diff --git "a/132928/metadata.json" "b/132928/metadata.json" new file mode 100644--- /dev/null +++ "b/132928/metadata.json" @@ -0,0 +1,54022 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "132928", + "quality_score": 0.9006, + "per_segment_quality_scores": [ + { + "start": 102.26, + "end": 106.94, + "probability": 0.8973 + }, + { + "start": 108.34, + "end": 108.62, + "probability": 0.4621 + }, + { + "start": 108.76, + "end": 110.4, + "probability": 0.7888 + }, + { + "start": 110.56, + "end": 111.56, + "probability": 0.6209 + }, + { + "start": 111.64, + "end": 112.92, + "probability": 0.8987 + }, + { + "start": 113.08, + "end": 114.2, + "probability": 0.92 + }, + { + "start": 114.86, + "end": 121.45, + "probability": 0.727 + }, + { + "start": 124.62, + "end": 125.08, + "probability": 0.2199 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.0, + "end": 242.0, + "probability": 0.0 + }, + { + "start": 242.18, + "end": 242.18, + "probability": 0.0402 + }, + { + "start": 242.18, + "end": 242.18, + "probability": 0.1563 + }, + { + "start": 242.18, + "end": 242.18, + "probability": 0.1993 + }, + { + "start": 242.18, + "end": 242.94, + "probability": 0.0171 + }, + { + "start": 244.2, + "end": 249.62, + "probability": 0.7594 + }, + { + "start": 249.78, + "end": 250.84, + "probability": 0.5045 + }, + { + "start": 250.98, + "end": 252.6, + "probability": 0.9789 + }, + { + "start": 253.0, + "end": 254.22, + "probability": 0.8721 + }, + { + "start": 256.56, + "end": 259.56, + "probability": 0.8486 + }, + { + "start": 260.16, + "end": 261.72, + "probability": 0.9951 + }, + { + "start": 262.3, + "end": 267.68, + "probability": 0.9904 + }, + { + "start": 268.02, + "end": 272.0, + "probability": 0.9932 + }, + { + "start": 272.26, + "end": 274.54, + "probability": 0.9667 + }, + { + "start": 274.66, + "end": 277.14, + "probability": 0.9691 + }, + { + "start": 277.24, + "end": 279.3, + "probability": 0.9775 + }, + { + "start": 279.83, + "end": 282.78, + "probability": 0.9937 + }, + { + "start": 283.18, + "end": 284.8, + "probability": 0.9553 + }, + { + "start": 285.5, + "end": 286.36, + "probability": 0.9515 + }, + { + "start": 286.48, + "end": 287.06, + "probability": 0.9611 + }, + { + "start": 287.34, + "end": 292.98, + "probability": 0.7224 + }, + { + "start": 293.46, + "end": 294.58, + "probability": 0.9305 + }, + { + "start": 294.74, + "end": 297.82, + "probability": 0.9889 + }, + { + "start": 297.82, + "end": 298.88, + "probability": 0.7715 + }, + { + "start": 299.16, + "end": 304.38, + "probability": 0.9972 + }, + { + "start": 306.34, + "end": 307.84, + "probability": 0.9322 + }, + { + "start": 307.92, + "end": 311.86, + "probability": 0.9846 + }, + { + "start": 312.94, + "end": 317.9, + "probability": 0.9769 + }, + { + "start": 318.42, + "end": 318.76, + "probability": 0.9263 + }, + { + "start": 319.4, + "end": 319.5, + "probability": 0.9973 + }, + { + "start": 320.32, + "end": 321.08, + "probability": 0.6166 + }, + { + "start": 321.18, + "end": 322.25, + "probability": 0.5357 + }, + { + "start": 322.81, + "end": 324.43, + "probability": 0.9727 + }, + { + "start": 325.54, + "end": 326.06, + "probability": 0.9324 + }, + { + "start": 326.52, + "end": 327.2, + "probability": 0.2566 + }, + { + "start": 328.26, + "end": 328.96, + "probability": 0.0818 + }, + { + "start": 328.96, + "end": 330.14, + "probability": 0.2431 + }, + { + "start": 330.42, + "end": 331.54, + "probability": 0.2349 + }, + { + "start": 331.84, + "end": 334.62, + "probability": 0.3868 + }, + { + "start": 336.08, + "end": 338.06, + "probability": 0.7161 + }, + { + "start": 338.24, + "end": 338.45, + "probability": 0.0927 + }, + { + "start": 339.02, + "end": 339.58, + "probability": 0.946 + }, + { + "start": 340.16, + "end": 341.54, + "probability": 0.957 + }, + { + "start": 341.54, + "end": 342.14, + "probability": 0.8797 + }, + { + "start": 342.32, + "end": 344.66, + "probability": 0.9541 + }, + { + "start": 345.09, + "end": 350.16, + "probability": 0.9847 + }, + { + "start": 350.72, + "end": 352.24, + "probability": 0.9738 + }, + { + "start": 352.28, + "end": 354.14, + "probability": 0.8911 + }, + { + "start": 354.92, + "end": 357.94, + "probability": 0.7632 + }, + { + "start": 358.8, + "end": 363.0, + "probability": 0.9939 + }, + { + "start": 363.8, + "end": 366.6, + "probability": 0.9985 + }, + { + "start": 367.1, + "end": 367.76, + "probability": 0.8746 + }, + { + "start": 368.16, + "end": 368.76, + "probability": 0.9069 + }, + { + "start": 369.32, + "end": 372.6, + "probability": 0.908 + }, + { + "start": 372.7, + "end": 373.56, + "probability": 0.9684 + }, + { + "start": 373.66, + "end": 374.54, + "probability": 0.8721 + }, + { + "start": 375.34, + "end": 376.96, + "probability": 0.9827 + }, + { + "start": 377.26, + "end": 379.58, + "probability": 0.9451 + }, + { + "start": 379.86, + "end": 383.58, + "probability": 0.9883 + }, + { + "start": 383.76, + "end": 384.84, + "probability": 0.9766 + }, + { + "start": 385.3, + "end": 386.6, + "probability": 0.7513 + }, + { + "start": 387.52, + "end": 388.68, + "probability": 0.8457 + }, + { + "start": 388.84, + "end": 390.46, + "probability": 0.7304 + }, + { + "start": 390.72, + "end": 394.32, + "probability": 0.9156 + }, + { + "start": 394.86, + "end": 396.38, + "probability": 0.99 + }, + { + "start": 396.94, + "end": 397.2, + "probability": 0.5481 + }, + { + "start": 397.22, + "end": 399.96, + "probability": 0.985 + }, + { + "start": 400.06, + "end": 400.7, + "probability": 0.8652 + }, + { + "start": 400.8, + "end": 401.28, + "probability": 0.5176 + }, + { + "start": 401.42, + "end": 402.12, + "probability": 0.9924 + }, + { + "start": 402.2, + "end": 403.56, + "probability": 0.8756 + }, + { + "start": 404.04, + "end": 406.78, + "probability": 0.9242 + }, + { + "start": 407.88, + "end": 409.66, + "probability": 0.7789 + }, + { + "start": 410.46, + "end": 412.1, + "probability": 0.9992 + }, + { + "start": 412.82, + "end": 413.6, + "probability": 0.98 + }, + { + "start": 413.74, + "end": 414.68, + "probability": 0.9664 + }, + { + "start": 414.86, + "end": 416.03, + "probability": 0.9878 + }, + { + "start": 427.98, + "end": 428.46, + "probability": 0.0318 + }, + { + "start": 428.46, + "end": 428.46, + "probability": 0.0858 + }, + { + "start": 428.46, + "end": 428.46, + "probability": 0.0833 + }, + { + "start": 428.46, + "end": 428.46, + "probability": 0.1421 + }, + { + "start": 428.46, + "end": 429.8, + "probability": 0.2883 + }, + { + "start": 432.64, + "end": 433.5, + "probability": 0.2916 + }, + { + "start": 434.64, + "end": 435.82, + "probability": 0.894 + }, + { + "start": 435.94, + "end": 441.16, + "probability": 0.9601 + }, + { + "start": 441.42, + "end": 447.1, + "probability": 0.9736 + }, + { + "start": 447.14, + "end": 448.5, + "probability": 0.9658 + }, + { + "start": 448.86, + "end": 450.58, + "probability": 0.9579 + }, + { + "start": 451.18, + "end": 453.66, + "probability": 0.7296 + }, + { + "start": 454.62, + "end": 456.88, + "probability": 0.9496 + }, + { + "start": 457.12, + "end": 457.98, + "probability": 0.9816 + }, + { + "start": 458.8, + "end": 459.59, + "probability": 0.992 + }, + { + "start": 459.94, + "end": 463.72, + "probability": 0.9855 + }, + { + "start": 463.72, + "end": 466.08, + "probability": 0.9914 + }, + { + "start": 466.4, + "end": 467.98, + "probability": 0.8678 + }, + { + "start": 468.92, + "end": 470.94, + "probability": 0.9729 + }, + { + "start": 472.1, + "end": 473.02, + "probability": 0.5862 + }, + { + "start": 473.1, + "end": 474.16, + "probability": 0.8988 + }, + { + "start": 474.26, + "end": 475.68, + "probability": 0.9918 + }, + { + "start": 476.2, + "end": 476.88, + "probability": 0.9623 + }, + { + "start": 478.3, + "end": 479.92, + "probability": 0.5862 + }, + { + "start": 481.37, + "end": 487.84, + "probability": 0.9897 + }, + { + "start": 488.12, + "end": 489.56, + "probability": 0.9102 + }, + { + "start": 489.88, + "end": 491.32, + "probability": 0.8409 + }, + { + "start": 491.56, + "end": 492.5, + "probability": 0.985 + }, + { + "start": 492.6, + "end": 493.72, + "probability": 0.9644 + }, + { + "start": 493.9, + "end": 496.06, + "probability": 0.9891 + }, + { + "start": 496.28, + "end": 499.0, + "probability": 0.9844 + }, + { + "start": 499.08, + "end": 501.36, + "probability": 0.9585 + }, + { + "start": 501.84, + "end": 503.94, + "probability": 0.9941 + }, + { + "start": 504.04, + "end": 506.5, + "probability": 0.9963 + }, + { + "start": 506.64, + "end": 506.98, + "probability": 0.6024 + }, + { + "start": 507.1, + "end": 507.4, + "probability": 0.9756 + }, + { + "start": 507.58, + "end": 510.1, + "probability": 0.9904 + }, + { + "start": 510.32, + "end": 511.2, + "probability": 0.9363 + }, + { + "start": 511.26, + "end": 514.19, + "probability": 0.9991 + }, + { + "start": 515.22, + "end": 518.0, + "probability": 0.7159 + }, + { + "start": 518.96, + "end": 520.56, + "probability": 0.8475 + }, + { + "start": 520.74, + "end": 521.36, + "probability": 0.9612 + }, + { + "start": 521.42, + "end": 522.76, + "probability": 0.7402 + }, + { + "start": 523.12, + "end": 523.92, + "probability": 0.9316 + }, + { + "start": 524.0, + "end": 525.34, + "probability": 0.4902 + }, + { + "start": 525.88, + "end": 530.62, + "probability": 0.8146 + }, + { + "start": 530.62, + "end": 533.56, + "probability": 0.9994 + }, + { + "start": 533.64, + "end": 534.78, + "probability": 0.9664 + }, + { + "start": 535.14, + "end": 535.82, + "probability": 0.7398 + }, + { + "start": 535.94, + "end": 538.18, + "probability": 0.7913 + }, + { + "start": 538.46, + "end": 539.64, + "probability": 0.7676 + }, + { + "start": 540.04, + "end": 540.56, + "probability": 0.9937 + }, + { + "start": 541.36, + "end": 542.46, + "probability": 0.8787 + }, + { + "start": 544.0, + "end": 544.68, + "probability": 0.7119 + }, + { + "start": 544.76, + "end": 545.26, + "probability": 0.5531 + }, + { + "start": 545.26, + "end": 546.58, + "probability": 0.9756 + }, + { + "start": 547.2, + "end": 551.46, + "probability": 0.9126 + }, + { + "start": 553.1, + "end": 555.93, + "probability": 0.9985 + }, + { + "start": 556.46, + "end": 558.32, + "probability": 0.6825 + }, + { + "start": 558.86, + "end": 562.94, + "probability": 0.9899 + }, + { + "start": 563.96, + "end": 567.16, + "probability": 0.3007 + }, + { + "start": 567.38, + "end": 569.85, + "probability": 0.9183 + }, + { + "start": 570.86, + "end": 574.34, + "probability": 0.9674 + }, + { + "start": 574.96, + "end": 574.98, + "probability": 0.9741 + }, + { + "start": 575.94, + "end": 576.94, + "probability": 0.9979 + }, + { + "start": 577.06, + "end": 578.26, + "probability": 0.8497 + }, + { + "start": 578.3, + "end": 580.12, + "probability": 0.9528 + }, + { + "start": 580.74, + "end": 584.08, + "probability": 0.8311 + }, + { + "start": 585.88, + "end": 589.22, + "probability": 0.6866 + }, + { + "start": 590.3, + "end": 591.14, + "probability": 0.6961 + }, + { + "start": 591.52, + "end": 591.92, + "probability": 0.652 + }, + { + "start": 592.06, + "end": 593.38, + "probability": 0.6053 + }, + { + "start": 593.56, + "end": 594.32, + "probability": 0.9822 + }, + { + "start": 594.74, + "end": 595.14, + "probability": 0.5172 + }, + { + "start": 595.38, + "end": 596.54, + "probability": 0.8052 + }, + { + "start": 596.64, + "end": 597.7, + "probability": 0.9309 + }, + { + "start": 598.16, + "end": 598.74, + "probability": 0.9452 + }, + { + "start": 598.8, + "end": 599.44, + "probability": 0.7584 + }, + { + "start": 599.9, + "end": 601.22, + "probability": 0.9059 + }, + { + "start": 601.7, + "end": 602.6, + "probability": 0.9779 + }, + { + "start": 602.78, + "end": 605.34, + "probability": 0.994 + }, + { + "start": 605.78, + "end": 606.44, + "probability": 0.9689 + }, + { + "start": 606.54, + "end": 607.42, + "probability": 0.9901 + }, + { + "start": 607.62, + "end": 609.08, + "probability": 0.8676 + }, + { + "start": 609.24, + "end": 610.0, + "probability": 0.8176 + }, + { + "start": 610.18, + "end": 610.76, + "probability": 0.8863 + }, + { + "start": 610.88, + "end": 611.8, + "probability": 0.7962 + }, + { + "start": 611.92, + "end": 612.66, + "probability": 0.5232 + }, + { + "start": 612.72, + "end": 613.58, + "probability": 0.9922 + }, + { + "start": 614.44, + "end": 620.26, + "probability": 0.894 + }, + { + "start": 620.34, + "end": 620.96, + "probability": 0.8223 + }, + { + "start": 621.08, + "end": 621.5, + "probability": 0.9819 + }, + { + "start": 621.76, + "end": 622.42, + "probability": 0.453 + }, + { + "start": 622.68, + "end": 623.63, + "probability": 0.6119 + }, + { + "start": 623.96, + "end": 625.6, + "probability": 0.9704 + }, + { + "start": 626.56, + "end": 627.78, + "probability": 0.7993 + }, + { + "start": 628.7, + "end": 629.34, + "probability": 0.9355 + }, + { + "start": 629.86, + "end": 632.08, + "probability": 0.9753 + }, + { + "start": 632.76, + "end": 635.88, + "probability": 0.9712 + }, + { + "start": 636.66, + "end": 638.44, + "probability": 0.7756 + }, + { + "start": 638.66, + "end": 640.4, + "probability": 0.8283 + }, + { + "start": 641.28, + "end": 641.84, + "probability": 0.946 + }, + { + "start": 642.32, + "end": 648.96, + "probability": 0.978 + }, + { + "start": 649.56, + "end": 651.44, + "probability": 0.786 + }, + { + "start": 652.36, + "end": 655.64, + "probability": 0.7913 + }, + { + "start": 656.26, + "end": 660.12, + "probability": 0.9827 + }, + { + "start": 660.96, + "end": 662.1, + "probability": 0.9589 + }, + { + "start": 662.44, + "end": 667.3, + "probability": 0.9027 + }, + { + "start": 667.78, + "end": 668.94, + "probability": 0.9575 + }, + { + "start": 670.02, + "end": 671.16, + "probability": 0.9763 + }, + { + "start": 672.2, + "end": 672.5, + "probability": 0.7242 + }, + { + "start": 673.04, + "end": 676.44, + "probability": 0.9448 + }, + { + "start": 676.76, + "end": 678.14, + "probability": 0.9985 + }, + { + "start": 680.92, + "end": 682.52, + "probability": 0.4366 + }, + { + "start": 682.76, + "end": 685.64, + "probability": 0.9945 + }, + { + "start": 686.38, + "end": 690.92, + "probability": 0.9722 + }, + { + "start": 691.38, + "end": 695.52, + "probability": 0.9438 + }, + { + "start": 695.76, + "end": 697.64, + "probability": 0.7704 + }, + { + "start": 698.3, + "end": 703.04, + "probability": 0.9241 + }, + { + "start": 703.06, + "end": 704.18, + "probability": 0.9365 + }, + { + "start": 704.62, + "end": 706.16, + "probability": 0.8013 + }, + { + "start": 707.92, + "end": 708.38, + "probability": 0.947 + }, + { + "start": 710.2, + "end": 713.68, + "probability": 0.8475 + }, + { + "start": 713.68, + "end": 716.32, + "probability": 0.9974 + }, + { + "start": 716.7, + "end": 721.5, + "probability": 0.7536 + }, + { + "start": 722.0, + "end": 722.92, + "probability": 0.9338 + }, + { + "start": 723.12, + "end": 725.58, + "probability": 0.9764 + }, + { + "start": 726.02, + "end": 728.82, + "probability": 0.9719 + }, + { + "start": 728.82, + "end": 731.94, + "probability": 0.9384 + }, + { + "start": 732.16, + "end": 733.84, + "probability": 0.978 + }, + { + "start": 734.36, + "end": 739.66, + "probability": 0.9877 + }, + { + "start": 740.12, + "end": 743.68, + "probability": 0.8968 + }, + { + "start": 744.02, + "end": 745.08, + "probability": 0.7112 + }, + { + "start": 745.62, + "end": 747.38, + "probability": 0.9994 + }, + { + "start": 747.62, + "end": 748.58, + "probability": 0.9982 + }, + { + "start": 748.8, + "end": 749.68, + "probability": 0.7264 + }, + { + "start": 749.96, + "end": 752.06, + "probability": 0.9826 + }, + { + "start": 752.36, + "end": 757.68, + "probability": 0.9892 + }, + { + "start": 758.26, + "end": 759.34, + "probability": 0.938 + }, + { + "start": 759.4, + "end": 763.48, + "probability": 0.4345 + }, + { + "start": 763.72, + "end": 765.06, + "probability": 0.7369 + }, + { + "start": 765.7, + "end": 770.32, + "probability": 0.9963 + }, + { + "start": 770.68, + "end": 773.18, + "probability": 0.9851 + }, + { + "start": 773.62, + "end": 776.48, + "probability": 0.9717 + }, + { + "start": 777.04, + "end": 783.3, + "probability": 0.9042 + }, + { + "start": 783.52, + "end": 786.14, + "probability": 0.6505 + }, + { + "start": 786.36, + "end": 790.1, + "probability": 0.934 + }, + { + "start": 790.76, + "end": 791.02, + "probability": 0.7585 + }, + { + "start": 792.22, + "end": 794.92, + "probability": 0.8382 + }, + { + "start": 795.12, + "end": 796.62, + "probability": 0.9062 + }, + { + "start": 797.5, + "end": 799.12, + "probability": 0.959 + }, + { + "start": 800.0, + "end": 800.52, + "probability": 0.8128 + }, + { + "start": 823.14, + "end": 826.42, + "probability": 0.6955 + }, + { + "start": 828.1, + "end": 831.58, + "probability": 0.678 + }, + { + "start": 831.58, + "end": 834.84, + "probability": 0.9971 + }, + { + "start": 835.42, + "end": 837.7, + "probability": 0.9303 + }, + { + "start": 838.22, + "end": 839.71, + "probability": 0.9946 + }, + { + "start": 840.42, + "end": 842.8, + "probability": 0.8709 + }, + { + "start": 843.62, + "end": 846.38, + "probability": 0.9766 + }, + { + "start": 846.94, + "end": 848.04, + "probability": 0.957 + }, + { + "start": 848.78, + "end": 849.85, + "probability": 0.9971 + }, + { + "start": 850.64, + "end": 851.18, + "probability": 0.9824 + }, + { + "start": 852.18, + "end": 858.18, + "probability": 0.9956 + }, + { + "start": 858.36, + "end": 862.0, + "probability": 0.7869 + }, + { + "start": 862.08, + "end": 863.4, + "probability": 0.7249 + }, + { + "start": 863.78, + "end": 866.64, + "probability": 0.9933 + }, + { + "start": 868.06, + "end": 870.0, + "probability": 0.8773 + }, + { + "start": 870.58, + "end": 876.04, + "probability": 0.9827 + }, + { + "start": 876.74, + "end": 878.18, + "probability": 0.9716 + }, + { + "start": 878.72, + "end": 880.8, + "probability": 0.9435 + }, + { + "start": 881.32, + "end": 883.42, + "probability": 0.9626 + }, + { + "start": 884.02, + "end": 888.2, + "probability": 0.9964 + }, + { + "start": 889.04, + "end": 890.28, + "probability": 0.7166 + }, + { + "start": 890.34, + "end": 895.76, + "probability": 0.9944 + }, + { + "start": 896.36, + "end": 899.56, + "probability": 0.9091 + }, + { + "start": 900.48, + "end": 903.9, + "probability": 0.8422 + }, + { + "start": 904.38, + "end": 911.44, + "probability": 0.9867 + }, + { + "start": 911.6, + "end": 914.38, + "probability": 0.9912 + }, + { + "start": 915.0, + "end": 917.1, + "probability": 0.9434 + }, + { + "start": 917.38, + "end": 921.74, + "probability": 0.9771 + }, + { + "start": 922.16, + "end": 927.06, + "probability": 0.9951 + }, + { + "start": 927.06, + "end": 932.18, + "probability": 0.9943 + }, + { + "start": 933.4, + "end": 934.94, + "probability": 0.9655 + }, + { + "start": 935.22, + "end": 937.04, + "probability": 0.9985 + }, + { + "start": 937.14, + "end": 938.18, + "probability": 0.873 + }, + { + "start": 938.7, + "end": 941.08, + "probability": 0.9849 + }, + { + "start": 941.46, + "end": 942.78, + "probability": 0.9982 + }, + { + "start": 943.42, + "end": 948.52, + "probability": 0.9934 + }, + { + "start": 948.88, + "end": 948.98, + "probability": 0.8069 + }, + { + "start": 949.62, + "end": 950.85, + "probability": 0.2356 + }, + { + "start": 951.62, + "end": 952.02, + "probability": 0.8203 + }, + { + "start": 952.42, + "end": 956.86, + "probability": 0.9939 + }, + { + "start": 957.0, + "end": 957.36, + "probability": 0.8518 + }, + { + "start": 957.86, + "end": 959.5, + "probability": 0.9557 + }, + { + "start": 960.02, + "end": 960.42, + "probability": 0.7987 + }, + { + "start": 960.84, + "end": 963.94, + "probability": 0.9954 + }, + { + "start": 963.94, + "end": 966.84, + "probability": 0.9842 + }, + { + "start": 967.26, + "end": 969.74, + "probability": 0.9875 + }, + { + "start": 970.52, + "end": 974.16, + "probability": 0.9932 + }, + { + "start": 974.74, + "end": 975.42, + "probability": 0.6509 + }, + { + "start": 975.94, + "end": 979.68, + "probability": 0.915 + }, + { + "start": 980.82, + "end": 984.23, + "probability": 0.8296 + }, + { + "start": 988.82, + "end": 992.58, + "probability": 0.8362 + }, + { + "start": 993.08, + "end": 994.14, + "probability": 0.8474 + }, + { + "start": 994.92, + "end": 995.24, + "probability": 0.4963 + }, + { + "start": 995.98, + "end": 998.58, + "probability": 0.6708 + }, + { + "start": 998.64, + "end": 1001.3, + "probability": 0.9514 + }, + { + "start": 1002.06, + "end": 1004.86, + "probability": 0.9912 + }, + { + "start": 1005.42, + "end": 1006.87, + "probability": 0.8674 + }, + { + "start": 1007.7, + "end": 1009.55, + "probability": 0.9116 + }, + { + "start": 1009.88, + "end": 1010.76, + "probability": 0.758 + }, + { + "start": 1011.2, + "end": 1016.9, + "probability": 0.9656 + }, + { + "start": 1017.08, + "end": 1018.22, + "probability": 0.9863 + }, + { + "start": 1018.78, + "end": 1019.32, + "probability": 0.7827 + }, + { + "start": 1019.38, + "end": 1021.16, + "probability": 0.989 + }, + { + "start": 1022.84, + "end": 1023.76, + "probability": 0.8525 + }, + { + "start": 1024.14, + "end": 1026.3, + "probability": 0.9392 + }, + { + "start": 1026.78, + "end": 1028.48, + "probability": 0.9927 + }, + { + "start": 1028.6, + "end": 1029.8, + "probability": 0.9971 + }, + { + "start": 1029.94, + "end": 1031.24, + "probability": 0.9244 + }, + { + "start": 1032.16, + "end": 1034.34, + "probability": 0.9792 + }, + { + "start": 1034.46, + "end": 1035.72, + "probability": 0.8881 + }, + { + "start": 1036.3, + "end": 1040.52, + "probability": 0.8118 + }, + { + "start": 1041.2, + "end": 1045.52, + "probability": 0.9753 + }, + { + "start": 1045.7, + "end": 1048.5, + "probability": 0.9878 + }, + { + "start": 1048.98, + "end": 1053.08, + "probability": 0.9963 + }, + { + "start": 1053.66, + "end": 1055.52, + "probability": 0.8286 + }, + { + "start": 1056.0, + "end": 1056.76, + "probability": 0.9717 + }, + { + "start": 1057.42, + "end": 1057.8, + "probability": 0.7022 + }, + { + "start": 1058.01, + "end": 1062.22, + "probability": 0.6647 + }, + { + "start": 1062.3, + "end": 1064.26, + "probability": 0.929 + }, + { + "start": 1064.76, + "end": 1065.52, + "probability": 0.9854 + }, + { + "start": 1066.05, + "end": 1068.62, + "probability": 0.4988 + }, + { + "start": 1068.78, + "end": 1071.36, + "probability": 0.2863 + }, + { + "start": 1071.54, + "end": 1072.62, + "probability": 0.0322 + }, + { + "start": 1072.62, + "end": 1073.38, + "probability": 0.0453 + }, + { + "start": 1073.38, + "end": 1077.7, + "probability": 0.6489 + }, + { + "start": 1077.72, + "end": 1079.04, + "probability": 0.6135 + }, + { + "start": 1079.12, + "end": 1080.72, + "probability": 0.9871 + }, + { + "start": 1081.3, + "end": 1084.89, + "probability": 0.998 + }, + { + "start": 1085.16, + "end": 1089.1, + "probability": 0.9951 + }, + { + "start": 1089.1, + "end": 1092.42, + "probability": 0.8846 + }, + { + "start": 1092.44, + "end": 1095.92, + "probability": 0.6475 + }, + { + "start": 1096.14, + "end": 1096.5, + "probability": 0.0046 + }, + { + "start": 1096.52, + "end": 1096.84, + "probability": 0.1182 + }, + { + "start": 1096.84, + "end": 1097.75, + "probability": 0.123 + }, + { + "start": 1097.78, + "end": 1098.32, + "probability": 0.0869 + }, + { + "start": 1098.38, + "end": 1098.9, + "probability": 0.8127 + }, + { + "start": 1099.0, + "end": 1101.26, + "probability": 0.9776 + }, + { + "start": 1101.36, + "end": 1101.82, + "probability": 0.8931 + }, + { + "start": 1101.9, + "end": 1103.0, + "probability": 0.9753 + }, + { + "start": 1103.13, + "end": 1103.34, + "probability": 0.2229 + }, + { + "start": 1103.38, + "end": 1104.24, + "probability": 0.8756 + }, + { + "start": 1104.54, + "end": 1104.74, + "probability": 0.0195 + }, + { + "start": 1104.74, + "end": 1104.74, + "probability": 0.1889 + }, + { + "start": 1104.74, + "end": 1104.74, + "probability": 0.2558 + }, + { + "start": 1104.74, + "end": 1105.74, + "probability": 0.7861 + }, + { + "start": 1106.16, + "end": 1106.4, + "probability": 0.0158 + }, + { + "start": 1106.4, + "end": 1109.72, + "probability": 0.7767 + }, + { + "start": 1109.96, + "end": 1111.92, + "probability": 0.8228 + }, + { + "start": 1112.32, + "end": 1113.7, + "probability": 0.1944 + }, + { + "start": 1113.7, + "end": 1113.7, + "probability": 0.2092 + }, + { + "start": 1113.7, + "end": 1114.0, + "probability": 0.4561 + }, + { + "start": 1114.28, + "end": 1115.38, + "probability": 0.8475 + }, + { + "start": 1115.52, + "end": 1121.8, + "probability": 0.6708 + }, + { + "start": 1121.92, + "end": 1123.74, + "probability": 0.5235 + }, + { + "start": 1123.76, + "end": 1125.33, + "probability": 0.4949 + }, + { + "start": 1125.62, + "end": 1126.1, + "probability": 0.2632 + }, + { + "start": 1126.1, + "end": 1126.64, + "probability": 0.0637 + }, + { + "start": 1127.12, + "end": 1127.2, + "probability": 0.4145 + }, + { + "start": 1127.2, + "end": 1128.26, + "probability": 0.9897 + }, + { + "start": 1128.34, + "end": 1128.82, + "probability": 0.9223 + }, + { + "start": 1128.96, + "end": 1129.2, + "probability": 0.391 + }, + { + "start": 1129.28, + "end": 1129.44, + "probability": 0.4434 + }, + { + "start": 1129.44, + "end": 1132.14, + "probability": 0.9517 + }, + { + "start": 1132.14, + "end": 1132.8, + "probability": 0.0303 + }, + { + "start": 1132.8, + "end": 1133.36, + "probability": 0.1093 + }, + { + "start": 1133.44, + "end": 1133.9, + "probability": 0.0669 + }, + { + "start": 1134.18, + "end": 1134.39, + "probability": 0.5713 + }, + { + "start": 1134.8, + "end": 1136.46, + "probability": 0.9226 + }, + { + "start": 1136.46, + "end": 1137.66, + "probability": 0.2651 + }, + { + "start": 1137.86, + "end": 1140.84, + "probability": 0.9599 + }, + { + "start": 1141.42, + "end": 1145.22, + "probability": 0.9918 + }, + { + "start": 1145.3, + "end": 1149.08, + "probability": 0.3226 + }, + { + "start": 1149.14, + "end": 1153.82, + "probability": 0.6737 + }, + { + "start": 1154.44, + "end": 1154.44, + "probability": 0.3268 + }, + { + "start": 1154.44, + "end": 1155.3, + "probability": 0.0937 + }, + { + "start": 1155.46, + "end": 1156.04, + "probability": 0.3806 + }, + { + "start": 1156.36, + "end": 1159.24, + "probability": 0.636 + }, + { + "start": 1159.66, + "end": 1162.06, + "probability": 0.956 + }, + { + "start": 1162.14, + "end": 1162.66, + "probability": 0.0211 + }, + { + "start": 1162.66, + "end": 1162.66, + "probability": 0.0761 + }, + { + "start": 1162.66, + "end": 1164.1, + "probability": 0.6478 + }, + { + "start": 1164.16, + "end": 1165.76, + "probability": 0.3767 + }, + { + "start": 1166.0, + "end": 1166.2, + "probability": 0.6724 + }, + { + "start": 1166.2, + "end": 1166.2, + "probability": 0.1407 + }, + { + "start": 1166.2, + "end": 1166.2, + "probability": 0.3265 + }, + { + "start": 1166.2, + "end": 1171.52, + "probability": 0.7504 + }, + { + "start": 1171.82, + "end": 1174.2, + "probability": 0.9526 + }, + { + "start": 1174.96, + "end": 1176.51, + "probability": 0.9556 + }, + { + "start": 1177.28, + "end": 1177.98, + "probability": 0.6176 + }, + { + "start": 1178.04, + "end": 1179.3, + "probability": 0.6013 + }, + { + "start": 1179.62, + "end": 1181.86, + "probability": 0.9825 + }, + { + "start": 1182.24, + "end": 1183.32, + "probability": 0.9812 + }, + { + "start": 1183.82, + "end": 1188.94, + "probability": 0.9963 + }, + { + "start": 1189.48, + "end": 1194.38, + "probability": 0.8943 + }, + { + "start": 1194.8, + "end": 1194.98, + "probability": 0.1107 + }, + { + "start": 1194.98, + "end": 1198.66, + "probability": 0.8235 + }, + { + "start": 1199.16, + "end": 1200.64, + "probability": 0.99 + }, + { + "start": 1200.82, + "end": 1204.9, + "probability": 0.9974 + }, + { + "start": 1205.0, + "end": 1206.18, + "probability": 0.9032 + }, + { + "start": 1206.2, + "end": 1206.56, + "probability": 0.0078 + }, + { + "start": 1206.86, + "end": 1206.9, + "probability": 0.0738 + }, + { + "start": 1206.9, + "end": 1209.24, + "probability": 0.9863 + }, + { + "start": 1209.64, + "end": 1212.36, + "probability": 0.7352 + }, + { + "start": 1212.4, + "end": 1214.74, + "probability": 0.5497 + }, + { + "start": 1215.32, + "end": 1219.32, + "probability": 0.9985 + }, + { + "start": 1219.8, + "end": 1221.54, + "probability": 0.9977 + }, + { + "start": 1222.02, + "end": 1224.92, + "probability": 0.9393 + }, + { + "start": 1225.28, + "end": 1229.82, + "probability": 0.9829 + }, + { + "start": 1230.28, + "end": 1234.52, + "probability": 0.7079 + }, + { + "start": 1234.78, + "end": 1236.44, + "probability": 0.752 + }, + { + "start": 1236.52, + "end": 1238.94, + "probability": 0.8691 + }, + { + "start": 1239.56, + "end": 1241.8, + "probability": 0.9959 + }, + { + "start": 1242.0, + "end": 1243.98, + "probability": 0.9634 + }, + { + "start": 1244.18, + "end": 1246.58, + "probability": 0.9233 + }, + { + "start": 1247.36, + "end": 1250.34, + "probability": 0.8335 + }, + { + "start": 1250.74, + "end": 1252.76, + "probability": 0.9897 + }, + { + "start": 1253.06, + "end": 1254.15, + "probability": 0.9932 + }, + { + "start": 1254.84, + "end": 1256.48, + "probability": 0.9334 + }, + { + "start": 1256.86, + "end": 1260.34, + "probability": 0.9976 + }, + { + "start": 1260.56, + "end": 1262.06, + "probability": 0.9985 + }, + { + "start": 1263.06, + "end": 1263.64, + "probability": 0.7125 + }, + { + "start": 1263.76, + "end": 1264.86, + "probability": 0.6545 + }, + { + "start": 1265.3, + "end": 1268.82, + "probability": 0.996 + }, + { + "start": 1269.1, + "end": 1269.66, + "probability": 0.9913 + }, + { + "start": 1270.18, + "end": 1271.88, + "probability": 0.9744 + }, + { + "start": 1272.34, + "end": 1272.71, + "probability": 0.9937 + }, + { + "start": 1273.12, + "end": 1274.04, + "probability": 0.7841 + }, + { + "start": 1274.44, + "end": 1277.04, + "probability": 0.9888 + }, + { + "start": 1277.46, + "end": 1278.42, + "probability": 0.9282 + }, + { + "start": 1278.76, + "end": 1281.38, + "probability": 0.6592 + }, + { + "start": 1281.98, + "end": 1284.88, + "probability": 0.9819 + }, + { + "start": 1284.98, + "end": 1289.2, + "probability": 0.9443 + }, + { + "start": 1289.2, + "end": 1293.18, + "probability": 0.9553 + }, + { + "start": 1293.74, + "end": 1297.8, + "probability": 0.989 + }, + { + "start": 1298.46, + "end": 1300.62, + "probability": 0.7234 + }, + { + "start": 1301.22, + "end": 1301.94, + "probability": 0.6295 + }, + { + "start": 1302.48, + "end": 1305.42, + "probability": 0.9974 + }, + { + "start": 1305.42, + "end": 1309.08, + "probability": 0.9996 + }, + { + "start": 1309.72, + "end": 1310.9, + "probability": 0.9206 + }, + { + "start": 1311.68, + "end": 1312.68, + "probability": 0.8264 + }, + { + "start": 1313.24, + "end": 1317.64, + "probability": 0.9805 + }, + { + "start": 1318.1, + "end": 1320.24, + "probability": 0.9724 + }, + { + "start": 1320.66, + "end": 1325.84, + "probability": 0.9945 + }, + { + "start": 1326.62, + "end": 1327.46, + "probability": 0.9442 + }, + { + "start": 1328.38, + "end": 1333.56, + "probability": 0.9733 + }, + { + "start": 1334.5, + "end": 1334.58, + "probability": 0.5448 + }, + { + "start": 1334.7, + "end": 1335.4, + "probability": 0.9564 + }, + { + "start": 1335.4, + "end": 1338.22, + "probability": 0.9858 + }, + { + "start": 1338.94, + "end": 1344.82, + "probability": 0.9961 + }, + { + "start": 1345.52, + "end": 1347.94, + "probability": 0.998 + }, + { + "start": 1348.42, + "end": 1353.02, + "probability": 0.9965 + }, + { + "start": 1353.02, + "end": 1358.68, + "probability": 0.9993 + }, + { + "start": 1359.92, + "end": 1363.28, + "probability": 0.9981 + }, + { + "start": 1363.92, + "end": 1366.24, + "probability": 0.988 + }, + { + "start": 1366.78, + "end": 1370.48, + "probability": 0.999 + }, + { + "start": 1371.06, + "end": 1373.99, + "probability": 0.9991 + }, + { + "start": 1374.26, + "end": 1375.16, + "probability": 0.8393 + }, + { + "start": 1375.48, + "end": 1376.78, + "probability": 0.7778 + }, + { + "start": 1377.34, + "end": 1378.28, + "probability": 0.7337 + }, + { + "start": 1378.7, + "end": 1381.06, + "probability": 0.9313 + }, + { + "start": 1381.32, + "end": 1383.04, + "probability": 0.9849 + }, + { + "start": 1383.5, + "end": 1385.36, + "probability": 0.9954 + }, + { + "start": 1385.84, + "end": 1386.56, + "probability": 0.9131 + }, + { + "start": 1386.7, + "end": 1391.12, + "probability": 0.9919 + }, + { + "start": 1391.34, + "end": 1392.12, + "probability": 0.8657 + }, + { + "start": 1392.46, + "end": 1394.6, + "probability": 0.7264 + }, + { + "start": 1395.0, + "end": 1397.32, + "probability": 0.9758 + }, + { + "start": 1397.88, + "end": 1400.78, + "probability": 0.9521 + }, + { + "start": 1401.16, + "end": 1404.44, + "probability": 0.9716 + }, + { + "start": 1404.52, + "end": 1405.62, + "probability": 0.8131 + }, + { + "start": 1405.86, + "end": 1407.36, + "probability": 0.8478 + }, + { + "start": 1407.4, + "end": 1409.68, + "probability": 0.9655 + }, + { + "start": 1410.36, + "end": 1413.0, + "probability": 0.7944 + }, + { + "start": 1413.14, + "end": 1413.9, + "probability": 0.4741 + }, + { + "start": 1413.9, + "end": 1414.49, + "probability": 0.4492 + }, + { + "start": 1415.36, + "end": 1415.68, + "probability": 0.0622 + }, + { + "start": 1415.68, + "end": 1415.86, + "probability": 0.1132 + }, + { + "start": 1415.98, + "end": 1416.36, + "probability": 0.8072 + }, + { + "start": 1416.4, + "end": 1419.02, + "probability": 0.7302 + }, + { + "start": 1419.08, + "end": 1420.64, + "probability": 0.6868 + }, + { + "start": 1421.14, + "end": 1424.57, + "probability": 0.9904 + }, + { + "start": 1425.75, + "end": 1426.44, + "probability": 0.8467 + }, + { + "start": 1427.06, + "end": 1427.26, + "probability": 0.7839 + }, + { + "start": 1427.36, + "end": 1428.74, + "probability": 0.9768 + }, + { + "start": 1429.02, + "end": 1429.66, + "probability": 0.6904 + }, + { + "start": 1429.88, + "end": 1430.62, + "probability": 0.5566 + }, + { + "start": 1430.62, + "end": 1430.9, + "probability": 0.3946 + }, + { + "start": 1431.38, + "end": 1432.52, + "probability": 0.9436 + }, + { + "start": 1432.86, + "end": 1434.14, + "probability": 0.9619 + }, + { + "start": 1434.5, + "end": 1436.02, + "probability": 0.9151 + }, + { + "start": 1436.04, + "end": 1436.78, + "probability": 0.798 + }, + { + "start": 1436.88, + "end": 1437.6, + "probability": 0.7256 + }, + { + "start": 1438.3, + "end": 1440.92, + "probability": 0.9921 + }, + { + "start": 1440.98, + "end": 1442.08, + "probability": 0.9072 + }, + { + "start": 1442.7, + "end": 1446.6, + "probability": 0.9528 + }, + { + "start": 1446.6, + "end": 1449.98, + "probability": 0.9983 + }, + { + "start": 1449.98, + "end": 1450.33, + "probability": 0.3378 + }, + { + "start": 1450.72, + "end": 1451.94, + "probability": 0.6928 + }, + { + "start": 1452.06, + "end": 1453.14, + "probability": 0.5296 + }, + { + "start": 1453.14, + "end": 1454.7, + "probability": 0.8035 + }, + { + "start": 1454.7, + "end": 1456.82, + "probability": 0.9801 + }, + { + "start": 1456.96, + "end": 1457.82, + "probability": 0.9573 + }, + { + "start": 1457.9, + "end": 1458.72, + "probability": 0.9658 + }, + { + "start": 1458.88, + "end": 1460.0, + "probability": 0.8716 + }, + { + "start": 1460.1, + "end": 1461.9, + "probability": 0.997 + }, + { + "start": 1461.96, + "end": 1462.38, + "probability": 0.3895 + }, + { + "start": 1462.48, + "end": 1462.6, + "probability": 0.2074 + }, + { + "start": 1462.6, + "end": 1463.54, + "probability": 0.7984 + }, + { + "start": 1463.54, + "end": 1464.74, + "probability": 0.8431 + }, + { + "start": 1465.02, + "end": 1468.8, + "probability": 0.9937 + }, + { + "start": 1469.02, + "end": 1470.28, + "probability": 0.7228 + }, + { + "start": 1470.6, + "end": 1474.54, + "probability": 0.553 + }, + { + "start": 1474.82, + "end": 1477.04, + "probability": 0.9643 + }, + { + "start": 1477.12, + "end": 1478.52, + "probability": 0.952 + }, + { + "start": 1478.9, + "end": 1480.28, + "probability": 0.9233 + }, + { + "start": 1480.44, + "end": 1481.08, + "probability": 0.8365 + }, + { + "start": 1481.08, + "end": 1481.52, + "probability": 0.7868 + }, + { + "start": 1481.6, + "end": 1481.76, + "probability": 0.5313 + }, + { + "start": 1481.76, + "end": 1482.18, + "probability": 0.4726 + }, + { + "start": 1482.3, + "end": 1483.62, + "probability": 0.8861 + }, + { + "start": 1483.7, + "end": 1487.28, + "probability": 0.6628 + }, + { + "start": 1487.28, + "end": 1487.3, + "probability": 0.2293 + }, + { + "start": 1487.3, + "end": 1488.57, + "probability": 0.9968 + }, + { + "start": 1489.12, + "end": 1490.62, + "probability": 0.9791 + }, + { + "start": 1490.94, + "end": 1492.3, + "probability": 0.9878 + }, + { + "start": 1492.46, + "end": 1493.72, + "probability": 0.9758 + }, + { + "start": 1493.84, + "end": 1494.68, + "probability": 0.9355 + }, + { + "start": 1495.2, + "end": 1497.42, + "probability": 0.9812 + }, + { + "start": 1497.75, + "end": 1499.8, + "probability": 0.7719 + }, + { + "start": 1500.24, + "end": 1504.2, + "probability": 0.949 + }, + { + "start": 1504.66, + "end": 1507.14, + "probability": 0.638 + }, + { + "start": 1507.76, + "end": 1509.19, + "probability": 0.1938 + }, + { + "start": 1509.44, + "end": 1511.63, + "probability": 0.3397 + }, + { + "start": 1512.26, + "end": 1512.26, + "probability": 0.1332 + }, + { + "start": 1512.26, + "end": 1512.64, + "probability": 0.4109 + }, + { + "start": 1512.64, + "end": 1512.72, + "probability": 0.0497 + }, + { + "start": 1512.72, + "end": 1515.94, + "probability": 0.8874 + }, + { + "start": 1515.98, + "end": 1517.22, + "probability": 0.483 + }, + { + "start": 1517.48, + "end": 1519.3, + "probability": 0.6315 + }, + { + "start": 1519.68, + "end": 1525.58, + "probability": 0.9158 + }, + { + "start": 1526.02, + "end": 1529.64, + "probability": 0.9787 + }, + { + "start": 1530.22, + "end": 1531.12, + "probability": 0.9551 + }, + { + "start": 1531.2, + "end": 1532.22, + "probability": 0.9107 + }, + { + "start": 1532.28, + "end": 1532.96, + "probability": 0.7775 + }, + { + "start": 1533.32, + "end": 1534.7, + "probability": 0.8661 + }, + { + "start": 1534.86, + "end": 1535.74, + "probability": 0.9435 + }, + { + "start": 1535.98, + "end": 1537.44, + "probability": 0.8556 + }, + { + "start": 1537.66, + "end": 1539.54, + "probability": 0.8199 + }, + { + "start": 1539.82, + "end": 1542.46, + "probability": 0.9893 + }, + { + "start": 1542.56, + "end": 1542.68, + "probability": 0.0233 + }, + { + "start": 1542.68, + "end": 1544.14, + "probability": 0.5784 + }, + { + "start": 1544.82, + "end": 1546.38, + "probability": 0.9077 + }, + { + "start": 1546.8, + "end": 1548.5, + "probability": 0.9832 + }, + { + "start": 1548.82, + "end": 1550.42, + "probability": 0.987 + }, + { + "start": 1550.88, + "end": 1553.5, + "probability": 0.9694 + }, + { + "start": 1553.94, + "end": 1555.2, + "probability": 0.8767 + }, + { + "start": 1555.3, + "end": 1555.68, + "probability": 0.9509 + }, + { + "start": 1556.02, + "end": 1557.78, + "probability": 0.9763 + }, + { + "start": 1558.26, + "end": 1561.8, + "probability": 0.9968 + }, + { + "start": 1562.24, + "end": 1563.78, + "probability": 0.8373 + }, + { + "start": 1564.72, + "end": 1567.22, + "probability": 0.9959 + }, + { + "start": 1567.64, + "end": 1569.56, + "probability": 0.9667 + }, + { + "start": 1569.68, + "end": 1570.24, + "probability": 0.5595 + }, + { + "start": 1570.54, + "end": 1571.22, + "probability": 0.6822 + }, + { + "start": 1571.32, + "end": 1572.32, + "probability": 0.832 + }, + { + "start": 1572.6, + "end": 1574.7, + "probability": 0.7097 + }, + { + "start": 1575.12, + "end": 1575.8, + "probability": 0.8332 + }, + { + "start": 1576.18, + "end": 1577.04, + "probability": 0.5844 + }, + { + "start": 1577.22, + "end": 1581.18, + "probability": 0.9873 + }, + { + "start": 1582.18, + "end": 1584.26, + "probability": 0.9985 + }, + { + "start": 1584.64, + "end": 1586.54, + "probability": 0.9881 + }, + { + "start": 1587.0, + "end": 1587.62, + "probability": 0.8552 + }, + { + "start": 1588.04, + "end": 1588.72, + "probability": 0.8077 + }, + { + "start": 1588.86, + "end": 1590.52, + "probability": 0.9919 + }, + { + "start": 1591.04, + "end": 1592.59, + "probability": 0.976 + }, + { + "start": 1593.62, + "end": 1599.96, + "probability": 0.9952 + }, + { + "start": 1600.56, + "end": 1604.64, + "probability": 0.9952 + }, + { + "start": 1605.14, + "end": 1606.26, + "probability": 0.995 + }, + { + "start": 1606.72, + "end": 1608.38, + "probability": 0.9655 + }, + { + "start": 1608.98, + "end": 1612.44, + "probability": 0.9911 + }, + { + "start": 1612.8, + "end": 1613.7, + "probability": 0.9241 + }, + { + "start": 1614.22, + "end": 1615.92, + "probability": 0.8579 + }, + { + "start": 1616.38, + "end": 1619.82, + "probability": 0.9937 + }, + { + "start": 1620.3, + "end": 1620.66, + "probability": 0.824 + }, + { + "start": 1621.04, + "end": 1622.44, + "probability": 0.8733 + }, + { + "start": 1622.66, + "end": 1623.88, + "probability": 0.9883 + }, + { + "start": 1624.26, + "end": 1625.34, + "probability": 0.6722 + }, + { + "start": 1625.96, + "end": 1629.4, + "probability": 0.9873 + }, + { + "start": 1629.4, + "end": 1632.82, + "probability": 0.9979 + }, + { + "start": 1633.38, + "end": 1636.42, + "probability": 0.9982 + }, + { + "start": 1636.72, + "end": 1638.26, + "probability": 0.9337 + }, + { + "start": 1638.62, + "end": 1639.66, + "probability": 0.6598 + }, + { + "start": 1640.2, + "end": 1640.82, + "probability": 0.4337 + }, + { + "start": 1641.16, + "end": 1642.58, + "probability": 0.9967 + }, + { + "start": 1642.86, + "end": 1644.68, + "probability": 0.9851 + }, + { + "start": 1644.94, + "end": 1646.22, + "probability": 0.9205 + }, + { + "start": 1646.4, + "end": 1648.42, + "probability": 0.9904 + }, + { + "start": 1648.98, + "end": 1652.84, + "probability": 0.8762 + }, + { + "start": 1652.84, + "end": 1652.86, + "probability": 0.0433 + }, + { + "start": 1652.86, + "end": 1653.72, + "probability": 0.15 + }, + { + "start": 1654.02, + "end": 1654.08, + "probability": 0.3751 + }, + { + "start": 1654.85, + "end": 1657.46, + "probability": 0.9457 + }, + { + "start": 1658.22, + "end": 1666.62, + "probability": 0.9659 + }, + { + "start": 1667.02, + "end": 1671.58, + "probability": 0.9976 + }, + { + "start": 1672.12, + "end": 1673.62, + "probability": 0.8736 + }, + { + "start": 1673.7, + "end": 1673.82, + "probability": 0.1989 + }, + { + "start": 1673.88, + "end": 1674.62, + "probability": 0.9301 + }, + { + "start": 1674.7, + "end": 1674.98, + "probability": 0.7635 + }, + { + "start": 1675.06, + "end": 1675.62, + "probability": 0.5287 + }, + { + "start": 1675.7, + "end": 1676.24, + "probability": 0.7971 + }, + { + "start": 1676.3, + "end": 1676.92, + "probability": 0.7 + }, + { + "start": 1676.94, + "end": 1677.48, + "probability": 0.8398 + }, + { + "start": 1677.74, + "end": 1679.66, + "probability": 0.9553 + }, + { + "start": 1680.12, + "end": 1685.68, + "probability": 0.9419 + }, + { + "start": 1685.9, + "end": 1687.62, + "probability": 0.9468 + }, + { + "start": 1688.56, + "end": 1688.98, + "probability": 0.778 + }, + { + "start": 1689.84, + "end": 1691.16, + "probability": 0.9431 + }, + { + "start": 1691.82, + "end": 1695.46, + "probability": 0.9957 + }, + { + "start": 1695.46, + "end": 1699.48, + "probability": 0.9971 + }, + { + "start": 1699.84, + "end": 1702.26, + "probability": 0.9958 + }, + { + "start": 1702.7, + "end": 1703.66, + "probability": 0.8914 + }, + { + "start": 1704.1, + "end": 1709.46, + "probability": 0.9907 + }, + { + "start": 1709.56, + "end": 1710.38, + "probability": 0.9004 + }, + { + "start": 1710.68, + "end": 1716.82, + "probability": 0.9903 + }, + { + "start": 1717.28, + "end": 1721.18, + "probability": 0.9487 + }, + { + "start": 1721.56, + "end": 1722.28, + "probability": 0.7959 + }, + { + "start": 1722.72, + "end": 1725.18, + "probability": 0.9749 + }, + { + "start": 1725.66, + "end": 1729.04, + "probability": 0.9932 + }, + { + "start": 1729.74, + "end": 1731.8, + "probability": 0.8247 + }, + { + "start": 1731.86, + "end": 1732.36, + "probability": 0.8842 + }, + { + "start": 1732.46, + "end": 1733.74, + "probability": 0.9868 + }, + { + "start": 1733.92, + "end": 1734.12, + "probability": 0.7562 + }, + { + "start": 1735.3, + "end": 1735.7, + "probability": 0.7676 + }, + { + "start": 1738.44, + "end": 1739.68, + "probability": 0.7981 + }, + { + "start": 1740.06, + "end": 1742.28, + "probability": 0.9971 + }, + { + "start": 1743.1, + "end": 1744.8, + "probability": 0.9938 + }, + { + "start": 1745.73, + "end": 1747.38, + "probability": 0.8242 + }, + { + "start": 1747.82, + "end": 1750.02, + "probability": 0.9995 + }, + { + "start": 1750.03, + "end": 1753.52, + "probability": 0.9966 + }, + { + "start": 1753.68, + "end": 1755.6, + "probability": 0.8166 + }, + { + "start": 1756.36, + "end": 1758.16, + "probability": 0.7958 + }, + { + "start": 1766.96, + "end": 1769.72, + "probability": 0.7099 + }, + { + "start": 1770.88, + "end": 1772.4, + "probability": 0.9052 + }, + { + "start": 1774.28, + "end": 1776.1, + "probability": 0.8739 + }, + { + "start": 1776.98, + "end": 1781.82, + "probability": 0.986 + }, + { + "start": 1782.7, + "end": 1785.87, + "probability": 0.9985 + }, + { + "start": 1786.74, + "end": 1787.72, + "probability": 0.9565 + }, + { + "start": 1789.44, + "end": 1790.36, + "probability": 0.9744 + }, + { + "start": 1792.44, + "end": 1796.78, + "probability": 0.9757 + }, + { + "start": 1797.38, + "end": 1799.4, + "probability": 0.9985 + }, + { + "start": 1801.04, + "end": 1802.0, + "probability": 0.83 + }, + { + "start": 1803.32, + "end": 1806.4, + "probability": 0.9819 + }, + { + "start": 1808.14, + "end": 1810.86, + "probability": 0.9722 + }, + { + "start": 1811.5, + "end": 1813.94, + "probability": 0.9816 + }, + { + "start": 1814.56, + "end": 1816.88, + "probability": 0.9869 + }, + { + "start": 1818.18, + "end": 1820.58, + "probability": 0.9971 + }, + { + "start": 1820.98, + "end": 1823.88, + "probability": 0.9974 + }, + { + "start": 1824.8, + "end": 1831.31, + "probability": 0.9926 + }, + { + "start": 1833.04, + "end": 1837.4, + "probability": 0.4984 + }, + { + "start": 1839.34, + "end": 1843.98, + "probability": 0.9941 + }, + { + "start": 1843.98, + "end": 1849.38, + "probability": 0.999 + }, + { + "start": 1850.28, + "end": 1851.12, + "probability": 0.9966 + }, + { + "start": 1852.18, + "end": 1854.04, + "probability": 0.9953 + }, + { + "start": 1855.12, + "end": 1855.77, + "probability": 0.5044 + }, + { + "start": 1858.24, + "end": 1861.88, + "probability": 0.9198 + }, + { + "start": 1862.02, + "end": 1862.6, + "probability": 0.6434 + }, + { + "start": 1862.64, + "end": 1867.32, + "probability": 0.6863 + }, + { + "start": 1868.22, + "end": 1872.46, + "probability": 0.749 + }, + { + "start": 1873.24, + "end": 1873.88, + "probability": 0.7886 + }, + { + "start": 1874.8, + "end": 1877.36, + "probability": 0.988 + }, + { + "start": 1878.24, + "end": 1878.96, + "probability": 0.707 + }, + { + "start": 1879.5, + "end": 1883.96, + "probability": 0.9372 + }, + { + "start": 1885.28, + "end": 1888.0, + "probability": 0.9212 + }, + { + "start": 1889.06, + "end": 1891.82, + "probability": 0.9985 + }, + { + "start": 1892.4, + "end": 1895.64, + "probability": 0.9987 + }, + { + "start": 1896.64, + "end": 1899.68, + "probability": 0.9965 + }, + { + "start": 1900.8, + "end": 1903.02, + "probability": 0.9559 + }, + { + "start": 1903.9, + "end": 1907.24, + "probability": 0.9564 + }, + { + "start": 1907.32, + "end": 1908.46, + "probability": 0.8265 + }, + { + "start": 1909.22, + "end": 1912.72, + "probability": 0.8384 + }, + { + "start": 1913.42, + "end": 1916.98, + "probability": 0.9587 + }, + { + "start": 1917.42, + "end": 1921.16, + "probability": 0.9834 + }, + { + "start": 1921.16, + "end": 1926.79, + "probability": 0.5426 + }, + { + "start": 1927.0, + "end": 1928.5, + "probability": 0.9873 + }, + { + "start": 1930.24, + "end": 1930.24, + "probability": 0.1879 + }, + { + "start": 1930.24, + "end": 1934.04, + "probability": 0.7293 + }, + { + "start": 1934.78, + "end": 1937.76, + "probability": 0.9071 + }, + { + "start": 1938.34, + "end": 1940.12, + "probability": 0.8433 + }, + { + "start": 1940.6, + "end": 1942.24, + "probability": 0.5171 + }, + { + "start": 1942.72, + "end": 1943.44, + "probability": 0.2822 + }, + { + "start": 1944.02, + "end": 1950.68, + "probability": 0.7581 + }, + { + "start": 1951.22, + "end": 1952.38, + "probability": 0.9597 + }, + { + "start": 1953.44, + "end": 1955.74, + "probability": 0.9819 + }, + { + "start": 1955.88, + "end": 1957.16, + "probability": 0.9958 + }, + { + "start": 1957.24, + "end": 1959.7, + "probability": 0.9956 + }, + { + "start": 1960.28, + "end": 1964.42, + "probability": 0.5872 + }, + { + "start": 1965.2, + "end": 1967.92, + "probability": 0.9973 + }, + { + "start": 1968.74, + "end": 1971.64, + "probability": 0.9719 + }, + { + "start": 1972.16, + "end": 1973.74, + "probability": 0.9822 + }, + { + "start": 1973.9, + "end": 1978.0, + "probability": 0.9747 + }, + { + "start": 1978.12, + "end": 1979.48, + "probability": 0.9578 + }, + { + "start": 1980.66, + "end": 1986.14, + "probability": 0.985 + }, + { + "start": 1986.14, + "end": 1989.86, + "probability": 0.9985 + }, + { + "start": 1990.18, + "end": 1991.22, + "probability": 0.8914 + }, + { + "start": 1994.08, + "end": 1997.08, + "probability": 0.7338 + }, + { + "start": 1998.06, + "end": 2001.24, + "probability": 0.9901 + }, + { + "start": 2002.36, + "end": 2002.5, + "probability": 0.1395 + }, + { + "start": 2002.5, + "end": 2003.94, + "probability": 0.8032 + }, + { + "start": 2004.0, + "end": 2006.06, + "probability": 0.7846 + }, + { + "start": 2006.42, + "end": 2007.0, + "probability": 0.6203 + }, + { + "start": 2007.04, + "end": 2008.66, + "probability": 0.7355 + }, + { + "start": 2009.16, + "end": 2019.14, + "probability": 0.7254 + }, + { + "start": 2019.24, + "end": 2020.31, + "probability": 0.9112 + }, + { + "start": 2021.44, + "end": 2023.0, + "probability": 0.6115 + }, + { + "start": 2023.92, + "end": 2025.26, + "probability": 0.9062 + }, + { + "start": 2025.72, + "end": 2028.68, + "probability": 0.9559 + }, + { + "start": 2029.54, + "end": 2031.82, + "probability": 0.9934 + }, + { + "start": 2032.86, + "end": 2036.6, + "probability": 0.9865 + }, + { + "start": 2037.2, + "end": 2041.1, + "probability": 0.7694 + }, + { + "start": 2041.54, + "end": 2043.1, + "probability": 0.9922 + }, + { + "start": 2044.28, + "end": 2046.58, + "probability": 0.9976 + }, + { + "start": 2046.58, + "end": 2050.51, + "probability": 0.9873 + }, + { + "start": 2052.14, + "end": 2052.84, + "probability": 0.9634 + }, + { + "start": 2054.1, + "end": 2055.2, + "probability": 0.9744 + }, + { + "start": 2055.78, + "end": 2056.46, + "probability": 0.7856 + }, + { + "start": 2056.58, + "end": 2064.65, + "probability": 0.8188 + }, + { + "start": 2064.97, + "end": 2067.04, + "probability": 0.9272 + }, + { + "start": 2068.08, + "end": 2070.78, + "probability": 0.4983 + }, + { + "start": 2070.98, + "end": 2075.0, + "probability": 0.8434 + }, + { + "start": 2075.84, + "end": 2077.16, + "probability": 0.7788 + }, + { + "start": 2078.24, + "end": 2080.22, + "probability": 0.594 + }, + { + "start": 2080.52, + "end": 2081.74, + "probability": 0.9946 + }, + { + "start": 2081.88, + "end": 2083.22, + "probability": 0.7222 + }, + { + "start": 2083.3, + "end": 2086.84, + "probability": 0.7439 + }, + { + "start": 2087.8, + "end": 2089.5, + "probability": 0.949 + }, + { + "start": 2090.62, + "end": 2092.3, + "probability": 0.6433 + }, + { + "start": 2092.76, + "end": 2094.28, + "probability": 0.8968 + }, + { + "start": 2094.62, + "end": 2096.62, + "probability": 0.7881 + }, + { + "start": 2097.34, + "end": 2100.06, + "probability": 0.8843 + }, + { + "start": 2100.88, + "end": 2104.4, + "probability": 0.9555 + }, + { + "start": 2105.58, + "end": 2109.7, + "probability": 0.7987 + }, + { + "start": 2110.26, + "end": 2112.2, + "probability": 0.9883 + }, + { + "start": 2113.02, + "end": 2114.79, + "probability": 0.8364 + }, + { + "start": 2117.98, + "end": 2121.24, + "probability": 0.9967 + }, + { + "start": 2121.24, + "end": 2124.5, + "probability": 0.9926 + }, + { + "start": 2125.42, + "end": 2127.76, + "probability": 0.8055 + }, + { + "start": 2128.6, + "end": 2131.26, + "probability": 0.8279 + }, + { + "start": 2132.1, + "end": 2132.58, + "probability": 0.498 + }, + { + "start": 2132.66, + "end": 2137.26, + "probability": 0.9684 + }, + { + "start": 2137.64, + "end": 2140.08, + "probability": 0.9979 + }, + { + "start": 2140.96, + "end": 2142.4, + "probability": 0.9694 + }, + { + "start": 2144.3, + "end": 2147.04, + "probability": 0.9743 + }, + { + "start": 2147.48, + "end": 2148.7, + "probability": 0.9952 + }, + { + "start": 2149.12, + "end": 2149.96, + "probability": 0.9008 + }, + { + "start": 2150.02, + "end": 2150.58, + "probability": 0.9549 + }, + { + "start": 2151.06, + "end": 2156.08, + "probability": 0.7537 + }, + { + "start": 2156.24, + "end": 2157.52, + "probability": 0.9802 + }, + { + "start": 2158.14, + "end": 2161.34, + "probability": 0.9751 + }, + { + "start": 2163.02, + "end": 2163.66, + "probability": 0.3785 + }, + { + "start": 2165.18, + "end": 2167.5, + "probability": 0.742 + }, + { + "start": 2168.86, + "end": 2170.36, + "probability": 0.9207 + }, + { + "start": 2171.32, + "end": 2173.48, + "probability": 0.996 + }, + { + "start": 2174.66, + "end": 2175.32, + "probability": 0.764 + }, + { + "start": 2176.1, + "end": 2176.84, + "probability": 0.9333 + }, + { + "start": 2176.96, + "end": 2177.75, + "probability": 0.8428 + }, + { + "start": 2178.36, + "end": 2179.98, + "probability": 0.9387 + }, + { + "start": 2181.22, + "end": 2185.08, + "probability": 0.6873 + }, + { + "start": 2185.68, + "end": 2186.08, + "probability": 0.5661 + }, + { + "start": 2186.78, + "end": 2188.82, + "probability": 0.9633 + }, + { + "start": 2190.18, + "end": 2191.22, + "probability": 0.9233 + }, + { + "start": 2191.32, + "end": 2193.46, + "probability": 0.8412 + }, + { + "start": 2194.0, + "end": 2196.2, + "probability": 0.9667 + }, + { + "start": 2197.78, + "end": 2203.0, + "probability": 0.975 + }, + { + "start": 2203.5, + "end": 2204.14, + "probability": 0.7553 + }, + { + "start": 2205.74, + "end": 2211.12, + "probability": 0.75 + }, + { + "start": 2211.18, + "end": 2212.52, + "probability": 0.8669 + }, + { + "start": 2213.14, + "end": 2217.36, + "probability": 0.9917 + }, + { + "start": 2217.74, + "end": 2222.74, + "probability": 0.9656 + }, + { + "start": 2223.16, + "end": 2225.0, + "probability": 0.8334 + }, + { + "start": 2225.64, + "end": 2227.0, + "probability": 0.9503 + }, + { + "start": 2227.88, + "end": 2228.92, + "probability": 0.8545 + }, + { + "start": 2229.76, + "end": 2230.1, + "probability": 0.4834 + }, + { + "start": 2230.8, + "end": 2231.96, + "probability": 0.8262 + }, + { + "start": 2232.78, + "end": 2235.12, + "probability": 0.9683 + }, + { + "start": 2236.32, + "end": 2237.28, + "probability": 0.9624 + }, + { + "start": 2238.1, + "end": 2243.16, + "probability": 0.9091 + }, + { + "start": 2243.82, + "end": 2250.6, + "probability": 0.9832 + }, + { + "start": 2251.36, + "end": 2254.22, + "probability": 0.988 + }, + { + "start": 2255.06, + "end": 2263.52, + "probability": 0.9301 + }, + { + "start": 2265.46, + "end": 2268.48, + "probability": 0.9912 + }, + { + "start": 2269.02, + "end": 2270.96, + "probability": 0.8525 + }, + { + "start": 2271.74, + "end": 2276.18, + "probability": 0.894 + }, + { + "start": 2276.28, + "end": 2277.64, + "probability": 0.9377 + }, + { + "start": 2278.5, + "end": 2280.9, + "probability": 0.9688 + }, + { + "start": 2281.6, + "end": 2282.28, + "probability": 0.9014 + }, + { + "start": 2283.4, + "end": 2284.84, + "probability": 0.3328 + }, + { + "start": 2285.54, + "end": 2286.9, + "probability": 0.8797 + }, + { + "start": 2288.04, + "end": 2289.72, + "probability": 0.9945 + }, + { + "start": 2290.52, + "end": 2295.2, + "probability": 0.7657 + }, + { + "start": 2296.32, + "end": 2297.2, + "probability": 0.8923 + }, + { + "start": 2299.42, + "end": 2301.0, + "probability": 0.9227 + }, + { + "start": 2301.82, + "end": 2303.14, + "probability": 0.9028 + }, + { + "start": 2304.3, + "end": 2306.42, + "probability": 0.9211 + }, + { + "start": 2306.94, + "end": 2310.68, + "probability": 0.9487 + }, + { + "start": 2311.84, + "end": 2313.38, + "probability": 0.9922 + }, + { + "start": 2314.54, + "end": 2315.72, + "probability": 0.873 + }, + { + "start": 2317.16, + "end": 2321.28, + "probability": 0.9975 + }, + { + "start": 2321.28, + "end": 2323.86, + "probability": 0.9958 + }, + { + "start": 2324.76, + "end": 2325.8, + "probability": 0.8001 + }, + { + "start": 2327.16, + "end": 2329.02, + "probability": 0.782 + }, + { + "start": 2330.16, + "end": 2331.68, + "probability": 0.6457 + }, + { + "start": 2332.54, + "end": 2333.34, + "probability": 0.894 + }, + { + "start": 2333.96, + "end": 2341.56, + "probability": 0.9703 + }, + { + "start": 2342.44, + "end": 2344.56, + "probability": 0.9458 + }, + { + "start": 2345.96, + "end": 2348.38, + "probability": 0.8046 + }, + { + "start": 2350.54, + "end": 2352.06, + "probability": 0.7834 + }, + { + "start": 2354.24, + "end": 2355.3, + "probability": 0.932 + }, + { + "start": 2355.42, + "end": 2355.64, + "probability": 0.8523 + }, + { + "start": 2356.58, + "end": 2359.72, + "probability": 0.8171 + }, + { + "start": 2360.26, + "end": 2361.98, + "probability": 0.3264 + }, + { + "start": 2362.06, + "end": 2363.92, + "probability": 0.9553 + }, + { + "start": 2364.08, + "end": 2365.12, + "probability": 0.6991 + }, + { + "start": 2365.2, + "end": 2369.0, + "probability": 0.9651 + }, + { + "start": 2369.0, + "end": 2370.2, + "probability": 0.6959 + }, + { + "start": 2370.46, + "end": 2374.9, + "probability": 0.8142 + }, + { + "start": 2375.0, + "end": 2376.44, + "probability": 0.9269 + }, + { + "start": 2377.16, + "end": 2378.92, + "probability": 0.9941 + }, + { + "start": 2379.5, + "end": 2386.26, + "probability": 0.9243 + }, + { + "start": 2386.94, + "end": 2392.62, + "probability": 0.9736 + }, + { + "start": 2393.08, + "end": 2399.34, + "probability": 0.9785 + }, + { + "start": 2399.34, + "end": 2407.48, + "probability": 0.9373 + }, + { + "start": 2408.62, + "end": 2410.66, + "probability": 0.8975 + }, + { + "start": 2413.8, + "end": 2415.64, + "probability": 0.9967 + }, + { + "start": 2416.82, + "end": 2418.26, + "probability": 0.9735 + }, + { + "start": 2420.44, + "end": 2422.74, + "probability": 0.9192 + }, + { + "start": 2423.68, + "end": 2425.78, + "probability": 0.859 + }, + { + "start": 2427.14, + "end": 2430.44, + "probability": 0.9879 + }, + { + "start": 2431.02, + "end": 2431.54, + "probability": 0.9553 + }, + { + "start": 2432.32, + "end": 2432.88, + "probability": 0.5843 + }, + { + "start": 2433.82, + "end": 2438.48, + "probability": 0.9964 + }, + { + "start": 2438.48, + "end": 2443.68, + "probability": 0.9894 + }, + { + "start": 2444.04, + "end": 2446.12, + "probability": 0.9045 + }, + { + "start": 2446.78, + "end": 2449.1, + "probability": 0.9973 + }, + { + "start": 2449.42, + "end": 2449.8, + "probability": 0.7431 + }, + { + "start": 2451.06, + "end": 2452.74, + "probability": 0.7012 + }, + { + "start": 2453.46, + "end": 2458.04, + "probability": 0.5198 + }, + { + "start": 2465.8, + "end": 2467.24, + "probability": 0.7943 + }, + { + "start": 2480.94, + "end": 2482.34, + "probability": 0.755 + }, + { + "start": 2482.4, + "end": 2483.83, + "probability": 0.881 + }, + { + "start": 2484.32, + "end": 2487.16, + "probability": 0.7874 + }, + { + "start": 2488.54, + "end": 2491.68, + "probability": 0.9067 + }, + { + "start": 2491.68, + "end": 2495.65, + "probability": 0.9787 + }, + { + "start": 2497.34, + "end": 2498.44, + "probability": 0.9146 + }, + { + "start": 2499.48, + "end": 2502.66, + "probability": 0.7545 + }, + { + "start": 2504.12, + "end": 2507.28, + "probability": 0.8249 + }, + { + "start": 2508.12, + "end": 2509.44, + "probability": 0.9465 + }, + { + "start": 2516.0, + "end": 2519.98, + "probability": 0.999 + }, + { + "start": 2520.72, + "end": 2524.88, + "probability": 0.9632 + }, + { + "start": 2525.88, + "end": 2528.8, + "probability": 0.9541 + }, + { + "start": 2529.48, + "end": 2533.4, + "probability": 0.974 + }, + { + "start": 2534.22, + "end": 2537.3, + "probability": 0.9951 + }, + { + "start": 2537.86, + "end": 2541.2, + "probability": 0.9872 + }, + { + "start": 2542.3, + "end": 2544.7, + "probability": 0.948 + }, + { + "start": 2546.04, + "end": 2549.36, + "probability": 0.9421 + }, + { + "start": 2549.96, + "end": 2552.5, + "probability": 0.9873 + }, + { + "start": 2553.24, + "end": 2557.8, + "probability": 0.96 + }, + { + "start": 2558.64, + "end": 2559.18, + "probability": 0.8505 + }, + { + "start": 2559.5, + "end": 2562.98, + "probability": 0.8744 + }, + { + "start": 2563.6, + "end": 2566.46, + "probability": 0.8084 + }, + { + "start": 2567.0, + "end": 2569.34, + "probability": 0.9963 + }, + { + "start": 2569.34, + "end": 2571.9, + "probability": 0.9663 + }, + { + "start": 2572.94, + "end": 2573.56, + "probability": 0.9057 + }, + { + "start": 2573.7, + "end": 2576.8, + "probability": 0.8528 + }, + { + "start": 2576.92, + "end": 2579.18, + "probability": 0.8816 + }, + { + "start": 2580.8, + "end": 2582.92, + "probability": 0.9706 + }, + { + "start": 2583.6, + "end": 2584.14, + "probability": 0.8261 + }, + { + "start": 2585.14, + "end": 2587.44, + "probability": 0.9984 + }, + { + "start": 2588.06, + "end": 2590.7, + "probability": 0.8867 + }, + { + "start": 2591.32, + "end": 2592.9, + "probability": 0.9307 + }, + { + "start": 2593.64, + "end": 2596.78, + "probability": 0.9932 + }, + { + "start": 2597.4, + "end": 2599.98, + "probability": 0.783 + }, + { + "start": 2600.62, + "end": 2601.86, + "probability": 0.931 + }, + { + "start": 2602.28, + "end": 2603.16, + "probability": 0.8546 + }, + { + "start": 2603.26, + "end": 2605.22, + "probability": 0.863 + }, + { + "start": 2606.2, + "end": 2607.25, + "probability": 0.7453 + }, + { + "start": 2608.14, + "end": 2611.26, + "probability": 0.9831 + }, + { + "start": 2611.94, + "end": 2615.74, + "probability": 0.88 + }, + { + "start": 2616.56, + "end": 2619.44, + "probability": 0.964 + }, + { + "start": 2619.44, + "end": 2621.46, + "probability": 0.9932 + }, + { + "start": 2622.2, + "end": 2625.04, + "probability": 0.9951 + }, + { + "start": 2625.56, + "end": 2629.32, + "probability": 0.9741 + }, + { + "start": 2629.36, + "end": 2631.42, + "probability": 0.9095 + }, + { + "start": 2632.46, + "end": 2632.72, + "probability": 0.8364 + }, + { + "start": 2633.64, + "end": 2636.0, + "probability": 0.7701 + }, + { + "start": 2636.78, + "end": 2639.36, + "probability": 0.9976 + }, + { + "start": 2639.4, + "end": 2642.78, + "probability": 0.8978 + }, + { + "start": 2644.06, + "end": 2647.76, + "probability": 0.8326 + }, + { + "start": 2655.7, + "end": 2658.1, + "probability": 0.6049 + }, + { + "start": 2662.62, + "end": 2667.64, + "probability": 0.9378 + }, + { + "start": 2667.84, + "end": 2668.56, + "probability": 0.4629 + }, + { + "start": 2669.94, + "end": 2675.62, + "probability": 0.9435 + }, + { + "start": 2675.62, + "end": 2680.94, + "probability": 0.8786 + }, + { + "start": 2681.12, + "end": 2681.92, + "probability": 0.6058 + }, + { + "start": 2682.94, + "end": 2684.32, + "probability": 0.9954 + }, + { + "start": 2685.3, + "end": 2687.9, + "probability": 0.9895 + }, + { + "start": 2688.78, + "end": 2689.8, + "probability": 0.4167 + }, + { + "start": 2690.92, + "end": 2696.78, + "probability": 0.9731 + }, + { + "start": 2699.06, + "end": 2702.3, + "probability": 0.0753 + }, + { + "start": 2702.32, + "end": 2703.84, + "probability": 0.2818 + }, + { + "start": 2705.78, + "end": 2708.74, + "probability": 0.2151 + }, + { + "start": 2710.42, + "end": 2712.76, + "probability": 0.1043 + }, + { + "start": 2714.02, + "end": 2715.76, + "probability": 0.0162 + }, + { + "start": 2821.76, + "end": 2823.9, + "probability": 0.8575 + }, + { + "start": 2824.12, + "end": 2825.48, + "probability": 0.9709 + }, + { + "start": 2826.36, + "end": 2827.12, + "probability": 0.9424 + }, + { + "start": 2828.7, + "end": 2831.14, + "probability": 0.9881 + }, + { + "start": 2832.68, + "end": 2836.26, + "probability": 0.9865 + }, + { + "start": 2836.58, + "end": 2837.9, + "probability": 0.9619 + }, + { + "start": 2838.74, + "end": 2839.88, + "probability": 0.7979 + }, + { + "start": 2840.48, + "end": 2842.12, + "probability": 0.8292 + }, + { + "start": 2842.94, + "end": 2854.04, + "probability": 0.8838 + }, + { + "start": 2854.56, + "end": 2855.66, + "probability": 0.9211 + }, + { + "start": 2856.48, + "end": 2859.56, + "probability": 0.9327 + }, + { + "start": 2860.5, + "end": 2862.1, + "probability": 0.9424 + }, + { + "start": 2863.72, + "end": 2869.14, + "probability": 0.989 + }, + { + "start": 2870.2, + "end": 2872.28, + "probability": 0.9418 + }, + { + "start": 2873.24, + "end": 2875.12, + "probability": 0.9407 + }, + { + "start": 2876.22, + "end": 2877.08, + "probability": 0.83 + }, + { + "start": 2878.3, + "end": 2880.04, + "probability": 0.9235 + }, + { + "start": 2883.12, + "end": 2889.9, + "probability": 0.9908 + }, + { + "start": 2890.82, + "end": 2892.1, + "probability": 0.9609 + }, + { + "start": 2893.04, + "end": 2898.35, + "probability": 0.9827 + }, + { + "start": 2900.72, + "end": 2901.7, + "probability": 0.8547 + }, + { + "start": 2902.96, + "end": 2909.42, + "probability": 0.9857 + }, + { + "start": 2909.76, + "end": 2915.28, + "probability": 0.9858 + }, + { + "start": 2916.1, + "end": 2916.3, + "probability": 0.5496 + }, + { + "start": 2917.0, + "end": 2923.46, + "probability": 0.9838 + }, + { + "start": 2923.46, + "end": 2928.18, + "probability": 0.9987 + }, + { + "start": 2928.92, + "end": 2932.34, + "probability": 0.9982 + }, + { + "start": 2934.0, + "end": 2938.1, + "probability": 0.4733 + }, + { + "start": 2938.98, + "end": 2943.84, + "probability": 0.993 + }, + { + "start": 2943.84, + "end": 2951.53, + "probability": 0.9924 + }, + { + "start": 2952.52, + "end": 2959.22, + "probability": 0.9979 + }, + { + "start": 2959.36, + "end": 2960.6, + "probability": 0.5543 + }, + { + "start": 2960.74, + "end": 2961.72, + "probability": 0.9388 + }, + { + "start": 2961.8, + "end": 2965.04, + "probability": 0.959 + }, + { + "start": 2965.84, + "end": 2974.52, + "probability": 0.9201 + }, + { + "start": 2974.72, + "end": 2975.12, + "probability": 0.3931 + }, + { + "start": 2976.04, + "end": 2979.62, + "probability": 0.9886 + }, + { + "start": 2982.52, + "end": 2985.36, + "probability": 0.7538 + }, + { + "start": 2987.2, + "end": 2991.74, + "probability": 0.998 + }, + { + "start": 2991.74, + "end": 2996.66, + "probability": 0.9915 + }, + { + "start": 2996.76, + "end": 2997.98, + "probability": 0.9421 + }, + { + "start": 2998.64, + "end": 3000.89, + "probability": 0.9933 + }, + { + "start": 3002.12, + "end": 3003.9, + "probability": 0.9981 + }, + { + "start": 3004.72, + "end": 3007.66, + "probability": 0.9978 + }, + { + "start": 3007.94, + "end": 3008.72, + "probability": 0.6234 + }, + { + "start": 3008.74, + "end": 3013.0, + "probability": 0.9583 + }, + { + "start": 3013.68, + "end": 3014.98, + "probability": 0.8091 + }, + { + "start": 3016.08, + "end": 3019.46, + "probability": 0.9741 + }, + { + "start": 3020.08, + "end": 3023.52, + "probability": 0.9786 + }, + { + "start": 3024.52, + "end": 3028.22, + "probability": 0.9771 + }, + { + "start": 3028.24, + "end": 3029.22, + "probability": 0.6361 + }, + { + "start": 3029.84, + "end": 3030.76, + "probability": 0.9548 + }, + { + "start": 3032.18, + "end": 3038.88, + "probability": 0.9491 + }, + { + "start": 3040.04, + "end": 3041.4, + "probability": 0.5242 + }, + { + "start": 3042.14, + "end": 3045.28, + "probability": 0.8447 + }, + { + "start": 3045.38, + "end": 3048.26, + "probability": 0.9853 + }, + { + "start": 3048.46, + "end": 3049.64, + "probability": 0.8112 + }, + { + "start": 3050.56, + "end": 3052.8, + "probability": 0.8745 + }, + { + "start": 3053.6, + "end": 3055.56, + "probability": 0.9784 + }, + { + "start": 3055.64, + "end": 3060.18, + "probability": 0.9465 + }, + { + "start": 3060.48, + "end": 3061.38, + "probability": 0.5678 + }, + { + "start": 3062.18, + "end": 3063.28, + "probability": 0.6619 + }, + { + "start": 3063.5, + "end": 3064.52, + "probability": 0.8916 + }, + { + "start": 3064.62, + "end": 3068.42, + "probability": 0.9734 + }, + { + "start": 3068.54, + "end": 3069.28, + "probability": 0.6806 + }, + { + "start": 3070.48, + "end": 3073.24, + "probability": 0.8944 + }, + { + "start": 3073.78, + "end": 3076.52, + "probability": 0.9787 + }, + { + "start": 3077.18, + "end": 3079.32, + "probability": 0.7568 + }, + { + "start": 3079.92, + "end": 3083.56, + "probability": 0.923 + }, + { + "start": 3084.18, + "end": 3087.82, + "probability": 0.9473 + }, + { + "start": 3088.87, + "end": 3093.18, + "probability": 0.7169 + }, + { + "start": 3093.38, + "end": 3095.36, + "probability": 0.9886 + }, + { + "start": 3096.32, + "end": 3096.8, + "probability": 0.6296 + }, + { + "start": 3097.04, + "end": 3099.84, + "probability": 0.9893 + }, + { + "start": 3099.94, + "end": 3103.74, + "probability": 0.9824 + }, + { + "start": 3104.5, + "end": 3108.58, + "probability": 0.6239 + }, + { + "start": 3109.78, + "end": 3114.69, + "probability": 0.9206 + }, + { + "start": 3115.94, + "end": 3118.2, + "probability": 0.7806 + }, + { + "start": 3118.92, + "end": 3126.38, + "probability": 0.9487 + }, + { + "start": 3127.22, + "end": 3128.6, + "probability": 0.9974 + }, + { + "start": 3129.62, + "end": 3136.06, + "probability": 0.9953 + }, + { + "start": 3136.06, + "end": 3141.16, + "probability": 0.9646 + }, + { + "start": 3141.46, + "end": 3144.34, + "probability": 0.8742 + }, + { + "start": 3145.7, + "end": 3148.22, + "probability": 0.9292 + }, + { + "start": 3150.68, + "end": 3152.94, + "probability": 0.9684 + }, + { + "start": 3153.02, + "end": 3155.46, + "probability": 0.8001 + }, + { + "start": 3155.68, + "end": 3160.78, + "probability": 0.9809 + }, + { + "start": 3162.44, + "end": 3166.38, + "probability": 0.9694 + }, + { + "start": 3166.42, + "end": 3168.74, + "probability": 0.8026 + }, + { + "start": 3168.84, + "end": 3169.36, + "probability": 0.9017 + }, + { + "start": 3169.48, + "end": 3170.02, + "probability": 0.8107 + }, + { + "start": 3170.12, + "end": 3170.76, + "probability": 0.9711 + }, + { + "start": 3170.88, + "end": 3171.44, + "probability": 0.7873 + }, + { + "start": 3172.2, + "end": 3177.34, + "probability": 0.9407 + }, + { + "start": 3178.12, + "end": 3179.62, + "probability": 0.9482 + }, + { + "start": 3181.14, + "end": 3183.58, + "probability": 0.9222 + }, + { + "start": 3184.06, + "end": 3187.76, + "probability": 0.9966 + }, + { + "start": 3193.36, + "end": 3196.9, + "probability": 0.9094 + }, + { + "start": 3197.84, + "end": 3200.92, + "probability": 0.9977 + }, + { + "start": 3203.61, + "end": 3206.48, + "probability": 0.9629 + }, + { + "start": 3206.48, + "end": 3211.96, + "probability": 0.9937 + }, + { + "start": 3213.42, + "end": 3216.76, + "probability": 0.9221 + }, + { + "start": 3217.38, + "end": 3218.74, + "probability": 0.8623 + }, + { + "start": 3218.8, + "end": 3220.16, + "probability": 0.6513 + }, + { + "start": 3222.44, + "end": 3224.9, + "probability": 0.9908 + }, + { + "start": 3225.16, + "end": 3225.9, + "probability": 0.6423 + }, + { + "start": 3226.38, + "end": 3231.06, + "probability": 0.9708 + }, + { + "start": 3231.7, + "end": 3234.5, + "probability": 0.9413 + }, + { + "start": 3235.44, + "end": 3239.28, + "probability": 0.9617 + }, + { + "start": 3241.74, + "end": 3243.8, + "probability": 0.9275 + }, + { + "start": 3244.86, + "end": 3249.32, + "probability": 0.9956 + }, + { + "start": 3249.36, + "end": 3256.0, + "probability": 0.9903 + }, + { + "start": 3256.68, + "end": 3262.96, + "probability": 0.9163 + }, + { + "start": 3263.56, + "end": 3264.36, + "probability": 0.691 + }, + { + "start": 3265.58, + "end": 3268.12, + "probability": 0.7996 + }, + { + "start": 3268.98, + "end": 3272.32, + "probability": 0.99 + }, + { + "start": 3273.06, + "end": 3276.68, + "probability": 0.9351 + }, + { + "start": 3277.24, + "end": 3278.82, + "probability": 0.969 + }, + { + "start": 3279.46, + "end": 3280.96, + "probability": 0.9476 + }, + { + "start": 3281.56, + "end": 3286.0, + "probability": 0.9231 + }, + { + "start": 3290.9, + "end": 3291.56, + "probability": 0.8333 + }, + { + "start": 3291.6, + "end": 3292.34, + "probability": 0.7791 + }, + { + "start": 3292.6, + "end": 3294.26, + "probability": 0.7728 + }, + { + "start": 3294.34, + "end": 3294.6, + "probability": 0.8843 + }, + { + "start": 3294.78, + "end": 3296.5, + "probability": 0.9619 + }, + { + "start": 3297.32, + "end": 3300.16, + "probability": 0.9937 + }, + { + "start": 3300.58, + "end": 3303.02, + "probability": 0.9793 + }, + { + "start": 3303.5, + "end": 3304.0, + "probability": 0.927 + }, + { + "start": 3304.46, + "end": 3307.9, + "probability": 0.9927 + }, + { + "start": 3308.52, + "end": 3310.8, + "probability": 0.8509 + }, + { + "start": 3310.88, + "end": 3311.62, + "probability": 0.7188 + }, + { + "start": 3312.06, + "end": 3313.3, + "probability": 0.8592 + }, + { + "start": 3313.58, + "end": 3314.64, + "probability": 0.8729 + }, + { + "start": 3314.8, + "end": 3318.52, + "probability": 0.9836 + }, + { + "start": 3319.14, + "end": 3322.9, + "probability": 0.9797 + }, + { + "start": 3323.26, + "end": 3324.18, + "probability": 0.2921 + }, + { + "start": 3324.2, + "end": 3327.76, + "probability": 0.991 + }, + { + "start": 3329.44, + "end": 3329.88, + "probability": 0.7491 + }, + { + "start": 3334.96, + "end": 3337.26, + "probability": 0.8798 + }, + { + "start": 3337.74, + "end": 3341.86, + "probability": 0.9384 + }, + { + "start": 3341.9, + "end": 3342.86, + "probability": 0.694 + }, + { + "start": 3353.2, + "end": 3354.1, + "probability": 0.3066 + }, + { + "start": 3354.18, + "end": 3354.96, + "probability": 0.8481 + }, + { + "start": 3354.98, + "end": 3355.24, + "probability": 0.7313 + }, + { + "start": 3355.42, + "end": 3357.84, + "probability": 0.8776 + }, + { + "start": 3358.8, + "end": 3360.93, + "probability": 0.9487 + }, + { + "start": 3362.6, + "end": 3366.44, + "probability": 0.9794 + }, + { + "start": 3366.8, + "end": 3370.66, + "probability": 0.9933 + }, + { + "start": 3371.22, + "end": 3375.98, + "probability": 0.9955 + }, + { + "start": 3376.74, + "end": 3381.12, + "probability": 0.9863 + }, + { + "start": 3381.36, + "end": 3382.76, + "probability": 0.9985 + }, + { + "start": 3384.16, + "end": 3384.9, + "probability": 0.9894 + }, + { + "start": 3385.94, + "end": 3388.14, + "probability": 0.891 + }, + { + "start": 3389.18, + "end": 3391.58, + "probability": 0.8831 + }, + { + "start": 3392.06, + "end": 3396.44, + "probability": 0.982 + }, + { + "start": 3397.44, + "end": 3399.22, + "probability": 0.9597 + }, + { + "start": 3399.44, + "end": 3402.7, + "probability": 0.9893 + }, + { + "start": 3403.14, + "end": 3406.54, + "probability": 0.9829 + }, + { + "start": 3406.62, + "end": 3408.18, + "probability": 0.9814 + }, + { + "start": 3408.3, + "end": 3409.48, + "probability": 0.8569 + }, + { + "start": 3410.18, + "end": 3415.54, + "probability": 0.8925 + }, + { + "start": 3415.7, + "end": 3416.98, + "probability": 0.9916 + }, + { + "start": 3417.06, + "end": 3417.86, + "probability": 0.6496 + }, + { + "start": 3418.46, + "end": 3421.04, + "probability": 0.933 + }, + { + "start": 3421.1, + "end": 3426.26, + "probability": 0.9658 + }, + { + "start": 3426.36, + "end": 3426.82, + "probability": 0.6556 + }, + { + "start": 3426.92, + "end": 3428.8, + "probability": 0.4007 + }, + { + "start": 3429.02, + "end": 3430.92, + "probability": 0.7581 + }, + { + "start": 3432.26, + "end": 3433.4, + "probability": 0.9883 + }, + { + "start": 3433.6, + "end": 3433.6, + "probability": 0.4895 + }, + { + "start": 3434.68, + "end": 3435.96, + "probability": 0.9097 + }, + { + "start": 3436.38, + "end": 3437.66, + "probability": 0.984 + }, + { + "start": 3437.72, + "end": 3438.66, + "probability": 0.9604 + }, + { + "start": 3438.76, + "end": 3441.38, + "probability": 0.8606 + }, + { + "start": 3441.46, + "end": 3443.27, + "probability": 0.9749 + }, + { + "start": 3444.24, + "end": 3446.48, + "probability": 0.9495 + }, + { + "start": 3446.74, + "end": 3455.0, + "probability": 0.9946 + }, + { + "start": 3455.08, + "end": 3457.14, + "probability": 0.9351 + }, + { + "start": 3458.18, + "end": 3462.84, + "probability": 0.9854 + }, + { + "start": 3463.52, + "end": 3468.82, + "probability": 0.9613 + }, + { + "start": 3470.8, + "end": 3473.66, + "probability": 0.7534 + }, + { + "start": 3473.74, + "end": 3476.14, + "probability": 0.9547 + }, + { + "start": 3476.48, + "end": 3477.18, + "probability": 0.7974 + }, + { + "start": 3477.26, + "end": 3478.8, + "probability": 0.972 + }, + { + "start": 3479.54, + "end": 3481.02, + "probability": 0.9598 + }, + { + "start": 3481.8, + "end": 3482.42, + "probability": 0.6017 + }, + { + "start": 3484.48, + "end": 3493.32, + "probability": 0.8048 + }, + { + "start": 3493.66, + "end": 3494.88, + "probability": 0.8043 + }, + { + "start": 3496.44, + "end": 3497.08, + "probability": 0.8442 + }, + { + "start": 3498.38, + "end": 3503.2, + "probability": 0.715 + }, + { + "start": 3504.46, + "end": 3505.12, + "probability": 0.9272 + }, + { + "start": 3505.2, + "end": 3505.98, + "probability": 0.532 + }, + { + "start": 3507.28, + "end": 3508.84, + "probability": 0.7752 + }, + { + "start": 3509.72, + "end": 3514.3, + "probability": 0.8403 + }, + { + "start": 3515.16, + "end": 3518.86, + "probability": 0.8466 + }, + { + "start": 3519.94, + "end": 3520.38, + "probability": 0.959 + }, + { + "start": 3521.36, + "end": 3523.66, + "probability": 0.928 + }, + { + "start": 3524.72, + "end": 3526.68, + "probability": 0.2708 + }, + { + "start": 3528.0, + "end": 3532.74, + "probability": 0.981 + }, + { + "start": 3532.8, + "end": 3537.22, + "probability": 0.9983 + }, + { + "start": 3539.14, + "end": 3544.2, + "probability": 0.9796 + }, + { + "start": 3545.38, + "end": 3548.5, + "probability": 0.8003 + }, + { + "start": 3549.2, + "end": 3553.84, + "probability": 0.9988 + }, + { + "start": 3554.94, + "end": 3558.5, + "probability": 0.9888 + }, + { + "start": 3559.12, + "end": 3561.84, + "probability": 0.9598 + }, + { + "start": 3562.96, + "end": 3568.4, + "probability": 0.9423 + }, + { + "start": 3570.04, + "end": 3570.32, + "probability": 0.0017 + }, + { + "start": 3572.48, + "end": 3573.78, + "probability": 0.679 + }, + { + "start": 3575.18, + "end": 3576.68, + "probability": 0.8473 + }, + { + "start": 3577.98, + "end": 3582.14, + "probability": 0.7476 + }, + { + "start": 3583.08, + "end": 3585.52, + "probability": 0.9229 + }, + { + "start": 3585.64, + "end": 3586.5, + "probability": 0.8649 + }, + { + "start": 3587.28, + "end": 3587.94, + "probability": 0.7085 + }, + { + "start": 3589.04, + "end": 3589.34, + "probability": 0.1549 + }, + { + "start": 3589.34, + "end": 3590.4, + "probability": 0.6337 + }, + { + "start": 3590.76, + "end": 3593.92, + "probability": 0.4922 + }, + { + "start": 3593.92, + "end": 3593.92, + "probability": 0.4537 + }, + { + "start": 3593.92, + "end": 3594.9, + "probability": 0.5729 + }, + { + "start": 3595.24, + "end": 3598.28, + "probability": 0.3397 + }, + { + "start": 3598.82, + "end": 3600.98, + "probability": 0.4584 + }, + { + "start": 3601.08, + "end": 3602.84, + "probability": 0.3277 + }, + { + "start": 3602.94, + "end": 3603.02, + "probability": 0.3488 + }, + { + "start": 3603.1, + "end": 3603.82, + "probability": 0.2158 + }, + { + "start": 3603.92, + "end": 3607.68, + "probability": 0.3595 + }, + { + "start": 3607.72, + "end": 3608.22, + "probability": 0.1873 + }, + { + "start": 3608.56, + "end": 3610.54, + "probability": 0.2179 + }, + { + "start": 3611.19, + "end": 3613.36, + "probability": 0.0299 + }, + { + "start": 3613.46, + "end": 3614.36, + "probability": 0.2179 + }, + { + "start": 3614.48, + "end": 3616.18, + "probability": 0.0043 + }, + { + "start": 3616.92, + "end": 3617.48, + "probability": 0.0253 + }, + { + "start": 3619.74, + "end": 3619.74, + "probability": 0.5024 + }, + { + "start": 3620.06, + "end": 3620.66, + "probability": 0.5038 + }, + { + "start": 3620.66, + "end": 3621.15, + "probability": 0.8931 + }, + { + "start": 3621.5, + "end": 3625.74, + "probability": 0.0351 + }, + { + "start": 3625.74, + "end": 3628.94, + "probability": 0.9707 + }, + { + "start": 3630.86, + "end": 3631.68, + "probability": 0.0354 + }, + { + "start": 3631.68, + "end": 3633.42, + "probability": 0.2749 + }, + { + "start": 3635.07, + "end": 3637.02, + "probability": 0.186 + }, + { + "start": 3637.77, + "end": 3640.49, + "probability": 0.0849 + }, + { + "start": 3642.66, + "end": 3645.58, + "probability": 0.148 + }, + { + "start": 3649.23, + "end": 3649.72, + "probability": 0.0816 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.0, + "end": 3682.0, + "probability": 0.0 + }, + { + "start": 3682.36, + "end": 3682.64, + "probability": 0.1578 + }, + { + "start": 3682.64, + "end": 3682.64, + "probability": 0.064 + }, + { + "start": 3682.64, + "end": 3684.9, + "probability": 0.7565 + }, + { + "start": 3685.06, + "end": 3686.38, + "probability": 0.8665 + }, + { + "start": 3687.04, + "end": 3690.44, + "probability": 0.7854 + }, + { + "start": 3691.42, + "end": 3692.53, + "probability": 0.7666 + }, + { + "start": 3692.76, + "end": 3694.64, + "probability": 0.999 + }, + { + "start": 3695.88, + "end": 3698.98, + "probability": 0.8985 + }, + { + "start": 3698.98, + "end": 3703.06, + "probability": 0.9943 + }, + { + "start": 3703.92, + "end": 3704.44, + "probability": 0.7784 + }, + { + "start": 3705.6, + "end": 3708.48, + "probability": 0.7488 + }, + { + "start": 3709.26, + "end": 3710.02, + "probability": 0.3798 + }, + { + "start": 3710.16, + "end": 3712.68, + "probability": 0.8257 + }, + { + "start": 3712.82, + "end": 3716.2, + "probability": 0.9235 + }, + { + "start": 3717.18, + "end": 3720.08, + "probability": 0.9823 + }, + { + "start": 3721.34, + "end": 3723.22, + "probability": 0.6844 + }, + { + "start": 3725.36, + "end": 3728.76, + "probability": 0.9628 + }, + { + "start": 3729.42, + "end": 3730.18, + "probability": 0.8181 + }, + { + "start": 3730.26, + "end": 3730.92, + "probability": 0.8363 + }, + { + "start": 3731.1, + "end": 3733.8, + "probability": 0.9851 + }, + { + "start": 3734.72, + "end": 3736.88, + "probability": 0.8247 + }, + { + "start": 3738.2, + "end": 3741.02, + "probability": 0.864 + }, + { + "start": 3741.12, + "end": 3742.72, + "probability": 0.4894 + }, + { + "start": 3743.14, + "end": 3744.76, + "probability": 0.9476 + }, + { + "start": 3744.76, + "end": 3746.24, + "probability": 0.7452 + }, + { + "start": 3746.34, + "end": 3748.2, + "probability": 0.809 + }, + { + "start": 3748.64, + "end": 3751.79, + "probability": 0.7073 + }, + { + "start": 3752.02, + "end": 3752.58, + "probability": 0.7118 + }, + { + "start": 3753.56, + "end": 3755.27, + "probability": 0.9905 + }, + { + "start": 3755.4, + "end": 3758.56, + "probability": 0.9287 + }, + { + "start": 3759.6, + "end": 3759.72, + "probability": 0.0786 + }, + { + "start": 3759.72, + "end": 3760.62, + "probability": 0.6035 + }, + { + "start": 3761.04, + "end": 3762.54, + "probability": 0.9951 + }, + { + "start": 3762.62, + "end": 3763.3, + "probability": 0.5633 + }, + { + "start": 3763.3, + "end": 3764.18, + "probability": 0.8512 + }, + { + "start": 3765.06, + "end": 3766.72, + "probability": 0.9795 + }, + { + "start": 3766.82, + "end": 3767.76, + "probability": 0.5715 + }, + { + "start": 3768.28, + "end": 3770.96, + "probability": 0.9165 + }, + { + "start": 3771.54, + "end": 3772.96, + "probability": 0.7024 + }, + { + "start": 3773.94, + "end": 3774.38, + "probability": 0.6107 + }, + { + "start": 3774.44, + "end": 3778.08, + "probability": 0.9614 + }, + { + "start": 3778.48, + "end": 3781.44, + "probability": 0.5615 + }, + { + "start": 3781.66, + "end": 3782.74, + "probability": 0.3316 + }, + { + "start": 3783.04, + "end": 3783.92, + "probability": 0.0066 + }, + { + "start": 3785.7, + "end": 3786.3, + "probability": 0.0014 + }, + { + "start": 3786.3, + "end": 3786.3, + "probability": 0.2984 + }, + { + "start": 3786.3, + "end": 3786.36, + "probability": 0.0506 + }, + { + "start": 3786.36, + "end": 3786.36, + "probability": 0.3974 + }, + { + "start": 3786.36, + "end": 3786.36, + "probability": 0.1674 + }, + { + "start": 3786.36, + "end": 3786.98, + "probability": 0.2951 + }, + { + "start": 3787.22, + "end": 3788.2, + "probability": 0.4521 + }, + { + "start": 3789.08, + "end": 3789.3, + "probability": 0.0196 + }, + { + "start": 3789.3, + "end": 3789.44, + "probability": 0.2893 + }, + { + "start": 3789.44, + "end": 3790.06, + "probability": 0.2197 + }, + { + "start": 3790.06, + "end": 3792.2, + "probability": 0.1625 + }, + { + "start": 3792.28, + "end": 3794.48, + "probability": 0.7246 + }, + { + "start": 3794.66, + "end": 3799.38, + "probability": 0.9431 + }, + { + "start": 3800.42, + "end": 3800.77, + "probability": 0.5224 + }, + { + "start": 3801.02, + "end": 3804.34, + "probability": 0.9166 + }, + { + "start": 3804.42, + "end": 3804.52, + "probability": 0.3681 + }, + { + "start": 3804.52, + "end": 3805.5, + "probability": 0.5404 + }, + { + "start": 3805.76, + "end": 3808.53, + "probability": 0.44 + }, + { + "start": 3811.22, + "end": 3814.58, + "probability": 0.2948 + }, + { + "start": 3814.58, + "end": 3817.36, + "probability": 0.0617 + }, + { + "start": 3817.36, + "end": 3819.6, + "probability": 0.0448 + }, + { + "start": 3821.2, + "end": 3822.08, + "probability": 0.0018 + }, + { + "start": 3822.56, + "end": 3823.88, + "probability": 0.3259 + }, + { + "start": 3824.3, + "end": 3825.3, + "probability": 0.0122 + }, + { + "start": 3825.3, + "end": 3825.56, + "probability": 0.1456 + }, + { + "start": 3825.56, + "end": 3825.84, + "probability": 0.1409 + }, + { + "start": 3825.88, + "end": 3829.46, + "probability": 0.1605 + }, + { + "start": 3829.6, + "end": 3829.95, + "probability": 0.0797 + }, + { + "start": 3831.68, + "end": 3832.05, + "probability": 0.2767 + }, + { + "start": 3838.68, + "end": 3840.14, + "probability": 0.0816 + }, + { + "start": 3841.12, + "end": 3841.62, + "probability": 0.1324 + }, + { + "start": 3843.4, + "end": 3844.5, + "probability": 0.0726 + }, + { + "start": 3844.82, + "end": 3845.34, + "probability": 0.0213 + }, + { + "start": 3845.34, + "end": 3845.64, + "probability": 0.0427 + }, + { + "start": 3846.18, + "end": 3848.5, + "probability": 0.0765 + }, + { + "start": 3848.5, + "end": 3848.64, + "probability": 0.02 + }, + { + "start": 3848.64, + "end": 3848.64, + "probability": 0.018 + }, + { + "start": 3848.66, + "end": 3848.68, + "probability": 0.0777 + }, + { + "start": 3848.68, + "end": 3848.84, + "probability": 0.309 + }, + { + "start": 3849.44, + "end": 3849.98, + "probability": 0.0282 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3850.0, + "end": 3850.0, + "probability": 0.0 + }, + { + "start": 3852.24, + "end": 3852.34, + "probability": 0.0197 + }, + { + "start": 3852.34, + "end": 3852.34, + "probability": 0.1213 + }, + { + "start": 3852.34, + "end": 3855.76, + "probability": 0.6771 + }, + { + "start": 3855.78, + "end": 3857.08, + "probability": 0.4714 + }, + { + "start": 3857.18, + "end": 3858.5, + "probability": 0.6657 + }, + { + "start": 3859.48, + "end": 3863.32, + "probability": 0.9738 + }, + { + "start": 3864.58, + "end": 3868.75, + "probability": 0.9963 + }, + { + "start": 3869.64, + "end": 3871.1, + "probability": 0.9122 + }, + { + "start": 3872.08, + "end": 3873.42, + "probability": 0.8945 + }, + { + "start": 3874.2, + "end": 3875.62, + "probability": 0.8947 + }, + { + "start": 3876.74, + "end": 3878.48, + "probability": 0.9314 + }, + { + "start": 3879.74, + "end": 3882.28, + "probability": 0.7627 + }, + { + "start": 3882.52, + "end": 3883.22, + "probability": 0.4034 + }, + { + "start": 3883.3, + "end": 3883.9, + "probability": 0.3898 + }, + { + "start": 3883.92, + "end": 3884.92, + "probability": 0.7299 + }, + { + "start": 3884.92, + "end": 3884.94, + "probability": 0.2885 + }, + { + "start": 3884.94, + "end": 3885.68, + "probability": 0.5127 + }, + { + "start": 3885.7, + "end": 3886.26, + "probability": 0.6729 + }, + { + "start": 3886.42, + "end": 3889.06, + "probability": 0.3049 + }, + { + "start": 3889.16, + "end": 3890.94, + "probability": 0.7403 + }, + { + "start": 3891.06, + "end": 3892.0, + "probability": 0.989 + }, + { + "start": 3892.3, + "end": 3894.05, + "probability": 0.9746 + }, + { + "start": 3894.6, + "end": 3896.68, + "probability": 0.6801 + }, + { + "start": 3897.84, + "end": 3900.32, + "probability": 0.573 + }, + { + "start": 3901.1, + "end": 3903.02, + "probability": 0.9242 + }, + { + "start": 3903.06, + "end": 3904.34, + "probability": 0.9834 + }, + { + "start": 3905.2, + "end": 3907.48, + "probability": 0.9673 + }, + { + "start": 3908.4, + "end": 3909.56, + "probability": 0.9544 + }, + { + "start": 3910.56, + "end": 3913.48, + "probability": 0.9796 + }, + { + "start": 3914.1, + "end": 3917.64, + "probability": 0.9951 + }, + { + "start": 3918.24, + "end": 3920.96, + "probability": 0.9883 + }, + { + "start": 3921.02, + "end": 3921.3, + "probability": 0.8673 + }, + { + "start": 3922.38, + "end": 3924.5, + "probability": 0.979 + }, + { + "start": 3925.08, + "end": 3925.58, + "probability": 0.9329 + }, + { + "start": 3925.98, + "end": 3927.18, + "probability": 0.9703 + }, + { + "start": 3927.76, + "end": 3929.72, + "probability": 0.8759 + }, + { + "start": 3932.31, + "end": 3935.59, + "probability": 0.3965 + }, + { + "start": 3936.28, + "end": 3939.5, + "probability": 0.9355 + }, + { + "start": 