diff --git "a/134197/metadata.json" "b/134197/metadata.json" new file mode 100644--- /dev/null +++ "b/134197/metadata.json" @@ -0,0 +1,21797 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "134197", + "quality_score": 0.8452, + "per_segment_quality_scores": [ + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.0, + "end": 170.0, + "probability": 0.0 + }, + { + "start": 170.28, + "end": 170.52, + "probability": 0.106 + }, + { + "start": 170.52, + "end": 170.52, + "probability": 0.0806 + }, + { + "start": 170.52, + "end": 176.12, + "probability": 0.7065 + }, + { + "start": 176.18, + "end": 177.26, + "probability": 0.8414 + }, + { + "start": 177.34, + "end": 180.78, + "probability": 0.9451 + }, + { + "start": 181.5, + "end": 184.42, + "probability": 0.7676 + }, + { + "start": 184.56, + "end": 185.56, + "probability": 0.4964 + }, + { + "start": 186.12, + "end": 187.68, + "probability": 0.991 + }, + { + "start": 187.84, + "end": 191.7, + "probability": 0.999 + }, + { + "start": 192.62, + "end": 196.04, + "probability": 0.8776 + }, + { + "start": 196.66, + "end": 198.74, + "probability": 0.6089 + }, + { + "start": 199.64, + "end": 203.26, + "probability": 0.9529 + }, + { + "start": 204.32, + "end": 204.38, + "probability": 0.2045 + }, + { + "start": 204.4, + "end": 205.16, + "probability": 0.6281 + }, + { + "start": 205.34, + "end": 205.98, + "probability": 0.5959 + }, + { + "start": 206.0, + "end": 207.72, + "probability": 0.9146 + }, + { + "start": 208.0, + "end": 209.38, + "probability": 0.6045 + }, + { + "start": 209.4, + "end": 212.02, + "probability": 0.5066 + }, + { + "start": 212.68, + "end": 212.76, + "probability": 0.1397 + }, + { + "start": 212.76, + "end": 212.76, + "probability": 0.0401 + }, + { + "start": 212.76, + "end": 214.48, + "probability": 0.0425 + }, + { + "start": 214.56, + "end": 214.78, + "probability": 0.7342 + }, + { + "start": 214.9, + "end": 215.42, + "probability": 0.8447 + }, + { + "start": 215.52, + "end": 217.46, + "probability": 0.2538 + }, + { + "start": 218.24, + "end": 219.22, + "probability": 0.3706 + }, + { + "start": 219.38, + "end": 220.52, + "probability": 0.9131 + }, + { + "start": 220.74, + "end": 221.92, + "probability": 0.2912 + }, + { + "start": 221.98, + "end": 223.5, + "probability": 0.0256 + }, + { + "start": 223.7, + "end": 226.68, + "probability": 0.2045 + }, + { + "start": 227.58, + "end": 229.66, + "probability": 0.1459 + }, + { + "start": 229.92, + "end": 229.92, + "probability": 0.5354 + }, + { + "start": 229.92, + "end": 229.92, + "probability": 0.1186 + }, + { + "start": 229.92, + "end": 229.92, + "probability": 0.1132 + }, + { + "start": 229.92, + "end": 229.92, + "probability": 0.3057 + }, + { + "start": 229.92, + "end": 229.92, + "probability": 0.0498 + }, + { + "start": 229.92, + "end": 231.1, + "probability": 0.6971 + }, + { + "start": 231.2, + "end": 233.92, + "probability": 0.7864 + }, + { + "start": 233.98, + "end": 235.48, + "probability": 0.7296 + }, + { + "start": 236.62, + "end": 240.94, + "probability": 0.7375 + }, + { + "start": 241.02, + "end": 242.36, + "probability": 0.0333 + }, + { + "start": 242.36, + "end": 243.14, + "probability": 0.3175 + }, + { + "start": 243.66, + "end": 248.34, + "probability": 0.1064 + }, + { + "start": 249.84, + "end": 249.84, + "probability": 0.0657 + }, + { + "start": 249.84, + "end": 249.84, + "probability": 0.2579 + }, + { + "start": 249.84, + "end": 249.84, + "probability": 0.034 + }, + { + "start": 249.84, + "end": 250.67, + "probability": 0.2322 + }, + { + "start": 252.84, + "end": 254.75, + "probability": 0.559 + }, + { + "start": 255.92, + "end": 257.66, + "probability": 0.8159 + }, + { + "start": 258.34, + "end": 261.08, + "probability": 0.9055 + }, + { + "start": 262.12, + "end": 264.22, + "probability": 0.9083 + }, + { + "start": 265.78, + "end": 267.92, + "probability": 0.7144 + }, + { + "start": 267.98, + "end": 270.62, + "probability": 0.9048 + }, + { + "start": 271.5, + "end": 274.78, + "probability": 0.973 + }, + { + "start": 275.08, + "end": 276.2, + "probability": 0.6426 + }, + { + "start": 276.94, + "end": 277.7, + "probability": 0.539 + }, + { + "start": 277.9, + "end": 281.46, + "probability": 0.9754 + }, + { + "start": 282.64, + "end": 286.8, + "probability": 0.9451 + }, + { + "start": 287.3, + "end": 288.12, + "probability": 0.887 + }, + { + "start": 288.78, + "end": 290.28, + "probability": 0.9907 + }, + { + "start": 291.18, + "end": 292.96, + "probability": 0.9789 + }, + { + "start": 293.94, + "end": 296.27, + "probability": 0.9792 + }, + { + "start": 296.9, + "end": 297.92, + "probability": 0.4298 + }, + { + "start": 298.56, + "end": 300.85, + "probability": 0.8833 + }, + { + "start": 301.74, + "end": 302.9, + "probability": 0.9324 + }, + { + "start": 303.58, + "end": 305.84, + "probability": 0.9963 + }, + { + "start": 306.44, + "end": 309.82, + "probability": 0.9944 + }, + { + "start": 310.02, + "end": 310.64, + "probability": 0.7217 + }, + { + "start": 311.38, + "end": 313.57, + "probability": 0.9929 + }, + { + "start": 314.14, + "end": 315.04, + "probability": 0.6626 + }, + { + "start": 316.12, + "end": 317.1, + "probability": 0.7063 + }, + { + "start": 317.34, + "end": 318.08, + "probability": 0.7527 + }, + { + "start": 319.04, + "end": 321.36, + "probability": 0.9939 + }, + { + "start": 321.42, + "end": 321.74, + "probability": 0.8988 + }, + { + "start": 322.58, + "end": 325.38, + "probability": 0.9346 + }, + { + "start": 329.0, + "end": 330.42, + "probability": 0.819 + }, + { + "start": 331.94, + "end": 335.02, + "probability": 0.9548 + }, + { + "start": 335.24, + "end": 337.56, + "probability": 0.9844 + }, + { + "start": 338.24, + "end": 340.9, + "probability": 0.9809 + }, + { + "start": 341.54, + "end": 343.3, + "probability": 0.9187 + }, + { + "start": 344.24, + "end": 345.78, + "probability": 0.8213 + }, + { + "start": 347.56, + "end": 351.08, + "probability": 0.9836 + }, + { + "start": 351.7, + "end": 352.64, + "probability": 0.9844 + }, + { + "start": 353.3, + "end": 355.24, + "probability": 0.9741 + }, + { + "start": 356.54, + "end": 359.66, + "probability": 0.3338 + }, + { + "start": 361.42, + "end": 365.4, + "probability": 0.9844 + }, + { + "start": 365.4, + "end": 372.74, + "probability": 0.9976 + }, + { + "start": 373.12, + "end": 374.72, + "probability": 0.9965 + }, + { + "start": 375.6, + "end": 376.92, + "probability": 0.8789 + }, + { + "start": 377.9, + "end": 380.04, + "probability": 0.9854 + }, + { + "start": 380.06, + "end": 383.02, + "probability": 0.9366 + }, + { + "start": 383.08, + "end": 389.3, + "probability": 0.9795 + }, + { + "start": 390.86, + "end": 391.9, + "probability": 0.8013 + }, + { + "start": 392.98, + "end": 394.68, + "probability": 0.9963 + }, + { + "start": 394.76, + "end": 397.32, + "probability": 0.9841 + }, + { + "start": 397.94, + "end": 399.64, + "probability": 0.9351 + }, + { + "start": 400.8, + "end": 404.16, + "probability": 0.9305 + }, + { + "start": 404.84, + "end": 405.62, + "probability": 0.9946 + }, + { + "start": 406.46, + "end": 407.76, + "probability": 0.884 + }, + { + "start": 408.3, + "end": 414.88, + "probability": 0.865 + }, + { + "start": 414.88, + "end": 416.5, + "probability": 0.9048 + }, + { + "start": 417.66, + "end": 421.98, + "probability": 0.9831 + }, + { + "start": 421.98, + "end": 425.36, + "probability": 0.9898 + }, + { + "start": 426.52, + "end": 432.54, + "probability": 0.953 + }, + { + "start": 433.84, + "end": 435.92, + "probability": 0.9782 + }, + { + "start": 436.86, + "end": 438.03, + "probability": 0.9212 + }, + { + "start": 438.94, + "end": 440.32, + "probability": 0.9706 + }, + { + "start": 441.54, + "end": 442.9, + "probability": 0.9583 + }, + { + "start": 444.04, + "end": 447.66, + "probability": 0.9794 + }, + { + "start": 450.1, + "end": 452.99, + "probability": 0.7556 + }, + { + "start": 453.0, + "end": 455.08, + "probability": 0.9934 + }, + { + "start": 455.92, + "end": 457.38, + "probability": 0.9612 + }, + { + "start": 458.18, + "end": 462.48, + "probability": 0.9912 + }, + { + "start": 464.06, + "end": 466.88, + "probability": 0.8004 + }, + { + "start": 467.16, + "end": 467.68, + "probability": 0.7136 + }, + { + "start": 467.76, + "end": 470.16, + "probability": 0.8131 + }, + { + "start": 470.9, + "end": 473.16, + "probability": 0.9968 + }, + { + "start": 474.0, + "end": 477.58, + "probability": 0.9804 + }, + { + "start": 478.68, + "end": 481.9, + "probability": 0.7436 + }, + { + "start": 482.66, + "end": 485.04, + "probability": 0.9948 + }, + { + "start": 487.52, + "end": 489.46, + "probability": 0.6784 + }, + { + "start": 492.05, + "end": 499.1, + "probability": 0.8656 + }, + { + "start": 499.7, + "end": 502.1, + "probability": 0.9316 + }, + { + "start": 502.1, + "end": 503.84, + "probability": 0.769 + }, + { + "start": 505.34, + "end": 506.18, + "probability": 0.637 + }, + { + "start": 506.54, + "end": 510.42, + "probability": 0.9922 + }, + { + "start": 510.88, + "end": 514.02, + "probability": 0.9551 + }, + { + "start": 514.02, + "end": 520.08, + "probability": 0.9904 + }, + { + "start": 520.22, + "end": 524.44, + "probability": 0.9972 + }, + { + "start": 525.06, + "end": 525.98, + "probability": 0.9689 + }, + { + "start": 526.92, + "end": 527.46, + "probability": 0.881 + }, + { + "start": 528.22, + "end": 530.78, + "probability": 0.9699 + }, + { + "start": 531.16, + "end": 534.68, + "probability": 0.9705 + }, + { + "start": 535.28, + "end": 537.82, + "probability": 0.9938 + }, + { + "start": 538.92, + "end": 539.24, + "probability": 0.595 + }, + { + "start": 539.38, + "end": 541.98, + "probability": 0.8963 + }, + { + "start": 542.22, + "end": 542.74, + "probability": 0.5636 + }, + { + "start": 543.76, + "end": 544.72, + "probability": 0.9997 + }, + { + "start": 546.28, + "end": 548.08, + "probability": 0.9974 + }, + { + "start": 548.96, + "end": 552.42, + "probability": 0.9985 + }, + { + "start": 553.76, + "end": 557.94, + "probability": 0.8787 + }, + { + "start": 557.94, + "end": 559.82, + "probability": 0.9216 + }, + { + "start": 560.38, + "end": 561.12, + "probability": 0.3678 + }, + { + "start": 561.12, + "end": 563.86, + "probability": 0.9679 + }, + { + "start": 564.4, + "end": 566.9, + "probability": 0.7538 + }, + { + "start": 567.22, + "end": 568.08, + "probability": 0.9984 + }, + { + "start": 569.64, + "end": 574.16, + "probability": 0.5177 + }, + { + "start": 574.88, + "end": 576.82, + "probability": 0.8899 + }, + { + "start": 577.52, + "end": 579.02, + "probability": 0.9801 + }, + { + "start": 579.08, + "end": 579.76, + "probability": 0.5872 + }, + { + "start": 579.82, + "end": 582.66, + "probability": 0.9257 + }, + { + "start": 583.12, + "end": 585.61, + "probability": 0.9707 + }, + { + "start": 586.72, + "end": 588.46, + "probability": 0.7443 + }, + { + "start": 589.38, + "end": 591.1, + "probability": 0.8482 + }, + { + "start": 592.42, + "end": 593.2, + "probability": 0.5753 + }, + { + "start": 594.34, + "end": 595.46, + "probability": 0.9027 + }, + { + "start": 596.02, + "end": 597.84, + "probability": 0.9472 + }, + { + "start": 597.84, + "end": 598.38, + "probability": 0.9265 + }, + { + "start": 599.78, + "end": 600.66, + "probability": 0.5015 + }, + { + "start": 600.9, + "end": 603.88, + "probability": 0.978 + }, + { + "start": 604.6, + "end": 605.14, + "probability": 0.8942 + }, + { + "start": 605.14, + "end": 606.24, + "probability": 0.589 + }, + { + "start": 606.32, + "end": 607.62, + "probability": 0.7692 + }, + { + "start": 608.22, + "end": 609.2, + "probability": 0.715 + }, + { + "start": 609.8, + "end": 612.04, + "probability": 0.9469 + }, + { + "start": 612.16, + "end": 614.14, + "probability": 0.7905 + }, + { + "start": 614.56, + "end": 616.94, + "probability": 0.9919 + }, + { + "start": 617.08, + "end": 620.34, + "probability": 0.9951 + }, + { + "start": 621.22, + "end": 624.02, + "probability": 0.9807 + }, + { + "start": 624.16, + "end": 626.92, + "probability": 0.9815 + }, + { + "start": 627.46, + "end": 631.2, + "probability": 0.8878 + }, + { + "start": 631.48, + "end": 633.14, + "probability": 0.9126 + }, + { + "start": 633.78, + "end": 636.94, + "probability": 0.851 + }, + { + "start": 637.84, + "end": 640.34, + "probability": 0.9972 + }, + { + "start": 641.1, + "end": 642.76, + "probability": 0.867 + }, + { + "start": 643.36, + "end": 645.02, + "probability": 0.989 + }, + { + "start": 645.44, + "end": 646.32, + "probability": 0.8657 + }, + { + "start": 646.76, + "end": 646.76, + "probability": 0.4881 + }, + { + "start": 646.76, + "end": 649.88, + "probability": 0.9532 + }, + { + "start": 649.88, + "end": 653.72, + "probability": 0.9877 + }, + { + "start": 654.02, + "end": 655.92, + "probability": 0.9298 + }, + { + "start": 680.2, + "end": 681.12, + "probability": 0.7344 + }, + { + "start": 681.22, + "end": 682.12, + "probability": 0.8393 + }, + { + "start": 682.22, + "end": 683.38, + "probability": 0.9066 + }, + { + "start": 683.82, + "end": 686.26, + "probability": 0.9688 + }, + { + "start": 687.18, + "end": 694.82, + "probability": 0.983 + }, + { + "start": 694.88, + "end": 697.66, + "probability": 0.993 + }, + { + "start": 699.82, + "end": 704.18, + "probability": 0.9873 + }, + { + "start": 705.54, + "end": 706.24, + "probability": 0.6853 + }, + { + "start": 706.44, + "end": 711.44, + "probability": 0.9995 + }, + { + "start": 711.44, + "end": 715.92, + "probability": 0.9961 + }, + { + "start": 716.08, + "end": 719.48, + "probability": 0.9962 + }, + { + "start": 719.48, + "end": 722.6, + "probability": 0.9894 + }, + { + "start": 723.06, + "end": 726.98, + "probability": 0.9928 + }, + { + "start": 728.34, + "end": 730.62, + "probability": 0.9981 + }, + { + "start": 730.68, + "end": 734.92, + "probability": 0.993 + }, + { + "start": 735.68, + "end": 736.38, + "probability": 0.428 + }, + { + "start": 737.24, + "end": 744.42, + "probability": 0.9513 + }, + { + "start": 744.58, + "end": 744.98, + "probability": 0.7911 + }, + { + "start": 745.12, + "end": 749.62, + "probability": 0.959 + }, + { + "start": 750.22, + "end": 750.72, + "probability": 0.7396 + }, + { + "start": 750.72, + "end": 751.4, + "probability": 0.8742 + }, + { + "start": 751.66, + "end": 754.64, + "probability": 0.9126 + }, + { + "start": 755.12, + "end": 757.22, + "probability": 0.9717 + }, + { + "start": 757.86, + "end": 758.49, + "probability": 0.9961 + }, + { + "start": 760.86, + "end": 766.66, + "probability": 0.9943 + }, + { + "start": 767.94, + "end": 770.3, + "probability": 0.9751 + }, + { + "start": 770.84, + "end": 775.82, + "probability": 0.9971 + }, + { + "start": 775.82, + "end": 780.34, + "probability": 0.9963 + }, + { + "start": 781.1, + "end": 782.76, + "probability": 0.8104 + }, + { + "start": 783.34, + "end": 786.66, + "probability": 0.9924 + }, + { + "start": 786.66, + "end": 790.6, + "probability": 0.9978 + }, + { + "start": 791.1, + "end": 792.7, + "probability": 0.9959 + }, + { + "start": 792.84, + "end": 793.34, + "probability": 0.787 + }, + { + "start": 793.92, + "end": 795.92, + "probability": 0.9686 + }, + { + "start": 796.06, + "end": 797.58, + "probability": 0.8744 + }, + { + "start": 797.92, + "end": 799.58, + "probability": 0.9696 + }, + { + "start": 800.02, + "end": 800.62, + "probability": 0.7091 + }, + { + "start": 800.74, + "end": 803.62, + "probability": 0.9773 + }, + { + "start": 803.62, + "end": 807.44, + "probability": 0.9961 + }, + { + "start": 807.88, + "end": 810.04, + "probability": 0.9832 + }, + { + "start": 810.22, + "end": 814.0, + "probability": 0.9973 + }, + { + "start": 814.0, + "end": 817.86, + "probability": 0.9939 + }, + { + "start": 818.76, + "end": 822.54, + "probability": 0.963 + }, + { + "start": 822.54, + "end": 825.0, + "probability": 0.9919 + }, + { + "start": 825.84, + "end": 831.5, + "probability": 0.9991 + }, + { + "start": 832.16, + "end": 835.7, + "probability": 0.9975 + }, + { + "start": 836.08, + "end": 839.06, + "probability": 0.9979 + }, + { + "start": 839.72, + "end": 841.98, + "probability": 0.9263 + }, + { + "start": 842.74, + "end": 848.86, + "probability": 0.8198 + }, + { + "start": 848.86, + "end": 852.36, + "probability": 0.985 + }, + { + "start": 852.48, + "end": 853.66, + "probability": 0.9077 + }, + { + "start": 854.14, + "end": 856.78, + "probability": 0.9863 + }, + { + "start": 857.56, + "end": 859.68, + "probability": 0.9885 + }, + { + "start": 859.82, + "end": 863.98, + "probability": 0.9939 + }, + { + "start": 865.4, + "end": 866.28, + "probability": 0.763 + }, + { + "start": 866.38, + "end": 868.22, + "probability": 0.9495 + }, + { + "start": 868.72, + "end": 871.92, + "probability": 0.9974 + }, + { + "start": 871.92, + "end": 876.28, + "probability": 0.9897 + }, + { + "start": 876.72, + "end": 880.74, + "probability": 0.9994 + }, + { + "start": 880.74, + "end": 885.34, + "probability": 0.9993 + }, + { + "start": 885.34, + "end": 890.3, + "probability": 0.9965 + }, + { + "start": 890.94, + "end": 891.56, + "probability": 0.4306 + }, + { + "start": 892.0, + "end": 894.06, + "probability": 0.9775 + }, + { + "start": 894.4, + "end": 897.58, + "probability": 0.9263 + }, + { + "start": 897.58, + "end": 901.08, + "probability": 0.9797 + }, + { + "start": 901.62, + "end": 903.48, + "probability": 0.9303 + }, + { + "start": 903.88, + "end": 904.98, + "probability": 0.7463 + }, + { + "start": 905.08, + "end": 905.84, + "probability": 0.7235 + }, + { + "start": 905.88, + "end": 906.64, + "probability": 0.8417 + }, + { + "start": 907.18, + "end": 910.1, + "probability": 0.0921 + }, + { + "start": 910.44, + "end": 912.4, + "probability": 0.8264 + }, + { + "start": 912.96, + "end": 913.2, + "probability": 0.6097 + }, + { + "start": 913.82, + "end": 914.48, + "probability": 0.7316 + }, + { + "start": 915.74, + "end": 920.16, + "probability": 0.9963 + }, + { + "start": 920.34, + "end": 925.98, + "probability": 0.9551 + }, + { + "start": 926.58, + "end": 930.2, + "probability": 0.8131 + }, + { + "start": 931.44, + "end": 936.68, + "probability": 0.993 + }, + { + "start": 937.28, + "end": 940.18, + "probability": 0.9925 + }, + { + "start": 940.18, + "end": 943.62, + "probability": 0.9938 + }, + { + "start": 944.02, + "end": 945.88, + "probability": 0.9966 + }, + { + "start": 946.6, + "end": 947.22, + "probability": 0.926 + }, + { + "start": 947.46, + "end": 948.26, + "probability": 0.5347 + }, + { + "start": 948.34, + "end": 951.72, + "probability": 0.9943 + }, + { + "start": 951.72, + "end": 954.88, + "probability": 0.9962 + }, + { + "start": 955.42, + "end": 960.14, + "probability": 0.9952 + }, + { + "start": 960.26, + "end": 966.08, + "probability": 0.995 + }, + { + "start": 966.2, + "end": 967.74, + "probability": 0.9879 + }, + { + "start": 968.28, + "end": 970.76, + "probability": 0.9971 + }, + { + "start": 971.2, + "end": 974.0, + "probability": 0.989 + }, + { + "start": 975.04, + "end": 975.54, + "probability": 0.8164 + }, + { + "start": 976.04, + "end": 980.2, + "probability": 0.9926 + }, + { + "start": 980.2, + "end": 983.66, + "probability": 0.9983 + }, + { + "start": 984.26, + "end": 985.58, + "probability": 0.8877 + }, + { + "start": 985.86, + "end": 986.66, + "probability": 0.714 + }, + { + "start": 987.1, + "end": 989.76, + "probability": 0.9296 + }, + { + "start": 990.12, + "end": 994.2, + "probability": 0.9969 + }, + { + "start": 995.02, + "end": 996.08, + "probability": 0.9538 + }, + { + "start": 1002.46, + "end": 1003.44, + "probability": 0.3789 + }, + { + "start": 1003.6, + "end": 1005.36, + "probability": 0.9888 + }, + { + "start": 1006.5, + "end": 1007.04, + "probability": 0.4933 + }, + { + "start": 1007.28, + "end": 1008.1, + "probability": 0.9394 + }, + { + "start": 1008.36, + "end": 1009.2, + "probability": 0.955 + }, + { + "start": 1009.22, + "end": 1012.84, + "probability": 0.9684 + }, + { + "start": 1013.44, + "end": 1016.2, + "probability": 0.9761 + }, + { + "start": 1016.28, + "end": 1018.7, + "probability": 0.8216 + }, + { + "start": 1019.22, + "end": 1022.94, + "probability": 0.9527 + }, + { + "start": 1023.44, + "end": 1026.6, + "probability": 0.6593 + }, + { + "start": 1026.84, + "end": 1030.62, + "probability": 0.9883 + }, + { + "start": 1031.16, + "end": 1031.76, + "probability": 0.7352 + }, + { + "start": 1031.86, + "end": 1034.92, + "probability": 0.994 + }, + { + "start": 1034.92, + "end": 1038.36, + "probability": 0.9817 + }, + { + "start": 1039.68, + "end": 1045.0, + "probability": 0.999 + }, + { + "start": 1045.48, + "end": 1046.34, + "probability": 0.8961 + }, + { + "start": 1046.54, + "end": 1047.22, + "probability": 0.735 + }, + { + "start": 1047.28, + "end": 1049.54, + "probability": 0.8451 + }, + { + "start": 1050.26, + "end": 1053.16, + "probability": 0.9975 + }, + { + "start": 1053.36, + "end": 1055.64, + "probability": 0.7865 + }, + { + "start": 1055.8, + "end": 1057.94, + "probability": 0.9224 + }, + { + "start": 1058.4, + "end": 1059.66, + "probability": 0.574 + }, + { + "start": 1060.06, + "end": 1064.4, + "probability": 0.9587 + }, + { + "start": 1065.92, + "end": 1067.5, + "probability": 0.8896 + }, + { + "start": 1067.66, + "end": 1071.5, + "probability": 0.6612 + }, + { + "start": 1071.72, + "end": 1073.56, + "probability": 0.9949 + }, + { + "start": 1074.08, + "end": 1075.08, + "probability": 0.7484 + }, + { + "start": 1075.96, + "end": 1079.22, + "probability": 0.9824 + }, + { + "start": 1079.34, + "end": 1085.96, + "probability": 0.9805 + }, + { + "start": 1086.12, + "end": 1087.4, + "probability": 0.6783 + }, + { + "start": 1087.88, + "end": 1092.06, + "probability": 0.9814 + }, + { + "start": 1092.22, + "end": 1096.16, + "probability": 0.9961 + }, + { + "start": 1096.58, + "end": 1096.78, + "probability": 0.3036 + }, + { + "start": 1097.0, + "end": 1098.56, + "probability": 0.8467 + }, + { + "start": 1099.26, + "end": 1103.06, + "probability": 0.6005 + }, + { + "start": 1103.36, + "end": 1104.88, + "probability": 0.8174 + }, + { + "start": 1105.22, + "end": 1112.36, + "probability": 0.9172 + }, + { + "start": 1113.04, + "end": 1114.32, + "probability": 0.8526 + }, + { + "start": 1114.46, + "end": 1118.2, + "probability": 0.9941 + }, + { + "start": 1118.58, + "end": 1121.08, + "probability": 0.9971 + }, + { + "start": 1121.64, + "end": 1126.32, + "probability": 0.9969 + }, + { + "start": 1126.32, + "end": 1130.46, + "probability": 0.9989 + }, + { + "start": 1131.76, + "end": 1135.78, + "probability": 0.9366 + }, + { + "start": 1137.16, + "end": 1141.6, + "probability": 0.9847 + }, + { + "start": 1141.94, + "end": 1144.88, + "probability": 0.9941 + }, + { + "start": 1145.2, + "end": 1146.5, + "probability": 0.5514 + }, + { + "start": 1146.68, + "end": 1149.52, + "probability": 0.5002 + }, + { + "start": 1149.8, + "end": 1155.66, + "probability": 0.9919 + }, + { + "start": 1156.18, + "end": 1159.68, + "probability": 0.7487 + }, + { + "start": 1160.3, + "end": 1164.58, + "probability": 0.9963 + }, + { + "start": 1165.0, + "end": 1165.89, + "probability": 0.6591 + }, + { + "start": 1166.0, + "end": 1167.42, + "probability": 0.8267 + }, + { + "start": 1167.78, + "end": 1168.72, + "probability": 0.9941 + }, + { + "start": 1169.08, + "end": 1170.46, + "probability": 0.9307 + }, + { + "start": 1171.1, + "end": 1173.1, + "probability": 0.8909 + }, + { + "start": 1173.8, + "end": 1177.1, + "probability": 0.9493 + }, + { + "start": 1177.26, + "end": 1178.4, + "probability": 0.7214 + }, + { + "start": 1178.82, + "end": 1180.64, + "probability": 0.7126 + }, + { + "start": 1181.22, + "end": 1183.45, + "probability": 0.9784 + }, + { + "start": 1183.6, + "end": 1186.66, + "probability": 0.9797 + }, + { + "start": 1187.1, + "end": 1188.06, + "probability": 0.6885 + }, + { + "start": 1188.44, + "end": 1189.04, + "probability": 0.7537 + }, + { + "start": 1189.08, + "end": 1194.56, + "probability": 0.9158 + }, + { + "start": 1195.42, + "end": 1198.79, + "probability": 0.9911 + }, + { + "start": 1199.54, + "end": 1200.12, + "probability": 0.8718 + }, + { + "start": 1200.2, + "end": 1201.44, + "probability": 