diff --git "a/107579/metadata.json" "b/107579/metadata.json" new file mode 100644--- /dev/null +++ "b/107579/metadata.json" @@ -0,0 +1,70567 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "107579", + "quality_score": 0.9008, + "per_segment_quality_scores": [ + { + "start": 61.7, + "end": 63.32, + "probability": 0.0214 + }, + { + "start": 63.32, + "end": 64.08, + "probability": 0.1032 + }, + { + "start": 64.82, + "end": 69.23, + "probability": 0.2785 + }, + { + "start": 74.54, + "end": 75.44, + "probability": 0.08 + }, + { + "start": 75.44, + "end": 75.44, + "probability": 0.2494 + }, + { + "start": 75.44, + "end": 77.98, + "probability": 0.1316 + }, + { + "start": 77.98, + "end": 86.3, + "probability": 0.0253 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 125.76, + "end": 129.0, + "probability": 0.4353 + }, + { + "start": 130.8, + "end": 133.38, + "probability": 0.7879 + }, + { + "start": 134.42, + "end": 137.68, + "probability": 0.993 + }, + { + "start": 137.74, + "end": 142.94, + "probability": 0.996 + }, + { + "start": 143.3, + "end": 148.46, + "probability": 0.9913 + }, + { + "start": 149.04, + "end": 154.04, + "probability": 0.9944 + }, + { + "start": 154.42, + "end": 154.76, + "probability": 0.6891 + }, + { + "start": 156.28, + "end": 158.6, + "probability": 0.882 + }, + { + "start": 158.98, + "end": 166.32, + "probability": 0.9958 + }, + { + "start": 175.08, + "end": 177.78, + "probability": 0.7798 + }, + { + "start": 178.2, + "end": 180.12, + "probability": 0.9993 + }, + { + "start": 180.82, + "end": 183.5, + "probability": 0.9963 + }, + { + "start": 184.92, + "end": 188.96, + "probability": 0.996 + }, + { + "start": 189.68, + "end": 190.66, + "probability": 0.9882 + }, + { + "start": 191.66, + "end": 196.74, + "probability": 0.9915 + }, + { + "start": 197.86, + "end": 199.74, + "probability": 0.9462 + }, + { + "start": 200.4, + "end": 204.1, + "probability": 0.9883 + }, + { + "start": 205.86, + "end": 207.45, + "probability": 0.4358 + }, + { + "start": 208.34, + "end": 209.14, + "probability": 0.7711 + }, + { + "start": 209.88, + "end": 214.04, + "probability": 0.9701 + }, + { + "start": 215.0, + "end": 216.28, + "probability": 0.9706 + }, + { + "start": 217.04, + "end": 221.55, + "probability": 0.98 + }, + { + "start": 222.2, + "end": 223.98, + "probability": 0.9849 + }, + { + "start": 224.06, + "end": 224.76, + "probability": 0.8528 + }, + { + "start": 225.14, + "end": 225.5, + "probability": 0.603 + }, + { + "start": 225.6, + "end": 226.74, + "probability": 0.9689 + }, + { + "start": 227.96, + "end": 229.6, + "probability": 0.8616 + }, + { + "start": 230.14, + "end": 231.32, + "probability": 0.9912 + }, + { + "start": 231.84, + "end": 232.77, + "probability": 0.9945 + }, + { + "start": 233.42, + "end": 234.94, + "probability": 0.9974 + }, + { + "start": 235.28, + "end": 236.32, + "probability": 0.9914 + }, + { + "start": 236.4, + "end": 238.58, + "probability": 0.9652 + }, + { + "start": 238.84, + "end": 239.26, + "probability": 0.0801 + }, + { + "start": 240.4, + "end": 241.07, + "probability": 0.1086 + }, + { + "start": 241.7, + "end": 242.2, + "probability": 0.2091 + }, + { + "start": 243.36, + "end": 244.4, + "probability": 0.9985 + }, + { + "start": 247.4, + "end": 249.66, + "probability": 0.9705 + }, + { + "start": 250.24, + "end": 251.1, + "probability": 0.9917 + }, + { + "start": 251.3, + "end": 254.0, + "probability": 0.8884 + }, + { + "start": 254.5, + "end": 255.2, + "probability": 0.2242 + }, + { + "start": 257.04, + "end": 258.3, + "probability": 0.9873 + }, + { + "start": 258.82, + "end": 264.86, + "probability": 0.9724 + }, + { + "start": 265.52, + "end": 267.12, + "probability": 0.998 + }, + { + "start": 267.76, + "end": 269.4, + "probability": 0.9915 + }, + { + "start": 270.04, + "end": 273.85, + "probability": 0.9951 + }, + { + "start": 275.2, + "end": 278.06, + "probability": 0.9995 + }, + { + "start": 279.06, + "end": 280.54, + "probability": 0.9992 + }, + { + "start": 281.16, + "end": 283.92, + "probability": 0.9915 + }, + { + "start": 284.44, + "end": 285.44, + "probability": 0.7932 + }, + { + "start": 286.0, + "end": 288.62, + "probability": 0.8892 + }, + { + "start": 289.38, + "end": 291.8, + "probability": 0.6523 + }, + { + "start": 292.42, + "end": 292.42, + "probability": 0.2798 + }, + { + "start": 292.42, + "end": 295.7, + "probability": 0.9691 + }, + { + "start": 296.18, + "end": 300.42, + "probability": 0.9985 + }, + { + "start": 300.94, + "end": 303.0, + "probability": 0.9986 + }, + { + "start": 303.48, + "end": 304.54, + "probability": 0.756 + }, + { + "start": 306.7, + "end": 310.24, + "probability": 0.9944 + }, + { + "start": 311.06, + "end": 316.36, + "probability": 0.9988 + }, + { + "start": 316.36, + "end": 321.5, + "probability": 0.9938 + }, + { + "start": 323.47, + "end": 325.84, + "probability": 0.9982 + }, + { + "start": 326.98, + "end": 331.6, + "probability": 0.9951 + }, + { + "start": 331.82, + "end": 336.24, + "probability": 0.9915 + }, + { + "start": 337.14, + "end": 339.1, + "probability": 0.9434 + }, + { + "start": 340.2, + "end": 345.78, + "probability": 0.866 + }, + { + "start": 346.3, + "end": 349.34, + "probability": 0.9997 + }, + { + "start": 349.96, + "end": 352.22, + "probability": 0.7775 + }, + { + "start": 355.27, + "end": 359.9, + "probability": 0.6553 + }, + { + "start": 360.24, + "end": 361.88, + "probability": 0.9897 + }, + { + "start": 363.06, + "end": 363.92, + "probability": 0.8071 + }, + { + "start": 364.82, + "end": 366.16, + "probability": 0.9859 + }, + { + "start": 366.26, + "end": 368.58, + "probability": 0.9634 + }, + { + "start": 370.32, + "end": 372.4, + "probability": 0.8818 + }, + { + "start": 373.12, + "end": 373.9, + "probability": 0.5802 + }, + { + "start": 374.34, + "end": 375.22, + "probability": 0.8718 + }, + { + "start": 375.38, + "end": 378.28, + "probability": 0.9165 + }, + { + "start": 378.32, + "end": 378.58, + "probability": 0.7492 + }, + { + "start": 378.66, + "end": 379.48, + "probability": 0.6705 + }, + { + "start": 379.58, + "end": 382.06, + "probability": 0.7743 + }, + { + "start": 383.14, + "end": 385.32, + "probability": 0.9795 + }, + { + "start": 385.94, + "end": 386.26, + "probability": 0.7922 + }, + { + "start": 386.78, + "end": 388.48, + "probability": 0.9468 + }, + { + "start": 389.18, + "end": 389.46, + "probability": 0.8965 + }, + { + "start": 389.52, + "end": 392.7, + "probability": 0.9229 + }, + { + "start": 393.14, + "end": 395.53, + "probability": 0.9766 + }, + { + "start": 397.42, + "end": 400.62, + "probability": 0.9782 + }, + { + "start": 401.08, + "end": 403.88, + "probability": 0.9341 + }, + { + "start": 404.36, + "end": 410.06, + "probability": 0.9759 + }, + { + "start": 410.74, + "end": 412.72, + "probability": 0.9783 + }, + { + "start": 413.36, + "end": 416.4, + "probability": 0.9957 + }, + { + "start": 417.26, + "end": 419.24, + "probability": 0.9922 + }, + { + "start": 419.4, + "end": 421.7, + "probability": 0.9722 + }, + { + "start": 422.24, + "end": 426.76, + "probability": 0.9538 + }, + { + "start": 427.64, + "end": 432.8, + "probability": 0.9955 + }, + { + "start": 433.76, + "end": 439.28, + "probability": 0.9628 + }, + { + "start": 440.04, + "end": 443.9, + "probability": 0.9296 + }, + { + "start": 444.62, + "end": 454.48, + "probability": 0.9912 + }, + { + "start": 455.66, + "end": 458.54, + "probability": 0.6797 + }, + { + "start": 458.7, + "end": 461.6, + "probability": 0.9983 + }, + { + "start": 461.6, + "end": 463.66, + "probability": 0.9915 + }, + { + "start": 464.64, + "end": 468.12, + "probability": 0.9138 + }, + { + "start": 468.2, + "end": 470.74, + "probability": 0.9978 + }, + { + "start": 471.32, + "end": 472.06, + "probability": 0.6401 + }, + { + "start": 472.22, + "end": 473.8, + "probability": 0.7222 + }, + { + "start": 473.82, + "end": 474.62, + "probability": 0.8861 + }, + { + "start": 475.08, + "end": 475.58, + "probability": 0.6391 + }, + { + "start": 476.24, + "end": 479.3, + "probability": 0.9343 + }, + { + "start": 479.84, + "end": 481.76, + "probability": 0.9966 + }, + { + "start": 482.26, + "end": 484.32, + "probability": 0.741 + }, + { + "start": 484.82, + "end": 485.28, + "probability": 0.6943 + }, + { + "start": 485.9, + "end": 487.48, + "probability": 0.9504 + }, + { + "start": 487.58, + "end": 490.16, + "probability": 0.9491 + }, + { + "start": 490.26, + "end": 494.36, + "probability": 0.9902 + }, + { + "start": 494.96, + "end": 496.48, + "probability": 0.9858 + }, + { + "start": 496.7, + "end": 497.2, + "probability": 0.9158 + }, + { + "start": 497.74, + "end": 502.4, + "probability": 0.9956 + }, + { + "start": 502.5, + "end": 504.8, + "probability": 0.758 + }, + { + "start": 506.69, + "end": 510.0, + "probability": 0.9987 + }, + { + "start": 510.92, + "end": 513.88, + "probability": 0.969 + }, + { + "start": 515.06, + "end": 517.4, + "probability": 0.9277 + }, + { + "start": 518.12, + "end": 521.5, + "probability": 0.9961 + }, + { + "start": 521.5, + "end": 525.4, + "probability": 0.9932 + }, + { + "start": 525.92, + "end": 526.9, + "probability": 0.8989 + }, + { + "start": 527.4, + "end": 528.2, + "probability": 0.9197 + }, + { + "start": 528.4, + "end": 528.9, + "probability": 0.6411 + }, + { + "start": 529.04, + "end": 534.24, + "probability": 0.9871 + }, + { + "start": 534.34, + "end": 536.38, + "probability": 0.7412 + }, + { + "start": 536.38, + "end": 536.62, + "probability": 0.5746 + }, + { + "start": 536.86, + "end": 536.9, + "probability": 0.5743 + }, + { + "start": 536.92, + "end": 537.45, + "probability": 0.6377 + }, + { + "start": 538.1, + "end": 540.14, + "probability": 0.918 + }, + { + "start": 540.22, + "end": 541.34, + "probability": 0.7732 + }, + { + "start": 541.84, + "end": 543.36, + "probability": 0.9429 + }, + { + "start": 546.72, + "end": 549.88, + "probability": 0.9995 + }, + { + "start": 550.54, + "end": 552.88, + "probability": 0.9857 + }, + { + "start": 553.06, + "end": 553.63, + "probability": 0.8945 + }, + { + "start": 554.34, + "end": 555.42, + "probability": 0.9789 + }, + { + "start": 556.86, + "end": 558.72, + "probability": 0.9989 + }, + { + "start": 560.68, + "end": 562.9, + "probability": 0.7827 + }, + { + "start": 563.34, + "end": 564.36, + "probability": 0.697 + }, + { + "start": 564.88, + "end": 566.16, + "probability": 0.9255 + }, + { + "start": 566.86, + "end": 568.6, + "probability": 0.8621 + }, + { + "start": 568.68, + "end": 570.16, + "probability": 0.9891 + }, + { + "start": 570.62, + "end": 574.0, + "probability": 0.9431 + }, + { + "start": 574.54, + "end": 575.92, + "probability": 0.7795 + }, + { + "start": 576.58, + "end": 577.18, + "probability": 0.9753 + }, + { + "start": 577.9, + "end": 579.38, + "probability": 0.9504 + }, + { + "start": 580.2, + "end": 584.18, + "probability": 0.9477 + }, + { + "start": 584.24, + "end": 586.22, + "probability": 0.9637 + }, + { + "start": 586.36, + "end": 587.51, + "probability": 0.9829 + }, + { + "start": 588.32, + "end": 590.62, + "probability": 0.9279 + }, + { + "start": 591.16, + "end": 593.0, + "probability": 0.9139 + }, + { + "start": 593.32, + "end": 597.44, + "probability": 0.9714 + }, + { + "start": 597.96, + "end": 603.3, + "probability": 0.9268 + }, + { + "start": 605.06, + "end": 605.64, + "probability": 0.6846 + }, + { + "start": 606.18, + "end": 607.32, + "probability": 0.4631 + }, + { + "start": 609.78, + "end": 612.35, + "probability": 0.8755 + }, + { + "start": 612.92, + "end": 617.99, + "probability": 0.9864 + }, + { + "start": 618.24, + "end": 618.6, + "probability": 0.4344 + }, + { + "start": 619.06, + "end": 619.16, + "probability": 0.0571 + }, + { + "start": 619.16, + "end": 620.1, + "probability": 0.8276 + }, + { + "start": 620.1, + "end": 621.1, + "probability": 0.5924 + }, + { + "start": 621.28, + "end": 625.62, + "probability": 0.8013 + }, + { + "start": 625.86, + "end": 627.16, + "probability": 0.9849 + }, + { + "start": 627.78, + "end": 629.3, + "probability": 0.8578 + }, + { + "start": 629.96, + "end": 633.0, + "probability": 0.9905 + }, + { + "start": 633.98, + "end": 635.58, + "probability": 0.8815 + }, + { + "start": 635.68, + "end": 639.0, + "probability": 0.9934 + }, + { + "start": 639.0, + "end": 642.74, + "probability": 0.9341 + }, + { + "start": 643.0, + "end": 644.94, + "probability": 0.7079 + }, + { + "start": 645.6, + "end": 649.36, + "probability": 0.9459 + }, + { + "start": 649.98, + "end": 653.58, + "probability": 0.9789 + }, + { + "start": 654.22, + "end": 654.46, + "probability": 0.7876 + }, + { + "start": 654.94, + "end": 655.77, + "probability": 0.8204 + }, + { + "start": 656.96, + "end": 660.34, + "probability": 0.9866 + }, + { + "start": 660.96, + "end": 662.0, + "probability": 0.9409 + }, + { + "start": 662.52, + "end": 664.86, + "probability": 0.995 + }, + { + "start": 664.92, + "end": 665.76, + "probability": 0.9539 + }, + { + "start": 666.44, + "end": 670.53, + "probability": 0.979 + }, + { + "start": 671.64, + "end": 672.6, + "probability": 0.976 + }, + { + "start": 672.98, + "end": 673.72, + "probability": 0.7219 + }, + { + "start": 673.92, + "end": 676.68, + "probability": 0.995 + }, + { + "start": 677.2, + "end": 680.46, + "probability": 0.9512 + }, + { + "start": 681.42, + "end": 682.7, + "probability": 0.4983 + }, + { + "start": 682.84, + "end": 687.06, + "probability": 0.9824 + }, + { + "start": 687.06, + "end": 691.34, + "probability": 0.96 + }, + { + "start": 691.38, + "end": 693.78, + "probability": 0.8716 + }, + { + "start": 694.12, + "end": 695.24, + "probability": 0.7532 + }, + { + "start": 695.44, + "end": 695.54, + "probability": 0.7973 + }, + { + "start": 697.85, + "end": 701.46, + "probability": 0.8799 + }, + { + "start": 702.02, + "end": 703.42, + "probability": 0.96 + }, + { + "start": 703.96, + "end": 708.04, + "probability": 0.9857 + }, + { + "start": 708.3, + "end": 711.6, + "probability": 0.9812 + }, + { + "start": 711.94, + "end": 714.64, + "probability": 0.8982 + }, + { + "start": 715.4, + "end": 716.42, + "probability": 0.6125 + }, + { + "start": 717.77, + "end": 721.4, + "probability": 0.9917 + }, + { + "start": 722.1, + "end": 722.68, + "probability": 0.9873 + }, + { + "start": 723.68, + "end": 726.18, + "probability": 0.9916 + }, + { + "start": 726.76, + "end": 732.12, + "probability": 0.9958 + }, + { + "start": 732.72, + "end": 735.44, + "probability": 0.9988 + }, + { + "start": 735.44, + "end": 738.1, + "probability": 0.9947 + }, + { + "start": 739.44, + "end": 742.92, + "probability": 0.9955 + }, + { + "start": 743.52, + "end": 745.08, + "probability": 0.7993 + }, + { + "start": 745.8, + "end": 750.25, + "probability": 0.9974 + }, + { + "start": 751.28, + "end": 755.12, + "probability": 0.8826 + }, + { + "start": 755.9, + "end": 759.78, + "probability": 0.965 + }, + { + "start": 759.78, + "end": 764.2, + "probability": 0.9938 + }, + { + "start": 764.7, + "end": 767.08, + "probability": 0.9888 + }, + { + "start": 767.46, + "end": 767.94, + "probability": 0.8728 + }, + { + "start": 768.76, + "end": 770.71, + "probability": 0.9834 + }, + { + "start": 771.8, + "end": 772.96, + "probability": 0.9902 + }, + { + "start": 773.66, + "end": 777.18, + "probability": 0.9956 + }, + { + "start": 777.86, + "end": 778.88, + "probability": 0.9988 + }, + { + "start": 779.46, + "end": 781.26, + "probability": 0.9963 + }, + { + "start": 782.34, + "end": 785.36, + "probability": 0.9241 + }, + { + "start": 785.78, + "end": 790.06, + "probability": 0.9976 + }, + { + "start": 790.36, + "end": 790.52, + "probability": 0.8726 + }, + { + "start": 790.84, + "end": 791.46, + "probability": 0.559 + }, + { + "start": 792.3, + "end": 793.16, + "probability": 0.9119 + }, + { + "start": 793.62, + "end": 796.24, + "probability": 0.9779 + }, + { + "start": 796.36, + "end": 800.2, + "probability": 0.8431 + }, + { + "start": 800.74, + "end": 802.36, + "probability": 0.8865 + }, + { + "start": 802.52, + "end": 805.26, + "probability": 0.9896 + }, + { + "start": 805.4, + "end": 805.8, + "probability": 0.8159 + }, + { + "start": 806.0, + "end": 809.1, + "probability": 0.9982 + }, + { + "start": 809.66, + "end": 811.48, + "probability": 0.9214 + }, + { + "start": 812.2, + "end": 816.52, + "probability": 0.9801 + }, + { + "start": 816.54, + "end": 819.3, + "probability": 0.9961 + }, + { + "start": 819.76, + "end": 822.24, + "probability": 0.9748 + }, + { + "start": 822.3, + "end": 823.8, + "probability": 0.9683 + }, + { + "start": 824.5, + "end": 824.82, + "probability": 0.5313 + }, + { + "start": 825.08, + "end": 829.52, + "probability": 0.9969 + }, + { + "start": 829.98, + "end": 832.36, + "probability": 0.9918 + }, + { + "start": 832.56, + "end": 836.96, + "probability": 0.9866 + }, + { + "start": 837.64, + "end": 838.26, + "probability": 0.8085 + }, + { + "start": 838.92, + "end": 841.44, + "probability": 0.8739 + }, + { + "start": 841.98, + "end": 842.86, + "probability": 0.9892 + }, + { + "start": 844.02, + "end": 844.75, + "probability": 0.7301 + }, + { + "start": 844.92, + "end": 845.7, + "probability": 0.9602 + }, + { + "start": 845.76, + "end": 848.26, + "probability": 0.9721 + }, + { + "start": 848.84, + "end": 851.18, + "probability": 0.9946 + }, + { + "start": 851.82, + "end": 854.32, + "probability": 0.7568 + }, + { + "start": 854.48, + "end": 857.74, + "probability": 0.988 + }, + { + "start": 857.74, + "end": 862.62, + "probability": 0.9826 + }, + { + "start": 863.28, + "end": 868.88, + "probability": 0.9751 + }, + { + "start": 868.88, + "end": 872.6, + "probability": 0.998 + }, + { + "start": 873.3, + "end": 875.08, + "probability": 0.6961 + }, + { + "start": 875.08, + "end": 877.7, + "probability": 0.993 + }, + { + "start": 877.8, + "end": 882.3, + "probability": 0.9964 + }, + { + "start": 882.48, + "end": 884.6, + "probability": 0.9702 + }, + { + "start": 886.08, + "end": 890.0, + "probability": 0.9568 + }, + { + "start": 890.64, + "end": 891.7, + "probability": 0.75 + }, + { + "start": 891.88, + "end": 895.24, + "probability": 0.9619 + }, + { + "start": 896.18, + "end": 898.96, + "probability": 0.9635 + }, + { + "start": 900.0, + "end": 902.7, + "probability": 0.9854 + }, + { + "start": 903.6, + "end": 908.14, + "probability": 0.9974 + }, + { + "start": 908.14, + "end": 912.72, + "probability": 0.9985 + }, + { + "start": 913.86, + "end": 915.1, + "probability": 0.7309 + }, + { + "start": 915.58, + "end": 918.18, + "probability": 0.9668 + }, + { + "start": 918.4, + "end": 920.64, + "probability": 0.991 + }, + { + "start": 921.94, + "end": 923.76, + "probability": 0.9255 + }, + { + "start": 924.28, + "end": 927.92, + "probability": 0.9905 + }, + { + "start": 928.46, + "end": 931.62, + "probability": 0.9047 + }, + { + "start": 931.68, + "end": 934.48, + "probability": 0.9958 + }, + { + "start": 934.48, + "end": 939.0, + "probability": 0.9966 + }, + { + "start": 939.72, + "end": 944.28, + "probability": 0.8006 + }, + { + "start": 944.66, + "end": 946.64, + "probability": 0.9835 + }, + { + "start": 947.18, + "end": 950.66, + "probability": 0.9914 + }, + { + "start": 951.18, + "end": 957.12, + "probability": 0.9916 + }, + { + "start": 957.94, + "end": 960.24, + "probability": 0.9977 + }, + { + "start": 960.78, + "end": 965.08, + "probability": 0.9976 + }, + { + "start": 965.5, + "end": 968.14, + "probability": 0.8605 + }, + { + "start": 968.76, + "end": 970.56, + "probability": 0.9912 + }, + { + "start": 971.21, + "end": 977.4, + "probability": 0.9434 + }, + { + "start": 977.94, + "end": 979.06, + "probability": 0.7387 + }, + { + "start": 979.72, + "end": 983.38, + "probability": 0.9889 + }, + { + "start": 985.08, + "end": 985.74, + "probability": 0.6254 + }, + { + "start": 986.28, + "end": 987.52, + "probability": 0.8704 + }, + { + "start": 987.56, + "end": 988.08, + "probability": 0.9198 + }, + { + "start": 988.56, + "end": 991.32, + "probability": 0.9845 + }, + { + "start": 991.7, + "end": 993.7, + "probability": 0.7998 + }, + { + "start": 993.98, + "end": 994.96, + "probability": 0.9117 + }, + { + "start": 995.14, + "end": 999.04, + "probability": 0.9801 + }, + { + "start": 999.52, + "end": 1002.48, + "probability": 0.8294 + }, + { + "start": 1002.9, + "end": 1003.9, + "probability": 0.9751 + }, + { + "start": 1004.88, + "end": 1006.7, + "probability": 0.999 + }, + { + "start": 1006.7, + "end": 1008.88, + "probability": 0.9951 + }, + { + "start": 1009.04, + "end": 1013.58, + "probability": 0.9951 + }, + { + "start": 1014.04, + "end": 1014.76, + "probability": 0.5936 + }, + { + "start": 1014.82, + "end": 1017.84, + "probability": 0.9771 + }, + { + "start": 1017.94, + "end": 1021.67, + "probability": 0.9233 + }, + { + "start": 1022.44, + "end": 1025.78, + "probability": 0.948 + }, + { + "start": 1026.28, + "end": 1027.6, + "probability": 0.9054 + }, + { + "start": 1028.08, + "end": 1030.5, + "probability": 0.9683 + }, + { + "start": 1030.5, + "end": 1033.2, + "probability": 0.9899 + }, + { + "start": 1033.88, + "end": 1039.3, + "probability": 0.9855 + }, + { + "start": 1039.66, + "end": 1044.04, + "probability": 0.9972 + }, + { + "start": 1044.52, + "end": 1047.6, + "probability": 0.9995 + }, + { + "start": 1047.68, + "end": 1048.16, + "probability": 0.9574 + }, + { + "start": 1048.76, + "end": 1050.88, + "probability": 0.9686 + }, + { + "start": 1051.92, + "end": 1055.9, + "probability": 0.976 + }, + { + "start": 1056.32, + "end": 1056.82, + "probability": 0.7727 + }, + { + "start": 1057.14, + "end": 1059.14, + "probability": 0.5823 + }, + { + "start": 1059.76, + "end": 1062.42, + "probability": 0.9427 + }, + { + "start": 1063.48, + "end": 1065.12, + "probability": 0.7282 + }, + { + "start": 1065.58, + "end": 1066.14, + "probability": 0.867 + }, + { + "start": 1067.42, + "end": 1072.78, + "probability": 0.939 + }, + { + "start": 1075.74, + "end": 1080.48, + "probability": 0.9736 + }, + { + "start": 1081.06, + "end": 1083.66, + "probability": 0.9878 + }, + { + "start": 1084.5, + "end": 1088.74, + "probability": 0.9618 + }, + { + "start": 1088.92, + "end": 1091.58, + "probability": 0.9741 + }, + { + "start": 1092.8, + "end": 1093.82, + "probability": 0.5321 + }, + { + "start": 1094.85, + "end": 1099.22, + "probability": 0.9291 + }, + { + "start": 1099.34, + "end": 1100.72, + "probability": 0.9705 + }, + { + "start": 1101.82, + "end": 1103.06, + "probability": 0.9337 + }, + { + "start": 1103.2, + "end": 1107.22, + "probability": 0.9866 + }, + { + "start": 1107.82, + "end": 1108.82, + "probability": 0.9723 + }, + { + "start": 1108.96, + "end": 1110.8, + "probability": 0.9766 + }, + { + "start": 1110.86, + "end": 1111.82, + "probability": 0.5726 + }, + { + "start": 1111.94, + "end": 1113.02, + "probability": 0.8275 + }, + { + "start": 1113.7, + "end": 1115.55, + "probability": 0.9923 + }, + { + "start": 1116.44, + "end": 1118.24, + "probability": 0.9847 + }, + { + "start": 1119.2, + "end": 1120.64, + "probability": 0.9932 + }, + { + "start": 1121.66, + "end": 1121.96, + "probability": 0.499 + }, + { + "start": 1122.52, + "end": 1123.02, + "probability": 0.4975 + }, + { + "start": 1123.12, + "end": 1126.29, + "probability": 0.9873 + }, + { + "start": 1127.5, + "end": 1131.46, + "probability": 0.8272 + }, + { + "start": 1131.84, + "end": 1133.02, + "probability": 0.9049 + }, + { + "start": 1133.68, + "end": 1137.14, + "probability": 0.9718 + }, + { + "start": 1137.74, + "end": 1140.34, + "probability": 0.5707 + }, + { + "start": 1140.34, + "end": 1141.38, + "probability": 0.1915 + }, + { + "start": 1141.38, + "end": 1142.58, + "probability": 0.5168 + }, + { + "start": 1142.7, + "end": 1144.5, + "probability": 0.9048 + }, + { + "start": 1144.96, + "end": 1149.68, + "probability": 0.9829 + }, + { + "start": 1150.48, + "end": 1154.52, + "probability": 0.979 + }, + { + "start": 1155.92, + "end": 1158.02, + "probability": 0.9973 + }, + { + "start": 1158.56, + "end": 1160.14, + "probability": 0.9297 + }, + { + "start": 1160.24, + "end": 1161.18, + "probability": 0.9 + }, + { + "start": 1161.36, + "end": 1161.54, + "probability": 0.7706 + }, + { + "start": 1162.0, + "end": 1165.52, + "probability": 0.9728 + }, + { + "start": 1165.82, + "end": 1166.76, + "probability": 0.7932 + }, + { + "start": 1167.98, + "end": 1171.18, + "probability": 0.8899 + }, + { + "start": 1171.34, + "end": 1171.66, + "probability": 0.8364 + }, + { + "start": 1172.02, + "end": 1178.0, + "probability": 0.9386 + }, + { + "start": 1178.56, + "end": 1180.08, + "probability": 0.9579 + }, + { + "start": 1180.74, + "end": 1184.62, + "probability": 0.9939 + }, + { + "start": 1184.62, + "end": 1187.36, + "probability": 0.9991 + }, + { + "start": 1187.9, + "end": 1189.68, + "probability": 0.6603 + }, + { + "start": 1190.36, + "end": 1195.08, + "probability": 0.9963 + }, + { + "start": 1195.2, + "end": 1195.9, + "probability": 0.9854 + }, + { + "start": 1196.34, + "end": 1197.04, + "probability": 0.5314 + }, + { + "start": 1197.12, + "end": 1197.58, + "probability": 0.6021 + }, + { + "start": 1198.12, + "end": 1198.54, + "probability": 0.8373 + }, + { + "start": 1204.0, + "end": 1208.94, + "probability": 0.9824 + }, + { + "start": 1210.1, + "end": 1212.92, + "probability": 0.7255 + }, + { + "start": 1214.37, + "end": 1217.62, + "probability": 0.8389 + }, + { + "start": 1217.86, + "end": 1219.45, + "probability": 0.9822 + }, + { + "start": 1220.22, + "end": 1221.24, + "probability": 0.9839 + }, + { + "start": 1221.76, + "end": 1223.36, + "probability": 0.8295 + }, + { + "start": 1224.02, + "end": 1224.68, + "probability": 0.7454 + }, + { + "start": 1224.82, + "end": 1227.48, + "probability": 0.8532 + }, + { + "start": 1229.56, + "end": 1231.72, + "probability": 0.6062 + }, + { + "start": 1232.4, + "end": 1234.52, + "probability": 0.7397 + }, + { + "start": 1234.7, + "end": 1235.82, + "probability": 0.9795 + }, + { + "start": 1236.24, + "end": 1237.64, + "probability": 0.8028 + }, + { + "start": 1237.68, + "end": 1238.34, + "probability": 0.7462 + }, + { + "start": 1238.56, + "end": 1238.68, + "probability": 0.5909 + }, + { + "start": 1239.6, + "end": 1242.36, + "probability": 0.998 + }, + { + "start": 1243.0, + "end": 1244.28, + "probability": 0.5235 + }, + { + "start": 1244.96, + "end": 1248.92, + "probability": 0.9866 + }, + { + "start": 1249.0, + "end": 1252.12, + "probability": 0.9253 + }, + { + "start": 1252.78, + "end": 1254.56, + "probability": 0.7545 + }, + { + "start": 1254.66, + "end": 1256.44, + "probability": 0.8776 + }, + { + "start": 1257.34, + "end": 1260.54, + "probability": 0.9515 + }, + { + "start": 1260.7, + "end": 1261.7, + "probability": 0.4905 + }, + { + "start": 1262.24, + "end": 1264.28, + "probability": 0.9393 + }, + { + "start": 1264.46, + "end": 1265.6, + "probability": 0.9487 + }, + { + "start": 1265.76, + "end": 1267.44, + "probability": 0.6259 + }, + { + "start": 1268.34, + "end": 1270.52, + "probability": 0.9746 + }, + { + "start": 1270.94, + "end": 1271.78, + "probability": 0.9047 + }, + { + "start": 1272.24, + "end": 1273.62, + "probability": 0.8213 + }, + { + "start": 1273.76, + "end": 1278.42, + "probability": 0.93 + }, + { + "start": 1278.52, + "end": 1280.38, + "probability": 0.9875 + }, + { + "start": 1280.98, + "end": 1282.08, + "probability": 0.7462 + }, + { + "start": 1282.82, + "end": 1287.42, + "probability": 0.9612 + }, + { + "start": 1287.66, + "end": 1288.65, + "probability": 0.9927 + }, + { + "start": 1289.42, + "end": 1291.88, + "probability": 0.962 + }, + { + "start": 1292.52, + "end": 1294.3, + "probability": 0.9962 + }, + { + "start": 1294.4, + "end": 1295.05, + "probability": 0.9123 + }, + { + "start": 1295.46, + "end": 1295.82, + "probability": 0.8673 + }, + { + "start": 1296.0, + "end": 1296.62, + "probability": 0.9375 + }, + { + "start": 1296.68, + "end": 1297.42, + "probability": 0.5002 + }, + { + "start": 1297.72, + "end": 1299.62, + "probability": 0.9165 + }, + { + "start": 1299.96, + "end": 1302.7, + "probability": 0.7499 + }, + { + "start": 1305.18, + "end": 1308.18, + "probability": 0.5505 + }, + { + "start": 1308.48, + "end": 1310.61, + "probability": 0.4292 + }, + { + "start": 1317.54, + "end": 1318.16, + "probability": 0.6867 + }, + { + "start": 1318.82, + "end": 1320.54, + "probability": 0.5848 + }, + { + "start": 1322.1, + "end": 1326.5, + "probability": 0.9893 + }, + { + "start": 1327.7, + "end": 1329.88, + "probability": 0.9847 + }, + { + "start": 1330.88, + "end": 1331.66, + "probability": 0.9996 + }, + { + "start": 1332.4, + "end": 1336.92, + "probability": 0.9746 + }, + { + "start": 1337.7, + "end": 1342.02, + "probability": 0.9913 + }, + { + "start": 1342.64, + "end": 1343.84, + "probability": 0.6855 + }, + { + "start": 1344.52, + "end": 1345.48, + "probability": 0.8699 + }, + { + "start": 1346.58, + "end": 1350.58, + "probability": 0.8786 + }, + { + "start": 1351.22, + "end": 1352.06, + "probability": 0.9082 + }, + { + "start": 1352.76, + "end": 1355.78, + "probability": 0.9904 + }, + { + "start": 1355.8, + "end": 1356.68, + "probability": 0.7338 + }, + { + "start": 1357.78, + "end": 1359.67, + "probability": 0.8503 + }, + { + "start": 1361.74, + "end": 1362.58, + "probability": 0.8413 + }, + { + "start": 1362.68, + "end": 1364.74, + "probability": 0.9187 + }, + { + "start": 1365.3, + "end": 1367.82, + "probability": 0.9816 + }, + { + "start": 1368.82, + "end": 1372.38, + "probability": 0.963 + }, + { + "start": 1372.58, + "end": 1373.96, + "probability": 0.9421 + }, + { + "start": 1374.04, + "end": 1377.06, + "probability": 0.7772 + }, + { + "start": 1377.38, + "end": 1377.94, + "probability": 0.6839 + }, + { + "start": 1379.25, + "end": 1386.22, + "probability": 0.7435 + }, + { + "start": 1386.52, + "end": 1386.68, + "probability": 0.051 + }, + { + "start": 1386.68, + "end": 1386.68, + "probability": 0.0639 + }, + { + "start": 1386.68, + "end": 1387.5, + "probability": 0.9756 + }, + { + "start": 1388.82, + "end": 1389.24, + "probability": 0.8805 + }, + { + "start": 1389.82, + "end": 1395.22, + "probability": 0.9438 + }, + { + "start": 1396.28, + "end": 1399.4, + "probability": 0.9895 + }, + { + "start": 1400.0, + "end": 1400.46, + "probability": 0.7631 + }, + { + "start": 1400.58, + "end": 1401.72, + "probability": 0.8003 + }, + { + "start": 1402.06, + "end": 1404.78, + "probability": 0.9721 + }, + { + "start": 1405.12, + "end": 1408.48, + "probability": 0.9065 + }, + { + "start": 1408.74, + "end": 1410.22, + "probability": 0.8839 + }, + { + "start": 1410.42, + "end": 1410.68, + "probability": 0.696 + }, + { + "start": 1411.38, + "end": 1411.76, + "probability": 0.7756 + }, + { + "start": 1412.2, + "end": 1412.58, + "probability": 0.8121 + }, + { + "start": 1413.23, + "end": 1417.3, + "probability": 0.9435 + }, + { + "start": 1417.48, + "end": 1418.28, + "probability": 0.973 + }, + { + "start": 1418.88, + "end": 1422.0, + "probability": 0.9962 + }, + { + "start": 1422.52, + "end": 1424.7, + "probability": 0.9821 + }, + { + "start": 1424.76, + "end": 1426.76, + "probability": 0.9962 + }, + { + "start": 1427.82, + "end": 1428.36, + "probability": 0.9968 + }, + { + "start": 1429.08, + "end": 1430.04, + "probability": 0.9948 + }, + { + "start": 1430.6, + "end": 1434.14, + "probability": 0.9746 + }, + { + "start": 1434.66, + "end": 1438.39, + "probability": 0.9959 + }, + { + "start": 1438.8, + "end": 1439.16, + "probability": 0.4045 + }, + { + "start": 1439.28, + "end": 1441.2, + "probability": 0.9868 + }, + { + "start": 1442.18, + "end": 1444.98, + "probability": 0.9955 + }, + { + "start": 1445.88, + "end": 1450.3, + "probability": 0.9996 + }, + { + "start": 1450.3, + "end": 1453.88, + "probability": 0.9995 + }, + { + "start": 1455.1, + "end": 1458.75, + "probability": 0.9823 + }, + { + "start": 1459.44, + "end": 1461.96, + "probability": 0.9961 + }, + { + "start": 1463.72, + "end": 1465.4, + "probability": 0.8937 + }, + { + "start": 1465.68, + "end": 1466.34, + "probability": 0.8538 + }, + { + "start": 1466.66, + "end": 1467.18, + "probability": 0.7734 + }, + { + "start": 1467.44, + "end": 1467.98, + "probability": 0.8042 + }, + { + "start": 1468.82, + "end": 1469.48, + "probability": 0.824 + }, + { + "start": 1469.54, + "end": 1471.7, + "probability": 0.9902 + }, + { + "start": 1472.46, + "end": 1473.46, + "probability": 0.9341 + }, + { + "start": 1474.46, + "end": 1476.52, + "probability": 0.7578 + }, + { + "start": 1477.24, + "end": 1479.94, + "probability": 0.9679 + }, + { + "start": 1480.1, + "end": 1480.78, + "probability": 0.901 + }, + { + "start": 1480.9, + "end": 1482.69, + "probability": 0.9536 + }, + { + "start": 1483.56, + "end": 1484.96, + "probability": 0.9155 + }, + { + "start": 1485.02, + "end": 1486.28, + "probability": 0.7648 + }, + { + "start": 1487.46, + "end": 1489.48, + "probability": 0.7052 + }, + { + "start": 1490.86, + "end": 1492.86, + "probability": 0.7911 + }, + { + "start": 1493.34, + "end": 1496.26, + "probability": 0.949 + }, + { + "start": 1496.82, + "end": 1499.66, + "probability": 0.9702 + }, + { + "start": 1500.6, + "end": 1501.22, + "probability": 0.9935 + }, + { + "start": 1502.0, + "end": 1506.0, + "probability": 0.9258 + }, + { + "start": 1506.16, + "end": 1507.2, + "probability": 0.9805 + }, + { + "start": 1507.22, + "end": 1507.88, + "probability": 0.976 + }, + { + "start": 1509.24, + "end": 1510.95, + "probability": 0.9905 + }, + { + "start": 1511.72, + "end": 1514.3, + "probability": 0.9858 + }, + { + "start": 1514.38, + "end": 1514.88, + "probability": 0.8108 + }, + { + "start": 1514.94, + "end": 1515.98, + "probability": 0.9971 + }, + { + "start": 1516.44, + "end": 1517.08, + "probability": 0.8456 + }, + { + "start": 1517.52, + "end": 1518.56, + "probability": 0.7713 + }, + { + "start": 1519.8, + "end": 1521.8, + "probability": 0.9285 + }, + { + "start": 1522.36, + "end": 1524.1, + "probability": 0.9229 + }, + { + "start": 1524.42, + "end": 1525.66, + "probability": 0.9598 + }, + { + "start": 1526.34, + "end": 1528.2, + "probability": 0.9575 + }, + { + "start": 1529.2, + "end": 1532.26, + "probability": 0.9635 + }, + { + "start": 1532.36, + "end": 1533.58, + "probability": 0.9977 + }, + { + "start": 1533.9, + "end": 1536.02, + "probability": 0.8357 + }, + { + "start": 1538.62, + "end": 1541.82, + "probability": 0.919 + }, + { + "start": 1542.46, + "end": 1545.6, + "probability": 0.9557 + }, + { + "start": 1546.2, + "end": 1547.6, + "probability": 0.7649 + }, + { + "start": 1547.62, + "end": 1549.15, + "probability": 0.9902 + }, + { + "start": 1549.38, + "end": 1552.68, + "probability": 0.934 + }, + { + "start": 1552.68, + "end": 1556.32, + "probability": 0.9983 + }, + { + "start": 1556.44, + "end": 1556.68, + "probability": 0.7749 + }, + { + "start": 1557.02, + "end": 1561.72, + "probability": 0.6852 + }, + { + "start": 1562.08, + "end": 1562.08, + "probability": 0.2518 + }, + { + "start": 1562.12, + "end": 1564.2, + "probability": 0.9876 + }, + { + "start": 1564.2, + "end": 1569.28, + "probability": 0.8664 + }, + { + "start": 1570.08, + "end": 1573.12, + "probability": 0.8394 + }, + { + "start": 1573.42, + "end": 1574.56, + "probability": 0.8657 + }, + { + "start": 1574.92, + "end": 1575.6, + "probability": 0.6826 + }, + { + "start": 1575.96, + "end": 1577.08, + "probability": 0.991 + }, + { + "start": 1577.22, + "end": 1577.7, + "probability": 0.9 + }, + { + "start": 1578.22, + "end": 1581.64, + "probability": 0.9623 + }, + { + "start": 1582.04, + "end": 1583.12, + "probability": 0.9402 + }, + { + "start": 1583.62, + "end": 1585.24, + "probability": 0.9418 + }, + { + "start": 1585.76, + "end": 1588.82, + "probability": 0.9959 + }, + { + "start": 1588.86, + "end": 1589.94, + "probability": 0.9348 + }, + { + "start": 1590.48, + "end": 1594.72, + "probability": 0.889 + }, + { + "start": 1595.58, + "end": 1598.94, + "probability": 0.9922 + }, + { + "start": 1599.56, + "end": 1601.8, + "probability": 0.7515 + }, + { + "start": 1602.7, + "end": 1603.32, + "probability": 0.6656 + }, + { + "start": 1603.92, + "end": 1605.07, + "probability": 0.988 + }, + { + "start": 1605.64, + "end": 1608.52, + "probability": 0.9863 + }, + { + "start": 1608.98, + "end": 1609.48, + "probability": 0.8359 + }, + { + "start": 1609.78, + "end": 1610.24, + "probability": 0.9414 + }, + { + "start": 1610.52, + "end": 1613.64, + "probability": 0.9866 + }, + { + "start": 1614.2, + "end": 1615.26, + "probability": 0.9985 + }, + { + "start": 1616.46, + "end": 1621.54, + "probability": 0.998 + }, + { + "start": 1621.7, + "end": 1622.54, + "probability": 0.9556 + }, + { + "start": 1623.1, + "end": 1624.86, + "probability": 0.8599 + }, + { + "start": 1625.2, + "end": 1626.28, + "probability": 0.9227 + }, + { + "start": 1626.44, + "end": 1628.36, + "probability": 0.4428 + }, + { + "start": 1628.54, + "end": 1630.38, + "probability": 0.6541 + }, + { + "start": 1630.4, + "end": 1631.59, + "probability": 0.7529 + }, + { + "start": 1633.04, + "end": 1635.18, + "probability": 0.8582 + }, + { + "start": 1636.1, + "end": 1637.62, + "probability": 0.9513 + }, + { + "start": 1638.54, + "end": 1640.7, + "probability": 0.9331 + }, + { + "start": 1641.78, + "end": 1642.3, + "probability": 0.6754 + }, + { + "start": 1642.3, + "end": 1643.46, + "probability": 0.9185 + }, + { + "start": 1643.74, + "end": 1644.28, + "probability": 0.9341 + }, + { + "start": 1644.36, + "end": 1646.06, + "probability": 0.9424 + }, + { + "start": 1646.47, + "end": 1647.4, + "probability": 0.9933 + }, + { + "start": 1648.0, + "end": 1648.6, + "probability": 0.8387 + }, + { + "start": 1649.2, + "end": 1649.82, + "probability": 0.8253 + }, + { + "start": 1650.1, + "end": 1651.34, + "probability": 0.9711 + }, + { + "start": 1651.44, + "end": 1653.24, + "probability": 0.9709 + }, + { + "start": 1653.24, + "end": 1655.82, + "probability": 0.0157 + }, + { + "start": 1656.44, + "end": 1656.54, + "probability": 0.1588 + }, + { + "start": 1656.54, + "end": 1657.3, + "probability": 0.3522 + }, + { + "start": 1657.4, + "end": 1659.94, + "probability": 0.9317 + }, + { + "start": 1660.1, + "end": 1661.46, + "probability": 0.8425 + }, + { + "start": 1661.66, + "end": 1662.04, + "probability": 0.8198 + }, + { + "start": 1662.2, + "end": 1662.88, + "probability": 0.9417 + }, + { + "start": 1663.06, + "end": 1663.82, + "probability": 0.8258 + }, + { + "start": 1664.04, + "end": 1666.04, + "probability": 0.6704 + }, + { + "start": 1666.52, + "end": 1669.3, + "probability": 0.9423 + }, + { + "start": 1669.5, + "end": 1671.22, + "probability": 0.7729 + }, + { + "start": 1671.48, + "end": 1672.02, + "probability": 0.7346 + }, + { + "start": 1672.76, + "end": 1673.42, + "probability": 0.8079 + }, + { + "start": 1673.52, + "end": 1674.04, + "probability": 0.9082 + }, + { + "start": 1674.2, + "end": 1676.66, + "probability": 0.9834 + }, + { + "start": 1676.7, + "end": 1678.34, + "probability": 0.9822 + }, + { + "start": 1679.22, + "end": 1679.98, + "probability": 0.9427 + }, + { + "start": 1680.78, + "end": 1682.68, + "probability": 0.8654 + }, + { + "start": 1682.8, + "end": 1684.22, + "probability": 0.8201 + }, + { + "start": 1684.82, + "end": 1685.98, + "probability": 0.9512 + }, + { + "start": 1686.12, + "end": 1688.14, + "probability": 0.9631 + }, + { + "start": 1688.28, + "end": 1688.8, + "probability": 0.7069 + }, + { + "start": 1689.38, + "end": 1692.44, + "probability": 0.9326 + }, + { + "start": 1693.8, + "end": 1696.72, + "probability": 0.7123 + }, + { + "start": 1697.6, + "end": 1701.96, + "probability": 0.9913 + }, + { + "start": 1702.58, + "end": 1707.3, + "probability": 0.7718 + }, + { + "start": 1708.52, + "end": 1709.9, + "probability": 0.9469 + }, + { + "start": 1721.68, + "end": 1722.46, + "probability": 0.516 + }, + { + "start": 1723.42, + "end": 1725.1, + "probability": 0.9671 + }, + { + "start": 1726.04, + "end": 1730.22, + "probability": 0.9868 + }, + { + "start": 1730.76, + "end": 1732.16, + "probability": 0.9033 + }, + { + "start": 1733.75, + "end": 1739.22, + "probability": 0.923 + }, + { + "start": 1739.28, + "end": 1739.52, + "probability": 0.3379 + }, + { + "start": 1739.66, + "end": 1745.64, + "probability": 0.9892 + }, + { + "start": 1746.0, + "end": 1746.38, + "probability": 0.8893 + }, + { + "start": 1747.04, + "end": 1748.4, + "probability": 0.8646 + }, + { + "start": 1749.62, + "end": 1750.92, + "probability": 0.5111 + }, + { + "start": 1751.76, + "end": 1753.88, + "probability": 0.7386 + }, + { + "start": 1754.66, + "end": 1756.7, + "probability": 0.9834 + }, + { + "start": 1758.0, + "end": 1761.72, + "probability": 0.9259 + }, + { + "start": 1761.72, + "end": 1765.22, + "probability": 0.9681 + }, + { + "start": 1765.7, + "end": 1766.12, + "probability": 0.5167 + }, + { + "start": 1766.26, + "end": 1767.22, + "probability": 0.8217 + }, + { + "start": 1767.32, + "end": 1767.76, + "probability": 0.8003 + }, + { + "start": 1769.1, + "end": 1769.96, + "probability": 0.9314 + }, + { + "start": 1770.36, + "end": 1772.63, + "probability": 0.9819 + }, + { + "start": 1773.16, + "end": 1776.6, + "probability": 0.9777 + }, + { + "start": 1776.72, + "end": 1780.9, + "probability": 0.8943 + }, + { + "start": 1781.76, + "end": 1784.22, + "probability": 0.6042 + }, + { + "start": 1784.22, + "end": 1786.88, + "probability": 0.9888 + }, + { + "start": 1786.92, + "end": 1788.3, + "probability": 0.975 + }, + { + "start": 1789.68, + "end": 1793.9, + "probability": 0.9946 + }, + { + "start": 1794.7, + "end": 1796.48, + "probability": 0.9819 + }, + { + "start": 1797.14, + "end": 1799.98, + "probability": 0.9453 + }, + { + "start": 1800.8, + "end": 1804.04, + "probability": 0.9588 + }, + { + "start": 1804.04, + "end": 1807.98, + "probability": 0.9984 + }, + { + "start": 1809.3, + "end": 1811.74, + "probability": 0.9952 + }, + { + "start": 1811.92, + "end": 1815.48, + "probability": 0.981 + }, + { + "start": 1816.1, + "end": 1816.6, + "probability": 0.8813 + }, + { + "start": 1816.9, + "end": 1817.78, + "probability": 0.9924 + }, + { + "start": 1817.88, + "end": 1820.36, + "probability": 0.9523 + }, + { + "start": 1820.96, + "end": 1823.1, + "probability": 0.9797 + }, + { + "start": 1823.82, + "end": 1824.84, + "probability": 0.8065 + }, + { + "start": 1825.86, + "end": 1828.52, + "probability": 0.8983 + }, + { + "start": 1829.0, + "end": 1829.16, + "probability": 0.7321 + }, + { + "start": 1829.3, + "end": 1830.16, + "probability": 0.7477 + }, + { + "start": 1830.48, + "end": 1831.48, + "probability": 0.9346 + }, + { + "start": 1831.54, + "end": 1838.74, + "probability": 0.9642 + }, + { + "start": 1838.86, + "end": 1842.26, + "probability": 0.6908 + }, + { + "start": 1842.76, + "end": 1845.76, + "probability": 0.9979 + }, + { + "start": 1846.52, + "end": 1851.56, + "probability": 0.9852 + }, + { + "start": 1851.7, + "end": 1854.68, + "probability": 0.9575 + }, + { + "start": 1855.32, + "end": 1858.4, + "probability": 0.9674 + }, + { + "start": 1858.48, + "end": 1859.7, + "probability": 0.8374 + }, + { + "start": 1860.28, + "end": 1861.28, + "probability": 0.7248 + }, + { + "start": 1861.44, + "end": 1864.78, + "probability": 0.8412 + }, + { + "start": 1864.9, + "end": 1865.76, + "probability": 0.6265 + }, + { + "start": 1866.9, + "end": 1872.48, + "probability": 0.9932 + }, + { + "start": 1872.74, + "end": 1873.8, + "probability": 0.9164 + }, + { + "start": 1874.52, + "end": 1877.14, + "probability": 0.9199 + }, + { + "start": 1879.1, + "end": 1881.48, + "probability": 0.7936 + }, + { + "start": 1881.48, + "end": 1883.78, + "probability": 0.998 + }, + { + "start": 1885.24, + "end": 1890.36, + "probability": 0.8577 + }, + { + "start": 1891.14, + "end": 1894.06, + "probability": 0.953 + }, + { + "start": 1894.74, + "end": 1897.86, + "probability": 0.9797 + }, + { + "start": 1898.14, + "end": 1898.72, + "probability": 0.7193 + }, + { + "start": 1899.64, + "end": 1902.22, + "probability": 0.7796 + }, + { + "start": 1903.22, + "end": 1907.04, + "probability": 0.9077 + }, + { + "start": 1907.58, + "end": 1908.84, + "probability": 0.8731 + }, + { + "start": 1909.62, + "end": 1917.0, + "probability": 0.8032 + }, + { + "start": 1917.1, + "end": 1918.24, + "probability": 0.8631 + }, + { + "start": 1918.86, + "end": 1921.64, + "probability": 0.9529 + }, + { + "start": 1922.52, + "end": 1924.1, + "probability": 0.9909 + }, + { + "start": 1924.92, + "end": 1925.96, + "probability": 0.7223 + }, + { + "start": 1926.06, + "end": 1928.56, + "probability": 0.8809 + }, + { + "start": 1928.66, + "end": 1931.37, + "probability": 0.9964 + }, + { + "start": 1932.58, + "end": 1934.78, + "probability": 0.9478 + }, + { + "start": 1935.04, + "end": 1937.6, + "probability": 0.9005 + }, + { + "start": 1937.64, + "end": 1939.34, + "probability": 0.9267 + }, + { + "start": 1939.98, + "end": 1940.76, + "probability": 0.6096 + }, + { + "start": 1940.82, + "end": 1941.34, + "probability": 0.8439 + }, + { + "start": 1941.82, + "end": 1946.8, + "probability": 0.9666 + }, + { + "start": 1947.1, + "end": 1949.96, + "probability": 0.9842 + }, + { + "start": 1951.14, + "end": 1951.52, + "probability": 0.2478 + }, + { + "start": 1951.64, + "end": 1952.58, + "probability": 0.7832 + }, + { + "start": 1952.74, + "end": 1956.54, + "probability": 0.9858 + }, + { + "start": 1957.8, + "end": 1962.02, + "probability": 0.9858 + }, + { + "start": 1962.78, + "end": 1966.46, + "probability": 0.9939 + }, + { + "start": 1966.46, + "end": 1971.04, + "probability": 0.998 + }, + { + "start": 1971.42, + "end": 1972.39, + "probability": 0.7412 + }, + { + "start": 1973.16, + "end": 1973.74, + "probability": 0.8397 + }, + { + "start": 1974.26, + "end": 1976.08, + "probability": 0.8934 + }, + { + "start": 1976.42, + "end": 1976.42, + "probability": 0.8828 + }, + { + "start": 1977.0, + "end": 1978.18, + "probability": 0.9496 + }, + { + "start": 1978.32, + "end": 1979.09, + "probability": 0.9082 + }, + { + "start": 1979.28, + "end": 1980.68, + "probability": 0.4406 + }, + { + "start": 1981.3, + "end": 1983.5, + "probability": 0.9956 + }, + { + "start": 1983.78, + "end": 1985.18, + "probability": 0.9012 + }, + { + "start": 1985.82, + "end": 1986.78, + "probability": 0.4675 + }, + { + "start": 1986.86, + "end": 1993.9, + "probability": 0.9697 + }, + { + "start": 1994.68, + "end": 1998.92, + "probability": 0.9333 + }, + { + "start": 1999.74, + "end": 2001.72, + "probability": 0.9546 + }, + { + "start": 2002.54, + "end": 2006.42, + "probability": 0.8535 + }, + { + "start": 2007.16, + "end": 2011.98, + "probability": 0.9922 + }, + { + "start": 2012.1, + "end": 2015.32, + "probability": 0.9578 + }, + { + "start": 2015.8, + "end": 2018.99, + "probability": 0.994 + }, + { + "start": 2020.28, + "end": 2023.94, + "probability": 0.8855 + }, + { + "start": 2025.96, + "end": 2029.98, + "probability": 0.9863 + }, + { + "start": 2029.98, + "end": 2032.94, + "probability": 0.9613 + }, + { + "start": 2033.96, + "end": 2034.84, + "probability": 0.9526 + }, + { + "start": 2035.06, + "end": 2038.9, + "probability": 0.9656 + }, + { + "start": 2039.36, + "end": 2040.08, + "probability": 0.9897 + }, + { + "start": 2040.32, + "end": 2040.9, + "probability": 0.8993 + }, + { + "start": 2041.68, + "end": 2046.38, + "probability": 0.9814 + }, + { + "start": 2047.12, + "end": 2048.06, + "probability": 0.8965 + }, + { + "start": 2048.22, + "end": 2048.84, + "probability": 0.9052 + }, + { + "start": 2049.02, + "end": 2051.2, + "probability": 0.9766 + }, + { + "start": 2052.32, + "end": 2056.18, + "probability": 0.9448 + }, + { + "start": 2057.5, + "end": 2058.36, + "probability": 0.8125 + }, + { + "start": 2058.6, + "end": 2059.18, + "probability": 0.9341 + }, + { + "start": 2060.26, + "end": 2064.02, + "probability": 0.9016 + }, + { + "start": 2064.74, + "end": 2065.32, + "probability": 0.7855 + }, + { + "start": 2065.72, + "end": 2068.62, + "probability": 0.9952 + }, + { + "start": 2068.72, + "end": 2070.72, + "probability": 0.7637 + }, + { + "start": 2070.92, + "end": 2075.58, + "probability": 0.9838 + }, + { + "start": 2076.52, + "end": 2079.87, + "probability": 0.9827 + }, + { + "start": 2080.6, + "end": 2083.36, + "probability": 0.9809 + }, + { + "start": 2084.2, + "end": 2088.0, + "probability": 0.9962 + }, + { + "start": 2088.5, + "end": 2089.9, + "probability": 0.9952 + }, + { + "start": 2090.52, + "end": 2093.58, + "probability": 0.9938 + }, + { + "start": 2094.72, + "end": 2099.74, + "probability": 0.9077 + }, + { + "start": 2099.9, + "end": 2100.3, + "probability": 0.6486 + }, + { + "start": 2100.62, + "end": 2102.44, + "probability": 0.9546 + }, + { + "start": 2102.44, + "end": 2105.2, + "probability": 0.9994 + }, + { + "start": 2105.82, + "end": 2109.26, + "probability": 0.7736 + }, + { + "start": 2110.38, + "end": 2114.14, + "probability": 0.7795 + }, + { + "start": 2115.1, + "end": 2116.72, + "probability": 0.9862 + }, + { + "start": 2117.46, + "end": 2119.74, + "probability": 0.7285 + }, + { + "start": 2120.3, + "end": 2123.78, + "probability": 0.9882 + }, + { + "start": 2124.02, + "end": 2125.84, + "probability": 0.9966 + }, + { + "start": 2126.3, + "end": 2127.48, + "probability": 0.9 + }, + { + "start": 2128.14, + "end": 2129.86, + "probability": 0.6294 + }, + { + "start": 2130.74, + "end": 2133.46, + "probability": 0.881 + }, + { + "start": 2134.42, + "end": 2138.34, + "probability": 0.9938 + }, + { + "start": 2139.1, + "end": 2141.24, + "probability": 0.9995 + }, + { + "start": 2142.56, + "end": 2144.4, + "probability": 0.678 + }, + { + "start": 2145.28, + "end": 2152.9, + "probability": 0.9963 + }, + { + "start": 2153.06, + "end": 2154.64, + "probability": 0.9069 + }, + { + "start": 2155.54, + "end": 2157.7, + "probability": 0.608 + }, + { + "start": 2158.74, + "end": 2162.16, + "probability": 0.9103 + }, + { + "start": 2163.32, + "end": 2166.54, + "probability": 0.9633 + }, + { + "start": 2167.42, + "end": 2172.24, + "probability": 0.9065 + }, + { + "start": 2172.46, + "end": 2176.88, + "probability": 0.9857 + }, + { + "start": 2177.62, + "end": 2181.14, + "probability": 0.9978 + }, + { + "start": 2181.24, + "end": 2183.04, + "probability": 0.9054 + }, + { + "start": 2184.06, + "end": 2187.3, + "probability": 0.995 + }, + { + "start": 2187.94, + "end": 2192.1, + "probability": 0.9398 + }, + { + "start": 2192.3, + "end": 2193.4, + "probability": 0.6655 + }, + { + "start": 2194.08, + "end": 2197.66, + "probability": 0.976 + }, + { + "start": 2198.86, + "end": 2201.26, + "probability": 0.9883 + }, + { + "start": 2201.84, + "end": 2203.54, + "probability": 0.888 + }, + { + "start": 2204.58, + "end": 2204.6, + "probability": 0.6735 + }, + { + "start": 2204.6, + "end": 2207.36, + "probability": 0.9849 + }, + { + "start": 2207.88, + "end": 2208.64, + "probability": 0.6692 + }, + { + "start": 2210.28, + "end": 2211.44, + "probability": 0.7862 + }, + { + "start": 2211.86, + "end": 2218.2, + "probability": 0.9819 + }, + { + "start": 2218.82, + "end": 2222.78, + "probability": 0.9939 + }, + { + "start": 2224.22, + "end": 2232.66, + "probability": 0.9788 + }, + { + "start": 2232.72, + "end": 2238.48, + "probability": 0.9924 + }, + { + "start": 2239.28, + "end": 2241.08, + "probability": 0.6106 + }, + { + "start": 2241.78, + "end": 2243.1, + "probability": 0.9355 + }, + { + "start": 2244.04, + "end": 2245.78, + "probability": 0.756 + }, + { + "start": 2246.4, + "end": 2249.54, + "probability": 0.9803 + }, + { + "start": 2253.26, + "end": 2257.41, + "probability": 0.9958 + }, + { + "start": 2257.48, + "end": 2263.54, + "probability": 0.9932 + }, + { + "start": 2264.78, + "end": 2266.74, + "probability": 0.9525 + }, + { + "start": 2266.82, + "end": 2271.48, + "probability": 0.994 + }, + { + "start": 2271.56, + "end": 2272.92, + "probability": 0.9452 + }, + { + "start": 2273.72, + "end": 2279.12, + "probability": 0.9988 + }, + { + "start": 2279.96, + "end": 2284.88, + "probability": 0.9884 + }, + { + "start": 2284.88, + "end": 2290.96, + "probability": 0.9932 + }, + { + "start": 2291.1, + "end": 2292.84, + "probability": 0.96 + }, + { + "start": 2293.56, + "end": 2295.84, + "probability": 0.9612 + }, + { + "start": 2296.36, + "end": 2297.06, + "probability": 0.9145 + }, + { + "start": 2298.08, + "end": 2301.3, + "probability": 0.9894 + }, + { + "start": 2301.9, + "end": 2304.76, + "probability": 0.9881 + }, + { + "start": 2305.5, + "end": 2309.64, + "probability": 0.9797 + }, + { + "start": 2310.2, + "end": 2312.98, + "probability": 0.9717 + }, + { + "start": 2314.24, + "end": 2315.72, + "probability": 0.8615 + }, + { + "start": 2316.8, + "end": 2319.3, + "probability": 0.8454 + }, + { + "start": 2320.64, + "end": 2323.28, + "probability": 0.8407 + }, + { + "start": 2324.56, + "end": 2327.74, + "probability": 0.9955 + }, + { + "start": 2328.32, + "end": 2333.18, + "probability": 0.9943 + }, + { + "start": 2333.18, + "end": 2335.34, + "probability": 0.9976 + }, + { + "start": 2335.48, + "end": 2338.76, + "probability": 0.9075 + }, + { + "start": 2338.76, + "end": 2343.3, + "probability": 0.9985 + }, + { + "start": 2343.84, + "end": 2347.5, + "probability": 0.9952 + }, + { + "start": 2347.94, + "end": 2348.72, + "probability": 0.9976 + }, + { + "start": 2349.38, + "end": 2351.86, + "probability": 0.76 + }, + { + "start": 2352.54, + "end": 2356.2, + "probability": 0.9232 + }, + { + "start": 2357.16, + "end": 2364.69, + "probability": 0.9754 + }, + { + "start": 2366.26, + "end": 2366.76, + "probability": 0.9265 + }, + { + "start": 2367.2, + "end": 2368.39, + "probability": 0.9895 + }, + { + "start": 2368.66, + "end": 2371.84, + "probability": 0.9932 + }, + { + "start": 2371.9, + "end": 2374.2, + "probability": 0.9869 + }, + { + "start": 2375.22, + "end": 2376.34, + "probability": 0.7462 + }, + { + "start": 2376.54, + "end": 2380.94, + "probability": 0.9045 + }, + { + "start": 2381.04, + "end": 2382.06, + "probability": 0.4628 + }, + { + "start": 2383.26, + "end": 2387.18, + "probability": 0.9752 + }, + { + "start": 2387.26, + "end": 2388.94, + "probability": 0.9988 + }, + { + "start": 2390.3, + "end": 2392.48, + "probability": 0.9912 + }, + { + "start": 2392.66, + "end": 2395.0, + "probability": 0.8723 + }, + { + "start": 2395.64, + "end": 2397.58, + "probability": 0.9958 + }, + { + "start": 2398.24, + "end": 2401.78, + "probability": 0.9537 + }, + { + "start": 2401.94, + "end": 2402.98, + "probability": 0.9888 + }, + { + "start": 2403.56, + "end": 2407.56, + "probability": 0.9971 + }, + { + "start": 2408.42, + "end": 2414.66, + "probability": 0.997 + }, + { + "start": 2415.6, + "end": 2417.2, + "probability": 0.9962 + }, + { + "start": 2418.08, + "end": 2419.52, + "probability": 0.9985 + }, + { + "start": 2420.36, + "end": 2422.7, + "probability": 0.9982 + }, + { + "start": 2422.78, + "end": 2425.1, + "probability": 0.9985 + }, + { + "start": 2427.48, + "end": 2427.62, + "probability": 0.0476 + }, + { + "start": 2427.94, + "end": 2428.72, + "probability": 0.0442 + }, + { + "start": 2428.72, + "end": 2428.72, + "probability": 0.3199 + }, + { + "start": 2428.72, + "end": 2430.06, + "probability": 0.2774 + }, + { + "start": 2430.06, + "end": 2430.3, + "probability": 0.7014 + }, + { + "start": 2431.36, + "end": 2435.1, + "probability": 0.979 + }, + { + "start": 2435.1, + "end": 2438.94, + "probability": 0.9828 + }, + { + "start": 2439.4, + "end": 2440.3, + "probability": 0.0457 + }, + { + "start": 2440.34, + "end": 2440.56, + "probability": 0.5722 + }, + { + "start": 2440.56, + "end": 2440.56, + "probability": 0.242 + }, + { + "start": 2440.56, + "end": 2441.16, + "probability": 0.2845 + }, + { + "start": 2441.18, + "end": 2442.7, + "probability": 0.9061 + }, + { + "start": 2442.82, + "end": 2446.72, + "probability": 0.9072 + }, + { + "start": 2447.24, + "end": 2447.94, + "probability": 0.1268 + }, + { + "start": 2447.94, + "end": 2447.94, + "probability": 0.282 + }, + { + "start": 2447.94, + "end": 2448.08, + "probability": 0.0065 + }, + { + "start": 2448.08, + "end": 2449.76, + "probability": 0.9079 + }, + { + "start": 2449.76, + "end": 2450.22, + "probability": 0.4077 + }, + { + "start": 2450.32, + "end": 2450.82, + "probability": 0.1612 + }, + { + "start": 2450.82, + "end": 2453.26, + "probability": 0.8483 + }, + { + "start": 2453.92, + "end": 2456.66, + "probability": 0.998 + }, + { + "start": 2457.4, + "end": 2459.18, + "probability": 0.8934 + }, + { + "start": 2459.28, + "end": 2460.22, + "probability": 0.998 + }, + { + "start": 2460.52, + "end": 2462.06, + "probability": 0.7256 + }, + { + "start": 2463.44, + "end": 2466.44, + "probability": 0.1003 + }, + { + "start": 2466.98, + "end": 2469.62, + "probability": 0.0301 + }, + { + "start": 2469.62, + "end": 2471.62, + "probability": 0.5051 + }, + { + "start": 2471.66, + "end": 2471.66, + "probability": 0.449 + }, + { + "start": 2471.76, + "end": 2475.28, + "probability": 0.3097 + }, + { + "start": 2475.34, + "end": 2475.54, + "probability": 0.5573 + }, + { + "start": 2475.68, + "end": 2478.74, + "probability": 0.1498 + }, + { + "start": 2480.53, + "end": 2481.78, + "probability": 0.1028 + }, + { + "start": 2481.78, + "end": 2482.06, + "probability": 0.1068 + }, + { + "start": 2482.18, + "end": 2483.5, + "probability": 0.0435 + }, + { + "start": 2484.02, + "end": 2484.24, + "probability": 0.0636 + }, + { + "start": 2485.88, + "end": 2487.0, + "probability": 0.1535 + }, + { + "start": 2488.6, + "end": 2489.22, + "probability": 0.0863 + }, + { + "start": 2489.22, + "end": 2490.86, + "probability": 0.0434 + }, + { + "start": 2492.31, + "end": 2494.28, + "probability": 0.4751 + }, + { + "start": 2494.32, + "end": 2496.04, + "probability": 0.0073 + }, + { + "start": 2496.14, + "end": 2497.92, + "probability": 0.1055 + }, + { + "start": 2498.5, + "end": 2500.68, + "probability": 0.1573 + }, + { + "start": 2501.42, + "end": 2501.78, + "probability": 0.1137 + }, + { + "start": 2502.15, + "end": 2503.19, + "probability": 0.0602 + }, + { + "start": 2505.24, + "end": 2506.7, + "probability": 0.0831 + }, + { + "start": 2506.96, + "end": 2508.66, + "probability": 0.2317 + }, + { + "start": 2508.66, + "end": 2508.98, + "probability": 0.0543 + }, + { + "start": 2509.0, + "end": 2509.0, + "probability": 0.0 + }, + { + "start": 2509.0, + "end": 2509.0, + "probability": 0.0 + }, + { + "start": 2509.0, + "end": 2509.0, + "probability": 0.0 + }, + { + "start": 2509.0, + "end": 2509.0, + "probability": 0.0 + }, + { + "start": 2509.0, + "end": 2509.0, + "probability": 0.0 + }, + { + "start": 2509.0, + "end": 2509.0, + "probability": 0.0 + }, + { + "start": 2509.0, + "end": 2509.0, + "probability": 0.0 + }, + { + "start": 2509.46, + "end": 2509.8, + "probability": 0.0901 + }, + { + "start": 2510.08, + "end": 2511.8, + "probability": 0.2538 + }, + { + "start": 2512.3, + "end": 2512.54, + "probability": 0.4593 + }, + { + "start": 2512.54, + "end": 2513.28, + "probability": 0.4423 + }, + { + "start": 2513.38, + "end": 2514.28, + "probability": 0.8319 + }, + { + "start": 2514.74, + "end": 2515.14, + "probability": 0.0334 + }, + { + "start": 2515.16, + "end": 2515.6, + "probability": 0.4681 + }, + { + "start": 2515.66, + "end": 2517.18, + "probability": 0.6683 + }, + { + "start": 2517.7, + "end": 2517.7, + "probability": 0.1904 + }, + { + "start": 2517.7, + "end": 2518.52, + "probability": 0.205 + }, + { + "start": 2518.72, + "end": 2518.78, + "probability": 0.0649 + }, + { + "start": 2518.82, + "end": 2519.44, + "probability": 0.7808 + }, + { + "start": 2519.44, + "end": 2520.94, + "probability": 0.8689 + }, + { + "start": 2521.0, + "end": 2525.34, + "probability": 0.9788 + }, + { + "start": 2525.92, + "end": 2527.86, + "probability": 0.716 + }, + { + "start": 2528.44, + "end": 2531.2, + "probability": 0.9514 + }, + { + "start": 2532.26, + "end": 2536.34, + "probability": 0.9937 + }, + { + "start": 2536.46, + "end": 2538.76, + "probability": 0.9968 + }, + { + "start": 2539.56, + "end": 2542.28, + "probability": 0.98 + }, + { + "start": 2543.56, + "end": 2543.66, + "probability": 0.4955 + }, + { + "start": 2544.04, + "end": 2547.18, + "probability": 0.9907 + }, + { + "start": 2547.2, + "end": 2549.78, + "probability": 0.9689 + }, + { + "start": 2550.56, + "end": 2552.92, + "probability": 0.9979 + }, + { + "start": 2553.88, + "end": 2554.84, + "probability": 0.6125 + }, + { + "start": 2555.14, + "end": 2555.64, + "probability": 0.7313 + }, + { + "start": 2556.3, + "end": 2557.5, + "probability": 0.9848 + }, + { + "start": 2557.66, + "end": 2557.98, + "probability": 0.7703 + }, + { + "start": 2558.1, + "end": 2560.56, + "probability": 0.8551 + }, + { + "start": 2561.06, + "end": 2563.04, + "probability": 0.9786 + }, + { + "start": 2563.5, + "end": 2566.86, + "probability": 0.9586 + }, + { + "start": 2567.12, + "end": 2570.06, + "probability": 0.9548 + }, + { + "start": 2570.12, + "end": 2572.18, + "probability": 0.9927 + }, + { + "start": 2573.06, + "end": 2574.7, + "probability": 0.94 + }, + { + "start": 2575.42, + "end": 2576.56, + "probability": 0.5016 + }, + { + "start": 2577.3, + "end": 2579.46, + "probability": 0.985 + }, + { + "start": 2579.46, + "end": 2581.64, + "probability": 0.962 + }, + { + "start": 2582.12, + "end": 2585.78, + "probability": 0.9901 + }, + { + "start": 2586.38, + "end": 2593.08, + "probability": 0.9618 + }, + { + "start": 2593.68, + "end": 2597.86, + "probability": 0.9901 + }, + { + "start": 2598.36, + "end": 2600.08, + "probability": 0.7689 + }, + { + "start": 2600.74, + "end": 2602.1, + "probability": 0.8744 + }, + { + "start": 2602.28, + "end": 2602.66, + "probability": 0.7585 + }, + { + "start": 2602.74, + "end": 2605.18, + "probability": 0.9841 + }, + { + "start": 2605.66, + "end": 2607.42, + "probability": 0.9077 + }, + { + "start": 2608.04, + "end": 2611.06, + "probability": 0.9941 + }, + { + "start": 2611.06, + "end": 2614.74, + "probability": 0.9901 + }, + { + "start": 2614.86, + "end": 2616.91, + "probability": 0.9938 + }, + { + "start": 2617.36, + "end": 2618.42, + "probability": 0.9363 + }, + { + "start": 2618.76, + "end": 2619.16, + "probability": 0.6122 + }, + { + "start": 2619.56, + "end": 2622.4, + "probability": 0.7814 + }, + { + "start": 2622.82, + "end": 2624.92, + "probability": 0.7995 + }, + { + "start": 2625.4, + "end": 2627.46, + "probability": 0.7843 + }, + { + "start": 2628.42, + "end": 2629.22, + "probability": 0.8103 + }, + { + "start": 2629.4, + "end": 2629.96, + "probability": 0.9726 + }, + { + "start": 2629.98, + "end": 2632.82, + "probability": 0.9919 + }, + { + "start": 2633.26, + "end": 2636.42, + "probability": 0.9888 + }, + { + "start": 2637.16, + "end": 2639.25, + "probability": 0.9617 + }, + { + "start": 2639.5, + "end": 2640.62, + "probability": 0.8389 + }, + { + "start": 2641.16, + "end": 2643.5, + "probability": 0.921 + }, + { + "start": 2644.34, + "end": 2645.82, + "probability": 0.9809 + }, + { + "start": 2646.36, + "end": 2646.84, + "probability": 0.6667 + }, + { + "start": 2647.54, + "end": 2647.68, + "probability": 0.2095 + }, + { + "start": 2647.68, + "end": 2650.04, + "probability": 0.9938 + }, + { + "start": 2650.72, + "end": 2651.32, + "probability": 0.8477 + }, + { + "start": 2651.78, + "end": 2654.52, + "probability": 0.9926 + }, + { + "start": 2654.96, + "end": 2656.72, + "probability": 0.9396 + }, + { + "start": 2657.26, + "end": 2658.26, + "probability": 0.9403 + }, + { + "start": 2658.58, + "end": 2663.38, + "probability": 0.9933 + }, + { + "start": 2663.82, + "end": 2666.24, + "probability": 0.9988 + }, + { + "start": 2666.76, + "end": 2669.96, + "probability": 0.9944 + }, + { + "start": 2669.96, + "end": 2675.32, + "probability": 0.9925 + }, + { + "start": 2676.38, + "end": 2678.68, + "probability": 0.967 + }, + { + "start": 2678.8, + "end": 2679.68, + "probability": 0.7463 + }, + { + "start": 2679.9, + "end": 2682.74, + "probability": 0.9744 + }, + { + "start": 2682.74, + "end": 2686.04, + "probability": 0.998 + }, + { + "start": 2686.92, + "end": 2690.98, + "probability": 0.9193 + }, + { + "start": 2691.6, + "end": 2693.68, + "probability": 0.9922 + }, + { + "start": 2694.16, + "end": 2694.9, + "probability": 0.9102 + }, + { + "start": 2695.58, + "end": 2697.42, + "probability": 0.9958 + }, + { + "start": 2697.92, + "end": 2699.24, + "probability": 0.8927 + }, + { + "start": 2699.7, + "end": 2704.64, + "probability": 0.969 + }, + { + "start": 2705.14, + "end": 2706.75, + "probability": 0.9946 + }, + { + "start": 2708.54, + "end": 2710.06, + "probability": 0.9355 + }, + { + "start": 2710.62, + "end": 2711.48, + "probability": 0.9812 + }, + { + "start": 2711.56, + "end": 2712.64, + "probability": 0.9901 + }, + { + "start": 2713.22, + "end": 2717.14, + "probability": 0.995 + }, + { + "start": 2717.34, + "end": 2718.7, + "probability": 0.6431 + }, + { + "start": 2719.26, + "end": 2720.76, + "probability": 0.8726 + }, + { + "start": 2721.36, + "end": 2723.8, + "probability": 0.8952 + }, + { + "start": 2723.9, + "end": 2727.01, + "probability": 0.998 + }, + { + "start": 2727.04, + "end": 2729.36, + "probability": 0.9976 + }, + { + "start": 2729.96, + "end": 2733.28, + "probability": 0.9946 + }, + { + "start": 2734.18, + "end": 2738.22, + "probability": 0.9493 + }, + { + "start": 2738.92, + "end": 2741.92, + "probability": 0.9824 + }, + { + "start": 2742.5, + "end": 2745.02, + "probability": 0.9585 + }, + { + "start": 2745.07, + "end": 2747.63, + "probability": 0.9978 + }, + { + "start": 2748.32, + "end": 2749.48, + "probability": 0.7346 + }, + { + "start": 2750.06, + "end": 2752.92, + "probability": 0.9753 + }, + { + "start": 2753.1, + "end": 2756.02, + "probability": 0.9837 + }, + { + "start": 2756.1, + "end": 2757.0, + "probability": 0.8344 + }, + { + "start": 2757.4, + "end": 2758.64, + "probability": 0.9653 + }, + { + "start": 2759.3, + "end": 2762.1, + "probability": 0.8928 + }, + { + "start": 2762.24, + "end": 2762.96, + "probability": 0.8791 + }, + { + "start": 2763.56, + "end": 2765.58, + "probability": 0.9769 + }, + { + "start": 2766.42, + "end": 2766.96, + "probability": 0.498 + }, + { + "start": 2768.14, + "end": 2776.22, + "probability": 0.9679 + }, + { + "start": 2776.38, + "end": 2781.12, + "probability": 0.921 + }, + { + "start": 2782.02, + "end": 2783.26, + "probability": 0.9917 + }, + { + "start": 2784.32, + "end": 2787.42, + "probability": 0.7152 + }, + { + "start": 2787.98, + "end": 2789.74, + "probability": 0.4677 + }, + { + "start": 2790.32, + "end": 2792.32, + "probability": 0.9983 + }, + { + "start": 2792.68, + "end": 2797.21, + "probability": 0.9163 + }, + { + "start": 2797.38, + "end": 2800.1, + "probability": 0.9058 + }, + { + "start": 2800.36, + "end": 2802.58, + "probability": 0.9966 + }, + { + "start": 2803.06, + "end": 2806.26, + "probability": 0.9977 + }, + { + "start": 2807.24, + "end": 2809.88, + "probability": 0.8622 + }, + { + "start": 2810.44, + "end": 2815.0, + "probability": 0.9663 + }, + { + "start": 2815.56, + "end": 2818.44, + "probability": 0.9573 + }, + { + "start": 2819.02, + "end": 2822.74, + "probability": 0.8747 + }, + { + "start": 2822.82, + "end": 2825.68, + "probability": 0.7664 + }, + { + "start": 2825.82, + "end": 2826.88, + "probability": 0.5787 + }, + { + "start": 2827.3, + "end": 2828.4, + "probability": 0.9873 + }, + { + "start": 2829.56, + "end": 2831.38, + "probability": 0.7816 + }, + { + "start": 2832.06, + "end": 2836.76, + "probability": 0.8891 + }, + { + "start": 2837.54, + "end": 2838.98, + "probability": 0.9667 + }, + { + "start": 2840.0, + "end": 2840.94, + "probability": 0.9141 + }, + { + "start": 2841.37, + "end": 2842.86, + "probability": 0.861 + }, + { + "start": 2843.0, + "end": 2847.08, + "probability": 0.9868 + }, + { + "start": 2848.34, + "end": 2850.38, + "probability": 0.9963 + }, + { + "start": 2851.3, + "end": 2852.72, + "probability": 0.8785 + }, + { + "start": 2853.62, + "end": 2855.64, + "probability": 0.4408 + }, + { + "start": 2856.38, + "end": 2857.84, + "probability": 0.7481 + }, + { + "start": 2858.62, + "end": 2859.66, + "probability": 0.7343 + }, + { + "start": 2860.56, + "end": 2863.14, + "probability": 0.9275 + }, + { + "start": 2863.9, + "end": 2864.64, + "probability": 0.6335 + }, + { + "start": 2865.46, + "end": 2868.26, + "probability": 0.8122 + }, + { + "start": 2868.82, + "end": 2873.56, + "probability": 0.9723 + }, + { + "start": 2873.74, + "end": 2874.92, + "probability": 0.9724 + }, + { + "start": 2876.38, + "end": 2884.66, + "probability": 0.9987 + }, + { + "start": 2885.42, + "end": 2887.42, + "probability": 0.9995 + }, + { + "start": 2888.06, + "end": 2890.28, + "probability": 0.9707 + }, + { + "start": 2891.02, + "end": 2891.7, + "probability": 0.8119 + }, + { + "start": 2892.36, + "end": 2893.56, + "probability": 0.6577 + }, + { + "start": 2893.6, + "end": 2897.88, + "probability": 0.9922 + }, + { + "start": 2898.94, + "end": 2901.56, + "probability": 0.9962 + }, + { + "start": 2901.56, + "end": 2904.26, + "probability": 0.9989 + }, + { + "start": 2905.78, + "end": 2909.42, + "probability": 0.9993 + }, + { + "start": 2910.34, + "end": 2912.14, + "probability": 0.8264 + }, + { + "start": 2913.76, + "end": 2917.26, + "probability": 0.9934 + }, + { + "start": 2918.7, + "end": 2921.58, + "probability": 0.9764 + }, + { + "start": 2921.84, + "end": 2922.88, + "probability": 0.8284 + }, + { + "start": 2923.48, + "end": 2924.63, + "probability": 0.9325 + }, + { + "start": 2925.56, + "end": 2931.97, + "probability": 0.9691 + }, + { + "start": 2932.84, + "end": 2934.56, + "probability": 0.954 + }, + { + "start": 2935.12, + "end": 2936.3, + "probability": 0.9946 + }, + { + "start": 2937.22, + "end": 2939.96, + "probability": 0.988 + }, + { + "start": 2940.98, + "end": 2942.72, + "probability": 0.933 + }, + { + "start": 2943.9, + "end": 2944.3, + "probability": 0.3253 + }, + { + "start": 2944.86, + "end": 2946.46, + "probability": 0.7421 + }, + { + "start": 2947.99, + "end": 2950.64, + "probability": 0.728 + }, + { + "start": 2950.64, + "end": 2954.06, + "probability": 0.9895 + }, + { + "start": 2955.06, + "end": 2958.44, + "probability": 0.9724 + }, + { + "start": 2959.18, + "end": 2964.54, + "probability": 0.9536 + }, + { + "start": 2965.1, + "end": 2966.28, + "probability": 0.9184 + }, + { + "start": 2967.14, + "end": 2967.74, + "probability": 0.866 + }, + { + "start": 2968.36, + "end": 2969.34, + "probability": 0.9987 + }, + { + "start": 2970.16, + "end": 2971.92, + "probability": 0.9472 + }, + { + "start": 2973.22, + "end": 2980.36, + "probability": 0.9844 + }, + { + "start": 2981.4, + "end": 2984.4, + "probability": 0.972 + }, + { + "start": 2985.34, + "end": 2986.52, + "probability": 0.9956 + }, + { + "start": 2987.06, + "end": 2993.04, + "probability": 0.9956 + }, + { + "start": 2994.88, + "end": 3001.02, + "probability": 0.9909 + }, + { + "start": 3001.54, + "end": 3003.74, + "probability": 0.9219 + }, + { + "start": 3004.56, + "end": 3008.64, + "probability": 0.9971 + }, + { + "start": 3008.64, + "end": 3011.52, + "probability": 0.9987 + }, + { + "start": 3012.4, + "end": 3015.68, + "probability": 0.9758 + }, + { + "start": 3017.58, + "end": 3022.46, + "probability": 0.9789 + }, + { + "start": 3023.12, + "end": 3024.88, + "probability": 0.9559 + }, + { + "start": 3025.54, + "end": 3026.96, + "probability": 0.6372 + }, + { + "start": 3027.18, + "end": 3027.98, + "probability": 0.9373 + }, + { + "start": 3028.34, + "end": 3032.74, + "probability": 0.9815 + }, + { + "start": 3033.18, + "end": 3034.1, + "probability": 0.9297 + }, + { + "start": 3035.22, + "end": 3037.06, + "probability": 0.9536 + }, + { + "start": 3038.2, + "end": 3041.64, + "probability": 0.8913 + }, + { + "start": 3042.54, + "end": 3046.32, + "probability": 0.9639 + }, + { + "start": 3046.72, + "end": 3050.5, + "probability": 0.7793 + }, + { + "start": 3051.18, + "end": 3056.04, + "probability": 0.9931 + }, + { + "start": 3057.16, + "end": 3059.1, + "probability": 0.9809 + }, + { + "start": 3060.02, + "end": 3065.62, + "probability": 0.9976 + }, + { + "start": 3066.88, + "end": 3071.36, + "probability": 0.9703 + }, + { + "start": 3071.52, + "end": 3072.16, + "probability": 0.9664 + }, + { + "start": 3074.62, + "end": 3075.34, + "probability": 0.9829 + }, + { + "start": 3076.38, + "end": 3078.44, + "probability": 0.7916 + }, + { + "start": 3078.68, + "end": 3079.74, + "probability": 0.8355 + }, + { + "start": 3080.38, + "end": 3081.08, + "probability": 0.5629 + }, + { + "start": 3082.54, + "end": 3083.96, + "probability": 0.786 + }, + { + "start": 3084.08, + "end": 3086.3, + "probability": 0.9948 + }, + { + "start": 3086.36, + "end": 3088.56, + "probability": 0.9899 + }, + { + "start": 3090.12, + "end": 3091.02, + "probability": 0.6963 + }, + { + "start": 3091.1, + "end": 3095.0, + "probability": 0.9195 + }, + { + "start": 3096.1, + "end": 3096.17, + "probability": 0.5188 + }, + { + "start": 3097.68, + "end": 3101.5, + "probability": 0.9752 + }, + { + "start": 3114.6, + "end": 3116.56, + "probability": 0.0163 + }, + { + "start": 3116.56, + "end": 3116.56, + "probability": 0.1431 + }, + { + "start": 3116.56, + "end": 3116.56, + "probability": 0.07 + }, + { + "start": 3116.56, + "end": 3118.98, + "probability": 0.524 + }, + { + "start": 3119.74, + "end": 3124.76, + "probability": 0.9055 + }, + { + "start": 3125.0, + "end": 3125.58, + "probability": 0.3606 + }, + { + "start": 3125.68, + "end": 3126.76, + "probability": 0.7573 + }, + { + "start": 3126.82, + "end": 3127.12, + "probability": 0.5489 + }, + { + "start": 3127.62, + "end": 3128.7, + "probability": 0.6665 + }, + { + "start": 3129.26, + "end": 3130.5, + "probability": 0.9844 + }, + { + "start": 3131.08, + "end": 3132.56, + "probability": 0.939 + }, + { + "start": 3133.14, + "end": 3136.48, + "probability": 0.9633 + }, + { + "start": 3139.02, + "end": 3140.94, + "probability": 0.9824 + }, + { + "start": 3141.58, + "end": 3143.38, + "probability": 0.7443 + }, + { + "start": 3143.98, + "end": 3146.04, + "probability": 0.8175 + }, + { + "start": 3146.56, + "end": 3148.36, + "probability": 0.8098 + }, + { + "start": 3148.94, + "end": 3149.94, + "probability": 0.9785 + }, + { + "start": 3150.6, + "end": 3154.24, + "probability": 0.79 + }, + { + "start": 3156.12, + "end": 3156.8, + "probability": 0.4106 + }, + { + "start": 3158.93, + "end": 3162.54, + "probability": 0.9978 + }, + { + "start": 3163.22, + "end": 3164.04, + "probability": 0.9766 + }, + { + "start": 3165.18, + "end": 3166.3, + "probability": 0.8811 + }, + { + "start": 3167.88, + "end": 3171.28, + "probability": 0.9817 + }, + { + "start": 3171.44, + "end": 3171.93, + "probability": 0.998 + }, + { + "start": 3173.18, + "end": 3174.92, + "probability": 0.9733 + }, + { + "start": 3175.86, + "end": 3179.06, + "probability": 0.9331 + }, + { + "start": 3179.58, + "end": 3180.41, + "probability": 0.6282 + }, + { + "start": 3181.32, + "end": 3183.2, + "probability": 0.9262 + }, + { + "start": 3183.84, + "end": 3185.66, + "probability": 0.998 + }, + { + "start": 3186.76, + "end": 3188.42, + "probability": 0.9849 + }, + { + "start": 3189.86, + "end": 3190.98, + "probability": 0.9813 + }, + { + "start": 3191.54, + "end": 3192.88, + "probability": 0.9872 + }, + { + "start": 3192.88, + "end": 3195.9, + "probability": 0.9957 + }, + { + "start": 3197.28, + "end": 3199.7, + "probability": 0.8965 + }, + { + "start": 3201.02, + "end": 3204.0, + "probability": 0.9673 + }, + { + "start": 3204.8, + "end": 3206.0, + "probability": 0.9922 + }, + { + "start": 3206.94, + "end": 3207.24, + "probability": 0.4563 + }, + { + "start": 3207.38, + "end": 3209.6, + "probability": 0.73 + }, + { + "start": 3209.6, + "end": 3213.4, + "probability": 0.9731 + }, + { + "start": 3214.86, + "end": 3217.24, + "probability": 0.9351 + }, + { + "start": 3218.24, + "end": 3219.7, + "probability": 0.985 + }, + { + "start": 3220.3, + "end": 3226.38, + "probability": 0.8738 + }, + { + "start": 3227.42, + "end": 3229.86, + "probability": 0.9966 + }, + { + "start": 3230.24, + "end": 3233.16, + "probability": 0.9496 + }, + { + "start": 3233.16, + "end": 3237.64, + "probability": 0.994 + }, + { + "start": 3237.96, + "end": 3239.24, + "probability": 0.8079 + }, + { + "start": 3240.2, + "end": 3242.42, + "probability": 0.763 + }, + { + "start": 3243.88, + "end": 3246.14, + "probability": 0.9327 + }, + { + "start": 3247.0, + "end": 3251.16, + "probability": 0.9376 + }, + { + "start": 3252.8, + "end": 3254.7, + "probability": 0.9722 + }, + { + "start": 3254.96, + "end": 3255.45, + "probability": 0.7813 + }, + { + "start": 3257.62, + "end": 3262.74, + "probability": 0.9562 + }, + { + "start": 3263.44, + "end": 3264.82, + "probability": 0.8323 + }, + { + "start": 3265.5, + "end": 3267.12, + "probability": 0.9786 + }, + { + "start": 3268.2, + "end": 3271.52, + "probability": 0.8022 + }, + { + "start": 3272.26, + "end": 3274.33, + "probability": 0.9839 + }, + { + "start": 3275.28, + "end": 3276.86, + "probability": 0.9844 + }, + { + "start": 3278.2, + "end": 3279.14, + "probability": 0.9312 + }, + { + "start": 3280.08, + "end": 3283.06, + "probability": 0.937 + }, + { + "start": 3284.72, + "end": 3286.96, + "probability": 0.9937 + }, + { + "start": 3287.5, + "end": 3288.38, + "probability": 0.9602 + }, + { + "start": 3289.22, + "end": 3291.4, + "probability": 0.9985 + }, + { + "start": 3292.18, + "end": 3294.2, + "probability": 0.7528 + }, + { + "start": 3295.76, + "end": 3296.92, + "probability": 0.9136 + }, + { + "start": 3297.74, + "end": 3299.4, + "probability": 0.815 + }, + { + "start": 3300.58, + "end": 3301.65, + "probability": 0.7887 + }, + { + "start": 3301.96, + "end": 3304.92, + "probability": 0.8864 + }, + { + "start": 3305.62, + "end": 3308.14, + "probability": 0.9119 + }, + { + "start": 3310.02, + "end": 3310.22, + "probability": 0.8344 + }, + { + "start": 3311.64, + "end": 3312.82, + "probability": 0.7608 + }, + { + "start": 3317.28, + "end": 3318.58, + "probability": 0.3083 + }, + { + "start": 3320.54, + "end": 3326.44, + "probability": 0.989 + }, + { + "start": 3327.3, + "end": 3328.16, + "probability": 0.7934 + }, + { + "start": 3328.36, + "end": 3329.4, + "probability": 0.9749 + }, + { + "start": 3329.54, + "end": 3333.72, + "probability": 0.9951 + }, + { + "start": 3334.42, + "end": 3336.52, + "probability": 0.9967 + }, + { + "start": 3337.22, + "end": 3337.96, + "probability": 0.3994 + }, + { + "start": 3338.04, + "end": 3338.22, + "probability": 0.8516 + }, + { + "start": 3338.34, + "end": 3341.48, + "probability": 0.9717 + }, + { + "start": 3342.02, + "end": 3343.42, + "probability": 0.9269 + }, + { + "start": 3344.04, + "end": 3349.44, + "probability": 0.9557 + }, + { + "start": 3349.94, + "end": 3353.08, + "probability": 0.9977 + }, + { + "start": 3353.78, + "end": 3354.96, + "probability": 0.4097 + }, + { + "start": 3355.56, + "end": 3359.76, + "probability": 0.7222 + }, + { + "start": 3360.5, + "end": 3364.2, + "probability": 0.8197 + }, + { + "start": 3365.1, + "end": 3365.86, + "probability": 0.8026 + }, + { + "start": 3366.32, + "end": 3366.98, + "probability": 0.7881 + }, + { + "start": 3367.44, + "end": 3370.04, + "probability": 0.9919 + }, + { + "start": 3370.46, + "end": 3370.74, + "probability": 0.9354 + }, + { + "start": 3371.34, + "end": 3372.7, + "probability": 0.8514 + }, + { + "start": 3373.04, + "end": 3374.76, + "probability": 0.9314 + }, + { + "start": 3375.22, + "end": 3375.78, + "probability": 0.7041 + }, + { + "start": 3376.0, + "end": 3376.98, + "probability": 0.8882 + }, + { + "start": 3377.08, + "end": 3379.04, + "probability": 0.9943 + }, + { + "start": 3379.2, + "end": 3379.42, + "probability": 0.4335 + }, + { + "start": 3379.64, + "end": 3380.06, + "probability": 0.6421 + }, + { + "start": 3380.06, + "end": 3381.18, + "probability": 0.9433 + }, + { + "start": 3381.96, + "end": 3384.4, + "probability": 0.9814 + }, + { + "start": 3384.94, + "end": 3387.57, + "probability": 0.7112 + }, + { + "start": 3388.04, + "end": 3388.92, + "probability": 0.0565 + }, + { + "start": 3388.92, + "end": 3389.27, + "probability": 0.1168 + }, + { + "start": 3390.9, + "end": 3392.96, + "probability": 0.5746 + }, + { + "start": 3392.96, + "end": 3395.82, + "probability": 0.505 + }, + { + "start": 3396.1, + "end": 3398.7, + "probability": 0.648 + }, + { + "start": 3398.7, + "end": 3403.04, + "probability": 0.9919 + }, + { + "start": 3403.72, + "end": 3405.5, + "probability": 0.4902 + }, + { + "start": 3405.54, + "end": 3406.24, + "probability": 0.462 + }, + { + "start": 3406.32, + "end": 3407.32, + "probability": 0.7592 + }, + { + "start": 3407.38, + "end": 3408.74, + "probability": 0.7168 + }, + { + "start": 3409.64, + "end": 3412.16, + "probability": 0.9935 + }, + { + "start": 3412.44, + "end": 3413.74, + "probability": 0.9666 + }, + { + "start": 3414.1, + "end": 3414.8, + "probability": 0.9172 + }, + { + "start": 3414.92, + "end": 3418.52, + "probability": 0.9932 + }, + { + "start": 3418.98, + "end": 3420.36, + "probability": 0.999 + }, + { + "start": 3420.78, + "end": 3425.34, + "probability": 0.981 + }, + { + "start": 3425.76, + "end": 3429.16, + "probability": 0.9961 + }, + { + "start": 3430.15, + "end": 3430.66, + "probability": 0.0487 + }, + { + "start": 3430.7, + "end": 3431.48, + "probability": 0.7549 + }, + { + "start": 3431.52, + "end": 3434.04, + "probability": 0.8576 + }, + { + "start": 3434.14, + "end": 3434.72, + "probability": 0.9307 + }, + { + "start": 3434.88, + "end": 3436.78, + "probability": 0.8335 + }, + { + "start": 3438.2, + "end": 3438.88, + "probability": 0.0111 + }, + { + "start": 3439.06, + "end": 3440.18, + "probability": 0.5646 + }, + { + "start": 3440.88, + "end": 3444.86, + "probability": 0.8158 + }, + { + "start": 3444.86, + "end": 3447.72, + "probability": 0.885 + }, + { + "start": 3448.22, + "end": 3450.9, + "probability": 0.7144 + }, + { + "start": 3451.4, + "end": 3452.32, + "probability": 0.9021 + }, + { + "start": 3454.7, + "end": 3456.18, + "probability": 0.1676 + }, + { + "start": 3456.18, + "end": 3456.18, + "probability": 0.5433 + }, + { + "start": 3456.18, + "end": 3456.95, + "probability": 0.1604 + }, + { + "start": 3457.12, + "end": 3458.3, + "probability": 0.7761 + }, + { + "start": 3458.48, + "end": 3459.24, + "probability": 0.6996 + }, + { + "start": 3459.42, + "end": 3460.16, + "probability": 0.3541 + }, + { + "start": 3460.3, + "end": 3465.04, + "probability": 0.8101 + }, + { + "start": 3465.64, + "end": 3467.66, + "probability": 0.9612 + }, + { + "start": 3467.8, + "end": 3468.68, + "probability": 0.9703 + }, + { + "start": 3469.32, + "end": 3471.32, + "probability": 0.9944 + }, + { + "start": 3471.98, + "end": 3474.52, + "probability": 0.9873 + }, + { + "start": 3475.48, + "end": 3478.48, + "probability": 0.9683 + }, + { + "start": 3479.14, + "end": 3480.08, + "probability": 0.8022 + }, + { + "start": 3480.14, + "end": 3480.5, + "probability": 0.7867 + }, + { + "start": 3480.6, + "end": 3482.4, + "probability": 0.7485 + }, + { + "start": 3482.86, + "end": 3489.74, + "probability": 0.9963 + }, + { + "start": 3490.18, + "end": 3492.52, + "probability": 0.6982 + }, + { + "start": 3493.06, + "end": 3494.57, + "probability": 0.3925 + }, + { + "start": 3497.58, + "end": 3502.36, + "probability": 0.9955 + }, + { + "start": 3503.0, + "end": 3503.24, + "probability": 0.2399 + }, + { + "start": 3503.24, + "end": 3504.21, + "probability": 0.4981 + }, + { + "start": 3504.96, + "end": 3506.38, + "probability": 0.9134 + }, + { + "start": 3507.24, + "end": 3511.62, + "probability": 0.9244 + }, + { + "start": 3512.98, + "end": 3514.04, + "probability": 0.968 + }, + { + "start": 3514.86, + "end": 3518.08, + "probability": 0.9648 + }, + { + "start": 3518.84, + "end": 3520.06, + "probability": 0.2072 + }, + { + "start": 3520.06, + "end": 3521.34, + "probability": 0.342 + }, + { + "start": 3521.88, + "end": 3525.82, + "probability": 0.8772 + }, + { + "start": 3525.82, + "end": 3527.7, + "probability": 0.9808 + }, + { + "start": 3527.7, + "end": 3529.98, + "probability": 0.075 + }, + { + "start": 3530.28, + "end": 3531.32, + "probability": 0.9477 + }, + { + "start": 3531.56, + "end": 3535.42, + "probability": 0.9868 + }, + { + "start": 3536.16, + "end": 3537.38, + "probability": 0.0032 + }, + { + "start": 3537.38, + "end": 3537.38, + "probability": 0.0211 + }, + { + "start": 3537.38, + "end": 3537.38, + "probability": 0.3444 + }, + { + "start": 3537.38, + "end": 3540.52, + "probability": 0.7806 + }, + { + "start": 3541.02, + "end": 3544.26, + "probability": 0.9321 + }, + { + "start": 3544.26, + "end": 3547.04, + "probability": 0.9865 + }, + { + "start": 3547.58, + "end": 3549.54, + "probability": 0.9416 + }, + { + "start": 3550.26, + "end": 3552.2, + "probability": 0.9886 + }, + { + "start": 3553.02, + "end": 3556.98, + "probability": 0.9814 + }, + { + "start": 3557.66, + "end": 3559.32, + "probability": 0.9941 + }, + { + "start": 3559.36, + "end": 3560.64, + "probability": 0.7478 + }, + { + "start": 3560.8, + "end": 3562.48, + "probability": 0.9622 + }, + { + "start": 3562.96, + "end": 3566.28, + "probability": 0.8816 + }, + { + "start": 3566.28, + "end": 3569.86, + "probability": 0.993 + }, + { + "start": 3570.4, + "end": 3574.3, + "probability": 0.9984 + }, + { + "start": 3574.74, + "end": 3576.16, + "probability": 0.7366 + }, + { + "start": 3577.06, + "end": 3579.02, + "probability": 0.7538 + }, + { + "start": 3580.26, + "end": 3582.94, + "probability": 0.6307 + }, + { + "start": 3582.94, + "end": 3584.86, + "probability": 0.8993 + }, + { + "start": 3585.22, + "end": 3586.18, + "probability": 0.8579 + }, + { + "start": 3586.94, + "end": 3590.1, + "probability": 0.5317 + }, + { + "start": 3594.2, + "end": 3594.68, + "probability": 0.4409 + }, + { + "start": 3595.04, + "end": 3598.3, + "probability": 0.6762 + }, + { + "start": 3598.32, + "end": 3599.76, + "probability": 0.7219 + }, + { + "start": 3602.44, + "end": 3604.42, + "probability": 0.9418 + }, + { + "start": 3604.96, + "end": 3605.46, + "probability": 0.5518 + }, + { + "start": 3605.66, + "end": 3606.7, + "probability": 0.6779 + }, + { + "start": 3607.16, + "end": 3608.06, + "probability": 0.9396 + }, + { + "start": 3608.14, + "end": 3610.48, + "probability": 0.9398 + }, + { + "start": 3610.52, + "end": 3613.24, + "probability": 0.7148 + }, + { + "start": 3613.96, + "end": 3617.66, + "probability": 0.7402 + }, + { + "start": 3618.3, + "end": 3620.44, + "probability": 0.8828 + }, + { + "start": 3621.12, + "end": 3623.52, + "probability": 0.8902 + }, + { + "start": 3624.2, + "end": 3628.36, + "probability": 0.9921 + }, + { + "start": 3628.63, + "end": 3631.76, + "probability": 0.8726 + }, + { + "start": 3632.52, + "end": 3633.34, + "probability": 0.6846 + }, + { + "start": 3633.5, + "end": 3637.16, + "probability": 0.8395 + }, + { + "start": 3638.0, + "end": 3641.24, + "probability": 0.9933 + }, + { + "start": 3641.24, + "end": 3643.24, + "probability": 0.9829 + }, + { + "start": 3643.36, + "end": 3647.56, + "probability": 0.8854 + }, + { + "start": 3647.64, + "end": 3647.88, + "probability": 0.6835 + }, + { + "start": 3648.5, + "end": 3650.68, + "probability": 0.7979 + }, + { + "start": 3650.84, + "end": 3651.92, + "probability": 0.9927 + }, + { + "start": 3652.76, + "end": 3655.06, + "probability": 0.9695 + }, + { + "start": 3656.44, + "end": 3659.26, + "probability": 0.7985 + }, + { + "start": 3659.86, + "end": 3661.96, + "probability": 0.8292 + }, + { + "start": 3662.48, + "end": 3665.02, + "probability": 0.9958 + }, + { + "start": 3665.44, + "end": 3665.66, + "probability": 0.6726 + }, + { + "start": 3665.78, + "end": 3670.1, + "probability": 0.9733 + }, + { + "start": 3670.12, + "end": 3672.7, + "probability": 0.9976 + }, + { + "start": 3673.78, + "end": 3679.04, + "probability": 0.9739 + }, + { + "start": 3679.18, + "end": 3680.68, + "probability": 0.9598 + }, + { + "start": 3682.52, + "end": 3685.28, + "probability": 0.7381 + }, + { + "start": 3686.5, + "end": 3688.34, + "probability": 0.4852 + }, + { + "start": 3692.22, + "end": 3694.58, + "probability": 0.901 + }, + { + "start": 3695.92, + "end": 3696.44, + "probability": 0.5143 + }, + { + "start": 3744.88, + "end": 3744.88, + "probability": 0.2656 + }, + { + "start": 3744.88, + "end": 3745.36, + "probability": 0.7131 + }, + { + "start": 3746.74, + "end": 3748.08, + "probability": 0.874 + }, + { + "start": 3755.0, + "end": 3757.92, + "probability": 0.9355 + }, + { + "start": 3758.92, + "end": 3760.96, + "probability": 0.9888 + }, + { + "start": 3761.16, + "end": 3764.16, + "probability": 0.9877 + }, + { + "start": 3765.86, + "end": 3767.94, + "probability": 0.9896 + }, + { + "start": 3769.4, + "end": 3771.32, + "probability": 0.9165 + }, + { + "start": 3772.32, + "end": 3773.66, + "probability": 0.9855 + }, + { + "start": 3774.7, + "end": 3777.1, + "probability": 0.9934 + }, + { + "start": 3778.16, + "end": 3780.02, + "probability": 0.9957 + }, + { + "start": 3781.14, + "end": 3782.56, + "probability": 0.9971 + }, + { + "start": 3783.44, + "end": 3784.68, + "probability": 0.9983 + }, + { + "start": 3785.78, + "end": 3787.5, + "probability": 0.986 + }, + { + "start": 3788.5, + "end": 3790.72, + "probability": 0.8593 + }, + { + "start": 3792.08, + "end": 3792.4, + "probability": 0.8536 + }, + { + "start": 3793.16, + "end": 3794.76, + "probability": 0.9509 + }, + { + "start": 3795.46, + "end": 3798.32, + "probability": 0.9696 + }, + { + "start": 3799.08, + "end": 3802.5, + "probability": 0.9932 + }, + { + "start": 3803.64, + "end": 3810.78, + "probability": 0.9961 + }, + { + "start": 3811.7, + "end": 3814.28, + "probability": 0.9367 + }, + { + "start": 3815.12, + "end": 3821.9, + "probability": 0.9942 + }, + { + "start": 3822.92, + "end": 3827.48, + "probability": 0.9905 + }, + { + "start": 3827.48, + "end": 3831.3, + "probability": 0.9973 + }, + { + "start": 3832.1, + "end": 3834.86, + "probability": 0.9137 + }, + { + "start": 3836.02, + "end": 3836.64, + "probability": 0.7299 + }, + { + "start": 3837.5, + "end": 3838.8, + "probability": 0.7355 + }, + { + "start": 3839.0, + "end": 3841.34, + "probability": 0.9841 + }, + { + "start": 3842.02, + "end": 3847.0, + "probability": 0.9929 + }, + { + "start": 3847.0, + "end": 3852.46, + "probability": 0.9596 + }, + { + "start": 3853.36, + "end": 3854.64, + "probability": 0.9283 + }, + { + "start": 3855.26, + "end": 3859.12, + "probability": 0.9908 + }, + { + "start": 3859.64, + "end": 3863.22, + "probability": 0.9615 + }, + { + "start": 3864.42, + "end": 3866.98, + "probability": 0.9126 + }, + { + "start": 3868.6, + "end": 3875.02, + "probability": 0.965 + }, + { + "start": 3875.66, + "end": 3880.78, + "probability": 0.9961 + }, + { + "start": 3881.68, + "end": 3886.18, + "probability": 0.9922 + }, + { + "start": 3886.72, + "end": 3889.08, + "probability": 0.995 + }, + { + "start": 3890.2, + "end": 3894.6, + "probability": 0.9651 + }, + { + "start": 3895.16, + "end": 3896.28, + "probability": 0.8982 + }, + { + "start": 3897.4, + "end": 3898.56, + "probability": 0.6883 + }, + { + "start": 3898.76, + "end": 3899.58, + "probability": 0.939 + }, + { + "start": 3899.8, + "end": 3902.52, + "probability": 0.9697 + }, + { + "start": 3903.4, + "end": 3910.18, + "probability": 0.8737 + }, + { + "start": 3910.78, + "end": 3912.48, + "probability": 0.9128 + }, + { + "start": 3914.1, + "end": 3915.92, + "probability": 0.9697 + }, + { + "start": 3916.88, + "end": 3919.86, + "probability": 0.9846 + }, + { + "start": 3920.8, + "end": 3925.32, + "probability": 0.9786 + }, + { + "start": 3925.96, + "end": 3931.6, + "probability": 0.9862 + }, + { + "start": 3932.94, + "end": 3936.04, + "probability": 0.9591 + }, + { + "start": 3936.68, + "end": 3941.98, + "probability": 0.9854 + }, + { + "start": 3942.5, + "end": 3947.08, + "probability": 0.975 + }, + { + "start": 3947.96, + "end": 3949.84, + "probability": 0.9956 + }, + { + "start": 3950.46, + "end": 3952.48, + "probability": 0.9722 + }, + { + "start": 3953.02, + "end": 3958.2, + "probability": 0.9977 + }, + { + "start": 3958.4, + "end": 3960.6, + "probability": 0.9494 + }, + { + "start": 3961.7, + "end": 3963.88, + "probability": 0.8685 + }, + { + "start": 3964.62, + "end": 3969.72, + "probability": 0.9976 + }, + { + "start": 3969.72, + "end": 3974.88, + "probability": 0.9858 + }, + { + "start": 3975.94, + "end": 3978.68, + "probability": 0.9713 + }, + { + "start": 3979.54, + "end": 3984.18, + "probability": 0.9915 + }, + { + "start": 3985.52, + "end": 3990.66, + "probability": 0.9985 + }, + { + "start": 3991.48, + "end": 3992.28, + "probability": 0.7587 + }, + { + "start": 3992.9, + "end": 3993.62, + "probability": 0.6241 + }, + { + "start": 3994.26, + "end": 3997.16, + "probability": 0.9907 + }, + { + "start": 3997.98, + "end": 3999.66, + "probability": 0.5016 + }, + { + "start": 4000.88, + "end": 4004.56, + "probability": 0.8973 + }, + { + "start": 4005.2, + "end": 4009.18, + "probability": 0.9951 + }, + { + "start": 4010.3, + "end": 4011.32, + "probability": 0.7002 + }, + { + "start": 4012.36, + "end": 4018.2, + "probability": 0.9906 + }, + { + "start": 4019.1, + "end": 4022.78, + "probability": 0.9932 + }, + { + "start": 4023.7, + "end": 4025.1, + "probability": 0.9485 + }, + { + "start": 4025.88, + "end": 4026.98, + "probability": 0.5244 + }, + { + "start": 4027.1, + "end": 4029.94, + "probability": 0.9546 + }, + { + "start": 4031.24, + "end": 4034.66, + "probability": 0.9961 + }, + { + "start": 4035.3, + "end": 4037.82, + "probability": 0.9746 + }, + { + "start": 4038.84, + "end": 4041.88, + "probability": 0.9941 + }, + { + "start": 4041.88, + "end": 4045.64, + "probability": 0.9979 + }, + { + "start": 4046.46, + "end": 4049.48, + "probability": 0.9327 + }, + { + "start": 4051.08, + "end": 4052.74, + "probability": 0.6572 + }, + { + "start": 4053.64, + "end": 4055.36, + "probability": 0.9894 + }, + { + "start": 4056.22, + "end": 4057.0, + "probability": 0.9358 + }, + { + "start": 4057.72, + "end": 4064.0, + "probability": 0.9874 + }, + { + "start": 4065.6, + "end": 4066.48, + "probability": 0.5201 + }, + { + "start": 4067.24, + "end": 4070.24, + "probability": 0.9862 + }, + { + "start": 4070.86, + "end": 4072.86, + "probability": 0.6809 + }, + { + "start": 4073.76, + "end": 4076.08, + "probability": 0.976 + }, + { + "start": 4077.24, + "end": 4078.1, + "probability": 0.908 + }, + { + "start": 4079.36, + "end": 4082.5, + "probability": 0.9473 + }, + { + "start": 4083.52, + "end": 4086.26, + "probability": 0.9989 + }, + { + "start": 4087.28, + "end": 4091.9, + "probability": 0.995 + }, + { + "start": 4093.0, + "end": 4093.32, + "probability": 0.7317 + }, + { + "start": 4093.86, + "end": 4095.92, + "probability": 0.9149 + }, + { + "start": 4096.98, + "end": 4099.96, + "probability": 0.7115 + }, + { + "start": 4100.62, + "end": 4102.74, + "probability": 0.9769 + }, + { + "start": 4103.6, + "end": 4105.18, + "probability": 0.9079 + }, + { + "start": 4105.94, + "end": 4109.16, + "probability": 0.9987 + }, + { + "start": 4110.02, + "end": 4112.5, + "probability": 0.9375 + }, + { + "start": 4113.48, + "end": 4115.7, + "probability": 0.8021 + }, + { + "start": 4116.3, + "end": 4118.98, + "probability": 0.9946 + }, + { + "start": 4120.06, + "end": 4121.58, + "probability": 0.9949 + }, + { + "start": 4122.6, + "end": 4122.94, + "probability": 0.3671 + }, + { + "start": 4123.92, + "end": 4124.2, + "probability": 0.8207 + }, + { + "start": 4125.38, + "end": 4125.64, + "probability": 0.8495 + }, + { + "start": 4134.46, + "end": 4138.22, + "probability": 0.7557 + }, + { + "start": 4176.52, + "end": 4177.16, + "probability": 0.6189 + }, + { + "start": 4177.54, + "end": 4178.69, + "probability": 0.8123 + }, + { + "start": 4179.24, + "end": 4180.4, + "probability": 0.9326 + }, + { + "start": 4180.92, + "end": 4181.88, + "probability": 0.9974 + }, + { + "start": 4183.52, + "end": 4185.36, + "probability": 0.9586 + }, + { + "start": 4186.4, + "end": 4190.16, + "probability": 0.9982 + }, + { + "start": 4191.04, + "end": 4195.94, + "probability": 0.9987 + }, + { + "start": 4197.62, + "end": 4198.52, + "probability": 0.9486 + }, + { + "start": 4199.06, + "end": 4202.6, + "probability": 0.9854 + }, + { + "start": 4203.18, + "end": 4203.86, + "probability": 0.8431 + }, + { + "start": 4204.4, + "end": 4204.78, + "probability": 0.9535 + }, + { + "start": 4207.4, + "end": 4211.74, + "probability": 0.9525 + }, + { + "start": 4213.08, + "end": 4217.4, + "probability": 0.9712 + }, + { + "start": 4218.74, + "end": 4222.14, + "probability": 0.9558 + }, + { + "start": 4222.14, + "end": 4225.7, + "probability": 0.9425 + }, + { + "start": 4226.72, + "end": 4229.38, + "probability": 0.9456 + }, + { + "start": 4229.5, + "end": 4230.44, + "probability": 0.8589 + }, + { + "start": 4231.26, + "end": 4234.82, + "probability": 0.9729 + }, + { + "start": 4235.56, + "end": 4236.6, + "probability": 0.9479 + }, + { + "start": 4238.4, + "end": 4240.48, + "probability": 0.994 + }, + { + "start": 4241.02, + "end": 4246.7, + "probability": 0.9955 + }, + { + "start": 4247.54, + "end": 4249.6, + "probability": 0.9941 + }, + { + "start": 4250.46, + "end": 4252.52, + "probability": 0.8693 + }, + { + "start": 4254.62, + "end": 4256.48, + "probability": 0.9909 + }, + { + "start": 4258.48, + "end": 4260.26, + "probability": 0.992 + }, + { + "start": 4261.26, + "end": 4265.76, + "probability": 0.994 + }, + { + "start": 4266.56, + "end": 4269.94, + "probability": 0.9985 + }, + { + "start": 4270.68, + "end": 4271.98, + "probability": 0.9688 + }, + { + "start": 4273.58, + "end": 4275.14, + "probability": 0.8652 + }, + { + "start": 4276.0, + "end": 4277.88, + "probability": 0.9982 + }, + { + "start": 4278.54, + "end": 4283.34, + "probability": 0.9963 + }, + { + "start": 4285.8, + "end": 4288.16, + "probability": 0.9854 + }, + { + "start": 4288.58, + "end": 4293.62, + "probability": 0.9888 + }, + { + "start": 4294.52, + "end": 4300.34, + "probability": 0.9875 + }, + { + "start": 4301.46, + "end": 4306.4, + "probability": 0.9889 + }, + { + "start": 4306.4, + "end": 4310.6, + "probability": 0.9998 + }, + { + "start": 4311.56, + "end": 4314.5, + "probability": 0.9986 + }, + { + "start": 4315.32, + "end": 4316.54, + "probability": 0.984 + }, + { + "start": 4317.1, + "end": 4317.88, + "probability": 0.9199 + }, + { + "start": 4318.54, + "end": 4319.16, + "probability": 0.7912 + }, + { + "start": 4320.22, + "end": 4323.66, + "probability": 0.9482 + }, + { + "start": 4324.18, + "end": 4325.16, + "probability": 0.993 + }, + { + "start": 4328.56, + "end": 4330.54, + "probability": 0.8475 + }, + { + "start": 4332.26, + "end": 4334.36, + "probability": 0.9984 + }, + { + "start": 4338.84, + "end": 4345.7, + "probability": 0.9536 + }, + { + "start": 4349.78, + "end": 4354.58, + "probability": 0.9938 + }, + { + "start": 4355.32, + "end": 4356.5, + "probability": 0.9752 + }, + { + "start": 4357.5, + "end": 4357.96, + "probability": 0.8826 + }, + { + "start": 4359.66, + "end": 4360.34, + "probability": 0.7687 + }, + { + "start": 4360.66, + "end": 4366.1, + "probability": 0.9982 + }, + { + "start": 4366.46, + "end": 4367.82, + "probability": 0.9318 + }, + { + "start": 4368.88, + "end": 4374.6, + "probability": 0.9969 + }, + { + "start": 4375.34, + "end": 4376.82, + "probability": 0.3701 + }, + { + "start": 4377.76, + "end": 4378.64, + "probability": 0.542 + }, + { + "start": 4379.0, + "end": 4381.74, + "probability": 0.92 + }, + { + "start": 4381.84, + "end": 4382.74, + "probability": 0.8203 + }, + { + "start": 4383.36, + "end": 4384.26, + "probability": 0.635 + }, + { + "start": 4386.2, + "end": 4387.78, + "probability": 0.8145 + }, + { + "start": 4387.96, + "end": 4391.5, + "probability": 0.9927 + }, + { + "start": 4391.8, + "end": 4391.9, + "probability": 0.9521 + }, + { + "start": 4393.46, + "end": 4395.42, + "probability": 0.9916 + }, + { + "start": 4395.92, + "end": 4399.04, + "probability": 0.9966 + }, + { + "start": 4400.0, + "end": 4404.94, + "probability": 0.9667 + }, + { + "start": 4409.12, + "end": 4410.26, + "probability": 0.9576 + }, + { + "start": 4411.24, + "end": 4412.76, + "probability": 0.8911 + }, + { + "start": 4412.84, + "end": 4417.72, + "probability": 0.92 + }, + { + "start": 4417.88, + "end": 4418.49, + "probability": 0.9201 + }, + { + "start": 4418.94, + "end": 4421.04, + "probability": 0.9899 + }, + { + "start": 4421.52, + "end": 4423.76, + "probability": 0.9629 + }, + { + "start": 4424.92, + "end": 4428.5, + "probability": 0.3219 + }, + { + "start": 4428.62, + "end": 4429.52, + "probability": 0.736 + }, + { + "start": 4430.6, + "end": 4431.26, + "probability": 0.9783 + }, + { + "start": 4431.94, + "end": 4433.0, + "probability": 0.9961 + }, + { + "start": 4433.1, + "end": 4434.31, + "probability": 0.9578 + }, + { + "start": 4436.4, + "end": 4437.22, + "probability": 0.9281 + }, + { + "start": 4438.78, + "end": 4445.02, + "probability": 0.9977 + }, + { + "start": 4446.06, + "end": 4448.08, + "probability": 0.9973 + }, + { + "start": 4449.4, + "end": 4452.48, + "probability": 0.9741 + }, + { + "start": 4463.44, + "end": 4465.44, + "probability": 0.9004 + }, + { + "start": 4466.3, + "end": 4467.5, + "probability": 0.8261 + }, + { + "start": 4468.44, + "end": 4471.38, + "probability": 0.9938 + }, + { + "start": 4472.06, + "end": 4473.9, + "probability": 0.9207 + }, + { + "start": 4474.44, + "end": 4476.32, + "probability": 0.8843 + }, + { + "start": 4477.28, + "end": 4479.84, + "probability": 0.8261 + }, + { + "start": 4480.62, + "end": 4484.3, + "probability": 0.974 + }, + { + "start": 4484.3, + "end": 4486.98, + "probability": 0.9495 + }, + { + "start": 4487.74, + "end": 4490.51, + "probability": 0.9952 + }, + { + "start": 4490.8, + "end": 4494.22, + "probability": 0.9773 + }, + { + "start": 4494.92, + "end": 4498.3, + "probability": 0.9595 + }, + { + "start": 4500.94, + "end": 4502.08, + "probability": 0.9454 + }, + { + "start": 4503.34, + "end": 4507.4, + "probability": 0.965 + }, + { + "start": 4507.62, + "end": 4510.12, + "probability": 0.6349 + }, + { + "start": 4511.26, + "end": 4514.76, + "probability": 0.8684 + }, + { + "start": 4516.24, + "end": 4519.68, + "probability": 0.7821 + }, + { + "start": 4521.0, + "end": 4522.7, + "probability": 0.8961 + }, + { + "start": 4523.28, + "end": 4527.8, + "probability": 0.9897 + }, + { + "start": 4528.04, + "end": 4528.82, + "probability": 0.6576 + }, + { + "start": 4529.4, + "end": 4532.92, + "probability": 0.8477 + }, + { + "start": 4533.56, + "end": 4536.14, + "probability": 0.968 + }, + { + "start": 4537.7, + "end": 4541.42, + "probability": 0.8956 + }, + { + "start": 4541.92, + "end": 4546.98, + "probability": 0.8716 + }, + { + "start": 4547.08, + "end": 4550.34, + "probability": 0.9819 + }, + { + "start": 4550.84, + "end": 4556.91, + "probability": 0.9895 + }, + { + "start": 4557.42, + "end": 4559.8, + "probability": 0.9968 + }, + { + "start": 4562.8, + "end": 4563.5, + "probability": 0.7705 + }, + { + "start": 4564.06, + "end": 4571.04, + "probability": 0.9668 + }, + { + "start": 4571.42, + "end": 4572.94, + "probability": 0.8317 + }, + { + "start": 4573.08, + "end": 4573.7, + "probability": 0.8895 + }, + { + "start": 4574.02, + "end": 4574.74, + "probability": 0.8076 + }, + { + "start": 4575.38, + "end": 4577.6, + "probability": 0.9779 + }, + { + "start": 4578.7, + "end": 4581.78, + "probability": 0.9961 + }, + { + "start": 4582.36, + "end": 4585.0, + "probability": 0.9641 + }, + { + "start": 4585.82, + "end": 4589.68, + "probability": 0.9976 + }, + { + "start": 4591.1, + "end": 4592.62, + "probability": 0.9963 + }, + { + "start": 4593.38, + "end": 4596.0, + "probability": 0.8 + }, + { + "start": 4596.54, + "end": 4597.3, + "probability": 0.7701 + }, + { + "start": 4598.4, + "end": 4599.68, + "probability": 0.9961 + }, + { + "start": 4599.86, + "end": 4600.1, + "probability": 0.8367 + }, + { + "start": 4602.22, + "end": 4609.78, + "probability": 0.9987 + }, + { + "start": 4610.02, + "end": 4612.96, + "probability": 0.9253 + }, + { + "start": 4613.72, + "end": 4614.96, + "probability": 0.981 + }, + { + "start": 4615.9, + "end": 4620.7, + "probability": 0.9847 + }, + { + "start": 4620.88, + "end": 4623.66, + "probability": 0.9113 + }, + { + "start": 4624.84, + "end": 4627.13, + "probability": 0.9907 + }, + { + "start": 4628.92, + "end": 4634.56, + "probability": 0.9954 + }, + { + "start": 4636.12, + "end": 4637.64, + "probability": 0.9175 + }, + { + "start": 4639.0, + "end": 4640.78, + "probability": 0.9661 + }, + { + "start": 4642.7, + "end": 4644.26, + "probability": 0.8565 + }, + { + "start": 4644.9, + "end": 4648.32, + "probability": 0.988 + }, + { + "start": 4648.9, + "end": 4651.28, + "probability": 0.9965 + }, + { + "start": 4652.4, + "end": 4658.58, + "probability": 0.9937 + }, + { + "start": 4659.4, + "end": 4662.02, + "probability": 0.999 + }, + { + "start": 4663.82, + "end": 4666.08, + "probability": 0.7905 + }, + { + "start": 4666.42, + "end": 4669.74, + "probability": 0.9609 + }, + { + "start": 4670.38, + "end": 4672.66, + "probability": 0.9918 + }, + { + "start": 4673.42, + "end": 4674.92, + "probability": 0.9381 + }, + { + "start": 4675.5, + "end": 4679.14, + "probability": 0.8686 + }, + { + "start": 4680.48, + "end": 4682.9, + "probability": 0.9987 + }, + { + "start": 4682.9, + "end": 4686.46, + "probability": 0.9881 + }, + { + "start": 4687.94, + "end": 4691.28, + "probability": 0.9905 + }, + { + "start": 4691.9, + "end": 4693.6, + "probability": 0.8789 + }, + { + "start": 4695.0, + "end": 4696.86, + "probability": 0.5001 + }, + { + "start": 4697.62, + "end": 4700.24, + "probability": 0.9964 + }, + { + "start": 4700.7, + "end": 4702.74, + "probability": 0.9954 + }, + { + "start": 4705.72, + "end": 4710.62, + "probability": 0.9087 + }, + { + "start": 4711.64, + "end": 4714.7, + "probability": 0.9893 + }, + { + "start": 4714.8, + "end": 4715.16, + "probability": 0.6173 + }, + { + "start": 4715.28, + "end": 4719.64, + "probability": 0.9839 + }, + { + "start": 4720.7, + "end": 4721.56, + "probability": 0.771 + }, + { + "start": 4722.26, + "end": 4723.59, + "probability": 0.9951 + }, + { + "start": 4724.24, + "end": 4725.34, + "probability": 0.9924 + }, + { + "start": 4725.46, + "end": 4730.54, + "probability": 0.8863 + }, + { + "start": 4732.76, + "end": 4737.24, + "probability": 0.992 + }, + { + "start": 4738.5, + "end": 4739.42, + "probability": 0.9715 + }, + { + "start": 4740.8, + "end": 4742.16, + "probability": 0.9961 + }, + { + "start": 4743.84, + "end": 4745.62, + "probability": 0.9922 + }, + { + "start": 4747.48, + "end": 4748.82, + "probability": 0.966 + }, + { + "start": 4750.54, + "end": 4751.8, + "probability": 0.9995 + }, + { + "start": 4752.36, + "end": 4754.4, + "probability": 0.9813 + }, + { + "start": 4756.08, + "end": 4757.0, + "probability": 0.9948 + }, + { + "start": 4758.86, + "end": 4763.28, + "probability": 0.9869 + }, + { + "start": 4763.58, + "end": 4765.5, + "probability": 0.6657 + }, + { + "start": 4766.22, + "end": 4770.08, + "probability": 0.9551 + }, + { + "start": 4772.56, + "end": 4773.16, + "probability": 0.6162 + }, + { + "start": 4776.82, + "end": 4778.36, + "probability": 0.5521 + }, + { + "start": 4779.04, + "end": 4780.1, + "probability": 0.8374 + }, + { + "start": 4780.52, + "end": 4784.38, + "probability": 0.9321 + }, + { + "start": 4785.56, + "end": 4787.0, + "probability": 0.9884 + }, + { + "start": 4787.94, + "end": 4788.28, + "probability": 0.76 + }, + { + "start": 4805.02, + "end": 4806.24, + "probability": 0.791 + }, + { + "start": 4807.04, + "end": 4810.24, + "probability": 0.8875 + }, + { + "start": 4835.36, + "end": 4835.82, + "probability": 0.7291 + }, + { + "start": 4837.84, + "end": 4838.82, + "probability": 0.7372 + }, + { + "start": 4839.34, + "end": 4841.66, + "probability": 0.9754 + }, + { + "start": 4843.34, + "end": 4843.98, + "probability": 0.7634 + }, + { + "start": 4845.32, + "end": 4850.38, + "probability": 0.9654 + }, + { + "start": 4852.1, + "end": 4857.14, + "probability": 0.9994 + }, + { + "start": 4857.98, + "end": 4861.48, + "probability": 0.993 + }, + { + "start": 4863.38, + "end": 4865.56, + "probability": 0.9958 + }, + { + "start": 4866.62, + "end": 4872.28, + "probability": 0.9885 + }, + { + "start": 4873.18, + "end": 4875.26, + "probability": 0.9995 + }, + { + "start": 4876.36, + "end": 4876.96, + "probability": 0.928 + }, + { + "start": 4878.04, + "end": 4880.38, + "probability": 0.9457 + }, + { + "start": 4881.56, + "end": 4883.78, + "probability": 0.9871 + }, + { + "start": 4884.04, + "end": 4885.08, + "probability": 0.5492 + }, + { + "start": 4885.18, + "end": 4886.6, + "probability": 0.9557 + }, + { + "start": 4889.78, + "end": 4892.06, + "probability": 0.838 + }, + { + "start": 4893.2, + "end": 4896.28, + "probability": 0.9931 + }, + { + "start": 4896.82, + "end": 4899.4, + "probability": 0.9964 + }, + { + "start": 4899.74, + "end": 4901.44, + "probability": 0.9967 + }, + { + "start": 4902.14, + "end": 4902.46, + "probability": 0.9968 + }, + { + "start": 4903.68, + "end": 4905.0, + "probability": 0.9656 + }, + { + "start": 4908.02, + "end": 4910.54, + "probability": 0.032 + }, + { + "start": 4910.54, + "end": 4910.54, + "probability": 0.1771 + }, + { + "start": 4910.54, + "end": 4910.54, + "probability": 0.0667 + }, + { + "start": 4910.54, + "end": 4912.28, + "probability": 0.7134 + }, + { + "start": 4912.92, + "end": 4914.52, + "probability": 0.9803 + }, + { + "start": 4914.84, + "end": 4916.0, + "probability": 0.8446 + }, + { + "start": 4917.84, + "end": 4921.53, + "probability": 0.9862 + }, + { + "start": 4923.5, + "end": 4923.96, + "probability": 0.7999 + }, + { + "start": 4925.56, + "end": 4926.58, + "probability": 0.5828 + }, + { + "start": 4927.36, + "end": 4928.98, + "probability": 0.4822 + }, + { + "start": 4929.24, + "end": 4934.74, + "probability": 0.9972 + }, + { + "start": 4938.2, + "end": 4939.34, + "probability": 0.7518 + }, + { + "start": 4941.12, + "end": 4941.96, + "probability": 0.9415 + }, + { + "start": 4943.66, + "end": 4946.3, + "probability": 0.9797 + }, + { + "start": 4947.5, + "end": 4948.12, + "probability": 0.8226 + }, + { + "start": 4949.4, + "end": 4950.26, + "probability": 0.9797 + }, + { + "start": 4951.78, + "end": 4953.06, + "probability": 0.9036 + }, + { + "start": 4956.66, + "end": 4959.12, + "probability": 0.9795 + }, + { + "start": 4959.22, + "end": 4959.74, + "probability": 0.9955 + }, + { + "start": 4960.78, + "end": 4962.6, + "probability": 0.9626 + }, + { + "start": 4963.36, + "end": 4964.42, + "probability": 0.9452 + }, + { + "start": 4965.68, + "end": 4969.26, + "probability": 0.9897 + }, + { + "start": 4970.62, + "end": 4972.48, + "probability": 0.9866 + }, + { + "start": 4975.9, + "end": 4976.6, + "probability": 0.8663 + }, + { + "start": 4979.04, + "end": 4984.92, + "probability": 0.9648 + }, + { + "start": 4985.58, + "end": 4986.48, + "probability": 0.8672 + }, + { + "start": 4987.42, + "end": 4988.74, + "probability": 0.7278 + }, + { + "start": 4990.54, + "end": 4991.42, + "probability": 0.9097 + }, + { + "start": 4992.64, + "end": 4993.16, + "probability": 0.9709 + }, + { + "start": 4994.96, + "end": 4997.42, + "probability": 0.7266 + }, + { + "start": 4998.22, + "end": 4999.24, + "probability": 0.9938 + }, + { + "start": 5001.4, + "end": 5003.66, + "probability": 0.9937 + }, + { + "start": 5007.34, + "end": 5007.98, + "probability": 0.9245 + }, + { + "start": 5008.12, + "end": 5010.58, + "probability": 0.9956 + }, + { + "start": 5010.58, + "end": 5014.96, + "probability": 0.9907 + }, + { + "start": 5016.54, + "end": 5021.04, + "probability": 0.9985 + }, + { + "start": 5021.9, + "end": 5023.6, + "probability": 0.8285 + }, + { + "start": 5024.44, + "end": 5026.88, + "probability": 0.9941 + }, + { + "start": 5028.7, + "end": 5032.56, + "probability": 0.9838 + }, + { + "start": 5032.88, + "end": 5035.1, + "probability": 0.9863 + }, + { + "start": 5036.2, + "end": 5037.82, + "probability": 0.987 + }, + { + "start": 5038.6, + "end": 5039.92, + "probability": 0.7658 + }, + { + "start": 5040.66, + "end": 5043.18, + "probability": 0.7219 + }, + { + "start": 5043.32, + "end": 5044.04, + "probability": 0.9781 + }, + { + "start": 5044.72, + "end": 5047.06, + "probability": 0.785 + }, + { + "start": 5047.22, + "end": 5047.92, + "probability": 0.7187 + }, + { + "start": 5048.8, + "end": 5052.32, + "probability": 0.9849 + }, + { + "start": 5053.58, + "end": 5055.16, + "probability": 0.9442 + }, + { + "start": 5055.28, + "end": 5056.0, + "probability": 0.8718 + }, + { + "start": 5056.1, + "end": 5058.16, + "probability": 0.842 + }, + { + "start": 5060.5, + "end": 5066.42, + "probability": 0.9972 + }, + { + "start": 5067.9, + "end": 5068.42, + "probability": 0.5359 + }, + { + "start": 5070.18, + "end": 5071.04, + "probability": 0.8354 + }, + { + "start": 5072.48, + "end": 5074.8, + "probability": 0.9984 + }, + { + "start": 5075.98, + "end": 5077.96, + "probability": 0.9744 + }, + { + "start": 5078.8, + "end": 5080.28, + "probability": 0.8416 + }, + { + "start": 5081.5, + "end": 5083.96, + "probability": 0.9956 + }, + { + "start": 5084.8, + "end": 5086.06, + "probability": 0.88 + }, + { + "start": 5088.64, + "end": 5089.94, + "probability": 0.7477 + }, + { + "start": 5090.88, + "end": 5092.98, + "probability": 0.9943 + }, + { + "start": 5094.22, + "end": 5095.35, + "probability": 0.991 + }, + { + "start": 5096.06, + "end": 5097.3, + "probability": 0.7774 + }, + { + "start": 5097.74, + "end": 5098.28, + "probability": 0.7224 + }, + { + "start": 5099.34, + "end": 5103.76, + "probability": 0.9978 + }, + { + "start": 5103.76, + "end": 5107.08, + "probability": 0.995 + }, + { + "start": 5108.16, + "end": 5111.4, + "probability": 0.9728 + }, + { + "start": 5112.16, + "end": 5115.24, + "probability": 0.9977 + }, + { + "start": 5116.04, + "end": 5116.91, + "probability": 0.9559 + }, + { + "start": 5117.52, + "end": 5118.16, + "probability": 0.9304 + }, + { + "start": 5118.88, + "end": 5120.3, + "probability": 0.9497 + }, + { + "start": 5121.22, + "end": 5122.86, + "probability": 0.9982 + }, + { + "start": 5123.74, + "end": 5126.06, + "probability": 0.9844 + }, + { + "start": 5126.78, + "end": 5128.56, + "probability": 0.989 + }, + { + "start": 5130.36, + "end": 5131.92, + "probability": 0.9741 + }, + { + "start": 5133.12, + "end": 5135.89, + "probability": 0.9669 + }, + { + "start": 5136.9, + "end": 5139.68, + "probability": 0.9868 + }, + { + "start": 5139.9, + "end": 5142.54, + "probability": 0.9917 + }, + { + "start": 5143.48, + "end": 5146.34, + "probability": 0.9849 + }, + { + "start": 5148.02, + "end": 5149.2, + "probability": 0.8718 + }, + { + "start": 5150.56, + "end": 5157.56, + "probability": 0.9698 + }, + { + "start": 5158.22, + "end": 5159.28, + "probability": 0.8043 + }, + { + "start": 5160.96, + "end": 5164.44, + "probability": 0.9987 + }, + { + "start": 5165.14, + "end": 5169.64, + "probability": 0.9978 + }, + { + "start": 5170.48, + "end": 5171.1, + "probability": 0.9208 + }, + { + "start": 5173.64, + "end": 5174.82, + "probability": 0.961 + }, + { + "start": 5176.36, + "end": 5177.82, + "probability": 0.861 + }, + { + "start": 5177.92, + "end": 5179.1, + "probability": 0.8961 + }, + { + "start": 5179.58, + "end": 5180.38, + "probability": 0.632 + }, + { + "start": 5180.48, + "end": 5181.56, + "probability": 0.9277 + }, + { + "start": 5181.68, + "end": 5182.6, + "probability": 0.6586 + }, + { + "start": 5183.02, + "end": 5184.04, + "probability": 0.9951 + }, + { + "start": 5185.74, + "end": 5186.98, + "probability": 0.8441 + }, + { + "start": 5189.28, + "end": 5190.07, + "probability": 0.5217 + }, + { + "start": 5191.88, + "end": 5192.66, + "probability": 0.9154 + }, + { + "start": 5193.74, + "end": 5195.2, + "probability": 0.9854 + }, + { + "start": 5196.9, + "end": 5200.36, + "probability": 0.9517 + }, + { + "start": 5201.62, + "end": 5203.06, + "probability": 0.9894 + }, + { + "start": 5204.64, + "end": 5206.64, + "probability": 0.8569 + }, + { + "start": 5207.9, + "end": 5212.34, + "probability": 0.9987 + }, + { + "start": 5213.2, + "end": 5216.98, + "probability": 0.9779 + }, + { + "start": 5217.24, + "end": 5218.12, + "probability": 0.779 + }, + { + "start": 5218.78, + "end": 5220.02, + "probability": 0.9933 + }, + { + "start": 5220.78, + "end": 5223.14, + "probability": 0.9575 + }, + { + "start": 5223.68, + "end": 5225.92, + "probability": 0.9463 + }, + { + "start": 5227.34, + "end": 5228.78, + "probability": 0.9924 + }, + { + "start": 5229.8, + "end": 5230.68, + "probability": 0.9503 + }, + { + "start": 5232.92, + "end": 5235.24, + "probability": 0.9831 + }, + { + "start": 5236.58, + "end": 5238.5, + "probability": 0.9432 + }, + { + "start": 5239.3, + "end": 5241.42, + "probability": 0.9955 + }, + { + "start": 5242.06, + "end": 5243.2, + "probability": 0.7478 + }, + { + "start": 5244.08, + "end": 5246.1, + "probability": 0.9761 + }, + { + "start": 5247.3, + "end": 5248.88, + "probability": 0.5942 + }, + { + "start": 5249.58, + "end": 5250.2, + "probability": 0.366 + }, + { + "start": 5250.28, + "end": 5250.92, + "probability": 0.8212 + }, + { + "start": 5251.1, + "end": 5252.42, + "probability": 0.8427 + }, + { + "start": 5252.56, + "end": 5255.44, + "probability": 0.9453 + }, + { + "start": 5255.86, + "end": 5256.4, + "probability": 0.9238 + }, + { + "start": 5256.42, + "end": 5256.88, + "probability": 0.9424 + }, + { + "start": 5257.1, + "end": 5257.58, + "probability": 0.4388 + }, + { + "start": 5258.8, + "end": 5259.78, + "probability": 0.9841 + }, + { + "start": 5260.0, + "end": 5261.36, + "probability": 0.9587 + }, + { + "start": 5261.52, + "end": 5262.56, + "probability": 0.5832 + }, + { + "start": 5264.64, + "end": 5267.64, + "probability": 0.9881 + }, + { + "start": 5268.16, + "end": 5269.12, + "probability": 0.9773 + }, + { + "start": 5269.16, + "end": 5271.16, + "probability": 0.9852 + }, + { + "start": 5272.14, + "end": 5274.02, + "probability": 0.9922 + }, + { + "start": 5275.24, + "end": 5277.14, + "probability": 0.9869 + }, + { + "start": 5277.76, + "end": 5278.84, + "probability": 0.9419 + }, + { + "start": 5279.7, + "end": 5282.78, + "probability": 0.9954 + }, + { + "start": 5284.4, + "end": 5287.68, + "probability": 0.8943 + }, + { + "start": 5288.18, + "end": 5289.3, + "probability": 0.7503 + }, + { + "start": 5290.12, + "end": 5291.02, + "probability": 0.8824 + }, + { + "start": 5291.76, + "end": 5292.8, + "probability": 0.998 + }, + { + "start": 5293.54, + "end": 5295.78, + "probability": 0.8947 + }, + { + "start": 5297.08, + "end": 5299.22, + "probability": 0.9886 + }, + { + "start": 5299.94, + "end": 5303.46, + "probability": 0.9818 + }, + { + "start": 5304.32, + "end": 5304.72, + "probability": 0.697 + }, + { + "start": 5305.26, + "end": 5309.26, + "probability": 0.996 + }, + { + "start": 5310.62, + "end": 5311.02, + "probability": 0.8975 + }, + { + "start": 5312.2, + "end": 5316.16, + "probability": 0.8335 + }, + { + "start": 5316.96, + "end": 5323.06, + "probability": 0.998 + }, + { + "start": 5323.26, + "end": 5324.62, + "probability": 0.771 + }, + { + "start": 5325.62, + "end": 5326.38, + "probability": 0.9389 + }, + { + "start": 5326.9, + "end": 5327.99, + "probability": 0.9589 + }, + { + "start": 5329.24, + "end": 5331.12, + "probability": 0.9416 + }, + { + "start": 5331.98, + "end": 5334.7, + "probability": 0.9925 + }, + { + "start": 5334.82, + "end": 5337.2, + "probability": 0.7586 + }, + { + "start": 5338.04, + "end": 5339.96, + "probability": 0.9984 + }, + { + "start": 5340.6, + "end": 5341.48, + "probability": 0.8978 + }, + { + "start": 5341.62, + "end": 5342.39, + "probability": 0.889 + }, + { + "start": 5342.6, + "end": 5344.2, + "probability": 0.994 + }, + { + "start": 5346.68, + "end": 5347.74, + "probability": 0.8199 + }, + { + "start": 5350.74, + "end": 5351.78, + "probability": 0.9954 + }, + { + "start": 5355.06, + "end": 5355.88, + "probability": 0.6691 + }, + { + "start": 5357.4, + "end": 5358.6, + "probability": 0.9995 + }, + { + "start": 5360.14, + "end": 5361.52, + "probability": 0.9718 + }, + { + "start": 5363.46, + "end": 5364.4, + "probability": 0.8854 + }, + { + "start": 5365.56, + "end": 5368.96, + "probability": 0.9941 + }, + { + "start": 5371.46, + "end": 5373.25, + "probability": 0.9723 + }, + { + "start": 5374.16, + "end": 5375.52, + "probability": 0.979 + }, + { + "start": 5376.8, + "end": 5381.54, + "probability": 0.9648 + }, + { + "start": 