658 + }, + { + "start": 22579.18, + "end": 22580.52, + "probability": 0.8921 + }, + { + "start": 22580.92, + "end": 22583.38, + "probability": 0.9896 + }, + { + "start": 22584.08, + "end": 22586.48, + "probability": 0.9141 + }, + { + "start": 22586.64, + "end": 22589.02, + "probability": 0.7719 + }, + { + "start": 22589.88, + "end": 22593.08, + "probability": 0.9937 + }, + { + "start": 22594.2, + "end": 22597.66, + "probability": 0.9989 + }, + { + "start": 22598.58, + "end": 22599.04, + "probability": 0.8083 + }, + { + "start": 22599.16, + "end": 22600.48, + "probability": 0.874 + }, + { + "start": 22600.62, + "end": 22602.74, + "probability": 0.8452 + }, + { + "start": 22602.94, + "end": 22604.48, + "probability": 0.7871 + }, + { + "start": 22605.24, + "end": 22607.76, + "probability": 0.9312 + }, + { + "start": 22609.04, + "end": 22610.2, + "probability": 0.3452 + }, + { + "start": 22610.26, + "end": 22611.3, + "probability": 0.8313 + }, + { + "start": 22611.32, + "end": 22612.54, + "probability": 0.9966 + }, + { + "start": 22613.06, + "end": 22614.56, + "probability": 0.9701 + }, + { + "start": 22615.14, + "end": 22616.4, + "probability": 0.9824 + }, + { + "start": 22616.92, + "end": 22617.32, + "probability": 0.8239 + }, + { + "start": 22619.12, + "end": 22622.9, + "probability": 0.7147 + }, + { + "start": 22623.22, + "end": 22627.54, + "probability": 0.8501 + }, + { + "start": 22628.54, + "end": 22629.4, + "probability": 0.3238 + }, + { + "start": 22630.48, + "end": 22630.48, + "probability": 0.2133 + }, + { + "start": 22647.2, + "end": 22648.16, + "probability": 0.2045 + }, + { + "start": 22649.32, + "end": 22652.71, + "probability": 0.6984 + }, + { + "start": 22655.48, + "end": 22658.92, + "probability": 0.6665 + }, + { + "start": 22660.08, + "end": 22662.78, + "probability": 0.7046 + }, + { + "start": 22662.82, + "end": 22663.7, + "probability": 0.7899 + }, + { + "start": 22663.92, + "end": 22665.76, + "probability": 0.9242 + }, + { + "start": 22666.2, + "end": 22667.22, + "probability": 0.7683 + }, + { + "start": 22667.76, + "end": 22668.4, + "probability": 0.8831 + }, + { + "start": 22669.6, + "end": 22675.44, + "probability": 0.9738 + }, + { + "start": 22676.44, + "end": 22677.24, + "probability": 0.9971 + }, + { + "start": 22677.98, + "end": 22678.92, + "probability": 0.5724 + }, + { + "start": 22679.48, + "end": 22682.28, + "probability": 0.8779 + }, + { + "start": 22683.04, + "end": 22689.54, + "probability": 0.9915 + }, + { + "start": 22690.82, + "end": 22691.42, + "probability": 0.9501 + }, + { + "start": 22691.94, + "end": 22692.54, + "probability": 0.5108 + }, + { + "start": 22693.44, + "end": 22698.18, + "probability": 0.7314 + }, + { + "start": 22699.32, + "end": 22702.3, + "probability": 0.9228 + }, + { + "start": 22704.44, + "end": 22707.82, + "probability": 0.9844 + }, + { + "start": 22708.72, + "end": 22710.78, + "probability": 0.9954 + }, + { + "start": 22712.3, + "end": 22713.86, + "probability": 0.8944 + }, + { + "start": 22714.62, + "end": 22716.7, + "probability": 0.8962 + }, + { + "start": 22717.32, + "end": 22721.36, + "probability": 0.8179 + }, + { + "start": 22722.06, + "end": 22722.72, + "probability": 0.8819 + }, + { + "start": 22723.94, + "end": 22725.16, + "probability": 0.9056 + }, + { + "start": 22725.7, + "end": 22727.24, + "probability": 0.9627 + }, + { + "start": 22727.64, + "end": 22730.56, + "probability": 0.98 + }, + { + "start": 22730.72, + "end": 22732.08, + "probability": 0.9744 + }, + { + "start": 22732.2, + "end": 22733.2, + "probability": 0.5944 + }, + { + "start": 22745.74, + "end": 22747.6, + "probability": 0.0365 + }, + { + "start": 22748.26, + "end": 22748.26, + "probability": 0.0155 + }, + { + "start": 22748.26, + "end": 22748.26, + "probability": 0.1359 + }, + { + "start": 22748.26, + "end": 22748.26, + "probability": 0.2827 + }, + { + "start": 22748.26, + "end": 22748.26, + "probability": 0.1083 + }, + { + "start": 22748.26, + "end": 22748.26, + "probability": 0.2627 + }, + { + "start": 22748.26, + "end": 22748.26, + "probability": 0.1817 + }, + { + "start": 22748.26, + "end": 22750.36, + "probability": 0.6611 + }, + { + "start": 22751.18, + "end": 22753.48, + "probability": 0.6013 + }, + { + "start": 22753.9, + "end": 22758.08, + "probability": 0.7681 + }, + { + "start": 22758.74, + "end": 22762.52, + "probability": 0.9659 + }, + { + "start": 22763.1, + "end": 22767.6, + "probability": 0.8911 + }, + { + "start": 22768.5, + "end": 22770.46, + "probability": 0.9746 + }, + { + "start": 22770.94, + "end": 22774.6, + "probability": 0.8836 + }, + { + "start": 22775.32, + "end": 22776.42, + "probability": 0.6442 + }, + { + "start": 22776.74, + "end": 22785.12, + "probability": 0.9333 + }, + { + "start": 22785.68, + "end": 22787.18, + "probability": 0.9517 + }, + { + "start": 22788.36, + "end": 22788.36, + "probability": 0.0016 + }, + { + "start": 22788.36, + "end": 22789.7, + "probability": 0.7847 + }, + { + "start": 22790.18, + "end": 22790.88, + "probability": 0.844 + }, + { + "start": 22791.22, + "end": 22794.54, + "probability": 0.9648 + }, + { + "start": 22794.62, + "end": 22795.54, + "probability": 0.5204 + }, + { + "start": 22796.72, + "end": 22799.04, + "probability": 0.7739 + }, + { + "start": 22799.5, + "end": 22800.32, + "probability": 0.9551 + }, + { + "start": 22801.56, + "end": 22804.04, + "probability": 0.7293 + }, + { + "start": 22804.78, + "end": 22805.9, + "probability": 0.5701 + }, + { + "start": 22806.94, + "end": 22809.04, + "probability": 0.9978 + }, + { + "start": 22810.5, + "end": 22815.08, + "probability": 0.7522 + }, + { + "start": 22815.62, + "end": 22819.04, + "probability": 0.9896 + }, + { + "start": 22819.2, + "end": 22819.86, + "probability": 0.8802 + }, + { + "start": 22820.0, + "end": 22821.5, + "probability": 0.6876 + }, + { + "start": 22822.16, + "end": 22825.9, + "probability": 0.9559 + }, + { + "start": 22826.36, + "end": 22829.4, + "probability": 0.5989 + }, + { + "start": 22830.1, + "end": 22831.48, + "probability": 0.9879 + }, + { + "start": 22832.26, + "end": 22835.52, + "probability": 0.8995 + }, + { + "start": 22836.0, + "end": 22841.58, + "probability": 0.9934 + }, + { + "start": 22842.42, + "end": 22846.96, + "probability": 0.9673 + }, + { + "start": 22846.98, + "end": 22851.82, + "probability": 0.9006 + }, + { + "start": 22852.36, + "end": 22852.36, + "probability": 0.0576 + }, + { + "start": 22852.36, + "end": 22853.4, + "probability": 0.7207 + }, + { + "start": 22853.58, + "end": 22858.48, + "probability": 0.8865 + }, + { + "start": 22858.92, + "end": 22860.68, + "probability": 0.6098 + }, + { + "start": 22861.38, + "end": 22862.78, + "probability": 0.9112 + }, + { + "start": 22863.16, + "end": 22865.52, + "probability": 0.9806 + }, + { + "start": 22865.92, + "end": 22866.34, + "probability": 0.0062 + }, + { + "start": 22868.12, + "end": 22869.24, + "probability": 0.0323 + }, + { + "start": 22869.46, + "end": 22873.1, + "probability": 0.144 + }, + { + "start": 22873.48, + "end": 22875.04, + "probability": 0.3541 + }, + { + "start": 22875.38, + "end": 22875.96, + "probability": 0.5839 + }, + { + "start": 22884.46, + "end": 22884.46, + "probability": 0.4546 + }, + { + "start": 22884.46, + "end": 22885.4, + "probability": 0.5378 + }, + { + "start": 22885.86, + "end": 22887.4, + "probability": 0.0545 + }, + { + "start": 22888.64, + "end": 22890.02, + "probability": 0.1238 + }, + { + "start": 22892.0, + "end": 22892.54, + "probability": 0.6218 + }, + { + "start": 22894.54, + "end": 22895.91, + "probability": 0.0227 + }, + { + "start": 22900.5, + "end": 22900.94, + "probability": 0.1321 + }, + { + "start": 22901.32, + "end": 22902.26, + "probability": 0.3136 + }, + { + "start": 22902.26, + "end": 22902.36, + "probability": 0.5943 + }, + { + "start": 22903.46, + "end": 22904.02, + "probability": 0.9734 + }, + { + "start": 22905.52, + "end": 22906.1, + "probability": 0.4721 + }, + { + "start": 22907.74, + "end": 22909.9, + "probability": 0.8182 + }, + { + "start": 22910.12, + "end": 22911.48, + "probability": 0.6904 + }, + { + "start": 22912.04, + "end": 22913.56, + "probability": 0.5095 + }, + { + "start": 22913.88, + "end": 22916.92, + "probability": 0.9551 + }, + { + "start": 22918.04, + "end": 22919.48, + "probability": 0.9832 + }, + { + "start": 22919.7, + "end": 22920.62, + "probability": 0.906 + }, + { + "start": 22921.52, + "end": 22923.09, + "probability": 0.8971 + }, + { + "start": 22923.54, + "end": 22923.89, + "probability": 0.5053 + }, + { + "start": 22924.06, + "end": 22924.54, + "probability": 0.7987 + }, + { + "start": 22925.0, + "end": 22925.7, + "probability": 0.4517 + }, + { + "start": 22925.7, + "end": 22927.9, + "probability": 0.6307 + }, + { + "start": 22928.42, + "end": 22930.58, + "probability": 0.9551 + }, + { + "start": 22930.94, + "end": 22932.83, + "probability": 0.9849 + }, + { + "start": 22933.0, + "end": 22933.84, + "probability": 0.542 + }, + { + "start": 22934.46, + "end": 22934.96, + "probability": 0.9648 + }, + { + "start": 22935.02, + "end": 22935.84, + "probability": 0.8066 + }, + { + "start": 22936.18, + "end": 22936.94, + "probability": 0.5229 + }, + { + "start": 22936.94, + "end": 22937.18, + "probability": 0.5881 + }, + { + "start": 22937.35, + "end": 22939.74, + "probability": 0.95 + }, + { + "start": 22940.28, + "end": 22942.12, + "probability": 0.9692 + }, + { + "start": 22942.7, + "end": 22944.02, + "probability": 0.9805 + }, + { + "start": 22945.02, + "end": 22949.54, + "probability": 0.6741 + }, + { + "start": 22950.16, + "end": 22952.14, + "probability": 0.9294 + }, + { + "start": 22953.12, + "end": 22954.94, + "probability": 0.7511 + }, + { + "start": 22955.18, + "end": 22956.44, + "probability": 0.7808 + }, + { + "start": 22956.5, + "end": 22960.7, + "probability": 0.6179 + }, + { + "start": 22960.9, + "end": 22962.06, + "probability": 0.6489 + }, + { + "start": 22962.18, + "end": 22964.96, + "probability": 0.7526 + }, + { + "start": 22965.72, + "end": 22967.84, + "probability": 0.8223 + }, + { + "start": 22968.66, + "end": 22970.1, + "probability": 0.8742 + }, + { + "start": 22970.24, + "end": 22970.84, + "probability": 0.8003 + }, + { + "start": 22970.96, + "end": 22972.78, + "probability": 0.5679 + }, + { + "start": 22973.48, + "end": 22973.58, + "probability": 0.8371 + }, + { + "start": 22973.86, + "end": 22974.27, + "probability": 0.7427 + }, + { + "start": 22974.44, + "end": 22976.04, + "probability": 0.9041 + }, + { + "start": 22976.1, + "end": 22976.6, + "probability": 0.5998 + }, + { + "start": 22976.64, + "end": 22976.64, + "probability": 0.5909 + }, + { + "start": 22976.64, + "end": 22978.0, + "probability": 0.659 + }, + { + "start": 22978.66, + "end": 22979.96, + "probability": 0.6681 + }, + { + "start": 22980.7, + "end": 22981.58, + "probability": 0.8333 + }, + { + "start": 22982.02, + "end": 22983.6, + "probability": 0.9719 + }, + { + "start": 22983.72, + "end": 22983.84, + "probability": 0.6833 + }, + { + "start": 22985.4, + "end": 22988.46, + "probability": 0.9313 + }, + { + "start": 22988.94, + "end": 22989.18, + "probability": 0.122 + }, + { + "start": 22989.2, + "end": 22989.86, + "probability": 0.8079 + }, + { + "start": 22990.2, + "end": 22990.88, + "probability": 0.6694 + }, + { + "start": 22991.06, + "end": 22991.47, + "probability": 0.8689 + }, + { + "start": 22992.6, + "end": 22993.22, + "probability": 0.6128 + }, + { + "start": 22993.22, + "end": 22996.88, + "probability": 0.8265 + }, + { + "start": 22997.42, + "end": 22998.0, + "probability": 0.8972 + }, + { + "start": 23000.04, + "end": 23002.18, + "probability": 0.1802 + }, + { + "start": 23002.68, + "end": 23003.96, + "probability": 0.9961 + }, + { + "start": 23004.48, + "end": 23009.36, + "probability": 0.8499 + }, + { + "start": 23009.72, + "end": 23014.48, + "probability": 0.9941 + }, + { + "start": 23014.74, + "end": 23014.84, + "probability": 0.4049 + }, + { + "start": 23015.5, + "end": 23016.48, + "probability": 0.7018 + }, + { + "start": 23017.08, + "end": 23017.74, + "probability": 0.9223 + }, + { + "start": 23017.78, + "end": 23019.22, + "probability": 0.7792 + }, + { + "start": 23019.68, + "end": 23022.08, + "probability": 0.978 + }, + { + "start": 23023.12, + "end": 23024.4, + "probability": 0.9388 + }, + { + "start": 23025.02, + "end": 23027.32, + "probability": 0.938 + }, + { + "start": 23027.46, + "end": 23028.12, + "probability": 0.9663 + }, + { + "start": 23030.16, + "end": 23031.72, + "probability": 0.6755 + }, + { + "start": 23032.24, + "end": 23033.86, + "probability": 0.6583 + }, + { + "start": 23035.18, + "end": 23037.34, + "probability": 0.6564 + }, + { + "start": 23038.72, + "end": 23039.76, + "probability": 0.9967 + }, + { + "start": 23040.6, + "end": 23041.53, + "probability": 0.6701 + }, + { + "start": 23044.46, + "end": 23048.16, + "probability": 0.5347 + }, + { + "start": 23049.98, + "end": 23050.18, + "probability": 0.065 + }, + { + "start": 23050.18, + "end": 23050.74, + "probability": 0.0975 + }, + { + "start": 23050.9, + "end": 23052.64, + "probability": 0.6757 + }, + { + "start": 23052.78, + "end": 23053.72, + "probability": 0.8034 + }, + { + "start": 23054.12, + "end": 23054.28, + "probability": 0.085 + }, + { + "start": 23054.46, + "end": 23056.22, + "probability": 0.0725 + }, + { + "start": 23056.28, + "end": 23058.02, + "probability": 0.4232 + }, + { + "start": 23058.02, + "end": 23059.38, + "probability": 0.1432 + }, + { + "start": 23059.46, + "end": 23059.48, + "probability": 0.1692 + }, + { + "start": 23059.48, + "end": 23062.12, + "probability": 0.9704 + }, + { + "start": 23062.34, + "end": 23064.8, + "probability": 0.7836 + }, + { + "start": 23066.14, + "end": 23068.46, + "probability": 0.6907 + }, + { + "start": 23068.96, + "end": 23069.52, + "probability": 0.5571 + }, + { + "start": 23070.58, + "end": 23071.68, + "probability": 0.0201 + }, + { + "start": 23072.66, + "end": 23075.04, + "probability": 0.7664 + }, + { + "start": 23075.74, + "end": 23077.84, + "probability": 0.8418 + }, + { + "start": 23077.96, + "end": 23079.71, + "probability": 0.9634 + }, + { + "start": 23079.84, + "end": 23080.42, + "probability": 0.6968 + }, + { + "start": 23080.52, + "end": 23080.62, + "probability": 0.3054 + }, + { + "start": 23082.14, + "end": 23082.38, + "probability": 0.357 + }, + { + "start": 23083.0, + "end": 23084.78, + "probability": 0.868 + }, + { + "start": 23089.72, + "end": 23091.46, + "probability": 0.8031 + }, + { + "start": 23091.62, + "end": 23093.48, + "probability": 0.7328 + }, + { + "start": 23093.5, + "end": 23095.08, + "probability": 0.0497 + }, + { + "start": 23095.28, + "end": 23097.14, + "probability": 0.8584 + }, + { + "start": 23097.52, + "end": 23098.24, + "probability": 0.5452 + }, + { + "start": 23098.68, + "end": 23099.58, + "probability": 0.3914 + }, + { + "start": 23101.88, + "end": 23105.08, + "probability": 0.1738 + }, + { + "start": 23116.22, + "end": 23116.94, + "probability": 0.0035 + }, + { + "start": 23117.06, + "end": 23118.12, + "probability": 0.0228 + }, + { + "start": 23118.12, + "end": 23118.16, + "probability": 0.045 + }, + { + "start": 23118.16, + "end": 23118.3, + "probability": 0.7689 + }, + { + "start": 23118.3, + "end": 23118.62, + "probability": 0.1382 + }, + { + "start": 23119.16, + "end": 23120.56, + "probability": 0.7377 + }, + { + "start": 23121.12, + "end": 23127.8, + "probability": 0.9046 + }, + { + "start": 23128.7, + "end": 23131.18, + "probability": 0.5707 + }, + { + "start": 23133.62, + "end": 23135.24, + "probability": 0.992 + }, + { + "start": 23136.34, + "end": 23138.24, + "probability": 0.9451 + }, + { + "start": 23138.24, + "end": 23141.19, + "probability": 0.8317 + }, + { + "start": 23141.74, + "end": 23142.58, + "probability": 0.1633 + }, + { + "start": 23144.44, + "end": 23145.62, + "probability": 0.9969 + }, + { + "start": 23146.24, + "end": 23148.14, + "probability": 0.467 + }, + { + "start": 23148.14, + "end": 23149.6, + "probability": 0.5919 + }, + { + "start": 23150.7, + "end": 23152.56, + "probability": 0.8941 + }, + { + "start": 23152.82, + "end": 23155.74, + "probability": 0.3841 + }, + { + "start": 23155.74, + "end": 23156.4, + "probability": 0.0834 + }, + { + "start": 23158.44, + "end": 23158.58, + "probability": 0.4717 + }, + { + "start": 23184.14, + "end": 23185.64, + "probability": 0.6895 + }, + { + "start": 23186.82, + "end": 23188.18, + "probability": 0.4548 + }, + { + "start": 23188.18, + "end": 23189.52, + "probability": 0.0734 + }, + { + "start": 23189.54, + "end": 23189.54, + "probability": 0.0497 + }, + { + "start": 23189.54, + "end": 23189.58, + "probability": 0.1558 + }, + { + "start": 23189.58, + "end": 23190.14, + "probability": 0.2399 + }, + { + "start": 23190.24, + "end": 23191.4, + "probability": 0.6286 + }, + { + "start": 23202.32, + "end": 23203.44, + "probability": 0.5449 + }, + { + "start": 23204.16, + "end": 23206.28, + "probability": 0.829 + }, + { + "start": 23207.0, + "end": 23208.06, + "probability": 0.7753 + }, + { + "start": 23209.62, + "end": 23210.9, + "probability": 0.842 + }, + { + "start": 23212.0, + "end": 23212.64, + "probability": 0.9982 + }, + { + "start": 23213.22, + "end": 23215.54, + "probability": 0.9646 + }, + { + "start": 23217.62, + "end": 23219.98, + "probability": 0.979 + }, + { + "start": 23221.82, + "end": 23227.94, + "probability": 0.9495 + }, + { + "start": 23229.0, + "end": 23233.06, + "probability": 0.991 + }, + { + "start": 23233.84, + "end": 23235.86, + "probability": 0.9493 + }, + { + "start": 23236.68, + "end": 23240.04, + "probability": 0.9794 + }, + { + "start": 23240.74, + "end": 23242.84, + "probability": 0.9793 + }, + { + "start": 23245.16, + "end": 23245.94, + "probability": 0.8366 + }, + { + "start": 23246.82, + "end": 23249.04, + "probability": 0.9702 + }, + { + "start": 23249.92, + "end": 23250.36, + "probability": 0.7907 + }, + { + "start": 23251.02, + "end": 23254.22, + "probability": 0.9424 + }, + { + "start": 23255.26, + "end": 23256.0, + "probability": 0.8868 + }, + { + "start": 23256.56, + "end": 23258.82, + "probability": 0.7156 + }, + { + "start": 23259.68, + "end": 23264.76, + "probability": 0.9883 + }, + { + "start": 23266.02, + "end": 23266.9, + "probability": 0.691 + }, + { + "start": 23267.92, + "end": 23268.8, + "probability": 0.8885 + }, + { + "start": 23269.58, + "end": 23273.7, + "probability": 0.986 + }, + { + "start": 23273.7, + "end": 23277.12, + "probability": 0.9903 + }, + { + "start": 23278.48, + "end": 23279.22, + "probability": 0.9813 + }, + { + "start": 23280.04, + "end": 23281.32, + "probability": 0.9943 + }, + { + "start": 23281.94, + "end": 23283.34, + "probability": 0.9467 + }, + { + "start": 23284.24, + "end": 23291.9, + "probability": 0.9967 + }, + { + "start": 23292.94, + "end": 23295.72, + "probability": 0.9862 + }, + { + "start": 23296.0, + "end": 23298.5, + "probability": 0.8646 + }, + { + "start": 23299.9, + "end": 23300.68, + "probability": 0.6923 + }, + { + "start": 23301.3, + "end": 23303.04, + "probability": 0.9984 + }, + { + "start": 23303.84, + "end": 23305.22, + "probability": 0.7111 + }, + { + "start": 23305.38, + "end": 23308.78, + "probability": 0.8281 + }, + { + "start": 23309.46, + "end": 23314.5, + "probability": 0.9866 + }, + { + "start": 23316.44, + "end": 23318.58, + "probability": 0.9892 + }, + { + "start": 23318.96, + "end": 23321.28, + "probability": 0.9531 + }, + { + "start": 23321.68, + "end": 23322.66, + "probability": 0.6861 + }, + { + "start": 23324.1, + "end": 23324.86, + "probability": 0.7509 + }, + { + "start": 23326.7, + "end": 23330.32, + "probability": 0.9893 + }, + { + "start": 23331.62, + "end": 23335.7, + "probability": 0.9798 + }, + { + "start": 23335.7, + "end": 23339.32, + "probability": 0.9775 + }, + { + "start": 23340.54, + "end": 23350.34, + "probability": 0.9862 + }, + { + "start": 23350.74, + "end": 23356.9, + "probability": 0.9863 + }, + { + "start": 23358.2, + "end": 23361.18, + "probability": 0.9956 + }, + { + "start": 23362.08, + "end": 23366.66, + "probability": 0.9823 + }, + { + "start": 23368.86, + "end": 23371.72, + "probability": 0.9855 + }, + { + "start": 23371.72, + "end": 23375.06, + "probability": 0.9957 + }, + { + "start": 23375.76, + "end": 23379.56, + "probability": 0.9847 + }, + { + "start": 23380.5, + "end": 23381.58, + "probability": 0.9472 + }, + { + "start": 23383.16, + "end": 23383.96, + "probability": 0.9669 + }, + { + "start": 23384.7, + "end": 23386.18, + "probability": 0.976 + }, + { + "start": 23387.34, + "end": 23390.06, + "probability": 0.9248 + }, + { + "start": 23391.32, + "end": 23395.48, + "probability": 0.9912 + }, + { + "start": 23395.48, + "end": 23400.06, + "probability": 0.9972 + }, + { + "start": 23401.34, + "end": 23403.98, + "probability": 0.9906 + }, + { + "start": 23405.22, + "end": 23407.96, + "probability": 0.9983 + }, + { + "start": 23407.96, + "end": 23410.64, + "probability": 0.9965 + }, + { + "start": 23412.4, + "end": 23416.12, + "probability": 0.799 + }, + { + "start": 23417.32, + "end": 23421.98, + "probability": 0.9949 + }, + { + "start": 23423.94, + "end": 23424.72, + "probability": 0.9884 + }, + { + "start": 23425.32, + "end": 23430.84, + "probability": 0.973 + }, + { + "start": 23432.5, + "end": 23433.3, + "probability": 0.8428 + }, + { + "start": 23433.82, + "end": 23435.22, + "probability": 0.9933 + }, + { + "start": 23435.72, + "end": 23440.44, + "probability": 0.9808 + }, + { + "start": 23440.44, + "end": 23444.96, + "probability": 0.998 + }, + { + "start": 23445.84, + "end": 23447.44, + "probability": 0.9536 + }, + { + "start": 23448.46, + "end": 23452.38, + "probability": 0.8954 + }, + { + "start": 23452.94, + "end": 23460.8, + "probability": 0.9872 + }, + { + "start": 23461.7, + "end": 23462.63, + "probability": 0.9941 + }, + { + "start": 23464.4, + "end": 23466.8, + "probability": 0.686 + }, + { + "start": 23467.94, + "end": 23468.66, + "probability": 0.9491 + }, + { + "start": 23469.28, + "end": 23472.5, + "probability": 0.9967 + }, + { + "start": 23473.62, + "end": 23476.2, + "probability": 0.9908 + }, + { + "start": 23477.04, + "end": 23477.9, + "probability": 0.8006 + }, + { + "start": 23478.54, + "end": 23480.1, + "probability": 0.7694 + }, + { + "start": 23481.92, + "end": 23486.28, + "probability": 0.9835 + }, + { + "start": 23487.92, + "end": 23490.84, + "probability": 0.9297 + }, + { + "start": 23492.36, + "end": 23495.14, + "probability": 0.8679 + }, + { + "start": 23496.56, + "end": 23497.54, + "probability": 0.9933 + }, + { + "start": 23498.82, + "end": 23503.84, + "probability": 0.9714 + }, + { + "start": 23505.36, + "end": 23508.14, + "probability": 0.9136 + }, + { + "start": 23508.82, + "end": 23510.92, + "probability": 0.991 + }, + { + "start": 23511.68, + "end": 23515.34, + "probability": 0.9983 + }, + { + "start": 23516.64, + "end": 23517.14, + "probability": 0.5566 + }, + { + "start": 23517.68, + "end": 23520.0, + "probability": 0.9645 + }, + { + "start": 23520.52, + "end": 23523.5, + "probability": 0.9899 + }, + { + "start": 23524.32, + "end": 23526.64, + "probability": 0.9847 + }, + { + "start": 23528.18, + "end": 23529.28, + "probability": 0.7503 + }, + { + "start": 23529.92, + "end": 23535.7, + "probability": 0.9957 + }, + { + "start": 23536.24, + "end": 23538.82, + "probability": 0.3239 + }, + { + "start": 23539.64, + "end": 23541.48, + "probability": 0.9639 + }, + { + "start": 23543.16, + "end": 23543.6, + "probability": 0.2517 + }, + { + "start": 23543.66, + "end": 23544.42, + "probability": 0.8491 + }, + { + "start": 23544.76, + "end": 23547.02, + "probability": 0.8778 + }, + { + "start": 23547.6, + "end": 23548.66, + "probability": 0.8646 + }, + { + "start": 23549.04, + "end": 23551.92, + "probability": 0.974 + }, + { + "start": 23552.32, + "end": 23553.44, + "probability": 0.6202 + }, + { + "start": 23553.52, + "end": 23554.34, + "probability": 0.2521 + }, + { + "start": 23556.31, + "end": 23557.32, + "probability": 0.1612 + }, + { + "start": 23558.14, + "end": 23559.48, + "probability": 0.0842 + }, + { + "start": 23559.48, + "end": 23559.48, + "probability": 0.3997 + }, + { + "start": 23559.48, + "end": 23561.78, + "probability": 0.6948 + }, + { + "start": 23562.44, + "end": 23567.86, + "probability": 0.3843 + }, + { + "start": 23571.54, + "end": 23572.44, + "probability": 0.0478 + }, + { + "start": 23574.1, + "end": 23574.9, + "probability": 0.0447 + }, + { + "start": 23575.28, + "end": 23576.22, + "probability": 0.0904 + }, + { + "start": 23576.26, + "end": 23578.6, + "probability": 0.1193 + }, + { + "start": 23583.44, + "end": 23584.9, + "probability": 0.1803 + }, + { + "start": 23584.9, + "end": 23585.54, + "probability": 0.2314 + }, + { + "start": 23586.46, + "end": 23587.5, + "probability": 0.0037 + }, + { + "start": 23590.78, + "end": 23595.9, + "probability": 0.0711 + }, + { + "start": 23596.84, + "end": 23597.0, + "probability": 0.5786 + }, + { + "start": 23605.82, + "end": 23605.86, + "probability": 0.0918 + }, + { + "start": 23605.86, + "end": 23606.75, + "probability": 0.0187 + }, + { + "start": 23607.92, + "end": 23608.66, + "probability": 0.0912 + }, + { + "start": 23615.52, + "end": 23615.58, + "probability": 0.1018 + }, + { + "start": 23615.58, + "end": 23616.04, + "probability": 0.4506 + }, + { + "start": 23617.56, + "end": 23618.32, + "probability": 0.9319 + }, + { + "start": 23618.76, + "end": 23620.32, + "probability": 0.7848 + }, + { + "start": 23621.46, + "end": 23622.48, + "probability": 0.9317 + }, + { + "start": 23622.62, + "end": 23627.54, + "probability": 0.9869 + }, + { + "start": 23628.12, + "end": 23632.7, + "probability": 0.9972 + }, + { + "start": 23633.4, + "end": 23633.68, + "probability": 0.6503 + }, + { + "start": 23633.9, + "end": 23635.6, + "probability": 0.9087 + }, + { + "start": 23636.08, + "end": 23637.64, + "probability": 0.9891 + }, + { + "start": 23637.76, + "end": 23638.78, + "probability": 0.9403 + }, + { + "start": 23639.16, + "end": 23642.76, + "probability": 0.9609 + }, + { + "start": 23643.48, + "end": 23646.98, + "probability": 0.9956 + }, + { + "start": 23647.6, + "end": 23649.48, + "probability": 0.7547 + }, + { + "start": 23649.76, + "end": 23656.92, + "probability": 0.9672 + }, + { + "start": 23657.16, + "end": 23658.82, + "probability": 0.737 + }, + { + "start": 23659.56, + "end": 23660.96, + "probability": 0.9428 + }, + { + "start": 23661.46, + "end": 23667.16, + "probability": 0.9661 + }, + { + "start": 23667.16, + "end": 23674.42, + "probability": 0.9829 + }, + { + "start": 23675.56, + "end": 23677.48, + "probability": 0.5299 + }, + { + "start": 23678.6, + "end": 23684.02, + "probability": 0.9786 + }, + { + "start": 23684.02, + "end": 23689.0, + "probability": 0.9786 + }, + { + "start": 23689.72, + "end": 23692.26, + "probability": 0.6038 + }, + { + "start": 23692.94, + "end": 23699.04, + "probability": 0.9933 + }, + { + "start": 23699.16, + "end": 23702.78, + "probability": 0.9949 + }, + { + "start": 23703.28, + "end": 23704.1, + "probability": 0.661 + }, + { + "start": 23704.26, + "end": 23711.66, + "probability": 0.8844 + }, + { + "start": 23713.24, + "end": 23716.38, + "probability": 0.915 + }, + { + "start": 23716.78, + "end": 23720.38, + "probability": 0.9932 + }, + { + "start": 23720.84, + "end": 23721.68, + "probability": 0.8588 + }, + { + "start": 23721.92, + "end": 23726.56, + "probability": 0.9816 + }, + { + "start": 23727.4, + "end": 23735.42, + "probability": 0.9556 + }, + { + "start": 23737.15, + "end": 23740.94, + "probability": 0.9336 + }, + { + "start": 23741.58, + "end": 23744.48, + "probability": 0.9744 + }, + { + "start": 23744.76, + "end": 23746.1, + "probability": 0.9952 + }, + { + "start": 23746.74, + "end": 23749.6, + "probability": 0.9924 + }, + { + "start": 23749.96, + "end": 23750.86, + "probability": 0.7771 + }, + { + "start": 23751.26, + "end": 23752.94, + "probability": 0.9937 + }, + { + "start": 23753.44, + "end": 23757.62, + "probability": 0.9929 + }, + { + "start": 23757.94, + "end": 23760.02, + "probability": 0.8389 + }, + { + "start": 23760.78, + "end": 23762.34, + "probability": 0.9447 + }, + { + "start": 23762.5, + "end": 23764.72, + "probability": 0.879 + }, + { + "start": 23765.1, + "end": 23769.22, + "probability": 0.9907 + }, + { + "start": 23769.28, + "end": 23773.92, + "probability": 0.9614 + }, + { + "start": 23774.56, + "end": 23776.22, + "probability": 0.8594 + }, + { + "start": 23776.98, + "end": 23779.42, + "probability": 0.8966 + }, + { + "start": 23779.88, + "end": 23781.08, + "probability": 0.8918 + }, + { + "start": 23781.4, + "end": 23784.02, + "probability": 0.845 + }, + { + "start": 23785.0, + "end": 23788.38, + "probability": 0.9648 + }, + { + "start": 23788.38, + "end": 23793.34, + "probability": 0.8276 + }, + { + "start": 23794.12, + "end": 23797.78, + "probability": 0.8882 + }, + { + "start": 23798.38, + "end": 23798.9, + "probability": 0.8758 + }, + { + "start": 23799.08, + "end": 23801.96, + "probability": 0.8306 + }, + { + "start": 23802.38, + "end": 23803.84, + "probability": 0.8613 + }, + { + "start": 23803.92, + "end": 23805.6, + "probability": 0.7627 + }, + { + "start": 23806.06, + "end": 23808.72, + "probability": 0.7618 + }, + { + "start": 23809.22, + "end": 23813.4, + "probability": 0.9661 + }, + { + "start": 23813.88, + "end": 23815.42, + "probability": 0.6751 + }, + { + "start": 23816.24, + "end": 23818.28, + "probability": 0.9817 + }, + { + "start": 23818.52, + "end": 23818.82, + "probability": 0.4819 + }, + { + "start": 23818.94, + "end": 23821.08, + "probability": 0.9577 + }, + { + "start": 23822.36, + "end": 23825.6, + "probability": 0.9941 + }, + { + "start": 23825.74, + "end": 23826.88, + "probability": 0.9255 + }, + { + "start": 23827.18, + "end": 23828.4, + "probability": 0.9873 + }, + { + "start": 23828.78, + "end": 23829.5, + "probability": 0.8384 + }, + { + "start": 23830.08, + "end": 23832.86, + "probability": 0.9941 + }, + { + "start": 23832.98, + "end": 23836.32, + "probability": 0.9895 + }, + { + "start": 23836.4, + "end": 23838.34, + "probability": 0.9578 + }, + { + "start": 23839.24, + "end": 23840.64, + "probability": 0.9618 + }, + { + "start": 23841.76, + "end": 23843.04, + "probability": 0.8079 + }, + { + "start": 23845.78, + "end": 23846.36, + "probability": 0.7489 + }, + { + "start": 23849.82, + "end": 23850.7, + "probability": 0.5172 + }, + { + "start": 23851.76, + "end": 23855.28, + "probability": 0.2277 + }, + { + "start": 23855.8, + "end": 23856.98, + "probability": 0.1481 + }, + { + "start": 23856.98, + "end": 23857.82, + "probability": 0.692 + }, + { + "start": 23857.88, + "end": 23858.38, + "probability": 0.7439 + }, + { + "start": 23859.24, + "end": 23861.82, + "probability": 0.8876 + }, + { + "start": 23862.24, + "end": 23862.26, + "probability": 0.6447 + }, + { + "start": 23862.7, + "end": 23863.44, + "probability": 0.915 + }, + { + "start": 23863.96, + "end": 23863.96, + "probability": 0.0311 + }, + { + "start": 23864.66, + "end": 23867.82, + "probability": 0.975 + }, + { + "start": 23867.98, + "end": 23869.1, + "probability": 0.5807 + }, + { + "start": 23869.4, + "end": 23870.9, + "probability": 0.8748 + }, + { + "start": 23872.22, + "end": 23872.5, + "probability": 0.7856 + }, + { + "start": 23872.66, + "end": 23873.12, + "probability": 0.7377 + }, + { + "start": 23873.22, + "end": 23875.1, + "probability": 0.7595 + }, + { + "start": 23875.1, + "end": 23876.66, + "probability": 0.987 + }, + { + "start": 23877.44, + "end": 23878.88, + "probability": 0.873 + }, + { + "start": 23880.46, + "end": 23881.44, + "probability": 0.546 + }, + { + "start": 23882.28, + "end": 23884.34, + "probability": 0.8026 + }, + { + "start": 23885.48, + "end": 23887.78, + "probability": 0.9563 + }, + { + "start": 23887.98, + "end": 23888.82, + "probability": 0.9948 + }, + { + "start": 23891.9, + "end": 23892.78, + "probability": 0.9808 + }, + { + "start": 23894.16, + "end": 23894.94, + "probability": 0.9278 + }, + { + "start": 23895.68, + "end": 23896.6, + "probability": 0.8941 + }, + { + "start": 23897.76, + "end": 23898.54, + "probability": 0.9175 + }, + { + "start": 23899.14, + "end": 23900.3, + "probability": 0.9883 + }, + { + "start": 23900.46, + "end": 23902.8, + "probability": 0.9922 + }, + { + "start": 23904.12, + "end": 23904.98, + "probability": 0.998 + }, + { + "start": 23906.4, + "end": 23907.68, + "probability": 0.9758 + }, + { + "start": 23908.5, + "end": 23910.62, + "probability": 0.9951 + }, + { + "start": 23910.68, + "end": 23914.28, + "probability": 0.8004 + }, + { + "start": 23915.5, + "end": 23917.86, + "probability": 0.9952 + }, + { + "start": 23918.54, + "end": 23921.98, + "probability": 0.9706 + }, + { + "start": 23923.54, + "end": 23924.32, + "probability": 0.9612 + }, + { + "start": 23925.84, + "end": 23930.02, + "probability": 0.6618 + }, + { + "start": 23930.78, + "end": 23933.82, + "probability": 0.0932 + }, + { + "start": 23934.38, + "end": 23935.72, + "probability": 0.3474 + }, + { + "start": 23935.86, + "end": 23938.66, + "probability": 0.0824 + }, + { + "start": 23938.66, + "end": 23938.66, + "probability": 0.0736 + }, + { + "start": 23938.66, + "end": 23938.66, + "probability": 0.1933 + }, + { + "start": 23938.66, + "end": 23939.34, + "probability": 0.0249 + }, + { + "start": 23940.1, + "end": 23940.1, + "probability": 0.0347 + }, + { + "start": 23940.1, + "end": 23942.4, + "probability": 0.5581 + }, + { + "start": 23942.84, + "end": 23943.22, + "probability": 0.5281 + }, + { + "start": 23943.22, + "end": 23944.08, + "probability": 0.6563 + }, + { + "start": 23944.3, + "end": 23944.93, + "probability": 0.2128 + }, + { + "start": 23945.4, + "end": 23945.82, + "probability": 0.7203 + }, + { + "start": 23945.9, + "end": 23947.44, + "probability": 0.4581 + }, + { + "start": 23947.72, + "end": 23948.26, + "probability": 0.8832 + }, + { + "start": 23948.56, + "end": 23952.3, + "probability": 0.1509 + }, + { + "start": 23955.82, + "end": 23957.08, + "probability": 0.2432 + }, + { + "start": 23959.88, + "end": 23961.2, + "probability": 0.6679 + }, + { + "start": 23962.78, + "end": 23963.9, + "probability": 0.4664 + }, + { + "start": 23964.34, + "end": 23965.02, + "probability": 0.6961 + }, + { + "start": 23965.38, + "end": 23966.76, + "probability": 0.862 + }, + { + "start": 23966.8, + "end": 23970.82, + "probability": 0.9129 + }, + { + "start": 23970.82, + "end": 23975.14, + "probability": 0.9565 + }, + { + "start": 23975.34, + "end": 23975.62, + "probability": 0.6792 + }, + { + "start": 23976.14, + "end": 23977.38, + "probability": 0.6827 + }, + { + "start": 23977.46, + "end": 23980.96, + "probability": 0.9445 + }, + { + "start": 23981.94, + "end": 23982.66, + "probability": 0.6779 + }, + { + "start": 23982.82, + "end": 23983.08, + "probability": 0.8171 + }, + { + "start": 23983.18, + "end": 23985.98, + "probability": 0.96 + }, + { + "start": 23985.98, + "end": 23989.7, + "probability": 0.9849 + }, + { + "start": 23990.58, + "end": 23994.16, + "probability": 0.9973 + }, + { + "start": 23995.1, + "end": 23999.32, + "probability": 0.7817 + }, + { + "start": 23999.84, + "end": 24002.9, + "probability": 0.9933 + }, + { + "start": 24004.24, + "end": 24006.44, + "probability": 0.732 + }, + { + "start": 24006.54, + "end": 24007.22, + "probability": 0.7578 + }, + { + "start": 24007.66, + "end": 24008.24, + "probability": 0.672 + }, + { + "start": 24008.48, + "end": 24008.88, + "probability": 0.1089 + }, + { + "start": 24009.84, + "end": 24012.92, + "probability": 0.7586 + }, + { + "start": 24013.64, + "end": 24017.1, + "probability": 0.9193 + }, + { + "start": 24017.62, + "end": 24018.06, + "probability": 0.2794 + }, + { + "start": 24018.18, + "end": 24023.24, + "probability": 0.9787 + }, + { + "start": 24025.13, + "end": 24028.56, + "probability": 0.9831 + }, + { + "start": 24031.28, + "end": 24032.18, + "probability": 0.0061 + }, + { + "start": 24032.24, + "end": 24032.88, + "probability": 0.9861 + }, + { + "start": 24033.7, + "end": 24035.38, + "probability": 0.9978 + }, + { + "start": 24036.34, + "end": 24041.26, + "probability": 0.9473 + }, + { + "start": 24042.08, + "end": 24042.08, + "probability": 0.3212 + }, + { + "start": 24042.08, + "end": 24045.96, + "probability": 0.995 + }, + { + "start": 24046.92, + "end": 24047.6, + "probability": 0.8506 + }, + { + "start": 24048.28, + "end": 24048.74, + "probability": 0.8938 + }, + { + "start": 24049.94, + "end": 24050.64, + "probability": 0.813 + }, + { + "start": 24051.48, + "end": 24053.56, + "probability": 0.9855 + }, + { + "start": 24054.12, + "end": 24054.8, + "probability": 0.9173 + }, + { + "start": 24055.42, + "end": 24059.38, + "probability": 0.8851 + }, + { + "start": 24060.1, + "end": 24062.4, + "probability": 0.9922 + }, + { + "start": 24063.4, + "end": 24063.9, + "probability": 0.2881 + }, + { + "start": 24063.9, + "end": 24068.72, + "probability": 0.9976 + }, + { + "start": 24068.82, + "end": 24070.58, + "probability": 0.8652 + }, + { + "start": 24071.12, + "end": 24074.32, + "probability": 0.9928 + }, + { + "start": 24074.46, + "end": 24075.12, + "probability": 0.6443 + }, + { + "start": 24075.4, + "end": 24079.16, + "probability": 0.4405 + }, + { + "start": 24079.58, + "end": 24081.22, + "probability": 0.5078 + }, + { + "start": 24081.42, + "end": 24081.42, + "probability": 0.0842 + }, + { + "start": 24081.42, + "end": 24081.42, + "probability": 0.0142 + }, + { + "start": 24081.42, + "end": 24081.42, + "probability": 0.4113 + }, + { + "start": 24081.42, + "end": 24082.48, + "probability": 0.5231 + }, + { + "start": 24082.7, + "end": 24083.92, + "probability": 0.9924 + }, + { + "start": 24084.96, + "end": 24085.84, + "probability": 0.4474 + }, + { + "start": 24085.9, + "end": 24087.27, + "probability": 0.1848 + }, + { + "start": 24087.52, + "end": 24089.5, + "probability": 0.9105 + }, + { + "start": 24090.16, + "end": 24091.24, + "probability": 0.8219 + }, + { + "start": 24091.66, + "end": 24093.96, + "probability": 0.7185 + }, + { + "start": 24094.84, + "end": 24097.44, + "probability": 0.7329 + }, + { + "start": 24098.16, + "end": 24099.44, + "probability": 0.6453 + }, + { + "start": 24100.24, + "end": 24100.68, + "probability": 0.9486 + }, + { + "start": 24100.92, + "end": 24103.04, + "probability": 0.9333 + }, + { + "start": 24103.22, + "end": 24104.12, + "probability": 0.4655 + }, + { + "start": 24104.64, + "end": 24105.5, + "probability": 0.7228 + }, + { + "start": 24105.98, + "end": 24106.42, + "probability": 0.7814 + }, + { + "start": 24113.9, + "end": 24117.48, + "probability": 0.1787 + }, + { + "start": 24137.8, + "end": 24143.06, + "probability": 0.9568 + }, + { + "start": 24146.14, + "end": 24147.52, + "probability": 0.6075 + }, + { + "start": 24150.1, + "end": 24151.8, + "probability": 0.8011 + }, + { + "start": 24155.04, + "end": 24157.9, + "probability": 0.8912 + }, + { + "start": 24159.16, + "end": 24159.66, + "probability": 0.8762 + }, + { + "start": 24160.18, + "end": 24166.94, + "probability": 0.795 + }, + { + "start": 24168.74, + "end": 24168.94, + "probability": 0.7693 + }, + { + "start": 24169.64, + "end": 24171.5, + "probability": 0.9312 + }, + { + "start": 24172.9, + "end": 24173.82, + "probability": 0.1914 + }, + { + "start": 24174.16, + "end": 24176.08, + "probability": 0.8823 + }, + { + "start": 24178.22, + "end": 24178.84, + "probability": 0.8535 + }, + { + "start": 24181.36, + "end": 24184.5, + "probability": 0.952 + }, + { + "start": 24185.14, + "end": 24186.16, + "probability": 0.8939 + }, + { + "start": 24186.98, + "end": 24188.64, + "probability": 0.9506 + }, + { + "start": 24188.76, + "end": 24189.26, + "probability": 0.7451 + }, + { + "start": 24189.34, + "end": 24192.36, + "probability": 0.9003 + }, + { + "start": 24193.74, + "end": 24194.06, + "probability": 0.4764 + }, + { + "start": 24194.76, + "end": 24195.04, + "probability": 0.8569 + }, + { + "start": 24196.12, + "end": 24196.84, + "probability": 0.6531 + }, + { + "start": 24198.86, + "end": 24203.04, + "probability": 0.8254 + }, + { + "start": 24205.16, + "end": 24208.2, + "probability": 0.9881 + }, + { + "start": 24209.56, + "end": 24211.54, + "probability": 0.999 + }, + { + "start": 24213.6, + "end": 24214.34, + "probability": 0.4336 + }, + { + "start": 24214.68, + "end": 24216.88, + "probability": 0.6887 + }, + { + "start": 24216.94, + "end": 24217.74, + "probability": 0.932 + }, + { + "start": 24218.38, + "end": 24219.56, + "probability": 0.8353 + }, + { + "start": 24220.4, + "end": 24226.08, + "probability": 0.9327 + }, + { + "start": 24226.28, + "end": 24227.66, + "probability": 0.948 + }, + { + "start": 24228.2, + "end": 24229.94, + "probability": 0.632 + }, + { + "start": 24231.2, + "end": 24233.64, + "probability": 0.9531 + }, + { + "start": 24233.9, + "end": 24236.8, + "probability": 0.8591 + }, + { + "start": 24237.54, + "end": 24238.96, + "probability": 0.718 + }, + { + "start": 24240.88, + "end": 24245.42, + "probability": 0.9897 + }, + { + "start": 24245.86, + "end": 24248.02, + "probability": 0.8232 + }, + { + "start": 24249.34, + "end": 24251.02, + "probability": 0.9148 + }, + { + "start": 24252.1, + "end": 24254.12, + "probability": 0.7058 + }, + { + "start": 24254.92, + "end": 24257.62, + "probability": 0.7932 + }, + { + "start": 24258.14, + "end": 24259.48, + "probability": 0.9092 + }, + { + "start": 24260.02, + "end": 24263.42, + "probability": 0.7871 + }, + { + "start": 24264.94, + "end": 24265.56, + "probability": 0.7808 + }, + { + "start": 24266.35, + "end": 24269.84, + "probability": 0.9964 + }, + { + "start": 24271.02, + "end": 24273.38, + "probability": 0.8617 + }, + { + "start": 24274.58, + "end": 24276.64, + "probability": 0.9235 + }, + { + "start": 24277.74, + "end": 24280.7, + "probability": 0.9563 + }, + { + "start": 24282.06, + "end": 24284.59, + "probability": 0.8713 + }, + { + "start": 24285.18, + "end": 24285.48, + "probability": 0.8436 + }, + { + "start": 24285.56, + "end": 24286.06, + "probability": 0.7504 + }, + { + "start": 24286.16, + "end": 24287.26, + "probability": 0.96 + }, + { + "start": 24287.98, + "end": 24288.74, + "probability": 0.9663 + }, + { + "start": 24289.22, + "end": 24289.76, + "probability": 0.823 + }, + { + "start": 24290.5, + "end": 24291.32, + "probability": 0.7143 + }, + { + "start": 24292.14, + "end": 24293.3, + "probability": 0.9656 + }, + { + "start": 24294.34, + "end": 24299.12, + "probability": 0.6882 + }, + { + "start": 24299.24, + "end": 24300.34, + "probability": 0.9862 + }, + { + "start": 24300.8, + "end": 24301.54, + "probability": 0.8178 + }, + { + "start": 24306.1, + "end": 24313.22, + "probability": 0.9172 + }, + { + "start": 24314.1, + "end": 24315.56, + "probability": 0.8943 + }, + { + "start": 24317.28, + "end": 24319.66, + "probability": 0.9628 + }, + { + "start": 24321.44, + "end": 24324.02, + "probability": 0.9886 + }, + { + "start": 24325.1, + "end": 24327.44, + "probability": 0.5186 + }, + { + "start": 24329.3, + "end": 24333.64, + "probability": 0.9203 + }, + { + "start": 24334.84, + "end": 24337.34, + "probability": 0.9734 + }, + { + "start": 24338.32, + "end": 24339.24, + "probability": 0.8268 + }, + { + "start": 24339.78, + "end": 24342.42, + "probability": 0.6928 + }, + { + "start": 24343.5, + "end": 24346.38, + "probability": 0.9572 + }, + { + "start": 24347.52, + "end": 24348.6, + "probability": 0.8811 + }, + { + "start": 24350.5, + "end": 24351.88, + "probability": 0.5885 + }, + { + "start": 24352.64, + "end": 24355.18, + "probability": 0.9838 + }, + { + "start": 24356.66, + "end": 24357.12, + "probability": 0.6349 + }, + { + "start": 24357.26, + "end": 24361.18, + "probability": 0.9973 + }, + { + "start": 24362.38, + "end": 24363.54, + "probability": 0.9761 + }, + { + "start": 24364.84, + "end": 24366.08, + "probability": 0.9922 + }, + { + "start": 24367.14, + "end": 24368.34, + "probability": 0.9939 + }, + { + "start": 24369.16, + "end": 24371.5, + "probability": 0.9702 + }, + { + "start": 24371.9, + "end": 24374.18, + "probability": 0.7497 + }, + { + "start": 24374.68, + "end": 24375.84, + "probability": 0.914 + }, + { + "start": 24377.64, + "end": 24378.26, + "probability": 0.7399 + }, + { + "start": 24379.56, + "end": 24381.78, + "probability": 0.6364 + }, + { + "start": 24382.02, + "end": 24382.9, + "probability": 0.9053 + }, + { + "start": 24384.68, + "end": 24387.06, + "probability": 0.8156 + }, + { + "start": 24387.06, + "end": 24389.74, + "probability": 0.9573 + }, + { + "start": 24390.38, + "end": 24391.46, + "probability": 0.8608 + }, + { + "start": 24392.18, + "end": 24393.92, + "probability": 0.8091 + }, + { + "start": 24394.72, + "end": 24396.76, + "probability": 0.73 + }, + { + "start": 24397.76, + "end": 24399.22, + "probability": 0.797 + }, + { + "start": 24406.02, + "end": 24407.54, + "probability": 0.6751 + }, + { + "start": 24407.6, + "end": 24409.48, + "probability": 0.6801 + }, + { + "start": 24410.6, + "end": 24411.16, + "probability": 0.6915 + }, + { + "start": 24412.8, + "end": 24413.89, + "probability": 0.9073 + }, + { + "start": 24414.1, + "end": 24416.1, + "probability": 0.8442 + }, + { + "start": 24416.3, + "end": 24416.54, + "probability": 0.5674 + }, + { + "start": 24416.58, + "end": 24417.52, + "probability": 0.8877 + }, + { + "start": 24418.6, + "end": 24421.38, + "probability": 0.9209 + }, + { + "start": 24422.14, + "end": 24425.2, + "probability": 0.9766 + }, + { + "start": 24426.18, + "end": 24430.6, + "probability": 0.9869 + }, + { + "start": 24430.74, + "end": 24432.34, + "probability": 0.9325 + }, + { + "start": 24432.52, + "end": 24436.16, + "probability": 0.9971 + }, + { + "start": 24437.26, + "end": 24440.8, + "probability": 0.9934 + }, + { + "start": 24440.8, + "end": 24443.14, + "probability": 0.9994 + }, + { + "start": 24443.54, + "end": 24444.44, + "probability": 0.8828 + }, + { + "start": 24445.42, + "end": 24450.78, + "probability": 0.8538 + }, + { + "start": 24452.08, + "end": 24454.06, + "probability": 0.6867 + }, + { + "start": 24454.76, + "end": 24455.94, + "probability": 0.9088 + }, + { + "start": 24456.66, + "end": 24459.5, + "probability": 0.9692 + }, + { + "start": 24459.52, + "end": 24460.52, + "probability": 0.828 + }, + { + "start": 24460.6, + "end": 24462.74, + "probability": 0.9124 + }, + { + "start": 24463.28, + "end": 24465.66, + "probability": 0.9945 + }, + { + "start": 24465.78, + "end": 24466.02, + "probability": 0.6913 + }, + { + "start": 24466.02, + "end": 24467.6, + "probability": 0.9427 + }, + { + "start": 24467.72, + "end": 24468.61, + "probability": 0.9802 + }, + { + "start": 24470.56, + "end": 24472.46, + "probability": 0.8764 + }, + { + "start": 24472.54, + "end": 24472.84, + "probability": 0.9612 + }, + { + "start": 24473.02, + "end": 24474.5, + "probability": 0.9451 + }, + { + "start": 24474.94, + "end": 24480.48, + "probability": 0.9683 + }, + { + "start": 24480.56, + "end": 24482.06, + "probability": 0.7981 + }, + { + "start": 24482.76, + "end": 24483.98, + "probability": 0.8742 + }, + { + "start": 24484.1, + "end": 24486.09, + "probability": 0.9971 + }, + { + "start": 24486.3, + "end": 24489.92, + "probability": 0.9956 + }, + { + "start": 24489.92, + "end": 24493.82, + "probability": 0.9904 + }, + { + "start": 24494.48, + "end": 24498.42, + "probability": 0.9978 + }, + { + "start": 24498.96, + "end": 24500.0, + "probability": 0.8381 + }, + { + "start": 24500.38, + "end": 24502.26, + "probability": 0.8986 + }, + { + "start": 24502.82, + "end": 24504.42, + "probability": 0.7647 + }, + { + "start": 24504.58, + "end": 24507.57, + "probability": 0.9908 + }, + { + "start": 24508.28, + "end": 24511.04, + "probability": 0.9668 + }, + { + "start": 24511.84, + "end": 24513.73, + "probability": 0.7665 + }, + { + "start": 24513.92, + "end": 24516.34, + "probability": 0.9607 + }, + { + "start": 24516.78, + "end": 24518.34, + "probability": 0.9045 + }, + { + "start": 24518.42, + "end": 24518.82, + "probability": 0.8763 + }, + { + "start": 24518.96, + "end": 24520.22, + "probability": 0.7943 + }, + { + "start": 24520.32, + "end": 24521.52, + "probability": 0.9702 + }, + { + "start": 24521.78, + "end": 24522.84, + "probability": 0.9941 + }, + { + "start": 24523.6, + "end": 24528.22, + "probability": 0.8955 + }, + { + "start": 24528.82, + "end": 24532.14, + "probability": 0.9978 + }, + { + "start": 24533.2, + "end": 24537.3, + "probability": 0.9824 + }, + { + "start": 24537.42, + "end": 24539.0, + "probability": 0.8253 + }, + { + "start": 24539.1, + "end": 24542.6, + "probability": 0.9553 + }, + { + "start": 24543.24, + "end": 24546.34, + "probability": 0.7726 + }, + { + "start": 24546.72, + "end": 24546.72, + "probability": 0.0569 + }, + { + "start": 24546.72, + "end": 24548.22, + "probability": 0.5593 + }, + { + "start": 24548.32, + "end": 24548.48, + "probability": 0.4315 + }, + { + "start": 24548.56, + "end": 24549.22, + "probability": 0.3394 + }, + { + "start": 24549.32, + "end": 24551.58, + "probability": 0.4655 + }, + { + "start": 24551.6, + "end": 24552.99, + "probability": 0.993 + }, + { + "start": 24553.39, + "end": 24555.53, + "probability": 0.8698 + }, + { + "start": 24555.93, + "end": 24557.13, + "probability": 0.77 + }, + { + "start": 24557.29, + "end": 24561.43, + "probability": 0.9946 + }, + { + "start": 24561.57, + "end": 24561.77, + "probability": 0.8654 + }, + { + "start": 24562.09, + "end": 24564.11, + "probability": 0.8175 + }, + { + "start": 24564.53, + "end": 24566.05, + "probability": 0.7052 + }, + { + "start": 24566.09, + "end": 24566.99, + "probability": 0.9764 + }, + { + "start": 24567.69, + "end": 24570.37, + "probability": 0.9858 + }, + { + "start": 24570.55, + "end": 24572.81, + "probability": 0.6685 + }, + { + "start": 24572.81, + "end": 24575.07, + "probability": 0.7448 + }, + { + "start": 24575.55, + "end": 24577.75, + "probability": 0.735 + }, + { + "start": 24578.79, + "end": 24580.73, + "probability": 0.991 + }, + { + "start": 24581.25, + "end": 24581.51, + "probability": 0.8026 + }, + { + "start": 24581.59, + "end": 24582.67, + "probability": 0.9412 + }, + { + "start": 24583.29, + "end": 24585.79, + "probability": 0.979 + }, + { + "start": 24585.79, + "end": 24588.39, + "probability": 0.9906 + }, + { + "start": 24588.57, + "end": 24591.71, + "probability": 0.773 + }, + { + "start": 24592.35, + "end": 24592.35, + "probability": 0.089 + }, + { + "start": 24592.35, + "end": 24594.91, + "probability": 0.6041 + }, + { + "start": 24595.05, + "end": 24595.77, + "probability": 0.2771 + }, + { + "start": 24596.17, + "end": 24596.95, + "probability": 0.5453 + }, + { + "start": 24597.03, + "end": 24597.45, + "probability": 0.6658 + }, + { + "start": 24597.67, + "end": 24600.61, + "probability": 0.7697 + }, + { + "start": 24601.35, + "end": 24604.67, + "probability": 0.9021 + }, + { + "start": 24604.81, + "end": 24606.58, + "probability": 0.7538 + }, + { + "start": 24607.41, + "end": 24611.51, + "probability": 0.1305 + }, + { + "start": 24614.53, + "end": 24614.53, + "probability": 0.0005 + }, + { + "start": 24615.65, + "end": 24618.39, + "probability": 0.1416 + }, + { + "start": 24636.43, + "end": 24637.95, + "probability": 0.0429 + }, + { + "start": 24637.95, + "end": 24640.47, + "probability": 0.3149 + }, + { + "start": 24641.15, + "end": 24643.01, + "probability": 0.2647 + }, + { + "start": 24643.25, + "end": 24646.87, + "probability": 0.13 + }, + { + "start": 24651.43, + "end": 24653.11, + "probability": 0.2276 + }, + { + "start": 24663.03, + "end": 24663.27, + "probability": 0.0733 + }, + { + "start": 24663.93, + "end": 24667.11, + "probability": 0.0546 + }, + { + "start": 24667.11, + "end": 24668.99, + "probability": 0.6545 + }, + { + "start": 24669.61, + "end": 24671.05, + "probability": 0.2545 + }, + { + "start": 24672.21, + "end": 24672.97, + "probability": 0.0922 + }, + { + "start": 24672.97, + "end": 24676.29, + "probability": 0.6058 + }, + { + "start": 24676.71, + "end": 24677.33, + "probability": 0.0443 + }, + { + "start": 24678.27, + "end": 24680.41, + "probability": 0.0417 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.0, + "end": 24700.0, + "probability": 0.0 + }, + { + "start": 24700.08, + "end": 24702.02, + "probability": 0.1082 + }, + { + "start": 24702.24, + "end": 24703.8, + "probability": 0.0685 + }, + { + "start": 24703.8, + "end": 24704.52, + "probability": 0.3533 + }, + { + "start": 24704.94, + "end": 24704.94, + "probability": 0.0822 + }, + { + "start": 24704.94, + "end": 24707.92, + "probability": 0.6298 + }, + { + "start": 24707.92, + "end": 24709.18, + "probability": 0.1451 + }, + { + "start": 24710.4, + "end": 24711.56, + "probability": 0.9613 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24848.0, + "end": 24848.0, + "probability": 0.0 + }, + { + "start": 24864.3, + "end": 24865.98, + "probability": 0.054 + }, + { + "start": 24867.22, + "end": 24868.5, + "probability": 0.4345 + }, + { + "start": 24869.14, + "end": 24869.6, + "probability": 0.0 + }, + { + "start": 24883.7, + "end": 24884.6, + "probability": 0.1107 + }, + { + "start": 24886.24, + "end": 24888.12, + "probability": 0.0274 + }, + { + "start": 24888.36, + "end": 24889.26, + "probability": 0.0505 + }, + { + "start": 24890.08, + "end": 24891.58, + "probability": 0.0153 + }, + { + "start": 24893.14, + "end": 24895.7, + "probability": 0.064 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.0, + "end": 24972.0, + "probability": 0.0 + }, + { + "start": 24972.2, + "end": 24972.28, + "probability": 0.0079 + }, + { + "start": 24972.28, + "end": 24972.28, + "probability": 0.0231 + }, + { + "start": 24972.28, + "end": 24972.28, + "probability": 0.1046 + }, + { + "start": 24972.28, + "end": 24975.5, + "probability": 0.8474 + }, + { + "start": 24976.42, + "end": 24977.48, + "probability": 0.4457 + }, + { + "start": 24978.04, + "end": 24979.88, + "probability": 0.7236 + }, + { + "start": 24980.4, + "end": 24981.78, + "probability": 0.9542 + }, + { + "start": 24982.4, + "end": 24985.84, + "probability": 0.9985 + }, + { + "start": 24986.42, + "end": 24987.12, + "probability": 0.8763 + }, + { + "start": 24988.44, + "end": 24991.78, + "probability": 0.7427 + }, + { + "start": 24992.32, + "end": 24997.1, + "probability": 0.9982 + }, + { + "start": 24997.68, + "end": 24999.1, + "probability": 0.9988 + }, + { + "start": 24999.64, + "end": 25000.34, + "probability": 0.8355 + }, + { + "start": 25000.88, + "end": 25002.1, + "probability": 0.9983 + }, + { + "start": 25002.68, + "end": 25003.14, + "probability": 0.9745 + }, + { + "start": 25004.34, + "end": 25004.58, + "probability": 0.6415 + }, + { + "start": 25005.44, + "end": 25007.1, + "probability": 0.3328 + }, + { + "start": 25007.7, + "end": 25011.8, + "probability": 0.9992 + }, + { + "start": 25012.5, + "end": 25013.22, + "probability": 0.5783 + }, + { + "start": 25013.88, + "end": 25015.84, + "probability": 0.8023 + }, + { + "start": 25016.36, + "end": 25020.36, + "probability": 0.9935 + }, + { + "start": 25021.28, + "end": 25022.38, + "probability": 0.4202 + }, + { + "start": 25023.0, + "end": 25025.02, + "probability": 0.9743 + }, + { + "start": 25025.74, + "end": 25029.14, + "probability": 0.8579 + }, + { + "start": 25029.76, + "end": 25030.66, + "probability": 0.8258 + }, + { + "start": 25031.58, + "end": 25034.36, + "probability": 0.9065 + }, + { + "start": 25034.68, + "end": 25039.0, + "probability": 0.8789 + }, + { + "start": 25040.2, + "end": 25043.42, + "probability": 0.794 + }, + { + "start": 25045.84, + "end": 25046.38, + "probability": 0.5822 + }, + { + "start": 25047.36, + "end": 25053.9, + "probability": 0.9937 + }, + { + "start": 25054.68, + "end": 25056.8, + "probability": 0.9659 + }, + { + "start": 25057.98, + "end": 25061.54, + "probability": 0.9905 + }, + { + "start": 25062.56, + "end": 25063.48, + "probability": 0.999 + }, + { + "start": 25064.26, + "end": 25065.34, + "probability": 0.9907 + }, + { + "start": 25065.94, + "end": 25066.34, + "probability": 0.9174 + }, + { + "start": 25067.06, + "end": 25068.86, + "probability": 0.9821 + }, + { + "start": 25069.78, + "end": 25075.38, + "probability": 0.9618 + }, + { + "start": 25076.78, + "end": 25080.08, + "probability": 0.9984 + }, + { + "start": 25080.88, + "end": 25086.5, + "probability": 0.9157 + }, + { + "start": 25087.06, + "end": 25088.34, + "probability": 0.9906 + }, + { + "start": 25089.0, + "end": 25090.5, + "probability": 0.9922 + }, + { + "start": 25091.1, + "end": 25091.34, + "probability": 0.2798 + }, + { + "start": 25091.4, + "end": 25091.86, + "probability": 0.8662 + }, + { + "start": 25092.0, + "end": 25093.92, + "probability": 0.9241 + }, + { + "start": 25095.18, + "end": 25097.14, + "probability": 0.6621 + }, + { + "start": 25097.78, + "end": 25098.72, + "probability": 0.7069 + }, + { + "start": 25099.54, + "end": 25101.0, + "probability": 0.5636 + }, + { + "start": 25101.68, + "end": 25103.06, + "probability": 0.9255 + }, + { + "start": 25105.46, + "end": 25107.24, + "probability": 0.6702 + }, + { + "start": 25108.22, + "end": 25112.66, + "probability": 0.9951 + }, + { + "start": 25113.28, + "end": 25114.92, + "probability": 0.7754 + }, + { + "start": 25115.48, + "end": 25117.72, + "probability": 0.571 + }, + { + "start": 25118.8, + "end": 25119.94, + "probability": 0.4278 + }, + { + "start": 25120.26, + "end": 25121.88, + "probability": 0.8435 + }, + { + "start": 25122.38, + "end": 25124.16, + "probability": 0.8094 + }, + { + "start": 25124.3, + "end": 25126.46, + "probability": 0.812 + }, + { + "start": 25126.74, + "end": 25127.06, + "probability": 0.9081 + }, + { + "start": 25127.12, + "end": 25128.18, + "probability": 0.9014 + }, + { + "start": 25128.38, + "end": 25132.6, + "probability": 0.9229 + }, + { + "start": 25133.12, + "end": 25136.86, + "probability": 0.725 + }, + { + "start": 25137.44, + "end": 25138.98, + "probability": 0.3674 + }, + { + "start": 25139.06, + "end": 25144.86, + "probability": 0.8422 + }, + { + "start": 25145.48, + "end": 25146.42, + "probability": 0.8278 + }, + { + "start": 25146.86, + "end": 25148.66, + "probability": 0.8238 + }, + { + "start": 25149.14, + "end": 25152.32, + "probability": 0.9475 + }, + { + "start": 25152.34, + "end": 25152.82, + "probability": 0.7182 + }, + { + "start": 25153.1, + "end": 25154.3, + "probability": 0.7851 + }, + { + "start": 25154.5, + "end": 25155.37, + "probability": 0.8043 + }, + { + "start": 25155.88, + "end": 25158.68, + "probability": 0.9917 + }, + { + "start": 25158.98, + "end": 25161.5, + "probability": 0.732 + }, + { + "start": 25162.0, + "end": 25167.92, + "probability": 0.9825 + }, + { + "start": 25168.14, + "end": 25168.77, + "probability": 0.3808 + }, + { + "start": 25168.94, + "end": 25171.16, + "probability": 0.7294 + }, + { + "start": 25171.72, + "end": 25173.26, + "probability": 0.9615 + }, + { + "start": 25173.7, + "end": 25175.62, + "probability": 0.9129 + }, + { + "start": 25175.72, + "end": 25179.14, + "probability": 0.906 + }, + { + "start": 25179.3, + "end": 25179.94, + "probability": 0.9222 + }, + { + "start": 25180.5, + "end": 25181.62, + "probability": 0.9277 + }, + { + "start": 25181.84, + "end": 25182.4, + "probability": 0.9917 + }, + { + "start": 25182.84, + "end": 25184.42, + "probability": 0.7622 + }, + { + "start": 25185.06, + "end": 25186.58, + "probability": 0.1872 + }, + { + "start": 25186.58, + "end": 25188.32, + "probability": 0.9852 + }, + { + "start": 25188.34, + "end": 25188.34, + "probability": 0.5021 + }, + { + "start": 25188.5, + "end": 25190.02, + "probability": 0.5563 + }, + { + "start": 25190.04, + "end": 25190.47, + "probability": 0.3007 + }, + { + "start": 25191.36, + "end": 25194.06, + "probability": 0.7247 + }, + { + "start": 25194.34, + "end": 25195.32, + "probability": 0.702 + }, + { + "start": 25195.7, + "end": 25198.58, + "probability": 0.9473 + }, + { + "start": 25199.2, + "end": 25200.06, + "probability": 0.9502 + }, + { + "start": 25200.68, + "end": 25205.08, + "probability": 0.9844 + }, + { + "start": 25205.96, + "end": 25206.88, + "probability": 0.9893 + }, + { + "start": 25207.46, + "end": 25208.08, + "probability": 0.98 + }, + { + "start": 25210.36, + "end": 25210.74, + "probability": 0.9829 + }, + { + "start": 25212.42, + "end": 25215.6, + "probability": 0.8347 + }, + { + "start": 25216.44, + "end": 25218.54, + "probability": 0.8934 + }, + { + "start": 25219.24, + "end": 25220.14, + "probability": 0.5042 + }, + { + "start": 25221.28, + "end": 25223.88, + "probability": 0.9509 + }, + { + "start": 25224.8, + "end": 25225.96, + "probability": 0.5051 + }, + { + "start": 25226.5, + "end": 25232.48, + "probability": 0.9876 + }, + { + "start": 25232.48, + "end": 25237.4, + "probability": 0.978 + }, + { + "start": 25238.16, + "end": 25239.08, + "probability": 0.7676 + }, + { + "start": 25239.6, + "end": 25240.78, + "probability": 0.9635 + }, + { + "start": 25241.4, + "end": 25243.68, + "probability": 0.9958 + }, + { + "start": 25244.26, + "end": 25247.22, + "probability": 0.9945 + }, + { + "start": 25247.8, + "end": 25250.92, + "probability": 0.5743 + }, + { + "start": 25250.98, + "end": 25251.18, + "probability": 0.3517 + }, + { + "start": 25251.18, + "end": 25254.1, + "probability": 0.9946 + }, + { + "start": 25254.86, + "end": 25256.98, + "probability": 0.9104 + }, + { + "start": 25258.08, + "end": 25261.12, + "probability": 0.9648 + }, + { + "start": 25261.2, + "end": 25262.46, + "probability": 0.9231 + }, + { + "start": 25262.5, + "end": 25263.42, + "probability": 0.6981 + }, + { + "start": 25263.88, + "end": 25264.78, + "probability": 0.9121 + }, + { + "start": 25265.12, + "end": 25273.04, + "probability": 0.9999 + }, + { + "start": 25273.56, + "end": 25274.64, + "probability": 0.5502 + }, + { + "start": 25274.74, + "end": 25276.02, + "probability": 0.6659 + }, + { + "start": 25276.48, + "end": 25276.94, + "probability": 0.6873 + }, + { + "start": 25277.1, + "end": 25281.04, + "probability": 0.9931 + }, + { + "start": 25281.18, + "end": 25284.48, + "probability": 0.8608 + }, + { + "start": 25284.86, + "end": 25287.48, + "probability": 0.994 + }, + { + "start": 25288.48, + "end": 25293.16, + "probability": 0.9819 + }, + { + "start": 25293.38, + "end": 25293.66, + "probability": 0.8508 + }, + { + "start": 25293.96, + "end": 25295.4, + "probability": 0.9266 + }, + { + "start": 25296.5, + "end": 25301.64, + "probability": 0.9401 + }, + { + "start": 25308.48, + "end": 25308.78, + "probability": 0.0312 + }, + { + "start": 25309.7, + "end": 25313.32, + "probability": 0.0265 + }, + { + "start": 25314.5, + "end": 25317.72, + "probability": 0.6276 + }, + { + "start": 25320.14, + "end": 25321.54, + "probability": 0.7223 + }, + { + "start": 25328.1, + "end": 25329.16, + "probability": 0.4886 + }, + { + "start": 25329.82, + "end": 25330.96, + "probability": 0.1472 + }, + { + "start": 25331.54, + "end": 25332.06, + "probability": 0.1298 + }, + { + "start": 25332.06, + "end": 25332.06, + "probability": 0.5163 + }, + { + "start": 25332.06, + "end": 25332.68, + "probability": 0.6993 + }, + { + "start": 25332.82, + "end": 25334.34, + "probability": 0.7641 + }, + { + "start": 25334.34, + "end": 25341.06, + "probability": 0.7449 + }, + { + "start": 25341.24, + "end": 25344.14, + "probability": 0.7008 + }, + { + "start": 25344.3, + "end": 25347.62, + "probability": 0.9773 + }, + { + "start": 25347.7, + "end": 25350.02, + "probability": 0.9995 + }, + { + "start": 25350.8, + "end": 25353.86, + "probability": 0.9871 + }, + { + "start": 25354.62, + "end": 25355.82, + "probability": 0.8217 + }, + { + "start": 25356.74, + "end": 25357.02, + "probability": 0.9106 + }, + { + "start": 25357.66, + "end": 25358.64, + "probability": 0.9977 + }, + { + "start": 25359.18, + "end": 25360.32, + "probability": 0.9966 + }, + { + "start": 25361.14, + "end": 25363.84, + "probability": 0.9969 + }, + { + "start": 25364.66, + "end": 25365.68, + "probability": 0.9547 + }, + { + "start": 25366.5, + "end": 25369.42, + "probability": 0.2077 + }, + { + "start": 25369.84, + "end": 25371.68, + "probability": 0.6494 + }, + { + "start": 25374.96, + "end": 25377.06, + "probability": 0.1101 + }, + { + "start": 25380.16, + "end": 25382.46, + "probability": 0.6558 + }, + { + "start": 25383.58, + "end": 25385.14, + "probability": 0.0252 + }, + { + "start": 25385.16, + "end": 25386.36, + "probability": 0.408 + }, + { + "start": 25387.16, + "end": 25387.88, + "probability": 0.2271 + }, + { + "start": 25387.88, + "end": 25388.22, + "probability": 0.1834 + }, + { + "start": 25389.12, + "end": 25390.02, + "probability": 0.2177 + }, + { + "start": 25390.02, + "end": 25393.48, + "probability": 0.2584 + }, + { + "start": 25393.74, + "end": 25396.66, + "probability": 0.0242 + }, + { + "start": 25397.04, + "end": 25397.77, + "probability": 0.0627 + }, + { + "start": 25397.84, + "end": 25399.1, + "probability": 0.11 + }, + { + "start": 25399.1, + "end": 25399.2, + "probability": 0.08 + }, + { + "start": 25399.2, + "end": 25399.52, + "probability": 0.1316 + }, + { + "start": 25399.54, + "end": 25399.58, + "probability": 0.1546 + }, + { + "start": 25399.58, + "end": 25401.56, + "probability": 0.0204 + }, + { + "start": 25402.04, + "end": 25402.27, + "probability": 0.0886 + }, + { + "start": 25404.18, + "end": 25404.84, + "probability": 0.0517 + }, + { + "start": 25404.85, + "end": 25404.98, + "probability": 0.0804 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.0, + "end": 25405.0, + "probability": 0.0 + }, + { + "start": 25405.65, + "end": 25409.04, + "probability": 0.5541 + }, + { + "start": 25409.24, + "end": 25410.0, + "probability": 0.3503 + }, + { + "start": 25410.06, + "end": 25410.76, + "probability": 0.8591 + }, + { + "start": 25410.78, + "end": 25411.36, + "probability": 0.2084 + }, + { + "start": 25411.54, + "end": 25412.94, + "probability": 0.5629 + }, + { + "start": 25416.38, + "end": 25417.78, + "probability": 0.7775 + }, + { + "start": 25418.64, + "end": 25421.08, + "probability": 0.9822 + }, + { + "start": 25422.26, + "end": 25424.38, + "probability": 0.7808 + }, + { + "start": 25424.98, + "end": 25425.88, + "probability": 0.6385 + }, + { + "start": 25426.86, + "end": 25428.26, + "probability": 0.0913 + }, + { + "start": 25428.54, + "end": 25429.1, + "probability": 0.8809 + }, + { + "start": 25430.5, + "end": 25431.06, + "probability": 0.669 + }, + { + "start": 25431.12, + "end": 25432.48, + "probability": 0.6691 + }, + { + "start": 25433.26, + "end": 25436.26, + "probability": 0.9501 + }, + { + "start": 25437.16, + "end": 25439.0, + "probability": 0.9117 + }, + { + "start": 25439.48, + "end": 25442.6, + "probability": 0.9957 + }, + { + "start": 25443.36, + "end": 25444.08, + "probability": 0.9592 + }, + { + "start": 25444.76, + "end": 25446.98, + "probability": 0.9969 + }, + { + "start": 25447.74, + "end": 25450.52, + "probability": 0.9464 + }, + { + "start": 25451.12, + "end": 25454.02, + "probability": 0.999 + }, + { + "start": 25454.66, + "end": 25456.06, + "probability": 0.9199 + }, + { + "start": 25457.58, + "end": 25458.08, + "probability": 0.0553 + }, + { + "start": 25459.75, + "end": 25460.5, + "probability": 0.0422 + }, + { + "start": 25461.9, + "end": 25462.12, + "probability": 0.0408 + }, + { + "start": 25462.12, + "end": 25462.12, + "probability": 0.0535 + }, + { + "start": 25462.12, + "end": 25462.12, + "probability": 0.1028 + }, + { + "start": 25462.12, + "end": 25462.12, + "probability": 0.0245 + }, + { + "start": 25462.12, + "end": 25466.99, + "probability": 0.5542 + }, + { + "start": 25468.14, + "end": 25470.52, + "probability": 0.0823 + }, + { + "start": 25472.76, + "end": 25473.72, + "probability": 0.097 + }, + { + "start": 25474.0, + "end": 25475.1, + "probability": 0.0212 + }, + { + "start": 25476.22, + "end": 25479.14, + "probability": 0.0219 + }, + { + "start": 25479.74, + "end": 25479.85, + "probability": 0.052 + }, + { + "start": 25480.54, + "end": 25481.62, + "probability": 0.1149 + }, + { + "start": 25481.66, + "end": 25482.78, + "probability": 0.5301 + }, + { + "start": 25482.78, + "end": 25485.42, + "probability": 0.3438 + }, + { + "start": 25487.44, + "end": 25488.22, + "probability": 0.3241 + }, + { + "start": 25499.78, + "end": 25501.61, + "probability": 0.0974 + }, + { + "start": 25503.7, + "end": 25503.96, + "probability": 0.301 + }, + { + "start": 25504.02, + "end": 25504.28, + "probability": 0.0747 + }, + { + "start": 25504.28, + "end": 25504.71, + "probability": 0.0152 + }, + { + "start": 25505.0, + "end": 25505.28, + "probability": 0.259 + }, + { + "start": 25505.92, + "end": 25507.3, + "probability": 0.0267 + }, + { + "start": 25507.3, + "end": 25508.08, + "probability": 0.3691 + }, + { + "start": 25508.74, + "end": 25509.88, + "probability": 0.0982 + }, + { + "start": 25509.9, + "end": 25511.18, + "probability": 0.2039 + }, + { + "start": 25514.08, + "end": 25515.72, + "probability": 0.0522 + }, + { + "start": 25515.72, + "end": 25519.6, + "probability": 0.0374 + }, + { + "start": 25519.6, + "end": 25521.72, + "probability": 0.0885 + }, + { + "start": 25523.68, + "end": 25523.92, + "probability": 0.1251 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.0, + "end": 25533.0, + "probability": 0.0 + }, + { + "start": 25533.08, + "end": 25535.7, + "probability": 0.1489 + }, + { + "start": 25535.74, + "end": 25536.88, + "probability": 0.6693 + }, + { + "start": 25537.44, + "end": 25539.56, + "probability": 0.0613 + }, + { + "start": 25540.28, + "end": 25542.58, + "probability": 0.3535 + }, + { + "start": 25545.21, + "end": 25548.22, + "probability": 0.4678 + }, + { + "start": 25548.48, + "end": 25550.52, + "probability": 0.5474 + }, + { + "start": 25550.52, + "end": 25551.02, + "probability": 0.4479 + }, + { + "start": 25551.7, + "end": 25552.98, + "probability": 0.3902 + }, + { + "start": 25553.12, + "end": 25554.66, + "probability": 0.2204 + }, + { + "start": 25554.9, + "end": 25557.66, + "probability": 0.111 + }, + { + "start": 25558.06, + "end": 25560.76, + "probability": 0.7351 + }, + { + "start": 25561.44, + "end": 25563.94, + "probability": 0.9523 + }, + { + "start": 25564.76, + "end": 25566.2, + "probability": 0.5583 + }, + { + "start": 25566.56, + "end": 25566.68, + "probability": 0.2466 + }, + { + "start": 25566.68, + "end": 25566.96, + "probability": 0.0082 + }, + { + "start": 25567.08, + "end": 25569.54, + "probability": 0.2912 + }, + { + "start": 25569.54, + "end": 25570.54, + "probability": 0.7516 + }, + { + "start": 25570.7, + "end": 25572.5, + "probability": 0.6368 + }, + { + "start": 25572.54, + "end": 25573.74, + "probability": 0.4164 + }, + { + "start": 25573.86, + "end": 25574.58, + "probability": 0.1033 + }, + { + "start": 25575.04, + "end": 25575.66, + "probability": 0.4743 + }, + { + "start": 25575.82, + "end": 25576.7, + "probability": 0.4304 + }, + { + "start": 25576.72, + "end": 25576.94, + "probability": 0.5808 + }, + { + "start": 25577.08, + "end": 25577.9, + "probability": 0.48 + }, + { + "start": 25578.02, + "end": 25580.4, + "probability": 0.7799 + }, + { + "start": 25581.56, + "end": 25582.1, + "probability": 0.1595 + }, + { + "start": 25586.4, + "end": 25586.84, + "probability": 0.4608 + }, + { + "start": 25587.06, + "end": 25587.72, + "probability": 0.2377 + }, + { + "start": 25588.32, + "end": 25590.1, + "probability": 0.4308 + }, + { + "start": 25591.48, + "end": 25594.5, + "probability": 0.6489 + }, + { + "start": 25595.34, + "end": 25596.72, + "probability": 0.8638 + }, + { + "start": 25600.12, + "end": 25600.44, + "probability": 0.4096 + }, + { + "start": 25601.1, + "end": 25604.1, + "probability": 0.7493 + }, + { + "start": 25604.48, + "end": 25605.48, + "probability": 0.5534 + }, + { + "start": 25605.48, + "end": 25607.58, + "probability": 0.0511 + }, + { + "start": 25607.76, + "end": 25608.84, + "probability": 0.7052 + }, + { + "start": 25608.96, + "end": 25609.7, + "probability": 0.8954 + }, + { + "start": 25610.38, + "end": 25612.48, + "probability": 0.9626 + }, + { + "start": 25613.32, + "end": 25614.62, + "probability": 0.9832 + }, + { + "start": 25614.64, + "end": 25619.32, + "probability": 0.994 + }, + { + "start": 25619.98, + "end": 25619.98, + "probability": 0.2015 + }, + { + "start": 25619.98, + "end": 25620.08, + "probability": 0.256 + }, + { + "start": 25620.3, + "end": 25624.82, + "probability": 0.9972 + }, + { + "start": 25625.0, + "end": 25626.62, + "probability": 0.9756 + }, + { + "start": 25627.22, + "end": 25628.94, + "probability": 0.8359 + }, + { + "start": 25629.76, + "end": 25631.68, + "probability": 0.1064 + }, + { + "start": 25631.68, + "end": 25632.29, + "probability": 0.6802 + }, + { + "start": 25632.62, + "end": 25635.98, + "probability": 0.6414 + }, + { + "start": 25636.22, + "end": 25636.24, + "probability": 0.3187 + }, + { + "start": 25636.24, + "end": 25637.02, + "probability": 0.6144 + }, + { + "start": 25637.42, + "end": 25640.7, + "probability": 0.7518 + }, + { + "start": 25641.0, + "end": 25641.06, + "probability": 0.5609 + }, + { + "start": 25641.06, + "end": 25641.06, + "probability": 0.0772 + }, + { + "start": 25641.06, + "end": 25641.06, + "probability": 0.0397 + }, + { + "start": 25641.06, + "end": 25642.6, + "probability": 0.5926 + }, + { + "start": 25642.62, + "end": 25643.7, + "probability": 0.7203 + }, + { + "start": 25645.26, + "end": 25645.42, + "probability": 0.6923 + }, + { + "start": 25645.42, + "end": 25646.75, + "probability": 0.496 + }, + { + "start": 25647.5, + "end": 25647.98, + "probability": 0.1002 + }, + { + "start": 25650.9, + "end": 25651.1, + "probability": 0.0543 + }, + { + "start": 25651.1, + "end": 25651.26, + "probability": 0.0697 + }, + { + "start": 25651.42, + "end": 25651.52, + "probability": 0.3281 + }, + { + "start": 25651.8, + "end": 25652.88, + "probability": 0.4401 + }, + { + "start": 25653.08, + "end": 25655.2, + "probability": 0.5022 + }, + { + "start": 25655.8, + "end": 25660.32, + "probability": 0.5109 + }, + { + "start": 25660.78, + "end": 25660.88, + "probability": 0.1029 + }, + { + "start": 25660.98, + "end": 25662.38, + "probability": 0.1474 + }, + { + "start": 25662.38, + "end": 25663.83, + "probability": 0.1171 + }, + { + "start": 25665.1, + "end": 25667.5, + "probability": 0.4387 + }, + { + "start": 25667.5, + "end": 25667.88, + "probability": 0.4615 + }, + { + "start": 25668.0, + "end": 25673.32, + "probability": 0.8601 + }, + { + "start": 25673.32, + "end": 25675.12, + "probability": 0.0958 + }, + { + "start": 25675.66, + "end": 25675.86, + "probability": 0.7483 + }, + { + "start": 25675.96, + "end": 25676.6, + "probability": 0.7231 + }, + { + "start": 25676.8, + "end": 25678.59, + "probability": 0.3206 + }, + { + "start": 25679.74, + "end": 25680.98, + "probability": 0.7391 + }, + { + "start": 25681.2, + "end": 25681.2, + "probability": 0.2404 + }, + { + "start": 25681.2, + "end": 25681.2, + "probability": 0.0143 + }, + { + "start": 25681.2, + "end": 25683.24, + "probability": 0.0706 + }, + { + "start": 25683.24, + "end": 25687.12, + "probability": 0.9863 + }, + { + "start": 25687.96, + "end": 25690.92, + "probability": 0.9956 + }, + { + "start": 25691.52, + "end": 25693.52, + "probability": 0.912 + }, + { + "start": 25693.52, + "end": 25695.56, + "probability": 0.97 + }, + { + "start": 25696.16, + "end": 25696.48, + "probability": 0.7551 + }, + { + "start": 25696.54, + "end": 25701.72, + "probability": 0.9562 + }, + { + "start": 25701.94, + "end": 25704.88, + "probability": 0.8984 + }, + { + "start": 25704.92, + "end": 25705.2, + "probability": 0.8588 + }, + { + "start": 25705.44, + "end": 25707.3, + "probability": 0.8688 + }, + { + "start": 25707.54, + "end": 25708.32, + "probability": 0.5968 + }, + { + "start": 25708.5, + "end": 25711.44, + "probability": 0.1764 + }, + { + "start": 25711.56, + "end": 25715.02, + "probability": 0.5039 + }, + { + "start": 25715.02, + "end": 25716.46, + "probability": 0.1152 + }, + { + "start": 25716.5, + "end": 25718.08, + "probability": 0.1805 + }, + { + "start": 25718.5, + "end": 25719.94, + "probability": 0.2416 + }, + { + "start": 25720.48, + "end": 25721.52, + "probability": 0.0271 + }, + { + "start": 25721.92, + "end": 25724.09, + "probability": 0.2513 + }, + { + "start": 25725.98, + "end": 25727.02, + "probability": 0.0514 + }, + { + "start": 25727.12, + "end": 25727.4, + "probability": 0.0974 + }, + { + "start": 25727.96, + "end": 25730.48, + "probability": 0.1229 + }, + { + "start": 25731.6, + "end": 25733.46, + "probability": 0.0753 + }, + { + "start": 25733.46, + "end": 25734.34, + "probability": 0.051 + }, + { + "start": 25735.9, + "end": 25735.94, + "probability": 0.3386 + }, + { + "start": 25735.94, + "end": 25736.58, + "probability": 0.2086 + }, + { + "start": 25736.58, + "end": 25736.68, + "probability": 0.4522 + }, + { + "start": 25737.54, + "end": 25738.78, + "probability": 0.8834 + }, + { + "start": 25739.32, + "end": 25739.64, + "probability": 0.0367 + }, + { + "start": 25739.64, + "end": 25739.64, + "probability": 0.0393 + }, + { + "start": 25739.64, + "end": 25739.64, + "probability": 0.5131 + }, + { + "start": 25739.64, + "end": 25739.64, + "probability": 0.0231 + }, + { + "start": 25739.64, + "end": 25739.64, + "probability": 0.0327 + }, + { + "start": 25739.64, + "end": 25741.66, + "probability": 0.6542 + }, + { + "start": 25742.48, + "end": 25744.12, + "probability": 0.7644 + }, + { + "start": 25744.92, + "end": 25746.34, + "probability": 0.6387 + }, + { + "start": 25746.98, + "end": 25748.32, + "probability": 0.7947 + }, + { + "start": 25748.84, + "end": 25751.98, + "probability": 0.9558 + }, + { + "start": 25752.62, + "end": 25755.3, + "probability": 0.8006 + }, + { + "start": 25756.0, + "end": 25757.04, + "probability": 0.974 + }, + { + "start": 25757.58, + "end": 25758.68, + "probability": 0.6814 + }, + { + "start": 25759.32, + "end": 25760.72, + "probability": 0.9872 + }, + { + "start": 25761.36, + "end": 25765.3, + "probability": 0.9585 + }, + { + "start": 25765.96, + "end": 25766.76, + "probability": 0.8031 + }, + { + "start": 25767.04, + "end": 25768.46, + "probability": 0.9963 + }, + { + "start": 25768.98, + "end": 25770.44, + "probability": 0.5154 + }, + { + "start": 25772.08, + "end": 25778.46, + "probability": 0.9952 + }, + { + "start": 25778.98, + "end": 25781.14, + "probability": 0.696 + }, + { + "start": 25781.2, + "end": 25781.3, + "probability": 0.5078 + }, + { + "start": 25781.66, + "end": 25782.52, + "probability": 0.9927 + }, + { + "start": 25783.4, + "end": 25784.3, + "probability": 0.8257 + }, + { + "start": 25785.7, + "end": 25788.5, + "probability": 0.899 + }, + { + "start": 25789.16, + "end": 25793.8, + "probability": 0.8047 + }, + { + "start": 25793.8, + "end": 25797.38, + "probability": 0.919 + }, + { + "start": 25797.98, + "end": 25800.04, + "probability": 0.0101 + }, + { + "start": 25800.04, + "end": 25800.04, + "probability": 0.1365 + }, + { + "start": 25800.04, + "end": 25804.1, + "probability": 0.5206 + }, + { + "start": 25804.12, + "end": 25808.4, + "probability": 0.8704 + }, + { + "start": 25809.06, + "end": 25809.3, + "probability": 0.7949 + }, + { + "start": 25809.94, + "end": 25811.98, + "probability": 0.9955 + }, + { + "start": 25812.36, + "end": 25813.26, + "probability": 0.9107 + }, + { + "start": 25814.32, + "end": 25815.6, + "probability": 0.8911 + }, + { + "start": 25815.7, + "end": 25816.22, + "probability": 0.6038 + }, + { + "start": 25817.08, + "end": 25819.46, + "probability": 0.9233 + }, + { + "start": 25820.14, + "end": 25823.76, + "probability": 0.9806 + }, + { + "start": 25824.26, + "end": 25825.4, + "probability": 0.9387 + }, + { + "start": 25825.82, + "end": 25827.26, + "probability": 0.9976 + }, + { + "start": 25828.08, + "end": 25828.58, + "probability": 0.5652 + }, + { + "start": 25829.4, + "end": 25830.38, + "probability": 0.9935 + }, + { + "start": 25830.9, + "end": 25832.32, + "probability": 0.8908 + }, + { + "start": 25832.92, + "end": 25834.64, + "probability": 0.7494 + }, + { + "start": 25835.26, + "end": 25838.5, + "probability": 0.7535 + }, + { + "start": 25839.08, + "end": 25840.42, + "probability": 0.9763 + }, + { + "start": 25841.0, + "end": 25844.82, + "probability": 0.8964 + }, + { + "start": 25845.38, + "end": 25846.72, + "probability": 0.9541 + }, + { + "start": 25846.74, + "end": 25849.42, + "probability": 0.6895 + }, + { + "start": 25849.86, + "end": 25851.18, + "probability": 0.059 + }, + { + "start": 25851.2, + "end": 25852.62, + "probability": 0.5349 + }, + { + "start": 25852.72, + "end": 25854.4, + "probability": 0.5727 + }, + { + "start": 25855.82, + "end": 25858.6, + "probability": 0.6294 + }, + { + "start": 25859.26, + "end": 25859.52, + "probability": 0.1456 + }, + { + "start": 25859.52, + "end": 25862.5, + "probability": 0.625 + }, + { + "start": 25862.6, + "end": 25867.08, + "probability": 0.7264 + }, + { + "start": 25868.37, + "end": 25870.56, + "probability": 0.8036 + }, + { + "start": 25870.7, + "end": 25872.82, + "probability": 0.9161 + }, + { + "start": 25873.32, + "end": 25874.42, + "probability": 0.9717 + }, + { + "start": 25874.96, + "end": 25878.16, + "probability": 0.6179 + }, + { + "start": 25879.72, + "end": 25880.74, + "probability": 0.8667 + }, + { + "start": 25881.08, + "end": 25883.81, + "probability": 0.6676 + }, + { + "start": 25884.04, + "end": 25884.44, + "probability": 0.4508 + }, + { + "start": 25884.46, + "end": 25887.98, + "probability": 0.3109 + }, + { + "start": 25887.98, + "end": 25888.36, + "probability": 0.5486 + }, + { + "start": 25888.44, + "end": 25890.86, + "probability": 0.733 + }, + { + "start": 25892.24, + "end": 25895.24, + "probability": 0.7043 + }, + { + "start": 25895.48, + "end": 25897.5, + "probability": 0.9563 + }, + { + "start": 25898.36, + "end": 25899.28, + "probability": 0.7837 + }, + { + "start": 25899.85, + "end": 25901.58, + "probability": 0.6059 + }, + { + "start": 25901.86, + "end": 25902.98, + "probability": 0.4245 + }, + { + "start": 25904.12, + "end": 25905.28, + "probability": 0.7965 + }, + { + "start": 25905.84, + "end": 25907.66, + "probability": 0.6427 + }, + { + "start": 25908.02, + "end": 25908.98, + "probability": 0.8007 + }, + { + "start": 25909.6, + "end": 25909.82, + "probability": 0.7996 + }, + { + "start": 25909.92, + "end": 25911.04, + "probability": 0.8865 + }, + { + "start": 25911.56, + "end": 25912.94, + "probability": 0.9839 + }, + { + "start": 25913.56, + "end": 25917.88, + "probability": 0.991 + }, + { + "start": 25918.42, + "end": 25920.14, + "probability": 0.9648 + }, + { + "start": 25920.56, + "end": 25921.4, + "probability": 0.8178 + }, + { + "start": 25921.46, + "end": 25922.84, + "probability": 0.9585 + }, + { + "start": 25923.64, + "end": 25924.42, + "probability": 0.4957 + }, + { + "start": 25924.44, + "end": 25925.6, + "probability": 0.7866 + }, + { + "start": 25926.3, + "end": 25929.74, + "probability": 0.9647 + }, + { + "start": 25929.9, + "end": 25933.88, + "probability": 0.3492 + }, + { + "start": 25935.15, + "end": 25936.72, + "probability": 0.852 + }, + { + "start": 25937.16, + "end": 25937.74, + "probability": 0.7503 + }, + { + "start": 25939.58, + "end": 25939.78, + "probability": 0.2619 + }, + { + "start": 25941.77, + "end": 25944.44, + "probability": 0.7516 + }, + { + "start": 25944.54, + "end": 25946.02, + "probability": 0.9805 + }, + { + "start": 25946.42, + "end": 25948.86, + "probability": 0.6871 + }, + { + "start": 25948.92, + "end": 25949.6, + "probability": 0.9297 + }, + { + "start": 25950.38, + "end": 25951.86, + "probability": 0.7219 + }, + { + "start": 25952.02, + "end": 25953.5, + "probability": 0.9403 + }, + { + "start": 25954.12, + "end": 25956.1, + "probability": 0.2703 + }, + { + "start": 25956.3, + "end": 25957.68, + "probability": 0.3557 + }, + { + "start": 25957.8, + "end": 25960.02, + "probability": 0.8132 + }, + { + "start": 25961.15, + "end": 25961.58, + "probability": 0.838 + }, + { + "start": 25961.98, + "end": 25963.56, + "probability": 0.4952 + }, + { + "start": 25963.62, + "end": 25966.22, + "probability": 0.7884 + }, + { + "start": 25966.8, + "end": 25969.68, + "probability": 0.9626 + }, + { + "start": 25969.76, + "end": 25972.56, + "probability": 0.9941 + }, + { + "start": 25972.8, + "end": 25977.08, + "probability": 0.9629 + }, + { + "start": 25977.64, + "end": 25980.56, + "probability": 0.9862 + }, + { + "start": 25980.96, + "end": 25982.02, + "probability": 0.9912 + }, + { + "start": 25983.02, + "end": 25983.23, + "probability": 0.2355 + }, + { + "start": 25984.06, + "end": 25987.02, + "probability": 0.8281 + }, + { + "start": 25987.92, + "end": 25990.3, + "probability": 0.969 + }, + { + "start": 25990.3, + "end": 25994.22, + "probability": 0.9429 + }, + { + "start": 25994.22, + "end": 25996.7, + "probability": 0.7892 + }, + { + "start": 25997.12, + "end": 25999.68, + "probability": 0.7787 + }, + { + "start": 26000.1, + "end": 26001.48, + "probability": 0.763 + }, + { + "start": 26001.88, + "end": 26003.18, + "probability": 0.6927 + }, + { + "start": 26003.52, + "end": 26005.3, + "probability": 0.8007 + }, + { + "start": 26005.86, + "end": 26007.38, + "probability": 0.9701 + }, + { + "start": 26008.5, + "end": 26010.22, + "probability": 0.9813 + }, + { + "start": 26010.88, + "end": 26012.0, + "probability": 0.881 + }, + { + "start": 26012.76, + "end": 26015.28, + "probability": 0.4569 + }, + { + "start": 26017.26, + "end": 26018.46, + "probability": 0.9056 + }, + { + "start": 26019.12, + "end": 26020.0, + "probability": 0.7338 + }, + { + "start": 26020.4, + "end": 26021.44, + "probability": 0.8501 + }, + { + "start": 26021.86, + "end": 26022.68, + "probability": 0.9301 + }, + { + "start": 26022.76, + "end": 26023.96, + "probability": 0.9682 + }, + { + "start": 26024.52, + "end": 26025.2, + "probability": 0.8022 + }, + { + "start": 26025.26, + "end": 26025.44, + "probability": 0.0652 + }, + { + "start": 26025.52, + "end": 26028.56, + "probability": 0.9907 + }, + { + "start": 26028.6, + "end": 26029.14, + "probability": 0.5052 + }, + { + "start": 26029.24, + "end": 26030.06, + "probability": 0.6195 + }, + { + "start": 26030.26, + "end": 26031.66, + "probability": 0.6684 + }, + { + "start": 26031.66, + "end": 26032.0, + "probability": 0.2446 + }, + { + "start": 26032.0, + "end": 26034.32, + "probability": 0.638 + }, + { + "start": 26034.72, + "end": 26039.66, + "probability": 0.8133 + }, + { + "start": 26039.66, + "end": 26040.2, + "probability": 0.5898 + }, + { + "start": 26040.24, + "end": 26040.52, + "probability": 0.746 + }, + { + "start": 26041.24, + "end": 26042.2, + "probability": 0.6884 + }, + { + "start": 26042.36, + "end": 26042.56, + "probability": 0.7331 + }, + { + "start": 26043.5, + "end": 26047.82, + "probability": 0.7314 + }, + { + "start": 26048.86, + "end": 26050.82, + "probability": 0.6216 + }, + { + "start": 26051.54, + "end": 26051.74, + "probability": 0.191 + }, + { + "start": 26051.74, + "end": 26051.74, + "probability": 0.2114 + }, + { + "start": 26051.74, + "end": 26052.65, + "probability": 0.6937 + }, + { + "start": 26052.94, + "end": 26054.88, + "probability": 0.3031 + }, + { + "start": 26055.04, + "end": 26055.54, + "probability": 0.1803 + }, + { + "start": 26055.92, + "end": 26058.78, + "probability": 0.2145 + }, + { + "start": 26060.04, + "end": 26061.64, + "probability": 0.3001 + }, + { + "start": 26062.0, + "end": 26065.43, + "probability": 0.4458 + }, + { + "start": 26065.82, + "end": 26066.22, + "probability": 0.3484 + }, + { + "start": 26066.22, + "end": 26066.54, + "probability": 0.0437 + }, + { + "start": 26066.72, + "end": 26069.7, + "probability": 0.5151 + }, + { + "start": 26070.98, + "end": 26071.47, + "probability": 0.9362 + }, + { + "start": 26071.62, + "end": 26072.18, + "probability": 0.6427 + }, + { + "start": 26072.18, + "end": 26073.16, + "probability": 0.736 + }, + { + "start": 26073.7, + "end": 26075.44, + "probability": 0.5103 + }, + { + "start": 26076.64, + "end": 26076.64, + "probability": 0.1541 + }, + { + "start": 26076.64, + "end": 26077.9, + "probability": 0.7554 + }, + { + "start": 26077.9, + "end": 26078.98, + "probability": 0.7816 + }, + { + "start": 26079.16, + "end": 26080.36, + "probability": 0.3843 + }, + { + "start": 26081.1, + "end": 26082.3, + "probability": 0.3035 + }, + { + "start": 26082.9, + "end": 26083.92, + "probability": 0.2583 + }, + { + "start": 26084.32, + "end": 26086.28, + "probability": 0.6894 + }, + { + "start": 26086.48, + "end": 26088.04, + "probability": 0.9355 + }, + { + "start": 26088.12, + "end": 26090.58, + "probability": 0.0646 + }, + { + "start": 26090.58, + "end": 26094.1, + "probability": 0.8984 + }, + { + "start": 26094.6, + "end": 26094.98, + "probability": 0.5074 + }, + { + "start": 26095.14, + "end": 26100.82, + "probability": 0.8926 + }, + { + "start": 26101.56, + "end": 26101.64, + "probability": 0.0487 + }, + { + "start": 26101.64, + "end": 26101.78, + "probability": 0.0351 + }, + { + "start": 26101.78, + "end": 26101.78, + "probability": 0.235 + }, + { + "start": 26101.78, + "end": 26104.85, + "probability": 0.4646 + }, + { + "start": 26105.3, + "end": 26108.44, + "probability": 0.9976 + }, + { + "start": 26108.44, + "end": 26111.28, + "probability": 0.972 + }, + { + "start": 26111.72, + "end": 26116.12, + "probability": 0.92 + }, + { + "start": 26116.2, + "end": 26117.46, + "probability": 0.76 + }, + { + "start": 26117.5, + "end": 26117.88, + "probability": 0.7691 + }, + { + "start": 26118.16, + "end": 26118.4, + "probability": 0.3688 + }, + { + "start": 26118.4, + "end": 26119.81, + "probability": 0.6353 + }, + { + "start": 26120.4, + "end": 26120.83, + "probability": 0.5791 + }, + { + "start": 26121.74, + "end": 26124.52, + "probability": 0.0037 + }, + { + "start": 26124.62, + "end": 26125.08, + "probability": 0.0262 + }, + { + "start": 26125.14, + "end": 26126.18, + "probability": 0.2929 + }, + { + "start": 26127.86, + "end": 26129.88, + "probability": 0.834 + }, + { + "start": 26130.02, + "end": 26133.88, + "probability": 0.7524 + }, + { + "start": 26133.98, + "end": 26137.0, + "probability": 0.4867 + }, + { + "start": 26137.18, + "end": 26137.54, + "probability": 0.0149 + }, + { + "start": 26139.64, + "end": 26144.58, + "probability": 0.5628 + }, + { + "start": 26145.34, + "end": 26146.3, + "probability": 0.0819 + }, + { + "start": 26146.52, + "end": 26148.2, + "probability": 0.6667 + }, + { + "start": 26148.8, + "end": 26150.62, + "probability": 0.2994 + }, + { + "start": 26150.88, + "end": 26151.24, + "probability": 0.114 + }, + { + "start": 26170.88, + "end": 26172.54, + "probability": 0.6085 + }, + { + "start": 26175.92, + "end": 26178.72, + "probability": 0.6871 + }, + { + "start": 26178.88, + "end": 26181.52, + "probability": 0.2667 + }, + { + "start": 26182.38, + "end": 26185.26, + "probability": 0.6624 + }, + { + "start": 26188.44, + "end": 26190.64, + "probability": 0.6735 + }, + { + "start": 26192.2, + "end": 26192.64, + "probability": 0.7798 + }, + { + "start": 26194.72, + "end": 26195.46, + "probability": 0.6952 + }, + { + "start": 26197.52, + "end": 26200.46, + "probability": 0.8505 + }, + { + "start": 26201.48, + "end": 26202.14, + "probability": 0.94 + }, + { + "start": 26203.64, + "end": 26206.02, + "probability": 0.2754 + }, + { + "start": 26206.02, + "end": 26206.02, + "probability": 0.2387 + }, + { + "start": 26206.02, + "end": 26207.08, + "probability": 0.1019 + }, + { + "start": 26210.38, + "end": 26212.96, + "probability": 0.0165 + }, + { + "start": 26213.4, + "end": 26214.56, + "probability": 0.0553 + }, + { + "start": 26214.56, + "end": 26215.54, + "probability": 0.0245 + }, + { + "start": 26215.72, + "end": 26216.34, + "probability": 0.2404 + }, + { + "start": 26218.16, + "end": 26219.64, + "probability": 0.1066 + }, + { + "start": 26220.16, + "end": 26220.8, + "probability": 0.1646 + }, + { + "start": 26222.76, + "end": 26223.04, + "probability": 0.1313 + }, + { + "start": 26297.58, + "end": 26298.46, + "probability": 0.1296 + }, + { + "start": 26299.47, + "end": 26300.1, + "probability": 0.0288 + }, + { + "start": 26300.34, + "end": 26300.83, + "probability": 0.6309 + }, + { + "start": 26301.12, + "end": 26303.02, + "probability": 0.74 + }, + { + "start": 26304.06, + "end": 26304.78, + "probability": 0.743 + }, + { + "start": 26305.46, + "end": 26306.44, + "probability": 0.7518 + }, + { + "start": 26309.94, + "end": 26310.38, + "probability": 0.7081 + }, + { + "start": 26311.92, + "end": 26312.9, + "probability": 0.798 + }, + { + "start": 26313.74, + "end": 26314.24, + "probability": 0.9876 + }, + { + "start": 26315.26, + "end": 26321.34, + "probability": 0.6559 + }, + { + "start": 26325.36, + "end": 26334.34, + "probability": 0.7489 + }, + { + "start": 26334.96, + "end": 26336.22, + "probability": 0.9713 + }, + { + "start": 26337.22, + "end": 26339.91, + "probability": 0.6715 + }, + { + "start": 26341.62, + "end": 26343.8, + "probability": 0.239 + }, + { + "start": 26355.42, + "end": 26355.42, + "probability": 0.3494 + }, + { + "start": 26355.42, + "end": 26360.12, + "probability": 0.2615 + }, + { + "start": 26360.46, + "end": 26367.35, + "probability": 0.1447 + }, + { + "start": 26370.58, + "end": 26371.36, + "probability": 0.3928 + }, + { + "start": 26371.36, + "end": 26378.2, + "probability": 0.0129 + }, + { + "start": 26378.2, + "end": 26378.2, + "probability": 0.1668 + }, + { + "start": 26378.58, + "end": 26378.82, + "probability": 0.0065 + }, + { + "start": 26446.0, + "end": 26446.0, + "probability": 0.0 + }, + { + "start": 26446.0, + "end": 26446.0, + "probability": 0.0 + }, + { + "start": 26446.0, + "end": 26446.0, + "probability": 0.0 + }, + { + "start": 26446.0, + "end": 26446.0, + "probability": 0.0 + }, + { + "start": 26447.12, + "end": 26447.74, + "probability": 0.0178 + }, + { + "start": 26448.0, + "end": 26448.2, + "probability": 0.2935 + }, + { + "start": 26448.2, + "end": 26448.2, + "probability": 0.0358 + }, + { + "start": 26448.2, + "end": 26449.54, + "probability": 0.1448 + }, + { + "start": 26450.82, + "end": 26451.0, + "probability": 0.2861 + }, + { + "start": 26451.0, + "end": 26451.38, + "probability": 0.3593 + }, + { + "start": 26451.72, + "end": 26451.97, + "probability": 0.074 + }, + { + "start": 26453.66, + "end": 26457.42, + "probability": 0.4489 + }, + { + "start": 26463.86, + "end": 26467.54, + "probability": 0.2239 + }, + { + "start": 26468.46, + "end": 26470.98, + "probability": 0.8119 + }, + { + "start": 26473.44, + "end": 26476.24, + "probability": 0.6308 + }, + { + "start": 26477.54, + "end": 26479.96, + "probability": 0.4933 + }, + { + "start": 26480.66, + "end": 26483.52, + "probability": 0.8726 + }, + { + "start": 26484.38, + "end": 26491.57, + "probability": 0.3576 + }, + { + "start": 26501.84, + "end": 26506.28, + "probability": 0.5513 + }, + { + "start": 26509.6, + "end": 26511.28, + "probability": 0.0592 + }, + { + "start": 26518.92, + "end": 26520.14, + "probability": 0.1601 + }, + { + "start": 26521.26, + "end": 26522.46, + "probability": 0.2115 + }, + { + "start": 26523.32, + "end": 26523.54, + "probability": 0.8582 + }, + { + "start": 26524.58, + "end": 26525.68, + "probability": 0.6653 + }, + { + "start": 26526.36, + "end": 26526.74, + "probability": 0.7798 + }, + { + "start": 26527.34, + "end": 26528.6, + "probability": 0.7298 + }, + { + "start": 26531.68, + "end": 26532.94, + "probability": 0.2546 + }, + { + "start": 26533.64, + "end": 26540.54, + "probability": 0.7001 + }, + { + "start": 26541.48, + "end": 26544.2, + "probability": 0.8726 + }, + { + "start": 26545.9, + "end": 26548.8, + "probability": 0.5219 + }, + { + "start": 26550.8, + "end": 26560.62, + "probability": 0.7075 + }, + { + "start": 26561.64, + "end": 26564.66, + "probability": 0.9723 + }, + { + "start": 26565.49, + "end": 26565.74, + "probability": 0.6727 + }, + { + "start": 26567.0, + "end": 26568.48, + "probability": 0.6101 + }, + { + "start": 26575.14, + "end": 26575.46, + "probability": 0.7168 + }, + { + "start": 26577.08, + "end": 26577.88, + "probability": 0.3113 + }, + { + "start": 26579.94, + "end": 26580.44, + "probability": 0.9733 + }, + { + "start": 26581.5, + "end": 26582.22, + "probability": 0.682 + }, + { + "start": 26583.64, + "end": 26584.1, + "probability": 0.9928 + }, + { + "start": 26584.96, + "end": 26585.66, + "probability": 0.7062 + }, + { + "start": 26586.74, + "end": 26588.94, + "probability": 0.9816 + }, + { + "start": 26589.96, + "end": 26590.38, + "probability": 0.9912 + }, + { + "start": 26591.18, + "end": 26591.66, + "probability": 0.8792 + }, + { + "start": 26594.42, + "end": 26596.22, + "probability": 0.8588 + }, + { + "start": 26597.3, + "end": 26598.64, + "probability": 0.8953 + }, + { + "start": 26599.74, + "end": 26600.16, + "probability": 0.9277 + }, + { + "start": 26601.66, + "end": 26602.42, + "probability": 0.9679 + }, + { + "start": 26603.82, + "end": 26604.12, + "probability": 0.7226 + }, + { + "start": 26605.36, + "end": 26606.1, + "probability": 0.6218 + }, + { + "start": 26607.4, + "end": 26608.0, + "probability": 0.8726 + }, + { + "start": 26608.66, + "end": 26609.58, + "probability": 0.5835 + }, + { + "start": 26614.6, + "end": 26616.82, + "probability": 0.5622 + }, + { + "start": 26617.86, + "end": 26619.76, + "probability": 0.713 + }, + { + "start": 26621.06, + "end": 26622.1, + "probability": 0.6598 + }, + { + "start": 26622.14, + "end": 26623.94, + "probability": 0.9181 + }, + { + "start": 26625.04, + "end": 26626.62, + "probability": 0.5889 + }, + { + "start": 26637.66, + "end": 26638.08, + "probability": 0.3546 + }, + { + "start": 26639.98, + "end": 26644.44, + "probability": 0.0403 + }, + { + "start": 26644.98, + "end": 26647.26, + "probability": 0.3102 + }, + { + "start": 26648.12, + "end": 26652.32, + "probability": 0.0643 + }, + { + "start": 26654.36, + "end": 26655.6, + "probability": 0.2432 + }, + { + "start": 26656.6, + "end": 26659.34, + "probability": 0.0611 + }, + { + "start": 26660.5, + "end": 26662.18, + "probability": 0.0172 + }, + { + "start": 26662.18, + "end": 26662.68, + "probability": 0.1209 + }, + { + "start": 26662.68, + "end": 26662.88, + "probability": 0.1565 + }, + { + "start": 26662.88, + "end": 26663.24, + "probability": 0.3162 + }, + { + "start": 26663.8, + "end": 26672.84, + "probability": 0.0464 + }, + { + "start": 26675.56, + "end": 26679.64, + "probability": 0.0456 + }, + { + "start": 26680.36, + "end": 26680.71, + "probability": 0.0486 + }, + { + "start": 26681.38, + "end": 26682.9, + "probability": 0.0351 + }, + { + "start": 26683.02, + "end": 26683.02, + "probability": 0.1554 + }, + { + "start": 26683.02, + "end": 26684.2, + "probability": 0.3087 + }, + { + "start": 26684.88, + "end": 26685.38, + "probability": 0.3597 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26891.0, + "end": 26891.0, + "probability": 0.0 + }, + { + "start": 26898.28, + "end": 26904.0, + "probability": 0.5041 + }, + { + "start": 26909.62, + "end": 26910.48, + "probability": 0.6207 + }, + { + "start": 26911.16, + "end": 26912.44, + "probability": 0.4982 + }, + { + "start": 26913.24, + "end": 26914.08, + "probability": 0.7342 + }, + { + "start": 26915.32, + "end": 26915.8, + "probability": 0.7929 + }, + { + "start": 26917.18, + "end": 26918.02, + "probability": 0.5273 + }, + { + "start": 26919.36, + "end": 26921.92, + "probability": 0.7558 + }, + { + "start": 26922.72, + "end": 26925.34, + "probability": 0.8796 + }, + { + "start": 26925.56, + "end": 26930.46, + "probability": 0.8724 + }, + { + "start": 26930.46, + "end": 26932.1, + "probability": 0.0294 + }, + { + "start": 26932.72, + "end": 26933.18, + "probability": 0.3315 + }, + { + "start": 26941.44, + "end": 26943.34, + "probability": 0.4084 + }, + { + "start": 26944.38, + "end": 26949.32, + "probability": 0.846 + }, + { + "start": 26950.02, + "end": 26952.74, + "probability": 0.7076 + }, + { + "start": 26955.8, + "end": 26959.68, + "probability": 0.8746 + }, + { + "start": 26960.3, + "end": 26962.68, + "probability": 0.4774 + }, + { + "start": 26967.26, + "end": 26968.54, + "probability": 0.0622 + }, + { + "start": 26969.16, + "end": 26971.84, + "probability": 0.511 + }, + { + "start": 26973.32, + "end": 26979.04, + "probability": 0.8111 + }, + { + "start": 26980.52, + "end": 26981.46, + "probability": 0.6766 + }, + { + "start": 26982.58, + "end": 26986.9, + "probability": 0.9015 + }, + { + "start": 26988.7, + "end": 26989.52, + "probability": 0.5713 + }, + { + "start": 26992.2, + "end": 26994.55, + "probability": 0.3401 + }, + { + "start": 26995.8, + "end": 26996.18, + "probability": 0.2576 + }, + { + "start": 26997.62, + "end": 26999.06, + "probability": 0.922 + }, + { + "start": 26999.84, + "end": 27000.2, + "probability": 0.8063 + }, + { + "start": 27001.5, + "end": 27002.42, + "probability": 0.6811 + }, + { + "start": 27006.84, + "end": 27007.32, + "probability": 0.7706 + }, + { + "start": 27008.32, + "end": 27008.96, + "probability": 0.5323 + }, + { + "start": 27009.84, + "end": 27012.6, + "probability": 0.7471 + }, + { + "start": 27013.68, + "end": 27017.68, + "probability": 0.9738 + }, + { + "start": 27020.7, + "end": 27021.1, + "probability": 0.2073 + }, + { + "start": 27023.93, + "end": 27027.22, + "probability": 0.7944 + }, + { + "start": 27027.46, + "end": 27028.56, + "probability": 0.728 + }, + { + "start": 27030.34, + "end": 27031.14, + "probability": 0.5055 + }, + { + "start": 27032.02, + "end": 27033.04, + "probability": 0.6592 + }, + { + "start": 27034.4, + "end": 27034.84, + "probability": 0.023 + }, + { + "start": 27038.06, + "end": 27038.18, + "probability": 0.0055 + }, + { + "start": 27038.96, + "end": 27039.06, + "probability": 0.0282 + }, + { + "start": 27039.98, + "end": 27041.22, + "probability": 0.1244 + }, + { + "start": 27041.26, + "end": 27041.32, + "probability": 0.4361 + }, + { + "start": 27041.32, + "end": 27041.32, + "probability": 0.424 + }, + { + "start": 27041.32, + "end": 27042.36, + "probability": 0.5745 + }, + { + "start": 27043.38, + "end": 27044.22, + "probability": 0.9696 + }, + { + "start": 27045.22, + "end": 27046.08, + "probability": 0.6495 + }, + { + "start": 27048.16, + "end": 27048.88, + "probability": 0.889 + }, + { + "start": 27051.14, + "end": 27052.26, + "probability": 0.6417 + }, + { + "start": 27053.08, + "end": 27056.1, + "probability": 0.9022 + }, + { + "start": 27056.74, + "end": 27057.56, + "probability": 0.6742 + }, + { + "start": 27058.36, + "end": 27059.08, + "probability": 0.9804 + }, + { + "start": 27059.82, + "end": 27060.72, + "probability": 0.955 + }, + { + "start": 27063.1, + "end": 27066.64, + "probability": 0.9691 + }, + { + "start": 27067.68, + "end": 27069.74, + "probability": 0.9871 + }, + { + "start": 27070.36, + "end": 27071.04, + "probability": 0.9803 + }, + { + "start": 27071.64, + "end": 27072.86, + "probability": 0.9285 + }, + { + "start": 27073.86, + "end": 27074.8, + "probability": 0.9821 + }, + { + "start": 27079.38, + "end": 27080.46, + "probability": 0.7594 + }, + { + "start": 27081.18, + "end": 27082.06, + "probability": 0.8311 + }, + { + "start": 27082.78, + "end": 27083.7, + "probability": 0.8177 + }, + { + "start": 27084.6, + "end": 27085.18, + "probability": 0.9426 + }, + { + "start": 27086.16, + "end": 27086.82, + "probability": 0.9153 + }, + { + "start": 27087.44, + "end": 27088.1, + "probability": 0.9562 + }, + { + "start": 27088.86, + "end": 27089.94, + "probability": 0.8785 + }, + { + "start": 27090.76, + "end": 27091.6, + "probability": 0.9977 + }, + { + "start": 27092.26, + "end": 27093.28, + "probability": 0.9259 + }, + { + "start": 27094.38, + "end": 27096.84, + "probability": 0.9924 + }, + { + "start": 27098.6, + "end": 27101.36, + "probability": 0.9722 + }, + { + "start": 27101.46, + "end": 27102.0, + "probability": 0.4908 + }, + { + "start": 27102.06, + "end": 27103.0, + "probability": 0.8594 + }, + { + "start": 27104.34, + "end": 27104.54, + "probability": 0.8324 + }, + { + "start": 27105.12, + "end": 27106.56, + "probability": 0.7704 + }, + { + "start": 27107.82, + "end": 27111.64, + "probability": 0.9135 + }, + { + "start": 27112.74, + "end": 27114.94, + "probability": 0.8475 + }, + { + "start": 27115.04, + "end": 27116.5, + "probability": 0.9863 + }, + { + "start": 27118.48, + "end": 27119.3, + "probability": 0.5876 + }, + { + "start": 27120.9, + "end": 27123.5, + "probability": 0.9292 + }, + { + "start": 27123.76, + "end": 27126.71, + "probability": 0.7511 + }, + { + "start": 27126.98, + "end": 27127.68, + "probability": 0.8346 + }, + { + "start": 27129.14, + "end": 27129.52, + "probability": 0.085 + }, + { + "start": 27129.84, + "end": 27131.42, + "probability": 0.061 + }, + { + "start": 27131.42, + "end": 27132.17, + "probability": 0.1515 + }, + { + "start": 27134.98, + "end": 27139.8, + "probability": 0.0275 + }, + { + "start": 27140.8, + "end": 27143.74, + "probability": 0.3052 + }, + { + "start": 27144.04, + "end": 27144.04, + "probability": 0.0675 + }, + { + "start": 27144.2, + "end": 27147.06, + "probability": 0.8627 + }, + { + "start": 27147.56, + "end": 27149.04, + "probability": 0.5773 + }, + { + "start": 27149.54, + "end": 27150.88, + "probability": 0.6569 + }, + { + "start": 27151.56, + "end": 27156.1, + "probability": 0.1632 + }, + { + "start": 27163.16, + "end": 27163.16, + "probability": 0.7159 + }, + { + "start": 27163.16, + "end": 27163.3, + "probability": 0.2415 + }, + { + "start": 27164.28, + "end": 27168.74, + "probability": 0.1148 + }, + { + "start": 27169.74, + "end": 27176.92, + "probability": 0.5591 + }, + { + "start": 27178.04, + "end": 27178.88, + "probability": 0.1052 + }, + { + "start": 27179.36, + "end": 27179.36, + "probability": 0.0869 + }, + { + "start": 27179.36, + "end": 27181.4, + "probability": 0.3544 + }, + { + "start": 27181.48, + "end": 27182.79, + "probability": 0.1504 + }, + { + "start": 27183.2, + "end": 27183.64, + "probability": 0.0175 + }, + { + "start": 27189.48, + "end": 27190.52, + "probability": 0.537 + }, + { + "start": 27192.72, + "end": 27194.16, + "probability": 0.5595 + }, + { + "start": 27194.44, + "end": 27195.16, + "probability": 0.2937 + }, + { + "start": 27195.38, + "end": 27198.28, + "probability": 0.8065 + }, + { + "start": 27198.66, + "end": 27198.98, + "probability": 0.5933 + }, + { + "start": 27199.0, + "end": 27201.04, + "probability": 0.8516 + }, + { + "start": 27201.04, + "end": 27203.58, + "probability": 0.9242 + }, + { + "start": 27204.3, + "end": 27209.87, + "probability": 0.9695 + }, + { + "start": 27210.42, + "end": 27211.6, + "probability": 0.8924 + }, + { + "start": 27212.54, + "end": 27213.6, + "probability": 0.2679 + }, + { + "start": 27214.24, + "end": 27215.98, + "probability": 0.8126 + }, + { + "start": 27217.54, + "end": 27219.32, + "probability": 0.9343 + }, + { + "start": 27221.82, + "end": 27222.32, + "probability": 0.5487 + }, + { + "start": 27225.94, + "end": 27227.28, + "probability": 0.1215 + }, + { + "start": 27227.34, + "end": 27228.67, + "probability": 0.734 + }, + { + "start": 27229.82, + "end": 27230.7, + "probability": 0.8762 + }, + { + "start": 27232.08, + "end": 27237.4, + "probability": 0.9975 + }, + { + "start": 27237.92, + "end": 27240.6, + "probability": 0.9951 + }, + { + "start": 27241.68, + "end": 27245.36, + "probability": 0.9985 + }, + { + "start": 27245.96, + "end": 27248.56, + "probability": 0.9963 + }, + { + "start": 27249.54, + "end": 27252.05, + "probability": 0.9844 + }, + { + "start": 27252.72, + "end": 27253.68, + "probability": 0.9988 + }, + { + "start": 27254.2, + "end": 27260.22, + "probability": 0.9985 + }, + { + "start": 27260.66, + "end": 27261.44, + "probability": 0.8283 + }, + { + "start": 27261.98, + "end": 27262.62, + "probability": 0.9708 + }, + { + "start": 27263.2, + "end": 27264.14, + "probability": 0.97 + }, + { + "start": 27264.68, + "end": 27266.04, + "probability": 0.8828 + }, + { + "start": 27266.6, + "end": 27269.22, + "probability": 0.5784 + }, + { + "start": 27269.5, + "end": 27270.94, + "probability": 0.4323 + }, + { + "start": 27270.96, + "end": 27272.08, + "probability": 0.9882 + }, + { + "start": 27272.14, + "end": 27276.64, + "probability": 0.9901 + }, + { + "start": 27278.02, + "end": 27280.44, + "probability": 0.9645 + }, + { + "start": 27281.06, + "end": 27285.86, + "probability": 0.9332 + }, + { + "start": 27286.5, + "end": 27288.38, + "probability": 0.979 + }, + { + "start": 27289.36, + "end": 27290.06, + "probability": 0.6855 + }, + { + "start": 27290.72, + "end": 27293.46, + "probability": 0.9565 + }, + { + "start": 27293.98, + "end": 27299.5, + "probability": 0.9963 + }, + { + "start": 27301.18, + "end": 27302.14, + "probability": 0.9185 + }, + { + "start": 27303.32, + "end": 27305.16, + "probability": 0.7576 + }, + { + "start": 27307.76, + "end": 27311.7, + "probability": 0.9821 + }, + { + "start": 27312.2, + "end": 27316.04, + "probability": 0.7492 + }, + { + "start": 27317.72, + "end": 27322.66, + "probability": 0.9979 + }, + { + "start": 27323.48, + "end": 27326.92, + "probability": 0.9662 + }, + { + "start": 27327.56, + "end": 27329.98, + "probability": 0.866 + }, + { + "start": 27331.78, + "end": 27335.36, + "probability": 0.8363 + }, + { + "start": 27336.06, + "end": 27338.3, + "probability": 0.9763 + }, + { + "start": 27339.14, + "end": 27340.4, + "probability": 0.983 + }, + { + "start": 27340.96, + "end": 27343.72, + "probability": 0.9774 + }, + { + "start": 27344.22, + "end": 27347.44, + "probability": 0.9685 + }, + { + "start": 27348.74, + "end": 27349.96, + "probability": 0.8467 + }, + { + "start": 27350.62, + "end": 27354.24, + "probability": 0.9454 + }, + { + "start": 27354.98, + "end": 27361.5, + "probability": 0.9875 + }, + { + "start": 27362.52, + "end": 27365.9, + "probability": 0.833 + }, + { + "start": 27366.42, + "end": 27373.98, + "probability": 0.9688 + }, + { + "start": 27374.74, + "end": 27375.0, + "probability": 0.7371 + }, + { + "start": 27375.56, + "end": 27378.12, + "probability": 0.9824 + }, + { + "start": 27378.64, + "end": 27379.16, + "probability": 0.9753 + }, + { + "start": 27379.8, + "end": 27380.64, + "probability": 0.7709 + }, + { + "start": 27381.14, + "end": 27384.1, + "probability": 0.9851 + }, + { + "start": 27384.6, + "end": 27386.22, + "probability": 0.8613 + }, + { + "start": 27387.82, + "end": 27388.52, + "probability": 0.7593 + }, + { + "start": 27389.12, + "end": 27391.7, + "probability": 0.9971 + }, + { + "start": 27392.78, + "end": 27397.58, + "probability": 