0.9869 + }, + { + "start": 1201.86, + "end": 1207.72, + "probability": 0.9977 + }, + { + "start": 1207.72, + "end": 1212.36, + "probability": 0.9769 + }, + { + "start": 1212.92, + "end": 1214.95, + "probability": 0.8647 + }, + { + "start": 1215.32, + "end": 1216.24, + "probability": 0.8307 + }, + { + "start": 1216.36, + "end": 1219.66, + "probability": 0.8884 + }, + { + "start": 1219.82, + "end": 1221.64, + "probability": 0.8748 + }, + { + "start": 1221.66, + "end": 1222.78, + "probability": 0.6612 + }, + { + "start": 1223.44, + "end": 1224.92, + "probability": 0.7781 + }, + { + "start": 1224.94, + "end": 1226.7, + "probability": 0.9809 + }, + { + "start": 1226.8, + "end": 1227.44, + "probability": 0.2388 + }, + { + "start": 1228.57, + "end": 1229.69, + "probability": 0.2742 + }, + { + "start": 1230.1, + "end": 1232.98, + "probability": 0.9448 + }, + { + "start": 1233.26, + "end": 1235.78, + "probability": 0.98 + }, + { + "start": 1235.8, + "end": 1237.8, + "probability": 0.7681 + }, + { + "start": 1237.82, + "end": 1237.82, + "probability": 0.1963 + }, + { + "start": 1237.92, + "end": 1238.68, + "probability": 0.7349 + }, + { + "start": 1238.68, + "end": 1239.72, + "probability": 0.3378 + }, + { + "start": 1239.74, + "end": 1243.26, + "probability": 0.9611 + }, + { + "start": 1243.68, + "end": 1244.41, + "probability": 0.9329 + }, + { + "start": 1244.7, + "end": 1248.08, + "probability": 0.987 + }, + { + "start": 1248.08, + "end": 1252.78, + "probability": 0.9989 + }, + { + "start": 1253.96, + "end": 1257.98, + "probability": 0.9136 + }, + { + "start": 1257.98, + "end": 1261.2, + "probability": 0.9989 + }, + { + "start": 1261.64, + "end": 1267.02, + "probability": 0.9873 + }, + { + "start": 1267.12, + "end": 1267.9, + "probability": 0.7311 + }, + { + "start": 1268.58, + "end": 1272.3, + "probability": 0.9963 + }, + { + "start": 1272.76, + "end": 1274.68, + "probability": 0.8735 + }, + { + "start": 1275.08, + "end": 1276.12, + "probability": 0.929 + }, + { + "start": 1276.18, + "end": 1277.42, + "probability": 0.6752 + }, + { + "start": 1277.48, + "end": 1278.1, + "probability": 0.9334 + }, + { + "start": 1278.48, + "end": 1282.82, + "probability": 0.8157 + }, + { + "start": 1283.42, + "end": 1285.02, + "probability": 0.9984 + }, + { + "start": 1285.18, + "end": 1286.43, + "probability": 0.9388 + }, + { + "start": 1286.8, + "end": 1289.26, + "probability": 0.9925 + }, + { + "start": 1289.38, + "end": 1289.78, + "probability": 0.7783 + }, + { + "start": 1290.62, + "end": 1291.3, + "probability": 0.7838 + }, + { + "start": 1292.22, + "end": 1294.4, + "probability": 0.9417 + }, + { + "start": 1294.52, + "end": 1295.62, + "probability": 0.9636 + }, + { + "start": 1308.64, + "end": 1310.08, + "probability": 0.7846 + }, + { + "start": 1311.74, + "end": 1313.3, + "probability": 0.8865 + }, + { + "start": 1315.32, + "end": 1316.78, + "probability": 0.7907 + }, + { + "start": 1318.2, + "end": 1319.1, + "probability": 0.5601 + }, + { + "start": 1319.18, + "end": 1319.96, + "probability": 0.9137 + }, + { + "start": 1320.24, + "end": 1325.16, + "probability": 0.9868 + }, + { + "start": 1325.82, + "end": 1327.16, + "probability": 0.7272 + }, + { + "start": 1329.34, + "end": 1330.76, + "probability": 0.8492 + }, + { + "start": 1331.52, + "end": 1333.92, + "probability": 0.9995 + }, + { + "start": 1334.02, + "end": 1335.68, + "probability": 0.999 + }, + { + "start": 1338.26, + "end": 1342.56, + "probability": 0.9735 + }, + { + "start": 1343.28, + "end": 1344.02, + "probability": 0.9659 + }, + { + "start": 1345.1, + "end": 1346.32, + "probability": 0.9868 + }, + { + "start": 1347.26, + "end": 1348.04, + "probability": 0.0837 + }, + { + "start": 1348.42, + "end": 1349.22, + "probability": 0.9341 + }, + { + "start": 1349.82, + "end": 1350.47, + "probability": 0.2785 + }, + { + "start": 1351.52, + "end": 1357.26, + "probability": 0.9897 + }, + { + "start": 1357.26, + "end": 1357.26, + "probability": 0.1921 + }, + { + "start": 1357.26, + "end": 1358.38, + "probability": 0.8666 + }, + { + "start": 1360.35, + "end": 1361.22, + "probability": 0.2567 + }, + { + "start": 1361.24, + "end": 1362.43, + "probability": 0.1331 + }, + { + "start": 1363.6, + "end": 1363.86, + "probability": 0.1182 + }, + { + "start": 1363.9, + "end": 1365.92, + "probability": 0.0314 + }, + { + "start": 1367.24, + "end": 1367.24, + "probability": 0.0499 + }, + { + "start": 1367.24, + "end": 1367.24, + "probability": 0.0983 + }, + { + "start": 1367.24, + "end": 1369.2, + "probability": 0.6848 + }, + { + "start": 1370.12, + "end": 1371.5, + "probability": 0.97 + }, + { + "start": 1372.36, + "end": 1373.6, + "probability": 0.814 + }, + { + "start": 1374.52, + "end": 1374.52, + "probability": 0.0542 + }, + { + "start": 1374.54, + "end": 1374.54, + "probability": 0.1686 + }, + { + "start": 1374.54, + "end": 1375.24, + "probability": 0.8189 + }, + { + "start": 1375.58, + "end": 1377.32, + "probability": 0.8934 + }, + { + "start": 1378.46, + "end": 1378.46, + "probability": 0.4472 + }, + { + "start": 1378.46, + "end": 1380.29, + "probability": 0.8405 + }, + { + "start": 1386.4, + "end": 1391.08, + "probability": 0.4288 + }, + { + "start": 1391.36, + "end": 1392.76, + "probability": 0.0947 + }, + { + "start": 1393.43, + "end": 1394.75, + "probability": 0.1022 + }, + { + "start": 1395.36, + "end": 1398.66, + "probability": 0.0768 + }, + { + "start": 1399.16, + "end": 1400.38, + "probability": 0.0935 + }, + { + "start": 1401.9, + "end": 1402.36, + "probability": 0.1725 + }, + { + "start": 1402.38, + "end": 1406.02, + "probability": 0.1443 + }, + { + "start": 1406.02, + "end": 1408.94, + "probability": 0.0961 + }, + { + "start": 1408.94, + "end": 1408.94, + "probability": 0.1587 + }, + { + "start": 1408.94, + "end": 1413.07, + "probability": 0.0228 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.0, + "end": 1465.0, + "probability": 0.0 + }, + { + "start": 1465.51, + "end": 1466.08, + "probability": 0.0369 + }, + { + "start": 1466.08, + "end": 1466.34, + "probability": 0.1113 + }, + { + "start": 1466.34, + "end": 1466.58, + "probability": 0.1299 + }, + { + "start": 1466.58, + "end": 1467.18, + "probability": 0.3956 + }, + { + "start": 1467.28, + "end": 1469.64, + "probability": 0.8415 + }, + { + "start": 1472.43, + "end": 1476.86, + "probability": 0.9516 + }, + { + "start": 1476.94, + "end": 1477.36, + "probability": 0.0851 + }, + { + "start": 1478.33, + "end": 1479.24, + "probability": 0.4802 + }, + { + "start": 1479.72, + "end": 1479.72, + "probability": 0.1757 + }, + { + "start": 1479.72, + "end": 1479.72, + "probability": 0.2489 + }, + { + "start": 1479.72, + "end": 1479.72, + "probability": 0.5613 + }, + { + "start": 1479.72, + "end": 1482.18, + "probability": 0.0281 + }, + { + "start": 1482.48, + "end": 1485.22, + "probability": 0.0406 + }, + { + "start": 1485.22, + "end": 1485.22, + "probability": 0.0484 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.0, + "end": 1598.0, + "probability": 0.0 + }, + { + "start": 1598.82, + "end": 1601.92, + "probability": 0.9294 + }, + { + "start": 1603.02, + "end": 1605.14, + "probability": 0.6672 + }, + { + "start": 1605.68, + "end": 1607.78, + "probability": 0.6681 + }, + { + "start": 1608.42, + "end": 1610.36, + "probability": 0.7927 + }, + { + "start": 1610.82, + "end": 1612.12, + "probability": 0.9827 + }, + { + "start": 1612.84, + "end": 1614.32, + "probability": 0.125 + }, + { + "start": 1616.58, + "end": 1617.28, + "probability": 0.1581 + }, + { + "start": 1617.28, + "end": 1617.36, + "probability": 0.1232 + }, + { + "start": 1617.42, + "end": 1617.98, + "probability": 0.0413 + }, + { + "start": 1618.3, + "end": 1618.84, + "probability": 0.096 + }, + { + "start": 1618.84, + "end": 1618.84, + "probability": 0.1417 + }, + { + "start": 1618.84, + "end": 1618.84, + "probability": 0.3633 + }, + { + "start": 1618.84, + "end": 1619.66, + "probability": 0.5122 + }, + { + "start": 1619.7, + "end": 1621.26, + "probability": 0.5662 + }, + { + "start": 1621.36, + "end": 1622.12, + "probability": 0.073 + }, + { + "start": 1622.62, + "end": 1625.36, + "probability": 0.4304 + }, + { + "start": 1626.56, + "end": 1626.56, + "probability": 0.169 + }, + { + "start": 1626.56, + "end": 1626.56, + "probability": 0.1725 + }, + { + "start": 1626.56, + "end": 1626.56, + "probability": 0.1229 + }, + { + "start": 1626.56, + "end": 1627.42, + "probability": 0.4197 + }, + { + "start": 1629.18, + "end": 1632.36, + "probability": 0.0397 + }, + { + "start": 1632.38, + "end": 1635.56, + "probability": 0.6055 + }, + { + "start": 1635.56, + "end": 1636.16, + "probability": 0.1243 + }, + { + "start": 1638.7, + "end": 1639.71, + "probability": 0.4277 + }, + { + "start": 1644.62, + "end": 1645.58, + "probability": 0.0373 + }, + { + "start": 1645.58, + "end": 1646.52, + "probability": 0.3079 + }, + { + "start": 1646.86, + "end": 1648.96, + "probability": 0.5474 + }, + { + "start": 1649.08, + "end": 1650.16, + "probability": 0.0241 + }, + { + "start": 1650.16, + "end": 1650.16, + "probability": 0.0272 + }, + { + "start": 1650.76, + "end": 1651.82, + "probability": 0.0373 + }, + { + "start": 1652.86, + "end": 1654.0, + "probability": 0.248 + }, + { + "start": 1654.22, + "end": 1659.54, + "probability": 0.3777 + }, + { + "start": 1671.16, + "end": 1671.22, + "probability": 0.034 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.0, + "end": 1720.0, + "probability": 0.0 + }, + { + "start": 1720.34, + "end": 1720.86, + "probability": 0.1688 + }, + { + "start": 1720.86, + "end": 1722.16, + "probability": 0.1533 + }, + { + "start": 1722.16, + "end": 1723.0, + "probability": 0.0462 + }, + { + "start": 1723.46, + "end": 1724.46, + "probability": 0.8133 + }, + { + "start": 1724.48, + "end": 1726.12, + "probability": 0.8119 + }, + { + "start": 1726.12, + "end": 1727.46, + "probability": 0.8011 + }, + { + "start": 1727.48, + "end": 1730.18, + "probability": 0.9288 + }, + { + "start": 1730.18, + "end": 1730.92, + "probability": 0.184 + }, + { + "start": 1732.72, + "end": 1734.3, + "probability": 0.2783 + }, + { + "start": 1741.96, + "end": 1743.96, + "probability": 0.2713 + }, + { + "start": 1743.96, + "end": 1746.71, + "probability": 0.0761 + }, + { + "start": 1746.84, + "end": 1748.52, + "probability": 0.1907 + }, + { + "start": 1748.94, + "end": 1749.36, + "probability": 0.0105 + }, + { + "start": 1750.5, + "end": 1751.68, + "probability": 0.3748 + }, + { + "start": 1752.16, + "end": 1753.32, + "probability": 0.0867 + }, + { + "start": 1754.22, + "end": 1755.71, + "probability": 0.0154 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.0, + "end": 1874.0, + "probability": 0.0 + }, + { + "start": 1874.04, + "end": 1876.06, + "probability": 0.0234 + }, + { + "start": 1876.12, + "end": 1878.2, + "probability": 0.0605 + }, + { + "start": 1878.2, + "end": 1883.16, + "probability": 0.0238 + }, + { + "start": 1883.52, + "end": 1886.92, + "probability": 0.0492 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1994.0, + "end": 1994.0, + "probability": 0.0 + }, + { + "start": 1998.34, + "end": 2000.96, + "probability": 0.0397 + }, + { + "start": 2000.98, + "end": 2000.98, + "probability": 0.1767 + }, + { + "start": 2001.06, + "end": 2003.17, + "probability": 0.9946 + }, + { + "start": 2003.9, + "end": 2006.66, + "probability": 0.9833 + }, + { + "start": 2007.92, + "end": 2008.24, + "probability": 0.0029 + }, + { + "start": 2008.24, + "end": 2008.24, + "probability": 0.0158 + }, + { + "start": 2008.24, + "end": 2009.76, + "probability": 0.2091 + }, + { + "start": 2009.96, + "end": 2009.96, + "probability": 0.0297 + }, + { + "start": 2009.96, + "end": 2010.72, + "probability": 0.8921 + }, + { + "start": 2011.18, + "end": 2014.12, + "probability": 0.964 + }, + { + "start": 2014.12, + "end": 2017.32, + "probability": 0.8123 + }, + { + "start": 2017.54, + "end": 2020.64, + "probability": 0.8835 + }, + { + "start": 2022.3, + "end": 2027.26, + "probability": 0.9904 + }, + { + "start": 2027.26, + "end": 2032.06, + "probability": 0.9543 + }, + { + "start": 2032.12, + "end": 2033.22, + "probability": 0.8316 + }, + { + "start": 2034.26, + "end": 2034.42, + "probability": 0.0019 + }, + { + "start": 2035.28, + "end": 2036.78, + "probability": 0.954 + }, + { + "start": 2037.0, + "end": 2041.84, + "probability": 0.9101 + }, + { + "start": 2042.48, + "end": 2046.5, + "probability": 0.9162 + }, + { + "start": 2046.5, + "end": 2050.04, + "probability": 0.9604 + }, + { + "start": 2050.1, + "end": 2051.22, + "probability": 0.41 + }, + { + "start": 2051.24, + "end": 2056.8, + "probability": 0.8871 + }, + { + "start": 2056.8, + "end": 2057.74, + "probability": 0.7663 + }, + { + "start": 2057.86, + "end": 2058.66, + "probability": 0.6867 + }, + { + "start": 2058.68, + "end": 2059.62, + "probability": 0.8029 + }, + { + "start": 2059.62, + "end": 2065.42, + "probability": 0.9278 + }, + { + "start": 2066.06, + "end": 2070.62, + "probability": 0.9888 + }, + { + "start": 2071.2, + "end": 2071.72, + "probability": 0.6729 + }, + { + "start": 2072.16, + "end": 2074.9, + "probability": 0.9961 + }, + { + "start": 2075.26, + "end": 2076.53, + "probability": 0.9951 + }, + { + "start": 2077.38, + "end": 2079.29, + "probability": 0.9729 + }, + { + "start": 2079.86, + "end": 2081.66, + "probability": 0.9907 + }, + { + "start": 2082.18, + "end": 2083.6, + "probability": 0.9943 + }, + { + "start": 2084.14, + "end": 2085.92, + "probability": 0.945 + }, + { + "start": 2086.24, + "end": 2092.7, + "probability": 0.9473 + }, + { + "start": 2093.08, + "end": 2094.92, + "probability": 0.7991 + }, + { + "start": 2096.08, + "end": 2098.14, + "probability": 0.7407 + }, + { + "start": 2098.72, + "end": 2101.72, + "probability": 0.9675 + }, + { + "start": 2102.14, + "end": 2103.34, + "probability": 0.9895 + }, + { + "start": 2103.76, + "end": 2106.36, + "probability": 0.9113 + }, + { + "start": 2107.2, + "end": 2111.24, + "probability": 0.9758 + }, + { + "start": 2111.72, + "end": 2112.94, + "probability": 0.708 + }, + { + "start": 2113.38, + "end": 2119.62, + "probability": 0.9917 + }, + { + "start": 2120.06, + "end": 2120.32, + "probability": 0.5647 + }, + { + "start": 2120.48, + "end": 2127.32, + "probability": 0.7959 + }, + { + "start": 2127.44, + "end": 2128.92, + "probability": 0.6224 + }, + { + "start": 2129.38, + "end": 2132.6, + "probability": 0.6649 + }, + { + "start": 2133.66, + "end": 2135.08, + "probability": 0.9672 + }, + { + "start": 2135.22, + "end": 2135.85, + "probability": 0.4611 + }, + { + "start": 2136.46, + "end": 2137.58, + "probability": 0.9678 + }, + { + "start": 2137.76, + "end": 2141.72, + "probability": 0.8752 + }, + { + "start": 2142.4, + "end": 2145.74, + "probability": 0.7085 + }, + { + "start": 2146.24, + "end": 2146.88, + "probability": 0.874 + }, + { + "start": 2147.06, + "end": 2148.44, + "probability": 0.9873 + }, + { + "start": 2148.9, + "end": 2150.44, + "probability": 0.9619 + }, + { + "start": 2150.82, + "end": 2152.42, + "probability": 0.9492 + }, + { + "start": 2152.74, + "end": 2153.9, + "probability": 0.9694 + }, + { + "start": 2154.16, + "end": 2155.44, + "probability": 0.9473 + }, + { + "start": 2156.04, + "end": 2157.3, + "probability": 0.4344 + }, + { + "start": 2158.04, + "end": 2159.96, + "probability": 0.754 + }, + { + "start": 2160.78, + "end": 2164.6, + "probability": 0.995 + }, + { + "start": 2164.6, + "end": 2168.8, + "probability": 0.8641 + }, + { + "start": 2169.38, + "end": 2173.32, + "probability": 0.9025 + }, + { + "start": 2174.0, + "end": 2174.72, + "probability": 0.3695 + }, + { + "start": 2175.38, + "end": 2175.64, + "probability": 0.8159 + }, + { + "start": 2176.76, + "end": 2181.42, + "probability": 0.9673 + }, + { + "start": 2182.62, + "end": 2185.14, + "probability": 0.5581 + }, + { + "start": 2185.74, + "end": 2187.08, + "probability": 0.7498 + }, + { + "start": 2187.14, + "end": 2193.64, + "probability": 0.9976 + }, + { + "start": 2193.64, + "end": 2195.64, + "probability": 0.978 + }, + { + "start": 2196.12, + "end": 2196.68, + "probability": 0.3381 + }, + { + "start": 2197.22, + "end": 2198.94, + "probability": 0.9972 + }, + { + "start": 2200.28, + "end": 2201.4, + "probability": 0.8979 + }, + { + "start": 2201.6, + "end": 2202.68, + "probability": 0.8052 + }, + { + "start": 2203.24, + "end": 2207.86, + "probability": 0.9666 + }, + { + "start": 2208.4, + "end": 2213.66, + "probability": 0.9782 + }, + { + "start": 2214.22, + "end": 2215.41, + "probability": 0.8669 + }, + { + "start": 2216.2, + "end": 2217.18, + "probability": 0.9462 + }, + { + "start": 2217.22, + "end": 2218.1, + "probability": 0.6583 + }, + { + "start": 2218.16, + "end": 2220.54, + "probability": 0.7382 + }, + { + "start": 2221.08, + "end": 2226.28, + "probability": 0.9736 + }, + { + "start": 2226.28, + "end": 2229.88, + "probability": 0.9045 + }, + { + "start": 2230.84, + "end": 2235.74, + "probability": 0.9604 + }, + { + "start": 2236.36, + "end": 2237.29, + "probability": 0.9532 + }, + { + "start": 2238.02, + "end": 2239.66, + "probability": 0.9843 + }, + { + "start": 2240.02, + "end": 2240.6, + "probability": 0.8771 + }, + { + "start": 2240.96, + "end": 2241.66, + "probability": 0.9403 + }, + { + "start": 2242.02, + "end": 2243.32, + "probability": 0.9722 + }, + { + "start": 2243.6, + "end": 2246.5, + "probability": 0.9805 + }, + { + "start": 2246.96, + "end": 2248.96, + "probability": 0.7852 + }, + { + "start": 2249.58, + "end": 2251.32, + "probability": 0.9815 + }, + { + "start": 2252.24, + "end": 2255.7, + "probability": 0.9448 + }, + { + "start": 2256.22, + "end": 2256.38, + "probability": 0.0515 + }, + { + "start": 2256.94, + "end": 2259.02, + "probability": 0.9888 + }, + { + "start": 2259.44, + "end": 2260.4, + "probability": 0.8833 + }, + { + "start": 2260.88, + "end": 2262.08, + "probability": 0.9321 + }, + { + "start": 2262.26, + "end": 2262.8, + "probability": 0.9824 + }, + { + "start": 2263.32, + "end": 2264.98, + "probability": 0.9893 + }, + { + "start": 2265.32, + "end": 2266.52, + "probability": 0.9962 + }, + { + "start": 2266.98, + "end": 2268.36, + "probability": 0.9839 + }, + { + "start": 2270.0, + "end": 2272.42, + "probability": 0.9214 + }, + { + "start": 2272.7, + "end": 2272.7, + "probability": 0.0145 + }, + { + "start": 2272.7, + "end": 2272.7, + "probability": 0.2178 + }, + { + "start": 2272.7, + "end": 2274.48, + "probability": 0.7597 + }, + { + "start": 2275.14, + "end": 2275.58, + "probability": 0.9863 + }, + { + "start": 2276.34, + "end": 2278.08, + "probability": 0.9528 + }, + { + "start": 2278.38, + "end": 2279.46, + "probability": 0.9343 + }, + { + "start": 2279.86, + "end": 2281.2, + "probability": 0.9862 + }, + { + "start": 2281.6, + "end": 2282.28, + "probability": 0.9609 + }, + { + "start": 2282.74, + "end": 2284.46, + "probability": 0.9955 + }, + { + "start": 2284.58, + "end": 2285.86, + "probability": 0.7439 + }, + { + "start": 2286.26, + "end": 2288.11, + "probability": 0.5181 + }, + { + "start": 2288.84, + "end": 2289.82, + "probability": 0.9061 + }, + { + "start": 2289.84, + "end": 2290.82, + "probability": 0.9814 + }, + { + "start": 2291.0, + "end": 2293.39, + "probability": 0.8811 + }, + { + "start": 2294.48, + "end": 2296.02, + "probability": 0.0031 + }, + { + "start": 2296.02, + "end": 2297.96, + "probability": 0.5511 + }, + { + "start": 2297.98, + "end": 2299.74, + "probability": 0.9814 + }, + { + "start": 2299.84, + "end": 2300.48, + "probability": 0.8166 + }, + { + "start": 2300.54, + "end": 2301.04, + "probability": 0.6461 + }, + { + "start": 2301.24, + "end": 2302.0, + "probability": 0.9075 + }, + { + "start": 2302.08, + "end": 2303.24, + "probability": 0.8975 + }, + { + "start": 2303.9, + "end": 2306.18, + "probability": 0.8883 + }, + { + "start": 2306.26, + "end": 2306.28, + "probability": 0.0862 + }, + { + "start": 2306.28, + "end": 2307.86, + "probability": 0.4796 + }, + { + "start": 2307.86, + "end": 2308.02, + "probability": 0.5603 + }, + { + "start": 2308.02, + "end": 2308.34, + "probability": 0.5327 + }, + { + "start": 2308.56, + "end": 2313.44, + "probability": 0.9921 + }, + { + "start": 2314.22, + "end": 2315.52, + "probability": 0.9753 + }, + { + "start": 2316.04, + "end": 2316.42, + "probability": 0.434 + }, + { + "start": 2317.16, + "end": 2319.52, + "probability": 0.9778 + }, + { + "start": 2319.86, + "end": 2321.14, + "probability": 0.8272 + }, + { + "start": 2321.94, + "end": 2323.45, + "probability": 0.9407 + }, + { + "start": 2323.86, + "end": 2325.7, + "probability": 0.7964 + }, + { + "start": 2326.22, + "end": 2326.78, + "probability": 0.9736 + }, + { + "start": 2327.8, + "end": 2330.4, + "probability": 0.2966 + }, + { + "start": 2330.78, + "end": 2331.32, + "probability": 0.9036 + }, + { + "start": 2331.66, + "end": 2332.52, + "probability": 0.9895 + }, + { + "start": 2332.62, + "end": 2333.32, + "probability": 0.9969 + }, + { + "start": 2333.7, + "end": 2334.18, + "probability": 0.9803 + }, + { + "start": 2334.2, + "end": 2335.24, + "probability": 0.9941 + }, + { + "start": 2335.54, + "end": 2335.92, + "probability": 0.6014 + }, + { + "start": 2336.26, + "end": 2337.6, + "probability": 0.8745 + }, + { + "start": 2338.7, + "end": 2339.6, + "probability": 0.7477 + }, + { + "start": 2340.42, + "end": 2345.68, + "probability": 0.9942 + }, + { + "start": 2346.2, + "end": 2347.4, + "probability": 0.7383 + }, + { + "start": 2347.5, + "end": 2348.86, + "probability": 0.9852 + }, + { + "start": 2349.32, + "end": 2350.92, + "probability": 0.9138 + }, + { + "start": 2351.44, + "end": 2352.76, + "probability": 0.9785 + }, + { + "start": 2353.18, + "end": 2355.8, + "probability": 0.9585 + }, + { + "start": 2356.16, + "end": 2356.96, + "probability": 0.8971 + }, + { + "start": 2357.38, + "end": 2359.12, + "probability": 0.9177 + }, + { + "start": 2359.52, + "end": 2361.6, + "probability": 0.558 + }, + { + "start": 2361.76, + "end": 2362.68, + "probability": 0.7356 + }, + { + "start": 2363.12, + "end": 2364.16, + "probability": 0.6956 + }, + { + "start": 2365.08, + "end": 2365.5, + "probability": 0.8636 + }, + { + "start": 2365.76, + "end": 2368.52, + "probability": 0.9958 + }, + { + "start": 2368.84, + "end": 2370.88, + "probability": 0.9748 + }, + { + "start": 2371.3, + "end": 2373.8, + "probability": 0.9512 + }, + { + "start": 2374.18, + "end": 2378.72, + "probability": 0.9871 + }, + { + "start": 2379.44, + "end": 2382.48, + "probability": 0.698 + }, + { + "start": 2382.88, + "end": 2387.3, + "probability": 0.9946 + }, + { + "start": 2387.66, + "end": 2387.86, + "probability": 0.4784 + }, + { + "start": 2388.28, + "end": 2389.92, + "probability": 0.9693 + }, + { + "start": 2390.0, + "end": 2392.3, + "probability": 0.759 + }, + { + "start": 2392.4, + "end": 2393.18, + "probability": 0.7056 + }, + { + "start": 2393.28, + "end": 2394.44, + "probability": 0.77 + }, + { + "start": 2395.02, + "end": 2396.6, + "probability": 0.8681 + }, + { + "start": 2397.34, + "end": 2398.32, + "probability": 0.9539 + }, + { + "start": 2398.96, + "end": 2399.98, + "probability": 0.8822 + }, + { + "start": 2400.56, + "end": 2402.92, + "probability": 0.9769 + }, + { + "start": 2403.68, + "end": 2407.54, + "probability": 0.7491 + }, + { + "start": 2407.9, + "end": 2409.74, + "probability": 0.9868 + }, + { + "start": 2410.58, + "end": 2414.28, + "probability": 0.9064 + }, + { + "start": 2414.7, + "end": 2418.7, + "probability": 0.9962 + }, + { + "start": 2419.22, + "end": 2420.16, + "probability": 0.8202 + }, + { + "start": 2420.54, + "end": 2421.6, + "probability": 0.9022 + }, + { + "start": 2422.0, + "end": 2423.34, + "probability": 0.8657 + }, + { + "start": 2423.86, + "end": 2427.3, + "probability": 0.9566 + }, + { + "start": 2427.84, + "end": 2431.98, + "probability": 0.963 + }, + { + "start": 2432.56, + "end": 2435.08, + "probability": 0.9968 + }, + { + "start": 2435.56, + "end": 2437.05, + "probability": 0.9956 + }, + { + "start": 2437.98, + "end": 2439.5, + "probability": 0.6244 + }, + { + "start": 2439.88, + "end": 2441.94, + "probability": 0.981 + }, + { + "start": 2442.5, + "end": 2443.54, + "probability": 0.9189 + }, + { + "start": 2444.04, + "end": 2445.16, + "probability": 0.9274 + }, + { + "start": 2445.46, + "end": 2446.8, + "probability": 0.9764 + }, + { + "start": 2447.18, + "end": 2448.42, + "probability": 0.9886 + }, + { + "start": 2448.98, + "end": 2449.12, + "probability": 0.4761 + }, + { + "start": 2449.48, + "end": 2450.18, + "probability": 0.4358 + }, + { + "start": 2450.36, + "end": 2451.94, + "probability": 0.8416 + }, + { + "start": 2452.04, + "end": 2452.78, + "probability": 0.6539 + }, + { + "start": 2452.9, + "end": 2452.92, + "probability": 0.4273 + }, + { + "start": 2453.06, + "end": 2453.3, + "probability": 0.356 + }, + { + "start": 2453.36, + "end": 2453.9, + "probability": 0.7179 + }, + { + "start": 2454.48, + "end": 2457.15, + "probability": 0.9834 + }, + { + "start": 2457.66, + "end": 2459.2, + "probability": 0.5358 + }, + { + "start": 2459.72, + "end": 2464.1, + "probability": 0.8975 + }, + { + "start": 2465.02, + "end": 2466.84, + "probability": 0.9664 + }, + { + "start": 2467.24, + "end": 2471.06, + "probability": 0.9958 + }, + { + "start": 2471.54, + "end": 2474.5, + "probability": 0.9601 + }, + { + "start": 2475.04, + "end": 2480.94, + "probability": 0.9968 + }, + { + "start": 2481.4, + "end": 2482.52, + "probability": 0.9321 + }, + { + "start": 2482.64, + "end": 2483.62, + "probability": 0.8327 + }, + { + "start": 2484.04, + "end": 2486.02, + "probability": 0.9982 + }, + { + "start": 2486.48, + "end": 2486.62, + "probability": 0.8042 + }, + { + "start": 2486.66, + "end": 2493.14, + "probability": 0.9907 + }, + { + "start": 2493.24, + "end": 2493.46, + "probability": 0.8128 + }, + { + "start": 2493.9, + "end": 2494.58, + "probability": 0.8035 + }, + { + "start": 2494.68, + "end": 2495.11, + "probability": 0.9788 + }, + { + "start": 2496.64, + "end": 2497.5, + "probability": 0.958 + }, + { + "start": 2498.2, + "end": 2499.14, + "probability": 0.6906 + }, + { + "start": 2500.8, + "end": 2502.18, + "probability": 0.8979 + }, + { + "start": 2503.58, + "end": 2505.46, + "probability": 0.9995 + }, + { + "start": 2508.38, + "end": 2509.64, + "probability": 0.999 + }, + { + "start": 2510.66, + "end": 2512.06, + "probability": 0.9912 + }, + { + "start": 2512.56, + "end": 2513.25, + "probability": 0.9109 + }, + { + "start": 2523.62, + "end": 2525.86, + "probability": 0.7052 + }, + { + "start": 2526.18, + "end": 2527.84, + "probability": 0.4258 + }, + { + "start": 2527.88, + "end": 2528.78, + "probability": 0.8745 + }, + { + "start": 2528.88, + "end": 2531.32, + "probability": 0.1025 + }, + { + "start": 2531.32, + "end": 2533.46, + "probability": 0.6276 + }, + { + "start": 2533.58, + "end": 2536.24, + "probability": 0.3074 + }, + { + "start": 2536.26, + "end": 2539.89, + "probability": 0.0383 + }, + { + "start": 2541.42, + "end": 2542.8, + "probability": 0.7527 + }, + { + "start": 2543.12, + "end": 2544.66, + "probability": 0.2746 + }, + { + "start": 2547.32, + "end": 2547.42, + "probability": 0.2357 + }, + { + "start": 2547.42, + "end": 2551.04, + "probability": 0.1058 + }, + { + "start": 2551.2, + "end": 2553.22, + "probability": 0.4678 + }, + { + "start": 2553.9, + "end": 2557.0, + "probability": 0.166 + }, + { + "start": 2557.28, + "end": 2558.12, + "probability": 0.329 + }, + { + "start": 2558.12, + "end": 2558.32, + "probability": 0.0625 + }, + { + "start": 2560.26, + "end": 2561.02, + "probability": 0.0076 + }, + { + "start": 2561.02, + "end": 2561.02, + "probability": 0.0003 + }, + { + "start": 2561.02, + "end": 2561.02, + "probability": 0.0426 + }, + { + "start": 2561.02, + "end": 2561.02, + "probability": 0.0414 + }, + { + "start": 2561.02, + "end": 2561.02, + "probability": 0.0247 + }, + { + "start": 2561.02, + "end": 2562.8, + "probability": 0.3142 + }, + { + "start": 2562.8, + "end": 2563.46, + "probability": 0.0657 + }, + { + "start": 2563.6, + "end": 2564.1, + "probability": 0.5491 + }, + { + "start": 2567.26, + "end": 2570.48, + "probability": 0.519 + }, + { + "start": 2571.48, + "end": 2573.1, + "probability": 0.5847 + }, + { + "start": 2573.26, + "end": 2573.26, + "probability": 0.1217 + }, + { + "start": 2573.26, + "end": 2575.22, + "probability": 0.9441 + }, + { + "start": 2575.46, + "end": 2580.4, + "probability": 0.9932 + }, + { + "start": 2581.14, + "end": 2581.72, + "probability": 0.5912 + }, + { + "start": 2582.08, + "end": 2583.58, + "probability": 0.9185 + }, + { + "start": 2583.6, + "end": 2584.26, + "probability": 0.6346 + }, + { + "start": 2584.46, + "end": 2589.24, + "probability": 0.9377 + }, + { + "start": 2589.38, + "end": 2590.66, + "probability": 0.802 + }, + { + "start": 2591.38, + "end": 2592.03, + "probability": 0.8867 + }, + { + "start": 2592.24, + "end": 2592.74, + "probability": 0.8422 + }, + { + "start": 2592.78, + "end": 2595.54, + "probability": 0.9798 + }, + { + "start": 2595.7, + "end": 2601.8, + "probability": 0.9555 + }, + { + "start": 2602.52, + "end": 2605.46, + "probability": 0.9026 + }, + { + "start": 2605.78, + "end": 2608.14, + "probability": 0.9348 + }, + { + "start": 2608.38, + "end": 2609.94, + "probability": 0.9707 + }, + { + "start": 2610.0, + "end": 2613.5, + "probability": 0.9902 + }, + { + "start": 2613.64, + "end": 2614.64, + "probability": 0.5246 + }, + { + "start": 2614.64, + "end": 2615.64, + "probability": 0.7606 + }, + { + "start": 2615.84, + "end": 2620.22, + "probability": 0.9803 + }, + { + "start": 2620.78, + "end": 2624.64, + "probability": 0.9707 + }, + { + "start": 2624.92, + "end": 2625.64, + "probability": 0.2039 + }, + { + "start": 2625.64, + "end": 2630.16, + "probability": 0.1025 + }, + { + "start": 2630.16, + "end": 2631.58, + "probability": 0.3098 + }, + { + "start": 2632.26, + "end": 2632.26, + "probability": 0.0183 + }, + { + "start": 2632.26, + "end": 2632.26, + "probability": 0.0244 + }, + { + "start": 2632.26, + "end": 2632.26, + "probability": 0.0386 + }, + { + "start": 2632.26, + "end": 2632.89, + "probability": 0.3599 + }, + { + "start": 2633.1, + "end": 2634.42, + "probability": 0.8759 + }, + { + "start": 2634.58, + "end": 2636.35, + "probability": 0.6087 + }, + { + "start": 2636.76, + "end": 2640.18, + "probability": 0.6697 + }, + { + "start": 2640.5, + "end": 2641.06, + "probability": 0.9326 + }, + { + "start": 2641.28, + "end": 2642.25, + "probability": 0.9756 + }, + { + "start": 2642.44, + "end": 2647.12, + "probability": 0.7615 + }, + { + "start": 2647.42, + "end": 2649.0, + "probability": 0.936 + }, + { + "start": 2649.24, + "end": 2654.8, + "probability": 0.9684 + }, + { + "start": 2655.62, + "end": 2656.8, + "probability": 0.8533 + }, + { + "start": 2657.16, + "end": 2660.49, + "probability": 0.9236 + }, + { + "start": 2660.92, + "end": 2664.1, + "probability": 0.6424 + }, + { + "start": 2664.7, + "end": 2665.74, + "probability": 0.7729 + }, + { + "start": 2665.88, + "end": 2668.33, + "probability": 0.6322 + }, + { + "start": 2668.9, + "end": 2672.44, + "probability": 0.887 + }, + { + "start": 2673.02, + "end": 2675.78, + "probability": 0.8302 + }, + { + "start": 2677.04, + "end": 2681.46, + "probability": 0.9941 + }, + { + "start": 2682.94, + "end": 2684.6, + "probability": 0.7581 + }, + { + "start": 2685.18, + "end": 2687.1, + "probability": 0.8741 + }, + { + "start": 2687.8, + "end": 2692.22, + "probability": 0.8688 + }, + { + "start": 2692.86, + "end": 2699.02, + "probability": 0.9801 + }, + { + "start": 2699.18, + "end": 2700.68, + "probability": 0.8876 + }, + { + "start": 2700.76, + "end": 2701.76, + "probability": 0.9882 + }, + { + "start": 2701.88, + "end": 2702.88, + "probability": 0.7539 + }, + { + "start": 2703.46, + "end": 2706.98, + "probability": 0.9965 + }, + { + "start": 2707.64, + "end": 2709.18, + "probability": 0.9886 + }, + { + "start": 2709.62, + "end": 2711.84, + "probability": 0.9932 + }, + { + "start": 2712.1, + "end": 2713.22, + "probability": 0.9859 + }, + { + "start": 2713.46, + "end": 2715.12, + "probability": 0.9971 + }, + { + "start": 2716.0, + "end": 2717.14, + "probability": 0.9517 + }, + { + "start": 2717.28, + "end": 2719.3, + "probability": 0.7494 + }, + { + "start": 2719.62, + "end": 2722.22, + "probability": 0.8326 + }, + { + "start": 2722.32, + "end": 2723.46, + "probability": 0.8676 + }, + { + "start": 2723.86, + "end": 2725.58, + "probability": 0.7783 + }, + { + "start": 2725.74, + "end": 2727.0, + "probability": 0.7107 + }, + { + "start": 2728.0, + "end": 2729.14, + "probability": 0.8507 + }, + { + "start": 2729.44, + "end": 2731.44, + "probability": 0.8998 + }, + { + "start": 2731.72, + "end": 2734.88, + "probability": 0.9472 + }, + { + "start": 2737.33, + "end": 2739.62, + "probability": 0.9634 + }, + { + "start": 2739.66, + "end": 2740.82, + "probability": 0.4729 + }, + { + "start": 2740.86, + "end": 2742.92, + "probability": 0.9965 + }, + { + "start": 2743.0, + "end": 2745.19, + "probability": 0.9286 + }, + { + "start": 2746.0, + "end": 2748.88, + "probability": 0.972 + }, + { + "start": 2749.0, + "end": 2750.39, + "probability": 0.9661 + }, + { + "start": 2751.34, + "end": 2753.57, + "probability": 0.9373 + }, + { + "start": 2754.04, + "end": 2760.2, + "probability": 0.988 + }, + { + "start": 2760.7, + "end": 2762.22, + "probability": 0.9185 + }, + { + "start": 2762.26, + "end": 2765.68, + "probability": 0.8887 + }, + { + "start": 2766.69, + "end": 2771.7, + "probability": 0.9919 + }, + { + "start": 2772.58, + "end": 2773.44, + "probability": 0.3969 + }, + { + "start": 2774.24, + "end": 2779.66, + "probability": 0.9794 + }, + { + "start": 2780.12, + "end": 2780.9, + "probability": 0.8247 + }, + { + "start": 2781.94, + "end": 2784.74, + "probability": 0.9849 + }, + { + "start": 2785.4, + "end": 2787.74, + "probability": 0.9949 + }, + { + "start": 2787.92, + "end": 2788.14, + "probability": 0.682 + }, + { + "start": 2788.16, + "end": 2790.4, + "probability": 0.934 + }, + { + "start": 2791.32, + "end": 2792.42, + "probability": 0.8796 + }, + { + "start": 2793.24, + "end": 2798.84, + "probability": 0.9907 + }, + { + "start": 2798.9, + "end": 2801.28, + "probability": 0.87 + }, + { + "start": 2801.74, + "end": 2802.68, + "probability": 0.203 + }, + { + "start": 2802.68, + "end": 2803.98, + "probability": 0.7552 + }, + { + "start": 2804.36, + "end": 2806.6, + "probability": 0.074 + }, + { + "start": 2806.6, + "end": 2807.46, + "probability": 0.0524 + }, + { + "start": 2807.46, + "end": 2807.96, + "probability": 0.2217 + }, + { + "start": 2808.94, + "end": 2812.6, + "probability": 0.0557 + }, + { + "start": 2813.6, + "end": 2814.72, + "probability": 0.1373 + }, + { + "start": 2814.72, + "end": 2815.8, + "probability": 0.0665 + }, + { + "start": 2815.86, + "end": 2815.86, + "probability": 0.307 + }, + { + "start": 2815.86, + "end": 2815.86, + "probability": 0.2583 + }, + { + "start": 2816.3, + "end": 2820.48, + "probability": 0.673 + }, + { + "start": 2821.32, + "end": 2824.0, + "probability": 0.9915 + }, + { + "start": 2825.3, + "end": 2825.92, + "probability": 0.5582 + }, + { + "start": 2826.34, + "end": 2827.04, + "probability": 0.6961 + }, + { + "start": 2827.22, + "end": 2829.8, + "probability": 0.998 + }, + { + "start": 2829.8, + "end": 2832.96, + "probability": 0.9848 + }, + { + "start": 2834.56, + "end": 2835.78, + "probability": 0.9292 + }, + { + "start": 2835.88, + "end": 2837.7, + "probability": 0.8315 + }, + { + "start": 2837.9, + "end": 2839.32, + "probability": 0.9819 + }, + { + "start": 2839.46, + "end": 2839.86, + "probability": 0.5163 + }, + { + "start": 2840.04, + "end": 2841.04, + "probability": 0.9675 + }, + { + "start": 2853.86, + "end": 2855.68, + "probability": 0.0123 + }, + { + "start": 2855.68, + "end": 2855.68, + "probability": 0.0188 + }, + { + "start": 2855.68, + "end": 2855.68, + "probability": 0.5177 + }, + { + "start": 2855.68, + "end": 2855.68, + "probability": 0.149 + }, + { + "start": 2855.68, + "end": 2855.68, + "probability": 0.3973 + }, + { + "start": 2855.68, + "end": 2856.59, + "probability": 0.0406 + }, + { + "start": 2858.49, + "end": 2861.94, + "probability": 0.7482 + }, + { + "start": 2862.62, + "end": 2863.44, + "probability": 0.8009 + }, + { + "start": 2864.1, + "end": 2866.46, + "probability": 0.5805 + }, + { + "start": 2867.04, + "end": 2869.68, + "probability": 0.9808 + }, + { + "start": 2871.0, + "end": 2877.66, + "probability": 0.9751 + }, + { + "start": 2878.82, + "end": 2880.5, + "probability": 0.7997 + }, + { + "start": 2880.68, + "end": 2882.56, + "probability": 0.8534 + }, + { + "start": 2882.86, + "end": 2884.22, + "probability": 0.8784 + }, + { + "start": 2884.92, + "end": 2891.98, + "probability": 0.9911 + }, + { + "start": 2892.88, + "end": 2894.38, + "probability": 0.9938 + }, + { + "start": 2894.5, + "end": 2896.86, + "probability": 0.7388 + }, + { + "start": 2896.94, + "end": 2898.06, + "probability": 0.9376 + }, + { + "start": 2898.08, + "end": 2899.58, + "probability": 0.9599 + }, + { + "start": 2899.58, + "end": 2902.2, + "probability": 0.8981 + }, + { + "start": 2902.26, + "end": 2905.48, + "probability": 0.9356 + }, + { + "start": 2906.22, + "end": 2914.5, + "probability": 0.8354 + }, + { + "start": 2914.8, + "end": 2916.44, + "probability": 0.981 + }, + { + "start": 2916.44, + "end": 2916.86, + "probability": 0.4744 + }, + { + "start": 2919.16, + "end": 2920.94, + "probability": 0.4027 + }, + { + "start": 2920.94, + "end": 2921.36, + "probability": 0.2492 + }, + { + "start": 2923.08, + "end": 2923.3, + "probability": 0.1502 + }, + { + "start": 2923.3, + "end": 2923.3, + "probability": 0.219 + }, + { + "start": 2923.3, + "end": 2923.3, + "probability": 0.2298 + }, + { + "start": 2923.3, + "end": 2926.22, + "probability": 0.4769 + }, + { + "start": 2926.9, + "end": 2928.75, + "probability": 0.6315 + }, + { + "start": 2929.28, + "end": 2931.2, + "probability": 0.9365 + }, + { + "start": 2931.2, + "end": 2932.7, + "probability": 0.7561 + }, + { + "start": 2932.8, + "end": 2934.5, + "probability": 0.9459 + }, + { + "start": 2934.5, + "end": 2936.64, + "probability": 0.3421 + }, + { + "start": 2936.78, + "end": 2938.78, + "probability": 0.7531 + }, + { + "start": 2938.96, + "end": 2941.56, + "probability": 0.9212 + }, + { + "start": 2941.56, + "end": 2943.48, + "probability": 0.9854 + }, + { + "start": 2943.64, + "end": 2945.58, + "probability": 0.9814 + }, + { + "start": 2945.72, + "end": 2947.54, + "probability": 0.8724 + }, + { + "start": 2947.78, + "end": 2949.32, + "probability": 0.6992 + }, + { + "start": 2949.4, + "end": 2951.5, + "probability": 0.9279 + }, + { + "start": 2952.02, + "end": 2954.4, + "probability": 0.9954 + }, + { + "start": 2954.5, + "end": 2957.16, + "probability": 0.9458 + }, + { + "start": 2958.26, + "end": 2958.74, + "probability": 0.1832 + }, + { + "start": 2958.74, + "end": 2959.36, + "probability": 0.1795 + }, + { + "start": 2959.54, + "end": 2961.09, + "probability": 0.713 + }, + { + "start": 2962.9, + "end": 2964.06, + "probability": 0.9657 + }, + { + "start": 2964.22, + "end": 2964.44, + "probability": 0.8241 + }, + { + "start": 2964.5, + "end": 2965.24, + "probability": 0.5415 + }, + { + "start": 2965.3, + "end": 2967.8, + "probability": 0.9958 + }, + { + "start": 2968.3, + "end": 2971.12, + "probability": 0.7745 + }, + { + "start": 2972.1, + "end": 2974.3, + "probability": 0.5384 + }, + { + "start": 2974.94, + "end": 2975.94, + "probability": 0.5329 + }, + { + "start": 2976.62, + "end": 2982.88, + "probability": 0.9961 + }, + { + "start": 2983.1, + "end": 2987.4, + "probability": 0.9882 + }, + { + "start": 2988.0, + "end": 2989.83, + "probability": 0.9922 + }, + { + "start": 2990.76, + "end": 2994.3, + "probability": 0.9971 + }, + { + "start": 2994.76, + "end": 2996.64, + "probability": 0.9279 + }, + { + "start": 2997.14, + "end": 3003.04, + "probability": 0.9895 + }, + { + "start": 3003.8, + "end": 3009.02, + "probability": 0.9902 + }, + { + "start": 3009.72, + "end": 3012.52, + "probability": 0.9886 + }, + { + "start": 3012.98, + "end": 3013.12, + "probability": 0.0159 + }, + { + "start": 3013.12, + "end": 3013.12, + "probability": 0.1764 + }, + { + "start": 3013.12, + "end": 3013.94, + "probability": 0.5058 + }, + { + "start": 3014.04, + "end": 3014.52, + "probability": 0.7693 + }, + { + "start": 3014.58, + "end": 3015.52, + "probability": 0.6131 + }, + { + "start": 3016.46, + "end": 3017.14, + "probability": 0.2283 + }, + { + "start": 3017.14, + "end": 3019.7, + "probability": 0.5781 + }, + { + "start": 3020.16, + "end": 3022.74, + "probability": 0.4227 + }, + { + "start": 3022.76, + "end": 3023.22, + "probability": 0.3142 + }, + { + "start": 3023.22, + "end": 3023.22, + "probability": 0.109 + }, + { + "start": 3023.22, + "end": 3023.22, + "probability": 0.4503 + }, + { + "start": 3023.22, + "end": 3028.6, + "probability": 0.263 + }, + { + "start": 3029.44, + "end": 3030.5, + "probability": 0.8501 + }, + { + "start": 3031.8, + "end": 3033.58, + "probability": 0.9155 + }, + { + "start": 3035.02, + "end": 3037.44, + "probability": 0.9922 + }, + { + "start": 3037.52, + "end": 3038.12, + "probability": 0.3997 + }, + { + "start": 3038.34, + "end": 3039.86, + "probability": 0.6436 + }, + { + "start": 3040.28, + "end": 3043.16, + "probability": 0.9949 + }, + { + "start": 3043.98, + "end": 3047.48, + "probability": 0.8858 + }, + { + "start": 3048.24, + "end": 3050.38, + "probability": 0.9946 + }, + { + "start": 3050.44, + "end": 3051.82, + "probability": 0.9869 + }, + { + "start": 3052.3, + "end": 3058.22, + "probability": 0.9919 + }, + { + "start": 3058.34, + "end": 3064.8, + "probability": 0.9146 + }, + { + "start": 3065.5, + "end": 3069.12, + "probability": 0.9574 + }, + { + "start": 3069.44, + "end": 3070.78, + "probability": 0.5409 + }, + { + "start": 3071.4, + "end": 3074.58, + "probability": 0.9839 + }, + { + "start": 3074.76, + "end": 3080.34, + "probability": 0.9941 + }, + { + "start": 3080.48, + "end": 3082.38, + "probability": 0.5715 + }, + { + "start": 3082.5, + "end": 3087.7, + "probability": 0.9551 + }, + { + "start": 3087.84, + "end": 3090.22, + "probability": 0.9829 + }, + { + "start": 3090.7, + "end": 3091.62, + "probability": 0.6645 + }, + { + "start": 3091.8, + "end": 3093.54, + "probability": 0.984 + }, + { + "start": 3093.72, + "end": 3095.0, + "probability": 0.9967 + }, + { + "start": 3095.84, + "end": 3098.86, + "probability": 0.9971 + }, + { + "start": 3099.76, + "end": 3101.16, + "probability": 0.9934 + }, + { + "start": 3101.26, + "end": 3104.72, + "probability": 0.9922 + }, + { + "start": 3104.72, + "end": 3107.96, + "probability": 0.9963 + }, + { + "start": 3108.44, + "end": 3109.04, + "probability": 0.9902 + }, + { + "start": 3109.6, + "end": 3110.65, + "probability": 0.3978 + }, + { + "start": 3111.26, + "end": 3113.42, + "probability": 0.6633 + }, + { + "start": 3113.94, + "end": 3118.7, + "probability": 0.9943 + }, + { + "start": 3119.24, + "end": 3120.32, + "probability": 0.9751 + }, + { + "start": 3120.52, + "end": 3121.76, + "probability": 0.9138 + }, + { + "start": 3122.02, + "end": 3122.28, + "probability": 0.83 + }, + { + "start": 3122.34, + "end": 3123.95, + "probability": 0.9639 + }, + { + "start": 3124.7, + "end": 3126.79, + "probability": 0.8843 + }, + { + "start": 3127.64, + "end": 3131.32, + "probability": 0.9976 + }, + { + "start": 3131.48, + "end": 3131.64, + "probability": 0.4375 + }, + { + "start": 3131.64, + "end": 3134.86, + "probability": 0.7325 + }, + { + "start": 3135.0, + "end": 3137.51, + "probability": 0.9832 + }, + { + "start": 3138.1, + "end": 3140.4, + "probability": 0.8262 + }, + { + "start": 3140.44, + "end": 3141.52, + "probability": 0.6786 + }, + { + "start": 3141.88, + "end": 3143.78, + "probability": 0.9945 + }, + { + "start": 3143.82, + "end": 3147.14, + "probability": 0.7657 + }, + { + "start": 3147.16, + "end": 3147.42, + "probability": 0.7366 + }, + { + "start": 3147.76, + "end": 3149.26, + "probability": 0.9071 + }, + { + "start": 3149.74, + "end": 3154.82, + "probability": 0.7876 + }, + { + "start": 3155.0, + "end": 3160.0, + "probability": 0.9588 + }, + { + "start": 3160.0, + "end": 3162.46, + "probability": 0.1792 + }, + { + "start": 3162.5, + "end": 3163.36, + "probability": 0.484 + }, + { + "start": 3163.44, + "end": 3164.74, + "probability": 0.8935 + }, + { + "start": 3164.82, + "end": 3165.6, + "probability": 0.4992 + }, + { + "start": 3165.6, + "end": 3165.74, + "probability": 0.0265 + }, + { + "start": 3165.82, + "end": 3167.76, + "probability": 0.8164 + }, + { + "start": 3167.8, + "end": 3170.0, + "probability": 0.9119 + }, + { + "start": 3170.06, + "end": 3172.38, + "probability": 0.9462 + }, + { + "start": 3172.86, + "end": 3177.36, + "probability": 0.9953 + }, + { + "start": 3177.66, + "end": 3177.98, + "probability": 0.7355 + }, + { + "start": 3178.08, + "end": 3178.76, + "probability": 0.7893 + }, + { + "start": 3179.0, + "end": 3180.4, + "probability": 0.7464 + }, + { + "start": 3180.4, + "end": 3182.68, + "probability": 0.6593 + }, + { + "start": 3182.68, + "end": 3185.14, + "probability": 0.4319 + }, + { + "start": 3185.14, + "end": 3186.48, + "probability": 0.3849 + }, + { + "start": 3187.66, + "end": 3190.04, + "probability": 0.6493 + }, + { + "start": 3191.16, + "end": 3191.8, + "probability": 0.3673 + }, + { + "start": 3192.44, + "end": 3195.32, + "probability": 0.9111 + }, + { + "start": 3195.8, + "end": 3197.22, + "probability": 0.8381 + }, + { + "start": 3197.6, + "end": 3199.76, + "probability": 0.8878 + }, + { + "start": 3200.2, + "end": 3202.2, + "probability": 0.8194 + }, + { + "start": 3202.92, + "end": 3205.22, + "probability": 0.9914 + }, + { + "start": 3205.84, + "end": 3207.2, + "probability": 0.8028 + }, + { + "start": 3207.94, + "end": 3210.26, + "probability": 0.9473 + }, + { + "start": 3210.64, + "end": 3218.94, + "probability": 0.9834 + }, + { + "start": 3219.16, + "end": 3220.07, + "probability": 0.8951 + }, + { + "start": 3221.8, + "end": 3223.81, + "probability": 0.8564 + }, + { + "start": 3224.66, + "end": 3227.28, + "probability": 0.9896 + }, + { + "start": 3227.7, + "end": 3230.0, + "probability": 0.9934 + }, + { + "start": 3230.5, + "end": 3234.04, + "probability": 0.9951 + }, + { + "start": 3234.22, + "end": 3238.36, + "probability": 0.9932 + }, + { + "start": 3239.16, + "end": 3239.79, + "probability": 0.9893 + }, + { + "start": 3240.74, + "end": 3241.74, + "probability": 0.9622 + }, + { + "start": 3242.24, + "end": 3244.3, + "probability": 0.9884 + }, + { + "start": 3244.56, + "end": 3249.74, + "probability": 0.9988 + }, + { + "start": 3249.94, + "end": 3253.96, + "probability": 0.8415 + }, + { + "start": 3254.66, + "end": 3256.28, + "probability": 0.8185 + }, + { + "start": 3256.9, + "end": 3259.87, + "probability": 0.9738 + }, + { + "start": 3260.08, + "end": 3260.74, + "probability": 0.8687 + }, + { + "start": 3261.0, + "end": 3261.38, + "probability": 0.457 + }, + { + "start": 3261.5, + "end": 3262.2, + "probability": 0.9858 + }, + { + "start": 3262.82, + "end": 3268.78, + "probability": 0.9751 + }, + { + "start": 3269.26, + "end": 3271.1, + "probability": 0.6432 + }, + { + "start": 3271.24, + "end": 3272.7, + "probability": 0.9951 + }, + { + "start": 3273.38, + "end": 3278.32, + "probability": 0.8884 + }, + { + "start": 3279.14, + "end": 3284.74, + "probability": 0.9932 + }, + { + "start": 3285.1, + "end": 3285.78, + "probability": 0.833 + }, + { + "start": 3286.26, + "end": 3290.36, + "probability": 0.9088 + }, + { + "start": 3290.64, + "end": 3291.26, + "probability": 0.9194 + }, + { + "start": 3291.42, + "end": 3293.4, + "probability": 0.9827 + }, + { + "start": 3293.74, + "end": 3295.04, + "probability": 0.9838 + }, + { + "start": 3295.36, + "end": 3296.92, + "probability": 0.9591 + }, + { + "start": 3297.38, + "end": 3304.54, + "probability": 0.9965 + }, + { + "start": 3305.08, + "end": 3310.36, + "probability": 0.9866 + }, + { + "start": 3310.9, + "end": 3316.9, + "probability": 0.9849 + }, + { + "start": 3317.4, + "end": 3319.44, + "probability": 0.9785 + }, + { + "start": 3319.58, + "end": 3320.78, + "probability": 