3940.38, + "end": 3945.3, + "probability": 0.9963 + }, + { + "start": 3945.66, + "end": 3948.42, + "probability": 0.9917 + }, + { + "start": 3949.1, + "end": 3951.71, + "probability": 0.9277 + }, + { + "start": 3952.56, + "end": 3955.24, + "probability": 0.9569 + }, + { + "start": 3955.66, + "end": 3958.54, + "probability": 0.9196 + }, + { + "start": 3959.86, + "end": 3960.31, + "probability": 0.9844 + }, + { + "start": 3961.4, + "end": 3962.88, + "probability": 0.9915 + }, + { + "start": 3964.36, + "end": 3965.52, + "probability": 0.8164 + }, + { + "start": 3965.78, + "end": 3968.6, + "probability": 0.7309 + }, + { + "start": 3969.8, + "end": 3971.2, + "probability": 0.8073 + }, + { + "start": 3971.6, + "end": 3974.95, + "probability": 0.7958 + }, + { + "start": 3977.38, + "end": 3981.22, + "probability": 0.586 + }, + { + "start": 3982.48, + "end": 3984.78, + "probability": 0.8871 + }, + { + "start": 3985.12, + "end": 3986.42, + "probability": 0.9031 + }, + { + "start": 3986.78, + "end": 3987.68, + "probability": 0.8425 + }, + { + "start": 3990.86, + "end": 3998.78, + "probability": 0.1196 + }, + { + "start": 4003.0, + "end": 4004.8, + "probability": 0.036 + }, + { + "start": 4004.88, + "end": 4005.14, + "probability": 0.2181 + }, + { + "start": 4005.24, + "end": 4005.3, + "probability": 0.3937 + }, + { + "start": 4005.3, + "end": 4008.1, + "probability": 0.5171 + }, + { + "start": 4008.12, + "end": 4012.51, + "probability": 0.6408 + }, + { + "start": 4013.12, + "end": 4014.3, + "probability": 0.0019 + }, + { + "start": 4015.18, + "end": 4020.12, + "probability": 0.1769 + }, + { + "start": 4020.12, + "end": 4020.28, + "probability": 0.0918 + }, + { + "start": 4020.36, + "end": 4021.38, + "probability": 0.1734 + }, + { + "start": 4024.6, + "end": 4026.34, + "probability": 0.1487 + }, + { + "start": 4026.34, + "end": 4027.16, + "probability": 0.0765 + }, + { + "start": 4028.2, + "end": 4029.5, + "probability": 0.0437 + }, + { + "start": 4029.92, + "end": 4029.92, + "probability": 0.082 + }, + { + "start": 4029.92, + "end": 4031.82, + "probability": 0.0432 + }, + { + "start": 4032.96, + "end": 4034.84, + "probability": 0.134 + }, + { + "start": 4034.84, + "end": 4035.02, + "probability": 0.6503 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.0, + "end": 4068.0, + "probability": 0.0 + }, + { + "start": 4068.24, + "end": 4068.3, + "probability": 0.4861 + }, + { + "start": 4068.3, + "end": 4068.94, + "probability": 0.0466 + }, + { + "start": 4069.68, + "end": 4075.22, + "probability": 0.9871 + }, + { + "start": 4075.42, + "end": 4080.44, + "probability": 0.9861 + }, + { + "start": 4080.84, + "end": 4084.56, + "probability": 0.9944 + }, + { + "start": 4084.56, + "end": 4090.3, + "probability": 0.9929 + }, + { + "start": 4090.58, + "end": 4092.12, + "probability": 0.5812 + }, + { + "start": 4092.76, + "end": 4093.24, + "probability": 0.9515 + }, + { + "start": 4094.3, + "end": 4095.0, + "probability": 0.2722 + }, + { + "start": 4095.44, + "end": 4096.38, + "probability": 0.265 + }, + { + "start": 4096.46, + "end": 4098.62, + "probability": 0.9193 + }, + { + "start": 4098.62, + "end": 4101.62, + "probability": 0.9963 + }, + { + "start": 4101.72, + "end": 4105.72, + "probability": 0.9729 + }, + { + "start": 4107.14, + "end": 4108.92, + "probability": 0.9377 + }, + { + "start": 4109.68, + "end": 4113.6, + "probability": 0.9935 + }, + { + "start": 4114.56, + "end": 4116.88, + "probability": 0.9852 + }, + { + "start": 4117.6, + "end": 4119.14, + "probability": 0.9995 + }, + { + "start": 4120.14, + "end": 4121.98, + "probability": 0.9584 + }, + { + "start": 4123.92, + "end": 4125.78, + "probability": 0.9653 + }, + { + "start": 4127.3, + "end": 4129.62, + "probability": 0.9689 + }, + { + "start": 4130.4, + "end": 4132.42, + "probability": 0.9961 + }, + { + "start": 4133.24, + "end": 4137.38, + "probability": 0.9873 + }, + { + "start": 4137.38, + "end": 4140.96, + "probability": 0.9949 + }, + { + "start": 4142.82, + "end": 4144.04, + "probability": 0.999 + }, + { + "start": 4144.76, + "end": 4146.32, + "probability": 0.994 + }, + { + "start": 4147.38, + "end": 4150.46, + "probability": 0.9974 + }, + { + "start": 4152.16, + "end": 4157.58, + "probability": 0.9995 + }, + { + "start": 4158.26, + "end": 4163.88, + "probability": 0.999 + }, + { + "start": 4164.4, + "end": 4165.05, + "probability": 0.9848 + }, + { + "start": 4165.68, + "end": 4167.63, + "probability": 0.9924 + }, + { + "start": 4167.92, + "end": 4169.73, + "probability": 0.823 + }, + { + "start": 4170.1, + "end": 4172.92, + "probability": 0.9354 + }, + { + "start": 4173.26, + "end": 4176.98, + "probability": 0.9871 + }, + { + "start": 4177.28, + "end": 4179.4, + "probability": 0.9079 + }, + { + "start": 4179.74, + "end": 4179.84, + "probability": 0.8838 + }, + { + "start": 4180.76, + "end": 4181.74, + "probability": 0.9503 + }, + { + "start": 4182.06, + "end": 4183.14, + "probability": 0.6869 + }, + { + "start": 4183.24, + "end": 4186.36, + "probability": 0.9484 + }, + { + "start": 4186.72, + "end": 4187.46, + "probability": 0.5764 + }, + { + "start": 4187.78, + "end": 4188.48, + "probability": 0.805 + }, + { + "start": 4188.58, + "end": 4192.78, + "probability": 0.9961 + }, + { + "start": 4193.22, + "end": 4193.58, + "probability": 0.7963 + }, + { + "start": 4194.88, + "end": 4196.76, + "probability": 0.9876 + }, + { + "start": 4196.86, + "end": 4199.52, + "probability": 0.8798 + }, + { + "start": 4209.26, + "end": 4209.32, + "probability": 0.7387 + }, + { + "start": 4209.32, + "end": 4211.34, + "probability": 0.5419 + }, + { + "start": 4211.4, + "end": 4213.0, + "probability": 0.7503 + }, + { + "start": 4213.12, + "end": 4214.5, + "probability": 0.8153 + }, + { + "start": 4215.38, + "end": 4220.08, + "probability": 0.9691 + }, + { + "start": 4220.22, + "end": 4222.56, + "probability": 0.9985 + }, + { + "start": 4222.56, + "end": 4226.14, + "probability": 0.7657 + }, + { + "start": 4227.8, + "end": 4230.42, + "probability": 0.9971 + }, + { + "start": 4230.42, + "end": 4233.28, + "probability": 0.999 + }, + { + "start": 4233.98, + "end": 4238.12, + "probability": 0.9412 + }, + { + "start": 4238.8, + "end": 4241.31, + "probability": 0.9675 + }, + { + "start": 4242.2, + "end": 4246.48, + "probability": 0.8957 + }, + { + "start": 4247.12, + "end": 4251.34, + "probability": 0.9952 + }, + { + "start": 4251.78, + "end": 4253.74, + "probability": 0.9954 + }, + { + "start": 4254.82, + "end": 4259.22, + "probability": 0.9978 + }, + { + "start": 4259.8, + "end": 4263.42, + "probability": 0.8823 + }, + { + "start": 4264.1, + "end": 4265.63, + "probability": 0.8359 + }, + { + "start": 4266.12, + "end": 4269.42, + "probability": 0.7758 + }, + { + "start": 4270.3, + "end": 4273.06, + "probability": 0.8708 + }, + { + "start": 4273.58, + "end": 4274.9, + "probability": 0.9846 + }, + { + "start": 4275.94, + "end": 4278.05, + "probability": 0.8022 + }, + { + "start": 4279.7, + "end": 4282.06, + "probability": 0.6462 + }, + { + "start": 4282.75, + "end": 4284.11, + "probability": 0.9793 + }, + { + "start": 4284.98, + "end": 4288.35, + "probability": 0.9926 + }, + { + "start": 4288.92, + "end": 4292.7, + "probability": 0.9878 + }, + { + "start": 4293.34, + "end": 4294.12, + "probability": 0.7474 + }, + { + "start": 4294.88, + "end": 4295.84, + "probability": 0.6231 + }, + { + "start": 4295.92, + "end": 4299.78, + "probability": 0.9542 + }, + { + "start": 4300.32, + "end": 4301.9, + "probability": 0.6761 + }, + { + "start": 4302.5, + "end": 4305.06, + "probability": 0.9373 + }, + { + "start": 4305.96, + "end": 4308.48, + "probability": 0.9718 + }, + { + "start": 4309.44, + "end": 4310.1, + "probability": 0.9346 + }, + { + "start": 4310.36, + "end": 4311.56, + "probability": 0.864 + }, + { + "start": 4312.14, + "end": 4313.52, + "probability": 0.9451 + }, + { + "start": 4313.56, + "end": 4315.53, + "probability": 0.9824 + }, + { + "start": 4315.58, + "end": 4317.52, + "probability": 0.7894 + }, + { + "start": 4318.2, + "end": 4320.68, + "probability": 0.9868 + }, + { + "start": 4320.68, + "end": 4324.16, + "probability": 0.9704 + }, + { + "start": 4324.68, + "end": 4326.24, + "probability": 0.76 + }, + { + "start": 4326.3, + "end": 4327.58, + "probability": 0.8682 + }, + { + "start": 4327.64, + "end": 4331.28, + "probability": 0.9221 + }, + { + "start": 4331.62, + "end": 4334.0, + "probability": 0.9938 + }, + { + "start": 4334.54, + "end": 4336.94, + "probability": 0.991 + }, + { + "start": 4337.3, + "end": 4338.04, + "probability": 0.7243 + }, + { + "start": 4338.82, + "end": 4341.2, + "probability": 0.9192 + }, + { + "start": 4341.38, + "end": 4345.06, + "probability": 0.9844 + }, + { + "start": 4345.76, + "end": 4348.76, + "probability": 0.951 + }, + { + "start": 4349.2, + "end": 4354.0, + "probability": 0.8831 + }, + { + "start": 4354.88, + "end": 4355.84, + "probability": 0.9254 + }, + { + "start": 4355.92, + "end": 4356.68, + "probability": 0.7992 + }, + { + "start": 4356.76, + "end": 4360.12, + "probability": 0.8067 + }, + { + "start": 4360.64, + "end": 4364.16, + "probability": 0.8863 + }, + { + "start": 4364.7, + "end": 4366.24, + "probability": 0.9462 + }, + { + "start": 4366.9, + "end": 4369.18, + "probability": 0.9948 + }, + { + "start": 4369.26, + "end": 4372.14, + "probability": 0.9481 + }, + { + "start": 4372.62, + "end": 4372.72, + "probability": 0.5082 + }, + { + "start": 4372.76, + "end": 4375.14, + "probability": 0.9866 + }, + { + "start": 4375.42, + "end": 4379.86, + "probability": 0.7352 + }, + { + "start": 4380.18, + "end": 4382.68, + "probability": 0.9694 + }, + { + "start": 4383.24, + "end": 4387.0, + "probability": 0.8481 + }, + { + "start": 4387.4, + "end": 4388.04, + "probability": 0.4555 + }, + { + "start": 4388.9, + "end": 4390.05, + "probability": 0.9668 + }, + { + "start": 4390.58, + "end": 4391.54, + "probability": 0.8165 + }, + { + "start": 4391.68, + "end": 4395.16, + "probability": 0.9941 + }, + { + "start": 4395.5, + "end": 4396.94, + "probability": 0.8721 + }, + { + "start": 4397.28, + "end": 4398.9, + "probability": 0.9836 + }, + { + "start": 4399.24, + "end": 4402.18, + "probability": 0.9832 + }, + { + "start": 4402.54, + "end": 4405.3, + "probability": 0.9665 + }, + { + "start": 4405.54, + "end": 4406.52, + "probability": 0.7918 + }, + { + "start": 4406.82, + "end": 4409.36, + "probability": 0.9858 + }, + { + "start": 4409.8, + "end": 4410.3, + "probability": 0.7271 + }, + { + "start": 4410.86, + "end": 4416.62, + "probability": 0.9565 + }, + { + "start": 4416.66, + "end": 4417.0, + "probability": 0.5162 + }, + { + "start": 4417.16, + "end": 4419.5, + "probability": 0.9085 + }, + { + "start": 4420.46, + "end": 4421.58, + "probability": 0.7291 + }, + { + "start": 4422.14, + "end": 4425.82, + "probability": 0.6135 + }, + { + "start": 4426.22, + "end": 4428.26, + "probability": 0.9927 + }, + { + "start": 4428.66, + "end": 4431.82, + "probability": 0.976 + }, + { + "start": 4432.1, + "end": 4432.66, + "probability": 0.8866 + }, + { + "start": 4433.3, + "end": 4433.8, + "probability": 0.6626 + }, + { + "start": 4433.94, + "end": 4436.9, + "probability": 0.8411 + }, + { + "start": 4458.3, + "end": 4458.3, + "probability": 0.0198 + }, + { + "start": 4458.3, + "end": 4458.3, + "probability": 0.3371 + }, + { + "start": 4458.3, + "end": 4458.3, + "probability": 0.2329 + }, + { + "start": 4458.3, + "end": 4458.3, + "probability": 0.1701 + }, + { + "start": 4477.2, + "end": 4479.6, + "probability": 0.7241 + }, + { + "start": 4480.4, + "end": 4482.4, + "probability": 0.9654 + }, + { + "start": 4483.08, + "end": 4485.66, + "probability": 0.9907 + }, + { + "start": 4486.38, + "end": 4489.42, + "probability": 0.6805 + }, + { + "start": 4490.7, + "end": 4491.88, + "probability": 0.9697 + }, + { + "start": 4492.8, + "end": 4495.92, + "probability": 0.9458 + }, + { + "start": 4495.92, + "end": 4499.32, + "probability": 0.8609 + }, + { + "start": 4499.98, + "end": 4501.78, + "probability": 0.7852 + }, + { + "start": 4502.38, + "end": 4503.84, + "probability": 0.7868 + }, + { + "start": 4504.54, + "end": 4505.26, + "probability": 0.4952 + }, + { + "start": 4505.84, + "end": 4507.16, + "probability": 0.6621 + }, + { + "start": 4508.18, + "end": 4511.28, + "probability": 0.9976 + }, + { + "start": 4512.24, + "end": 4515.22, + "probability": 0.9839 + }, + { + "start": 4515.78, + "end": 4515.96, + "probability": 0.5279 + }, + { + "start": 4516.84, + "end": 4518.04, + "probability": 0.9902 + }, + { + "start": 4519.1, + "end": 4520.44, + "probability": 0.8513 + }, + { + "start": 4521.06, + "end": 4523.8, + "probability": 0.9491 + }, + { + "start": 4524.4, + "end": 4528.97, + "probability": 0.929 + }, + { + "start": 4530.3, + "end": 4531.1, + "probability": 0.9224 + }, + { + "start": 4531.98, + "end": 4536.54, + "probability": 0.8391 + }, + { + "start": 4537.28, + "end": 4541.04, + "probability": 0.9392 + }, + { + "start": 4543.02, + "end": 4547.4, + "probability": 0.8088 + }, + { + "start": 4548.42, + "end": 4554.04, + "probability": 0.9897 + }, + { + "start": 4554.22, + "end": 4555.58, + "probability": 0.9524 + }, + { + "start": 4556.28, + "end": 4557.64, + "probability": 0.8096 + }, + { + "start": 4559.24, + "end": 4561.73, + "probability": 0.938 + }, + { + "start": 4562.38, + "end": 4567.7, + "probability": 0.9118 + }, + { + "start": 4568.94, + "end": 4569.6, + "probability": 0.5981 + }, + { + "start": 4569.8, + "end": 4570.78, + "probability": 0.6587 + }, + { + "start": 4571.72, + "end": 4578.3, + "probability": 0.9909 + }, + { + "start": 4578.3, + "end": 4584.7, + "probability": 0.9879 + }, + { + "start": 4585.5, + "end": 4586.3, + "probability": 0.4073 + }, + { + "start": 4587.14, + "end": 4591.88, + "probability": 0.8054 + }, + { + "start": 4592.86, + "end": 4596.54, + "probability": 0.9839 + }, + { + "start": 4597.08, + "end": 4600.68, + "probability": 0.9968 + }, + { + "start": 4601.58, + "end": 4603.74, + "probability": 0.9937 + }, + { + "start": 4604.56, + "end": 4605.38, + "probability": 0.8172 + }, + { + "start": 4606.04, + "end": 4607.0, + "probability": 0.772 + }, + { + "start": 4608.5, + "end": 4612.06, + "probability": 0.9956 + }, + { + "start": 4612.06, + "end": 4617.76, + "probability": 0.9292 + }, + { + "start": 4619.26, + "end": 4620.4, + "probability": 0.756 + }, + { + "start": 4621.18, + "end": 4622.48, + "probability": 0.9924 + }, + { + "start": 4623.58, + "end": 4626.69, + "probability": 0.9119 + }, + { + "start": 4627.12, + "end": 4631.58, + "probability": 0.918 + }, + { + "start": 4632.02, + "end": 4633.8, + "probability": 0.9954 + }, + { + "start": 4634.4, + "end": 4637.52, + "probability": 0.8833 + }, + { + "start": 4638.76, + "end": 4639.92, + "probability": 0.9684 + }, + { + "start": 4640.02, + "end": 4640.48, + "probability": 0.7555 + }, + { + "start": 4640.64, + "end": 4641.98, + "probability": 0.9839 + }, + { + "start": 4642.88, + "end": 4644.6, + "probability": 0.9385 + }, + { + "start": 4645.38, + "end": 4647.76, + "probability": 0.9984 + }, + { + "start": 4648.48, + "end": 4650.94, + "probability": 0.9958 + }, + { + "start": 4651.82, + "end": 4655.2, + "probability": 0.9419 + }, + { + "start": 4656.06, + "end": 4657.12, + "probability": 0.7563 + }, + { + "start": 4657.48, + "end": 4658.2, + "probability": 0.8935 + }, + { + "start": 4658.3, + "end": 4660.0, + "probability": 0.8425 + }, + { + "start": 4660.4, + "end": 4661.48, + "probability": 0.9795 + }, + { + "start": 4664.48, + "end": 4665.82, + "probability": 0.6852 + }, + { + "start": 4666.58, + "end": 4669.36, + "probability": 0.7866 + }, + { + "start": 4670.9, + "end": 4671.64, + "probability": 0.5804 + }, + { + "start": 4672.46, + "end": 4674.36, + "probability": 0.1791 + }, + { + "start": 4674.8, + "end": 4675.86, + "probability": 0.7947 + }, + { + "start": 4676.02, + "end": 4677.16, + "probability": 0.2503 + }, + { + "start": 4677.74, + "end": 4679.03, + "probability": 0.2279 + }, + { + "start": 4683.86, + "end": 4687.2, + "probability": 0.9647 + }, + { + "start": 4694.18, + "end": 4694.98, + "probability": 0.1275 + }, + { + "start": 4695.1, + "end": 4697.94, + "probability": 0.3887 + }, + { + "start": 4698.32, + "end": 4699.04, + "probability": 0.8756 + }, + { + "start": 4702.38, + "end": 4706.48, + "probability": 0.9553 + }, + { + "start": 4709.28, + "end": 4711.08, + "probability": 0.9613 + }, + { + "start": 4714.36, + "end": 4715.68, + "probability": 0.973 + }, + { + "start": 4718.64, + "end": 4721.73, + "probability": 0.722 + }, + { + "start": 4723.32, + "end": 4723.72, + "probability": 0.4737 + }, + { + "start": 4727.12, + "end": 4729.84, + "probability": 0.9917 + }, + { + "start": 4732.12, + "end": 4733.02, + "probability": 0.9897 + }, + { + "start": 4734.64, + "end": 4735.52, + "probability": 0.9833 + }, + { + "start": 4737.1, + "end": 4739.0, + "probability": 0.9923 + }, + { + "start": 4740.44, + "end": 4741.2, + "probability": 0.9233 + }, + { + "start": 4742.76, + "end": 4743.98, + "probability": 0.9785 + }, + { + "start": 4747.2, + "end": 4751.8, + "probability": 0.9878 + }, + { + "start": 4754.68, + "end": 4755.18, + "probability": 0.7729 + }, + { + "start": 4756.44, + "end": 4757.24, + "probability": 0.9982 + }, + { + "start": 4759.52, + "end": 4762.46, + "probability": 0.9956 + }, + { + "start": 4764.5, + "end": 4765.98, + "probability": 0.9971 + }, + { + "start": 4768.1, + "end": 4768.56, + "probability": 0.8919 + }, + { + "start": 4769.1, + "end": 4769.7, + "probability": 0.9951 + }, + { + "start": 4772.9, + "end": 4773.42, + "probability": 0.9945 + }, + { + "start": 4775.14, + "end": 4776.32, + "probability": 0.8336 + }, + { + "start": 4779.1, + "end": 4781.4, + "probability": 0.9941 + }, + { + "start": 4783.4, + "end": 4784.52, + "probability": 0.9995 + }, + { + "start": 4786.22, + "end": 4787.6, + "probability": 0.9056 + }, + { + "start": 4791.9, + "end": 4793.64, + "probability": 0.9904 + }, + { + "start": 4797.24, + "end": 4799.6, + "probability": 0.9688 + }, + { + "start": 4801.68, + "end": 4802.82, + "probability": 0.8674 + }, + { + "start": 4803.34, + "end": 4804.26, + "probability": 0.9021 + }, + { + "start": 4805.92, + "end": 4809.52, + "probability": 0.8322 + }, + { + "start": 4810.78, + "end": 4814.4, + "probability": 0.9901 + }, + { + "start": 4816.62, + "end": 4817.44, + "probability": 0.8977 + }, + { + "start": 4817.58, + "end": 4820.48, + "probability": 0.8261 + }, + { + "start": 4820.58, + "end": 4821.7, + "probability": 0.538 + }, + { + "start": 4821.78, + "end": 4824.84, + "probability": 0.9445 + }, + { + "start": 4825.62, + "end": 4828.7, + "probability": 0.8914 + }, + { + "start": 4829.32, + "end": 4831.3, + "probability": 0.945 + }, + { + "start": 4832.92, + "end": 4841.7, + "probability": 0.992 + }, + { + "start": 4841.74, + "end": 4846.46, + "probability": 0.7802 + }, + { + "start": 4846.88, + "end": 4854.72, + "probability": 0.6968 + }, + { + "start": 4855.68, + "end": 4857.94, + "probability": 0.9499 + }, + { + "start": 4859.0, + "end": 4860.5, + "probability": 0.9834 + }, + { + "start": 4861.86, + "end": 4862.94, + "probability": 0.9429 + }, + { + "start": 4863.18, + "end": 4866.32, + "probability": 0.9834 + }, + { + "start": 4868.5, + "end": 4870.56, + "probability": 0.7053 + }, + { + "start": 4872.08, + "end": 4873.02, + "probability": 0.9552 + }, + { + "start": 4874.9, + "end": 4876.08, + "probability": 0.9924 + }, + { + "start": 4877.82, + "end": 4877.96, + "probability": 0.6815 + }, + { + "start": 4877.96, + "end": 4878.84, + "probability": 0.9931 + }, + { + "start": 4880.3, + "end": 4882.84, + "probability": 0.6164 + }, + { + "start": 4882.96, + "end": 4883.62, + "probability": 0.8136 + }, + { + "start": 4885.02, + "end": 4891.2, + "probability": 0.998 + }, + { + "start": 4891.28, + "end": 4891.64, + "probability": 0.8016 + }, + { + "start": 4891.8, + "end": 4893.48, + "probability": 0.6531 + }, + { + "start": 4893.6, + "end": 4895.58, + "probability": 0.6971 + }, + { + "start": 4915.92, + "end": 4916.44, + "probability": 0.476 + }, + { + "start": 4916.94, + "end": 4917.28, + "probability": 0.7227 + }, + { + "start": 4919.64, + "end": 4920.86, + "probability": 0.6971 + }, + { + "start": 4921.9, + "end": 4927.2, + "probability": 0.9648 + }, + { + "start": 4933.66, + "end": 4934.28, + "probability": 0.1486 + }, + { + "start": 4934.94, + "end": 4942.18, + "probability": 0.9813 + }, + { + "start": 4942.3, + "end": 4944.66, + "probability": 0.7972 + }, + { + "start": 4945.3, + "end": 4947.92, + "probability": 0.9105 + }, + { + "start": 4948.44, + "end": 4954.44, + "probability": 0.9938 + }, + { + "start": 4954.44, + "end": 4959.68, + "probability": 0.9991 + }, + { + "start": 4960.34, + "end": 4965.82, + "probability": 0.9675 + }, + { + "start": 4965.82, + "end": 4969.88, + "probability": 0.9922 + }, + { + "start": 4970.22, + "end": 4974.02, + "probability": 0.9294 + }, + { + "start": 4974.52, + "end": 4976.12, + "probability": 0.8525 + }, + { + "start": 4976.32, + "end": 4981.29, + "probability": 0.9578 + }, + { + "start": 4982.04, + "end": 4983.62, + "probability": 0.8066 + }, + { + "start": 4983.94, + "end": 4986.2, + "probability": 0.9934 + }, + { + "start": 4986.52, + "end": 4988.54, + "probability": 0.9977 + }, + { + "start": 4988.72, + "end": 4990.08, + "probability": 0.9348 + }, + { + "start": 4990.86, + "end": 4990.86, + "probability": 0.5815 + }, + { + "start": 4991.48, + "end": 4992.6, + "probability": 0.7286 + }, + { + "start": 4993.38, + "end": 4998.64, + "probability": 0.9643 + }, + { + "start": 4998.64, + "end": 5002.88, + "probability": 0.9465 + }, + { + "start": 5003.78, + "end": 5008.86, + "probability": 0.9883 + }, + { + "start": 5009.4, + "end": 5015.36, + "probability": 0.6474 + }, + { + "start": 5016.74, + "end": 5021.12, + "probability": 0.8402 + }, + { + "start": 5021.72, + "end": 5024.34, + "probability": 0.998 + }, + { + "start": 5024.34, + "end": 5028.38, + "probability": 0.9771 + }, + { + "start": 5028.86, + "end": 5032.06, + "probability": 0.7554 + }, + { + "start": 5032.84, + "end": 5037.56, + "probability": 0.9713 + }, + { + "start": 5038.14, + "end": 5040.94, + "probability": 0.924 + }, + { + "start": 5041.74, + "end": 5043.76, + "probability": 0.8098 + }, + { + "start": 5044.64, + "end": 5049.0, + "probability": 0.9834 + }, + { + "start": 5049.08, + "end": 5050.98, + "probability": 0.8914 + }, + { + "start": 5051.92, + "end": 5054.53, + "probability": 0.9661 + }, + { + "start": 5055.18, + "end": 5058.56, + "probability": 0.9281 + }, + { + "start": 5059.72, + "end": 5061.46, + "probability": 0.9261 + }, + { + "start": 5061.64, + "end": 5069.26, + "probability": 0.8824 + }, + { + "start": 5069.44, + "end": 5070.2, + "probability": 0.7874 + }, + { + "start": 5070.54, + "end": 5073.99, + "probability": 0.8731 + }, + { + "start": 5074.22, + "end": 5076.2, + "probability": 0.9912 + }, + { + "start": 5076.88, + "end": 5081.48, + "probability": 0.735 + }, + { + "start": 5081.8, + "end": 5085.26, + "probability": 0.894 + }, + { + "start": 5085.42, + "end": 5089.56, + "probability": 0.997 + }, + { + "start": 5091.92, + "end": 5092.44, + "probability": 0.5811 + }, + { + "start": 5092.52, + "end": 5093.8, + "probability": 0.911 + }, + { + "start": 5102.44, + "end": 5102.68, + "probability": 0.6921 + }, + { + "start": 5105.36, + "end": 5106.82, + "probability": 0.8812 + }, + { + "start": 5107.12, + "end": 5107.52, + "probability": 0.7412 + }, + { + "start": 5107.94, + "end": 5109.81, + "probability": 0.7332 + }, + { + "start": 5110.86, + "end": 5116.68, + "probability": 0.9896 + }, + { + "start": 5118.4, + "end": 5125.16, + "probability": 0.9972 + }, + { + "start": 5126.34, + "end": 5129.64, + "probability": 0.9663 + }, + { + "start": 5130.82, + "end": 5135.1, + "probability": 0.9893 + }, + { + "start": 5135.96, + "end": 5140.52, + "probability": 0.957 + }, + { + "start": 5142.1, + "end": 5145.92, + "probability": 0.9595 + }, + { + "start": 5146.76, + "end": 5151.68, + "probability": 0.9987 + }, + { + "start": 5153.32, + "end": 5154.98, + "probability": 0.9993 + }, + { + "start": 5156.52, + "end": 5157.32, + "probability": 0.9194 + }, + { + "start": 5157.86, + "end": 5159.4, + "probability": 0.9803 + }, + { + "start": 5160.14, + "end": 5163.18, + "probability": 0.9972 + }, + { + "start": 5164.72, + "end": 5170.36, + "probability": 0.9899 + }, + { + "start": 5172.18, + "end": 5175.16, + "probability": 0.9187 + }, + { + "start": 5176.62, + "end": 5182.24, + "probability": 0.9989 + }, + { + "start": 5182.28, + "end": 5183.0, + "probability": 0.6448 + }, + { + "start": 5183.22, + "end": 5184.4, + "probability": 0.9791 + }, + { + "start": 5185.96, + "end": 5189.46, + "probability": 0.9828 + }, + { + "start": 5190.38, + "end": 5195.5, + "probability": 0.9954 + }, + { + "start": 5197.02, + "end": 5199.3, + "probability": 0.9067 + }, + { + "start": 5200.82, + "end": 5203.18, + "probability": 0.9196 + }, + { + "start": 5203.18, + "end": 5206.08, + "probability": 0.9146 + }, + { + "start": 5206.28, + "end": 5207.88, + "probability": 0.2434 + }, + { + "start": 5208.66, + "end": 5212.2, + "probability": 0.9954 + }, + { + "start": 5213.9, + "end": 5217.7, + "probability": 0.9974 + }, + { + "start": 5218.26, + "end": 5219.1, + "probability": 0.9496 + }, + { + "start": 5220.02, + "end": 5223.72, + "probability": 0.9866 + }, + { + "start": 5226.08, + "end": 5226.86, + "probability": 0.5584 + }, + { + "start": 5229.52, + "end": 5234.76, + "probability": 0.957 + }, + { + "start": 5235.64, + "end": 5236.6, + "probability": 0.9398 + }, + { + "start": 5237.7, + "end": 5241.92, + "probability": 0.8279 + }, + { + "start": 5242.24, + "end": 5247.12, + "probability": 0.9927 + }, + { + "start": 5248.22, + "end": 5252.7, + "probability": 0.9905 + }, + { + "start": 5252.7, + "end": 5257.9, + "probability": 0.9946 + }, + { + "start": 5258.58, + "end": 5261.52, + "probability": 0.9956 + }, + { + "start": 5262.84, + "end": 5263.86, + "probability": 0.6943 + }, + { + "start": 5264.52, + "end": 5265.8, + "probability": 0.9976 + }, + { + "start": 5266.48, + "end": 5266.92, + "probability": 0.9838 + }, + { + "start": 5268.72, + "end": 5269.62, + "probability": 0.644 + }, + { + "start": 5270.0, + "end": 5271.9, + "probability": 0.8311 + }, + { + "start": 5274.66, + "end": 5275.14, + "probability": 0.8722 + }, + { + "start": 5277.04, + "end": 5277.42, + "probability": 0.9592 + }, + { + "start": 5278.26, + "end": 5282.58, + "probability": 0.8158 + }, + { + "start": 5283.86, + "end": 5289.52, + "probability": 0.9847 + }, + { + "start": 5292.84, + "end": 5293.76, + "probability": 0.8518 + }, + { + "start": 5294.8, + "end": 5297.44, + "probability": 0.6961 + }, + { + "start": 5297.5, + "end": 5302.62, + "probability": 0.9904 + }, + { + "start": 5302.7, + "end": 5303.96, + "probability": 0.9264 + }, + { + "start": 5304.44, + "end": 5305.38, + "probability": 0.9613 + }, + { + "start": 5322.21, + "end": 5326.1, + "probability": 0.8041 + }, + { + "start": 5326.12, + "end": 5328.72, + "probability": 0.9074 + }, + { + "start": 5330.32, + "end": 5332.24, + "probability": 0.9326 + }, + { + "start": 5332.48, + "end": 5334.36, + "probability": 0.3106 + }, + { + "start": 5334.8, + "end": 5335.62, + "probability": 0.4234 + }, + { + "start": 5335.74, + "end": 5340.34, + "probability": 0.7659 + }, + { + "start": 5341.16, + "end": 5345.66, + "probability": 0.8398 + }, + { + "start": 5346.44, + "end": 5349.12, + "probability": 0.7715 + }, + { + "start": 5349.12, + "end": 5352.8, + "probability": 0.8589 + }, + { + "start": 5353.88, + "end": 5354.94, + "probability": 0.9089 + }, + { + "start": 5355.68, + "end": 5357.04, + "probability": 0.9282 + }, + { + "start": 5358.06, + "end": 5359.42, + "probability": 0.4911 + }, + { + "start": 5359.88, + "end": 5360.52, + "probability": 0.5095 + }, + { + "start": 5360.86, + "end": 5363.52, + "probability": 0.8862 + }, + { + "start": 5364.72, + "end": 5369.32, + "probability": 0.974 + }, + { + "start": 5370.12, + "end": 5370.84, + "probability": 0.8115 + }, + { + "start": 5371.36, + "end": 5372.26, + "probability": 0.8574 + }, + { + "start": 5373.06, + "end": 5374.62, + "probability": 0.7711 + }, + { + "start": 5378.0, + "end": 5379.34, + "probability": 0.2708 + }, + { + "start": 5390.04, + "end": 5390.54, + "probability": 0.5566 + }, + { + "start": 5390.56, + "end": 5392.04, + "probability": 0.9212 + }, + { + "start": 5392.42, + "end": 5397.5, + "probability": 0.9694 + }, + { + "start": 5398.86, + "end": 5399.92, + "probability": 0.4023 + }, + { + "start": 5400.2, + "end": 5401.78, + "probability": 0.8352 + }, + { + "start": 5403.36, + "end": 5407.62, + "probability": 0.2093 + }, + { + "start": 5411.92, + "end": 5411.94, + "probability": 0.0026 + }, + { + "start": 5416.78, + "end": 5417.02, + "probability": 0.0994 + }, + { + "start": 5417.02, + "end": 5418.5, + "probability": 0.2481 + }, + { + "start": 5418.74, + "end": 5420.94, + "probability": 0.8984 + }, + { + "start": 5421.1, + "end": 5423.22, + "probability": 0.8801 + }, + { + "start": 5423.4, + "end": 5425.88, + "probability": 0.9793 + }, + { + "start": 5426.4, + "end": 5428.92, + "probability": 0.8616 + }, + { + "start": 5429.56, + "end": 5430.26, + "probability": 0.678 + }, + { + "start": 5430.8, + "end": 5431.52, + "probability": 0.8243 + }, + { + "start": 5433.04, + "end": 5434.43, + "probability": 0.0403 + }, + { + "start": 5436.52, + "end": 5436.52, + "probability": 0.0845 + }, + { + "start": 5447.58, + "end": 5448.04, + "probability": 0.1703 + }, + { + "start": 5448.04, + "end": 5449.68, + "probability": 0.5497 + }, + { + "start": 5449.72, + "end": 5452.88, + "probability": 0.9805 + }, + { + "start": 5452.92, + "end": 5454.1, + "probability": 0.9296 + }, + { + "start": 5454.54, + "end": 5460.11, + "probability": 0.9519 + }, + { + "start": 5460.64, + "end": 5461.52, + "probability": 0.8478 + }, + { + "start": 5462.82, + "end": 5466.78, + "probability": 0.2163 + }, + { + "start": 5475.06, + "end": 5476.86, + "probability": 0.059 + }, + { + "start": 5476.86, + "end": 5481.54, + "probability": 0.5178 + }, + { + "start": 5482.2, + "end": 5483.4, + "probability": 0.5332 + }, + { + "start": 5483.56, + "end": 5487.0, + "probability": 0.9862 + }, + { + "start": 5488.72, + "end": 5494.54, + "probability": 0.8365 + }, + { + "start": 5496.1, + "end": 5496.32, + "probability": 0.6595 + }, + { + "start": 5496.5, + "end": 5496.5, + "probability": 0.0009 + }, + { + "start": 5503.0, + "end": 5503.86, + "probability": 0.6405 + }, + { + "start": 5564.92, + "end": 5568.24, + "probability": 0.8475 + }, + { + "start": 5569.36, + "end": 5571.56, + "probability": 0.753 + }, + { + "start": 5572.16, + "end": 5573.68, + "probability": 0.5771 + }, + { + "start": 5575.28, + "end": 5578.7, + "probability": 0.99 + }, + { + "start": 5579.32, + "end": 5582.73, + "probability": 0.9595 + }, + { + "start": 5583.76, + "end": 5586.04, + "probability": 0.9314 + }, + { + "start": 5586.06, + "end": 5588.0, + "probability": 0.6177 + }, + { + "start": 5588.2, + "end": 5591.42, + "probability": 0.9224 + }, + { + "start": 5593.13, + "end": 5597.26, + "probability": 0.9958 + }, + { + "start": 5597.8, + "end": 5600.56, + "probability": 0.997 + }, + { + "start": 5601.3, + "end": 5604.5, + "probability": 0.9479 + }, + { + "start": 5605.06, + "end": 5608.94, + "probability": 0.9061 + }, + { + "start": 5609.8, + "end": 5613.08, + "probability": 0.921 + }, + { + "start": 5613.08, + "end": 5616.8, + "probability": 0.9908 + }, + { + "start": 5617.38, + "end": 5618.56, + "probability": 0.8308 + }, + { + "start": 5618.66, + "end": 5621.0, + "probability": 0.9114 + }, + { + "start": 5621.5, + "end": 5624.26, + "probability": 0.9979 + }, + { + "start": 5625.58, + "end": 5626.52, + "probability": 0.8585 + }, + { + "start": 5627.5, + "end": 5630.42, + "probability": 0.9977 + }, + { + "start": 5630.78, + "end": 5635.28, + "probability": 0.9886 + }, + { + "start": 5635.9, + "end": 5639.72, + "probability": 0.9971 + }, + { + "start": 5640.8, + "end": 5643.12, + "probability": 0.9311 + }, + { + "start": 5643.88, + "end": 5648.0, + "probability": 0.997 + }, + { + "start": 5648.64, + "end": 5656.1, + "probability": 0.9302 + }, + { + "start": 5657.32, + "end": 5662.12, + "probability": 0.991 + }, + { + "start": 5662.64, + "end": 5665.6, + "probability": 0.9841 + }, + { + "start": 5666.38, + "end": 5671.7, + "probability": 0.9929 + }, + { + "start": 5673.66, + "end": 5678.16, + "probability": 0.9213 + }, + { + "start": 5679.08, + "end": 5679.68, + "probability": 0.7738 + }, + { + "start": 5681.02, + "end": 5682.31, + "probability": 0.9033 + }, + { + "start": 5684.34, + "end": 5685.34, + "probability": 0.9934 + }, + { + "start": 5685.44, + "end": 5687.04, + "probability": 0.974 + }, + { + "start": 5687.18, + "end": 5689.8, + "probability": 0.9745 + }, + { + "start": 5690.9, + "end": 5695.72, + "probability": 0.9971 + }, + { + "start": 5696.52, + "end": 5699.04, + "probability": 0.7785 + }, + { + "start": 5699.82, + "end": 5704.6, + "probability": 0.8849 + }, + { + "start": 5705.78, + "end": 5711.98, + "probability": 0.9874 + }, + { + "start": 5712.72, + "end": 5714.26, + "probability": 0.9951 + }, + { + "start": 5714.76, + "end": 5716.22, + "probability": 0.99 + }, + { + "start": 5716.72, + "end": 5719.7, + "probability": 0.9881 + }, + { + "start": 5720.68, + "end": 5725.02, + "probability": 0.963 + }, + { + "start": 5725.84, + "end": 5731.5, + "probability": 0.9942 + }, + { + "start": 5732.18, + "end": 5734.58, + "probability": 0.7386 + }, + { + "start": 5735.4, + "end": 5737.72, + "probability": 0.7281 + }, + { + "start": 5738.08, + "end": 5741.7, + "probability": 0.9909 + }, + { + "start": 5742.36, + "end": 5744.04, + "probability": 0.8864 + }, + { + "start": 5744.58, + "end": 5748.14, + "probability": 0.9976 + }, + { + "start": 5748.62, + "end": 5751.12, + "probability": 0.9821 + }, + { + "start": 5751.46, + "end": 5754.66, + "probability": 0.9906 + }, + { + "start": 5755.12, + "end": 5756.38, + "probability": 0.9507 + }, + { + "start": 5756.46, + "end": 5757.88, + "probability": 0.8685 + }, + { + "start": 5758.0, + "end": 5761.24, + "probability": 0.998 + }, + { + "start": 5762.1, + "end": 5765.86, + "probability": 0.9347 + }, + { + "start": 5766.62, + "end": 5768.26, + "probability": 0.9776 + }, + { + "start": 5769.2, + "end": 5775.28, + "probability": 0.9995 + }, + { + "start": 5776.06, + "end": 5776.62, + "probability": 0.9431 + }, + { + "start": 5777.36, + "end": 5780.4, + "probability": 0.9126 + }, + { + "start": 5780.48, + "end": 5784.16, + "probability": 0.9932 + }, + { + "start": 5784.96, + "end": 5787.24, + "probability": 0.9644 + }, + { + "start": 5787.78, + "end": 5790.12, + "probability": 0.9958 + }, + { + "start": 5790.76, + "end": 5795.56, + "probability": 0.9963 + }, + { + "start": 5796.2, + "end": 5799.78, + "probability": 0.9932 + }, + { + "start": 5800.4, + "end": 5801.34, + "probability": 0.7679 + }, + { + "start": 5801.96, + "end": 5806.74, + "probability": 0.9902 + }, + { + "start": 5807.64, + "end": 5811.46, + "probability": 0.998 + }, + { + "start": 5812.04, + "end": 5815.04, + "probability": 0.8516 + }, + { + "start": 5815.66, + "end": 5820.24, + "probability": 0.9989 + }, + { + "start": 5820.34, + "end": 5824.96, + "probability": 0.9902 + }, + { + "start": 5825.42, + "end": 5829.58, + "probability": 0.9834 + }, + { + "start": 5830.46, + "end": 5830.84, + "probability": 0.7232 + }, + { + "start": 5831.7, + "end": 5833.08, + "probability": 0.7247 + }, + { + "start": 5833.24, + "end": 5836.16, + "probability": 0.8698 + }, + { + "start": 5836.62, + "end": 5841.66, + "probability": 0.9922 + }, + { + "start": 5842.8, + "end": 5843.72, + "probability": 0.9968 + }, + { + "start": 5844.46, + "end": 5848.2, + "probability": 0.9045 + }, + { + "start": 5848.64, + "end": 5852.62, + "probability": 0.9928 + }, + { + "start": 5854.16, + "end": 5856.14, + "probability": 0.8832 + }, + { + "start": 5856.66, + "end": 5859.42, + "probability": 0.9966 + }, + { + "start": 5859.82, + "end": 5862.38, + "probability": 0.9748 + }, + { + "start": 5862.9, + "end": 5864.48, + "probability": 0.9543 + }, + { + "start": 5864.92, + "end": 5866.92, + "probability": 0.9906 + }, + { + "start": 5868.42, + "end": 5871.96, + "probability": 0.9206 + }, + { + "start": 5872.66, + "end": 5876.62, + "probability": 0.7863 + }, + { + "start": 5877.26, + "end": 5881.56, + "probability": 0.9987 + }, + { + "start": 5881.56, + "end": 5886.18, + "probability": 0.9983 + }, + { + "start": 5886.18, + "end": 5891.18, + "probability": 0.9983 + }, + { + "start": 5892.1, + "end": 5893.62, + "probability": 0.932 + }, + { + "start": 5893.78, + "end": 5898.32, + "probability": 0.9637 + }, + { + "start": 5898.88, + "end": 5902.16, + "probability": 0.9863 + }, + { + "start": 5902.58, + "end": 5906.66, + "probability": 0.9755 + }, + { + "start": 5907.16, + "end": 5910.3, + "probability": 0.9937 + }, + { + "start": 5910.72, + "end": 5912.24, + "probability": 0.9315 + }, + { + "start": 5912.86, + "end": 5915.94, + "probability": 0.9984 + }, + { + "start": 5915.94, + "end": 5921.38, + "probability": 0.9795 + }, + { + "start": 5922.16, + "end": 5925.72, + "probability": 0.8518 + }, + { + "start": 5926.24, + "end": 5929.64, + "probability": 0.9956 + }, + { + "start": 5929.64, + "end": 5933.02, + "probability": 0.998 + }, + { + "start": 5933.18, + "end": 5936.2, + "probability": 0.9014 + }, + { + "start": 5937.18, + "end": 5939.78, + "probability": 0.993 + }, + { + "start": 5939.78, + "end": 5943.46, + "probability": 0.9883 + }, + { + "start": 5944.08, + "end": 5944.48, + "probability": 0.8135 + }, + { + "start": 5944.86, + "end": 5946.02, + "probability": 0.9324 + }, + { + "start": 5946.48, + "end": 5950.1, + "probability": 0.9926 + }, + { + "start": 5950.92, + "end": 5951.68, + "probability": 0.368 + }, + { + "start": 5952.26, + "end": 5957.92, + "probability": 0.9866 + }, + { + "start": 5958.66, + "end": 5959.46, + "probability": 0.8954 + }, + { + "start": 5959.58, + "end": 5960.16, + "probability": 0.3872 + }, + { + "start": 5960.6, + "end": 5965.72, + "probability": 0.9962 + }, + { + "start": 5966.2, + "end": 5971.3, + "probability": 0.988 + }, + { + "start": 5971.3, + "end": 5975.72, + "probability": 0.984 + }, + { + "start": 5977.28, + "end": 5978.58, + "probability": 0.9618 + }, + { + "start": 5979.5, + "end": 5979.84, + "probability": 0.5027 + }, + { + "start": 5980.32, + "end": 5982.5, + "probability": 0.9975 + }, + { + "start": 5982.58, + "end": 5989.48, + "probability": 0.9929 + }, + { + "start": 5990.04, + "end": 5990.98, + "probability": 0.8998 + }, + { + "start": 5991.52, + "end": 5995.68, + "probability": 0.9335 + }, + { + "start": 5996.44, + "end": 5998.48, + "probability": 0.9812 + }, + { + "start": 5999.14, + "end": 6002.78, + "probability": 0.992 + }, + { + "start": 6003.5, + "end": 6004.64, + "probability": 0.98 + }, + { + "start": 6004.76, + "end": 6005.28, + "probability": 0.7173 + }, + { + "start": 6005.36, + "end": 6006.08, + "probability": 0.991 + }, + { + "start": 6006.2, + "end": 6009.3, + "probability": 0.9807 + }, + { + "start": 6010.02, + "end": 6014.63, + "probability": 0.9926 + }, + { + "start": 6015.22, + "end": 6017.08, + "probability": 0.9946 + }, + { + "start": 6017.44, + "end": 6020.42, + "probability": 0.9897 + }, + { + "start": 6020.9, + "end": 6025.06, + "probability": 0.9423 + }, + { + "start": 6025.06, + "end": 6028.88, + "probability": 0.9968 + }, + { + "start": 6029.36, + "end": 6031.17, + "probability": 0.9672 + }, + { + "start": 6031.84, + "end": 6034.04, + "probability": 0.8637 + }, + { + "start": 6034.44, + "end": 6036.94, + "probability": 0.9963 + }, + { + "start": 6037.3, + "end": 6038.74, + "probability": 0.6198 + }, + { + "start": 6039.34, + "end": 6040.18, + "probability": 0.9246 + }, + { + "start": 6040.52, + "end": 6041.62, + "probability": 0.9663 + }, + { + "start": 6042.06, + "end": 6044.64, + "probability": 0.9867 + }, + { + "start": 6045.28, + "end": 6047.96, + "probability": 0.984 + }, + { + "start": 6048.92, + "end": 6050.58, + "probability": 0.9932 + }, + { + "start": 6051.48, + "end": 6053.6, + "probability": 0.7794 + }, + { + "start": 6054.24, + "end": 6060.02, + "probability": 0.9946 + }, + { + "start": 6060.62, + "end": 6064.25, + "probability": 0.9343 + }, + { + "start": 6065.38, + "end": 6068.73, + "probability": 0.6206 + }, + { + "start": 6069.22, + "end": 6072.03, + "probability": 0.9837 + }, + { + "start": 6073.04, + "end": 6075.96, + "probability": 0.9699 + }, + { + "start": 6076.42, + "end": 6080.5, + "probability": 0.9935 + }, + { + "start": 6080.84, + "end": 6081.48, + "probability": 0.9045 + }, + { + "start": 6083.98, + "end": 6085.54, + "probability": 0.9475 + }, + { + "start": 6094.5, + "end": 6095.58, + "probability": 0.7726 + }, + { + "start": 6096.6, + "end": 6098.9, + "probability": 0.9302 + }, + { + "start": 6099.52, + "end": 6102.76, + "probability": 0.9938 + }, + { + "start": 6103.32, + "end": 6104.86, + "probability": 0.5853 + }, + { + "start": 6105.96, + "end": 6107.14, + "probability": 0.978 + }, + { + "start": 6108.38, + "end": 6110.5, + "probability": 0.6979 + }, + { + "start": 6112.26, + "end": 6112.92, + "probability": 0.0283 + }, + { + "start": 6113.2, + "end": 6113.54, + "probability": 0.2042 + }, + { + "start": 6113.54, + "end": 6114.04, + "probability": 0.0544 + }, + { + "start": 6114.76, + "end": 6116.12, + "probability": 0.9155 + }, + { + "start": 6118.32, + "end": 6118.42, + "probability": 0.0168 + }, + { + "start": 6118.42, + "end": 6120.0, + "probability": 0.9829 + }, + { + "start": 6120.46, + "end": 6121.12, + "probability": 0.8574 + }, + { + "start": 6124.48, + "end": 6124.52, + "probability": 0.0057 + }, + { + "start": 6124.52, + "end": 6126.31, + "probability": 0.4943 + }, + { + "start": 6126.84, + "end": 6129.26, + "probability": 0.7482 + }, + { + "start": 6129.98, + "end": 6131.72, + "probability": 0.9775 + }, + { + "start": 6131.94, + "end": 6134.32, + "probability": 0.9926 + }, + { + "start": 6134.44, + "end": 6135.6, + "probability": 0.6176 + }, + { + "start": 6136.68, + "end": 6138.32, + "probability": 0.9565 + }, + { + "start": 6138.42, + "end": 6139.06, + "probability": 0.8395 + }, + { + "start": 6139.14, + "end": 6141.02, + "probability": 0.9084 + }, + { + "start": 6141.58, + "end": 6142.54, + "probability": 0.577 + }, + { + "start": 6143.26, + "end": 6146.52, + "probability": 0.9971 + }, + { + "start": 6147.08, + "end": 6150.98, + "probability": 0.9528 + }, + { + "start": 6155.9, + "end": 6157.72, + "probability": 0.5116 + }, + { + "start": 6157.94, + "end": 6161.34, + "probability": 0.8325 + }, + { + "start": 6161.86, + "end": 6163.26, + "probability": 0.9875 + }, + { + "start": 6163.36, + "end": 6165.02, + "probability": 0.9648 + }, + { + "start": 6165.16, + "end": 6166.19, + "probability": 0.9919 + }, + { + "start": 6167.2, + "end": 6167.8, + "probability": 0.576 + }, + { + "start": 6168.06, + "end": 6168.36, + "probability": 0.2439 + }, + { + "start": 6169.04, + "end": 6169.73, + "probability": 0.1318 + }, + { + "start": 6170.08, + "end": 6170.08, + "probability": 0.1457 + }, + { + "start": 6170.14, + "end": 6172.56, + "probability": 0.5858 + }, + { + "start": 6173.0, + "end": 6174.04, + "probability": 0.3999 + }, + { + "start": 6174.04, + "end": 6174.7, + "probability": 0.5457 + }, + { + "start": 6175.54, + "end": 6176.06, + "probability": 0.9575 + }, + { + "start": 6176.8, + "end": 6177.46, + "probability": 0.5318 + }, + { + "start": 6177.62, + "end": 6182.3, + "probability": 0.9473 + }, + { + "start": 6182.4, + "end": 6183.05, + "probability": 0.9663 + }, + { + "start": 6184.12, + "end": 6184.67, + "probability": 0.979 + }, + { + "start": 6186.32, + "end": 6190.06, + "probability": 0.9377 + }, + { + "start": 6190.78, + "end": 6191.5, + "probability": 0.7242 + }, + { + "start": 6192.08, + "end": 6198.94, + "probability": 0.9969 + }, + { + "start": 6200.08, + "end": 6200.18, + "probability": 0.0832 + }, + { + "start": 6201.06, + "end": 6201.06, + "probability": 0.0912 + }, + { + "start": 6201.06, + "end": 6202.16, + "probability": 0.0262 + }, + { + "start": 6202.56, + "end": 6204.44, + "probability": 0.5088 + }, + { + "start": 6205.9, + "end": 6205.9, + "probability": 0.0524 + }, + { + "start": 6205.9, + "end": 6205.9, + "probability": 0.0402 + }, + { + "start": 6205.9, + "end": 6205.9, + "probability": 0.1326 + }, + { + "start": 6205.9, + "end": 6205.9, + "probability": 0.0691 + }, + { + "start": 6205.9, + "end": 6205.9, + "probability": 0.0351 + }, + { + "start": 6205.9, + "end": 6206.9, + "probability": 0.4088 + }, + { + "start": 6206.92, + "end": 6211.26, + "probability": 0.9053 + }, + { + "start": 6211.34, + "end": 6215.5, + "probability": 0.9924 + }, + { + "start": 6215.58, + "end": 6219.36, + "probability": 0.9856 + }, + { + "start": 6219.88, + "end": 6220.54, + "probability": 0.7966 + }, + { + "start": 6220.66, + "end": 6220.84, + "probability": 0.9201 + }, + { + "start": 6220.88, + "end": 6223.52, + "probability": 0.9953 + }, + { + "start": 6224.2, + "end": 6225.8, + "probability": 0.6785 + }, + { + "start": 6225.94, + "end": 6227.02, + "probability": 0.6099 + }, + { + "start": 6227.08, + "end": 6230.88, + "probability": 0.9132 + }, + { + "start": 6231.5, + "end": 6237.9, + "probability": 0.9897 + }, + { + "start": 6238.59, + "end": 6240.04, + "probability": 0.6439 + }, + { + "start": 6240.1, + "end": 6241.88, + "probability": 0.9181 + }, + { + "start": 6241.88, + "end": 6243.68, + "probability": 0.9458 + }, + { + "start": 6243.7, + "end": 6247.02, + "probability": 0.9966 + }, + { + "start": 6247.18, + "end": 6248.82, + "probability": 0.9208 + }, + { + "start": 6249.68, + "end": 6250.5, + "probability": 0.9431 + }, + { + "start": 6251.86, + "end": 6256.42, + "probability": 0.9503 + }, + { + "start": 6256.54, + "end": 6257.68, + "probability": 0.9748 + }, + { + "start": 6257.74, + "end": 6258.8, + "probability": 0.9508 + }, + { + "start": 6258.92, + "end": 6258.92, + "probability": 0.2576 + }, + { + "start": 6259.04, + "end": 6260.6, + "probability": 0.868 + }, + { + "start": 6260.68, + "end": 6266.06, + "probability": 0.8155 + }, + { + "start": 6266.66, + "end": 6268.94, + "probability": 0.9982 + }, + { + "start": 6269.26, + "end": 6269.92, + "probability": 0.6956 + }, + { + "start": 6270.0, + "end": 6270.58, + "probability": 0.9144 + }, + { + "start": 6270.86, + "end": 6271.58, + "probability": 0.9841 + }, + { + "start": 6271.64, + "end": 6272.16, + "probability": 0.3844 + }, + { + "start": 6272.32, + "end": 6273.04, + "probability": 0.8528 + }, + { + "start": 6273.34, + "end": 6275.32, + "probability": 0.9741 + }, + { + "start": 6276.4, + "end": 6279.8, + "probability": 0.8931 + }, + { + "start": 6279.92, + "end": 6283.14, + "probability": 0.752 + }, + { + "start": 6283.9, + "end": 6287.08, + "probability": 0.9946 + }, + { + "start": 6287.14, + "end": 6287.6, + "probability": 0.7834 + }, + { + "start": 6287.82, + "end": 6288.86, + "probability": 0.9933 + }, + { + "start": 6288.94, + "end": 6290.78, + "probability": 0.6667 + }, + { + "start": 6290.86, + "end": 6291.24, + "probability": 0.7133 + }, + { + "start": 6292.38, + "end": 6293.38, + "probability": 0.8443 + }, + { + "start": 6293.7, + "end": 6293.84, + "probability": 0.47 + }, + { + "start": 6293.84, + "end": 6295.26, + "probability": 0.8365 + }, + { + "start": 6295.76, + "end": 6296.29, + "probability": 0.9822 + }, + { + "start": 6299.12, + "end": 6303.78, + "probability": 0.9856 + }, + { + "start": 6303.8, + "end": 6306.7, + "probability": 0.9889 + }, + { + "start": 6307.78, + "end": 6310.68, + "probability": 0.9937 + }, + { + "start": 6310.68, + "end": 6314.66, + "probability": 0.9668 + }, + { + "start": 6315.3, + "end": 6317.68, + "probability": 0.9833 + }, + { + "start": 6318.58, + "end": 6321.1, + "probability": 0.9839 + }, + { + "start": 6321.1, + "end": 6324.94, + "probability": 0.9986 + }, + { + "start": 6325.76, + "end": 6328.68, + "probability": 0.953 + }, + { + "start": 6329.08, + "end": 6336.12, + "probability": 0.977 + }, + { + "start": 6337.5, + "end": 6339.8, + "probability": 0.9952 + }, + { + "start": 6340.3, + "end": 6344.16, + "probability": 0.9512 + }, + { + "start": 6344.92, + "end": 6347.88, + "probability": 0.9921 + }, + { + "start": 6348.86, + "end": 6351.78, + "probability": 0.989 + }, + { + "start": 6352.52, + "end": 6353.38, + "probability": 0.7715 + }, + { + "start": 6353.62, + "end": 6354.58, + "probability": 0.7981 + }, + { + "start": 6354.62, + "end": 6356.96, + "probability": 0.9846 + }, + { + "start": 6357.12, + "end": 6357.82, + "probability": 0.8785 + }, + { + "start": 6357.96, + "end": 6360.12, + "probability": 0.9752 + }, + { + "start": 6360.94, + "end": 6364.62, + "probability": 0.9865 + }, + { + "start": 6364.72, + "end": 6365.78, + "probability": 0.9281 + }, + { + "start": 6366.22, + "end": 6369.44, + "probability": 0.9931 + }, + { + "start": 6369.44, + "end": 6371.68, + "probability": 0.9979 + }, + { + "start": 6372.26, + "end": 6373.48, + "probability": 0.7086 + }, + { + "start": 6373.58, + "end": 6374.7, + "probability": 0.9028 + }, + { + "start": 6374.72, + "end": 6376.42, + "probability": 0.925 + }, + { + "start": 6377.04, + "end": 6378.26, + "probability": 0.9136 + }, + { + "start": 6378.36, + "end": 6378.82, + "probability": 0.891 + }, + { + "start": 6378.88, + "end": 6379.92, + "probability": 0.9241 + }, + { + "start": 6380.64, + "end": 6383.84, + "probability": 0.9801 + }, + { + "start": 6383.84, + "end": 6387.52, + "probability": 0.9771 + }, + { + "start": 6388.34, + "end": 6392.16, + "probability": 0.9937 + }, + { + "start": 6392.44, + "end": 6395.6, + "probability": 0.9365 + }, + { + "start": 6396.34, + "end": 6400.52, + "probability": 0.98 + }, + { + "start": 6401.68, + "end": 6405.24, + "probability": 0.9862 + }, + { + "start": 6406.02, + "end": 6409.08, + "probability": 0.9796 + }, + { + "start": 6409.08, + "end": 6411.92, + "probability": 0.9957 + }, + { + "start": 6412.46, + "end": 6413.28, + "probability": 0.8313 + }, + { + "start": 6413.42, + "end": 6419.02, + "probability": 0.9893 + }, + { + "start": 6419.62, + "end": 6422.3, + "probability": 0.8256 + }, + { + "start": 6423.4, + "end": 6427.72, + "probability": 0.9884 + }, + { + "start": 6428.2, + "end": 6431.64, + "probability": 0.9945 + }, + { + "start": 6431.74, + "end": 6434.1, + "probability": 0.9825 + }, + { + "start": 6434.62, + "end": 6438.4, + "probability": 0.9842 + }, + { + "start": 6438.4, + "end": 6442.0, + "probability": 0.9979 + }, + { + "start": 6442.0, + "end": 6447.34, + "probability": 0.9767 + }, + { + "start": 6448.1, + "end": 6450.26, + "probability": 0.9939 + }, + { + "start": 6451.88, + "end": 6456.24, + "probability": 0.9771 + }, + { + "start": 6456.8, + "end": 6457.74, + "probability": 0.7297 + }, + { + "start": 6458.42, + "end": 6460.54, + "probability": 0.9866 + }, + { + "start": 6460.58, + "end": 6463.4, + "probability": 0.4997 + }, + { + "start": 6464.4, + "end": 6468.46, + "probability": 0.9699 + }, + { + "start": 6468.98, + "end": 6473.54, + "probability": 0.9966 + }, + { + "start": 6474.2, + "end": 6474.9, + "probability": 0.5467 + }, + { + "start": 6475.42, + "end": 6477.16, + "probability": 0.9963 + }, + { + "start": 6477.64, + "end": 6478.22, + "probability": 0.772 + }, + { + "start": 6483.58, + "end": 6485.06, + "probability": 0.7921 + }, + { + "start": 6485.1, + "end": 6489.3, + "probability": 0.9655 + }, + { + "start": 6489.34, + "end": 6492.04, + "probability": 0.9407 + }, + { + "start": 6493.08, + "end": 6497.91, + "probability": 0.9987 + }, + { + "start": 6498.98, + "end": 6502.16, + "probability": 0.7682 + }, + { + "start": 6508.56, + "end": 6509.54, + "probability": 0.6102 + }, + { + "start": 6509.66, + "end": 6512.78, + "probability": 0.6155 + }, + { + "start": 6513.06, + "end": 6517.48, + "probability": 0.9878 + }, + { + "start": 6517.64, + "end": 6518.96, + "probability": 0.7959 + }, + { + "start": 6518.96, + "end": 6520.94, + "probability": 0.9967 + }, + { + "start": 6521.06, + "end": 6522.8, + "probability": 0.9489 + }, + { + "start": 6523.4, + "end": 6525.36, + "probability": 0.9956 + }, + { + "start": 6525.44, + "end": 6527.5, + "probability": 0.9901 + }, + { + "start": 6527.66, + "end": 6530.26, + "probability": 0.9266 + }, + { + "start": 6530.72, + "end": 6531.44, + "probability": 0.4984 + }, + { + "start": 6531.66, + "end": 6532.32, + "probability": 0.8945 + }, + { + "start": 6532.38, + "end": 6534.18, + "probability": 0.671 + }, + { + "start": 6534.46, + "end": 6536.8, + "probability": 0.9839 + }, + { + "start": 6536.86, + "end": 6537.24, + "probability": 0.7316 + }, + { + "start": 6537.78, + "end": 6539.9, + "probability": 0.7264 + }, + { + "start": 6540.1, + "end": 6544.96, + "probability": 0.9978 + }, + { + "start": 6545.84, + "end": 6547.48, + "probability": 0.8264 + }, + { + "start": 6547.96, + "end": 6549.22, + "probability": 0.3554 + }, + { + "start": 6553.76, + "end": 6554.9, + "probability": 0.5056 + }, + { + "start": 6555.18, + "end": 6555.18, + "probability": 0.3065 + }, + { + "start": 6555.18, + "end": 6555.98, + "probability": 0.1144 + }, + { + "start": 6557.04, + "end": 6557.75, + "probability": 0.2295 + }, + { + "start": 6560.62, + "end": 6561.46, + "probability": 0.9697 + }, + { + "start": 6561.68, + "end": 6563.52, + "probability": 0.9385 + }, + { + "start": 6563.6, + "end": 6564.18, + "probability": 0.7725 + }, + { + "start": 6565.82, + "end": 6565.84, + "probability": 0.5787 + }, + { + "start": 6565.84, + "end": 6566.54, + "probability": 0.6163 + }, + { + "start": 6567.02, + "end": 6568.22, + "probability": 0.8677 + }, + { + "start": 6571.34, + "end": 6573.35, + "probability": 0.7521 + }, + { + "start": 6574.34, + "end": 6575.28, + "probability": 0.9589 + }, + { + "start": 6575.56, + "end": 6577.36, + "probability": 0.8558 + }, + { + "start": 6577.56, + "end": 6580.04, + "probability": 0.8582 + }, + { + "start": 6580.18, + "end": 6582.26, + "probability": 0.9336 + }, + { + "start": 6582.38, + "end": 6590.64, + "probability": 0.918 + }, + { + "start": 6591.4, + "end": 6594.12, + "probability": 0.9305 + }, + { + "start": 6596.02, + "end": 6598.42, + "probability": 0.9418 + }, + { + "start": 6598.44, + "end": 6599.36, + "probability": 0.9599 + }, + { + "start": 6599.78, + "end": 6600.6, + "probability": 0.0549 + }, + { + "start": 6601.96, + "end": 6602.84, + "probability": 0.3462 + }, + { + "start": 6602.84, + "end": 6604.56, + "probability": 0.5649 + }, + { + "start": 6606.5, + "end": 6608.76, + "probability": 0.8692 + }, + { + "start": 6609.28, + "end": 6612.74, + "probability": 0.8719 + }, + { + "start": 6613.64, + "end": 6614.24, + "probability": 0.7252 + }, + { + "start": 6614.58, + "end": 6619.26, + "probability": 0.9242 + }, + { + "start": 6619.26, + "end": 6623.04, + "probability": 0.8408 + }, + { + "start": 6624.12, + "end": 6626.36, + "probability": 0.9938 + }, + { + "start": 6627.08, + "end": 6628.24, + "probability": 0.9946 + }, + { + "start": 6628.36, + "end": 6631.78, + "probability": 0.9919 + }, + { + "start": 6631.78, + "end": 6636.96, + "probability": 0.9984 + }, + { + "start": 6637.06, + "end": 6638.32, + "probability": 0.8745 + }, + { + "start": 6638.94, + "end": 6641.64, + "probability": 0.978 + }, + { + "start": 6642.34, + "end": 6643.3, + "probability": 0.9404 + }, + { + "start": 6643.98, + "end": 6650.54, + "probability": 0.875 + }, + { + "start": 6651.58, + "end": 6654.47, + "probability": 0.936 + }, + { + "start": 6656.82, + "end": 6661.14, + "probability": 0.9761 + }, + { + "start": 6661.24, + "end": 6662.84, + "probability": 0.998 + }, + { + "start": 6663.24, + "end": 6664.12, + "probability": 0.3228 + }, + { + "start": 6664.16, + "end": 6664.62, + "probability": 0.4231 + }, + { + "start": 6664.62, + "end": 6664.62, + "probability": 0.3058 + }, + { + "start": 6664.62, + "end": 6666.18, + "probability": 0.9375 + }, + { + "start": 6666.6, + "end": 6668.18, + "probability": 0.9826 + }, + { + "start": 6668.26, + "end": 6670.28, + "probability": 0.8989 + }, + { + "start": 6670.82, + "end": 6672.4, + "probability": 0.9368 + }, + { + "start": 6672.44, + "end": 6675.78, + "probability": 0.9609 + }, + { + "start": 6675.98, + "end": 6676.54, + "probability": 0.8165 + }, + { + "start": 6676.64, + "end": 6677.4, + "probability": 0.8603 + }, + { + "start": 6677.94, + "end": 6680.06, + "probability": 0.8208 + }, + { + "start": 6680.14, + "end": 6681.76, + "probability": 0.9673 + }, + { + "start": 6682.38, + "end": 6683.74, + "probability": 0.9258 + }, + { + "start": 6684.74, + "end": 6685.18, + "probability": 0.8738 + }, + { + "start": 6685.26, + "end": 6685.82, + "probability": 0.6797 + }, + { + "start": 6685.82, + "end": 6688.72, + "probability": 0.9945 + }, + { + "start": 6689.12, + "end": 6691.3, + "probability": 0.9942 + }, + { + "start": 6691.3, + "end": 6695.6, + "probability": 0.9808 + }, + { + "start": 6696.44, + "end": 6698.14, + "probability": 0.5998 + }, + { + "start": 6698.78, + "end": 6701.06, + "probability": 0.9693 + }, + { + "start": 6701.66, + "end": 6702.12, + "probability": 0.8667 + }, + { + "start": 6702.94, + "end": 6705.18, + "probability": 0.681 + }, + { + "start": 6711.62, + "end": 6713.06, + "probability": 0.8723 + }, + { + "start": 6717.18, + "end": 6720.02, + "probability": 0.8874 + }, + { + "start": 6720.94, + "end": 6722.9, + "probability": 0.8554 + }, + { + "start": 6731.58, + "end": 6731.58, + "probability": 0.0184 + }, + { + "start": 6731.58, + "end": 6731.58, + "probability": 0.1673 + }, + { + "start": 6731.58, + "end": 6731.58, + "probability": 0.0681 + }, + { + "start": 6731.58, + "end": 6731.66, + "probability": 0.0193 + }, + { + "start": 6748.98, + "end": 6751.94, + "probability": 0.4246 + }, + { + "start": 6753.06, + "end": 6755.8, + "probability": 0.8072 + }, + { + "start": 6757.08, + "end": 6760.46, + "probability": 0.8617 + }, + { + "start": 6762.76, + "end": 6766.5, + "probability": 0.951 + }, + { + "start": 6769.5, + "end": 6773.52, + "probability": 0.9951 + }, + { + "start": 6774.64, + "end": 6775.74, + "probability": 0.998 + }, + { + "start": 6775.94, + "end": 6777.44, + "probability": 0.9561 + }, + { + "start": 6778.94, + "end": 6780.28, + "probability": 0.9878 + }, + { + "start": 6781.96, + "end": 6785.38, + "probability": 0.9421 + }, + { + "start": 6785.6, + "end": 6790.08, + "probability": 0.9149 + }, + { + "start": 6791.32, + "end": 6793.58, + "probability": 0.9622 + }, + { + "start": 6794.16, + "end": 6796.68, + "probability": 0.9934 + }, + { + "start": 6798.32, + "end": 6799.3, + "probability": 0.7063 + }, + { + "start": 6800.9, + "end": 6804.3, + "probability": 0.9871 + }, + { + "start": 6805.4, + "end": 6806.34, + "probability": 0.8551 + }, + { + "start": 6807.38, + "end": 6808.32, + "probability": 0.9918 + }, + { + "start": 6809.92, + "end": 6811.98, + "probability": 0.9968 + }, + { + "start": 6815.2, + "end": 6816.66, + "probability": 0.905 + }, + { + "start": 6818.04, + "end": 6820.45, + "probability": 0.9731 + }, + { + "start": 6821.3, + "end": 6822.92, + "probability": 0.9993 + }, + { + "start": 6824.36, + "end": 6826.2, + "probability": 0.9979 + }, + { + "start": 6827.5, + "end": 6830.16, + "probability": 0.9569 + }, + { + "start": 6832.6, + "end": 6835.16, + "probability": 0.9425 + }, + { + "start": 6836.66, + "end": 6838.88, + "probability": 0.8409 + }, + { + "start": 6839.1, + "end": 6841.78, + "probability": 0.9438 + }, + { + "start": 6842.8, + "end": 6846.0, + "probability": 0.9956 + }, + { + "start": 6847.12, + "end": 6849.04, + "probability": 0.9971 + }, + { + "start": 6851.3, + "end": 6851.78, + "probability": 0.9858 + }, + { + "start": 6852.9, + "end": 6854.44, + "probability": 0.9985 + }, + { + "start": 6855.32, + "end": 6856.6, + "probability": 0.903 + }, + { + "start": 6858.02, + "end": 6860.98, + "probability": 0.9956 + }, + { + "start": 6860.98, + "end": 6862.74, + "probability": 0.9946 + }, + { + "start": 6864.92, + "end": 6868.72, + "probability": 0.9417 + }, + { + "start": 6870.02, + "end": 6871.52, + "probability": 0.7422 + }, + { + "start": 6871.66, + "end": 6874.28, + "probability": 0.7281 + }, + { + "start": 6875.02, + "end": 6876.03, + "probability": 0.8979 + }, + { + "start": 6876.22, + "end": 6877.76, + "probability": 0.8535 + }, + { + "start": 6878.62, + "end": 6879.68, + "probability": 0.9003 + }, + { + "start": 6880.0, + "end": 6881.14, + "probability": 0.9116 + }, + { + "start": 6881.76, + "end": 6882.18, + "probability": 0.5698 + }, + { + "start": 6883.54, + "end": 6885.82, + "probability": 0.9984 + }, + { + "start": 6885.82, + "end": 6887.6, + "probability": 0.993 + }, + { + "start": 6888.18, + "end": 6888.88, + "probability": 0.7979 + }, + { + "start": 6888.98, + "end": 6891.28, + "probability": 0.9736 + }, + { + "start": 6892.42, + "end": 6893.32, + "probability": 0.8624 + }, + { + "start": 6893.74, + "end": 6897.06, + "probability": 0.774 + }, + { + "start": 6897.7, + "end": 6905.04, + "probability": 0.9172 + }, + { + "start": 6905.12, + "end": 6906.34, + "probability": 0.788 + }, + { + "start": 6908.22, + "end": 6908.88, + "probability": 0.9419 + }, + { + "start": 6908.96, + "end": 6912.13, + "probability": 0.9513 + }, + { + "start": 6912.5, + "end": 6913.1, + "probability": 0.8695 + }, + { + "start": 6913.2, + "end": 6914.4, + "probability": 0.7877 + }, + { + "start": 6914.62, + "end": 6914.98, + "probability": 0.4706 + }, + { + "start": 6915.06, + "end": 6916.9, + "probability": 0.9932 + }, + { + "start": 6917.04, + "end": 6919.37, + "probability": 0.9819 + }, + { + "start": 6920.28, + "end": 6920.8, + "probability": 0.8775 + }, + { + "start": 6922.2, + "end": 6922.86, + "probability": 0.9863 + }, + { + "start": 6923.4, + "end": 6926.52, + "probability": 0.9836 + }, + { + "start": 6927.04, + "end": 6928.9, + "probability": 0.4446 + }, + { + "start": 6929.36, + "end": 6930.42, + "probability": 0.7944 + }, + { + "start": 6931.06, + "end": 6934.04, + "probability": 0.9664 + }, + { + "start": 6934.6, + "end": 6934.82, + "probability": 0.7596 + }, + { + "start": 6936.4, + "end": 6938.92, + "probability": 0.8403 + }, + { + "start": 6939.0, + "end": 6941.3, + "probability": 0.7674 + }, + { + "start": 6955.86, + "end": 6958.83, + "probability": 0.7933 + }, + { + "start": 6962.32, + "end": 6963.66, + "probability": 0.6886 + }, + { + "start": 6963.82, + "end": 6964.3, + "probability": 0.8244 + }, + { + "start": 6964.38, + "end": 6965.48, + "probability": 0.8239 + }, + { + "start": 6965.62, + "end": 6966.08, + "probability": 0.7749 + }, + { + "start": 6966.14, + "end": 6966.44, + "probability": 0.5484 + }, + { + "start": 6966.56, + "end": 6970.32, + "probability": 0.9902 + }, + { + "start": 6971.08, + "end": 6972.88, + "probability": 0.9438 + }, + { + "start": 6974.06, + "end": 6976.24, + "probability": 0.9808 + }, + { + "start": 6976.36, + "end": 6978.52, + "probability": 0.9841 + }, + { + "start": 6978.76, + "end": 6982.98, + "probability": 0.9979 + }, + { + "start": 6983.64, + "end": 6988.2, + "probability": 0.989 + }, + { + "start": 6988.3, + "end": 6991.08, + "probability": 0.9476 + }, + { + "start": 6991.94, + "end": 6994.85, + "probability": 0.9595 + }, + { + "start": 6994.94, + "end": 6997.02, + "probability": 0.679 + }, + { + "start": 6997.82, + "end": 7002.76, + "probability": 0.9935 + }, + { + "start": 7003.9, + "end": 7009.34, + "probability": 0.968 + }, + { + "start": 7009.52, + "end": 7011.06, + "probability": 0.9907 + }, + { + "start": 7011.66, + "end": 7012.15, + "probability": 0.5296 + }, + { + "start": 7012.44, + "end": 7014.46, + "probability": 0.9923 + }, + { + "start": 7014.9, + "end": 7018.74, + "probability": 0.9084 + }, + { + "start": 7018.86, + "end": 7019.8, + "probability": 0.9024 + }, + { + "start": 7020.6, + "end": 7026.48, + "probability": 0.9582 + }, + { + "start": 7026.62, + "end": 7028.44, + "probability": 0.9937 + }, + { + "start": 7029.06, + "end": 7031.56, + "probability": 0.9654 + }, + { + "start": 7032.08, + "end": 7034.6, + "probability": 0.9487 + }, + { + "start": 7035.08, + "end": 7038.2, + "probability": 0.9989 + }, + { + "start": 7038.2, + "end": 7041.92, + "probability": 0.997 + }, + { + "start": 7042.52, + "end": 7044.42, + "probability": 0.982 + }, + { + "start": 7044.9, + "end": 7048.46, + "probability": 0.9946 + }, + { + "start": 7049.04, + "end": 7049.66, + "probability": 0.4688 + }, + { + "start": 7049.8, + "end": 7053.74, + "probability": 0.9923 + }, + { + "start": 7055.1, + "end": 7058.14, + "probability": 0.9937 + }, + { + "start": 7058.4, + "end": 7061.12, + "probability": 0.9348 + }, + { + "start": 7061.62, + "end": 7062.0, + "probability": 0.7932 + }, + { + "start": 7062.18, + "end": 7063.24, + "probability": 0.5102 + }, + { + "start": 7063.4, + "end": 7064.31, + "probability": 0.8875 + }, + { + "start": 7064.44, + "end": 7068.1, + "probability": 0.9965 + }, + { + "start": 7068.46, + "end": 7076.52, + "probability": 0.9984 + }, + { + "start": 7077.84, + "end": 7078.54, + "probability": 0.9937 + }, + { + "start": 7079.3, + "end": 7080.94, + "probability": 0.937 + }, + { + "start": 7081.04, + "end": 7081.9, + "probability": 0.9026 + }, + { + "start": 7082.3, + "end": 7084.62, + "probability": 0.8387 + }, + { + "start": 7084.72, + "end": 7085.16, + "probability": 0.8511 + }, + { + "start": 7085.96, + "end": 7090.54, + "probability": 0.8812 + }, + { + "start": 7090.96, + "end": 7091.82, + "probability": 0.8964 + }, + { + "start": 7092.5, + "end": 7096.44, + "probability": 0.9911 + }, + { + "start": 7096.44, + "end": 7099.82, + "probability": 0.9928 + }, + { + "start": 7100.36, + "end": 7101.5, + "probability": 0.9459 + }, + { + "start": 7102.12, + "end": 7106.77, + "probability": 0.9491 + }, + { + "start": 7108.06, + "end": 7109.4, + "probability": 0.9572 + }, + { + "start": 7110.32, + "end": 7112.42, + "probability": 0.9849 + }, + { + "start": 7112.92, + "end": 7115.54, + "probability": 0.9865 + }, + { + "start": 7115.94, + "end": 7116.62, + "probability": 0.8298 + }, + { + "start": 7116.68, + "end": 7118.5, + "probability": 0.986 + }, + { + "start": 7119.0, + "end": 7121.98, + "probability": 0.9929 + }, + { + "start": 7122.96, + "end": 7124.42, + "probability": 0.7544 + }, + { + "start": 7125.08, + "end": 7128.66, + "probability": 0.9644 + }, + { + "start": 7129.76, + "end": 7134.02, + "probability": 0.9915 + }, + { + "start": 7134.02, + "end": 7136.08, + "probability": 0.9926 + }, + { + "start": 7136.16, + "end": 7136.38, + "probability": 0.78 + }, + { + "start": 7137.22, + "end": 7139.5, + "probability": 0.8313 + }, + { + "start": 7139.64, + "end": 7142.52, + "probability": 0.831 + }, + { + "start": 7145.3, + "end": 7146.66, + "probability": 0.917 + }, + { + "start": 7148.1, + "end": 7150.62, + "probability": 0.9044 + }, + { + "start": 7151.64, + "end": 7154.18, + "probability": 0.7764 + }, + { + "start": 7155.14, + "end": 7155.74, + "probability": 0.9482 + }, + { + "start": 7156.34, + "end": 7158.0, + "probability": 0.9709 + }, + { + "start": 7158.8, + "end": 7165.64, + "probability": 0.9751 + }, + { + "start": 7168.1, + "end": 7171.2, + "probability": 0.9062 + }, + { + "start": 7172.14, + "end": 7173.56, + "probability": 0.761 + }, + { + "start": 7174.18, + "end": 7176.32, + "probability": 0.9181 + }, + { + "start": 7177.4, + "end": 7181.82, + "probability": 0.9952 + }, + { + "start": 7182.6, + "end": 7184.1, + "probability": 0.7754 + }, + { + "start": 7185.06, + "end": 7186.64, + "probability": 0.9834 + }, + { + "start": 7186.92, + "end": 7188.08, + "probability": 0.9265 + }, + { + "start": 7188.86, + "end": 7191.43, + "probability": 0.9136 + }, + { + "start": 7192.56, + "end": 7197.5, + "probability": 0.8569 + }, + { + "start": 7199.75, + "end": 7203.26, + "probability": 0.9495 + }, + { + "start": 7203.66, + "end": 7204.32, + "probability": 0.541 + }, + { + "start": 7205.38, + "end": 7206.92, + "probability": 0.9769 + }, + { + "start": 7206.94, + "end": 7208.01, + "probability": 0.6133 + }, + { + "start": 7209.3, + "end": 7214.0, + "probability": 0.9438 + }, + { + "start": 7214.06, + "end": 7218.94, + "probability": 0.9915 + }, + { + "start": 7219.9, + "end": 7222.48, + "probability": 0.5927 + }, + { + "start": 7223.88, + "end": 7227.72, + "probability": 0.5627 + }, + { + "start": 7228.56, + "end": 7230.26, + "probability": 0.9883 + }, + { + "start": 7232.06, + "end": 7235.6, + "probability": 0.5086 + }, + { + "start": 7235.6, + "end": 7238.74, + "probability": 0.9844 + }, + { + "start": 7239.58, + "end": 7240.44, + "probability": 0.9206 + }, + { + "start": 7241.18, + "end": 7242.32, + "probability": 0.7057 + }, + { + "start": 7243.54, + "end": 7246.72, + "probability": 0.9617 + }, + { + "start": 7246.84, + "end": 7247.64, + "probability": 0.8837 + }, + { + "start": 7247.96, + "end": 7248.5, + "probability": 0.9106 + }, + { + "start": 7249.88, + "end": 7250.82, + "probability": 0.8675 + }, + { + "start": 7251.46, + "end": 7253.08, + "probability": 0.8824 + }, + { + "start": 7253.16, + "end": 7254.56, + "probability": 0.5385 + }, + { + "start": 7255.54, + "end": 7256.26, + "probability": 0.9209 + }, + { + "start": 7257.12, + "end": 7261.5, + "probability": 0.9462 + }, + { + "start": 7261.96, + "end": 7263.16, + "probability": 0.4804 + }, + { + "start": 7264.28, + "end": 7264.28, + "probability": 0.7251 + }, + { + "start": 7264.9, + "end": 7268.42, + "probability": 0.8414 + }, + { + "start": 7269.42, + "end": 7271.62, + "probability": 0.9963 + }, + { + "start": 7272.38, + "end": 7275.94, + "probability": 0.7987 + }, + { + "start": 7276.08, + "end": 7276.58, + "probability": 0.5354 + }, + { + "start": 7277.18, + "end": 7277.82, + "probability": 0.6266 + }, + { + "start": 7278.74, + "end": 7281.18, + "probability": 0.5103 + }, + { + "start": 7281.18, + "end": 7282.2, + "probability": 0.7725 + }, + { + "start": 7282.92, + "end": 7283.72, + "probability": 0.8865 + }, + { + "start": 7284.36, + "end": 7284.87, + "probability": 0.6113 + }, + { + "start": 7285.26, + "end": 7285.81, + "probability": 0.5866 + }, + { + "start": 7286.26, + "end": 7286.54, + "probability": 0.5712 + }, + { + "start": 7286.96, + "end": 7289.96, + "probability": 0.5538 + }, + { + "start": 7290.38, + "end": 7293.34, + "probability": 0.994 + }, + { + "start": 7294.5, + "end": 7296.14, + "probability": 0.8755 + }, + { + "start": 7296.38, + "end": 7296.94, + "probability": 0.7662 + }, + { + "start": 7297.58, + "end": 7299.16, + "probability": 0.9751 + }, + { + "start": 7300.74, + "end": 7301.78, + "probability": 0.9824 + }, + { + "start": 7302.96, + "end": 7306.0, + "probability": 0.9239 + }, + { + "start": 7306.66, + "end": 7308.84, + "probability": 0.5833 + }, + { + "start": 7309.7, + "end": 7310.9, + "probability": 0.9541 + }, + { + "start": 7311.76, + "end": 7312.56, + "probability": 0.5414 + }, + { + "start": 7312.72, + "end": 7315.14, + "probability": 0.8299 + }, + { + "start": 7315.56, + "end": 7317.78, + "probability": 0.9567 + }, + { + "start": 7318.86, + "end": 7320.04, + "probability": 0.925 + }, + { + "start": 7320.12, + "end": 7322.38, + "probability": 0.8706 + }, + { + "start": 7323.18, + "end": 7329.94, + "probability": 0.9832 + }, + { + "start": 7330.84, + "end": 7331.7, + "probability": 0.5007 + }, + { + "start": 7332.36, + "end": 7334.18, + "probability": 0.7858 + }, + { + "start": 7334.18, + "end": 7337.56, + "probability": 0.7363 + }, + { + "start": 7337.66, + "end": 7337.92, + "probability": 0.9027 + }, + { + "start": 7338.64, + "end": 7341.64, + "probability": 0.8996 + }, + { + "start": 7342.02, + "end": 7343.84, + "probability": 0.9515 + }, + { + "start": 7344.5, + "end": 7345.28, + "probability": 0.5024 + }, + { + "start": 7346.18, + "end": 7349.16, + "probability": 0.8125 + }, + { + "start": 7349.36, + "end": 7349.98, + "probability": 0.9403 + }, + { + "start": 7350.14, + "end": 7350.42, + "probability": 0.0299 + }, + { + "start": 7350.42, + "end": 7350.6, + "probability": 0.2482 + }, + { + "start": 7350.6, + "end": 7351.36, + "probability": 0.6576 + }, + { + "start": 7351.64, + "end": 7353.32, + "probability": 0.573 + }, + { + "start": 7354.48, + "end": 7356.08, + "probability": 0.9616 + }, + { + "start": 7357.48, + "end": 7360.68, + "probability": 0.6494 + }, + { + "start": 7361.76, + "end": 7362.58, + "probability": 0.6061 + }, + { + "start": 7364.4, + "end": 7367.0, + "probability": 0.1631 + }, + { + "start": 7372.8, + "end": 7374.3, + "probability": 0.4937 + }, + { + "start": 7374.42, + "end": 7375.82, + "probability": 0.8646 + }, + { + "start": 7376.08, + "end": 7377.0, + "probability": 0.8691 + }, + { + "start": 7377.24, + "end": 7379.16, + "probability": 0.8752 + }, + { + "start": 7380.5, + "end": 7382.73, + "probability": 0.5819 + }, + { + "start": 7383.7, + "end": 7386.81, + "probability": 0.842 + }, + { + "start": 7387.04, + "end": 7388.78, + "probability": 0.7824 + }, + { + "start": 7389.62, + "end": 7391.98, + "probability": 0.9525 + }, + { + "start": 7393.9, + "end": 7397.0, + "probability": 0.9518 + }, + { + "start": 7397.76, + "end": 7405.34, + "probability": 0.9798 + }, + { + "start": 7406.56, + "end": 7408.22, + "probability": 0.8634 + }, + { + "start": 7408.62, + "end": 7413.94, + "probability": 0.9854 + }, + { + "start": 7414.42, + "end": 7415.9, + "probability": 0.8796 + }, + { + "start": 7416.32, + "end": 7419.0, + "probability": 0.7978 + }, + { + "start": 7419.6, + "end": 7421.08, + "probability": 0.9831 + }, + { + "start": 7421.3, + "end": 7424.62, + "probability": 0.9359 + }, + { + "start": 7424.84, + "end": 7427.58, + "probability": 0.8931 + }, + { + "start": 7428.08, + "end": 7430.82, + "probability": 0.2362 + }, + { + "start": 7430.82, + "end": 7434.86, + "probability": 0.963 + }, + { + "start": 7436.14, + "end": 7438.86, + "probability": 0.5297 + }, + { + "start": 7438.92, + "end": 7439.8, + "probability": 0.9011 + }, + { + "start": 7439.92, + "end": 7440.92, + "probability": 0.8566 + }, + { + "start": 7441.68, + "end": 7442.88, + "probability": 0.5629 + }, + { + "start": 7443.12, + "end": 7443.64, + "probability": 0.716 + }, + { + "start": 7443.96, + "end": 7447.98, + "probability": 0.981 + }, + { + "start": 7447.98, + "end": 7452.02, + "probability": 0.9689 + }, + { + "start": 7453.44, + "end": 7458.14, + "probability": 0.9181 + }, + { + "start": 7458.39, + "end": 7463.5, + "probability": 0.9469 + }, + { + "start": 7464.0, + "end": 7467.22, + "probability": 0.9392 + }, + { + "start": 7468.0, + "end": 7469.24, + "probability": 0.6146 + }, + { + "start": 7469.48, + "end": 7474.0, + "probability": 0.8828 + }, + { + "start": 7474.26, + "end": 7476.24, + "probability": 0.6773 + }, + { + "start": 7476.68, + "end": 7479.82, + "probability": 0.9853 + }, + { + "start": 7480.46, + "end": 7483.38, + "probability": 0.9336 + }, + { + "start": 7483.68, + "end": 7484.4, + "probability": 0.9597 + }, + { + "start": 7484.4, + "end": 7486.98, + "probability": 0.9674 + }, + { + "start": 7487.28, + "end": 7487.38, + "probability": 0.0356 + }, + { + "start": 7489.22, + "end": 7492.46, + "probability": 0.5707 + }, + { + "start": 7493.42, + "end": 7496.52, + "probability": 0.9751 + }, + { + "start": 7496.62, + "end": 7498.3, + "probability": 0.8938 + }, + { + "start": 7499.0, + "end": 7500.88, + "probability": 0.9902 + }, + { + "start": 7501.44, + "end": 7508.34, + "probability": 0.9014 + }, + { + "start": 7510.4, + "end": 7513.6, + "probability": 0.4763 + }, + { + "start": 7514.3, + "end": 7518.96, + "probability": 0.9284 + }, + { + "start": 7519.72, + "end": 7520.82, + "probability": 0.8795 + }, + { + "start": 7521.24, + "end": 7522.14, + "probability": 0.9226 + }, + { + "start": 7522.58, + "end": 7529.0, + "probability": 0.8745 + }, + { + "start": 7529.5, + "end": 7530.76, + "probability": 0.8102 + }, + { + "start": 7530.96, + "end": 7532.06, + "probability": 0.5482 + }, + { + "start": 7532.8, + "end": 7534.16, + "probability": 0.938 + }, + { + "start": 7534.64, + "end": 7538.44, + "probability": 0.9272 + }, + { + "start": 7539.22, + "end": 7542.63, + "probability": 0.6979 + }, + { + "start": 7543.9, + "end": 7548.62, + "probability": 0.9839 + }, + { + "start": 7549.12, + "end": 7550.48, + "probability": 0.98 + }, + { + "start": 7551.16, + "end": 7554.12, + "probability": 0.9897 + }, + { + "start": 7554.52, + "end": 7560.4, + "probability": 0.9634 + }, + { + "start": 7560.98, + "end": 7567.02, + "probability": 0.9731 + }, + { + "start": 7567.44, + "end": 7567.68, + "probability": 0.6642 + }, + { + "start": 7568.02, + "end": 7568.68, + "probability": 0.6506 + }, + { + "start": 7568.78, + "end": 7570.5, + "probability": 0.9935 + }, + { + "start": 7571.1, + "end": 7571.92, + "probability": 0.7471 + }, + { + "start": 7573.74, + "end": 7574.88, + "probability": 0.0088 + }, + { + "start": 7586.26, + "end": 7587.86, + "probability": 0.2217 + }, + { + "start": 7592.42, + "end": 7598.76, + "probability": 0.8154 + }, + { + "start": 7598.76, + "end": 7604.14, + "probability": 0.9904 + }, + { + "start": 7604.42, + "end": 7606.46, + "probability": 0.8503 + }, + { + "start": 7608.96, + "end": 7610.9, + "probability": 0.9518 + }, + { + "start": 7612.52, + "end": 7613.2, + "probability": 0.6724 + }, + { + "start": 7614.94, + "end": 7616.38, + "probability": 0.5654 + }, + { + "start": 7617.78, + "end": 7619.62, + "probability": 0.9956 + }, + { + "start": 7621.62, + "end": 7624.0, + "probability": 0.6779 + }, + { + "start": 7625.36, + "end": 7626.54, + "probability": 0.8647 + }, + { + "start": 7627.96, + "end": 7629.68, + "probability": 0.9966 + }, + { + "start": 7632.3, + "end": 7635.76, + "probability": 0.998 + }, + { + "start": 7636.34, + "end": 7638.46, + "probability": 0.731 + }, + { + "start": 7638.56, + "end": 7639.94, + "probability": 0.9857 + }, + { + "start": 7639.96, + "end": 7640.78, + "probability": 0.9163 + }, + { + "start": 7643.5, + "end": 7647.96, + "probability": 0.9914 + }, + { + "start": 7648.08, + "end": 7650.8, + "probability": 0.9691 + }, + { + "start": 7652.57, + "end": 7654.02, + "probability": 0.9819 + }, + { + "start": 7654.94, + "end": 7657.26, + "probability": 0.9033 + }, + { + "start": 7658.3, + "end": 7661.2, + "probability": 0.9832 + }, + { + "start": 7662.52, + "end": 7665.42, + "probability": 0.9886 + }, + { + "start": 7666.38, + "end": 7671.06, + "probability": 0.9985 + }, + { + "start": 7673.44, + "end": 7677.06, + "probability": 0.9811 + }, + { + "start": 7678.1, + "end": 7680.17, + "probability": 0.9805 + }, + { + "start": 7683.2, + "end": 7684.22, + "probability": 0.9773 + }, + { + "start": 7684.68, + "end": 7685.95, + "probability": 0.9877 + }, + { + "start": 7686.52, + "end": 7688.66, + "probability": 0.9126 + }, + { + "start": 7689.82, + "end": 7692.38, + "probability": 0.9828 + }, + { + "start": 7693.66, + "end": 7694.94, + "probability": 0.8381 + }, + { + "start": 7696.12, + "end": 7699.48, + "probability": 0.8403 + }, + { + "start": 7699.48, + "end": 7702.64, + "probability": 0.9923 + }, + { + "start": 7704.1, + "end": 7706.02, + "probability": 0.9768 + }, + { + "start": 7709.3, + "end": 7710.2, + "probability": 0.5054 + }, + { + "start": 7711.26, + "end": 7712.58, + "probability": 0.8887 + }, + { + "start": 7715.26, + "end": 7716.54, + "probability": 0.7998 + }, + { + "start": 7717.1, + "end": 7718.62, + "probability": 0.5642 + }, + { + "start": 7720.12, + "end": 7720.52, + "probability": 0.8833 + }, + { + "start": 7721.5, + "end": 7722.7, + "probability": 0.3218 + }, + { + "start": 7724.24, + "end": 7726.49, + "probability": 0.9891 + }, + { + "start": 7729.2, + "end": 7730.4, + "probability": 0.9807 + }, + { + "start": 7730.64, + "end": 7731.18, + "probability": 0.3193 + }, + { + "start": 7731.32, + "end": 7732.96, + "probability": 0.9766 + }, + { + "start": 7733.56, + "end": 7739.92, + "probability": 0.9932 + }, + { + "start": 7741.28, + "end": 7742.04, + "probability": 0.6809 + }, + { + "start": 7743.54, + "end": 7744.58, + "probability": 0.5527 + }, + { + "start": 7745.38, + "end": 7747.88, + "probability": 0.9877 + }, + { + "start": 7747.88, + "end": 7749.44, + "probability": 0.8324 + }, + { + "start": 7749.6, + "end": 7754.38, + "probability": 0.9927 + }, + { + "start": 7754.46, + "end": 7756.42, + "probability": 0.998 + }, + { + "start": 7757.92, + "end": 7758.86, + "probability": 0.8268 + }, + { + "start": 7760.52, + "end": 7763.86, + "probability": 0.9558 + }, + { + "start": 7764.64, + "end": 7765.74, + "probability": 0.8861 + }, + { + "start": 7766.94, + "end": 7771.08, + "probability": 0.9835 + }, + { + "start": 7772.26, + "end": 7773.57, + "probability": 0.9987 + }, + { + "start": 7774.38, + "end": 7775.52, + "probability": 0.7254 + }, + { + "start": 7776.32, + "end": 7780.16, + "probability": 0.9969 + }, + { + "start": 7780.88, + "end": 7781.72, + "probability": 0.7178 + }, + { + "start": 7781.88, + "end": 7782.54, + "probability": 0.7764 + }, + { + "start": 7782.6, + "end": 7786.16, + "probability": 0.6622 + }, + { + "start": 7786.82, + "end": 7793.1, + "probability": 0.9619 + }, + { + "start": 7793.84, + "end": 7796.42, + "probability": 0.9928 + }, + { + "start": 7796.52, + "end": 7796.96, + "probability": 0.5123 + }, + { + "start": 7797.78, + "end": 7798.92, + "probability": 0.7393 + }, + { + "start": 7798.98, + "end": 7800.94, + "probability": 0.6752 + }, + { + "start": 7806.04, + "end": 7807.38, + "probability": 0.7865 + }, + { + "start": 7816.68, + "end": 7818.32, + "probability": 0.5023 + }, + { + "start": 7820.18, + "end": 7821.28, + "probability": 0.9985 + }, + { + "start": 7824.5, + "end": 7825.7, + "probability": 0.7127 + }, + { + "start": 7827.44, + "end": 7828.68, + "probability": 0.8269 + }, + { + "start": 7831.1, + "end": 7832.56, + "probability": 0.7467 + }, + { + "start": 7834.92, + "end": 7836.76, + "probability": 0.9714 + }, + { + "start": 7837.92, + "end": 7838.58, + "probability": 0.6776 + }, + { + "start": 7841.0, + "end": 7842.12, + "probability": 0.998 + }, + { + "start": 7843.36, + "end": 7844.22, + "probability": 0.7378 + }, + { + "start": 7848.88, + "end": 7850.26, + "probability": 0.6888 + }, + { + "start": 7851.84, + "end": 7852.9, + "probability": 0.9747 + }, + { + "start": 7855.18, + "end": 7857.28, + "probability": 0.8553 + }, + { + "start": 7858.1, + "end": 7858.8, + "probability": 0.8675 + }, + { + "start": 7859.58, + "end": 7863.56, + "probability": 0.9709 + }, + { + "start": 7865.16, + "end": 7869.46, + "probability": 0.9818 + }, + { + "start": 7870.16, + "end": 7871.3, + "probability": 0.9373 + }, + { + "start": 7873.44, + "end": 7875.88, + "probability": 0.9238 + }, + { + "start": 7875.88, + "end": 7880.1, + "probability": 0.8652 + }, + { + "start": 7881.46, + "end": 7883.4, + "probability": 0.8988 + }, + { + "start": 7884.32, + "end": 7886.92, + "probability": 0.9293 + }, + { + "start": 7888.58, + "end": 7890.3, + "probability": 0.9238 + }, + { + "start": 7891.18, + "end": 7892.38, + "probability": 0.744 + }, + { + "start": 7893.5, + "end": 7894.92, + "probability": 0.9208 + }, + { + "start": 7896.24, + "end": 7898.18, + "probability": 0.6293 + }, + { + "start": 7900.8, + "end": 7902.58, + "probability": 0.917 + }, + { + "start": 7903.3, + "end": 7904.0, + "probability": 0.8608 + }, + { + "start": 7906.0, + "end": 7908.19, + "probability": 0.8839 + }, + { + "start": 7909.66, + "end": 7911.08, + "probability": 0.9927 + }, + { + "start": 7911.5, + "end": 7911.62, + "probability": 0.7198 + }, + { + "start": 7912.16, + "end": 7912.36, + "probability": 0.5262 + }, + { + "start": 7912.88, + "end": 7914.16, + "probability": 0.873 + }, + { + "start": 7914.26, + "end": 7915.05, + "probability": 0.7729 + }, + { + "start": 7916.88, + "end": 7921.02, + "probability": 0.8414 + }, + { + "start": 7922.4, + "end": 7924.34, + "probability": 0.9524 + }, + { + "start": 7925.08, + "end": 7927.44, + "probability": 0.9535 + }, + { + "start": 7928.58, + "end": 7929.54, + "probability": 0.5038 + }, + { + "start": 7930.52, + "end": 7931.82, + "probability": 0.8247 + }, + { + "start": 7932.92, + "end": 7934.48, + "probability": 0.9401 + }, + { + "start": 7935.52, + "end": 7937.32, + "probability": 0.883 + }, + { + "start": 7939.94, + "end": 7943.44, + "probability": 0.974 + }, + { + "start": 7943.48, + "end": 7944.38, + "probability": 0.792 + }, + { + "start": 7946.62, + "end": 7948.04, + "probability": 0.8635 + }, + { + "start": 7949.02, + "end": 7950.08, + "probability": 0.6586 + }, + { + "start": 7951.58, + "end": 7952.58, + "probability": 0.9777 + }, + { + "start": 7954.02, + "end": 7955.56, + "probability": 0.9937 + }, + { + "start": 7956.12, + "end": 7957.44, + "probability": 0.9766 + }, + { + "start": 7958.22, + "end": 7959.44, + "probability": 0.9834 + }, + { + "start": 7959.98, + "end": 7961.22, + "probability": 0.8964 + }, + { + "start": 7962.12, + "end": 7963.48, + "probability": 0.9938 + }, + { + "start": 7965.34, + "end": 7966.74, + "probability": 0.6542 + }, + { + "start": 7967.9, + "end": 7968.66, + "probability": 0.5996 + }, + { + "start": 7969.88, + "end": 7972.84, + "probability": 0.9169 + }, + { + "start": 7973.98, + "end": 7974.4, + "probability": 0.4592 + }, + { + "start": 7975.14, + "end": 7975.78, + "probability": 0.6738 + }, + { + "start": 7975.86, + "end": 7977.36, + "probability": 0.9779 + }, + { + "start": 7987.02, + "end": 7989.72, + "probability": 0.7128 + }, + { + "start": 7990.6, + "end": 7991.84, + "probability": 0.9348 + }, + { + "start": 7991.92, + "end": 7992.64, + "probability": 0.7256 + }, + { + "start": 7993.72, + "end": 7996.64, + "probability": 0.9568 + }, + { + "start": 7998.38, + "end": 8001.0, + "probability": 0.9517 + }, + { + "start": 8001.74, + "end": 8003.66, + "probability": 0.9933 + }, + { + "start": 8005.42, + "end": 8008.06, + "probability": 0.9949 + }, + { + "start": 8008.14, + "end": 8011.14, + "probability": 0.8359 + }, + { + "start": 8011.82, + "end": 8012.44, + "probability": 0.8772 + }, + { + "start": 8013.54, + "end": 8018.2, + "probability": 0.999 + }, + { + "start": 8018.64, + "end": 8019.48, + "probability": 0.8882 + }, + { + "start": 8020.6, + "end": 8025.4, + "probability": 0.9842 + }, + { + "start": 8027.52, + "end": 8029.16, + "probability": 0.9831 + }, + { + "start": 8029.22, + "end": 8031.44, + "probability": 0.9568 + }, + { + "start": 8032.62, + "end": 8034.45, + "probability": 0.9983 + }, + { + "start": 8035.0, + "end": 8036.82, + "probability": 0.933 + }, + { + "start": 8037.54, + "end": 8042.04, + "probability": 0.9938 + }, + { + "start": 8043.08, + "end": 8044.3, + "probability": 0.7774 + }, + { + "start": 8044.86, + "end": 8046.22, + "probability": 0.9834 + }, + { + "start": 8046.72, + "end": 8047.64, + "probability": 0.5186 + }, + { + "start": 8047.92, + "end": 8048.72, + "probability": 0.1679 + }, + { + "start": 8048.78, + "end": 8048.9, + "probability": 0.0477 + }, + { + "start": 8049.56, + "end": 8050.14, + "probability": 0.5155 + }, + { + "start": 8050.8, + "end": 8051.56, + "probability": 0.841 + }, + { + "start": 8052.8, + "end": 8053.9, + "probability": 0.8975 + }, + { + "start": 8055.7, + "end": 8059.44, + "probability": 0.9802 + }, + { + "start": 8061.0, + "end": 8065.14, + "probability": 0.9785 + }, + { + "start": 8066.1, + "end": 8067.34, + "probability": 0.9954 + }, + { + "start": 8068.72, + "end": 8069.66, + "probability": 0.5783 + }, + { + "start": 8069.72, + "end": 8070.48, + "probability": 0.9728 + }, + { + "start": 8071.68, + "end": 8073.2, + "probability": 0.9635 + }, + { + "start": 8074.8, + "end": 8081.86, + "probability": 0.9973 + }, + { + "start": 8084.0, + "end": 8084.86, + "probability": 0.7579 + }, + { + "start": 8087.2, + "end": 8092.92, + "probability": 0.9976 + }, + { + "start": 8094.52, + "end": 8097.8, + "probability": 0.9845 + }, + { + "start": 8099.63, + "end": 8104.52, + "probability": 0.8816 + }, + { + "start": 8105.68, + "end": 8107.76, + "probability": 0.9944 + }, + { + "start": 8108.5, + "end": 8109.76, + "probability": 0.6468 + }, + { + "start": 8110.0, + "end": 8111.72, + "probability": 0.9296 + }, + { + "start": 8113.88, + "end": 8117.19, + "probability": 0.9956 + }, + { + "start": 8119.3, + "end": 8122.72, + "probability": 0.9983 + }, + { + "start": 8122.83, + "end": 8127.28, + "probability": 0.9688 + }, + { + "start": 8128.06, + "end": 8129.1, + "probability": 0.9533 + }, + { + "start": 8129.4, + "end": 8130.72, + "probability": 0.9915 + }, + { + "start": 8130.84, + "end": 8132.04, + "probability": 0.9966 + }, + { + "start": 8133.38, + "end": 8136.8, + "probability": 0.8809 + }, + { + "start": 8138.06, + "end": 8142.1, + "probability": 0.9866 + }, + { + "start": 8144.18, + "end": 8145.34, + "probability": 0.999 + }, + { + "start": 8146.98, + "end": 8149.16, + "probability": 0.9873 + }, + { + "start": 8150.46, + "end": 8153.72, + "probability": 0.9972 + }, + { + "start": 8156.32, + "end": 8157.56, + "probability": 0.998 + }, + { + "start": 8160.22, + "end": 8161.1, + "probability": 0.8839 + }, + { + "start": 8162.02, + "end": 8164.62, + "probability": 0.7627 + }, + { + "start": 8164.84, + "end": 8166.26, + "probability": 0.7566 + }, + { + "start": 8168.6, + "end": 8172.92, + "probability": 0.991 + }, + { + "start": 8174.18, + "end": 8179.0, + "probability": 0.986 + }, + { + "start": 8182.38, + "end": 8183.12, + "probability": 0.975 + }, + { + "start": 8184.4, + "end": 8184.5, + "probability": 0.5972 + }, + { + "start": 8184.62, + "end": 8188.84, + "probability": 0.9967 + }, + { + "start": 8189.52, + "end": 8193.0, + "probability": 0.9219 + }, + { + "start": 8194.08, + "end": 8194.3, + "probability": 0.7524 + }, + { + "start": 8194.32, + "end": 8195.62, + "probability": 0.9209 + }, + { + "start": 8195.76, + "end": 8196.58, + "probability": 0.7996 + }, + { + "start": 8199.31, + "end": 8201.32, + "probability": 0.5529 + }, + { + "start": 