5382.5, + "end": 5384.18, + "probability": 0.9461 + }, + { + "start": 5385.24, + "end": 5389.78, + "probability": 0.9893 + }, + { + "start": 5389.78, + "end": 5394.66, + "probability": 0.9568 + }, + { + "start": 5395.76, + "end": 5397.24, + "probability": 0.8981 + }, + { + "start": 5398.36, + "end": 5399.6, + "probability": 0.8461 + }, + { + "start": 5400.24, + "end": 5401.18, + "probability": 0.9621 + }, + { + "start": 5402.16, + "end": 5403.63, + "probability": 0.9889 + }, + { + "start": 5404.9, + "end": 5407.38, + "probability": 0.9809 + }, + { + "start": 5408.18, + "end": 5410.16, + "probability": 0.9933 + }, + { + "start": 5411.66, + "end": 5413.74, + "probability": 0.6394 + }, + { + "start": 5414.66, + "end": 5415.48, + "probability": 0.8583 + }, + { + "start": 5416.6, + "end": 5419.04, + "probability": 0.9688 + }, + { + "start": 5421.64, + "end": 5424.06, + "probability": 0.6367 + }, + { + "start": 5424.98, + "end": 5429.46, + "probability": 0.9961 + }, + { + "start": 5430.26, + "end": 5431.54, + "probability": 0.6783 + }, + { + "start": 5432.4, + "end": 5433.56, + "probability": 0.8994 + }, + { + "start": 5434.96, + "end": 5439.46, + "probability": 0.9949 + }, + { + "start": 5440.9, + "end": 5444.44, + "probability": 0.9761 + }, + { + "start": 5445.32, + "end": 5447.5, + "probability": 0.9976 + }, + { + "start": 5448.38, + "end": 5451.22, + "probability": 0.9775 + }, + { + "start": 5452.6, + "end": 5456.66, + "probability": 0.9932 + }, + { + "start": 5458.2, + "end": 5458.94, + "probability": 0.761 + }, + { + "start": 5458.98, + "end": 5460.92, + "probability": 0.7935 + }, + { + "start": 5461.08, + "end": 5462.13, + "probability": 0.9923 + }, + { + "start": 5462.4, + "end": 5463.25, + "probability": 0.9891 + }, + { + "start": 5463.72, + "end": 5466.22, + "probability": 0.9932 + }, + { + "start": 5467.76, + "end": 5468.96, + "probability": 0.9974 + }, + { + "start": 5469.78, + "end": 5471.7, + "probability": 0.9995 + }, + { + "start": 5472.7, + "end": 5474.98, + "probability": 0.399 + }, + { + "start": 5476.12, + "end": 5477.38, + "probability": 0.4877 + }, + { + "start": 5477.58, + "end": 5478.12, + "probability": 0.7466 + }, + { + "start": 5479.1, + "end": 5479.96, + "probability": 0.5698 + }, + { + "start": 5480.66, + "end": 5481.06, + "probability": 0.3379 + }, + { + "start": 5481.06, + "end": 5482.8, + "probability": 0.779 + }, + { + "start": 5483.06, + "end": 5485.52, + "probability": 0.4164 + }, + { + "start": 5485.72, + "end": 5486.38, + "probability": 0.7861 + }, + { + "start": 5487.52, + "end": 5487.98, + "probability": 0.3423 + }, + { + "start": 5488.0, + "end": 5488.5, + "probability": 0.5878 + }, + { + "start": 5488.54, + "end": 5491.88, + "probability": 0.9397 + }, + { + "start": 5492.62, + "end": 5494.0, + "probability": 0.9613 + }, + { + "start": 5494.16, + "end": 5496.06, + "probability": 0.7984 + }, + { + "start": 5496.14, + "end": 5497.82, + "probability": 0.7725 + }, + { + "start": 5498.16, + "end": 5498.64, + "probability": 0.8386 + }, + { + "start": 5499.84, + "end": 5500.66, + "probability": 0.8454 + }, + { + "start": 5501.56, + "end": 5502.94, + "probability": 0.9837 + }, + { + "start": 5503.94, + "end": 5505.18, + "probability": 0.9789 + }, + { + "start": 5505.88, + "end": 5508.14, + "probability": 0.986 + }, + { + "start": 5509.7, + "end": 5511.76, + "probability": 0.9801 + }, + { + "start": 5513.08, + "end": 5513.94, + "probability": 0.6865 + }, + { + "start": 5515.22, + "end": 5516.26, + "probability": 0.9989 + }, + { + "start": 5517.7, + "end": 5519.76, + "probability": 0.9111 + }, + { + "start": 5521.02, + "end": 5522.18, + "probability": 0.9648 + }, + { + "start": 5523.7, + "end": 5524.2, + "probability": 0.4631 + }, + { + "start": 5525.46, + "end": 5526.26, + "probability": 0.6311 + }, + { + "start": 5527.36, + "end": 5528.62, + "probability": 0.6675 + }, + { + "start": 5529.78, + "end": 5532.46, + "probability": 0.8556 + }, + { + "start": 5533.18, + "end": 5534.36, + "probability": 0.9902 + }, + { + "start": 5535.28, + "end": 5540.1, + "probability": 0.9834 + }, + { + "start": 5541.34, + "end": 5544.08, + "probability": 0.9318 + }, + { + "start": 5545.04, + "end": 5545.82, + "probability": 0.8936 + }, + { + "start": 5547.02, + "end": 5549.1, + "probability": 0.96 + }, + { + "start": 5550.26, + "end": 5556.74, + "probability": 0.9596 + }, + { + "start": 5557.92, + "end": 5558.74, + "probability": 0.9567 + }, + { + "start": 5560.02, + "end": 5560.74, + "probability": 0.9661 + }, + { + "start": 5561.44, + "end": 5563.88, + "probability": 0.9889 + }, + { + "start": 5565.08, + "end": 5567.52, + "probability": 0.9744 + }, + { + "start": 5568.34, + "end": 5570.38, + "probability": 0.9732 + }, + { + "start": 5571.0, + "end": 5572.4, + "probability": 0.9981 + }, + { + "start": 5573.48, + "end": 5578.86, + "probability": 0.9893 + }, + { + "start": 5580.12, + "end": 5580.68, + "probability": 0.8958 + }, + { + "start": 5581.44, + "end": 5582.16, + "probability": 0.99 + }, + { + "start": 5584.02, + "end": 5586.62, + "probability": 0.9922 + }, + { + "start": 5587.34, + "end": 5588.48, + "probability": 0.8116 + }, + { + "start": 5589.56, + "end": 5592.18, + "probability": 0.9965 + }, + { + "start": 5593.2, + "end": 5594.44, + "probability": 0.9484 + }, + { + "start": 5595.3, + "end": 5598.28, + "probability": 0.9932 + }, + { + "start": 5599.18, + "end": 5601.56, + "probability": 0.9805 + }, + { + "start": 5602.14, + "end": 5602.84, + "probability": 0.4887 + }, + { + "start": 5603.24, + "end": 5606.44, + "probability": 0.8868 + }, + { + "start": 5606.96, + "end": 5610.92, + "probability": 0.9106 + }, + { + "start": 5610.92, + "end": 5610.92, + "probability": 0.4456 + }, + { + "start": 5610.92, + "end": 5610.92, + "probability": 0.2652 + }, + { + "start": 5610.92, + "end": 5611.56, + "probability": 0.4307 + }, + { + "start": 5612.2, + "end": 5612.2, + "probability": 0.1286 + }, + { + "start": 5612.2, + "end": 5615.72, + "probability": 0.8813 + }, + { + "start": 5616.78, + "end": 5616.8, + "probability": 0.5928 + }, + { + "start": 5618.1, + "end": 5618.92, + "probability": 0.7825 + }, + { + "start": 5619.7, + "end": 5624.36, + "probability": 0.9833 + }, + { + "start": 5625.02, + "end": 5630.8, + "probability": 0.9826 + }, + { + "start": 5631.0, + "end": 5631.62, + "probability": 0.7348 + }, + { + "start": 5631.86, + "end": 5632.3, + "probability": 0.3783 + }, + { + "start": 5632.3, + "end": 5633.02, + "probability": 0.0671 + }, + { + "start": 5633.22, + "end": 5640.06, + "probability": 0.9622 + }, + { + "start": 5640.96, + "end": 5641.94, + "probability": 0.9408 + }, + { + "start": 5643.0, + "end": 5645.0, + "probability": 0.9309 + }, + { + "start": 5647.44, + "end": 5648.86, + "probability": 0.8285 + }, + { + "start": 5650.28, + "end": 5651.66, + "probability": 0.9862 + }, + { + "start": 5652.46, + "end": 5653.64, + "probability": 0.2579 + }, + { + "start": 5654.04, + "end": 5656.8, + "probability": 0.6699 + }, + { + "start": 5657.7, + "end": 5663.58, + "probability": 0.958 + }, + { + "start": 5663.72, + "end": 5664.62, + "probability": 0.5259 + }, + { + "start": 5664.96, + "end": 5665.0, + "probability": 0.0701 + }, + { + "start": 5665.0, + "end": 5665.0, + "probability": 0.283 + }, + { + "start": 5665.0, + "end": 5670.72, + "probability": 0.9859 + }, + { + "start": 5671.44, + "end": 5675.5, + "probability": 0.738 + }, + { + "start": 5676.18, + "end": 5676.96, + "probability": 0.7718 + }, + { + "start": 5678.38, + "end": 5678.6, + "probability": 0.0944 + }, + { + "start": 5678.6, + "end": 5678.6, + "probability": 0.1774 + }, + { + "start": 5678.6, + "end": 5679.12, + "probability": 0.6519 + }, + { + "start": 5679.9, + "end": 5681.86, + "probability": 0.9369 + }, + { + "start": 5682.16, + "end": 5682.16, + "probability": 0.5762 + }, + { + "start": 5682.16, + "end": 5685.32, + "probability": 0.9951 + }, + { + "start": 5685.32, + "end": 5689.6, + "probability": 0.8875 + }, + { + "start": 5689.7, + "end": 5689.92, + "probability": 0.0419 + }, + { + "start": 5689.92, + "end": 5689.92, + "probability": 0.0567 + }, + { + "start": 5689.92, + "end": 5691.58, + "probability": 0.6361 + }, + { + "start": 5691.6, + "end": 5694.24, + "probability": 0.832 + }, + { + "start": 5694.52, + "end": 5695.88, + "probability": 0.8729 + }, + { + "start": 5696.44, + "end": 5697.76, + "probability": 0.9464 + }, + { + "start": 5698.48, + "end": 5702.52, + "probability": 0.9897 + }, + { + "start": 5702.72, + "end": 5703.52, + "probability": 0.9979 + }, + { + "start": 5704.02, + "end": 5704.68, + "probability": 0.7694 + }, + { + "start": 5705.14, + "end": 5705.52, + "probability": 0.9417 + }, + { + "start": 5705.84, + "end": 5707.18, + "probability": 0.9901 + }, + { + "start": 5707.78, + "end": 5709.32, + "probability": 0.9833 + }, + { + "start": 5709.86, + "end": 5713.9, + "probability": 0.9943 + }, + { + "start": 5714.32, + "end": 5715.0, + "probability": 0.5784 + }, + { + "start": 5715.18, + "end": 5715.78, + "probability": 0.7876 + }, + { + "start": 5716.94, + "end": 5718.72, + "probability": 0.9694 + }, + { + "start": 5719.84, + "end": 5724.32, + "probability": 0.9965 + }, + { + "start": 5725.08, + "end": 5727.26, + "probability": 0.9011 + }, + { + "start": 5728.14, + "end": 5730.1, + "probability": 0.9419 + }, + { + "start": 5730.72, + "end": 5733.76, + "probability": 0.9969 + }, + { + "start": 5734.6, + "end": 5737.78, + "probability": 0.824 + }, + { + "start": 5738.6, + "end": 5743.0, + "probability": 0.9634 + }, + { + "start": 5744.48, + "end": 5745.0, + "probability": 0.9899 + }, + { + "start": 5746.72, + "end": 5747.04, + "probability": 0.8943 + }, + { + "start": 5747.56, + "end": 5747.8, + "probability": 0.2955 + }, + { + "start": 5747.9, + "end": 5749.26, + "probability": 0.8458 + }, + { + "start": 5749.6, + "end": 5752.3, + "probability": 0.886 + }, + { + "start": 5752.3, + "end": 5752.88, + "probability": 0.8449 + }, + { + "start": 5752.94, + "end": 5753.71, + "probability": 0.1983 + }, + { + "start": 5753.96, + "end": 5754.06, + "probability": 0.1174 + }, + { + "start": 5754.22, + "end": 5756.02, + "probability": 0.8766 + }, + { + "start": 5756.16, + "end": 5757.14, + "probability": 0.832 + }, + { + "start": 5757.7, + "end": 5760.94, + "probability": 0.9701 + }, + { + "start": 5762.38, + "end": 5764.54, + "probability": 0.4069 + }, + { + "start": 5764.54, + "end": 5764.54, + "probability": 0.1025 + }, + { + "start": 5764.54, + "end": 5766.42, + "probability": 0.6727 + }, + { + "start": 5766.58, + "end": 5771.68, + "probability": 0.0837 + }, + { + "start": 5774.66, + "end": 5775.96, + "probability": 0.3062 + }, + { + "start": 5776.44, + "end": 5777.62, + "probability": 0.023 + }, + { + "start": 5778.3, + "end": 5780.06, + "probability": 0.0839 + }, + { + "start": 5781.12, + "end": 5784.3, + "probability": 0.5508 + }, + { + "start": 5784.7, + "end": 5785.78, + "probability": 0.4467 + }, + { + "start": 5786.78, + "end": 5786.82, + "probability": 0.2189 + }, + { + "start": 5786.82, + "end": 5790.28, + "probability": 0.0658 + }, + { + "start": 5792.32, + "end": 5794.56, + "probability": 0.1985 + }, + { + "start": 5794.74, + "end": 5797.64, + "probability": 0.3747 + }, + { + "start": 5797.64, + "end": 5798.08, + "probability": 0.2602 + }, + { + "start": 5799.04, + "end": 5799.83, + "probability": 0.0532 + }, + { + "start": 5801.76, + "end": 5802.3, + "probability": 0.1569 + }, + { + "start": 5802.3, + "end": 5802.78, + "probability": 0.0473 + }, + { + "start": 5802.88, + "end": 5805.68, + "probability": 0.3286 + }, + { + "start": 5805.68, + "end": 5808.12, + "probability": 0.2867 + }, + { + "start": 5808.42, + "end": 5809.92, + "probability": 0.0654 + }, + { + "start": 5810.64, + "end": 5814.0, + "probability": 0.6309 + }, + { + "start": 5814.24, + "end": 5815.46, + "probability": 0.1799 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.0, + "end": 5850.0, + "probability": 0.0 + }, + { + "start": 5850.58, + "end": 5853.08, + "probability": 0.0862 + }, + { + "start": 5853.32, + "end": 5854.46, + "probability": 0.0885 + }, + { + "start": 5854.46, + "end": 5854.82, + "probability": 0.3902 + }, + { + "start": 5855.08, + "end": 5857.12, + "probability": 0.5243 + }, + { + "start": 5857.12, + "end": 5857.3, + "probability": 0.3828 + }, + { + "start": 5858.16, + "end": 5861.34, + "probability": 0.1502 + }, + { + "start": 5861.7, + "end": 5862.42, + "probability": 0.1845 + }, + { + "start": 5863.07, + "end": 5864.52, + "probability": 0.4955 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.0, + "end": 5984.0, + "probability": 0.0 + }, + { + "start": 5984.12, + "end": 5989.28, + "probability": 0.9596 + }, + { + "start": 5990.36, + "end": 5998.7, + "probability": 0.9771 + }, + { + "start": 6000.52, + "end": 6004.68, + "probability": 0.9974 + }, + { + "start": 6005.58, + "end": 6008.24, + "probability": 0.9957 + }, + { + "start": 6009.48, + "end": 6011.17, + "probability": 0.6683 + }, + { + "start": 6012.22, + "end": 6019.46, + "probability": 0.9934 + }, + { + "start": 6020.96, + "end": 6022.33, + "probability": 0.9669 + }, + { + "start": 6023.72, + "end": 6026.4, + "probability": 0.9731 + }, + { + "start": 6028.46, + "end": 6029.84, + "probability": 0.9792 + }, + { + "start": 6030.4, + "end": 6031.68, + "probability": 0.9862 + }, + { + "start": 6032.44, + "end": 6039.36, + "probability": 0.9818 + }, + { + "start": 6041.62, + "end": 6049.42, + "probability": 0.9895 + }, + { + "start": 6050.22, + "end": 6050.58, + "probability": 0.2171 + }, + { + "start": 6050.94, + "end": 6052.66, + "probability": 0.9399 + }, + { + "start": 6052.7, + "end": 6059.52, + "probability": 0.9541 + }, + { + "start": 6060.1, + "end": 6063.86, + "probability": 0.979 + }, + { + "start": 6065.78, + "end": 6074.86, + "probability": 0.9109 + }, + { + "start": 6076.34, + "end": 6080.54, + "probability": 0.9856 + }, + { + "start": 6080.54, + "end": 6085.14, + "probability": 0.996 + }, + { + "start": 6086.52, + "end": 6091.92, + "probability": 0.883 + }, + { + "start": 6092.58, + "end": 6094.56, + "probability": 0.8211 + }, + { + "start": 6095.16, + "end": 6096.8, + "probability": 0.99 + }, + { + "start": 6097.66, + "end": 6099.84, + "probability": 0.6884 + }, + { + "start": 6101.4, + "end": 6105.26, + "probability": 0.9888 + }, + { + "start": 6105.96, + "end": 6110.36, + "probability": 0.9987 + }, + { + "start": 6112.46, + "end": 6113.24, + "probability": 0.8449 + }, + { + "start": 6114.66, + "end": 6118.66, + "probability": 0.9966 + }, + { + "start": 6119.6, + "end": 6120.16, + "probability": 0.6323 + }, + { + "start": 6120.76, + "end": 6122.26, + "probability": 0.5852 + }, + { + "start": 6124.86, + "end": 6126.5, + "probability": 0.73 + }, + { + "start": 6127.51, + "end": 6129.4, + "probability": 0.7468 + }, + { + "start": 6130.38, + "end": 6133.78, + "probability": 0.9463 + }, + { + "start": 6134.4, + "end": 6136.5, + "probability": 0.9869 + }, + { + "start": 6137.02, + "end": 6139.1, + "probability": 0.9943 + }, + { + "start": 6140.56, + "end": 6144.78, + "probability": 0.9951 + }, + { + "start": 6146.26, + "end": 6148.98, + "probability": 0.9771 + }, + { + "start": 6149.56, + "end": 6150.9, + "probability": 0.9145 + }, + { + "start": 6152.96, + "end": 6152.96, + "probability": 0.3953 + }, + { + "start": 6153.12, + "end": 6154.12, + "probability": 0.8826 + }, + { + "start": 6154.28, + "end": 6159.3, + "probability": 0.994 + }, + { + "start": 6160.2, + "end": 6161.27, + "probability": 0.9976 + }, + { + "start": 6162.42, + "end": 6168.68, + "probability": 0.9954 + }, + { + "start": 6169.96, + "end": 6171.4, + "probability": 0.5216 + }, + { + "start": 6171.44, + "end": 6173.4, + "probability": 0.9291 + }, + { + "start": 6173.52, + "end": 6175.22, + "probability": 0.8992 + }, + { + "start": 6176.16, + "end": 6176.9, + "probability": 0.7368 + }, + { + "start": 6177.98, + "end": 6180.74, + "probability": 0.7983 + }, + { + "start": 6181.7, + "end": 6183.78, + "probability": 0.9735 + }, + { + "start": 6185.78, + "end": 6188.82, + "probability": 0.9075 + }, + { + "start": 6189.9, + "end": 6190.64, + "probability": 0.8109 + }, + { + "start": 6190.72, + "end": 6191.3, + "probability": 0.945 + }, + { + "start": 6191.42, + "end": 6193.74, + "probability": 0.9646 + }, + { + "start": 6193.98, + "end": 6198.1, + "probability": 0.9661 + }, + { + "start": 6199.3, + "end": 6202.04, + "probability": 0.8987 + }, + { + "start": 6202.62, + "end": 6204.14, + "probability": 0.9921 + }, + { + "start": 6204.76, + "end": 6211.44, + "probability": 0.9901 + }, + { + "start": 6211.44, + "end": 6217.6, + "probability": 0.9604 + }, + { + "start": 6218.76, + "end": 6226.64, + "probability": 0.931 + }, + { + "start": 6227.7, + "end": 6234.92, + "probability": 0.999 + }, + { + "start": 6235.46, + "end": 6235.66, + "probability": 0.0131 + }, + { + "start": 6235.76, + "end": 6240.54, + "probability": 0.9494 + }, + { + "start": 6240.96, + "end": 6241.72, + "probability": 0.7656 + }, + { + "start": 6242.7, + "end": 6246.12, + "probability": 0.9286 + }, + { + "start": 6247.68, + "end": 6249.32, + "probability": 0.9045 + }, + { + "start": 6249.4, + "end": 6250.94, + "probability": 0.7867 + }, + { + "start": 6251.24, + "end": 6256.22, + "probability": 0.7987 + }, + { + "start": 6257.36, + "end": 6263.58, + "probability": 0.993 + }, + { + "start": 6264.1, + "end": 6267.54, + "probability": 0.9859 + }, + { + "start": 6268.76, + "end": 6272.78, + "probability": 0.9867 + }, + { + "start": 6274.48, + "end": 6278.4, + "probability": 0.9506 + }, + { + "start": 6279.76, + "end": 6287.26, + "probability": 0.9508 + }, + { + "start": 6288.64, + "end": 6290.9, + "probability": 0.9189 + }, + { + "start": 6292.56, + "end": 6294.48, + "probability": 0.4972 + }, + { + "start": 6295.2, + "end": 6298.36, + "probability": 0.7962 + }, + { + "start": 6299.0, + "end": 6305.36, + "probability": 0.9888 + }, + { + "start": 6306.52, + "end": 6310.28, + "probability": 0.7699 + }, + { + "start": 6311.18, + "end": 6312.54, + "probability": 0.9451 + }, + { + "start": 6313.5, + "end": 6316.3, + "probability": 0.7434 + }, + { + "start": 6318.08, + "end": 6319.84, + "probability": 0.9916 + }, + { + "start": 6320.44, + "end": 6323.08, + "probability": 0.7177 + }, + { + "start": 6323.62, + "end": 6328.16, + "probability": 0.9208 + }, + { + "start": 6328.66, + "end": 6332.22, + "probability": 0.9456 + }, + { + "start": 6335.04, + "end": 6340.6, + "probability": 0.9654 + }, + { + "start": 6340.6, + "end": 6346.44, + "probability": 0.9919 + }, + { + "start": 6347.22, + "end": 6350.04, + "probability": 0.9648 + }, + { + "start": 6350.04, + "end": 6353.52, + "probability": 0.98 + }, + { + "start": 6354.3, + "end": 6354.78, + "probability": 0.5633 + }, + { + "start": 6355.9, + "end": 6357.52, + "probability": 0.9982 + }, + { + "start": 6358.48, + "end": 6359.04, + "probability": 0.7538 + }, + { + "start": 6359.58, + "end": 6366.34, + "probability": 0.9875 + }, + { + "start": 6366.82, + "end": 6372.27, + "probability": 0.9953 + }, + { + "start": 6372.92, + "end": 6378.72, + "probability": 0.9847 + }, + { + "start": 6379.6, + "end": 6380.0, + "probability": 0.5278 + }, + { + "start": 6380.08, + "end": 6382.22, + "probability": 0.9175 + }, + { + "start": 6382.22, + "end": 6386.22, + "probability": 0.9531 + }, + { + "start": 6388.94, + "end": 6390.62, + "probability": 0.923 + }, + { + "start": 6391.04, + "end": 6394.34, + "probability": 0.973 + }, + { + "start": 6395.28, + "end": 6397.28, + "probability": 0.9932 + }, + { + "start": 6397.44, + "end": 6398.94, + "probability": 0.998 + }, + { + "start": 6399.62, + "end": 6404.8, + "probability": 0.967 + }, + { + "start": 6404.98, + "end": 6405.98, + "probability": 0.6764 + }, + { + "start": 6406.22, + "end": 6407.26, + "probability": 0.4597 + }, + { + "start": 6407.94, + "end": 6411.3, + "probability": 0.9736 + }, + { + "start": 6411.84, + "end": 6414.0, + "probability": 0.918 + }, + { + "start": 6415.66, + "end": 6415.84, + "probability": 0.7581 + }, + { + "start": 6415.94, + "end": 6420.06, + "probability": 0.9277 + }, + { + "start": 6420.06, + "end": 6424.24, + "probability": 0.9891 + }, + { + "start": 6424.24, + "end": 6428.6, + "probability": 0.9779 + }, + { + "start": 6429.02, + "end": 6431.1, + "probability": 0.9624 + }, + { + "start": 6431.1, + "end": 6433.68, + "probability": 0.9911 + }, + { + "start": 6434.38, + "end": 6435.69, + "probability": 0.6949 + }, + { + "start": 6437.12, + "end": 6437.76, + "probability": 0.7074 + }, + { + "start": 6437.82, + "end": 6440.0, + "probability": 0.987 + }, + { + "start": 6440.34, + "end": 6444.7, + "probability": 0.996 + }, + { + "start": 6444.78, + "end": 6448.84, + "probability": 0.9927 + }, + { + "start": 6449.32, + "end": 6455.54, + "probability": 0.9678 + }, + { + "start": 6456.42, + "end": 6456.42, + "probability": 0.873 + }, + { + "start": 6456.96, + "end": 6459.96, + "probability": 0.8078 + }, + { + "start": 6461.4, + "end": 6463.92, + "probability": 0.785 + }, + { + "start": 6464.46, + "end": 6472.0, + "probability": 0.9861 + }, + { + "start": 6472.04, + "end": 6472.62, + "probability": 0.6762 + }, + { + "start": 6473.04, + "end": 6474.78, + "probability": 0.9937 + }, + { + "start": 6474.86, + "end": 6475.3, + "probability": 0.7928 + }, + { + "start": 6475.6, + "end": 6477.14, + "probability": 0.8564 + }, + { + "start": 6477.8, + "end": 6478.85, + "probability": 0.4821 + }, + { + "start": 6479.66, + "end": 6481.82, + "probability": 0.9972 + }, + { + "start": 6482.92, + "end": 6486.72, + "probability": 0.9951 + }, + { + "start": 6487.86, + "end": 6492.04, + "probability": 0.9975 + }, + { + "start": 6492.58, + "end": 6493.68, + "probability": 0.9907 + }, + { + "start": 6494.58, + "end": 6497.5, + "probability": 0.9077 + }, + { + "start": 6498.52, + "end": 6499.18, + "probability": 0.7702 + }, + { + "start": 6499.94, + "end": 6501.12, + "probability": 0.7107 + }, + { + "start": 6502.48, + "end": 6505.46, + "probability": 0.864 + }, + { + "start": 6505.72, + "end": 6506.68, + "probability": 0.8278 + }, + { + "start": 6506.86, + "end": 6508.48, + "probability": 0.9805 + }, + { + "start": 6509.08, + "end": 6512.98, + "probability": 0.9728 + }, + { + "start": 6513.44, + "end": 6515.6, + "probability": 0.99 + }, + { + "start": 6515.68, + "end": 6517.98, + "probability": 0.9793 + }, + { + "start": 6518.1, + "end": 6518.6, + "probability": 0.7586 + }, + { + "start": 6518.66, + "end": 6519.8, + "probability": 0.9592 + }, + { + "start": 6519.8, + "end": 6521.74, + "probability": 0.8197 + }, + { + "start": 6522.6, + "end": 6525.96, + "probability": 0.9875 + }, + { + "start": 6526.04, + "end": 6530.1, + "probability": 0.9822 + }, + { + "start": 6530.22, + "end": 6531.36, + "probability": 0.9873 + }, + { + "start": 6531.9, + "end": 6535.04, + "probability": 0.9376 + }, + { + "start": 6535.66, + "end": 6537.28, + "probability": 0.9495 + }, + { + "start": 6537.52, + "end": 6538.14, + "probability": 0.9764 + }, + { + "start": 6538.24, + "end": 6539.68, + "probability": 0.9877 + }, + { + "start": 6540.36, + "end": 6543.44, + "probability": 0.9387 + }, + { + "start": 6547.2, + "end": 6548.36, + "probability": 0.5024 + }, + { + "start": 6548.44, + "end": 6549.68, + "probability": 0.8536 + }, + { + "start": 6549.76, + "end": 6553.3, + "probability": 0.976 + }, + { + "start": 6553.3, + "end": 6557.78, + "probability": 0.9815 + }, + { + "start": 6558.3, + "end": 6561.14, + "probability": 0.6469 + }, + { + "start": 6561.66, + "end": 6565.38, + "probability": 0.9824 + }, + { + "start": 6565.38, + "end": 6569.2, + "probability": 0.9941 + }, + { + "start": 6569.68, + "end": 6573.26, + "probability": 0.9932 + }, + { + "start": 6574.06, + "end": 6574.34, + "probability": 0.6142 + }, + { + "start": 6574.82, + "end": 6579.26, + "probability": 0.9928 + }, + { + "start": 6579.26, + "end": 6583.04, + "probability": 0.9953 + }, + { + "start": 6583.76, + "end": 6585.96, + "probability": 0.985 + }, + { + "start": 6587.92, + "end": 6591.82, + "probability": 0.9752 + }, + { + "start": 6591.82, + "end": 6597.86, + "probability": 0.9924 + }, + { + "start": 6598.46, + "end": 6603.26, + "probability": 0.9928 + }, + { + "start": 6604.06, + "end": 6606.36, + "probability": 0.9963 + }, + { + "start": 6607.32, + "end": 6609.58, + "probability": 0.878 + }, + { + "start": 6609.64, + "end": 6612.76, + "probability": 0.9648 + }, + { + "start": 6613.48, + "end": 6617.12, + "probability": 0.8906 + }, + { + "start": 6617.28, + "end": 6620.46, + "probability": 0.6208 + }, + { + "start": 6621.14, + "end": 6625.88, + "probability": 0.9311 + }, + { + "start": 6626.72, + "end": 6627.92, + "probability": 0.8403 + }, + { + "start": 6628.66, + "end": 6631.24, + "probability": 0.8508 + }, + { + "start": 6632.0, + "end": 6636.78, + "probability": 0.9663 + }, + { + "start": 6636.78, + "end": 6641.52, + "probability": 0.992 + }, + { + "start": 6642.5, + "end": 6644.08, + "probability": 0.7787 + }, + { + "start": 6644.64, + "end": 6651.04, + "probability": 0.9283 + }, + { + "start": 6652.42, + "end": 6655.12, + "probability": 0.6738 + }, + { + "start": 6655.68, + "end": 6658.7, + "probability": 0.9923 + }, + { + "start": 6659.8, + "end": 6661.04, + "probability": 0.6586 + }, + { + "start": 6662.8, + "end": 6664.04, + "probability": 0.6058 + }, + { + "start": 6664.66, + "end": 6669.01, + "probability": 0.7262 + }, + { + "start": 6670.16, + "end": 6675.72, + "probability": 0.9506 + }, + { + "start": 6675.72, + "end": 6684.26, + "probability": 0.9953 + }, + { + "start": 6684.64, + "end": 6685.82, + "probability": 0.7108 + }, + { + "start": 6686.44, + "end": 6694.6, + "probability": 0.9143 + }, + { + "start": 6695.62, + "end": 6697.2, + "probability": 0.7313 + }, + { + "start": 6697.9, + "end": 6701.1, + "probability": 0.9357 + }, + { + "start": 6702.14, + "end": 6707.92, + "probability": 0.9324 + }, + { + "start": 6708.48, + "end": 6713.1, + "probability": 0.9569 + }, + { + "start": 6714.06, + "end": 6718.79, + "probability": 0.9971 + }, + { + "start": 6719.58, + "end": 6721.44, + "probability": 0.7503 + }, + { + "start": 6722.22, + "end": 6727.08, + "probability": 0.9971 + }, + { + "start": 6727.52, + "end": 6728.8, + "probability": 0.8547 + }, + { + "start": 6729.18, + "end": 6733.2, + "probability": 0.7457 + }, + { + "start": 6734.1, + "end": 6737.32, + "probability": 0.9914 + }, + { + "start": 6738.0, + "end": 6744.0, + "probability": 0.9696 + }, + { + "start": 6744.42, + "end": 6745.26, + "probability": 0.5712 + }, + { + "start": 6745.3, + "end": 6746.22, + "probability": 0.8855 + }, + { + "start": 6747.06, + "end": 6751.04, + "probability": 0.9935 + }, + { + "start": 6752.14, + "end": 6752.52, + "probability": 0.8513 + }, + { + "start": 6756.52, + "end": 6757.04, + "probability": 0.6192 + }, + { + "start": 6757.04, + "end": 6758.22, + "probability": 0.8117 + }, + { + "start": 6772.8, + "end": 6774.62, + "probability": 0.7231 + }, + { + "start": 6776.28, + "end": 6779.88, + "probability": 0.9707 + }, + { + "start": 6780.56, + "end": 6785.74, + "probability": 0.8004 + }, + { + "start": 6786.38, + "end": 6789.78, + "probability": 0.958 + }, + { + "start": 6790.32, + "end": 6792.18, + "probability": 0.981 + }, + { + "start": 6792.28, + "end": 6793.18, + "probability": 0.6945 + }, + { + "start": 6793.6, + "end": 6796.82, + "probability": 0.989 + }, + { + "start": 6797.16, + "end": 6799.52, + "probability": 0.9865 + }, + { + "start": 6799.7, + "end": 6800.5, + "probability": 0.9859 + }, + { + "start": 6803.9, + "end": 6805.06, + "probability": 0.8198 + }, + { + "start": 6805.98, + "end": 6806.74, + "probability": 0.8055 + }, + { + "start": 6807.78, + "end": 6810.02, + "probability": 0.9913 + }, + { + "start": 6810.56, + "end": 6812.6, + "probability": 0.9393 + }, + { + "start": 6813.28, + "end": 6813.94, + "probability": 0.8965 + }, + { + "start": 6814.94, + "end": 6817.0, + "probability": 0.9624 + }, + { + "start": 6817.82, + "end": 6821.3, + "probability": 0.8928 + }, + { + "start": 6821.68, + "end": 6824.06, + "probability": 0.6329 + }, + { + "start": 6824.88, + "end": 6828.92, + "probability": 0.7335 + }, + { + "start": 6829.64, + "end": 6831.32, + "probability": 0.8033 + }, + { + "start": 6831.6, + "end": 6834.34, + "probability": 0.8517 + }, + { + "start": 6835.14, + "end": 6838.58, + "probability": 0.9898 + }, + { + "start": 6838.66, + "end": 6840.36, + "probability": 0.8376 + }, + { + "start": 6840.9, + "end": 6841.7, + "probability": 0.8275 + }, + { + "start": 6842.88, + "end": 6846.46, + "probability": 0.9956 + }, + { + "start": 6846.74, + "end": 6848.88, + "probability": 0.9967 + }, + { + "start": 6849.18, + "end": 6850.52, + "probability": 0.9976 + }, + { + "start": 6851.1, + "end": 6851.24, + "probability": 0.0617 + }, + { + "start": 6852.1, + "end": 6853.4, + "probability": 0.8538 + }, + { + "start": 6853.84, + "end": 6855.82, + "probability": 0.5821 + }, + { + "start": 6856.8, + "end": 6860.9, + "probability": 0.7498 + }, + { + "start": 6861.4, + "end": 6863.36, + "probability": 0.8573 + }, + { + "start": 6864.16, + "end": 6869.26, + "probability": 0.9368 + }, + { + "start": 6869.34, + "end": 6869.34, + "probability": 0.2484 + }, + { + "start": 6869.34, + "end": 6874.18, + "probability": 0.9274 + }, + { + "start": 6876.82, + "end": 6880.4, + "probability": 0.833 + }, + { + "start": 6881.1, + "end": 6883.62, + "probability": 0.7511 + }, + { + "start": 6884.22, + "end": 6887.84, + "probability": 0.9158 + }, + { + "start": 6888.34, + "end": 6893.24, + "probability": 0.8901 + }, + { + "start": 6893.78, + "end": 6895.6, + "probability": 0.9767 + }, + { + "start": 6895.76, + "end": 6900.28, + "probability": 0.9849 + }, + { + "start": 6901.4, + "end": 6904.96, + "probability": 0.7927 + }, + { + "start": 6905.44, + "end": 6908.9, + "probability": 0.7535 + }, + { + "start": 6910.12, + "end": 6912.72, + "probability": 0.8044 + }, + { + "start": 6913.12, + "end": 6916.28, + "probability": 0.6869 + }, + { + "start": 6916.38, + "end": 6916.48, + "probability": 0.5107 + }, + { + "start": 6919.08, + "end": 6921.04, + "probability": 0.7321 + }, + { + "start": 6921.74, + "end": 6924.12, + "probability": 0.6401 + }, + { + "start": 6924.42, + "end": 6929.58, + "probability": 0.9224 + }, + { + "start": 6930.52, + "end": 6933.54, + "probability": 0.9962 + }, + { + "start": 6934.06, + "end": 6936.52, + "probability": 0.9041 + }, + { + "start": 6936.98, + "end": 6938.78, + "probability": 0.9895 + }, + { + "start": 6939.42, + "end": 6944.72, + "probability": 0.9825 + }, + { + "start": 6944.72, + "end": 6949.9, + "probability": 0.9947 + }, + { + "start": 6950.38, + "end": 6951.7, + "probability": 0.7765 + }, + { + "start": 6951.86, + "end": 6954.42, + "probability": 0.7515 + }, + { + "start": 6954.5, + "end": 6956.28, + "probability": 0.9805 + }, + { + "start": 6956.3, + "end": 6957.54, + "probability": 0.8048 + }, + { + "start": 6958.14, + "end": 6958.96, + "probability": 0.8537 + }, + { + "start": 6959.56, + "end": 6961.5, + "probability": 0.9894 + }, + { + "start": 6961.84, + "end": 6966.72, + "probability": 0.965 + }, + { + "start": 6967.04, + "end": 6967.94, + "probability": 0.5244 + }, + { + "start": 6968.24, + "end": 6969.76, + "probability": 0.9352 + }, + { + "start": 6973.82, + "end": 6974.62, + "probability": 0.6621 + }, + { + "start": 6974.8, + "end": 6977.98, + "probability": 0.9932 + }, + { + "start": 6978.12, + "end": 6979.78, + "probability": 0.9693 + }, + { + "start": 6981.24, + "end": 6984.12, + "probability": 0.6251 + }, + { + "start": 6985.9, + "end": 6990.9, + "probability": 0.7564 + }, + { + "start": 6992.16, + "end": 6992.72, + "probability": 0.0366 + }, + { + "start": 6995.46, + "end": 6995.66, + "probability": 0.1908 + }, + { + "start": 6997.98, + "end": 6999.1, + "probability": 0.6719 + }, + { + "start": 7006.4, + "end": 7008.26, + "probability": 0.4781 + }, + { + "start": 7008.28, + "end": 7008.82, + "probability": 0.8046 + }, + { + "start": 7009.56, + "end": 7012.42, + "probability": 0.3457 + }, + { + "start": 7013.7, + "end": 7014.54, + "probability": 0.7223 + }, + { + "start": 7024.46, + "end": 7026.3, + "probability": 0.5663 + }, + { + "start": 7026.54, + "end": 7029.3, + "probability": 0.6003 + }, + { + "start": 7029.54, + "end": 7033.0, + "probability": 0.7753 + }, + { + "start": 7034.28, + "end": 7037.04, + "probability": 0.8984 + }, + { + "start": 7037.68, + "end": 7044.19, + "probability": 0.9792 + }, + { + "start": 7044.36, + "end": 7048.24, + "probability": 0.9776 + }, + { + "start": 7048.3, + "end": 7049.1, + "probability": 0.7403 + }, + { + "start": 7051.9, + "end": 7054.76, + "probability": 0.9942 + }, + { + "start": 7055.88, + "end": 7058.22, + "probability": 0.9612 + }, + { + "start": 7059.28, + "end": 7059.6, + "probability": 0.3691 + }, + { + "start": 7059.64, + "end": 7062.18, + "probability": 0.9737 + }, + { + "start": 7062.36, + "end": 7069.08, + "probability": 0.9622 + }, + { + "start": 7069.12, + "end": 7069.66, + "probability": 0.3359 + }, + { + "start": 7071.5, + "end": 7073.4, + "probability": 0.9475 + }, + { + "start": 7073.78, + "end": 7075.56, + "probability": 0.8755 + }, + { + "start": 7075.72, + "end": 7077.82, + "probability": 0.9221 + }, + { + "start": 7078.36, + "end": 7078.8, + "probability": 0.9653 + }, + { + "start": 7079.68, + "end": 7085.08, + "probability": 0.9904 + }, + { + "start": 7085.88, + "end": 7089.46, + "probability": 0.9678 + }, + { + "start": 7090.04, + "end": 7090.62, + "probability": 0.9666 + }, + { + "start": 7092.58, + "end": 7093.08, + "probability": 0.8303 + }, + { + "start": 7093.42, + "end": 7097.92, + "probability": 0.9806 + }, + { + "start": 7098.5, + "end": 7102.06, + "probability": 0.9943 + }, + { + "start": 7102.06, + "end": 7105.14, + "probability": 0.8968 + }, + { + "start": 7105.68, + "end": 7109.3, + "probability": 0.9874 + }, + { + "start": 7112.38, + "end": 7114.74, + "probability": 0.9809 + }, + { + "start": 7116.66, + "end": 7118.8, + "probability": 0.995 + }, + { + "start": 7119.34, + "end": 7124.38, + "probability": 0.9865 + }, + { + "start": 7124.44, + "end": 7127.48, + "probability": 0.9982 + }, + { + "start": 7127.48, + "end": 7132.62, + "probability": 0.9531 + }, + { + "start": 7134.22, + "end": 7134.88, + "probability": 0.7456 + }, + { + "start": 7135.02, + "end": 7140.76, + "probability": 0.998 + }, + { + "start": 7141.32, + "end": 7144.4, + "probability": 0.9983 + }, + { + "start": 7146.16, + "end": 7148.12, + "probability": 0.9995 + }, + { + "start": 7148.12, + "end": 7151.14, + "probability": 0.9761 + }, + { + "start": 7152.38, + "end": 7154.16, + "probability": 0.9873 + }, + { + "start": 7155.02, + "end": 7156.44, + "probability": 0.7515 + }, + { + "start": 7158.1, + "end": 7158.98, + "probability": 0.941 + }, + { + "start": 7159.74, + "end": 7162.0, + "probability": 0.9979 + }, + { + "start": 7163.6, + "end": 7168.36, + "probability": 0.9515 + }, + { + "start": 7168.36, + "end": 7171.14, + "probability": 0.999 + }, + { + "start": 7171.22, + "end": 7171.98, + "probability": 0.7725 + }, + { + "start": 7173.1, + "end": 7175.54, + "probability": 0.8847 + }, + { + "start": 7176.82, + "end": 7179.44, + "probability": 0.8858 + }, + { + "start": 7179.74, + "end": 7184.16, + "probability": 0.9927 + }, + { + "start": 7184.22, + "end": 7184.82, + "probability": 0.4531 + }, + { + "start": 7185.78, + "end": 7188.84, + "probability": 0.9777 + }, + { + "start": 7190.82, + "end": 7193.96, + "probability": 0.7864 + }, + { + "start": 7195.18, + "end": 7199.34, + "probability": 0.9911 + }, + { + "start": 7201.02, + "end": 7205.3, + "probability": 0.9548 + }, + { + "start": 7205.88, + "end": 7209.52, + "probability": 0.877 + }, + { + "start": 7210.46, + "end": 7214.54, + "probability": 0.9842 + }, + { + "start": 7215.26, + "end": 7216.44, + "probability": 0.8804 + }, + { + "start": 7216.6, + "end": 7219.36, + "probability": 0.9912 + }, + { + "start": 7219.66, + "end": 7220.24, + "probability": 0.8447 + }, + { + "start": 7221.08, + "end": 7225.9, + "probability": 0.9967 + }, + { + "start": 7228.26, + "end": 7231.54, + "probability": 0.9904 + }, + { + "start": 7231.92, + "end": 7234.4, + "probability": 0.9972 + }, + { + "start": 7235.56, + "end": 7241.7, + "probability": 0.9973 + }, + { + "start": 7243.58, + "end": 7246.46, + "probability": 0.9814 + }, + { + "start": 7247.32, + "end": 7248.99, + "probability": 0.964 + }, + { + "start": 7250.62, + "end": 7253.76, + "probability": 0.8924 + }, + { + "start": 7254.76, + "end": 7255.78, + "probability": 0.9122 + }, + { + "start": 7256.42, + "end": 7259.88, + "probability": 0.9595 + }, + { + "start": 7260.56, + "end": 7260.92, + "probability": 0.6729 + }, + { + "start": 7261.06, + "end": 7263.8, + "probability": 0.9929 + }, + { + "start": 7265.94, + "end": 7267.8, + "probability": 0.9121 + }, + { + "start": 7268.68, + "end": 7270.16, + "probability": 0.9467 + }, + { + "start": 7271.2, + "end": 7277.1, + "probability": 0.9824 + }, + { + "start": 7277.28, + "end": 7279.42, + "probability": 0.9619 + }, + { + "start": 7284.48, + "end": 7288.18, + "probability": 0.9976 + }, + { + "start": 7288.8, + "end": 7294.26, + "probability": 0.9885 + }, + { + "start": 7295.84, + "end": 7298.6, + "probability": 0.9227 + }, + { + "start": 7299.94, + "end": 7301.32, + "probability": 0.8946 + }, + { + "start": 7301.64, + "end": 7303.59, + "probability": 0.9978 + }, + { + "start": 7304.3, + "end": 7305.12, + "probability": 0.9335 + }, + { + "start": 7308.2, + "end": 7310.04, + "probability": 0.7493 + }, + { + "start": 7310.74, + "end": 7315.42, + "probability": 0.9927 + }, + { + "start": 7317.14, + "end": 7319.64, + "probability": 0.9277 + }, + { + "start": 7319.88, + "end": 7322.0, + "probability": 0.9955 + }, + { + "start": 7322.28, + "end": 7327.48, + "probability": 0.9965 + }, + { + "start": 7331.26, + "end": 7333.75, + "probability": 0.9249 + }, + { + "start": 7335.68, + "end": 7336.94, + "probability": 0.9654 + }, + { + "start": 7337.74, + "end": 7341.58, + "probability": 0.8842 + }, + { + "start": 7342.54, + "end": 7345.12, + "probability": 0.9969 + }, + { + "start": 7345.12, + "end": 7348.08, + "probability": 0.9973 + }, + { + "start": 7348.94, + "end": 7351.72, + "probability": 0.9431 + }, + { + "start": 7357.16, + "end": 7361.78, + "probability": 0.9427 + }, + { + "start": 7361.86, + "end": 7363.52, + "probability": 0.9762 + }, + { + "start": 7364.54, + "end": 7369.3, + "probability": 0.9789 + }, + { + "start": 7370.42, + "end": 7371.6, + "probability": 0.9597 + }, + { + "start": 7372.74, + "end": 7377.14, + "probability": 0.8747 + }, + { + "start": 7377.96, + "end": 7380.0, + "probability": 0.7761 + }, + { + "start": 7380.44, + "end": 7380.98, + "probability": 0.6557 + }, + { + "start": 7381.06, + "end": 7383.78, + "probability": 0.9859 + }, + { + "start": 7383.86, + "end": 7385.07, + "probability": 0.6719 + }, + { + "start": 7387.9, + "end": 7391.74, + "probability": 0.9972 + }, + { + "start": 7392.7, + "end": 7397.7, + "probability": 0.999 + }, + { + "start": 7399.12, + "end": 7402.06, + "probability": 0.9945 + }, + { + "start": 7403.92, + "end": 7408.54, + "probability": 0.9871 + }, + { + "start": 7409.56, + "end": 7411.26, + "probability": 0.8874 + }, + { + "start": 7411.84, + "end": 7414.14, + "probability": 0.9434 + }, + { + "start": 7414.6, + "end": 7421.04, + "probability": 0.9969 + }, + { + "start": 7421.58, + "end": 7422.48, + "probability": 0.5799 + }, + { + "start": 7422.48, + "end": 7424.56, + "probability": 0.9425 + }, + { + "start": 7424.98, + "end": 7429.44, + "probability": 0.9479 + }, + { + "start": 7431.8, + "end": 7433.2, + "probability": 0.9933 + }, + { + "start": 7433.92, + "end": 7437.14, + "probability": 0.9923 + }, + { + "start": 7437.14, + "end": 7441.08, + "probability": 0.9989 + }, + { + "start": 7442.22, + "end": 7447.68, + "probability": 0.9857 + }, + { + "start": 7448.2, + "end": 7450.68, + "probability": 0.8929 + }, + { + "start": 7453.04, + "end": 7456.4, + "probability": 0.7663 + }, + { + "start": 7457.42, + "end": 7465.38, + "probability": 0.984 + }, + { + "start": 7466.36, + "end": 7466.98, + "probability": 0.9913 + }, + { + "start": 7468.76, + "end": 7470.84, + "probability": 0.9829 + }, + { + "start": 7470.96, + "end": 7474.02, + "probability": 0.7983 + }, + { + "start": 7477.98, + "end": 7482.96, + "probability": 0.9975 + }, + { + "start": 7483.78, + "end": 7485.66, + "probability": 0.9994 + }, + { + "start": 7486.7, + "end": 7491.76, + "probability": 0.9678 + }, + { + "start": 7492.64, + "end": 7497.9, + "probability": 0.9932 + }, + { + "start": 7499.38, + "end": 7501.34, + "probability": 0.8224 + }, + { + "start": 7502.06, + "end": 7505.6, + "probability": 0.9409 + }, + { + "start": 7506.56, + "end": 7507.38, + "probability": 0.8519 + }, + { + "start": 7507.98, + "end": 7510.88, + "probability": 0.9241 + }, + { + "start": 7511.46, + "end": 7512.28, + "probability": 0.7639 + }, + { + "start": 7513.02, + "end": 7514.1, + "probability": 0.4894 + }, + { + "start": 7514.78, + "end": 7516.84, + "probability": 0.8387 + }, + { + "start": 7517.76, + "end": 7520.34, + "probability": 0.8654 + }, + { + "start": 7521.02, + "end": 7524.56, + "probability": 0.9841 + }, + { + "start": 7525.44, + "end": 7526.18, + "probability": 0.9894 + }, + { + "start": 7527.0, + "end": 7529.86, + "probability": 0.852 + }, + { + "start": 7530.62, + "end": 7535.7, + "probability": 0.9038 + }, + { + "start": 7537.22, + "end": 7537.22, + "probability": 0.1629 + }, + { + "start": 7539.62, + "end": 7540.96, + "probability": 0.895 + }, + { + "start": 7543.24, + "end": 7543.46, + "probability": 0.2616 + }, + { + "start": 7543.58, + "end": 7544.74, + "probability": 0.9895 + }, + { + "start": 7544.88, + "end": 7545.18, + "probability": 0.7839 + }, + { + "start": 7545.3, + "end": 7548.22, + "probability": 0.9376 + }, + { + "start": 7548.9, + "end": 7550.3, + "probability": 0.9658 + }, + { + "start": 7551.1, + "end": 7554.32, + "probability": 0.9949 + }, + { + "start": 7554.92, + "end": 7557.66, + "probability": 0.995 + }, + { + "start": 7559.6, + "end": 7560.32, + "probability": 0.4943 + }, + { + "start": 7561.58, + "end": 7563.92, + "probability": 0.9201 + }, + { + "start": 7564.66, + "end": 7567.56, + "probability": 0.9932 + }, + { + "start": 7568.12, + "end": 7569.24, + "probability": 0.7442 + }, + { + "start": 7569.92, + "end": 7573.1, + "probability": 0.8598 + }, + { + "start": 7574.12, + "end": 7575.24, + "probability": 0.8613 + }, + { + "start": 7576.26, + "end": 7577.28, + "probability": 0.8202 + }, + { + "start": 7577.5, + "end": 7578.86, + "probability": 0.9441 + }, + { + "start": 7578.96, + "end": 7584.94, + "probability": 0.9515 + }, + { + "start": 7587.18, + "end": 7587.38, + "probability": 0.8507 + }, + { + "start": 7587.5, + "end": 7591.66, + "probability": 0.9722 + }, + { + "start": 7592.18, + "end": 7594.06, + "probability": 0.8776 + }, + { + "start": 7594.2, + "end": 7595.54, + "probability": 0.7866 + }, + { + "start": 7595.96, + "end": 7595.98, + "probability": 0.0392 + }, + { + "start": 7596.98, + "end": 7599.8, + "probability": 0.9919 + }, + { + "start": 7599.94, + "end": 7601.0, + "probability": 0.8434 + }, + { + "start": 7601.46, + "end": 7604.94, + "probability": 0.9908 + }, + { + "start": 7606.0, + "end": 7607.64, + "probability": 0.6526 + }, + { + "start": 7609.08, + "end": 7615.44, + "probability": 0.9912 + }, + { + "start": 7619.3, + "end": 7623.18, + "probability": 0.9636 + }, + { + "start": 7624.9, + "end": 7625.74, + "probability": 0.8843 + }, + { + "start": 7626.7, + "end": 7628.84, + "probability": 0.9462 + }, + { + "start": 7629.28, + "end": 7632.24, + "probability": 0.9496 + }, + { + "start": 7633.12, + "end": 7633.4, + "probability": 0.899 + }, + { + "start": 7633.82, + "end": 7635.52, + "probability": 0.7868 + }, + { + "start": 7636.22, + "end": 7637.42, + "probability": 0.995 + }, + { + "start": 7638.1, + "end": 7639.84, + "probability": 0.9956 + }, + { + "start": 7640.58, + "end": 7644.1, + "probability": 0.9887 + }, + { + "start": 7647.92, + "end": 7648.96, + "probability": 0.9321 + }, + { + "start": 7649.38, + "end": 7651.08, + "probability": 0.7382 + }, + { + "start": 7651.18, + "end": 7651.8, + "probability": 0.6213 + }, + { + "start": 7652.24, + "end": 7653.36, + "probability": 0.967 + }, + { + "start": 7654.04, + "end": 7655.4, + "probability": 0.8701 + }, + { + "start": 7664.22, + "end": 7664.76, + "probability": 0.7656 + }, + { + "start": 7664.88, + "end": 7665.68, + "probability": 0.7649 + }, + { + "start": 7666.32, + "end": 7667.02, + "probability": 0.9324 + }, + { + "start": 7670.15, + "end": 7671.0, + "probability": 0.9216 + }, + { + "start": 7671.06, + "end": 7671.34, + "probability": 0.8141 + }, + { + "start": 7671.86, + "end": 7672.45, + "probability": 0.9759 + }, + { + "start": 7673.95, + "end": 7675.92, + "probability": 0.7885 + }, + { + "start": 7677.3, + "end": 7677.3, + "probability": 0.2771 + }, + { + "start": 7677.3, + "end": 7678.16, + "probability": 0.4818 + }, + { + "start": 7678.28, + "end": 7678.7, + "probability": 0.6088 + }, + { + "start": 7678.8, + "end": 7679.84, + "probability": 0.76 + }, + { + "start": 7680.02, + "end": 7683.56, + "probability": 0.9974 + }, + { + "start": 7684.46, + "end": 7686.9, + "probability": 0.9962 + }, + { + "start": 7686.96, + "end": 7688.84, + "probability": 0.9492 + }, + { + "start": 7689.7, + "end": 7693.84, + "probability": 0.8981 + }, + { + "start": 7694.86, + "end": 7696.2, + "probability": 0.6896 + }, + { + "start": 7696.3, + "end": 7699.26, + "probability": 0.9905 + }, + { + "start": 7699.32, + "end": 7702.82, + "probability": 0.9946 + }, + { + "start": 7704.0, + "end": 7707.0, + "probability": 0.9343 + }, + { + "start": 7707.18, + "end": 7707.84, + "probability": 0.3789 + }, + { + "start": 7707.88, + "end": 7708.28, + "probability": 0.7759 + }, + { + "start": 7708.36, + "end": 7710.21, + "probability": 0.9624 + }, + { + "start": 7711.14, + "end": 7714.66, + "probability": 0.9585 + }, + { + "start": 7715.42, + "end": 7717.58, + "probability": 0.984 + }, + { + "start": 7717.58, + "end": 7720.72, + "probability": 0.9813 + }, + { + "start": 7721.28, + "end": 7726.0, + "probability": 0.9574 + }, + { + "start": 7726.06, + "end": 7727.58, + "probability": 0.8976 + }, + { + "start": 7727.68, + "end": 7729.6, + "probability": 0.7113 + }, + { + "start": 7729.68, + "end": 7731.32, + "probability": 0.9955 + }, + { + "start": 7732.6, + "end": 7737.64, + "probability": 0.9954 + }, + { + "start": 7737.64, + "end": 7741.78, + "probability": 0.9966 + }, + { + "start": 7743.72, + "end": 7745.22, + "probability": 0.7278 + }, + { + "start": 7745.56, + "end": 7745.72, + "probability": 0.7527 + }, + { + "start": 7745.8, + "end": 7748.1, + "probability": 0.8727 + }, + { + "start": 7748.56, + "end": 7752.96, + "probability": 0.9954 + }, + { + "start": 7753.1, + "end": 7753.96, + "probability": 0.7823 + }, + { + "start": 7754.14, + "end": 7754.36, + "probability": 0.6599 + }, + { + "start": 7754.52, + "end": 7754.91, + "probability": 0.8979 + }, + { + "start": 7755.16, + "end": 7756.19, + "probability": 0.5305 + }, + { + "start": 7756.34, + "end": 7757.48, + "probability": 0.6492 + }, + { + "start": 7757.8, + "end": 7763.12, + "probability": 0.9872 + }, + { + "start": 7763.34, + "end": 7765.08, + "probability": 0.9946 + }, + { + "start": 7765.16, + "end": 7765.34, + "probability": 0.3804 + }, + { + "start": 7765.38, + "end": 7765.6, + "probability": 0.72 + }, + { + "start": 7765.7, + "end": 7766.94, + "probability": 0.9457 + }, + { + "start": 7767.68, + "end": 7770.24, + "probability": 0.9897 + }, + { + "start": 7770.28, + "end": 7776.08, + "probability": 0.9163 + }, + { + "start": 7777.26, + "end": 7780.78, + "probability": 0.8291 + }, + { + "start": 7781.18, + "end": 7784.34, + "probability": 0.9764 + }, + { + "start": 7784.78, + "end": 7787.56, + "probability": 0.9908 + }, + { + "start": 7787.56, + "end": 7790.3, + "probability": 0.9933 + }, + { + "start": 7790.66, + "end": 7791.88, + "probability": 0.8944 + }, + { + "start": 7791.96, + "end": 7793.78, + "probability": 0.9255 + }, + { + "start": 7794.78, + "end": 7795.52, + "probability": 0.7799 + }, + { + "start": 7795.94, + "end": 7796.78, + "probability": 0.8788 + }, + { + "start": 7796.9, + "end": 7800.92, + "probability": 0.9905 + }, + { + "start": 7801.28, + "end": 7805.16, + "probability": 0.9827 + }, + { + "start": 7805.46, + "end": 7806.12, + "probability": 0.9153 + }, + { + "start": 7806.8, + "end": 7807.98, + "probability": 0.9805 + }, + { + "start": 7808.5, + "end": 7809.84, + "probability": 0.8418 + }, + { + "start": 7809.92, + "end": 7811.1, + "probability": 0.9791 + }, + { + "start": 7811.52, + "end": 7812.64, + "probability": 0.97 + }, + { + "start": 7812.8, + "end": 7813.72, + "probability": 0.8575 + }, + { + "start": 7814.04, + "end": 7816.94, + "probability": 0.9673 + }, + { + "start": 7817.06, + "end": 7817.4, + "probability": 0.2343 + }, + { + "start": 7817.48, + "end": 7818.12, + "probability": 0.6656 + }, + { + "start": 7818.18, + "end": 7819.44, + "probability": 0.9629 + }, + { + "start": 7820.4, + "end": 7823.74, + "probability": 0.9684 + }, + { + "start": 7823.8, + "end": 7825.26, + "probability": 0.769 + }, + { + "start": 7825.58, + "end": 7830.06, + "probability": 0.9951 + }, + { + "start": 7830.48, + "end": 7832.21, + "probability": 0.9066 + }, + { + "start": 7833.36, + "end": 7833.62, + "probability": 0.74 + }, + { + "start": 7833.76, + "end": 7834.28, + "probability": 0.8119 + }, + { + "start": 7834.66, + "end": 7835.58, + "probability": 0.5055 + }, + { + "start": 7835.66, + "end": 7837.28, + "probability": 0.8086 + }, + { + "start": 7837.86, + "end": 7839.46, + "probability": 0.9706 + }, + { + "start": 7839.66, + "end": 7843.64, + "probability": 0.9777 + }, + { + "start": 7843.64, + "end": 7846.22, + "probability": 0.9988 + }, + { + "start": 7846.68, + "end": 7849.56, + "probability": 0.9929 + }, + { + "start": 7849.88, + "end": 7850.14, + "probability": 0.6691 + }, + { + "start": 7853.58, + "end": 7854.06, + "probability": 0.5579 + }, + { + "start": 7854.08, + "end": 7856.94, + "probability": 0.8058 + }, + { + "start": 7873.94, + "end": 7875.0, + "probability": 0.7447 + }, + { + "start": 7876.4, + "end": 7878.18, + "probability": 0.7592 + }, + { + "start": 7878.92, + "end": 7882.14, + "probability": 0.9599 + }, + { + "start": 7883.1, + "end": 7887.64, + "probability": 0.9971 + }, + { + "start": 7888.32, + "end": 7889.78, + "probability": 0.8065 + }, + { + "start": 7890.66, + "end": 7891.72, + "probability": 0.9577 + }, + { + "start": 7892.72, + "end": 7893.74, + "probability": 0.9451 + }, + { + "start": 7895.42, + "end": 7897.9, + "probability": 0.7596 + }, + { + "start": 7899.04, + "end": 7901.64, + "probability": 0.958 + }, + { + "start": 7901.74, + "end": 7902.44, + "probability": 0.4944 + }, + { + "start": 7902.48, + "end": 7903.06, + "probability": 0.6241 + }, + { + "start": 7903.86, + "end": 7907.5, + "probability": 0.9683 + }, + { + "start": 7908.4, + "end": 7910.14, + "probability": 0.9083 + }, + { + "start": 7911.38, + "end": 7912.22, + "probability": 0.8537 + }, + { + "start": 7913.34, + "end": 7917.74, + "probability": 0.9944 + }, + { + "start": 7918.44, + "end": 7924.12, + "probability": 0.9912 + }, + { + "start": 7924.74, + "end": 7925.66, + "probability": 0.9654 + }, + { + "start": 7926.36, + "end": 7927.22, + "probability": 0.9665 + }, + { + "start": 7927.82, + "end": 7930.12, + "probability": 0.9892 + }, + { + "start": 7931.02, + "end": 7931.88, + "probability": 0.9241 + }, + { + "start": 7932.12, + "end": 7933.42, + "probability": 0.9157 + }, + { + "start": 7933.6, + "end": 7934.08, + "probability": 0.5957 + }, + { + "start": 7934.24, + "end": 7936.82, + "probability": 0.9101 + }, + { + "start": 7937.36, + "end": 7938.62, + "probability": 0.815 + }, + { + "start": 7939.14, + "end": 7940.68, + "probability": 0.9985 + }, + { + "start": 7941.36, + "end": 7942.68, + "probability": 0.9917 + }, + { + "start": 7942.72, + "end": 7945.1, + "probability": 0.9935 + }, + { + "start": 7946.38, + "end": 7949.36, + "probability": 0.441 + }, + { + "start": 7950.0, + "end": 7952.36, + "probability": 0.9871 + }, + { + "start": 7952.92, + "end": 7957.12, + "probability": 0.9888 + }, + { + "start": 7957.32, + "end": 7958.54, + "probability": 0.7407 + }, + { + "start": 7959.2, + "end": 7961.08, + "probability": 0.8909 + }, + { + "start": 7961.18, + "end": 7963.56, + "probability": 0.6707 + }, + { + "start": 7964.44, + "end": 7966.7, + "probability": 0.9612 + }, + { + "start": 7967.46, + "end": 7968.87, + "probability": 0.8594 + }, + { + "start": 7969.8, + "end": 7973.36, + "probability": 0.9004 + }, + { + "start": 7973.98, + "end": 7975.94, + "probability": 0.9972 + }, + { + "start": 7976.6, + "end": 7978.44, + "probability": 0.9604 + }, + { + "start": 7979.16, + "end": 7979.88, + "probability": 0.9929 + }, + { + "start": 7980.58, + "end": 7982.5, + "probability": 0.9897 + }, + { + "start": 7982.62, + "end": 7983.88, + "probability": 0.9379 + }, + { + "start": 7984.1, + "end": 7986.52, + "probability": 0.7959 + }, + { + "start": 7987.02, + "end": 7989.12, + "probability": 0.989 + }, + { + "start": 7989.74, + "end": 7992.1, + "probability": 0.9795 + }, + { + "start": 7992.78, + "end": 7996.48, + "probability": 0.9635 + }, + { + "start": 7997.0, + "end": 8001.42, + "probability": 0.9659 + }, + { + "start": 8001.98, + "end": 8002.52, + "probability": 0.9822 + }, + { + "start": 8003.12, + "end": 8006.14, + "probability": 0.9332 + }, + { + "start": 8006.42, + "end": 8006.74, + "probability": 0.9355 + }, + { + "start": 8010.44, + "end": 8011.24, + "probability": 0.7184 + }, + { + "start": 8012.04, + "end": 8013.2, + "probability": 0.968 + }, + { + "start": 8013.48, + "end": 8013.94, + "probability": 0.902 + }, + { + "start": 8014.02, + "end": 8016.58, + "probability": 0.8389 + }, + { + "start": 8016.62, + "end": 8017.14, + "probability": 0.4739 + }, + { + "start": 8017.74, + "end": 8018.26, + "probability": 0.8444 + }, + { + "start": 8018.46, + "end": 8019.66, + "probability": 0.9147 + }, + { + "start": 8052.78, + "end": 8054.12, + "probability": 0.7982 + }, + { + "start": 8060.86, + "end": 8061.9, + "probability": 0.7721 + }, + { + "start": 8063.8, + "end": 8065.44, + "probability": 0.9988 + }, + { + "start": 8066.04, + "end": 8067.98, + "probability": 0.9967 + }, + { + "start": 8069.12, + "end": 8071.98, + "probability": 0.9526 + }, + { + "start": 8073.34, + "end": 8073.72, + "probability": 0.7661 + }, + { + "start": 8074.58, + "end": 8076.82, + "probability": 0.9209 + }, + { + "start": 8078.3, + "end": 8079.14, + "probability": 0.9781 + }, + { + "start": 8080.16, + "end": 8081.6, + "probability": 0.9727 + }, + { + "start": 8082.7, + "end": 8084.36, + "probability": 0.9994 + }, + { + "start": 8085.38, + "end": 8087.44, + "probability": 0.9977 + }, + { + "start": 8089.26, + "end": 8092.7, + "probability": 0.9847 + }, + { + "start": 8093.78, + "end": 8096.54, + "probability": 0.9991 + }, + { + "start": 8098.04, + "end": 8100.98, + "probability": 0.9541 + }, + { + "start": 8101.5, + "end": 8102.44, + "probability": 0.8699 + }, + { + "start": 8102.5, + "end": 8104.1, + "probability": 0.9953 + }, + { + "start": 8104.8, + "end": 8105.2, + "probability": 0.9299 + }, + { + "start": 8107.28, + "end": 8108.82, + "probability": 0.989 + }, + { + "start": 8109.72, + "end": 8116.68, + "probability": 0.9912 + }, + { + "start": 8118.28, + "end": 8119.16, + "probability": 0.4969 + }, + { + "start": 8121.09, + "end": 8121.34, + "probability": 0.0338 + }, + { + "start": 8124.31, + "end": 8124.96, + "probability": 0.613 + }, + { + "start": 8124.96, + "end": 8127.16, + "probability": 0.4899 + }, + { + "start": 8127.3, + "end": 8127.9, + "probability": 0.2121 + }, + { + "start": 8127.9, + "end": 8127.9, + "probability": 0.0442 + }, + { + "start": 8127.9, + "end": 8131.18, + "probability": 0.7609 + }, + { + "start": 8131.82, + "end": 8133.2, + "probability": 0.5437 + }, + { + "start": 8133.22, + "end": 8134.42, + "probability": 0.7164 + }, + { + "start": 8134.5, + "end": 8137.68, + "probability": 0.7614 + }, + { + "start": 8137.86, + "end": 8142.62, + "probability": 0.9879 + }, + { + "start": 8143.64, + "end": 8145.7, + "probability": 0.0736 + }, + { + "start": 8145.9, + "end": 8148.42, + "probability": 0.953 + }, + { + "start": 8148.5, + "end": 8149.14, + "probability": 0.6414 + }, + { + "start": 8149.52, + "end": 8151.82, + "probability": 0.7314 + }, + { + "start": 8151.94, + "end": 8153.57, + "probability": 0.8562 + }, + { + "start": 8153.6, + "end": 8154.58, + "probability": 0.2567 + }, + { + "start": 8155.18, + "end": 8158.24, + "probability": 0.3662 + }, + { + "start": 8158.4, + "end": 8159.7, + "probability": 0.4207 + }, + { + "start": 8159.76, + "end": 8161.16, + "probability": 0.4204 + }, + { + "start": 8161.3, + "end": 8161.7, + "probability": 0.7361 + }, + { + "start": 8161.72, + "end": 8163.86, + "probability": 0.162 + }, + { + "start": 8164.52, + "end": 8168.9, + "probability": 0.6191 + }, + { + "start": 8171.04, + "end": 8176.46, + "probability": 0.8154 + }, + { + "start": 8176.48, + "end": 8179.26, + "probability": 0.9757 + }, + { + "start": 8180.48, + "end": 8181.84, + "probability": 0.9675 + }, + { + "start": 8182.98, + "end": 8186.7, + "probability": 0.9746 + }, + { + "start": 8186.92, + "end": 8188.98, + "probability": 0.5009 + }, + { + "start": 8189.16, + "end": 8189.86, + "probability": 0.7084 + }, + { + "start": 8191.24, + "end": 8194.6, + "probability": 0.5467 + }, + { + "start": 8194.9, + "end": 8196.94, + "probability": 0.8848 + }, + { + "start": 8197.98, + "end": 8200.27, + "probability": 0.5935 + }, + { + "start": 8202.06, + "end": 8205.78, + "probability": 0.7932 + }, + { + "start": 8206.24, + "end": 8208.8, + "probability": 0.7077 + }, + { + "start": 8209.24, + "end": 8211.04, + "probability": 0.8138 + }, + { + "start": 8211.14, + "end": 8212.6, + "probability": 0.6476 + }, + { + "start": 8212.72, + "end": 8213.44, + "probability": 0.6189 + }, + { + "start": 8213.52, + "end": 8214.24, + "probability": 0.9525 + }, + { + "start": 8214.6, + "end": 8215.48, + "probability": 0.5833 + }, + { + "start": 8215.6, + "end": 8217.44, + "probability": 0.6958 + }, + { + "start": 8217.5, + "end": 8218.48, + "probability": 0.762 + }, + { + "start": 8225.54, + "end": 8228.52, + "probability": 0.5498 + }, + { + "start": 8229.46, + "end": 8230.34, + "probability": 0.6901 + }, + { + "start": 8230.38, + "end": 8233.52, + "probability": 0.464 + }, + { + "start": 8234.4, + "end": 8237.0, + "probability": 0.8016 + }, + { + "start": 8237.1, + "end": 8238.16, + "probability": 0.7959 + }, + { + "start": 8238.2, + "end": 8240.18, + "probability": 0.8391 + }, + { + "start": 8240.24, + "end": 8244.12, + "probability": 0.5168 + }, + { + "start": 8245.24, + "end": 8245.78, + "probability": 0.1923 + }, + { + "start": 8245.84, + "end": 8249.7, + "probability": 0.5433 + }, + { + "start": 8250.34, + "end": 8252.9, + "probability": 0.3502 + }, + { + "start": 8253.8, + "end": 8253.8, + "probability": 0.0637 + }, + { + "start": 8256.2, + "end": 8257.54, + "probability": 0.0293 + }, + { + "start": 8259.36, + "end": 8262.1, + "probability": 0.0251 + }, + { + "start": 8262.1, + "end": 8265.3, + "probability": 0.3816 + }, + { + "start": 8266.0, + "end": 8267.36, + "probability": 0.5005 + }, + { + "start": 8267.78, + "end": 8270.04, + "probability": 0.7185 + }, + { + "start": 8271.83, + "end": 8275.3, + "probability": 0.4725 + }, + { + "start": 8275.3, + "end": 8277.74, + "probability": 0.4103 + }, + { + "start": 8277.74, + "end": 8280.56, + "probability": 0.8271 + }, + { + "start": 8281.18, + "end": 8283.72, + "probability": 0.6216 + }, + { + "start": 8284.28, + "end": 8284.28, + "probability": 0.1013 + }, + { + "start": 8284.28, + "end": 8286.56, + "probability": 0.7422 + }, + { + "start": 8287.96, + "end": 8288.74, + "probability": 0.6104 + }, + { + "start": 8290.93, + "end": 8291.28, + "probability": 0.0325 + }, + { + "start": 8293.96, + "end": 8296.3, + "probability": 0.483 + }, + { + "start": 8296.38, + "end": 8298.8, + "probability": 0.7055 + }, + { + "start": 8298.8, + "end": 8301.84, + "probability": 0.8555 + }, + { + "start": 8301.96, + "end": 8302.52, + "probability": 0.6066 + }, + { + "start": 8304.28, + "end": 8307.24, + "probability": 0.7039 + }, + { + "start": 8307.49, + "end": 8308.66, + "probability": 0.7046 + }, + { + "start": 8308.88, + "end": 8310.59, + "probability": 0.6965 + }, + { + "start": 8311.54, + "end": 8313.56, + "probability": 0.7259 + }, + { + "start": 8314.82, + "end": 8315.96, + "probability": 0.0097 + }, + { + "start": 8317.26, + "end": 8318.12, + "probability": 0.3686 + }, + { + "start": 8318.18, + "end": 8319.4, + "probability": 0.8423 + }, + { + "start": 8320.34, + "end": 8322.1, + "probability": 0.9751 + }, + { + "start": 8322.2, + "end": 8322.56, + "probability": 0.9617 + }, + { + "start": 8322.74, + "end": 8326.16, + "probability": 0.8177 + }, + { + "start": 8326.54, + "end": 8330.22, + "probability": 0.7137 + }, + { + "start": 8331.26, + "end": 8331.34, + "probability": 0.0891 + }, + { + "start": 8331.34, + "end": 8335.22, + "probability": 0.6707 + }, + { + "start": 8335.26, + "end": 8337.02, + "probability": 0.7938 + }, + { + "start": 8339.54, + "end": 8340.86, + "probability": 0.1747 + }, + { + "start": 8341.3, + "end": 8343.72, + "probability": 0.4022 + }, + { + "start": 8344.48, + "end": 8347.5, + "probability": 0.4408 + }, + { + "start": 8347.78, + "end": 8351.32, + "probability": 0.4439 + }, + { + "start": 8351.6, + "end": 8354.16, + "probability": 0.7374 + }, + { + "start": 8355.06, + "end": 8356.56, + "probability": 0.1496 + }, + { + "start": 8357.86, + "end": 8358.9, + "probability": 0.2386 + }, + { + "start": 8361.04, + "end": 8362.04, + "probability": 0.0826 + }, + { + "start": 8362.92, + "end": 8363.96, + "probability": 0.2672 + }, + { + "start": 8364.32, + "end": 8367.92, + "probability": 0.1554 + }, + { + "start": 8368.18, + "end": 8369.24, + "probability": 0.2598 + }, + { + "start": 8369.62, + "end": 8371.0, + "probability": 0.7257 + }, + { + "start": 8372.54, + "end": 8375.71, + "probability": 0.6896 + }, + { + "start": 8377.16, + "end": 8378.0, + "probability": 0.4302 + }, + { + "start": 8379.28, + "end": 8384.46, + "probability": 0.5441 + }, + { + "start": 8384.96, + "end": 8387.96, + "probability": 0.6806 + }, + { + "start": 8388.98, + "end": 8389.98, + "probability": 0.0802 + }, + { + "start": 8390.04, + "end": 8395.66, + "probability": 0.3606 + }, + { + "start": 8396.4, + "end": 8398.76, + "probability": 0.7986 + }, + { + "start": 8400.78, + "end": 8400.94, + "probability": 0.2499 + }, + { + "start": 8401.62, + "end": 8402.82, + "probability": 0.0311 + }, + { + "start": 8404.38, + "end": 8405.84, + "probability": 0.0715 + }, + { + "start": 8407.41, + "end": 8408.8, + "probability": 0.1405 + }, + { + "start": 8408.8, + "end": 8408.8, + "probability": 0.1415 + }, + { + "start": 8408.8, + "end": 8408.8, + "probability": 0.1611 + }, + { + "start": 8409.38, + "end": 8409.38, + "probability": 0.2843 + }, + { + "start": 8409.38, + "end": 8410.76, + "probability": 0.2076 + }, + { + "start": 8411.72, + "end": 8412.96, + "probability": 0.2587 + }, + { + "start": 8413.36, + "end": 8415.82, + "probability": 0.5359 + }, + { + "start": 8415.92, + "end": 8418.78, + "probability": 0.5276 + }, + { + "start": 8418.92, + "end": 8419.56, + "probability": 0.439 + }, + { + "start": 8419.86, + "end": 8423.7, + "probability": 0.8735 + }, + { + "start": 8423.7, + "end": 8426.26, + "probability": 0.9608 + }, + { + "start": 8430.14, + "end": 8430.28, + "probability": 0.023 + }, + { + "start": 8430.28, + "end": 8430.28, + "probability": 0.4677 + }, + { + "start": 8430.28, + "end": 8430.28, + "probability": 0.0457 + }, + { + "start": 8430.28, + "end": 8431.47, + "probability": 0.0223 + }, + { + "start": 8432.26, + "end": 8434.24, + "probability": 0.2974 + }, + { + "start": 8434.62, + "end": 8437.14, + "probability": 0.3723 + }, + { + "start": 8438.26, + "end": 8440.24, + "probability": 0.0887 + }, + { + "start": 8441.7, + "end": 8444.5, + "probability": 0.0448 + }, + { + "start": 8444.5, + "end": 8446.36, + "probability": 0.1839 + }, + { + "start": 8447.46, + "end": 8453.94, + "probability": 0.7583 + }, + { + "start": 8454.66, + "end": 8457.2, + "probability": 0.9678 + }, + { + "start": 8457.24, + "end": 8458.06, + "probability": 0.3839 + }, + { + "start": 8458.26, + "end": 8460.2, + "probability": 0.8669 + }, + { + "start": 8461.26, + "end": 8466.02, + "probability": 0.995 + }, + { + "start": 8467.08, + "end": 8470.62, + "probability": 0.9748 + }, + { + "start": 8471.42, + "end": 8472.48, + "probability": 0.825 + }, + { + "start": 8473.1, + "end": 8476.54, + "probability": 0.3552 + }, + { + "start": 8477.64, + "end": 8479.12, + "probability": 0.5131 + }, + { + "start": 8480.08, + "end": 8481.94, + "probability": 0.7098 + }, + { + "start": 8482.3, + "end": 8487.52, + "probability": 0.1255 + }, + { + "start": 8487.9, + "end": 8487.9, + "probability": 0.0357 + }, + { + "start": 8487.9, + "end": 8491.22, + "probability": 0.5727 + }, + { + "start": 8491.5, + "end": 8495.6, + "probability": 0.4761 + }, + { + "start": 8495.66, + "end": 8497.4, + "probability": 0.6793 + }, + { + "start": 8497.4, + "end": 8499.4, + "probability": 0.6885 + }, + { + "start": 8499.62, + "end": 8507.66, + "probability": 0.9658 + }, + { + "start": 8508.08, + "end": 8511.54, + "probability": 0.7858 + }, + { + "start": 8511.8, + "end": 8513.72, + "probability": 0.9329 + }, + { + "start": 8513.96, + "end": 8515.92, + "probability": 0.8299 + }, + { + "start": 8516.12, + "end": 8518.62, + "probability": 0.9542 + }, + { + "start": 8519.18, + "end": 8521.94, + "probability": 0.998 + }, + { + "start": 8522.88, + "end": 8524.46, + "probability": 0.9072 + }, + { + "start": 8525.52, + "end": 8528.48, + "probability": 0.9724 + }, + { + "start": 8529.44, + "end": 8534.64, + "probability": 0.8862 + }, + { + "start": 8535.52, + "end": 8539.28, + "probability": 0.9712 + }, + { + "start": 8540.06, + "end": 8542.82, + "probability": 0.5041 + }, + { + "start": 8543.64, + "end": 8545.36, + "probability": 0.4164 + }, + { + "start": 8545.36, + "end": 8547.12, + "probability": 0.0311 + }, + { + "start": 8548.06, + "end": 8549.3, + "probability": 0.2454 + }, + { + "start": 8549.92, + "end": 8550.4, + "probability": 0.1507 + }, + { + "start": 8550.4, + "end": 8551.46, + "probability": 0.1021 + }, + { + "start": 8551.78, + "end": 8553.65, + "probability": 0.2438 + }, + { + "start": 8554.66, + "end": 8555.14, + "probability": 0.4307 + }, + { + "start": 8555.66, + "end": 8558.62, + "probability": 0.6265 + }, + { + "start": 8558.62, + "end": 8563.08, + "probability": 0.7834 + }, + { + "start": 8563.08, + "end": 8567.32, + "probability": 0.9844 + }, + { + "start": 8568.34, + "end": 8572.24, + "probability": 0.9952 + }, + { + "start": 8572.24, + "end": 8575.02, + "probability": 0.9965 + }, + { + "start": 8576.32, + "end": 8578.4, + "probability": 0.6565 + }, + { + "start": 8579.54, + "end": 8583.86, + "probability": 0.9969 + }, + { + "start": 8584.46, + "end": 8586.72, + "probability": 0.9826 + }, + { + "start": 8587.16, + "end": 8591.44, + "probability": 0.8811 + }, + { + "start": 8591.44, + "end": 8595.0, + "probability": 0.9937 + }, + { + "start": 8595.54, + "end": 8596.36, + "probability": 0.9985 + }, + { + "start": 8597.04, + "end": 8600.8, + "probability": 0.9935 + }, + { + "start": 8600.92, + "end": 8602.08, + "probability": 0.7434 + }, + { + "start": 8602.56, + "end": 8605.06, + "probability": 0.9907 + }, + { + "start": 8605.62, + "end": 8608.64, + "probability": 0.9762 + }, + { + "start": 8608.64, + "end": 8611.0, + "probability": 0.9947 + }, + { + "start": 8611.92, + "end": 8612.78, + "probability": 0.0857 + }, + { + "start": 8618.18, + "end": 8618.56, + "probability": 0.1622 + }, + { + "start": 8618.56, + "end": 8618.56, + "probability": 0.025 + }, + { + "start": 8618.56, + "end": 8618.56, + "probability": 0.1695 + }, + { + "start": 8618.56, + "end": 8619.46, + "probability": 0.067 + }, + { + "start": 8621.86, + "end": 8622.58, + "probability": 0.8193 + }, + { + "start": 8622.7, + "end": 8626.6, + "probability": 0.8499 + }, + { + "start": 8626.76, + "end": 8631.5, + "probability": 0.9814 + }, + { + "start": 8633.34, + "end": 8634.28, + "probability": 0.7412 + }, + { + "start": 8636.2, + "end": 8637.5, + "probability": 0.1456 + }, + { + "start": 8637.9, + "end": 8639.64, + "probability": 0.7946 + }, + { + "start": 8639.74, + "end": 8642.98, + "probability": 0.9785 + }, + { + "start": 8643.06, + "end": 8645.96, + "probability": 0.9927 + }, + { + "start": 8647.32, + "end": 8648.64, + "probability": 0.5565 + }, + { + "start": 8649.06, + "end": 8652.22, + "probability": 0.98 + }, + { + "start": 8653.0, + "end": 8655.58, + "probability": 0.7411 + }, + { + "start": 8659.02, + "end": 8660.54, + "probability": 0.4818 + }, + { + "start": 8661.14, + "end": 8664.2, + "probability": 0.6837 + }, + { + "start": 8666.04, + "end": 8669.84, + "probability": 0.9816 + }, + { + "start": 8669.88, + "end": 8672.74, + "probability": 0.7714 + }, + { + "start": 8673.38, + "end": 8678.5, + "probability": 0.6263 + }, + { + "start": 8678.68, + "end": 8680.06, + "probability": 0.806 + }, + { + "start": 8684.14, + "end": 8685.24, + "probability": 0.7691 + }, + { + "start": 8687.18, + "end": 8689.38, + "probability": 0.5231 + }, + { + "start": 8689.94, + "end": 8692.28, + "probability": 0.833 + }, + { + "start": 8692.28, + "end": 8692.35, + "probability": 0.7788 + }, + { + "start": 8693.94, + "end": 8698.96, + "probability": 0.9467 + }, + { + "start": 8699.04, + "end": 8700.06, + "probability": 0.0283 + }, + { + "start": 8700.48, + "end": 8701.08, + "probability": 0.6541 + }, + { + "start": 8701.14, + "end": 8705.38, + "probability": 0.8422 + }, + { + "start": 8705.4, + "end": 8707.28, + "probability": 0.5281 + }, + { + "start": 8708.52, + "end": 8709.76, + "probability": 0.5138 + }, + { + "start": 8710.08, + "end": 8715.54, + "probability": 0.9793 + }, + { + "start": 8715.74, + "end": 8717.04, + "probability": 0.2889 + }, + { + "start": 8717.78, + "end": 8719.13, + "probability": 0.3737 + }, + { + "start": 8719.2, + "end": 8721.54, + "probability": 0.9946 + }, + { + "start": 8722.22, + "end": 8722.82, + "probability": 0.0028 + }, + { + "start": 8724.21, + "end": 8724.28, + "probability": 0.2018 + }, + { + "start": 8724.28, + "end": 8726.76, + "probability": 0.9 + }, + { + "start": 8726.88, + "end": 8728.74, + "probability": 0.2868 + }, + { + "start": 8729.04, + "end": 8730.68, + "probability": 0.2386 + }, + { + "start": 8733.82, + "end": 8735.2, + "probability": 0.4353 + }, + { + "start": 8735.98, + "end": 8740.46, + "probability": 0.8144 + }, + { + "start": 8740.64, + "end": 8744.92, + "probability": 0.7815 + }, + { + "start": 8749.49, + "end": 8750.38, + "probability": 0.0519 + }, + { + "start": 8750.74, + "end": 8753.02, + "probability": 0.0267 + }, + { + "start": 8753.76, + "end": 8756.12, + "probability": 0.0674 + }, + { + "start": 8762.0, + "end": 8763.94, + "probability": 0.2257 + }, + { + "start": 8764.82, + "end": 8766.28, + "probability": 0.0225 + }, + { + "start": 8769.48, + "end": 8772.59, + "probability": 0.5591 + }, + { + "start": 8772.96, + "end": 8773.38, + "probability": 0.5984 + }, + { + "start": 8773.5, + "end": 8773.84, + "probability": 0.0975 + }, + { + "start": 8773.84, + "end": 8774.16, + "probability": 0.1392 + }, + { + "start": 8774.34, + "end": 8774.74, + "probability": 0.5105 + }, + { + "start": 8774.76, + "end": 8781.98, + "probability": 0.9136 + }, + { + "start": 8784.31, + "end": 8787.86, + "probability": 0.7674 + }, + { + "start": 8788.38, + "end": 8789.46, + "probability": 0.7138 + }, + { + "start": 8790.0, + "end": 8790.92, + "probability": 0.0447 + }, + { + "start": 8791.44, + "end": 8795.96, + "probability": 0.5135 + }, + { + "start": 8797.08, + "end": 8797.5, + "probability": 0.5339 + }, + { + "start": 8797.68, + "end": 8799.0, + "probability": 0.9119 + }, + { + "start": 8799.24, + "end": 8800.3, + "probability": 0.8054 + }, + { + "start": 8800.36, + "end": 8804.88, + "probability": 0.9067 + }, + { + "start": 8806.26, + "end": 8808.26, + "probability": 0.7105 + }, + { + "start": 8808.9, + "end": 8809.54, + "probability": 0.7858 + }, + { + "start": 8815.74, + "end": 8819.06, + "probability": 0.9619 + }, + { + "start": 8819.36, + "end": 8821.28, + "probability": 0.5217 + }, + { + "start": 8821.82, + "end": 8822.94, + "probability": 0.7919 + }, + { + "start": 8823.7, + "end": 8826.52, + "probability": 0.9893 + }, + { + "start": 8826.58, + "end": 8828.78, + "probability": 0.964 + }, + { + "start": 8828.82, + "end": 8829.78, + "probability": 0.5179 + }, + { + "start": 8830.96, + "end": 8833.04, + "probability": 0.6071 + }, + { + "start": 8833.38, + "end": 8834.06, + "probability": 0.636 + }, + { + "start": 8834.8, + "end": 8839.8, + "probability": 0.0413 + }, + { + "start": 8841.32, + "end": 8841.86, + "probability": 0.0559 + }, + { + "start": 8845.46, + "end": 8846.66, + "probability": 0.0405 + }, + { + "start": 8848.44, + "end": 8848.92, + "probability": 0.0523 + }, + { + "start": 8849.36, + "end": 8850.66, + "probability": 0.2321 + }, + { + "start": 8851.4, + "end": 8854.0, + "probability": 0.4366 + }, + { + "start": 8854.22, + "end": 8855.3, + "probability": 0.6313 + }, + { + "start": 8856.02, + "end": 8856.68, + "probability": 0.9265 + }, + { + "start": 8857.2, + "end": 8862.38, + "probability": 0.8799 + }, + { + "start": 8862.5, + "end": 8863.42, + "probability": 0.9985 + }, + { + "start": 8863.98, + "end": 8864.26, + "probability": 0.9819 + }, + { + "start": 8868.16, + "end": 8871.08, + "probability": 0.8899 + }, + { + "start": 8871.64, + "end": 8872.7, + "probability": 0.617 + }, + { + "start": 8873.28, + "end": 8876.17, + "probability": 0.7241 + }, + { + "start": 8877.36, + "end": 8877.94, + "probability": 0.909 + }, + { + "start": 8878.42, + "end": 8882.22, + "probability": 0.9924 + }, + { + "start": 8882.22, + "end": 8884.54, + "probability": 0.9414 + }, + { + "start": 8884.86, + "end": 8887.8, + "probability": 0.3514 + }, + { + "start": 8888.2, + "end": 8890.78, + "probability": 0.9702 + }, + { + "start": 8891.38, + "end": 8892.86, + "probability": 0.9615 + }, + { + "start": 8893.42, + "end": 8894.82, + "probability": 0.6551 + }, + { + "start": 8895.14, + "end": 8898.74, + "probability": 0.6295 + }, + { + "start": 8899.18, + "end": 8900.92, + "probability": 0.9211 + }, + { + "start": 8917.14, + "end": 8920.14, + "probability": 0.7271 + }, + { + "start": 8921.6, + "end": 8925.62, + "probability": 0.9987 + }, + { + "start": 8925.62, + "end": 8929.4, + "probability": 0.9876 + }, + { + "start": 8930.9, + "end": 8933.5, + "probability": 0.9106 + }, + { + "start": 8933.68, + "end": 8934.6, + "probability": 0.821 + }, + { + "start": 8934.76, + "end": 8936.24, + "probability": 0.8152 + }, + { + "start": 8936.36, + "end": 8938.14, + "probability": 0.9845 + }, + { + "start": 8938.88, + "end": 8941.44, + "probability": 0.8219 + }, + { + "start": 8941.58, + "end": 8944.3, + "probability": 0.7956 + }, + { + "start": 8945.06, + "end": 8948.42, + "probability": 0.8451 + }, + { + "start": 8949.74, + "end": 8950.0, + "probability": 0.8009 + }, + { + "start": 8951.3, + "end": 8953.22, + "probability": 0.9727 + }, + { + "start": 8953.48, + "end": 8957.1, + "probability": 0.9169 + }, + { + "start": 8957.8, + "end": 8959.2, + "probability": 0.7784 + }, + { + "start": 8960.08, + "end": 8961.8, + "probability": 0.8713 + }, + { + "start": 8963.74, + "end": 8966.52, + "probability": 0.9308 + }, + { + "start": 8967.93, + "end": 8970.88, + "probability": 0.9338 + }, + { + "start": 8972.04, + "end": 8974.08, + "probability": 0.8805 + }, + { + "start": 8975.68, + "end": 8979.68, + "probability": 0.905 + }, + { + "start": 8981.3, + "end": 8982.42, + "probability": 0.9985 + }, + { + "start": 8983.48, + "end": 8984.96, + "probability": 0.7179 + }, + { + "start": 8986.24, + "end": 8990.96, + "probability": 0.8087 + }, + { + "start": 8992.1, + "end": 8993.72, + "probability": 0.938 + }, + { + "start": 8995.0, + "end": 8995.0, + "probability": 0.9292 + }, + { + "start": 8996.96, + "end": 8998.9, + "probability": 0.9762 + }, + { + "start": 9000.24, + "end": 9001.04, + "probability": 0.7874 + }, + { + "start": 9002.18, + "end": 9003.68, + "probability": 0.9988 + }, + { + "start": 9004.32, + "end": 9006.6, + "probability": 0.8243 + }, + { + "start": 9007.34, + "end": 9009.82, + "probability": 0.9993 + }, + { + "start": 9010.62, + "end": 9012.26, + "probability": 0.995 + }, + { + "start": 9014.1, + "end": 9016.7, + "probability": 0.9618 + }, + { + "start": 9018.42, + "end": 9019.86, + "probability": 0.9128 + }, + { + "start": 9021.84, + "end": 9022.5, + "probability": 0.789 + }, + { + "start": 9023.86, + "end": 9024.35, + "probability": 0.584 + }, + { + "start": 9024.44, + "end": 9024.78, + "probability": 0.9575 + }, + { + "start": 9024.92, + "end": 9025.64, + "probability": 0.9626 + }, + { + "start": 9025.78, + "end": 9026.92, + "probability": 0.8931 + }, + { + "start": 9027.68, + "end": 9030.08, + "probability": 0.9927 + }, + { + "start": 9030.28, + "end": 9033.14, + "probability": 0.8713 + }, + { + "start": 9034.52, + "end": 9037.12, + "probability": 0.9899 + }, + { + "start": 9037.92, + "end": 9039.02, + "probability": 0.9226 + }, + { + "start": 9040.64, + "end": 9042.72, + "probability": 0.9317 + }, + { + "start": 9043.6, + "end": 9044.88, + "probability": 0.9833 + }, + { + "start": 9045.28, + "end": 9049.0, + "probability": 0.9378 + }, + { + "start": 9050.14, + "end": 9053.68, + "probability": 0.9876 + }, + { + "start": 9054.16, + "end": 9054.96, + "probability": 0.9307 + }, + { + "start": 9055.4, + "end": 9055.98, + "probability": 0.7863 + }, + { + "start": 9057.14, + "end": 9057.8, + "probability": 0.9218 + }, + { + "start": 9058.52, + "end": 9059.34, + "probability": 0.9921 + }, + { + "start": 9060.02, + "end": 9060.64, + "probability": 0.9431 + }, + { + "start": 9062.02, + "end": 9069.99, + "probability": 0.9935 + }, + { + "start": 9070.86, + "end": 9072.96, + "probability": 0.7934 + }, + { + "start": 9073.44, + "end": 9074.4, + "probability": 0.954 + }, + { + "start": 9076.28, + "end": 9082.22, + "probability": 0.9776 + }, + { + "start": 9082.22, + "end": 9089.82, + "probability": 0.9631 + }, + { + "start": 9091.18, + "end": 9095.14, + "probability": 0.9932 + }, + { + "start": 9095.94, + "end": 9097.66, + "probability": 0.9755 + }, + { + "start": 9098.2, + "end": 9100.78, + "probability": 0.9309 + }, + { + "start": 9101.54, + "end": 9102.58, + "probability": 0.9245 + }, + { + "start": 9104.66, + "end": 9106.9, + "probability": 0.9752 + }, + { + "start": 9106.9, + "end": 9110.46, + "probability": 0.9882 + }, + { + "start": 9110.66, + "end": 9112.06, + "probability": 0.8885 + }, + { + "start": 9112.7, + "end": 9115.6, + "probability": 0.9559 + }, + { + "start": 9118.6, + "end": 9122.42, + "probability": 0.9988 + }, + { + "start": 9122.42, + "end": 9125.34, + "probability": 0.9808 + }, + { + "start": 9126.68, + "end": 9132.36, + "probability": 0.9953 + }, + { + "start": 9132.4, + "end": 9137.44, + "probability": 0.9888 + }, + { + "start": 9138.86, + "end": 9138.96, + "probability": 0.6703 + }, + { + "start": 9140.52, + "end": 9143.52, + "probability": 0.9152 + }, + { + "start": 9143.72, + "end": 9145.6, + "probability": 0.8629 + }, + { + "start": 9146.44, + "end": 9147.94, + "probability": 0.9385 + }, + { + "start": 9148.72, + "end": 9153.22, + "probability": 0.9372 + }, + { + "start": 9153.22, + "end": 9158.06, + "probability": 0.984 + }, + { + "start": 9160.18, + "end": 9163.55, + "probability": 0.8568 + }, + { + "start": 9164.54, + "end": 9169.18, + "probability": 0.9984 + }, + { + "start": 9169.78, + "end": 9170.7, + "probability": 0.8294 + }, + { + "start": 9171.34, + "end": 9174.04, + "probability": 0.9961 + }, + { + "start": 9174.64, + "end": 9178.54, + "probability": 0.9919 + }, + { + "start": 9180.86, + "end": 9184.1, + "probability": 0.7739 + }, + { + "start": 9184.74, + "end": 9186.46, + "probability": 0.9968 + }, + { + "start": 9187.26, + "end": 9192.7, + "probability": 0.9969 + }, + { + "start": 9192.7, + "end": 9196.78, + "probability": 0.9636 + }, + { + "start": 9198.04, + "end": 9201.66, + "probability": 0.9959 + }, + { + "start": 9201.66, + "end": 9207.02, + "probability": 0.9808 + }, + { + "start": 9208.7, + "end": 9208.96, + "probability": 0.4835 + }, + { + "start": 9209.0, + "end": 9214.4, + "probability": 0.9297 + }, + { + "start": 9215.5, + "end": 9220.34, + "probability": 0.9958 + }, + { + "start": 9220.34, + "end": 9227.24, + "probability": 0.8687 + }, + { + "start": 9229.62, + "end": 9232.92, + "probability": 0.9778 + }, + { + "start": 9233.3, + "end": 9238.68, + "probability": 0.9337 + }, + { + "start": 9239.62, + "end": 9241.96, + "probability": 0.9914 + }, + { + "start": 9243.18, + "end": 9247.44, + "probability": 0.9716 + }, + { + "start": 9247.98, + "end": 9250.48, + "probability": 0.9542 + }, + { + "start": 9250.62, + "end": 9253.38, + "probability": 0.8999 + }, + { + "start": 9253.52, + "end": 9260.12, + "probability": 0.9893 + }, + { + "start": 9260.26, + "end": 9263.14, + "probability": 0.9836 + }, + { + "start": 9265.34, + "end": 9270.58, + "probability": 0.9871 + }, + { + "start": 9271.98, + "end": 9277.34, + "probability": 0.9117 + }, + { + "start": 9277.9, + "end": 9278.34, + "probability": 0.7432 + }, + { + "start": 9278.4, + "end": 9279.04, + "probability": 0.8478 + }, + { + "start": 9279.24, + "end": 9284.04, + "probability": 0.9414 + }, + { + "start": 9284.62, + "end": 9286.36, + "probability": 0.996 + }, + { + "start": 9286.92, + "end": 9288.8, + "probability": 0.9427 + }, + { + "start": 9290.46, + "end": 9297.68, + "probability": 0.9858 + }, + { + "start": 9298.02, + "end": 9299.2, + "probability": 0.9856 + }, + { + "start": 9299.88, + "end": 9302.84, + "probability": 0.9953 + }, + { + "start": 9302.92, + "end": 9308.88, + "probability": 0.9984 + }, + { + "start": 9311.06, + "end": 9315.28, + "probability": 0.9951 + }, + { + "start": 9315.76, + "end": 9319.8, + "probability": 0.9603 + }, + { + "start": 9320.4, + "end": 9323.72, + "probability": 0.9983 + }, + { + "start": 9325.28, + "end": 9329.02, + "probability": 0.9706 + }, + { + "start": 9330.06, + "end": 9331.66, + "probability": 0.9676 + }, + { + "start": 9331.76, + "end": 9332.7, + "probability": 0.9022 + }, + { + "start": 9333.08, + "end": 9334.38, + "probability": 0.6534 + }, + { + "start": 9334.9, + "end": 9337.04, + "probability": 0.9339 + }, + { + "start": 9337.84, + "end": 9338.68, + "probability": 0.8967 + }, + { + "start": 9339.98, + "end": 9343.22, + "probability": 0.9927 + }, + { + "start": 9344.18, + "end": 9348.5, + "probability": 0.8967 + }, + { + "start": 9348.5, + "end": 9352.58, + "probability": 0.9903 + }, + { + "start": 9356.2, + "end": 9360.42, + "probability": 0.9707 + }, + { + "start": 9360.54, + "end": 9364.38, + "probability": 0.9812 + }, + { + "start": 9365.46, + "end": 9366.4, + "probability": 0.6775 + }, + { + "start": 9366.72, + "end": 9373.48, + "probability": 0.9365 + }, + { + "start": 9375.72, + "end": 9376.72, + "probability": 0.8338 + }, + { + "start": 9377.68, + "end": 9381.32, + "probability": 0.8651 + }, + { + "start": 9381.78, + "end": 9385.54, + "probability": 0.7061 + }, + { + "start": 9385.54, + "end": 9389.16, + "probability": 0.9531 + }, + { + "start": 9390.22, + "end": 9395.92, + "probability": 0.984 + }, + { + "start": 9396.62, + "end": 9396.96, + "probability": 0.8453 + }, + { + "start": 9397.68, + "end": 9400.58, + "probability": 0.9739 + }, + { + "start": 9401.16, + "end": 9403.78, + "probability": 0.8438 + }, + { + "start": 9403.84, + "end": 9405.28, + "probability": 0.9583 + }, + { + "start": 9405.78, + "end": 9407.52, + "probability": 0.4578 + }, + { + "start": 9407.84, + "end": 9408.72, + "probability": 0.8429 + }, + { + "start": 9409.04, + "end": 9410.71, + "probability": 0.9535 + }, + { + "start": 9412.26, + "end": 9415.06, + "probability": 0.9936 + }, + { + "start": 9424.88, + "end": 9425.22, + "probability": 0.4651 + }, + { + "start": 9426.34, + "end": 9427.66, + "probability": 0.8307 + }, + { + "start": 9428.53, + "end": 9431.12, + "probability": 0.6656 + }, + { + "start": 9432.2, + "end": 9437.64, + "probability": 0.8206 + }, + { + "start": 9438.34, + "end": 9440.86, + "probability": 0.977 + }, + { + "start": 9441.42, + "end": 9442.24, + "probability": 0.9553 + }, + { + "start": 9443.02, + "end": 9447.14, + "probability": 0.9957 + }, + { + "start": 9447.9, + "end": 9452.22, + "probability": 0.9958 + }, + { + "start": 9452.74, + "end": 9455.98, + "probability": 0.9837 + }, + { + "start": 9456.88, + "end": 9461.62, + "probability": 0.9983 + }, + { + "start": 9461.62, + "end": 9465.92, + "probability": 0.9993 + }, + { + "start": 9466.68, + "end": 9469.96, + "probability": 0.9984 + }, + { + "start": 9470.5, + "end": 9473.82, + "probability": 0.8382 + }, + { + "start": 9474.24, + "end": 9478.34, + "probability": 0.6718 + }, + { + "start": 9478.8, + "end": 9481.34, + "probability": 0.9217 + }, + { + "start": 9481.84, + "end": 9483.66, + "probability": 0.9873 + }, + { + "start": 9484.62, + "end": 9485.44, + "probability": 0.9459 + }, + { + "start": 9486.34, + "end": 9487.04, + "probability": 0.8135 + }, + { + "start": 9487.66, + "end": 9488.62, + "probability": 0.9749 + }, + { + "start": 9489.3, + "end": 9491.06, + "probability": 0.9758 + }, + { + "start": 9491.74, + "end": 9492.36, + "probability": 0.9514 + }, + { + "start": 9493.08, + "end": 9495.18, + "probability": 0.9956 + }, + { + "start": 9496.38, + "end": 9504.86, + "probability": 0.9913 + }, + { + "start": 9505.78, + "end": 9507.52, + "probability": 0.8589 + }, + { + "start": 9508.06, + "end": 9512.42, + "probability": 0.9961 + }, + { + "start": 9513.2, + "end": 9519.22, + "probability": 0.998 + }, + { + "start": 9519.62, + "end": 9520.86, + "probability": 0.9602 + }, + { + "start": 9521.4, + "end": 9525.42, + "probability": 0.9617 + }, + { + "start": 9525.8, + "end": 9527.1, + "probability": 0.9832 + }, + { + "start": 9527.9, + "end": 9530.1, + "probability": 0.9985 + }, + { + "start": 9530.62, + "end": 9534.72, + "probability": 0.9306 + }, + { + "start": 9535.48, + "end": 9541.66, + "probability": 0.7226 + }, + { + "start": 9542.16, + "end": 9547.28, + "probability": 0.8896 + }, + { + "start": 9547.28, + "end": 9551.88, + "probability": 0.9837 + }, + { + "start": 9552.66, + "end": 9559.54, + "probability": 0.9849 + }, + { + "start": 9560.18, + "end": 9562.88, + "probability": 0.9117 + }, + { + "start": 9563.52, + "end": 9567.94, + "probability": 0.9951 + }, + { + "start": 9568.64, + "end": 9571.82, + "probability": 0.9634 + }, + { + "start": 9572.5, + "end": 9573.64, + "probability": 0.9615 + }, + { + "start": 9574.06, + "end": 9579.12, + "probability": 0.9905 + }, + { + "start": 9579.78, + "end": 9583.48, + "probability": 0.988 + }, + { + "start": 9584.02, + "end": 9587.26, + "probability": 0.965 + }, + { + "start": 9588.02, + "end": 9591.08, + "probability": 0.9876 + }, + { + "start": 9591.92, + "end": 9595.22, + "probability": 0.9066 + }, + { + "start": 9595.68, + "end": 9599.02, + "probability": 0.9925 + }, + { + "start": 9599.76, + "end": 9600.82, + "probability": 0.8584 + }, + { + "start": 9600.96, + "end": 9601.1, + "probability": 0.9278 + }, + { + "start": 9601.2, + "end": 9603.7, + "probability": 0.996 + }, + { + "start": 9603.84, + "end": 9604.4, + "probability": 0.5393 + }, + { + "start": 9604.4, + "end": 9604.64, + "probability": 0.6007 + }, + { + "start": 9605.16, + "end": 9607.12, + "probability": 0.998 + }, + { + "start": 9607.76, + "end": 9611.46, + "probability": 0.7363 + }, + { + "start": 9611.46, + "end": 9618.48, + "probability": 0.9903 + }, + { + "start": 9618.68, + "end": 9622.22, + "probability": 0.9972 + }, + { + "start": 9622.82, + "end": 9626.96, + "probability": 0.9912 + }, + { + "start": 9626.96, + "end": 9630.8, + "probability": 0.994 + }, + { + "start": 9630.98, + "end": 9631.44, + "probability": 0.7373 + }, + { + "start": 9631.64, + "end": 9633.38, + "probability": 0.8613 + }, + { + "start": 9633.78, + "end": 9638.08, + "probability": 0.9759 + }, + { + "start": 9657.96, + "end": 9659.7, + "probability": 0.7238 + }, + { + "start": 9660.34, + "end": 9661.18, + "probability": 0.8339 + }, + { + "start": 9662.14, + "end": 9662.14, + "probability": 0.7091 + }, + { + "start": 9664.98, + "end": 9666.16, + "probability": 0.8566 + }, + { + "start": 9667.34, + "end": 9668.34, + "probability": 0.8141 + }, + { + "start": 9671.82, + "end": 9674.74, + "probability": 0.9935 + }, + { + "start": 9675.7, + "end": 9677.92, + "probability": 0.9993 + }, + { + "start": 9679.3, + "end": 9682.24, + "probability": 0.9914 + }, + { + "start": 9683.0, + "end": 9683.62, + "probability": 0.851 + }, + { + "start": 9684.62, + "end": 9685.18, + "probability": 0.9878 + }, + { + "start": 9686.46, + "end": 9688.32, + "probability": 0.9976 + }, + { + "start": 9692.88, + "end": 9696.32, + "probability": 0.6633 + }, + { + "start": 9700.62, + "end": 9704.64, + "probability": 0.973 + }, + { + "start": 9706.0, + "end": 9714.72, + "probability": 0.9942 + }, + { + "start": 9714.92, + "end": 9716.32, + "probability": 0.9108 + }, + { + "start": 9717.9, + "end": 9721.58, + "probability": 0.9919 + }, + { + "start": 9723.16, + "end": 9725.26, + "probability": 0.5313 + }, + { + "start": 9725.3, + "end": 9728.4, + "probability": 0.9927 + }, + { + "start": 9731.5, + "end": 9734.18, + "probability": 0.972 + }, + { + "start": 9734.74, + "end": 9736.24, + "probability": 0.9826 + }, + { + "start": 9737.72, + "end": 9738.65, + "probability": 0.9941 + }, + { + "start": 9741.3, + "end": 9741.98, + "probability": 0.9448 + }, + { + "start": 9745.4, + "end": 9747.96, + "probability": 0.999 + }, + { + "start": 9747.96, + "end": 9752.4, + "probability": 0.994 + }, + { + "start": 9752.56, + "end": 9753.5, + "probability": 0.6754 + }, + { + "start": 9754.2, + "end": 9757.52, + "probability": 0.9971 + }, + { + "start": 9758.1, + "end": 9759.08, + "probability": 0.9714 + }, + { + "start": 9760.94, + "end": 9764.2, + "probability": 0.9832 + }, + { + "start": 9764.42, + "end": 9766.86, + "probability": 0.7797 + }, + { + "start": 9772.02, + "end": 9772.38, + "probability": 0.712 + }, + { + "start": 9773.86, + "end": 9774.96, + "probability": 0.9771 + }, + { + "start": 9776.22, + "end": 9778.14, + "probability": 0.9962 + }, + { + "start": 9779.16, + "end": 9785.64, + "probability": 0.9966 + }, + { + "start": 9786.08, + "end": 9789.78, + "probability": 0.9177 + }, + { + "start": 9793.66, + "end": 9794.52, + "probability": 0.8797 + }, + { + "start": 9795.46, + "end": 9799.08, + "probability": 0.868 + }, + { + "start": 9800.02, + "end": 9804.36, + "probability": 0.9905 + }, + { + "start": 9805.12, + "end": 9806.84, + "probability": 0.9803 + }, + { + "start": 9809.54, + "end": 9810.7, + "probability": 0.8048 + }, + { + "start": 9810.82, + "end": 9812.4, + "probability": 0.9698 + }, + { + "start": 9813.82, + "end": 9814.42, + "probability": 0.5294 + }, + { + "start": 9814.8, + "end": 9815.32, + "probability": 0.7894 + }, + { + "start": 9820.2, + "end": 9820.8, + "probability": 0.6623 + }, + { + "start": 9830.86, + "end": 9838.16, + "probability": 0.9961 + }, + { + "start": 9839.82, + "end": 9842.84, + "probability": 0.9995 + }, + { + "start": 9843.48, + "end": 9844.06, + "probability": 0.9876 + }, + { + "start": 9844.7, + "end": 9846.24, + "probability": 0.7779 + }, + { + "start": 9846.96, + "end": 9852.26, + "probability": 0.9638 + }, + { + "start": 9859.4, + "end": 9859.72, + "probability": 0.2641 + }, + { + "start": 9859.9, + "end": 9867.68, + "probability": 0.9956 + }, + { + "start": 9868.62, + "end": 9870.34, + "probability": 0.9368 + }, + { + "start": 9875.22, + "end": 9876.02, + "probability": 0.8481 + }, + { + "start": 9878.18, + "end": 9879.54, + "probability": 0.9821 + }, + { + "start": 9880.46, + "end": 9882.58, + "probability": 0.9985 + }, + { + "start": 9883.24, + "end": 9885.14, + "probability": 0.777 + }, + { + "start": 9886.78, + "end": 9888.86, + "probability": 0.9941 + }, + { + "start": 9889.98, + "end": 9892.12, + "probability": 0.9143 + }, + { + "start": 9892.94, + "end": 9898.5, + "probability": 0.9822 + }, + { + "start": 9900.32, + "end": 9905.1, + "probability": 0.9365 + }, + { + "start": 9905.94, + "end": 9909.36, + "probability": 0.9585 + }, + { + "start": 9909.84, + "end": 9912.52, + "probability": 0.6677 + }, + { + "start": 9912.62, + "end": 9913.06, + "probability": 0.4797 + }, + { + "start": 9914.24, + "end": 9916.3, + "probability": 0.9113 + }, + { + "start": 9916.38, + "end": 9917.34, + "probability": 0.7752 + }, + { + "start": 9919.98, + "end": 9922.06, + "probability": 0.9564 + }, + { + "start": 9922.1, + "end": 9925.08, + "probability": 0.0769 + }, + { + "start": 9925.84, + "end": 9928.44, + "probability": 0.9893 + }, + { + "start": 9928.58, + "end": 9936.44, + "probability": 0.9867 + }, + { + "start": 9937.34, + "end": 9943.8, + "probability": 0.9355 + }, + { + "start": 9944.44, + "end": 9944.9, + "probability": 0.4893 + }, + { + "start": 9945.0, + "end": 9945.9, + "probability": 0.7564 + }, + { + "start": 9946.06, + "end": 9947.7, + "probability": 0.9779 + }, + { + "start": 9948.42, + "end": 9948.56, + "probability": 0.2823 + }, + { + "start": 9948.7, + "end": 9950.98, + "probability": 0.9451 + }, + { + "start": 9951.8, + "end": 9955.07, + "probability": 0.8192 + }, + { + "start": 9956.22, + "end": 9956.22, + "probability": 0.0 + }, + { + "start": 9957.14, + "end": 9958.2, + "probability": 0.3174 + }, + { + "start": 9973.92, + "end": 9977.5, + "probability": 0.8624 + }, + { + "start": 9977.98, + "end": 9981.72, + "probability": 0.8506 + }, + { + "start": 9981.86, + "end": 9983.78, + "probability": 0.8676 + }, + { + "start": 9985.64, + "end": 9987.26, + "probability": 0.96 + }, + { + "start": 9987.52, + "end": 9988.67, + "probability": 0.7357 + }, + { + "start": 9988.72, + "end": 9991.7, + "probability": 0.905 + }, + { + "start": 9992.34, + "end": 9995.72, + "probability": 0.9921 + }, + { + "start": 9996.36, + "end": 10001.54, + "probability": 0.9917 + }, + { + "start": 10002.92, + "end": 10006.24, + "probability": 0.5323 + }, + { + "start": 10007.12, + "end": 10010.6, + "probability": 0.7166 + }, + { + "start": 10011.42, + "end": 10013.32, + "probability": 0.9869 + }, + { + "start": 10014.52, + "end": 10018.72, + "probability": 0.9873 + }, + { + "start": 10019.08, + "end": 10027.28, + "probability": 0.8597 + }, + { + "start": 10028.34, + "end": 10029.86, + "probability": 0.8033 + }, + { + "start": 10029.94, + "end": 10030.84, + "probability": 0.7678 + }, + { + "start": 10030.86, + "end": 10031.95, + "probability": 0.885 + }, + { + "start": 10032.2, + "end": 10036.14, + "probability": 0.984 + }, + { + "start": 10037.38, + "end": 10038.86, + "probability": 0.8474 + }, + { + "start": 10039.38, + "end": 10040.38, + "probability": 0.9133 + }, + { + "start": 10040.9, + "end": 10045.44, + "probability": 0.9631 + }, + { + "start": 10047.02, + "end": 10049.92, + "probability": 0.9683 + }, + { + "start": 10050.04, + "end": 10052.64, + "probability": 0.9867 + }, + { + "start": 10052.7, + "end": 10053.32, + "probability": 0.606 + }, + { + "start": 10053.94, + "end": 10055.14, + "probability": 0.752 + }, + { + "start": 10056.0, + "end": 10057.72, + "probability": 0.7549 + }, + { + "start": 10058.58, + "end": 10060.58, + "probability": 0.5066 + }, + { + "start": 10061.42, + "end": 10065.28, + "probability": 0.8425 + }, + { + "start": 10066.2, + "end": 10069.3, + "probability": 0.9945 + }, + { + "start": 10069.8, + "end": 10070.58, + "probability": 0.9932 + }, + { + "start": 10071.46, + "end": 10074.94, + "probability": 0.9756 + }, + { + "start": 10075.0, + "end": 10075.38, + "probability": 0.6975 + }, + { + "start": 10075.44, + "end": 10079.5, + "probability": 0.8604 + }, + { + "start": 10080.58, + "end": 10086.36, + "probability": 0.9941 + }, + { + "start": 10087.8, + "end": 10089.24, + "probability": 0.9122 + }, + { + "start": 10090.08, + "end": 10092.46, + "probability": 0.4567 + }, + { + "start": 10093.52, + "end": 10098.06, + "probability": 0.8623 + }, + { + "start": 10098.64, + "end": 10102.96, + "probability": 0.816 + }, + { + "start": 10103.44, + "end": 10106.62, + "probability": 0.9634 + }, + { + "start": 10107.86, + "end": 10108.84, + "probability": 0.9626 + }, + { + "start": 10109.38, + "end": 10112.9, + "probability": 0.9329 + }, + { + "start": 10113.84, + "end": 10114.32, + "probability": 0.3259 + }, + { + "start": 10115.34, + "end": 10120.2, + "probability": 0.9704 + }, + { + "start": 10120.84, + "end": 10121.84, + "probability": 0.6954 + }, + { + "start": 10122.72, + "end": 10122.82, + "probability": 0.6289 + }, + { + "start": 10124.99, + "end": 10128.06, + "probability": 0.9491 + }, + { + "start": 10128.86, + "end": 10134.7, + "probability": 0.9977 + }, + { + "start": 10134.8, + "end": 10140.26, + "probability": 0.9985 + }, + { + "start": 10141.54, + "end": 10144.06, + "probability": 0.9695 + }, + { + "start": 10144.6, + "end": 10146.42, + "probability": 0.8792 + }, + { + "start": 10147.08, + "end": 10148.62, + "probability": 0.9995 + }, + { + "start": 10149.16, + "end": 10151.6, + "probability": 0.9948 + }, + { + "start": 10152.86, + "end": 10156.6, + "probability": 0.9989 + }, + { + "start": 10156.96, + "end": 10158.4, + "probability": 0.9855 + }, + { + "start": 10158.84, + "end": 10160.52, + "probability": 0.6525 + }, + { + "start": 10162.56, + "end": 10165.14, + "probability": 0.7013 + }, + { + "start": 10165.14, + "end": 10165.68, + "probability": 0.822 + }, + { + "start": 10173.06, + "end": 10173.06, + "probability": 0.1808 + }, + { + "start": 10173.06, + "end": 10173.06, + "probability": 0.0995 + }, + { + "start": 10173.06, + "end": 10173.06, + "probability": 0.1642 + }, + { + "start": 10173.06, + "end": 10173.06, + "probability": 0.2054 + }, + { + "start": 10173.06, + "end": 10173.06, + "probability": 0.1887 + }, + { + "start": 10173.06, + "end": 10173.06, + "probability": 0.5062 + }, + { + "start": 10201.98, + "end": 10203.5, + "probability": 0.4853 + }, + { + "start": 10204.72, + "end": 10207.7, + "probability": 0.9899 + }, + { + "start": 10209.1, + "end": 10211.4, + "probability": 0.7593 + }, + { + "start": 10212.64, + "end": 10219.56, + "probability": 0.9675 + }, + { + "start": 10220.68, + "end": 10222.53, + "probability": 0.7443 + }, + { + "start": 10223.48, + "end": 10226.46, + "probability": 0.855 + }, + { + "start": 10226.52, + "end": 10227.42, + "probability": 0.863 + }, + { + "start": 10228.62, + "end": 10229.78, + "probability": 0.8821 + }, + { + "start": 10230.52, + "end": 10231.6, + "probability": 0.5894 + }, + { + "start": 10232.52, + "end": 10234.18, + "probability": 0.9493 + }, + { + "start": 10234.38, + "end": 10236.56, + "probability": 0.7469 + }, + { + "start": 10236.64, + "end": 10239.74, + "probability": 0.9646 + }, + { + "start": 10240.44, + "end": 10241.5, + "probability": 0.7739 + }, + { + "start": 10241.78, + "end": 10244.0, + "probability": 0.3571 + }, + { + "start": 10244.4, + "end": 10248.06, + "probability": 0.9746 + }, + { + "start": 10250.18, + "end": 10257.78, + "probability": 0.9956 + }, + { + "start": 10258.02, + "end": 10261.08, + "probability": 0.8248 + }, + { + "start": 10261.5, + "end": 10265.78, + "probability": 0.8967 + }, + { + "start": 10266.34, + "end": 10266.88, + "probability": 0.981 + }, + { + "start": 10267.76, + "end": 10269.5, + "probability": 0.7168 + }, + { + "start": 10270.3, + "end": 10271.54, + "probability": 0.8193 + }, + { + "start": 10272.94, + "end": 10275.16, + "probability": 0.9594 + }, + { + "start": 10275.52, + "end": 10281.66, + "probability": 0.9884 + }, + { + "start": 10282.46, + "end": 10287.34, + "probability": 0.9946 + }, + { + "start": 10288.02, + "end": 10292.16, + "probability": 0.9979 + }, + { + "start": 10292.72, + "end": 10298.46, + "probability": 0.9989 + }, + { + "start": 10299.36, + "end": 10300.76, + "probability": 0.9932 + }, + { + "start": 10300.9, + "end": 10301.38, + "probability": 0.5748 + }, + { + "start": 10301.4, + "end": 10303.14, + "probability": 0.7317 + }, + { + "start": 10303.24, + "end": 10304.77, + "probability": 0.7085 + }, + { + "start": 10305.06, + "end": 10305.2, + "probability": 0.0015 + }, + { + "start": 10305.2, + "end": 10305.92, + "probability": 0.3955 + }, + { + "start": 10305.94, + "end": 10307.34, + "probability": 0.8887 + }, + { + "start": 10307.96, + "end": 10308.0, + "probability": 0.4804 + }, + { + "start": 10308.0, + "end": 10311.66, + "probability": 0.9598 + }, + { + "start": 10312.18, + "end": 10315.7, + "probability": 0.9938 + }, + { + "start": 10315.9, + "end": 10319.68, + "probability": 0.558 + }, + { + "start": 10320.4, + "end": 10322.98, + "probability": 0.9868 + }, + { + "start": 10323.12, + "end": 10324.96, + "probability": 0.99 + }, + { + "start": 10325.08, + "end": 10328.42, + "probability": 0.9536 + }, + { + "start": 10329.24, + "end": 10330.48, + "probability": 0.9356 + }, + { + "start": 10330.9, + "end": 10331.96, + "probability": 0.9624 + }, + { + "start": 10332.58, + "end": 10336.38, + "probability": 0.9977 + }, + { + "start": 10336.38, + "end": 10342.62, + "probability": 0.9792 + }, + { + "start": 10342.72, + "end": 10343.38, + "probability": 0.628 + }, + { + "start": 10343.74, + "end": 10347.6, + "probability": 0.9908 + }, + { + "start": 10347.78, + "end": 10354.04, + "probability": 0.987 + }, + { + "start": 10354.1, + "end": 10357.24, + "probability": 0.9257 + }, + { + "start": 10357.48, + "end": 10358.08, + "probability": 0.8674 + }, + { + "start": 10358.28, + "end": 10360.18, + "probability": 0.6911 + }, + { + "start": 10361.79, + "end": 10364.36, + "probability": 0.6079 + }, + { + "start": 10364.52, + "end": 10365.0, + "probability": 0.6855 + }, + { + "start": 10365.54, + "end": 10369.36, + "probability": 0.5867 + }, + { + "start": 10370.56, + "end": 10373.64, + "probability": 0.7637 + }, + { + "start": 10374.2, + "end": 10374.36, + "probability": 0.8062 + }, + { + "start": 10374.92, + "end": 10375.7, + "probability": 0.93 + }, + { + "start": 10376.06, + "end": 10377.41, + "probability": 0.9186 + }, + { + "start": 10378.4, + "end": 10380.68, + "probability": 0.6513 + }, + { + "start": 10380.9, + "end": 10384.78, + "probability": 0.9915 + }, + { + "start": 10385.24, + "end": 10386.16, + "probability": 0.8483 + }, + { + "start": 10386.64, + "end": 10388.06, + "probability": 0.859 + }, + { + "start": 10388.64, + "end": 10390.34, + "probability": 0.9011 + }, + { + "start": 10390.84, + "end": 10391.58, + "probability": 0.5627 + }, + { + "start": 10392.14, + "end": 10394.28, + "probability": 0.9139 + }, + { + "start": 10394.61, + "end": 10396.46, + "probability": 0.9893 + }, + { + "start": 10397.0, + "end": 10397.86, + "probability": 0.9181 + }, + { + "start": 10400.41, + "end": 10401.82, + "probability": 0.7481 + }, + { + "start": 10402.22, + "end": 10403.1, + "probability": 0.2282 + }, + { + "start": 10404.16, + "end": 10404.58, + "probability": 0.9469 + }, + { + "start": 10405.78, + "end": 10406.92, + "probability": 0.7987 + }, + { + "start": 10409.42, + "end": 10409.9, + "probability": 0.9556 + }, + { + "start": 10411.3, + "end": 10412.24, + "probability": 0.7722 + }, + { + "start": 10413.04, + "end": 10413.58, + "probability": 0.9773 + }, + { + "start": 10414.9, + "end": 10415.4, + "probability": 0.8268 + }, + { + "start": 10418.44, + "end": 10419.94, + "probability": 0.2699 + }, + { + "start": 10421.3, + "end": 10422.02, + "probability": 0.6813 + }, + { + "start": 10423.62, + "end": 10424.56, + "probability": 0.7333 + }, + { + "start": 10428.0, + "end": 10430.18, + "probability": 0.9172 + }, + { + "start": 10431.16, + "end": 10432.1, + "probability": 0.8025 + }, + { + "start": 10433.4, + "end": 10434.0, + "probability": 0.9282 + }, + { + "start": 10435.68, + "end": 10436.66, + "probability": 0.6096 + }, + { + "start": 10440.78, + "end": 10442.28, + "probability": 0.9749 + }, + { + "start": 10443.59, + "end": 10445.62, + "probability": 0.1109 + }, + { + "start": 10450.26, + "end": 10451.44, + "probability": 0.7376 + }, + { + "start": 10452.0, + "end": 10453.02, + "probability": 0.5086 + }, + { + "start": 10454.62, + "end": 10456.02, + "probability": 0.7449 + }, + { + "start": 10456.82, + "end": 10457.86, + "probability": 0.5965 + }, + { + "start": 10460.28, + "end": 10461.64, + "probability": 0.9792 + }, + { + "start": 10462.94, + "end": 10463.88, + "probability": 0.879 + }, + { + "start": 10466.02, + "end": 10468.0, + "probability": 0.4639 + }, + { + "start": 10469.86, + "end": 10470.84, + "probability": 0.7744 + }, + { + "start": 10472.9, + "end": 10473.66, + "probability": 0.9879 + }, + { + "start": 10474.86, + "end": 10476.18, + "probability": 0.686 + }, + { + "start": 10477.34, + "end": 10477.86, + "probability": 0.5385 + }, + { + "start": 10479.68, + "end": 10480.5, + "probability": 0.7159 + }, + { + "start": 10483.94, + "end": 10484.94, + "probability": 0.7251 + }, + { + "start": 10486.42, + "end": 10487.24, + "probability": 0.9382 + }, + { + "start": 10488.4, + "end": 10489.74, + "probability": 0.9377 + }, + { + "start": 10490.9, + "end": 10491.68, + "probability": 0.9771 + }, + { + "start": 10494.2, + "end": 10494.98, + "probability": 0.9797 + }, + { + "start": 10495.96, + "end": 10497.44, + "probability": 0.9429 + }, + { + "start": 10498.3, + "end": 10498.76, + "probability": 0.9868 + }, + { + "start": 10500.9, + "end": 10501.74, + "probability": 0.8579 + }, + { + "start": 10504.12, + "end": 10504.26, + "probability": 0.0321 + }, + { + "start": 10508.92, + "end": 10510.72, + "probability": 0.4903 + }, + { + "start": 10512.36, + "end": 10513.52, + "probability": 0.5142 + }, + { + "start": 10514.28, + "end": 10514.56, + "probability": 0.5181 + }, + { + "start": 10516.14, + "end": 10517.06, + "probability": 0.9645 + }, + { + "start": 10518.4, + "end": 10518.8, + "probability": 0.5274 + }, + { + "start": 10520.32, + "end": 10521.22, + "probability": 0.5829 + }, + { + "start": 10522.77, + "end": 10524.98, + "probability": 0.9364 + }, + { + "start": 10527.96, + "end": 10528.66, + "probability": 0.7878 + }, + { + "start": 10529.72, + "end": 10530.78, + "probability": 0.6791 + }, + { + "start": 10532.77, + "end": 10537.94, + "probability": 0.5828 + }, + { + "start": 10538.98, + "end": 10539.6, + "probability": 0.9899 + }, + { + "start": 10541.16, + "end": 10542.44, + "probability": 0.6465 + }, + { + "start": 10543.06, + "end": 10543.42, + "probability": 0.9375 + }, + { + "start": 10545.58, + "end": 10546.24, + "probability": 0.7526 + }, + { + "start": 10552.02, + "end": 10554.96, + "probability": 0.2802 + }, + { + "start": 10564.16, + "end": 10564.16, + "probability": 0.2586 + }, + { + "start": 10564.16, + "end": 10564.22, + "probability": 0.0389 + }, + { + "start": 10564.22, + "end": 10564.22, + "probability": 0.2095 + }, + { + "start": 10564.22, + "end": 10564.68, + "probability": 0.4015 + }, + { + "start": 10566.8, + "end": 10568.97, + "probability": 0.146 + }, + { + "start": 10573.04, + "end": 10580.06, + "probability": 0.1385 + }, + { + "start": 10583.18, + "end": 10585.22, + "probability": 0.1971 + }, + { + "start": 10586.44, + "end": 10586.82, + "probability": 0.096 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11306.0, + "end": 11306.0, + "probability": 0.0 + }, + { + "start": 11392.08, + "end": 11392.62, + "probability": 0.0151 + }, + { + "start": 11393.9, + "end": 11395.3, + "probability": 0.0074 + }, + { + "start": 11395.3, + "end": 11397.88, + "probability": 0.0168 + }, + { + "start": 11398.04, + "end": 11401.06, + "probability": 0.031 + }, + { + "start": 11401.4, + "end": 11402.98, + "probability": 0.068 + }, + { + "start": 11403.52, + "end": 11404.3, + "probability": 0.1661 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.0, + "end": 11430.0, + "probability": 0.0 + }, + { + "start": 11430.59, + "end": 11431.92, + "probability": 0.3894 + }, + { + "start": 11436.22, + "end": 11437.0, + "probability": 0.0301 + }, + { + "start": 11437.12, + "end": 11440.22, + "probability": 0.9127 + }, + { + "start": 11445.18, + "end": 11445.7, + "probability": 0.7321 + }, + { + "start": 11445.82, + "end": 11448.72, + "probability": 0.9956 + }, + { + "start": 11448.9, + "end": 11450.52, + "probability": 0.9143 + }, + { + "start": 11459.3, + "end": 11461.48, + "probability": 0.5422 + }, + { + "start": 11461.78, + "end": 11462.42, + "probability": 0.7209 + }, + { + "start": 11462.7, + "end": 11463.38, + "probability": 0.8199 + }, + { + "start": 11485.0, + "end": 11488.44, + "probability": 0.0415 + }, + { + "start": 11490.4, + "end": 11491.1, + "probability": 0.0092 + }, + { + "start": 11497.2, + "end": 11504.54, + "probability": 0.0328 + }, + { + "start": 11505.72, + "end": 11505.94, + "probability": 0.5698 + }, + { + "start": 11506.74, + "end": 11508.54, + "probability": 0.5006 + }, + { + "start": 11512.78, + "end": 11515.84, + "probability": 0.0482 + }, + { + "start": 11516.52, + "end": 11519.17, + "probability": 0.075 + }, + { + "start": 11521.76, + "end": 11521.96, + "probability": 0.1624 + }, + { + "start": 11522.48, + "end": 11522.6, + "probability": 0.0209 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.0, + "end": 11550.0, + "probability": 0.0 + }, + { + "start": 11550.14, + "end": 11550.14, + "probability": 0.1795 + }, + { + "start": 11550.14, + "end": 11551.91, + "probability": 0.5375 + }, + { + "start": 11552.62, + "end": 11554.9, + "probability": 0.9126 + }, + { + "start": 11555.74, + "end": 11556.92, + "probability": 0.5475 + }, + { + "start": 11559.78, + "end": 11562.86, + "probability": 0.6948 + }, + { + "start": 11563.4, + "end": 11564.78, + "probability": 0.6345 + }, + { + "start": 11565.54, + "end": 11568.34, + "probability": 0.991 + }, + { + "start": 11568.44, + "end": 11569.12, + "probability": 0.8035 + }, + { + "start": 11572.14, + "end": 11574.72, + "probability": 0.8435 + }, + { + "start": 11574.72, + "end": 11579.16, + "probability": 0.9639 + }, + { + "start": 11579.98, + "end": 11581.36, + "probability": 0.2006 + }, + { + "start": 11582.0, + "end": 11583.38, + "probability": 0.9749 + }, + { + "start": 11584.1, + "end": 11585.98, + "probability": 0.9602 + }, + { + "start": 11586.78, + "end": 11588.78, + "probability": 0.9962 + }, + { + "start": 11589.16, + "end": 11589.4, + "probability": 0.6837 + }, + { + "start": 11591.52, + "end": 11594.86, + "probability": 0.7737 + }, + { + "start": 11595.36, + "end": 11602.6, + "probability": 0.7721 + }, + { + "start": 11604.18, + "end": 11605.32, + "probability": 0.8055 + }, + { + "start": 11605.9, + "end": 11609.58, + "probability": 0.8918 + }, + { + "start": 11610.0, + "end": 11611.56, + "probability": 0.6183 + }, + { + "start": 11612.68, + "end": 11617.98, + "probability": 0.6758 + }, + { + "start": 11619.04, + "end": 11622.56, + "probability": 0.7998 + }, + { + "start": 11622.78, + "end": 11625.6, + "probability": 0.9573 + }, + { + "start": 11626.86, + "end": 11627.99, + "probability": 0.3833 + }, + { + "start": 11628.42, + "end": 11628.46, + "probability": 0.7078 + }, + { + "start": 11629.04, + "end": 11630.44, + "probability": 0.8116 + }, + { + "start": 11631.16, + "end": 11633.86, + "probability": 0.9862 + }, + { + "start": 11633.86, + "end": 11637.02, + "probability": 0.9977 + }, + { + "start": 11637.48, + "end": 11638.84, + "probability": 0.9714 + }, + { + "start": 11639.48, + "end": 11641.4, + "probability": 0.86 + }, + { + "start": 11641.98, + "end": 11647.02, + "probability": 0.9793 + }, + { + "start": 11647.6, + "end": 11650.36, + "probability": 0.9892 + }, + { + "start": 11651.42, + "end": 11654.16, + "probability": 0.995 + }, + { + "start": 11654.72, + "end": 11656.8, + "probability": 0.9976 + }, + { + "start": 11657.14, + "end": 11658.06, + "probability": 0.9917 + }, + { + "start": 11659.36, + "end": 11665.04, + "probability": 0.9954 + }, + { + "start": 11665.64, + "end": 11667.3, + "probability": 0.9985 + }, + { + "start": 11667.82, + "end": 11668.98, + "probability": 0.9692 + }, + { + "start": 11669.84, + "end": 11672.32, + "probability": 0.9934 + }, + { + "start": 11672.32, + "end": 11676.46, + "probability": 0.9691 + }, + { + "start": 11677.58, + "end": 11681.58, + "probability": 0.9528 + }, + { + "start": 11682.42, + "end": 11687.74, + "probability": 0.9958 + }, + { + "start": 11689.2, + "end": 11693.14, + "probability": 0.9434 + }, + { + "start": 11693.76, + "end": 11696.46, + "probability": 0.9895 + }, + { + "start": 11697.3, + "end": 11698.9, + "probability": 0.9985 + }, + { + "start": 11701.46, + "end": 11704.02, + "probability": 0.9989 + }, + { + "start": 11704.66, + "end": 11707.84, + "probability": 0.9694 + }, + { + "start": 11709.0, + "end": 11712.14, + "probability": 0.9646 + }, + { + "start": 11712.14, + "end": 11715.68, + "probability": 0.9172 + }, + { + "start": 11717.0, + "end": 11720.0, + "probability": 0.7403 + }, + { + "start": 11720.52, + "end": 11722.44, + "probability": 0.9294 + }, + { + "start": 11723.12, + "end": 11724.4, + "probability": 0.5954 + }, + { + "start": 11724.52, + "end": 11728.7, + "probability": 0.9913 + }, + { + "start": 11729.94, + "end": 11732.34, + "probability": 0.9863 + }, + { + "start": 11732.8, + "end": 11733.94, + "probability": 0.8677 + }, + { + "start": 11734.18, + "end": 11734.32, + "probability": 0.833 + }, + { + "start": 11735.1, + "end": 11739.88, + "probability": 0.9854 + }, + { + "start": 11740.64, + "end": 11741.12, + "probability": 0.9861 + }, + { + "start": 11742.06, + "end": 11746.56, + "probability": 0.9984 + }, + { + "start": 11747.12, + "end": 11750.2, + "probability": 0.995 + }, + { + "start": 11750.2, + "end": 11754.06, + "probability": 0.9897 + }, + { + "start": 11754.7, + "end": 11757.82, + "probability": 0.9835 + }, + { + "start": 11759.82, + "end": 11762.68, + "probability": 0.9894 + }, + { + "start": 11763.42, + "end": 11764.67, + "probability": 0.9693 + }, + { + "start": 11765.46, + "end": 11768.72, + "probability": 0.9005 + }, + { + "start": 11769.38, + "end": 11772.38, + "probability": 0.7966 + }, + { + "start": 11772.98, + "end": 11777.82, + "probability": 0.9992 + }, + { + "start": 11778.48, + "end": 11782.04, + "probability": 0.9925 + }, + { + "start": 11782.04, + "end": 11786.46, + "probability": 0.9894 + }, + { + "start": 11786.98, + "end": 11788.6, + "probability": 0.1994 + }, + { + "start": 11789.3, + "end": 11789.86, + "probability": 0.2594 + }, + { + "start": 11790.52, + "end": 11794.9, + "probability": 0.957 + }, + { + "start": 11795.32, + "end": 11798.68, + "probability": 0.9745 + }, + { + "start": 11799.02, + "end": 11802.66, + "probability": 0.6734 + }, + { + "start": 11803.2, + "end": 11803.93, + "probability": 0.9695 + }, + { + "start": 11804.68, + "end": 11806.9, + "probability": 0.8227 + }, + { + "start": 11807.34, + "end": 11810.81, + "probability": 0.9895 + }, + { + "start": 11811.18, + "end": 11816.4, + "probability": 0.9967 + }, + { + "start": 11816.9, + "end": 11819.86, + "probability": 0.8513 + }, + { + "start": 11820.56, + "end": 11824.18, + "probability": 0.9573 + }, + { + "start": 11825.06, + "end": 11827.2, + "probability": 0.9926 + }, + { + "start": 11827.68, + "end": 11829.87, + "probability": 0.9412 + }, + { + "start": 11830.62, + "end": 11834.08, + "probability": 0.9974 + }, + { + "start": 11835.16, + "end": 11836.16, + "probability": 0.9549 + }, + { + "start": 11836.56, + "end": 11837.48, + "probability": 0.8279 + }, + { + "start": 11837.94, + "end": 11841.98, + "probability": 0.9891 + }, + { + "start": 11843.5, + "end": 11846.04, + "probability": 0.9972 + }, + { + "start": 11846.66, + "end": 11849.3, + "probability": 0.9878 + }, + { + "start": 11849.84, + "end": 11854.28, + "probability": 0.9959 + }, + { + "start": 11855.06, + "end": 11857.72, + "probability": 0.9579 + }, + { + "start": 11858.3, + "end": 11861.36, + "probability": 0.9689 + }, + { + "start": 11862.02, + "end": 11863.0, + "probability": 0.9409 + }, + { + "start": 11863.62, + "end": 11867.12, + "probability": 0.976 + }, + { + "start": 11867.72, + "end": 11869.02, + "probability": 0.989 + }, + { + "start": 11869.62, + "end": 11873.78, + "probability": 0.9902 + }, + { + "start": 11874.72, + "end": 11877.2, + "probability": 0.9836 + }, + { + "start": 11877.68, + "end": 11881.52, + "probability": 0.9033 + }, + { + "start": 11882.26, + "end": 11886.5, + "probability": 0.9985 + }, + { + "start": 11886.92, + "end": 11887.64, + "probability": 0.533 + }, + { + "start": 11888.2, + "end": 11888.66, + "probability": 0.8848 + }, + { + "start": 11889.24, + "end": 11891.26, + "probability": 0.9307 + }, + { + "start": 11891.8, + "end": 11894.1, + "probability": 0.986 + }, + { + "start": 11895.12, + "end": 11897.9, + "probability": 0.7419 + }, + { + "start": 11898.44, + "end": 11899.34, + "probability": 0.9467 + }, + { + "start": 11899.86, + "end": 11902.74, + "probability": 0.9971 + }, + { + "start": 11903.96, + "end": 11907.22, + "probability": 0.9956 + }, + { + "start": 11907.6, + "end": 11910.14, + "probability": 0.8223 + }, + { + "start": 11910.6, + "end": 11914.74, + "probability": 0.954 + }, + { + "start": 11915.5, + "end": 11918.44, + "probability": 0.9313 + }, + { + "start": 11919.36, + "end": 11919.76, + "probability": 0.6122 + }, + { + "start": 11920.3, + "end": 11922.16, + "probability": 0.9685 + }, + { + "start": 11922.64, + "end": 11924.9, + "probability": 0.998 + }, + { + "start": 11925.5, + "end": 11927.34, + "probability": 0.9812 + }, + { + "start": 11927.78, + "end": 11930.62, + "probability": 0.9976 + }, + { + "start": 11931.02, + "end": 11932.92, + "probability": 0.9963 + }, + { + "start": 11933.06, + "end": 11936.34, + "probability": 0.9956 + }, + { + "start": 11936.96, + "end": 11937.7, + "probability": 0.9659 + }, + { + "start": 11938.7, + "end": 11941.2, + "probability": 0.9396 + }, + { + "start": 11941.76, + "end": 11942.8, + "probability": 0.9358 + }, + { + "start": 11943.54, + "end": 11944.82, + "probability": 0.9867 + }, + { + "start": 11945.6, + "end": 11949.7, + "probability": 0.9922 + }, + { + "start": 11951.1, + "end": 11956.26, + "probability": 0.9897 + }, + { + "start": 11956.82, + "end": 11959.3, + "probability": 0.9688 + }, + { + "start": 11960.48, + "end": 11964.24, + "probability": 0.9668 + }, + { + "start": 11966.8, + "end": 11969.2, + "probability": 0.9784 + }, + { + "start": 11970.16, + "end": 11971.78, + "probability": 0.994 + }, + { + "start": 11972.54, + "end": 11973.3, + "probability": 0.7991 + }, + { + "start": 11973.7, + "end": 11978.94, + "probability": 0.9867 + }, + { + "start": 11979.64, + "end": 11981.74, + "probability": 0.9456 + }, + { + "start": 11982.76, + "end": 11984.6, + "probability": 0.9959 + }, + { + "start": 11985.54, + "end": 11986.08, + "probability": 0.8499 + }, + { + "start": 11987.04, + "end": 11988.87, + "probability": 0.9924 + }, + { + "start": 11989.68, + "end": 11989.84, + "probability": 0.9057 + }, + { + "start": 11990.46, + "end": 11991.6, + "probability": 0.9834 + }, + { + "start": 11992.46, + "end": 11996.86, + "probability": 0.9958 + }, + { + "start": 11998.5, + "end": 11999.6, + "probability": 0.6239 + }, + { + "start": 12001.82, + "end": 12005.62, + "probability": 0.7618 + }, + { + "start": 12006.38, + "end": 12008.82, + "probability": 0.9546 + }, + { + "start": 12009.26, + "end": 12011.18, + "probability": 0.9739 + }, + { + "start": 12011.7, + "end": 12012.76, + "probability": 0.9851 + }, + { + "start": 12013.92, + "end": 12015.46, + "probability": 0.6745 + }, + { + "start": 12015.76, + "end": 12021.58, + "probability": 0.9967 + }, + { + "start": 12022.36, + "end": 12024.0, + "probability": 0.992 + }, + { + "start": 12024.8, + "end": 12026.94, + "probability": 0.9912 + }, + { + "start": 12027.46, + "end": 12028.42, + "probability": 0.9053 + }, + { + "start": 12029.22, + "end": 12032.48, + "probability": 0.9824 + }, + { + "start": 12032.84, + "end": 12035.86, + "probability": 0.9918 + }, + { + "start": 12036.42, + "end": 