0.9849 + }, + { + "start": 3321.5, + "end": 3322.48, + "probability": 0.6439 + }, + { + "start": 3322.98, + "end": 3327.7, + "probability": 0.9915 + }, + { + "start": 3327.96, + "end": 3330.26, + "probability": 0.9888 + }, + { + "start": 3330.86, + "end": 3333.4, + "probability": 0.9326 + }, + { + "start": 3333.92, + "end": 3337.8, + "probability": 0.9949 + }, + { + "start": 3337.92, + "end": 3344.66, + "probability": 0.9977 + }, + { + "start": 3345.12, + "end": 3345.66, + "probability": 0.6371 + }, + { + "start": 3346.1, + "end": 3347.46, + "probability": 0.8589 + }, + { + "start": 3347.94, + "end": 3349.2, + "probability": 0.8185 + }, + { + "start": 3349.58, + "end": 3350.5, + "probability": 0.9287 + }, + { + "start": 3350.82, + "end": 3353.34, + "probability": 0.991 + }, + { + "start": 3353.48, + "end": 3354.02, + "probability": 0.8411 + }, + { + "start": 3354.16, + "end": 3354.76, + "probability": 0.6175 + }, + { + "start": 3354.86, + "end": 3357.72, + "probability": 0.7137 + }, + { + "start": 3357.8, + "end": 3360.48, + "probability": 0.5045 + }, + { + "start": 3361.04, + "end": 3366.18, + "probability": 0.9089 + }, + { + "start": 3367.2, + "end": 3369.92, + "probability": 0.6022 + }, + { + "start": 3370.58, + "end": 3371.34, + "probability": 0.4589 + }, + { + "start": 3378.66, + "end": 3382.22, + "probability": 0.2615 + }, + { + "start": 3382.22, + "end": 3382.22, + "probability": 0.9628 + }, + { + "start": 3382.22, + "end": 3386.82, + "probability": 0.8149 + }, + { + "start": 3387.16, + "end": 3390.04, + "probability": 0.9277 + }, + { + "start": 3390.04, + "end": 3392.82, + "probability": 0.973 + }, + { + "start": 3392.88, + "end": 3395.26, + "probability": 0.7108 + }, + { + "start": 3395.74, + "end": 3398.94, + "probability": 0.8134 + }, + { + "start": 3398.98, + "end": 3400.38, + "probability": 0.6975 + }, + { + "start": 3403.69, + "end": 3405.74, + "probability": 0.5585 + }, + { + "start": 3405.9, + "end": 3410.19, + "probability": 0.7203 + }, + { + "start": 3410.44, + "end": 3411.98, + "probability": 0.9257 + }, + { + "start": 3412.32, + "end": 3415.44, + "probability": 0.965 + }, + { + "start": 3416.02, + "end": 3419.1, + "probability": 0.9966 + }, + { + "start": 3419.48, + "end": 3423.4, + "probability": 0.9997 + }, + { + "start": 3423.8, + "end": 3426.16, + "probability": 0.9987 + }, + { + "start": 3426.48, + "end": 3427.82, + "probability": 0.9458 + }, + { + "start": 3427.82, + "end": 3429.22, + "probability": 0.8865 + }, + { + "start": 3429.32, + "end": 3429.84, + "probability": 0.6871 + }, + { + "start": 3431.26, + "end": 3431.26, + "probability": 0.0895 + }, + { + "start": 3431.26, + "end": 3433.44, + "probability": 0.3542 + }, + { + "start": 3434.56, + "end": 3439.28, + "probability": 0.9746 + }, + { + "start": 3439.52, + "end": 3442.18, + "probability": 0.9294 + }, + { + "start": 3442.18, + "end": 3444.0, + "probability": 0.9053 + }, + { + "start": 3444.34, + "end": 3446.86, + "probability": 0.9932 + }, + { + "start": 3446.86, + "end": 3450.82, + "probability": 0.9923 + }, + { + "start": 3451.38, + "end": 3452.68, + "probability": 0.7979 + }, + { + "start": 3452.96, + "end": 3453.46, + "probability": 0.9248 + }, + { + "start": 3454.0, + "end": 3456.3, + "probability": 0.9354 + }, + { + "start": 3456.66, + "end": 3457.66, + "probability": 0.5326 + }, + { + "start": 3457.68, + "end": 3458.38, + "probability": 0.7532 + }, + { + "start": 3458.58, + "end": 3459.7, + "probability": 0.8536 + }, + { + "start": 3459.8, + "end": 3460.0, + "probability": 0.6287 + }, + { + "start": 3460.08, + "end": 3461.62, + "probability": 0.8028 + }, + { + "start": 3461.98, + "end": 3466.18, + "probability": 0.9705 + }, + { + "start": 3466.18, + "end": 3470.86, + "probability": 0.9404 + }, + { + "start": 3471.32, + "end": 3475.68, + "probability": 0.9598 + }, + { + "start": 3475.98, + "end": 3477.4, + "probability": 0.9661 + }, + { + "start": 3477.92, + "end": 3479.26, + "probability": 0.7659 + }, + { + "start": 3479.5, + "end": 3482.4, + "probability": 0.9935 + }, + { + "start": 3482.4, + "end": 3485.54, + "probability": 0.9561 + }, + { + "start": 3485.76, + "end": 3486.72, + "probability": 0.9611 + }, + { + "start": 3487.2, + "end": 3492.36, + "probability": 0.9956 + }, + { + "start": 3492.76, + "end": 3494.22, + "probability": 0.975 + }, + { + "start": 3494.34, + "end": 3495.3, + "probability": 0.9211 + }, + { + "start": 3495.98, + "end": 3496.64, + "probability": 0.8392 + }, + { + "start": 3496.74, + "end": 3498.04, + "probability": 0.9147 + }, + { + "start": 3498.12, + "end": 3502.94, + "probability": 0.9884 + }, + { + "start": 3503.68, + "end": 3509.54, + "probability": 0.9902 + }, + { + "start": 3509.96, + "end": 3515.94, + "probability": 0.8964 + }, + { + "start": 3516.72, + "end": 3517.82, + "probability": 0.1535 + }, + { + "start": 3518.2, + "end": 3519.28, + "probability": 0.5663 + }, + { + "start": 3520.02, + "end": 3522.16, + "probability": 0.6362 + }, + { + "start": 3522.34, + "end": 3522.46, + "probability": 0.0995 + }, + { + "start": 3522.46, + "end": 3522.46, + "probability": 0.0379 + }, + { + "start": 3522.46, + "end": 3522.46, + "probability": 0.0531 + }, + { + "start": 3522.46, + "end": 3522.46, + "probability": 0.1401 + }, + { + "start": 3522.46, + "end": 3524.16, + "probability": 0.4959 + }, + { + "start": 3524.3, + "end": 3526.74, + "probability": 0.9037 + }, + { + "start": 3526.74, + "end": 3529.36, + "probability": 0.9959 + }, + { + "start": 3529.92, + "end": 3533.12, + "probability": 0.6801 + }, + { + "start": 3533.18, + "end": 3534.42, + "probability": 0.9972 + }, + { + "start": 3534.52, + "end": 3534.52, + "probability": 0.3277 + }, + { + "start": 3534.56, + "end": 3536.46, + "probability": 0.6477 + }, + { + "start": 3536.48, + "end": 3537.38, + "probability": 0.9124 + }, + { + "start": 3537.64, + "end": 3540.9, + "probability": 0.9912 + }, + { + "start": 3541.0, + "end": 3542.57, + "probability": 0.9951 + }, + { + "start": 3543.26, + "end": 3543.98, + "probability": 0.0094 + }, + { + "start": 3544.66, + "end": 3545.9, + "probability": 0.8936 + }, + { + "start": 3546.5, + "end": 3551.9, + "probability": 0.9557 + }, + { + "start": 3552.08, + "end": 3557.24, + "probability": 0.9347 + }, + { + "start": 3557.5, + "end": 3558.68, + "probability": 0.5923 + }, + { + "start": 3560.36, + "end": 3565.3, + "probability": 0.934 + }, + { + "start": 3565.36, + "end": 3565.74, + "probability": 0.5878 + }, + { + "start": 3565.82, + "end": 3566.7, + "probability": 0.6991 + }, + { + "start": 3567.14, + "end": 3569.6, + "probability": 0.9922 + }, + { + "start": 3569.74, + "end": 3573.8, + "probability": 0.7767 + }, + { + "start": 3574.64, + "end": 3577.0, + "probability": 0.966 + }, + { + "start": 3578.0, + "end": 3579.08, + "probability": 0.8139 + }, + { + "start": 3579.26, + "end": 3580.22, + "probability": 0.9002 + }, + { + "start": 3580.28, + "end": 3581.58, + "probability": 0.9044 + }, + { + "start": 3582.04, + "end": 3582.54, + "probability": 0.9398 + }, + { + "start": 3582.58, + "end": 3585.54, + "probability": 0.9787 + }, + { + "start": 3585.88, + "end": 3586.86, + "probability": 0.8362 + }, + { + "start": 3586.92, + "end": 3587.4, + "probability": 0.9048 + }, + { + "start": 3587.82, + "end": 3588.4, + "probability": 0.5354 + }, + { + "start": 3588.44, + "end": 3588.83, + "probability": 0.918 + }, + { + "start": 3589.6, + "end": 3590.42, + "probability": 0.9573 + }, + { + "start": 3591.02, + "end": 3591.77, + "probability": 0.8716 + }, + { + "start": 3592.2, + "end": 3593.18, + "probability": 0.7112 + }, + { + "start": 3593.38, + "end": 3595.88, + "probability": 0.8428 + }, + { + "start": 3595.96, + "end": 3596.2, + "probability": 0.8123 + }, + { + "start": 3596.22, + "end": 3598.76, + "probability": 0.2476 + }, + { + "start": 3598.92, + "end": 3598.92, + "probability": 0.0063 + }, + { + "start": 3598.92, + "end": 3599.85, + "probability": 0.4963 + }, + { + "start": 3600.16, + "end": 3601.7, + "probability": 0.708 + }, + { + "start": 3602.06, + "end": 3602.92, + "probability": 0.8929 + }, + { + "start": 3603.16, + "end": 3603.74, + "probability": 0.7222 + }, + { + "start": 3604.0, + "end": 3604.79, + "probability": 0.9683 + }, + { + "start": 3604.98, + "end": 3607.76, + "probability": 0.9966 + }, + { + "start": 3608.06, + "end": 3611.08, + "probability": 0.7937 + }, + { + "start": 3611.32, + "end": 3612.22, + "probability": 0.8517 + }, + { + "start": 3612.62, + "end": 3614.84, + "probability": 0.9879 + }, + { + "start": 3614.92, + "end": 3618.54, + "probability": 0.9224 + }, + { + "start": 3618.64, + "end": 3620.45, + "probability": 0.9453 + }, + { + "start": 3620.78, + "end": 3621.16, + "probability": 0.8615 + }, + { + "start": 3621.24, + "end": 3622.14, + "probability": 0.9064 + }, + { + "start": 3622.22, + "end": 3623.94, + "probability": 0.9536 + }, + { + "start": 3623.98, + "end": 3624.36, + "probability": 0.8734 + }, + { + "start": 3624.84, + "end": 3629.1, + "probability": 0.9535 + }, + { + "start": 3629.46, + "end": 3632.94, + "probability": 0.901 + }, + { + "start": 3633.0, + "end": 3634.08, + "probability": 0.7996 + }, + { + "start": 3634.46, + "end": 3634.48, + "probability": 0.4324 + }, + { + "start": 3634.9, + "end": 3636.1, + "probability": 0.7408 + }, + { + "start": 3636.5, + "end": 3637.18, + "probability": 0.7844 + }, + { + "start": 3637.28, + "end": 3640.84, + "probability": 0.6838 + }, + { + "start": 3641.38, + "end": 3641.38, + "probability": 0.0121 + }, + { + "start": 3641.38, + "end": 3642.2, + "probability": 0.5165 + }, + { + "start": 3642.76, + "end": 3644.14, + "probability": 0.9392 + }, + { + "start": 3644.3, + "end": 3645.3, + "probability": 0.9216 + }, + { + "start": 3645.62, + "end": 3646.7, + "probability": 0.5388 + }, + { + "start": 3647.1, + "end": 3649.2, + "probability": 0.9337 + }, + { + "start": 3649.26, + "end": 3650.34, + "probability": 0.9305 + }, + { + "start": 3650.54, + "end": 3651.5, + "probability": 0.9716 + }, + { + "start": 3651.98, + "end": 3652.32, + "probability": 0.8424 + }, + { + "start": 3652.46, + "end": 3652.96, + "probability": 0.3892 + }, + { + "start": 3653.1, + "end": 3653.68, + "probability": 0.6911 + }, + { + "start": 3653.76, + "end": 3656.26, + "probability": 0.936 + }, + { + "start": 3656.6, + "end": 3657.46, + "probability": 0.4008 + }, + { + "start": 3657.54, + "end": 3659.1, + "probability": 0.9657 + }, + { + "start": 3659.36, + "end": 3660.58, + "probability": 0.8938 + }, + { + "start": 3660.58, + "end": 3662.7, + "probability": 0.7177 + }, + { + "start": 3662.72, + "end": 3663.78, + "probability": 0.7162 + }, + { + "start": 3663.9, + "end": 3666.44, + "probability": 0.9659 + }, + { + "start": 3666.94, + "end": 3668.7, + "probability": 0.9878 + }, + { + "start": 3668.9, + "end": 3670.75, + "probability": 0.87 + }, + { + "start": 3670.88, + "end": 3671.82, + "probability": 0.7547 + }, + { + "start": 3671.96, + "end": 3674.1, + "probability": 0.9814 + }, + { + "start": 3674.2, + "end": 3675.36, + "probability": 0.9976 + }, + { + "start": 3676.1, + "end": 3679.32, + "probability": 0.9916 + }, + { + "start": 3679.6, + "end": 3683.02, + "probability": 0.998 + }, + { + "start": 3683.54, + "end": 3684.9, + "probability": 0.902 + }, + { + "start": 3685.32, + "end": 3685.92, + "probability": 0.5959 + }, + { + "start": 3686.34, + "end": 3688.74, + "probability": 0.9874 + }, + { + "start": 3688.94, + "end": 3689.86, + "probability": 0.792 + }, + { + "start": 3689.94, + "end": 3690.22, + "probability": 0.5841 + }, + { + "start": 3690.26, + "end": 3691.98, + "probability": 0.913 + }, + { + "start": 3692.06, + "end": 3697.2, + "probability": 0.9733 + }, + { + "start": 3697.44, + "end": 3698.34, + "probability": 0.7391 + }, + { + "start": 3698.6, + "end": 3700.86, + "probability": 0.9819 + }, + { + "start": 3701.4, + "end": 3703.15, + "probability": 0.9965 + }, + { + "start": 3703.76, + "end": 3707.18, + "probability": 0.9836 + }, + { + "start": 3707.18, + "end": 3709.58, + "probability": 0.9949 + }, + { + "start": 3710.12, + "end": 3710.12, + "probability": 0.022 + }, + { + "start": 3710.12, + "end": 3713.68, + "probability": 0.6087 + }, + { + "start": 3714.02, + "end": 3715.12, + "probability": 0.8586 + }, + { + "start": 3715.3, + "end": 3716.9, + "probability": 0.9932 + }, + { + "start": 3717.54, + "end": 3719.26, + "probability": 0.8373 + }, + { + "start": 3719.26, + "end": 3719.52, + "probability": 0.134 + }, + { + "start": 3719.52, + "end": 3720.7, + "probability": 0.4299 + }, + { + "start": 3720.86, + "end": 3721.68, + "probability": 0.5822 + }, + { + "start": 3721.86, + "end": 3725.38, + "probability": 0.8682 + }, + { + "start": 3725.62, + "end": 3725.74, + "probability": 0.6271 + }, + { + "start": 3725.74, + "end": 3729.5, + "probability": 0.5551 + }, + { + "start": 3729.6, + "end": 3730.3, + "probability": 0.5491 + }, + { + "start": 3730.68, + "end": 3731.56, + "probability": 0.5513 + }, + { + "start": 3731.68, + "end": 3733.22, + "probability": 0.9415 + }, + { + "start": 3733.86, + "end": 3738.0, + "probability": 0.8267 + }, + { + "start": 3738.0, + "end": 3739.0, + "probability": 0.7117 + }, + { + "start": 3739.46, + "end": 3740.14, + "probability": 0.3476 + }, + { + "start": 3741.54, + "end": 3744.84, + "probability": 0.9044 + }, + { + "start": 3745.26, + "end": 3748.86, + "probability": 0.9965 + }, + { + "start": 3749.26, + "end": 3750.02, + "probability": 0.5841 + }, + { + "start": 3750.18, + "end": 3750.38, + "probability": 0.4415 + }, + { + "start": 3750.86, + "end": 3752.14, + "probability": 0.924 + }, + { + "start": 3756.24, + "end": 3757.88, + "probability": 0.6399 + }, + { + "start": 3758.12, + "end": 3760.02, + "probability": 0.6789 + }, + { + "start": 3760.72, + "end": 3763.06, + "probability": 0.9983 + }, + { + "start": 3763.72, + "end": 3766.9, + "probability": 0.9951 + }, + { + "start": 3767.76, + "end": 3771.7, + "probability": 0.9954 + }, + { + "start": 3771.7, + "end": 3775.16, + "probability": 0.9897 + }, + { + "start": 3775.66, + "end": 3779.76, + "probability": 0.9945 + }, + { + "start": 3780.36, + "end": 3783.02, + "probability": 0.9912 + }, + { + "start": 3783.12, + "end": 3783.64, + "probability": 0.8649 + }, + { + "start": 3783.7, + "end": 3788.58, + "probability": 0.9978 + }, + { + "start": 3788.96, + "end": 3792.82, + "probability": 0.9829 + }, + { + "start": 3793.28, + "end": 3797.6, + "probability": 0.9938 + }, + { + "start": 3798.26, + "end": 3800.48, + "probability": 0.9946 + }, + { + "start": 3801.06, + "end": 3801.96, + "probability": 0.7202 + }, + { + "start": 3803.14, + "end": 3805.0, + "probability": 0.9979 + }, + { + "start": 3805.82, + "end": 3808.7, + "probability": 0.9992 + }, + { + "start": 3808.7, + "end": 3812.84, + "probability": 0.9993 + }, + { + "start": 3813.12, + "end": 3817.64, + "probability": 0.9843 + }, + { + "start": 3818.16, + "end": 3821.3, + "probability": 0.9572 + }, + { + "start": 3821.54, + "end": 3824.65, + "probability": 0.9791 + }, + { + "start": 3825.28, + "end": 3826.06, + "probability": 0.6654 + }, + { + "start": 3826.06, + "end": 3826.28, + "probability": 0.8346 + }, + { + "start": 3826.44, + "end": 3828.7, + "probability": 0.7032 + }, + { + "start": 3828.78, + "end": 3832.96, + "probability": 0.8029 + }, + { + "start": 3833.28, + "end": 3837.28, + "probability": 0.9951 + }, + { + "start": 3837.28, + "end": 3841.5, + "probability": 0.996 + }, + { + "start": 3842.12, + "end": 3846.72, + "probability": 0.9995 + }, + { + "start": 3847.54, + "end": 3851.18, + "probability": 0.9986 + }, + { + "start": 3851.66, + "end": 3852.32, + "probability": 0.5187 + }, + { + "start": 3852.46, + "end": 3855.46, + "probability": 0.999 + }, + { + "start": 3856.18, + "end": 3857.64, + "probability": 0.8208 + }, + { + "start": 3858.04, + "end": 3861.02, + "probability": 0.9613 + }, + { + "start": 3861.78, + "end": 3862.48, + "probability": 0.9683 + }, + { + "start": 3862.56, + "end": 3863.58, + "probability": 0.6679 + }, + { + "start": 3863.92, + "end": 3868.56, + "probability": 0.9978 + }, + { + "start": 3869.26, + "end": 3870.06, + "probability": 0.754 + }, + { + "start": 3870.3, + "end": 3875.16, + "probability": 0.9969 + }, + { + "start": 3875.6, + "end": 3881.18, + "probability": 0.9875 + }, + { + "start": 3881.52, + "end": 3882.22, + "probability": 0.9426 + }, + { + "start": 3882.52, + "end": 3883.24, + "probability": 0.9932 + }, + { + "start": 3883.64, + "end": 3884.68, + "probability": 0.9699 + }, + { + "start": 3884.82, + "end": 3885.8, + "probability": 0.9732 + }, + { + "start": 3886.06, + "end": 3886.84, + "probability": 0.8255 + }, + { + "start": 3887.28, + "end": 3889.06, + "probability": 0.8932 + }, + { + "start": 3889.34, + "end": 3890.16, + "probability": 0.603 + }, + { + "start": 3890.3, + "end": 3891.66, + "probability": 0.9012 + }, + { + "start": 3891.74, + "end": 3893.5, + "probability": 0.9525 + }, + { + "start": 3893.7, + "end": 3896.96, + "probability": 0.9932 + }, + { + "start": 3896.96, + "end": 3900.94, + "probability": 0.9796 + }, + { + "start": 3901.5, + "end": 3902.71, + "probability": 0.8933 + }, + { + "start": 3903.26, + "end": 3905.34, + "probability": 0.9938 + }, + { + "start": 3905.46, + "end": 3907.1, + "probability": 0.8156 + }, + { + "start": 3907.36, + "end": 3911.26, + "probability": 0.9912 + }, + { + "start": 3911.9, + "end": 3916.0, + "probability": 0.9885 + }, + { + "start": 3916.0, + "end": 3919.24, + "probability": 0.9976 + }, + { + "start": 3919.92, + "end": 3925.18, + "probability": 0.945 + }, + { + "start": 3925.94, + "end": 3933.52, + "probability": 0.9993 + }, + { + "start": 3934.06, + "end": 3936.7, + "probability": 0.9333 + }, + { + "start": 3936.9, + "end": 3940.52, + "probability": 0.9585 + }, + { + "start": 3941.88, + "end": 3946.2, + "probability": 0.9947 + }, + { + "start": 3946.5, + "end": 3947.14, + "probability": 0.9783 + }, + { + "start": 3947.2, + "end": 3950.22, + "probability": 0.9971 + }, + { + "start": 3951.14, + "end": 3951.93, + "probability": 0.9177 + }, + { + "start": 3952.84, + "end": 3955.3, + "probability": 0.8787 + }, + { + "start": 3955.54, + "end": 3956.06, + "probability": 0.5391 + }, + { + "start": 3957.64, + "end": 3959.88, + "probability": 0.9968 + }, + { + "start": 3960.4, + "end": 3963.94, + "probability": 0.8409 + }, + { + "start": 3964.54, + "end": 3968.38, + "probability": 0.7913 + }, + { + "start": 3968.96, + "end": 3973.48, + "probability": 0.9897 + }, + { + "start": 3974.08, + "end": 3977.46, + "probability": 0.9775 + }, + { + "start": 3978.06, + "end": 3978.58, + "probability": 0.6544 + }, + { + "start": 3978.76, + "end": 3979.0, + "probability": 0.7678 + }, + { + "start": 3979.12, + "end": 3980.28, + "probability": 0.7919 + }, + { + "start": 3980.6, + "end": 3982.06, + "probability": 0.9676 + }, + { + "start": 3982.4, + "end": 3982.86, + "probability": 0.8862 + }, + { + "start": 3983.76, + "end": 3986.58, + "probability": 0.98 + }, + { + "start": 3986.88, + "end": 3991.84, + "probability": 0.9771 + }, + { + "start": 3992.22, + "end": 3994.5, + "probability": 0.998 + }, + { + "start": 3994.6, + "end": 3996.6, + "probability": 0.8943 + }, + { + "start": 3997.28, + "end": 4000.82, + "probability": 0.9942 + }, + { + "start": 4001.04, + "end": 4002.91, + "probability": 0.8784 + }, + { + "start": 4003.12, + "end": 4006.6, + "probability": 0.9805 + }, + { + "start": 4006.88, + "end": 4007.36, + "probability": 0.4528 + }, + { + "start": 4007.48, + "end": 4009.0, + "probability": 0.762 + }, + { + "start": 4009.78, + "end": 4011.94, + "probability": 0.9933 + }, + { + "start": 4012.06, + "end": 4012.3, + "probability": 0.8474 + }, + { + "start": 4012.44, + "end": 4013.8, + "probability": 0.9808 + }, + { + "start": 4014.12, + "end": 4015.48, + "probability": 0.9961 + }, + { + "start": 4016.28, + "end": 4018.08, + "probability": 0.9963 + }, + { + "start": 4018.3, + "end": 4018.92, + "probability": 0.7828 + }, + { + "start": 4019.02, + "end": 4022.54, + "probability": 0.9706 + }, + { + "start": 4022.94, + "end": 4027.64, + "probability": 0.9912 + }, + { + "start": 4028.1, + "end": 4033.4, + "probability": 0.9694 + }, + { + "start": 4033.52, + "end": 4039.36, + "probability": 0.9373 + }, + { + "start": 4040.24, + "end": 4046.46, + "probability": 0.9109 + }, + { + "start": 4046.84, + "end": 4048.6, + "probability": 0.9484 + }, + { + "start": 4048.94, + "end": 4049.96, + "probability": 0.8603 + }, + { + "start": 4050.62, + "end": 4052.8, + "probability": 0.976 + }, + { + "start": 4053.56, + "end": 4057.92, + "probability": 0.9922 + }, + { + "start": 4058.4, + "end": 4059.4, + "probability": 0.9557 + }, + { + "start": 4060.22, + "end": 4064.86, + "probability": 0.9896 + }, + { + "start": 4065.4, + "end": 4070.16, + "probability": 0.9982 + }, + { + "start": 4070.56, + "end": 4073.7, + "probability": 0.99 + }, + { + "start": 4073.88, + "end": 4076.78, + "probability": 0.978 + }, + { + "start": 4077.08, + "end": 4078.66, + "probability": 0.9838 + }, + { + "start": 4079.0, + "end": 4080.44, + "probability": 0.7532 + }, + { + "start": 4080.72, + "end": 4082.68, + "probability": 0.936 + }, + { + "start": 4083.28, + "end": 4083.66, + "probability": 0.4745 + }, + { + "start": 4083.76, + "end": 4084.14, + "probability": 0.9209 + }, + { + "start": 4084.26, + "end": 4084.72, + "probability": 0.7975 + }, + { + "start": 4084.8, + "end": 4085.84, + "probability": 0.9371 + }, + { + "start": 4086.2, + "end": 4088.78, + "probability": 0.9696 + }, + { + "start": 4089.3, + "end": 4092.04, + "probability": 0.87 + }, + { + "start": 4092.52, + "end": 4094.6, + "probability": 0.8852 + }, + { + "start": 4094.86, + "end": 4095.96, + "probability": 0.9802 + }, + { + "start": 4096.28, + "end": 4097.52, + "probability": 0.945 + }, + { + "start": 4097.56, + "end": 4098.76, + "probability": 0.8691 + }, + { + "start": 4099.08, + "end": 4099.48, + "probability": 0.7567 + }, + { + "start": 4100.02, + "end": 4101.82, + "probability": 0.9692 + }, + { + "start": 4102.44, + "end": 4103.5, + "probability": 0.7423 + }, + { + "start": 4104.12, + "end": 4111.18, + "probability": 0.9937 + }, + { + "start": 4111.2, + "end": 4119.22, + "probability": 0.9969 + }, + { + "start": 4120.4, + "end": 4124.22, + "probability": 0.9435 + }, + { + "start": 4124.58, + "end": 4126.82, + "probability": 0.9329 + }, + { + "start": 4126.82, + "end": 4130.38, + "probability": 0.9686 + }, + { + "start": 4130.72, + "end": 4132.21, + "probability": 0.9778 + }, + { + "start": 4132.54, + "end": 4137.42, + "probability": 0.9932 + }, + { + "start": 4137.82, + "end": 4140.38, + "probability": 0.9931 + }, + { + "start": 4140.64, + "end": 4144.22, + "probability": 0.9911 + }, + { + "start": 4144.72, + "end": 4147.04, + "probability": 0.9481 + }, + { + "start": 4147.42, + "end": 4150.52, + "probability": 0.9836 + }, + { + "start": 4150.96, + "end": 4152.82, + "probability": 0.97 + }, + { + "start": 4153.64, + "end": 4159.6, + "probability": 0.9933 + }, + { + "start": 4159.6, + "end": 4163.42, + "probability": 0.8724 + }, + { + "start": 4164.0, + "end": 4165.64, + "probability": 0.8636 + }, + { + "start": 4166.18, + "end": 4170.82, + "probability": 0.9984 + }, + { + "start": 4171.26, + "end": 4173.76, + "probability": 0.9435 + }, + { + "start": 4174.2, + "end": 4176.46, + "probability": 0.7482 + }, + { + "start": 4176.88, + "end": 4177.6, + "probability": 0.9131 + }, + { + "start": 4178.06, + "end": 4183.34, + "probability": 0.9904 + }, + { + "start": 4183.92, + "end": 4184.68, + "probability": 0.8813 + }, + { + "start": 4185.36, + "end": 4186.52, + "probability": 0.9795 + }, + { + "start": 4186.56, + "end": 4188.16, + "probability": 0.8532 + }, + { + "start": 4188.3, + "end": 4190.1, + "probability": 0.9906 + }, + { + "start": 4190.46, + "end": 4191.28, + "probability": 0.5164 + }, + { + "start": 4191.34, + "end": 4193.4, + "probability": 0.9951 + }, + { + "start": 4194.06, + "end": 4197.72, + "probability": 0.985 + }, + { + "start": 4198.14, + "end": 4199.45, + "probability": 0.9736 + }, + { + "start": 