0.8995 + }, + { + "start": 27398.28, + "end": 27401.5, + "probability": 0.9171 + }, + { + "start": 27401.96, + "end": 27403.4, + "probability": 0.897 + }, + { + "start": 27404.76, + "end": 27406.84, + "probability": 0.8151 + }, + { + "start": 27407.28, + "end": 27408.72, + "probability": 0.9896 + }, + { + "start": 27409.2, + "end": 27412.24, + "probability": 0.8807 + }, + { + "start": 27412.84, + "end": 27414.74, + "probability": 0.9986 + }, + { + "start": 27415.48, + "end": 27417.32, + "probability": 0.8599 + }, + { + "start": 27417.9, + "end": 27423.48, + "probability": 0.9577 + }, + { + "start": 27424.0, + "end": 27425.74, + "probability": 0.9552 + }, + { + "start": 27426.92, + "end": 27429.04, + "probability": 0.8389 + }, + { + "start": 27429.04, + "end": 27432.26, + "probability": 0.9976 + }, + { + "start": 27432.78, + "end": 27433.84, + "probability": 0.8766 + }, + { + "start": 27434.5, + "end": 27437.4, + "probability": 0.9537 + }, + { + "start": 27437.68, + "end": 27440.94, + "probability": 0.9812 + }, + { + "start": 27441.58, + "end": 27442.0, + "probability": 0.7769 + }, + { + "start": 27442.54, + "end": 27445.54, + "probability": 0.993 + }, + { + "start": 27446.48, + "end": 27448.82, + "probability": 0.9946 + }, + { + "start": 27449.34, + "end": 27453.14, + "probability": 0.957 + }, + { + "start": 27455.1, + "end": 27455.82, + "probability": 0.8196 + }, + { + "start": 27456.42, + "end": 27460.2, + "probability": 0.9487 + }, + { + "start": 27461.14, + "end": 27465.94, + "probability": 0.9709 + }, + { + "start": 27467.3, + "end": 27469.9, + "probability": 0.7238 + }, + { + "start": 27470.92, + "end": 27474.94, + "probability": 0.991 + }, + { + "start": 27475.34, + "end": 27478.7, + "probability": 0.99 + }, + { + "start": 27479.28, + "end": 27482.26, + "probability": 0.9889 + }, + { + "start": 27483.36, + "end": 27488.85, + "probability": 0.8389 + }, + { + "start": 27490.54, + "end": 27495.98, + "probability": 0.9928 + }, + { + "start": 27496.36, + "end": 27500.48, + "probability": 0.9885 + }, + { + "start": 27501.84, + "end": 27502.76, + "probability": 0.6826 + }, + { + "start": 27503.7, + "end": 27507.28, + "probability": 0.962 + }, + { + "start": 27507.46, + "end": 27512.34, + "probability": 0.9932 + }, + { + "start": 27513.12, + "end": 27518.34, + "probability": 0.8693 + }, + { + "start": 27518.34, + "end": 27521.84, + "probability": 0.9884 + }, + { + "start": 27523.94, + "end": 27527.52, + "probability": 0.96 + }, + { + "start": 27527.94, + "end": 27530.78, + "probability": 0.9943 + }, + { + "start": 27531.62, + "end": 27532.16, + "probability": 0.7453 + }, + { + "start": 27532.76, + "end": 27536.02, + "probability": 0.9295 + }, + { + "start": 27536.44, + "end": 27537.28, + "probability": 0.9089 + }, + { + "start": 27537.36, + "end": 27539.5, + "probability": 0.959 + }, + { + "start": 27539.98, + "end": 27541.06, + "probability": 0.8228 + }, + { + "start": 27541.64, + "end": 27544.16, + "probability": 0.7461 + }, + { + "start": 27544.94, + "end": 27548.76, + "probability": 0.9922 + }, + { + "start": 27549.32, + "end": 27549.7, + "probability": 0.9529 + }, + { + "start": 27551.78, + "end": 27556.74, + "probability": 0.9924 + }, + { + "start": 27557.54, + "end": 27561.06, + "probability": 0.9872 + }, + { + "start": 27561.64, + "end": 27562.18, + "probability": 0.9011 + }, + { + "start": 27562.72, + "end": 27564.18, + "probability": 0.9997 + }, + { + "start": 27564.98, + "end": 27566.96, + "probability": 0.9818 + }, + { + "start": 27567.28, + "end": 27571.24, + "probability": 0.8829 + }, + { + "start": 27571.9, + "end": 27577.56, + "probability": 0.9508 + }, + { + "start": 27578.2, + "end": 27579.42, + "probability": 0.9772 + }, + { + "start": 27579.78, + "end": 27580.3, + "probability": 0.7196 + }, + { + "start": 27580.58, + "end": 27580.58, + "probability": 0.2139 + }, + { + "start": 27580.58, + "end": 27582.24, + "probability": 0.6056 + }, + { + "start": 27582.32, + "end": 27586.32, + "probability": 0.7705 + }, + { + "start": 27586.62, + "end": 27588.16, + "probability": 0.9618 + }, + { + "start": 27588.8, + "end": 27589.12, + "probability": 0.6577 + }, + { + "start": 27602.96, + "end": 27603.28, + "probability": 0.2454 + }, + { + "start": 27604.0, + "end": 27605.89, + "probability": 0.5979 + }, + { + "start": 27607.34, + "end": 27611.0, + "probability": 0.8238 + }, + { + "start": 27611.66, + "end": 27612.74, + "probability": 0.967 + }, + { + "start": 27613.4, + "end": 27615.36, + "probability": 0.9668 + }, + { + "start": 27615.46, + "end": 27617.09, + "probability": 0.9886 + }, + { + "start": 27618.5, + "end": 27619.86, + "probability": 0.9233 + }, + { + "start": 27620.04, + "end": 27623.92, + "probability": 0.9922 + }, + { + "start": 27624.34, + "end": 27624.92, + "probability": 0.9313 + }, + { + "start": 27624.94, + "end": 27625.54, + "probability": 0.9311 + }, + { + "start": 27625.56, + "end": 27626.48, + "probability": 0.9805 + }, + { + "start": 27626.62, + "end": 27626.96, + "probability": 0.9374 + }, + { + "start": 27627.02, + "end": 27627.46, + "probability": 0.9253 + }, + { + "start": 27627.98, + "end": 27629.44, + "probability": 0.8185 + }, + { + "start": 27630.76, + "end": 27635.66, + "probability": 0.9395 + }, + { + "start": 27636.22, + "end": 27637.66, + "probability": 0.6809 + }, + { + "start": 27638.26, + "end": 27642.5, + "probability": 0.9846 + }, + { + "start": 27643.08, + "end": 27643.88, + "probability": 0.8047 + }, + { + "start": 27644.82, + "end": 27645.94, + "probability": 0.9287 + }, + { + "start": 27646.74, + "end": 27649.08, + "probability": 0.994 + }, + { + "start": 27649.46, + "end": 27654.6, + "probability": 0.9926 + }, + { + "start": 27655.72, + "end": 27662.16, + "probability": 0.9524 + }, + { + "start": 27662.8, + "end": 27663.4, + "probability": 0.7258 + }, + { + "start": 27663.88, + "end": 27668.37, + "probability": 0.9902 + }, + { + "start": 27668.54, + "end": 27674.24, + "probability": 0.966 + }, + { + "start": 27674.72, + "end": 27676.7, + "probability": 0.7045 + }, + { + "start": 27676.8, + "end": 27678.54, + "probability": 0.8818 + }, + { + "start": 27678.72, + "end": 27680.28, + "probability": 0.9883 + }, + { + "start": 27680.98, + "end": 27684.32, + "probability": 0.9977 + }, + { + "start": 27684.95, + "end": 27692.34, + "probability": 0.8429 + }, + { + "start": 27692.56, + "end": 27693.74, + "probability": 0.9956 + }, + { + "start": 27694.12, + "end": 27695.68, + "probability": 0.8918 + }, + { + "start": 27695.76, + "end": 27696.02, + "probability": 0.3707 + }, + { + "start": 27696.14, + "end": 27696.34, + "probability": 0.5823 + }, + { + "start": 27697.24, + "end": 27700.34, + "probability": 0.998 + }, + { + "start": 27700.88, + "end": 27703.02, + "probability": 0.9927 + }, + { + "start": 27703.12, + "end": 27703.6, + "probability": 0.6789 + }, + { + "start": 27703.78, + "end": 27704.82, + "probability": 0.8245 + }, + { + "start": 27705.22, + "end": 27707.42, + "probability": 0.9895 + }, + { + "start": 27708.08, + "end": 27708.3, + "probability": 0.8406 + }, + { + "start": 27708.88, + "end": 27710.17, + "probability": 0.51 + }, + { + "start": 27711.06, + "end": 27711.28, + "probability": 0.357 + }, + { + "start": 27711.28, + "end": 27711.5, + "probability": 0.6955 + }, + { + "start": 27711.58, + "end": 27712.16, + "probability": 0.8235 + }, + { + "start": 27712.28, + "end": 27714.76, + "probability": 0.7485 + }, + { + "start": 27714.88, + "end": 27715.32, + "probability": 0.8264 + }, + { + "start": 27716.28, + "end": 27717.34, + "probability": 0.8824 + }, + { + "start": 27717.54, + "end": 27720.52, + "probability": 0.9953 + }, + { + "start": 27721.42, + "end": 27723.76, + "probability": 0.6427 + }, + { + "start": 27724.46, + "end": 27725.98, + "probability": 0.9694 + }, + { + "start": 27727.08, + "end": 27727.58, + "probability": 0.8078 + }, + { + "start": 27729.76, + "end": 27732.64, + "probability": 0.9491 + }, + { + "start": 27740.84, + "end": 27741.46, + "probability": 0.0183 + }, + { + "start": 27743.42, + "end": 27744.22, + "probability": 0.6979 + }, + { + "start": 27746.76, + "end": 27747.54, + "probability": 0.8871 + }, + { + "start": 27749.55, + "end": 27751.7, + "probability": 0.715 + }, + { + "start": 27753.57, + "end": 27754.54, + "probability": 0.9376 + }, + { + "start": 27757.78, + "end": 27758.82, + "probability": 0.4366 + }, + { + "start": 27759.24, + "end": 27761.62, + "probability": 0.9815 + }, + { + "start": 27763.0, + "end": 27764.14, + "probability": 0.7517 + }, + { + "start": 27765.24, + "end": 27765.54, + "probability": 0.5758 + }, + { + "start": 27767.94, + "end": 27769.9, + "probability": 0.9765 + }, + { + "start": 27777.08, + "end": 27779.62, + "probability": 0.4837 + }, + { + "start": 27781.22, + "end": 27783.1, + "probability": 0.5354 + }, + { + "start": 27783.8, + "end": 27784.92, + "probability": 0.6386 + }, + { + "start": 27785.0, + "end": 27785.34, + "probability": 0.7379 + }, + { + "start": 27786.04, + "end": 27786.68, + "probability": 0.9377 + }, + { + "start": 27786.96, + "end": 27788.62, + "probability": 0.2531 + }, + { + "start": 27789.16, + "end": 27790.32, + "probability": 0.4946 + }, + { + "start": 27791.14, + "end": 27791.92, + "probability": 0.5733 + }, + { + "start": 27792.06, + "end": 27792.1, + "probability": 0.2127 + }, + { + "start": 27792.1, + "end": 27792.46, + "probability": 0.8399 + }, + { + "start": 27792.82, + "end": 27794.02, + "probability": 0.789 + }, + { + "start": 27795.16, + "end": 27795.4, + "probability": 0.5542 + }, + { + "start": 27796.16, + "end": 27796.62, + "probability": 0.9025 + }, + { + "start": 27797.0, + "end": 27797.48, + "probability": 0.7093 + }, + { + "start": 27800.18, + "end": 27800.46, + "probability": 0.7805 + }, + { + "start": 27801.04, + "end": 27801.8, + "probability": 0.8023 + }, + { + "start": 27802.54, + "end": 27804.72, + "probability": 0.7314 + }, + { + "start": 27806.22, + "end": 27807.48, + "probability": 0.9328 + }, + { + "start": 27808.06, + "end": 27809.1, + "probability": 0.871 + }, + { + "start": 27811.9, + "end": 27812.22, + "probability": 0.5555 + }, + { + "start": 27813.12, + "end": 27815.2, + "probability": 0.9652 + }, + { + "start": 27815.78, + "end": 27817.68, + "probability": 0.9763 + }, + { + "start": 27818.56, + "end": 27821.72, + "probability": 0.9887 + }, + { + "start": 27821.74, + "end": 27824.98, + "probability": 0.9993 + }, + { + "start": 27826.44, + "end": 27828.8, + "probability": 0.999 + }, + { + "start": 27829.42, + "end": 27830.72, + "probability": 0.9796 + }, + { + "start": 27831.56, + "end": 27832.94, + "probability": 0.9247 + }, + { + "start": 27833.84, + "end": 27834.52, + "probability": 0.8842 + }, + { + "start": 27835.94, + "end": 27838.24, + "probability": 0.9917 + }, + { + "start": 27838.76, + "end": 27842.62, + "probability": 0.9961 + }, + { + "start": 27843.8, + "end": 27847.12, + "probability": 0.999 + }, + { + "start": 27847.78, + "end": 27849.02, + "probability": 0.9451 + }, + { + "start": 27849.44, + "end": 27850.68, + "probability": 0.9607 + }, + { + "start": 27851.14, + "end": 27852.42, + "probability": 0.9915 + }, + { + "start": 27852.94, + "end": 27853.14, + "probability": 0.9784 + }, + { + "start": 27854.74, + "end": 27855.18, + "probability": 0.8203 + }, + { + "start": 27855.7, + "end": 27861.46, + "probability": 0.9961 + }, + { + "start": 27861.46, + "end": 27867.22, + "probability": 0.9994 + }, + { + "start": 27869.88, + "end": 27870.7, + "probability": 0.6699 + }, + { + "start": 27871.76, + "end": 27873.78, + "probability": 0.9871 + }, + { + "start": 27874.38, + "end": 27878.38, + "probability": 0.9964 + }, + { + "start": 27879.22, + "end": 27879.66, + "probability": 0.9799 + }, + { + "start": 27881.3, + "end": 27884.9, + "probability": 0.9986 + }, + { + "start": 27885.38, + "end": 27890.98, + "probability": 0.9925 + }, + { + "start": 27892.8, + "end": 27895.74, + "probability": 0.9959 + }, + { + "start": 27896.3, + "end": 27897.58, + "probability": 0.999 + }, + { + "start": 27898.34, + "end": 27900.06, + "probability": 0.7773 + }, + { + "start": 27900.22, + "end": 27901.18, + "probability": 0.9574 + }, + { + "start": 27902.5, + "end": 27905.56, + "probability": 0.9885 + }, + { + "start": 27906.4, + "end": 27908.28, + "probability": 0.9798 + }, + { + "start": 27909.14, + "end": 27911.84, + "probability": 0.9661 + }, + { + "start": 27913.1, + "end": 27915.39, + "probability": 0.9854 + }, + { + "start": 27915.6, + "end": 27918.42, + "probability": 0.9938 + }, + { + "start": 27918.84, + "end": 27921.4, + "probability": 0.9327 + }, + { + "start": 27921.7, + "end": 27925.02, + "probability": 0.9951 + }, + { + "start": 27925.64, + "end": 27926.2, + "probability": 0.8346 + }, + { + "start": 27926.94, + "end": 27929.72, + "probability": 0.9389 + }, + { + "start": 27930.32, + "end": 27931.0, + "probability": 0.8268 + }, + { + "start": 27932.02, + "end": 27936.94, + "probability": 0.9979 + }, + { + "start": 27937.48, + "end": 27938.74, + "probability": 0.9948 + }, + { + "start": 27940.64, + "end": 27941.96, + "probability": 0.95 + }, + { + "start": 27942.66, + "end": 27946.36, + "probability": 0.9956 + }, + { + "start": 27947.42, + "end": 27952.54, + "probability": 0.9934 + }, + { + "start": 27953.94, + "end": 27956.98, + "probability": 0.9971 + }, + { + "start": 27957.48, + "end": 27960.92, + "probability": 0.9993 + }, + { + "start": 27961.88, + "end": 27965.88, + "probability": 0.991 + }, + { + "start": 27966.86, + "end": 27967.08, + "probability": 0.6843 + }, + { + "start": 27967.64, + "end": 27969.9, + "probability": 0.9808 + }, + { + "start": 27970.58, + "end": 27971.78, + "probability": 0.9628 + }, + { + "start": 27972.34, + "end": 27974.68, + "probability": 0.9629 + }, + { + "start": 27977.14, + "end": 27980.18, + "probability": 0.985 + }, + { + "start": 27980.84, + "end": 27983.62, + "probability": 0.9881 + }, + { + "start": 27984.4, + "end": 27985.62, + "probability": 0.844 + }, + { + "start": 27986.56, + "end": 27988.48, + "probability": 0.9833 + }, + { + "start": 27989.04, + "end": 27989.32, + "probability": 0.7586 + }, + { + "start": 27990.76, + "end": 27993.38, + "probability": 0.9985 + }, + { + "start": 27993.5, + "end": 27997.0, + "probability": 0.9994 + }, + { + "start": 27998.06, + "end": 27998.68, + "probability": 0.322 + }, + { + "start": 27999.84, + "end": 28003.2, + "probability": 0.8878 + }, + { + "start": 28003.82, + "end": 28007.36, + "probability": 0.9756 + }, + { + "start": 28008.0, + "end": 28012.52, + "probability": 0.9917 + }, + { + "start": 28012.52, + "end": 28018.26, + "probability": 0.9995 + }, + { + "start": 28018.64, + "end": 28019.92, + "probability": 0.8324 + }, + { + "start": 28020.88, + "end": 28025.34, + "probability": 0.989 + }, + { + "start": 28027.22, + "end": 28028.14, + "probability": 0.4854 + }, + { + "start": 28028.64, + "end": 28031.58, + "probability": 0.9909 + }, + { + "start": 28031.58, + "end": 28034.14, + "probability": 0.9983 + }, + { + "start": 28035.22, + "end": 28039.06, + "probability": 0.8987 + }, + { + "start": 28039.78, + "end": 28040.16, + "probability": 0.671 + }, + { + "start": 28040.34, + "end": 28043.9, + "probability": 0.9625 + }, + { + "start": 28044.42, + "end": 28046.32, + "probability": 0.9879 + }, + { + "start": 28047.6, + "end": 28051.24, + "probability": 0.7867 + }, + { + "start": 28051.68, + "end": 28055.4, + "probability": 0.9753 + }, + { + "start": 28057.64, + "end": 28062.24, + "probability": 0.9932 + }, + { + "start": 28063.24, + "end": 28064.38, + "probability": 0.8837 + }, + { + "start": 28065.14, + "end": 28067.3, + "probability": 0.9331 + }, + { + "start": 28070.42, + "end": 28071.02, + "probability": 0.7579 + }, + { + "start": 28072.76, + "end": 28073.94, + "probability": 0.745 + }, + { + "start": 28076.14, + "end": 28078.58, + "probability": 0.99 + }, + { + "start": 28078.58, + "end": 28082.76, + "probability": 0.9983 + }, + { + "start": 28083.24, + "end": 28083.92, + "probability": 0.8121 + }, + { + "start": 28085.52, + "end": 28087.44, + "probability": 0.9757 + }, + { + "start": 28087.84, + "end": 28088.4, + "probability": 0.9647 + }, + { + "start": 28088.86, + "end": 28091.9, + "probability": 0.9906 + }, + { + "start": 28092.3, + "end": 28094.36, + "probability": 0.9088 + }, + { + "start": 28095.34, + "end": 28097.48, + "probability": 0.9976 + }, + { + "start": 28099.64, + "end": 28101.44, + "probability": 0.9985 + }, + { + "start": 28101.98, + "end": 28102.86, + "probability": 0.9056 + }, + { + "start": 28103.6, + "end": 28104.96, + "probability": 0.9665 + }, + { + "start": 28106.18, + "end": 28108.64, + "probability": 0.9526 + }, + { + "start": 28110.62, + "end": 28114.1, + "probability": 0.9906 + }, + { + "start": 28114.5, + "end": 28117.4, + "probability": 0.992 + }, + { + "start": 28117.9, + "end": 28120.14, + "probability": 0.8408 + }, + { + "start": 28120.7, + "end": 28121.22, + "probability": 0.9641 + }, + { + "start": 28123.46, + "end": 28124.72, + "probability": 0.9927 + }, + { + "start": 28125.36, + "end": 28126.08, + "probability": 0.9661 + }, + { + "start": 28127.98, + "end": 28130.6, + "probability": 0.9819 + }, + { + "start": 28131.44, + "end": 28134.28, + "probability": 0.97 + }, + { + "start": 28134.8, + "end": 28135.24, + "probability": 0.8505 + }, + { + "start": 28136.28, + "end": 28136.78, + "probability": 0.9833 + }, + { + "start": 28137.3, + "end": 28138.16, + "probability": 0.9168 + }, + { + "start": 28138.82, + "end": 28141.16, + "probability": 0.9937 + }, + { + "start": 28141.82, + "end": 28142.14, + "probability": 0.9727 + }, + { + "start": 28143.74, + "end": 28145.96, + "probability": 0.9984 + }, + { + "start": 28146.66, + "end": 28149.38, + "probability": 0.9955 + }, + { + "start": 28152.74, + "end": 28155.38, + "probability": 0.9743 + }, + { + "start": 28155.96, + "end": 28159.38, + "probability": 0.9948 + }, + { + "start": 28159.96, + "end": 28160.8, + "probability": 0.9565 + }, + { + "start": 28162.72, + "end": 28165.2, + "probability": 0.9988 + }, + { + "start": 28166.1, + "end": 28166.66, + "probability": 0.9321 + }, + { + "start": 28167.56, + "end": 28168.1, + "probability": 0.985 + }, + { + "start": 28168.34, + "end": 28168.9, + "probability": 0.9905 + }, + { + "start": 28169.24, + "end": 28169.82, + "probability": 0.6597 + }, + { + "start": 28170.22, + "end": 28171.24, + "probability": 0.7396 + }, + { + "start": 28171.58, + "end": 28173.66, + "probability": 0.8533 + }, + { + "start": 28173.94, + "end": 28174.42, + "probability": 0.7126 + }, + { + "start": 28175.52, + "end": 28176.72, + "probability": 0.9845 + }, + { + "start": 28177.24, + "end": 28178.11, + "probability": 0.994 + }, + { + "start": 28178.64, + "end": 28180.98, + "probability": 0.9805 + }, + { + "start": 28181.56, + "end": 28185.34, + "probability": 0.9963 + }, + { + "start": 28185.86, + "end": 28186.24, + "probability": 0.9451 + }, + { + "start": 28187.42, + "end": 28188.58, + "probability": 0.6254 + }, + { + "start": 28188.74, + "end": 28190.46, + "probability": 0.944 + }, + { + "start": 28191.08, + "end": 28191.94, + "probability": 0.8399 + }, + { + "start": 28192.92, + "end": 28194.88, + "probability": 0.9055 + }, + { + "start": 28195.08, + "end": 28196.02, + "probability": 0.828 + }, + { + "start": 28198.1, + "end": 28198.68, + "probability": 0.4589 + }, + { + "start": 28203.84, + "end": 28207.7, + "probability": 0.7749 + }, + { + "start": 28208.34, + "end": 28208.94, + "probability": 0.3524 + }, + { + "start": 28209.82, + "end": 28212.06, + "probability": 0.9374 + }, + { + "start": 28213.36, + "end": 28216.54, + "probability": 0.7406 + }, + { + "start": 28217.4, + "end": 28218.64, + "probability": 0.6347 + }, + { + "start": 28218.8, + "end": 28219.96, + "probability": 0.6322 + }, + { + "start": 28221.72, + "end": 28222.88, + "probability": 0.8171 + }, + { + "start": 28223.58, + "end": 28223.88, + "probability": 0.2883 + }, + { + "start": 28224.08, + "end": 28224.08, + "probability": 0.083 + }, + { + "start": 28224.18, + "end": 28225.04, + "probability": 0.9829 + }, + { + "start": 28230.34, + "end": 28234.72, + "probability": 0.8303 + }, + { + "start": 28235.34, + "end": 28237.36, + "probability": 0.916 + }, + { + "start": 28238.26, + "end": 28241.18, + "probability": 0.9868 + }, + { + "start": 28241.6, + "end": 28242.64, + "probability": 0.9678 + }, + { + "start": 28242.78, + "end": 28243.18, + "probability": 0.8899 + }, + { + "start": 28244.06, + "end": 28245.44, + "probability": 0.9666 + }, + { + "start": 28246.16, + "end": 28248.4, + "probability": 0.8757 + }, + { + "start": 28249.42, + "end": 28253.34, + "probability": 0.999 + }, + { + "start": 28253.92, + "end": 28258.28, + "probability": 0.9984 + }, + { + "start": 28259.14, + "end": 28263.38, + "probability": 0.9934 + }, + { + "start": 28264.12, + "end": 28268.7, + "probability": 0.9983 + }, + { + "start": 28269.32, + "end": 28275.14, + "probability": 0.988 + }, + { + "start": 28275.72, + "end": 28277.26, + "probability": 0.9634 + }, + { + "start": 28278.26, + "end": 28280.32, + "probability": 0.9972 + }, + { + "start": 28280.88, + "end": 28281.74, + "probability": 0.8139 + }, + { + "start": 28282.44, + "end": 28283.06, + "probability": 0.774 + }, + { + "start": 28283.66, + "end": 28288.82, + "probability": 0.9907 + }, + { + "start": 28289.68, + "end": 28291.48, + "probability": 0.9979 + }, + { + "start": 28292.02, + "end": 28293.3, + "probability": 0.9824 + }, + { + "start": 28293.94, + "end": 28295.5, + "probability": 0.8595 + }, + { + "start": 28296.04, + "end": 28297.58, + "probability": 0.9956 + }, + { + "start": 28298.16, + "end": 28305.12, + "probability": 0.9974 + }, + { + "start": 28306.04, + "end": 28306.72, + "probability": 0.8684 + }, + { + "start": 28307.36, + "end": 28311.54, + "probability": 0.9723 + }, + { + "start": 28312.1, + "end": 28316.2, + "probability": 0.9604 + }, + { + "start": 28316.8, + "end": 28320.1, + "probability": 0.9909 + }, + { + "start": 28321.72, + "end": 28328.34, + "probability": 0.9822 + }, + { + "start": 28328.56, + "end": 28330.08, + "probability": 0.7418 + }, + { + "start": 28330.5, + "end": 28333.36, + "probability": 0.7237 + }, + { + "start": 28334.36, + "end": 28335.16, + "probability": 0.635 + }, + { + "start": 28335.94, + "end": 28337.44, + "probability": 0.9034 + }, + { + "start": 28337.68, + "end": 28341.1, + "probability": 0.4111 + }, + { + "start": 28341.14, + "end": 28342.22, + "probability": 0.2347 + }, + { + "start": 28342.26, + "end": 28342.58, + "probability": 0.6931 + }, + { + "start": 28342.64, + "end": 28344.12, + "probability": 0.0548 + }, + { + "start": 28344.32, + "end": 28350.98, + "probability": 0.9467 + }, + { + "start": 28351.62, + "end": 28352.14, + "probability": 0.9994 + }, + { + "start": 28352.88, + "end": 28354.76, + "probability": 0.9213 + }, + { + "start": 28355.48, + "end": 28358.18, + "probability": 0.8149 + }, + { + "start": 28358.8, + "end": 28364.66, + "probability": 0.9937 + }, + { + "start": 28365.22, + "end": 28370.86, + "probability": 0.9689 + }, + { + "start": 28371.38, + "end": 28372.7, + "probability": 0.9948 + }, + { + "start": 28373.36, + "end": 28374.52, + "probability": 0.7695 + }, + { + "start": 28375.14, + "end": 28377.02, + "probability": 0.786 + }, + { + "start": 28377.5, + "end": 28379.34, + "probability": 0.9777 + }, + { + "start": 28380.08, + "end": 28386.0, + "probability": 0.9794 + }, + { + "start": 28386.0, + "end": 28390.78, + "probability": 0.998 + }, + { + "start": 28391.94, + "end": 28393.26, + "probability": 0.8896 + }, + { + "start": 28393.34, + "end": 28397.3, + "probability": 0.9878 + }, + { + "start": 28398.02, + "end": 28399.63, + "probability": 0.4984 + }, + { + "start": 28400.16, + "end": 28403.26, + "probability": 0.9867 + }, + { + "start": 28403.84, + "end": 28405.14, + "probability": 0.7526 + }, + { + "start": 28405.56, + "end": 28410.52, + "probability": 0.9967 + }, + { + "start": 28411.12, + "end": 28413.62, + "probability": 0.9976 + }, + { + "start": 28414.38, + "end": 28415.98, + "probability": 0.8696 + }, + { + "start": 28416.56, + "end": 28420.12, + "probability": 0.9982 + }, + { + "start": 28421.1, + "end": 28426.12, + "probability": 0.9958 + }, + { + "start": 28426.12, + "end": 28430.86, + "probability": 0.9897 + }, + { + "start": 28431.38, + "end": 28432.48, + "probability": 0.9875 + }, + { + "start": 28433.78, + "end": 28439.54, + "probability": 0.9898 + }, + { + "start": 28440.06, + "end": 28442.6, + "probability": 0.9788 + }, + { + "start": 28443.44, + "end": 28447.66, + "probability": 0.9176 + }, + { + "start": 28448.32, + "end": 28450.64, + "probability": 0.9751 + }, + { + "start": 28451.38, + "end": 28453.98, + "probability": 0.9967 + }, + { + "start": 28454.64, + "end": 28458.0, + "probability": 0.9211 + }, + { + "start": 28458.52, + "end": 28459.04, + "probability": 0.4753 + }, + { + "start": 28459.16, + "end": 28460.62, + "probability": 0.9497 + }, + { + "start": 28461.0, + "end": 28464.98, + "probability": 0.9924 + }, + { + "start": 28465.6, + "end": 28466.74, + "probability": 0.5173 + }, + { + "start": 28467.46, + "end": 28472.52, + "probability": 0.8733 + }, + { + "start": 28472.96, + "end": 28476.13, + "probability": 0.9761 + }, + { + "start": 28476.86, + "end": 28478.68, + "probability": 0.9903 + }, + { + "start": 28479.36, + "end": 28480.76, + "probability": 0.9871 + }, + { + "start": 28481.74, + "end": 28482.86, + "probability": 0.6617 + }, + { + "start": 28483.76, + "end": 28490.94, + "probability": 0.9891 + }, + { + "start": 28491.52, + "end": 28495.16, + "probability": 0.9937 + }, + { + "start": 28495.16, + "end": 28499.92, + "probability": 0.9941 + }, + { + "start": 28500.38, + "end": 28502.04, + "probability": 0.9807 + }, + { + "start": 28502.66, + "end": 28506.1, + "probability": 0.9927 + }, + { + "start": 28506.16, + "end": 28509.28, + "probability": 0.9984 + }, + { + "start": 28509.8, + "end": 28514.92, + "probability": 0.986 + }, + { + "start": 28515.46, + "end": 28519.6, + "probability": 0.9969 + }, + { + "start": 28519.86, + "end": 28520.58, + "probability": 0.807 + }, + { + "start": 28521.14, + "end": 28521.58, + "probability": 0.8 + }, + { + "start": 28522.12, + "end": 28526.96, + "probability": 0.8892 + }, + { + "start": 28527.3, + "end": 28528.24, + "probability": 0.9839 + }, + { + "start": 28528.3, + "end": 28528.94, + "probability": 0.7732 + }, + { + "start": 28529.08, + "end": 28530.13, + "probability": 0.774 + }, + { + "start": 28530.64, + "end": 28535.32, + "probability": 0.9951 + }, + { + "start": 28536.04, + "end": 28539.2, + "probability": 0.9873 + }, + { + "start": 28540.26, + "end": 28543.04, + "probability": 0.9273 + }, + { + "start": 28543.72, + "end": 28546.56, + "probability": 0.9959 + }, + { + "start": 28547.06, + "end": 28548.05, + "probability": 0.9897 + }, + { + "start": 28548.58, + "end": 28552.14, + "probability": 0.9587 + }, + { + "start": 28552.94, + "end": 28554.14, + "probability": 0.8576 + }, + { + "start": 28554.52, + "end": 28555.58, + "probability": 0.9221 + }, + { + "start": 28556.02, + "end": 28557.46, + "probability": 0.8821 + }, + { + "start": 28557.88, + "end": 28559.72, + "probability": 0.4626 + }, + { + "start": 28560.34, + "end": 28562.42, + "probability": 0.7111 + }, + { + "start": 28562.98, + "end": 28567.8, + "probability": 0.9788 + }, + { + "start": 28567.84, + "end": 28568.4, + "probability": 0.8503 + }, + { + "start": 28568.9, + "end": 28573.44, + "probability": 0.9653 + }, + { + "start": 28573.96, + "end": 28574.96, + "probability": 0.8062 + }, + { + "start": 28575.18, + "end": 28575.54, + "probability": 0.6914 + }, + { + "start": 28577.0, + "end": 28579.72, + "probability": 0.8304 + }, + { + "start": 28580.58, + "end": 28582.33, + "probability": 0.998 + }, + { + "start": 28583.28, + "end": 28587.78, + "probability": 0.9457 + }, + { + "start": 28588.3, + "end": 28591.78, + "probability": 0.9957 + }, + { + "start": 28592.36, + "end": 28595.16, + "probability": 0.9966 + }, + { + "start": 28595.76, + "end": 28597.72, + "probability": 0.8499 + }, + { + "start": 28599.04, + "end": 28599.58, + "probability": 0.6741 + }, + { + "start": 28618.92, + "end": 28619.96, + "probability": 0.2592 + }, + { + "start": 28620.5, + "end": 28623.48, + "probability": 0.0443 + }, + { + "start": 28623.92, + "end": 28626.32, + "probability": 0.028 + }, + { + "start": 28627.98, + "end": 28631.66, + "probability": 0.097 + }, + { + "start": 28632.06, + "end": 28633.36, + "probability": 0.0952 + }, + { + "start": 28634.36, + "end": 28634.36, + "probability": 0.3336 + }, + { + "start": 28634.36, + "end": 28634.62, + "probability": 0.1044 + }, + { + "start": 28634.68, + "end": 28638.68, + "probability": 0.0626 + }, + { + "start": 28638.68, + "end": 28638.78, + "probability": 0.1145 + }, + { + "start": 28639.94, + "end": 28640.48, + "probability": 0.1542 + }, + { + "start": 28642.1, + "end": 28642.4, + "probability": 0.1569 + }, + { + "start": 28642.58, + "end": 28642.74, + "probability": 0.0089 + }, + { + "start": 28706.8, + "end": 28709.42, + "probability": 0.6509 + }, + { + "start": 28710.1, + "end": 28713.62, + "probability": 0.8971 + }, + { + "start": 28713.82, + "end": 28716.12, + "probability": 0.5028 + }, + { + "start": 28716.6, + "end": 28717.32, + "probability": 0.6484 + }, + { + "start": 28720.22, + "end": 28722.48, + "probability": 0.0545 + }, + { + "start": 28738.94, + "end": 28742.94, + "probability": 0.9967 + }, + { + "start": 28744.08, + "end": 28745.94, + "probability": 0.8286 + }, + { + "start": 28746.4, + "end": 28746.72, + "probability": 0.2824 + }, + { + "start": 28748.4, + "end": 28749.26, + "probability": 0.0719 + }, + { + "start": 28750.26, + "end": 28750.26, + "probability": 0.1075 + }, + { + "start": 28750.7, + "end": 28750.84, + "probability": 0.0061 + }, + { + "start": 28828.26, + "end": 28828.46, + "probability": 0.0677 + }, + { + "start": 28828.46, + "end": 28828.46, + "probability": 0.115 + }, + { + "start": 28828.46, + "end": 28828.46, + "probability": 0.0172 + }, + { + "start": 28828.46, + "end": 28828.54, + "probability": 0.0669 + }, + { + "start": 28828.54, + "end": 28831.14, + "probability": 0.4783 + }, + { + "start": 28831.32, + "end": 28833.96, + "probability": 0.321 + }, + { + "start": 28834.78, + "end": 28835.34, + "probability": 0.0996 + }, + { + "start": 28835.47, + "end": 28835.86, + "probability": 0.0909 + }, + { + "start": 28836.54, + "end": 28838.46, + "probability": 0.7032 + }, + { + "start": 28838.56, + "end": 28839.0, + "probability": 0.6971 + }, + { + "start": 28842.24, + "end": 28843.36, + "probability": 0.9541 + }, + { + "start": 28844.78, + "end": 28844.88, + "probability": 0.7034 + }, + { + "start": 28848.34, + "end": 28849.0, + "probability": 0.601 + }, + { + "start": 28849.34, + "end": 28851.0, + "probability": 0.4785 + }, + { + "start": 28851.88, + "end": 28852.66, + "probability": 0.691 + }, + { + "start": 28853.98, + "end": 28856.36, + "probability": 0.4703 + }, + { + "start": 28857.28, + "end": 28859.16, + "probability": 0.9001 + }, + { + "start": 28859.22, + "end": 28860.4, + "probability": 0.9716 + }, + { + "start": 28860.4, + "end": 28861.48, + "probability": 0.6749 + }, + { + "start": 28862.06, + "end": 28863.4, + "probability": 0.8424 + }, + { + "start": 28863.6, + "end": 28865.28, + "probability": 0.6604 + }, + { + "start": 28865.86, + "end": 28869.14, + "probability": 0.6315 + }, + { + "start": 28869.14, + "end": 28873.8, + "probability": 0.9438 + }, + { + "start": 28874.08, + "end": 28876.44, + "probability": 0.8088 + }, + { + "start": 28876.88, + "end": 28877.94, + "probability": 0.7684 + }, + { + "start": 28878.04, + "end": 28879.36, + "probability": 0.87 + }, + { + "start": 28879.78, + "end": 28880.52, + "probability": 0.8495 + }, + { + "start": 28880.62, + "end": 28881.8, + "probability": 0.7026 + }, + { + "start": 28881.98, + "end": 28883.13, + "probability": 0.9837 + }, + { + "start": 28883.48, + "end": 28884.36, + "probability": 0.4004 + }, + { + "start": 28884.72, + "end": 28885.7, + "probability": 0.3786 + }, + { + "start": 28885.7, + "end": 28885.96, + "probability": 0.3518 + }, + { + "start": 28886.48, + "end": 28887.16, + "probability": 0.8684 + }, + { + "start": 28887.7, + "end": 28888.24, + "probability": 0.9975 + }, + { + "start": 28892.72, + "end": 28893.82, + "probability": 0.7378 + }, + { + "start": 28894.72, + "end": 28896.0, + "probability": 0.7867 + }, + { + "start": 28897.08, + "end": 28897.74, + "probability": 0.7076 + }, + { + "start": 28898.3, + "end": 28899.14, + "probability": 0.8998 + }, + { + "start": 28899.82, + "end": 28901.7, + "probability": 0.812 + }, + { + "start": 28902.4, + "end": 28906.32, + "probability": 0.9863 + }, + { + "start": 28907.68, + "end": 28913.98, + "probability": 0.993 + }, + { + "start": 28915.34, + "end": 28916.64, + "probability": 0.9506 + }, + { + "start": 28918.0, + "end": 28919.98, + "probability": 0.9973 + }, + { + "start": 28921.08, + "end": 28922.64, + "probability": 0.9961 + }, + { + "start": 28923.72, + "end": 28929.04, + "probability": 0.9944 + }, + { + "start": 28931.84, + "end": 28932.62, + "probability": 0.954 + }, + { + "start": 28934.28, + "end": 28935.72, + "probability": 0.9799 + }, + { + "start": 28936.22, + "end": 28939.28, + "probability": 0.9912 + }, + { + "start": 28940.22, + "end": 28942.86, + "probability": 0.7516 + }, + { + "start": 28943.0, + "end": 28948.12, + "probability": 0.8809 + }, + { + "start": 28948.74, + "end": 28951.1, + "probability": 0.9737 + }, + { + "start": 28951.7, + "end": 28954.5, + "probability": 0.7769 + }, + { + "start": 28957.64, + "end": 28958.26, + "probability": 0.927 + }, + { + "start": 28960.2, + "end": 28961.6, + "probability": 0.9987 + }, + { + "start": 28962.46, + "end": 28965.1, + "probability": 0.979 + }, + { + "start": 28966.0, + "end": 28970.88, + "probability": 0.9968 + }, + { + "start": 28973.1, + "end": 28976.14, + "probability": 0.9665 + }, + { + "start": 28977.68, + "end": 28978.58, + "probability": 0.8811 + }, + { + "start": 28979.8, + "end": 28980.86, + "probability": 0.9699 + }, + { + "start": 28981.5, + "end": 28983.46, + "probability": 0.9346 + }, + { + "start": 28984.8, + "end": 28988.02, + "probability": 0.9933 + }, + { + "start": 28989.08, + "end": 28992.28, + "probability": 0.9987 + }, + { + "start": 28996.8, + "end": 28997.78, + "probability": 0.8445 + }, + { + "start": 28998.36, + "end": 29000.72, + "probability": 0.9785 + }, + { + "start": 29002.3, + "end": 29003.56, + "probability": 0.9902 + }, + { + "start": 29003.74, + "end": 29004.52, + "probability": 0.7259 + }, + { + "start": 29004.62, + "end": 29005.69, + "probability": 0.8276 + }, + { + "start": 29006.62, + "end": 29010.46, + "probability": 0.9958 + }, + { + "start": 29010.6, + "end": 29011.7, + "probability": 0.9493 + }, + { + "start": 29012.6, + "end": 29014.34, + "probability": 0.9712 + }, + { + "start": 29014.86, + "end": 29017.61, + "probability": 0.8577 + }, + { + "start": 29019.02, + "end": 29020.7, + "probability": 0.9873 + }, + { + "start": 29025.02, + "end": 29026.81, + "probability": 0.5172 + }, + { + "start": 29027.12, + "end": 29027.76, + "probability": 0.7456 + }, + { + "start": 29028.86, + "end": 29034.96, + "probability": 0.9891 + }, + { + "start": 29034.96, + "end": 29039.36, + "probability": 0.9985 + }, + { + "start": 29039.38, + "end": 29040.4, + "probability": 0.9485 + }, + { + "start": 29045.26, + "end": 29046.75, + "probability": 0.999 + }, + { + "start": 29047.94, + "end": 29049.72, + "probability": 0.9057 + }, + { + "start": 29050.82, + "end": 29055.4, + "probability": 0.9609 + }, + { + "start": 29056.74, + "end": 29057.72, + "probability": 0.9286 + }, + { + "start": 29058.2, + "end": 29060.92, + "probability": 0.9715 + }, + { + "start": 29061.46, + "end": 29065.56, + "probability": 0.9893 + }, + { + "start": 29066.48, + "end": 29070.54, + "probability": 0.9915 + }, + { + "start": 29070.9, + "end": 29073.1, + "probability": 0.6693 + }, + { + "start": 29073.88, + "end": 29074.5, + "probability": 0.7896 + }, + { + "start": 29075.96, + "end": 29076.92, + "probability": 0.9972 + }, + { + "start": 29077.86, + "end": 29081.53, + "probability": 0.7035 + }, + { + "start": 29082.96, + "end": 29085.82, + "probability": 0.0184 + }, + { + "start": 29085.82, + "end": 29089.38, + "probability": 0.342 + }, + { + "start": 29089.38, + "end": 29089.56, + "probability": 0.6875 + }, + { + "start": 29090.3, + "end": 29091.92, + "probability": 0.5848 + }, + { + "start": 29092.86, + "end": 29093.92, + "probability": 0.964 + }, + { + "start": 29095.2, + "end": 29098.66, + "probability": 0.6711 + }, + { + "start": 29099.48, + "end": 29101.52, + "probability": 0.9324 + }, + { + "start": 29101.7, + "end": 29103.88, + "probability": 0.4513 + }, + { + "start": 29103.9, + "end": 29106.78, + "probability": 0.9876 + }, + { + "start": 29108.42, + "end": 29112.17, + "probability": 0.956 + }, + { + "start": 29112.9, + "end": 29113.7, + "probability": 0.8101 + }, + { + "start": 29114.42, + "end": 29116.22, + "probability": 0.9698 + }, + { + "start": 29116.8, + "end": 29117.88, + "probability": 0.876 + }, + { + "start": 29118.38, + "end": 29119.5, + "probability": 0.9675 + }, + { + "start": 29119.98, + "end": 29120.58, + "probability": 0.9636 + }, + { + "start": 29120.66, + "end": 29121.4, + "probability": 0.7967 + }, + { + "start": 29122.02, + "end": 29124.88, + "probability": 0.9321 + }, + { + "start": 29125.58, + "end": 29126.94, + "probability": 0.8201 + }, + { + "start": 29131.78, + "end": 29132.94, + "probability": 0.8014 + }, + { + "start": 29134.42, + "end": 29135.76, + "probability": 0.7592 + }, + { + "start": 29137.28, + "end": 29142.02, + "probability": 0.8428 + }, + { + "start": 29142.92, + "end": 29143.9, + "probability": 0.7975 + }, + { + "start": 29147.52, + "end": 29148.16, + "probability": 0.9762 + }, + { + "start": 29148.84, + "end": 29149.44, + "probability": 0.9873 + }, + { + "start": 29150.68, + "end": 29153.44, + "probability": 0.9144 + }, + { + "start": 29156.06, + "end": 29159.24, + "probability": 0.9979 + }, + { + "start": 29160.16, + "end": 29163.84, + "probability": 0.9868 + }, + { + "start": 29166.46, + "end": 29172.16, + "probability": 0.9985 + }, + { + "start": 29172.28, + "end": 29174.2, + "probability": 0.8839 + }, + { + "start": 29174.38, + "end": 29181.58, + "probability": 0.8934 + }, + { + "start": 29182.22, + "end": 29183.4, + "probability": 0.7688 + }, + { + "start": 29189.26, + "end": 29189.78, + "probability": 0.5182 + }, + { + "start": 29191.74, + "end": 29194.64, + "probability": 0.9976 + }, + { + "start": 29196.4, + "end": 29196.54, + "probability": 0.1047 + }, + { + "start": 29196.54, + "end": 29196.98, + "probability": 0.5322 + }, + { + "start": 29207.78, + "end": 29208.8, + "probability": 0.9734 + }, + { + "start": 29210.32, + "end": 29211.22, + "probability": 0.9767 + }, + { + "start": 29212.26, + "end": 29213.08, + "probability": 0.9542 + }, + { + "start": 29214.0, + "end": 29216.3, + "probability": 0.9795 + }, + { + "start": 29217.84, + "end": 29221.14, + "probability": 0.9751 + }, + { + "start": 29221.82, + "end": 29224.47, + "probability": 0.9937 + }, + { + "start": 29225.36, + "end": 29226.52, + "probability": 0.836 + }, + { + "start": 29229.64, + "end": 29229.74, + "probability": 0.3339 + }, + { + "start": 29230.56, + "end": 29233.44, + "probability": 0.8868 + }, + { + "start": 29234.4, + "end": 29236.56, + "probability": 0.8466 + }, + { + "start": 29237.34, + "end": 29237.74, + "probability": 0.6686 + }, + { + "start": 29239.14, + "end": 29240.26, + "probability": 0.9556 + }, + { + "start": 29241.3, + "end": 29243.87, + "probability": 0.9927 + }, + { + "start": 29244.4, + "end": 29244.98, + "probability": 0.8915 + }, + { + "start": 29248.24, + "end": 29249.92, + "probability": 0.9638 + }, + { + "start": 29250.52, + "end": 29253.46, + "probability": 0.9435 + }, + { + "start": 29254.26, + "end": 29254.7, + "probability": 0.754 + }, + { + "start": 29256.28, + "end": 29257.4, + "probability": 0.9506 + }, + { + "start": 29258.54, + "end": 29262.94, + "probability": 0.9761 + }, + { + "start": 29264.06, + "end": 29265.36, + "probability": 0.9121 + }, + { + "start": 29266.54, + "end": 29267.76, + "probability": 0.9722 + }, + { + "start": 29269.6, + "end": 29273.84, + "probability": 0.9841 + }, + { + "start": 29274.02, + "end": 29275.14, + "probability": 0.0367 + }, + { + "start": 29276.24, + "end": 29276.94, + "probability": 0.8517 + }, + { + "start": 29277.42, + "end": 29278.24, + "probability": 0.6463 + }, + { + "start": 29278.58, + "end": 29280.73, + "probability": 0.9824 + }, + { + "start": 29287.12, + "end": 29288.66, + "probability": 0.6213 + }, + { + "start": 29292.88, + "end": 29293.96, + "probability": 0.8751 + }, + { + "start": 29297.8, + "end": 29301.4, + "probability": 0.7001 + }, + { + "start": 29303.06, + "end": 29303.86, + "probability": 0.9266 + }, + { + "start": 29305.42, + "end": 29307.94, + "probability": 0.5948 + }, + { + "start": 29311.36, + "end": 29311.74, + "probability": 0.2557 + }, + { + "start": 29314.08, + "end": 29316.34, + "probability": 0.9287 + }, + { + "start": 29316.54, + "end": 29318.82, + "probability": 0.8728 + }, + { + "start": 29319.56, + "end": 29321.66, + "probability": 0.5647 + }, + { + "start": 29323.77, + "end": 29325.64, + "probability": 0.6288 + }, + { + "start": 29327.4, + "end": 29330.76, + "probability": 0.9145 + }, + { + "start": 29330.9, + "end": 29331.68, + "probability": 0.4317 + }, + { + "start": 29331.86, + "end": 29332.21, + "probability": 0.2233 + }, + { + "start": 29334.21, + "end": 29336.46, + "probability": 0.0285 + }, + { + "start": 29342.84, + "end": 29345.66, + "probability": 0.8726 + }, + { + "start": 29347.0, + "end": 29348.74, + "probability": 0.9424 + }, + { + "start": 29350.4, + "end": 29351.36, + "probability": 0.9978 + }, + { + "start": 29352.46, + "end": 29352.88, + "probability": 0.9773 + }, + { + "start": 29353.78, + "end": 29354.7, + "probability": 0.9722 + }, + { + "start": 29355.62, + "end": 29356.58, + "probability": 0.8694 + }, + { + "start": 29357.62, + "end": 29360.12, + "probability": 0.9971 + }, + { + "start": 29360.86, + "end": 29362.32, + "probability": 0.8636 + }, + { + "start": 29364.2, + "end": 29368.48, + "probability": 0.9894 + }, + { + "start": 29378.98, + "end": 29379.2, + "probability": 0.7198 + }, + { + "start": 29379.2, + "end": 29380.36, + "probability": 0.7122 + }, + { + "start": 29381.86, + "end": 29383.74, + "probability": 0.7877 + }, + { + "start": 29384.86, + "end": 29386.72, + "probability": 0.8953 + }, + { + "start": 29388.22, + "end": 29389.0, + "probability": 0.9093 + }, + { + "start": 29393.08, + "end": 29397.6, + "probability": 0.9688 + }, + { + "start": 29399.32, + "end": 29400.12, + "probability": 0.7769 + }, + { + "start": 29402.22, + "end": 29402.9, + "probability": 0.5222 + }, + { + "start": 29402.9, + "end": 29404.0, + "probability": 0.6831 + }, + { + "start": 29405.2, + "end": 29407.2, + "probability": 0.9625 + }, + { + "start": 29409.02, + "end": 29411.26, + "probability": 0.9806 + }, + { + "start": 29412.6, + "end": 29419.1, + "probability": 0.9668 + }, + { + "start": 29420.8, + "end": 29421.22, + "probability": 0.7918 + }, + { + "start": 29421.54, + "end": 29422.14, + "probability": 0.6282 + }, + { + "start": 29422.3, + "end": 29424.6, + "probability": 0.6977 + }, + { + "start": 29428.46, + "end": 29429.8, + "probability": 0.4744 + }, + { + "start": 29430.04, + "end": 29431.8, + "probability": 0.8138 + }, + { + "start": 29431.9, + "end": 29432.08, + "probability": 0.5744 + }, + { + "start": 29432.2, + "end": 29432.44, + "probability": 0.5749 + }, + { + "start": 29432.68, + "end": 29434.04, + "probability": 0.3758 + }, + { + "start": 29434.36, + "end": 29435.13, + "probability": 0.9599 + }, + { + "start": 29438.1, + "end": 29438.92, + "probability": 0.6697 + }, + { + "start": 29439.64, + "end": 29440.12, + "probability": 0.934 + }, + { + "start": 29447.24, + "end": 29447.24, + "probability": 0.1251 + }, + { + "start": 29447.24, + "end": 29447.24, + "probability": 0.1783 + }, + { + "start": 29447.24, + "end": 29447.24, + "probability": 0.138 + }, + { + "start": 29447.24, + "end": 29447.24, + "probability": 0.02 + }, + { + "start": 29447.24, + "end": 29447.24, + "probability": 0.3637 + }, + { + "start": 29447.24, + "end": 29447.24, + "probability": 0.0314 + }, + { + "start": 29459.46, + "end": 29459.46, + "probability": 0.4092 + }, + { + "start": 29459.5, + "end": 29461.9, + "probability": 0.7493 + }, + { + "start": 29471.32, + "end": 29475.38, + "probability": 0.2581 + }, + { + "start": 29475.82, + "end": 29477.6, + "probability": 0.0029 + }, + { + "start": 29484.92, + "end": 29490.3, + "probability": 0.8753 + }, + { + "start": 29492.06, + "end": 29494.14, + "probability": 0.5075 + }, + { + "start": 29494.14, + "end": 29495.36, + "probability": 0.6786 + }, + { + "start": 29495.42, + "end": 29498.24, + "probability": 0.9799 + }, + { + "start": 29499.92, + "end": 29500.9, + "probability": 0.7795 + }, + { + "start": 29503.22, + "end": 29508.0, + "probability": 0.9606 + }, + { + "start": 29509.36, + "end": 29512.28, + "probability": 0.7809 + }, + { + "start": 29514.1, + "end": 29515.11, + "probability": 0.8728 + }, + { + "start": 29516.42, + "end": 29518.26, + "probability": 0.96 + }, + { + "start": 29520.08, + "end": 29523.06, + "probability": 0.9956 + }, + { + "start": 29524.16, + "end": 29525.9, + "probability": 0.9304 + }, + { + "start": 29526.9, + "end": 29528.38, + "probability": 0.064 + }, + { + "start": 29528.38, + "end": 29528.9, + "probability": 0.5133 + }, + { + "start": 29529.76, + "end": 29530.36, + "probability": 0.2389 + }, + { + "start": 29531.02, + "end": 29531.6, + "probability": 0.329 + }, + { + "start": 29531.6, + "end": 29532.46, + "probability": 0.0289 + }, + { + "start": 29534.55, + "end": 29534.96, + "probability": 0.0843 + }, + { + "start": 29534.96, + "end": 29535.12, + "probability": 0.0803 + }, + { + "start": 29535.12, + "end": 29536.59, + "probability": 0.7935 + }, + { + "start": 29537.6, + "end": 29538.8, + "probability": 0.5054 + }, + { + "start": 29541.49, + "end": 29542.82, + "probability": 0.0895 + }, + { + "start": 29544.08, + "end": 29546.74, + "probability": 0.7169 + }, + { + "start": 29546.82, + "end": 29548.06, + "probability": 0.2658 + }, + { + "start": 29548.06, + "end": 29551.5, + "probability": 0.9395 + }, + { + "start": 29551.62, + "end": 29552.11, + "probability": 0.8848 + }, + { + "start": 29552.44, + "end": 29553.04, + "probability": 0.8824 + }, + { + "start": 29553.7, + "end": 29554.38, + "probability": 0.9453 + }, + { + "start": 29555.18, + "end": 29556.84, + "probability": 0.7994 + }, + { + "start": 29557.42, + "end": 29559.8, + "probability": 0.5201 + }, + { + "start": 29559.8, + "end": 29560.0, + "probability": 0.5812 + }, + { + "start": 29560.14, + "end": 29560.16, + "probability": 0.2209 + }, + { + "start": 29560.16, + "end": 29562.14, + "probability": 0.5688 + }, + { + "start": 29563.16, + "end": 29565.55, + "probability": 0.5499 + }, + { + "start": 29566.5, + "end": 29568.09, + "probability": 0.7499 + }, + { + "start": 29570.0, + "end": 29572.32, + "probability": 0.9847 + }, + { + "start": 29573.7, + "end": 29575.38, + "probability": 0.9989 + }, + { + "start": 29577.32, + "end": 29578.0, + "probability": 0.5305 + }, + { + "start": 29578.16, + "end": 29582.6, + "probability": 0.9774 + }, + { + "start": 29585.12, + "end": 29586.06, + "probability": 0.7983 + }, + { + "start": 29586.14, + "end": 29588.84, + "probability": 0.8956 + }, + { + "start": 29590.3, + "end": 29596.06, + "probability": 0.7563 + }, + { + "start": 29596.86, + "end": 29598.18, + "probability": 0.9789 + }, + { + "start": 29600.9, + "end": 29602.48, + "probability": 0.8831 + }, + { + "start": 29603.46, + "end": 29605.68, + "probability": 0.9956 + }, + { + "start": 29606.18, + "end": 29607.44, + "probability": 0.913 + }, + { + "start": 29607.66, + "end": 29608.02, + "probability": 0.7332 + }, + { + "start": 29609.04, + "end": 29609.52, + "probability": 0.4947 + }, + { + "start": 29609.58, + "end": 29612.92, + "probability": 0.9938 + }, + { + "start": 29613.58, + "end": 29615.52, + "probability": 0.5493 + }, + { + "start": 29615.56, + "end": 29617.6, + "probability": 0.5413 + }, + { + "start": 29617.82, + "end": 29619.24, + "probability": 0.4496 + }, + { + "start": 29619.48, + "end": 29623.4, + "probability": 0.2946 + }, + { + "start": 29623.56, + "end": 29624.76, + "probability": 0.151 + }, + { + "start": 29626.16, + "end": 29630.46, + "probability": 0.869 + }, + { + "start": 29631.34, + "end": 29633.72, + "probability": 0.8937 + }, + { + "start": 29634.24, + "end": 29634.95, + "probability": 0.9399 + }, + { + "start": 29635.3, + "end": 29637.87, + "probability": 0.987 + }, + { + "start": 29640.32, + "end": 29641.04, + "probability": 0.3054 + }, + { + "start": 29641.04, + "end": 29643.72, + "probability": 0.7287 + }, + { + "start": 29644.42, + "end": 29645.78, + "probability": 0.9007 + }, + { + "start": 29646.34, + "end": 29649.64, + "probability": 0.9756 + }, + { + "start": 29650.06, + "end": 29651.26, + "probability": 0.7271 + }, + { + "start": 29651.4, + "end": 29652.12, + "probability": 0.6249 + }, + { + "start": 29652.72, + "end": 29656.44, + "probability": 0.9685 + }, + { + "start": 29657.4, + "end": 29658.44, + "probability": 0.5316 + }, + { + "start": 29659.2, + "end": 29662.1, + "probability": 0.7224 + }, + { + "start": 29662.88, + "end": 29663.38, + "probability": 0.9343 + }, + { + "start": 29663.46, + "end": 29665.92, + "probability": 0.8683 + }, + { + "start": 29667.84, + "end": 29671.5, + "probability": 0.1758 + }, + { + "start": 29672.2, + "end": 29675.24, + "probability": 0.5659 + }, + { + "start": 29675.26, + "end": 29678.18, + "probability": 0.6888 + }, + { + "start": 29678.6, + "end": 29680.72, + "probability": 0.7542 + }, + { + "start": 29680.92, + "end": 29681.72, + "probability": 0.4549 + }, + { + "start": 29681.72, + "end": 29682.76, + "probability": 0.014 + }, + { + "start": 29684.86, + "end": 29687.14, + "probability": 0.4685 + }, + { + "start": 29687.26, + "end": 29688.18, + "probability": 0.4643 + }, + { + "start": 29689.68, + "end": 29692.12, + "probability": 0.6974 + }, + { + "start": 29692.24, + "end": 29694.34, + "probability": 0.8143 + }, + { + "start": 29694.34, + "end": 29694.76, + "probability": 0.2999 + }, + { + "start": 29694.96, + "end": 29696.84, + "probability": 0.9221 + }, + { + "start": 29697.94, + "end": 29698.86, + "probability": 0.4701 + }, + { + "start": 29709.82, + "end": 29712.26, + "probability": 0.5076 + }, + { + "start": 29712.34, + "end": 29713.26, + "probability": 0.5449 + }, + { + "start": 29713.36, + "end": 29714.32, + "probability": 0.9495 + }, + { + "start": 29715.38, + "end": 29718.1, + "probability": 0.9688 + }, + { + "start": 29718.94, + "end": 29719.86, + "probability": 0.7653 + }, + { + "start": 29721.63, + "end": 29723.7, + "probability": 0.8798 + }, + { + "start": 29723.92, + "end": 29726.58, + "probability": 0.0429 + }, + { + "start": 29726.88, + "end": 29728.06, + "probability": 0.9821 + }, + { + "start": 29728.24, + "end": 29732.86, + "probability": 0.9044 + }, + { + "start": 29732.98, + "end": 29736.53, + "probability": 0.0895 + }, + { + "start": 29739.08, + "end": 29739.32, + "probability": 0.1832 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.0, + "end": 29874.0, + "probability": 0.0 + }, + { + "start": 29874.12, + "end": 29874.72, + "probability": 0.0334 + }, + { + "start": 29875.7, + "end": 29876.54, + "probability": 0.066 + }, + { + "start": 29876.66, + "end": 29877.05, + "probability": 0.0854 + }, + { + "start": 29879.18, + "end": 29879.3, + "probability": 0.2157 + }, + { + "start": 29880.3, + "end": 29880.81, + "probability": 0.3008 + }, + { + "start": 29881.16, + "end": 29881.86, + "probability": 0.016 + }, + { + "start": 29897.86, + "end": 29901.24, + "probability": 0.0825 + }, + { + "start": 29902.7, + "end": 29902.7, + "probability": 0.137 + }, + { + "start": 29902.7, + "end": 29904.9, + "probability": 0.7229 + }, + { + "start": 29905.78, + "end": 29907.08, + "probability": 0.9032 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.0, + "end": 30005.0, + "probability": 0.0 + }, + { + "start": 30005.16, + "end": 30005.16, + "probability": 0.0457 + }, + { + "start": 30005.16, + "end": 30005.16, + "probability": 0.0949 + }, + { + "start": 30005.16, + "end": 30007.34, + "probability": 0.6785 + }, + { + "start": 30008.08, + "end": 30012.18, + "probability": 0.9533 + }, + { + "start": 30012.18, + "end": 30012.32, + "probability": 0.3371 + }, + { + "start": 30012.36, + "end": 30012.82, + "probability": 0.3949 + }, + { + "start": 30012.9, + "end": 30013.24, + "probability": 0.4159 + }, + { + "start": 30013.24, + "end": 30014.12, + "probability": 0.8794 + }, + { + "start": 30014.54, + "end": 30016.4, + "probability": 0.9971 + }, + { + "start": 30016.82, + "end": 30020.9, + "probability": 0.9945 + }, + { + "start": 30021.76, + "end": 30024.4, + "probability": 0.9976 + }, + { + "start": 30024.8, + "end": 30026.7, + "probability": 0.9198 + }, + { + "start": 30027.84, + "end": 30028.94, + "probability": 0.7505 + }, + { + "start": 30030.88, + "end": 30033.8, + "probability": 0.9517 + }, + { + "start": 30034.54, + "end": 30034.74, + "probability": 0.5958 + }, + { + "start": 30035.34, + "end": 30037.02, + "probability": 0.6063 + }, + { + "start": 30037.64, + "end": 30039.66, + "probability": 0.3334 + }, + { + "start": 30041.18, + "end": 30041.54, + "probability": 0.696 + }, + { + "start": 30043.46, + "end": 30043.99, + "probability": 0.5104 + }, + { + "start": 30045.36, + "end": 30046.14, + "probability": 0.9649 + }, + { + "start": 30047.1, + "end": 30048.08, + "probability": 0.8521 + }, + { + "start": 30048.66, + "end": 30050.46, + "probability": 0.7253 + }, + { + "start": 30051.18, + "end": 30051.64, + "probability": 0.6545 + }, + { + "start": 30052.66, + "end": 30053.48, + "probability": 0.7951 + }, + { + "start": 30054.5, + "end": 30054.86, + "probability": 0.9824 + }, + { + "start": 30055.74, + "end": 30056.38, + "probability": 0.8916 + }, + { + "start": 30057.9, + "end": 30060.98, + "probability": 0.518 + }, + { + "start": 30061.62, + "end": 30062.82, + "probability": 0.5443 + }, + { + "start": 30063.58, + "end": 30063.58, + "probability": 0.7374 + }, + { + "start": 30063.58, + "end": 30063.58, + "probability": 0.8191 + }, + { + "start": 30063.58, + "end": 30064.06, + "probability": 0.358 + }, + { + "start": 30065.9, + "end": 30066.34, + "probability": 0.7642 + }, + { + "start": 30066.62, + "end": 30067.02, + "probability": 0.1263 + }, + { + "start": 30067.42, + "end": 30069.68, + "probability": 0.8354 + }, + { + "start": 30070.64, + "end": 30072.14, + "probability": 0.6876 + }, + { + "start": 30073.26, + "end": 30073.68, + "probability": 0.8154 + }, + { + "start": 30074.52, + "end": 30075.3, + "probability": 0.9002 + }, + { + "start": 30076.02, + "end": 30076.34, + "probability": 0.991 + }, + { + "start": 30077.12, + "end": 30077.82, + "probability": 0.899 + }, + { + "start": 30078.68, + "end": 