12040.2, + "probability": 0.9988 + }, + { + "start": 12041.6, + "end": 12046.86, + "probability": 0.9977 + }, + { + "start": 12047.33, + "end": 12053.74, + "probability": 0.7756 + }, + { + "start": 12054.62, + "end": 12061.38, + "probability": 0.9958 + }, + { + "start": 12061.88, + "end": 12064.76, + "probability": 0.8179 + }, + { + "start": 12065.4, + "end": 12069.62, + "probability": 0.8347 + }, + { + "start": 12070.08, + "end": 12075.14, + "probability": 0.9873 + }, + { + "start": 12075.84, + "end": 12079.3, + "probability": 0.9638 + }, + { + "start": 12082.4, + "end": 12083.1, + "probability": 0.4393 + }, + { + "start": 12083.62, + "end": 12085.11, + "probability": 0.7459 + }, + { + "start": 12086.44, + "end": 12087.6, + "probability": 0.7753 + }, + { + "start": 12087.82, + "end": 12091.7, + "probability": 0.9957 + }, + { + "start": 12092.32, + "end": 12092.76, + "probability": 0.8049 + }, + { + "start": 12093.36, + "end": 12097.02, + "probability": 0.9212 + }, + { + "start": 12097.78, + "end": 12101.58, + "probability": 0.9357 + }, + { + "start": 12102.32, + "end": 12106.26, + "probability": 0.9639 + }, + { + "start": 12107.52, + "end": 12112.0, + "probability": 0.9177 + }, + { + "start": 12112.0, + "end": 12117.12, + "probability": 0.9917 + }, + { + "start": 12118.14, + "end": 12123.3, + "probability": 0.8181 + }, + { + "start": 12124.04, + "end": 12125.2, + "probability": 0.9984 + }, + { + "start": 12125.72, + "end": 12127.58, + "probability": 0.8527 + }, + { + "start": 12128.2, + "end": 12132.32, + "probability": 0.7107 + }, + { + "start": 12132.92, + "end": 12134.1, + "probability": 0.9567 + }, + { + "start": 12134.62, + "end": 12140.72, + "probability": 0.9635 + }, + { + "start": 12141.86, + "end": 12149.06, + "probability": 0.9564 + }, + { + "start": 12149.3, + "end": 12151.34, + "probability": 0.7004 + }, + { + "start": 12151.34, + "end": 12153.1, + "probability": 0.8934 + }, + { + "start": 12153.7, + "end": 12157.04, + "probability": 0.9534 + }, + { + "start": 12158.08, + "end": 12164.2, + "probability": 0.9837 + }, + { + "start": 12164.88, + "end": 12169.58, + "probability": 0.9922 + }, + { + "start": 12169.81, + "end": 12172.4, + "probability": 0.9814 + }, + { + "start": 12173.1, + "end": 12177.8, + "probability": 0.9196 + }, + { + "start": 12178.38, + "end": 12183.18, + "probability": 0.9353 + }, + { + "start": 12183.9, + "end": 12190.82, + "probability": 0.9928 + }, + { + "start": 12192.06, + "end": 12199.74, + "probability": 0.9897 + }, + { + "start": 12199.88, + "end": 12204.06, + "probability": 0.995 + }, + { + "start": 12204.68, + "end": 12210.84, + "probability": 0.9668 + }, + { + "start": 12210.94, + "end": 12213.09, + "probability": 0.9053 + }, + { + "start": 12213.72, + "end": 12217.66, + "probability": 0.9645 + }, + { + "start": 12218.48, + "end": 12224.32, + "probability": 0.8797 + }, + { + "start": 12224.88, + "end": 12229.0, + "probability": 0.9712 + }, + { + "start": 12229.68, + "end": 12239.82, + "probability": 0.976 + }, + { + "start": 12241.06, + "end": 12243.94, + "probability": 0.9717 + }, + { + "start": 12245.08, + "end": 12247.38, + "probability": 0.9941 + }, + { + "start": 12247.92, + "end": 12250.06, + "probability": 0.9401 + }, + { + "start": 12251.16, + "end": 12252.72, + "probability": 0.8977 + }, + { + "start": 12253.54, + "end": 12253.54, + "probability": 0.1855 + }, + { + "start": 12254.08, + "end": 12257.56, + "probability": 0.9951 + }, + { + "start": 12258.42, + "end": 12262.46, + "probability": 0.9876 + }, + { + "start": 12263.26, + "end": 12266.4, + "probability": 0.6717 + }, + { + "start": 12267.16, + "end": 12270.52, + "probability": 0.917 + }, + { + "start": 12271.78, + "end": 12274.94, + "probability": 0.9814 + }, + { + "start": 12275.54, + "end": 12280.1, + "probability": 0.9972 + }, + { + "start": 12280.96, + "end": 12285.1, + "probability": 0.9792 + }, + { + "start": 12285.82, + "end": 12291.08, + "probability": 0.9958 + }, + { + "start": 12293.04, + "end": 12296.4, + "probability": 0.9841 + }, + { + "start": 12297.0, + "end": 12302.34, + "probability": 0.9963 + }, + { + "start": 12303.16, + "end": 12306.65, + "probability": 0.9983 + }, + { + "start": 12307.86, + "end": 12310.56, + "probability": 0.9354 + }, + { + "start": 12311.14, + "end": 12311.66, + "probability": 0.7691 + }, + { + "start": 12312.26, + "end": 12314.68, + "probability": 0.8604 + }, + { + "start": 12315.96, + "end": 12317.32, + "probability": 0.6776 + }, + { + "start": 12317.56, + "end": 12321.16, + "probability": 0.9113 + }, + { + "start": 12321.28, + "end": 12321.82, + "probability": 0.7881 + }, + { + "start": 12322.26, + "end": 12323.06, + "probability": 0.8062 + }, + { + "start": 12325.12, + "end": 12329.16, + "probability": 0.8977 + }, + { + "start": 12330.36, + "end": 12332.7, + "probability": 0.8468 + }, + { + "start": 12333.22, + "end": 12334.44, + "probability": 0.806 + }, + { + "start": 12335.08, + "end": 12338.3, + "probability": 0.9985 + }, + { + "start": 12339.4, + "end": 12342.08, + "probability": 0.9958 + }, + { + "start": 12343.02, + "end": 12345.14, + "probability": 0.9977 + }, + { + "start": 12345.72, + "end": 12347.66, + "probability": 0.7941 + }, + { + "start": 12347.68, + "end": 12350.46, + "probability": 0.7817 + }, + { + "start": 12350.66, + "end": 12353.7, + "probability": 0.5504 + }, + { + "start": 12353.78, + "end": 12355.64, + "probability": 0.7662 + }, + { + "start": 12355.78, + "end": 12356.84, + "probability": 0.7375 + }, + { + "start": 12358.12, + "end": 12359.62, + "probability": 0.8686 + }, + { + "start": 12360.46, + "end": 12363.28, + "probability": 0.9965 + }, + { + "start": 12364.16, + "end": 12367.0, + "probability": 0.9961 + }, + { + "start": 12367.82, + "end": 12369.02, + "probability": 0.9073 + }, + { + "start": 12369.66, + "end": 12372.6, + "probability": 0.9907 + }, + { + "start": 12373.16, + "end": 12373.8, + "probability": 0.7489 + }, + { + "start": 12375.06, + "end": 12376.66, + "probability": 0.9485 + }, + { + "start": 12377.8, + "end": 12379.06, + "probability": 0.9963 + }, + { + "start": 12379.92, + "end": 12383.41, + "probability": 0.8817 + }, + { + "start": 12385.2, + "end": 12386.2, + "probability": 0.9568 + }, + { + "start": 12387.32, + "end": 12389.02, + "probability": 0.9431 + }, + { + "start": 12390.42, + "end": 12397.56, + "probability": 0.9992 + }, + { + "start": 12398.66, + "end": 12399.0, + "probability": 0.5135 + }, + { + "start": 12399.22, + "end": 12400.42, + "probability": 0.9134 + }, + { + "start": 12400.52, + "end": 12401.22, + "probability": 0.974 + }, + { + "start": 12402.16, + "end": 12403.66, + "probability": 0.9971 + }, + { + "start": 12404.36, + "end": 12405.5, + "probability": 0.9953 + }, + { + "start": 12406.46, + "end": 12410.52, + "probability": 0.9975 + }, + { + "start": 12411.44, + "end": 12412.96, + "probability": 0.984 + }, + { + "start": 12413.52, + "end": 12417.04, + "probability": 0.942 + }, + { + "start": 12418.36, + "end": 12421.52, + "probability": 0.9961 + }, + { + "start": 12422.66, + "end": 12423.06, + "probability": 0.8998 + }, + { + "start": 12423.98, + "end": 12426.58, + "probability": 0.9964 + }, + { + "start": 12427.1, + "end": 12428.08, + "probability": 0.9626 + }, + { + "start": 12429.14, + "end": 12430.62, + "probability": 0.4557 + }, + { + "start": 12431.36, + "end": 12433.52, + "probability": 0.9932 + }, + { + "start": 12433.86, + "end": 12437.98, + "probability": 0.9526 + }, + { + "start": 12438.44, + "end": 12441.84, + "probability": 0.8568 + }, + { + "start": 12443.28, + "end": 12445.03, + "probability": 0.4503 + }, + { + "start": 12445.26, + "end": 12446.94, + "probability": 0.5516 + }, + { + "start": 12447.0, + "end": 12450.96, + "probability": 0.8348 + }, + { + "start": 12453.08, + "end": 12456.28, + "probability": 0.8392 + }, + { + "start": 12456.52, + "end": 12459.54, + "probability": 0.8671 + }, + { + "start": 12459.98, + "end": 12462.94, + "probability": 0.9852 + }, + { + "start": 12463.52, + "end": 12469.24, + "probability": 0.998 + }, + { + "start": 12469.24, + "end": 12474.66, + "probability": 0.9984 + }, + { + "start": 12475.44, + "end": 12477.3, + "probability": 0.9974 + }, + { + "start": 12477.9, + "end": 12478.58, + "probability": 0.9731 + }, + { + "start": 12479.5, + "end": 12479.88, + "probability": 0.6751 + }, + { + "start": 12479.94, + "end": 12482.32, + "probability": 0.9432 + }, + { + "start": 12482.4, + "end": 12483.15, + "probability": 0.9567 + }, + { + "start": 12483.24, + "end": 12484.44, + "probability": 0.9722 + }, + { + "start": 12485.14, + "end": 12485.52, + "probability": 0.9583 + }, + { + "start": 12486.42, + "end": 12487.48, + "probability": 0.9982 + }, + { + "start": 12488.68, + "end": 12489.9, + "probability": 0.913 + }, + { + "start": 12491.0, + "end": 12495.3, + "probability": 0.8691 + }, + { + "start": 12495.36, + "end": 12496.92, + "probability": 0.991 + }, + { + "start": 12497.28, + "end": 12498.78, + "probability": 0.9682 + }, + { + "start": 12498.82, + "end": 12500.44, + "probability": 0.6973 + }, + { + "start": 12501.28, + "end": 12502.0, + "probability": 0.6364 + }, + { + "start": 12502.78, + "end": 12507.08, + "probability": 0.9929 + }, + { + "start": 12507.34, + "end": 12511.18, + "probability": 0.9733 + }, + { + "start": 12511.86, + "end": 12513.12, + "probability": 0.9935 + }, + { + "start": 12513.76, + "end": 12514.28, + "probability": 0.7107 + }, + { + "start": 12514.86, + "end": 12516.65, + "probability": 0.9176 + }, + { + "start": 12518.64, + "end": 12521.38, + "probability": 0.7819 + }, + { + "start": 12521.4, + "end": 12522.36, + "probability": 0.9102 + }, + { + "start": 12522.48, + "end": 12523.5, + "probability": 0.7761 + }, + { + "start": 12524.34, + "end": 12529.08, + "probability": 0.9624 + }, + { + "start": 12529.38, + "end": 12530.3, + "probability": 0.9301 + }, + { + "start": 12530.76, + "end": 12532.62, + "probability": 0.9517 + }, + { + "start": 12532.66, + "end": 12533.74, + "probability": 0.8766 + }, + { + "start": 12533.88, + "end": 12535.02, + "probability": 0.9093 + }, + { + "start": 12535.82, + "end": 12537.72, + "probability": 0.9668 + }, + { + "start": 12538.76, + "end": 12540.48, + "probability": 0.9957 + }, + { + "start": 12541.18, + "end": 12544.76, + "probability": 0.9954 + }, + { + "start": 12545.09, + "end": 12547.16, + "probability": 0.9997 + }, + { + "start": 12549.28, + "end": 12557.18, + "probability": 0.986 + }, + { + "start": 12557.26, + "end": 12559.12, + "probability": 0.9868 + }, + { + "start": 12559.74, + "end": 12560.64, + "probability": 0.9995 + }, + { + "start": 12562.3, + "end": 12564.4, + "probability": 0.9969 + }, + { + "start": 12565.98, + "end": 12567.18, + "probability": 0.8472 + }, + { + "start": 12568.3, + "end": 12570.36, + "probability": 0.8877 + }, + { + "start": 12572.02, + "end": 12573.44, + "probability": 0.9699 + }, + { + "start": 12574.0, + "end": 12576.7, + "probability": 0.9862 + }, + { + "start": 12577.62, + "end": 12577.98, + "probability": 0.9492 + }, + { + "start": 12578.02, + "end": 12578.16, + "probability": 0.6184 + }, + { + "start": 12578.2, + "end": 12582.5, + "probability": 0.9546 + }, + { + "start": 12583.36, + "end": 12588.02, + "probability": 0.9874 + }, + { + "start": 12588.66, + "end": 12593.58, + "probability": 0.9899 + }, + { + "start": 12594.58, + "end": 12595.48, + "probability": 0.7581 + }, + { + "start": 12596.08, + "end": 12598.18, + "probability": 0.8929 + }, + { + "start": 12601.76, + "end": 12602.48, + "probability": 0.1791 + }, + { + "start": 12602.48, + "end": 12604.24, + "probability": 0.779 + }, + { + "start": 12604.84, + "end": 12607.03, + "probability": 0.9792 + }, + { + "start": 12607.94, + "end": 12609.46, + "probability": 0.98 + }, + { + "start": 12609.58, + "end": 12610.66, + "probability": 0.9032 + }, + { + "start": 12612.22, + "end": 12614.24, + "probability": 0.9972 + }, + { + "start": 12614.9, + "end": 12615.5, + "probability": 0.9997 + }, + { + "start": 12616.58, + "end": 12619.24, + "probability": 0.9999 + }, + { + "start": 12620.1, + "end": 12621.58, + "probability": 0.9979 + }, + { + "start": 12622.46, + "end": 12623.64, + "probability": 0.999 + }, + { + "start": 12624.4, + "end": 12627.02, + "probability": 0.9991 + }, + { + "start": 12627.66, + "end": 12628.82, + "probability": 0.9963 + }, + { + "start": 12630.14, + "end": 12634.18, + "probability": 0.998 + }, + { + "start": 12634.7, + "end": 12635.94, + "probability": 0.769 + }, + { + "start": 12636.66, + "end": 12638.32, + "probability": 0.9995 + }, + { + "start": 12639.22, + "end": 12640.44, + "probability": 0.9965 + }, + { + "start": 12641.74, + "end": 12642.92, + "probability": 0.9991 + }, + { + "start": 12643.62, + "end": 12644.48, + "probability": 0.856 + }, + { + "start": 12645.92, + "end": 12649.62, + "probability": 0.9956 + }, + { + "start": 12650.74, + "end": 12651.54, + "probability": 0.7175 + }, + { + "start": 12652.5, + "end": 12653.64, + "probability": 0.7756 + }, + { + "start": 12654.34, + "end": 12654.8, + "probability": 0.7553 + }, + { + "start": 12656.62, + "end": 12658.25, + "probability": 0.9912 + }, + { + "start": 12659.4, + "end": 12660.24, + "probability": 0.7379 + }, + { + "start": 12661.08, + "end": 12662.16, + "probability": 0.7141 + }, + { + "start": 12663.92, + "end": 12666.06, + "probability": 0.9936 + }, + { + "start": 12666.64, + "end": 12668.12, + "probability": 0.9245 + }, + { + "start": 12668.96, + "end": 12670.66, + "probability": 0.998 + }, + { + "start": 12671.42, + "end": 12672.66, + "probability": 0.9586 + }, + { + "start": 12673.26, + "end": 12674.6, + "probability": 0.9963 + }, + { + "start": 12675.48, + "end": 12676.96, + "probability": 0.9609 + }, + { + "start": 12677.72, + "end": 12678.54, + "probability": 0.9971 + }, + { + "start": 12679.22, + "end": 12685.62, + "probability": 0.9956 + }, + { + "start": 12687.8, + "end": 12688.92, + "probability": 0.9108 + }, + { + "start": 12689.46, + "end": 12691.66, + "probability": 0.9812 + }, + { + "start": 12692.34, + "end": 12693.7, + "probability": 0.9933 + }, + { + "start": 12694.86, + "end": 12697.4, + "probability": 0.8114 + }, + { + "start": 12697.48, + "end": 12698.46, + "probability": 0.9926 + }, + { + "start": 12699.2, + "end": 12700.0, + "probability": 0.9653 + }, + { + "start": 12701.5, + "end": 12702.98, + "probability": 0.9966 + }, + { + "start": 12703.96, + "end": 12704.78, + "probability": 0.9804 + }, + { + "start": 12705.46, + "end": 12706.98, + "probability": 0.9063 + }, + { + "start": 12707.9, + "end": 12709.16, + "probability": 0.9967 + }, + { + "start": 12710.12, + "end": 12711.3, + "probability": 0.8376 + }, + { + "start": 12712.18, + "end": 12714.1, + "probability": 0.9912 + }, + { + "start": 12714.34, + "end": 12717.3, + "probability": 0.9788 + }, + { + "start": 12717.84, + "end": 12721.1, + "probability": 0.99 + }, + { + "start": 12722.2, + "end": 12723.5, + "probability": 0.9737 + }, + { + "start": 12724.88, + "end": 12725.84, + "probability": 0.893 + }, + { + "start": 12726.74, + "end": 12727.92, + "probability": 0.9959 + }, + { + "start": 12729.28, + "end": 12730.78, + "probability": 0.7982 + }, + { + "start": 12730.8, + "end": 12731.82, + "probability": 0.817 + }, + { + "start": 12732.18, + "end": 12732.92, + "probability": 0.801 + }, + { + "start": 12733.66, + "end": 12735.5, + "probability": 0.9968 + }, + { + "start": 12737.68, + "end": 12739.74, + "probability": 0.9937 + }, + { + "start": 12740.78, + "end": 12741.42, + "probability": 0.8758 + }, + { + "start": 12742.44, + "end": 12744.4, + "probability": 0.9689 + }, + { + "start": 12745.16, + "end": 12748.32, + "probability": 0.9528 + }, + { + "start": 12748.78, + "end": 12753.4, + "probability": 0.9927 + }, + { + "start": 12754.42, + "end": 12755.38, + "probability": 0.9522 + }, + { + "start": 12756.16, + "end": 12757.5, + "probability": 0.9652 + }, + { + "start": 12758.86, + "end": 12761.66, + "probability": 0.9922 + }, + { + "start": 12762.4, + "end": 12763.26, + "probability": 0.9868 + }, + { + "start": 12764.08, + "end": 12764.76, + "probability": 0.8207 + }, + { + "start": 12765.78, + "end": 12766.94, + "probability": 0.9874 + }, + { + "start": 12767.54, + "end": 12769.84, + "probability": 0.9125 + }, + { + "start": 12770.4, + "end": 12770.76, + "probability": 0.8417 + }, + { + "start": 12771.28, + "end": 12772.44, + "probability": 0.7551 + }, + { + "start": 12774.94, + "end": 12775.7, + "probability": 0.9661 + }, + { + "start": 12776.66, + "end": 12776.94, + "probability": 0.8452 + }, + { + "start": 12777.84, + "end": 12778.9, + "probability": 0.9617 + }, + { + "start": 12779.96, + "end": 12780.46, + "probability": 0.6799 + }, + { + "start": 12780.72, + "end": 12782.37, + "probability": 0.9964 + }, + { + "start": 12784.18, + "end": 12784.98, + "probability": 0.8379 + }, + { + "start": 12786.02, + "end": 12788.22, + "probability": 0.8926 + }, + { + "start": 12788.92, + "end": 12790.38, + "probability": 0.9966 + }, + { + "start": 12792.02, + "end": 12793.58, + "probability": 0.6622 + }, + { + "start": 12794.28, + "end": 12795.45, + "probability": 0.9956 + }, + { + "start": 12795.94, + "end": 12797.2, + "probability": 0.9205 + }, + { + "start": 12797.44, + "end": 12799.24, + "probability": 0.95 + }, + { + "start": 12799.28, + "end": 12802.48, + "probability": 0.9991 + }, + { + "start": 12803.28, + "end": 12806.34, + "probability": 0.9986 + }, + { + "start": 12807.06, + "end": 12807.64, + "probability": 0.9985 + }, + { + "start": 12808.4, + "end": 12809.72, + "probability": 0.9875 + }, + { + "start": 12811.64, + "end": 12814.48, + "probability": 0.9925 + }, + { + "start": 12815.02, + "end": 12815.94, + "probability": 0.9803 + }, + { + "start": 12816.9, + "end": 12820.44, + "probability": 0.9967 + }, + { + "start": 12821.34, + "end": 12821.7, + "probability": 0.9905 + }, + { + "start": 12823.0, + "end": 12827.92, + "probability": 0.999 + }, + { + "start": 12828.1, + "end": 12830.78, + "probability": 0.9932 + }, + { + "start": 12831.06, + "end": 12836.58, + "probability": 0.9968 + }, + { + "start": 12837.28, + "end": 12839.8, + "probability": 0.6635 + }, + { + "start": 12840.46, + "end": 12843.46, + "probability": 0.9775 + }, + { + "start": 12844.42, + "end": 12848.7, + "probability": 0.9666 + }, + { + "start": 12848.7, + "end": 12853.02, + "probability": 0.9906 + }, + { + "start": 12853.5, + "end": 12859.2, + "probability": 0.9689 + }, + { + "start": 12860.32, + "end": 12862.36, + "probability": 0.9984 + }, + { + "start": 12863.06, + "end": 12863.5, + "probability": 0.9399 + }, + { + "start": 12864.18, + "end": 12865.72, + "probability": 0.9801 + }, + { + "start": 12866.48, + "end": 12867.82, + "probability": 0.8999 + }, + { + "start": 12868.58, + "end": 12870.04, + "probability": 0.9893 + }, + { + "start": 12870.78, + "end": 12873.32, + "probability": 0.9773 + }, + { + "start": 12873.9, + "end": 12875.24, + "probability": 0.9837 + }, + { + "start": 12876.74, + "end": 12877.44, + "probability": 0.7551 + }, + { + "start": 12878.34, + "end": 12878.54, + "probability": 0.7703 + }, + { + "start": 12880.5, + "end": 12881.38, + "probability": 0.8047 + }, + { + "start": 12882.08, + "end": 12886.26, + "probability": 0.8232 + }, + { + "start": 12887.14, + "end": 12892.62, + "probability": 0.9561 + }, + { + "start": 12893.34, + "end": 12895.58, + "probability": 0.9202 + }, + { + "start": 12896.38, + "end": 12897.44, + "probability": 0.8214 + }, + { + "start": 12898.02, + "end": 12899.1, + "probability": 0.9239 + }, + { + "start": 12902.24, + "end": 12904.56, + "probability": 0.5861 + }, + { + "start": 12907.1, + "end": 12914.2, + "probability": 0.9777 + }, + { + "start": 12915.48, + "end": 12916.62, + "probability": 0.969 + }, + { + "start": 12917.66, + "end": 12920.44, + "probability": 0.9862 + }, + { + "start": 12921.3, + "end": 12922.35, + "probability": 0.7509 + }, + { + "start": 12923.34, + "end": 12924.36, + "probability": 0.6024 + }, + { + "start": 12925.66, + "end": 12927.21, + "probability": 0.7342 + }, + { + "start": 12927.94, + "end": 12928.2, + "probability": 0.8124 + }, + { + "start": 12929.3, + "end": 12930.16, + "probability": 0.8199 + }, + { + "start": 12930.98, + "end": 12932.58, + "probability": 0.9661 + }, + { + "start": 12932.64, + "end": 12933.5, + "probability": 0.8427 + }, + { + "start": 12933.66, + "end": 12937.78, + "probability": 0.9813 + }, + { + "start": 12940.02, + "end": 12941.18, + "probability": 0.5664 + }, + { + "start": 12941.32, + "end": 12942.6, + "probability": 0.9967 + }, + { + "start": 12943.08, + "end": 12944.16, + "probability": 0.7236 + }, + { + "start": 12944.24, + "end": 12944.82, + "probability": 0.5451 + }, + { + "start": 12944.92, + "end": 12946.58, + "probability": 0.9789 + }, + { + "start": 12946.6, + "end": 12947.32, + "probability": 0.3123 + }, + { + "start": 12948.58, + "end": 12949.24, + "probability": 0.8831 + }, + { + "start": 12950.72, + "end": 12953.58, + "probability": 0.9662 + }, + { + "start": 12953.96, + "end": 12956.5, + "probability": 0.9664 + }, + { + "start": 12957.76, + "end": 12959.22, + "probability": 0.7949 + }, + { + "start": 12961.26, + "end": 12963.6, + "probability": 0.6468 + }, + { + "start": 12963.72, + "end": 12964.36, + "probability": 0.8915 + }, + { + "start": 12964.6, + "end": 12966.42, + "probability": 0.9962 + }, + { + "start": 12967.74, + "end": 12967.98, + "probability": 0.4919 + }, + { + "start": 12968.4, + "end": 12969.34, + "probability": 0.8032 + }, + { + "start": 12970.38, + "end": 12972.9, + "probability": 0.9186 + }, + { + "start": 12973.54, + "end": 12974.7, + "probability": 0.9949 + }, + { + "start": 12975.64, + "end": 12979.56, + "probability": 0.9945 + }, + { + "start": 12980.26, + "end": 12982.2, + "probability": 0.9536 + }, + { + "start": 12982.78, + "end": 12984.18, + "probability": 0.8594 + }, + { + "start": 12985.04, + "end": 12986.94, + "probability": 0.9887 + }, + { + "start": 12987.56, + "end": 12988.22, + "probability": 0.5768 + }, + { + "start": 12990.04, + "end": 12991.96, + "probability": 0.9839 + }, + { + "start": 12993.06, + "end": 12995.44, + "probability": 0.8696 + }, + { + "start": 12996.08, + "end": 12999.08, + "probability": 0.9748 + }, + { + "start": 13000.02, + "end": 13003.62, + "probability": 0.8716 + }, + { + "start": 13005.14, + "end": 13010.06, + "probability": 0.9736 + }, + { + "start": 13011.22, + "end": 13013.14, + "probability": 0.8838 + }, + { + "start": 13013.34, + "end": 13016.2, + "probability": 0.9213 + }, + { + "start": 13017.44, + "end": 13021.8, + "probability": 0.9626 + }, + { + "start": 13022.54, + "end": 13026.74, + "probability": 0.7733 + }, + { + "start": 13027.1, + "end": 13027.68, + "probability": 0.5613 + }, + { + "start": 13027.78, + "end": 13028.4, + "probability": 0.5636 + }, + { + "start": 13028.44, + "end": 13029.12, + "probability": 0.8313 + }, + { + "start": 13029.76, + "end": 13030.7, + "probability": 0.9125 + }, + { + "start": 13031.66, + "end": 13033.84, + "probability": 0.9919 + }, + { + "start": 13034.4, + "end": 13038.52, + "probability": 0.9993 + }, + { + "start": 13039.82, + "end": 13044.36, + "probability": 0.8733 + }, + { + "start": 13045.36, + "end": 13048.06, + "probability": 0.9612 + }, + { + "start": 13048.06, + "end": 13051.8, + "probability": 0.9957 + }, + { + "start": 13053.58, + "end": 13056.0, + "probability": 0.8912 + }, + { + "start": 13056.6, + "end": 13060.46, + "probability": 0.8175 + }, + { + "start": 13061.1, + "end": 13062.66, + "probability": 0.9532 + }, + { + "start": 13064.44, + "end": 13066.36, + "probability": 0.9419 + }, + { + "start": 13067.08, + "end": 13070.78, + "probability": 0.9712 + }, + { + "start": 13072.32, + "end": 13073.86, + "probability": 0.6987 + }, + { + "start": 13074.8, + "end": 13076.02, + "probability": 0.7202 + }, + { + "start": 13077.18, + "end": 13081.58, + "probability": 0.9547 + }, + { + "start": 13082.42, + "end": 13084.68, + "probability": 0.9976 + }, + { + "start": 13085.78, + "end": 13089.48, + "probability": 0.8381 + }, + { + "start": 13090.0, + "end": 13093.92, + "probability": 0.9371 + }, + { + "start": 13094.58, + "end": 13096.58, + "probability": 0.893 + }, + { + "start": 13097.44, + "end": 13097.8, + "probability": 0.9436 + }, + { + "start": 13098.4, + "end": 13099.26, + "probability": 0.9783 + }, + { + "start": 13101.12, + "end": 13102.7, + "probability": 0.9449 + }, + { + "start": 13103.16, + "end": 13109.66, + "probability": 0.9927 + }, + { + "start": 13110.46, + "end": 13112.4, + "probability": 0.859 + }, + { + "start": 13114.5, + "end": 13115.5, + "probability": 0.8192 + }, + { + "start": 13117.22, + "end": 13118.56, + "probability": 0.6715 + }, + { + "start": 13119.46, + "end": 13120.84, + "probability": 0.598 + }, + { + "start": 13121.66, + "end": 13127.66, + "probability": 0.9473 + }, + { + "start": 13129.54, + "end": 13134.56, + "probability": 0.9805 + }, + { + "start": 13135.94, + "end": 13137.7, + "probability": 0.8438 + }, + { + "start": 13137.94, + "end": 13139.68, + "probability": 0.9086 + }, + { + "start": 13140.36, + "end": 13144.62, + "probability": 0.9721 + }, + { + "start": 13144.62, + "end": 13148.84, + "probability": 0.9749 + }, + { + "start": 13149.6, + "end": 13151.76, + "probability": 0.9714 + }, + { + "start": 13152.4, + "end": 13154.04, + "probability": 0.746 + }, + { + "start": 13154.62, + "end": 13156.62, + "probability": 0.8623 + }, + { + "start": 13157.24, + "end": 13160.06, + "probability": 0.996 + }, + { + "start": 13160.68, + "end": 13162.32, + "probability": 0.6161 + }, + { + "start": 13164.02, + "end": 13169.76, + "probability": 0.96 + }, + { + "start": 13170.52, + "end": 13173.12, + "probability": 0.9909 + }, + { + "start": 13174.28, + "end": 13174.64, + "probability": 0.5948 + }, + { + "start": 13174.9, + "end": 13177.84, + "probability": 0.9987 + }, + { + "start": 13179.04, + "end": 13180.58, + "probability": 0.9977 + }, + { + "start": 13181.78, + "end": 13182.34, + "probability": 0.7739 + }, + { + "start": 13183.12, + "end": 13187.16, + "probability": 0.9994 + }, + { + "start": 13187.9, + "end": 13192.1, + "probability": 0.9979 + }, + { + "start": 13192.66, + "end": 13197.54, + "probability": 0.995 + }, + { + "start": 13197.54, + "end": 13203.24, + "probability": 0.9944 + }, + { + "start": 13203.7, + "end": 13206.06, + "probability": 0.9765 + }, + { + "start": 13206.84, + "end": 13208.62, + "probability": 0.9907 + }, + { + "start": 13209.6, + "end": 13211.82, + "probability": 0.8967 + }, + { + "start": 13212.52, + "end": 13216.16, + "probability": 0.9319 + }, + { + "start": 13216.7, + "end": 13220.94, + "probability": 0.9795 + }, + { + "start": 13222.06, + "end": 13227.4, + "probability": 0.9426 + }, + { + "start": 13227.4, + "end": 13233.62, + "probability": 0.9873 + }, + { + "start": 13233.84, + "end": 13236.06, + "probability": 0.8379 + }, + { + "start": 13236.44, + "end": 13236.92, + "probability": 0.4254 + }, + { + "start": 13237.06, + "end": 13239.34, + "probability": 0.9472 + }, + { + "start": 13240.3, + "end": 13243.16, + "probability": 0.8527 + }, + { + "start": 13243.54, + "end": 13249.62, + "probability": 0.9492 + }, + { + "start": 13250.38, + "end": 13253.08, + "probability": 0.9724 + }, + { + "start": 13253.88, + "end": 13260.42, + "probability": 0.8665 + }, + { + "start": 13261.24, + "end": 13261.96, + "probability": 0.4238 + }, + { + "start": 13262.58, + "end": 13264.26, + "probability": 0.9929 + }, + { + "start": 13265.22, + "end": 13267.42, + "probability": 0.9872 + }, + { + "start": 13267.96, + "end": 13269.96, + "probability": 0.7296 + }, + { + "start": 13270.42, + "end": 13275.86, + "probability": 0.9686 + }, + { + "start": 13277.14, + "end": 13277.56, + "probability": 0.7554 + }, + { + "start": 13278.36, + "end": 13280.2, + "probability": 0.7884 + }, + { + "start": 13280.24, + "end": 13284.16, + "probability": 0.9772 + }, + { + "start": 13284.24, + "end": 13292.38, + "probability": 0.8936 + }, + { + "start": 13292.48, + "end": 13293.98, + "probability": 0.7681 + }, + { + "start": 13294.12, + "end": 13295.76, + "probability": 0.7181 + }, + { + "start": 13296.1, + "end": 13298.84, + "probability": 0.9698 + }, + { + "start": 13300.18, + "end": 13305.1, + "probability": 0.7436 + }, + { + "start": 13305.26, + "end": 13306.78, + "probability": 0.9019 + }, + { + "start": 13318.42, + "end": 13319.22, + "probability": 0.2659 + }, + { + "start": 13330.86, + "end": 13330.86, + "probability": 0.4907 + }, + { + "start": 13330.86, + "end": 13331.62, + "probability": 0.517 + }, + { + "start": 13331.68, + "end": 13332.38, + "probability": 0.7627 + }, + { + "start": 13332.56, + "end": 13337.84, + "probability": 0.9842 + }, + { + "start": 13338.0, + "end": 13340.42, + "probability": 0.9404 + }, + { + "start": 13341.2, + "end": 13341.86, + "probability": 0.7811 + }, + { + "start": 13342.78, + "end": 13346.44, + "probability": 0.9813 + }, + { + "start": 13347.98, + "end": 13351.4, + "probability": 0.9907 + }, + { + "start": 13353.98, + "end": 13354.74, + "probability": 0.9377 + }, + { + "start": 13355.32, + "end": 13357.04, + "probability": 0.9778 + }, + { + "start": 13358.44, + "end": 13363.04, + "probability": 0.9146 + }, + { + "start": 13363.44, + "end": 13365.36, + "probability": 0.962 + }, + { + "start": 13366.06, + "end": 13367.8, + "probability": 0.9898 + }, + { + "start": 13368.5, + "end": 13369.72, + "probability": 0.9958 + }, + { + "start": 13372.28, + "end": 13375.86, + "probability": 0.9699 + }, + { + "start": 13376.92, + "end": 13378.2, + "probability": 0.5048 + }, + { + "start": 13379.48, + "end": 13383.3, + "probability": 0.9905 + }, + { + "start": 13384.46, + "end": 13386.36, + "probability": 0.8948 + }, + { + "start": 13386.54, + "end": 13387.19, + "probability": 0.9453 + }, + { + "start": 13389.68, + "end": 13392.3, + "probability": 0.9767 + }, + { + "start": 13394.38, + "end": 13397.26, + "probability": 0.8761 + }, + { + "start": 13398.2, + "end": 13401.48, + "probability": 0.969 + }, + { + "start": 13402.02, + "end": 13405.38, + "probability": 0.9352 + }, + { + "start": 13405.66, + "end": 13407.0, + "probability": 0.7799 + }, + { + "start": 13408.24, + "end": 13411.42, + "probability": 0.9517 + }, + { + "start": 13411.42, + "end": 13415.7, + "probability": 0.9591 + }, + { + "start": 13416.82, + "end": 13419.2, + "probability": 0.9912 + }, + { + "start": 13420.0, + "end": 13421.86, + "probability": 0.9261 + }, + { + "start": 13422.76, + "end": 13425.16, + "probability": 0.9312 + }, + { + "start": 13426.4, + "end": 13427.68, + "probability": 0.9751 + }, + { + "start": 13429.06, + "end": 13430.46, + "probability": 0.9893 + }, + { + "start": 13431.04, + "end": 13434.9, + "probability": 0.5133 + }, + { + "start": 13435.58, + "end": 13438.92, + "probability": 0.5244 + }, + { + "start": 13439.92, + "end": 13441.8, + "probability": 0.5201 + }, + { + "start": 13442.14, + "end": 13442.48, + "probability": 0.7214 + }, + { + "start": 13442.72, + "end": 13444.94, + "probability": 0.8735 + }, + { + "start": 13445.02, + "end": 13446.56, + "probability": 0.8688 + }, + { + "start": 13447.6, + "end": 13450.59, + "probability": 0.6791 + }, + { + "start": 13451.54, + "end": 13455.88, + "probability": 0.9943 + }, + { + "start": 13456.62, + "end": 13460.18, + "probability": 0.9717 + }, + { + "start": 13460.9, + "end": 13462.8, + "probability": 0.9351 + }, + { + "start": 13463.66, + "end": 13464.44, + "probability": 0.9619 + }, + { + "start": 13465.32, + "end": 13466.78, + "probability": 0.5924 + }, + { + "start": 13467.82, + "end": 13471.88, + "probability": 0.998 + }, + { + "start": 13472.44, + "end": 13472.98, + "probability": 0.4372 + }, + { + "start": 13473.16, + "end": 13475.76, + "probability": 0.5337 + }, + { + "start": 13475.94, + "end": 13479.08, + "probability": 0.4419 + }, + { + "start": 13479.8, + "end": 13483.98, + "probability": 0.8803 + }, + { + "start": 13484.82, + "end": 13489.58, + "probability": 0.9919 + }, + { + "start": 13489.86, + "end": 13490.72, + "probability": 0.8534 + }, + { + "start": 13490.84, + "end": 13494.62, + "probability": 0.9958 + }, + { + "start": 13495.2, + "end": 13496.08, + "probability": 0.7854 + }, + { + "start": 13496.68, + "end": 13498.74, + "probability": 0.9988 + }, + { + "start": 13500.52, + "end": 13502.52, + "probability": 0.9885 + }, + { + "start": 13504.18, + "end": 13506.94, + "probability": 0.733 + }, + { + "start": 13507.6, + "end": 13511.4, + "probability": 0.586 + }, + { + "start": 13511.5, + "end": 13514.4, + "probability": 0.8438 + }, + { + "start": 13514.88, + "end": 13518.3, + "probability": 0.9954 + }, + { + "start": 13518.42, + "end": 13519.58, + "probability": 0.8272 + }, + { + "start": 13519.68, + "end": 13523.14, + "probability": 0.7564 + }, + { + "start": 13523.22, + "end": 13524.6, + "probability": 0.7527 + }, + { + "start": 13524.68, + "end": 13525.76, + "probability": 0.7238 + }, + { + "start": 13526.04, + "end": 13526.44, + "probability": 0.8377 + }, + { + "start": 13526.7, + "end": 13527.18, + "probability": 0.7073 + }, + { + "start": 13527.26, + "end": 13530.68, + "probability": 0.9105 + }, + { + "start": 13530.8, + "end": 13531.96, + "probability": 0.7739 + }, + { + "start": 13532.34, + "end": 13533.7, + "probability": 0.8829 + }, + { + "start": 13534.16, + "end": 13534.16, + "probability": 0.6098 + }, + { + "start": 13534.16, + "end": 13534.4, + "probability": 0.4905 + }, + { + "start": 13534.66, + "end": 13536.04, + "probability": 0.9393 + }, + { + "start": 13536.22, + "end": 13540.06, + "probability": 0.8792 + }, + { + "start": 13540.06, + "end": 13540.44, + "probability": 0.6859 + }, + { + "start": 13542.0, + "end": 13544.74, + "probability": 0.9427 + }, + { + "start": 13544.74, + "end": 13546.5, + "probability": 0.9561 + }, + { + "start": 13546.68, + "end": 13547.55, + "probability": 0.9595 + }, + { + "start": 13548.52, + "end": 13548.86, + "probability": 0.5508 + }, + { + "start": 13548.98, + "end": 13548.98, + "probability": 0.1786 + }, + { + "start": 13549.16, + "end": 13550.96, + "probability": 0.9792 + }, + { + "start": 13551.36, + "end": 13556.46, + "probability": 0.9463 + }, + { + "start": 13556.82, + "end": 13557.18, + "probability": 0.5193 + }, + { + "start": 13557.3, + "end": 13557.86, + "probability": 0.8302 + }, + { + "start": 13564.94, + "end": 13568.32, + "probability": 0.7681 + }, + { + "start": 13568.72, + "end": 13569.86, + "probability": 0.702 + }, + { + "start": 13570.12, + "end": 13571.16, + "probability": 0.7838 + }, + { + "start": 13571.5, + "end": 13575.64, + "probability": 0.9489 + }, + { + "start": 13575.76, + "end": 13581.48, + "probability": 0.9269 + }, + { + "start": 13582.1, + "end": 13583.14, + "probability": 0.4137 + }, + { + "start": 13583.4, + "end": 13586.2, + "probability": 0.9762 + }, + { + "start": 13586.24, + "end": 13587.04, + "probability": 0.9071 + }, + { + "start": 13587.96, + "end": 13589.08, + "probability": 0.9447 + }, + { + "start": 13589.82, + "end": 13591.96, + "probability": 0.9583 + }, + { + "start": 13592.66, + "end": 13597.08, + "probability": 0.9429 + }, + { + "start": 13597.66, + "end": 13602.06, + "probability": 0.9789 + }, + { + "start": 13602.48, + "end": 13603.2, + "probability": 0.7162 + }, + { + "start": 13604.22, + "end": 13605.62, + "probability": 0.9585 + }, + { + "start": 13606.34, + "end": 13610.58, + "probability": 0.8601 + }, + { + "start": 13611.28, + "end": 13612.26, + "probability": 0.8897 + }, + { + "start": 13612.92, + "end": 13615.68, + "probability": 0.9508 + }, + { + "start": 13615.84, + "end": 13617.82, + "probability": 0.9141 + }, + { + "start": 13618.24, + "end": 13620.06, + "probability": 0.9933 + }, + { + "start": 13620.26, + "end": 13623.81, + "probability": 0.9261 + }, + { + "start": 13624.62, + "end": 13627.54, + "probability": 0.8318 + }, + { + "start": 13628.16, + "end": 13631.76, + "probability": 0.989 + }, + { + "start": 13632.52, + "end": 13635.6, + "probability": 0.7412 + }, + { + "start": 13636.32, + "end": 13640.1, + "probability": 0.7353 + }, + { + "start": 13640.14, + "end": 13642.08, + "probability": 0.9969 + }, + { + "start": 13642.84, + "end": 13643.84, + "probability": 0.8224 + }, + { + "start": 13644.68, + "end": 13649.1, + "probability": 0.9799 + }, + { + "start": 13650.1, + "end": 13651.72, + "probability": 0.9937 + }, + { + "start": 13652.22, + "end": 13652.74, + "probability": 0.7372 + }, + { + "start": 13652.98, + "end": 13653.2, + "probability": 0.8016 + }, + { + "start": 13653.6, + "end": 13654.54, + "probability": 0.6925 + }, + { + "start": 13654.6, + "end": 13661.18, + "probability": 0.9941 + }, + { + "start": 13662.29, + "end": 13667.74, + "probability": 0.8974 + }, + { + "start": 13667.88, + "end": 13669.24, + "probability": 0.5557 + }, + { + "start": 13669.68, + "end": 13673.26, + "probability": 0.7497 + }, + { + "start": 13673.42, + "end": 13674.9, + "probability": 0.9772 + }, + { + "start": 13675.44, + "end": 13677.22, + "probability": 0.8245 + }, + { + "start": 13677.56, + "end": 13677.78, + "probability": 0.6953 + }, + { + "start": 13679.14, + "end": 13680.04, + "probability": 0.6134 + }, + { + "start": 13681.58, + "end": 13683.3, + "probability": 0.2706 + }, + { + "start": 13684.38, + "end": 13686.58, + "probability": 0.7905 + }, + { + "start": 13688.16, + "end": 13693.22, + "probability": 0.7948 + }, + { + "start": 13694.22, + "end": 13696.58, + "probability": 0.752 + }, + { + "start": 13696.88, + "end": 13699.24, + "probability": 0.9688 + }, + { + "start": 13699.24, + "end": 13701.88, + "probability": 0.9465 + }, + { + "start": 13701.88, + "end": 13703.78, + "probability": 0.9601 + }, + { + "start": 13705.54, + "end": 13707.24, + "probability": 0.503 + }, + { + "start": 13708.68, + "end": 13709.34, + "probability": 0.6185 + }, + { + "start": 13709.44, + "end": 13710.02, + "probability": 0.627 + }, + { + "start": 13710.02, + "end": 13710.54, + "probability": 0.8036 + }, + { + "start": 13732.16, + "end": 13735.21, + "probability": 0.0833 + }, + { + "start": 13738.5, + "end": 13741.46, + "probability": 0.0591 + }, + { + "start": 13745.6, + "end": 13750.8, + "probability": 0.0688 + }, + { + "start": 13754.7, + "end": 13757.42, + "probability": 0.0848 + }, + { + "start": 13758.08, + "end": 13761.02, + "probability": 0.0942 + }, + { + "start": 13764.96, + "end": 13765.56, + "probability": 0.1867 + }, + { + "start": 13770.5, + "end": 13773.76, + "probability": 0.264 + }, + { + "start": 13775.14, + "end": 13775.7, + "probability": 0.0594 + }, + { + "start": 13777.92, + "end": 13778.48, + "probability": 0.0662 + }, + { + "start": 13780.0, + "end": 13780.62, + "probability": 0.4568 + }, + { + "start": 13782.36, + "end": 13786.84, + "probability": 0.0417 + }, + { + "start": 13786.84, + "end": 13787.16, + "probability": 0.091 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13793.0, + "end": 13793.0, + "probability": 0.0 + }, + { + "start": 13794.54, + "end": 13799.38, + "probability": 0.3595 + }, + { + "start": 13799.66, + "end": 13805.14, + "probability": 0.9641 + }, + { + "start": 13806.14, + "end": 13810.7, + "probability": 0.9346 + }, + { + "start": 13814.08, + "end": 13814.08, + "probability": 0.564 + }, + { + "start": 13814.14, + "end": 13818.2, + "probability": 0.878 + }, + { + "start": 13818.62, + "end": 13824.62, + "probability": 0.8493 + }, + { + "start": 13828.81, + "end": 13834.0, + "probability": 0.9802 + }, + { + "start": 13834.12, + "end": 13835.24, + "probability": 0.7548 + }, + { + "start": 13835.74, + "end": 13836.04, + "probability": 0.7319 + }, + { + "start": 13836.7, + "end": 13842.16, + "probability": 0.2978 + }, + { + "start": 13843.38, + "end": 13844.14, + "probability": 0.8223 + }, + { + "start": 13846.8, + "end": 13846.8, + "probability": 0.0334 + }, + { + "start": 13846.8, + "end": 13846.8, + "probability": 0.2957 + }, + { + "start": 13846.8, + "end": 13846.8, + "probability": 0.0461 + }, + { + "start": 13846.8, + "end": 13847.64, + "probability": 0.1269 + }, + { + "start": 13851.0, + "end": 13851.56, + "probability": 0.4576 + }, + { + "start": 13852.42, + "end": 13852.52, + "probability": 0.2599 + }, + { + "start": 13864.26, + "end": 13865.45, + "probability": 0.6367 + }, + { + "start": 13867.2, + "end": 13867.38, + "probability": 0.0376 + }, + { + "start": 13867.38, + "end": 13868.55, + "probability": 0.4178 + }, + { + "start": 13869.88, + "end": 13871.2, + "probability": 0.7932 + }, + { + "start": 13872.4, + "end": 13875.8, + "probability": 0.8547 + }, + { + "start": 13876.84, + "end": 13879.52, + "probability": 0.6735 + }, + { + "start": 13880.54, + "end": 13884.5, + "probability": 0.8965 + }, + { + "start": 13886.76, + "end": 13891.96, + "probability": 0.9941 + }, + { + "start": 13891.96, + "end": 13896.4, + "probability": 0.7612 + }, + { + "start": 13896.56, + "end": 13897.04, + "probability": 0.6358 + }, + { + "start": 13897.86, + "end": 13899.66, + "probability": 0.9919 + }, + { + "start": 13901.24, + "end": 13901.76, + "probability": 0.9604 + }, + { + "start": 13902.56, + "end": 13903.7, + "probability": 0.8796 + }, + { + "start": 13904.12, + "end": 13904.72, + "probability": 0.7324 + }, + { + "start": 13905.18, + "end": 13906.66, + "probability": 0.9504 + }, + { + "start": 13907.12, + "end": 13908.32, + "probability": 0.9746 + }, + { + "start": 13909.14, + "end": 13910.6, + "probability": 0.2989 + }, + { + "start": 13911.36, + "end": 13914.9, + "probability": 0.8949 + }, + { + "start": 13915.18, + "end": 13917.16, + "probability": 0.8811 + }, + { + "start": 13917.68, + "end": 13919.0, + "probability": 0.979 + }, + { + "start": 13919.12, + "end": 13920.12, + "probability": 0.9892 + }, + { + "start": 13920.28, + "end": 13922.22, + "probability": 0.7942 + }, + { + "start": 13922.58, + "end": 13923.08, + "probability": 0.556 + }, + { + "start": 13923.32, + "end": 13925.4, + "probability": 0.9816 + }, + { + "start": 13925.76, + "end": 13927.42, + "probability": 0.8267 + }, + { + "start": 13927.8, + "end": 13928.54, + "probability": 0.7534 + }, + { + "start": 13928.9, + "end": 13929.96, + "probability": 0.929 + }, + { + "start": 13930.28, + "end": 13931.24, + "probability": 0.9071 + }, + { + "start": 13933.4, + "end": 13936.92, + "probability": 0.8821 + }, + { + "start": 13937.92, + "end": 13940.08, + "probability": 0.9831 + }, + { + "start": 13940.08, + "end": 13942.56, + "probability": 0.9933 + }, + { + "start": 13943.56, + "end": 13946.8, + "probability": 0.8285 + }, + { + "start": 13947.92, + "end": 13949.46, + "probability": 0.9777 + }, + { + "start": 13949.92, + "end": 13951.08, + "probability": 0.8461 + }, + { + "start": 13951.8, + "end": 13952.44, + "probability": 0.7923 + }, + { + "start": 13953.92, + "end": 13956.44, + "probability": 0.9492 + }, + { + "start": 13957.46, + "end": 13958.78, + "probability": 0.7393 + }, + { + "start": 13958.96, + "end": 13962.38, + "probability": 0.9924 + }, + { + "start": 13963.22, + "end": 13965.98, + "probability": 0.9956 + }, + { + "start": 13967.44, + "end": 13972.1, + "probability": 0.991 + }, + { + "start": 13972.18, + "end": 13973.22, + "probability": 0.6469 + }, + { + "start": 13973.6, + "end": 13974.23, + "probability": 0.9871 + }, + { + "start": 13974.56, + "end": 13975.38, + "probability": 0.9701 + }, + { + "start": 13975.96, + "end": 13976.32, + "probability": 0.4942 + }, + { + "start": 13977.14, + "end": 13977.88, + "probability": 0.8555 + }, + { + "start": 13977.98, + "end": 13978.86, + "probability": 0.7205 + }, + { + "start": 13979.66, + "end": 13983.8, + "probability": 0.9955 + }, + { + "start": 13984.74, + "end": 13985.89, + "probability": 0.3723 + }, + { + "start": 13986.14, + "end": 13987.52, + "probability": 0.8413 + }, + { + "start": 13987.78, + "end": 13988.72, + "probability": 0.8234 + }, + { + "start": 13988.82, + "end": 13989.82, + "probability": 0.7793 + }, + { + "start": 13990.84, + "end": 13993.68, + "probability": 0.9971 + }, + { + "start": 13993.68, + "end": 13996.96, + "probability": 0.999 + }, + { + "start": 13996.98, + "end": 13999.74, + "probability": 0.9944 + }, + { + "start": 13999.98, + "end": 14000.98, + "probability": 0.6594 + }, + { + "start": 14001.42, + "end": 14003.44, + "probability": 0.9917 + }, + { + "start": 14003.9, + "end": 14004.5, + "probability": 0.677 + }, + { + "start": 14005.06, + "end": 14008.04, + "probability": 0.9915 + }, + { + "start": 14008.62, + "end": 14008.82, + "probability": 0.6315 + }, + { + "start": 14011.08, + "end": 14014.1, + "probability": 0.9514 + }, + { + "start": 14015.2, + "end": 14020.24, + "probability": 0.9647 + }, + { + "start": 14036.56, + "end": 14037.16, + "probability": 0.5122 + }, + { + "start": 14039.8, + "end": 14040.0, + "probability": 0.7402 + }, + { + "start": 14042.1, + "end": 14043.86, + "probability": 0.6978 + }, + { + "start": 14044.66, + "end": 14049.88, + "probability": 0.9651 + }, + { + "start": 14050.12, + "end": 14051.5, + "probability": 0.911 + }, + { + "start": 14052.66, + "end": 14055.22, + "probability": 0.8927 + }, + { + "start": 14056.14, + "end": 14056.9, + "probability": 0.5008 + }, + { + "start": 14058.46, + "end": 14060.14, + "probability": 0.969 + }, + { + "start": 14061.26, + "end": 14062.72, + "probability": 0.9205 + }, + { + "start": 14064.34, + "end": 14067.54, + "probability": 0.959 + }, + { + "start": 14068.08, + "end": 14069.7, + "probability": 0.7517 + }, + { + "start": 14070.7, + "end": 14072.02, + "probability": 0.8814 + }, + { + "start": 14072.7, + "end": 14077.56, + "probability": 0.99 + }, + { + "start": 14078.78, + "end": 14082.15, + "probability": 0.556 + }, + { + "start": 14083.3, + "end": 14086.92, + "probability": 0.9636 + }, + { + "start": 14087.44, + "end": 14088.22, + "probability": 0.7604 + }, + { + "start": 14088.74, + "end": 14090.46, + "probability": 0.8467 + }, + { + "start": 14091.0, + "end": 14094.48, + "probability": 0.7339 + }, + { + "start": 14095.22, + "end": 14097.18, + "probability": 0.9938 + }, + { + "start": 14100.12, + "end": 14102.96, + "probability": 0.9448 + }, + { + "start": 14106.19, + "end": 14108.14, + "probability": 0.8482 + }, + { + "start": 14115.43, + "end": 14119.52, + "probability": 0.9718 + }, + { + "start": 14120.82, + "end": 14122.74, + "probability": 0.9427 + }, + { + "start": 14124.14, + "end": 14130.76, + "probability": 0.9887 + }, + { + "start": 14131.68, + "end": 14135.88, + "probability": 0.9441 + }, + { + "start": 14138.4, + "end": 14140.14, + "probability": 0.7958 + }, + { + "start": 14140.22, + "end": 14142.74, + "probability": 0.9434 + }, + { + "start": 14144.1, + "end": 14148.56, + "probability": 0.9959 + }, + { + "start": 14149.2, + "end": 14150.22, + "probability": 0.9515 + }, + { + "start": 14151.48, + "end": 14155.22, + "probability": 0.9548 + }, + { + "start": 14155.92, + "end": 14158.86, + "probability": 0.999 + }, + { + "start": 14159.38, + "end": 14161.7, + "probability": 0.9915 + }, + { + "start": 14163.58, + "end": 14166.3, + "probability": 0.9915 + }, + { + "start": 14166.3, + "end": 14168.94, + "probability": 0.9909 + }, + { + "start": 14169.04, + "end": 14171.18, + "probability": 0.9889 + }, + { + "start": 14171.76, + "end": 14175.15, + "probability": 0.6046 + }, + { + "start": 14175.84, + "end": 14176.78, + "probability": 0.8787 + }, + { + "start": 14177.78, + "end": 14179.94, + "probability": 0.96 + }, + { + "start": 14181.18, + "end": 14183.78, + "probability": 0.9736 + }, + { + "start": 14184.8, + "end": 14187.22, + "probability": 0.998 + }, + { + "start": 14188.26, + "end": 14190.44, + "probability": 0.7022 + }, + { + "start": 14191.94, + "end": 14192.78, + "probability": 0.7341 + }, + { + "start": 14193.32, + "end": 14197.14, + "probability": 0.9748 + }, + { + "start": 14197.34, + "end": 14198.33, + "probability": 0.5379 + }, + { + "start": 14198.62, + "end": 14202.03, + "probability": 0.9196 + }, + { + "start": 14204.5, + "end": 14205.52, + "probability": 0.968 + }, + { + "start": 14205.64, + "end": 14206.36, + "probability": 0.8447 + }, + { + "start": 14206.48, + "end": 14211.5, + "probability": 0.934 + }, + { + "start": 14211.6, + "end": 14212.0, + "probability": 0.8542 + }, + { + "start": 14212.22, + "end": 14215.0, + "probability": 0.111 + }, + { + "start": 14215.0, + "end": 14215.92, + "probability": 0.2899 + }, + { + "start": 14216.62, + "end": 14217.84, + "probability": 0.8843 + }, + { + "start": 14218.6, + "end": 14220.18, + "probability": 0.7329 + }, + { + "start": 14220.72, + "end": 14222.64, + "probability": 0.7489 + }, + { + "start": 14223.85, + "end": 14225.38, + "probability": 0.8893 + }, + { + "start": 14231.71, + "end": 14233.88, + "probability": 0.6961 + }, + { + "start": 14235.36, + "end": 14237.0, + "probability": 0.9956 + }, + { + "start": 14240.3, + "end": 14241.76, + "probability": 0.6494 + }, + { + "start": 14242.96, + "end": 14243.62, + "probability": 0.999 + }, + { + "start": 14244.92, + "end": 14245.28, + "probability": 0.8904 + }, + { + "start": 14247.04, + "end": 14247.64, + "probability": 0.7155 + }, + { + "start": 14247.78, + "end": 14248.62, + "probability": 0.7603 + }, + { + "start": 14248.86, + "end": 14250.2, + "probability": 0.1192 + }, + { + "start": 14250.66, + "end": 14253.26, + "probability": 0.6623 + }, + { + "start": 14253.32, + "end": 14253.72, + "probability": 0.6884 + }, + { + "start": 14254.64, + "end": 14255.94, + "probability": 0.8116 + }, + { + "start": 14256.82, + "end": 14257.74, + "probability": 0.5378 + }, + { + "start": 14260.66, + "end": 14263.88, + "probability": 0.7226 + }, + { + "start": 14266.04, + "end": 14267.76, + "probability": 0.7322 + }, + { + "start": 14267.96, + "end": 14270.94, + "probability": 0.8491 + }, + { + "start": 14271.84, + "end": 14273.46, + "probability": 0.8394 + }, + { + "start": 14273.56, + "end": 14274.6, + "probability": 0.6792 + }, + { + "start": 14274.96, + "end": 14276.16, + "probability": 0.7762 + }, + { + "start": 14276.26, + "end": 14277.98, + "probability": 0.4955 + }, + { + "start": 14278.08, + "end": 14280.05, + "probability": 0.9927 + }, + { + "start": 14280.74, + "end": 14282.08, + "probability": 0.9932 + }, + { + "start": 14282.8, + "end": 14284.26, + "probability": 0.8517 + }, + { + "start": 14284.3, + "end": 14285.18, + "probability": 0.8648 + }, + { + "start": 14285.88, + "end": 14287.74, + "probability": 0.6872 + }, + { + "start": 14287.92, + "end": 14289.68, + "probability": 0.5436 + }, + { + "start": 14289.74, + "end": 14291.06, + "probability": 0.7896 + }, + { + "start": 14291.06, + "end": 14292.38, + "probability": 0.5045 + }, + { + "start": 14292.44, + "end": 14293.42, + "probability": 0.2215 + }, + { + "start": 14293.42, + "end": 14296.3, + "probability": 0.8202 + }, + { + "start": 14296.75, + "end": 14297.18, + "probability": 0.4394 + }, + { + "start": 14297.22, + "end": 14297.86, + "probability": 0.7275 + }, + { + "start": 14298.66, + "end": 14300.8, + "probability": 0.9491 + }, + { + "start": 14301.28, + "end": 14302.22, + "probability": 0.7899 + }, + { + "start": 14303.18, + "end": 14303.52, + "probability": 0.522 + }, + { + "start": 14303.6, + "end": 14305.62, + "probability": 0.688 + }, + { + "start": 14305.86, + "end": 14308.96, + "probability": 0.9681 + }, + { + "start": 14309.1, + "end": 14311.6, + "probability": 0.9612 + }, + { + "start": 14312.62, + "end": 14316.12, + "probability": 0.5959 + }, + { + "start": 14317.0, + "end": 14317.0, + "probability": 0.3284 + }, + { + "start": 14317.0, + "end": 14322.9, + "probability": 0.4832 + }, + { + "start": 14324.24, + "end": 14328.08, + "probability": 0.7967 + }, + { + "start": 14329.28, + "end": 14330.06, + "probability": 0.7606 + }, + { + "start": 14330.78, + "end": 14332.76, + "probability": 0.7454 + }, + { + "start": 14333.34, + "end": 14334.1, + "probability": 0.7973 + }, + { + "start": 14334.12, + "end": 14334.85, + "probability": 0.9791 + }, + { + "start": 14335.26, + "end": 14339.28, + "probability": 0.7472 + }, + { + "start": 14339.28, + "end": 14340.28, + "probability": 0.6125 + }, + { + "start": 14340.36, + "end": 14340.92, + "probability": 0.849 + }, + { + "start": 14342.94, + "end": 14344.12, + "probability": 0.3802 + }, + { + "start": 14344.84, + "end": 14345.27, + "probability": 0.8237 + }, + { + "start": 14346.92, + "end": 14349.18, + "probability": 0.7177 + }, + { + "start": 14349.84, + "end": 14351.32, + "probability": 0.6094 + }, + { + "start": 14351.32, + "end": 14351.82, + "probability": 0.0191 + }, + { + "start": 14352.56, + "end": 14353.74, + "probability": 0.1236 + }, + { + "start": 14354.63, + "end": 14358.06, + "probability": 0.4322 + }, + { + "start": 14358.45, + "end": 14359.33, + "probability": 0.4685 + }, + { + "start": 14359.5, + "end": 14360.94, + "probability": 0.3613 + }, + { + "start": 14361.24, + "end": 14362.3, + "probability": 0.2909 + }, + { + "start": 14362.41, + "end": 14368.28, + "probability": 0.8165 + }, + { + "start": 14368.56, + "end": 14371.48, + "probability": 0.4638 + }, + { + "start": 14371.5, + "end": 14376.44, + "probability": 0.8979 + }, + { + "start": 14377.44, + "end": 14381.0, + "probability": 0.7355 + }, + { + "start": 14381.8, + "end": 14382.36, + "probability": 0.2344 + }, + { + "start": 14384.6, + "end": 14385.42, + "probability": 0.748 + }, + { + "start": 14386.0, + "end": 14387.62, + "probability": 0.9001 + }, + { + "start": 14389.16, + "end": 14390.14, + "probability": 0.9814 + }, + { + "start": 14391.14, + "end": 14391.72, + "probability": 0.9885 + }, + { + "start": 14392.36, + "end": 14394.52, + "probability": 0.9181 + }, + { + "start": 14395.36, + "end": 14396.48, + "probability": 0.9463 + }, + { + "start": 14397.24, + "end": 14400.04, + "probability": 0.8105 + }, + { + "start": 14400.14, + "end": 14400.86, + "probability": 0.9385 + }, + { + "start": 14401.26, + "end": 14402.86, + "probability": 0.7626 + }, + { + "start": 14402.92, + "end": 14404.52, + "probability": 0.9578 + }, + { + "start": 14404.74, + "end": 14409.38, + "probability": 0.9107 + }, + { + "start": 14410.2, + "end": 14411.62, + "probability": 0.5433 + }, + { + "start": 14412.34, + "end": 14413.32, + "probability": 0.3549 + }, + { + "start": 14413.92, + "end": 14415.34, + "probability": 0.9331 + }, + { + "start": 14415.74, + "end": 14419.12, + "probability": 0.7314 + }, + { + "start": 14419.52, + "end": 14419.88, + "probability": 0.7449 + }, + { + "start": 14420.04, + "end": 14420.36, + "probability": 0.8893 + }, + { + "start": 14420.42, + "end": 14422.94, + "probability": 0.9948 + }, + { + "start": 14423.04, + "end": 14424.04, + "probability": 0.2304 + }, + { + "start": 14424.18, + "end": 14425.06, + "probability": 0.8268 + }, + { + "start": 14425.47, + "end": 14425.9, + "probability": 0.7204 + }, + { + "start": 14425.9, + "end": 14426.48, + "probability": 0.5204 + }, + { + "start": 14426.48, + "end": 14428.96, + "probability": 0.6985 + }, + { + "start": 14429.0, + "end": 14429.96, + "probability": 0.9413 + }, + { + "start": 14430.18, + "end": 14430.66, + "probability": 0.9582 + }, + { + "start": 14431.28, + "end": 14433.46, + "probability": 0.6289 + }, + { + "start": 14433.8, + "end": 14437.62, + "probability": 0.0724 + }, + { + "start": 14438.36, + "end": 14438.74, + "probability": 0.09 + }, + { + "start": 14439.7, + "end": 14440.6, + "probability": 0.2175 + }, + { + "start": 14440.9, + "end": 14441.24, + "probability": 0.0361 + }, + { + "start": 14441.24, + "end": 14444.06, + "probability": 0.9408 + }, + { + "start": 14444.46, + "end": 14448.56, + "probability": 0.9904 + }, + { + "start": 14448.76, + "end": 14450.6, + "probability": 0.8795 + }, + { + "start": 14450.7, + "end": 14451.14, + "probability": 0.6237 + }, + { + "start": 14451.52, + "end": 14452.14, + "probability": 0.8172 + }, + { + "start": 14452.9, + "end": 14453.44, + "probability": 0.4722 + }, + { + "start": 14454.38, + "end": 14455.46, + "probability": 0.3189 + }, + { + "start": 14458.68, + "end": 14464.32, + "probability": 0.0844 + }, + { + "start": 14464.32, + "end": 14465.12, + "probability": 0.2069 + }, + { + "start": 14471.34, + "end": 14471.66, + "probability": 0.1485 + }, + { + "start": 14471.66, + "end": 14471.66, + "probability": 0.0258 + }, + { + "start": 14471.66, + "end": 14471.66, + "probability": 0.4702 + }, + { + "start": 14471.66, + "end": 14471.66, + "probability": 0.0912 + }, + { + "start": 14471.66, + "end": 14479.58, + "probability": 0.6694 + }, + { + "start": 14480.1, + "end": 14482.12, + "probability": 0.6322 + }, + { + "start": 14482.58, + "end": 14482.92, + "probability": 0.4235 + }, + { + "start": 14482.98, + "end": 14487.34, + "probability": 0.9924 + }, + { + "start": 14487.88, + "end": 14488.42, + "probability": 0.496 + }, + { + "start": 14489.42, + "end": 14489.42, + "probability": 0.3446 + }, + { + "start": 14489.46, + "end": 14489.54, + "probability": 0.1104 + }, + { + "start": 14489.54, + "end": 14490.86, + "probability": 0.8124 + }, + { + "start": 14492.73, + "end": 14494.36, + "probability": 0.9943 + }, + { + "start": 14495.22, + "end": 14498.36, + "probability": 0.7252 + }, + { + "start": 14499.56, + "end": 14503.84, + "probability": 0.4963 + }, + { + "start": 14505.96, + "end": 14511.24, + "probability": 0.6175 + }, + { + "start": 14511.78, + "end": 14513.66, + "probability": 0.6289 + }, + { + "start": 14526.2, + "end": 14526.34, + "probability": 0.1905 + }, + { + "start": 14528.64, + "end": 14528.66, + "probability": 0.0544 + }, + { + "start": 14529.94, + "end": 14530.85, + "probability": 0.3674 + }, + { + "start": 14532.36, + "end": 14541.36, + "probability": 0.7787 + }, + { + "start": 14542.68, + "end": 14543.28, + "probability": 0.9026 + }, + { + "start": 14546.02, + "end": 14547.04, + "probability": 0.8537 + }, + { + "start": 14550.42, + "end": 14552.94, + "probability": 0.9324 + }, + { + "start": 14554.22, + "end": 14558.4, + "probability": 0.9723 + }, + { + "start": 14559.94, + "end": 14561.32, + "probability": 0.999 + }, + { + "start": 14562.38, + "end": 14564.16, + "probability": 0.9884 + }, + { + "start": 14565.3, + "end": 14570.04, + "probability": 0.9297 + }, + { + "start": 14570.9, + "end": 14574.96, + "probability": 0.998 + }, + { + "start": 14575.82, + "end": 14579.18, + "probability": 0.8478 + }, + { + "start": 14580.94, + "end": 14585.56, + "probability": 0.9909 + }, + { + "start": 14588.54, + "end": 14591.18, + "probability": 0.6518 + }, + { + "start": 14591.9, + "end": 14593.98, + "probability": 0.9805 + }, + { + "start": 14595.2, + "end": 14596.5, + "probability": 0.7386 + }, + { + "start": 14598.0, + "end": 14601.92, + "probability": 0.9645 + }, + { + "start": 14603.16, + "end": 14603.76, + "probability": 0.6539 + }, + { + "start": 14604.72, + "end": 14609.6, + "probability": 0.9839 + }, + { + "start": 14610.18, + "end": 14611.46, + "probability": 0.9678 + }, + { + "start": 14613.38, + "end": 14615.54, + "probability": 0.9378 + }, + { + "start": 14616.84, + "end": 14619.44, + "probability": 0.7967 + }, + { + "start": 14620.46, + "end": 14623.68, + "probability": 0.9989 + }, + { + "start": 14624.38, + "end": 14626.8, + "probability": 0.8923 + }, + { + "start": 14628.24, + "end": 14633.46, + "probability": 0.9116 + }, + { + "start": 14634.8, + "end": 14635.6, + "probability": 0.8813 + }, + { + "start": 14636.72, + "end": 14647.04, + "probability": 0.9882 + }, + { + "start": 14648.1, + "end": 14649.2, + "probability": 0.8148 + }, + { + "start": 14649.78, + "end": 14650.4, + "probability": 0.991 + }, + { + "start": 14652.18, + "end": 14652.52, + "probability": 0.6355 + }, + { + "start": 14653.94, + "end": 14655.26, + "probability": 0.8398 + }, + { + "start": 14656.78, + "end": 14662.54, + "probability": 0.9901 + }, + { + "start": 14664.06, + "end": 14665.26, + "probability": 0.8018 + }, + { + "start": 14666.68, + "end": 14673.16, + "probability": 0.9899 + }, + { + "start": 14675.08, + "end": 14677.72, + "probability": 0.9294 + }, + { + "start": 14679.2, + "end": 14681.26, + "probability": 0.965 + }, + { + "start": 14683.02, + "end": 14686.66, + "probability": 0.7957 + }, + { + "start": 14688.28, + "end": 14692.94, + "probability": 0.8337 + }, + { + "start": 14694.06, + "end": 14696.54, + "probability": 0.9912 + }, + { + "start": 14697.24, + "end": 14701.58, + "probability": 0.8495 + }, + { + "start": 14702.36, + "end": 14710.1, + "probability": 0.9973 + }, + { + "start": 14711.02, + "end": 14713.4, + "probability": 0.965 + }, + { + "start": 14715.92, + "end": 14717.3, + "probability": 0.7722 + }, + { + "start": 14719.98, + "end": 14720.72, + "probability": 0.2948 + }, + { + "start": 14721.82, + "end": 14724.42, + "probability": 0.7789 + }, + { + "start": 14725.04, + "end": 14727.24, + "probability": 0.9795 + }, + { + "start": 14729.84, + "end": 14730.66, + "probability": 0.8442 + }, + { + "start": 14732.42, + "end": 14736.5, + "probability": 0.982 + }, + { + "start": 14737.06, + "end": 14738.5, + "probability": 0.9253 + }, + { + "start": 14739.74, + "end": 14742.68, + "probability": 0.998 + }, + { + "start": 14743.58, + "end": 14745.0, + "probability": 0.7363 + }, + { + "start": 14746.2, + "end": 14747.6, + "probability": 0.8418 + }, + { + "start": 14748.48, + "end": 14751.18, + "probability": 0.8145 + }, + { + "start": 14752.52, + "end": 14754.7, + "probability": 0.9823 + }, + { + "start": 14755.56, + "end": 14758.8, + "probability": 0.9854 + }, + { + "start": 14759.64, + "end": 14761.14, + "probability": 0.9912 + }, + { + "start": 14761.9, + "end": 14765.42, + "probability": 0.9191 + }, + { + "start": 14767.3, + "end": 14772.8, + "probability": 0.885 + }, + { + "start": 14774.64, + "end": 14775.84, + "probability": 0.8631 + }, + { + "start": 14776.7, + "end": 14783.44, + "probability": 0.9889 + }, + { + "start": 14783.44, + "end": 14789.1, + "probability": 0.994 + }, + { + "start": 14790.76, + "end": 14797.76, + "probability": 0.9641 + }, + { + "start": 14797.76, + "end": 14804.02, + "probability": 0.9963 + }, + { + "start": 14805.44, + "end": 14806.86, + "probability": 0.7631 + }, + { + "start": 14807.06, + "end": 14808.88, + "probability": 0.9893 + }, + { + "start": 14809.2, + "end": 14809.96, + "probability": 0.7861 + }, + { + "start": 14810.14, + "end": 14810.92, + "probability": 0.9312 + }, + { + "start": 14813.32, + "end": 14820.8, + "probability": 0.9946 + }, + { + "start": 14821.58, + "end": 14822.24, + "probability": 0.928 + }, + { + "start": 14824.14, + "end": 14824.56, + "probability": 0.8063 + }, + { + "start": 14826.12, + "end": 14827.12, + "probability": 0.7844 + }, + { + "start": 14827.68, + "end": 14833.22, + "probability": 0.98 + }, + { + "start": 14833.94, + "end": 14834.3, + "probability": 0.8002 + }, + { + "start": 14844.62, + "end": 14845.04, + "probability": 0.2657 + }, + { + "start": 14845.88, + "end": 14846.22, + "probability": 0.9619 + }, + { + "start": 14849.76, + "end": 14850.4, + "probability": 0.6884 + }, + { + "start": 14850.56, + "end": 14851.46, + "probability": 0.8671 + }, + { + "start": 14851.88, + "end": 14852.2, + "probability": 0.5136 + }, + { + "start": 14852.24, + "end": 14856.62, + "probability": 0.968 + }, + { + "start": 14857.34, + "end": 14858.32, + "probability": 0.9946 + }, + { + "start": 14859.1, + "end": 14860.02, + "probability": 0.9873 + }, + { + "start": 14861.72, + "end": 14863.46, + "probability": 0.979 + }, + { + "start": 14864.08, + "end": 14866.7, + "probability": 0.9152 + }, + { + "start": 14868.3, + "end": 14871.18, + "probability": 0.9805 + }, + { + "start": 14872.64, + "end": 14875.14, + "probability": 0.9638 + }, + { + "start": 14876.28, + "end": 14879.4, + "probability": 0.9805 + }, + { + "start": 14879.46, + "end": 14881.9, + "probability": 0.9326 + }, + { + "start": 14882.64, + "end": 14884.18, + "probability": 0.8327 + }, + { + "start": 14885.56, + "end": 14889.84, + "probability": 0.9542 + }, + { + "start": 14891.24, + "end": 14896.46, + "probability": 0.9741 + }, + { + "start": 14897.46, + "end": 14901.8, + "probability": 0.9868 + }, + { + "start": 14901.8, + "end": 14906.14, + "probability": 0.9983 + }, + { + "start": 14907.1, + "end": 14911.4, + "probability": 0.8715 + }, + { + "start": 14912.2, + "end": 14916.82, + "probability": 0.9839 + }, + { + "start": 14917.82, + "end": 14923.62, + "probability": 0.9426 + }, + { + "start": 14925.68, + "end": 14927.12, + "probability": 0.9055 + }, + { + "start": 14927.78, + "end": 14931.2, + "probability": 0.9985 + }, + { + "start": 14932.08, + "end": 14934.94, + "probability": 0.9027 + }, + { + "start": 14936.96, + "end": 14940.26, + "probability": 0.9678 + }, + { + "start": 14941.38, + "end": 14943.74, + "probability": 0.9762 + }, + { + "start": 14945.04, + "end": 14948.3, + "probability": 0.9849 + }, + { + "start": 14948.84, + "end": 14950.44, + "probability": 0.9819 + }, + { + "start": 14951.06, + "end": 14952.62, + "probability": 0.9764 + }, + { + "start": 14953.52, + "end": 14955.26, + "probability": 0.7767 + }, + { + "start": 14955.98, + "end": 14958.12, + "probability": 0.946 + }, + { + "start": 14958.98, + "end": 14963.48, + "probability": 0.9941 + }, + { + "start": 14964.18, + "end": 14964.54, + "probability": 0.9783 + }, + { + "start": 14965.44, + "end": 14971.2, + "probability": 0.9751 + }, + { + "start": 14972.56, + "end": 14974.74, + "probability": 0.9831 + }, + { + "start": 14976.02, + "end": 14980.98, + "probability": 0.9602 + }, + { + "start": 14981.94, + "end": 14984.34, + "probability": 0.988 + }, + { + "start": 14986.16, + "end": 14988.0, + "probability": 0.8108 + }, + { + "start": 14988.54, + "end": 14991.98, + "probability": 0.6544 + }, + { + "start": 14993.46, + "end": 14995.1, + "probability": 0.989 + }, + { + "start": 14995.72, + "end": 14996.94, + "probability": 0.9915 + }, + { + "start": 14997.5, + "end": 14999.44, + "probability": 0.876 + }, + { + "start": 15000.04, + "end": 15000.92, + "probability": 0.9662 + }, + { + "start": 15001.48, + "end": 15001.7, + "probability": 0.9973 + }, + { + "start": 15002.38, + "end": 15008.06, + "probability": 0.9962 + }, + { + "start": 15009.72, + "end": 15014.94, + "probability": 0.9927 + }, + { + "start": 15014.94, + "end": 15020.8, + "probability": 0.998 + }, + { + "start": 15021.58, + "end": 15025.48, + "probability": 0.9565 + }, + { + "start": 15026.1, + "end": 15028.68, + "probability": 0.9615 + }, + { + "start": 15029.8, + "end": 15030.74, + "probability": 0.9447 + }, + { + "start": 15031.84, + "end": 15036.5, + "probability": 0.9924 + }, + { + "start": 15037.94, + "end": 15039.68, + "probability": 0.9961 + }, + { + "start": 15040.22, + "end": 15043.3, + "probability": 0.9486 + }, + { + "start": 15044.6, + "end": 15045.57, + "probability": 0.6266 + }, + { + "start": 15046.42, + "end": 15050.28, + "probability": 0.9916 + }, + { + "start": 15050.54, + "end": 15051.78, + "probability": 0.9291 + }, + { + "start": 15054.2, + "end": 15056.1, + "probability": 0.7907 + }, + { + "start": 15056.96, + "end": 15058.42, + "probability": 0.9944 + }, + { + "start": 15059.02, + "end": 15060.84, + "probability": 0.98 + }, + { + "start": 15062.26, + "end": 15067.44, + "probability": 0.9946 + }, + { + "start": 15067.98, + "end": 15071.42, + "probability": 0.9705 + }, + { + "start": 15072.48, + "end": 15075.74, + "probability": 0.9917 + }, + { + "start": 15075.92, + "end": 15076.86, + "probability": 0.9272 + }, + { + "start": 15078.02, + "end": 15083.06, + "probability": 0.9956 + }, + { + "start": 15083.66, + "end": 15088.78, + "probability": 0.9825 + }, + { + "start": 15088.78, + "end": 15093.66, + "probability": 0.8799 + }, + { + "start": 15094.44, + "end": 15097.92, + "probability": 0.9797 + }, + { + "start": 15099.12, + "end": 15105.18, + "probability": 0.9982 + }, + { + "start": 15106.38, + "end": 15108.56, + "probability": 0.6159 + }, + { + "start": 15110.02, + "end": 15110.7, + "probability": 0.6097 + }, + { + "start": 15111.78, + "end": 15116.46, + "probability": 0.9974 + }, + { + "start": 15117.98, + "end": 15122.76, + "probability": 0.965 + }, + { + "start": 15123.48, + "end": 15125.6, + "probability": 0.9905 + }, + { + "start": 15126.18, + "end": 15130.48, + "probability": 0.9767 + }, + { + "start": 15131.02, + "end": 15132.06, + "probability": 0.9878 + }, + { + "start": 15133.0, + "end": 15133.74, + "probability": 0.9763 + }, + { + "start": 15134.26, + "end": 15136.8, + "probability": 0.9227 + }, + { + "start": 15137.36, + "end": 15141.86, + "probability": 0.9878 + }, + { + "start": 15142.9, + "end": 15143.46, + "probability": 0.7235 + }, + { + "start": 15144.42, + "end": 15150.64, + "probability": 0.9958 + }, + { + "start": 15151.08, + "end": 15152.0, + "probability": 0.8849 + }, + { + "start": 15152.26, + "end": 15153.6, + "probability": 0.9539 + }, + { + "start": 15154.0, + "end": 15155.46, + "probability": 0.9757 + }, + { + "start": 15156.5, + "end": 15157.3, + "probability": 0.9315 + }, + { + "start": 15158.22, + "end": 15161.08, + "probability": 0.9793 + }, + { + "start": 15161.84, + "end": 15163.0, + "probability": 0.8582 + }, + { + "start": 15163.62, + "end": 15164.64, + "probability": 0.5565 + }, + { + "start": 15164.76, + "end": 15166.12, + "probability": 0.6698 + }, + { + "start": 15166.82, + "end": 15170.16, + "probability": 0.9929 + }, + { + "start": 15171.26, + "end": 15174.36, + "probability": 0.8263 + }, + { + "start": 15174.98, + "end": 15175.18, + "probability": 0.6683 + }, + { + "start": 15177.36, + "end": 15178.16, + "probability": 0.7202 + }, + { + "start": 15178.78, + "end": 15179.56, + "probability": 0.6894 + }, + { + "start": 15180.06, + "end": 15181.54, + "probability": 0.9824 + }, + { + "start": 15182.46, + "end": 15184.34, + "probability": 0.5315 + }, + { + "start": 15184.98, + "end": 15185.78, + "probability": 0.8633 + }, + { + "start": 15185.86, + "end": 15187.5, + "probability": 0.8993 + }, + { + "start": 15188.14, + "end": 15191.26, + "probability": 0.6161 + }, + { + "start": 15194.94, + "end": 15196.04, + "probability": 0.7453 + }, + { + "start": 15201.5, + "end": 15203.14, + "probability": 0.8749 + }, + { + "start": 15204.18, + "end": 15204.38, + "probability": 0.8657 + }, + { + "start": 15205.62, + "end": 15206.56, + "probability": 0.8423 + }, + { + "start": 15208.48, + "end": 15210.46, + "probability": 0.7644 + }, + { + "start": 15212.6, + "end": 15215.68, + "probability": 0.9816 + }, + { + "start": 15217.84, + "end": 15219.56, + "probability": 0.6277 + }, + { + "start": 15220.18, + "end": 15221.76, + "probability": 0.8516 + }, + { + "start": 15223.02, + "end": 15226.65, + "probability": 0.9847 + }, + { + "start": 15227.14, + "end": 15228.27, + "probability": 0.9429 + }, + { + "start": 15229.8, + "end": 15230.94, + "probability": 0.5383 + }, + { + "start": 15232.94, + "end": 15234.56, + "probability": 0.9851 + }, + { + "start": 15234.68, + "end": 15238.22, + "probability": 0.8767 + }, + { + "start": 15240.1, + "end": 15241.18, + "probability": 0.9956 + }, + { + "start": 15242.48, + "end": 15244.08, + "probability": 0.607 + }, + { + "start": 15245.08, + "end": 15245.74, + "probability": 0.8562 + }, + { + "start": 15247.4, + "end": 15249.51, + "probability": 0.7514 + }, + { + "start": 15250.32, + "end": 15251.28, + "probability": 0.901 + }, + { + "start": 15252.92, + "end": 15253.56, + "probability": 0.6893 + }, + { + "start": 15253.85, + "end": 15256.56, + "probability": 0.9491 + }, + { + "start": 15257.86, + "end": 15261.16, + "probability": 0.6827 + }, + { + "start": 15262.72, + "end": 15264.2, + "probability": 0.5734 + }, + { + "start": 15265.16, + "end": 15267.46, + "probability": 0.724 + }, + { + "start": 15270.06, + "end": 15270.06, + "probability": 0.5277 + }, + { + "start": 15270.18, + "end": 15270.72, + "probability": 0.6286 + }, + { + "start": 15270.72, + "end": 15271.24, + "probability": 0.5016 + }, + { + "start": 15271.28, + "end": 15271.82, + "probability": 0.719 + }, + { + "start": 15272.3, + "end": 15273.98, + "probability": 0.9378 + }, + { + "start": 15274.04, + "end": 15274.38, + "probability": 0.939 + }, + { + "start": 15275.63, + "end": 15277.34, + "probability": 0.6987 + }, + { + "start": 15277.38, + "end": 15277.48, + "probability": 0.0261 + }, + { + "start": 15277.48, + "end": 15277.88, + "probability": 0.0516 + }, + { + "start": 15278.08, + "end": 15278.8, + "probability": 0.4167 + }, + { + "start": 15279.92, + "end": 15281.96, + "probability": 0.7882 + }, + { + "start": 15282.8, + "end": 15285.38, + "probability": 0.9889 + }, + { + "start": 15285.76, + "end": 15286.26, + "probability": 0.9727 + }, + { + "start": 15286.62, + "end": 15287.34, + "probability": 0.9811 + }, + { + "start": 15288.74, + "end": 15289.28, + "probability": 0.751 + }, + { + "start": 15289.34, + "end": 15290.48, + "probability": 0.9995 + }, + { + "start": 15291.42, + "end": 15292.38, + "probability": 0.741 + }, + { + "start": 15293.14, + "end": 15294.72, + "probability": 0.9797 + }, + { + "start": 15295.4, + "end": 15296.58, + "probability": 0.764 + }, + { + "start": 15296.88, + "end": 15297.22, + "probability": 0.4212 + }, + { + "start": 15297.28, + "end": 15297.51, + "probability": 0.9778 + }, + { + "start": 15297.88, + "end": 15299.84, + "probability": 0.9165 + }, + { + "start": 15300.4, + "end": 15301.5, + "probability": 0.7461 + }, + { + "start": 15302.69, + "end": 15302.84, + "probability": 0.0283 + }, + { + "start": 15303.1, + "end": 15303.16, + "probability": 0.3201 + }, + { + "start": 15303.16, + "end": 15303.16, + "probability": 0.2811 + }, + { + "start": 15303.28, + "end": 15304.28, + "probability": 0.5521 + }, + { + "start": 15304.36, + "end": 15305.06, + "probability": 0.6008 + }, + { + "start": 15305.18, + "end": 15309.72, + "probability": 0.9521 + }, + { + "start": 15309.78, + "end": 15311.4, + "probability": 0.9434 + }, + { + "start": 15312.34, + "end": 15313.64, + "probability": 0.9844 + }, + { + "start": 15313.9, + "end": 15314.6, + "probability": 0.8626 + }, + { + "start": 15314.96, + "end": 15316.1, + "probability": 0.7754 + }, + { + "start": 15316.88, + "end": 15318.62, + "probability": 0.8799 + }, + { + "start": 15318.76, + "end": 15320.02, + "probability": 0.9758 + }, + { + "start": 15322.14, + "end": 15324.76, + "probability": 0.9767 + }, + { + "start": 15326.12, + "end": 15327.32, + "probability": 0.9929 + }, + { + "start": 15328.52, + "end": 15329.92, + "probability": 0.8809 + }, + { + "start": 15332.2, + "end": 15334.72, + "probability": 0.5192 + }, + { + "start": 15335.42, + "end": 15336.64, + "probability": 0.357 + }, + { + "start": 15337.38, + "end": 15339.52, + "probability": 0.8915 + }, + { + "start": 15339.88, + "end": 15340.9, + "probability": 0.5343 + }, + { + "start": 15340.94, + "end": 15341.94, + "probability": 0.9961 + }, + { + "start": 15341.94, + "end": 15342.96, + "probability": 0.7787 + }, + { + "start": 15343.0, + "end": 15343.9, + "probability": 0.7027 + }, + { + "start": 15346.06, + "end": 15348.58, + "probability": 0.9871 + }, + { + "start": 15348.58, + "end": 15349.24, + "probability": 0.8402 + }, + { + "start": 15351.02, + "end": 15352.04, + "probability": 0.7935 + }, + { + "start": 15353.96, + "end": 15355.94, + "probability": 0.9301 + }, + { + "start": 15358.1, + "end": 15360.12, + "probability": 0.9631 + }, + { + "start": 15360.9, + "end": 15362.76, + "probability": 0.9772 + }, + { + "start": 15363.58, + "end": 15365.82, + "probability": 0.886 + }, + { + "start": 15366.64, + "end": 15367.76, + "probability": 0.9409 + }, + { + "start": 15369.06, + "end": 15371.25, + "probability": 0.9785 + }, + { + "start": 15371.88, + "end": 15372.12, + "probability": 0.743 + }, + { + "start": 15373.14, + "end": 15375.2, + "probability": 0.5589 + }, + { + "start": 15379.64, + "end": 15383.54, + "probability": 0.9648 + }, + { + "start": 15384.1, + "end": 15385.08, + "probability": 0.9897 + }, + { + "start": 15386.08, + "end": 15387.8, + "probability": 0.6287 + }, + { + "start": 15388.66, + "end": 15389.5, + "probability": 0.7117 + }, + { + "start": 15390.0, + "end": 15391.98, + "probability": 0.9891 + }, + { + "start": 15392.68, + "end": 15393.5, + "probability": 0.9601 + }, + { + "start": 15393.94, + "end": 15395.1, + "probability": 0.9565 + }, + { + "start": 15395.52, + "end": 15398.26, + "probability": 0.9946 + }, + { + "start": 15399.32, + "end": 15400.36, + "probability": 0.6383 + }, + { + "start": 15401.18, + "end": 15401.58, + "probability": 0.633 + }, + { + "start": 15401.72, + "end": 15402.84, + "probability": 0.8268 + }, + { + "start": 15403.0, + "end": 15405.46, + "probability": 0.4343 + }, + { + "start": 15405.46, + "end": 15405.46, + "probability": 0.4494 + }, + { + "start": 15405.46, + "end": 15409.2, + "probability": 0.9672 + }, + { + "start": 15409.22, + "end": 15409.76, + "probability": 0.4176 + }, + { + "start": 15409.78, + "end": 15411.88, + "probability": 0.9686 + }, + { + "start": 15411.98, + "end": 15412.78, + "probability": 0.9401 + }, + { + "start": 15413.04, + "end": 15413.84, + "probability": 0.6921 + }, + { + "start": 15415.14, + "end": 15415.86, + "probability": 0.8347 + }, + { + "start": 15417.38, + "end": 15420.34, + "probability": 0.6756 + }, + { + "start": 15422.82, + "end": 15425.44, + "probability": 0.8657 + }, + { + "start": 15427.36, + "end": 15430.22, + "probability": 0.9678 + }, + { + "start": 15436.98, + "end": 15437.6, + "probability": 0.5398 + }, + { + "start": 15437.84, + "end": 15438.6, + "probability": 0.8969 + }, + { + "start": 15439.5, + "end": 15440.14, + "probability": 0.8806 + }, + { + "start": 15453.9, + "end": 15455.8, + "probability": 0.2223 + }, + { + "start": 15458.05, + "end": 15458.8, + "probability": 0.1371 + }, + { + "start": 15459.16, + "end": 15460.06, + "probability": 0.2997 + }, + { + "start": 15460.68, + "end": 15465.1, + "probability": 0.786 + }, + { + "start": 15465.24, + "end": 15469.7, + "probability": 0.9844 + }, + { + "start": 15469.7, + "end": 15473.82, + "probability": 0.8892 + }, + { + "start": 15475.74, + "end": 15479.12, + "probability": 0.959 + }, + { + "start": 15483.9, + "end": 15489.5, + "probability": 0.776 + }, + { + "start": 15490.22, + "end": 15492.2, + "probability": 0.4309 + }, + { + "start": 15492.5, + "end": 15494.38, + "probability": 0.8758 + }, + { + "start": 15494.5, + "end": 15495.68, + "probability": 0.8109 + }, + { + "start": 15495.84, + "end": 15497.38, + "probability": 0.564 + }, + { + "start": 15498.22, + "end": 15501.04, + "probability": 0.9029 + }, + { + "start": 15502.38, + "end": 15504.14, + "probability": 0.9023 + }, + { + "start": 15505.7, + "end": 15506.22, + "probability": 0.9084 + }, + { + "start": 15508.56, + "end": 15508.66, + "probability": 0.0298 + }, + { + "start": 15512.44, + "end": 15512.52, + "probability": 0.0393 + }, + { + "start": 15512.9, + "end": 15513.64, + "probability": 0.1805 + }, + { + "start": 15513.82, + "end": 15517.8, + "probability": 0.0255 + }, + { + "start": 15524.74, + "end": 15528.12, + "probability": 0.1615 + }, + { + "start": 15529.2, + "end": 15530.18, + "probability": 0.0574 + }, + { + "start": 15530.78, + "end": 15532.3, + "probability": 0.6721 + }, + { + "start": 15532.8, + "end": 15534.84, + "probability": 0.8983 + }, + { + "start": 15534.96, + "end": 15536.42, + "probability": 0.7448 + }, + { + "start": 15537.78, + "end": 15540.92, + "probability": 0.9889 + }, + { + "start": 15541.68, + "end": 15542.26, + "probability": 0.9856 + }, + { + "start": 15543.22, + "end": 15548.96, + "probability": 0.9704 + }, + { + "start": 15550.98, + "end": 15551.54, + "probability": 0.5806 + }, + { + "start": 15552.12, + "end": 15553.98, + "probability": 0.9779 + }, + { + "start": 15555.02, + "end": 15556.02, + "probability": 0.9651 + }, + { + "start": 15556.7, + "end": 15559.68, + "probability": 0.9265 + }, + { + "start": 15560.44, + "end": 15562.14, + "probability": 0.8918 + }, + { + "start": 15562.98, + "end": 15564.22, + "probability": 0.995 + }, + { + "start": 15565.72, + "end": 15567.52, + "probability": 0.974 + }, + { + "start": 15568.3, + "end": 15570.5, + "probability": 0.9423 + }, + { + "start": 15571.33, + "end": 15573.86, + "probability": 0.5055 + }, + { + "start": 15574.86, + "end": 15577.62, + "probability": 0.6229 + }, + { + "start": 15578.3, + "end": 15581.56, + "probability": 0.9945 + }, + { + "start": 15583.26, + "end": 15589.18, + "probability": 0.9985 + }, + { + "start": 15590.22, + "end": 15591.5, + "probability": 0.999 + }, + { + "start": 15592.38, + "end": 15593.9, + "probability": 0.9984 + }, + { + "start": 15595.52, + "end": 15598.96, + "probability": 0.9463 + }, + { + "start": 15599.7, + "end": 15602.46, + "probability": 0.984 + }, + { + "start": 15603.1, + "end": 15604.12, + "probability": 0.9766 + }, + { + "start": 15605.66, + "end": 15607.08, + "probability": 0.8866 + }, + { + "start": 15608.28, + "end": 15610.92, + "probability": 0.9369 + }, + { + "start": 15611.94, + "end": 15615.62, + "probability": 0.9785 + }, + { + "start": 15616.34, + "end": 15616.84, + "probability": 0.9743 + }, + { + "start": 15618.22, + "end": 15619.68, + "probability": 0.9856 + }, + { + "start": 15620.58, + "end": 15621.26, + "probability": 0.8163 + }, + { + "start": 15622.04, + "end": 15624.68, + "probability": 0.9807 + }, + { + "start": 15625.58, + "end": 15627.52, + "probability": 0.8211 + }, + { + "start": 15628.82, + "end": 15631.7, + "probability": 0.9838 + }, + { + "start": 15632.7, + "end": 15635.4, + "probability": 0.998 + }, + { + "start": 15636.74, + "end": 15638.02, + "probability": 0.9985 + }, + { + "start": 15639.1, + "end": 15643.62, + "probability": 0.9985 + }, + { + "start": 15644.94, + "end": 15646.44, + "probability": 0.9861 + }, + { + "start": 15646.96, + "end": 15648.38, + "probability": 0.9458 + }, + { + "start": 15649.58, + "end": 15652.88, + "probability": 0.9782 + }, + { + "start": 15653.72, + "end": 15655.14, + "probability": 0.9967 + }, + { + "start": 15656.48, + "end": 15660.04, + "probability": 0.9976 + }, + { + "start": 15661.34, + "end": 15665.62, + "probability": 0.9846 + }, + { + "start": 15666.46, + "end": 15670.2, + "probability": 0.9951 + }, + { + "start": 15671.56, + "end": 15674.78, + "probability": 0.957 + }, + { + "start": 15675.54, + "end": 15676.5, + "probability": 0.9444 + }, + { + "start": 15677.9, + "end": 15682.3, + "probability": 0.8398 + }, + { + "start": 15683.54, + "end": 15685.48, + "probability": 0.9849 + }, + { + "start": 15687.08, + "end": 15687.54, + "probability": 0.9881 + }, + { + "start": 15688.34, + "end": 15692.24, + "probability": 0.8979 + }, + { + "start": 15694.2, + "end": 15695.38, + "probability": 0.6212 + }, + { + "start": 15696.62, + "end": 15697.02, + "probability": 0.697 + }, + { + "start": 15698.12, + "end": 15699.48, + "probability": 0.8904 + }, + { + "start": 15700.02, + "end": 15702.14, + "probability": 0.7817 + }, + { + "start": 15703.82, + "end": 15707.1, + "probability": 0.8832 + }, + { + "start": 15708.78, + "end": 15710.58, + "probability": 0.9755 + }, + { + "start": 15711.68, + "end": 15714.32, + "probability": 0.999 + }, + { + "start": 15716.04, + "end": 15719.32, + "probability": 0.9793 + }, + { + "start": 15720.2, + "end": 15721.6, + "probability": 0.6928 + }, + { + "start": 15722.6, + "end": 15723.76, + "probability": 0.9137 + }, + { + "start": 15724.48, + "end": 15725.34, + "probability": 0.9966 + }, + { + "start": 15726.72, + "end": 15727.2, + "probability": 0.7753 + }, + { + "start": 15727.94, + "end": 15731.98, + "probability": 0.9428 + }, + { + "start": 15733.04, + "end": 15735.84, + "probability": 0.8967 + }, + { + "start": 15736.78, + "end": 15739.0, + "probability": 0.9652 + }, + { + "start": 15740.32, + "end": 15741.71, + "probability": 0.9662 + }, + { + "start": 15742.9, + "end": 15743.74, + "probability": 0.6432 + }, + { + "start": 15744.44, + "end": 15746.48, + "probability": 0.9965 + }, + { + "start": 15747.5, + "end": 15747.92, + "probability": 0.8436 + }, + { + "start": 15749.02, + "end": 15753.82, + "probability": 0.966 + }, + { + "start": 15754.94, + "end": 15757.46, + "probability": 0.9946 + }, + { + "start": 15758.04, + "end": 15758.8, + "probability": 0.9958 + }, + { + "start": 15759.38, + "end": 15761.38, + "probability": 0.9991 + }, + { + "start": 15762.12, + "end": 15765.8, + "probability": 0.9628 + }, + { + "start": 15766.06, + "end": 15767.76, + "probability": 0.9151 + }, + { + "start": 15769.42, + "end": 15771.07, + "probability": 0.9707 + }, + { + "start": 15772.38, + "end": 15773.52, + "probability": 0.8899 + }, + { + "start": 15774.94, + "end": 15775.7, + "probability": 0.8589 + }, + { + "start": 15776.66, + "end": 15777.78, + "probability": 0.9857 + }, + { + "start": 15779.24, + "end": 15782.56, + "probability": 0.9945 + }, + { + "start": 15783.56, + "end": 15784.86, + "probability": 0.9928 + }, + { + "start": 15785.52, + "end": 15786.54, + "probability": 0.9915 + }, + { + "start": 15787.32, + "end": 15788.94, + "probability": 0.9938 + }, + { + "start": 15790.28, + "end": 15791.46, + "probability": 0.9037 + }, + { + "start": 15792.18, + "end": 15794.86, + "probability": 0.9943 + }, + { + "start": 15795.7, + "end": 15797.56, + "probability": 0.9579 + }, + { + "start": 15798.18, + "end": 15801.94, + "probability": 0.9915 + }, + { + "start": 15802.84, + "end": 15803.8, + "probability": 0.8408 + }, + { + "start": 15804.62, + "end": 15806.9, + "probability": 0.9209 + }, + { + "start": 15807.46, + "end": 15808.52, + "probability": 0.767 + }, + { + "start": 15809.46, + "end": 15810.42, + "probability": 0.9041 + }, + { + "start": 15811.16, + "end": 15814.02, + "probability": 0.9896 + }, + { + "start": 15814.8, + "end": 15815.8, + "probability": 0.738 + }, + { + "start": 15815.86, + "end": 15817.22, + "probability": 0.6895 + }, + { + "start": 15817.36, + "end": 15820.94, + "probability": 0.8584 + }, + { + "start": 15821.48, + "end": 15822.38, + "probability": 0.9551 + }, + { + "start": 15822.92, + "end": 15823.66, + "probability": 0.6048 + }, + { + "start": 15824.26, + "end": 15824.62, + "probability": 0.7005 + }, + { + "start": 15826.12, + "end": 15827.62, + "probability": 0.9437 + }, + { + "start": 15828.56, + "end": 15830.64, + "probability": 0.9606 + }, + { + "start": 15831.64, + "end": 15837.74, + "probability": 0.9795 + }, + { + "start": 15838.06, + "end": 15838.82, + "probability": 0.8794 + }, + { + "start": 15839.68, + "end": 15842.64, + "probability": 0.9008 + }, + { + "start": 15843.2, + "end": 15845.56, + "probability": 0.9906 + }, + { + "start": 15846.58, + "end": 15849.04, + "probability": 0.9811 + }, + { + "start": 15849.82, + "end": 15851.38, + "probability": 0.9954 + }, + { + "start": 15852.54, + "end": 15855.94, + "probability": 0.9949 + }, + { + "start": 15856.62, + "end": 15859.16, + "probability": 0.9481 + }, + { + "start": 15860.6, + "end": 15862.74, + "probability": 0.7286 + }, + { + "start": 15863.56, + "end": 15864.17, + "probability": 0.9553 + }, + { + "start": 15864.9, + "end": 15867.86, + "probability": 0.9777 + }, + { + "start": 15869.86, + "end": 15873.46, + "probability": 0.9906 + }, + { + "start": 15874.96, + "end": 15875.92, + "probability": 0.9255 + }, + { + "start": 15876.48, + "end": 15877.18, + "probability": 0.9791 + }, + { + "start": 15878.22, + "end": 15883.64, + "probability": 0.99 + }, + { + "start": 15884.74, + "end": 15885.1, + "probability": 0.8965 + }, + { + "start": 15885.56, + "end": 15886.22, + "probability": 0.8577 + }, + { + "start": 15886.34, + "end": 15892.52, + "probability": 0.9905 + }, + { + "start": 15893.42, + "end": 15895.72, + "probability": 0.9851 + }, + { + "start": 15896.24, + "end": 15897.86, + "probability": 0.9727 + }, + { + "start": 15899.52, + "end": 15900.58, + "probability": 0.8596 + }, + { + "start": 15901.4, + "end": 15905.78, + "probability": 0.9951 + }, + { + "start": 15907.08, + "end": 15908.02, + "probability": 0.9426 + }, + { + "start": 15908.26, + "end": 15912.4, + "probability": 0.9832 + }, + { + "start": 15912.45, + "end": 15914.94, + "probability": 0.9965 + }, + { + "start": 15915.98, + "end": 15916.62, + "probability": 0.9583 + }, + { + "start": 15917.3, + "end": 15922.22, + "probability": 0.9722 + }, + { + "start": 15922.66, + "end": 15924.06, + "probability": 0.8505 + }, + { + "start": 15924.64, + "end": 15932.46, + "probability": 0.9751 + }, + { + "start": 15933.64, + "end": 15934.24, + "probability": 0.6962 + }, + { + "start": 15935.62, + "end": 15936.6, + "probability": 0.8005 + }, + { + "start": 15937.18, + "end": 15939.04, + "probability": 0.9745 + }, + { + "start": 15939.8, + "end": 15940.42, + "probability": 0.8823 + }, + { + "start": 15941.46, + "end": 15943.28, + "probability": 0.9987 + }, + { + "start": 15944.64, + "end": 15946.56, + "probability": 0.9976 + }, + { + "start": 15947.32, + "end": 15949.52, + "probability": 0.9691 + }, + { + "start": 15951.72, + "end": 15954.12, + "probability": 0.7765 + }, + { + "start": 15954.24, + "end": 15955.48, + "probability": 0.8388 + }, + { + "start": 15955.74, + "end": 15959.08, + "probability": 0.9903 + }, + { + "start": 15959.6, + "end": 15961.38, + "probability": 0.9862 + }, + { + "start": 15962.5, + "end": 15964.04, + "probability": 0.9213 + }, + { + "start": 15964.6, + "end": 15966.2, + "probability": 0.9352 + }, + { + "start": 15966.92, + "end": 15969.92, + "probability": 0.7485 + }, + { + "start": 15970.56, + "end": 15971.94, + "probability": 0.9891 + }, + { + "start": 15972.78, + "end": 15977.96, + "probability": 0.9894 + }, + { + "start": 15978.36, + "end": 15978.8, + "probability": 0.8473 + }, + { + "start": 15979.36, + "end": 15980.94, + "probability": 0.8315 + }, + { + "start": 15982.1, + "end": 15985.56, + "probability": 0.9087 + }, + { + "start": 15985.88, + "end": 15986.24, + "probability": 0.7905 + }, + { + "start": 15987.62, + "end": 16007.74, + "probability": 0.5652 + }, + { + "start": 16008.12, + "end": 16009.24, + "probability": 0.8611 + }, + { + "start": 16011.64, + "end": 16013.66, + "probability": 0.8793 + }, + { + "start": 16014.42, + "end": 16019.28, + "probability": 0.9759 + }, + { + "start": 16020.34, + "end": 16021.98, + "probability": 0.9353 + }, + { + "start": 16023.16, + "end": 16023.84, + "probability": 0.8765 + }, + { + "start": 16024.44, + "end": 16025.32, + "probability": 0.9346 + }, + { + "start": 16026.88, + "end": 16028.24, + "probability": 0.8644 + }, + { + "start": 16029.42, + "end": 16030.38, + "probability": 0.9811 + }, + { + "start": 16031.7, + "end": 16032.26, + "probability": 0.908 + }, + { + "start": 16037.24, + "end": 16041.54, + "probability": 0.9896 + }, + { + "start": 16042.54, + "end": 16045.62, + "probability": 0.9878 + }, + { + "start": 16046.68, + "end": 16050.16, + "probability": 0.9414 + }, + { + "start": 16053.14, + "end": 16055.9, + "probability": 0.9937 + }, + { + "start": 16057.28, + "end": 16059.74, + "probability": 0.9271 + }, + { + "start": 16060.86, + "end": 16062.08, + "probability": 0.9728 + }, + { + "start": 16062.78, + "end": 16067.0, + "probability": 0.9969 + }, + { + "start": 16070.08, + "end": 16075.5, + "probability": 0.8503 + }, + { + "start": 16077.66, + "end": 16082.5, + "probability": 0.8745 + }, + { + "start": 16082.86, + "end": 16083.54, + "probability": 0.8842 + }, + { + "start": 16083.78, + "end": 16085.04, + "probability": 0.8707 + }, + { + "start": 16086.02, + "end": 16089.94, + "probability": 0.9769 + }, + { + "start": 16090.56, + "end": 16093.52, + "probability": 0.8101 + }, + { + "start": 16094.34, + "end": 16097.82, + "probability": 0.9464 + }, + { + "start": 16097.84, + "end": 16099.82, + "probability": 0.8193 + }, + { + "start": 16099.9, + "end": 16100.28, + "probability": 0.8349 + }, + { + "start": 16101.1, + "end": 16103.08, + "probability": 0.8929 + }, + { + "start": 16103.46, + "end": 16104.48, + "probability": 0.7879 + }, + { + "start": 16106.04, + "end": 16110.88, + "probability": 0.9001 + }, + { + "start": 16111.84, + "end": 16112.2, + "probability": 0.0455 + }, + { + "start": 16115.06, + "end": 16121.22, + "probability": 0.9771 + }, + { + "start": 16121.54, + "end": 16125.28, + "probability": 0.9977 + }, + { + "start": 16126.44, + "end": 16128.0, + "probability": 0.9722 + }, + { + "start": 16128.84, + "end": 16130.42, + "probability": 0.972 + }, + { + "start": 16132.28, + "end": 16134.88, + "probability": 0.9665 + }, + { + "start": 16136.58, + "end": 16143.3, + "probability": 0.9912 + }, + { + "start": 16144.82, + "end": 16147.96, + "probability": 0.9945 + }, + { + "start": 16148.08, + "end": 16151.06, + "probability": 0.9979 + }, + { + "start": 16151.62, + "end": 16155.7, + "probability": 0.9985 + }, + { + "start": 16157.02, + "end": 16158.24, + "probability": 0.9957 + }, + { + "start": 16161.5, + "end": 16164.54, + "probability": 0.996 + }, + { + "start": 16166.02, + "end": 16166.48, + "probability": 0.7348 + }, + { + "start": 16168.1, + "end": 16174.38, + "probability": 0.9663 + }, + { + "start": 16176.32, + "end": 16177.56, + "probability": 0.7227 + }, + { + "start": 16184.38, + "end": 16187.84, + "probability": 0.9905 + }, + { + "start": 16190.26, + "end": 16193.12, + "probability": 0.9912 + }, + { + "start": 16193.36, + "end": 16197.52, + "probability": 0.9927 + }, + { + "start": 16199.34, + "end": 16200.18, + "probability": 0.999 + }, + { + "start": 16201.28, + "end": 16203.86, + "probability": 0.978 + }, + { + "start": 16203.88, + "end": 16204.74, + "probability": 0.8844 + }, + { + "start": 16205.22, + "end": 16210.46, + "probability": 0.9957 + }, + { + "start": 16210.66, + "end": 16213.06, + "probability": 0.9086 + }, + { + "start": 16213.72, + "end": 16217.7, + "probability": 0.9734 + }, + { + "start": 16218.4, + "end": 16219.92, + "probability": 0.991 + }, + { + "start": 16221.14, + "end": 16223.48, + "probability": 0.9592 + }, + { + "start": 16224.28, + "end": 16225.42, + "probability": 0.8079 + }, + { + "start": 16226.88, + "end": 16230.18, + "probability": 0.9945 + }, + { + "start": 16230.18, + "end": 16234.94, + "probability": 0.9732 + }, + { + "start": 16235.8, + "end": 16239.66, + "probability": 0.9801 + }, + { + "start": 16239.8, + "end": 16240.34, + "probability": 0.4352 + }, + { + "start": 16240.96, + "end": 16243.74, + "probability": 0.6368 + }, + { + "start": 16244.9, + "end": 16245.46, + "probability": 0.4806 + }, + { + "start": 16246.18, + "end": 16252.6, + "probability": 0.9886 + }, + { + "start": 16253.9, + "end": 16257.68, + "probability": 0.9963 + }, + { + "start": 16258.46, + "end": 16261.3, + "probability": 0.9895 + }, + { + "start": 16263.08, + "end": 16264.26, + "probability": 0.7993 + }, + { + "start": 16264.44, + "end": 16265.64, + "probability": 0.9961 + }, + { + "start": 16266.82, + "end": 16269.94, + "probability": 0.2984 + }, + { + "start": 16272.48, + "end": 16272.98, + "probability": 0.7859 + }, + { + "start": 16273.68, + "end": 16278.64, + "probability": 0.9023 + }, + { + "start": 16278.86, + "end": 16281.54, + "probability": 0.9011 + }, + { + "start": 16282.3, + "end": 16286.42, + "probability": 0.9971 + }, + { + "start": 16286.48, + "end": 16288.0, + "probability": 0.9319 + }, + { + "start": 16288.24, + "end": 16288.46, + "probability": 0.2351 + }, + { + "start": 16289.2, + "end": 16291.0, + "probability": 0.9891 + }, + { + "start": 16291.54, + "end": 16293.54, + "probability": 0.9984 + }, + { + "start": 16294.33, + "end": 16298.82, + "probability": 0.967 + }, + { + "start": 16299.24, + "end": 16302.6, + "probability": 0.8471 + }, + { + "start": 16303.66, + "end": 16305.04, + "probability": 0.8036 + }, + { + "start": 16305.1, + "end": 16309.36, + "probability": 0.9688 + }, + { + "start": 16309.46, + "end": 16313.7, + "probability": 0.9062 + }, + { + "start": 16313.78, + "end": 16314.72, + "probability": 0.2063 + }, + { + "start": 16315.4, + "end": 16315.4, + "probability": 0.0361 + }, + { + "start": 16315.4, + "end": 16319.46, + "probability": 0.9761 + }, + { + "start": 16323.76, + "end": 16327.0, + "probability": 0.9979 + }, + { + "start": 16327.0, + "end": 16333.56, + "probability": 0.9988 + }, + { + "start": 16333.9, + "end": 16339.76, + "probability": 0.9822 + }, + { + "start": 16340.18, + "end": 16341.86, + "probability": 0.8677 + }, + { + "start": 16342.1, + "end": 16342.7, + "probability": 0.8881 + }, + { + "start": 16342.8, + "end": 16343.26, + "probability": 0.9038 + }, + { + "start": 16343.8, + "end": 16345.38, + "probability": 0.9941 + }, + { + "start": 16346.8, + "end": 16351.32, + "probability": 0.9965 + }, + { + "start": 16352.36, + "end": 16352.46, + "probability": 0.7258 + }, + { + "start": 16353.52, + "end": 16353.8, + "probability": 0.6802 + }, + { + "start": 16354.2, + "end": 16359.1, + "probability": 0.979 + }, + { + "start": 16360.1, + "end": 16361.3, + "probability": 0.9928 + }, + { + "start": 16362.26, + "end": 16366.36, + "probability": 0.9803 + }, + { + "start": 16368.22, + "end": 16370.44, + "probability": 0.9609 + }, + { + "start": 16371.38, + "end": 16374.06, + "probability": 0.9644 + }, + { + "start": 16375.58, + "end": 16378.64, + "probability": 0.9518 + }, + { + "start": 16379.36, + "end": 16382.48, + "probability": 0.9935 + }, + { + "start": 16383.02, + "end": 16385.0, + "probability": 0.9757 + }, + { + "start": 16386.02, + "end": 16386.54, + "probability": 0.5038 + }, + { + "start": 16388.66, + "end": 16390.44, + "probability": 0.9915 + }, + { + "start": 16391.04, + "end": 16391.82, + "probability": 0.9978 + }, + { + "start": 16393.18, + "end": 16395.14, + "probability": 0.9618 + }, + { + "start": 16395.3, + "end": 16397.06, + "probability": 0.813 + }, + { + "start": 16397.46, + "end": 16401.72, + "probability": 0.9905 + }, + { + "start": 16401.72, + "end": 16406.54, + "probability": 0.9422 + }, + { + "start": 16409.04, + "end": 16415.14, + "probability": 0.9934 + }, + { + "start": 16416.4, + "end": 16421.1, + "probability": 0.9988 + }, + { + "start": 16422.18, + "end": 16426.68, + "probability": 0.9826 + }, + { + "start": 16427.22, + "end": 16428.86, + "probability": 0.9979 + }, + { + "start": 16429.74, + "end": 16434.22, + "probability": 0.9881 + }, + { + "start": 16434.26, + "end": 16436.88, + "probability": 0.9493 + }, + { + "start": 16437.16, + "end": 16438.04, + "probability": 0.9277 + }, + { + "start": 16438.18, + "end": 16438.42, + "probability": 0.4621 + }, + { + "start": 16439.58, + "end": 16442.68, + "probability": 0.4119 + }, + { + "start": 16443.36, + "end": 16445.52, + "probability": 0.958 + }, + { + "start": 16446.74, + "end": 16449.6, + "probability": 0.7972 + }, + { + "start": 16450.34, + "end": 16450.96, + "probability": 0.3188 + }, + { + "start": 16453.14, + "end": 16457.54, + "probability": 0.9777 + }, + { + "start": 16457.72, + "end": 16457.72, + "probability": 0.4066 + }, + { + "start": 16457.72, + "end": 16459.06, + "probability": 0.7551 + }, + { + "start": 16459.76, + "end": 16460.14, + "probability": 0.8035 + }, + { + "start": 16460.3, + "end": 16463.52, + "probability": 0.9973 + }, + { + "start": 16465.78, + "end": 16467.86, + "probability": 0.9396 + }, + { + "start": 16469.2, + "end": 16469.9, + "probability": 0.7662 + }, + { + "start": 16470.66, + "end": 16476.86, + "probability": 0.9693 + }, + { + "start": 16476.94, + "end": 16478.36, + "probability": 0.999 + }, + { + "start": 16478.98, + "end": 16480.42, + "probability": 0.9224 + }, + { + "start": 16481.14, + "end": 16486.98, + "probability": 0.9224 + }, + { + "start": 16490.78, + "end": 16495.14, + "probability": 0.9883 + }, + { + "start": 16495.14, + "end": 16498.06, + "probability": 0.9916 + }, + { + "start": 16498.32, + "end": 16502.64, + "probability": 0.9495 + }, + { + "start": 16505.9, + "end": 16506.52, + "probability": 0.8823 + }, + { + "start": 16506.62, + "end": 16509.06, + "probability": 0.9712 + }, + { + "start": 16509.06, + "end": 16511.94, + "probability": 0.9978 + }, + { + "start": 16512.52, + "end": 16514.74, + "probability": 0.9761 + }, + { + "start": 16515.54, + "end": 16519.1, + "probability": 0.9888 + }, + { + "start": 16520.36, + "end": 16521.62, + "probability": 0.9756 + }, + { + "start": 16522.24, + "end": 16523.24, + "probability": 0.8173 + }, + { + "start": 16523.38, + "end": 16527.04, + "probability": 0.9827 + }, + { + "start": 16527.4, + "end": 16532.66, + "probability": 0.9467 + }, + { + "start": 16532.78, + "end": 16533.66, + "probability": 0.7836 + }, + { + "start": 16534.36, + "end": 16537.48, + "probability": 0.9826 + }, + { + "start": 16537.84, + "end": 16541.14, + "probability": 0.9163 + }, + { + "start": 16542.08, + "end": 16542.56, + "probability": 0.7603 + }, + { + "start": 16542.66, + "end": 16544.74, + "probability": 0.7256 + }, + { + "start": 16545.06, + "end": 16546.22, + "probability": 0.6229 + }, + { + "start": 16546.64, + "end": 16549.08, + "probability": 0.9967 + }, + { + "start": 16550.02, + "end": 16550.5, + "probability": 0.8672 + }, + { + "start": 16551.32, + "end": 16551.92, + "probability": 0.8048 + }, + { + "start": 16556.76, + "end": 16557.42, + "probability": 0.1181 + }, + { + "start": 16557.92, + "end": 16558.96, + "probability": 0.5934 + }, + { + "start": 16559.2, + "end": 16559.72, + "probability": 0.777 + }, + { + "start": 16559.78, + "end": 16559.78, + "probability": 0.7492 + }, + { + "start": 16559.9, + "end": 16560.08, + "probability": 0.0337 + }, + { + "start": 16560.08, + "end": 16560.66, + "probability": 0.3752 + }, + { + "start": 16560.76, + "end": 16561.08, + "probability": 0.5792 + }, + { + "start": 16561.08, + "end": 16561.08, + "probability": 0.2789 + }, + { + "start": 16561.08, + "end": 16563.06, + "probability": 0.9744 + }, + { + "start": 16563.06, + "end": 16568.06, + "probability": 0.9693 + }, + { + "start": 16569.32, + "end": 16572.06, + "probability": 0.9603 + }, + { + "start": 16573.44, + "end": 16576.32, + "probability": 0.9613 + }, + { + "start": 16577.96, + "end": 16578.91, + "probability": 0.9935 + }, + { + "start": 16580.46, + "end": 16582.52, + "probability": 0.9987 + }, + { + "start": 16582.52, + "end": 16586.1, + "probability": 0.9969 + }, + { + "start": 16587.22, + "end": 16588.06, + "probability": 0.5402 + }, + { + "start": 16588.94, + "end": 16590.7, + "probability": 0.9655 + }, + { + "start": 16595.26, + "end": 16596.12, + "probability": 0.5571 + }, + { + "start": 16596.14, + "end": 16596.8, + "probability": 0.7315 + }, + { + "start": 16596.9, + "end": 16600.84, + "probability": 0.9902 + }, + { + "start": 16601.8, + "end": 16608.32, + "probability": 0.9883 + }, + { + "start": 16609.44, + "end": 16611.72, + "probability": 0.8824 + }, + { + "start": 16611.88, + "end": 16614.88, + "probability": 0.9888 + }, + { + "start": 16615.42, + "end": 16620.16, + "probability": 0.8814 + }, + { + "start": 16620.16, + "end": 16622.9, + "probability": 0.9728 + }, + { + "start": 16623.52, + "end": 16624.5, + "probability": 0.975 + }, + { + "start": 16624.68, + "end": 16627.78, + "probability": 0.9804 + }, + { + "start": 16628.12, + "end": 16629.46, + "probability": 0.7951 + }, + { + "start": 16629.56, + "end": 16630.6, + "probability": 0.7278 + }, + { + "start": 16631.82, + "end": 16632.36, + "probability": 0.8768 + }, + { + "start": 16632.88, + "end": 16638.64, + "probability": 0.9365 + }, + { + "start": 16639.44, + "end": 16641.88, + "probability": 0.97 + }, + { + "start": 16641.96, + "end": 16642.4, + "probability": 0.9922 + }, + { + "start": 16643.02, + "end": 16644.58, + "probability": 0.9961 + }, + { + "start": 16645.2, + "end": 16645.54, + "probability": 0.9888 + }, + { + "start": 16648.24, + "end": 16649.72, + "probability": 0.6488 + }, + { + "start": 16650.46, + "end": 16652.54, + "probability": 0.9582 + }, + { + "start": 16652.88, + "end": 16654.2, + "probability": 0.8645 + }, + { + "start": 16655.8, + "end": 16658.4, + "probability": 0.8548 + }, + { + "start": 16659.72, + "end": 16663.56, + "probability": 0.9918 + }, + { + "start": 16665.54, + "end": 16665.72, + "probability": 0.181 + }, + { + "start": 16665.72, + "end": 16670.12, + "probability": 0.991 + }, + { + "start": 16670.92, + "end": 16672.82, + "probability": 0.993 + }, + { + "start": 16673.5, + "end": 16674.08, + "probability": 0.7491 + }, + { + "start": 16675.2, + "end": 16680.82, + "probability": 0.9984 + }, + { + "start": 16681.76, + "end": 16685.86, + "probability": 0.9914 + }, + { + "start": 16686.7, + "end": 16687.56, + "probability": 0.9082 + }, + { + "start": 16688.28, + "end": 16691.06, + "probability": 0.9956 + }, + { + "start": 16691.82, + "end": 16692.72, + "probability": 0.9893 + }, + { + "start": 16693.38, + "end": 16694.58, + "probability": 0.9653 + }, + { + "start": 16695.96, + "end": 16700.94, + "probability": 0.9976 + }, + { + "start": 16701.92, + "end": 16703.9, + "probability": 0.9972 + }, + { + "start": 16704.5, + "end": 16706.18, + "probability": 0.9742 + }, + { + "start": 16706.7, + "end": 16710.82, + "probability": 0.9326 + }, + { + "start": 16712.58, + "end": 16714.38, + "probability": 0.7451 + }, + { + "start": 16714.92, + "end": 16715.98, + "probability": 0.8098 + }, + { + "start": 16716.8, + "end": 16718.54, + "probability": 0.9519 + }, + { + "start": 16719.78, + "end": 16720.44, + "probability": 0.8993 + }, + { + "start": 16722.66, + "end": 16729.4, + "probability": 0.9741 + }, + { + "start": 16730.14, + "end": 16733.12, + "probability": 0.9727 + }, + { + "start": 16734.18, + "end": 16736.52, + "probability": 0.9313 + }, + { + "start": 16738.62, + "end": 16739.56, + "probability": 0.7538 + }, + { + "start": 16741.62, + "end": 16742.42, + "probability": 0.9825 + }, + { + "start": 16743.88, + "end": 16749.54, + "probability": 0.9777 + }, + { + "start": 16751.1, + "end": 16752.82, + "probability": 0.9947 + }, + { + "start": 16753.88, + "end": 16757.6, + "probability": 0.9974 + }, + { + "start": 16758.58, + "end": 16759.82, + "probability": 0.9993 + }, + { + "start": 16760.4, + "end": 16762.82, + "probability": 0.9949 + }, + { + "start": 16763.64, + "end": 16768.42, + "probability": 0.9956 + }, + { + "start": 16768.96, + "end": 16769.46, + "probability": 0.895 + }, + { + "start": 16770.1, + "end": 16775.92, + "probability": 0.99 + }, + { + "start": 16776.22, + "end": 16777.02, + "probability": 0.8596 + }, + { + "start": 16777.6, + "end": 16779.16, + "probability": 0.9955 + }, + { + "start": 16779.92, + "end": 16780.84, + "probability": 0.1238 + }, + { + "start": 16782.4, + "end": 16785.88, + "probability": 0.6424 + }, + { + "start": 16786.46, + "end": 16787.76, + "probability": 0.8094 + }, + { + "start": 16787.92, + "end": 16793.48, + "probability": 0.9263 + }, + { + "start": 16794.48, + "end": 16796.46, + "probability": 0.9248 + }, + { + "start": 16797.14, + "end": 16801.7, + "probability": 0.9738 + }, + { + "start": 16802.7, + "end": 16803.62, + "probability": 0.5579 + }, + { + "start": 16804.86, + "end": 16806.7, + "probability": 0.9982 + }, + { + "start": 16807.44, + "end": 16808.2, + "probability": 0.9774 + }, + { + "start": 16808.84, + "end": 16814.2, + "probability": 0.991 + }, + { + "start": 16814.72, + "end": 16815.42, + "probability": 0.6841 + }, + { + "start": 16816.28, + "end": 16818.6, + "probability": 0.9788 + }, + { + "start": 16819.18, + "end": 16821.7, + "probability": 0.9531 + }, + { + "start": 16822.24, + "end": 16827.62, + "probability": 0.9906 + }, + { + "start": 16828.16, + "end": 16829.26, + "probability": 0.7447 + }, + { + "start": 16829.74, + "end": 16830.18, + "probability": 0.8723 + }, + { + "start": 16830.8, + "end": 16834.16, + "probability": 0.9517 + }, + { + "start": 16834.6, + "end": 16835.2, + "probability": 0.8978 + }, + { + "start": 16836.04, + "end": 16838.02, + "probability": 0.7855 + }, + { + "start": 16838.72, + "end": 16839.3, + "probability": 0.9501 + }, + { + "start": 16839.86, + "end": 16840.41, + "probability": 0.7297 + }, + { + "start": 16841.62, + "end": 16842.7, + "probability": 0.6906 + }, + { + "start": 16843.42, + "end": 16846.04, + "probability": 0.9135 + }, + { + "start": 16846.78, + "end": 16851.58, + "probability": 0.9396 + }, + { + "start": 16852.58, + "end": 16857.2, + "probability": 0.8028 + }, + { + "start": 16858.8, + "end": 16861.14, + "probability": 0.7266 + }, + { + "start": 16861.74, + "end": 16862.54, + "probability": 0.2535 + }, + { + "start": 16863.84, + "end": 16864.2, + "probability": 0.9619 + }, + { + "start": 16865.2, + "end": 16866.26, + "probability": 0.8965 + }, + { + "start": 16867.34, + "end": 16867.78, + "probability": 0.9762 + }, + { + "start": 16869.14, + "end": 16869.98, + "probability": 0.8607 + }, + { + "start": 16871.08, + "end": 16872.36, + "probability": 0.9463 + }, + { + "start": 16873.02, + "end": 16874.36, + "probability": 0.9219 + }, + { + "start": 16875.18, + "end": 16875.64, + "probability": 0.9863 + }, + { + "start": 16876.94, + "end": 16877.8, + "probability": 0.9334 + }, + { + "start": 16878.44, + "end": 16878.88, + "probability": 0.9944 + }, + { + "start": 16880.2, + "end": 16881.08, + "probability": 0.9726 + }, + { + "start": 16881.96, + "end": 16882.36, + "probability": 0.9906 + }, + { + "start": 16883.54, + "end": 16884.5, + "probability": 0.5174 + }, + { + "start": 16885.38, + "end": 16885.78, + "probability": 0.5712 + }, + { + "start": 16887.5, + "end": 16888.46, + "probability": 0.7136 + }, + { + "start": 16889.38, + "end": 16891.68, + "probability": 0.9429 + }, + { + "start": 16893.12, + "end": 16893.7, + "probability": 0.9834 + }, + { + "start": 16894.96, + "end": 16895.94, + "probability": 0.9435 + }, + { + "start": 16896.72, + "end": 16897.14, + "probability": 0.9888 + }, + { + "start": 16898.38, + "end": 16899.28, + "probability": 0.9716 + }, + { + "start": 16901.29, + "end": 16903.66, + "probability": 0.9934 + }, + { + "start": 16904.84, + "end": 16907.32, + "probability": 0.9905 + }, + { + "start": 16911.72, + "end": 16912.36, + "probability": 0.8754 + }, + { + "start": 16913.7, + "end": 16914.52, + "probability": 0.7277 + }, + { + "start": 16915.86, + "end": 16916.3, + "probability": 0.6225 + }, + { + "start": 16918.68, + "end": 16919.5, + "probability": 0.9115 + }, + { + "start": 16920.32, + "end": 16920.74, + "probability": 0.9684 + }, + { + "start": 16922.84, + "end": 16923.7, + "probability": 0.9736 + }, + { + "start": 16925.85, + "end": 16928.8, + "probability": 0.972 + }, + { + "start": 16929.76, + "end": 16930.22, + "probability": 0.9793 + }, + { + "start": 16931.88, + "end": 16932.74, + "probability": 0.9808 + }, + { + "start": 16933.86, + "end": 16934.3, + "probability": 0.9885 + }, + { + "start": 16935.86, + "end": 16936.88, + "probability": 0.9359 + }, + { + "start": 16939.18, + "end": 16939.58, + "probability": 0.9565 + }, + { + "start": 16941.06, + "end": 16941.94, + "probability": 0.946 + }, + { + "start": 16942.94, + "end": 16943.2, + "probability": 0.6961 + }, + { + "start": 16944.74, + "end": 16945.56, + "probability": 0.5514 + }, + { + "start": 16946.24, + "end": 16947.3, + "probability": 0.9344 + }, + { + "start": 16947.84, + "end": 16948.82, + "probability": 0.9907 + }, + { + "start": 16951.24, + "end": 16951.58, + "probability": 0.7905 + }, + { + "start": 16953.42, + "end": 16954.44, + "probability": 0.9847 + }, + { + "start": 16956.09, + "end": 16958.16, + "probability": 0.981 + }, + { + "start": 16959.28, + "end": 16959.96, + "probability": 0.9923 + }, + { + "start": 16961.38, + "end": 16962.64, + "probability": 0.8127 + }, + { + "start": 16963.64, + "end": 16964.08, + "probability": 0.9937 + }, + { + "start": 16966.28, + "end": 16966.88, + "probability": 0.9938 + }, + { + "start": 16968.08, + "end": 16968.44, + "probability": 0.99 + }, + { + "start": 16970.1, + "end": 16970.84, + "probability": 0.9835 + }, + { + "start": 16971.52, + "end": 16971.78, + "probability": 0.9919 + }, + { + "start": 16973.22, + "end": 16974.08, + "probability": 0.8827 + }, + { + "start": 16975.96, + "end": 16977.56, + "probability": 0.7961 + }, + { + "start": 16979.68, + "end": 16980.36, + "probability": 0.7431 + }, + { + "start": 16981.08, + "end": 16983.02, + "probability": 0.6636 + }, + { + "start": 16984.96, + "end": 16985.86, + "probability": 0.9347 + }, + { + "start": 16986.66, + "end": 16987.36, + "probability": 0.7066 + }, + { + "start": 16988.18, + "end": 16988.98, + "probability": 0.9759 + }, + { + "start": 16989.76, + "end": 16992.2, + "probability": 0.9514 + }, + { + "start": 16993.09, + "end": 16995.58, + "probability": 0.8486 + }, + { + "start": 16996.82, + "end": 16997.44, + "probability": 0.8654 + }, + { + "start": 16998.66, + "end": 16999.6, + "probability": 0.9924 + }, + { + "start": 17000.42, + "end": 17001.88, + "probability": 0.0388 + }, + { + "start": 17002.66, + "end": 17004.76, + "probability": 0.4994 + }, + { + "start": 17006.48, + "end": 17007.5, + "probability": 0.6112 + }, + { + "start": 17008.52, + "end": 17008.92, + "probability": 0.9134 + }, + { + "start": 17010.26, + "end": 17011.14, + "probability": 0.9564 + }, + { + "start": 17012.19, + "end": 17015.4, + "probability": 0.8766 + }, + { + "start": 17016.47, + "end": 17018.8, + "probability": 0.9685 + }, + { + "start": 17019.92, + "end": 17020.38, + "probability": 0.9966 + }, + { + "start": 17022.32, + "end": 17023.08, + "probability": 0.9803 + }, + { + "start": 17024.22, + "end": 17027.32, + "probability": 0.9751 + }, + { + "start": 17028.28, + "end": 17028.68, + "probability": 0.9928 + }, + { + "start": 17030.3, + "end": 17031.34, + "probability": 0.9553 + }, + { + "start": 17032.32, + "end": 17032.5, + "probability": 0.4966 + }, + { + "start": 17034.54, + "end": 17035.7, + "probability": 0.7708 + }, + { + "start": 17036.58, + "end": 17036.94, + "probability": 0.9386 + }, + { + "start": 17038.74, + "end": 17039.86, + "probability": 0.9826 + }, + { + "start": 17040.42, + "end": 17041.68, + "probability": 0.9197 + }, + { + "start": 17042.6, + "end": 17043.82, + "probability": 0.7331 + }, + { + "start": 17047.14, + "end": 17047.54, + "probability": 0.9466 + }, + { + "start": 17049.5, + "end": 17050.28, + "probability": 0.5626 + }, + { + "start": 17051.26, + "end": 17051.7, + "probability": 0.987 + }, + { + "start": 17053.4, + "end": 17054.48, + "probability": 0.9511 + }, + { + "start": 17056.38, + "end": 17056.78, + "probability": 0.9925 + }, + { + "start": 17058.46, + "end": 17059.38, + "probability": 0.9395 + }, + { + "start": 17060.52, + "end": 17060.92, + "probability": 0.9954 + }, + { + "start": 17062.86, + "end": 17063.44, + "probability": 0.6165 + }, + { + "start": 17065.34, + "end": 17067.34, + "probability": 0.9397 + }, + { + "start": 17069.6, + "end": 17070.54, + "probability": 0.8133 + }, + { + "start": 17072.26, + "end": 17072.58, + "probability": 0.7617 + }, + { + "start": 17074.76, + "end": 17075.52, + "probability": 0.8502 + }, + { + "start": 17076.42, + "end": 17078.46, + "probability": 0.9894 + }, + { + "start": 17079.4, + "end": 17080.64, + "probability": 0.7965 + }, + { + "start": 17081.82, + "end": 17083.0, + "probability": 0.9861 + }, + { + "start": 17083.7, + "end": 17084.78, + "probability": 0.9473 + }, + { + "start": 17085.42, + "end": 17086.9, + "probability": 0.9761 + }, + { + "start": 17087.82, + "end": 17088.06, + "probability": 0.9907 + }, + { + "start": 17089.04, + "end": 17090.3, + "probability": 0.6924 + }, + { + "start": 17090.94, + "end": 17091.18, + "probability": 0.5159 + }, + { + "start": 17093.18, + "end": 17093.92, + "probability": 0.7453 + }, + { + "start": 17094.72, + "end": 17095.04, + "probability": 0.8387 + }, + { + "start": 17097.42, + "end": 17098.48, + "probability": 0.8837 + }, + { + "start": 17100.1, + "end": 17103.64, + "probability": 0.885 + }, + { + "start": 17104.98, + "end": 17105.8, + "probability": 0.7662 + }, + { + "start": 17107.52, + "end": 17107.82, + "probability": 0.9129 + }, + { + "start": 17110.04, + "end": 17110.8, + "probability": 0.9267 + }, + { + "start": 17112.16, + "end": 17112.52, + "probability": 0.813 + }, + { + "start": 17114.5, + "end": 17115.06, + "probability": 0.9847 + }, + { + "start": 17117.22, + "end": 17119.62, + "probability": 0.9436 + }, + { + "start": 17123.35, + "end": 17124.84, + "probability": 0.9382 + }, + { + "start": 17126.36, + "end": 17128.32, + "probability": 0.0455 + }, + { + "start": 17142.58, + "end": 17143.7, + "probability": 0.1133 + }, + { + "start": 17144.84, + "end": 17145.08, + "probability": 0.5137 + }, + { + "start": 17146.44, + "end": 17147.26, + "probability": 0.8111 + }, + { + "start": 17150.29, + "end": 17152.6, + "probability": 0.9377 + }, + { + "start": 17153.66, + "end": 17153.94, + "probability": 0.7508 + }, + { + "start": 17155.68, + "end": 17156.7, + "probability": 0.9484 + }, + { + "start": 17165.72, + "end": 17166.02, + "probability": 0.5883 + }, + { + "start": 17168.02, + "end": 17168.56, + "probability": 0.625 + }, + { + "start": 17169.98, + "end": 17170.28, + "probability": 0.9585 + }, + { + "start": 17172.56, + "end": 17173.26, + "probability": 0.955 + }, + { + "start": 17174.7, + "end": 17176.38, + "probability": 0.978 + }, + { + "start": 17176.94, + "end": 17178.02, + "probability": 0.9806 + }, + { + "start": 17179.68, + "end": 17181.72, + "probability": 0.932 + }, + { + "start": 17183.36, + "end": 17183.78, + "probability": 0.9917 + }, + { + "start": 17185.9, + "end": 17186.4, + "probability": 0.8045 + }, + { + "start": 17191.2, + "end": 17191.56, + "probability": 0.9761 + }, + { + "start": 17194.0, + "end": 17194.4, + "probability": 0.7538 + }, + { + "start": 17197.9, + "end": 17198.32, + "probability": 0.8652 + }, + { + "start": 17200.2, + "end": 17201.1, + "probability": 0.5523 + }, + { + "start": 17203.4, + "end": 17203.8, + "probability": 0.9683 + }, + { + "start": 17205.76, + "end": 17206.64, + "probability": 0.8619 + }, + { + "start": 17207.62, + "end": 17207.94, + "probability": 0.9601 + }, + { + "start": 17209.54, + "end": 17210.6, + "probability": 0.9512 + }, + { + "start": 17211.5, + "end": 17211.88, + "probability": 0.8215 + }, + { + "start": 17213.38, + "end": 17214.14, + "probability": 0.9751 + }, + { + "start": 17215.93, + "end": 17218.12, + "probability": 0.9875 + }, + { + "start": 17219.34, + "end": 17220.4, + "probability": 0.9702 + }, + { + "start": 17221.32, + "end": 17222.2, + "probability": 0.4591 + }, + { + "start": 17223.0, + "end": 17223.42, + "probability": 0.9823 + }, + { + "start": 17225.46, + "end": 17226.28, + "probability": 0.7381 + }, + { + "start": 17227.78, + "end": 17228.18, + "probability": 0.759 + }, + { + "start": 17229.86, + "end": 17230.64, + "probability": 0.7304 + }, + { + "start": 17233.26, + "end": 17233.74, + "probability": 0.9797 + }, + { + "start": 17235.6, + "end": 17236.66, + "probability": 0.9669 + }, + { + "start": 17240.44, + "end": 17240.84, + "probability": 0.9097 + }, + { + "start": 17242.92, + "end": 17243.9, + "probability": 0.8071 + }, + { + "start": 17244.54, + "end": 17245.04, + "probability": 0.9963 + }, + { + "start": 17246.84, + "end": 17248.36, + "probability": 0.8008 + }, + { + "start": 17249.92, + "end": 17250.68, + "probability": 0.8735 + }, + { + "start": 17252.32, + "end": 17252.78, + "probability": 0.1486 + }, + { + "start": 17255.86, + "end": 17257.02, + "probability": 0.2576 + }, + { + "start": 17258.8, + "end": 17259.2, + "probability": 0.5494 + }, + { + "start": 17260.74, + "end": 17261.52, + "probability": 0.6804 + }, + { + "start": 17265.44, + "end": 17266.18, + "probability": 0.9131 + }, + { + "start": 17267.32, + "end": 17268.2, + "probability": 0.5385 + }, + { + "start": 17269.06, + "end": 17269.48, + "probability": 0.8709 + }, + { + "start": 17271.7, + "end": 17272.72, + "probability": 0.8172 + }, + { + "start": 17273.58, + "end": 17274.6, + "probability": 0.9331 + }, + { + "start": 17275.76, + "end": 17276.56, + "probability": 0.7753 + }, + { + "start": 17277.84, + "end": 17278.24, + "probability": 0.8507 + }, + { + "start": 17279.94, + "end": 17280.86, + "probability": 0.8591 + }, + { + "start": 17283.1, + "end": 17285.7, + "probability": 0.7466 + }, + { + "start": 17286.62, + "end": 17287.3, + "probability": 0.6239 + }, + { + "start": 17288.26, + "end": 17288.58, + "probability": 0.9565 + }, + { + "start": 17290.38, + "end": 17291.82, + "probability": 0.4472 + }, + { + "start": 17295.14, + "end": 17297.84, + "probability": 0.8254 + }, + { + "start": 17299.54, + "end": 17300.48, + "probability": 0.8459 + }, + { + "start": 17305.66, + "end": 17305.96, + "probability": 0.5779 + }, + { + "start": 17308.02, + "end": 17309.04, + "probability": 0.7117 + }, + { + "start": 17313.92, + "end": 17314.7, + "probability": 0.9006 + }, + { + "start": 17315.78, + "end": 17316.54, + "probability": 0.6625 + }, + { + "start": 17317.46, + "end": 17318.66, + "probability": 