8201.4, + "end": 8202.52, + "probability": 0.9065 + }, + { + "start": 8203.46, + "end": 8206.64, + "probability": 0.9758 + }, + { + "start": 8214.68, + "end": 8217.6, + "probability": 0.6973 + }, + { + "start": 8218.5, + "end": 8221.36, + "probability": 0.9234 + }, + { + "start": 8222.04, + "end": 8222.86, + "probability": 0.4932 + }, + { + "start": 8223.02, + "end": 8224.02, + "probability": 0.6803 + }, + { + "start": 8224.52, + "end": 8226.2, + "probability": 0.2209 + }, + { + "start": 8226.26, + "end": 8226.28, + "probability": 0.1609 + }, + { + "start": 8226.3, + "end": 8226.3, + "probability": 0.3252 + }, + { + "start": 8226.3, + "end": 8226.3, + "probability": 0.6909 + }, + { + "start": 8226.34, + "end": 8231.76, + "probability": 0.8276 + }, + { + "start": 8232.5, + "end": 8233.52, + "probability": 0.485 + }, + { + "start": 8233.52, + "end": 8234.7, + "probability": 0.1332 + }, + { + "start": 8235.16, + "end": 8238.62, + "probability": 0.7484 + }, + { + "start": 8238.82, + "end": 8239.7, + "probability": 0.7288 + }, + { + "start": 8240.06, + "end": 8241.0, + "probability": 0.0535 + }, + { + "start": 8241.18, + "end": 8241.24, + "probability": 0.1516 + }, + { + "start": 8241.24, + "end": 8242.51, + "probability": 0.8943 + }, + { + "start": 8242.72, + "end": 8244.6, + "probability": 0.5087 + }, + { + "start": 8244.72, + "end": 8245.84, + "probability": 0.6633 + }, + { + "start": 8245.96, + "end": 8246.54, + "probability": 0.3886 + }, + { + "start": 8247.2, + "end": 8249.02, + "probability": 0.9658 + }, + { + "start": 8249.04, + "end": 8251.12, + "probability": 0.8536 + }, + { + "start": 8251.12, + "end": 8256.02, + "probability": 0.9924 + }, + { + "start": 8256.34, + "end": 8259.9, + "probability": 0.7484 + }, + { + "start": 8259.96, + "end": 8260.58, + "probability": 0.0664 + }, + { + "start": 8260.72, + "end": 8260.72, + "probability": 0.1341 + }, + { + "start": 8260.98, + "end": 8263.2, + "probability": 0.2935 + }, + { + "start": 8263.34, + "end": 8263.8, + "probability": 0.2263 + }, + { + "start": 8263.9, + "end": 8264.18, + "probability": 0.5784 + }, + { + "start": 8265.26, + "end": 8267.4, + "probability": 0.4075 + }, + { + "start": 8267.4, + "end": 8268.29, + "probability": 0.0122 + }, + { + "start": 8271.04, + "end": 8275.14, + "probability": 0.3346 + }, + { + "start": 8275.4, + "end": 8279.56, + "probability": 0.0415 + }, + { + "start": 8281.16, + "end": 8286.0, + "probability": 0.0624 + }, + { + "start": 8286.72, + "end": 8290.26, + "probability": 0.0275 + }, + { + "start": 8290.36, + "end": 8291.96, + "probability": 0.2676 + }, + { + "start": 8291.96, + "end": 8292.8, + "probability": 0.2554 + }, + { + "start": 8293.78, + "end": 8294.66, + "probability": 0.4813 + }, + { + "start": 8294.66, + "end": 8295.44, + "probability": 0.4598 + }, + { + "start": 8296.14, + "end": 8296.56, + "probability": 0.8904 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.0, + "end": 8387.0, + "probability": 0.0 + }, + { + "start": 8387.38, + "end": 8390.86, + "probability": 0.6498 + }, + { + "start": 8391.34, + "end": 8392.3, + "probability": 0.7757 + }, + { + "start": 8393.04, + "end": 8394.88, + "probability": 0.8742 + }, + { + "start": 8395.3, + "end": 8396.8, + "probability": 0.846 + }, + { + "start": 8396.98, + "end": 8397.26, + "probability": 0.0544 + }, + { + "start": 8397.26, + "end": 8400.86, + "probability": 0.8861 + }, + { + "start": 8401.98, + "end": 8403.88, + "probability": 0.8462 + }, + { + "start": 8404.3, + "end": 8405.26, + "probability": 0.6613 + }, + { + "start": 8405.52, + "end": 8406.2, + "probability": 0.0225 + }, + { + "start": 8406.2, + "end": 8406.2, + "probability": 0.3136 + }, + { + "start": 8406.2, + "end": 8406.88, + "probability": 0.4014 + }, + { + "start": 8406.94, + "end": 8407.48, + "probability": 0.3572 + }, + { + "start": 8407.48, + "end": 8411.52, + "probability": 0.4561 + }, + { + "start": 8411.52, + "end": 8414.01, + "probability": 0.05 + }, + { + "start": 8415.26, + "end": 8417.86, + "probability": 0.0515 + }, + { + "start": 8421.52, + "end": 8421.76, + "probability": 0.4696 + }, + { + "start": 8421.76, + "end": 8422.28, + "probability": 0.4918 + }, + { + "start": 8422.48, + "end": 8423.16, + "probability": 0.0248 + }, + { + "start": 8430.48, + "end": 8430.82, + "probability": 0.0271 + }, + { + "start": 8430.82, + "end": 8430.82, + "probability": 0.1488 + }, + { + "start": 8430.82, + "end": 8432.0, + "probability": 0.2942 + }, + { + "start": 8432.54, + "end": 8433.92, + "probability": 0.7019 + }, + { + "start": 8434.64, + "end": 8436.28, + "probability": 0.9929 + }, + { + "start": 8436.9, + "end": 8440.48, + "probability": 0.9569 + }, + { + "start": 8441.24, + "end": 8443.06, + "probability": 0.8297 + }, + { + "start": 8443.92, + "end": 8450.68, + "probability": 0.9759 + }, + { + "start": 8451.96, + "end": 8453.7, + "probability": 0.9368 + }, + { + "start": 8454.16, + "end": 8455.26, + "probability": 0.9929 + }, + { + "start": 8455.8, + "end": 8458.72, + "probability": 0.95 + }, + { + "start": 8459.24, + "end": 8461.76, + "probability": 0.981 + }, + { + "start": 8462.4, + "end": 8462.91, + "probability": 0.9856 + }, + { + "start": 8463.96, + "end": 8470.32, + "probability": 0.9871 + }, + { + "start": 8471.0, + "end": 8472.06, + "probability": 0.943 + }, + { + "start": 8472.88, + "end": 8476.4, + "probability": 0.9927 + }, + { + "start": 8476.4, + "end": 8479.54, + "probability": 0.8197 + }, + { + "start": 8480.12, + "end": 8484.02, + "probability": 0.9894 + }, + { + "start": 8485.08, + "end": 8488.56, + "probability": 0.9925 + }, + { + "start": 8488.56, + "end": 8492.6, + "probability": 0.9985 + }, + { + "start": 8493.06, + "end": 8496.84, + "probability": 0.9878 + }, + { + "start": 8497.26, + "end": 8499.6, + "probability": 0.9889 + }, + { + "start": 8499.6, + "end": 8502.94, + "probability": 0.9886 + }, + { + "start": 8503.72, + "end": 8508.26, + "probability": 0.9592 + }, + { + "start": 8508.86, + "end": 8512.16, + "probability": 0.9756 + }, + { + "start": 8512.16, + "end": 8515.62, + "probability": 0.9973 + }, + { + "start": 8516.64, + "end": 8520.08, + "probability": 0.9932 + }, + { + "start": 8520.08, + "end": 8523.52, + "probability": 0.9983 + }, + { + "start": 8524.1, + "end": 8525.66, + "probability": 0.8805 + }, + { + "start": 8526.2, + "end": 8531.36, + "probability": 0.9772 + }, + { + "start": 8531.78, + "end": 8535.8, + "probability": 0.9953 + }, + { + "start": 8536.64, + "end": 8537.1, + "probability": 0.2327 + }, + { + "start": 8537.56, + "end": 8541.28, + "probability": 0.9909 + }, + { + "start": 8542.38, + "end": 8545.28, + "probability": 0.9836 + }, + { + "start": 8545.98, + "end": 8550.72, + "probability": 0.9144 + }, + { + "start": 8551.44, + "end": 8554.68, + "probability": 0.984 + }, + { + "start": 8555.5, + "end": 8558.78, + "probability": 0.9373 + }, + { + "start": 8558.78, + "end": 8563.8, + "probability": 0.8032 + }, + { + "start": 8564.12, + "end": 8565.06, + "probability": 0.9832 + }, + { + "start": 8565.48, + "end": 8566.44, + "probability": 0.8303 + }, + { + "start": 8566.68, + "end": 8567.96, + "probability": 0.9889 + }, + { + "start": 8568.24, + "end": 8569.18, + "probability": 0.9641 + }, + { + "start": 8569.48, + "end": 8570.5, + "probability": 0.9829 + }, + { + "start": 8570.88, + "end": 8571.86, + "probability": 0.7821 + }, + { + "start": 8572.18, + "end": 8573.32, + "probability": 0.9798 + }, + { + "start": 8573.66, + "end": 8574.42, + "probability": 0.9328 + }, + { + "start": 8574.74, + "end": 8576.02, + "probability": 0.9822 + }, + { + "start": 8576.4, + "end": 8577.52, + "probability": 0.6988 + }, + { + "start": 8578.54, + "end": 8581.94, + "probability": 0.9946 + }, + { + "start": 8581.98, + "end": 8585.5, + "probability": 0.9865 + }, + { + "start": 8585.92, + "end": 8587.0, + "probability": 0.7335 + }, + { + "start": 8587.86, + "end": 8590.52, + "probability": 0.9771 + }, + { + "start": 8591.78, + "end": 8592.16, + "probability": 0.3522 + }, + { + "start": 8592.28, + "end": 8593.24, + "probability": 0.91 + }, + { + "start": 8593.42, + "end": 8593.98, + "probability": 0.6588 + }, + { + "start": 8594.28, + "end": 8599.4, + "probability": 0.9927 + }, + { + "start": 8599.86, + "end": 8601.42, + "probability": 0.6131 + }, + { + "start": 8601.76, + "end": 8606.66, + "probability": 0.959 + }, + { + "start": 8606.9, + "end": 8610.4, + "probability": 0.9926 + }, + { + "start": 8611.0, + "end": 8614.36, + "probability": 0.9966 + }, + { + "start": 8615.1, + "end": 8618.9, + "probability": 0.996 + }, + { + "start": 8619.18, + "end": 8622.14, + "probability": 0.9953 + }, + { + "start": 8623.18, + "end": 8623.98, + "probability": 0.7443 + }, + { + "start": 8625.1, + "end": 8626.92, + "probability": 0.8838 + }, + { + "start": 8631.86, + "end": 8632.78, + "probability": 0.6027 + }, + { + "start": 8633.76, + "end": 8635.66, + "probability": 0.8856 + }, + { + "start": 8650.7, + "end": 8654.3, + "probability": 0.9429 + }, + { + "start": 8655.04, + "end": 8656.08, + "probability": 0.9944 + }, + { + "start": 8658.16, + "end": 8661.72, + "probability": 0.9946 + }, + { + "start": 8663.98, + "end": 8665.12, + "probability": 0.7414 + }, + { + "start": 8665.8, + "end": 8667.86, + "probability": 0.9973 + }, + { + "start": 8669.18, + "end": 8672.48, + "probability": 0.7482 + }, + { + "start": 8673.16, + "end": 8676.0, + "probability": 0.9976 + }, + { + "start": 8677.94, + "end": 8681.48, + "probability": 0.9763 + }, + { + "start": 8682.5, + "end": 8683.6, + "probability": 0.9012 + }, + { + "start": 8684.9, + "end": 8687.92, + "probability": 0.9054 + }, + { + "start": 8687.92, + "end": 8691.0, + "probability": 0.9993 + }, + { + "start": 8691.9, + "end": 8696.04, + "probability": 0.9724 + }, + { + "start": 8696.74, + "end": 8698.86, + "probability": 0.9853 + }, + { + "start": 8699.76, + "end": 8703.42, + "probability": 0.8542 + }, + { + "start": 8704.36, + "end": 8709.3, + "probability": 0.9788 + }, + { + "start": 8709.48, + "end": 8714.42, + "probability": 0.9343 + }, + { + "start": 8715.16, + "end": 8717.38, + "probability": 0.8087 + }, + { + "start": 8717.6, + "end": 8721.42, + "probability": 0.8498 + }, + { + "start": 8721.56, + "end": 8722.86, + "probability": 0.3621 + }, + { + "start": 8722.94, + "end": 8726.06, + "probability": 0.968 + }, + { + "start": 8726.9, + "end": 8732.68, + "probability": 0.9299 + }, + { + "start": 8734.44, + "end": 8736.02, + "probability": 0.9687 + }, + { + "start": 8736.36, + "end": 8739.46, + "probability": 0.9946 + }, + { + "start": 8739.58, + "end": 8744.76, + "probability": 0.7122 + }, + { + "start": 8745.04, + "end": 8749.03, + "probability": 0.9844 + }, + { + "start": 8749.82, + "end": 8752.26, + "probability": 0.9531 + }, + { + "start": 8752.34, + "end": 8755.16, + "probability": 0.9917 + }, + { + "start": 8755.3, + "end": 8756.06, + "probability": 0.8828 + }, + { + "start": 8756.62, + "end": 8759.6, + "probability": 0.9834 + }, + { + "start": 8760.36, + "end": 8765.66, + "probability": 0.9329 + }, + { + "start": 8767.5, + "end": 8770.7, + "probability": 0.9106 + }, + { + "start": 8770.88, + "end": 8773.56, + "probability": 0.9799 + }, + { + "start": 8774.52, + "end": 8778.06, + "probability": 0.9614 + }, + { + "start": 8778.32, + "end": 8780.16, + "probability": 0.8198 + }, + { + "start": 8781.56, + "end": 8784.86, + "probability": 0.9781 + }, + { + "start": 8786.24, + "end": 8790.62, + "probability": 0.9252 + }, + { + "start": 8791.46, + "end": 8794.98, + "probability": 0.9327 + }, + { + "start": 8795.66, + "end": 8798.88, + "probability": 0.9761 + }, + { + "start": 8799.86, + "end": 8801.82, + "probability": 0.9935 + }, + { + "start": 8801.88, + "end": 8806.1, + "probability": 0.8862 + }, + { + "start": 8807.46, + "end": 8813.84, + "probability": 0.9917 + }, + { + "start": 8814.84, + "end": 8819.18, + "probability": 0.8597 + }, + { + "start": 8820.4, + "end": 8823.38, + "probability": 0.9924 + }, + { + "start": 8824.64, + "end": 8829.12, + "probability": 0.8508 + }, + { + "start": 8829.92, + "end": 8833.14, + "probability": 0.983 + }, + { + "start": 8834.32, + "end": 8835.7, + "probability": 0.8651 + }, + { + "start": 8836.64, + "end": 8838.34, + "probability": 0.9655 + }, + { + "start": 8840.18, + "end": 8841.16, + "probability": 0.6268 + }, + { + "start": 8841.58, + "end": 8846.38, + "probability": 0.7685 + }, + { + "start": 8855.08, + "end": 8856.52, + "probability": 0.597 + }, + { + "start": 8856.8, + "end": 8858.38, + "probability": 0.6665 + }, + { + "start": 8858.56, + "end": 8865.52, + "probability": 0.9511 + }, + { + "start": 8866.68, + "end": 8872.74, + "probability": 0.9902 + }, + { + "start": 8873.82, + "end": 8874.3, + "probability": 0.4998 + }, + { + "start": 8874.46, + "end": 8878.38, + "probability": 0.9951 + }, + { + "start": 8878.68, + "end": 8880.76, + "probability": 0.8982 + }, + { + "start": 8880.8, + "end": 8880.8, + "probability": 0.4041 + }, + { + "start": 8880.8, + "end": 8882.18, + "probability": 0.7853 + }, + { + "start": 8882.4, + "end": 8884.56, + "probability": 0.8159 + }, + { + "start": 8885.02, + "end": 8885.22, + "probability": 0.7314 + }, + { + "start": 8885.36, + "end": 8886.98, + "probability": 0.9491 + }, + { + "start": 8887.08, + "end": 8887.9, + "probability": 0.9829 + }, + { + "start": 8888.8, + "end": 8889.74, + "probability": 0.8326 + }, + { + "start": 8890.56, + "end": 8890.94, + "probability": 0.8628 + }, + { + "start": 8891.1, + "end": 8892.7, + "probability": 0.962 + }, + { + "start": 8893.06, + "end": 8894.66, + "probability": 0.9573 + }, + { + "start": 8894.7, + "end": 8896.76, + "probability": 0.898 + }, + { + "start": 8897.08, + "end": 8898.92, + "probability": 0.9579 + }, + { + "start": 8899.68, + "end": 8906.66, + "probability": 0.9224 + }, + { + "start": 8907.64, + "end": 8911.32, + "probability": 0.7755 + }, + { + "start": 8912.18, + "end": 8914.18, + "probability": 0.9939 + }, + { + "start": 8915.04, + "end": 8919.64, + "probability": 0.9529 + }, + { + "start": 8919.78, + "end": 8920.64, + "probability": 0.7693 + }, + { + "start": 8920.98, + "end": 8922.18, + "probability": 0.753 + }, + { + "start": 8922.24, + "end": 8924.8, + "probability": 0.8994 + }, + { + "start": 8926.0, + "end": 8929.38, + "probability": 0.973 + }, + { + "start": 8929.38, + "end": 8933.14, + "probability": 0.9945 + }, + { + "start": 8934.18, + "end": 8934.18, + "probability": 0.0036 + }, + { + "start": 8934.7, + "end": 8939.4, + "probability": 0.998 + }, + { + "start": 8939.66, + "end": 8939.96, + "probability": 0.5112 + }, + { + "start": 8940.12, + "end": 8945.09, + "probability": 0.9785 + }, + { + "start": 8945.76, + "end": 8946.22, + "probability": 0.254 + }, + { + "start": 8946.3, + "end": 8947.08, + "probability": 0.8689 + }, + { + "start": 8947.1, + "end": 8947.58, + "probability": 0.8102 + }, + { + "start": 8948.02, + "end": 8950.36, + "probability": 0.9979 + }, + { + "start": 8951.1, + "end": 8953.13, + "probability": 0.98 + }, + { + "start": 8953.82, + "end": 8954.5, + "probability": 0.8451 + }, + { + "start": 8954.64, + "end": 8955.04, + "probability": 0.8334 + }, + { + "start": 8955.14, + "end": 8960.3, + "probability": 0.9614 + }, + { + "start": 8961.68, + "end": 8964.52, + "probability": 0.9146 + }, + { + "start": 8965.48, + "end": 8970.56, + "probability": 0.9258 + }, + { + "start": 8970.82, + "end": 8971.72, + "probability": 0.736 + }, + { + "start": 8972.0, + "end": 8973.6, + "probability": 0.9674 + }, + { + "start": 8973.64, + "end": 8975.98, + "probability": 0.9839 + }, + { + "start": 8976.4, + "end": 8977.2, + "probability": 0.7838 + }, + { + "start": 8977.2, + "end": 8981.24, + "probability": 0.7329 + }, + { + "start": 8981.74, + "end": 8985.36, + "probability": 0.8965 + }, + { + "start": 8985.92, + "end": 8991.8, + "probability": 0.9604 + }, + { + "start": 8991.92, + "end": 8993.7, + "probability": 0.9925 + }, + { + "start": 8994.34, + "end": 8996.42, + "probability": 0.9966 + }, + { + "start": 8997.08, + "end": 8999.24, + "probability": 0.5449 + }, + { + "start": 8999.32, + "end": 9000.3, + "probability": 0.9818 + }, + { + "start": 9000.44, + "end": 9003.88, + "probability": 0.9843 + }, + { + "start": 9004.18, + "end": 9008.06, + "probability": 0.8992 + }, + { + "start": 9008.86, + "end": 9011.64, + "probability": 0.9901 + }, + { + "start": 9012.2, + "end": 9015.94, + "probability": 0.9926 + }, + { + "start": 9016.24, + "end": 9019.02, + "probability": 0.9813 + }, + { + "start": 9019.02, + "end": 9022.2, + "probability": 0.999 + }, + { + "start": 9022.56, + "end": 9024.34, + "probability": 0.9944 + }, + { + "start": 9024.9, + "end": 9026.9, + "probability": 0.8721 + }, + { + "start": 9027.22, + "end": 9027.7, + "probability": 0.9749 + }, + { + "start": 9027.84, + "end": 9029.73, + "probability": 0.8962 + }, + { + "start": 9030.32, + "end": 9032.88, + "probability": 0.4016 + }, + { + "start": 9033.14, + "end": 9036.38, + "probability": 0.9779 + }, + { + "start": 9036.7, + "end": 9037.84, + "probability": 0.9384 + }, + { + "start": 9038.44, + "end": 9042.42, + "probability": 0.8771 + }, + { + "start": 9042.44, + "end": 9042.78, + "probability": 0.7204 + }, + { + "start": 9042.86, + "end": 9049.3, + "probability": 0.9447 + }, + { + "start": 9049.52, + "end": 9049.8, + "probability": 0.7078 + }, + { + "start": 9050.26, + "end": 9050.88, + "probability": 0.6891 + }, + { + "start": 9051.0, + "end": 9054.26, + "probability": 0.9367 + }, + { + "start": 9055.22, + "end": 9056.62, + "probability": 0.8806 + }, + { + "start": 9067.84, + "end": 9069.58, + "probability": 0.6243 + }, + { + "start": 9070.02, + "end": 9072.06, + "probability": 0.7875 + }, + { + "start": 9072.44, + "end": 9074.02, + "probability": 0.8323 + }, + { + "start": 9074.02, + "end": 9074.3, + "probability": 0.4405 + }, + { + "start": 9074.4, + "end": 9074.77, + "probability": 0.7339 + }, + { + "start": 9075.48, + "end": 9077.94, + "probability": 0.9683 + }, + { + "start": 9078.02, + "end": 9078.38, + "probability": 0.9104 + }, + { + "start": 9078.96, + "end": 9079.72, + "probability": 0.8951 + }, + { + "start": 9080.02, + "end": 9081.82, + "probability": 0.6693 + }, + { + "start": 9081.98, + "end": 9082.05, + "probability": 0.2676 + }, + { + "start": 9082.86, + "end": 9089.66, + "probability": 0.9933 + }, + { + "start": 9091.28, + "end": 9093.08, + "probability": 0.998 + }, + { + "start": 9093.4, + "end": 9094.58, + "probability": 0.9491 + }, + { + "start": 9095.16, + "end": 9098.88, + "probability": 0.9945 + }, + { + "start": 9099.76, + "end": 9103.84, + "probability": 0.6644 + }, + { + "start": 9104.08, + "end": 9105.4, + "probability": 0.7663 + }, + { + "start": 9105.96, + "end": 9113.36, + "probability": 0.8022 + }, + { + "start": 9113.7, + "end": 9120.36, + "probability": 0.9141 + }, + { + "start": 9120.96, + "end": 9122.48, + "probability": 0.8297 + }, + { + "start": 9123.76, + "end": 9125.44, + "probability": 0.9946 + }, + { + "start": 9126.18, + "end": 9126.46, + "probability": 0.3112 + }, + { + "start": 9127.32, + "end": 9127.88, + "probability": 0.9504 + }, + { + "start": 9128.82, + "end": 9131.55, + "probability": 0.9716 + }, + { + "start": 9133.2, + "end": 9136.32, + "probability": 0.6333 + }, + { + "start": 9136.64, + "end": 9140.37, + "probability": 0.9731 + }, + { + "start": 9140.78, + "end": 9144.66, + "probability": 0.9197 + }, + { + "start": 9145.24, + "end": 9147.68, + "probability": 0.607 + }, + { + "start": 9147.92, + "end": 9149.32, + "probability": 0.3494 + }, + { + "start": 9149.96, + "end": 9155.16, + "probability": 0.7815 + }, + { + "start": 9155.16, + "end": 9160.46, + "probability": 0.6631 + }, + { + "start": 9160.74, + "end": 9163.18, + "probability": 0.88 + }, + { + "start": 9163.54, + "end": 9166.18, + "probability": 0.7643 + }, + { + "start": 9166.2, + "end": 9171.82, + "probability": 0.6635 + }, + { + "start": 9171.82, + "end": 9176.98, + "probability": 0.9805 + }, + { + "start": 9177.6, + "end": 9180.18, + "probability": 0.7989 + }, + { + "start": 9180.58, + "end": 9185.12, + "probability": 0.6648 + }, + { + "start": 9185.12, + "end": 9192.12, + "probability": 0.7477 + }, + { + "start": 9192.12, + "end": 9196.4, + "probability": 0.986 + }, + { + "start": 9196.76, + "end": 9198.68, + "probability": 0.9893 + }, + { + "start": 9199.66, + "end": 9201.96, + "probability": 0.7768 + }, + { + "start": 9201.98, + "end": 9202.05, + "probability": 0.9531 + }, + { + "start": 9204.38, + "end": 9206.6, + "probability": 0.7755 + }, + { + "start": 9206.84, + "end": 9207.04, + "probability": 0.0246 + }, + { + "start": 9208.72, + "end": 9208.86, + "probability": 0.0001 + }, + { + "start": 9208.86, + "end": 9209.0, + "probability": 0.019 + }, + { + "start": 9209.0, + "end": 9209.0, + "probability": 0.0386 + }, + { + "start": 9209.0, + "end": 9210.16, + "probability": 0.1317 + }, + { + "start": 9210.16, + "end": 9212.78, + "probability": 0.6527 + }, + { + "start": 9213.48, + "end": 9216.84, + "probability": 0.9933 + }, + { + "start": 9217.86, + "end": 9220.0, + "probability": 0.9971 + }, + { + "start": 9220.4, + "end": 9221.26, + "probability": 0.9154 + }, + { + "start": 9221.82, + "end": 9223.66, + "probability": 0.9866 + }, + { + "start": 9223.66, + "end": 9223.88, + "probability": 0.1231 + }, + { + "start": 9224.32, + "end": 9225.44, + "probability": 0.7392 + }, + { + "start": 9225.52, + "end": 9227.5, + "probability": 0.8035 + }, + { + "start": 9228.44, + "end": 9229.72, + "probability": 0.958 + }, + { + "start": 9230.18, + "end": 9231.4, + "probability": 0.4711 + }, + { + "start": 9231.46, + "end": 9235.08, + "probability": 0.9961 + }, + { + "start": 9236.3, + "end": 9236.86, + "probability": 0.405 + }, + { + "start": 9237.06, + "end": 9237.72, + "probability": 0.7175 + }, + { + "start": 9238.24, + "end": 9241.74, + "probability": 0.986 + }, + { + "start": 9242.12, + "end": 9244.5, + "probability": 0.9972 + }, + { + "start": 9244.98, + "end": 9247.2, + "probability": 0.9977 + }, + { + "start": 9247.74, + "end": 9249.6, + "probability": 0.9953 + }, + { + "start": 9250.1, + "end": 9251.3, + "probability": 0.3841 + }, + { + "start": 9252.1, + "end": 9255.92, + "probability": 0.979 + }, + { + "start": 9256.42, + "end": 9258.18, + "probability": 0.7883 + }, + { + "start": 9258.74, + "end": 9262.88, + "probability": 0.9911 + }, + { + "start": 9263.16, + "end": 9264.22, + "probability": 0.6945 + }, + { + "start": 9264.28, + "end": 9265.33, + "probability": 0.9877 + }, + { + "start": 9265.72, + "end": 9267.88, + "probability": 0.9258 + }, + { + "start": 9268.14, + "end": 9270.32, + "probability": 0.9856 + }, + { + "start": 9270.68, + "end": 9273.78, + "probability": 0.9827 + }, + { + "start": 9273.92, + "end": 9275.42, + "probability": 0.9632 + }, + { + "start": 9275.44, + "end": 9276.62, + "probability": 0.9026 + }, + { + "start": 9276.66, + "end": 9280.22, + "probability": 0.9281 + }, + { + "start": 9280.44, + "end": 9281.84, + "probability": 0.5053 + }, + { + "start": 9282.1, + "end": 9284.16, + "probability": 0.9958 + }, + { + "start": 9284.58, + "end": 9286.7, + "probability": 0.908 + }, + { + "start": 9286.78, + "end": 9287.16, + "probability": 0.3472 + }, + { + "start": 9287.28, + "end": 9289.06, + "probability": 0.8359 + }, + { + "start": 9289.14, + "end": 9291.98, + "probability": 0.8402 + }, + { + "start": 9292.8, + "end": 9297.18, + "probability": 0.951 + }, + { + "start": 9297.44, + "end": 9298.18, + "probability": 0.7254 + }, + { + "start": 9299.16, + "end": 9300.62, + "probability": 0.8899 + }, + { + "start": 9310.66, + "end": 9313.16, + "probability": 0.5902 + }, + { + "start": 9314.0, + "end": 9317.14, + "probability": 0.8424 + }, + { + "start": 9317.14, + "end": 9322.7, + "probability": 0.8613 + }, + { + "start": 9323.32, + "end": 9325.18, + "probability": 0.856 + }, + { + "start": 9325.88, + "end": 9327.51, + "probability": 0.9668 + }, + { + "start": 9327.74, + "end": 9331.32, + "probability": 0.7271 + }, + { + "start": 9332.9, + "end": 9334.06, + "probability": 0.8244 + }, + { + "start": 9334.3, + "end": 9337.76, + "probability": 0.871 + }, + { + "start": 9337.76, + "end": 9342.32, + "probability": 0.9935 + }, + { + "start": 9343.36, + "end": 9347.98, + "probability": 0.7287 + }, + { + "start": 9349.04, + "end": 9350.26, + "probability": 0.9106 + }, + { + "start": 9351.54, + "end": 9353.08, + "probability": 0.8871 + }, + { + "start": 9353.24, + "end": 9355.58, + "probability": 0.9976 + }, + { + "start": 9356.06, + "end": 9361.52, + "probability": 0.9877 + }, + { + "start": 9362.3, + "end": 9365.28, + "probability": 0.955 + }, + { + "start": 9366.62, + "end": 9371.84, + "probability": 0.8234 + }, + { + "start": 9372.72, + "end": 9374.7, + "probability": 0.9475 + }, + { + "start": 9375.76, + "end": 9382.84, + "probability": 0.9855 + }, + { + "start": 9383.66, + "end": 9385.22, + "probability": 0.9969 + }, + { + "start": 9386.28, + "end": 9388.38, + "probability": 0.9103 + }, + { + "start": 9388.42, + "end": 9393.04, + "probability": 0.9281 + }, + { + "start": 9393.3, + "end": 9394.96, + "probability": 0.5759 + }, + { + "start": 9395.1, + "end": 9396.04, + "probability": 0.9631 + }, + { + "start": 9396.7, + "end": 9400.98, + "probability": 0.9309 + }, + { + "start": 9401.24, + "end": 9401.68, + "probability": 0.3457 + }, + { + "start": 9401.78, + "end": 9406.92, + "probability": 0.9569 + }, + { + "start": 9408.0, + "end": 9413.32, + "probability": 0.9741 + }, + { + "start": 9413.56, + "end": 9414.86, + "probability": 0.5222 + }, + { + "start": 9415.2, + "end": 9416.02, + "probability": 0.715 + }, + { + "start": 9416.3, + "end": 9420.08, + "probability": 0.8154 + }, + { + "start": 9420.86, + "end": 9425.06, + "probability": 0.9072 + }, + { + "start": 9426.08, + "end": 9427.23, + "probability": 0.9912 + }, + { + "start": 9428.0, + "end": 9431.25, + "probability": 0.9788 + }, + { + "start": 9431.7, + "end": 9434.42, + "probability": 0.9092 + }, + { + "start": 9435.2, + "end": 9440.1, + "probability": 0.9925 + }, + { + "start": 9441.46, + "end": 9443.5, + "probability": 0.9047 + }, + { + "start": 9444.6, + "end": 9449.48, + "probability": 0.9658 + }, + { + "start": 9451.2, + "end": 9456.56, + "probability": 0.892 + }, + { + "start": 9456.92, + "end": 9461.68, + "probability": 0.9178 + }, + { + "start": 9462.72, + "end": 9465.11, + "probability": 0.5418 + }, + { + "start": 9465.88, + "end": 9469.64, + "probability": 0.9491 + }, + { + "start": 9470.66, + "end": 9473.76, + "probability": 0.94 + }, + { + "start": 9473.76, + "end": 9477.88, + "probability": 0.99 + }, + { + "start": 9478.54, + "end": 9479.45, + "probability": 0.7669 + }, + { + "start": 9479.56, + "end": 9480.76, + "probability": 0.5972 + }, + { + "start": 9481.08, + "end": 9485.26, + "probability": 0.9502 + }, + { + "start": 9485.92, + "end": 9487.2, + "probability": 0.6837 + }, + { + "start": 9487.38, + "end": 9490.64, + "probability": 0.9936 + }, + { + "start": 9490.64, + "end": 9494.56, + "probability": 0.979 + }, + { + "start": 9494.78, + "end": 9495.56, + "probability": 0.8892 + }, + { + "start": 9496.06, + "end": 9500.32, + "probability": 0.9823 + }, + { + "start": 9500.32, + "end": 9505.84, + "probability": 0.9907 + }, + { + "start": 9506.12, + "end": 9508.24, + "probability": 0.2833 + }, + { + "start": 9508.32, + "end": 9508.92, + "probability": 0.6296 + }, + { + "start": 9508.96, + "end": 9511.26, + "probability": 0.9397 + }, + { + "start": 9522.03, + "end": 9526.44, + "probability": 0.7534 + }, + { + "start": 9528.3, + "end": 9531.58, + "probability": 0.9714 + }, + { + "start": 9531.84, + "end": 9533.46, + "probability": 0.9895 + }, + { + "start": 9533.72, + "end": 9534.66, + "probability": 0.5705 + }, + { + "start": 9535.36, + "end": 9537.28, + "probability": 0.7865 + }, + { + "start": 9537.9, + "end": 9539.44, + "probability": 0.9141 + }, + { + "start": 9541.8, + "end": 9543.34, + "probability": 0.2769 + }, + { + "start": 9546.26, + "end": 9548.52, + "probability": 0.59 + }, + { + "start": 9548.68, + "end": 9549.98, + "probability": 0.8521 + }, + { + "start": 9550.1, + "end": 9550.56, + "probability": 0.2577 + }, + { + "start": 9550.84, + "end": 9551.05, + "probability": 0.3023 + }, + { + "start": 9551.5, + "end": 9552.74, + "probability": 0.6685 + }, + { + "start": 9553.7, + "end": 9554.04, + "probability": 0.7961 + }, + { + "start": 9554.78, + "end": 9555.54, + "probability": 0.0576 + }, + { + "start": 9557.52, + "end": 9559.54, + "probability": 0.8117 + }, + { + "start": 9562.56, + "end": 9562.56, + "probability": 0.0027 + }, + { + "start": 9562.7, + "end": 9563.0, + "probability": 0.1035 + }, + { + "start": 9563.58, + "end": 9563.62, + "probability": 0.326 + }, + { + "start": 9563.62, + "end": 9565.8, + "probability": 0.6456 + }, + { + "start": 9565.94, + "end": 9568.26, + "probability": 0.9483 + }, + { + "start": 9568.32, + "end": 9570.38, + "probability": 0.7892 + }, + { + "start": 9570.38, + "end": 9571.34, + "probability": 0.0786 + }, + { + "start": 9571.94, + "end": 9573.2, + "probability": 0.149 + }, + { + "start": 9573.56, + "end": 9574.22, + "probability": 0.6781 + }, + { + "start": 9574.42, + "end": 9578.0, + "probability": 0.8661 + }, + { + "start": 9578.0, + "end": 9579.1, + "probability": 0.6938 + }, + { + "start": 9579.24, + "end": 9580.22, + "probability": 0.9199 + }, + { + "start": 9580.8, + "end": 9583.46, + "probability": 0.9133 + }, + { + "start": 9583.68, + "end": 9584.26, + "probability": 0.5499 + }, + { + "start": 9584.3, + "end": 9584.66, + "probability": 0.6534 + }, + { + "start": 9584.74, + "end": 9587.16, + "probability": 0.8811 + }, + { + "start": 9587.78, + "end": 9589.4, + "probability": 0.9922 + }, + { + "start": 9590.66, + "end": 9593.5, + "probability": 0.5884 + }, + { + "start": 9593.68, + "end": 9595.58, + "probability": 0.8579 + }, + { + "start": 9595.7, + "end": 9598.86, + "probability": 0.6556 + }, + { + "start": 9599.16, + "end": 9600.02, + "probability": 0.8227 + }, + { + "start": 9600.04, + "end": 9603.31, + "probability": 0.8765 + }, + { + "start": 9603.7, + "end": 9604.46, + "probability": 0.245 + }, + { + "start": 9604.46, + "end": 9607.77, + "probability": 0.6926 + }, + { + "start": 9608.1, + "end": 9609.87, + "probability": 0.9932 + }, + { + "start": 9610.6, + "end": 9612.64, + "probability": 0.7097 + }, + { + "start": 9613.78, + "end": 9617.28, + "probability": 0.8665 + }, + { + "start": 9617.28, + "end": 9620.92, + "probability": 0.5835 + }, + { + "start": 9621.44, + "end": 9623.46, + "probability": 0.9356 + }, + { + "start": 9623.72, + "end": 9627.7, + "probability": 0.9561 + }, + { + "start": 9627.82, + "end": 9629.88, + "probability": 0.728 + }, + { + "start": 9630.04, + "end": 9630.74, + "probability": 0.3697 + }, + { + "start": 9630.94, + "end": 9631.42, + "probability": 0.1574 + }, + { + "start": 9631.62, + "end": 9632.98, + "probability": 0.8957 + }, + { + "start": 9633.88, + "end": 9635.24, + "probability": 0.9749 + }, + { + "start": 9635.34, + "end": 9637.44, + "probability": 0.9224 + }, + { + "start": 9637.8, + "end": 9639.36, + "probability": 0.9014 + }, + { + "start": 9639.42, + "end": 9642.2, + "probability": 0.9891 + }, + { + "start": 9642.36, + "end": 9646.64, + "probability": 0.9234 + }, + { + "start": 9646.72, + "end": 9647.28, + "probability": 0.8608 + }, + { + "start": 9647.42, + "end": 9647.6, + "probability": 0.2877 + }, + { + "start": 9647.7, + "end": 9649.04, + "probability": 0.8948 + }, + { + "start": 9649.04, + "end": 9649.22, + "probability": 0.0195 + }, + { + "start": 9649.26, + "end": 9651.02, + "probability": 0.211 + }, + { + "start": 9651.44, + "end": 9652.96, + "probability": 0.349 + }, + { + "start": 9653.27, + "end": 9654.12, + "probability": 0.281 + }, + { + "start": 9654.22, + "end": 9656.03, + "probability": 0.1125 + }, + { + "start": 9657.14, + "end": 9658.64, + "probability": 0.5534 + }, + { + "start": 9659.16, + "end": 9660.82, + "probability": 0.4946 + }, + { + "start": 9660.94, + "end": 9666.42, + "probability": 0.8178 + }, + { + "start": 9666.92, + "end": 9669.44, + "probability": 0.8075 + }, + { + "start": 9669.84, + "end": 9670.62, + "probability": 0.8363 + }, + { + "start": 9670.98, + "end": 9673.08, + "probability": 0.7277 + }, + { + "start": 9673.18, + "end": 9674.14, + "probability": 0.603 + }, + { + "start": 9674.78, + "end": 9675.0, + "probability": 0.055 + }, + { + "start": 9675.0, + "end": 9675.0, + "probability": 0.0987 + }, + { + "start": 9675.0, + "end": 9676.04, + "probability": 0.2853 + }, + { + "start": 9676.58, + "end": 9677.34, + "probability": 0.7957 + }, + { + "start": 9677.54, + "end": 9682.67, + "probability": 0.9498 + }, + { + "start": 9683.14, + "end": 9683.84, + "probability": 0.6889 + }, + { + "start": 9684.48, + "end": 9685.14, + "probability": 0.1758 + }, + { + "start": 9685.16, + "end": 9685.56, + "probability": 0.1907 + }, + { + "start": 9685.56, + "end": 9685.9, + "probability": 0.1434 + }, + { + "start": 9686.5, + "end": 9688.08, + "probability": 0.1922 + }, + { + "start": 9688.2, + "end": 9688.92, + "probability": 0.0578 + }, + { + "start": 9688.92, + "end": 9688.92, + "probability": 0.0352 + }, + { + "start": 9688.92, + "end": 9688.92, + "probability": 0.0169 + }, + { + "start": 9688.92, + "end": 9692.68, + "probability": 0.4522 + }, + { + "start": 9692.68, + "end": 9697.56, + "probability": 0.9725 + }, + { + "start": 9697.74, + "end": 9701.2, + "probability": 0.9856 + }, + { + "start": 9701.52, + "end": 9704.56, + "probability": 0.8201 + }, + { + "start": 9704.78, + "end": 9706.22, + "probability": 0.757 + }, + { + "start": 9706.42, + "end": 9706.42, + "probability": 0.0116 + }, + { + "start": 9706.94, + "end": 9707.12, + "probability": 0.4114 + }, + { + "start": 9707.12, + "end": 9708.54, + "probability": 0.8151 + }, + { + "start": 9708.7, + "end": 9713.62, + "probability": 0.9668 + }, + { + "start": 9713.96, + "end": 9716.9, + "probability": 0.9521 + }, + { + "start": 9717.7, + "end": 9722.58, + "probability": 0.718 + }, + { + "start": 9723.04, + "end": 9725.34, + "probability": 0.8525 + }, + { + "start": 9725.74, + "end": 9727.08, + "probability": 0.1355 + }, + { + "start": 9727.64, + "end": 9729.14, + "probability": 0.6302 + }, + { + "start": 9729.28, + "end": 9730.9, + "probability": 0.7589 + }, + { + "start": 9732.34, + "end": 9734.16, + "probability": 0.8545 + }, + { + "start": 9734.62, + "end": 9735.83, + "probability": 0.9529 + }, + { + "start": 9736.76, + "end": 9737.94, + "probability": 0.8918 + }, + { + "start": 9738.34, + "end": 9740.2, + "probability": 0.9341 + }, + { + "start": 9740.74, + "end": 9743.68, + "probability": 0.717 + }, + { + "start": 9744.5, + "end": 9745.29, + "probability": 0.2908 + }, + { + "start": 9745.48, + "end": 9745.8, + "probability": 0.3995 + }, + { + "start": 9745.86, + "end": 9747.06, + "probability": 0.5526 + }, + { + "start": 9747.7, + "end": 9749.72, + "probability": 0.4476 + }, + { + "start": 9749.72, + "end": 9749.74, + "probability": 0.2023 + }, + { + "start": 9749.74, + "end": 9754.74, + "probability": 0.9878 + }, + { + "start": 9754.76, + "end": 9759.02, + "probability": 0.9008 + }, + { + "start": 9759.02, + "end": 9762.78, + "probability": 0.5527 + }, + { + "start": 9763.04, + "end": 9768.62, + "probability": 0.4279 + }, + { + "start": 9768.68, + "end": 9768.84, + "probability": 0.4735 + }, + { + "start": 9768.84, + "end": 9769.08, + "probability": 0.378 + }, + { + "start": 9769.6, + "end": 9769.78, + "probability": 0.4436 + }, + { + "start": 9769.78, + "end": 9772.82, + "probability": 0.0415 + }, + { + "start": 9773.1, + "end": 9773.4, + "probability": 0.3403 + }, + { + "start": 9773.4, + "end": 9773.98, + "probability": 0.6675 + }, + { + "start": 9774.26, + "end": 9776.18, + "probability": 0.2331 + }, + { + "start": 9779.0, + "end": 9781.2, + "probability": 0.672 + }, + { + "start": 9783.6, + "end": 9784.8, + "probability": 0.6503 + }, + { + "start": 9785.68, + "end": 9785.68, + "probability": 0.4382 + }, + { + "start": 9791.8, + "end": 9793.7, + "probability": 0.0588 + }, + { + "start": 9794.34, + "end": 9795.74, + "probability": 0.1238 + }, + { + "start": 9796.22, + "end": 9799.42, + "probability": 0.1578 + }, + { + "start": 9799.54, + "end": 9802.52, + "probability": 0.1864 + }, + { + "start": 9807.68, + "end": 9808.5, + "probability": 0.106 + }, + { + "start": 9808.62, + "end": 9810.32, + "probability": 0.4891 + }, + { + "start": 9810.8, + "end": 9813.02, + "probability": 0.6007 + }, + { + "start": 9813.02, + "end": 9814.32, + "probability": 0.1669 + }, + { + "start": 9814.58, + "end": 9816.4, + "probability": 0.1312 + }, + { + "start": 9817.26, + "end": 9818.11, + "probability": 0.1172 + }, + { + "start": 9823.4, + "end": 9828.48, + "probability": 0.5281 + }, + { + "start": 9828.48, + "end": 9828.58, + "probability": 0.0608 + }, + { + "start": 9828.88, + "end": 9830.9, + "probability": 0.044 + }, + { + "start": 9831.04, + "end": 9831.04, + "probability": 0.0331 + }, + { + "start": 9831.88, + "end": 9834.3, + "probability": 0.0394 + }, + { + "start": 9834.56, + "end": 9837.54, + "probability": 0.0098 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.0, + "end": 9848.0, + "probability": 0.0 + }, + { + "start": 9848.12, + "end": 9848.44, + "probability": 0.0345 + }, + { + "start": 9848.44, + "end": 9848.7, + "probability": 0.0383 + }, + { + "start": 9848.7, + "end": 9849.38, + "probability": 0.4683 + }, + { + "start": 9849.48, + "end": 9850.14, + "probability": 0.8571 + }, + { + "start": 9850.6, + "end": 9852.94, + "probability": 0.9578 + }, + { + "start": 9853.52, + "end": 9855.3, + "probability": 0.5574 + }, + { + "start": 9855.42, + "end": 9857.4, + "probability": 0.9987 + }, + { + "start": 9857.96, + "end": 9860.92, + "probability": 0.8434 + }, + { + "start": 9861.42, + "end": 9864.3, + "probability": 0.8602 + }, + { + "start": 9864.98, + "end": 9865.58, + "probability": 0.9752 + }, + { + "start": 9868.58, + "end": 9869.02, + "probability": 0.5794 + }, + { + "start": 9869.64, + "end": 9870.62, + "probability": 0.8109 + }, + { + "start": 9871.58, + "end": 9872.52, + "probability": 0.9934 + }, + { + "start": 9873.58, + "end": 9875.3, + "probability": 0.6376 + }, + { + "start": 9875.36, + "end": 9876.28, + "probability": 0.8486 + }, + { + "start": 9876.4, + "end": 9877.12, + "probability": 0.8937 + }, + { + "start": 9877.18, + "end": 9878.2, + "probability": 0.976 + }, + { + "start": 9878.28, + "end": 9878.86, + "probability": 0.9855 + }, + { + "start": 9878.96, + "end": 9879.82, + "probability": 0.9814 + }, + { + "start": 9879.82, + "end": 9881.14, + "probability": 0.9614 + }, + { + "start": 9881.48, + "end": 9882.5, + "probability": 0.6509 + }, + { + "start": 9882.78, + "end": 9882.88, + "probability": 0.7736 + }, + { + "start": 9883.4, + "end": 9884.55, + "probability": 0.3126 + }, + { + "start": 9885.78, + "end": 9888.18, + "probability": 0.9224 + }, + { + "start": 9888.64, + "end": 9895.68, + "probability": 0.9573 + }, + { + "start": 9895.74, + "end": 9896.84, + "probability": 0.8472 + }, + { + "start": 9897.96, + "end": 9901.4, + "probability": 0.6168 + }, + { + "start": 9902.2, + "end": 9903.35, + "probability": 0.6978 + }, + { + "start": 9904.16, + "end": 9907.64, + "probability": 0.7339 + }, + { + "start": 9908.3, + "end": 9914.38, + "probability": 0.9822 + }, + { + "start": 9914.86, + "end": 9919.6, + "probability": 0.9271 + }, + { + "start": 9919.62, + "end": 9923.98, + "probability": 0.8246 + }, + { + "start": 9924.7, + "end": 9926.02, + "probability": 0.9395 + }, + { + "start": 9926.02, + "end": 9928.3, + "probability": 0.5295 + }, + { + "start": 9929.22, + "end": 9933.24, + "probability": 0.7554 + }, + { + "start": 9934.1, + "end": 9936.3, + "probability": 0.9944 + }, + { + "start": 9937.76, + "end": 9939.44, + "probability": 0.979 + }, + { + "start": 9941.8, + "end": 9943.26, + "probability": 0.6831 + }, + { + "start": 9943.44, + "end": 9944.48, + "probability": 0.6906 + }, + { + "start": 9945.32, + "end": 9949.96, + "probability": 0.9683 + }, + { + "start": 9951.34, + "end": 9954.66, + "probability": 0.9713 + }, + { + "start": 9955.7, + "end": 9960.34, + "probability": 0.9696 + }, + { + "start": 9960.48, + "end": 9961.68, + "probability": 0.7838 + }, + { + "start": 9962.44, + "end": 9963.76, + "probability": 0.9993 + }, + { + "start": 9963.86, + "end": 9966.66, + "probability": 0.8922 + }, + { + "start": 9967.28, + "end": 9970.66, + "probability": 0.9959 + }, + { + "start": 9971.08, + "end": 9972.72, + "probability": 0.9834 + }, + { + "start": 9973.5, + "end": 9975.96, + "probability": 0.9761 + }, + { + "start": 9976.64, + "end": 9977.18, + "probability": 0.7685 + }, + { + "start": 9978.1, + "end": 9979.3, + "probability": 0.8877 + }, + { + "start": 9979.76, + "end": 9983.14, + "probability": 0.9871 + }, + { + "start": 9983.94, + "end": 9986.26, + "probability": 0.5207 + }, + { + "start": 9986.3, + "end": 9988.46, + "probability": 0.664 + }, + { + "start": 9989.18, + "end": 9993.32, + "probability": 0.7563 + }, + { + "start": 9995.32, + "end": 9996.64, + "probability": 0.9861 + }, + { + "start": 9997.38, + "end": 9998.22, + "probability": 0.6627 + }, + { + "start": 9998.76, + "end": 9999.87, + "probability": 0.6482 + }, + { + "start": 10000.34, + "end": 10001.3, + "probability": 0.9133 + }, + { + "start": 10001.46, + "end": 10002.82, + "probability": 0.9503 + }, + { + "start": 10003.68, + "end": 10006.2, + "probability": 0.9922 + }, + { + "start": 10006.68, + "end": 10011.44, + "probability": 0.9824 + }, + { + "start": 10011.86, + "end": 10014.76, + "probability": 0.9956 + }, + { + "start": 10014.76, + "end": 10018.42, + "probability": 0.9895 + }, + { + "start": 10019.12, + "end": 10024.24, + "probability": 0.9861 + }, + { + "start": 10024.62, + "end": 10030.42, + "probability": 0.9755 + }, + { + "start": 10031.2, + "end": 10034.0, + "probability": 0.9337 + }, + { + "start": 10034.94, + "end": 10039.72, + "probability": 0.9962 + }, + { + "start": 10039.86, + "end": 10040.06, + "probability": 0.2747 + }, + { + "start": 10040.3, + "end": 10040.6, + "probability": 0.2937 + }, + { + "start": 10041.04, + "end": 10042.38, + "probability": 0.9952 + }, + { + "start": 10042.48, + "end": 10043.68, + "probability": 0.7974 + }, + { + "start": 10043.8, + "end": 10047.48, + "probability": 0.6916 + }, + { + "start": 10047.52, + "end": 10048.3, + "probability": 0.575 + }, + { + "start": 10048.78, + "end": 10050.62, + "probability": 0.4662 + }, + { + "start": 10051.0, + "end": 10052.84, + "probability": 0.9937 + }, + { + "start": 10052.9, + "end": 10053.6, + "probability": 0.6373 + }, + { + "start": 10053.68, + "end": 10055.78, + "probability": 0.9076 + }, + { + "start": 10057.3, + "end": 10060.0, + "probability": 0.8306 + }, + { + "start": 10070.26, + "end": 10072.66, + "probability": 0.5902 + }, + { + "start": 10078.72, + "end": 10081.14, + "probability": 0.7815 + }, + { + "start": 10081.74, + "end": 10082.32, + "probability": 0.9873 + }, + { + "start": 10082.84, + "end": 10084.36, + "probability": 0.9032 + }, + { + "start": 10084.5, + "end": 10086.0, + "probability": 0.6567 + }, + { + "start": 10086.94, + "end": 10088.16, + "probability": 0.6711 + }, + { + "start": 10088.26, + "end": 10091.32, + "probability": 0.9014 + }, + { + "start": 10091.38, + "end": 10091.92, + "probability": 0.9663 + }, + { + "start": 10092.04, + "end": 10092.58, + "probability": 0.9774 + }, + { + "start": 10092.64, + "end": 10093.6, + "probability": 0.9071 + }, + { + "start": 10094.46, + "end": 10096.22, + "probability": 0.722 + }, + { + "start": 10096.46, + "end": 10097.78, + "probability": 0.9059 + }, + { + "start": 10097.84, + "end": 10098.6, + "probability": 0.8412 + }, + { + "start": 10098.98, + "end": 10101.04, + "probability": 0.9945 + }, + { + "start": 10101.3, + "end": 10101.78, + "probability": 0.8299 + }, + { + "start": 10102.02, + "end": 10102.62, + "probability": 0.8957 + }, + { + "start": 10102.66, + "end": 10104.16, + "probability": 0.8921 + }, + { + "start": 10104.3, + "end": 10111.04, + "probability": 0.9917 + }, + { + "start": 10111.66, + "end": 10112.88, + "probability": 0.9558 + }, + { + "start": 10113.22, + "end": 10118.84, + "probability": 0.9644 + }, + { + "start": 10119.88, + "end": 10121.12, + "probability": 0.9949 + }, + { + "start": 10121.18, + "end": 10125.84, + "probability": 0.992 + }, + { + "start": 10126.18, + "end": 10128.02, + "probability": 0.9676 + }, + { + "start": 10128.28, + "end": 10128.9, + "probability": 0.8051 + }, + { + "start": 10129.06, + "end": 10130.74, + "probability": 0.1055 + }, + { + "start": 10130.74, + "end": 10132.62, + "probability": 0.8724 + }, + { + "start": 10133.56, + "end": 10135.62, + "probability": 0.998 + }, + { + "start": 10136.2, + "end": 10139.66, + "probability": 0.9967 + }, + { + "start": 10140.3, + "end": 10146.18, + "probability": 0.9821 + }, + { + "start": 10146.28, + "end": 10147.52, + "probability": 0.55 + }, + { + "start": 10147.98, + "end": 10148.74, + "probability": 0.5829 + }, + { + "start": 10149.08, + "end": 10154.2, + "probability": 0.798 + }, + { + "start": 10155.04, + "end": 10160.94, + "probability": 0.981 + }, + { + "start": 10161.3, + "end": 10163.96, + "probability": 0.9215 + }, + { + "start": 10164.2, + "end": 10166.88, + "probability": 0.9922 + }, + { + "start": 10167.26, + "end": 10168.05, + "probability": 0.8604 + }, + { + "start": 10168.62, + "end": 10171.68, + "probability": 0.8315 + }, + { + "start": 10171.8, + "end": 10172.12, + "probability": 0.9066 + }, + { + "start": 10172.28, + "end": 10173.84, + "probability": 0.9476 + }, + { + "start": 10173.94, + "end": 10177.32, + "probability": 0.9341 + }, + { + "start": 10177.98, + "end": 10180.38, + "probability": 0.987 + }, + { + "start": 10180.66, + "end": 10182.06, + "probability": 0.9774 + }, + { + "start": 10182.66, + "end": 10184.48, + "probability": 0.8189 + }, + { + "start": 10185.62, + "end": 10187.8, + "probability": 0.9971 + }, + { + "start": 10187.86, + "end": 10190.78, + "probability": 0.6509 + }, + { + "start": 10190.98, + "end": 10191.44, + "probability": 0.9404 + }, + { + "start": 10191.56, + "end": 10192.18, + "probability": 0.9413 + }, + { + "start": 10192.42, + "end": 10193.94, + "probability": 0.8835 + }, + { + "start": 10193.96, + "end": 10196.4, + "probability": 0.8833 + }, + { + "start": 10196.48, + "end": 10199.66, + "probability": 0.9941 + }, + { + "start": 10199.84, + "end": 10202.02, + "probability": 0.9718 + }, + { + "start": 10202.22, + "end": 10203.24, + "probability": 0.861 + }, + { + "start": 10203.56, + "end": 10205.16, + "probability": 0.9647 + }, + { + "start": 10205.24, + "end": 10208.9, + "probability": 0.9889 + }, + { + "start": 10209.38, + "end": 10210.78, + "probability": 0.8278 + }, + { + "start": 10210.96, + "end": 10214.4, + "probability": 0.9332 + }, + { + "start": 10214.48, + "end": 10216.14, + "probability": 0.9857 + }, + { + "start": 10216.18, + "end": 10218.86, + "probability": 0.9887 + }, + { + "start": 10219.32, + "end": 10221.4, + "probability": 0.9189 + }, + { + "start": 10221.46, + "end": 10223.16, + "probability": 0.8817 + }, + { + "start": 10223.4, + "end": 10223.82, + "probability": 0.9384 + }, + { + "start": 10223.88, + "end": 10224.94, + "probability": 0.9978 + }, + { + "start": 10225.2, + "end": 10226.24, + "probability": 0.9253 + }, + { + "start": 10226.5, + "end": 10228.71, + "probability": 0.7373 + }, + { + "start": 10228.84, + "end": 10231.86, + "probability": 0.8933 + }, + { + "start": 10232.28, + "end": 10233.06, + "probability": 0.7112 + }, + { + "start": 10233.08, + "end": 10233.28, + "probability": 0.7328 + }, + { + "start": 10233.28, + "end": 10236.62, + "probability": 0.949 + }, + { + "start": 10236.96, + "end": 10239.12, + "probability": 0.678 + }, + { + "start": 10239.46, + "end": 10240.68, + "probability": 0.9115 + }, + { + "start": 10240.74, + "end": 10242.86, + "probability": 0.9266 + }, + { + "start": 10243.12, + "end": 10243.62, + "probability": 0.7319 + }, + { + "start": 10243.8, + "end": 10248.0, + "probability": 0.9846 + }, + { + "start": 10248.08, + "end": 10249.24, + "probability": 0.9993 + }, + { + "start": 10249.42, + "end": 10253.4, + "probability": 0.8025 + }, + { + "start": 10254.04, + "end": 10259.39, + "probability": 0.9972 + }, + { + "start": 10261.16, + "end": 10261.54, + "probability": 0.9624 + }, + { + "start": 10261.64, + "end": 10262.96, + "probability": 0.9637 + }, + { + "start": 10263.14, + "end": 10263.82, + "probability": 0.8372 + }, + { + "start": 10264.22, + "end": 10266.66, + "probability": 0.9987 + }, + { + "start": 10266.8, + "end": 10269.0, + "probability": 0.8342 + }, + { + "start": 10269.8, + "end": 10270.78, + "probability": 0.8491 + }, + { + "start": 10271.36, + "end": 10271.36, + "probability": 0.3322 + }, + { + "start": 10271.42, + "end": 10271.86, + "probability": 0.9788 + }, + { + "start": 10272.84, + "end": 10276.24, + "probability": 0.934 + }, + { + "start": 10276.54, + "end": 10278.5, + "probability": 0.9966 + }, + { + "start": 10278.56, + "end": 10279.04, + "probability": 0.6785 + }, + { + "start": 10279.08, + "end": 10281.9, + "probability": 0.9646 + }, + { + "start": 10282.88, + "end": 10284.24, + "probability": 0.9105 + }, + { + "start": 10284.88, + "end": 10287.75, + "probability": 0.7261 + }, + { + "start": 10307.3, + "end": 10307.93, + "probability": 0.3644 + }, + { + "start": 10310.44, + "end": 10314.1, + "probability": 0.9705 + }, + { + "start": 10316.32, + "end": 10318.76, + "probability": 0.6935 + }, + { + "start": 10321.6, + "end": 10322.62, + "probability": 0.9266 + }, + { + "start": 10325.16, + "end": 10326.96, + "probability": 0.7274 + }, + { + "start": 10328.4, + "end": 10334.06, + "probability": 0.9541 + }, + { + "start": 10335.44, + "end": 10339.36, + "probability": 0.867 + }, + { + "start": 10339.56, + "end": 10342.2, + "probability": 0.8431 + }, + { + "start": 10343.68, + "end": 10344.18, + "probability": 0.6708 + }, + { + "start": 10344.84, + "end": 10347.0, + "probability": 0.9894 + }, + { + "start": 10348.94, + "end": 10352.38, + "probability": 0.9617 + }, + { + "start": 10353.52, + "end": 10354.66, + "probability": 0.8504 + }, + { + "start": 10356.14, + "end": 10361.71, + "probability": 0.8007 + }, + { + "start": 10364.2, + "end": 10369.38, + "probability": 0.9282 + }, + { + "start": 10370.92, + "end": 10378.36, + "probability": 0.901 + }, + { + "start": 10381.08, + "end": 10383.7, + "probability": 0.9813 + }, + { + "start": 10385.4, + "end": 10386.36, + "probability": 0.5162 + }, + { + "start": 10387.64, + "end": 10388.98, + "probability": 0.8765 + }, + { + "start": 10390.06, + "end": 10395.56, + "probability": 0.9304 + }, + { + "start": 10396.72, + "end": 10400.92, + "probability": 0.953 + }, + { + "start": 10401.86, + "end": 10408.14, + "probability": 0.9753 + }, + { + "start": 10409.88, + "end": 10412.02, + "probability": 0.9234 + }, + { + "start": 10412.82, + "end": 10417.44, + "probability": 0.978 + }, + { + "start": 10418.02, + "end": 10422.26, + "probability": 0.9854 + }, + { + "start": 10423.28, + "end": 10424.88, + "probability": 0.9098 + }, + { + "start": 10425.0, + "end": 10426.02, + "probability": 0.9242 + }, + { + "start": 10426.06, + "end": 10427.58, + "probability": 0.9509 + }, + { + "start": 10429.26, + "end": 10435.5, + "probability": 0.8848 + }, + { + "start": 10435.64, + "end": 10438.84, + "probability": 0.207 + }, + { + "start": 10439.92, + "end": 10447.2, + "probability": 0.7565 + }, + { + "start": 10447.98, + "end": 10456.2, + "probability": 0.9734 + }, + { + "start": 10456.86, + "end": 10458.62, + "probability": 0.3565 + }, + { + "start": 10459.08, + "end": 10464.14, + "probability": 0.7888 + }, + { + "start": 10465.18, + "end": 10468.36, + "probability": 0.9043 + }, + { + "start": 10468.84, + "end": 10474.76, + "probability": 0.9829 + }, + { + "start": 10475.0, + "end": 10478.92, + "probability": 0.8623 + }, + { + "start": 10479.44, + "end": 10482.34, + "probability": 0.9949 + }, + { + "start": 10482.9, + "end": 10487.74, + "probability": 0.9775 + }, + { + "start": 10488.26, + "end": 10490.94, + "probability": 0.9875 + }, + { + "start": 10491.54, + "end": 10492.72, + "probability": 0.9355 + }, + { + "start": 10492.9, + "end": 10496.26, + "probability": 0.8872 + }, + { + "start": 10497.1, + "end": 10498.62, + "probability": 0.8344 + }, + { + "start": 10498.7, + "end": 10501.4, + "probability": 0.8574 + }, + { + "start": 10514.82, + "end": 10516.52, + "probability": 0.6623 + }, + { + "start": 10516.64, + "end": 10517.76, + "probability": 0.7489 + }, + { + "start": 10518.56, + "end": 10519.3, + "probability": 0.5866 + }, + { + "start": 10520.78, + "end": 10524.16, + "probability": 0.8631 + }, + { + "start": 10527.36, + "end": 10532.12, + "probability": 0.9959 + }, + { + "start": 10533.2, + "end": 10534.76, + "probability": 0.9277 + }, + { + "start": 10534.98, + "end": 10538.1, + "probability": 0.9249 + }, + { + "start": 10538.16, + "end": 10541.08, + "probability": 0.9955 + }, + { + "start": 10542.38, + "end": 10547.3, + "probability": 0.9961 + }, + { + "start": 10547.71, + "end": 10553.7, + "probability": 0.9839 + }, + { + "start": 10554.92, + "end": 10557.06, + "probability": 0.7213 + }, + { + "start": 10558.18, + "end": 10560.24, + "probability": 0.7255 + }, + { + "start": 10561.9, + "end": 10565.1, + "probability": 0.9528 + }, + { + "start": 10567.12, + "end": 10569.9, + "probability": 0.9409 + }, + { + "start": 10571.26, + "end": 10574.88, + "probability": 0.8057 + }, + { + "start": 10575.22, + "end": 10578.5, + "probability": 0.8708 + }, + { + "start": 10579.24, + "end": 10582.44, + "probability": 0.9651 + }, + { + "start": 10583.56, + "end": 10586.96, + "probability": 0.7864 + }, + { + "start": 10587.82, + "end": 10589.86, + "probability": 0.8016 + }, + { + "start": 10590.76, + "end": 10593.62, + "probability": 0.9995 + }, + { + "start": 10594.02, + "end": 10596.74, + "probability": 0.9978 + }, + { + "start": 10597.82, + "end": 10599.76, + "probability": 0.9861 + }, + { + "start": 10600.32, + "end": 10601.18, + "probability": 0.6095 + }, + { + "start": 10602.3, + "end": 10605.16, + "probability": 0.97 + }, + { + "start": 10605.66, + "end": 10610.08, + "probability": 0.9755 + }, + { + "start": 10610.16, + "end": 10617.98, + "probability": 0.9854 + }, + { + "start": 10618.8, + "end": 10621.62, + "probability": 0.9888 + }, + { + "start": 10621.82, + "end": 10626.18, + "probability": 0.9954 + }, + { + "start": 10627.18, + "end": 10630.06, + "probability": 0.9342 + }, + { + "start": 10630.1, + "end": 10633.62, + "probability": 0.9993 + }, + { + "start": 10634.9, + "end": 10636.26, + "probability": 0.9709 + }, + { + "start": 10637.0, + "end": 10640.04, + "probability": 0.9858 + }, + { + "start": 10640.46, + "end": 10643.56, + "probability": 0.9771 + }, + { + "start": 10643.94, + "end": 10644.54, + "probability": 0.6107 + }, + { + "start": 10645.1, + "end": 10646.52, + "probability": 0.3109 + }, + { + "start": 10646.86, + "end": 10648.18, + "probability": 0.9532 + }, + { + "start": 10648.62, + "end": 10651.28, + "probability": 0.9877 + }, + { + "start": 10651.58, + "end": 10653.5, + "probability": 0.9912 + }, + { + "start": 10653.8, + "end": 10656.22, + "probability": 0.9924 + }, + { + "start": 10656.82, + "end": 10661.28, + "probability": 0.9907 + }, + { + "start": 10661.28, + "end": 10664.72, + "probability": 0.9953 + }, + { + "start": 10665.32, + "end": 10665.6, + "probability": 0.4661 + }, + { + "start": 10665.8, + "end": 10670.18, + "probability": 0.9944 + }, + { + "start": 10670.88, + "end": 10672.6, + "probability": 0.9514 + }, + { + "start": 10672.66, + "end": 10675.88, + "probability": 0.9946 + }, + { + "start": 10676.26, + "end": 10680.12, + "probability": 0.987 + }, + { + "start": 10680.82, + "end": 10684.72, + "probability": 0.98 + }, + { + "start": 10684.92, + "end": 10685.36, + "probability": 0.9378 + }, + { + "start": 10686.12, + "end": 10687.0, + "probability": 0.7167 + }, + { + "start": 10687.18, + "end": 10689.6, + "probability": 0.8915 + }, + { + "start": 10689.66, + "end": 10690.74, + "probability": 0.9553 + }, + { + "start": 10691.24, + "end": 10695.8, + "probability": 0.9899 + }, + { + "start": 10696.0, + "end": 10699.13, + "probability": 0.9951 + }, + { + "start": 10699.64, + "end": 10701.62, + "probability": 0.886 + }, + { + "start": 10701.62, + "end": 10704.28, + "probability": 0.9094 + }, + { + "start": 10704.72, + "end": 10708.58, + "probability": 0.9983 + }, + { + "start": 10708.74, + "end": 10709.08, + "probability": 0.7819 + }, + { + "start": 10709.26, + "end": 10710.44, + "probability": 0.6444 + }, + { + "start": 10710.58, + "end": 10712.1, + "probability": 0.9505 + }, + { + "start": 10730.02, + "end": 10732.84, + "probability": 0.7051 + }, + { + "start": 10734.26, + "end": 10736.91, + "probability": 0.9851 + }, + { + "start": 10737.68, + "end": 10740.08, + "probability": 0.9973 + }, + { + "start": 10742.04, + "end": 10744.74, + "probability": 0.9995 + }, + { + "start": 10746.1, + "end": 10751.78, + "probability": 0.9985 + }, + { + "start": 10752.4, + "end": 10753.24, + "probability": 0.6514 + }, + { + "start": 10755.22, + "end": 10758.68, + "probability": 0.9961 + }, + { + "start": 10759.32, + "end": 10763.08, + "probability": 0.9888 + }, + { + "start": 10765.06, + "end": 10767.51, + "probability": 0.9958 + }, + { + "start": 10769.82, + "end": 10773.36, + "probability": 0.9968 + }, + { + "start": 10774.04, + "end": 10776.34, + "probability": 0.9939 + }, + { + "start": 10776.9, + "end": 10780.8, + "probability": 0.971 + }, + { + "start": 10781.44, + "end": 10784.58, + "probability": 0.9878 + }, + { + "start": 10785.9, + "end": 10789.26, + "probability": 0.9954 + }, + { + "start": 10789.9, + "end": 10790.53, + "probability": 0.8722 + }, + { + "start": 10792.0, + "end": 10793.54, + "probability": 0.9426 + }, + { + "start": 10794.12, + "end": 10796.68, + "probability": 0.981 + }, + { + "start": 10797.26, + "end": 10800.92, + "probability": 0.9921 + }, + { + "start": 10802.72, + "end": 10805.46, + "probability": 0.9379 + }, + { + "start": 10805.82, + "end": 10808.74, + "probability": 0.9988 + }, + { + "start": 10809.92, + "end": 10811.7, + "probability": 0.9971 + }, + { + "start": 10811.8, + "end": 10814.2, + "probability": 0.9917 + }, + { + "start": 10815.08, + "end": 10817.3, + "probability": 0.9988 + }, + { + "start": 10818.18, + "end": 10818.76, + "probability": 0.9823 + }, + { + "start": 10818.86, + "end": 10819.4, + "probability": 0.9877 + }, + { + "start": 10819.5, + "end": 10822.12, + "probability": 0.9847 + }, + { + "start": 10823.22, + "end": 10826.28, + "probability": 0.9939 + }, + { + "start": 10826.28, + "end": 10829.94, + "probability": 0.997 + }, + { + "start": 10831.5, + "end": 10832.44, + "probability": 0.9362 + }, + { + "start": 10833.36, + "end": 10836.06, + "probability": 0.9859 + }, + { + "start": 10837.9, + "end": 10840.72, + "probability": 0.9827 + }, + { + "start": 10842.48, + "end": 10845.8, + "probability": 0.995 + }, + { + "start": 10846.88, + "end": 10848.46, + "probability": 0.9951 + }, + { + "start": 10848.74, + "end": 10851.42, + "probability": 0.9892 + }, + { + "start": 10852.38, + "end": 10854.22, + "probability": 0.9801 + }, + { + "start": 10854.32, + "end": 10857.32, + "probability": 0.9921 + }, + { + "start": 10858.54, + "end": 10863.12, + "probability": 0.9253 + }, + { + "start": 10863.88, + "end": 10864.54, + "probability": 0.8525 + }, + { + "start": 10865.36, + "end": 10866.6, + "probability": 0.9494 + }, + { + "start": 10867.78, + "end": 10869.42, + "probability": 0.981 + }, + { + "start": 10871.08, + "end": 10874.72, + "probability": 0.9908 + }, + { + "start": 10876.06, + "end": 10878.64, + "probability": 0.9805 + }, + { + "start": 10879.48, + "end": 10880.44, + "probability": 0.9092 + }, + { + "start": 10881.06, + "end": 10882.74, + "probability": 0.9856 + }, + { + "start": 10883.26, + "end": 10884.98, + "probability": 0.9462 + }, + { + "start": 10886.0, + "end": 10890.24, + "probability": 0.9983 + }, + { + "start": 10890.54, + "end": 10891.78, + "probability": 0.8284 + }, + { + "start": 10892.92, + "end": 10895.82, + "probability": 0.9928 + }, + { + "start": 10895.82, + "end": 10901.38, + "probability": 0.999 + }, + { + "start": 10901.64, + "end": 10903.26, + "probability": 0.9156 + }, + { + "start": 10904.5, + "end": 10908.28, + "probability": 0.9862 + }, + { + "start": 10908.88, + "end": 10912.06, + "probability": 0.9986 + }, + { + "start": 10912.6, + "end": 10914.96, + "probability": 0.8314 + }, + { + "start": 10915.78, + "end": 10919.04, + "probability": 0.978 + }, + { + "start": 10919.04, + "end": 10923.66, + "probability": 0.9978 + }, + { + "start": 10923.8, + "end": 10924.84, + "probability": 0.8924 + }, + { + "start": 10925.42, + "end": 10926.54, + "probability": 0.9338 + }, + { + "start": 10927.82, + "end": 10928.38, + "probability": 0.8842 + }, + { + "start": 10929.06, + "end": 10931.98, + "probability": 0.9932 + }, + { + "start": 10931.98, + "end": 10935.0, + "probability": 0.9913 + }, + { + "start": 10935.44, + "end": 10936.48, + "probability": 0.813 + }, + { + "start": 10937.36, + "end": 10938.88, + "probability": 0.9338 + }, + { + "start": 10939.9, + "end": 10942.76, + "probability": 0.9989 + }, + { + "start": 10943.56, + "end": 10947.56, + "probability": 0.9924 + }, + { + "start": 10947.62, + "end": 10948.55, + "probability": 0.9019 + }, + { + "start": 10949.26, + "end": 10950.18, + "probability": 0.6398 + }, + { + "start": 10951.1, + "end": 10952.58, + "probability": 0.6156 + }, + { + "start": 10953.12, + "end": 10955.56, + "probability": 0.9614 + }, + { + "start": 10969.02, + "end": 10972.42, + "probability": 0.4052 + }, + { + "start": 10972.52, + "end": 10973.74, + "probability": 0.5743 + }, + { + "start": 10974.22, + "end": 10978.94, + "probability": 0.8096 + }, + { + "start": 10979.82, + "end": 10982.48, + "probability": 0.9917 + }, + { + "start": 10983.0, + "end": 10984.64, + "probability": 0.9408 + }, + { + "start": 10985.32, + "end": 10992.94, + "probability": 0.9963 + }, + { + "start": 10993.5, + "end": 10996.9, + "probability": 0.8584 + }, + { + "start": 10998.0, + "end": 11000.84, + "probability": 0.8322 + }, + { + "start": 11000.92, + "end": 11005.48, + "probability": 0.8976 + }, + { + "start": 11005.6, + "end": 11006.46, + "probability": 0.9253 + }, + { + "start": 11007.24, + "end": 11009.94, + "probability": 0.6238 + }, + { + "start": 11011.06, + "end": 11011.84, + "probability": 0.6021 + }, + { + "start": 11013.28, + "end": 11019.12, + "probability": 0.9815 + }, + { + "start": 11019.78, + "end": 11023.08, + "probability": 0.9214 + }, + { + "start": 11023.6, + "end": 11026.1, + "probability": 0.9735 + }, + { + "start": 11026.82, + "end": 11027.34, + "probability": 0.5986 + }, + { + "start": 11028.86, + "end": 11032.22, + "probability": 0.9889 + }, + { + "start": 11032.9, + "end": 11035.7, + "probability": 0.915 + }, + { + "start": 11036.38, + "end": 11037.24, + "probability": 0.9126 + }, + { + "start": 11038.48, + "end": 11040.86, + "probability": 0.9833 + }, + { + "start": 11040.86, + "end": 11044.22, + "probability": 0.9914 + }, + { + "start": 11044.3, + "end": 11047.62, + "probability": 0.954 + }, + { + "start": 11048.68, + "end": 11053.82, + "probability": 0.9538 + }, + { + "start": 11054.44, + "end": 11057.44, + "probability": 0.994 + }, + { + "start": 11057.62, + "end": 11062.28, + "probability": 0.9942 + }, + { + "start": 11063.02, + "end": 11063.66, + "probability": 0.926 + }, + { + "start": 11064.72, + "end": 11067.18, + "probability": 0.9875 + }, + { + "start": 11068.24, + "end": 11071.5, + "probability": 0.966 + }, + { + "start": 11072.18, + "end": 11074.36, + "probability": 0.9641 + }, + { + "start": 11075.74, + "end": 11079.68, + "probability": 0.8822 + }, + { + "start": 11080.48, + "end": 11085.7, + "probability": 0.9828 + }, + { + "start": 11086.86, + "end": 11089.08, + "probability": 0.8191 + }, + { + "start": 11089.3, + "end": 11092.32, + "probability": 0.9619 + }, + { + "start": 11093.4, + "end": 11093.98, + "probability": 0.9375 + }, + { + "start": 11094.28, + "end": 11094.98, + "probability": 0.9169 + }, + { + "start": 11095.08, + "end": 11097.9, + "probability": 0.937 + }, + { + "start": 11098.56, + "end": 11102.6, + "probability": 0.9904 + }, + { + "start": 11103.36, + "end": 11104.32, + "probability": 0.9063 + }, + { + "start": 11105.12, + "end": 11106.64, + "probability": 0.6552 + }, + { + "start": 11107.88, + "end": 11108.98, + "probability": 0.9984 + }, + { + "start": 11109.88, + "end": 11113.12, + "probability": 0.9878 + }, + { + "start": 11114.14, + "end": 11117.72, + "probability": 0.9966 + }, + { + "start": 11118.38, + "end": 11119.6, + "probability": 0.7827 + }, + { + "start": 11120.26, + "end": 11122.7, + "probability": 0.9941 + }, + { + "start": 11123.22, + "end": 11129.92, + "probability": 0.9914 + }, + { + "start": 11130.68, + "end": 11134.86, + "probability": 0.9836 + }, + { + "start": 11135.1, + "end": 11135.32, + "probability": 0.6582 + }, + { + "start": 11137.02, + "end": 11138.14, + "probability": 0.5631 + }, + { + "start": 11138.24, + "end": 11139.42, + "probability": 0.9187 + }, + { + "start": 11154.42, + "end": 11155.56, + "probability": 0.9088 + }, + { + "start": 11157.54, + "end": 11158.74, + "probability": 0.9025 + }, + { + "start": 11159.6, + "end": 11160.38, + "probability": 0.5811 + }, + { + "start": 11160.52, + "end": 11161.54, + "probability": 0.9033 + }, + { + "start": 11161.74, + "end": 11161.96, + "probability": 0.6381 + }, + { + "start": 11162.04, + "end": 11168.0, + "probability": 0.9937 + }, + { + "start": 11169.58, + "end": 11173.58, + "probability": 0.9622 + }, + { + "start": 11174.98, + "end": 11178.14, + "probability": 0.9533 + }, + { + "start": 11179.42, + "end": 11184.28, + "probability": 0.9785 + }, + { + "start": 11185.1, + "end": 11185.96, + "probability": 0.9268 + }, + { + "start": 11186.34, + "end": 11187.22, + "probability": 0.9745 + }, + { + "start": 11187.46, + "end": 11188.5, + "probability": 0.9919 + }, + { + "start": 11188.94, + "end": 11189.88, + "probability": 0.9603 + }, + { + "start": 11190.22, + "end": 11191.42, + "probability": 0.9824 + }, + { + "start": 11191.8, + "end": 11193.04, + "probability": 0.9653 + }, + { + "start": 11193.92, + "end": 11194.62, + "probability": 0.9912 + }, + { + "start": 11195.66, + "end": 11197.2, + "probability": 0.7788 + }, + { + "start": 11197.76, + "end": 11201.28, + "probability": 0.9835 + }, + { + "start": 11202.36, + "end": 11206.12, + "probability": 0.9952 + }, + { + "start": 11207.02, + "end": 11210.52, + "probability": 0.9864 + }, + { + "start": 11211.32, + "end": 11214.35, + "probability": 0.9863 + }, + { + "start": 11214.82, + "end": 11216.56, + "probability": 0.7866 + }, + { + "start": 11217.02, + "end": 11217.48, + "probability": 0.9303 + }, + { + "start": 11217.88, + "end": 11219.46, + "probability": 0.7822 + }, + { + "start": 11220.22, + "end": 11221.9, + "probability": 0.9131 + }, + { + "start": 11222.7, + "end": 11224.2, + "probability": 0.822 + }, + { + "start": 11224.34, + "end": 11224.68, + "probability": 0.9394 + }, + { + "start": 11225.66, + "end": 11226.27, + "probability": 0.936 + }, + { + "start": 11226.46, + "end": 11227.73, + "probability": 0.978 + }, + { + "start": 11227.92, + "end": 11229.7, + "probability": 0.9709 + }, + { + "start": 11229.76, + "end": 11230.72, + "probability": 0.9622 + }, + { + "start": 11231.12, + "end": 11232.3, + "probability": 0.9958 + }, + { + "start": 11232.36, + "end": 11237.46, + "probability": 0.9247 + }, + { + "start": 11237.56, + "end": 11238.34, + "probability": 0.9223 + }, + { + "start": 11238.88, + "end": 11239.42, + "probability": 0.5552 + }, + { + "start": 11240.32, + "end": 11243.06, + "probability": 0.6183 + }, + { + "start": 11243.58, + "end": 11245.52, + "probability": 0.9658 + }, + { + "start": 11245.66, + "end": 11247.72, + "probability": 0.8102 + }, + { + "start": 11248.2, + "end": 11248.36, + "probability": 0.3641 + }, + { + "start": 11249.26, + "end": 11250.7, + "probability": 0.9634 + }, + { + "start": 11251.0, + "end": 11252.9, + "probability": 0.8782 + }, + { + "start": 11253.08, + "end": 11253.98, + "probability": 0.9784 + }, + { + "start": 11254.06, + "end": 11255.38, + "probability": 0.9914 + }, + { + "start": 11255.42, + "end": 11255.64, + "probability": 0.7367 + }, + { + "start": 11256.82, + "end": 11258.5, + "probability": 0.9868 + }, + { + "start": 11258.68, + "end": 11260.82, + "probability": 0.9951 + }, + { + "start": 11261.4, + "end": 11263.08, + "probability": 0.87 + }, + { + "start": 11263.58, + "end": 11265.3, + "probability": 0.9596 + }, + { + "start": 11265.4, + "end": 11266.68, + "probability": 0.929 + }, + { + "start": 11267.36, + "end": 11269.24, + "probability": 0.9741 + }, + { + "start": 11269.68, + "end": 11270.74, + "probability": 0.7911 + }, + { + "start": 11270.8, + "end": 11271.56, + "probability": 0.8539 + }, + { + "start": 11271.66, + "end": 11272.65, + "probability": 0.9761 + }, + { + "start": 11273.22, + "end": 11274.98, + "probability": 0.9744 + }, + { + "start": 11275.06, + "end": 11275.44, + "probability": 0.7086 + }, + { + "start": 11275.5, + "end": 11275.98, + "probability": 0.903 + }, + { + "start": 11276.04, + "end": 11277.12, + "probability": 0.956 + }, + { + "start": 11277.6, + "end": 11280.86, + "probability": 0.993 + }, + { + "start": 11281.14, + "end": 11282.3, + "probability": 0.8729 + }, + { + "start": 11283.02, + "end": 11289.44, + "probability": 0.9821 + }, + { + "start": 11290.0, + "end": 11294.02, + "probability": 0.9985 + }, + { + "start": 11294.54, + "end": 11295.7, + "probability": 0.9985 + }, + { + "start": 11295.82, + "end": 11298.26, + "probability": 0.9962 + }, + { + "start": 11298.74, + "end": 11302.2, + "probability": 0.9966 + }, + { + "start": 11302.54, + "end": 11304.9, + "probability": 0.8941 + }, + { + "start": 11305.58, + "end": 11309.82, + "probability": 0.9778 + }, + { + "start": 11310.0, + "end": 11311.22, + "probability": 0.7195 + }, + { + "start": 11311.8, + "end": 11317.46, + "probability": 0.9858 + }, + { + "start": 11317.46, + "end": 11321.16, + "probability": 0.9995 + }, + { + "start": 11321.52, + "end": 11322.32, + "probability": 0.9933 + }, + { + "start": 11322.46, + "end": 11323.2, + "probability": 0.7336 + }, + { + "start": 11323.52, + "end": 11325.7, + "probability": 0.984 + }, + { + "start": 11325.7, + "end": 11327.42, + "probability": 0.8652 + }, + { + "start": 11327.9, + "end": 11329.22, + "probability": 0.9954 + }, + { + "start": 11329.76, + "end": 11331.08, + "probability": 0.8192 + }, + { + "start": 11331.5, + "end": 11332.62, + "probability": 0.8173 + }, + { + "start": 11333.0, + "end": 11334.44, + "probability": 0.9531 + }, + { + "start": 11334.56, + "end": 11337.46, + "probability": 0.9723 + }, + { + "start": 11338.44, + "end": 11339.7, + "probability": 0.7954 + }, + { + "start": 11340.5, + "end": 11343.52, + "probability": 0.9857 + }, + { + "start": 11344.16, + "end": 11345.08, + "probability": 0.3551 + }, + { + "start": 11345.68, + "end": 11346.56, + "probability": 0.454 + }, + { + "start": 11346.58, + "end": 11349.32, + "probability": 0.9958 + }, + { + "start": 11349.6, + "end": 11354.38, + "probability": 0.9967 + }, + { + "start": 11354.42, + "end": 11354.94, + "probability": 0.6788 + }, + { + "start": 11355.0, + "end": 11358.76, + "probability": 0.9977 + }, + { + "start": 11359.2, + "end": 11360.6, + "probability": 0.8193 + }, + { + "start": 11360.86, + "end": 11362.26, + "probability": 0.8902 + }, + { + "start": 11363.1, + "end": 11364.34, + "probability": 0.9099 + }, + { + "start": 11364.46, + "end": 11366.14, + "probability": 0.8258 + }, + { + "start": 11366.82, + "end": 11368.7, + "probability": 0.6786 + }, + { + "start": 11371.92, + "end": 11373.19, + "probability": 0.9341 + }, + { + "start": 11385.2, + "end": 11387.54, + "probability": 0.6855 + }, + { + "start": 11388.28, + "end": 11389.3, + "probability": 0.8145 + }, + { + "start": 11389.5, + "end": 11393.08, + "probability": 0.981 + }, + { + "start": 11393.8, + "end": 11394.56, + "probability": 0.9914 + }, + { + "start": 11395.14, + "end": 11396.51, + "probability": 0.568 + }, + { + "start": 11397.9, + "end": 11400.3, + "probability": 0.8992 + }, + { + "start": 11401.48, + "end": 11402.46, + "probability": 0.9448 + }, + { + "start": 11402.94, + "end": 11410.6, + "probability": 0.9865 + }, + { + "start": 11411.14, + "end": 11416.82, + "probability": 0.9938 + }, + { + "start": 11417.06, + "end": 11418.4, + "probability": 0.7847 + }, + { + "start": 11419.46, + "end": 11422.72, + "probability": 0.9883 + }, + { + "start": 11422.72, + "end": 11427.86, + "probability": 0.9782 + }, + { + "start": 11429.36, + "end": 11429.96, + "probability": 0.4421 + }, + { + "start": 11430.4, + "end": 11437.68, + "probability": 0.9542 + }, + { + "start": 11438.4, + "end": 11446.6, + "probability": 0.9891 + }, + { + "start": 11446.98, + "end": 11447.9, + "probability": 0.9337 + }, + { + "start": 11448.02, + "end": 11449.98, + "probability": 0.8322 + }, + { + "start": 11450.66, + "end": 11457.18, + "probability": 0.9702 + }, + { + "start": 11457.76, + "end": 11460.38, + "probability": 0.9973 + }, + { + "start": 11460.38, + "end": 11465.54, + "probability": 0.998 + }, + { + "start": 11466.14, + "end": 11470.34, + "probability": 0.9906 + }, + { + "start": 11470.6, + "end": 11472.06, + "probability": 0.9375 + }, + { + "start": 11473.14, + "end": 11474.46, + "probability": 0.8621 + }, + { + "start": 11474.9, + "end": 11477.42, + "probability": 0.9822 + }, + { + "start": 11477.9, + "end": 11478.88, + "probability": 0.6279 + }, + { + "start": 11479.04, + "end": 11486.36, + "probability": 0.9174 + }, + { + "start": 11486.86, + "end": 11487.42, + "probability": 0.4694 + }, + { + "start": 11488.18, + "end": 11493.62, + "probability": 0.9575 + }, + { + "start": 11493.92, + "end": 11494.42, + "probability": 0.9608 + }, + { + "start": 11496.07, + "end": 11497.3, + "probability": 0.4339 + }, + { + "start": 11497.8, + "end": 11508.5, + "probability": 0.9719 + }, + { + "start": 11509.1, + "end": 11511.8, + "probability": 0.9854 + }, + { + "start": 11511.96, + "end": 11513.04, + "probability": 0.9493 + }, + { + "start": 11513.52, + "end": 11517.22, + "probability": 0.9109 + }, + { + "start": 11517.68, + "end": 11526.06, + "probability": 0.9679 + }, + { + "start": 11526.64, + "end": 11529.69, + "probability": 0.9473 + }, + { + "start": 11530.68, + "end": 11533.28, + "probability": 0.8721 + }, + { + "start": 11533.84, + "end": 11537.04, + "probability": 0.99 + }, + { + "start": 11537.6, + "end": 11539.16, + "probability": 0.9636 + }, + { + "start": 11539.72, + "end": 11544.44, + "probability": 0.9177 + }, + { + "start": 11544.8, + "end": 11547.52, + "probability": 0.9988 + }, + { + "start": 11548.02, + "end": 11556.02, + "probability": 0.9922 + }, + { + "start": 11557.2, + "end": 11558.18, + "probability": 0.3871 + }, + { + "start": 11558.42, + "end": 11564.7, + "probability": 0.9688 + }, + { + "start": 11564.76, + "end": 11565.28, + "probability": 0.3977 + }, + { + "start": 11565.44, + "end": 11566.26, + "probability": 0.742 + }, + { + "start": 11566.46, + "end": 11567.92, + "probability": 0.9391 + }, + { + "start": 11568.66, + "end": 11569.36, + "probability": 0.7936 + }, + { + "start": 11587.9, + "end": 11590.1, + "probability": 0.7181 + }, + { + "start": 11590.92, + "end": 11594.9, + "probability": 0.9886 + }, + { + "start": 11595.92, + "end": 11601.02, + "probability": 0.9922 + }, + { + "start": 11601.16, + "end": 11601.92, + "probability": 0.5894 + }, + { + "start": 11602.76, + "end": 11605.98, + "probability": 0.9332 + }, + { + "start": 11606.64, + "end": 11609.02, + "probability": 0.9512 + }, + { + "start": 11609.1, + "end": 11609.65, + "probability": 0.8521 + }, + { + "start": 11610.7, + "end": 11616.82, + "probability": 0.9956 + }, + { + "start": 11617.72, + "end": 11620.98, + "probability": 0.9327 + }, + { + "start": 11621.06, + "end": 11622.16, + "probability": 0.8286 + }, + { + "start": 11622.58, + "end": 11626.5, + "probability": 0.9609 + }, + { + "start": 11626.5, + "end": 11630.48, + "probability": 0.9966 + }, + { + "start": 11630.6, + "end": 11631.82, + "probability": 0.7412 + }, + { + "start": 11632.32, + "end": 11633.82, + "probability": 0.9836 + }, + { + "start": 11634.38, + "end": 11636.6, + "probability": 0.9527 + }, + { + "start": 11636.7, + "end": 11639.48, + "probability": 0.9907 + }, + { + "start": 11640.12, + "end": 11640.72, + "probability": 0.604 + }, + { + "start": 11640.74, + "end": 11641.4, + "probability": 0.8298 + }, + { + "start": 11642.98, + "end": 11643.84, + "probability": 0.8752 + }, + { + "start": 11644.64, + "end": 11646.18, + "probability": 0.9876 + }, + { + "start": 11646.84, + "end": 11648.28, + "probability": 0.9641 + }, + { + "start": 11648.96, + "end": 11651.36, + "probability": 0.9909 + }, + { + "start": 11651.54, + "end": 11652.78, + "probability": 0.823 + }, + { + "start": 11652.92, + "end": 11654.02, + "probability": 0.9849 + }, + { + "start": 11654.8, + "end": 11657.68, + "probability": 0.9873 + }, + { + "start": 11658.28, + "end": 11661.14, + "probability": 0.9829 + }, + { + "start": 11661.5, + "end": 11661.92, + "probability": 0.9528 + }, + { + "start": 11662.74, + "end": 11665.6, + "probability": 0.9902 + }, + { + "start": 11666.18, + "end": 11670.24, + "probability": 0.9944 + }, + { + "start": 11671.64, + "end": 11676.04, + "probability": 0.9986 + }, + { + "start": 11676.72, + "end": 11677.72, + "probability": 0.9692 + }, + { + "start": 11677.84, + "end": 11678.92, + "probability": 0.9948 + }, + { + "start": 11679.12, + "end": 11680.52, + "probability": 0.9692 + }, + { + "start": 11680.72, + "end": 11681.94, + "probability": 0.981 + }, + { + "start": 11682.68, + "end": 11684.16, + "probability": 0.8828 + }, + { + "start": 11685.08, + "end": 11685.26, + "probability": 0.1852 + }, + { + "start": 11685.62, + "end": 11688.66, + "probability": 0.9617 + }, + { + "start": 11689.16, + "end": 11693.16, + "probability": 0.9985 + }, + { + "start": 11693.56, + "end": 11698.52, + "probability": 0.985 + }, + { + "start": 11699.0, + "end": 11701.26, + "probability": 0.9779 + }, + { + "start": 11701.96, + "end": 11707.32, + "probability": 0.9916 + }, + { + "start": 11707.98, + "end": 11708.74, + "probability": 0.6404 + }, + { + "start": 11709.4, + "end": 11711.18, + "probability": 0.9562 + }, + { + "start": 11711.98, + "end": 11716.06, + "probability": 0.9951 + }, + { + "start": 11716.86, + "end": 11718.56, + "probability": 0.7291 + }, + { + "start": 11719.84, + "end": 11724.72, + "probability": 0.87 + }, + { + "start": 11724.96, + "end": 11727.22, + "probability": 0.9835 + }, + { + "start": 11727.82, + "end": 11730.8, + "probability": 0.9878 + }, + { + "start": 11731.36, + "end": 11733.84, + "probability": 0.995 + }, + { + "start": 11734.34, + "end": 11738.94, + "probability": 0.9958 + }, + { + "start": 11739.52, + "end": 11742.12, + "probability": 0.9863 + }, + { + "start": 11742.86, + "end": 11744.16, + "probability": 0.8169 + }, + { + "start": 11744.4, + "end": 11747.86, + "probability": 0.9177 + }, + { + "start": 11749.28, + "end": 11751.2, + "probability": 0.8582 + }, + { + "start": 11751.7, + "end": 11755.12, + "probability": 0.9902 + }, + { + "start": 11755.84, + "end": 11759.74, + "probability": 0.9937 + }, + { + "start": 11760.1, + "end": 11760.7, + "probability": 0.7668 + }, + { + "start": 11760.9, + "end": 11762.2, + "probability": 0.6698 + }, + { + "start": 11762.34, + "end": 11764.68, + "probability": 0.9521 + }, + { + "start": 11766.64, + "end": 11767.38, + "probability": 0.7831 + }, + { + "start": 11774.46, + "end": 11776.82, + "probability": 0.5141 + }, + { + "start": 11778.14, + "end": 11781.8, + "probability": 0.9952 + }, + { + "start": 11781.88, + "end": 11782.72, + "probability": 0.7405 + }, + { + "start": 11783.36, + "end": 11784.66, + "probability": 0.9761 + }, + { + "start": 11786.18, + "end": 11788.8, + "probability": 0.9235 + }, + { + "start": 11789.02, + "end": 11791.28, + "probability": 0.9825 + }, + { + "start": 11792.0, + "end": 11794.98, + "probability": 0.9971 + }, + { + "start": 11795.42, + "end": 11796.2, + "probability": 0.8087 + }, + { + "start": 11796.64, + "end": 11797.84, + "probability": 0.996 + }, + { + "start": 11797.92, + "end": 11800.82, + "probability": 0.9976 + }, + { + "start": 11801.22, + "end": 11803.24, + "probability": 0.974 + }, + { + "start": 11803.34, + "end": 11806.76, + "probability": 0.9985 + }, + { + "start": 11807.2, + "end": 11808.41, + "probability": 0.8922 + }, + { + "start": 11808.98, + "end": 11810.08, + "probability": 0.9741 + }, + { + "start": 11810.64, + "end": 11815.76, + "probability": 0.9738 + }, + { + "start": 11815.92, + "end": 11817.3, + "probability": 0.7683 + }, + { + "start": 11818.64, + "end": 11820.64, + "probability": 0.999 + }, + { + "start": 11820.64, + "end": 11823.86, + "probability": 0.9957 + }, + { + "start": 11824.68, + "end": 11827.68, + "probability": 0.9976 + }, + { + "start": 11827.8, + "end": 11829.76, + "probability": 0.9929 + }, + { + "start": 11830.04, + "end": 11830.56, + "probability": 0.5328 + }, + { + "start": 11831.26, + "end": 11832.32, + "probability": 0.8436 + }, + { + "start": 11832.92, + "end": 11834.56, + "probability": 0.7998 + }, + { + "start": 11835.18, + "end": 11837.06, + "probability": 0.7877 + }, + { + "start": 11837.1, + "end": 11838.58, + "probability": 0.9304 + }, + { + "start": 11839.12, + "end": 11842.14, + "probability": 0.9924 + }, + { + "start": 11842.8, + "end": 11845.64, + "probability": 0.9447 + }, + { + "start": 11845.7, + "end": 11847.46, + "probability": 0.9876 + }, + { + "start": 11847.98, + "end": 11851.18, + "probability": 0.9833 + }, + { + "start": 11851.7, + "end": 11853.86, + "probability": 0.9963 + }, + { + "start": 11854.6, + "end": 11858.0, + "probability": 0.9815 + }, + { + "start": 11858.48, + "end": 11860.64, + "probability": 0.9971 + }, + { + "start": 11861.3, + "end": 11865.06, + "probability": 0.9878 + }, + { + "start": 11865.64, + "end": 11868.3, + "probability": 0.9941 + }, + { + "start": 11868.9, + "end": 11871.52, + "probability": 0.9978 + }, + { + "start": 11871.64, + "end": 11872.06, + "probability": 0.4125 + }, + { + "start": 11872.06, + "end": 11873.04, + "probability": 0.7518 + }, + { + "start": 11873.66, + "end": 11874.74, + "probability": 0.9295 + }, + { + "start": 11875.02, + "end": 11876.28, + "probability": 0.8573 + }, + { + "start": 11876.66, + "end": 11879.24, + "probability": 0.9926 + }, + { + "start": 11879.54, + "end": 11880.12, + "probability": 0.8315 + }, + { + "start": 11880.28, + "end": 11880.98, + "probability": 0.7029 + }, + { + "start": 11881.3, + "end": 11883.46, + "probability": 0.8739 + }, + { + "start": 11884.5, + "end": 11886.94, + "probability": 0.9776 + }, + { + "start": 11888.72, + "end": 11891.82, + "probability": 0.9211 + }, + { + "start": 11892.42, + "end": 11893.14, + "probability": 0.7874 + }, + { + "start": 11893.28, + "end": 11894.8, + "probability": 0.9882 + }, + { + "start": 11915.7, + "end": 11917.44, + "probability": 0.6598 + }, + { + "start": 11919.48, + "end": 11921.16, + "probability": 0.7284 + }, + { + "start": 11923.9, + "end": 11926.96, + "probability": 0.9937 + }, + { + "start": 11927.82, + "end": 11931.48, + "probability": 0.9894 + }, + { + "start": 11932.62, + "end": 11934.26, + "probability": 0.9944 + }, + { + "start": 11934.34, + "end": 11935.88, + "probability": 0.9448 + }, + { + "start": 11935.96, + "end": 11936.98, + "probability": 0.9159 + }, + { + "start": 11937.4, + "end": 11938.56, + "probability": 0.9272 + }, + { + "start": 11939.38, + "end": 11941.6, + "probability": 0.7346 + }, + { + "start": 11942.54, + "end": 11944.89, + "probability": 0.9828 + }, + { + "start": 11946.08, + "end": 11948.06, + "probability": 0.9763 + }, + { + "start": 11950.58, + "end": 11952.0, + "probability": 0.662 + }, + { + "start": 11952.24, + "end": 11955.84, + "probability": 0.9695 + }, + { + "start": 11956.7, + "end": 11957.3, + "probability": 0.5309 + }, + { + "start": 11958.22, + "end": 11959.38, + "probability": 0.9057 + }, + { + "start": 11961.28, + "end": 11962.18, + "probability": 0.906 + }, + { + "start": 11962.3, + "end": 11963.0, + "probability": 0.6235 + }, + { + "start": 11963.4, + "end": 11964.32, + "probability": 0.853 + }, + { + "start": 11964.52, + "end": 11965.24, + "probability": 0.7949 + }, + { + "start": 11968.02, + "end": 11970.64, + "probability": 0.8201 + }, + { + "start": 11971.22, + "end": 11972.54, + "probability": 0.8681 + }, + { + "start": 11973.36, + "end": 11975.74, + "probability": 0.877 + }, + { + "start": 11979.24, + "end": 11979.84, + "probability": 0.704 + }, + { + "start": 11979.98, + "end": 11985.36, + "probability": 0.9807 + }, + { + "start": 11986.84, + "end": 11987.74, + "probability": 0.429 + }, + { + "start": 11988.6, + "end": 11990.24, + "probability": 0.8589 + }, + { + "start": 11991.76, + "end": 11994.3, + "probability": 0.9166 + }, + { + "start": 11996.28, + "end": 11998.62, + "probability": 0.9568 + }, + { + "start": 11999.72, + "end": 12001.38, + "probability": 0.9282 + }, + { + "start": 12002.58, + "end": 12004.0, + "probability": 0.6133 + }, + { + "start": 12005.2, + "end": 12007.12, + "probability": 0.7659 + }, + { + "start": 12007.86, + "end": 12008.54, + "probability": 0.4522 + }, + { + "start": 12012.3, + "end": 12013.48, + "probability": 0.9587 + }, + { + "start": 12014.32, + "end": 12017.96, + "probability": 0.9849 + }, + { + "start": 12018.88, + "end": 12019.66, + "probability": 0.515 + }, + { + "start": 12020.5, + "end": 12022.16, + "probability": 0.792 + }, + { + "start": 12022.58, + "end": 12024.0, + "probability": 0.5677 + }, + { + "start": 12024.36, + "end": 12027.88, + "probability": 0.8149 + }, + { + "start": 12027.88, + "end": 12028.79, + "probability": 0.6689 + }, + { + "start": 12029.26, + "end": 12031.42, + "probability": 0.8645 + }, + { + "start": 12031.48, + "end": 12031.56, + "probability": 0.0826 + }, + { + "start": 12031.64, + "end": 12038.56, + "probability": 0.9124 + }, + { + "start": 12038.88, + "end": 12042.64, + "probability": 0.9645 + }, + { + "start": 12043.8, + "end": 12045.06, + "probability": 0.7 + }, + { + "start": 12047.5, + "end": 12049.72, + "probability": 0.7489 + }, + { + "start": 12050.6, + "end": 12054.74, + "probability": 0.9369 + }, + { + "start": 12055.5, + "end": 12057.06, + "probability": 0.6412 + }, + { + "start": 12058.3, + "end": 12059.5, + "probability": 0.874 + }, + { + "start": 12059.74, + "end": 12061.5, + "probability": 0.7689 + }, + { + "start": 12063.04, + "end": 12064.92, + "probability": 0.9165 + }, + { + "start": 12065.74, + "end": 12068.72, + "probability": 0.6278 + }, + { + "start": 12069.24, + "end": 12070.82, + "probability": 0.7415 + }, + { + "start": 12071.36, + "end": 12072.92, + "probability": 0.9555 + }, + { + "start": 12074.32, + "end": 12076.28, + "probability": 0.9037 + }, + { + "start": 12077.82, + "end": 12084.74, + "probability": 0.9877 + }, + { + "start": 12087.66, + "end": 12092.52, + "probability": 0.9727 + }, + { + "start": 12093.16, + "end": 12095.02, + "probability": 0.9023 + }, + { + "start": 12095.26, + "end": 12096.1, + "probability": 0.3198 + }, + { + "start": 12096.18, + "end": 12099.64, + "probability": 0.7783 + }, + { + "start": 12099.64, + "end": 12099.64, + "probability": 0.7381 + }, + { + "start": 12099.9, + "end": 12103.24, + "probability": 0.4934 + }, + { + "start": 12104.56, + "end": 12106.02, + "probability": 0.8229 + }, + { + "start": 12106.52, + "end": 12108.72, + "probability": 0.2241 + }, + { + "start": 12108.72, + "end": 12110.58, + "probability": 0.2358 + }, + { + "start": 12110.82, + "end": 12111.4, + "probability": 0.49 + }, + { + "start": 12111.47, + "end": 12111.83, + "probability": 0.3466 + }, + { + "start": 12112.52, + "end": 12113.16, + "probability": 0.803 + }, + { + "start": 12113.18, + "end": 12114.08, + "probability": 0.805 + }, + { + "start": 12114.1, + "end": 12115.64, + "probability": 0.8855 + }, + { + "start": 12115.94, + "end": 12116.54, + "probability": 0.1424 + }, + { + "start": 12116.54, + "end": 12118.04, + "probability": 0.3483 + }, + { + "start": 12118.04, + "end": 12118.26, + "probability": 0.7214 + }, + { + "start": 12118.38, + "end": 12121.12, + "probability": 0.7087 + }, + { + "start": 12121.42, + "end": 12121.42, + "probability": 0.0331 + }, + { + "start": 12121.42, + "end": 12121.46, + "probability": 0.1246 + }, + { + "start": 12121.46, + "end": 12124.76, + "probability": 0.7386 + }, + { + "start": 12125.02, + "end": 12125.12, + "probability": 0.2105 + }, + { + "start": 12125.12, + "end": 12125.82, + "probability": 0.7186 + }, + { + "start": 12126.16, + "end": 12129.06, + "probability": 0.674 + }, + { + "start": 12129.32, + "end": 12131.94, + "probability": 0.7572 + }, + { + "start": 12132.0, + "end": 12133.96, + "probability": 0.0336 + }, + { + "start": 12134.54, + "end": 12136.22, + "probability": 0.059 + }, + { + "start": 12137.08, + "end": 12138.48, + "probability": 0.7454 + }, + { + "start": 12140.04, + "end": 12140.68, + "probability": 0.0275 + }, + { + "start": 12141.42, + "end": 12142.28, + "probability": 0.1747 + }, + { + "start": 12142.46, + "end": 12144.22, + "probability": 0.1192 + }, + { + "start": 12144.22, + "end": 12144.29, + "probability": 0.4194 + }, + { + "start": 12146.96, + "end": 12149.8, + "probability": 0.6098 + }, + { + "start": 12150.46, + "end": 12154.1, + "probability": 0.1491 + }, + { + "start": 12154.16, + "end": 12155.24, + "probability": 0.1147 + }, + { + "start": 12156.46, + "end": 12157.9, + "probability": 0.0196 + }, + { + "start": 12160.06, + "end": 12161.02, + "probability": 0.1147 + }, + { + "start": 