30080.54, + "probability": 0.9855 + }, + { + "start": 30081.44, + "end": 30083.7, + "probability": 0.9675 + }, + { + "start": 30084.46, + "end": 30084.94, + "probability": 0.9891 + }, + { + "start": 30085.7, + "end": 30086.72, + "probability": 0.9808 + }, + { + "start": 30087.42, + "end": 30088.96, + "probability": 0.9939 + }, + { + "start": 30089.52, + "end": 30090.32, + "probability": 0.9769 + }, + { + "start": 30091.42, + "end": 30093.46, + "probability": 0.5171 + }, + { + "start": 30094.36, + "end": 30095.6, + "probability": 0.5311 + }, + { + "start": 30096.36, + "end": 30096.36, + "probability": 0.6118 + }, + { + "start": 30096.38, + "end": 30097.68, + "probability": 0.9946 + }, + { + "start": 30099.36, + "end": 30101.84, + "probability": 0.7987 + }, + { + "start": 30102.56, + "end": 30104.24, + "probability": 0.4643 + }, + { + "start": 30104.34, + "end": 30105.86, + "probability": 0.2056 + }, + { + "start": 30108.06, + "end": 30108.44, + "probability": 0.9602 + }, + { + "start": 30109.28, + "end": 30110.12, + "probability": 0.6437 + }, + { + "start": 30110.98, + "end": 30113.04, + "probability": 0.7402 + }, + { + "start": 30114.54, + "end": 30116.16, + "probability": 0.8556 + }, + { + "start": 30117.44, + "end": 30117.92, + "probability": 0.9845 + }, + { + "start": 30119.2, + "end": 30119.92, + "probability": 0.9347 + }, + { + "start": 30122.24, + "end": 30123.22, + "probability": 0.9451 + }, + { + "start": 30124.0, + "end": 30124.74, + "probability": 0.9812 + }, + { + "start": 30125.58, + "end": 30126.12, + "probability": 0.9837 + }, + { + "start": 30127.02, + "end": 30127.98, + "probability": 0.9474 + }, + { + "start": 30128.64, + "end": 30129.74, + "probability": 0.8228 + }, + { + "start": 30131.1, + "end": 30131.98, + "probability": 0.9573 + }, + { + "start": 30132.94, + "end": 30133.36, + "probability": 0.9707 + }, + { + "start": 30134.3, + "end": 30135.14, + "probability": 0.8283 + }, + { + "start": 30136.42, + "end": 30138.56, + "probability": 0.5118 + }, + { + "start": 30141.44, + "end": 30141.92, + "probability": 0.9899 + }, + { + "start": 30142.92, + "end": 30143.64, + "probability": 0.7564 + }, + { + "start": 30147.5, + "end": 30147.92, + "probability": 0.5057 + }, + { + "start": 30148.54, + "end": 30149.3, + "probability": 0.76 + }, + { + "start": 30150.26, + "end": 30150.92, + "probability": 0.8185 + }, + { + "start": 30151.44, + "end": 30152.18, + "probability": 0.8728 + }, + { + "start": 30153.12, + "end": 30153.66, + "probability": 0.9891 + }, + { + "start": 30154.26, + "end": 30154.9, + "probability": 0.8351 + }, + { + "start": 30155.76, + "end": 30157.74, + "probability": 0.8499 + }, + { + "start": 30158.6, + "end": 30159.5, + "probability": 0.9311 + }, + { + "start": 30160.54, + "end": 30160.98, + "probability": 0.9699 + }, + { + "start": 30161.9, + "end": 30162.7, + "probability": 0.9323 + }, + { + "start": 30163.58, + "end": 30164.86, + "probability": 0.8534 + }, + { + "start": 30165.7, + "end": 30166.12, + "probability": 0.5646 + }, + { + "start": 30167.08, + "end": 30168.08, + "probability": 0.56 + }, + { + "start": 30170.8, + "end": 30175.26, + "probability": 0.8871 + }, + { + "start": 30178.02, + "end": 30179.88, + "probability": 0.9007 + }, + { + "start": 30181.16, + "end": 30181.62, + "probability": 0.9863 + }, + { + "start": 30183.74, + "end": 30184.5, + "probability": 0.9303 + }, + { + "start": 30186.64, + "end": 30187.14, + "probability": 0.959 + }, + { + "start": 30187.86, + "end": 30191.54, + "probability": 0.8118 + }, + { + "start": 30193.24, + "end": 30195.04, + "probability": 0.5076 + }, + { + "start": 30195.86, + "end": 30196.56, + "probability": 0.7894 + }, + { + "start": 30197.3, + "end": 30197.74, + "probability": 0.8737 + }, + { + "start": 30198.4, + "end": 30199.3, + "probability": 0.8038 + }, + { + "start": 30200.28, + "end": 30202.18, + "probability": 0.7054 + }, + { + "start": 30203.34, + "end": 30203.72, + "probability": 0.8778 + }, + { + "start": 30204.7, + "end": 30205.76, + "probability": 0.8445 + }, + { + "start": 30214.36, + "end": 30214.64, + "probability": 0.5049 + }, + { + "start": 30216.04, + "end": 30217.14, + "probability": 0.5441 + }, + { + "start": 30218.34, + "end": 30218.88, + "probability": 0.8926 + }, + { + "start": 30220.44, + "end": 30221.28, + "probability": 0.6738 + }, + { + "start": 30222.58, + "end": 30225.06, + "probability": 0.704 + }, + { + "start": 30227.18, + "end": 30227.78, + "probability": 0.9855 + }, + { + "start": 30228.88, + "end": 30229.7, + "probability": 0.4196 + }, + { + "start": 30234.58, + "end": 30236.15, + "probability": 0.3794 + }, + { + "start": 30238.64, + "end": 30239.14, + "probability": 0.9827 + }, + { + "start": 30240.14, + "end": 30240.96, + "probability": 0.5779 + }, + { + "start": 30243.0, + "end": 30243.58, + "probability": 0.9937 + }, + { + "start": 30244.48, + "end": 30244.98, + "probability": 0.8778 + }, + { + "start": 30246.68, + "end": 30248.2, + "probability": 0.5126 + }, + { + "start": 30251.48, + "end": 30254.38, + "probability": 0.09 + }, + { + "start": 30258.24, + "end": 30261.38, + "probability": 0.3835 + }, + { + "start": 30276.38, + "end": 30277.08, + "probability": 0.2998 + }, + { + "start": 30277.92, + "end": 30278.32, + "probability": 0.5067 + }, + { + "start": 30279.66, + "end": 30280.34, + "probability": 0.737 + }, + { + "start": 30281.16, + "end": 30281.62, + "probability": 0.7198 + }, + { + "start": 30282.48, + "end": 30283.59, + "probability": 0.959 + }, + { + "start": 30285.85, + "end": 30286.29, + "probability": 0.7227 + }, + { + "start": 30287.45, + "end": 30288.17, + "probability": 0.5876 + }, + { + "start": 30290.17, + "end": 30291.83, + "probability": 0.8385 + }, + { + "start": 30292.59, + "end": 30292.99, + "probability": 0.7544 + }, + { + "start": 30293.87, + "end": 30294.47, + "probability": 0.9637 + }, + { + "start": 30296.53, + "end": 30298.71, + "probability": 0.9139 + }, + { + "start": 30299.45, + "end": 30300.75, + "probability": 0.9531 + }, + { + "start": 30302.29, + "end": 30302.73, + "probability": 0.995 + }, + { + "start": 30304.73, + "end": 30305.97, + "probability": 0.8888 + }, + { + "start": 30308.93, + "end": 30309.49, + "probability": 0.992 + }, + { + "start": 30311.05, + "end": 30311.79, + "probability": 0.9513 + }, + { + "start": 30312.85, + "end": 30313.33, + "probability": 0.9943 + }, + { + "start": 30314.43, + "end": 30317.31, + "probability": 0.7526 + }, + { + "start": 30317.83, + "end": 30318.27, + "probability": 0.8894 + }, + { + "start": 30319.53, + "end": 30320.47, + "probability": 0.7349 + }, + { + "start": 30322.27, + "end": 30324.87, + "probability": 0.5106 + }, + { + "start": 30324.87, + "end": 30325.05, + "probability": 0.4048 + }, + { + "start": 30325.05, + "end": 30325.07, + "probability": 0.0561 + }, + { + "start": 30325.07, + "end": 30325.61, + "probability": 0.3447 + }, + { + "start": 30326.45, + "end": 30328.11, + "probability": 0.8066 + }, + { + "start": 30329.15, + "end": 30329.51, + "probability": 0.8868 + }, + { + "start": 30329.81, + "end": 30330.43, + "probability": 0.019 + }, + { + "start": 30332.01, + "end": 30332.81, + "probability": 0.0833 + }, + { + "start": 30333.89, + "end": 30334.71, + "probability": 0.6474 + }, + { + "start": 30336.45, + "end": 30338.03, + "probability": 0.7764 + }, + { + "start": 30339.55, + "end": 30342.97, + "probability": 0.8643 + }, + { + "start": 30343.81, + "end": 30344.77, + "probability": 0.7507 + }, + { + "start": 30346.39, + "end": 30347.89, + "probability": 0.8046 + }, + { + "start": 30348.85, + "end": 30350.45, + "probability": 0.8723 + }, + { + "start": 30353.31, + "end": 30354.21, + "probability": 0.4528 + }, + { + "start": 30355.25, + "end": 30355.67, + "probability": 0.7443 + }, + { + "start": 30357.39, + "end": 30358.25, + "probability": 0.4319 + }, + { + "start": 30361.07, + "end": 30361.97, + "probability": 0.874 + }, + { + "start": 30362.69, + "end": 30363.71, + "probability": 0.6937 + }, + { + "start": 30365.37, + "end": 30366.45, + "probability": 0.4971 + }, + { + "start": 30367.23, + "end": 30368.35, + "probability": 0.0831 + }, + { + "start": 30368.89, + "end": 30369.69, + "probability": 0.375 + }, + { + "start": 30369.69, + "end": 30370.07, + "probability": 0.5445 + }, + { + "start": 30371.03, + "end": 30371.03, + "probability": 0.5816 + }, + { + "start": 30371.09, + "end": 30372.71, + "probability": 0.3465 + }, + { + "start": 30373.11, + "end": 30373.63, + "probability": 0.2684 + }, + { + "start": 30376.36, + "end": 30378.55, + "probability": 0.4583 + }, + { + "start": 30379.29, + "end": 30380.05, + "probability": 0.3394 + }, + { + "start": 30380.85, + "end": 30380.97, + "probability": 0.0823 + }, + { + "start": 30381.0, + "end": 30381.07, + "probability": 0.0965 + }, + { + "start": 30381.07, + "end": 30382.21, + "probability": 0.0676 + }, + { + "start": 30382.57, + "end": 30382.61, + "probability": 0.2328 + }, + { + "start": 30382.61, + "end": 30382.61, + "probability": 0.1553 + }, + { + "start": 30382.61, + "end": 30383.69, + "probability": 0.1293 + }, + { + "start": 30384.11, + "end": 30388.05, + "probability": 0.0761 + }, + { + "start": 30388.73, + "end": 30389.67, + "probability": 0.0975 + }, + { + "start": 30390.31, + "end": 30391.11, + "probability": 0.4738 + }, + { + "start": 30391.23, + "end": 30391.67, + "probability": 0.0465 + }, + { + "start": 30391.67, + "end": 30391.95, + "probability": 0.2794 + }, + { + "start": 30392.07, + "end": 30394.49, + "probability": 0.5138 + }, + { + "start": 30395.67, + "end": 30398.73, + "probability": 0.5385 + }, + { + "start": 30399.27, + "end": 30399.69, + "probability": 0.1702 + }, + { + "start": 30400.93, + "end": 30402.21, + "probability": 0.773 + }, + { + "start": 30402.37, + "end": 30403.13, + "probability": 0.8516 + }, + { + "start": 30403.29, + "end": 30405.01, + "probability": 0.9166 + }, + { + "start": 30405.45, + "end": 30406.75, + "probability": 0.4935 + }, + { + "start": 30407.27, + "end": 30409.67, + "probability": 0.4061 + }, + { + "start": 30410.39, + "end": 30411.95, + "probability": 0.5031 + }, + { + "start": 30412.49, + "end": 30413.03, + "probability": 0.6444 + }, + { + "start": 30413.27, + "end": 30413.87, + "probability": 0.1797 + }, + { + "start": 30415.11, + "end": 30416.89, + "probability": 0.4368 + }, + { + "start": 30417.33, + "end": 30418.29, + "probability": 0.3629 + }, + { + "start": 30420.11, + "end": 30423.31, + "probability": 0.5488 + }, + { + "start": 30423.61, + "end": 30425.11, + "probability": 0.3557 + }, + { + "start": 30425.19, + "end": 30425.49, + "probability": 0.3237 + }, + { + "start": 30425.49, + "end": 30425.81, + "probability": 0.287 + }, + { + "start": 30425.89, + "end": 30427.19, + "probability": 0.0913 + }, + { + "start": 30427.63, + "end": 30429.29, + "probability": 0.5119 + }, + { + "start": 30429.73, + "end": 30432.09, + "probability": 0.2135 + }, + { + "start": 30432.93, + "end": 30433.89, + "probability": 0.137 + }, + { + "start": 30434.23, + "end": 30434.52, + "probability": 0.2037 + }, + { + "start": 30435.85, + "end": 30436.17, + "probability": 0.6108 + }, + { + "start": 30437.33, + "end": 30437.95, + "probability": 0.6668 + }, + { + "start": 30439.15, + "end": 30439.59, + "probability": 0.9873 + }, + { + "start": 30440.29, + "end": 30440.91, + "probability": 0.6174 + }, + { + "start": 30441.81, + "end": 30442.05, + "probability": 0.988 + }, + { + "start": 30442.97, + "end": 30443.71, + "probability": 0.3295 + }, + { + "start": 30444.87, + "end": 30449.75, + "probability": 0.7398 + }, + { + "start": 30450.61, + "end": 30450.89, + "probability": 0.9211 + }, + { + "start": 30452.11, + "end": 30453.17, + "probability": 0.6388 + }, + { + "start": 30453.85, + "end": 30457.95, + "probability": 0.6802 + }, + { + "start": 30458.67, + "end": 30459.59, + "probability": 0.701 + }, + { + "start": 30460.37, + "end": 30462.33, + "probability": 0.8571 + }, + { + "start": 30462.91, + "end": 30467.35, + "probability": 0.7309 + }, + { + "start": 30468.77, + "end": 30471.21, + "probability": 0.9491 + }, + { + "start": 30476.51, + "end": 30479.69, + "probability": 0.4334 + }, + { + "start": 30485.95, + "end": 30496.89, + "probability": 0.4067 + }, + { + "start": 30499.35, + "end": 30499.35, + "probability": 0.0114 + }, + { + "start": 30499.87, + "end": 30505.94, + "probability": 0.1182 + }, + { + "start": 30508.33, + "end": 30508.83, + "probability": 0.3102 + }, + { + "start": 30509.49, + "end": 30511.23, + "probability": 0.0141 + }, + { + "start": 30514.31, + "end": 30517.19, + "probability": 0.2023 + }, + { + "start": 30517.39, + "end": 30517.95, + "probability": 0.6676 + }, + { + "start": 30518.09, + "end": 30519.19, + "probability": 0.7577 + }, + { + "start": 30519.25, + "end": 30519.79, + "probability": 0.0187 + }, + { + "start": 30520.19, + "end": 30520.51, + "probability": 0.1434 + }, + { + "start": 30520.51, + "end": 30521.51, + "probability": 0.1261 + }, + { + "start": 30521.87, + "end": 30522.45, + "probability": 0.6085 + }, + { + "start": 30522.51, + "end": 30524.89, + "probability": 0.9326 + }, + { + "start": 30525.55, + "end": 30526.39, + "probability": 0.9033 + }, + { + "start": 30526.59, + "end": 30529.03, + "probability": 0.8341 + }, + { + "start": 30530.05, + "end": 30530.36, + "probability": 0.0928 + }, + { + "start": 30530.85, + "end": 30532.97, + "probability": 0.5642 + }, + { + "start": 30533.87, + "end": 30535.61, + "probability": 0.3047 + }, + { + "start": 30535.61, + "end": 30537.43, + "probability": 0.2598 + }, + { + "start": 30537.53, + "end": 30539.79, + "probability": 0.6499 + }, + { + "start": 30540.61, + "end": 30540.69, + "probability": 0.0213 + }, + { + "start": 30540.69, + "end": 30543.17, + "probability": 0.0508 + }, + { + "start": 30544.39, + "end": 30547.31, + "probability": 0.7699 + }, + { + "start": 30547.79, + "end": 30551.23, + "probability": 0.8892 + }, + { + "start": 30551.47, + "end": 30553.75, + "probability": 0.6638 + }, + { + "start": 30554.15, + "end": 30557.09, + "probability": 0.9074 + }, + { + "start": 30557.95, + "end": 30559.17, + "probability": 0.9797 + }, + { + "start": 30559.91, + "end": 30560.63, + "probability": 0.3746 + }, + { + "start": 30564.27, + "end": 30567.51, + "probability": 0.6411 + }, + { + "start": 30569.17, + "end": 30572.31, + "probability": 0.6779 + }, + { + "start": 30574.61, + "end": 30575.19, + "probability": 0.7959 + }, + { + "start": 30576.39, + "end": 30578.09, + "probability": 0.8464 + }, + { + "start": 30579.31, + "end": 30580.83, + "probability": 0.7831 + }, + { + "start": 30581.63, + "end": 30583.61, + "probability": 0.8933 + }, + { + "start": 30586.19, + "end": 30588.51, + "probability": 0.9176 + }, + { + "start": 30589.31, + "end": 30591.49, + "probability": 0.9657 + }, + { + "start": 30596.13, + "end": 30603.87, + "probability": 0.6947 + }, + { + "start": 30611.99, + "end": 30614.41, + "probability": 0.8008 + }, + { + "start": 30615.45, + "end": 30616.31, + "probability": 0.8001 + }, + { + "start": 30617.07, + "end": 30618.21, + "probability": 0.762 + }, + { + "start": 30618.83, + "end": 30621.29, + "probability": 0.8952 + }, + { + "start": 30623.67, + "end": 30625.63, + "probability": 0.5665 + }, + { + "start": 30626.53, + "end": 30626.91, + "probability": 0.8659 + }, + { + "start": 30627.53, + "end": 30628.33, + "probability": 0.7222 + }, + { + "start": 30629.11, + "end": 30630.85, + "probability": 0.733 + }, + { + "start": 30632.1, + "end": 30634.07, + "probability": 0.908 + }, + { + "start": 30636.53, + "end": 30638.07, + "probability": 0.67 + }, + { + "start": 30639.39, + "end": 30641.49, + "probability": 0.9403 + }, + { + "start": 30644.45, + "end": 30646.79, + "probability": 0.8098 + }, + { + "start": 30648.01, + "end": 30650.05, + "probability": 0.134 + }, + { + "start": 30650.47, + "end": 30651.41, + "probability": 0.0772 + }, + { + "start": 30651.69, + "end": 30653.71, + "probability": 0.2958 + }, + { + "start": 30653.97, + "end": 30655.76, + "probability": 0.3525 + }, + { + "start": 30659.83, + "end": 30664.47, + "probability": 0.7169 + }, + { + "start": 30666.11, + "end": 30668.97, + "probability": 0.8173 + }, + { + "start": 30669.83, + "end": 30670.53, + "probability": 0.4527 + }, + { + "start": 30671.73, + "end": 30673.55, + "probability": 0.7713 + }, + { + "start": 30674.11, + "end": 30676.31, + "probability": 0.9258 + }, + { + "start": 30676.99, + "end": 30678.99, + "probability": 0.7038 + }, + { + "start": 30680.55, + "end": 30682.17, + "probability": 0.6662 + }, + { + "start": 30683.47, + "end": 30685.03, + "probability": 0.8406 + }, + { + "start": 30690.89, + "end": 30691.51, + "probability": 0.799 + }, + { + "start": 30692.11, + "end": 30692.63, + "probability": 0.5591 + }, + { + "start": 30694.35, + "end": 30695.93, + "probability": 0.8864 + }, + { + "start": 30697.01, + "end": 30699.17, + "probability": 0.9262 + }, + { + "start": 30700.25, + "end": 30701.11, + "probability": 0.991 + }, + { + "start": 30702.49, + "end": 30704.27, + "probability": 0.9797 + }, + { + "start": 30704.79, + "end": 30705.69, + "probability": 0.7633 + }, + { + "start": 30706.93, + "end": 30708.69, + "probability": 0.9823 + }, + { + "start": 30709.27, + "end": 30709.93, + "probability": 0.8777 + }, + { + "start": 30710.57, + "end": 30711.41, + "probability": 0.742 + }, + { + "start": 30712.61, + "end": 30713.51, + "probability": 0.8048 + }, + { + "start": 30714.53, + "end": 30715.33, + "probability": 0.7301 + }, + { + "start": 30716.35, + "end": 30717.95, + "probability": 0.9054 + }, + { + "start": 30719.87, + "end": 30720.55, + "probability": 0.4321 + }, + { + "start": 30723.61, + "end": 30725.05, + "probability": 0.5335 + }, + { + "start": 30726.87, + "end": 30727.55, + "probability": 0.766 + }, + { + "start": 30730.45, + "end": 30733.29, + "probability": 0.6779 + }, + { + "start": 30734.67, + "end": 30736.29, + "probability": 0.9118 + }, + { + "start": 30738.07, + "end": 30739.33, + "probability": 0.9623 + }, + { + "start": 30740.71, + "end": 30743.55, + "probability": 0.8906 + }, + { + "start": 30744.25, + "end": 30745.17, + "probability": 0.7395 + }, + { + "start": 30746.67, + "end": 30747.55, + "probability": 0.9897 + }, + { + "start": 30748.19, + "end": 30748.55, + "probability": 0.7508 + }, + { + "start": 30750.45, + "end": 30751.73, + "probability": 0.2985 + }, + { + "start": 30752.33, + "end": 30754.23, + "probability": 0.1076 + }, + { + "start": 30754.35, + "end": 30755.31, + "probability": 0.148 + }, + { + "start": 30755.59, + "end": 30756.03, + "probability": 0.5259 + }, + { + "start": 30756.59, + "end": 30756.99, + "probability": 0.5847 + }, + { + "start": 30757.69, + "end": 30759.97, + "probability": 0.388 + }, + { + "start": 30760.19, + "end": 30761.75, + "probability": 0.2326 + }, + { + "start": 30762.95, + "end": 30764.91, + "probability": 0.8599 + }, + { + "start": 30769.71, + "end": 30770.87, + "probability": 0.0266 + }, + { + "start": 30770.87, + "end": 30771.75, + "probability": 0.5862 + }, + { + "start": 30772.89, + "end": 30774.73, + "probability": 0.8441 + }, + { + "start": 30776.27, + "end": 30778.65, + "probability": 0.8126 + }, + { + "start": 30779.33, + "end": 30780.13, + "probability": 0.9534 + }, + { + "start": 30781.31, + "end": 30783.81, + "probability": 0.9495 + }, + { + "start": 30784.39, + "end": 30786.45, + "probability": 0.919 + }, + { + "start": 30788.91, + "end": 30790.01, + "probability": 0.8408 + }, + { + "start": 30790.91, + "end": 30792.87, + "probability": 0.8448 + }, + { + "start": 30793.21, + "end": 30797.45, + "probability": 0.8901 + }, + { + "start": 30798.33, + "end": 30799.97, + "probability": 0.4797 + }, + { + "start": 30800.03, + "end": 30801.57, + "probability": 0.5147 + }, + { + "start": 30802.23, + "end": 30805.03, + "probability": 0.7608 + }, + { + "start": 30806.01, + "end": 30808.91, + "probability": 0.9246 + }, + { + "start": 30811.02, + "end": 30812.75, + "probability": 0.7466 + }, + { + "start": 30813.95, + "end": 30818.35, + "probability": 0.9945 + }, + { + "start": 30818.35, + "end": 30823.43, + "probability": 0.9973 + }, + { + "start": 30823.77, + "end": 30824.51, + "probability": 0.7571 + }, + { + "start": 30824.95, + "end": 30826.17, + "probability": 0.1978 + }, + { + "start": 30827.21, + "end": 30828.35, + "probability": 0.8663 + }, + { + "start": 30830.14, + "end": 30834.73, + "probability": 0.8706 + }, + { + "start": 30838.59, + "end": 30841.45, + "probability": 0.1883 + }, + { + "start": 30842.45, + "end": 30842.83, + "probability": 0.1025 + }, + { + "start": 30843.35, + "end": 30845.01, + "probability": 0.0911 + }, + { + "start": 30848.98, + "end": 30852.57, + "probability": 0.0651 + }, + { + "start": 30866.91, + "end": 30867.99, + "probability": 0.0645 + }, + { + "start": 30867.99, + "end": 30868.49, + "probability": 0.0524 + }, + { + "start": 30868.49, + "end": 30868.49, + "probability": 0.0977 + }, + { + "start": 30869.45, + "end": 30869.79, + "probability": 0.3598 + }, + { + "start": 30869.95, + "end": 30870.09, + "probability": 0.022 + }, + { + "start": 30871.17, + "end": 30871.57, + "probability": 0.3138 + }, + { + "start": 30871.57, + "end": 30871.59, + "probability": 0.0402 + }, + { + "start": 30910.75, + "end": 30911.45, + "probability": 0.0986 + }, + { + "start": 30911.71, + "end": 30912.07, + "probability": 0.0574 + }, + { + "start": 30914.19, + "end": 30915.05, + "probability": 0.1497 + }, + { + "start": 30916.0, + "end": 30918.55, + "probability": 0.5672 + }, + { + "start": 30918.63, + "end": 30920.63, + "probability": 0.996 + }, + { + "start": 30920.75, + "end": 30925.53, + "probability": 0.9492 + }, + { + "start": 30925.85, + "end": 30927.17, + "probability": 0.9466 + }, + { + "start": 30927.93, + "end": 30930.57, + "probability": 0.9749 + }, + { + "start": 30930.57, + "end": 30932.81, + "probability": 0.9037 + }, + { + "start": 30933.97, + "end": 30935.71, + "probability": 0.99 + }, + { + "start": 30935.79, + "end": 30939.95, + "probability": 0.8516 + }, + { + "start": 30940.01, + "end": 30941.45, + "probability": 0.7178 + }, + { + "start": 30943.09, + "end": 30946.17, + "probability": 0.8862 + }, + { + "start": 30947.37, + "end": 30947.81, + "probability": 0.2245 + }, + { + "start": 30947.81, + "end": 30953.27, + "probability": 0.9236 + }, + { + "start": 30953.31, + "end": 30954.31, + "probability": 0.6855 + }, + { + "start": 30954.61, + "end": 30954.61, + "probability": 0.459 + }, + { + "start": 30954.67, + "end": 30955.69, + "probability": 0.7114 + }, + { + "start": 30955.71, + "end": 30956.85, + "probability": 0.6058 + }, + { + "start": 30956.93, + "end": 30958.09, + "probability": 0.9432 + }, + { + "start": 30958.43, + "end": 30959.93, + "probability": 0.6263 + }, + { + "start": 30960.61, + "end": 30962.83, + "probability": 0.7301 + }, + { + "start": 30963.41, + "end": 30964.31, + "probability": 0.76 + }, + { + "start": 30965.05, + "end": 30966.03, + "probability": 0.3742 + }, + { + "start": 30967.01, + "end": 30970.63, + "probability": 0.8394 + }, + { + "start": 30971.21, + "end": 30973.91, + "probability": 0.9157 + }, + { + "start": 30974.29, + "end": 30977.41, + "probability": 0.6503 + }, + { + "start": 30977.51, + "end": 30981.39, + "probability": 0.6359 + }, + { + "start": 30981.53, + "end": 30982.53, + "probability": 0.7023 + }, + { + "start": 30983.43, + "end": 30984.95, + "probability": 0.9685 + }, + { + "start": 30985.67, + "end": 30989.37, + "probability": 0.8867 + }, + { + "start": 30989.47, + "end": 30990.39, + "probability": 0.872 + }, + { + "start": 30990.91, + "end": 30992.97, + "probability": 0.5643 + }, + { + "start": 30993.73, + "end": 30994.37, + "probability": 0.936 + }, + { + "start": 30994.37, + "end": 30996.97, + "probability": 0.9934 + }, + { + "start": 30996.97, + "end": 31000.61, + "probability": 0.9974 + }, + { + "start": 31009.53, + "end": 31011.97, + "probability": 0.7789 + }, + { + "start": 31012.05, + "end": 31012.53, + "probability": 0.7014 + }, + { + "start": 31012.71, + "end": 31013.41, + "probability": 0.8392 + }, + { + "start": 31013.99, + "end": 31016.05, + "probability": 0.9012 + }, + { + "start": 31021.77, + "end": 31022.91, + "probability": 0.0912 + }, + { + "start": 31022.91, + "end": 31026.83, + "probability": 0.0375 + }, + { + "start": 31028.85, + "end": 31033.43, + "probability": 0.5706 + }, + { + "start": 31038.01, + "end": 31040.73, + "probability": 0.1124 + }, + { + "start": 31040.79, + "end": 31041.42, + "probability": 0.0923 + }, + { + "start": 31047.51, + "end": 31047.59, + "probability": 0.0908 + }, + { + "start": 31047.59, + "end": 31048.37, + "probability": 0.1991 + }, + { + "start": 31051.52, + "end": 31057.97, + "probability": 0.0323 + }, + { + "start": 31061.25, + "end": 31062.39, + "probability": 0.0397 + }, + { + "start": 31062.61, + "end": 31064.17, + "probability": 0.0624 + }, + { + "start": 31066.37, + "end": 31068.19, + "probability": 0.0985 + }, + { + "start": 31068.21, + "end": 31068.59, + "probability": 0.5098 + }, + { + "start": 31070.83, + "end": 31071.93, + "probability": 0.3191 + }, + { + "start": 31075.07, + "end": 31075.65, + "probability": 0.2189 + }, + { + "start": 31076.45, + "end": 31078.7, + "probability": 0.0672 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31090.0, + "end": 31090.0, + "probability": 0.0 + }, + { + "start": 31132.36, + "end": 31132.6, + "probability": 0.0106 + }, + { + "start": 31132.74, + "end": 31135.64, + "probability": 0.1299 + }, + { + "start": 31135.66, + "end": 31137.72, + "probability": 0.066 + }, + { + "start": 31137.72, + "end": 31138.18, + "probability": 0.0831 + }, + { + "start": 31138.22, + "end": 31138.9, + "probability": 0.0076 + }, + { + "start": 31139.7, + "end": 31140.84, + "probability": 0.0442 + }, + { + "start": 31141.92, + "end": 31143.12, + "probability": 0.0212 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31212.0, + "end": 31212.0, + "probability": 0.0 + }, + { + "start": 31226.34, + "end": 31226.46, + "probability": 0.0018 + }, + { + "start": 31245.94, + "end": 31246.76, + "probability": 0.0035 + }, + { + "start": 31248.58, + "end": 31248.68, + "probability": 0.1667 + }, + { + "start": 31261.84, + "end": 31263.74, + "probability": 0.0169 + }, + { + "start": 31263.82, + "end": 31266.18, + "probability": 0.2139 + }, + { + "start": 31277.0, + "end": 31278.5, + "probability": 0.0492 + }, + { + "start": 31278.5, + "end": 31280.96, + "probability": 0.0782 + }, + { + "start": 31281.88, + "end": 31282.8, + "probability": 0.1185 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.0, + "end": 31332.0, + "probability": 0.0 + }, + { + "start": 31332.02, + "end": 31332.8, + "probability": 0.016 + }, + { + "start": 31332.8, + "end": 31334.22, + "probability": 0.3156 + }, + { + "start": 31334.24, + "end": 31338.84, + "probability": 0.6734 + }, + { + "start": 31339.12, + "end": 31341.36, + "probability": 0.4054 + }, + { + "start": 31341.8, + "end": 31342.76, + "probability": 0.9376 + }, + { + "start": 31343.82, + "end": 31346.38, + "probability": 0.5168 + }, + { + "start": 31346.74, + "end": 31349.52, + "probability": 0.9647 + }, + { + "start": 31350.86, + "end": 31352.42, + "probability": 0.5958 + }, + { + "start": 31352.42, + "end": 31355.48, + "probability": 0.9826 + }, + { + "start": 31355.8, + "end": 31356.16, + "probability": 0.7942 + }, + { + "start": 31356.74, + "end": 31359.12, + "probability": 0.5356 + }, + { + "start": 31359.14, + "end": 31359.74, + "probability": 0.7153 + }, + { + "start": 31360.28, + "end": 31361.62, + "probability": 0.8909 + }, + { + "start": 31362.3, + "end": 31364.98, + "probability": 0.9486 + }, + { + "start": 31365.62, + "end": 31368.32, + "probability": 0.908 + }, + { + "start": 31368.5, + "end": 31371.12, + "probability": 0.8896 + }, + { + "start": 31372.68, + "end": 31373.4, + "probability": 0.8604 + }, + { + "start": 31374.14, + "end": 31375.18, + "probability": 0.9574 + }, + { + "start": 31375.98, + "end": 31376.82, + "probability": 0.6092 + }, + { + "start": 31376.94, + "end": 31381.24, + "probability": 0.9147 + }, + { + "start": 31381.88, + "end": 31383.52, + "probability": 0.9443 + }, + { + "start": 31384.26, + "end": 31385.36, + "probability": 0.7221 + }, + { + "start": 31385.58, + "end": 31388.72, + "probability": 0.9454 + }, + { + "start": 31389.34, + "end": 31391.16, + "probability": 0.9152 + }, + { + "start": 31391.64, + "end": 31394.62, + "probability": 0.8963 + }, + { + "start": 31395.16, + "end": 31396.06, + "probability": 0.8979 + }, + { + "start": 31396.26, + "end": 31396.98, + "probability": 0.8289 + }, + { + "start": 31397.6, + "end": 31398.76, + "probability": 0.8293 + }, + { + "start": 31399.28, + "end": 31400.45, + "probability": 0.895 + }, + { + "start": 31400.8, + "end": 31401.46, + "probability": 0.9021 + }, + { + "start": 31401.86, + "end": 31402.06, + "probability": 0.7281 + }, + { + "start": 31403.2, + "end": 31406.54, + "probability": 0.9225 + }, + { + "start": 31406.72, + "end": 31411.13, + "probability": 0.7642 + }, + { + "start": 31412.26, + "end": 31412.78, + "probability": 0.4769 + }, + { + "start": 31413.2, + "end": 31413.34, + "probability": 0.6872 + }, + { + "start": 31414.06, + "end": 31414.7, + "probability": 0.8165 + }, + { + "start": 31415.38, + "end": 31416.98, + "probability": 0.9398 + }, + { + "start": 31418.04, + "end": 31419.28, + "probability": 0.554 + }, + { + "start": 31420.0, + "end": 31422.0, + "probability": 0.4166 + }, + { + "start": 31422.78, + "end": 31423.88, + "probability": 0.961 + }, + { + "start": 31424.16, + "end": 31425.54, + "probability": 0.803 + }, + { + "start": 31425.8, + "end": 31426.33, + "probability": 0.9038 + }, + { + "start": 31427.24, + "end": 31428.58, + "probability": 0.6819 + }, + { + "start": 31429.18, + "end": 31430.7, + "probability": 0.9766 + }, + { + "start": 31431.68, + "end": 31431.96, + "probability": 0.9424 + }, + { + "start": 31432.86, + "end": 31433.21, + "probability": 0.4022 + }, + { + "start": 31433.6, + "end": 31437.98, + "probability": 0.9092 + }, + { + "start": 31438.06, + "end": 31440.32, + "probability": 0.9576 + }, + { + "start": 31440.54, + "end": 31440.74, + "probability": 0.9076 + }, + { + "start": 31441.36, + "end": 31443.36, + "probability": 0.9941 + }, + { + "start": 31444.2, + "end": 31445.74, + "probability": 0.8137 + }, + { + "start": 31446.38, + "end": 31447.06, + "probability": 0.6336 + }, + { + "start": 31447.58, + "end": 31449.22, + "probability": 0.9597 + }, + { + "start": 31449.42, + "end": 31451.06, + "probability": 0.9861 + }, + { + "start": 31451.66, + "end": 31453.51, + "probability": 0.9759 + }, + { + "start": 31454.02, + "end": 31457.48, + "probability": 0.9759 + }, + { + "start": 31457.96, + "end": 31460.7, + "probability": 0.968 + }, + { + "start": 31461.24, + "end": 31463.84, + "probability": 0.987 + }, + { + "start": 31464.14, + "end": 31466.32, + "probability": 0.966 + }, + { + "start": 31466.88, + "end": 31469.86, + "probability": 0.9942 + }, + { + "start": 31470.44, + "end": 31471.58, + "probability": 0.6775 + }, + { + "start": 31472.18, + "end": 31473.96, + "probability": 0.9365 + }, + { + "start": 31474.22, + "end": 31475.62, + "probability": 0.9729 + }, + { + "start": 31476.14, + "end": 31477.98, + "probability": 0.7825 + }, + { + "start": 31478.08, + "end": 31481.2, + "probability": 0.8017 + }, + { + "start": 31481.82, + "end": 31483.58, + "probability": 0.931 + }, + { + "start": 31483.76, + "end": 31484.7, + "probability": 0.691 + }, + { + "start": 31485.5, + "end": 31487.72, + "probability": 0.8228 + }, + { + "start": 31488.54, + "end": 31489.52, + "probability": 0.781 + }, + { + "start": 31490.08, + "end": 31493.85, + "probability": 0.8863 + }, + { + "start": 31494.22, + "end": 31497.8, + "probability": 0.9807 + }, + { + "start": 31498.3, + "end": 31502.32, + "probability": 0.809 + }, + { + "start": 31502.82, + "end": 31503.68, + "probability": 0.5804 + }, + { + "start": 31504.52, + "end": 31506.84, + "probability": 0.8238 + }, + { + "start": 31507.68, + "end": 31509.28, + "probability": 0.8836 + }, + { + "start": 31509.28, + "end": 31511.68, + "probability": 0.5897 + }, + { + "start": 31512.32, + "end": 31514.26, + "probability": 0.6256 + }, + { + "start": 31514.74, + "end": 31517.76, + "probability": 0.8272 + }, + { + "start": 31518.26, + "end": 31520.88, + "probability": 0.9972 + }, + { + "start": 31522.18, + "end": 31525.22, + "probability": 0.7661 + }, + { + "start": 31525.88, + "end": 31526.38, + "probability": 0.6183 + }, + { + "start": 31527.42, + "end": 31529.1, + "probability": 0.993 + }, + { + "start": 31529.78, + "end": 31532.1, + "probability": 0.9977 + }, + { + "start": 31532.2, + "end": 31534.2, + "probability": 0.7407 + }, + { + "start": 31534.82, + "end": 31536.6, + "probability": 0.9539 + }, + { + "start": 31537.38, + "end": 31538.26, + "probability": 0.5494 + }, + { + "start": 31539.48, + "end": 31542.56, + "probability": 0.9348 + }, + { + "start": 31543.84, + "end": 31546.46, + "probability": 0.8994 + }, + { + "start": 31547.34, + "end": 31548.14, + "probability": 0.9896 + }, + { + "start": 31548.8, + "end": 31550.3, + "probability": 0.9569 + }, + { + "start": 31550.82, + "end": 31551.7, + "probability": 0.742 + }, + { + "start": 31552.46, + "end": 31556.02, + "probability": 0.9961 + }, + { + "start": 31556.7, + "end": 31557.94, + "probability": 0.9919 + }, + { + "start": 31558.96, + "end": 31561.04, + "probability": 0.9909 + }, + { + "start": 31561.7, + "end": 31563.46, + "probability": 0.9914 + }, + { + "start": 31563.74, + "end": 31566.96, + "probability": 0.9165 + }, + { + "start": 31566.96, + "end": 31569.08, + "probability": 0.6532 + }, + { + "start": 31570.08, + "end": 31570.9, + "probability": 0.8607 + }, + { + "start": 31571.02, + "end": 31571.34, + "probability": 0.5277 + }, + { + "start": 31571.42, + "end": 31572.62, + "probability": 0.9792 + }, + { + "start": 31573.92, + "end": 31577.58, + "probability": 0.8634 + }, + { + "start": 31577.7, + "end": 31578.04, + "probability": 0.9499 + }, + { + "start": 31578.38, + "end": 31580.56, + "probability": 0.9684 + }, + { + "start": 31581.22, + "end": 31584.66, + "probability": 0.9927 + }, + { + "start": 31584.76, + "end": 31585.58, + "probability": 0.8188 + }, + { + "start": 31586.54, + "end": 31587.84, + "probability": 0.97 + }, + { + "start": 31588.42, + "end": 31590.52, + "probability": 0.7671 + }, + { + "start": 31590.52, + "end": 31594.44, + "probability": 0.6247 + }, + { + "start": 31595.0, + "end": 31595.52, + "probability": 0.4641 + }, + { + "start": 31595.64, + "end": 31598.14, + "probability": 0.8522 + }, + { + "start": 31598.2, + "end": 31600.98, + "probability": 0.899 + }, + { + "start": 31601.1, + "end": 31602.38, + "probability": 0.9805 + }, + { + "start": 31603.08, + "end": 31605.04, + "probability": 0.9604 + }, + { + "start": 31605.4, + "end": 31606.37, + "probability": 0.9818 + }, + { + "start": 31607.86, + "end": 31609.98, + "probability": 0.9613 + }, + { + "start": 31609.98, + "end": 31612.72, + "probability": 0.8187 + }, + { + "start": 31613.3, + "end": 31613.74, + "probability": 0.9316 + }, + { + "start": 31614.26, + "end": 31614.66, + "probability": 0.9888 + }, + { + "start": 31616.66, + "end": 31616.82, + "probability": 0.6578 + }, + { + "start": 31617.64, + "end": 31620.26, + "probability": 0.4971 + }, + { + "start": 31620.9, + "end": 31623.18, + "probability": 0.7688 + }, + { + "start": 31623.82, + "end": 31631.2, + "probability": 0.7371 + }, + { + "start": 31631.5, + "end": 31633.1, + "probability": 0.0505 + }, + { + "start": 31633.1, + "end": 31633.6, + "probability": 0.2593 + }, + { + "start": 31635.06, + "end": 31635.16, + "probability": 0.2759 + }, + { + "start": 31636.04, + "end": 31636.04, + "probability": 0.2814 + }, + { + "start": 31638.24, + "end": 31638.24, + "probability": 0.101 + }, + { + "start": 31638.24, + "end": 31638.56, + "probability": 0.0586 + }, + { + "start": 31638.56, + "end": 31639.6, + "probability": 0.4202 + }, + { + "start": 31640.86, + "end": 31642.22, + "probability": 0.9611 + }, + { + "start": 31643.82, + "end": 31643.82, + "probability": 0.0814 + }, + { + "start": 31646.34, + "end": 31648.78, + "probability": 0.125 + }, + { + "start": 31652.83, + "end": 31653.22, + "probability": 0.5453 + }, + { + "start": 31653.8, + "end": 31658.78, + "probability": 0.9963 + }, + { + "start": 31660.5, + "end": 31662.6, + "probability": 0.7834 + }, + { + "start": 31665.72, + "end": 31666.5, + "probability": 0.7149 + }, + { + "start": 31666.6, + "end": 31667.84, + "probability": 0.9084 + }, + { + "start": 31667.94, + "end": 31668.44, + "probability": 0.8024 + }, + { + "start": 31668.76, + "end": 31669.82, + "probability": 0.8636 + }, + { + "start": 31670.62, + "end": 31670.92, + "probability": 0.7284 + }, + { + "start": 31673.21, + "end": 31678.12, + "probability": 0.9243 + }, + { + "start": 31678.66, + "end": 31684.66, + "probability": 0.9531 + }, + { + "start": 31684.74, + "end": 31685.62, + "probability": 0.9554 + }, + { + "start": 31685.62, + "end": 31687.02, + "probability": 0.9705 + }, + { + "start": 31687.92, + "end": 31690.1, + "probability": 0.9139 + }, + { + "start": 31691.34, + "end": 31694.46, + "probability": 0.8842 + }, + { + "start": 31695.96, + "end": 31699.4, + "probability": 0.9956 + }, + { + "start": 31701.16, + "end": 31705.5, + "probability": 0.9614 + }, + { + "start": 31705.68, + "end": 31708.24, + "probability": 0.8493 + }, + { + "start": 31708.84, + "end": 31710.56, + "probability": 0.9987 + }, + { + "start": 31711.34, + "end": 31716.36, + "probability": 0.9985 + }, + { + "start": 31717.8, + "end": 31720.28, + "probability": 0.9878 + }, + { + "start": 31721.62, + "end": 31724.48, + "probability": 0.999 + }, + { + "start": 31726.27, + "end": 31730.84, + "probability": 0.9976 + }, + { + "start": 31730.96, + "end": 31732.54, + "probability": 0.673 + }, + { + "start": 31732.64, + "end": 31734.94, + "probability": 0.885 + }, + { + "start": 31735.0, + "end": 31736.82, + "probability": 0.9963 + }, + { + "start": 31737.6, + "end": 31743.12, + "probability": 0.9896 + }, + { + "start": 31743.94, + "end": 31748.02, + "probability": 0.9788 + }, + { + "start": 31748.06, + "end": 31752.68, + "probability": 0.7656 + }, + { + "start": 31753.42, + "end": 31759.96, + "probability": 0.9852 + }, + { + "start": 31760.02, + "end": 31762.38, + "probability": 0.9221 + }, + { + "start": 31763.86, + "end": 31769.92, + "probability": 0.5996 + }, + { + "start": 31771.54, + "end": 31776.32, + "probability": 0.9651 + }, + { + "start": 31776.54, + "end": 31778.44, + "probability": 0.9958 + }, + { + "start": 31778.64, + "end": 31783.76, + "probability": 0.975 + }, + { + "start": 31784.48, + "end": 31786.52, + "probability": 0.5972 + }, + { + "start": 31787.02, + "end": 31789.28, + "probability": 0.9962 + }, + { + "start": 31789.92, + "end": 31795.92, + "probability": 0.8444 + }, + { + "start": 31796.52, + "end": 31798.82, + "probability": 0.9116 + }, + { + "start": 31800.12, + "end": 31802.7, + "probability": 0.8724 + }, + { + "start": 31803.2, + "end": 31805.6, + "probability": 0.9965 + }, + { + "start": 31805.82, + "end": 31808.86, + "probability": 0.8975 + }, + { + "start": 31808.96, + "end": 31810.56, + "probability": 0.9924 + }, + { + "start": 31812.12, + "end": 31813.78, + "probability": 0.8907 + }, + { + "start": 31814.46, + "end": 31821.74, + "probability": 0.9701 + }, + { + "start": 31821.74, + "end": 31822.04, + "probability": 0.7056 + }, + { + "start": 31822.54, + "end": 31826.16, + "probability": 0.9849 + }, + { + "start": 31826.34, + "end": 31827.12, + "probability": 0.5975 + }, + { + "start": 31827.2, + "end": 31827.89, + "probability": 0.9663 + }, + { + "start": 31828.6, + "end": 31829.34, + "probability": 0.9478 + }, + { + "start": 31829.86, + "end": 31830.84, + "probability": 0.7404 + }, + { + "start": 31831.84, + "end": 31833.0, + "probability": 0.9471 + }, + { + "start": 31833.48, + "end": 31835.58, + "probability": 0.9881 + }, + { + "start": 31837.53, + "end": 31844.74, + "probability": 0.9937 + }, + { + "start": 31845.38, + "end": 31849.48, + "probability": 0.9916 + }, + { + "start": 31850.14, + "end": 31853.2, + "probability": 0.9953 + }, + { + "start": 31853.22, + "end": 31856.52, + "probability": 0.9924 + }, + { + "start": 31857.38, + "end": 31857.8, + "probability": 0.5991 + }, + { + "start": 31858.48, + "end": 31858.5, + "probability": 0.6268 + }, + { + "start": 31859.04, + "end": 31860.28, + "probability": 0.9863 + }, + { + "start": 31860.98, + "end": 31862.8, + "probability": 0.6885 + }, + { + "start": 31868.32, + "end": 31870.24, + "probability": 0.9277 + }, + { + "start": 31872.6, + "end": 31876.58, + "probability": 0.1657 + }, + { + "start": 31877.14, + "end": 31878.92, + "probability": 0.8988 + }, + { + "start": 31880.1, + "end": 31881.64, + "probability": 0.8838 + }, + { + "start": 31881.9, + "end": 31885.72, + "probability": 0.7473 + }, + { + "start": 31887.32, + "end": 31888.75, + "probability": 0.9375 + }, + { + "start": 31889.4, + "end": 31890.0, + "probability": 0.9399 + }, + { + "start": 31890.66, + "end": 31891.68, + "probability": 0.4512 + }, + { + "start": 31891.76, + "end": 31892.72, + "probability": 0.8546 + }, + { + "start": 31893.72, + "end": 31894.54, + "probability": 0.9092 + }, + { + "start": 31896.58, + "end": 31900.7, + "probability": 0.6399 + }, + { + "start": 31901.68, + "end": 31904.8, + "probability": 0.9912 + }, + { + "start": 31906.2, + "end": 31908.2, + "probability": 0.8824 + }, + { + "start": 31910.32, + "end": 31911.66, + "probability": 0.9495 + }, + { + "start": 31913.12, + "end": 31913.94, + "probability": 0.8735 + }, + { + "start": 31914.02, + "end": 31916.64, + "probability": 0.9943 + }, + { + "start": 31917.42, + "end": 31918.97, + "probability": 0.9976 + }, + { + "start": 31919.28, + "end": 31920.04, + "probability": 0.9022 + }, + { + "start": 31922.08, + "end": 31924.74, + "probability": 0.9988 + }, + { + "start": 31925.78, + "end": 31926.88, + "probability": 0.9937 + }, + { + "start": 31928.1, + "end": 31928.7, + "probability": 0.5996 + }, + { + "start": 31929.64, + "end": 31933.62, + "probability": 0.9979 + }, + { + "start": 31934.7, + "end": 31935.58, + "probability": 0.9425 + }, + { + "start": 31937.12, + "end": 31942.8, + "probability": 0.9973 + }, + { + "start": 31943.68, + "end": 31948.72, + "probability": 0.963 + }, + { + "start": 31948.86, + "end": 31952.46, + "probability": 0.9951 + }, + { + "start": 31953.38, + "end": 31958.28, + "probability": 0.9559 + }, + { + "start": 31960.0, + "end": 31963.63, + "probability": 0.9937 + }, + { + "start": 31965.04, + "end": 31967.03, + "probability": 0.748 + }, + { + "start": 31967.56, + "end": 31969.64, + "probability": 0.9633 + }, + { + "start": 31971.22, + "end": 31972.08, + "probability": 0.9804 + }, + { + "start": 31973.3, + "end": 31974.22, + "probability": 0.8962 + }, + { + "start": 31975.4, + "end": 31976.42, + "probability": 0.9075 + }, + { + "start": 31976.86, + "end": 31978.36, + "probability": 0.9963 + }, + { + "start": 31978.86, + "end": 31979.68, + "probability": 0.9235 + }, + { + "start": 31980.42, + "end": 31981.77, + "probability": 0.9954 + }, + { + "start": 31982.56, + "end": 31986.04, + "probability": 0.9971 + }, + { + "start": 31986.14, + "end": 31986.8, + "probability": 0.998 + }, + { + "start": 31987.58, + "end": 31989.12, + "probability": 0.8759 + }, + { + "start": 31989.64, + "end": 31991.1, + "probability": 0.8192 + }, + { + "start": 31991.2, + "end": 31991.54, + "probability": 0.7858 + }, + { + "start": 31991.86, + "end": 31992.56, + "probability": 0.9553 + }, + { + "start": 31992.92, + "end": 31993.54, + "probability": 0.9318 + }, + { + "start": 31993.58, + "end": 31994.02, + "probability": 0.8738 + }, + { + "start": 31994.06, + "end": 31994.56, + "probability": 0.7047 + }, + { + "start": 31994.64, + "end": 31995.6, + "probability": 0.9707 + }, + { + "start": 31995.72, + "end": 31997.64, + "probability": 0.9977 + }, + { + "start": 31998.14, + "end": 32000.7, + "probability": 0.9849 + }, + { + "start": 32000.82, + "end": 32001.77, + "probability": 0.9624 + }, + { + "start": 32002.46, + "end": 32005.02, + "probability": 0.9471 + }, + { + "start": 32005.18, + "end": 32005.2, + "probability": 0.7739 + }, + { + "start": 32006.46, + "end": 32008.14, + "probability": 0.9144 + }, + { + "start": 32009.14, + "end": 32010.8, + "probability": 0.9482 + }, + { + "start": 32011.14, + "end": 32012.5, + "probability": 0.9976 + }, + { + "start": 32013.18, + "end": 32014.26, + "probability": 0.998 + }, + { + "start": 32014.48, + "end": 32015.04, + "probability": 0.649 + }, + { + "start": 32015.46, + "end": 32018.48, + "probability": 0.9715 + }, + { + "start": 32018.62, + "end": 32019.88, + "probability": 0.6945 + }, + { + "start": 32020.32, + "end": 32021.24, + "probability": 0.9917 + }, + { + "start": 32022.0, + "end": 32024.78, + "probability": 0.8578 + }, + { + "start": 32025.18, + "end": 32031.86, + "probability": 0.9819 + }, + { + "start": 32032.26, + "end": 32032.94, + "probability": 0.9644 + }, + { + "start": 32033.2, + "end": 32035.64, + "probability": 0.8949 + }, + { + "start": 32035.86, + "end": 32037.19, + "probability": 0.9194 + }, + { + "start": 32037.96, + "end": 32040.3, + "probability": 0.8676 + }, + { + "start": 32041.18, + "end": 32041.94, + "probability": 0.6709 + }, + { + "start": 32042.14, + "end": 32044.18, + "probability": 0.9304 + }, + { + "start": 32045.5, + "end": 32047.6, + "probability": 0.9978 + }, + { + "start": 32048.0, + "end": 32050.5, + "probability": 0.996 + }, + { + "start": 32052.3, + "end": 32056.92, + "probability": 0.9263 + }, + { + "start": 32057.16, + "end": 32060.08, + "probability": 0.7363 + }, + { + "start": 32060.14, + "end": 32061.6, + "probability": 0.9434 + }, + { + "start": 32061.72, + "end": 32063.54, + "probability": 0.7273 + }, + { + "start": 32064.26, + "end": 32067.28, + "probability": 0.9897 + }, + { + "start": 32068.0, + "end": 32072.24, + "probability": 0.9831 + }, + { + "start": 32072.62, + "end": 32074.96, + "probability": 0.9937 + }, + { + "start": 32075.02, + "end": 32076.25, + "probability": 0.9499 + }, + { + "start": 32076.62, + "end": 32077.84, + "probability": 0.9969 + }, + { + "start": 32078.78, + "end": 32080.08, + "probability": 0.8726 + }, + { + "start": 32082.16, + "end": 32082.5, + "probability": 0.9039 + }, + { + "start": 32082.78, + "end": 32083.48, + "probability": 0.8234 + }, + { + "start": 32083.8, + "end": 32085.74, + "probability": 0.9948 + }, + { + "start": 32085.96, + "end": 32088.18, + "probability": 0.9941 + }, + { + "start": 32088.64, + "end": 32091.16, + "probability": 0.9952 + }, + { + "start": 32091.5, + "end": 32092.14, + "probability": 0.9755 + }, + { + "start": 32092.24, + "end": 32093.62, + "probability": 0.9532 + }, + { + "start": 32094.38, + "end": 32095.38, + "probability": 0.8525 + }, + { + "start": 32095.54, + "end": 32095.86, + "probability": 0.88 + }, + { + "start": 32096.12, + "end": 32097.74, + "probability": 0.8135 + }, + { + "start": 32097.88, + "end": 32099.16, + "probability": 0.9785 + }, + { + "start": 32099.22, + "end": 32100.2, + "probability": 0.9528 + }, + { + "start": 32100.6, + "end": 32101.52, + "probability": 0.9901 + }, + { + "start": 32101.76, + "end": 32102.58, + "probability": 0.8812 + }, + { + "start": 32102.72, + "end": 32103.2, + "probability": 0.5695 + }, + { + "start": 32103.58, + "end": 32103.78, + "probability": 0.897 + }, + { + "start": 32104.3, + "end": 32106.74, + "probability": 0.9367 + }, + { + "start": 32107.18, + "end": 32109.61, + "probability": 0.9399 + }, + { + "start": 32110.44, + "end": 32111.52, + "probability": 0.6649 + }, + { + "start": 32112.28, + "end": 32113.6, + "probability": 0.5133 + }, + { + "start": 32113.6, + "end": 32114.49, + "probability": 0.9958 + }, + { + "start": 32114.88, + "end": 32117.58, + "probability": 0.9661 + }, + { + "start": 32118.32, + "end": 32120.12, + "probability": 0.9585 + }, + { + "start": 32120.96, + "end": 32121.14, + "probability": 0.1633 + }, + { + "start": 32121.14, + "end": 32122.26, + "probability": 0.0423 + }, + { + "start": 32122.34, + "end": 32123.22, + "probability": 0.7769 + }, + { + "start": 32123.24, + "end": 32123.24, + "probability": 0.1209 + }, + { + "start": 32123.44, + "end": 32124.66, + "probability": 0.6358 + }, + { + "start": 32125.96, + "end": 32126.16, + "probability": 0.4962 + }, + { + "start": 32127.54, + "end": 32128.58, + "probability": 0.7667 + }, + { + "start": 32130.0, + "end": 32130.38, + "probability": 0.0848 + }, + { + "start": 32130.46, + "end": 32131.32, + "probability": 0.804 + }, + { + "start": 32131.66, + "end": 32132.26, + "probability": 0.8337 + }, + { + "start": 32133.66, + "end": 32136.06, + "probability": 0.65 + }, + { + "start": 32153.44, + "end": 32155.92, + "probability": 0.7324 + }, + { + "start": 32158.02, + "end": 32161.57, + "probability": 0.7754 + }, + { + "start": 32162.48, + "end": 32164.2, + "probability": 0.7996 + }, + { + "start": 32164.78, + "end": 32165.02, + "probability": 0.7641 + }, + { + "start": 32165.18, + "end": 32165.7, + "probability": 0.7785 + }, + { + "start": 32165.86, + "end": 32166.12, + "probability": 0.389 + }, + { + "start": 32166.22, + "end": 32166.78, + "probability": 0.8716 + }, + { + "start": 32167.12, + "end": 32167.4, + "probability": 0.3914 + }, + { + "start": 32167.46, + "end": 32167.83, + "probability": 0.9827 + }, + { + "start": 32168.52, + "end": 32169.62, + "probability": 0.8068 + }, + { + "start": 32170.2, + "end": 32170.84, + "probability": 0.7887 + }, + { + "start": 32171.08, + "end": 32173.98, + "probability": 0.9681 + }, + { + "start": 32174.46, + "end": 32175.04, + "probability": 0.8916 + }, + { + "start": 32177.42, + "end": 32181.26, + "probability": 0.6864 + }, + { + "start": 32182.02, + "end": 32182.76, + "probability": 0.9747 + }, + { + "start": 32183.72, + "end": 32184.5, + "probability": 0.8678 + }, + { + "start": 32185.3, + "end": 32186.59, + "probability": 0.6147 + }, + { + "start": 32187.42, + "end": 32189.72, + "probability": 0.7832 + }, + { + "start": 32191.46, + "end": 32196.9, + "probability": 0.8233 + }, + { + "start": 32198.24, + "end": 32199.84, + "probability": 0.7465 + }, + { + "start": 32200.0, + "end": 32201.24, + "probability": 0.9533 + }, + { + "start": 32203.65, + "end": 32205.76, + "probability": 0.6945 + }, + { + "start": 32205.82, + "end": 32206.19, + "probability": 0.614 + }, + { + "start": 32206.62, + "end": 32206.97, + "probability": 0.8442 + }, + { + "start": 32207.38, + "end": 32207.86, + "probability": 0.6416 + }, + { + "start": 32209.46, + "end": 32212.48, + "probability": 0.9747 + }, + { + "start": 32213.38, + "end": 32213.85, + "probability": 0.9526 + }, + { + "start": 32216.04, + "end": 32217.08, + "probability": 0.5182 + }, + { + "start": 32219.44, + "end": 32221.26, + "probability": 0.6189 + }, + { + "start": 32222.48, + "end": 32223.3, + "probability": 0.9963 + }, + { + "start": 32224.12, + "end": 32226.7, + "probability": 0.8687 + }, + { + "start": 32226.74, + "end": 32227.16, + "probability": 0.8394 + }, + { + "start": 32227.5, + "end": 32230.34, + "probability": 0.8962 + }, + { + "start": 32232.14, + "end": 32233.16, + "probability": 0.9715 + }, + { + "start": 32233.24, + "end": 32234.82, + "probability": 0.9945 + }, + { + "start": 32235.42, + "end": 32236.44, + "probability": 0.8418 + }, + { + "start": 32237.12, + "end": 32238.32, + "probability": 0.9875 + }, + { + "start": 32240.42, + "end": 32240.84, + "probability": 0.5874 + }, + { + "start": 32242.16, + "end": 32244.86, + "probability": 0.7707 + }, + { + "start": 32245.02, + "end": 32248.04, + "probability": 0.9396 + }, + { + "start": 32248.64, + "end": 32249.06, + "probability": 0.765 + }, + { + "start": 32249.26, + "end": 32249.62, + "probability": 0.658 + }, + { + "start": 32249.98, + "end": 32252.9, + "probability": 0.8148 + }, + { + "start": 32254.26, + "end": 32255.9, + "probability": 0.8254 + }, + { + "start": 32256.38, + "end": 32258.88, + "probability": 0.9969 + }, + { + "start": 32259.4, + "end": 32260.92, + "probability": 0.8608 + }, + { + "start": 32261.0, + "end": 32262.12, + "probability": 0.8245 + }, + { + "start": 32262.16, + "end": 32266.0, + "probability": 0.9628 + }, + { + "start": 32266.18, + "end": 32268.2, + "probability": 0.9007 + }, + { + "start": 32269.22, + "end": 32270.14, + "probability": 0.8832 + }, + { + "start": 32270.38, + "end": 32272.56, + "probability": 0.9846 + }, + { + "start": 32274.38, + "end": 32278.38, + "probability": 0.9858 + }, + { + "start": 32279.54, + "end": 32282.64, + "probability": 0.9595 + }, + { + "start": 32282.66, + "end": 32283.94, + "probability": 0.4024 + }, + { + "start": 32284.0, + "end": 32285.74, + "probability": 0.6307 + }, + { + "start": 32285.8, + "end": 32286.06, + "probability": 0.9011 + }, + { + "start": 32286.86, + "end": 32288.04, + "probability": 0.9238 + }, + { + "start": 32288.16, + "end": 32289.12, + "probability": 0.8034 + }, + { + "start": 32291.3, + "end": 32292.92, + "probability": 0.9985 + }, + { + "start": 32294.3, + "end": 32296.26, + "probability": 0.7909 + }, + { + "start": 32296.66, + "end": 32298.72, + "probability": 0.8083 + }, + { + "start": 32298.74, + "end": 32299.76, + "probability": 0.8813 + }, + { + "start": 32300.96, + "end": 32302.44, + "probability": 0.9857 + }, + { + "start": 32303.32, + "end": 32304.16, + "probability": 0.7045 + }, + { + "start": 32304.2, + "end": 32304.72, + "probability": 0.8553 + }, + { + "start": 32304.82, + "end": 32305.8, + "probability": 0.8564 + }, + { + "start": 32307.5, + "end": 32309.06, + "probability": 0.9811 + }, + { + "start": 32310.48, + "end": 32312.22, + "probability": 0.9268 + }, + { + "start": 32313.1, + "end": 32314.38, + "probability": 0.6477 + }, + { + "start": 32314.52, + "end": 32315.48, + "probability": 0.294 + }, + { + "start": 32315.52, + "end": 32318.16, + "probability": 0.8075 + }, + { + "start": 32319.14, + "end": 32320.9, + "probability": 0.9424 + }, + { + "start": 32321.0, + "end": 32322.32, + "probability": 0.8907 + }, + { + "start": 32323.46, + "end": 32325.9, + "probability": 0.9428 + }, + { + "start": 32327.74, + "end": 32328.74, + "probability": 0.6921 + }, + { + "start": 32328.84, + "end": 32329.66, + "probability": 0.78 + }, + { + "start": 32329.76, + "end": 32331.58, + "probability": 0.8774 + }, + { + "start": 32331.7, + "end": 32332.06, + "probability": 0.9733 + }, + { + "start": 32333.02, + "end": 32333.26, + "probability": 0.3446 + }, + { + "start": 32333.46, + "end": 32336.14, + "probability": 0.8205 + }, + { + "start": 32337.2, + "end": 32340.0, + "probability": 0.9922 + }, + { + "start": 32340.04, + "end": 32344.86, + "probability": 0.9941 + }, + { + "start": 32344.9, + "end": 32345.74, + "probability": 0.6716 + }, + { + "start": 32345.98, + "end": 32348.62, + "probability": 0.6787 + }, + { + "start": 32349.28, + "end": 32353.1, + "probability": 0.6095 + }, + { + "start": 32353.8, + "end": 32357.02, + "probability": 0.7915 + }, + { + "start": 32357.58, + "end": 32358.2, + "probability": 0.3499 + }, + { + "start": 32358.2, + "end": 32359.3, + "probability": 0.5611 + }, + { + "start": 32359.9, + "end": 