0.9631 + }, + { + "start": 17319.76, + "end": 17320.7, + "probability": 0.9175 + }, + { + "start": 17321.62, + "end": 17322.12, + "probability": 0.9886 + }, + { + "start": 17323.62, + "end": 17324.42, + "probability": 0.9015 + }, + { + "start": 17327.6, + "end": 17328.0, + "probability": 0.9857 + }, + { + "start": 17329.86, + "end": 17330.6, + "probability": 0.8398 + }, + { + "start": 17333.2, + "end": 17333.92, + "probability": 0.7682 + }, + { + "start": 17337.28, + "end": 17337.62, + "probability": 0.5811 + }, + { + "start": 17339.56, + "end": 17340.34, + "probability": 0.9714 + }, + { + "start": 17341.74, + "end": 17342.92, + "probability": 0.9552 + }, + { + "start": 17343.84, + "end": 17344.74, + "probability": 0.9039 + }, + { + "start": 17345.84, + "end": 17348.66, + "probability": 0.9891 + }, + { + "start": 17350.38, + "end": 17351.58, + "probability": 0.9934 + }, + { + "start": 17352.6, + "end": 17353.44, + "probability": 0.9254 + }, + { + "start": 17356.1, + "end": 17356.54, + "probability": 0.9793 + }, + { + "start": 17358.42, + "end": 17359.4, + "probability": 0.9123 + }, + { + "start": 17360.7, + "end": 17361.4, + "probability": 0.562 + }, + { + "start": 17363.04, + "end": 17364.12, + "probability": 0.7478 + }, + { + "start": 17365.4, + "end": 17365.7, + "probability": 0.9867 + }, + { + "start": 17368.58, + "end": 17369.24, + "probability": 0.6016 + }, + { + "start": 17371.2, + "end": 17371.46, + "probability": 0.9909 + }, + { + "start": 17373.56, + "end": 17374.58, + "probability": 0.9359 + }, + { + "start": 17375.2, + "end": 17375.88, + "probability": 0.9943 + }, + { + "start": 17377.5, + "end": 17378.74, + "probability": 0.7597 + }, + { + "start": 17380.04, + "end": 17380.46, + "probability": 0.9969 + }, + { + "start": 17382.32, + "end": 17383.42, + "probability": 0.8285 + }, + { + "start": 17384.1, + "end": 17384.5, + "probability": 0.9966 + }, + { + "start": 17386.36, + "end": 17387.26, + "probability": 0.9608 + }, + { + "start": 17390.32, + "end": 17390.68, + "probability": 0.9539 + }, + { + "start": 17393.34, + "end": 17394.22, + "probability": 0.8821 + }, + { + "start": 17394.98, + "end": 17395.28, + "probability": 0.0288 + }, + { + "start": 17398.58, + "end": 17399.64, + "probability": 0.4999 + }, + { + "start": 17400.66, + "end": 17401.04, + "probability": 0.5203 + }, + { + "start": 17402.56, + "end": 17403.44, + "probability": 0.8071 + }, + { + "start": 17405.42, + "end": 17405.9, + "probability": 0.9463 + }, + { + "start": 17408.54, + "end": 17409.28, + "probability": 0.719 + }, + { + "start": 17413.6, + "end": 17414.14, + "probability": 0.9849 + }, + { + "start": 17416.32, + "end": 17417.2, + "probability": 0.8072 + }, + { + "start": 17417.88, + "end": 17418.26, + "probability": 0.5519 + }, + { + "start": 17420.34, + "end": 17421.46, + "probability": 0.7271 + }, + { + "start": 17424.14, + "end": 17425.88, + "probability": 0.7448 + }, + { + "start": 17428.02, + "end": 17428.78, + "probability": 0.693 + }, + { + "start": 17431.11, + "end": 17432.62, + "probability": 0.8545 + }, + { + "start": 17435.94, + "end": 17436.34, + "probability": 0.369 + }, + { + "start": 17438.26, + "end": 17439.52, + "probability": 0.5372 + }, + { + "start": 17440.8, + "end": 17441.08, + "probability": 0.7913 + }, + { + "start": 17445.16, + "end": 17446.76, + "probability": 0.7649 + }, + { + "start": 17448.6, + "end": 17449.78, + "probability": 0.5022 + }, + { + "start": 17453.48, + "end": 17453.88, + "probability": 0.9435 + }, + { + "start": 17457.76, + "end": 17458.28, + "probability": 0.6288 + }, + { + "start": 17459.4, + "end": 17460.02, + "probability": 0.9655 + }, + { + "start": 17463.26, + "end": 17464.02, + "probability": 0.4432 + }, + { + "start": 17465.96, + "end": 17466.6, + "probability": 0.827 + }, + { + "start": 17467.7, + "end": 17468.44, + "probability": 0.9305 + }, + { + "start": 17470.46, + "end": 17471.18, + "probability": 0.9644 + }, + { + "start": 17472.08, + "end": 17473.26, + "probability": 0.9206 + }, + { + "start": 17477.34, + "end": 17478.02, + "probability": 0.9812 + }, + { + "start": 17479.62, + "end": 17480.48, + "probability": 0.9218 + }, + { + "start": 17482.72, + "end": 17483.54, + "probability": 0.9852 + }, + { + "start": 17485.62, + "end": 17486.6, + "probability": 0.929 + }, + { + "start": 17488.5, + "end": 17488.94, + "probability": 0.9871 + }, + { + "start": 17492.78, + "end": 17494.12, + "probability": 0.9738 + }, + { + "start": 17496.32, + "end": 17496.64, + "probability": 0.356 + }, + { + "start": 17590.18, + "end": 17591.6, + "probability": 0.0309 + }, + { + "start": 17594.36, + "end": 17595.46, + "probability": 0.1207 + }, + { + "start": 17603.04, + "end": 17605.38, + "probability": 0.0852 + }, + { + "start": 17609.2, + "end": 17615.16, + "probability": 0.024 + }, + { + "start": 17615.82, + "end": 17618.28, + "probability": 0.0243 + }, + { + "start": 17618.36, + "end": 17618.62, + "probability": 0.1608 + }, + { + "start": 17618.78, + "end": 17619.7, + "probability": 0.1918 + }, + { + "start": 17620.7, + "end": 17622.86, + "probability": 0.0317 + }, + { + "start": 17622.86, + "end": 17624.38, + "probability": 0.0748 + }, + { + "start": 17624.6, + "end": 17626.4, + "probability": 0.0058 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.0, + "probability": 0.0 + }, + { + "start": 17715.0, + "end": 17715.56, + "probability": 0.3618 + }, + { + "start": 17716.64, + "end": 17722.98, + "probability": 0.994 + }, + { + "start": 17725.58, + "end": 17726.94, + "probability": 0.5006 + }, + { + "start": 17728.28, + "end": 17732.72, + "probability": 0.9971 + }, + { + "start": 17734.74, + "end": 17736.86, + "probability": 0.9508 + }, + { + "start": 17738.82, + "end": 17744.46, + "probability": 0.9744 + }, + { + "start": 17744.46, + "end": 17748.48, + "probability": 0.9922 + }, + { + "start": 17751.64, + "end": 17753.62, + "probability": 0.9983 + }, + { + "start": 17755.86, + "end": 17757.68, + "probability": 0.9814 + }, + { + "start": 17758.8, + "end": 17762.18, + "probability": 0.9801 + }, + { + "start": 17762.18, + "end": 17767.86, + "probability": 0.9977 + }, + { + "start": 17768.54, + "end": 17769.26, + "probability": 0.7717 + }, + { + "start": 17770.0, + "end": 17771.86, + "probability": 0.9964 + }, + { + "start": 17772.68, + "end": 17774.6, + "probability": 0.9996 + }, + { + "start": 17776.48, + "end": 17783.34, + "probability": 0.8892 + }, + { + "start": 17784.54, + "end": 17788.6, + "probability": 0.9801 + }, + { + "start": 17790.06, + "end": 17792.22, + "probability": 0.9105 + }, + { + "start": 17793.4, + "end": 17794.24, + "probability": 0.9717 + }, + { + "start": 17796.16, + "end": 17797.56, + "probability": 0.5643 + }, + { + "start": 17799.1, + "end": 17801.32, + "probability": 0.7486 + }, + { + "start": 17804.08, + "end": 17805.86, + "probability": 0.9977 + }, + { + "start": 17806.78, + "end": 17808.93, + "probability": 0.995 + }, + { + "start": 17811.18, + "end": 17813.26, + "probability": 0.996 + }, + { + "start": 17814.48, + "end": 17819.27, + "probability": 0.0895 + }, + { + "start": 17821.68, + "end": 17821.94, + "probability": 0.07 + }, + { + "start": 17822.46, + "end": 17823.5, + "probability": 0.9721 + }, + { + "start": 17827.46, + "end": 17830.42, + "probability": 0.029 + }, + { + "start": 17830.42, + "end": 17830.42, + "probability": 0.0683 + }, + { + "start": 17830.42, + "end": 17830.42, + "probability": 0.0865 + }, + { + "start": 17830.42, + "end": 17834.62, + "probability": 0.704 + }, + { + "start": 17835.74, + "end": 17838.38, + "probability": 0.9951 + }, + { + "start": 17839.22, + "end": 17841.04, + "probability": 0.877 + }, + { + "start": 17842.16, + "end": 17844.88, + "probability": 0.829 + }, + { + "start": 17845.58, + "end": 17848.78, + "probability": 0.9984 + }, + { + "start": 17849.64, + "end": 17855.2, + "probability": 0.9917 + }, + { + "start": 17856.12, + "end": 17859.4, + "probability": 0.9645 + }, + { + "start": 17860.38, + "end": 17861.2, + "probability": 0.7844 + }, + { + "start": 17862.46, + "end": 17863.1, + "probability": 0.733 + }, + { + "start": 17863.3, + "end": 17864.24, + "probability": 0.8833 + }, + { + "start": 17864.4, + "end": 17867.31, + "probability": 0.8752 + }, + { + "start": 17869.38, + "end": 17872.94, + "probability": 0.8975 + }, + { + "start": 17873.76, + "end": 17875.1, + "probability": 0.908 + }, + { + "start": 17876.36, + "end": 17877.24, + "probability": 0.8263 + }, + { + "start": 17878.2, + "end": 17880.58, + "probability": 0.9787 + }, + { + "start": 17883.54, + "end": 17885.36, + "probability": 0.9586 + }, + { + "start": 17886.04, + "end": 17890.46, + "probability": 0.8514 + }, + { + "start": 17890.7, + "end": 17892.86, + "probability": 0.9705 + }, + { + "start": 17893.62, + "end": 17895.32, + "probability": 0.8029 + }, + { + "start": 17896.36, + "end": 17897.44, + "probability": 0.8659 + }, + { + "start": 17898.46, + "end": 17902.32, + "probability": 0.9709 + }, + { + "start": 17903.14, + "end": 17906.0, + "probability": 0.9573 + }, + { + "start": 17906.78, + "end": 17909.72, + "probability": 0.998 + }, + { + "start": 17912.12, + "end": 17914.3, + "probability": 0.988 + }, + { + "start": 17915.16, + "end": 17916.76, + "probability": 0.9766 + }, + { + "start": 17917.46, + "end": 17919.32, + "probability": 0.7491 + }, + { + "start": 17920.1, + "end": 17921.2, + "probability": 0.8857 + }, + { + "start": 17921.9, + "end": 17927.02, + "probability": 0.9528 + }, + { + "start": 17928.24, + "end": 17930.96, + "probability": 0.9607 + }, + { + "start": 17931.54, + "end": 17932.36, + "probability": 0.9622 + }, + { + "start": 17933.5, + "end": 17933.9, + "probability": 0.7782 + }, + { + "start": 17934.3, + "end": 17937.04, + "probability": 0.6004 + }, + { + "start": 17937.84, + "end": 17938.28, + "probability": 0.7617 + }, + { + "start": 17939.16, + "end": 17940.16, + "probability": 0.6493 + }, + { + "start": 17941.44, + "end": 17944.74, + "probability": 0.5894 + }, + { + "start": 17945.88, + "end": 17947.28, + "probability": 0.8956 + }, + { + "start": 17948.7, + "end": 17951.22, + "probability": 0.8106 + }, + { + "start": 17953.34, + "end": 17953.98, + "probability": 0.6661 + }, + { + "start": 17954.78, + "end": 17959.94, + "probability": 0.9979 + }, + { + "start": 17959.94, + "end": 17963.5, + "probability": 0.9948 + }, + { + "start": 17964.32, + "end": 17965.34, + "probability": 0.3371 + }, + { + "start": 17965.9, + "end": 17969.72, + "probability": 0.9831 + }, + { + "start": 17972.02, + "end": 17974.86, + "probability": 0.9985 + }, + { + "start": 17975.6, + "end": 17980.14, + "probability": 0.9678 + }, + { + "start": 17980.94, + "end": 17984.93, + "probability": 0.9166 + }, + { + "start": 17986.2, + "end": 17987.08, + "probability": 0.8656 + }, + { + "start": 17989.76, + "end": 17992.1, + "probability": 0.948 + }, + { + "start": 17993.98, + "end": 17994.96, + "probability": 0.987 + }, + { + "start": 17996.96, + "end": 17997.9, + "probability": 0.9973 + }, + { + "start": 17998.78, + "end": 18001.76, + "probability": 0.9972 + }, + { + "start": 18002.34, + "end": 18003.72, + "probability": 0.8534 + }, + { + "start": 18005.78, + "end": 18010.92, + "probability": 0.9972 + }, + { + "start": 18012.18, + "end": 18015.8, + "probability": 0.9928 + }, + { + "start": 18016.46, + "end": 18017.3, + "probability": 0.8092 + }, + { + "start": 18019.52, + "end": 18022.24, + "probability": 0.703 + }, + { + "start": 18023.0, + "end": 18026.64, + "probability": 0.9752 + }, + { + "start": 18028.1, + "end": 18030.1, + "probability": 0.9083 + }, + { + "start": 18030.96, + "end": 18033.78, + "probability": 0.9806 + }, + { + "start": 18034.32, + "end": 18036.84, + "probability": 0.7349 + }, + { + "start": 18037.46, + "end": 18042.16, + "probability": 0.9333 + }, + { + "start": 18044.3, + "end": 18045.34, + "probability": 0.9424 + }, + { + "start": 18045.98, + "end": 18047.36, + "probability": 0.9843 + }, + { + "start": 18047.9, + "end": 18048.43, + "probability": 0.9819 + }, + { + "start": 18049.74, + "end": 18049.98, + "probability": 0.9924 + }, + { + "start": 18052.26, + "end": 18052.9, + "probability": 0.5183 + }, + { + "start": 18053.52, + "end": 18054.66, + "probability": 0.6974 + }, + { + "start": 18055.3, + "end": 18062.49, + "probability": 0.9636 + }, + { + "start": 18063.8, + "end": 18066.46, + "probability": 0.9821 + }, + { + "start": 18067.0, + "end": 18068.0, + "probability": 0.7982 + }, + { + "start": 18068.68, + "end": 18071.96, + "probability": 0.986 + }, + { + "start": 18072.64, + "end": 18073.38, + "probability": 0.9264 + }, + { + "start": 18074.08, + "end": 18075.84, + "probability": 0.9972 + }, + { + "start": 18076.84, + "end": 18077.84, + "probability": 0.9872 + }, + { + "start": 18078.94, + "end": 18079.88, + "probability": 0.971 + }, + { + "start": 18080.86, + "end": 18082.32, + "probability": 0.9359 + }, + { + "start": 18085.3, + "end": 18086.72, + "probability": 0.9791 + }, + { + "start": 18088.7, + "end": 18090.84, + "probability": 0.8271 + }, + { + "start": 18091.48, + "end": 18093.82, + "probability": 0.9847 + }, + { + "start": 18094.4, + "end": 18097.28, + "probability": 0.9844 + }, + { + "start": 18098.1, + "end": 18101.62, + "probability": 0.9947 + }, + { + "start": 18102.5, + "end": 18105.04, + "probability": 0.7988 + }, + { + "start": 18105.71, + "end": 18109.24, + "probability": 0.778 + }, + { + "start": 18109.92, + "end": 18110.88, + "probability": 0.9875 + }, + { + "start": 18111.64, + "end": 18112.92, + "probability": 0.9959 + }, + { + "start": 18113.58, + "end": 18116.0, + "probability": 0.7631 + }, + { + "start": 18116.96, + "end": 18118.92, + "probability": 0.644 + }, + { + "start": 18119.74, + "end": 18120.0, + "probability": 0.4784 + }, + { + "start": 18120.6, + "end": 18121.2, + "probability": 0.9772 + }, + { + "start": 18122.02, + "end": 18123.74, + "probability": 0.9761 + }, + { + "start": 18124.34, + "end": 18127.78, + "probability": 0.9875 + }, + { + "start": 18128.4, + "end": 18130.66, + "probability": 0.998 + }, + { + "start": 18131.22, + "end": 18132.22, + "probability": 0.9893 + }, + { + "start": 18133.92, + "end": 18138.3, + "probability": 0.9942 + }, + { + "start": 18138.66, + "end": 18141.62, + "probability": 0.9992 + }, + { + "start": 18142.72, + "end": 18146.18, + "probability": 0.9893 + }, + { + "start": 18146.82, + "end": 18148.56, + "probability": 0.6821 + }, + { + "start": 18149.16, + "end": 18150.86, + "probability": 0.9485 + }, + { + "start": 18151.58, + "end": 18154.22, + "probability": 0.9624 + }, + { + "start": 18154.72, + "end": 18159.53, + "probability": 0.9879 + }, + { + "start": 18160.06, + "end": 18160.66, + "probability": 0.9989 + }, + { + "start": 18161.18, + "end": 18162.72, + "probability": 0.9939 + }, + { + "start": 18163.4, + "end": 18165.37, + "probability": 0.9896 + }, + { + "start": 18167.82, + "end": 18168.84, + "probability": 0.7597 + }, + { + "start": 18169.98, + "end": 18171.48, + "probability": 0.9991 + }, + { + "start": 18172.06, + "end": 18173.46, + "probability": 0.9708 + }, + { + "start": 18175.18, + "end": 18175.44, + "probability": 0.5108 + }, + { + "start": 18175.88, + "end": 18177.02, + "probability": 0.2213 + }, + { + "start": 18177.52, + "end": 18178.94, + "probability": 0.962 + }, + { + "start": 18179.96, + "end": 18181.99, + "probability": 0.9985 + }, + { + "start": 18182.12, + "end": 18186.4, + "probability": 0.0242 + }, + { + "start": 18187.63, + "end": 18188.34, + "probability": 0.0873 + }, + { + "start": 18189.32, + "end": 18191.76, + "probability": 0.38 + }, + { + "start": 18192.32, + "end": 18193.6, + "probability": 0.1669 + }, + { + "start": 18194.18, + "end": 18194.34, + "probability": 0.1225 + }, + { + "start": 18194.62, + "end": 18195.54, + "probability": 0.533 + }, + { + "start": 18195.78, + "end": 18196.26, + "probability": 0.1996 + }, + { + "start": 18196.44, + "end": 18196.9, + "probability": 0.0502 + }, + { + "start": 18197.1, + "end": 18197.68, + "probability": 0.1346 + }, + { + "start": 18197.68, + "end": 18198.98, + "probability": 0.4271 + }, + { + "start": 18199.1, + "end": 18201.96, + "probability": 0.5011 + }, + { + "start": 18202.18, + "end": 18204.94, + "probability": 0.2624 + }, + { + "start": 18208.5, + "end": 18208.5, + "probability": 0.2687 + }, + { + "start": 18208.5, + "end": 18209.28, + "probability": 0.3588 + }, + { + "start": 18209.28, + "end": 18209.28, + "probability": 0.5488 + }, + { + "start": 18209.4, + "end": 18209.8, + "probability": 0.0543 + }, + { + "start": 18209.8, + "end": 18213.9, + "probability": 0.7319 + }, + { + "start": 18214.48, + "end": 18216.48, + "probability": 0.9765 + }, + { + "start": 18217.64, + "end": 18218.44, + "probability": 0.8667 + }, + { + "start": 18218.66, + "end": 18221.3, + "probability": 0.956 + }, + { + "start": 18222.26, + "end": 18224.74, + "probability": 0.9976 + }, + { + "start": 18225.7, + "end": 18230.88, + "probability": 0.7934 + }, + { + "start": 18231.6, + "end": 18232.6, + "probability": 0.5687 + }, + { + "start": 18232.78, + "end": 18238.24, + "probability": 0.9654 + }, + { + "start": 18238.92, + "end": 18241.78, + "probability": 0.8898 + }, + { + "start": 18244.2, + "end": 18246.22, + "probability": 0.4876 + }, + { + "start": 18246.84, + "end": 18248.62, + "probability": 0.9766 + }, + { + "start": 18249.3, + "end": 18252.58, + "probability": 0.9478 + }, + { + "start": 18253.34, + "end": 18255.82, + "probability": 0.8966 + }, + { + "start": 18256.74, + "end": 18258.49, + "probability": 0.9734 + }, + { + "start": 18258.84, + "end": 18260.31, + "probability": 0.9642 + }, + { + "start": 18260.84, + "end": 18261.5, + "probability": 0.5014 + }, + { + "start": 18261.56, + "end": 18262.7, + "probability": 0.854 + }, + { + "start": 18263.1, + "end": 18266.08, + "probability": 0.9889 + }, + { + "start": 18266.2, + "end": 18268.34, + "probability": 0.9585 + }, + { + "start": 18268.72, + "end": 18270.96, + "probability": 0.9709 + }, + { + "start": 18271.7, + "end": 18273.66, + "probability": 0.7927 + }, + { + "start": 18274.38, + "end": 18279.28, + "probability": 0.9915 + }, + { + "start": 18280.62, + "end": 18282.02, + "probability": 0.5649 + }, + { + "start": 18282.82, + "end": 18283.68, + "probability": 0.6096 + }, + { + "start": 18285.36, + "end": 18287.06, + "probability": 0.9314 + }, + { + "start": 18288.94, + "end": 18293.42, + "probability": 0.6136 + }, + { + "start": 18294.14, + "end": 18296.68, + "probability": 0.9054 + }, + { + "start": 18296.88, + "end": 18297.74, + "probability": 0.304 + }, + { + "start": 18298.7, + "end": 18299.9, + "probability": 0.7874 + }, + { + "start": 18300.56, + "end": 18301.5, + "probability": 0.2706 + }, + { + "start": 18302.18, + "end": 18304.08, + "probability": 0.4931 + }, + { + "start": 18305.38, + "end": 18309.32, + "probability": 0.1196 + }, + { + "start": 18310.0, + "end": 18310.14, + "probability": 0.1417 + }, + { + "start": 18310.14, + "end": 18310.14, + "probability": 0.0761 + }, + { + "start": 18310.14, + "end": 18313.36, + "probability": 0.5534 + }, + { + "start": 18313.98, + "end": 18314.62, + "probability": 0.8779 + }, + { + "start": 18315.4, + "end": 18316.48, + "probability": 0.6919 + }, + { + "start": 18316.74, + "end": 18316.96, + "probability": 0.8477 + }, + { + "start": 18317.06, + "end": 18317.76, + "probability": 0.96 + }, + { + "start": 18318.1, + "end": 18318.92, + "probability": 0.8038 + }, + { + "start": 18319.0, + "end": 18319.84, + "probability": 0.6584 + }, + { + "start": 18320.6, + "end": 18322.44, + "probability": 0.9722 + }, + { + "start": 18322.96, + "end": 18324.67, + "probability": 0.6665 + }, + { + "start": 18325.94, + "end": 18327.08, + "probability": 0.8167 + }, + { + "start": 18327.8, + "end": 18329.34, + "probability": 0.9575 + }, + { + "start": 18329.9, + "end": 18331.86, + "probability": 0.9944 + }, + { + "start": 18332.64, + "end": 18333.8, + "probability": 0.9663 + }, + { + "start": 18334.26, + "end": 18334.8, + "probability": 0.8766 + }, + { + "start": 18334.88, + "end": 18340.2, + "probability": 0.9233 + }, + { + "start": 18340.3, + "end": 18341.56, + "probability": 0.9937 + }, + { + "start": 18342.9, + "end": 18343.38, + "probability": 0.8995 + }, + { + "start": 18343.46, + "end": 18347.04, + "probability": 0.7804 + }, + { + "start": 18347.7, + "end": 18353.5, + "probability": 0.9934 + }, + { + "start": 18354.74, + "end": 18358.0, + "probability": 0.7056 + }, + { + "start": 18358.58, + "end": 18361.28, + "probability": 0.9888 + }, + { + "start": 18361.9, + "end": 18362.62, + "probability": 0.6199 + }, + { + "start": 18362.94, + "end": 18364.92, + "probability": 0.8784 + }, + { + "start": 18365.48, + "end": 18369.1, + "probability": 0.9182 + }, + { + "start": 18371.34, + "end": 18372.92, + "probability": 0.7198 + }, + { + "start": 18373.28, + "end": 18373.9, + "probability": 0.6786 + }, + { + "start": 18382.08, + "end": 18383.94, + "probability": 0.7817 + }, + { + "start": 18385.34, + "end": 18386.64, + "probability": 0.7785 + }, + { + "start": 18387.16, + "end": 18389.74, + "probability": 0.9727 + }, + { + "start": 18391.62, + "end": 18393.66, + "probability": 0.8506 + }, + { + "start": 18393.66, + "end": 18399.86, + "probability": 0.9923 + }, + { + "start": 18400.8, + "end": 18402.22, + "probability": 0.994 + }, + { + "start": 18402.98, + "end": 18404.66, + "probability": 0.9863 + }, + { + "start": 18405.24, + "end": 18406.62, + "probability": 0.8569 + }, + { + "start": 18407.76, + "end": 18410.24, + "probability": 0.7644 + }, + { + "start": 18410.96, + "end": 18412.14, + "probability": 0.776 + }, + { + "start": 18412.22, + "end": 18413.26, + "probability": 0.8872 + }, + { + "start": 18413.4, + "end": 18414.45, + "probability": 0.99 + }, + { + "start": 18415.24, + "end": 18417.36, + "probability": 0.9843 + }, + { + "start": 18419.32, + "end": 18424.7, + "probability": 0.9588 + }, + { + "start": 18425.6, + "end": 18426.78, + "probability": 0.8428 + }, + { + "start": 18428.12, + "end": 18430.7, + "probability": 0.9355 + }, + { + "start": 18430.86, + "end": 18432.4, + "probability": 0.8753 + }, + { + "start": 18432.46, + "end": 18433.22, + "probability": 0.7216 + }, + { + "start": 18433.74, + "end": 18435.12, + "probability": 0.9596 + }, + { + "start": 18436.38, + "end": 18437.1, + "probability": 0.7325 + }, + { + "start": 18437.88, + "end": 18441.04, + "probability": 0.9814 + }, + { + "start": 18441.56, + "end": 18446.36, + "probability": 0.9987 + }, + { + "start": 18447.32, + "end": 18450.9, + "probability": 0.9671 + }, + { + "start": 18451.06, + "end": 18452.73, + "probability": 0.98 + }, + { + "start": 18453.34, + "end": 18457.65, + "probability": 0.9976 + }, + { + "start": 18458.16, + "end": 18463.0, + "probability": 0.9284 + }, + { + "start": 18463.0, + "end": 18466.32, + "probability": 0.9933 + }, + { + "start": 18467.58, + "end": 18468.64, + "probability": 0.8374 + }, + { + "start": 18469.18, + "end": 18473.52, + "probability": 0.9919 + }, + { + "start": 18474.24, + "end": 18475.32, + "probability": 0.9991 + }, + { + "start": 18476.9, + "end": 18480.22, + "probability": 0.9985 + }, + { + "start": 18480.76, + "end": 18487.88, + "probability": 0.9962 + }, + { + "start": 18488.46, + "end": 18491.88, + "probability": 0.9807 + }, + { + "start": 18492.84, + "end": 18498.48, + "probability": 0.9237 + }, + { + "start": 18498.66, + "end": 18499.14, + "probability": 0.8234 + }, + { + "start": 18499.2, + "end": 18504.46, + "probability": 0.9121 + }, + { + "start": 18505.02, + "end": 18507.42, + "probability": 0.9846 + }, + { + "start": 18508.92, + "end": 18509.26, + "probability": 0.7404 + }, + { + "start": 18509.9, + "end": 18513.16, + "probability": 0.9932 + }, + { + "start": 18513.48, + "end": 18516.48, + "probability": 0.9943 + }, + { + "start": 18517.88, + "end": 18521.38, + "probability": 0.991 + }, + { + "start": 18522.0, + "end": 18525.32, + "probability": 0.9973 + }, + { + "start": 18526.24, + "end": 18529.8, + "probability": 0.9881 + }, + { + "start": 18530.32, + "end": 18533.3, + "probability": 0.0089 + }, + { + "start": 18535.06, + "end": 18538.9, + "probability": 0.0403 + }, + { + "start": 18538.9, + "end": 18538.9, + "probability": 0.0885 + }, + { + "start": 18538.9, + "end": 18539.48, + "probability": 0.0544 + }, + { + "start": 18540.14, + "end": 18541.1, + "probability": 0.5606 + }, + { + "start": 18541.6, + "end": 18544.06, + "probability": 0.9571 + }, + { + "start": 18544.84, + "end": 18545.0, + "probability": 0.2985 + }, + { + "start": 18545.48, + "end": 18547.2, + "probability": 0.5564 + }, + { + "start": 18547.46, + "end": 18548.78, + "probability": 0.7495 + }, + { + "start": 18549.24, + "end": 18551.78, + "probability": 0.8328 + }, + { + "start": 18552.5, + "end": 18558.4, + "probability": 0.9541 + }, + { + "start": 18558.4, + "end": 18565.34, + "probability": 0.9899 + }, + { + "start": 18566.52, + "end": 18572.38, + "probability": 0.9695 + }, + { + "start": 18573.0, + "end": 18576.36, + "probability": 0.7639 + }, + { + "start": 18577.02, + "end": 18580.62, + "probability": 0.9906 + }, + { + "start": 18581.64, + "end": 18585.96, + "probability": 0.882 + }, + { + "start": 18586.27, + "end": 18590.48, + "probability": 0.9758 + }, + { + "start": 18591.3, + "end": 18594.56, + "probability": 0.9681 + }, + { + "start": 18595.04, + "end": 18600.3, + "probability": 0.6676 + }, + { + "start": 18600.9, + "end": 18602.96, + "probability": 0.999 + }, + { + "start": 18604.8, + "end": 18606.28, + "probability": 0.8986 + }, + { + "start": 18607.28, + "end": 18615.42, + "probability": 0.9834 + }, + { + "start": 18615.42, + "end": 18622.1, + "probability": 0.975 + }, + { + "start": 18623.44, + "end": 18627.0, + "probability": 0.9701 + }, + { + "start": 18627.2, + "end": 18627.79, + "probability": 0.6532 + }, + { + "start": 18629.04, + "end": 18632.38, + "probability": 0.9469 + }, + { + "start": 18632.48, + "end": 18633.06, + "probability": 0.8125 + }, + { + "start": 18633.28, + "end": 18634.08, + "probability": 0.8833 + }, + { + "start": 18634.68, + "end": 18635.72, + "probability": 0.9108 + }, + { + "start": 18635.82, + "end": 18638.18, + "probability": 0.9883 + }, + { + "start": 18638.92, + "end": 18647.68, + "probability": 0.9947 + }, + { + "start": 18648.38, + "end": 18648.84, + "probability": 0.6803 + }, + { + "start": 18650.52, + "end": 18652.52, + "probability": 0.8409 + }, + { + "start": 18653.12, + "end": 18655.72, + "probability": 0.7413 + }, + { + "start": 18656.58, + "end": 18657.18, + "probability": 0.3496 + }, + { + "start": 18657.24, + "end": 18659.28, + "probability": 0.8229 + }, + { + "start": 18660.64, + "end": 18661.82, + "probability": 0.8872 + }, + { + "start": 18669.36, + "end": 18670.02, + "probability": 0.4948 + }, + { + "start": 18672.02, + "end": 18673.22, + "probability": 0.9734 + }, + { + "start": 18674.72, + "end": 18675.14, + "probability": 0.7227 + }, + { + "start": 18675.72, + "end": 18676.64, + "probability": 0.8003 + }, + { + "start": 18682.76, + "end": 18683.62, + "probability": 0.7554 + }, + { + "start": 18686.16, + "end": 18686.94, + "probability": 0.958 + }, + { + "start": 18690.6, + "end": 18692.94, + "probability": 0.9132 + }, + { + "start": 18695.0, + "end": 18696.32, + "probability": 0.9422 + }, + { + "start": 18697.42, + "end": 18700.43, + "probability": 0.9531 + }, + { + "start": 18703.72, + "end": 18706.98, + "probability": 0.9858 + }, + { + "start": 18708.54, + "end": 18712.04, + "probability": 0.8972 + }, + { + "start": 18713.16, + "end": 18714.92, + "probability": 0.9912 + }, + { + "start": 18717.12, + "end": 18719.73, + "probability": 0.9256 + }, + { + "start": 18720.62, + "end": 18723.73, + "probability": 0.9899 + }, + { + "start": 18723.9, + "end": 18728.64, + "probability": 0.9962 + }, + { + "start": 18729.34, + "end": 18731.01, + "probability": 0.8848 + }, + { + "start": 18731.56, + "end": 18738.04, + "probability": 0.9256 + }, + { + "start": 18738.62, + "end": 18741.96, + "probability": 0.9862 + }, + { + "start": 18742.68, + "end": 18743.92, + "probability": 0.9753 + }, + { + "start": 18744.5, + "end": 18748.17, + "probability": 0.0777 + }, + { + "start": 18749.8, + "end": 18751.36, + "probability": 0.5737 + }, + { + "start": 18752.56, + "end": 18755.54, + "probability": 0.8259 + }, + { + "start": 18755.62, + "end": 18758.42, + "probability": 0.6953 + }, + { + "start": 18758.52, + "end": 18758.84, + "probability": 0.8555 + }, + { + "start": 18759.36, + "end": 18760.84, + "probability": 0.9619 + }, + { + "start": 18760.9, + "end": 18763.9, + "probability": 0.9124 + }, + { + "start": 18763.96, + "end": 18764.95, + "probability": 0.9858 + }, + { + "start": 18765.98, + "end": 18767.26, + "probability": 0.9288 + }, + { + "start": 18768.26, + "end": 18774.66, + "probability": 0.9671 + }, + { + "start": 18777.08, + "end": 18778.94, + "probability": 0.8132 + }, + { + "start": 18779.02, + "end": 18780.78, + "probability": 0.9548 + }, + { + "start": 18781.28, + "end": 18784.44, + "probability": 0.9814 + }, + { + "start": 18785.04, + "end": 18787.42, + "probability": 0.9704 + }, + { + "start": 18787.52, + "end": 18788.96, + "probability": 0.7483 + }, + { + "start": 18789.84, + "end": 18794.26, + "probability": 0.9911 + }, + { + "start": 18795.1, + "end": 18795.74, + "probability": 0.784 + }, + { + "start": 18796.32, + "end": 18797.76, + "probability": 0.9245 + }, + { + "start": 18799.34, + "end": 18800.96, + "probability": 0.9668 + }, + { + "start": 18802.2, + "end": 18804.7, + "probability": 0.751 + }, + { + "start": 18807.14, + "end": 18808.16, + "probability": 0.9125 + }, + { + "start": 18809.14, + "end": 18815.0, + "probability": 0.9538 + }, + { + "start": 18815.64, + "end": 18818.7, + "probability": 0.9743 + }, + { + "start": 18819.22, + "end": 18820.74, + "probability": 0.7828 + }, + { + "start": 18821.8, + "end": 18822.72, + "probability": 0.9958 + }, + { + "start": 18823.08, + "end": 18823.68, + "probability": 0.6439 + }, + { + "start": 18824.94, + "end": 18827.5, + "probability": 0.9461 + }, + { + "start": 18828.26, + "end": 18829.88, + "probability": 0.958 + }, + { + "start": 18831.1, + "end": 18832.72, + "probability": 0.9412 + }, + { + "start": 18834.24, + "end": 18835.58, + "probability": 0.9912 + }, + { + "start": 18835.8, + "end": 18837.14, + "probability": 0.876 + }, + { + "start": 18837.84, + "end": 18842.92, + "probability": 0.9932 + }, + { + "start": 18843.4, + "end": 18844.24, + "probability": 0.2415 + }, + { + "start": 18845.48, + "end": 18847.5, + "probability": 0.928 + }, + { + "start": 18849.16, + "end": 18857.22, + "probability": 0.9775 + }, + { + "start": 18857.84, + "end": 18858.49, + "probability": 0.8844 + }, + { + "start": 18860.56, + "end": 18862.0, + "probability": 0.6939 + }, + { + "start": 18862.72, + "end": 18863.44, + "probability": 0.5787 + }, + { + "start": 18864.32, + "end": 18866.62, + "probability": 0.4332 + }, + { + "start": 18867.5, + "end": 18868.44, + "probability": 0.6506 + }, + { + "start": 18868.5, + "end": 18868.94, + "probability": 0.8984 + }, + { + "start": 18870.12, + "end": 18871.0, + "probability": 0.7215 + }, + { + "start": 18873.36, + "end": 18874.76, + "probability": 0.768 + }, + { + "start": 18876.6, + "end": 18877.52, + "probability": 0.9471 + }, + { + "start": 18879.08, + "end": 18881.48, + "probability": 0.1975 + }, + { + "start": 18881.74, + "end": 18884.58, + "probability": 0.8432 + }, + { + "start": 18884.84, + "end": 18892.38, + "probability": 0.8225 + }, + { + "start": 18893.42, + "end": 18894.6, + "probability": 0.9954 + }, + { + "start": 18896.4, + "end": 18896.92, + "probability": 0.8747 + }, + { + "start": 18897.54, + "end": 18898.12, + "probability": 0.4135 + }, + { + "start": 18898.6, + "end": 18900.0, + "probability": 0.9941 + }, + { + "start": 18900.64, + "end": 18902.02, + "probability": 0.3872 + }, + { + "start": 18902.64, + "end": 18904.56, + "probability": 0.7888 + }, + { + "start": 18905.92, + "end": 18909.52, + "probability": 0.9731 + }, + { + "start": 18909.76, + "end": 18910.96, + "probability": 0.8465 + }, + { + "start": 18911.2, + "end": 18911.34, + "probability": 0.7085 + }, + { + "start": 18911.7, + "end": 18913.08, + "probability": 0.9913 + }, + { + "start": 18913.64, + "end": 18919.16, + "probability": 0.9945 + }, + { + "start": 18920.06, + "end": 18920.84, + "probability": 0.6641 + }, + { + "start": 18921.36, + "end": 18925.08, + "probability": 0.9943 + }, + { + "start": 18925.48, + "end": 18928.72, + "probability": 0.9495 + }, + { + "start": 18929.18, + "end": 18931.66, + "probability": 0.9749 + }, + { + "start": 18932.06, + "end": 18933.14, + "probability": 0.9165 + }, + { + "start": 18933.62, + "end": 18934.72, + "probability": 0.8965 + }, + { + "start": 18935.36, + "end": 18938.96, + "probability": 0.7397 + }, + { + "start": 18939.12, + "end": 18941.16, + "probability": 0.658 + }, + { + "start": 18942.44, + "end": 18943.58, + "probability": 0.6873 + }, + { + "start": 18944.34, + "end": 18947.52, + "probability": 0.7799 + }, + { + "start": 18948.08, + "end": 18950.6, + "probability": 0.9443 + }, + { + "start": 18951.0, + "end": 18951.26, + "probability": 0.8997 + }, + { + "start": 18952.96, + "end": 18953.72, + "probability": 0.2519 + }, + { + "start": 18955.12, + "end": 18955.48, + "probability": 0.8274 + }, + { + "start": 18956.98, + "end": 18957.92, + "probability": 0.8899 + }, + { + "start": 18958.84, + "end": 18959.1, + "probability": 0.9609 + }, + { + "start": 18960.28, + "end": 18961.1, + "probability": 0.7179 + }, + { + "start": 18961.88, + "end": 18962.16, + "probability": 0.9258 + }, + { + "start": 18963.74, + "end": 18964.86, + "probability": 0.67 + }, + { + "start": 18965.64, + "end": 18965.88, + "probability": 0.9778 + }, + { + "start": 18967.04, + "end": 18967.9, + "probability": 0.8823 + }, + { + "start": 18968.6, + "end": 18968.88, + "probability": 0.9756 + }, + { + "start": 18970.22, + "end": 18971.04, + "probability": 0.9182 + }, + { + "start": 18971.76, + "end": 18972.14, + "probability": 0.9686 + }, + { + "start": 18973.8, + "end": 18974.72, + "probability": 0.5847 + }, + { + "start": 18978.04, + "end": 18978.32, + "probability": 0.5139 + }, + { + "start": 18980.0, + "end": 18980.86, + "probability": 0.5266 + }, + { + "start": 18981.66, + "end": 18984.2, + "probability": 0.9045 + }, + { + "start": 18984.94, + "end": 18985.36, + "probability": 0.9514 + }, + { + "start": 18986.62, + "end": 18990.72, + "probability": 0.9756 + }, + { + "start": 18992.22, + "end": 18998.54, + "probability": 0.9912 + }, + { + "start": 18999.64, + "end": 19000.04, + "probability": 0.981 + }, + { + "start": 19001.56, + "end": 19002.42, + "probability": 0.9922 + }, + { + "start": 19003.64, + "end": 19005.6, + "probability": 0.9897 + }, + { + "start": 19006.84, + "end": 19007.06, + "probability": 0.9777 + }, + { + "start": 19008.82, + "end": 19009.54, + "probability": 0.6371 + }, + { + "start": 19010.64, + "end": 19011.0, + "probability": 0.8564 + }, + { + "start": 19012.3, + "end": 19013.66, + "probability": 0.9617 + }, + { + "start": 19014.18, + "end": 19014.72, + "probability": 0.9668 + }, + { + "start": 19016.18, + "end": 19016.98, + "probability": 0.9694 + }, + { + "start": 19018.0, + "end": 19018.44, + "probability": 0.959 + }, + { + "start": 19019.84, + "end": 19020.82, + "probability": 0.9588 + }, + { + "start": 19021.72, + "end": 19022.78, + "probability": 0.9741 + }, + { + "start": 19024.08, + "end": 19024.94, + "probability": 0.9814 + }, + { + "start": 19026.64, + "end": 19029.58, + "probability": 0.8605 + }, + { + "start": 19030.96, + "end": 19031.74, + "probability": 0.8937 + }, + { + "start": 19032.94, + "end": 19033.3, + "probability": 0.9316 + }, + { + "start": 19035.14, + "end": 19036.22, + "probability": 0.9799 + }, + { + "start": 19040.08, + "end": 19040.76, + "probability": 0.8547 + }, + { + "start": 19042.22, + "end": 19043.2, + "probability": 0.9716 + }, + { + "start": 19045.34, + "end": 19046.36, + "probability": 0.7839 + }, + { + "start": 19048.16, + "end": 19049.04, + "probability": 0.8963 + }, + { + "start": 19050.22, + "end": 19051.4, + "probability": 0.9067 + }, + { + "start": 19052.74, + "end": 19054.02, + "probability": 0.0189 + }, + { + "start": 19054.02, + "end": 19054.24, + "probability": 0.3412 + }, + { + "start": 19054.24, + "end": 19054.26, + "probability": 0.2916 + }, + { + "start": 19054.26, + "end": 19054.3, + "probability": 0.0543 + }, + { + "start": 19055.46, + "end": 19056.46, + "probability": 0.3636 + }, + { + "start": 19057.5, + "end": 19057.57, + "probability": 0.7249 + }, + { + "start": 19057.82, + "end": 19061.37, + "probability": 0.6573 + }, + { + "start": 19061.86, + "end": 19063.74, + "probability": 0.897 + }, + { + "start": 19063.8, + "end": 19065.54, + "probability": 0.6575 + }, + { + "start": 19066.76, + "end": 19067.86, + "probability": 0.0735 + }, + { + "start": 19067.9, + "end": 19073.94, + "probability": 0.5234 + }, + { + "start": 19073.94, + "end": 19074.94, + "probability": 0.2301 + }, + { + "start": 19076.02, + "end": 19077.92, + "probability": 0.0051 + }, + { + "start": 19078.62, + "end": 19080.0, + "probability": 0.2088 + }, + { + "start": 19080.62, + "end": 19082.08, + "probability": 0.5065 + }, + { + "start": 19083.68, + "end": 19086.12, + "probability": 0.0272 + }, + { + "start": 19086.68, + "end": 19088.54, + "probability": 0.2301 + }, + { + "start": 19090.04, + "end": 19090.9, + "probability": 0.3992 + }, + { + "start": 19092.48, + "end": 19094.72, + "probability": 0.6894 + }, + { + "start": 19096.2, + "end": 19099.14, + "probability": 0.9854 + }, + { + "start": 19099.82, + "end": 19101.14, + "probability": 0.8323 + }, + { + "start": 19101.82, + "end": 19102.22, + "probability": 0.9686 + }, + { + "start": 19103.72, + "end": 19104.88, + "probability": 0.8979 + }, + { + "start": 19107.18, + "end": 19110.42, + "probability": 0.9448 + }, + { + "start": 19111.26, + "end": 19112.36, + "probability": 0.9766 + }, + { + "start": 19112.98, + "end": 19114.0, + "probability": 0.7732 + }, + { + "start": 19114.92, + "end": 19115.58, + "probability": 0.9744 + }, + { + "start": 19119.94, + "end": 19120.96, + "probability": 0.8195 + }, + { + "start": 19121.48, + "end": 19121.78, + "probability": 0.811 + }, + { + "start": 19124.34, + "end": 19125.2, + "probability": 0.7226 + }, + { + "start": 19126.14, + "end": 19126.54, + "probability": 0.8545 + }, + { + "start": 19128.06, + "end": 19129.1, + "probability": 0.8795 + }, + { + "start": 19129.96, + "end": 19131.34, + "probability": 0.9738 + }, + { + "start": 19132.32, + "end": 19133.16, + "probability": 0.9743 + }, + { + "start": 19134.41, + "end": 19137.58, + "probability": 0.8956 + }, + { + "start": 19138.78, + "end": 19139.98, + "probability": 0.9917 + }, + { + "start": 19140.84, + "end": 19141.68, + "probability": 0.9564 + }, + { + "start": 19143.7, + "end": 19144.08, + "probability": 0.9946 + }, + { + "start": 19145.72, + "end": 19146.52, + "probability": 0.9784 + }, + { + "start": 19147.38, + "end": 19147.72, + "probability": 0.9888 + }, + { + "start": 19149.66, + "end": 19150.88, + "probability": 0.8162 + }, + { + "start": 19152.84, + "end": 19153.26, + "probability": 0.7077 + }, + { + "start": 19155.02, + "end": 19156.06, + "probability": 0.795 + }, + { + "start": 19156.98, + "end": 19157.4, + "probability": 0.8982 + }, + { + "start": 19158.94, + "end": 19160.18, + "probability": 0.901 + }, + { + "start": 19161.6, + "end": 19162.0, + "probability": 0.993 + }, + { + "start": 19163.7, + "end": 19164.88, + "probability": 0.9285 + }, + { + "start": 19168.44, + "end": 19168.86, + "probability": 0.7053 + }, + { + "start": 19169.6, + "end": 19170.28, + "probability": 0.9971 + }, + { + "start": 19172.36, + "end": 19173.6, + "probability": 0.7651 + }, + { + "start": 19177.4, + "end": 19177.78, + "probability": 0.9909 + }, + { + "start": 19180.0, + "end": 19182.12, + "probability": 0.2782 + }, + { + "start": 19184.0, + "end": 19185.14, + "probability": 0.8783 + }, + { + "start": 19185.84, + "end": 19186.74, + "probability": 0.9927 + }, + { + "start": 19187.96, + "end": 19188.96, + "probability": 0.853 + }, + { + "start": 19190.48, + "end": 19192.34, + "probability": 0.9932 + }, + { + "start": 19195.74, + "end": 19196.42, + "probability": 0.8812 + }, + { + "start": 19197.96, + "end": 19198.9, + "probability": 0.8776 + }, + { + "start": 19201.3, + "end": 19207.16, + "probability": 0.684 + }, + { + "start": 19208.18, + "end": 19208.46, + "probability": 0.7308 + }, + { + "start": 19210.36, + "end": 19211.58, + "probability": 0.6077 + }, + { + "start": 19212.66, + "end": 19213.02, + "probability": 0.7201 + }, + { + "start": 19214.64, + "end": 19215.76, + "probability": 0.9429 + }, + { + "start": 19216.56, + "end": 19218.16, + "probability": 0.9001 + }, + { + "start": 19219.44, + "end": 19220.22, + "probability": 0.969 + }, + { + "start": 19221.74, + "end": 19222.18, + "probability": 0.9819 + }, + { + "start": 19223.66, + "end": 19224.44, + "probability": 0.9974 + }, + { + "start": 19225.08, + "end": 19225.54, + "probability": 0.9779 + }, + { + "start": 19227.3, + "end": 19228.58, + "probability": 0.9622 + }, + { + "start": 19229.28, + "end": 19229.68, + "probability": 0.9842 + }, + { + "start": 19231.38, + "end": 19232.22, + "probability": 0.9356 + }, + { + "start": 19233.18, + "end": 19233.56, + "probability": 0.9697 + }, + { + "start": 19235.62, + "end": 19236.4, + "probability": 0.9835 + }, + { + "start": 19237.16, + "end": 19237.38, + "probability": 0.9907 + }, + { + "start": 19239.26, + "end": 19240.02, + "probability": 0.707 + }, + { + "start": 19244.2, + "end": 19244.88, + "probability": 0.8461 + }, + { + "start": 19246.48, + "end": 19247.4, + "probability": 0.7939 + }, + { + "start": 19249.84, + "end": 19250.22, + "probability": 0.9375 + }, + { + "start": 19252.22, + "end": 19253.04, + "probability": 0.9567 + }, + { + "start": 19254.44, + "end": 19254.92, + "probability": 0.9919 + }, + { + "start": 19258.74, + "end": 19259.84, + "probability": 0.6482 + }, + { + "start": 19260.76, + "end": 19261.12, + "probability": 0.9696 + }, + { + "start": 19262.54, + "end": 19263.2, + "probability": 0.8852 + }, + { + "start": 19266.9, + "end": 19267.8, + "probability": 0.9559 + }, + { + "start": 19268.84, + "end": 19270.08, + "probability": 0.9622 + }, + { + "start": 19272.18, + "end": 19272.56, + "probability": 0.8833 + }, + { + "start": 19274.16, + "end": 19274.96, + "probability": 0.9518 + }, + { + "start": 19276.02, + "end": 19276.46, + "probability": 0.9875 + }, + { + "start": 19277.84, + "end": 19278.78, + "probability": 0.8947 + }, + { + "start": 19279.78, + "end": 19280.22, + "probability": 0.9912 + }, + { + "start": 19282.02, + "end": 19282.98, + "probability": 0.9905 + }, + { + "start": 19284.34, + "end": 19284.68, + "probability": 0.9927 + }, + { + "start": 19286.28, + "end": 19286.92, + "probability": 0.8732 + }, + { + "start": 19288.24, + "end": 19288.54, + "probability": 0.7763 + }, + { + "start": 19290.36, + "end": 19291.12, + "probability": 0.8306 + }, + { + "start": 19292.1, + "end": 19293.6, + "probability": 0.9891 + }, + { + "start": 19294.14, + "end": 19295.22, + "probability": 0.9803 + }, + { + "start": 19296.22, + "end": 19298.06, + "probability": 0.9935 + }, + { + "start": 19298.64, + "end": 19299.8, + "probability": 0.9185 + }, + { + "start": 19301.64, + "end": 19302.16, + "probability": 0.985 + }, + { + "start": 19304.2, + "end": 19304.72, + "probability": 0.7438 + }, + { + "start": 19309.04, + "end": 19309.4, + "probability": 0.8452 + }, + { + "start": 19311.32, + "end": 19312.46, + "probability": 0.9248 + }, + { + "start": 19313.16, + "end": 19313.46, + "probability": 0.9222 + }, + { + "start": 19315.06, + "end": 19316.02, + "probability": 0.7505 + }, + { + "start": 19318.98, + "end": 19320.38, + "probability": 0.7039 + }, + { + "start": 19322.4, + "end": 19323.5, + "probability": 0.5779 + }, + { + "start": 19324.22, + "end": 19325.38, + "probability": 0.9665 + }, + { + "start": 19326.34, + "end": 19327.5, + "probability": 0.9133 + }, + { + "start": 19328.3, + "end": 19328.68, + "probability": 0.8477 + }, + { + "start": 19330.48, + "end": 19331.2, + "probability": 0.9697 + }, + { + "start": 19333.17, + "end": 19335.18, + "probability": 0.9797 + }, + { + "start": 19336.48, + "end": 19339.26, + "probability": 0.7571 + }, + { + "start": 19340.08, + "end": 19340.52, + "probability": 0.9871 + }, + { + "start": 19342.24, + "end": 19343.22, + "probability": 0.9942 + }, + { + "start": 19344.24, + "end": 19344.62, + "probability": 0.9817 + }, + { + "start": 19346.44, + "end": 19347.32, + "probability": 0.8716 + }, + { + "start": 19348.2, + "end": 19348.54, + "probability": 0.9946 + }, + { + "start": 19350.64, + "end": 19351.68, + "probability": 0.6863 + }, + { + "start": 19352.4, + "end": 19352.8, + "probability": 0.7852 + }, + { + "start": 19354.74, + "end": 19355.86, + "probability": 0.8554 + }, + { + "start": 19356.88, + "end": 19358.9, + "probability": 0.9331 + }, + { + "start": 19360.8, + "end": 19361.72, + "probability": 0.8395 + }, + { + "start": 19362.34, + "end": 19363.28, + "probability": 0.9854 + }, + { + "start": 19364.72, + "end": 19365.72, + "probability": 0.959 + }, + { + "start": 19367.78, + "end": 19368.22, + "probability": 0.9934 + }, + { + "start": 19370.14, + "end": 19371.38, + "probability": 0.9802 + }, + { + "start": 19372.64, + "end": 19373.3, + "probability": 0.9956 + }, + { + "start": 19374.68, + "end": 19375.62, + "probability": 0.9209 + }, + { + "start": 19377.3, + "end": 19377.46, + "probability": 0.0382 + }, + { + "start": 19379.16, + "end": 19380.0, + "probability": 0.6826 + }, + { + "start": 19381.36, + "end": 19382.28, + "probability": 0.3316 + }, + { + "start": 19383.9, + "end": 19384.36, + "probability": 0.9202 + }, + { + "start": 19386.38, + "end": 19387.58, + "probability": 0.8258 + }, + { + "start": 19388.32, + "end": 19388.74, + "probability": 0.752 + }, + { + "start": 19390.64, + "end": 19391.48, + "probability": 0.6067 + }, + { + "start": 19394.22, + "end": 19396.76, + "probability": 0.8726 + }, + { + "start": 19398.38, + "end": 19398.86, + "probability": 0.9941 + }, + { + "start": 19400.82, + "end": 19401.56, + "probability": 0.7588 + }, + { + "start": 19403.74, + "end": 19405.9, + "probability": 0.8927 + }, + { + "start": 19408.22, + "end": 19409.0, + "probability": 0.3071 + }, + { + "start": 19411.38, + "end": 19411.78, + "probability": 0.6196 + }, + { + "start": 19416.18, + "end": 19416.88, + "probability": 0.7476 + }, + { + "start": 19417.86, + "end": 19418.24, + "probability": 0.8796 + }, + { + "start": 19419.98, + "end": 19421.22, + "probability": 0.9109 + }, + { + "start": 19423.1, + "end": 19423.46, + "probability": 0.9466 + }, + { + "start": 19425.42, + "end": 19426.2, + "probability": 0.6806 + }, + { + "start": 19427.38, + "end": 19430.14, + "probability": 0.9929 + }, + { + "start": 19431.14, + "end": 19431.48, + "probability": 0.9873 + }, + { + "start": 19433.1, + "end": 19433.86, + "probability": 0.9166 + }, + { + "start": 19434.92, + "end": 19437.14, + "probability": 0.9653 + }, + { + "start": 19438.72, + "end": 19439.58, + "probability": 0.8825 + }, + { + "start": 19440.88, + "end": 19441.18, + "probability": 0.9919 + }, + { + "start": 19442.86, + "end": 19443.64, + "probability": 0.9747 + }, + { + "start": 19447.76, + "end": 19448.16, + "probability": 0.5629 + }, + { + "start": 19450.02, + "end": 19450.82, + "probability": 0.6621 + }, + { + "start": 19451.96, + "end": 19452.44, + "probability": 0.8363 + }, + { + "start": 19454.56, + "end": 19455.4, + "probability": 0.801 + }, + { + "start": 19456.68, + "end": 19458.04, + "probability": 0.9778 + }, + { + "start": 19458.76, + "end": 19459.8, + "probability": 0.9827 + }, + { + "start": 19460.9, + "end": 19463.28, + "probability": 0.9813 + }, + { + "start": 19464.86, + "end": 19465.32, + "probability": 0.9966 + }, + { + "start": 19467.14, + "end": 19467.98, + "probability": 0.9415 + }, + { + "start": 19469.87, + "end": 19471.68, + "probability": 0.9927 + }, + { + "start": 19472.66, + "end": 19473.06, + "probability": 0.998 + }, + { + "start": 19475.66, + "end": 19476.7, + "probability": 0.7477 + }, + { + "start": 19479.82, + "end": 19481.04, + "probability": 0.1594 + }, + { + "start": 19481.98, + "end": 19482.4, + "probability": 0.7207 + }, + { + "start": 19484.06, + "end": 19485.32, + "probability": 0.8934 + }, + { + "start": 19487.14, + "end": 19487.54, + "probability": 0.9548 + }, + { + "start": 19489.48, + "end": 19490.56, + "probability": 0.9406 + }, + { + "start": 19491.34, + "end": 19491.66, + "probability": 0.8669 + }, + { + "start": 19493.48, + "end": 19494.48, + "probability": 0.9243 + }, + { + "start": 19495.7, + "end": 19496.2, + "probability": 0.9709 + }, + { + "start": 19497.98, + "end": 19499.04, + "probability": 0.8951 + }, + { + "start": 19501.76, + "end": 19502.38, + "probability": 0.6527 + }, + { + "start": 19504.26, + "end": 19505.34, + "probability": 0.9514 + }, + { + "start": 19506.26, + "end": 19506.68, + "probability": 0.9751 + }, + { + "start": 19508.34, + "end": 19509.22, + "probability": 0.6319 + }, + { + "start": 19509.9, + "end": 19512.11, + "probability": 0.8791 + }, + { + "start": 19514.04, + "end": 19514.54, + "probability": 0.9847 + }, + { + "start": 19516.28, + "end": 19517.16, + "probability": 0.9657 + }, + { + "start": 19518.76, + "end": 19519.26, + "probability": 0.9873 + }, + { + "start": 19521.52, + "end": 19522.76, + "probability": 0.9387 + }, + { + "start": 19523.78, + "end": 19524.38, + "probability": 0.9857 + }, + { + "start": 19526.06, + "end": 19526.8, + "probability": 0.941 + }, + { + "start": 19528.42, + "end": 19530.22, + "probability": 0.9422 + }, + { + "start": 19532.44, + "end": 19533.1, + "probability": 0.7045 + }, + { + "start": 19534.0, + "end": 19534.28, + "probability": 0.9827 + }, + { + "start": 19535.9, + "end": 19537.14, + "probability": 0.6138 + }, + { + "start": 19540.62, + "end": 19541.84, + "probability": 0.7594 + }, + { + "start": 19543.0, + "end": 19544.98, + "probability": 0.9764 + }, + { + "start": 19548.06, + "end": 19549.64, + "probability": 0.6295 + }, + { + "start": 19553.1, + "end": 19554.82, + "probability": 0.9697 + }, + { + "start": 19556.08, + "end": 19557.1, + "probability": 0.826 + }, + { + "start": 19564.4, + "end": 19565.48, + "probability": 0.589 + }, + { + "start": 19566.4, + "end": 19567.72, + "probability": 0.8028 + }, + { + "start": 19573.54, + "end": 19574.38, + "probability": 0.4446 + }, + { + "start": 19575.8, + "end": 19575.96, + "probability": 0.7756 + }, + { + "start": 19576.94, + "end": 19577.66, + "probability": 0.6651 + }, + { + "start": 19579.26, + "end": 19580.0, + "probability": 0.6836 + }, + { + "start": 19587.16, + "end": 19587.79, + "probability": 0.5008 + }, + { + "start": 19589.0, + "end": 19589.32, + "probability": 0.5443 + }, + { + "start": 19595.14, + "end": 19595.38, + "probability": 0.7149 + }, + { + "start": 19597.9, + "end": 19598.52, + "probability": 0.5704 + }, + { + "start": 19599.72, + "end": 19600.56, + "probability": 0.8267 + }, + { + "start": 19602.28, + "end": 19603.0, + "probability": 0.7349 + }, + { + "start": 19604.58, + "end": 19606.6, + "probability": 0.6262 + }, + { + "start": 19608.62, + "end": 19609.9, + "probability": 0.6773 + }, + { + "start": 19613.54, + "end": 19614.72, + "probability": 0.9761 + }, + { + "start": 19616.34, + "end": 19618.56, + "probability": 0.7706 + }, + { + "start": 19619.2, + "end": 19620.98, + "probability": 0.4561 + }, + { + "start": 19621.06, + "end": 19622.54, + "probability": 0.6866 + }, + { + "start": 19623.06, + "end": 19623.92, + "probability": 0.8529 + }, + { + "start": 19676.76, + "end": 19678.56, + "probability": 0.0083 + }, + { + "start": 19679.28, + "end": 19679.84, + "probability": 0.0741 + }, + { + "start": 19683.72, + "end": 19685.36, + "probability": 0.0791 + }, + { + "start": 19693.04, + "end": 19695.88, + "probability": 0.0774 + }, + { + "start": 19700.36, + "end": 19700.7, + "probability": 0.0865 + }, + { + "start": 19703.98, + "end": 19704.5, + "probability": 0.2 + }, + { + "start": 19731.62, + "end": 19734.42, + "probability": 0.042 + }, + { + "start": 19794.0, + "end": 19794.0, + "probability": 0.0 + }, + { + "start": 19810.5, + "end": 19812.08, + "probability": 0.0312 + }, + { + "start": 19814.8, + "end": 19816.24, + "probability": 0.1041 + }, + { + "start": 19821.46, + "end": 19823.22, + "probability": 0.0563 + }, + { + "start": 19824.46, + "end": 19825.78, + "probability": 0.0254 + }, + { + "start": 19833.04, + "end": 19837.18, + "probability": 0.1351 + }, + { + "start": 19837.51, + "end": 19839.74, + "probability": 0.0507 + }, + { + "start": 19840.11, + "end": 19840.94, + "probability": 0.0636 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.0, + "end": 19926.0, + "probability": 0.0 + }, + { + "start": 19926.2, + "end": 19926.7, + "probability": 0.0603 + }, + { + "start": 19926.7, + "end": 19926.7, + "probability": 0.0346 + }, + { + "start": 19926.7, + "end": 19927.14, + "probability": 0.0935 + }, + { + "start": 19927.24, + "end": 19927.38, + "probability": 0.2072 + }, + { + "start": 19927.46, + "end": 19927.64, + "probability": 0.8123 + }, + { + "start": 19927.74, + "end": 19928.5, + "probability": 0.9774 + }, + { + "start": 19928.56, + "end": 19929.24, + "probability": 0.9575 + }, + { + "start": 19929.36, + "end": 19930.08, + "probability": 0.9502 + }, + { + "start": 19930.62, + "end": 19933.44, + "probability": 0.9568 + }, + { + "start": 19933.44, + "end": 19935.58, + "probability": 0.9973 + }, + { + "start": 19936.52, + "end": 19939.16, + "probability": 0.9126 + }, + { + "start": 19940.26, + "end": 19940.78, + "probability": 0.5696 + }, + { + "start": 19940.84, + "end": 19941.24, + "probability": 0.7143 + }, + { + "start": 19941.32, + "end": 19943.48, + "probability": 0.9141 + }, + { + "start": 19944.14, + "end": 19948.52, + "probability": 0.9923 + }, + { + "start": 19949.08, + "end": 19950.1, + "probability": 0.8877 + }, + { + "start": 19950.16, + "end": 19951.96, + "probability": 0.9964 + }, + { + "start": 19952.42, + "end": 19954.56, + "probability": 0.9818 + }, + { + "start": 19955.28, + "end": 19957.26, + "probability": 0.9043 + }, + { + "start": 19958.2, + "end": 19961.34, + "probability": 0.7889 + }, + { + "start": 19961.94, + "end": 19962.8, + "probability": 0.8186 + }, + { + "start": 19963.7, + "end": 19963.92, + "probability": 0.5571 + }, + { + "start": 19964.0, + "end": 19966.72, + "probability": 0.8846 + }, + { + "start": 19966.88, + "end": 19967.24, + "probability": 0.8665 + }, + { + "start": 19967.94, + "end": 19968.62, + "probability": 0.9594 + }, + { + "start": 19969.06, + "end": 19973.01, + "probability": 0.9932 + }, + { + "start": 19973.56, + "end": 19976.2, + "probability": 0.981 + }, + { + "start": 19976.76, + "end": 19977.34, + "probability": 0.7219 + }, + { + "start": 19977.7, + "end": 19978.6, + "probability": 0.8802 + }, + { + "start": 19978.74, + "end": 19981.56, + "probability": 0.994 + }, + { + "start": 19982.36, + "end": 19982.84, + "probability": 0.8989 + }, + { + "start": 19982.96, + "end": 19987.92, + "probability": 0.9611 + }, + { + "start": 19988.72, + "end": 19991.96, + "probability": 0.9659 + }, + { + "start": 19992.5, + "end": 19995.84, + "probability": 0.992 + }, + { + "start": 19995.84, + "end": 19998.26, + "probability": 0.9995 + }, + { + "start": 19999.64, + "end": 20000.32, + "probability": 0.8452 + }, + { + "start": 20000.82, + "end": 20001.38, + "probability": 0.9319 + }, + { + "start": 20001.44, + "end": 20001.94, + "probability": 0.7007 + }, + { + "start": 20002.4, + "end": 20004.13, + "probability": 0.9785 + }, + { + "start": 20004.46, + "end": 20005.01, + "probability": 0.9839 + }, + { + "start": 20005.38, + "end": 20005.74, + "probability": 0.7177 + }, + { + "start": 20005.9, + "end": 20006.46, + "probability": 0.5427 + }, + { + "start": 20006.98, + "end": 20011.56, + "probability": 0.9841 + }, + { + "start": 20011.98, + "end": 20012.8, + "probability": 0.9547 + }, + { + "start": 20014.78, + "end": 20016.06, + "probability": 0.7942 + }, + { + "start": 20016.7, + "end": 20020.86, + "probability": 0.9641 + }, + { + "start": 20021.4, + "end": 20022.9, + "probability": 0.9721 + }, + { + "start": 20023.14, + "end": 20023.38, + "probability": 0.7061 + }, + { + "start": 20023.42, + "end": 20023.76, + "probability": 0.8916 + }, + { + "start": 20023.9, + "end": 20025.98, + "probability": 0.9148 + }, + { + "start": 20026.84, + "end": 20029.08, + "probability": 0.9595 + }, + { + "start": 20029.16, + "end": 20030.04, + "probability": 0.7052 + }, + { + "start": 20030.18, + "end": 20030.5, + "probability": 0.9506 + }, + { + "start": 20030.8, + "end": 20032.8, + "probability": 0.9808 + }, + { + "start": 20033.6, + "end": 20036.58, + "probability": 0.8896 + }, + { + "start": 20037.46, + "end": 20038.24, + "probability": 0.8665 + }, + { + "start": 20038.36, + "end": 20039.16, + "probability": 0.9995 + }, + { + "start": 20039.74, + "end": 20043.96, + "probability": 0.9851 + }, + { + "start": 20044.6, + "end": 20048.28, + "probability": 0.9966 + }, + { + "start": 20048.4, + "end": 20050.82, + "probability": 0.9686 + }, + { + "start": 20051.36, + "end": 20052.26, + "probability": 0.2822 + }, + { + "start": 20052.6, + "end": 20054.34, + "probability": 0.7804 + }, + { + "start": 20054.56, + "end": 20056.24, + "probability": 0.7165 + }, + { + "start": 20056.62, + "end": 20057.22, + "probability": 0.6204 + }, + { + "start": 20057.88, + "end": 20058.54, + "probability": 0.9262 + }, + { + "start": 20058.98, + "end": 20062.24, + "probability": 0.9934 + }, + { + "start": 20062.32, + "end": 20062.94, + "probability": 0.6834 + }, + { + "start": 20063.1, + "end": 20065.08, + "probability": 0.8471 + }, + { + "start": 20065.76, + "end": 20068.2, + "probability": 0.9722 + }, + { + "start": 20068.36, + "end": 20069.46, + "probability": 0.8823 + }, + { + "start": 20070.28, + "end": 20071.44, + "probability": 0.9919 + }, + { + "start": 20072.06, + "end": 20075.54, + "probability": 0.9908 + }, + { + "start": 20077.24, + "end": 20083.08, + "probability": 0.9161 + }, + { + "start": 20083.16, + "end": 20084.94, + "probability": 0.8607 + }, + { + "start": 20085.06, + "end": 20088.52, + "probability": 0.7344 + }, + { + "start": 20089.14, + "end": 20091.04, + "probability": 0.9412 + }, + { + "start": 20092.19, + "end": 20098.7, + "probability": 0.6647 + }, + { + "start": 20099.98, + "end": 20103.68, + "probability": 0.7559 + }, + { + "start": 20104.18, + "end": 20106.8, + "probability": 0.9894 + }, + { + "start": 20107.6, + "end": 20108.88, + "probability": 0.9979 + }, + { + "start": 20109.54, + "end": 20113.52, + "probability": 0.7867 + }, + { + "start": 20114.5, + "end": 20116.76, + "probability": 0.9992 + }, + { + "start": 20117.26, + "end": 20117.48, + "probability": 0.714 + }, + { + "start": 20118.98, + "end": 20121.18, + "probability": 0.8516 + }, + { + "start": 20121.86, + "end": 20124.28, + "probability": 0.9341 + }, + { + "start": 20124.48, + "end": 20128.18, + "probability": 0.9008 + }, + { + "start": 20128.76, + "end": 20129.16, + "probability": 0.1392 + }, + { + "start": 20130.18, + "end": 20131.4, + "probability": 0.2378 + }, + { + "start": 20131.46, + "end": 20136.0, + "probability": 0.5331 + }, + { + "start": 20137.12, + "end": 20142.7, + "probability": 0.9825 + }, + { + "start": 20143.18, + "end": 20147.4, + "probability": 0.8109 + }, + { + "start": 20148.54, + "end": 20149.28, + "probability": 0.8409 + }, + { + "start": 20149.64, + "end": 20150.7, + "probability": 0.9384 + }, + { + "start": 20150.98, + "end": 20151.42, + "probability": 0.772 + }, + { + "start": 20151.7, + "end": 20152.52, + "probability": 0.5169 + }, + { + "start": 20152.54, + "end": 20153.12, + "probability": 0.9843 + }, + { + "start": 20153.48, + "end": 20154.2, + "probability": 0.4179 + }, + { + "start": 20155.72, + "end": 20159.34, + "probability": 0.9988 + }, + { + "start": 20160.02, + "end": 20161.8, + "probability": 0.7964 + }, + { + "start": 20162.74, + "end": 20165.9, + "probability": 0.9948 + }, + { + "start": 20166.46, + "end": 20168.28, + "probability": 0.9189 + }, + { + "start": 20168.8, + "end": 20170.26, + "probability": 0.5268 + }, + { + "start": 20170.34, + "end": 20170.84, + "probability": 0.8537 + }, + { + "start": 20172.24, + "end": 20175.08, + "probability": 0.9946 + }, + { + "start": 20175.72, + "end": 20176.48, + "probability": 0.6789 + }, + { + "start": 20177.44, + "end": 20179.15, + "probability": 0.8587 + }, + { + "start": 20180.44, + "end": 20184.08, + "probability": 0.957 + }, + { + "start": 20184.44, + "end": 20187.74, + "probability": 0.7995 + }, + { + "start": 20188.34, + "end": 20189.4, + "probability": 0.9029 + }, + { + "start": 20191.06, + "end": 20193.22, + "probability": 0.77 + }, + { + "start": 20193.78, + "end": 20197.76, + "probability": 0.8219 + }, + { + "start": 20198.04, + "end": 20202.94, + "probability": 0.6878 + }, + { + "start": 20203.48, + "end": 20204.54, + "probability": 0.7571 + }, + { + "start": 20205.06, + "end": 20211.02, + "probability": 0.8756 + }, + { + "start": 20211.32, + "end": 20213.08, + "probability": 0.8545 + }, + { + "start": 20213.12, + "end": 20216.66, + "probability": 0.5204 + }, + { + "start": 20217.04, + "end": 20223.92, + "probability": 0.9738 + }, + { + "start": 20224.5, + "end": 20225.52, + "probability": 0.5391 + }, + { + "start": 20225.66, + "end": 20226.4, + "probability": 0.7542 + }, + { + "start": 20226.96, + "end": 20227.96, + "probability": 0.7372 + }, + { + "start": 20229.02, + "end": 20232.82, + "probability": 0.9832 + }, + { + "start": 20233.98, + "end": 20236.04, + "probability": 0.8822 + }, + { + "start": 20236.14, + "end": 20237.95, + "probability": 0.9927 + }, + { + "start": 20238.78, + "end": 20239.36, + "probability": 0.7947 + }, + { + "start": 20241.52, + "end": 20243.7, + "probability": 0.9124 + }, + { + "start": 20243.7, + "end": 20244.7, + "probability": 0.7156 + }, + { + "start": 20244.7, + "end": 20245.02, + "probability": 0.0361 + }, + { + "start": 20246.12, + "end": 20249.94, + "probability": 0.9306 + }, + { + "start": 20251.19, + "end": 20256.22, + "probability": 0.7075 + }, + { + "start": 20256.44, + "end": 20256.56, + "probability": 0.0673 + }, + { + "start": 20256.56, + "end": 20256.9, + "probability": 0.0394 + }, + { + "start": 20256.9, + "end": 20258.34, + "probability": 0.1003 + }, + { + "start": 20258.34, + "end": 20259.28, + "probability": 0.2746 + }, + { + "start": 20259.8, + "end": 20261.38, + "probability": 0.1436 + }, + { + "start": 20261.4, + "end": 20264.86, + "probability": 0.8294 + }, + { + "start": 20265.1, + "end": 20266.88, + "probability": 0.4031 + }, + { + "start": 20266.9, + "end": 20270.36, + "probability": 0.1451 + }, + { + "start": 20270.5, + "end": 20271.24, + "probability": 0.578 + }, + { + "start": 20271.24, + "end": 20271.42, + "probability": 0.724 + }, + { + "start": 20271.42, + "end": 20276.46, + "probability": 0.4537 + }, + { + "start": 20276.58, + "end": 20279.12, + "probability": 0.6656 + }, + { + "start": 20279.12, + "end": 20281.64, + "probability": 0.1162 + }, + { + "start": 20281.64, + "end": 20281.92, + "probability": 0.1337 + }, + { + "start": 20281.92, + "end": 20283.69, + "probability": 0.2131 + }, + { + "start": 20283.8, + "end": 20284.22, + "probability": 0.8173 + }, + { + "start": 20284.34, + "end": 20286.36, + "probability": 0.6953 + }, + { + "start": 20286.36, + "end": 20288.0, + "probability": 0.3068 + }, + { + "start": 20288.0, + "end": 20288.48, + "probability": 0.0249 + }, + { + "start": 20288.8, + "end": 20293.34, + "probability": 0.5031 + }, + { + "start": 20293.58, + "end": 20294.08, + "probability": 0.3903 + }, + { + "start": 20294.26, + "end": 20294.84, + "probability": 0.7019 + }, + { + "start": 20295.3, + "end": 20295.72, + "probability": 0.7201 + }, + { + "start": 20295.72, + "end": 20296.14, + "probability": 0.6852 + }, + { + "start": 20296.8, + "end": 20298.42, + "probability": 0.0712 + }, + { + "start": 20298.46, + "end": 20299.2, + "probability": 0.5486 + }, + { + "start": 20299.48, + "end": 20301.09, + "probability": 0.8306 + }, + { + "start": 20301.26, + "end": 20302.52, + "probability": 0.1513 + }, + { + "start": 20302.58, + "end": 20303.94, + "probability": 0.4126 + }, + { + "start": 20304.1, + "end": 20304.1, + "probability": 0.6053 + }, + { + "start": 20304.1, + "end": 20304.8, + "probability": 0.2414 + }, + { + "start": 20304.8, + "end": 20306.32, + "probability": 0.6501 + }, + { + "start": 20307.2, + "end": 20310.06, + "probability": 0.4547 + }, + { + "start": 20310.16, + "end": 20312.56, + "probability": 0.3709 + }, + { + "start": 20312.64, + "end": 20313.1, + "probability": 0.3965 + }, + { + "start": 20313.84, + "end": 20314.86, + "probability": 0.8776 + }, + { + "start": 20315.68, + "end": 20316.56, + "probability": 0.9312 + }, + { + "start": 20316.64, + "end": 20318.08, + "probability": 0.9335 + }, + { + "start": 20318.46, + "end": 20319.46, + "probability": 0.992 + }, + { + "start": 20319.8, + "end": 20319.8, + "probability": 0.3336 + }, + { + "start": 20319.8, + "end": 20322.74, + "probability": 0.7815 + }, + { + "start": 20323.02, + "end": 20326.2, + "probability": 0.8301 + }, + { + "start": 20326.5, + "end": 20327.7, + "probability": 0.5672 + }, + { + "start": 20328.5, + "end": 20329.98, + "probability": 0.8495 + }, + { + "start": 20330.16, + "end": 20332.24, + "probability": 0.4058 + }, + { + "start": 20332.32, + "end": 20333.58, + "probability": 0.9988 + }, + { + "start": 20334.04, + "end": 20335.64, + "probability": 0.9922 + }, + { + "start": 20335.86, + "end": 20337.72, + "probability": 0.6956 + }, + { + "start": 20337.9, + "end": 20338.8, + "probability": 0.8396 + }, + { + "start": 20339.14, + "end": 20339.2, + "probability": 0.0482 + }, + { + "start": 20339.2, + "end": 20339.2, + "probability": 0.0466 + }, + { + "start": 20339.2, + "end": 20342.86, + "probability": 0.7656 + }, + { + "start": 20344.06, + "end": 20344.12, + "probability": 0.0295 + }, + { + "start": 20344.12, + "end": 20346.92, + "probability": 0.8671 + }, + { + "start": 20347.08, + "end": 20347.84, + "probability": 0.5299 + }, + { + "start": 20348.06, + "end": 20349.16, + "probability": 0.9009 + }, + { + "start": 20349.16, + "end": 20349.3, + "probability": 0.2077 + }, + { + "start": 20349.36, + "end": 20349.54, + "probability": 0.0585 + }, + { + "start": 20349.54, + "end": 20349.54, + "probability": 0.1572 + }, + { + "start": 20349.54, + "end": 20352.74, + "probability": 0.6465 + }, + { + "start": 20353.4, + "end": 20355.68, + "probability": 0.7101 + }, + { + "start": 20355.96, + "end": 20357.68, + "probability": 0.9984 + }, + { + "start": 20357.72, + "end": 20357.98, + "probability": 0.7769 + }, + { + "start": 20357.98, + "end": 20357.98, + "probability": 0.0029 + }, + { + "start": 20358.0, + "end": 20358.76, + "probability": 0.1623 + }, + { + "start": 20359.4, + "end": 20359.68, + "probability": 0.2826 + }, + { + "start": 20359.74, + "end": 20360.42, + "probability": 0.4867 + }, + { + "start": 20360.5, + "end": 20363.26, + "probability": 0.0998 + }, + { + "start": 20363.68, + "end": 20366.22, + "probability": 0.2538 + }, + { + "start": 20368.12, + "end": 20369.96, + "probability": 0.4586 + }, + { + "start": 20370.6, + "end": 20372.98, + "probability": 0.579 + }, + { + "start": 20374.5, + "end": 20376.76, + "probability": 0.7962 + }, + { + "start": 20382.34, + "end": 20383.48, + "probability": 0.4045 + }, + { + "start": 20383.68, + "end": 20385.72, + "probability": 0.5799 + }, + { + "start": 20386.9, + "end": 20390.92, + "probability": 0.7265 + }, + { + "start": 20390.98, + "end": 20391.98, + "probability": 0.9856 + }, + { + "start": 20394.1, + "end": 20399.98, + "probability": 0.967 + }, + { + "start": 20400.16, + "end": 20402.22, + "probability": 0.9626 + }, + { + "start": 20402.96, + "end": 20403.8, + "probability": 0.1862 + }, + { + "start": 20404.28, + "end": 20404.66, + "probability": 0.6953 + }, + { + "start": 20405.8, + "end": 20408.04, + "probability": 0.8842 + }, + { + "start": 20408.04, + "end": 20410.76, + "probability": 0.9565 + }, + { + "start": 20411.86, + "end": 20414.96, + "probability": 0.9263 + }, + { + "start": 20415.74, + "end": 20416.98, + "probability": 0.9891 + }, + { + "start": 20419.52, + "end": 20423.14, + "probability": 0.9784 + }, + { + "start": 20423.2, + "end": 20426.34, + "probability": 0.8408 + }, + { + "start": 20426.56, + "end": 20428.98, + "probability": 0.9958 + }, + { + "start": 20428.98, + "end": 20431.24, + "probability": 0.9813 + }, + { + "start": 20432.04, + "end": 20434.34, + "probability": 0.9954 + }, + { + "start": 20434.38, + "end": 20436.84, + "probability": 0.9359 + }, + { + "start": 20437.56, + "end": 20439.28, + "probability": 0.8018 + }, + { + "start": 20439.7, + "end": 20440.56, + "probability": 0.9485 + }, + { + "start": 20443.5, + "end": 20448.51, + "probability": 0.9941 + }, + { + "start": 20449.66, + "end": 20453.94, + "probability": 0.9776 + }, + { + "start": 20454.34, + "end": 20455.84, + "probability": 0.9941 + }, + { + "start": 20457.8, + "end": 20461.18, + "probability": 0.9883 + }, + { + "start": 20462.66, + "end": 20464.56, + "probability": 0.9489 + }, + { + "start": 20466.18, + "end": 20469.82, + "probability": 0.9517 + }, + { + "start": 20469.98, + "end": 20470.42, + "probability": 0.9033 + }, + { + "start": 20472.52, + "end": 20473.9, + "probability": 0.993 + }, + { + "start": 20474.2, + "end": 20476.67, + "probability": 0.9321 + }, + { + "start": 20478.12, + "end": 20478.6, + "probability": 0.3677 + }, + { + "start": 20479.46, + "end": 20480.06, + "probability": 0.5219 + }, + { + "start": 20480.24, + "end": 20481.68, + "probability": 0.9442 + }, + { + "start": 20481.84, + "end": 20483.17, + "probability": 0.7205 + }, + { + "start": 20485.48, + "end": 20489.1, + "probability": 0.997 + }, + { + "start": 20489.24, + "end": 20490.02, + "probability": 0.9799 + }, + { + "start": 20491.12, + "end": 20491.98, + "probability": 0.8326 + }, + { + "start": 20493.5, + "end": 20496.02, + "probability": 0.8926 + }, + { + "start": 20496.06, + "end": 20496.38, + "probability": 0.524 + }, + { + "start": 20496.42, + "end": 20499.96, + "probability": 0.9875 + }, + { + "start": 20500.28, + "end": 20501.08, + "probability": 0.5286 + }, + { + "start": 20502.44, + "end": 20503.04, + "probability": 0.9714 + }, + { + "start": 20504.42, + "end": 20507.14, + "probability": 0.9663 + }, + { + "start": 20507.86, + "end": 20510.02, + "probability": 0.9956 + }, + { + "start": 20510.16, + "end": 20511.28, + "probability": 0.6372 + }, + { + "start": 20511.62, + "end": 20513.72, + "probability": 0.9446 + }, + { + "start": 20513.72, + "end": 20515.42, + "probability": 0.9971 + }, + { + "start": 20515.76, + "end": 20517.62, + "probability": 0.8684 + }, + { + "start": 20517.68, + "end": 20518.42, + "probability": 0.2688 + }, + { + "start": 20518.82, + "end": 20520.32, + "probability": 0.9337 + }, + { + "start": 20520.4, + "end": 20521.76, + "probability": 0.9416 + }, + { + "start": 20522.66, + "end": 20526.55, + "probability": 0.9898 + }, + { + "start": 20527.28, + "end": 20528.08, + "probability": 0.6784 + }, + { + "start": 20528.12, + "end": 20529.86, + "probability": 0.9534 + }, + { + "start": 20530.16, + "end": 20530.7, + "probability": 0.788 + }, + { + "start": 20530.72, + "end": 20531.08, + "probability": 0.9085 + }, + { + "start": 20531.68, + "end": 20532.22, + "probability": 0.9072 + }, + { + "start": 20533.08, + "end": 20535.06, + "probability": 0.9963 + }, + { + "start": 20535.54, + "end": 20537.06, + "probability": 0.994 + }, + { + "start": 20537.6, + "end": 20538.56, + "probability": 0.8226 + }, + { + "start": 20538.74, + "end": 20539.63, + "probability": 0.998 + }, + { + "start": 20540.1, + "end": 20540.62, + "probability": 0.8118 + }, + { + "start": 20541.4, + "end": 20542.16, + "probability": 0.9773 + }, + { + "start": 20543.06, + "end": 20545.5, + "probability": 0.9062 + }, + { + "start": 20546.68, + "end": 20548.39, + "probability": 0.9137 + }, + { + "start": 20549.32, + "end": 20550.3, + "probability": 0.7456 + }, + { + "start": 20551.28, + "end": 20552.24, + "probability": 0.8396 + }, + { + "start": 20552.32, + "end": 20553.52, + "probability": 0.9873 + }, + { + "start": 20554.46, + "end": 20557.62, + "probability": 0.9224 + }, + { + "start": 20558.4, + "end": 20560.28, + "probability": 0.998 + }, + { + "start": 20560.74, + "end": 20561.3, + "probability": 0.8256 + }, + { + "start": 20561.88, + "end": 20563.36, + "probability": 0.9422 + }, + { + "start": 20563.62, + "end": 20565.32, + "probability": 0.8573 + }, + { + "start": 20566.06, + "end": 20567.98, + "probability": 0.9891 + }, + { + "start": 20567.98, + "end": 20570.56, + "probability": 0.9967 + }, + { + "start": 20571.38, + "end": 20573.56, + "probability": 0.9046 + }, + { + "start": 20576.3, + "end": 20577.34, + "probability": 0.8787 + }, + { + "start": 20577.86, + "end": 20579.02, + "probability": 0.9537 + }, + { + "start": 20580.04, + "end": 20583.82, + "probability": 0.9842 + }, + { + "start": 20584.14, + "end": 20585.86, + "probability": 0.9917 + }, + { + "start": 20586.52, + "end": 20588.24, + "probability": 0.9985 + }, + { + "start": 20588.24, + "end": 20590.8, + "probability": 0.9852 + }, + { + "start": 20591.04, + "end": 20593.34, + "probability": 0.9844 + }, + { + "start": 20593.42, + "end": 20593.84, + "probability": 0.9036 + }, + { + "start": 20594.46, + "end": 20595.96, + "probability": 0.9678 + }, + { + "start": 20597.36, + "end": 20599.38, + "probability": 0.9919 + }, + { + "start": 20600.54, + "end": 20601.8, + "probability": 0.9365 + }, + { + "start": 20603.18, + "end": 20605.5, + "probability": 0.718 + }, + { + "start": 20606.16, + "end": 20607.88, + "probability": 0.4623 + }, + { + "start": 20608.24, + "end": 20609.42, + "probability": 0.958 + }, + { + "start": 20609.46, + "end": 20610.09, + "probability": 0.9829 + }, + { + "start": 20610.68, + "end": 20611.84, + "probability": 0.9022 + }, + { + "start": 20613.04, + "end": 20613.68, + "probability": 0.8663 + }, + { + "start": 20614.54, + "end": 20617.76, + "probability": 0.9988 + }, + { + "start": 20618.7, + "end": 20621.54, + "probability": 0.9878 + }, + { + "start": 20624.3, + "end": 20624.74, + "probability": 0.5428 + }, + { + "start": 20625.78, + "end": 20629.28, + "probability": 0.9044 + }, + { + "start": 20629.38, + "end": 20629.64, + "probability": 0.7146 + }, + { + "start": 20629.7, + "end": 20630.08, + "probability": 0.8829 + }, + { + "start": 20630.08, + "end": 20631.36, + "probability": 0.8759 + }, + { + "start": 20631.38, + "end": 20632.24, + "probability": 0.9709 + }, + { + "start": 20633.08, + "end": 20634.9, + "probability": 0.9866 + }, + { + "start": 20635.08, + "end": 20636.72, + "probability": 0.9958 + }, + { + "start": 20636.72, + "end": 20639.3, + "probability": 0.9032 + }, + { + "start": 20639.86, + "end": 20642.84, + "probability": 0.958 + }, + { + "start": 20643.2, + "end": 20643.36, + "probability": 0.8477 + }, + { + "start": 20645.52, + "end": 20646.46, + "probability": 0.6876 + }, + { + "start": 20648.66, + "end": 20653.16, + "probability": 0.3803 + }, + { + "start": 20653.16, + "end": 20653.16, + "probability": 0.3606 + }, + { + "start": 20653.16, + "end": 20653.16, + "probability": 0.0601 + }, + { + "start": 20653.16, + "end": 20653.16, + "probability": 0.2333 + }, + { + "start": 20653.16, + "end": 20657.2, + "probability": 0.9438 + }, + { + "start": 20657.98, + "end": 20659.28, + "probability": 0.7931 + }, + { + "start": 20660.4, + "end": 20661.7, + "probability": 0.8615 + }, + { + "start": 20663.8, + "end": 20664.72, + "probability": 0.7027 + }, + { + "start": 20665.04, + "end": 20667.76, + "probability": 0.9476 + }, + { + "start": 20668.96, + "end": 20670.04, + "probability": 0.9963 + }, + { + "start": 20670.26, + "end": 20672.52, + "probability": 0.9194 + }, + { + "start": 20673.42, + "end": 20676.44, + "probability": 0.9013 + }, + { + "start": 20677.26, + "end": 20678.24, + "probability": 0.7544 + }, + { + "start": 20678.92, + "end": 20680.94, + "probability": 0.9419 + }, + { + "start": 20681.82, + "end": 20686.26, + "probability": 0.9881 + }, + { + "start": 20686.92, + "end": 20687.82, + "probability": 0.852 + }, + { + "start": 20687.86, + "end": 20689.66, + "probability": 0.9538 + }, + { + "start": 20690.16, + "end": 20694.36, + "probability": 0.989 + }, + { + "start": 20694.74, + "end": 20695.64, + "probability": 0.8053 + }, + { + "start": 20696.8, + "end": 20697.56, + "probability": 0.9412 + }, + { + "start": 20699.2, + "end": 20700.2, + "probability": 0.8351 + }, + { + "start": 20701.52, + "end": 20702.48, + "probability": 0.9927 + }, + { + "start": 20703.4, + "end": 20704.58, + "probability": 0.8413 + }, + { + "start": 20705.62, + "end": 20707.62, + "probability": 0.9976 + }, + { + "start": 20720.68, + "end": 20721.36, + "probability": 0.4975 + }, + { + "start": 20725.68, + "end": 20725.78, + "probability": 0.0116 + }, + { + "start": 20726.72, + "end": 20730.9, + "probability": 0.0495 + }, + { + "start": 20730.92, + "end": 20734.62, + "probability": 0.3771 + }, + { + "start": 20734.66, + "end": 20734.74, + "probability": 0.5884 + }, + { + "start": 20735.38, + "end": 20736.5, + "probability": 0.0597 + }, + { + "start": 20737.06, + "end": 20739.22, + "probability": 0.0737 + }, + { + "start": 20740.66, + "end": 20743.54, + "probability": 0.0605 + }, + { + "start": 20743.54, + "end": 20749.56, + "probability": 0.1391 + }, + { + "start": 20767.58, + "end": 20768.4, + "probability": 0.0029 + }, + { + "start": 20774.76, + "end": 20776.0, + "probability": 0.4101 + }, + { + "start": 20778.81, + "end": 20781.98, + "probability": 0.0657 + }, + { + "start": 20781.98, + "end": 20782.06, + "probability": 0.0707 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.0, + "end": 20799.0, + "probability": 0.0 + }, + { + "start": 20799.22, + "end": 20799.22, + "probability": 0.0192 + }, + { + "start": 20799.22, + "end": 20799.52, + "probability": 0.0286 + }, + { + "start": 20799.86, + "end": 20804.64, + "probability": 0.9912 + }, + { + "start": 20805.28, + "end": 20807.4, + "probability": 0.9729 + }, + { + "start": 20808.16, + "end": 20810.5, + "probability": 0.9977 + }, + { + "start": 20810.9, + "end": 20812.58, + "probability": 0.8645 + }, + { + "start": 20812.92, + "end": 20813.04, + "probability": 0.2713 + }, + { + "start": 20813.5, + "end": 20814.24, + "probability": 0.984 + }, + { + "start": 20815.34, + "end": 20819.42, + "probability": 0.943 + }, + { + "start": 20819.78, + "end": 20820.36, + "probability": 0.9478 + }, + { + "start": 20820.9, + "end": 20820.9, + "probability": 0.1118 + }, + { + "start": 20820.9, + "end": 20821.92, + "probability": 0.8555 + }, + { + "start": 20822.62, + "end": 20823.44, + "probability": 0.6161 + }, + { + "start": 20823.84, + "end": 20824.92, + "probability": 0.7648 + }, + { + "start": 20825.42, + "end": 20829.28, + "probability": 0.9013 + }, + { + "start": 20830.02, + "end": 20836.88, + "probability": 0.9981 + }, + { + "start": 20837.69, + "end": 20841.14, + "probability": 0.9949 + }, + { + "start": 20841.22, + "end": 20841.48, + "probability": 0.7665 + }, + { + "start": 20842.9, + "end": 20844.06, + "probability": 0.1889 + }, + { + "start": 20844.12, + "end": 20845.52, + "probability": 0.0653 + }, + { + "start": 20845.52, + "end": 20845.52, + "probability": 0.5743 + }, + { + "start": 20845.52, + "end": 20846.18, + "probability": 0.0404 + }, + { + "start": 20846.5, + "end": 20851.44, + "probability": 0.9513 + }, + { + "start": 20851.68, + "end": 20853.99, + "probability": 0.9858 + }, + { + "start": 20854.92, + "end": 20859.18, + "probability": 0.9007 + }, + { + "start": 20859.76, + "end": 20859.76, + "probability": 0.2119 + }, + { + "start": 20859.8, + "end": 20860.3, + "probability": 0.5161 + }, + { + "start": 20860.48, + "end": 20863.4, + "probability": 0.943 + }, + { + "start": 20864.04, + "end": 20866.04, + "probability": 0.1369 + }, + { + "start": 20866.77, + "end": 20869.12, + "probability": 0.9043 + }, + { + "start": 20869.2, + "end": 20870.81, + "probability": 0.9155 + }, + { + "start": 20872.46, + "end": 20877.6, + "probability": 0.8215 + }, + { + "start": 20877.72, + "end": 20879.14, + "probability": 0.9767 + }, + { + "start": 20882.72, + "end": 20882.98, + "probability": 0.0201 + }, + { + "start": 20883.88, + "end": 20884.22, + "probability": 0.6453 + }, + { + "start": 20885.38, + "end": 20886.36, + "probability": 0.6993 + }, + { + "start": 20892.8, + "end": 20893.16, + "probability": 0.6851 + }, + { + "start": 20894.72, + "end": 20895.5, + "probability": 0.5783 + }, + { + "start": 20896.26, + "end": 20896.62, + "probability": 0.8028 + }, + { + "start": 20898.26, + "end": 20899.44, + "probability": 0.8244 + }, + { + "start": 20900.32, + "end": 20901.44, + "probability": 0.9666 + }, + { + "start": 20902.02, + "end": 20902.88, + "probability": 0.8898 + }, + { + "start": 20904.25, + "end": 20906.6, + "probability": 0.9875 + }, + { + "start": 20907.38, + "end": 20907.88, + "probability": 0.9813 + }, + { + "start": 20909.5, + "end": 20910.48, + "probability": 0.6193 + }, + { + "start": 20911.82, + "end": 20912.22, + "probability": 0.9885 + }, + { + "start": 20913.84, + "end": 20914.92, + "probability": 0.9723 + }, + { + "start": 20915.54, + "end": 20916.3, + "probability": 0.5007 + }, + { + "start": 20920.28, + "end": 20921.32, + "probability": 0.3955 + }, + { + "start": 20922.62, + "end": 20923.3, + "probability": 0.8885 + }, + { + "start": 20925.48, + "end": 20926.42, + "probability": 0.8595 + }, + { + "start": 20927.18, + "end": 20927.58, + "probability": 0.6478 + }, + { + "start": 20929.26, + "end": 20930.1, + "probability": 0.8862 + }, + { + "start": 20935.42, + "end": 20936.14, + "probability": 0.8385 + }, + { + "start": 20938.36, + "end": 20939.26, + "probability": 0.9781 + }, + { + "start": 20940.2, + "end": 20943.4, + "probability": 0.985 + }, + { + "start": 20944.34, + "end": 20944.78, + "probability": 0.9834 + }, + { + "start": 20946.86, + "end": 20947.7, + "probability": 0.9891 + }, + { + "start": 20948.34, + "end": 20948.5, + "probability": 0.9829 + }, + { + "start": 20950.34, + "end": 20951.12, + "probability": 0.6761 + }, + { + "start": 20952.24, + "end": 20952.66, + "probability": 0.8934 + }, + { + "start": 20954.74, + "end": 20955.64, + "probability": 0.9688 + }, + { + "start": 20956.91, + "end": 20959.86, + "probability": 0.9695 + }, + { + "start": 20960.78, + "end": 20962.12, + "probability": 0.9771 + }, + { + "start": 20962.7, + "end": 20963.58, + "probability": 0.9699 + }, + { + "start": 20964.64, + "end": 20965.06, + "probability": 0.969 + }, + { + "start": 20966.26, + "end": 20967.26, + "probability": 0.9571 + }, + { + "start": 20968.34, + "end": 20968.82, + "probability": 0.9873 + }, + { + "start": 20970.34, + "end": 20971.22, + "probability": 0.9627 + }, + { + "start": 20971.82, + "end": 20972.34, + "probability": 0.8997 + }, + { + "start": 20974.0, + "end": 20975.7, + "probability": 0.993 + }, + { + "start": 20977.04, + "end": 20978.12, + "probability": 0.9833 + }, + { + "start": 20978.74, + "end": 20979.12, + "probability": 0.5233 + }, + { + "start": 20980.82, + "end": 20981.74, + "probability": 0.9603 + }, + { + "start": 20986.44, + "end": 20988.54, + "probability": 0.9051 + }, + { + "start": 20989.66, + "end": 20990.36, + "probability": 0.9147 + }, + { + "start": 20991.94, + "end": 20993.22, + "probability": 0.7527 + }, + { + "start": 20994.9, + "end": 20995.28, + "probability": 0.9775 + }, + { + "start": 20997.4, + "end": 20998.04, + "probability": 0.9893 + }, + { + "start": 20999.9, + "end": 21002.2, + "probability": 0.9806 + }, + { + "start": 21002.84, + "end": 21005.38, + "probability": 0.9451 + }, + { + "start": 21006.66, + "end": 21007.0, + "probability": 0.2961 + }, + { + "start": 21012.08, + "end": 21012.86, + "probability": 0.509 + }, + { + "start": 21019.2, + "end": 21019.83, + "probability": 0.4953 + }, + { + "start": 21021.42, + "end": 21021.86, + "probability": 0.8278 + }, + { + "start": 21023.62, + "end": 21024.38, + "probability": 0.8293 + }, + { + "start": 21026.12, + "end": 21026.6, + "probability": 0.9817 + }, + { + "start": 21028.16, + "end": 21029.0, + "probability": 0.9023 + }, + { + "start": 21030.74, + "end": 21033.4, + "probability": 0.8636 + }, + { + "start": 21036.6, + "end": 21037.28, + "probability": 0.9257 + }, + { + "start": 21038.64, + "end": 21039.64, + "probability": 0.9548 + }, + { + "start": 21042.06, + "end": 21042.82, + "probability": 0.9902 + }, + { + "start": 21043.9, + "end": 21044.72, + "probability": 0.9514 + }, + { + "start": 21046.06, + "end": 21051.18, + "probability": 0.5885 + }, + { + "start": 21052.88, + "end": 21053.78, + "probability": 0.6574 + }, + { + "start": 21054.6, + "end": 21054.92, + "probability": 0.8752 + }, + { + "start": 21056.56, + "end": 21057.92, + "probability": 0.8168 + }, + { + "start": 21059.14, + "end": 21061.74, + "probability": 0.9821 + }, + { + "start": 21062.84, + "end": 21064.08, + "probability": 0.9852 + }, + { + "start": 21065.12, + "end": 21066.0, + "probability": 0.9856 + }, + { + "start": 21067.14, + "end": 21070.48, + "probability": 0.9354 + }, + { + "start": 21072.16, + "end": 21072.68, + "probability": 0.9951 + }, + { + "start": 21074.74, + "end": 21075.88, + "probability": 0.9683 + }, + { + "start": 21077.08, + "end": 21080.15, + "probability": 0.0458 + }, + { + "start": 21083.54, + "end": 21084.72, + "probability": 0.6894 + }, + { + "start": 21087.3, + "end": 21087.7, + "probability": 0.8457 + }, + { + "start": 21089.54, + "end": 21090.76, + "probability": 0.7907 + }, + { + "start": 21092.54, + "end": 21094.16, + "probability": 0.9889 + }, + { + "start": 21097.82, + "end": 21098.28, + "probability": 0.3666 + }, + { + "start": 21099.78, + "end": 21100.14, + "probability": 0.848 + }, + { + "start": 21102.44, + "end": 21103.56, + "probability": 0.7647 + }, + { + "start": 21104.3, + "end": 21105.8, + "probability": 0.9552 + }, + { + "start": 21106.58, + "end": 21107.52, + "probability": 0.8188 + }, + { + "start": 21108.24, + "end": 21110.14, + "probability": 0.9793 + }, + { + "start": 21111.04, + "end": 21111.84, + "probability": 0.987 + }, + { + "start": 21113.46, + "end": 21113.88, + "probability": 0.8862 + }, + { + "start": 21116.24, + "end": 21117.16, + "probability": 0.9548 + }, + { + "start": 21117.84, + "end": 21118.28, + "probability": 0.9412 + }, + { + "start": 21120.12, + "end": 21120.94, + "probability": 0.9287 + }, + { + "start": 21123.52, + "end": 21125.14, + "probability": 0.4367 + }, + { + "start": 21127.64, + "end": 21127.74, + "probability": 0.0049 + }, + { + "start": 21131.12, + "end": 21132.08, + "probability": 0.2326 + }, + { + "start": 21134.74, + "end": 21135.12, + "probability": 0.6602 + }, + { + "start": 21137.3, + "end": 21138.4, + "probability": 0.9362 + }, + { + "start": 21139.58, + "end": 21139.88, + "probability": 0.8499 + }, + { + "start": 21142.62, + "end": 21143.36, + "probability": 0.9248 + }, + { + "start": 21145.58, + "end": 21145.98, + "probability": 0.9531 + }, + { + "start": 21147.66, + "end": 21148.4, + "probability": 0.9943 + }, + { + "start": 21151.06, + "end": 21151.42, + "probability": 0.9954 + }, + { + "start": 21153.28, + "end": 21154.38, + "probability": 0.9532 + }, + { + "start": 21155.22, + "end": 21155.56, + "probability": 0.9945 + }, + { + "start": 21157.44, + "end": 21158.12, + "probability": 0.9396 + }, + { + "start": 21158.78, + "end": 21158.86, + "probability": 0.0612 + }, + { + "start": 21170.72, + "end": 21173.84, + "probability": 0.5651 + }, + { + "start": 21180.32, + "end": 21181.2, + "probability": 0.5485 + }, + { + "start": 21184.06, + "end": 21184.8, + "probability": 0.5313 + }, + { + "start": 21186.24, + "end": 21186.66, + "probability": 0.9214 + }, + { + "start": 21188.58, + "end": 21189.06, + "probability": 0.8713 + }, + { + "start": 21190.42, + "end": 21190.9, + "probability": 0.9757 + }, + { + "start": 21195.38, + "end": 21196.52, + "probability": 0.4333 + }, + { + "start": 21197.6, + "end": 21197.98, + "probability": 0.9749 + }, + { + "start": 21199.5, + "end": 21200.18, + "probability": 0.8857 + }, + { + "start": 21202.98, + "end": 21203.46, + "probability": 0.9954 + }, + { + "start": 21205.14, + "end": 21206.38, + "probability": 0.9455 + }, + { + "start": 21210.54, + "end": 21210.98, + "probability": 0.5027 + }, + { + "start": 21212.88, + "end": 21213.64, + "probability": 0.9468 + }, + { + "start": 21214.63, + "end": 21217.06, + "probability": 0.9583 + }, + { + "start": 21218.4, + "end": 21220.42, + "probability": 0.998 + }, + { + "start": 21222.36, + "end": 21223.2, + "probability": 0.959 + }, + { + "start": 21224.32, + "end": 21224.54, + "probability": 0.5367 + }, + { + "start": 21226.1, + "end": 21226.88, + "probability": 0.7 + }, + { + "start": 21227.96, + "end": 21228.34, + "probability": 0.9668 + }, + { + "start": 21230.08, + "end": 21230.78, + "probability": 0.9489 + }, + { + "start": 21233.08, + "end": 21233.54, + "probability": 0.9845 + }, + { + "start": 21235.36, + "end": 21236.58, + "probability": 0.9853 + }, + { + "start": 21237.6, + "end": 21238.78, + "probability": 0.9875 + }, + { + "start": 21239.72, + "end": 21240.88, + "probability": 0.8613 + }, + { + "start": 21243.96, + "end": 21244.38, + "probability": 0.9958 + }, + { + "start": 21246.52, + "end": 21247.32, + "probability": 0.8017 + }, + { + "start": 21250.12, + "end": 21251.54, + "probability": 0.9636 + }, + { + "start": 21252.46, + "end": 21253.46, + "probability": 0.8239 + }, + { + "start": 21254.34, + "end": 21254.6, + "probability": 0.7668 + }, + { + "start": 21256.44, + "end": 21257.4, + "probability": 0.6082 + }, + { + "start": 21258.62, + "end": 21259.6, + "probability": 0.9704 + }, + { + "start": 21260.58, + "end": 21261.68, + "probability": 0.9225 + }, + { + "start": 21262.2, + "end": 21263.36, + "probability": 0.988 + }, + { + "start": 21264.34, + "end": 21265.44, + "probability": 0.9474 + }, + { + "start": 21266.62, + "end": 21267.02, + "probability": 0.937 + }, + { + "start": 21268.8, + "end": 21269.5, + "probability": 0.9784 + }, + { + "start": 21271.47, + "end": 21273.36, + "probability": 0.9905 + }, + { + "start": 21274.52, + "end": 21277.06, + "probability": 0.9695 + }, + { + "start": 21278.56, + "end": 21279.62, + "probability": 0.4441 + }, + { + "start": 21280.32, + "end": 21280.72, + "probability": 0.9915 + }, + { + "start": 21282.78, + "end": 21283.64, + "probability": 0.7348 + }, + { + "start": 21285.42, + "end": 21285.74, + "probability": 0.8677 + }, + { + "start": 21287.58, + "end": 21288.04, + "probability": 0.6897 + }, + { + "start": 21291.96, + "end": 21292.42, + "probability": 0.9567 + }, + { + "start": 21294.64, + "end": 21295.7, + "probability": 0.9542 + }, + { + "start": 21296.34, + "end": 21297.6, + "probability": 0.969 + }, + { + "start": 21298.64, + "end": 21299.72, + "probability": 0.8421 + }, + { + "start": 21301.3, + "end": 21303.46, + "probability": 0.9512 + }, + { + "start": 21305.5, + "end": 21308.16, + "probability": 0.9335 + }, + { + "start": 21308.86, + "end": 21309.68, + "probability": 0.892 + }, + { + "start": 21311.32, + "end": 21313.6, + "probability": 0.5003 + }, + { + "start": 21315.82, + "end": 21317.02, + "probability": 0.7626 + }, + { + "start": 21318.57, + "end": 21320.84, + "probability": 0.7934 + }, + { + "start": 21324.24, + "end": 21324.98, + "probability": 0.9323 + }, + { + "start": 21326.6, + "end": 21327.52, + "probability": 0.4643 + }, + { + "start": 21330.04, + "end": 21330.24, + "probability": 0.734 + }, + { + "start": 21342.66, + "end": 21343.88, + "probability": 0.5979 + }, + { + "start": 21344.76, + "end": 21345.16, + "probability": 0.5286 + }, + { + "start": 21347.24, + "end": 21348.2, + "probability": 0.5451 + }, + { + "start": 21350.66, + "end": 21353.16, + "probability": 0.963 + }, + { + "start": 21354.98, + "end": 21355.36, + "probability": 0.9316 + }, + { + "start": 21357.8, + "end": 21358.54, + "probability": 0.7804 + }, + { + "start": 21361.34, + "end": 21361.86, + "probability": 0.5719 + }, + { + "start": 21363.98, + "end": 21365.02, + "probability": 0.3796 + }, + { + "start": 21369.82, + "end": 21370.84, + "probability": 0.8231 + }, + { + "start": 21372.04, + "end": 21372.46, + "probability": 0.9648 + }, + { + "start": 21374.16, + "end": 21375.36, + "probability": 0.9445 + }, + { + "start": 21376.74, + "end": 21377.14, + "probability": 0.9502 + }, + { + "start": 21379.04, + "end": 21379.88, + "probability": 0.8186 + }, + { + "start": 21381.1, + "end": 21381.48, + "probability": 0.9749 + }, + { + "start": 21383.08, + "end": 21383.98, + "probability": 0.9831 + }, + { + "start": 21384.9, + "end": 21385.3, + "probability": 0.9904 + }, + { + "start": 21386.94, + "end": 21387.64, + "probability": 0.9268 + }, + { + "start": 21389.1, + "end": 21389.48, + "probability": 0.9969 + }, + { + "start": 21391.08, + "end": 21391.92, + "probability": 0.9365 + }, + { + "start": 21392.7, + "end": 21393.1, + "probability": 0.9922 + }, + { + "start": 21394.66, + "end": 21395.4, + "probability": 0.7893 + }, + { + "start": 21396.12, + "end": 21396.42, + "probability": 0.5075 + }, + { + "start": 21398.02, + "end": 21398.94, + "probability": 0.857 + }, + { + "start": 21400.18, + "end": 21400.64, + "probability": 0.9373 + }, + { + "start": 21402.68, + "end": 21403.46, + "probability": 0.8342 + }, + { + "start": 21404.32, + "end": 21405.86, + "probability": 0.9636 + }, + { + "start": 21406.8, + "end": 21407.88, + "probability": 0.9857 + }, + { + "start": 21409.84, + "end": 21410.76, + "probability": 0.99 + }, + { + "start": 21411.96, + "end": 21412.82, + "probability": 0.9698 + }, + { + "start": 21413.88, + "end": 21414.4, + "probability": 0.9915 + }, + { + "start": 21416.16, + "end": 21417.04, + "probability": 0.8058 + }, + { + "start": 21423.4, + "end": 21424.12, + "probability": 0.8665 + }, + { + "start": 21425.78, + "end": 21427.02, + "probability": 0.9327 + }, + { + "start": 21428.04, + "end": 21428.3, + "probability": 0.9805 + }, + { + "start": 21431.12, + "end": 21431.84, + "probability": 0.6456 + }, + { + "start": 21432.98, + "end": 21433.4, + "probability": 0.987 + }, + { + "start": 21434.9, + "end": 21436.26, + "probability": 0.9103 + }, + { + "start": 21436.84, + "end": 21437.58, + "probability": 0.9961 + }, + { + "start": 21439.04, + "end": 21440.44, + "probability": 0.9544 + }, + { + "start": 21441.02, + "end": 21442.0, + "probability": 0.9943 + }, + { + "start": 21442.58, + "end": 21444.6, + "probability": 0.8076 + }, + { + "start": 21445.18, + "end": 21445.78, + "probability": 0.986 + }, + { + "start": 21447.4, + "end": 21448.32, + "probability": 0.9845 + }, + { + "start": 21449.22, + "end": 21449.62, + "probability": 0.9966 + }, + { + "start": 21452.18, + "end": 21454.5, + "probability": 0.9762 + }, + { + "start": 21456.66, + "end": 21457.76, + "probability": 0.918 + }, + { + "start": 21458.94, + "end": 21459.2, + "probability": 0.608 + }, + { + "start": 21460.86, + "end": 21461.8, + "probability": 0.8312 + }, + { + "start": 21462.58, + "end": 21462.9, + "probability": 0.9521 + }, + { + "start": 21464.5, + "end": 21465.34, + "probability": 0.7501 + }, + { + "start": 21466.08, + "end": 21467.38, + "probability": 0.9875 + }, + { + "start": 21468.16, + "end": 21469.08, + "probability": 0.9645 + }, + { + "start": 21469.76, + "end": 21470.98, + "probability": 0.9648 + }, + { + "start": 21472.44, + "end": 21473.84, + "probability": 0.8993 + }, + { + "start": 21474.54, + "end": 21475.08, + "probability": 0.9891 + }, + { + "start": 21476.9, + "end": 21477.72, + "probability": 0.8997 + }, + { + "start": 21479.34, + "end": 21481.74, + "probability": 0.6557 + }, + { + "start": 21484.58, + "end": 21484.86, + "probability": 0.3679 + }, + { + "start": 21486.98, + "end": 21487.08, + "probability": 0.0014 + }, + { + "start": 21491.48, + "end": 21492.48, + "probability": 0.3156 + }, + { + "start": 21493.72, + "end": 21494.42, + "probability": 0.5016 + }, + { + "start": 21504.36, + "end": 21506.36, + "probability": 0.903 + }, + { + "start": 21506.46, + "end": 21510.04, + "probability": 0.9387 + }, + { + "start": 21510.26, + "end": 21512.72, + "probability": 0.0619 + }, + { + "start": 21516.7, + "end": 21517.8, + "probability": 0.4127 + }, + { + "start": 21521.62, + "end": 21522.34, + "probability": 0.8199 + }, + { + "start": 21523.6, + "end": 21524.36, + "probability": 0.7264 + }, + { + "start": 21525.56, + "end": 21529.5, + "probability": 0.8532 + }, + { + "start": 21530.48, + "end": 21530.96, + "probability": 0.8939 + }, + { + "start": 21534.74, + "end": 21535.56, + "probability": 0.6176 + }, + { + "start": 21541.42, + "end": 21542.16, + "probability": 0.8559 + }, + { + "start": 21545.38, + "end": 21546.22, + "probability": 0.5659 + }, + { + "start": 21549.1, + "end": 21549.76, + "probability": 0.9215 + }, + { + "start": 21550.96, + "end": 21552.0, + "probability": 0.8526 + }, + { + "start": 21552.82, + "end": 21553.12, + "probability": 0.9128 + }, + { + "start": 21556.88, + "end": 21557.6, + "probability": 0.6455 + }, + { + "start": 21558.6, + "end": 21558.94, + "probability": 0.7539 + }, + { + "start": 21563.78, + "end": 21564.52, + "probability": 0.5349 + }, + { + "start": 21569.1, + "end": 21569.88, + "probability": 0.8248 + }, + { + "start": 21572.18, + "end": 21573.1, + "probability": 0.8061 + }, + { + "start": 21582.82, + "end": 21584.9, + "probability": 0.5524 + }, + { + "start": 21589.04, + "end": 21594.88, + "probability": 0.9242 + }, + { + "start": 21595.56, + "end": 21596.16, + "probability": 0.327 + }, + { + "start": 21597.12, + "end": 21600.04, + "probability": 0.5001 + }, + { + "start": 21601.82, + "end": 21602.68, + "probability": 0.9698 + }, + { + "start": 21604.0, + "end": 21608.05, + "probability": 0.8159 + }, + { + "start": 21609.62, + "end": 21610.84, + "probability": 0.8425 + }, + { + "start": 21616.66, + "end": 21618.42, + "probability": 0.4169 + }, + { + "start": 21619.24, + "end": 21619.8, + "probability": 0.2359 + }, + { + "start": 21633.18, + "end": 21634.66, + "probability": 0.4341 + }, + { + "start": 21637.62, + "end": 21639.42, + "probability": 0.0753 + }, + { + "start": 21640.74, + "end": 21641.8, + "probability": 0.0649 + }, + { + "start": 21642.26, + "end": 21643.58, + "probability": 0.104 + }, + { + "start": 21645.1, + "end": 21646.49, + "probability": 0.0806 + }, + { + "start": 21649.2, + "end": 21654.48, + "probability": 0.0932 + }, + { + "start": 21655.52, + "end": 21656.5, + "probability": 0.0083 + }, + { + "start": 21666.32, + "end": 21672.7, + "probability": 0.1405 + }, + { + "start": 21768.0, + "end": 21768.0, + "probability": 0.0 + }, + { + "start": 21768.1, + "end": 21770.1, + "probability": 0.0375 + }, + { + "start": 21770.1, + "end": 21773.72, + "probability": 0.5577 + }, + { + "start": 21774.16, + "end": 21774.76, + "probability": 0.5079 + }, + { + "start": 21774.76, + "end": 21775.26, + "probability": 0.5781 + }, + { + "start": 21777.0, + "end": 21781.26, + "probability": 0.6459 + }, + { + "start": 21783.96, + "end": 21786.72, + "probability": 0.4883 + }, + { + "start": 21787.08, + "end": 21792.48, + "probability": 0.6908 + }, + { + "start": 21792.48, + "end": 21798.9, + "probability": 0.9865 + }, + { + "start": 21798.94, + "end": 21799.74, + "probability": 0.8198 + }, + { + "start": 21799.88, + "end": 21802.9, + "probability": 0.5802 + }, + { + "start": 21803.64, + "end": 21806.29, + "probability": 0.5028 + }, + { + "start": 21807.12, + "end": 21809.82, + "probability": 0.6442 + }, + { + "start": 21810.16, + "end": 21810.16, + "probability": 0.0388 + }, + { + "start": 21810.16, + "end": 21810.16, + "probability": 0.3506 + }, + { + "start": 21810.16, + "end": 21816.24, + "probability": 0.9251 + }, + { + "start": 21816.86, + "end": 21820.66, + "probability": 0.9517 + }, + { + "start": 21821.6, + "end": 21822.18, + "probability": 0.861 + }, + { + "start": 21822.26, + "end": 21824.98, + "probability": 0.9827 + }, + { + "start": 21825.5, + "end": 21832.56, + "probability": 0.994 + }, + { + "start": 21833.42, + "end": 21834.72, + "probability": 0.7635 + }, + { + "start": 21835.18, + "end": 21842.16, + "probability": 0.8434 + }, + { + "start": 21842.78, + "end": 21845.14, + "probability": 0.3233 + }, + { + "start": 21845.16, + "end": 21846.84, + "probability": 0.793 + }, + { + "start": 21846.84, + "end": 21850.37, + "probability": 0.9294 + }, + { + "start": 21851.6, + "end": 21854.12, + "probability": 0.5678 + }, + { + "start": 21854.58, + "end": 21860.22, + "probability": 0.5978 + }, + { + "start": 21860.54, + "end": 21863.26, + "probability": 0.7183 + }, + { + "start": 21863.84, + "end": 21868.3, + "probability": 0.8375 + }, + { + "start": 21869.16, + "end": 21869.74, + "probability": 0.0168 + }, + { + "start": 21869.74, + "end": 21871.74, + "probability": 0.9369 + }, + { + "start": 21872.06, + "end": 21873.06, + "probability": 0.5381 + }, + { + "start": 21873.16, + "end": 21875.76, + "probability": 0.8818 + }, + { + "start": 21876.62, + "end": 21881.48, + "probability": 0.5594 + }, + { + "start": 21881.62, + "end": 21884.11, + "probability": 0.7864 + }, + { + "start": 21884.14, + "end": 21884.42, + "probability": 0.1518 + }, + { + "start": 21884.7, + "end": 21885.68, + "probability": 0.6626 + }, + { + "start": 21885.9, + "end": 21886.92, + "probability": 0.1923 + }, + { + "start": 21886.92, + "end": 21887.69, + "probability": 0.157 + }, + { + "start": 21888.2, + "end": 21895.34, + "probability": 0.9812 + }, + { + "start": 21895.44, + "end": 21895.84, + "probability": 0.1192 + }, + { + "start": 21895.98, + "end": 21900.74, + "probability": 0.7055 + }, + { + "start": 21901.34, + "end": 21905.98, + "probability": 0.9318 + }, + { + "start": 21906.62, + "end": 21908.94, + "probability": 0.701 + }, + { + "start": 21909.7, + "end": 21909.9, + "probability": 0.0395 + }, + { + "start": 21909.9, + "end": 21910.86, + "probability": 0.0204 + }, + { + "start": 21911.64, + "end": 21915.3, + "probability": 0.6615 + }, + { + "start": 21915.6, + "end": 21918.1, + "probability": 0.7035 + }, + { + "start": 21918.12, + "end": 21919.55, + "probability": 0.3062 + }, + { + "start": 21920.26, + "end": 21921.32, + "probability": 0.3621 + }, + { + "start": 21921.36, + "end": 21926.66, + "probability": 0.2904 + }, + { + "start": 21926.66, + "end": 21928.42, + "probability": 0.4658 + }, + { + "start": 21928.42, + "end": 21928.84, + "probability": 0.7337 + }, + { + "start": 21929.68, + "end": 21930.14, + "probability": 0.774 + }, + { + "start": 21930.26, + "end": 21932.48, + "probability": 0.7243 + }, + { + "start": 21932.58, + "end": 21933.3, + "probability": 0.7035 + }, + { + "start": 21933.3, + "end": 21934.98, + "probability": 0.4036 + }, + { + "start": 21936.78, + "end": 21938.04, + "probability": 0.0517 + }, + { + "start": 21938.06, + "end": 21941.06, + "probability": 0.0023 + }, + { + "start": 21941.18, + "end": 21942.38, + "probability": 0.265 + }, + { + "start": 21942.38, + "end": 21942.52, + "probability": 0.151 + }, + { + "start": 21945.2, + "end": 21947.36, + "probability": 0.0665 + }, + { + "start": 21948.64, + "end": 21951.05, + "probability": 0.2557 + }, + { + "start": 21954.32, + "end": 21954.88, + "probability": 0.2419 + }, + { + "start": 21955.08, + "end": 21956.7, + "probability": 0.0395 + }, + { + "start": 21956.7, + "end": 21956.8, + "probability": 0.0282 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22028.0, + "end": 22028.0, + "probability": 0.0 + }, + { + "start": 22029.5, + "end": 22031.18, + "probability": 0.0205 + }, + { + "start": 22031.18, + "end": 22031.18, + "probability": 0.0443 + }, + { + "start": 22031.32, + "end": 22033.86, + "probability": 0.6796 + }, + { + "start": 22033.9, + "end": 22035.08, + "probability": 0.9006 + }, + { + "start": 22035.87, + "end": 22038.68, + "probability": 0.6562 + }, + { + "start": 22038.83, + "end": 22045.84, + "probability": 0.9722 + }, + { + "start": 22045.92, + "end": 22046.38, + "probability": 0.8419 + }, + { + "start": 22046.72, + "end": 22047.97, + "probability": 0.7679 + }, + { + "start": 22048.28, + "end": 22051.34, + "probability": 0.7422 + }, + { + "start": 22051.78, + "end": 22055.47, + "probability": 0.9835 + }, + { + "start": 22056.04, + "end": 22056.47, + "probability": 0.9165 + }, + { + "start": 22056.88, + "end": 22059.92, + "probability": 0.5366 + }, + { + "start": 22060.44, + "end": 22060.44, + "probability": 0.0928 + }, + { + "start": 22060.44, + "end": 22063.3, + "probability": 0.9846 + }, + { + "start": 22063.42, + "end": 22063.76, + "probability": 0.878 + }, + { + "start": 22063.82, + "end": 22064.6, + "probability": 0.9295 + }, + { + "start": 22065.24, + "end": 22067.88, + "probability": 0.9669 + }, + { + "start": 22068.36, + "end": 22069.7, + "probability": 0.9817 + }, + { + "start": 22070.5, + "end": 22074.64, + "probability": 0.9554 + }, + { + "start": 22075.3, + "end": 22076.2, + "probability": 0.9995 + }, + { + "start": 22077.24, + "end": 22082.76, + "probability": 0.996 + }, + { + "start": 22083.18, + "end": 22086.5, + "probability": 0.9105 + }, + { + "start": 22087.52, + "end": 22088.12, + "probability": 0.7892 + }, + { + "start": 22088.38, + "end": 22088.58, + "probability": 0.5106 + }, + { + "start": 22088.72, + "end": 22090.7, + "probability": 0.9854 + }, + { + "start": 22090.82, + "end": 22093.22, + "probability": 0.998 + }, + { + "start": 22094.08, + "end": 22097.66, + "probability": 0.9866 + }, + { + "start": 22097.72, + "end": 22103.38, + "probability": 0.9869 + }, + { + "start": 22103.48, + "end": 22108.12, + "probability": 0.999 + }, + { + "start": 22108.64, + "end": 22110.68, + "probability": 0.9783 + }, + { + "start": 22110.76, + "end": 22111.92, + "probability": 0.6723 + }, + { + "start": 22112.92, + "end": 22117.5, + "probability": 0.9692 + }, + { + "start": 22117.76, + "end": 22122.8, + "probability": 0.9961 + }, + { + "start": 22123.48, + "end": 22125.92, + "probability": 0.7031 + }, + { + "start": 22126.32, + "end": 22128.56, + "probability": 0.9976 + }, + { + "start": 22128.68, + "end": 22129.46, + "probability": 0.9692 + }, + { + "start": 22130.14, + "end": 22134.7, + "probability": 0.9915 + }, + { + "start": 22135.14, + "end": 22136.14, + "probability": 0.5071 + }, + { + "start": 22136.78, + "end": 22138.28, + "probability": 0.8564 + }, + { + "start": 22138.52, + "end": 22142.64, + "probability": 0.1519 + }, + { + "start": 22143.32, + "end": 22146.96, + "probability": 0.438 + }, + { + "start": 22147.16, + "end": 22149.26, + "probability": 0.9174 + }, + { + "start": 22149.48, + "end": 22150.7, + "probability": 0.2049 + }, + { + "start": 22151.88, + "end": 22152.92, + "probability": 0.4856 + }, + { + "start": 22153.62, + "end": 22155.67, + "probability": 0.9705 + }, + { + "start": 22156.2, + "end": 22158.01, + "probability": 0.9801 + }, + { + "start": 22159.0, + "end": 22161.06, + "probability": 0.9708 + }, + { + "start": 22162.44, + "end": 22163.8, + "probability": 0.9275 + }, + { + "start": 22165.06, + "end": 22167.6, + "probability": 0.9965 + }, + { + "start": 22168.26, + "end": 22168.98, + "probability": 0.9344 + }, + { + "start": 22170.22, + "end": 22171.34, + "probability": 0.9771 + }, + { + "start": 22171.72, + "end": 22174.06, + "probability": 0.9929 + }, + { + "start": 22174.8, + "end": 22177.78, + "probability": 0.9291 + }, + { + "start": 22180.18, + "end": 22184.96, + "probability": 0.7566 + }, + { + "start": 22185.5, + "end": 22186.6, + "probability": 0.9519 + }, + { + "start": 22188.02, + "end": 22189.58, + "probability": 0.9951 + }, + { + "start": 22190.32, + "end": 22193.1, + "probability": 0.999 + }, + { + "start": 22194.0, + "end": 22199.86, + "probability": 0.993 + }, + { + "start": 22200.92, + "end": 22203.02, + "probability": 0.9897 + }, + { + "start": 22204.22, + "end": 22205.98, + "probability": 0.9491 + }, + { + "start": 22206.6, + "end": 22208.82, + "probability": 0.9542 + }, + { + "start": 22209.72, + "end": 22211.34, + "probability": 0.8633 + }, + { + "start": 22212.24, + "end": 22215.16, + "probability": 0.9321 + }, + { + "start": 22215.22, + "end": 22216.68, + "probability": 0.9733 + }, + { + "start": 22216.8, + "end": 22217.48, + "probability": 0.9679 + }, + { + "start": 22218.14, + "end": 22219.54, + "probability": 0.7993 + }, + { + "start": 22220.96, + "end": 22222.24, + "probability": 0.9331 + }, + { + "start": 22222.96, + "end": 22226.14, + "probability": 0.8384 + }, + { + "start": 22226.64, + "end": 22228.5, + "probability": 0.9584 + }, + { + "start": 22229.16, + "end": 22231.2, + "probability": 0.9237 + }, + { + "start": 22231.72, + "end": 22233.02, + "probability": 0.9258 + }, + { + "start": 22233.68, + "end": 22234.62, + "probability": 0.9758 + }, + { + "start": 22234.76, + "end": 22235.88, + "probability": 0.7265 + }, + { + "start": 22236.3, + "end": 22236.7, + "probability": 0.8709 + }, + { + "start": 22236.78, + "end": 22239.36, + "probability": 0.88 + }, + { + "start": 22240.1, + "end": 22240.78, + "probability": 0.9333 + }, + { + "start": 22241.54, + "end": 22242.46, + "probability": 0.6695 + }, + { + "start": 22242.6, + "end": 22245.6, + "probability": 0.9905 + }, + { + "start": 22246.44, + "end": 22251.32, + "probability": 0.9952 + }, + { + "start": 22252.4, + "end": 22253.62, + "probability": 0.9875 + }, + { + "start": 22254.88, + "end": 22256.42, + "probability": 0.8125 + }, + { + "start": 22257.22, + "end": 22261.48, + "probability": 0.9259 + }, + { + "start": 22263.4, + "end": 22263.9, + "probability": 0.3378 + }, + { + "start": 22265.02, + "end": 22267.04, + "probability": 0.9701 + }, + { + "start": 22269.4, + "end": 22272.88, + "probability": 0.959 + }, + { + "start": 22272.88, + "end": 22275.34, + "probability": 0.9968 + }, + { + "start": 22276.26, + "end": 22280.76, + "probability": 0.9149 + }, + { + "start": 22280.76, + "end": 22283.32, + "probability": 0.9832 + }, + { + "start": 22284.22, + "end": 22285.32, + "probability": 0.8116 + }, + { + "start": 22285.86, + "end": 22287.88, + "probability": 0.8563 + }, + { + "start": 22288.92, + "end": 22290.62, + "probability": 0.9249 + }, + { + "start": 22291.22, + "end": 22292.2, + "probability": 0.9864 + }, + { + "start": 22292.92, + "end": 22295.04, + "probability": 0.9235 + }, + { + "start": 22296.42, + "end": 22304.7, + "probability": 0.8967 + }, + { + "start": 22305.42, + "end": 22309.32, + "probability": 0.5602 + }, + { + "start": 22310.14, + "end": 22314.58, + "probability": 0.9966 + }, + { + "start": 22315.16, + "end": 22317.5, + "probability": 0.9101 + }, + { + "start": 22318.0, + "end": 22318.6, + "probability": 0.9174 + }, + { + "start": 22319.64, + "end": 22320.51, + "probability": 0.9817 + }, + { + "start": 22321.48, + "end": 22322.7, + "probability": 0.9888 + }, + { + "start": 22323.3, + "end": 22325.84, + "probability": 0.9399 + }, + { + "start": 22326.76, + "end": 22327.72, + "probability": 0.9809 + }, + { + "start": 22328.54, + "end": 22331.56, + "probability": 0.9941 + }, + { + "start": 22332.06, + "end": 22337.02, + "probability": 0.9899 + }, + { + "start": 22337.14, + "end": 22337.82, + "probability": 0.8392 + }, + { + "start": 22338.74, + "end": 22339.92, + "probability": 0.7671 + }, + { + "start": 22339.94, + "end": 22340.52, + "probability": 0.9353 + }, + { + "start": 22341.12, + "end": 22341.65, + "probability": 0.9883 + }, + { + "start": 22342.38, + "end": 22344.04, + "probability": 0.9862 + }, + { + "start": 22344.32, + "end": 22345.83, + "probability": 0.9971 + }, + { + "start": 22347.7, + "end": 22350.64, + "probability": 0.8644 + }, + { + "start": 22351.72, + "end": 22353.42, + "probability": 0.9397 + }, + { + "start": 22354.4, + "end": 22356.14, + "probability": 0.9956 + }, + { + "start": 22356.48, + "end": 22358.78, + "probability": 0.9862 + }, + { + "start": 22359.24, + "end": 22362.34, + "probability": 0.9427 + }, + { + "start": 22363.2, + "end": 22367.09, + "probability": 0.9105 + }, + { + "start": 22367.66, + "end": 22369.5, + "probability": 0.9023 + }, + { + "start": 22370.18, + "end": 22371.12, + "probability": 0.8931 + }, + { + "start": 22372.1, + "end": 22374.18, + "probability": 0.8224 + }, + { + "start": 22375.04, + "end": 22378.87, + "probability": 0.9667 + }, + { + "start": 22379.68, + "end": 22384.86, + "probability": 0.987 + }, + { + "start": 22385.44, + "end": 22389.22, + "probability": 0.9974 + }, + { + "start": 22389.34, + "end": 22390.52, + "probability": 0.7589 + }, + { + "start": 22391.28, + "end": 22393.76, + "probability": 0.9733 + }, + { + "start": 22394.3, + "end": 22394.84, + "probability": 0.9139 + }, + { + "start": 22395.48, + "end": 22399.26, + "probability": 0.9937 + }, + { + "start": 22399.8, + "end": 22401.34, + "probability": 0.9569 + }, + { + "start": 22402.08, + "end": 22405.22, + "probability": 0.9893 + }, + { + "start": 22405.74, + "end": 22407.08, + "probability": 0.9893 + }, + { + "start": 22407.9, + "end": 22412.22, + "probability": 0.9889 + }, + { + "start": 22412.3, + "end": 22412.94, + "probability": 0.5321 + }, + { + "start": 22413.6, + "end": 22419.68, + "probability": 0.9922 + }, + { + "start": 22420.44, + "end": 22421.58, + "probability": 0.8323 + }, + { + "start": 22422.62, + "end": 22427.14, + "probability": 0.9989 + }, + { + "start": 22427.72, + "end": 22429.24, + "probability": 0.985 + }, + { + "start": 22429.97, + "end": 22430.68, + "probability": 0.8604 + }, + { + "start": 22431.82, + "end": 22434.72, + "probability": 0.9336 + }, + { + "start": 22435.56, + "end": 22438.6, + "probability": 0.955 + }, + { + "start": 22438.8, + "end": 22441.48, + "probability": 0.9954 + }, + { + "start": 22442.36, + "end": 22445.42, + "probability": 0.9927 + }, + { + "start": 22445.56, + "end": 22447.2, + "probability": 0.8957 + }, + { + "start": 22448.94, + "end": 22451.6, + "probability": 0.9614 + }, + { + "start": 22452.12, + "end": 22453.86, + "probability": 0.9162 + }, + { + "start": 22454.94, + "end": 22457.41, + "probability": 0.9922 + }, + { + "start": 22458.8, + "end": 22464.2, + "probability": 0.9836 + }, + { + "start": 22464.44, + "end": 22465.28, + "probability": 0.8325 + }, + { + "start": 22465.76, + "end": 22466.62, + "probability": 0.7817 + }, + { + "start": 22468.28, + "end": 22470.8, + "probability": 0.4666 + }, + { + "start": 22472.06, + "end": 22474.68, + "probability": 0.9866 + }, + { + "start": 22477.22, + "end": 22478.28, + "probability": 0.8704 + }, + { + "start": 22479.16, + "end": 22481.1, + "probability": 0.9557 + }, + { + "start": 22481.22, + "end": 22482.78, + "probability": 0.6007 + }, + { + "start": 22482.86, + "end": 22483.92, + "probability": 0.9234 + }, + { + "start": 22484.0, + "end": 22484.44, + "probability": 0.6241 + }, + { + "start": 22485.18, + "end": 22487.3, + "probability": 0.9224 + }, + { + "start": 22488.02, + "end": 22490.22, + "probability": 0.9953 + }, + { + "start": 22490.9, + "end": 22492.66, + "probability": 0.9937 + }, + { + "start": 22493.08, + "end": 22497.24, + "probability": 0.8924 + }, + { + "start": 22497.36, + "end": 22500.86, + "probability": 0.9945 + }, + { + "start": 22501.86, + "end": 22502.46, + "probability": 0.8779 + }, + { + "start": 22502.56, + "end": 22505.04, + "probability": 0.9614 + }, + { + "start": 22506.12, + "end": 22507.84, + "probability": 0.9193 + }, + { + "start": 22508.64, + "end": 22509.71, + "probability": 0.9818 + }, + { + "start": 22511.34, + "end": 22513.78, + "probability": 0.8279 + }, + { + "start": 22513.86, + "end": 22515.8, + "probability": 0.9977 + }, + { + "start": 22516.7, + "end": 22520.5, + "probability": 0.9735 + }, + { + "start": 22521.64, + "end": 22523.46, + "probability": 0.5846 + }, + { + "start": 22524.58, + "end": 22525.94, + "probability": 0.5347 + }, + { + "start": 22526.68, + "end": 22529.76, + "probability": 0.9814 + }, + { + "start": 22531.02, + "end": 22532.4, + "probability": 0.9865 + }, + { + "start": 22533.08, + "end": 22536.08, + "probability": 0.9971 + }, + { + "start": 22536.92, + "end": 22537.44, + "probability": 0.576 + }, + { + "start": 22538.24, + "end": 22540.24, + "probability": 0.6855 + }, + { + "start": 22540.98, + "end": 22543.03, + "probability": 0.7519 + }, + { + "start": 22543.68, + "end": 22544.96, + "probability": 0.875 + }, + { + "start": 22545.58, + "end": 22546.8, + "probability": 0.9392 + }, + { + "start": 22547.38, + "end": 22548.2, + "probability": 0.8638 + }, + { + "start": 22549.78, + "end": 22550.71, + "probability": 0.9958 + }, + { + "start": 22551.76, + "end": 22554.19, + "probability": 0.9927 + }, + { + "start": 22555.4, + "end": 22558.02, + "probability": 0.8105 + }, + { + "start": 22559.0, + "end": 22560.6, + "probability": 0.9976 + }, + { + "start": 22561.54, + "end": 22563.62, + "probability": 0.9842 + }, + { + "start": 22565.02, + "end": 22567.34, + "probability": 0.8854 + }, + { + "start": 22568.22, + "end": 22570.14, + "probability": 0.9883 + }, + { + "start": 22570.14, + "end": 22573.1, + "probability": 0.999 + }, + { + "start": 22574.14, + "end": 22577.59, + "probability": 0.9418 + }, + { + "start": 22578.58, + "end": 22579.14, + "probability": 0.7144 + }, + { + "start": 22580.44, + "end": 22582.36, + "probability": 0.9964 + }, + { + "start": 22583.02, + "end": 22585.08, + "probability": 0.7424 + }, + { + "start": 22585.92, + "end": 22588.12, + "probability": 0.8838 + }, + { + "start": 22588.16, + "end": 22589.34, + "probability": 0.9924 + }, + { + "start": 22589.96, + "end": 22590.4, + "probability": 0.7953 + }, + { + "start": 22591.14, + "end": 22592.11, + "probability": 0.8752 + }, + { + "start": 22593.34, + "end": 22594.22, + "probability": 0.9684 + }, + { + "start": 22594.3, + "end": 22596.18, + "probability": 0.99 + }, + { + "start": 22597.44, + "end": 22600.78, + "probability": 0.9768 + }, + { + "start": 22601.34, + "end": 22602.5, + "probability": 0.9872 + }, + { + "start": 22603.1, + "end": 22604.27, + "probability": 0.7135 + }, + { + "start": 22604.98, + "end": 22606.86, + "probability": 0.595 + }, + { + "start": 22608.82, + "end": 22610.6, + "probability": 0.8355 + }, + { + "start": 22611.08, + "end": 22612.72, + "probability": 0.9893 + }, + { + "start": 22612.86, + "end": 22614.56, + "probability": 0.996 + }, + { + "start": 22615.14, + "end": 22620.02, + "probability": 0.7632 + }, + { + "start": 22620.24, + "end": 22623.19, + "probability": 0.8359 + }, + { + "start": 22624.1, + "end": 22625.56, + "probability": 0.9799 + }, + { + "start": 22625.84, + "end": 22626.44, + "probability": 0.3972 + }, + { + "start": 22626.6, + "end": 22627.68, + "probability": 0.7267 + }, + { + "start": 22627.7, + "end": 22628.8, + "probability": 0.5931 + }, + { + "start": 22629.42, + "end": 22630.28, + "probability": 0.8148 + }, + { + "start": 22630.28, + "end": 22631.29, + "probability": 0.4163 + }, + { + "start": 22631.66, + "end": 22634.66, + "probability": 0.9676 + }, + { + "start": 22636.08, + "end": 22636.89, + "probability": 0.998 + }, + { + "start": 22637.84, + "end": 22638.65, + "probability": 0.9985 + }, + { + "start": 22639.74, + "end": 22641.38, + "probability": 0.7812 + }, + { + "start": 22641.52, + "end": 22642.36, + "probability": 0.7777 + }, + { + "start": 22642.46, + "end": 22646.06, + "probability": 0.9627 + }, + { + "start": 22646.88, + "end": 22650.96, + "probability": 0.7367 + }, + { + "start": 22651.6, + "end": 22653.2, + "probability": 0.877 + }, + { + "start": 22653.88, + "end": 22657.16, + "probability": 0.7954 + }, + { + "start": 22658.04, + "end": 22660.69, + "probability": 0.9897 + }, + { + "start": 22661.68, + "end": 22664.02, + "probability": 0.9926 + }, + { + "start": 22664.4, + "end": 22665.78, + "probability": 0.9977 + }, + { + "start": 22666.56, + "end": 22670.44, + "probability": 0.9631 + }, + { + "start": 22671.18, + "end": 22671.52, + "probability": 0.8289 + }, + { + "start": 22672.54, + "end": 22673.82, + "probability": 0.8635 + }, + { + "start": 22674.42, + "end": 22676.84, + "probability": 0.8977 + }, + { + "start": 22677.38, + "end": 22679.76, + "probability": 0.9653 + }, + { + "start": 22680.54, + "end": 22681.52, + "probability": 0.9416 + }, + { + "start": 22682.88, + "end": 22683.7, + "probability": 0.967 + }, + { + "start": 22684.3, + "end": 22686.38, + "probability": 