12162.08, + "end": 12162.96, + "probability": 0.4685 + }, + { + "start": 12162.96, + "end": 12164.96, + "probability": 0.03 + }, + { + "start": 12167.15, + "end": 12173.23, + "probability": 0.1608 + }, + { + "start": 12174.54, + "end": 12176.78, + "probability": 0.2986 + }, + { + "start": 12176.78, + "end": 12178.18, + "probability": 0.2472 + }, + { + "start": 12178.24, + "end": 12183.56, + "probability": 0.115 + }, + { + "start": 12184.66, + "end": 12186.74, + "probability": 0.0293 + }, + { + "start": 12186.84, + "end": 12188.49, + "probability": 0.5873 + }, + { + "start": 12189.72, + "end": 12190.95, + "probability": 0.0214 + }, + { + "start": 12195.5, + "end": 12195.98, + "probability": 0.2603 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.0, + "end": 12196.0, + "probability": 0.0 + }, + { + "start": 12196.46, + "end": 12200.86, + "probability": 0.7385 + }, + { + "start": 12200.98, + "end": 12202.31, + "probability": 0.0303 + }, + { + "start": 12202.74, + "end": 12203.58, + "probability": 0.628 + }, + { + "start": 12203.58, + "end": 12203.74, + "probability": 0.4951 + }, + { + "start": 12203.74, + "end": 12203.86, + "probability": 0.1989 + }, + { + "start": 12203.86, + "end": 12205.41, + "probability": 0.9478 + }, + { + "start": 12205.44, + "end": 12207.14, + "probability": 0.3118 + }, + { + "start": 12209.58, + "end": 12209.86, + "probability": 0.0459 + }, + { + "start": 12209.86, + "end": 12212.38, + "probability": 0.5571 + }, + { + "start": 12212.48, + "end": 12212.48, + "probability": 0.4161 + }, + { + "start": 12212.48, + "end": 12212.96, + "probability": 0.6224 + }, + { + "start": 12213.66, + "end": 12214.6, + "probability": 0.9816 + }, + { + "start": 12216.18, + "end": 12218.94, + "probability": 0.8605 + }, + { + "start": 12220.5, + "end": 12226.94, + "probability": 0.9687 + }, + { + "start": 12228.42, + "end": 12233.76, + "probability": 0.9865 + }, + { + "start": 12234.42, + "end": 12234.9, + "probability": 0.5119 + }, + { + "start": 12235.96, + "end": 12241.52, + "probability": 0.9896 + }, + { + "start": 12241.52, + "end": 12247.28, + "probability": 0.97 + }, + { + "start": 12248.7, + "end": 12254.7, + "probability": 0.9944 + }, + { + "start": 12254.8, + "end": 12255.98, + "probability": 0.9009 + }, + { + "start": 12256.2, + "end": 12256.7, + "probability": 0.5487 + }, + { + "start": 12257.92, + "end": 12262.7, + "probability": 0.99 + }, + { + "start": 12263.34, + "end": 12264.54, + "probability": 0.888 + }, + { + "start": 12265.26, + "end": 12269.9, + "probability": 0.953 + }, + { + "start": 12270.82, + "end": 12275.3, + "probability": 0.9817 + }, + { + "start": 12276.0, + "end": 12277.54, + "probability": 0.8705 + }, + { + "start": 12278.2, + "end": 12280.92, + "probability": 0.9858 + }, + { + "start": 12281.44, + "end": 12283.9, + "probability": 0.9839 + }, + { + "start": 12284.48, + "end": 12286.4, + "probability": 0.9824 + }, + { + "start": 12287.92, + "end": 12292.38, + "probability": 0.9614 + }, + { + "start": 12293.2, + "end": 12297.52, + "probability": 0.7761 + }, + { + "start": 12298.18, + "end": 12300.72, + "probability": 0.9275 + }, + { + "start": 12303.02, + "end": 12307.54, + "probability": 0.9914 + }, + { + "start": 12307.88, + "end": 12312.86, + "probability": 0.9932 + }, + { + "start": 12312.98, + "end": 12314.84, + "probability": 0.9584 + }, + { + "start": 12315.18, + "end": 12318.9, + "probability": 0.9973 + }, + { + "start": 12319.8, + "end": 12326.32, + "probability": 0.9974 + }, + { + "start": 12326.32, + "end": 12335.0, + "probability": 0.9397 + }, + { + "start": 12335.52, + "end": 12336.64, + "probability": 0.8918 + }, + { + "start": 12337.4, + "end": 12340.88, + "probability": 0.9468 + }, + { + "start": 12341.5, + "end": 12346.78, + "probability": 0.9972 + }, + { + "start": 12347.42, + "end": 12349.7, + "probability": 0.9604 + }, + { + "start": 12350.4, + "end": 12351.4, + "probability": 0.7221 + }, + { + "start": 12351.6, + "end": 12355.34, + "probability": 0.9831 + }, + { + "start": 12356.38, + "end": 12361.16, + "probability": 0.9612 + }, + { + "start": 12361.62, + "end": 12363.2, + "probability": 0.9036 + }, + { + "start": 12363.68, + "end": 12365.98, + "probability": 0.9521 + }, + { + "start": 12367.64, + "end": 12367.7, + "probability": 0.2677 + }, + { + "start": 12367.7, + "end": 12367.7, + "probability": 0.1376 + }, + { + "start": 12367.7, + "end": 12373.58, + "probability": 0.8343 + }, + { + "start": 12374.26, + "end": 12380.0, + "probability": 0.9692 + }, + { + "start": 12382.72, + "end": 12386.84, + "probability": 0.8503 + }, + { + "start": 12387.68, + "end": 12391.86, + "probability": 0.9983 + }, + { + "start": 12392.58, + "end": 12394.2, + "probability": 0.9917 + }, + { + "start": 12394.62, + "end": 12396.04, + "probability": 0.9901 + }, + { + "start": 12396.2, + "end": 12396.96, + "probability": 0.9375 + }, + { + "start": 12396.98, + "end": 12398.14, + "probability": 0.9482 + }, + { + "start": 12398.46, + "end": 12402.06, + "probability": 0.9781 + }, + { + "start": 12402.7, + "end": 12403.38, + "probability": 0.7402 + }, + { + "start": 12403.68, + "end": 12404.42, + "probability": 0.6664 + }, + { + "start": 12404.44, + "end": 12406.6, + "probability": 0.9307 + }, + { + "start": 12414.7, + "end": 12416.54, + "probability": 0.9744 + }, + { + "start": 12425.42, + "end": 12427.44, + "probability": 0.6674 + }, + { + "start": 12428.24, + "end": 12431.14, + "probability": 0.9792 + }, + { + "start": 12431.84, + "end": 12433.66, + "probability": 0.9702 + }, + { + "start": 12434.28, + "end": 12436.66, + "probability": 0.9813 + }, + { + "start": 12436.66, + "end": 12439.06, + "probability": 0.9919 + }, + { + "start": 12439.28, + "end": 12441.26, + "probability": 0.7903 + }, + { + "start": 12441.34, + "end": 12443.62, + "probability": 0.9844 + }, + { + "start": 12444.34, + "end": 12446.74, + "probability": 0.9195 + }, + { + "start": 12447.0, + "end": 12447.44, + "probability": 0.7349 + }, + { + "start": 12447.82, + "end": 12449.78, + "probability": 0.9501 + }, + { + "start": 12450.14, + "end": 12450.7, + "probability": 0.7883 + }, + { + "start": 12451.3, + "end": 12453.59, + "probability": 0.939 + }, + { + "start": 12454.3, + "end": 12456.93, + "probability": 0.9937 + }, + { + "start": 12457.12, + "end": 12458.77, + "probability": 0.9756 + }, + { + "start": 12459.66, + "end": 12460.66, + "probability": 0.5907 + }, + { + "start": 12461.22, + "end": 12462.16, + "probability": 0.7157 + }, + { + "start": 12462.66, + "end": 12465.54, + "probability": 0.9733 + }, + { + "start": 12466.02, + "end": 12467.54, + "probability": 0.4348 + }, + { + "start": 12468.46, + "end": 12469.44, + "probability": 0.0584 + }, + { + "start": 12469.56, + "end": 12470.48, + "probability": 0.0219 + }, + { + "start": 12480.66, + "end": 12482.1, + "probability": 0.0687 + }, + { + "start": 12498.02, + "end": 12499.82, + "probability": 0.6422 + }, + { + "start": 12500.36, + "end": 12503.36, + "probability": 0.8102 + }, + { + "start": 12504.02, + "end": 12507.05, + "probability": 0.9805 + }, + { + "start": 12507.28, + "end": 12507.52, + "probability": 0.7118 + }, + { + "start": 12507.62, + "end": 12511.1, + "probability": 0.8612 + }, + { + "start": 12511.26, + "end": 12514.44, + "probability": 0.9884 + }, + { + "start": 12514.44, + "end": 12517.44, + "probability": 0.6064 + }, + { + "start": 12517.44, + "end": 12517.44, + "probability": 0.3478 + }, + { + "start": 12517.44, + "end": 12523.64, + "probability": 0.9558 + }, + { + "start": 12523.98, + "end": 12527.4, + "probability": 0.0624 + }, + { + "start": 12529.08, + "end": 12529.1, + "probability": 0.0397 + }, + { + "start": 12529.1, + "end": 12529.1, + "probability": 0.0673 + }, + { + "start": 12529.1, + "end": 12533.42, + "probability": 0.9487 + }, + { + "start": 12534.8, + "end": 12539.2, + "probability": 0.937 + }, + { + "start": 12539.2, + "end": 12546.94, + "probability": 0.9001 + }, + { + "start": 12548.2, + "end": 12552.14, + "probability": 0.9619 + }, + { + "start": 12552.54, + "end": 12553.92, + "probability": 0.7435 + }, + { + "start": 12554.54, + "end": 12556.36, + "probability": 0.7822 + }, + { + "start": 12556.78, + "end": 12559.44, + "probability": 0.8405 + }, + { + "start": 12559.54, + "end": 12561.96, + "probability": 0.5881 + }, + { + "start": 12562.88, + "end": 12562.88, + "probability": 0.0504 + }, + { + "start": 12562.88, + "end": 12563.98, + "probability": 0.7181 + }, + { + "start": 12563.98, + "end": 12565.0, + "probability": 0.951 + }, + { + "start": 12565.52, + "end": 12567.42, + "probability": 0.8847 + }, + { + "start": 12567.68, + "end": 12568.66, + "probability": 0.601 + }, + { + "start": 12570.38, + "end": 12570.46, + "probability": 0.3271 + }, + { + "start": 12570.46, + "end": 12572.04, + "probability": 0.4646 + }, + { + "start": 12572.38, + "end": 12572.48, + "probability": 0.0145 + }, + { + "start": 12574.28, + "end": 12575.68, + "probability": 0.3882 + }, + { + "start": 12576.42, + "end": 12577.48, + "probability": 0.7078 + }, + { + "start": 12577.66, + "end": 12578.14, + "probability": 0.662 + }, + { + "start": 12581.2, + "end": 12583.6, + "probability": 0.3081 + }, + { + "start": 12583.66, + "end": 12584.94, + "probability": 0.3835 + }, + { + "start": 12585.92, + "end": 12587.34, + "probability": 0.1298 + }, + { + "start": 12589.42, + "end": 12590.66, + "probability": 0.3585 + }, + { + "start": 12593.32, + "end": 12593.96, + "probability": 0.3249 + }, + { + "start": 12593.96, + "end": 12593.98, + "probability": 0.0394 + }, + { + "start": 12593.98, + "end": 12593.98, + "probability": 0.5812 + }, + { + "start": 12593.98, + "end": 12593.98, + "probability": 0.1422 + }, + { + "start": 12593.98, + "end": 12595.44, + "probability": 0.7877 + }, + { + "start": 12595.92, + "end": 12598.5, + "probability": 0.9979 + }, + { + "start": 12598.5, + "end": 12602.06, + "probability": 0.9659 + }, + { + "start": 12602.12, + "end": 12603.88, + "probability": 0.9915 + }, + { + "start": 12604.36, + "end": 12608.0, + "probability": 0.9532 + }, + { + "start": 12608.2, + "end": 12610.64, + "probability": 0.9599 + }, + { + "start": 12611.1, + "end": 12611.64, + "probability": 0.5064 + }, + { + "start": 12612.22, + "end": 12613.18, + "probability": 0.9974 + }, + { + "start": 12613.76, + "end": 12614.72, + "probability": 0.5728 + }, + { + "start": 12615.14, + "end": 12619.0, + "probability": 0.9907 + }, + { + "start": 12619.68, + "end": 12620.16, + "probability": 0.4269 + }, + { + "start": 12620.48, + "end": 12623.56, + "probability": 0.9953 + }, + { + "start": 12623.96, + "end": 12628.9, + "probability": 0.9917 + }, + { + "start": 12629.46, + "end": 12630.48, + "probability": 0.734 + }, + { + "start": 12630.54, + "end": 12632.44, + "probability": 0.51 + }, + { + "start": 12632.94, + "end": 12634.1, + "probability": 0.7483 + }, + { + "start": 12634.54, + "end": 12635.22, + "probability": 0.69 + }, + { + "start": 12635.48, + "end": 12638.42, + "probability": 0.9982 + }, + { + "start": 12638.92, + "end": 12639.24, + "probability": 0.851 + }, + { + "start": 12639.82, + "end": 12641.78, + "probability": 0.9864 + }, + { + "start": 12642.26, + "end": 12644.52, + "probability": 0.9976 + }, + { + "start": 12644.94, + "end": 12646.62, + "probability": 0.6981 + }, + { + "start": 12647.16, + "end": 12648.42, + "probability": 0.9704 + }, + { + "start": 12649.04, + "end": 12650.62, + "probability": 0.9349 + }, + { + "start": 12650.94, + "end": 12651.64, + "probability": 0.934 + }, + { + "start": 12651.98, + "end": 12654.34, + "probability": 0.9839 + }, + { + "start": 12654.86, + "end": 12656.0, + "probability": 0.9404 + }, + { + "start": 12656.32, + "end": 12660.38, + "probability": 0.9246 + }, + { + "start": 12660.8, + "end": 12661.92, + "probability": 0.5455 + }, + { + "start": 12662.34, + "end": 12663.92, + "probability": 0.7737 + }, + { + "start": 12664.56, + "end": 12668.24, + "probability": 0.994 + }, + { + "start": 12668.46, + "end": 12673.22, + "probability": 0.9251 + }, + { + "start": 12673.64, + "end": 12674.9, + "probability": 0.6125 + }, + { + "start": 12675.08, + "end": 12675.44, + "probability": 0.7233 + }, + { + "start": 12675.8, + "end": 12680.74, + "probability": 0.9975 + }, + { + "start": 12681.24, + "end": 12685.64, + "probability": 0.9058 + }, + { + "start": 12686.0, + "end": 12689.24, + "probability": 0.9869 + }, + { + "start": 12689.7, + "end": 12691.78, + "probability": 0.9729 + }, + { + "start": 12692.12, + "end": 12694.58, + "probability": 0.9976 + }, + { + "start": 12694.78, + "end": 12695.97, + "probability": 0.9834 + }, + { + "start": 12696.46, + "end": 12698.95, + "probability": 0.995 + }, + { + "start": 12699.34, + "end": 12700.56, + "probability": 0.8876 + }, + { + "start": 12701.52, + "end": 12704.52, + "probability": 0.8678 + }, + { + "start": 12704.68, + "end": 12707.93, + "probability": 0.9976 + }, + { + "start": 12708.78, + "end": 12710.84, + "probability": 0.9966 + }, + { + "start": 12711.34, + "end": 12712.08, + "probability": 0.8896 + }, + { + "start": 12713.0, + "end": 12714.0, + "probability": 0.8236 + }, + { + "start": 12714.28, + "end": 12714.8, + "probability": 0.6476 + }, + { + "start": 12715.14, + "end": 12719.08, + "probability": 0.8131 + }, + { + "start": 12719.58, + "end": 12725.32, + "probability": 0.998 + }, + { + "start": 12725.68, + "end": 12729.94, + "probability": 0.9958 + }, + { + "start": 12730.88, + "end": 12733.8, + "probability": 0.9708 + }, + { + "start": 12734.84, + "end": 12738.12, + "probability": 0.9779 + }, + { + "start": 12738.24, + "end": 12739.66, + "probability": 0.9475 + }, + { + "start": 12740.08, + "end": 12742.38, + "probability": 0.9124 + }, + { + "start": 12742.74, + "end": 12746.28, + "probability": 0.9936 + }, + { + "start": 12746.28, + "end": 12749.14, + "probability": 0.9984 + }, + { + "start": 12749.56, + "end": 12753.72, + "probability": 0.9932 + }, + { + "start": 12754.08, + "end": 12754.71, + "probability": 0.9879 + }, + { + "start": 12755.42, + "end": 12756.02, + "probability": 0.9888 + }, + { + "start": 12756.6, + "end": 12759.28, + "probability": 0.9866 + }, + { + "start": 12759.86, + "end": 12761.02, + "probability": 0.9178 + }, + { + "start": 12761.36, + "end": 12764.9, + "probability": 0.9956 + }, + { + "start": 12765.18, + "end": 12767.28, + "probability": 0.996 + }, + { + "start": 12767.68, + "end": 12768.88, + "probability": 0.7887 + }, + { + "start": 12769.28, + "end": 12771.02, + "probability": 0.9949 + }, + { + "start": 12771.42, + "end": 12773.06, + "probability": 0.9921 + }, + { + "start": 12773.32, + "end": 12774.84, + "probability": 0.9745 + }, + { + "start": 12775.08, + "end": 12776.26, + "probability": 0.7566 + }, + { + "start": 12776.64, + "end": 12777.8, + "probability": 0.9897 + }, + { + "start": 12778.6, + "end": 12782.16, + "probability": 0.915 + }, + { + "start": 12782.54, + "end": 12784.02, + "probability": 0.9534 + }, + { + "start": 12784.36, + "end": 12787.24, + "probability": 0.9954 + }, + { + "start": 12787.6, + "end": 12788.22, + "probability": 0.8584 + }, + { + "start": 12788.78, + "end": 12790.36, + "probability": 0.9484 + }, + { + "start": 12790.38, + "end": 12790.88, + "probability": 0.829 + }, + { + "start": 12792.02, + "end": 12794.38, + "probability": 0.8457 + }, + { + "start": 12795.84, + "end": 12797.64, + "probability": 0.4296 + }, + { + "start": 12817.3, + "end": 12818.64, + "probability": 0.1632 + }, + { + "start": 12818.8, + "end": 12820.52, + "probability": 0.5355 + }, + { + "start": 12821.5, + "end": 12825.1, + "probability": 0.978 + }, + { + "start": 12826.38, + "end": 12827.76, + "probability": 0.8019 + }, + { + "start": 12828.98, + "end": 12831.34, + "probability": 0.967 + }, + { + "start": 12831.44, + "end": 12833.62, + "probability": 0.9923 + }, + { + "start": 12833.64, + "end": 12834.54, + "probability": 0.8461 + }, + { + "start": 12834.62, + "end": 12837.98, + "probability": 0.9535 + }, + { + "start": 12838.56, + "end": 12840.9, + "probability": 0.9448 + }, + { + "start": 12841.32, + "end": 12844.5, + "probability": 0.9474 + }, + { + "start": 12845.02, + "end": 12848.44, + "probability": 0.9976 + }, + { + "start": 12848.62, + "end": 12849.46, + "probability": 0.9937 + }, + { + "start": 12850.02, + "end": 12851.16, + "probability": 0.966 + }, + { + "start": 12852.74, + "end": 12853.02, + "probability": 0.6689 + }, + { + "start": 12853.06, + "end": 12854.34, + "probability": 0.9715 + }, + { + "start": 12854.38, + "end": 12857.28, + "probability": 0.9945 + }, + { + "start": 12858.86, + "end": 12861.3, + "probability": 0.8677 + }, + { + "start": 12861.62, + "end": 12864.08, + "probability": 0.9991 + }, + { + "start": 12865.16, + "end": 12867.62, + "probability": 0.8669 + }, + { + "start": 12869.68, + "end": 12872.4, + "probability": 0.9816 + }, + { + "start": 12872.88, + "end": 12873.56, + "probability": 0.4886 + }, + { + "start": 12873.7, + "end": 12875.52, + "probability": 0.9971 + }, + { + "start": 12876.14, + "end": 12876.68, + "probability": 0.6728 + }, + { + "start": 12877.22, + "end": 12877.94, + "probability": 0.6599 + }, + { + "start": 12878.16, + "end": 12881.48, + "probability": 0.9879 + }, + { + "start": 12881.48, + "end": 12886.4, + "probability": 0.92 + }, + { + "start": 12886.88, + "end": 12888.3, + "probability": 0.9622 + }, + { + "start": 12888.96, + "end": 12891.44, + "probability": 0.8406 + }, + { + "start": 12891.94, + "end": 12894.72, + "probability": 0.9963 + }, + { + "start": 12895.06, + "end": 12895.12, + "probability": 0.39 + }, + { + "start": 12895.56, + "end": 12896.04, + "probability": 0.817 + }, + { + "start": 12896.12, + "end": 12896.68, + "probability": 0.8538 + }, + { + "start": 12896.78, + "end": 12900.54, + "probability": 0.8353 + }, + { + "start": 12900.68, + "end": 12900.68, + "probability": 0.3059 + }, + { + "start": 12900.7, + "end": 12901.98, + "probability": 0.9318 + }, + { + "start": 12902.34, + "end": 12905.88, + "probability": 0.7152 + }, + { + "start": 12906.7, + "end": 12909.44, + "probability": 0.9987 + }, + { + "start": 12910.06, + "end": 12910.3, + "probability": 0.5924 + }, + { + "start": 12910.46, + "end": 12911.78, + "probability": 0.8167 + }, + { + "start": 12912.22, + "end": 12915.14, + "probability": 0.9893 + }, + { + "start": 12915.14, + "end": 12920.02, + "probability": 0.9973 + }, + { + "start": 12921.04, + "end": 12922.62, + "probability": 0.8162 + }, + { + "start": 12922.66, + "end": 12923.84, + "probability": 0.968 + }, + { + "start": 12924.16, + "end": 12931.94, + "probability": 0.9961 + }, + { + "start": 12932.32, + "end": 12933.44, + "probability": 0.6695 + }, + { + "start": 12933.5, + "end": 12937.46, + "probability": 0.9992 + }, + { + "start": 12937.46, + "end": 12940.76, + "probability": 0.9976 + }, + { + "start": 12941.34, + "end": 12942.0, + "probability": 0.7335 + }, + { + "start": 12942.42, + "end": 12943.18, + "probability": 0.9439 + }, + { + "start": 12943.78, + "end": 12944.3, + "probability": 0.8088 + }, + { + "start": 12944.48, + "end": 12947.2, + "probability": 0.9889 + }, + { + "start": 12947.68, + "end": 12949.48, + "probability": 0.9904 + }, + { + "start": 12950.36, + "end": 12953.68, + "probability": 0.9846 + }, + { + "start": 12954.4, + "end": 12955.56, + "probability": 0.2835 + }, + { + "start": 12955.76, + "end": 12958.75, + "probability": 0.9912 + }, + { + "start": 12959.12, + "end": 12961.09, + "probability": 0.854 + }, + { + "start": 12961.64, + "end": 12963.98, + "probability": 0.7803 + }, + { + "start": 12964.6, + "end": 12965.4, + "probability": 0.7578 + }, + { + "start": 12965.48, + "end": 12966.18, + "probability": 0.9756 + }, + { + "start": 12966.24, + "end": 12966.84, + "probability": 0.9801 + }, + { + "start": 12966.92, + "end": 12968.08, + "probability": 0.9807 + }, + { + "start": 12968.16, + "end": 12972.58, + "probability": 0.9736 + }, + { + "start": 12973.46, + "end": 12974.96, + "probability": 0.9685 + }, + { + "start": 12975.3, + "end": 12977.9, + "probability": 0.9958 + }, + { + "start": 12978.04, + "end": 12980.2, + "probability": 0.848 + }, + { + "start": 12980.36, + "end": 12983.14, + "probability": 0.9844 + }, + { + "start": 12983.34, + "end": 12984.48, + "probability": 0.8607 + }, + { + "start": 12984.56, + "end": 12985.74, + "probability": 0.9993 + }, + { + "start": 12986.6, + "end": 12990.06, + "probability": 0.9804 + }, + { + "start": 12990.74, + "end": 12992.54, + "probability": 0.9764 + }, + { + "start": 12992.68, + "end": 12994.08, + "probability": 0.9937 + }, + { + "start": 12994.12, + "end": 12996.02, + "probability": 0.9468 + }, + { + "start": 12996.46, + "end": 12998.22, + "probability": 0.9899 + }, + { + "start": 12999.1, + "end": 13003.72, + "probability": 0.9451 + }, + { + "start": 13003.72, + "end": 13007.1, + "probability": 0.9548 + }, + { + "start": 13007.4, + "end": 13009.5, + "probability": 0.9868 + }, + { + "start": 13009.52, + "end": 13009.52, + "probability": 0.396 + }, + { + "start": 13009.52, + "end": 13013.36, + "probability": 0.9484 + }, + { + "start": 13013.7, + "end": 13013.74, + "probability": 0.5852 + }, + { + "start": 13013.82, + "end": 13014.32, + "probability": 0.6165 + }, + { + "start": 13014.4, + "end": 13015.9, + "probability": 0.7937 + }, + { + "start": 13016.42, + "end": 13016.9, + "probability": 0.8762 + }, + { + "start": 13020.84, + "end": 13028.52, + "probability": 0.808 + }, + { + "start": 13039.78, + "end": 13040.36, + "probability": 0.8411 + }, + { + "start": 13040.86, + "end": 13044.36, + "probability": 0.9805 + }, + { + "start": 13044.44, + "end": 13046.18, + "probability": 0.9728 + }, + { + "start": 13046.5, + "end": 13048.84, + "probability": 0.7748 + }, + { + "start": 13048.86, + "end": 13050.56, + "probability": 0.9601 + }, + { + "start": 13051.18, + "end": 13054.02, + "probability": 0.9911 + }, + { + "start": 13054.64, + "end": 13059.46, + "probability": 0.9844 + }, + { + "start": 13059.58, + "end": 13062.16, + "probability": 0.9755 + }, + { + "start": 13062.84, + "end": 13065.18, + "probability": 0.9755 + }, + { + "start": 13065.68, + "end": 13069.94, + "probability": 0.9977 + }, + { + "start": 13069.94, + "end": 13073.38, + "probability": 0.9743 + }, + { + "start": 13073.86, + "end": 13075.08, + "probability": 0.9359 + }, + { + "start": 13075.3, + "end": 13076.08, + "probability": 0.9868 + }, + { + "start": 13076.16, + "end": 13081.36, + "probability": 0.9814 + }, + { + "start": 13081.68, + "end": 13086.46, + "probability": 0.9983 + }, + { + "start": 13086.82, + "end": 13087.08, + "probability": 0.9016 + }, + { + "start": 13087.16, + "end": 13088.02, + "probability": 0.7514 + }, + { + "start": 13088.36, + "end": 13093.24, + "probability": 0.7943 + }, + { + "start": 13093.28, + "end": 13095.54, + "probability": 0.7765 + }, + { + "start": 13096.02, + "end": 13097.16, + "probability": 0.9966 + }, + { + "start": 13097.7, + "end": 13101.88, + "probability": 0.9728 + }, + { + "start": 13102.02, + "end": 13104.12, + "probability": 0.6366 + }, + { + "start": 13104.64, + "end": 13106.72, + "probability": 0.9948 + }, + { + "start": 13107.2, + "end": 13109.68, + "probability": 0.9837 + }, + { + "start": 13109.8, + "end": 13110.36, + "probability": 0.9354 + }, + { + "start": 13110.78, + "end": 13112.66, + "probability": 0.9872 + }, + { + "start": 13112.78, + "end": 13113.88, + "probability": 0.8035 + }, + { + "start": 13114.36, + "end": 13118.12, + "probability": 0.7391 + }, + { + "start": 13118.28, + "end": 13119.86, + "probability": 0.8839 + }, + { + "start": 13120.38, + "end": 13126.06, + "probability": 0.8055 + }, + { + "start": 13126.32, + "end": 13128.22, + "probability": 0.9787 + }, + { + "start": 13128.64, + "end": 13131.7, + "probability": 0.9739 + }, + { + "start": 13131.86, + "end": 13133.08, + "probability": 0.9421 + }, + { + "start": 13133.24, + "end": 13134.77, + "probability": 0.9668 + }, + { + "start": 13135.44, + "end": 13136.58, + "probability": 0.9253 + }, + { + "start": 13136.84, + "end": 13138.2, + "probability": 0.8526 + }, + { + "start": 13138.62, + "end": 13142.52, + "probability": 0.9885 + }, + { + "start": 13142.96, + "end": 13145.02, + "probability": 0.9616 + }, + { + "start": 13145.14, + "end": 13145.91, + "probability": 0.382 + }, + { + "start": 13146.0, + "end": 13146.64, + "probability": 0.7817 + }, + { + "start": 13147.02, + "end": 13149.06, + "probability": 0.863 + }, + { + "start": 13149.64, + "end": 13152.18, + "probability": 0.7904 + }, + { + "start": 13152.18, + "end": 13154.72, + "probability": 0.988 + }, + { + "start": 13155.22, + "end": 13158.34, + "probability": 0.8495 + }, + { + "start": 13158.44, + "end": 13160.34, + "probability": 0.9409 + }, + { + "start": 13160.62, + "end": 13161.38, + "probability": 0.7307 + }, + { + "start": 13161.46, + "end": 13162.52, + "probability": 0.9601 + }, + { + "start": 13162.52, + "end": 13162.66, + "probability": 0.8036 + }, + { + "start": 13162.8, + "end": 13163.8, + "probability": 0.9622 + }, + { + "start": 13164.36, + "end": 13165.79, + "probability": 0.9896 + }, + { + "start": 13165.86, + "end": 13169.82, + "probability": 0.9884 + }, + { + "start": 13169.94, + "end": 13171.58, + "probability": 0.9679 + }, + { + "start": 13171.96, + "end": 13173.34, + "probability": 0.9525 + }, + { + "start": 13173.66, + "end": 13175.74, + "probability": 0.9581 + }, + { + "start": 13175.9, + "end": 13176.44, + "probability": 0.728 + }, + { + "start": 13176.82, + "end": 13178.6, + "probability": 0.9941 + }, + { + "start": 13178.88, + "end": 13180.12, + "probability": 0.911 + }, + { + "start": 13180.24, + "end": 13182.66, + "probability": 0.99 + }, + { + "start": 13182.82, + "end": 13185.6, + "probability": 0.9749 + }, + { + "start": 13185.68, + "end": 13187.16, + "probability": 0.8017 + }, + { + "start": 13187.22, + "end": 13188.04, + "probability": 0.6754 + }, + { + "start": 13188.38, + "end": 13191.1, + "probability": 0.9529 + }, + { + "start": 13191.22, + "end": 13192.16, + "probability": 0.9647 + }, + { + "start": 13192.26, + "end": 13194.76, + "probability": 0.8955 + }, + { + "start": 13195.04, + "end": 13200.72, + "probability": 0.9855 + }, + { + "start": 13201.22, + "end": 13202.06, + "probability": 0.8969 + }, + { + "start": 13202.14, + "end": 13203.18, + "probability": 0.889 + }, + { + "start": 13203.24, + "end": 13203.99, + "probability": 0.6199 + }, + { + "start": 13204.66, + "end": 13206.18, + "probability": 0.9902 + }, + { + "start": 13207.2, + "end": 13208.68, + "probability": 0.881 + }, + { + "start": 13208.8, + "end": 13209.16, + "probability": 0.8602 + }, + { + "start": 13209.34, + "end": 13211.88, + "probability": 0.946 + }, + { + "start": 13212.08, + "end": 13214.38, + "probability": 0.9251 + }, + { + "start": 13214.38, + "end": 13217.0, + "probability": 0.9785 + }, + { + "start": 13217.28, + "end": 13218.3, + "probability": 0.9971 + }, + { + "start": 13218.6, + "end": 13220.38, + "probability": 0.9868 + }, + { + "start": 13220.86, + "end": 13222.16, + "probability": 0.9756 + }, + { + "start": 13222.28, + "end": 13222.87, + "probability": 0.9473 + }, + { + "start": 13223.1, + "end": 13224.64, + "probability": 0.9062 + }, + { + "start": 13225.04, + "end": 13226.32, + "probability": 0.924 + }, + { + "start": 13226.5, + "end": 13228.02, + "probability": 0.9668 + }, + { + "start": 13228.44, + "end": 13232.7, + "probability": 0.8857 + }, + { + "start": 13233.1, + "end": 13235.46, + "probability": 0.9745 + }, + { + "start": 13236.06, + "end": 13237.05, + "probability": 0.6617 + }, + { + "start": 13237.62, + "end": 13238.82, + "probability": 0.9636 + }, + { + "start": 13239.16, + "end": 13243.32, + "probability": 0.9611 + }, + { + "start": 13243.8, + "end": 13245.08, + "probability": 0.9214 + }, + { + "start": 13245.54, + "end": 13246.6, + "probability": 0.998 + }, + { + "start": 13246.72, + "end": 13247.74, + "probability": 0.9967 + }, + { + "start": 13248.08, + "end": 13248.12, + "probability": 0.6292 + }, + { + "start": 13248.12, + "end": 13248.26, + "probability": 0.3611 + }, + { + "start": 13248.3, + "end": 13249.06, + "probability": 0.8495 + }, + { + "start": 13249.18, + "end": 13251.36, + "probability": 0.9089 + }, + { + "start": 13251.52, + "end": 13254.36, + "probability": 0.9883 + }, + { + "start": 13254.36, + "end": 13256.44, + "probability": 0.9968 + }, + { + "start": 13256.8, + "end": 13258.18, + "probability": 0.9559 + }, + { + "start": 13258.4, + "end": 13259.26, + "probability": 0.9371 + }, + { + "start": 13259.54, + "end": 13260.56, + "probability": 0.5816 + }, + { + "start": 13260.62, + "end": 13261.22, + "probability": 0.2849 + }, + { + "start": 13261.56, + "end": 13263.56, + "probability": 0.8634 + }, + { + "start": 13263.6, + "end": 13265.38, + "probability": 0.9553 + }, + { + "start": 13266.04, + "end": 13267.22, + "probability": 0.8556 + }, + { + "start": 13267.54, + "end": 13270.28, + "probability": 0.8973 + }, + { + "start": 13270.28, + "end": 13270.28, + "probability": 0.2886 + }, + { + "start": 13270.3, + "end": 13270.3, + "probability": 0.3187 + }, + { + "start": 13270.42, + "end": 13272.3, + "probability": 0.9601 + }, + { + "start": 13272.7, + "end": 13273.28, + "probability": 0.5598 + }, + { + "start": 13273.6, + "end": 13275.2, + "probability": 0.9272 + }, + { + "start": 13276.63, + "end": 13278.96, + "probability": 0.981 + }, + { + "start": 13279.48, + "end": 13280.32, + "probability": 0.9532 + }, + { + "start": 13283.08, + "end": 13284.47, + "probability": 0.9286 + }, + { + "start": 13285.32, + "end": 13285.99, + "probability": 0.2003 + }, + { + "start": 13286.96, + "end": 13288.96, + "probability": 0.3673 + }, + { + "start": 13290.52, + "end": 13292.6, + "probability": 0.6048 + }, + { + "start": 13293.18, + "end": 13294.27, + "probability": 0.6706 + }, + { + "start": 13295.08, + "end": 13298.18, + "probability": 0.9576 + }, + { + "start": 13298.66, + "end": 13299.82, + "probability": 0.8161 + }, + { + "start": 13299.88, + "end": 13300.96, + "probability": 0.6648 + }, + { + "start": 13301.74, + "end": 13305.34, + "probability": 0.9688 + }, + { + "start": 13305.54, + "end": 13306.84, + "probability": 0.9674 + }, + { + "start": 13306.94, + "end": 13309.92, + "probability": 0.9711 + }, + { + "start": 13310.44, + "end": 13318.7, + "probability": 0.8275 + }, + { + "start": 13319.5, + "end": 13327.34, + "probability": 0.9919 + }, + { + "start": 13327.9, + "end": 13328.58, + "probability": 0.6696 + }, + { + "start": 13329.9, + "end": 13332.06, + "probability": 0.9692 + }, + { + "start": 13333.56, + "end": 13335.06, + "probability": 0.7576 + }, + { + "start": 13335.88, + "end": 13337.66, + "probability": 0.9156 + }, + { + "start": 13338.36, + "end": 13342.22, + "probability": 0.9987 + }, + { + "start": 13342.22, + "end": 13347.88, + "probability": 0.9971 + }, + { + "start": 13348.94, + "end": 13355.52, + "probability": 0.9786 + }, + { + "start": 13356.6, + "end": 13359.32, + "probability": 0.9823 + }, + { + "start": 13360.9, + "end": 13364.24, + "probability": 0.996 + }, + { + "start": 13365.26, + "end": 13366.62, + "probability": 0.7637 + }, + { + "start": 13366.86, + "end": 13369.72, + "probability": 0.9358 + }, + { + "start": 13370.24, + "end": 13371.76, + "probability": 0.9519 + }, + { + "start": 13372.4, + "end": 13377.78, + "probability": 0.969 + }, + { + "start": 13378.36, + "end": 13386.26, + "probability": 0.9775 + }, + { + "start": 13387.04, + "end": 13388.52, + "probability": 0.9783 + }, + { + "start": 13389.22, + "end": 13394.74, + "probability": 0.9847 + }, + { + "start": 13395.5, + "end": 13399.36, + "probability": 0.957 + }, + { + "start": 13400.08, + "end": 13402.76, + "probability": 0.8335 + }, + { + "start": 13403.28, + "end": 13406.16, + "probability": 0.9977 + }, + { + "start": 13406.58, + "end": 13408.48, + "probability": 0.9633 + }, + { + "start": 13408.56, + "end": 13410.54, + "probability": 0.9573 + }, + { + "start": 13410.78, + "end": 13412.18, + "probability": 0.7808 + }, + { + "start": 13414.12, + "end": 13414.94, + "probability": 0.8605 + }, + { + "start": 13415.86, + "end": 13420.94, + "probability": 0.9684 + }, + { + "start": 13421.22, + "end": 13426.86, + "probability": 0.9952 + }, + { + "start": 13427.04, + "end": 13427.56, + "probability": 0.7406 + }, + { + "start": 13428.08, + "end": 13431.38, + "probability": 0.9951 + }, + { + "start": 13431.92, + "end": 13433.86, + "probability": 0.9942 + }, + { + "start": 13434.36, + "end": 13434.86, + "probability": 0.9812 + }, + { + "start": 13436.22, + "end": 13439.97, + "probability": 0.6561 + }, + { + "start": 13441.18, + "end": 13449.26, + "probability": 0.9437 + }, + { + "start": 13450.06, + "end": 13451.22, + "probability": 0.725 + }, + { + "start": 13451.84, + "end": 13456.24, + "probability": 0.978 + }, + { + "start": 13456.6, + "end": 13458.9, + "probability": 0.9668 + }, + { + "start": 13459.24, + "end": 13460.9, + "probability": 0.8091 + }, + { + "start": 13461.68, + "end": 13465.16, + "probability": 0.9856 + }, + { + "start": 13465.82, + "end": 13469.32, + "probability": 0.9821 + }, + { + "start": 13469.84, + "end": 13471.18, + "probability": 0.9756 + }, + { + "start": 13471.54, + "end": 13477.88, + "probability": 0.9958 + }, + { + "start": 13478.1, + "end": 13478.93, + "probability": 0.8223 + }, + { + "start": 13479.4, + "end": 13484.4, + "probability": 0.9694 + }, + { + "start": 13484.64, + "end": 13490.16, + "probability": 0.9945 + }, + { + "start": 13490.18, + "end": 13490.54, + "probability": 0.7176 + }, + { + "start": 13490.56, + "end": 13491.14, + "probability": 0.5478 + }, + { + "start": 13491.2, + "end": 13494.0, + "probability": 0.8683 + }, + { + "start": 13512.98, + "end": 13515.66, + "probability": 0.7676 + }, + { + "start": 13518.18, + "end": 13521.16, + "probability": 0.9876 + }, + { + "start": 13522.68, + "end": 13523.88, + "probability": 0.9867 + }, + { + "start": 13525.2, + "end": 13526.56, + "probability": 0.8779 + }, + { + "start": 13528.2, + "end": 13531.6, + "probability": 0.9925 + }, + { + "start": 13533.94, + "end": 13535.06, + "probability": 0.9661 + }, + { + "start": 13535.8, + "end": 13537.84, + "probability": 0.9857 + }, + { + "start": 13539.32, + "end": 13544.08, + "probability": 0.7503 + }, + { + "start": 13545.1, + "end": 13545.64, + "probability": 0.3673 + }, + { + "start": 13547.9, + "end": 13553.72, + "probability": 0.9583 + }, + { + "start": 13554.54, + "end": 13558.52, + "probability": 0.9506 + }, + { + "start": 13559.54, + "end": 13561.12, + "probability": 0.8495 + }, + { + "start": 13562.0, + "end": 13562.98, + "probability": 0.961 + }, + { + "start": 13563.88, + "end": 13564.58, + "probability": 0.8407 + }, + { + "start": 13565.48, + "end": 13569.74, + "probability": 0.9017 + }, + { + "start": 13571.08, + "end": 13572.7, + "probability": 0.7945 + }, + { + "start": 13572.84, + "end": 13573.2, + "probability": 0.9361 + }, + { + "start": 13575.52, + "end": 13579.52, + "probability": 0.9852 + }, + { + "start": 13580.2, + "end": 13585.44, + "probability": 0.8875 + }, + { + "start": 13586.84, + "end": 13590.82, + "probability": 0.8713 + }, + { + "start": 13592.38, + "end": 13594.28, + "probability": 0.9143 + }, + { + "start": 13596.58, + "end": 13598.06, + "probability": 0.9487 + }, + { + "start": 13600.1, + "end": 13604.08, + "probability": 0.9087 + }, + { + "start": 13604.24, + "end": 13606.02, + "probability": 0.9905 + }, + { + "start": 13606.56, + "end": 13607.44, + "probability": 0.95 + }, + { + "start": 13610.8, + "end": 13615.68, + "probability": 0.9917 + }, + { + "start": 13616.3, + "end": 13620.1, + "probability": 0.9828 + }, + { + "start": 13622.22, + "end": 13622.66, + "probability": 0.6481 + }, + { + "start": 13623.2, + "end": 13629.18, + "probability": 0.9954 + }, + { + "start": 13630.16, + "end": 13632.04, + "probability": 0.9855 + }, + { + "start": 13635.0, + "end": 13635.64, + "probability": 0.6689 + }, + { + "start": 13638.2, + "end": 13640.6, + "probability": 0.9544 + }, + { + "start": 13641.98, + "end": 13650.5, + "probability": 0.8552 + }, + { + "start": 13650.5, + "end": 13657.1, + "probability": 0.9618 + }, + { + "start": 13657.96, + "end": 13660.1, + "probability": 0.9816 + }, + { + "start": 13660.96, + "end": 13662.24, + "probability": 0.9451 + }, + { + "start": 13663.18, + "end": 13667.06, + "probability": 0.7999 + }, + { + "start": 13667.64, + "end": 13673.04, + "probability": 0.9946 + }, + { + "start": 13674.04, + "end": 13674.78, + "probability": 0.6691 + }, + { + "start": 13675.88, + "end": 13677.32, + "probability": 0.9757 + }, + { + "start": 13678.66, + "end": 13681.2, + "probability": 0.9497 + }, + { + "start": 13682.04, + "end": 13682.54, + "probability": 0.8465 + }, + { + "start": 13683.36, + "end": 13684.04, + "probability": 0.6102 + }, + { + "start": 13684.12, + "end": 13686.52, + "probability": 0.8446 + }, + { + "start": 13700.32, + "end": 13703.3, + "probability": 0.7126 + }, + { + "start": 13704.02, + "end": 13704.46, + "probability": 0.7038 + }, + { + "start": 13704.98, + "end": 13708.0, + "probability": 0.9904 + }, + { + "start": 13708.0, + "end": 13710.42, + "probability": 0.9191 + }, + { + "start": 13711.46, + "end": 13711.92, + "probability": 0.5239 + }, + { + "start": 13714.32, + "end": 13714.92, + "probability": 0.9518 + }, + { + "start": 13716.06, + "end": 13717.98, + "probability": 0.9969 + }, + { + "start": 13717.98, + "end": 13720.98, + "probability": 0.9556 + }, + { + "start": 13721.24, + "end": 13722.06, + "probability": 0.5735 + }, + { + "start": 13722.18, + "end": 13722.66, + "probability": 0.6555 + }, + { + "start": 13723.26, + "end": 13724.0, + "probability": 0.9883 + }, + { + "start": 13724.34, + "end": 13727.48, + "probability": 0.8625 + }, + { + "start": 13727.82, + "end": 13728.74, + "probability": 0.9427 + }, + { + "start": 13728.78, + "end": 13732.12, + "probability": 0.9968 + }, + { + "start": 13732.12, + "end": 13734.86, + "probability": 0.9924 + }, + { + "start": 13735.78, + "end": 13737.61, + "probability": 0.8204 + }, + { + "start": 13737.78, + "end": 13741.82, + "probability": 0.9691 + }, + { + "start": 13741.82, + "end": 13745.2, + "probability": 0.991 + }, + { + "start": 13745.64, + "end": 13748.1, + "probability": 0.9754 + }, + { + "start": 13748.76, + "end": 13752.98, + "probability": 0.7475 + }, + { + "start": 13752.98, + "end": 13755.52, + "probability": 0.9888 + }, + { + "start": 13755.82, + "end": 13759.64, + "probability": 0.9267 + }, + { + "start": 13760.06, + "end": 13760.32, + "probability": 0.7254 + }, + { + "start": 13760.5, + "end": 13763.92, + "probability": 0.993 + }, + { + "start": 13764.08, + "end": 13767.96, + "probability": 0.9787 + }, + { + "start": 13769.24, + "end": 13770.98, + "probability": 0.9729 + }, + { + "start": 13771.68, + "end": 13773.52, + "probability": 0.9165 + }, + { + "start": 13774.4, + "end": 13776.48, + "probability": 0.9763 + }, + { + "start": 13777.56, + "end": 13779.62, + "probability": 0.9806 + }, + { + "start": 13780.14, + "end": 13780.62, + "probability": 0.8183 + }, + { + "start": 13780.98, + "end": 13782.08, + "probability": 0.9888 + }, + { + "start": 13782.16, + "end": 13783.14, + "probability": 0.9893 + }, + { + "start": 13783.22, + "end": 13784.08, + "probability": 0.6548 + }, + { + "start": 13784.12, + "end": 13784.78, + "probability": 0.8495 + }, + { + "start": 13786.44, + "end": 13788.32, + "probability": 0.9863 + }, + { + "start": 13789.3, + "end": 13793.28, + "probability": 0.9078 + }, + { + "start": 13794.02, + "end": 13794.92, + "probability": 0.8979 + }, + { + "start": 13795.52, + "end": 13796.92, + "probability": 0.4561 + }, + { + "start": 13799.52, + "end": 13806.1, + "probability": 0.9949 + }, + { + "start": 13807.2, + "end": 13809.4, + "probability": 0.9116 + }, + { + "start": 13809.76, + "end": 13812.58, + "probability": 0.9966 + }, + { + "start": 13812.62, + "end": 13814.68, + "probability": 0.9196 + }, + { + "start": 13814.98, + "end": 13818.76, + "probability": 0.9854 + }, + { + "start": 13819.28, + "end": 13822.6, + "probability": 0.9681 + }, + { + "start": 13822.9, + "end": 13826.36, + "probability": 0.9199 + }, + { + "start": 13826.9, + "end": 13827.92, + "probability": 0.9458 + }, + { + "start": 13828.02, + "end": 13833.12, + "probability": 0.9769 + }, + { + "start": 13833.9, + "end": 13836.44, + "probability": 0.9766 + }, + { + "start": 13836.54, + "end": 13838.44, + "probability": 0.9786 + }, + { + "start": 13838.54, + "end": 13841.7, + "probability": 0.993 + }, + { + "start": 13841.84, + "end": 13842.26, + "probability": 0.5624 + }, + { + "start": 13842.7, + "end": 13846.28, + "probability": 0.9554 + }, + { + "start": 13846.36, + "end": 13848.63, + "probability": 0.9902 + }, + { + "start": 13849.0, + "end": 13851.36, + "probability": 0.884 + }, + { + "start": 13851.5, + "end": 13857.86, + "probability": 0.9416 + }, + { + "start": 13858.4, + "end": 13859.34, + "probability": 0.7963 + }, + { + "start": 13860.62, + "end": 13862.36, + "probability": 0.9793 + }, + { + "start": 13862.7, + "end": 13863.74, + "probability": 0.9836 + }, + { + "start": 13864.24, + "end": 13865.42, + "probability": 0.9777 + }, + { + "start": 13865.54, + "end": 13868.3, + "probability": 0.9938 + }, + { + "start": 13870.04, + "end": 13871.42, + "probability": 0.7089 + }, + { + "start": 13873.36, + "end": 13875.28, + "probability": 0.9463 + }, + { + "start": 13891.02, + "end": 13892.44, + "probability": 0.6226 + }, + { + "start": 13892.64, + "end": 13894.88, + "probability": 0.6728 + }, + { + "start": 13896.26, + "end": 13897.74, + "probability": 0.9517 + }, + { + "start": 13899.02, + "end": 13900.5, + "probability": 0.8695 + }, + { + "start": 13901.04, + "end": 13905.1, + "probability": 0.9965 + }, + { + "start": 13906.5, + "end": 13908.66, + "probability": 0.7205 + }, + { + "start": 13909.9, + "end": 13915.46, + "probability": 0.9757 + }, + { + "start": 13915.64, + "end": 13916.72, + "probability": 0.8731 + }, + { + "start": 13917.5, + "end": 13920.66, + "probability": 0.7986 + }, + { + "start": 13922.28, + "end": 13923.72, + "probability": 0.8285 + }, + { + "start": 13924.26, + "end": 13927.13, + "probability": 0.993 + }, + { + "start": 13927.38, + "end": 13928.0, + "probability": 0.3792 + }, + { + "start": 13929.12, + "end": 13932.94, + "probability": 0.8579 + }, + { + "start": 13933.7, + "end": 13935.74, + "probability": 0.9955 + }, + { + "start": 13937.2, + "end": 13938.86, + "probability": 0.9191 + }, + { + "start": 13939.96, + "end": 13941.96, + "probability": 0.9948 + }, + { + "start": 13942.8, + "end": 13944.4, + "probability": 0.9941 + }, + { + "start": 13945.48, + "end": 13948.58, + "probability": 0.9688 + }, + { + "start": 13952.13, + "end": 13956.92, + "probability": 0.9761 + }, + { + "start": 13959.48, + "end": 13961.46, + "probability": 0.8886 + }, + { + "start": 13962.92, + "end": 13963.62, + "probability": 0.7708 + }, + { + "start": 13966.06, + "end": 13967.5, + "probability": 0.9883 + }, + { + "start": 13968.1, + "end": 13969.78, + "probability": 0.9595 + }, + { + "start": 13969.86, + "end": 13971.3, + "probability": 0.9915 + }, + { + "start": 13972.16, + "end": 13973.62, + "probability": 0.9807 + }, + { + "start": 13974.66, + "end": 13981.46, + "probability": 0.9766 + }, + { + "start": 13981.46, + "end": 13984.2, + "probability": 0.9963 + }, + { + "start": 13985.86, + "end": 13988.7, + "probability": 0.9929 + }, + { + "start": 13989.24, + "end": 13995.98, + "probability": 0.9694 + }, + { + "start": 13997.24, + "end": 14000.66, + "probability": 0.7224 + }, + { + "start": 14001.38, + "end": 14002.76, + "probability": 0.9773 + }, + { + "start": 14002.98, + "end": 14007.1, + "probability": 0.9985 + }, + { + "start": 14008.06, + "end": 14009.76, + "probability": 0.9175 + }, + { + "start": 14010.58, + "end": 14014.48, + "probability": 0.9958 + }, + { + "start": 14015.16, + "end": 14016.4, + "probability": 0.9966 + }, + { + "start": 14017.41, + "end": 14019.58, + "probability": 0.9473 + }, + { + "start": 14020.21, + "end": 14026.08, + "probability": 0.8909 + }, + { + "start": 14026.08, + "end": 14028.9, + "probability": 0.9995 + }, + { + "start": 14029.6, + "end": 14032.4, + "probability": 0.8857 + }, + { + "start": 14032.98, + "end": 14034.26, + "probability": 0.9969 + }, + { + "start": 14034.44, + "end": 14035.9, + "probability": 0.9305 + }, + { + "start": 14036.3, + "end": 14038.05, + "probability": 0.7877 + }, + { + "start": 14038.76, + "end": 14041.08, + "probability": 0.5724 + }, + { + "start": 14041.46, + "end": 14042.54, + "probability": 0.9314 + }, + { + "start": 14042.9, + "end": 14045.24, + "probability": 0.9946 + }, + { + "start": 14045.32, + "end": 14046.48, + "probability": 0.9736 + }, + { + "start": 14046.84, + "end": 14048.44, + "probability": 0.9924 + }, + { + "start": 14049.22, + "end": 14051.54, + "probability": 0.9976 + }, + { + "start": 14052.16, + "end": 14053.68, + "probability": 0.9878 + }, + { + "start": 14054.16, + "end": 14054.92, + "probability": 0.9093 + }, + { + "start": 14055.2, + "end": 14057.04, + "probability": 0.9829 + }, + { + "start": 14057.22, + "end": 14058.72, + "probability": 0.7496 + }, + { + "start": 14058.92, + "end": 14060.72, + "probability": 0.1373 + }, + { + "start": 14060.72, + "end": 14061.84, + "probability": 0.0569 + }, + { + "start": 14062.36, + "end": 14062.7, + "probability": 0.0292 + }, + { + "start": 14062.7, + "end": 14062.7, + "probability": 0.3071 + }, + { + "start": 14062.7, + "end": 14066.0, + "probability": 0.3923 + }, + { + "start": 14066.12, + "end": 14068.72, + "probability": 0.8599 + }, + { + "start": 14069.87, + "end": 14073.16, + "probability": 0.588 + }, + { + "start": 14073.16, + "end": 14074.9, + "probability": 0.7342 + }, + { + "start": 14074.9, + "end": 14076.32, + "probability": 0.9627 + }, + { + "start": 14076.5, + "end": 14076.98, + "probability": 0.7246 + }, + { + "start": 14077.18, + "end": 14078.75, + "probability": 0.937 + }, + { + "start": 14079.22, + "end": 14079.66, + "probability": 0.6648 + }, + { + "start": 14082.3, + "end": 14083.56, + "probability": 0.7212 + }, + { + "start": 14083.56, + "end": 14086.78, + "probability": 0.8179 + }, + { + "start": 14087.12, + "end": 14088.94, + "probability": 0.8957 + }, + { + "start": 14089.42, + "end": 14091.46, + "probability": 0.9806 + }, + { + "start": 14092.29, + "end": 14096.34, + "probability": 0.7368 + }, + { + "start": 14096.84, + "end": 14097.74, + "probability": 0.7723 + }, + { + "start": 14099.94, + "end": 14100.64, + "probability": 0.5607 + }, + { + "start": 14101.2, + "end": 14104.06, + "probability": 0.697 + }, + { + "start": 14104.06, + "end": 14105.54, + "probability": 0.9751 + }, + { + "start": 14105.92, + "end": 14107.32, + "probability": 0.7843 + }, + { + "start": 14107.52, + "end": 14110.48, + "probability": 0.6418 + }, + { + "start": 14110.8, + "end": 14111.64, + "probability": 0.4283 + }, + { + "start": 14112.02, + "end": 14117.62, + "probability": 0.497 + }, + { + "start": 14117.76, + "end": 14118.88, + "probability": 0.9937 + }, + { + "start": 14120.26, + "end": 14125.22, + "probability": 0.9901 + }, + { + "start": 14125.46, + "end": 14126.82, + "probability": 0.8016 + }, + { + "start": 14127.3, + "end": 14128.68, + "probability": 0.6892 + }, + { + "start": 14128.72, + "end": 14129.5, + "probability": 0.7241 + }, + { + "start": 14130.52, + "end": 14135.46, + "probability": 0.8994 + }, + { + "start": 14135.98, + "end": 14138.26, + "probability": 0.8281 + }, + { + "start": 14138.36, + "end": 14141.14, + "probability": 0.8697 + }, + { + "start": 14141.14, + "end": 14144.72, + "probability": 0.6739 + }, + { + "start": 14144.72, + "end": 14146.5, + "probability": 0.385 + }, + { + "start": 14147.2, + "end": 14152.28, + "probability": 0.4207 + }, + { + "start": 14152.38, + "end": 14154.04, + "probability": 0.1019 + }, + { + "start": 14154.3, + "end": 14154.9, + "probability": 0.5102 + }, + { + "start": 14154.9, + "end": 14155.68, + "probability": 0.1744 + }, + { + "start": 14155.92, + "end": 14156.08, + "probability": 0.5853 + }, + { + "start": 14156.26, + "end": 14158.22, + "probability": 0.3365 + }, + { + "start": 14158.28, + "end": 14159.76, + "probability": 0.4926 + }, + { + "start": 14160.08, + "end": 14160.7, + "probability": 0.1247 + }, + { + "start": 14160.7, + "end": 14163.6, + "probability": 0.4368 + }, + { + "start": 14163.68, + "end": 14166.62, + "probability": 0.7991 + }, + { + "start": 14166.62, + "end": 14171.24, + "probability": 0.7801 + }, + { + "start": 14172.08, + "end": 14172.28, + "probability": 0.4265 + }, + { + "start": 14172.28, + "end": 14172.92, + "probability": 0.9724 + }, + { + "start": 14172.98, + "end": 14177.6, + "probability": 0.9978 + }, + { + "start": 14178.28, + "end": 14179.28, + "probability": 0.6599 + }, + { + "start": 14183.72, + "end": 14188.28, + "probability": 0.9884 + }, + { + "start": 14188.42, + "end": 14190.48, + "probability": 0.998 + }, + { + "start": 14191.0, + "end": 14196.08, + "probability": 0.9327 + }, + { + "start": 14197.42, + "end": 14201.05, + "probability": 0.8803 + }, + { + "start": 14201.98, + "end": 14207.5, + "probability": 0.9992 + }, + { + "start": 14208.2, + "end": 14209.9, + "probability": 0.9999 + }, + { + "start": 14210.06, + "end": 14210.46, + "probability": 0.7854 + }, + { + "start": 14211.92, + "end": 14212.53, + "probability": 0.9746 + }, + { + "start": 14213.6, + "end": 14221.48, + "probability": 0.9954 + }, + { + "start": 14221.52, + "end": 14222.68, + "probability": 0.9751 + }, + { + "start": 14222.84, + "end": 14224.46, + "probability": 0.8168 + }, + { + "start": 14224.64, + "end": 14225.34, + "probability": 0.1268 + }, + { + "start": 14225.58, + "end": 14230.1, + "probability": 0.7928 + }, + { + "start": 14230.14, + "end": 14230.14, + "probability": 0.0833 + }, + { + "start": 14230.14, + "end": 14230.14, + "probability": 0.0744 + }, + { + "start": 14230.18, + "end": 14234.64, + "probability": 0.9951 + }, + { + "start": 14235.08, + "end": 14237.9, + "probability": 0.9312 + }, + { + "start": 14238.02, + "end": 14239.4, + "probability": 0.2401 + }, + { + "start": 14239.8, + "end": 14242.78, + "probability": 0.6772 + }, + { + "start": 14242.78, + "end": 14243.73, + "probability": 0.7189 + }, + { + "start": 14243.88, + "end": 14244.64, + "probability": 0.4744 + }, + { + "start": 14244.76, + "end": 14249.84, + "probability": 0.9951 + }, + { + "start": 14250.26, + "end": 14255.74, + "probability": 0.9871 + }, + { + "start": 14255.84, + "end": 14259.7, + "probability": 0.9956 + }, + { + "start": 14260.14, + "end": 14263.14, + "probability": 0.7224 + }, + { + "start": 14263.85, + "end": 14266.13, + "probability": 0.0128 + }, + { + "start": 14267.34, + "end": 14267.42, + "probability": 0.1541 + }, + { + "start": 14267.42, + "end": 14267.42, + "probability": 0.0759 + }, + { + "start": 14267.42, + "end": 14268.0, + "probability": 0.2756 + }, + { + "start": 14268.3, + "end": 14269.54, + "probability": 0.6439 + }, + { + "start": 14269.62, + "end": 14272.06, + "probability": 0.1582 + }, + { + "start": 14272.32, + "end": 14272.32, + "probability": 0.2848 + }, + { + "start": 14272.32, + "end": 14273.34, + "probability": 0.6167 + }, + { + "start": 14273.4, + "end": 14274.62, + "probability": 0.8126 + }, + { + "start": 14274.78, + "end": 14276.09, + "probability": 0.8867 + }, + { + "start": 14276.28, + "end": 14279.0, + "probability": 0.9932 + }, + { + "start": 14279.2, + "end": 14283.74, + "probability": 0.9754 + }, + { + "start": 14284.04, + "end": 14285.38, + "probability": 0.7002 + }, + { + "start": 14285.6, + "end": 14287.64, + "probability": 0.9915 + }, + { + "start": 14287.88, + "end": 14292.02, + "probability": 0.9972 + }, + { + "start": 14292.48, + "end": 14297.78, + "probability": 0.8999 + }, + { + "start": 14297.94, + "end": 14298.82, + "probability": 0.3616 + }, + { + "start": 14299.06, + "end": 14301.54, + "probability": 0.8807 + }, + { + "start": 14301.74, + "end": 14301.92, + "probability": 0.7896 + }, + { + "start": 14302.2, + "end": 14303.56, + "probability": 0.981 + }, + { + "start": 14303.84, + "end": 14305.32, + "probability": 0.6206 + }, + { + "start": 14305.76, + "end": 14309.86, + "probability": 0.8377 + }, + { + "start": 14311.72, + "end": 14314.18, + "probability": 0.2255 + }, + { + "start": 14314.18, + "end": 14316.34, + "probability": 0.7466 + }, + { + "start": 14316.52, + "end": 14321.24, + "probability": 0.9794 + }, + { + "start": 14321.24, + "end": 14321.24, + "probability": 0.7536 + }, + { + "start": 14321.36, + "end": 14321.98, + "probability": 0.5149 + }, + { + "start": 14322.38, + "end": 14323.48, + "probability": 0.3264 + }, + { + "start": 14323.48, + "end": 14329.03, + "probability": 0.8724 + }, + { + "start": 14329.46, + "end": 14330.48, + "probability": 0.7058 + }, + { + "start": 14330.48, + "end": 14336.96, + "probability": 0.9844 + }, + { + "start": 14337.32, + "end": 14339.68, + "probability": 0.9176 + }, + { + "start": 14339.88, + "end": 14341.16, + "probability": 0.6243 + }, + { + "start": 14341.16, + "end": 14342.06, + "probability": 0.4721 + }, + { + "start": 14342.08, + "end": 14343.0, + "probability": 0.9633 + }, + { + "start": 14343.16, + "end": 14344.73, + "probability": 0.9531 + }, + { + "start": 14346.2, + "end": 14349.44, + "probability": 0.9884 + }, + { + "start": 14349.44, + "end": 14352.54, + "probability": 0.9967 + }, + { + "start": 14352.7, + "end": 14353.3, + "probability": 0.5077 + }, + { + "start": 14353.42, + "end": 14356.13, + "probability": 0.9058 + }, + { + "start": 14356.66, + "end": 14358.42, + "probability": 0.1725 + }, + { + "start": 14381.96, + "end": 14383.94, + "probability": 0.7299 + }, + { + "start": 14384.8, + "end": 14387.74, + "probability": 0.9035 + }, + { + "start": 14388.24, + "end": 14390.8, + "probability": 0.9651 + }, + { + "start": 14391.86, + "end": 14392.58, + "probability": 0.411 + }, + { + "start": 14392.7, + "end": 14398.26, + "probability": 0.9688 + }, + { + "start": 14399.9, + "end": 14405.94, + "probability": 0.9867 + }, + { + "start": 14406.98, + "end": 14408.52, + "probability": 0.8828 + }, + { + "start": 14409.54, + "end": 14414.46, + "probability": 0.9138 + }, + { + "start": 14415.46, + "end": 14418.26, + "probability": 0.9571 + }, + { + "start": 14418.98, + "end": 14420.9, + "probability": 0.7934 + }, + { + "start": 14421.28, + "end": 14423.14, + "probability": 0.8947 + }, + { + "start": 14423.58, + "end": 14424.74, + "probability": 0.9873 + }, + { + "start": 14425.34, + "end": 14426.14, + "probability": 0.7494 + }, + { + "start": 14427.04, + "end": 14428.02, + "probability": 0.933 + }, + { + "start": 14428.92, + "end": 14430.12, + "probability": 0.9466 + }, + { + "start": 14430.28, + "end": 14436.04, + "probability": 0.9761 + }, + { + "start": 14436.58, + "end": 14439.28, + "probability": 0.9225 + }, + { + "start": 14441.0, + "end": 14444.5, + "probability": 0.8589 + }, + { + "start": 14445.3, + "end": 14447.67, + "probability": 0.9071 + }, + { + "start": 14448.22, + "end": 14449.64, + "probability": 0.7208 + }, + { + "start": 14450.24, + "end": 14453.84, + "probability": 0.9539 + }, + { + "start": 14454.68, + "end": 14455.28, + "probability": 0.7422 + }, + { + "start": 14455.34, + "end": 14456.94, + "probability": 0.9248 + }, + { + "start": 14457.02, + "end": 14458.06, + "probability": 0.7872 + }, + { + "start": 14458.3, + "end": 14463.22, + "probability": 0.9731 + }, + { + "start": 14463.34, + "end": 14466.74, + "probability": 0.9165 + }, + { + "start": 14467.44, + "end": 14468.6, + "probability": 0.8296 + }, + { + "start": 14468.66, + "end": 14471.36, + "probability": 0.8035 + }, + { + "start": 14471.52, + "end": 14473.22, + "probability": 0.8623 + }, + { + "start": 14473.58, + "end": 14474.42, + "probability": 0.9298 + }, + { + "start": 14474.62, + "end": 14476.52, + "probability": 0.8082 + }, + { + "start": 14477.82, + "end": 14478.42, + "probability": 0.8529 + }, + { + "start": 14478.48, + "end": 14480.16, + "probability": 0.4807 + }, + { + "start": 14480.88, + "end": 14485.2, + "probability": 0.9917 + }, + { + "start": 14485.64, + "end": 14486.76, + "probability": 0.9198 + }, + { + "start": 14486.84, + "end": 14488.45, + "probability": 0.9912 + }, + { + "start": 14488.72, + "end": 14491.27, + "probability": 0.9744 + }, + { + "start": 14491.84, + "end": 14492.9, + "probability": 0.9054 + }, + { + "start": 14492.98, + "end": 14496.28, + "probability": 0.9619 + }, + { + "start": 14496.28, + "end": 14498.86, + "probability": 0.0828 + }, + { + "start": 14498.86, + "end": 14498.86, + "probability": 0.0069 + }, + { + "start": 14498.86, + "end": 14499.22, + "probability": 0.0404 + }, + { + "start": 14499.44, + "end": 14499.6, + "probability": 0.3108 + }, + { + "start": 14499.72, + "end": 14500.56, + "probability": 0.2004 + }, + { + "start": 14500.78, + "end": 14502.56, + "probability": 0.7692 + }, + { + "start": 14502.64, + "end": 14503.9, + "probability": 0.553 + }, + { + "start": 14504.22, + "end": 14504.29, + "probability": 0.0439 + }, + { + "start": 14505.2, + "end": 14505.3, + "probability": 0.1666 + }, + { + "start": 14505.3, + "end": 14506.04, + "probability": 0.2889 + }, + { + "start": 14506.06, + "end": 14509.56, + "probability": 0.7207 + }, + { + "start": 14510.04, + "end": 14510.66, + "probability": 0.89 + }, + { + "start": 14510.8, + "end": 14514.58, + "probability": 0.9917 + }, + { + "start": 14515.3, + "end": 14517.82, + "probability": 0.9124 + }, + { + "start": 14518.54, + "end": 14519.12, + "probability": 0.9418 + }, + { + "start": 14519.12, + "end": 14521.88, + "probability": 0.9954 + }, + { + "start": 14521.88, + "end": 14523.8, + "probability": 0.7974 + }, + { + "start": 14524.52, + "end": 14527.02, + "probability": 0.8922 + }, + { + "start": 14527.1, + "end": 14527.98, + "probability": 0.9495 + }, + { + "start": 14528.06, + "end": 14528.82, + "probability": 0.7893 + }, + { + "start": 14529.0, + "end": 14531.12, + "probability": 0.9819 + }, + { + "start": 14531.54, + "end": 14534.06, + "probability": 0.731 + }, + { + "start": 14534.56, + "end": 14540.56, + "probability": 0.9898 + }, + { + "start": 14540.8, + "end": 14542.28, + "probability": 0.9618 + }, + { + "start": 14542.42, + "end": 14545.06, + "probability": 0.9704 + }, + { + "start": 14545.48, + "end": 14550.58, + "probability": 0.9355 + }, + { + "start": 14551.1, + "end": 14553.4, + "probability": 0.9167 + }, + { + "start": 14553.66, + "end": 14557.11, + "probability": 0.9245 + }, + { + "start": 14557.97, + "end": 14559.94, + "probability": 0.9128 + }, + { + "start": 14560.08, + "end": 14561.06, + "probability": 0.973 + }, + { + "start": 14561.6, + "end": 14562.88, + "probability": 0.9956 + }, + { + "start": 14563.28, + "end": 14565.6, + "probability": 0.8671 + }, + { + "start": 14565.66, + "end": 14567.68, + "probability": 0.9034 + }, + { + "start": 14567.78, + "end": 14568.02, + "probability": 0.7487 + }, + { + "start": 14568.68, + "end": 14569.28, + "probability": 0.6305 + }, + { + "start": 14569.44, + "end": 14571.54, + "probability": 0.8965 + }, + { + "start": 14571.9, + "end": 14573.66, + "probability": 0.948 + }, + { + "start": 14595.46, + "end": 14599.26, + "probability": 0.7699 + }, + { + "start": 14599.94, + "end": 14602.44, + "probability": 0.9825 + }, + { + "start": 14603.54, + "end": 14605.8, + "probability": 0.9362 + }, + { + "start": 14607.14, + "end": 14608.04, + "probability": 0.9664 + }, + { + "start": 14608.16, + "end": 14612.34, + "probability": 0.988 + }, + { + "start": 14612.38, + "end": 14614.96, + "probability": 0.6499 + }, + { + "start": 14614.96, + "end": 14615.42, + "probability": 0.4104 + }, + { + "start": 14616.16, + "end": 14618.12, + "probability": 0.6451 + }, + { + "start": 14618.55, + "end": 14621.78, + "probability": 0.4681 + }, + { + "start": 14622.18, + "end": 14623.86, + "probability": 0.436 + }, + { + "start": 14623.88, + "end": 14624.58, + "probability": 0.6386 + }, + { + "start": 14624.6, + "end": 14626.84, + "probability": 0.465 + }, + { + "start": 14627.02, + "end": 14628.56, + "probability": 0.779 + }, + { + "start": 14628.66, + "end": 14633.88, + "probability": 0.979 + }, + { + "start": 14634.6, + "end": 14636.26, + "probability": 0.9905 + }, + { + "start": 14637.1, + "end": 14640.7, + "probability": 0.9978 + }, + { + "start": 14641.38, + "end": 14645.18, + "probability": 0.9966 + }, + { + "start": 14645.72, + "end": 14649.82, + "probability": 0.989 + }, + { + "start": 14650.26, + "end": 14651.78, + "probability": 0.9449 + }, + { + "start": 14652.08, + "end": 14656.48, + "probability": 0.9892 + }, + { + "start": 14656.86, + "end": 14661.44, + "probability": 0.9882 + }, + { + "start": 14662.1, + "end": 14668.6, + "probability": 0.9382 + }, + { + "start": 14669.4, + "end": 14672.34, + "probability": 0.9943 + }, + { + "start": 14672.34, + "end": 14676.32, + "probability": 0.9625 + }, + { + "start": 14676.86, + "end": 14682.64, + "probability": 0.9973 + }, + { + "start": 14683.04, + "end": 14684.58, + "probability": 0.7558 + }, + { + "start": 14684.76, + "end": 14685.34, + "probability": 0.9145 + }, + { + "start": 14686.2, + "end": 14689.86, + "probability": 0.9699 + }, + { + "start": 14689.86, + "end": 14694.1, + "probability": 0.9579 + }, + { + "start": 14694.74, + "end": 14698.56, + "probability": 0.9893 + }, + { + "start": 14698.56, + "end": 14702.56, + "probability": 0.9937 + }, + { + "start": 14703.6, + "end": 14707.6, + "probability": 0.9982 + }, + { + "start": 14707.6, + "end": 14711.98, + "probability": 0.9963 + }, + { + "start": 14713.28, + "end": 14720.92, + "probability": 0.9917 + }, + { + "start": 14721.54, + "end": 14722.62, + "probability": 0.8039 + }, + { + "start": 14722.89, + "end": 14724.44, + "probability": 0.8408 + }, + { + "start": 14724.44, + "end": 14724.7, + "probability": 0.5075 + }, + { + "start": 14724.9, + "end": 14727.2, + "probability": 0.5316 + }, + { + "start": 14727.2, + "end": 14727.88, + "probability": 0.4754 + }, + { + "start": 14728.6, + "end": 14728.6, + "probability": 0.0697 + }, + { + "start": 14728.6, + "end": 14730.18, + "probability": 0.6934 + }, + { + "start": 14730.38, + "end": 14735.88, + "probability": 0.938 + }, + { + "start": 14737.16, + "end": 14742.26, + "probability": 0.9962 + }, + { + "start": 14743.26, + "end": 14745.16, + "probability": 0.9742 + }, + { + "start": 14745.38, + "end": 14747.7, + "probability": 0.9926 + }, + { + "start": 14748.02, + "end": 14748.94, + "probability": 0.7871 + }, + { + "start": 14748.98, + "end": 14754.64, + "probability": 0.9961 + }, + { + "start": 14755.38, + "end": 14758.74, + "probability": 0.9856 + }, + { + "start": 14759.26, + "end": 14760.04, + "probability": 0.8514 + }, + { + "start": 14760.38, + "end": 14761.5, + "probability": 0.9022 + }, + { + "start": 14761.54, + "end": 14762.46, + "probability": 0.8665 + }, + { + "start": 14762.5, + "end": 14764.02, + "probability": 0.9011 + }, + { + "start": 14764.36, + "end": 14765.8, + "probability": 0.9559 + }, + { + "start": 14766.58, + "end": 14769.3, + "probability": 0.9955 + }, + { + "start": 14770.1, + "end": 14772.48, + "probability": 0.9866 + }, + { + "start": 14773.34, + "end": 14777.64, + "probability": 0.9979 + }, + { + "start": 14777.64, + "end": 14784.08, + "probability": 0.9958 + }, + { + "start": 14784.74, + "end": 14787.44, + "probability": 0.7871 + }, + { + "start": 14787.98, + "end": 14788.46, + "probability": 0.8919 + }, + { + "start": 14789.1, + "end": 14793.3, + "probability": 0.9971 + }, + { + "start": 14794.12, + "end": 14795.14, + "probability": 0.861 + }, + { + "start": 14795.66, + "end": 14798.88, + "probability": 0.9984 + }, + { + "start": 14799.7, + "end": 14803.5, + "probability": 0.9854 + }, + { + "start": 14803.58, + "end": 14809.32, + "probability": 0.8539 + }, + { + "start": 14809.54, + "end": 14810.08, + "probability": 0.7419 + }, + { + "start": 14810.42, + "end": 14812.8, + "probability": 0.9412 + }, + { + "start": 14813.68, + "end": 14815.56, + "probability": 0.627 + }, + { + "start": 14816.36, + "end": 14819.38, + "probability": 0.9077 + }, + { + "start": 14819.78, + "end": 14821.38, + "probability": 0.9697 + }, + { + "start": 14821.8, + "end": 14824.64, + "probability": 0.9493 + }, + { + "start": 14824.68, + "end": 14825.42, + "probability": 0.7626 + }, + { + "start": 14825.5, + "end": 14828.3, + "probability": 0.7409 + }, + { + "start": 14828.42, + "end": 14830.56, + "probability": 0.8763 + }, + { + "start": 14853.56, + "end": 14854.6, + "probability": 0.6486 + }, + { + "start": 14854.96, + "end": 14856.44, + "probability": 0.9743 + }, + { + "start": 14856.48, + "end": 14857.46, + "probability": 0.9106 + }, + { + "start": 14858.18, + "end": 14860.8, + "probability": 0.8982 + }, + { + "start": 14861.4, + "end": 14862.16, + "probability": 0.9689 + }, + { + "start": 14862.26, + "end": 14862.94, + "probability": 0.9102 + }, + { + "start": 14863.08, + "end": 14868.88, + "probability": 0.9274 + }, + { + "start": 14870.22, + "end": 14873.18, + "probability": 0.999 + }, + { + "start": 14873.18, + "end": 14875.96, + "probability": 0.9978 + }, + { + "start": 14876.56, + "end": 14878.36, + "probability": 0.9459 + }, + { + "start": 14878.82, + "end": 14880.9, + "probability": 0.8214 + }, + { + "start": 14881.4, + "end": 14882.58, + "probability": 0.9891 + }, + { + "start": 14882.72, + "end": 14884.03, + "probability": 0.9792 + }, + { + "start": 14884.74, + "end": 14886.44, + "probability": 0.6135 + }, + { + "start": 14886.74, + "end": 14887.46, + "probability": 0.9132 + }, + { + "start": 14888.14, + "end": 14889.16, + "probability": 0.958 + }, + { + "start": 14889.92, + "end": 14894.64, + "probability": 0.9201 + }, + { + "start": 14895.88, + "end": 14899.94, + "probability": 0.9878 + }, + { + "start": 14900.6, + "end": 14903.12, + "probability": 0.9958 + }, + { + "start": 14903.12, + "end": 14906.6, + "probability": 0.9967 + }, + { + "start": 14907.3, + "end": 14912.66, + "probability": 0.9919 + }, + { + "start": 14913.1, + "end": 14913.88, + "probability": 0.8767 + }, + { + "start": 14914.02, + "end": 14914.98, + "probability": 0.636 + }, + { + "start": 14915.66, + "end": 14917.1, + "probability": 0.9125 + }, + { + "start": 14917.9, + "end": 14922.46, + "probability": 0.9637 + }, + { + "start": 14922.46, + "end": 14925.0, + "probability": 0.9979 + }, + { + "start": 14925.22, + "end": 14926.26, + "probability": 0.9991 + }, + { + "start": 14926.92, + "end": 14929.06, + "probability": 0.9854 + }, + { + "start": 14930.0, + "end": 14932.98, + "probability": 0.8252 + }, + { + "start": 14933.32, + "end": 14938.06, + "probability": 0.9873 + }, + { + "start": 14938.88, + "end": 14941.6, + "probability": 0.998 + }, + { + "start": 14941.68, + "end": 14942.8, + "probability": 0.9495 + }, + { + "start": 14943.58, + "end": 14947.48, + "probability": 0.9973 + }, + { + "start": 14948.0, + "end": 14948.22, + "probability": 0.6726 + }, + { + "start": 14948.32, + "end": 14950.02, + "probability": 0.9975 + }, + { + "start": 14950.94, + "end": 14956.06, + "probability": 0.9557 + }, + { + "start": 14956.46, + "end": 14958.55, + "probability": 0.951 + }, + { + "start": 14958.91, + "end": 14959.55, + "probability": 0.8137 + }, + { + "start": 14961.14, + "end": 14963.83, + "probability": 0.8204 + }, + { + "start": 14964.41, + "end": 14965.67, + "probability": 0.9445 + }, + { + "start": 14966.33, + "end": 14966.33, + "probability": 0.0908 + }, + { + "start": 14966.33, + "end": 14966.33, + "probability": 0.3564 + }, + { + "start": 14966.33, + "end": 14971.79, + "probability": 0.9037 + }, + { + "start": 14971.89, + "end": 14972.79, + "probability": 0.3834 + }, + { + "start": 14972.91, + "end": 14973.99, + "probability": 0.8 + }, + { + "start": 14974.15, + "end": 14974.91, + "probability": 0.6852 + }, + { + "start": 14975.29, + "end": 14976.43, + "probability": 0.9669 + }, + { + "start": 14976.73, + "end": 14977.29, + "probability": 0.4615 + }, + { + "start": 14977.31, + "end": 14978.21, + "probability": 0.8574 + }, + { + "start": 14979.09, + "end": 14980.69, + "probability": 0.0428 + }, + { + "start": 14980.69, + "end": 14980.69, + "probability": 0.1091 + }, + { + "start": 14980.69, + "end": 14982.23, + "probability": 0.772 + }, + { + "start": 14982.23, + "end": 14982.81, + "probability": 0.7028 + }, + { + "start": 14983.45, + "end": 14985.83, + "probability": 0.9883 + }, + { + "start": 14985.89, + "end": 14986.85, + "probability": 0.0342 + }, + { + "start": 14986.93, + "end": 14989.81, + "probability": 0.9712 + }, + { + "start": 14989.97, + "end": 14990.87, + "probability": 0.796 + }, + { + "start": 14990.97, + "end": 14995.49, + "probability": 0.991 + }, + { + "start": 14995.61, + "end": 14996.49, + "probability": 0.6854 + }, + { + "start": 14997.19, + "end": 14998.74, + "probability": 0.9956 + }, + { + "start": 14999.25, + "end": 15002.17, + "probability": 0.9874 + }, + { + "start": 15002.99, + "end": 15003.75, + "probability": 0.7257 + }, + { + "start": 15004.39, + "end": 15004.88, + "probability": 0.97 + }, + { + "start": 15005.33, + "end": 15006.51, + "probability": 0.8895 + }, + { + "start": 15006.67, + "end": 15007.11, + "probability": 0.2461 + }, + { + "start": 15007.23, + "end": 15008.72, + "probability": 0.9983 + }, + { + "start": 15009.29, + "end": 15011.33, + "probability": 0.967 + }, + { + "start": 15011.33, + "end": 15013.65, + "probability": 0.086 + }, + { + "start": 15019.35, + "end": 15022.55, + "probability": 0.4948 + }, + { + "start": 15023.07, + "end": 15024.75, + "probability": 0.1288 + }, + { + "start": 15025.39, + "end": 15025.83, + "probability": 0.2097 + }, + { + "start": 15027.55, + "end": 15030.15, + "probability": 0.176 + }, + { + "start": 15030.39, + "end": 15031.64, + "probability": 0.5947 + }, + { + "start": 15031.65, + "end": 15033.19, + "probability": 0.8663 + }, + { + "start": 15033.63, + "end": 15035.65, + "probability": 0.0496 + }, + { + "start": 15035.65, + "end": 15038.97, + "probability": 0.091 + }, + { + "start": 15039.41, + "end": 15040.52, + "probability": 0.0569 + }, + { + "start": 15040.85, + "end": 15041.39, + "probability": 0.0709 + }, + { + "start": 15041.39, + "end": 15041.41, + "probability": 0.5554 + }, + { + "start": 15042.09, + "end": 15044.63, + "probability": 0.1053 + }, + { + "start": 15044.63, + "end": 15047.31, + "probability": 0.1667 + }, + { + "start": 15047.45, + "end": 15048.29, + "probability": 0.0312 + }, + { + "start": 15048.59, + "end": 15048.99, + "probability": 0.2504 + }, + { + "start": 15048.99, + "end": 15049.27, + "probability": 0.0539 + }, + { + "start": 15050.01, + "end": 15051.53, + "probability": 0.279 + }, + { + "start": 15052.81, + "end": 15052.89, + "probability": 0.4246 + }, + { + "start": 15057.45, + "end": 15059.63, + "probability": 0.1847 + }, + { + "start": 15059.87, + "end": 15060.39, + "probability": 0.0667 + }, + { + "start": 15060.39, + "end": 15061.87, + "probability": 0.0745 + }, + { + "start": 15064.77, + "end": 15066.57, + "probability": 0.0147 + }, + { + "start": 15069.15, + "end": 15070.69, + "probability": 0.2241 + }, + { + "start": 15070.69, + "end": 15071.57, + "probability": 0.148 + }, + { + "start": 15074.14, + "end": 15074.53, + "probability": 0.2116 + }, + { + "start": 15074.99, + "end": 15075.83, + "probability": 0.051 + }, + { + "start": 15076.01, + "end": 15076.43, + "probability": 0.089 + }, + { + "start": 15076.73, + "end": 15079.2, + "probability": 0.0327 + }, + { + "start": 15081.21, + "end": 15082.19, + "probability": 0.1126 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.0, + "end": 15087.0, + "probability": 0.0 + }, + { + "start": 15087.2, + "end": 15088.44, + "probability": 0.6005 + }, + { + "start": 15088.52, + "end": 15093.72, + "probability": 0.4625 + }, + { + "start": 15093.98, + "end": 15099.1, + "probability": 0.9083 + }, + { + "start": 15099.18, + "end": 15100.72, + "probability": 0.6551 + }, + { + "start": 15101.04, + "end": 15102.94, + "probability": 0.4999 + }, + { + "start": 15103.16, + "end": 15103.16, + "probability": 0.0902 + }, + { + "start": 15103.34, + "end": 15103.5, + "probability": 0.1364 + }, + { + "start": 15103.5, + "end": 15106.98, + "probability": 0.9258 + }, + { + "start": 15107.1, + "end": 15109.56, + "probability": 0.2802 + }, + { + "start": 15109.56, + "end": 15109.64, + "probability": 0.0965 + }, + { + "start": 15109.64, + "end": 15109.84, + "probability": 0.0062 + }, + { + "start": 15109.98, + "end": 15110.1, + "probability": 0.0985 + }, + { + "start": 15110.1, + "end": 15113.32, + "probability": 0.9892 + }, + { + "start": 15113.74, + "end": 15114.9, + "probability": 0.0272 + }, + { + "start": 15115.08, + "end": 15115.16, + "probability": 0.5867 + }, + { + "start": 15115.18, + "end": 15117.05, + "probability": 0.9946 + }, + { + "start": 15117.16, + "end": 15118.34, + "probability": 0.6221 + }, + { + "start": 15118.56, + "end": 15119.7, + "probability": 0.4898 + }, + { + "start": 15119.7, + "end": 15120.58, + "probability": 0.294 + }, + { + "start": 15121.13, + "end": 15121.88, + "probability": 0.1206 + }, + { + "start": 15121.96, + "end": 15122.14, + "probability": 0.3765 + }, + { + "start": 15122.48, + "end": 15122.52, + "probability": 0.5213 + }, + { + "start": 15122.52, + "end": 15122.52, + "probability": 0.074 + }, + { + "start": 15122.52, + "end": 15122.52, + "probability": 0.4043 + }, + { + "start": 15122.52, + "end": 15123.36, + "probability": 0.5439 + }, + { + "start": 15123.84, + "end": 15126.62, + "probability": 0.8858 + }, + { + "start": 15127.02, + "end": 15127.86, + "probability": 0.4858 + }, + { + "start": 15127.92, + "end": 15129.4, + "probability": 0.9743 + }, + { + "start": 15129.44, + "end": 15131.5, + "probability": 0.6718 + }, + { + "start": 15131.9, + "end": 15132.52, + "probability": 0.1651 + }, + { + "start": 15134.3, + "end": 15134.94, + "probability": 0.0216 + }, + { + "start": 15134.94, + "end": 15134.94, + "probability": 0.1374 + }, + { + "start": 15134.94, + "end": 15134.94, + "probability": 0.1479 + }, + { + "start": 15134.94, + "end": 15135.4, + "probability": 0.188 + }, + { + "start": 15135.4, + "end": 15136.14, + "probability": 0.5435 + }, + { + "start": 15136.18, + "end": 15138.94, + "probability": 0.8793 + }, + { + "start": 15139.2, + "end": 15140.3, + "probability": 0.7365 + }, + { + "start": 15140.34, + "end": 15141.5, + "probability": 0.7041 + }, + { + "start": 15141.74, + "end": 15141.78, + "probability": 0.5181 + }, + { + "start": 15141.78, + "end": 15144.06, + "probability": 0.6331 + }, + { + "start": 15144.36, + "end": 15146.72, + "probability": 0.9059 + }, + { + "start": 15146.98, + "end": 15148.64, + "probability": 0.8943 + }, + { + "start": 15148.66, + "end": 15149.16, + "probability": 0.3016 + }, + { + "start": 15151.42, + "end": 15151.76, + "probability": 0.0099 + }, + { + "start": 15151.76, + "end": 15152.56, + "probability": 0.0799 + }, + { + "start": 15152.56, + "end": 15152.58, + "probability": 0.0372 + }, + { + "start": 15152.58, + "end": 15152.62, + "probability": 0.3702 + }, + { + "start": 15152.62, + "end": 15153.32, + "probability": 0.3363 + }, + { + "start": 15153.34, + "end": 15153.48, + "probability": 0.1147 + }, + { + "start": 15153.48, + "end": 15154.0, + "probability": 0.4618 + }, + { + "start": 15154.24, + "end": 15154.36, + "probability": 0.5816 + }, + { + "start": 15154.46, + "end": 15158.9, + "probability": 0.021 + }, + { + "start": 15163.46, + "end": 15167.32, + "probability": 0.022 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15238.0, + "end": 15238.0, + "probability": 0.0 + }, + { + "start": 15239.47, + "end": 15244.14, + "probability": 0.8365 + }, + { + "start": 15244.76, + "end": 15245.2, + "probability": 0.7415 + }, + { + "start": 15245.98, + "end": 15246.96, + "probability": 0.9541 + }, + { + "start": 15248.02, + "end": 15251.46, + "probability": 0.9904 + }, + { + "start": 15252.74, + "end": 15254.09, + "probability": 0.9584 + }, + { + "start": 15255.16, + "end": 15256.44, + "probability": 0.8724 + }, + { + "start": 15257.0, + "end": 15257.64, + "probability": 0.99 + }, + { + "start": 15259.52, + "end": 15261.54, + "probability": 0.986 + }, + { + "start": 15262.52, + "end": 15264.04, + "probability": 0.2879 + }, + { + "start": 15264.04, + "end": 15264.78, + "probability": 0.0807 + }, + { + "start": 15264.8, + "end": 15266.86, + "probability": 0.9609 + }, + { + "start": 15267.45, + "end": 15271.92, + "probability": 0.9879 + }, + { + "start": 15272.82, + "end": 15273.46, + "probability": 0.9778 + }, + { + "start": 15274.4, + "end": 15275.52, + "probability": 0.989 + }, + { + "start": 15276.14, + "end": 15277.16, + "probability": 0.9662 + }, + { + "start": 15278.04, + "end": 15279.42, + "probability": 0.96 + }, + { + "start": 15280.02, + "end": 15287.88, + "probability": 0.9966 + }, + { + "start": 15288.98, + "end": 15291.92, + "probability": 0.9089 + }, + { + "start": 15292.62, + "end": 15293.32, + "probability": 0.9678 + }, + { + "start": 15294.24, + "end": 15300.78, + "probability": 0.9977 + }, + { + "start": 15301.6, + "end": 15302.1, + "probability": 0.8953 + }, + { + "start": 15302.18, + "end": 15304.62, + "probability": 0.7895 + }, + { + "start": 15304.66, + "end": 15306.98, + "probability": 0.9937 + }, + { + "start": 15308.0, + "end": 15308.4, + "probability": 0.8782 + }, + { + "start": 15308.98, + "end": 15310.98, + "probability": 0.9621 + }, + { + "start": 15312.34, + "end": 15313.14, + "probability": 0.9722 + }, + { + "start": 15313.68, + "end": 15314.8, + "probability": 0.9003 + }, + { + "start": 15316.06, + "end": 15321.52, + "probability": 0.7773 + }, + { + "start": 15321.56, + "end": 15325.88, + "probability": 0.9922 + }, + { + "start": 15325.88, + "end": 15329.22, + "probability": 0.9947 + }, + { + "start": 15329.8, + "end": 15332.6, + "probability": 0.8198 + }, + { + "start": 15332.7, + "end": 15333.48, + "probability": 0.7259 + }, + { + "start": 15334.8, + "end": 15336.44, + "probability": 0.9089 + }, + { + "start": 15337.18, + "end": 15340.4, + "probability": 0.9895 + }, + { + "start": 15341.44, + "end": 15343.38, + "probability": 0.9678 + }, + { + "start": 15344.0, + "end": 15349.92, + "probability": 0.984 + }, + { + "start": 15350.92, + "end": 15352.04, + "probability": 0.7236 + }, + { + "start": 15354.09, + "end": 15358.58, + "probability": 0.8003 + }, + { + "start": 15359.54, + "end": 15360.24, + "probability": 0.8118 + }, + { + "start": 15360.84, + "end": 15366.86, + "probability": 0.9892 + }, + { + "start": 15366.96, + "end": 15369.58, + "probability": 0.9637 + }, + { + "start": 15371.02, + "end": 15372.64, + "probability": 0.9565 + }, + { + "start": 15373.16, + "end": 15373.26, + "probability": 0.2914 + }, + { + "start": 15373.36, + "end": 15374.0, + "probability": 0.8997 + }, + { + "start": 15374.08, + "end": 15376.44, + "probability": 0.8946 + }, + { + "start": 15376.64, + "end": 15378.38, + "probability": 0.9368 + }, + { + "start": 15379.18, + "end": 15380.08, + "probability": 0.957 + }, + { + "start": 15380.18, + "end": 15384.26, + "probability": 0.9803 + }, + { + "start": 15386.64, + "end": 15388.92, + "probability": 0.925 + }, + { + "start": 15389.38, + "end": 15391.66, + "probability": 0.5505 + }, + { + "start": 15392.38, + "end": 15393.66, + "probability": 0.9829 + }, + { + "start": 15394.38, + "end": 15395.9, + "probability": 0.9102 + }, + { + "start": 15396.36, + "end": 15396.92, + "probability": 0.806 + }, + { + "start": 15397.56, + "end": 15399.1, + "probability": 0.7593 + }, + { + "start": 15399.22, + "end": 15399.64, + "probability": 0.5726 + }, + { + "start": 15399.74, + "end": 15401.73, + "probability": 0.5797 + }, + { + "start": 15402.28, + "end": 15404.18, + "probability": 0.9883 + }, + { + "start": 15404.34, + "end": 15408.52, + "probability": 0.9965 + }, + { + "start": 15408.94, + "end": 15410.72, + "probability": 0.9929 + }, + { + "start": 15410.9, + "end": 15412.9, + "probability": 0.8331 + }, + { + "start": 15413.96, + "end": 15413.98, + "probability": 0.6894 + }, + { + "start": 15413.98, + "end": 15416.62, + "probability": 0.9965 + }, + { + "start": 15416.62, + "end": 15416.66, + "probability": 0.8229 + }, + { + "start": 15416.66, + "end": 15417.08, + "probability": 0.6684 + }, + { + "start": 15417.24, + "end": 15419.02, + "probability": 0.9243 + }, + { + "start": 15438.66, + "end": 15440.64, + "probability": 0.5876 + }, + { + "start": 15442.42, + "end": 15445.2, + "probability": 0.4998 + }, + { + "start": 15446.46, + "end": 15446.64, + "probability": 0.2949 + }, + { + "start": 15446.76, + "end": 15447.52, + "probability": 0.7247 + }, + { + "start": 15447.58, + "end": 15450.88, + "probability": 0.995 + }, + { + "start": 15461.6, + "end": 15461.94, + "probability": 0.542 + }, + { + "start": 15462.1, + "end": 15464.44, + "probability": 0.1806 + }, + { + "start": 15464.44, + "end": 15464.44, + "probability": 0.0827 + }, + { + "start": 15464.44, + "end": 15464.44, + "probability": 0.0044 + }, + { + "start": 15464.44, + "end": 15465.78, + "probability": 0.0531 + }, + { + "start": 15465.8, + "end": 15466.5, + "probability": 0.6456 + }, + { + "start": 15466.7, + "end": 15471.9, + "probability": 0.9513 + }, + { + "start": 15472.04, + "end": 15473.12, + "probability": 0.7916 + }, + { + "start": 15474.3, + "end": 15475.86, + "probability": 0.8905 + }, + { + "start": 15475.92, + "end": 15477.26, + "probability": 0.9966 + }, + { + "start": 15478.54, + "end": 15482.34, + "probability": 0.9962 + }, + { + "start": 15483.2, + "end": 15487.9, + "probability": 0.9602 + }, + { + "start": 15488.04, + "end": 15491.0, + "probability": 0.9949 + }, + { + "start": 15491.34, + "end": 15491.94, + "probability": 0.5002 + }, + { + "start": 15494.14, + "end": 15500.06, + "probability": 0.9985 + }, + { + "start": 15500.18, + "end": 15501.76, + "probability": 0.8654 + }, + { + "start": 15501.86, + "end": 15503.64, + "probability": 0.8809 + }, + { + "start": 15504.39, + "end": 15507.0, + "probability": 0.9976 + }, + { + "start": 15507.1, + "end": 15509.22, + "probability": 0.5616 + }, + { + "start": 15509.96, + "end": 15511.42, + "probability": 0.9447 + }, + { + "start": 15511.6, + "end": 15514.48, + "probability": 0.9899 + }, + { + "start": 15514.54, + "end": 15518.02, + "probability": 0.9742 + }, + { + "start": 15518.32, + "end": 15520.02, + "probability": 0.8779 + }, + { + "start": 15520.44, + "end": 15520.72, + "probability": 0.8955 + }, + { + "start": 15521.62, + "end": 15522.5, + "probability": 0.9644 + }, + { + "start": 15523.76, + "end": 15526.08, + "probability": 0.9686 + }, + { + "start": 15527.02, + "end": 15533.18, + "probability": 0.8477 + }, + { + "start": 15534.24, + "end": 15535.1, + "probability": 0.7271 + }, + { + "start": 15535.16, + "end": 15535.8, + "probability": 0.8916 + }, + { + "start": 15535.88, + "end": 15542.0, + "probability": 0.9963 + }, + { + "start": 15542.92, + "end": 15544.3, + "probability": 0.8643 + }, + { + "start": 15544.38, + "end": 15549.62, + "probability": 0.998 + }, + { + "start": 15549.86, + "end": 15551.34, + "probability": 0.9421 + }, + { + "start": 15552.1, + "end": 15558.2, + "probability": 0.9673 + }, + { + "start": 15558.76, + "end": 15561.12, + "probability": 0.8735 + }, + { + "start": 15562.32, + "end": 15565.06, + "probability": 0.9074 + }, + { + "start": 15565.74, + "end": 15566.62, + "probability": 0.6967 + }, + { + "start": 15567.48, + "end": 15570.7, + "probability": 0.8117 + }, + { + "start": 15570.74, + "end": 15576.96, + "probability": 0.9937 + }, + { + "start": 15577.44, + "end": 15579.16, + "probability": 0.9232 + }, + { + "start": 15579.7, + "end": 15581.0, + "probability": 0.8443 + }, + { + "start": 15582.08, + "end": 15583.64, + "probability": 0.7936 + }, + { + "start": 15584.18, + "end": 15587.1, + "probability": 0.9587 + }, + { + "start": 15587.66, + "end": 15591.34, + "probability": 0.9888 + }, + { + "start": 15591.66, + "end": 15597.52, + "probability": 0.8356 + }, + { + "start": 15597.9, + "end": 15601.18, + "probability": 0.9875 + }, + { + "start": 15601.56, + "end": 15603.26, + "probability": 0.8815 + }, + { + "start": 15603.44, + "end": 15606.44, + "probability": 0.9846 + }, + { + "start": 15606.46, + "end": 15608.82, + "probability": 0.7869 + }, + { + "start": 15609.56, + "end": 15612.56, + "probability": 0.6763 + }, + { + "start": 15613.12, + "end": 15615.72, + "probability": 0.9844 + }, + { + "start": 15616.28, + "end": 15617.38, + "probability": 0.7753 + }, + { + "start": 15619.6, + "end": 15620.22, + "probability": 0.0271 + }, + { + "start": 15620.22, + "end": 15621.2, + "probability": 0.4471 + }, + { + "start": 15621.5, + "end": 15621.5, + "probability": 0.5054 + }, + { + "start": 15621.5, + "end": 15622.66, + "probability": 0.1206 + }, + { + "start": 15623.26, + "end": 15623.38, + "probability": 0.026 + }, + { + "start": 15623.38, + "end": 15623.38, + "probability": 0.2322 + }, + { + "start": 15623.38, + "end": 15623.38, + "probability": 0.1397 + }, + { + "start": 15623.38, + "end": 15625.22, + "probability": 0.2266 + }, + { + "start": 15625.22, + "end": 15627.64, + "probability": 0.2786 + }, + { + "start": 15627.88, + "end": 15632.48, + "probability": 0.5156 + }, + { + "start": 15632.56, + "end": 15633.7, + "probability": 0.1494 + }, + { + "start": 15634.79, + "end": 15637.88, + "probability": 0.0253 + }, + { + "start": 15637.88, + "end": 15638.7, + "probability": 0.0224 + }, + { + "start": 15638.7, + "end": 15638.7, + "probability": 0.1749 + }, + { + "start": 15638.7, + "end": 15638.7, + "probability": 0.3198 + }, + { + "start": 15638.7, + "end": 15640.02, + "probability": 0.2766 + }, + { + "start": 15640.38, + "end": 15640.56, + "probability": 0.0928 + }, + { + "start": 15641.2, + "end": 15641.56, + "probability": 0.3774 + }, + { + "start": 15641.58, + "end": 15642.46, + "probability": 0.4951 + }, + { + "start": 15648.24, + "end": 15648.86, + "probability": 0.0186 + }, + { + "start": 15648.86, + "end": 15650.4, + "probability": 0.0238 + }, + { + "start": 15650.56, + "end": 15651.22, + "probability": 0.0936 + }, + { + "start": 15651.44, + "end": 15651.88, + "probability": 0.2785 + }, + { + "start": 15652.02, + "end": 15653.78, + "probability": 0.0393 + }, + { + "start": 15663.52, + "end": 15667.38, + "probability": 0.7323 + }, + { + "start": 15668.96, + "end": 15672.9, + "probability": 0.8583 + }, + { + "start": 15673.56, + "end": 15675.72, + "probability": 0.9417 + }, + { + "start": 15675.72, + "end": 15676.46, + "probability": 0.6449 + }, + { + "start": 15676.56, + "end": 15677.7, + "probability": 0.8547 + }, + { + "start": 15677.7, + "end": 15678.3, + "probability": 0.5868 + }, + { + "start": 15678.68, + "end": 15683.84, + "probability": 0.9704 + }, + { + "start": 15684.04, + "end": 15684.22, + "probability": 0.5667 + }, + { + "start": 15684.26, + "end": 15684.9, + "probability": 0.8326 + }, + { + "start": 15685.22, + "end": 15688.74, + "probability": 0.9859 + }, + { + "start": 15700.46, + "end": 15701.48, + "probability": 0.6189 + }, + { + "start": 15701.54, + "end": 15702.3, + "probability": 0.7988 + }, + { + "start": 15702.36, + "end": 15703.72, + "probability": 0.7806 + }, + { + "start": 15705.64, + "end": 15709.16, + "probability": 0.9939 + }, + { + "start": 15709.3, + "end": 15709.74, + "probability": 0.7629 + }, + { + "start": 15709.78, + "end": 15711.76, + "probability": 0.9648 + }, + { + "start": 15711.84, + "end": 15715.2, + "probability": 0.2644 + }, + { + "start": 15717.0, + "end": 15718.62, + "probability": 0.1648 + }, + { + "start": 15718.78, + "end": 15720.1, + "probability": 0.4541 + }, + { + "start": 15720.14, + "end": 15722.64, + "probability": 0.2287 + }, + { + "start": 15722.94, + "end": 15723.96, + "probability": 0.7615 + }, + { + "start": 15723.96, + "end": 15723.96, + "probability": 0.3611 + }, + { + "start": 15723.96, + "end": 15724.02, + "probability": 0.8494 + }, + { + "start": 15724.1, + "end": 15728.18, + "probability": 0.9971 + }, + { + "start": 15728.56, + "end": 15730.58, + "probability": 0.9163 + }, + { + "start": 15730.98, + "end": 15733.5, + "probability": 0.5059 + }, + { + "start": 15734.3, + "end": 15735.38, + "probability": 0.1994 + }, + { + "start": 15735.84, + "end": 15737.52, + "probability": 0.6558 + }, + { + "start": 15737.6, + "end": 15741.96, + "probability": 0.9543 + }, + { + "start": 15742.1, + "end": 15744.62, + "probability": 0.9976 + }, + { + "start": 15744.7, + "end": 15745.34, + "probability": 0.5935 + }, + { + "start": 15746.02, + "end": 15746.92, + "probability": 0.9212 + }, + { + "start": 15747.54, + "end": 15751.16, + "probability": 0.9452 + }, + { + "start": 15752.08, + "end": 15754.1, + "probability": 0.9269 + }, + { + "start": 15754.94, + "end": 15760.04, + "probability": 0.9464 + }, + { + "start": 15761.1, + "end": 15763.44, + "probability": 0.967 + }, + { + "start": 15764.72, + "end": 15765.66, + "probability": 0.7069 + }, + { + "start": 15766.2, + "end": 15768.02, + "probability": 0.7744 + }, + { + "start": 15768.16, + "end": 15773.42, + "probability": 0.9465 + }, + { + "start": 15774.1, + "end": 15775.42, + "probability": 0.7843 + }, + { + "start": 15777.22, + "end": 15777.92, + "probability": 0.8508 + }, + { + "start": 15778.76, + "end": 15779.46, + "probability": 0.0378 + }, + { + "start": 15780.12, + "end": 15781.78, + "probability": 0.5477 + }, + { + "start": 15781.86, + "end": 15783.66, + "probability": 0.9968 + }, + { + "start": 15783.86, + "end": 15791.62, + "probability": 0.9926 + }, + { + "start": 15792.72, + "end": 15795.14, + "probability": 0.9255 + }, + { + "start": 15796.1, + "end": 15798.22, + "probability": 0.7838 + }, + { + "start": 15798.9, + "end": 15805.72, + "probability": 0.6251 + }, + { + "start": 15806.68, + "end": 15807.38, + "probability": 0.1085 + }, + { + "start": 15807.38, + "end": 15807.38, + "probability": 0.2247 + }, + { + "start": 15807.38, + "end": 15807.98, + "probability": 0.5759 + }, + { + "start": 15808.24, + "end": 