4200.26, + "end": 4200.8, + "probability": 0.9631 + }, + { + "start": 4201.32, + "end": 4204.78, + "probability": 0.9948 + }, + { + "start": 4204.98, + "end": 4210.14, + "probability": 0.8998 + }, + { + "start": 4210.64, + "end": 4214.24, + "probability": 0.9606 + }, + { + "start": 4214.24, + "end": 4219.72, + "probability": 0.9958 + }, + { + "start": 4220.0, + "end": 4222.8, + "probability": 0.9971 + }, + { + "start": 4222.8, + "end": 4226.08, + "probability": 0.9958 + }, + { + "start": 4226.5, + "end": 4227.56, + "probability": 0.7868 + }, + { + "start": 4229.12, + "end": 4230.74, + "probability": 0.9818 + }, + { + "start": 4230.78, + "end": 4236.26, + "probability": 0.9131 + }, + { + "start": 4236.64, + "end": 4237.24, + "probability": 0.9817 + }, + { + "start": 4238.14, + "end": 4239.52, + "probability": 0.9952 + }, + { + "start": 4239.86, + "end": 4240.34, + "probability": 0.8979 + }, + { + "start": 4241.18, + "end": 4242.42, + "probability": 0.9831 + }, + { + "start": 4242.72, + "end": 4243.96, + "probability": 0.9938 + }, + { + "start": 4244.38, + "end": 4245.08, + "probability": 0.5824 + }, + { + "start": 4245.66, + "end": 4246.21, + "probability": 0.9067 + }, + { + "start": 4247.06, + "end": 4248.25, + "probability": 0.9464 + }, + { + "start": 4248.84, + "end": 4250.06, + "probability": 0.9872 + }, + { + "start": 4250.56, + "end": 4251.35, + "probability": 0.6194 + }, + { + "start": 4252.16, + "end": 4254.64, + "probability": 0.9557 + }, + { + "start": 4255.08, + "end": 4256.9, + "probability": 0.9971 + }, + { + "start": 4257.18, + "end": 4259.26, + "probability": 0.9988 + }, + { + "start": 4259.54, + "end": 4260.46, + "probability": 0.7593 + }, + { + "start": 4261.66, + "end": 4265.32, + "probability": 0.9988 + }, + { + "start": 4265.32, + "end": 4270.36, + "probability": 0.9923 + }, + { + "start": 4270.84, + "end": 4272.92, + "probability": 0.9116 + }, + { + "start": 4273.28, + "end": 4275.84, + "probability": 0.9705 + }, + { + "start": 4276.14, + "end": 4280.04, + "probability": 0.9913 + }, + { + "start": 4280.52, + "end": 4280.56, + "probability": 0.0446 + }, + { + "start": 4281.12, + "end": 4284.22, + "probability": 0.9982 + }, + { + "start": 4284.34, + "end": 4284.92, + "probability": 0.8259 + }, + { + "start": 4285.44, + "end": 4286.26, + "probability": 0.7911 + }, + { + "start": 4287.84, + "end": 4294.94, + "probability": 0.7922 + }, + { + "start": 4302.88, + "end": 4304.22, + "probability": 0.4649 + }, + { + "start": 4304.28, + "end": 4308.32, + "probability": 0.7057 + }, + { + "start": 4309.92, + "end": 4313.8, + "probability": 0.8993 + }, + { + "start": 4315.2, + "end": 4323.16, + "probability": 0.9961 + }, + { + "start": 4323.16, + "end": 4328.72, + "probability": 0.9907 + }, + { + "start": 4329.28, + "end": 4332.82, + "probability": 0.9867 + }, + { + "start": 4333.58, + "end": 4337.64, + "probability": 0.9806 + }, + { + "start": 4337.72, + "end": 4341.93, + "probability": 0.9867 + }, + { + "start": 4342.78, + "end": 4343.97, + "probability": 0.9736 + }, + { + "start": 4344.68, + "end": 4347.26, + "probability": 0.9792 + }, + { + "start": 4351.14, + "end": 4353.04, + "probability": 0.5814 + }, + { + "start": 4353.24, + "end": 4357.24, + "probability": 0.9769 + }, + { + "start": 4358.14, + "end": 4361.3, + "probability": 0.9946 + }, + { + "start": 4362.14, + "end": 4364.8, + "probability": 0.9935 + }, + { + "start": 4364.8, + "end": 4370.3, + "probability": 0.9896 + }, + { + "start": 4370.78, + "end": 4372.22, + "probability": 0.9871 + }, + { + "start": 4372.76, + "end": 4375.86, + "probability": 0.9961 + }, + { + "start": 4376.86, + "end": 4378.24, + "probability": 0.7118 + }, + { + "start": 4378.38, + "end": 4382.24, + "probability": 0.9911 + }, + { + "start": 4383.48, + "end": 4384.88, + "probability": 0.9915 + }, + { + "start": 4385.6, + "end": 4388.04, + "probability": 0.996 + }, + { + "start": 4388.04, + "end": 4390.8, + "probability": 0.988 + }, + { + "start": 4391.64, + "end": 4394.22, + "probability": 0.9642 + }, + { + "start": 4394.88, + "end": 4398.86, + "probability": 0.9838 + }, + { + "start": 4398.86, + "end": 4401.98, + "probability": 0.9957 + }, + { + "start": 4403.38, + "end": 4406.48, + "probability": 0.9902 + }, + { + "start": 4406.58, + "end": 4410.06, + "probability": 0.9722 + }, + { + "start": 4410.52, + "end": 4413.14, + "probability": 0.9987 + }, + { + "start": 4413.62, + "end": 4418.14, + "probability": 0.9963 + }, + { + "start": 4418.68, + "end": 4421.48, + "probability": 0.9905 + }, + { + "start": 4422.12, + "end": 4422.8, + "probability": 0.9329 + }, + { + "start": 4423.44, + "end": 4425.44, + "probability": 0.9912 + }, + { + "start": 4425.96, + "end": 4427.6, + "probability": 0.8743 + }, + { + "start": 4427.6, + "end": 4430.88, + "probability": 0.7752 + }, + { + "start": 4432.3, + "end": 4435.38, + "probability": 0.9818 + }, + { + "start": 4435.94, + "end": 4436.96, + "probability": 0.6109 + }, + { + "start": 4437.74, + "end": 4441.4, + "probability": 0.9613 + }, + { + "start": 4442.08, + "end": 4447.26, + "probability": 0.9772 + }, + { + "start": 4447.94, + "end": 4450.42, + "probability": 0.9963 + }, + { + "start": 4450.42, + "end": 4453.72, + "probability": 0.8724 + }, + { + "start": 4454.48, + "end": 4457.9, + "probability": 0.9952 + }, + { + "start": 4457.9, + "end": 4462.04, + "probability": 0.9876 + }, + { + "start": 4462.58, + "end": 4463.36, + "probability": 0.8214 + }, + { + "start": 4464.08, + "end": 4464.86, + "probability": 0.938 + }, + { + "start": 4465.48, + "end": 4470.76, + "probability": 0.9066 + }, + { + "start": 4471.38, + "end": 4476.26, + "probability": 0.9777 + }, + { + "start": 4476.72, + "end": 4478.1, + "probability": 0.8027 + }, + { + "start": 4478.6, + "end": 4480.28, + "probability": 0.9735 + }, + { + "start": 4480.92, + "end": 4483.3, + "probability": 0.668 + }, + { + "start": 4483.42, + "end": 4485.38, + "probability": 0.6597 + }, + { + "start": 4485.62, + "end": 4488.54, + "probability": 0.8711 + }, + { + "start": 4489.24, + "end": 4489.86, + "probability": 0.8101 + }, + { + "start": 4490.5, + "end": 4492.88, + "probability": 0.9858 + }, + { + "start": 4492.88, + "end": 4496.5, + "probability": 0.9932 + }, + { + "start": 4497.32, + "end": 4499.64, + "probability": 0.998 + }, + { + "start": 4499.64, + "end": 4502.9, + "probability": 0.9957 + }, + { + "start": 4503.48, + "end": 4505.82, + "probability": 0.9837 + }, + { + "start": 4506.76, + "end": 4510.78, + "probability": 0.997 + }, + { + "start": 4510.78, + "end": 4516.64, + "probability": 0.9912 + }, + { + "start": 4517.16, + "end": 4521.64, + "probability": 0.9929 + }, + { + "start": 4522.92, + "end": 4524.8, + "probability": 0.9464 + }, + { + "start": 4525.4, + "end": 4528.62, + "probability": 0.9962 + }, + { + "start": 4528.62, + "end": 4532.5, + "probability": 0.9928 + }, + { + "start": 4533.22, + "end": 4538.24, + "probability": 0.967 + }, + { + "start": 4538.34, + "end": 4541.36, + "probability": 0.9661 + }, + { + "start": 4542.22, + "end": 4545.88, + "probability": 0.9985 + }, + { + "start": 4546.52, + "end": 4549.88, + "probability": 0.7385 + }, + { + "start": 4550.5, + "end": 4553.48, + "probability": 0.9985 + }, + { + "start": 4553.92, + "end": 4557.4, + "probability": 0.9869 + }, + { + "start": 4558.2, + "end": 4561.32, + "probability": 0.9539 + }, + { + "start": 4561.9, + "end": 4563.28, + "probability": 0.9166 + }, + { + "start": 4563.94, + "end": 4568.32, + "probability": 0.9954 + }, + { + "start": 4568.44, + "end": 4569.8, + "probability": 0.9801 + }, + { + "start": 4570.42, + "end": 4576.16, + "probability": 0.9688 + }, + { + "start": 4576.16, + "end": 4584.28, + "probability": 0.9971 + }, + { + "start": 4584.82, + "end": 4588.02, + "probability": 0.976 + }, + { + "start": 4589.2, + "end": 4597.7, + "probability": 0.9953 + }, + { + "start": 4598.7, + "end": 4599.36, + "probability": 0.7441 + }, + { + "start": 4600.86, + "end": 4605.06, + "probability": 0.9729 + }, + { + "start": 4605.08, + "end": 4606.36, + "probability": 0.6097 + }, + { + "start": 4607.2, + "end": 4609.96, + "probability": 0.3597 + }, + { + "start": 4610.38, + "end": 4611.11, + "probability": 0.5785 + }, + { + "start": 4611.76, + "end": 4614.3, + "probability": 0.6458 + }, + { + "start": 4616.42, + "end": 4616.74, + "probability": 0.3634 + }, + { + "start": 4617.3, + "end": 4621.14, + "probability": 0.5505 + }, + { + "start": 4621.46, + "end": 4623.44, + "probability": 0.6018 + }, + { + "start": 4623.44, + "end": 4623.44, + "probability": 0.4771 + }, + { + "start": 4623.44, + "end": 4624.55, + "probability": 0.9197 + }, + { + "start": 4625.14, + "end": 4627.56, + "probability": 0.9661 + }, + { + "start": 4627.82, + "end": 4632.34, + "probability": 0.7497 + }, + { + "start": 4633.0, + "end": 4634.66, + "probability": 0.9963 + }, + { + "start": 4634.74, + "end": 4636.28, + "probability": 0.7895 + }, + { + "start": 4636.64, + "end": 4637.44, + "probability": 0.837 + }, + { + "start": 4637.64, + "end": 4643.08, + "probability": 0.8789 + }, + { + "start": 4644.04, + "end": 4645.32, + "probability": 0.9942 + }, + { + "start": 4647.88, + "end": 4651.31, + "probability": 0.9736 + }, + { + "start": 4652.2, + "end": 4655.9, + "probability": 0.9718 + }, + { + "start": 4657.59, + "end": 4661.46, + "probability": 0.5848 + }, + { + "start": 4677.88, + "end": 4683.58, + "probability": 0.8006 + }, + { + "start": 4683.8, + "end": 4690.46, + "probability": 0.9879 + }, + { + "start": 4690.96, + "end": 4692.66, + "probability": 0.9236 + }, + { + "start": 4693.6, + "end": 4698.92, + "probability": 0.8175 + }, + { + "start": 4699.66, + "end": 4704.14, + "probability": 0.9831 + }, + { + "start": 4704.14, + "end": 4707.86, + "probability": 0.9738 + }, + { + "start": 4708.56, + "end": 4711.34, + "probability": 0.8555 + }, + { + "start": 4711.8, + "end": 4713.36, + "probability": 0.9439 + }, + { + "start": 4714.32, + "end": 4715.76, + "probability": 0.955 + }, + { + "start": 4716.3, + "end": 4716.86, + "probability": 0.6853 + }, + { + "start": 4717.12, + "end": 4723.58, + "probability": 0.799 + }, + { + "start": 4724.04, + "end": 4727.68, + "probability": 0.7793 + }, + { + "start": 4728.42, + "end": 4731.1, + "probability": 0.9683 + }, + { + "start": 4731.8, + "end": 4733.23, + "probability": 0.8386 + }, + { + "start": 4734.14, + "end": 4738.3, + "probability": 0.9763 + }, + { + "start": 4738.78, + "end": 4738.9, + "probability": 0.0982 + }, + { + "start": 4738.9, + "end": 4743.38, + "probability": 0.9309 + }, + { + "start": 4744.28, + "end": 4746.76, + "probability": 0.9895 + }, + { + "start": 4747.92, + "end": 4751.38, + "probability": 0.8546 + }, + { + "start": 4752.04, + "end": 4757.98, + "probability": 0.9689 + }, + { + "start": 4758.8, + "end": 4759.7, + "probability": 0.9885 + }, + { + "start": 4760.58, + "end": 4761.24, + "probability": 0.6818 + }, + { + "start": 4761.5, + "end": 4766.88, + "probability": 0.9878 + }, + { + "start": 4767.54, + "end": 4772.7, + "probability": 0.9075 + }, + { + "start": 4773.2, + "end": 4773.84, + "probability": 0.719 + }, + { + "start": 4774.5, + "end": 4775.61, + "probability": 0.1046 + }, + { + "start": 4776.38, + "end": 4778.92, + "probability": 0.9077 + }, + { + "start": 4779.58, + "end": 4780.6, + "probability": 0.8846 + }, + { + "start": 4781.06, + "end": 4783.34, + "probability": 0.9943 + }, + { + "start": 4783.68, + "end": 4787.4, + "probability": 0.8251 + }, + { + "start": 4787.98, + "end": 4789.64, + "probability": 0.9961 + }, + { + "start": 4789.64, + "end": 4793.96, + "probability": 0.8656 + }, + { + "start": 4794.56, + "end": 4796.0, + "probability": 0.7209 + }, + { + "start": 4796.5, + "end": 4798.3, + "probability": 0.8363 + }, + { + "start": 4798.42, + "end": 4800.62, + "probability": 0.9549 + }, + { + "start": 4801.46, + "end": 4805.04, + "probability": 0.9812 + }, + { + "start": 4805.24, + "end": 4808.36, + "probability": 0.7559 + }, + { + "start": 4811.86, + "end": 4813.0, + "probability": 0.7839 + }, + { + "start": 4813.34, + "end": 4815.98, + "probability": 0.8992 + }, + { + "start": 4816.1, + "end": 4817.96, + "probability": 0.9682 + }, + { + "start": 4822.36, + "end": 4826.04, + "probability": 0.8881 + }, + { + "start": 4828.24, + "end": 4828.78, + "probability": 0.3744 + }, + { + "start": 4834.96, + "end": 4836.12, + "probability": 0.8462 + }, + { + "start": 4837.0, + "end": 4840.04, + "probability": 0.4611 + }, + { + "start": 4841.64, + "end": 4847.16, + "probability": 0.9951 + }, + { + "start": 4847.94, + "end": 4849.46, + "probability": 0.9619 + }, + { + "start": 4850.06, + "end": 4851.38, + "probability": 0.766 + }, + { + "start": 4852.1, + "end": 4855.2, + "probability": 0.9192 + }, + { + "start": 4855.82, + "end": 4857.86, + "probability": 0.9053 + }, + { + "start": 4858.46, + "end": 4860.22, + "probability": 0.8315 + }, + { + "start": 4860.92, + "end": 4863.18, + "probability": 0.9478 + }, + { + "start": 4864.22, + "end": 4864.22, + "probability": 0.3133 + }, + { + "start": 4864.22, + "end": 4866.78, + "probability": 0.9883 + }, + { + "start": 4867.72, + "end": 4870.3, + "probability": 0.9871 + }, + { + "start": 4871.58, + "end": 4873.16, + "probability": 0.5019 + }, + { + "start": 4873.91, + "end": 4876.54, + "probability": 0.6578 + }, + { + "start": 4879.14, + "end": 4883.18, + "probability": 0.8797 + }, + { + "start": 4883.98, + "end": 4887.94, + "probability": 0.9761 + }, + { + "start": 4888.94, + "end": 4890.06, + "probability": 0.9814 + }, + { + "start": 4890.84, + "end": 4892.6, + "probability": 0.9059 + }, + { + "start": 4893.22, + "end": 4894.54, + "probability": 0.7832 + }, + { + "start": 4894.74, + "end": 4899.88, + "probability": 0.9856 + }, + { + "start": 4900.14, + "end": 4903.42, + "probability": 0.9663 + }, + { + "start": 4903.9, + "end": 4906.52, + "probability": 0.9409 + }, + { + "start": 4908.38, + "end": 4910.14, + "probability": 0.8872 + }, + { + "start": 4910.22, + "end": 4912.4, + "probability": 0.9883 + }, + { + "start": 4913.08, + "end": 4913.72, + "probability": 0.6547 + }, + { + "start": 4915.13, + "end": 4919.96, + "probability": 0.9861 + }, + { + "start": 4920.68, + "end": 4923.7, + "probability": 0.9771 + }, + { + "start": 4924.2, + "end": 4924.5, + "probability": 0.9061 + }, + { + "start": 4925.0, + "end": 4928.4, + "probability": 0.6637 + }, + { + "start": 4928.4, + "end": 4932.22, + "probability": 0.9953 + }, + { + "start": 4932.34, + "end": 4935.8, + "probability": 0.948 + }, + { + "start": 4935.8, + "end": 4939.96, + "probability": 0.994 + }, + { + "start": 4940.7, + "end": 4942.78, + "probability": 0.0509 + }, + { + "start": 4943.0, + "end": 4943.8, + "probability": 0.0283 + }, + { + "start": 4944.12, + "end": 4945.04, + "probability": 0.3196 + }, + { + "start": 4945.38, + "end": 4946.16, + "probability": 0.5843 + }, + { + "start": 4946.44, + "end": 4948.64, + "probability": 0.9824 + }, + { + "start": 4949.2, + "end": 4951.96, + "probability": 0.9705 + }, + { + "start": 4952.56, + "end": 4954.98, + "probability": 0.958 + }, + { + "start": 4954.98, + "end": 4960.78, + "probability": 0.6907 + }, + { + "start": 4960.92, + "end": 4961.06, + "probability": 0.1827 + }, + { + "start": 4961.18, + "end": 4962.38, + "probability": 0.2052 + }, + { + "start": 4962.54, + "end": 4964.22, + "probability": 0.9247 + }, + { + "start": 4964.32, + "end": 4965.21, + "probability": 0.5296 + }, + { + "start": 4965.36, + "end": 4966.57, + "probability": 0.3422 + }, + { + "start": 4967.48, + "end": 4967.88, + "probability": 0.4885 + }, + { + "start": 4968.04, + "end": 4968.48, + "probability": 0.6737 + }, + { + "start": 4969.7, + "end": 4972.08, + "probability": 0.7725 + }, + { + "start": 4972.92, + "end": 4975.98, + "probability": 0.994 + }, + { + "start": 4975.98, + "end": 4979.28, + "probability": 0.9986 + }, + { + "start": 4979.66, + "end": 4981.02, + "probability": 0.9295 + }, + { + "start": 4982.16, + "end": 4986.34, + "probability": 0.9033 + }, + { + "start": 4986.4, + "end": 4987.12, + "probability": 0.8033 + }, + { + "start": 4987.7, + "end": 4989.12, + "probability": 0.998 + }, + { + "start": 4991.69, + "end": 4993.82, + "probability": 0.7177 + }, + { + "start": 4994.18, + "end": 4999.3, + "probability": 0.9925 + }, + { + "start": 4999.7, + "end": 5002.44, + "probability": 0.9382 + }, + { + "start": 5002.78, + "end": 5004.18, + "probability": 0.7305 + }, + { + "start": 5004.32, + "end": 5004.98, + "probability": 0.9239 + }, + { + "start": 5005.86, + "end": 5007.7, + "probability": 0.9749 + }, + { + "start": 5008.54, + "end": 5014.64, + "probability": 0.0167 + }, + { + "start": 5015.46, + "end": 5017.08, + "probability": 0.0196 + }, + { + "start": 5017.12, + "end": 5017.9, + "probability": 0.1428 + }, + { + "start": 5017.9, + "end": 5018.66, + "probability": 0.4203 + }, + { + "start": 5019.64, + "end": 5019.94, + "probability": 0.2861 + }, + { + "start": 5019.94, + "end": 5022.22, + "probability": 0.2681 + }, + { + "start": 5023.51, + "end": 5028.46, + "probability": 0.0391 + }, + { + "start": 5028.58, + "end": 5028.74, + "probability": 0.0042 + }, + { + "start": 5028.74, + "end": 5031.66, + "probability": 0.0595 + }, + { + "start": 5031.66, + "end": 5031.9, + "probability": 0.1744 + }, + { + "start": 5031.9, + "end": 5033.71, + "probability": 0.7622 + }, + { + "start": 5034.16, + "end": 5036.6, + "probability": 0.6433 + }, + { + "start": 5036.74, + "end": 5038.28, + "probability": 0.9863 + }, + { + "start": 5038.82, + "end": 5040.42, + "probability": 0.8351 + }, + { + "start": 5043.13, + "end": 5045.52, + "probability": 0.5537 + }, + { + "start": 5045.94, + "end": 5047.98, + "probability": 0.9787 + }, + { + "start": 5048.1, + "end": 5049.33, + "probability": 0.9522 + }, + { + "start": 5050.48, + "end": 5053.48, + "probability": 0.4879 + }, + { + "start": 5053.48, + "end": 5054.66, + "probability": 0.8981 + }, + { + "start": 5054.74, + "end": 5056.7, + "probability": 0.9587 + }, + { + "start": 5056.78, + "end": 5059.66, + "probability": 0.0706 + }, + { + "start": 5059.66, + "end": 5062.28, + "probability": 0.9702 + }, + { + "start": 5062.28, + "end": 5063.18, + "probability": 0.6235 + }, + { + "start": 5063.46, + "end": 5065.52, + "probability": 0.9851 + }, + { + "start": 5065.66, + "end": 5067.32, + "probability": 0.9901 + }, + { + "start": 5067.44, + "end": 5069.9, + "probability": 0.067 + }, + { + "start": 5069.9, + "end": 5070.74, + "probability": 0.2139 + }, + { + "start": 5070.76, + "end": 5071.26, + "probability": 0.5822 + }, + { + "start": 5071.28, + "end": 5072.06, + "probability": 0.8943 + }, + { + "start": 5072.16, + "end": 5072.8, + "probability": 0.7789 + }, + { + "start": 5072.82, + "end": 5076.52, + "probability": 0.8877 + }, + { + "start": 5076.6, + "end": 5077.74, + "probability": 0.759 + }, + { + "start": 5078.5, + "end": 5082.96, + "probability": 0.4525 + }, + { + "start": 5083.04, + "end": 5085.48, + "probability": 0.9496 + }, + { + "start": 5085.76, + "end": 5087.76, + "probability": 0.7485 + }, + { + "start": 5088.22, + "end": 5097.76, + "probability": 0.1514 + }, + { + "start": 5097.82, + "end": 5098.88, + "probability": 0.6945 + }, + { + "start": 5099.42, + "end": 5101.22, + "probability": 0.0942 + }, + { + "start": 5101.9, + "end": 5105.34, + "probability": 0.7944 + }, + { + "start": 5106.44, + "end": 5111.02, + "probability": 0.9619 + }, + { + "start": 5111.02, + "end": 5111.68, + "probability": 0.8499 + }, + { + "start": 5111.8, + "end": 5113.04, + "probability": 0.4451 + }, + { + "start": 5113.34, + "end": 5114.04, + "probability": 0.695 + }, + { + "start": 5115.94, + "end": 5117.56, + "probability": 0.5807 + }, + { + "start": 5117.72, + "end": 5120.21, + "probability": 0.9287 + }, + { + "start": 5120.7, + "end": 5123.64, + "probability": 0.8896 + }, + { + "start": 5123.86, + "end": 5125.72, + "probability": 0.3933 + }, + { + "start": 5126.6, + "end": 5128.12, + "probability": 0.9307 + }, + { + "start": 5129.18, + "end": 5132.96, + "probability": 0.8502 + }, + { + "start": 5133.02, + "end": 5135.1, + "probability": 0.2342 + }, + { + "start": 5135.24, + "end": 5136.04, + "probability": 0.0153 + }, + { + "start": 5137.45, + "end": 5140.04, + "probability": 0.8663 + }, + { + "start": 5150.85, + "end": 5151.3, + "probability": 0.2671 + }, + { + "start": 5151.3, + "end": 5153.76, + "probability": 0.7079 + }, + { + "start": 5153.86, + "end": 5156.7, + "probability": 0.905 + }, + { + "start": 5157.16, + "end": 5158.14, + "probability": 0.8443 + }, + { + "start": 5158.14, + "end": 5161.64, + "probability": 0.9698 + }, + { + "start": 5162.96, + "end": 5165.62, + "probability": 0.7948 + }, + { + "start": 5166.04, + "end": 5170.58, + "probability": 0.9597 + }, + { + "start": 5170.94, + "end": 5171.22, + "probability": 0.7874 + }, + { + "start": 5172.08, + "end": 5172.24, + "probability": 0.544 + }, + { + "start": 5172.26, + "end": 5176.52, + "probability": 0.9322 + }, + { + "start": 5177.7, + "end": 5180.32, + "probability": 0.9741 + }, + { + "start": 5181.04, + "end": 5181.42, + "probability": 0.7957 + }, + { + "start": 5182.34, + "end": 5184.64, + "probability": 0.9523 + }, + { + "start": 5185.32, + "end": 5188.76, + "probability": 0.5321 + }, + { + "start": 5189.08, + "end": 5190.8, + "probability": 0.3324 + }, + { + "start": 5190.8, + "end": 5194.38, + "probability": 0.1358 + }, + { + "start": 5194.38, + "end": 5194.88, + "probability": 0.3365 + }, + { + "start": 5195.06, + "end": 5195.08, + "probability": 0.0897 + }, + { + "start": 5195.08, + "end": 5198.76, + "probability": 0.4597 + }, + { + "start": 5198.9, + "end": 5198.9, + "probability": 0.0401 + }, + { + "start": 5198.9, + "end": 5200.66, + "probability": 0.53 + }, + { + "start": 5201.24, + "end": 5206.12, + "probability": 0.6282 + }, + { + "start": 5206.34, + "end": 5207.32, + "probability": 0.4924 + }, + { + "start": 5207.38, + "end": 5209.96, + "probability": 0.0133 + }, + { + "start": 5211.59, + "end": 5212.64, + "probability": 0.1524 + }, + { + "start": 5213.42, + "end": 5213.86, + "probability": 0.3386 + }, + { + "start": 5213.99, + "end": 5215.92, + "probability": 0.0015 + }, + { + "start": 5218.86, + "end": 5219.23, + "probability": 0.0026 + }, + { + "start": 5219.32, + "end": 5220.1, + "probability": 0.3288 + }, + { + "start": 5220.28, + "end": 5221.4, + "probability": 0.2711 + }, + { + "start": 5221.66, + "end": 5224.08, + "probability": 0.0617 + }, + { + "start": 5224.08, + "end": 5224.46, + "probability": 0.0053 + }, + { + "start": 5224.46, + "end": 5224.46, + "probability": 0.0229 + }, + { + "start": 5224.46, + "end": 5225.06, + "probability": 0.2046 + }, + { + "start": 5225.3, + "end": 5225.3, + "probability": 0.2827 + }, + { + "start": 5225.3, + "end": 5227.06, + "probability": 0.5726 + }, + { + "start": 5228.02, + "end": 5232.0, + "probability": 0.2462 + }, + { + "start": 5232.0, + "end": 5232.24, + "probability": 0.6592 + }, + { + "start": 5232.24, + "end": 5233.84, + "probability": 0.7279 + }, + { + "start": 5238.87, + "end": 5241.26, + "probability": 0.893 + }, + { + "start": 5241.34, + "end": 5242.74, + "probability": 0.2211 + }, + { + "start": 5242.74, + "end": 5243.74, + "probability": 0.245 + }, + { + "start": 5243.76, + "end": 5244.74, + "probability": 0.3965 + }, + { + "start": 5245.02, + "end": 5245.9, + "probability": 0.0245 + }, + { + "start": 5246.3, + "end": 5246.66, + "probability": 0.1831 + }, + { + "start": 5247.36, + "end": 5248.4, + "probability": 0.1259 + }, + { + "start": 5253.5, + "end": 5255.02, + "probability": 0.0237 + }, + { + "start": 5255.23, + "end": 5255.78, + "probability": 0.0409 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5271.0, + "end": 5271.0, + "probability": 0.0 + }, + { + "start": 5272.38, + "end": 5275.02, + "probability": 0.0407 + }, + { + "start": 5281.42, + "end": 5286.78, + "probability": 0.2004 + }, + { + "start": 5287.3, + "end": 5288.42, + "probability": 0.045 + }, + { + "start": 5290.92, + "end": 5292.5, + "probability": 0.1063 + }, + { + "start": 5292.98, + "end": 5293.68, + "probability": 0.0504 