0.8896 + }, + { + "start": 22687.14, + "end": 22690.98, + "probability": 0.9976 + }, + { + "start": 22691.52, + "end": 22692.54, + "probability": 0.9684 + }, + { + "start": 22692.66, + "end": 22693.04, + "probability": 0.5122 + }, + { + "start": 22693.04, + "end": 22693.16, + "probability": 0.7397 + }, + { + "start": 22696.6, + "end": 22702.28, + "probability": 0.8084 + }, + { + "start": 22702.78, + "end": 22706.36, + "probability": 0.5951 + }, + { + "start": 22717.52, + "end": 22719.92, + "probability": 0.8099 + }, + { + "start": 22720.82, + "end": 22725.3, + "probability": 0.8755 + }, + { + "start": 22725.94, + "end": 22728.2, + "probability": 0.8349 + }, + { + "start": 22729.54, + "end": 22731.4, + "probability": 0.7987 + }, + { + "start": 22732.64, + "end": 22735.32, + "probability": 0.99 + }, + { + "start": 22737.2, + "end": 22739.54, + "probability": 0.9541 + }, + { + "start": 22740.58, + "end": 22742.2, + "probability": 0.9561 + }, + { + "start": 22742.92, + "end": 22744.44, + "probability": 0.8401 + }, + { + "start": 22747.24, + "end": 22750.0, + "probability": 0.9033 + }, + { + "start": 22751.1, + "end": 22753.44, + "probability": 0.4835 + }, + { + "start": 22754.0, + "end": 22755.82, + "probability": 0.9755 + }, + { + "start": 22757.3, + "end": 22758.46, + "probability": 0.8745 + }, + { + "start": 22759.94, + "end": 22768.36, + "probability": 0.9783 + }, + { + "start": 22768.38, + "end": 22769.68, + "probability": 0.9668 + }, + { + "start": 22770.64, + "end": 22774.42, + "probability": 0.9992 + }, + { + "start": 22775.52, + "end": 22778.04, + "probability": 0.9779 + }, + { + "start": 22781.5, + "end": 22782.28, + "probability": 0.7543 + }, + { + "start": 22783.46, + "end": 22784.44, + "probability": 0.6864 + }, + { + "start": 22785.28, + "end": 22788.62, + "probability": 0.8624 + }, + { + "start": 22789.18, + "end": 22791.84, + "probability": 0.9834 + }, + { + "start": 22792.42, + "end": 22793.82, + "probability": 0.9585 + }, + { + "start": 22794.86, + "end": 22799.32, + "probability": 0.0199 + }, + { + "start": 22800.78, + "end": 22805.66, + "probability": 0.0418 + }, + { + "start": 22806.28, + "end": 22813.98, + "probability": 0.0717 + }, + { + "start": 22814.56, + "end": 22815.28, + "probability": 0.0237 + }, + { + "start": 22816.7, + "end": 22819.04, + "probability": 0.0809 + }, + { + "start": 22819.68, + "end": 22819.78, + "probability": 0.0242 + }, + { + "start": 22823.62, + "end": 22824.3, + "probability": 0.0166 + }, + { + "start": 22826.48, + "end": 22827.52, + "probability": 0.0399 + }, + { + "start": 22828.34, + "end": 22829.32, + "probability": 0.1143 + }, + { + "start": 22829.96, + "end": 22833.92, + "probability": 0.0789 + }, + { + "start": 22834.08, + "end": 22834.74, + "probability": 0.1642 + }, + { + "start": 22835.16, + "end": 22837.46, + "probability": 0.1487 + }, + { + "start": 22837.93, + "end": 22841.16, + "probability": 0.0445 + }, + { + "start": 22842.04, + "end": 22842.98, + "probability": 0.1464 + }, + { + "start": 22844.02, + "end": 22845.64, + "probability": 0.0906 + }, + { + "start": 22847.0, + "end": 22847.0, + "probability": 0.0 + }, + { + "start": 22847.0, + "end": 22847.0, + "probability": 0.0 + }, + { + "start": 22847.0, + "end": 22847.0, + "probability": 0.0 + }, + { + "start": 22847.0, + "end": 22847.0, + "probability": 0.0 + }, + { + "start": 22847.0, + "end": 22847.0, + "probability": 0.0 + }, + { + "start": 22847.0, + "end": 22847.0, + "probability": 0.0 + }, + { + "start": 22847.0, + "end": 22847.0, + "probability": 0.0 + }, + { + "start": 22848.32, + "end": 22849.86, + "probability": 0.7606 + }, + { + "start": 22850.66, + "end": 22851.1, + "probability": 0.8379 + }, + { + "start": 22851.42, + "end": 22852.0, + "probability": 0.549 + }, + { + "start": 22852.04, + "end": 22855.94, + "probability": 0.9598 + }, + { + "start": 22856.62, + "end": 22858.66, + "probability": 0.9391 + }, + { + "start": 22859.28, + "end": 22860.92, + "probability": 0.9697 + }, + { + "start": 22861.56, + "end": 22863.06, + "probability": 0.9908 + }, + { + "start": 22863.6, + "end": 22868.5, + "probability": 0.7602 + }, + { + "start": 22869.12, + "end": 22869.52, + "probability": 0.8051 + }, + { + "start": 22871.16, + "end": 22872.14, + "probability": 0.5657 + }, + { + "start": 22872.68, + "end": 22880.48, + "probability": 0.8584 + }, + { + "start": 22897.52, + "end": 22897.52, + "probability": 0.435 + }, + { + "start": 22897.52, + "end": 22899.06, + "probability": 0.5364 + }, + { + "start": 22899.98, + "end": 22901.54, + "probability": 0.9937 + }, + { + "start": 22903.88, + "end": 22906.44, + "probability": 0.599 + }, + { + "start": 22907.52, + "end": 22911.4, + "probability": 0.9845 + }, + { + "start": 22911.56, + "end": 22915.26, + "probability": 0.9946 + }, + { + "start": 22916.4, + "end": 22920.3, + "probability": 0.9189 + }, + { + "start": 22920.82, + "end": 22924.1, + "probability": 0.9954 + }, + { + "start": 22924.68, + "end": 22926.9, + "probability": 0.9593 + }, + { + "start": 22927.98, + "end": 22929.2, + "probability": 0.8281 + }, + { + "start": 22929.56, + "end": 22933.74, + "probability": 0.9581 + }, + { + "start": 22935.62, + "end": 22939.72, + "probability": 0.9194 + }, + { + "start": 22940.1, + "end": 22945.48, + "probability": 0.9979 + }, + { + "start": 22945.48, + "end": 22951.54, + "probability": 0.9984 + }, + { + "start": 22952.26, + "end": 22956.76, + "probability": 0.9797 + }, + { + "start": 22957.74, + "end": 22961.86, + "probability": 0.9906 + }, + { + "start": 22961.86, + "end": 22967.86, + "probability": 0.9917 + }, + { + "start": 22967.86, + "end": 22972.66, + "probability": 0.994 + }, + { + "start": 22974.26, + "end": 22979.58, + "probability": 0.9967 + }, + { + "start": 22980.42, + "end": 22983.46, + "probability": 0.9966 + }, + { + "start": 22984.66, + "end": 22986.22, + "probability": 0.4987 + }, + { + "start": 22986.26, + "end": 22986.92, + "probability": 0.774 + }, + { + "start": 22987.34, + "end": 22989.92, + "probability": 0.9957 + }, + { + "start": 22989.92, + "end": 22993.84, + "probability": 0.9989 + }, + { + "start": 22995.26, + "end": 22998.54, + "probability": 0.9897 + }, + { + "start": 22998.98, + "end": 23000.6, + "probability": 0.9982 + }, + { + "start": 23001.24, + "end": 23003.4, + "probability": 0.9059 + }, + { + "start": 23004.5, + "end": 23006.84, + "probability": 0.9329 + }, + { + "start": 23007.38, + "end": 23008.88, + "probability": 0.9228 + }, + { + "start": 23009.76, + "end": 23012.82, + "probability": 0.6661 + }, + { + "start": 23015.46, + "end": 23021.36, + "probability": 0.9769 + }, + { + "start": 23022.14, + "end": 23023.98, + "probability": 0.715 + }, + { + "start": 23024.4, + "end": 23028.02, + "probability": 0.9845 + }, + { + "start": 23028.44, + "end": 23031.52, + "probability": 0.9822 + }, + { + "start": 23032.06, + "end": 23032.32, + "probability": 0.8357 + }, + { + "start": 23033.94, + "end": 23036.68, + "probability": 0.8026 + }, + { + "start": 23037.3, + "end": 23042.74, + "probability": 0.9648 + }, + { + "start": 23042.9, + "end": 23047.66, + "probability": 0.9797 + }, + { + "start": 23048.36, + "end": 23052.26, + "probability": 0.9817 + }, + { + "start": 23052.84, + "end": 23053.72, + "probability": 0.9778 + }, + { + "start": 23054.96, + "end": 23055.78, + "probability": 0.6805 + }, + { + "start": 23056.16, + "end": 23060.62, + "probability": 0.9588 + }, + { + "start": 23061.24, + "end": 23065.36, + "probability": 0.9917 + }, + { + "start": 23073.86, + "end": 23074.18, + "probability": 0.3545 + }, + { + "start": 23074.18, + "end": 23075.66, + "probability": 0.8303 + }, + { + "start": 23079.36, + "end": 23081.36, + "probability": 0.2763 + }, + { + "start": 23081.36, + "end": 23082.8, + "probability": 0.4865 + }, + { + "start": 23083.08, + "end": 23084.22, + "probability": 0.3643 + }, + { + "start": 23088.7, + "end": 23089.7, + "probability": 0.9971 + }, + { + "start": 23090.46, + "end": 23092.44, + "probability": 0.9711 + }, + { + "start": 23100.2, + "end": 23100.78, + "probability": 0.7268 + }, + { + "start": 23106.14, + "end": 23110.16, + "probability": 0.4552 + }, + { + "start": 23110.7, + "end": 23115.96, + "probability": 0.9941 + }, + { + "start": 23118.14, + "end": 23119.18, + "probability": 0.2033 + }, + { + "start": 23119.18, + "end": 23120.82, + "probability": 0.3565 + }, + { + "start": 23120.82, + "end": 23121.6, + "probability": 0.5412 + }, + { + "start": 23121.68, + "end": 23122.54, + "probability": 0.6899 + }, + { + "start": 23122.64, + "end": 23123.58, + "probability": 0.4695 + }, + { + "start": 23126.06, + "end": 23129.18, + "probability": 0.7859 + }, + { + "start": 23130.06, + "end": 23131.88, + "probability": 0.8377 + }, + { + "start": 23132.9, + "end": 23133.76, + "probability": 0.7852 + }, + { + "start": 23136.89, + "end": 23144.2, + "probability": 0.9969 + }, + { + "start": 23144.34, + "end": 23149.22, + "probability": 0.9417 + }, + { + "start": 23150.32, + "end": 23153.24, + "probability": 0.9852 + }, + { + "start": 23153.42, + "end": 23154.92, + "probability": 0.9639 + }, + { + "start": 23155.78, + "end": 23156.7, + "probability": 0.3391 + }, + { + "start": 23157.3, + "end": 23164.92, + "probability": 0.9957 + }, + { + "start": 23167.1, + "end": 23167.78, + "probability": 0.8058 + }, + { + "start": 23169.08, + "end": 23171.96, + "probability": 0.8804 + }, + { + "start": 23172.0, + "end": 23172.2, + "probability": 0.3982 + }, + { + "start": 23172.3, + "end": 23174.24, + "probability": 0.9006 + }, + { + "start": 23174.44, + "end": 23175.64, + "probability": 0.9865 + }, + { + "start": 23176.66, + "end": 23177.88, + "probability": 0.9885 + }, + { + "start": 23177.98, + "end": 23180.58, + "probability": 0.974 + }, + { + "start": 23181.68, + "end": 23185.52, + "probability": 0.9969 + }, + { + "start": 23185.52, + "end": 23187.7, + "probability": 0.9836 + }, + { + "start": 23187.76, + "end": 23189.0, + "probability": 0.7276 + }, + { + "start": 23189.88, + "end": 23194.06, + "probability": 0.9977 + }, + { + "start": 23194.86, + "end": 23196.96, + "probability": 0.4533 + }, + { + "start": 23198.5, + "end": 23199.54, + "probability": 0.8704 + }, + { + "start": 23201.34, + "end": 23204.02, + "probability": 0.9757 + }, + { + "start": 23205.74, + "end": 23206.54, + "probability": 0.9803 + }, + { + "start": 23207.58, + "end": 23209.2, + "probability": 0.9656 + }, + { + "start": 23210.14, + "end": 23213.66, + "probability": 0.9501 + }, + { + "start": 23213.66, + "end": 23216.3, + "probability": 0.9839 + }, + { + "start": 23217.26, + "end": 23218.6, + "probability": 0.9019 + }, + { + "start": 23219.54, + "end": 23222.98, + "probability": 0.9846 + }, + { + "start": 23223.76, + "end": 23226.86, + "probability": 0.9831 + }, + { + "start": 23227.88, + "end": 23230.06, + "probability": 0.9901 + }, + { + "start": 23231.56, + "end": 23232.52, + "probability": 0.6664 + }, + { + "start": 23232.92, + "end": 23235.02, + "probability": 0.9924 + }, + { + "start": 23236.02, + "end": 23239.42, + "probability": 0.9201 + }, + { + "start": 23240.2, + "end": 23241.58, + "probability": 0.8535 + }, + { + "start": 23241.7, + "end": 23242.04, + "probability": 0.9282 + }, + { + "start": 23242.38, + "end": 23242.79, + "probability": 0.9601 + }, + { + "start": 23243.26, + "end": 23245.0, + "probability": 0.9067 + }, + { + "start": 23245.9, + "end": 23248.2, + "probability": 0.9912 + }, + { + "start": 23249.06, + "end": 23251.24, + "probability": 0.893 + }, + { + "start": 23253.04, + "end": 23255.32, + "probability": 0.9924 + }, + { + "start": 23256.08, + "end": 23258.0, + "probability": 0.9783 + }, + { + "start": 23259.06, + "end": 23259.9, + "probability": 0.9863 + }, + { + "start": 23262.06, + "end": 23263.18, + "probability": 0.8594 + }, + { + "start": 23263.7, + "end": 23264.93, + "probability": 0.9571 + }, + { + "start": 23266.1, + "end": 23268.56, + "probability": 0.9651 + }, + { + "start": 23269.14, + "end": 23273.04, + "probability": 0.9035 + }, + { + "start": 23273.74, + "end": 23276.58, + "probability": 0.8398 + }, + { + "start": 23277.2, + "end": 23278.52, + "probability": 0.7171 + }, + { + "start": 23278.52, + "end": 23279.9, + "probability": 0.9948 + }, + { + "start": 23280.54, + "end": 23284.16, + "probability": 0.6677 + }, + { + "start": 23284.66, + "end": 23285.24, + "probability": 0.6936 + }, + { + "start": 23285.42, + "end": 23285.88, + "probability": 0.284 + }, + { + "start": 23285.94, + "end": 23287.38, + "probability": 0.6133 + }, + { + "start": 23288.04, + "end": 23291.56, + "probability": 0.7389 + }, + { + "start": 23293.82, + "end": 23295.18, + "probability": 0.9864 + }, + { + "start": 23295.28, + "end": 23296.7, + "probability": 0.9699 + }, + { + "start": 23298.02, + "end": 23302.72, + "probability": 0.9891 + }, + { + "start": 23303.26, + "end": 23305.98, + "probability": 0.9079 + }, + { + "start": 23306.98, + "end": 23309.32, + "probability": 0.8755 + }, + { + "start": 23310.28, + "end": 23312.96, + "probability": 0.9719 + }, + { + "start": 23313.54, + "end": 23313.96, + "probability": 0.9511 + }, + { + "start": 23314.02, + "end": 23316.23, + "probability": 0.9206 + }, + { + "start": 23317.98, + "end": 23320.78, + "probability": 0.9917 + }, + { + "start": 23321.58, + "end": 23324.26, + "probability": 0.9932 + }, + { + "start": 23324.86, + "end": 23325.36, + "probability": 0.5594 + }, + { + "start": 23326.14, + "end": 23330.32, + "probability": 0.9928 + }, + { + "start": 23330.6, + "end": 23330.82, + "probability": 0.5945 + }, + { + "start": 23330.92, + "end": 23333.4, + "probability": 0.9224 + }, + { + "start": 23333.82, + "end": 23334.92, + "probability": 0.8378 + }, + { + "start": 23335.8, + "end": 23336.84, + "probability": 0.9243 + }, + { + "start": 23337.46, + "end": 23339.34, + "probability": 0.9895 + }, + { + "start": 23339.34, + "end": 23341.54, + "probability": 0.9938 + }, + { + "start": 23341.68, + "end": 23342.3, + "probability": 0.769 + }, + { + "start": 23342.46, + "end": 23343.16, + "probability": 0.5361 + }, + { + "start": 23343.86, + "end": 23345.68, + "probability": 0.9128 + }, + { + "start": 23346.2, + "end": 23347.5, + "probability": 0.7968 + }, + { + "start": 23347.56, + "end": 23347.9, + "probability": 0.6782 + }, + { + "start": 23348.0, + "end": 23349.9, + "probability": 0.7805 + }, + { + "start": 23350.46, + "end": 23351.02, + "probability": 0.5371 + }, + { + "start": 23351.04, + "end": 23353.02, + "probability": 0.6638 + }, + { + "start": 23353.04, + "end": 23353.1, + "probability": 0.5542 + }, + { + "start": 23353.1, + "end": 23353.44, + "probability": 0.6012 + }, + { + "start": 23353.5, + "end": 23357.22, + "probability": 0.9941 + }, + { + "start": 23357.22, + "end": 23360.92, + "probability": 0.6299 + }, + { + "start": 23360.92, + "end": 23361.36, + "probability": 0.3545 + }, + { + "start": 23361.38, + "end": 23361.7, + "probability": 0.1524 + }, + { + "start": 23361.7, + "end": 23361.7, + "probability": 0.4186 + }, + { + "start": 23361.7, + "end": 23361.86, + "probability": 0.3347 + }, + { + "start": 23362.4, + "end": 23362.4, + "probability": 0.529 + }, + { + "start": 23362.4, + "end": 23363.22, + "probability": 0.5338 + }, + { + "start": 23363.34, + "end": 23364.84, + "probability": 0.9266 + }, + { + "start": 23365.18, + "end": 23365.26, + "probability": 0.5697 + }, + { + "start": 23365.78, + "end": 23367.64, + "probability": 0.9671 + }, + { + "start": 23368.18, + "end": 23369.92, + "probability": 0.427 + }, + { + "start": 23370.26, + "end": 23371.36, + "probability": 0.9805 + }, + { + "start": 23371.76, + "end": 23372.02, + "probability": 0.8577 + }, + { + "start": 23372.9, + "end": 23375.98, + "probability": 0.9163 + }, + { + "start": 23390.18, + "end": 23391.22, + "probability": 0.8438 + }, + { + "start": 23391.76, + "end": 23392.2, + "probability": 0.8103 + }, + { + "start": 23393.26, + "end": 23395.62, + "probability": 0.9222 + }, + { + "start": 23396.1, + "end": 23401.82, + "probability": 0.981 + }, + { + "start": 23402.16, + "end": 23403.52, + "probability": 0.8835 + }, + { + "start": 23403.88, + "end": 23405.26, + "probability": 0.9464 + }, + { + "start": 23406.42, + "end": 23407.56, + "probability": 0.9043 + }, + { + "start": 23409.52, + "end": 23413.34, + "probability": 0.9679 + }, + { + "start": 23414.52, + "end": 23414.76, + "probability": 0.4055 + }, + { + "start": 23414.92, + "end": 23424.26, + "probability": 0.9712 + }, + { + "start": 23425.24, + "end": 23427.58, + "probability": 0.8717 + }, + { + "start": 23429.16, + "end": 23431.78, + "probability": 0.9978 + }, + { + "start": 23433.08, + "end": 23437.72, + "probability": 0.9305 + }, + { + "start": 23439.32, + "end": 23440.9, + "probability": 0.969 + }, + { + "start": 23441.7, + "end": 23445.12, + "probability": 0.9585 + }, + { + "start": 23447.88, + "end": 23449.67, + "probability": 0.1121 + }, + { + "start": 23450.76, + "end": 23453.64, + "probability": 0.0562 + }, + { + "start": 23456.64, + "end": 23464.34, + "probability": 0.0927 + }, + { + "start": 23469.68, + "end": 23471.94, + "probability": 0.9007 + }, + { + "start": 23471.98, + "end": 23473.44, + "probability": 0.9722 + }, + { + "start": 23474.44, + "end": 23477.28, + "probability": 0.9922 + }, + { + "start": 23477.92, + "end": 23478.04, + "probability": 0.216 + }, + { + "start": 23478.84, + "end": 23480.65, + "probability": 0.0827 + }, + { + "start": 23481.84, + "end": 23482.26, + "probability": 0.282 + }, + { + "start": 23482.78, + "end": 23483.78, + "probability": 0.242 + }, + { + "start": 23485.16, + "end": 23485.16, + "probability": 0.0435 + }, + { + "start": 23486.54, + "end": 23488.22, + "probability": 0.0126 + }, + { + "start": 23488.58, + "end": 23489.62, + "probability": 0.6136 + }, + { + "start": 23491.7, + "end": 23493.06, + "probability": 0.3107 + }, + { + "start": 23493.62, + "end": 23498.04, + "probability": 0.9905 + }, + { + "start": 23498.28, + "end": 23499.64, + "probability": 0.7751 + }, + { + "start": 23499.88, + "end": 23500.66, + "probability": 0.4219 + }, + { + "start": 23501.0, + "end": 23501.64, + "probability": 0.7297 + }, + { + "start": 23502.26, + "end": 23503.0, + "probability": 0.7461 + }, + { + "start": 23503.48, + "end": 23504.96, + "probability": 0.529 + }, + { + "start": 23507.51, + "end": 23510.32, + "probability": 0.5786 + }, + { + "start": 23512.68, + "end": 23516.46, + "probability": 0.9714 + }, + { + "start": 23517.38, + "end": 23519.34, + "probability": 0.9946 + }, + { + "start": 23519.68, + "end": 23520.28, + "probability": 0.8143 + }, + { + "start": 23521.28, + "end": 23524.74, + "probability": 0.9492 + }, + { + "start": 23524.88, + "end": 23526.84, + "probability": 0.1114 + }, + { + "start": 23527.48, + "end": 23529.56, + "probability": 0.938 + }, + { + "start": 23529.82, + "end": 23530.22, + "probability": 0.4037 + }, + { + "start": 23530.42, + "end": 23531.89, + "probability": 0.2025 + }, + { + "start": 23532.88, + "end": 23533.2, + "probability": 0.0835 + }, + { + "start": 23533.46, + "end": 23534.26, + "probability": 0.0637 + }, + { + "start": 23534.64, + "end": 23537.32, + "probability": 0.7764 + }, + { + "start": 23538.28, + "end": 23542.84, + "probability": 0.9927 + }, + { + "start": 23542.84, + "end": 23547.28, + "probability": 0.9288 + }, + { + "start": 23547.42, + "end": 23550.99, + "probability": 0.9369 + }, + { + "start": 23551.36, + "end": 23552.42, + "probability": 0.6644 + }, + { + "start": 23552.92, + "end": 23554.8, + "probability": 0.9948 + }, + { + "start": 23555.38, + "end": 23559.28, + "probability": 0.8383 + }, + { + "start": 23560.64, + "end": 23561.58, + "probability": 0.7282 + }, + { + "start": 23562.82, + "end": 23564.88, + "probability": 0.7344 + }, + { + "start": 23564.96, + "end": 23569.24, + "probability": 0.9863 + }, + { + "start": 23570.76, + "end": 23576.06, + "probability": 0.9922 + }, + { + "start": 23576.42, + "end": 23580.8, + "probability": 0.8079 + }, + { + "start": 23582.22, + "end": 23585.24, + "probability": 0.1567 + }, + { + "start": 23586.48, + "end": 23587.44, + "probability": 0.6376 + }, + { + "start": 23588.6, + "end": 23588.88, + "probability": 0.9629 + }, + { + "start": 23589.84, + "end": 23590.76, + "probability": 0.8767 + }, + { + "start": 23592.12, + "end": 23592.64, + "probability": 0.9857 + }, + { + "start": 23593.34, + "end": 23594.44, + "probability": 0.6666 + }, + { + "start": 23595.48, + "end": 23595.74, + "probability": 0.9453 + }, + { + "start": 23596.68, + "end": 23597.54, + "probability": 0.9117 + }, + { + "start": 23598.14, + "end": 23603.04, + "probability": 0.9516 + }, + { + "start": 23603.86, + "end": 23604.26, + "probability": 0.989 + }, + { + "start": 23605.62, + "end": 23606.46, + "probability": 0.9279 + }, + { + "start": 23607.26, + "end": 23607.64, + "probability": 0.6283 + }, + { + "start": 23608.94, + "end": 23610.0, + "probability": 0.5104 + }, + { + "start": 23610.88, + "end": 23611.26, + "probability": 0.9287 + }, + { + "start": 23612.08, + "end": 23612.86, + "probability": 0.9364 + }, + { + "start": 23614.12, + "end": 23614.44, + "probability": 0.9841 + }, + { + "start": 23615.66, + "end": 23616.46, + "probability": 0.8931 + }, + { + "start": 23617.58, + "end": 23619.68, + "probability": 0.9895 + }, + { + "start": 23620.38, + "end": 23622.56, + "probability": 0.9798 + }, + { + "start": 23623.28, + "end": 23623.68, + "probability": 0.9655 + }, + { + "start": 23625.1, + "end": 23625.96, + "probability": 0.9727 + }, + { + "start": 23627.58, + "end": 23627.98, + "probability": 0.9941 + }, + { + "start": 23628.76, + "end": 23629.6, + "probability": 0.9882 + }, + { + "start": 23630.5, + "end": 23630.92, + "probability": 0.9564 + }, + { + "start": 23631.72, + "end": 23632.54, + "probability": 0.9802 + }, + { + "start": 23634.1, + "end": 23634.32, + "probability": 0.9958 + }, + { + "start": 23635.56, + "end": 23636.38, + "probability": 0.2931 + }, + { + "start": 23637.14, + "end": 23637.48, + "probability": 0.7098 + }, + { + "start": 23638.48, + "end": 23639.32, + "probability": 0.7036 + }, + { + "start": 23640.48, + "end": 23640.86, + "probability": 0.8342 + }, + { + "start": 23641.74, + "end": 23642.66, + "probability": 0.8961 + }, + { + "start": 23643.48, + "end": 23645.34, + "probability": 0.9852 + }, + { + "start": 23646.08, + "end": 23646.62, + "probability": 0.992 + }, + { + "start": 23647.16, + "end": 23647.88, + "probability": 0.9894 + }, + { + "start": 23649.63, + "end": 23651.74, + "probability": 0.9898 + }, + { + "start": 23652.9, + "end": 23654.7, + "probability": 0.9689 + }, + { + "start": 23656.7, + "end": 23659.88, + "probability": 0.8752 + }, + { + "start": 23663.12, + "end": 23666.08, + "probability": 0.7393 + }, + { + "start": 23666.64, + "end": 23668.86, + "probability": 0.692 + }, + { + "start": 23671.36, + "end": 23673.44, + "probability": 0.7764 + }, + { + "start": 23674.1, + "end": 23676.06, + "probability": 0.9415 + }, + { + "start": 23677.24, + "end": 23678.94, + "probability": 0.7906 + }, + { + "start": 23680.7, + "end": 23683.06, + "probability": 0.5683 + }, + { + "start": 23684.9, + "end": 23687.02, + "probability": 0.4351 + }, + { + "start": 23694.82, + "end": 23695.88, + "probability": 0.5041 + }, + { + "start": 23712.12, + "end": 23714.78, + "probability": 0.804 + }, + { + "start": 23715.44, + "end": 23715.84, + "probability": 0.8667 + }, + { + "start": 23717.22, + "end": 23718.06, + "probability": 0.8106 + }, + { + "start": 23719.38, + "end": 23723.54, + "probability": 0.9427 + }, + { + "start": 23724.34, + "end": 23724.66, + "probability": 0.9768 + }, + { + "start": 23725.32, + "end": 23726.65, + "probability": 0.524 + }, + { + "start": 23727.3, + "end": 23729.42, + "probability": 0.7037 + }, + { + "start": 23730.1, + "end": 23730.64, + "probability": 0.9355 + }, + { + "start": 23732.06, + "end": 23732.86, + "probability": 0.9419 + }, + { + "start": 23733.58, + "end": 23735.4, + "probability": 0.7226 + }, + { + "start": 23738.14, + "end": 23738.8, + "probability": 0.9904 + }, + { + "start": 23740.0, + "end": 23740.84, + "probability": 0.9405 + }, + { + "start": 23741.86, + "end": 23745.32, + "probability": 0.9249 + }, + { + "start": 23746.86, + "end": 23751.0, + "probability": 0.8449 + }, + { + "start": 23751.84, + "end": 23752.34, + "probability": 0.7537 + }, + { + "start": 23753.08, + "end": 23753.84, + "probability": 0.4027 + }, + { + "start": 23754.9, + "end": 23755.36, + "probability": 0.9834 + }, + { + "start": 23756.46, + "end": 23757.44, + "probability": 0.8452 + }, + { + "start": 23758.3, + "end": 23758.78, + "probability": 0.9928 + }, + { + "start": 23760.12, + "end": 23760.88, + "probability": 0.8035 + }, + { + "start": 23762.32, + "end": 23764.34, + "probability": 0.9915 + }, + { + "start": 23765.7, + "end": 23766.16, + "probability": 0.8792 + }, + { + "start": 23766.74, + "end": 23767.52, + "probability": 0.7427 + }, + { + "start": 23769.06, + "end": 23770.7, + "probability": 0.5091 + }, + { + "start": 23771.24, + "end": 23772.66, + "probability": 0.0227 + }, + { + "start": 23784.62, + "end": 23785.78, + "probability": 0.3753 + }, + { + "start": 23786.56, + "end": 23786.84, + "probability": 0.5342 + }, + { + "start": 23788.78, + "end": 23789.98, + "probability": 0.9342 + }, + { + "start": 23790.82, + "end": 23793.32, + "probability": 0.8032 + }, + { + "start": 23798.9, + "end": 23799.2, + "probability": 0.5957 + }, + { + "start": 23800.36, + "end": 23801.22, + "probability": 0.7234 + }, + { + "start": 23801.98, + "end": 23802.48, + "probability": 0.9066 + }, + { + "start": 23803.54, + "end": 23804.68, + "probability": 0.9218 + }, + { + "start": 23805.4, + "end": 23807.46, + "probability": 0.9728 + }, + { + "start": 23808.64, + "end": 23810.48, + "probability": 0.9709 + }, + { + "start": 23811.46, + "end": 23812.6, + "probability": 0.9868 + }, + { + "start": 23813.46, + "end": 23814.14, + "probability": 0.8176 + }, + { + "start": 23819.92, + "end": 23820.38, + "probability": 0.7384 + }, + { + "start": 23821.34, + "end": 23822.14, + "probability": 0.974 + }, + { + "start": 23822.84, + "end": 23824.14, + "probability": 0.8156 + }, + { + "start": 23826.22, + "end": 23826.56, + "probability": 0.9312 + }, + { + "start": 23829.6, + "end": 23830.82, + "probability": 0.3684 + }, + { + "start": 23831.58, + "end": 23832.12, + "probability": 0.9688 + }, + { + "start": 23832.9, + "end": 23834.4, + "probability": 0.855 + }, + { + "start": 23835.68, + "end": 23840.18, + "probability": 0.9427 + }, + { + "start": 23840.96, + "end": 23844.18, + "probability": 0.8491 + }, + { + "start": 23845.08, + "end": 23846.9, + "probability": 0.9377 + }, + { + "start": 23847.82, + "end": 23850.26, + "probability": 0.9825 + }, + { + "start": 23850.9, + "end": 23853.34, + "probability": 0.9675 + }, + { + "start": 23854.2, + "end": 23855.74, + "probability": 0.0163 + }, + { + "start": 23856.74, + "end": 23857.58, + "probability": 0.7026 + }, + { + "start": 23860.96, + "end": 23863.02, + "probability": 0.6787 + }, + { + "start": 23863.7, + "end": 23865.62, + "probability": 0.8194 + }, + { + "start": 23866.4, + "end": 23866.96, + "probability": 0.9915 + }, + { + "start": 23867.7, + "end": 23868.64, + "probability": 0.7095 + }, + { + "start": 23869.94, + "end": 23872.48, + "probability": 0.8181 + }, + { + "start": 23873.16, + "end": 23873.76, + "probability": 0.9889 + }, + { + "start": 23874.6, + "end": 23875.5, + "probability": 0.7426 + }, + { + "start": 23877.44, + "end": 23878.04, + "probability": 0.9858 + }, + { + "start": 23879.32, + "end": 23880.44, + "probability": 0.91 + }, + { + "start": 23881.1, + "end": 23881.6, + "probability": 0.9827 + }, + { + "start": 23882.56, + "end": 23883.64, + "probability": 0.9497 + }, + { + "start": 23884.66, + "end": 23885.12, + "probability": 0.9836 + }, + { + "start": 23885.8, + "end": 23886.48, + "probability": 0.6864 + }, + { + "start": 23888.02, + "end": 23888.46, + "probability": 0.5399 + }, + { + "start": 23889.12, + "end": 23889.94, + "probability": 0.7805 + }, + { + "start": 23891.34, + "end": 23893.6, + "probability": 0.7481 + }, + { + "start": 23894.18, + "end": 23896.64, + "probability": 0.9577 + }, + { + "start": 23898.1, + "end": 23900.82, + "probability": 0.9587 + }, + { + "start": 23903.78, + "end": 23906.68, + "probability": 0.9865 + }, + { + "start": 23907.02, + "end": 23913.36, + "probability": 0.8818 + }, + { + "start": 23913.72, + "end": 23914.22, + "probability": 0.994 + }, + { + "start": 23915.14, + "end": 23915.9, + "probability": 0.5959 + }, + { + "start": 23918.04, + "end": 23918.54, + "probability": 0.8428 + }, + { + "start": 23919.2, + "end": 23919.92, + "probability": 0.7952 + }, + { + "start": 23921.64, + "end": 23923.8, + "probability": 0.8995 + }, + { + "start": 23930.3, + "end": 23931.22, + "probability": 0.7217 + }, + { + "start": 23933.0, + "end": 23933.98, + "probability": 0.5286 + }, + { + "start": 23934.98, + "end": 23935.56, + "probability": 0.9621 + }, + { + "start": 23936.38, + "end": 23937.5, + "probability": 0.654 + }, + { + "start": 23938.04, + "end": 23938.5, + "probability": 0.9778 + }, + { + "start": 23939.2, + "end": 23940.3, + "probability": 0.7311 + }, + { + "start": 23941.54, + "end": 23944.0, + "probability": 0.9736 + }, + { + "start": 23945.18, + "end": 23948.04, + "probability": 0.7874 + }, + { + "start": 23954.26, + "end": 23957.2, + "probability": 0.3546 + }, + { + "start": 23959.9, + "end": 23960.36, + "probability": 0.6577 + }, + { + "start": 23962.64, + "end": 23963.38, + "probability": 0.9142 + }, + { + "start": 23964.97, + "end": 23967.2, + "probability": 0.9335 + }, + { + "start": 23967.98, + "end": 23968.56, + "probability": 0.9803 + }, + { + "start": 23969.26, + "end": 23970.06, + "probability": 0.7984 + }, + { + "start": 23974.08, + "end": 23976.28, + "probability": 0.7539 + }, + { + "start": 23976.84, + "end": 23977.38, + "probability": 0.9621 + }, + { + "start": 23978.06, + "end": 23981.4, + "probability": 0.8859 + }, + { + "start": 23982.34, + "end": 23982.94, + "probability": 0.9777 + }, + { + "start": 23983.68, + "end": 23984.42, + "probability": 0.9537 + }, + { + "start": 23986.98, + "end": 23988.9, + "probability": 0.9766 + }, + { + "start": 23991.72, + "end": 23992.32, + "probability": 0.9834 + }, + { + "start": 23993.66, + "end": 23994.52, + "probability": 0.8613 + }, + { + "start": 23995.9, + "end": 23996.38, + "probability": 0.9836 + }, + { + "start": 23997.38, + "end": 23998.16, + "probability": 0.9488 + }, + { + "start": 23999.62, + "end": 24000.08, + "probability": 0.9873 + }, + { + "start": 24000.84, + "end": 24001.6, + "probability": 0.5931 + }, + { + "start": 24003.18, + "end": 24003.7, + "probability": 0.9299 + }, + { + "start": 24004.98, + "end": 24008.6, + "probability": 0.9198 + }, + { + "start": 24010.36, + "end": 24011.74, + "probability": 0.9964 + }, + { + "start": 24013.34, + "end": 24014.12, + "probability": 0.9693 + }, + { + "start": 24015.04, + "end": 24015.6, + "probability": 0.9971 + }, + { + "start": 24016.24, + "end": 24017.58, + "probability": 0.9189 + }, + { + "start": 24018.32, + "end": 24021.0, + "probability": 0.8948 + }, + { + "start": 24021.6, + "end": 24022.18, + "probability": 0.9969 + }, + { + "start": 24023.2, + "end": 24024.44, + "probability": 0.9253 + }, + { + "start": 24025.28, + "end": 24026.06, + "probability": 0.9897 + }, + { + "start": 24027.86, + "end": 24028.72, + "probability": 0.5286 + }, + { + "start": 24029.62, + "end": 24030.1, + "probability": 0.7381 + }, + { + "start": 24031.42, + "end": 24032.52, + "probability": 0.81 + }, + { + "start": 24034.26, + "end": 24034.72, + "probability": 0.8013 + }, + { + "start": 24035.8, + "end": 24036.66, + "probability": 0.7613 + }, + { + "start": 24037.78, + "end": 24040.2, + "probability": 0.9595 + }, + { + "start": 24041.32, + "end": 24044.12, + "probability": 0.8495 + }, + { + "start": 24046.84, + "end": 24049.1, + "probability": 0.9486 + }, + { + "start": 24053.64, + "end": 24055.62, + "probability": 0.6663 + }, + { + "start": 24056.4, + "end": 24056.9, + "probability": 0.8061 + }, + { + "start": 24057.54, + "end": 24058.24, + "probability": 0.4738 + }, + { + "start": 24061.16, + "end": 24061.72, + "probability": 0.9658 + }, + { + "start": 24062.98, + "end": 24066.22, + "probability": 0.5211 + }, + { + "start": 24067.1, + "end": 24067.5, + "probability": 0.9429 + }, + { + "start": 24070.56, + "end": 24073.14, + "probability": 0.7082 + }, + { + "start": 24073.14, + "end": 24076.8, + "probability": 0.98 + }, + { + "start": 24077.54, + "end": 24078.44, + "probability": 0.2535 + }, + { + "start": 24082.4, + "end": 24083.02, + "probability": 0.8814 + }, + { + "start": 24086.2, + "end": 24086.96, + "probability": 0.5681 + }, + { + "start": 24089.86, + "end": 24090.86, + "probability": 0.8374 + }, + { + "start": 24091.74, + "end": 24092.52, + "probability": 0.7184 + }, + { + "start": 24094.28, + "end": 24095.18, + "probability": 0.5046 + }, + { + "start": 24097.26, + "end": 24098.22, + "probability": 0.6903 + }, + { + "start": 24099.12, + "end": 24099.48, + "probability": 0.7666 + }, + { + "start": 24107.06, + "end": 24111.68, + "probability": 0.9325 + }, + { + "start": 24112.36, + "end": 24115.36, + "probability": 0.9991 + }, + { + "start": 24124.7, + "end": 24125.4, + "probability": 0.7512 + }, + { + "start": 24125.76, + "end": 24132.1, + "probability": 0.9544 + }, + { + "start": 24133.98, + "end": 24137.54, + "probability": 0.0638 + }, + { + "start": 24138.4, + "end": 24138.84, + "probability": 0.1302 + }, + { + "start": 24140.6, + "end": 24142.0, + "probability": 0.0393 + }, + { + "start": 24142.27, + "end": 24144.26, + "probability": 0.2643 + }, + { + "start": 24145.22, + "end": 24147.54, + "probability": 0.1527 + }, + { + "start": 24164.9, + "end": 24167.26, + "probability": 0.0348 + }, + { + "start": 24167.86, + "end": 24169.04, + "probability": 0.2956 + }, + { + "start": 24176.14, + "end": 24177.84, + "probability": 0.0901 + }, + { + "start": 24180.36, + "end": 24181.34, + "probability": 0.0169 + }, + { + "start": 24183.36, + "end": 24185.84, + "probability": 0.0468 + }, + { + "start": 24186.16, + "end": 24188.78, + "probability": 0.0553 + }, + { + "start": 24188.9, + "end": 24191.38, + "probability": 0.0592 + }, + { + "start": 24191.94, + "end": 24193.08, + "probability": 0.0017 + }, + { + "start": 24215.1, + "end": 24215.12, + "probability": 0.1795 + }, + { + "start": 24215.71, + "end": 24216.4, + "probability": 0.0215 + }, + { + "start": 24216.4, + "end": 24216.4, + "probability": 0.0288 + }, + { + "start": 24216.4, + "end": 24217.04, + "probability": 0.0325 + }, + { + "start": 24217.04, + "end": 24217.04, + "probability": 0.0368 + }, + { + "start": 24217.04, + "end": 24218.8, + "probability": 0.1604 + }, + { + "start": 24219.34, + "end": 24222.2, + "probability": 0.0886 + }, + { + "start": 24223.02, + "end": 24227.3, + "probability": 0.1178 + }, + { + "start": 24234.18, + "end": 24236.94, + "probability": 0.0337 + }, + { + "start": 24236.94, + "end": 24242.06, + "probability": 0.0156 + }, + { + "start": 24242.64, + "end": 24244.48, + "probability": 0.0757 + }, + { + "start": 24245.34, + "end": 24247.41, + "probability": 0.1036 + }, + { + "start": 24250.02, + "end": 24253.9, + "probability": 0.0597 + }, + { + "start": 24253.9, + "end": 24253.97, + "probability": 0.2074 + }, + { + "start": 24331.0, + "end": 24331.0, + "probability": 0.0 + }, + { + "start": 24331.0, + "end": 24331.0, + "probability": 0.0 + }, + { + "start": 24331.02, + "end": 24331.02, + "probability": 0.0133 + }, + { + "start": 24331.02, + "end": 24331.02, + "probability": 0.108 + }, + { + "start": 24331.02, + "end": 24331.02, + "probability": 0.1765 + }, + { + "start": 24331.02, + "end": 24331.02, + "probability": 0.0728 + }, + { + "start": 24331.02, + "end": 24334.38, + "probability": 0.8678 + }, + { + "start": 24334.44, + "end": 24338.64, + "probability": 0.4932 + }, + { + "start": 24338.92, + "end": 24340.2, + "probability": 0.4724 + }, + { + "start": 24340.76, + "end": 24342.52, + "probability": 0.9797 + }, + { + "start": 24343.18, + "end": 24343.82, + "probability": 0.6774 + }, + { + "start": 24343.94, + "end": 24346.32, + "probability": 0.9541 + }, + { + "start": 24346.32, + "end": 24349.68, + "probability": 0.6283 + }, + { + "start": 24349.8, + "end": 24351.28, + "probability": 0.4412 + }, + { + "start": 24351.92, + "end": 24355.17, + "probability": 0.7553 + }, + { + "start": 24356.04, + "end": 24358.88, + "probability": 0.8511 + }, + { + "start": 24359.46, + "end": 24359.82, + "probability": 0.7072 + }, + { + "start": 24360.42, + "end": 24361.7, + "probability": 0.7493 + }, + { + "start": 24361.94, + "end": 24367.7, + "probability": 0.9711 + }, + { + "start": 24367.7, + "end": 24371.72, + "probability": 0.9915 + }, + { + "start": 24371.82, + "end": 24373.18, + "probability": 0.9425 + }, + { + "start": 24373.24, + "end": 24373.56, + "probability": 0.7809 + }, + { + "start": 24380.0, + "end": 24381.73, + "probability": 0.7284 + }, + { + "start": 24384.12, + "end": 24384.98, + "probability": 0.7892 + }, + { + "start": 24386.1, + "end": 24386.3, + "probability": 0.6024 + }, + { + "start": 24388.28, + "end": 24393.52, + "probability": 0.9878 + }, + { + "start": 24395.06, + "end": 24396.55, + "probability": 0.9172 + }, + { + "start": 24397.62, + "end": 24399.14, + "probability": 0.8866 + }, + { + "start": 24400.3, + "end": 24402.62, + "probability": 0.8127 + }, + { + "start": 24403.62, + "end": 24406.0, + "probability": 0.9895 + }, + { + "start": 24406.8, + "end": 24408.26, + "probability": 0.9968 + }, + { + "start": 24409.16, + "end": 24410.92, + "probability": 0.9673 + }, + { + "start": 24412.26, + "end": 24415.44, + "probability": 0.9653 + }, + { + "start": 24416.7, + "end": 24420.52, + "probability": 0.9946 + }, + { + "start": 24420.52, + "end": 24422.54, + "probability": 0.9917 + }, + { + "start": 24424.36, + "end": 24426.58, + "probability": 0.9896 + }, + { + "start": 24427.62, + "end": 24428.78, + "probability": 0.9542 + }, + { + "start": 24430.1, + "end": 24436.16, + "probability": 0.9543 + }, + { + "start": 24437.06, + "end": 24437.78, + "probability": 0.9028 + }, + { + "start": 24438.82, + "end": 24439.34, + "probability": 0.9495 + }, + { + "start": 24440.82, + "end": 24441.84, + "probability": 0.918 + }, + { + "start": 24442.2, + "end": 24443.14, + "probability": 0.6378 + }, + { + "start": 24444.52, + "end": 24446.32, + "probability": 0.9973 + }, + { + "start": 24447.56, + "end": 24452.54, + "probability": 0.9961 + }, + { + "start": 24455.08, + "end": 24458.5, + "probability": 0.9735 + }, + { + "start": 24459.62, + "end": 24462.66, + "probability": 0.9876 + }, + { + "start": 24463.62, + "end": 24466.71, + "probability": 0.9875 + }, + { + "start": 24467.58, + "end": 24468.56, + "probability": 0.9992 + }, + { + "start": 24470.34, + "end": 24474.56, + "probability": 0.9993 + }, + { + "start": 24474.58, + "end": 24478.9, + "probability": 0.9233 + }, + { + "start": 24479.26, + "end": 24480.92, + "probability": 0.6625 + }, + { + "start": 24485.42, + "end": 24485.58, + "probability": 0.2324 + }, + { + "start": 24487.9, + "end": 24489.84, + "probability": 0.9868 + }, + { + "start": 24490.87, + "end": 24496.68, + "probability": 0.9475 + }, + { + "start": 24496.98, + "end": 24497.52, + "probability": 0.8904 + }, + { + "start": 24497.58, + "end": 24500.52, + "probability": 0.9064 + }, + { + "start": 24500.56, + "end": 24500.86, + "probability": 0.9186 + }, + { + "start": 24502.54, + "end": 24505.12, + "probability": 0.8542 + }, + { + "start": 24506.38, + "end": 24508.47, + "probability": 0.9131 + }, + { + "start": 24509.42, + "end": 24512.42, + "probability": 0.9852 + }, + { + "start": 24513.36, + "end": 24513.98, + "probability": 0.9023 + }, + { + "start": 24514.98, + "end": 24516.84, + "probability": 0.8878 + }, + { + "start": 24518.62, + "end": 24520.68, + "probability": 0.9984 + }, + { + "start": 24522.02, + "end": 24525.0, + "probability": 0.9956 + }, + { + "start": 24526.16, + "end": 24529.3, + "probability": 0.9963 + }, + { + "start": 24530.1, + "end": 24531.24, + "probability": 0.5796 + }, + { + "start": 24532.06, + "end": 24533.4, + "probability": 0.8617 + }, + { + "start": 24534.34, + "end": 24536.64, + "probability": 0.9877 + }, + { + "start": 24538.14, + "end": 24538.8, + "probability": 0.6655 + }, + { + "start": 24539.84, + "end": 24541.88, + "probability": 0.9729 + }, + { + "start": 24542.86, + "end": 24546.5, + "probability": 0.8632 + }, + { + "start": 24547.46, + "end": 24548.9, + "probability": 0.5342 + }, + { + "start": 24549.88, + "end": 24553.08, + "probability": 0.9979 + }, + { + "start": 24553.88, + "end": 24554.32, + "probability": 0.8409 + }, + { + "start": 24555.1, + "end": 24557.2, + "probability": 0.9794 + }, + { + "start": 24558.12, + "end": 24561.92, + "probability": 0.9818 + }, + { + "start": 24562.88, + "end": 24565.46, + "probability": 0.9927 + }, + { + "start": 24567.04, + "end": 24568.42, + "probability": 0.9214 + }, + { + "start": 24570.16, + "end": 24571.8, + "probability": 0.9028 + }, + { + "start": 24572.56, + "end": 24574.44, + "probability": 0.9577 + }, + { + "start": 24575.38, + "end": 24577.12, + "probability": 0.9839 + }, + { + "start": 24578.78, + "end": 24580.44, + "probability": 0.6895 + }, + { + "start": 24581.84, + "end": 24587.18, + "probability": 0.8959 + }, + { + "start": 24588.44, + "end": 24592.82, + "probability": 0.994 + }, + { + "start": 24594.44, + "end": 24598.92, + "probability": 0.9937 + }, + { + "start": 24600.24, + "end": 24603.18, + "probability": 0.9877 + }, + { + "start": 24604.06, + "end": 24605.4, + "probability": 0.8637 + }, + { + "start": 24606.56, + "end": 24608.44, + "probability": 0.9983 + }, + { + "start": 24609.74, + "end": 24613.44, + "probability": 0.8033 + }, + { + "start": 24614.56, + "end": 24617.82, + "probability": 0.9458 + }, + { + "start": 24619.16, + "end": 24620.8, + "probability": 0.9717 + }, + { + "start": 24621.0, + "end": 24624.26, + "probability": 0.7515 + }, + { + "start": 24624.3, + "end": 24626.04, + "probability": 0.8571 + }, + { + "start": 24626.84, + "end": 24628.7, + "probability": 0.9435 + }, + { + "start": 24629.6, + "end": 24631.24, + "probability": 0.9083 + }, + { + "start": 24632.46, + "end": 24633.52, + "probability": 0.9409 + }, + { + "start": 24634.46, + "end": 24639.34, + "probability": 0.9948 + }, + { + "start": 24639.34, + "end": 24643.84, + "probability": 0.9983 + }, + { + "start": 24643.84, + "end": 24649.5, + "probability": 0.9975 + }, + { + "start": 24650.26, + "end": 24653.36, + "probability": 0.995 + }, + { + "start": 24654.54, + "end": 24655.81, + "probability": 0.9844 + }, + { + "start": 24657.14, + "end": 24658.6, + "probability": 0.9635 + }, + { + "start": 24659.84, + "end": 24660.5, + "probability": 0.4756 + }, + { + "start": 24661.54, + "end": 24664.52, + "probability": 0.8851 + }, + { + "start": 24665.22, + "end": 24665.74, + "probability": 0.8898 + }, + { + "start": 24666.52, + "end": 24668.2, + "probability": 0.9455 + }, + { + "start": 24669.1, + "end": 24671.5, + "probability": 0.8875 + }, + { + "start": 24673.1, + "end": 24676.88, + "probability": 0.7974 + }, + { + "start": 24676.96, + "end": 24679.16, + "probability": 0.994 + }, + { + "start": 24680.64, + "end": 24682.78, + "probability": 0.7667 + }, + { + "start": 24683.82, + "end": 24685.58, + "probability": 0.7452 + }, + { + "start": 24686.62, + "end": 24689.16, + "probability": 0.9659 + }, + { + "start": 24690.2, + "end": 24691.58, + "probability": 0.7578 + }, + { + "start": 24692.52, + "end": 24695.32, + "probability": 0.9735 + }, + { + "start": 24696.4, + "end": 24700.28, + "probability": 0.9424 + }, + { + "start": 24701.08, + "end": 24705.22, + "probability": 0.9869 + }, + { + "start": 24706.24, + "end": 24707.52, + "probability": 0.991 + }, + { + "start": 24708.5, + "end": 24711.56, + "probability": 0.9957 + }, + { + "start": 24713.06, + "end": 24715.04, + "probability": 0.5926 + }, + { + "start": 24716.24, + "end": 24719.03, + "probability": 0.9653 + }, + { + "start": 24720.22, + "end": 24721.79, + "probability": 0.9856 + }, + { + "start": 24724.42, + "end": 24725.34, + "probability": 0.9961 + }, + { + "start": 24726.08, + "end": 24727.34, + "probability": 0.5172 + }, + { + "start": 24728.56, + "end": 24730.86, + "probability": 0.9221 + }, + { + "start": 24731.76, + "end": 24734.94, + "probability": 0.7358 + }, + { + "start": 24736.38, + "end": 24738.36, + "probability": 0.9753 + }, + { + "start": 24739.68, + "end": 24742.46, + "probability": 0.8821 + }, + { + "start": 24743.42, + "end": 24747.2, + "probability": 0.9709 + }, + { + "start": 24747.78, + "end": 24748.76, + "probability": 0.9573 + }, + { + "start": 24750.24, + "end": 24753.0, + "probability": 0.9424 + }, + { + "start": 24754.72, + "end": 24761.32, + "probability": 0.9987 + }, + { + "start": 24762.38, + "end": 24764.54, + "probability": 0.9152 + }, + { + "start": 24765.16, + "end": 24767.08, + "probability": 0.6159 + }, + { + "start": 24768.26, + "end": 24770.36, + "probability": 0.9976 + }, + { + "start": 24771.38, + "end": 24773.02, + "probability": 0.9987 + }, + { + "start": 24774.68, + "end": 24776.27, + "probability": 0.9985 + }, + { + "start": 24778.0, + "end": 24781.24, + "probability": 0.9512 + }, + { + "start": 24781.84, + "end": 24782.73, + "probability": 0.9958 + }, + { + "start": 24784.04, + "end": 24786.0, + "probability": 0.9417 + }, + { + "start": 24787.02, + "end": 24789.84, + "probability": 0.9958 + }, + { + "start": 24790.16, + "end": 24791.98, + "probability": 0.4068 + }, + { + "start": 24793.44, + "end": 24795.36, + "probability": 0.9634 + }, + { + "start": 24796.44, + "end": 24797.34, + "probability": 0.8004 + }, + { + "start": 24798.78, + "end": 24800.42, + "probability": 0.1271 + }, + { + "start": 24801.54, + "end": 24801.64, + "probability": 0.0005 + }, + { + "start": 24801.64, + "end": 24801.64, + "probability": 0.2706 + }, + { + "start": 24801.64, + "end": 24803.0, + "probability": 0.1991 + }, + { + "start": 24803.5, + "end": 24803.7, + "probability": 0.0148 + }, + { + "start": 24804.56, + "end": 24806.94, + "probability": 0.5623 + }, + { + "start": 24810.95, + "end": 24811.36, + "probability": 0.0888 + }, + { + "start": 24811.36, + "end": 24812.12, + "probability": 0.1233 + }, + { + "start": 24813.68, + "end": 24814.78, + "probability": 0.2196 + }, + { + "start": 24816.04, + "end": 24819.44, + "probability": 0.3334 + }, + { + "start": 24819.6, + "end": 24820.32, + "probability": 0.2256 + }, + { + "start": 24820.32, + "end": 24820.44, + "probability": 0.5804 + }, + { + "start": 24820.86, + "end": 24825.7, + "probability": 0.8242 + }, + { + "start": 24826.08, + "end": 24829.48, + "probability": 0.7927 + }, + { + "start": 24829.94, + "end": 24831.92, + "probability": 0.7897 + }, + { + "start": 24832.94, + "end": 24832.94, + "probability": 0.0064 + }, + { + "start": 24832.94, + "end": 24834.3, + "probability": 0.639 + }, + { + "start": 24835.12, + "end": 24837.96, + "probability": 0.6703 + }, + { + "start": 24839.22, + "end": 24839.22, + "probability": 0.0122 + }, + { + "start": 24839.22, + "end": 24840.8, + "probability": 0.3812 + }, + { + "start": 24840.84, + "end": 24841.5, + "probability": 0.0573 + }, + { + "start": 24841.5, + "end": 24842.08, + "probability": 0.012 + }, + { + "start": 24843.29, + "end": 24846.12, + "probability": 0.8696 + }, + { + "start": 24847.72, + "end": 24856.12, + "probability": 0.9122 + }, + { + "start": 24856.28, + "end": 24857.32, + "probability": 0.0888 + }, + { + "start": 24857.32, + "end": 24859.45, + "probability": 0.0685 + }, + { + "start": 24860.18, + "end": 24860.64, + "probability": 0.2354 + }, + { + "start": 24860.64, + "end": 24863.14, + "probability": 0.8345 + }, + { + "start": 24864.84, + "end": 24866.96, + "probability": 0.899 + }, + { + "start": 24867.6, + "end": 24870.8, + "probability": 0.674 + }, + { + "start": 24871.42, + "end": 24872.12, + "probability": 0.1677 + }, + { + "start": 24872.93, + "end": 24876.34, + "probability": 0.9296 + }, + { + "start": 24877.16, + "end": 24883.64, + "probability": 0.8784 + }, + { + "start": 24884.46, + "end": 24886.36, + "probability": 0.8312 + }, + { + "start": 24887.4, + "end": 24889.78, + "probability": 0.7794 + }, + { + "start": 24890.54, + "end": 24894.86, + "probability": 0.9471 + }, + { + "start": 24895.85, + "end": 24896.64, + "probability": 0.8776 + }, + { + "start": 24897.54, + "end": 24903.32, + "probability": 0.984 + }, + { + "start": 24904.38, + "end": 24910.68, + "probability": 0.9837 + }, + { + "start": 24911.64, + "end": 24914.18, + "probability": 0.98 + }, + { + "start": 24915.08, + "end": 24920.58, + "probability": 0.9985 + }, + { + "start": 24921.56, + "end": 24924.54, + "probability": 0.9969 + }, + { + "start": 24925.3, + "end": 24926.6, + "probability": 0.8693 + }, + { + "start": 24927.9, + "end": 24928.66, + "probability": 0.8109 + }, + { + "start": 24929.08, + "end": 24930.13, + "probability": 0.9885 + }, + { + "start": 24930.68, + "end": 24931.16, + "probability": 0.8842 + }, + { + "start": 24931.46, + "end": 24932.42, + "probability": 0.8625 + }, + { + "start": 24933.4, + "end": 24936.2, + "probability": 0.9966 + }, + { + "start": 24937.2, + "end": 24938.38, + "probability": 0.9995 + }, + { + "start": 24938.98, + "end": 24940.31, + "probability": 0.9976 + }, + { + "start": 24941.34, + "end": 24942.72, + "probability": 0.9101 + }, + { + "start": 24943.52, + "end": 24945.8, + "probability": 0.9953 + }, + { + "start": 24946.98, + "end": 24950.0, + "probability": 0.9888 + }, + { + "start": 24951.4, + "end": 24953.98, + "probability": 0.9025 + }, + { + "start": 24955.3, + "end": 24956.36, + "probability": 0.5508 + }, + { + "start": 24956.56, + "end": 24958.68, + "probability": 0.9946 + }, + { + "start": 24959.74, + "end": 24963.54, + "probability": 0.9932 + }, + { + "start": 24964.92, + "end": 24968.62, + "probability": 0.9918 + }, + { + "start": 24968.62, + "end": 24974.92, + "probability": 0.8416 + }, + { + "start": 24976.06, + "end": 24977.74, + "probability": 0.665 + }, + { + "start": 24978.42, + "end": 24979.1, + "probability": 0.635 + }, + { + "start": 24980.74, + "end": 24983.86, + "probability": 0.8489 + }, + { + "start": 24984.94, + "end": 24988.95, + "probability": 0.9714 + }, + { + "start": 24990.12, + "end": 24992.5, + "probability": 0.6375 + }, + { + "start": 24993.28, + "end": 24994.62, + "probability": 0.7173 + }, + { + "start": 24996.46, + "end": 24999.36, + "probability": 0.9654 + }, + { + "start": 25000.16, + "end": 25001.88, + "probability": 0.9481 + }, + { + "start": 25002.72, + "end": 25004.45, + "probability": 0.9893 + }, + { + "start": 25005.54, + "end": 25006.84, + "probability": 0.6751 + }, + { + "start": 25007.78, + "end": 25011.08, + "probability": 0.9932 + }, + { + "start": 25012.04, + "end": 25014.2, + "probability": 0.9832 + }, + { + "start": 25014.98, + "end": 25015.88, + "probability": 0.8838 + }, + { + "start": 25016.7, + "end": 25018.44, + "probability": 0.6766 + }, + { + "start": 25019.2, + "end": 25020.08, + "probability": 0.8157 + }, + { + "start": 25022.66, + "end": 25023.4, + "probability": 0.6724 + }, + { + "start": 25024.3, + "end": 25025.4, + "probability": 0.9188 + }, + { + "start": 25025.5, + "end": 25026.54, + "probability": 0.9241 + }, + { + "start": 25026.68, + "end": 25027.9, + "probability": 0.9862 + }, + { + "start": 25028.86, + "end": 25030.1, + "probability": 0.9956 + }, + { + "start": 25031.24, + "end": 25032.64, + "probability": 0.9102 + }, + { + "start": 25034.16, + "end": 25037.56, + "probability": 0.9596 + }, + { + "start": 25037.96, + "end": 25039.9, + "probability": 0.9943 + }, + { + "start": 25042.62, + "end": 25044.6, + "probability": 0.9922 + }, + { + "start": 25045.66, + "end": 25047.22, + "probability": 0.8181 + }, + { + "start": 25047.98, + "end": 25051.0, + "probability": 0.9919 + }, + { + "start": 25052.06, + "end": 25054.98, + "probability": 0.9839 + }, + { + "start": 25056.38, + "end": 25057.48, + "probability": 0.6467 + }, + { + "start": 25058.38, + "end": 25060.6, + "probability": 0.9741 + }, + { + "start": 25061.52, + "end": 25062.98, + "probability": 0.8866 + }, + { + "start": 25063.06, + "end": 25063.82, + "probability": 0.8842 + }, + { + "start": 25063.88, + "end": 25064.72, + "probability": 0.8973 + }, + { + "start": 25065.22, + "end": 25066.14, + "probability": 0.8573 + }, + { + "start": 25066.58, + "end": 25067.64, + "probability": 0.9638 + }, + { + "start": 25068.3, + "end": 25072.02, + "probability": 0.9919 + }, + { + "start": 25072.74, + "end": 25077.12, + "probability": 0.9231 + }, + { + "start": 25077.88, + "end": 25078.58, + "probability": 0.9791 + }, + { + "start": 25079.16, + "end": 25085.88, + "probability": 0.9944 + }, + { + "start": 25085.96, + "end": 25086.48, + "probability": 0.7972 + }, + { + "start": 25087.4, + "end": 25089.04, + "probability": 0.7167 + }, + { + "start": 25089.16, + "end": 25093.38, + "probability": 0.7408 + }, + { + "start": 25093.76, + "end": 25094.1, + "probability": 0.7206 + }, + { + "start": 25105.34, + "end": 25105.36, + "probability": 0.3682 + }, + { + "start": 25105.36, + "end": 25105.36, + "probability": 0.0586 + }, + { + "start": 25105.36, + "end": 25105.36, + "probability": 0.0197 + }, + { + "start": 25105.36, + "end": 25105.36, + "probability": 0.0533 + }, + { + "start": 25105.36, + "end": 25105.56, + "probability": 0.1103 + }, + { + "start": 25118.6, + "end": 25118.82, + "probability": 0.1652 + }, + { + "start": 25134.84, + "end": 25135.42, + "probability": 0.0501 + }, + { + "start": 25142.84, + "end": 25145.64, + "probability": 0.7993 + }, + { + "start": 25146.6, + "end": 25146.6, + "probability": 0.2288 + }, + { + "start": 25146.6, + "end": 25148.14, + "probability": 0.7023 + }, + { + "start": 25148.26, + "end": 25148.84, + "probability": 0.6021 + }, + { + "start": 25148.98, + "end": 25149.98, + "probability": 0.6924 + }, + { + "start": 25150.0, + "end": 25150.88, + "probability": 0.9113 + }, + { + "start": 25154.34, + "end": 25156.08, + "probability": 0.6898 + }, + { + "start": 25156.86, + "end": 25160.36, + "probability": 0.9973 + }, + { + "start": 25160.36, + "end": 25164.3, + "probability": 0.9973 + }, + { + "start": 25165.66, + "end": 25167.56, + "probability": 0.9841 + }, + { + "start": 25168.08, + "end": 25171.58, + "probability": 0.9651 + }, + { + "start": 25172.18, + "end": 25175.78, + "probability": 0.9805 + }, + { + "start": 25176.82, + "end": 25177.32, + "probability": 0.7809 + }, + { + "start": 25177.88, + "end": 25180.52, + "probability": 0.997 + }, + { + "start": 25180.54, + "end": 25183.14, + "probability": 0.9941 + }, + { + "start": 25183.74, + "end": 25186.06, + "probability": 0.8155 + }, + { + "start": 25186.96, + "end": 25191.04, + "probability": 0.9734 + }, + { + "start": 25192.16, + "end": 25195.86, + "probability": 0.9978 + }, + { + "start": 25195.86, + "end": 25199.52, + "probability": 0.99 + }, + { + "start": 25200.1, + "end": 25202.78, + "probability": 0.9859 + }, + { + "start": 25202.78, + "end": 25206.04, + "probability": 0.9215 + }, + { + "start": 25206.12, + "end": 25207.94, + "probability": 0.2339 + }, + { + "start": 25208.14, + "end": 25208.6, + "probability": 0.7278 + }, + { + "start": 25209.22, + "end": 25211.64, + "probability": 0.9966 + }, + { + "start": 25212.16, + "end": 25215.42, + "probability": 0.9851 + }, + { + "start": 25216.6, + "end": 25218.92, + "probability": 0.9937 + }, + { + "start": 25218.92, + "end": 25222.18, + "probability": 0.9895 + }, + { + "start": 25223.14, + "end": 25223.34, + "probability": 0.7667 + }, + { + "start": 25223.96, + "end": 25226.26, + "probability": 0.9824 + }, + { + "start": 25226.26, + "end": 25231.58, + "probability": 0.9609 + }, + { + "start": 25233.14, + "end": 25236.64, + "probability": 0.9926 + }, + { + "start": 25237.16, + "end": 25240.24, + "probability": 0.9919 + }, + { + "start": 25241.36, + "end": 25241.98, + "probability": 0.7636 + }, + { + "start": 25242.38, + "end": 25249.22, + "probability": 0.9891 + }, + { + "start": 25249.4, + "end": 25249.74, + "probability": 0.7995 + }, + { + "start": 25251.5, + "end": 25253.24, + "probability": 0.9959 + }, + { + "start": 25253.82, + "end": 25254.38, + "probability": 0.3545 + }, + { + "start": 25254.78, + "end": 25255.96, + "probability": 0.5095 + }, + { + "start": 25255.96, + "end": 25256.44, + "probability": 0.7036 + }, + { + "start": 25270.96, + "end": 25271.72, + "probability": 0.5132 + }, + { + "start": 25272.18, + "end": 25272.98, + "probability": 0.712 + }, + { + "start": 25273.36, + "end": 25273.72, + "probability": 0.0127 + }, + { + "start": 25274.86, + "end": 25276.08, + "probability": 0.0203 + }, + { + "start": 25276.08, + "end": 25276.62, + "probability": 0.1542 + }, + { + "start": 25277.22, + "end": 25277.22, + "probability": 0.1215 + }, + { + "start": 25277.22, + "end": 25277.22, + "probability": 0.6313 + }, + { + "start": 25277.3, + "end": 25280.36, + "probability": 0.7503 + }, + { + "start": 25281.52, + "end": 25284.04, + "probability": 0.9335 + }, + { + "start": 25284.9, + "end": 25286.78, + "probability": 0.9902 + }, + { + "start": 25288.4, + "end": 25291.68, + "probability": 0.9835 + }, + { + "start": 25292.72, + "end": 25296.42, + "probability": 0.8944 + }, + { + "start": 25297.38, + "end": 25303.48, + "probability": 0.9819 + }, + { + "start": 25305.08, + "end": 25306.68, + "probability": 0.7508 + }, + { + "start": 25307.5, + "end": 25309.1, + "probability": 0.7871 + }, + { + "start": 25309.64, + "end": 25311.6, + "probability": 0.8452 + }, + { + "start": 25312.58, + "end": 25313.3, + "probability": 0.9435 + }, + { + "start": 25314.2, + "end": 25315.6, + "probability": 0.9185 + }, + { + "start": 25316.96, + "end": 25318.36, + "probability": 0.7162 + }, + { + "start": 25318.52, + "end": 25319.34, + "probability": 0.8561 + }, + { + "start": 25319.46, + "end": 25321.96, + "probability": 0.8666 + }, + { + "start": 25322.64, + "end": 25324.68, + "probability": 0.9967 + }, + { + "start": 25325.48, + "end": 25326.82, + "probability": 0.6408 + }, + { + "start": 25328.06, + "end": 25329.6, + "probability": 0.5516 + }, + { + "start": 25330.04, + "end": 25332.15, + "probability": 0.96 + }, + { + "start": 25333.2, + "end": 25333.66, + "probability": 0.8041 + }, + { + "start": 25334.48, + "end": 25337.22, + "probability": 0.9105 + }, + { + "start": 25338.62, + "end": 25340.34, + "probability": 0.8471 + }, + { + "start": 25340.52, + "end": 25342.06, + "probability": 0.9812 + }, + { + "start": 25343.12, + "end": 25345.22, + "probability": 0.9912 + }, + { + "start": 25345.46, + "end": 25350.52, + "probability": 0.9587 + }, + { + "start": 25351.38, + "end": 25353.14, + "probability": 0.9237 + }, + { + "start": 25354.04, + "end": 25355.07, + "probability": 0.8119 + }, + { + "start": 25356.6, + "end": 25357.02, + "probability": 0.7661 + }, + { + "start": 25359.1, + "end": 25360.18, + "probability": 0.9971 + }, + { + "start": 25361.14, + "end": 25362.2, + "probability": 0.9971 + }, + { + "start": 25363.98, + "end": 25367.3, + "probability": 0.9813 + }, + { + "start": 25367.86, + "end": 25368.46, + "probability": 0.737 + }, + { + "start": 25369.0, + "end": 25369.7, + "probability": 0.9588 + }, + { + "start": 25370.58, + "end": 25372.42, + "probability": 0.7821 + }, + { + "start": 25373.36, + "end": 25374.08, + "probability": 0.9583 + }, + { + "start": 25374.72, + "end": 25378.02, + "probability": 0.9161 + }, + { + "start": 25387.04, + "end": 25391.1, + "probability": 0.8227 + }, + { + "start": 25392.44, + "end": 25394.09, + "probability": 0.9546 + }, + { + "start": 25395.12, + "end": 25396.8, + "probability": 0.9989 + }, + { + "start": 25396.96, + "end": 25398.9, + "probability": 0.9983 + }, + { + "start": 25399.66, + "end": 25400.64, + "probability": 0.8895 + }, + { + "start": 25401.26, + "end": 25404.84, + "probability": 0.5344 + }, + { + "start": 25405.68, + "end": 25407.7, + "probability": 0.8744 + }, + { + "start": 25408.56, + "end": 25410.16, + "probability": 0.8843 + }, + { + "start": 25410.38, + "end": 25412.92, + "probability": 0.8537 + }, + { + "start": 25413.7, + "end": 25415.16, + "probability": 0.8994 + }, + { + "start": 25416.08, + "end": 25418.46, + "probability": 0.717 + }, + { + "start": 25419.22, + "end": 25421.12, + "probability": 0.999 + }, + { + "start": 25422.0, + "end": 25425.06, + "probability": 0.7908 + }, + { + "start": 25425.74, + "end": 25427.24, + "probability": 0.9945 + }, + { + "start": 25427.88, + "end": 25429.64, + "probability": 0.9573 + }, + { + "start": 25430.4, + "end": 25431.52, + "probability": 0.8849 + }, + { + "start": 25432.62, + "end": 25434.44, + "probability": 0.9941 + }, + { + "start": 25435.28, + "end": 25438.49, + "probability": 0.198 + }, + { + "start": 25440.3, + "end": 25442.06, + "probability": 0.7946 + }, + { + "start": 25443.32, + "end": 25443.82, + "probability": 0.9178 + }, + { + "start": 25444.8, + "end": 25446.68, + "probability": 0.992 + }, + { + "start": 25447.96, + "end": 25451.52, + "probability": 0.9741 + }, + { + "start": 25452.68, + "end": 25457.94, + "probability": 0.98 + }, + { + "start": 25458.68, + "end": 25460.4, + "probability": 0.8907 + }, + { + "start": 25462.08, + "end": 25468.72, + "probability": 0.8418 + }, + { + "start": 25469.42, + "end": 25470.74, + "probability": 0.803 + }, + { + "start": 25471.4, + "end": 25473.12, + "probability": 0.9647 + }, + { + "start": 25473.64, + "end": 25475.68, + "probability": 0.9963 + }, + { + "start": 25477.02, + "end": 25478.18, + "probability": 0.7654 + }, + { + "start": 25479.02, + "end": 25482.98, + "probability": 0.9779 + }, + { + "start": 25483.7, + "end": 25484.64, + "probability": 0.9683 + }, + { + "start": 25484.84, + "end": 25489.76, + "probability": 0.9379 + }, + { + "start": 25490.48, + "end": 25492.12, + "probability": 0.8303 + }, + { + "start": 25493.08, + "end": 25495.66, + "probability": 0.9447 + }, + { + "start": 25496.5, + "end": 25500.8, + "probability": 0.9517 + }, + { + "start": 25501.54, + "end": 25503.43, + "probability": 0.8376 + }, + { + "start": 25504.6, + "end": 25505.54, + "probability": 0.9319 + }, + { + "start": 25506.6, + "end": 25508.85, + "probability": 0.9971 + }, + { + "start": 25509.54, + "end": 25513.72, + "probability": 0.9946 + }, + { + "start": 25513.72, + "end": 25518.68, + "probability": 0.995 + }, + { + "start": 25519.38, + "end": 25520.76, + "probability": 0.9951 + }, + { + "start": 25521.64, + "end": 25522.12, + "probability": 0.9213 + }, + { + "start": 25524.0, + "end": 25526.02, + "probability": 0.9542 + }, + { + "start": 25526.14, + "end": 25527.44, + "probability": 0.8848 + }, + { + "start": 25528.6, + "end": 25531.38, + "probability": 0.956 + }, + { + "start": 25532.16, + "end": 25534.32, + "probability": 0.9957 + }, + { + "start": 25534.38, + "end": 25537.88, + "probability": 0.9452 + }, + { + "start": 25538.74, + "end": 25540.06, + "probability": 0.7897 + }, + { + "start": 25540.62, + "end": 25541.92, + "probability": 0.9658 + }, + { + "start": 25542.82, + "end": 25544.64, + "probability": 0.8945 + }, + { + "start": 25545.28, + "end": 25548.48, + "probability": 0.9801 + }, + { + "start": 25550.02, + "end": 25553.34, + "probability": 0.9453 + }, + { + "start": 25554.24, + "end": 25556.0, + "probability": 0.9572 + }, + { + "start": 25557.34, + "end": 25559.48, + "probability": 0.5707 + }, + { + "start": 25559.76, + "end": 25561.0, + "probability": 0.9907 + }, + { + "start": 25562.0, + "end": 25563.02, + "probability": 0.4963 + }, + { + "start": 25564.0, + "end": 25565.38, + "probability": 0.8258 + }, + { + "start": 25565.44, + "end": 25565.64, + "probability": 0.8595 + }, + { + "start": 25565.74, + "end": 25567.84, + "probability": 0.9785 + }, + { + "start": 25568.0, + "end": 25569.24, + "probability": 0.9953 + }, + { + "start": 25570.44, + "end": 25572.94, + "probability": 0.7436 + }, + { + "start": 25573.78, + "end": 25575.54, + "probability": 0.9985 + }, + { + "start": 25576.56, + "end": 25579.34, + "probability": 0.8379 + }, + { + "start": 25579.98, + "end": 25582.5, + "probability": 0.6835 + }, + { + "start": 25582.54, + "end": 25583.88, + "probability": 0.99 + }, + { + "start": 25584.88, + "end": 25586.54, + "probability": 0.944 + }, + { + "start": 25587.4, + "end": 25589.94, + "probability": 0.6298 + }, + { + "start": 25590.96, + "end": 25592.6, + "probability": 0.8855 + }, + { + "start": 25594.48, + "end": 25596.76, + "probability": 0.9583 + }, + { + "start": 25597.58, + "end": 25599.82, + "probability": 0.9949 + }, + { + "start": 25600.66, + "end": 25604.66, + "probability": 0.8586 + }, + { + "start": 25604.82, + "end": 25604.92, + "probability": 0.3603 + }, + { + "start": 25604.98, + "end": 25605.26, + "probability": 0.8737 + }, + { + "start": 25605.3, + "end": 25606.74, + "probability": 0.9984 + }, + { + "start": 25606.84, + "end": 25610.92, + "probability": 0.9691 + }, + { + "start": 25612.24, + "end": 25614.16, + "probability": 0.8638 + }, + { + "start": 25615.02, + "end": 25616.06, + "probability": 0.5015 + }, + { + "start": 25616.74, + "end": 25616.98, + "probability": 0.6438 + }, + { + "start": 25617.38, + "end": 25618.02, + "probability": 0.3166 + }, + { + "start": 25618.5, + "end": 25621.02, + "probability": 0.9691 + }, + { + "start": 25621.04, + "end": 25623.36, + "probability": 0.8066 + }, + { + "start": 25630.22, + "end": 25631.4, + "probability": 0.4637 + }, + { + "start": 25633.82, + "end": 25636.88, + "probability": 0.9897 + }, + { + "start": 25637.66, + "end": 25642.18, + "probability": 0.8613 + }, + { + "start": 25643.82, + "end": 25645.62, + "probability": 0.9399 + }, + { + "start": 25664.34, + "end": 25664.34, + "probability": 0.7271 + }, + { + "start": 25664.34, + "end": 25665.58, + "probability": 0.8393 + }, + { + "start": 25666.52, + "end": 25667.14, + "probability": 0.7639 + }, + { + "start": 25668.5, + "end": 25670.14, + "probability": 0.8179 + }, + { + "start": 25671.52, + "end": 25673.06, + "probability": 0.9046 + }, + { + "start": 25675.62, + "end": 25679.48, + "probability": 0.8933 + }, + { + "start": 25681.08, + "end": 25682.12, + "probability": 0.9814 + }, + { + "start": 25683.18, + "end": 25685.68, + "probability": 0.996 + }, + { + "start": 25687.54, + "end": 25688.16, + "probability": 0.7564 + }, + { + "start": 25689.42, + "end": 25694.62, + "probability": 0.9926 + }, + { + "start": 25696.04, + "end": 25700.24, + "probability": 0.9895 + }, + { + "start": 25703.12, + "end": 25706.5, + "probability": 0.802 + }, + { + "start": 25707.18, + "end": 25708.62, + "probability": 0.9714 + }, + { + "start": 25709.42, + "end": 25713.66, + "probability": 0.9101 + }, + { + "start": 25714.36, + "end": 25714.66, + "probability": 0.3572 + }, + { + "start": 25715.88, + "end": 25717.78, + "probability": 0.7576 + }, + { + "start": 25719.68, + "end": 25721.78, + "probability": 0.7926 + }, + { + "start": 25725.28, + "end": 25727.3, + "probability": 0.5968 + }, + { + "start": 25727.92, + "end": 25730.48, + "probability": 0.9958 + }, + { + "start": 25730.56, + "end": 25731.94, + "probability": 0.9661 + }, + { + "start": 25733.26, + "end": 25734.58, + "probability": 0.9678 + }, + { + "start": 25734.64, + "end": 25735.24, + "probability": 0.4939 + }, + { + "start": 25736.14, + "end": 25737.4, + "probability": 0.8491 + }, + { + "start": 25737.92, + "end": 25739.12, + "probability": 0.9461 + }, + { + "start": 25741.84, + "end": 25742.92, + "probability": 0.4699 + }, + { + "start": 25743.04, + "end": 25743.32, + "probability": 0.5142 + }, + { + "start": 25743.32, + "end": 25744.18, + "probability": 0.727 + }, + { + "start": 25746.06, + "end": 25750.72, + "probability": 0.995 + }, + { + "start": 25751.44, + "end": 25752.74, + "probability": 0.9817 + }, + { + "start": 25753.8, + "end": 25756.47, + "probability": 0.8927 + }, + { + "start": 25759.58, + "end": 25762.16, + "probability": 0.9258 + }, + { + "start": 25762.68, + "end": 25767.34, + "probability": 0.9965 + }, + { + "start": 25768.9, + "end": 25770.34, + "probability": 0.6632 + }, + { + "start": 25770.92, + "end": 25772.12, + "probability": 0.887 + }, + { + "start": 25772.2, + "end": 25774.2, + "probability": 0.992 + }, + { + "start": 25776.24, + "end": 25780.34, + "probability": 0.9489 + }, + { + "start": 25781.52, + "end": 25784.78, + "probability": 0.9033 + }, + { + "start": 25787.46, + "end": 25788.87, + "probability": 0.8632 + }, + { + "start": 25788.96, + "end": 25793.7, + "probability": 0.9652 + }, + { + "start": 25797.08, + "end": 25801.62, + "probability": 0.9915 + }, + { + "start": 25801.62, + "end": 25805.0, + "probability": 0.9662 + }, + { + "start": 25806.44, + "end": 25813.68, + "probability": 0.9873 + }, + { + "start": 25814.78, + "end": 25816.2, + "probability": 0.7891 + }, + { + "start": 25816.88, + "end": 25819.71, + "probability": 0.9144 + }, + { + "start": 25820.38, + "end": 25821.76, + "probability": 0.9599 + }, + { + "start": 25822.4, + "end": 25824.12, + "probability": 0.9834 + }, + { + "start": 25824.66, + "end": 25826.94, + "probability": 0.9875 + }, + { + "start": 25827.72, + "end": 25828.86, + "probability": 0.7162 + }, + { + "start": 25830.4, + "end": 25833.21, + "probability": 0.7744 + }, + { + "start": 25834.28, + "end": 25838.06, + "probability": 0.9397 + }, + { + "start": 25839.18, + "end": 25843.34, + "probability": 0.9943 + }, + { + "start": 25843.78, + "end": 25846.98, + "probability": 0.8896 + }, + { + "start": 25847.86, + "end": 25853.42, + "probability": 0.9915 + }, + { + "start": 25854.08, + "end": 25856.3, + "probability": 0.9271 + }, + { + "start": 25857.14, + "end": 25858.48, + "probability": 0.836 + }, + { + "start": 25858.74, + "end": 25860.32, + "probability": 0.9901 + }, + { + "start": 25860.54, + "end": 25861.17, + "probability": 0.7368 + }, + { + "start": 25861.5, + "end": 25863.98, + "probability": 0.9686 + }, + { + "start": 25865.66, + "end": 25868.62, + "probability": 0.9382 + }, + { + "start": 25869.98, + "end": 25871.76, + "probability": 0.9772 + }, + { + "start": 25872.86, + "end": 25875.34, + "probability": 0.7931 + }, + { + "start": 25876.32, + "end": 25877.44, + "probability": 0.9346 + }, + { + "start": 25877.58, + "end": 25878.22, + "probability": 0.8228 + }, + { + "start": 25878.58, + "end": 25882.14, + "probability": 0.9741 + }, + { + "start": 25882.78, + "end": 25884.78, + "probability": 0.9531 + }, + { + "start": 25886.94, + "end": 25888.56, + "probability": 0.9562 + }, + { + "start": 25889.34, + "end": 25892.7, + "probability": 0.9607 + }, + { + "start": 25894.16, + "end": 25894.88, + "probability": 0.7193 + }, + { + "start": 25895.54, + "end": 25898.2, + "probability": 0.9956 + }, + { + "start": 25900.62, + "end": 25904.68, + "probability": 0.9819 + }, + { + "start": 25904.84, + "end": 25905.66, + "probability": 0.7234 + }, + { + "start": 25905.7, + "end": 25906.91, + "probability": 0.9771 + }, + { + "start": 25908.56, + "end": 25909.98, + "probability": 0.9702 + }, + { + "start": 25910.16, + "end": 25911.22, + "probability": 0.8545 + }, + { + "start": 25911.68, + "end": 25914.04, + "probability": 0.959 + }, + { + "start": 25914.52, + "end": 25918.56, + "probability": 0.9512 + }, + { + "start": 25921.46, + "end": 25923.78, + "probability": 0.9824 + }, + { + "start": 25924.22, + "end": 25929.9, + "probability": 0.8977 + }, + { + "start": 25930.98, + "end": 25931.82, + "probability": 0.8798 + }, + { + "start": 25932.82, + "end": 25937.56, + "probability": 0.9407 + }, + { + "start": 25937.92, + "end": 25939.08, + "probability": 0.622 + }, + { + "start": 25939.14, + "end": 25940.18, + "probability": 0.4638 + }, + { + "start": 25940.82, + "end": 25942.12, + "probability": 0.8954 + }, + { + "start": 25943.2, + "end": 25945.18, + "probability": 0.998 + }, + { + "start": 25945.28, + "end": 25947.16, + "probability": 0.991 + }, + { + "start": 25947.5, + "end": 25947.64, + "probability": 0.8917 + }, + { + "start": 25947.78, + "end": 25949.48, + "probability": 0.7782 + }, + { + "start": 25950.02, + "end": 25950.92, + "probability": 0.5972 + }, + { + "start": 25951.02, + "end": 25951.52, + "probability": 0.5631 + }, + { + "start": 25951.6, + "end": 25952.6, + "probability": 0.9116 + }, + { + "start": 25953.14, + "end": 25956.7, + "probability": 0.8353 + }, + { + "start": 25957.48, + "end": 25958.64, + "probability": 0.8543 + }, + { + "start": 25958.68, + "end": 25961.92, + "probability": 0.9926 + }, + { + "start": 25966.74, + "end": 25970.4, + "probability": 0.9496 + }, + { + "start": 25970.96, + "end": 25973.4, + "probability": 0.8567 + }, + { + "start": 25974.38, + "end": 25976.54, + "probability": 0.8733 + }, + { + "start": 25977.52, + "end": 25981.16, + "probability": 0.9829 + }, + { + "start": 25981.24, + "end": 25982.58, + "probability": 0.9051 + }, + { + "start": 25983.08, + "end": 25984.82, + "probability": 0.9827 + }, + { + "start": 25986.16, + "end": 25987.06, + "probability": 0.6757 + }, + { + "start": 25989.12, + "end": 25992.64, + "probability": 0.96 + }, + { + "start": 25993.58, + "end": 25994.4, + "probability": 0.9693 + }, + { + "start": 25995.16, + "end": 25996.76, + "probability": 0.9544 + }, + { + "start": 25997.56, + "end": 26000.64, + "probability": 0.8068 + }, + { + "start": 26001.3, + "end": 26003.48, + "probability": 0.9829 + }, + { + "start": 26004.48, + "end": 26006.03, + "probability": 0.9406 + }, + { + "start": 26007.52, + "end": 26008.86, + "probability": 0.925 + }, + { + "start": 26010.38, + "end": 26013.0, + "probability": 0.7913 + }, + { + "start": 26013.7, + "end": 26015.54, + "probability": 0.8872 + }, + { + "start": 26016.26, + "end": 26018.12, + "probability": 0.9951 + }, + { + "start": 26019.02, + "end": 26022.62, + "probability": 0.981 + }, + { + "start": 26023.72, + "end": 26025.58, + "probability": 0.9427 + }, + { + "start": 26026.36, + "end": 26031.46, + "probability": 0.9491 + }, + { + "start": 26032.18, + "end": 26034.48, + "probability": 0.7381 + }, + { + "start": 26036.46, + "end": 26042.56, + "probability": 0.9941 + }, + { + "start": 26042.78, + "end": 26046.34, + "probability": 0.9943 + }, + { + "start": 26047.84, + "end": 26049.34, + "probability": 0.9118 + }, + { + "start": 26049.94, + "end": 26053.12, + "probability": 0.8535 + }, + { + "start": 26054.54, + "end": 26058.42, + "probability": 0.7944 + }, + { + "start": 26059.2, + "end": 26061.22, + "probability": 0.7906 + }, + { + "start": 26062.06, + "end": 26062.84, + "probability": 0.8429 + }, + { + "start": 26064.28, + "end": 26069.9, + "probability": 0.9766 + }, + { + "start": 26071.24, + "end": 26073.8, + "probability": 0.9875 + }, + { + "start": 26073.9, + "end": 26076.72, + "probability": 0.9946 + }, + { + "start": 26077.64, + "end": 26082.76, + "probability": 0.9881 + }, + { + "start": 26082.88, + "end": 26083.44, + "probability": 0.998 + }, + { + "start": 26084.3, + "end": 26086.88, + "probability": 0.9983 + }, + { + "start": 26087.94, + "end": 26088.5, + "probability": 0.6368 + }, + { + "start": 26089.3, + "end": 26089.81, + "probability": 0.7861 + }, + { + "start": 26090.92, + "end": 26092.86, + "probability": 0.9951 + }, + { + "start": 26093.98, + "end": 26095.0, + "probability": 0.9916 + }, + { + "start": 26095.0, + "end": 26095.42, + "probability": 0.6286 + }, + { + "start": 26095.46, + "end": 26096.74, + "probability": 0.3187 + }, + { + "start": 26096.74, + "end": 26097.4, + "probability": 0.7687 + }, + { + "start": 26097.88, + "end": 26099.36, + "probability": 0.9692 + }, + { + "start": 26100.74, + "end": 26102.76, + "probability": 0.941 + }, + { + "start": 26102.92, + "end": 26108.12, + "probability": 0.9423 + }, + { + "start": 26108.56, + "end": 26112.46, + "probability": 0.9901 + }, + { + "start": 26113.06, + "end": 26115.62, + "probability": 0.678 + }, + { + "start": 26116.38, + "end": 26120.7, + "probability": 0.9097 + }, + { + "start": 26121.18, + "end": 26125.88, + "probability": 0.9885 + }, + { + "start": 26126.02, + "end": 26126.84, + "probability": 0.8847 + }, + { + "start": 26128.12, + "end": 26129.36, + "probability": 0.8624 + }, + { + "start": 26129.76, + "end": 26131.82, + "probability": 0.9717 + }, + { + "start": 26131.88, + "end": 26132.84, + "probability": 0.939 + }, + { + "start": 26133.58, + "end": 26134.16, + "probability": 0.7056 + }, + { + "start": 26134.84, + "end": 26137.6, + "probability": 0.7531 + }, + { + "start": 26138.12, + "end": 26139.12, + "probability": 0.735 + }, + { + "start": 26143.08, + "end": 26143.86, + "probability": 0.4072 + }, + { + "start": 26143.86, + "end": 26149.14, + "probability": 0.9989 + }, + { + "start": 26149.84, + "end": 26151.18, + "probability": 0.9946 + }, + { + "start": 26151.34, + "end": 26152.02, + "probability": 0.7808 + }, + { + "start": 26152.8, + "end": 26154.52, + "probability": 0.9763 + }, + { + "start": 26155.04, + "end": 26155.94, + "probability": 0.8047 + }, + { + "start": 26156.7, + "end": 26161.2, + "probability": 0.9928 + }, + { + "start": 26161.7, + "end": 26162.66, + "probability": 0.865 + }, + { + "start": 26162.94, + "end": 26164.6, + "probability": 0.764 + }, + { + "start": 26165.78, + "end": 26169.9, + "probability": 0.8092 + }, + { + "start": 26171.06, + "end": 26178.52, + "probability": 0.9821 + }, + { + "start": 26178.58, + "end": 26181.66, + "probability": 0.8162 + }, + { + "start": 26181.79, + "end": 26185.46, + "probability": 0.9951 + }, + { + "start": 26186.16, + "end": 26187.52, + "probability": 0.7672 + }, + { + "start": 26188.0, + "end": 26188.98, + "probability": 0.9876 + }, + { + "start": 26189.44, + "end": 26190.96, + "probability": 0.995 + }, + { + "start": 26191.66, + "end": 26195.72, + "probability": 0.9601 + }, + { + "start": 26195.8, + "end": 26197.22, + "probability": 0.5791 + }, + { + "start": 26197.58, + "end": 26201.94, + "probability": 0.7463 + }, + { + "start": 26203.36, + "end": 26203.84, + "probability": 0.8327 + }, + { + "start": 26204.38, + "end": 26205.76, + "probability": 0.9258 + }, + { + "start": 26206.36, + "end": 26209.28, + "probability": 0.9902 + }, + { + "start": 26209.46, + "end": 26214.48, + "probability": 0.9463 + }, + { + "start": 26214.92, + "end": 26216.14, + "probability": 0.539 + }, + { + "start": 26216.28, + "end": 26217.6, + "probability": 0.98 + }, + { + "start": 26217.98, + "end": 26220.0, + "probability": 0.9774 + }, + { + "start": 26220.76, + "end": 26223.78, + "probability": 0.9903 + }, + { + "start": 26223.86, + "end": 26226.1, + "probability": 0.8411 + }, + { + "start": 26226.62, + "end": 26227.5, + "probability": 0.8258 + }, + { + "start": 26228.22, + "end": 26229.52, + "probability": 0.97 + }, + { + "start": 26229.74, + "end": 26232.08, + "probability": 0.8798 + }, + { + "start": 26232.42, + "end": 26236.7, + "probability": 0.9627 + }, + { + "start": 26236.88, + "end": 26238.78, + "probability": 0.9362 + }, + { + "start": 26238.94, + "end": 26241.24, + "probability": 0.9968 + }, + { + "start": 26241.58, + "end": 26245.06, + "probability": 0.9921 + }, + { + "start": 26245.14, + "end": 26248.13, + "probability": 0.8289 + }, + { + "start": 26249.1, + "end": 26252.92, + "probability": 0.9912 + }, + { + "start": 26253.56, + "end": 26261.31, + "probability": 0.991 + }, + { + "start": 26262.3, + "end": 26265.92, + "probability": 0.996 + }, + { + "start": 26266.48, + "end": 26267.02, + "probability": 0.845 + }, + { + "start": 26267.9, + "end": 26268.9, + "probability": 0.7023 + }, + { + "start": 26269.28, + "end": 26275.92, + "probability": 0.9683 + }, + { + "start": 26276.28, + "end": 26277.3, + "probability": 0.5124 + }, + { + "start": 26279.9, + "end": 26281.62, + "probability": 0.7903 + }, + { + "start": 26281.96, + "end": 26286.38, + "probability": 0.7686 + }, + { + "start": 26286.56, + "end": 26287.04, + "probability": 0.8862 + }, + { + "start": 26288.16, + "end": 26288.16, + "probability": 0.2771 + }, + { + "start": 26307.9, + "end": 26308.48, + "probability": 0.6743 + }, + { + "start": 26310.88, + "end": 26314.16, + "probability": 0.5586 + }, + { + "start": 26315.42, + "end": 26316.58, + "probability": 0.6558 + }, + { + "start": 26318.71, + "end": 26324.16, + "probability": 0.7493 + }, + { + "start": 26327.14, + "end": 26328.8, + "probability": 0.9575 + }, + { + "start": 26333.84, + "end": 26333.84, + "probability": 0.0002 + }, + { + "start": 26336.48, + "end": 26337.48, + "probability": 0.0577 + }, + { + "start": 26337.6, + "end": 26338.78, + "probability": 0.4536 + }, + { + "start": 26339.94, + "end": 26341.5, + "probability": 0.6211 + }, + { + "start": 26343.38, + "end": 26344.34, + "probability": 0.611 + }, + { + "start": 26344.36, + "end": 26345.54, + "probability": 0.567 + }, + { + "start": 26345.78, + "end": 26348.78, + "probability": 0.8563 + }, + { + "start": 26348.92, + "end": 26352.54, + "probability": 0.9739 + }, + { + "start": 26352.68, + "end": 26353.18, + "probability": 0.7675 + }, + { + "start": 26354.36, + "end": 26355.94, + "probability": 0.9854 + }, + { + "start": 26357.5, + "end": 26359.16, + "probability": 0.9283 + }, + { + "start": 26360.84, + "end": 26361.91, + "probability": 0.9915 + }, + { + "start": 26363.38, + "end": 26368.88, + "probability": 0.9249 + }, + { + "start": 26370.1, + "end": 26371.3, + "probability": 0.9785 + }, + { + "start": 26371.84, + "end": 26373.96, + "probability": 0.5234 + }, + { + "start": 26374.82, + "end": 26375.82, + "probability": 0.9656 + }, + { + "start": 26376.48, + "end": 26379.28, + "probability": 0.9848 + }, + { + "start": 26379.36, + "end": 26379.82, + "probability": 0.8341 + }, + { + "start": 26380.42, + "end": 26381.2, + "probability": 0.0674 + }, + { + "start": 26381.44, + "end": 26385.5, + "probability": 0.7095 + }, + { + "start": 26385.94, + "end": 26386.4, + "probability": 0.2965 + }, + { + "start": 26386.7, + "end": 26388.08, + "probability": 0.3746 + }, + { + "start": 26388.2, + "end": 26388.98, + "probability": 0.1225 + }, + { + "start": 26390.22, + "end": 26392.32, + "probability": 0.2404 + }, + { + "start": 26392.48, + "end": 26393.97, + "probability": 0.0513 + }, + { + "start": 26395.0, + "end": 26398.02, + "probability": 0.7991 + }, + { + "start": 26398.42, + "end": 26400.52, + "probability": 0.6757 + }, + { + "start": 26401.0, + "end": 26402.46, + "probability": 0.9053 + }, + { + "start": 26402.52, + "end": 26404.24, + "probability": 0.5802 + }, + { + "start": 26404.42, + "end": 26404.42, + "probability": 0.095 + }, + { + "start": 26404.42, + "end": 26405.72, + "probability": 0.9792 + }, + { + "start": 26405.74, + "end": 26407.82, + "probability": 0.8508 + }, + { + "start": 26408.3, + "end": 26411.16, + "probability": 0.9966 + }, + { + "start": 26411.96, + "end": 26414.52, + "probability": 0.9954 + }, + { + "start": 26414.62, + "end": 26415.66, + "probability": 0.6669 + }, + { + "start": 26416.94, + "end": 26419.48, + "probability": 0.9316 + }, + { + "start": 26420.58, + "end": 26423.66, + "probability": 0.9419 + }, + { + "start": 26424.9, + "end": 26425.58, + "probability": 0.998 + }, + { + "start": 26426.62, + "end": 26427.36, + "probability": 0.883 + }, + { + "start": 26428.08, + "end": 26429.66, + "probability": 0.9331 + }, + { + "start": 26430.46, + "end": 26432.44, + "probability": 0.9941 + }, + { + "start": 26433.04, + "end": 26438.0, + "probability": 0.9966 + }, + { + "start": 26438.28, + "end": 26440.84, + "probability": 0.9954 + }, + { + "start": 26442.2, + "end": 26444.12, + "probability": 0.9978 + }, + { + "start": 26444.16, + "end": 26447.18, + "probability": 0.988 + }, + { + "start": 26447.9, + "end": 26449.64, + "probability": 0.6265 + }, + { + "start": 26450.68, + "end": 26451.36, + "probability": 0.7276 + }, + { + "start": 26452.86, + "end": 26458.14, + "probability": 0.9833 + }, + { + "start": 26458.14, + "end": 26463.66, + "probability": 0.986 + }, + { + "start": 26464.56, + "end": 26467.2, + "probability": 0.9976 + }, + { + "start": 26467.84, + "end": 26468.38, + "probability": 0.6272 + }, + { + "start": 26469.06, + "end": 26470.28, + "probability": 0.954 + }, + { + "start": 26470.38, + "end": 26474.2, + "probability": 0.8738 + }, + { + "start": 26474.84, + "end": 26474.84, + "probability": 0.1131 + }, + { + "start": 26474.84, + "end": 26475.3, + "probability": 0.4019 + }, + { + "start": 26476.0, + "end": 26477.18, + "probability": 0.9963 + }, + { + "start": 26477.84, + "end": 26479.26, + "probability": 0.4995 + }, + { + "start": 26479.28, + "end": 26482.2, + "probability": 0.9437 + }, + { + "start": 26482.68, + "end": 26484.08, + "probability": 0.867 + }, + { + "start": 26484.66, + "end": 26486.16, + "probability": 0.9221 + }, + { + "start": 26486.74, + "end": 26488.02, + "probability": 0.8999 + }, + { + "start": 26488.14, + "end": 26488.88, + "probability": 0.7234 + }, + { + "start": 26489.0, + "end": 26489.6, + "probability": 0.7953 + }, + { + "start": 26490.26, + "end": 26492.98, + "probability": 0.9644 + }, + { + "start": 26494.0, + "end": 26496.42, + "probability": 0.8393 + }, + { + "start": 26496.58, + "end": 26498.28, + "probability": 0.9771 + }, + { + "start": 26498.9, + "end": 26500.44, + "probability": 0.9721 + }, + { + "start": 26500.98, + "end": 26502.88, + "probability": 0.9961 + }, + { + "start": 26503.24, + "end": 26504.5, + "probability": 0.9817 + }, + { + "start": 26504.9, + "end": 26506.2, + "probability": 0.9956 + }, + { + "start": 26506.28, + "end": 26507.98, + "probability": 0.9412 + }, + { + "start": 26508.88, + "end": 26509.94, + "probability": 0.6911 + }, + { + "start": 26511.54, + "end": 26511.54, + "probability": 0.8765 + }, + { + "start": 26513.5, + "end": 26515.1, + "probability": 0.6987 + }, + { + "start": 26517.9, + "end": 26521.62, + "probability": 0.9916 + }, + { + "start": 26523.06, + "end": 26525.7, + "probability": 0.9982 + }, + { + "start": 26526.26, + "end": 26530.8, + "probability": 0.9229 + }, + { + "start": 26531.26, + "end": 26534.3, + "probability": 0.8237 + }, + { + "start": 26535.36, + "end": 26537.14, + "probability": 0.999 + }, + { + "start": 26537.3, + "end": 26539.7, + "probability": 0.9535 + }, + { + "start": 26540.18, + "end": 26544.06, + "probability": 0.7948 + }, + { + "start": 26544.16, + "end": 26546.42, + "probability": 0.9688 + }, + { + "start": 26548.34, + "end": 26548.86, + "probability": 0.8584 + }, + { + "start": 26549.6, + "end": 26552.84, + "probability": 0.9861 + }, + { + "start": 26553.78, + "end": 26555.76, + "probability": 0.8845 + }, + { + "start": 26556.5, + "end": 26557.56, + "probability": 0.9828 + }, + { + "start": 26558.36, + "end": 26561.36, + "probability": 0.9753 + }, + { + "start": 26561.44, + "end": 26562.32, + "probability": 0.7725 + }, + { + "start": 26563.02, + "end": 26564.34, + "probability": 0.7537 + }, + { + "start": 26564.44, + "end": 26566.64, + "probability": 0.843 + }, + { + "start": 26567.58, + "end": 26571.76, + "probability": 0.9457 + }, + { + "start": 26572.46, + "end": 26574.02, + "probability": 0.7837 + }, + { + "start": 26574.32, + "end": 26575.0, + "probability": 0.8785 + }, + { + "start": 26575.34, + "end": 26577.66, + "probability": 0.9475 + }, + { + "start": 26578.58, + "end": 26579.2, + "probability": 0.8302 + }, + { + "start": 26579.96, + "end": 26583.52, + "probability": 0.8543 + }, + { + "start": 26584.64, + "end": 26586.96, + "probability": 0.9954 + }, + { + "start": 26587.1, + "end": 26589.56, + "probability": 0.974 + }, + { + "start": 26589.98, + "end": 26592.4, + "probability": 0.9976 + }, + { + "start": 26593.68, + "end": 26595.98, + "probability": 0.9686 + }, + { + "start": 26595.98, + "end": 26599.34, + "probability": 0.7516 + }, + { + "start": 26599.82, + "end": 26604.02, + "probability": 0.9119 + }, + { + "start": 26604.76, + "end": 26607.3, + "probability": 0.7868 + }, + { + "start": 26608.78, + "end": 26610.2, + "probability": 0.7951 + }, + { + "start": 26610.88, + "end": 26614.06, + "probability": 0.9185 + }, + { + "start": 26615.08, + "end": 26616.24, + "probability": 0.7548 + }, + { + "start": 26617.38, + "end": 26618.24, + "probability": 0.9776 + }, + { + "start": 26619.5, + "end": 26620.44, + "probability": 0.8387 + }, + { + "start": 26621.06, + "end": 26622.7, + "probability": 0.9686 + }, + { + "start": 26622.76, + "end": 26625.4, + "probability": 0.7613 + }, + { + "start": 26626.1, + "end": 26630.0, + "probability": 0.9488 + }, + { + "start": 26630.58, + "end": 26632.92, + "probability": 0.9731 + }, + { + "start": 26633.44, + "end": 26638.08, + "probability": 0.9697 + }, + { + "start": 26638.6, + "end": 26640.94, + "probability": 0.8538 + }, + { + "start": 26641.46, + "end": 26643.06, + "probability": 0.9464 + }, + { + "start": 26643.32, + "end": 26645.6, + "probability": 0.9739 + }, + { + "start": 26645.92, + "end": 26648.36, + "probability": 0.788 + }, + { + "start": 26648.62, + "end": 26650.8, + "probability": 0.7878 + }, + { + "start": 26652.82, + "end": 26656.6, + "probability": 0.967 + }, + { + "start": 26656.6, + "end": 26659.54, + "probability": 0.9647 + }, + { + "start": 26660.28, + "end": 26663.34, + "probability": 0.9434 + }, + { + "start": 26664.24, + "end": 26664.52, + "probability": 0.4274 + }, + { + "start": 26664.56, + "end": 26665.74, + "probability": 0.9038 + }, + { + "start": 26665.88, + "end": 26666.04, + "probability": 0.6508 + }, + { + "start": 26666.1, + "end": 26668.8, + "probability": 0.7944 + }, + { + "start": 26668.8, + "end": 26671.48, + "probability": 0.9614 + }, + { + "start": 26672.22, + "end": 26672.96, + "probability": 0.8746 + }, + { + "start": 26673.1, + "end": 26675.8, + "probability": 0.9665 + }, + { + "start": 26676.08, + "end": 26677.42, + "probability": 0.847 + }, + { + "start": 26678.6, + "end": 26679.06, + "probability": 0.7973 + }, + { + "start": 26679.16, + "end": 26680.64, + "probability": 0.8359 + }, + { + "start": 26681.06, + "end": 26683.86, + "probability": 0.9775 + }, + { + "start": 26684.98, + "end": 26685.7, + "probability": 0.6382 + }, + { + "start": 26687.6, + "end": 26691.1, + "probability": 0.9525 + }, + { + "start": 26691.5, + "end": 26694.4, + "probability": 0.9907 + }, + { + "start": 26695.3, + "end": 26695.96, + "probability": 0.9566 + }, + { + "start": 26698.18, + "end": 26699.32, + "probability": 0.8708 + }, + { + "start": 26700.64, + "end": 26702.84, + "probability": 0.5009 + }, + { + "start": 26703.18, + "end": 26704.66, + "probability": 0.1264 + }, + { + "start": 26705.46, + "end": 26706.66, + "probability": 0.1227 + }, + { + "start": 26707.14, + "end": 26709.16, + "probability": 0.5415 + }, + { + "start": 26709.2, + "end": 26709.8, + "probability": 0.2695 + }, + { + "start": 26709.96, + "end": 26711.0, + "probability": 0.0027 + }, + { + "start": 26711.0, + "end": 26711.78, + "probability": 0.1574 + }, + { + "start": 26712.31, + "end": 26716.72, + "probability": 0.4307 + }, + { + "start": 26716.84, + "end": 26718.26, + "probability": 0.9834 + }, + { + "start": 26720.44, + "end": 26721.1, + "probability": 0.8257 + }, + { + "start": 26721.2, + "end": 26721.7, + "probability": 0.8702 + }, + { + "start": 26722.46, + "end": 26725.36, + "probability": 0.704 + }, + { + "start": 26726.3, + "end": 26728.8, + "probability": 0.7881 + }, + { + "start": 26728.8, + "end": 26731.98, + "probability": 0.9784 + }, + { + "start": 26732.52, + "end": 26736.58, + "probability": 0.9904 + }, + { + "start": 26737.24, + "end": 26737.62, + "probability": 0.5067 + }, + { + "start": 26740.5, + "end": 26741.76, + "probability": 0.4785 + }, + { + "start": 26742.46, + "end": 26744.9, + "probability": 0.9958 + }, + { + "start": 26745.3, + "end": 26745.96, + "probability": 0.9568 + }, + { + "start": 26746.04, + "end": 26746.54, + "probability": 0.7627 + }, + { + "start": 26749.02, + "end": 26750.46, + "probability": 0.8879 + }, + { + "start": 26751.7, + "end": 26753.24, + "probability": 0.6528 + }, + { + "start": 26758.82, + "end": 26760.52, + "probability": 0.8752 + }, + { + "start": 26761.58, + "end": 26767.96, + "probability": 0.9857 + }, + { + "start": 26768.44, + "end": 26769.9, + "probability": 0.9187 + }, + { + "start": 26771.52, + "end": 26771.56, + "probability": 0.0327 + }, + { + "start": 26772.14, + "end": 26773.0, + "probability": 0.0763 + }, + { + "start": 26775.42, + "end": 26780.72, + "probability": 0.6587 + }, + { + "start": 26781.34, + "end": 26781.34, + "probability": 0.0143 + }, + { + "start": 26781.36, + "end": 26781.9, + "probability": 0.4385 + }, + { + "start": 26783.36, + "end": 26784.94, + "probability": 0.8828 + }, + { + "start": 26785.06, + "end": 26786.12, + "probability": 0.9886 + }, + { + "start": 26786.22, + "end": 26786.6, + "probability": 0.7451 + }, + { + "start": 26786.74, + "end": 26787.78, + "probability": 0.7591 + }, + { + "start": 26788.68, + "end": 26791.06, + "probability": 0.5875 + }, + { + "start": 26791.4, + "end": 26793.84, + "probability": 0.9444 + }, + { + "start": 26793.84, + "end": 26796.36, + "probability": 0.9937 + }, + { + "start": 26798.02, + "end": 26798.12, + "probability": 0.1439 + }, + { + "start": 26799.44, + "end": 26802.62, + "probability": 0.4935 + }, + { + "start": 26806.86, + "end": 26811.22, + "probability": 0.7647 + }, + { + "start": 26811.7, + "end": 26814.12, + "probability": 0.9273 + }, + { + "start": 26814.86, + "end": 26815.46, + "probability": 0.8673 + }, + { + "start": 26815.56, + "end": 26818.68, + "probability": 0.9945 + }, + { + "start": 26819.44, + "end": 26821.18, + "probability": 0.9318 + }, + { + "start": 26821.8, + "end": 26823.28, + "probability": 0.9041 + }, + { + "start": 26824.92, + "end": 26824.92, + "probability": 0.0167 + }, + { + "start": 26825.32, + "end": 26827.18, + "probability": 0.6176 + }, + { + "start": 26827.84, + "end": 26830.5, + "probability": 0.9679 + }, + { + "start": 26832.08, + "end": 26834.56, + "probability": 0.8397 + }, + { + "start": 26834.76, + "end": 26836.72, + "probability": 0.9985 + }, + { + "start": 26836.88, + "end": 26839.39, + "probability": 0.9508 + }, + { + "start": 26840.18, + "end": 26843.0, + "probability": 0.9829 + }, + { + "start": 26843.0, + "end": 26843.92, + "probability": 0.7214 + }, + { + "start": 26844.02, + "end": 26845.34, + "probability": 0.9807 + }, + { + "start": 26845.34, + "end": 26847.26, + "probability": 0.9844 + }, + { + "start": 26848.38, + "end": 26850.78, + "probability": 0.6608 + }, + { + "start": 26851.9, + "end": 26856.5, + "probability": 0.9871 + }, + { + "start": 26856.6, + "end": 26857.73, + "probability": 0.7852 + }, + { + "start": 26858.08, + "end": 26862.62, + "probability": 0.9796 + }, + { + "start": 26862.7, + "end": 26863.62, + "probability": 0.7628 + }, + { + "start": 26864.82, + "end": 26865.22, + "probability": 0.7419 + }, + { + "start": 26865.42, + "end": 26866.22, + "probability": 0.8893 + }, + { + "start": 26866.4, + "end": 26867.06, + "probability": 0.5751 + }, + { + "start": 26867.06, + "end": 26868.1, + "probability": 0.6015 + }, + { + "start": 26868.9, + "end": 26870.28, + "probability": 0.852 + }, + { + "start": 26870.54, + "end": 26874.36, + "probability": 0.9126 + }, + { + "start": 26874.58, + "end": 26876.22, + "probability": 0.611 + }, + { + "start": 26876.9, + "end": 26880.14, + "probability": 0.978 + }, + { + "start": 26880.74, + "end": 26883.0, + "probability": 0.8588 + }, + { + "start": 26883.38, + "end": 26884.68, + "probability": 0.9545 + }, + { + "start": 26885.26, + "end": 26889.18, + "probability": 0.9208 + }, + { + "start": 26889.88, + "end": 26891.76, + "probability": 0.9666 + }, + { + "start": 26892.86, + "end": 26893.94, + "probability": 0.7031 + }, + { + "start": 26894.68, + "end": 26895.36, + "probability": 0.8774 + }, + { + "start": 26896.2, + "end": 26896.9, + "probability": 0.6684 + }, + { + "start": 26897.2, + "end": 26898.38, + "probability": 0.5609 + }, + { + "start": 26899.04, + "end": 26901.06, + "probability": 0.8292 + }, + { + "start": 26901.72, + "end": 26903.72, + "probability": 0.9233 + }, + { + "start": 26903.82, + "end": 26904.86, + "probability": 0.8079 + }, + { + "start": 26905.18, + "end": 26906.85, + "probability": 0.9992 + }, + { + "start": 26907.36, + "end": 26909.56, + "probability": 0.9863 + }, + { + "start": 26909.88, + "end": 26911.12, + "probability": 0.9307 + }, + { + "start": 26912.78, + "end": 26914.96, + "probability": 0.9275 + }, + { + "start": 26915.24, + "end": 26918.94, + "probability": 0.9711 + }, + { + "start": 26919.54, + "end": 26922.18, + "probability": 0.8669 + }, + { + "start": 26922.66, + "end": 26924.62, + "probability": 0.9866 + }, + { + "start": 26924.98, + "end": 26926.74, + "probability": 0.8106 + }, + { + "start": 26927.1, + "end": 26927.64, + "probability": 0.7719 + }, + { + "start": 26927.81, + "end": 26928.96, + "probability": 0.0457 + }, + { + "start": 26930.14, + "end": 26930.4, + "probability": 0.0995 + }, + { + "start": 26930.4, + "end": 26930.4, + "probability": 0.0737 + }, + { + "start": 26930.4, + "end": 26930.92, + "probability": 0.1429 + }, + { + "start": 26931.4, + "end": 26933.9, + "probability": 0.9805 + }, + { + "start": 26934.06, + "end": 26934.34, + "probability": 0.4351 + }, + { + "start": 26934.62, + "end": 26935.04, + "probability": 0.5911 + }, + { + "start": 26935.04, + "end": 26935.04, + "probability": 0.6691 + }, + { + "start": 26935.04, + "end": 26936.58, + "probability": 0.5824 + }, + { + "start": 26936.7, + "end": 26937.15, + "probability": 0.5643 + }, + { + "start": 26950.36, + "end": 26954.16, + "probability": 0.4658 + }, + { + "start": 26955.98, + "end": 26958.28, + "probability": 0.112 + }, + { + "start": 26958.28, + "end": 26958.28, + "probability": 0.3266 + }, + { + "start": 26958.28, + "end": 26958.8, + "probability": 0.0593 + }, + { + "start": 26959.54, + "end": 26961.4, + "probability": 0.1048 + }, + { + "start": 26965.48, + "end": 26968.42, + "probability": 0.0789 + }, + { + "start": 26968.8, + "end": 26969.6, + "probability": 0.1274 + }, + { + "start": 26972.2, + "end": 26973.78, + "probability": 0.1553 + }, + { + "start": 26973.88, + "end": 26975.94, + "probability": 0.063 + }, + { + "start": 26977.23, + "end": 26979.28, + "probability": 0.0138 + }, + { + "start": 26979.28, + "end": 26979.34, + "probability": 0.0049 + }, + { + "start": 26979.34, + "end": 26979.34, + "probability": 0.3229 + }, + { + "start": 26979.38, + "end": 26979.84, + "probability": 0.0686 + }, + { + "start": 26979.84, + "end": 26979.84, + "probability": 0.0302 + }, + { + "start": 26979.84, + "end": 26980.7, + "probability": 0.4941 + }, + { + "start": 26981.28, + "end": 26981.28, + "probability": 0.2002 + }, + { + "start": 26981.28, + "end": 26981.28, + "probability": 0.1091 + }, + { + "start": 26981.28, + "end": 26981.4, + "probability": 0.0644 + }, + { + "start": 26981.4, + "end": 26981.4, + "probability": 0.4131 + }, + { + "start": 26981.4, + "end": 26982.45, + "probability": 0.3879 + }, + { + "start": 26982.64, + "end": 26982.88, + "probability": 0.7094 + }, + { + "start": 26983.8, + "end": 26989.98, + "probability": 0.6476 + }, + { + "start": 26990.0, + "end": 26993.1, + "probability": 0.9355 + }, + { + "start": 26993.58, + "end": 26996.16, + "probability": 0.7593 + }, + { + "start": 26996.9, + "end": 26998.68, + "probability": 0.9149 + }, + { + "start": 27000.04, + "end": 27001.94, + "probability": 0.6945 + }, + { + "start": 27002.04, + "end": 27003.82, + "probability": 0.5142 + }, + { + "start": 27003.84, + "end": 27004.34, + "probability": 0.8737 + }, + { + "start": 27016.76, + "end": 27019.6, + "probability": 0.456 + }, + { + "start": 27019.76, + "end": 27020.04, + "probability": 0.5156 + }, + { + "start": 27020.2, + "end": 27022.88, + "probability": 0.7789 + }, + { + "start": 27023.34, + "end": 27023.96, + "probability": 0.8114 + }, + { + "start": 27024.02, + "end": 27024.32, + "probability": 0.7952 + }, + { + "start": 27024.38, + "end": 27026.42, + "probability": 0.9819 + }, + { + "start": 27026.6, + "end": 27029.42, + "probability": 0.9886 + }, + { + "start": 27029.56, + "end": 27032.38, + "probability": 0.9289 + }, + { + "start": 27033.08, + "end": 27035.88, + "probability": 0.772 + }, + { + "start": 27035.9, + "end": 27036.98, + "probability": 0.8499 + }, + { + "start": 27037.1, + "end": 27038.46, + "probability": 0.8751 + }, + { + "start": 27039.82, + "end": 27040.44, + "probability": 0.8543 + }, + { + "start": 27041.8, + "end": 27045.46, + "probability": 0.9389 + }, + { + "start": 27046.28, + "end": 27048.16, + "probability": 0.9896 + }, + { + "start": 27049.46, + "end": 27051.36, + "probability": 0.0216 + }, + { + "start": 27051.36, + "end": 27055.92, + "probability": 0.9751 + }, + { + "start": 27056.52, + "end": 27062.3, + "probability": 0.9915 + }, + { + "start": 27063.1, + "end": 27065.78, + "probability": 0.7219 + }, + { + "start": 27066.38, + "end": 27068.73, + "probability": 0.8679 + }, + { + "start": 27069.7, + "end": 27070.8, + "probability": 0.9218 + }, + { + "start": 27072.3, + "end": 27076.3, + "probability": 0.9795 + }, + { + "start": 27076.3, + "end": 27079.5, + "probability": 0.9998 + }, + { + "start": 27079.82, + "end": 27081.88, + "probability": 0.9971 + }, + { + "start": 27082.52, + "end": 27089.72, + "probability": 0.9836 + }, + { + "start": 27091.4, + "end": 27092.52, + "probability": 0.612 + }, + { + "start": 27092.96, + "end": 27092.96, + "probability": 0.3768 + }, + { + "start": 27092.96, + "end": 27093.62, + "probability": 0.2776 + }, + { + "start": 27093.92, + "end": 27094.7, + "probability": 0.6313 + }, + { + "start": 27095.14, + "end": 27095.7, + "probability": 0.8598 + }, + { + "start": 27096.0, + "end": 27100.08, + "probability": 0.9243 + }, + { + "start": 27100.66, + "end": 27102.48, + "probability": 0.9468 + }, + { + "start": 27102.7, + "end": 27105.5, + "probability": 0.9883 + }, + { + "start": 27106.6, + "end": 27107.13, + "probability": 0.4878 + }, + { + "start": 27108.24, + "end": 27115.74, + "probability": 0.7217 + }, + { + "start": 27116.0, + "end": 27117.1, + "probability": 0.8491 + }, + { + "start": 27117.12, + "end": 27118.08, + "probability": 0.8837 + }, + { + "start": 27118.2, + "end": 27119.1, + "probability": 0.4505 + }, + { + "start": 27119.12, + "end": 27119.44, + "probability": 0.6131 + }, + { + "start": 27119.52, + "end": 27120.3, + "probability": 0.5688 + }, + { + "start": 27120.78, + "end": 27122.22, + "probability": 0.1145 + }, + { + "start": 27122.28, + "end": 27123.06, + "probability": 0.5039 + }, + { + "start": 27123.16, + "end": 27123.4, + "probability": 0.1871 + }, + { + "start": 27123.4, + "end": 27124.28, + "probability": 0.4693 + }, + { + "start": 27124.8, + "end": 27126.84, + "probability": 0.6982 + }, + { + "start": 27127.0, + "end": 27130.82, + "probability": 0.9829 + }, + { + "start": 27131.38, + "end": 27132.26, + "probability": 0.8828 + }, + { + "start": 27133.76, + "end": 27134.12, + "probability": 0.4781 + }, + { + "start": 27134.12, + "end": 27135.88, + "probability": 0.6688 + }, + { + "start": 27135.88, + "end": 27136.82, + "probability": 0.504 + }, + { + "start": 27137.18, + "end": 27138.0, + "probability": 0.1624 + }, + { + "start": 27138.1, + "end": 27139.08, + "probability": 0.6562 + }, + { + "start": 27139.2, + "end": 27140.16, + "probability": 0.5914 + }, + { + "start": 27141.08, + "end": 27141.12, + "probability": 0.0344 + }, + { + "start": 27141.12, + "end": 27141.12, + "probability": 0.1134 + }, + { + "start": 27141.12, + "end": 27142.28, + "probability": 0.5671 + }, + { + "start": 27142.34, + "end": 27142.72, + "probability": 0.419 + }, + { + "start": 27142.94, + "end": 27145.04, + "probability": 0.5836 + }, + { + "start": 27145.14, + "end": 27152.02, + "probability": 0.489 + }, + { + "start": 27152.64, + "end": 27152.88, + "probability": 0.072 + }, + { + "start": 27152.88, + "end": 27152.92, + "probability": 0.0075 + }, + { + "start": 27153.62, + "end": 27154.14, + "probability": 0.2015 + }, + { + "start": 27154.14, + "end": 27157.86, + "probability": 0.9104 + }, + { + "start": 27158.32, + "end": 27161.22, + "probability": 0.9946 + }, + { + "start": 27162.0, + "end": 27163.8, + "probability": 0.9418 + }, + { + "start": 27163.98, + "end": 27164.2, + "probability": 0.3475 + }, + { + "start": 27164.5, + "end": 27165.01, + "probability": 0.2272 + }, + { + "start": 27165.42, + "end": 27167.16, + "probability": 0.5114 + }, + { + "start": 27167.78, + "end": 27167.78, + "probability": 0.3481 + }, + { + "start": 27167.78, + "end": 27167.78, + "probability": 0.282 + }, + { + "start": 27167.78, + "end": 27169.69, + "probability": 0.7363 + }, + { + "start": 27170.46, + "end": 27172.26, + "probability": 0.8707 + }, + { + "start": 27172.52, + "end": 27173.96, + "probability": 0.192 + }, + { + "start": 27173.96, + "end": 27179.06, + "probability": 0.3482 + }, + { + "start": 27179.72, + "end": 27181.06, + "probability": 0.8804 + }, + { + "start": 27181.62, + "end": 27184.6, + "probability": 0.9746 + }, + { + "start": 27185.34, + "end": 27186.08, + "probability": 0.8026 + }, + { + "start": 27186.3, + "end": 27186.9, + "probability": 0.5064 + }, + { + "start": 27187.04, + "end": 27187.8, + "probability": 0.7568 + }, + { + "start": 27188.18, + "end": 27190.16, + "probability": 0.8639 + }, + { + "start": 27190.54, + "end": 27192.2, + "probability": 0.9265 + }, + { + "start": 27192.6, + "end": 27192.62, + "probability": 0.0926 + }, + { + "start": 27192.64, + "end": 27195.24, + "probability": 0.7813 + }, + { + "start": 27195.72, + "end": 27197.42, + "probability": 0.9231 + }, + { + "start": 27197.58, + "end": 27199.88, + "probability": 0.6899 + }, + { + "start": 27200.24, + "end": 27200.64, + "probability": 0.5592 + }, + { + "start": 27200.84, + "end": 27202.58, + "probability": 0.9869 + }, + { + "start": 27203.16, + "end": 27206.14, + "probability": 0.959 + }, + { + "start": 27206.14, + "end": 27212.52, + "probability": 0.9846 + }, + { + "start": 27213.0, + "end": 27214.34, + "probability": 0.9224 + }, + { + "start": 27214.92, + "end": 27216.08, + "probability": 0.9584 + }, + { + "start": 27216.5, + "end": 27217.76, + "probability": 0.9421 + }, + { + "start": 27218.1, + "end": 27221.68, + "probability": 0.9881 + }, + { + "start": 27222.2, + "end": 27222.72, + "probability": 0.6059 + }, + { + "start": 27222.86, + "end": 27223.62, + "probability": 0.521 + }, + { + "start": 27223.84, + "end": 27225.22, + "probability": 0.8097 + }, + { + "start": 27225.3, + "end": 27228.54, + "probability": 0.3775 + }, + { + "start": 27231.06, + "end": 27232.5, + "probability": 0.166 + }, + { + "start": 27232.5, + "end": 27235.52, + "probability": 0.7018 + }, + { + "start": 27235.74, + "end": 27240.44, + "probability": 0.9357 + }, + { + "start": 27240.6, + "end": 27241.54, + "probability": 0.8846 + }, + { + "start": 27242.7, + "end": 27243.34, + "probability": 0.2179 + }, + { + "start": 27244.76, + "end": 27247.22, + "probability": 0.6397 + }, + { + "start": 27248.22, + "end": 27248.76, + "probability": 0.98 + }, + { + "start": 27250.0, + "end": 27250.72, + "probability": 0.7182 + }, + { + "start": 27252.04, + "end": 27252.54, + "probability": 0.9904 + }, + { + "start": 27253.5, + "end": 27254.36, + "probability": 0.7297 + }, + { + "start": 27255.28, + "end": 27255.66, + "probability": 0.915 + }, + { + "start": 27256.32, + "end": 27257.1, + "probability": 0.8371 + }, + { + "start": 27257.67, + "end": 27259.58, + "probability": 0.8677 + }, + { + "start": 27262.78, + "end": 27264.3, + "probability": 0.5413 + }, + { + "start": 27265.56, + "end": 27266.4, + "probability": 0.523 + }, + { + "start": 27268.36, + "end": 27269.96, + "probability": 0.6499 + }, + { + "start": 27271.02, + "end": 27271.34, + "probability": 0.7252 + }, + { + "start": 27272.92, + "end": 27273.84, + "probability": 0.7972 + }, + { + "start": 27275.06, + "end": 27277.12, + "probability": 0.9478 + }, + { + "start": 27279.4, + "end": 27279.84, + "probability": 0.99 + }, + { + "start": 27281.2, + "end": 27281.98, + "probability": 0.8348 + }, + { + "start": 27283.94, + "end": 27284.76, + "probability": 0.9888 + }, + { + "start": 27285.52, + "end": 27286.18, + "probability": 0.9114 + }, + { + "start": 27288.5, + "end": 27289.3, + "probability": 0.9486 + }, + { + "start": 27290.04, + "end": 27291.12, + "probability": 0.9391 + }, + { + "start": 27291.92, + "end": 27292.44, + "probability": 0.9961 + }, + { + "start": 27293.64, + "end": 27294.46, + "probability": 0.6963 + }, + { + "start": 27296.1, + "end": 27296.88, + "probability": 0.7238 + }, + { + "start": 27297.44, + "end": 27298.18, + "probability": 0.7975 + }, + { + "start": 27299.1, + "end": 27299.62, + "probability": 0.9915 + }, + { + "start": 27300.5, + "end": 27301.34, + "probability": 0.9396 + }, + { + "start": 27302.42, + "end": 27303.18, + "probability": 0.8593 + }, + { + "start": 27303.8, + "end": 27304.56, + "probability": 0.8564 + }, + { + "start": 27307.04, + "end": 27307.84, + "probability": 0.8558 + }, + { + "start": 27308.48, + "end": 27309.32, + "probability": 0.878 + }, + { + "start": 27312.36, + "end": 27312.8, + "probability": 0.9624 + }, + { + "start": 27314.08, + "end": 27315.1, + "probability": 0.8403 + }, + { + "start": 27315.9, + "end": 27316.44, + "probability": 0.9967 + }, + { + "start": 27317.04, + "end": 27317.86, + "probability": 0.9573 + }, + { + "start": 27319.28, + "end": 27321.74, + "probability": 0.8801 + }, + { + "start": 27322.46, + "end": 27324.42, + "probability": 0.8577 + }, + { + "start": 27325.22, + "end": 27326.16, + "probability": 0.9619 + }, + { + "start": 27326.9, + "end": 27330.02, + "probability": 0.9305 + }, + { + "start": 27331.72, + "end": 27333.4, + "probability": 0.6802 + }, + { + "start": 27334.08, + "end": 27334.64, + "probability": 0.9909 + }, + { + "start": 27336.1, + "end": 27336.74, + "probability": 0.9836 + }, + { + "start": 27337.58, + "end": 27338.02, + "probability": 0.9736 + }, + { + "start": 27338.58, + "end": 27341.52, + "probability": 0.9788 + }, + { + "start": 27342.66, + "end": 27343.28, + "probability": 0.984 + }, + { + "start": 27344.24, + "end": 27344.98, + "probability": 0.8779 + }, + { + "start": 27347.74, + "end": 27348.2, + "probability": 0.5708 + }, + { + "start": 27352.06, + "end": 27352.86, + "probability": 0.5743 + }, + { + "start": 27357.52, + "end": 27357.84, + "probability": 0.759 + }, + { + "start": 27358.44, + "end": 27359.16, + "probability": 0.6174 + }, + { + "start": 27363.52, + "end": 27366.14, + "probability": 0.9023 + }, + { + "start": 27367.06, + "end": 27367.4, + "probability": 0.6073 + }, + { + "start": 27368.4, + "end": 27369.26, + "probability": 0.7282 + }, + { + "start": 27369.8, + "end": 27371.36, + "probability": 0.92 + }, + { + "start": 27371.98, + "end": 27372.8, + "probability": 0.8561 + }, + { + "start": 27373.7, + "end": 27374.58, + "probability": 0.9644 + }, + { + "start": 27375.66, + "end": 27376.06, + "probability": 0.9353 + }, + { + "start": 27376.74, + "end": 27377.7, + "probability": 0.8728 + }, + { + "start": 27378.38, + "end": 27378.84, + "probability": 0.9678 + }, + { + "start": 27379.54, + "end": 27380.38, + "probability": 0.9847 + }, + { + "start": 27381.12, + "end": 27381.6, + "probability": 0.9832 + }, + { + "start": 27382.2, + "end": 27383.4, + "probability": 0.9578 + }, + { + "start": 27387.84, + "end": 27388.3, + "probability": 0.5341 + }, + { + "start": 27389.04, + "end": 27389.92, + "probability": 0.734 + }, + { + "start": 27399.44, + "end": 27402.62, + "probability": 0.8813 + }, + { + "start": 27403.52, + "end": 27405.28, + "probability": 0.639 + }, + { + "start": 27408.78, + "end": 27412.26, + "probability": 0.9657 + }, + { + "start": 27413.04, + "end": 27413.46, + "probability": 0.9912 + }, + { + "start": 27413.98, + "end": 27415.06, + "probability": 0.4328 + }, + { + "start": 27417.88, + "end": 27418.48, + "probability": 0.945 + }, + { + "start": 27419.82, + "end": 27421.06, + "probability": 0.9564 + }, + { + "start": 27422.04, + "end": 27423.16, + "probability": 0.9504 + }, + { + "start": 27423.76, + "end": 27424.92, + "probability": 0.7505 + }, + { + "start": 27427.68, + "end": 27428.9, + "probability": 0.7785 + }, + { + "start": 27429.76, + "end": 27430.64, + "probability": 0.3381 + }, + { + "start": 27431.64, + "end": 27432.22, + "probability": 0.9933 + }, + { + "start": 27433.5, + "end": 27434.56, + "probability": 0.7721 + }, + { + "start": 27435.14, + "end": 27435.64, + "probability": 0.9937 + }, + { + "start": 27436.38, + "end": 27437.18, + "probability": 0.7659 + }, + { + "start": 27437.84, + "end": 27438.44, + "probability": 0.9964 + }, + { + "start": 27439.1, + "end": 27439.92, + "probability": 0.9882 + }, + { + "start": 27441.44, + "end": 27441.98, + "probability": 0.9976 + }, + { + "start": 27445.74, + "end": 27446.58, + "probability": 0.6073 + }, + { + "start": 27447.46, + "end": 27449.24, + "probability": 0.5943 + }, + { + "start": 27450.32, + "end": 27450.98, + "probability": 0.9694 + }, + { + "start": 27451.76, + "end": 27452.98, + "probability": 0.7786 + }, + { + "start": 27453.8, + "end": 27457.22, + "probability": 0.9529 + }, + { + "start": 27457.86, + "end": 27458.7, + "probability": 0.9625 + }, + { + "start": 27461.84, + "end": 27462.34, + "probability": 0.9937 + }, + { + "start": 27463.5, + "end": 27464.3, + "probability": 0.9906 + }, + { + "start": 27464.9, + "end": 27465.44, + "probability": 0.9839 + }, + { + "start": 27466.64, + "end": 27467.86, + "probability": 0.938 + }, + { + "start": 27471.08, + "end": 27471.52, + "probability": 0.0151 + }, + { + "start": 27475.52, + "end": 27477.3, + "probability": 0.5495 + }, + { + "start": 27480.46, + "end": 27481.32, + "probability": 0.5462 + }, + { + "start": 27481.84, + "end": 27482.5, + "probability": 0.8009 + }, + { + "start": 27484.02, + "end": 27484.36, + "probability": 0.5723 + }, + { + "start": 27486.34, + "end": 27487.0, + "probability": 0.8917 + }, + { + "start": 27489.74, + "end": 27491.48, + "probability": 0.9482 + }, + { + "start": 27495.34, + "end": 27496.88, + "probability": 0.876 + }, + { + "start": 27499.0, + "end": 27499.52, + "probability": 0.9904 + }, + { + "start": 27501.24, + "end": 27502.46, + "probability": 0.4586 + }, + { + "start": 27504.64, + "end": 27505.16, + "probability": 0.7378 + }, + { + "start": 27508.5, + "end": 27509.06, + "probability": 0.58 + }, + { + "start": 27510.64, + "end": 27511.12, + "probability": 0.9878 + }, + { + "start": 27511.74, + "end": 27512.9, + "probability": 0.859 + }, + { + "start": 27516.78, + "end": 27517.82, + "probability": 0.7717 + }, + { + "start": 27519.3, + "end": 27520.12, + "probability": 0.8842 + }, + { + "start": 27521.58, + "end": 27522.02, + "probability": 0.9263 + }, + { + "start": 27522.86, + "end": 27523.82, + "probability": 0.8759 + }, + { + "start": 27524.48, + "end": 27525.08, + "probability": 0.9943 + }, + { + "start": 27526.3, + "end": 27527.38, + "probability": 0.967 + }, + { + "start": 27528.02, + "end": 27530.5, + "probability": 0.9303 + }, + { + "start": 27531.56, + "end": 27532.1, + "probability": 0.9977 + }, + { + "start": 27533.5, + "end": 27534.62, + "probability": 0.9785 + }, + { + "start": 27535.72, + "end": 27537.98, + "probability": 0.6812 + }, + { + "start": 27538.58, + "end": 27540.5, + "probability": 0.7353 + }, + { + "start": 27541.7, + "end": 27542.26, + "probability": 0.9862 + }, + { + "start": 27543.04, + "end": 27543.86, + "probability": 0.6723 + }, + { + "start": 27546.66, + "end": 27548.28, + "probability": 0.5041 + }, + { + "start": 27549.02, + "end": 27550.04, + "probability": 0.8937 + }, + { + "start": 27550.62, + "end": 27551.18, + "probability": 0.9753 + }, + { + "start": 27552.22, + "end": 27553.06, + "probability": 0.5401 + }, + { + "start": 27557.98, + "end": 27558.88, + "probability": 0.7767 + }, + { + "start": 27559.5, + "end": 27560.42, + "probability": 0.5798 + }, + { + "start": 27562.22, + "end": 27562.72, + "probability": 0.9412 + }, + { + "start": 27565.42, + "end": 27566.44, + "probability": 0.875 + }, + { + "start": 27567.08, + "end": 27567.54, + "probability": 0.8728 + }, + { + "start": 27568.46, + "end": 27569.14, + "probability": 0.949 + }, + { + "start": 27570.46, + "end": 27571.92, + "probability": 0.9591 + }, + { + "start": 27572.94, + "end": 27574.92, + "probability": 0.7554 + }, + { + "start": 27575.66, + "end": 27577.64, + "probability": 0.9784 + }, + { + "start": 27578.9, + "end": 27579.32, + "probability": 0.989 + }, + { + "start": 27579.9, + "end": 27580.76, + "probability": 0.929 + }, + { + "start": 27583.04, + "end": 27583.52, + "probability": 0.7516 + }, + { + "start": 27584.74, + "end": 27585.78, + "probability": 0.7083 + }, + { + "start": 27588.66, + "end": 27589.16, + "probability": 0.812 + }, + { + "start": 27590.82, + "end": 27595.94, + "probability": 0.8239 + }, + { + "start": 27599.26, + "end": 27600.96, + "probability": 0.6739 + }, + { + "start": 27602.2, + "end": 27603.7, + "probability": 0.9176 + }, + { + "start": 27607.44, + "end": 27608.38, + "probability": 0.7141 + }, + { + "start": 27608.98, + "end": 27609.84, + "probability": 0.4576 + }, + { + "start": 27610.9, + "end": 27611.26, + "probability": 0.6066 + }, + { + "start": 27612.58, + "end": 27613.5, + "probability": 0.6603 + }, + { + "start": 27614.42, + "end": 27614.9, + "probability": 0.8306 + }, + { + "start": 27615.8, + "end": 27616.18, + "probability": 0.5829 + }, + { + "start": 27619.58, + "end": 27622.08, + "probability": 0.913 + }, + { + "start": 27625.16, + "end": 27625.7, + "probability": 0.9938 + }, + { + "start": 27627.66, + "end": 27628.4, + "probability": 0.8235 + }, + { + "start": 27631.34, + "end": 27633.22, + "probability": 0.4963 + }, + { + "start": 27636.72, + "end": 27640.52, + "probability": 0.2028 + }, + { + "start": 27644.48, + "end": 27645.32, + "probability": 0.1947 + }, + { + "start": 27646.6, + "end": 27647.04, + "probability": 0.5509 + }, + { + "start": 27647.86, + "end": 27648.84, + "probability": 0.908 + }, + { + "start": 27649.9, + "end": 27650.4, + "probability": 0.8892 + }, + { + "start": 27651.26, + "end": 27652.08, + "probability": 0.7467 + }, + { + "start": 27653.24, + "end": 27655.68, + "probability": 0.9719 + }, + { + "start": 27656.26, + "end": 27659.34, + "probability": 0.9762 + }, + { + "start": 27659.92, + "end": 27660.8, + "probability": 0.9016 + }, + { + "start": 27661.98, + "end": 27662.54, + "probability": 0.9945 + }, + { + "start": 27663.24, + "end": 27663.86, + "probability": 0.9705 + }, + { + "start": 27664.48, + "end": 27666.14, + "probability": 0.7888 + }, + { + "start": 27669.0, + "end": 27669.76, + "probability": 0.0398 + }, + { + "start": 27675.02, + "end": 27675.3, + "probability": 0.5623 + }, + { + "start": 27677.52, + "end": 27678.18, + "probability": 0.4836 + }, + { + "start": 27679.62, + "end": 27681.44, + "probability": 0.8365 + }, + { + "start": 27683.76, + "end": 27685.52, + "probability": 0.9567 + }, + { + "start": 27686.42, + "end": 27689.26, + "probability": 0.7744 + }, + { + "start": 27689.96, + "end": 27690.6, + "probability": 0.8861 + }, + { + "start": 27692.64, + "end": 27693.18, + "probability": 0.9959 + }, + { + "start": 27694.9, + "end": 27695.86, + "probability": 0.9189 + }, + { + "start": 27698.52, + "end": 27701.22, + "probability": 0.9615 + }, + { + "start": 27701.82, + "end": 27702.98, + "probability": 0.476 + }, + { + "start": 27704.38, + "end": 27707.26, + "probability": 0.8562 + }, + { + "start": 27707.86, + "end": 27708.68, + "probability": 0.8583 + }, + { + "start": 27709.84, + "end": 27710.3, + "probability": 0.8569 + }, + { + "start": 27710.86, + "end": 27711.64, + "probability": 0.7152 + }, + { + "start": 27712.48, + "end": 27714.4, + "probability": 0.9646 + }, + { + "start": 27715.06, + "end": 27716.82, + "probability": 0.925 + }, + { + "start": 27717.48, + "end": 27719.22, + "probability": 0.9425 + }, + { + "start": 27722.82, + "end": 27725.52, + "probability": 0.8818 + }, + { + "start": 27731.62, + "end": 27732.12, + "probability": 0.7413 + }, + { + "start": 27733.6, + "end": 27734.36, + "probability": 0.5627 + }, + { + "start": 27736.91, + "end": 27738.58, + "probability": 0.6302 + }, + { + "start": 27741.32, + "end": 27743.46, + "probability": 0.7481 + }, + { + "start": 27746.12, + "end": 27748.62, + "probability": 0.813 + }, + { + "start": 27750.42, + "end": 27752.62, + "probability": 0.794 + }, + { + "start": 27752.92, + "end": 27753.22, + "probability": 0.6699 + }, + { + "start": 27754.12, + "end": 27754.78, + "probability": 0.3618 + }, + { + "start": 27756.2, + "end": 27756.8, + "probability": 0.2791 + }, + { + "start": 27759.12, + "end": 27759.74, + "probability": 0.624 + }, + { + "start": 27762.04, + "end": 27764.34, + "probability": 0.6172 + }, + { + "start": 27766.86, + "end": 27769.08, + "probability": 0.6711 + }, + { + "start": 27775.6, + "end": 27776.5, + "probability": 0.7253 + }, + { + "start": 27777.5, + "end": 27778.34, + "probability": 0.9176 + }, + { + "start": 27779.34, + "end": 27779.66, + "probability": 0.8933 + }, + { + "start": 27781.74, + "end": 27782.6, + "probability": 0.9236 + }, + { + "start": 27783.28, + "end": 27784.12, + "probability": 0.4816 + }, + { + "start": 27785.94, + "end": 27786.9, + "probability": 0.4069 + }, + { + "start": 27794.32, + "end": 27795.14, + "probability": 0.6723 + }, + { + "start": 27796.42, + "end": 27797.2, + "probability": 0.6734 + }, + { + "start": 27797.98, + "end": 27798.48, + "probability": 0.8734 + }, + { + "start": 27800.42, + "end": 27801.32, + "probability": 0.8103 + }, + { + "start": 27802.0, + "end": 27805.32, + "probability": 0.8594 + }, + { + "start": 27805.94, + "end": 27806.46, + "probability": 0.9038 + }, + { + "start": 27810.5, + "end": 27811.24, + "probability": 0.7462 + }, + { + "start": 27813.36, + "end": 27813.88, + "probability": 0.8088 + }, + { + "start": 27816.02, + "end": 27818.04, + "probability": 0.6295 + }, + { + "start": 27819.7, + "end": 27820.38, + "probability": 0.8774 + }, + { + "start": 27821.14, + "end": 27822.16, + "probability": 0.9854 + }, + { + "start": 27824.64, + "end": 27825.64, + "probability": 0.8199 + }, + { + "start": 27826.64, + "end": 27827.2, + "probability": 0.9847 + }, + { + "start": 27829.66, + "end": 27830.53, + "probability": 0.8894 + }, + { + "start": 27835.34, + "end": 27836.12, + "probability": 0.6827 + }, + { + "start": 27837.38, + "end": 27838.12, + "probability": 0.588 + }, + { + "start": 27839.76, + "end": 27840.28, + "probability": 0.8548 + }, + { + "start": 27843.42, + "end": 27844.44, + "probability": 0.6075 + }, + { + "start": 27845.44, + "end": 27845.86, + "probability": 0.6438 + }, + { + "start": 27847.94, + "end": 27848.86, + "probability": 0.8563 + }, + { + "start": 27850.02, + "end": 27851.94, + "probability": 0.6138 + }, + { + "start": 27853.06, + "end": 27855.0, + "probability": 0.5777 + }, + { + "start": 27858.46, + "end": 27859.26, + "probability": 0.3602 + }, + { + "start": 27861.04, + "end": 27862.26, + "probability": 0.7983 + }, + { + "start": 27865.26, + "end": 27865.94, + "probability": 0.4348 + }, + { + "start": 27867.86, + "end": 27869.94, + "probability": 0.6928 + }, + { + "start": 27872.32, + "end": 27873.68, + "probability": 0.8293 + }, + { + "start": 27874.04, + "end": 27877.0, + "probability": 0.2114 + }, + { + "start": 27879.68, + "end": 27880.64, + "probability": 0.7634 + }, + { + "start": 27882.44, + "end": 27883.92, + "probability": 0.6162 + }, + { + "start": 27886.48, + "end": 27887.22, + "probability": 0.4231 + }, + { + "start": 27893.76, + "end": 27894.12, + "probability": 0.6002 + }, + { + "start": 27897.64, + "end": 27897.98, + "probability": 0.5187 + }, + { + "start": 27899.36, + "end": 27899.86, + "probability": 0.8145 + }, + { + "start": 27902.58, + "end": 27903.34, + "probability": 0.6652 + }, + { + "start": 27904.4, + "end": 27904.88, + "probability": 0.8022 + }, + { + "start": 27907.0, + "end": 27908.12, + "probability": 0.5357 + }, + { + "start": 27910.6, + "end": 27911.42, + "probability": 0.7731 + }, + { + "start": 27914.58, + "end": 27919.98, + "probability": 0.8872 + }, + { + "start": 27920.28, + "end": 27920.88, + "probability": 0.3004 + }, + { + "start": 27923.04, + "end": 27925.88, + "probability": 0.5119 + }, + { + "start": 27926.02, + "end": 27927.06, + "probability": 0.449 + }, + { + "start": 27927.68, + "end": 27928.98, + "probability": 0.7058 + }, + { + "start": 27930.32, + "end": 27935.2, + "probability": 0.1273 + }, + { + "start": 27936.24, + "end": 27937.3, + "probability": 0.1118 + }, + { + "start": 27944.9, + "end": 27945.1, + "probability": 0.1496 + }, + { + "start": 27976.86, + "end": 27978.09, + "probability": 0.0088 + }, + { + "start": 27979.12, + "end": 27979.7, + "probability": 0.0898 + }, + { + "start": 28062.72, + "end": 28063.02, + "probability": 0.7567 + }, + { + "start": 28063.04, + "end": 28065.0, + "probability": 0.9871 + }, + { + "start": 28065.36, + "end": 28068.34, + "probability": 0.699 + }, + { + "start": 28068.72, + "end": 28071.6, + "probability": 0.9759 + }, + { + "start": 28072.42, + "end": 28075.1, + "probability": 0.9623 + }, + { + "start": 28075.62, + "end": 28076.32, + "probability": 0.6372 + }, + { + "start": 28085.06, + "end": 28085.52, + "probability": 0.7042 + }, + { + "start": 28095.1, + "end": 28095.74, + "probability": 0.455 + }, + { + "start": 28096.78, + "end": 28098.64, + "probability": 0.4552 + }, + { + "start": 28099.34, + "end": 28100.34, + "probability": 0.8865 + }, + { + "start": 28101.84, + "end": 28104.32, + "probability": 0.5422 + }, + { + "start": 28104.58, + "end": 28104.86, + "probability": 0.5399 + }, + { + "start": 28104.86, + "end": 28106.34, + "probability": 0.7535 + }, + { + "start": 28106.9, + "end": 28109.74, + "probability": 0.5767 + }, + { + "start": 28110.12, + "end": 28111.67, + "probability": 0.9072 + }, + { + "start": 28111.96, + "end": 28113.58, + "probability": 0.7896 + }, + { + "start": 28114.46, + "end": 28115.7, + "probability": 0.9489 + }, + { + "start": 28116.44, + "end": 28116.88, + "probability": 0.8149 + }, + { + "start": 28117.74, + "end": 28119.6, + "probability": 0.949 + }, + { + "start": 28120.5, + "end": 28121.92, + "probability": 0.7799 + }, + { + "start": 28122.84, + "end": 28125.34, + "probability": 0.9993 + }, + { + "start": 28126.4, + "end": 28129.42, + "probability": 0.9958 + }, + { + "start": 28131.46, + "end": 28132.78, + "probability": 0.9971 + }, + { + "start": 28133.92, + "end": 28139.16, + "probability": 0.9843 + }, + { + "start": 28140.68, + "end": 28142.46, + "probability": 0.9625 + }, + { + "start": 28143.14, + "end": 28144.62, + "probability": 0.813 + }, + { + "start": 28146.18, + "end": 28147.64, + "probability": 0.732 + }, + { + "start": 28149.5, + "end": 28150.22, + "probability": 0.6419 + }, + { + "start": 28151.42, + "end": 28152.18, + "probability": 0.8527 + }, + { + "start": 28153.58, + "end": 28155.42, + "probability": 0.8337 + }, + { + "start": 28156.86, + "end": 28160.08, + "probability": 0.9916 + }, + { + "start": 28161.58, + "end": 28164.8, + "probability": 0.9907 + }, + { + "start": 28166.2, + "end": 28168.68, + "probability": 0.9573 + }, + { + "start": 28170.28, + "end": 28173.24, + "probability": 0.9946 + }, + { + "start": 28174.98, + "end": 28176.06, + "probability": 0.9948 + }, + { + "start": 28177.48, + "end": 28178.88, + "probability": 0.8582 + }, + { + "start": 28180.62, + "end": 28183.64, + "probability": 0.9941 + }, + { + "start": 28184.6, + "end": 28185.46, + "probability": 0.9896 + }, + { + "start": 28187.38, + "end": 28190.24, + "probability": 0.9852 + }, + { + "start": 28191.36, + "end": 28194.44, + "probability": 0.9917 + }, + { + "start": 28195.38, + "end": 28196.2, + "probability": 0.9979 + }, + { + "start": 28197.36, + "end": 28198.26, + "probability": 0.9961 + }, + { + "start": 28200.94, + "end": 28201.4, + "probability": 0.2655 + }, + { + "start": 28202.5, + "end": 28204.08, + "probability": 0.9852 + }, + { + "start": 28206.64, + "end": 28209.14, + "probability": 0.8743 + }, + { + "start": 28210.62, + "end": 28211.26, + "probability": 0.8857 + }, + { + "start": 28212.64, + "end": 28214.1, + "probability": 0.8495 + }, + { + "start": 28214.82, + "end": 28215.74, + "probability": 0.7216 + }, + { + "start": 28217.24, + "end": 28221.64, + "probability": 0.9871 + }, + { + "start": 28222.66, + "end": 28223.54, + "probability": 0.7951 + }, + { + "start": 28224.7, + "end": 28225.7, + "probability": 0.9471 + }, + { + "start": 28226.26, + "end": 28227.78, + "probability": 0.9987 + }, + { + "start": 28228.7, + "end": 28230.58, + "probability": 0.9865 + }, + { + "start": 28231.24, + "end": 28232.42, + "probability": 0.8839 + }, + { + "start": 28233.6, + "end": 28234.3, + "probability": 0.9961 + }, + { + "start": 28235.32, + "end": 28237.08, + "probability": 0.9767 + }, + { + "start": 28238.82, + "end": 28239.88, + "probability": 0.7489 + }, + { + "start": 28240.7, + "end": 28244.44, + "probability": 0.9959 + }, + { + "start": 28246.6, + "end": 28248.84, + "probability": 0.9713 + }, + { + "start": 28250.6, + "end": 28252.4, + "probability": 0.9648 + }, + { + "start": 28254.28, + "end": 28257.18, + "probability": 0.8549 + }, + { + "start": 28258.52, + "end": 28262.34, + "probability": 0.978 + }, + { + "start": 28263.44, + "end": 28268.22, + "probability": 0.9888 + }, + { + "start": 28270.48, + "end": 28272.88, + "probability": 0.9858 + }, + { + "start": 28273.98, + "end": 28278.88, + "probability": 0.9462 + }, + { + "start": 28280.94, + "end": 28281.52, + "probability": 0.7583 + }, + { + "start": 28282.16, + "end": 28285.02, + "probability": 0.9901 + }, + { + "start": 28285.86, + "end": 28287.7, + "probability": 0.9562 + }, + { + "start": 28288.66, + "end": 28293.46, + "probability": 0.995 + }, + { + "start": 28294.3, + "end": 28297.02, + "probability": 0.9988 + }, + { + "start": 28298.62, + "end": 28302.26, + "probability": 0.9932 + }, + { + "start": 28303.88, + "end": 28304.18, + "probability": 0.6331 + }, + { + "start": 28305.1, + "end": 28307.78, + "probability": 0.9865 + }, + { + "start": 28308.58, + "end": 28310.24, + "probability": 0.9992 + }, + { + "start": 28311.68, + "end": 28313.44, + "probability": 0.7646 + }, + { + "start": 28314.26, + "end": 28316.16, + "probability": 0.9927 + }, + { + "start": 28317.46, + "end": 28320.58, + "probability": 0.9932 + }, + { + "start": 28321.34, + "end": 28325.24, + "probability": 0.9974 + }, + { + "start": 28326.2, + "end": 28329.16, + "probability": 0.8427 + }, + { + "start": 28329.52, + "end": 28331.58, + "probability": 0.4417 + }, + { + "start": 28332.6, + "end": 28333.94, + "probability": 0.9837 + }, + { + "start": 28334.14, + "end": 28339.22, + "probability": 0.9576 + }, + { + "start": 28340.06, + "end": 28349.18, + "probability": 0.9819 + }, + { + "start": 28349.4, + "end": 28350.6, + "probability": 0.7644 + }, + { + "start": 28352.04, + "end": 28353.34, + "probability": 0.7788 + }, + { + "start": 28354.1, + "end": 28355.84, + "probability": 0.7092 + }, + { + "start": 28356.64, + "end": 28358.27, + "probability": 0.9897 + }, + { + "start": 28359.42, + "end": 28360.22, + "probability": 0.969 + }, + { + "start": 28361.28, + "end": 28362.12, + "probability": 0.812 + }, + { + "start": 28363.02, + "end": 28365.68, + "probability": 0.9963 + }, + { + "start": 28368.3, + "end": 28371.1, + "probability": 0.9948 + }, + { + "start": 28373.36, + "end": 28374.34, + "probability": 0.9976 + }, + { + "start": 28375.94, + "end": 28377.24, + "probability": 0.8581 + }, + { + "start": 28378.94, + "end": 28380.64, + "probability": 0.9966 + }, + { + "start": 28381.84, + "end": 28383.68, + "probability": 0.9987 + }, + { + "start": 28385.22, + "end": 28386.9, + "probability": 0.8371 + }, + { + "start": 28387.0, + "end": 28389.52, + "probability": 0.9773 + }, + { + "start": 28390.46, + "end": 28393.04, + "probability": 0.9984 + }, + { + "start": 28394.52, + "end": 28397.69, + "probability": 0.7622 + }, + { + "start": 28399.66, + "end": 28403.18, + "probability": 0.8202 + }, + { + "start": 28404.18, + "end": 28407.52, + "probability": 0.9861 + }, + { + "start": 28408.02, + "end": 28408.56, + "probability": 0.7559 + }, + { + "start": 28409.16, + "end": 28410.08, + "probability": 0.9891 + }, + { + "start": 28410.62, + "end": 28416.64, + "probability": 0.9976 + }, + { + "start": 28417.52, + "end": 28418.12, + "probability": 0.6809 + }, + { + "start": 28419.1, + "end": 28419.56, + "probability": 0.9795 + }, + { + "start": 28420.18, + "end": 28421.8, + "probability": 0.9744 + }, + { + "start": 28423.24, + "end": 28425.3, + "probability": 0.9886 + }, + { + "start": 28426.88, + "end": 28427.24, + "probability": 0.641 + }, + { + "start": 28427.92, + "end": 28432.0, + "probability": 0.9882 + }, + { + "start": 28433.22, + "end": 28434.44, + "probability": 0.999 + }, + { + "start": 28435.88, + "end": 28438.26, + "probability": 0.9814 + }, + { + "start": 28439.36, + "end": 28446.58, + "probability": 0.9941 + }, + { + "start": 28447.44, + "end": 28451.72, + "probability": 0.9528 + }, + { + "start": 28454.1, + "end": 28455.7, + "probability": 0.9949 + }, + { + "start": 28456.72, + "end": 28457.64, + "probability": 0.8588 + }, + { + "start": 28458.5, + "end": 28459.32, + "probability": 0.9837 + }, + { + "start": 28460.98, + "end": 28463.88, + "probability": 0.6339 + }, + { + "start": 28464.82, + "end": 28468.52, + "probability": 0.9769 + }, + { + "start": 28471.18, + "end": 28473.48, + "probability": 0.9951 + }, + { + "start": 28474.56, + "end": 28475.54, + "probability": 0.9373 + }, + { + "start": 28477.58, + "end": 28479.46, + "probability": 0.9937 + }, + { + "start": 28481.32, + "end": 28484.4, + "probability": 0.9548 + }, + { + "start": 28484.4, + "end": 28487.06, + "probability": 0.9666 + }, + { + "start": 28488.24, + "end": 28489.46, + "probability": 0.749 + }, + { + "start": 28491.28, + "end": 28493.44, + "probability": 0.43 + }, + { + "start": 28494.06, + "end": 28494.54, + "probability": 0.0559 + }, + { + "start": 28494.54, + "end": 28494.88, + "probability": 0.3997 + }, + { + "start": 28495.24, + "end": 28496.74, + "probability": 0.2631 + }, + { + "start": 28496.8, + "end": 28497.86, + "probability": 0.5652 + }, + { + "start": 28497.92, + "end": 28498.38, + "probability": 0.3375 + }, + { + "start": 28498.46, + "end": 28498.96, + "probability": 0.1353 + }, + { + "start": 28500.26, + "end": 28502.92, + "probability": 0.1275 + }, + { + "start": 28503.82, + "end": 28504.5, + "probability": 0.7713 + }, + { + "start": 28505.84, + "end": 28506.82, + "probability": 0.2337 + }, + { + "start": 28507.24, + "end": 28507.72, + "probability": 0.1343 + }, + { + "start": 28507.8, + "end": 28508.38, + "probability": 0.435 + }, + { + "start": 28508.38, + "end": 28508.38, + "probability": 0.4303 + }, + { + "start": 28508.38, + "end": 28508.86, + "probability": 0.8133 + }, + { + "start": 28509.52, + "end": 28511.32, + "probability": 0.9944 + }, + { + "start": 28512.62, + "end": 28514.42, + "probability": 0.3391 + }, + { + "start": 28515.68, + "end": 28515.82, + "probability": 0.0799 + }, + { + "start": 28516.06, + "end": 28519.87, + "probability": 0.9365 + }, + { + "start": 28520.2, + "end": 28521.66, + "probability": 0.3996 + }, + { + "start": 28521.66, + "end": 28522.84, + "probability": 0.2121 + }, + { + "start": 28522.96, + "end": 28525.76, + "probability": 0.2135 + }, + { + "start": 28525.78, + "end": 28528.16, + "probability": 0.1223 + }, + { + "start": 28528.64, + "end": 28529.78, + "probability": 0.1604 + }, + { + "start": 28530.06, + "end": 28530.8, + "probability": 0.171 + }, + { + "start": 28531.4, + "end": 28532.18, + "probability": 0.3259 + }, + { + "start": 28532.18, + "end": 28532.46, + "probability": 0.1589 + }, + { + "start": 28532.88, + "end": 28534.63, + "probability": 0.9284 + }, + { + "start": 28534.88, + "end": 28536.02, + "probability": 0.962 + }, + { + "start": 28537.08, + "end": 28537.66, + "probability": 0.8376 + }, + { + "start": 28538.28, + "end": 28540.04, + "probability": 0.871 + }, + { + "start": 28540.52, + "end": 28543.48, + "probability": 0.3352 + }, + { + "start": 28543.5, + "end": 28543.96, + "probability": 0.0861 + }, + { + "start": 28544.02, + "end": 28544.4, + "probability": 0.3528 + }, + { + "start": 28544.4, + "end": 28545.98, + "probability": 0.5131 + }, + { + "start": 28546.02, + "end": 28547.38, + "probability": 0.6058 + }, + { + "start": 28547.46, + "end": 28548.8, + "probability": 0.9087 + }, + { + "start": 28549.0, + "end": 28552.42, + "probability": 0.5945 + }, + { + "start": 28552.7, + "end": 28554.64, + "probability": 0.8465 + }, + { + "start": 28555.4, + "end": 28557.48, + "probability": 0.8903 + }, + { + "start": 28558.32, + "end": 28558.94, + "probability": 0.0732 + }, + { + "start": 28558.95, + "end": 28559.44, + "probability": 0.379 + }, + { + "start": 28559.44, + "end": 28561.52, + "probability": 0.4384 + }, + { + "start": 28561.8, + "end": 28564.26, + "probability": 0.8262 + }, + { + "start": 28564.76, + "end": 28565.16, + "probability": 0.3338 + }, + { + "start": 28567.86, + "end": 28570.56, + "probability": 0.381 + }, + { + "start": 28570.62, + "end": 28572.9, + "probability": 0.6842 + }, + { + "start": 28573.46, + "end": 28575.7, + "probability": 0.8318 + }, + { + "start": 28576.04, + "end": 28577.52, + "probability": 0.7302 + }, + { + "start": 28577.66, + "end": 28578.4, + "probability": 0.6497 + }, + { + "start": 28578.82, + "end": 28580.42, + "probability": 0.8026 + }, + { + "start": 28581.5, + "end": 28582.82, + "probability": 0.3349 + }, + { + "start": 28582.82, + "end": 28583.44, + "probability": 0.5922 + }, + { + "start": 28583.7, + "end": 28585.46, + "probability": 0.7824 + }, + { + "start": 28585.66, + "end": 28590.5, + "probability": 0.9695 + }, + { + "start": 28591.58, + "end": 28592.98, + "probability": 0.6821 + }, + { + "start": 28593.94, + "end": 28597.0, + "probability": 0.9653 + }, + { + "start": 28598.58, + "end": 28600.48, + "probability": 0.8083 + }, + { + "start": 28602.4, + "end": 28603.84, + "probability": 0.7502 + }, + { + "start": 28604.28, + "end": 28610.6, + "probability": 0.6567 + }, + { + "start": 28611.12, + "end": 28614.82, + "probability": 0.0571 + }, + { + "start": 28615.5, + "end": 28616.84, + "probability": 0.6366 + }, + { + "start": 28616.92, + "end": 28617.62, + "probability": 0.7607 + }, + { + "start": 28618.12, + "end": 28621.28, + "probability": 0.2504 + }, + { + "start": 28624.32, + "end": 28626.54, + "probability": 0.2614 + }, + { + "start": 28626.54, + "end": 28634.92, + "probability": 0.6289 + }, + { + "start": 28636.44, + "end": 28638.9, + "probability": 0.9957 + }, + { + "start": 28639.76, + "end": 28642.54, + "probability": 0.7898 + }, + { + "start": 28643.4, + "end": 28649.04, + "probability": 0.5047 + }, + { + "start": 28650.07, + "end": 28652.74, + "probability": 0.7472 + }, + { + "start": 28653.76, + "end": 28653.92, + "probability": 0.4098 + }, + { + "start": 28654.06, + "end": 28654.54, + "probability": 0.8593 + }, + { + "start": 28654.64, + "end": 28657.04, + "probability": 0.8059 + }, + { + "start": 28657.26, + "end": 28659.96, + "probability": 0.9534 + }, + { + "start": 28661.08, + "end": 28661.66, + "probability": 0.6951 + }, + { + "start": 28662.76, + "end": 28664.34, + "probability": 0.9691 + }, + { + "start": 28665.62, + "end": 28668.13, + "probability": 0.7274 + }, + { + "start": 28669.22, + "end": 28669.38, + "probability": 0.4693 + }, + { + "start": 28669.64, + "end": 28671.2, + "probability": 0.5154 + }, + { + "start": 28671.6, + "end": 28673.14, + "probability": 0.5135 + }, + { + "start": 28673.34, + "end": 28674.42, + "probability": 0.242 + }, + { + "start": 28674.42, + "end": 28676.58, + "probability": 0.9409 + }, + { + "start": 28677.4, + "end": 28679.7, + "probability": 0.6138 + }, + { + "start": 28680.14, + "end": 28680.72, + "probability": 0.9146 + }, + { + "start": 28681.87, + "end": 28685.14, + "probability": 0.6692 + }, + { + "start": 28685.82, + "end": 28686.28, + "probability": 0.894 + }, + { + "start": 28686.9, + "end": 28688.24, + "probability": 0.9807 + }, + { + "start": 28688.9, + "end": 28690.72, + "probability": 0.9776 + }, + { + "start": 28690.88, + "end": 28696.62, + "probability": 0.9834 + }, + { + "start": 28697.36, + "end": 28697.7, + "probability": 0.8656 + }, + { + "start": 28698.58, + "end": 28700.54, + "probability": 0.9006 + }, + { + "start": 28700.74, + "end": 28702.2, + "probability": 0.7892 + }, + { + "start": 28702.28, + "end": 28704.54, + "probability": 0.8342 + }, + { + "start": 28704.58, + "end": 28705.24, + "probability": 0.9005 + }, + { + "start": 28710.42, + "end": 28710.62, + "probability": 0.5983 + }, + { + "start": 28710.62, + "end": 28711.74, + "probability": 0.9069 + }, + { + "start": 28712.02, + "end": 28713.05, + "probability": 0.388 + }, + { + "start": 28713.06, + "end": 28714.7, + "probability": 0.8752 + }, + { + "start": 28722.75, + "end": 28725.36, + "probability": 0.5581 + }, + { + "start": 28726.67, + "end": 28730.38, + "probability": 0.986 + }, + { + "start": 28730.92, + "end": 28732.7, + "probability": 0.9344 + }, + { + "start": 28733.16, + "end": 28738.02, + "probability": 0.8385 + }, + { + "start": 28738.24, + "end": 28740.74, + "probability": 0.4034 + }, + { + "start": 28741.62, + "end": 28743.38, + "probability": 0.595 + }, + { + "start": 28743.56, + "end": 28744.72, + "probability": 0.2867 + }, + { + "start": 28744.8, + "end": 28745.62, + "probability": 0.9092 + }, + { + "start": 28746.84, + "end": 28750.64, + "probability": 0.0544 + }, + { + "start": 28750.64, + "end": 28754.24, + "probability": 0.2532 + }, + { + "start": 28754.34, + "end": 28754.34, + "probability": 0.0265 + }, + { + "start": 28754.34, + "end": 28754.94, + "probability": 0.0273 + }, + { + "start": 28755.9, + "end": 28756.28, + "probability": 0.4758 + }, + { + "start": 28757.02, + "end": 28757.72, + "probability": 0.3332 + }, + { + "start": 28759.52, + "end": 28760.04, + "probability": 0.3164 + }, + { + "start": 28760.04, + "end": 28760.28, + "probability": 0.4413 + }, + { + "start": 28761.12, + "end": 28762.32, + "probability": 0.7194 + }, + { + "start": 28762.48, + "end": 28763.26, + "probability": 0.3784 + }, + { + "start": 28764.36, + "end": 28764.48, + "probability": 0.0137 + }, + { + "start": 28765.62, + "end": 28766.3, + "probability": 0.2896 + }, + { + "start": 28766.3, + "end": 28766.44, + "probability": 0.1071 + }, + { + "start": 28767.16, + "end": 28770.46, + "probability": 0.9702 + }, + { + "start": 28771.38, + "end": 28772.46, + "probability": 0.7737 + }, + { + "start": 28772.76, + "end": 28775.57, + "probability": 0.8929 + }, + { + "start": 28775.98, + "end": 28776.72, + "probability": 0.9431 + }, + { + "start": 28777.28, + "end": 28777.88, + "probability": 0.5331 + }, + { + "start": 28778.0, + "end": 28778.28, + "probability": 0.9192 + }, + { + "start": 28779.22, + "end": 28781.88, + "probability": 0.0179 + }, + { + "start": 28782.34, + "end": 28784.28, + "probability": 0.1592 + }, + { + "start": 28785.46, + "end": 28786.12, + "probability": 0.6563 + }, + { + "start": 28787.88, + "end": 28789.46, + "probability": 0.7032 + }, + { + "start": 28792.24, + "end": 28792.74, + "probability": 0.8642 + }, + { + "start": 28792.76, + "end": 28793.64, + "probability": 0.744 + }, + { + "start": 28793.7, + "end": 28796.96, + "probability": 0.9681 + }, + { + "start": 28797.2, + "end": 28797.74, + "probability": 0.7221 + }, + { + "start": 28798.2, + "end": 28798.82, + "probability": 0.2501 + }, + { + "start": 28798.96, + "end": 28799.67, + "probability": 0.8014 + }, + { + "start": 28800.46, + "end": 28802.12, + "probability": 0.9641 + }, + { + "start": 28803.52, + "end": 28809.14, + "probability": 0.9794 + }, + { + "start": 28810.84, + "end": 28813.46, + "probability": 0.8707 + }, + { + "start": 28813.46, + "end": 28813.88, + "probability": 0.2997 + }, + { + "start": 28813.92, + "end": 28818.7, + "probability": 0.9824 + }, + { + "start": 28819.22, + "end": 28819.84, + "probability": 0.9897 + }, + { + "start": 28820.36, + "end": 28822.04, + "probability": 0.3609 + }, + { + "start": 28822.4, + "end": 28827.32, + "probability": 0.9496 + }, + { + "start": 28830.18, + "end": 28832.74, + "probability": 0.8289 + }, + { + "start": 28833.62, + "end": 28837.88, + "probability": 0.9989 + }, + { + "start": 28838.2, + "end": 28840.16, + "probability": 0.9983 + }, + { + "start": 28840.76, + "end": 28842.6, + "probability": 0.9454 + }, + { + "start": 28843.54, + "end": 28844.14, + "probability": 0.9855 + }, + { + "start": 28846.02, + "end": 28848.06, + "probability": 0.9736 + }, + { + "start": 28848.28, + "end": 28851.16, + "probability": 0.9886 + }, + { + "start": 28851.58, + "end": 28852.76, + "probability": 0.9001 + }, + { + "start": 28852.82, + "end": 28853.42, + "probability": 0.9674 + }, + { + "start": 28853.48, + "end": 28854.06, + "probability": 0.9586 + }, + { + "start": 28854.8, + "end": 28857.94, + "probability": 0.9666 + }, + { + "start": 28858.08, + "end": 28859.36, + "probability": 0.9976 + }, + { + "start": 28860.2, + "end": 28864.6, + "probability": 0.9924 + }, + { + "start": 28867.16, + "end": 28869.96, + "probability": 0.7507 + }, + { + "start": 28870.02, + "end": 28874.18, + "probability": 0.9971 + }, + { + "start": 28874.78, + "end": 28876.24, + "probability": 0.8841 + }, + { + "start": 28876.8, + "end": 28879.52, + "probability": 0.9926 + }, + { + "start": 28880.16, + "end": 28882.62, + "probability": 0.946 + }, + { + "start": 28883.54, + "end": 28886.02, + "probability": 0.5448 + }, + { + "start": 28886.22, + "end": 28889.3, + "probability": 0.9552 + }, + { + "start": 28890.3, + "end": 28892.46, + "probability": 0.9576 + }, + { + "start": 28893.26, + "end": 28896.15, + "probability": 0.9374 + }, + { + "start": 28897.3, + "end": 28897.6, + "probability": 0.7687 + }, + { + "start": 28898.44, + "end": 28900.22, + "probability": 0.8308 + }, + { + "start": 28900.6, + "end": 28903.82, + "probability": 0.9408 + }, + { + "start": 28904.2, + "end": 28904.74, + "probability": 0.5393 + }, + { + "start": 28905.66, + "end": 28906.3, + "probability": 0.9472 + }, + { + "start": 28907.18, + "end": 28908.44, + "probability": 0.7982 + }, + { + "start": 28909.44, + "end": 28911.74, + "probability": 0.9526 + }, + { + "start": 28913.06, + "end": 28913.16, + "probability": 0.089 + }, + { + "start": 28915.1, + "end": 28915.26, + "probability": 0.1365 + }, + { + "start": 28915.28, + "end": 28915.28, + "probability": 0.4372 + }, + { + "start": 28915.28, + "end": 28922.26, + "probability": 0.932 + }, + { + "start": 28923.8, + "end": 28926.22, + "probability": 0.9467 + }, + { + "start": 28926.7, + "end": 28930.06, + "probability": 0.999 + }, + { + "start": 28930.66, + "end": 28934.78, + "probability": 0.9997 + }, + { + "start": 28935.42, + "end": 28937.3, + "probability": 0.9956 + }, + { + "start": 28938.14, + "end": 28942.58, + "probability": 0.9951 + }, + { + "start": 28942.58, + "end": 28947.42, + "probability": 0.999 + }, + { + "start": 28947.74, + "end": 28948.02, + "probability": 0.1621 + }, + { + "start": 28948.12, + "end": 28951.28, + "probability": 0.4836 + }, + { + "start": 28951.34, + "end": 28952.76, + "probability": 0.3223 + }, + { + "start": 28953.1, + "end": 28954.8, + "probability": 0.7832 + }, + { + "start": 28955.86, + "end": 28958.92, + "probability": 0.6732 + }, + { + "start": 28960.08, + "end": 28961.14, + "probability": 0.7864 + }, + { + "start": 28961.64, + "end": 28964.6, + "probability": 0.9906 + }, + { + "start": 28964.7, + "end": 28965.84, + "probability": 0.9158 + }, + { + "start": 28966.94, + "end": 28971.4, + "probability": 0.9952 + }, + { + "start": 28971.5, + "end": 28972.5, + "probability": 0.9924 + }, + { + "start": 28973.48, + "end": 28975.36, + "probability": 0.991 + }, + { + "start": 28976.3, + "end": 28977.1, + "probability": 0.0324 + }, + { + "start": 28977.1, + "end": 28977.42, + "probability": 0.2198 + }, + { + "start": 28977.44, + "end": 28978.28, + "probability": 0.7555 + }, + { + "start": 28978.34, + "end": 28980.84, + "probability": 0.9956 + }, + { + "start": 28981.0, + "end": 28982.82, + "probability": 0.4767 + }, + { + "start": 28982.9, + "end": 28982.9, + "probability": 0.1317 + }, + { + "start": 28982.9, + "end": 28983.46, + "probability": 0.1933 + }, + { + "start": 28983.5, + "end": 28983.58, + "probability": 0.01 + }, + { + "start": 28983.58, + "end": 28986.76, + "probability": 0.7473 + }, + { + "start": 28987.22, + "end": 28990.24, + "probability": 0.9814 + }, + { + "start": 28990.5, + "end": 28994.32, + "probability": 0.9886 + }, + { + "start": 28994.46, + "end": 28996.96, + "probability": 0.8986 + }, + { + "start": 28997.32, + "end": 28998.44, + "probability": 0.9568 + }, + { + "start": 28998.92, + "end": 29000.46, + "probability": 0.9928 + }, + { + "start": 29000.86, + "end": 29002.5, + "probability": 0.9962 + }, + { + "start": 29002.9, + "end": 29008.18, + "probability": 0.9919 + }, + { + "start": 29008.94, + "end": 29009.14, + "probability": 0.185 + }, + { + "start": 29009.14, + "end": 29009.14, + "probability": 0.2521 + }, + { + "start": 29009.14, + "end": 29010.84, + "probability": 0.8371 + }, + { + "start": 29010.86, + "end": 29012.57, + "probability": 0.9944 + }, + { + "start": 29013.14, + "end": 29014.76, + "probability": 0.8389 + }, + { + "start": 29015.1, + "end": 29015.14, + "probability": 0.1199 + }, + { + "start": 29015.14, + "end": 29016.26, + "probability": 0.8153 + }, + { + "start": 29016.56, + "end": 29017.56, + "probability": 0.9723 + }, + { + "start": 29017.94, + "end": 29019.04, + "probability": 0.9243 + }, + { + "start": 29019.06, + "end": 29021.64, + "probability": 0.9243 + }, + { + "start": 29022.82, + "end": 29024.6, + "probability": 0.415 + }, + { + "start": 29024.66, + "end": 29024.94, + "probability": 0.0303 + }, + { + "start": 29025.12, + "end": 29025.12, + "probability": 0.0012 + }, + { + "start": 29026.28, + "end": 29026.3, + "probability": 0.1411 + }, + { + "start": 29026.3, + "end": 29026.34, + "probability": 0.1177 + }, + { + "start": 29026.34, + "end": 29028.1, + "probability": 0.8264 + }, + { + "start": 29028.2, + "end": 29030.94, + "probability": 0.8774 + }, + { + "start": 29031.14, + "end": 29031.14, + "probability": 0.0434 + }, + { + "start": 29031.14, + "end": 29031.7, + "probability": 0.4631 + }, + { + "start": 29031.72, + "end": 29032.74, + "probability": 0.7875 + }, + { + "start": 29032.84, + "end": 29034.68, + "probability": 0.7133 + }, + { + "start": 29034.9, + "end": 29034.9, + "probability": 0.0051 + }, + { + "start": 29034.9, + "end": 29034.9, + "probability": 0.2644 + }, + { + "start": 29034.9, + "end": 29034.9, + "probability": 0.8676 + }, + { + "start": 29034.9, + "end": 29035.12, + "probability": 0.5981 + }, + { + "start": 29035.22, + "end": 29036.48, + "probability": 0.8344 + }, + { + "start": 29036.78, + "end": 29036.88, + "probability": 0.5829 + }, + { + "start": 29037.08, + "end": 29039.46, + "probability": 0.1639 + }, + { + "start": 29039.64, + "end": 29041.29, + "probability": 0.725 + }, + { + "start": 29041.56, + "end": 29045.66, + "probability": 0.5381 + }, + { + "start": 29045.86, + "end": 29047.38, + "probability": 0.6261 + }, + { + "start": 29047.52, + "end": 29049.74, + "probability": 0.7783 + }, + { + "start": 29049.76, + "end": 29050.28, + "probability": 0.6677 + }, + { + "start": 29050.28, + "end": 29050.66, + "probability": 0.6946 + }, + { + "start": 29050.76, + "end": 29051.98, + "probability": 0.9619 + }, + { + "start": 29054.3, + "end": 29055.83, + "probability": 0.9827 + }, + { + "start": 29057.38, + "end": 29061.66, + "probability": 0.9951 + }, + { + "start": 29062.94, + "end": 29065.7, + "probability": 0.8813 + }, + { + "start": 29066.7, + "end": 29070.92, + "probability": 0.9702 + }, + { + "start": 29071.28, + "end": 29072.49, + "probability": 0.9969 + }, + { + "start": 29073.3, + "end": 29074.18, + "probability": 0.9446 + }, + { + "start": 29075.04, + "end": 29076.86, + "probability": 0.4182 + }, + { + "start": 29077.0, + "end": 29077.68, + "probability": 0.9212 + }, + { + "start": 29077.8, + "end": 29080.8, + "probability": 0.9849 + }, + { + "start": 29081.26, + "end": 29083.0, + "probability": 0.9923 + }, + { + "start": 29083.4, + "end": 29086.88, + "probability": 0.975 + }, + { + "start": 29087.02, + "end": 29088.86, + "probability": 0.8832 + }, + { + "start": 29089.9, + "end": 29091.64, + "probability": 0.9151 + }, + { + "start": 29092.36, + "end": 29092.94, + "probability": 0.9888 + }, + { + "start": 29093.84, + "end": 29094.68, + "probability": 0.7759 + }, + { + "start": 29095.68, + "end": 29097.9, + "probability": 0.9814 + }, + { + "start": 29099.2, + "end": 29100.84, + "probability": 0.9845 + }, + { + "start": 29101.4, + "end": 29102.38, + "probability": 0.9976 + }, + { + "start": 29102.92, + "end": 29106.22, + "probability": 0.8883 + }, + { + "start": 29106.64, + "end": 29108.34, + "probability": 0.2509 + }, + { + "start": 29108.76, + "end": 29111.7, + "probability": 0.9823 + }, + { + "start": 29112.02, + "end": 29113.96, + "probability": 0.9242 + }, + { + "start": 29114.58, + "end": 29118.4, + "probability": 0.9821 + }, + { + "start": 29118.46, + "end": 29118.84, + "probability": 0.8296 + }, + { + "start": 29124.8, + "end": 29128.58, + "probability": 0.917 + }, + { + "start": 29129.02, + "end": 29130.96, + "probability": 0.9854 + }, + { + "start": 29131.42, + "end": 29135.58, + "probability": 0.9896 + }, + { + "start": 29136.16, + "end": 29138.22, + "probability": 0.7695 + }, + { + "start": 29138.24, + "end": 29140.24, + "probability": 0.974 + }, + { + "start": 29140.76, + "end": 29141.54, + "probability": 0.7209 + }, + { + "start": 29142.22, + "end": 29143.46, + "probability": 0.8624 + }, + { + "start": 29145.98, + "end": 29146.8, + "probability": 0.9648 + }, + { + "start": 29147.56, + "end": 29149.94, + "probability": 0.9642 + }, + { + "start": 29150.06, + "end": 29153.48, + "probability": 0.9889 + }, + { + "start": 29153.48, + "end": 29159.8, + "probability": 0.9851 + }, + { + "start": 29160.24, + "end": 29162.74, + "probability": 0.9984 + }, + { + "start": 29163.18, + "end": 29163.8, + "probability": 0.7095 + }, + { + "start": 29164.24, + "end": 29168.2, + "probability": 0.9977 + }, + { + "start": 29168.34, + "end": 29169.98, + "probability": 0.9956 + }, + { + "start": 29170.78, + "end": 29171.3, + "probability": 0.7826 + }, + { + "start": 29171.7, + "end": 29172.12, + "probability": 0.7948 + }, + { + "start": 29172.2, + "end": 29172.58, + "probability": 0.4956 + }, + { + "start": 29172.7, + "end": 29174.4, + "probability": 0.924 + }, + { + "start": 29174.46, + "end": 29179.76, + "probability": 0.9971 + }, + { + "start": 29179.76, + "end": 29185.16, + "probability": 0.9782 + }, + { + "start": 29185.28, + "end": 29186.08, + "probability": 0.7604 + }, + { + "start": 29186.74, + "end": 29188.22, + "probability": 0.9696 + }, + { + "start": 29188.56, + "end": 29191.64, + "probability": 0.8976 + }, + { + "start": 29192.56, + "end": 29194.94, + "probability": 0.9339 + }, + { + "start": 29195.2, + "end": 29195.46, + "probability": 0.9056 + }, + { + "start": 29197.32, + "end": 29200.96, + "probability": 0.9668 + }, + { + "start": 29202.03, + "end": 29203.06, + "probability": 0.8991 + }, + { + "start": 29212.08, + "end": 29212.78, + "probability": 0.749 + }, + { + "start": 29218.22, + "end": 29219.82, + "probability": 0.9271 + }, + { + "start": 29220.22, + "end": 29224.41, + "probability": 0.9712 + }, + { + "start": 29225.34, + "end": 29228.42, + "probability": 0.9782 + }, + { + "start": 29229.42, + "end": 29233.32, + "probability": 0.7288 + }, + { + "start": 29233.48, + "end": 29235.92, + "probability": 0.7551 + }, + { + "start": 29236.6, + "end": 29237.34, + "probability": 0.2644 + }, + { + "start": 29237.48, + "end": 29238.78, + "probability": 0.9197 + }, + { + "start": 29239.66, + "end": 29241.02, + "probability": 0.937 + }, + { + "start": 29241.62, + "end": 29243.14, + "probability": 0.9345 + }, + { + "start": 29243.8, + "end": 29244.14, + "probability": 0.9827 + }, + { + "start": 29244.76, + "end": 29249.0, + "probability": 0.9858 + }, + { + "start": 29249.02, + "end": 29250.08, + "probability": 0.998 + }, + { + "start": 29250.36, + "end": 29251.36, + "probability": 0.9895 + }, + { + "start": 29252.22, + "end": 29252.64, + "probability": 0.3562 + }, + { + "start": 29254.0, + "end": 29258.7, + "probability": 0.9944 + }, + { + "start": 29260.88, + "end": 29261.76, + "probability": 0.851 + }, + { + "start": 29262.82, + "end": 29263.97, + "probability": 0.8355 + }, + { + "start": 29265.26, + "end": 29270.2, + "probability": 0.9789 + }, + { + "start": 29270.3, + "end": 29270.86, + "probability": 0.9262 + }, + { + "start": 29270.96, + "end": 29274.14, + "probability": 0.549 + }, + { + "start": 29274.14, + "end": 29274.24, + "probability": 0.3478 + }, + { + "start": 29274.82, + "end": 29276.52, + "probability": 0.7371 + }, + { + "start": 29277.54, + "end": 29281.2, + "probability": 0.9221 + }, + { + "start": 29282.97, + "end": 29285.38, + "probability": 0.923 + }, + { + "start": 29285.84, + "end": 29287.5, + "probability": 0.9443 + }, + { + "start": 29288.44, + "end": 29295.02, + "probability": 0.741 + }, + { + "start": 29295.78, + "end": 29297.78, + "probability": 0.6336 + }, + { + "start": 29298.28, + "end": 29302.28, + "probability": 0.981 + }, + { + "start": 29303.15, + "end": 29306.36, + "probability": 0.9611 + }, + { + "start": 29306.98, + "end": 29307.88, + "probability": 0.8174 + }, + { + "start": 29308.4, + "end": 29309.76, + "probability": 0.6343 + }, + { + "start": 29310.36, + "end": 29311.2, + "probability": 0.5211 + }, + { + "start": 29312.0, + "end": 29315.64, + "probability": 0.9769 + }, + { + "start": 29316.58, + "end": 29317.46, + "probability": 0.4978 + }, + { + "start": 29318.84, + "end": 29320.6, + "probability": 0.9889 + }, + { + "start": 29320.78, + "end": 29325.84, + "probability": 0.9897 + }, + { + "start": 29325.86, + "end": 29326.61, + "probability": 0.6977 + }, + { + "start": 29327.16, + "end": 29328.12, + "probability": 0.8988 + }, + { + "start": 29328.56, + "end": 29329.72, + "probability": 0.7898 + }, + { + "start": 29329.8, + "end": 29330.7, + "probability": 0.6271 + }, + { + "start": 29331.3, + "end": 29332.94, + "probability": 0.8509 + }, + { + "start": 29333.3, + "end": 29333.64, + "probability": 0.9167 + }, + { + "start": 29336.34, + "end": 29338.8, + "probability": 0.6857 + }, + { + "start": 29338.88, + "end": 29341.72, + "probability": 0.7623 + }, + { + "start": 29341.78, + "end": 29343.59, + "probability": 0.7542 + }, + { + "start": 29350.96, + "end": 29351.52, + "probability": 0.583 + }, + { + "start": 29352.4, + "end": 29356.32, + "probability": 0.0544 + }, + { + "start": 29359.48, + "end": 29361.0, + "probability": 0.0047 + }, + { + "start": 29361.73, + "end": 29365.96, + "probability": 0.0619 + }, + { + "start": 29367.0, + "end": 29369.56, + "probability": 0.0091 + }, + { + "start": 29371.04, + "end": 29377.14, + "probability": 0.3206 + }, + { + "start": 29377.26, + "end": 29380.11, + "probability": 0.9846 + }, + { + "start": 29380.7, + "end": 29383.91, + "probability": 0.9334 + }, + { + "start": 29384.52, + "end": 29390.93, + "probability": 0.9229 + }, + { + "start": 29392.04, + "end": 29395.3, + "probability": 0.3638 + }, + { + "start": 29395.38, + "end": 29398.0, + "probability": 0.8534 + }, + { + "start": 29399.3, + "end": 29400.88, + "probability": 0.9645 + }, + { + "start": 29402.0, + "end": 29403.06, + "probability": 0.8215 + }, + { + "start": 29406.92, + "end": 29411.48, + "probability": 0.6129 + }, + { + "start": 29411.64, + "end": 29417.06, + "probability": 0.914 + }, + { + "start": 29417.68, + "end": 29419.18, + "probability": 0.6106 + }, + { + "start": 29420.04, + "end": 29420.86, + "probability": 0.6286 + }, + { + "start": 29420.86, + "end": 29421.56, + "probability": 0.9438 + }, + { + "start": 29422.44, + "end": 29423.06, + "probability": 0.51 + }, + { + "start": 29423.12, + "end": 29423.34, + "probability": 0.8304 + }, + { + "start": 29424.14, + "end": 29425.42, + "probability": 0.8007 + }, + { + "start": 29425.96, + "end": 29428.52, + "probability": 0.9438 + }, + { + "start": 29430.74, + "end": 29432.06, + "probability": 0.7659 + }, + { + "start": 29439.13, + "end": 29441.18, + "probability": 0.6697 + }, + { + "start": 29441.26, + "end": 29443.14, + "probability": 0.7302 + }, + { + "start": 29444.8, + "end": 29446.1, + "probability": 0.6733 + }, + { + "start": 29446.32, + "end": 29447.28, + "probability": 0.6963 + }, + { + "start": 29447.42, + "end": 29452.3, + "probability": 0.9359 + }, + { + "start": 29453.0, + "end": 29455.22, + "probability": 0.9539 + }, + { + "start": 29455.86, + "end": 29457.14, + "probability": 0.9453 + }, + { + "start": 29457.7, + "end": 29461.38, + "probability": 0.859 + }, + { + "start": 29462.42, + "end": 29467.9, + "probability": 0.9719 + }, + { + "start": 29468.8, + "end": 29471.0, + "probability": 0.9729 + }, + { + "start": 29472.06, + "end": 29474.38, + "probability": 0.2036 + }, + { + "start": 29474.72, + "end": 29480.64, + "probability": 0.7597 + }, + { + "start": 29480.82, + "end": 29483.12, + "probability": 0.9325 + }, + { + "start": 29483.66, + "end": 29485.22, + "probability": 0.8221 + }, + { + "start": 29486.22, + "end": 29487.84, + "probability": 0.8005 + }, + { + "start": 29488.2, + "end": 29489.32, + "probability": 0.9103 + }, + { + "start": 29489.72, + "end": 29491.78, + "probability": 0.9839 + }, + { + "start": 29491.8, + "end": 29492.36, + "probability": 0.5266 + }, + { + "start": 29492.96, + "end": 29493.38, + "probability": 0.5585 + }, + { + "start": 29493.38, + "end": 29493.38, + "probability": 0.4783 + }, + { + "start": 29493.46, + "end": 29493.74, + "probability": 0.8923 + }, + { + "start": 29493.84, + "end": 29494.96, + "probability": 0.7066 + }, + { + "start": 29495.1, + "end": 29496.52, + "probability": 0.8137 + }, + { + "start": 29497.26, + "end": 29500.43, + "probability": 0.9392 + }, + { + "start": 29501.26, + "end": 29504.86, + "probability": 0.6941 + }, + { + "start": 29505.38, + "end": 29512.04, + "probability": 0.8387 + }, + { + "start": 29512.58, + "end": 29516.14, + "probability": 0.9782 + }, + { + "start": 29516.2, + "end": 29518.55, + "probability": 0.9483 + }, + { + "start": 29518.82, + "end": 29521.56, + "probability": 0.9957 + }, + { + "start": 29521.56, + "end": 29526.06, + "probability": 0.7376 + }, + { + "start": 29526.14, + "end": 29527.96, + "probability": 0.9973 + }, + { + "start": 29528.18, + "end": 29529.82, + "probability": 0.2957 + }, + { + "start": 29530.02, + "end": 29531.24, + "probability": 0.7781 + }, + { + "start": 29532.38, + "end": 29538.66, + "probability": 0.8752 + }, + { + "start": 29539.2, + "end": 29545.36, + "probability": 0.9778 + }, + { + "start": 29545.74, + "end": 29547.84, + "probability": 0.936 + }, + { + "start": 29548.36, + "end": 29549.7, + "probability": 0.9445 + }, + { + "start": 29549.8, + "end": 29551.5, + "probability": 0.9646 + }, + { + "start": 29552.24, + "end": 29555.68, + "probability": 0.8139 + }, + { + "start": 29555.68, + "end": 29559.46, + "probability": 0.954 + }, + { + "start": 29559.84, + "end": 29560.7, + "probability": 0.6235 + }, + { + "start": 29561.2, + "end": 29564.38, + "probability": 0.6088 + }, + { + "start": 29564.72, + "end": 29566.68, + "probability": 0.8478 + }, + { + "start": 29566.88, + "end": 29569.0, + "probability": 0.7878 + }, + { + "start": 29569.3, + "end": 29570.74, + "probability": 0.972 + }, + { + "start": 29570.84, + "end": 29574.28, + "probability": 0.9595 + }, + { + "start": 29574.34, + "end": 29574.76, + "probability": 0.75 + }, + { + "start": 29575.92, + "end": 29578.0, + "probability": 0.7644 + }, + { + "start": 29578.14, + "end": 29582.78, + "probability": 0.8298 + }, + { + "start": 29583.12, + "end": 29586.16, + "probability": 0.9211 + }, + { + "start": 29586.56, + "end": 29588.62, + "probability": 0.9346 + }, + { + "start": 29596.85, + "end": 29598.32, + "probability": 0.6607 + }, + { + "start": 29598.88, + "end": 29602.48, + "probability": 0.6987 + }, + { + "start": 29603.56, + "end": 29606.72, + "probability": 0.9955 + }, + { + "start": 29607.22, + "end": 29610.76, + "probability": 0.9976 + }, + { + "start": 29610.76, + "end": 29616.48, + "probability": 0.9803 + }, + { + "start": 29618.5, + "end": 29623.76, + "probability": 0.981 + }, + { + "start": 29624.62, + "end": 29631.5, + "probability": 0.9607 + }, + { + "start": 29632.1, + "end": 29635.7, + "probability": 0.9561 + }, + { + "start": 29636.26, + "end": 29638.7, + "probability": 0.9944 + }, + { + "start": 29638.86, + "end": 29640.74, + "probability": 0.9891 + }, + { + "start": 29641.74, + "end": 29645.48, + "probability": 0.9738 + }, + { + "start": 29646.2, + "end": 29648.78, + "probability": 0.8676 + }, + { + "start": 29649.24, + "end": 29651.02, + "probability": 0.7535 + }, + { + "start": 29651.38, + "end": 29652.8, + "probability": 0.8641 + }, + { + "start": 29653.26, + "end": 29655.68, + "probability": 0.9591 + }, + { + "start": 29655.8, + "end": 29658.94, + "probability": 0.9941 + }, + { + "start": 29659.38, + "end": 29660.24, + "probability": 0.8872 + }, + { + "start": 29660.6, + "end": 29662.16, + "probability": 0.7473 + }, + { + "start": 29662.24, + "end": 29663.16, + "probability": 0.8592 + }, + { + "start": 29663.2, + "end": 29663.48, + "probability": 0.4792 + }, + { + "start": 29663.52, + "end": 29663.76, + "probability": 0.4756 + }, + { + "start": 29663.76, + "end": 29663.78, + "probability": 0.4059 + }, + { + "start": 29663.78, + "end": 29665.26, + "probability": 0.9827 + }, + { + "start": 29665.5, + "end": 29666.5, + "probability": 0.791 + }, + { + "start": 29666.68, + "end": 29667.06, + "probability": 0.9066 + }, + { + "start": 29667.18, + "end": 29667.2, + "probability": 0.2786 + }, + { + "start": 29667.2, + "end": 29667.72, + "probability": 0.8574 + }, + { + "start": 29668.18, + "end": 29670.0, + "probability": 0.6591 + }, + { + "start": 29670.2, + "end": 29671.14, + "probability": 0.8936 + }, + { + "start": 29671.86, + "end": 29674.18, + "probability": 0.8802 + }, + { + "start": 29674.32, + "end": 29675.18, + "probability": 0.8145 + }, + { + "start": 29675.36, + "end": 29679.14, + "probability": 0.6107 + }, + { + "start": 29679.32, + "end": 29679.34, + "probability": 0.3546 + }, + { + "start": 29679.34, + "end": 29679.62, + "probability": 0.4227 + }, + { + "start": 29679.76, + "end": 29681.12, + "probability": 0.7728 + }, + { + "start": 29681.12, + "end": 29681.6, + "probability": 0.6903 + }, + { + "start": 29684.11, + "end": 29684.56, + "probability": 0.0251 + }, + { + "start": 29684.56, + "end": 29684.56, + "probability": 0.0757 + }, + { + "start": 29684.56, + "end": 29684.56, + "probability": 0.0406 + }, + { + "start": 29684.56, + "end": 29685.22, + "probability": 0.3671 + }, + { + "start": 29685.24, + "end": 29685.65, + "probability": 0.9263 + }, + { + "start": 29686.44, + "end": 29687.18, + "probability": 0.7923 + }, + { + "start": 29687.68, + "end": 29689.46, + "probability": 0.9585 + }, + { + "start": 29690.04, + "end": 29692.96, + "probability": 0.9435 + }, + { + "start": 29693.04, + "end": 29693.72, + "probability": 0.7849 + }, + { + "start": 29693.96, + "end": 29694.06, + "probability": 0.1882 + }, + { + "start": 29694.06, + "end": 29695.94, + "probability": 0.6943 + }, + { + "start": 29696.0, + "end": 29698.42, + "probability": 0.8464 + }, + { + "start": 29699.26, + "end": 29700.1, + "probability": 0.915 + }, + { + "start": 29700.68, + "end": 29701.14, + "probability": 0.8159 + }, + { + "start": 29701.14, + "end": 29702.94, + "probability": 0.9037 + }, + { + "start": 29703.14, + "end": 29704.14, + "probability": 0.9799 + }, + { + "start": 29704.86, + "end": 29706.84, + "probability": 0.4198 + }, + { + "start": 29706.94, + "end": 29708.08, + "probability": 0.6034 + }, + { + "start": 29708.9, + "end": 29712.58, + "probability": 0.9712 + }, + { + "start": 29713.48, + "end": 29716.14, + "probability": 0.9436 + }, + { + "start": 29717.08, + "end": 29719.5, + "probability": 0.9745 + }, + { + "start": 29720.24, + "end": 29729.02, + "probability": 0.9793 + }, + { + "start": 29729.64, + "end": 29733.05, + "probability": 0.897 + }, + { + "start": 29734.52, + "end": 29735.9, + "probability": 0.6387 + }, + { + "start": 29736.06, + "end": 29736.71, + "probability": 0.7138 + }, + { + "start": 29737.1, + "end": 29738.4, + "probability": 0.6993 + }, + { + "start": 29739.56, + "end": 29744.16, + "probability": 0.6235 + }, + { + "start": 29744.78, + "end": 29747.0, + "probability": 0.8298 + }, + { + "start": 29748.78, + "end": 29750.6, + "probability": 0.4973 + }, + { + "start": 29751.02, + "end": 29752.04, + "probability": 0.9851 + }, + { + "start": 29752.72, + "end": 29755.5, + "probability": 0.8868 + }, + { + "start": 29756.5, + "end": 29757.4, + "probability": 0.4439 + }, + { + "start": 29757.96, + "end": 29759.5, + "probability": 0.9665 + }, + { + "start": 29760.2, + "end": 29761.68, + "probability": 0.8498 + }, + { + "start": 29762.36, + "end": 29765.22, + "probability": 0.9523 + }, + { + "start": 29765.78, + "end": 29770.32, + "probability": 0.9312 + }, + { + "start": 29771.52, + "end": 29773.44, + "probability": 0.728 + }, + { + "start": 29774.06, + "end": 29780.38, + "probability": 0.987 + }, + { + "start": 29781.02, + "end": 29784.64, + "probability": 0.9827 + }, + { + "start": 29784.64, + "end": 29787.56, + "probability": 0.6769 + }, + { + "start": 29787.56, + "end": 29787.72, + "probability": 0.5522 + }, + { + "start": 29787.98, + "end": 29788.04, + "probability": 0.2849 + }, + { + "start": 29788.14, + "end": 29788.26, + "probability": 0.2548 + }, + { + "start": 29788.26, + "end": 29792.0, + "probability": 0.9815 + }, + { + "start": 29792.28, + "end": 29793.48, + "probability": 0.7882 + }, + { + "start": 29793.94, + "end": 29794.88, + "probability": 0.6421 + }, + { + "start": 29795.46, + "end": 29801.14, + "probability": 0.958 + }, + { + "start": 29801.16, + "end": 29801.16, + "probability": 0.3458 + }, + { + "start": 29801.16, + "end": 29801.16, + "probability": 0.5607 + }, + { + "start": 29801.16, + "end": 29804.34, + "probability": 0.827 + }, + { + "start": 29804.4, + "end": 29806.4, + "probability": 0.8372 + }, + { + "start": 29806.96, + "end": 29810.22, + "probability": 0.8366 + }, + { + "start": 29810.3, + "end": 29810.62, + "probability": 0.8653 + }, + { + "start": 29821.64, + "end": 29822.36, + "probability": 0.4954 + }, + { + "start": 29823.02, + "end": 29823.98, + "probability": 0.3156 + }, + { + "start": 29824.3, + "end": 29825.44, + "probability": 0.509 + }, + { + "start": 29826.14, + "end": 29827.42, + "probability": 0.9668 + }, + { + "start": 29829.84, + "end": 29831.22, + "probability": 0.7511 + }, + { + "start": 29832.26, + "end": 29833.44, + "probability": 0.8413 + }, + { + "start": 29834.82, + "end": 29836.92, + "probability": 0.9886 + }, + { + "start": 29837.76, + "end": 29840.85, + "probability": 0.9795 + }, + { + "start": 29842.4, + "end": 29844.31, + "probability": 0.9929 + }, + { + "start": 29844.6, + "end": 29846.4, + "probability": 0.9985 + }, + { + "start": 29847.04, + "end": 29848.39, + "probability": 0.8082 + }, + { + "start": 29849.26, + "end": 29853.3, + "probability": 0.8944 + }, + { + "start": 29853.3, + "end": 29854.58, + "probability": 0.7649 + }, + { + "start": 29855.1, + "end": 29857.23, + "probability": 0.896 + }, + { + "start": 29857.35, + "end": 29860.12, + "probability": 0.8062 + }, + { + "start": 29860.18, + "end": 29865.22, + "probability": 0.9121 + }, + { + "start": 29865.42, + "end": 29867.76, + "probability": 0.933 + }, + { + "start": 29868.78, + "end": 29876.36, + "probability": 0.6781 + }, + { + "start": 29877.52, + "end": 29882.44, + "probability": 0.7604 + }, + { + "start": 29883.08, + "end": 29886.68, + "probability": 0.9757 + }, + { + "start": 29887.87, + "end": 29889.69, + "probability": 0.0978 + }, + { + "start": 29890.7, + "end": 29892.6, + "probability": 0.893 + }, + { + "start": 29894.36, + "end": 29898.78, + "probability": 0.9456 + }, + { + "start": 29898.9, + "end": 29903.68, + "probability": 0.7796 + }, + { + "start": 29904.5, + "end": 29906.72, + "probability": 0.8893 + }, + { + "start": 29907.54, + "end": 29908.98, + "probability": 0.9271 + }, + { + "start": 29909.6, + "end": 29910.38, + "probability": 0.9141 + }, + { + "start": 29911.02, + "end": 29912.96, + "probability": 0.8758 + }, + { + "start": 29913.92, + "end": 29917.3, + "probability": 0.9582 + }, + { + "start": 29917.38, + "end": 29918.5, + "probability": 0.8837 + }, + { + "start": 29919.61, + "end": 29923.0, + "probability": 0.7916 + }, + { + "start": 29923.08, + "end": 29924.38, + "probability": 0.9907 + }, + { + "start": 29924.48, + "end": 29925.82, + "probability": 0.6257 + }, + { + "start": 29926.7, + "end": 29927.78, + "probability": 0.7669 + }, + { + "start": 29928.46, + "end": 29933.84, + "probability": 0.9124 + }, + { + "start": 29934.18, + "end": 29937.58, + "probability": 0.9763 + }, + { + "start": 29937.98, + "end": 29941.34, + "probability": 0.9517 + }, + { + "start": 29941.76, + "end": 29944.62, + "probability": 0.9878 + }, + { + "start": 29944.78, + "end": 29947.18, + "probability": 0.6831 + }, + { + "start": 29947.34, + "end": 29950.88, + "probability": 0.8113 + }, + { + "start": 29951.24, + "end": 29952.8, + "probability": 0.9608 + }, + { + "start": 29952.8, + "end": 29953.38, + "probability": 0.4644 + }, + { + "start": 29953.86, + "end": 29954.32, + "probability": 0.6644 + }, + { + "start": 29954.34, + "end": 29954.74, + "probability": 0.9444 + }, + { + "start": 29956.06, + "end": 29958.48, + "probability": 0.7202 + }, + { + "start": 29958.92, + "end": 29960.78, + "probability": 0.8137 + }, + { + "start": 29960.8, + "end": 29960.9, + "probability": 0.827 + }, + { + "start": 29969.82, + "end": 29971.1, + "probability": 0.6333 + }, + { + "start": 29975.82, + "end": 29976.14, + "probability": 0.3872 + }, + { + "start": 29976.14, + "end": 29977.84, + "probability": 0.6841 + }, + { + "start": 29978.86, + "end": 29980.6, + "probability": 0.8917 + }, + { + "start": 29981.42, + "end": 29984.6, + "probability": 0.7551 + }, + { + "start": 29985.18, + "end": 29985.24, + "probability": 0.0016 + }, + { + "start": 29985.24, + "end": 29986.48, + "probability": 0.8472 + }, + { + "start": 29986.62, + "end": 29987.46, + "probability": 0.9116 + }, + { + "start": 29988.2, + "end": 29989.68, + "probability": 0.9273 + }, + { + "start": 29990.64, + "end": 29991.06, + "probability": 0.0275 + }, + { + "start": 29991.06, + "end": 29991.06, + "probability": 0.1305 + }, + { + "start": 29991.06, + "end": 29995.98, + "probability": 0.986 + }, + { + "start": 29995.98, + "end": 30001.24, + "probability": 0.9993 + }, + { + "start": 30002.3, + "end": 30007.54, + "probability": 0.9884 + }, + { + "start": 30007.98, + "end": 30010.22, + "probability": 0.9443 + }, + { + "start": 30010.98, + "end": 30012.04, + "probability": 0.8003 + }, + { + "start": 30012.8, + "end": 30014.14, + "probability": 0.7668 + }, + { + "start": 30014.96, + "end": 30017.04, + "probability": 0.9554 + }, + { + "start": 30017.54, + "end": 30022.78, + "probability": 0.9889 + }, + { + "start": 30023.38, + "end": 30027.02, + "probability": 0.9427 + }, + { + "start": 30027.08, + "end": 30027.9, + "probability": 0.8595 + }, + { + "start": 30028.26, + "end": 30029.22, + "probability": 0.9447 + }, + { + "start": 30029.56, + "end": 30032.18, + "probability": 0.8633 + }, + { + "start": 30032.7, + "end": 30037.42, + "probability": 0.996 + }, + { + "start": 30038.36, + "end": 30043.3, + "probability": 0.9638 + }, + { + "start": 30044.32, + "end": 30046.24, + "probability": 0.9846 + }, + { + "start": 30047.06, + "end": 30050.12, + "probability": 0.9614 + }, + { + "start": 30050.66, + "end": 30052.72, + "probability": 0.987 + }, + { + "start": 30053.2, + "end": 30054.44, + "probability": 0.9253 + }, + { + "start": 30054.82, + "end": 30060.9, + "probability": 0.9871 + }, + { + "start": 30060.9, + "end": 30066.78, + "probability": 0.9785 + }, + { + "start": 30067.28, + "end": 30070.36, + "probability": 0.999 + }, + { + "start": 30071.0, + "end": 30074.04, + "probability": 0.9976 + }, + { + "start": 30074.58, + "end": 30076.15, + "probability": 0.9976 + }, + { + "start": 30076.8, + "end": 30078.76, + "probability": 0.9073 + }, + { + "start": 30079.56, + "end": 30084.26, + "probability": 0.9969 + }, + { + "start": 30084.94, + "end": 30086.7, + "probability": 0.8105 + }, + { + "start": 30088.18, + "end": 30093.3, + "probability": 0.978 + }, + { + "start": 30093.8, + "end": 30098.14, + "probability": 0.9771 + }, + { + "start": 30098.74, + "end": 30103.2, + "probability": 0.9965 + }, + { + "start": 30103.64, + "end": 30104.48, + "probability": 0.8576 + }, + { + "start": 30105.04, + "end": 30105.88, + "probability": 0.6951 + }, + { + "start": 30106.58, + "end": 30110.8, + "probability": 0.9936 + }, + { + "start": 30111.4, + "end": 30116.68, + "probability": 0.9614 + }, + { + "start": 30117.24, + "end": 30120.76, + "probability": 0.8718 + }, + { + "start": 30121.4, + "end": 30126.66, + "probability": 0.9393 + }, + { + "start": 30127.24, + "end": 30127.54, + "probability": 0.8533 + }, + { + "start": 30128.06, + "end": 30128.62, + "probability": 0.8179 + }, + { + "start": 30129.28, + "end": 30134.46, + "probability": 0.9965 + }, + { + "start": 30135.02, + "end": 30136.8, + "probability": 0.9579 + }, + { + "start": 30137.4, + "end": 30142.64, + "probability": 0.9813 + }, + { + "start": 30142.66, + "end": 30145.58, + "probability": 0.8391 + }, + { + "start": 30145.58, + "end": 30145.94, + "probability": 0.3865 + }, + { + "start": 30145.94, + "end": 30147.28, + "probability": 0.6724 + }, + { + "start": 30147.3, + "end": 30148.4, + "probability": 0.9502 + }, + { + "start": 30149.04, + "end": 30150.36, + "probability": 0.9582 + }, + { + "start": 30150.74, + "end": 30151.22, + "probability": 0.6233 + }, + { + "start": 30151.22, + "end": 30155.12, + "probability": 0.9886 + }, + { + "start": 30155.2, + "end": 30156.1, + "probability": 0.8108 + }, + { + "start": 30156.22, + "end": 30158.9, + "probability": 0.7856 + }, + { + "start": 30158.9, + "end": 30159.22, + "probability": 0.3035 + }, + { + "start": 30159.5, + "end": 30161.3, + "probability": 0.8668 + }, + { + "start": 30161.48, + "end": 30164.3, + "probability": 0.9777 + }, + { + "start": 30164.76, + "end": 30166.7, + "probability": 0.9717 + }, + { + "start": 30166.76, + "end": 30168.66, + "probability": 0.7116 + }, + { + "start": 30168.66, + "end": 30168.84, + "probability": 0.7169 + }, + { + "start": 30168.94, + "end": 30170.26, + "probability": 0.7892 + }, + { + "start": 30170.26, + "end": 30170.44, + "probability": 0.3503 + }, + { + "start": 30170.54, + "end": 30170.92, + "probability": 0.3417 + }, + { + "start": 30171.02, + "end": 30174.74, + "probability": 0.8354 + }, + { + "start": 30175.26, + "end": 30175.4, + "probability": 0.021 + }, + { + "start": 30175.4, + "end": 30175.47, + "probability": 0.6999 + }, + { + "start": 30175.64, + "end": 30176.48, + "probability": 0.8303 + }, + { + "start": 30176.98, + "end": 30177.58, + "probability": 0.8461 + }, + { + "start": 30177.78, + "end": 30178.86, + "probability": 0.5676 + }, + { + "start": 30178.86, + "end": 30179.91, + "probability": 0.9467 + }, + { + "start": 30180.64, + "end": 30182.5, + "probability": 0.6335 + }, + { + "start": 30182.68, + "end": 30185.26, + "probability": 0.609 + }, + { + "start": 30185.78, + "end": 30186.06, + "probability": 0.5776 + }, + { + "start": 30186.06, + "end": 30186.06, + "probability": 0.5917 + }, + { + "start": 30186.06, + "end": 30192.3, + "probability": 0.7696 + }, + { + "start": 30193.0, + "end": 30196.48, + "probability": 0.1104 + }, + { + "start": 30196.48, + "end": 30197.04, + "probability": 0.2063 + }, + { + "start": 30197.04, + "end": 30197.14, + "probability": 0.1049 + }, + { + "start": 30197.14, + "end": 30197.18, + "probability": 0.0747 + }, + { + "start": 30197.18, + "end": 30198.1, + "probability": 0.6443 + }, + { + "start": 30198.2, + "end": 30199.84, + "probability": 0.8455 + }, + { + "start": 30200.14, + "end": 30200.14, + "probability": 0.1815 + }, + { + "start": 30200.14, + "end": 30200.62, + "probability": 0.6667 + }, + { + "start": 30204.96, + "end": 30205.06, + "probability": 0.0847 + }, + { + "start": 30206.56, + "end": 30208.36, + "probability": 0.4724 + }, + { + "start": 30208.94, + "end": 30211.48, + "probability": 0.9931 + }, + { + "start": 30211.54, + "end": 30212.48, + "probability": 0.998 + }, + { + "start": 30213.54, + "end": 30217.06, + "probability": 0.9985 + }, + { + "start": 30218.32, + "end": 30220.5, + "probability": 0.8435 + }, + { + "start": 30220.52, + "end": 30222.68, + "probability": 0.9349 + }, + { + "start": 30223.74, + "end": 30225.68, + "probability": 0.8845 + }, + { + "start": 30226.18, + "end": 30226.8, + "probability": 0.5668 + }, + { + "start": 30228.34, + "end": 30229.44, + "probability": 0.7432 + }, + { + "start": 30229.5, + "end": 30229.7, + "probability": 0.2584 + }, + { + "start": 30229.76, + "end": 30230.32, + "probability": 0.2327 + }, + { + "start": 30230.64, + "end": 30231.28, + "probability": 0.7271 + }, + { + "start": 30231.34, + "end": 30233.19, + "probability": 0.673 + }, + { + "start": 30234.32, + "end": 30238.12, + "probability": 0.9027 + }, + { + "start": 30238.68, + "end": 30240.6, + "probability": 0.7073 + }, + { + "start": 30241.34, + "end": 30242.08, + "probability": 0.5854 + }, + { + "start": 30242.84, + "end": 30246.72, + "probability": 0.7476 + }, + { + "start": 30247.24, + "end": 30248.68, + "probability": 0.7644 + }, + { + "start": 30249.42, + "end": 30249.5, + "probability": 0.3181 + }, + { + "start": 30252.01, + "end": 30256.5, + "probability": 0.0708 + }, + { + "start": 30257.46, + "end": 30259.44, + "probability": 0.0186 + }, + { + "start": 30259.68, + "end": 30259.86, + "probability": 0.0335 + }, + { + "start": 30259.86, + "end": 30263.2, + "probability": 0.0783 + }, + { + "start": 30263.2, + "end": 30263.8, + "probability": 0.032 + }, + { + "start": 30265.4, + "end": 30268.08, + "probability": 0.317 + }, + { + "start": 30272.37, + "end": 30275.04, + "probability": 0.5213 + }, + { + "start": 30275.04, + "end": 30276.5, + "probability": 0.2316 + }, + { + "start": 30276.64, + "end": 30283.54, + "probability": 0.9611 + }, + { + "start": 30284.64, + "end": 30288.46, + "probability": 0.9863 + }, + { + "start": 30290.28, + "end": 30294.52, + "probability": 0.9168 + }, + { + "start": 30295.02, + "end": 30295.86, + "probability": 0.5068 + }, + { + "start": 30296.12, + "end": 30296.68, + "probability": 0.6558 + }, + { + "start": 30296.68, + "end": 30297.02, + "probability": 0.3808 + }, + { + "start": 30297.44, + "end": 30298.52, + "probability": 0.8826 + }, + { + "start": 30299.06, + "end": 30300.04, + "probability": 0.3679 + }, + { + "start": 30300.04, + "end": 30303.14, + "probability": 0.8081 + }, + { + "start": 30303.6, + "end": 30306.38, + "probability": 0.7221 + }, + { + "start": 30306.84, + "end": 30308.56, + "probability": 0.393 + }, + { + "start": 30309.58, + "end": 30311.34, + "probability": 0.9008 + }, + { + "start": 30311.62, + "end": 30314.82, + "probability": 0.9526 + }, + { + "start": 30315.86, + "end": 30318.12, + "probability": 0.6499 + }, + { + "start": 30322.92, + "end": 30324.75, + "probability": 0.0822 + }, + { + "start": 30328.8, + "end": 30329.15, + "probability": 0.0177 + }, + { + "start": 30330.68, + "end": 30333.5, + "probability": 0.0431 + }, + { + "start": 30335.04, + "end": 30339.32, + "probability": 0.1225 + }, + { + "start": 30340.98, + "end": 30342.96, + "probability": 0.4545 + }, + { + "start": 30343.14, + "end": 30347.14, + "probability": 0.9644 + }, + { + "start": 30348.64, + "end": 30349.24, + "probability": 0.8869 + }, + { + "start": 30349.46, + "end": 30351.6, + "probability": 0.7006 + }, + { + "start": 30351.96, + "end": 30353.9, + "probability": 0.3007 + }, + { + "start": 30354.32, + "end": 30355.42, + "probability": 0.5098 + }, + { + "start": 30355.56, + "end": 30355.86, + "probability": 0.6531 + }, + { + "start": 30355.96, + "end": 30356.46, + "probability": 0.8602 + }, + { + "start": 30356.48, + "end": 30358.3, + "probability": 0.978 + }, + { + "start": 30358.58, + "end": 30361.82, + "probability": 0.8365 + }, + { + "start": 30362.18, + "end": 30367.18, + "probability": 0.8994 + }, + { + "start": 30367.42, + "end": 30371.28, + "probability": 0.7377 + }, + { + "start": 30371.48, + "end": 30374.1, + "probability": 0.8165 + }, + { + "start": 30374.76, + "end": 30376.5, + "probability": 0.8008 + }, + { + "start": 30396.97, + "end": 30402.08, + "probability": 0.1954 + }, + { + "start": 30402.08, + "end": 30402.2, + "probability": 0.0416 + }, + { + "start": 30405.54, + "end": 30410.14, + "probability": 0.0793 + }, + { + "start": 30411.4, + "end": 30413.44, + "probability": 0.0806 + }, + { + "start": 30413.8, + "end": 30415.04, + "probability": 0.476 + }, + { + "start": 30415.82, + "end": 30416.98, + "probability": 0.057 + }, + { + "start": 30417.04, + "end": 30418.32, + "probability": 0.0755 + }, + { + "start": 30418.32, + "end": 30420.04, + "probability": 0.2554 + }, + { + "start": 30421.78, + "end": 30427.8, + "probability": 0.1834 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.0, + "end": 30473.0, + "probability": 0.0 + }, + { + "start": 30473.44, + "end": 30473.46, + "probability": 0.1408 + }, + { + "start": 30473.46, + "end": 30473.54, + "probability": 0.1272 + }, + { + "start": 30474.44, + "end": 30476.38, + "probability": 0.7543 + }, + { + "start": 30477.06, + "end": 30479.86, + "probability": 0.2919 + }, + { + "start": 30480.74, + "end": 30481.62, + "probability": 0.4313 + }, + { + "start": 30482.68, + "end": 30483.12, + "probability": 0.8117 + }, + { + "start": 30483.3, + "end": 30484.16, + "probability": 0.852 + }, + { + "start": 30484.58, + "end": 30487.82, + "probability": 0.8014 + }, + { + "start": 30488.26, + "end": 30491.12, + "probability": 0.9691 + }, + { + "start": 30492.04, + "end": 30496.24, + "probability": 0.9711 + }, + { + "start": 30496.3, + "end": 30497.56, + "probability": 0.6086 + }, + { + "start": 30498.04, + "end": 30499.8, + "probability": 0.9861 + }, + { + "start": 30500.38, + "end": 30501.5, + "probability": 0.9417 + }, + { + "start": 30502.8, + "end": 30506.24, + "probability": 0.9061 + }, + { + "start": 30508.0, + "end": 30508.06, + "probability": 0.9648 + }, + { + "start": 30509.4, + "end": 30510.2, + "probability": 0.9853 + }, + { + "start": 30511.82, + "end": 30512.16, + "probability": 0.7955 + }, + { + "start": 30513.58, + "end": 30515.46, + "probability": 0.8376 + }, + { + "start": 30515.5, + "end": 30517.5, + "probability": 0.9859 + }, + { + "start": 30518.1, + "end": 30519.64, + "probability": 0.9261 + }, + { + "start": 30519.92, + "end": 30520.36, + "probability": 0.4329 + }, + { + "start": 30520.56, + "end": 30525.48, + "probability": 0.9352 + }, + { + "start": 30525.58, + "end": 30527.24, + "probability": 0.7472 + }, + { + "start": 30528.02, + "end": 30529.66, + "probability": 0.8801 + }, + { + "start": 30529.74, + "end": 30533.14, + "probability": 0.8247 + }, + { + "start": 30534.14, + "end": 30534.92, + "probability": 0.7838 + }, + { + "start": 30535.52, + "end": 30536.88, + "probability": 0.8658 + }, + { + "start": 30537.16, + "end": 30539.14, + "probability": 0.991 + }, + { + "start": 30539.22, + "end": 30539.6, + "probability": 0.8596 + }, + { + "start": 30540.14, + "end": 30541.76, + "probability": 0.7616 + }, + { + "start": 30542.34, + "end": 30545.46, + "probability": 0.894 + }, + { + "start": 30545.54, + "end": 30549.36, + "probability": 0.9585 + }, + { + "start": 30550.52, + "end": 30551.36, + "probability": 0.4671 + }, + { + "start": 30551.66, + "end": 30552.03, + "probability": 0.5449 + }, + { + "start": 30559.24, + "end": 30559.24, + "probability": 0.2864 + }, + { + "start": 30559.24, + "end": 30560.7, + "probability": 0.7844 + }, + { + "start": 30560.82, + "end": 30562.48, + "probability": 0.7743 + }, + { + "start": 30562.98, + "end": 30566.0, + "probability": 0.9728 + }, + { + "start": 30566.14, + "end": 30567.8, + "probability": 0.9379 + }, + { + "start": 30568.48, + "end": 30569.04, + "probability": 0.9961 + }, + { + "start": 30569.68, + "end": 30572.12, + "probability": 0.9292 + }, + { + "start": 30572.86, + "end": 30577.14, + "probability": 0.996 + }, + { + "start": 30577.64, + "end": 30580.5, + "probability": 0.9703 + }, + { + "start": 30580.94, + "end": 30583.72, + "probability": 0.9889 + }, + { + "start": 30584.92, + "end": 30586.12, + "probability": 0.8081 + }, + { + "start": 30586.78, + "end": 30591.76, + "probability": 0.9841 + }, + { + "start": 30592.9, + "end": 30596.14, + "probability": 0.9983 + }, + { + "start": 30596.14, + "end": 30599.78, + "probability": 0.9972 + }, + { + "start": 30600.44, + "end": 30602.38, + "probability": 0.9987 + }, + { + "start": 30603.22, + "end": 30603.84, + "probability": 0.861 + }, + { + "start": 30604.4, + "end": 30609.14, + "probability": 0.9657 + }, + { + "start": 30609.14, + "end": 30613.12, + "probability": 0.7183 + }, + { + "start": 30613.44, + "end": 30617.74, + "probability": 0.9312 + }, + { + "start": 30619.84, + "end": 30621.24, + "probability": 0.7178 + }, + { + "start": 30621.52, + "end": 30622.92, + "probability": 0.8746 + }, + { + "start": 30622.92, + "end": 30627.98, + "probability": 0.9709 + }, + { + "start": 30628.98, + "end": 30634.64, + "probability": 0.884 + }, + { + "start": 30634.64, + "end": 30637.96, + "probability": 0.9577 + }, + { + "start": 30638.02, + "end": 30639.56, + "probability": 0.7832 + }, + { + "start": 30641.12, + "end": 30642.88, + "probability": 0.1161 + }, + { + "start": 30642.88, + "end": 30646.04, + "probability": 0.927 + }, + { + "start": 30646.38, + "end": 30649.0, + "probability": 0.7988 + }, + { + "start": 30649.78, + "end": 30650.9, + "probability": 0.7778 + }, + { + "start": 30651.3, + "end": 30651.76, + "probability": 0.8756 + }, + { + "start": 30651.94, + "end": 30654.0, + "probability": 0.9001 + }, + { + "start": 30654.44, + "end": 30655.2, + "probability": 0.5712 + }, + { + "start": 30655.72, + "end": 30657.4, + "probability": 0.5262 + }, + { + "start": 30657.42, + "end": 30662.96, + "probability": 0.9801 + }, + { + "start": 30663.62, + "end": 30664.16, + "probability": 0.7817 + }, + { + "start": 30664.26, + "end": 30667.04, + "probability": 0.9658 + }, + { + "start": 30667.82, + "end": 30668.06, + "probability": 0.2575 + }, + { + "start": 30668.06, + "end": 30669.32, + "probability": 0.6971 + }, + { + "start": 30669.48, + "end": 30675.3, + "probability": 0.863 + }, + { + "start": 30675.36, + "end": 30676.68, + "probability": 0.8597 + }, + { + "start": 30687.62, + "end": 30689.12, + "probability": 0.8484 + }, + { + "start": 30704.74, + "end": 30704.82, + "probability": 0.2584 + }, + { + "start": 30704.88, + "end": 30705.64, + "probability": 0.5437 + }, + { + "start": 30705.9, + "end": 30708.08, + "probability": 0.966 + }, + { + "start": 30709.06, + "end": 30712.62, + "probability": 0.9976 + }, + { + "start": 30712.62, + "end": 30717.08, + "probability": 0.9895 + }, + { + "start": 30717.74, + "end": 30718.44, + "probability": 0.9563 + }, + { + "start": 30719.6, + "end": 30720.16, + "probability": 0.8216 + }, + { + "start": 30720.62, + "end": 30723.84, + "probability": 0.996 + }, + { + "start": 30723.88, + "end": 30725.36, + "probability": 0.9868 + }, + { + "start": 30725.76, + "end": 30727.02, + "probability": 0.9625 + }, + { + "start": 30728.48, + "end": 30732.42, + "probability": 0.9939 + }, + { + "start": 30733.24, + "end": 30733.78, + "probability": 0.8798 + }, + { + "start": 30734.38, + "end": 30737.62, + "probability": 0.9907 + }, + { + "start": 30738.14, + "end": 30741.39, + "probability": 0.9834 + }, + { + "start": 30742.52, + "end": 30744.49, + "probability": 0.7404 + }, + { + "start": 30745.06, + "end": 30748.6, + "probability": 0.999 + }, + { + "start": 30748.8, + "end": 30753.18, + "probability": 0.9579 + }, + { + "start": 30753.6, + "end": 30756.84, + "probability": 0.9749 + }, + { + "start": 30756.96, + "end": 30758.59, + "probability": 0.8993 + }, + { + "start": 30759.18, + "end": 30760.32, + "probability": 0.9928 + }, + { + "start": 30761.82, + "end": 30765.18, + "probability": 0.975 + }, + { + "start": 30765.18, + "end": 30769.54, + "probability": 0.9966 + }, + { + "start": 30770.78, + "end": 30772.56, + "probability": 0.9907 + }, + { + "start": 30772.56, + "end": 30775.96, + "probability": 0.9974 + }, + { + "start": 30776.8, + "end": 30778.76, + "probability": 0.9954 + }, + { + "start": 30778.96, + "end": 30782.22, + "probability": 0.9337 + }, + { + "start": 30782.8, + "end": 30783.64, + "probability": 0.8383 + }, + { + "start": 30784.04, + "end": 30786.28, + "probability": 0.9734 + }, + { + "start": 30787.22, + "end": 30790.02, + "probability": 0.9974 + }, + { + "start": 30790.02, + "end": 30793.34, + "probability": 0.981 + }, + { + "start": 30793.62, + "end": 30794.26, + "probability": 0.7063 + }, + { + "start": 30795.0, + "end": 30795.86, + "probability": 0.9734 + }, + { + "start": 30797.22, + "end": 30803.32, + "probability": 0.9636 + }, + { + "start": 30804.42, + "end": 30808.02, + "probability": 0.997 + }, + { + "start": 30808.02, + "end": 30813.54, + "probability": 0.9905 + }, + { + "start": 30814.06, + "end": 30814.7, + "probability": 0.9981 + }, + { + "start": 30815.26, + "end": 30817.26, + "probability": 0.9931 + }, + { + "start": 30817.88, + "end": 30819.16, + "probability": 0.9642 + }, + { + "start": 30820.54, + "end": 30823.4, + "probability": 0.9747 + }, + { + "start": 30824.46, + "end": 30825.22, + "probability": 0.9001 + }, + { + "start": 30825.22, + "end": 30825.73, + "probability": 0.5811 + }, + { + "start": 30825.96, + "end": 30827.36, + "probability": 0.9476 + }, + { + "start": 30827.94, + "end": 30831.88, + "probability": 0.9728 + }, + { + "start": 30839.6, + "end": 30839.84, + "probability": 0.2566 + }, + { + "start": 30839.84, + "end": 30841.64, + "probability": 0.6253 + }, + { + "start": 30841.74, + "end": 30845.46, + "probability": 0.9375 + }, + { + "start": 30849.94, + "end": 30851.82, + "probability": 0.7874 + }, + { + "start": 30857.59, + "end": 30858.86, + "probability": 0.7991 + }, + { + "start": 30865.5, + "end": 30865.5, + "probability": 0.0378 + }, + { + "start": 30865.5, + "end": 30866.78, + "probability": 0.9851 + }, + { + "start": 30867.78, + "end": 30868.9, + "probability": 0.8171 + }, + { + "start": 30869.0, + "end": 30869.96, + "probability": 0.8323 + }, + { + "start": 30870.16, + "end": 30871.06, + "probability": 0.6945 + }, + { + "start": 30871.38, + "end": 30872.54, + "probability": 0.9637 + }, + { + "start": 30872.68, + "end": 30873.22, + "probability": 0.8356 + }, + { + "start": 30873.42, + "end": 30878.18, + "probability": 0.9924 + }, + { + "start": 30878.48, + "end": 30879.27, + "probability": 0.9709 + }, + { + "start": 30880.04, + "end": 30884.12, + "probability": 0.9868 + }, + { + "start": 30885.08, + "end": 30885.82, + "probability": 0.6453 + }, + { + "start": 30886.1, + "end": 30887.24, + "probability": 0.498 + }, + { + "start": 30887.74, + "end": 30888.32, + "probability": 0.26 + }, + { + "start": 30889.26, + "end": 30891.08, + "probability": 0.928 + }, + { + "start": 30893.32, + "end": 30893.54, + "probability": 0.0517 + }, + { + "start": 30893.54, + "end": 30893.54, + "probability": 0.0359 + }, + { + "start": 30893.54, + "end": 30894.58, + "probability": 0.5768 + }, + { + "start": 30894.6, + "end": 30895.84, + "probability": 0.9514 + }, + { + "start": 30896.46, + "end": 30898.34, + "probability": 0.8362 + }, + { + "start": 30898.8, + "end": 30900.48, + "probability": 0.9725 + }, + { + "start": 30900.66, + "end": 30902.5, + "probability": 0.9182 + }, + { + "start": 30902.92, + "end": 30905.14, + "probability": 0.9036 + }, + { + "start": 30905.5, + "end": 30906.4, + "probability": 0.9368 + }, + { + "start": 30906.78, + "end": 30908.08, + "probability": 0.9686 + }, + { + "start": 30908.28, + "end": 30909.2, + "probability": 0.7894 + }, + { + "start": 30909.54, + "end": 30912.84, + "probability": 0.9789 + }, + { + "start": 30912.86, + "end": 30913.36, + "probability": 0.5055 + }, + { + "start": 30913.76, + "end": 30916.94, + "probability": 0.7471 + }, + { + "start": 30917.52, + "end": 30919.96, + "probability": 0.938 + }, + { + "start": 30920.08, + "end": 30920.78, + "probability": 0.5705 + }, + { + "start": 30920.88, + "end": 30921.92, + "probability": 0.7325 + }, + { + "start": 30922.16, + "end": 30923.06, + "probability": 0.3517 + }, + { + "start": 30923.48, + "end": 30924.54, + "probability": 0.9194 + }, + { + "start": 30924.92, + "end": 30930.84, + "probability": 0.9761 + }, + { + "start": 30931.58, + "end": 30933.63, + "probability": 0.9922 + }, + { + "start": 30934.2, + "end": 30935.48, + "probability": 0.9021 + }, + { + "start": 30935.98, + "end": 30937.39, + "probability": 0.7784 + }, + { + "start": 30937.92, + "end": 30940.07, + "probability": 0.9314 + }, + { + "start": 30940.94, + "end": 30940.98, + "probability": 0.9399 + }, + { + "start": 30940.98, + "end": 30941.42, + "probability": 0.4526 + }, + { + "start": 30941.74, + "end": 30946.5, + "probability": 0.9043 + }, + { + "start": 30947.06, + "end": 30949.42, + "probability": 0.7964 + }, + { + "start": 30950.06, + "end": 30952.92, + "probability": 0.9924 + }, + { + "start": 30953.38, + "end": 30954.08, + "probability": 0.6561 + }, + { + "start": 30954.16, + "end": 30954.82, + "probability": 0.7742 + }, + { + "start": 30954.98, + "end": 30955.99, + "probability": 0.6791 + }, + { + "start": 30956.04, + "end": 30956.36, + "probability": 0.585 + }, + { + "start": 30956.4, + "end": 30959.02, + "probability": 0.5372 + }, + { + "start": 30959.56, + "end": 30959.56, + "probability": 0.1691 + }, + { + "start": 30959.56, + "end": 30959.56, + "probability": 0.0433 + }, + { + "start": 30959.56, + "end": 30960.76, + "probability": 0.7504 + }, + { + "start": 30960.76, + "end": 30962.5, + "probability": 0.1748 + }, + { + "start": 30962.5, + "end": 30962.5, + "probability": 0.2104 + }, + { + "start": 30962.5, + "end": 30964.03, + "probability": 0.9702 + }, + { + "start": 30964.62, + "end": 30966.52, + "probability": 0.7447 + }, + { + "start": 30967.08, + "end": 30969.62, + "probability": 0.5864 + }, + { + "start": 30969.68, + "end": 30975.04, + "probability": 0.643 + }, + { + "start": 30975.92, + "end": 30978.74, + "probability": 0.9333 + }, + { + "start": 30978.92, + "end": 30980.1, + "probability": 0.7035 + }, + { + "start": 30980.48, + "end": 30982.12, + "probability": 0.7856 + }, + { + "start": 30982.3, + "end": 30982.48, + "probability": 0.7991 + }, + { + "start": 30982.66, + "end": 30983.24, + "probability": 0.0254 + }, + { + "start": 30983.34, + "end": 30983.44, + "probability": 0.052 + }, + { + "start": 30983.44, + "end": 30983.44, + "probability": 0.0775 + }, + { + "start": 30983.44, + "end": 30983.46, + "probability": 0.0524 + }, + { + "start": 30983.46, + "end": 30984.26, + "probability": 0.569 + }, + { + "start": 30984.36, + "end": 30985.5, + "probability": 0.8107 + }, + { + "start": 30985.8, + "end": 30987.98, + "probability": 0.9504 + }, + { + "start": 30988.22, + "end": 30990.18, + "probability": 0.2908 + }, + { + "start": 30990.34, + "end": 30991.94, + "probability": 0.374 + }, + { + "start": 30992.06, + "end": 30999.06, + "probability": 0.9889 + }, + { + "start": 30999.38, + "end": 31001.14, + "probability": 0.7393 + }, + { + "start": 31001.38, + "end": 31002.98, + "probability": 0.9959 + }, + { + "start": 31003.34, + "end": 31006.9, + "probability": 0.863 + }, + { + "start": 31007.22, + "end": 31008.24, + "probability": 0.985 + }, + { + "start": 31008.44, + "end": 31010.9, + "probability": 0.8248 + }, + { + "start": 31011.26, + "end": 31012.06, + "probability": 0.6534 + }, + { + "start": 31012.26, + "end": 31014.74, + "probability": 0.9026 + }, + { + "start": 31014.78, + "end": 31015.32, + "probability": 0.9464 + }, + { + "start": 31015.96, + "end": 31018.3, + "probability": 0.9859 + }, + { + "start": 31018.3, + "end": 31019.34, + "probability": 0.9865 + }, + { + "start": 31019.38, + "end": 31019.38, + "probability": 0.1771 + }, + { + "start": 31019.52, + "end": 31020.76, + "probability": 0.9877 + }, + { + "start": 31021.46, + "end": 31022.94, + "probability": 0.9747 + }, + { + "start": 31023.26, + "end": 31026.42, + "probability": 0.9923 + }, + { + "start": 31026.64, + "end": 31028.48, + "probability": 0.825 + }, + { + "start": 31028.6, + "end": 31029.68, + "probability": 0.6861 + }, + { + "start": 31031.64, + "end": 31034.72, + "probability": 0.7527 + }, + { + "start": 31034.78, + "end": 31036.48, + "probability": 0.5379 + }, + { + "start": 31037.12, + "end": 31040.36, + "probability": 0.7159 + }, + { + "start": 31040.42, + "end": 31042.22, + "probability": 0.9187 + }, + { + "start": 31042.56, + "end": 31044.36, + "probability": 0.9181 + }, + { + "start": 31044.46, + "end": 31045.49, + "probability": 0.7297 + }, + { + "start": 31046.36, + "end": 31050.68, + "probability": 0.7438 + }, + { + "start": 31050.68, + "end": 31053.26, + "probability": 0.9917 + }, + { + "start": 31053.68, + "end": 31056.14, + "probability": 0.8131 + }, + { + "start": 31056.22, + "end": 31056.82, + "probability": 0.062 + }, + { + "start": 31056.82, + "end": 31057.4, + "probability": 0.5957 + }, + { + "start": 31057.4, + "end": 31058.0, + "probability": 0.6679 + }, + { + "start": 31058.14, + "end": 31059.22, + "probability": 0.6064 + }, + { + "start": 31059.26, + "end": 31060.08, + "probability": 0.7141 + }, + { + "start": 31060.36, + "end": 31063.28, + "probability": 0.9062 + }, + { + "start": 31064.12, + "end": 31065.36, + "probability": 0.2474 + }, + { + "start": 31066.86, + "end": 31072.04, + "probability": 0.8121 + }, + { + "start": 31072.5, + "end": 31073.62, + "probability": 0.6851 + }, + { + "start": 31073.9, + "end": 31074.3, + "probability": 0.776 + }, + { + "start": 31074.4, + "end": 31075.77, + "probability": 0.6719 + }, + { + "start": 31077.91, + "end": 31081.5, + "probability": 0.8599 + }, + { + "start": 31081.82, + "end": 31085.26, + "probability": 0.9001 + }, + { + "start": 31085.82, + "end": 31087.55, + "probability": 0.574 + }, + { + "start": 31087.68, + "end": 31088.8, + "probability": 0.7491 + }, + { + "start": 31091.57, + "end": 31094.13, + "probability": 0.032 + }, + { + "start": 31096.24, + "end": 31099.88, + "probability": 0.1262 + }, + { + "start": 31100.6, + "end": 31105.02, + "probability": 0.0569 + }, + { + "start": 31105.78, + "end": 31106.22, + "probability": 0.1631 + }, + { + "start": 31106.44, + "end": 31106.66, + "probability": 0.2937 + }, + { + "start": 31107.88, + "end": 31110.08, + "probability": 0.5032 + }, + { + "start": 31110.66, + "end": 31111.72, + "probability": 0.3761 + }, + { + "start": 31111.78, + "end": 31115.36, + "probability": 0.9469 + }, + { + "start": 31115.52, + "end": 31116.16, + "probability": 0.2374 + }, + { + "start": 31116.3, + "end": 31116.3, + "probability": 0.2691 + }, + { + "start": 31116.3, + "end": 31119.7, + "probability": 0.8842 + }, + { + "start": 31119.76, + "end": 31121.4, + "probability": 0.8606 + }, + { + "start": 31121.96, + "end": 31122.34, + "probability": 0.9647 + }, + { + "start": 31122.36, + "end": 31126.62, + "probability": 0.9497 + }, + { + "start": 31126.74, + "end": 31130.3, + "probability": 0.8963 + }, + { + "start": 31130.3, + "end": 31131.38, + "probability": 0.6844 + }, + { + "start": 31131.42, + "end": 31131.94, + "probability": 0.841 + }, + { + "start": 31134.04, + "end": 31136.16, + "probability": 0.1676 + }, + { + "start": 31139.68, + "end": 31142.19, + "probability": 0.0315 + }, + { + "start": 31142.86, + "end": 31146.72, + "probability": 0.0565 + }, + { + "start": 31147.18, + "end": 31147.18, + "probability": 0.0383 + }, + { + "start": 31148.72, + "end": 31150.4, + "probability": 0.1287 + }, + { + "start": 31150.56, + "end": 31152.82, + "probability": 0.3924 + }, + { + "start": 31153.26, + "end": 31157.8, + "probability": 0.8966 + }, + { + "start": 31157.9, + "end": 31158.76, + "probability": 0.7301 + }, + { + "start": 31163.02, + "end": 31163.6, + "probability": 0.7114 + }, + { + "start": 31163.8, + "end": 31165.22, + "probability": 0.649 + }, + { + "start": 31165.34, + "end": 31166.66, + "probability": 0.4629 + }, + { + "start": 31167.34, + "end": 31171.1, + "probability": 0.6852 + }, + { + "start": 31171.1, + "end": 31172.3, + "probability": 0.6057 + }, + { + "start": 31172.44, + "end": 31175.38, + "probability": 0.1202 + }, + { + "start": 31175.48, + "end": 31178.14, + "probability": 0.8646 + }, + { + "start": 31178.8, + "end": 31180.9, + "probability": 0.7944 + }, + { + "start": 31202.44, + "end": 31205.72, + "probability": 0.711 + }, + { + "start": 31206.98, + "end": 31207.6, + "probability": 0.8288 + }, + { + "start": 31207.66, + "end": 31208.36, + "probability": 0.8208 + }, + { + "start": 31208.84, + "end": 31213.74, + "probability": 0.9375 + }, + { + "start": 31213.88, + "end": 31214.66, + "probability": 0.6067 + }, + { + "start": 31215.92, + "end": 31217.94, + "probability": 0.7126 + }, + { + "start": 31218.34, + "end": 31223.22, + "probability": 0.9055 + }, + { + "start": 31223.45, + "end": 31226.88, + "probability": 0.8468 + }, + { + "start": 31227.72, + "end": 31235.18, + "probability": 0.9881 + }, + { + "start": 31236.04, + "end": 31238.48, + "probability": 0.9956 + }, + { + "start": 31238.6, + "end": 31240.3, + "probability": 0.9912 + }, + { + "start": 31241.18, + "end": 31245.04, + "probability": 0.9989 + }, + { + "start": 31245.74, + "end": 31251.4, + "probability": 0.9959 + }, + { + "start": 31252.34, + "end": 31255.02, + "probability": 0.7922 + }, + { + "start": 31256.02, + "end": 31257.7, + "probability": 0.9795 + }, + { + "start": 31258.42, + "end": 31262.34, + "probability": 0.7916 + }, + { + "start": 31262.94, + "end": 31264.92, + "probability": 0.8401 + }, + { + "start": 31265.92, + "end": 31267.8, + "probability": 0.9779 + }, + { + "start": 31268.24, + "end": 31270.68, + "probability": 0.9766 + }, + { + "start": 31271.32, + "end": 31274.18, + "probability": 0.9831 + }, + { + "start": 31274.9, + "end": 31276.36, + "probability": 0.7984 + }, + { + "start": 31277.48, + "end": 31279.56, + "probability": 0.7826 + }, + { + "start": 31279.94, + "end": 31281.82, + "probability": 0.978 + }, + { + "start": 31281.94, + "end": 31282.5, + "probability": 0.9764 + }, + { + "start": 31283.16, + "end": 31286.66, + "probability": 0.8954 + }, + { + "start": 31287.76, + "end": 31291.94, + "probability": 0.9485 + }, + { + "start": 31292.6, + "end": 31295.44, + "probability": 0.9984 + }, + { + "start": 31295.96, + "end": 31297.9, + "probability": 0.8835 + }, + { + "start": 31298.82, + "end": 31300.56, + "probability": 0.8611 + }, + { + "start": 31301.18, + "end": 31305.54, + "probability": 0.9893 + }, + { + "start": 31305.54, + "end": 31309.94, + "probability": 0.9646 + }, + { + "start": 31310.76, + "end": 31313.66, + "probability": 0.9287 + }, + { + "start": 31314.36, + "end": 31317.46, + "probability": 0.9692 + }, + { + "start": 31317.82, + "end": 31319.56, + "probability": 0.8154 + }, + { + "start": 31319.74, + "end": 31320.12, + "probability": 0.7705 + }, + { + "start": 31321.14, + "end": 31321.5, + "probability": 0.669 + }, + { + "start": 31321.62, + "end": 31323.92, + "probability": 0.6752 + }, + { + "start": 31324.46, + "end": 31325.0, + "probability": 0.5794 + }, + { + "start": 31325.04, + "end": 31326.14, + "probability": 0.8429 + }, + { + "start": 31332.08, + "end": 31332.7, + "probability": 0.2798 + }, + { + "start": 31333.22, + "end": 31335.74, + "probability": 0.1437 + }, + { + "start": 31338.08, + "end": 31338.95, + "probability": 0.81 + }, + { + "start": 31339.6, + "end": 31340.1, + "probability": 0.5713 + }, + { + "start": 31340.2, + "end": 31342.6, + "probability": 0.7941 + }, + { + "start": 31342.68, + "end": 31343.3, + "probability": 0.26 + }, + { + "start": 31343.38, + "end": 31344.08, + "probability": 0.8703 + }, + { + "start": 31344.14, + "end": 31346.5, + "probability": 0.815 + }, + { + "start": 31347.44, + "end": 31348.0, + "probability": 0.6107 + }, + { + "start": 31348.88, + "end": 31349.92, + "probability": 0.8023 + }, + { + "start": 31350.62, + "end": 31351.52, + "probability": 0.6191 + }, + { + "start": 31351.9, + "end": 31351.9, + "probability": 0.0443 + }, + { + "start": 31351.9, + "end": 31352.88, + "probability": 0.591 + }, + { + "start": 31354.3, + "end": 31355.3, + "probability": 0.7699 + }, + { + "start": 31364.2, + "end": 31365.98, + "probability": 0.1604 + }, + { + "start": 31367.04, + "end": 31370.6, + "probability": 0.0189 + }, + { + "start": 31370.98, + "end": 31373.44, + "probability": 0.0884 + }, + { + "start": 31373.46, + "end": 31375.96, + "probability": 0.0114 + }, + { + "start": 31387.4, + "end": 31391.0, + "probability": 0.0979 + }, + { + "start": 31391.0, + "end": 31391.0, + "probability": 0.028 + }, + { + "start": 31400.46, + "end": 31401.32, + "probability": 0.009 + }, + { + "start": 31402.7, + "end": 31404.72, + "probability": 0.2442 + }, + { + "start": 31405.42, + "end": 31407.1, + "probability": 0.1492 + }, + { + "start": 31407.1, + "end": 31410.7, + "probability": 0.0619 + }, + { + "start": 31410.7, + "end": 31410.8, + "probability": 0.0303 + }, + { + "start": 31411.78, + "end": 31413.8, + "probability": 0.065 + }, + { + "start": 31418.69, + "end": 31420.22, + "probability": 0.2204 + }, + { + "start": 31421.12, + "end": 31424.24, + "probability": 0.0272 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31442.0, + "end": 31442.0, + "probability": 0.0 + }, + { + "start": 31445.98, + "end": 31449.08, + "probability": 0.0106 + }, + { + "start": 31449.08, + "end": 31453.3, + "probability": 0.0432 + }, + { + "start": 31453.3, + "end": 31453.6, + "probability": 0.0159 + }, + { + "start": 31453.6, + "end": 31453.6, + "probability": 0.0752 + }, + { + "start": 31453.6, + "end": 31453.6, + "probability": 0.1555 + }, + { + "start": 31453.6, + "end": 31454.88, + "probability": 0.0219 + }, + { + "start": 31455.58, + "end": 31458.02, + "probability": 0.2201 + }, + { + "start": 31458.28, + "end": 31459.64, + "probability": 0.1628 + }, + { + "start": 31462.02, + "end": 31462.56, + "probability": 0.6788 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31563.0, + "end": 31563.0, + "probability": 0.0 + }, + { + "start": 31568.08, + "end": 31569.32, + "probability": 0.2511 + }, + { + "start": 31569.98, + "end": 31571.06, + "probability": 0.581 + }, + { + "start": 31571.5, + "end": 31573.04, + "probability": 0.7603 + }, + { + "start": 31573.62, + "end": 31576.8, + "probability": 0.498 + }, + { + "start": 31576.84, + "end": 31577.6, + "probability": 0.4586 + }, + { + "start": 31577.6, + "end": 31578.38, + "probability": 0.6362 + }, + { + "start": 31578.38, + "end": 31579.04, + "probability": 0.6821 + }, + { + "start": 31579.22, + "end": 31579.76, + "probability": 0.2657 + }, + { + "start": 31579.88, + "end": 31580.3, + "probability": 0.707 + }, + { + "start": 31580.94, + "end": 31581.08, + "probability": 0.1465 + }, + { + "start": 31581.08, + "end": 31581.44, + "probability": 0.821 + }, + { + "start": 31582.36, + "end": 31583.44, + "probability": 0.399 + }, + { + "start": 31583.92, + "end": 31584.56, + "probability": 0.144 + }, + { + "start": 31584.56, + "end": 31585.82, + "probability": 0.4496 + }, + { + "start": 31585.96, + "end": 31586.16, + "probability": 0.5424 + }, + { + "start": 31587.28, + "end": 31588.12, + "probability": 0.7713 + }, + { + "start": 31588.18, + "end": 31589.68, + "probability": 0.8324 + }, + { + "start": 31590.08, + "end": 31592.9, + "probability": 0.9666 + }, + { + "start": 31593.04, + "end": 31594.34, + "probability": 0.8391 + }, + { + "start": 31594.58, + "end": 31595.12, + "probability": 0.2869 + }, + { + "start": 31595.21, + "end": 31601.02, + "probability": 0.6031 + }, + { + "start": 31601.28, + "end": 31602.25, + "probability": 0.7839 + }, + { + "start": 31602.68, + "end": 31603.52, + "probability": 0.1779 + }, + { + "start": 31606.02, + "end": 31606.02, + "probability": 0.3329 + }, + { + "start": 31606.02, + "end": 31607.46, + "probability": 0.1075 + }, + { + "start": 31607.9, + "end": 31610.22, + "probability": 0.7413 + }, + { + "start": 31610.22, + "end": 31612.18, + "probability": 0.7394 + }, + { + "start": 31612.98, + "end": 31615.18, + "probability": 0.9335 + }, + { + "start": 31615.86, + "end": 31616.84, + "probability": 0.1641 + }, + { + "start": 31617.76, + "end": 31621.17, + "probability": 0.7974 + }, + { + "start": 31622.1, + "end": 31625.34, + "probability": 0.6543 + }, + { + "start": 31625.5, + "end": 31625.5, + "probability": 0.7314 + }, + { + "start": 31625.62, + "end": 31626.0, + "probability": 0.3608 + }, + { + "start": 31626.36, + "end": 31628.44, + "probability": 0.6782 + }, + { + "start": 31628.48, + "end": 31629.7, + "probability": 0.8256 + }, + { + "start": 31629.92, + "end": 31631.4, + "probability": 0.7691 + }, + { + "start": 31632.44, + "end": 31633.14, + "probability": 0.5627 + }, + { + "start": 31633.14, + "end": 31634.52, + "probability": 0.1585 + }, + { + "start": 31635.94, + "end": 31638.24, + "probability": 0.5167 + }, + { + "start": 31638.3, + "end": 31641.08, + "probability": 0.6584 + }, + { + "start": 31641.46, + "end": 31646.58, + "probability": 0.0181 + }, + { + "start": 31646.58, + "end": 31646.58, + "probability": 0.0986 + }, + { + "start": 31646.58, + "end": 31647.22, + "probability": 0.1216 + }, + { + "start": 31647.66, + "end": 31647.66, + "probability": 0.3618 + }, + { + "start": 31647.66, + "end": 31649.18, + "probability": 0.4558 + }, + { + "start": 31649.26, + "end": 31652.01, + "probability": 0.7805 + }, + { + "start": 31652.36, + "end": 31654.28, + "probability": 0.8545 + }, + { + "start": 31655.46, + "end": 31657.92, + "probability": 0.7357 + }, + { + "start": 31658.54, + "end": 31659.02, + "probability": 0.8943 + }, + { + "start": 31660.24, + "end": 31660.78, + "probability": 0.2273 + }, + { + "start": 31661.63, + "end": 31663.92, + "probability": 0.8488 + }, + { + "start": 31664.42, + "end": 31666.92, + "probability": 0.6495 + }, + { + "start": 31668.18, + "end": 31669.28, + "probability": 0.9396 + }, + { + "start": 31672.53, + "end": 31675.34, + "probability": 0.8367 + }, + { + "start": 31679.8, + "end": 31680.66, + "probability": 0.7223 + }, + { + "start": 31680.74, + "end": 31683.08, + "probability": 0.9842 + }, + { + "start": 31683.22, + "end": 31685.98, + "probability": 0.0683 + }, + { + "start": 31686.06, + "end": 31686.32, + "probability": 0.0207 + }, + { + "start": 31688.23, + "end": 31691.28, + "probability": 0.6679 + }, + { + "start": 31691.38, + "end": 31692.56, + "probability": 0.7539 + }, + { + "start": 31692.62, + "end": 31693.52, + "probability": 0.6188 + }, + { + "start": 31694.68, + "end": 31694.7, + "probability": 0.0013 + }, + { + "start": 31703.94, + "end": 31706.86, + "probability": 0.9103 + }, + { + "start": 31706.86, + "end": 31710.18, + "probability": 0.8743 + }, + { + "start": 31710.64, + "end": 31713.04, + "probability": 0.9208 + }, + { + "start": 31713.94, + "end": 31716.34, + "probability": 0.1552 + }, + { + "start": 31717.08, + "end": 31718.24, + "probability": 0.9075 + }, + { + "start": 31720.5, + "end": 31720.84, + "probability": 0.0997 + }, + { + "start": 31725.02, + "end": 31726.31, + "probability": 0.722 + }, + { + "start": 31734.36, + "end": 31735.24, + "probability": 0.7063 + }, + { + "start": 31737.48, + "end": 31738.26, + "probability": 0.9475 + }, + { + "start": 31739.6, + "end": 31742.32, + "probability": 0.8635 + }, + { + "start": 31743.14, + "end": 31745.22, + "probability": 0.6278 + }, + { + "start": 31745.98, + "end": 31746.42, + "probability": 0.8898 + }, + { + "start": 31747.8, + "end": 31749.12, + "probability": 0.7427 + }, + { + "start": 31750.08, + "end": 31755.02, + "probability": 0.9665 + }, + { + "start": 31755.84, + "end": 31760.52, + "probability": 0.9926 + }, + { + "start": 31762.34, + "end": 31765.02, + "probability": 0.9873 + }, + { + "start": 31765.16, + "end": 31765.66, + "probability": 0.6365 + }, + { + "start": 31766.52, + "end": 31770.8, + "probability": 0.9157 + }, + { + "start": 31771.62, + "end": 31774.8, + "probability": 0.6462 + }, + { + "start": 31775.42, + "end": 31777.94, + "probability": 0.9377 + }, + { + "start": 31778.6, + "end": 31779.5, + "probability": 0.9648 + }, + { + "start": 31780.04, + "end": 31782.13, + "probability": 0.7495 + }, + { + "start": 31782.48, + "end": 31786.28, + "probability": 0.9762 + }, + { + "start": 31786.7, + "end": 31787.64, + "probability": 0.8619 + }, + { + "start": 31787.68, + "end": 31792.54, + "probability": 0.9896 + }, + { + "start": 31793.08, + "end": 31798.42, + "probability": 0.9559 + }, + { + "start": 31798.66, + "end": 31798.94, + "probability": 0.0447 + }, + { + "start": 31798.94, + "end": 31799.38, + "probability": 0.7561 + }, + { + "start": 31799.6, + "end": 31803.18, + "probability": 0.9805 + }, + { + "start": 31803.34, + "end": 31804.02, + "probability": 0.7935 + }, + { + "start": 31804.24, + "end": 31805.46, + "probability": 0.5268 + }, + { + "start": 31805.48, + "end": 31809.14, + "probability": 0.9272 + }, + { + "start": 31809.9, + "end": 31815.12, + "probability": 0.6899 + }, + { + "start": 31815.12, + "end": 31821.96, + "probability": 0.9714 + }, + { + "start": 31822.02, + "end": 31828.48, + "probability": 0.9836 + }, + { + "start": 31828.86, + "end": 31831.44, + "probability": 0.7285 + }, + { + "start": 31833.3, + "end": 31835.38, + "probability": 0.9518 + }, + { + "start": 31835.78, + "end": 31838.0, + "probability": 0.9758 + }, + { + "start": 31838.72, + "end": 31841.68, + "probability": 0.9285 + }, + { + "start": 31841.86, + "end": 31842.94, + "probability": 0.461 + }, + { + "start": 31843.62, + "end": 31845.7, + "probability": 0.8909 + }, + { + "start": 31849.6, + "end": 31851.92, + "probability": 0.7082 + }, + { + "start": 31852.38, + "end": 31853.18, + "probability": 0.8249 + }, + { + "start": 31854.54, + "end": 31855.28, + "probability": 0.8514 + }, + { + "start": 31855.44, + "end": 31856.92, + "probability": 0.9531 + }, + { + "start": 31857.44, + "end": 31859.84, + "probability": 0.9149 + }, + { + "start": 31860.24, + "end": 31862.14, + "probability": 0.6437 + }, + { + "start": 31863.08, + "end": 31865.92, + "probability": 0.8241 + }, + { + "start": 31866.92, + "end": 31867.64, + "probability": 0.8007 + }, + { + "start": 31869.2, + "end": 31872.3, + "probability": 0.9209 + }, + { + "start": 31872.3, + "end": 31876.34, + "probability": 0.8023 + }, + { + "start": 31877.16, + "end": 31881.76, + "probability": 0.3528 + }, + { + "start": 31882.94, + "end": 31884.84, + "probability": 0.946 + }, + { + "start": 31885.44, + "end": 31889.32, + "probability": 0.9922 + }, + { + "start": 31889.36, + "end": 31893.26, + "probability": 0.9534 + }, + { + "start": 31893.86, + "end": 31897.56, + "probability": 0.9904 + }, + { + "start": 31897.76, + "end": 31902.7, + "probability": 0.7939 + }, + { + "start": 31903.22, + "end": 31906.0, + "probability": 0.9966 + }, + { + "start": 31906.4, + "end": 31906.86, + "probability": 0.8285 + }, + { + "start": 31908.26, + "end": 31909.64, + "probability": 0.8051 + }, + { + "start": 31909.68, + "end": 31913.64, + "probability": 0.8236 + }, + { + "start": 31913.68, + "end": 31914.9, + "probability": 0.5229 + }, + { + "start": 31920.65, + "end": 31924.14, + "probability": 0.8159 + }, + { + "start": 31934.04, + "end": 31936.44, + "probability": 0.6915 + }, + { + "start": 31938.08, + "end": 31942.94, + "probability": 0.4615 + }, + { + "start": 31943.02, + "end": 31947.24, + "probability": 0.5794 + }, + { + "start": 31947.78, + "end": 31953.9, + "probability": 0.782 + }, + { + "start": 31954.78, + "end": 31959.46, + "probability": 0.9971 + }, + { + "start": 31960.5, + "end": 31963.44, + "probability": 0.9363 + }, + { + "start": 31964.02, + "end": 31969.1, + "probability": 0.9957 + }, + { + "start": 31969.56, + "end": 31972.08, + "probability": 0.9659 + }, + { + "start": 31972.84, + "end": 31975.14, + "probability": 0.9994 + }, + { + "start": 31975.14, + "end": 31977.94, + "probability": 0.9979 + }, + { + "start": 31979.02, + "end": 31981.28, + "probability": 0.9987 + }, + { + "start": 31981.28, + "end": 31983.74, + "probability": 0.8748 + }, + { + "start": 31984.16, + "end": 31984.76, + "probability": 0.8565 + }, + { + "start": 31985.62, + "end": 31990.02, + "probability": 0.9701 + }, + { + "start": 31990.54, + "end": 31991.98, + "probability": 0.7917 + }, + { + "start": 31992.58, + "end": 31994.32, + "probability": 0.9694 + }, + { + "start": 31995.18, + "end": 31995.42, + "probability": 0.7344 + }, + { + "start": 31997.42, + "end": 31999.72, + "probability": 0.9519 + }, + { + "start": 31999.84, + "end": 32002.88, + "probability": 0.9446 + }, + { + "start": 32003.64, + "end": 32004.14, + "probability": 0.3586 + }, + { + "start": 32006.58, + "end": 32008.42, + "probability": 0.9725 + }, + { + "start": 32011.3, + "end": 32013.34, + "probability": 0.5247 + }, + { + "start": 32014.18, + "end": 32014.18, + "probability": 0.242 + }, + { + "start": 32014.18, + "end": 32014.86, + "probability": 0.564 + }, + { + "start": 32016.31, + "end": 32016.8, + "probability": 0.1376 + }, + { + "start": 32018.34, + "end": 32019.42, + "probability": 0.0393 + }, + { + "start": 32019.6, + "end": 32021.16, + "probability": 0.3301 + }, + { + "start": 32022.22, + "end": 32023.22, + "probability": 0.7832 + }, + { + "start": 32024.35, + "end": 32026.42, + "probability": 0.8135 + }, + { + "start": 32026.5, + "end": 32027.26, + "probability": 0.6903 + }, + { + "start": 32027.74, + "end": 32029.24, + "probability": 0.8748 + }, + { + "start": 32029.76, + "end": 32030.86, + "probability": 0.7256 + }, + { + "start": 32032.69, + "end": 32033.76, + "probability": 0.8239 + }, + { + "start": 32034.09, + "end": 32035.44, + "probability": 0.645 + }, + { + "start": 32035.72, + "end": 32037.58, + "probability": 0.808 + }, + { + "start": 32037.72, + "end": 32038.88, + "probability": 0.6728 + }, + { + "start": 32039.58, + "end": 32039.82, + "probability": 0.501 + }, + { + "start": 32039.92, + "end": 32041.84, + "probability": 0.9538 + }, + { + "start": 32042.2, + "end": 32043.44, + "probability": 0.9038 + }, + { + "start": 32044.73, + "end": 32047.48, + "probability": 0.5021 + }, + { + "start": 32047.74, + "end": 32051.46, + "probability": 0.7167 + }, + { + "start": 32051.54, + "end": 32055.0, + "probability": 0.9577 + }, + { + "start": 32055.48, + "end": 32057.3, + "probability": 0.9126 + }, + { + "start": 32057.32, + "end": 32058.66, + "probability": 0.5143 + }, + { + "start": 32059.41, + "end": 32060.36, + "probability": 0.463 + }, + { + "start": 32060.5, + "end": 32060.8, + "probability": 0.5478 + }, + { + "start": 32061.02, + "end": 32062.18, + "probability": 0.9948 + }, + { + "start": 32062.36, + "end": 32062.58, + "probability": 0.7396 + }, + { + "start": 32062.86, + "end": 32063.54, + "probability": 0.7645 + }, + { + "start": 32063.58, + "end": 32064.87, + "probability": 0.7612 + }, + { + "start": 32065.84, + "end": 32068.42, + "probability": 0.8452 + }, + { + "start": 32068.9, + "end": 32071.68, + "probability": 0.9017 + }, + { + "start": 32072.52, + "end": 32075.84, + "probability": 0.9867 + }, + { + "start": 32076.48, + "end": 32078.32, + "probability": 0.8824 + }, + { + "start": 32078.98, + "end": 32083.4, + "probability": 0.9921 + }, + { + "start": 32084.18, + "end": 32084.5, + "probability": 0.4334 + }, + { + "start": 32084.62, + "end": 32088.26, + "probability": 0.9946 + }, + { + "start": 32088.66, + "end": 32091.7, + "probability": 0.9802 + }, + { + "start": 32092.24, + "end": 32093.82, + "probability": 0.7651 + }, + { + "start": 32094.44, + "end": 32095.92, + "probability": 0.8527 + }, + { + "start": 32096.68, + "end": 32100.36, + "probability": 0.9944 + }, + { + "start": 32101.02, + "end": 32105.7, + "probability": 0.9563 + }, + { + "start": 32107.22, + "end": 32109.88, + "probability": 0.9958 + }, + { + "start": 32110.98, + "end": 32113.14, + "probability": 0.7315 + }, + { + "start": 32113.28, + "end": 32115.24, + "probability": 0.9817 + }, + { + "start": 32115.72, + "end": 32118.44, + "probability": 0.878 + }, + { + "start": 32118.86, + "end": 32120.9, + "probability": 0.9851 + }, + { + "start": 32121.3, + "end": 32122.84, + "probability": 0.9976 + }, + { + "start": 32123.38, + "end": 32123.66, + "probability": 0.7107 + }, + { + "start": 32124.36, + "end": 32129.8, + "probability": 0.9961 + }, + { + "start": 32130.66, + "end": 32133.02, + "probability": 0.8341 + }, + { + "start": 32133.76, + "end": 32136.12, + "probability": 0.9435 + }, + { + "start": 32136.66, + "end": 32138.16, + "probability": 0.7154 + }, + { + "start": 32138.44, + "end": 32141.36, + "probability": 0.9771 + }, + { + "start": 32142.0, + "end": 32142.38, + "probability": 0.8381 + }, + { + "start": 32142.82, + "end": 32144.3, + "probability": 0.9394 + }, + { + "start": 32144.54, + "end": 32146.46, + "probability": 0.9641 + }, + { + "start": 32146.92, + "end": 32148.16, + "probability": 0.2604 + }, + { + "start": 32148.3, + "end": 32149.88, + "probability": 0.8889 + }, + { + "start": 32150.28, + "end": 32154.76, + "probability": 0.7407 + }, + { + "start": 32155.2, + "end": 32155.58, + "probability": 0.0178 + }, + { + "start": 32157.32, + "end": 32157.46, + "probability": 0.0789 + }, + { + "start": 32157.46, + "end": 32157.82, + "probability": 0.4098 + }, + { + "start": 32158.16, + "end": 32159.88, + "probability": 0.6509 + }, + { + "start": 32159.96, + "end": 32162.2, + "probability": 0.5359 + }, + { + "start": 32162.4, + "end": 32163.47, + "probability": 0.9692 + }, + { + "start": 32163.68, + "end": 32165.78, + "probability": 0.9624 + }, + { + "start": 32166.2, + "end": 32170.68, + "probability": 0.6703 + }, + { + "start": 32171.44, + "end": 32171.9, + "probability": 0.8299 + }, + { + "start": 32172.0, + "end": 32176.34, + "probability": 0.9946 + }, + { + "start": 32176.56, + "end": 32181.28, + "probability": 0.9578 + }, + { + "start": 32181.4, + "end": 32181.7, + "probability": 0.8629 + }, + { + "start": 32181.8, + "end": 32183.48, + "probability": 0.9089 + }, + { + "start": 32184.42, + "end": 32184.42, + "probability": 0.2556 + }, + { + "start": 32184.42, + "end": 32186.02, + "probability": 0.6279 + }, + { + "start": 32186.24, + "end": 32189.62, + "probability": 0.7363 + }, + { + "start": 32190.24, + "end": 32193.48, + "probability": 0.8035 + }, + { + "start": 32194.1, + "end": 32196.94, + "probability": 0.9409 + }, + { + "start": 32197.3, + "end": 32198.27, + "probability": 0.9678 + }, + { + "start": 32198.4, + "end": 32198.94, + "probability": 0.3053 + }, + { + "start": 32200.0, + "end": 32203.96, + "probability": 0.9731 + }, + { + "start": 32204.38, + "end": 32205.62, + "probability": 0.8882 + }, + { + "start": 32206.04, + "end": 32208.4, + "probability": 0.998 + }, + { + "start": 32208.68, + "end": 32209.94, + "probability": 0.9077 + }, + { + "start": 32210.46, + "end": 32216.24, + "probability": 0.9895 + }, + { + "start": 32216.84, + "end": 32219.88, + "probability": 0.9448 + }, + { + "start": 32220.5, + "end": 32221.68, + "probability": 0.7617 + }, + { + "start": 32222.1, + "end": 32223.36, + "probability": 0.9486 + }, + { + "start": 32224.2, + "end": 32225.22, + "probability": 0.8935 + }, + { + "start": 32225.32, + "end": 32226.36, + "probability": 0.9843 + }, + { + "start": 32226.72, + "end": 32228.08, + "probability": 0.9838 + }, + { + "start": 32228.34, + "end": 32229.56, + "probability": 0.9901 + }, + { + "start": 32229.66, + "end": 32232.28, + "probability": 0.9067 + }, + { + "start": 32232.66, + "end": 32233.18, + "probability": 0.9119 + }, + { + "start": 32233.6, + "end": 32234.43, + "probability": 0.9198 + }, + { + "start": 32235.02, + "end": 32235.78, + "probability": 0.8113 + }, + { + "start": 32236.16, + "end": 32237.56, + "probability": 0.9735 + }, + { + "start": 32242.76, + "end": 32244.88, + "probability": 0.7577 + }, + { + "start": 32245.08, + "end": 32249.92, + "probability": 0.8861 + }, + { + "start": 32250.28, + "end": 32253.66, + "probability": 0.8017 + }, + { + "start": 32253.98, + "end": 32253.98, + "probability": 0.1313 + }, + { + "start": 32254.06, + "end": 32254.06, + "probability": 0.0534 + }, + { + "start": 32254.06, + "end": 32254.06, + "probability": 0.5175 + }, + { + "start": 32254.08, + "end": 32254.76, + "probability": 0.5682 + }, + { + "start": 32254.76, + "end": 32257.16, + "probability": 0.6583 + }, + { + "start": 32257.16, + "end": 32258.22, + "probability": 0.4006 + }, + { + "start": 32258.34, + "end": 32262.48, + "probability": 0.7928 + }, + { + "start": 32262.48, + "end": 32263.32, + "probability": 0.818 + }, + { + "start": 32263.46, + "end": 32266.26, + "probability": 0.2798 + }, + { + "start": 32266.6, + "end": 32268.7, + "probability": 0.7713 + }, + { + "start": 32268.8, + "end": 32269.36, + "probability": 0.5316 + }, + { + "start": 32269.48, + "end": 32271.88, + "probability": 0.9971 + }, + { + "start": 32272.56, + "end": 32274.22, + "probability": 0.9638 + }, + { + "start": 32274.54, + "end": 32276.3, + "probability": 0.7238 + }, + { + "start": 32276.3, + "end": 32280.12, + "probability": 0.9095 + }, + { + "start": 32280.54, + "end": 32281.0, + "probability": 0.8791 + }, + { + "start": 32281.08, + "end": 32285.86, + "probability": 0.9497 + }, + { + "start": 32286.1, + "end": 32287.56, + "probability": 0.618 + }, + { + "start": 32287.72, + "end": 32288.18, + "probability": 0.7902 + }, + { + "start": 32288.62, + "end": 32291.62, + "probability": 0.7814 + }, + { + "start": 32292.36, + "end": 32295.56, + "probability": 0.7111 + }, + { + "start": 32296.12, + "end": 32302.3, + "probability": 0.9751 + }, + { + "start": 32303.44, + "end": 32307.24, + "probability": 0.9291 + }, + { + "start": 32307.56, + "end": 32308.26, + "probability": 0.7669 + }, + { + "start": 32308.32, + "end": 32308.64, + "probability": 0.9187 + }, + { + "start": 32308.72, + "end": 32309.23, + "probability": 0.7404 + }, + { + "start": 32310.36, + "end": 32315.4, + "probability": 0.9951 + }, + { + "start": 32315.88, + "end": 32320.28, + "probability": 0.8996 + }, + { + "start": 32320.94, + "end": 32323.92, + "probability": 0.838 + }, + { + "start": 32324.42, + "end": 32325.78, + "probability": 0.9414 + }, + { + "start": 32326.16, + "end": 32327.42, + "probability": 0.8998 + }, + { + "start": 32328.24, + "end": 32332.0, + "probability": 0.9684 + }, + { + "start": 32332.56, + "end": 32336.1, + "probability": 0.9958 + }, + { + "start": 32337.28, + "end": 32339.4, + "probability": 0.998 + }, + { + "start": 32339.44, + "end": 32341.94, + "probability": 0.7645 + }, + { + "start": 32342.68, + "end": 32344.2, + "probability": 0.96 + }, + { + "start": 32344.32, + "end": 32345.78, + "probability": 0.9893 + }, + { + "start": 32346.56, + "end": 32347.92, + "probability": 0.8987 + }, + { + "start": 32348.76, + "end": 32350.7, + "probability": 0.9211 + }, + { + "start": 32350.78, + "end": 32351.2, + "probability": 0.966 + }, + { + "start": 32351.38, + "end": 32353.44, + "probability": 0.9253 + }, + { + "start": 32353.96, + "end": 32359.72, + "probability": 0.9535 + }, + { + "start": 32360.5, + "end": 32362.18, + "probability": 0.6665 + }, + { + "start": 32362.34, + "end": 32365.82, + "probability": 0.784 + }, + { + "start": 32366.3, + "end": 32368.88, + "probability": 0.9915 + }, + { + "start": 32369.42, + "end": 32370.12, + "probability": 0.9702 + }, + { + "start": 32371.12, + "end": 32374.5, + "probability": 0.9985 + }, + { + "start": 32375.22, + "end": 32378.56, + "probability": 0.6218 + }, + { + "start": 32378.8, + "end": 32380.76, + "probability": 0.9722 + }, + { + "start": 32381.18, + "end": 32383.08, + "probability": 0.9733 + }, + { + "start": 32383.22, + "end": 32383.48, + "probability": 0.6278 + }, + { + "start": 32383.72, + "end": 32385.0, + "probability": 0.947 + }, + { + "start": 32385.64, + "end": 32387.54, + "probability": 0.9917 + }, + { + "start": 32388.18, + "end": 32388.65, + "probability": 0.9846 + }, + { + "start": 32389.52, + "end": 32390.18, + "probability": 0.9688 + }, + { + "start": 32390.46, + "end": 32391.78, + "probability": 0.9822 + }, + { + "start": 32392.3, + "end": 32392.92, + "probability": 0.7804 + }, + { + "start": 32393.56, + "end": 32394.16, + "probability": 0.823 + }, + { + "start": 32394.96, + "end": 32396.61, + "probability": 0.8931 + }, + { + "start": 32396.96, + "end": 32399.4, + "probability": 0.8784 + }, + { + "start": 32399.52, + "end": 32401.6, + "probability": 0.8807 + }, + { + "start": 32401.7, + "end": 32402.9, + "probability": 0.7695 + }, + { + "start": 32403.6, + "end": 32405.28, + "probability": 0.9884 + }, + { + "start": 32405.9, + "end": 32406.84, + "probability": 0.455 + }, + { + "start": 32407.5, + "end": 32408.36, + "probability": 0.6136 + }, + { + "start": 32408.92, + "end": 32410.06, + "probability": 0.9629 + }, + { + "start": 32410.16, + "end": 32411.34, + "probability": 0.8604 + }, + { + "start": 32411.48, + "end": 32413.14, + "probability": 0.9855 + }, + { + "start": 32413.14, + "end": 32415.78, + "probability": 0.9668 + }, + { + "start": 32415.96, + "end": 32418.1, + "probability": 0.9803 + }, + { + "start": 32418.46, + "end": 32421.32, + "probability": 0.9905 + }, + { + "start": 32421.92, + "end": 32422.32, + "probability": 0.7539 + }, + { + "start": 32422.48, + "end": 32424.94, + "probability": 0.8762 + }, + { + "start": 32425.02, + "end": 32426.66, + "probability": 0.9861 + }, + { + "start": 32426.76, + "end": 32428.54, + "probability": 0.9978 + }, + { + "start": 32429.32, + "end": 32431.42, + "probability": 0.9993 + }, + { + "start": 32431.58, + "end": 32433.26, + "probability": 0.9692 + }, + { + "start": 32433.36, + "end": 32434.26, + "probability": 0.8912 + }, + { + "start": 32434.88, + "end": 32435.8, + "probability": 0.7621 + }, + { + "start": 32435.86, + "end": 32437.54, + "probability": 0.9977 + }, + { + "start": 32438.32, + "end": 32439.26, + "probability": 0.6544 + }, + { + "start": 32439.46, + "end": 32440.12, + "probability": 0.9707 + }, + { + "start": 32440.24, + "end": 32440.52, + "probability": 0.776 + }, + { + "start": 32440.66, + "end": 32440.82, + "probability": 0.8417 + }, + { + "start": 32441.08, + "end": 32443.0, + "probability": 0.8916 + }, + { + "start": 32443.26, + "end": 32445.3, + "probability": 0.9871 + }, + { + "start": 32445.62, + "end": 32447.06, + "probability": 0.9794 + }, + { + "start": 32448.38, + "end": 32449.18, + "probability": 0.9459 + }, + { + "start": 32449.38, + "end": 32450.6, + "probability": 0.807 + }, + { + "start": 32450.72, + "end": 32452.77, + "probability": 0.978 + }, + { + "start": 32453.4, + "end": 32453.92, + "probability": 0.5062 + }, + { + "start": 32454.46, + "end": 32456.38, + "probability": 0.8278 + }, + { + "start": 32456.52, + "end": 32459.64, + "probability": 0.9945 + }, + { + "start": 32459.64, + "end": 32464.18, + "probability": 0.9981 + }, + { + "start": 32464.66, + "end": 32466.24, + "probability": 0.8237 + }, + { + "start": 32466.28, + "end": 32469.52, + "probability": 0.9937 + }, + { + "start": 32469.52, + "end": 32472.12, + "probability": 0.9969 + }, + { + "start": 32472.4, + "end": 32475.1, + "probability": 0.9995 + }, + { + "start": 32475.28, + "end": 32475.52, + "probability": 0.6848 + }, + { + "start": 32476.02, + "end": 32478.04, + "probability": 0.622 + }, + { + "start": 32478.94, + "end": 32483.48, + "probability": 0.8541 + }, + { + "start": 32484.78, + "end": 32485.44, + "probability": 0.5677 + }, + { + "start": 32486.22, + "end": 32488.7, + "probability": 0.9481 + }, + { + "start": 32489.6, + "end": 32491.31, + "probability": 0.5471 + }, + { + "start": 32491.9, + "end": 32493.1, + "probability": 0.5305 + }, + { + "start": 32494.34, + "end": 32496.26, + "probability": 0.913 + }, + { + "start": 32496.38, + "end": 32497.3, + "probability": 0.9254 + }, + { + "start": 32498.26, + "end": 32500.18, + "probability": 0.6369 + }, + { + "start": 32501.56, + "end": 32503.26, + "probability": 0.5131 + }, + { + "start": 32503.26, + "end": 32505.02, + "probability": 0.2103 + }, + { + "start": 32505.48, + "end": 32506.18, + "probability": 0.0204 + }, + { + "start": 32506.18, + "end": 32506.66, + "probability": 0.0742 + }, + { + "start": 32506.84, + "end": 32507.92, + "probability": 0.1709 + }, + { + "start": 32508.94, + "end": 32509.98, + "probability": 0.7293 + }, + { + "start": 32510.38, + "end": 32510.48, + "probability": 0.5923 + }, + { + "start": 32511.46, + "end": 32513.3, + "probability": 0.7253 + }, + { + "start": 32513.88, + "end": 32514.62, + "probability": 0.7218 + }, + { + "start": 32514.74, + "end": 32517.02, + "probability": 0.9725 + }, + { + "start": 32517.24, + "end": 32518.4, + "probability": 0.9438 + }, + { + "start": 32518.62, + "end": 32518.94, + "probability": 0.0327 + }, + { + "start": 32518.94, + "end": 32521.6, + "probability": 0.3768 + }, + { + "start": 32523.4, + "end": 32524.78, + "probability": 0.7523 + }, + { + "start": 32524.86, + "end": 32525.48, + "probability": 0.7206 + }, + { + "start": 32525.56, + "end": 32529.42, + "probability": 0.8586 + }, + { + "start": 32530.32, + "end": 32532.48, + "probability": 0.9125 + }, + { + "start": 32533.18, + "end": 32535.58, + "probability": 0.9988 + }, + { + "start": 32536.32, + "end": 32538.36, + "probability": 0.9871 + }, + { + "start": 32539.06, + "end": 32545.48, + "probability": 0.9937 + }, + { + "start": 32546.12, + "end": 32548.38, + "probability": 0.9316 + }, + { + "start": 32549.16, + "end": 32551.56, + "probability": 0.8411 + }, + { + "start": 32554.56, + "end": 32556.82, + "probability": 0.8249 + }, + { + "start": 32556.98, + "end": 32559.1, + "probability": 0.5523 + }, + { + "start": 32559.44, + "end": 32560.8, + "probability": 0.3364 + }, + { + "start": 32560.92, + "end": 32561.45, + "probability": 0.3352 + }, + { + "start": 32561.72, + "end": 32563.14, + "probability": 0.8329 + }, + { + "start": 32563.14, + "end": 32563.96, + "probability": 0.8565 + }, + { + "start": 32563.96, + "end": 32564.04, + "probability": 0.3867 + }, + { + "start": 32564.06, + "end": 32566.92, + "probability": 0.8481 + }, + { + "start": 32567.1, + "end": 32567.78, + "probability": 0.6735 + }, + { + "start": 32568.58, + "end": 32570.1, + "probability": 0.7238 + }, + { + "start": 32572.4, + "end": 32575.06, + "probability": 0.0824 + }, + { + "start": 32576.29, + "end": 32579.06, + "probability": 0.7856 + }, + { + "start": 32579.06, + "end": 32579.92, + "probability": 0.513 + }, + { + "start": 32580.57, + "end": 32583.08, + "probability": 0.1542 + }, + { + "start": 32583.24, + "end": 32584.04, + "probability": 0.5268 + }, + { + "start": 32584.74, + "end": 32592.22, + "probability": 0.5669 + }, + { + "start": 32592.22, + "end": 32595.65, + "probability": 0.6291 + }, + { + "start": 32596.22, + "end": 32596.84, + "probability": 0.0942 + }, + { + "start": 32596.92, + "end": 32597.67, + "probability": 0.2266 + }, + { + "start": 32598.4, + "end": 32599.8, + "probability": 0.0165 + }, + { + "start": 32602.02, + "end": 32602.58, + "probability": 0.0092 + }, + { + "start": 32602.58, + "end": 32602.84, + "probability": 0.2088 + }, + { + "start": 32602.84, + "end": 32607.16, + "probability": 0.9681 + }, + { + "start": 32608.04, + "end": 32610.08, + "probability": 0.9877 + }, + { + "start": 32611.38, + "end": 32611.54, + "probability": 0.0158 + }, + { + "start": 32611.84, + "end": 32612.24, + "probability": 0.4349 + }, + { + "start": 32612.32, + "end": 32612.82, + "probability": 0.8495 + }, + { + "start": 32612.9, + "end": 32617.24, + "probability": 0.9752 + }, + { + "start": 32617.98, + "end": 32621.56, + "probability": 0.4209 + }, + { + "start": 32622.92, + "end": 32626.86, + "probability": 0.7908 + }, + { + "start": 32627.76, + "end": 32628.94, + "probability": 0.0742 + }, + { + "start": 32629.56, + "end": 32633.74, + "probability": 0.6156 + }, + { + "start": 32633.8, + "end": 32638.3, + "probability": 0.8031 + }, + { + "start": 32638.42, + "end": 32641.6, + "probability": 0.8731 + }, + { + "start": 32641.8, + "end": 32642.76, + "probability": 0.4975 + }, + { + "start": 32643.55, + "end": 32643.62, + "probability": 0.0631 + }, + { + "start": 32643.7, + "end": 32644.66, + "probability": 0.4479 + }, + { + "start": 32644.74, + "end": 32645.74, + "probability": 0.4313 + }, + { + "start": 32645.74, + "end": 32647.7, + "probability": 0.9551 + }, + { + "start": 32647.96, + "end": 32649.66, + "probability": 0.9797 + }, + { + "start": 32649.72, + "end": 32653.18, + "probability": 0.9891 + }, + { + "start": 32653.42, + "end": 32656.5, + "probability": 0.9185 + }, + { + "start": 32656.76, + "end": 