15808.3, + "probability": 0.4593 + }, + { + "start": 15808.4, + "end": 15809.4, + "probability": 0.386 + }, + { + "start": 15809.9, + "end": 15811.02, + "probability": 0.1493 + }, + { + "start": 15811.02, + "end": 15811.72, + "probability": 0.226 + }, + { + "start": 15811.9, + "end": 15814.02, + "probability": 0.5522 + }, + { + "start": 15814.1, + "end": 15815.68, + "probability": 0.7573 + }, + { + "start": 15815.92, + "end": 15817.96, + "probability": 0.8842 + }, + { + "start": 15819.74, + "end": 15821.74, + "probability": 0.9789 + }, + { + "start": 15822.1, + "end": 15823.74, + "probability": 0.7456 + }, + { + "start": 15823.8, + "end": 15823.8, + "probability": 0.368 + }, + { + "start": 15823.84, + "end": 15824.7, + "probability": 0.8541 + }, + { + "start": 15824.8, + "end": 15825.46, + "probability": 0.627 + }, + { + "start": 15825.58, + "end": 15826.19, + "probability": 0.7497 + }, + { + "start": 15826.52, + "end": 15827.36, + "probability": 0.8931 + }, + { + "start": 15827.6, + "end": 15833.25, + "probability": 0.9247 + }, + { + "start": 15834.94, + "end": 15838.36, + "probability": 0.9977 + }, + { + "start": 15839.16, + "end": 15840.0, + "probability": 0.6994 + }, + { + "start": 15840.66, + "end": 15841.98, + "probability": 0.8838 + }, + { + "start": 15842.54, + "end": 15845.78, + "probability": 0.915 + }, + { + "start": 15845.86, + "end": 15846.61, + "probability": 0.9604 + }, + { + "start": 15847.84, + "end": 15848.54, + "probability": 0.5525 + }, + { + "start": 15850.14, + "end": 15851.7, + "probability": 0.8519 + }, + { + "start": 15852.0, + "end": 15852.36, + "probability": 0.9573 + }, + { + "start": 15853.42, + "end": 15854.72, + "probability": 0.8439 + }, + { + "start": 15855.74, + "end": 15861.88, + "probability": 0.8921 + }, + { + "start": 15862.4, + "end": 15864.74, + "probability": 0.9729 + }, + { + "start": 15865.24, + "end": 15869.08, + "probability": 0.958 + }, + { + "start": 15869.88, + "end": 15871.24, + "probability": 0.8447 + }, + { + "start": 15872.46, + "end": 15876.8, + "probability": 0.7877 + }, + { + "start": 15876.9, + "end": 15877.3, + "probability": 0.5204 + }, + { + "start": 15877.34, + "end": 15878.14, + "probability": 0.8926 + }, + { + "start": 15879.14, + "end": 15883.14, + "probability": 0.9983 + }, + { + "start": 15883.32, + "end": 15884.5, + "probability": 0.9052 + }, + { + "start": 15884.68, + "end": 15887.06, + "probability": 0.9616 + }, + { + "start": 15887.3, + "end": 15889.44, + "probability": 0.605 + }, + { + "start": 15889.64, + "end": 15890.54, + "probability": 0.9891 + }, + { + "start": 15890.64, + "end": 15892.96, + "probability": 0.3714 + }, + { + "start": 15893.88, + "end": 15895.48, + "probability": 0.5409 + }, + { + "start": 15895.68, + "end": 15898.26, + "probability": 0.6775 + }, + { + "start": 15898.62, + "end": 15900.58, + "probability": 0.8528 + }, + { + "start": 15900.58, + "end": 15904.9, + "probability": 0.553 + }, + { + "start": 15905.16, + "end": 15907.48, + "probability": 0.9414 + }, + { + "start": 15907.8, + "end": 15910.38, + "probability": 0.7627 + }, + { + "start": 15911.18, + "end": 15913.42, + "probability": 0.9188 + }, + { + "start": 15914.42, + "end": 15916.14, + "probability": 0.8361 + }, + { + "start": 15916.72, + "end": 15920.72, + "probability": 0.9731 + }, + { + "start": 15921.66, + "end": 15923.68, + "probability": 0.9758 + }, + { + "start": 15924.4, + "end": 15925.0, + "probability": 0.8078 + }, + { + "start": 15925.62, + "end": 15926.56, + "probability": 0.9084 + }, + { + "start": 15927.4, + "end": 15932.14, + "probability": 0.8723 + }, + { + "start": 15932.66, + "end": 15933.48, + "probability": 0.4465 + }, + { + "start": 15934.04, + "end": 15935.56, + "probability": 0.6389 + }, + { + "start": 15936.32, + "end": 15941.26, + "probability": 0.2485 + }, + { + "start": 15941.26, + "end": 15941.34, + "probability": 0.0244 + }, + { + "start": 15941.34, + "end": 15941.83, + "probability": 0.1638 + }, + { + "start": 15942.58, + "end": 15943.36, + "probability": 0.9521 + }, + { + "start": 15943.52, + "end": 15946.76, + "probability": 0.6835 + }, + { + "start": 15946.84, + "end": 15948.26, + "probability": 0.6465 + }, + { + "start": 15948.72, + "end": 15950.22, + "probability": 0.6519 + }, + { + "start": 15951.4, + "end": 15952.3, + "probability": 0.7539 + }, + { + "start": 15952.5, + "end": 15952.96, + "probability": 0.6316 + }, + { + "start": 15953.24, + "end": 15954.44, + "probability": 0.9287 + }, + { + "start": 15954.78, + "end": 15955.66, + "probability": 0.7885 + }, + { + "start": 15955.9, + "end": 15957.68, + "probability": 0.8766 + }, + { + "start": 15959.08, + "end": 15961.42, + "probability": 0.7588 + }, + { + "start": 15961.66, + "end": 15963.32, + "probability": 0.937 + }, + { + "start": 15963.46, + "end": 15967.1, + "probability": 0.9862 + }, + { + "start": 15968.1, + "end": 15969.46, + "probability": 0.8301 + }, + { + "start": 15969.56, + "end": 15971.22, + "probability": 0.9687 + }, + { + "start": 15971.28, + "end": 15972.34, + "probability": 0.9961 + }, + { + "start": 15975.46, + "end": 15980.18, + "probability": 0.9893 + }, + { + "start": 15980.26, + "end": 15982.3, + "probability": 0.991 + }, + { + "start": 15982.92, + "end": 15984.46, + "probability": 0.9985 + }, + { + "start": 15984.84, + "end": 15985.3, + "probability": 0.4924 + }, + { + "start": 15985.32, + "end": 15986.34, + "probability": 0.9421 + }, + { + "start": 15986.72, + "end": 15988.2, + "probability": 0.7854 + }, + { + "start": 15989.66, + "end": 15993.1, + "probability": 0.0355 + }, + { + "start": 15993.22, + "end": 15993.44, + "probability": 0.8509 + }, + { + "start": 15993.64, + "end": 15996.02, + "probability": 0.9352 + }, + { + "start": 15996.48, + "end": 15997.96, + "probability": 0.0306 + }, + { + "start": 15997.96, + "end": 15997.96, + "probability": 0.0745 + }, + { + "start": 15997.98, + "end": 16000.32, + "probability": 0.9603 + }, + { + "start": 16003.48, + "end": 16007.6, + "probability": 0.9277 + }, + { + "start": 16007.7, + "end": 16008.64, + "probability": 0.855 + }, + { + "start": 16009.0, + "end": 16009.98, + "probability": 0.9738 + }, + { + "start": 16010.52, + "end": 16013.2, + "probability": 0.9908 + }, + { + "start": 16013.28, + "end": 16014.32, + "probability": 0.9858 + }, + { + "start": 16014.36, + "end": 16015.52, + "probability": 0.9941 + }, + { + "start": 16016.1, + "end": 16019.92, + "probability": 0.7724 + }, + { + "start": 16020.16, + "end": 16020.9, + "probability": 0.698 + }, + { + "start": 16021.24, + "end": 16021.66, + "probability": 0.9517 + }, + { + "start": 16022.02, + "end": 16023.48, + "probability": 0.943 + }, + { + "start": 16023.86, + "end": 16026.1, + "probability": 0.7695 + }, + { + "start": 16026.56, + "end": 16029.42, + "probability": 0.8664 + }, + { + "start": 16029.62, + "end": 16030.78, + "probability": 0.8225 + }, + { + "start": 16031.16, + "end": 16033.84, + "probability": 0.6857 + }, + { + "start": 16043.86, + "end": 16046.02, + "probability": 0.7794 + }, + { + "start": 16046.54, + "end": 16047.06, + "probability": 0.0743 + }, + { + "start": 16047.06, + "end": 16049.58, + "probability": 0.0952 + }, + { + "start": 16049.64, + "end": 16050.42, + "probability": 0.4786 + }, + { + "start": 16050.42, + "end": 16050.42, + "probability": 0.0747 + }, + { + "start": 16050.42, + "end": 16050.42, + "probability": 0.0742 + }, + { + "start": 16050.42, + "end": 16053.04, + "probability": 0.1771 + }, + { + "start": 16054.36, + "end": 16056.54, + "probability": 0.0307 + }, + { + "start": 16057.42, + "end": 16059.44, + "probability": 0.0783 + }, + { + "start": 16059.44, + "end": 16059.88, + "probability": 0.0476 + }, + { + "start": 16060.18, + "end": 16060.18, + "probability": 0.0727 + }, + { + "start": 16060.18, + "end": 16061.26, + "probability": 0.1735 + }, + { + "start": 16061.26, + "end": 16063.1, + "probability": 0.5797 + }, + { + "start": 16064.68, + "end": 16066.0, + "probability": 0.3521 + }, + { + "start": 16066.0, + "end": 16066.23, + "probability": 0.1011 + }, + { + "start": 16071.71, + "end": 16072.67, + "probability": 0.0608 + }, + { + "start": 16073.18, + "end": 16074.4, + "probability": 0.0446 + }, + { + "start": 16074.72, + "end": 16079.4, + "probability": 0.1368 + }, + { + "start": 16096.26, + "end": 16103.06, + "probability": 0.3016 + }, + { + "start": 16103.22, + "end": 16105.06, + "probability": 0.2389 + }, + { + "start": 16105.34, + "end": 16106.52, + "probability": 0.1344 + }, + { + "start": 16106.52, + "end": 16106.94, + "probability": 0.0313 + }, + { + "start": 16107.22, + "end": 16108.54, + "probability": 0.0904 + }, + { + "start": 16108.54, + "end": 16108.54, + "probability": 0.3417 + }, + { + "start": 16108.54, + "end": 16109.78, + "probability": 0.1496 + }, + { + "start": 16109.78, + "end": 16109.9, + "probability": 0.041 + }, + { + "start": 16112.34, + "end": 16117.88, + "probability": 0.5412 + }, + { + "start": 16118.38, + "end": 16119.54, + "probability": 0.2408 + }, + { + "start": 16119.74, + "end": 16124.28, + "probability": 0.0097 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.16, + "end": 16246.54, + "probability": 0.7408 + }, + { + "start": 16246.6, + "end": 16248.06, + "probability": 0.8135 + }, + { + "start": 16248.26, + "end": 16251.76, + "probability": 0.796 + }, + { + "start": 16251.8, + "end": 16252.84, + "probability": 0.588 + }, + { + "start": 16253.44, + "end": 16255.62, + "probability": 0.7195 + }, + { + "start": 16256.32, + "end": 16256.72, + "probability": 0.5392 + }, + { + "start": 16257.44, + "end": 16258.16, + "probability": 0.7454 + }, + { + "start": 16258.28, + "end": 16259.76, + "probability": 0.9549 + }, + { + "start": 16259.86, + "end": 16261.6, + "probability": 0.9597 + }, + { + "start": 16261.66, + "end": 16263.1, + "probability": 0.949 + }, + { + "start": 16263.64, + "end": 16266.92, + "probability": 0.7742 + }, + { + "start": 16269.71, + "end": 16272.66, + "probability": 0.8232 + }, + { + "start": 16275.92, + "end": 16279.58, + "probability": 0.6637 + }, + { + "start": 16279.6, + "end": 16281.28, + "probability": 0.601 + }, + { + "start": 16281.88, + "end": 16287.02, + "probability": 0.9917 + }, + { + "start": 16287.1, + "end": 16287.54, + "probability": 0.4908 + }, + { + "start": 16287.54, + "end": 16288.5, + "probability": 0.7054 + }, + { + "start": 16289.08, + "end": 16289.82, + "probability": 0.8699 + }, + { + "start": 16291.21, + "end": 16294.02, + "probability": 0.9591 + }, + { + "start": 16294.02, + "end": 16296.72, + "probability": 0.9203 + }, + { + "start": 16296.8, + "end": 16297.58, + "probability": 0.3584 + }, + { + "start": 16297.6, + "end": 16300.92, + "probability": 0.717 + }, + { + "start": 16300.94, + "end": 16304.32, + "probability": 0.9789 + }, + { + "start": 16304.76, + "end": 16307.54, + "probability": 0.9456 + }, + { + "start": 16307.96, + "end": 16310.76, + "probability": 0.9651 + }, + { + "start": 16310.76, + "end": 16314.2, + "probability": 0.9989 + }, + { + "start": 16314.2, + "end": 16320.26, + "probability": 0.9207 + }, + { + "start": 16321.06, + "end": 16325.21, + "probability": 0.9594 + }, + { + "start": 16325.7, + "end": 16329.96, + "probability": 0.9833 + }, + { + "start": 16330.48, + "end": 16334.18, + "probability": 0.9114 + }, + { + "start": 16334.18, + "end": 16340.02, + "probability": 0.9975 + }, + { + "start": 16340.12, + "end": 16344.08, + "probability": 0.9831 + }, + { + "start": 16344.18, + "end": 16348.24, + "probability": 0.9487 + }, + { + "start": 16348.66, + "end": 16351.04, + "probability": 0.9928 + }, + { + "start": 16351.04, + "end": 16355.34, + "probability": 0.9795 + }, + { + "start": 16355.98, + "end": 16358.36, + "probability": 0.7455 + }, + { + "start": 16358.56, + "end": 16360.52, + "probability": 0.4594 + }, + { + "start": 16361.5, + "end": 16364.4, + "probability": 0.9605 + }, + { + "start": 16365.14, + "end": 16367.98, + "probability": 0.8932 + }, + { + "start": 16368.04, + "end": 16371.0, + "probability": 0.8009 + }, + { + "start": 16371.1, + "end": 16372.18, + "probability": 0.8145 + }, + { + "start": 16372.36, + "end": 16376.32, + "probability": 0.9705 + }, + { + "start": 16377.4, + "end": 16379.72, + "probability": 0.9684 + }, + { + "start": 16379.72, + "end": 16381.9, + "probability": 0.9072 + }, + { + "start": 16382.1, + "end": 16382.96, + "probability": 0.9779 + }, + { + "start": 16383.58, + "end": 16388.24, + "probability": 0.9834 + }, + { + "start": 16388.24, + "end": 16393.24, + "probability": 0.9951 + }, + { + "start": 16393.42, + "end": 16397.36, + "probability": 0.8973 + }, + { + "start": 16397.48, + "end": 16398.9, + "probability": 0.8181 + }, + { + "start": 16399.06, + "end": 16401.87, + "probability": 0.9599 + }, + { + "start": 16402.18, + "end": 16406.56, + "probability": 0.7508 + }, + { + "start": 16406.56, + "end": 16409.82, + "probability": 0.9969 + }, + { + "start": 16409.82, + "end": 16413.0, + "probability": 0.9386 + }, + { + "start": 16414.44, + "end": 16418.82, + "probability": 0.9203 + }, + { + "start": 16418.82, + "end": 16422.82, + "probability": 0.9756 + }, + { + "start": 16423.36, + "end": 16425.52, + "probability": 0.8816 + }, + { + "start": 16426.06, + "end": 16429.38, + "probability": 0.9555 + }, + { + "start": 16429.56, + "end": 16430.06, + "probability": 0.7266 + }, + { + "start": 16430.18, + "end": 16432.04, + "probability": 0.9369 + }, + { + "start": 16432.76, + "end": 16438.98, + "probability": 0.9897 + }, + { + "start": 16438.98, + "end": 16443.72, + "probability": 0.9987 + }, + { + "start": 16445.84, + "end": 16451.36, + "probability": 0.9935 + }, + { + "start": 16452.44, + "end": 16455.92, + "probability": 0.9774 + }, + { + "start": 16456.82, + "end": 16463.88, + "probability": 0.992 + }, + { + "start": 16464.0, + "end": 16468.94, + "probability": 0.9577 + }, + { + "start": 16469.18, + "end": 16475.52, + "probability": 0.9913 + }, + { + "start": 16475.54, + "end": 16478.01, + "probability": 0.0678 + }, + { + "start": 16478.4, + "end": 16479.38, + "probability": 0.0613 + }, + { + "start": 16479.88, + "end": 16483.38, + "probability": 0.3718 + }, + { + "start": 16483.46, + "end": 16484.27, + "probability": 0.2152 + }, + { + "start": 16484.7, + "end": 16485.02, + "probability": 0.7507 + }, + { + "start": 16485.12, + "end": 16485.7, + "probability": 0.7907 + }, + { + "start": 16485.98, + "end": 16491.9, + "probability": 0.965 + }, + { + "start": 16492.0, + "end": 16493.3, + "probability": 0.8388 + }, + { + "start": 16493.4, + "end": 16494.48, + "probability": 0.7828 + }, + { + "start": 16494.78, + "end": 16496.24, + "probability": 0.4888 + }, + { + "start": 16496.24, + "end": 16496.68, + "probability": 0.0424 + }, + { + "start": 16496.68, + "end": 16496.68, + "probability": 0.228 + }, + { + "start": 16496.7, + "end": 16498.06, + "probability": 0.9407 + }, + { + "start": 16498.06, + "end": 16499.26, + "probability": 0.2726 + }, + { + "start": 16499.66, + "end": 16501.6, + "probability": 0.7249 + }, + { + "start": 16501.62, + "end": 16502.12, + "probability": 0.5135 + }, + { + "start": 16502.22, + "end": 16504.22, + "probability": 0.9884 + }, + { + "start": 16504.76, + "end": 16505.42, + "probability": 0.9561 + }, + { + "start": 16505.52, + "end": 16507.14, + "probability": 0.9927 + }, + { + "start": 16507.24, + "end": 16509.34, + "probability": 0.9866 + }, + { + "start": 16509.54, + "end": 16511.88, + "probability": 0.9728 + }, + { + "start": 16512.12, + "end": 16512.78, + "probability": 0.9086 + }, + { + "start": 16512.9, + "end": 16517.7, + "probability": 0.9475 + }, + { + "start": 16517.9, + "end": 16518.96, + "probability": 0.9884 + }, + { + "start": 16519.08, + "end": 16521.88, + "probability": 0.9817 + }, + { + "start": 16522.28, + "end": 16524.82, + "probability": 0.283 + }, + { + "start": 16525.04, + "end": 16526.26, + "probability": 0.6175 + }, + { + "start": 16526.48, + "end": 16528.96, + "probability": 0.6313 + }, + { + "start": 16529.14, + "end": 16529.36, + "probability": 0.9465 + }, + { + "start": 16529.54, + "end": 16533.74, + "probability": 0.9749 + }, + { + "start": 16534.22, + "end": 16540.36, + "probability": 0.9844 + }, + { + "start": 16540.46, + "end": 16541.36, + "probability": 0.7708 + }, + { + "start": 16541.92, + "end": 16543.86, + "probability": 0.9702 + }, + { + "start": 16543.88, + "end": 16544.6, + "probability": 0.23 + }, + { + "start": 16544.6, + "end": 16548.94, + "probability": 0.9587 + }, + { + "start": 16549.08, + "end": 16550.82, + "probability": 0.9978 + }, + { + "start": 16550.92, + "end": 16553.42, + "probability": 0.6563 + }, + { + "start": 16553.96, + "end": 16556.06, + "probability": 0.9443 + }, + { + "start": 16556.28, + "end": 16559.9, + "probability": 0.9835 + }, + { + "start": 16560.1, + "end": 16562.58, + "probability": 0.9987 + }, + { + "start": 16562.7, + "end": 16563.14, + "probability": 0.7583 + }, + { + "start": 16563.28, + "end": 16564.04, + "probability": 0.5927 + }, + { + "start": 16564.5, + "end": 16568.62, + "probability": 0.9805 + }, + { + "start": 16568.62, + "end": 16573.04, + "probability": 0.9992 + }, + { + "start": 16573.22, + "end": 16574.02, + "probability": 0.4767 + }, + { + "start": 16574.28, + "end": 16577.16, + "probability": 0.98 + }, + { + "start": 16577.4, + "end": 16577.7, + "probability": 0.7305 + }, + { + "start": 16579.1, + "end": 16583.24, + "probability": 0.8891 + }, + { + "start": 16583.46, + "end": 16584.88, + "probability": 0.967 + }, + { + "start": 16585.34, + "end": 16588.25, + "probability": 0.7659 + }, + { + "start": 16604.12, + "end": 16606.85, + "probability": 0.7135 + }, + { + "start": 16608.36, + "end": 16608.94, + "probability": 0.5715 + }, + { + "start": 16609.68, + "end": 16610.6, + "probability": 0.98 + }, + { + "start": 16611.34, + "end": 16613.64, + "probability": 0.8882 + }, + { + "start": 16615.16, + "end": 16617.7, + "probability": 0.803 + }, + { + "start": 16618.86, + "end": 16621.44, + "probability": 0.9038 + }, + { + "start": 16622.04, + "end": 16625.08, + "probability": 0.9261 + }, + { + "start": 16625.72, + "end": 16627.36, + "probability": 0.6722 + }, + { + "start": 16627.5, + "end": 16630.5, + "probability": 0.9443 + }, + { + "start": 16631.32, + "end": 16636.94, + "probability": 0.8993 + }, + { + "start": 16637.5, + "end": 16638.26, + "probability": 0.8335 + }, + { + "start": 16638.8, + "end": 16640.24, + "probability": 0.8991 + }, + { + "start": 16640.92, + "end": 16642.02, + "probability": 0.9221 + }, + { + "start": 16642.16, + "end": 16643.1, + "probability": 0.6115 + }, + { + "start": 16643.78, + "end": 16646.22, + "probability": 0.8511 + }, + { + "start": 16646.22, + "end": 16647.18, + "probability": 0.3463 + }, + { + "start": 16647.24, + "end": 16651.06, + "probability": 0.9233 + }, + { + "start": 16651.36, + "end": 16653.02, + "probability": 0.8818 + }, + { + "start": 16653.48, + "end": 16655.4, + "probability": 0.8833 + }, + { + "start": 16655.94, + "end": 16656.98, + "probability": 0.9247 + }, + { + "start": 16657.08, + "end": 16660.4, + "probability": 0.8181 + }, + { + "start": 16660.7, + "end": 16663.14, + "probability": 0.8705 + }, + { + "start": 16663.18, + "end": 16664.48, + "probability": 0.9742 + }, + { + "start": 16665.32, + "end": 16667.14, + "probability": 0.9077 + }, + { + "start": 16667.96, + "end": 16669.42, + "probability": 0.8696 + }, + { + "start": 16670.27, + "end": 16672.04, + "probability": 0.9819 + }, + { + "start": 16673.42, + "end": 16673.94, + "probability": 0.6088 + }, + { + "start": 16674.64, + "end": 16675.85, + "probability": 0.9465 + }, + { + "start": 16676.2, + "end": 16677.36, + "probability": 0.9745 + }, + { + "start": 16677.66, + "end": 16679.04, + "probability": 0.9904 + }, + { + "start": 16679.58, + "end": 16683.74, + "probability": 0.9581 + }, + { + "start": 16684.6, + "end": 16689.36, + "probability": 0.9855 + }, + { + "start": 16690.2, + "end": 16691.74, + "probability": 0.9924 + }, + { + "start": 16692.46, + "end": 16694.28, + "probability": 0.4105 + }, + { + "start": 16694.72, + "end": 16696.68, + "probability": 0.969 + }, + { + "start": 16697.06, + "end": 16697.76, + "probability": 0.6947 + }, + { + "start": 16698.3, + "end": 16700.46, + "probability": 0.891 + }, + { + "start": 16701.3, + "end": 16702.6, + "probability": 0.8085 + }, + { + "start": 16702.94, + "end": 16706.18, + "probability": 0.9919 + }, + { + "start": 16706.58, + "end": 16708.26, + "probability": 0.9561 + }, + { + "start": 16708.92, + "end": 16712.44, + "probability": 0.9685 + }, + { + "start": 16713.0, + "end": 16714.2, + "probability": 0.9694 + }, + { + "start": 16715.54, + "end": 16716.5, + "probability": 0.7306 + }, + { + "start": 16716.52, + "end": 16719.54, + "probability": 0.9862 + }, + { + "start": 16720.18, + "end": 16721.44, + "probability": 0.9766 + }, + { + "start": 16722.02, + "end": 16723.44, + "probability": 0.9911 + }, + { + "start": 16723.84, + "end": 16727.26, + "probability": 0.9974 + }, + { + "start": 16727.8, + "end": 16729.18, + "probability": 0.8877 + }, + { + "start": 16729.56, + "end": 16730.28, + "probability": 0.6766 + }, + { + "start": 16730.52, + "end": 16730.94, + "probability": 0.8665 + }, + { + "start": 16731.02, + "end": 16731.66, + "probability": 0.9283 + }, + { + "start": 16732.1, + "end": 16735.52, + "probability": 0.9692 + }, + { + "start": 16736.04, + "end": 16740.14, + "probability": 0.913 + }, + { + "start": 16740.7, + "end": 16741.87, + "probability": 0.9076 + }, + { + "start": 16742.36, + "end": 16743.72, + "probability": 0.938 + }, + { + "start": 16744.4, + "end": 16748.52, + "probability": 0.9727 + }, + { + "start": 16748.66, + "end": 16750.58, + "probability": 0.6739 + }, + { + "start": 16751.2, + "end": 16754.7, + "probability": 0.8762 + }, + { + "start": 16755.56, + "end": 16757.52, + "probability": 0.915 + }, + { + "start": 16758.02, + "end": 16760.34, + "probability": 0.9739 + }, + { + "start": 16760.86, + "end": 16762.34, + "probability": 0.7349 + }, + { + "start": 16762.84, + "end": 16765.4, + "probability": 0.9909 + }, + { + "start": 16765.76, + "end": 16768.34, + "probability": 0.9953 + }, + { + "start": 16768.78, + "end": 16772.6, + "probability": 0.9946 + }, + { + "start": 16773.16, + "end": 16775.66, + "probability": 0.8845 + }, + { + "start": 16776.04, + "end": 16777.42, + "probability": 0.9848 + }, + { + "start": 16777.98, + "end": 16778.78, + "probability": 0.9971 + }, + { + "start": 16779.18, + "end": 16779.78, + "probability": 0.9217 + }, + { + "start": 16780.28, + "end": 16783.12, + "probability": 0.9829 + }, + { + "start": 16783.68, + "end": 16784.27, + "probability": 0.2361 + }, + { + "start": 16785.14, + "end": 16787.73, + "probability": 0.9868 + }, + { + "start": 16788.5, + "end": 16790.34, + "probability": 0.9797 + }, + { + "start": 16790.86, + "end": 16791.62, + "probability": 0.4292 + }, + { + "start": 16792.3, + "end": 16795.98, + "probability": 0.8925 + }, + { + "start": 16796.62, + "end": 16797.94, + "probability": 0.7929 + }, + { + "start": 16817.24, + "end": 16817.24, + "probability": 0.3019 + }, + { + "start": 16817.24, + "end": 16817.24, + "probability": 0.5577 + }, + { + "start": 16817.24, + "end": 16817.24, + "probability": 0.0303 + }, + { + "start": 16817.24, + "end": 16817.24, + "probability": 0.1593 + }, + { + "start": 16817.24, + "end": 16817.24, + "probability": 0.282 + }, + { + "start": 16817.24, + "end": 16817.24, + "probability": 0.2001 + }, + { + "start": 16817.24, + "end": 16817.24, + "probability": 0.0521 + }, + { + "start": 16831.62, + "end": 16832.74, + "probability": 0.5163 + }, + { + "start": 16833.86, + "end": 16838.0, + "probability": 0.9092 + }, + { + "start": 16838.8, + "end": 16845.52, + "probability": 0.9987 + }, + { + "start": 16845.52, + "end": 16851.44, + "probability": 0.9973 + }, + { + "start": 16852.06, + "end": 16853.1, + "probability": 0.8957 + }, + { + "start": 16853.98, + "end": 16858.58, + "probability": 0.7354 + }, + { + "start": 16860.48, + "end": 16860.76, + "probability": 0.2117 + }, + { + "start": 16861.18, + "end": 16867.72, + "probability": 0.9246 + }, + { + "start": 16869.0, + "end": 16871.8, + "probability": 0.6004 + }, + { + "start": 16872.62, + "end": 16876.8, + "probability": 0.8183 + }, + { + "start": 16879.22, + "end": 16879.5, + "probability": 0.796 + }, + { + "start": 16879.5, + "end": 16881.52, + "probability": 0.9995 + }, + { + "start": 16882.64, + "end": 16886.18, + "probability": 0.8899 + }, + { + "start": 16887.04, + "end": 16888.58, + "probability": 0.972 + }, + { + "start": 16889.24, + "end": 16896.42, + "probability": 0.9919 + }, + { + "start": 16896.78, + "end": 16897.92, + "probability": 0.8794 + }, + { + "start": 16898.82, + "end": 16903.1, + "probability": 0.989 + }, + { + "start": 16903.74, + "end": 16906.4, + "probability": 0.9126 + }, + { + "start": 16907.06, + "end": 16911.17, + "probability": 0.9689 + }, + { + "start": 16911.5, + "end": 16913.26, + "probability": 0.8065 + }, + { + "start": 16913.5, + "end": 16915.72, + "probability": 0.7783 + }, + { + "start": 16916.34, + "end": 16920.54, + "probability": 0.9547 + }, + { + "start": 16921.92, + "end": 16924.92, + "probability": 0.87 + }, + { + "start": 16927.41, + "end": 16930.24, + "probability": 0.9482 + }, + { + "start": 16930.92, + "end": 16931.58, + "probability": 0.9626 + }, + { + "start": 16932.4, + "end": 16938.04, + "probability": 0.9961 + }, + { + "start": 16938.3, + "end": 16942.86, + "probability": 0.9979 + }, + { + "start": 16943.46, + "end": 16944.6, + "probability": 0.9012 + }, + { + "start": 16945.48, + "end": 16947.49, + "probability": 0.6655 + }, + { + "start": 16948.24, + "end": 16954.08, + "probability": 0.9945 + }, + { + "start": 16954.08, + "end": 16959.26, + "probability": 0.9717 + }, + { + "start": 16960.18, + "end": 16962.86, + "probability": 0.9036 + }, + { + "start": 16963.86, + "end": 16967.78, + "probability": 0.965 + }, + { + "start": 16968.06, + "end": 16970.04, + "probability": 0.9539 + }, + { + "start": 16970.08, + "end": 16971.12, + "probability": 0.9091 + }, + { + "start": 16971.14, + "end": 16972.59, + "probability": 0.9092 + }, + { + "start": 16973.46, + "end": 16974.94, + "probability": 0.9732 + }, + { + "start": 16975.3, + "end": 16977.18, + "probability": 0.0059 + }, + { + "start": 16977.18, + "end": 16978.26, + "probability": 0.8615 + }, + { + "start": 16978.46, + "end": 16980.74, + "probability": 0.9371 + }, + { + "start": 16980.88, + "end": 16982.81, + "probability": 0.9912 + }, + { + "start": 16983.7, + "end": 16985.34, + "probability": 0.9849 + }, + { + "start": 16986.32, + "end": 16989.18, + "probability": 0.969 + }, + { + "start": 16990.1, + "end": 16990.92, + "probability": 0.8219 + }, + { + "start": 16991.02, + "end": 16991.98, + "probability": 0.8997 + }, + { + "start": 16992.04, + "end": 16993.24, + "probability": 0.8876 + }, + { + "start": 16993.72, + "end": 16995.22, + "probability": 0.9589 + }, + { + "start": 16995.96, + "end": 16996.94, + "probability": 0.9994 + }, + { + "start": 16997.58, + "end": 17003.02, + "probability": 0.9595 + }, + { + "start": 17003.28, + "end": 17003.54, + "probability": 0.739 + }, + { + "start": 17003.94, + "end": 17004.44, + "probability": 0.5742 + }, + { + "start": 17004.72, + "end": 17005.76, + "probability": 0.6463 + }, + { + "start": 17019.76, + "end": 17019.76, + "probability": 0.4745 + }, + { + "start": 17019.76, + "end": 17019.76, + "probability": 0.1593 + }, + { + "start": 17019.76, + "end": 17019.76, + "probability": 0.1549 + }, + { + "start": 17019.76, + "end": 17019.76, + "probability": 0.1401 + }, + { + "start": 17019.76, + "end": 17019.76, + "probability": 0.1136 + }, + { + "start": 17019.76, + "end": 17019.88, + "probability": 0.0906 + }, + { + "start": 17039.97, + "end": 17044.34, + "probability": 0.9689 + }, + { + "start": 17044.46, + "end": 17047.92, + "probability": 0.9685 + }, + { + "start": 17049.26, + "end": 17050.4, + "probability": 0.9322 + }, + { + "start": 17050.46, + "end": 17051.17, + "probability": 0.9478 + }, + { + "start": 17051.44, + "end": 17052.14, + "probability": 0.7917 + }, + { + "start": 17052.54, + "end": 17052.98, + "probability": 0.8885 + }, + { + "start": 17055.44, + "end": 17056.17, + "probability": 0.9243 + }, + { + "start": 17057.16, + "end": 17059.16, + "probability": 0.8187 + }, + { + "start": 17059.94, + "end": 17063.2, + "probability": 0.9198 + }, + { + "start": 17064.16, + "end": 17066.92, + "probability": 0.9016 + }, + { + "start": 17067.76, + "end": 17069.24, + "probability": 0.8538 + }, + { + "start": 17071.2, + "end": 17074.74, + "probability": 0.968 + }, + { + "start": 17076.24, + "end": 17077.42, + "probability": 0.8752 + }, + { + "start": 17078.14, + "end": 17079.04, + "probability": 0.9714 + }, + { + "start": 17080.76, + "end": 17081.48, + "probability": 0.748 + }, + { + "start": 17081.64, + "end": 17083.0, + "probability": 0.881 + }, + { + "start": 17083.06, + "end": 17085.24, + "probability": 0.9344 + }, + { + "start": 17085.66, + "end": 17085.8, + "probability": 0.79 + }, + { + "start": 17085.86, + "end": 17087.7, + "probability": 0.626 + }, + { + "start": 17087.98, + "end": 17089.1, + "probability": 0.9915 + }, + { + "start": 17091.04, + "end": 17091.82, + "probability": 0.8641 + }, + { + "start": 17092.56, + "end": 17093.84, + "probability": 0.6775 + }, + { + "start": 17095.8, + "end": 17097.7, + "probability": 0.4307 + }, + { + "start": 17098.86, + "end": 17104.46, + "probability": 0.8003 + }, + { + "start": 17106.56, + "end": 17107.68, + "probability": 0.9608 + }, + { + "start": 17107.9, + "end": 17108.76, + "probability": 0.8181 + }, + { + "start": 17109.82, + "end": 17112.0, + "probability": 0.9709 + }, + { + "start": 17112.48, + "end": 17112.92, + "probability": 0.8575 + }, + { + "start": 17113.08, + "end": 17113.36, + "probability": 0.3457 + }, + { + "start": 17113.96, + "end": 17116.6, + "probability": 0.8812 + }, + { + "start": 17117.8, + "end": 17120.08, + "probability": 0.9336 + }, + { + "start": 17121.0, + "end": 17122.98, + "probability": 0.6367 + }, + { + "start": 17123.08, + "end": 17124.1, + "probability": 0.9131 + }, + { + "start": 17124.6, + "end": 17126.0, + "probability": 0.8271 + }, + { + "start": 17126.38, + "end": 17126.4, + "probability": 0.8604 + }, + { + "start": 17126.5, + "end": 17129.46, + "probability": 0.9482 + }, + { + "start": 17130.16, + "end": 17130.74, + "probability": 0.859 + }, + { + "start": 17131.06, + "end": 17131.58, + "probability": 0.9795 + }, + { + "start": 17133.42, + "end": 17134.5, + "probability": 0.6744 + }, + { + "start": 17134.64, + "end": 17137.5, + "probability": 0.951 + }, + { + "start": 17137.96, + "end": 17140.5, + "probability": 0.8564 + }, + { + "start": 17140.6, + "end": 17143.76, + "probability": 0.7847 + }, + { + "start": 17143.86, + "end": 17144.66, + "probability": 0.8661 + }, + { + "start": 17145.32, + "end": 17146.86, + "probability": 0.8901 + }, + { + "start": 17146.92, + "end": 17147.68, + "probability": 0.2792 + }, + { + "start": 17148.16, + "end": 17149.02, + "probability": 0.9824 + }, + { + "start": 17149.3, + "end": 17149.76, + "probability": 0.8244 + }, + { + "start": 17149.8, + "end": 17150.78, + "probability": 0.8868 + }, + { + "start": 17152.62, + "end": 17154.52, + "probability": 0.9873 + }, + { + "start": 17155.8, + "end": 17156.88, + "probability": 0.5658 + }, + { + "start": 17158.12, + "end": 17158.5, + "probability": 0.5675 + }, + { + "start": 17159.48, + "end": 17163.38, + "probability": 0.9665 + }, + { + "start": 17164.14, + "end": 17167.4, + "probability": 0.9788 + }, + { + "start": 17167.92, + "end": 17169.72, + "probability": 0.916 + }, + { + "start": 17170.42, + "end": 17171.67, + "probability": 0.9905 + }, + { + "start": 17172.34, + "end": 17173.12, + "probability": 0.9922 + }, + { + "start": 17174.24, + "end": 17174.87, + "probability": 0.9062 + }, + { + "start": 17175.86, + "end": 17177.88, + "probability": 0.9826 + }, + { + "start": 17178.44, + "end": 17178.98, + "probability": 0.9905 + }, + { + "start": 17179.48, + "end": 17179.98, + "probability": 0.8145 + }, + { + "start": 17180.96, + "end": 17183.98, + "probability": 0.8958 + }, + { + "start": 17184.58, + "end": 17185.98, + "probability": 0.9962 + }, + { + "start": 17187.14, + "end": 17188.06, + "probability": 0.8471 + }, + { + "start": 17188.86, + "end": 17191.5, + "probability": 0.8416 + }, + { + "start": 17192.18, + "end": 17192.92, + "probability": 0.9874 + }, + { + "start": 17193.02, + "end": 17194.05, + "probability": 0.9861 + }, + { + "start": 17194.2, + "end": 17195.56, + "probability": 0.9792 + }, + { + "start": 17196.3, + "end": 17199.68, + "probability": 0.9648 + }, + { + "start": 17200.26, + "end": 17202.38, + "probability": 0.9616 + }, + { + "start": 17202.62, + "end": 17205.32, + "probability": 0.9937 + }, + { + "start": 17205.8, + "end": 17206.5, + "probability": 0.9649 + }, + { + "start": 17208.86, + "end": 17210.78, + "probability": 0.8669 + }, + { + "start": 17228.7, + "end": 17230.1, + "probability": 0.6813 + }, + { + "start": 17230.2, + "end": 17231.0, + "probability": 0.6556 + }, + { + "start": 17232.34, + "end": 17233.16, + "probability": 0.6631 + }, + { + "start": 17234.72, + "end": 17238.82, + "probability": 0.9641 + }, + { + "start": 17239.86, + "end": 17241.24, + "probability": 0.9159 + }, + { + "start": 17241.4, + "end": 17247.8, + "probability": 0.9609 + }, + { + "start": 17250.1, + "end": 17252.36, + "probability": 0.7051 + }, + { + "start": 17252.92, + "end": 17256.9, + "probability": 0.9927 + }, + { + "start": 17257.6, + "end": 17261.8, + "probability": 0.9995 + }, + { + "start": 17262.42, + "end": 17265.96, + "probability": 0.9983 + }, + { + "start": 17266.92, + "end": 17271.48, + "probability": 0.9855 + }, + { + "start": 17272.22, + "end": 17275.88, + "probability": 0.9973 + }, + { + "start": 17276.64, + "end": 17277.52, + "probability": 0.9409 + }, + { + "start": 17278.32, + "end": 17280.62, + "probability": 0.7918 + }, + { + "start": 17281.22, + "end": 17282.4, + "probability": 0.9971 + }, + { + "start": 17283.2, + "end": 17285.48, + "probability": 0.9971 + }, + { + "start": 17285.92, + "end": 17288.46, + "probability": 0.9922 + }, + { + "start": 17288.9, + "end": 17290.3, + "probability": 0.9967 + }, + { + "start": 17292.1, + "end": 17294.34, + "probability": 0.9784 + }, + { + "start": 17294.94, + "end": 17296.46, + "probability": 0.7615 + }, + { + "start": 17297.98, + "end": 17298.76, + "probability": 0.952 + }, + { + "start": 17299.26, + "end": 17300.9, + "probability": 0.9424 + }, + { + "start": 17301.38, + "end": 17303.7, + "probability": 0.9009 + }, + { + "start": 17304.62, + "end": 17306.88, + "probability": 0.9929 + }, + { + "start": 17307.58, + "end": 17310.28, + "probability": 0.9384 + }, + { + "start": 17310.88, + "end": 17312.46, + "probability": 0.7844 + }, + { + "start": 17313.76, + "end": 17315.42, + "probability": 0.8256 + }, + { + "start": 17316.16, + "end": 17317.22, + "probability": 0.7392 + }, + { + "start": 17318.22, + "end": 17320.9, + "probability": 0.9352 + }, + { + "start": 17321.56, + "end": 17325.2, + "probability": 0.9973 + }, + { + "start": 17325.84, + "end": 17328.9, + "probability": 0.9927 + }, + { + "start": 17329.66, + "end": 17330.74, + "probability": 0.6039 + }, + { + "start": 17331.56, + "end": 17332.6, + "probability": 0.9049 + }, + { + "start": 17333.6, + "end": 17335.22, + "probability": 0.9967 + }, + { + "start": 17335.88, + "end": 17340.02, + "probability": 0.9959 + }, + { + "start": 17341.24, + "end": 17343.64, + "probability": 0.9881 + }, + { + "start": 17343.64, + "end": 17347.64, + "probability": 0.8707 + }, + { + "start": 17348.06, + "end": 17349.26, + "probability": 0.9739 + }, + { + "start": 17349.62, + "end": 17350.56, + "probability": 0.9095 + }, + { + "start": 17352.6, + "end": 17353.48, + "probability": 0.7883 + }, + { + "start": 17353.62, + "end": 17356.12, + "probability": 0.9561 + }, + { + "start": 17356.92, + "end": 17359.96, + "probability": 0.9809 + }, + { + "start": 17361.58, + "end": 17364.92, + "probability": 0.9959 + }, + { + "start": 17365.28, + "end": 17366.74, + "probability": 0.9895 + }, + { + "start": 17367.78, + "end": 17368.64, + "probability": 0.8899 + }, + { + "start": 17369.4, + "end": 17371.96, + "probability": 0.9376 + }, + { + "start": 17372.88, + "end": 17373.9, + "probability": 0.4467 + }, + { + "start": 17375.12, + "end": 17376.18, + "probability": 0.9764 + }, + { + "start": 17376.4, + "end": 17380.08, + "probability": 0.854 + }, + { + "start": 17380.08, + "end": 17384.72, + "probability": 0.8254 + }, + { + "start": 17385.8, + "end": 17388.08, + "probability": 0.998 + }, + { + "start": 17388.64, + "end": 17390.2, + "probability": 0.9287 + }, + { + "start": 17391.02, + "end": 17392.84, + "probability": 0.8198 + }, + { + "start": 17393.36, + "end": 17394.62, + "probability": 0.7205 + }, + { + "start": 17394.98, + "end": 17395.98, + "probability": 0.695 + }, + { + "start": 17396.38, + "end": 17398.26, + "probability": 0.9882 + }, + { + "start": 17398.68, + "end": 17399.94, + "probability": 0.9955 + }, + { + "start": 17400.7, + "end": 17402.22, + "probability": 0.9966 + }, + { + "start": 17402.68, + "end": 17403.56, + "probability": 0.8103 + }, + { + "start": 17403.88, + "end": 17406.88, + "probability": 0.9808 + }, + { + "start": 17408.24, + "end": 17409.84, + "probability": 0.8792 + }, + { + "start": 17422.1, + "end": 17423.14, + "probability": 0.5224 + }, + { + "start": 17424.34, + "end": 17426.7, + "probability": 0.9641 + }, + { + "start": 17428.92, + "end": 17432.8, + "probability": 0.9972 + }, + { + "start": 17432.96, + "end": 17434.38, + "probability": 0.9976 + }, + { + "start": 17435.98, + "end": 17440.62, + "probability": 0.9883 + }, + { + "start": 17442.4, + "end": 17445.7, + "probability": 0.9771 + }, + { + "start": 17446.84, + "end": 17455.52, + "probability": 0.8896 + }, + { + "start": 17456.6, + "end": 17459.3, + "probability": 0.7502 + }, + { + "start": 17460.4, + "end": 17462.84, + "probability": 0.8318 + }, + { + "start": 17463.96, + "end": 17466.34, + "probability": 0.7148 + }, + { + "start": 17467.52, + "end": 17472.46, + "probability": 0.9715 + }, + { + "start": 17473.22, + "end": 17476.62, + "probability": 0.9484 + }, + { + "start": 17478.86, + "end": 17480.1, + "probability": 0.8198 + }, + { + "start": 17481.28, + "end": 17482.88, + "probability": 0.9879 + }, + { + "start": 17484.08, + "end": 17486.12, + "probability": 0.9312 + }, + { + "start": 17487.46, + "end": 17489.92, + "probability": 0.9981 + }, + { + "start": 17491.64, + "end": 17495.04, + "probability": 0.8888 + }, + { + "start": 17496.3, + "end": 17498.22, + "probability": 0.9976 + }, + { + "start": 17499.46, + "end": 17501.22, + "probability": 0.8521 + }, + { + "start": 17505.74, + "end": 17507.96, + "probability": 0.8511 + }, + { + "start": 17509.26, + "end": 17510.02, + "probability": 0.9531 + }, + { + "start": 17511.19, + "end": 17516.46, + "probability": 0.9726 + }, + { + "start": 17519.0, + "end": 17523.4, + "probability": 0.7138 + }, + { + "start": 17525.28, + "end": 17526.56, + "probability": 0.96 + }, + { + "start": 17528.18, + "end": 17529.84, + "probability": 0.7438 + }, + { + "start": 17531.46, + "end": 17533.8, + "probability": 0.9107 + }, + { + "start": 17538.54, + "end": 17544.66, + "probability": 0.9969 + }, + { + "start": 17546.24, + "end": 17546.38, + "probability": 0.0721 + }, + { + "start": 17546.38, + "end": 17550.38, + "probability": 0.9976 + }, + { + "start": 17552.36, + "end": 17555.6, + "probability": 0.9088 + }, + { + "start": 17558.44, + "end": 17559.9, + "probability": 0.9639 + }, + { + "start": 17561.36, + "end": 17562.76, + "probability": 0.9285 + }, + { + "start": 17562.86, + "end": 17563.42, + "probability": 0.4298 + }, + { + "start": 17563.42, + "end": 17565.34, + "probability": 0.7288 + }, + { + "start": 17565.86, + "end": 17568.5, + "probability": 0.9927 + }, + { + "start": 17570.54, + "end": 17575.04, + "probability": 0.7224 + }, + { + "start": 17576.72, + "end": 17583.38, + "probability": 0.9756 + }, + { + "start": 17583.9, + "end": 17585.52, + "probability": 0.8554 + }, + { + "start": 17586.36, + "end": 17588.88, + "probability": 0.9978 + }, + { + "start": 17590.52, + "end": 17592.24, + "probability": 0.9883 + }, + { + "start": 17593.5, + "end": 17594.8, + "probability": 0.9871 + }, + { + "start": 17595.8, + "end": 17599.6, + "probability": 0.9974 + }, + { + "start": 17601.3, + "end": 17603.6, + "probability": 0.9975 + }, + { + "start": 17605.32, + "end": 17606.94, + "probability": 0.9958 + }, + { + "start": 17607.5, + "end": 17610.96, + "probability": 0.8427 + }, + { + "start": 17612.24, + "end": 17615.65, + "probability": 0.9951 + }, + { + "start": 17617.34, + "end": 17618.2, + "probability": 0.9557 + }, + { + "start": 17618.2, + "end": 17618.98, + "probability": 0.6129 + }, + { + "start": 17620.54, + "end": 17621.62, + "probability": 0.9248 + }, + { + "start": 17622.86, + "end": 17624.22, + "probability": 0.7219 + }, + { + "start": 17624.9, + "end": 17628.16, + "probability": 0.8209 + }, + { + "start": 17628.72, + "end": 17632.08, + "probability": 0.9961 + }, + { + "start": 17633.2, + "end": 17634.54, + "probability": 0.9878 + }, + { + "start": 17635.72, + "end": 17638.34, + "probability": 0.9958 + }, + { + "start": 17638.44, + "end": 17639.04, + "probability": 0.3815 + }, + { + "start": 17639.04, + "end": 17639.14, + "probability": 0.5731 + }, + { + "start": 17639.22, + "end": 17641.46, + "probability": 0.6627 + }, + { + "start": 17642.32, + "end": 17642.9, + "probability": 0.821 + }, + { + "start": 17643.86, + "end": 17644.56, + "probability": 0.8446 + }, + { + "start": 17648.66, + "end": 17649.32, + "probability": 0.7876 + }, + { + "start": 17652.04, + "end": 17653.52, + "probability": 0.8672 + }, + { + "start": 17653.9, + "end": 17654.48, + "probability": 0.8497 + }, + { + "start": 17655.44, + "end": 17656.38, + "probability": 0.907 + }, + { + "start": 17656.4, + "end": 17657.15, + "probability": 0.9733 + }, + { + "start": 17661.14, + "end": 17663.44, + "probability": 0.6158 + }, + { + "start": 17664.66, + "end": 17669.1, + "probability": 0.981 + }, + { + "start": 17670.46, + "end": 17671.46, + "probability": 0.6967 + }, + { + "start": 17673.02, + "end": 17674.8, + "probability": 0.5976 + }, + { + "start": 17676.28, + "end": 17677.72, + "probability": 0.7881 + }, + { + "start": 17679.18, + "end": 17682.02, + "probability": 0.7291 + }, + { + "start": 17682.44, + "end": 17684.9, + "probability": 0.9954 + }, + { + "start": 17685.96, + "end": 17686.9, + "probability": 0.7167 + }, + { + "start": 17688.62, + "end": 17692.64, + "probability": 0.8726 + }, + { + "start": 17692.7, + "end": 17695.32, + "probability": 0.8467 + }, + { + "start": 17696.54, + "end": 17696.96, + "probability": 0.6553 + }, + { + "start": 17697.52, + "end": 17698.08, + "probability": 0.4625 + }, + { + "start": 17698.1, + "end": 17701.16, + "probability": 0.9895 + }, + { + "start": 17701.96, + "end": 17708.06, + "probability": 0.987 + }, + { + "start": 17708.22, + "end": 17709.0, + "probability": 0.5719 + }, + { + "start": 17709.94, + "end": 17710.9, + "probability": 0.9751 + }, + { + "start": 17712.42, + "end": 17714.04, + "probability": 0.9907 + }, + { + "start": 17715.54, + "end": 17717.29, + "probability": 0.9358 + }, + { + "start": 17719.84, + "end": 17721.16, + "probability": 0.8491 + }, + { + "start": 17722.46, + "end": 17725.82, + "probability": 0.7836 + }, + { + "start": 17727.78, + "end": 17729.5, + "probability": 0.9593 + }, + { + "start": 17730.68, + "end": 17731.58, + "probability": 0.7422 + }, + { + "start": 17733.22, + "end": 17734.96, + "probability": 0.8219 + }, + { + "start": 17737.34, + "end": 17737.82, + "probability": 0.9956 + }, + { + "start": 17739.92, + "end": 17742.42, + "probability": 0.9895 + }, + { + "start": 17744.24, + "end": 17745.16, + "probability": 0.9521 + }, + { + "start": 17745.54, + "end": 17745.54, + "probability": 0.004 + }, + { + "start": 17746.52, + "end": 17748.82, + "probability": 0.998 + }, + { + "start": 17749.78, + "end": 17750.24, + "probability": 0.792 + }, + { + "start": 17752.1, + "end": 17753.63, + "probability": 0.9497 + }, + { + "start": 17755.96, + "end": 17756.44, + "probability": 0.8008 + }, + { + "start": 17759.32, + "end": 17760.62, + "probability": 0.9954 + }, + { + "start": 17761.98, + "end": 17763.1, + "probability": 0.9973 + }, + { + "start": 17765.62, + "end": 17767.84, + "probability": 0.8602 + }, + { + "start": 17769.18, + "end": 17770.48, + "probability": 0.9902 + }, + { + "start": 17772.42, + "end": 17774.26, + "probability": 0.9944 + }, + { + "start": 17775.22, + "end": 17776.1, + "probability": 0.3743 + }, + { + "start": 17776.5, + "end": 17777.2, + "probability": 0.993 + }, + { + "start": 17778.9, + "end": 17779.82, + "probability": 0.9165 + }, + { + "start": 17781.62, + "end": 17783.06, + "probability": 0.8483 + }, + { + "start": 17784.6, + "end": 17785.42, + "probability": 0.998 + }, + { + "start": 17787.18, + "end": 17788.42, + "probability": 0.9299 + }, + { + "start": 17789.19, + "end": 17794.76, + "probability": 0.9515 + }, + { + "start": 17796.76, + "end": 17799.68, + "probability": 0.9626 + }, + { + "start": 17801.32, + "end": 17803.32, + "probability": 0.9977 + }, + { + "start": 17805.0, + "end": 17806.64, + "probability": 0.9898 + }, + { + "start": 17808.46, + "end": 17810.62, + "probability": 0.8565 + }, + { + "start": 17812.26, + "end": 17815.6, + "probability": 0.9519 + }, + { + "start": 17817.04, + "end": 17821.2, + "probability": 0.8824 + }, + { + "start": 17821.98, + "end": 17822.88, + "probability": 0.1733 + }, + { + "start": 17823.5, + "end": 17823.88, + "probability": 0.4064 + }, + { + "start": 17824.2, + "end": 17825.52, + "probability": 0.6481 + }, + { + "start": 17826.76, + "end": 17826.86, + "probability": 0.6349 + }, + { + "start": 17826.86, + "end": 17826.86, + "probability": 0.0355 + }, + { + "start": 17826.86, + "end": 17827.68, + "probability": 0.9075 + }, + { + "start": 17828.0, + "end": 17833.28, + "probability": 0.7993 + }, + { + "start": 17834.8, + "end": 17835.36, + "probability": 0.6534 + }, + { + "start": 17835.66, + "end": 17836.88, + "probability": 0.8683 + }, + { + "start": 17846.38, + "end": 17848.78, + "probability": 0.6981 + }, + { + "start": 17850.94, + "end": 17852.98, + "probability": 0.7967 + }, + { + "start": 17853.16, + "end": 17855.44, + "probability": 0.9936 + }, + { + "start": 17857.22, + "end": 17860.46, + "probability": 0.9874 + }, + { + "start": 17862.74, + "end": 17863.54, + "probability": 0.825 + }, + { + "start": 17864.64, + "end": 17865.84, + "probability": 0.9999 + }, + { + "start": 17866.74, + "end": 17868.74, + "probability": 0.9357 + }, + { + "start": 17870.06, + "end": 17875.54, + "probability": 0.997 + }, + { + "start": 17876.94, + "end": 17880.44, + "probability": 0.957 + }, + { + "start": 17882.82, + "end": 17886.08, + "probability": 0.9953 + }, + { + "start": 17886.22, + "end": 17887.18, + "probability": 0.7505 + }, + { + "start": 17887.62, + "end": 17889.58, + "probability": 0.6643 + }, + { + "start": 17891.6, + "end": 17892.92, + "probability": 0.7993 + }, + { + "start": 17894.46, + "end": 17895.7, + "probability": 0.9559 + }, + { + "start": 17896.78, + "end": 17898.44, + "probability": 0.9498 + }, + { + "start": 17899.28, + "end": 17900.62, + "probability": 0.9697 + }, + { + "start": 17902.14, + "end": 17904.58, + "probability": 0.9978 + }, + { + "start": 17905.24, + "end": 17907.32, + "probability": 0.7692 + }, + { + "start": 17908.42, + "end": 17913.72, + "probability": 0.9769 + }, + { + "start": 17915.06, + "end": 17917.88, + "probability": 0.9823 + }, + { + "start": 17920.08, + "end": 17921.22, + "probability": 0.7874 + }, + { + "start": 17921.88, + "end": 17926.54, + "probability": 0.9666 + }, + { + "start": 17926.98, + "end": 17929.22, + "probability": 0.9504 + }, + { + "start": 17930.9, + "end": 17932.66, + "probability": 0.6436 + }, + { + "start": 17933.96, + "end": 17935.36, + "probability": 0.5396 + }, + { + "start": 17936.72, + "end": 17939.28, + "probability": 0.6876 + }, + { + "start": 17941.32, + "end": 17945.6, + "probability": 0.927 + }, + { + "start": 17946.72, + "end": 17948.52, + "probability": 0.8489 + }, + { + "start": 17949.18, + "end": 17951.5, + "probability": 0.9746 + }, + { + "start": 17953.48, + "end": 17955.2, + "probability": 0.943 + }, + { + "start": 17957.8, + "end": 17960.5, + "probability": 0.9414 + }, + { + "start": 17962.18, + "end": 17965.26, + "probability": 0.9912 + }, + { + "start": 17968.62, + "end": 17971.12, + "probability": 0.9021 + }, + { + "start": 17972.5, + "end": 17973.98, + "probability": 0.9915 + }, + { + "start": 17974.84, + "end": 17977.14, + "probability": 0.998 + }, + { + "start": 17978.16, + "end": 17979.26, + "probability": 0.5579 + }, + { + "start": 17979.92, + "end": 17982.98, + "probability": 0.9979 + }, + { + "start": 17985.28, + "end": 17988.2, + "probability": 0.9954 + }, + { + "start": 17988.34, + "end": 17989.04, + "probability": 0.9929 + }, + { + "start": 17991.36, + "end": 17992.46, + "probability": 0.9934 + }, + { + "start": 17993.74, + "end": 17997.3, + "probability": 0.9619 + }, + { + "start": 17999.9, + "end": 18002.66, + "probability": 0.9984 + }, + { + "start": 18003.54, + "end": 18005.48, + "probability": 0.984 + }, + { + "start": 18007.52, + "end": 18013.24, + "probability": 0.9616 + }, + { + "start": 18015.58, + "end": 18020.24, + "probability": 0.9355 + }, + { + "start": 18021.8, + "end": 18022.68, + "probability": 0.711 + }, + { + "start": 18023.84, + "end": 18025.58, + "probability": 0.9417 + }, + { + "start": 18026.3, + "end": 18030.76, + "probability": 0.9929 + }, + { + "start": 18030.94, + "end": 18031.62, + "probability": 0.66 + }, + { + "start": 18033.22, + "end": 18034.08, + "probability": 0.7599 + }, + { + "start": 18035.42, + "end": 18036.8, + "probability": 0.985 + }, + { + "start": 18038.38, + "end": 18040.82, + "probability": 0.9756 + }, + { + "start": 18045.82, + "end": 18046.18, + "probability": 0.4932 + }, + { + "start": 18046.28, + "end": 18047.7, + "probability": 0.9492 + }, + { + "start": 18057.98, + "end": 18059.54, + "probability": 0.5631 + }, + { + "start": 18060.06, + "end": 18060.26, + "probability": 0.6591 + }, + { + "start": 18062.8, + "end": 18067.16, + "probability": 0.9893 + }, + { + "start": 18067.2, + "end": 18068.92, + "probability": 0.9659 + }, + { + "start": 18069.54, + "end": 18072.64, + "probability": 0.9587 + }, + { + "start": 18072.76, + "end": 18078.1, + "probability": 0.9237 + }, + { + "start": 18078.7, + "end": 18081.66, + "probability": 0.9347 + }, + { + "start": 18082.48, + "end": 18083.82, + "probability": 0.8816 + }, + { + "start": 18084.38, + "end": 18085.26, + "probability": 0.709 + }, + { + "start": 18085.44, + "end": 18085.8, + "probability": 0.8275 + }, + { + "start": 18085.86, + "end": 18086.82, + "probability": 0.9412 + }, + { + "start": 18087.42, + "end": 18089.72, + "probability": 0.9569 + }, + { + "start": 18090.22, + "end": 18090.58, + "probability": 0.8243 + }, + { + "start": 18090.7, + "end": 18092.52, + "probability": 0.7768 + }, + { + "start": 18093.28, + "end": 18094.42, + "probability": 0.9316 + }, + { + "start": 18095.54, + "end": 18096.38, + "probability": 0.8019 + }, + { + "start": 18097.6, + "end": 18097.72, + "probability": 0.0264 + }, + { + "start": 18097.72, + "end": 18098.81, + "probability": 0.546 + }, + { + "start": 18099.38, + "end": 18100.49, + "probability": 0.937 + }, + { + "start": 18100.9, + "end": 18101.72, + "probability": 0.5183 + }, + { + "start": 18101.74, + "end": 18102.48, + "probability": 0.4403 + }, + { + "start": 18102.8, + "end": 18103.2, + "probability": 0.7107 + }, + { + "start": 18103.52, + "end": 18105.48, + "probability": 0.9707 + }, + { + "start": 18105.92, + "end": 18106.22, + "probability": 0.5113 + }, + { + "start": 18106.28, + "end": 18107.4, + "probability": 0.882 + }, + { + "start": 18107.6, + "end": 18109.64, + "probability": 0.977 + }, + { + "start": 18110.0, + "end": 18111.92, + "probability": 0.9491 + }, + { + "start": 18112.34, + "end": 18113.32, + "probability": 0.4693 + }, + { + "start": 18113.44, + "end": 18113.96, + "probability": 0.6126 + }, + { + "start": 18114.08, + "end": 18115.52, + "probability": 0.9458 + }, + { + "start": 18116.22, + "end": 18118.68, + "probability": 0.9323 + }, + { + "start": 18119.32, + "end": 18120.08, + "probability": 0.6752 + }, + { + "start": 18120.22, + "end": 18120.78, + "probability": 0.1984 + }, + { + "start": 18121.06, + "end": 18121.94, + "probability": 0.8666 + }, + { + "start": 18122.42, + "end": 18123.84, + "probability": 0.9275 + }, + { + "start": 18124.06, + "end": 18125.62, + "probability": 0.8221 + }, + { + "start": 18126.86, + "end": 18132.06, + "probability": 0.9475 + }, + { + "start": 18132.58, + "end": 18134.54, + "probability": 0.8376 + }, + { + "start": 18134.62, + "end": 18134.98, + "probability": 0.8267 + }, + { + "start": 18135.4, + "end": 18137.53, + "probability": 0.9963 + }, + { + "start": 18138.54, + "end": 18139.18, + "probability": 0.3277 + }, + { + "start": 18139.92, + "end": 18141.72, + "probability": 0.8126 + }, + { + "start": 18142.12, + "end": 18144.52, + "probability": 0.9753 + }, + { + "start": 18145.24, + "end": 18146.74, + "probability": 0.9423 + }, + { + "start": 18146.94, + "end": 18148.64, + "probability": 0.8206 + }, + { + "start": 18149.46, + "end": 18150.34, + "probability": 0.6252 + }, + { + "start": 18151.16, + "end": 18154.9, + "probability": 0.9748 + }, + { + "start": 18155.48, + "end": 18158.36, + "probability": 0.7823 + }, + { + "start": 18158.6, + "end": 18161.76, + "probability": 0.6276 + }, + { + "start": 18162.1, + "end": 18163.58, + "probability": 0.856 + }, + { + "start": 18163.76, + "end": 18165.44, + "probability": 0.9613 + }, + { + "start": 18165.8, + "end": 18166.3, + "probability": 0.3156 + }, + { + "start": 18166.32, + "end": 18166.94, + "probability": 0.1961 + }, + { + "start": 18167.06, + "end": 18167.8, + "probability": 0.9575 + }, + { + "start": 18168.88, + "end": 18171.34, + "probability": 0.9371 + }, + { + "start": 18171.86, + "end": 18174.4, + "probability": 0.8254 + }, + { + "start": 18175.16, + "end": 18178.14, + "probability": 0.962 + }, + { + "start": 18178.24, + "end": 18179.02, + "probability": 0.9849 + }, + { + "start": 18179.72, + "end": 18180.74, + "probability": 0.7424 + }, + { + "start": 18180.76, + "end": 18181.21, + "probability": 0.9855 + }, + { + "start": 18182.54, + "end": 18187.56, + "probability": 0.8917 + }, + { + "start": 18187.64, + "end": 18190.08, + "probability": 0.8255 + }, + { + "start": 18190.84, + "end": 18192.56, + "probability": 0.8335 + }, + { + "start": 18192.7, + "end": 18193.67, + "probability": 0.96 + }, + { + "start": 18194.16, + "end": 18194.8, + "probability": 0.783 + }, + { + "start": 18194.8, + "end": 18198.68, + "probability": 0.6062 + }, + { + "start": 18201.73, + "end": 18204.18, + "probability": 0.217 + }, + { + "start": 18204.34, + "end": 18207.6, + "probability": 0.3677 + }, + { + "start": 18207.6, + "end": 18207.68, + "probability": 0.0051 + }, + { + "start": 18207.68, + "end": 18208.77, + "probability": 0.5486 + }, + { + "start": 18209.54, + "end": 18211.0, + "probability": 0.7385 + }, + { + "start": 18211.46, + "end": 18215.02, + "probability": 0.7251 + }, + { + "start": 18215.26, + "end": 18216.2, + "probability": 0.959 + }, + { + "start": 18216.36, + "end": 18218.66, + "probability": 0.1304 + }, + { + "start": 18218.76, + "end": 18221.24, + "probability": 0.813 + }, + { + "start": 18221.46, + "end": 18225.8, + "probability": 0.9858 + }, + { + "start": 18226.06, + "end": 18226.5, + "probability": 0.3946 + }, + { + "start": 18226.52, + "end": 18227.1, + "probability": 0.8206 + }, + { + "start": 18227.14, + "end": 18229.08, + "probability": 0.9326 + }, + { + "start": 18229.18, + "end": 18230.36, + "probability": 0.9592 + }, + { + "start": 18230.62, + "end": 18230.72, + "probability": 0.3833 + }, + { + "start": 18230.76, + "end": 18231.64, + "probability": 0.635 + }, + { + "start": 18231.68, + "end": 18232.68, + "probability": 0.8508 + }, + { + "start": 18233.2, + "end": 18233.68, + "probability": 0.8638 + }, + { + "start": 18233.76, + "end": 18234.92, + "probability": 0.9912 + }, + { + "start": 18235.0, + "end": 18235.52, + "probability": 0.1846 + }, + { + "start": 18235.64, + "end": 18240.32, + "probability": 0.9653 + }, + { + "start": 18240.56, + "end": 18241.39, + "probability": 0.786 + }, + { + "start": 18241.7, + "end": 18243.56, + "probability": 0.9289 + }, + { + "start": 18244.68, + "end": 18248.02, + "probability": 0.9748 + }, + { + "start": 18248.82, + "end": 18250.34, + "probability": 0.9917 + }, + { + "start": 18250.42, + "end": 18251.55, + "probability": 0.1384 + }, + { + "start": 18252.4, + "end": 18252.66, + "probability": 0.4534 + }, + { + "start": 18253.04, + "end": 18262.35, + "probability": 0.9007 + }, + { + "start": 18263.22, + "end": 18264.32, + "probability": 0.6039 + }, + { + "start": 18264.74, + "end": 18265.02, + "probability": 0.2939 + }, + { + "start": 18265.04, + "end": 18266.36, + "probability": 0.3563 + }, + { + "start": 18266.64, + "end": 18267.27, + "probability": 0.6457 + }, + { + "start": 18268.18, + "end": 18270.06, + "probability": 0.9854 + }, + { + "start": 18270.66, + "end": 18275.7, + "probability": 0.2894 + }, + { + "start": 18280.38, + "end": 18283.52, + "probability": 0.8433 + }, + { + "start": 18283.88, + "end": 18284.0, + "probability": 0.2579 + }, + { + "start": 18284.04, + "end": 18285.42, + "probability": 0.9506 + }, + { + "start": 18285.86, + "end": 18287.74, + "probability": 0.8727 + }, + { + "start": 18287.9, + "end": 18288.36, + "probability": 0.7245 + }, + { + "start": 18288.4, + "end": 18289.91, + "probability": 0.8239 + }, + { + "start": 18290.04, + "end": 18291.12, + "probability": 0.6308 + }, + { + "start": 18291.34, + "end": 18293.08, + "probability": 0.647 + }, + { + "start": 18293.92, + "end": 18299.48, + "probability": 0.9763 + }, + { + "start": 18299.58, + "end": 18301.2, + "probability": 0.8507 + }, + { + "start": 18302.81, + "end": 18307.04, + "probability": 0.3559 + }, + { + "start": 18307.16, + "end": 18308.0, + "probability": 0.4941 + }, + { + "start": 18308.12, + "end": 18309.02, + "probability": 0.4585 + }, + { + "start": 18309.02, + "end": 18310.3, + "probability": 0.6824 + }, + { + "start": 18310.36, + "end": 18312.68, + "probability": 0.8101 + }, + { + "start": 18312.68, + "end": 18314.9, + "probability": 0.296 + }, + { + "start": 18315.48, + "end": 18317.11, + "probability": 0.095 + }, + { + "start": 18318.56, + "end": 18319.96, + "probability": 0.5172 + }, + { + "start": 18320.06, + "end": 18320.8, + "probability": 0.2718 + }, + { + "start": 18320.82, + "end": 18322.92, + "probability": 0.4391 + }, + { + "start": 18322.92, + "end": 18324.28, + "probability": 0.4841 + }, + { + "start": 18324.34, + "end": 18324.76, + "probability": 0.4176 + }, + { + "start": 18324.76, + "end": 18325.86, + "probability": 0.3916 + }, + { + "start": 18325.98, + "end": 18326.54, + "probability": 0.2719 + }, + { + "start": 18326.72, + "end": 18327.08, + "probability": 0.0577 + }, + { + "start": 18328.04, + "end": 18329.22, + "probability": 0.038 + }, + { + "start": 18329.26, + "end": 18329.92, + "probability": 0.5256 + }, + { + "start": 18330.32, + "end": 18330.34, + "probability": 0.2778 + }, + { + "start": 18330.34, + "end": 18330.34, + "probability": 0.036 + }, + { + "start": 18330.34, + "end": 18332.0, + "probability": 0.5238 + }, + { + "start": 18333.56, + "end": 18334.02, + "probability": 0.588 + }, + { + "start": 18334.08, + "end": 18338.6, + "probability": 0.6192 + }, + { + "start": 18342.08, + "end": 18346.24, + "probability": 0.4537 + }, + { + "start": 18346.24, + "end": 18347.08, + "probability": 0.826 + }, + { + "start": 18347.3, + "end": 18350.67, + "probability": 0.2517 + }, + { + "start": 18351.26, + "end": 18360.8, + "probability": 0.5776 + }, + { + "start": 18360.94, + "end": 18361.8, + "probability": 0.4927 + }, + { + "start": 18361.84, + "end": 18362.43, + "probability": 0.7325 + }, + { + "start": 18363.48, + "end": 18364.82, + "probability": 0.8005 + }, + { + "start": 18365.46, + "end": 18365.7, + "probability": 0.1056 + }, + { + "start": 18367.27, + "end": 18370.08, + "probability": 0.329 + }, + { + "start": 18370.74, + "end": 18371.81, + "probability": 0.9045 + }, + { + "start": 18372.56, + "end": 18373.82, + "probability": 0.8936 + }, + { + "start": 18373.92, + "end": 18374.26, + "probability": 0.4313 + }, + { + "start": 18376.04, + "end": 18377.3, + "probability": 0.6973 + }, + { + "start": 18377.5, + "end": 18379.5, + "probability": 0.7354 + }, + { + "start": 18379.5, + "end": 18380.12, + "probability": 0.2383 + }, + { + "start": 18382.0, + "end": 18384.97, + "probability": 0.7134 + }, + { + "start": 18385.76, + "end": 18387.7, + "probability": 0.8447 + }, + { + "start": 18387.94, + "end": 18389.58, + "probability": 0.832 + }, + { + "start": 18389.66, + "end": 18392.12, + "probability": 0.673 + }, + { + "start": 18392.7, + "end": 18398.44, + "probability": 0.8564 + }, + { + "start": 18399.04, + "end": 18402.14, + "probability": 0.9954 + }, + { + "start": 18402.22, + "end": 18402.88, + "probability": 0.943 + }, + { + "start": 18402.96, + "end": 18403.54, + "probability": 0.6337 + }, + { + "start": 18404.28, + "end": 18404.97, + "probability": 0.7725 + }, + { + "start": 18405.78, + "end": 18408.08, + "probability": 0.6721 + }, + { + "start": 18408.54, + "end": 18410.25, + "probability": 0.9961 + }, + { + "start": 18411.04, + "end": 18416.18, + "probability": 0.9724 + }, + { + "start": 18416.66, + "end": 18422.42, + "probability": 0.9786 + }, + { + "start": 18422.54, + "end": 18423.82, + "probability": 0.339 + }, + { + "start": 18424.44, + "end": 18426.78, + "probability": 0.9778 + }, + { + "start": 18427.14, + "end": 18430.06, + "probability": 0.9878 + }, + { + "start": 18430.68, + "end": 18431.22, + "probability": 0.7466 + }, + { + "start": 18431.66, + "end": 18434.58, + "probability": 0.9644 + }, + { + "start": 18435.2, + "end": 18437.76, + "probability": 0.9869 + }, + { + "start": 18438.06, + "end": 18438.06, + "probability": 0.2762 + }, + { + "start": 18438.06, + "end": 18440.26, + "probability": 0.8766 + }, + { + "start": 18440.54, + "end": 18441.38, + "probability": 0.6955 + }, + { + "start": 18441.66, + "end": 18446.18, + "probability": 0.9334 + }, + { + "start": 18446.42, + "end": 18447.54, + "probability": 0.8778 + }, + { + "start": 18448.1, + "end": 18449.56, + "probability": 0.7969 + }, + { + "start": 18449.96, + "end": 18454.48, + "probability": 0.9797 + }, + { + "start": 18454.82, + "end": 18459.94, + "probability": 0.9904 + }, + { + "start": 18460.64, + "end": 18464.8, + "probability": 0.9853 + }, + { + "start": 18464.86, + "end": 18466.02, + "probability": 0.824 + }, + { + "start": 18466.26, + "end": 18467.21, + "probability": 0.9686 + }, + { + "start": 18467.56, + "end": 18468.67, + "probability": 0.9779 + }, + { + "start": 18468.98, + "end": 18469.87, + "probability": 0.7928 + }, + { + "start": 18470.22, + "end": 18471.21, + "probability": 0.7412 + }, + { + "start": 18472.34, + "end": 18474.68, + "probability": 0.9967 + }, + { + "start": 18474.68, + "end": 18480.25, + "probability": 0.9709 + }, + { + "start": 18480.96, + "end": 18482.88, + "probability": 0.1421 + }, + { + "start": 18484.62, + "end": 18484.84, + "probability": 0.0156 + }, + { + "start": 18484.84, + "end": 18485.26, + "probability": 0.6157 + }, + { + "start": 18485.56, + "end": 18485.74, + "probability": 0.0691 + }, + { + "start": 18486.06, + "end": 18487.88, + "probability": 0.0237 + }, + { + "start": 18487.88, + "end": 18492.46, + "probability": 0.0081 + }, + { + "start": 18492.46, + "end": 18492.58, + "probability": 0.3334 + }, + { + "start": 18492.58, + "end": 18492.66, + "probability": 0.0171 + }, + { + "start": 18493.18, + "end": 18493.68, + "probability": 0.0526 + }, + { + "start": 18493.68, + "end": 18493.68, + "probability": 0.0393 + }, + { + "start": 18493.68, + "end": 18493.68, + "probability": 0.0264 + }, + { + "start": 18493.68, + "end": 18495.44, + "probability": 0.546 + }, + { + "start": 18498.14, + "end": 18500.82, + "probability": 0.1576 + }, + { + "start": 18501.82, + "end": 18502.44, + "probability": 0.0944 + }, + { + "start": 18505.87, + "end": 18515.06, + "probability": 0.1688 + }, + { + "start": 18517.58, + "end": 18518.68, + "probability": 0.0685 + }, + { + "start": 18519.32, + "end": 18520.84, + "probability": 0.0861 + }, + { + "start": 18520.98, + "end": 18523.82, + "probability": 0.1554 + }, + { + "start": 18524.9, + "end": 18526.06, + "probability": 0.1446 + }, + { + "start": 18526.06, + "end": 18526.64, + "probability": 0.2596 + }, + { + "start": 18526.64, + "end": 18527.76, + "probability": 0.0299 + }, + { + "start": 18528.48, + "end": 18535.2, + "probability": 0.1089 + }, + { + "start": 18542.67, + "end": 18544.62, + "probability": 0.0628 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.0, + "end": 18586.0, + "probability": 0.0 + }, + { + "start": 18586.18, + "end": 18586.44, + "probability": 0.161 + }, + { + "start": 18586.44, + "end": 18586.44, + "probability": 0.2091 + }, + { + "start": 18586.44, + "end": 18587.12, + "probability": 0.3129 + }, + { + "start": 18587.3, + "end": 18588.73, + "probability": 0.2317 + }, + { + "start": 18589.48, + "end": 18591.32, + "probability": 0.0551 + }, + { + "start": 18591.32, + "end": 18591.48, + "probability": 0.0381 + }, + { + "start": 18592.04, + "end": 18593.62, + "probability": 0.1616 + }, + { + "start": 18593.84, + "end": 18597.89, + "probability": 0.1899 + }, + { + "start": 18600.08, + "end": 18600.71, + "probability": 0.3428 + }, + { + "start": 18601.56, + "end": 18605.44, + "probability": 0.6522 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.0, + "end": 18709.0, + "probability": 0.0 + }, + { + "start": 18709.3, + "end": 18710.68, + "probability": 0.324 + }, + { + "start": 18710.68, + "end": 18717.18, + "probability": 0.9919 + }, + { + "start": 18718.14, + "end": 18722.14, + "probability": 0.9993 + }, + { + "start": 18722.7, + "end": 18727.2, + "probability": 0.991 + }, + { + "start": 18728.18, + "end": 18730.48, + "probability": 0.0498 + }, + { + "start": 18731.94, + "end": 18732.06, + "probability": 0.0514 + }, + { + "start": 18732.06, + "end": 18732.06, + "probability": 0.0515 + }, + { + "start": 18732.06, + "end": 18732.06, + "probability": 0.1808 + }, + { + "start": 18732.06, + "end": 18732.06, + "probability": 0.0628 + }, + { + "start": 18732.06, + "end": 18732.06, + "probability": 0.2346 + }, + { + "start": 18732.06, + "end": 18732.72, + "probability": 0.0531 + }, + { + "start": 18732.88, + "end": 18734.4, + "probability": 0.5946 + }, + { + "start": 18734.4, + "end": 18737.78, + "probability": 0.8235 + }, + { + "start": 18739.46, + "end": 18740.31, + "probability": 0.0141 + }, + { + "start": 18741.26, + "end": 18741.52, + "probability": 0.1725 + }, + { + "start": 18742.55, + "end": 18742.76, + "probability": 0.3026 + }, + { + "start": 18743.72, + "end": 18743.72, + "probability": 0.2357 + }, + { + "start": 18743.72, + "end": 18743.72, + "probability": 0.0588 + }, + { + "start": 18744.44, + "end": 18745.46, + "probability": 0.1514 + }, + { + "start": 18745.6, + "end": 18746.88, + "probability": 0.1361 + }, + { + "start": 18749.38, + "end": 18750.24, + "probability": 0.2977 + }, + { + "start": 18755.24, + "end": 18755.62, + "probability": 0.0014 + }, + { + "start": 18757.14, + "end": 18759.92, + "probability": 0.0783 + }, + { + "start": 18759.92, + "end": 18760.2, + "probability": 0.027 + }, + { + "start": 18760.2, + "end": 18760.5, + "probability": 0.0227 + }, + { + "start": 18760.52, + "end": 18760.52, + "probability": 0.2666 + }, + { + "start": 18761.02, + "end": 18763.78, + "probability": 0.0813 + }, + { + "start": 18764.26, + "end": 18764.5, + "probability": 0.0768 + }, + { + "start": 18766.52, + "end": 18766.94, + "probability": 0.2355 + }, + { + "start": 18766.94, + "end": 18768.08, + "probability": 0.1414 + }, + { + "start": 18770.24, + "end": 18771.48, + "probability": 0.1457 + }, + { + "start": 18771.58, + "end": 18772.36, + "probability": 0.3233 + }, + { + "start": 18774.72, + "end": 18774.92, + "probability": 0.0091 + }, + { + "start": 18775.1, + "end": 18775.98, + "probability": 0.0322 + }, + { + "start": 18778.36, + "end": 18778.88, + "probability": 0.0872 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.0, + "end": 18830.0, + "probability": 0.0 + }, + { + "start": 18830.14, + "end": 18830.16, + "probability": 0.0584 + }, + { + "start": 18830.16, + "end": 18830.16, + "probability": 0.0585 + }, + { + "start": 18830.16, + "end": 18831.0, + "probability": 0.1237 + }, + { + "start": 18831.12, + "end": 18832.82, + "probability": 0.4897 + }, + { + "start": 18833.12, + "end": 18837.82, + "probability": 0.9689 + }, + { + "start": 18837.92, + "end": 18838.84, + "probability": 0.8762 + }, + { + "start": 18839.18, + "end": 18840.08, + "probability": 0.7652 + }, + { + "start": 18840.18, + "end": 18841.88, + "probability": 0.7835 + }, + { + "start": 18841.88, + "end": 18843.42, + "probability": 0.8617 + }, + { + "start": 18843.64, + "end": 18843.82, + "probability": 0.8487 + }, + { + "start": 18843.82, + "end": 18844.84, + "probability": 0.95 + }, + { + "start": 18845.74, + "end": 18851.5, + "probability": 0.925 + }, + { + "start": 18852.06, + "end": 18853.99, + "probability": 0.9878 + }, + { + "start": 18854.22, + "end": 18856.74, + "probability": 0.9829 + }, + { + "start": 18857.5, + "end": 18858.88, + "probability": 0.9817 + }, + { + "start": 18858.94, + "end": 18860.07, + "probability": 0.9846 + }, + { + "start": 18861.08, + "end": 18863.24, + "probability": 0.9827 + }, + { + "start": 18863.34, + "end": 18865.42, + "probability": 0.9966 + }, + { + "start": 18865.64, + "end": 18868.2, + "probability": 0.9886 + }, + { + "start": 18869.04, + "end": 18869.93, + "probability": 0.9854 + }, + { + "start": 18870.44, + "end": 18871.24, + "probability": 0.9624 + }, + { + "start": 18872.02, + "end": 18872.98, + "probability": 0.9857 + }, + { + "start": 18873.82, + "end": 18874.93, + "probability": 0.7401 + }, + { + "start": 18875.44, + "end": 18877.04, + "probability": 0.9834 + }, + { + "start": 18877.36, + "end": 18878.68, + "probability": 0.9722 + }, + { + "start": 18878.8, + "end": 18879.22, + "probability": 0.7788 + }, + { + "start": 18879.38, + "end": 18879.9, + "probability": 0.9675 + }, + { + "start": 18880.5, + "end": 18882.16, + "probability": 0.9777 + }, + { + "start": 18882.3, + "end": 18883.06, + "probability": 0.9744 + }, + { + "start": 18883.38, + "end": 18884.7, + "probability": 0.9074 + }, + { + "start": 18884.82, + "end": 18885.02, + "probability": 0.6726 + }, + { + "start": 18885.04, + "end": 18885.64, + "probability": 0.9584 + }, + { + "start": 18886.48, + "end": 18887.06, + "probability": 0.9025 + }, + { + "start": 18888.34, + "end": 18891.36, + "probability": 0.9877 + }, + { + "start": 18891.64, + "end": 18893.06, + "probability": 0.8004 + }, + { + "start": 18893.06, + "end": 18894.89, + "probability": 0.6772 + }, + { + "start": 18895.66, + "end": 18897.4, + "probability": 0.8124 + }, + { + "start": 18897.5, + "end": 18898.16, + "probability": 0.6435 + }, + { + "start": 18898.22, + "end": 18899.5, + "probability": 0.9953 + }, + { + "start": 18900.02, + "end": 18901.34, + "probability": 0.7806 + }, + { + "start": 18901.66, + "end": 18902.28, + "probability": 0.2201 + }, + { + "start": 18902.46, + "end": 18903.72, + "probability": 0.9568 + }, + { + "start": 18903.9, + "end": 18905.84, + "probability": 0.9339 + }, + { + "start": 18906.14, + "end": 18907.84, + "probability": 0.7841 + }, + { + "start": 18908.42, + "end": 18908.42, + "probability": 0.6878 + }, + { + "start": 18908.42, + "end": 18909.7, + "probability": 0.9254 + }, + { + "start": 18910.32, + "end": 18910.62, + "probability": 0.0613 + }, + { + "start": 18910.62, + "end": 18915.74, + "probability": 0.8996 + }, + { + "start": 18915.86, + "end": 18917.38, + "probability": 0.8064 + }, + { + "start": 18917.58, + "end": 18918.78, + "probability": 0.6664 + }, + { + "start": 18919.5, + "end": 18921.62, + "probability": 0.4018 + }, + { + "start": 18921.88, + "end": 18922.64, + "probability": 0.5044 + }, + { + "start": 18922.96, + "end": 18923.6, + "probability": 0.5899 + }, + { + "start": 18923.82, + "end": 18924.08, + "probability": 0.507 + }, + { + "start": 18924.08, + "end": 18925.28, + "probability": 0.4686 + }, + { + "start": 18926.1, + "end": 18926.44, + "probability": 0.0119 + }, + { + "start": 18926.44, + "end": 18931.76, + "probability": 0.988 + }, + { + "start": 18931.86, + "end": 18934.6, + "probability": 0.9336 + }, + { + "start": 18934.6, + "end": 18934.72, + "probability": 0.6656 + }, + { + "start": 18934.78, + "end": 18937.3, + "probability": 0.4922 + }, + { + "start": 18937.36, + "end": 18938.74, + "probability": 0.0884 + }, + { + "start": 18938.74, + "end": 18938.76, + "probability": 0.0626 + }, + { + "start": 18938.76, + "end": 18939.58, + "probability": 0.6542 + }, + { + "start": 18940.92, + "end": 18942.36, + "probability": 0.8134 + }, + { + "start": 18942.48, + "end": 18944.36, + "probability": 0.2619 + }, + { + "start": 18944.4, + "end": 18944.82, + "probability": 0.0636 + }, + { + "start": 18944.98, + "end": 18945.26, + "probability": 0.0973 + }, + { + "start": 18945.82, + "end": 18946.7, + "probability": 0.4613 + }, + { + "start": 18947.58, + "end": 18950.59, + "probability": 0.6323 + }, + { + "start": 18950.72, + "end": 18950.92, + "probability": 0.0241 + }, + { + "start": 18950.92, + "end": 18951.16, + "probability": 0.2974 + }, + { + "start": 18951.4, + "end": 18952.06, + "probability": 0.2644 + }, + { + "start": 18952.12, + "end": 18953.14, + "probability": 0.693 + }, + { + "start": 18953.26, + "end": 18953.69, + "probability": 0.5204 + }, + { + "start": 18954.24, + "end": 18955.22, + "probability": 0.5789 + }, + { + "start": 18955.4, + "end": 18956.2, + "probability": 0.3709 + }, + { + "start": 18956.22, + "end": 18958.28, + "probability": 0.4268 + }, + { + "start": 18958.46, + "end": 18958.62, + "probability": 0.2184 + }, + { + "start": 18958.62, + "end": 18958.62, + "probability": 0.0549 + }, + { + "start": 18958.62, + "end": 18958.62, + "probability": 0.1265 + }, + { + "start": 18958.62, + "end": 18958.62, + "probability": 0.266 + }, + { + "start": 18958.62, + "end": 18961.66, + "probability": 0.7641 + }, + { + "start": 18961.72, + "end": 18962.44, + "probability": 0.8947 + }, + { + "start": 18962.56, + "end": 18963.4, + "probability": 0.2872 + }, + { + "start": 18964.72, + "end": 18965.58, + "probability": 0.3045 + }, + { + "start": 18966.62, + "end": 18967.2, + "probability": 0.1998 + }, + { + "start": 18967.24, + "end": 18967.44, + "probability": 0.5067 + }, + { + "start": 18967.44, + "end": 18968.32, + "probability": 0.1815 + }, + { + "start": 18968.32, + "end": 18969.77, + "probability": 0.9093 + }, + { + "start": 18970.0, + "end": 18971.24, + "probability": 0.28 + }, + { + "start": 18971.32, + "end": 18973.84, + "probability": 0.4891 + }, + { + "start": 18974.08, + "end": 18975.58, + "probability": 0.4864 + }, + { + "start": 18975.78, + "end": 18976.66, + "probability": 0.0591 + }, + { + "start": 18976.66, + "end": 18979.22, + "probability": 0.1277 + }, + { + "start": 18981.19, + "end": 18983.11, + "probability": 0.0831 + }, + { + "start": 18983.58, + "end": 18983.68, + "probability": 0.1094 + }, + { + "start": 18983.68, + "end": 18986.22, + "probability": 0.6706 + }, + { + "start": 18986.26, + "end": 18987.98, + "probability": 0.699 + }, + { + "start": 18988.22, + "end": 18989.52, + "probability": 0.1779 + }, + { + "start": 18990.28, + "end": 18990.4, + "probability": 0.0342 + }, + { + "start": 18990.4, + "end": 18990.78, + "probability": 0.0349 + }, + { + "start": 18991.42, + "end": 18991.58, + "probability": 0.3881 + }, + { + "start": 18991.84, + "end": 18991.98, + "probability": 0.1131 + }, + { + "start": 18992.32, + "end": 18992.96, + "probability": 0.8939 + }, + { + "start": 18993.08, + "end": 18993.3, + "probability": 0.5232 + }, + { + "start": 18993.3, + "end": 18993.94, + "probability": 0.9385 + }, + { + "start": 18994.38, + "end": 18998.08, + "probability": 0.6776 + }, + { + "start": 18998.84, + "end": 19001.8, + "probability": 0.9968 + }, + { + "start": 19002.76, + "end": 19006.0, + "probability": 0.9992 + }, + { + "start": 19006.2, + "end": 19008.08, + "probability": 0.9917 + }, + { + "start": 19008.42, + "end": 19010.4, + "probability": 0.9961 + }, + { + "start": 19011.04, + "end": 19012.56, + "probability": 0.978 + }, + { + "start": 19012.7, + "end": 19013.44, + "probability": 0.8423 + }, + { + "start": 19013.52, + "end": 19014.41, + "probability": 0.89 + }, + { + "start": 19014.7, + "end": 19017.28, + "probability": 0.9884 + }, + { + "start": 19018.9, + "end": 19019.12, + "probability": 0.2762 + }, + { + "start": 19019.36, + "end": 19020.86, + "probability": 0.9829 + }, + { + "start": 19021.28, + "end": 19025.44, + "probability": 0.9584 + }, + { + "start": 19026.34, + "end": 19028.16, + "probability": 0.9836 + }, + { + "start": 19029.1, + "end": 19031.9, + "probability": 0.8184 + }, + { + "start": 19033.06, + "end": 19035.92, + "probability": 0.9348 + }, + { + "start": 19037.52, + "end": 19038.94, + "probability": 0.9166 + }, + { + "start": 19039.16, + "end": 19041.5, + "probability": 0.9739 + }, + { + "start": 19042.76, + "end": 19043.72, + "probability": 0.9525 + }, + { + "start": 19043.84, + "end": 19045.94, + "probability": 0.9736 + }, + { + "start": 19046.24, + "end": 19048.46, + "probability": 0.4964 + }, + { + "start": 19048.98, + "end": 19053.16, + "probability": 0.6953 + }, + { + "start": 19067.4, + "end": 19067.94, + "probability": 0.1378 + }, + { + "start": 19067.94, + "end": 19067.94, + "probability": 0.0076 + }, + { + "start": 19067.94, + "end": 19067.94, + "probability": 0.0645 + }, + { + "start": 19067.94, + "end": 19070.2, + "probability": 0.385 + }, + { + "start": 19070.92, + "end": 19074.5, + "probability": 0.8995 + }, + { + "start": 19076.16, + "end": 19078.29, + "probability": 0.9673 + }, + { + "start": 19079.2, + "end": 19080.08, + "probability": 0.6229 + }, + { + "start": 19080.98, + "end": 19084.66, + "probability": 0.9896 + }, + { + "start": 19084.92, + "end": 19086.04, + "probability": 0.9107 + }, + { + "start": 19086.14, + "end": 19087.46, + "probability": 0.9885 + }, + { + "start": 19087.96, + "end": 19092.98, + "probability": 0.9946 + }, + { + "start": 19093.34, + "end": 19099.06, + "probability": 0.9976 + }, + { + "start": 19099.48, + "end": 19103.28, + "probability": 0.9734 + }, + { + "start": 19104.14, + "end": 19106.32, + "probability": 0.9892 + }, + { + "start": 19107.54, + "end": 19108.5, + "probability": 0.8975 + }, + { + "start": 19109.02, + "end": 19109.96, + "probability": 0.5063 + }, + { + "start": 19110.48, + "end": 19111.3, + "probability": 0.8627 + }, + { + "start": 19111.44, + "end": 19112.76, + "probability": 0.9893 + }, + { + "start": 19113.9, + "end": 19115.46, + "probability": 0.8688 + }, + { + "start": 19116.54, + "end": 19120.24, + "probability": 0.9889 + }, + { + "start": 19122.82, + "end": 19126.18, + "probability": 0.9912 + }, + { + "start": 19127.34, + "end": 19131.28, + "probability": 0.996 + }, + { + "start": 19131.58, + "end": 19133.96, + "probability": 0.8586 + }, + { + "start": 19133.98, + "end": 19137.16, + "probability": 0.7982 + }, + { + "start": 19137.8, + "end": 19139.5, + "probability": 0.9731 + }, + { + "start": 19140.06, + "end": 19141.44, + "probability": 0.7821 + }, + { + "start": 19141.74, + "end": 19143.12, + "probability": 0.959 + }, + { + "start": 19143.3, + "end": 19145.56, + "probability": 0.841 + }, + { + "start": 19146.34, + "end": 19149.7, + "probability": 0.9944 + }, + { + "start": 19150.38, + "end": 19151.77, + "probability": 0.9007 + }, + { + "start": 19153.52, + "end": 19157.12, + "probability": 0.991 + }, + { + "start": 19158.12, + "end": 19162.88, + "probability": 0.999 + }, + { + "start": 19163.68, + "end": 19165.92, + "probability": 0.6576 + }, + { + "start": 19167.08, + "end": 19169.44, + "probability": 0.6788 + }, + { + "start": 19170.0, + "end": 19173.78, + "probability": 0.9963 + }, + { + "start": 19173.86, + "end": 19177.22, + "probability": 0.994 + }, + { + "start": 19177.76, + "end": 19181.84, + "probability": 0.9193 + }, + { + "start": 19182.76, + "end": 19184.44, + "probability": 0.5558 + }, + { + "start": 19185.39, + "end": 19188.64, + "probability": 0.78 + }, + { + "start": 19189.36, + "end": 19191.54, + "probability": 0.9858 + }, + { + "start": 19192.78, + "end": 19199.32, + "probability": 0.5332 + }, + { + "start": 19200.48, + "end": 19205.82, + "probability": 0.9736 + }, + { + "start": 19206.3, + "end": 19209.74, + "probability": 0.8622 + }, + { + "start": 19210.08, + "end": 19216.66, + "probability": 0.9993 + }, + { + "start": 19222.0, + "end": 19223.58, + "probability": 0.6538 + }, + { + "start": 19224.78, + "end": 19225.46, + "probability": 0.4779 + }, + { + "start": 19226.74, + "end": 19229.03, + "probability": 0.8905 + }, + { + "start": 19243.34, + "end": 19244.78, + "probability": 0.7043 + }, + { + "start": 19244.98, + "end": 19246.16, + "probability": 0.7658 + }, + { + "start": 19246.16, + "end": 19248.3, + "probability": 0.8528 + }, + { + "start": 19248.66, + "end": 19249.78, + "probability": 0.7654 + }, + { + "start": 19250.82, + "end": 19252.06, + "probability": 0.5324 + }, + { + "start": 19252.26, + "end": 19255.94, + "probability": 0.9883 + }, + { + "start": 19256.48, + "end": 19257.96, + "probability": 0.8442 + }, + { + "start": 19259.72, + "end": 19260.64, + "probability": 0.881 + }, + { + "start": 19260.98, + "end": 19261.36, + "probability": 0.4619 + }, + { + "start": 19261.5, + "end": 19262.48, + "probability": 0.8103 + }, + { + "start": 19262.7, + "end": 19265.06, + "probability": 0.977 + }, + { + "start": 19265.2, + "end": 19270.7, + "probability": 0.9961 + }, + { + "start": 19271.54, + "end": 19274.66, + "probability": 0.9299 + }, + { + "start": 19275.1, + "end": 19275.12, + "probability": 0.364 + }, + { + "start": 19275.12, + "end": 19276.7, + "probability": 0.6161 + }, + { + "start": 19277.2, + "end": 19281.26, + "probability": 0.9727 + }, + { + "start": 19282.06, + "end": 19284.34, + "probability": 0.9875 + }, + { + "start": 19284.64, + "end": 19289.0, + "probability": 0.9595 + }, + { + "start": 19289.0, + "end": 19291.94, + "probability": 0.999 + }, + { + "start": 19292.64, + "end": 19297.94, + "probability": 0.9972 + }, + { + "start": 19298.88, + "end": 19300.06, + "probability": 0.6825 + }, + { + "start": 19300.82, + "end": 19303.64, + "probability": 0.9954 + }, + { + "start": 19304.1, + "end": 19306.52, + "probability": 0.9899 + }, + { + "start": 19307.08, + "end": 19310.78, + "probability": 0.9968 + }, + { + "start": 19311.64, + "end": 19313.48, + "probability": 0.986 + }, + { + "start": 19314.04, + "end": 19316.08, + "probability": 0.9878 + }, + { + "start": 19316.74, + "end": 19322.3, + "probability": 0.9686 + }, + { + "start": 19323.8, + "end": 19326.76, + "probability": 0.9189 + }, + { + "start": 19327.88, + "end": 19330.42, + "probability": 0.9973 + }, + { + "start": 19331.1, + "end": 19332.29, + "probability": 0.9988 + }, + { + "start": 19333.12, + "end": 19338.2, + "probability": 0.9905 + }, + { + "start": 19338.2, + "end": 19342.54, + "probability": 0.9996 + }, + { + "start": 19343.84, + "end": 19348.48, + "probability": 0.9849 + }, + { + "start": 19349.08, + "end": 19353.32, + "probability": 0.9972 + }, + { + "start": 19353.32, + "end": 19357.16, + "probability": 0.9983 + }, + { + "start": 19359.36, + "end": 19361.36, + "probability": 0.9957 + }, + { + "start": 19362.32, + "end": 19363.88, + "probability": 0.9263 + }, + { + "start": 19364.6, + "end": 19367.98, + "probability": 0.9664 + }, + { + "start": 19368.48, + "end": 19373.26, + "probability": 0.9921 + }, + { + "start": 19373.74, + "end": 19376.4, + "probability": 0.999 + }, + { + "start": 19376.4, + "end": 19381.22, + "probability": 0.999 + }, + { + "start": 19382.86, + "end": 19385.6, + "probability": 0.6368 + }, + { + "start": 19386.8, + "end": 19391.26, + "probability": 0.9514 + }, + { + "start": 19391.52, + "end": 19392.3, + "probability": 0.9927 + }, + { + "start": 19393.08, + "end": 19397.68, + "probability": 0.998 + }, + { + "start": 19398.64, + "end": 19399.74, + "probability": 0.9294 + }, + { + "start": 19400.44, + "end": 19401.68, + "probability": 0.9209 + }, + { + "start": 19402.22, + "end": 19403.82, + "probability": 0.9572 + }, + { + "start": 19404.58, + "end": 19409.0, + "probability": 0.9943 + }, + { + "start": 19409.44, + "end": 19411.12, + "probability": 0.9934 + }, + { + "start": 19411.64, + "end": 19412.34, + "probability": 0.9987 + }, + { + "start": 19412.96, + "end": 19414.02, + "probability": 0.9662 + }, + { + "start": 19414.86, + "end": 19416.22, + "probability": 0.91 + }, + { + "start": 19417.04, + "end": 19423.32, + "probability": 0.9917 + }, + { + "start": 19423.88, + "end": 19424.24, + "probability": 0.004 + }, + { + "start": 19424.76, + "end": 19426.32, + "probability": 0.0329 + }, + { + "start": 19427.48, + "end": 19427.6, + "probability": 0.1617 + }, + { + "start": 19427.6, + "end": 19428.34, + "probability": 0.3865 + }, + { + "start": 19431.44, + "end": 19433.7, + "probability": 0.5226 + }, + { + "start": 19433.88, + "end": 19434.26, + "probability": 0.2992 + }, + { + "start": 19434.26, + "end": 19434.56, + "probability": 0.0543 + }, + { + "start": 19434.56, + "end": 19438.39, + "probability": 0.7847 + }, + { + "start": 19438.72, + "end": 19438.8, + "probability": 0.1401 + }, + { + "start": 19438.8, + "end": 19443.4, + "probability": 0.7826 + }, + { + "start": 19443.4, + "end": 19444.44, + "probability": 0.0562 + }, + { + "start": 19444.44, + "end": 19444.44, + "probability": 0.1695 + }, + { + "start": 19444.44, + "end": 19447.38, + "probability": 0.4697 + }, + { + "start": 19447.42, + "end": 19449.32, + "probability": 0.4082 + }, + { + "start": 19449.94, + "end": 19449.94, + "probability": 0.2367 + }, + { + "start": 19449.94, + "end": 19451.42, + "probability": 0.5984 + }, + { + "start": 19451.42, + "end": 19454.32, + "probability": 0.2426 + }, + { + "start": 19454.82, + "end": 19455.76, + "probability": 0.0158 + }, + { + "start": 19455.76, + "end": 19456.08, + "probability": 0.0515 + }, + { + "start": 19456.08, + "end": 19456.08, + "probability": 0.0465 + }, + { + "start": 19456.08, + "end": 19456.08, + "probability": 0.1273 + }, + { + "start": 19456.08, + "end": 19458.68, + "probability": 0.19 + }, + { + "start": 19459.08, + "end": 19459.36, + "probability": 0.0592 + }, + { + "start": 19460.62, + "end": 19465.09, + "probability": 0.7661 + }, + { + "start": 19465.62, + "end": 19466.54, + "probability": 0.2598 + }, + { + "start": 19466.8, + "end": 19467.52, + "probability": 0.1437 + }, + { + "start": 19467.62, + "end": 19469.81, + "probability": 0.4301 + }, + { + "start": 19469.94, + "end": 19471.12, + "probability": 0.7842 + }, + { + "start": 19471.16, + "end": 19475.2, + "probability": 0.9384 + }, + { + "start": 19476.3, + "end": 19476.52, + "probability": 0.1132 + }, + { + "start": 19476.52, + "end": 19476.52, + "probability": 0.1246 + }, + { + "start": 19476.52, + "end": 19477.54, + "probability": 0.354 + }, + { + "start": 19478.56, + "end": 19479.48, + "probability": 0.7523 + }, + { + "start": 19479.56, + "end": 19479.96, + "probability": 0.5956 + }, + { + "start": 19480.02, + "end": 19481.94, + "probability": 0.3757 + }, + { + "start": 19483.9, + "end": 19485.81, + "probability": 0.6228 + }, + { + "start": 19485.94, + "end": 19487.54, + "probability": 0.0544 + }, + { + "start": 19487.54, + "end": 19487.62, + "probability": 0.2299 + }, + { + "start": 19487.62, + "end": 19488.86, + "probability": 0.5198 + }, + { + "start": 19488.88, + "end": 19489.6, + "probability": 0.2224 + }, + { + "start": 19490.26, + "end": 19491.3, + "probability": 0.7766 + }, + { + "start": 19492.39, + "end": 19494.12, + "probability": 0.588 + }, + { + "start": 19494.3, + "end": 19495.72, + "probability": 0.6806 + }, + { + "start": 19496.42, + "end": 19496.74, + "probability": 0.9333 + }, + { + "start": 19496.8, + "end": 19497.76, + "probability": 0.877 + }, + { + "start": 19498.22, + "end": 19499.88, + "probability": 0.4481 + }, + { + "start": 19499.96, + "end": 19503.02, + "probability": 0.9965 + }, + { + "start": 19503.02, + "end": 19505.04, + "probability": 0.9952 + }, + { + "start": 19506.22, + "end": 19506.88, + "probability": 0.6876 + }, + { + "start": 19507.56, + "end": 19510.24, + "probability": 0.8889 + }, + { + "start": 19510.78, + "end": 19512.48, + "probability": 0.9878 + }, + { + "start": 19513.1, + "end": 19519.42, + "probability": 0.9967 + }, + { + "start": 19519.88, + "end": 19521.72, + "probability": 0.976 + }, + { + "start": 19524.86, + "end": 19528.8, + "probability": 0.9851 + }, + { + "start": 19529.42, + "end": 19533.15, + "probability": 0.9684 + }, + { + "start": 19533.92, + "end": 19535.07, + "probability": 0.9985 + }, + { + "start": 19536.02, + "end": 19539.41, + "probability": 0.9861 + }, + { + "start": 19540.08, + "end": 19543.82, + "probability": 0.9985 + }, + { + "start": 19544.52, + "end": 19546.6, + "probability": 0.9888 + }, + { + "start": 19547.28, + "end": 19549.72, + "probability": 0.9933 + }, + { + "start": 19549.78, + "end": 19553.0, + "probability": 0.8212 + }, + { + "start": 19553.84, + "end": 19558.9, + "probability": 0.998 + }, + { + "start": 19559.64, + "end": 19563.36, + "probability": 0.9955 + }, + { + "start": 19563.58, + "end": 19565.64, + "probability": 