32360.86, + "probability": 0.9224 + }, + { + "start": 32361.12, + "end": 32363.84, + "probability": 0.9568 + }, + { + "start": 32364.08, + "end": 32364.24, + "probability": 0.9088 + }, + { + "start": 32364.26, + "end": 32364.36, + "probability": 0.7016 + }, + { + "start": 32365.16, + "end": 32368.56, + "probability": 0.8083 + }, + { + "start": 32369.14, + "end": 32371.38, + "probability": 0.8821 + }, + { + "start": 32371.98, + "end": 32373.92, + "probability": 0.5703 + }, + { + "start": 32374.9, + "end": 32376.88, + "probability": 0.7273 + }, + { + "start": 32393.04, + "end": 32393.64, + "probability": 0.477 + }, + { + "start": 32394.18, + "end": 32394.7, + "probability": 0.6973 + }, + { + "start": 32396.56, + "end": 32400.9, + "probability": 0.8457 + }, + { + "start": 32401.74, + "end": 32402.24, + "probability": 0.8569 + }, + { + "start": 32403.6, + "end": 32404.02, + "probability": 0.8585 + }, + { + "start": 32404.06, + "end": 32404.86, + "probability": 0.9405 + }, + { + "start": 32405.02, + "end": 32405.76, + "probability": 0.978 + }, + { + "start": 32420.32, + "end": 32420.78, + "probability": 0.0558 + }, + { + "start": 32420.78, + "end": 32420.8, + "probability": 0.0781 + }, + { + "start": 32420.8, + "end": 32420.8, + "probability": 0.2048 + }, + { + "start": 32420.8, + "end": 32420.8, + "probability": 0.0701 + }, + { + "start": 32420.8, + "end": 32421.42, + "probability": 0.1131 + }, + { + "start": 32423.96, + "end": 32424.45, + "probability": 0.2837 + }, + { + "start": 32424.98, + "end": 32425.8, + "probability": 0.6396 + }, + { + "start": 32425.86, + "end": 32427.0, + "probability": 0.7838 + }, + { + "start": 32428.62, + "end": 32431.5, + "probability": 0.9633 + }, + { + "start": 32433.24, + "end": 32435.14, + "probability": 0.8237 + }, + { + "start": 32435.4, + "end": 32436.44, + "probability": 0.7501 + }, + { + "start": 32440.9, + "end": 32443.32, + "probability": 0.9833 + }, + { + "start": 32443.42, + "end": 32443.88, + "probability": 0.641 + }, + { + "start": 32444.04, + "end": 32445.94, + "probability": 0.6703 + }, + { + "start": 32447.08, + "end": 32449.08, + "probability": 0.991 + }, + { + "start": 32449.08, + "end": 32452.14, + "probability": 0.9831 + }, + { + "start": 32453.24, + "end": 32454.2, + "probability": 0.9961 + }, + { + "start": 32456.6, + "end": 32457.1, + "probability": 0.874 + }, + { + "start": 32458.12, + "end": 32460.18, + "probability": 0.9956 + }, + { + "start": 32462.2, + "end": 32463.66, + "probability": 0.9646 + }, + { + "start": 32463.86, + "end": 32466.46, + "probability": 0.7943 + }, + { + "start": 32468.3, + "end": 32472.08, + "probability": 0.9743 + }, + { + "start": 32472.98, + "end": 32475.04, + "probability": 0.9873 + }, + { + "start": 32476.58, + "end": 32479.01, + "probability": 0.8418 + }, + { + "start": 32480.12, + "end": 32482.76, + "probability": 0.989 + }, + { + "start": 32482.86, + "end": 32483.5, + "probability": 0.9194 + }, + { + "start": 32484.72, + "end": 32487.12, + "probability": 0.9168 + }, + { + "start": 32488.18, + "end": 32490.32, + "probability": 0.7563 + }, + { + "start": 32492.46, + "end": 32493.08, + "probability": 0.6136 + }, + { + "start": 32493.72, + "end": 32495.72, + "probability": 0.988 + }, + { + "start": 32496.44, + "end": 32499.0, + "probability": 0.9534 + }, + { + "start": 32500.58, + "end": 32502.76, + "probability": 0.9976 + }, + { + "start": 32502.84, + "end": 32504.42, + "probability": 0.7867 + }, + { + "start": 32504.9, + "end": 32505.14, + "probability": 0.8041 + }, + { + "start": 32505.82, + "end": 32506.84, + "probability": 0.5334 + }, + { + "start": 32506.96, + "end": 32508.38, + "probability": 0.7265 + }, + { + "start": 32510.5, + "end": 32512.4, + "probability": 0.987 + }, + { + "start": 32512.48, + "end": 32514.02, + "probability": 0.9883 + }, + { + "start": 32514.12, + "end": 32515.36, + "probability": 0.9224 + }, + { + "start": 32517.0, + "end": 32519.26, + "probability": 0.952 + }, + { + "start": 32520.78, + "end": 32524.84, + "probability": 0.9285 + }, + { + "start": 32525.02, + "end": 32527.5, + "probability": 0.9836 + }, + { + "start": 32527.78, + "end": 32528.66, + "probability": 0.9676 + }, + { + "start": 32528.78, + "end": 32530.32, + "probability": 0.9675 + }, + { + "start": 32530.9, + "end": 32531.75, + "probability": 0.7244 + }, + { + "start": 32531.92, + "end": 32532.7, + "probability": 0.3407 + }, + { + "start": 32533.96, + "end": 32534.48, + "probability": 0.9876 + }, + { + "start": 32535.02, + "end": 32537.58, + "probability": 0.6563 + }, + { + "start": 32537.84, + "end": 32539.94, + "probability": 0.9924 + }, + { + "start": 32540.52, + "end": 32543.48, + "probability": 0.4207 + }, + { + "start": 32544.06, + "end": 32544.44, + "probability": 0.1314 + }, + { + "start": 32545.1, + "end": 32547.88, + "probability": 0.9829 + }, + { + "start": 32547.96, + "end": 32548.24, + "probability": 0.64 + }, + { + "start": 32548.32, + "end": 32550.06, + "probability": 0.8158 + }, + { + "start": 32550.08, + "end": 32550.88, + "probability": 0.9661 + }, + { + "start": 32551.04, + "end": 32551.32, + "probability": 0.7112 + }, + { + "start": 32551.4, + "end": 32551.64, + "probability": 0.8445 + }, + { + "start": 32551.74, + "end": 32552.0, + "probability": 0.3869 + }, + { + "start": 32553.0, + "end": 32557.26, + "probability": 0.899 + }, + { + "start": 32557.66, + "end": 32559.6, + "probability": 0.9131 + }, + { + "start": 32560.26, + "end": 32564.32, + "probability": 0.526 + }, + { + "start": 32564.34, + "end": 32565.49, + "probability": 0.8049 + }, + { + "start": 32566.86, + "end": 32569.1, + "probability": 0.6868 + }, + { + "start": 32569.24, + "end": 32570.58, + "probability": 0.9667 + }, + { + "start": 32571.12, + "end": 32572.6, + "probability": 0.8091 + }, + { + "start": 32574.26, + "end": 32574.86, + "probability": 0.7069 + }, + { + "start": 32576.44, + "end": 32578.26, + "probability": 0.937 + }, + { + "start": 32578.4, + "end": 32579.72, + "probability": 0.9748 + }, + { + "start": 32580.6, + "end": 32581.26, + "probability": 0.8465 + }, + { + "start": 32581.52, + "end": 32583.28, + "probability": 0.6709 + }, + { + "start": 32583.28, + "end": 32585.2, + "probability": 0.818 + }, + { + "start": 32585.32, + "end": 32585.84, + "probability": 0.5397 + }, + { + "start": 32585.9, + "end": 32586.3, + "probability": 0.8762 + }, + { + "start": 32586.52, + "end": 32586.9, + "probability": 0.4693 + }, + { + "start": 32588.26, + "end": 32590.01, + "probability": 0.9915 + }, + { + "start": 32590.2, + "end": 32592.5, + "probability": 0.9963 + }, + { + "start": 32592.98, + "end": 32594.43, + "probability": 0.8808 + }, + { + "start": 32595.48, + "end": 32596.46, + "probability": 0.9609 + }, + { + "start": 32597.58, + "end": 32599.05, + "probability": 0.8384 + }, + { + "start": 32599.62, + "end": 32601.36, + "probability": 0.6894 + }, + { + "start": 32602.52, + "end": 32605.7, + "probability": 0.9661 + }, + { + "start": 32605.8, + "end": 32607.86, + "probability": 0.7714 + }, + { + "start": 32609.4, + "end": 32611.26, + "probability": 0.9961 + }, + { + "start": 32611.42, + "end": 32613.12, + "probability": 0.9849 + }, + { + "start": 32614.5, + "end": 32615.46, + "probability": 0.9294 + }, + { + "start": 32615.84, + "end": 32617.32, + "probability": 0.998 + }, + { + "start": 32617.52, + "end": 32618.8, + "probability": 0.8646 + }, + { + "start": 32619.26, + "end": 32621.18, + "probability": 0.9001 + }, + { + "start": 32621.52, + "end": 32621.94, + "probability": 0.9004 + }, + { + "start": 32622.04, + "end": 32622.32, + "probability": 0.9334 + }, + { + "start": 32622.48, + "end": 32622.78, + "probability": 0.5049 + }, + { + "start": 32623.38, + "end": 32625.44, + "probability": 0.9348 + }, + { + "start": 32627.0, + "end": 32630.38, + "probability": 0.9583 + }, + { + "start": 32631.3, + "end": 32631.7, + "probability": 0.7974 + }, + { + "start": 32632.38, + "end": 32633.3, + "probability": 0.7459 + }, + { + "start": 32633.56, + "end": 32635.28, + "probability": 0.9613 + }, + { + "start": 32636.32, + "end": 32636.64, + "probability": 0.84 + }, + { + "start": 32637.42, + "end": 32639.46, + "probability": 0.8774 + }, + { + "start": 32640.56, + "end": 32644.78, + "probability": 0.969 + }, + { + "start": 32644.9, + "end": 32646.58, + "probability": 0.9862 + }, + { + "start": 32647.14, + "end": 32647.78, + "probability": 0.7392 + }, + { + "start": 32648.66, + "end": 32649.98, + "probability": 0.8507 + }, + { + "start": 32651.64, + "end": 32654.62, + "probability": 0.9792 + }, + { + "start": 32654.74, + "end": 32655.6, + "probability": 0.7157 + }, + { + "start": 32655.68, + "end": 32656.14, + "probability": 0.7747 + }, + { + "start": 32656.38, + "end": 32659.24, + "probability": 0.9676 + }, + { + "start": 32659.32, + "end": 32660.86, + "probability": 0.954 + }, + { + "start": 32661.52, + "end": 32662.98, + "probability": 0.6582 + }, + { + "start": 32663.04, + "end": 32664.82, + "probability": 0.9884 + }, + { + "start": 32665.42, + "end": 32667.86, + "probability": 0.9968 + }, + { + "start": 32667.9, + "end": 32668.62, + "probability": 0.9855 + }, + { + "start": 32669.56, + "end": 32670.78, + "probability": 0.96 + }, + { + "start": 32671.72, + "end": 32673.24, + "probability": 0.5397 + }, + { + "start": 32673.62, + "end": 32677.38, + "probability": 0.68 + }, + { + "start": 32677.58, + "end": 32678.16, + "probability": 0.7036 + }, + { + "start": 32678.48, + "end": 32679.8, + "probability": 0.6146 + }, + { + "start": 32679.94, + "end": 32680.36, + "probability": 0.8003 + }, + { + "start": 32680.48, + "end": 32681.74, + "probability": 0.8865 + }, + { + "start": 32681.78, + "end": 32682.62, + "probability": 0.8975 + }, + { + "start": 32683.52, + "end": 32684.06, + "probability": 0.9507 + }, + { + "start": 32685.02, + "end": 32686.12, + "probability": 0.9496 + }, + { + "start": 32687.68, + "end": 32691.02, + "probability": 0.9799 + }, + { + "start": 32691.16, + "end": 32693.18, + "probability": 0.9748 + }, + { + "start": 32693.36, + "end": 32697.36, + "probability": 0.685 + }, + { + "start": 32697.38, + "end": 32697.84, + "probability": 0.8735 + }, + { + "start": 32698.1, + "end": 32702.2, + "probability": 0.9906 + }, + { + "start": 32702.8, + "end": 32706.2, + "probability": 0.9845 + }, + { + "start": 32707.94, + "end": 32709.8, + "probability": 0.5579 + }, + { + "start": 32715.98, + "end": 32716.66, + "probability": 0.8437 + }, + { + "start": 32717.36, + "end": 32718.04, + "probability": 0.5839 + }, + { + "start": 32718.48, + "end": 32720.48, + "probability": 0.8564 + }, + { + "start": 32720.88, + "end": 32725.28, + "probability": 0.7909 + }, + { + "start": 32726.92, + "end": 32731.2, + "probability": 0.8148 + }, + { + "start": 32732.64, + "end": 32733.66, + "probability": 0.9852 + }, + { + "start": 32734.66, + "end": 32736.6, + "probability": 0.9768 + }, + { + "start": 32736.72, + "end": 32738.32, + "probability": 0.7128 + }, + { + "start": 32738.56, + "end": 32738.98, + "probability": 0.4354 + }, + { + "start": 32739.1, + "end": 32739.54, + "probability": 0.463 + }, + { + "start": 32739.92, + "end": 32741.1, + "probability": 0.9539 + }, + { + "start": 32741.76, + "end": 32743.88, + "probability": 0.8795 + }, + { + "start": 32743.88, + "end": 32745.26, + "probability": 0.9125 + }, + { + "start": 32745.7, + "end": 32746.84, + "probability": 0.7141 + }, + { + "start": 32747.2, + "end": 32749.24, + "probability": 0.9842 + }, + { + "start": 32749.46, + "end": 32752.9, + "probability": 0.9661 + }, + { + "start": 32753.46, + "end": 32757.38, + "probability": 0.8024 + }, + { + "start": 32757.4, + "end": 32761.68, + "probability": 0.8109 + }, + { + "start": 32762.86, + "end": 32763.96, + "probability": 0.7656 + }, + { + "start": 32764.54, + "end": 32765.86, + "probability": 0.9571 + }, + { + "start": 32765.96, + "end": 32768.48, + "probability": 0.3645 + }, + { + "start": 32768.9, + "end": 32769.8, + "probability": 0.6125 + }, + { + "start": 32769.96, + "end": 32771.78, + "probability": 0.5134 + }, + { + "start": 32771.92, + "end": 32774.84, + "probability": 0.9292 + }, + { + "start": 32775.32, + "end": 32776.68, + "probability": 0.874 + }, + { + "start": 32777.24, + "end": 32778.34, + "probability": 0.9692 + }, + { + "start": 32778.81, + "end": 32780.42, + "probability": 0.9988 + }, + { + "start": 32780.52, + "end": 32781.25, + "probability": 0.9632 + }, + { + "start": 32781.84, + "end": 32784.18, + "probability": 0.8386 + }, + { + "start": 32784.2, + "end": 32785.04, + "probability": 0.9626 + }, + { + "start": 32785.6, + "end": 32788.02, + "probability": 0.9379 + }, + { + "start": 32788.32, + "end": 32789.5, + "probability": 0.8892 + }, + { + "start": 32791.22, + "end": 32793.93, + "probability": 0.8179 + }, + { + "start": 32794.52, + "end": 32798.56, + "probability": 0.5823 + }, + { + "start": 32799.18, + "end": 32804.72, + "probability": 0.9682 + }, + { + "start": 32804.94, + "end": 32805.54, + "probability": 0.1082 + }, + { + "start": 32805.54, + "end": 32806.04, + "probability": 0.415 + }, + { + "start": 32806.08, + "end": 32808.04, + "probability": 0.8438 + }, + { + "start": 32808.58, + "end": 32810.12, + "probability": 0.9084 + }, + { + "start": 32810.22, + "end": 32811.5, + "probability": 0.9839 + }, + { + "start": 32811.68, + "end": 32811.98, + "probability": 0.7562 + }, + { + "start": 32812.02, + "end": 32815.78, + "probability": 0.9003 + }, + { + "start": 32816.58, + "end": 32820.56, + "probability": 0.9976 + }, + { + "start": 32821.2, + "end": 32823.32, + "probability": 0.818 + }, + { + "start": 32823.32, + "end": 32826.06, + "probability": 0.9924 + }, + { + "start": 32826.84, + "end": 32829.38, + "probability": 0.4958 + }, + { + "start": 32830.42, + "end": 32830.42, + "probability": 0.051 + }, + { + "start": 32830.42, + "end": 32832.54, + "probability": 0.9774 + }, + { + "start": 32832.54, + "end": 32835.36, + "probability": 0.9884 + }, + { + "start": 32835.48, + "end": 32836.06, + "probability": 0.5837 + }, + { + "start": 32836.16, + "end": 32836.92, + "probability": 0.8008 + }, + { + "start": 32838.04, + "end": 32838.94, + "probability": 0.8428 + }, + { + "start": 32839.12, + "end": 32840.84, + "probability": 0.4862 + }, + { + "start": 32840.9, + "end": 32842.2, + "probability": 0.9885 + }, + { + "start": 32844.0, + "end": 32847.72, + "probability": 0.9741 + }, + { + "start": 32848.52, + "end": 32850.74, + "probability": 0.8105 + }, + { + "start": 32850.8, + "end": 32851.92, + "probability": 0.7352 + }, + { + "start": 32852.02, + "end": 32853.74, + "probability": 0.9841 + }, + { + "start": 32854.36, + "end": 32856.86, + "probability": 0.8413 + }, + { + "start": 32857.42, + "end": 32858.92, + "probability": 0.5039 + }, + { + "start": 32859.78, + "end": 32860.63, + "probability": 0.9973 + }, + { + "start": 32861.3, + "end": 32864.36, + "probability": 0.9189 + }, + { + "start": 32864.6, + "end": 32864.82, + "probability": 0.7346 + }, + { + "start": 32865.34, + "end": 32868.38, + "probability": 0.9856 + }, + { + "start": 32868.46, + "end": 32870.4, + "probability": 0.9454 + }, + { + "start": 32871.26, + "end": 32871.9, + "probability": 0.9755 + }, + { + "start": 32873.04, + "end": 32875.08, + "probability": 0.8868 + }, + { + "start": 32875.6, + "end": 32876.5, + "probability": 0.5482 + }, + { + "start": 32876.6, + "end": 32878.76, + "probability": 0.9534 + }, + { + "start": 32878.82, + "end": 32879.56, + "probability": 0.6802 + }, + { + "start": 32880.56, + "end": 32883.45, + "probability": 0.9963 + }, + { + "start": 32884.06, + "end": 32885.62, + "probability": 0.9915 + }, + { + "start": 32885.98, + "end": 32886.68, + "probability": 0.8993 + }, + { + "start": 32887.46, + "end": 32889.36, + "probability": 0.8589 + }, + { + "start": 32890.55, + "end": 32893.0, + "probability": 0.8148 + }, + { + "start": 32894.0, + "end": 32894.87, + "probability": 0.8972 + }, + { + "start": 32895.06, + "end": 32898.08, + "probability": 0.7765 + }, + { + "start": 32898.14, + "end": 32899.84, + "probability": 0.9966 + }, + { + "start": 32900.72, + "end": 32902.52, + "probability": 0.9949 + }, + { + "start": 32903.54, + "end": 32905.14, + "probability": 0.7873 + }, + { + "start": 32905.34, + "end": 32906.8, + "probability": 0.9336 + }, + { + "start": 32906.96, + "end": 32908.46, + "probability": 0.9782 + }, + { + "start": 32909.36, + "end": 32910.48, + "probability": 0.7495 + }, + { + "start": 32910.74, + "end": 32914.8, + "probability": 0.6061 + }, + { + "start": 32914.86, + "end": 32917.12, + "probability": 0.6474 + }, + { + "start": 32917.66, + "end": 32918.26, + "probability": 0.8282 + }, + { + "start": 32919.04, + "end": 32923.08, + "probability": 0.7257 + }, + { + "start": 32923.6, + "end": 32926.57, + "probability": 0.988 + }, + { + "start": 32927.48, + "end": 32930.18, + "probability": 0.9595 + }, + { + "start": 32930.4, + "end": 32932.05, + "probability": 0.9087 + }, + { + "start": 32933.32, + "end": 32934.74, + "probability": 0.4523 + }, + { + "start": 32935.48, + "end": 32936.42, + "probability": 0.8542 + }, + { + "start": 32936.62, + "end": 32936.86, + "probability": 0.7109 + }, + { + "start": 32936.98, + "end": 32937.92, + "probability": 0.7266 + }, + { + "start": 32938.14, + "end": 32940.26, + "probability": 0.8936 + }, + { + "start": 32940.8, + "end": 32941.02, + "probability": 0.8008 + }, + { + "start": 32941.52, + "end": 32945.22, + "probability": 0.9148 + }, + { + "start": 32945.34, + "end": 32945.82, + "probability": 0.767 + }, + { + "start": 32945.98, + "end": 32947.54, + "probability": 0.9888 + }, + { + "start": 32947.68, + "end": 32950.02, + "probability": 0.9967 + }, + { + "start": 32950.34, + "end": 32952.44, + "probability": 0.8886 + }, + { + "start": 32953.0, + "end": 32953.56, + "probability": 0.7731 + }, + { + "start": 32954.52, + "end": 32955.14, + "probability": 0.7679 + }, + { + "start": 32955.64, + "end": 32957.56, + "probability": 0.8259 + }, + { + "start": 32957.72, + "end": 32960.18, + "probability": 0.9728 + }, + { + "start": 32960.26, + "end": 32960.72, + "probability": 0.5759 + }, + { + "start": 32961.06, + "end": 32963.01, + "probability": 0.8804 + }, + { + "start": 32963.38, + "end": 32965.32, + "probability": 0.7359 + }, + { + "start": 32966.02, + "end": 32966.8, + "probability": 0.7737 + }, + { + "start": 32966.82, + "end": 32967.54, + "probability": 0.8319 + }, + { + "start": 32967.64, + "end": 32969.26, + "probability": 0.7896 + }, + { + "start": 32969.4, + "end": 32969.84, + "probability": 0.7437 + }, + { + "start": 32970.1, + "end": 32970.64, + "probability": 0.9686 + }, + { + "start": 32970.68, + "end": 32971.0, + "probability": 0.7289 + }, + { + "start": 32971.38, + "end": 32973.05, + "probability": 0.9736 + }, + { + "start": 32973.34, + "end": 32973.92, + "probability": 0.7541 + }, + { + "start": 32974.68, + "end": 32978.2, + "probability": 0.9941 + }, + { + "start": 32978.74, + "end": 32979.36, + "probability": 0.7894 + }, + { + "start": 32980.12, + "end": 32981.14, + "probability": 0.8473 + }, + { + "start": 32981.28, + "end": 32982.38, + "probability": 0.9354 + }, + { + "start": 32982.48, + "end": 32985.52, + "probability": 0.8674 + }, + { + "start": 32985.52, + "end": 32989.82, + "probability": 0.9665 + }, + { + "start": 32990.2, + "end": 32993.08, + "probability": 0.9715 + }, + { + "start": 32993.12, + "end": 32993.82, + "probability": 0.862 + }, + { + "start": 32994.0, + "end": 32994.26, + "probability": 0.8442 + }, + { + "start": 32994.34, + "end": 32994.6, + "probability": 0.9312 + }, + { + "start": 32994.68, + "end": 32995.1, + "probability": 0.9688 + }, + { + "start": 32995.54, + "end": 32996.16, + "probability": 0.9095 + }, + { + "start": 32996.28, + "end": 32997.76, + "probability": 0.9495 + }, + { + "start": 32998.2, + "end": 32998.68, + "probability": 0.843 + }, + { + "start": 32999.16, + "end": 33001.34, + "probability": 0.9868 + }, + { + "start": 33001.8, + "end": 33002.3, + "probability": 0.9762 + }, + { + "start": 33003.18, + "end": 33005.48, + "probability": 0.8185 + }, + { + "start": 33006.43, + "end": 33007.74, + "probability": 0.8247 + }, + { + "start": 33008.54, + "end": 33009.12, + "probability": 0.6741 + }, + { + "start": 33009.68, + "end": 33012.14, + "probability": 0.9768 + }, + { + "start": 33012.28, + "end": 33013.3, + "probability": 0.9573 + }, + { + "start": 33013.46, + "end": 33015.65, + "probability": 0.9702 + }, + { + "start": 33016.46, + "end": 33019.32, + "probability": 0.998 + }, + { + "start": 33019.34, + "end": 33020.32, + "probability": 0.8467 + }, + { + "start": 33020.38, + "end": 33022.46, + "probability": 0.8713 + }, + { + "start": 33022.56, + "end": 33023.78, + "probability": 0.8874 + }, + { + "start": 33024.32, + "end": 33024.84, + "probability": 0.9878 + }, + { + "start": 33025.0, + "end": 33026.32, + "probability": 0.9626 + }, + { + "start": 33027.08, + "end": 33027.4, + "probability": 0.7544 + }, + { + "start": 33029.28, + "end": 33031.08, + "probability": 0.5836 + }, + { + "start": 33031.25, + "end": 33032.94, + "probability": 0.8024 + }, + { + "start": 33033.14, + "end": 33033.44, + "probability": 0.2724 + }, + { + "start": 33033.5, + "end": 33035.85, + "probability": 0.4157 + }, + { + "start": 33036.5, + "end": 33038.78, + "probability": 0.2715 + }, + { + "start": 33039.34, + "end": 33039.34, + "probability": 0.4171 + }, + { + "start": 33039.84, + "end": 33041.76, + "probability": 0.3957 + }, + { + "start": 33041.76, + "end": 33041.98, + "probability": 0.182 + }, + { + "start": 33042.22, + "end": 33043.38, + "probability": 0.3732 + }, + { + "start": 33043.72, + "end": 33047.02, + "probability": 0.6756 + }, + { + "start": 33047.56, + "end": 33048.24, + "probability": 0.2695 + }, + { + "start": 33048.26, + "end": 33049.39, + "probability": 0.9036 + }, + { + "start": 33049.56, + "end": 33050.82, + "probability": 0.6424 + }, + { + "start": 33051.56, + "end": 33053.0, + "probability": 0.2718 + }, + { + "start": 33054.22, + "end": 33057.5, + "probability": 0.6162 + }, + { + "start": 33057.88, + "end": 33058.82, + "probability": 0.7403 + }, + { + "start": 33059.52, + "end": 33060.04, + "probability": 0.7475 + }, + { + "start": 33060.08, + "end": 33062.1, + "probability": 0.9067 + }, + { + "start": 33062.92, + "end": 33064.96, + "probability": 0.7359 + }, + { + "start": 33065.48, + "end": 33065.68, + "probability": 0.7213 + }, + { + "start": 33066.28, + "end": 33066.42, + "probability": 0.0026 + }, + { + "start": 33067.18, + "end": 33067.48, + "probability": 0.1011 + }, + { + "start": 33067.54, + "end": 33068.04, + "probability": 0.3814 + }, + { + "start": 33068.18, + "end": 33069.8, + "probability": 0.7192 + }, + { + "start": 33070.22, + "end": 33072.34, + "probability": 0.8354 + }, + { + "start": 33074.46, + "end": 33075.44, + "probability": 0.5698 + }, + { + "start": 33077.4, + "end": 33078.64, + "probability": 0.5627 + }, + { + "start": 33079.22, + "end": 33079.82, + "probability": 0.983 + }, + { + "start": 33085.02, + "end": 33085.54, + "probability": 0.7397 + }, + { + "start": 33086.12, + "end": 33086.99, + "probability": 0.3608 + }, + { + "start": 33087.76, + "end": 33088.52, + "probability": 0.8352 + }, + { + "start": 33090.16, + "end": 33090.88, + "probability": 0.6848 + }, + { + "start": 33091.82, + "end": 33092.06, + "probability": 0.6859 + }, + { + "start": 33092.14, + "end": 33094.1, + "probability": 0.9793 + }, + { + "start": 33094.2, + "end": 33096.02, + "probability": 0.9568 + }, + { + "start": 33096.02, + "end": 33096.1, + "probability": 0.4073 + }, + { + "start": 33096.4, + "end": 33096.84, + "probability": 0.7387 + }, + { + "start": 33097.06, + "end": 33098.98, + "probability": 0.8585 + }, + { + "start": 33099.54, + "end": 33100.58, + "probability": 0.8317 + }, + { + "start": 33101.48, + "end": 33102.94, + "probability": 0.9723 + }, + { + "start": 33107.02, + "end": 33110.12, + "probability": 0.8352 + }, + { + "start": 33112.44, + "end": 33113.78, + "probability": 0.734 + }, + { + "start": 33114.36, + "end": 33116.8, + "probability": 0.9023 + }, + { + "start": 33117.98, + "end": 33120.3, + "probability": 0.9341 + }, + { + "start": 33120.6, + "end": 33122.6, + "probability": 0.9987 + }, + { + "start": 33124.5, + "end": 33126.66, + "probability": 0.8759 + }, + { + "start": 33127.5, + "end": 33128.12, + "probability": 0.8458 + }, + { + "start": 33128.85, + "end": 33130.92, + "probability": 0.959 + }, + { + "start": 33132.74, + "end": 33135.22, + "probability": 0.9749 + }, + { + "start": 33137.02, + "end": 33139.3, + "probability": 0.9158 + }, + { + "start": 33140.02, + "end": 33142.77, + "probability": 0.9686 + }, + { + "start": 33143.56, + "end": 33144.38, + "probability": 0.9968 + }, + { + "start": 33144.96, + "end": 33146.06, + "probability": 0.966 + }, + { + "start": 33146.6, + "end": 33147.34, + "probability": 0.9186 + }, + { + "start": 33147.88, + "end": 33148.44, + "probability": 0.8259 + }, + { + "start": 33149.04, + "end": 33153.26, + "probability": 0.9564 + }, + { + "start": 33154.52, + "end": 33154.72, + "probability": 0.8578 + }, + { + "start": 33156.94, + "end": 33158.34, + "probability": 0.8231 + }, + { + "start": 33159.34, + "end": 33160.18, + "probability": 0.9547 + }, + { + "start": 33161.36, + "end": 33163.46, + "probability": 0.9663 + }, + { + "start": 33164.96, + "end": 33166.1, + "probability": 0.9933 + }, + { + "start": 33167.26, + "end": 33169.08, + "probability": 0.9854 + }, + { + "start": 33169.72, + "end": 33170.4, + "probability": 0.9878 + }, + { + "start": 33171.2, + "end": 33171.42, + "probability": 0.9919 + }, + { + "start": 33174.46, + "end": 33176.52, + "probability": 0.9534 + }, + { + "start": 33178.22, + "end": 33180.38, + "probability": 0.9953 + }, + { + "start": 33181.52, + "end": 33185.24, + "probability": 0.9878 + }, + { + "start": 33186.7, + "end": 33189.4, + "probability": 0.9792 + }, + { + "start": 33190.14, + "end": 33190.88, + "probability": 0.767 + }, + { + "start": 33192.22, + "end": 33193.68, + "probability": 0.9511 + }, + { + "start": 33194.08, + "end": 33195.46, + "probability": 0.9304 + }, + { + "start": 33195.94, + "end": 33197.58, + "probability": 0.8993 + }, + { + "start": 33198.44, + "end": 33204.14, + "probability": 0.978 + }, + { + "start": 33206.22, + "end": 33208.28, + "probability": 0.9961 + }, + { + "start": 33208.72, + "end": 33211.72, + "probability": 0.998 + }, + { + "start": 33212.26, + "end": 33213.5, + "probability": 0.9983 + }, + { + "start": 33214.76, + "end": 33215.08, + "probability": 0.8431 + }, + { + "start": 33215.64, + "end": 33217.98, + "probability": 0.868 + }, + { + "start": 33219.06, + "end": 33221.36, + "probability": 0.9937 + }, + { + "start": 33222.16, + "end": 33223.48, + "probability": 0.9516 + }, + { + "start": 33224.18, + "end": 33224.88, + "probability": 0.8489 + }, + { + "start": 33226.28, + "end": 33228.28, + "probability": 0.9976 + }, + { + "start": 33230.22, + "end": 33233.06, + "probability": 0.8608 + }, + { + "start": 33234.0, + "end": 33236.78, + "probability": 0.8076 + }, + { + "start": 33237.5, + "end": 33239.2, + "probability": 0.9879 + }, + { + "start": 33241.2, + "end": 33243.98, + "probability": 0.9895 + }, + { + "start": 33244.6, + "end": 33245.76, + "probability": 0.9805 + }, + { + "start": 33246.32, + "end": 33248.02, + "probability": 0.9248 + }, + { + "start": 33248.64, + "end": 33250.44, + "probability": 0.9736 + }, + { + "start": 33251.44, + "end": 33252.88, + "probability": 0.9946 + }, + { + "start": 33254.18, + "end": 33257.68, + "probability": 0.98 + }, + { + "start": 33258.44, + "end": 33261.86, + "probability": 0.8819 + }, + { + "start": 33262.9, + "end": 33265.06, + "probability": 0.9473 + }, + { + "start": 33266.24, + "end": 33269.32, + "probability": 0.976 + }, + { + "start": 33270.48, + "end": 33273.32, + "probability": 0.9837 + }, + { + "start": 33274.12, + "end": 33275.74, + "probability": 0.8679 + }, + { + "start": 33276.28, + "end": 33277.86, + "probability": 0.9418 + }, + { + "start": 33279.92, + "end": 33282.38, + "probability": 0.9944 + }, + { + "start": 33283.04, + "end": 33285.5, + "probability": 0.9792 + }, + { + "start": 33285.86, + "end": 33286.52, + "probability": 0.6555 + }, + { + "start": 33287.18, + "end": 33289.27, + "probability": 0.9731 + }, + { + "start": 33289.72, + "end": 33290.0, + "probability": 0.3262 + }, + { + "start": 33291.32, + "end": 33292.64, + "probability": 0.998 + }, + { + "start": 33294.36, + "end": 33297.5, + "probability": 0.9565 + }, + { + "start": 33298.36, + "end": 33299.34, + "probability": 0.9453 + }, + { + "start": 33301.22, + "end": 33304.44, + "probability": 0.9964 + }, + { + "start": 33304.48, + "end": 33307.48, + "probability": 0.9736 + }, + { + "start": 33308.12, + "end": 33309.9, + "probability": 0.9596 + }, + { + "start": 33310.52, + "end": 33314.12, + "probability": 0.9948 + }, + { + "start": 33314.64, + "end": 33316.2, + "probability": 0.9513 + }, + { + "start": 33316.8, + "end": 33319.49, + "probability": 0.9979 + }, + { + "start": 33320.16, + "end": 33320.82, + "probability": 0.847 + }, + { + "start": 33321.36, + "end": 33321.92, + "probability": 0.7192 + }, + { + "start": 33321.92, + "end": 33321.92, + "probability": 0.7163 + }, + { + "start": 33322.06, + "end": 33322.9, + "probability": 0.8916 + }, + { + "start": 33324.85, + "end": 33327.24, + "probability": 0.7032 + }, + { + "start": 33346.16, + "end": 33347.74, + "probability": 0.526 + }, + { + "start": 33347.74, + "end": 33349.92, + "probability": 0.838 + }, + { + "start": 33353.02, + "end": 33353.4, + "probability": 0.8331 + }, + { + "start": 33354.46, + "end": 33354.9, + "probability": 0.8691 + }, + { + "start": 33356.24, + "end": 33358.64, + "probability": 0.993 + }, + { + "start": 33359.78, + "end": 33360.42, + "probability": 0.9124 + }, + { + "start": 33361.14, + "end": 33364.05, + "probability": 0.9683 + }, + { + "start": 33364.84, + "end": 33365.34, + "probability": 0.4217 + }, + { + "start": 33366.22, + "end": 33367.08, + "probability": 0.9169 + }, + { + "start": 33367.5, + "end": 33367.86, + "probability": 0.9422 + }, + { + "start": 33368.96, + "end": 33370.62, + "probability": 0.9657 + }, + { + "start": 33371.68, + "end": 33374.48, + "probability": 0.9827 + }, + { + "start": 33376.06, + "end": 33377.12, + "probability": 0.9956 + }, + { + "start": 33377.86, + "end": 33381.98, + "probability": 0.9787 + }, + { + "start": 33383.38, + "end": 33385.4, + "probability": 0.5724 + }, + { + "start": 33386.56, + "end": 33387.2, + "probability": 0.9793 + }, + { + "start": 33388.36, + "end": 33389.42, + "probability": 0.8502 + }, + { + "start": 33390.9, + "end": 33391.36, + "probability": 0.7461 + }, + { + "start": 33392.08, + "end": 33393.94, + "probability": 0.9995 + }, + { + "start": 33395.06, + "end": 33397.32, + "probability": 0.7585 + }, + { + "start": 33398.38, + "end": 33398.78, + "probability": 0.7794 + }, + { + "start": 33399.46, + "end": 33403.65, + "probability": 0.7231 + }, + { + "start": 33405.04, + "end": 33410.48, + "probability": 0.991 + }, + { + "start": 33411.16, + "end": 33415.06, + "probability": 0.6652 + }, + { + "start": 33416.08, + "end": 33416.34, + "probability": 0.6523 + }, + { + "start": 33417.1, + "end": 33418.02, + "probability": 0.7172 + }, + { + "start": 33419.64, + "end": 33425.74, + "probability": 0.9966 + }, + { + "start": 33425.88, + "end": 33427.06, + "probability": 0.9994 + }, + { + "start": 33429.02, + "end": 33430.5, + "probability": 0.9758 + }, + { + "start": 33431.78, + "end": 33434.98, + "probability": 0.8102 + }, + { + "start": 33435.14, + "end": 33436.4, + "probability": 0.9107 + }, + { + "start": 33437.58, + "end": 33438.92, + "probability": 0.9899 + }, + { + "start": 33439.04, + "end": 33440.54, + "probability": 0.9963 + }, + { + "start": 33441.34, + "end": 33445.42, + "probability": 0.991 + }, + { + "start": 33446.22, + "end": 33446.96, + "probability": 0.8939 + }, + { + "start": 33447.84, + "end": 33448.88, + "probability": 0.9904 + }, + { + "start": 33449.76, + "end": 33450.38, + "probability": 0.5211 + }, + { + "start": 33450.44, + "end": 33455.2, + "probability": 0.9549 + }, + { + "start": 33455.72, + "end": 33457.38, + "probability": 0.7977 + }, + { + "start": 33458.04, + "end": 33465.5, + "probability": 0.9971 + }, + { + "start": 33466.18, + "end": 33466.38, + "probability": 0.5848 + }, + { + "start": 33466.52, + "end": 33467.72, + "probability": 0.9644 + }, + { + "start": 33471.44, + "end": 33472.66, + "probability": 0.8459 + }, + { + "start": 33473.54, + "end": 33476.57, + "probability": 0.8892 + }, + { + "start": 33477.46, + "end": 33478.5, + "probability": 0.9833 + }, + { + "start": 33479.02, + "end": 33480.32, + "probability": 0.9961 + }, + { + "start": 33481.36, + "end": 33481.82, + "probability": 0.4816 + }, + { + "start": 33482.34, + "end": 33482.54, + "probability": 0.7495 + }, + { + "start": 33484.06, + "end": 33484.54, + "probability": 0.3878 + }, + { + "start": 33485.58, + "end": 33485.68, + "probability": 0.5287 + }, + { + "start": 33487.42, + "end": 33489.3, + "probability": 0.9605 + }, + { + "start": 33490.9, + "end": 33492.62, + "probability": 0.869 + }, + { + "start": 33493.28, + "end": 33494.4, + "probability": 0.9561 + }, + { + "start": 33495.24, + "end": 33496.68, + "probability": 0.9193 + }, + { + "start": 33497.66, + "end": 33500.08, + "probability": 0.9728 + }, + { + "start": 33500.74, + "end": 33501.34, + "probability": 0.9853 + }, + { + "start": 33501.88, + "end": 33502.16, + "probability": 0.604 + }, + { + "start": 33503.18, + "end": 33504.32, + "probability": 0.8546 + }, + { + "start": 33505.86, + "end": 33506.1, + "probability": 0.9314 + }, + { + "start": 33507.48, + "end": 33509.22, + "probability": 0.9941 + }, + { + "start": 33511.34, + "end": 33512.22, + "probability": 0.8324 + }, + { + "start": 33513.48, + "end": 33516.24, + "probability": 0.9902 + }, + { + "start": 33517.1, + "end": 33517.61, + "probability": 0.9679 + }, + { + "start": 33518.78, + "end": 33523.54, + "probability": 0.9811 + }, + { + "start": 33524.36, + "end": 33528.18, + "probability": 0.9995 + }, + { + "start": 33529.32, + "end": 33530.0, + "probability": 0.4132 + }, + { + "start": 33530.98, + "end": 33532.22, + "probability": 0.9044 + }, + { + "start": 33533.42, + "end": 33534.38, + "probability": 0.9104 + }, + { + "start": 33535.12, + "end": 33536.18, + "probability": 0.9246 + }, + { + "start": 33537.08, + "end": 33539.14, + "probability": 0.3863 + }, + { + "start": 33539.32, + "end": 33541.72, + "probability": 0.8618 + }, + { + "start": 33542.34, + "end": 33543.86, + "probability": 0.5865 + }, + { + "start": 33544.34, + "end": 33546.38, + "probability": 0.9412 + }, + { + "start": 33547.0, + "end": 33552.28, + "probability": 0.9808 + }, + { + "start": 33552.68, + "end": 33553.96, + "probability": 0.9258 + }, + { + "start": 33554.26, + "end": 33554.68, + "probability": 0.4744 + }, + { + "start": 33554.82, + "end": 33554.82, + "probability": 0.019 + }, + { + "start": 33554.82, + "end": 33555.04, + "probability": 0.7887 + }, + { + "start": 33555.44, + "end": 33557.3, + "probability": 0.9802 + }, + { + "start": 33557.42, + "end": 33557.89, + "probability": 0.9037 + }, + { + "start": 33558.14, + "end": 33560.41, + "probability": 0.8813 + }, + { + "start": 33560.68, + "end": 33561.3, + "probability": 0.7301 + }, + { + "start": 33561.4, + "end": 33563.64, + "probability": 0.9814 + }, + { + "start": 33563.78, + "end": 33568.12, + "probability": 0.8388 + }, + { + "start": 33568.22, + "end": 33568.76, + "probability": 0.3682 + }, + { + "start": 33568.86, + "end": 33569.57, + "probability": 0.9399 + }, + { + "start": 33570.24, + "end": 33571.76, + "probability": 0.8364 + }, + { + "start": 33571.86, + "end": 33573.06, + "probability": 0.9363 + }, + { + "start": 33574.78, + "end": 33577.8, + "probability": 0.9491 + }, + { + "start": 33577.94, + "end": 33578.5, + "probability": 0.9926 + }, + { + "start": 33579.34, + "end": 33582.14, + "probability": 0.9817 + }, + { + "start": 33583.0, + "end": 33583.2, + "probability": 0.7864 + }, + { + "start": 33583.96, + "end": 33589.0, + "probability": 0.9844 + }, + { + "start": 33589.0, + "end": 33589.06, + "probability": 0.6946 + }, + { + "start": 33589.06, + "end": 33589.82, + "probability": 0.7327 + }, + { + "start": 33590.82, + "end": 33591.74, + "probability": 0.7708 + }, + { + "start": 33592.36, + "end": 33592.66, + "probability": 0.6946 + }, + { + "start": 33615.44, + "end": 33615.46, + "probability": 0.0935 + }, + { + "start": 33615.46, + "end": 33616.2, + "probability": 0.5315 + }, + { + "start": 33617.64, + "end": 33618.36, + "probability": 0.7174 + }, + { + "start": 33620.08, + "end": 33624.72, + "probability": 0.8865 + }, + { + "start": 33626.34, + "end": 33632.44, + "probability": 0.999 + }, + { + "start": 33633.22, + "end": 33634.5, + "probability": 0.8068 + }, + { + "start": 33635.38, + "end": 33637.04, + "probability": 0.486 + }, + { + "start": 33637.64, + "end": 33638.84, + "probability": 0.9186 + }, + { + "start": 33638.94, + "end": 33640.95, + "probability": 0.9127 + }, + { + "start": 33641.26, + "end": 33641.46, + "probability": 0.5257 + }, + { + "start": 33641.88, + "end": 33642.34, + "probability": 0.7128 + }, + { + "start": 33642.4, + "end": 33644.2, + "probability": 0.4963 + }, + { + "start": 33644.84, + "end": 33650.38, + "probability": 0.9677 + }, + { + "start": 33651.5, + "end": 33651.52, + "probability": 0.1104 + }, + { + "start": 33651.52, + "end": 33654.2, + "probability": 0.9675 + }, + { + "start": 33654.74, + "end": 33656.28, + "probability": 0.7861 + }, + { + "start": 33657.46, + "end": 33659.22, + "probability": 0.9757 + }, + { + "start": 33659.8, + "end": 33664.86, + "probability": 0.9832 + }, + { + "start": 33665.52, + "end": 33667.52, + "probability": 0.8085 + }, + { + "start": 33669.14, + "end": 33671.78, + "probability": 0.8439 + }, + { + "start": 33672.98, + "end": 33675.66, + "probability": 0.9788 + }, + { + "start": 33676.52, + "end": 33677.32, + "probability": 0.9896 + }, + { + "start": 33677.38, + "end": 33678.08, + "probability": 0.962 + }, + { + "start": 33678.78, + "end": 33679.42, + "probability": 0.8717 + }, + { + "start": 33681.02, + "end": 33681.72, + "probability": 0.8052 + }, + { + "start": 33683.04, + "end": 33685.23, + "probability": 0.8462 + }, + { + "start": 33686.0, + "end": 33686.92, + "probability": 0.9985 + }, + { + "start": 33687.52, + "end": 33689.18, + "probability": 0.8527 + }, + { + "start": 33690.08, + "end": 33692.26, + "probability": 0.7666 + }, + { + "start": 33692.78, + "end": 33695.04, + "probability": 0.9974 + }, + { + "start": 33695.76, + "end": 33702.26, + "probability": 0.9961 + }, + { + "start": 33703.5, + "end": 33705.96, + "probability": 0.7312 + }, + { + "start": 33706.52, + "end": 33708.52, + "probability": 0.9982 + }, + { + "start": 33709.42, + "end": 33711.96, + "probability": 0.8267 + }, + { + "start": 33712.52, + "end": 33713.86, + "probability": 0.8337 + }, + { + "start": 33715.08, + "end": 33716.02, + "probability": 0.9075 + }, + { + "start": 33716.7, + "end": 33724.36, + "probability": 0.959 + }, + { + "start": 33726.1, + "end": 33728.88, + "probability": 0.9033 + }, + { + "start": 33729.66, + "end": 33733.34, + "probability": 0.7724 + }, + { + "start": 33733.46, + "end": 33734.94, + "probability": 0.8413 + }, + { + "start": 33735.1, + "end": 33735.82, + "probability": 0.6444 + }, + { + "start": 33736.46, + "end": 33737.78, + "probability": 0.935 + }, + { + "start": 33738.3, + "end": 33739.58, + "probability": 0.9722 + }, + { + "start": 33740.74, + "end": 33742.48, + "probability": 0.6584 + }, + { + "start": 33743.26, + "end": 33746.2, + "probability": 0.7058 + }, + { + "start": 33746.68, + "end": 33750.78, + "probability": 0.6747 + }, + { + "start": 33751.42, + "end": 33752.66, + "probability": 0.6034 + }, + { + "start": 33752.72, + "end": 33759.7, + "probability": 0.6097 + }, + { + "start": 33759.7, + "end": 33761.34, + "probability": 0.5556 + }, + { + "start": 33761.54, + "end": 33762.74, + "probability": 0.2655 + }, + { + "start": 33762.98, + "end": 33766.52, + "probability": 0.9318 + }, + { + "start": 33766.74, + "end": 33770.96, + "probability": 0.6899 + }, + { + "start": 33771.2, + "end": 33772.4, + "probability": 0.9905 + }, + { + "start": 33772.82, + "end": 33775.02, + "probability": 0.7464 + }, + { + "start": 33775.54, + "end": 33777.1, + "probability": 0.7486 + }, + { + "start": 33777.24, + "end": 33784.25, + "probability": 0.938 + }, + { + "start": 33784.46, + "end": 33784.56, + "probability": 0.4034 + }, + { + "start": 33784.56, + "end": 33784.72, + "probability": 0.0923 + }, + { + "start": 33784.76, + "end": 33785.16, + "probability": 0.8594 + }, + { + "start": 33785.5, + "end": 33789.28, + "probability": 0.6278 + }, + { + "start": 33790.18, + "end": 33791.56, + "probability": 0.9155 + }, + { + "start": 33792.2, + "end": 33793.0, + "probability": 0.9546 + }, + { + "start": 33793.28, + "end": 33795.26, + "probability": 0.7029 + }, + { + "start": 33795.6, + "end": 33797.24, + "probability": 0.439 + }, + { + "start": 33797.8, + "end": 33800.25, + "probability": 0.8481 + }, + { + "start": 33802.26, + "end": 33805.18, + "probability": 0.8896 + }, + { + "start": 33817.82, + "end": 33821.08, + "probability": 0.9259 + }, + { + "start": 33824.86, + "end": 33827.0, + "probability": 0.6751 + }, + { + "start": 33828.82, + "end": 33830.52, + "probability": 0.8659 + }, + { + "start": 33831.78, + "end": 33835.46, + "probability": 0.4528 + }, + { + "start": 33836.54, + "end": 33837.82, + "probability": 0.8694 + }, + { + "start": 33838.68, + "end": 33840.88, + "probability": 0.7958 + }, + { + "start": 33841.84, + "end": 33844.7, + "probability": 0.7065 + }, + { + "start": 33845.76, + "end": 33848.3, + "probability": 0.8407 + }, + { + "start": 33850.36, + "end": 33852.71, + "probability": 0.9941 + }, + { + "start": 33853.02, + "end": 33856.52, + "probability": 0.991 + }, + { + "start": 33857.08, + "end": 33859.48, + "probability": 0.8766 + }, + { + "start": 33860.68, + "end": 33862.05, + "probability": 0.8302 + }, + { + "start": 33863.14, + "end": 33865.96, + "probability": 0.9706 + }, + { + "start": 33866.92, + "end": 33874.42, + "probability": 0.9805 + }, + { + "start": 33874.68, + "end": 33875.29, + "probability": 0.7396 + }, + { + "start": 33876.1, + "end": 33877.02, + "probability": 0.0597 + }, + { + "start": 33877.04, + "end": 33878.16, + "probability": 0.2948 + }, + { + "start": 33878.56, + "end": 33880.79, + "probability": 0.9944 + }, + { + "start": 33882.44, + "end": 33883.16, + "probability": 0.8449 + }, + { + "start": 33884.9, + "end": 33887.56, + "probability": 0.9719 + }, + { + "start": 33888.82, + "end": 33890.82, + "probability": 0.749 + }, + { + "start": 33890.96, + "end": 33892.3, + "probability": 0.1104 + }, + { + "start": 33894.16, + "end": 33895.22, + "probability": 0.6404 + }, + { + "start": 33896.82, + "end": 33898.96, + "probability": 0.9942 + }, + { + "start": 33900.32, + "end": 33902.12, + "probability": 0.5832 + }, + { + "start": 33902.76, + "end": 33903.95, + "probability": 0.8081 + }, + { + "start": 33905.84, + "end": 33906.7, + "probability": 0.9569 + }, + { + "start": 33907.26, + "end": 33911.12, + "probability": 0.7888 + }, + { + "start": 33912.24, + "end": 33915.26, + "probability": 0.5015 + }, + { + "start": 33916.84, + "end": 33925.32, + "probability": 0.783 + }, + { + "start": 33926.0, + "end": 33926.82, + "probability": 0.7633 + }, + { + "start": 33926.96, + "end": 33927.66, + "probability": 0.7153 + }, + { + "start": 33928.08, + "end": 33930.1, + "probability": 0.8698 + }, + { + "start": 33930.66, + "end": 33932.62, + "probability": 0.9534 + }, + { + "start": 33933.58, + "end": 33935.78, + "probability": 0.7678 + }, + { + "start": 33936.34, + "end": 33937.82, + "probability": 0.9847 + }, + { + "start": 33939.58, + "end": 33942.0, + "probability": 0.6084 + }, + { + "start": 33943.92, + "end": 33944.6, + "probability": 0.574 + }, + { + "start": 33944.68, + "end": 33945.48, + "probability": 0.9944 + }, + { + "start": 33946.02, + "end": 33950.38, + "probability": 0.8759 + }, + { + "start": 33951.0, + "end": 33951.74, + "probability": 0.6276 + }, + { + "start": 33951.96, + "end": 33956.6, + "probability": 0.9519 + }, + { + "start": 33957.82, + "end": 33959.08, + "probability": 0.7942 + }, + { + "start": 33960.06, + "end": 33961.74, + "probability": 0.8768 + }, + { + "start": 33961.94, + "end": 33968.06, + "probability": 0.9422 + }, + { + "start": 33968.66, + "end": 33970.74, + "probability": 0.6811 + }, + { + "start": 33971.32, + "end": 33973.9, + "probability": 0.0652 + }, + { + "start": 33973.9, + "end": 33975.62, + "probability": 0.763 + }, + { + "start": 33977.04, + "end": 33979.02, + "probability": 0.8 + }, + { + "start": 33980.84, + "end": 33984.44, + "probability": 0.7247 + }, + { + "start": 33984.98, + "end": 33989.62, + "probability": 0.9485 + }, + { + "start": 33990.3, + "end": 33992.27, + "probability": 0.4566 + }, + { + "start": 33993.68, + "end": 33999.24, + "probability": 0.9844 + }, + { + "start": 33999.24, + "end": 34002.48, + "probability": 0.9804 + }, + { + "start": 34002.74, + "end": 34006.86, + "probability": 0.8979 + }, + { + "start": 34006.86, + "end": 34009.98, + "probability": 0.7026 + }, + { + "start": 34010.86, + "end": 34012.64, + "probability": 0.4084 + }, + { + "start": 34013.5, + "end": 34013.88, + "probability": 0.4406 + }, + { + "start": 34014.56, + "end": 34015.12, + "probability": 0.3562 + }, + { + "start": 34015.12, + "end": 34017.9, + "probability": 0.9972 + }, + { + "start": 34019.06, + "end": 34022.38, + "probability": 0.9991 + }, + { + "start": 34022.38, + "end": 34026.1, + "probability": 0.8945 + }, + { + "start": 34026.94, + "end": 34027.78, + "probability": 0.9248 + }, + { + "start": 34028.1, + "end": 34030.76, + "probability": 0.8207 + }, + { + "start": 34031.88, + "end": 34032.22, + "probability": 0.743 + }, + { + "start": 34032.9, + "end": 34033.12, + "probability": 0.8192 + }, + { + "start": 34033.68, + "end": 34034.86, + "probability": 0.6373 + }, + { + "start": 34035.1, + "end": 34036.54, + "probability": 0.7354 + }, + { + "start": 34036.82, + "end": 34037.94, + "probability": 0.4131 + }, + { + "start": 34038.58, + "end": 34040.2, + "probability": 0.6053 + }, + { + "start": 34040.74, + "end": 34041.78, + "probability": 0.7759 + }, + { + "start": 34042.03, + "end": 34042.71, + "probability": 0.8109 + }, + { + "start": 34042.8, + "end": 34043.02, + "probability": 0.8483 + }, + { + "start": 34043.94, + "end": 34046.38, + "probability": 0.554 + }, + { + "start": 34057.16, + "end": 34057.72, + "probability": 0.2623 + }, + { + "start": 34068.64, + "end": 34071.42, + "probability": 0.7671 + }, + { + "start": 34072.92, + "end": 34076.64, + "probability": 0.9919 + }, + { + "start": 34076.64, + "end": 34080.34, + "probability": 0.9666 + }, + { + "start": 34081.26, + "end": 34082.37, + "probability": 0.9334 + }, + { + "start": 34084.99, + "end": 34087.38, + "probability": 0.6296 + }, + { + "start": 34089.08, + "end": 34089.96, + "probability": 0.8016 + }, + { + "start": 34090.7, + "end": 34092.1, + "probability": 0.8485 + }, + { + "start": 34093.17, + "end": 34095.34, + "probability": 0.9425 + }, + { + "start": 34095.74, + "end": 34096.52, + "probability": 0.6315 + }, + { + "start": 34097.74, + "end": 34098.3, + "probability": 0.9819 + }, + { + "start": 34099.5, + "end": 34104.2, + "probability": 0.7979 + }, + { + "start": 34104.42, + "end": 34107.72, + "probability": 0.5648 + }, + { + "start": 34108.82, + "end": 34110.58, + "probability": 0.9907 + }, + { + "start": 34110.78, + "end": 34111.14, + "probability": 0.563 + }, + { + "start": 34111.26, + "end": 34112.68, + "probability": 0.9516 + }, + { + "start": 34112.84, + "end": 34113.36, + "probability": 0.7666 + }, + { + "start": 34113.86, + "end": 34114.23, + "probability": 0.5017 + }, + { + "start": 34115.28, + "end": 34117.0, + "probability": 0.417 + }, + { + "start": 34117.38, + "end": 34117.98, + "probability": 0.0465 + }, + { + "start": 34117.98, + "end": 34120.96, + "probability": 0.8989 + }, + { + "start": 34121.66, + "end": 34124.84, + "probability": 0.9714 + }, + { + "start": 34124.9, + "end": 34126.54, + "probability": 0.9426 + }, + { + "start": 34129.08, + "end": 34130.53, + "probability": 0.9292 + }, + { + "start": 34130.62, + "end": 34130.84, + "probability": 0.1013 + }, + { + "start": 34131.1, + "end": 34132.2, + "probability": 0.7231 + }, + { + "start": 34132.36, + "end": 34135.66, + "probability": 0.9667 + }, + { + "start": 34136.86, + "end": 34140.7, + "probability": 0.9423 + }, + { + "start": 34140.78, + "end": 34143.7, + "probability": 0.9857 + }, + { + "start": 34145.14, + "end": 34147.24, + "probability": 0.9803 + }, + { + "start": 34148.26, + "end": 34151.76, + "probability": 0.9757 + }, + { + "start": 34152.04, + "end": 34154.04, + "probability": 0.7697 + }, + { + "start": 34154.94, + "end": 34155.52, + "probability": 0.7564 + }, + { + "start": 34156.24, + "end": 34159.32, + "probability": 0.7754 + }, + { + "start": 34159.92, + "end": 34160.76, + "probability": 0.8955 + }, + { + "start": 34160.99, + "end": 34164.26, + "probability": 0.6308 + }, + { + "start": 34164.98, + "end": 34168.88, + "probability": 0.986 + }, + { + "start": 34169.3, + "end": 34171.18, + "probability": 0.9723 + }, + { + "start": 34171.96, + "end": 34174.6, + "probability": 0.6634 + }, + { + "start": 34175.14, + "end": 34177.77, + "probability": 0.9619 + }, + { + "start": 34179.58, + "end": 34180.12, + "probability": 0.6202 + }, + { + "start": 34180.14, + "end": 34183.42, + "probability": 0.9179 + }, + { + "start": 34183.48, + "end": 34183.92, + "probability": 0.8878 + }, + { + "start": 34183.96, + "end": 34184.62, + "probability": 0.8984 + }, + { + "start": 34184.8, + "end": 34185.44, + "probability": 0.5082 + }, + { + "start": 34186.64, + "end": 34190.08, + "probability": 0.0289 + }, + { + "start": 34190.9, + "end": 34191.88, + "probability": 0.6493 + }, + { + "start": 34192.82, + "end": 34195.18, + "probability": 0.485 + }, + { + "start": 34195.24, + "end": 34196.31, + "probability": 0.2942 + }, + { + "start": 34196.5, + "end": 34197.44, + "probability": 0.1161 + }, + { + "start": 34200.08, + "end": 34200.34, + "probability": 0.0216 + }, + { + "start": 34200.34, + "end": 34201.12, + "probability": 0.0223 + }, + { + "start": 34201.12, + "end": 34201.92, + "probability": 0.8524 + }, + { + "start": 34202.84, + "end": 34209.47, + "probability": 0.5297 + }, + { + "start": 34210.02, + "end": 34210.68, + "probability": 0.576 + }, + { + "start": 34211.2, + "end": 34212.6, + "probability": 0.8469 + }, + { + "start": 34213.5, + "end": 34215.78, + "probability": 0.953 + }, + { + "start": 34216.78, + "end": 34222.82, + "probability": 0.9772 + }, + { + "start": 34224.32, + "end": 34224.92, + "probability": 0.6731 + }, + { + "start": 34225.48, + "end": 34227.66, + "probability": 0.826 + }, + { + "start": 34228.26, + "end": 34232.5, + "probability": 0.9971 + }, + { + "start": 34233.16, + "end": 34236.08, + "probability": 0.9457 + }, + { + "start": 34236.7, + "end": 34237.92, + "probability": 0.9429 + }, + { + "start": 34238.66, + "end": 34240.09, + "probability": 0.7542 + }, + { + "start": 34240.88, + "end": 34244.3, + "probability": 0.9362 + }, + { + "start": 34244.3, + "end": 34247.54, + "probability": 0.9965 + }, + { + "start": 34249.08, + "end": 34250.74, + "probability": 0.9866 + }, + { + "start": 34251.58, + "end": 34253.6, + "probability": 0.9978 + }, + { + "start": 34254.16, + "end": 34256.68, + "probability": 0.9399 + }, + { + "start": 34257.3, + "end": 34258.3, + "probability": 0.9741 + }, + { + "start": 34259.06, + "end": 34261.44, + "probability": 0.9974 + }, + { + "start": 34262.18, + "end": 34264.72, + "probability": 0.9995 + }, + { + "start": 34265.48, + "end": 34265.64, + "probability": 0.3528 + }, + { + "start": 34266.12, + "end": 34270.16, + "probability": 0.9814 + }, + { + "start": 34270.54, + "end": 34271.02, + "probability": 0.7119 + }, + { + "start": 34271.6, + "end": 34277.04, + "probability": 0.9809 + }, + { + "start": 34277.38, + "end": 34277.66, + "probability": 0.6517 + }, + { + "start": 34278.14, + "end": 34279.0, + "probability": 0.8631 + }, + { + "start": 34279.32, + "end": 34281.68, + "probability": 0.9637 + }, + { + "start": 34282.2, + "end": 34285.52, + "probability": 0.9744 + }, + { + "start": 34286.8, + "end": 34287.96, + "probability": 0.9971 + }, + { + "start": 34288.52, + "end": 34290.94, + "probability": 0.6116 + }, + { + "start": 34291.52, + "end": 34293.8, + "probability": 0.8838 + }, + { + "start": 34294.7, + "end": 34297.82, + "probability": 0.9717 + }, + { + "start": 34299.66, + "end": 34300.3, + "probability": 0.7602 + }, + { + "start": 34300.96, + "end": 34305.54, + "probability": 0.9783 + }, + { + "start": 34305.74, + "end": 34307.8, + "probability": 0.8176 + }, + { + "start": 34308.24, + "end": 34310.08, + "probability": 0.7851 + }, + { + "start": 34310.6, + "end": 34310.98, + "probability": 0.7709 + }, + { + "start": 34311.38, + "end": 34312.0, + "probability": 0.8961 + }, + { + "start": 34312.14, + "end": 34313.32, + "probability": 0.6881 + }, + { + "start": 34313.44, + "end": 34314.08, + "probability": 0.8945 + }, + { + "start": 34314.28, + "end": 34315.57, + "probability": 0.8234 + }, + { + "start": 34315.76, + "end": 34316.3, + "probability": 0.6091 + }, + { + "start": 34316.4, + "end": 34319.12, + "probability": 0.2519 + }, + { + "start": 34319.62, + "end": 34322.36, + "probability": 0.3975 + }, + { + "start": 34322.36, + "end": 34322.86, + "probability": 0.6875 + }, + { + "start": 34323.18, + "end": 34326.76, + "probability": 0.0545 + }, + { + "start": 34326.8, + "end": 34326.8, + "probability": 0.4338 + }, + { + "start": 34327.78, + "end": 34332.54, + "probability": 0.9251 + }, + { + "start": 34332.68, + "end": 34334.98, + "probability": 0.9763 + }, + { + "start": 34336.4, + "end": 34339.38, + "probability": 0.7881 + }, + { + "start": 34339.42, + "end": 34340.08, + "probability": 0.6606 + }, + { + "start": 34340.08, + "end": 34340.78, + "probability": 0.6976 + }, + { + "start": 34341.4, + "end": 34344.02, + "probability": 0.7078 + }, + { + "start": 34344.68, + "end": 34346.36, + "probability": 0.7079 + }, + { + "start": 34346.36, + "end": 34346.92, + "probability": 0.7099 + }, + { + "start": 34347.26, + "end": 34348.56, + "probability": 0.7876 + }, + { + "start": 34349.14, + "end": 34352.66, + "probability": 0.9893 + }, + { + "start": 34352.74, + "end": 34354.6, + "probability": 0.9876 + }, + { + "start": 34355.12, + "end": 34355.62, + "probability": 0.8984 + }, + { + "start": 34356.6, + "end": 34356.88, + "probability": 0.96 + }, + { + "start": 34357.6, + "end": 34359.86, + "probability": 0.9969 + }, + { + "start": 34361.03, + "end": 34362.02, + "probability": 0.6305 + }, + { + "start": 34362.04, + "end": 34366.22, + "probability": 0.941 + }, + { + "start": 34366.42, + "end": 34368.34, + "probability": 0.9971 + }, + { + "start": 34369.02, + "end": 34371.1, + "probability": 0.9559 + }, + { + "start": 34371.52, + "end": 34373.8, + "probability": 0.9092 + }, + { + "start": 34374.2, + "end": 34379.48, + "probability": 