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.0, + "end": 5396.0, + "probability": 0.0 + }, + { + "start": 5396.22, + "end": 5396.52, + "probability": 0.0734 + }, + { + "start": 5396.52, + "end": 5396.52, + "probability": 0.1609 + }, + { + "start": 5396.52, + "end": 5397.26, + "probability": 0.2913 + }, + { + "start": 5397.92, + "end": 5400.92, + "probability": 0.6649 + }, + { + "start": 5401.56, + "end": 5405.08, + "probability": 0.7134 + }, + { + "start": 5405.62, + "end": 5406.82, + "probability": 0.8987 + }, + { + "start": 5407.38, + "end": 5410.1, + "probability": 0.9779 + }, + { + "start": 5410.58, + "end": 5416.46, + "probability": 0.8886 + }, + { + "start": 5417.14, + "end": 5417.9, + "probability": 0.9699 + }, + { + "start": 5418.72, + "end": 5419.7, + "probability": 0.9478 + }, + { + "start": 5420.22, + "end": 5421.94, + "probability": 0.8984 + }, + { + "start": 5422.74, + "end": 5427.92, + "probability": 0.8765 + }, + { + "start": 5428.14, + "end": 5431.06, + "probability": 0.6671 + }, + { + "start": 5431.12, + "end": 5433.52, + "probability": 0.7649 + }, + { + "start": 5434.38, + "end": 5436.88, + "probability": 0.9218 + }, + { + "start": 5437.36, + "end": 5441.32, + "probability": 0.9533 + }, + { + "start": 5442.32, + "end": 5444.84, + "probability": 0.9622 + }, + { + "start": 5445.76, + "end": 5446.4, + "probability": 0.6777 + }, + { + "start": 5446.98, + "end": 5450.6, + "probability": 0.8984 + }, + { + "start": 5451.38, + "end": 5452.2, + "probability": 0.638 + }, + { + "start": 5452.8, + "end": 5457.06, + "probability": 0.9692 + }, + { + "start": 5457.74, + "end": 5459.64, + "probability": 0.9818 + }, + { + "start": 5460.26, + "end": 5465.34, + "probability": 0.8433 + }, + { + "start": 5465.86, + "end": 5469.06, + "probability": 0.8757 + }, + { + "start": 5469.7, + "end": 5470.86, + "probability": 0.8102 + }, + { + "start": 5471.6, + "end": 5473.28, + "probability": 0.9908 + }, + { + "start": 5474.44, + "end": 5476.62, + "probability": 0.9771 + }, + { + "start": 5477.1, + "end": 5478.6, + "probability": 0.8559 + }, + { + "start": 5478.92, + "end": 5481.72, + "probability": 0.9987 + }, + { + "start": 5482.7, + "end": 5485.58, + "probability": 0.9727 + }, + { + "start": 5486.0, + "end": 5487.47, + "probability": 0.9171 + }, + { + "start": 5488.04, + "end": 5489.6, + "probability": 0.9911 + }, + { + "start": 5490.02, + "end": 5496.4, + "probability": 0.9937 + }, + { + "start": 5496.64, + "end": 5497.44, + "probability": 0.6892 + }, + { + "start": 5498.08, + "end": 5502.14, + "probability": 0.7489 + }, + { + "start": 5503.34, + "end": 5505.88, + "probability": 0.9932 + }, + { + "start": 5506.36, + "end": 5508.72, + "probability": 0.9956 + }, + { + "start": 5509.16, + "end": 5512.1, + "probability": 0.964 + }, + { + "start": 5513.32, + "end": 5514.82, + "probability": 0.9479 + }, + { + "start": 5516.12, + "end": 5517.5, + "probability": 0.887 + }, + { + "start": 5518.56, + "end": 5522.11, + "probability": 0.9655 + }, + { + "start": 5522.74, + "end": 5527.28, + "probability": 0.987 + }, + { + "start": 5527.8, + "end": 5529.86, + "probability": 0.9402 + }, + { + "start": 5530.32, + "end": 5532.08, + "probability": 0.9834 + }, + { + "start": 5532.48, + "end": 5535.64, + "probability": 0.7512 + }, + { + "start": 5535.98, + "end": 5537.26, + "probability": 0.9967 + }, + { + "start": 5537.92, + "end": 5539.4, + "probability": 0.9896 + }, + { + "start": 5539.48, + "end": 5542.0, + "probability": 0.9577 + }, + { + "start": 5542.34, + "end": 5544.59, + "probability": 0.9605 + }, + { + "start": 5546.5, + "end": 5547.66, + "probability": 0.9886 + }, + { + "start": 5548.42, + "end": 5551.78, + "probability": 0.8469 + }, + { + "start": 5552.2, + "end": 5553.74, + "probability": 0.8954 + }, + { + "start": 5554.08, + "end": 5555.54, + "probability": 0.988 + }, + { + "start": 5555.88, + "end": 5556.98, + "probability": 0.9317 + }, + { + "start": 5557.24, + "end": 5558.48, + "probability": 0.9939 + }, + { + "start": 5558.52, + "end": 5560.78, + "probability": 0.998 + }, + { + "start": 5561.12, + "end": 5562.08, + "probability": 0.8442 + }, + { + "start": 5562.2, + "end": 5562.7, + "probability": 0.3378 + }, + { + "start": 5563.16, + "end": 5566.36, + "probability": 0.9438 + }, + { + "start": 5566.7, + "end": 5568.06, + "probability": 0.7299 + }, + { + "start": 5568.52, + "end": 5571.66, + "probability": 0.977 + }, + { + "start": 5571.82, + "end": 5574.56, + "probability": 0.9241 + }, + { + "start": 5574.92, + "end": 5579.1, + "probability": 0.8967 + }, + { + "start": 5579.1, + "end": 5580.96, + "probability": 0.1785 + }, + { + "start": 5581.06, + "end": 5584.3, + "probability": 0.6347 + }, + { + "start": 5584.44, + "end": 5586.1, + "probability": 0.9683 + }, + { + "start": 5586.14, + "end": 5588.54, + "probability": 0.901 + }, + { + "start": 5588.7, + "end": 5591.82, + "probability": 0.893 + }, + { + "start": 5591.86, + "end": 5594.44, + "probability": 0.8914 + }, + { + "start": 5594.44, + "end": 5594.78, + "probability": 0.0443 + }, + { + "start": 5595.06, + "end": 5597.22, + "probability": 0.0776 + }, + { + "start": 5597.42, + "end": 5599.58, + "probability": 0.0257 + }, + { + "start": 5599.96, + "end": 5599.98, + "probability": 0.0241 + }, + { + "start": 5599.98, + "end": 5604.98, + "probability": 0.9626 + }, + { + "start": 5605.32, + "end": 5607.56, + "probability": 0.8448 + }, + { + "start": 5607.9, + "end": 5609.98, + "probability": 0.969 + }, + { + "start": 5610.36, + "end": 5613.08, + "probability": 0.8617 + }, + { + "start": 5613.5, + "end": 5616.02, + "probability": 0.9704 + }, + { + "start": 5616.32, + "end": 5617.64, + "probability": 0.7488 + }, + { + "start": 5617.96, + "end": 5618.94, + "probability": 0.9417 + }, + { + "start": 5619.3, + "end": 5620.88, + "probability": 0.9382 + }, + { + "start": 5621.2, + "end": 5622.12, + "probability": 0.9517 + }, + { + "start": 5622.44, + "end": 5624.76, + "probability": 0.9845 + }, + { + "start": 5625.18, + "end": 5626.58, + "probability": 0.9324 + }, + { + "start": 5626.88, + "end": 5628.5, + "probability": 0.83 + }, + { + "start": 5629.16, + "end": 5631.58, + "probability": 0.9556 + }, + { + "start": 5631.94, + "end": 5633.32, + "probability": 0.9771 + }, + { + "start": 5633.34, + "end": 5634.47, + "probability": 0.9434 + }, + { + "start": 5634.88, + "end": 5636.26, + "probability": 0.6379 + }, + { + "start": 5637.64, + "end": 5640.84, + "probability": 0.6496 + }, + { + "start": 5640.96, + "end": 5642.34, + "probability": 0.252 + }, + { + "start": 5642.56, + "end": 5645.44, + "probability": 0.9663 + }, + { + "start": 5645.6, + "end": 5648.66, + "probability": 0.9958 + }, + { + "start": 5653.92, + "end": 5655.82, + "probability": 0.7482 + }, + { + "start": 5660.4, + "end": 5662.68, + "probability": 0.6738 + }, + { + "start": 5662.76, + "end": 5665.06, + "probability": 0.7793 + }, + { + "start": 5665.78, + "end": 5672.24, + "probability": 0.9867 + }, + { + "start": 5672.4, + "end": 5676.34, + "probability": 0.9037 + }, + { + "start": 5676.76, + "end": 5679.76, + "probability": 0.993 + }, + { + "start": 5680.3, + "end": 5685.58, + "probability": 0.8564 + }, + { + "start": 5685.72, + "end": 5687.86, + "probability": 0.9584 + }, + { + "start": 5687.9, + "end": 5692.84, + "probability": 0.9194 + }, + { + "start": 5693.58, + "end": 5696.96, + "probability": 0.958 + }, + { + "start": 5697.1, + "end": 5699.12, + "probability": 0.937 + }, + { + "start": 5699.7, + "end": 5703.44, + "probability": 0.991 + }, + { + "start": 5704.02, + "end": 5706.8, + "probability": 0.959 + }, + { + "start": 5707.18, + "end": 5708.4, + "probability": 0.9887 + }, + { + "start": 5708.86, + "end": 5710.88, + "probability": 0.992 + }, + { + "start": 5712.16, + "end": 5713.12, + "probability": 0.9285 + }, + { + "start": 5714.18, + "end": 5718.36, + "probability": 0.98 + }, + { + "start": 5718.78, + "end": 5719.92, + "probability": 0.5688 + }, + { + "start": 5720.58, + "end": 5723.0, + "probability": 0.7525 + }, + { + "start": 5723.58, + "end": 5728.3, + "probability": 0.9512 + }, + { + "start": 5728.66, + "end": 5730.86, + "probability": 0.9696 + }, + { + "start": 5731.38, + "end": 5732.48, + "probability": 0.8917 + }, + { + "start": 5733.04, + "end": 5734.92, + "probability": 0.9683 + }, + { + "start": 5735.02, + "end": 5736.74, + "probability": 0.9139 + }, + { + "start": 5736.74, + "end": 5738.3, + "probability": 0.3983 + }, + { + "start": 5738.72, + "end": 5739.76, + "probability": 0.8604 + }, + { + "start": 5740.16, + "end": 5740.56, + "probability": 0.4565 + }, + { + "start": 5740.64, + "end": 5740.66, + "probability": 0.3579 + }, + { + "start": 5740.66, + "end": 5745.54, + "probability": 0.7597 + }, + { + "start": 5745.54, + "end": 5749.48, + "probability": 0.9564 + }, + { + "start": 5749.9, + "end": 5750.76, + "probability": 0.81 + }, + { + "start": 5750.86, + "end": 5751.7, + "probability": 0.7827 + }, + { + "start": 5752.38, + "end": 5753.56, + "probability": 0.8592 + }, + { + "start": 5758.5, + "end": 5763.02, + "probability": 0.6167 + }, + { + "start": 5764.54, + "end": 5766.62, + "probability": 0.6753 + }, + { + "start": 5767.94, + "end": 5772.02, + "probability": 0.721 + }, + { + "start": 5772.46, + "end": 5773.28, + "probability": 0.4183 + }, + { + "start": 5773.34, + "end": 5775.64, + "probability": 0.9932 + }, + { + "start": 5776.12, + "end": 5776.42, + "probability": 0.3456 + }, + { + "start": 5779.08, + "end": 5779.64, + "probability": 0.0647 + }, + { + "start": 5791.14, + "end": 5791.72, + "probability": 0.3737 + }, + { + "start": 5792.38, + "end": 5793.52, + "probability": 0.4755 + }, + { + "start": 5793.62, + "end": 5794.74, + "probability": 0.7297 + }, + { + "start": 5795.1, + "end": 5796.2, + "probability": 0.6654 + }, + { + "start": 5796.34, + "end": 5797.5, + "probability": 0.9666 + }, + { + "start": 5797.52, + "end": 5799.42, + "probability": 0.901 + }, + { + "start": 5799.5, + "end": 5801.52, + "probability": 0.8324 + }, + { + "start": 5803.6, + "end": 5806.46, + "probability": 0.6996 + }, + { + "start": 5806.46, + "end": 5808.76, + "probability": 0.6082 + }, + { + "start": 5809.18, + "end": 5811.6, + "probability": 0.7545 + }, + { + "start": 5811.94, + "end": 5816.54, + "probability": 0.7739 + }, + { + "start": 5816.62, + "end": 5821.26, + "probability": 0.5503 + }, + { + "start": 5821.94, + "end": 5824.28, + "probability": 0.9736 + }, + { + "start": 5825.0, + "end": 5825.7, + "probability": 0.7638 + }, + { + "start": 5825.82, + "end": 5829.9, + "probability": 0.9801 + }, + { + "start": 5829.98, + "end": 5833.54, + "probability": 0.9634 + }, + { + "start": 5833.54, + "end": 5837.22, + "probability": 0.9756 + }, + { + "start": 5837.34, + "end": 5838.72, + "probability": 0.8111 + }, + { + "start": 5839.83, + "end": 5844.19, + "probability": 0.9758 + }, + { + "start": 5845.12, + "end": 5849.54, + "probability": 0.9917 + }, + { + "start": 5849.66, + "end": 5853.38, + "probability": 0.9803 + }, + { + "start": 5854.02, + "end": 5855.24, + "probability": 0.8171 + }, + { + "start": 5855.44, + "end": 5860.28, + "probability": 0.8826 + }, + { + "start": 5860.34, + "end": 5860.8, + "probability": 0.8252 + }, + { + "start": 5860.88, + "end": 5861.2, + "probability": 0.8179 + }, + { + "start": 5861.32, + "end": 5861.88, + "probability": 0.7744 + }, + { + "start": 5862.28, + "end": 5863.32, + "probability": 0.6636 + }, + { + "start": 5863.34, + "end": 5866.08, + "probability": 0.8586 + }, + { + "start": 5866.92, + "end": 5868.24, + "probability": 0.9496 + }, + { + "start": 5868.34, + "end": 5869.68, + "probability": 0.7991 + }, + { + "start": 5870.22, + "end": 5874.2, + "probability": 0.9863 + }, + { + "start": 5874.34, + "end": 5875.96, + "probability": 0.8997 + }, + { + "start": 5876.44, + "end": 5877.14, + "probability": 0.4345 + }, + { + "start": 5877.46, + "end": 5877.98, + "probability": 0.8082 + }, + { + "start": 5878.24, + "end": 5879.52, + "probability": 0.6708 + }, + { + "start": 5879.66, + "end": 5882.47, + "probability": 0.963 + }, + { + "start": 5884.4, + "end": 5886.36, + "probability": 0.9518 + }, + { + "start": 5887.18, + "end": 5888.2, + "probability": 0.8179 + }, + { + "start": 5889.48, + "end": 5892.11, + "probability": 0.8929 + }, + { + "start": 5892.54, + "end": 5897.22, + "probability": 0.9802 + }, + { + "start": 5897.64, + "end": 5898.94, + "probability": 0.8389 + }, + { + "start": 5899.08, + "end": 5900.8, + "probability": 0.694 + }, + { + "start": 5901.0, + "end": 5906.34, + "probability": 0.5128 + }, + { + "start": 5906.5, + "end": 5909.14, + "probability": 0.9968 + }, + { + "start": 5910.85, + "end": 5916.04, + "probability": 0.8623 + }, + { + "start": 5916.06, + "end": 5916.48, + "probability": 0.7898 + }, + { + "start": 5917.26, + "end": 5917.9, + "probability": 0.9029 + }, + { + "start": 5919.78, + "end": 5922.5, + "probability": 0.9416 + }, + { + "start": 5922.78, + "end": 5929.9, + "probability": 0.8975 + }, + { + "start": 5931.06, + "end": 5933.04, + "probability": 0.176 + }, + { + "start": 5943.13, + "end": 5945.48, + "probability": 0.6157 + }, + { + "start": 5948.86, + "end": 5955.1, + "probability": 0.6639 + }, + { + "start": 5957.02, + "end": 5958.75, + "probability": 0.9526 + }, + { + "start": 5960.16, + "end": 5964.78, + "probability": 0.8822 + }, + { + "start": 5965.72, + "end": 5966.96, + "probability": 0.951 + }, + { + "start": 5968.7, + "end": 5970.3, + "probability": 0.9799 + }, + { + "start": 5971.1, + "end": 5972.38, + "probability": 0.942 + }, + { + "start": 5973.94, + "end": 5975.6, + "probability": 0.3051 + }, + { + "start": 5976.92, + "end": 5978.08, + "probability": 0.8049 + }, + { + "start": 5978.88, + "end": 5982.4, + "probability": 0.8503 + }, + { + "start": 5983.58, + "end": 5984.92, + "probability": 0.9709 + }, + { + "start": 5985.8, + "end": 5987.1, + "probability": 0.9626 + }, + { + "start": 5988.02, + "end": 5990.68, + "probability": 0.9637 + }, + { + "start": 5991.8, + "end": 5996.0, + "probability": 0.887 + }, + { + "start": 5996.18, + "end": 5997.61, + "probability": 0.9883 + }, + { + "start": 5998.8, + "end": 6000.86, + "probability": 0.9944 + }, + { + "start": 6001.6, + "end": 6003.58, + "probability": 0.9693 + }, + { + "start": 6004.18, + "end": 6004.92, + "probability": 0.8757 + }, + { + "start": 6005.68, + "end": 6008.04, + "probability": 0.998 + }, + { + "start": 6008.84, + "end": 6010.74, + "probability": 0.7026 + }, + { + "start": 6011.54, + "end": 6015.42, + "probability": 0.9828 + }, + { + "start": 6018.22, + "end": 6020.42, + "probability": 0.8386 + }, + { + "start": 6023.2, + "end": 6028.08, + "probability": 0.9013 + }, + { + "start": 6029.48, + "end": 6033.14, + "probability": 0.9834 + }, + { + "start": 6033.84, + "end": 6034.4, + "probability": 0.9192 + }, + { + "start": 6035.68, + "end": 6036.9, + "probability": 0.8643 + }, + { + "start": 6038.0, + "end": 6039.64, + "probability": 0.9388 + }, + { + "start": 6039.84, + "end": 6041.24, + "probability": 0.9883 + }, + { + "start": 6042.08, + "end": 6045.96, + "probability": 0.9959 + }, + { + "start": 6046.76, + "end": 6050.3, + "probability": 0.8845 + }, + { + "start": 6051.04, + "end": 6053.7, + "probability": 0.9846 + }, + { + "start": 6054.56, + "end": 6056.02, + "probability": 0.9984 + }, + { + "start": 6057.22, + "end": 6059.78, + "probability": 0.8579 + }, + { + "start": 6060.54, + "end": 6061.44, + "probability": 0.5845 + }, + { + "start": 6062.62, + "end": 6064.24, + "probability": 0.9943 + }, + { + "start": 6065.2, + "end": 6072.68, + "probability": 0.9665 + }, + { + "start": 6072.86, + "end": 6074.68, + "probability": 0.9442 + }, + { + "start": 6075.38, + "end": 6080.04, + "probability": 0.9724 + }, + { + "start": 6084.28, + "end": 6086.06, + "probability": 0.9062 + }, + { + "start": 6086.88, + "end": 6087.1, + "probability": 0.2583 + }, + { + "start": 6087.12, + "end": 6089.06, + "probability": 0.8496 + }, + { + "start": 6089.06, + "end": 6089.84, + "probability": 0.7761 + }, + { + "start": 6090.46, + "end": 6093.12, + "probability": 0.9119 + }, + { + "start": 6093.78, + "end": 6094.96, + "probability": 0.1831 + }, + { + "start": 6095.9, + "end": 6096.96, + "probability": 0.9028 + }, + { + "start": 6098.54, + "end": 6099.62, + "probability": 0.9023 + }, + { + "start": 6107.58, + "end": 6108.74, + "probability": 0.3166 + }, + { + "start": 6110.25, + "end": 6116.82, + "probability": 0.7249 + }, + { + "start": 6116.82, + "end": 6123.22, + "probability": 0.9719 + }, + { + "start": 6124.8, + "end": 6126.0, + "probability": 0.8991 + }, + { + "start": 6126.52, + "end": 6127.22, + "probability": 0.8586 + }, + { + "start": 6127.38, + "end": 6128.12, + "probability": 0.983 + }, + { + "start": 6128.32, + "end": 6129.22, + "probability": 0.8904 + }, + { + "start": 6129.34, + "end": 6131.28, + "probability": 0.9971 + }, + { + "start": 6131.38, + "end": 6131.74, + "probability": 0.7966 + }, + { + "start": 6131.78, + "end": 6132.44, + "probability": 0.5756 + }, + { + "start": 6133.64, + "end": 6134.14, + "probability": 0.85 + }, + { + "start": 6134.34, + "end": 6135.36, + "probability": 0.8616 + }, + { + "start": 6135.44, + "end": 6140.64, + "probability": 0.9991 + }, + { + "start": 6141.08, + "end": 6144.0, + "probability": 0.994 + }, + { + "start": 6144.66, + "end": 6147.38, + "probability": 0.9897 + }, + { + "start": 6147.44, + "end": 6149.64, + "probability": 0.981 + }, + { + "start": 6150.18, + "end": 6153.16, + "probability": 0.9897 + }, + { + "start": 6153.16, + "end": 6158.26, + "probability": 0.989 + }, + { + "start": 6158.36, + "end": 6159.14, + "probability": 0.8996 + }, + { + "start": 6159.2, + "end": 6160.34, + "probability": 0.8777 + }, + { + "start": 6160.74, + "end": 6163.58, + "probability": 0.7347 + }, + { + "start": 6163.84, + "end": 6164.18, + "probability": 0.2818 + }, + { + "start": 6164.74, + "end": 6165.0, + "probability": 0.3301 + }, + { + "start": 6165.04, + "end": 6165.7, + "probability": 0.6041 + }, + { + "start": 6166.54, + "end": 6167.98, + "probability": 0.7273 + }, + { + "start": 6168.1, + "end": 6170.01, + "probability": 0.8708 + }, + { + "start": 6170.76, + "end": 6175.38, + "probability": 0.7071 + }, + { + "start": 6176.08, + "end": 6182.7, + "probability": 0.9983 + }, + { + "start": 6182.8, + "end": 6183.78, + "probability": 0.9217 + }, + { + "start": 6183.9, + "end": 6184.94, + "probability": 0.9613 + }, + { + "start": 6184.98, + "end": 6186.02, + "probability": 0.9778 + }, + { + "start": 6186.1, + "end": 6187.42, + "probability": 0.9886 + }, + { + "start": 6187.62, + "end": 6188.7, + "probability": 0.7691 + }, + { + "start": 6190.34, + "end": 6196.38, + "probability": 0.9983 + }, + { + "start": 6197.64, + "end": 6203.22, + "probability": 0.9942 + }, + { + "start": 6204.22, + "end": 6211.04, + "probability": 0.9995 + }, + { + "start": 6211.46, + "end": 6216.84, + "probability": 0.9971 + }, + { + "start": 6217.3, + "end": 6223.6, + "probability": 0.7769 + }, + { + "start": 6223.92, + "end": 6224.82, + "probability": 0.7484 + }, + { + "start": 6225.84, + "end": 6228.4, + "probability": 0.9967 + }, + { + "start": 6229.46, + "end": 6231.96, + "probability": 0.9717 + }, + { + "start": 6232.06, + "end": 6236.64, + "probability": 0.9901 + }, + { + "start": 6236.76, + "end": 6238.16, + "probability": 0.8553 + }, + { + "start": 6238.62, + "end": 6240.24, + "probability": 0.9827 + }, + { + "start": 6240.32, + "end": 6241.32, + "probability": 0.8923 + }, + { + "start": 6241.72, + "end": 6244.3, + "probability": 0.9855 + }, + { + "start": 6244.78, + "end": 6247.42, + "probability": 0.9953 + }, + { + "start": 6247.66, + "end": 6248.02, + "probability": 0.5183 + }, + { + "start": 6249.3, + "end": 6250.94, + "probability": 0.9496 + }, + { + "start": 6251.82, + "end": 6254.8, + "probability": 0.9619 + }, + { + "start": 6255.04, + "end": 6255.62, + "probability": 0.9332 + }, + { + "start": 6255.72, + "end": 6257.0, + "probability": 0.9212 + }, + { + "start": 6257.06, + "end": 6258.26, + "probability": 0.9734 + }, + { + "start": 6258.36, + "end": 6260.0, + "probability": 0.9977 + }, + { + "start": 6261.26, + "end": 6264.68, + "probability": 0.9994 + }, + { + "start": 6264.78, + "end": 6267.48, + "probability": 0.9727 + }, + { + "start": 6268.04, + "end": 6271.96, + "probability": 0.9985 + }, + { + "start": 6271.96, + "end": 6275.68, + "probability": 0.999 + }, + { + "start": 6276.64, + "end": 6279.12, + "probability": 0.9954 + }, + { + "start": 6280.08, + "end": 6281.74, + "probability": 0.9424 + }, + { + "start": 6281.82, + "end": 6284.1, + "probability": 0.757 + }, + { + "start": 6284.1, + "end": 6284.92, + "probability": 0.2339 + }, + { + "start": 6285.0, + "end": 6285.96, + "probability": 0.668 + }, + { + "start": 6286.02, + "end": 6289.14, + "probability": 0.9122 + }, + { + "start": 6289.72, + "end": 6290.76, + "probability": 0.8125 + }, + { + "start": 6291.1, + "end": 6291.42, + "probability": 0.6036 + }, + { + "start": 6291.44, + "end": 6293.66, + "probability": 0.6797 + }, + { + "start": 6293.92, + "end": 6295.28, + "probability": 0.7466 + }, + { + "start": 6295.38, + "end": 6296.22, + "probability": 0.792 + }, + { + "start": 6296.34, + "end": 6302.85, + "probability": 0.7758 + }, + { + "start": 6304.36, + "end": 6304.76, + "probability": 0.4922 + }, + { + "start": 6305.14, + "end": 6306.56, + "probability": 0.6463 + }, + { + "start": 6307.1, + "end": 6308.74, + "probability": 0.8542 + }, + { + "start": 6308.9, + "end": 6310.44, + "probability": 0.8293 + }, + { + "start": 6311.26, + "end": 6316.4, + "probability": 0.5161 + }, + { + "start": 6316.4, + "end": 6321.28, + "probability": 0.9174 + }, + { + "start": 6321.94, + "end": 6325.7, + "probability": 0.7153 + }, + { + "start": 6325.7, + "end": 6326.96, + "probability": 0.1705 + }, + { + "start": 6327.34, + "end": 6328.08, + "probability": 0.3062 + }, + { + "start": 6333.8, + "end": 6335.5, + "probability": 0.6035 + }, + { + "start": 6335.5, + "end": 6338.48, + "probability": 0.1321 + }, + { + "start": 6338.48, + "end": 6341.62, + "probability": 0.1252 + }, + { + "start": 6342.0, + "end": 6343.06, + "probability": 0.0145 + }, + { + "start": 6344.26, + "end": 6345.24, + "probability": 0.7107 + }, + { + "start": 6346.21, + "end": 6350.15, + "probability": 0.9976 + }, + { + "start": 6350.62, + "end": 6351.94, + "probability": 0.1817 + }, + { + "start": 6352.36, + "end": 6354.0, + "probability": 0.0127 + }, + { + "start": 6354.32, + "end": 6355.89, + "probability": 0.7988 + }, + { + "start": 6356.92, + "end": 6360.74, + "probability": 0.5029 + }, + { + "start": 6360.8, + "end": 6361.5, + "probability": 0.5966 + }, + { + "start": 6361.68, + "end": 6364.12, + "probability": 0.7555 + }, + { + "start": 6364.18, + "end": 6365.44, + "probability": 0.8575 + }, + { + "start": 6367.7, + "end": 6370.72, + "probability": 0.9595 + }, + { + "start": 6371.56, + "end": 6374.2, + "probability": 0.7491 + }, + { + "start": 6374.22, + "end": 6375.68, + "probability": 0.9797 + }, + { + "start": 6375.78, + "end": 6376.4, + "probability": 0.7969 + }, + { + "start": 6377.84, + "end": 6379.52, + "probability": 0.8879 + }, + { + "start": 6379.52, + "end": 6383.04, + "probability": 0.9983 + }, + { + "start": 6383.56, + "end": 6389.86, + "probability": 0.9618 + }, + { + "start": 6390.36, + "end": 6390.8, + "probability": 0.9505 + }, + { + "start": 6390.84, + "end": 6392.1, + "probability": 0.8855 + }, + { + "start": 6396.46, + "end": 6398.66, + "probability": 0.2585 + }, + { + "start": 6398.86, + "end": 6399.98, + "probability": 0.9824 + }, + { + "start": 6400.8, + "end": 6402.2, + "probability": 0.9037 + }, + { + "start": 6402.22, + "end": 6407.76, + "probability": 0.9833 + }, + { + "start": 6407.76, + "end": 6411.24, + "probability": 0.9985 + }, + { + "start": 6411.76, + "end": 6417.26, + "probability": 0.9958 + }, + { + "start": 6417.26, + "end": 6421.78, + "probability": 0.9961 + }, + { + "start": 6422.24, + "end": 6423.89, + "probability": 0.7479 + }, + { + "start": 6424.14, + "end": 6427.32, + "probability": 0.8719 + }, + { + "start": 