0.9919 + }, + { + "start": 19566.18, + "end": 19570.34, + "probability": 0.9836 + }, + { + "start": 19570.62, + "end": 19571.38, + "probability": 0.5492 + }, + { + "start": 19572.12, + "end": 19574.68, + "probability": 0.9776 + }, + { + "start": 19575.14, + "end": 19579.66, + "probability": 0.9928 + }, + { + "start": 19580.5, + "end": 19582.8, + "probability": 0.9901 + }, + { + "start": 19582.92, + "end": 19583.88, + "probability": 0.9692 + }, + { + "start": 19584.02, + "end": 19585.06, + "probability": 0.8193 + }, + { + "start": 19585.48, + "end": 19587.68, + "probability": 0.9847 + }, + { + "start": 19587.8, + "end": 19590.2, + "probability": 0.9891 + }, + { + "start": 19590.92, + "end": 19594.17, + "probability": 0.9944 + }, + { + "start": 19594.66, + "end": 19596.6, + "probability": 0.8157 + }, + { + "start": 19596.96, + "end": 19597.66, + "probability": 0.4979 + }, + { + "start": 19598.28, + "end": 19600.76, + "probability": 0.9699 + }, + { + "start": 19601.18, + "end": 19602.88, + "probability": 0.8704 + }, + { + "start": 19603.38, + "end": 19608.46, + "probability": 0.9878 + }, + { + "start": 19608.9, + "end": 19610.44, + "probability": 0.9844 + }, + { + "start": 19610.88, + "end": 19613.38, + "probability": 0.9443 + }, + { + "start": 19613.72, + "end": 19615.66, + "probability": 0.993 + }, + { + "start": 19616.42, + "end": 19618.4, + "probability": 0.9954 + }, + { + "start": 19619.28, + "end": 19622.22, + "probability": 0.7189 + }, + { + "start": 19622.64, + "end": 19626.2, + "probability": 0.9729 + }, + { + "start": 19626.4, + "end": 19628.28, + "probability": 0.8191 + }, + { + "start": 19628.94, + "end": 19629.0, + "probability": 0.1697 + }, + { + "start": 19629.0, + "end": 19629.0, + "probability": 0.2434 + }, + { + "start": 19629.0, + "end": 19629.1, + "probability": 0.0762 + }, + { + "start": 19629.2, + "end": 19630.9, + "probability": 0.7548 + }, + { + "start": 19631.16, + "end": 19636.1, + "probability": 0.9863 + }, + { + "start": 19636.4, + "end": 19641.04, + "probability": 0.9915 + }, + { + "start": 19641.48, + "end": 19644.7, + "probability": 0.9922 + }, + { + "start": 19644.92, + "end": 19645.6, + "probability": 0.2787 + }, + { + "start": 19645.78, + "end": 19650.22, + "probability": 0.9441 + }, + { + "start": 19650.48, + "end": 19653.86, + "probability": 0.9251 + }, + { + "start": 19654.28, + "end": 19659.56, + "probability": 0.9069 + }, + { + "start": 19659.76, + "end": 19660.5, + "probability": 0.3955 + }, + { + "start": 19660.56, + "end": 19661.76, + "probability": 0.6183 + }, + { + "start": 19661.92, + "end": 19662.74, + "probability": 0.8369 + }, + { + "start": 19662.96, + "end": 19665.58, + "probability": 0.9858 + }, + { + "start": 19665.62, + "end": 19666.22, + "probability": 0.7669 + }, + { + "start": 19666.24, + "end": 19666.88, + "probability": 0.775 + }, + { + "start": 19667.82, + "end": 19669.84, + "probability": 0.7354 + }, + { + "start": 19669.9, + "end": 19670.58, + "probability": 0.813 + }, + { + "start": 19671.22, + "end": 19673.92, + "probability": 0.5542 + }, + { + "start": 19676.94, + "end": 19686.92, + "probability": 0.8179 + }, + { + "start": 19686.92, + "end": 19688.64, + "probability": 0.3678 + }, + { + "start": 19689.36, + "end": 19690.52, + "probability": 0.6426 + }, + { + "start": 19693.74, + "end": 19695.12, + "probability": 0.0844 + }, + { + "start": 19696.54, + "end": 19700.34, + "probability": 0.6581 + }, + { + "start": 19701.04, + "end": 19702.02, + "probability": 0.7559 + }, + { + "start": 19702.22, + "end": 19706.48, + "probability": 0.7242 + }, + { + "start": 19706.48, + "end": 19711.04, + "probability": 0.7002 + }, + { + "start": 19712.08, + "end": 19714.46, + "probability": 0.7032 + }, + { + "start": 19714.62, + "end": 19720.8, + "probability": 0.9898 + }, + { + "start": 19722.12, + "end": 19725.98, + "probability": 0.6724 + }, + { + "start": 19727.1, + "end": 19729.16, + "probability": 0.8512 + }, + { + "start": 19729.8, + "end": 19733.42, + "probability": 0.986 + }, + { + "start": 19734.68, + "end": 19737.56, + "probability": 0.5555 + }, + { + "start": 19738.04, + "end": 19742.16, + "probability": 0.9971 + }, + { + "start": 19743.76, + "end": 19747.38, + "probability": 0.8872 + }, + { + "start": 19748.16, + "end": 19751.64, + "probability": 0.9056 + }, + { + "start": 19752.42, + "end": 19755.38, + "probability": 0.9732 + }, + { + "start": 19755.52, + "end": 19757.7, + "probability": 0.9162 + }, + { + "start": 19758.48, + "end": 19761.34, + "probability": 0.9644 + }, + { + "start": 19761.94, + "end": 19765.54, + "probability": 0.9941 + }, + { + "start": 19766.62, + "end": 19769.42, + "probability": 0.9645 + }, + { + "start": 19769.84, + "end": 19774.68, + "probability": 0.9697 + }, + { + "start": 19775.52, + "end": 19778.7, + "probability": 0.7945 + }, + { + "start": 19779.26, + "end": 19782.48, + "probability": 0.9984 + }, + { + "start": 19782.9, + "end": 19787.28, + "probability": 0.9718 + }, + { + "start": 19787.68, + "end": 19793.71, + "probability": 0.9598 + }, + { + "start": 19795.04, + "end": 19801.1, + "probability": 0.8283 + }, + { + "start": 19801.3, + "end": 19803.0, + "probability": 0.8311 + }, + { + "start": 19803.26, + "end": 19805.24, + "probability": 0.9754 + }, + { + "start": 19806.48, + "end": 19807.34, + "probability": 0.7476 + }, + { + "start": 19807.42, + "end": 19811.5, + "probability": 0.9452 + }, + { + "start": 19812.48, + "end": 19816.74, + "probability": 0.9729 + }, + { + "start": 19817.56, + "end": 19822.08, + "probability": 0.9949 + }, + { + "start": 19822.8, + "end": 19826.36, + "probability": 0.991 + }, + { + "start": 19827.18, + "end": 19831.6, + "probability": 0.9826 + }, + { + "start": 19832.18, + "end": 19834.83, + "probability": 0.9883 + }, + { + "start": 19835.42, + "end": 19837.24, + "probability": 0.8372 + }, + { + "start": 19838.14, + "end": 19842.24, + "probability": 0.987 + }, + { + "start": 19842.96, + "end": 19845.76, + "probability": 0.9683 + }, + { + "start": 19845.96, + "end": 19849.38, + "probability": 0.9928 + }, + { + "start": 19850.24, + "end": 19857.16, + "probability": 0.9922 + }, + { + "start": 19858.02, + "end": 19860.78, + "probability": 0.9987 + }, + { + "start": 19861.14, + "end": 19863.2, + "probability": 0.986 + }, + { + "start": 19864.04, + "end": 19868.9, + "probability": 0.9136 + }, + { + "start": 19869.2, + "end": 19872.36, + "probability": 0.8913 + }, + { + "start": 19873.14, + "end": 19876.1, + "probability": 0.9402 + }, + { + "start": 19877.1, + "end": 19879.4, + "probability": 0.9429 + }, + { + "start": 19880.12, + "end": 19885.96, + "probability": 0.8833 + }, + { + "start": 19886.84, + "end": 19891.86, + "probability": 0.8009 + }, + { + "start": 19891.86, + "end": 19896.22, + "probability": 0.9865 + }, + { + "start": 19896.94, + "end": 19899.27, + "probability": 0.6882 + }, + { + "start": 19900.16, + "end": 19905.02, + "probability": 0.9446 + }, + { + "start": 19905.62, + "end": 19907.0, + "probability": 0.6769 + }, + { + "start": 19907.22, + "end": 19907.86, + "probability": 0.6168 + }, + { + "start": 19908.02, + "end": 19913.98, + "probability": 0.9972 + }, + { + "start": 19914.12, + "end": 19915.2, + "probability": 0.5705 + }, + { + "start": 19915.64, + "end": 19918.1, + "probability": 0.8255 + }, + { + "start": 19918.26, + "end": 19923.26, + "probability": 0.9849 + }, + { + "start": 19923.52, + "end": 19927.61, + "probability": 0.8604 + }, + { + "start": 19928.14, + "end": 19928.24, + "probability": 0.542 + }, + { + "start": 19930.96, + "end": 19934.88, + "probability": 0.7573 + }, + { + "start": 19935.02, + "end": 19935.28, + "probability": 0.7521 + }, + { + "start": 19936.12, + "end": 19937.92, + "probability": 0.9553 + }, + { + "start": 19949.78, + "end": 19951.96, + "probability": 0.6775 + }, + { + "start": 19953.16, + "end": 19957.02, + "probability": 0.9946 + }, + { + "start": 19958.48, + "end": 19961.24, + "probability": 0.998 + }, + { + "start": 19962.6, + "end": 19964.7, + "probability": 0.9857 + }, + { + "start": 19966.6, + "end": 19971.14, + "probability": 0.9991 + }, + { + "start": 19972.42, + "end": 19977.52, + "probability": 0.999 + }, + { + "start": 19979.66, + "end": 19982.91, + "probability": 0.998 + }, + { + "start": 19982.94, + "end": 19988.74, + "probability": 0.9776 + }, + { + "start": 19989.66, + "end": 19992.92, + "probability": 0.996 + }, + { + "start": 19994.0, + "end": 19996.08, + "probability": 0.9985 + }, + { + "start": 19997.16, + "end": 20002.0, + "probability": 0.9963 + }, + { + "start": 20004.14, + "end": 20007.26, + "probability": 0.9966 + }, + { + "start": 20007.26, + "end": 20010.98, + "probability": 0.9849 + }, + { + "start": 20012.22, + "end": 20013.2, + "probability": 0.5129 + }, + { + "start": 20013.26, + "end": 20014.04, + "probability": 0.9727 + }, + { + "start": 20014.42, + "end": 20015.18, + "probability": 0.7286 + }, + { + "start": 20015.28, + "end": 20017.8, + "probability": 0.972 + }, + { + "start": 20019.08, + "end": 20019.99, + "probability": 0.9611 + }, + { + "start": 20022.2, + "end": 20026.52, + "probability": 0.9948 + }, + { + "start": 20027.24, + "end": 20032.6, + "probability": 0.9982 + }, + { + "start": 20037.78, + "end": 20042.38, + "probability": 0.9468 + }, + { + "start": 20042.44, + "end": 20043.3, + "probability": 0.995 + }, + { + "start": 20043.34, + "end": 20044.26, + "probability": 0.9262 + }, + { + "start": 20045.26, + "end": 20049.2, + "probability": 0.7987 + }, + { + "start": 20050.58, + "end": 20052.0, + "probability": 0.91 + }, + { + "start": 20054.56, + "end": 20058.66, + "probability": 0.9598 + }, + { + "start": 20058.74, + "end": 20059.54, + "probability": 0.9177 + }, + { + "start": 20060.16, + "end": 20061.14, + "probability": 0.8297 + }, + { + "start": 20063.1, + "end": 20065.66, + "probability": 0.96 + }, + { + "start": 20066.96, + "end": 20071.22, + "probability": 0.9818 + }, + { + "start": 20072.42, + "end": 20072.9, + "probability": 0.7525 + }, + { + "start": 20073.38, + "end": 20073.86, + "probability": 0.7514 + }, + { + "start": 20075.84, + "end": 20076.48, + "probability": 0.7418 + }, + { + "start": 20076.8, + "end": 20079.14, + "probability": 0.795 + }, + { + "start": 20079.84, + "end": 20080.97, + "probability": 0.9747 + }, + { + "start": 20091.96, + "end": 20093.91, + "probability": 0.5898 + }, + { + "start": 20096.58, + "end": 20099.4, + "probability": 0.6718 + }, + { + "start": 20099.86, + "end": 20101.1, + "probability": 0.4891 + }, + { + "start": 20101.52, + "end": 20103.78, + "probability": 0.6104 + }, + { + "start": 20104.58, + "end": 20105.52, + "probability": 0.7501 + }, + { + "start": 20105.6, + "end": 20106.1, + "probability": 0.5795 + }, + { + "start": 20106.28, + "end": 20106.71, + "probability": 0.9585 + }, + { + "start": 20107.06, + "end": 20110.72, + "probability": 0.8146 + }, + { + "start": 20110.8, + "end": 20111.04, + "probability": 0.5727 + }, + { + "start": 20111.08, + "end": 20111.3, + "probability": 0.7882 + }, + { + "start": 20111.3, + "end": 20111.78, + "probability": 0.8018 + }, + { + "start": 20112.08, + "end": 20112.92, + "probability": 0.8085 + }, + { + "start": 20113.04, + "end": 20113.72, + "probability": 0.4242 + }, + { + "start": 20113.92, + "end": 20114.85, + "probability": 0.3099 + }, + { + "start": 20115.2, + "end": 20117.72, + "probability": 0.594 + }, + { + "start": 20118.05, + "end": 20122.32, + "probability": 0.9812 + }, + { + "start": 20123.5, + "end": 20124.88, + "probability": 0.9924 + }, + { + "start": 20125.86, + "end": 20128.76, + "probability": 0.9663 + }, + { + "start": 20130.2, + "end": 20130.42, + "probability": 0.5837 + }, + { + "start": 20131.1, + "end": 20132.78, + "probability": 0.9248 + }, + { + "start": 20133.16, + "end": 20133.96, + "probability": 0.5629 + }, + { + "start": 20134.04, + "end": 20135.82, + "probability": 0.9835 + }, + { + "start": 20137.48, + "end": 20140.04, + "probability": 0.937 + }, + { + "start": 20140.08, + "end": 20142.86, + "probability": 0.762 + }, + { + "start": 20144.08, + "end": 20146.32, + "probability": 0.9939 + }, + { + "start": 20147.52, + "end": 20149.36, + "probability": 0.7734 + }, + { + "start": 20149.42, + "end": 20150.76, + "probability": 0.5875 + }, + { + "start": 20153.68, + "end": 20155.84, + "probability": 0.9591 + }, + { + "start": 20156.62, + "end": 20157.2, + "probability": 0.9097 + }, + { + "start": 20157.36, + "end": 20158.15, + "probability": 0.9264 + }, + { + "start": 20158.62, + "end": 20159.98, + "probability": 0.9938 + }, + { + "start": 20160.14, + "end": 20163.34, + "probability": 0.9236 + }, + { + "start": 20165.14, + "end": 20165.72, + "probability": 0.9053 + }, + { + "start": 20165.74, + "end": 20167.32, + "probability": 0.994 + }, + { + "start": 20167.36, + "end": 20168.26, + "probability": 0.7074 + }, + { + "start": 20168.94, + "end": 20169.16, + "probability": 0.6395 + }, + { + "start": 20169.64, + "end": 20170.53, + "probability": 0.9897 + }, + { + "start": 20170.92, + "end": 20172.1, + "probability": 0.9639 + }, + { + "start": 20172.5, + "end": 20173.28, + "probability": 0.9903 + }, + { + "start": 20173.62, + "end": 20174.54, + "probability": 0.9799 + }, + { + "start": 20174.62, + "end": 20175.7, + "probability": 0.7968 + }, + { + "start": 20176.42, + "end": 20176.91, + "probability": 0.9868 + }, + { + "start": 20177.9, + "end": 20178.74, + "probability": 0.932 + }, + { + "start": 20178.8, + "end": 20180.42, + "probability": 0.784 + }, + { + "start": 20180.42, + "end": 20180.92, + "probability": 0.5896 + }, + { + "start": 20181.08, + "end": 20181.71, + "probability": 0.8306 + }, + { + "start": 20182.78, + "end": 20184.18, + "probability": 0.9132 + }, + { + "start": 20184.94, + "end": 20186.82, + "probability": 0.9775 + }, + { + "start": 20186.92, + "end": 20188.24, + "probability": 0.7377 + }, + { + "start": 20189.24, + "end": 20191.77, + "probability": 0.9214 + }, + { + "start": 20192.62, + "end": 20194.22, + "probability": 0.9717 + }, + { + "start": 20195.9, + "end": 20197.56, + "probability": 0.8704 + }, + { + "start": 20198.12, + "end": 20199.68, + "probability": 0.7523 + }, + { + "start": 20200.6, + "end": 20202.16, + "probability": 0.9985 + }, + { + "start": 20203.22, + "end": 20208.26, + "probability": 0.8795 + }, + { + "start": 20208.38, + "end": 20208.78, + "probability": 0.8131 + }, + { + "start": 20208.86, + "end": 20211.24, + "probability": 0.9681 + }, + { + "start": 20211.72, + "end": 20215.16, + "probability": 0.9961 + }, + { + "start": 20215.74, + "end": 20217.1, + "probability": 0.986 + }, + { + "start": 20217.82, + "end": 20221.92, + "probability": 0.9963 + }, + { + "start": 20222.68, + "end": 20223.34, + "probability": 0.4543 + }, + { + "start": 20224.04, + "end": 20224.52, + "probability": 0.7298 + }, + { + "start": 20224.6, + "end": 20228.25, + "probability": 0.9575 + }, + { + "start": 20228.32, + "end": 20228.72, + "probability": 0.4462 + }, + { + "start": 20229.06, + "end": 20235.08, + "probability": 0.991 + }, + { + "start": 20235.64, + "end": 20236.38, + "probability": 0.4609 + }, + { + "start": 20236.44, + "end": 20237.4, + "probability": 0.4627 + }, + { + "start": 20237.86, + "end": 20240.9, + "probability": 0.9842 + }, + { + "start": 20241.58, + "end": 20245.42, + "probability": 0.1458 + }, + { + "start": 20245.42, + "end": 20246.44, + "probability": 0.0653 + }, + { + "start": 20246.44, + "end": 20246.5, + "probability": 0.057 + }, + { + "start": 20246.52, + "end": 20247.2, + "probability": 0.3382 + }, + { + "start": 20247.2, + "end": 20247.24, + "probability": 0.4026 + }, + { + "start": 20247.24, + "end": 20249.0, + "probability": 0.5273 + }, + { + "start": 20249.0, + "end": 20249.56, + "probability": 0.1359 + }, + { + "start": 20249.92, + "end": 20249.96, + "probability": 0.1878 + }, + { + "start": 20250.82, + "end": 20251.26, + "probability": 0.0632 + }, + { + "start": 20251.26, + "end": 20251.96, + "probability": 0.0992 + }, + { + "start": 20252.12, + "end": 20252.89, + "probability": 0.9855 + }, + { + "start": 20253.3, + "end": 20255.2, + "probability": 0.981 + }, + { + "start": 20256.28, + "end": 20257.12, + "probability": 0.8618 + }, + { + "start": 20257.3, + "end": 20258.11, + "probability": 0.4548 + }, + { + "start": 20259.58, + "end": 20260.54, + "probability": 0.5903 + }, + { + "start": 20260.8, + "end": 20261.02, + "probability": 0.0935 + }, + { + "start": 20261.02, + "end": 20262.63, + "probability": 0.8894 + }, + { + "start": 20262.86, + "end": 20264.1, + "probability": 0.8173 + }, + { + "start": 20264.26, + "end": 20265.66, + "probability": 0.8285 + }, + { + "start": 20265.78, + "end": 20269.96, + "probability": 0.9325 + }, + { + "start": 20271.02, + "end": 20271.72, + "probability": 0.4091 + }, + { + "start": 20271.72, + "end": 20273.32, + "probability": 0.0086 + }, + { + "start": 20273.32, + "end": 20273.32, + "probability": 0.097 + }, + { + "start": 20273.32, + "end": 20273.72, + "probability": 0.1217 + }, + { + "start": 20274.26, + "end": 20274.26, + "probability": 0.0065 + }, + { + "start": 20274.28, + "end": 20274.67, + "probability": 0.3412 + }, + { + "start": 20275.42, + "end": 20277.04, + "probability": 0.9619 + }, + { + "start": 20277.1, + "end": 20279.66, + "probability": 0.9138 + }, + { + "start": 20280.24, + "end": 20281.6, + "probability": 0.8659 + }, + { + "start": 20281.74, + "end": 20282.02, + "probability": 0.8793 + }, + { + "start": 20282.14, + "end": 20285.18, + "probability": 0.991 + }, + { + "start": 20285.64, + "end": 20286.3, + "probability": 0.8281 + }, + { + "start": 20286.36, + "end": 20287.4, + "probability": 0.851 + }, + { + "start": 20287.44, + "end": 20288.48, + "probability": 0.9287 + }, + { + "start": 20288.94, + "end": 20290.46, + "probability": 0.9785 + }, + { + "start": 20291.08, + "end": 20294.32, + "probability": 0.9899 + }, + { + "start": 20294.98, + "end": 20295.94, + "probability": 0.8717 + }, + { + "start": 20296.6, + "end": 20298.22, + "probability": 0.9974 + }, + { + "start": 20298.74, + "end": 20299.46, + "probability": 0.573 + }, + { + "start": 20299.54, + "end": 20303.93, + "probability": 0.97 + }, + { + "start": 20304.04, + "end": 20304.28, + "probability": 0.4643 + }, + { + "start": 20304.44, + "end": 20304.56, + "probability": 0.7329 + }, + { + "start": 20304.98, + "end": 20306.26, + "probability": 0.9947 + }, + { + "start": 20308.84, + "end": 20309.42, + "probability": 0.6 + }, + { + "start": 20309.54, + "end": 20313.0, + "probability": 0.8733 + }, + { + "start": 20313.26, + "end": 20314.26, + "probability": 0.7299 + }, + { + "start": 20318.5, + "end": 20319.54, + "probability": 0.1337 + }, + { + "start": 20320.78, + "end": 20322.92, + "probability": 0.0484 + }, + { + "start": 20323.64, + "end": 20328.06, + "probability": 0.2565 + }, + { + "start": 20333.42, + "end": 20333.5, + "probability": 0.0947 + }, + { + "start": 20354.6, + "end": 20358.06, + "probability": 0.9299 + }, + { + "start": 20359.66, + "end": 20361.0, + "probability": 0.9656 + }, + { + "start": 20362.04, + "end": 20363.04, + "probability": 0.7578 + }, + { + "start": 20363.34, + "end": 20368.38, + "probability": 0.844 + }, + { + "start": 20370.0, + "end": 20374.84, + "probability": 0.9985 + }, + { + "start": 20375.56, + "end": 20378.22, + "probability": 0.996 + }, + { + "start": 20379.04, + "end": 20383.1, + "probability": 0.9749 + }, + { + "start": 20383.9, + "end": 20385.06, + "probability": 0.8581 + }, + { + "start": 20386.46, + "end": 20391.88, + "probability": 0.9978 + }, + { + "start": 20392.92, + "end": 20395.88, + "probability": 0.9966 + }, + { + "start": 20396.12, + "end": 20397.24, + "probability": 0.931 + }, + { + "start": 20398.4, + "end": 20407.9, + "probability": 0.7779 + }, + { + "start": 20408.48, + "end": 20409.86, + "probability": 0.7999 + }, + { + "start": 20411.06, + "end": 20413.96, + "probability": 0.7688 + }, + { + "start": 20414.92, + "end": 20415.5, + "probability": 0.9515 + }, + { + "start": 20415.6, + "end": 20423.18, + "probability": 0.9681 + }, + { + "start": 20424.67, + "end": 20427.21, + "probability": 0.8547 + }, + { + "start": 20428.24, + "end": 20433.82, + "probability": 0.9507 + }, + { + "start": 20435.1, + "end": 20438.8, + "probability": 0.9924 + }, + { + "start": 20439.66, + "end": 20441.88, + "probability": 0.5709 + }, + { + "start": 20442.38, + "end": 20444.72, + "probability": 0.9892 + }, + { + "start": 20445.84, + "end": 20450.9, + "probability": 0.9385 + }, + { + "start": 20452.08, + "end": 20455.3, + "probability": 0.9979 + }, + { + "start": 20455.82, + "end": 20461.58, + "probability": 0.9395 + }, + { + "start": 20461.58, + "end": 20465.26, + "probability": 0.9986 + }, + { + "start": 20465.26, + "end": 20469.14, + "probability": 0.9994 + }, + { + "start": 20469.66, + "end": 20475.26, + "probability": 0.8864 + }, + { + "start": 20475.66, + "end": 20478.6, + "probability": 0.9336 + }, + { + "start": 20479.62, + "end": 20489.28, + "probability": 0.9969 + }, + { + "start": 20489.28, + "end": 20493.44, + "probability": 0.9968 + }, + { + "start": 20494.24, + "end": 20495.66, + "probability": 0.7291 + }, + { + "start": 20497.04, + "end": 20502.34, + "probability": 0.9863 + }, + { + "start": 20503.34, + "end": 20508.88, + "probability": 0.9856 + }, + { + "start": 20509.34, + "end": 20512.46, + "probability": 0.9908 + }, + { + "start": 20513.1, + "end": 20516.94, + "probability": 0.997 + }, + { + "start": 20516.94, + "end": 20521.98, + "probability": 0.9946 + }, + { + "start": 20522.08, + "end": 20522.88, + "probability": 0.7871 + }, + { + "start": 20523.64, + "end": 20524.24, + "probability": 0.6685 + }, + { + "start": 20525.02, + "end": 20526.7, + "probability": 0.7572 + }, + { + "start": 20546.7, + "end": 20548.17, + "probability": 0.5535 + }, + { + "start": 20548.42, + "end": 20549.72, + "probability": 0.6823 + }, + { + "start": 20550.78, + "end": 20555.02, + "probability": 0.9836 + }, + { + "start": 20555.46, + "end": 20556.8, + "probability": 0.8501 + }, + { + "start": 20557.86, + "end": 20559.5, + "probability": 0.9749 + }, + { + "start": 20559.92, + "end": 20562.62, + "probability": 0.9626 + }, + { + "start": 20563.86, + "end": 20564.3, + "probability": 0.6908 + }, + { + "start": 20565.0, + "end": 20569.5, + "probability": 0.9919 + }, + { + "start": 20570.1, + "end": 20571.22, + "probability": 0.8745 + }, + { + "start": 20571.94, + "end": 20576.42, + "probability": 0.8206 + }, + { + "start": 20577.16, + "end": 20580.96, + "probability": 0.9833 + }, + { + "start": 20582.46, + "end": 20584.5, + "probability": 0.6914 + }, + { + "start": 20585.64, + "end": 20588.54, + "probability": 0.9202 + }, + { + "start": 20589.46, + "end": 20592.3, + "probability": 0.9883 + }, + { + "start": 20592.98, + "end": 20594.08, + "probability": 0.9585 + }, + { + "start": 20594.94, + "end": 20599.94, + "probability": 0.9924 + }, + { + "start": 20601.12, + "end": 20601.98, + "probability": 0.7483 + }, + { + "start": 20602.64, + "end": 20603.56, + "probability": 0.9237 + }, + { + "start": 20604.24, + "end": 20605.16, + "probability": 0.9887 + }, + { + "start": 20606.08, + "end": 20607.98, + "probability": 0.948 + }, + { + "start": 20609.92, + "end": 20612.34, + "probability": 0.9979 + }, + { + "start": 20612.6, + "end": 20615.92, + "probability": 0.9899 + }, + { + "start": 20616.86, + "end": 20620.6, + "probability": 0.9941 + }, + { + "start": 20621.6, + "end": 20622.16, + "probability": 0.8997 + }, + { + "start": 20623.34, + "end": 20627.8, + "probability": 0.9749 + }, + { + "start": 20627.8, + "end": 20631.7, + "probability": 0.9642 + }, + { + "start": 20633.2, + "end": 20634.04, + "probability": 0.7928 + }, + { + "start": 20635.02, + "end": 20636.78, + "probability": 0.9749 + }, + { + "start": 20637.48, + "end": 20639.92, + "probability": 0.6001 + }, + { + "start": 20640.44, + "end": 20643.1, + "probability": 0.9678 + }, + { + "start": 20643.78, + "end": 20648.34, + "probability": 0.9907 + }, + { + "start": 20649.56, + "end": 20652.12, + "probability": 0.9917 + }, + { + "start": 20652.22, + "end": 20655.94, + "probability": 0.0303 + }, + { + "start": 20656.7, + "end": 20658.8, + "probability": 0.8734 + }, + { + "start": 20658.8, + "end": 20662.18, + "probability": 0.9959 + }, + { + "start": 20663.36, + "end": 20664.94, + "probability": 0.7404 + }, + { + "start": 20665.42, + "end": 20670.24, + "probability": 0.9046 + }, + { + "start": 20670.4, + "end": 20670.7, + "probability": 0.7126 + }, + { + "start": 20671.06, + "end": 20673.76, + "probability": 0.8258 + }, + { + "start": 20675.08, + "end": 20675.78, + "probability": 0.8848 + }, + { + "start": 20676.48, + "end": 20679.28, + "probability": 0.9853 + }, + { + "start": 20679.28, + "end": 20682.68, + "probability": 0.9911 + }, + { + "start": 20684.06, + "end": 20684.76, + "probability": 0.7416 + }, + { + "start": 20685.96, + "end": 20689.74, + "probability": 0.9843 + }, + { + "start": 20690.32, + "end": 20694.36, + "probability": 0.9957 + }, + { + "start": 20697.0, + "end": 20698.32, + "probability": 0.043 + }, + { + "start": 20698.32, + "end": 20698.84, + "probability": 0.266 + }, + { + "start": 20699.2, + "end": 20699.46, + "probability": 0.4047 + }, + { + "start": 20699.74, + "end": 20703.16, + "probability": 0.0444 + }, + { + "start": 20703.36, + "end": 20704.11, + "probability": 0.0176 + }, + { + "start": 20704.66, + "end": 20705.16, + "probability": 0.0429 + }, + { + "start": 20705.16, + "end": 20708.9, + "probability": 0.1453 + }, + { + "start": 20709.2, + "end": 20709.44, + "probability": 0.3248 + }, + { + "start": 20709.44, + "end": 20711.58, + "probability": 0.9445 + }, + { + "start": 20711.66, + "end": 20711.94, + "probability": 0.6332 + }, + { + "start": 20711.94, + "end": 20715.84, + "probability": 0.7202 + }, + { + "start": 20716.36, + "end": 20716.68, + "probability": 0.1363 + }, + { + "start": 20717.1, + "end": 20718.4, + "probability": 0.9435 + }, + { + "start": 20718.44, + "end": 20719.66, + "probability": 0.9503 + }, + { + "start": 20719.76, + "end": 20722.08, + "probability": 0.7575 + }, + { + "start": 20722.08, + "end": 20722.34, + "probability": 0.4076 + }, + { + "start": 20722.4, + "end": 20724.74, + "probability": 0.5598 + }, + { + "start": 20725.3, + "end": 20725.8, + "probability": 0.4368 + }, + { + "start": 20725.8, + "end": 20728.46, + "probability": 0.8184 + }, + { + "start": 20729.02, + "end": 20734.3, + "probability": 0.882 + }, + { + "start": 20734.58, + "end": 20739.04, + "probability": 0.9181 + }, + { + "start": 20739.42, + "end": 20741.04, + "probability": 0.985 + }, + { + "start": 20741.6, + "end": 20745.49, + "probability": 0.8794 + }, + { + "start": 20746.1, + "end": 20747.06, + "probability": 0.7929 + }, + { + "start": 20747.28, + "end": 20749.28, + "probability": 0.893 + }, + { + "start": 20749.74, + "end": 20754.34, + "probability": 0.9951 + }, + { + "start": 20754.94, + "end": 20757.7, + "probability": 0.9238 + }, + { + "start": 20758.32, + "end": 20759.5, + "probability": 0.9546 + }, + { + "start": 20760.86, + "end": 20762.28, + "probability": 0.7451 + }, + { + "start": 20765.34, + "end": 20767.34, + "probability": 0.6753 + }, + { + "start": 20791.62, + "end": 20792.46, + "probability": 0.5379 + }, + { + "start": 20792.46, + "end": 20792.84, + "probability": 0.1146 + }, + { + "start": 20792.84, + "end": 20796.74, + "probability": 0.6495 + }, + { + "start": 20797.48, + "end": 20798.76, + "probability": 0.1181 + }, + { + "start": 20799.8, + "end": 20800.18, + "probability": 0.4531 + }, + { + "start": 20800.18, + "end": 20800.52, + "probability": 0.7873 + }, + { + "start": 20800.62, + "end": 20801.0, + "probability": 0.7329 + }, + { + "start": 20801.02, + "end": 20801.94, + "probability": 0.8475 + }, + { + "start": 20802.04, + "end": 20802.88, + "probability": 0.9214 + }, + { + "start": 20803.3, + "end": 20804.18, + "probability": 0.9517 + }, + { + "start": 20804.28, + "end": 20806.8, + "probability": 0.9738 + }, + { + "start": 20806.84, + "end": 20808.8, + "probability": 0.9987 + }, + { + "start": 20809.14, + "end": 20810.28, + "probability": 0.8452 + }, + { + "start": 20810.4, + "end": 20812.28, + "probability": 0.9724 + }, + { + "start": 20812.84, + "end": 20815.92, + "probability": 0.939 + }, + { + "start": 20816.82, + "end": 20818.7, + "probability": 0.9688 + }, + { + "start": 20819.24, + "end": 20821.74, + "probability": 0.979 + }, + { + "start": 20822.86, + "end": 20824.92, + "probability": 0.9595 + }, + { + "start": 20825.26, + "end": 20828.16, + "probability": 0.9983 + }, + { + "start": 20828.78, + "end": 20829.22, + "probability": 0.5768 + }, + { + "start": 20829.74, + "end": 20831.28, + "probability": 0.9926 + }, + { + "start": 20832.82, + "end": 20833.48, + "probability": 0.9712 + }, + { + "start": 20833.68, + "end": 20838.48, + "probability": 0.9644 + }, + { + "start": 20839.54, + "end": 20842.7, + "probability": 0.688 + }, + { + "start": 20843.76, + "end": 20847.34, + "probability": 0.998 + }, + { + "start": 20847.5, + "end": 20850.86, + "probability": 0.9772 + }, + { + "start": 20852.3, + "end": 20857.56, + "probability": 0.9868 + }, + { + "start": 20858.0, + "end": 20859.46, + "probability": 0.998 + }, + { + "start": 20860.28, + "end": 20862.1, + "probability": 0.9539 + }, + { + "start": 20862.44, + "end": 20865.66, + "probability": 0.9897 + }, + { + "start": 20866.86, + "end": 20869.86, + "probability": 0.989 + }, + { + "start": 20870.16, + "end": 20872.02, + "probability": 0.9814 + }, + { + "start": 20873.34, + "end": 20874.92, + "probability": 0.7703 + }, + { + "start": 20875.24, + "end": 20877.0, + "probability": 0.7057 + }, + { + "start": 20877.56, + "end": 20879.5, + "probability": 0.8896 + }, + { + "start": 20880.5, + "end": 20882.36, + "probability": 0.969 + }, + { + "start": 20886.74, + "end": 20888.26, + "probability": 0.6604 + }, + { + "start": 20888.96, + "end": 20891.34, + "probability": 0.9897 + }, + { + "start": 20892.54, + "end": 20897.7, + "probability": 0.9897 + }, + { + "start": 20898.3, + "end": 20901.72, + "probability": 0.998 + }, + { + "start": 20902.38, + "end": 20906.36, + "probability": 0.9868 + }, + { + "start": 20907.02, + "end": 20911.34, + "probability": 0.8222 + }, + { + "start": 20912.24, + "end": 20915.58, + "probability": 0.9647 + }, + { + "start": 20916.02, + "end": 20917.3, + "probability": 0.8346 + }, + { + "start": 20918.38, + "end": 20921.7, + "probability": 0.9907 + }, + { + "start": 20925.18, + "end": 20929.12, + "probability": 0.9948 + }, + { + "start": 20930.4, + "end": 20935.02, + "probability": 0.9946 + }, + { + "start": 20935.16, + "end": 20936.11, + "probability": 0.9307 + }, + { + "start": 20936.46, + "end": 20938.52, + "probability": 0.7477 + }, + { + "start": 20939.04, + "end": 20940.08, + "probability": 0.7581 + }, + { + "start": 20940.6, + "end": 20942.36, + "probability": 0.97 + }, + { + "start": 20942.48, + "end": 20945.4, + "probability": 0.9691 + }, + { + "start": 20945.44, + "end": 20947.02, + "probability": 0.999 + }, + { + "start": 20947.54, + "end": 20949.54, + "probability": 0.9291 + }, + { + "start": 20949.62, + "end": 20950.78, + "probability": 0.7989 + }, + { + "start": 20951.2, + "end": 20953.54, + "probability": 0.9934 + }, + { + "start": 20953.92, + "end": 20955.48, + "probability": 0.9714 + }, + { + "start": 20955.82, + "end": 20957.36, + "probability": 0.9521 + }, + { + "start": 20958.42, + "end": 20960.9, + "probability": 0.9976 + }, + { + "start": 20961.62, + "end": 20968.88, + "probability": 0.9879 + }, + { + "start": 20969.76, + "end": 20971.9, + "probability": 0.9629 + }, + { + "start": 20972.34, + "end": 20973.26, + "probability": 0.8847 + }, + { + "start": 20976.92, + "end": 20978.22, + "probability": 0.9404 + }, + { + "start": 20978.98, + "end": 20984.04, + "probability": 0.0757 + }, + { + "start": 20999.9, + "end": 21003.86, + "probability": 0.6356 + }, + { + "start": 21005.82, + "end": 21006.56, + "probability": 0.7653 + }, + { + "start": 21008.46, + "end": 21010.72, + "probability": 0.8942 + }, + { + "start": 21011.42, + "end": 21011.76, + "probability": 0.8907 + }, + { + "start": 21012.74, + "end": 21015.24, + "probability": 0.95 + }, + { + "start": 21016.46, + "end": 21018.34, + "probability": 0.9313 + }, + { + "start": 21019.58, + "end": 21023.8, + "probability": 0.9423 + }, + { + "start": 21024.56, + "end": 21026.2, + "probability": 0.8601 + }, + { + "start": 21027.58, + "end": 21029.3, + "probability": 0.5846 + }, + { + "start": 21030.02, + "end": 21032.58, + "probability": 0.8794 + }, + { + "start": 21033.58, + "end": 21037.6, + "probability": 0.999 + }, + { + "start": 21037.68, + "end": 21039.19, + "probability": 0.9315 + }, + { + "start": 21040.52, + "end": 21041.94, + "probability": 0.8542 + }, + { + "start": 21042.54, + "end": 21043.54, + "probability": 0.8799 + }, + { + "start": 21043.62, + "end": 21044.48, + "probability": 0.8636 + }, + { + "start": 21044.82, + "end": 21045.9, + "probability": 0.9213 + }, + { + "start": 21045.94, + "end": 21047.02, + "probability": 0.8281 + }, + { + "start": 21048.06, + "end": 21049.44, + "probability": 0.9741 + }, + { + "start": 21050.5, + "end": 21052.32, + "probability": 0.9806 + }, + { + "start": 21052.34, + "end": 21054.32, + "probability": 0.971 + }, + { + "start": 21055.2, + "end": 21057.42, + "probability": 0.9878 + }, + { + "start": 21058.38, + "end": 21058.9, + "probability": 0.8178 + }, + { + "start": 21059.48, + "end": 21060.92, + "probability": 0.997 + }, + { + "start": 21061.72, + "end": 21062.04, + "probability": 0.9561 + }, + { + "start": 21063.12, + "end": 21067.46, + "probability": 0.802 + }, + { + "start": 21068.64, + "end": 21069.2, + "probability": 0.8711 + }, + { + "start": 21069.96, + "end": 21071.12, + "probability": 0.9966 + }, + { + "start": 21071.88, + "end": 21074.1, + "probability": 0.9995 + }, + { + "start": 21074.56, + "end": 21079.22, + "probability": 0.99 + }, + { + "start": 21079.78, + "end": 21082.26, + "probability": 0.9042 + }, + { + "start": 21083.72, + "end": 21086.04, + "probability": 0.9868 + }, + { + "start": 21087.74, + "end": 21095.08, + "probability": 0.7586 + }, + { + "start": 21095.32, + "end": 21099.44, + "probability": 0.984 + }, + { + "start": 21099.64, + "end": 21100.0, + "probability": 0.1243 + }, + { + "start": 21100.0, + "end": 21100.0, + "probability": 0.2401 + }, + { + "start": 21100.0, + "end": 21100.7, + "probability": 0.9431 + }, + { + "start": 21101.6, + "end": 21103.4, + "probability": 0.3383 + }, + { + "start": 21103.44, + "end": 21105.18, + "probability": 0.9232 + }, + { + "start": 21105.18, + "end": 21108.56, + "probability": 0.495 + }, + { + "start": 21109.32, + "end": 21109.98, + "probability": 0.0215 + }, + { + "start": 21109.98, + "end": 21110.89, + "probability": 0.0143 + }, + { + "start": 21110.98, + "end": 21111.3, + "probability": 0.2058 + }, + { + "start": 21111.3, + "end": 21111.98, + "probability": 0.131 + }, + { + "start": 21111.98, + "end": 21116.02, + "probability": 0.3314 + }, + { + "start": 21116.04, + "end": 21117.26, + "probability": 0.7812 + }, + { + "start": 21118.0, + "end": 21118.78, + "probability": 0.3983 + }, + { + "start": 21119.32, + "end": 21120.8, + "probability": 0.9546 + }, + { + "start": 21121.24, + "end": 21123.94, + "probability": 0.7925 + }, + { + "start": 21125.06, + "end": 21127.66, + "probability": 0.9259 + }, + { + "start": 21127.7, + "end": 21128.43, + "probability": 0.5417 + }, + { + "start": 21129.44, + "end": 21131.68, + "probability": 0.8983 + }, + { + "start": 21132.6, + "end": 21134.38, + "probability": 0.9972 + }, + { + "start": 21135.1, + "end": 21138.31, + "probability": 0.9973 + }, + { + "start": 21139.64, + "end": 21143.1, + "probability": 0.928 + }, + { + "start": 21144.7, + "end": 21147.44, + "probability": 0.7897 + }, + { + "start": 21148.0, + "end": 21151.98, + "probability": 0.9795 + }, + { + "start": 21152.49, + "end": 21155.77, + "probability": 0.7767 + }, + { + "start": 21156.34, + "end": 21159.46, + "probability": 0.9308 + }, + { + "start": 21160.24, + "end": 21161.5, + "probability": 0.9072 + }, + { + "start": 21161.84, + "end": 21165.1, + "probability": 0.9894 + }, + { + "start": 21165.54, + "end": 21167.74, + "probability": 0.9976 + }, + { + "start": 21168.44, + "end": 21175.24, + "probability": 0.9463 + }, + { + "start": 21175.62, + "end": 21181.66, + "probability": 0.8476 + }, + { + "start": 21182.4, + "end": 21184.66, + "probability": 0.8356 + }, + { + "start": 21185.76, + "end": 21187.74, + "probability": 0.4738 + }, + { + "start": 21187.86, + "end": 21189.26, + "probability": 0.5357 + }, + { + "start": 21189.6, + "end": 21191.16, + "probability": 0.2024 + }, + { + "start": 21191.16, + "end": 21191.62, + "probability": 0.4621 + }, + { + "start": 21191.66, + "end": 21194.38, + "probability": 0.1001 + }, + { + "start": 21194.5, + "end": 21197.4, + "probability": 0.6654 + }, + { + "start": 21197.4, + "end": 21198.68, + "probability": 0.6775 + }, + { + "start": 21199.38, + "end": 21201.36, + "probability": 0.2117 + }, + { + "start": 21202.04, + "end": 21202.22, + "probability": 0.062 + }, + { + "start": 21202.42, + "end": 21202.68, + "probability": 0.2831 + }, + { + "start": 21202.68, + "end": 21203.2, + "probability": 0.2146 + }, + { + "start": 21203.52, + "end": 21204.38, + "probability": 0.3304 + }, + { + "start": 21204.5, + "end": 21207.88, + "probability": 0.6075 + }, + { + "start": 21207.98, + "end": 21208.64, + "probability": 0.0003 + }, + { + "start": 21208.86, + "end": 21210.46, + "probability": 0.3758 + }, + { + "start": 21210.64, + "end": 21211.62, + "probability": 0.4779 + }, + { + "start": 21212.2, + "end": 21212.7, + "probability": 0.4068 + }, + { + "start": 21212.88, + "end": 21214.8, + "probability": 0.7674 + }, + { + "start": 21215.36, + "end": 21216.52, + "probability": 0.9626 + }, + { + "start": 21216.58, + "end": 21217.76, + "probability": 0.8353 + }, + { + "start": 21218.3, + "end": 21219.78, + "probability": 0.757 + }, + { + "start": 21220.34, + "end": 21221.24, + "probability": 0.764 + }, + { + "start": 21222.26, + "end": 21224.56, + "probability": 0.9985 + }, + { + "start": 21225.38, + "end": 21226.56, + "probability": 0.7889 + }, + { + "start": 21226.78, + "end": 21233.92, + "probability": 0.9803 + }, + { + "start": 21233.92, + "end": 21239.28, + "probability": 0.983 + }, + { + "start": 21240.48, + "end": 21246.42, + "probability": 0.855 + }, + { + "start": 21246.98, + "end": 21249.96, + "probability": 0.9761 + }, + { + "start": 21250.32, + "end": 21250.32, + "probability": 0.0324 + }, + { + "start": 21250.32, + "end": 21251.9, + "probability": 0.592 + }, + { + "start": 21252.4, + "end": 21257.9, + "probability": 0.755 + }, + { + "start": 21258.38, + "end": 21260.18, + "probability": 0.0692 + }, + { + "start": 21263.12, + "end": 21263.62, + "probability": 0.1449 + }, + { + "start": 21263.62, + "end": 21263.62, + "probability": 0.0829 + }, + { + "start": 21263.62, + "end": 21268.16, + "probability": 0.9817 + }, + { + "start": 21269.42, + "end": 21271.88, + "probability": 0.9951 + }, + { + "start": 21272.34, + "end": 21273.56, + "probability": 0.7998 + }, + { + "start": 21274.16, + "end": 21278.56, + "probability": 0.9889 + }, + { + "start": 21279.28, + "end": 21280.9, + "probability": 0.9863 + }, + { + "start": 21281.0, + "end": 21281.46, + "probability": 0.9215 + }, + { + "start": 21281.6, + "end": 21283.7, + "probability": 0.8008 + }, + { + "start": 21284.66, + "end": 21289.28, + "probability": 0.981 + }, + { + "start": 21290.54, + "end": 21290.68, + "probability": 0.9336 + }, + { + "start": 21291.62, + "end": 21292.52, + "probability": 0.7578 + }, + { + "start": 21294.88, + "end": 21297.86, + "probability": 0.9749 + }, + { + "start": 21298.96, + "end": 21301.46, + "probability": 0.9941 + }, + { + "start": 21302.64, + "end": 21307.42, + "probability": 0.9582 + }, + { + "start": 21308.18, + "end": 21308.88, + "probability": 0.5002 + }, + { + "start": 21310.06, + "end": 21317.74, + "probability": 0.9594 + }, + { + "start": 21318.64, + "end": 21320.5, + "probability": 0.9924 + }, + { + "start": 21321.08, + "end": 21326.48, + "probability": 0.9705 + }, + { + "start": 21327.68, + "end": 21328.98, + "probability": 0.9925 + }, + { + "start": 21329.5, + "end": 21330.36, + "probability": 0.9604 + }, + { + "start": 21330.74, + "end": 21333.82, + "probability": 0.9312 + }, + { + "start": 21334.06, + "end": 21336.13, + "probability": 0.7343 + }, + { + "start": 21337.14, + "end": 21337.74, + "probability": 0.8295 + }, + { + "start": 21338.28, + "end": 21340.44, + "probability": 0.8417 + }, + { + "start": 21341.4, + "end": 21344.48, + "probability": 0.9391 + }, + { + "start": 21345.14, + "end": 21345.96, + "probability": 0.8447 + }, + { + "start": 21346.68, + "end": 21350.42, + "probability": 0.843 + }, + { + "start": 21350.48, + "end": 21351.5, + "probability": 0.7436 + }, + { + "start": 21352.72, + "end": 21358.12, + "probability": 0.9585 + }, + { + "start": 21358.82, + "end": 21364.02, + "probability": 0.9857 + }, + { + "start": 21364.88, + "end": 21367.02, + "probability": 0.789 + }, + { + "start": 21367.76, + "end": 21369.79, + "probability": 0.9866 + }, + { + "start": 21372.74, + "end": 21374.22, + "probability": 0.8083 + }, + { + "start": 21375.44, + "end": 21377.98, + "probability": 0.9715 + }, + { + "start": 21378.62, + "end": 21384.2, + "probability": 0.9971 + }, + { + "start": 21385.38, + "end": 21386.12, + "probability": 0.5329 + }, + { + "start": 21386.86, + "end": 21387.9, + "probability": 0.9333 + }, + { + "start": 21388.0, + "end": 21388.28, + "probability": 0.8887 + }, + { + "start": 21390.84, + "end": 21392.18, + "probability": 0.8374 + }, + { + "start": 21415.48, + "end": 21416.5, + "probability": 0.8425 + }, + { + "start": 21416.92, + "end": 21417.81, + "probability": 0.5105 + }, + { + "start": 21418.98, + "end": 21424.78, + "probability": 0.957 + }, + { + "start": 21425.2, + "end": 21426.86, + "probability": 0.9941 + }, + { + "start": 21428.44, + "end": 21431.96, + "probability": 0.9883 + }, + { + "start": 21433.04, + "end": 21433.88, + "probability": 0.5733 + }, + { + "start": 21435.32, + "end": 21436.1, + "probability": 0.8248 + }, + { + "start": 21436.6, + "end": 21437.56, + "probability": 0.5173 + }, + { + "start": 21437.7, + "end": 21439.12, + "probability": 0.4862 + }, + { + "start": 21439.32, + "end": 21440.1, + "probability": 0.9548 + }, + { + "start": 21440.28, + "end": 21444.22, + "probability": 0.9545 + }, + { + "start": 21445.02, + "end": 21450.0, + "probability": 0.981 + }, + { + "start": 21450.86, + "end": 21452.96, + "probability": 0.9492 + }, + { + "start": 21454.02, + "end": 21455.98, + "probability": 0.3694 + }, + { + "start": 21457.1, + "end": 21459.04, + "probability": 0.6254 + }, + { + "start": 21460.26, + "end": 21465.36, + "probability": 0.9899 + }, + { + "start": 21466.22, + "end": 21467.2, + "probability": 0.806 + }, + { + "start": 21468.24, + "end": 21471.52, + "probability": 0.9056 + }, + { + "start": 21471.96, + "end": 21476.3, + "probability": 0.6769 + }, + { + "start": 21476.8, + "end": 21480.06, + "probability": 0.9141 + }, + { + "start": 21481.26, + "end": 21485.36, + "probability": 0.9496 + }, + { + "start": 21486.24, + "end": 21487.64, + "probability": 0.8267 + }, + { + "start": 21489.78, + "end": 21491.38, + "probability": 0.9621 + }, + { + "start": 21492.02, + "end": 21493.38, + "probability": 0.8765 + }, + { + "start": 21494.34, + "end": 21497.54, + "probability": 0.6649 + }, + { + "start": 21497.98, + "end": 21502.34, + "probability": 0.9912 + }, + { + "start": 21502.34, + "end": 21508.14, + "probability": 0.5178 + }, + { + "start": 21508.64, + "end": 21509.34, + "probability": 0.6661 + }, + { + "start": 21510.62, + "end": 21514.06, + "probability": 0.9664 + }, + { + "start": 21514.68, + "end": 21520.02, + "probability": 0.9411 + }, + { + "start": 21520.28, + "end": 21521.26, + "probability": 0.9762 + }, + { + "start": 21522.78, + "end": 21527.74, + "probability": 0.8586 + }, + { + "start": 21527.84, + "end": 21527.94, + "probability": 0.2562 + }, + { + "start": 21528.48, + "end": 21534.28, + "probability": 0.7158 + }, + { + "start": 21535.28, + "end": 21535.96, + "probability": 0.332 + }, + { + "start": 21536.28, + "end": 21540.2, + "probability": 0.7827 + }, + { + "start": 21540.28, + "end": 21545.12, + "probability": 0.9574 + }, + { + "start": 21546.22, + "end": 21551.1, + "probability": 0.6736 + }, + { + "start": 21551.14, + "end": 21553.76, + "probability": 0.6093 + }, + { + "start": 21554.38, + "end": 21555.43, + "probability": 0.5019 + }, + { + "start": 21556.88, + "end": 21561.4, + "probability": 0.9224 + }, + { + "start": 21562.02, + "end": 21567.56, + "probability": 0.9653 + }, + { + "start": 21568.06, + "end": 21573.36, + "probability": 0.8947 + }, + { + "start": 21574.74, + "end": 21577.8, + "probability": 0.8669 + }, + { + "start": 21578.28, + "end": 21581.18, + "probability": 0.9481 + }, + { + "start": 21581.64, + "end": 21589.22, + "probability": 0.9251 + }, + { + "start": 21589.96, + "end": 21592.54, + "probability": 0.9595 + }, + { + "start": 21593.08, + "end": 21596.62, + "probability": 0.9976 + }, + { + "start": 21596.73, + "end": 21601.0, + "probability": 0.7523 + }, + { + "start": 21601.48, + "end": 21603.48, + "probability": 0.8131 + }, + { + "start": 21603.62, + "end": 21604.14, + "probability": 0.7654 + }, + { + "start": 21604.84, + "end": 21604.98, + "probability": 0.4697 + }, + { + "start": 21605.1, + "end": 21605.66, + "probability": 0.3406 + }, + { + "start": 21606.66, + "end": 21607.66, + "probability": 0.7401 + }, + { + "start": 21607.7, + "end": 21608.28, + "probability": 0.3831 + }, + { + "start": 21608.38, + "end": 21609.28, + "probability": 0.7474 + }, + { + "start": 21609.3, + "end": 21609.74, + "probability": 0.3283 + }, + { + "start": 21612.64, + "end": 21613.58, + "probability": 0.8735 + }, + { + "start": 21614.8, + "end": 21616.9, + "probability": 0.9486 + }, + { + "start": 21617.0, + "end": 21617.0, + "probability": 0.8974 + }, + { + "start": 21617.2, + "end": 21618.59, + "probability": 0.5648 + }, + { + "start": 21618.72, + "end": 21621.86, + "probability": 0.6234 + }, + { + "start": 21622.28, + "end": 21622.7, + "probability": 0.7744 + }, + { + "start": 21622.78, + "end": 21623.94, + "probability": 0.7906 + }, + { + "start": 21624.06, + "end": 21624.6, + "probability": 0.5188 + }, + { + "start": 21624.78, + "end": 21626.58, + "probability": 0.5942 + }, + { + "start": 21626.86, + "end": 21627.78, + "probability": 0.7001 + }, + { + "start": 21628.28, + "end": 21629.54, + "probability": 0.7108 + }, + { + "start": 21629.74, + "end": 21630.98, + "probability": 0.6232 + }, + { + "start": 21631.02, + "end": 21631.94, + "probability": 0.908 + }, + { + "start": 21632.22, + "end": 21633.12, + "probability": 0.9458 + }, + { + "start": 21634.4, + "end": 21635.54, + "probability": 0.992 + }, + { + "start": 21637.89, + "end": 21638.58, + "probability": 0.3826 + }, + { + "start": 21638.58, + "end": 21638.58, + "probability": 0.231 + }, + { + "start": 21638.58, + "end": 21639.49, + "probability": 0.6409 + }, + { + "start": 21639.7, + "end": 21640.62, + "probability": 0.4683 + }, + { + "start": 21641.48, + "end": 21643.38, + "probability": 0.9722 + }, + { + "start": 21653.56, + "end": 21656.26, + "probability": 0.5687 + }, + { + "start": 21656.34, + "end": 21657.56, + "probability": 0.7319 + }, + { + "start": 21658.9, + "end": 21660.56, + "probability": 0.9163 + }, + { + "start": 21662.26, + "end": 21665.82, + "probability": 0.8538 + }, + { + "start": 21667.92, + "end": 21669.12, + "probability": 0.9055 + }, + { + "start": 21670.94, + "end": 21674.74, + "probability": 0.7408 + }, + { + "start": 21676.04, + "end": 21678.82, + "probability": 0.9758 + }, + { + "start": 21680.74, + "end": 21684.02, + "probability": 0.9897 + }, + { + "start": 21684.7, + "end": 21688.02, + "probability": 0.9984 + }, + { + "start": 21689.12, + "end": 21690.44, + "probability": 0.7973 + }, + { + "start": 21691.22, + "end": 21691.88, + "probability": 0.9256 + }, + { + "start": 21692.86, + "end": 21694.42, + "probability": 0.9421 + }, + { + "start": 21695.8, + "end": 21699.2, + "probability": 0.9823 + }, + { + "start": 21699.86, + "end": 21701.84, + "probability": 0.9871 + }, + { + "start": 21703.36, + "end": 21705.08, + "probability": 0.9617 + }, + { + "start": 21705.58, + "end": 21706.41, + "probability": 0.9178 + }, + { + "start": 21707.28, + "end": 21708.2, + "probability": 0.934 + }, + { + "start": 21709.56, + "end": 21713.46, + "probability": 0.991 + }, + { + "start": 21713.46, + "end": 21716.8, + "probability": 0.9969 + }, + { + "start": 21717.4, + "end": 21722.62, + "probability": 0.9814 + }, + { + "start": 21724.36, + "end": 21727.44, + "probability": 0.9058 + }, + { + "start": 21728.36, + "end": 21729.58, + "probability": 0.8115 + }, + { + "start": 21730.52, + "end": 21733.8, + "probability": 0.8877 + }, + { + "start": 21734.42, + "end": 21735.12, + "probability": 0.942 + }, + { + "start": 21735.82, + "end": 21736.46, + "probability": 0.9195 + }, + { + "start": 21737.96, + "end": 21740.68, + "probability": 0.969 + }, + { + "start": 21742.16, + "end": 21743.2, + "probability": 0.9939 + }, + { + "start": 21744.2, + "end": 21746.16, + "probability": 0.8931 + }, + { + "start": 21747.66, + "end": 21748.16, + "probability": 0.8396 + }, + { + "start": 21749.24, + "end": 21754.1, + "probability": 0.9957 + }, + { + "start": 21755.38, + "end": 21757.52, + "probability": 0.9948 + }, + { + "start": 21758.44, + "end": 21758.9, + "probability": 0.9166 + }, + { + "start": 21759.78, + "end": 21760.34, + "probability": 0.6441 + }, + { + "start": 21760.56, + "end": 21761.86, + "probability": 0.9373 + }, + { + "start": 21784.13, + "end": 21785.6, + "probability": 0.878 + }, + { + "start": 21786.42, + "end": 21788.64, + "probability": 0.7349 + }, + { + "start": 21790.04, + "end": 21796.1, + "probability": 0.9973 + }, + { + "start": 21796.74, + "end": 21799.26, + "probability": 0.9992 + }, + { + "start": 21800.48, + "end": 21805.42, + "probability": 0.9868 + }, + { + "start": 21806.04, + "end": 21811.96, + "probability": 0.9712 + }, + { + "start": 21812.98, + "end": 21813.2, + "probability": 0.1017 + }, + { + "start": 21813.2, + "end": 21814.0, + "probability": 0.7249 + }, + { + "start": 21814.16, + "end": 21814.5, + "probability": 0.7086 + }, + { + "start": 21814.56, + "end": 21815.42, + "probability": 0.6714 + }, + { + "start": 21815.84, + "end": 21817.34, + "probability": 0.8685 + }, + { + "start": 21817.98, + "end": 21820.52, + "probability": 0.8825 + }, + { + "start": 21821.82, + "end": 21829.0, + "probability": 0.9316 + }, + { + "start": 21829.44, + "end": 21831.97, + "probability": 0.9971 + }, + { + "start": 21833.02, + "end": 21834.5, + "probability": 0.7233 + }, + { + "start": 21835.56, + "end": 21839.12, + "probability": 0.9805 + }, + { + "start": 21839.12, + "end": 21842.24, + "probability": 0.9976 + }, + { + "start": 21843.04, + "end": 21844.74, + "probability": 0.841 + }, + { + "start": 21844.84, + "end": 21848.52, + "probability": 0.8489 + }, + { + "start": 21848.66, + "end": 21849.84, + "probability": 0.9274 + }, + { + "start": 21850.76, + "end": 21859.52, + "probability": 0.9409 + }, + { + "start": 21860.52, + "end": 21863.26, + "probability": 0.9599 + }, + { + "start": 21864.54, + "end": 21867.72, + "probability": 0.98 + }, + { + "start": 21868.46, + "end": 21871.9, + "probability": 0.9759 + }, + { + "start": 21871.9, + "end": 21876.28, + "probability": 0.9617 + }, + { + "start": 21876.44, + "end": 21877.53, + "probability": 0.9272 + }, + { + "start": 21878.84, + "end": 21882.36, + "probability": 0.6119 + }, + { + "start": 21883.2, + "end": 21885.0, + "probability": 0.9706 + }, + { + "start": 21885.56, + "end": 21887.9, + "probability": 0.9759 + }, + { + "start": 21888.1, + "end": 21889.44, + "probability": 0.7609 + }, + { + "start": 21889.64, + "end": 21891.62, + "probability": 0.9706 + }, + { + "start": 21892.86, + "end": 21894.54, + "probability": 0.9854 + }, + { + "start": 21895.4, + "end": 21899.68, + "probability": 0.87 + }, + { + "start": 21900.6, + "end": 21905.22, + "probability": 0.9921 + }, + { + "start": 21906.1, + "end": 21911.12, + "probability": 0.9565 + }, + { + "start": 21911.74, + "end": 21913.74, + "probability": 0.9921 + }, + { + "start": 21914.22, + "end": 21921.92, + "probability": 0.9846 + }, + { + "start": 21922.76, + "end": 21924.99, + "probability": 0.9976 + }, + { + "start": 21925.9, + "end": 21926.82, + "probability": 0.9888 + }, + { + "start": 21927.58, + "end": 21928.48, + "probability": 0.9421 + }, + { + "start": 21929.06, + "end": 21930.68, + "probability": 0.9766 + }, + { + "start": 21931.78, + "end": 21933.92, + "probability": 0.7271 + }, + { + "start": 21934.52, + "end": 21941.0, + "probability": 0.9989 + }, + { + "start": 21941.52, + "end": 21944.68, + "probability": 0.999 + }, + { + "start": 21945.74, + "end": 21946.54, + "probability": 0.7595 + }, + { + "start": 21947.26, + "end": 21947.62, + "probability": 0.5883 + }, + { + "start": 21947.7, + "end": 21948.86, + "probability": 0.5819 + }, + { + "start": 21949.8, + "end": 21950.5, + "probability": 0.0975 + }, + { + "start": 21952.58, + "end": 21958.91, + "probability": 0.0149 + }, + { + "start": 21973.12, + "end": 21975.38, + "probability": 0.4257 + }, + { + "start": 21975.38, + "end": 21977.44, + "probability": 0.8993 + }, + { + "start": 21977.96, + "end": 21979.54, + "probability": 0.8405 + }, + { + "start": 21979.82, + "end": 21985.66, + "probability": 0.9144 + }, + { + "start": 21985.86, + "end": 21987.32, + "probability": 0.8578 + }, + { + "start": 21987.76, + "end": 21988.4, + "probability": 0.9057 + }, + { + "start": 21989.26, + "end": 21994.04, + "probability": 0.9933 + }, + { + "start": 21994.8, + "end": 21997.76, + "probability": 0.9377 + }, + { + "start": 21998.24, + "end": 21999.52, + "probability": 0.7257 + }, + { + "start": 21999.8, + "end": 22001.4, + "probability": 0.7857 + }, + { + "start": 22001.42, + "end": 22001.72, + "probability": 0.8643 + }, + { + "start": 22001.74, + "end": 22002.56, + "probability": 0.8232 + }, + { + "start": 22003.18, + "end": 22007.5, + "probability": 0.9634 + }, + { + "start": 22007.9, + "end": 22010.2, + "probability": 0.9966 + }, + { + "start": 22010.86, + "end": 22012.5, + "probability": 0.6992 + }, + { + "start": 22013.16, + "end": 22014.78, + "probability": 0.8426 + }, + { + "start": 22015.4, + "end": 22016.06, + "probability": 0.8877 + }, + { + "start": 22017.0, + "end": 22020.4, + "probability": 0.7828 + }, + { + "start": 22021.12, + "end": 22021.9, + "probability": 0.6277 + }, + { + "start": 22022.42, + "end": 22028.64, + "probability": 0.946 + }, + { + "start": 22029.12, + "end": 22031.72, + "probability": 0.8984 + }, + { + "start": 22032.24, + "end": 22034.02, + "probability": 0.7151 + }, + { + "start": 22034.66, + "end": 22035.1, + "probability": 0.4994 + }, + { + "start": 22035.86, + "end": 22037.8, + "probability": 0.2566 + }, + { + "start": 22038.62, + "end": 22043.12, + "probability": 0.4872 + }, + { + "start": 22043.12, + "end": 22043.89, + "probability": 0.1354 + }, + { + "start": 22044.52, + "end": 22046.78, + "probability": 0.9849 + }, + { + "start": 22047.36, + "end": 22047.56, + "probability": 0.8531 + }, + { + "start": 22048.12, + "end": 22048.5, + "probability": 0.385 + }, + { + "start": 22048.64, + "end": 22049.22, + "probability": 0.5233 + }, + { + "start": 22049.32, + "end": 22049.46, + "probability": 0.4729 + }, + { + "start": 22049.56, + "end": 22050.58, + "probability": 0.9667 + }, + { + "start": 22050.7, + "end": 22051.09, + "probability": 0.8574 + }, + { + "start": 22051.44, + "end": 22055.33, + "probability": 0.9369 + }, + { + "start": 22055.96, + "end": 22058.72, + "probability": 0.5606 + }, + { + "start": 22059.88, + "end": 22060.82, + "probability": 0.709 + }, + { + "start": 22061.52, + "end": 22062.38, + "probability": 0.6816 + }, + { + "start": 22062.76, + "end": 22063.06, + "probability": 0.629 + }, + { + "start": 22063.08, + "end": 22063.36, + "probability": 0.6118 + }, + { + "start": 22063.52, + "end": 22065.14, + "probability": 0.8945 + }, + { + "start": 22065.44, + "end": 22069.47, + "probability": 0.9347 + }, + { + "start": 22070.42, + "end": 22074.4, + "probability": 0.9508 + }, + { + "start": 22074.76, + "end": 22078.22, + "probability": 0.9784 + }, + { + "start": 22078.78, + "end": 22079.78, + "probability": 0.9919 + }, + { + "start": 22079.84, + "end": 22080.78, + "probability": 0.8597 + }, + { + "start": 22081.12, + "end": 22082.24, + "probability": 0.9339 + }, + { + "start": 22082.64, + "end": 22083.08, + "probability": 0.9099 + }, + { + "start": 22083.84, + "end": 22085.74, + "probability": 0.8761 + }, + { + "start": 22085.86, + "end": 22086.88, + "probability": 0.7604 + }, + { + "start": 22087.22, + "end": 22088.92, + "probability": 0.8221 + }, + { + "start": 22089.48, + "end": 22090.74, + "probability": 0.9963 + }, + { + "start": 22091.38, + "end": 22093.1, + "probability": 0.8452 + }, + { + "start": 22093.64, + "end": 22094.76, + "probability": 0.9607 + }, + { + "start": 22094.96, + "end": 22098.62, + "probability": 0.986 + }, + { + "start": 22098.62, + "end": 22101.76, + "probability": 0.9378 + }, + { + "start": 22102.32, + "end": 22103.42, + "probability": 0.8161 + }, + { + "start": 22103.8, + "end": 22106.79, + "probability": 0.9077 + }, + { + "start": 22107.38, + "end": 22109.68, + "probability": 0.9463 + }, + { + "start": 22110.26, + "end": 22111.74, + "probability": 0.4794 + }, + { + "start": 22112.62, + "end": 22116.02, + "probability": 0.8811 + }, + { + "start": 22116.1, + "end": 22118.06, + "probability": 0.934 + }, + { + "start": 22118.06, + "end": 22119.66, + "probability": 0.8598 + }, + { + "start": 22119.78, + "end": 22123.08, + "probability": 0.9563 + }, + { + "start": 22123.14, + "end": 22124.18, + "probability": 0.8439 + }, + { + "start": 22124.76, + "end": 22126.32, + "probability": 0.9934 + }, + { + "start": 22126.96, + "end": 22129.76, + "probability": 0.7646 + }, + { + "start": 22129.84, + "end": 22130.38, + "probability": 0.9507 + }, + { + "start": 22130.98, + "end": 22131.9, + "probability": 0.9497 + }, + { + "start": 22131.94, + "end": 22133.56, + "probability": 0.8267 + }, + { + "start": 22133.68, + "end": 22133.84, + "probability": 0.4866 + }, + { + "start": 22133.94, + "end": 22134.06, + "probability": 0.7178 + }, + { + "start": 22134.14, + "end": 22134.22, + "probability": 0.3857 + }, + { + "start": 22134.32, + "end": 22138.28, + "probability": 0.9952 + }, + { + "start": 22139.06, + "end": 22139.18, + "probability": 0.2091 + }, + { + "start": 22139.48, + "end": 22141.32, + "probability": 0.9639 + }, + { + "start": 22141.84, + "end": 22146.7, + "probability": 0.9471 + }, + { + "start": 22146.71, + "end": 22149.76, + "probability": 0.9964 + }, + { + "start": 22150.2, + "end": 22150.32, + "probability": 0.7646 + }, + { + "start": 22150.46, + "end": 22152.34, + "probability": 0.9275 + }, + { + "start": 22152.5, + "end": 22155.32, + "probability": 0.9965 + }, + { + "start": 22155.62, + "end": 22156.96, + "probability": 0.9457 + }, + { + "start": 22157.22, + "end": 22158.88, + "probability": 0.8651 + }, + { + "start": 22159.42, + "end": 22159.44, + "probability": 0.0894 + }, + { + "start": 22159.46, + "end": 22161.62, + "probability": 0.9688 + }, + { + "start": 22164.56, + "end": 22165.84, + "probability": 0.8864 + }, + { + "start": 22166.42, + "end": 22168.94, + "probability": 0.9343 + }, + { + "start": 22169.46, + "end": 22171.96, + "probability": 0.9917 + }, + { + "start": 22172.1, + "end": 22175.96, + "probability": 0.9978 + }, + { + "start": 22176.46, + "end": 22177.21, + "probability": 0.9848 + }, + { + "start": 22177.9, + "end": 22181.04, + "probability": 0.9985 + }, + { + "start": 22181.26, + "end": 22183.06, + "probability": 0.998 + }, + { + "start": 22183.06, + "end": 22183.44, + "probability": 0.7324 + }, + { + "start": 22184.1, + "end": 22186.04, + "probability": 0.7137 + }, + { + "start": 22186.46, + "end": 22188.02, + "probability": 0.7149 + }, + { + "start": 22189.08, + "end": 22190.08, + "probability": 0.7841 + }, + { + "start": 22191.4, + "end": 22192.04, + "probability": 0.4264 + }, + { + "start": 22192.24, + "end": 22193.68, + "probability": 0.5866 + }, + { + "start": 22193.74, + "end": 22194.95, + "probability": 0.9417 + }, + { + "start": 22195.08, + "end": 22195.38, + "probability": 0.5409 + }, + { + "start": 22197.06, + "end": 22197.18, + "probability": 0.2298 + }, + { + "start": 22198.62, + "end": 22200.6, + "probability": 0.8521 + }, + { + "start": 22200.78, + "end": 22201.87, + "probability": 0.7608 + }, + { + "start": 22202.46, + "end": 22202.8, + "probability": 0.7657 + }, + { + "start": 22203.52, + "end": 22203.92, + "probability": 0.9037 + }, + { + "start": 22204.52, + "end": 22206.3, + "probability": 0.5062 + }, + { + "start": 22206.4, + "end": 22207.26, + "probability": 0.7148 + }, + { + "start": 22207.48, + "end": 22209.58, + "probability": 0.9785 + }, + { + "start": 22209.74, + "end": 22213.32, + "probability": 0.3777 + }, + { + "start": 22213.32, + "end": 22215.36, + "probability": 0.8147 + }, + { + "start": 22215.44, + "end": 22216.2, + "probability": 0.7534 + }, + { + "start": 22216.34, + "end": 22216.72, + "probability": 0.4944 + }, + { + "start": 22219.54, + "end": 22221.04, + "probability": 0.9102 + }, + { + "start": 22221.74, + "end": 22222.7, + "probability": 0.7607 + }, + { + "start": 22223.12, + "end": 22226.04, + "probability": 0.8518 + }, + { + "start": 22227.6, + "end": 22230.28, + "probability": 0.9076 + }, + { + "start": 22231.0, + "end": 22233.56, + "probability": 0.9797 + }, + { + "start": 22234.22, + "end": 22239.9, + "probability": 0.8552 + }, + { + "start": 22241.04, + "end": 22241.82, + "probability": 0.7717 + }, + { + "start": 22242.92, + "end": 22243.42, + "probability": 0.908 + }, + { + "start": 22244.86, + "end": 22248.82, + "probability": 0.9967 + }, + { + "start": 22249.72, + "end": 22250.44, + "probability": 0.3 + }, + { + "start": 22251.34, + "end": 22256.58, + "probability": 0.9648 + }, + { + "start": 22259.4, + "end": 22260.1, + "probability": 0.8777 + }, + { + "start": 22260.18, + "end": 22263.94, + "probability": 0.9947 + }, + { + "start": 22264.5, + "end": 22265.2, + "probability": 0.8381 + }, + { + "start": 22266.78, + "end": 22271.12, + "probability": 0.8139 + }, + { + "start": 22272.44, + "end": 22274.32, + "probability": 0.2927 + }, + { + "start": 22277.2, + "end": 22280.79, + "probability": 0.939 + }, + { + "start": 22282.14, + "end": 22283.12, + "probability": 0.9657 + }, + { + "start": 22284.12, + "end": 22285.07, + "probability": 0.9394 + }, + { + "start": 22286.42, + "end": 22288.62, + "probability": 0.8104 + }, + { + "start": 22291.08, + "end": 22295.88, + "probability": 0.7631 + }, + { + "start": 22298.54, + "end": 22300.4, + "probability": 0.8298 + }, + { + "start": 22301.86, + "end": 22302.82, + "probability": 0.8823 + }, + { + "start": 22303.74, + "end": 22304.5, + "probability": 0.9382 + }, + { + "start": 22305.3, + "end": 22309.72, + "probability": 0.9395 + }, + { + "start": 22310.86, + "end": 22314.1, + "probability": 0.9828 + }, + { + "start": 22315.04, + "end": 22317.52, + "probability": 0.9366 + }, + { + "start": 22318.04, + "end": 22320.98, + "probability": 0.9826 + }, + { + "start": 22321.98, + "end": 22322.44, + "probability": 0.9785 + }, + { + "start": 22324.12, + "end": 22324.46, + "probability": 0.3834 + }, + { + "start": 22325.46, + "end": 22325.76, + "probability": 0.4645 + }, + { + "start": 22325.92, + "end": 22331.04, + "probability": 0.978 + }, + { + "start": 22332.88, + "end": 22337.2, + "probability": 0.9734 + }, + { + "start": 22338.1, + "end": 22339.42, + "probability": 0.9988 + }, + { + "start": 22341.06, + "end": 22343.2, + "probability": 0.6903 + }, + { + "start": 22345.08, + "end": 22349.82, + "probability": 0.9489 + }, + { + "start": 22350.42, + "end": 22352.4, + "probability": 0.8068 + }, + { + "start": 22352.5, + "end": 22353.34, + "probability": 0.9706 + }, + { + "start": 22353.46, + "end": 22357.36, + "probability": 0.9678 + }, + { + "start": 22358.3, + "end": 22363.0, + "probability": 0.9985 + }, + { + "start": 22363.0, + "end": 22369.1, + "probability": 0.9767 + }, + { + "start": 22369.22, + "end": 22370.0, + "probability": 0.7832 + }, + { + "start": 22371.72, + "end": 22373.74, + "probability": 0.9986 + }, + { + "start": 22374.34, + "end": 22379.12, + "probability": 0.9888 + }, + { + "start": 22380.6, + "end": 22383.54, + "probability": 0.9632 + }, + { + "start": 22384.24, + "end": 22385.72, + "probability": 0.9954 + }, + { + "start": 22386.97, + "end": 22389.98, + "probability": 0.4235 + }, + { + "start": 22391.02, + "end": 22392.31, + "probability": 0.9758 + }, + { + "start": 22393.92, + "end": 22394.5, + "probability": 0.8364 + }, + { + "start": 22396.34, + "end": 22403.1, + "probability": 0.9921 + }, + { + "start": 22404.38, + "end": 22405.66, + "probability": 0.9751 + }, + { + "start": 22407.18, + "end": 22407.94, + "probability": 0.9338 + }, + { + "start": 22409.3, + "end": 22409.7, + "probability": 0.8771 + }, + { + "start": 22410.0, + "end": 22410.24, + "probability": 0.8353 + }, + { + "start": 22411.16, + "end": 22412.62, + "probability": 0.6523 + }, + { + "start": 22426.54, + "end": 22428.92, + "probability": 0.7685 + }, + { + "start": 22430.04, + "end": 22433.74, + "probability": 0.99 + }, + { + "start": 22434.3, + "end": 22436.34, + "probability": 0.9897 + }, + { + "start": 22436.82, + "end": 22439.24, + "probability": 0.9099 + }, + { + "start": 22439.88, + "end": 22443.26, + "probability": 0.992 + }, + { + "start": 22443.26, + "end": 22447.42, + "probability": 0.9885 + }, + { + "start": 22447.92, + "end": 22451.32, + "probability": 0.9474 + }, + { + "start": 22451.32, + "end": 22455.6, + "probability": 0.9872 + }, + { + "start": 22456.14, + "end": 22461.46, + "probability": 0.9929 + }, + { + "start": 22462.18, + "end": 22465.16, + "probability": 0.9866 + }, + { + "start": 22466.8, + "end": 22470.4, + "probability": 0.9966 + }, + { + "start": 22470.96, + "end": 22472.24, + "probability": 0.9817 + }, + { + "start": 22472.94, + "end": 22474.76, + "probability": 0.8818 + }, + { + "start": 22475.92, + "end": 22479.78, + "probability": 0.9245 + }, + { + "start": 22480.7, + "end": 22488.08, + "probability": 0.9905 + }, + { + "start": 22489.04, + "end": 22494.85, + "probability": 0.9967 + }, + { + "start": 22497.1, + "end": 22499.56, + "probability": 0.9536 + }, + { + "start": 22499.64, + "end": 22501.5, + "probability": 0.537 + }, + { + "start": 22501.5, + "end": 22501.52, + "probability": 0.079 + }, + { + "start": 22501.74, + "end": 22504.38, + "probability": 0.234 + }, + { + "start": 22504.38, + "end": 22507.5, + "probability": 0.9198 + }, + { + "start": 22508.02, + "end": 22511.0, + "probability": 0.9646 + }, + { + "start": 22511.0, + "end": 22514.2, + "probability": 0.9127 + }, + { + "start": 22514.56, + "end": 22515.2, + "probability": 0.0598 + }, + { + "start": 22516.7, + "end": 22518.96, + "probability": 0.6299 + }, + { + "start": 22519.12, + "end": 22523.82, + "probability": 0.9953 + }, + { + "start": 22524.06, + "end": 22524.98, + "probability": 0.3942 + }, + { + "start": 22525.18, + "end": 22525.86, + "probability": 0.8044 + }, + { + "start": 22525.92, + "end": 22526.54, + "probability": 0.8622 + }, + { + "start": 22526.6, + "end": 22528.8, + "probability": 0.9621 + }, + { + "start": 22529.42, + "end": 22531.68, + "probability": 0.8442 + }, + { + "start": 22531.98, + "end": 22533.96, + "probability": 0.998 + }, + { + "start": 22534.08, + "end": 22536.36, + "probability": 0.9493 + }, + { + "start": 22536.64, + "end": 22537.6, + "probability": 0.863 + }, + { + "start": 22538.02, + "end": 22539.34, + "probability": 0.6627 + }, + { + "start": 22540.26, + "end": 22541.07, + "probability": 0.9753 + }, + { + "start": 22541.92, + "end": 22543.08, + "probability": 0.7861 + }, + { + "start": 22543.82, + "end": 22547.32, + "probability": 0.9985 + }, + { + "start": 22548.16, + "end": 22553.96, + "probability": 0.9806 + }, + { + "start": 22554.66, + "end": 22556.13, + "probability": 0.9932 + }, + { + "start": 22556.96, + "end": 22559.32, + "probability": 0.9204 + }, + { + "start": 22559.94, + "end": 22564.68, + "probability": 0.9827 + }, + { + "start": 22567.86, + "end": 22568.5, + "probability": 0.3973 + }, + { + "start": 22569.4, + "end": 22570.46, + "probability": 0.2567 + }, + { + "start": 22570.62, + "end": 22572.02, + "probability": 0.8442 + }, + { + "start": 22572.62, + "end": 22573.42, + "probability": 0.7797 + }, + { + "start": 22573.48, + "end": 22574.24, + "probability": 0.7566 + }, + { + "start": 22574.28, + "end": 22575.1, + "probability": 0.8838 + }, + { + "start": 22575.14, + "end": 22575.78, + "probability": 0.7692 + }, + { + "start": 22576.18, + "end": 22576.9, + "probability": 0.6884 + }, + { + "start": 22577.46, + "end": 22579.64, + "probability": 0.864 + }, + { + "start": 22579.88, + "end": 22580.5, + "probability": 0.5953 + }, + { + "start": 22580.54, + "end": 22581.32, + "probability": 0.9781 + }, + { + "start": 22581.54, + "end": 22582.38, + "probability": 0.4775 + }, + { + "start": 22583.1, + "end": 22585.0, + "probability": 0.7355 + }, + { + "start": 22586.28, + "end": 22587.8, + "probability": 0.6732 + }, + { + "start": 22587.86, + "end": 22588.64, + "probability": 0.8899 + }, + { + "start": 22588.72, + "end": 22589.64, + "probability": 0.948 + }, + { + "start": 22589.98, + "end": 22590.94, + "probability": 0.9381 + }, + { + "start": 22590.96, + "end": 22592.12, + "probability": 0.9741 + }, + { + "start": 22592.14, + "end": 22593.02, + "probability": 0.9902 + }, + { + "start": 22593.42, + "end": 22594.5, + "probability": 0.7748 + }, + { + "start": 22594.5, + "end": 22595.62, + "probability": 0.9705 + }, + { + "start": 22595.72, + "end": 22596.68, + "probability": 0.9613 + }, + { + "start": 22597.2, + "end": 22598.08, + "probability": 0.9699 + }, + { + "start": 22598.14, + "end": 22599.16, + "probability": 0.2821 + }, + { + "start": 22599.36, + "end": 22599.92, + "probability": 0.7762 + }, + { + "start": 22600.38, + "end": 22602.42, + "probability": 0.6577 + }, + { + "start": 22602.92, + "end": 22603.66, + "probability": 0.9509 + }, + { + "start": 22604.08, + "end": 22605.44, + "probability": 0.8387 + }, + { + "start": 22605.9, + "end": 22606.94, + "probability": 0.962 + }, + { + "start": 22607.0, + "end": 22607.68, + "probability": 0.8378 + }, + { + "start": 22607.84, + "end": 22608.62, + "probability": 0.9906 + }, + { + "start": 22609.08, + "end": 22610.14, + "probability": 0.9463 + }, + { + "start": 22610.26, + "end": 22610.76, + "probability": 0.9149 + }, + { + "start": 22610.88, + "end": 22611.64, + "probability": 0.9801 + }, + { + "start": 22612.38, + "end": 22613.56, + "probability": 0.9838 + }, + { + "start": 22613.78, + "end": 22614.96, + "probability": 0.9761 + }, + { + "start": 22615.2, + "end": 22616.3, + "probability": 0.9667 + }, + { + "start": 22616.42, + "end": 22617.32, + "probability": 0.7472 + }, + { + "start": 22617.6, + "end": 22618.38, + "probability": 0.5329 + }, + { + "start": 22618.72, + "end": 22619.58, + "probability": 0.9268 + }, + { + "start": 22620.08, + "end": 22620.98, + "probability": 0.9449 + }, + { + "start": 22621.0, + "end": 22622.06, + "probability": 0.9003 + }, + { + "start": 22622.16, + "end": 22622.9, + "probability": 0.9534 + }, + { + "start": 22623.36, + "end": 22624.32, + "probability": 0.9845 + }, + { + "start": 22624.34, + "end": 22625.2, + "probability": 0.9406 + }, + { + "start": 22625.32, + "end": 22626.32, + "probability": 0.951 + }, + { + "start": 22626.76, + "end": 22627.44, + "probability": 0.9708 + }, + { + "start": 22627.44, + "end": 22628.16, + "probability": 0.926 + }, + { + "start": 22628.42, + "end": 22629.26, + "probability": 0.993 + }, + { + "start": 22629.7, + "end": 22630.68, + "probability": 0.8756 + }, + { + "start": 22630.7, + "end": 22631.62, + "probability": 0.9901 + }, + { + "start": 22631.86, + "end": 22632.7, + "probability": 0.7733 + }, + { + "start": 22633.24, + "end": 22634.92, + "probability": 0.4015 + }, + { + "start": 22635.04, + "end": 22636.0, + "probability": 0.5509 + }, + { + "start": 22636.14, + "end": 22637.44, + "probability": 0.9285 + }, + { + "start": 22637.54, + "end": 22638.45, + "probability": 0.2515 + }, + { + "start": 22638.88, + "end": 22641.7, + "probability": 0.6122 + }, + { + "start": 22641.96, + "end": 22642.74, + "probability": 0.9517 + }, + { + "start": 22643.1, + "end": 22644.4, + "probability": 0.7496 + }, + { + "start": 22644.4, + "end": 22644.96, + "probability": 0.8905 + }, + { + "start": 22645.2, + "end": 22646.24, + "probability": 0.9661 + }, + { + "start": 22646.62, + "end": 22647.58, + "probability": 0.9646 + }, + { + "start": 22647.58, + "end": 22648.38, + "probability": 0.9459 + }, + { + "start": 22648.68, + "end": 22649.38, + "probability": 0.9726 + }, + { + "start": 22649.86, + "end": 22650.7, + "probability": 0.6517 + }, + { + "start": 22650.72, + "end": 22651.68, + "probability": 0.6489 + }, + { + "start": 22651.76, + "end": 22652.7, + "probability": 0.8448 + }, + { + "start": 22653.08, + "end": 22654.06, + "probability": 0.9122 + }, + { + "start": 22654.14, + "end": 22654.92, + "probability": 0.9425 + }, + { + "start": 22655.24, + "end": 22656.08, + "probability": 0.9563 + }, + { + "start": 22656.5, + "end": 22657.78, + "probability": 0.98 + }, + { + "start": 22657.82, + "end": 22658.38, + "probability": 0.9673 + }, + { + "start": 22658.54, + "end": 22659.48, + "probability": 0.9807 + }, + { + "start": 22659.96, + "end": 22661.14, + "probability": 0.9712 + }, + { + "start": 22661.18, + "end": 22662.02, + "probability": 0.9574 + }, + { + "start": 22662.42, + "end": 22663.34, + "probability": 0.9889 + }, + { + "start": 22663.6, + "end": 22664.66, + "probability": 0.99 + }, + { + "start": 22664.92, + "end": 22665.82, + "probability": 0.9819 + }, + { + "start": 22666.04, + "end": 22667.02, + "probability": 0.6672 + }, + { + "start": 22667.66, + "end": 22668.64, + "probability": 0.7021 + }, + { + "start": 22668.7, + "end": 22669.58, + "probability": 0.735 + }, + { + "start": 22669.66, + "end": 22670.48, + "probability": 0.9586 + }, + { + "start": 22670.9, + "end": 22672.1, + "probability": 0.936 + }, + { + "start": 22672.44, + "end": 22673.16, + "probability": 0.9518 + }, + { + "start": 22673.46, + "end": 22674.18, + "probability": 0.9526 + }, + { + "start": 22674.72, + "end": 22676.86, + "probability": 0.9789 + }, + { + "start": 22676.86, + "end": 22678.0, + "probability": 0.96 + }, + { + "start": 22678.0, + "end": 22678.9, + "probability": 0.9966 + }, + { + "start": 22679.32, + "end": 22680.56, + "probability": 0.9929 + }, + { + "start": 22680.56, + "end": 22681.42, + "probability": 0.9685 + }, + { + "start": 22681.74, + "end": 22682.66, + "probability": 0.9817 + }, + { + "start": 22683.16, + "end": 22684.04, + "probability": 0.5636 + }, + { + "start": 22684.44, + "end": 22685.64, + "probability": 0.4905 + }, + { + "start": 22686.0, + "end": 22686.92, + "probability": 0.7639 + }, + { + "start": 22687.34, + "end": 22688.72, + "probability": 0.7826 + }, + { + "start": 22688.84, + "end": 22692.26, + "probability": 0.5255 + }, + { + "start": 22697.88, + "end": 22698.74, + "probability": 0.6367 + }, + { + "start": 22699.32, + "end": 22702.52, + "probability": 0.6663 + }, + { + "start": 22703.08, + "end": 22706.44, + "probability": 0.9519 + }, + { + "start": 22707.44, + "end": 22708.34, + "probability": 0.9311 + }, + { + "start": 22708.38, + "end": 22710.42, + "probability": 0.933 + }, + { + "start": 22710.72, + "end": 22711.9, + "probability": 0.8635 + }, + { + "start": 22712.22, + "end": 22713.26, + "probability": 0.9387 + }, + { + "start": 22713.28, + "end": 22714.44, + "probability": 0.929 + }, + { + "start": 22714.46, + "end": 22715.16, + "probability": 0.9931 + }, + { + "start": 22715.74, + "end": 22717.28, + "probability": 0.8975 + }, + { + "start": 22717.86, + "end": 22719.86, + "probability": 0.3274 + }, + { + "start": 22720.54, + "end": 22723.56, + "probability": 0.8721 + }, + { + "start": 22724.18, + "end": 22727.2, + "probability": 0.9364 + }, + { + "start": 22727.72, + "end": 22728.7, + "probability": 0.7534 + }, + { + "start": 22728.7, + "end": 22729.76, + "probability": 0.9285 + }, + { + "start": 22729.82, + "end": 22730.94, + "probability": 0.9911 + }, + { + "start": 22731.3, + "end": 22732.46, + "probability": 0.9852 + }, + { + "start": 22732.72, + "end": 22733.56, + "probability": 0.9534 + }, + { + "start": 22733.8, + "end": 22734.94, + "probability": 0.9907 + }, + { + "start": 22735.42, + "end": 22736.4, + "probability": 0.7367 + }, + { + "start": 22736.46, + "end": 22737.26, + "probability": 0.582 + }, + { + "start": 22737.52, + "end": 22738.32, + "probability": 0.8283 + }, + { + "start": 22738.84, + "end": 22739.78, + "probability": 0.838 + }, + { + "start": 22739.82, + "end": 22740.5, + "probability": 0.9536 + }, + { + "start": 22740.74, + "end": 22741.72, + "probability": 0.8617 + }, + { + "start": 22742.14, + "end": 22743.18, + "probability": 0.8107 + }, + { + "start": 22743.2, + "end": 22743.94, + "probability": 0.9412 + }, + { + "start": 22744.1, + "end": 22744.96, + "probability": 0.8784 + }, + { + "start": 22745.4, + "end": 22746.96, + "probability": 0.9396 + }, + { + "start": 22746.96, + "end": 22748.06, + "probability": 0.9314 + }, + { + "start": 22748.06, + "end": 22749.04, + "probability": 0.9931 + }, + { + "start": 22749.42, + "end": 22750.3, + "probability": 0.9899 + }, + { + "start": 22750.62, + "end": 22751.28, + "probability": 0.9668 + }, + { + "start": 22751.58, + "end": 22752.56, + "probability": 0.9935 + }, + { + "start": 22753.02, + "end": 22754.06, + "probability": 0.9084 + }, + { + "start": 22754.34, + "end": 22755.1, + "probability": 0.7075 + }, + { + "start": 22755.8, + "end": 22756.56, + "probability": 0.7249 + }, + { + "start": 22757.08, + "end": 22759.96, + "probability": 0.9324 + }, + { + "start": 22760.68, + "end": 22763.22, + "probability": 0.9466 + }, + { + "start": 22764.1, + "end": 22768.04, + "probability": 0.9215 + }, + { + "start": 22768.7, + "end": 22772.1, + "probability": 0.9697 + }, + { + "start": 22772.68, + "end": 22773.9, + "probability": 0.7071 + }, + { + "start": 22773.92, + "end": 22774.48, + "probability": 0.7148 + }, + { + "start": 22774.82, + "end": 22775.82, + "probability": 0.939 + }, + { + "start": 22776.24, + "end": 22777.28, + "probability": 0.9004 + }, + { + "start": 22777.3, + "end": 22778.02, + "probability": 0.8643 + }, + { + "start": 22778.06, + "end": 22778.92, + "probability": 0.9661 + }, + { + "start": 22779.52, + "end": 22782.02, + "probability": 0.937 + }, + { + "start": 22782.64, + "end": 22783.42, + "probability": 0.9948 + }, + { + "start": 22783.44, + "end": 22784.36, + "probability": 0.9751 + }, + { + "start": 22784.38, + "end": 22785.4, + "probability": 0.9904 + }, + { + "start": 22785.9, + "end": 22786.88, + "probability": 0.9403 + }, + { + "start": 22786.88, + "end": 22787.62, + "probability": 0.9594 + }, + { + "start": 22787.8, + "end": 22788.66, + "probability": 0.6925 + }, + { + "start": 22789.24, + "end": 22791.68, + "probability": 0.8245 + }, + { + "start": 22792.44, + "end": 22795.22, + "probability": 0.8644 + }, + { + "start": 22795.86, + "end": 22796.88, + "probability": 0.7692 + }, + { + "start": 22796.94, + "end": 22797.54, + "probability": 0.9166 + }, + { + "start": 22797.6, + "end": 22798.62, + "probability": 0.9284 + }, + { + "start": 22799.1, + "end": 22800.08, + "probability": 0.9673 + }, + { + "start": 22800.14, + "end": 22800.68, + "probability": 0.9729 + }, + { + "start": 22800.88, + "end": 22801.4, + "probability": 0.9637 + }, + { + "start": 22802.1, + "end": 22805.0, + "probability": 0.7531 + }, + { + "start": 22805.64, + "end": 22808.64, + "probability": 0.8869 + }, + { + "start": 22809.16, + "end": 22810.3, + "probability": 0.9576 + }, + { + "start": 22811.04, + "end": 22811.78, + "probability": 0.9449 + }, + { + "start": 22812.24, + "end": 22813.36, + "probability": 0.9504 + }, + { + "start": 22813.5, + "end": 22814.3, + "probability": 0.9735 + }, + { + "start": 22814.5, + "end": 22815.3, + "probability": 0.9855 + }, + { + "start": 22815.72, + "end": 22816.86, + "probability": 0.9185 + }, + { + "start": 22816.88, + "end": 22817.52, + "probability": 0.9896 + }, + { + "start": 22817.78, + "end": 22818.64, + "probability": 0.6491 + }, + { + "start": 22819.18, + "end": 22819.88, + "probability": 0.5081 + }, + { + "start": 22819.94, + "end": 22820.54, + "probability": 0.699 + }, + { + "start": 22820.9, + "end": 22823.88, + "probability": 0.7906 + }, + { + "start": 22824.0, + "end": 22824.64, + "probability": 0.895 + }, + { + "start": 22825.16, + "end": 22828.94, + "probability": 0.9222 + }, + { + "start": 22829.46, + "end": 22830.16, + "probability": 0.9904 + }, + { + "start": 22830.18, + "end": 22831.0, + "probability": 0.9833 + }, + { + "start": 22831.3, + "end": 22832.16, + "probability": 0.9058 + }, + { + "start": 22832.54, + "end": 22833.56, + "probability": 0.6071 + }, + { + "start": 22833.62, + "end": 22834.62, + "probability": 0.3592 + }, + { + "start": 22834.78, + "end": 22835.48, + "probability": 0.8621 + }, + { + "start": 22835.98, + "end": 22837.24, + "probability": 0.8267 + }, + { + "start": 22837.36, + "end": 22837.94, + "probability": 0.8966 + }, + { + "start": 22838.34, + "end": 22839.0, + "probability": 0.9928 + }, + { + "start": 22839.54, + "end": 22842.3, + "probability": 0.9611 + }, + { + "start": 22842.82, + "end": 22844.94, + "probability": 0.9207 + }, + { + "start": 22845.66, + "end": 22846.96, + "probability": 0.9079 + }, + { + "start": 22847.82, + "end": 22849.0, + "probability": 0.5381 + }, + { + "start": 22849.24, + "end": 22850.68, + "probability": 0.7756 + }, + { + "start": 22850.76, + "end": 22851.61, + "probability": 0.5651 + }, + { + "start": 22851.89, + "end": 22853.96, + "probability": 0.6216 + }, + { + "start": 22853.96, + "end": 22855.98, + "probability": 0.943 + }, + { + "start": 22856.0, + "end": 22857.46, + "probability": 0.902 + }, + { + "start": 22857.54, + "end": 22857.86, + "probability": 0.6561 + }, + { + "start": 22857.86, + "end": 22858.25, + "probability": 0.5506 + }, + { + "start": 22859.98, + "end": 22860.04, + "probability": 0.5772 + }, + { + "start": 22860.04, + "end": 22860.54, + "probability": 0.6414 + }, + { + "start": 22866.5, + "end": 22866.5, + "probability": 0.1518 + }, + { + "start": 22866.5, + "end": 22866.5, + "probability": 0.0792 + }, + { + "start": 22866.5, + "end": 22866.52, + "probability": 0.1329 + }, + { + "start": 22890.82, + "end": 22891.6, + "probability": 0.1685 + }, + { + "start": 22896.54, + "end": 22901.2, + "probability": 0.9907 + }, + { + "start": 22901.76, + "end": 22902.66, + "probability": 0.909 + }, + { + "start": 22903.82, + "end": 22904.82, + "probability": 0.9813 + }, + { + "start": 22905.0, + "end": 22907.12, + "probability": 0.9295 + }, + { + "start": 22907.24, + "end": 22908.52, + "probability": 0.8306 + }, + { + "start": 22909.34, + "end": 22913.04, + "probability": 0.7141 + }, + { + "start": 22913.04, + "end": 22917.32, + "probability": 0.9926 + }, + { + "start": 22918.64, + "end": 22921.61, + "probability": 0.9937 + }, + { + "start": 22923.0, + "end": 22926.27, + "probability": 0.9937 + }, + { + "start": 22926.72, + "end": 22927.78, + "probability": 0.9771 + }, + { + "start": 22928.92, + "end": 22931.02, + "probability": 0.8987 + }, + { + "start": 22931.08, + "end": 22934.82, + "probability": 0.9453 + }, + { + "start": 22935.44, + "end": 22938.22, + "probability": 0.861 + }, + { + "start": 22939.62, + "end": 22945.09, + "probability": 0.9754 + }, + { + "start": 22946.0, + "end": 22947.3, + "probability": 0.8892 + }, + { + "start": 22948.58, + "end": 22951.38, + "probability": 0.2529 + }, + { + "start": 22958.38, + "end": 22960.74, + "probability": 0.1581 + }, + { + "start": 22960.74, + "end": 22960.74, + "probability": 0.0379 + }, + { + "start": 22960.74, + "end": 22961.54, + "probability": 0.1163 + }, + { + "start": 22961.54, + "end": 22963.62, + "probability": 0.4668 + }, + { + "start": 22964.8, + "end": 22972.44, + "probability": 0.9748 + }, + { + "start": 22972.62, + "end": 22974.54, + "probability": 0.842 + }, + { + "start": 22975.2, + "end": 22977.32, + "probability": 0.9948 + }, + { + "start": 22978.26, + "end": 22979.4, + "probability": 0.4476 + }, + { + "start": 22979.52, + "end": 22981.2, + "probability": 0.8657 + }, + { + "start": 22983.31, + "end": 22986.86, + "probability": 0.9693 + }, + { + "start": 22986.94, + "end": 22988.14, + "probability": 0.9797 + }, + { + "start": 22988.32, + "end": 22990.2, + "probability": 0.807 + }, + { + "start": 22990.64, + "end": 22993.28, + "probability": 0.9886 + }, + { + "start": 22993.36, + "end": 22994.64, + "probability": 0.9664 + }, + { + "start": 22994.92, + "end": 22995.38, + "probability": 0.681 + }, + { + "start": 22996.8, + "end": 22997.18, + "probability": 0.0588 + }, + { + "start": 22997.34, + "end": 22999.38, + "probability": 0.7187 + }, + { + "start": 22999.62, + "end": 23000.64, + "probability": 0.0054 + }, + { + "start": 23000.64, + "end": 23001.02, + "probability": 0.6406 + }, + { + "start": 23001.02, + "end": 23002.16, + "probability": 0.9069 + }, + { + "start": 23002.26, + "end": 23002.62, + "probability": 0.7383 + }, + { + "start": 23002.62, + "end": 23003.82, + "probability": 0.4361 + }, + { + "start": 23004.26, + "end": 23005.4, + "probability": 0.8642 + }, + { + "start": 23005.7, + "end": 23008.32, + "probability": 0.8657 + }, + { + "start": 23008.62, + "end": 23009.44, + "probability": 0.321 + }, + { + "start": 23009.58, + "end": 23009.94, + "probability": 0.4712 + }, + { + "start": 23010.1, + "end": 23010.1, + "probability": 0.019 + }, + { + "start": 23010.1, + "end": 23011.2, + "probability": 0.6112 + }, + { + "start": 23011.22, + "end": 23011.92, + "probability": 0.8748 + }, + { + "start": 23012.58, + "end": 23014.7, + "probability": 0.6027 + }, + { + "start": 23014.74, + "end": 23015.64, + "probability": 0.7677 + }, + { + "start": 23015.82, + "end": 23016.22, + "probability": 0.5231 + }, + { + "start": 23016.28, + "end": 23016.82, + "probability": 0.9325 + }, + { + "start": 23016.86, + "end": 23017.18, + "probability": 0.9635 + }, + { + "start": 23017.24, + "end": 23019.34, + "probability": 0.9344 + }, + { + "start": 23019.46, + "end": 23019.84, + "probability": 0.6665 + }, + { + "start": 23019.9, + "end": 23021.06, + "probability": 0.9871 + }, + { + "start": 23021.46, + "end": 23023.76, + "probability": 0.8188 + }, + { + "start": 23024.02, + "end": 23025.16, + "probability": 0.5824 + }, + { + "start": 23025.56, + "end": 23026.8, + "probability": 0.7568 + }, + { + "start": 23027.96, + "end": 23029.08, + "probability": 0.6363 + }, + { + "start": 23030.2, + "end": 23030.2, + "probability": 0.007 + }, + { + "start": 23030.2, + "end": 23031.54, + "probability": 0.5913 + }, + { + "start": 23032.02, + "end": 23032.5, + "probability": 0.1533 + }, + { + "start": 23032.5, + "end": 23034.44, + "probability": 0.8027 + }, + { + "start": 23034.78, + "end": 23036.72, + "probability": 0.4129 + }, + { + "start": 23036.86, + "end": 23039.64, + "probability": 0.2694 + }, + { + "start": 23040.94, + "end": 23041.3, + "probability": 0.0034 + }, + { + "start": 23041.3, + "end": 23043.46, + "probability": 0.1931 + }, + { + "start": 23043.68, + "end": 23048.56, + "probability": 0.0826 + }, + { + "start": 23048.72, + "end": 23048.72, + "probability": 0.0042 + }, + { + "start": 23050.08, + "end": 23050.64, + "probability": 0.2176 + }, + { + "start": 23050.64, + "end": 23053.04, + "probability": 0.1165 + }, + { + "start": 23053.04, + "end": 23053.04, + "probability": 0.1304 + }, + { + "start": 23053.04, + "end": 23053.04, + "probability": 0.2077 + }, + { + "start": 23053.04, + "end": 23053.04, + "probability": 0.3196 + }, + { + "start": 23053.32, + "end": 23053.32, + "probability": 0.4001 + }, + { + "start": 23053.32, + "end": 23054.28, + "probability": 0.1326 + }, + { + "start": 23054.48, + "end": 23054.6, + "probability": 0.1092 + }, + { + "start": 23055.16, + "end": 23055.4, + "probability": 0.4674 + }, + { + "start": 23055.4, + "end": 23055.4, + "probability": 0.0293 + }, + { + "start": 23055.4, + "end": 23055.4, + "probability": 0.4144 + }, + { + "start": 23055.4, + "end": 23056.2, + "probability": 0.7728 + }, + { + "start": 23056.38, + "end": 23056.8, + "probability": 0.8107 + }, + { + "start": 23057.56, + "end": 23058.1, + "probability": 0.4888 + }, + { + "start": 23058.32, + "end": 23059.26, + "probability": 0.6738 + }, + { + "start": 23059.68, + "end": 23060.54, + "probability": 0.7828 + }, + { + "start": 23063.12, + "end": 23066.32, + "probability": 0.791 + }, + { + "start": 23070.6, + "end": 23073.8, + "probability": 0.9347 + }, + { + "start": 23074.02, + "end": 23074.72, + "probability": 0.0621 + }, + { + "start": 23074.76, + "end": 23075.14, + "probability": 0.9437 + }, + { + "start": 23075.34, + "end": 23076.66, + "probability": 0.6161 + }, + { + "start": 23076.72, + "end": 23083.22, + "probability": 0.9692 + }, + { + "start": 23083.98, + "end": 23086.0, + "probability": 0.867 + }, + { + "start": 23086.92, + "end": 23089.06, + "probability": 0.5768 + }, + { + "start": 23089.18, + "end": 23089.36, + "probability": 0.2958 + }, + { + "start": 23089.48, + "end": 23091.96, + "probability": 0.6214 + }, + { + "start": 23091.96, + "end": 23092.54, + "probability": 0.7206 + }, + { + "start": 23093.28, + "end": 23096.46, + "probability": 0.652 + }, + { + "start": 23108.2, + "end": 23109.24, + "probability": 0.0329 + }, + { + "start": 