32658.04, + "probability": 0.98 + }, + { + "start": 32658.6, + "end": 32659.87, + "probability": 0.9585 + }, + { + "start": 32660.89, + "end": 32661.63, + "probability": 0.546 + }, + { + "start": 32661.89, + "end": 32662.43, + "probability": 0.8584 + }, + { + "start": 32663.21, + "end": 32666.87, + "probability": 0.8191 + }, + { + "start": 32666.97, + "end": 32669.47, + "probability": 0.8383 + }, + { + "start": 32670.27, + "end": 32670.49, + "probability": 0.5119 + }, + { + "start": 32670.61, + "end": 32671.95, + "probability": 0.9601 + }, + { + "start": 32672.19, + "end": 32672.29, + "probability": 0.7629 + }, + { + "start": 32673.07, + "end": 32673.47, + "probability": 0.5766 + }, + { + "start": 32674.15, + "end": 32674.47, + "probability": 0.9413 + }, + { + "start": 32675.63, + "end": 32676.21, + "probability": 0.9785 + }, + { + "start": 32676.93, + "end": 32679.17, + "probability": 0.9232 + }, + { + "start": 32679.59, + "end": 32681.95, + "probability": 0.931 + }, + { + "start": 32682.29, + "end": 32683.05, + "probability": 0.4766 + }, + { + "start": 32683.11, + "end": 32685.23, + "probability": 0.9492 + }, + { + "start": 32686.01, + "end": 32688.85, + "probability": 0.691 + }, + { + "start": 32689.83, + "end": 32690.04, + "probability": 0.0495 + }, + { + "start": 32690.35, + "end": 32693.51, + "probability": 0.9513 + }, + { + "start": 32693.57, + "end": 32693.91, + "probability": 0.8374 + }, + { + "start": 32693.97, + "end": 32694.77, + "probability": 0.5894 + }, + { + "start": 32694.85, + "end": 32695.51, + "probability": 0.6492 + }, + { + "start": 32695.79, + "end": 32696.99, + "probability": 0.6093 + }, + { + "start": 32697.01, + "end": 32698.51, + "probability": 0.8706 + }, + { + "start": 32698.77, + "end": 32699.27, + "probability": 0.7753 + }, + { + "start": 32699.33, + "end": 32699.65, + "probability": 0.8292 + }, + { + "start": 32700.39, + "end": 32700.61, + "probability": 0.2307 + }, + { + "start": 32700.61, + "end": 32700.91, + "probability": 0.0589 + }, + { + "start": 32701.77, + "end": 32702.75, + "probability": 0.4059 + }, + { + "start": 32703.71, + "end": 32704.35, + "probability": 0.2863 + }, + { + "start": 32704.35, + "end": 32704.77, + "probability": 0.4182 + }, + { + "start": 32704.87, + "end": 32705.35, + "probability": 0.6263 + }, + { + "start": 32705.45, + "end": 32708.01, + "probability": 0.6786 + }, + { + "start": 32708.03, + "end": 32708.59, + "probability": 0.8311 + }, + { + "start": 32708.59, + "end": 32709.89, + "probability": 0.8962 + }, + { + "start": 32709.95, + "end": 32710.79, + "probability": 0.9084 + }, + { + "start": 32711.05, + "end": 32711.68, + "probability": 0.0103 + }, + { + "start": 32712.11, + "end": 32712.77, + "probability": 0.631 + }, + { + "start": 32712.87, + "end": 32713.49, + "probability": 0.6734 + }, + { + "start": 32713.65, + "end": 32715.37, + "probability": 0.7166 + }, + { + "start": 32715.61, + "end": 32716.57, + "probability": 0.4254 + }, + { + "start": 32717.52, + "end": 32719.53, + "probability": 0.4915 + }, + { + "start": 32719.59, + "end": 32721.37, + "probability": 0.771 + }, + { + "start": 32722.97, + "end": 32723.87, + "probability": 0.8298 + }, + { + "start": 32724.07, + "end": 32726.45, + "probability": 0.3044 + }, + { + "start": 32727.15, + "end": 32727.31, + "probability": 0.5595 + }, + { + "start": 32732.89, + "end": 32733.77, + "probability": 0.2132 + }, + { + "start": 32736.31, + "end": 32737.89, + "probability": 0.3826 + }, + { + "start": 32738.23, + "end": 32738.85, + "probability": 0.0684 + }, + { + "start": 32738.89, + "end": 32740.33, + "probability": 0.173 + }, + { + "start": 32740.99, + "end": 32742.75, + "probability": 0.0402 + }, + { + "start": 32742.75, + "end": 32744.39, + "probability": 0.1875 + }, + { + "start": 32744.79, + "end": 32746.35, + "probability": 0.1447 + }, + { + "start": 32747.03, + "end": 32747.03, + "probability": 0.0882 + }, + { + "start": 32747.07, + "end": 32747.87, + "probability": 0.0455 + }, + { + "start": 32747.87, + "end": 32748.73, + "probability": 0.2972 + }, + { + "start": 32748.93, + "end": 32749.27, + "probability": 0.0543 + }, + { + "start": 32750.15, + "end": 32752.71, + "probability": 0.0047 + }, + { + "start": 32752.97, + "end": 32753.86, + "probability": 0.3834 + }, + { + "start": 32754.89, + "end": 32756.95, + "probability": 0.094 + }, + { + "start": 32757.81, + "end": 32758.63, + "probability": 0.1754 + }, + { + "start": 32758.79, + "end": 32759.79, + "probability": 0.0866 + }, + { + "start": 32762.32, + "end": 32766.81, + "probability": 0.1777 + }, + { + "start": 32767.69, + "end": 32769.77, + "probability": 0.036 + }, + { + "start": 32771.27, + "end": 32775.35, + "probability": 0.0022 + }, + { + "start": 32776.49, + "end": 32776.69, + "probability": 0.0382 + }, + { + "start": 32776.69, + "end": 32777.15, + "probability": 0.0509 + }, + { + "start": 32777.15, + "end": 32779.29, + "probability": 0.0108 + }, + { + "start": 32779.79, + "end": 32780.97, + "probability": 0.0089 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.0, + "end": 32781.0, + "probability": 0.0 + }, + { + "start": 32781.18, + "end": 32782.16, + "probability": 0.1282 + }, + { + "start": 32782.16, + "end": 32783.5, + "probability": 0.9263 + }, + { + "start": 32783.6, + "end": 32784.68, + "probability": 0.8969 + }, + { + "start": 32784.88, + "end": 32788.7, + "probability": 0.9663 + }, + { + "start": 32788.7, + "end": 32788.7, + "probability": 0.0083 + }, + { + "start": 32788.7, + "end": 32789.26, + "probability": 0.4099 + }, + { + "start": 32790.38, + "end": 32793.0, + "probability": 0.0318 + }, + { + "start": 32793.2, + "end": 32793.22, + "probability": 0.0083 + }, + { + "start": 32793.22, + "end": 32794.84, + "probability": 0.9945 + }, + { + "start": 32794.9, + "end": 32796.38, + "probability": 0.8384 + }, + { + "start": 32796.6, + "end": 32798.9, + "probability": 0.7405 + }, + { + "start": 32799.08, + "end": 32801.87, + "probability": 0.2787 + }, + { + "start": 32802.46, + "end": 32802.46, + "probability": 0.0542 + }, + { + "start": 32802.46, + "end": 32804.2, + "probability": 0.9744 + }, + { + "start": 32804.32, + "end": 32805.84, + "probability": 0.6937 + }, + { + "start": 32805.84, + "end": 32806.3, + "probability": 0.4426 + }, + { + "start": 32806.32, + "end": 32807.84, + "probability": 0.9912 + }, + { + "start": 32808.26, + "end": 32810.21, + "probability": 0.9586 + }, + { + "start": 32810.62, + "end": 32811.72, + "probability": 0.9951 + }, + { + "start": 32811.78, + "end": 32813.92, + "probability": 0.6874 + }, + { + "start": 32813.92, + "end": 32815.32, + "probability": 0.7219 + }, + { + "start": 32815.34, + "end": 32815.48, + "probability": 0.1149 + }, + { + "start": 32815.48, + "end": 32816.03, + "probability": 0.6591 + }, + { + "start": 32816.1, + "end": 32818.12, + "probability": 0.9565 + }, + { + "start": 32818.28, + "end": 32820.28, + "probability": 0.5171 + }, + { + "start": 32820.34, + "end": 32821.26, + "probability": 0.9459 + }, + { + "start": 32821.34, + "end": 32822.76, + "probability": 0.8302 + }, + { + "start": 32823.5, + "end": 32823.8, + "probability": 0.0739 + }, + { + "start": 32823.8, + "end": 32824.44, + "probability": 0.3755 + }, + { + "start": 32825.08, + "end": 32826.7, + "probability": 0.6279 + }, + { + "start": 32826.9, + "end": 32828.16, + "probability": 0.5953 + }, + { + "start": 32828.34, + "end": 32829.68, + "probability": 0.8897 + }, + { + "start": 32829.68, + "end": 32833.24, + "probability": 0.5095 + }, + { + "start": 32844.7, + "end": 32845.6, + "probability": 0.1377 + }, + { + "start": 32846.79, + "end": 32847.56, + "probability": 0.0736 + }, + { + "start": 32849.04, + "end": 32849.54, + "probability": 0.1727 + }, + { + "start": 32850.88, + "end": 32852.1, + "probability": 0.1209 + }, + { + "start": 32854.04, + "end": 32856.65, + "probability": 0.0242 + }, + { + "start": 32857.74, + "end": 32861.28, + "probability": 0.1607 + }, + { + "start": 32861.28, + "end": 32863.5, + "probability": 0.0577 + }, + { + "start": 32864.56, + "end": 32866.52, + "probability": 0.4015 + }, + { + "start": 32870.2, + "end": 32876.7, + "probability": 0.045 + }, + { + "start": 32876.7, + "end": 32876.7, + "probability": 0.059 + }, + { + "start": 32876.7, + "end": 32876.7, + "probability": 0.079 + }, + { + "start": 32876.7, + "end": 32876.7, + "probability": 0.1511 + }, + { + "start": 32877.92, + "end": 32878.1, + "probability": 0.5678 + }, + { + "start": 32878.14, + "end": 32878.21, + "probability": 0.0673 + }, + { + "start": 32878.44, + "end": 32881.18, + "probability": 0.0932 + }, + { + "start": 32881.9, + "end": 32882.26, + "probability": 0.1467 + }, + { + "start": 32883.94, + "end": 32885.3, + "probability": 0.0172 + }, + { + "start": 32888.16, + "end": 32888.36, + "probability": 0.1074 + }, + { + "start": 32894.74, + "end": 32897.64, + "probability": 0.167 + }, + { + "start": 32898.24, + "end": 32898.82, + "probability": 0.1635 + }, + { + "start": 32898.98, + "end": 32901.72, + "probability": 0.0346 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.0, + "end": 32902.0, + "probability": 0.0 + }, + { + "start": 32902.12, + "end": 32903.36, + "probability": 0.3139 + }, + { + "start": 32904.1, + "end": 32907.26, + "probability": 0.8496 + }, + { + "start": 32907.52, + "end": 32908.54, + "probability": 0.1036 + }, + { + "start": 32909.44, + "end": 32910.08, + "probability": 0.0895 + }, + { + "start": 32910.08, + "end": 32910.08, + "probability": 0.0842 + }, + { + "start": 32910.08, + "end": 32911.42, + "probability": 0.1713 + }, + { + "start": 32911.88, + "end": 32913.2, + "probability": 0.9453 + }, + { + "start": 32913.3, + "end": 32915.52, + "probability": 0.8979 + }, + { + "start": 32915.66, + "end": 32916.66, + "probability": 0.9219 + }, + { + "start": 32918.28, + "end": 32919.8, + "probability": 0.8026 + }, + { + "start": 32920.74, + "end": 32922.68, + "probability": 0.9453 + }, + { + "start": 32922.8, + "end": 32924.28, + "probability": 0.9793 + }, + { + "start": 32924.32, + "end": 32924.98, + "probability": 0.7359 + }, + { + "start": 32925.08, + "end": 32929.06, + "probability": 0.9541 + }, + { + "start": 32929.24, + "end": 32930.68, + "probability": 0.9705 + }, + { + "start": 32932.02, + "end": 32934.4, + "probability": 0.8676 + }, + { + "start": 32935.2, + "end": 32940.46, + "probability": 0.8772 + }, + { + "start": 32941.3, + "end": 32942.1, + "probability": 0.9602 + }, + { + "start": 32942.74, + "end": 32946.76, + "probability": 0.9188 + }, + { + "start": 32946.86, + "end": 32948.34, + "probability": 0.9951 + }, + { + "start": 32949.22, + "end": 32951.86, + "probability": 0.9188 + }, + { + "start": 32952.88, + "end": 32959.0, + "probability": 0.9885 + }, + { + "start": 32959.94, + "end": 32964.9, + "probability": 0.9941 + }, + { + "start": 32965.04, + "end": 32965.6, + "probability": 0.8912 + }, + { + "start": 32966.74, + "end": 32970.2, + "probability": 0.9935 + }, + { + "start": 32970.74, + "end": 32974.02, + "probability": 0.9974 + }, + { + "start": 32974.52, + "end": 32976.34, + "probability": 0.9567 + }, + { + "start": 32977.02, + "end": 32977.8, + "probability": 0.7038 + }, + { + "start": 32979.6, + "end": 32979.92, + "probability": 0.8752 + }, + { + "start": 32980.34, + "end": 32981.92, + "probability": 0.8841 + }, + { + "start": 32982.1, + "end": 32987.1, + "probability": 0.9594 + }, + { + "start": 32988.02, + "end": 32989.34, + "probability": 0.0434 + }, + { + "start": 32989.9, + "end": 32991.48, + "probability": 0.1722 + }, + { + "start": 32991.48, + "end": 32992.08, + "probability": 0.0565 + }, + { + "start": 32992.98, + "end": 32993.0, + "probability": 0.0472 + }, + { + "start": 32993.0, + "end": 32993.0, + "probability": 0.4731 + }, + { + "start": 32993.0, + "end": 32993.0, + "probability": 0.1248 + }, + { + "start": 32993.0, + "end": 32994.04, + "probability": 0.5234 + }, + { + "start": 32998.52, + "end": 32999.36, + "probability": 0.1209 + }, + { + "start": 32999.36, + "end": 33000.39, + "probability": 0.4611 + }, + { + "start": 33000.52, + "end": 33001.98, + "probability": 0.0721 + }, + { + "start": 33002.3, + "end": 33006.02, + "probability": 0.0836 + }, + { + "start": 33006.36, + "end": 33007.24, + "probability": 0.9577 + }, + { + "start": 33008.58, + "end": 33009.74, + "probability": 0.4758 + }, + { + "start": 33009.8, + "end": 33011.46, + "probability": 0.353 + }, + { + "start": 33011.46, + "end": 33013.04, + "probability": 0.7623 + }, + { + "start": 33013.76, + "end": 33018.7, + "probability": 0.9902 + }, + { + "start": 33019.4, + "end": 33021.94, + "probability": 0.9961 + }, + { + "start": 33022.42, + "end": 33025.08, + "probability": 0.9961 + }, + { + "start": 33025.56, + "end": 33028.31, + "probability": 0.995 + }, + { + "start": 33028.85, + "end": 33029.81, + "probability": 0.778 + }, + { + "start": 33029.91, + "end": 33031.37, + "probability": 0.8661 + }, + { + "start": 33031.39, + "end": 33032.47, + "probability": 0.7439 + }, + { + "start": 33032.85, + "end": 33037.55, + "probability": 0.9489 + }, + { + "start": 33038.15, + "end": 33039.15, + "probability": 0.0312 + }, + { + "start": 33039.15, + "end": 33039.15, + "probability": 0.0966 + }, + { + "start": 33039.15, + "end": 33040.11, + "probability": 0.9905 + }, + { + "start": 33043.19, + "end": 33046.73, + "probability": 0.8548 + }, + { + "start": 33047.85, + "end": 33052.91, + "probability": 0.9107 + }, + { + "start": 33053.03, + "end": 33055.81, + "probability": 0.9404 + }, + { + "start": 33056.15, + "end": 33057.33, + "probability": 0.3701 + }, + { + "start": 33057.99, + "end": 33062.21, + "probability": 0.0249 + }, + { + "start": 33062.91, + "end": 33063.47, + "probability": 0.0014 + }, + { + "start": 33063.71, + "end": 33064.41, + "probability": 0.2253 + }, + { + "start": 33064.41, + "end": 33065.95, + "probability": 0.3845 + }, + { + "start": 33067.21, + "end": 33069.29, + "probability": 0.4782 + }, + { + "start": 33070.89, + "end": 33072.83, + "probability": 0.7458 + }, + { + "start": 33072.85, + "end": 33074.17, + "probability": 0.7153 + }, + { + "start": 33074.99, + "end": 33075.71, + "probability": 0.9749 + }, + { + "start": 33075.79, + "end": 33077.35, + "probability": 0.7611 + }, + { + "start": 33077.57, + "end": 33078.55, + "probability": 0.4025 + }, + { + "start": 33078.81, + "end": 33078.81, + "probability": 0.5851 + }, + { + "start": 33078.87, + "end": 33079.33, + "probability": 0.761 + }, + { + "start": 33079.33, + "end": 33080.05, + "probability": 0.5864 + }, + { + "start": 33080.21, + "end": 33087.49, + "probability": 0.8745 + }, + { + "start": 33087.49, + "end": 33089.13, + "probability": 0.4021 + }, + { + "start": 33089.25, + "end": 33089.67, + "probability": 0.5375 + }, + { + "start": 33089.79, + "end": 33090.47, + "probability": 0.8388 + }, + { + "start": 33091.23, + "end": 33092.01, + "probability": 0.5046 + }, + { + "start": 33092.81, + "end": 33093.91, + "probability": 0.9826 + }, + { + "start": 33093.97, + "end": 33094.77, + "probability": 0.8722 + }, + { + "start": 33095.25, + "end": 33099.81, + "probability": 0.9404 + }, + { + "start": 33100.09, + "end": 33101.49, + "probability": 0.0205 + }, + { + "start": 33101.49, + "end": 33101.49, + "probability": 0.2766 + }, + { + "start": 33101.49, + "end": 33101.49, + "probability": 0.1872 + }, + { + "start": 33101.49, + "end": 33103.35, + "probability": 0.7049 + }, + { + "start": 33104.13, + "end": 33108.83, + "probability": 0.3507 + }, + { + "start": 33109.73, + "end": 33110.31, + "probability": 0.1694 + }, + { + "start": 33110.51, + "end": 33112.43, + "probability": 0.4944 + }, + { + "start": 33112.51, + "end": 33113.47, + "probability": 0.8938 + }, + { + "start": 33113.61, + "end": 33114.05, + "probability": 0.1311 + }, + { + "start": 33114.05, + "end": 33114.31, + "probability": 0.3701 + }, + { + "start": 33114.39, + "end": 33114.47, + "probability": 0.1657 + }, + { + "start": 33114.57, + "end": 33115.95, + "probability": 0.9546 + }, + { + "start": 33116.15, + "end": 33124.69, + "probability": 0.9713 + }, + { + "start": 33124.91, + "end": 33125.57, + "probability": 0.8628 + }, + { + "start": 33125.79, + "end": 33125.79, + "probability": 0.4244 + }, + { + "start": 33125.81, + "end": 33126.87, + "probability": 0.1622 + }, + { + "start": 33127.25, + "end": 33131.63, + "probability": 0.9024 + }, + { + "start": 33132.33, + "end": 33135.17, + "probability": 0.6375 + }, + { + "start": 33135.25, + "end": 33140.33, + "probability": 0.3962 + }, + { + "start": 33140.93, + "end": 33142.45, + "probability": 0.0957 + }, + { + "start": 33142.45, + "end": 33144.71, + "probability": 0.0886 + }, + { + "start": 33144.71, + "end": 33146.63, + "probability": 0.7451 + }, + { + "start": 33146.87, + "end": 33147.91, + "probability": 0.0137 + }, + { + "start": 33147.93, + "end": 33148.45, + "probability": 0.0821 + }, + { + "start": 33148.45, + "end": 33148.45, + "probability": 0.0967 + }, + { + "start": 33148.45, + "end": 33148.85, + "probability": 0.0274 + }, + { + "start": 33149.19, + "end": 33149.57, + "probability": 0.0541 + }, + { + "start": 33149.57, + "end": 33154.67, + "probability": 0.5288 + }, + { + "start": 33155.01, + "end": 33155.11, + "probability": 0.2102 + }, + { + "start": 33155.11, + "end": 33156.33, + "probability": 0.043 + }, + { + "start": 33156.73, + "end": 33160.57, + "probability": 0.1377 + }, + { + "start": 33161.63, + "end": 33161.81, + "probability": 0.0089 + }, + { + "start": 33161.81, + "end": 33162.5, + "probability": 0.4126 + }, + { + "start": 33164.19, + "end": 33164.35, + "probability": 0.2221 + }, + { + "start": 33164.83, + "end": 33165.53, + "probability": 0.1005 + }, + { + "start": 33166.13, + "end": 33168.43, + "probability": 0.1645 + }, + { + "start": 33168.61, + "end": 33169.01, + "probability": 0.4089 + }, + { + "start": 33170.63, + "end": 33171.37, + "probability": 0.0826 + }, + { + "start": 33171.37, + "end": 33171.77, + "probability": 0.0858 + }, + { + "start": 33172.47, + "end": 33175.03, + "probability": 0.1035 + }, + { + "start": 33175.03, + "end": 33177.29, + "probability": 0.0816 + }, + { + "start": 33177.45, + "end": 33177.87, + "probability": 0.1373 + }, + { + "start": 33178.01, + "end": 33179.49, + "probability": 0.0869 + }, + { + "start": 33179.61, + "end": 33181.07, + "probability": 0.0648 + }, + { + "start": 33181.17, + "end": 33182.83, + "probability": 0.1788 + }, + { + "start": 33183.17, + "end": 33183.17, + "probability": 0.0163 + }, + { + "start": 33183.17, + "end": 33184.55, + "probability": 0.1409 + }, + { + "start": 33184.55, + "end": 33186.69, + "probability": 0.1216 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.0, + "end": 33197.0, + "probability": 0.0 + }, + { + "start": 33197.12, + "end": 33197.12, + "probability": 0.4245 + }, + { + "start": 33197.12, + "end": 33197.16, + "probability": 0.1502 + }, + { + "start": 33197.16, + "end": 33197.56, + "probability": 0.5325 + }, + { + "start": 33198.3, + "end": 33198.98, + "probability": 0.6939 + }, + { + "start": 33199.24, + "end": 33199.24, + "probability": 0.6668 + }, + { + "start": 33199.24, + "end": 33200.76, + "probability": 0.7558 + }, + { + "start": 33200.82, + "end": 33203.68, + "probability": 0.6829 + }, + { + "start": 33204.28, + "end": 33204.74, + "probability": 0.1238 + }, + { + "start": 33204.8, + "end": 33205.02, + "probability": 0.2309 + }, + { + "start": 33205.16, + "end": 33205.16, + "probability": 0.2144 + }, + { + "start": 33205.16, + "end": 33205.16, + "probability": 0.1273 + }, + { + "start": 33205.16, + "end": 33208.48, + "probability": 0.7523 + }, + { + "start": 33208.82, + "end": 33211.3, + "probability": 0.7341 + }, + { + "start": 33211.56, + "end": 33212.8, + "probability": 0.0481 + }, + { + "start": 33212.94, + "end": 33212.94, + "probability": 0.0352 + }, + { + "start": 33213.1, + "end": 33213.9, + "probability": 0.0506 + }, + { + "start": 33214.0, + "end": 33214.56, + "probability": 0.0997 + }, + { + "start": 33215.26, + "end": 33217.04, + "probability": 0.3445 + }, + { + "start": 33217.04, + "end": 33217.39, + "probability": 0.0338 + }, + { + "start": 33217.58, + "end": 33217.58, + "probability": 0.0312 + }, + { + "start": 33217.58, + "end": 33218.1, + "probability": 0.051 + }, + { + "start": 33218.12, + "end": 33218.4, + "probability": 0.1586 + }, + { + "start": 33218.42, + "end": 33219.08, + "probability": 0.1522 + }, + { + "start": 33219.52, + "end": 33219.6, + "probability": 0.3148 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.0, + "end": 33330.0, + "probability": 0.0 + }, + { + "start": 33330.22, + "end": 33331.04, + "probability": 0.0154 + }, + { + "start": 33331.04, + "end": 33331.26, + "probability": 0.4729 + }, + { + "start": 33331.7, + "end": 33332.6, + "probability": 0.0855 + }, + { + "start": 33336.08, + "end": 33338.84, + "probability": 0.3372 + }, + { + "start": 33339.64, + "end": 33342.26, + "probability": 0.08 + }, + { + "start": 33342.38, + "end": 33346.86, + "probability": 0.0703 + }, + { + "start": 33347.3, + "end": 33349.24, + "probability": 0.0456 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33465.0, + "end": 33465.0, + "probability": 0.0 + }, + { + "start": 33466.02, + "end": 33466.22, + "probability": 0.0813 + }, + { + "start": 33466.22, + "end": 33466.22, + "probability": 0.0612 + }, + { + "start": 33466.22, + "end": 33470.7, + "probability": 0.9901 + }, + { + "start": 33471.12, + "end": 33475.76, + "probability": 0.933 + }, + { + "start": 33475.94, + "end": 33477.08, + "probability": 0.709 + }, + { + "start": 33477.16, + "end": 33478.52, + "probability": 0.7326 + }, + { + "start": 33478.7, + "end": 33480.46, + "probability": 0.8429 + }, + { + "start": 33480.69, + "end": 33484.96, + "probability": 0.5771 + }, + { + "start": 33485.06, + "end": 33489.36, + "probability": 0.7487 + }, + { + "start": 33491.44, + "end": 33492.8, + "probability": 0.7437 + }, + { + "start": 33492.82, + "end": 33494.12, + "probability": 0.8086 + }, + { + "start": 33494.28, + "end": 33496.3, + "probability": 0.7728 + }, + { + "start": 33497.73, + "end": 33499.18, + "probability": 0.792 + }, + { + "start": 33499.34, + "end": 33499.78, + "probability": 0.3913 + }, + { + "start": 33499.9, + "end": 33501.66, + "probability": 0.6551 + }, + { + "start": 33501.82, + "end": 33506.06, + "probability": 0.0398 + }, + { + "start": 33507.92, + "end": 33508.8, + "probability": 0.0385 + }, + { + "start": 33512.44, + "end": 33514.98, + "probability": 0.0182 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.0, + "end": 33617.0, + "probability": 0.0 + }, + { + "start": 33617.12, + "end": 33618.0, + "probability": 0.5717 + }, + { + "start": 33618.12, + "end": 33619.42, + "probability": 0.5779 + }, + { + "start": 33619.88, + "end": 33620.92, + "probability": 0.761 + }, + { + "start": 33621.0, + "end": 33621.58, + "probability": 0.5573 + }, + { + "start": 33621.9, + "end": 33623.1, + "probability": 0.7788 + }, + { + "start": 33623.26, + "end": 33624.25, + "probability": 0.8472 + }, + { + "start": 33624.96, + "end": 33625.5, + "probability": 0.6508 + }, + { + "start": 33625.7, + "end": 33628.66, + "probability": 0.9836 + }, + { + "start": 33628.66, + "end": 33633.06, + "probability": 0.995 + }, + { + "start": 33634.1, + "end": 33637.36, + "probability": 0.6586 + }, + { + "start": 33637.68, + "end": 33642.02, + "probability": 0.9862 + }, + { + "start": 33642.28, + "end": 33643.22, + "probability": 0.7759 + }, + { + "start": 33643.5, + "end": 33647.74, + "probability": 0.9428 + }, + { + "start": 33648.56, + "end": 33649.28, + "probability": 0.4623 + }, + { + "start": 33649.98, + "end": 33651.26, + "probability": 0.7283 + }, + { + "start": 33651.5, + "end": 33653.44, + "probability": 0.8845 + }, + { + "start": 33653.8, + "end": 33655.62, + "probability": 0.8273 + }, + { + "start": 33655.92, + "end": 33659.72, + "probability": 0.9403 + }, + { + "start": 33660.1, + "end": 33664.0, + "probability": 0.8457 + }, + { + "start": 33664.62, + "end": 33667.34, + "probability": 0.9758 + }, + { + "start": 33667.96, + "end": 33669.4, + "probability": 0.7362 + }, + { + "start": 33670.88, + "end": 33673.32, + "probability": 0.7545 + }, + { + "start": 33673.98, + "end": 33676.36, + "probability": 0.971 + }, + { + "start": 33676.82, + "end": 33679.76, + "probability": 0.9592 + }, + { + "start": 33680.54, + "end": 33684.5, + "probability": 0.9749 + }, + { + "start": 33685.68, + "end": 33689.0, + "probability": 0.9479 + }, + { + "start": 33689.0, + "end": 33691.24, + "probability": 0.8266 + }, + { + "start": 33691.32, + "end": 33693.3, + "probability": 0.7841 + }, + { + "start": 33693.4, + "end": 33694.98, + "probability": 0.6843 + }, + { + "start": 33696.1, + "end": 33699.42, + "probability": 0.9445 + }, + { + "start": 33699.76, + "end": 33703.16, + "probability": 0.8848 + }, + { + "start": 33703.58, + "end": 33706.26, + "probability": 0.885 + }, + { + "start": 33706.72, + "end": 33712.36, + "probability": 0.9814 + }, + { + "start": 33713.26, + "end": 33714.86, + "probability": 0.7375 + }, + { + "start": 33715.48, + "end": 33719.34, + "probability": 0.9892 + }, + { + "start": 33719.94, + "end": 33723.58, + "probability": 0.9297 + }, + { + "start": 33723.92, + "end": 33724.36, + "probability": 0.6472 + }, + { + "start": 33724.48, + "end": 33727.3, + "probability": 0.965 + }, + { + "start": 33727.66, + "end": 33728.46, + "probability": 0.9703 + }, + { + "start": 33728.52, + "end": 33729.57, + "probability": 0.7939 + }, + { + "start": 33730.14, + "end": 33731.84, + "probability": 0.5491 + }, + { + "start": 33732.1, + "end": 33734.9, + "probability": 0.8713 + }, + { + "start": 33735.04, + "end": 33735.9, + "probability": 0.5061 + }, + { + "start": 33735.98, + "end": 33740.76, + "probability": 0.8862 + }, + { + "start": 33741.26, + "end": 33743.52, + "probability": 0.9952 + }, + { + "start": 33743.68, + "end": 33744.04, + "probability": 0.6525 + }, + { + "start": 33747.14, + "end": 33748.76, + "probability": 0.6475 + }, + { + "start": 33748.8, + "end": 33751.8, + "probability": 0.4049 + }, + { + "start": 33751.82, + "end": 33752.82, + "probability": 0.518 + }, + { + "start": 33770.02, + "end": 33770.02, + "probability": 0.418 + }, + { + "start": 33770.02, + "end": 33770.84, + "probability": 0.4762 + }, + { + "start": 33770.92, + "end": 33771.66, + "probability": 0.3283 + }, + { + "start": 33772.85, + "end": 33776.8, + "probability": 0.9147 + }, + { + "start": 33776.9, + "end": 33779.74, + "probability": 0.9949 + }, + { + "start": 33780.32, + "end": 33781.94, + "probability": 0.9344 + }, + { + "start": 33782.18, + "end": 33786.66, + "probability": 0.999 + }, + { + "start": 33787.02, + "end": 33787.74, + "probability": 0.8154 + }, + { + "start": 33787.84, + "end": 33789.72, + "probability": 0.9304 + }, + { + "start": 33790.34, + "end": 33790.9, + "probability": 0.815 + }, + { + "start": 33790.98, + "end": 33794.84, + "probability": 0.9966 + }, + { + "start": 33795.36, + "end": 33797.5, + "probability": 0.926 + }, + { + "start": 33798.16, + "end": 33801.98, + "probability": 0.9756 + }, + { + "start": 33802.36, + "end": 33806.66, + "probability": 0.9822 + }, + { + "start": 33806.78, + "end": 33809.57, + "probability": 0.9751 + }, + { + "start": 33810.32, + "end": 33811.5, + "probability": 0.9972 + }, + { + "start": 33811.78, + "end": 33813.28, + "probability": 0.9839 + }, + { + "start": 33813.44, + "end": 33813.8, + "probability": 0.8483 + }, + { + "start": 33815.6, + "end": 33817.24, + "probability": 0.6948 + }, + { + "start": 33817.94, + "end": 33824.66, + "probability": 0.6541 + }, + { + "start": 33824.76, + "end": 33824.94, + "probability": 0.9016 + }, + { + "start": 33828.2, + "end": 33829.14, + "probability": 0.6246 + }, + { + "start": 33829.64, + "end": 33837.44, + "probability": 0.3 + }, + { + "start": 33837.46, + "end": 33838.2, + "probability": 0.4031 + }, + { + "start": 33839.74, + "end": 33840.14, + "probability": 0.5622 + }, + { + "start": 33841.47, + "end": 33845.28, + "probability": 0.5708 + }, + { + "start": 33851.53, + "end": 33852.83, + "probability": 0.0788 + }, + { + "start": 33854.14, + "end": 33855.86, + "probability": 0.1108 + }, + { + "start": 33856.86, + "end": 33857.42, + "probability": 0.07 + }, + { + "start": 33857.42, + "end": 33857.56, + "probability": 0.2319 + }, + { + "start": 33857.56, + "end": 33857.58, + "probability": 0.0818 + }, + { + "start": 33858.04, + "end": 33858.38, + "probability": 0.2838 + }, + { + "start": 33858.58, + "end": 33860.0, + "probability": 0.4343 + }, + { + "start": 33860.38, + "end": 33860.68, + "probability": 0.3547 + }, + { + "start": 33860.78, + "end": 33861.24, + "probability": 0.6695 + }, + { + "start": 33861.3, + "end": 33861.58, + "probability": 0.3195 + }, + { + "start": 33861.72, + "end": 33862.98, + "probability": 0.5467 + }, + { + "start": 33863.5, + "end": 33863.78, + "probability": 0.0027 + }, + { + "start": 33867.7, + "end": 33870.42, + "probability": 0.9758 + }, + { + "start": 33871.5, + "end": 33873.14, + "probability": 0.7937 + }, + { + "start": 33876.5, + "end": 33878.54, + "probability": 0.7533 + }, + { + "start": 33879.14, + "end": 33881.36, + "probability": 0.5699 + }, + { + "start": 33881.44, + "end": 33883.14, + "probability": 0.7994 + }, + { + "start": 33883.26, + "end": 33885.04, + "probability": 0.7668 + }, + { + "start": 33887.5, + "end": 33890.92, + "probability": 0.5243 + }, + { + "start": 33892.02, + "end": 33895.16, + "probability": 0.813 + }, + { + "start": 33898.31, + "end": 33899.44, + "probability": 0.2116 + }, + { + "start": 33901.84, + "end": 33905.44, + "probability": 0.6543 + }, + { + "start": 33906.78, + "end": 33910.68, + "probability": 0.8062 + }, + { + "start": 33911.38, + "end": 33915.22, + "probability": 0.923 + }, + { + "start": 33915.22, + "end": 33918.3, + "probability": 0.7323 + }, + { + "start": 33919.04, + "end": 33925.14, + "probability": 0.4385 + }, + { + "start": 33925.26, + "end": 33928.44, + "probability": 0.9395 + }, + { + "start": 33930.14, + "end": 33930.9, + "probability": 0.661 + }, + { + "start": 33941.48, + "end": 33943.28, + "probability": 0.5217 + }, + { + "start": 33944.86, + "end": 33949.98, + "probability": 0.855 + }, + { + "start": 33951.14, + "end": 33959.44, + "probability": 0.9639 + }, + { + "start": 33959.52, + "end": 33963.16, + "probability": 0.8445 + }, + { + "start": 33963.82, + "end": 33968.0, + "probability": 0.9466 + }, + { + "start": 33968.76, + "end": 33970.86, + "probability": 0.867 + }, + { + "start": 33971.48, + "end": 33975.84, + "probability": 0.9532 + }, + { + "start": 33976.76, + "end": 33980.18, + "probability": 0.8523 + }, + { + "start": 33980.9, + "end": 33984.82, + "probability": 0.9941 + }, + { + "start": 33985.78, + "end": 33991.78, + "probability": 0.9706 + }, + { + "start": 33992.32, + "end": 33994.26, + "probability": 0.999 + }, + { + "start": 33994.9, + "end": 34000.2, + "probability": 0.9981 + }, + { + "start": 34000.2, + "end": 34005.68, + "probability": 0.9904 + }, + { + "start": 34007.02, + "end": 34009.1, + "probability": 0.9292 + }, + { + "start": 34009.84, + "end": 34012.28, + "probability": 0.9362 + }, + { + "start": 34012.88, + "end": 34013.8, + "probability": 0.5136 + }, + { + "start": 34014.02, + "end": 34014.92, + "probability": 0.7613 + }, + { + "start": 34015.08, + "end": 34017.64, + "probability": 0.9806 + }, + { + "start": 34020.7, + "end": 34026.1, + "probability": 0.9715 + }, + { + "start": 34026.2, + "end": 34027.04, + "probability": 0.3929 + }, + { + "start": 34027.8, + "end": 34029.66, + "probability": 0.9595 + }, + { + "start": 34030.42, + "end": 34033.82, + "probability": 0.823 + }, + { + "start": 34034.44, + "end": 34039.9, + "probability": 0.9204 + }, + { + "start": 34040.4, + "end": 34045.64, + "probability": 0.9788 + }, + { + "start": 34046.04, + "end": 34049.0, + "probability": 0.979 + }, + { + "start": 34049.28, + "end": 34050.06, + "probability": 0.696 + }, + { + "start": 34050.66, + "end": 34050.66, + "probability": 0.588 + }, + { + "start": 34050.66, + "end": 34053.42, + "probability": 0.9984 + }, + { + "start": 34053.42, + "end": 34056.2, + "probability": 0.9746 + }, + { + "start": 34056.68, + "end": 34059.36, + "probability": 0.5589 + }, + { + "start": 34059.36, + "end": 34059.36, + "probability": 0.0173 + }, + { + "start": 34059.36, + "end": 34061.44, + "probability": 0.3346 + }, + { + "start": 34061.52, + "end": 34061.82, + "probability": 0.359 + }, + { + "start": 34061.82, + "end": 34061.92, + "probability": 0.5488 + }, + { + "start": 34062.54, + "end": 34065.64, + "probability": 0.59 + }, + { + "start": 34065.9, + "end": 34066.64, + "probability": 0.8547 + }, + { + "start": 34071.66, + "end": 34071.76, + "probability": 0.6593 + }, + { + "start": 34072.78, + "end": 34074.6, + "probability": 0.6214 + }, + { + "start": 34075.43, + "end": 34079.33, + "probability": 0.7869 + }, + { + "start": 34080.16, + "end": 34080.84, + "probability": 0.701 + }, + { + "start": 34081.16, + "end": 34085.22, + "probability": 0.7966 + }, + { + "start": 34085.32, + "end": 34089.62, + "probability": 0.9523 + }, + { + "start": 34090.26, + "end": 34091.24, + "probability": 0.7506 + }, + { + "start": 34092.14, + "end": 34097.14, + "probability": 0.8697 + }, + { + "start": 34097.68, + "end": 34099.84, + "probability": 0.9135 + }, + { + "start": 34100.28, + "end": 34102.36, + "probability": 0.9946 + }, + { + "start": 34104.04, + "end": 34104.88, + "probability": 0.7657 + }, + { + "start": 34105.6, + "end": 34108.84, + "probability": 0.8896 + }, + { + "start": 34109.3, + "end": 34109.54, + "probability": 0.6501 + }, + { + "start": 34110.16, + "end": 34114.28, + "probability": 0.817 + }, + { + "start": 34114.72, + "end": 34115.38, + "probability": 0.3994 + }, + { + "start": 34115.64, + "end": 34122.36, + "probability": 0.8743 + }, + { + "start": 34123.2, + "end": 34124.56, + "probability": 0.7358 + }, + { + "start": 34130.96, + "end": 34132.9, + "probability": 0.6224 + }, + { + "start": 34133.78, + "end": 34135.68, + "probability": 0.2846 + }, + { + "start": 34145.06, + "end": 34146.08, + "probability": 0.0676 + }, + { + "start": 34150.1, + "end": 34151.44, + "probability": 0.6566 + }, + { + "start": 34153.5, + "end": 34157.56, + "probability": 0.9302 + }, + { + "start": 34163.26, + "end": 34164.4, + "probability": 0.0097 + }, + { + "start": 34164.41, + "end": 34166.42, + "probability": 0.0384 + }, + { + "start": 34166.6, + "end": 34169.76, + "probability": 0.0714 + }, + { + "start": 34170.18, + "end": 34173.26, + "probability": 0.0936 + }, + { + "start": 34191.22, + "end": 34192.24, + "probability": 0.0351 + }, + { + "start": 34193.58, + "end": 34194.06, + "probability": 0.1184 + }, + { + "start": 34195.4, + "end": 34196.26, + "probability": 0.0548 + }, + { + "start": 34197.12, + "end": 34197.22, + "probability": 0.1151 + }, + { + "start": 34197.36, + "end": 34200.66, + "probability": 0.0384 + }, + { + "start": 34202.52, + "end": 34203.5, + "probability": 0.0408 + }, + { + "start": 34203.5, + "end": 34205.74, + "probability": 0.0734 + }, + { + "start": 34205.74, + "end": 34205.9, + "probability": 0.0444 + }, + { + "start": 34205.9, + "end": 34206.04, + "probability": 0.0863 + }, + { + "start": 34217.51, + "end": 34219.25, + "probability": 0.0893 + }, + { + "start": 34219.76, + "end": 34220.86, + "probability": 0.3005 + }, + { + "start": 34223.18, + "end": 34225.36, + "probability": 0.0271 + }, + { + "start": 34226.08, + "end": 34227.94, + "probability": 0.1381 + }, + { + "start": 34227.94, + "end": 34227.94, + "probability": 0.0178 + }, + { + "start": 34227.94, + "end": 34228.8, + "probability": 0.0364 + }, + { + "start": 34229.0, + "end": 34229.0, + "probability": 0.0 + }, + { + "start": 34229.0, + "end": 34229.0, + "probability": 0.0 + }, + { + "start": 34229.0, + "end": 34229.0, + "probability": 0.0 + }, + { + "start": 34229.0, + "end": 34229.0, + "probability": 0.0 + }, + { + "start": 34229.0, + "end": 34229.0, + "probability": 0.0 + }, + { + "start": 34229.14, + "end": 34229.53, + "probability": 0.4149 + }, + { + "start": 34233.88, + "end": 34234.74, + "probability": 0.8352 + }, + { + "start": 34235.84, + "end": 34239.92, + "probability": 0.991 + }, + { + "start": 34240.7, + "end": 34242.22, + "probability": 0.7212 + }, + { + "start": 34244.88, + "end": 34247.44, + "probability": 0.9985 + }, + { + "start": 34248.41, + "end": 34251.64, + "probability": 0.893 + }, + { + "start": 34253.66, + "end": 34256.9, + "probability": 0.64 + }, + { + "start": 34258.16, + "end": 34260.92, + "probability": 0.8129 + }, + { + "start": 34262.08, + "end": 34268.46, + "probability": 0.959 + }, + { + "start": 34269.3, + "end": 34272.14, + "probability": 0.9808 + }, + { + "start": 34273.0, + "end": 34275.06, + "probability": 0.8386 + }, + { + "start": 34275.26, + "end": 34276.9, + "probability": 0.9709 + }, + { + "start": 34278.66, + "end": 34282.96, + "probability": 0.807 + }, + { + "start": 34284.62, + "end": 34286.04, + "probability": 0.3499 + }, + { + "start": 34286.7, + "end": 34287.6, + "probability": 0.8568 + }, + { + "start": 34288.5, + "end": 34291.94, + "probability": 0.9972 + }, + { + "start": 34293.34, + "end": 34294.46, + "probability": 0.1844 + }, + { + "start": 34295.86, + "end": 34300.24, + "probability": 0.9496 + }, + { + "start": 34300.9, + "end": 34301.64, + "probability": 0.9662 + }, + { + "start": 34303.32, + "end": 34303.46, + "probability": 0.3196 + }, + { + "start": 34303.52, + "end": 34304.1, + "probability": 0.8293 + }, + { + "start": 34304.2, + "end": 34305.88, + "probability": 0.8522 + }, + { + "start": 34306.28, + "end": 34307.52, + "probability": 0.8477 + }, + { + "start": 34307.96, + "end": 34310.24, + "probability": 0.8714 + }, + { + "start": 34313.02, + "end": 34316.04, + "probability": 0.9475 + }, + { + "start": 34319.38, + "end": 34325.36, + "probability": 0.9808 + }, + { + "start": 34325.92, + "end": 34327.44, + "probability": 0.9097 + }, + { + "start": 34327.94, + "end": 34330.22, + "probability": 0.9472 + }, + { + "start": 34331.38, + "end": 34333.01, + "probability": 0.9888 + }, + { + "start": 34333.9, + "end": 34335.17, + "probability": 0.9956 + }, + { + "start": 34336.76, + "end": 34338.74, + "probability": 0.9588 + }, + { + "start": 34339.44, + "end": 34341.94, + "probability": 0.9976 + }, + { + "start": 34342.6, + "end": 34345.02, + "probability": 0.9956 + }, + { + "start": 34345.96, + "end": 34348.52, + "probability": 0.7677 + }, + { + "start": 34348.64, + "end": 34350.92, + "probability": 0.965 + }, + { + "start": 34352.42, + "end": 34353.2, + "probability": 0.9308 + }, + { + "start": 34354.42, + "end": 34356.64, + "probability": 0.9941 + }, + { + "start": 34358.56, + "end": 34360.0, + "probability": 0.6765 + }, + { + "start": 34361.24, + "end": 34363.06, + "probability": 0.9868 + }, + { + "start": 34363.52, + "end": 34364.14, + "probability": 0.7871 + }, + { + "start": 34366.1, + "end": 34369.14, + "probability": 0.9907 + }, + { + "start": 34371.62, + "end": 34374.92, + "probability": 0.9855 + }, + { + "start": 34375.84, + "end": 34376.08, + "probability": 0.5 + }, + { + "start": 34377.08, + "end": 34377.62, + "probability": 0.9983 + }, + { + "start": 34379.34, + "end": 34380.24, + "probability": 0.5241 + }, + { + "start": 34381.72, + "end": 34384.89, + "probability": 0.624 + }, + { + "start": 34386.34, + "end": 34387.52, + "probability": 0.9588 + }, + { + "start": 34387.66, + "end": 34392.72, + "probability": 0.7925 + }, + { + "start": 34393.9, + "end": 34395.82, + "probability": 0.7456 + }, + { + "start": 34397.36, + "end": 34398.68, + "probability": 0.8206 + }, + { + "start": 34399.88, + "end": 34400.74, + "probability": 0.7311 + }, + { + "start": 34401.8, + "end": 34403.94, + "probability": 0.9889 + }, + { + "start": 34404.02, + "end": 34405.0, + "probability": 0.8969 + }, + { + "start": 34405.24, + "end": 34410.16, + "probability": 0.9937 + }, + { + "start": 34411.38, + "end": 34413.36, + "probability": 0.9009 + }, + { + "start": 34413.6, + "end": 34415.82, + "probability": 0.9961 + }, + { + "start": 34418.97, + "end": 34420.76, + "probability": 0.6166 + }, + { + "start": 34421.74, + "end": 34422.4, + "probability": 0.4526 + }, + { + "start": 34424.58, + "end": 34430.5, + "probability": 0.9751 + }, + { + "start": 34432.16, + "end": 34433.2, + "probability": 0.9309 + }, + { + "start": 34433.82, + "end": 34435.48, + "probability": 0.9954 + }, + { + "start": 34436.92, + "end": 34440.02, + "probability": 0.9952 + }, + { + "start": 34441.26, + "end": 34441.99, + "probability": 0.9571 + }, + { + "start": 34445.2, + "end": 34447.18, + "probability": 0.8069 + }, + { + "start": 34447.22, + "end": 34449.38, + "probability": 0.9057 + }, + { + "start": 34450.56, + "end": 34451.68, + "probability": 0.7329 + }, + { + "start": 34452.84, + "end": 34456.18, + "probability": 0.9239 + }, + { + "start": 34456.98, + "end": 34457.76, + "probability": 0.7152 + }, + { + "start": 34457.94, + "end": 34460.5, + "probability": 0.7474 + }, + { + "start": 34460.82, + "end": 34461.4, + "probability": 0.405 + }, + { + "start": 34462.86, + "end": 34467.4, + "probability": 0.9968 + }, + { + "start": 34468.66, + "end": 34472.02, + "probability": 0.8823 + }, + { + "start": 34474.06, + "end": 34476.42, + "probability": 0.9421 + }, + { + "start": 34476.94, + "end": 34477.8, + "probability": 0.9852 + }, + { + "start": 34478.58, + "end": 34479.68, + "probability": 0.9658 + }, + { + "start": 34479.88, + "end": 34481.18, + "probability": 0.52 + }, + { + "start": 34481.26, + "end": 34482.68, + "probability": 0.9645 + }, + { + "start": 34482.84, + "end": 34483.42, + "probability": 0.5357 + }, + { + "start": 34484.46, + "end": 34485.76, + "probability": 0.6362 + }, + { + "start": 34485.96, + "end": 34486.87, + "probability": 0.7944 + }, + { + "start": 34487.06, + "end": 34488.3, + "probability": 0.7744 + }, + { + "start": 34488.42, + "end": 34489.32, + "probability": 0.6362 + }, + { + "start": 34489.6, + "end": 34491.95, + "probability": 0.9307 + }, + { + "start": 34492.06, + "end": 34492.6, + "probability": 0.9091 + }, + { + "start": 34494.48, + "end": 34498.14, + "probability": 0.7131 + }, + { + "start": 34498.78, + "end": 34501.5, + "probability": 0.9438 + }, + { + "start": 34502.12, + "end": 34506.1, + "probability": 0.8916 + }, + { + "start": 34509.1, + "end": 34511.3, + "probability": 0.4456 + }, + { + "start": 34511.68, + "end": 34512.68, + "probability": 0.8228 + }, + { + "start": 34512.82, + "end": 34514.46, + "probability": 0.7805 + }, + { + "start": 34514.64, + "end": 34515.14, + "probability": 0.9176 + }, + { + "start": 34516.54, + "end": 34521.54, + "probability": 0.8645 + }, + { + "start": 34523.5, + "end": 34525.68, + "probability": 0.8672 + }, + { + "start": 34527.76, + "end": 34529.3, + "probability": 0.9691 + }, + { + "start": 34530.54, + "end": 34532.74, + "probability": 0.9819 + }, + { + "start": 34533.28, + "end": 34534.38, + "probability": 0.3004 + }, + { + "start": 34535.32, + "end": 34539.48, + "probability": 0.8778 + }, + { + "start": 34542.16, + "end": 34543.28, + "probability": 0.9476 + }, + { + "start": 34543.5, + "end": 34544.06, + "probability": 0.8399 + }, + { + "start": 34544.22, + "end": 34545.32, + "probability": 0.9473 + }, + { + "start": 34548.0, + "end": 34548.94, + "probability": 0.9289 + }, + { + "start": 34551.8, + "end": 34552.36, + "probability": 0.5379 + }, + { + "start": 34552.8, + "end": 34553.28, + "probability": 0.535 + }, + { + "start": 34553.44, + "end": 34557.02, + "probability": 0.3535 + }, + { + "start": 34557.3, + "end": 34557.66, + "probability": 0.5432 + }, + { + "start": 34558.06, + "end": 34558.6, + "probability": 0.5804 + }, + { + "start": 34559.12, + "end": 34559.68, + "probability": 0.7664 + }, + { + "start": 34560.46, + "end": 34561.14, + "probability": 0.5073 + }, + { + "start": 34561.32, + "end": 34562.62, + "probability": 0.6527 + }, + { + "start": 34563.34, + "end": 34566.16, + "probability": 0.7357 + }, + { + "start": 34566.26, + "end": 34567.08, + "probability": 0.2219 + }, + { + "start": 34567.78, + "end": 34568.54, + "probability": 0.3906 + }, + { + "start": 34569.32, + "end": 34573.62, + "probability": 0.6486 + }, + { + "start": 34575.48, + "end": 34579.2, + "probability": 0.921 + }, + { + "start": 34580.32, + "end": 34581.24, + "probability": 0.7481 + }, + { + "start": 34583.76, + "end": 34584.42, + "probability": 0.5736 + }, + { + "start": 34584.56, + "end": 34589.6, + "probability": 0.808 + }, + { + "start": 34589.94, + "end": 34592.44, + "probability": 0.9513 + }, + { + "start": 34593.98, + "end": 34595.02, + "probability": 0.7873 + }, + { + "start": 34595.94, + "end": 34596.24, + "probability": 0.9219 + }, + { + "start": 34596.96, + "end": 34600.62, + "probability": 0.9968 + }, + { + "start": 34600.72, + "end": 34601.58, + "probability": 0.8632 + }, + { + "start": 34602.26, + "end": 34603.26, + "probability": 0.9536 + }, + { + "start": 34604.02, + "end": 34604.62, + "probability": 0.8162 + }, + { + "start": 34608.54, + "end": 34610.92, + "probability": 0.9756 + }, + { + "start": 34610.96, + "end": 34611.06, + "probability": 0.0778 + }, + { + "start": 34611.12, + "end": 34611.88, + "probability": 0.7725 + }, + { + "start": 34612.96, + "end": 34614.12, + "probability": 0.542 + }, + { + "start": 34614.24, + "end": 34615.8, + "probability": 0.784 + }, + { + "start": 34616.08, + "end": 34619.3, + "probability": 0.7285 + }, + { + "start": 34619.42, + "end": 34619.94, + "probability": 0.4522 + }, + { + "start": 34622.03, + "end": 34623.88, + "probability": 0.9634 + }, + { + "start": 34625.06, + "end": 34625.3, + "probability": 0.364 + }, + { + "start": 34625.32, + "end": 34626.02, + "probability": 0.5126 + }, + { + "start": 34627.16, + "end": 34628.96, + "probability": 0.901 + }, + { + "start": 34629.5, + "end": 34630.54, + "probability": 0.9509 + }, + { + "start": 34631.12, + "end": 34634.32, + "probability": 0.9746 + }, + { + "start": 34634.5, + "end": 34638.2, + "probability": 0.9926 + }, + { + "start": 34638.34, + "end": 34638.82, + "probability": 0.6845 + }, + { + "start": 34638.9, + "end": 34642.6, + "probability": 0.8391 + }, + { + "start": 34643.34, + "end": 34644.04, + "probability": 0.7713 + }, + { + "start": 34644.22, + "end": 34644.62, + "probability": 0.9749 + }, + { + "start": 34646.38, + "end": 34650.72, + "probability": 0.9957 + }, + { + "start": 34653.22, + "end": 34654.24, + "probability": 0.901 + }, + { + "start": 34654.38, + "end": 34657.58, + "probability": 0.9747 + }, + { + "start": 34658.54, + "end": 34659.62, + "probability": 0.9381 + }, + { + "start": 34660.86, + "end": 34660.86, + "probability": 0.0024 + }, + { + "start": 34663.44, + "end": 34665.9, + "probability": 0.9708 + }, + { + "start": 34665.98, + "end": 34666.8, + "probability": 0.8007 + }, + { + "start": 34666.88, + "end": 34667.74, + "probability": 0.6898 + }, + { + "start": 34668.1, + "end": 34669.38, + "probability": 0.8725 + }, + { + "start": 34670.02, + "end": 34671.3, + "probability": 0.9744 + }, + { + "start": 34672.42, + "end": 34673.96, + "probability": 0.9932 + }, + { + "start": 34674.66, + "end": 34676.86, + "probability": 0.986 + }, + { + "start": 34677.55, + "end": 34678.52, + "probability": 0.0026 + }, + { + "start": 34680.84, + "end": 34682.7, + "probability": 0.7348 + }, + { + "start": 34683.9, + "end": 34686.24, + "probability": 0.9897 + }, + { + "start": 34686.99, + "end": 34688.58, + "probability": 0.9541 + }, + { + "start": 34690.28, + "end": 34693.45, + "probability": 0.9928 + }, + { + "start": 34694.36, + "end": 34696.4, + "probability": 0.8754 + }, + { + "start": 34697.58, + "end": 34699.68, + "probability": 0.8695 + }, + { + "start": 34703.04, + "end": 34705.82, + "probability": 0.8221 + }, + { + "start": 34707.76, + "end": 34708.22, + "probability": 0.4784 + }, + { + "start": 34708.28, + "end": 34709.06, + "probability": 0.941 + }, + { + "start": 34709.14, + "end": 34710.68, + "probability": 0.9866 + }, + { + "start": 34711.3, + "end": 34714.02, + "probability": 0.9961 + }, + { + "start": 34714.72, + "end": 34717.7, + "probability": 0.9812 + }, + { + "start": 34719.66, + "end": 34720.83, + "probability": 0.895 + }, + { + "start": 34721.9, + "end": 34724.3, + "probability": 0.6365 + }, + { + "start": 34724.46, + "end": 34726.24, + "probability": 0.9948 + }, + { + "start": 34726.76, + "end": 34727.74, + "probability": 0.8608 + }, + { + "start": 34730.4, + "end": 34733.48, + "probability": 0.6677 + }, + { + "start": 34734.88, + "end": 34735.37, + "probability": 0.7989 + }, + { + "start": 34735.76, + "end": 34736.72, + "probability": 0.5615 + }, + { + "start": 34737.72, + "end": 34738.1, + "probability": 0.9769 + }, + { + "start": 34739.54, + "end": 34744.28, + "probability": 0.8483 + }, + { + "start": 34744.4, + "end": 34744.54, + "probability": 0.7214 + }, + { + "start": 34744.94, + "end": 34747.12, + "probability": 0.6364 + }, + { + "start": 34748.11, + "end": 34750.4, + "probability": 0.9881 + }, + { + "start": 34750.98, + "end": 34754.46, + "probability": 0.9738 + }, + { + "start": 34756.32, + "end": 34759.16, + "probability": 0.9597 + }, + { + "start": 34760.44, + "end": 34765.0, + "probability": 0.8998 + }, + { + "start": 34765.02, + "end": 34765.64, + "probability": 0.7369 + }, + { + "start": 34765.76, + "end": 34765.88, + "probability": 0.548 + }, + { + "start": 34766.22, + "end": 34766.82, + "probability": 0.9443 + }, + { + "start": 34767.58, + "end": 34769.28, + "probability": 0.9928 + }, + { + "start": 34769.86, + "end": 34770.51, + "probability": 0.4152 + }, + { + "start": 34772.0, + "end": 34774.0, + "probability": 0.8974 + }, + { + "start": 34774.62, + "end": 34775.38, + "probability": 0.9324 + }, + { + "start": 34776.8, + "end": 34778.68, + "probability": 0.8663 + }, + { + "start": 34779.6, + "end": 34782.72, + "probability": 0.9483 + }, + { + "start": 34782.8, + "end": 34783.92, + "probability": 0.9795 + }, + { + "start": 34784.12, + "end": 34785.16, + "probability": 0.9949 + }, + { + "start": 34785.5, + "end": 34785.84, + "probability": 0.4714 + }, + { + "start": 34786.48, + "end": 34788.72, + "probability": 0.6796 + }, + { + "start": 34790.54, + "end": 34792.14, + "probability": 0.9657 + }, + { + "start": 34792.22, + "end": 34792.56, + "probability": 0.9716 + }, + { + "start": 34792.64, + "end": 34793.54, + "probability": 0.7127 + }, + { + "start": 34793.58, + "end": 34794.67, + "probability": 0.9315 + }, + { + "start": 34795.84, + "end": 34796.56, + "probability": 0.967 + }, + { + "start": 34796.72, + "end": 34797.92, + "probability": 0.998 + }, + { + "start": 34798.5, + "end": 34799.9, + "probability": 0.9185 + }, + { + "start": 34800.44, + "end": 34800.98, + "probability": 0.748 + }, + { + "start": 34801.18, + "end": 34801.6, + "probability": 0.2866 + }, + { + "start": 34801.86, + "end": 34802.26, + "probability": 0.6984 + }, + { + "start": 34803.46, + "end": 34804.42, + "probability": 0.581 + }, + { + "start": 34805.34, + "end": 34808.24, + "probability": 0.8955 + }, + { + "start": 34810.4, + "end": 34810.4, + "probability": 0.5457 + }, + { + "start": 34810.4, + "end": 34814.72, + "probability": 0.8668 + }, + { + "start": 34814.86, + "end": 34815.52, + "probability": 0.9496 + }, + { + "start": 34816.2, + "end": 34816.72, + "probability": 0.8642 + }, + { + "start": 34817.78, + "end": 34820.3, + "probability": 0.5005 + }, + { + "start": 34821.0, + "end": 34821.2, + "probability": 0.5215 + }, + { + "start": 34821.2, + "end": 34823.06, + "probability": 0.9907 + }, + { + "start": 34823.36, + "end": 34823.36, + "probability": 0.2344 + }, + { + "start": 34823.36, + "end": 34823.68, + "probability": 0.8879 + }, + { + "start": 34825.8, + "end": 34826.12, + "probability": 0.8688 + }, + { + "start": 34826.68, + "end": 34828.39, + "probability": 0.859 + }, + { + "start": 34828.92, + "end": 34829.24, + "probability": 0.7241 + }, + { + "start": 34829.61, + "end": 34833.46, + "probability": 0.6533 + }, + { + "start": 34833.7, + "end": 34835.72, + "probability": 0.7802 + }, + { + "start": 34836.28, + "end": 34838.19, + "probability": 0.9373 + }, + { + "start": 34838.82, + "end": 34840.42, + "probability": 0.9742 + }, + { + "start": 34841.28, + "end": 34842.02, + "probability": 0.6631 + }, + { + "start": 34843.94, + "end": 34846.16, + "probability": 0.9453 + }, + { + "start": 34846.58, + "end": 34849.82, + "probability": 0.6804 + }, + { + "start": 34849.86, + "end": 34850.4, + "probability": 0.8195 + }, + { + "start": 34850.94, + "end": 34852.78, + "probability": 0.8029 + }, + { + "start": 34853.62, + "end": 34857.52, + "probability": 0.7293 + }, + { + "start": 34858.34, + "end": 34861.7, + "probability": 0.5681 + }, + { + "start": 34862.14, + "end": 34862.16, + "probability": 0.1113 + }, + { + "start": 34862.16, + "end": 34863.96, + "probability": 0.894 + }, + { + "start": 34864.0, + "end": 34865.02, + "probability": 0.6546 + }, + { + "start": 34865.46, + "end": 34866.1, + "probability": 0.5703 + }, + { + "start": 34866.16, + "end": 34866.26, + "probability": 0.1548 + }, + { + "start": 34866.26, + "end": 34867.83, + "probability": 0.9 + }, + { + "start": 34868.62, + "end": 34873.76, + "probability": 0.935 + }, + { + "start": 34873.86, + "end": 34874.24, + "probability": 0.8581 + }, + { + "start": 34874.68, + "end": 34876.36, + "probability": 0.7861 + }, + { + "start": 34877.24, + "end": 34877.58, + "probability": 0.237 + }, + { + "start": 34877.58, + "end": 34878.92, + "probability": 0.5619 + }, + { + "start": 34879.0, + "end": 34879.24, + "probability": 0.6776 + }, + { + "start": 34880.02, + "end": 34880.8, + "probability": 0.8135 + }, + { + "start": 34881.02, + "end": 34881.44, + "probability": 0.4233 + }, + { + "start": 34881.54, + "end": 34881.94, + "probability": 0.6803 + }, + { + "start": 34882.2, + "end": 34885.68, + "probability": 0.885 + }, + { + "start": 34885.8, + "end": 34887.3, + "probability": 0.9272 + }, + { + "start": 34887.3, + "end": 34888.18, + "probability": 0.7762 + }, + { + "start": 34904.24, + "end": 34906.6, + "probability": 0.5805 + }, + { + "start": 34907.54, + "end": 34908.74, + "probability": 0.8341 + }, + { + "start": 34908.78, + "end": 34910.86, + "probability": 0.8677 + }, + { + "start": 34912.42, + "end": 34912.64, + "probability": 0.8527 + }, + { + "start": 34912.64, + "end": 34915.16, + "probability": 0.9238 + }, + { + "start": 34915.34, + "end": 34915.54, + "probability": 0.9105 + }, + { + "start": 34915.58, + "end": 34917.76, + "probability": 0.9927 + }, + { + "start": 34917.76, + "end": 34919.02, + "probability": 0.9752 + }, + { + "start": 34920.52, + "end": 34921.98, + "probability": 0.9402 + }, + { + "start": 34922.14, + "end": 34922.14, + "probability": 0.0699 + }, + { + "start": 34922.3, + "end": 34923.09, + "probability": 0.5062 + }, + { + "start": 34923.38, + "end": 34923.52, + "probability": 0.4026 + }, + { + "start": 34924.18, + "end": 34924.64, + "probability": 0.823 + }, + { + "start": 34924.72, + "end": 34926.0, + "probability": 0.8795 + }, + { + "start": 34927.38, + "end": 34928.68, + "probability": 0.0795 + }, + { + "start": 34928.84, + "end": 34931.26, + "probability": 0.358 + }, + { + "start": 34932.2, + "end": 34932.3, + "probability": 0.0625 + }, + { + "start": 34933.8, + "end": 34934.84, + "probability": 0.0264 + }, + { + "start": 34934.84, + "end": 34935.04, + "probability": 0.1476 + }, + { + "start": 34935.36, + "end": 34935.54, + "probability": 0.3987 + }, + { + "start": 34935.54, + "end": 34937.7, + "probability": 0.7205 + }, + { + "start": 34937.72, + "end": 34938.86, + "probability": 0.774 + }, + { + "start": 34939.73, + "end": 34940.28, + "probability": 0.539 + }, + { + "start": 34940.32, + "end": 34940.66, + "probability": 0.3089 + }, + { + "start": 34941.1, + "end": 34947.04, + "probability": 0.9973 + }, + { + "start": 34947.52, + "end": 34948.32, + "probability": 0.4262 + }, + { + "start": 34948.48, + "end": 34949.08, + "probability": 0.8939 + }, + { + "start": 34949.12, + "end": 34951.0, + "probability": 0.9438 + }, + { + "start": 34951.4, + "end": 34953.4, + "probability": 0.9754 + }, + { + "start": 34953.64, + "end": 34954.72, + "probability": 0.4287 + }, + { + "start": 34955.0, + "end": 34956.0, + "probability": 0.2832 + }, + { + "start": 34956.71, + "end": 34958.98, + "probability": 0.7011 + }, + { + "start": 34958.98, + "end": 34961.88, + "probability": 0.4957 + }, + { + "start": 34962.24, + "end": 34963.92, + "probability": 0.9129 + }, + { + "start": 34964.34, + "end": 34966.22, + "probability": 0.964 + }, + { + "start": 34966.34, + "end": 34968.34, + "probability": 0.5822 + }, + { + "start": 34969.54, + "end": 34970.92, + "probability": 0.9631 + }, + { + "start": 34971.2, + "end": 34976.32, + "probability": 0.8857 + }, + { + "start": 34976.86, + "end": 34980.42, + "probability": 0.9859 + }, + { + "start": 34980.94, + "end": 34987.82, + "probability": 0.9834 + }, + { + "start": 34988.16, + "end": 34989.64, + "probability": 0.796 + }, + { + "start": 34990.0, + "end": 34995.96, + "probability": 0.6901 + }, + { + "start": 34996.6, + "end": 35004.82, + "probability": 0.9963 + }, + { + "start": 35005.22, + "end": 35005.66, + "probability": 0.8608 + }, + { + "start": 35006.74, + "end": 35007.08, + "probability": 0.8799 + }, + { + "start": 35007.22, + "end": 35008.96, + "probability": 0.9062 + }, + { + "start": 35009.36, + "end": 35013.5, + "probability": 0.9985 + }, + { + "start": 35013.5, + "end": 35017.74, + "probability": 0.9966 + }, + { + "start": 35018.1, + "end": 35019.22, + "probability": 0.8401 + }, + { + "start": 35019.78, + "end": 35020.56, + "probability": 0.586 + }, + { + "start": 35022.98, + "end": 35024.14, + "probability": 0.3877 + }, + { + "start": 35024.78, + "end": 35027.32, + "probability": 0.7741 + }, + { + "start": 35027.52, + "end": 35027.64, + "probability": 0.0753 + }, + { + "start": 35028.26, + "end": 35028.72, + "probability": 0.089 + }, + { + "start": 35028.72, + "end": 35029.6, + "probability": 0.4494 + }, + { + "start": 35029.84, + "end": 35029.84, + "probability": 0.3191 + }, + { + "start": 35030.18, + "end": 35031.43, + "probability": 0.9951 + }, + { + "start": 35031.54, + "end": 35032.62, + "probability": 0.998 + }, + { + "start": 35033.32, + "end": 35037.34, + "probability": 0.3057 + }, + { + "start": 35038.1, + "end": 35040.58, + "probability": 0.7986 + }, + { + "start": 35040.64, + "end": 35041.96, + "probability": 0.8465 + }, + { + "start": 35041.96, + "end": 35044.8, + "probability": 0.9942 + }, + { + "start": 35044.8, + "end": 35047.42, + "probability": 0.9944 + }, + { + "start": 35047.88, + "end": 35049.48, + "probability": 0.9711 + }, + { + "start": 35049.94, + "end": 35052.02, + "probability": 0.016 + }, + { + "start": 35052.98, + "end": 35053.74, + "probability": 0.0597 + }, + { + "start": 35053.74, + "end": 35053.74, + "probability": 0.5401 + }, + { + "start": 35053.74, + "end": 35055.68, + "probability": 0.4286 + }, + { + "start": 35056.5, + "end": 35057.9, + "probability": 0.6084 + }, + { + "start": 35058.0, + "end": 35058.22, + "probability": 0.1406 + }, + { + "start": 35058.3, + "end": 35060.12, + "probability": 0.6553 + }, + { + "start": 35060.6, + "end": 35061.78, + "probability": 0.657 + }, + { + "start": 35061.9, + "end": 35062.44, + "probability": 0.813 + }, + { + "start": 35062.72, + "end": 35068.3, + "probability": 0.422 + }, + { + "start": 35068.38, + "end": 35069.78, + "probability": 0.7334 + }, + { + "start": 35069.78, + "end": 35070.68, + "probability": 0.3696 + }, + { + "start": 35070.92, + "end": 35073.08, + "probability": 0.1121 + }, + { + "start": 35073.98, + "end": 35074.26, + "probability": 0.0003 + }, + { + "start": 35074.26, + "end": 35074.26, + "probability": 0.111 + }, + { + "start": 35074.26, + "end": 35074.26, + "probability": 0.0545 + }, + { + "start": 35074.26, + "end": 35074.26, + "probability": 0.1414 + }, + { + "start": 35074.26, + "end": 35075.02, + "probability": 0.3168 + }, + { + "start": 35075.14, + "end": 35077.78, + "probability": 0.7895 + }, + { + "start": 35077.92, + "end": 35078.72, + "probability": 0.0505 + }, + { + "start": 35079.4, + "end": 35082.16, + "probability": 0.7366 + }, + { + "start": 35082.2, + "end": 35084.14, + "probability": 0.5078 + }, + { + "start": 35085.18, + "end": 35086.5, + "probability": 0.9061 + }, + { + "start": 35086.7, + "end": 35088.72, + "probability": 0.911 + }, + { + "start": 35089.28, + "end": 35089.96, + "probability": 0.0491 + }, + { + "start": 35090.08, + "end": 35094.28, + "probability": 0.9453 + }, + { + "start": 35094.34, + "end": 35097.34, + "probability": 0.8668 + }, + { + "start": 35098.88, + "end": 35104.34, + "probability": 0.9567 + }, + { + "start": 35104.92, + "end": 35106.64, + "probability": 0.9135 + }, + { + "start": 35107.18, + "end": 35110.9, + "probability": 0.9796 + }, + { + "start": 35111.54, + "end": 35113.28, + "probability": 0.6406 + }, + { + "start": 35114.01, + "end": 35115.08, + "probability": 0.6146 + }, + { + "start": 35116.22, + "end": 35119.14, + "probability": 0.7495 + }, + { + "start": 35119.14, + "end": 35119.86, + "probability": 0.76 + }, + { + "start": 35120.48, + "end": 35122.52, + "probability": 0.0085 + }, + { + "start": 35123.32, + "end": 35125.96, + "probability": 0.8541 + }, + { + "start": 35126.38, + "end": 35126.94, + "probability": 0.019 + }, + { + "start": 35127.12, + "end": 35127.44, + "probability": 0.0103 + }, + { + "start": 35127.72, + "end": 35129.72, + "probability": 0.7572 + }, + { + "start": 35130.18, + "end": 35130.56, + "probability": 0.2754 + }, + { + "start": 35130.7, + "end": 35136.56, + "probability": 0.8865 + }, + { + "start": 35136.72, + "end": 35140.66, + "probability": 0.8588 + }, + { + "start": 35141.22, + "end": 35144.3, + "probability": 0.324 + }, + { + "start": 35145.1, + "end": 35150.0, + "probability": 0.9848 + }, + { + "start": 35150.78, + "end": 35153.48, + "probability": 0.3167 + }, + { + "start": 35154.14, + "end": 35156.6, + "probability": 0.6648 + }, + { + "start": 35156.72, + "end": 35158.98, + "probability": 0.9692 + }, + { + "start": 35163.14, + "end": 35169.28, + "probability": 0.8133 + }, + { + "start": 35169.58, + "end": 35170.8, + "probability": 0.6973 + }, + { + "start": 35171.45, + "end": 35172.34, + "probability": 0.9236 + }, + { + "start": 35173.02, + "end": 35174.94, + "probability": 0.7499 + }, + { + "start": 35176.46, + "end": 35180.72, + "probability": 0.967 + }, + { + "start": 35180.9, + "end": 35182.12, + "probability": 0.869 + }, + { + "start": 35183.22, + "end": 35185.08, + "probability": 0.9832 + }, + { + "start": 35185.88, + "end": 35189.06, + "probability": 0.9975 + }, + { + "start": 35190.1, + "end": 35191.48, + "probability": 0.9951 + }, + { + "start": 35192.76, + "end": 35193.48, + "probability": 0.9677 + }, + { + "start": 35193.62, + "end": 35194.92, + "probability": 0.9837 + }, + { + "start": 35196.7, + "end": 35198.2, + "probability": 0.8345 + }, + { + "start": 35198.96, + "end": 35203.15, + "probability": 0.9316 + }, + { + "start": 35203.56, + "end": 35204.12, + "probability": 0.7802 + }, + { + "start": 35205.82, + "end": 35208.8, + "probability": 0.5403 + }, + { + "start": 35209.52, + "end": 35210.46, + "probability": 0.6329 + }, + { + "start": 35211.74, + "end": 35214.92, + "probability": 0.8525 + }, + { + "start": 35216.1, + "end": 35217.72, + "probability": 0.8315 + }, + { + "start": 35218.28, + "end": 35218.7, + "probability": 0.7944 + }, + { + "start": 35219.46, + "end": 35222.02, + "probability": 0.9703 + }, + { + "start": 35222.58, + "end": 35226.9, + "probability": 0.9858 + }, + { + "start": 35227.58, + "end": 35228.68, + "probability": 0.8567 + }, + { + "start": 35229.54, + "end": 35232.18, + "probability": 0.5694 + }, + { + "start": 35232.4, + "end": 35236.88, + "probability": 0.958 + }, + { + "start": 35238.38, + "end": 35239.52, + "probability": 0.7911 + }, + { + "start": 35240.02, + "end": 35240.44, + "probability": 0.9399 + }, + { + "start": 35241.14, + "end": 35242.06, + "probability": 0.7793 + }, + { + "start": 35242.42, + "end": 35245.62, + "probability": 0.764 + }, + { + "start": 35246.3, + "end": 35250.02, + "probability": 0.9743 + }, + { + "start": 35251.48, + "end": 35252.74, + "probability": 0.4848 + }, + { + "start": 35252.86, + "end": 35257.48, + "probability": 0.9839 + }, + { + "start": 35257.78, + "end": 35259.3, + "probability": 0.9589 + }, + { + "start": 35260.22, + "end": 35260.99, + "probability": 0.9696 + }, + { + "start": 35262.46, + "end": 35263.58, + "probability": 0.9101 + }, + { + "start": 35263.68, + "end": 35271.14, + "probability": 0.9595 + }, + { + "start": 35272.68, + "end": 35274.8, + "probability": 0.9712 + }, + { + "start": 35275.28, + "end": 35275.91, + "probability": 0.9846 + }, + { + "start": 35276.4, + "end": 35277.25, + "probability": 0.9631 + }, + { + "start": 35277.72, + "end": 35278.8, + "probability": 0.9928 + }, + { + "start": 35279.4, + "end": 35282.42, + "probability": 0.9802 + }, + { + "start": 35283.58, + "end": 35286.56, + "probability": 0.9844 + }, + { + "start": 35286.64, + "end": 35287.56, + "probability": 0.7732 + }, + { + "start": 35288.36, + "end": 35289.58, + "probability": 0.9405 + }, + { + "start": 35291.06, + "end": 35292.26, + "probability": 0.9972 + }, + { + "start": 35293.78, + "end": 35294.42, + "probability": 0.9147 + }, + { + "start": 35295.5, + "end": 35295.94, + "probability": 0.9922 + }, + { + "start": 35296.7, + "end": 35297.18, + "probability": 0.8517 + }, + { + "start": 35298.14, + "end": 35300.78, + "probability": 0.642 + }, + { + "start": 35301.36, + "end": 35302.3, + "probability": 0.8144 + }, + { + "start": 35304.43, + "end": 35311.6, + "probability": 0.949 + }, + { + "start": 35312.86, + "end": 35313.28, + "probability": 0.7459 + }, + { + "start": 35314.74, + "end": 35317.74, + "probability": 0.5447 + }, + { + "start": 35318.46, + "end": 35320.94, + "probability": 0.5585 + }, + { + "start": 35322.84, + "end": 35324.22, + "probability": 0.9151 + }, + { + "start": 35325.28, + "end": 35327.56, + "probability": 0.9486 + }, + { + "start": 35328.7, + "end": 35329.86, + "probability": 0.4144 + }, + { + "start": 35330.06, + "end": 35331.8, + "probability": 0.6401 + }, + { + "start": 35332.16, + "end": 35335.44, + "probability": 0.7261 + }, + { + "start": 35346.42, + "end": 35347.12, + "probability": 0.9458 + }, + { + "start": 35348.7, + "end": 35348.86, + "probability": 0.0458 + }, + { + "start": 35348.86, + "end": 35348.86, + "probability": 0.0638 + }, + { + "start": 35348.86, + "end": 35353.62, + "probability": 0.6472 + }, + { + "start": 35353.82, + "end": 35354.84, + "probability": 0.8002 + }, + { + "start": 35354.92, + "end": 35356.56, + "probability": 0.8458 + }, + { + "start": 35357.44, + "end": 35359.32, + "probability": 0.6863 + }, + { + "start": 35360.5, + "end": 35364.24, + "probability": 0.8689 + }, + { + "start": 35364.92, + "end": 35365.88, + "probability": 0.8529 + }, + { + "start": 35367.26, + "end": 35369.08, + "probability": 0.7842 + }, + { + "start": 35371.38, + "end": 35372.92, + "probability": 0.9462 + }, + { + "start": 35374.96, + "end": 35376.91, + "probability": 0.815 + }, + { + "start": 35379.26, + "end": 35382.34, + "probability": 0.9415 + }, + { + "start": 35384.1, + "end": 35386.54, + "probability": 0.9774 + }, + { + "start": 35386.96, + "end": 35388.14, + "probability": 0.8472 + }, + { + "start": 35388.8, + "end": 35390.28, + "probability": 0.9935 + }, + { + "start": 35390.34, + "end": 35391.64, + "probability": 0.7495 + }, + { + "start": 35393.04, + "end": 35396.18, + "probability": 0.8787 + }, + { + "start": 35397.04, + "end": 35398.78, + "probability": 0.9758 + }, + { + "start": 35400.41, + "end": 35402.87, + "probability": 0.6367 + }, + { + "start": 35404.14, + "end": 35405.1, + "probability": 0.7001 + }, + { + "start": 35406.0, + "end": 35408.92, + "probability": 0.9314 + }, + { + "start": 35409.36, + "end": 35410.1, + "probability": 0.8984 + }, + { + "start": 35410.36, + "end": 35415.34, + "probability": 0.8545 + }, + { + "start": 35415.96, + "end": 35418.46, + "probability": 0.9951 + }, + { + "start": 35421.76, + "end": 35423.16, + "probability": 0.9766 + }, + { + "start": 35423.3, + "end": 35424.35, + "probability": 0.9778 + }, + { + "start": 35424.64, + "end": 35425.14, + "probability": 0.62 + }, + { + "start": 35425.96, + "end": 35427.88, + "probability": 0.9643 + }, + { + "start": 35428.12, + "end": 35431.66, + "probability": 0.9895 + }, + { + "start": 35433.22, + "end": 35434.8, + "probability": 0.9772 + }, + { + "start": 35435.36, + "end": 35439.22, + "probability": 0.9678 + }, + { + "start": 35441.24, + "end": 35444.98, + "probability": 0.9766 + }, + { + "start": 35444.98, + "end": 35447.56, + "probability": 0.992 + }, + { + "start": 35450.04, + "end": 35451.79, + "probability": 0.85 + }, + { + "start": 35452.34, + "end": 35452.92, + "probability": 0.6563 + }, + { + "start": 35453.26, + "end": 35453.44, + "probability": 0.0008 + }, + { + "start": 35455.76, + "end": 35457.06, + "probability": 0.2251 + }, + { + "start": 35457.06, + "end": 35459.19, + "probability": 0.1003 + }, + { + "start": 35460.2, + "end": 35463.26, + "probability": 0.6519 + }, + { + "start": 35464.08, + "end": 35466.94, + "probability": 0.8062 + }, + { + "start": 35468.04, + "end": 35472.9, + "probability": 0.973 + }, + { + "start": 35473.44, + "end": 35475.66, + "probability": 0.65 + }, + { + "start": 35476.9, + "end": 35478.1, + "probability": 0.8877 + }, + { + "start": 35479.0, + "end": 35482.34, + "probability": 0.9706 + }, + { + "start": 35482.88, + "end": 35486.08, + "probability": 0.9333 + }, + { + "start": 35486.2, + "end": 35487.54, + "probability": 0.7956 + }, + { + "start": 35487.92, + "end": 35490.19, + "probability": 0.9888 + }, + { + "start": 35491.42, + "end": 35492.22, + "probability": 0.7204 + }, + { + "start": 35493.08, + "end": 35493.54, + "probability": 0.9172 + }, + { + "start": 35494.56, + "end": 35494.92, + "probability": 0.679 + }, + { + "start": 35495.02, + "end": 35496.54, + "probability": 0.9858 + }, + { + "start": 35496.62, + "end": 35497.32, + "probability": 0.9825 + }, + { + "start": 35497.92, + "end": 35499.3, + "probability": 0.9396 + }, + { + "start": 35500.36, + "end": 35502.16, + "probability": 0.9883 + }, + { + "start": 35502.96, + "end": 35508.12, + "probability": 0.9588 + }, + { + "start": 35509.72, + "end": 35511.16, + "probability": 0.9792 + }, + { + "start": 35511.74, + "end": 35512.57, + "probability": 0.733 + }, + { + "start": 35513.36, + "end": 35516.28, + "probability": 0.9629 + }, + { + "start": 35516.48, + "end": 35519.44, + "probability": 0.9695 + }, + { + "start": 35519.44, + "end": 35522.22, + "probability": 0.9822 + }, + { + "start": 35522.6, + "end": 35523.94, + "probability": 0.9698 + }, + { + "start": 35524.0, + "end": 35524.64, + "probability": 0.7473 + }, + { + "start": 35524.8, + "end": 35526.02, + "probability": 0.56 + }, + { + "start": 35526.4, + "end": 35527.2, + "probability": 0.8826 + }, + { + "start": 35527.84, + "end": 35529.44, + "probability": 0.9592 + }, + { + "start": 35529.76, + "end": 35532.21, + "probability": 0.9447 + }, + { + "start": 35532.94, + "end": 35534.02, + "probability": 0.9347 + }, + { + "start": 35534.84, + "end": 35537.42, + "probability": 0.9156 + }, + { + "start": 35537.6, + "end": 35540.04, + "probability": 0.9397 + }, + { + "start": 35540.92, + "end": 35543.0, + "probability": 0.853 + }, + { + "start": 35543.04, + "end": 35549.48, + "probability": 0.8546 + }, + { + "start": 35550.02, + "end": 35551.1, + "probability": 0.9869 + }, + { + "start": 35551.56, + "end": 35554.44, + "probability": 0.9263 + }, + { + "start": 35555.28, + "end": 35558.14, + "probability": 0.9946 + }, + { + "start": 35558.39, + "end": 35561.28, + "probability": 0.9827 + }, + { + "start": 35562.8, + "end": 35563.78, + "probability": 0.9993 + }, + { + "start": 35564.54, + "end": 35565.5, + "probability": 0.8327 + }, + { + "start": 35567.34, + "end": 35571.7, + "probability": 0.9932 + }, + { + "start": 35571.8, + "end": 35573.0, + "probability": 0.9454 + }, + { + "start": 35573.02, + "end": 35574.1, + "probability": 0.9835 + }, + { + "start": 35575.18, + "end": 35576.64, + "probability": 0.9944 + }, + { + "start": 35577.32, + "end": 35578.74, + "probability": 0.9869 + }, + { + "start": 35579.58, + "end": 35579.7, + "probability": 0.1933 + }, + { + "start": 35579.7, + "end": 35583.42, + "probability": 0.4708 + }, + { + "start": 35583.46, + "end": 35584.28, + "probability": 0.8232 + }, + { + "start": 35584.32, + "end": 35585.1, + "probability": 0.7399 + }, + { + "start": 35585.76, + "end": 35589.28, + "probability": 0.993 + }, + { + "start": 35590.58, + "end": 35593.6, + "probability": 0.9027 + }, + { + "start": 35594.12, + "end": 35595.84, + "probability": 0.4308 + }, + { + "start": 35596.1, + "end": 35598.68, + "probability": 0.5709 + }, + { + "start": 35600.3, + "end": 35604.19, + "probability": 0.9625 + }, + { + "start": 35605.62, + "end": 35608.44, + "probability": 0.7612 + }, + { + "start": 35609.02, + "end": 35611.82, + "probability": 0.7789 + }, + { + "start": 35612.44, + "end": 35614.96, + "probability": 0.9095 + }, + { + "start": 35615.44, + "end": 35616.98, + "probability": 0.9017 + }, + { + "start": 35617.44, + "end": 35619.38, + "probability": 0.7402 + }, + { + "start": 35620.64, + "end": 35626.02, + "probability": 0.9441 + }, + { + "start": 35629.92, + "end": 35630.38, + "probability": 0.0839 + }, + { + "start": 35630.5, + "end": 35631.08, + "probability": 0.681 + }, + { + "start": 35631.32, + "end": 35635.52, + "probability": 0.5232 + }, + { + "start": 35635.66, + "end": 35638.94, + "probability": 0.9316 + }, + { + "start": 35639.3, + "end": 35639.94, + "probability": 0.6232 + }, + { + "start": 35641.9, + "end": 35642.74, + "probability": 0.8196 + }, + { + "start": 35642.86, + "end": 35643.46, + "probability": 0.4624 + }, + { + "start": 35643.64, + "end": 35644.56, + "probability": 0.5739 + }, + { + "start": 35645.04, + "end": 35650.14, + "probability": 0.589 + }, + { + "start": 35650.44, + "end": 35651.34, + "probability": 0.8638 + }, + { + "start": 35651.4, + "end": 35652.0, + "probability": 0.358 + }, + { + "start": 35652.64, + "end": 35656.06, + "probability": 0.9557 + }, + { + "start": 35657.04, + "end": 35660.2, + "probability": 0.9507 + }, + { + "start": 35660.8, + "end": 35662.0, + "probability": 0.7462 + }, + { + "start": 35662.38, + "end": 35663.66, + "probability": 0.8184 + }, + { + "start": 35664.2, + "end": 35669.39, + "probability": 0.9355 + }, + { + "start": 35670.76, + "end": 35673.04, + "probability": 0.9724 + }, + { + "start": 35673.7, + "end": 35677.12, + "probability": 0.6777 + }, + { + "start": 35679.76, + "end": 35680.6, + "probability": 0.8091 + }, + { + "start": 35681.72, + "end": 35686.02, + "probability": 0.9928 + }, + { + "start": 35686.14, + "end": 35686.24, + "probability": 0.3923 + }, + { + "start": 35687.24, + "end": 35690.14, + "probability": 0.9712 + }, + { + "start": 35691.06, + "end": 35692.56, + "probability": 0.8889 + }, + { + "start": 35692.86, + "end": 35694.04, + "probability": 0.7594 + }, + { + "start": 35695.72, + "end": 35698.2, + "probability": 0.8621 + }, + { + "start": 35698.34, + "end": 35699.58, + "probability": 0.5173 + }, + { + "start": 35699.74, + "end": 35700.9, + "probability": 0.6327 + }, + { + "start": 35701.6, + "end": 35704.28, + "probability": 0.5554 + }, + { + "start": 35704.62, + "end": 35705.52, + "probability": 0.9091 + }, + { + "start": 35706.72, + "end": 35707.7, + "probability": 0.7644 + }, + { + "start": 35708.82, + "end": 35711.76, + "probability": 0.9036 + }, + { + "start": 35711.98, + "end": 35713.32, + "probability": 0.5783 + }, + { + "start": 35714.4, + "end": 35716.56, + "probability": 0.9795 + }, + { + "start": 35716.92, + "end": 35718.78, + "probability": 0.9827 + }, + { + "start": 35719.5, + "end": 35720.06, + "probability": 0.8789 + }, + { + "start": 35721.02, + "end": 35723.06, + "probability": 0.6363 + }, + { + "start": 35723.48, + "end": 35724.27, + "probability": 0.8774 + }, + { + "start": 35725.24, + "end": 35730.78, + "probability": 0.9797 + }, + { + "start": 35731.66, + "end": 35731.94, + "probability": 0.2692 + }, + { + "start": 35732.04, + "end": 35732.74, + "probability": 0.6495 + }, + { + "start": 35732.84, + "end": 35733.46, + "probability": 0.958 + }, + { + "start": 35733.6, + "end": 35734.98, + "probability": 0.9575 + }, + { + "start": 35735.14, + "end": 35735.64, + "probability": 0.6992 + }, + { + "start": 35736.4, + "end": 35736.8, + "probability": 0.7843 + }, + { + "start": 35736.88, + "end": 35738.18, + "probability": 0.9653 + }, + { + "start": 35738.32, + "end": 35740.74, + "probability": 0.7709 + }, + { + "start": 35741.54, + "end": 35742.92, + "probability": 0.9331 + }, + { + "start": 35743.44, + "end": 35748.08, + "probability": 0.7104 + }, + { + "start": 35748.42, + "end": 35752.06, + "probability": 0.9663 + }, + { + "start": 35752.64, + "end": 35754.78, + "probability": 0.9603 + }, + { + "start": 35755.18, + "end": 35760.14, + "probability": 0.9939 + }, + { + "start": 35760.74, + "end": 35761.48, + "probability": 0.6243 + }, + { + "start": 35762.46, + "end": 35764.82, + "probability": 0.3842 + }, + { + "start": 35765.16, + "end": 35768.08, + "probability": 0.5615 + }, + { + "start": 35768.56, + "end": 35772.96, + "probability": 0.7786 + }, + { + "start": 35773.36, + "end": 35774.2, + "probability": 0.8224 + }, + { + "start": 35774.58, + "end": 35775.6, + "probability": 0.6206 + }, + { + "start": 35775.96, + "end": 35779.66, + "probability": 0.9927 + }, + { + "start": 35780.06, + "end": 35784.38, + "probability": 0.9966 + }, + { + "start": 35784.42, + "end": 35784.7, + "probability": 0.6762 + }, + { + "start": 35785.26, + "end": 35787.42, + "probability": 0.7282 + }, + { + "start": 35787.56, + "end": 35792.8, + "probability": 0.968 + }, + { + "start": 35793.32, + "end": 35793.54, + "probability": 0.9819 + }, + { + "start": 35793.66, + "end": 35798.32, + "probability": 0.9579 + }, + { + "start": 35799.1, + "end": 35803.68, + "probability": 0.7029 + }, + { + "start": 35803.8, + "end": 35803.9, + "probability": 0.1576 + }, + { + "start": 35804.54, + "end": 35804.64, + "probability": 0.0001 + }, + { + "start": 35804.64, + "end": 35807.9, + "probability": 0.7485 + }, + { + "start": 35808.62, + "end": 35811.14, + "probability": 0.8036 + }, + { + "start": 35813.1, + "end": 35814.46, + "probability": 0.7152 + }, + { + "start": 35826.58, + "end": 35826.8, + "probability": 0.8051 + }, + { + "start": 35827.34, + "end": 35827.82, + "probability": 0.6005 + }, + { + "start": 35827.98, + "end": 35830.82, + "probability": 0.8499 + }, + { + "start": 35831.1, + "end": 35831.98, + "probability": 0.9086 + }, + { + "start": 35832.14, + "end": 35833.24, + "probability": 0.8505 + }, + { + "start": 35835.56, + "end": 35839.7, + "probability": 0.7793 + }, + { + "start": 35842.64, + "end": 35847.34, + "probability": 0.9895 + }, + { + "start": 35850.32, + "end": 35859.08, + "probability": 0.87 + }, + { + "start": 35859.8, + "end": 35863.58, + "probability": 0.9839 + }, + { + "start": 35864.34, + "end": 35869.86, + "probability": 0.7994 + }, + { + "start": 35871.54, + "end": 35873.28, + "probability": 0.8843 + }, + { + "start": 35873.36, + "end": 35876.52, + "probability": 0.9125 + }, + { + "start": 35877.68, + "end": 35879.22, + "probability": 0.9701 + }, + { + "start": 35879.44, + "end": 35882.5, + "probability": 0.9924 + }, + { + "start": 35882.5, + "end": 35885.98, + "probability": 0.9949 + }, + { + "start": 35887.28, + "end": 35890.94, + "probability": 0.7438 + }, + { + "start": 35892.1, + "end": 35894.49, + "probability": 0.9321 + }, + { + "start": 35895.36, + "end": 35897.28, + "probability": 0.9432 + }, + { + "start": 35898.12, + "end": 35899.84, + "probability": 0.9718 + }, + { + "start": 35900.6, + "end": 35905.28, + "probability": 0.863 + }, + { + "start": 35905.96, + "end": 35909.72, + "probability": 0.9916 + }, + { + "start": 35909.72, + "end": 35913.2, + "probability": 0.9948 + }, + { + "start": 35913.38, + "end": 35915.08, + "probability": 0.9991 + }, + { + "start": 35915.62, + "end": 35916.72, + "probability": 0.838 + }, + { + "start": 35917.34, + "end": 35920.52, + "probability": 0.6381 + }, + { + "start": 35921.62, + "end": 35923.58, + "probability": 0.928 + }, + { + "start": 35924.06, + "end": 35927.92, + "probability": 0.9929 + }, + { + "start": 35928.82, + "end": 35933.5, + "probability": 0.9733 + }, + { + "start": 35934.0, + "end": 35935.66, + "probability": 0.9697 + }, + { + "start": 35936.18, + "end": 35937.17, + "probability": 0.9817 + }, + { + "start": 35938.02, + "end": 35938.8, + "probability": 0.8066 + }, + { + "start": 35939.36, + "end": 35941.46, + "probability": 0.9971 + }, + { + "start": 35942.16, + "end": 35943.9, + "probability": 0.8853 + }, + { + "start": 35944.46, + "end": 35950.38, + "probability": 0.9939 + }, + { + "start": 35950.38, + "end": 35954.46, + "probability": 0.8779 + }, + { + "start": 35954.62, + "end": 35957.46, + "probability": 0.7929 + }, + { + "start": 35958.14, + "end": 35959.1, + "probability": 0.8026 + }, + { + "start": 35959.28, + "end": 35962.74, + "probability": 0.9279 + }, + { + "start": 35963.16, + "end": 35964.74, + "probability": 0.9698 + }, + { + "start": 35965.06, + "end": 35965.9, + "probability": 0.9722 + }, + { + "start": 35965.98, + "end": 35966.54, + "probability": 0.7472 + }, + { + "start": 35967.12, + "end": 35969.32, + "probability": 0.8887 + }, + { + "start": 35969.46, + "end": 35971.82, + "probability": 0.9942 + }, + { + "start": 35971.94, + "end": 35974.48, + "probability": 0.9985 + }, + { + "start": 35975.02, + "end": 35975.77, + "probability": 0.9507 + }, + { + "start": 35975.92, + "end": 35977.18, + "probability": 0.9769 + }, + { + "start": 35977.24, + "end": 35981.66, + "probability": 0.9906 + }, + { + "start": 35982.18, + "end": 35985.14, + "probability": 0.8659 + }, + { + "start": 35985.52, + "end": 35987.28, + "probability": 0.9889 + }, + { + "start": 35987.72, + "end": 35989.6, + "probability": 0.7371 + }, + { + "start": 35989.86, + "end": 35991.28, + "probability": 0.9875 + }, + { + "start": 35992.7, + "end": 35993.24, + "probability": 0.7059 + }, + { + "start": 35993.38, + "end": 35993.7, + "probability": 0.8142 + }, + { + "start": 35993.78, + "end": 35999.0, + "probability": 0.981 + }, + { + "start": 35999.36, + "end": 36002.16, + "probability": 0.9213 + }, + { + "start": 36002.78, + "end": 36004.66, + "probability": 0.9964 + }, + { + "start": 36006.1, + "end": 36007.84, + "probability": 0.8898 + }, + { + "start": 36007.88, + "end": 36008.48, + "probability": 0.8683 + }, + { + "start": 36008.56, + "end": 36013.98, + "probability": 0.9751 + }, + { + "start": 36014.48, + "end": 36017.1, + "probability": 0.9971 + }, + { + "start": 36018.12, + "end": 36019.14, + "probability": 0.4897 + }, + { + "start": 36019.6, + "end": 36021.86, + "probability": 0.9995 + }, + { + "start": 36021.86, + "end": 36027.06, + "probability": 0.925 + }, + { + "start": 36027.7, + "end": 36027.82, + "probability": 0.5943 + }, + { + "start": 36027.82, + "end": 36029.98, + "probability": 0.8877 + }, + { + "start": 36030.6, + "end": 36032.12, + "probability": 0.8594 + }, + { + "start": 36032.62, + "end": 36033.28, + "probability": 0.549 + }, + { + "start": 36033.44, + "end": 36037.02, + "probability": 0.8413 + }, + { + "start": 36037.3, + "end": 36037.54, + "probability": 0.1821 + }, + { + "start": 36037.98, + "end": 36040.96, + "probability": 0.9541 + }, + { + "start": 36041.46, + "end": 36041.78, + "probability": 0.5229 + }, + { + "start": 36042.1, + "end": 36043.7, + "probability": 0.7524 + }, + { + "start": 36044.12, + "end": 36047.0, + "probability": 0.9015 + }, + { + "start": 36070.14, + "end": 36070.34, + "probability": 0.519 + }, + { + "start": 36071.12, + "end": 36072.36, + "probability": 0.5959 + }, + { + "start": 36073.9, + "end": 36076.1, + "probability": 0.7868 + }, + { + "start": 36076.62, + "end": 36078.26, + "probability": 0.6681 + }, + { + "start": 36078.42, + "end": 36086.49, + "probability": 0.9907 + }, + { + "start": 36088.2, + "end": 36092.88, + "probability": 0.9889 + }, + { + "start": 36094.56, + "end": 36095.68, + "probability": 0.9375 + }, + { + "start": 36097.66, + "end": 36101.5, + "probability": 0.929 + }, + { + "start": 36102.04, + "end": 36104.92, + "probability": 0.9895 + }, + { + "start": 36104.92, + "end": 36107.68, + "probability": 0.9943 + }, + { + "start": 36110.06, + "end": 36112.12, + "probability": 0.6379 + }, + { + "start": 36113.4, + "end": 36114.14, + "probability": 0.9305 + }, + { + "start": 36114.3, + "end": 36116.54, + "probability": 0.8146 + }, + { + "start": 36116.62, + "end": 36120.26, + "probability": 0.9248 + }, + { + "start": 36120.62, + "end": 36124.88, + "probability": 0.9253 + }, + { + "start": 36125.08, + "end": 36126.6, + "probability": 0.6606 + }, + { + "start": 36126.76, + "end": 36127.3, + "probability": 0.8962 + }, + { + "start": 36128.34, + "end": 36133.02, + "probability": 0.9736 + }, + { + "start": 36133.58, + "end": 36135.34, + "probability": 0.8548 + }, + { + "start": 36136.0, + "end": 36139.28, + "probability": 0.9627 + }, + { + "start": 36139.88, + "end": 36144.56, + "probability": 0.995 + }, + { + "start": 36145.52, + "end": 36146.64, + "probability": 0.9236 + }, + { + "start": 36146.8, + "end": 36148.7, + "probability": 0.8152 + }, + { + "start": 36148.92, + "end": 36150.92, + "probability": 0.9819 + }, + { + "start": 36151.48, + "end": 36155.06, + "probability": 0.999 + }, + { + "start": 36155.72, + "end": 36158.2, + "probability": 0.9783 + }, + { + "start": 36159.16, + "end": 36160.2, + "probability": 0.7729 + }, + { + "start": 36160.34, + "end": 36161.36, + "probability": 0.7332 + }, + { + "start": 36161.52, + "end": 36166.96, + "probability": 0.9937 + }, + { + "start": 36167.62, + "end": 36171.62, + "probability": 0.9853 + }, + { + "start": 36172.5, + "end": 36177.19, + "probability": 0.9896 + }, + { + "start": 36177.7, + "end": 36182.84, + "probability": 0.862 + }, + { + "start": 36182.9, + "end": 36183.38, + "probability": 0.945 + }, + { + "start": 36183.62, + "end": 36185.04, + "probability": 0.8525 + }, + { + "start": 36186.1, + "end": 36189.12, + "probability": 0.8379 + }, + { + "start": 36189.68, + "end": 36194.2, + "probability": 0.9933 + }, + { + "start": 36194.8, + "end": 36198.26, + "probability": 0.9911 + }, + { + "start": 36198.92, + "end": 36202.26, + "probability": 0.9936 + }, + { + "start": 36202.88, + "end": 36203.76, + "probability": 0.5468 + }, + { + "start": 36204.52, + "end": 36207.78, + "probability": 0.8833 + }, + { + "start": 36208.87, + "end": 36211.28, + "probability": 0.9983 + }, + { + "start": 36211.44, + "end": 36215.62, + "probability": 0.9961 + }, + { + "start": 36215.76, + "end": 36216.64, + "probability": 0.9881 + }, + { + "start": 36217.02, + "end": 36218.22, + "probability": 0.9381 + }, + { + "start": 36218.84, + "end": 36220.72, + "probability": 0.9973 + }, + { + "start": 36220.76, + "end": 36222.02, + "probability": 0.8152 + }, + { + "start": 36222.42, + "end": 36223.6, + "probability": 0.8779 + }, + { + "start": 36224.12, + "end": 36224.9, + "probability": 0.8112 + }, + { + "start": 36225.0, + "end": 36226.0, + "probability": 0.9248 + }, + { + "start": 36226.1, + "end": 36230.58, + "probability": 0.9865 + }, + { + "start": 36230.58, + "end": 36235.1, + "probability": 0.8962 + }, + { + "start": 36235.28, + "end": 36238.74, + "probability": 0.9692 + }, + { + "start": 36238.74, + "end": 36241.54, + "probability": 0.9841 + }, + { + "start": 36242.12, + "end": 36245.14, + "probability": 0.8203 + }, + { + "start": 36245.66, + "end": 36251.42, + "probability": 0.9953 + }, + { + "start": 36252.02, + "end": 36254.22, + "probability": 0.9936 + }, + { + "start": 36254.9, + "end": 36257.28, + "probability": 0.921 + }, + { + "start": 36257.92, + "end": 36260.15, + "probability": 0.8847 + }, + { + "start": 36260.6, + "end": 36265.3, + "probability": 0.9196 + }, + { + "start": 36265.62, + "end": 36265.94, + "probability": 0.4818 + }, + { + "start": 36265.98, + "end": 36266.4, + "probability": 0.4382 + }, + { + "start": 36266.86, + "end": 36271.98, + "probability": 0.9617 + }, + { + "start": 36272.22, + "end": 36272.46, + "probability": 0.7764 + }, + { + "start": 36272.66, + "end": 36274.84, + "probability": 0.7827 + }, + { + "start": 36274.96, + "end": 36276.54, + "probability": 0.5729 + }, + { + "start": 36277.12, + "end": 36278.62, + "probability": 0.7726 + }, + { + "start": 36301.52, + "end": 36302.5, + "probability": 0.4964 + }, + { + "start": 36303.22, + "end": 36306.42, + "probability": 0.7272 + }, + { + "start": 36309.18, + "end": 36312.9, + "probability": 0.9945 + }, + { + "start": 36315.94, + "end": 36316.04, + "probability": 0.9703 + }, + { + "start": 36317.26, + "end": 36318.88, + "probability": 0.796 + }, + { + "start": 36318.98, + "end": 36320.16, + "probability": 0.9763 + }, + { + "start": 36322.04, + "end": 36326.06, + "probability": 0.992 + }, + { + "start": 36327.16, + "end": 36330.9, + "probability": 0.8501 + }, + { + "start": 36331.02, + "end": 36332.22, + "probability": 0.7733 + }, + { + "start": 36333.28, + "end": 36338.7, + "probability": 0.9967 + }, + { + "start": 36339.44, + "end": 36340.18, + "probability": 0.8388 + }, + { + "start": 36341.66, + "end": 36343.84, + "probability": 0.5245 + }, + { + "start": 36343.96, + "end": 36350.98, + "probability": 0.8344 + }, + { + "start": 36351.56, + "end": 36352.6, + "probability": 0.98 + }, + { + "start": 36353.6, + "end": 36354.42, + "probability": 0.8356 + }, + { + "start": 36356.45, + "end": 36361.92, + "probability": 0.9767 + }, + { + "start": 36362.28, + "end": 36363.92, + "probability": 0.5698 + }, + { + "start": 36365.2, + "end": 36369.24, + "probability": 0.9146 + }, + { + "start": 36370.02, + "end": 36371.2, + "probability": 0.7722 + }, + { + "start": 36371.92, + "end": 36372.88, + "probability": 0.9595 + }, + { + "start": 36373.7, + "end": 36376.4, + "probability": 0.9339 + }, + { + "start": 36377.62, + "end": 36378.22, + "probability": 0.7709 + }, + { + "start": 36378.38, + "end": 36379.14, + "probability": 0.924 + }, + { + "start": 36379.24, + "end": 36382.34, + "probability": 0.9822 + }, + { + "start": 36382.62, + "end": 36383.6, + "probability": 0.9532 + }, + { + "start": 36383.86, + "end": 36384.88, + "probability": 0.9686 + }, + { + "start": 36385.68, + "end": 36389.02, + "probability": 0.9897 + }, + { + "start": 36389.22, + "end": 36391.08, + "probability": 0.8491 + }, + { + "start": 36392.74, + "end": 36393.98, + "probability": 0.7188 + }, + { + "start": 36394.52, + "end": 36398.12, + "probability": 0.9736 + }, + { + "start": 36398.54, + "end": 36399.18, + "probability": 0.9922 + }, + { + "start": 36399.9, + "end": 36402.0, + "probability": 0.9899 + }, + { + "start": 36405.5, + "end": 36407.86, + "probability": 0.8513 + }, + { + "start": 36409.16, + "end": 36414.3, + "probability": 0.9885 + }, + { + "start": 36414.3, + "end": 36418.6, + "probability": 0.9886 + }, + { + "start": 36422.08, + "end": 36427.04, + "probability": 0.9717 + }, + { + "start": 36427.04, + "end": 36431.56, + "probability": 0.9376 + }, + { + "start": 36432.66, + "end": 36435.96, + "probability": 0.9805 + }, + { + "start": 36436.26, + "end": 36436.54, + "probability": 0.1639 + }, + { + "start": 36436.54, + "end": 36436.84, + "probability": 0.5718 + }, + { + "start": 36436.84, + "end": 36437.86, + "probability": 0.9331 + }, + { + "start": 36442.3, + "end": 36443.58, + "probability": 0.598 + }, + { + "start": 36445.98, + "end": 36447.42, + "probability": 0.9934 + }, + { + "start": 36448.16, + "end": 36450.16, + "probability": 0.9853 + }, + { + "start": 36450.68, + "end": 36455.46, + "probability": 0.9536 + }, + { + "start": 36455.84, + "end": 36457.44, + "probability": 0.9897 + }, + { + "start": 36457.54, + "end": 36458.52, + "probability": 0.8698 + }, + { + "start": 36459.18, + "end": 36462.94, + "probability": 0.9916 + }, + { + "start": 36463.74, + "end": 36465.64, + "probability": 0.4152 + }, + { + "start": 36466.2, + "end": 36469.8, + "probability": 0.6544 + }, + { + "start": 36469.9, + "end": 36471.74, + "probability": 0.6162 + }, + { + "start": 36471.86, + "end": 36473.32, + "probability": 0.8444 + }, + { + "start": 36473.96, + "end": 36477.64, + "probability": 0.9864 + }, + { + "start": 36478.78, + "end": 36482.58, + "probability": 0.9902 + }, + { + "start": 36483.12, + "end": 36484.8, + "probability": 0.9631 + }, + { + "start": 36485.84, + "end": 36487.52, + "probability": 0.9526 + }, + { + "start": 36488.36, + "end": 36493.78, + "probability": 0.0305 + }, + { + "start": 36493.82, + "end": 36497.12, + "probability": 0.3014 + }, + { + "start": 36497.34, + "end": 36497.34, + "probability": 0.1243 + }, + { + "start": 36497.34, + "end": 36497.34, + "probability": 0.0556 + }, + { + "start": 36497.34, + "end": 36499.12, + "probability": 0.172 + }, + { + "start": 36499.68, + "end": 36502.18, + "probability": 0.7542 + }, + { + "start": 36502.88, + "end": 36503.38, + "probability": 0.1509 + }, + { + "start": 36504.34, + "end": 36506.28, + "probability": 0.901 + }, + { + "start": 36506.88, + "end": 36507.42, + "probability": 0.0266 + }, + { + "start": 36507.56, + "end": 36510.44, + "probability": 0.5112 + }, + { + "start": 36511.16, + "end": 36512.12, + "probability": 0.2336 + }, + { + "start": 36512.12, + "end": 36513.71, + "probability": 0.5602 + }, + { + "start": 36514.56, + "end": 36522.72, + "probability": 0.9882 + }, + { + "start": 36522.72, + "end": 36525.82, + "probability": 0.9869 + }, + { + "start": 36526.08, + "end": 36528.72, + "probability": 0.2171 + }, + { + "start": 36529.4, + "end": 36531.0, + "probability": 0.1327 + }, + { + "start": 36531.18, + "end": 36535.1, + "probability": 0.4533 + }, + { + "start": 36536.2, + "end": 36536.34, + "probability": 0.2515 + }, + { + "start": 36536.34, + "end": 36537.86, + "probability": 0.7788 + }, + { + "start": 36537.86, + "end": 36538.6, + "probability": 0.6755 + }, + { + "start": 36538.72, + "end": 36545.08, + "probability": 0.9972 + }, + { + "start": 36545.56, + "end": 36546.74, + "probability": 0.9878 + }, + { + "start": 36547.44, + "end": 36550.1, + "probability": 0.6166 + }, + { + "start": 36550.24, + "end": 36551.74, + "probability": 0.9132 + }, + { + "start": 36553.06, + "end": 36556.44, + "probability": 0.7944 + }, + { + "start": 36556.58, + "end": 36557.58, + "probability": 0.1966 + }, + { + "start": 36557.68, + "end": 36559.2, + "probability": 0.1034 + }, + { + "start": 36561.2, + "end": 36562.52, + "probability": 0.4272 + }, + { + "start": 36563.16, + "end": 36563.64, + "probability": 0.4624 + }, + { + "start": 36563.76, + "end": 36563.9, + "probability": 0.3303 + }, + { + "start": 36563.9, + "end": 36564.64, + "probability": 0.3167 + }, + { + "start": 36564.88, + "end": 36566.86, + "probability": 0.1386 + }, + { + "start": 36567.86, + "end": 36572.72, + "probability": 0.9111 + }, + { + "start": 36573.36, + "end": 36574.4, + "probability": 0.8198 + }, + { + "start": 36574.78, + "end": 36578.76, + "probability": 0.9988 + }, + { + "start": 36580.54, + "end": 36585.3, + "probability": 0.9941 + }, + { + "start": 36585.92, + "end": 36590.8, + "probability": 0.9969 + }, + { + "start": 36590.8, + "end": 36595.48, + "probability": 0.997 + }, + { + "start": 36596.56, + "end": 36599.18, + "probability": 0.9976 + }, + { + "start": 36599.28, + "end": 36599.78, + "probability": 0.9926 + }, + { + "start": 36601.08, + "end": 36601.12, + "probability": 0.0997 + }, + { + "start": 36601.12, + "end": 36603.4, + "probability": 0.9802 + }, + { + "start": 36603.92, + "end": 36609.1, + "probability": 0.9863 + }, + { + "start": 36609.6, + "end": 36611.74, + "probability": 0.9346 + }, + { + "start": 36612.32, + "end": 36614.78, + "probability": 0.9949 + }, + { + "start": 36615.54, + "end": 36618.88, + "probability": 0.9543 + }, + { + "start": 36619.4, + "end": 36620.24, + "probability": 0.9152 + }, + { + "start": 36620.44, + "end": 36623.02, + "probability": 0.5075 + }, + { + "start": 36624.08, + "end": 36624.76, + "probability": 0.0773 + }, + { + "start": 36624.76, + "end": 36624.76, + "probability": 0.0596 + }, + { + "start": 36624.76, + "end": 36624.76, + "probability": 0.2366 + }, + { + "start": 36624.76, + "end": 36624.76, + "probability": 0.121 + }, + { + "start": 36624.76, + "end": 36627.94, + "probability": 0.5028 + }, + { + "start": 36627.94, + "end": 36627.94, + "probability": 0.6204 + }, + { + "start": 36627.94, + "end": 36628.12, + "probability": 0.8054 + }, + { + "start": 36628.24, + "end": 36629.1, + "probability": 0.7155 + }, + { + "start": 36629.1, + "end": 36630.18, + "probability": 0.121 + }, + { + "start": 36630.38, + "end": 36631.56, + "probability": 0.6346 + }, + { + "start": 36631.56, + "end": 36631.56, + "probability": 0.093 + }, + { + "start": 36631.56, + "end": 36633.03, + "probability": 0.4958 + }, + { + "start": 36633.46, + "end": 36634.38, + "probability": 0.7276 + }, + { + "start": 36635.51, + "end": 36636.42, + "probability": 0.0598 + }, + { + "start": 36636.96, + "end": 36642.98, + "probability": 0.863 + }, + { + "start": 36642.98, + "end": 36647.44, + "probability": 0.9836 + }, + { + "start": 36647.7, + "end": 36649.99, + "probability": 0.51 + }, + { + "start": 36650.98, + "end": 36651.73, + "probability": 0.6091 + }, + { + "start": 36652.0, + "end": 36652.12, + "probability": 0.3416 + }, + { + "start": 36653.18, + "end": 36654.78, + "probability": 0.8222 + }, + { + "start": 36655.72, + "end": 36658.12, + "probability": 0.9525 + }, + { + "start": 36658.28, + "end": 36661.1, + "probability": 0.9869 + }, + { + "start": 36661.2, + "end": 36661.58, + "probability": 0.7513 + }, + { + "start": 36662.1, + "end": 36665.32, + "probability": 0.7828 + }, + { + "start": 36665.42, + "end": 36667.06, + "probability": 0.8325 + }, + { + "start": 36667.68, + "end": 36669.46, + "probability": 0.9844 + }, + { + "start": 36670.36, + "end": 36671.94, + "probability": 0.9561 + }, + { + "start": 36673.68, + "end": 36674.98, + "probability": 0.8317 + }, + { + "start": 36675.52, + "end": 36677.5, + "probability": 0.9952 + }, + { + "start": 36678.82, + "end": 36684.16, + "probability": 0.9775 + }, + { + "start": 36684.34, + "end": 36686.3, + "probability": 0.8239 + }, + { + "start": 36687.62, + "end": 36691.44, + "probability": 0.9827 + }, + { + "start": 36691.74, + "end": 36694.62, + "probability": 0.9348 + }, + { + "start": 36695.28, + "end": 36696.72, + "probability": 0.9985 + }, + { + "start": 36697.9, + "end": 36700.7, + "probability": 0.9529 + }, + { + "start": 36700.88, + "end": 36702.68, + "probability": 0.8726 + }, + { + "start": 36703.36, + "end": 36706.04, + "probability": 0.9537 + }, + { + "start": 36706.28, + "end": 36710.36, + "probability": 0.9531 + }, + { + "start": 36710.98, + "end": 36711.5, + "probability": 0.9768 + }, + { + "start": 36714.34, + "end": 36716.66, + "probability": 0.0108 + }, + { + "start": 36717.04, + "end": 36718.34, + "probability": 0.0839 + }, + { + "start": 36719.5, + "end": 36719.5, + "probability": 0.0767 + }, + { + "start": 36719.5, + "end": 36721.4, + "probability": 0.7884 + }, + { + "start": 36722.3, + "end": 36725.58, + "probability": 0.9803 + }, + { + "start": 36725.94, + "end": 36727.52, + "probability": 0.9596 + }, + { + "start": 36728.08, + "end": 36729.9, + "probability": 0.9422 + }, + { + "start": 36730.84, + "end": 36735.3, + "probability": 0.9967 + }, + { + "start": 36735.68, + "end": 36738.66, + "probability": 0.9097 + }, + { + "start": 36739.86, + "end": 36739.86, + "probability": 0.0684 + }, + { + "start": 36739.86, + "end": 36741.3, + "probability": 0.995 + }, + { + "start": 36743.16, + "end": 36745.92, + "probability": 0.9982 + }, + { + "start": 36747.81, + "end": 36749.56, + "probability": 0.8228 + }, + { + "start": 36751.06, + "end": 36751.9, + "probability": 0.4966 + }, + { + "start": 36752.62, + "end": 36753.78, + "probability": 0.0011 + }, + { + "start": 36753.78, + "end": 36755.86, + "probability": 0.682 + }, + { + "start": 36756.44, + "end": 36757.4, + "probability": 0.833 + }, + { + "start": 36760.14, + "end": 36760.72, + "probability": 0.0841 + }, + { + "start": 36760.72, + "end": 36760.72, + "probability": 0.1055 + }, + { + "start": 36760.72, + "end": 36763.76, + "probability": 0.7114 + }, + { + "start": 36763.76, + "end": 36768.02, + "probability": 0.995 + }, + { + "start": 36768.56, + "end": 36773.89, + "probability": 0.2532 + }, + { + "start": 36774.74, + "end": 36774.82, + "probability": 0.3709 + }, + { + "start": 36774.82, + "end": 36775.68, + "probability": 0.2468 + }, + { + "start": 36775.68, + "end": 36775.9, + "probability": 0.0949 + }, + { + "start": 36776.08, + "end": 36777.0, + "probability": 0.5837 + }, + { + "start": 36777.36, + "end": 36777.92, + "probability": 0.419 + }, + { + "start": 36777.98, + "end": 36780.32, + "probability": 0.9895 + }, + { + "start": 36781.26, + "end": 36782.1, + "probability": 0.8911 + }, + { + "start": 36782.94, + "end": 36784.14, + "probability": 0.6492 + }, + { + "start": 36784.52, + "end": 36787.36, + "probability": 0.9399 + }, + { + "start": 36787.58, + "end": 36792.6, + "probability": 0.9524 + }, + { + "start": 36793.2, + "end": 36798.7, + "probability": 0.9449 + }, + { + "start": 36799.98, + "end": 36802.62, + "probability": 0.9968 + }, + { + "start": 36802.76, + "end": 36804.68, + "probability": 0.9948 + }, + { + "start": 36806.62, + "end": 36810.14, + "probability": 0.9736 + }, + { + "start": 36810.54, + "end": 36812.5, + "probability": 0.5921 + }, + { + "start": 36812.7, + "end": 36813.44, + "probability": 0.7753 + }, + { + "start": 36813.5, + "end": 36817.24, + "probability": 0.8368 + }, + { + "start": 36817.32, + "end": 36818.1, + "probability": 0.7927 + }, + { + "start": 36819.1, + "end": 36822.8, + "probability": 0.9643 + }, + { + "start": 36823.14, + "end": 36826.68, + "probability": 0.9933 + }, + { + "start": 36827.28, + "end": 36827.76, + "probability": 0.9502 + }, + { + "start": 36828.6, + "end": 36833.0, + "probability": 0.9795 + }, + { + "start": 36833.0, + "end": 36835.86, + "probability": 0.981 + }, + { + "start": 36836.18, + "end": 36837.1, + "probability": 0.9924 + }, + { + "start": 36837.46, + "end": 36840.24, + "probability": 0.9892 + }, + { + "start": 36840.24, + "end": 36843.64, + "probability": 0.9906 + }, + { + "start": 36844.74, + "end": 36847.88, + "probability": 0.9224 + }, + { + "start": 36847.96, + "end": 36850.28, + "probability": 0.9864 + }, + { + "start": 36850.48, + "end": 36852.54, + "probability": 0.7986 + }, + { + "start": 36853.08, + "end": 36856.6, + "probability": 0.9385 + }, + { + "start": 36856.72, + "end": 36859.62, + "probability": 0.9326 + }, + { + "start": 36860.18, + "end": 36862.52, + "probability": 0.9619 + }, + { + "start": 36862.64, + "end": 36864.88, + "probability": 0.8169 + }, + { + "start": 36865.4, + "end": 36866.78, + "probability": 0.9839 + }, + { + "start": 36867.56, + "end": 36869.2, + "probability": 0.6667 + }, + { + "start": 36869.96, + "end": 36871.66, + "probability": 0.979 + }, + { + "start": 36873.84, + "end": 36877.54, + "probability": 0.9905 + }, + { + "start": 36878.18, + "end": 36880.3, + "probability": 0.9508 + }, + { + "start": 36881.44, + "end": 36884.93, + "probability": 0.6987 + }, + { + "start": 36885.26, + "end": 36885.86, + "probability": 0.639 + }, + { + "start": 36886.4, + "end": 36887.3, + "probability": 0.9832 + }, + { + "start": 36887.4, + "end": 36889.48, + "probability": 0.9949 + }, + { + "start": 36890.94, + "end": 36894.68, + "probability": 0.8794 + }, + { + "start": 36894.72, + "end": 36895.82, + "probability": 0.8577 + }, + { + "start": 36895.84, + "end": 36897.09, + "probability": 0.9816 + }, + { + "start": 36897.72, + "end": 36899.34, + "probability": 0.8664 + }, + { + "start": 36899.84, + "end": 36901.8, + "probability": 0.739 + }, + { + "start": 36901.98, + "end": 36905.3, + "probability": 0.9876 + }, + { + "start": 36906.72, + "end": 36909.42, + "probability": 0.9696 + }, + { + "start": 36909.64, + "end": 36911.72, + "probability": 0.8285 + }, + { + "start": 36912.32, + "end": 36914.22, + "probability": 0.9959 + }, + { + "start": 36914.86, + "end": 36918.58, + "probability": 0.9976 + }, + { + "start": 36919.04, + "end": 36922.5, + "probability": 0.9568 + }, + { + "start": 36924.04, + "end": 36928.6, + "probability": 0.9644 + }, + { + "start": 36928.76, + "end": 36931.6, + "probability": 0.8649 + }, + { + "start": 36931.98, + "end": 36937.0, + "probability": 0.9478 + }, + { + "start": 36937.66, + "end": 36939.22, + "probability": 0.948 + }, + { + "start": 36939.9, + "end": 36941.86, + "probability": 0.959 + }, + { + "start": 36942.66, + "end": 36944.34, + "probability": 0.7579 + }, + { + "start": 36945.04, + "end": 36946.68, + "probability": 0.9296 + }, + { + "start": 36947.48, + "end": 36952.08, + "probability": 0.8763 + }, + { + "start": 36952.62, + "end": 36956.42, + "probability": 0.9979 + }, + { + "start": 36956.86, + "end": 36960.04, + "probability": 0.998 + }, + { + "start": 36960.28, + "end": 36961.24, + "probability": 0.9799 + }, + { + "start": 36962.22, + "end": 36965.48, + "probability": 0.8023 + }, + { + "start": 36966.06, + "end": 36970.48, + "probability": 0.9857 + }, + { + "start": 36970.88, + "end": 36973.48, + "probability": 0.9856 + }, + { + "start": 36974.16, + "end": 36977.02, + "probability": 0.9937 + }, + { + "start": 36978.5, + "end": 36984.97, + "probability": 0.9939 + }, + { + "start": 36986.2, + "end": 36988.76, + "probability": 0.9329 + }, + { + "start": 36988.88, + "end": 36993.6, + "probability": 0.9979 + }, + { + "start": 36994.52, + "end": 36996.36, + "probability": 0.9886 + }, + { + "start": 36996.76, + "end": 36999.28, + "probability": 0.9697 + }, + { + "start": 37000.3, + "end": 37002.0, + "probability": 0.7896 + }, + { + "start": 37004.16, + "end": 37006.24, + "probability": 0.8616 + }, + { + "start": 37006.52, + "end": 37007.8, + "probability": 0.9849 + }, + { + "start": 37008.84, + "end": 37010.66, + "probability": 0.8323 + }, + { + "start": 37010.9, + "end": 37013.58, + "probability": 0.995 + }, + { + "start": 37014.12, + "end": 37015.12, + "probability": 0.7922 + }, + { + "start": 37015.16, + "end": 37018.26, + "probability": 0.9729 + }, + { + "start": 37018.74, + "end": 37021.12, + "probability": 0.9982 + }, + { + "start": 37021.72, + "end": 37022.74, + "probability": 0.7155 + }, + { + "start": 37025.34, + "end": 37027.16, + "probability": 0.8822 + }, + { + "start": 37027.42, + "end": 37030.16, + "probability": 0.9888 + }, + { + "start": 37030.16, + "end": 37032.06, + "probability": 0.7943 + }, + { + "start": 37032.22, + "end": 37032.44, + "probability": 0.4519 + }, + { + "start": 37032.48, + "end": 37032.7, + "probability": 0.3071 + }, + { + "start": 37032.76, + "end": 37036.36, + "probability": 0.8335 + }, + { + "start": 37036.7, + "end": 37038.6, + "probability": 0.972 + }, + { + "start": 37039.44, + "end": 37043.98, + "probability": 0.972 + }, + { + "start": 37045.1, + "end": 37048.68, + "probability": 0.9799 + }, + { + "start": 37050.82, + "end": 37053.12, + "probability": 0.9382 + }, + { + "start": 37053.4, + "end": 37055.72, + "probability": 0.9749 + }, + { + "start": 37057.42, + "end": 37058.8, + "probability": 0.8777 + }, + { + "start": 37058.86, + "end": 37060.66, + "probability": 0.8786 + }, + { + "start": 37060.96, + "end": 37063.14, + "probability": 0.9949 + }, + { + "start": 37063.58, + "end": 37064.82, + "probability": 0.9135 + }, + { + "start": 37066.18, + "end": 37067.58, + "probability": 0.9974 + }, + { + "start": 37068.68, + "end": 37071.9, + "probability": 0.9492 + }, + { + "start": 37073.3, + "end": 37073.92, + "probability": 0.7311 + }, + { + "start": 37075.0, + "end": 37077.26, + "probability": 0.989 + }, + { + "start": 37077.54, + "end": 37079.7, + "probability": 0.8738 + }, + { + "start": 37079.78, + "end": 37081.2, + "probability": 0.9473 + }, + { + "start": 37083.58, + "end": 37083.78, + "probability": 0.0817 + }, + { + "start": 37083.78, + "end": 37084.13, + "probability": 0.79 + }, + { + "start": 37086.02, + "end": 37087.26, + "probability": 0.8799 + }, + { + "start": 37087.88, + "end": 37087.88, + "probability": 0.0168 + }, + { + "start": 37089.3, + "end": 37090.9, + "probability": 0.2382 + }, + { + "start": 37091.9, + "end": 37095.06, + "probability": 0.3764 + }, + { + "start": 37096.12, + "end": 37096.6, + "probability": 0.5649 + }, + { + "start": 37097.8, + "end": 37100.57, + "probability": 0.3131 + }, + { + "start": 37100.74, + "end": 37102.06, + "probability": 0.1921 + }, + { + "start": 37102.12, + "end": 37102.12, + "probability": 0.2745 + }, + { + "start": 37102.12, + "end": 37103.5, + "probability": 0.701 + }, + { + "start": 37103.7, + "end": 37106.48, + "probability": 0.8633 + }, + { + "start": 37106.9, + "end": 37106.9, + "probability": 0.06 + }, + { + "start": 37106.9, + "end": 37109.14, + "probability": 0.7597 + }, + { + "start": 37109.76, + "end": 37111.16, + "probability": 0.9228 + }, + { + "start": 37111.16, + "end": 37112.62, + "probability": 0.299 + }, + { + "start": 37112.82, + "end": 37113.08, + "probability": 0.1083 + }, + { + "start": 37113.12, + "end": 37113.88, + "probability": 0.6348 + }, + { + "start": 37113.88, + "end": 37114.79, + "probability": 0.1338 + }, + { + "start": 37116.26, + "end": 37116.26, + "probability": 0.0142 + }, + { + "start": 37116.26, + "end": 37116.56, + "probability": 0.4499 + }, + { + "start": 37117.66, + "end": 37121.0, + "probability": 0.3635 + }, + { + "start": 37121.0, + "end": 37122.95, + "probability": 0.2251 + }, + { + "start": 37123.52, + "end": 37123.56, + "probability": 0.2879 + }, + { + "start": 37123.56, + "end": 37124.28, + "probability": 0.1682 + }, + { + "start": 37124.38, + "end": 37126.3, + "probability": 0.1036 + }, + { + "start": 37127.68, + "end": 37128.0, + "probability": 0.0205 + }, + { + "start": 37128.0, + "end": 37128.0, + "probability": 0.2569 + }, + { + "start": 37128.0, + "end": 37129.44, + "probability": 0.1431 + }, + { + "start": 37129.44, + "end": 37132.34, + "probability": 0.9579 + }, + { + "start": 37132.44, + "end": 37133.52, + "probability": 0.7866 + }, + { + "start": 37133.94, + "end": 37136.22, + "probability": 0.1667 + }, + { + "start": 37136.62, + "end": 37136.72, + "probability": 0.0919 + }, + { + "start": 37136.9, + "end": 37136.9, + "probability": 0.1394 + }, + { + "start": 37136.9, + "end": 37136.9, + "probability": 0.0031 + }, + { + "start": 37138.32, + "end": 37138.44, + "probability": 0.056 + }, + { + "start": 37138.8, + "end": 37139.94, + "probability": 0.0683 + }, + { + "start": 37141.54, + "end": 37143.26, + "probability": 0.9834 + }, + { + "start": 37144.24, + "end": 37146.7, + "probability": 0.8252 + }, + { + "start": 37147.24, + "end": 37149.1, + "probability": 0.9786 + }, + { + "start": 37154.84, + "end": 37158.9, + "probability": 0.6411 + }, + { + "start": 37159.48, + "end": 37160.16, + "probability": 0.7471 + }, + { + "start": 37160.3, + "end": 37162.46, + "probability": 0.9893 + }, + { + "start": 37162.6, + "end": 37164.32, + "probability": 0.9379 + }, + { + "start": 37164.4, + "end": 37167.5, + "probability": 0.9875 + }, + { + "start": 37168.06, + "end": 37169.58, + "probability": 0.8429 + }, + { + "start": 37169.64, + "end": 37173.8, + "probability": 0.9586 + }, + { + "start": 37174.14, + "end": 37175.26, + "probability": 0.7873 + }, + { + "start": 37175.84, + "end": 37177.02, + "probability": 0.9439 + }, + { + "start": 37178.1, + "end": 37181.68, + "probability": 0.9357 + }, + { + "start": 37182.1, + "end": 37184.3, + "probability": 0.7286 + }, + { + "start": 37184.7, + "end": 37185.42, + "probability": 0.9805 + }, + { + "start": 37185.96, + "end": 37190.38, + "probability": 0.9961 + }, + { + "start": 37191.0, + "end": 37193.76, + "probability": 0.9941 + }, + { + "start": 37193.76, + "end": 37197.38, + "probability": 0.9637 + }, + { + "start": 37197.8, + "end": 37201.4, + "probability": 0.9957 + }, + { + "start": 37201.78, + "end": 37203.12, + "probability": 0.8734 + }, + { + "start": 37203.7, + "end": 37205.7, + "probability": 0.9946 + }, + { + "start": 37206.38, + "end": 37208.02, + "probability": 0.9001 + }, + { + "start": 37208.52, + "end": 37211.72, + "probability": 0.9689 + }, + { + "start": 37212.28, + "end": 37214.6, + "probability": 0.9979 + }, + { + "start": 37215.28, + "end": 37216.9, + "probability": 0.998 + }, + { + "start": 37217.58, + "end": 37219.98, + "probability": 0.9943 + }, + { + "start": 37220.66, + "end": 37221.16, + "probability": 0.683 + }, + { + "start": 37221.54, + "end": 37224.7, + "probability": 0.9865 + }, + { + "start": 37224.7, + "end": 37227.64, + "probability": 0.9705 + }, + { + "start": 37228.26, + "end": 37231.32, + "probability": 0.9937 + }, + { + "start": 37231.82, + "end": 37232.26, + "probability": 0.4097 + }, + { + "start": 37235.68, + "end": 37236.5, + "probability": 0.8665 + }, + { + "start": 37237.64, + "end": 37239.54, + "probability": 0.9701 + }, + { + "start": 37240.92, + "end": 37243.54, + "probability": 0.8143 + }, + { + "start": 37243.82, + "end": 37249.44, + "probability": 0.9775 + }, + { + "start": 37249.54, + "end": 37249.9, + "probability": 0.0023 + }, + { + "start": 37250.46, + "end": 37251.72, + "probability": 0.9027 + }, + { + "start": 37251.9, + "end": 37254.68, + "probability": 0.9885 + }, + { + "start": 37258.56, + "end": 37260.02, + "probability": 0.3565 + }, + { + "start": 37262.17, + "end": 37264.88, + "probability": 0.7486 + }, + { + "start": 37268.02, + "end": 37269.02, + "probability": 0.9032 + }, + { + "start": 37271.56, + "end": 37273.4, + "probability": 0.8625 + }, + { + "start": 37274.3, + "end": 37276.0, + "probability": 0.9978 + }, + { + "start": 37276.96, + "end": 37278.22, + "probability": 0.9911 + }, + { + "start": 37279.0, + "end": 37281.54, + "probability": 0.9984 + }, + { + "start": 37282.8, + "end": 37282.8, + "probability": 0.0275 + }, + { + "start": 37282.8, + "end": 37284.66, + "probability": 0.9795 + }, + { + "start": 37288.14, + "end": 37290.7, + "probability": 0.7744 + }, + { + "start": 37291.42, + "end": 37293.08, + "probability": 0.9978 + }, + { + "start": 37293.74, + "end": 37296.1, + "probability": 0.981 + }, + { + "start": 37297.38, + "end": 37298.1, + "probability": 0.5048 + }, + { + "start": 37298.18, + "end": 37300.3, + "probability": 0.9472 + }, + { + "start": 37300.88, + "end": 37304.34, + "probability": 0.9873 + }, + { + "start": 37304.64, + "end": 37306.52, + "probability": 0.9033 + }, + { + "start": 37307.6, + "end": 37307.62, + "probability": 0.0515 + }, + { + "start": 37307.62, + "end": 37312.6, + "probability": 0.8818 + }, + { + "start": 37313.12, + "end": 37315.34, + "probability": 0.9702 + }, + { + "start": 37316.02, + "end": 37318.9, + "probability": 0.9166 + }, + { + "start": 37319.9, + "end": 37321.76, + "probability": 0.9637 + }, + { + "start": 37322.42, + "end": 37323.4, + "probability": 0.8792 + }, + { + "start": 37324.14, + "end": 37327.66, + "probability": 0.5933 + }, + { + "start": 37328.5, + "end": 37328.64, + "probability": 0.1771 + }, + { + "start": 37328.64, + "end": 37329.41, + "probability": 0.0728 + }, + { + "start": 37330.0, + "end": 37331.22, + "probability": 0.7268 + }, + { + "start": 37331.48, + "end": 37333.04, + "probability": 0.0958 + }, + { + "start": 37333.7, + "end": 37334.24, + "probability": 0.7169 + }, + { + "start": 37335.02, + "end": 37337.54, + "probability": 0.9944 + }, + { + "start": 37337.73, + "end": 37340.92, + "probability": 0.9854 + }, + { + "start": 37341.26, + "end": 37342.09, + "probability": 0.9795 + }, + { + "start": 37343.78, + "end": 37347.04, + "probability": 0.9712 + }, + { + "start": 37347.34, + "end": 37351.62, + "probability": 0.7461 + }, + { + "start": 37351.86, + "end": 37354.62, + "probability": 0.7899 + }, + { + "start": 37357.72, + "end": 37358.2, + "probability": 0.0937 + }, + { + "start": 37358.2, + "end": 37361.64, + "probability": 0.6622 + }, + { + "start": 37362.16, + "end": 37364.02, + "probability": 0.7611 + }, + { + "start": 37364.2, + "end": 37370.82, + "probability": 0.0634 + }, + { + "start": 37373.72, + "end": 37374.24, + "probability": 0.104 + }, + { + "start": 37374.24, + "end": 37374.24, + "probability": 0.077 + }, + { + "start": 37374.24, + "end": 37375.42, + "probability": 0.1192 + }, + { + "start": 37376.02, + "end": 37378.46, + "probability": 0.1367 + }, + { + "start": 37380.08, + "end": 37381.99, + "probability": 0.962 + }, + { + "start": 37382.4, + "end": 37383.56, + "probability": 0.8634 + }, + { + "start": 37384.18, + "end": 37385.83, + "probability": 0.999 + }, + { + "start": 37386.1, + "end": 37386.96, + "probability": 0.9994 + }, + { + "start": 37387.54, + "end": 37388.1, + "probability": 0.8011 + }, + { + "start": 37390.58, + "end": 37391.12, + "probability": 0.7395 + }, + { + "start": 37391.74, + "end": 37393.46, + "probability": 0.6166 + }, + { + "start": 37393.76, + "end": 37396.78, + "probability": 0.8167 + }, + { + "start": 37397.64, + "end": 37399.92, + "probability": 0.086 + }, + { + "start": 37400.16, + "end": 37404.24, + "probability": 0.7616 + }, + { + "start": 37405.02, + "end": 37413.44, + "probability": 0.8085 + }, + { + "start": 37413.58, + "end": 37414.56, + "probability": 0.991 + }, + { + "start": 37415.0, + "end": 37418.76, + "probability": 0.9868 + }, + { + "start": 37418.8, + "end": 37422.18, + "probability": 0.8409 + }, + { + "start": 37422.32, + "end": 37422.98, + "probability": 0.9902 + }, + { + "start": 37423.68, + "end": 37425.36, + "probability": 0.9836 + }, + { + "start": 37425.94, + "end": 37426.52, + "probability": 0.5109 + }, + { + "start": 37427.34, + "end": 37431.24, + "probability": 0.9541 + }, + { + "start": 37432.04, + "end": 37434.24, + "probability": 0.9353 + }, + { + "start": 37434.34, + "end": 37436.44, + "probability": 0.8991 + }, + { + "start": 37436.74, + "end": 37437.94, + "probability": 0.9627 + }, + { + "start": 37438.32, + "end": 37440.18, + "probability": 0.9172 + }, + { + "start": 37440.28, + "end": 37444.58, + "probability": 0.9691 + }, + { + "start": 37444.9, + "end": 37448.16, + "probability": 0.1756 + }, + { + "start": 37448.62, + "end": 37451.98, + "probability": 0.9673 + }, + { + "start": 37452.62, + "end": 37455.4, + "probability": 0.9763 + }, + { + "start": 37456.04, + "end": 37457.71, + "probability": 0.9985 + }, + { + "start": 37458.16, + "end": 37459.5, + "probability": 0.9978 + }, + { + "start": 37459.94, + "end": 37462.06, + "probability": 0.9884 + }, + { + "start": 37462.06, + "end": 37462.6, + "probability": 0.39 + }, + { + "start": 37462.6, + "end": 37463.22, + "probability": 0.8918 + }, + { + "start": 37463.36, + "end": 37463.94, + "probability": 0.5161 + }, + { + "start": 37465.14, + "end": 37467.58, + "probability": 0.5322 + }, + { + "start": 37467.58, + "end": 37471.96, + "probability": 0.9142 + }, + { + "start": 37472.12, + "end": 37472.48, + "probability": 0.6135 + }, + { + "start": 37472.62, + "end": 37472.88, + "probability": 0.9398 + }, + { + "start": 37474.7, + "end": 37476.94, + "probability": 0.4948 + }, + { + "start": 37481.52, + "end": 37483.38, + "probability": 0.5838 + }, + { + "start": 37483.48, + "end": 37486.98, + "probability": 0.9218 + }, + { + "start": 37487.66, + "end": 37488.94, + "probability": 0.9927 + }, + { + "start": 37489.68, + "end": 37491.34, + "probability": 0.8752 + }, + { + "start": 37491.82, + "end": 37494.28, + "probability": 0.8938 + }, + { + "start": 37494.46, + "end": 37497.28, + "probability": 0.9933 + }, + { + "start": 37498.38, + "end": 37501.96, + "probability": 0.9604 + }, + { + "start": 37502.3, + "end": 37503.06, + "probability": 0.8611 + }, + { + "start": 37503.8, + "end": 37505.08, + "probability": 0.8116 + }, + { + "start": 37505.42, + "end": 37507.38, + "probability": 0.8142 + }, + { + "start": 37507.86, + "end": 37512.44, + "probability": 0.9736 + }, + { + "start": 37512.52, + "end": 37514.0, + "probability": 0.8918 + }, + { + "start": 37514.34, + "end": 37518.04, + "probability": 0.9454 + }, + { + "start": 37518.14, + "end": 37519.86, + "probability": 0.5276 + }, + { + "start": 37520.22, + "end": 37522.1, + "probability": 0.9705 + }, + { + "start": 37522.74, + "end": 37525.86, + "probability": 