0.9977 + }, + { + "start": 34379.86, + "end": 34380.64, + "probability": 0.8243 + }, + { + "start": 34380.78, + "end": 34381.06, + "probability": 0.7118 + }, + { + "start": 34381.2, + "end": 34381.78, + "probability": 0.6386 + }, + { + "start": 34381.96, + "end": 34382.9, + "probability": 0.7939 + }, + { + "start": 34382.96, + "end": 34383.96, + "probability": 0.9028 + }, + { + "start": 34384.24, + "end": 34388.2, + "probability": 0.5608 + }, + { + "start": 34388.54, + "end": 34391.26, + "probability": 0.7903 + }, + { + "start": 34392.74, + "end": 34393.0, + "probability": 0.6874 + }, + { + "start": 34413.08, + "end": 34413.08, + "probability": 0.2579 + }, + { + "start": 34413.08, + "end": 34414.32, + "probability": 0.3559 + }, + { + "start": 34414.68, + "end": 34416.05, + "probability": 0.8632 + }, + { + "start": 34416.2, + "end": 34416.76, + "probability": 0.7321 + }, + { + "start": 34417.74, + "end": 34420.54, + "probability": 0.6621 + }, + { + "start": 34421.4, + "end": 34421.84, + "probability": 0.6737 + }, + { + "start": 34421.96, + "end": 34424.84, + "probability": 0.7372 + }, + { + "start": 34425.34, + "end": 34425.76, + "probability": 0.4158 + }, + { + "start": 34426.62, + "end": 34428.6, + "probability": 0.8146 + }, + { + "start": 34430.04, + "end": 34431.94, + "probability": 0.5768 + }, + { + "start": 34432.16, + "end": 34432.4, + "probability": 0.0452 + }, + { + "start": 34432.4, + "end": 34433.32, + "probability": 0.8692 + }, + { + "start": 34433.72, + "end": 34434.18, + "probability": 0.744 + }, + { + "start": 34435.58, + "end": 34437.3, + "probability": 0.8711 + }, + { + "start": 34438.54, + "end": 34440.0, + "probability": 0.4641 + }, + { + "start": 34440.08, + "end": 34440.7, + "probability": 0.0891 + }, + { + "start": 34440.72, + "end": 34441.56, + "probability": 0.4554 + }, + { + "start": 34455.98, + "end": 34458.04, + "probability": 0.7898 + }, + { + "start": 34460.54, + "end": 34461.62, + "probability": 0.7746 + }, + { + "start": 34463.36, + "end": 34464.16, + "probability": 0.8449 + }, + { + "start": 34464.38, + "end": 34465.3, + "probability": 0.9763 + }, + { + "start": 34465.58, + "end": 34468.99, + "probability": 0.5252 + }, + { + "start": 34469.52, + "end": 34470.66, + "probability": 0.9108 + }, + { + "start": 34471.1, + "end": 34475.04, + "probability": 0.7838 + }, + { + "start": 34475.7, + "end": 34478.84, + "probability": 0.9096 + }, + { + "start": 34478.88, + "end": 34480.3, + "probability": 0.8625 + }, + { + "start": 34487.04, + "end": 34487.66, + "probability": 0.6929 + }, + { + "start": 34488.32, + "end": 34493.68, + "probability": 0.9886 + }, + { + "start": 34494.56, + "end": 34497.26, + "probability": 0.9938 + }, + { + "start": 34497.98, + "end": 34500.72, + "probability": 0.992 + }, + { + "start": 34500.72, + "end": 34503.72, + "probability": 0.8859 + }, + { + "start": 34503.82, + "end": 34504.42, + "probability": 0.4397 + }, + { + "start": 34504.62, + "end": 34506.84, + "probability": 0.9749 + }, + { + "start": 34507.5, + "end": 34510.24, + "probability": 0.9268 + }, + { + "start": 34510.36, + "end": 34512.74, + "probability": 0.9101 + }, + { + "start": 34513.48, + "end": 34514.46, + "probability": 0.9053 + }, + { + "start": 34515.4, + "end": 34515.98, + "probability": 0.9345 + }, + { + "start": 34516.08, + "end": 34519.24, + "probability": 0.958 + }, + { + "start": 34519.38, + "end": 34522.44, + "probability": 0.9706 + }, + { + "start": 34525.41, + "end": 34526.44, + "probability": 0.7151 + }, + { + "start": 34527.12, + "end": 34528.97, + "probability": 0.1651 + }, + { + "start": 34535.2, + "end": 34536.22, + "probability": 0.509 + }, + { + "start": 34539.94, + "end": 34541.58, + "probability": 0.8008 + }, + { + "start": 34541.9, + "end": 34542.38, + "probability": 0.9285 + }, + { + "start": 34543.66, + "end": 34546.4, + "probability": 0.9922 + }, + { + "start": 34547.42, + "end": 34551.78, + "probability": 0.9974 + }, + { + "start": 34552.88, + "end": 34556.68, + "probability": 0.9547 + }, + { + "start": 34557.22, + "end": 34558.42, + "probability": 0.9868 + }, + { + "start": 34559.52, + "end": 34565.26, + "probability": 0.9894 + }, + { + "start": 34566.24, + "end": 34570.0, + "probability": 0.9734 + }, + { + "start": 34571.06, + "end": 34572.74, + "probability": 0.9951 + }, + { + "start": 34573.9, + "end": 34576.02, + "probability": 0.7097 + }, + { + "start": 34576.08, + "end": 34578.02, + "probability": 0.9897 + }, + { + "start": 34578.76, + "end": 34579.12, + "probability": 0.8664 + }, + { + "start": 34580.24, + "end": 34580.44, + "probability": 0.7226 + }, + { + "start": 34582.16, + "end": 34587.26, + "probability": 0.934 + }, + { + "start": 34589.42, + "end": 34590.0, + "probability": 0.9666 + }, + { + "start": 34591.72, + "end": 34596.8, + "probability": 0.994 + }, + { + "start": 34597.0, + "end": 34598.76, + "probability": 0.9872 + }, + { + "start": 34599.74, + "end": 34603.46, + "probability": 0.9912 + }, + { + "start": 34603.54, + "end": 34607.98, + "probability": 0.9989 + }, + { + "start": 34608.72, + "end": 34613.0, + "probability": 0.9976 + }, + { + "start": 34613.74, + "end": 34617.0, + "probability": 0.9443 + }, + { + "start": 34618.22, + "end": 34621.1, + "probability": 0.8484 + }, + { + "start": 34622.04, + "end": 34624.14, + "probability": 0.9959 + }, + { + "start": 34624.88, + "end": 34630.34, + "probability": 0.9706 + }, + { + "start": 34632.18, + "end": 34636.44, + "probability": 0.9924 + }, + { + "start": 34637.72, + "end": 34640.12, + "probability": 0.9519 + }, + { + "start": 34640.98, + "end": 34641.8, + "probability": 0.7483 + }, + { + "start": 34642.44, + "end": 34643.76, + "probability": 0.942 + }, + { + "start": 34645.3, + "end": 34646.5, + "probability": 0.9756 + }, + { + "start": 34647.18, + "end": 34650.94, + "probability": 0.9608 + }, + { + "start": 34651.82, + "end": 34654.06, + "probability": 0.9766 + }, + { + "start": 34654.84, + "end": 34658.48, + "probability": 0.9635 + }, + { + "start": 34659.48, + "end": 34661.68, + "probability": 0.9827 + }, + { + "start": 34662.1, + "end": 34665.62, + "probability": 0.9873 + }, + { + "start": 34666.38, + "end": 34669.04, + "probability": 0.917 + }, + { + "start": 34669.22, + "end": 34672.64, + "probability": 0.8379 + }, + { + "start": 34672.9, + "end": 34673.78, + "probability": 0.6981 + }, + { + "start": 34674.2, + "end": 34674.74, + "probability": 0.8453 + }, + { + "start": 34675.58, + "end": 34680.06, + "probability": 0.9808 + }, + { + "start": 34680.06, + "end": 34680.26, + "probability": 0.4941 + }, + { + "start": 34680.54, + "end": 34680.84, + "probability": 0.7707 + }, + { + "start": 34681.04, + "end": 34681.46, + "probability": 0.7888 + }, + { + "start": 34681.94, + "end": 34683.68, + "probability": 0.6764 + }, + { + "start": 34683.84, + "end": 34685.0, + "probability": 0.9547 + }, + { + "start": 34685.16, + "end": 34687.0, + "probability": 0.9721 + }, + { + "start": 34687.58, + "end": 34689.04, + "probability": 0.5701 + }, + { + "start": 34690.96, + "end": 34692.3, + "probability": 0.8452 + }, + { + "start": 34692.38, + "end": 34693.04, + "probability": 0.9096 + }, + { + "start": 34693.86, + "end": 34696.64, + "probability": 0.9935 + }, + { + "start": 34697.48, + "end": 34700.72, + "probability": 0.9924 + }, + { + "start": 34701.12, + "end": 34705.94, + "probability": 0.9827 + }, + { + "start": 34706.54, + "end": 34708.65, + "probability": 0.9739 + }, + { + "start": 34709.72, + "end": 34710.7, + "probability": 0.9535 + }, + { + "start": 34712.06, + "end": 34713.64, + "probability": 0.9995 + }, + { + "start": 34714.38, + "end": 34715.9, + "probability": 0.9894 + }, + { + "start": 34717.54, + "end": 34722.74, + "probability": 0.9819 + }, + { + "start": 34722.88, + "end": 34725.62, + "probability": 0.9585 + }, + { + "start": 34726.26, + "end": 34728.3, + "probability": 0.8392 + }, + { + "start": 34728.72, + "end": 34730.33, + "probability": 0.3947 + }, + { + "start": 34730.6, + "end": 34735.56, + "probability": 0.6722 + }, + { + "start": 34735.56, + "end": 34736.54, + "probability": 0.6595 + }, + { + "start": 34736.62, + "end": 34738.2, + "probability": 0.9617 + }, + { + "start": 34739.61, + "end": 34740.38, + "probability": 0.4988 + }, + { + "start": 34740.38, + "end": 34742.32, + "probability": 0.7496 + }, + { + "start": 34742.52, + "end": 34743.22, + "probability": 0.6266 + }, + { + "start": 34743.28, + "end": 34743.98, + "probability": 0.4696 + }, + { + "start": 34744.88, + "end": 34745.06, + "probability": 0.7651 + }, + { + "start": 34745.06, + "end": 34747.41, + "probability": 0.7279 + }, + { + "start": 34753.42, + "end": 34761.52, + "probability": 0.95 + }, + { + "start": 34767.14, + "end": 34767.14, + "probability": 0.1859 + }, + { + "start": 34767.14, + "end": 34769.84, + "probability": 0.6608 + }, + { + "start": 34770.94, + "end": 34772.3, + "probability": 0.6515 + }, + { + "start": 34773.6, + "end": 34774.44, + "probability": 0.8217 + }, + { + "start": 34775.48, + "end": 34777.2, + "probability": 0.983 + }, + { + "start": 34777.36, + "end": 34778.2, + "probability": 0.953 + }, + { + "start": 34778.54, + "end": 34779.34, + "probability": 0.6188 + }, + { + "start": 34779.48, + "end": 34780.0, + "probability": 0.831 + }, + { + "start": 34780.1, + "end": 34781.34, + "probability": 0.8077 + }, + { + "start": 34781.9, + "end": 34786.38, + "probability": 0.9875 + }, + { + "start": 34786.38, + "end": 34790.1, + "probability": 0.9829 + }, + { + "start": 34790.2, + "end": 34790.94, + "probability": 0.7573 + }, + { + "start": 34791.74, + "end": 34792.3, + "probability": 0.6845 + }, + { + "start": 34792.88, + "end": 34792.96, + "probability": 0.0059 + }, + { + "start": 34793.54, + "end": 34794.3, + "probability": 0.8391 + }, + { + "start": 34795.14, + "end": 34799.9, + "probability": 0.9938 + }, + { + "start": 34800.24, + "end": 34800.64, + "probability": 0.8318 + }, + { + "start": 34801.44, + "end": 34805.6, + "probability": 0.9681 + }, + { + "start": 34805.9, + "end": 34807.6, + "probability": 0.8979 + }, + { + "start": 34807.74, + "end": 34811.26, + "probability": 0.9678 + }, + { + "start": 34811.26, + "end": 34814.12, + "probability": 0.9773 + }, + { + "start": 34815.0, + "end": 34817.94, + "probability": 0.9871 + }, + { + "start": 34817.94, + "end": 34822.04, + "probability": 0.9932 + }, + { + "start": 34823.24, + "end": 34823.62, + "probability": 0.5463 + }, + { + "start": 34823.66, + "end": 34825.76, + "probability": 0.9766 + }, + { + "start": 34825.86, + "end": 34828.9, + "probability": 0.962 + }, + { + "start": 34829.32, + "end": 34832.8, + "probability": 0.9199 + }, + { + "start": 34833.9, + "end": 34837.28, + "probability": 0.9985 + }, + { + "start": 34837.7, + "end": 34839.72, + "probability": 0.9962 + }, + { + "start": 34839.72, + "end": 34842.18, + "probability": 0.9795 + }, + { + "start": 34842.96, + "end": 34846.46, + "probability": 0.993 + }, + { + "start": 34846.58, + "end": 34851.1, + "probability": 0.9901 + }, + { + "start": 34851.68, + "end": 34852.72, + "probability": 0.9706 + }, + { + "start": 34854.06, + "end": 34854.64, + "probability": 0.6225 + }, + { + "start": 34855.06, + "end": 34855.78, + "probability": 0.8359 + }, + { + "start": 34855.84, + "end": 34858.7, + "probability": 0.887 + }, + { + "start": 34859.08, + "end": 34862.24, + "probability": 0.6724 + }, + { + "start": 34863.04, + "end": 34863.78, + "probability": 0.9604 + }, + { + "start": 34864.4, + "end": 34870.2, + "probability": 0.9889 + }, + { + "start": 34870.74, + "end": 34871.36, + "probability": 0.637 + }, + { + "start": 34872.1, + "end": 34873.06, + "probability": 0.9837 + }, + { + "start": 34873.58, + "end": 34874.38, + "probability": 0.9667 + }, + { + "start": 34874.9, + "end": 34878.32, + "probability": 0.985 + }, + { + "start": 34879.42, + "end": 34882.34, + "probability": 0.999 + }, + { + "start": 34883.14, + "end": 34886.9, + "probability": 0.9756 + }, + { + "start": 34888.92, + "end": 34891.1, + "probability": 0.9684 + }, + { + "start": 34891.22, + "end": 34895.62, + "probability": 0.9936 + }, + { + "start": 34895.84, + "end": 34898.12, + "probability": 0.9583 + }, + { + "start": 34898.62, + "end": 34899.24, + "probability": 0.3718 + }, + { + "start": 34899.24, + "end": 34900.46, + "probability": 0.9703 + }, + { + "start": 34900.68, + "end": 34904.24, + "probability": 0.738 + }, + { + "start": 34905.86, + "end": 34906.48, + "probability": 0.3193 + }, + { + "start": 34907.4, + "end": 34907.62, + "probability": 0.1571 + }, + { + "start": 34908.02, + "end": 34909.12, + "probability": 0.8477 + }, + { + "start": 34909.28, + "end": 34912.96, + "probability": 0.7576 + }, + { + "start": 34915.02, + "end": 34915.22, + "probability": 0.7816 + }, + { + "start": 34933.62, + "end": 34933.62, + "probability": 0.2401 + }, + { + "start": 34933.62, + "end": 34935.13, + "probability": 0.6889 + }, + { + "start": 34936.1, + "end": 34937.34, + "probability": 0.7364 + }, + { + "start": 34937.76, + "end": 34939.74, + "probability": 0.9693 + }, + { + "start": 34940.76, + "end": 34943.3, + "probability": 0.7679 + }, + { + "start": 34944.6, + "end": 34947.04, + "probability": 0.9561 + }, + { + "start": 34948.02, + "end": 34949.64, + "probability": 0.6863 + }, + { + "start": 34950.24, + "end": 34950.84, + "probability": 0.6559 + }, + { + "start": 34950.96, + "end": 34951.57, + "probability": 0.5047 + }, + { + "start": 34952.78, + "end": 34955.16, + "probability": 0.7075 + }, + { + "start": 34955.24, + "end": 34956.38, + "probability": 0.75 + }, + { + "start": 34962.48, + "end": 34965.1, + "probability": 0.6378 + }, + { + "start": 34966.32, + "end": 34974.36, + "probability": 0.8209 + }, + { + "start": 34974.62, + "end": 34974.96, + "probability": 0.9634 + }, + { + "start": 34975.68, + "end": 34982.2, + "probability": 0.9777 + }, + { + "start": 34982.7, + "end": 34983.94, + "probability": 0.8435 + }, + { + "start": 34984.16, + "end": 34984.59, + "probability": 0.4095 + }, + { + "start": 34984.62, + "end": 34985.1, + "probability": 0.7644 + }, + { + "start": 34985.22, + "end": 34986.46, + "probability": 0.6144 + }, + { + "start": 34987.38, + "end": 34990.4, + "probability": 0.9791 + }, + { + "start": 34991.18, + "end": 34995.74, + "probability": 0.9531 + }, + { + "start": 34997.0, + "end": 35001.28, + "probability": 0.9685 + }, + { + "start": 35002.22, + "end": 35004.64, + "probability": 0.9116 + }, + { + "start": 35004.7, + "end": 35007.02, + "probability": 0.575 + }, + { + "start": 35007.12, + "end": 35010.44, + "probability": 0.9617 + }, + { + "start": 35011.98, + "end": 35012.66, + "probability": 0.5582 + }, + { + "start": 35012.72, + "end": 35014.3, + "probability": 0.7136 + }, + { + "start": 35015.16, + "end": 35018.04, + "probability": 0.8544 + }, + { + "start": 35018.08, + "end": 35019.32, + "probability": 0.6173 + }, + { + "start": 35019.62, + "end": 35019.74, + "probability": 0.5179 + }, + { + "start": 35019.84, + "end": 35021.7, + "probability": 0.9604 + }, + { + "start": 35022.42, + "end": 35023.07, + "probability": 0.9954 + }, + { + "start": 35023.9, + "end": 35025.08, + "probability": 0.9456 + }, + { + "start": 35025.5, + "end": 35027.32, + "probability": 0.914 + }, + { + "start": 35028.18, + "end": 35029.53, + "probability": 0.7856 + }, + { + "start": 35029.92, + "end": 35031.3, + "probability": 0.897 + }, + { + "start": 35031.32, + "end": 35032.38, + "probability": 0.6656 + }, + { + "start": 35032.5, + "end": 35033.46, + "probability": 0.645 + }, + { + "start": 35034.0, + "end": 35035.54, + "probability": 0.9757 + }, + { + "start": 35035.84, + "end": 35036.88, + "probability": 0.9299 + }, + { + "start": 35037.28, + "end": 35038.26, + "probability": 0.9713 + }, + { + "start": 35038.36, + "end": 35039.1, + "probability": 0.9113 + }, + { + "start": 35039.46, + "end": 35040.22, + "probability": 0.6797 + }, + { + "start": 35040.82, + "end": 35040.92, + "probability": 0.1601 + }, + { + "start": 35040.92, + "end": 35041.4, + "probability": 0.3427 + }, + { + "start": 35043.79, + "end": 35045.7, + "probability": 0.639 + }, + { + "start": 35045.7, + "end": 35049.14, + "probability": 0.7335 + }, + { + "start": 35050.08, + "end": 35052.42, + "probability": 0.8749 + }, + { + "start": 35052.88, + "end": 35055.58, + "probability": 0.8746 + }, + { + "start": 35056.42, + "end": 35056.62, + "probability": 0.9601 + }, + { + "start": 35057.46, + "end": 35058.5, + "probability": 0.6844 + }, + { + "start": 35058.58, + "end": 35059.58, + "probability": 0.8545 + }, + { + "start": 35059.8, + "end": 35060.26, + "probability": 0.2264 + }, + { + "start": 35060.8, + "end": 35063.04, + "probability": 0.8864 + }, + { + "start": 35065.84, + "end": 35066.74, + "probability": 0.832 + }, + { + "start": 35066.76, + "end": 35070.18, + "probability": 0.9016 + }, + { + "start": 35070.7, + "end": 35071.94, + "probability": 0.9754 + }, + { + "start": 35073.14, + "end": 35073.92, + "probability": 0.7773 + }, + { + "start": 35074.42, + "end": 35076.24, + "probability": 0.9633 + }, + { + "start": 35076.7, + "end": 35079.54, + "probability": 0.9961 + }, + { + "start": 35079.54, + "end": 35085.84, + "probability": 0.9796 + }, + { + "start": 35086.54, + "end": 35089.9, + "probability": 0.9888 + }, + { + "start": 35090.4, + "end": 35093.44, + "probability": 0.9948 + }, + { + "start": 35094.12, + "end": 35097.98, + "probability": 0.9929 + }, + { + "start": 35098.5, + "end": 35099.82, + "probability": 0.9997 + }, + { + "start": 35100.44, + "end": 35101.0, + "probability": 0.9862 + }, + { + "start": 35101.62, + "end": 35104.14, + "probability": 0.9741 + }, + { + "start": 35104.58, + "end": 35107.18, + "probability": 0.9832 + }, + { + "start": 35107.18, + "end": 35109.14, + "probability": 0.9905 + }, + { + "start": 35109.7, + "end": 35110.54, + "probability": 0.9679 + }, + { + "start": 35111.36, + "end": 35114.06, + "probability": 0.9979 + }, + { + "start": 35114.24, + "end": 35117.66, + "probability": 0.999 + }, + { + "start": 35118.12, + "end": 35119.54, + "probability": 0.8212 + }, + { + "start": 35120.0, + "end": 35121.04, + "probability": 0.9573 + }, + { + "start": 35123.3, + "end": 35125.26, + "probability": 0.9814 + }, + { + "start": 35126.04, + "end": 35129.32, + "probability": 0.9077 + }, + { + "start": 35129.94, + "end": 35131.0, + "probability": 0.9912 + }, + { + "start": 35132.88, + "end": 35133.16, + "probability": 0.8678 + }, + { + "start": 35134.12, + "end": 35134.62, + "probability": 0.4823 + }, + { + "start": 35136.44, + "end": 35137.98, + "probability": 0.8039 + }, + { + "start": 35142.86, + "end": 35145.38, + "probability": 0.9149 + }, + { + "start": 35146.92, + "end": 35148.86, + "probability": 0.9985 + }, + { + "start": 35148.94, + "end": 35154.7, + "probability": 0.9334 + }, + { + "start": 35154.84, + "end": 35157.08, + "probability": 0.8069 + }, + { + "start": 35157.84, + "end": 35158.9, + "probability": 0.8036 + }, + { + "start": 35159.36, + "end": 35161.1, + "probability": 0.9365 + }, + { + "start": 35161.22, + "end": 35161.86, + "probability": 0.8281 + }, + { + "start": 35161.94, + "end": 35162.36, + "probability": 0.8772 + }, + { + "start": 35162.46, + "end": 35166.28, + "probability": 0.747 + }, + { + "start": 35166.54, + "end": 35167.42, + "probability": 0.7493 + }, + { + "start": 35168.5, + "end": 35171.66, + "probability": 0.9611 + }, + { + "start": 35172.42, + "end": 35174.46, + "probability": 0.8765 + }, + { + "start": 35175.64, + "end": 35176.94, + "probability": 0.9668 + }, + { + "start": 35177.2, + "end": 35177.99, + "probability": 0.9392 + }, + { + "start": 35178.64, + "end": 35179.44, + "probability": 0.8967 + }, + { + "start": 35179.72, + "end": 35180.92, + "probability": 0.8155 + }, + { + "start": 35181.46, + "end": 35184.08, + "probability": 0.9171 + }, + { + "start": 35185.06, + "end": 35188.16, + "probability": 0.9258 + }, + { + "start": 35189.24, + "end": 35190.8, + "probability": 0.9387 + }, + { + "start": 35191.38, + "end": 35192.58, + "probability": 0.9188 + }, + { + "start": 35193.44, + "end": 35194.76, + "probability": 0.8253 + }, + { + "start": 35195.3, + "end": 35204.68, + "probability": 0.9619 + }, + { + "start": 35204.84, + "end": 35211.52, + "probability": 0.7964 + }, + { + "start": 35212.38, + "end": 35218.38, + "probability": 0.9958 + }, + { + "start": 35218.94, + "end": 35219.5, + "probability": 0.5679 + }, + { + "start": 35219.74, + "end": 35222.56, + "probability": 0.9146 + }, + { + "start": 35222.64, + "end": 35223.88, + "probability": 0.8049 + }, + { + "start": 35224.22, + "end": 35225.52, + "probability": 0.6233 + }, + { + "start": 35226.14, + "end": 35229.48, + "probability": 0.8525 + }, + { + "start": 35229.48, + "end": 35231.8, + "probability": 0.9987 + }, + { + "start": 35232.04, + "end": 35232.04, + "probability": 0.022 + }, + { + "start": 35232.04, + "end": 35232.48, + "probability": 0.673 + }, + { + "start": 35232.62, + "end": 35234.28, + "probability": 0.8375 + }, + { + "start": 35234.52, + "end": 35236.2, + "probability": 0.9149 + }, + { + "start": 35236.94, + "end": 35237.62, + "probability": 0.978 + }, + { + "start": 35238.28, + "end": 35243.83, + "probability": 0.9938 + }, + { + "start": 35244.98, + "end": 35246.54, + "probability": 0.9943 + }, + { + "start": 35248.06, + "end": 35248.6, + "probability": 0.2767 + }, + { + "start": 35248.6, + "end": 35253.24, + "probability": 0.3052 + }, + { + "start": 35253.24, + "end": 35253.24, + "probability": 0.0263 + }, + { + "start": 35253.24, + "end": 35255.3, + "probability": 0.6723 + }, + { + "start": 35256.24, + "end": 35260.3, + "probability": 0.9058 + }, + { + "start": 35260.44, + "end": 35261.64, + "probability": 0.9645 + }, + { + "start": 35262.18, + "end": 35265.65, + "probability": 0.9991 + }, + { + "start": 35266.34, + "end": 35268.38, + "probability": 0.9987 + }, + { + "start": 35268.48, + "end": 35270.18, + "probability": 0.9399 + }, + { + "start": 35271.02, + "end": 35272.17, + "probability": 0.3175 + }, + { + "start": 35272.62, + "end": 35273.1, + "probability": 0.03 + }, + { + "start": 35273.1, + "end": 35273.26, + "probability": 0.1984 + }, + { + "start": 35273.6, + "end": 35278.82, + "probability": 0.9683 + }, + { + "start": 35278.88, + "end": 35280.98, + "probability": 0.9902 + }, + { + "start": 35281.34, + "end": 35283.42, + "probability": 0.99 + }, + { + "start": 35284.44, + "end": 35285.36, + "probability": 0.9355 + }, + { + "start": 35285.82, + "end": 35288.96, + "probability": 0.9688 + }, + { + "start": 35289.54, + "end": 35292.16, + "probability": 0.7503 + }, + { + "start": 35292.62, + "end": 35297.3, + "probability": 0.899 + }, + { + "start": 35297.98, + "end": 35300.12, + "probability": 0.6091 + }, + { + "start": 35300.7, + "end": 35303.42, + "probability": 0.9956 + }, + { + "start": 35304.12, + "end": 35308.78, + "probability": 0.9468 + }, + { + "start": 35308.78, + "end": 35311.96, + "probability": 0.9816 + }, + { + "start": 35312.18, + "end": 35312.44, + "probability": 0.4781 + }, + { + "start": 35312.98, + "end": 35317.98, + "probability": 0.9966 + }, + { + "start": 35318.64, + "end": 35320.35, + "probability": 0.7748 + }, + { + "start": 35321.4, + "end": 35324.7, + "probability": 0.9197 + }, + { + "start": 35325.24, + "end": 35325.7, + "probability": 0.8271 + }, + { + "start": 35326.24, + "end": 35326.94, + "probability": 0.8385 + }, + { + "start": 35327.28, + "end": 35330.04, + "probability": 0.99 + }, + { + "start": 35330.14, + "end": 35333.2, + "probability": 0.9203 + }, + { + "start": 35333.54, + "end": 35334.5, + "probability": 0.9855 + }, + { + "start": 35335.02, + "end": 35336.6, + "probability": 0.9935 + }, + { + "start": 35337.86, + "end": 35339.04, + "probability": 0.9357 + }, + { + "start": 35339.16, + "end": 35339.44, + "probability": 0.6072 + }, + { + "start": 35340.1, + "end": 35342.32, + "probability": 0.6785 + }, + { + "start": 35342.94, + "end": 35345.42, + "probability": 0.6849 + }, + { + "start": 35349.68, + "end": 35353.74, + "probability": 0.6155 + }, + { + "start": 35354.26, + "end": 35354.9, + "probability": 0.9056 + }, + { + "start": 35355.12, + "end": 35356.38, + "probability": 0.9793 + }, + { + "start": 35356.58, + "end": 35358.9, + "probability": 0.9489 + }, + { + "start": 35360.84, + "end": 35363.34, + "probability": 0.9966 + }, + { + "start": 35363.41, + "end": 35368.65, + "probability": 0.9917 + }, + { + "start": 35369.14, + "end": 35370.84, + "probability": 0.9768 + }, + { + "start": 35371.18, + "end": 35371.82, + "probability": 0.8286 + }, + { + "start": 35372.6, + "end": 35378.36, + "probability": 0.7359 + }, + { + "start": 35379.22, + "end": 35380.82, + "probability": 0.9915 + }, + { + "start": 35381.42, + "end": 35384.3, + "probability": 0.9415 + }, + { + "start": 35385.02, + "end": 35385.78, + "probability": 0.7686 + }, + { + "start": 35386.52, + "end": 35387.56, + "probability": 0.3938 + }, + { + "start": 35388.32, + "end": 35388.76, + "probability": 0.8436 + }, + { + "start": 35389.72, + "end": 35391.18, + "probability": 0.9141 + }, + { + "start": 35391.84, + "end": 35395.94, + "probability": 0.9808 + }, + { + "start": 35395.96, + "end": 35397.12, + "probability": 0.8137 + }, + { + "start": 35397.62, + "end": 35398.22, + "probability": 0.6903 + }, + { + "start": 35398.26, + "end": 35399.62, + "probability": 0.941 + }, + { + "start": 35399.78, + "end": 35401.56, + "probability": 0.8447 + }, + { + "start": 35401.82, + "end": 35405.74, + "probability": 0.9902 + }, + { + "start": 35405.74, + "end": 35409.38, + "probability": 0.9995 + }, + { + "start": 35410.08, + "end": 35414.6, + "probability": 0.9937 + }, + { + "start": 35415.88, + "end": 35418.24, + "probability": 0.9775 + }, + { + "start": 35418.24, + "end": 35421.5, + "probability": 0.9946 + }, + { + "start": 35422.0, + "end": 35423.98, + "probability": 0.9608 + }, + { + "start": 35424.56, + "end": 35428.98, + "probability": 0.9902 + }, + { + "start": 35429.42, + "end": 35432.82, + "probability": 0.9918 + }, + { + "start": 35433.72, + "end": 35434.52, + "probability": 0.7769 + }, + { + "start": 35434.62, + "end": 35436.88, + "probability": 0.5503 + }, + { + "start": 35437.02, + "end": 35438.92, + "probability": 0.8863 + }, + { + "start": 35440.0, + "end": 35443.16, + "probability": 0.51 + }, + { + "start": 35443.36, + "end": 35446.26, + "probability": 0.9707 + }, + { + "start": 35446.38, + "end": 35449.4, + "probability": 0.999 + }, + { + "start": 35449.4, + "end": 35452.1, + "probability": 0.993 + }, + { + "start": 35452.78, + "end": 35456.26, + "probability": 0.9922 + }, + { + "start": 35456.78, + "end": 35458.74, + "probability": 0.995 + }, + { + "start": 35461.87, + "end": 35465.5, + "probability": 0.7477 + }, + { + "start": 35465.56, + "end": 35466.2, + "probability": 0.8423 + }, + { + "start": 35467.2, + "end": 35468.56, + "probability": 0.9817 + }, + { + "start": 35469.02, + "end": 35471.6, + "probability": 0.9639 + }, + { + "start": 35472.1, + "end": 35475.78, + "probability": 0.9272 + }, + { + "start": 35477.17, + "end": 35481.8, + "probability": 0.9915 + }, + { + "start": 35481.86, + "end": 35483.32, + "probability": 0.8367 + }, + { + "start": 35483.32, + "end": 35485.06, + "probability": 0.9949 + }, + { + "start": 35485.74, + "end": 35489.84, + "probability": 0.944 + }, + { + "start": 35490.48, + "end": 35494.24, + "probability": 0.9984 + }, + { + "start": 35494.56, + "end": 35495.2, + "probability": 0.8276 + }, + { + "start": 35495.76, + "end": 35500.64, + "probability": 0.9897 + }, + { + "start": 35501.24, + "end": 35504.44, + "probability": 0.9452 + }, + { + "start": 35504.7, + "end": 35505.58, + "probability": 0.9863 + }, + { + "start": 35505.66, + "end": 35510.22, + "probability": 0.9697 + }, + { + "start": 35511.58, + "end": 35517.84, + "probability": 0.9954 + }, + { + "start": 35519.02, + "end": 35519.82, + "probability": 0.8146 + }, + { + "start": 35520.2, + "end": 35520.76, + "probability": 0.9422 + }, + { + "start": 35521.12, + "end": 35522.56, + "probability": 0.9565 + }, + { + "start": 35523.38, + "end": 35526.34, + "probability": 0.8883 + }, + { + "start": 35526.34, + "end": 35529.52, + "probability": 0.966 + }, + { + "start": 35529.8, + "end": 35530.3, + "probability": 0.8573 + }, + { + "start": 35531.08, + "end": 35532.9, + "probability": 0.9613 + }, + { + "start": 35533.44, + "end": 35536.5, + "probability": 0.68 + }, + { + "start": 35536.7, + "end": 35538.8, + "probability": 0.9875 + }, + { + "start": 35539.24, + "end": 35541.88, + "probability": 0.6561 + }, + { + "start": 35542.48, + "end": 35543.98, + "probability": 0.8674 + }, + { + "start": 35544.68, + "end": 35546.26, + "probability": 0.9871 + }, + { + "start": 35546.38, + "end": 35547.5, + "probability": 0.9819 + }, + { + "start": 35547.98, + "end": 35549.22, + "probability": 0.905 + }, + { + "start": 35549.3, + "end": 35553.36, + "probability": 0.9753 + }, + { + "start": 35553.44, + "end": 35554.62, + "probability": 0.8269 + }, + { + "start": 35555.28, + "end": 35557.62, + "probability": 0.9943 + }, + { + "start": 35557.86, + "end": 35560.84, + "probability": 0.9752 + }, + { + "start": 35561.34, + "end": 35567.92, + "probability": 0.9714 + }, + { + "start": 35568.5, + "end": 35570.08, + "probability": 0.8077 + }, + { + "start": 35571.02, + "end": 35571.98, + "probability": 0.5884 + }, + { + "start": 35572.6, + "end": 35574.68, + "probability": 0.9758 + }, + { + "start": 35575.4, + "end": 35578.38, + "probability": 0.9559 + }, + { + "start": 35578.65, + "end": 35580.18, + "probability": 0.5916 + }, + { + "start": 35580.2, + "end": 35582.5, + "probability": 0.9431 + }, + { + "start": 35583.9, + "end": 35585.06, + "probability": 0.9648 + }, + { + "start": 35585.12, + "end": 35585.78, + "probability": 0.9719 + }, + { + "start": 35586.32, + "end": 35587.24, + "probability": 0.9967 + }, + { + "start": 35588.12, + "end": 35589.06, + "probability": 0.9938 + }, + { + "start": 35589.88, + "end": 35590.5, + "probability": 0.5391 + }, + { + "start": 35591.66, + "end": 35592.42, + "probability": 0.2298 + }, + { + "start": 35592.42, + "end": 35592.42, + "probability": 0.2272 + }, + { + "start": 35592.42, + "end": 35592.52, + "probability": 0.3101 + }, + { + "start": 35593.54, + "end": 35597.42, + "probability": 0.5011 + }, + { + "start": 35598.1, + "end": 35598.86, + "probability": 0.9229 + }, + { + "start": 35606.18, + "end": 35607.4, + "probability": 0.4986 + }, + { + "start": 35607.4, + "end": 35607.84, + "probability": 0.5545 + }, + { + "start": 35609.22, + "end": 35611.86, + "probability": 0.796 + }, + { + "start": 35612.66, + "end": 35618.84, + "probability": 0.8216 + }, + { + "start": 35619.5, + "end": 35621.08, + "probability": 0.9208 + }, + { + "start": 35622.38, + "end": 35626.02, + "probability": 0.6049 + }, + { + "start": 35626.5, + "end": 35628.06, + "probability": 0.7894 + }, + { + "start": 35628.66, + "end": 35630.86, + "probability": 0.9652 + }, + { + "start": 35631.52, + "end": 35634.08, + "probability": 0.9985 + }, + { + "start": 35634.44, + "end": 35634.68, + "probability": 0.8486 + }, + { + "start": 35635.74, + "end": 35637.54, + "probability": 0.745 + }, + { + "start": 35638.54, + "end": 35639.42, + "probability": 0.6126 + }, + { + "start": 35639.52, + "end": 35639.7, + "probability": 0.6521 + }, + { + "start": 35639.78, + "end": 35640.68, + "probability": 0.7892 + }, + { + "start": 35640.84, + "end": 35643.66, + "probability": 0.9928 + }, + { + "start": 35643.76, + "end": 35649.02, + "probability": 0.9904 + }, + { + "start": 35649.54, + "end": 35653.16, + "probability": 0.9952 + }, + { + "start": 35653.4, + "end": 35654.3, + "probability": 0.7587 + }, + { + "start": 35654.32, + "end": 35655.26, + "probability": 0.9292 + }, + { + "start": 35655.44, + "end": 35656.16, + "probability": 0.8134 + }, + { + "start": 35656.26, + "end": 35659.82, + "probability": 0.982 + }, + { + "start": 35660.64, + "end": 35663.72, + "probability": 0.9971 + }, + { + "start": 35664.39, + "end": 35664.82, + "probability": 0.9362 + }, + { + "start": 35664.94, + "end": 35669.4, + "probability": 0.9893 + }, + { + "start": 35670.08, + "end": 35671.16, + "probability": 0.9642 + }, + { + "start": 35671.38, + "end": 35673.2, + "probability": 0.9888 + }, + { + "start": 35674.1, + "end": 35679.24, + "probability": 0.9927 + }, + { + "start": 35681.4, + "end": 35682.72, + "probability": 0.8742 + }, + { + "start": 35682.96, + "end": 35686.06, + "probability": 0.9309 + }, + { + "start": 35687.26, + "end": 35687.96, + "probability": 0.9607 + }, + { + "start": 35688.1, + "end": 35691.92, + "probability": 0.8647 + }, + { + "start": 35692.06, + "end": 35692.92, + "probability": 0.8139 + }, + { + "start": 35693.6, + "end": 35695.3, + "probability": 0.7918 + }, + { + "start": 35695.88, + "end": 35699.24, + "probability": 0.9397 + }, + { + "start": 35699.34, + "end": 35701.62, + "probability": 0.8655 + }, + { + "start": 35701.76, + "end": 35703.92, + "probability": 0.8779 + }, + { + "start": 35705.44, + "end": 35710.56, + "probability": 0.7549 + }, + { + "start": 35710.72, + "end": 35713.58, + "probability": 0.8481 + }, + { + "start": 35713.94, + "end": 35714.64, + "probability": 0.7893 + }, + { + "start": 35715.14, + "end": 35717.26, + "probability": 0.9846 + }, + { + "start": 35718.21, + "end": 35720.42, + "probability": 0.8911 + }, + { + "start": 35721.32, + "end": 35723.72, + "probability": 0.9673 + }, + { + "start": 35724.98, + "end": 35727.54, + "probability": 0.9878 + }, + { + "start": 35728.28, + "end": 35731.32, + "probability": 0.9792 + }, + { + "start": 35732.14, + "end": 35735.96, + "probability": 0.9022 + }, + { + "start": 35744.36, + "end": 35744.36, + "probability": 0.0034 + }, + { + "start": 35744.36, + "end": 35745.5, + "probability": 0.6911 + }, + { + "start": 35745.68, + "end": 35748.48, + "probability": 0.9163 + }, + { + "start": 35749.8, + "end": 35751.84, + "probability": 0.9671 + }, + { + "start": 35752.48, + "end": 35754.16, + "probability": 0.9628 + }, + { + "start": 35754.9, + "end": 35757.32, + "probability": 0.9404 + }, + { + "start": 35757.42, + "end": 35759.54, + "probability": 0.9847 + }, + { + "start": 35759.68, + "end": 35760.77, + "probability": 0.9912 + }, + { + "start": 35761.98, + "end": 35764.06, + "probability": 0.8047 + }, + { + "start": 35764.6, + "end": 35770.92, + "probability": 0.9768 + }, + { + "start": 35771.82, + "end": 35772.62, + "probability": 0.9426 + }, + { + "start": 35773.74, + "end": 35777.08, + "probability": 0.9966 + }, + { + "start": 35777.28, + "end": 35779.3, + "probability": 0.8778 + }, + { + "start": 35779.38, + "end": 35780.48, + "probability": 0.8007 + }, + { + "start": 35780.62, + "end": 35784.86, + "probability": 0.9927 + }, + { + "start": 35785.6, + "end": 35787.46, + "probability": 0.9908 + }, + { + "start": 35787.5, + "end": 35789.42, + "probability": 0.989 + }, + { + "start": 35789.66, + "end": 35790.44, + "probability": 0.9162 + }, + { + "start": 35790.58, + "end": 35791.04, + "probability": 0.861 + }, + { + "start": 35791.16, + "end": 35791.76, + "probability": 0.539 + }, + { + "start": 35792.22, + "end": 35795.66, + "probability": 0.941 + }, + { + "start": 35796.2, + "end": 35798.32, + "probability": 0.9971 + }, + { + "start": 35798.4, + "end": 35802.22, + "probability": 0.9902 + }, + { + "start": 35802.22, + "end": 35805.0, + "probability": 0.7091 + }, + { + "start": 35805.78, + "end": 35806.3, + "probability": 0.9183 + }, + { + "start": 35806.74, + "end": 35810.92, + "probability": 0.9948 + }, + { + "start": 35811.46, + "end": 35811.98, + "probability": 0.8827 + }, + { + "start": 35811.98, + "end": 35814.24, + "probability": 0.9963 + }, + { + "start": 35814.78, + "end": 35815.64, + "probability": 0.8372 + }, + { + "start": 35815.8, + "end": 35819.86, + "probability": 0.9941 + }, + { + "start": 35820.94, + "end": 35824.92, + "probability": 0.9962 + }, + { + "start": 35825.58, + "end": 35829.96, + "probability": 0.9855 + }, + { + "start": 35830.42, + "end": 35831.44, + "probability": 0.4705 + }, + { + "start": 35831.98, + "end": 35832.4, + "probability": 0.5739 + }, + { + "start": 35832.84, + "end": 35836.72, + "probability": 0.7828 + }, + { + "start": 35836.92, + "end": 35837.58, + "probability": 0.7805 + }, + { + "start": 35837.96, + "end": 35838.68, + "probability": 0.7326 + }, + { + "start": 35839.72, + "end": 35844.46, + "probability": 0.9814 + }, + { + "start": 35845.04, + "end": 35847.86, + "probability": 0.9595 + }, + { + "start": 35847.86, + "end": 35850.48, + "probability": 0.9991 + }, + { + "start": 35851.12, + "end": 35856.26, + "probability": 0.9897 + }, + { + "start": 35856.4, + "end": 35858.1, + "probability": 0.9968 + }, + { + "start": 35858.96, + "end": 35861.78, + "probability": 0.9352 + }, + { + "start": 35862.44, + "end": 35863.84, + "probability": 0.653 + }, + { + "start": 35864.38, + "end": 35867.02, + "probability": 0.8695 + }, + { + "start": 35867.02, + "end": 35869.46, + "probability": 0.9989 + }, + { + "start": 35870.38, + "end": 35872.36, + "probability": 0.9888 + }, + { + "start": 35872.36, + "end": 35874.34, + "probability": 0.996 + }, + { + "start": 35874.92, + "end": 35878.58, + "probability": 0.9752 + }, + { + "start": 35879.3, + "end": 35880.58, + "probability": 0.8757 + }, + { + "start": 35881.14, + "end": 35884.76, + "probability": 0.9746 + }, + { + "start": 35884.84, + "end": 35888.2, + "probability": 0.9827 + }, + { + "start": 35888.84, + "end": 35890.14, + "probability": 0.6051 + }, + { + "start": 35890.68, + "end": 35894.72, + "probability": 0.9905 + }, + { + "start": 35895.28, + "end": 35896.44, + "probability": 0.9987 + }, + { + "start": 35896.98, + "end": 35898.36, + "probability": 0.9012 + }, + { + "start": 35900.44, + "end": 35900.96, + "probability": 0.4904 + }, + { + "start": 35901.2, + "end": 35902.28, + "probability": 0.577 + }, + { + "start": 35903.44, + "end": 35903.9, + "probability": 0.7079 + }, + { + "start": 35905.38, + "end": 35907.14, + "probability": 0.9947 + }, + { + "start": 35907.2, + "end": 35908.96, + "probability": 0.994 + }, + { + "start": 35910.08, + "end": 35915.7, + "probability": 0.9777 + }, + { + "start": 35915.7, + "end": 35921.48, + "probability": 0.9954 + }, + { + "start": 35922.14, + "end": 35924.02, + "probability": 0.885 + }, + { + "start": 35924.72, + "end": 35929.2, + "probability": 0.994 + }, + { + "start": 35930.12, + "end": 35931.78, + "probability": 0.747 + }, + { + "start": 35932.64, + "end": 35933.5, + "probability": 0.8542 + }, + { + "start": 35934.04, + "end": 35934.74, + "probability": 0.9927 + }, + { + "start": 35935.48, + "end": 35936.92, + "probability": 0.9737 + }, + { + "start": 35937.66, + "end": 35938.5, + "probability": 0.9019 + }, + { + "start": 35938.64, + "end": 35940.72, + "probability": 0.9951 + }, + { + "start": 35941.26, + "end": 35943.22, + "probability": 0.9203 + }, + { + "start": 35943.84, + "end": 35944.76, + "probability": 0.7776 + }, + { + "start": 35945.98, + "end": 35947.88, + "probability": 0.9873 + }, + { + "start": 35948.46, + "end": 35949.14, + "probability": 0.8703 + }, + { + "start": 35949.72, + "end": 35951.1, + "probability": 0.7989 + }, + { + "start": 35951.16, + "end": 35952.96, + "probability": 0.9204 + }, + { + "start": 35953.46, + "end": 35956.34, + "probability": 0.9901 + }, + { + "start": 35957.0, + "end": 35960.38, + "probability": 0.5784 + }, + { + "start": 35960.69, + "end": 35963.64, + "probability": 0.9573 + }, + { + "start": 35963.64, + "end": 35966.28, + "probability": 0.9442 + }, + { + "start": 35966.34, + "end": 35970.28, + "probability": 0.9784 + }, + { + "start": 35970.82, + "end": 35976.34, + "probability": 0.9513 + }, + { + "start": 35976.5, + "end": 35977.44, + "probability": 0.967 + }, + { + "start": 35977.74, + "end": 35979.1, + "probability": 0.9853 + }, + { + "start": 35979.5, + "end": 35980.38, + "probability": 0.9399 + }, + { + "start": 35981.18, + "end": 35984.22, + "probability": 0.9627 + }, + { + "start": 35986.16, + "end": 35989.08, + "probability": 0.9165 + }, + { + "start": 35989.36, + "end": 35993.09, + "probability": 0.574 + }, + { + "start": 35993.7, + "end": 35995.18, + "probability": 0.034 + }, + { + "start": 35995.22, + "end": 35996.54, + "probability": 0.536 + }, + { + "start": 35996.92, + "end": 35999.68, + "probability": 0.9463 + }, + { + "start": 36000.2, + "end": 36002.8, + "probability": 0.9981 + }, + { + "start": 36003.9, + "end": 36006.04, + "probability": 0.9349 + }, + { + "start": 36007.14, + "end": 36008.3, + "probability": 0.8672 + }, + { + "start": 36008.48, + "end": 36009.74, + "probability": 0.9858 + }, + { + "start": 36010.2, + "end": 36010.7, + "probability": 0.3598 + }, + { + "start": 36010.74, + "end": 36011.94, + "probability": 0.6346 + }, + { + "start": 36012.04, + "end": 36012.5, + "probability": 0.8909 + }, + { + "start": 36012.98, + "end": 36015.4, + "probability": 0.9957 + }, + { + "start": 36015.78, + "end": 36020.16, + "probability": 0.9555 + }, + { + "start": 36020.9, + "end": 36023.4, + "probability": 0.7122 + }, + { + "start": 36023.56, + "end": 36023.8, + "probability": 0.4863 + }, + { + "start": 36023.92, + "end": 36027.82, + "probability": 0.8144 + }, + { + "start": 36028.69, + "end": 36031.16, + "probability": 0.9539 + }, + { + "start": 36031.7, + "end": 36033.31, + "probability": 0.9779 + }, + { + "start": 36033.54, + "end": 36035.0, + "probability": 0.6828 + }, + { + "start": 36035.18, + "end": 36036.62, + "probability": 0.8948 + }, + { + "start": 36036.72, + "end": 36038.43, + "probability": 0.9674 + }, + { + "start": 36039.12, + "end": 36042.06, + "probability": 0.9626 + }, + { + "start": 36042.2, + "end": 36043.31, + "probability": 0.8779 + }, + { + "start": 36044.44, + "end": 36046.42, + "probability": 0.968 + }, + { + "start": 36047.6, + "end": 36050.7, + "probability": 0.9971 + }, + { + "start": 36051.36, + "end": 36056.8, + "probability": 0.9933 + }, + { + "start": 36056.8, + "end": 36061.57, + "probability": 0.9995 + }, + { + "start": 36062.68, + "end": 36064.04, + "probability": 0.9208 + }, + { + "start": 36064.66, + "end": 36067.63, + "probability": 0.9987 + }, + { + "start": 36068.86, + "end": 36070.42, + "probability": 0.9976 + }, + { + "start": 36071.32, + "end": 36073.74, + "probability": 0.7261 + }, + { + "start": 36073.92, + "end": 36076.34, + "probability": 0.5233 + }, + { + "start": 36076.52, + "end": 36077.02, + "probability": 0.8811 + }, + { + "start": 36078.29, + "end": 36081.2, + "probability": 0.9194 + }, + { + "start": 36081.76, + "end": 36082.3, + "probability": 0.4556 + }, + { + "start": 36082.96, + "end": 36085.58, + "probability": 0.9116 + }, + { + "start": 36086.18, + "end": 36086.86, + "probability": 0.8817 + }, + { + "start": 36087.7, + "end": 36088.8, + "probability": 0.7254 + }, + { + "start": 36089.36, + "end": 36093.46, + "probability": 0.9922 + }, + { + "start": 36094.38, + "end": 36097.18, + "probability": 0.8176 + }, + { + "start": 36100.63, + "end": 36101.18, + "probability": 0.1552 + }, + { + "start": 36101.18, + "end": 36101.86, + "probability": 0.9109 + }, + { + "start": 36103.8, + "end": 36105.74, + "probability": 0.819 + }, + { + "start": 36107.56, + "end": 36108.42, + "probability": 0.954 + }, + { + "start": 36108.68, + "end": 36109.02, + "probability": 0.0764 + }, + { + "start": 36109.02, + "end": 36109.02, + "probability": 0.9081 + }, + { + "start": 36109.32, + "end": 36110.32, + "probability": 0.976 + }, + { + "start": 36111.04, + "end": 36111.66, + "probability": 0.7829 + }, + { + "start": 36112.26, + "end": 36114.2, + "probability": 0.9878 + }, + { + "start": 36114.74, + "end": 36118.26, + "probability": 0.9336 + }, + { + "start": 36118.8, + "end": 36118.84, + "probability": 0.0593 + }, + { + "start": 36118.84, + "end": 36120.12, + "probability": 0.5875 + }, + { + "start": 36120.6, + "end": 36124.8, + "probability": 0.9766 + }, + { + "start": 36125.28, + "end": 36127.24, + "probability": 0.9719 + }, + { + "start": 36127.82, + "end": 36128.48, + "probability": 0.973 + }, + { + "start": 36128.94, + "end": 36129.32, + "probability": 0.2934 + }, + { + "start": 36131.28, + "end": 36135.16, + "probability": 0.9946 + }, + { + "start": 36135.36, + "end": 36135.78, + "probability": 0.4758 + }, + { + "start": 36136.36, + "end": 36136.92, + "probability": 0.302 + }, + { + "start": 36137.1, + "end": 36139.84, + "probability": 0.9934 + }, + { + "start": 36140.0, + "end": 36141.1, + "probability": 0.9605 + }, + { + "start": 36141.3, + "end": 36141.44, + "probability": 0.8068 + }, + { + "start": 36141.46, + "end": 36143.74, + "probability": 0.9539 + }, + { + "start": 36143.76, + "end": 36146.12, + "probability": 0.9795 + }, + { + "start": 36146.32, + "end": 36149.57, + "probability": 0.9954 + }, + { + "start": 36150.06, + "end": 36152.74, + "probability": 0.8337 + }, + { + "start": 36152.92, + "end": 36153.4, + "probability": 0.7811 + }, + { + "start": 36154.18, + "end": 36154.98, + "probability": 0.9053 + }, + { + "start": 36155.68, + "end": 36158.9, + "probability": 0.8552 + }, + { + "start": 36159.84, + "end": 36162.0, + "probability": 0.8278 + }, + { + "start": 36162.2, + "end": 36162.38, + "probability": 0.3619 + }, + { + "start": 36162.58, + "end": 36164.2, + "probability": 0.736 + }, + { + "start": 36164.22, + "end": 36164.22, + "probability": 0.5199 + }, + { + "start": 36164.22, + "end": 36165.28, + "probability": 0.3848 + }, + { + "start": 36165.28, + "end": 36169.08, + "probability": 0.9734 + }, + { + "start": 36169.08, + "end": 36171.16, + "probability": 0.9823 + }, + { + "start": 36171.32, + "end": 36172.14, + "probability": 0.8692 + }, + { + "start": 36172.6, + "end": 36173.46, + "probability": 0.4799 + }, + { + "start": 36174.22, + "end": 36174.22, + "probability": 0.0001 + }, + { + "start": 36175.74, + "end": 36176.64, + "probability": 0.5411 + }, + { + "start": 36176.68, + "end": 36177.2, + "probability": 0.519 + }, + { + "start": 36177.7, + "end": 36180.58, + "probability": 0.742 + }, + { + "start": 36181.14, + "end": 36181.34, + "probability": 0.9302 + }, + { + "start": 36190.46, + "end": 36190.84, + "probability": 0.236 + }, + { + "start": 36191.38, + "end": 36192.62, + "probability": 0.7691 + }, + { + "start": 36192.76, + "end": 36193.04, + "probability": 0.7 + }, + { + "start": 36193.34, + "end": 36194.64, + "probability": 0.8892 + }, + { + "start": 36194.68, + "end": 36195.6, + "probability": 0.8239 + }, + { + "start": 36196.44, + "end": 36197.38, + "probability": 0.9556 + }, + { + "start": 36197.56, + "end": 36200.38, + "probability": 0.9834 + }, + { + "start": 36201.08, + "end": 36206.68, + "probability": 0.9672 + }, + { + "start": 36207.84, + "end": 36210.4, + "probability": 0.9979 + }, + { + "start": 36210.5, + "end": 36212.65, + "probability": 0.9451 + }, + { + "start": 36213.12, + "end": 36215.3, + "probability": 0.6445 + }, + { + "start": 36215.36, + "end": 36216.38, + "probability": 0.8697 + }, + { + "start": 36216.52, + "end": 36220.82, + "probability": 0.4714 + }, + { + "start": 36221.74, + "end": 36221.74, + "probability": 0.0341 + }, + { + "start": 36221.74, + "end": 36224.0, + "probability": 0.9754 + }, + { + "start": 36224.0, + "end": 36226.34, + "probability": 0.9971 + }, + { + "start": 36226.72, + "end": 36227.44, + "probability": 0.8407 + }, + { + "start": 36228.1, + "end": 36230.18, + "probability": 0.8427 + }, + { + "start": 36230.42, + "end": 36234.12, + "probability": 0.9395 + }, + { + "start": 36234.12, + "end": 36236.52, + "probability": 0.9937 + }, + { + "start": 36237.36, + "end": 36240.8, + "probability": 0.9372 + }, + { + "start": 36242.08, + "end": 36242.62, + "probability": 0.3905 + }, + { + "start": 36242.98, + "end": 36243.66, + "probability": 0.8851 + }, + { + "start": 36243.8, + "end": 36246.42, + "probability": 0.8833 + }, + { + "start": 36246.42, + "end": 36246.52, + "probability": 0.5762 + }, + { + "start": 36247.04, + "end": 36249.32, + "probability": 0.9308 + }, + { + "start": 36250.18, + "end": 36253.95, + "probability": 0.9873 + }, + { + "start": 36256.0, + "end": 36258.12, + "probability": 0.787 + }, + { + "start": 36258.68, + "end": 36260.02, + "probability": 0.996 + }, + { + "start": 36260.74, + "end": 36261.94, + "probability": 0.9853 + }, + { + "start": 36262.46, + "end": 36265.62, + "probability": 0.9955 + }, + { + "start": 36265.74, + "end": 36267.56, + "probability": 0.9719 + }, + { + "start": 36268.0, + "end": 36268.49, + "probability": 0.8476 + }, + { + "start": 36269.48, + "end": 36271.32, + "probability": 0.9746 + }, + { + "start": 36273.18, + "end": 36275.06, + "probability": 0.7466 + }, + { + "start": 36275.58, + "end": 36277.06, + "probability": 0.8615 + }, + { + "start": 36277.74, + "end": 36278.88, + "probability": 0.9748 + }, + { + "start": 36279.9, + "end": 36283.12, + "probability": 0.901 + }, + { + "start": 36283.96, + "end": 36286.86, + "probability": 0.9893 + }, + { + "start": 36287.84, + "end": 36288.46, + "probability": 0.9524 + }, + { + "start": 36289.04, + "end": 36290.72, + "probability": 0.9967 + }, + { + "start": 36292.52, + "end": 36295.16, + "probability": 0.8143 + }, + { + "start": 36295.94, + "end": 36298.43, + "probability": 0.9197 + }, + { + "start": 36299.74, + "end": 36301.76, + "probability": 0.88 + }, + { + "start": 36302.5, + "end": 36303.2, + "probability": 0.9969 + }, + { + "start": 36304.16, + "end": 36307.64, + "probability": 0.9507 + }, + { + "start": 36308.58, + "end": 36310.08, + "probability": 0.98 + }, + { + "start": 36310.08, + "end": 36312.72, + "probability": 0.9907 + }, + { + "start": 36313.4, + "end": 36315.04, + "probability": 0.992 + }, + { + "start": 36315.78, + "end": 36317.44, + "probability": 0.7851 + }, + { + "start": 36318.26, + "end": 36322.7, + "probability": 0.9937 + }, + { + "start": 36323.0, + "end": 36323.86, + "probability": 0.8261 + }, + { + "start": 36325.12, + "end": 36327.9, + "probability": 0.9964 + }, + { + "start": 36328.08, + "end": 36328.34, + "probability": 0.7511 + }, + { + "start": 36328.42, + "end": 36329.6, + "probability": 0.9967 + }, + { + "start": 36330.02, + "end": 36330.94, + "probability": 0.9412 + }, + { + "start": 36331.0, + "end": 36334.26, + "probability": 0.9875 + }, + { + "start": 36334.26, + "end": 36334.62, + "probability": 0.8595 + }, + { + "start": 36335.18, + "end": 36336.3, + "probability": 0.7425 + }, + { + "start": 36337.2, + "end": 36339.76, + "probability": 0.9996 + }, + { + "start": 36340.54, + "end": 36342.32, + "probability": 0.8016 + }, + { + "start": 36342.84, + "end": 36345.52, + "probability": 0.731 + }, + { + "start": 36346.08, + "end": 36347.12, + "probability": 0.796 + }, + { + "start": 36347.3, + "end": 36350.06, + "probability": 0.9947 + }, + { + "start": 36350.62, + "end": 36351.68, + "probability": 0.9106 + }, + { + "start": 36352.42, + "end": 36355.06, + "probability": 0.9531 + }, + { + "start": 36356.2, + "end": 36357.86, + "probability": 0.997 + }, + { + "start": 36357.94, + "end": 36360.66, + "probability": 0.9872 + }, + { + "start": 36361.5, + "end": 36363.66, + "probability": 0.8885 + }, + { + "start": 36364.95, + "end": 36368.96, + "probability": 0.9841 + }, + { + "start": 36370.4, + "end": 36370.68, + "probability": 0.7477 + }, + { + "start": 36371.52, + "end": 36372.54, + "probability": 0.9799 + }, + { + "start": 36373.08, + "end": 36375.98, + "probability": 0.6017 + }, + { + "start": 36377.36, + "end": 36381.76, + "probability": 0.9948 + }, + { + "start": 36382.46, + "end": 36384.21, + "probability": 0.8086 + }, + { + "start": 36386.64, + "end": 36389.38, + "probability": 0.9619 + }, + { + "start": 36389.92, + "end": 36392.47, + "probability": 0.9478 + }, + { + "start": 36394.26, + "end": 36395.44, + "probability": 0.5797 + }, + { + "start": 36396.16, + "end": 36398.56, + "probability": 0.9982 + }, + { + "start": 36399.82, + "end": 36400.42, + "probability": 0.7064 + }, + { + "start": 36400.74, + "end": 36401.42, + "probability": 0.7397 + }, + { + "start": 36401.52, + "end": 36403.28, + "probability": 0.9554 + }, + { + "start": 36405.34, + "end": 36407.02, + "probability": 0.9956 + }, + { + "start": 36407.06, + "end": 36408.98, + "probability": 0.9962 + }, + { + "start": 36410.48, + "end": 36410.72, + "probability": 0.6641 + }, + { + "start": 36411.42, + "end": 36414.96, + "probability": 0.988 + }, + { + "start": 36416.56, + "end": 36417.04, + "probability": 0.9227 + }, + { + "start": 36418.46, + "end": 36420.48, + "probability": 0.9564 + }, + { + "start": 36422.16, + "end": 36424.64, + "probability": 0.9857 + }, + { + "start": 36425.84, + "end": 36427.98, + "probability": 0.901 + }, + { + "start": 36428.7, + "end": 36429.32, + "probability": 0.6316 + }, + { + "start": 36429.48, + "end": 36429.78, + "probability": 0.7858 + }, + { + "start": 36429.8, + "end": 36431.24, + "probability": 0.9565 + }, + { + "start": 36431.82, + "end": 36433.38, + "probability": 0.7888 + }, + { + "start": 36433.56, + "end": 36433.92, + "probability": 0.9747 + }, + { + "start": 36434.62, + "end": 36438.56, + "probability": 0.9989 + }, + { + "start": 36439.26, + "end": 36439.42, + "probability": 0.9982 + }, + { + "start": 36440.51, + "end": 36442.47, + "probability": 0.7529 + }, + { + "start": 36443.88, + "end": 36445.18, + "probability": 0.976 + }, + { + "start": 36445.52, + "end": 36448.64, + "probability": 0.9855 + }, + { + "start": 36448.76, + "end": 36450.78, + "probability": 0.9976 + }, + { + "start": 36450.78, + "end": 36453.61, + "probability": 0.9836 + }, + { + "start": 36454.28, + "end": 36455.82, + "probability": 0.9971 + }, + { + "start": 36456.6, + "end": 36457.3, + "probability": 0.9511 + }, + { + "start": 36458.7, + "end": 36459.72, + "probability": 0.998 + }, + { + "start": 36461.02, + "end": 36461.66, + "probability": 0.9736 + }, + { + "start": 36462.18, + "end": 36462.66, + "probability": 0.7018 + }, + { + "start": 36463.74, + "end": 36466.02, + "probability": 0.9889 + }, + { + "start": 36466.66, + "end": 36470.1, + "probability": 0.9793 + }, + { + "start": 36470.78, + "end": 36474.94, + "probability": 0.986 + }, + { + "start": 36475.26, + "end": 36477.9, + "probability": 0.9976 + }, + { + "start": 36478.64, + "end": 36480.16, + "probability": 0.9922 + }, + { + "start": 36480.18, + "end": 36482.56, + "probability": 0.6864 + }, + { + "start": 36483.22, + "end": 36484.42, + "probability": 0.9221 + }, + { + "start": 36484.64, + "end": 36487.86, + "probability": 0.7549 + }, + { + "start": 36488.42, + "end": 36495.16, + "probability": 0.9781 + }, + { + "start": 36495.24, + "end": 36495.73, + "probability": 0.9004 + }, + { + "start": 36495.96, + "end": 36497.48, + "probability": 0.9609 + }, + { + "start": 36498.02, + "end": 36498.9, + "probability": 0.8616 + }, + { + "start": 36500.54, + "end": 36500.54, + "probability": 0.9648 + }, + { + "start": 36501.16, + "end": 36502.46, + "probability": 0.9775 + }, + { + "start": 36502.54, + "end": 36504.72, + "probability": 0.9213 + }, + { + "start": 36504.74, + "end": 36507.7, + "probability": 0.991 + }, + { + "start": 36507.96, + "end": 36508.45, + "probability": 0.9495 + }, + { + "start": 36508.52, + "end": 36509.18, + "probability": 0.9019 + }, + { + "start": 36509.9, + "end": 36511.72, + "probability": 0.9954 + }, + { + "start": 36512.52, + "end": 