23110.18, + "end": 23110.78, + "probability": 0.4431 + }, + { + "start": 23111.26, + "end": 23112.13, + "probability": 0.8875 + }, + { + "start": 23113.0, + "end": 23113.52, + "probability": 0.8242 + }, + { + "start": 23115.46, + "end": 23116.02, + "probability": 0.4774 + }, + { + "start": 23116.54, + "end": 23118.32, + "probability": 0.9619 + }, + { + "start": 23118.76, + "end": 23119.35, + "probability": 0.9478 + }, + { + "start": 23119.62, + "end": 23120.87, + "probability": 0.9912 + }, + { + "start": 23122.58, + "end": 23123.44, + "probability": 0.6724 + }, + { + "start": 23124.34, + "end": 23125.0, + "probability": 0.2913 + }, + { + "start": 23126.48, + "end": 23127.52, + "probability": 0.6071 + }, + { + "start": 23127.96, + "end": 23131.28, + "probability": 0.8843 + }, + { + "start": 23131.86, + "end": 23133.62, + "probability": 0.9158 + }, + { + "start": 23133.74, + "end": 23137.82, + "probability": 0.9809 + }, + { + "start": 23138.42, + "end": 23139.94, + "probability": 0.9995 + }, + { + "start": 23140.18, + "end": 23141.81, + "probability": 0.98 + }, + { + "start": 23142.6, + "end": 23143.28, + "probability": 0.8909 + }, + { + "start": 23143.32, + "end": 23145.56, + "probability": 0.97 + }, + { + "start": 23145.64, + "end": 23146.3, + "probability": 0.3908 + }, + { + "start": 23146.3, + "end": 23148.42, + "probability": 0.7419 + }, + { + "start": 23149.48, + "end": 23151.84, + "probability": 0.9784 + }, + { + "start": 23151.96, + "end": 23153.66, + "probability": 0.857 + }, + { + "start": 23153.94, + "end": 23156.96, + "probability": 0.9088 + }, + { + "start": 23157.88, + "end": 23161.2, + "probability": 0.9967 + }, + { + "start": 23161.2, + "end": 23164.34, + "probability": 0.9701 + }, + { + "start": 23164.72, + "end": 23165.78, + "probability": 0.9891 + }, + { + "start": 23165.82, + "end": 23166.66, + "probability": 0.8795 + }, + { + "start": 23167.34, + "end": 23171.76, + "probability": 0.9521 + }, + { + "start": 23172.24, + "end": 23172.9, + "probability": 0.7188 + }, + { + "start": 23173.36, + "end": 23174.1, + "probability": 0.9667 + }, + { + "start": 23175.08, + "end": 23176.14, + "probability": 0.9368 + }, + { + "start": 23176.2, + "end": 23177.76, + "probability": 0.9756 + }, + { + "start": 23177.94, + "end": 23179.11, + "probability": 0.9987 + }, + { + "start": 23179.62, + "end": 23181.44, + "probability": 0.995 + }, + { + "start": 23181.83, + "end": 23184.96, + "probability": 0.8911 + }, + { + "start": 23185.78, + "end": 23187.92, + "probability": 0.9103 + }, + { + "start": 23188.32, + "end": 23191.62, + "probability": 0.9523 + }, + { + "start": 23192.08, + "end": 23192.58, + "probability": 0.9834 + }, + { + "start": 23192.72, + "end": 23194.26, + "probability": 0.5159 + }, + { + "start": 23196.5, + "end": 23197.04, + "probability": 0.5072 + }, + { + "start": 23197.2, + "end": 23198.02, + "probability": 0.5501 + }, + { + "start": 23198.98, + "end": 23202.12, + "probability": 0.6818 + }, + { + "start": 23202.12, + "end": 23204.16, + "probability": 0.9371 + }, + { + "start": 23204.7, + "end": 23205.64, + "probability": 0.9915 + }, + { + "start": 23206.66, + "end": 23211.14, + "probability": 0.9868 + }, + { + "start": 23211.14, + "end": 23214.3, + "probability": 0.945 + }, + { + "start": 23214.94, + "end": 23216.86, + "probability": 0.9844 + }, + { + "start": 23217.26, + "end": 23217.89, + "probability": 0.7788 + }, + { + "start": 23218.38, + "end": 23222.98, + "probability": 0.985 + }, + { + "start": 23223.12, + "end": 23226.28, + "probability": 0.9925 + }, + { + "start": 23226.74, + "end": 23227.49, + "probability": 0.6059 + }, + { + "start": 23227.78, + "end": 23228.82, + "probability": 0.6821 + }, + { + "start": 23229.2, + "end": 23231.04, + "probability": 0.7656 + }, + { + "start": 23231.12, + "end": 23231.84, + "probability": 0.9067 + }, + { + "start": 23232.2, + "end": 23233.88, + "probability": 0.9368 + }, + { + "start": 23233.92, + "end": 23236.41, + "probability": 0.8999 + }, + { + "start": 23237.06, + "end": 23239.42, + "probability": 0.9635 + }, + { + "start": 23239.42, + "end": 23241.92, + "probability": 0.978 + }, + { + "start": 23242.08, + "end": 23242.94, + "probability": 0.9236 + }, + { + "start": 23243.64, + "end": 23245.94, + "probability": 0.9294 + }, + { + "start": 23246.02, + "end": 23246.83, + "probability": 0.8013 + }, + { + "start": 23247.26, + "end": 23248.0, + "probability": 0.9941 + }, + { + "start": 23248.36, + "end": 23248.74, + "probability": 0.9144 + }, + { + "start": 23249.18, + "end": 23249.66, + "probability": 0.9122 + }, + { + "start": 23250.4, + "end": 23251.62, + "probability": 0.9103 + }, + { + "start": 23266.58, + "end": 23267.74, + "probability": 0.8597 + }, + { + "start": 23268.8, + "end": 23269.94, + "probability": 0.7296 + }, + { + "start": 23272.86, + "end": 23273.94, + "probability": 0.5731 + }, + { + "start": 23276.36, + "end": 23276.84, + "probability": 0.7488 + }, + { + "start": 23277.5, + "end": 23280.86, + "probability": 0.9803 + }, + { + "start": 23283.7, + "end": 23284.12, + "probability": 0.8646 + }, + { + "start": 23284.94, + "end": 23285.18, + "probability": 0.3679 + }, + { + "start": 23285.22, + "end": 23286.02, + "probability": 0.4482 + }, + { + "start": 23286.18, + "end": 23286.64, + "probability": 0.7573 + }, + { + "start": 23286.76, + "end": 23288.37, + "probability": 0.3175 + }, + { + "start": 23288.8, + "end": 23293.42, + "probability": 0.8563 + }, + { + "start": 23294.5, + "end": 23294.62, + "probability": 0.1828 + }, + { + "start": 23294.62, + "end": 23294.62, + "probability": 0.0108 + }, + { + "start": 23294.62, + "end": 23294.62, + "probability": 0.0416 + }, + { + "start": 23294.62, + "end": 23297.0, + "probability": 0.9551 + }, + { + "start": 23297.32, + "end": 23300.7, + "probability": 0.8817 + }, + { + "start": 23302.04, + "end": 23304.16, + "probability": 0.9736 + }, + { + "start": 23306.3, + "end": 23307.62, + "probability": 0.9893 + }, + { + "start": 23308.26, + "end": 23312.1, + "probability": 0.9966 + }, + { + "start": 23312.56, + "end": 23313.34, + "probability": 0.1179 + }, + { + "start": 23315.16, + "end": 23320.06, + "probability": 0.9848 + }, + { + "start": 23320.06, + "end": 23325.36, + "probability": 0.9988 + }, + { + "start": 23327.1, + "end": 23333.06, + "probability": 0.802 + }, + { + "start": 23333.18, + "end": 23333.36, + "probability": 0.4017 + }, + { + "start": 23333.74, + "end": 23337.88, + "probability": 0.9815 + }, + { + "start": 23339.32, + "end": 23342.08, + "probability": 0.9513 + }, + { + "start": 23342.38, + "end": 23343.44, + "probability": 0.9528 + }, + { + "start": 23344.0, + "end": 23344.7, + "probability": 0.6264 + }, + { + "start": 23345.84, + "end": 23352.58, + "probability": 0.9253 + }, + { + "start": 23352.6, + "end": 23355.48, + "probability": 0.9636 + }, + { + "start": 23356.32, + "end": 23359.04, + "probability": 0.9888 + }, + { + "start": 23359.58, + "end": 23360.96, + "probability": 0.8976 + }, + { + "start": 23361.42, + "end": 23365.38, + "probability": 0.9958 + }, + { + "start": 23366.16, + "end": 23368.78, + "probability": 0.8033 + }, + { + "start": 23369.32, + "end": 23370.67, + "probability": 0.9373 + }, + { + "start": 23371.48, + "end": 23372.59, + "probability": 0.9198 + }, + { + "start": 23373.78, + "end": 23374.41, + "probability": 0.8807 + }, + { + "start": 23375.1, + "end": 23376.14, + "probability": 0.1448 + }, + { + "start": 23377.54, + "end": 23378.8, + "probability": 0.9015 + }, + { + "start": 23379.68, + "end": 23380.0, + "probability": 0.5804 + }, + { + "start": 23380.82, + "end": 23381.04, + "probability": 0.0621 + }, + { + "start": 23381.04, + "end": 23381.04, + "probability": 0.0875 + }, + { + "start": 23381.04, + "end": 23381.86, + "probability": 0.2275 + }, + { + "start": 23383.04, + "end": 23383.16, + "probability": 0.5488 + }, + { + "start": 23383.16, + "end": 23384.5, + "probability": 0.8664 + }, + { + "start": 23385.4, + "end": 23386.04, + "probability": 0.9775 + }, + { + "start": 23387.42, + "end": 23388.98, + "probability": 0.9681 + }, + { + "start": 23390.06, + "end": 23395.88, + "probability": 0.8575 + }, + { + "start": 23397.26, + "end": 23402.18, + "probability": 0.505 + }, + { + "start": 23402.18, + "end": 23405.82, + "probability": 0.6922 + }, + { + "start": 23407.26, + "end": 23408.9, + "probability": 0.9679 + }, + { + "start": 23409.8, + "end": 23412.48, + "probability": 0.9945 + }, + { + "start": 23413.4, + "end": 23417.0, + "probability": 0.9954 + }, + { + "start": 23417.82, + "end": 23421.88, + "probability": 0.8954 + }, + { + "start": 23424.24, + "end": 23428.34, + "probability": 0.9917 + }, + { + "start": 23428.34, + "end": 23434.28, + "probability": 0.9956 + }, + { + "start": 23435.18, + "end": 23438.28, + "probability": 0.9701 + }, + { + "start": 23438.96, + "end": 23442.88, + "probability": 0.9854 + }, + { + "start": 23443.94, + "end": 23446.42, + "probability": 0.9946 + }, + { + "start": 23447.84, + "end": 23449.7, + "probability": 0.9868 + }, + { + "start": 23450.24, + "end": 23451.84, + "probability": 0.8665 + }, + { + "start": 23451.88, + "end": 23452.52, + "probability": 0.7436 + }, + { + "start": 23452.9, + "end": 23454.56, + "probability": 0.7753 + }, + { + "start": 23455.78, + "end": 23458.96, + "probability": 0.9969 + }, + { + "start": 23459.58, + "end": 23463.16, + "probability": 0.9943 + }, + { + "start": 23463.82, + "end": 23464.28, + "probability": 0.7234 + }, + { + "start": 23465.8, + "end": 23467.32, + "probability": 0.654 + }, + { + "start": 23467.98, + "end": 23470.6, + "probability": 0.9189 + }, + { + "start": 23471.46, + "end": 23473.86, + "probability": 0.9525 + }, + { + "start": 23474.68, + "end": 23475.72, + "probability": 0.9117 + }, + { + "start": 23500.16, + "end": 23502.34, + "probability": 0.7131 + }, + { + "start": 23503.4, + "end": 23506.42, + "probability": 0.9976 + }, + { + "start": 23507.36, + "end": 23510.68, + "probability": 0.9772 + }, + { + "start": 23511.24, + "end": 23516.12, + "probability": 0.9961 + }, + { + "start": 23516.82, + "end": 23517.36, + "probability": 0.6543 + }, + { + "start": 23518.0, + "end": 23522.12, + "probability": 0.9973 + }, + { + "start": 23523.04, + "end": 23526.18, + "probability": 0.9966 + }, + { + "start": 23526.76, + "end": 23531.22, + "probability": 0.9939 + }, + { + "start": 23532.04, + "end": 23534.42, + "probability": 0.984 + }, + { + "start": 23534.96, + "end": 23537.18, + "probability": 0.8916 + }, + { + "start": 23537.98, + "end": 23542.6, + "probability": 0.9973 + }, + { + "start": 23542.6, + "end": 23548.1, + "probability": 0.9986 + }, + { + "start": 23548.92, + "end": 23552.66, + "probability": 0.9985 + }, + { + "start": 23552.66, + "end": 23557.04, + "probability": 0.9976 + }, + { + "start": 23557.56, + "end": 23558.16, + "probability": 0.8817 + }, + { + "start": 23558.74, + "end": 23564.44, + "probability": 0.9958 + }, + { + "start": 23564.44, + "end": 23570.74, + "probability": 0.9984 + }, + { + "start": 23571.74, + "end": 23575.56, + "probability": 0.9884 + }, + { + "start": 23576.16, + "end": 23578.76, + "probability": 0.5808 + }, + { + "start": 23579.28, + "end": 23581.58, + "probability": 0.978 + }, + { + "start": 23582.1, + "end": 23587.82, + "probability": 0.995 + }, + { + "start": 23588.78, + "end": 23589.94, + "probability": 0.9751 + }, + { + "start": 23590.5, + "end": 23592.02, + "probability": 0.9938 + }, + { + "start": 23592.62, + "end": 23596.3, + "probability": 0.999 + }, + { + "start": 23596.3, + "end": 23600.9, + "probability": 0.9905 + }, + { + "start": 23601.6, + "end": 23605.98, + "probability": 0.998 + }, + { + "start": 23606.9, + "end": 23608.86, + "probability": 0.7366 + }, + { + "start": 23609.48, + "end": 23614.04, + "probability": 0.996 + }, + { + "start": 23615.06, + "end": 23620.8, + "probability": 0.9832 + }, + { + "start": 23621.2, + "end": 23622.72, + "probability": 0.9782 + }, + { + "start": 23623.52, + "end": 23626.96, + "probability": 0.9939 + }, + { + "start": 23627.6, + "end": 23633.96, + "probability": 0.9937 + }, + { + "start": 23634.64, + "end": 23636.28, + "probability": 0.9863 + }, + { + "start": 23637.74, + "end": 23642.76, + "probability": 0.9692 + }, + { + "start": 23642.76, + "end": 23647.72, + "probability": 0.9823 + }, + { + "start": 23648.5, + "end": 23653.12, + "probability": 0.9895 + }, + { + "start": 23653.12, + "end": 23657.58, + "probability": 0.9995 + }, + { + "start": 23658.38, + "end": 23661.74, + "probability": 0.998 + }, + { + "start": 23661.74, + "end": 23666.1, + "probability": 0.9924 + }, + { + "start": 23666.36, + "end": 23668.44, + "probability": 0.9318 + }, + { + "start": 23669.16, + "end": 23670.2, + "probability": 0.7906 + }, + { + "start": 23670.92, + "end": 23674.4, + "probability": 0.9956 + }, + { + "start": 23674.96, + "end": 23679.78, + "probability": 0.9917 + }, + { + "start": 23679.78, + "end": 23685.58, + "probability": 0.8895 + }, + { + "start": 23686.3, + "end": 23686.3, + "probability": 0.6111 + }, + { + "start": 23686.3, + "end": 23691.36, + "probability": 0.9805 + }, + { + "start": 23691.36, + "end": 23695.82, + "probability": 0.9339 + }, + { + "start": 23696.24, + "end": 23698.18, + "probability": 0.9828 + }, + { + "start": 23698.54, + "end": 23703.44, + "probability": 0.9935 + }, + { + "start": 23705.32, + "end": 23707.9, + "probability": 0.7153 + }, + { + "start": 23708.58, + "end": 23710.69, + "probability": 0.6838 + }, + { + "start": 23711.2, + "end": 23712.76, + "probability": 0.9367 + }, + { + "start": 23714.79, + "end": 23716.2, + "probability": 0.5875 + }, + { + "start": 23718.14, + "end": 23719.92, + "probability": 0.8498 + }, + { + "start": 23721.02, + "end": 23725.68, + "probability": 0.5312 + }, + { + "start": 23726.76, + "end": 23729.52, + "probability": 0.2279 + }, + { + "start": 23729.72, + "end": 23732.26, + "probability": 0.7193 + }, + { + "start": 23733.87, + "end": 23736.44, + "probability": 0.5721 + }, + { + "start": 23737.38, + "end": 23740.68, + "probability": 0.661 + }, + { + "start": 23742.8, + "end": 23743.3, + "probability": 0.6033 + }, + { + "start": 23743.36, + "end": 23744.7, + "probability": 0.9704 + }, + { + "start": 23744.74, + "end": 23746.73, + "probability": 0.9824 + }, + { + "start": 23748.12, + "end": 23749.06, + "probability": 0.7492 + }, + { + "start": 23749.06, + "end": 23752.3, + "probability": 0.6859 + }, + { + "start": 23752.48, + "end": 23755.42, + "probability": 0.8701 + }, + { + "start": 23755.64, + "end": 23758.1, + "probability": 0.9021 + }, + { + "start": 23758.32, + "end": 23766.22, + "probability": 0.9434 + }, + { + "start": 23766.68, + "end": 23768.68, + "probability": 0.8299 + }, + { + "start": 23769.52, + "end": 23772.34, + "probability": 0.8224 + }, + { + "start": 23772.94, + "end": 23775.32, + "probability": 0.6645 + }, + { + "start": 23775.44, + "end": 23775.96, + "probability": 0.7487 + }, + { + "start": 23776.02, + "end": 23777.42, + "probability": 0.868 + }, + { + "start": 23778.3, + "end": 23781.22, + "probability": 0.9514 + }, + { + "start": 23781.22, + "end": 23786.84, + "probability": 0.9807 + }, + { + "start": 23787.26, + "end": 23791.76, + "probability": 0.9993 + }, + { + "start": 23792.38, + "end": 23796.66, + "probability": 0.9999 + }, + { + "start": 23796.66, + "end": 23801.66, + "probability": 0.9806 + }, + { + "start": 23802.34, + "end": 23808.06, + "probability": 0.9892 + }, + { + "start": 23808.16, + "end": 23809.42, + "probability": 0.593 + }, + { + "start": 23810.1, + "end": 23811.94, + "probability": 0.7496 + }, + { + "start": 23812.5, + "end": 23817.28, + "probability": 0.9463 + }, + { + "start": 23818.04, + "end": 23818.72, + "probability": 0.9124 + }, + { + "start": 23818.8, + "end": 23819.74, + "probability": 0.8547 + }, + { + "start": 23819.82, + "end": 23824.16, + "probability": 0.9689 + }, + { + "start": 23824.84, + "end": 23826.04, + "probability": 0.9816 + }, + { + "start": 23826.32, + "end": 23828.0, + "probability": 0.931 + }, + { + "start": 23828.18, + "end": 23831.28, + "probability": 0.9965 + }, + { + "start": 23832.4, + "end": 23833.78, + "probability": 0.9928 + }, + { + "start": 23833.96, + "end": 23836.96, + "probability": 0.9818 + }, + { + "start": 23837.52, + "end": 23840.32, + "probability": 0.883 + }, + { + "start": 23840.38, + "end": 23841.28, + "probability": 0.8688 + }, + { + "start": 23841.92, + "end": 23843.5, + "probability": 0.936 + }, + { + "start": 23843.6, + "end": 23844.62, + "probability": 0.7537 + }, + { + "start": 23845.06, + "end": 23848.9, + "probability": 0.9946 + }, + { + "start": 23850.0, + "end": 23851.44, + "probability": 0.9843 + }, + { + "start": 23851.68, + "end": 23853.08, + "probability": 0.9744 + }, + { + "start": 23853.26, + "end": 23854.46, + "probability": 0.9751 + }, + { + "start": 23855.24, + "end": 23855.52, + "probability": 0.4996 + }, + { + "start": 23855.6, + "end": 23856.64, + "probability": 0.6226 + }, + { + "start": 23856.7, + "end": 23860.46, + "probability": 0.9402 + }, + { + "start": 23860.46, + "end": 23865.94, + "probability": 0.9801 + }, + { + "start": 23866.5, + "end": 23869.16, + "probability": 0.9469 + }, + { + "start": 23869.82, + "end": 23871.78, + "probability": 0.9856 + }, + { + "start": 23872.28, + "end": 23876.74, + "probability": 0.995 + }, + { + "start": 23877.22, + "end": 23878.76, + "probability": 0.8912 + }, + { + "start": 23879.38, + "end": 23881.06, + "probability": 0.9986 + }, + { + "start": 23881.18, + "end": 23883.28, + "probability": 0.8973 + }, + { + "start": 23883.8, + "end": 23887.28, + "probability": 0.9761 + }, + { + "start": 23887.98, + "end": 23890.78, + "probability": 0.9823 + }, + { + "start": 23892.24, + "end": 23892.56, + "probability": 0.4318 + }, + { + "start": 23892.62, + "end": 23893.58, + "probability": 0.8945 + }, + { + "start": 23893.66, + "end": 23897.26, + "probability": 0.955 + }, + { + "start": 23897.86, + "end": 23901.64, + "probability": 0.9603 + }, + { + "start": 23902.14, + "end": 23908.16, + "probability": 0.9805 + }, + { + "start": 23908.68, + "end": 23909.74, + "probability": 0.9011 + }, + { + "start": 23910.98, + "end": 23912.02, + "probability": 0.882 + }, + { + "start": 23912.12, + "end": 23913.04, + "probability": 0.9198 + }, + { + "start": 23913.14, + "end": 23917.24, + "probability": 0.9775 + }, + { + "start": 23917.7, + "end": 23919.0, + "probability": 0.9424 + }, + { + "start": 23920.2, + "end": 23922.18, + "probability": 0.9783 + }, + { + "start": 23923.08, + "end": 23924.4, + "probability": 0.8025 + }, + { + "start": 23924.46, + "end": 23926.62, + "probability": 0.9961 + }, + { + "start": 23927.46, + "end": 23929.89, + "probability": 0.9861 + }, + { + "start": 23930.84, + "end": 23932.03, + "probability": 0.7764 + }, + { + "start": 23932.84, + "end": 23933.92, + "probability": 0.9071 + }, + { + "start": 23934.44, + "end": 23935.98, + "probability": 0.9274 + }, + { + "start": 23936.68, + "end": 23939.12, + "probability": 0.9953 + }, + { + "start": 23939.54, + "end": 23941.4, + "probability": 0.9927 + }, + { + "start": 23941.86, + "end": 23943.86, + "probability": 0.998 + }, + { + "start": 23944.32, + "end": 23948.62, + "probability": 0.9089 + }, + { + "start": 23949.18, + "end": 23950.48, + "probability": 0.8934 + }, + { + "start": 23951.14, + "end": 23952.22, + "probability": 0.973 + }, + { + "start": 23952.98, + "end": 23953.6, + "probability": 0.7866 + }, + { + "start": 23953.78, + "end": 23956.34, + "probability": 0.6079 + }, + { + "start": 23957.48, + "end": 23958.58, + "probability": 0.3955 + }, + { + "start": 23959.7, + "end": 23961.04, + "probability": 0.9469 + }, + { + "start": 23975.44, + "end": 23975.94, + "probability": 0.6202 + }, + { + "start": 23976.98, + "end": 23977.34, + "probability": 0.2832 + }, + { + "start": 23977.38, + "end": 23977.38, + "probability": 0.1268 + }, + { + "start": 23977.78, + "end": 23978.0, + "probability": 0.2323 + }, + { + "start": 23997.02, + "end": 23997.94, + "probability": 0.4027 + }, + { + "start": 23998.78, + "end": 24001.48, + "probability": 0.9692 + }, + { + "start": 24002.0, + "end": 24003.0, + "probability": 0.9497 + }, + { + "start": 24005.96, + "end": 24006.9, + "probability": 0.9005 + }, + { + "start": 24008.56, + "end": 24010.12, + "probability": 0.998 + }, + { + "start": 24012.34, + "end": 24013.58, + "probability": 0.75 + }, + { + "start": 24014.52, + "end": 24014.56, + "probability": 0.0603 + }, + { + "start": 24019.01, + "end": 24020.75, + "probability": 0.109 + }, + { + "start": 24021.3, + "end": 24022.87, + "probability": 0.9193 + }, + { + "start": 24023.275, + "end": 24024.27, + "probability": 0.3416 + }, + { + "start": 24024.27, + "end": 24030.07, + "probability": 0.9246 + }, + { + "start": 24031.16, + "end": 24035.53, + "probability": 0.9377 + }, + { + "start": 24037.05, + "end": 24039.71, + "probability": 0.8864 + }, + { + "start": 24040.09, + "end": 24041.39, + "probability": 0.439 + }, + { + "start": 24042.46, + "end": 24043.35, + "probability": 0.7389 + }, + { + "start": 24043.37, + "end": 24043.37, + "probability": 0.3448 + }, + { + "start": 24043.49, + "end": 24045.23, + "probability": 0.9611 + }, + { + "start": 24045.49, + "end": 24047.87, + "probability": 0.9888 + }, + { + "start": 24048.39, + "end": 24050.89, + "probability": 0.9976 + }, + { + "start": 24052.29, + "end": 24055.17, + "probability": 0.9973 + }, + { + "start": 24055.39, + "end": 24056.91, + "probability": 0.9718 + }, + { + "start": 24056.99, + "end": 24058.25, + "probability": 0.5105 + }, + { + "start": 24058.49, + "end": 24059.76, + "probability": 0.7212 + }, + { + "start": 24060.13, + "end": 24063.07, + "probability": 0.9685 + }, + { + "start": 24063.47, + "end": 24066.97, + "probability": 0.6948 + }, + { + "start": 24067.23, + "end": 24068.81, + "probability": 0.9845 + }, + { + "start": 24069.29, + "end": 24070.49, + "probability": 0.6322 + }, + { + "start": 24071.43, + "end": 24071.79, + "probability": 0.0909 + }, + { + "start": 24071.79, + "end": 24075.27, + "probability": 0.5293 + }, + { + "start": 24075.49, + "end": 24077.11, + "probability": 0.3725 + }, + { + "start": 24078.77, + "end": 24079.37, + "probability": 0.7514 + }, + { + "start": 24080.03, + "end": 24080.95, + "probability": 0.9482 + }, + { + "start": 24081.03, + "end": 24087.95, + "probability": 0.9082 + }, + { + "start": 24088.51, + "end": 24089.09, + "probability": 0.3473 + }, + { + "start": 24089.49, + "end": 24089.99, + "probability": 0.3079 + }, + { + "start": 24090.05, + "end": 24091.05, + "probability": 0.9633 + }, + { + "start": 24091.87, + "end": 24095.09, + "probability": 0.82 + }, + { + "start": 24095.55, + "end": 24095.63, + "probability": 0.1662 + }, + { + "start": 24095.63, + "end": 24097.19, + "probability": 0.7847 + }, + { + "start": 24097.67, + "end": 24100.79, + "probability": 0.9292 + }, + { + "start": 24101.09, + "end": 24106.07, + "probability": 0.988 + }, + { + "start": 24106.14, + "end": 24106.53, + "probability": 0.3567 + }, + { + "start": 24106.55, + "end": 24109.47, + "probability": 0.7476 + }, + { + "start": 24109.47, + "end": 24109.69, + "probability": 0.8096 + }, + { + "start": 24109.69, + "end": 24111.33, + "probability": 0.3142 + }, + { + "start": 24111.59, + "end": 24119.21, + "probability": 0.9513 + }, + { + "start": 24119.29, + "end": 24120.13, + "probability": 0.3104 + }, + { + "start": 24120.13, + "end": 24121.67, + "probability": 0.6258 + }, + { + "start": 24121.91, + "end": 24122.55, + "probability": 0.3596 + }, + { + "start": 24122.57, + "end": 24122.95, + "probability": 0.7188 + }, + { + "start": 24123.07, + "end": 24123.47, + "probability": 0.9302 + }, + { + "start": 24123.55, + "end": 24124.29, + "probability": 0.3742 + }, + { + "start": 24124.35, + "end": 24124.55, + "probability": 0.9332 + }, + { + "start": 24124.61, + "end": 24125.79, + "probability": 0.8501 + }, + { + "start": 24126.01, + "end": 24127.51, + "probability": 0.9299 + }, + { + "start": 24127.69, + "end": 24128.01, + "probability": 0.676 + }, + { + "start": 24128.45, + "end": 24128.79, + "probability": 0.5672 + }, + { + "start": 24129.37, + "end": 24130.89, + "probability": 0.2852 + }, + { + "start": 24130.97, + "end": 24133.79, + "probability": 0.4162 + }, + { + "start": 24134.73, + "end": 24136.83, + "probability": 0.9388 + }, + { + "start": 24138.51, + "end": 24138.51, + "probability": 0.0357 + }, + { + "start": 24138.51, + "end": 24139.3, + "probability": 0.9619 + }, + { + "start": 24141.51, + "end": 24144.74, + "probability": 0.8254 + }, + { + "start": 24144.99, + "end": 24145.78, + "probability": 0.9724 + }, + { + "start": 24146.31, + "end": 24147.17, + "probability": 0.9685 + }, + { + "start": 24147.41, + "end": 24148.39, + "probability": 0.931 + }, + { + "start": 24149.11, + "end": 24149.47, + "probability": 0.9441 + }, + { + "start": 24150.33, + "end": 24151.15, + "probability": 0.8934 + }, + { + "start": 24151.73, + "end": 24153.37, + "probability": 0.3371 + }, + { + "start": 24153.37, + "end": 24154.41, + "probability": 0.3752 + }, + { + "start": 24154.41, + "end": 24154.69, + "probability": 0.0243 + }, + { + "start": 24155.21, + "end": 24157.75, + "probability": 0.8826 + }, + { + "start": 24157.79, + "end": 24158.91, + "probability": 0.3797 + }, + { + "start": 24158.95, + "end": 24159.97, + "probability": 0.8835 + }, + { + "start": 24160.25, + "end": 24161.11, + "probability": 0.8578 + }, + { + "start": 24161.45, + "end": 24162.65, + "probability": 0.9155 + }, + { + "start": 24162.75, + "end": 24164.63, + "probability": 0.3858 + }, + { + "start": 24164.63, + "end": 24165.69, + "probability": 0.677 + }, + { + "start": 24165.93, + "end": 24167.11, + "probability": 0.106 + }, + { + "start": 24167.17, + "end": 24168.33, + "probability": 0.8964 + }, + { + "start": 24168.43, + "end": 24169.34, + "probability": 0.8402 + }, + { + "start": 24170.33, + "end": 24174.17, + "probability": 0.9792 + }, + { + "start": 24174.39, + "end": 24174.59, + "probability": 0.0071 + }, + { + "start": 24174.59, + "end": 24177.13, + "probability": 0.165 + }, + { + "start": 24177.13, + "end": 24177.49, + "probability": 0.1445 + }, + { + "start": 24177.63, + "end": 24179.57, + "probability": 0.4934 + }, + { + "start": 24180.31, + "end": 24180.39, + "probability": 0.055 + }, + { + "start": 24180.39, + "end": 24182.83, + "probability": 0.2469 + }, + { + "start": 24182.83, + "end": 24184.43, + "probability": 0.5061 + }, + { + "start": 24184.59, + "end": 24184.85, + "probability": 0.6398 + }, + { + "start": 24184.85, + "end": 24185.59, + "probability": 0.0148 + }, + { + "start": 24185.61, + "end": 24187.87, + "probability": 0.7889 + }, + { + "start": 24188.51, + "end": 24189.38, + "probability": 0.9181 + }, + { + "start": 24190.63, + "end": 24191.35, + "probability": 0.9233 + }, + { + "start": 24191.53, + "end": 24191.85, + "probability": 0.8705 + }, + { + "start": 24191.87, + "end": 24192.57, + "probability": 0.9334 + }, + { + "start": 24192.77, + "end": 24196.01, + "probability": 0.9827 + }, + { + "start": 24196.63, + "end": 24197.77, + "probability": 0.968 + }, + { + "start": 24197.95, + "end": 24199.07, + "probability": 0.9228 + }, + { + "start": 24199.37, + "end": 24199.81, + "probability": 0.6129 + }, + { + "start": 24199.91, + "end": 24203.03, + "probability": 0.8428 + }, + { + "start": 24203.47, + "end": 24205.23, + "probability": 0.8194 + }, + { + "start": 24205.59, + "end": 24206.85, + "probability": 0.9941 + }, + { + "start": 24207.67, + "end": 24212.95, + "probability": 0.9764 + }, + { + "start": 24213.13, + "end": 24213.99, + "probability": 0.8223 + }, + { + "start": 24214.53, + "end": 24214.59, + "probability": 0.4388 + }, + { + "start": 24214.59, + "end": 24217.57, + "probability": 0.8825 + }, + { + "start": 24217.77, + "end": 24220.97, + "probability": 0.8246 + }, + { + "start": 24221.83, + "end": 24224.52, + "probability": 0.5059 + }, + { + "start": 24224.81, + "end": 24225.77, + "probability": 0.9755 + }, + { + "start": 24227.08, + "end": 24227.57, + "probability": 0.2306 + }, + { + "start": 24227.67, + "end": 24229.99, + "probability": 0.9189 + }, + { + "start": 24231.17, + "end": 24232.19, + "probability": 0.2085 + }, + { + "start": 24232.35, + "end": 24234.99, + "probability": 0.1344 + }, + { + "start": 24236.39, + "end": 24237.95, + "probability": 0.5475 + }, + { + "start": 24238.53, + "end": 24238.79, + "probability": 0.1358 + }, + { + "start": 24238.91, + "end": 24239.03, + "probability": 0.2806 + }, + { + "start": 24239.03, + "end": 24240.85, + "probability": 0.6188 + }, + { + "start": 24240.97, + "end": 24242.49, + "probability": 0.7757 + }, + { + "start": 24242.61, + "end": 24243.01, + "probability": 0.3072 + }, + { + "start": 24243.07, + "end": 24245.31, + "probability": 0.8638 + }, + { + "start": 24245.31, + "end": 24245.41, + "probability": 0.3995 + }, + { + "start": 24245.41, + "end": 24247.99, + "probability": 0.4764 + }, + { + "start": 24248.23, + "end": 24249.91, + "probability": 0.3249 + }, + { + "start": 24252.01, + "end": 24253.17, + "probability": 0.3615 + }, + { + "start": 24254.07, + "end": 24254.09, + "probability": 0.059 + }, + { + "start": 24254.09, + "end": 24254.09, + "probability": 0.0425 + }, + { + "start": 24254.09, + "end": 24256.15, + "probability": 0.2822 + }, + { + "start": 24256.27, + "end": 24260.33, + "probability": 0.7251 + }, + { + "start": 24260.51, + "end": 24262.24, + "probability": 0.2311 + }, + { + "start": 24262.87, + "end": 24267.33, + "probability": 0.23 + }, + { + "start": 24267.33, + "end": 24270.73, + "probability": 0.0766 + }, + { + "start": 24271.05, + "end": 24271.53, + "probability": 0.0647 + }, + { + "start": 24272.09, + "end": 24274.49, + "probability": 0.161 + }, + { + "start": 24274.71, + "end": 24275.13, + "probability": 0.2304 + }, + { + "start": 24275.19, + "end": 24276.03, + "probability": 0.6785 + }, + { + "start": 24276.09, + "end": 24276.65, + "probability": 0.4897 + }, + { + "start": 24276.91, + "end": 24279.95, + "probability": 0.9296 + }, + { + "start": 24280.39, + "end": 24284.07, + "probability": 0.7357 + }, + { + "start": 24285.55, + "end": 24287.03, + "probability": 0.9663 + }, + { + "start": 24288.35, + "end": 24290.69, + "probability": 0.0714 + }, + { + "start": 24290.69, + "end": 24291.13, + "probability": 0.078 + }, + { + "start": 24291.13, + "end": 24291.97, + "probability": 0.5455 + }, + { + "start": 24292.15, + "end": 24292.89, + "probability": 0.5213 + }, + { + "start": 24293.55, + "end": 24293.55, + "probability": 0.3654 + }, + { + "start": 24293.55, + "end": 24293.55, + "probability": 0.0262 + }, + { + "start": 24293.55, + "end": 24294.57, + "probability": 0.4097 + }, + { + "start": 24294.57, + "end": 24296.29, + "probability": 0.8865 + }, + { + "start": 24296.35, + "end": 24297.23, + "probability": 0.729 + }, + { + "start": 24298.01, + "end": 24303.07, + "probability": 0.9977 + }, + { + "start": 24303.81, + "end": 24310.65, + "probability": 0.8852 + }, + { + "start": 24311.89, + "end": 24312.41, + "probability": 0.8196 + }, + { + "start": 24312.51, + "end": 24317.29, + "probability": 0.9882 + }, + { + "start": 24318.49, + "end": 24322.15, + "probability": 0.9886 + }, + { + "start": 24322.47, + "end": 24323.47, + "probability": 0.7042 + }, + { + "start": 24323.55, + "end": 24325.73, + "probability": 0.9731 + }, + { + "start": 24326.83, + "end": 24327.17, + "probability": 0.8584 + }, + { + "start": 24327.23, + "end": 24331.25, + "probability": 0.9905 + }, + { + "start": 24331.25, + "end": 24334.48, + "probability": 0.9985 + }, + { + "start": 24334.83, + "end": 24335.39, + "probability": 0.5101 + }, + { + "start": 24335.49, + "end": 24336.05, + "probability": 0.8958 + }, + { + "start": 24336.59, + "end": 24337.53, + "probability": 0.8916 + }, + { + "start": 24338.85, + "end": 24343.33, + "probability": 0.9931 + }, + { + "start": 24343.91, + "end": 24347.37, + "probability": 0.9955 + }, + { + "start": 24347.57, + "end": 24348.03, + "probability": 0.6718 + }, + { + "start": 24349.07, + "end": 24353.51, + "probability": 0.924 + }, + { + "start": 24353.63, + "end": 24356.61, + "probability": 0.9357 + }, + { + "start": 24356.87, + "end": 24360.83, + "probability": 0.9056 + }, + { + "start": 24361.29, + "end": 24362.61, + "probability": 0.9968 + }, + { + "start": 24364.07, + "end": 24365.03, + "probability": 0.9092 + }, + { + "start": 24366.25, + "end": 24367.65, + "probability": 0.8123 + }, + { + "start": 24368.13, + "end": 24368.85, + "probability": 0.8676 + }, + { + "start": 24369.57, + "end": 24372.47, + "probability": 0.9934 + }, + { + "start": 24372.47, + "end": 24376.15, + "probability": 0.938 + }, + { + "start": 24376.79, + "end": 24378.53, + "probability": 0.9789 + }, + { + "start": 24379.01, + "end": 24381.35, + "probability": 0.9409 + }, + { + "start": 24381.49, + "end": 24386.83, + "probability": 0.9917 + }, + { + "start": 24387.23, + "end": 24388.91, + "probability": 0.7091 + }, + { + "start": 24389.05, + "end": 24391.23, + "probability": 0.9109 + }, + { + "start": 24392.61, + "end": 24394.87, + "probability": 0.9976 + }, + { + "start": 24395.57, + "end": 24396.47, + "probability": 0.8608 + }, + { + "start": 24396.97, + "end": 24399.71, + "probability": 0.9744 + }, + { + "start": 24400.01, + "end": 24403.53, + "probability": 0.9506 + }, + { + "start": 24404.93, + "end": 24406.23, + "probability": 0.9961 + }, + { + "start": 24407.03, + "end": 24410.23, + "probability": 0.978 + }, + { + "start": 24411.03, + "end": 24413.63, + "probability": 0.991 + }, + { + "start": 24414.91, + "end": 24415.71, + "probability": 0.5714 + }, + { + "start": 24415.81, + "end": 24421.01, + "probability": 0.9899 + }, + { + "start": 24421.01, + "end": 24426.21, + "probability": 0.9971 + }, + { + "start": 24426.29, + "end": 24429.67, + "probability": 0.9348 + }, + { + "start": 24429.81, + "end": 24433.73, + "probability": 0.9932 + }, + { + "start": 24433.73, + "end": 24438.11, + "probability": 0.9976 + }, + { + "start": 24438.71, + "end": 24441.05, + "probability": 0.9467 + }, + { + "start": 24441.49, + "end": 24442.39, + "probability": 0.7791 + }, + { + "start": 24442.43, + "end": 24444.63, + "probability": 0.9965 + }, + { + "start": 24445.21, + "end": 24447.75, + "probability": 0.6317 + }, + { + "start": 24447.81, + "end": 24449.97, + "probability": 0.9934 + }, + { + "start": 24450.67, + "end": 24451.75, + "probability": 0.7871 + }, + { + "start": 24451.93, + "end": 24452.79, + "probability": 0.8857 + }, + { + "start": 24452.91, + "end": 24460.15, + "probability": 0.9829 + }, + { + "start": 24460.15, + "end": 24463.77, + "probability": 0.9962 + }, + { + "start": 24464.25, + "end": 24466.35, + "probability": 0.9838 + }, + { + "start": 24466.59, + "end": 24469.32, + "probability": 0.9141 + }, + { + "start": 24469.93, + "end": 24472.37, + "probability": 0.9971 + }, + { + "start": 24473.01, + "end": 24476.77, + "probability": 0.9045 + }, + { + "start": 24476.83, + "end": 24482.03, + "probability": 0.9213 + }, + { + "start": 24482.25, + "end": 24484.31, + "probability": 0.6773 + }, + { + "start": 24484.43, + "end": 24484.93, + "probability": 0.5744 + }, + { + "start": 24484.99, + "end": 24486.37, + "probability": 0.8828 + }, + { + "start": 24486.53, + "end": 24490.99, + "probability": 0.9954 + }, + { + "start": 24492.32, + "end": 24496.27, + "probability": 0.8898 + }, + { + "start": 24496.41, + "end": 24500.11, + "probability": 0.9995 + }, + { + "start": 24500.27, + "end": 24502.03, + "probability": 0.9535 + }, + { + "start": 24502.21, + "end": 24502.59, + "probability": 0.8938 + }, + { + "start": 24502.59, + "end": 24503.55, + "probability": 0.8996 + }, + { + "start": 24505.26, + "end": 24505.75, + "probability": 0.1649 + }, + { + "start": 24505.75, + "end": 24505.75, + "probability": 0.0793 + }, + { + "start": 24505.75, + "end": 24509.39, + "probability": 0.8413 + }, + { + "start": 24509.69, + "end": 24512.74, + "probability": 0.9873 + }, + { + "start": 24513.39, + "end": 24514.79, + "probability": 0.9667 + }, + { + "start": 24516.93, + "end": 24517.27, + "probability": 0.2738 + }, + { + "start": 24517.27, + "end": 24520.35, + "probability": 0.9167 + }, + { + "start": 24520.65, + "end": 24524.35, + "probability": 0.9066 + }, + { + "start": 24524.91, + "end": 24525.31, + "probability": 0.6592 + }, + { + "start": 24525.35, + "end": 24529.15, + "probability": 0.9453 + }, + { + "start": 24534.03, + "end": 24535.35, + "probability": 0.6977 + }, + { + "start": 24536.6, + "end": 24538.77, + "probability": 0.9948 + }, + { + "start": 24541.99, + "end": 24549.61, + "probability": 0.7882 + }, + { + "start": 24552.23, + "end": 24558.61, + "probability": 0.9527 + }, + { + "start": 24559.41, + "end": 24562.39, + "probability": 0.9419 + }, + { + "start": 24563.15, + "end": 24565.69, + "probability": 0.4759 + }, + { + "start": 24565.91, + "end": 24566.91, + "probability": 0.7804 + }, + { + "start": 24566.99, + "end": 24567.67, + "probability": 0.952 + }, + { + "start": 24567.91, + "end": 24570.71, + "probability": 0.4621 + }, + { + "start": 24576.81, + "end": 24581.71, + "probability": 0.944 + }, + { + "start": 24582.4, + "end": 24585.91, + "probability": 0.9915 + }, + { + "start": 24586.81, + "end": 24586.81, + "probability": 0.4931 + }, + { + "start": 24586.81, + "end": 24591.15, + "probability": 0.7302 + }, + { + "start": 24591.33, + "end": 24592.33, + "probability": 0.6914 + }, + { + "start": 24593.47, + "end": 24597.43, + "probability": 0.8627 + }, + { + "start": 24598.27, + "end": 24599.47, + "probability": 0.7552 + }, + { + "start": 24600.29, + "end": 24601.23, + "probability": 0.8844 + }, + { + "start": 24601.75, + "end": 24602.49, + "probability": 0.5669 + }, + { + "start": 24604.05, + "end": 24606.46, + "probability": 0.9598 + }, + { + "start": 24606.77, + "end": 24610.05, + "probability": 0.8398 + }, + { + "start": 24611.89, + "end": 24616.25, + "probability": 0.9067 + }, + { + "start": 24616.25, + "end": 24618.81, + "probability": 0.8221 + }, + { + "start": 24619.19, + "end": 24619.94, + "probability": 0.627 + }, + { + "start": 24620.77, + "end": 24621.75, + "probability": 0.8115 + }, + { + "start": 24622.91, + "end": 24626.27, + "probability": 0.7911 + }, + { + "start": 24627.07, + "end": 24627.91, + "probability": 0.9077 + }, + { + "start": 24627.97, + "end": 24628.83, + "probability": 0.9906 + }, + { + "start": 24629.67, + "end": 24630.51, + "probability": 0.9641 + }, + { + "start": 24630.67, + "end": 24632.41, + "probability": 0.8818 + }, + { + "start": 24633.07, + "end": 24635.05, + "probability": 0.6186 + }, + { + "start": 24635.47, + "end": 24636.61, + "probability": 0.5247 + }, + { + "start": 24636.75, + "end": 24637.32, + "probability": 0.6647 + }, + { + "start": 24638.07, + "end": 24639.35, + "probability": 0.7676 + }, + { + "start": 24639.47, + "end": 24640.03, + "probability": 0.6299 + }, + { + "start": 24640.11, + "end": 24641.97, + "probability": 0.5999 + }, + { + "start": 24643.33, + "end": 24645.09, + "probability": 0.5337 + }, + { + "start": 24649.05, + "end": 24650.73, + "probability": 0.6655 + }, + { + "start": 24651.21, + "end": 24652.03, + "probability": 0.5681 + }, + { + "start": 24652.19, + "end": 24657.35, + "probability": 0.8938 + }, + { + "start": 24657.43, + "end": 24658.19, + "probability": 0.9478 + }, + { + "start": 24658.91, + "end": 24663.13, + "probability": 0.9276 + }, + { + "start": 24663.84, + "end": 24666.01, + "probability": 0.9989 + }, + { + "start": 24666.81, + "end": 24668.59, + "probability": 0.9565 + }, + { + "start": 24668.91, + "end": 24673.99, + "probability": 0.9768 + }, + { + "start": 24674.89, + "end": 24675.55, + "probability": 0.8133 + }, + { + "start": 24676.73, + "end": 24679.53, + "probability": 0.8704 + }, + { + "start": 24680.25, + "end": 24682.83, + "probability": 0.9565 + }, + { + "start": 24682.85, + "end": 24687.71, + "probability": 0.892 + }, + { + "start": 24688.25, + "end": 24691.25, + "probability": 0.6529 + }, + { + "start": 24691.83, + "end": 24694.73, + "probability": 0.6293 + }, + { + "start": 24696.77, + "end": 24699.59, + "probability": 0.7358 + }, + { + "start": 24701.39, + "end": 24704.43, + "probability": 0.1064 + }, + { + "start": 24720.73, + "end": 24724.39, + "probability": 0.4218 + }, + { + "start": 24724.49, + "end": 24727.33, + "probability": 0.6158 + }, + { + "start": 24728.23, + "end": 24734.57, + "probability": 0.5917 + }, + { + "start": 24736.61, + "end": 24738.11, + "probability": 0.0421 + }, + { + "start": 24738.11, + "end": 24740.25, + "probability": 0.0327 + }, + { + "start": 24740.27, + "end": 24741.59, + "probability": 0.2572 + }, + { + "start": 24742.37, + "end": 24742.43, + "probability": 0.0121 + }, + { + "start": 24742.43, + "end": 24743.53, + "probability": 0.5516 + }, + { + "start": 24743.91, + "end": 24744.4, + "probability": 0.2784 + }, + { + "start": 24745.75, + "end": 24750.19, + "probability": 0.1328 + }, + { + "start": 24751.28, + "end": 24756.11, + "probability": 0.0204 + }, + { + "start": 24757.13, + "end": 24758.47, + "probability": 0.0065 + }, + { + "start": 24762.81, + "end": 24765.95, + "probability": 0.0966 + }, + { + "start": 24765.95, + "end": 24769.07, + "probability": 0.0459 + }, + { + "start": 24778.23, + "end": 24781.57, + "probability": 0.0853 + }, + { + "start": 24781.57, + "end": 24781.57, + "probability": 0.5775 + }, + { + "start": 24781.57, + "end": 24783.31, + "probability": 0.3119 + }, + { + "start": 24783.41, + "end": 24786.42, + "probability": 0.3443 + }, + { + "start": 24789.0, + "end": 24791.18, + "probability": 0.7558 + }, + { + "start": 24791.18, + "end": 24795.42, + "probability": 0.9404 + }, + { + "start": 24795.42, + "end": 24799.56, + "probability": 0.9824 + }, + { + "start": 24800.02, + "end": 24801.9, + "probability": 0.791 + }, + { + "start": 24801.96, + "end": 24802.38, + "probability": 0.3046 + }, + { + "start": 24802.46, + "end": 24803.66, + "probability": 0.5078 + }, + { + "start": 24803.8, + "end": 24806.7, + "probability": 0.918 + }, + { + "start": 24806.82, + "end": 24809.08, + "probability": 0.9967 + }, + { + "start": 24809.08, + "end": 24812.78, + "probability": 0.9921 + }, + { + "start": 24812.84, + "end": 24817.08, + "probability": 0.96 + }, + { + "start": 24817.14, + "end": 24819.36, + "probability": 0.9906 + }, + { + "start": 24819.6, + "end": 24820.76, + "probability": 0.6531 + }, + { + "start": 24820.84, + "end": 24822.98, + "probability": 0.8394 + }, + { + "start": 24823.38, + "end": 24827.64, + "probability": 0.9882 + }, + { + "start": 24828.1, + "end": 24830.38, + "probability": 0.9703 + }, + { + "start": 24830.56, + "end": 24834.38, + "probability": 0.9544 + }, + { + "start": 24834.6, + "end": 24836.82, + "probability": 0.9893 + }, + { + "start": 24837.34, + "end": 24839.56, + "probability": 0.9966 + }, + { + "start": 24839.56, + "end": 24843.34, + "probability": 0.9827 + }, + { + "start": 24844.0, + "end": 24846.8, + "probability": 0.8374 + }, + { + "start": 24846.8, + "end": 24851.2, + "probability": 0.9978 + }, + { + "start": 24851.2, + "end": 24855.48, + "probability": 0.9924 + }, + { + "start": 24856.26, + "end": 24859.86, + "probability": 0.9713 + }, + { + "start": 24859.94, + "end": 24863.4, + "probability": 0.8138 + }, + { + "start": 24864.46, + "end": 24865.18, + "probability": 0.7871 + }, + { + "start": 24865.36, + "end": 24865.94, + "probability": 0.9622 + }, + { + "start": 24866.1, + "end": 24869.7, + "probability": 0.96 + }, + { + "start": 24871.16, + "end": 24876.88, + "probability": 0.9698 + }, + { + "start": 24877.26, + "end": 24879.5, + "probability": 0.9977 + }, + { + "start": 24879.58, + "end": 24880.72, + "probability": 0.9683 + }, + { + "start": 24880.8, + "end": 24882.92, + "probability": 0.9025 + }, + { + "start": 24883.2, + "end": 24889.0, + "probability": 0.9383 + }, + { + "start": 24890.22, + "end": 24892.41, + "probability": 0.9833 + }, + { + "start": 24893.88, + "end": 24894.42, + "probability": 0.765 + }, + { + "start": 24894.62, + "end": 24896.98, + "probability": 0.9839 + }, + { + "start": 24896.98, + "end": 24902.1, + "probability": 0.9694 + }, + { + "start": 24902.9, + "end": 24905.97, + "probability": 0.9809 + }, + { + "start": 24907.1, + "end": 24910.4, + "probability": 0.993 + }, + { + "start": 24910.4, + "end": 24913.21, + "probability": 0.9995 + }, + { + "start": 24913.74, + "end": 24918.0, + "probability": 0.9927 + }, + { + "start": 24918.64, + "end": 24924.42, + "probability": 0.9934 + }, + { + "start": 24924.42, + "end": 24928.0, + "probability": 0.9964 + }, + { + "start": 24928.0, + "end": 24928.86, + "probability": 0.677 + }, + { + "start": 24928.94, + "end": 24930.06, + "probability": 0.992 + }, + { + "start": 24930.18, + "end": 24931.54, + "probability": 0.9976 + }, + { + "start": 24932.68, + "end": 24935.52, + "probability": 0.9374 + }, + { + "start": 24935.52, + "end": 24938.22, + "probability": 0.9948 + }, + { + "start": 24938.84, + "end": 24939.52, + "probability": 0.9085 + }, + { + "start": 24940.12, + "end": 24941.76, + "probability": 0.6377 + }, + { + "start": 24942.18, + "end": 24943.06, + "probability": 0.8987 + }, + { + "start": 24943.26, + "end": 24943.64, + "probability": 0.8458 + }, + { + "start": 24943.7, + "end": 24944.16, + "probability": 0.9365 + }, + { + "start": 24944.66, + "end": 24948.58, + "probability": 0.9986 + }, + { + "start": 24949.02, + "end": 24951.12, + "probability": 0.888 + }, + { + "start": 24951.82, + "end": 24953.66, + "probability": 0.7541 + }, + { + "start": 24953.74, + "end": 24954.88, + "probability": 0.9707 + }, + { + "start": 24955.06, + "end": 24959.08, + "probability": 0.997 + }, + { + "start": 24959.64, + "end": 24962.12, + "probability": 0.9995 + }, + { + "start": 24962.64, + "end": 24965.44, + "probability": 0.9933 + }, + { + "start": 24965.52, + "end": 24969.26, + "probability": 0.8114 + }, + { + "start": 24969.26, + "end": 24971.8, + "probability": 0.998 + }, + { + "start": 24972.36, + "end": 24976.26, + "probability": 0.9677 + }, + { + "start": 24976.42, + "end": 24976.62, + "probability": 0.6118 + }, + { + "start": 24978.44, + "end": 24979.04, + "probability": 0.5945 + }, + { + "start": 24979.84, + "end": 24983.12, + "probability": 0.7629 + }, + { + "start": 24984.74, + "end": 24985.62, + "probability": 0.8781 + }, + { + "start": 24986.44, + "end": 24987.52, + "probability": 0.9545 + }, + { + "start": 24987.58, + "end": 24988.02, + "probability": 0.4335 + }, + { + "start": 24988.2, + "end": 24991.84, + "probability": 0.8498 + }, + { + "start": 24993.2, + "end": 24995.74, + "probability": 0.1185 + }, + { + "start": 24996.36, + "end": 24997.3, + "probability": 0.1458 + }, + { + "start": 24997.56, + "end": 24997.56, + "probability": 0.2785 + }, + { + "start": 24997.56, + "end": 24997.56, + "probability": 0.7185 + }, + { + "start": 24997.56, + "end": 24998.02, + "probability": 0.4401 + }, + { + "start": 24998.14, + "end": 24999.26, + "probability": 0.9596 + }, + { + "start": 25001.3, + "end": 25003.03, + "probability": 0.8438 + }, + { + "start": 25005.6, + "end": 25010.18, + "probability": 0.6846 + }, + { + "start": 25010.46, + "end": 25010.58, + "probability": 0.4673 + }, + { + "start": 25021.06, + "end": 25021.32, + "probability": 0.1346 + }, + { + "start": 25025.42, + "end": 25027.78, + "probability": 0.9722 + }, + { + "start": 25032.04, + "end": 25034.38, + "probability": 0.8831 + }, + { + "start": 25034.66, + "end": 25037.56, + "probability": 0.7545 + }, + { + "start": 25037.74, + "end": 25038.84, + "probability": 0.8288 + }, + { + "start": 25038.92, + "end": 25039.54, + "probability": 0.8962 + }, + { + "start": 25040.13, + "end": 25042.32, + "probability": 0.9901 + }, + { + "start": 25043.34, + "end": 25048.42, + "probability": 0.9109 + }, + { + "start": 25049.4, + "end": 25052.98, + "probability": 0.9635 + }, + { + "start": 25053.72, + "end": 25058.92, + "probability": 0.9964 + }, + { + "start": 25060.02, + "end": 25062.5, + "probability": 0.9863 + }, + { + "start": 25062.5, + "end": 25065.88, + "probability": 0.8874 + }, + { + "start": 25066.42, + "end": 25069.46, + "probability": 0.9948 + }, + { + "start": 25070.88, + "end": 25073.1, + "probability": 0.9644 + }, + { + "start": 25074.18, + "end": 25076.92, + "probability": 0.9907 + }, + { + "start": 25076.92, + "end": 25080.66, + "probability": 0.9346 + }, + { + "start": 25082.04, + "end": 25085.06, + "probability": 0.9409 + }, + { + "start": 25086.54, + "end": 25088.22, + "probability": 0.9246 + }, + { + "start": 25089.0, + "end": 25092.2, + "probability": 0.9735 + }, + { + "start": 25092.94, + "end": 25096.34, + "probability": 0.8041 + }, + { + "start": 25097.7, + "end": 25098.12, + "probability": 0.7054 + }, + { + "start": 25098.22, + "end": 25098.64, + "probability": 0.816 + }, + { + "start": 25098.64, + "end": 25099.96, + "probability": 0.9893 + }, + { + "start": 25100.08, + "end": 25102.12, + "probability": 0.9978 + }, + { + "start": 25102.78, + "end": 25105.32, + "probability": 0.9526 + }, + { + "start": 25106.58, + "end": 25111.46, + "probability": 0.9932 + }, + { + "start": 25112.36, + "end": 25114.33, + "probability": 0.9822 + }, + { + "start": 25116.0, + "end": 25117.79, + "probability": 0.9972 + }, + { + "start": 25118.06, + "end": 25121.76, + "probability": 0.999 + }, + { + "start": 25123.08, + "end": 25123.82, + "probability": 0.9122 + }, + { + "start": 25124.66, + "end": 25126.26, + "probability": 0.9267 + }, + { + "start": 25126.32, + "end": 25127.46, + "probability": 0.9917 + }, + { + "start": 25127.56, + "end": 25131.58, + "probability": 0.9445 + }, + { + "start": 25133.16, + "end": 25137.08, + "probability": 0.9397 + }, + { + "start": 25137.76, + "end": 25139.14, + "probability": 0.8242 + }, + { + "start": 25139.88, + "end": 25142.14, + "probability": 0.8515 + }, + { + "start": 25142.96, + "end": 25146.32, + "probability": 0.9824 + }, + { + "start": 25146.4, + "end": 25146.47, + "probability": 0.1295 + }, + { + "start": 25147.18, + "end": 25148.06, + "probability": 0.4428 + }, + { + "start": 25148.52, + "end": 25153.98, + "probability": 0.9948 + }, + { + "start": 25155.14, + "end": 25157.42, + "probability": 0.509 + }, + { + "start": 25159.0, + "end": 25159.82, + "probability": 0.6277 + }, + { + "start": 25160.06, + "end": 25164.16, + "probability": 0.9873 + }, + { + "start": 25165.66, + "end": 25169.5, + "probability": 0.9867 + }, + { + "start": 25170.28, + "end": 25173.18, + "probability": 0.9219 + }, + { + "start": 25173.94, + "end": 25174.66, + "probability": 0.9272 + }, + { + "start": 25174.8, + "end": 25176.8, + "probability": 0.6382 + }, + { + "start": 25177.44, + "end": 25177.76, + "probability": 0.7758 + }, + { + "start": 25177.76, + "end": 25181.84, + "probability": 0.9765 + }, + { + "start": 25182.32, + "end": 25183.88, + "probability": 0.9749 + }, + { + "start": 25183.96, + "end": 25187.3, + "probability": 0.9578 + }, + { + "start": 25187.3, + "end": 25190.38, + "probability": 0.856 + }, + { + "start": 25191.26, + "end": 25191.94, + "probability": 0.747 + }, + { + "start": 25192.0, + "end": 25192.98, + "probability": 0.8242 + }, + { + "start": 25193.04, + "end": 25196.46, + "probability": 0.9887 + }, + { + "start": 25198.06, + "end": 25200.46, + "probability": 0.9897 + }, + { + "start": 25201.3, + "end": 25203.46, + "probability": 0.9983 + }, + { + "start": 25204.3, + "end": 25207.68, + "probability": 0.9939 + }, + { + "start": 25208.74, + "end": 25210.06, + "probability": 0.8478 + }, + { + "start": 25210.64, + "end": 25213.24, + "probability": 0.8973 + }, + { + "start": 25214.08, + "end": 25215.1, + "probability": 0.7358 + }, + { + "start": 25215.98, + "end": 25217.88, + "probability": 0.9443 + }, + { + "start": 25219.06, + "end": 25220.74, + "probability": 0.6985 + }, + { + "start": 25220.8, + "end": 25223.56, + "probability": 0.9586 + }, + { + "start": 25223.56, + "end": 25226.48, + "probability": 0.9719 + }, + { + "start": 25226.82, + "end": 25228.08, + "probability": 0.9864 + }, + { + "start": 25228.58, + "end": 25229.64, + "probability": 0.9727 + }, + { + "start": 25230.46, + "end": 25231.51, + "probability": 0.181 + }, + { + "start": 25231.98, + "end": 25233.54, + "probability": 0.0618 + }, + { + "start": 25234.52, + "end": 25236.97, + "probability": 0.018 + }, + { + "start": 25263.2, + "end": 25267.08, + "probability": 0.8008 + }, + { + "start": 25268.38, + "end": 25271.5, + "probability": 0.7699 + }, + { + "start": 25272.36, + "end": 25276.42, + "probability": 0.9956 + }, + { + "start": 25277.26, + "end": 25277.8, + "probability": 0.8399 + }, + { + "start": 25278.26, + "end": 25281.14, + "probability": 0.9893 + }, + { + "start": 25281.76, + "end": 25282.28, + "probability": 0.8462 + }, + { + "start": 25283.4, + "end": 25286.12, + "probability": 0.9978 + }, + { + "start": 25287.08, + "end": 25290.26, + "probability": 0.9109 + }, + { + "start": 25293.14, + "end": 25293.74, + "probability": 0.6178 + }, + { + "start": 25293.84, + "end": 25294.64, + "probability": 0.6354 + }, + { + "start": 25294.8, + "end": 25297.68, + "probability": 0.9734 + }, + { + "start": 25299.5, + "end": 25301.21, + "probability": 0.9956 + }, + { + "start": 25302.02, + "end": 25306.54, + "probability": 0.9163 + }, + { + "start": 25307.32, + "end": 25310.28, + "probability": 0.941 + }, + { + "start": 25311.0, + "end": 25312.05, + "probability": 0.9458 + }, + { + "start": 25313.14, + "end": 25313.7, + "probability": 0.738 + }, + { + "start": 25313.7, + "end": 25315.66, + "probability": 0.939 + }, + { + "start": 25316.9, + "end": 25319.52, + "probability": 0.9877 + }, + { + "start": 25320.12, + "end": 25326.78, + "probability": 0.998 + }, + { + "start": 25327.44, + "end": 25327.84, + "probability": 0.6372 + }, + { + "start": 25327.98, + "end": 25328.86, + "probability": 0.4218 + }, + { + "start": 25328.94, + "end": 25331.06, + "probability": 0.9907 + }, + { + "start": 25332.56, + "end": 25338.1, + "probability": 0.9786 + }, + { + "start": 25339.26, + "end": 25340.02, + "probability": 0.4771 + }, + { + "start": 25340.12, + "end": 25343.1, + "probability": 0.9404 + }, + { + "start": 25343.74, + "end": 25350.44, + "probability": 0.9517 + }, + { + "start": 25350.44, + "end": 25351.12, + "probability": 0.1099 + }, + { + "start": 25351.24, + "end": 25353.64, + "probability": 0.9863 + }, + { + "start": 25353.88, + "end": 25355.12, + "probability": 0.9673 + }, + { + "start": 25355.84, + "end": 25361.22, + "probability": 0.9132 + }, + { + "start": 25361.4, + "end": 25363.7, + "probability": 0.5378 + }, + { + "start": 25363.7, + "end": 25366.16, + "probability": 0.9177 + }, + { + "start": 25366.16, + "end": 25368.22, + "probability": 0.8718 + }, + { + "start": 25368.5, + "end": 25371.0, + "probability": 0.6655 + }, + { + "start": 25372.04, + "end": 25372.52, + "probability": 0.0925 + }, + { + "start": 25372.52, + "end": 25372.52, + "probability": 0.05 + }, + { + "start": 25372.52, + "end": 25372.72, + "probability": 0.4047 + }, + { + "start": 25372.84, + "end": 25374.02, + "probability": 0.949 + }, + { + "start": 25374.53, + "end": 25374.6, + "probability": 0.2574 + }, + { + "start": 25374.64, + "end": 25376.63, + "probability": 0.6135 + }, + { + "start": 25377.68, + "end": 25378.91, + "probability": 0.8672 + }, + { + "start": 25379.46, + "end": 25380.86, + "probability": 0.9106 + }, + { + "start": 25380.96, + "end": 25382.2, + "probability": 0.6908 + }, + { + "start": 25382.34, + "end": 25386.74, + "probability": 0.6818 + }, + { + "start": 25387.16, + "end": 25390.0, + "probability": 0.7742 + }, + { + "start": 25390.62, + "end": 25391.8, + "probability": 0.9233 + }, + { + "start": 25392.06, + "end": 25395.2, + "probability": 0.9878 + }, + { + "start": 25395.3, + "end": 25396.32, + "probability": 0.8977 + }, + { + "start": 25399.6, + "end": 25400.76, + "probability": 0.5284 + }, + { + "start": 25400.88, + "end": 25404.18, + "probability": 0.7242 + }, + { + "start": 25404.2, + "end": 25405.14, + "probability": 0.8025 + }, + { + "start": 25405.94, + "end": 25407.3, + "probability": 0.9377 + }, + { + "start": 25412.52, + "end": 25417.26, + "probability": 0.5291 + }, + { + "start": 25418.24, + "end": 25422.78, + "probability": 0.4443 + }, + { + "start": 25423.52, + "end": 25424.54, + "probability": 0.0286 + }, + { + "start": 25424.54, + "end": 25429.64, + "probability": 0.1494 + }, + { + "start": 25429.74, + "end": 25431.48, + "probability": 0.289 + }, + { + "start": 25431.56, + "end": 25436.88, + "probability": 0.8669 + }, + { + "start": 25437.14, + "end": 25439.26, + "probability": 0.7618 + }, + { + "start": 25441.96, + "end": 25444.46, + "probability": 0.9317 + }, + { + "start": 25444.86, + "end": 25445.54, + "probability": 0.7889 + }, + { + "start": 25445.68, + "end": 25447.3, + "probability": 0.3638 + }, + { + "start": 25447.66, + "end": 25448.58, + "probability": 0.5852 + }, + { + "start": 25448.72, + "end": 25450.32, + "probability": 0.6607 + }, + { + "start": 25450.52, + "end": 25452.06, + "probability": 0.5799 + }, + { + "start": 25453.12, + "end": 25454.4, + "probability": 0.9106 + }, + { + "start": 25454.48, + "end": 25467.1, + "probability": 0.9882 + }, + { + "start": 25469.16, + "end": 25471.24, + "probability": 0.9844 + }, + { + "start": 25474.42, + "end": 25475.94, + "probability": 0.7541 + }, + { + "start": 25477.24, + "end": 25479.74, + "probability": 0.9977 + }, + { + "start": 25481.5, + "end": 25484.39, + "probability": 0.9811 + }, + { + "start": 25485.92, + "end": 25488.46, + "probability": 0.9978 + }, + { + "start": 25489.9, + "end": 25490.4, + "probability": 0.4959 + }, + { + "start": 25490.48, + "end": 25496.8, + "probability": 0.9523 + }, + { + "start": 25499.48, + "end": 25503.58, + "probability": 0.8783 + }, + { + "start": 25505.0, + "end": 25509.48, + "probability": 0.95 + }, + { + "start": 25510.46, + "end": 25512.48, + "probability": 0.9928 + }, + { + "start": 25513.94, + "end": 25515.64, + "probability": 0.9963 + }, + { + "start": 25516.72, + "end": 25523.56, + "probability": 0.9918 + }, + { + "start": 25524.36, + "end": 25526.7, + "probability": 0.907 + }, + { + "start": 25527.31, + "end": 25531.02, + "probability": 0.9959 + }, + { + "start": 25532.14, + "end": 25533.66, + "probability": 0.841 + }, + { + "start": 25534.46, + "end": 25539.02, + "probability": 0.8787 + }, + { + "start": 25541.04, + "end": 25545.46, + "probability": 0.9946 + }, + { + "start": 25546.94, + "end": 25549.84, + "probability": 0.9137 + }, + { + "start": 25549.94, + "end": 25552.84, + "probability": 0.8326 + }, + { + "start": 25553.56, + "end": 25555.66, + "probability": 0.9517 + }, + { + "start": 25555.78, + "end": 25557.38, + "probability": 0.9604 + }, + { + "start": 25558.16, + "end": 25560.45, + "probability": 0.9951 + }, + { + "start": 25561.26, + "end": 25561.75, + "probability": 0.8794 + }, + { + "start": 25562.88, + "end": 25564.38, + "probability": 0.9287 + }, + { + "start": 25564.7, + "end": 25565.86, + "probability": 0.9171 + }, + { + "start": 25565.86, + "end": 25568.0, + "probability": 0.9363 + }, + { + "start": 25568.12, + "end": 25569.26, + "probability": 0.3323 + }, + { + "start": 25570.96, + "end": 25575.88, + "probability": 0.5965 + }, + { + "start": 25576.84, + "end": 25578.68, + "probability": 0.8605 + }, + { + "start": 25580.28, + "end": 25582.86, + "probability": 0.9734 + }, + { + "start": 25583.46, + "end": 25588.26, + "probability": 0.9954 + }, + { + "start": 25589.66, + "end": 25592.6, + "probability": 0.957 + }, + { + "start": 25593.44, + "end": 25596.32, + "probability": 0.9551 + }, + { + "start": 25596.44, + "end": 25598.56, + "probability": 0.7594 + }, + { + "start": 25599.08, + "end": 25601.06, + "probability": 0.8941 + }, + { + "start": 25601.26, + "end": 25601.61, + "probability": 0.5107 + }, + { + "start": 25602.6, + "end": 25605.0, + "probability": 0.9949 + }, + { + "start": 25605.22, + "end": 25606.84, + "probability": 0.9482 + }, + { + "start": 25608.28, + "end": 25610.74, + "probability": 0.6509 + }, + { + "start": 25611.72, + "end": 25613.16, + "probability": 0.6522 + }, + { + "start": 25614.08, + "end": 25614.7, + "probability": 0.5307 + }, + { + "start": 25614.78, + "end": 25618.98, + "probability": 0.991 + }, + { + "start": 25620.12, + "end": 25623.34, + "probability": 0.997 + }, + { + "start": 25623.96, + "end": 25627.58, + "probability": 0.9097 + }, + { + "start": 25627.7, + "end": 25628.04, + "probability": 0.5128 + }, + { + "start": 25628.22, + "end": 25628.98, + "probability": 0.5375 + }, + { + "start": 25629.04, + "end": 25630.58, + "probability": 0.919 + }, + { + "start": 25630.62, + "end": 25631.24, + "probability": 0.8021 + }, + { + "start": 25631.28, + "end": 25632.7, + "probability": 0.9617 + }, + { + "start": 25642.79, + "end": 25646.0, + "probability": 0.6777 + }, + { + "start": 25646.96, + "end": 25647.74, + "probability": 0.6773 + }, + { + "start": 25647.84, + "end": 25649.08, + "probability": 0.5787 + }, + { + "start": 25649.22, + "end": 25651.3, + "probability": 0.9955 + }, + { + "start": 25651.54, + "end": 25652.8, + "probability": 0.9741 + }, + { + "start": 25653.44, + "end": 25658.16, + "probability": 0.9598 + }, + { + "start": 25658.96, + "end": 25661.45, + "probability": 0.8396 + }, + { + "start": 25662.5, + "end": 25662.58, + "probability": 0.0019 + }, + { + "start": 25662.58, + "end": 25662.58, + "probability": 0.0727 + }, + { + "start": 25662.58, + "end": 25665.52, + "probability": 0.5146 + }, + { + "start": 25669.92, + "end": 25671.72, + "probability": 0.9951 + }, + { + "start": 25671.78, + "end": 25673.0, + "probability": 0.9958 + }, + { + "start": 25673.0, + "end": 25676.16, + "probability": 0.9628 + }, + { + "start": 25676.54, + "end": 25677.05, + "probability": 0.0348 + }, + { + "start": 25677.84, + "end": 25677.84, + "probability": 0.017 + }, + { + "start": 25677.84, + "end": 25677.84, + "probability": 0.6279 + }, + { + "start": 25677.84, + "end": 25679.06, + "probability": 0.7075 + }, + { + "start": 25679.18, + "end": 25680.48, + "probability": 0.6474 + }, + { + "start": 25680.48, + "end": 25681.4, + "probability": 0.832 + }, + { + "start": 25682.2, + "end": 25682.36, + "probability": 0.4258 + }, + { + "start": 25682.4, + "end": 25682.84, + "probability": 0.1146 + }, + { + "start": 25683.82, + "end": 25687.84, + "probability": 0.9589 + }, + { + "start": 25688.26, + "end": 25693.12, + "probability": 0.8195 + }, + { + "start": 25694.42, + "end": 25694.42, + "probability": 0.0096 + }, + { + "start": 25694.42, + "end": 25694.92, + "probability": 0.098 + }, + { + "start": 25694.92, + "end": 25696.54, + "probability": 0.5373 + }, + { + "start": 25697.05, + "end": 25698.44, + "probability": 0.8755 + }, + { + "start": 25698.54, + "end": 25699.89, + "probability": 0.6051 + }, + { + "start": 25700.3, + "end": 25703.5, + "probability": 0.9523 + }, + { + "start": 25703.5, + "end": 25705.42, + "probability": 0.9946 + }, + { + "start": 25705.52, + "end": 25707.84, + "probability": 0.9984 + }, + { + "start": 25710.64, + "end": 25711.62, + "probability": 0.8625 + }, + { + "start": 25711.64, + "end": 25712.1, + "probability": 0.0239 + }, + { + "start": 25712.1, + "end": 25712.56, + "probability": 0.1385 + }, + { + "start": 25712.62, + "end": 25716.3, + "probability": 0.501 + }, + { + "start": 25716.6, + "end": 25719.88, + "probability": 0.2113 + }, + { + "start": 25719.88, + "end": 25722.5, + "probability": 0.4917 + }, + { + "start": 25723.74, + "end": 25723.92, + "probability": 0.0084 + }, + { + "start": 25723.92, + "end": 25724.5, + "probability": 0.4488 + }, + { + "start": 25726.07, + "end": 25728.84, + "probability": 0.3849 + }, + { + "start": 25728.92, + "end": 25731.58, + "probability": 0.7999 + }, + { + "start": 25731.66, + "end": 25732.36, + "probability": 0.7762 + }, + { + "start": 25732.36, + "end": 25732.72, + "probability": 0.8936 + }, + { + "start": 25732.76, + "end": 25734.23, + "probability": 0.988 + }, + { + "start": 25735.11, + "end": 25735.83, + "probability": 0.5057 + }, + { + "start": 25735.91, + "end": 25737.83, + "probability": 0.8976 + }, + { + "start": 25738.35, + "end": 25739.37, + "probability": 0.6783 + }, + { + "start": 25739.45, + "end": 25740.71, + "probability": 0.0697 + }, + { + "start": 25741.01, + "end": 25742.63, + "probability": 0.3894 + }, + { + "start": 25743.09, + "end": 25743.27, + "probability": 0.2629 + }, + { + "start": 25743.27, + "end": 25743.27, + "probability": 0.2911 + }, + { + "start": 25743.27, + "end": 25744.49, + "probability": 0.9832 + }, + { + "start": 25744.57, + "end": 25745.31, + "probability": 0.7962 + }, + { + "start": 25745.31, + "end": 25746.81, + "probability": 0.9382 + }, + { + "start": 25746.85, + "end": 25749.05, + "probability": 0.81 + }, + { + "start": 25749.15, + "end": 25754.03, + "probability": 0.8204 + }, + { + "start": 25755.07, + "end": 25756.09, + "probability": 0.8753 + }, + { + "start": 25756.25, + "end": 25757.43, + "probability": 0.978 + }, + { + "start": 25757.49, + "end": 25759.05, + "probability": 0.9871 + }, + { + "start": 25759.47, + "end": 25761.26, + "probability": 0.9886 + }, + { + "start": 25761.69, + "end": 25764.61, + "probability": 0.941 + }, + { + "start": 25764.73, + "end": 25765.25, + "probability": 0.439 + }, + { + "start": 25765.65, + "end": 25768.79, + "probability": 0.7131 + }, + { + "start": 25769.25, + "end": 25770.39, + "probability": 0.9286 + }, + { + "start": 25770.43, + "end": 25771.59, + "probability": 0.853 + }, + { + "start": 25771.77, + "end": 25773.78, + "probability": 0.9312 + }, + { + "start": 25774.85, + "end": 25776.07, + "probability": 0.03 + }, + { + "start": 25776.07, + "end": 25779.49, + "probability": 0.558 + }, + { + "start": 25779.55, + "end": 25780.18, + "probability": 0.0881 + }, + { + "start": 25780.91, + "end": 25781.07, + "probability": 0.2096 + }, + { + "start": 25781.15, + "end": 25781.15, + "probability": 0.0291 + }, + { + "start": 25781.15, + "end": 25785.31, + "probability": 0.5344 + }, + { + "start": 25785.63, + "end": 25786.01, + "probability": 0.4979 + }, + { + "start": 25786.15, + "end": 25788.23, + "probability": 0.018 + }, + { + "start": 25789.0, + "end": 25789.21, + "probability": 0.0155 + }, + { + "start": 25789.75, + "end": 25789.85, + "probability": 0.0764 + }, + { + "start": 25789.85, + "end": 25789.85, + "probability": 0.1626 + }, + { + "start": 25789.85, + "end": 25793.35, + "probability": 0.6142 + }, + { + "start": 25793.39, + "end": 25794.47, + "probability": 0.4972 + }, + { + "start": 25794.47, + "end": 25795.85, + "probability": 0.8472 + }, + { + "start": 25796.29, + "end": 25797.05, + "probability": 0.0386 + }, + { + "start": 25798.01, + "end": 25798.15, + "probability": 0.12 + }, + { + "start": 25798.15, + "end": 25798.75, + "probability": 0.1699 + }, + { + "start": 25799.29, + "end": 25799.57, + "probability": 0.2162 + }, + { + "start": 25800.99, + "end": 25801.89, + "probability": 0.129 + }, + { + "start": 25802.95, + "end": 25803.21, + "probability": 0.238 + }, + { + "start": 25803.21, + "end": 25803.23, + "probability": 0.6526 + }, + { + "start": 25803.23, + "end": 25803.23, + "probability": 0.5193 + }, + { + "start": 25803.23, + "end": 25803.23, + "probability": 0.7173 + }, + { + "start": 25803.23, + "end": 25804.03, + "probability": 0.0781 + }, + { + "start": 25804.03, + "end": 25807.95, + "probability": 0.6781 + }, + { + "start": 25808.51, + "end": 25809.99, + "probability": 0.9424 + }, + { + "start": 25810.55, + "end": 25813.95, + "probability": 0.1622 + }, + { + "start": 25814.07, + "end": 25814.58, + "probability": 0.8506 + }, + { + "start": 25814.93, + "end": 25816.33, + "probability": 0.7684 + }, + { + "start": 25816.75, + "end": 25822.29, + "probability": 0.9927 + }, + { + "start": 25822.41, + "end": 25823.41, + "probability": 0.6964 + }, + { + "start": 25823.45, + "end": 25824.11, + "probability": 0.9613 + }, + { + "start": 25824.15, + "end": 25824.59, + "probability": 0.9261 + }, + { + "start": 25824.65, + "end": 25825.53, + "probability": 0.8589 + }, + { + "start": 25825.63, + "end": 25826.19, + "probability": 0.617 + }, + { + "start": 25826.55, + "end": 25828.57, + "probability": 0.9906 + }, + { + "start": 25828.69, + "end": 25830.73, + "probability": 0.705 + }, + { + "start": 25831.01, + "end": 25832.65, + "probability": 0.9245 + }, + { + "start": 25833.03, + "end": 25835.19, + "probability": 0.9372 + }, + { + "start": 25835.53, + "end": 25836.73, + "probability": 0.9082 + }, + { + "start": 25837.23, + "end": 25839.83, + "probability": 0.7705 + }, + { + "start": 25839.93, + "end": 25841.97, + "probability": 0.6377 + }, + { + "start": 25842.11, + "end": 25843.09, + "probability": 0.9026 + }, + { + "start": 25843.23, + "end": 25844.01, + "probability": 0.7278 + }, + { + "start": 25844.01, + "end": 25844.11, + "probability": 0.5137 + }, + { + "start": 25844.11, + "end": 25845.81, + "probability": 0.6427 + }, + { + "start": 25845.97, + "end": 25846.51, + "probability": 0.7186 + }, + { + "start": 25846.61, + "end": 25848.51, + "probability": 0.7798 + }, + { + "start": 25848.63, + "end": 25849.27, + "probability": 0.8015 + }, + { + "start": 25849.27, + "end": 25849.87, + "probability": 0.7523 + }, + { + "start": 25850.11, + "end": 25853.77, + "probability": 0.9302 + }, + { + "start": 25853.85, + "end": 25854.49, + "probability": 0.6354 + }, + { + "start": 25854.87, + "end": 25854.95, + "probability": 0.1077 + }, + { + "start": 25854.95, + "end": 25856.11, + "probability": 0.7505 + }, + { + "start": 25856.23, + "end": 25856.78, + "probability": 0.0017 + }, + { + "start": 25860.26, + "end": 25860.46, + "probability": 0.326 + }, + { + "start": 25860.46, + "end": 25860.46, + "probability": 0.1109 + }, + { + "start": 25860.46, + "end": 25860.46, + "probability": 0.0285 + }, + { + "start": 25860.46, + "end": 25860.46, + "probability": 0.0976 + }, + { + "start": 25860.46, + "end": 25863.2, + "probability": 0.7037 + }, + { + "start": 25863.5, + "end": 25864.64, + "probability": 0.3355 + }, + { + "start": 25864.84, + "end": 25870.64, + "probability": 0.7924 + }, + { + "start": 25870.84, + "end": 25873.32, + "probability": 0.6278 + }, + { + "start": 25873.32, + "end": 25875.44, + "probability": 0.2993 + }, + { + "start": 25875.58, + "end": 25876.1, + "probability": 0.7876 + }, + { + "start": 25876.82, + "end": 25878.32, + "probability": 0.041 + }, + { + "start": 25880.6, + "end": 25882.0, + "probability": 0.0201 + }, + { + "start": 25882.18, + "end": 25882.8, + "probability": 0.5041 + }, + { + "start": 25882.9, + "end": 25884.48, + "probability": 0.5755 + }, + { + "start": 25889.6, + "end": 25893.44, + "probability": 0.7327 + }, + { + "start": 25893.58, + "end": 25895.9, + "probability": 0.6771 + }, + { + "start": 25896.02, + "end": 25896.9, + "probability": 0.5583 + }, + { + "start": 25897.06, + "end": 25899.48, + "probability": 0.9984 + }, + { + "start": 25899.6, + "end": 25900.44, + "probability": 0.9771 + }, + { + "start": 25900.64, + "end": 25905.5, + "probability": 0.9957 + }, + { + "start": 25906.56, + "end": 25909.72, + "probability": 0.9791 + }, + { + "start": 25909.88, + "end": 25911.18, + "probability": 0.8787 + }, + { + "start": 25911.76, + "end": 25915.54, + "probability": 0.9825 + }, + { + "start": 25916.32, + "end": 25921.52, + "probability": 0.9707 + }, + { + "start": 25923.35, + "end": 25926.78, + "probability": 0.9828 + }, + { + "start": 25927.02, + "end": 25931.22, + "probability": 0.978 + }, + { + "start": 25932.38, + "end": 25935.46, + "probability": 0.992 + }, + { + "start": 25935.92, + "end": 25939.2, + "probability": 0.9925 + }, + { + "start": 25939.68, + "end": 25941.64, + "probability": 0.9932 + }, + { + "start": 25942.08, + "end": 25944.8, + "probability": 0.9966 + }, + { + "start": 25944.8, + "end": 25948.34, + "probability": 0.9976 + }, + { + "start": 25949.14, + "end": 25949.68, + "probability": 0.8293 + }, + { + "start": 25950.08, + "end": 25952.9, + "probability": 0.9378 + }, + { + "start": 25953.4, + "end": 25959.14, + "probability": 0.9941 + }, + { + "start": 25959.56, + "end": 25961.08, + "probability": 0.9755 + }, + { + "start": 25961.52, + "end": 25966.62, + "probability": 0.9709 + }, + { + "start": 25967.68, + "end": 25971.5, + "probability": 0.9775 + }, + { + "start": 25971.74, + "end": 25973.38, + "probability": 0.9995 + }, + { + "start": 25973.98, + "end": 25975.06, + "probability": 0.8857 + }, + { + "start": 25975.1, + "end": 25978.1, + "probability": 0.9141 + }, + { + "start": 25978.38, + "end": 25980.68, + "probability": 0.9448 + }, + { + "start": 25981.36, + "end": 25982.84, + "probability": 0.9495 + }, + { + "start": 25983.16, + "end": 25984.46, + "probability": 0.9468 + }, + { + "start": 25985.0, + "end": 25985.82, + "probability": 0.958 + }, + { + "start": 25986.06, + "end": 25987.82, + "probability": 0.9847 + }, + { + "start": 25988.08, + "end": 25988.9, + "probability": 0.7692 + }, + { + "start": 25989.28, + "end": 25990.76, + "probability": 0.909 + }, + { + "start": 25991.12, + "end": 25992.03, + "probability": 0.9568 + }, + { + "start": 25992.38, + "end": 25993.66, + "probability": 0.8124 + }, + { + "start": 25993.86, + "end": 25995.3, + "probability": 0.8705 + }, + { + "start": 25996.32, + "end": 25999.74, + "probability": 0.9083 + }, + { + "start": 25999.78, + "end": 26001.02, + "probability": 0.8642 + }, + { + "start": 26001.74, + "end": 26002.46, + "probability": 0.8628 + }, + { + "start": 26003.38, + "end": 26004.18, + "probability": 0.9764 + }, + { + "start": 26004.5, + "end": 26006.84, + "probability": 0.9877 + }, + { + "start": 26007.12, + "end": 26012.2, + "probability": 0.9897 + }, + { + "start": 26012.72, + "end": 26015.76, + "probability": 0.8348 + }, + { + "start": 26016.32, + "end": 26018.06, + "probability": 0.9307 + }, + { + "start": 26018.36, + "end": 26020.16, + "probability": 0.9673 + }, + { + "start": 26020.6, + "end": 26021.58, + "probability": 0.9399 + }, + { + "start": 26021.92, + "end": 26022.82, + "probability": 0.7663 + }, + { + "start": 26023.56, + "end": 26024.34, + "probability": 0.8645 + }, + { + "start": 26024.84, + "end": 26026.68, + "probability": 0.8772 + }, + { + "start": 26026.82, + "end": 26029.81, + "probability": 0.8326 + }, + { + "start": 26030.12, + "end": 26030.84, + "probability": 0.679 + }, + { + "start": 26031.1, + "end": 26031.98, + "probability": 0.6871 + }, + { + "start": 26032.48, + "end": 26033.48, + "probability": 0.8521 + }, + { + "start": 26033.84, + "end": 26034.94, + "probability": 0.9465 + }, + { + "start": 26035.02, + "end": 26037.16, + "probability": 0.8904 + }, + { + "start": 26037.7, + "end": 26039.32, + "probability": 0.9851 + }, + { + "start": 26039.72, + "end": 26041.24, + "probability": 0.894 + }, + { + "start": 26041.62, + "end": 26043.6, + "probability": 0.9917 + }, + { + "start": 26043.9, + "end": 26044.68, + "probability": 0.7399 + }, + { + "start": 26044.69, + "end": 26047.86, + "probability": 0.9674 + }, + { + "start": 26048.4, + "end": 26048.84, + "probability": 0.6293 + }, + { + "start": 26049.12, + "end": 26050.21, + "probability": 0.8324 + }, + { + "start": 26050.7, + "end": 26052.16, + "probability": 0.9656 + }, + { + "start": 26052.68, + "end": 26055.38, + "probability": 0.9934 + }, + { + "start": 26056.16, + "end": 26056.34, + "probability": 0.2794 + }, + { + "start": 26056.34, + "end": 26056.34, + "probability": 0.1152 + }, + { + "start": 26056.34, + "end": 26056.34, + "probability": 0.4187 + }, + { + "start": 26056.34, + "end": 26058.24, + "probability": 0.9203 + }, + { + "start": 26058.68, + "end": 26061.5, + "probability": 0.8018 + }, + { + "start": 26061.72, + "end": 26062.23, + "probability": 0.8311 + }, + { + "start": 26063.54, + "end": 26065.66, + "probability": 0.6169 + }, + { + "start": 26066.26, + "end": 26067.46, + "probability": 0.6849 + }, + { + "start": 26068.5, + "end": 26071.6, + "probability": 0.9884 + }, + { + "start": 26071.84, + "end": 26072.18, + "probability": 0.8916 + }, + { + "start": 26072.24, + "end": 26073.88, + "probability": 0.8816 + }, + { + "start": 26074.22, + "end": 26076.23, + "probability": 0.8889 + }, + { + "start": 26076.78, + "end": 26077.52, + "probability": 0.9916 + }, + { + "start": 26078.4, + "end": 26080.3, + "probability": 0.7626 + }, + { + "start": 26080.98, + "end": 26081.6, + "probability": 0.937 + }, + { + "start": 26081.68, + "end": 26082.8, + "probability": 0.1662 + }, + { + "start": 26083.92, + "end": 26083.98, + "probability": 0.6277 + }, + { + "start": 26083.98, + "end": 26087.96, + "probability": 0.9886 + }, + { + "start": 26088.96, + "end": 26089.06, + "probability": 0.3923 + }, + { + "start": 26089.58, + "end": 26091.42, + "probability": 0.9364 + }, + { + "start": 26091.5, + "end": 26092.74, + "probability": 0.9512 + }, + { + "start": 26092.78, + "end": 26093.06, + "probability": 0.8317 + }, + { + "start": 26093.44, + "end": 26093.98, + "probability": 0.507 + }, + { + "start": 26094.0, + "end": 26095.26, + "probability": 0.9556 + }, + { + "start": 26095.38, + "end": 26095.82, + "probability": 0.6593 + }, + { + "start": 26095.82, + "end": 26096.5, + "probability": 0.7059 + }, + { + "start": 26096.52, + "end": 26097.4, + "probability": 0.6253 + }, + { + "start": 26105.68, + "end": 26106.42, + "probability": 0.7241 + }, + { + "start": 26114.16, + "end": 26116.9, + "probability": 0.4028 + }, + { + "start": 26116.92, + "end": 26118.0, + "probability": 0.6432 + }, + { + "start": 26118.84, + "end": 26119.9, + "probability": 0.7812 + }, + { + "start": 26120.78, + "end": 26121.72, + "probability": 0.6997 + }, + { + "start": 26121.86, + "end": 26122.38, + "probability": 0.4933 + }, + { + "start": 26122.38, + "end": 26123.08, + "probability": 0.6377 + }, + { + "start": 26123.86, + "end": 26126.48, + "probability": 0.9793 + }, + { + "start": 26126.96, + "end": 26127.5, + "probability": 0.9465 + }, + { + "start": 26127.52, + "end": 26128.32, + "probability": 0.9639 + }, + { + "start": 26128.62, + "end": 26131.98, + "probability": 0.9823 + }, + { + "start": 26132.48, + "end": 26133.06, + "probability": 0.8752 + }, + { + "start": 26133.72, + "end": 26134.76, + "probability": 0.7888 + }, + { + "start": 26135.7, + "end": 26140.4, + "probability": 0.9853 + }, + { + "start": 26141.24, + "end": 26144.62, + "probability": 0.9354 + }, + { + "start": 26145.7, + "end": 26146.4, + "probability": 0.7335 + }, + { + "start": 26146.5, + "end": 26147.64, + "probability": 0.9871 + }, + { + "start": 26148.42, + "end": 26151.58, + "probability": 0.998 + }, + { + "start": 26151.58, + "end": 26154.38, + "probability": 0.98 + }, + { + "start": 26154.82, + "end": 26156.54, + "probability": 0.9662 + }, + { + "start": 26157.42, + "end": 26158.62, + "probability": 0.7583 + }, + { + "start": 26158.74, + "end": 26160.47, + "probability": 0.9768 + }, + { + "start": 26161.52, + "end": 26162.46, + "probability": 0.963 + }, + { + "start": 26162.5, + "end": 26165.64, + "probability": 0.9965 + }, + { + "start": 26166.04, + "end": 26169.75, + "probability": 0.9905 + }, + { + "start": 26170.78, + "end": 26172.3, + "probability": 0.9915 + }, + { + "start": 26173.22, + "end": 26174.54, + "probability": 0.9543 + }, + { + "start": 26175.42, + "end": 26179.56, + "probability": 0.9905 + }, + { + "start": 26180.16, + "end": 26181.08, + "probability": 0.9932 + }, + { + "start": 26181.4, + "end": 26183.34, + "probability": 0.9609 + }, + { + "start": 26184.02, + "end": 26187.14, + "probability": 0.9884 + }, + { + "start": 26187.62, + "end": 26191.4, + "probability": 0.9849 + }, + { + "start": 26191.98, + "end": 26192.96, + "probability": 0.999 + }, + { + "start": 26194.3, + "end": 26198.26, + "probability": 0.9943 + }, + { + "start": 26198.3, + "end": 26200.84, + "probability": 0.9931 + }, + { + "start": 26200.98, + "end": 26202.36, + "probability": 0.9811 + }, + { + "start": 26202.88, + "end": 26203.86, + "probability": 0.9798 + }, + { + "start": 26204.34, + "end": 26210.22, + "probability": 0.9856 + }, + { + "start": 26210.7, + "end": 26216.06, + "probability": 0.9988 + }, + { + "start": 26216.06, + "end": 26220.38, + "probability": 0.9989 + }, + { + "start": 26220.62, + "end": 26224.8, + "probability": 0.6628 + }, + { + "start": 26224.86, + "end": 26226.12, + "probability": 0.8575 + }, + { + "start": 26226.52, + "end": 26228.14, + "probability": 0.9993 + }, + { + "start": 26228.82, + "end": 26232.42, + "probability": 0.7265 + }, + { + "start": 26233.0, + "end": 26237.58, + "probability": 0.9961 + }, + { + "start": 26237.58, + "end": 26244.14, + "probability": 0.9897 + }, + { + "start": 26244.14, + "end": 26249.24, + "probability": 0.9976 + }, + { + "start": 26250.44, + "end": 26254.42, + "probability": 0.9985 + }, + { + "start": 26254.52, + "end": 26255.18, + "probability": 0.5665 + }, + { + "start": 26255.26, + "end": 26256.0, + "probability": 0.871 + }, + { + "start": 26256.26, + "end": 26258.54, + "probability": 0.9988 + }, + { + "start": 26258.98, + "end": 26263.18, + "probability": 0.9763 + }, + { + "start": 26263.18, + "end": 26268.08, + "probability": 0.9834 + }, + { + "start": 26268.42, + "end": 26273.72, + "probability": 0.9932 + }, + { + "start": 26274.36, + "end": 26278.7, + "probability": 0.9972 + }, + { + "start": 26279.12, + "end": 26287.26, + "probability": 0.9961 + }, + { + "start": 26287.58, + "end": 26288.66, + "probability": 0.8728 + }, + { + "start": 26289.04, + "end": 26289.58, + "probability": 0.988 + }, + { + "start": 26290.18, + "end": 26290.68, + "probability": 0.7258 + }, + { + "start": 26290.84, + "end": 26292.02, + "probability": 0.889 + }, + { + "start": 26292.58, + "end": 26294.1, + "probability": 0.9392 + }, + { + "start": 26295.28, + "end": 26300.52, + "probability": 0.9973 + }, + { + "start": 26300.7, + "end": 26301.16, + "probability": 0.757 + }, + { + "start": 26301.34, + "end": 26302.02, + "probability": 0.4869 + }, + { + "start": 26302.04, + "end": 26303.96, + "probability": 0.791 + }, + { + "start": 26305.36, + "end": 26309.52, + "probability": 0.6971 + }, + { + "start": 26311.44, + "end": 26314.14, + "probability": 0.9534 + }, + { + "start": 26316.16, + "end": 26318.84, + "probability": 0.7723 + }, + { + "start": 26320.16, + "end": 26323.9, + "probability": 0.952 + }, + { + "start": 26324.7, + "end": 26326.18, + "probability": 0.9745 + }, + { + "start": 26329.22, + "end": 26332.58, + "probability": 0.9733 + }, + { + "start": 26333.18, + "end": 26337.72, + "probability": 0.8657 + }, + { + "start": 26339.36, + "end": 26341.68, + "probability": 0.9285 + }, + { + "start": 26343.44, + "end": 26344.46, + "probability": 0.8829 + }, + { + "start": 26350.98, + "end": 26352.02, + "probability": 0.746 + }, + { + "start": 26359.44, + "end": 26362.32, + "probability": 0.835 + }, + { + "start": 26363.74, + "end": 26365.06, + "probability": 0.9224 + }, + { + "start": 26365.72, + "end": 26366.3, + "probability": 0.4756 + }, + { + "start": 26366.82, + "end": 26369.02, + "probability": 0.9493 + }, + { + "start": 26369.66, + "end": 26372.26, + "probability": 0.9541 + }, + { + "start": 26372.34, + "end": 26373.24, + "probability": 0.8902 + }, + { + "start": 26373.34, + "end": 26374.4, + "probability": 0.4268 + }, + { + "start": 26376.4, + "end": 26378.2, + "probability": 0.2663 + }, + { + "start": 26379.22, + "end": 26381.38, + "probability": 0.8184 + }, + { + "start": 26381.46, + "end": 26383.32, + "probability": 0.7549 + }, + { + "start": 26383.42, + "end": 26384.38, + "probability": 0.0072 + }, + { + "start": 26384.9, + "end": 26387.04, + "probability": 0.376 + }, + { + "start": 26387.22, + "end": 26389.36, + "probability": 0.5409 + }, + { + "start": 26389.36, + "end": 26392.82, + "probability": 0.5657 + }, + { + "start": 26393.36, + "end": 26395.44, + "probability": 0.6509 + }, + { + "start": 26395.76, + "end": 26398.1, + "probability": 0.7718 + }, + { + "start": 26399.12, + "end": 26401.5, + "probability": 0.9372 + }, + { + "start": 26401.6, + "end": 26402.96, + "probability": 0.7153 + }, + { + "start": 26404.65, + "end": 26409.18, + "probability": 0.1205 + }, + { + "start": 26409.3, + "end": 26411.62, + "probability": 0.4461 + }, + { + "start": 26412.26, + "end": 26416.0, + "probability": 0.7529 + }, + { + "start": 26416.78, + "end": 26421.74, + "probability": 0.994 + }, + { + "start": 26421.9, + "end": 26424.02, + "probability": 0.9344 + }, + { + "start": 26424.16, + "end": 26425.48, + "probability": 0.7212 + }, + { + "start": 26426.23, + "end": 26431.41, + "probability": 0.959 + }, + { + "start": 26433.7, + "end": 26436.92, + "probability": 0.6553 + }, + { + "start": 26437.6, + "end": 26438.96, + "probability": 0.7964 + }, + { + "start": 26440.89, + "end": 26443.32, + "probability": 0.7689 + }, + { + "start": 26443.46, + "end": 26445.66, + "probability": 0.6912 + }, + { + "start": 26445.72, + "end": 26446.92, + "probability": 0.956 + }, + { + "start": 26447.8, + "end": 26452.76, + "probability": 0.916 + }, + { + "start": 26453.52, + "end": 26456.66, + "probability": 0.8302 + }, + { + "start": 26457.32, + "end": 26462.24, + "probability": 0.862 + }, + { + "start": 26462.96, + "end": 26465.94, + "probability": 0.8599 + }, + { + "start": 26467.54, + "end": 26470.26, + "probability": 0.8016 + }, + { + "start": 26470.46, + "end": 26472.84, + "probability": 0.9838 + }, + { + "start": 26474.24, + "end": 26479.66, + "probability": 0.9642 + }, + { + "start": 26479.82, + "end": 26482.06, + "probability": 0.8114 + }, + { + "start": 26482.84, + "end": 26484.1, + "probability": 0.9383 + }, + { + "start": 26484.68, + "end": 26485.1, + "probability": 0.6927 + }, + { + "start": 26485.74, + "end": 26488.79, + "probability": 0.9978 + }, + { + "start": 26490.78, + "end": 26492.6, + "probability": 0.8749 + }, + { + "start": 26493.94, + "end": 26495.36, + "probability": 0.9036 + }, + { + "start": 26496.72, + "end": 26498.02, + "probability": 0.9017 + }, + { + "start": 26498.38, + "end": 26500.28, + "probability": 0.9956 + }, + { + "start": 26500.36, + "end": 26502.72, + "probability": 0.7586 + }, + { + "start": 26503.32, + "end": 26506.16, + "probability": 0.795 + }, + { + "start": 26507.72, + "end": 26509.4, + "probability": 0.9976 + }, + { + "start": 26510.74, + "end": 26514.28, + "probability": 0.9682 + }, + { + "start": 26515.28, + "end": 26519.42, + "probability": 0.895 + }, + { + "start": 26520.78, + "end": 26524.24, + "probability": 0.9872 + }, + { + "start": 26524.36, + "end": 26525.16, + "probability": 0.5031 + }, + { + "start": 26526.1, + "end": 26528.74, + "probability": 0.7892 + }, + { + "start": 26529.26, + "end": 26531.42, + "probability": 0.7683 + }, + { + "start": 26532.88, + "end": 26537.04, + "probability": 0.588 + }, + { + "start": 26538.3, + "end": 26540.08, + "probability": 0.9908 + }, + { + "start": 26540.16, + "end": 26541.9, + "probability": 0.7163 + }, + { + "start": 26542.02, + "end": 26543.18, + "probability": 0.682 + }, + { + "start": 26544.36, + "end": 26544.82, + "probability": 0.934 + }, + { + "start": 26545.34, + "end": 26549.88, + "probability": 0.54 + }, + { + "start": 26550.68, + "end": 26555.08, + "probability": 0.9304 + }, + { + "start": 26556.08, + "end": 26559.04, + "probability": 0.753 + }, + { + "start": 26560.06, + "end": 26561.28, + "probability": 0.7759 + }, + { + "start": 26562.62, + "end": 26566.04, + "probability": 0.8184 + }, + { + "start": 26568.62, + "end": 26569.94, + "probability": 0.8108 + }, + { + "start": 26570.14, + "end": 26574.5, + "probability": 0.7574 + }, + { + "start": 26574.58, + "end": 26576.2, + "probability": 0.9575 + }, + { + "start": 26576.3, + "end": 26576.9, + "probability": 0.4942 + }, + { + "start": 26577.04, + "end": 26578.04, + "probability": 0.5314 + }, + { + "start": 26578.08, + "end": 26578.52, + "probability": 0.9835 + }, + { + "start": 26580.92, + "end": 26585.71, + "probability": 0.9513 + }, + { + "start": 26586.34, + "end": 26588.26, + "probability": 0.752 + }, + { + "start": 26588.98, + "end": 26589.57, + "probability": 0.8877 + }, + { + "start": 26589.96, + "end": 26591.38, + "probability": 0.974 + }, + { + "start": 26591.54, + "end": 26592.9, + "probability": 0.9604 + }, + { + "start": 26593.62, + "end": 26594.95, + "probability": 0.9878 + }, + { + "start": 26595.88, + "end": 26597.7, + "probability": 0.9877 + }, + { + "start": 26597.76, + "end": 26599.84, + "probability": 0.9759 + }, + { + "start": 26601.1, + "end": 26604.44, + "probability": 0.953 + }, + { + "start": 26605.32, + "end": 26607.4, + "probability": 0.9423 + }, + { + "start": 26607.54, + "end": 26610.98, + "probability": 0.9834 + }, + { + "start": 26611.88, + "end": 26615.66, + "probability": 0.8945 + }, + { + "start": 26615.82, + "end": 26618.54, + "probability": 0.8151 + }, + { + "start": 26619.24, + "end": 26620.7, + "probability": 0.7209 + }, + { + "start": 26620.8, + "end": 26622.72, + "probability": 0.9972 + }, + { + "start": 26623.38, + "end": 26626.12, + "probability": 0.9941 + }, + { + "start": 26626.28, + "end": 26627.12, + "probability": 0.9411 + }, + { + "start": 26627.3, + "end": 26630.8, + "probability": 0.931 + }, + { + "start": 26632.78, + "end": 26635.26, + "probability": 0.9677 + }, + { + "start": 26635.34, + "end": 26638.98, + "probability": 0.9924 + }, + { + "start": 26639.66, + "end": 26641.96, + "probability": 0.9622 + }, + { + "start": 26642.12, + "end": 26642.76, + "probability": 0.6924 + }, + { + "start": 26643.76, + "end": 26644.72, + "probability": 0.983 + }, + { + "start": 26645.04, + "end": 26645.14, + "probability": 0.6458 + }, + { + "start": 26645.66, + "end": 26647.28, + "probability": 0.7271 + }, + { + "start": 26647.94, + "end": 26652.32, + "probability": 0.985 + }, + { + "start": 26652.94, + "end": 26655.84, + "probability": 0.9155 + }, + { + "start": 26656.5, + "end": 26659.82, + "probability": 0.9727 + }, + { + "start": 26660.48, + "end": 26663.02, + "probability": 0.9969 + }, + { + "start": 26663.1, + "end": 26664.02, + "probability": 0.5041 + }, + { + "start": 