0.852 + }, + { + "start": 37526.28, + "end": 37527.14, + "probability": 0.9768 + }, + { + "start": 37527.78, + "end": 37528.72, + "probability": 0.7499 + }, + { + "start": 37529.86, + "end": 37532.32, + "probability": 0.9593 + }, + { + "start": 37532.76, + "end": 37535.58, + "probability": 0.995 + }, + { + "start": 37536.0, + "end": 37536.46, + "probability": 0.8137 + }, + { + "start": 37536.58, + "end": 37537.01, + "probability": 0.9023 + }, + { + "start": 37537.56, + "end": 37540.26, + "probability": 0.97 + }, + { + "start": 37540.64, + "end": 37541.08, + "probability": 0.9111 + }, + { + "start": 37541.6, + "end": 37544.76, + "probability": 0.974 + }, + { + "start": 37545.18, + "end": 37547.74, + "probability": 0.9932 + }, + { + "start": 37548.14, + "end": 37548.7, + "probability": 0.7818 + }, + { + "start": 37549.02, + "end": 37554.3, + "probability": 0.7774 + }, + { + "start": 37554.68, + "end": 37558.62, + "probability": 0.8997 + }, + { + "start": 37558.7, + "end": 37560.36, + "probability": 0.9902 + }, + { + "start": 37560.68, + "end": 37560.98, + "probability": 0.8208 + }, + { + "start": 37560.98, + "end": 37562.01, + "probability": 0.9844 + }, + { + "start": 37562.12, + "end": 37562.6, + "probability": 0.9126 + }, + { + "start": 37562.62, + "end": 37563.4, + "probability": 0.6365 + }, + { + "start": 37563.96, + "end": 37564.28, + "probability": 0.4991 + }, + { + "start": 37565.26, + "end": 37568.56, + "probability": 0.6464 + }, + { + "start": 37569.26, + "end": 37570.18, + "probability": 0.8847 + }, + { + "start": 37570.4, + "end": 37571.36, + "probability": 0.8583 + }, + { + "start": 37571.74, + "end": 37573.86, + "probability": 0.7493 + }, + { + "start": 37574.64, + "end": 37575.02, + "probability": 0.4075 + }, + { + "start": 37575.3, + "end": 37575.8, + "probability": 0.6909 + }, + { + "start": 37576.16, + "end": 37577.5, + "probability": 0.9747 + }, + { + "start": 37577.58, + "end": 37578.34, + "probability": 0.876 + }, + { + "start": 37578.78, + "end": 37579.88, + "probability": 0.9789 + }, + { + "start": 37580.12, + "end": 37580.64, + "probability": 0.743 + }, + { + "start": 37581.74, + "end": 37585.18, + "probability": 0.8282 + }, + { + "start": 37585.22, + "end": 37587.2, + "probability": 0.9536 + }, + { + "start": 37587.66, + "end": 37589.18, + "probability": 0.955 + }, + { + "start": 37589.42, + "end": 37591.44, + "probability": 0.9834 + }, + { + "start": 37593.28, + "end": 37596.24, + "probability": 0.7958 + }, + { + "start": 37596.98, + "end": 37599.4, + "probability": 0.9983 + }, + { + "start": 37599.74, + "end": 37601.66, + "probability": 0.8779 + }, + { + "start": 37602.24, + "end": 37605.06, + "probability": 0.9897 + }, + { + "start": 37605.5, + "end": 37608.04, + "probability": 0.5155 + }, + { + "start": 37608.04, + "end": 37608.42, + "probability": 0.0303 + }, + { + "start": 37608.42, + "end": 37608.78, + "probability": 0.4663 + }, + { + "start": 37609.06, + "end": 37609.06, + "probability": 0.0715 + }, + { + "start": 37609.76, + "end": 37611.62, + "probability": 0.8217 + }, + { + "start": 37611.72, + "end": 37611.93, + "probability": 0.3435 + }, + { + "start": 37612.9, + "end": 37615.62, + "probability": 0.552 + }, + { + "start": 37615.84, + "end": 37615.96, + "probability": 0.1444 + }, + { + "start": 37615.96, + "end": 37616.84, + "probability": 0.3013 + }, + { + "start": 37616.88, + "end": 37617.74, + "probability": 0.6444 + }, + { + "start": 37617.76, + "end": 37618.46, + "probability": 0.8552 + }, + { + "start": 37618.62, + "end": 37619.04, + "probability": 0.7669 + }, + { + "start": 37619.08, + "end": 37619.86, + "probability": 0.8125 + }, + { + "start": 37620.1, + "end": 37621.04, + "probability": 0.8976 + }, + { + "start": 37628.42, + "end": 37629.52, + "probability": 0.5315 + }, + { + "start": 37629.6, + "end": 37631.44, + "probability": 0.979 + }, + { + "start": 37633.2, + "end": 37633.54, + "probability": 0.9367 + }, + { + "start": 37634.28, + "end": 37635.18, + "probability": 0.7443 + }, + { + "start": 37636.56, + "end": 37638.26, + "probability": 0.9694 + }, + { + "start": 37639.82, + "end": 37644.18, + "probability": 0.5718 + }, + { + "start": 37648.46, + "end": 37650.4, + "probability": 0.3835 + }, + { + "start": 37660.24, + "end": 37660.96, + "probability": 0.0392 + }, + { + "start": 37661.02, + "end": 37661.62, + "probability": 0.2777 + }, + { + "start": 37662.38, + "end": 37666.3, + "probability": 0.6553 + }, + { + "start": 37666.44, + "end": 37673.5, + "probability": 0.7449 + }, + { + "start": 37674.08, + "end": 37674.98, + "probability": 0.9956 + }, + { + "start": 37675.62, + "end": 37678.04, + "probability": 0.5582 + }, + { + "start": 37678.7, + "end": 37679.8, + "probability": 0.0421 + }, + { + "start": 37680.36, + "end": 37682.18, + "probability": 0.8831 + }, + { + "start": 37682.3, + "end": 37683.5, + "probability": 0.5506 + }, + { + "start": 37683.98, + "end": 37685.8, + "probability": 0.8864 + }, + { + "start": 37685.86, + "end": 37687.2, + "probability": 0.7711 + }, + { + "start": 37687.96, + "end": 37689.66, + "probability": 0.7233 + }, + { + "start": 37690.92, + "end": 37695.28, + "probability": 0.692 + }, + { + "start": 37706.52, + "end": 37707.32, + "probability": 0.5249 + }, + { + "start": 37707.32, + "end": 37707.58, + "probability": 0.4899 + }, + { + "start": 37714.0, + "end": 37714.58, + "probability": 0.4747 + }, + { + "start": 37715.04, + "end": 37715.9, + "probability": 0.6905 + }, + { + "start": 37716.1, + "end": 37718.3, + "probability": 0.7592 + }, + { + "start": 37718.56, + "end": 37720.96, + "probability": 0.9556 + }, + { + "start": 37721.76, + "end": 37722.58, + "probability": 0.7368 + }, + { + "start": 37723.72, + "end": 37726.38, + "probability": 0.9889 + }, + { + "start": 37726.82, + "end": 37728.48, + "probability": 0.974 + }, + { + "start": 37729.28, + "end": 37729.62, + "probability": 0.5068 + }, + { + "start": 37729.9, + "end": 37733.74, + "probability": 0.7957 + }, + { + "start": 37733.86, + "end": 37734.42, + "probability": 0.7632 + }, + { + "start": 37735.02, + "end": 37736.12, + "probability": 0.8562 + }, + { + "start": 37736.82, + "end": 37737.56, + "probability": 0.9424 + }, + { + "start": 37738.48, + "end": 37740.86, + "probability": 0.9121 + }, + { + "start": 37742.54, + "end": 37744.84, + "probability": 0.9838 + }, + { + "start": 37744.84, + "end": 37748.22, + "probability": 0.9956 + }, + { + "start": 37748.42, + "end": 37753.52, + "probability": 0.9922 + }, + { + "start": 37753.6, + "end": 37758.82, + "probability": 0.9842 + }, + { + "start": 37760.06, + "end": 37765.58, + "probability": 0.9785 + }, + { + "start": 37766.66, + "end": 37769.02, + "probability": 0.9036 + }, + { + "start": 37770.56, + "end": 37774.54, + "probability": 0.9955 + }, + { + "start": 37775.08, + "end": 37777.76, + "probability": 0.9882 + }, + { + "start": 37778.34, + "end": 37779.98, + "probability": 0.9458 + }, + { + "start": 37780.02, + "end": 37783.0, + "probability": 0.9395 + }, + { + "start": 37783.82, + "end": 37786.74, + "probability": 0.9852 + }, + { + "start": 37787.26, + "end": 37790.36, + "probability": 0.884 + }, + { + "start": 37790.36, + "end": 37794.32, + "probability": 0.9945 + }, + { + "start": 37795.12, + "end": 37798.0, + "probability": 0.9539 + }, + { + "start": 37798.9, + "end": 37803.9, + "probability": 0.7118 + }, + { + "start": 37804.96, + "end": 37808.74, + "probability": 0.9067 + }, + { + "start": 37809.34, + "end": 37811.48, + "probability": 0.9429 + }, + { + "start": 37812.88, + "end": 37814.56, + "probability": 0.894 + }, + { + "start": 37815.4, + "end": 37818.28, + "probability": 0.9969 + }, + { + "start": 37818.28, + "end": 37820.94, + "probability": 0.9992 + }, + { + "start": 37821.52, + "end": 37823.3, + "probability": 0.9979 + }, + { + "start": 37823.3, + "end": 37825.26, + "probability": 0.9865 + }, + { + "start": 37825.36, + "end": 37826.98, + "probability": 0.8442 + }, + { + "start": 37828.16, + "end": 37829.0, + "probability": 0.7339 + }, + { + "start": 37830.14, + "end": 37833.64, + "probability": 0.9896 + }, + { + "start": 37835.2, + "end": 37835.74, + "probability": 0.6724 + }, + { + "start": 37836.16, + "end": 37839.76, + "probability": 0.9023 + }, + { + "start": 37840.02, + "end": 37843.84, + "probability": 0.6109 + }, + { + "start": 37844.32, + "end": 37845.74, + "probability": 0.881 + }, + { + "start": 37846.4, + "end": 37849.2, + "probability": 0.9611 + }, + { + "start": 37849.48, + "end": 37850.46, + "probability": 0.9983 + }, + { + "start": 37851.32, + "end": 37856.06, + "probability": 0.9093 + }, + { + "start": 37856.48, + "end": 37858.06, + "probability": 0.9622 + }, + { + "start": 37858.82, + "end": 37860.74, + "probability": 0.9788 + }, + { + "start": 37861.26, + "end": 37862.88, + "probability": 0.9575 + }, + { + "start": 37863.64, + "end": 37866.64, + "probability": 0.7482 + }, + { + "start": 37867.06, + "end": 37867.58, + "probability": 0.9863 + }, + { + "start": 37868.44, + "end": 37871.04, + "probability": 0.9736 + }, + { + "start": 37871.12, + "end": 37873.24, + "probability": 0.746 + }, + { + "start": 37875.02, + "end": 37876.94, + "probability": 0.9919 + }, + { + "start": 37877.66, + "end": 37879.86, + "probability": 0.636 + }, + { + "start": 37880.5, + "end": 37883.08, + "probability": 0.9976 + }, + { + "start": 37884.82, + "end": 37885.92, + "probability": 0.5034 + }, + { + "start": 37886.78, + "end": 37887.46, + "probability": 0.6832 + }, + { + "start": 37887.54, + "end": 37891.92, + "probability": 0.7597 + }, + { + "start": 37893.46, + "end": 37896.02, + "probability": 0.9958 + }, + { + "start": 37896.7, + "end": 37898.02, + "probability": 0.9541 + }, + { + "start": 37899.3, + "end": 37899.32, + "probability": 0.5669 + }, + { + "start": 37900.1, + "end": 37900.92, + "probability": 0.7648 + }, + { + "start": 37901.94, + "end": 37906.46, + "probability": 0.9875 + }, + { + "start": 37907.12, + "end": 37912.36, + "probability": 0.9937 + }, + { + "start": 37913.06, + "end": 37913.82, + "probability": 0.0365 + }, + { + "start": 37914.12, + "end": 37917.11, + "probability": 0.389 + }, + { + "start": 37917.8, + "end": 37920.08, + "probability": 0.8314 + }, + { + "start": 37920.36, + "end": 37920.62, + "probability": 0.819 + }, + { + "start": 37920.96, + "end": 37924.06, + "probability": 0.98 + }, + { + "start": 37924.94, + "end": 37925.42, + "probability": 0.6409 + }, + { + "start": 37926.36, + "end": 37927.54, + "probability": 0.8569 + }, + { + "start": 37928.08, + "end": 37929.94, + "probability": 0.8121 + }, + { + "start": 37931.3, + "end": 37933.56, + "probability": 0.7631 + }, + { + "start": 37934.16, + "end": 37935.14, + "probability": 0.5485 + }, + { + "start": 37935.58, + "end": 37936.86, + "probability": 0.8901 + }, + { + "start": 37936.96, + "end": 37937.72, + "probability": 0.6909 + }, + { + "start": 37937.78, + "end": 37938.26, + "probability": 0.8769 + }, + { + "start": 37939.16, + "end": 37939.46, + "probability": 0.8885 + }, + { + "start": 37940.78, + "end": 37942.98, + "probability": 0.9724 + }, + { + "start": 37944.0, + "end": 37948.84, + "probability": 0.9794 + }, + { + "start": 37949.16, + "end": 37950.96, + "probability": 0.8603 + }, + { + "start": 37951.46, + "end": 37952.6, + "probability": 0.7469 + }, + { + "start": 37952.86, + "end": 37953.58, + "probability": 0.0046 + }, + { + "start": 37953.82, + "end": 37954.08, + "probability": 0.4693 + }, + { + "start": 37954.14, + "end": 37955.09, + "probability": 0.7953 + }, + { + "start": 37955.5, + "end": 37956.36, + "probability": 0.776 + }, + { + "start": 37957.28, + "end": 37958.64, + "probability": 0.9263 + }, + { + "start": 37961.22, + "end": 37964.86, + "probability": 0.5785 + }, + { + "start": 37965.92, + "end": 37968.6, + "probability": 0.647 + }, + { + "start": 37969.1, + "end": 37971.44, + "probability": 0.9509 + }, + { + "start": 37971.94, + "end": 37972.66, + "probability": 0.8479 + }, + { + "start": 37973.98, + "end": 37974.32, + "probability": 0.3717 + }, + { + "start": 37974.54, + "end": 37975.18, + "probability": 0.7224 + }, + { + "start": 37977.13, + "end": 37980.26, + "probability": 0.724 + }, + { + "start": 37980.72, + "end": 37985.26, + "probability": 0.8777 + }, + { + "start": 37985.3, + "end": 37986.84, + "probability": 0.8826 + }, + { + "start": 37987.74, + "end": 37989.3, + "probability": 0.4647 + }, + { + "start": 37990.06, + "end": 37990.22, + "probability": 0.6756 + }, + { + "start": 37990.3, + "end": 37992.4, + "probability": 0.6775 + }, + { + "start": 37992.52, + "end": 37996.56, + "probability": 0.8061 + }, + { + "start": 37996.64, + "end": 37997.56, + "probability": 0.8285 + }, + { + "start": 37998.22, + "end": 37999.02, + "probability": 0.8325 + }, + { + "start": 37999.98, + "end": 38001.06, + "probability": 0.7477 + }, + { + "start": 38001.7, + "end": 38004.7, + "probability": 0.7731 + }, + { + "start": 38005.5, + "end": 38006.64, + "probability": 0.7363 + }, + { + "start": 38006.68, + "end": 38009.55, + "probability": 0.9058 + }, + { + "start": 38010.12, + "end": 38011.46, + "probability": 0.9697 + }, + { + "start": 38012.14, + "end": 38014.24, + "probability": 0.9041 + }, + { + "start": 38014.36, + "end": 38014.56, + "probability": 0.6961 + }, + { + "start": 38014.72, + "end": 38015.54, + "probability": 0.9321 + }, + { + "start": 38015.76, + "end": 38018.4, + "probability": 0.8525 + }, + { + "start": 38018.56, + "end": 38020.29, + "probability": 0.9956 + }, + { + "start": 38021.42, + "end": 38023.86, + "probability": 0.9943 + }, + { + "start": 38024.6, + "end": 38024.84, + "probability": 0.9108 + }, + { + "start": 38025.8, + "end": 38026.88, + "probability": 0.9217 + }, + { + "start": 38027.96, + "end": 38028.88, + "probability": 0.7285 + }, + { + "start": 38029.5, + "end": 38031.44, + "probability": 0.6921 + }, + { + "start": 38032.16, + "end": 38033.52, + "probability": 0.9341 + }, + { + "start": 38034.2, + "end": 38036.52, + "probability": 0.6966 + }, + { + "start": 38036.78, + "end": 38038.78, + "probability": 0.2256 + }, + { + "start": 38039.18, + "end": 38041.52, + "probability": 0.9942 + }, + { + "start": 38041.82, + "end": 38043.56, + "probability": 0.9968 + }, + { + "start": 38043.98, + "end": 38045.18, + "probability": 0.988 + }, + { + "start": 38045.76, + "end": 38046.82, + "probability": 0.953 + }, + { + "start": 38047.36, + "end": 38051.2, + "probability": 0.9894 + }, + { + "start": 38051.94, + "end": 38053.02, + "probability": 0.9924 + }, + { + "start": 38053.7, + "end": 38056.62, + "probability": 0.9852 + }, + { + "start": 38057.2, + "end": 38061.26, + "probability": 0.7173 + }, + { + "start": 38061.4, + "end": 38062.84, + "probability": 0.9558 + }, + { + "start": 38063.3, + "end": 38063.7, + "probability": 0.464 + }, + { + "start": 38063.98, + "end": 38064.34, + "probability": 0.6263 + }, + { + "start": 38064.6, + "end": 38069.58, + "probability": 0.9753 + }, + { + "start": 38069.88, + "end": 38071.18, + "probability": 0.8892 + }, + { + "start": 38071.96, + "end": 38073.22, + "probability": 0.9224 + }, + { + "start": 38073.58, + "end": 38075.11, + "probability": 0.5051 + }, + { + "start": 38075.54, + "end": 38077.8, + "probability": 0.6467 + }, + { + "start": 38078.08, + "end": 38078.54, + "probability": 0.9489 + }, + { + "start": 38079.16, + "end": 38079.54, + "probability": 0.6463 + }, + { + "start": 38079.54, + "end": 38081.62, + "probability": 0.7609 + }, + { + "start": 38081.7, + "end": 38085.48, + "probability": 0.9482 + }, + { + "start": 38097.1, + "end": 38100.1, + "probability": 0.9208 + }, + { + "start": 38100.24, + "end": 38100.7, + "probability": 0.748 + }, + { + "start": 38104.84, + "end": 38105.32, + "probability": 0.7252 + }, + { + "start": 38105.44, + "end": 38106.46, + "probability": 0.2512 + }, + { + "start": 38106.7, + "end": 38107.52, + "probability": 0.6753 + }, + { + "start": 38107.62, + "end": 38108.72, + "probability": 0.626 + }, + { + "start": 38108.92, + "end": 38115.18, + "probability": 0.9271 + }, + { + "start": 38115.4, + "end": 38118.18, + "probability": 0.6682 + }, + { + "start": 38118.86, + "end": 38121.12, + "probability": 0.7987 + }, + { + "start": 38122.3, + "end": 38124.16, + "probability": 0.7937 + }, + { + "start": 38124.28, + "end": 38126.5, + "probability": 0.9112 + }, + { + "start": 38127.7, + "end": 38130.22, + "probability": 0.9847 + }, + { + "start": 38130.82, + "end": 38131.8, + "probability": 0.9417 + }, + { + "start": 38132.48, + "end": 38133.27, + "probability": 0.5526 + }, + { + "start": 38134.5, + "end": 38136.44, + "probability": 0.4613 + }, + { + "start": 38137.63, + "end": 38139.74, + "probability": 0.5014 + }, + { + "start": 38140.46, + "end": 38140.88, + "probability": 0.5942 + }, + { + "start": 38141.44, + "end": 38142.16, + "probability": 0.9139 + }, + { + "start": 38143.18, + "end": 38145.0, + "probability": 0.4912 + }, + { + "start": 38145.62, + "end": 38150.28, + "probability": 0.728 + }, + { + "start": 38150.48, + "end": 38152.22, + "probability": 0.9819 + }, + { + "start": 38152.42, + "end": 38155.9, + "probability": 0.9375 + }, + { + "start": 38156.6, + "end": 38157.84, + "probability": 0.7483 + }, + { + "start": 38158.44, + "end": 38160.3, + "probability": 0.9964 + }, + { + "start": 38160.52, + "end": 38161.64, + "probability": 0.0428 + }, + { + "start": 38162.18, + "end": 38164.14, + "probability": 0.9126 + }, + { + "start": 38165.16, + "end": 38170.02, + "probability": 0.809 + }, + { + "start": 38171.34, + "end": 38176.0, + "probability": 0.9891 + }, + { + "start": 38176.3, + "end": 38177.48, + "probability": 0.7064 + }, + { + "start": 38178.42, + "end": 38181.38, + "probability": 0.959 + }, + { + "start": 38181.86, + "end": 38186.29, + "probability": 0.4727 + }, + { + "start": 38186.94, + "end": 38188.72, + "probability": 0.959 + }, + { + "start": 38189.42, + "end": 38190.08, + "probability": 0.3474 + }, + { + "start": 38190.18, + "end": 38191.22, + "probability": 0.6886 + }, + { + "start": 38191.3, + "end": 38192.28, + "probability": 0.6294 + }, + { + "start": 38192.58, + "end": 38196.9, + "probability": 0.6351 + }, + { + "start": 38197.4, + "end": 38198.42, + "probability": 0.6395 + }, + { + "start": 38198.54, + "end": 38199.72, + "probability": 0.9133 + }, + { + "start": 38200.22, + "end": 38204.84, + "probability": 0.0649 + }, + { + "start": 38204.96, + "end": 38205.94, + "probability": 0.2042 + }, + { + "start": 38206.08, + "end": 38209.34, + "probability": 0.7886 + }, + { + "start": 38209.54, + "end": 38210.3, + "probability": 0.8063 + }, + { + "start": 38210.9, + "end": 38211.74, + "probability": 0.7001 + }, + { + "start": 38211.86, + "end": 38213.46, + "probability": 0.6198 + }, + { + "start": 38213.58, + "end": 38215.26, + "probability": 0.6702 + }, + { + "start": 38215.74, + "end": 38216.48, + "probability": 0.8743 + }, + { + "start": 38217.54, + "end": 38221.2, + "probability": 0.8318 + }, + { + "start": 38221.2, + "end": 38222.24, + "probability": 0.6305 + }, + { + "start": 38222.74, + "end": 38224.74, + "probability": 0.9863 + }, + { + "start": 38225.6, + "end": 38231.24, + "probability": 0.7371 + }, + { + "start": 38231.54, + "end": 38233.96, + "probability": 0.8662 + }, + { + "start": 38234.06, + "end": 38234.6, + "probability": 0.5854 + }, + { + "start": 38234.96, + "end": 38236.06, + "probability": 0.7874 + }, + { + "start": 38236.68, + "end": 38236.88, + "probability": 0.0617 + }, + { + "start": 38238.5, + "end": 38239.22, + "probability": 0.89 + }, + { + "start": 38239.52, + "end": 38240.68, + "probability": 0.8033 + }, + { + "start": 38240.86, + "end": 38241.9, + "probability": 0.9493 + }, + { + "start": 38242.38, + "end": 38245.16, + "probability": 0.9386 + }, + { + "start": 38245.22, + "end": 38245.92, + "probability": 0.9214 + }, + { + "start": 38247.14, + "end": 38251.18, + "probability": 0.7318 + }, + { + "start": 38252.54, + "end": 38253.28, + "probability": 0.93 + }, + { + "start": 38254.4, + "end": 38255.72, + "probability": 0.7998 + }, + { + "start": 38256.36, + "end": 38257.82, + "probability": 0.9609 + }, + { + "start": 38258.02, + "end": 38259.94, + "probability": 0.8362 + }, + { + "start": 38261.14, + "end": 38264.68, + "probability": 0.9668 + }, + { + "start": 38266.4, + "end": 38268.76, + "probability": 0.9028 + }, + { + "start": 38269.3, + "end": 38271.12, + "probability": 0.9862 + }, + { + "start": 38271.8, + "end": 38276.54, + "probability": 0.7394 + }, + { + "start": 38277.32, + "end": 38278.16, + "probability": 0.8525 + }, + { + "start": 38278.32, + "end": 38279.3, + "probability": 0.2314 + }, + { + "start": 38280.5, + "end": 38282.28, + "probability": 0.6156 + }, + { + "start": 38282.9, + "end": 38284.58, + "probability": 0.9146 + }, + { + "start": 38284.84, + "end": 38289.62, + "probability": 0.7918 + }, + { + "start": 38290.06, + "end": 38292.16, + "probability": 0.9222 + }, + { + "start": 38293.28, + "end": 38297.78, + "probability": 0.9939 + }, + { + "start": 38298.86, + "end": 38299.96, + "probability": 0.7704 + }, + { + "start": 38301.08, + "end": 38302.92, + "probability": 0.9858 + }, + { + "start": 38303.36, + "end": 38306.86, + "probability": 0.8317 + }, + { + "start": 38307.18, + "end": 38309.06, + "probability": 0.4868 + }, + { + "start": 38309.18, + "end": 38314.12, + "probability": 0.8937 + }, + { + "start": 38315.18, + "end": 38315.48, + "probability": 0.3213 + }, + { + "start": 38315.66, + "end": 38316.96, + "probability": 0.9075 + }, + { + "start": 38317.02, + "end": 38319.54, + "probability": 0.6519 + }, + { + "start": 38320.49, + "end": 38323.4, + "probability": 0.9556 + }, + { + "start": 38323.48, + "end": 38323.9, + "probability": 0.3444 + }, + { + "start": 38324.09, + "end": 38325.9, + "probability": 0.9157 + }, + { + "start": 38326.16, + "end": 38327.66, + "probability": 0.768 + }, + { + "start": 38328.24, + "end": 38329.32, + "probability": 0.8997 + }, + { + "start": 38329.88, + "end": 38330.58, + "probability": 0.8867 + }, + { + "start": 38331.28, + "end": 38332.78, + "probability": 0.8057 + }, + { + "start": 38333.28, + "end": 38336.96, + "probability": 0.9585 + }, + { + "start": 38337.34, + "end": 38338.26, + "probability": 0.7832 + }, + { + "start": 38338.64, + "end": 38339.54, + "probability": 0.8403 + }, + { + "start": 38340.02, + "end": 38340.48, + "probability": 0.5767 + }, + { + "start": 38340.6, + "end": 38342.8, + "probability": 0.9727 + }, + { + "start": 38343.12, + "end": 38345.56, + "probability": 0.6643 + }, + { + "start": 38346.24, + "end": 38347.42, + "probability": 0.9827 + }, + { + "start": 38347.9, + "end": 38354.98, + "probability": 0.5487 + }, + { + "start": 38355.48, + "end": 38356.66, + "probability": 0.9078 + }, + { + "start": 38357.28, + "end": 38358.16, + "probability": 0.8701 + }, + { + "start": 38358.36, + "end": 38358.76, + "probability": 0.7019 + }, + { + "start": 38358.88, + "end": 38362.02, + "probability": 0.9827 + }, + { + "start": 38362.76, + "end": 38366.62, + "probability": 0.9041 + }, + { + "start": 38367.16, + "end": 38370.6, + "probability": 0.9936 + }, + { + "start": 38370.7, + "end": 38373.72, + "probability": 0.993 + }, + { + "start": 38374.6, + "end": 38375.46, + "probability": 0.8392 + }, + { + "start": 38375.58, + "end": 38381.24, + "probability": 0.7746 + }, + { + "start": 38381.78, + "end": 38384.86, + "probability": 0.8254 + }, + { + "start": 38385.08, + "end": 38387.78, + "probability": 0.477 + }, + { + "start": 38387.78, + "end": 38387.78, + "probability": 0.5142 + }, + { + "start": 38387.78, + "end": 38387.78, + "probability": 0.5126 + }, + { + "start": 38387.78, + "end": 38388.1, + "probability": 0.1113 + }, + { + "start": 38388.1, + "end": 38388.72, + "probability": 0.6081 + }, + { + "start": 38388.78, + "end": 38393.36, + "probability": 0.86 + }, + { + "start": 38393.54, + "end": 38393.84, + "probability": 0.7581 + }, + { + "start": 38395.02, + "end": 38396.61, + "probability": 0.9729 + }, + { + "start": 38397.44, + "end": 38398.0, + "probability": 0.4061 + }, + { + "start": 38398.28, + "end": 38398.76, + "probability": 0.7977 + }, + { + "start": 38405.2, + "end": 38406.4, + "probability": 0.5909 + }, + { + "start": 38406.88, + "end": 38412.8, + "probability": 0.875 + }, + { + "start": 38414.08, + "end": 38417.74, + "probability": 0.9724 + }, + { + "start": 38417.74, + "end": 38421.76, + "probability": 0.7556 + }, + { + "start": 38422.1, + "end": 38422.6, + "probability": 0.8135 + }, + { + "start": 38423.38, + "end": 38425.94, + "probability": 0.8222 + }, + { + "start": 38427.98, + "end": 38431.44, + "probability": 0.8796 + }, + { + "start": 38431.86, + "end": 38434.14, + "probability": 0.8984 + }, + { + "start": 38435.08, + "end": 38435.68, + "probability": 0.6514 + }, + { + "start": 38436.74, + "end": 38438.9, + "probability": 0.9163 + }, + { + "start": 38439.6, + "end": 38441.76, + "probability": 0.9902 + }, + { + "start": 38442.88, + "end": 38445.58, + "probability": 0.9451 + }, + { + "start": 38446.28, + "end": 38448.06, + "probability": 0.8237 + }, + { + "start": 38448.6, + "end": 38449.4, + "probability": 0.7576 + }, + { + "start": 38450.4, + "end": 38453.66, + "probability": 0.9392 + }, + { + "start": 38454.28, + "end": 38457.7, + "probability": 0.9589 + }, + { + "start": 38458.12, + "end": 38462.88, + "probability": 0.9924 + }, + { + "start": 38464.48, + "end": 38467.78, + "probability": 0.746 + }, + { + "start": 38468.32, + "end": 38472.04, + "probability": 0.9133 + }, + { + "start": 38472.62, + "end": 38474.02, + "probability": 0.9507 + }, + { + "start": 38475.04, + "end": 38475.86, + "probability": 0.7328 + }, + { + "start": 38476.96, + "end": 38481.48, + "probability": 0.8939 + }, + { + "start": 38482.52, + "end": 38485.58, + "probability": 0.9709 + }, + { + "start": 38486.02, + "end": 38486.34, + "probability": 0.8115 + }, + { + "start": 38487.3, + "end": 38487.98, + "probability": 0.7832 + }, + { + "start": 38488.2, + "end": 38489.72, + "probability": 0.845 + }, + { + "start": 38489.92, + "end": 38491.8, + "probability": 0.7437 + }, + { + "start": 38492.44, + "end": 38492.76, + "probability": 0.7893 + }, + { + "start": 38501.86, + "end": 38502.04, + "probability": 0.3479 + }, + { + "start": 38502.04, + "end": 38503.1, + "probability": 0.5868 + }, + { + "start": 38504.06, + "end": 38505.38, + "probability": 0.7376 + }, + { + "start": 38508.36, + "end": 38508.88, + "probability": 0.7911 + }, + { + "start": 38509.82, + "end": 38513.84, + "probability": 0.9695 + }, + { + "start": 38513.84, + "end": 38518.3, + "probability": 0.9988 + }, + { + "start": 38518.4, + "end": 38519.22, + "probability": 0.7557 + }, + { + "start": 38520.46, + "end": 38521.12, + "probability": 0.5077 + }, + { + "start": 38521.26, + "end": 38524.42, + "probability": 0.9922 + }, + { + "start": 38524.5, + "end": 38525.76, + "probability": 0.9458 + }, + { + "start": 38526.36, + "end": 38527.48, + "probability": 0.8804 + }, + { + "start": 38527.56, + "end": 38529.98, + "probability": 0.9618 + }, + { + "start": 38530.62, + "end": 38531.5, + "probability": 0.9765 + }, + { + "start": 38531.66, + "end": 38532.88, + "probability": 0.6635 + }, + { + "start": 38533.44, + "end": 38533.78, + "probability": 0.7578 + }, + { + "start": 38534.44, + "end": 38536.32, + "probability": 0.9153 + }, + { + "start": 38536.94, + "end": 38540.04, + "probability": 0.9677 + }, + { + "start": 38540.58, + "end": 38541.08, + "probability": 0.9075 + }, + { + "start": 38541.72, + "end": 38545.18, + "probability": 0.9859 + }, + { + "start": 38546.1, + "end": 38550.7, + "probability": 0.9931 + }, + { + "start": 38551.28, + "end": 38555.82, + "probability": 0.968 + }, + { + "start": 38556.46, + "end": 38557.52, + "probability": 0.9053 + }, + { + "start": 38558.26, + "end": 38562.22, + "probability": 0.9969 + }, + { + "start": 38562.24, + "end": 38566.8, + "probability": 0.9827 + }, + { + "start": 38567.3, + "end": 38570.62, + "probability": 0.9604 + }, + { + "start": 38571.22, + "end": 38572.46, + "probability": 0.9814 + }, + { + "start": 38573.26, + "end": 38574.2, + "probability": 0.711 + }, + { + "start": 38575.06, + "end": 38577.98, + "probability": 0.9049 + }, + { + "start": 38578.56, + "end": 38580.5, + "probability": 0.9476 + }, + { + "start": 38581.42, + "end": 38583.48, + "probability": 0.8736 + }, + { + "start": 38583.92, + "end": 38584.46, + "probability": 0.8734 + }, + { + "start": 38585.06, + "end": 38588.78, + "probability": 0.9953 + }, + { + "start": 38589.36, + "end": 38591.44, + "probability": 0.9922 + }, + { + "start": 38591.58, + "end": 38594.86, + "probability": 0.9158 + }, + { + "start": 38594.96, + "end": 38595.66, + "probability": 0.639 + }, + { + "start": 38596.1, + "end": 38598.02, + "probability": 0.9822 + }, + { + "start": 38598.22, + "end": 38601.62, + "probability": 0.9791 + }, + { + "start": 38601.7, + "end": 38601.7, + "probability": 0.5376 + }, + { + "start": 38601.74, + "end": 38603.04, + "probability": 0.7272 + }, + { + "start": 38603.8, + "end": 38606.16, + "probability": 0.9985 + }, + { + "start": 38606.16, + "end": 38609.96, + "probability": 0.9915 + }, + { + "start": 38610.4, + "end": 38614.6, + "probability": 0.9919 + }, + { + "start": 38615.02, + "end": 38618.9, + "probability": 0.9963 + }, + { + "start": 38619.9, + "end": 38625.9, + "probability": 0.9787 + }, + { + "start": 38626.44, + "end": 38631.24, + "probability": 0.9541 + }, + { + "start": 38631.76, + "end": 38635.2, + "probability": 0.9592 + }, + { + "start": 38635.68, + "end": 38635.98, + "probability": 0.2533 + }, + { + "start": 38635.98, + "end": 38637.74, + "probability": 0.6589 + }, + { + "start": 38637.92, + "end": 38641.44, + "probability": 0.8761 + }, + { + "start": 38641.46, + "end": 38641.56, + "probability": 0.8931 + }, + { + "start": 38645.32, + "end": 38645.42, + "probability": 0.4181 + }, + { + "start": 38645.42, + "end": 38646.5, + "probability": 0.7132 + }, + { + "start": 38646.92, + "end": 38647.36, + "probability": 0.7607 + }, + { + "start": 38647.44, + "end": 38648.42, + "probability": 0.6149 + }, + { + "start": 38648.74, + "end": 38651.85, + "probability": 0.8916 + }, + { + "start": 38653.34, + "end": 38653.78, + "probability": 0.1225 + }, + { + "start": 38655.48, + "end": 38658.94, + "probability": 0.9895 + }, + { + "start": 38658.94, + "end": 38661.46, + "probability": 0.9878 + }, + { + "start": 38661.66, + "end": 38663.4, + "probability": 0.7107 + }, + { + "start": 38664.04, + "end": 38666.92, + "probability": 0.9558 + }, + { + "start": 38667.0, + "end": 38667.84, + "probability": 0.7039 + }, + { + "start": 38668.92, + "end": 38670.2, + "probability": 0.854 + }, + { + "start": 38670.76, + "end": 38672.42, + "probability": 0.9259 + }, + { + "start": 38673.44, + "end": 38677.12, + "probability": 0.968 + }, + { + "start": 38677.12, + "end": 38680.1, + "probability": 0.9976 + }, + { + "start": 38680.68, + "end": 38681.8, + "probability": 0.8571 + }, + { + "start": 38682.46, + "end": 38689.64, + "probability": 0.9695 + }, + { + "start": 38690.1, + "end": 38694.8, + "probability": 0.9577 + }, + { + "start": 38694.96, + "end": 38695.16, + "probability": 0.6996 + }, + { + "start": 38695.82, + "end": 38696.42, + "probability": 0.8078 + }, + { + "start": 38696.96, + "end": 38698.66, + "probability": 0.5411 + }, + { + "start": 38699.6, + "end": 38703.02, + "probability": 0.5902 + }, + { + "start": 38705.18, + "end": 38706.38, + "probability": 0.6806 + }, + { + "start": 38706.46, + "end": 38706.64, + "probability": 0.5867 + }, + { + "start": 38707.36, + "end": 38707.48, + "probability": 0.4192 + }, + { + "start": 38707.78, + "end": 38708.62, + "probability": 0.723 + }, + { + "start": 38710.24, + "end": 38710.68, + "probability": 0.7146 + }, + { + "start": 38710.78, + "end": 38711.22, + "probability": 0.6457 + }, + { + "start": 38711.7, + "end": 38712.18, + "probability": 0.7507 + }, + { + "start": 38718.3, + "end": 38718.3, + "probability": 0.3251 + }, + { + "start": 38718.3, + "end": 38722.34, + "probability": 0.6988 + }, + { + "start": 38722.66, + "end": 38724.76, + "probability": 0.0369 + }, + { + "start": 38725.9, + "end": 38726.9, + "probability": 0.318 + }, + { + "start": 38727.46, + "end": 38728.34, + "probability": 0.521 + }, + { + "start": 38729.44, + "end": 38731.3, + "probability": 0.6415 + }, + { + "start": 38734.0, + "end": 38735.48, + "probability": 0.6388 + }, + { + "start": 38735.56, + "end": 38741.3, + "probability": 0.8748 + }, + { + "start": 38741.62, + "end": 38743.92, + "probability": 0.9908 + }, + { + "start": 38744.64, + "end": 38747.24, + "probability": 0.847 + }, + { + "start": 38747.24, + "end": 38751.04, + "probability": 0.8731 + }, + { + "start": 38751.14, + "end": 38751.14, + "probability": 0.005 + }, + { + "start": 38752.1, + "end": 38752.56, + "probability": 0.1558 + }, + { + "start": 38754.82, + "end": 38755.0, + "probability": 0.0904 + }, + { + "start": 38755.0, + "end": 38755.0, + "probability": 0.1637 + }, + { + "start": 38755.0, + "end": 38755.0, + "probability": 0.7266 + }, + { + "start": 38755.0, + "end": 38755.0, + "probability": 0.2049 + }, + { + "start": 38755.0, + "end": 38755.88, + "probability": 0.1067 + }, + { + "start": 38757.36, + "end": 38760.5, + "probability": 0.7975 + }, + { + "start": 38760.5, + "end": 38761.1, + "probability": 0.8998 + }, + { + "start": 38776.02, + "end": 38776.96, + "probability": 0.368 + }, + { + "start": 38777.88, + "end": 38778.72, + "probability": 0.5473 + }, + { + "start": 38780.44, + "end": 38782.18, + "probability": 0.9479 + }, + { + "start": 38783.16, + "end": 38785.28, + "probability": 0.9984 + }, + { + "start": 38786.66, + "end": 38788.28, + "probability": 0.9819 + }, + { + "start": 38789.38, + "end": 38790.18, + "probability": 0.9534 + }, + { + "start": 38791.58, + "end": 38792.02, + "probability": 0.6341 + }, + { + "start": 38793.82, + "end": 38794.86, + "probability": 0.9111 + }, + { + "start": 38795.58, + "end": 38797.78, + "probability": 0.8765 + }, + { + "start": 38798.42, + "end": 38799.24, + "probability": 0.884 + }, + { + "start": 38800.46, + "end": 38802.65, + "probability": 0.936 + }, + { + "start": 38803.4, + "end": 38803.83, + "probability": 0.9893 + }, + { + "start": 38804.98, + "end": 38808.84, + "probability": 0.9341 + }, + { + "start": 38811.88, + "end": 38812.32, + "probability": 0.362 + }, + { + "start": 38813.64, + "end": 38815.58, + "probability": 0.9961 + }, + { + "start": 38816.18, + "end": 38817.6, + "probability": 0.7192 + }, + { + "start": 38817.74, + "end": 38821.1, + "probability": 0.9734 + }, + { + "start": 38824.0, + "end": 38824.92, + "probability": 0.524 + }, + { + "start": 38826.32, + "end": 38830.9, + "probability": 0.9909 + }, + { + "start": 38832.22, + "end": 38832.96, + "probability": 0.9971 + }, + { + "start": 38833.2, + "end": 38835.42, + "probability": 0.8859 + }, + { + "start": 38836.04, + "end": 38838.14, + "probability": 0.9135 + }, + { + "start": 38838.36, + "end": 38840.38, + "probability": 0.963 + }, + { + "start": 38840.94, + "end": 38842.48, + "probability": 0.9871 + }, + { + "start": 38844.04, + "end": 38845.2, + "probability": 0.9891 + }, + { + "start": 38845.32, + "end": 38846.72, + "probability": 0.994 + }, + { + "start": 38846.94, + "end": 38848.02, + "probability": 0.9851 + }, + { + "start": 38848.56, + "end": 38852.8, + "probability": 0.9695 + }, + { + "start": 38852.8, + "end": 38855.24, + "probability": 0.9797 + }, + { + "start": 38855.44, + "end": 38856.18, + "probability": 0.5132 + }, + { + "start": 38856.18, + "end": 38857.04, + "probability": 0.9052 + }, + { + "start": 38858.06, + "end": 38858.76, + "probability": 0.8796 + }, + { + "start": 38861.18, + "end": 38864.74, + "probability": 0.9924 + }, + { + "start": 38865.66, + "end": 38866.32, + "probability": 0.6737 + }, + { + "start": 38866.5, + "end": 38871.52, + "probability": 0.832 + }, + { + "start": 38871.96, + "end": 38873.8, + "probability": 0.9928 + }, + { + "start": 38875.0, + "end": 38879.5, + "probability": 0.9277 + }, + { + "start": 38880.38, + "end": 38882.72, + "probability": 0.9834 + }, + { + "start": 38883.5, + "end": 38886.76, + "probability": 0.9937 + }, + { + "start": 38887.32, + "end": 38888.46, + "probability": 0.9352 + }, + { + "start": 38888.98, + "end": 38889.67, + "probability": 0.9912 + }, + { + "start": 38890.16, + "end": 38892.12, + "probability": 0.9892 + }, + { + "start": 38893.16, + "end": 38895.66, + "probability": 0.9703 + }, + { + "start": 38896.56, + "end": 38898.2, + "probability": 0.7016 + }, + { + "start": 38898.32, + "end": 38898.9, + "probability": 0.8319 + }, + { + "start": 38899.28, + "end": 38905.42, + "probability": 0.9937 + }, + { + "start": 38906.0, + "end": 38906.44, + "probability": 0.9576 + }, + { + "start": 38908.52, + "end": 38909.2, + "probability": 0.8609 + }, + { + "start": 38909.86, + "end": 38910.34, + "probability": 0.8764 + }, + { + "start": 38910.56, + "end": 38910.96, + "probability": 0.8968 + }, + { + "start": 38911.1, + "end": 38911.36, + "probability": 0.9511 + }, + { + "start": 38911.58, + "end": 38911.88, + "probability": 0.8596 + }, + { + "start": 38912.12, + "end": 38915.44, + "probability": 0.9784 + }, + { + "start": 38916.28, + "end": 38917.78, + "probability": 0.9958 + }, + { + "start": 38918.48, + "end": 38919.74, + "probability": 0.9499 + }, + { + "start": 38920.24, + "end": 38921.06, + "probability": 0.8268 + }, + { + "start": 38921.54, + "end": 38922.12, + "probability": 0.6388 + }, + { + "start": 38922.28, + "end": 38924.13, + "probability": 0.8878 + }, + { + "start": 38924.7, + "end": 38926.28, + "probability": 0.9567 + }, + { + "start": 38927.14, + "end": 38928.58, + "probability": 0.9915 + }, + { + "start": 38929.28, + "end": 38931.26, + "probability": 0.9959 + }, + { + "start": 38932.14, + "end": 38934.18, + "probability": 0.8254 + }, + { + "start": 38937.12, + "end": 38938.88, + "probability": 0.9413 + }, + { + "start": 38939.86, + "end": 38941.14, + "probability": 0.97 + }, + { + "start": 38942.1, + "end": 38945.42, + "probability": 0.984 + }, + { + "start": 38946.3, + "end": 38948.9, + "probability": 0.9905 + }, + { + "start": 38949.72, + "end": 38952.78, + "probability": 0.9851 + }, + { + "start": 38953.58, + "end": 38956.48, + "probability": 0.9778 + }, + { + "start": 38957.56, + "end": 38959.58, + "probability": 0.9601 + }, + { + "start": 38959.76, + "end": 38961.14, + "probability": 0.9425 + }, + { + "start": 38961.26, + "end": 38964.12, + "probability": 0.9691 + }, + { + "start": 38964.4, + "end": 38964.64, + "probability": 0.7685 + }, + { + "start": 38965.28, + "end": 38966.58, + "probability": 0.6059 + }, + { + "start": 38966.86, + "end": 38968.88, + "probability": 0.9978 + }, + { + "start": 38969.22, + "end": 38971.3, + "probability": 0.9941 + }, + { + "start": 38972.3, + "end": 38974.46, + "probability": 0.9928 + }, + { + "start": 38976.36, + "end": 38979.94, + "probability": 0.9989 + }, + { + "start": 38980.56, + "end": 38981.44, + "probability": 0.993 + }, + { + "start": 38981.96, + "end": 38984.64, + "probability": 0.9161 + }, + { + "start": 38985.06, + "end": 38989.28, + "probability": 0.9823 + }, + { + "start": 38989.9, + "end": 38991.12, + "probability": 0.3103 + }, + { + "start": 38991.12, + "end": 38992.66, + "probability": 0.9893 + }, + { + "start": 38992.94, + "end": 38992.94, + "probability": 0.3405 + }, + { + "start": 38993.3, + "end": 38996.02, + "probability": 0.9969 + }, + { + "start": 38996.02, + "end": 38999.38, + "probability": 0.9997 + }, + { + "start": 38999.82, + "end": 39000.5, + "probability": 0.7495 + }, + { + "start": 39001.24, + "end": 39001.24, + "probability": 0.4344 + }, + { + "start": 39001.28, + "end": 39002.34, + "probability": 0.7131 + }, + { + "start": 39024.56, + "end": 39025.48, + "probability": 0.7776 + }, + { + "start": 39026.8, + "end": 39027.72, + "probability": 0.6643 + }, + { + "start": 39028.68, + "end": 39029.58, + "probability": 0.7417 + }, + { + "start": 39031.38, + "end": 39036.28, + "probability": 0.998 + }, + { + "start": 39037.28, + "end": 39038.0, + "probability": 0.8994 + }, + { + "start": 39039.16, + "end": 39039.92, + "probability": 0.8302 + }, + { + "start": 39041.04, + "end": 39041.78, + "probability": 0.7754 + }, + { + "start": 39042.54, + "end": 39044.02, + "probability": 0.7749 + }, + { + "start": 39044.58, + "end": 39045.62, + "probability": 0.9956 + }, + { + "start": 39046.88, + "end": 39048.38, + "probability": 0.9917 + }, + { + "start": 39048.96, + "end": 39052.78, + "probability": 0.9927 + }, + { + "start": 39053.44, + "end": 39058.1, + "probability": 0.7383 + }, + { + "start": 39058.38, + "end": 39059.29, + "probability": 0.9625 + }, + { + "start": 39060.02, + "end": 39062.94, + "probability": 0.9379 + }, + { + "start": 39063.62, + "end": 39068.04, + "probability": 0.9937 + }, + { + "start": 39068.2, + "end": 39069.4, + "probability": 0.8579 + }, + { + "start": 39070.46, + "end": 39072.0, + "probability": 0.9271 + }, + { + "start": 39072.4, + "end": 39075.12, + "probability": 0.9811 + }, + { + "start": 39075.86, + "end": 39078.24, + "probability": 0.9969 + }, + { + "start": 39079.06, + "end": 39081.01, + "probability": 0.9957 + }, + { + "start": 39081.44, + "end": 39082.48, + "probability": 0.9824 + }, + { + "start": 39083.78, + "end": 39085.08, + "probability": 0.7855 + }, + { + "start": 39086.16, + "end": 39088.44, + "probability": 0.8907 + }, + { + "start": 39089.6, + "end": 39090.32, + "probability": 0.988 + }, + { + "start": 39090.84, + "end": 39091.14, + "probability": 0.5278 + }, + { + "start": 39091.96, + "end": 39092.82, + "probability": 0.9333 + }, + { + "start": 39092.98, + "end": 39093.74, + "probability": 0.9949 + }, + { + "start": 39094.36, + "end": 39095.64, + "probability": 0.9498 + }, + { + "start": 39095.94, + "end": 39096.8, + "probability": 0.9729 + }, + { + "start": 39097.64, + "end": 39098.7, + "probability": 0.5262 + }, + { + "start": 39099.68, + "end": 39103.82, + "probability": 0.9967 + }, + { + "start": 39104.4, + "end": 39106.82, + "probability": 0.9119 + }, + { + "start": 39107.6, + "end": 39108.26, + "probability": 0.991 + }, + { + "start": 39109.3, + "end": 39110.8, + "probability": 0.5724 + }, + { + "start": 39112.24, + "end": 39113.82, + "probability": 0.998 + }, + { + "start": 39114.44, + "end": 39115.08, + "probability": 0.9063 + }, + { + "start": 39115.4, + "end": 39117.88, + "probability": 0.9718 + }, + { + "start": 39118.94, + "end": 39122.32, + "probability": 0.8153 + }, + { + "start": 39123.28, + "end": 39125.0, + "probability": 0.6263 + }, + { + "start": 39126.16, + "end": 39132.48, + "probability": 0.962 + }, + { + "start": 39134.06, + "end": 39134.78, + "probability": 0.8217 + }, + { + "start": 39135.92, + "end": 39137.74, + "probability": 0.9148 + }, + { + "start": 39137.86, + "end": 39138.98, + "probability": 0.9812 + }, + { + "start": 39139.18, + "end": 39139.98, + "probability": 0.8066 + }, + { + "start": 39140.04, + "end": 39140.82, + "probability": 0.8821 + }, + { + "start": 39141.18, + "end": 39142.94, + "probability": 0.8779 + }, + { + "start": 39143.3, + "end": 39143.68, + "probability": 0.8588 + }, + { + "start": 39143.68, + "end": 39144.58, + "probability": 0.9531 + }, + { + "start": 39144.9, + "end": 39146.26, + "probability": 0.9366 + }, + { + "start": 39146.52, + "end": 39147.06, + "probability": 0.5708 + }, + { + "start": 39147.76, + "end": 39149.78, + "probability": 0.8337 + }, + { + "start": 39151.58, + "end": 39154.84, + "probability": 0.9806 + }, + { + "start": 39155.5, + "end": 39158.0, + "probability": 0.9921 + }, + { + "start": 39158.34, + "end": 39163.36, + "probability": 0.9545 + }, + { + "start": 39164.0, + "end": 39164.92, + "probability": 0.7446 + }, + { + "start": 39166.06, + "end": 39167.9, + "probability": 0.8113 + }, + { + "start": 39168.54, + "end": 39172.3, + "probability": 0.9252 + }, + { + "start": 39173.16, + "end": 39175.04, + "probability": 0.9966 + }, + { + "start": 39176.12, + "end": 39177.32, + "probability": 0.7855 + }, + { + "start": 39178.08, + "end": 39178.93, + "probability": 0.9152 + }, + { + "start": 39179.56, + "end": 39180.67, + "probability": 0.9838 + }, + { + "start": 39181.16, + "end": 39183.58, + "probability": 0.9924 + }, + { + "start": 39184.18, + "end": 39186.52, + "probability": 0.981 + }, + { + "start": 39187.14, + "end": 39189.66, + "probability": 0.9319 + }, + { + "start": 39190.92, + "end": 39193.26, + "probability": 0.7648 + }, + { + "start": 39194.24, + "end": 39197.44, + "probability": 0.9929 + }, + { + "start": 39197.86, + "end": 39199.14, + "probability": 0.9842 + }, + { + "start": 39199.5, + "end": 39200.3, + "probability": 0.9935 + }, + { + "start": 39201.74, + "end": 39203.36, + "probability": 0.9808 + }, + { + "start": 39203.78, + "end": 39205.64, + "probability": 0.961 + }, + { + "start": 39206.1, + "end": 39207.08, + "probability": 0.9879 + }, + { + "start": 39207.52, + "end": 39208.8, + "probability": 0.9618 + }, + { + "start": 39209.2, + "end": 39210.72, + "probability": 0.9779 + }, + { + "start": 39211.06, + "end": 39211.5, + "probability": 0.8364 + }, + { + "start": 39211.9, + "end": 39212.56, + "probability": 0.8398 + }, + { + "start": 39213.06, + "end": 39216.66, + "probability": 0.8271 + }, + { + "start": 39218.32, + "end": 39220.04, + "probability": 0.3687 + }, + { + "start": 39250.74, + "end": 39253.08, + "probability": 0.6632 + }, + { + "start": 39254.12, + "end": 39256.94, + "probability": 0.9923 + }, + { + "start": 39257.26, + "end": 39259.38, + "probability": 0.9529 + }, + { + "start": 39260.32, + "end": 39261.5, + "probability": 0.9808 + }, + { + "start": 39262.06, + "end": 39264.54, + "probability": 0.9193 + }, + { + "start": 39265.56, + "end": 39267.58, + "probability": 0.9043 + }, + { + "start": 39268.14, + "end": 39270.94, + "probability": 0.9263 + }, + { + "start": 39272.04, + "end": 39272.62, + "probability": 0.3393 + }, + { + "start": 39273.65, + "end": 39275.27, + "probability": 0.0773 + }, + { + "start": 39275.66, + "end": 39276.78, + "probability": 0.8271 + }, + { + "start": 39278.0, + "end": 39282.74, + "probability": 0.9817 + }, + { + "start": 39282.74, + "end": 39286.72, + "probability": 0.9554 + }, + { + "start": 39287.16, + "end": 39287.68, + "probability": 0.7793 + }, + { + "start": 39288.56, + "end": 39291.64, + "probability": 0.9739 + }, + { + "start": 39293.12, + "end": 39294.18, + "probability": 0.9772 + }, + { + "start": 39294.96, + "end": 39297.64, + "probability": 0.9091 + }, + { + "start": 39298.44, + "end": 39301.65, + "probability": 0.958 + }, + { + "start": 39302.92, + "end": 39307.34, + "probability": 0.8082 + }, + { + "start": 39308.76, + "end": 39314.66, + "probability": 0.9924 + }, + { + "start": 39315.52, + "end": 39317.86, + "probability": 0.9922 + }, + { + "start": 39319.08, + "end": 39322.6, + "probability": 0.9155 + }, + { + "start": 39323.44, + "end": 39326.52, + "probability": 0.963 + }, + { + "start": 39326.52, + "end": 39330.4, + "probability": 0.6004 + }, + { + "start": 39331.28, + "end": 39334.92, + "probability": 0.8648 + }, + { + "start": 39335.38, + "end": 39338.98, + "probability": 0.8936 + }, + { + "start": 39339.88, + "end": 39340.64, + "probability": 0.5829 + }, + { + "start": 39341.44, + "end": 39345.46, + "probability": 0.9961 + }, + { + "start": 39345.46, + "end": 39350.22, + "probability": 0.9947 + }, + { + "start": 39351.18, + "end": 39353.94, + "probability": 0.8318 + }, + { + "start": 39355.04, + "end": 39356.04, + "probability": 0.9782 + }, + { + "start": 39356.64, + "end": 39357.46, + "probability": 0.9966 + }, + { + "start": 39358.58, + "end": 39359.7, + "probability": 0.8077 + }, + { + "start": 39360.4, + "end": 39363.4, + "probability": 0.9685 + }, + { + "start": 39364.1, + "end": 39367.4, + "probability": 0.9929 + }, + { + "start": 39368.54, + "end": 39368.98, + "probability": 0.953 + }, + { + "start": 39370.22, + "end": 39371.16, + "probability": 0.9951 + }, + { + "start": 39372.2, + "end": 39373.82, + "probability": 0.9962 + }, + { + "start": 39374.86, + "end": 39378.78, + "probability": 0.9819 + }, + { + "start": 39379.56, + "end": 39382.18, + "probability": 0.9927 + }, + { + "start": 39383.1, + "end": 39383.82, + "probability": 0.7551 + }, + { + "start": 39384.64, + "end": 39387.62, + "probability": 0.9936 + }, + { + "start": 39387.62, + "end": 39391.14, + "probability": 0.9646 + }, + { + "start": 39392.0, + "end": 39393.02, + "probability": 0.968 + }, + { + "start": 39393.66, + "end": 39395.18, + "probability": 0.9968 + }, + { + "start": 39395.74, + "end": 39396.6, + "probability": 0.7367 + }, + { + "start": 39397.18, + "end": 39402.7, + "probability": 0.9712 + }, + { + "start": 39403.4, + "end": 39403.98, + "probability": 0.4211 + }, + { + "start": 39404.64, + "end": 39406.42, + "probability": 0.9958 + }, + { + "start": 39407.12, + "end": 39408.46, + "probability": 0.6694 + }, + { + "start": 39409.44, + "end": 39410.98, + "probability": 0.9365 + }, + { + "start": 39411.62, + "end": 39416.54, + "probability": 0.9716 + }, + { + "start": 39417.26, + "end": 39419.96, + "probability": 0.7046 + }, + { + "start": 39420.24, + "end": 39420.5, + "probability": 0.727 + }, + { + "start": 39421.28, + "end": 39423.58, + "probability": 0.8229 + }, + { + "start": 39424.0, + "end": 39426.53, + "probability": 0.9187 + }, + { + "start": 39441.42, + "end": 39442.48, + "probability": 0.1974 + }, + { + "start": 39443.8, + "end": 39445.0, + "probability": 0.6487 + }, + { + "start": 39446.02, + "end": 39449.48, + "probability": 0.9938 + }, + { + "start": 39449.98, + "end": 39452.08, + "probability": 0.9126 + }, + { + "start": 39452.5, + "end": 39455.5, + "probability": 0.9832 + }, + { + "start": 39456.6, + "end": 39457.3, + "probability": 0.994 + }, + { + "start": 39457.86, + "end": 39460.34, + "probability": 0.9969 + }, + { + "start": 39460.96, + "end": 39461.18, + "probability": 0.9493 + }, + { + "start": 39462.04, + "end": 39463.02, + "probability": 0.8994 + }, + { + "start": 39463.62, + "end": 39465.44, + "probability": 0.7086 + }, + { + "start": 39465.98, + "end": 39473.3, + "probability": 0.989 + }, + { + "start": 39473.66, + "end": 39476.48, + "probability": 0.8889 + }, + { + "start": 39477.02, + "end": 39479.14, + "probability": 0.5178 + }, + { + "start": 39479.48, + "end": 39481.3, + "probability": 0.6814 + }, + { + "start": 39481.54, + "end": 39483.02, + "probability": 0.9053 + }, + { + "start": 39483.38, + "end": 39485.42, + "probability": 0.861 + }, + { + "start": 39485.52, + "end": 39486.92, + "probability": 0.9266 + }, + { + "start": 39487.22, + "end": 39488.28, + "probability": 0.8428 + }, + { + "start": 39488.7, + "end": 39490.24, + "probability": 0.4996 + }, + { + "start": 39490.9, + "end": 39493.5, + "probability": 0.9774 + }, + { + "start": 39493.8, + "end": 39494.2, + "probability": 0.2259 + }, + { + "start": 39494.42, + "end": 39494.56, + "probability": 0.3994 + }, + { + "start": 39494.56, + "end": 39495.12, + "probability": 0.8835 + }, + { + "start": 39495.26, + "end": 39496.74, + "probability": 0.9354 + }, + { + "start": 39497.06, + "end": 39501.8, + "probability": 0.9209 + }, + { + "start": 39502.96, + "end": 39505.82, + "probability": 0.8486 + }, + { + "start": 39507.42, + "end": 39509.0, + "probability": 0.8402 + }, + { + "start": 39510.72, + "end": 39511.57, + "probability": 0.9722 + }, + { + "start": 39513.26, + "end": 39515.04, + "probability": 0.9984 + }, + { + "start": 39515.68, + "end": 39519.2, + "probability": 0.9893 + }, + { + "start": 39519.66, + "end": 39521.78, + "probability": 0.8689 + }, + { + "start": 39522.82, + "end": 39522.82, + "probability": 0.472 + }, + { + "start": 39523.04, + "end": 39523.54, + "probability": 0.6875 + }, + { + "start": 39523.9, + "end": 39524.13, + "probability": 0.7686 + }, + { + "start": 39524.72, + "end": 39525.6, + "probability": 0.9107 + }, + { + "start": 39527.02, + "end": 39527.74, + "probability": 0.9868 + }, + { + "start": 39527.88, + "end": 39528.36, + "probability": 0.9493 + }, + { + "start": 39528.54, + "end": 39528.64, + "probability": 0.8608 + }, + { + "start": 39528.98, + "end": 39530.76, + "probability": 0.8217 + }, + { + "start": 39531.86, + "end": 39533.9, + "probability": 0.9415 + }, + { + "start": 39534.56, + "end": 39536.02, + "probability": 0.9694 + }, + { + "start": 39536.66, + "end": 39537.19, + "probability": 0.5101 + }, + { + "start": 39538.04, + "end": 39539.3, + "probability": 0.9993 + }, + { + "start": 39540.14, + "end": 39541.44, + "probability": 0.9617 + }, + { + "start": 39542.26, + "end": 39546.1, + "probability": 0.9955 + }, + { + "start": 39546.88, + "end": 39548.56, + "probability": 0.9825 + }, + { + "start": 39549.38, + "end": 39552.16, + "probability": 0.9799 + }, + { + "start": 39553.08, + "end": 39554.92, + "probability": 0.7632 + }, + { + "start": 39555.58, + "end": 39558.16, + "probability": 0.9943 + }, + { + "start": 39558.9, + "end": 39561.08, + "probability": 0.9525 + }, + { + "start": 39561.66, + "end": 39563.95, + "probability": 0.974 + }, + { + "start": 39564.74, + "end": 39568.12, + "probability": 0.917 + }, + { + "start": 39568.72, + "end": 39570.48, + "probability": 0.7651 + }, + { + "start": 39570.86, + "end": 39571.14, + "probability": 0.1 + }, + { + "start": 39571.26, + "end": 39572.66, + "probability": 0.9458 + }, + { + "start": 39574.06, + "end": 39574.6, + "probability": 0.8097 + }, + { + "start": 39575.4, + "end": 39578.88, + "probability": 0.9891 + }, + { + "start": 39580.08, + "end": 39581.54, + "probability": 0.8584 + }, + { + "start": 39582.08, + "end": 39583.2, + "probability": 0.9863 + }, + { + "start": 39584.12, + "end": 39586.44, + "probability": 0.9951 + }, + { + "start": 39586.96, + "end": 39589.47, + "probability": 0.5348 + }, + { + "start": 39590.6, + "end": 39592.04, + "probability": 0.9769 + }, + { + "start": 39592.92, + "end": 39593.94, + "probability": 0.9089 + }, + { + "start": 39594.12, + "end": 39597.48, + "probability": 0.9952 + }, + { + "start": 39598.68, + "end": 39601.32, + "probability": 0.9925 + }, + { + "start": 39601.46, + "end": 39605.06, + "probability": 0.9969 + }, + { + "start": 39605.52, + "end": 39607.96, + "probability": 0.9415 + }, + { + "start": 39609.0, + "end": 39610.46, + "probability": 0.999 + }, + { + "start": 39611.32, + "end": 39614.52, + "probability": 0.9955 + }, + { + "start": 39615.18, + "end": 39619.67, + "probability": 0.8817 + }, + { + "start": 39620.16, + "end": 39620.86, + "probability": 0.8017 + }, + { + "start": 39621.9, + "end": 39622.76, + "probability": 0.975 + }, + { + "start": 39623.4, + "end": 39623.94, + "probability": 0.9675 + }, + { + "start": 39624.94, + "end": 39625.1, + "probability": 0.9432 + }, + { + "start": 39625.86, + "end": 39626.78, + "probability": 0.0193 + }, + { + "start": 39649.84, + "end": 39651.26, + "probability": 0.5368 + }, + { + "start": 39653.12, + "end": 39654.09, + "probability": 0.991 + }, + { + "start": 39654.82, + "end": 39655.82, + "probability": 0.9835 + }, + { + "start": 39656.92, + "end": 39657.78, + "probability": 0.7054 + }, + { + "start": 39659.32, + "end": 39664.64, + "probability": 0.9012 + }, + { + "start": 39664.8, + "end": 39665.52, + "probability": 0.5539 + }, + { + "start": 39665.58, + "end": 39666.4, + "probability": 0.4516 + }, + { + "start": 39668.62, + "end": 39668.76, + "probability": 0.162 + }, + { + "start": 39669.5, + "end": 39671.06, + "probability": 0.1022 + }, + { + "start": 39671.18, + "end": 39671.22, + "probability": 0.6902 + }, + { + "start": 39671.3, + "end": 39671.88, + "probability": 0.4859 + }, + { + "start": 39671.88, + "end": 39673.5, + "probability": 0.8258 + }, + { + "start": 39673.56, + "end": 39673.92, + "probability": 0.2051 + }, + { + "start": 39673.92, + "end": 39674.4, + "probability": 0.093 + }, + { + "start": 39674.84, + "end": 39675.84, + "probability": 0.0852 + }, + { + "start": 39677.4, + "end": 39678.48, + "probability": 0.6062 + }, + { + "start": 39678.7, + "end": 39681.04, + "probability": 0.8956 + }, + { + "start": 39683.58, + "end": 39684.6, + "probability": 0.7174 + }, + { + "start": 39685.14, + "end": 39685.86, + "probability": 0.501 + }, + { + "start": 39686.7, + "end": 39687.33, + "probability": 0.8965 + }, + { + "start": 39688.76, + "end": 39689.66, + "probability": 0.81 + }, + { + "start": 39689.92, + "end": 39692.16, + "probability": 0.9714 + }, + { + "start": 39692.66, + "end": 39693.28, + "probability": 0.903 + }, + { + "start": 39695.5, + "end": 39696.06, + "probability": 0.9375 + }, + { + "start": 39697.86, + "end": 39698.54, + "probability": 0.8057 + }, + { + "start": 39700.96, + "end": 39702.64, + "probability": 0.9468 + }, + { + "start": 39705.86, + "end": 39708.28, + "probability": 0.9877 + }, + { + "start": 39709.22, + "end": 39710.3, + "probability": 0.9172 + }, + { + "start": 39712.64, + "end": 39713.5, + "probability": 0.9907 + }, + { + "start": 39714.08, + "end": 39717.92, + "probability": 0.9977 + }, + { + "start": 39719.54, + "end": 39720.72, + "probability": 0.9993 + }, + { + "start": 39721.5, + "end": 39722.24, + "probability": 0.9995 + }, + { + "start": 39723.44, + "end": 39726.4, + "probability": 0.6813 + }, + { + "start": 39728.2, + "end": 39729.27, + "probability": 0.9956 + }, + { + "start": 39731.22, + "end": 39731.98, + "probability": 0.9893 + }, + { + "start": 39733.22, + "end": 39736.14, + "probability": 0.9133 + }, + { + "start": 39736.28, + "end": 39739.46, + "probability": 0.9336 + }, + { + "start": 39741.94, + "end": 39743.53, + "probability": 0.6834 + }, + { + "start": 39746.1, + "end": 39747.04, + "probability": 0.9744 + }, + { + "start": 39749.0, + "end": 39750.3, + "probability": 0.9139 + }, + { + "start": 39750.34, + "end": 39750.82, + "probability": 0.9894 + }, + { + "start": 39751.24, + "end": 39751.84, + "probability": 0.9839 + }, + { + "start": 39751.92, + "end": 39752.68, + "probability": 0.9535 + }, + { + "start": 39752.82, + "end": 39753.48, + "probability": 0.9671 + }, + { + "start": 39753.48, + "end": 39754.14, + "probability": 0.9498 + }, + { + "start": 39754.24, + "end": 39754.92, + "probability": 0.6462 + }, + { + "start": 39755.0, + "end": 39755.7, + "probability": 0.8923 + }, + { + "start": 39757.68, + "end": 39758.32, + "probability": 0.0293 + }, + { + "start": 39758.32, + "end": 39760.7, + "probability": 0.5581 + }, + { + "start": 39761.22, + "end": 39763.1, + "probability": 0.0659 + }, + { + "start": 39764.54, + "end": 39768.6, + "probability": 0.312 + }, + { + "start": 39768.78, + "end": 39771.54, + "probability": 0.7799 + }, + { + "start": 39771.7, + "end": 39774.26, + "probability": 0.2197 + }, + { + "start": 39775.58, + "end": 39776.6, + "probability": 0.0049 + }, + { + "start": 39776.62, + "end": 39776.84, + "probability": 0.1137 + }, + { + "start": 39776.84, + "end": 39778.66, + "probability": 0.3421 + }, + { + "start": 39779.12, + "end": 39781.16, + "probability": 0.5548 + }, + { + "start": 39781.48, + "end": 39784.84, + "probability": 0.5027 + }, + { + "start": 39784.84, + "end": 39785.76, + "probability": 0.0895 + }, + { + "start": 39786.4, + "end": 39787.08, + "probability": 0.3151 + }, + { + "start": 39787.22, + "end": 39787.54, + "probability": 0.2211 + }, + { + "start": 39787.56, + "end": 39787.56, + "probability": 0.048 + }, + { + "start": 39787.56, + "end": 39788.36, + "probability": 0.4346 + }, + { + "start": 39788.36, + "end": 39789.9, + "probability": 0.7166 + }, + { + "start": 39790.16, + "end": 39792.38, + "probability": 0.8442 + }, + { + "start": 39793.78, + "end": 39795.38, + "probability": 0.9286 + }, + { + "start": 39798.96, + "end": 39800.1, + "probability": 0.5744 + }, + { + "start": 39800.78, + "end": 39801.3, + "probability": 0.5062 + }, + { + "start": 39802.74, + "end": 39804.48, + "probability": 0.974 + }, + { + "start": 39805.54, + "end": 39806.34, + "probability": 0.8834 + }, + { + "start": 39807.8, + "end": 39808.52, + "probability": 0.9181 + }, + { + "start": 39810.64, + "end": 39811.82, + "probability": 0.9745 + }, + { + "start": 39813.3, + "end": 39814.88, + "probability": 0.8897 + }, + { + "start": 39814.96, + "end": 39815.35, + "probability": 0.9649 + }, + { + "start": 39816.04, + "end": 39818.88, + "probability": 0.7801 + }, + { + "start": 39819.34, + "end": 39819.34, + "probability": 0.0337 + }, + { + "start": 39819.34, + "end": 39819.34, + "probability": 0.1145 + }, + { + "start": 39819.34, + "end": 39821.34, + "probability": 0.35 + }, + { + "start": 39822.02, + "end": 39824.2, + "probability": 0.9987 + }, + { + "start": 39825.68, + "end": 39827.12, + "probability": 0.769 + }, + { + "start": 39829.06, + "end": 39830.3, + "probability": 0.9517 + }, + { + "start": 39831.4, + "end": 39831.88, + "probability": 0.6544 + }, + { + "start": 39834.62, + "end": 39834.99, + "probability": 0.9325 + }, + { + "start": 39836.56, + "end": 39837.62, + "probability": 0.8912 + }, + { + "start": 39839.16, + "end": 39841.1, + "probability": 0.9021 + }, + { + "start": 39841.62, + "end": 39841.99, + "probability": 0.9723 + }, + { + "start": 39843.38, + "end": 39844.92, + "probability": 0.8634 + }, + { + "start": 39845.48, + "end": 39846.12, + "probability": 0.9927 + }, + { + "start": 39846.86, + "end": 39847.82, + "probability": 0.9611 + }, + { + "start": 39849.84, + "end": 39850.24, + "probability": 0.7479 + }, + { + "start": 39850.64, + "end": 39852.04, + "probability": 0.9925 + }, + { + "start": 39853.68, + "end": 39856.42, + "probability": 0.9963 + }, + { + "start": 39857.62, + "end": 39858.92, + "probability": 0.9984 + }, + { + "start": 39859.0, + "end": 39860.1, + "probability": 0.8947 + }, + { + "start": 39860.22, + "end": 39863.76, + "probability": 0.9644 + }, + { + "start": 39864.84, + "end": 39865.38, + "probability": 0.8254 + }, + { + "start": 39867.24, + "end": 39869.56, + "probability": 0.749 + }, + { + "start": 39869.96, + "end": 39870.68, + "probability": 0.7457 + }, + { + "start": 39872.76, + "end": 39874.04, + "probability": 0.7544 + }, + { + "start": 39874.14, + "end": 39875.22, + "probability": 0.936 + }, + { + "start": 39875.5, + "end": 39877.02, + "probability": 0.9806 + }, + { + "start": 39877.98, + "end": 39878.56, + "probability": 0.9893 + }, + { + "start": 39878.94, + "end": 39880.26, + "probability": 0.8596 + }, + { + "start": 39880.9, + "end": 39882.04, + "probability": 0.82 + }, + { + "start": 39883.28, + "end": 39883.74, + "probability": 0.2605 + }, + { + "start": 39885.3, + "end": 39886.46, + "probability": 0.9282 + }, + { + "start": 39887.84, + "end": 39890.68, + "probability": 0.8818 + }, + { + "start": 39891.08, + "end": 39894.38, + "probability": 0.9215 + }, + { + "start": 39897.4, + "end": 39898.16, + "probability": 0.7973 + }, + { + "start": 39899.6, + "end": 39900.8, + "probability": 0.9572 + }, + { + "start": 39902.14, + "end": 39903.12, + "probability": 0.9484 + }, + { + "start": 39903.18, + "end": 39905.26, + "probability": 0.9825 + }, + { + "start": 39907.0, + "end": 39908.34, + "probability": 0.9771 + }, + { + "start": 39908.48, + "end": 39908.98, + "probability": 0.6841 + }, + { + "start": 39910.06, + "end": 39911.8, + "probability": 0.991 + }, + { + "start": 39913.38, + "end": 39915.98, + "probability": 0.9653 + }, + { + "start": 39916.66, + "end": 39917.04, + "probability": 0.1246 + }, + { + "start": 39917.9, + "end": 39918.7, + "probability": 0.3518 + }, + { + "start": 39919.16, + "end": 39921.06, + "probability": 0.0363 + }, + { + "start": 39922.71, + "end": 39924.46, + "probability": 0.3175 + }, + { + "start": 39924.86, + "end": 39929.06, + "probability": 0.1255 + }, + { + "start": 39931.6, + "end": 39932.05, + "probability": 0.0742 + }, + { + "start": 39933.24, + "end": 39935.64, + "probability": 0.073 + }, + { + "start": 39935.64, + "end": 39937.58, + "probability": 0.2591 + }, + { + "start": 39937.58, + "end": 39938.04, + "probability": 0.0327 + }, + { + "start": 39938.2, + "end": 39940.0, + "probability": 0.0898 + }, + { + "start": 39940.08, + "end": 39940.14, + "probability": 0.1295 + }, + { + "start": 39940.14, + "end": 39940.14, + "probability": 0.169 + }, + { + "start": 39940.14, + "end": 39940.14, + "probability": 0.0457 + }, + { + "start": 39940.14, + "end": 39941.26, + "probability": 0.4182 + }, + { + "start": 39941.58, + "end": 39941.58, + "probability": 0.575 + }, + { + "start": 39941.58, + "end": 39942.66, + "probability": 0.7219 + }, + { + "start": 39942.66, + "end": 39944.82, + "probability": 0.5567 + }, + { + "start": 39945.08, + "end": 39945.55, + "probability": 0.0334 + }, + { + "start": 39946.0, + "end": 39946.96, + "probability": 0.1396 + }, + { + "start": 39947.2, + "end": 39947.2, + "probability": 0.0103 + }, + { + "start": 39947.2, + "end": 39947.2, + "probability": 0.0198 + }, + { + "start": 39947.2, + "end": 39949.06, + "probability": 0.6098 + }, + { + "start": 39949.88, + "end": 39951.0, + "probability": 0.6278 + }, + { + "start": 39951.34, + "end": 39951.76, + "probability": 0.2514 + }, + { + "start": 39952.3, + "end": 39952.46, + "probability": 0.0379 + }, + { + "start": 39952.96, + "end": 39956.22, + "probability": 0.3519 + }, + { + "start": 39956.52, + "end": 39957.44, + "probability": 0.2954 + }, + { + "start": 39957.88, + "end": 39962.64, + "probability": 0.7385 + }, + { + "start": 39962.98, + "end": 39963.78, + "probability": 0.9868 + }, + { + "start": 39964.52, + "end": 39965.26, + "probability": 0.8512 + }, + { + "start": 39965.36, + "end": 39967.34, + "probability": 0.6268 + }, + { + "start": 39967.46, + "end": 39968.14, + "probability": 0.9938 + }, + { + "start": 39971.08, + "end": 39973.78, + "probability": 0.9702 + }, + { + "start": 39975.38, + "end": 39977.92, + "probability": 0.151 + }, + { + "start": 39979.56, + "end": 39981.04, + "probability": 0.8608 + }, + { + "start": 39982.22, + "end": 39982.36, + "probability": 0.8955 + }, + { + "start": 39985.28, + "end": 39986.66, + "probability": 0.4992 + }, + { + "start": 39987.94, + "end": 39989.56, + "probability": 0.9106 + }, + { + "start": 39989.84, + "end": 39990.26, + "probability": 0.7413 + }, + { + "start": 39990.28, + "end": 39993.04, + "probability": 0.9219 + }, + { + "start": 39993.58, + "end": 39998.54, + "probability": 0.9027 + }, + { + "start": 39999.32, + "end": 40000.37, + "probability": 0.9688 + }, + { + "start": 40000.96, + "end": 40001.56, + "probability": 0.7006 + }, + { + "start": 40002.02, + "end": 40007.18, + "probability": 0.9871 + }, + { + "start": 40007.34, + "end": 40008.9, + "probability": 0.8834 + }, + { + "start": 40010.26, + "end": 40012.9, + "probability": 0.9988 + }, + { + "start": 40013.42, + "end": 40016.0, + "probability": 0.99 + }, + { + "start": 40016.7, + "end": 40019.1, + "probability": 0.9855 + }, + { + "start": 40019.5, + "end": 40020.34, + "probability": 0.8371 + }, + { + "start": 40020.78, + "end": 40021.38, + "probability": 0.6978 + }, + { + "start": 40021.46, + "end": 40022.38, + "probability": 0.9779 + }, + { + "start": 40023.24, + "end": 40025.74, + "probability": 0.9663 + }, + { + "start": 40026.02, + "end": 40028.62, + "probability": 0.9989 + }, + { + "start": 40029.28, + "end": 40030.18, + "probability": 0.8834 + }, + { + "start": 40031.82, + "end": 40034.06, + "probability": 0.5397 + }, + { + "start": 40036.0, + "end": 40039.96, + "probability": 0.9666 + }, + { + "start": 40042.6, + "end": 40045.58, + "probability": 0.8452 + }, + { + "start": 40046.08, + "end": 40051.48, + "probability": 0.9945 + }, + { + "start": 40052.1, + "end": 40054.28, + "probability": 0.8162 + }, + { + "start": 40054.9, + "end": 40056.33, + "probability": 0.9846 + }, + { + "start": 40057.52, + "end": 40057.98, + "probability": 0.8474 + }, + { + "start": 40058.42, + "end": 40062.06, + "probability": 0.9926 + }, + { + "start": 40063.64, + "end": 40064.4, + "probability": 0.7498 + }, + { + "start": 40066.1, + "end": 40066.5, + "probability": 0.9156 + }, + { + "start": 40067.76, + "end": 40069.6, + "probability": 0.9655 + }, + { + "start": 40069.6, + "end": 40071.8, + "probability": 0.9922 + }, + { + "start": 40073.44, + "end": 40075.38, + "probability": 0.9976 + }, + { + "start": 40076.56, + "end": 40077.24, + "probability": 0.9507 + }, + { + "start": 40077.96, + "end": 40078.96, + "probability": 0.8198 + }, + { + "start": 40079.56, + "end": 40082.3, + "probability": 0.9922 + }, + { + "start": 40082.9, + "end": 40085.38, + "probability": 0.9877 + }, + { + "start": 40086.16, + "end": 40087.08, + "probability": 0.7715 + }, + { + "start": 40087.46, + "end": 40088.38, + "probability": 0.7321 + }, + { + "start": 40088.76, + "end": 40090.32, + "probability": 0.8627 + }, + { + "start": 40091.14, + "end": 40092.06, + "probability": 0.8507 + }, + { + "start": 40094.14, + "end": 40094.8, + "probability": 0.7991 + }, + { + "start": 40094.96, + "end": 40096.66, + "probability": 0.9512 + }, + { + "start": 40096.7, + "end": 40097.52, + "probability": 0.9922 + }, + { + "start": 40098.92, + "end": 40102.0, + "probability": 0.8727 + }, + { + "start": 40102.74, + "end": 40104.72, + "probability": 0.9965 + }, + { + "start": 40105.94, + "end": 40107.7, + "probability": 0.9337 + }, + { + "start": 40109.04, + "end": 40111.22, + "probability": 0.8379 + }, + { + "start": 40111.32, + "end": 40112.68, + "probability": 0.985 + }, + { + "start": 40113.24, + "end": 40114.3, + "probability": 0.9486 + }, + { + "start": 40114.88, + "end": 40119.06, + "probability": 0.951 + }, + { + "start": 40119.2, + "end": 40124.88, + "probability": 0.9874 + }, + { + "start": 40125.64, + "end": 40127.92, + "probability": 0.9932 + }, + { + "start": 40128.55, + "end": 40133.06, + "probability": 0.9863 + }, + { + "start": 40133.92, + "end": 40134.83, + "probability": 0.953 + }, + { + "start": 40136.9, + "end": 40137.18, + "probability": 0.9825 + }, + { + "start": 40138.66, + "end": 40139.0, + "probability": 0.8941 + }, + { + "start": 40140.66, + "end": 40141.64, + "probability": 0.9645 + }, + { + "start": 40142.32, + "end": 40143.18, + "probability": 0.87 + }, + { + "start": 40144.64, + "end": 40145.8, + "probability": 0.9938 + }, + { + "start": 40146.76, + "end": 40148.22, + "probability": 0.9877 + }, + { + "start": 40149.12, + "end": 40151.6, + "probability": 0.9576 + }, + { + "start": 40152.16, + "end": 40154.38, + "probability": 0.704 + }, + { + "start": 40154.62, + "end": 40155.86, + "probability": 0.9858 + }, + { + "start": 40157.02, + "end": 40159.38, + "probability": 0.9956 + }, + { + "start": 40160.12, + "end": 40161.08, + "probability": 0.9351 + }, + { + "start": 40161.68, + "end": 40163.03, + "probability": 0.9974 + }, + { + "start": 40163.34, + "end": 40163.92, + "probability": 0.82 + }, + { + "start": 40164.74, + "end": 40165.62, + "probability": 0.6869 + }, + { + "start": 40166.3, + "end": 40167.74, + "probability": 0.843 + }, + { + "start": 40167.92, + "end": 40171.66, + "probability": 0.9949 + }, + { + "start": 40171.82, + "end": 40173.26, + "probability": 0.999 + }, + { + "start": 40173.92, + "end": 40175.96, + "probability": 0.998 + }, + { + "start": 40176.52, + "end": 40177.12, + "probability": 0.4743 + }, + { + "start": 40177.5, + "end": 40177.58, + "probability": 0.3793 + }, + { + "start": 40177.64, + "end": 40178.1, + "probability": 0.411 + }, + { + "start": 40178.46, + "end": 40179.98, + "probability": 0.9556 + }, + { + "start": 40180.58, + "end": 40181.12, + "probability": 0.9139 + }, + { + "start": 40181.72, + "end": 40182.86, + "probability": 0.8545 + }, + { + "start": 40183.5, + "end": 40185.18, + "probability": 0.502 + }, + { + "start": 40185.52, + "end": 40185.97, + "probability": 0.9658 + }, + { + "start": 40186.88, + "end": 40187.42, + "probability": 0.7186 + }, + { + "start": 40187.94, + "end": 40190.7, + "probability": 0.9938 + }, + { + "start": 40190.78, + "end": 40192.9, + "probability": 0.8747 + }, + { + "start": 40193.18, + "end": 40193.36, + "probability": 0.5738 + }, + { + "start": 40198.4, + "end": 40202.74, + "probability": 0.9299 + }, + { + "start": 40206.1, + "end": 40206.72, + "probability": 0.6693 + }, + { + "start": 40208.98, + "end": 40210.88, + "probability": 0.9956 + }, + { + "start": 40211.04, + "end": 40212.04, + "probability": 0.8271 + }, + { + "start": 40212.16, + "end": 40212.46, + "probability": 0.7082 + }, + { + "start": 40212.58, + "end": 40213.26, + "probability": 0.9485 + }, + { + "start": 40213.76, + "end": 40213.88, + "probability": 0.8604 + }, + { + "start": 40214.08, + "end": 40216.84, + "probability": 0.983 + }, + { + "start": 40216.96, + "end": 40218.88, + "probability": 0.9728 + }, + { + "start": 40218.96, + "end": 40221.0, + "probability": 0.7571 + }, + { + "start": 40221.66, + "end": 40222.46, + "probability": 0.8174 + }, + { + "start": 40223.46, + "end": 40224.98, + "probability": 0.9751 + }, + { + "start": 40225.06, + "end": 40225.88, + "probability": 0.9854 + }, + { + "start": 40227.16, + "end": 40227.88, + "probability": 0.9027 + }, + { + "start": 40228.92, + "end": 40229.51, + "probability": 0.9404 + }, + { + "start": 40230.58, + "end": 40231.42, + "probability": 0.991 + }, + { + "start": 40232.42, + "end": 40233.26, + "probability": 0.9531 + }, + { + "start": 40234.56, + "end": 40236.26, + "probability": 0.8327 + }, + { + "start": 40236.42, + "end": 40237.5, + "probability": 0.6791 + }, + { + "start": 40239.34, + "end": 40239.8, + "probability": 0.8773 + }, + { + "start": 40240.54, + "end": 40241.82, + "probability": 0.9702 + }, + { + "start": 40242.48, + "end": 40243.76, + "probability": 0.6371 + }, + { + "start": 40243.9, + "end": 40247.32, + "probability": 0.7682 + }, + { + "start": 40248.1, + "end": 40249.51, + "probability": 0.8404 + }, + { + "start": 40250.74, + "end": 40254.52, + "probability": 0.9965 + }, + { + "start": 40254.92, + "end": 40256.34, + "probability": 0.9386 + }, + { + "start": 40257.04, + "end": 40260.32, + "probability": 0.9845 + }, + { + "start": 40260.38, + "end": 40262.67, + "probability": 0.998 + }, + { + "start": 40264.14, + "end": 40264.62, + "probability": 0.8586 + }, + { + "start": 40265.48, + "end": 40266.0, + "probability": 0.8838 + }, + { + "start": 40266.34, + "end": 40267.68, + "probability": 0.9634 + }, + { + "start": 40268.44, + "end": 40269.34, + "probability": 0.9888 + }, + { + "start": 40269.66, + "end": 40269.78, + "probability": 0.6769 + }, + { + "start": 40270.2, + "end": 40274.06, + "probability": 0.9937 + }, + { + "start": 40274.8, + "end": 40275.64, + "probability": 0.8235 + }, + { + "start": 40275.64, + "end": 40276.12, + "probability": 0.4999 + }, + { + "start": 40276.26, + "end": 40276.74, + "probability": 0.1952 + }, + { + "start": 40277.38, + "end": 40278.32, + "probability": 0.5909 + }, + { + "start": 40278.48, + "end": 40279.24, + "probability": 0.0672 + }, + { + "start": 40280.32, + "end": 40280.62, + "probability": 0.1481 + }, + { + "start": 40280.62, + "end": 40281.59, + "probability": 0.131 + }, + { + "start": 40281.74, + "end": 40282.06, + "probability": 0.1684 + }, + { + "start": 40283.35, + "end": 40286.28, + "probability": 0.1161 + }, + { + "start": 40286.4, + "end": 40286.64, + "probability": 0.1654 + }, + { + "start": 40286.64, + "end": 40286.74, + "probability": 0.3032 + }, + { + "start": 40287.28, + "end": 40288.1, + "probability": 0.8315 + }, + { + "start": 40288.7, + "end": 40291.68, + "probability": 0.9927 + }, + { + "start": 40291.9, + "end": 40292.8, + "probability": 0.615 + }, + { + "start": 40293.0, + "end": 40294.96, + "probability": 0.9907 + }, + { + "start": 40296.12, + "end": 40296.74, + "probability": 0.8657 + }, + { + "start": 40297.56, + "end": 40300.06, + "probability": 0.2504 + }, + { + "start": 40300.06, + "end": 40300.96, + "probability": 0.1631 + }, + { + "start": 40300.96, + "end": 40301.22, + "probability": 0.5046 + }, + { + "start": 40302.18, + "end": 40302.56, + "probability": 0.5854 + }, + { + "start": 40302.7, + "end": 40305.18, + "probability": 0.7874 + }, + { + "start": 40305.28, + "end": 40305.56, + "probability": 0.453 + }, + { + "start": 40306.58, + "end": 40307.32, + "probability": 0.1168 + }, + { + "start": 40307.58, + "end": 40307.58, + "probability": 0.0921 + }, + { + "start": 40307.58, + "end": 40308.12, + "probability": 0.0985 + }, + { + "start": 40308.14, + "end": 40308.24, + "probability": 0.1742 + }, + { + "start": 40308.24, + "end": 40308.78, + "probability": 0.2846 + }, + { + "start": 40309.12, + "end": 40312.72, + "probability": 0.8872 + }, + { + "start": 40313.0, + "end": 40313.34, + "probability": 0.9565 + }, + { + "start": 40313.36, + "end": 40314.48, + "probability": 0.7622 + }, + { + "start": 40314.82, + "end": 40317.06, + "probability": 0.9673 + }, + { + "start": 40317.36, + "end": 40317.9, + "probability": 0.8201 + }, + { + "start": 40318.32, + "end": 40320.08, + "probability": 0.8368 + }, + { + "start": 40320.18, + "end": 40321.36, + "probability": 0.7643 + }, + { + "start": 40321.44, + "end": 40321.74, + "probability": 0.7184 + }, + { + "start": 40322.3, + "end": 40323.22, + "probability": 0.8149 + }, + { + "start": 40323.42, + "end": 40323.87, + "probability": 0.9429 + }, + { + "start": 40324.56, + "end": 40328.3, + "probability": 0.9841 + }, + { + "start": 40328.58, + "end": 40330.6, + "probability": 0.5661 + }, + { + "start": 40331.12, + "end": 40331.64, + "probability": 0.9631 + }, + { + "start": 40331.78, + "end": 40334.58, + "probability": 0.9458 + }, + { + "start": 40334.78, + "end": 40335.1, + "probability": 0.8661 + }, + { + "start": 40335.9, + "end": 40337.64, + "probability": 0.7034 + }, + { + "start": 40337.66, + "end": 40339.75, + "probability": 0.9251 + }, + { + "start": 40340.64, + "end": 40342.08, + "probability": 0.26 + }, + { + "start": 40342.8, + "end": 40345.86, + "probability": 0.6902 + }, + { + "start": 40346.48, + "end": 40346.8, + "probability": 0.4803 + }, + { + "start": 40346.88, + "end": 40349.8, + "probability": 0.7217 + }, + { + "start": 40350.88, + "end": 40352.74, + "probability": 0.7018 + }, + { + "start": 40352.74, + "end": 40353.66, + "probability": 0.4067 + }, + { + "start": 40354.7, + "end": 40355.74, + "probability": 0.8361 + }, + { + "start": 40356.6, + "end": 40363.0, + "probability": 0.9751 + }, + { + "start": 40363.2, + "end": 40364.16, + "probability": 0.916 + }, + { + "start": 40365.08, + "end": 40366.08, + "probability": 0.7248 + }, + { + "start": 40366.16, + "end": 40366.7, + "probability": 0.8519 + }, + { + "start": 40366.84, + "end": 40371.66, + "probability": 0.9436 + }, + { + "start": 40372.74, + "end": 40376.26, + "probability": 0.9596 + }, + { + "start": 40376.78, + "end": 40380.08, + "probability": 0.9705 + }, + { + "start": 40380.16, + "end": 40382.34, + "probability": 0.7366 + }, + { + "start": 40382.74, + "end": 40385.64, + "probability": 0.9931 + }, + { + "start": 40386.38, + "end": 40388.07, + "probability": 0.9971 + }, + { + "start": 40388.82, + "end": 40392.68, + "probability": 0.9349 + }, + { + "start": 40393.3, + "end": 40395.1, + "probability": 0.8628 + }, + { + "start": 40395.64, + "end": 40396.32, + "probability": 0.9489 + }, + { + "start": 40396.48, + "end": 40396.92, + "probability": 0.7582 + }, + { + "start": 40398.3, + "end": 40398.56, + "probability": 0.6692 + }, + { + "start": 40398.64, + "end": 40402.76, + "probability": 0.7033 + }, + { + "start": 40402.92, + "end": 40404.86, + "probability": 0.995 + }, + { + "start": 40405.06, + "end": 40406.05, + "probability": 0.9259 + }, + { + "start": 40407.02, + "end": 40407.62, + "probability": 0.7197 + }, + { + "start": 40407.98, + "end": 40409.6, + "probability": 0.9123 + }, + { + "start": 40410.76, + "end": 40413.46, + "probability": 0.7163 + }, + { + "start": 40414.12, + "end": 40415.14, + "probability": 0.8479 + }, + { + "start": 40415.94, + "end": 40416.58, + "probability": 0.6398 + }, + { + "start": 40416.66, + "end": 40417.24, + "probability": 0.8293 + }, + { + "start": 40428.54, + "end": 40428.72, + "probability": 0.7648 + }, + { + "start": 40428.72, + "end": 40428.72, + "probability": 0.3597 + }, + { + "start": 40428.72, + "end": 40429.94, + "probability": 0.8133 + }, + { + "start": 40430.66, + "end": 40432.6, + "probability": 0.5104 + }, + { + "start": 40433.1, + "end": 40436.72, + "probability": 0.7483 + }, + { + "start": 40438.6, + "end": 40443.34, + "probability": 0.577 + }, + { + "start": 40444.48, + "end": 40448.82, + "probability": 0.9202 + }, + { + "start": 40448.96, + "end": 40449.06, + "probability": 0.0525 + }, + { + "start": 40449.06, + "end": 40450.9, + "probability": 0.9694 + }, + { + "start": 40451.52, + "end": 40452.8, + "probability": 0.945 + }, + { + "start": 40464.62, + "end": 40465.54, + "probability": 0.6116 + }, + { + "start": 40465.8, + "end": 40465.82, + "probability": 0.5925 + }, + { + "start": 40465.84, + "end": 40466.94, + "probability": 0.3204 + }, + { + "start": 40468.76, + "end": 40469.94, + "probability": 0.6469 + }, + { + "start": 40471.28, + "end": 40472.6, + "probability": 0.8816 + }, + { + "start": 40473.36, + "end": 40474.44, + "probability": 0.7007 + }, + { + "start": 40475.16, + "end": 40477.7, + "probability": 0.9202 + }, + { + "start": 40478.74, + "end": 40480.74, + "probability": 0.5551 + }, + { + "start": 40480.74, + "end": 40481.16, + "probability": 0.1227 + }, + { + "start": 40482.42, + "end": 40484.04, + "probability": 0.2624 + }, + { + "start": 40484.41, + "end": 40488.42, + "probability": 0.7827 + }, + { + "start": 40488.74, + "end": 40489.86, + "probability": 0.7007 + }, + { + "start": 40489.98, + "end": 40491.14, + "probability": 0.5772 + }, + { + "start": 40491.9, + "end": 40496.69, + "probability": 0.1723 + }, + { + "start": 40497.14, + "end": 40498.44, + "probability": 0.2355 + }, + { + "start": 40498.48, + "end": 40498.92, + "probability": 0.2796 + }, + { + "start": 40500.4, + "end": 40501.9, + "probability": 0.4371 + }, + { + "start": 40501.96, + "end": 40501.98, + "probability": 0.151 + }, + { + "start": 40502.04, + "end": 40504.4, + "probability": 0.9534 + }, + { + "start": 40505.2, + "end": 40508.74, + "probability": 0.9923 + }, + { + "start": 40509.44, + "end": 40513.1, + "probability": 0.9641 + }, + { + "start": 40513.96, + "end": 40515.28, + "probability": 0.9983 + }, + { + "start": 40515.98, + "end": 40516.62, + "probability": 0.8709 + }, + { + "start": 40517.5, + "end": 40520.68, + "probability": 0.998 + }, + { + "start": 40521.82, + "end": 40523.26, + "probability": 0.8462 + }, + { + "start": 40524.8, + "end": 40527.68, + "probability": 0.9218 + }, + { + "start": 40528.58, + "end": 40529.12, + "probability": 0.5663 + }, + { + "start": 40529.92, + "end": 40537.1, + "probability": 0.9902 + }, + { + "start": 40538.42, + "end": 40540.72, + "probability": 0.9779 + }, + { + "start": 40540.86, + "end": 40542.66, + "probability": 0.999 + }, + { + "start": 40543.76, + "end": 40548.68, + "probability": 0.9937 + }, + { + "start": 40549.46, + "end": 40549.94, + "probability": 0.5076 + }, + { + "start": 40550.04, + "end": 40550.48, + "probability": 0.4287 + }, + { + "start": 40551.38, + "end": 40555.54, + "probability": 0.9987 + }, + { + "start": 40556.14, + "end": 40557.56, + "probability": 0.999 + }, + { + "start": 40558.48, + "end": 40560.94, + "probability": 0.9976 + }, + { + "start": 40561.1, + "end": 40563.49, + "probability": 0.7269 + }, + { + "start": 40563.82, + "end": 40565.6, + "probability": 0.9648 + }, + { + "start": 40566.36, + "end": 40567.28, + "probability": 0.93 + }, + { + "start": 40568.2, + "end": 40572.3, + "probability": 0.9596 + }, + { + "start": 40577.18, + "end": 40579.74, + "probability": 0.8274 + }, + { + "start": 40580.6, + "end": 40581.26, + "probability": 0.7275 + }, + { + "start": 40582.0, + "end": 40585.76, + "probability": 0.9342 + }, + { + "start": 40587.2, + "end": 40592.04, + "probability": 0.995 + }, + { + "start": 40593.0, + "end": 40595.0, + "probability": 0.9853 + }, + { + "start": 40595.94, + "end": 40596.82, + "probability": 0.8548 + }, + { + "start": 40597.58, + "end": 40600.92, + "probability": 0.9408 + }, + { + "start": 40601.42, + "end": 40602.9, + "probability": 0.9985 + }, + { + "start": 40603.98, + "end": 40604.74, + "probability": 0.7652 + }, + { + "start": 40605.58, + "end": 40607.96, + "probability": 0.9944 + }, + { + "start": 40608.66, + "end": 40610.56, + "probability": 0.9941 + }, + { + "start": 40611.16, + "end": 40613.76, + "probability": 0.9966 + }, + { + "start": 40614.18, + "end": 40616.62, + "probability": 0.9946 + }, + { + "start": 40617.16, + "end": 40620.88, + "probability": 0.9822 + }, + { + "start": 40621.78, + "end": 40622.66, + "probability": 0.6349 + }, + { + "start": 40623.36, + "end": 40624.86, + "probability": 0.7645 + }, + { + "start": 40626.42, + "end": 40631.56, + "probability": 0.9386 + }, + { + "start": 40632.14, + "end": 40638.3, + "probability": 0.9968 + }, + { + "start": 40638.66, + "end": 40639.34, + "probability": 0.9168 + }, + { + "start": 40639.72, + "end": 40640.28, + "probability": 0.9827 + }, + { + "start": 40641.02, + "end": 40641.48, + "probability": 0.8466 + }, + { + "start": 40642.18, + "end": 40643.56, + "probability": 0.8723 + }, + { + "start": 40644.92, + "end": 40646.56, + "probability": 0.9938 + }, + { + "start": 40647.34, + "end": 40651.86, + "probability": 0.9355 + }, + { + "start": 40653.28, + "end": 40655.02, + "probability": 0.9697 + }, + { + "start": 40656.34, + "end": 40660.46, + "probability": 0.9382 + }, + { + "start": 40661.46, + "end": 40665.3, + "probability": 0.9841 + }, + { + "start": 40666.1, + "end": 40670.48, + "probability": 0.9956 + }, + { + "start": 40670.48, + "end": 40673.38, + "probability": 0.9973 + }, + { + "start": 40674.26, + "end": 40675.28, + "probability": 0.8142 + }, + { + "start": 40675.82, + "end": 40677.48, + "probability": 0.953 + }, + { + "start": 40677.94, + "end": 40682.16, + "probability": 0.9819 + }, + { + "start": 40683.34, + "end": 40683.92, + "probability": 0.5914 + }, + { + "start": 40684.7, + "end": 40687.66, + "probability": 0.9967 + }, + { + "start": 40688.26, + "end": 40690.7, + "probability": 0.9603 + }, + { + "start": 40691.38, + "end": 40693.56, + "probability": 0.9338 + }, + { + "start": 40694.22, + "end": 40698.58, + "probability": 0.9904 + }, + { + "start": 40699.3, + "end": 40699.94, + "probability": 0.9764 + }, + { + "start": 40700.64, + "end": 40703.62, + "probability": 0.9941 + }, + { + "start": 40704.44, + "end": 40707.1, + "probability": 0.6911 + }, + { + "start": 40707.76, + "end": 40710.32, + "probability": 0.9646 + }, + { + "start": 40711.2, + "end": 40712.02, + "probability": 0.929 + }, + { + "start": 40712.64, + "end": 40713.5, + "probability": 0.7908 + }, + { + "start": 40714.14, + "end": 40716.48, + "probability": 0.7267 + }, + { + "start": 40717.18, + "end": 40718.3, + "probability": 0.9865 + }, + { + "start": 40718.96, + "end": 40720.82, + "probability": 0.9265 + }, + { + "start": 40721.52, + "end": 40722.38, + "probability": 0.7959 + }, + { + "start": 40722.88, + "end": 40727.42, + "probability": 0.9776 + }, + { + "start": 40728.48, + "end": 40729.64, + "probability": 0.798 + }, + { + "start": 40730.98, + "end": 40731.74, + "probability": 0.9795 + }, + { + "start": 40732.5, + "end": 40736.6, + "probability": 0.999 + }, + { + "start": 40738.28, + "end": 40742.06, + "probability": 0.9984 + }, + { + "start": 40742.62, + "end": 40743.64, + "probability": 0.9926 + }, + { + "start": 40744.32, + "end": 40747.58, + "probability": 0.9991 + }, + { + "start": 40748.22, + "end": 40751.56, + "probability": 0.9771 + }, + { + "start": 40752.72, + "end": 40755.21, + "probability": 0.8767 + }, + { + "start": 40755.86, + "end": 40758.98, + "probability": 0.9758 + }, + { + "start": 40759.92, + "end": 40761.52, + "probability": 0.9731 + }, + { + "start": 40762.16, + "end": 40766.24, + "probability": 0.9923 + }, + { + "start": 40766.74, + "end": 40767.22, + "probability": 0.9829 + }, + { + "start": 40767.82, + "end": 40770.04, + "probability": 0.8336 + }, + { + "start": 40770.62, + "end": 40773.08, + "probability": 0.9076 + }, + { + "start": 40774.0, + "end": 40775.4, + "probability": 0.9856 + }, + { + "start": 40775.94, + "end": 40779.0, + "probability": 0.833 + }, + { + "start": 40779.0, + "end": 40779.56, + "probability": 0.3759 + }, + { + "start": 40780.32, + "end": 40783.16, + "probability": 0.9917 + }, + { + "start": 40783.24, + "end": 40787.02, + "probability": 0.9742 + }, + { + "start": 40787.64, + "end": 40788.34, + "probability": 0.853 + }, + { + "start": 40789.46, + "end": 40791.98, + "probability": 0.9275 + }, + { + "start": 40792.54, + "end": 40793.64, + "probability": 0.6669 + }, + { + "start": 40793.78, + "end": 40795.92, + "probability": 0.9616 + }, + { + "start": 40796.0, + "end": 40796.34, + "probability": 0.8822 + }, + { + "start": 40797.38, + "end": 40799.1, + "probability": 0.9474 + }, + { + "start": 40799.16, + "end": 40800.42, + "probability": 0.9714 + }, + { + "start": 40800.98, + "end": 40804.46, + "probability": 0.9883 + }, + { + "start": 40806.02, + "end": 40809.22, + "probability": 0.7062 + }, + { + "start": 40809.98, + "end": 40810.88, + "probability": 0.7218 + }, + { + "start": 40811.82, + "end": 40813.72, + "probability": 0.9088 + }, + { + "start": 40814.18, + "end": 40814.76, + "probability": 0.9455 + }, + { + "start": 40815.32, + "end": 40818.8, + "probability": 0.7546 + }, + { + "start": 40819.38, + "end": 40821.84, + "probability": 0.9862 + }, + { + "start": 40822.98, + "end": 40824.6, + "probability": 0.9402 + }, + { + "start": 40825.58, + "end": 40829.46, + "probability": 0.9695 + }, + { + "start": 40830.02, + "end": 40831.15, + "probability": 0.9736 + }, + { + "start": 40831.82, + "end": 40832.52, + "probability": 0.954 + }, + { + "start": 40833.3, + "end": 40834.96, + "probability": 0.8425 + }, + { + "start": 40835.56, + "end": 40836.68, + "probability": 0.9958 + }, + { + "start": 40837.88, + "end": 40840.58, + "probability": 0.8582 + }, + { + "start": 40841.66, + "end": 40845.36, + "probability": 0.9971 + }, + { + "start": 40845.74, + "end": 40849.64, + "probability": 0.9951 + }, + { + "start": 40850.56, + "end": 40852.18, + "probability": 0.9693 + }, + { + "start": 40852.32, + "end": 40853.8, + "probability": 0.9346 + }, + { + "start": 40854.38, + "end": 40856.36, + "probability": 0.9681 + }, + { + "start": 40857.16, + "end": 40858.0, + "probability": 0.9977 + }, + { + "start": 40858.58, + "end": 40860.74, + "probability": 0.9923 + }, + { + "start": 40862.02, + "end": 40864.7, + "probability": 0.9661 + }, + { + "start": 40865.2, + "end": 40867.48, + "probability": 0.9951 + }, + { + "start": 40867.58, + "end": 40868.1, + "probability": 0.8577 + }, + { + "start": 40868.16, + "end": 40868.86, + "probability": 0.9029 + }, + { + "start": 40869.78, + "end": 40872.8, + "probability": 0.9859 + }, + { + "start": 40873.92, + "end": 40874.3, + "probability": 0.9648 + }, + { + "start": 40875.44, + "end": 40878.88, + "probability": 0.9918 + }, + { + "start": 40879.44, + "end": 40881.48, + "probability": 0.9408 + }, + { + "start": 40882.16, + "end": 40883.46, + "probability": 0.9953 + }, + { + "start": 40884.1, + "end": 40886.78, + "probability": 0.8721 + }, + { + "start": 40887.4, + "end": 40891.78, + "probability": 0.7266 + }, + { + "start": 40892.1, + "end": 40894.86, + "probability": 0.9785 + }, + { + "start": 40895.46, + "end": 40898.32, + "probability": 0.7393 + }, + { + "start": 40899.22, + "end": 40900.31, + "probability": 0.5082 + }, + { + "start": 40901.46, + "end": 40907.08, + "probability": 0.982 + }, + { + "start": 40907.62, + "end": 40908.4, + "probability": 0.8213 + }, + { + "start": 40909.0, + "end": 40909.0, + "probability": 0.5284 + }, + { + "start": 40909.0, + "end": 40913.18, + "probability": 0.9659 + }, + { + "start": 40913.9, + "end": 40916.02, + "probability": 0.8833 + }, + { + "start": 40916.74, + "end": 40919.22, + "probability": 0.9501 + }, + { + "start": 40919.8, + "end": 40920.76, + "probability": 0.9935 + }, + { + "start": 40921.38, + "end": 40924.68, + "probability": 0.9548 + }, + { + "start": 40924.68, + "end": 40926.72, + "probability": 0.9863 + }, + { + "start": 40927.84, + "end": 40928.54, + "probability": 0.7189 + }, + { + "start": 40929.2, + "end": 40934.22, + "probability": 0.9055 + }, + { + "start": 40935.22, + "end": 40940.4, + "probability": 0.9915 + }, + { + "start": 40941.06, + "end": 40944.52, + "probability": 0.9921 + }, + { + "start": 40945.38, + "end": 40946.42, + "probability": 0.985 + }, + { + "start": 40947.18, + "end": 40951.22, + "probability": 0.988 + }, + { + "start": 40951.3, + "end": 40954.26, + "probability": 0.9613 + }, + { + "start": 40955.08, + "end": 40956.66, + "probability": 0.5931 + }, + { + "start": 40956.84, + "end": 40959.02, + "probability": 0.674 + }, + { + "start": 40959.14, + "end": 40960.28, + "probability": 0.7155 + }, + { + "start": 40961.36, + "end": 40963.08, + "probability": 0.9162 + }, + { + "start": 40963.6, + "end": 40964.64, + "probability": 0.9941 + }, + { + "start": 40965.24, + "end": 40967.64, + "probability": 0.988 + }, + { + "start": 40968.52, + "end": 40971.16, + "probability": 0.9688 + }, + { + "start": 40971.76, + "end": 40976.08, + "probability": 0.9954 + }, + { + "start": 40977.24, + "end": 40979.72, + "probability": 0.9728 + }, + { + "start": 40980.46, + "end": 40983.9, + "probability": 0.9874 + }, + { + "start": 40984.36, + "end": 40989.06, + "probability": 0.9795 + }, + { + "start": 40989.82, + "end": 40992.3, + "probability": 0.8616 + }, + { + "start": 40992.82, + "end": 40996.12, + "probability": 0.9754 + }, + { + "start": 40996.72, + "end": 40999.17, + "probability": 0.9885 + }, + { + "start": 40999.28, + "end": 41001.54, + "probability": 0.9982 + }, + { + "start": 41002.6, + "end": 41005.16, + "probability": 0.749 + }, + { + "start": 41005.68, + "end": 41008.96, + "probability": 0.6657 + }, + { + "start": 41009.04, + "end": 41010.44, + "probability": 0.8867 + }, + { + "start": 41011.04, + "end": 41014.52, + "probability": 0.9953 + }, + { + "start": 41014.56, + "end": 41017.68, + "probability": 0.9722 + }, + { + "start": 41018.58, + "end": 41019.12, + "probability": 0.7794 + }, + { + "start": 41019.64, + "end": 41022.16, + "probability": 0.9817 + }, + { + "start": 41022.72, + "end": 41026.36, + "probability": 0.847 + }, + { + "start": 41027.02, + "end": 41030.46, + "probability": 0.953 + }, + { + "start": 41030.54, + "end": 41033.52, + "probability": 0.9243 + }, + { + "start": 41033.66, + "end": 41034.72, + "probability": 0.9978 + }, + { + "start": 41035.44, + "end": 41037.92, + "probability": 0.9894 + }, + { + "start": 41038.46, + "end": 41040.3, + "probability": 0.9513 + }, + { + "start": 41041.0, + "end": 41042.52, + "probability": 0.9435 + }, + { + "start": 41043.08, + "end": 41046.2, + "probability": 0.8381 + }, + { + "start": 41046.44, + "end": 41048.38, + "probability": 0.5652 + }, + { + "start": 41048.92, + "end": 41050.66, + "probability": 0.9036 + }, + { + "start": 41051.2, + "end": 41054.44, + "probability": 0.8572 + }, + { + "start": 41054.48, + "end": 41055.34, + "probability": 0.9828 + }, + { + "start": 41056.14, + "end": 41060.16, + "probability": 0.9937 + }, + { + "start": 41060.16, + "end": 41064.12, + "probability": 0.9665 + }, + { + "start": 41064.68, + "end": 41066.26, + "probability": 0.9397 + }, + { + "start": 41067.02, + "end": 41069.44, + "probability": 0.9663 + }, + { + "start": 41069.56, + "end": 41071.18, + "probability": 0.9762 + }, + { + "start": 41071.18, + "end": 41074.36, + "probability": 0.9977 + }, + { + "start": 41075.0, + "end": 41078.1, + "probability": 0.9874 + }, + { + "start": 41078.1, + "end": 41080.58, + "probability": 0.9835 + }, + { + "start": 41081.62, + "end": 41083.3, + "probability": 0.9609 + }, + { + "start": 41083.98, + "end": 41086.18, + "probability": 0.9888 + }, + { + "start": 41086.18, + "end": 41090.02, + "probability": 0.9992 + }, + { + "start": 41090.54, + "end": 41093.96, + "probability": 0.9899 + }, + { + "start": 41094.38, + "end": 41094.62, + "probability": 0.7177 + }, + { + "start": 41095.0, + "end": 41096.56, + "probability": 0.2287 + }, + { + "start": 41096.84, + "end": 41099.12, + "probability": 0.9917 + }, + { + "start": 41099.14, + "end": 41099.76, + "probability": 0.6516 + }, + { + "start": 41100.44, + "end": 41101.36, + "probability": 0.9946 + }, + { + "start": 41101.92, + "end": 41106.7, + "probability": 0.9978 + }, + { + "start": 41106.7, + "end": 41109.8, + "probability": 0.9984 + }, + { + "start": 41110.34, + "end": 41112.92, + "probability": 0.9626 + }, + { + "start": 41113.6, + "end": 41116.28, + "probability": 0.9761 + }, + { + "start": 41116.74, + "end": 41118.28, + "probability": 0.8538 + }, + { + "start": 41118.58, + "end": 41119.12, + "probability": 0.8522 + }, + { + "start": 41119.2, + "end": 41120.22, + "probability": 0.6716 + }, + { + "start": 41120.84, + "end": 41121.28, + "probability": 0.9465 + }, + { + "start": 41121.42, + "end": 41124.02, + "probability": 0.8888 + }, + { + "start": 41124.7, + "end": 41126.96, + "probability": 0.9292 + }, + { + "start": 41127.34, + "end": 41127.56, + "probability": 0.7739 + }, + { + "start": 41128.54, + "end": 41128.78, + "probability": 0.7687 + }, + { + "start": 41128.86, + "end": 41129.72, + "probability": 0.9769 + }, + { + "start": 41130.06, + "end": 41131.94, + "probability": 0.9888 + }, + { + "start": 41132.3, + "end": 41134.36, + "probability": 0.9917 + }, + { + "start": 41134.46, + "end": 41136.57, + "probability": 0.8076 + }, + { + "start": 41136.92, + "end": 41137.43, + "probability": 0.5288 + }, + { + "start": 41138.04, + "end": 41139.62, + "probability": 0.9797 + }, + { + "start": 41140.08, + "end": 41140.68, + "probability": 0.746 + }, + { + "start": 41141.54, + "end": 41141.9, + "probability": 0.9692 + }, + { + "start": 41143.06, + "end": 41144.42, + "probability": 0.9663 + }, + { + "start": 41145.1, + "end": 41149.02, + "probability": 0.8377 + }, + { + "start": 41149.6, + "end": 41151.92, + "probability": 0.9558 + }, + { + "start": 41152.34, + "end": 41152.66, + "probability": 0.7268 + }, + { + "start": 41152.78, + "end": 41153.28, + "probability": 0.6004 + }, + { + "start": 41153.7, + "end": 41155.08, + "probability": 0.9602 + }, + { + "start": 41156.28, + "end": 41157.0, + "probability": 0.521 + }, + { + "start": 41157.4, + "end": 41158.16, + "probability": 0.8958 + }, + { + "start": 41169.2, + "end": 41170.44, + "probability": 0.7436 + }, + { + "start": 41172.2, + "end": 41173.32, + "probability": 0.8511 + }, + { + "start": 41175.16, + "end": 41175.7, + "probability": 0.8674 + }, + { + "start": 41176.46, + "end": 41177.74, + "probability": 0.9666 + }, + { + "start": 41179.14, + "end": 41182.06, + "probability": 0.3598 + }, + { + "start": 41183.34, + "end": 41185.9, + "probability": 0.9877 + }, + { + "start": 41185.9, + "end": 41188.66, + "probability": 0.9989 + }, + { + "start": 41190.14, + "end": 41192.38, + "probability": 0.8368 + }, + { + "start": 41193.18, + "end": 41196.06, + "probability": 0.9795 + }, + { + "start": 41198.68, + "end": 41199.3, + "probability": 0.9359 + }, + { + "start": 41200.06, + "end": 41200.98, + "probability": 0.9746 + }, + { + "start": 41202.0, + "end": 41204.64, + "probability": 0.9968 + }, + { + "start": 41204.64, + "end": 41208.36, + "probability": 0.9862 + }, + { + "start": 41209.08, + "end": 41211.9, + "probability": 0.9907 + }, + { + "start": 41212.92, + "end": 41213.88, + "probability": 0.9935 + }, + { + "start": 41215.2, + "end": 41217.2, + "probability": 0.9113 + }, + { + "start": 41217.96, + "end": 41221.2, + "probability": 0.9839 + }, + { + "start": 41222.44, + "end": 41223.08, + "probability": 0.9859 + }, + { + "start": 41223.92, + "end": 41227.72, + "probability": 0.9934 + }, + { + "start": 41228.38, + "end": 41231.3, + "probability": 0.9763 + }, + { + "start": 41234.16, + "end": 41235.94, + "probability": 0.9143 + }, + { + "start": 41236.8, + "end": 41239.8, + "probability": 0.9824 + }, + { + "start": 41240.56, + "end": 41242.02, + "probability": 0.9102 + }, + { + "start": 41242.02, + "end": 41245.1, + "probability": 0.9899 + }, + { + "start": 41245.1, + "end": 41249.09, + "probability": 0.8941 + }, + { + "start": 41249.92, + "end": 41253.58, + "probability": 0.9907 + }, + { + "start": 41255.02, + "end": 41256.48, + "probability": 0.9803 + }, + { + "start": 41257.82, + "end": 41259.34, + "probability": 0.9196 + }, + { + "start": 41260.82, + "end": 41264.36, + "probability": 0.6844 + }, + { + "start": 41264.98, + "end": 41269.22, + "probability": 0.9156 + }, + { + "start": 41269.58, + "end": 41269.8, + "probability": 0.6672 + }, + { + "start": 41270.76, + "end": 41271.84, + "probability": 0.4998 + }, + { + "start": 41272.32, + "end": 41273.24, + "probability": 0.7331 + }, + { + "start": 41274.04, + "end": 41278.84, + "probability": 0.8822 + }, + { + "start": 41279.46, + "end": 41280.46, + "probability": 0.5295 + }, + { + "start": 41282.3, + "end": 41284.56, + "probability": 0.2622 + }, + { + "start": 41285.48, + "end": 41286.6, + "probability": 0.6381 + }, + { + "start": 41286.6, + "end": 41286.62, + "probability": 0.6644 + }, + { + "start": 41287.18, + "end": 41288.46, + "probability": 0.8325 + }, + { + "start": 41289.92, + "end": 41291.24, + "probability": 0.3048 + }, + { + "start": 41292.36, + "end": 41296.38, + "probability": 0.8594 + }, + { + "start": 41296.94, + "end": 41297.34, + "probability": 0.0839 + }, + { + "start": 41298.36, + "end": 41302.68, + "probability": 0.4629 + }, + { + "start": 41303.34, + "end": 41306.14, + "probability": 0.9797 + }, + { + "start": 41306.7, + "end": 41311.1, + "probability": 0.9294 + }, + { + "start": 41311.4, + "end": 41317.42, + "probability": 0.8409 + }, + { + "start": 41317.54, + "end": 41319.18, + "probability": 0.877 + }, + { + "start": 41319.26, + "end": 41319.98, + "probability": 0.7415 + }, + { + "start": 41338.3, + "end": 41338.3, + "probability": 0.5113 + }, + { + "start": 41338.3, + "end": 41338.3, + "probability": 0.2886 + }, + { + "start": 41338.3, + "end": 41341.87, + "probability": 0.9485 + }, + { + "start": 41342.58, + "end": 41342.82, + "probability": 0.7028 + }, + { + "start": 41343.58, + "end": 41345.43, + "probability": 0.9891 + }, + { + "start": 41346.5, + "end": 41350.54, + "probability": 0.989 + }, + { + "start": 41351.08, + "end": 41353.92, + "probability": 0.9203 + }, + { + "start": 41353.92, + "end": 41357.38, + "probability": 0.9934 + }, + { + "start": 41357.98, + "end": 41359.32, + "probability": 0.9976 + }, + { + "start": 41359.84, + "end": 41363.26, + "probability": 0.9836 + }, + { + "start": 41364.96, + "end": 41365.34, + "probability": 0.3388 + }, + { + "start": 41365.54, + "end": 41366.52, + "probability": 0.471 + }, + { + "start": 41368.16, + "end": 41369.4, + "probability": 0.7216 + }, + { + "start": 41371.3, + "end": 41372.03, + "probability": 0.9731 + }, + { + "start": 41372.8, + "end": 41374.92, + "probability": 0.9028 + }, + { + "start": 41375.0, + "end": 41375.28, + "probability": 0.5458 + }, + { + "start": 41375.32, + "end": 41378.06, + "probability": 0.937 + }, + { + "start": 41378.26, + "end": 41378.85, + "probability": 0.7964 + }, + { + "start": 41379.44, + "end": 41379.76, + "probability": 0.9644 + }, + { + "start": 41380.44, + "end": 41390.18, + "probability": 0.969 + }, + { + "start": 41390.18, + "end": 41394.94, + "probability": 0.9417 + }, + { + "start": 41395.64, + "end": 41396.12, + "probability": 0.7884 + }, + { + "start": 41397.06, + "end": 41397.34, + "probability": 0.7352 + }, + { + "start": 41398.72, + "end": 41399.8, + "probability": 0.7979 + }, + { + "start": 41399.84, + "end": 41402.08, + "probability": 0.926 + }, + { + "start": 41402.18, + "end": 41402.7, + "probability": 0.9531 + }, + { + "start": 41403.12, + "end": 41405.22, + "probability": 0.9955 + }, + { + "start": 41405.52, + "end": 41405.86, + "probability": 0.448 + }, + { + "start": 41406.52, + "end": 41409.06, + "probability": 0.998 + }, + { + "start": 41409.78, + "end": 41415.24, + "probability": 0.9783 + }, + { + "start": 41416.06, + "end": 41423.3, + "probability": 0.9905 + }, + { + "start": 41423.3, + "end": 41427.64, + "probability": 0.9952 + }, + { + "start": 41427.64, + "end": 41431.64, + "probability": 0.9072 + }, + { + "start": 41432.06, + "end": 41432.72, + "probability": 0.7598 + }, + { + "start": 41433.24, + "end": 41435.74, + "probability": 0.981 + }, + { + "start": 41436.76, + "end": 41438.72, + "probability": 0.9727 + }, + { + "start": 41439.82, + "end": 41440.26, + "probability": 0.7562 + }, + { + "start": 41441.42, + "end": 41442.84, + "probability": 0.9773 + }, + { + "start": 41443.52, + "end": 41445.8, + "probability": 0.9587 + }, + { + "start": 41446.1, + "end": 41447.7, + "probability": 0.7709 + }, + { + "start": 41448.22, + "end": 41448.76, + "probability": 0.8378 + }, + { + "start": 41449.38, + "end": 41449.7, + "probability": 0.6987 + }, + { + "start": 41452.24, + "end": 41454.92, + "probability": 0.7409 + }, + { + "start": 41454.92, + "end": 41456.24, + "probability": 0.7395 + }, + { + "start": 41456.54, + "end": 41458.94, + "probability": 0.9893 + }, + { + "start": 41459.18, + "end": 41462.52, + "probability": 0.9766 + }, + { + "start": 41462.52, + "end": 41465.64, + "probability": 0.9874 + }, + { + "start": 41466.06, + "end": 41467.28, + "probability": 0.998 + }, + { + "start": 41467.82, + "end": 41473.38, + "probability": 0.9796 + }, + { + "start": 41473.82, + "end": 41476.58, + "probability": 0.9949 + }, + { + "start": 41477.24, + "end": 41480.22, + "probability": 0.6577 + }, + { + "start": 41480.66, + "end": 41482.06, + "probability": 0.8982 + }, + { + "start": 41482.3, + "end": 41483.2, + "probability": 0.9268 + }, + { + "start": 41483.4, + "end": 41484.86, + "probability": 0.7318 + }, + { + "start": 41485.4, + "end": 41489.12, + "probability": 0.9604 + }, + { + "start": 41489.3, + "end": 41494.02, + "probability": 0.9902 + }, + { + "start": 41494.46, + "end": 41496.04, + "probability": 0.8806 + }, + { + "start": 41496.28, + "end": 41498.0, + "probability": 0.6957 + }, + { + "start": 41498.04, + "end": 41499.7, + "probability": 0.4369 + }, + { + "start": 41499.98, + "end": 41499.98, + "probability": 0.0125 + }, + { + "start": 41499.98, + "end": 41501.46, + "probability": 0.7506 + }, + { + "start": 41502.22, + "end": 41503.28, + "probability": 0.6448 + }, + { + "start": 41503.78, + "end": 41505.98, + "probability": 0.9381 + }, + { + "start": 41506.1, + "end": 41506.89, + "probability": 0.6782 + }, + { + "start": 41507.5, + "end": 41510.1, + "probability": 0.9618 + }, + { + "start": 41510.32, + "end": 41511.72, + "probability": 0.9811 + }, + { + "start": 41512.02, + "end": 41513.14, + "probability": 0.95 + }, + { + "start": 41513.7, + "end": 41513.9, + "probability": 0.3563 + }, + { + "start": 41514.78, + "end": 41515.54, + "probability": 0.6456 + }, + { + "start": 41516.9, + "end": 41521.92, + "probability": 0.9922 + }, + { + "start": 41522.3, + "end": 41526.28, + "probability": 0.9976 + }, + { + "start": 41526.88, + "end": 41528.6, + "probability": 0.9293 + }, + { + "start": 41528.78, + "end": 41533.84, + "probability": 0.8497 + }, + { + "start": 41533.96, + "end": 41534.4, + "probability": 0.7191 + }, + { + "start": 41534.44, + "end": 41535.51, + "probability": 0.8582 + }, + { + "start": 41536.2, + "end": 41538.28, + "probability": 0.6061 + }, + { + "start": 41538.46, + "end": 41541.66, + "probability": 0.963 + }, + { + "start": 41542.2, + "end": 41545.34, + "probability": 0.981 + }, + { + "start": 41545.7, + "end": 41546.4, + "probability": 0.9814 + }, + { + "start": 41546.6, + "end": 41548.74, + "probability": 0.9906 + }, + { + "start": 41549.1, + "end": 41549.66, + "probability": 0.8027 + }, + { + "start": 41549.74, + "end": 41550.38, + "probability": 0.9001 + }, + { + "start": 41550.48, + "end": 41551.1, + "probability": 0.9364 + }, + { + "start": 41551.3, + "end": 41552.98, + "probability": 0.9268 + }, + { + "start": 41553.72, + "end": 41555.72, + "probability": 0.9803 + }, + { + "start": 41556.38, + "end": 41556.94, + "probability": 0.7313 + }, + { + "start": 41556.98, + "end": 41559.88, + "probability": 0.9589 + }, + { + "start": 41560.58, + "end": 41563.04, + "probability": 0.6437 + }, + { + "start": 41563.52, + "end": 41563.78, + "probability": 0.3564 + }, + { + "start": 41565.22, + "end": 41567.04, + "probability": 0.9388 + }, + { + "start": 41567.6, + "end": 41569.32, + "probability": 0.9539 + }, + { + "start": 41570.12, + "end": 41575.92, + "probability": 0.9845 + }, + { + "start": 41576.66, + "end": 41577.74, + "probability": 0.6792 + }, + { + "start": 41578.62, + "end": 41580.82, + "probability": 0.7945 + }, + { + "start": 41580.9, + "end": 41582.56, + "probability": 0.8722 + }, + { + "start": 41583.28, + "end": 41584.94, + "probability": 0.9941 + }, + { + "start": 41586.82, + "end": 41588.46, + "probability": 0.9491 + }, + { + "start": 41588.68, + "end": 41594.66, + "probability": 0.8147 + }, + { + "start": 41594.78, + "end": 41594.88, + "probability": 0.0491 + }, + { + "start": 41595.58, + "end": 41597.22, + "probability": 0.6833 + }, + { + "start": 41597.26, + "end": 41600.68, + "probability": 0.5761 + }, + { + "start": 41600.72, + "end": 41602.84, + "probability": 0.1031 + }, + { + "start": 41603.04, + "end": 41604.58, + "probability": 0.8491 + }, + { + "start": 41604.66, + "end": 41606.08, + "probability": 0.923 + }, + { + "start": 41606.24, + "end": 41606.42, + "probability": 0.4723 + }, + { + "start": 41607.16, + "end": 41608.3, + "probability": 0.6169 + }, + { + "start": 41608.32, + "end": 41609.54, + "probability": 0.7461 + }, + { + "start": 41610.74, + "end": 41611.62, + "probability": 0.5541 + }, + { + "start": 41611.72, + "end": 41615.24, + "probability": 0.8087 + }, + { + "start": 41615.8, + "end": 41618.34, + "probability": 0.9056 + }, + { + "start": 41618.84, + "end": 41620.76, + "probability": 0.9409 + }, + { + "start": 41620.88, + "end": 41621.86, + "probability": 0.8342 + }, + { + "start": 41623.18, + "end": 41630.14, + "probability": 0.9951 + }, + { + "start": 41630.66, + "end": 41632.62, + "probability": 0.836 + }, + { + "start": 41640.9, + "end": 41641.58, + "probability": 0.5106 + }, + { + "start": 41641.66, + "end": 41642.62, + "probability": 0.2932 + }, + { + "start": 41642.84, + "end": 41644.92, + "probability": 0.8564 + }, + { + "start": 41645.84, + "end": 41647.58, + "probability": 0.9755 + }, + { + "start": 41648.52, + "end": 41649.2, + "probability": 0.4349 + }, + { + "start": 41649.88, + "end": 41653.24, + "probability": 0.6767 + }, + { + "start": 41653.32, + "end": 41653.42, + "probability": 0.3233 + }, + { + "start": 41654.22, + "end": 41655.12, + "probability": 0.135 + }, + { + "start": 41655.12, + "end": 41655.12, + "probability": 0.0534 + }, + { + "start": 41655.26, + "end": 41659.94, + "probability": 0.7484 + }, + { + "start": 41660.64, + "end": 41661.08, + "probability": 0.9224 + }, + { + "start": 41661.66, + "end": 41663.76, + "probability": 0.9658 + }, + { + "start": 41663.76, + "end": 41666.14, + "probability": 0.9863 + }, + { + "start": 41666.96, + "end": 41669.8, + "probability": 0.8844 + }, + { + "start": 41670.54, + "end": 41673.9, + "probability": 0.8947 + }, + { + "start": 41674.72, + "end": 41677.04, + "probability": 0.9895 + }, + { + "start": 41677.64, + "end": 41680.32, + "probability": 0.9262 + }, + { + "start": 41680.4, + "end": 41683.2, + "probability": 0.968 + }, + { + "start": 41683.2, + "end": 41686.14, + "probability": 0.9273 + }, + { + "start": 41687.62, + "end": 41688.08, + "probability": 0.3873 + }, + { + "start": 41688.22, + "end": 41688.6, + "probability": 0.5958 + }, + { + "start": 41690.38, + "end": 41693.22, + "probability": 0.5911 + }, + { + "start": 41694.82, + "end": 41696.3, + "probability": 0.7193 + }, + { + "start": 41697.06, + "end": 41698.56, + "probability": 0.8579 + }, + { + "start": 41699.3, + "end": 41702.14, + "probability": 0.9976 + }, + { + "start": 41702.14, + "end": 41707.0, + "probability": 0.9644 + }, + { + "start": 41707.54, + "end": 41713.9, + "probability": 0.9448 + }, + { + "start": 41715.13, + "end": 41717.82, + "probability": 0.9452 + }, + { + "start": 41718.74, + "end": 41720.9, + "probability": 0.9872 + }, + { + "start": 41721.52, + "end": 41724.32, + "probability": 0.9841 + }, + { + "start": 41724.76, + "end": 41727.1, + "probability": 0.9446 + }, + { + "start": 41727.2, + "end": 41730.64, + "probability": 0.9434 + }, + { + "start": 41730.72, + "end": 41731.94, + "probability": 0.9628 + }, + { + "start": 41732.3, + "end": 41733.97, + "probability": 0.9873 + }, + { + "start": 41734.7, + "end": 41738.02, + "probability": 0.85 + }, + { + "start": 41738.38, + "end": 41739.38, + "probability": 0.948 + }, + { + "start": 41739.8, + "end": 41740.22, + "probability": 0.7443 + }, + { + "start": 41741.0, + "end": 41743.4, + "probability": 0.9671 + }, + { + "start": 41743.54, + "end": 41744.94, + "probability": 0.9647 + }, + { + "start": 41745.28, + "end": 41750.5, + "probability": 0.9936 + }, + { + "start": 41751.42, + "end": 41754.0, + "probability": 0.9519 + }, + { + "start": 41754.68, + "end": 41755.68, + "probability": 0.9568 + }, + { + "start": 41755.86, + "end": 41758.28, + "probability": 0.9109 + }, + { + "start": 41758.46, + "end": 41762.65, + "probability": 0.9501 + }, + { + "start": 41764.64, + "end": 41770.18, + "probability": 0.9967 + }, + { + "start": 41770.72, + "end": 41772.11, + "probability": 0.9902 + }, + { + "start": 41773.36, + "end": 41776.87, + "probability": 0.855 + }, + { + "start": 41779.28, + "end": 41781.66, + "probability": 0.9718 + }, + { + "start": 41782.16, + "end": 41783.5, + "probability": 0.7508 + }, + { + "start": 41783.98, + "end": 41785.0, + "probability": 0.4465 + }, + { + "start": 41785.96, + "end": 41786.48, + "probability": 0.829 + }, + { + "start": 41786.9, + "end": 41788.8, + "probability": 0.981 + }, + { + "start": 41789.0, + "end": 41789.46, + "probability": 0.8387 + }, + { + "start": 41791.6, + "end": 41794.3, + "probability": 0.9574 + }, + { + "start": 41796.0, + "end": 41796.34, + "probability": 0.7584 + }, + { + "start": 41797.42, + "end": 41798.34, + "probability": 0.9018 + }, + { + "start": 41806.88, + "end": 41808.8, + "probability": 0.8582 + }, + { + "start": 41809.68, + "end": 41811.18, + "probability": 0.9932 + }, + { + "start": 41811.56, + "end": 41812.01, + "probability": 0.9312 + }, + { + "start": 41812.96, + "end": 41815.28, + "probability": 0.8759 + }, + { + "start": 41816.0, + "end": 41821.54, + "probability": 0.7987 + }, + { + "start": 41822.36, + "end": 41829.06, + "probability": 0.9892 + }, + { + "start": 41829.86, + "end": 41832.0, + "probability": 0.7736 + }, + { + "start": 41832.64, + "end": 41836.14, + "probability": 0.9391 + }, + { + "start": 41836.44, + "end": 41839.82, + "probability": 0.891 + }, + { + "start": 41840.5, + "end": 41845.18, + "probability": 0.9558 + }, + { + "start": 41845.36, + "end": 41847.18, + "probability": 0.9766 + }, + { + "start": 41848.68, + "end": 41852.84, + "probability": 0.866 + }, + { + "start": 41854.02, + "end": 41854.36, + "probability": 0.868 + }, + { + "start": 41855.04, + "end": 41855.8, + "probability": 0.9683 + }, + { + "start": 41857.24, + "end": 41858.26, + "probability": 0.8083 + }, + { + "start": 41859.06, + "end": 41863.22, + "probability": 0.9369 + }, + { + "start": 41864.72, + "end": 41868.44, + "probability": 0.8844 + }, + { + "start": 41868.46, + "end": 41870.7, + "probability": 0.6729 + }, + { + "start": 41871.06, + "end": 41872.36, + "probability": 0.9548 + }, + { + "start": 41872.62, + "end": 41876.92, + "probability": 0.971 + }, + { + "start": 41877.26, + "end": 41878.2, + "probability": 0.5092 + }, + { + "start": 41878.2, + "end": 41879.24, + "probability": 0.9283 + }, + { + "start": 41879.34, + "end": 41882.18, + "probability": 0.6758 + }, + { + "start": 41882.2, + "end": 41882.58, + "probability": 0.847 + }, + { + "start": 41882.68, + "end": 41883.84, + "probability": 0.9054 + }, + { + "start": 41883.92, + "end": 41884.58, + "probability": 0.926 + }, + { + "start": 41885.46, + "end": 41892.84, + "probability": 0.9019 + }, + { + "start": 41892.86, + "end": 41893.36, + "probability": 0.3089 + }, + { + "start": 41894.22, + "end": 41894.94, + "probability": 0.7627 + }, + { + "start": 41895.4, + "end": 41897.54, + "probability": 0.929 + }, + { + "start": 41899.06, + "end": 41901.02, + "probability": 0.5363 + }, + { + "start": 41901.4, + "end": 41905.42, + "probability": 0.4471 + }, + { + "start": 41906.16, + "end": 41909.84, + "probability": 0.9085 + }, + { + "start": 41910.38, + "end": 41913.12, + "probability": 0.687 + }, + { + "start": 41913.5, + "end": 41914.68, + "probability": 0.6318 + }, + { + "start": 41915.1, + "end": 41915.68, + "probability": 0.8775 + }, + { + "start": 41917.88, + "end": 41919.7, + "probability": 0.7673 + }, + { + "start": 41922.52, + "end": 41926.22, + "probability": 0.9836 + }, + { + "start": 41926.78, + "end": 41929.56, + "probability": 0.9142 + }, + { + "start": 41930.22, + "end": 41934.16, + "probability": 0.8972 + }, + { + "start": 41935.1, + "end": 41940.08, + "probability": 0.9724 + }, + { + "start": 41941.26, + "end": 41946.58, + "probability": 0.9819 + }, + { + "start": 41947.6, + "end": 41948.56, + "probability": 0.6835 + }, + { + "start": 41949.4, + "end": 41954.5, + "probability": 0.9927 + }, + { + "start": 41954.96, + "end": 41955.26, + "probability": 0.5607 + }, + { + "start": 41955.6, + "end": 41956.1, + "probability": 0.6445 + }, + { + "start": 41957.0, + "end": 41957.38, + "probability": 0.7889 + }, + { + "start": 41957.38, + "end": 41958.82, + "probability": 0.8988 + }, + { + "start": 41959.3, + "end": 41961.56, + "probability": 0.9933 + }, + { + "start": 41961.56, + "end": 41964.12, + "probability": 0.9785 + }, + { + "start": 41964.92, + "end": 41965.24, + "probability": 0.5114 + }, + { + "start": 41965.74, + "end": 41971.3, + "probability": 0.9761 + }, + { + "start": 41971.4, + "end": 41973.66, + "probability": 0.9985 + }, + { + "start": 41975.22, + "end": 41975.84, + "probability": 0.6984 + }, + { + "start": 41975.94, + "end": 41980.17, + "probability": 0.8626 + }, + { + "start": 41981.02, + "end": 41985.34, + "probability": 0.9485 + }, + { + "start": 41985.5, + "end": 41990.68, + "probability": 0.9875 + }, + { + "start": 41990.98, + "end": 41997.36, + "probability": 0.9958 + }, + { + "start": 41997.36, + "end": 42002.76, + "probability": 0.9837 + }, + { + "start": 42002.78, + "end": 42005.06, + "probability": 0.9052 + }, + { + "start": 42005.82, + "end": 42006.9, + "probability": 0.9731 + }, + { + "start": 42007.46, + "end": 42009.5, + "probability": 0.8149 + }, + { + "start": 42010.5, + "end": 42011.86, + "probability": 0.7528 + }, + { + "start": 42012.78, + "end": 42013.38, + "probability": 0.7073 + }, + { + "start": 42013.64, + "end": 42014.38, + "probability": 0.9364 + }, + { + "start": 42015.32, + "end": 42016.76, + "probability": 0.8966 + }, + { + "start": 42018.1, + "end": 42024.12, + "probability": 0.9828 + }, + { + "start": 42024.76, + "end": 42029.4, + "probability": 0.9679 + }, + { + "start": 42029.4, + "end": 42033.48, + "probability": 0.9949 + }, + { + "start": 42034.08, + "end": 42035.46, + "probability": 0.8323 + }, + { + "start": 42035.52, + "end": 42041.58, + "probability": 0.9509 + }, + { + "start": 42041.72, + "end": 42045.96, + "probability": 0.9986 + }, + { + "start": 42046.52, + "end": 42047.54, + "probability": 0.5778 + }, + { + "start": 42047.56, + "end": 42049.44, + "probability": 0.8822 + }, + { + "start": 42049.5, + "end": 42053.66, + "probability": 0.9854 + }, + { + "start": 42053.78, + "end": 42056.44, + "probability": 0.9562 + }, + { + "start": 42057.8, + "end": 42058.26, + "probability": 0.7953 + }, + { + "start": 42058.42, + "end": 42063.82, + "probability": 0.8895 + }, + { + "start": 42064.78, + "end": 42066.4, + "probability": 0.9966 + }, + { + "start": 42067.0, + "end": 42070.64, + "probability": 0.9886 + }, + { + "start": 42071.14, + "end": 42072.52, + "probability": 0.9774 + }, + { + "start": 42074.22, + "end": 42075.28, + "probability": 0.7289 + }, + { + "start": 42076.02, + "end": 42076.28, + "probability": 0.0035 + } + ], + "segments_count": 14110, + "words_count": 66861, + "avg_words_per_segment": 4.7386, + "avg_segment_duration": 1.926, + "avg_words_per_minute": 95.1815, + "plenum_id": "107579", + "duration": 42147.49, + "title": null, + "plenum_date": "2022-05-11" +} \ No newline at end of file