36515.22, + "probability": 0.9997 + }, + { + "start": 36515.44, + "end": 36517.74, + "probability": 0.999 + }, + { + "start": 36519.04, + "end": 36520.5, + "probability": 0.9746 + }, + { + "start": 36521.28, + "end": 36521.78, + "probability": 0.8728 + }, + { + "start": 36522.96, + "end": 36526.46, + "probability": 0.9822 + }, + { + "start": 36526.92, + "end": 36530.98, + "probability": 0.988 + }, + { + "start": 36531.24, + "end": 36534.74, + "probability": 0.9984 + }, + { + "start": 36535.4, + "end": 36537.71, + "probability": 0.9885 + }, + { + "start": 36538.68, + "end": 36542.86, + "probability": 0.9795 + }, + { + "start": 36542.98, + "end": 36545.04, + "probability": 0.979 + }, + { + "start": 36545.8, + "end": 36548.08, + "probability": 0.9585 + }, + { + "start": 36548.58, + "end": 36550.24, + "probability": 0.9598 + }, + { + "start": 36550.76, + "end": 36553.33, + "probability": 0.7476 + }, + { + "start": 36553.86, + "end": 36554.84, + "probability": 0.796 + }, + { + "start": 36555.66, + "end": 36557.62, + "probability": 0.6382 + }, + { + "start": 36558.04, + "end": 36558.94, + "probability": 0.9718 + }, + { + "start": 36559.38, + "end": 36564.0, + "probability": 0.8214 + }, + { + "start": 36564.68, + "end": 36566.2, + "probability": 0.9347 + }, + { + "start": 36567.46, + "end": 36568.76, + "probability": 0.9971 + }, + { + "start": 36569.36, + "end": 36569.54, + "probability": 0.2799 + }, + { + "start": 36570.5, + "end": 36571.04, + "probability": 0.6799 + }, + { + "start": 36572.84, + "end": 36573.04, + "probability": 0.6163 + }, + { + "start": 36574.0, + "end": 36575.08, + "probability": 0.8641 + }, + { + "start": 36576.04, + "end": 36577.2, + "probability": 0.9507 + }, + { + "start": 36578.16, + "end": 36578.67, + "probability": 0.978 + }, + { + "start": 36580.08, + "end": 36584.5, + "probability": 0.9934 + }, + { + "start": 36585.3, + "end": 36585.84, + "probability": 0.9833 + }, + { + "start": 36586.4, + "end": 36590.0, + "probability": 0.9777 + }, + { + "start": 36591.04, + "end": 36592.42, + "probability": 0.9419 + }, + { + "start": 36593.52, + "end": 36595.66, + "probability": 0.7669 + }, + { + "start": 36595.74, + "end": 36598.36, + "probability": 0.9927 + }, + { + "start": 36598.44, + "end": 36599.0, + "probability": 0.8779 + }, + { + "start": 36599.48, + "end": 36602.68, + "probability": 0.9749 + }, + { + "start": 36603.56, + "end": 36607.42, + "probability": 0.9955 + }, + { + "start": 36607.98, + "end": 36610.46, + "probability": 0.9864 + }, + { + "start": 36610.52, + "end": 36614.22, + "probability": 0.9633 + }, + { + "start": 36616.34, + "end": 36617.52, + "probability": 0.9761 + }, + { + "start": 36618.98, + "end": 36620.1, + "probability": 0.999 + }, + { + "start": 36620.84, + "end": 36622.94, + "probability": 0.9885 + }, + { + "start": 36623.32, + "end": 36623.98, + "probability": 0.3736 + }, + { + "start": 36629.82, + "end": 36630.34, + "probability": 0.9982 + }, + { + "start": 36631.4, + "end": 36633.2, + "probability": 0.8871 + }, + { + "start": 36633.52, + "end": 36633.64, + "probability": 0.0212 + }, + { + "start": 36633.64, + "end": 36633.86, + "probability": 0.1453 + }, + { + "start": 36634.38, + "end": 36636.66, + "probability": 0.7985 + }, + { + "start": 36637.52, + "end": 36638.24, + "probability": 0.8971 + }, + { + "start": 36638.62, + "end": 36640.46, + "probability": 0.599 + }, + { + "start": 36640.62, + "end": 36642.06, + "probability": 0.8817 + }, + { + "start": 36642.42, + "end": 36643.64, + "probability": 0.9751 + }, + { + "start": 36644.22, + "end": 36644.22, + "probability": 0.4091 + }, + { + "start": 36644.28, + "end": 36645.98, + "probability": 0.8787 + }, + { + "start": 36646.84, + "end": 36648.02, + "probability": 0.9659 + }, + { + "start": 36648.1, + "end": 36650.66, + "probability": 0.992 + }, + { + "start": 36650.88, + "end": 36652.28, + "probability": 0.9491 + }, + { + "start": 36652.3, + "end": 36653.96, + "probability": 0.7969 + }, + { + "start": 36654.46, + "end": 36655.3, + "probability": 0.9668 + }, + { + "start": 36655.9, + "end": 36656.54, + "probability": 0.7171 + }, + { + "start": 36656.6, + "end": 36657.08, + "probability": 0.6175 + }, + { + "start": 36657.56, + "end": 36660.28, + "probability": 0.9788 + }, + { + "start": 36660.68, + "end": 36662.62, + "probability": 0.9459 + }, + { + "start": 36663.56, + "end": 36665.56, + "probability": 0.9973 + }, + { + "start": 36666.12, + "end": 36668.68, + "probability": 0.9821 + }, + { + "start": 36669.96, + "end": 36670.54, + "probability": 0.649 + }, + { + "start": 36670.66, + "end": 36676.24, + "probability": 0.9927 + }, + { + "start": 36676.36, + "end": 36678.96, + "probability": 0.998 + }, + { + "start": 36679.48, + "end": 36680.94, + "probability": 0.9143 + }, + { + "start": 36682.06, + "end": 36683.3, + "probability": 0.7533 + }, + { + "start": 36683.68, + "end": 36685.72, + "probability": 0.9503 + }, + { + "start": 36685.92, + "end": 36689.41, + "probability": 0.9977 + }, + { + "start": 36689.5, + "end": 36691.56, + "probability": 0.9685 + }, + { + "start": 36691.66, + "end": 36693.84, + "probability": 0.7901 + }, + { + "start": 36694.48, + "end": 36695.26, + "probability": 0.8368 + }, + { + "start": 36695.36, + "end": 36695.64, + "probability": 0.7696 + }, + { + "start": 36695.86, + "end": 36698.32, + "probability": 0.9594 + }, + { + "start": 36699.38, + "end": 36701.48, + "probability": 0.9346 + }, + { + "start": 36702.06, + "end": 36702.3, + "probability": 0.7662 + }, + { + "start": 36702.44, + "end": 36705.98, + "probability": 0.9358 + }, + { + "start": 36706.42, + "end": 36708.44, + "probability": 0.9862 + }, + { + "start": 36708.66, + "end": 36711.74, + "probability": 0.9976 + }, + { + "start": 36711.78, + "end": 36712.88, + "probability": 0.7179 + }, + { + "start": 36713.28, + "end": 36714.5, + "probability": 0.6634 + }, + { + "start": 36714.58, + "end": 36715.02, + "probability": 0.5338 + }, + { + "start": 36715.1, + "end": 36717.6, + "probability": 0.7242 + }, + { + "start": 36717.98, + "end": 36718.24, + "probability": 0.6632 + }, + { + "start": 36718.36, + "end": 36718.56, + "probability": 0.3264 + }, + { + "start": 36718.84, + "end": 36719.72, + "probability": 0.7119 + }, + { + "start": 36720.02, + "end": 36720.24, + "probability": 0.9002 + }, + { + "start": 36721.42, + "end": 36723.6, + "probability": 0.7469 + }, + { + "start": 36724.48, + "end": 36724.76, + "probability": 0.2643 + }, + { + "start": 36725.08, + "end": 36725.69, + "probability": 0.7554 + }, + { + "start": 36726.28, + "end": 36729.94, + "probability": 0.9792 + }, + { + "start": 36730.88, + "end": 36731.1, + "probability": 0.6629 + }, + { + "start": 36732.04, + "end": 36732.26, + "probability": 0.7823 + }, + { + "start": 36732.38, + "end": 36733.22, + "probability": 0.677 + }, + { + "start": 36734.0, + "end": 36735.26, + "probability": 0.6917 + }, + { + "start": 36735.94, + "end": 36737.5, + "probability": 0.842 + }, + { + "start": 36738.14, + "end": 36740.48, + "probability": 0.7006 + }, + { + "start": 36740.54, + "end": 36741.96, + "probability": 0.9108 + }, + { + "start": 36742.32, + "end": 36744.35, + "probability": 0.9821 + }, + { + "start": 36745.14, + "end": 36746.21, + "probability": 0.9345 + }, + { + "start": 36747.18, + "end": 36748.4, + "probability": 0.7865 + }, + { + "start": 36748.48, + "end": 36749.06, + "probability": 0.675 + }, + { + "start": 36749.1, + "end": 36749.3, + "probability": 0.7583 + }, + { + "start": 36749.42, + "end": 36749.52, + "probability": 0.691 + }, + { + "start": 36749.94, + "end": 36750.3, + "probability": 0.8995 + }, + { + "start": 36750.38, + "end": 36753.76, + "probability": 0.9126 + }, + { + "start": 36754.28, + "end": 36754.78, + "probability": 0.7278 + }, + { + "start": 36755.34, + "end": 36757.34, + "probability": 0.8724 + }, + { + "start": 36757.52, + "end": 36759.36, + "probability": 0.9272 + }, + { + "start": 36759.76, + "end": 36761.14, + "probability": 0.9497 + }, + { + "start": 36761.92, + "end": 36764.4, + "probability": 0.736 + }, + { + "start": 36764.48, + "end": 36767.02, + "probability": 0.8724 + }, + { + "start": 36767.7, + "end": 36771.98, + "probability": 0.9591 + }, + { + "start": 36772.84, + "end": 36773.38, + "probability": 0.973 + }, + { + "start": 36774.1, + "end": 36775.3, + "probability": 0.9984 + }, + { + "start": 36775.92, + "end": 36777.66, + "probability": 0.9932 + }, + { + "start": 36778.34, + "end": 36781.86, + "probability": 0.9568 + }, + { + "start": 36782.62, + "end": 36783.12, + "probability": 0.8156 + }, + { + "start": 36784.2, + "end": 36785.2, + "probability": 0.749 + }, + { + "start": 36785.76, + "end": 36786.3, + "probability": 0.9465 + }, + { + "start": 36787.34, + "end": 36788.88, + "probability": 0.9707 + }, + { + "start": 36789.78, + "end": 36791.54, + "probability": 0.9913 + }, + { + "start": 36792.24, + "end": 36793.04, + "probability": 0.9818 + }, + { + "start": 36793.62, + "end": 36794.88, + "probability": 0.8534 + }, + { + "start": 36794.98, + "end": 36798.84, + "probability": 0.9952 + }, + { + "start": 36799.36, + "end": 36801.1, + "probability": 0.9963 + }, + { + "start": 36801.56, + "end": 36802.4, + "probability": 0.9619 + }, + { + "start": 36802.62, + "end": 36806.3, + "probability": 0.9926 + }, + { + "start": 36807.88, + "end": 36808.4, + "probability": 0.7403 + }, + { + "start": 36810.04, + "end": 36812.46, + "probability": 0.996 + }, + { + "start": 36813.58, + "end": 36814.0, + "probability": 0.8757 + }, + { + "start": 36814.04, + "end": 36815.9, + "probability": 0.8843 + }, + { + "start": 36815.98, + "end": 36817.02, + "probability": 0.95 + }, + { + "start": 36817.36, + "end": 36822.66, + "probability": 0.9784 + }, + { + "start": 36823.02, + "end": 36823.02, + "probability": 0.2617 + }, + { + "start": 36823.02, + "end": 36823.02, + "probability": 0.1138 + }, + { + "start": 36823.02, + "end": 36824.54, + "probability": 0.5063 + }, + { + "start": 36826.1, + "end": 36827.29, + "probability": 0.9883 + }, + { + "start": 36827.78, + "end": 36829.32, + "probability": 0.9434 + }, + { + "start": 36830.02, + "end": 36831.1, + "probability": 0.8759 + }, + { + "start": 36832.1, + "end": 36832.54, + "probability": 0.6351 + }, + { + "start": 36833.3, + "end": 36834.96, + "probability": 0.9891 + }, + { + "start": 36836.39, + "end": 36838.08, + "probability": 0.9998 + }, + { + "start": 36838.72, + "end": 36842.14, + "probability": 0.9981 + }, + { + "start": 36842.34, + "end": 36844.22, + "probability": 0.9819 + }, + { + "start": 36844.8, + "end": 36845.18, + "probability": 0.9112 + }, + { + "start": 36846.02, + "end": 36847.6, + "probability": 0.9954 + }, + { + "start": 36848.0, + "end": 36849.65, + "probability": 0.669 + }, + { + "start": 36850.5, + "end": 36853.72, + "probability": 0.9939 + }, + { + "start": 36854.12, + "end": 36855.28, + "probability": 0.9103 + }, + { + "start": 36856.02, + "end": 36858.34, + "probability": 0.9274 + }, + { + "start": 36859.8, + "end": 36861.08, + "probability": 0.9963 + }, + { + "start": 36862.8, + "end": 36865.76, + "probability": 0.98 + }, + { + "start": 36866.3, + "end": 36866.54, + "probability": 0.9336 + }, + { + "start": 36866.65, + "end": 36869.34, + "probability": 0.9941 + }, + { + "start": 36869.8, + "end": 36870.8, + "probability": 0.6745 + }, + { + "start": 36871.38, + "end": 36872.78, + "probability": 0.9961 + }, + { + "start": 36873.42, + "end": 36875.26, + "probability": 0.959 + }, + { + "start": 36875.26, + "end": 36878.1, + "probability": 0.9925 + }, + { + "start": 36878.54, + "end": 36878.9, + "probability": 0.7085 + }, + { + "start": 36879.08, + "end": 36881.28, + "probability": 0.9944 + }, + { + "start": 36881.44, + "end": 36884.66, + "probability": 0.9215 + }, + { + "start": 36884.74, + "end": 36886.94, + "probability": 0.8252 + }, + { + "start": 36888.08, + "end": 36888.48, + "probability": 0.8287 + }, + { + "start": 36888.54, + "end": 36890.2, + "probability": 0.9904 + }, + { + "start": 36890.3, + "end": 36891.7, + "probability": 0.8804 + }, + { + "start": 36891.84, + "end": 36892.59, + "probability": 0.9836 + }, + { + "start": 36893.54, + "end": 36897.78, + "probability": 0.9413 + }, + { + "start": 36898.24, + "end": 36899.06, + "probability": 0.6678 + }, + { + "start": 36899.88, + "end": 36901.82, + "probability": 0.8653 + }, + { + "start": 36902.12, + "end": 36903.52, + "probability": 0.9543 + }, + { + "start": 36904.44, + "end": 36906.0, + "probability": 0.9893 + }, + { + "start": 36906.54, + "end": 36907.52, + "probability": 0.8483 + }, + { + "start": 36908.04, + "end": 36909.7, + "probability": 0.9615 + }, + { + "start": 36910.14, + "end": 36911.7, + "probability": 0.9984 + }, + { + "start": 36912.22, + "end": 36912.44, + "probability": 0.6128 + }, + { + "start": 36913.4, + "end": 36914.38, + "probability": 0.8368 + }, + { + "start": 36915.16, + "end": 36915.64, + "probability": 0.8085 + }, + { + "start": 36916.44, + "end": 36918.66, + "probability": 0.9978 + }, + { + "start": 36919.2, + "end": 36922.04, + "probability": 0.7498 + }, + { + "start": 36922.08, + "end": 36922.98, + "probability": 0.9599 + }, + { + "start": 36923.56, + "end": 36926.22, + "probability": 0.9734 + }, + { + "start": 36926.3, + "end": 36927.24, + "probability": 0.9985 + }, + { + "start": 36927.94, + "end": 36928.08, + "probability": 0.4526 + }, + { + "start": 36928.22, + "end": 36929.1, + "probability": 0.9133 + }, + { + "start": 36929.22, + "end": 36929.62, + "probability": 0.8303 + }, + { + "start": 36929.7, + "end": 36931.54, + "probability": 0.9817 + }, + { + "start": 36931.54, + "end": 36933.26, + "probability": 0.9842 + }, + { + "start": 36934.0, + "end": 36934.68, + "probability": 0.9382 + }, + { + "start": 36934.78, + "end": 36936.96, + "probability": 0.9644 + }, + { + "start": 36937.32, + "end": 36938.8, + "probability": 0.9851 + }, + { + "start": 36939.2, + "end": 36941.58, + "probability": 0.9989 + }, + { + "start": 36941.94, + "end": 36942.54, + "probability": 0.7574 + }, + { + "start": 36943.4, + "end": 36946.88, + "probability": 0.9829 + }, + { + "start": 36947.34, + "end": 36948.74, + "probability": 0.9404 + }, + { + "start": 36949.54, + "end": 36951.34, + "probability": 0.9954 + }, + { + "start": 36951.34, + "end": 36953.04, + "probability": 0.7949 + }, + { + "start": 36953.46, + "end": 36954.16, + "probability": 0.6348 + }, + { + "start": 36954.54, + "end": 36955.81, + "probability": 0.8773 + }, + { + "start": 36955.94, + "end": 36959.43, + "probability": 0.9731 + }, + { + "start": 36962.17, + "end": 36962.76, + "probability": 0.9736 + }, + { + "start": 36963.58, + "end": 36964.78, + "probability": 0.9863 + }, + { + "start": 36965.82, + "end": 36966.3, + "probability": 0.8731 + }, + { + "start": 36966.42, + "end": 36969.4, + "probability": 0.9572 + }, + { + "start": 36970.06, + "end": 36973.16, + "probability": 0.9954 + }, + { + "start": 36974.48, + "end": 36976.64, + "probability": 0.9323 + }, + { + "start": 36977.24, + "end": 36978.06, + "probability": 0.9954 + }, + { + "start": 36978.9, + "end": 36983.26, + "probability": 0.9866 + }, + { + "start": 36983.32, + "end": 36984.17, + "probability": 0.9939 + }, + { + "start": 36984.86, + "end": 36987.74, + "probability": 0.9902 + }, + { + "start": 36987.8, + "end": 36990.32, + "probability": 0.9547 + }, + { + "start": 36991.52, + "end": 36995.64, + "probability": 0.9683 + }, + { + "start": 36996.22, + "end": 36999.7, + "probability": 0.9177 + }, + { + "start": 37000.3, + "end": 37000.56, + "probability": 0.3358 + }, + { + "start": 37001.0, + "end": 37002.44, + "probability": 0.8354 + }, + { + "start": 37002.44, + "end": 37004.6, + "probability": 0.55 + }, + { + "start": 37004.78, + "end": 37007.12, + "probability": 0.5934 + }, + { + "start": 37007.2, + "end": 37009.64, + "probability": 0.8304 + }, + { + "start": 37009.78, + "end": 37010.32, + "probability": 0.8168 + }, + { + "start": 37011.12, + "end": 37013.54, + "probability": 0.8635 + }, + { + "start": 37014.24, + "end": 37015.68, + "probability": 0.8659 + }, + { + "start": 37016.66, + "end": 37018.92, + "probability": 0.9716 + }, + { + "start": 37019.24, + "end": 37020.1, + "probability": 0.8714 + }, + { + "start": 37020.3, + "end": 37021.5, + "probability": 0.9937 + }, + { + "start": 37022.6, + "end": 37023.4, + "probability": 0.9781 + }, + { + "start": 37024.06, + "end": 37024.88, + "probability": 0.9955 + }, + { + "start": 37025.42, + "end": 37025.94, + "probability": 0.8638 + }, + { + "start": 37026.92, + "end": 37029.34, + "probability": 0.9861 + }, + { + "start": 37029.34, + "end": 37033.04, + "probability": 0.9988 + }, + { + "start": 37034.6, + "end": 37036.34, + "probability": 0.9917 + }, + { + "start": 37036.44, + "end": 37037.57, + "probability": 0.7585 + }, + { + "start": 37037.66, + "end": 37038.3, + "probability": 0.9105 + }, + { + "start": 37038.96, + "end": 37041.6, + "probability": 0.876 + }, + { + "start": 37041.96, + "end": 37042.64, + "probability": 0.8944 + }, + { + "start": 37043.16, + "end": 37044.78, + "probability": 0.9961 + }, + { + "start": 37044.8, + "end": 37045.96, + "probability": 0.9976 + }, + { + "start": 37047.0, + "end": 37048.66, + "probability": 0.9858 + }, + { + "start": 37049.14, + "end": 37050.54, + "probability": 0.9856 + }, + { + "start": 37050.66, + "end": 37051.78, + "probability": 0.956 + }, + { + "start": 37052.66, + "end": 37054.98, + "probability": 0.8841 + }, + { + "start": 37055.48, + "end": 37057.72, + "probability": 0.7832 + }, + { + "start": 37057.78, + "end": 37058.96, + "probability": 0.9161 + }, + { + "start": 37059.64, + "end": 37060.9, + "probability": 0.8621 + }, + { + "start": 37061.1, + "end": 37061.5, + "probability": 0.8908 + }, + { + "start": 37061.76, + "end": 37064.42, + "probability": 0.8999 + }, + { + "start": 37065.36, + "end": 37065.88, + "probability": 0.5322 + }, + { + "start": 37065.88, + "end": 37066.92, + "probability": 0.6425 + }, + { + "start": 37066.92, + "end": 37068.38, + "probability": 0.9334 + }, + { + "start": 37068.74, + "end": 37070.25, + "probability": 0.5025 + }, + { + "start": 37076.84, + "end": 37079.38, + "probability": 0.588 + }, + { + "start": 37079.72, + "end": 37083.36, + "probability": 0.9175 + }, + { + "start": 37083.46, + "end": 37084.1, + "probability": 0.8029 + }, + { + "start": 37084.62, + "end": 37087.48, + "probability": 0.994 + }, + { + "start": 37087.84, + "end": 37088.54, + "probability": 0.9015 + }, + { + "start": 37088.9, + "end": 37090.28, + "probability": 0.6369 + }, + { + "start": 37090.68, + "end": 37096.36, + "probability": 0.961 + }, + { + "start": 37096.66, + "end": 37101.34, + "probability": 0.7503 + }, + { + "start": 37101.76, + "end": 37102.02, + "probability": 0.5151 + }, + { + "start": 37102.06, + "end": 37103.3, + "probability": 0.9882 + }, + { + "start": 37103.48, + "end": 37107.35, + "probability": 0.9794 + }, + { + "start": 37108.88, + "end": 37111.34, + "probability": 0.9805 + }, + { + "start": 37111.42, + "end": 37113.82, + "probability": 0.9888 + }, + { + "start": 37114.2, + "end": 37118.06, + "probability": 0.9976 + }, + { + "start": 37118.06, + "end": 37123.22, + "probability": 0.8604 + }, + { + "start": 37124.2, + "end": 37126.24, + "probability": 0.9077 + }, + { + "start": 37128.77, + "end": 37134.16, + "probability": 0.9897 + }, + { + "start": 37134.2, + "end": 37137.76, + "probability": 0.8986 + }, + { + "start": 37137.96, + "end": 37137.98, + "probability": 0.0014 + }, + { + "start": 37137.98, + "end": 37139.12, + "probability": 0.9125 + }, + { + "start": 37139.22, + "end": 37139.6, + "probability": 0.7429 + }, + { + "start": 37139.66, + "end": 37142.42, + "probability": 0.8958 + }, + { + "start": 37142.56, + "end": 37143.76, + "probability": 0.9102 + }, + { + "start": 37144.86, + "end": 37147.12, + "probability": 0.9905 + }, + { + "start": 37147.34, + "end": 37147.5, + "probability": 0.8875 + }, + { + "start": 37147.54, + "end": 37152.12, + "probability": 0.9727 + }, + { + "start": 37152.88, + "end": 37153.94, + "probability": 0.5844 + }, + { + "start": 37154.1, + "end": 37155.08, + "probability": 0.8057 + }, + { + "start": 37155.4, + "end": 37158.28, + "probability": 0.9847 + }, + { + "start": 37159.16, + "end": 37165.34, + "probability": 0.9961 + }, + { + "start": 37166.34, + "end": 37171.02, + "probability": 0.9602 + }, + { + "start": 37172.02, + "end": 37173.68, + "probability": 0.9015 + }, + { + "start": 37173.72, + "end": 37176.9, + "probability": 0.8048 + }, + { + "start": 37177.72, + "end": 37184.72, + "probability": 0.9932 + }, + { + "start": 37186.04, + "end": 37191.98, + "probability": 0.9956 + }, + { + "start": 37192.04, + "end": 37193.02, + "probability": 0.7222 + }, + { + "start": 37193.22, + "end": 37196.04, + "probability": 0.9963 + }, + { + "start": 37196.88, + "end": 37200.06, + "probability": 0.8958 + }, + { + "start": 37201.24, + "end": 37203.12, + "probability": 0.9329 + }, + { + "start": 37203.18, + "end": 37206.94, + "probability": 0.995 + }, + { + "start": 37206.94, + "end": 37208.3, + "probability": 0.8786 + }, + { + "start": 37208.5, + "end": 37208.66, + "probability": 0.6907 + }, + { + "start": 37209.28, + "end": 37210.54, + "probability": 0.2333 + }, + { + "start": 37210.68, + "end": 37212.39, + "probability": 0.9831 + }, + { + "start": 37214.05, + "end": 37215.34, + "probability": 0.8054 + }, + { + "start": 37215.84, + "end": 37217.9, + "probability": 0.8455 + }, + { + "start": 37218.24, + "end": 37218.95, + "probability": 0.7148 + }, + { + "start": 37220.0, + "end": 37222.1, + "probability": 0.9821 + }, + { + "start": 37223.24, + "end": 37225.9, + "probability": 0.9023 + }, + { + "start": 37226.56, + "end": 37229.14, + "probability": 0.8757 + }, + { + "start": 37229.96, + "end": 37232.18, + "probability": 0.9886 + }, + { + "start": 37232.34, + "end": 37235.34, + "probability": 0.6857 + }, + { + "start": 37235.4, + "end": 37240.71, + "probability": 0.9666 + }, + { + "start": 37241.5, + "end": 37241.9, + "probability": 0.9591 + }, + { + "start": 37242.82, + "end": 37244.14, + "probability": 0.7927 + }, + { + "start": 37245.0, + "end": 37246.5, + "probability": 0.9915 + }, + { + "start": 37246.8, + "end": 37247.92, + "probability": 0.9257 + }, + { + "start": 37247.98, + "end": 37249.58, + "probability": 0.6178 + }, + { + "start": 37250.44, + "end": 37251.72, + "probability": 0.99 + }, + { + "start": 37252.64, + "end": 37253.14, + "probability": 0.875 + }, + { + "start": 37254.54, + "end": 37255.82, + "probability": 0.9973 + }, + { + "start": 37257.04, + "end": 37257.82, + "probability": 0.8951 + }, + { + "start": 37257.94, + "end": 37261.38, + "probability": 0.9973 + }, + { + "start": 37262.86, + "end": 37268.96, + "probability": 0.7791 + }, + { + "start": 37269.44, + "end": 37271.28, + "probability": 0.9421 + }, + { + "start": 37272.16, + "end": 37273.5, + "probability": 0.6686 + }, + { + "start": 37274.38, + "end": 37275.32, + "probability": 0.6595 + }, + { + "start": 37275.64, + "end": 37277.1, + "probability": 0.9199 + }, + { + "start": 37277.26, + "end": 37278.32, + "probability": 0.942 + }, + { + "start": 37278.46, + "end": 37278.6, + "probability": 0.4901 + }, + { + "start": 37278.92, + "end": 37280.45, + "probability": 0.9787 + }, + { + "start": 37281.18, + "end": 37282.38, + "probability": 0.6351 + }, + { + "start": 37282.48, + "end": 37283.48, + "probability": 0.9952 + }, + { + "start": 37283.76, + "end": 37285.78, + "probability": 0.9043 + }, + { + "start": 37285.92, + "end": 37286.84, + "probability": 0.9623 + }, + { + "start": 37287.08, + "end": 37289.4, + "probability": 0.9976 + }, + { + "start": 37289.4, + "end": 37292.58, + "probability": 0.9976 + }, + { + "start": 37294.58, + "end": 37296.0, + "probability": 0.9741 + }, + { + "start": 37296.26, + "end": 37300.14, + "probability": 0.9312 + }, + { + "start": 37300.84, + "end": 37301.62, + "probability": 0.9328 + }, + { + "start": 37301.72, + "end": 37302.52, + "probability": 0.7778 + }, + { + "start": 37302.82, + "end": 37304.0, + "probability": 0.9945 + }, + { + "start": 37305.06, + "end": 37309.24, + "probability": 0.9058 + }, + { + "start": 37309.32, + "end": 37309.64, + "probability": 0.7974 + }, + { + "start": 37310.57, + "end": 37313.71, + "probability": 0.4494 + }, + { + "start": 37314.94, + "end": 37315.52, + "probability": 0.9615 + }, + { + "start": 37315.64, + "end": 37318.92, + "probability": 0.9921 + }, + { + "start": 37319.26, + "end": 37319.56, + "probability": 0.8022 + }, + { + "start": 37320.06, + "end": 37322.1, + "probability": 0.8337 + }, + { + "start": 37322.26, + "end": 37325.32, + "probability": 0.9935 + }, + { + "start": 37326.18, + "end": 37329.02, + "probability": 0.997 + }, + { + "start": 37329.56, + "end": 37333.0, + "probability": 0.9775 + }, + { + "start": 37333.3, + "end": 37335.62, + "probability": 0.9197 + }, + { + "start": 37336.24, + "end": 37336.88, + "probability": 0.6168 + }, + { + "start": 37336.98, + "end": 37340.0, + "probability": 0.9972 + }, + { + "start": 37342.08, + "end": 37343.18, + "probability": 0.8284 + }, + { + "start": 37343.74, + "end": 37344.6, + "probability": 0.9203 + }, + { + "start": 37345.06, + "end": 37347.4, + "probability": 0.9851 + }, + { + "start": 37348.1, + "end": 37348.8, + "probability": 0.99 + }, + { + "start": 37349.46, + "end": 37350.8, + "probability": 0.9224 + }, + { + "start": 37351.5, + "end": 37352.98, + "probability": 0.8989 + }, + { + "start": 37354.18, + "end": 37354.78, + "probability": 0.9966 + }, + { + "start": 37358.26, + "end": 37358.7, + "probability": 0.9904 + }, + { + "start": 37359.46, + "end": 37362.96, + "probability": 0.9982 + }, + { + "start": 37363.48, + "end": 37364.64, + "probability": 0.8249 + }, + { + "start": 37365.98, + "end": 37368.74, + "probability": 0.658 + }, + { + "start": 37369.3, + "end": 37370.06, + "probability": 0.939 + }, + { + "start": 37371.2, + "end": 37372.34, + "probability": 0.6231 + }, + { + "start": 37373.02, + "end": 37374.62, + "probability": 0.5908 + }, + { + "start": 37375.36, + "end": 37376.62, + "probability": 0.7492 + }, + { + "start": 37377.52, + "end": 37378.74, + "probability": 0.8463 + }, + { + "start": 37379.56, + "end": 37381.82, + "probability": 0.7729 + }, + { + "start": 37382.68, + "end": 37383.58, + "probability": 0.9565 + }, + { + "start": 37384.86, + "end": 37385.94, + "probability": 0.9982 + }, + { + "start": 37386.84, + "end": 37387.92, + "probability": 0.6489 + }, + { + "start": 37388.96, + "end": 37390.32, + "probability": 0.9883 + }, + { + "start": 37391.02, + "end": 37392.56, + "probability": 0.768 + }, + { + "start": 37392.7, + "end": 37394.34, + "probability": 0.9577 + }, + { + "start": 37394.86, + "end": 37395.44, + "probability": 0.7578 + }, + { + "start": 37396.36, + "end": 37397.0, + "probability": 0.8788 + }, + { + "start": 37397.18, + "end": 37397.3, + "probability": 0.8948 + }, + { + "start": 37398.3, + "end": 37399.12, + "probability": 0.9824 + }, + { + "start": 37400.3, + "end": 37401.07, + "probability": 0.7681 + }, + { + "start": 37402.7, + "end": 37404.49, + "probability": 0.9084 + }, + { + "start": 37404.66, + "end": 37404.94, + "probability": 0.4661 + }, + { + "start": 37405.02, + "end": 37408.28, + "probability": 0.9221 + }, + { + "start": 37409.04, + "end": 37409.34, + "probability": 0.5754 + }, + { + "start": 37409.88, + "end": 37412.62, + "probability": 0.9976 + }, + { + "start": 37413.18, + "end": 37414.1, + "probability": 0.7657 + }, + { + "start": 37414.68, + "end": 37415.8, + "probability": 0.9703 + }, + { + "start": 37416.46, + "end": 37417.04, + "probability": 0.9001 + }, + { + "start": 37417.78, + "end": 37418.46, + "probability": 0.9855 + }, + { + "start": 37418.6, + "end": 37422.06, + "probability": 0.9812 + }, + { + "start": 37422.5, + "end": 37423.66, + "probability": 0.9141 + }, + { + "start": 37423.9, + "end": 37425.28, + "probability": 0.6809 + }, + { + "start": 37426.05, + "end": 37428.2, + "probability": 0.9738 + }, + { + "start": 37428.3, + "end": 37429.62, + "probability": 0.9868 + }, + { + "start": 37429.84, + "end": 37431.06, + "probability": 0.5317 + }, + { + "start": 37431.16, + "end": 37433.58, + "probability": 0.6213 + }, + { + "start": 37434.36, + "end": 37434.38, + "probability": 0.1552 + }, + { + "start": 37434.38, + "end": 37434.74, + "probability": 0.3926 + }, + { + "start": 37434.82, + "end": 37435.28, + "probability": 0.829 + }, + { + "start": 37435.38, + "end": 37438.26, + "probability": 0.8174 + }, + { + "start": 37438.42, + "end": 37439.46, + "probability": 0.7847 + }, + { + "start": 37439.58, + "end": 37443.96, + "probability": 0.5055 + }, + { + "start": 37444.0, + "end": 37444.58, + "probability": 0.8504 + }, + { + "start": 37445.18, + "end": 37445.88, + "probability": 0.9662 + }, + { + "start": 37446.52, + "end": 37448.3, + "probability": 0.6722 + }, + { + "start": 37448.6, + "end": 37449.82, + "probability": 0.6566 + }, + { + "start": 37449.84, + "end": 37450.8, + "probability": 0.7255 + }, + { + "start": 37450.8, + "end": 37451.28, + "probability": 0.6873 + }, + { + "start": 37451.4, + "end": 37451.75, + "probability": 0.4112 + }, + { + "start": 37452.22, + "end": 37458.16, + "probability": 0.9629 + }, + { + "start": 37458.62, + "end": 37461.0, + "probability": 0.9613 + }, + { + "start": 37461.08, + "end": 37461.82, + "probability": 0.5937 + }, + { + "start": 37462.58, + "end": 37463.2, + "probability": 0.4568 + }, + { + "start": 37463.24, + "end": 37464.16, + "probability": 0.9771 + }, + { + "start": 37464.8, + "end": 37465.84, + "probability": 0.931 + }, + { + "start": 37466.54, + "end": 37469.24, + "probability": 0.9885 + }, + { + "start": 37469.36, + "end": 37472.6, + "probability": 0.7678 + }, + { + "start": 37473.42, + "end": 37474.88, + "probability": 0.5894 + }, + { + "start": 37475.52, + "end": 37478.34, + "probability": 0.9893 + }, + { + "start": 37479.22, + "end": 37479.48, + "probability": 0.8635 + }, + { + "start": 37480.04, + "end": 37480.44, + "probability": 0.9795 + }, + { + "start": 37481.14, + "end": 37481.96, + "probability": 0.8374 + }, + { + "start": 37482.06, + "end": 37483.24, + "probability": 0.7146 + }, + { + "start": 37483.3, + "end": 37483.8, + "probability": 0.4278 + }, + { + "start": 37483.82, + "end": 37487.78, + "probability": 0.1997 + }, + { + "start": 37488.38, + "end": 37488.8, + "probability": 0.2059 + }, + { + "start": 37489.64, + "end": 37490.72, + "probability": 0.8314 + }, + { + "start": 37491.26, + "end": 37493.22, + "probability": 0.9689 + }, + { + "start": 37494.08, + "end": 37494.18, + "probability": 0.4824 + }, + { + "start": 37495.06, + "end": 37495.74, + "probability": 0.9252 + }, + { + "start": 37496.98, + "end": 37497.54, + "probability": 0.9259 + }, + { + "start": 37498.28, + "end": 37501.76, + "probability": 0.9523 + }, + { + "start": 37502.48, + "end": 37503.72, + "probability": 0.5189 + }, + { + "start": 37504.4, + "end": 37505.44, + "probability": 0.8599 + }, + { + "start": 37505.8, + "end": 37506.46, + "probability": 0.6621 + }, + { + "start": 37506.5, + "end": 37507.82, + "probability": 0.8289 + }, + { + "start": 37508.04, + "end": 37509.66, + "probability": 0.9818 + }, + { + "start": 37510.22, + "end": 37513.1, + "probability": 0.5001 + }, + { + "start": 37513.42, + "end": 37517.54, + "probability": 0.9775 + }, + { + "start": 37518.12, + "end": 37519.68, + "probability": 0.8679 + }, + { + "start": 37519.7, + "end": 37521.2, + "probability": 0.9025 + }, + { + "start": 37522.32, + "end": 37524.12, + "probability": 0.821 + }, + { + "start": 37524.2, + "end": 37525.28, + "probability": 0.9818 + }, + { + "start": 37526.32, + "end": 37527.88, + "probability": 0.9964 + }, + { + "start": 37527.94, + "end": 37531.0, + "probability": 0.925 + }, + { + "start": 37531.6, + "end": 37534.8, + "probability": 0.9111 + }, + { + "start": 37535.44, + "end": 37537.1, + "probability": 0.9708 + }, + { + "start": 37537.82, + "end": 37538.42, + "probability": 0.9398 + }, + { + "start": 37538.74, + "end": 37539.48, + "probability": 0.7989 + }, + { + "start": 37539.92, + "end": 37541.91, + "probability": 0.9775 + }, + { + "start": 37542.4, + "end": 37545.26, + "probability": 0.5574 + }, + { + "start": 37545.26, + "end": 37548.88, + "probability": 0.9484 + }, + { + "start": 37549.96, + "end": 37550.94, + "probability": 0.7509 + }, + { + "start": 37551.68, + "end": 37554.18, + "probability": 0.9194 + }, + { + "start": 37554.74, + "end": 37555.76, + "probability": 0.998 + }, + { + "start": 37556.22, + "end": 37558.24, + "probability": 0.949 + }, + { + "start": 37559.22, + "end": 37559.5, + "probability": 0.835 + }, + { + "start": 37559.54, + "end": 37561.54, + "probability": 0.9902 + }, + { + "start": 37561.76, + "end": 37562.9, + "probability": 0.9012 + }, + { + "start": 37563.64, + "end": 37563.92, + "probability": 0.7598 + }, + { + "start": 37564.52, + "end": 37566.12, + "probability": 0.9821 + }, + { + "start": 37567.32, + "end": 37569.21, + "probability": 0.5248 + }, + { + "start": 37569.42, + "end": 37573.24, + "probability": 0.6013 + }, + { + "start": 37573.86, + "end": 37577.52, + "probability": 0.8102 + }, + { + "start": 37578.38, + "end": 37579.8, + "probability": 0.9379 + }, + { + "start": 37579.96, + "end": 37580.49, + "probability": 0.6005 + }, + { + "start": 37590.12, + "end": 37591.06, + "probability": 0.3592 + }, + { + "start": 37591.26, + "end": 37592.26, + "probability": 0.4825 + }, + { + "start": 37592.4, + "end": 37593.02, + "probability": 0.813 + }, + { + "start": 37593.16, + "end": 37594.4, + "probability": 0.9503 + }, + { + "start": 37595.36, + "end": 37597.66, + "probability": 0.8691 + }, + { + "start": 37601.72, + "end": 37602.88, + "probability": 0.816 + }, + { + "start": 37602.9, + "end": 37603.92, + "probability": 0.6908 + }, + { + "start": 37605.38, + "end": 37610.0, + "probability": 0.9788 + }, + { + "start": 37610.58, + "end": 37612.02, + "probability": 0.7953 + }, + { + "start": 37612.76, + "end": 37613.84, + "probability": 0.6029 + }, + { + "start": 37614.44, + "end": 37618.5, + "probability": 0.8994 + }, + { + "start": 37619.64, + "end": 37622.82, + "probability": 0.9705 + }, + { + "start": 37623.22, + "end": 37625.38, + "probability": 0.8894 + }, + { + "start": 37626.5, + "end": 37630.82, + "probability": 0.9557 + }, + { + "start": 37631.24, + "end": 37631.78, + "probability": 0.7887 + }, + { + "start": 37631.9, + "end": 37632.38, + "probability": 0.8615 + }, + { + "start": 37632.52, + "end": 37635.34, + "probability": 0.9827 + }, + { + "start": 37635.96, + "end": 37636.64, + "probability": 0.861 + }, + { + "start": 37637.68, + "end": 37638.36, + "probability": 0.6553 + }, + { + "start": 37638.58, + "end": 37640.42, + "probability": 0.9966 + }, + { + "start": 37640.96, + "end": 37641.88, + "probability": 0.8976 + }, + { + "start": 37642.44, + "end": 37644.52, + "probability": 0.7582 + }, + { + "start": 37644.68, + "end": 37646.08, + "probability": 0.73 + }, + { + "start": 37646.12, + "end": 37649.54, + "probability": 0.8432 + }, + { + "start": 37650.28, + "end": 37651.28, + "probability": 0.5565 + }, + { + "start": 37651.32, + "end": 37652.82, + "probability": 0.8925 + }, + { + "start": 37656.44, + "end": 37657.34, + "probability": 0.6688 + }, + { + "start": 37657.44, + "end": 37658.28, + "probability": 0.4448 + }, + { + "start": 37660.82, + "end": 37661.42, + "probability": 0.5778 + }, + { + "start": 37662.5, + "end": 37665.16, + "probability": 0.9573 + }, + { + "start": 37666.56, + "end": 37667.98, + "probability": 0.9429 + }, + { + "start": 37668.14, + "end": 37670.3, + "probability": 0.971 + }, + { + "start": 37671.18, + "end": 37673.16, + "probability": 0.9423 + }, + { + "start": 37673.24, + "end": 37673.86, + "probability": 0.8363 + }, + { + "start": 37673.9, + "end": 37674.76, + "probability": 0.8648 + }, + { + "start": 37675.44, + "end": 37677.4, + "probability": 0.9539 + }, + { + "start": 37678.48, + "end": 37681.12, + "probability": 0.864 + }, + { + "start": 37682.02, + "end": 37683.28, + "probability": 0.9971 + }, + { + "start": 37683.44, + "end": 37685.75, + "probability": 0.9878 + }, + { + "start": 37686.94, + "end": 37690.04, + "probability": 0.9792 + }, + { + "start": 37690.04, + "end": 37693.84, + "probability": 0.995 + }, + { + "start": 37694.36, + "end": 37697.06, + "probability": 0.9029 + }, + { + "start": 37697.28, + "end": 37697.42, + "probability": 0.6258 + }, + { + "start": 37697.44, + "end": 37697.82, + "probability": 0.853 + }, + { + "start": 37698.3, + "end": 37700.46, + "probability": 0.7549 + }, + { + "start": 37700.56, + "end": 37702.93, + "probability": 0.9446 + }, + { + "start": 37703.2, + "end": 37705.26, + "probability": 0.9907 + }, + { + "start": 37706.38, + "end": 37708.68, + "probability": 0.98 + }, + { + "start": 37708.98, + "end": 37710.42, + "probability": 0.7901 + }, + { + "start": 37710.54, + "end": 37712.92, + "probability": 0.9937 + }, + { + "start": 37713.18, + "end": 37713.78, + "probability": 0.967 + }, + { + "start": 37714.36, + "end": 37715.26, + "probability": 0.9875 + }, + { + "start": 37716.54, + "end": 37718.52, + "probability": 0.9818 + }, + { + "start": 37720.12, + "end": 37723.54, + "probability": 0.7504 + }, + { + "start": 37724.14, + "end": 37725.14, + "probability": 0.9951 + }, + { + "start": 37725.3, + "end": 37726.66, + "probability": 0.9981 + }, + { + "start": 37727.62, + "end": 37730.36, + "probability": 0.9678 + }, + { + "start": 37730.88, + "end": 37732.98, + "probability": 0.7318 + }, + { + "start": 37734.14, + "end": 37738.38, + "probability": 0.9811 + }, + { + "start": 37739.26, + "end": 37740.46, + "probability": 0.9036 + }, + { + "start": 37741.0, + "end": 37741.54, + "probability": 0.8408 + }, + { + "start": 37742.08, + "end": 37742.32, + "probability": 0.8552 + }, + { + "start": 37742.42, + "end": 37744.68, + "probability": 0.9836 + }, + { + "start": 37745.06, + "end": 37747.36, + "probability": 0.9932 + }, + { + "start": 37747.98, + "end": 37749.96, + "probability": 0.7484 + }, + { + "start": 37750.4, + "end": 37750.96, + "probability": 0.8787 + }, + { + "start": 37751.02, + "end": 37754.06, + "probability": 0.7749 + }, + { + "start": 37754.26, + "end": 37756.0, + "probability": 0.7383 + }, + { + "start": 37756.82, + "end": 37759.2, + "probability": 0.9683 + }, + { + "start": 37759.82, + "end": 37763.96, + "probability": 0.9716 + }, + { + "start": 37764.12, + "end": 37764.32, + "probability": 0.6797 + }, + { + "start": 37765.18, + "end": 37767.16, + "probability": 0.3157 + }, + { + "start": 37767.18, + "end": 37767.6, + "probability": 0.8671 + }, + { + "start": 37768.3, + "end": 37770.65, + "probability": 0.8284 + }, + { + "start": 37772.14, + "end": 37773.0, + "probability": 0.6279 + }, + { + "start": 37774.22, + "end": 37775.58, + "probability": 0.879 + }, + { + "start": 37775.68, + "end": 37776.28, + "probability": 0.9506 + }, + { + "start": 37781.66, + "end": 37783.16, + "probability": 0.9692 + }, + { + "start": 37783.3, + "end": 37785.22, + "probability": 0.9751 + }, + { + "start": 37785.38, + "end": 37786.98, + "probability": 0.3755 + }, + { + "start": 37786.98, + "end": 37787.94, + "probability": 0.998 + }, + { + "start": 37788.2, + "end": 37789.18, + "probability": 0.9756 + }, + { + "start": 37789.24, + "end": 37790.44, + "probability": 0.8085 + }, + { + "start": 37790.74, + "end": 37792.8, + "probability": 0.9118 + }, + { + "start": 37792.92, + "end": 37794.78, + "probability": 0.9756 + }, + { + "start": 37795.82, + "end": 37796.28, + "probability": 0.6766 + }, + { + "start": 37796.28, + "end": 37797.04, + "probability": 0.4973 + }, + { + "start": 37797.1, + "end": 37797.82, + "probability": 0.9893 + }, + { + "start": 37797.92, + "end": 37799.78, + "probability": 0.8467 + }, + { + "start": 37800.52, + "end": 37802.3, + "probability": 0.672 + }, + { + "start": 37802.88, + "end": 37803.94, + "probability": 0.9868 + }, + { + "start": 37804.68, + "end": 37804.84, + "probability": 0.8362 + }, + { + "start": 37804.98, + "end": 37808.6, + "probability": 0.9682 + }, + { + "start": 37809.12, + "end": 37811.96, + "probability": 0.6512 + }, + { + "start": 37812.68, + "end": 37815.38, + "probability": 0.7017 + }, + { + "start": 37815.46, + "end": 37816.02, + "probability": 0.6146 + }, + { + "start": 37816.12, + "end": 37818.04, + "probability": 0.733 + }, + { + "start": 37818.84, + "end": 37820.92, + "probability": 0.4998 + }, + { + "start": 37820.92, + "end": 37822.79, + "probability": 0.9868 + }, + { + "start": 37823.38, + "end": 37825.64, + "probability": 0.9305 + }, + { + "start": 37826.06, + "end": 37826.58, + "probability": 0.7776 + }, + { + "start": 37827.66, + "end": 37829.0, + "probability": 0.4327 + }, + { + "start": 37829.1, + "end": 37829.28, + "probability": 0.6959 + }, + { + "start": 37829.5, + "end": 37831.86, + "probability": 0.8005 + }, + { + "start": 37831.96, + "end": 37833.24, + "probability": 0.957 + }, + { + "start": 37833.8, + "end": 37835.22, + "probability": 0.8998 + }, + { + "start": 37835.48, + "end": 37835.68, + "probability": 0.3789 + }, + { + "start": 37835.76, + "end": 37837.64, + "probability": 0.9292 + }, + { + "start": 37838.3, + "end": 37842.16, + "probability": 0.9915 + }, + { + "start": 37843.06, + "end": 37845.2, + "probability": 0.97 + }, + { + "start": 37845.4, + "end": 37848.98, + "probability": 0.7661 + }, + { + "start": 37849.46, + "end": 37851.9, + "probability": 0.9888 + }, + { + "start": 37852.0, + "end": 37853.32, + "probability": 0.996 + }, + { + "start": 37853.42, + "end": 37854.0, + "probability": 0.9475 + }, + { + "start": 37854.38, + "end": 37856.7, + "probability": 0.9534 + }, + { + "start": 37857.2, + "end": 37859.48, + "probability": 0.8216 + }, + { + "start": 37859.9, + "end": 37862.03, + "probability": 0.9792 + }, + { + "start": 37862.56, + "end": 37865.05, + "probability": 0.871 + }, + { + "start": 37865.5, + "end": 37868.02, + "probability": 0.9337 + }, + { + "start": 37868.74, + "end": 37869.78, + "probability": 0.8708 + }, + { + "start": 37870.4, + "end": 37872.62, + "probability": 0.9966 + }, + { + "start": 37872.74, + "end": 37873.28, + "probability": 0.6411 + }, + { + "start": 37874.22, + "end": 37875.08, + "probability": 0.8993 + }, + { + "start": 37875.74, + "end": 37878.16, + "probability": 0.6944 + }, + { + "start": 37878.56, + "end": 37880.46, + "probability": 0.9644 + }, + { + "start": 37881.18, + "end": 37883.62, + "probability": 0.9862 + }, + { + "start": 37884.68, + "end": 37886.28, + "probability": 0.9948 + }, + { + "start": 37886.98, + "end": 37887.2, + "probability": 0.5044 + }, + { + "start": 37887.96, + "end": 37888.92, + "probability": 0.8091 + }, + { + "start": 37889.48, + "end": 37890.86, + "probability": 0.9927 + }, + { + "start": 37891.44, + "end": 37892.58, + "probability": 0.7298 + }, + { + "start": 37893.32, + "end": 37895.1, + "probability": 0.9574 + }, + { + "start": 37895.26, + "end": 37895.58, + "probability": 0.9438 + }, + { + "start": 37895.66, + "end": 37897.98, + "probability": 0.9704 + }, + { + "start": 37898.72, + "end": 37900.06, + "probability": 0.9588 + }, + { + "start": 37900.22, + "end": 37901.52, + "probability": 0.6469 + }, + { + "start": 37901.54, + "end": 37902.14, + "probability": 0.9022 + }, + { + "start": 37902.66, + "end": 37905.6, + "probability": 0.9966 + }, + { + "start": 37905.6, + "end": 37909.14, + "probability": 0.9878 + }, + { + "start": 37910.36, + "end": 37912.26, + "probability": 0.9823 + }, + { + "start": 37912.44, + "end": 37914.0, + "probability": 0.9318 + }, + { + "start": 37914.56, + "end": 37915.38, + "probability": 0.959 + }, + { + "start": 37916.92, + "end": 37917.52, + "probability": 0.6601 + }, + { + "start": 37919.76, + "end": 37921.38, + "probability": 0.6917 + }, + { + "start": 37921.6, + "end": 37922.46, + "probability": 0.5181 + }, + { + "start": 37922.58, + "end": 37924.88, + "probability": 0.924 + }, + { + "start": 37925.12, + "end": 37926.17, + "probability": 0.8912 + }, + { + "start": 37927.0, + "end": 37928.12, + "probability": 0.7294 + }, + { + "start": 37928.32, + "end": 37929.9, + "probability": 0.7097 + }, + { + "start": 37931.72, + "end": 37934.0, + "probability": 0.9915 + }, + { + "start": 37934.96, + "end": 37936.92, + "probability": 0.9978 + }, + { + "start": 37938.12, + "end": 37938.58, + "probability": 0.7982 + }, + { + "start": 37940.26, + "end": 37941.02, + "probability": 0.8655 + }, + { + "start": 37941.8, + "end": 37943.52, + "probability": 0.9038 + }, + { + "start": 37944.08, + "end": 37944.56, + "probability": 0.8412 + }, + { + "start": 37944.74, + "end": 37946.1, + "probability": 0.9691 + }, + { + "start": 37946.84, + "end": 37950.56, + "probability": 0.6379 + }, + { + "start": 37951.72, + "end": 37954.28, + "probability": 0.8668 + }, + { + "start": 37971.78, + "end": 37972.24, + "probability": 0.3997 + }, + { + "start": 37972.32, + "end": 37975.5, + "probability": 0.6836 + }, + { + "start": 37977.24, + "end": 37978.46, + "probability": 0.9199 + }, + { + "start": 37979.6, + "end": 37982.9, + "probability": 0.9365 + }, + { + "start": 37983.34, + "end": 37988.22, + "probability": 0.9771 + }, + { + "start": 37988.42, + "end": 37992.16, + "probability": 0.9828 + }, + { + "start": 37992.54, + "end": 37993.88, + "probability": 0.8716 + }, + { + "start": 37993.94, + "end": 37996.1, + "probability": 0.9788 + }, + { + "start": 37997.3, + "end": 38003.46, + "probability": 0.4201 + }, + { + "start": 38003.46, + "end": 38005.54, + "probability": 0.4155 + }, + { + "start": 38006.42, + "end": 38007.84, + "probability": 0.6883 + }, + { + "start": 38008.88, + "end": 38011.68, + "probability": 0.9707 + }, + { + "start": 38011.68, + "end": 38015.28, + "probability": 0.9775 + }, + { + "start": 38016.0, + "end": 38017.24, + "probability": 0.552 + }, + { + "start": 38017.28, + "end": 38019.44, + "probability": 0.9907 + }, + { + "start": 38021.58, + "end": 38026.24, + "probability": 0.997 + }, + { + "start": 38027.7, + "end": 38028.32, + "probability": 0.8874 + }, + { + "start": 38028.74, + "end": 38029.24, + "probability": 0.929 + }, + { + "start": 38029.7, + "end": 38031.38, + "probability": 0.9755 + }, + { + "start": 38032.06, + "end": 38032.98, + "probability": 0.8675 + }, + { + "start": 38033.26, + "end": 38034.22, + "probability": 0.7882 + }, + { + "start": 38034.42, + "end": 38034.84, + "probability": 0.87 + }, + { + "start": 38035.44, + "end": 38037.12, + "probability": 0.9387 + }, + { + "start": 38037.98, + "end": 38039.6, + "probability": 0.607 + }, + { + "start": 38040.18, + "end": 38041.32, + "probability": 0.6984 + }, + { + "start": 38042.14, + "end": 38045.02, + "probability": 0.8247 + }, + { + "start": 38045.54, + "end": 38048.0, + "probability": 0.9412 + }, + { + "start": 38048.0, + "end": 38051.22, + "probability": 0.9109 + }, + { + "start": 38052.12, + "end": 38055.68, + "probability": 0.9713 + }, + { + "start": 38055.68, + "end": 38058.04, + "probability": 0.9476 + }, + { + "start": 38058.12, + "end": 38059.32, + "probability": 0.856 + }, + { + "start": 38059.46, + "end": 38060.06, + "probability": 0.8893 + }, + { + "start": 38060.24, + "end": 38060.86, + "probability": 0.6237 + }, + { + "start": 38061.7, + "end": 38063.88, + "probability": 0.9176 + }, + { + "start": 38064.4, + "end": 38064.74, + "probability": 0.7631 + }, + { + "start": 38065.98, + "end": 38068.76, + "probability": 0.9901 + }, + { + "start": 38068.76, + "end": 38071.94, + "probability": 0.9982 + }, + { + "start": 38072.6, + "end": 38074.66, + "probability": 0.9952 + }, + { + "start": 38075.26, + "end": 38078.14, + "probability": 0.9906 + }, + { + "start": 38078.8, + "end": 38081.5, + "probability": 0.8165 + }, + { + "start": 38082.38, + "end": 38086.92, + "probability": 0.7779 + }, + { + "start": 38087.54, + "end": 38089.92, + "probability": 0.971 + }, + { + "start": 38090.4, + "end": 38092.8, + "probability": 0.9971 + }, + { + "start": 38092.88, + "end": 38096.38, + "probability": 0.876 + }, + { + "start": 38097.02, + "end": 38097.82, + "probability": 0.95 + }, + { + "start": 38098.48, + "end": 38098.9, + "probability": 0.7679 + }, + { + "start": 38099.52, + "end": 38102.38, + "probability": 0.995 + }, + { + "start": 38103.46, + "end": 38107.6, + "probability": 0.9679 + }, + { + "start": 38110.58, + "end": 38111.16, + "probability": 0.9834 + }, + { + "start": 38111.88, + "end": 38114.14, + "probability": 0.8735 + }, + { + "start": 38114.72, + "end": 38118.28, + "probability": 0.9944 + }, + { + "start": 38118.28, + "end": 38122.52, + "probability": 0.9985 + }, + { + "start": 38123.08, + "end": 38125.38, + "probability": 0.853 + }, + { + "start": 38125.5, + "end": 38126.94, + "probability": 0.9022 + }, + { + "start": 38128.14, + "end": 38129.4, + "probability": 0.9265 + }, + { + "start": 38129.6, + "end": 38132.5, + "probability": 0.9159 + }, + { + "start": 38132.58, + "end": 38135.76, + "probability": 0.9349 + }, + { + "start": 38135.76, + "end": 38138.96, + "probability": 0.9932 + }, + { + "start": 38139.94, + "end": 38145.52, + "probability": 0.9979 + }, + { + "start": 38146.62, + "end": 38149.64, + "probability": 0.9909 + }, + { + "start": 38150.28, + "end": 38155.02, + "probability": 0.9824 + }, + { + "start": 38155.16, + "end": 38155.46, + "probability": 0.6403 + }, + { + "start": 38156.02, + "end": 38158.74, + "probability": 0.9883 + }, + { + "start": 38159.42, + "end": 38159.72, + "probability": 0.6366 + }, + { + "start": 38159.78, + "end": 38162.88, + "probability": 0.9397 + }, + { + "start": 38163.38, + "end": 38167.29, + "probability": 0.9659 + }, + { + "start": 38169.4, + "end": 38171.14, + "probability": 0.9541 + }, + { + "start": 38171.86, + "end": 38172.3, + "probability": 0.8513 + }, + { + "start": 38173.32, + "end": 38177.8, + "probability": 0.9912 + }, + { + "start": 38178.46, + "end": 38181.18, + "probability": 0.9804 + }, + { + "start": 38182.76, + "end": 38184.52, + "probability": 0.9889 + }, + { + "start": 38185.84, + "end": 38189.64, + "probability": 0.6802 + }, + { + "start": 38190.44, + "end": 38193.28, + "probability": 0.7769 + }, + { + "start": 38194.9, + "end": 38199.41, + "probability": 0.964 + }, + { + "start": 38200.34, + "end": 38202.88, + "probability": 0.9944 + }, + { + "start": 38202.88, + "end": 38206.08, + "probability": 0.9582 + }, + { + "start": 38206.48, + "end": 38211.38, + "probability": 0.9871 + }, + { + "start": 38212.3, + "end": 38214.3, + "probability": 0.993 + }, + { + "start": 38214.9, + "end": 38215.76, + "probability": 0.8322 + }, + { + "start": 38216.48, + "end": 38218.08, + "probability": 0.9894 + }, + { + "start": 38230.92, + "end": 38231.64, + "probability": 0.6221 + }, + { + "start": 38231.7, + "end": 38232.54, + "probability": 0.7774 + }, + { + "start": 38232.58, + "end": 38233.16, + "probability": 0.7885 + }, + { + "start": 38233.32, + "end": 38239.28, + "probability": 0.9788 + }, + { + "start": 38239.28, + "end": 38244.52, + "probability": 0.9803 + }, + { + "start": 38244.88, + "end": 38246.86, + "probability": 0.901 + }, + { + "start": 38246.96, + "end": 38248.88, + "probability": 0.8124 + }, + { + "start": 38249.66, + "end": 38251.62, + "probability": 0.9746 + }, + { + "start": 38251.68, + "end": 38254.04, + "probability": 0.9928 + }, + { + "start": 38254.14, + "end": 38256.07, + "probability": 0.9315 + }, + { + "start": 38256.86, + "end": 38262.08, + "probability": 0.968 + }, + { + "start": 38263.58, + "end": 38264.58, + "probability": 0.8086 + }, + { + "start": 38264.66, + "end": 38265.34, + "probability": 0.7844 + }, + { + "start": 38266.25, + "end": 38267.26, + "probability": 0.3652 + }, + { + "start": 38267.6, + "end": 38271.7, + "probability": 0.9935 + }, + { + "start": 38273.6, + "end": 38277.68, + "probability": 0.9882 + }, + { + "start": 38278.92, + "end": 38282.9, + "probability": 0.9928 + }, + { + "start": 38283.02, + "end": 38283.86, + "probability": 0.7964 + }, + { + "start": 38284.84, + "end": 38286.18, + "probability": 0.996 + }, + { + "start": 38287.08, + "end": 38288.14, + "probability": 0.8397 + }, + { + "start": 38288.62, + "end": 38290.85, + "probability": 0.999 + }, + { + "start": 38291.64, + "end": 38293.46, + "probability": 0.8511 + }, + { + "start": 38294.16, + "end": 38294.46, + "probability": 0.7033 + }, + { + "start": 38295.48, + "end": 38296.14, + "probability": 0.8379 + }, + { + "start": 38297.42, + "end": 38298.78, + "probability": 0.967 + }, + { + "start": 38299.86, + "end": 38303.44, + "probability": 0.9969 + }, + { + "start": 38305.12, + "end": 38308.5, + "probability": 0.9961 + }, + { + "start": 38308.5, + "end": 38313.0, + "probability": 0.9992 + }, + { + "start": 38313.14, + "end": 38313.36, + "probability": 0.3995 + }, + { + "start": 38313.8, + "end": 38316.18, + "probability": 0.9873 + }, + { + "start": 38316.18, + "end": 38321.16, + "probability": 0.9801 + }, + { + "start": 38322.42, + "end": 38323.42, + "probability": 0.9727 + }, + { + "start": 38323.5, + "end": 38324.8, + "probability": 0.973 + }, + { + "start": 38324.88, + "end": 38329.08, + "probability": 0.9885 + }, + { + "start": 38330.36, + "end": 38332.5, + "probability": 0.9721 + }, + { + "start": 38333.82, + "end": 38337.02, + "probability": 0.9942 + }, + { + "start": 38337.16, + "end": 38339.74, + "probability": 0.9819 + }, + { + "start": 38340.88, + "end": 38342.26, + "probability": 0.9886 + }, + { + "start": 38342.44, + "end": 38346.3, + "probability": 0.9785 + }, + { + "start": 38346.4, + "end": 38348.82, + "probability": 0.9957 + }, + { + "start": 38350.26, + "end": 38351.24, + "probability": 0.8867 + }, + { + "start": 38352.92, + "end": 38354.84, + "probability": 0.9067 + }, + { + "start": 38356.44, + "end": 38363.34, + "probability": 0.9538 + }, + { + "start": 38363.34, + "end": 38368.54, + "probability": 0.9882 + }, + { + "start": 38369.96, + "end": 38371.64, + "probability": 0.9841 + }, + { + "start": 38371.82, + "end": 38376.14, + "probability": 0.9902 + }, + { + "start": 38376.43, + "end": 38381.42, + "probability": 0.9965 + }, + { + "start": 38381.46, + "end": 38382.72, + "probability": 0.8489 + }, + { + "start": 38383.4, + "end": 38385.9, + "probability": 0.9981 + }, + { + "start": 38386.94, + "end": 38392.12, + "probability": 0.9897 + }, + { + "start": 38392.18, + "end": 38393.94, + "probability": 0.9974 + }, + { + "start": 38394.5, + "end": 38396.24, + "probability": 0.6422 + }, + { + "start": 38396.38, + "end": 38399.29, + "probability": 0.9929 + }, + { + "start": 38400.9, + "end": 38406.12, + "probability": 0.9521 + }, + { + "start": 38406.22, + "end": 38407.36, + "probability": 0.9009 + }, + { + "start": 38407.54, + "end": 38410.12, + "probability": 0.9976 + }, + { + "start": 38410.12, + "end": 38413.22, + "probability": 0.9819 + }, + { + "start": 38414.76, + "end": 38416.52, + "probability": 0.934 + }, + { + "start": 38416.52, + "end": 38419.78, + "probability": 0.9932 + }, + { + "start": 38420.26, + "end": 38421.26, + "probability": 0.6536 + }, + { + "start": 38422.36, + "end": 38427.54, + "probability": 0.8333 + }, + { + "start": 38428.9, + "end": 38429.08, + "probability": 0.8334 + }, + { + "start": 38429.12, + "end": 38431.84, + "probability": 0.9546 + }, + { + "start": 38431.84, + "end": 38435.48, + "probability": 0.9346 + }, + { + "start": 