26664.24, + "end": 26665.28, + "probability": 0.9651 + }, + { + "start": 26665.34, + "end": 26668.36, + "probability": 0.9971 + }, + { + "start": 26668.44, + "end": 26669.68, + "probability": 0.9858 + }, + { + "start": 26670.34, + "end": 26672.36, + "probability": 0.9782 + }, + { + "start": 26673.1, + "end": 26674.76, + "probability": 0.9984 + }, + { + "start": 26675.56, + "end": 26677.7, + "probability": 0.9941 + }, + { + "start": 26677.8, + "end": 26679.78, + "probability": 0.8312 + }, + { + "start": 26680.48, + "end": 26683.36, + "probability": 0.9875 + }, + { + "start": 26684.74, + "end": 26688.22, + "probability": 0.6821 + }, + { + "start": 26688.92, + "end": 26692.16, + "probability": 0.9639 + }, + { + "start": 26692.7, + "end": 26696.68, + "probability": 0.9641 + }, + { + "start": 26697.58, + "end": 26700.8, + "probability": 0.9845 + }, + { + "start": 26701.66, + "end": 26703.92, + "probability": 0.8085 + }, + { + "start": 26704.84, + "end": 26707.8, + "probability": 0.8921 + }, + { + "start": 26707.98, + "end": 26708.84, + "probability": 0.8652 + }, + { + "start": 26708.86, + "end": 26709.5, + "probability": 0.8768 + }, + { + "start": 26709.52, + "end": 26710.9, + "probability": 0.8973 + }, + { + "start": 26711.38, + "end": 26713.42, + "probability": 0.91 + }, + { + "start": 26713.42, + "end": 26714.47, + "probability": 0.9578 + }, + { + "start": 26715.3, + "end": 26715.84, + "probability": 0.4628 + }, + { + "start": 26715.9, + "end": 26716.36, + "probability": 0.8809 + }, + { + "start": 26716.58, + "end": 26719.74, + "probability": 0.9199 + }, + { + "start": 26719.9, + "end": 26721.26, + "probability": 0.9783 + }, + { + "start": 26722.08, + "end": 26723.34, + "probability": 0.7309 + }, + { + "start": 26723.96, + "end": 26725.88, + "probability": 0.9771 + }, + { + "start": 26726.44, + "end": 26726.66, + "probability": 0.8691 + }, + { + "start": 26727.22, + "end": 26727.52, + "probability": 0.2179 + }, + { + "start": 26727.52, + "end": 26728.29, + "probability": 0.7608 + }, + { + "start": 26728.9, + "end": 26732.8, + "probability": 0.9207 + }, + { + "start": 26733.46, + "end": 26736.44, + "probability": 0.9551 + }, + { + "start": 26737.04, + "end": 26738.26, + "probability": 0.8407 + }, + { + "start": 26738.44, + "end": 26738.82, + "probability": 0.7364 + }, + { + "start": 26738.98, + "end": 26740.62, + "probability": 0.9225 + }, + { + "start": 26740.7, + "end": 26742.26, + "probability": 0.9613 + }, + { + "start": 26742.9, + "end": 26745.5, + "probability": 0.8982 + }, + { + "start": 26746.0, + "end": 26747.84, + "probability": 0.9904 + }, + { + "start": 26748.9, + "end": 26750.08, + "probability": 0.9703 + }, + { + "start": 26750.24, + "end": 26751.78, + "probability": 0.5946 + }, + { + "start": 26751.78, + "end": 26754.54, + "probability": 0.6826 + }, + { + "start": 26754.54, + "end": 26756.98, + "probability": 0.9574 + }, + { + "start": 26756.98, + "end": 26757.64, + "probability": 0.8828 + }, + { + "start": 26758.32, + "end": 26761.48, + "probability": 0.7743 + }, + { + "start": 26761.6, + "end": 26762.08, + "probability": 0.5325 + }, + { + "start": 26762.78, + "end": 26763.84, + "probability": 0.9832 + }, + { + "start": 26763.94, + "end": 26764.4, + "probability": 0.9711 + }, + { + "start": 26764.54, + "end": 26764.96, + "probability": 0.9859 + }, + { + "start": 26765.06, + "end": 26765.64, + "probability": 0.8923 + }, + { + "start": 26765.72, + "end": 26766.77, + "probability": 0.9869 + }, + { + "start": 26767.42, + "end": 26768.88, + "probability": 0.909 + }, + { + "start": 26769.4, + "end": 26772.76, + "probability": 0.988 + }, + { + "start": 26773.62, + "end": 26775.06, + "probability": 0.9713 + }, + { + "start": 26775.76, + "end": 26777.32, + "probability": 0.6426 + }, + { + "start": 26779.62, + "end": 26783.0, + "probability": 0.9528 + }, + { + "start": 26783.1, + "end": 26784.32, + "probability": 0.8619 + }, + { + "start": 26784.42, + "end": 26788.76, + "probability": 0.8903 + }, + { + "start": 26789.58, + "end": 26791.12, + "probability": 0.9898 + }, + { + "start": 26792.38, + "end": 26794.98, + "probability": 0.7322 + }, + { + "start": 26795.08, + "end": 26796.71, + "probability": 0.9276 + }, + { + "start": 26797.56, + "end": 26798.62, + "probability": 0.9471 + }, + { + "start": 26807.06, + "end": 26809.56, + "probability": 0.9516 + }, + { + "start": 26809.76, + "end": 26810.14, + "probability": 0.6822 + }, + { + "start": 26810.22, + "end": 26810.62, + "probability": 0.6031 + }, + { + "start": 26810.72, + "end": 26812.82, + "probability": 0.813 + }, + { + "start": 26813.62, + "end": 26816.54, + "probability": 0.9926 + }, + { + "start": 26817.24, + "end": 26819.06, + "probability": 0.8741 + }, + { + "start": 26820.5, + "end": 26822.43, + "probability": 0.8145 + }, + { + "start": 26822.56, + "end": 26824.04, + "probability": 0.9322 + }, + { + "start": 26824.58, + "end": 26825.66, + "probability": 0.8016 + }, + { + "start": 26826.2, + "end": 26828.38, + "probability": 0.9803 + }, + { + "start": 26828.58, + "end": 26828.98, + "probability": 0.8502 + }, + { + "start": 26829.02, + "end": 26829.46, + "probability": 0.9797 + }, + { + "start": 26829.58, + "end": 26831.88, + "probability": 0.8089 + }, + { + "start": 26831.92, + "end": 26836.34, + "probability": 0.9982 + }, + { + "start": 26837.02, + "end": 26839.32, + "probability": 0.8904 + }, + { + "start": 26839.44, + "end": 26840.46, + "probability": 0.9229 + }, + { + "start": 26841.16, + "end": 26841.82, + "probability": 0.6396 + }, + { + "start": 26841.86, + "end": 26843.6, + "probability": 0.9764 + }, + { + "start": 26843.7, + "end": 26846.16, + "probability": 0.9154 + }, + { + "start": 26846.72, + "end": 26850.26, + "probability": 0.9844 + }, + { + "start": 26850.88, + "end": 26854.06, + "probability": 0.9854 + }, + { + "start": 26854.66, + "end": 26857.22, + "probability": 0.968 + }, + { + "start": 26858.0, + "end": 26862.0, + "probability": 0.9916 + }, + { + "start": 26863.76, + "end": 26865.5, + "probability": 0.8594 + }, + { + "start": 26866.94, + "end": 26871.0, + "probability": 0.9072 + }, + { + "start": 26871.96, + "end": 26875.38, + "probability": 0.962 + }, + { + "start": 26876.04, + "end": 26878.06, + "probability": 0.968 + }, + { + "start": 26878.16, + "end": 26878.48, + "probability": 0.4931 + }, + { + "start": 26878.72, + "end": 26880.7, + "probability": 0.8391 + }, + { + "start": 26880.8, + "end": 26881.54, + "probability": 0.417 + }, + { + "start": 26881.6, + "end": 26884.52, + "probability": 0.9814 + }, + { + "start": 26885.18, + "end": 26887.38, + "probability": 0.8262 + }, + { + "start": 26888.24, + "end": 26889.06, + "probability": 0.9869 + }, + { + "start": 26889.2, + "end": 26890.04, + "probability": 0.9564 + }, + { + "start": 26890.18, + "end": 26893.26, + "probability": 0.99 + }, + { + "start": 26893.46, + "end": 26894.13, + "probability": 0.9558 + }, + { + "start": 26894.8, + "end": 26896.28, + "probability": 0.7088 + }, + { + "start": 26897.04, + "end": 26900.92, + "probability": 0.9642 + }, + { + "start": 26900.96, + "end": 26903.5, + "probability": 0.9667 + }, + { + "start": 26903.88, + "end": 26905.04, + "probability": 0.5833 + }, + { + "start": 26905.7, + "end": 26906.1, + "probability": 0.6634 + }, + { + "start": 26907.16, + "end": 26911.34, + "probability": 0.9316 + }, + { + "start": 26911.42, + "end": 26913.84, + "probability": 0.1179 + }, + { + "start": 26913.84, + "end": 26914.34, + "probability": 0.4471 + }, + { + "start": 26914.34, + "end": 26917.48, + "probability": 0.6696 + }, + { + "start": 26918.06, + "end": 26919.96, + "probability": 0.8777 + }, + { + "start": 26920.56, + "end": 26923.04, + "probability": 0.5246 + }, + { + "start": 26924.26, + "end": 26924.78, + "probability": 0.6631 + }, + { + "start": 26925.26, + "end": 26926.9, + "probability": 0.8806 + }, + { + "start": 26928.89, + "end": 26930.96, + "probability": 0.1955 + }, + { + "start": 26930.96, + "end": 26932.5, + "probability": 0.2756 + }, + { + "start": 26932.74, + "end": 26933.08, + "probability": 0.4129 + }, + { + "start": 26933.88, + "end": 26934.3, + "probability": 0.9513 + }, + { + "start": 26937.74, + "end": 26938.78, + "probability": 0.8693 + }, + { + "start": 26944.64, + "end": 26946.22, + "probability": 0.1081 + }, + { + "start": 26946.3, + "end": 26946.94, + "probability": 0.2569 + }, + { + "start": 26947.08, + "end": 26949.42, + "probability": 0.3578 + }, + { + "start": 26949.46, + "end": 26949.74, + "probability": 0.8937 + }, + { + "start": 26949.8, + "end": 26952.54, + "probability": 0.8783 + }, + { + "start": 26954.0, + "end": 26962.94, + "probability": 0.993 + }, + { + "start": 26964.94, + "end": 26969.98, + "probability": 0.9957 + }, + { + "start": 26970.84, + "end": 26972.84, + "probability": 0.6324 + }, + { + "start": 26973.86, + "end": 26976.96, + "probability": 0.9956 + }, + { + "start": 26976.96, + "end": 26981.7, + "probability": 0.9789 + }, + { + "start": 26981.7, + "end": 26987.16, + "probability": 0.9741 + }, + { + "start": 26987.64, + "end": 26989.1, + "probability": 0.6877 + }, + { + "start": 26989.78, + "end": 26990.9, + "probability": 0.6156 + }, + { + "start": 26991.64, + "end": 26994.6, + "probability": 0.8657 + }, + { + "start": 26995.96, + "end": 26996.94, + "probability": 0.949 + }, + { + "start": 26997.36, + "end": 27001.78, + "probability": 0.9909 + }, + { + "start": 27002.74, + "end": 27005.7, + "probability": 0.7503 + }, + { + "start": 27006.4, + "end": 27012.92, + "probability": 0.9479 + }, + { + "start": 27013.36, + "end": 27015.32, + "probability": 0.8674 + }, + { + "start": 27016.26, + "end": 27017.62, + "probability": 0.8622 + }, + { + "start": 27018.42, + "end": 27018.86, + "probability": 0.8916 + }, + { + "start": 27019.98, + "end": 27022.5, + "probability": 0.9983 + }, + { + "start": 27022.72, + "end": 27023.92, + "probability": 0.3416 + }, + { + "start": 27024.66, + "end": 27025.96, + "probability": 0.7788 + }, + { + "start": 27026.32, + "end": 27026.52, + "probability": 0.7429 + }, + { + "start": 27028.06, + "end": 27032.86, + "probability": 0.872 + }, + { + "start": 27033.96, + "end": 27038.88, + "probability": 0.9698 + }, + { + "start": 27040.34, + "end": 27046.6, + "probability": 0.8395 + }, + { + "start": 27048.74, + "end": 27053.32, + "probability": 0.9881 + }, + { + "start": 27053.94, + "end": 27054.82, + "probability": 0.9127 + }, + { + "start": 27055.36, + "end": 27061.34, + "probability": 0.9705 + }, + { + "start": 27061.48, + "end": 27064.22, + "probability": 0.8577 + }, + { + "start": 27064.36, + "end": 27065.52, + "probability": 0.9551 + }, + { + "start": 27066.24, + "end": 27069.14, + "probability": 0.8691 + }, + { + "start": 27069.96, + "end": 27075.48, + "probability": 0.8469 + }, + { + "start": 27075.48, + "end": 27083.82, + "probability": 0.9889 + }, + { + "start": 27083.96, + "end": 27085.18, + "probability": 0.9966 + }, + { + "start": 27085.68, + "end": 27088.7, + "probability": 0.998 + }, + { + "start": 27088.7, + "end": 27092.14, + "probability": 0.9425 + }, + { + "start": 27093.14, + "end": 27093.34, + "probability": 0.5155 + }, + { + "start": 27093.38, + "end": 27094.28, + "probability": 0.1141 + }, + { + "start": 27094.4, + "end": 27094.4, + "probability": 0.1277 + }, + { + "start": 27094.4, + "end": 27099.14, + "probability": 0.7441 + }, + { + "start": 27099.78, + "end": 27105.36, + "probability": 0.9757 + }, + { + "start": 27105.82, + "end": 27105.96, + "probability": 0.87 + }, + { + "start": 27107.58, + "end": 27108.34, + "probability": 0.5482 + }, + { + "start": 27108.34, + "end": 27109.74, + "probability": 0.4606 + }, + { + "start": 27110.26, + "end": 27112.52, + "probability": 0.6646 + }, + { + "start": 27113.52, + "end": 27114.18, + "probability": 0.671 + }, + { + "start": 27114.18, + "end": 27115.76, + "probability": 0.9292 + }, + { + "start": 27117.94, + "end": 27120.18, + "probability": 0.9795 + }, + { + "start": 27134.14, + "end": 27134.42, + "probability": 0.8101 + }, + { + "start": 27135.32, + "end": 27136.47, + "probability": 0.7155 + }, + { + "start": 27137.78, + "end": 27141.9, + "probability": 0.819 + }, + { + "start": 27144.66, + "end": 27150.7, + "probability": 0.9615 + }, + { + "start": 27151.46, + "end": 27152.28, + "probability": 0.5424 + }, + { + "start": 27152.52, + "end": 27159.7, + "probability": 0.998 + }, + { + "start": 27160.74, + "end": 27165.76, + "probability": 0.8873 + }, + { + "start": 27166.82, + "end": 27172.58, + "probability": 0.9988 + }, + { + "start": 27173.58, + "end": 27178.16, + "probability": 0.998 + }, + { + "start": 27179.5, + "end": 27182.12, + "probability": 0.9991 + }, + { + "start": 27182.7, + "end": 27183.26, + "probability": 0.5637 + }, + { + "start": 27183.96, + "end": 27187.24, + "probability": 0.961 + }, + { + "start": 27188.26, + "end": 27192.12, + "probability": 0.991 + }, + { + "start": 27192.74, + "end": 27194.0, + "probability": 0.9966 + }, + { + "start": 27194.92, + "end": 27196.04, + "probability": 0.999 + }, + { + "start": 27196.26, + "end": 27196.91, + "probability": 0.9575 + }, + { + "start": 27197.46, + "end": 27198.28, + "probability": 0.7744 + }, + { + "start": 27198.48, + "end": 27199.52, + "probability": 0.9976 + }, + { + "start": 27199.9, + "end": 27201.32, + "probability": 0.9079 + }, + { + "start": 27201.72, + "end": 27202.84, + "probability": 0.9955 + }, + { + "start": 27203.62, + "end": 27205.54, + "probability": 0.9872 + }, + { + "start": 27206.44, + "end": 27210.48, + "probability": 0.9909 + }, + { + "start": 27211.28, + "end": 27214.66, + "probability": 0.9972 + }, + { + "start": 27214.66, + "end": 27218.12, + "probability": 0.9979 + }, + { + "start": 27219.04, + "end": 27221.56, + "probability": 0.9963 + }, + { + "start": 27222.32, + "end": 27223.72, + "probability": 0.8725 + }, + { + "start": 27224.64, + "end": 27229.94, + "probability": 0.9954 + }, + { + "start": 27230.6, + "end": 27230.94, + "probability": 0.7903 + }, + { + "start": 27232.02, + "end": 27233.84, + "probability": 0.997 + }, + { + "start": 27235.6, + "end": 27236.8, + "probability": 0.9844 + }, + { + "start": 27238.06, + "end": 27241.24, + "probability": 0.9756 + }, + { + "start": 27241.32, + "end": 27242.94, + "probability": 0.6859 + }, + { + "start": 27243.6, + "end": 27247.74, + "probability": 0.9937 + }, + { + "start": 27247.76, + "end": 27248.32, + "probability": 0.6333 + }, + { + "start": 27249.12, + "end": 27252.12, + "probability": 0.9577 + }, + { + "start": 27252.7, + "end": 27255.92, + "probability": 0.9905 + }, + { + "start": 27256.88, + "end": 27259.04, + "probability": 0.9916 + }, + { + "start": 27259.04, + "end": 27262.9, + "probability": 0.9716 + }, + { + "start": 27265.12, + "end": 27266.2, + "probability": 0.9788 + }, + { + "start": 27266.86, + "end": 27267.18, + "probability": 0.8223 + }, + { + "start": 27268.02, + "end": 27269.08, + "probability": 0.9995 + }, + { + "start": 27270.06, + "end": 27274.4, + "probability": 0.9989 + }, + { + "start": 27275.84, + "end": 27280.16, + "probability": 0.7975 + }, + { + "start": 27281.32, + "end": 27285.4, + "probability": 0.9883 + }, + { + "start": 27285.4, + "end": 27290.34, + "probability": 0.9972 + }, + { + "start": 27292.59, + "end": 27294.32, + "probability": 0.1469 + }, + { + "start": 27294.66, + "end": 27297.16, + "probability": 0.749 + }, + { + "start": 27297.72, + "end": 27302.94, + "probability": 0.9495 + }, + { + "start": 27303.68, + "end": 27307.02, + "probability": 0.964 + }, + { + "start": 27309.18, + "end": 27312.56, + "probability": 0.988 + }, + { + "start": 27312.56, + "end": 27317.61, + "probability": 0.9998 + }, + { + "start": 27318.7, + "end": 27321.66, + "probability": 0.7167 + }, + { + "start": 27321.74, + "end": 27321.98, + "probability": 0.6637 + }, + { + "start": 27322.3, + "end": 27323.44, + "probability": 0.9956 + }, + { + "start": 27323.54, + "end": 27323.72, + "probability": 0.7064 + }, + { + "start": 27323.8, + "end": 27324.58, + "probability": 0.7845 + }, + { + "start": 27325.02, + "end": 27326.18, + "probability": 0.9943 + }, + { + "start": 27326.66, + "end": 27331.24, + "probability": 0.9956 + }, + { + "start": 27331.66, + "end": 27332.42, + "probability": 0.5127 + }, + { + "start": 27332.44, + "end": 27334.16, + "probability": 0.7438 + }, + { + "start": 27334.28, + "end": 27334.68, + "probability": 0.5851 + }, + { + "start": 27334.86, + "end": 27336.44, + "probability": 0.8398 + }, + { + "start": 27337.7, + "end": 27339.42, + "probability": 0.8817 + }, + { + "start": 27340.18, + "end": 27341.2, + "probability": 0.0619 + }, + { + "start": 27341.34, + "end": 27341.46, + "probability": 0.1716 + }, + { + "start": 27342.22, + "end": 27345.38, + "probability": 0.0456 + }, + { + "start": 27346.5, + "end": 27346.7, + "probability": 0.1124 + }, + { + "start": 27346.7, + "end": 27348.06, + "probability": 0.2412 + }, + { + "start": 27349.06, + "end": 27350.3, + "probability": 0.1272 + }, + { + "start": 27351.18, + "end": 27351.98, + "probability": 0.1016 + }, + { + "start": 27352.38, + "end": 27353.02, + "probability": 0.2912 + }, + { + "start": 27354.98, + "end": 27355.04, + "probability": 0.5048 + }, + { + "start": 27355.04, + "end": 27356.97, + "probability": 0.8784 + }, + { + "start": 27357.72, + "end": 27361.6, + "probability": 0.0336 + }, + { + "start": 27361.6, + "end": 27361.6, + "probability": 0.0626 + }, + { + "start": 27361.6, + "end": 27361.6, + "probability": 0.0145 + }, + { + "start": 27361.6, + "end": 27361.6, + "probability": 0.2185 + }, + { + "start": 27361.6, + "end": 27361.6, + "probability": 0.1117 + }, + { + "start": 27361.6, + "end": 27362.36, + "probability": 0.5231 + }, + { + "start": 27362.98, + "end": 27364.32, + "probability": 0.2765 + }, + { + "start": 27365.34, + "end": 27368.3, + "probability": 0.9829 + }, + { + "start": 27369.54, + "end": 27373.84, + "probability": 0.9226 + }, + { + "start": 27374.68, + "end": 27378.38, + "probability": 0.881 + }, + { + "start": 27378.56, + "end": 27380.8, + "probability": 0.2028 + }, + { + "start": 27380.92, + "end": 27380.92, + "probability": 0.1288 + }, + { + "start": 27380.92, + "end": 27383.96, + "probability": 0.8938 + }, + { + "start": 27384.04, + "end": 27388.64, + "probability": 0.8111 + }, + { + "start": 27388.66, + "end": 27390.64, + "probability": 0.9201 + }, + { + "start": 27390.66, + "end": 27391.4, + "probability": 0.1382 + }, + { + "start": 27391.5, + "end": 27391.5, + "probability": 0.4095 + }, + { + "start": 27391.5, + "end": 27393.34, + "probability": 0.9231 + }, + { + "start": 27393.86, + "end": 27394.62, + "probability": 0.7155 + }, + { + "start": 27396.1, + "end": 27398.8, + "probability": 0.6669 + }, + { + "start": 27398.82, + "end": 27399.82, + "probability": 0.5356 + }, + { + "start": 27399.82, + "end": 27400.46, + "probability": 0.4523 + }, + { + "start": 27400.52, + "end": 27400.68, + "probability": 0.3654 + }, + { + "start": 27400.68, + "end": 27400.68, + "probability": 0.1766 + }, + { + "start": 27400.68, + "end": 27404.3, + "probability": 0.719 + }, + { + "start": 27404.68, + "end": 27406.5, + "probability": 0.9771 + }, + { + "start": 27406.68, + "end": 27407.64, + "probability": 0.7233 + }, + { + "start": 27407.68, + "end": 27407.74, + "probability": 0.6354 + }, + { + "start": 27407.76, + "end": 27408.4, + "probability": 0.9119 + }, + { + "start": 27408.54, + "end": 27410.46, + "probability": 0.6575 + }, + { + "start": 27410.64, + "end": 27412.9, + "probability": 0.9486 + }, + { + "start": 27413.18, + "end": 27414.33, + "probability": 0.9773 + }, + { + "start": 27415.16, + "end": 27418.86, + "probability": 0.6901 + }, + { + "start": 27418.86, + "end": 27419.34, + "probability": 0.2277 + }, + { + "start": 27419.54, + "end": 27422.64, + "probability": 0.801 + }, + { + "start": 27422.68, + "end": 27423.24, + "probability": 0.6726 + }, + { + "start": 27423.32, + "end": 27424.2, + "probability": 0.9668 + }, + { + "start": 27424.98, + "end": 27426.06, + "probability": 0.7795 + }, + { + "start": 27426.14, + "end": 27431.42, + "probability": 0.9746 + }, + { + "start": 27431.42, + "end": 27433.38, + "probability": 0.9447 + }, + { + "start": 27433.56, + "end": 27435.5, + "probability": 0.2267 + }, + { + "start": 27441.0, + "end": 27442.16, + "probability": 0.1741 + }, + { + "start": 27446.94, + "end": 27448.22, + "probability": 0.4169 + }, + { + "start": 27448.78, + "end": 27450.64, + "probability": 0.2232 + }, + { + "start": 27450.68, + "end": 27451.04, + "probability": 0.0821 + }, + { + "start": 27451.04, + "end": 27455.15, + "probability": 0.0315 + }, + { + "start": 27457.24, + "end": 27457.52, + "probability": 0.0754 + }, + { + "start": 27458.72, + "end": 27460.0, + "probability": 0.3854 + }, + { + "start": 27460.14, + "end": 27462.78, + "probability": 0.5513 + }, + { + "start": 27462.94, + "end": 27463.06, + "probability": 0.1281 + }, + { + "start": 27469.22, + "end": 27469.9, + "probability": 0.2119 + }, + { + "start": 27470.3, + "end": 27472.9, + "probability": 0.1468 + }, + { + "start": 27473.02, + "end": 27476.34, + "probability": 0.123 + }, + { + "start": 27477.58, + "end": 27479.44, + "probability": 0.508 + }, + { + "start": 27480.42, + "end": 27483.0, + "probability": 0.1059 + }, + { + "start": 27483.12, + "end": 27483.91, + "probability": 0.033 + }, + { + "start": 27484.06, + "end": 27484.1, + "probability": 0.1998 + }, + { + "start": 27484.98, + "end": 27486.32, + "probability": 0.0541 + }, + { + "start": 27486.88, + "end": 27487.92, + "probability": 0.3296 + }, + { + "start": 27491.12, + "end": 27493.36, + "probability": 0.0612 + }, + { + "start": 27494.32, + "end": 27499.2, + "probability": 0.1591 + }, + { + "start": 27500.54, + "end": 27503.24, + "probability": 0.0487 + }, + { + "start": 27503.78, + "end": 27503.78, + "probability": 0.151 + }, + { + "start": 27503.78, + "end": 27503.78, + "probability": 0.0849 + }, + { + "start": 27503.78, + "end": 27504.14, + "probability": 0.3786 + }, + { + "start": 27504.14, + "end": 27506.3, + "probability": 0.0312 + }, + { + "start": 27506.3, + "end": 27506.48, + "probability": 0.1967 + }, + { + "start": 27507.06, + "end": 27508.12, + "probability": 0.0949 + }, + { + "start": 27508.12, + "end": 27509.6, + "probability": 0.035 + }, + { + "start": 27511.3, + "end": 27511.83, + "probability": 0.0627 + }, + { + "start": 27512.24, + "end": 27513.06, + "probability": 0.1568 + }, + { + "start": 27513.24, + "end": 27513.24, + "probability": 0.139 + }, + { + "start": 27513.98, + "end": 27514.98, + "probability": 0.4156 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.0, + "end": 27515.0, + "probability": 0.0 + }, + { + "start": 27515.28, + "end": 27518.6, + "probability": 0.1908 + }, + { + "start": 27518.6, + "end": 27518.9, + "probability": 0.2268 + }, + { + "start": 27518.9, + "end": 27521.94, + "probability": 0.6089 + }, + { + "start": 27522.68, + "end": 27525.22, + "probability": 0.9536 + }, + { + "start": 27525.94, + "end": 27531.48, + "probability": 0.9346 + }, + { + "start": 27531.82, + "end": 27533.16, + "probability": 0.306 + }, + { + "start": 27533.16, + "end": 27534.49, + "probability": 0.3051 + }, + { + "start": 27535.52, + "end": 27537.04, + "probability": 0.2278 + }, + { + "start": 27537.04, + "end": 27537.7, + "probability": 0.2371 + }, + { + "start": 27537.86, + "end": 27540.18, + "probability": 0.0235 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.0, + "end": 27644.0, + "probability": 0.0 + }, + { + "start": 27644.1, + "end": 27644.3, + "probability": 0.5976 + }, + { + "start": 27644.3, + "end": 27644.3, + "probability": 0.4144 + }, + { + "start": 27644.3, + "end": 27644.88, + "probability": 0.118 + }, + { + "start": 27647.42, + "end": 27648.76, + "probability": 0.4117 + }, + { + "start": 27649.74, + "end": 27650.78, + "probability": 0.3749 + }, + { + "start": 27651.4, + "end": 27652.04, + "probability": 0.5578 + }, + { + "start": 27652.1, + "end": 27652.86, + "probability": 0.8933 + }, + { + "start": 27654.14, + "end": 27656.04, + "probability": 0.9305 + }, + { + "start": 27656.08, + "end": 27656.94, + "probability": 0.7236 + }, + { + "start": 27657.64, + "end": 27660.9, + "probability": 0.7288 + }, + { + "start": 27661.8, + "end": 27663.36, + "probability": 0.942 + }, + { + "start": 27664.24, + "end": 27667.28, + "probability": 0.9746 + }, + { + "start": 27667.94, + "end": 27668.9, + "probability": 0.9124 + }, + { + "start": 27669.76, + "end": 27671.12, + "probability": 0.811 + }, + { + "start": 27672.6, + "end": 27673.48, + "probability": 0.8728 + }, + { + "start": 27673.58, + "end": 27674.1, + "probability": 0.9359 + }, + { + "start": 27674.32, + "end": 27675.0, + "probability": 0.7056 + }, + { + "start": 27675.14, + "end": 27675.88, + "probability": 0.5022 + }, + { + "start": 27675.88, + "end": 27676.66, + "probability": 0.9047 + }, + { + "start": 27677.4, + "end": 27680.18, + "probability": 0.7598 + }, + { + "start": 27680.86, + "end": 27683.32, + "probability": 0.9438 + }, + { + "start": 27684.88, + "end": 27687.76, + "probability": 0.9686 + }, + { + "start": 27688.86, + "end": 27691.52, + "probability": 0.9727 + }, + { + "start": 27692.48, + "end": 27695.86, + "probability": 0.8374 + }, + { + "start": 27696.12, + "end": 27697.15, + "probability": 0.637 + }, + { + "start": 27697.96, + "end": 27702.28, + "probability": 0.9341 + }, + { + "start": 27703.12, + "end": 27706.34, + "probability": 0.8273 + }, + { + "start": 27706.96, + "end": 27708.68, + "probability": 0.9854 + }, + { + "start": 27709.26, + "end": 27709.84, + "probability": 0.6516 + }, + { + "start": 27710.6, + "end": 27711.56, + "probability": 0.5711 + }, + { + "start": 27712.7, + "end": 27713.26, + "probability": 0.342 + }, + { + "start": 27714.36, + "end": 27715.72, + "probability": 0.9839 + }, + { + "start": 27717.12, + "end": 27718.98, + "probability": 0.5082 + }, + { + "start": 27719.56, + "end": 27721.44, + "probability": 0.5922 + }, + { + "start": 27721.96, + "end": 27723.04, + "probability": 0.9643 + }, + { + "start": 27724.38, + "end": 27725.14, + "probability": 0.7267 + }, + { + "start": 27725.94, + "end": 27726.76, + "probability": 0.7983 + }, + { + "start": 27727.92, + "end": 27729.52, + "probability": 0.9611 + }, + { + "start": 27730.9, + "end": 27730.94, + "probability": 0.4494 + }, + { + "start": 27730.94, + "end": 27731.68, + "probability": 0.5269 + }, + { + "start": 27731.96, + "end": 27738.34, + "probability": 0.9551 + }, + { + "start": 27738.62, + "end": 27740.76, + "probability": 0.5208 + }, + { + "start": 27741.04, + "end": 27742.9, + "probability": 0.9232 + }, + { + "start": 27743.22, + "end": 27747.46, + "probability": 0.9592 + }, + { + "start": 27747.56, + "end": 27748.84, + "probability": 0.8342 + }, + { + "start": 27749.34, + "end": 27750.66, + "probability": 0.9233 + }, + { + "start": 27751.7, + "end": 27753.54, + "probability": 0.763 + }, + { + "start": 27754.2, + "end": 27755.31, + "probability": 0.9631 + }, + { + "start": 27756.6, + "end": 27760.34, + "probability": 0.8268 + }, + { + "start": 27760.86, + "end": 27765.2, + "probability": 0.7422 + }, + { + "start": 27766.52, + "end": 27767.08, + "probability": 0.9364 + }, + { + "start": 27767.18, + "end": 27768.48, + "probability": 0.9634 + }, + { + "start": 27768.5, + "end": 27770.84, + "probability": 0.7904 + }, + { + "start": 27772.86, + "end": 27774.24, + "probability": 0.675 + }, + { + "start": 27775.36, + "end": 27776.12, + "probability": 0.6519 + }, + { + "start": 27776.12, + "end": 27777.8, + "probability": 0.4438 + }, + { + "start": 27777.98, + "end": 27778.7, + "probability": 0.2309 + }, + { + "start": 27779.64, + "end": 27780.7, + "probability": 0.5127 + }, + { + "start": 27781.22, + "end": 27784.44, + "probability": 0.8869 + }, + { + "start": 27785.42, + "end": 27786.02, + "probability": 0.6942 + }, + { + "start": 27786.3, + "end": 27790.88, + "probability": 0.6514 + }, + { + "start": 27790.92, + "end": 27791.82, + "probability": 0.6968 + }, + { + "start": 27791.82, + "end": 27794.5, + "probability": 0.4818 + }, + { + "start": 27794.5, + "end": 27795.2, + "probability": 0.0851 + }, + { + "start": 27795.2, + "end": 27795.92, + "probability": 0.5073 + }, + { + "start": 27796.28, + "end": 27798.86, + "probability": 0.2595 + }, + { + "start": 27798.9, + "end": 27800.9, + "probability": 0.6668 + }, + { + "start": 27801.36, + "end": 27805.64, + "probability": 0.6108 + }, + { + "start": 27806.9, + "end": 27809.18, + "probability": 0.2644 + }, + { + "start": 27809.66, + "end": 27814.26, + "probability": 0.8809 + }, + { + "start": 27814.82, + "end": 27815.45, + "probability": 0.7813 + }, + { + "start": 27815.76, + "end": 27816.56, + "probability": 0.9587 + }, + { + "start": 27816.7, + "end": 27818.24, + "probability": 0.9314 + }, + { + "start": 27818.62, + "end": 27820.2, + "probability": 0.9902 + }, + { + "start": 27820.68, + "end": 27822.74, + "probability": 0.9972 + }, + { + "start": 27823.02, + "end": 27825.3, + "probability": 0.9817 + }, + { + "start": 27825.68, + "end": 27827.08, + "probability": 0.9919 + }, + { + "start": 27827.39, + "end": 27829.54, + "probability": 0.9722 + }, + { + "start": 27829.88, + "end": 27831.72, + "probability": 0.6288 + }, + { + "start": 27832.58, + "end": 27836.7, + "probability": 0.7812 + }, + { + "start": 27836.88, + "end": 27837.22, + "probability": 0.6599 + }, + { + "start": 27837.24, + "end": 27841.38, + "probability": 0.9778 + }, + { + "start": 27842.14, + "end": 27843.64, + "probability": 0.7439 + }, + { + "start": 27844.6, + "end": 27846.08, + "probability": 0.6932 + }, + { + "start": 27846.86, + "end": 27850.64, + "probability": 0.6025 + }, + { + "start": 27850.76, + "end": 27852.53, + "probability": 0.8163 + }, + { + "start": 27853.1, + "end": 27858.44, + "probability": 0.8107 + }, + { + "start": 27859.18, + "end": 27861.44, + "probability": 0.937 + }, + { + "start": 27861.9, + "end": 27863.32, + "probability": 0.9385 + }, + { + "start": 27863.8, + "end": 27865.12, + "probability": 0.6406 + }, + { + "start": 27865.48, + "end": 27867.9, + "probability": 0.8287 + }, + { + "start": 27868.7, + "end": 27870.64, + "probability": 0.8787 + }, + { + "start": 27871.26, + "end": 27872.72, + "probability": 0.6858 + }, + { + "start": 27873.28, + "end": 27873.96, + "probability": 0.5264 + }, + { + "start": 27874.48, + "end": 27877.96, + "probability": 0.8672 + }, + { + "start": 27878.18, + "end": 27879.88, + "probability": 0.5788 + }, + { + "start": 27880.06, + "end": 27880.06, + "probability": 0.0748 + }, + { + "start": 27880.06, + "end": 27881.5, + "probability": 0.607 + }, + { + "start": 27882.36, + "end": 27883.78, + "probability": 0.0934 + }, + { + "start": 27884.14, + "end": 27885.5, + "probability": 0.7532 + }, + { + "start": 27885.7, + "end": 27885.7, + "probability": 0.0963 + }, + { + "start": 27885.7, + "end": 27887.5, + "probability": 0.7398 + }, + { + "start": 27890.52, + "end": 27893.83, + "probability": 0.3887 + }, + { + "start": 27897.22, + "end": 27899.48, + "probability": 0.0626 + }, + { + "start": 27899.48, + "end": 27901.2, + "probability": 0.7842 + }, + { + "start": 27901.42, + "end": 27901.74, + "probability": 0.0615 + }, + { + "start": 27901.74, + "end": 27902.84, + "probability": 0.813 + }, + { + "start": 27903.44, + "end": 27906.02, + "probability": 0.856 + }, + { + "start": 27906.68, + "end": 27909.04, + "probability": 0.8269 + }, + { + "start": 27909.5, + "end": 27911.18, + "probability": 0.9812 + }, + { + "start": 27934.94, + "end": 27935.94, + "probability": 0.591 + }, + { + "start": 27936.02, + "end": 27937.26, + "probability": 0.7327 + }, + { + "start": 27937.5, + "end": 27940.64, + "probability": 0.9622 + }, + { + "start": 27941.48, + "end": 27942.2, + "probability": 0.3852 + }, + { + "start": 27942.65, + "end": 27951.12, + "probability": 0.9891 + }, + { + "start": 27951.12, + "end": 27956.78, + "probability": 0.9774 + }, + { + "start": 27957.24, + "end": 27963.04, + "probability": 0.9283 + }, + { + "start": 27963.7, + "end": 27968.22, + "probability": 0.9351 + }, + { + "start": 27968.98, + "end": 27973.86, + "probability": 0.9908 + }, + { + "start": 27974.74, + "end": 27977.12, + "probability": 0.8682 + }, + { + "start": 27978.18, + "end": 27981.4, + "probability": 0.8835 + }, + { + "start": 27982.66, + "end": 27986.75, + "probability": 0.8456 + }, + { + "start": 27987.48, + "end": 27992.08, + "probability": 0.9609 + }, + { + "start": 27992.62, + "end": 27993.96, + "probability": 0.9995 + }, + { + "start": 27995.22, + "end": 27996.76, + "probability": 0.9289 + }, + { + "start": 27997.16, + "end": 27999.88, + "probability": 0.9775 + }, + { + "start": 28000.44, + "end": 28003.44, + "probability": 0.999 + }, + { + "start": 28003.44, + "end": 28008.34, + "probability": 0.9825 + }, + { + "start": 28008.98, + "end": 28013.2, + "probability": 0.9993 + }, + { + "start": 28014.08, + "end": 28017.06, + "probability": 0.9944 + }, + { + "start": 28017.98, + "end": 28019.06, + "probability": 0.9193 + }, + { + "start": 28019.8, + "end": 28024.06, + "probability": 0.9978 + }, + { + "start": 28024.62, + "end": 28027.29, + "probability": 0.9928 + }, + { + "start": 28028.36, + "end": 28030.54, + "probability": 0.9927 + }, + { + "start": 28031.02, + "end": 28032.5, + "probability": 0.9703 + }, + { + "start": 28033.56, + "end": 28034.34, + "probability": 0.7632 + }, + { + "start": 28034.4, + "end": 28039.96, + "probability": 0.9909 + }, + { + "start": 28040.44, + "end": 28045.14, + "probability": 0.9936 + }, + { + "start": 28046.02, + "end": 28048.1, + "probability": 0.9327 + }, + { + "start": 28049.06, + "end": 28051.35, + "probability": 0.9793 + }, + { + "start": 28052.1, + "end": 28056.34, + "probability": 0.9989 + }, + { + "start": 28056.94, + "end": 28059.97, + "probability": 0.8762 + }, + { + "start": 28060.84, + "end": 28065.35, + "probability": 0.9956 + }, + { + "start": 28066.04, + "end": 28068.04, + "probability": 0.9383 + }, + { + "start": 28068.62, + "end": 28074.34, + "probability": 0.9554 + }, + { + "start": 28074.46, + "end": 28077.42, + "probability": 0.9963 + }, + { + "start": 28077.42, + "end": 28079.62, + "probability": 0.9553 + }, + { + "start": 28080.3, + "end": 28081.84, + "probability": 0.8735 + }, + { + "start": 28082.58, + "end": 28083.72, + "probability": 0.9722 + }, + { + "start": 28084.26, + "end": 28086.84, + "probability": 0.9849 + }, + { + "start": 28087.68, + "end": 28088.82, + "probability": 0.9491 + }, + { + "start": 28089.68, + "end": 28093.3, + "probability": 0.8813 + }, + { + "start": 28094.1, + "end": 28097.5, + "probability": 0.9933 + }, + { + "start": 28097.5, + "end": 28100.84, + "probability": 0.9939 + }, + { + "start": 28101.72, + "end": 28104.78, + "probability": 0.9788 + }, + { + "start": 28105.5, + "end": 28108.1, + "probability": 0.9739 + }, + { + "start": 28108.58, + "end": 28110.36, + "probability": 0.8241 + }, + { + "start": 28111.08, + "end": 28113.26, + "probability": 0.94 + }, + { + "start": 28114.5, + "end": 28116.77, + "probability": 0.937 + }, + { + "start": 28117.46, + "end": 28119.08, + "probability": 0.9458 + }, + { + "start": 28119.64, + "end": 28120.62, + "probability": 0.6403 + }, + { + "start": 28121.28, + "end": 28122.16, + "probability": 0.7504 + }, + { + "start": 28124.94, + "end": 28127.22, + "probability": 0.51 + }, + { + "start": 28128.14, + "end": 28129.88, + "probability": 0.99 + }, + { + "start": 28130.7, + "end": 28131.1, + "probability": 0.76 + }, + { + "start": 28131.74, + "end": 28132.18, + "probability": 0.9152 + }, + { + "start": 28134.38, + "end": 28137.06, + "probability": 0.8731 + }, + { + "start": 28141.22, + "end": 28142.08, + "probability": 0.0158 + }, + { + "start": 28142.12, + "end": 28143.8, + "probability": 0.8937 + }, + { + "start": 28143.9, + "end": 28144.24, + "probability": 0.0707 + }, + { + "start": 28144.24, + "end": 28144.88, + "probability": 0.7317 + }, + { + "start": 28145.68, + "end": 28146.71, + "probability": 0.6215 + }, + { + "start": 28148.11, + "end": 28148.73, + "probability": 0.7437 + }, + { + "start": 28150.14, + "end": 28151.68, + "probability": 0.4497 + }, + { + "start": 28152.44, + "end": 28152.64, + "probability": 0.2087 + }, + { + "start": 28152.64, + "end": 28153.94, + "probability": 0.7918 + }, + { + "start": 28154.34, + "end": 28154.54, + "probability": 0.2611 + }, + { + "start": 28154.54, + "end": 28156.1, + "probability": 0.5224 + }, + { + "start": 28156.1, + "end": 28157.86, + "probability": 0.687 + }, + { + "start": 28158.5, + "end": 28160.32, + "probability": 0.5279 + }, + { + "start": 28160.88, + "end": 28160.88, + "probability": 0.133 + }, + { + "start": 28160.88, + "end": 28163.2, + "probability": 0.5396 + }, + { + "start": 28164.82, + "end": 28166.14, + "probability": 0.678 + }, + { + "start": 28167.86, + "end": 28170.4, + "probability": 0.6284 + }, + { + "start": 28177.4, + "end": 28182.9, + "probability": 0.711 + }, + { + "start": 28191.35, + "end": 28193.62, + "probability": 0.7826 + }, + { + "start": 28202.9, + "end": 28204.36, + "probability": 0.6264 + }, + { + "start": 28204.58, + "end": 28205.56, + "probability": 0.8142 + }, + { + "start": 28205.68, + "end": 28206.89, + "probability": 0.9806 + }, + { + "start": 28207.06, + "end": 28207.62, + "probability": 0.383 + }, + { + "start": 28208.57, + "end": 28210.36, + "probability": 0.9966 + }, + { + "start": 28210.8, + "end": 28213.94, + "probability": 0.9634 + }, + { + "start": 28215.2, + "end": 28216.04, + "probability": 0.6653 + }, + { + "start": 28216.08, + "end": 28220.06, + "probability": 0.9917 + }, + { + "start": 28220.22, + "end": 28221.63, + "probability": 0.3018 + }, + { + "start": 28222.6, + "end": 28227.3, + "probability": 0.698 + }, + { + "start": 28227.42, + "end": 28231.86, + "probability": 0.9827 + }, + { + "start": 28232.14, + "end": 28233.38, + "probability": 0.148 + }, + { + "start": 28234.2, + "end": 28235.34, + "probability": 0.5747 + }, + { + "start": 28235.86, + "end": 28236.64, + "probability": 0.9124 + }, + { + "start": 28237.68, + "end": 28238.74, + "probability": 0.8259 + }, + { + "start": 28238.74, + "end": 28240.02, + "probability": 0.703 + }, + { + "start": 28240.1, + "end": 28240.76, + "probability": 0.6956 + }, + { + "start": 28241.06, + "end": 28245.02, + "probability": 0.9731 + }, + { + "start": 28245.18, + "end": 28246.02, + "probability": 0.9977 + }, + { + "start": 28247.0, + "end": 28247.5, + "probability": 0.5122 + }, + { + "start": 28248.0, + "end": 28249.74, + "probability": 0.7864 + }, + { + "start": 28249.94, + "end": 28251.11, + "probability": 0.9458 + }, + { + "start": 28252.28, + "end": 28252.6, + "probability": 0.5612 + }, + { + "start": 28252.64, + "end": 28253.2, + "probability": 0.96 + }, + { + "start": 28253.3, + "end": 28257.2, + "probability": 0.7671 + }, + { + "start": 28257.92, + "end": 28259.64, + "probability": 0.0559 + }, + { + "start": 28259.84, + "end": 28261.1, + "probability": 0.8096 + }, + { + "start": 28261.22, + "end": 28263.3, + "probability": 0.7596 + }, + { + "start": 28263.36, + "end": 28264.2, + "probability": 0.5503 + }, + { + "start": 28265.02, + "end": 28269.08, + "probability": 0.6533 + }, + { + "start": 28269.36, + "end": 28270.4, + "probability": 0.9719 + }, + { + "start": 28270.48, + "end": 28273.42, + "probability": 0.9856 + }, + { + "start": 28273.88, + "end": 28275.0, + "probability": 0.9122 + }, + { + "start": 28275.72, + "end": 28276.48, + "probability": 0.6837 + }, + { + "start": 28276.66, + "end": 28279.88, + "probability": 0.9672 + }, + { + "start": 28279.94, + "end": 28281.04, + "probability": 0.9601 + }, + { + "start": 28281.74, + "end": 28282.66, + "probability": 0.895 + }, + { + "start": 28282.68, + "end": 28283.77, + "probability": 0.9881 + }, + { + "start": 28283.94, + "end": 28286.28, + "probability": 0.9908 + }, + { + "start": 28286.74, + "end": 28289.05, + "probability": 0.9177 + }, + { + "start": 28289.56, + "end": 28290.38, + "probability": 0.6788 + }, + { + "start": 28290.58, + "end": 28294.68, + "probability": 0.7908 + }, + { + "start": 28295.5, + "end": 28297.68, + "probability": 0.9762 + }, + { + "start": 28298.26, + "end": 28300.92, + "probability": 0.9033 + }, + { + "start": 28301.44, + "end": 28303.1, + "probability": 0.9433 + }, + { + "start": 28303.18, + "end": 28303.42, + "probability": 0.7812 + }, + { + "start": 28303.52, + "end": 28304.6, + "probability": 0.9323 + }, + { + "start": 28305.02, + "end": 28308.2, + "probability": 0.9819 + }, + { + "start": 28308.32, + "end": 28308.81, + "probability": 0.5972 + }, + { + "start": 28309.04, + "end": 28309.34, + "probability": 0.0699 + }, + { + "start": 28310.08, + "end": 28313.88, + "probability": 0.9079 + }, + { + "start": 28314.16, + "end": 28316.5, + "probability": 0.9424 + }, + { + "start": 28316.68, + "end": 28316.96, + "probability": 0.5128 + }, + { + "start": 28317.56, + "end": 28319.94, + "probability": 0.8787 + }, + { + "start": 28320.58, + "end": 28321.88, + "probability": 0.7522 + }, + { + "start": 28321.94, + "end": 28324.18, + "probability": 0.9956 + }, + { + "start": 28324.24, + "end": 28324.98, + "probability": 0.9854 + }, + { + "start": 28325.02, + "end": 28325.61, + "probability": 0.9708 + }, + { + "start": 28325.8, + "end": 28327.58, + "probability": 0.8982 + }, + { + "start": 28328.24, + "end": 28329.8, + "probability": 0.5965 + }, + { + "start": 28329.9, + "end": 28330.8, + "probability": 0.7453 + }, + { + "start": 28331.3, + "end": 28332.34, + "probability": 0.8107 + }, + { + "start": 28332.4, + "end": 28333.12, + "probability": 0.918 + }, + { + "start": 28333.64, + "end": 28336.3, + "probability": 0.9879 + }, + { + "start": 28336.42, + "end": 28338.22, + "probability": 0.9876 + }, + { + "start": 28338.24, + "end": 28339.62, + "probability": 0.9468 + }, + { + "start": 28339.66, + "end": 28340.46, + "probability": 0.9644 + }, + { + "start": 28340.82, + "end": 28341.48, + "probability": 0.8353 + }, + { + "start": 28342.08, + "end": 28343.66, + "probability": 0.9439 + }, + { + "start": 28343.94, + "end": 28346.6, + "probability": 0.9062 + }, + { + "start": 28370.68, + "end": 28372.72, + "probability": 0.5063 + }, + { + "start": 28372.82, + "end": 28373.66, + "probability": 0.8192 + }, + { + "start": 28373.8, + "end": 28374.8, + "probability": 0.8184 + }, + { + "start": 28374.94, + "end": 28377.42, + "probability": 0.9595 + }, + { + "start": 28378.2, + "end": 28380.0, + "probability": 0.8956 + }, + { + "start": 28380.62, + "end": 28382.54, + "probability": 0.8508 + }, + { + "start": 28382.56, + "end": 28387.14, + "probability": 0.9937 + }, + { + "start": 28387.84, + "end": 28389.77, + "probability": 0.9813 + }, + { + "start": 28390.78, + "end": 28392.38, + "probability": 0.9863 + }, + { + "start": 28392.48, + "end": 28393.76, + "probability": 0.8511 + }, + { + "start": 28393.86, + "end": 28396.08, + "probability": 0.9955 + }, + { + "start": 28396.84, + "end": 28399.44, + "probability": 0.6416 + }, + { + "start": 28399.62, + "end": 28400.36, + "probability": 0.638 + }, + { + "start": 28400.68, + "end": 28401.62, + "probability": 0.7335 + }, + { + "start": 28401.9, + "end": 28404.61, + "probability": 0.9434 + }, + { + "start": 28405.13, + "end": 28408.75, + "probability": 0.9932 + }, + { + "start": 28408.77, + "end": 28409.85, + "probability": 0.5346 + }, + { + "start": 28409.91, + "end": 28411.15, + "probability": 0.8907 + }, + { + "start": 28411.51, + "end": 28412.41, + "probability": 0.9186 + }, + { + "start": 28412.47, + "end": 28413.73, + "probability": 0.8844 + }, + { + "start": 28414.23, + "end": 28415.03, + "probability": 0.1663 + }, + { + "start": 28415.17, + "end": 28417.13, + "probability": 0.9091 + }, + { + "start": 28417.29, + "end": 28418.61, + "probability": 0.8854 + }, + { + "start": 28418.99, + "end": 28420.97, + "probability": 0.9982 + }, + { + "start": 28421.05, + "end": 28422.35, + "probability": 0.8748 + }, + { + "start": 28423.99, + "end": 28425.17, + "probability": 0.4866 + }, + { + "start": 28425.73, + "end": 28426.57, + "probability": 0.729 + }, + { + "start": 28426.83, + "end": 28428.79, + "probability": 0.9646 + }, + { + "start": 28428.79, + "end": 28432.19, + "probability": 0.9803 + }, + { + "start": 28432.19, + "end": 28432.87, + "probability": 0.8263 + }, + { + "start": 28432.97, + "end": 28434.17, + "probability": 0.8667 + }, + { + "start": 28434.51, + "end": 28437.95, + "probability": 0.9289 + }, + { + "start": 28440.11, + "end": 28440.35, + "probability": 0.0337 + }, + { + "start": 28440.51, + "end": 28440.51, + "probability": 0.1248 + }, + { + "start": 28440.51, + "end": 28440.51, + "probability": 0.0325 + }, + { + "start": 28440.51, + "end": 28442.45, + "probability": 0.6198 + }, + { + "start": 28442.53, + "end": 28444.61, + "probability": 0.9913 + }, + { + "start": 28444.81, + "end": 28445.85, + "probability": 0.0913 + }, + { + "start": 28445.85, + "end": 28446.21, + "probability": 0.0822 + }, + { + "start": 28446.63, + "end": 28446.63, + "probability": 0.1294 + }, + { + "start": 28446.65, + "end": 28447.49, + "probability": 0.2378 + }, + { + "start": 28455.41, + "end": 28456.63, + "probability": 0.2535 + }, + { + "start": 28458.17, + "end": 28459.77, + "probability": 0.0267 + }, + { + "start": 28459.77, + "end": 28461.88, + "probability": 0.0679 + }, + { + "start": 28463.75, + "end": 28463.75, + "probability": 0.1162 + }, + { + "start": 28466.09, + "end": 28468.53, + "probability": 0.3388 + }, + { + "start": 28468.79, + "end": 28470.03, + "probability": 0.009 + }, + { + "start": 28470.35, + "end": 28471.95, + "probability": 0.0762 + }, + { + "start": 28472.05, + "end": 28472.05, + "probability": 0.007 + }, + { + "start": 28473.05, + "end": 28473.27, + "probability": 0.0219 + }, + { + "start": 28473.55, + "end": 28474.55, + "probability": 0.6177 + }, + { + "start": 28476.59, + "end": 28480.43, + "probability": 0.0509 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.0, + "end": 28554.0, + "probability": 0.0 + }, + { + "start": 28554.14, + "end": 28555.54, + "probability": 0.3285 + }, + { + "start": 28557.96, + "end": 28558.72, + "probability": 0.079 + }, + { + "start": 28558.72, + "end": 28561.6, + "probability": 0.6435 + }, + { + "start": 28562.26, + "end": 28567.38, + "probability": 0.784 + }, + { + "start": 28567.9, + "end": 28570.54, + "probability": 0.932 + }, + { + "start": 28570.88, + "end": 28571.48, + "probability": 0.7458 + }, + { + "start": 28571.52, + "end": 28573.92, + "probability": 0.8371 + }, + { + "start": 28574.48, + "end": 28575.22, + "probability": 0.8706 + }, + { + "start": 28575.3, + "end": 28577.44, + "probability": 0.9411 + }, + { + "start": 28577.44, + "end": 28580.4, + "probability": 0.989 + }, + { + "start": 28580.56, + "end": 28581.02, + "probability": 0.6265 + }, + { + "start": 28581.16, + "end": 28582.06, + "probability": 0.7491 + }, + { + "start": 28582.66, + "end": 28586.12, + "probability": 0.5322 + }, + { + "start": 28586.38, + "end": 28589.28, + "probability": 0.5396 + }, + { + "start": 28589.28, + "end": 28590.2, + "probability": 0.481 + }, + { + "start": 28591.0, + "end": 28594.02, + "probability": 0.7166 + }, + { + "start": 28618.3, + "end": 28618.5, + "probability": 0.6401 + }, + { + "start": 28619.3, + "end": 28619.52, + "probability": 0.1819 + }, + { + "start": 28619.68, + "end": 28622.68, + "probability": 0.0309 + }, + { + "start": 28622.68, + "end": 28623.66, + "probability": 0.009 + }, + { + "start": 28623.66, + "end": 28624.06, + "probability": 0.0205 + }, + { + "start": 28625.08, + "end": 28626.76, + "probability": 0.01 + }, + { + "start": 28629.1, + "end": 28630.16, + "probability": 0.1561 + }, + { + "start": 28640.96, + "end": 28642.84, + "probability": 0.9305 + }, + { + "start": 28644.02, + "end": 28647.74, + "probability": 0.996 + }, + { + "start": 28647.74, + "end": 28652.68, + "probability": 0.9969 + }, + { + "start": 28652.68, + "end": 28657.72, + "probability": 0.9956 + }, + { + "start": 28658.72, + "end": 28662.24, + "probability": 0.8099 + }, + { + "start": 28662.92, + "end": 28667.1, + "probability": 0.9858 + }, + { + "start": 28668.68, + "end": 28671.62, + "probability": 0.9868 + }, + { + "start": 28671.62, + "end": 28674.22, + "probability": 0.8763 + }, + { + "start": 28674.4, + "end": 28675.06, + "probability": 0.7278 + }, + { + "start": 28677.02, + "end": 28680.88, + "probability": 0.9933 + }, + { + "start": 28680.88, + "end": 28685.46, + "probability": 0.9907 + }, + { + "start": 28685.6, + "end": 28689.62, + "probability": 0.986 + }, + { + "start": 28689.74, + "end": 28690.64, + "probability": 0.8568 + }, + { + "start": 28690.78, + "end": 28697.26, + "probability": 0.9709 + }, + { + "start": 28697.68, + "end": 28707.36, + "probability": 0.8559 + }, + { + "start": 28708.02, + "end": 28709.96, + "probability": 0.9766 + }, + { + "start": 28711.18, + "end": 28714.24, + "probability": 0.9825 + }, + { + "start": 28715.22, + "end": 28719.28, + "probability": 0.9927 + }, + { + "start": 28719.28, + "end": 28727.64, + "probability": 0.9714 + }, + { + "start": 28728.16, + "end": 28731.02, + "probability": 0.9873 + }, + { + "start": 28731.18, + "end": 28732.06, + "probability": 0.9049 + }, + { + "start": 28732.9, + "end": 28734.08, + "probability": 0.9445 + }, + { + "start": 28735.52, + "end": 28738.86, + "probability": 0.9712 + }, + { + "start": 28739.46, + "end": 28741.16, + "probability": 0.8659 + }, + { + "start": 28741.78, + "end": 28744.5, + "probability": 0.777 + }, + { + "start": 28745.2, + "end": 28748.62, + "probability": 0.995 + }, + { + "start": 28748.62, + "end": 28752.88, + "probability": 0.994 + }, + { + "start": 28754.42, + "end": 28755.0, + "probability": 0.5792 + }, + { + "start": 28755.46, + "end": 28758.1, + "probability": 0.9893 + }, + { + "start": 28758.22, + "end": 28761.62, + "probability": 0.9943 + }, + { + "start": 28762.18, + "end": 28765.16, + "probability": 0.9914 + }, + { + "start": 28766.74, + "end": 28769.68, + "probability": 0.9858 + }, + { + "start": 28770.58, + "end": 28775.52, + "probability": 0.9992 + }, + { + "start": 28776.26, + "end": 28779.96, + "probability": 0.967 + }, + { + "start": 28781.08, + "end": 28783.66, + "probability": 0.9787 + }, + { + "start": 28784.34, + "end": 28786.44, + "probability": 0.9832 + }, + { + "start": 28787.52, + "end": 28789.88, + "probability": 0.9839 + }, + { + "start": 28790.04, + "end": 28793.42, + "probability": 0.9908 + }, + { + "start": 28793.96, + "end": 28797.74, + "probability": 0.9814 + }, + { + "start": 28798.92, + "end": 28803.02, + "probability": 0.9969 + }, + { + "start": 28803.06, + "end": 28810.62, + "probability": 0.9853 + }, + { + "start": 28811.22, + "end": 28815.26, + "probability": 0.9772 + }, + { + "start": 28815.8, + "end": 28818.14, + "probability": 0.988 + }, + { + "start": 28818.44, + "end": 28821.2, + "probability": 0.9606 + }, + { + "start": 28822.02, + "end": 28824.78, + "probability": 0.8809 + }, + { + "start": 28824.78, + "end": 28826.78, + "probability": 0.9945 + }, + { + "start": 28828.56, + "end": 28829.12, + "probability": 0.6811 + }, + { + "start": 28830.16, + "end": 28834.26, + "probability": 0.998 + }, + { + "start": 28834.26, + "end": 28839.66, + "probability": 0.993 + }, + { + "start": 28840.86, + "end": 28842.94, + "probability": 0.9863 + }, + { + "start": 28842.94, + "end": 28847.3, + "probability": 0.9739 + }, + { + "start": 28847.88, + "end": 28851.22, + "probability": 0.9991 + }, + { + "start": 28852.06, + "end": 28854.52, + "probability": 0.9987 + }, + { + "start": 28854.52, + "end": 28858.78, + "probability": 0.9532 + }, + { + "start": 28858.84, + "end": 28861.36, + "probability": 0.9967 + }, + { + "start": 28864.46, + "end": 28865.46, + "probability": 0.5266 + }, + { + "start": 28865.6, + "end": 28867.32, + "probability": 0.8601 + }, + { + "start": 28867.6, + "end": 28870.38, + "probability": 0.991 + }, + { + "start": 28870.38, + "end": 28874.64, + "probability": 0.877 + }, + { + "start": 28875.42, + "end": 28878.58, + "probability": 0.9214 + }, + { + "start": 28880.04, + "end": 28883.5, + "probability": 0.9836 + }, + { + "start": 28883.68, + "end": 28884.07, + "probability": 0.8442 + }, + { + "start": 28884.58, + "end": 28886.2, + "probability": 0.9879 + }, + { + "start": 28887.22, + "end": 28887.64, + "probability": 0.7666 + }, + { + "start": 28887.72, + "end": 28890.38, + "probability": 0.9896 + }, + { + "start": 28890.52, + "end": 28894.06, + "probability": 0.949 + }, + { + "start": 28894.84, + "end": 28898.0, + "probability": 0.928 + }, + { + "start": 28898.58, + "end": 28901.38, + "probability": 0.9744 + }, + { + "start": 28902.66, + "end": 28905.08, + "probability": 0.9836 + }, + { + "start": 28905.08, + "end": 28908.1, + "probability": 0.9656 + }, + { + "start": 28909.56, + "end": 28911.6, + "probability": 0.9445 + }, + { + "start": 28911.6, + "end": 28914.42, + "probability": 0.9487 + }, + { + "start": 28915.32, + "end": 28918.14, + "probability": 0.7408 + }, + { + "start": 28918.22, + "end": 28921.54, + "probability": 0.9745 + }, + { + "start": 28921.54, + "end": 28924.46, + "probability": 0.9822 + }, + { + "start": 28924.6, + "end": 28925.42, + "probability": 0.9896 + }, + { + "start": 28925.82, + "end": 28926.54, + "probability": 0.5595 + }, + { + "start": 28926.6, + "end": 28926.94, + "probability": 0.2612 + }, + { + "start": 28926.94, + "end": 28930.4, + "probability": 0.8171 + }, + { + "start": 28930.6, + "end": 28932.26, + "probability": 0.5025 + }, + { + "start": 28932.32, + "end": 28934.39, + "probability": 0.8921 + }, + { + "start": 28935.54, + "end": 28937.64, + "probability": 0.9833 + }, + { + "start": 28938.0, + "end": 28941.38, + "probability": 0.8279 + }, + { + "start": 28941.72, + "end": 28943.44, + "probability": 0.7294 + }, + { + "start": 28944.74, + "end": 28946.34, + "probability": 0.9401 + }, + { + "start": 28953.26, + "end": 28955.96, + "probability": 0.5792 + }, + { + "start": 28956.04, + "end": 28956.94, + "probability": 0.6378 + }, + { + "start": 28957.12, + "end": 28957.62, + "probability": 0.8476 + }, + { + "start": 28957.8, + "end": 28962.7, + "probability": 0.8988 + }, + { + "start": 28963.6, + "end": 28966.98, + "probability": 0.9956 + }, + { + "start": 28967.74, + "end": 28969.18, + "probability": 0.38 + }, + { + "start": 28971.14, + "end": 28972.06, + "probability": 0.955 + }, + { + "start": 28974.34, + "end": 28974.56, + "probability": 0.0966 + }, + { + "start": 28974.56, + "end": 28974.64, + "probability": 0.2167 + }, + { + "start": 28974.64, + "end": 28976.44, + "probability": 0.2401 + }, + { + "start": 28976.56, + "end": 28977.8, + "probability": 0.1596 + }, + { + "start": 28978.08, + "end": 28978.2, + "probability": 0.0349 + }, + { + "start": 28978.4, + "end": 28980.7, + "probability": 0.8113 + }, + { + "start": 28980.74, + "end": 28982.18, + "probability": 0.8829 + }, + { + "start": 28982.36, + "end": 28982.6, + "probability": 0.9519 + }, + { + "start": 28982.64, + "end": 28983.82, + "probability": 0.9305 + }, + { + "start": 28984.32, + "end": 28987.28, + "probability": 0.9075 + }, + { + "start": 28987.32, + "end": 28991.04, + "probability": 0.9937 + }, + { + "start": 28991.04, + "end": 28995.12, + "probability": 0.8534 + }, + { + "start": 28995.18, + "end": 29000.3, + "probability": 0.8314 + }, + { + "start": 29000.52, + "end": 29002.7, + "probability": 0.6124 + }, + { + "start": 29002.7, + "end": 29004.86, + "probability": 0.4395 + }, + { + "start": 29005.28, + "end": 29005.76, + "probability": 0.2643 + }, + { + "start": 29005.82, + "end": 29006.44, + "probability": 0.5898 + }, + { + "start": 29006.46, + "end": 29007.39, + "probability": 0.6692 + }, + { + "start": 29007.7, + "end": 29008.54, + "probability": 0.1997 + }, + { + "start": 29008.54, + "end": 29008.54, + "probability": 0.0593 + }, + { + "start": 29008.54, + "end": 29011.22, + "probability": 0.8933 + }, + { + "start": 29011.3, + "end": 29013.22, + "probability": 0.9908 + }, + { + "start": 29013.3, + "end": 29016.64, + "probability": 0.8692 + }, + { + "start": 29017.04, + "end": 29018.1, + "probability": 0.9729 + }, + { + "start": 29018.56, + "end": 29020.88, + "probability": 0.8566 + }, + { + "start": 29021.28, + "end": 29021.6, + "probability": 0.5503 + }, + { + "start": 29021.68, + "end": 29023.15, + "probability": 0.8828 + }, + { + "start": 29023.64, + "end": 29028.8, + "probability": 0.9988 + }, + { + "start": 29029.26, + "end": 29029.58, + "probability": 0.7453 + }, + { + "start": 29029.8, + "end": 29030.88, + "probability": 0.9192 + }, + { + "start": 29031.28, + "end": 29032.66, + "probability": 0.9961 + }, + { + "start": 29033.06, + "end": 29034.3, + "probability": 0.9666 + }, + { + "start": 29034.42, + "end": 29036.18, + "probability": 0.6397 + }, + { + "start": 29036.26, + "end": 29036.96, + "probability": 0.7387 + }, + { + "start": 29037.06, + "end": 29037.48, + "probability": 0.6263 + }, + { + "start": 29037.66, + "end": 29038.7, + "probability": 0.7786 + }, + { + "start": 29039.04, + "end": 29042.48, + "probability": 0.912 + }, + { + "start": 29043.24, + "end": 29047.6, + "probability": 0.9944 + }, + { + "start": 29047.96, + "end": 29048.57, + "probability": 0.8898 + }, + { + "start": 29049.08, + "end": 29053.7, + "probability": 0.8392 + }, + { + "start": 29053.7, + "end": 29055.4, + "probability": 0.874 + }, + { + "start": 29055.4, + "end": 29058.64, + "probability": 0.8977 + }, + { + "start": 29058.88, + "end": 29060.26, + "probability": 0.9194 + }, + { + "start": 29060.28, + "end": 29062.19, + "probability": 0.9888 + }, + { + "start": 29062.36, + "end": 29063.29, + "probability": 0.8927 + }, + { + "start": 29063.82, + "end": 29067.61, + "probability": 0.9845 + }, + { + "start": 29067.79, + "end": 29068.45, + "probability": 0.5218 + }, + { + "start": 29069.69, + "end": 29072.69, + "probability": 0.6936 + }, + { + "start": 29073.03, + "end": 29074.87, + "probability": 0.9766 + }, + { + "start": 29075.35, + "end": 29079.05, + "probability": 0.9595 + }, + { + "start": 29079.63, + "end": 29081.57, + "probability": 0.1839 + }, + { + "start": 29082.61, + "end": 29085.89, + "probability": 0.9473 + }, + { + "start": 29086.45, + "end": 29089.23, + "probability": 0.863 + }, + { + "start": 29089.37, + "end": 29089.91, + "probability": 0.874 + }, + { + "start": 29090.95, + "end": 29092.39, + "probability": 0.5025 + }, + { + "start": 29092.39, + "end": 29094.65, + "probability": 0.9017 + }, + { + "start": 29094.77, + "end": 29095.34, + "probability": 0.9487 + }, + { + "start": 29097.92, + "end": 29100.49, + "probability": 0.7558 + }, + { + "start": 29101.01, + "end": 29105.03, + "probability": 0.9694 + }, + { + "start": 29105.63, + "end": 29108.43, + "probability": 0.9106 + }, + { + "start": 29109.07, + "end": 29109.91, + "probability": 0.9904 + }, + { + "start": 29110.93, + "end": 29114.69, + "probability": 0.7577 + }, + { + "start": 29114.87, + "end": 29116.95, + "probability": 0.9902 + }, + { + "start": 29117.99, + "end": 29121.83, + "probability": 0.9946 + }, + { + "start": 29122.09, + "end": 29122.91, + "probability": 0.7683 + }, + { + "start": 29124.17, + "end": 29125.19, + "probability": 0.9426 + }, + { + "start": 29125.31, + "end": 29127.15, + "probability": 0.959 + }, + { + "start": 29127.19, + "end": 29129.25, + "probability": 0.4137 + }, + { + "start": 29129.33, + "end": 29130.11, + "probability": 0.8071 + }, + { + "start": 29130.25, + "end": 29132.25, + "probability": 0.4354 + }, + { + "start": 29133.03, + "end": 29135.89, + "probability": 0.9641 + }, + { + "start": 29136.85, + "end": 29140.13, + "probability": 0.9793 + }, + { + "start": 29140.95, + "end": 29142.07, + "probability": 0.9734 + }, + { + "start": 29142.25, + "end": 29143.28, + "probability": 0.957 + }, + { + "start": 29143.51, + "end": 29144.83, + "probability": 0.9925 + }, + { + "start": 29145.25, + "end": 29147.15, + "probability": 0.1582 + }, + { + "start": 29147.15, + "end": 29147.88, + "probability": 0.6209 + }, + { + "start": 29148.43, + "end": 29150.43, + "probability": 0.9837 + }, + { + "start": 29150.73, + "end": 29154.13, + "probability": 0.9932 + }, + { + "start": 29155.45, + "end": 29158.01, + "probability": 0.9971 + }, + { + "start": 29158.69, + "end": 29161.73, + "probability": 0.6585 + }, + { + "start": 29162.03, + "end": 29162.49, + "probability": 0.754 + }, + { + "start": 29162.53, + "end": 29162.88, + "probability": 0.8204 + }, + { + "start": 29164.15, + "end": 29165.97, + "probability": 0.9534 + }, + { + "start": 29166.33, + "end": 29167.74, + "probability": 0.9746 + }, + { + "start": 29168.33, + "end": 29169.69, + "probability": 0.8911 + }, + { + "start": 29169.77, + "end": 29170.83, + "probability": 0.8384 + }, + { + "start": 29170.91, + "end": 29172.07, + "probability": 0.8062 + }, + { + "start": 29172.39, + "end": 29174.75, + "probability": 0.9765 + }, + { + "start": 29175.11, + "end": 29176.21, + "probability": 0.9023 + }, + { + "start": 29177.01, + "end": 29178.01, + "probability": 0.9869 + }, + { + "start": 29178.85, + "end": 29180.67, + "probability": 0.9498 + }, + { + "start": 29180.83, + "end": 29182.75, + "probability": 0.9985 + }, + { + "start": 29183.07, + "end": 29186.32, + "probability": 0.999 + }, + { + "start": 29187.21, + "end": 29190.85, + "probability": 0.992 + }, + { + "start": 29191.69, + "end": 29194.27, + "probability": 0.9856 + }, + { + "start": 29195.55, + "end": 29196.61, + "probability": 0.999 + }, + { + "start": 29197.41, + "end": 29198.87, + "probability": 0.9336 + }, + { + "start": 29199.17, + "end": 29200.69, + "probability": 0.835 + }, + { + "start": 29200.97, + "end": 29202.71, + "probability": 0.9482 + }, + { + "start": 29202.85, + "end": 29204.53, + "probability": 0.6968 + }, + { + "start": 29204.87, + "end": 29205.13, + "probability": 0.6672 + }, + { + "start": 29205.17, + "end": 29205.91, + "probability": 0.7942 + }, + { + "start": 29206.23, + "end": 29206.77, + "probability": 0.5169 + }, + { + "start": 29206.83, + "end": 29207.45, + "probability": 0.8326 + }, + { + "start": 29207.89, + "end": 29208.31, + "probability": 0.8448 + }, + { + "start": 29208.47, + "end": 29211.27, + "probability": 0.8908 + }, + { + "start": 29211.73, + "end": 29212.31, + "probability": 0.998 + }, + { + "start": 29212.33, + "end": 29214.05, + "probability": 0.8561 + }, + { + "start": 29214.57, + "end": 29215.09, + "probability": 0.6973 + }, + { + "start": 29215.23, + "end": 29219.37, + "probability": 0.9256 + }, + { + "start": 29219.55, + "end": 29223.07, + "probability": 0.9915 + }, + { + "start": 29223.07, + "end": 29226.27, + "probability": 0.9834 + }, + { + "start": 29226.73, + "end": 29228.27, + "probability": 0.9966 + }, + { + "start": 29229.09, + "end": 29231.31, + "probability": 0.8975 + }, + { + "start": 29231.51, + "end": 29231.97, + "probability": 0.2473 + }, + { + "start": 29231.99, + "end": 29233.73, + "probability": 0.9219 + }, + { + "start": 29234.29, + "end": 29239.37, + "probability": 0.9804 + }, + { + "start": 29239.89, + "end": 29241.43, + "probability": 0.9966 + }, + { + "start": 29242.13, + "end": 29244.93, + "probability": 0.8018 + }, + { + "start": 29245.01, + "end": 29246.41, + "probability": 0.9895 + }, + { + "start": 29246.81, + "end": 29250.05, + "probability": 0.9805 + }, + { + "start": 29250.55, + "end": 29253.73, + "probability": 0.9727 + }, + { + "start": 29254.05, + "end": 29254.37, + "probability": 0.8294 + }, + { + "start": 29254.45, + "end": 29254.99, + "probability": 0.4219 + }, + { + "start": 29255.41, + "end": 29256.13, + "probability": 0.5785 + }, + { + "start": 29256.47, + "end": 29257.81, + "probability": 0.908 + }, + { + "start": 29258.41, + "end": 29260.35, + "probability": 0.9207 + }, + { + "start": 29260.39, + "end": 29260.73, + "probability": 0.718 + }, + { + "start": 29260.85, + "end": 29261.47, + "probability": 0.923 + }, + { + "start": 29262.17, + "end": 29264.09, + "probability": 0.9809 + }, + { + "start": 29264.21, + "end": 29265.93, + "probability": 0.9641 + }, + { + "start": 29266.33, + "end": 29269.75, + "probability": 0.9905 + }, + { + "start": 29270.41, + "end": 29272.11, + "probability": 0.8141 + }, + { + "start": 29272.71, + "end": 29274.43, + "probability": 0.6929 + }, + { + "start": 29274.77, + "end": 29275.33, + "probability": 0.7222 + }, + { + "start": 29275.57, + "end": 29277.75, + "probability": 0.9922 + }, + { + "start": 29278.27, + "end": 29279.43, + "probability": 0.9836 + }, + { + "start": 29279.83, + "end": 29283.13, + "probability": 0.9147 + }, + { + "start": 29283.65, + "end": 29284.75, + "probability": 0.5105 + }, + { + "start": 29285.39, + "end": 29286.49, + "probability": 0.6049 + }, + { + "start": 29286.89, + "end": 29287.95, + "probability": 0.9146 + }, + { + "start": 29288.31, + "end": 29290.1, + "probability": 0.9702 + }, + { + "start": 29290.35, + "end": 29290.57, + "probability": 0.741 + }, + { + "start": 29290.77, + "end": 29291.75, + "probability": 0.4932 + }, + { + "start": 29291.95, + "end": 29293.19, + "probability": 0.9375 + }, + { + "start": 29294.09, + "end": 29296.21, + "probability": 0.6722 + }, + { + "start": 29308.65, + "end": 29309.39, + "probability": 0.7242 + }, + { + "start": 29309.97, + "end": 29312.21, + "probability": 0.779 + }, + { + "start": 29313.17, + "end": 29315.35, + "probability": 0.9469 + }, + { + "start": 29315.67, + "end": 29317.75, + "probability": 0.9948 + }, + { + "start": 29318.33, + "end": 29319.67, + "probability": 0.9956 + }, + { + "start": 29320.55, + "end": 29323.17, + "probability": 0.999 + }, + { + "start": 29324.13, + "end": 29324.71, + "probability": 0.7793 + }, + { + "start": 29324.71, + "end": 29325.39, + "probability": 0.6855 + }, + { + "start": 29326.37, + "end": 29329.15, + "probability": 0.9824 + }, + { + "start": 29329.51, + "end": 29332.01, + "probability": 0.9246 + }, + { + "start": 29333.83, + "end": 29337.09, + "probability": 0.9621 + }, + { + "start": 29337.15, + "end": 29337.15, + "probability": 0.6041 + }, + { + "start": 29337.15, + "end": 29338.83, + "probability": 0.8915 + }, + { + "start": 29339.31, + "end": 29339.61, + "probability": 0.0595 + }, + { + "start": 29339.95, + "end": 29340.37, + "probability": 0.502 + }, + { + "start": 29340.67, + "end": 29343.45, + "probability": 0.8839 + }, + { + "start": 29343.57, + "end": 29345.03, + "probability": 0.9979 + }, + { + "start": 29345.15, + "end": 29346.71, + "probability": 0.9771 + }, + { + "start": 29347.2, + "end": 29350.51, + "probability": 0.9985 + }, + { + "start": 29351.09, + "end": 29352.31, + "probability": 0.7646 + }, + { + "start": 29352.37, + "end": 29356.81, + "probability": 0.9975 + }, + { + "start": 29357.55, + "end": 29361.49, + "probability": 0.9941 + }, + { + "start": 29362.13, + "end": 29367.09, + "probability": 0.9793 + }, + { + "start": 29368.19, + "end": 29370.81, + "probability": 0.9948 + }, + { + "start": 29371.61, + "end": 29375.31, + "probability": 0.836 + }, + { + "start": 29375.91, + "end": 29376.39, + "probability": 0.6659 + }, + { + "start": 29376.43, + "end": 29377.87, + "probability": 0.9615 + }, + { + "start": 29377.99, + "end": 29381.13, + "probability": 0.9858 + }, + { + "start": 29381.75, + "end": 29382.75, + "probability": 0.0053 + }, + { + "start": 29383.37, + "end": 29383.67, + "probability": 0.2931 + }, + { + "start": 29383.79, + "end": 29384.99, + "probability": 0.5139 + }, + { + "start": 29387.83, + "end": 29391.75, + "probability": 0.9438 + }, + { + "start": 29392.29, + "end": 29395.69, + "probability": 0.8706 + }, + { + "start": 29396.21, + "end": 29398.99, + "probability": 0.9388 + }, + { + "start": 29399.21, + "end": 29401.16, + "probability": 0.9733 + }, + { + "start": 29403.49, + "end": 29407.69, + "probability": 0.9966 + }, + { + "start": 29408.39, + "end": 29412.17, + "probability": 0.8675 + }, + { + "start": 29412.79, + "end": 29416.15, + "probability": 0.9686 + }, + { + "start": 29417.23, + "end": 29423.35, + "probability": 0.9968 + }, + { + "start": 29423.83, + "end": 29427.43, + "probability": 0.9844 + }, + { + "start": 29427.89, + "end": 29432.75, + "probability": 0.9562 + }, + { + "start": 29433.39, + "end": 29434.27, + "probability": 0.8938 + }, + { + "start": 29435.45, + "end": 29438.86, + "probability": 0.9821 + }, + { + "start": 29439.54, + "end": 29440.94, + "probability": 0.9929 + }, + { + "start": 29441.69, + "end": 29443.53, + "probability": 0.9956 + }, + { + "start": 29443.87, + "end": 29445.89, + "probability": 0.9978 + }, + { + "start": 29446.47, + "end": 29451.67, + "probability": 0.9797 + }, + { + "start": 29452.43, + "end": 29454.77, + "probability": 0.7931 + }, + { + "start": 29455.13, + "end": 29458.35, + "probability": 0.9973 + }, + { + "start": 29458.67, + "end": 29463.63, + "probability": 0.9886 + }, + { + "start": 29464.05, + "end": 29465.17, + "probability": 0.9736 + }, + { + "start": 29466.01, + "end": 29468.49, + "probability": 0.7807 + }, + { + "start": 29469.15, + "end": 29472.71, + "probability": 0.9881 + }, + { + "start": 29472.71, + "end": 29476.93, + "probability": 0.9111 + }, + { + "start": 29477.63, + "end": 29479.33, + "probability": 0.896 + }, + { + "start": 29479.37, + "end": 29482.65, + "probability": 0.9426 + }, + { + "start": 29483.05, + "end": 29484.17, + "probability": 0.9716 + }, + { + "start": 29484.67, + "end": 29485.93, + "probability": 0.8062 + }, + { + "start": 29486.57, + "end": 29488.87, + "probability": 0.6342 + }, + { + "start": 29489.51, + "end": 29494.65, + "probability": 0.8613 + }, + { + "start": 29495.33, + "end": 29496.53, + "probability": 0.8644 + }, + { + "start": 29496.61, + "end": 29499.17, + "probability": 0.9819 + }, + { + "start": 29499.93, + "end": 29501.87, + "probability": 0.6683 + }, + { + "start": 29502.13, + "end": 29503.33, + "probability": 0.9958 + }, + { + "start": 29503.39, + "end": 29504.95, + "probability": 0.991 + }, + { + "start": 29505.15, + "end": 29506.53, + "probability": 0.8832 + }, + { + "start": 29507.27, + "end": 29509.49, + "probability": 0.8425 + }, + { + "start": 29509.77, + "end": 29512.89, + "probability": 0.8255 + }, + { + "start": 29513.01, + "end": 29514.81, + "probability": 0.8745 + }, + { + "start": 29514.95, + "end": 29521.15, + "probability": 0.9661 + }, + { + "start": 29521.69, + "end": 29522.19, + "probability": 0.9386 + }, + { + "start": 29522.31, + "end": 29522.87, + "probability": 0.651 + }, + { + "start": 29523.03, + "end": 29523.72, + "probability": 0.8358 + }, + { + "start": 29524.39, + "end": 29527.41, + "probability": 0.9909 + }, + { + "start": 29527.91, + "end": 29529.53, + "probability": 0.8699 + }, + { + "start": 29530.11, + "end": 29531.31, + "probability": 0.7017 + }, + { + "start": 29531.43, + "end": 29532.29, + "probability": 0.8931 + }, + { + "start": 29532.43, + "end": 29534.11, + "probability": 0.9683 + }, + { + "start": 29534.85, + "end": 29536.55, + "probability": 0.8122 + }, + { + "start": 29536.61, + "end": 29540.11, + "probability": 0.9238 + }, + { + "start": 29540.87, + "end": 29543.47, + "probability": 0.8166 + }, + { + "start": 29543.75, + "end": 29545.63, + "probability": 0.851 + }, + { + "start": 29546.25, + "end": 29546.55, + "probability": 0.704 + }, + { + "start": 29546.71, + "end": 29548.23, + "probability": 0.5608 + }, + { + "start": 29549.05, + "end": 29551.23, + "probability": 0.9729 + }, + { + "start": 29551.39, + "end": 29552.53, + "probability": 0.9518 + }, + { + "start": 29553.09, + "end": 29555.21, + "probability": 0.7565 + }, + { + "start": 29556.09, + "end": 29557.35, + "probability": 0.8247 + }, + { + "start": 29558.55, + "end": 29560.99, + "probability": 0.9916 + }, + { + "start": 29561.47, + "end": 29565.67, + "probability": 0.9129 + }, + { + "start": 29566.01, + "end": 29566.49, + "probability": 0.4106 + }, + { + "start": 29567.23, + "end": 29570.51, + "probability": 0.9944 + }, + { + "start": 29570.89, + "end": 29572.09, + "probability": 0.9876 + }, + { + "start": 29572.97, + "end": 29579.65, + "probability": 0.9602 + }, + { + "start": 29579.65, + "end": 29584.87, + "probability": 0.9979 + }, + { + "start": 29586.01, + "end": 29588.25, + "probability": 0.9226 + }, + { + "start": 29588.99, + "end": 29594.57, + "probability": 0.9912 + }, + { + "start": 29594.57, + "end": 29597.75, + "probability": 0.9492 + }, + { + "start": 29597.95, + "end": 29598.81, + "probability": 0.9736 + }, + { + "start": 29599.87, + "end": 29601.46, + "probability": 0.9956 + }, + { + "start": 29601.97, + "end": 29602.77, + "probability": 0.7871 + }, + { + "start": 29603.21, + "end": 29607.21, + "probability": 0.9038 + }, + { + "start": 29607.37, + "end": 29607.85, + "probability": 0.4372 + }, + { + "start": 29607.85, + "end": 29607.89, + "probability": 0.0439 + }, + { + "start": 29608.07, + "end": 29608.17, + "probability": 0.2523 + }, + { + "start": 29609.13, + "end": 29611.43, + "probability": 0.5075 + }, + { + "start": 29612.01, + "end": 29612.53, + "probability": 0.9141 + }, + { + "start": 29613.11, + "end": 29614.71, + "probability": 0.9741 + }, + { + "start": 29616.21, + "end": 29618.05, + "probability": 0.724 + }, + { + "start": 29618.41, + "end": 29620.85, + "probability": 0.9883 + }, + { + "start": 29621.45, + "end": 29622.77, + "probability": 0.9666 + }, + { + "start": 29622.83, + "end": 29624.43, + "probability": 0.6914 + }, + { + "start": 29624.71, + "end": 29626.01, + "probability": 0.8054 + }, + { + "start": 29626.41, + "end": 29628.33, + "probability": 0.9003 + }, + { + "start": 29628.53, + "end": 29629.47, + "probability": 0.7502 + }, + { + "start": 29629.97, + "end": 29632.19, + "probability": 0.9893 + }, + { + "start": 29633.33, + "end": 29638.17, + "probability": 0.9402 + }, + { + "start": 29638.19, + "end": 29638.53, + "probability": 0.8038 + }, + { + "start": 29638.75, + "end": 29640.27, + "probability": 0.7729 + }, + { + "start": 29640.47, + "end": 29641.71, + "probability": 0.1102 + }, + { + "start": 29643.87, + "end": 29644.23, + "probability": 0.6105 + }, + { + "start": 29644.99, + "end": 29646.25, + "probability": 0.7395 + }, + { + "start": 29646.64, + "end": 29648.06, + "probability": 0.6086 + }, + { + "start": 29648.89, + "end": 29652.95, + "probability": 0.6765 + }, + { + "start": 29653.05, + "end": 29655.25, + "probability": 0.0898 + }, + { + "start": 29655.35, + "end": 29660.39, + "probability": 0.7525 + }, + { + "start": 29660.78, + "end": 29663.17, + "probability": 0.7798 + }, + { + "start": 29663.49, + "end": 29663.85, + "probability": 0.8188 + }, + { + "start": 29663.97, + "end": 29666.35, + "probability": 0.5556 + }, + { + "start": 29666.57, + "end": 29671.29, + "probability": 0.993 + }, + { + "start": 29671.29, + "end": 29675.51, + "probability": 0.9799 + }, + { + "start": 29676.37, + "end": 29680.79, + "probability": 0.8377 + }, + { + "start": 29681.25, + "end": 29684.67, + "probability": 0.9895 + }, + { + "start": 29685.35, + "end": 29686.79, + "probability": 0.9905 + }, + { + "start": 29687.17, + "end": 29690.83, + "probability": 0.9937 + }, + { + "start": 29690.89, + "end": 29695.61, + "probability": 0.994 + }, + { + "start": 29696.67, + "end": 29701.92, + "probability": 0.9956 + }, + { + "start": 29702.85, + "end": 29707.81, + "probability": 0.6718 + }, + { + "start": 29709.05, + "end": 29712.03, + "probability": 0.9905 + }, + { + "start": 29712.73, + "end": 29715.33, + "probability": 0.8915 + }, + { + "start": 29716.35, + "end": 29719.95, + "probability": 0.9199 + }, + { + "start": 29720.67, + "end": 29726.61, + "probability": 0.9776 + }, + { + "start": 29727.09, + "end": 29731.73, + "probability": 0.9974 + }, + { + "start": 29731.77, + "end": 29733.31, + "probability": 0.8361 + }, + { + "start": 29733.63, + "end": 29735.61, + "probability": 0.9757 + }, + { + "start": 29736.09, + "end": 29739.27, + "probability": 0.9666 + }, + { + "start": 29739.67, + "end": 29741.83, + "probability": 0.9862 + }, + { + "start": 29742.03, + "end": 29744.32, + "probability": 0.8773 + }, + { + "start": 29744.85, + "end": 29747.49, + "probability": 0.9331 + }, + { + "start": 29747.79, + "end": 29751.91, + "probability": 0.978 + }, + { + "start": 29753.17, + "end": 29760.59, + "probability": 0.9929 + }, + { + "start": 29761.11, + "end": 29761.85, + "probability": 0.7292 + }, + { + "start": 29762.91, + "end": 29763.77, + "probability": 0.3467 + }, + { + "start": 29764.31, + "end": 29768.51, + "probability": 0.9849 + }, + { + "start": 29768.99, + "end": 29774.09, + "probability": 0.9934 + }, + { + "start": 29775.41, + "end": 29781.01, + "probability": 0.993 + }, + { + "start": 29782.47, + "end": 29783.31, + "probability": 0.8842 + }, + { + "start": 29783.31, + "end": 29783.79, + "probability": 0.0727 + }, + { + "start": 29784.21, + "end": 29786.98, + "probability": 0.9956 + }, + { + "start": 29787.47, + "end": 29787.77, + "probability": 0.8053 + }, + { + "start": 29788.91, + "end": 29789.87, + "probability": 0.2905 + }, + { + "start": 29789.93, + "end": 29791.85, + "probability": 0.9801 + }, + { + "start": 29792.01, + "end": 29795.91, + "probability": 0.9309 + }, + { + "start": 29796.23, + "end": 29799.89, + "probability": 0.8696 + }, + { + "start": 29807.29, + "end": 29808.13, + "probability": 0.7785 + }, + { + "start": 29814.41, + "end": 29816.95, + "probability": 0.6609 + }, + { + "start": 29818.17, + "end": 29818.87, + "probability": 0.9096 + }, + { + "start": 29818.97, + "end": 29821.33, + "probability": 0.9773 + }, + { + "start": 29821.47, + "end": 29824.99, + "probability": 0.9796 + }, + { + "start": 29826.15, + "end": 29827.23, + "probability": 0.9902 + }, + { + "start": 29828.57, + "end": 29829.53, + "probability": 0.8635 + }, + { + "start": 29831.61, + "end": 29833.25, + "probability": 0.7979 + }, + { + "start": 29834.19, + "end": 29835.17, + "probability": 0.9954 + }, + { + "start": 29836.51, + "end": 29838.23, + "probability": 0.9917 + }, + { + "start": 29838.95, + "end": 29842.37, + "probability": 0.9931 + }, + { + "start": 29842.37, + "end": 29845.45, + "probability": 0.9979 + }, + { + "start": 29845.69, + "end": 29847.13, + "probability": 0.9894 + }, + { + "start": 29847.19, + "end": 29847.75, + "probability": 0.912 + }, + { + "start": 29849.13, + "end": 29851.01, + "probability": 0.9965 + }, + { + "start": 29851.97, + "end": 29853.49, + "probability": 0.5174 + }, + { + "start": 29855.05, + "end": 29858.75, + "probability": 0.9948 + }, + { + "start": 29859.49, + "end": 29860.23, + "probability": 0.5565 + }, + { + "start": 29860.55, + "end": 29861.45, + "probability": 0.5039 + }, + { + "start": 29862.33, + "end": 29865.73, + "probability": 0.8386 + }, + { + "start": 29866.53, + "end": 29872.15, + "probability": 0.9811 + }, + { + "start": 29872.77, + "end": 29875.77, + "probability": 0.9043 + }, + { + "start": 29876.31, + "end": 29880.69, + "probability": 0.9985 + }, + { + "start": 29882.17, + "end": 29887.05, + "probability": 0.9821 + }, + { + "start": 29888.55, + "end": 29890.44, + "probability": 0.8686 + }, + { + "start": 29891.51, + "end": 29894.15, + "probability": 0.9902 + }, + { + "start": 29895.03, + "end": 29898.01, + "probability": 0.9484 + }, + { + "start": 29899.91, + "end": 29907.29, + "probability": 0.9924 + }, + { + "start": 29907.89, + "end": 29910.47, + "probability": 0.828 + }, + { + "start": 29911.71, + "end": 29917.61, + "probability": 0.9966 + }, + { + "start": 29918.67, + "end": 29922.27, + "probability": 0.9886 + }, + { + "start": 29922.95, + "end": 29927.09, + "probability": 0.8713 + }, + { + "start": 29928.29, + "end": 29935.07, + "probability": 0.9874 + }, + { + "start": 29935.81, + "end": 29939.41, + "probability": 0.9752 + }, + { + "start": 29941.27, + "end": 29943.57, + "probability": 0.9951 + }, + { + "start": 29943.71, + "end": 29943.79, + "probability": 0.2043 + }, + { + "start": 29943.99, + "end": 29944.77, + "probability": 0.8725 + }, + { + "start": 29945.25, + "end": 29945.99, + "probability": 0.8508 + }, + { + "start": 29946.77, + "end": 29948.73, + "probability": 0.8722 + }, + { + "start": 29949.11, + "end": 29950.67, + "probability": 0.9916 + }, + { + "start": 29951.09, + "end": 29952.79, + "probability": 0.9888 + }, + { + "start": 29953.35, + "end": 29957.31, + "probability": 0.916 + }, + { + "start": 29957.47, + "end": 29963.51, + "probability": 0.9833 + }, + { + "start": 29965.39, + "end": 29971.75, + "probability": 0.9896 + }, + { + "start": 29972.73, + "end": 29980.47, + "probability": 0.9893 + }, + { + "start": 29981.75, + "end": 29982.33, + "probability": 0.5637 + }, + { + "start": 29983.07, + "end": 29989.59, + "probability": 0.9883 + }, + { + "start": 29990.73, + "end": 29994.25, + "probability": 0.9639 + }, + { + "start": 29995.85, + "end": 29996.99, + "probability": 0.9542 + }, + { + "start": 29997.51, + "end": 29998.45, + "probability": 0.8893 + }, + { + "start": 29999.47, + "end": 30004.41, + "probability": 0.9896 + }, + { + "start": 30004.95, + "end": 30008.81, + "probability": 0.9969 + }, + { + "start": 30009.25, + "end": 30011.75, + "probability": 0.7697 + }, + { + "start": 30020.83, + "end": 30022.31, + "probability": 0.0381 + }, + { + "start": 30023.29, + "end": 30027.69, + "probability": 0.2944 + }, + { + "start": 30028.03, + "end": 30029.63, + "probability": 0.3879 + }, + { + "start": 30030.97, + "end": 30040.77, + "probability": 0.7573 + }, + { + "start": 30041.65, + "end": 30042.49, + "probability": 0.6337 + }, + { + "start": 30042.59, + "end": 30047.67, + "probability": 0.8023 + }, + { + "start": 30047.75, + "end": 30048.63, + "probability": 0.6577 + }, + { + "start": 30049.49, + "end": 30050.53, + "probability": 0.9087 + }, + { + "start": 30051.85, + "end": 30054.75, + "probability": 0.9095 + }, + { + "start": 30057.45, + "end": 30060.11, + "probability": 0.0006 + }, + { + "start": 30063.35, + "end": 30064.95, + "probability": 0.0748 + }, + { + "start": 30069.71, + "end": 30075.07, + "probability": 0.5639 + }, + { + "start": 30077.69, + "end": 30080.25, + "probability": 0.9832 + }, + { + "start": 30080.61, + "end": 30086.37, + "probability": 0.9539 + }, + { + "start": 30086.73, + "end": 30088.93, + "probability": 0.9014 + }, + { + "start": 30089.27, + "end": 30095.59, + "probability": 0.0118 + }, + { + "start": 30095.59, + "end": 30096.67, + "probability": 0.4088 + }, + { + "start": 30096.81, + "end": 30099.39, + "probability": 0.4678 + }, + { + "start": 30099.39, + "end": 30099.93, + "probability": 0.0374 + }, + { + "start": 30099.93, + "end": 30099.97, + "probability": 0.0849 + }, + { + "start": 30101.05, + "end": 30106.81, + "probability": 0.6859 + }, + { + "start": 30107.91, + "end": 30109.53, + "probability": 0.4712 + }, + { + "start": 30110.25, + "end": 30111.13, + "probability": 0.7587 + }, + { + "start": 30111.21, + "end": 30111.69, + "probability": 0.9686 + }, + { + "start": 30111.83, + "end": 30114.45, + "probability": 0.9618 + }, + { + "start": 30115.65, + "end": 30119.17, + "probability": 0.9543 + }, + { + "start": 30119.37, + "end": 30119.79, + "probability": 0.5323 + }, + { + "start": 30119.91, + "end": 30120.67, + "probability": 0.5779 + }, + { + "start": 30121.27, + "end": 30122.37, + "probability": 0.2755 + }, + { + "start": 30122.61, + "end": 30128.47, + "probability": 0.9858 + }, + { + "start": 30129.57, + "end": 30131.85, + "probability": 0.7314 + }, + { + "start": 30132.03, + "end": 30133.01, + "probability": 0.7297 + }, + { + "start": 30133.09, + "end": 30134.01, + "probability": 0.6642 + }, + { + "start": 30134.07, + "end": 30137.41, + "probability": 0.7964 + }, + { + "start": 30137.41, + "end": 30141.43, + "probability": 0.9761 + }, + { + "start": 30142.33, + "end": 30146.51, + "probability": 0.539 + }, + { + "start": 30152.29, + "end": 30156.07, + "probability": 0.8592 + }, + { + "start": 30157.57, + "end": 30169.51, + "probability": 0.9194 + }, + { + "start": 30169.81, + "end": 30170.49, + "probability": 0.8155 + }, + { + "start": 30171.47, + "end": 30173.07, + "probability": 0.8349 + }, + { + "start": 30174.13, + "end": 30176.61, + "probability": 0.9756 + }, + { + "start": 30177.53, + "end": 30178.19, + "probability": 0.3071 + }, + { + "start": 30180.99, + "end": 30182.01, + "probability": 0.2888 + }, + { + "start": 30182.55, + "end": 30184.89, + "probability": 0.1327 + }, + { + "start": 30185.33, + "end": 30189.15, + "probability": 0.1936 + }, + { + "start": 30199.17, + "end": 30201.19, + "probability": 0.502 + }, + { + "start": 30214.03, + "end": 30216.07, + "probability": 0.6347 + }, + { + "start": 30216.21, + "end": 30220.37, + "probability": 0.9783 + }, + { + "start": 30221.09, + "end": 30222.15, + "probability": 0.0991 + }, + { + "start": 30222.17, + "end": 30225.57, + "probability": 0.8927 + }, + { + "start": 30225.57, + "end": 30228.37, + "probability": 0.9795 + }, + { + "start": 30229.03, + "end": 30231.51, + "probability": 0.7668 + }, + { + "start": 30231.91, + "end": 30233.61, + "probability": 0.9772 + }, + { + "start": 30233.61, + "end": 30236.11, + "probability": 0.9525 + }, + { + "start": 30236.31, + "end": 30240.19, + "probability": 0.9738 + }, + { + "start": 30240.25, + "end": 30244.41, + "probability": 0.9662 + }, + { + "start": 30244.99, + "end": 30246.97, + "probability": 0.8447 + }, + { + "start": 30246.97, + "end": 30251.67, + "probability": 0.8915 + }, + { + "start": 30252.87, + "end": 30256.53, + "probability": 0.939 + }, + { + "start": 30256.71, + "end": 30260.23, + "probability": 0.83 + }, + { + "start": 30260.23, + "end": 30262.77, + "probability": 0.9759 + }, + { + "start": 30263.13, + "end": 30263.77, + "probability": 0.8397 + }, + { + "start": 30263.97, + "end": 30265.63, + "probability": 0.8104 + }, + { + "start": 30265.63, + "end": 30268.53, + "probability": 0.9927 + }, + { + "start": 30268.61, + "end": 30271.25, + "probability": 0.704 + }, + { + "start": 30271.25, + "end": 30274.87, + "probability": 0.9449 + }, + { + "start": 30274.89, + "end": 30275.21, + "probability": 0.3334 + }, + { + "start": 30275.29, + "end": 30280.97, + "probability": 0.9731 + }, + { + "start": 30281.39, + "end": 30282.03, + "probability": 0.545 + }, + { + "start": 30283.73, + "end": 30284.33, + "probability": 0.7886 + }, + { + "start": 30284.65, + "end": 30287.95, + "probability": 0.9811 + }, + { + "start": 30287.95, + "end": 30290.81, + "probability": 0.9336 + }, + { + "start": 30291.21, + "end": 30294.83, + "probability": 0.7491 + }, + { + "start": 30295.27, + "end": 30296.63, + "probability": 0.9108 + }, + { + "start": 30297.39, + "end": 30300.53, + "probability": 0.9984 + }, + { + "start": 30300.53, + "end": 30305.07, + "probability": 0.3953 + }, + { + "start": 30305.07, + "end": 30305.11, + "probability": 0.3224 + }, + { + "start": 30305.11, + "end": 30305.11, + "probability": 0.2663 + }, + { + "start": 30305.11, + "end": 30308.51, + "probability": 0.2358 + }, + { + "start": 30308.69, + "end": 30310.43, + "probability": 0.9356 + }, + { + "start": 30310.59, + "end": 30313.37, + "probability": 0.6229 + }, + { + "start": 30313.45, + "end": 30313.81, + "probability": 0.2436 + }, + { + "start": 30314.07, + "end": 30315.39, + "probability": 0.5975 + }, + { + "start": 30315.51, + "end": 30318.33, + "probability": 0.9437 + }, + { + "start": 30318.41, + "end": 30318.93, + "probability": 0.4079 + }, + { + "start": 30318.97, + "end": 30319.91, + "probability": 0.4919 + }, + { + "start": 30319.95, + "end": 30320.53, + "probability": 0.5184 + }, + { + "start": 30320.67, + "end": 30321.37, + "probability": 0.5849 + }, + { + "start": 30321.97, + "end": 30325.03, + "probability": 0.1659 + }, + { + "start": 30325.05, + "end": 30327.41, + "probability": 0.9744 + }, + { + "start": 30327.57, + "end": 30327.97, + "probability": 0.468 + }, + { + "start": 30328.85, + "end": 30335.69, + "probability": 0.898 + }, + { + "start": 30336.57, + "end": 30339.71, + "probability": 0.9847 + }, + { + "start": 30340.69, + "end": 30341.5, + "probability": 0.5024 + }, + { + "start": 30341.75, + "end": 30343.65, + "probability": 0.8733 + }, + { + "start": 30345.31, + "end": 30347.19, + "probability": 0.002 + }, + { + "start": 30357.37, + "end": 30358.77, + "probability": 0.5713 + }, + { + "start": 30358.91, + "end": 30361.53, + "probability": 0.8476 + }, + { + "start": 30361.67, + "end": 30364.07, + "probability": 0.7379 + }, + { + "start": 30364.15, + "end": 30364.59, + "probability": 0.8367 + }, + { + "start": 30364.63, + "end": 30365.47, + "probability": 0.8431 + }, + { + "start": 30366.25, + "end": 30366.87, + "probability": 0.9402 + }, + { + "start": 30367.93, + "end": 30369.99, + "probability": 0.9865 + }, + { + "start": 30370.09, + "end": 30372.37, + "probability": 0.9627 + }, + { + "start": 30372.37, + "end": 30374.83, + "probability": 0.936 + }, + { + "start": 30374.99, + "end": 30377.55, + "probability": 0.851 + }, + { + "start": 30380.43, + "end": 30389.25, + "probability": 0.7686 + }, + { + "start": 30389.93, + "end": 30392.19, + "probability": 0.0877 + }, + { + "start": 30392.57, + "end": 30396.93, + "probability": 0.9312 + }, + { + "start": 30397.85, + "end": 30400.97, + "probability": 0.8062 + }, + { + "start": 30401.13, + "end": 30402.09, + "probability": 0.8453 + }, + { + "start": 30402.81, + "end": 30406.33, + "probability": 0.9274 + }, + { + "start": 30406.75, + "end": 30408.63, + "probability": 0.6177 + }, + { + "start": 30408.63, + "end": 30411.43, + "probability": 0.7056 + }, + { + "start": 30412.21, + "end": 30414.31, + "probability": 0.5259 + }, + { + "start": 30414.63, + "end": 30416.39, + "probability": 0.4875 + }, + { + "start": 30416.77, + "end": 30423.19, + "probability": 0.8466 + }, + { + "start": 30440.93, + "end": 30442.43, + "probability": 0.1125 + }, + { + "start": 30442.97, + "end": 30443.11, + "probability": 0.0058 + } + ], + "segments_count": 10801, + "words_count": 52903, + "avg_words_per_segment": 4.898, + "avg_segment_duration": 1.9995, + "avg_words_per_minute": 102.4175, + "plenum_id": "132928", + "duration": 30992.54, + "title": null, + "plenum_date": "2024-12-09" +} \ No newline at end of file