38436.2, + "end": 38442.02, + "probability": 0.9809 + }, + { + "start": 38442.9, + "end": 38446.34, + "probability": 0.8456 + }, + { + "start": 38446.58, + "end": 38451.64, + "probability": 0.8029 + }, + { + "start": 38452.12, + "end": 38454.08, + "probability": 0.9466 + }, + { + "start": 38454.48, + "end": 38458.34, + "probability": 0.9937 + }, + { + "start": 38459.14, + "end": 38461.6, + "probability": 0.8347 + }, + { + "start": 38462.34, + "end": 38470.96, + "probability": 0.987 + }, + { + "start": 38471.02, + "end": 38471.92, + "probability": 0.5138 + }, + { + "start": 38472.46, + "end": 38473.5, + "probability": 0.9476 + }, + { + "start": 38473.64, + "end": 38473.88, + "probability": 0.8676 + }, + { + "start": 38474.12, + "end": 38475.8, + "probability": 0.9214 + }, + { + "start": 38476.24, + "end": 38479.63, + "probability": 0.9883 + }, + { + "start": 38480.78, + "end": 38480.96, + "probability": 0.9557 + }, + { + "start": 38481.02, + "end": 38481.72, + "probability": 0.7021 + }, + { + "start": 38483.14, + "end": 38486.78, + "probability": 0.9906 + }, + { + "start": 38487.0, + "end": 38488.46, + "probability": 0.7904 + }, + { + "start": 38488.68, + "end": 38491.0, + "probability": 0.9934 + }, + { + "start": 38491.0, + "end": 38493.2, + "probability": 0.9971 + }, + { + "start": 38493.86, + "end": 38501.98, + "probability": 0.998 + }, + { + "start": 38502.38, + "end": 38503.36, + "probability": 0.9358 + }, + { + "start": 38503.74, + "end": 38509.54, + "probability": 0.9482 + }, + { + "start": 38509.76, + "end": 38510.84, + "probability": 0.8626 + }, + { + "start": 38511.44, + "end": 38513.52, + "probability": 0.8125 + }, + { + "start": 38513.62, + "end": 38516.54, + "probability": 0.8762 + }, + { + "start": 38516.68, + "end": 38518.02, + "probability": 0.9578 + }, + { + "start": 38519.02, + "end": 38523.54, + "probability": 0.9899 + }, + { + "start": 38524.3, + "end": 38525.69, + "probability": 0.7648 + }, + { + "start": 38525.88, + "end": 38527.74, + "probability": 0.9861 + }, + { + "start": 38527.9, + "end": 38528.76, + "probability": 0.8417 + }, + { + "start": 38530.56, + "end": 38532.96, + "probability": 0.9238 + }, + { + "start": 38533.12, + "end": 38534.08, + "probability": 0.781 + }, + { + "start": 38534.2, + "end": 38534.6, + "probability": 0.6509 + }, + { + "start": 38534.66, + "end": 38535.44, + "probability": 0.859 + }, + { + "start": 38535.86, + "end": 38537.48, + "probability": 0.991 + }, + { + "start": 38539.8, + "end": 38542.1, + "probability": 0.9061 + }, + { + "start": 38545.43, + "end": 38547.12, + "probability": 0.5496 + }, + { + "start": 38547.64, + "end": 38548.16, + "probability": 0.6593 + }, + { + "start": 38549.76, + "end": 38551.24, + "probability": 0.719 + }, + { + "start": 38551.9, + "end": 38553.34, + "probability": 0.8849 + }, + { + "start": 38556.92, + "end": 38562.88, + "probability": 0.9901 + }, + { + "start": 38562.96, + "end": 38565.24, + "probability": 0.8901 + }, + { + "start": 38566.4, + "end": 38567.34, + "probability": 0.6941 + }, + { + "start": 38568.0, + "end": 38569.98, + "probability": 0.9862 + }, + { + "start": 38569.98, + "end": 38572.54, + "probability": 0.9715 + }, + { + "start": 38572.68, + "end": 38575.98, + "probability": 0.9507 + }, + { + "start": 38576.48, + "end": 38593.12, + "probability": 0.4642 + }, + { + "start": 38593.18, + "end": 38593.88, + "probability": 0.0975 + }, + { + "start": 38593.88, + "end": 38593.88, + "probability": 0.024 + }, + { + "start": 38593.88, + "end": 38593.88, + "probability": 0.0694 + }, + { + "start": 38593.88, + "end": 38594.96, + "probability": 0.5232 + }, + { + "start": 38595.24, + "end": 38596.72, + "probability": 0.6944 + }, + { + "start": 38597.04, + "end": 38600.12, + "probability": 0.7344 + }, + { + "start": 38600.48, + "end": 38602.55, + "probability": 0.7506 + }, + { + "start": 38603.06, + "end": 38605.8, + "probability": 0.9688 + }, + { + "start": 38605.8, + "end": 38608.74, + "probability": 0.8844 + }, + { + "start": 38609.06, + "end": 38611.1, + "probability": 0.8543 + }, + { + "start": 38611.82, + "end": 38615.3, + "probability": 0.4765 + }, + { + "start": 38615.76, + "end": 38620.64, + "probability": 0.9873 + }, + { + "start": 38622.76, + "end": 38624.0, + "probability": 0.7699 + }, + { + "start": 38624.12, + "end": 38626.88, + "probability": 0.6986 + }, + { + "start": 38627.6, + "end": 38631.98, + "probability": 0.8023 + }, + { + "start": 38633.1, + "end": 38635.06, + "probability": 0.9939 + }, + { + "start": 38635.06, + "end": 38638.34, + "probability": 0.9829 + }, + { + "start": 38638.46, + "end": 38639.62, + "probability": 0.8463 + }, + { + "start": 38640.44, + "end": 38640.72, + "probability": 0.5366 + }, + { + "start": 38640.78, + "end": 38643.68, + "probability": 0.9927 + }, + { + "start": 38643.68, + "end": 38645.9, + "probability": 0.9772 + }, + { + "start": 38646.5, + "end": 38646.9, + "probability": 0.7999 + }, + { + "start": 38647.62, + "end": 38653.92, + "probability": 0.9359 + }, + { + "start": 38655.08, + "end": 38658.3, + "probability": 0.9659 + }, + { + "start": 38659.06, + "end": 38661.66, + "probability": 0.9902 + }, + { + "start": 38662.36, + "end": 38670.16, + "probability": 0.9008 + }, + { + "start": 38671.4, + "end": 38671.94, + "probability": 0.79 + }, + { + "start": 38672.16, + "end": 38675.1, + "probability": 0.9394 + }, + { + "start": 38675.1, + "end": 38678.66, + "probability": 0.9784 + }, + { + "start": 38679.12, + "end": 38680.88, + "probability": 0.8135 + }, + { + "start": 38681.0, + "end": 38681.4, + "probability": 0.5672 + }, + { + "start": 38682.32, + "end": 38684.32, + "probability": 0.799 + }, + { + "start": 38684.32, + "end": 38688.92, + "probability": 0.9861 + }, + { + "start": 38689.74, + "end": 38694.0, + "probability": 0.9453 + }, + { + "start": 38694.2, + "end": 38694.42, + "probability": 0.6963 + }, + { + "start": 38695.94, + "end": 38698.32, + "probability": 0.9928 + }, + { + "start": 38698.84, + "end": 38699.18, + "probability": 0.8491 + }, + { + "start": 38699.28, + "end": 38701.86, + "probability": 0.9521 + }, + { + "start": 38702.5, + "end": 38706.12, + "probability": 0.9542 + }, + { + "start": 38707.1, + "end": 38709.78, + "probability": 0.8966 + }, + { + "start": 38710.96, + "end": 38711.94, + "probability": 0.912 + }, + { + "start": 38712.7, + "end": 38717.26, + "probability": 0.9937 + }, + { + "start": 38717.98, + "end": 38722.44, + "probability": 0.9733 + }, + { + "start": 38723.84, + "end": 38726.6, + "probability": 0.9966 + }, + { + "start": 38726.7, + "end": 38730.38, + "probability": 0.9954 + }, + { + "start": 38730.96, + "end": 38733.82, + "probability": 0.8955 + }, + { + "start": 38734.04, + "end": 38735.29, + "probability": 0.8511 + }, + { + "start": 38735.8, + "end": 38736.9, + "probability": 0.622 + }, + { + "start": 38737.22, + "end": 38740.56, + "probability": 0.979 + }, + { + "start": 38741.34, + "end": 38745.34, + "probability": 0.9857 + }, + { + "start": 38751.28, + "end": 38752.38, + "probability": 0.7535 + }, + { + "start": 38753.23, + "end": 38757.26, + "probability": 0.9782 + }, + { + "start": 38757.26, + "end": 38760.24, + "probability": 0.9744 + }, + { + "start": 38760.44, + "end": 38763.36, + "probability": 0.9565 + }, + { + "start": 38764.26, + "end": 38765.9, + "probability": 0.7113 + }, + { + "start": 38765.96, + "end": 38767.4, + "probability": 0.3914 + }, + { + "start": 38767.8, + "end": 38768.66, + "probability": 0.8365 + }, + { + "start": 38768.8, + "end": 38770.74, + "probability": 0.9309 + }, + { + "start": 38771.5, + "end": 38772.28, + "probability": 0.9896 + }, + { + "start": 38772.8, + "end": 38774.54, + "probability": 0.8268 + }, + { + "start": 38774.86, + "end": 38776.1, + "probability": 0.9854 + }, + { + "start": 38776.16, + "end": 38777.46, + "probability": 0.9888 + }, + { + "start": 38777.6, + "end": 38778.88, + "probability": 0.9702 + }, + { + "start": 38778.96, + "end": 38779.16, + "probability": 0.579 + }, + { + "start": 38779.24, + "end": 38781.14, + "probability": 0.8341 + }, + { + "start": 38781.82, + "end": 38784.08, + "probability": 0.9567 + }, + { + "start": 38787.96, + "end": 38790.66, + "probability": 0.9704 + }, + { + "start": 38791.3, + "end": 38793.2, + "probability": 0.9908 + }, + { + "start": 38793.8, + "end": 38797.58, + "probability": 0.9744 + }, + { + "start": 38798.24, + "end": 38800.16, + "probability": 0.908 + }, + { + "start": 38800.66, + "end": 38803.16, + "probability": 0.9954 + }, + { + "start": 38803.7, + "end": 38804.1, + "probability": 0.515 + }, + { + "start": 38804.2, + "end": 38804.48, + "probability": 0.8357 + }, + { + "start": 38804.52, + "end": 38806.38, + "probability": 0.965 + }, + { + "start": 38806.5, + "end": 38807.22, + "probability": 0.4943 + }, + { + "start": 38807.84, + "end": 38809.54, + "probability": 0.994 + }, + { + "start": 38809.62, + "end": 38810.22, + "probability": 0.9578 + }, + { + "start": 38810.3, + "end": 38811.28, + "probability": 0.8816 + }, + { + "start": 38811.72, + "end": 38813.9, + "probability": 0.9305 + }, + { + "start": 38814.32, + "end": 38816.66, + "probability": 0.8582 + }, + { + "start": 38816.78, + "end": 38820.9, + "probability": 0.9825 + }, + { + "start": 38821.12, + "end": 38824.98, + "probability": 0.9902 + }, + { + "start": 38825.12, + "end": 38826.64, + "probability": 0.8996 + }, + { + "start": 38826.78, + "end": 38828.06, + "probability": 0.6829 + }, + { + "start": 38828.18, + "end": 38828.36, + "probability": 0.9669 + }, + { + "start": 38828.46, + "end": 38829.56, + "probability": 0.9875 + }, + { + "start": 38830.08, + "end": 38831.0, + "probability": 0.7274 + }, + { + "start": 38831.66, + "end": 38834.34, + "probability": 0.9893 + }, + { + "start": 38834.48, + "end": 38837.14, + "probability": 0.9811 + }, + { + "start": 38837.52, + "end": 38839.34, + "probability": 0.9961 + }, + { + "start": 38839.34, + "end": 38841.22, + "probability": 0.9939 + }, + { + "start": 38842.44, + "end": 38847.54, + "probability": 0.9866 + }, + { + "start": 38847.58, + "end": 38850.76, + "probability": 0.9619 + }, + { + "start": 38850.78, + "end": 38854.46, + "probability": 0.9988 + }, + { + "start": 38855.22, + "end": 38858.62, + "probability": 0.937 + }, + { + "start": 38859.42, + "end": 38863.12, + "probability": 0.9902 + }, + { + "start": 38863.24, + "end": 38868.5, + "probability": 0.8836 + }, + { + "start": 38869.16, + "end": 38873.28, + "probability": 0.9956 + }, + { + "start": 38873.28, + "end": 38878.72, + "probability": 0.9958 + }, + { + "start": 38878.88, + "end": 38879.22, + "probability": 0.25 + }, + { + "start": 38879.24, + "end": 38883.7, + "probability": 0.9888 + }, + { + "start": 38883.7, + "end": 38888.82, + "probability": 0.9902 + }, + { + "start": 38889.64, + "end": 38890.08, + "probability": 0.3812 + }, + { + "start": 38890.38, + "end": 38890.74, + "probability": 0.9326 + }, + { + "start": 38890.82, + "end": 38893.04, + "probability": 0.9888 + }, + { + "start": 38893.12, + "end": 38893.74, + "probability": 0.6757 + }, + { + "start": 38893.94, + "end": 38898.26, + "probability": 0.9956 + }, + { + "start": 38898.36, + "end": 38901.11, + "probability": 0.9695 + }, + { + "start": 38901.52, + "end": 38904.8, + "probability": 0.9922 + }, + { + "start": 38904.98, + "end": 38909.26, + "probability": 0.9941 + }, + { + "start": 38911.54, + "end": 38913.06, + "probability": 0.7659 + }, + { + "start": 38913.9, + "end": 38920.65, + "probability": 0.9922 + }, + { + "start": 38920.92, + "end": 38926.3, + "probability": 0.9767 + }, + { + "start": 38926.32, + "end": 38929.11, + "probability": 0.9923 + }, + { + "start": 38930.92, + "end": 38932.44, + "probability": 0.1823 + }, + { + "start": 38932.96, + "end": 38932.96, + "probability": 0.1705 + }, + { + "start": 38932.96, + "end": 38933.56, + "probability": 0.4712 + }, + { + "start": 38933.76, + "end": 38936.82, + "probability": 0.758 + }, + { + "start": 38938.02, + "end": 38938.44, + "probability": 0.8027 + }, + { + "start": 38938.5, + "end": 38940.14, + "probability": 0.9674 + }, + { + "start": 38940.54, + "end": 38942.22, + "probability": 0.9806 + }, + { + "start": 38942.48, + "end": 38946.46, + "probability": 0.9802 + }, + { + "start": 38947.06, + "end": 38948.36, + "probability": 0.917 + }, + { + "start": 38949.16, + "end": 38952.46, + "probability": 0.991 + }, + { + "start": 38953.2, + "end": 38954.26, + "probability": 0.8837 + }, + { + "start": 38954.32, + "end": 38956.26, + "probability": 0.9734 + }, + { + "start": 38956.5, + "end": 38959.04, + "probability": 0.9919 + }, + { + "start": 38960.04, + "end": 38964.16, + "probability": 0.9976 + }, + { + "start": 38964.16, + "end": 38967.42, + "probability": 0.9934 + }, + { + "start": 38967.92, + "end": 38970.54, + "probability": 0.9843 + }, + { + "start": 38970.98, + "end": 38972.66, + "probability": 0.933 + }, + { + "start": 38973.06, + "end": 38974.18, + "probability": 0.9451 + }, + { + "start": 38974.9, + "end": 38978.0, + "probability": 0.8778 + }, + { + "start": 38978.02, + "end": 38983.48, + "probability": 0.9286 + }, + { + "start": 38985.0, + "end": 38986.16, + "probability": 0.9972 + }, + { + "start": 38986.62, + "end": 38987.72, + "probability": 0.8226 + }, + { + "start": 38988.9, + "end": 38991.3, + "probability": 0.9867 + }, + { + "start": 38991.74, + "end": 38992.44, + "probability": 0.9152 + }, + { + "start": 38992.78, + "end": 38994.32, + "probability": 0.9985 + }, + { + "start": 38995.0, + "end": 38997.84, + "probability": 0.9421 + }, + { + "start": 38999.0, + "end": 39002.5, + "probability": 0.9876 + }, + { + "start": 39003.02, + "end": 39005.8, + "probability": 0.8723 + }, + { + "start": 39006.58, + "end": 39007.44, + "probability": 0.5651 + }, + { + "start": 39007.58, + "end": 39010.32, + "probability": 0.9956 + }, + { + "start": 39012.5, + "end": 39012.74, + "probability": 0.5323 + }, + { + "start": 39013.02, + "end": 39014.24, + "probability": 0.7884 + }, + { + "start": 39015.74, + "end": 39015.9, + "probability": 0.7753 + }, + { + "start": 39016.5, + "end": 39016.88, + "probability": 0.5731 + }, + { + "start": 39019.16, + "end": 39019.72, + "probability": 0.9082 + }, + { + "start": 39020.86, + "end": 39023.42, + "probability": 0.6761 + }, + { + "start": 39024.36, + "end": 39024.5, + "probability": 0.0299 + }, + { + "start": 39026.56, + "end": 39028.72, + "probability": 0.6709 + }, + { + "start": 39031.96, + "end": 39032.6, + "probability": 0.8106 + }, + { + "start": 39034.12, + "end": 39037.98, + "probability": 0.7364 + }, + { + "start": 39041.28, + "end": 39042.08, + "probability": 0.6198 + }, + { + "start": 39043.86, + "end": 39044.48, + "probability": 0.6275 + }, + { + "start": 39045.62, + "end": 39046.56, + "probability": 0.6602 + }, + { + "start": 39046.68, + "end": 39047.14, + "probability": 0.7808 + }, + { + "start": 39047.44, + "end": 39048.64, + "probability": 0.9321 + }, + { + "start": 39048.78, + "end": 39051.3, + "probability": 0.9727 + }, + { + "start": 39052.12, + "end": 39053.34, + "probability": 0.3427 + }, + { + "start": 39053.34, + "end": 39054.57, + "probability": 0.3777 + }, + { + "start": 39055.62, + "end": 39056.58, + "probability": 0.1881 + }, + { + "start": 39059.0, + "end": 39060.86, + "probability": 0.9558 + }, + { + "start": 39066.54, + "end": 39072.16, + "probability": 0.9889 + }, + { + "start": 39073.0, + "end": 39075.73, + "probability": 0.6067 + }, + { + "start": 39076.42, + "end": 39078.28, + "probability": 0.9909 + }, + { + "start": 39078.52, + "end": 39079.64, + "probability": 0.7947 + }, + { + "start": 39080.38, + "end": 39081.14, + "probability": 0.7026 + }, + { + "start": 39081.22, + "end": 39082.18, + "probability": 0.7357 + }, + { + "start": 39082.2, + "end": 39083.18, + "probability": 0.6385 + }, + { + "start": 39083.28, + "end": 39083.82, + "probability": 0.8172 + }, + { + "start": 39083.88, + "end": 39084.61, + "probability": 0.991 + }, + { + "start": 39085.96, + "end": 39087.38, + "probability": 0.9374 + }, + { + "start": 39088.5, + "end": 39088.9, + "probability": 0.8318 + }, + { + "start": 39089.76, + "end": 39090.62, + "probability": 0.9854 + }, + { + "start": 39090.9, + "end": 39094.16, + "probability": 0.834 + }, + { + "start": 39094.28, + "end": 39094.98, + "probability": 0.9521 + }, + { + "start": 39095.18, + "end": 39096.2, + "probability": 0.803 + }, + { + "start": 39096.38, + "end": 39099.42, + "probability": 0.951 + }, + { + "start": 39100.1, + "end": 39102.54, + "probability": 0.7983 + }, + { + "start": 39103.12, + "end": 39108.08, + "probability": 0.9659 + }, + { + "start": 39109.36, + "end": 39114.84, + "probability": 0.7769 + }, + { + "start": 39115.44, + "end": 39121.12, + "probability": 0.9931 + }, + { + "start": 39121.82, + "end": 39124.32, + "probability": 0.9994 + }, + { + "start": 39125.9, + "end": 39127.14, + "probability": 0.8022 + }, + { + "start": 39127.7, + "end": 39128.46, + "probability": 0.933 + }, + { + "start": 39129.3, + "end": 39130.84, + "probability": 0.9707 + }, + { + "start": 39131.48, + "end": 39132.64, + "probability": 0.9904 + }, + { + "start": 39133.06, + "end": 39139.32, + "probability": 0.9692 + }, + { + "start": 39139.72, + "end": 39140.0, + "probability": 0.6899 + }, + { + "start": 39140.8, + "end": 39141.18, + "probability": 0.686 + }, + { + "start": 39141.68, + "end": 39142.22, + "probability": 0.7263 + }, + { + "start": 39142.32, + "end": 39143.94, + "probability": 0.8213 + }, + { + "start": 39144.2, + "end": 39148.02, + "probability": 0.9938 + }, + { + "start": 39148.28, + "end": 39153.34, + "probability": 0.9817 + }, + { + "start": 39154.14, + "end": 39155.08, + "probability": 0.8757 + }, + { + "start": 39156.22, + "end": 39157.54, + "probability": 0.5583 + }, + { + "start": 39157.6, + "end": 39157.98, + "probability": 0.8119 + }, + { + "start": 39158.08, + "end": 39162.02, + "probability": 0.9723 + }, + { + "start": 39162.02, + "end": 39165.52, + "probability": 0.9908 + }, + { + "start": 39165.68, + "end": 39166.52, + "probability": 0.883 + }, + { + "start": 39167.72, + "end": 39168.38, + "probability": 0.9708 + }, + { + "start": 39168.44, + "end": 39174.52, + "probability": 0.9334 + }, + { + "start": 39176.24, + "end": 39180.28, + "probability": 0.9331 + }, + { + "start": 39180.3, + "end": 39182.2, + "probability": 0.7939 + }, + { + "start": 39182.34, + "end": 39184.04, + "probability": 0.4178 + }, + { + "start": 39184.06, + "end": 39187.16, + "probability": 0.9795 + }, + { + "start": 39187.26, + "end": 39187.92, + "probability": 0.8901 + }, + { + "start": 39188.46, + "end": 39190.14, + "probability": 0.8806 + }, + { + "start": 39190.66, + "end": 39198.62, + "probability": 0.9831 + }, + { + "start": 39198.62, + "end": 39205.26, + "probability": 0.9985 + }, + { + "start": 39205.97, + "end": 39212.08, + "probability": 0.978 + }, + { + "start": 39213.2, + "end": 39214.58, + "probability": 0.693 + }, + { + "start": 39214.72, + "end": 39215.54, + "probability": 0.6722 + }, + { + "start": 39216.48, + "end": 39216.7, + "probability": 0.1954 + }, + { + "start": 39217.26, + "end": 39221.58, + "probability": 0.994 + }, + { + "start": 39222.52, + "end": 39226.9, + "probability": 0.9979 + }, + { + "start": 39228.2, + "end": 39228.36, + "probability": 0.4584 + }, + { + "start": 39228.52, + "end": 39232.62, + "probability": 0.9932 + }, + { + "start": 39233.88, + "end": 39236.07, + "probability": 0.9761 + }, + { + "start": 39237.34, + "end": 39246.08, + "probability": 0.766 + }, + { + "start": 39246.74, + "end": 39248.64, + "probability": 0.9677 + }, + { + "start": 39248.9, + "end": 39249.42, + "probability": 0.5545 + }, + { + "start": 39249.5, + "end": 39250.5, + "probability": 0.904 + }, + { + "start": 39251.08, + "end": 39253.82, + "probability": 0.9615 + }, + { + "start": 39254.88, + "end": 39255.8, + "probability": 0.8856 + }, + { + "start": 39256.58, + "end": 39260.06, + "probability": 0.904 + }, + { + "start": 39260.22, + "end": 39263.28, + "probability": 0.9233 + }, + { + "start": 39263.84, + "end": 39270.0, + "probability": 0.8456 + }, + { + "start": 39271.16, + "end": 39271.58, + "probability": 0.4105 + }, + { + "start": 39272.68, + "end": 39277.98, + "probability": 0.8317 + }, + { + "start": 39278.1, + "end": 39279.02, + "probability": 0.9313 + }, + { + "start": 39279.7, + "end": 39282.52, + "probability": 0.9968 + }, + { + "start": 39282.88, + "end": 39285.24, + "probability": 0.6908 + }, + { + "start": 39285.7, + "end": 39287.34, + "probability": 0.9875 + }, + { + "start": 39289.58, + "end": 39290.7, + "probability": 0.649 + }, + { + "start": 39290.94, + "end": 39291.82, + "probability": 0.8658 + }, + { + "start": 39294.18, + "end": 39294.86, + "probability": 0.7506 + }, + { + "start": 39295.04, + "end": 39298.94, + "probability": 0.987 + }, + { + "start": 39298.94, + "end": 39302.6, + "probability": 0.9982 + }, + { + "start": 39302.74, + "end": 39310.24, + "probability": 0.7615 + }, + { + "start": 39310.76, + "end": 39311.86, + "probability": 0.8174 + }, + { + "start": 39311.92, + "end": 39312.12, + "probability": 0.8 + }, + { + "start": 39312.2, + "end": 39313.83, + "probability": 0.9434 + }, + { + "start": 39314.22, + "end": 39315.3, + "probability": 0.9221 + }, + { + "start": 39315.34, + "end": 39316.47, + "probability": 0.9956 + }, + { + "start": 39317.76, + "end": 39323.58, + "probability": 0.9849 + }, + { + "start": 39324.6, + "end": 39324.9, + "probability": 0.6144 + }, + { + "start": 39325.64, + "end": 39329.86, + "probability": 0.7961 + }, + { + "start": 39331.04, + "end": 39336.2, + "probability": 0.9951 + }, + { + "start": 39336.36, + "end": 39340.66, + "probability": 0.9906 + }, + { + "start": 39341.16, + "end": 39341.7, + "probability": 0.8804 + }, + { + "start": 39342.54, + "end": 39343.64, + "probability": 0.9013 + }, + { + "start": 39344.04, + "end": 39346.26, + "probability": 0.9693 + }, + { + "start": 39346.36, + "end": 39347.44, + "probability": 0.8965 + }, + { + "start": 39348.44, + "end": 39351.12, + "probability": 0.9894 + }, + { + "start": 39351.24, + "end": 39357.44, + "probability": 0.9928 + }, + { + "start": 39358.22, + "end": 39359.74, + "probability": 0.5863 + }, + { + "start": 39359.86, + "end": 39364.08, + "probability": 0.9883 + }, + { + "start": 39364.1, + "end": 39367.7, + "probability": 0.99 + }, + { + "start": 39368.08, + "end": 39373.02, + "probability": 0.9852 + }, + { + "start": 39373.36, + "end": 39374.57, + "probability": 0.9114 + }, + { + "start": 39375.54, + "end": 39378.28, + "probability": 0.9283 + }, + { + "start": 39378.44, + "end": 39379.56, + "probability": 0.5906 + }, + { + "start": 39379.56, + "end": 39384.78, + "probability": 0.9809 + }, + { + "start": 39385.3, + "end": 39386.76, + "probability": 0.8315 + }, + { + "start": 39386.96, + "end": 39389.6, + "probability": 0.958 + }, + { + "start": 39390.0, + "end": 39391.78, + "probability": 0.9375 + }, + { + "start": 39391.88, + "end": 39393.04, + "probability": 0.9639 + }, + { + "start": 39393.74, + "end": 39394.42, + "probability": 0.8868 + }, + { + "start": 39395.32, + "end": 39396.5, + "probability": 0.9336 + }, + { + "start": 39397.2, + "end": 39399.94, + "probability": 0.9581 + }, + { + "start": 39400.16, + "end": 39400.72, + "probability": 0.7172 + }, + { + "start": 39401.8, + "end": 39402.12, + "probability": 0.3894 + }, + { + "start": 39402.36, + "end": 39403.64, + "probability": 0.7847 + }, + { + "start": 39403.66, + "end": 39404.6, + "probability": 0.6334 + }, + { + "start": 39404.68, + "end": 39406.06, + "probability": 0.8528 + }, + { + "start": 39406.24, + "end": 39407.02, + "probability": 0.6404 + }, + { + "start": 39407.18, + "end": 39407.9, + "probability": 0.9253 + }, + { + "start": 39408.12, + "end": 39409.82, + "probability": 0.8931 + }, + { + "start": 39409.9, + "end": 39411.02, + "probability": 0.9314 + }, + { + "start": 39411.12, + "end": 39411.96, + "probability": 0.9364 + }, + { + "start": 39412.64, + "end": 39414.76, + "probability": 0.8722 + }, + { + "start": 39414.86, + "end": 39417.6, + "probability": 0.9919 + }, + { + "start": 39417.68, + "end": 39424.38, + "probability": 0.9802 + }, + { + "start": 39424.78, + "end": 39427.74, + "probability": 0.9817 + }, + { + "start": 39427.88, + "end": 39429.12, + "probability": 0.9961 + }, + { + "start": 39429.2, + "end": 39432.58, + "probability": 0.9934 + }, + { + "start": 39432.72, + "end": 39433.44, + "probability": 0.7146 + }, + { + "start": 39433.58, + "end": 39434.58, + "probability": 0.9299 + }, + { + "start": 39434.7, + "end": 39435.46, + "probability": 0.8086 + }, + { + "start": 39435.5, + "end": 39442.78, + "probability": 0.9907 + }, + { + "start": 39443.42, + "end": 39446.58, + "probability": 0.9259 + }, + { + "start": 39447.14, + "end": 39450.3, + "probability": 0.9218 + }, + { + "start": 39451.16, + "end": 39451.9, + "probability": 0.9554 + }, + { + "start": 39451.9, + "end": 39453.8, + "probability": 0.9198 + }, + { + "start": 39454.48, + "end": 39456.89, + "probability": 0.7837 + }, + { + "start": 39457.24, + "end": 39458.72, + "probability": 0.707 + }, + { + "start": 39459.1, + "end": 39460.02, + "probability": 0.8766 + }, + { + "start": 39460.04, + "end": 39462.12, + "probability": 0.9779 + }, + { + "start": 39462.62, + "end": 39464.2, + "probability": 0.9835 + }, + { + "start": 39464.8, + "end": 39466.74, + "probability": 0.8157 + }, + { + "start": 39467.08, + "end": 39469.64, + "probability": 0.7482 + }, + { + "start": 39469.76, + "end": 39473.48, + "probability": 0.9962 + }, + { + "start": 39473.92, + "end": 39474.84, + "probability": 0.8699 + }, + { + "start": 39475.26, + "end": 39476.07, + "probability": 0.6616 + }, + { + "start": 39476.54, + "end": 39478.56, + "probability": 0.9769 + }, + { + "start": 39478.74, + "end": 39480.92, + "probability": 0.9961 + }, + { + "start": 39481.3, + "end": 39484.04, + "probability": 0.9937 + }, + { + "start": 39484.88, + "end": 39487.14, + "probability": 0.988 + }, + { + "start": 39487.24, + "end": 39490.36, + "probability": 0.9244 + }, + { + "start": 39490.86, + "end": 39490.88, + "probability": 0.3767 + }, + { + "start": 39490.88, + "end": 39491.42, + "probability": 0.9177 + }, + { + "start": 39491.8, + "end": 39491.8, + "probability": 0.5111 + }, + { + "start": 39491.94, + "end": 39493.82, + "probability": 0.7623 + }, + { + "start": 39494.98, + "end": 39495.22, + "probability": 0.7608 + }, + { + "start": 39495.26, + "end": 39495.94, + "probability": 0.8535 + }, + { + "start": 39496.06, + "end": 39496.72, + "probability": 0.904 + }, + { + "start": 39496.76, + "end": 39498.5, + "probability": 0.9441 + }, + { + "start": 39499.08, + "end": 39499.34, + "probability": 0.7386 + }, + { + "start": 39500.46, + "end": 39504.42, + "probability": 0.9812 + }, + { + "start": 39504.46, + "end": 39505.88, + "probability": 0.833 + }, + { + "start": 39506.52, + "end": 39508.14, + "probability": 0.9697 + }, + { + "start": 39508.72, + "end": 39513.48, + "probability": 0.8537 + }, + { + "start": 39514.02, + "end": 39515.14, + "probability": 0.9985 + }, + { + "start": 39515.7, + "end": 39518.66, + "probability": 0.8924 + }, + { + "start": 39519.18, + "end": 39522.26, + "probability": 0.9384 + }, + { + "start": 39522.92, + "end": 39525.52, + "probability": 0.9858 + }, + { + "start": 39525.58, + "end": 39529.86, + "probability": 0.9373 + }, + { + "start": 39530.4, + "end": 39534.12, + "probability": 0.941 + }, + { + "start": 39534.6, + "end": 39536.52, + "probability": 0.9867 + }, + { + "start": 39537.08, + "end": 39540.14, + "probability": 0.9074 + }, + { + "start": 39540.3, + "end": 39540.9, + "probability": 0.9662 + }, + { + "start": 39541.52, + "end": 39541.9, + "probability": 0.9414 + }, + { + "start": 39541.98, + "end": 39542.66, + "probability": 0.7634 + }, + { + "start": 39543.14, + "end": 39546.2, + "probability": 0.7684 + }, + { + "start": 39546.34, + "end": 39546.68, + "probability": 0.7047 + }, + { + "start": 39547.16, + "end": 39547.86, + "probability": 0.8394 + }, + { + "start": 39547.9, + "end": 39551.28, + "probability": 0.9862 + }, + { + "start": 39551.46, + "end": 39551.9, + "probability": 0.6136 + }, + { + "start": 39551.98, + "end": 39556.48, + "probability": 0.9731 + }, + { + "start": 39556.8, + "end": 39561.06, + "probability": 0.8789 + }, + { + "start": 39562.74, + "end": 39564.06, + "probability": 0.2626 + }, + { + "start": 39564.56, + "end": 39566.16, + "probability": 0.5748 + }, + { + "start": 39566.3, + "end": 39569.82, + "probability": 0.9768 + }, + { + "start": 39569.92, + "end": 39572.9, + "probability": 0.812 + }, + { + "start": 39573.92, + "end": 39577.94, + "probability": 0.026 + }, + { + "start": 39579.0, + "end": 39580.1, + "probability": 0.0774 + }, + { + "start": 39580.1, + "end": 39580.1, + "probability": 0.0583 + }, + { + "start": 39580.1, + "end": 39580.1, + "probability": 0.15 + }, + { + "start": 39580.1, + "end": 39580.1, + "probability": 0.1102 + }, + { + "start": 39580.1, + "end": 39580.38, + "probability": 0.1167 + }, + { + "start": 39581.34, + "end": 39582.78, + "probability": 0.6518 + }, + { + "start": 39582.92, + "end": 39583.22, + "probability": 0.6792 + }, + { + "start": 39592.3, + "end": 39593.34, + "probability": 0.5133 + }, + { + "start": 39594.46, + "end": 39596.28, + "probability": 0.9873 + }, + { + "start": 39596.94, + "end": 39599.18, + "probability": 0.9924 + }, + { + "start": 39599.8, + "end": 39602.34, + "probability": 0.9951 + }, + { + "start": 39602.34, + "end": 39606.82, + "probability": 0.9921 + }, + { + "start": 39607.6, + "end": 39611.52, + "probability": 0.8265 + }, + { + "start": 39612.2, + "end": 39616.32, + "probability": 0.9956 + }, + { + "start": 39616.64, + "end": 39618.98, + "probability": 0.9932 + }, + { + "start": 39620.3, + "end": 39624.26, + "probability": 0.9194 + }, + { + "start": 39624.26, + "end": 39629.46, + "probability": 0.9921 + }, + { + "start": 39629.96, + "end": 39635.2, + "probability": 0.995 + }, + { + "start": 39635.56, + "end": 39635.82, + "probability": 0.7388 + }, + { + "start": 39636.74, + "end": 39638.44, + "probability": 0.7743 + }, + { + "start": 39638.82, + "end": 39642.08, + "probability": 0.9961 + }, + { + "start": 39642.08, + "end": 39646.46, + "probability": 0.9784 + }, + { + "start": 39646.96, + "end": 39648.92, + "probability": 0.9673 + }, + { + "start": 39650.06, + "end": 39652.98, + "probability": 0.8864 + }, + { + "start": 39652.98, + "end": 39657.22, + "probability": 0.9929 + }, + { + "start": 39658.36, + "end": 39662.86, + "probability": 0.9855 + }, + { + "start": 39663.52, + "end": 39666.56, + "probability": 0.9627 + }, + { + "start": 39667.7, + "end": 39668.16, + "probability": 0.7649 + }, + { + "start": 39668.46, + "end": 39671.28, + "probability": 0.9949 + }, + { + "start": 39671.6, + "end": 39676.28, + "probability": 0.9893 + }, + { + "start": 39676.88, + "end": 39678.26, + "probability": 0.8641 + }, + { + "start": 39678.82, + "end": 39680.7, + "probability": 0.991 + }, + { + "start": 39688.98, + "end": 39689.6, + "probability": 0.8148 + }, + { + "start": 39689.78, + "end": 39693.62, + "probability": 0.9905 + }, + { + "start": 39693.86, + "end": 39694.52, + "probability": 0.9281 + }, + { + "start": 39695.06, + "end": 39695.72, + "probability": 0.9946 + }, + { + "start": 39696.36, + "end": 39700.2, + "probability": 0.9961 + }, + { + "start": 39701.67, + "end": 39705.38, + "probability": 0.7357 + }, + { + "start": 39705.52, + "end": 39707.66, + "probability": 0.9849 + }, + { + "start": 39708.12, + "end": 39710.82, + "probability": 0.9907 + }, + { + "start": 39711.32, + "end": 39714.3, + "probability": 0.6525 + }, + { + "start": 39714.68, + "end": 39716.94, + "probability": 0.6621 + }, + { + "start": 39717.34, + "end": 39718.58, + "probability": 0.9893 + }, + { + "start": 39718.74, + "end": 39719.3, + "probability": 0.9908 + }, + { + "start": 39719.78, + "end": 39720.51, + "probability": 0.9237 + }, + { + "start": 39720.98, + "end": 39721.96, + "probability": 0.9978 + }, + { + "start": 39722.42, + "end": 39723.12, + "probability": 0.3774 + }, + { + "start": 39723.66, + "end": 39727.8, + "probability": 0.9832 + }, + { + "start": 39728.24, + "end": 39730.56, + "probability": 0.9438 + }, + { + "start": 39730.96, + "end": 39733.16, + "probability": 0.937 + }, + { + "start": 39733.24, + "end": 39735.3, + "probability": 0.9676 + }, + { + "start": 39735.38, + "end": 39739.2, + "probability": 0.876 + }, + { + "start": 39740.22, + "end": 39743.44, + "probability": 0.73 + }, + { + "start": 39743.56, + "end": 39744.38, + "probability": 0.7597 + }, + { + "start": 39744.8, + "end": 39745.26, + "probability": 0.2714 + }, + { + "start": 39745.5, + "end": 39745.88, + "probability": 0.4888 + }, + { + "start": 39746.26, + "end": 39748.52, + "probability": 0.8605 + }, + { + "start": 39748.94, + "end": 39753.4, + "probability": 0.9937 + }, + { + "start": 39753.64, + "end": 39758.36, + "probability": 0.9862 + }, + { + "start": 39758.54, + "end": 39759.58, + "probability": 0.826 + }, + { + "start": 39759.72, + "end": 39760.38, + "probability": 0.5702 + }, + { + "start": 39760.94, + "end": 39761.94, + "probability": 0.6849 + }, + { + "start": 39761.94, + "end": 39763.06, + "probability": 0.8287 + }, + { + "start": 39763.3, + "end": 39765.66, + "probability": 0.9748 + }, + { + "start": 39765.74, + "end": 39766.58, + "probability": 0.5215 + }, + { + "start": 39767.14, + "end": 39767.93, + "probability": 0.9075 + }, + { + "start": 39768.28, + "end": 39770.56, + "probability": 0.905 + }, + { + "start": 39771.18, + "end": 39773.84, + "probability": 0.9491 + }, + { + "start": 39773.88, + "end": 39776.38, + "probability": 0.9233 + }, + { + "start": 39776.68, + "end": 39778.36, + "probability": 0.9937 + }, + { + "start": 39778.44, + "end": 39780.12, + "probability": 0.9868 + }, + { + "start": 39780.38, + "end": 39782.28, + "probability": 0.958 + }, + { + "start": 39782.46, + "end": 39782.84, + "probability": 0.5324 + }, + { + "start": 39782.86, + "end": 39784.82, + "probability": 0.9648 + }, + { + "start": 39784.82, + "end": 39787.46, + "probability": 0.9951 + }, + { + "start": 39787.52, + "end": 39788.02, + "probability": 0.7475 + }, + { + "start": 39788.14, + "end": 39788.4, + "probability": 0.8196 + }, + { + "start": 39789.24, + "end": 39791.76, + "probability": 0.9946 + }, + { + "start": 39792.64, + "end": 39798.06, + "probability": 0.3734 + }, + { + "start": 39798.62, + "end": 39799.12, + "probability": 0.5126 + }, + { + "start": 39799.56, + "end": 39800.18, + "probability": 0.0393 + }, + { + "start": 39800.64, + "end": 39800.64, + "probability": 0.51 + }, + { + "start": 39800.64, + "end": 39804.0, + "probability": 0.9975 + }, + { + "start": 39804.32, + "end": 39806.16, + "probability": 0.9033 + }, + { + "start": 39806.88, + "end": 39808.12, + "probability": 0.0681 + }, + { + "start": 39808.42, + "end": 39811.31, + "probability": 0.9819 + }, + { + "start": 39812.44, + "end": 39814.02, + "probability": 0.9537 + }, + { + "start": 39814.22, + "end": 39815.86, + "probability": 0.6938 + }, + { + "start": 39815.86, + "end": 39816.0, + "probability": 0.0797 + }, + { + "start": 39817.28, + "end": 39823.3, + "probability": 0.9368 + }, + { + "start": 39824.0, + "end": 39824.48, + "probability": 0.0647 + }, + { + "start": 39824.54, + "end": 39828.12, + "probability": 0.5201 + }, + { + "start": 39828.12, + "end": 39829.16, + "probability": 0.6436 + }, + { + "start": 39829.56, + "end": 39830.0, + "probability": 0.5706 + }, + { + "start": 39830.48, + "end": 39831.24, + "probability": 0.528 + }, + { + "start": 39831.24, + "end": 39833.38, + "probability": 0.4726 + }, + { + "start": 39834.14, + "end": 39834.24, + "probability": 0.6232 + }, + { + "start": 39834.3, + "end": 39837.73, + "probability": 0.9529 + }, + { + "start": 39838.02, + "end": 39838.98, + "probability": 0.9148 + }, + { + "start": 39844.52, + "end": 39844.88, + "probability": 0.1585 + }, + { + "start": 39845.64, + "end": 39850.54, + "probability": 0.9973 + }, + { + "start": 39851.44, + "end": 39857.04, + "probability": 0.9858 + }, + { + "start": 39857.2, + "end": 39860.78, + "probability": 0.9949 + }, + { + "start": 39861.24, + "end": 39861.64, + "probability": 0.4548 + }, + { + "start": 39861.8, + "end": 39862.18, + "probability": 0.8885 + }, + { + "start": 39862.26, + "end": 39863.24, + "probability": 0.9846 + }, + { + "start": 39863.4, + "end": 39864.78, + "probability": 0.9827 + }, + { + "start": 39865.32, + "end": 39869.46, + "probability": 0.9159 + }, + { + "start": 39869.72, + "end": 39870.14, + "probability": 0.9015 + }, + { + "start": 39871.3, + "end": 39871.86, + "probability": 0.7161 + }, + { + "start": 39871.92, + "end": 39872.3, + "probability": 0.8462 + }, + { + "start": 39872.5, + "end": 39873.22, + "probability": 0.7598 + }, + { + "start": 39873.26, + "end": 39875.62, + "probability": 0.7528 + }, + { + "start": 39876.8, + "end": 39880.1, + "probability": 0.8711 + }, + { + "start": 39880.72, + "end": 39881.82, + "probability": 0.8445 + }, + { + "start": 39882.78, + "end": 39884.14, + "probability": 0.013 + }, + { + "start": 39884.8, + "end": 39886.3, + "probability": 0.9949 + }, + { + "start": 39887.28, + "end": 39888.48, + "probability": 0.9554 + }, + { + "start": 39888.82, + "end": 39889.52, + "probability": 0.9332 + }, + { + "start": 39889.52, + "end": 39891.74, + "probability": 0.8951 + }, + { + "start": 39891.92, + "end": 39896.86, + "probability": 0.9828 + }, + { + "start": 39897.72, + "end": 39902.37, + "probability": 0.9598 + }, + { + "start": 39903.36, + "end": 39905.64, + "probability": 0.736 + }, + { + "start": 39906.28, + "end": 39908.94, + "probability": 0.5595 + }, + { + "start": 39909.48, + "end": 39912.34, + "probability": 0.9912 + }, + { + "start": 39912.34, + "end": 39915.68, + "probability": 0.8908 + }, + { + "start": 39916.2, + "end": 39920.2, + "probability": 0.9926 + }, + { + "start": 39921.04, + "end": 39921.72, + "probability": 0.6957 + }, + { + "start": 39921.82, + "end": 39922.34, + "probability": 0.6309 + }, + { + "start": 39922.44, + "end": 39924.02, + "probability": 0.8207 + }, + { + "start": 39924.44, + "end": 39927.3, + "probability": 0.9333 + }, + { + "start": 39927.44, + "end": 39928.62, + "probability": 0.9651 + }, + { + "start": 39929.32, + "end": 39930.58, + "probability": 0.8773 + }, + { + "start": 39931.16, + "end": 39931.48, + "probability": 0.8725 + }, + { + "start": 39932.22, + "end": 39934.3, + "probability": 0.9776 + }, + { + "start": 39934.74, + "end": 39935.78, + "probability": 0.9951 + }, + { + "start": 39935.88, + "end": 39937.1, + "probability": 0.9255 + }, + { + "start": 39937.7, + "end": 39941.24, + "probability": 0.9971 + }, + { + "start": 39942.74, + "end": 39946.12, + "probability": 0.9835 + }, + { + "start": 39946.58, + "end": 39948.08, + "probability": 0.886 + }, + { + "start": 39948.92, + "end": 39953.88, + "probability": 0.9795 + }, + { + "start": 39955.92, + "end": 39957.24, + "probability": 0.9033 + }, + { + "start": 39957.7, + "end": 39966.44, + "probability": 0.8184 + }, + { + "start": 39966.96, + "end": 39972.14, + "probability": 0.8053 + }, + { + "start": 39972.64, + "end": 39974.7, + "probability": 0.9062 + }, + { + "start": 39975.26, + "end": 39976.5, + "probability": 0.9768 + }, + { + "start": 39978.36, + "end": 39981.92, + "probability": 0.995 + }, + { + "start": 39982.62, + "end": 39984.48, + "probability": 0.9458 + }, + { + "start": 39984.74, + "end": 39986.06, + "probability": 0.9346 + }, + { + "start": 39986.62, + "end": 39988.36, + "probability": 0.998 + }, + { + "start": 39989.44, + "end": 39992.92, + "probability": 0.9484 + }, + { + "start": 39993.62, + "end": 39994.9, + "probability": 0.9067 + }, + { + "start": 39995.76, + "end": 39996.42, + "probability": 0.9857 + }, + { + "start": 39996.59, + "end": 39998.3, + "probability": 0.9758 + }, + { + "start": 39999.6, + "end": 40001.94, + "probability": 0.9719 + }, + { + "start": 40002.86, + "end": 40009.49, + "probability": 0.7305 + }, + { + "start": 40010.28, + "end": 40012.5, + "probability": 0.9929 + }, + { + "start": 40013.12, + "end": 40015.12, + "probability": 0.7727 + }, + { + "start": 40015.66, + "end": 40017.22, + "probability": 0.5036 + }, + { + "start": 40020.62, + "end": 40023.3, + "probability": 0.9181 + }, + { + "start": 40023.84, + "end": 40025.04, + "probability": 0.7624 + }, + { + "start": 40027.2, + "end": 40029.3, + "probability": 0.9935 + }, + { + "start": 40030.08, + "end": 40034.26, + "probability": 0.9877 + }, + { + "start": 40035.28, + "end": 40038.62, + "probability": 0.9446 + }, + { + "start": 40039.02, + "end": 40042.58, + "probability": 0.9912 + }, + { + "start": 40043.32, + "end": 40044.12, + "probability": 0.731 + }, + { + "start": 40045.22, + "end": 40047.62, + "probability": 0.8492 + }, + { + "start": 40048.34, + "end": 40051.04, + "probability": 0.9937 + }, + { + "start": 40051.5, + "end": 40053.1, + "probability": 0.9639 + }, + { + "start": 40053.52, + "end": 40055.48, + "probability": 0.9543 + }, + { + "start": 40056.26, + "end": 40060.14, + "probability": 0.9951 + }, + { + "start": 40060.56, + "end": 40064.9, + "probability": 0.9958 + }, + { + "start": 40066.64, + "end": 40069.41, + "probability": 0.6721 + }, + { + "start": 40070.38, + "end": 40072.32, + "probability": 0.8832 + }, + { + "start": 40072.62, + "end": 40073.98, + "probability": 0.9238 + }, + { + "start": 40074.44, + "end": 40078.29, + "probability": 0.9818 + }, + { + "start": 40078.84, + "end": 40079.14, + "probability": 0.9459 + }, + { + "start": 40079.66, + "end": 40080.62, + "probability": 0.8464 + }, + { + "start": 40081.88, + "end": 40082.42, + "probability": 0.5699 + }, + { + "start": 40083.0, + "end": 40083.64, + "probability": 0.8602 + }, + { + "start": 40084.62, + "end": 40086.46, + "probability": 0.746 + }, + { + "start": 40087.64, + "end": 40090.26, + "probability": 0.9781 + }, + { + "start": 40090.62, + "end": 40091.06, + "probability": 0.7081 + }, + { + "start": 40091.26, + "end": 40092.7, + "probability": 0.9835 + }, + { + "start": 40098.28, + "end": 40100.72, + "probability": 0.8965 + }, + { + "start": 40101.42, + "end": 40101.62, + "probability": 0.9349 + }, + { + "start": 40103.18, + "end": 40106.18, + "probability": 0.997 + }, + { + "start": 40106.32, + "end": 40107.31, + "probability": 0.9375 + }, + { + "start": 40107.72, + "end": 40108.68, + "probability": 0.9702 + }, + { + "start": 40109.26, + "end": 40111.48, + "probability": 0.8367 + }, + { + "start": 40112.08, + "end": 40113.02, + "probability": 0.9704 + }, + { + "start": 40113.24, + "end": 40113.64, + "probability": 0.8457 + }, + { + "start": 40113.74, + "end": 40116.5, + "probability": 0.9943 + }, + { + "start": 40116.76, + "end": 40117.78, + "probability": 0.9675 + }, + { + "start": 40118.22, + "end": 40119.22, + "probability": 0.9489 + }, + { + "start": 40119.34, + "end": 40120.7, + "probability": 0.9426 + }, + { + "start": 40120.8, + "end": 40121.0, + "probability": 0.934 + }, + { + "start": 40121.38, + "end": 40124.86, + "probability": 0.9966 + }, + { + "start": 40124.94, + "end": 40125.96, + "probability": 0.5865 + }, + { + "start": 40126.6, + "end": 40126.6, + "probability": 0.3864 + }, + { + "start": 40126.64, + "end": 40129.02, + "probability": 0.7518 + }, + { + "start": 40129.12, + "end": 40133.14, + "probability": 0.9796 + }, + { + "start": 40133.28, + "end": 40138.7, + "probability": 0.9929 + }, + { + "start": 40138.88, + "end": 40140.88, + "probability": 0.9971 + }, + { + "start": 40141.0, + "end": 40144.56, + "probability": 0.9282 + }, + { + "start": 40144.56, + "end": 40148.18, + "probability": 0.9907 + }, + { + "start": 40148.8, + "end": 40150.38, + "probability": 0.8295 + }, + { + "start": 40150.68, + "end": 40151.44, + "probability": 0.989 + }, + { + "start": 40151.58, + "end": 40152.62, + "probability": 0.8437 + }, + { + "start": 40152.74, + "end": 40156.66, + "probability": 0.9616 + }, + { + "start": 40156.84, + "end": 40161.92, + "probability": 0.9521 + }, + { + "start": 40162.18, + "end": 40162.94, + "probability": 0.9746 + }, + { + "start": 40163.34, + "end": 40165.88, + "probability": 0.9854 + }, + { + "start": 40166.01, + "end": 40168.38, + "probability": 0.9956 + }, + { + "start": 40168.76, + "end": 40172.04, + "probability": 0.9796 + }, + { + "start": 40172.16, + "end": 40172.82, + "probability": 0.3023 + }, + { + "start": 40172.94, + "end": 40175.24, + "probability": 0.9528 + }, + { + "start": 40175.48, + "end": 40178.06, + "probability": 0.7006 + }, + { + "start": 40179.1, + "end": 40180.52, + "probability": 0.9886 + }, + { + "start": 40181.3, + "end": 40181.82, + "probability": 0.5657 + }, + { + "start": 40182.4, + "end": 40183.14, + "probability": 0.4811 + }, + { + "start": 40183.18, + "end": 40183.38, + "probability": 0.8675 + }, + { + "start": 40183.58, + "end": 40187.46, + "probability": 0.9727 + }, + { + "start": 40187.46, + "end": 40190.5, + "probability": 0.9933 + }, + { + "start": 40191.94, + "end": 40192.8, + "probability": 0.7808 + }, + { + "start": 40193.94, + "end": 40197.62, + "probability": 0.9435 + }, + { + "start": 40197.66, + "end": 40199.2, + "probability": 0.987 + }, + { + "start": 40199.38, + "end": 40201.74, + "probability": 0.7853 + }, + { + "start": 40201.84, + "end": 40203.92, + "probability": 0.9414 + }, + { + "start": 40204.04, + "end": 40207.38, + "probability": 0.9895 + }, + { + "start": 40208.68, + "end": 40209.34, + "probability": 0.7245 + }, + { + "start": 40209.72, + "end": 40210.3, + "probability": 0.9517 + }, + { + "start": 40210.62, + "end": 40213.7, + "probability": 0.9759 + }, + { + "start": 40213.7, + "end": 40216.98, + "probability": 0.9199 + }, + { + "start": 40217.12, + "end": 40221.28, + "probability": 0.9837 + }, + { + "start": 40222.1, + "end": 40224.32, + "probability": 0.7323 + }, + { + "start": 40224.44, + "end": 40228.2, + "probability": 0.855 + }, + { + "start": 40228.52, + "end": 40233.06, + "probability": 0.9451 + }, + { + "start": 40233.06, + "end": 40237.92, + "probability": 0.9985 + }, + { + "start": 40238.48, + "end": 40240.96, + "probability": 0.9979 + }, + { + "start": 40241.06, + "end": 40242.54, + "probability": 0.8224 + }, + { + "start": 40243.34, + "end": 40244.8, + "probability": 0.8264 + }, + { + "start": 40245.26, + "end": 40248.26, + "probability": 0.9956 + }, + { + "start": 40248.48, + "end": 40250.26, + "probability": 0.8764 + }, + { + "start": 40250.38, + "end": 40250.84, + "probability": 0.904 + }, + { + "start": 40251.5, + "end": 40255.02, + "probability": 0.772 + }, + { + "start": 40255.32, + "end": 40258.18, + "probability": 0.9631 + }, + { + "start": 40263.14, + "end": 40265.58, + "probability": 0.9377 + }, + { + "start": 40267.2, + "end": 40269.12, + "probability": 0.241 + }, + { + "start": 40269.34, + "end": 40270.8, + "probability": 0.7278 + }, + { + "start": 40271.3, + "end": 40272.22, + "probability": 0.312 + }, + { + "start": 40272.64, + "end": 40274.46, + "probability": 0.1702 + }, + { + "start": 40274.78, + "end": 40274.98, + "probability": 0.0177 + }, + { + "start": 40275.54, + "end": 40275.99, + "probability": 0.4048 + }, + { + "start": 40276.96, + "end": 40278.08, + "probability": 0.2794 + }, + { + "start": 40278.12, + "end": 40279.04, + "probability": 0.5962 + }, + { + "start": 40279.34, + "end": 40281.14, + "probability": 0.862 + }, + { + "start": 40282.0, + "end": 40282.25, + "probability": 0.0616 + }, + { + "start": 40283.06, + "end": 40283.7, + "probability": 0.7562 + }, + { + "start": 40285.7, + "end": 40290.56, + "probability": 0.9742 + }, + { + "start": 40290.76, + "end": 40290.88, + "probability": 0.4926 + }, + { + "start": 40292.5, + "end": 40293.24, + "probability": 0.7189 + }, + { + "start": 40293.3, + "end": 40295.08, + "probability": 0.9608 + }, + { + "start": 40302.8, + "end": 40303.88, + "probability": 0.6319 + }, + { + "start": 40305.1, + "end": 40307.74, + "probability": 0.8248 + }, + { + "start": 40308.86, + "end": 40312.36, + "probability": 0.9864 + }, + { + "start": 40312.36, + "end": 40316.7, + "probability": 0.9715 + }, + { + "start": 40317.06, + "end": 40318.02, + "probability": 0.8176 + }, + { + "start": 40318.6, + "end": 40319.24, + "probability": 0.9142 + }, + { + "start": 40320.64, + "end": 40321.08, + "probability": 0.6188 + }, + { + "start": 40322.06, + "end": 40324.98, + "probability": 0.8905 + }, + { + "start": 40325.74, + "end": 40328.5, + "probability": 0.9772 + }, + { + "start": 40329.04, + "end": 40329.4, + "probability": 0.9586 + }, + { + "start": 40331.08, + "end": 40335.51, + "probability": 0.7923 + }, + { + "start": 40336.22, + "end": 40338.26, + "probability": 0.8982 + }, + { + "start": 40339.96, + "end": 40341.64, + "probability": 0.9088 + }, + { + "start": 40341.74, + "end": 40345.6, + "probability": 0.9728 + }, + { + "start": 40345.74, + "end": 40352.76, + "probability": 0.9785 + }, + { + "start": 40353.84, + "end": 40356.07, + "probability": 0.7492 + }, + { + "start": 40356.4, + "end": 40357.36, + "probability": 0.9834 + }, + { + "start": 40357.76, + "end": 40359.2, + "probability": 0.8727 + }, + { + "start": 40359.76, + "end": 40365.38, + "probability": 0.9565 + }, + { + "start": 40366.44, + "end": 40366.88, + "probability": 0.8071 + }, + { + "start": 40368.3, + "end": 40371.06, + "probability": 0.9853 + }, + { + "start": 40371.6, + "end": 40373.5, + "probability": 0.8191 + }, + { + "start": 40373.78, + "end": 40374.58, + "probability": 0.7793 + }, + { + "start": 40375.2, + "end": 40380.1, + "probability": 0.9891 + }, + { + "start": 40380.56, + "end": 40382.0, + "probability": 0.7318 + }, + { + "start": 40382.18, + "end": 40382.68, + "probability": 0.8297 + }, + { + "start": 40383.1, + "end": 40384.24, + "probability": 0.9255 + }, + { + "start": 40386.46, + "end": 40388.0, + "probability": 0.926 + }, + { + "start": 40388.18, + "end": 40390.88, + "probability": 0.9409 + }, + { + "start": 40391.7, + "end": 40392.86, + "probability": 0.7851 + }, + { + "start": 40394.83, + "end": 40396.9, + "probability": 0.3298 + }, + { + "start": 40396.9, + "end": 40399.08, + "probability": 0.9691 + }, + { + "start": 40399.7, + "end": 40400.28, + "probability": 0.5898 + }, + { + "start": 40400.86, + "end": 40402.14, + "probability": 0.8577 + }, + { + "start": 40402.66, + "end": 40403.46, + "probability": 0.9831 + }, + { + "start": 40404.4, + "end": 40407.16, + "probability": 0.9583 + }, + { + "start": 40407.26, + "end": 40409.38, + "probability": 0.665 + }, + { + "start": 40410.3, + "end": 40411.32, + "probability": 0.2897 + }, + { + "start": 40412.1, + "end": 40413.54, + "probability": 0.9363 + }, + { + "start": 40414.66, + "end": 40416.74, + "probability": 0.8794 + }, + { + "start": 40417.36, + "end": 40418.54, + "probability": 0.9954 + }, + { + "start": 40418.58, + "end": 40420.44, + "probability": 0.9868 + }, + { + "start": 40421.22, + "end": 40422.38, + "probability": 0.7088 + }, + { + "start": 40422.96, + "end": 40423.6, + "probability": 0.5422 + }, + { + "start": 40425.4, + "end": 40429.0, + "probability": 0.9398 + }, + { + "start": 40429.16, + "end": 40431.88, + "probability": 0.9774 + }, + { + "start": 40431.98, + "end": 40432.78, + "probability": 0.8707 + }, + { + "start": 40433.18, + "end": 40435.9, + "probability": 0.8907 + }, + { + "start": 40436.4, + "end": 40437.04, + "probability": 0.5411 + }, + { + "start": 40437.58, + "end": 40439.86, + "probability": 0.9575 + }, + { + "start": 40439.96, + "end": 40443.12, + "probability": 0.8135 + }, + { + "start": 40443.96, + "end": 40444.42, + "probability": 0.7092 + }, + { + "start": 40444.98, + "end": 40449.14, + "probability": 0.9615 + }, + { + "start": 40450.0, + "end": 40450.34, + "probability": 0.8313 + }, + { + "start": 40450.4, + "end": 40451.06, + "probability": 0.8883 + }, + { + "start": 40451.48, + "end": 40452.68, + "probability": 0.91 + }, + { + "start": 40452.82, + "end": 40454.48, + "probability": 0.7974 + }, + { + "start": 40454.86, + "end": 40459.37, + "probability": 0.9263 + }, + { + "start": 40460.46, + "end": 40464.36, + "probability": 0.9672 + }, + { + "start": 40465.1, + "end": 40466.78, + "probability": 0.921 + }, + { + "start": 40468.12, + "end": 40470.26, + "probability": 0.8125 + }, + { + "start": 40470.52, + "end": 40472.88, + "probability": 0.8408 + }, + { + "start": 40473.02, + "end": 40473.26, + "probability": 0.765 + }, + { + "start": 40473.94, + "end": 40476.66, + "probability": 0.8219 + }, + { + "start": 40477.34, + "end": 40478.88, + "probability": 0.873 + }, + { + "start": 40479.68, + "end": 40480.64, + "probability": 0.7832 + }, + { + "start": 40480.72, + "end": 40484.3, + "probability": 0.9294 + }, + { + "start": 40484.44, + "end": 40486.34, + "probability": 0.6561 + }, + { + "start": 40487.06, + "end": 40492.6, + "probability": 0.8459 + }, + { + "start": 40493.16, + "end": 40495.9, + "probability": 0.6265 + }, + { + "start": 40496.48, + "end": 40499.02, + "probability": 0.8479 + }, + { + "start": 40499.62, + "end": 40501.08, + "probability": 0.8121 + }, + { + "start": 40501.82, + "end": 40501.82, + "probability": 0.4724 + }, + { + "start": 40501.82, + "end": 40507.24, + "probability": 0.9057 + }, + { + "start": 40508.01, + "end": 40509.28, + "probability": 0.799 + }, + { + "start": 40509.5, + "end": 40510.86, + "probability": 0.9971 + }, + { + "start": 40510.94, + "end": 40513.8, + "probability": 0.8283 + }, + { + "start": 40513.8, + "end": 40513.98, + "probability": 0.7811 + }, + { + "start": 40514.1, + "end": 40516.7, + "probability": 0.9897 + }, + { + "start": 40517.24, + "end": 40517.88, + "probability": 0.9372 + }, + { + "start": 40517.88, + "end": 40519.02, + "probability": 0.9801 + }, + { + "start": 40519.08, + "end": 40519.98, + "probability": 0.9238 + }, + { + "start": 40520.08, + "end": 40521.42, + "probability": 0.9507 + }, + { + "start": 40522.72, + "end": 40523.2, + "probability": 0.9135 + }, + { + "start": 40523.64, + "end": 40525.02, + "probability": 0.7904 + }, + { + "start": 40525.32, + "end": 40525.62, + "probability": 0.9094 + }, + { + "start": 40526.32, + "end": 40527.58, + "probability": 0.6536 + }, + { + "start": 40527.74, + "end": 40528.06, + "probability": 0.6691 + }, + { + "start": 40528.36, + "end": 40529.52, + "probability": 0.8033 + }, + { + "start": 40529.66, + "end": 40531.78, + "probability": 0.9926 + }, + { + "start": 40531.9, + "end": 40532.5, + "probability": 0.769 + }, + { + "start": 40532.7, + "end": 40533.38, + "probability": 0.859 + }, + { + "start": 40533.86, + "end": 40534.02, + "probability": 0.6844 + }, + { + "start": 40534.02, + "end": 40534.12, + "probability": 0.4983 + }, + { + "start": 40535.34, + "end": 40535.98, + "probability": 0.8798 + }, + { + "start": 40538.88, + "end": 40540.06, + "probability": 0.3963 + }, + { + "start": 40540.12, + "end": 40543.58, + "probability": 0.7883 + }, + { + "start": 40545.04, + "end": 40548.0, + "probability": 0.9307 + }, + { + "start": 40548.62, + "end": 40549.86, + "probability": 0.6409 + } + ], + "segments_count": 14078, + "words_count": 67393, + "avg_words_per_segment": 4.7871, + "avg_segment_duration": 1.9095, + "avg_words_per_minute": 99.5517, + "plenum_id": "102413", + "duration": 40617.9, + "title": null, + "plenum_date": "2021-12-08" +} \ No newline at end of file