6427.38, + "end": 6428.1, + "probability": 0.9637 + }, + { + "start": 6429.1, + "end": 6431.28, + "probability": 0.9545 + }, + { + "start": 6431.84, + "end": 6434.08, + "probability": 0.9775 + }, + { + "start": 6434.5, + "end": 6435.72, + "probability": 0.9614 + }, + { + "start": 6436.18, + "end": 6439.16, + "probability": 0.9525 + }, + { + "start": 6439.76, + "end": 6441.88, + "probability": 0.9908 + }, + { + "start": 6442.58, + "end": 6446.36, + "probability": 0.6903 + }, + { + "start": 6446.9, + "end": 6454.36, + "probability": 0.9769 + }, + { + "start": 6454.72, + "end": 6457.24, + "probability": 0.8994 + }, + { + "start": 6457.74, + "end": 6459.17, + "probability": 0.9976 + }, + { + "start": 6459.5, + "end": 6462.44, + "probability": 0.9933 + }, + { + "start": 6462.44, + "end": 6466.48, + "probability": 0.507 + }, + { + "start": 6466.72, + "end": 6468.34, + "probability": 0.7901 + }, + { + "start": 6469.18, + "end": 6470.54, + "probability": 0.9901 + }, + { + "start": 6471.24, + "end": 6472.38, + "probability": 0.9631 + }, + { + "start": 6472.5, + "end": 6475.2, + "probability": 0.9832 + }, + { + "start": 6475.56, + "end": 6478.8, + "probability": 0.8287 + }, + { + "start": 6479.32, + "end": 6481.1, + "probability": 0.8664 + }, + { + "start": 6481.42, + "end": 6482.64, + "probability": 0.9149 + }, + { + "start": 6482.9, + "end": 6484.14, + "probability": 0.9854 + }, + { + "start": 6484.48, + "end": 6487.4, + "probability": 0.9604 + }, + { + "start": 6487.72, + "end": 6493.04, + "probability": 0.9507 + }, + { + "start": 6493.64, + "end": 6498.26, + "probability": 0.9354 + }, + { + "start": 6498.82, + "end": 6502.54, + "probability": 0.7786 + }, + { + "start": 6502.96, + "end": 6503.8, + "probability": 0.7169 + }, + { + "start": 6503.82, + "end": 6504.78, + "probability": 0.8892 + }, + { + "start": 6505.4, + "end": 6507.34, + "probability": 0.577 + }, + { + "start": 6508.32, + "end": 6510.76, + "probability": 0.9889 + }, + { + "start": 6510.82, + "end": 6511.18, + "probability": 0.8638 + }, + { + "start": 6511.72, + "end": 6512.32, + "probability": 0.7865 + }, + { + "start": 6512.52, + "end": 6515.66, + "probability": 0.8558 + }, + { + "start": 6516.06, + "end": 6516.26, + "probability": 0.8972 + }, + { + "start": 6516.58, + "end": 6518.42, + "probability": 0.8711 + }, + { + "start": 6518.84, + "end": 6522.2, + "probability": 0.7284 + }, + { + "start": 6529.8, + "end": 6532.24, + "probability": 0.7198 + }, + { + "start": 6533.26, + "end": 6533.98, + "probability": 0.865 + }, + { + "start": 6534.06, + "end": 6537.44, + "probability": 0.9255 + }, + { + "start": 6538.14, + "end": 6539.86, + "probability": 0.9709 + }, + { + "start": 6540.04, + "end": 6544.16, + "probability": 0.9775 + }, + { + "start": 6544.68, + "end": 6546.9, + "probability": 0.9963 + }, + { + "start": 6547.06, + "end": 6551.12, + "probability": 0.9933 + }, + { + "start": 6551.58, + "end": 6553.7, + "probability": 0.9098 + }, + { + "start": 6553.96, + "end": 6556.96, + "probability": 0.7826 + }, + { + "start": 6556.96, + "end": 6560.8, + "probability": 0.9216 + }, + { + "start": 6561.42, + "end": 6563.3, + "probability": 0.8978 + }, + { + "start": 6563.44, + "end": 6565.58, + "probability": 0.9969 + }, + { + "start": 6566.38, + "end": 6569.68, + "probability": 0.9644 + }, + { + "start": 6570.18, + "end": 6571.5, + "probability": 0.7891 + }, + { + "start": 6572.22, + "end": 6572.98, + "probability": 0.7464 + }, + { + "start": 6573.6, + "end": 6575.28, + "probability": 0.8746 + }, + { + "start": 6575.84, + "end": 6582.56, + "probability": 0.9924 + }, + { + "start": 6583.02, + "end": 6584.7, + "probability": 0.8154 + }, + { + "start": 6584.98, + "end": 6587.46, + "probability": 0.9941 + }, + { + "start": 6588.02, + "end": 6591.12, + "probability": 0.9873 + }, + { + "start": 6591.26, + "end": 6591.86, + "probability": 0.7627 + }, + { + "start": 6591.98, + "end": 6593.77, + "probability": 0.9478 + }, + { + "start": 6594.22, + "end": 6597.46, + "probability": 0.961 + }, + { + "start": 6598.12, + "end": 6601.78, + "probability": 0.9875 + }, + { + "start": 6602.5, + "end": 6604.72, + "probability": 0.9946 + }, + { + "start": 6605.06, + "end": 6607.01, + "probability": 0.9897 + }, + { + "start": 6607.2, + "end": 6608.14, + "probability": 0.8206 + }, + { + "start": 6608.22, + "end": 6611.9, + "probability": 0.9009 + }, + { + "start": 6612.36, + "end": 6614.38, + "probability": 0.6658 + }, + { + "start": 6614.92, + "end": 6617.36, + "probability": 0.9946 + }, + { + "start": 6618.3, + "end": 6618.72, + "probability": 0.8233 + }, + { + "start": 6619.18, + "end": 6624.42, + "probability": 0.8694 + }, + { + "start": 6624.94, + "end": 6626.68, + "probability": 0.9578 + }, + { + "start": 6626.86, + "end": 6631.48, + "probability": 0.9961 + }, + { + "start": 6631.66, + "end": 6636.02, + "probability": 0.9878 + }, + { + "start": 6636.42, + "end": 6639.12, + "probability": 0.9781 + }, + { + "start": 6640.14, + "end": 6643.72, + "probability": 0.9714 + }, + { + "start": 6644.36, + "end": 6648.3, + "probability": 0.9644 + }, + { + "start": 6649.06, + "end": 6651.06, + "probability": 0.9961 + }, + { + "start": 6651.52, + "end": 6652.42, + "probability": 0.8452 + }, + { + "start": 6652.54, + "end": 6654.22, + "probability": 0.9952 + }, + { + "start": 6654.6, + "end": 6658.64, + "probability": 0.9854 + }, + { + "start": 6658.9, + "end": 6659.64, + "probability": 0.3856 + }, + { + "start": 6660.4, + "end": 6661.28, + "probability": 0.7648 + }, + { + "start": 6661.68, + "end": 6664.56, + "probability": 0.9035 + }, + { + "start": 6664.66, + "end": 6668.36, + "probability": 0.9797 + }, + { + "start": 6668.5, + "end": 6672.58, + "probability": 0.8402 + }, + { + "start": 6676.78, + "end": 6678.28, + "probability": 0.2858 + }, + { + "start": 6678.46, + "end": 6679.0, + "probability": 0.6617 + }, + { + "start": 6679.64, + "end": 6679.64, + "probability": 0.2789 + }, + { + "start": 6694.6, + "end": 6697.26, + "probability": 0.5008 + }, + { + "start": 6697.4, + "end": 6699.76, + "probability": 0.3087 + }, + { + "start": 6700.14, + "end": 6700.4, + "probability": 0.1462 + }, + { + "start": 6703.24, + "end": 6704.16, + "probability": 0.1097 + }, + { + "start": 6704.66, + "end": 6708.38, + "probability": 0.1496 + }, + { + "start": 6708.64, + "end": 6712.47, + "probability": 0.0475 + }, + { + "start": 6719.26, + "end": 6720.26, + "probability": 0.0283 + }, + { + "start": 6720.26, + "end": 6721.28, + "probability": 0.1087 + }, + { + "start": 6721.3, + "end": 6722.98, + "probability": 0.0853 + }, + { + "start": 6723.04, + "end": 6724.4, + "probability": 0.0468 + }, + { + "start": 6725.22, + "end": 6732.02, + "probability": 0.2326 + }, + { + "start": 6732.82, + "end": 6736.7, + "probability": 0.0583 + }, + { + "start": 6736.7, + "end": 6738.66, + "probability": 0.1386 + }, + { + "start": 6739.3, + "end": 6742.14, + "probability": 0.6932 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.0, + "end": 6759.0, + "probability": 0.0 + }, + { + "start": 6759.16, + "end": 6759.51, + "probability": 0.3842 + }, + { + "start": 6760.86, + "end": 6763.76, + "probability": 0.7998 + }, + { + "start": 6764.18, + "end": 6765.54, + "probability": 0.3137 + }, + { + "start": 6765.68, + "end": 6770.14, + "probability": 0.8009 + }, + { + "start": 6770.14, + "end": 6777.76, + "probability": 0.9465 + }, + { + "start": 6778.36, + "end": 6779.8, + "probability": 0.5218 + }, + { + "start": 6779.96, + "end": 6781.06, + "probability": 0.2752 + }, + { + "start": 6781.18, + "end": 6783.42, + "probability": 0.9091 + }, + { + "start": 6783.62, + "end": 6785.8, + "probability": 0.8551 + }, + { + "start": 6785.82, + "end": 6788.16, + "probability": 0.8945 + }, + { + "start": 6788.26, + "end": 6791.9, + "probability": 0.9407 + }, + { + "start": 6792.42, + "end": 6794.8, + "probability": 0.7433 + }, + { + "start": 6794.9, + "end": 6796.04, + "probability": 0.6151 + }, + { + "start": 6796.16, + "end": 6797.68, + "probability": 0.9707 + }, + { + "start": 6799.18, + "end": 6802.22, + "probability": 0.967 + }, + { + "start": 6802.92, + "end": 6808.1, + "probability": 0.9974 + }, + { + "start": 6808.98, + "end": 6811.16, + "probability": 0.954 + }, + { + "start": 6813.5, + "end": 6814.64, + "probability": 0.6607 + }, + { + "start": 6815.82, + "end": 6820.68, + "probability": 0.9937 + }, + { + "start": 6820.68, + "end": 6826.56, + "probability": 0.9986 + }, + { + "start": 6827.4, + "end": 6830.73, + "probability": 0.9628 + }, + { + "start": 6832.26, + "end": 6836.7, + "probability": 0.8965 + }, + { + "start": 6838.86, + "end": 6839.82, + "probability": 0.9155 + }, + { + "start": 6841.92, + "end": 6845.36, + "probability": 0.9969 + }, + { + "start": 6850.86, + "end": 6857.98, + "probability": 0.8994 + }, + { + "start": 6859.32, + "end": 6860.78, + "probability": 0.8186 + }, + { + "start": 6861.84, + "end": 6863.44, + "probability": 0.9648 + }, + { + "start": 6864.38, + "end": 6865.14, + "probability": 0.9757 + }, + { + "start": 6865.7, + "end": 6868.16, + "probability": 0.9889 + }, + { + "start": 6869.24, + "end": 6873.06, + "probability": 0.9443 + }, + { + "start": 6874.06, + "end": 6875.8, + "probability": 0.8991 + }, + { + "start": 6877.2, + "end": 6878.48, + "probability": 0.514 + }, + { + "start": 6879.38, + "end": 6882.59, + "probability": 0.9985 + }, + { + "start": 6884.32, + "end": 6888.98, + "probability": 0.9989 + }, + { + "start": 6891.94, + "end": 6895.5, + "probability": 0.9984 + }, + { + "start": 6896.76, + "end": 6898.22, + "probability": 0.7997 + }, + { + "start": 6898.32, + "end": 6899.18, + "probability": 0.7609 + }, + { + "start": 6899.36, + "end": 6900.66, + "probability": 0.9091 + }, + { + "start": 6902.22, + "end": 6903.18, + "probability": 0.6337 + }, + { + "start": 6903.6, + "end": 6905.62, + "probability": 0.9662 + }, + { + "start": 6906.24, + "end": 6911.14, + "probability": 0.975 + }, + { + "start": 6911.84, + "end": 6914.82, + "probability": 0.9634 + }, + { + "start": 6914.88, + "end": 6918.24, + "probability": 0.9993 + }, + { + "start": 6919.24, + "end": 6924.98, + "probability": 0.9963 + }, + { + "start": 6925.92, + "end": 6931.82, + "probability": 0.9227 + }, + { + "start": 6933.0, + "end": 6938.58, + "probability": 0.998 + }, + { + "start": 6940.24, + "end": 6943.62, + "probability": 0.9963 + }, + { + "start": 6944.86, + "end": 6948.72, + "probability": 0.9923 + }, + { + "start": 6948.88, + "end": 6950.42, + "probability": 0.9653 + }, + { + "start": 6951.02, + "end": 6957.64, + "probability": 0.9809 + }, + { + "start": 6957.64, + "end": 6962.12, + "probability": 0.9967 + }, + { + "start": 6962.18, + "end": 6962.84, + "probability": 0.8384 + }, + { + "start": 6962.9, + "end": 6963.64, + "probability": 0.8436 + }, + { + "start": 6964.54, + "end": 6971.64, + "probability": 0.9954 + }, + { + "start": 6971.78, + "end": 6974.14, + "probability": 0.9345 + }, + { + "start": 6974.84, + "end": 6982.3, + "probability": 0.9949 + }, + { + "start": 6983.14, + "end": 6986.16, + "probability": 0.8055 + }, + { + "start": 6987.92, + "end": 6991.62, + "probability": 0.8746 + }, + { + "start": 6992.18, + "end": 6992.52, + "probability": 0.7213 + }, + { + "start": 6992.58, + "end": 6993.44, + "probability": 0.9413 + }, + { + "start": 6993.92, + "end": 6998.86, + "probability": 0.9678 + }, + { + "start": 6999.66, + "end": 7002.81, + "probability": 0.8373 + }, + { + "start": 7004.04, + "end": 7009.5, + "probability": 0.9775 + }, + { + "start": 7010.16, + "end": 7012.04, + "probability": 0.9995 + }, + { + "start": 7012.04, + "end": 7014.88, + "probability": 0.9982 + }, + { + "start": 7015.0, + "end": 7015.46, + "probability": 0.9172 + }, + { + "start": 7015.54, + "end": 7017.8, + "probability": 0.9778 + }, + { + "start": 7018.74, + "end": 7021.66, + "probability": 0.9985 + }, + { + "start": 7022.22, + "end": 7024.16, + "probability": 0.9924 + }, + { + "start": 7025.14, + "end": 7026.96, + "probability": 0.9982 + }, + { + "start": 7027.6, + "end": 7031.62, + "probability": 0.9895 + }, + { + "start": 7032.52, + "end": 7034.18, + "probability": 0.7646 + }, + { + "start": 7034.94, + "end": 7037.82, + "probability": 0.996 + }, + { + "start": 7039.22, + "end": 7045.38, + "probability": 0.9914 + }, + { + "start": 7045.94, + "end": 7049.14, + "probability": 0.9695 + }, + { + "start": 7049.9, + "end": 7050.66, + "probability": 0.5687 + }, + { + "start": 7051.14, + "end": 7054.08, + "probability": 0.9942 + }, + { + "start": 7055.22, + "end": 7061.48, + "probability": 0.993 + }, + { + "start": 7061.48, + "end": 7065.96, + "probability": 0.9845 + }, + { + "start": 7066.86, + "end": 7067.98, + "probability": 0.4542 + }, + { + "start": 7068.68, + "end": 7074.7, + "probability": 0.9985 + }, + { + "start": 7075.12, + "end": 7076.28, + "probability": 0.9292 + }, + { + "start": 7077.18, + "end": 7078.04, + "probability": 0.272 + }, + { + "start": 7078.12, + "end": 7079.06, + "probability": 0.9653 + }, + { + "start": 7079.56, + "end": 7085.04, + "probability": 0.9856 + }, + { + "start": 7085.58, + "end": 7090.48, + "probability": 0.9107 + }, + { + "start": 7091.1, + "end": 7092.32, + "probability": 0.9349 + }, + { + "start": 7093.12, + "end": 7098.48, + "probability": 0.9634 + }, + { + "start": 7099.38, + "end": 7102.96, + "probability": 0.9643 + }, + { + "start": 7103.9, + "end": 7107.22, + "probability": 0.9724 + }, + { + "start": 7108.02, + "end": 7110.46, + "probability": 0.938 + }, + { + "start": 7110.54, + "end": 7112.02, + "probability": 0.965 + }, + { + "start": 7112.48, + "end": 7115.2, + "probability": 0.9602 + }, + { + "start": 7115.56, + "end": 7120.58, + "probability": 0.9901 + }, + { + "start": 7120.58, + "end": 7125.4, + "probability": 0.9883 + }, + { + "start": 7125.92, + "end": 7128.58, + "probability": 0.747 + }, + { + "start": 7129.22, + "end": 7131.04, + "probability": 0.8393 + }, + { + "start": 7131.74, + "end": 7133.28, + "probability": 0.8597 + }, + { + "start": 7134.6, + "end": 7139.28, + "probability": 0.9964 + }, + { + "start": 7139.84, + "end": 7142.0, + "probability": 0.9901 + }, + { + "start": 7142.16, + "end": 7142.8, + "probability": 0.415 + }, + { + "start": 7142.94, + "end": 7144.04, + "probability": 0.8695 + }, + { + "start": 7144.44, + "end": 7145.0, + "probability": 0.9808 + }, + { + "start": 7145.38, + "end": 7145.76, + "probability": 0.8315 + }, + { + "start": 7145.84, + "end": 7146.38, + "probability": 0.6597 + }, + { + "start": 7146.5, + "end": 7147.04, + "probability": 0.7671 + }, + { + "start": 7147.62, + "end": 7149.8, + "probability": 0.9774 + }, + { + "start": 7150.24, + "end": 7152.72, + "probability": 0.9918 + }, + { + "start": 7153.44, + "end": 7156.54, + "probability": 0.9858 + }, + { + "start": 7157.06, + "end": 7158.8, + "probability": 0.7603 + }, + { + "start": 7159.34, + "end": 7163.74, + "probability": 0.9454 + }, + { + "start": 7164.72, + "end": 7167.88, + "probability": 0.9972 + }, + { + "start": 7167.88, + "end": 7172.08, + "probability": 0.9882 + }, + { + "start": 7172.92, + "end": 7173.86, + "probability": 0.7034 + }, + { + "start": 7175.16, + "end": 7177.26, + "probability": 0.9932 + }, + { + "start": 7177.82, + "end": 7181.7, + "probability": 0.9822 + }, + { + "start": 7182.22, + "end": 7184.56, + "probability": 0.9703 + }, + { + "start": 7185.34, + "end": 7188.56, + "probability": 0.9957 + }, + { + "start": 7189.0, + "end": 7189.78, + "probability": 0.9204 + }, + { + "start": 7189.88, + "end": 7190.64, + "probability": 0.7656 + }, + { + "start": 7191.1, + "end": 7193.74, + "probability": 0.9963 + }, + { + "start": 7194.18, + "end": 7195.12, + "probability": 0.9507 + }, + { + "start": 7195.52, + "end": 7199.06, + "probability": 0.9953 + }, + { + "start": 7199.66, + "end": 7204.22, + "probability": 0.9929 + }, + { + "start": 7204.78, + "end": 7206.14, + "probability": 0.9961 + }, + { + "start": 7207.02, + "end": 7211.82, + "probability": 0.9614 + }, + { + "start": 7212.12, + "end": 7214.5, + "probability": 0.9663 + }, + { + "start": 7214.82, + "end": 7215.4, + "probability": 0.9167 + }, + { + "start": 7216.1, + "end": 7217.18, + "probability": 0.9676 + }, + { + "start": 7217.54, + "end": 7220.32, + "probability": 0.9263 + }, + { + "start": 7220.62, + "end": 7225.54, + "probability": 0.9671 + }, + { + "start": 7226.38, + "end": 7229.52, + "probability": 0.9911 + }, + { + "start": 7230.04, + "end": 7231.08, + "probability": 0.9744 + }, + { + "start": 7231.52, + "end": 7233.26, + "probability": 0.9857 + }, + { + "start": 7233.42, + "end": 7234.48, + "probability": 0.9916 + }, + { + "start": 7234.48, + "end": 7235.58, + "probability": 0.9932 + }, + { + "start": 7235.88, + "end": 7237.62, + "probability": 0.939 + }, + { + "start": 7237.7, + "end": 7238.26, + "probability": 0.946 + }, + { + "start": 7238.36, + "end": 7238.8, + "probability": 0.9312 + }, + { + "start": 7239.24, + "end": 7240.08, + "probability": 0.7453 + }, + { + "start": 7240.7, + "end": 7243.06, + "probability": 0.992 + }, + { + "start": 7243.06, + "end": 7246.6, + "probability": 0.9857 + }, + { + "start": 7246.7, + "end": 7247.16, + "probability": 0.7315 + }, + { + "start": 7253.06, + "end": 7257.22, + "probability": 0.6307 + }, + { + "start": 7257.38, + "end": 7258.68, + "probability": 0.4257 + }, + { + "start": 7258.74, + "end": 7259.68, + "probability": 0.8486 + }, + { + "start": 7259.78, + "end": 7260.3, + "probability": 0.2204 + }, + { + "start": 7260.38, + "end": 7261.6, + "probability": 0.2027 + }, + { + "start": 7261.66, + "end": 7264.8, + "probability": 0.623 + }, + { + "start": 7267.76, + "end": 7270.08, + "probability": 0.3594 + }, + { + "start": 7270.24, + "end": 7273.76, + "probability": 0.942 + }, + { + "start": 7273.76, + "end": 7274.04, + "probability": 0.3024 + }, + { + "start": 7275.16, + "end": 7276.56, + "probability": 0.6532 + }, + { + "start": 7276.56, + "end": 7278.02, + "probability": 0.5196 + }, + { + "start": 7278.28, + "end": 7282.9, + "probability": 0.9934 + }, + { + "start": 7283.06, + "end": 7285.24, + "probability": 0.9901 + }, + { + "start": 7287.89, + "end": 7289.04, + "probability": 0.1111 + }, + { + "start": 7289.04, + "end": 7290.08, + "probability": 0.2645 + }, + { + "start": 7290.7, + "end": 7291.26, + "probability": 0.0676 + }, + { + "start": 7291.46, + "end": 7292.22, + "probability": 0.3135 + }, + { + "start": 7292.22, + "end": 7295.04, + "probability": 0.4783 + }, + { + "start": 7295.16, + "end": 7296.12, + "probability": 0.7872 + }, + { + "start": 7296.26, + "end": 7299.26, + "probability": 0.9937 + }, + { + "start": 7299.42, + "end": 7302.4, + "probability": 0.8566 + }, + { + "start": 7302.7, + "end": 7302.9, + "probability": 0.8626 + }, + { + "start": 7302.98, + "end": 7305.55, + "probability": 0.939 + }, + { + "start": 7306.02, + "end": 7306.14, + "probability": 0.3953 + }, + { + "start": 7306.24, + "end": 7306.68, + "probability": 0.8965 + }, + { + "start": 7306.76, + "end": 7308.02, + "probability": 0.9346 + }, + { + "start": 7308.28, + "end": 7309.25, + "probability": 0.9406 + }, + { + "start": 7309.4, + "end": 7310.98, + "probability": 0.8907 + }, + { + "start": 7311.1, + "end": 7312.86, + "probability": 0.967 + }, + { + "start": 7313.34, + "end": 7315.43, + "probability": 0.9897 + }, + { + "start": 7315.72, + "end": 7316.48, + "probability": 0.9829 + }, + { + "start": 7316.48, + "end": 7319.86, + "probability": 0.9971 + }, + { + "start": 7319.88, + "end": 7323.94, + "probability": 0.8214 + }, + { + "start": 7323.94, + "end": 7326.78, + "probability": 0.9674 + }, + { + "start": 7326.88, + "end": 7328.42, + "probability": 0.7607 + }, + { + "start": 7329.72, + "end": 7330.24, + "probability": 0.3069 + }, + { + "start": 7330.88, + "end": 7333.6, + "probability": 0.9849 + }, + { + "start": 7334.42, + "end": 7334.42, + "probability": 0.0364 + }, + { + "start": 7334.42, + "end": 7334.42, + "probability": 0.0533 + }, + { + "start": 7334.42, + "end": 7334.42, + "probability": 0.2454 + }, + { + "start": 7334.42, + "end": 7335.78, + "probability": 0.569 + }, + { + "start": 7336.42, + "end": 7337.78, + "probability": 0.4459 + }, + { + "start": 7342.12, + "end": 7344.6, + "probability": 0.7877 + }, + { + "start": 7345.56, + "end": 7348.93, + "probability": 0.973 + }, + { + "start": 7349.28, + "end": 7353.74, + "probability": 0.9489 + }, + { + "start": 7354.32, + "end": 7356.52, + "probability": 0.9419 + }, + { + "start": 7356.58, + "end": 7361.02, + "probability": 0.9446 + }, + { + "start": 7361.54, + "end": 7362.64, + "probability": 0.7773 + }, + { + "start": 7364.37, + "end": 7371.62, + "probability": 0.9623 + }, + { + "start": 7374.8, + "end": 7378.42, + "probability": 0.7798 + }, + { + "start": 7379.74, + "end": 7380.56, + "probability": 0.4887 + }, + { + "start": 7380.56, + "end": 7381.58, + "probability": 0.5831 + }, + { + "start": 7382.1, + "end": 7383.34, + "probability": 0.1628 + }, + { + "start": 7383.6, + "end": 7383.6, + "probability": 0.0235 + }, + { + "start": 7383.9, + "end": 7386.3, + "probability": 0.5711 + }, + { + "start": 7386.7, + "end": 7390.3, + "probability": 0.8999 + }, + { + "start": 7390.34, + "end": 7390.58, + "probability": 0.2456 + }, + { + "start": 7390.64, + "end": 7393.14, + "probability": 0.9053 + }, + { + "start": 7393.24, + "end": 7396.66, + "probability": 0.5536 + }, + { + "start": 7396.74, + "end": 7400.96, + "probability": 0.8708 + }, + { + "start": 7400.98, + "end": 7401.82, + "probability": 0.3878 + }, + { + "start": 7401.82, + "end": 7404.68, + "probability": 0.9197 + }, + { + "start": 7404.7, + "end": 7407.6, + "probability": 0.7301 + }, + { + "start": 7407.88, + "end": 7409.2, + "probability": 0.0407 + }, + { + "start": 7409.76, + "end": 7412.54, + "probability": 0.6167 + }, + { + "start": 7413.92, + "end": 7417.4, + "probability": 0.9159 + }, + { + "start": 7418.34, + "end": 7421.6, + "probability": 0.2205 + }, + { + "start": 7423.26, + "end": 7426.56, + "probability": 0.2401 + }, + { + "start": 7426.78, + "end": 7427.04, + "probability": 0.8862 + }, + { + "start": 7427.78, + "end": 7429.98, + "probability": 0.5122 + }, + { + "start": 7429.98, + "end": 7431.92, + "probability": 0.5736 + }, + { + "start": 7431.92, + "end": 7431.92, + "probability": 0.025 + }, + { + "start": 7431.92, + "end": 7431.92, + "probability": 0.9329 + }, + { + "start": 7431.92, + "end": 7431.92, + "probability": 0.6817 + }, + { + "start": 7432.02, + "end": 7432.94, + "probability": 0.645 + }, + { + "start": 7433.06, + "end": 7433.78, + "probability": 0.7764 + }, + { + "start": 7434.5, + "end": 7435.48, + "probability": 0.3387 + }, + { + "start": 7436.48, + "end": 7437.1, + "probability": 0.2361 + }, + { + "start": 7437.1, + "end": 7438.86, + "probability": 0.4697 + }, + { + "start": 7438.98, + "end": 7439.74, + "probability": 0.6879 + }, + { + "start": 7440.73, + "end": 7442.14, + "probability": 0.0505 + }, + { + "start": 7442.18, + "end": 7444.54, + "probability": 0.5796 + }, + { + "start": 7445.04, + "end": 7446.52, + "probability": 0.2059 + }, + { + "start": 7446.58, + "end": 7447.62, + "probability": 0.9684 + }, + { + "start": 7447.7, + "end": 7450.52, + "probability": 0.9522 + }, + { + "start": 7450.68, + "end": 7454.36, + "probability": 0.7888 + }, + { + "start": 7455.86, + "end": 7458.48, + "probability": 0.9927 + }, + { + "start": 7459.3, + "end": 7461.12, + "probability": 0.5336 + }, + { + "start": 7461.98, + "end": 7462.62, + "probability": 0.0658 + }, + { + "start": 7462.76, + "end": 7463.63, + "probability": 0.7769 + }, + { + "start": 7463.72, + "end": 7465.52, + "probability": 0.8811 + }, + { + "start": 7465.62, + "end": 7466.46, + "probability": 0.7615 + }, + { + "start": 7466.74, + "end": 7469.79, + "probability": 0.7998 + }, + { + "start": 7471.18, + "end": 7474.62, + "probability": 0.9787 + }, + { + "start": 7474.66, + "end": 7477.4, + "probability": 0.9909 + }, + { + "start": 7477.4, + "end": 7479.78, + "probability": 0.9986 + }, + { + "start": 7480.82, + "end": 7482.78, + "probability": 0.681 + }, + { + "start": 7482.98, + "end": 7485.28, + "probability": 0.7906 + }, + { + "start": 7485.48, + "end": 7487.34, + "probability": 0.9211 + }, + { + "start": 7488.08, + "end": 7489.98, + "probability": 0.9941 + }, + { + "start": 7491.0, + "end": 7494.4, + "probability": 0.9552 + }, + { + "start": 7495.4, + "end": 7496.64, + "probability": 0.5401 + }, + { + "start": 7498.22, + "end": 7500.4, + "probability": 0.7761 + }, + { + "start": 7500.86, + "end": 7508.8, + "probability": 0.919 + }, + { + "start": 7509.96, + "end": 7511.56, + "probability": 0.8553 + }, + { + "start": 7512.92, + "end": 7515.86, + "probability": 0.6593 + }, + { + "start": 7515.96, + "end": 7519.22, + "probability": 0.7712 + }, + { + "start": 7519.78, + "end": 7521.08, + "probability": 0.5663 + }, + { + "start": 7522.14, + "end": 7525.14, + "probability": 0.9199 + }, + { + "start": 7525.78, + "end": 7528.74, + "probability": 0.9679 + }, + { + "start": 7529.24, + "end": 7531.5, + "probability": 0.9792 + }, + { + "start": 7531.78, + "end": 7532.98, + "probability": 0.9668 + }, + { + "start": 7533.02, + "end": 7534.72, + "probability": 0.4211 + }, + { + "start": 7535.08, + "end": 7535.94, + "probability": 0.6756 + }, + { + "start": 7536.04, + "end": 7537.22, + "probability": 0.6938 + }, + { + "start": 7537.84, + "end": 7539.66, + "probability": 0.9689 + }, + { + "start": 7540.42, + "end": 7541.64, + "probability": 0.0634 + }, + { + "start": 7541.64, + "end": 7541.64, + "probability": 0.2174 + }, + { + "start": 7541.64, + "end": 7543.2, + "probability": 0.8401 + }, + { + "start": 7545.68, + "end": 7547.34, + "probability": 0.9917 + }, + { + "start": 7547.46, + "end": 7552.54, + "probability": 0.5605 + }, + { + "start": 7553.0, + "end": 7554.5, + "probability": 0.5937 + }, + { + "start": 7554.58, + "end": 7556.1, + "probability": 0.8484 + }, + { + "start": 7556.28, + "end": 7556.8, + "probability": 0.8538 + }, + { + "start": 7557.0, + "end": 7557.34, + "probability": 0.7616 + }, + { + "start": 7557.4, + "end": 7558.24, + "probability": 0.984 + }, + { + "start": 7558.32, + "end": 7560.38, + "probability": 0.7768 + }, + { + "start": 7561.14, + "end": 7563.86, + "probability": 0.8281 + }, + { + "start": 7564.06, + "end": 7567.0, + "probability": 0.1002 + }, + { + "start": 7569.4, + "end": 7569.8, + "probability": 0.0111 + }, + { + "start": 7569.8, + "end": 7569.8, + "probability": 0.1127 + }, + { + "start": 7569.8, + "end": 7571.1, + "probability": 0.0108 + }, + { + "start": 7571.12, + "end": 7573.36, + "probability": 0.9814 + }, + { + "start": 7574.2, + "end": 7579.73, + "probability": 0.8052 + }, + { + "start": 7581.74, + "end": 7582.72, + "probability": 0.9482 + }, + { + "start": 7582.8, + "end": 7584.62, + "probability": 0.9918 + }, + { + "start": 7584.7, + "end": 7585.42, + "probability": 0.9614 + }, + { + "start": 7585.96, + "end": 7586.26, + "probability": 0.5705 + }, + { + "start": 7588.53, + "end": 7591.62, + "probability": 0.9077 + }, + { + "start": 7592.53, + "end": 7593.8, + "probability": 0.0913 + }, + { + "start": 7595.26, + "end": 7599.66, + "probability": 0.9775 + }, + { + "start": 7600.04, + "end": 7601.58, + "probability": 0.9509 + }, + { + "start": 7602.0, + "end": 7603.56, + "probability": 0.9448 + }, + { + "start": 7603.64, + "end": 7605.08, + "probability": 0.996 + }, + { + "start": 7605.66, + "end": 7608.58, + "probability": 0.8655 + }, + { + "start": 7609.1, + "end": 7611.22, + "probability": 0.583 + }, + { + "start": 7611.34, + "end": 7612.66, + "probability": 0.7745 + }, + { + "start": 7612.84, + "end": 7613.58, + "probability": 0.2438 + }, + { + "start": 7613.7, + "end": 7616.22, + "probability": 0.9924 + }, + { + "start": 7616.48, + "end": 7617.4, + "probability": 0.9174 + }, + { + "start": 7617.56, + "end": 7621.78, + "probability": 0.9964 + }, + { + "start": 7621.92, + "end": 7624.22, + "probability": 0.968 + }, + { + "start": 7625.12, + "end": 7631.8, + "probability": 0.9946 + }, + { + "start": 7631.86, + "end": 7635.4, + "probability": 0.9922 + }, + { + "start": 7635.94, + "end": 7638.66, + "probability": 0.9971 + }, + { + "start": 7638.76, + "end": 7641.4, + "probability": 0.8904 + }, + { + "start": 7642.04, + "end": 7644.2, + "probability": 0.8988 + }, + { + "start": 7644.68, + "end": 7648.42, + "probability": 0.9351 + }, + { + "start": 7648.52, + "end": 7651.96, + "probability": 0.9924 + }, + { + "start": 7652.14, + "end": 7652.98, + "probability": 0.7841 + }, + { + "start": 7653.2, + "end": 7654.44, + "probability": 0.9933 + }, + { + "start": 7654.64, + "end": 7655.59, + "probability": 0.9888 + }, + { + "start": 7655.74, + "end": 7660.12, + "probability": 0.9893 + }, + { + "start": 7660.2, + "end": 7662.06, + "probability": 0.6431 + }, + { + "start": 7662.08, + "end": 7663.26, + "probability": 0.9731 + }, + { + "start": 7663.32, + "end": 7666.16, + "probability": 0.9918 + }, + { + "start": 7666.34, + "end": 7669.46, + "probability": 0.7847 + }, + { + "start": 7670.22, + "end": 7670.7, + "probability": 0.7946 + }, + { + "start": 7671.08, + "end": 7671.9, + "probability": 0.969 + }, + { + "start": 7672.06, + "end": 7672.88, + "probability": 0.7536 + }, + { + "start": 7673.1, + "end": 7674.58, + "probability": 0.8242 + }, + { + "start": 7674.74, + "end": 7676.36, + "probability": 0.9801 + }, + { + "start": 7676.98, + "end": 7677.82, + "probability": 0.9139 + }, + { + "start": 7678.08, + "end": 7679.66, + "probability": 0.7593 + }, + { + "start": 7679.82, + "end": 7681.64, + "probability": 0.4281 + }, + { + "start": 7682.14, + "end": 7683.1, + "probability": 0.9887 + }, + { + "start": 7683.74, + "end": 7688.76, + "probability": 0.9878 + }, + { + "start": 7688.84, + "end": 7690.74, + "probability": 0.9933 + }, + { + "start": 7690.84, + "end": 7691.96, + "probability": 0.6581 + }, + { + "start": 7692.0, + "end": 7693.02, + "probability": 0.8524 + }, + { + "start": 7693.08, + "end": 7694.92, + "probability": 0.9907 + }, + { + "start": 7695.68, + "end": 7699.4, + "probability": 0.9797 + }, + { + "start": 7699.9, + "end": 7700.52, + "probability": 0.9113 + }, + { + "start": 7701.18, + "end": 7701.26, + "probability": 0.0748 + }, + { + "start": 7701.26, + "end": 7703.72, + "probability": 0.9895 + }, + { + "start": 7703.82, + "end": 7706.76, + "probability": 0.999 + }, + { + "start": 7707.32, + "end": 7708.94, + "probability": 0.7997 + }, + { + "start": 7710.38, + "end": 7712.8, + "probability": 0.9375 + }, + { + "start": 7713.54, + "end": 7714.75, + "probability": 0.9753 + }, + { + "start": 7715.7, + "end": 7717.78, + "probability": 0.9731 + }, + { + "start": 7718.48, + "end": 7720.16, + "probability": 0.9775 + }, + { + "start": 7720.28, + "end": 7721.84, + "probability": 0.9625 + }, + { + "start": 7722.34, + "end": 7724.08, + "probability": 0.998 + }, + { + "start": 7724.46, + "end": 7725.69, + "probability": 0.9937 + }, + { + "start": 7726.8, + "end": 7729.24, + "probability": 0.9985 + }, + { + "start": 7729.24, + "end": 7732.58, + "probability": 0.9573 + }, + { + "start": 7733.04, + "end": 7737.72, + "probability": 0.9951 + }, + { + "start": 7737.72, + "end": 7743.84, + "probability": 0.9976 + }, + { + "start": 7743.98, + "end": 7744.46, + "probability": 0.1016 + }, + { + "start": 7744.86, + "end": 7745.5, + "probability": 0.6945 + }, + { + "start": 7746.44, + "end": 7748.9, + "probability": 0.9898 + }, + { + "start": 7749.0, + "end": 7749.74, + "probability": 0.7205 + }, + { + "start": 7749.76, + "end": 7753.78, + "probability": 0.9411 + }, + { + "start": 7754.28, + "end": 7756.82, + "probability": 0.9917 + }, + { + "start": 7757.62, + "end": 7761.7, + "probability": 0.9912 + }, + { + "start": 7761.7, + "end": 7764.52, + "probability": 0.9877 + }, + { + "start": 7765.38, + "end": 7766.58, + "probability": 0.5002 + }, + { + "start": 7766.76, + "end": 7768.4, + "probability": 0.9278 + }, + { + "start": 7768.48, + "end": 7769.83, + "probability": 0.9973 + }, + { + "start": 7770.52, + "end": 7773.74, + "probability": 0.9958 + }, + { + "start": 7773.74, + "end": 7777.46, + "probability": 0.9948 + }, + { + "start": 7777.9, + "end": 7780.24, + "probability": 0.6481 + }, + { + "start": 7780.5, + "end": 7782.68, + "probability": 0.0425 + }, + { + "start": 7782.68, + "end": 7782.68, + "probability": 0.0487 + }, + { + "start": 7782.68, + "end": 7785.7, + "probability": 0.1971 + }, + { + "start": 7785.7, + "end": 7786.98, + "probability": 0.3208 + }, + { + "start": 7787.7, + "end": 7791.04, + "probability": 0.9399 + }, + { + "start": 7791.2, + "end": 7793.28, + "probability": 0.9368 + }, + { + "start": 7793.5, + "end": 7796.42, + "probability": 0.9917 + }, + { + "start": 7796.98, + "end": 7798.28, + "probability": 0.9309 + }, + { + "start": 7798.28, + "end": 7799.08, + "probability": 0.4425 + }, + { + "start": 7799.18, + "end": 7801.82, + "probability": 0.9899 + }, + { + "start": 7801.92, + "end": 7807.26, + "probability": 0.9954 + }, + { + "start": 7808.18, + "end": 7810.1, + "probability": 0.9595 + }, + { + "start": 7810.46, + "end": 7812.3, + "probability": 0.9971 + }, + { + "start": 7812.36, + "end": 7815.96, + "probability": 0.9121 + }, + { + "start": 7816.08, + "end": 7818.2, + "probability": 0.9951 + }, + { + "start": 7818.52, + "end": 7820.12, + "probability": 0.9817 + }, + { + "start": 7820.24, + "end": 7822.42, + "probability": 0.986 + }, + { + "start": 7824.12, + "end": 7824.12, + "probability": 0.0289 + }, + { + "start": 7824.12, + "end": 7824.12, + "probability": 0.0833 + }, + { + "start": 7824.12, + "end": 7824.12, + "probability": 0.3699 + }, + { + "start": 7824.12, + "end": 7825.68, + "probability": 0.5447 + }, + { + "start": 7826.44, + "end": 7830.96, + "probability": 0.7753 + }, + { + "start": 7830.96, + "end": 7834.62, + "probability": 0.6067 + }, + { + "start": 7834.64, + "end": 7834.64, + "probability": 0.0955 + }, + { + "start": 7834.64, + "end": 7835.06, + "probability": 0.5728 + }, + { + "start": 7835.88, + "end": 7844.05, + "probability": 0.4943 + }, + { + "start": 7844.84, + "end": 7845.02, + "probability": 0.0258 + }, + { + "start": 7845.02, + "end": 7845.32, + "probability": 0.0759 + }, + { + "start": 7845.32, + "end": 7846.5, + "probability": 0.1164 + }, + { + "start": 7846.6, + "end": 7851.7, + "probability": 0.8348 + }, + { + "start": 7851.86, + "end": 7852.8, + "probability": 0.6022 + }, + { + "start": 7853.86, + "end": 7854.26, + "probability": 0.06 + }, + { + "start": 7854.26, + "end": 7859.14, + "probability": 0.6573 + }, + { + "start": 7859.2, + "end": 7861.04, + "probability": 0.4309 + }, + { + "start": 7861.04, + "end": 7865.0, + "probability": 0.9927 + }, + { + "start": 7865.14, + "end": 7867.78, + "probability": 0.9962 + }, + { + "start": 7868.16, + "end": 7869.2, + "probability": 0.8997 + }, + { + "start": 7869.82, + "end": 7871.42, + "probability": 0.9922 + }, + { + "start": 7872.08, + "end": 7877.2, + "probability": 0.9978 + }, + { + "start": 7877.2, + "end": 7882.2, + "probability": 0.8679 + }, + { + "start": 7882.2, + "end": 7882.2, + "probability": 0.5157 + }, + { + "start": 7882.2, + "end": 7886.36, + "probability": 0.0436 + }, + { + "start": 7886.36, + "end": 7886.42, + "probability": 0.0699 + }, + { + "start": 7886.42, + "end": 7886.42, + "probability": 0.1816 + }, + { + "start": 7886.42, + "end": 7887.98, + "probability": 0.5525 + }, + { + "start": 7888.38, + "end": 7889.26, + "probability": 0.3017 + }, + { + "start": 7889.58, + "end": 7893.16, + "probability": 0.8491 + }, + { + "start": 7893.5, + "end": 7893.5, + "probability": 0.654 + }, + { + "start": 7893.58, + "end": 7894.5, + "probability": 0.8741 + }, + { + "start": 7894.66, + "end": 7896.24, + "probability": 0.8181 + }, + { + "start": 7896.48, + "end": 7899.66, + "probability": 0.9701 + }, + { + "start": 7899.96, + "end": 7902.86, + "probability": 0.9956 + }, + { + "start": 7902.9, + "end": 7905.52, + "probability": 0.9915 + }, + { + "start": 7905.6, + "end": 7905.9, + "probability": 0.6796 + }, + { + "start": 7906.32, + "end": 7907.06, + "probability": 0.595 + }, + { + "start": 7907.28, + "end": 7913.3, + "probability": 0.8687 + }, + { + "start": 7913.3, + "end": 7913.3, + "probability": 0.7498 + }, + { + "start": 7913.4, + "end": 7914.66, + "probability": 0.0515 + }, + { + "start": 7915.2, + "end": 7916.08, + "probability": 0.3526 + }, + { + "start": 7916.6, + "end": 7918.68, + "probability": 0.1497 + }, + { + "start": 7918.8, + "end": 7919.52, + "probability": 0.1974 + }, + { + "start": 7920.0, + "end": 7922.58, + "probability": 0.8116 + }, + { + "start": 7922.98, + "end": 7923.72, + "probability": 0.0257 + }, + { + "start": 7925.04, + "end": 7926.76, + "probability": 0.2176 + }, + { + "start": 7928.08, + "end": 7930.92, + "probability": 0.3519 + }, + { + "start": 7933.18, + "end": 7934.72, + "probability": 0.0681 + }, + { + "start": 7937.46, + "end": 7938.72, + "probability": 0.0276 + }, + { + "start": 7941.15, + "end": 7942.79, + "probability": 0.1056 + }, + { + "start": 7944.04, + "end": 7946.0, + "probability": 0.0462 + }, + { + "start": 7946.0, + "end": 7946.44, + "probability": 0.0562 + }, + { + "start": 7947.44, + "end": 7947.44, + "probability": 0.3243 + }, + { + "start": 7951.2, + "end": 7952.4, + "probability": 0.0238 + }, + { + "start": 7952.4, + "end": 7952.4, + "probability": 0.0598 + }, + { + "start": 7952.4, + "end": 7953.64, + "probability": 0.1033 + }, + { + "start": 7954.98, + "end": 7956.9, + "probability": 0.1376 + }, + { + "start": 7956.9, + "end": 7960.96, + "probability": 0.6606 + }, + { + "start": 7962.12, + "end": 7962.12, + "probability": 0.3904 + }, + { + "start": 7962.12, + "end": 7962.12, + "probability": 0.0271 + }, + { + "start": 7962.12, + "end": 7962.12, + "probability": 0.0287 + }, + { + "start": 7962.12, + "end": 7966.08, + "probability": 0.4383 + }, + { + "start": 7966.8, + "end": 7971.34, + "probability": 0.97 + }, + { + "start": 7972.64, + "end": 7977.7, + "probability": 0.9701 + }, + { + "start": 7977.74, + "end": 7981.68, + "probability": 0.7654 + }, + { + "start": 7983.32, + "end": 7991.7, + "probability": 0.9968 + }, + { + "start": 7993.52, + "end": 7997.18, + "probability": 0.9891 + }, + { + "start": 7997.24, + "end": 7998.54, + "probability": 0.6532 + }, + { + "start": 7999.4, + "end": 8002.54, + "probability": 0.9668 + }, + { + "start": 8002.76, + "end": 8004.08, + "probability": 0.6957 + }, + { + "start": 8004.16, + "end": 8004.62, + "probability": 0.9085 + }, + { + "start": 8004.7, + "end": 8006.44, + "probability": 0.9776 + }, + { + "start": 8007.1, + "end": 8011.12, + "probability": 0.9897 + }, + { + "start": 8011.22, + "end": 8013.72, + "probability": 0.8702 + }, + { + "start": 8014.36, + "end": 8014.98, + "probability": 0.5432 + }, + { + "start": 8015.12, + "end": 8015.76, + "probability": 0.3529 + }, + { + "start": 8015.96, + "end": 8016.3, + "probability": 0.8507 + }, + { + "start": 8016.36, + "end": 8017.56, + "probability": 0.8229 + }, + { + "start": 8017.58, + "end": 8019.1, + "probability": 0.8472 + }, + { + "start": 8019.64, + "end": 8023.5, + "probability": 0.9863 + }, + { + "start": 8023.56, + "end": 8025.72, + "probability": 0.9066 + }, + { + "start": 8026.64, + "end": 8029.78, + "probability": 0.6841 + }, + { + "start": 8029.88, + "end": 8031.56, + "probability": 0.989 + }, + { + "start": 8032.08, + "end": 8034.38, + "probability": 0.993 + }, + { + "start": 8034.98, + "end": 8037.14, + "probability": 0.8912 + }, + { + "start": 8038.16, + "end": 8042.78, + "probability": 0.9855 + }, + { + "start": 8043.04, + "end": 8044.38, + "probability": 0.9956 + }, + { + "start": 8045.62, + "end": 8046.1, + "probability": 0.5694 + }, + { + "start": 8046.6, + "end": 8047.24, + "probability": 0.6099 + }, + { + "start": 8047.3, + "end": 8054.16, + "probability": 0.9958 + }, + { + "start": 8054.16, + "end": 8059.78, + "probability": 0.997 + }, + { + "start": 8060.42, + "end": 8064.22, + "probability": 0.9964 + }, + { + "start": 8065.1, + "end": 8069.48, + "probability": 0.9968 + }, + { + "start": 8069.82, + "end": 8071.36, + "probability": 0.9781 + }, + { + "start": 8072.04, + "end": 8078.98, + "probability": 0.9979 + }, + { + "start": 8079.2, + "end": 8082.34, + "probability": 0.9991 + }, + { + "start": 8082.54, + "end": 8088.56, + "probability": 0.9911 + }, + { + "start": 8089.61, + "end": 8091.8, + "probability": 0.7336 + }, + { + "start": 8092.1, + "end": 8096.44, + "probability": 0.9862 + }, + { + "start": 8097.44, + "end": 8100.06, + "probability": 0.998 + }, + { + "start": 8100.34, + "end": 8101.12, + "probability": 0.6656 + }, + { + "start": 8101.2, + "end": 8104.08, + "probability": 0.9941 + }, + { + "start": 8104.6, + "end": 8104.84, + "probability": 0.2795 + }, + { + "start": 8104.94, + "end": 8108.18, + "probability": 0.9481 + }, + { + "start": 8108.58, + "end": 8110.82, + "probability": 0.9826 + }, + { + "start": 8111.04, + "end": 8111.62, + "probability": 0.7874 + }, + { + "start": 8111.96, + "end": 8113.32, + "probability": 0.6645 + }, + { + "start": 8113.56, + "end": 8114.18, + "probability": 0.7263 + }, + { + "start": 8114.18, + "end": 8116.36, + "probability": 0.9156 + }, + { + "start": 8116.36, + "end": 8120.94, + "probability": 0.9141 + }, + { + "start": 8120.94, + "end": 8122.3, + "probability": 0.9741 + }, + { + "start": 8123.02, + "end": 8125.98, + "probability": 0.744 + }, + { + "start": 8126.42, + "end": 8127.69, + "probability": 0.2749 + }, + { + "start": 8129.0, + "end": 8130.62, + "probability": 0.6581 + }, + { + "start": 8131.12, + "end": 8131.34, + "probability": 0.2897 + }, + { + "start": 8133.44, + "end": 8133.78, + "probability": 0.1752 + }, + { + "start": 8145.4, + "end": 8150.38, + "probability": 0.2287 + }, + { + "start": 8150.44, + "end": 8152.86, + "probability": 0.4331 + }, + { + "start": 8153.02, + "end": 8156.54, + "probability": 0.2165 + }, + { + "start": 8157.48, + "end": 8160.82, + "probability": 0.296 + }, + { + "start": 8162.66, + "end": 8164.92, + "probability": 0.8452 + }, + { + "start": 8165.44, + "end": 8166.86, + "probability": 0.5646 + }, + { + "start": 8166.98, + "end": 8168.32, + "probability": 0.466 + }, + { + "start": 8169.1, + "end": 8170.98, + "probability": 0.0706 + }, + { + "start": 8171.16, + "end": 8171.46, + "probability": 0.0201 + }, + { + "start": 8172.04, + "end": 8174.68, + "probability": 0.0703 + }, + { + "start": 8178.48, + "end": 8179.18, + "probability": 0.0292 + }, + { + "start": 8179.18, + "end": 8179.62, + "probability": 0.1484 + }, + { + "start": 8180.2, + "end": 8180.36, + "probability": 0.9971 + }, + { + "start": 8183.86, + "end": 8184.4, + "probability": 0.4877 + }, + { + "start": 8185.98, + "end": 8186.12, + "probability": 0.0556 + }, + { + "start": 8186.12, + "end": 8186.12, + "probability": 0.0248 + }, + { + "start": 8186.12, + "end": 8186.76, + "probability": 0.0472 + }, + { + "start": 8189.36, + "end": 8192.3, + "probability": 0.0473 + }, + { + "start": 8198.5, + "end": 8198.6, + "probability": 0.0639 + }, + { + "start": 8200.04, + "end": 8200.26, + "probability": 0.1913 + }, + { + "start": 8200.26, + "end": 8200.56, + "probability": 0.1118 + }, + { + "start": 8200.62, + "end": 8201.1, + "probability": 0.0924 + }, + { + "start": 8201.24, + "end": 8201.78, + "probability": 0.1628 + }, + { + "start": 8202.04, + "end": 8202.8, + "probability": 0.0573 + }, + { + "start": 8204.22, + "end": 8207.52, + "probability": 0.0833 + }, + { + "start": 8208.66, + "end": 8209.54, + "probability": 0.0973 + }, + { + "start": 8209.54, + "end": 8209.84, + "probability": 0.174 + }, + { + "start": 8209.84, + "end": 8209.96, + "probability": 0.0093 + }, + { + "start": 8209.96, + "end": 8209.96, + "probability": 0.0545 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.0, + "end": 8210.0, + "probability": 0.0 + }, + { + "start": 8210.18, + "end": 8211.56, + "probability": 0.0735 + }, + { + "start": 8213.0, + "end": 8215.48, + "probability": 0.8849 + }, + { + "start": 8216.6, + "end": 8217.83, + "probability": 0.6413 + }, + { + "start": 8218.62, + "end": 8219.14, + "probability": 0.7198 + }, + { + "start": 8219.22, + "end": 8220.58, + "probability": 0.6808 + }, + { + "start": 8220.58, + "end": 8223.44, + "probability": 0.8626 + }, + { + "start": 8223.56, + "end": 8227.34, + "probability": 0.9379 + }, + { + "start": 8227.44, + "end": 8230.05, + "probability": 0.6708 + }, + { + "start": 8230.76, + "end": 8232.7, + "probability": 0.8164 + }, + { + "start": 8232.82, + "end": 8235.4, + "probability": 0.9808 + }, + { + "start": 8236.04, + "end": 8237.34, + "probability": 0.9222 + }, + { + "start": 8237.36, + "end": 8238.58, + "probability": 0.9277 + }, + { + "start": 8238.68, + "end": 8239.88, + "probability": 0.9946 + }, + { + "start": 8239.96, + "end": 8241.62, + "probability": 0.994 + }, + { + "start": 8241.7, + "end": 8242.2, + "probability": 0.8096 + }, + { + "start": 8242.88, + "end": 8244.82, + "probability": 0.9679 + }, + { + "start": 8244.98, + "end": 8245.8, + "probability": 0.918 + }, + { + "start": 8246.22, + "end": 8249.23, + "probability": 0.9709 + }, + { + "start": 8249.84, + "end": 8251.26, + "probability": 0.9913 + }, + { + "start": 8251.44, + "end": 8253.04, + "probability": 0.9958 + }, + { + "start": 8253.56, + "end": 8255.02, + "probability": 0.9042 + }, + { + "start": 8255.14, + "end": 8258.56, + "probability": 0.8702 + }, + { + "start": 8258.8, + "end": 8258.92, + "probability": 0.47 + }, + { + "start": 8258.98, + "end": 8260.88, + "probability": 0.9756 + }, + { + "start": 8261.2, + "end": 8262.48, + "probability": 0.6658 + }, + { + "start": 8262.68, + "end": 8266.14, + "probability": 0.9807 + }, + { + "start": 8266.14, + "end": 8270.56, + "probability": 0.9756 + }, + { + "start": 8270.68, + "end": 8274.24, + "probability": 0.9897 + }, + { + "start": 8274.4, + "end": 8275.58, + "probability": 0.7555 + }, + { + "start": 8275.98, + "end": 8276.6, + "probability": 0.5723 + }, + { + "start": 8276.62, + "end": 8277.8, + "probability": 0.8809 + }, + { + "start": 8277.86, + "end": 8281.16, + "probability": 0.9286 + }, + { + "start": 8281.56, + "end": 8284.08, + "probability": 0.8943 + }, + { + "start": 8284.18, + "end": 8287.18, + "probability": 0.9982 + }, + { + "start": 8287.88, + "end": 8289.7, + "probability": 0.6446 + }, + { + "start": 8290.1, + "end": 8290.58, + "probability": 0.8611 + }, + { + "start": 8290.9, + "end": 8290.9, + "probability": 0.6824 + }, + { + "start": 8290.96, + "end": 8292.48, + "probability": 0.901 + }, + { + "start": 8292.58, + "end": 8293.62, + "probability": 0.6884 + }, + { + "start": 8293.8, + "end": 8294.46, + "probability": 0.7621 + }, + { + "start": 8294.48, + "end": 8295.04, + "probability": 0.9717 + }, + { + "start": 8295.8, + "end": 8296.46, + "probability": 0.5332 + }, + { + "start": 8296.54, + "end": 8297.46, + "probability": 0.7265 + }, + { + "start": 8297.48, + "end": 8297.74, + "probability": 0.2775 + }, + { + "start": 8297.8, + "end": 8300.22, + "probability": 0.7758 + }, + { + "start": 8300.4, + "end": 8301.1, + "probability": 0.7734 + }, + { + "start": 8301.44, + "end": 8303.38, + "probability": 0.8667 + }, + { + "start": 8311.38, + "end": 8312.74, + "probability": 0.7548 + }, + { + "start": 8312.82, + "end": 8313.86, + "probability": 0.73 + }, + { + "start": 8317.54, + "end": 8318.8, + "probability": 0.6838 + }, + { + "start": 8319.9, + "end": 8321.24, + "probability": 0.8217 + }, + { + "start": 8321.46, + "end": 8325.44, + "probability": 0.9678 + }, + { + "start": 8325.44, + "end": 8328.32, + "probability": 0.995 + }, + { + "start": 8329.04, + "end": 8331.28, + "probability": 0.9507 + }, + { + "start": 8331.28, + "end": 8333.84, + "probability": 0.7437 + }, + { + "start": 8334.6, + "end": 8339.08, + "probability": 0.9741 + }, + { + "start": 8339.62, + "end": 8343.3, + "probability": 0.9543 + }, + { + "start": 8344.18, + "end": 8347.32, + "probability": 0.859 + }, + { + "start": 8347.88, + "end": 8351.1, + "probability": 0.9355 + }, + { + "start": 8351.1, + "end": 8355.02, + "probability": 0.9648 + }, + { + "start": 8355.68, + "end": 8358.7, + "probability": 0.9956 + }, + { + "start": 8358.76, + "end": 8362.84, + "probability": 0.8149 + }, + { + "start": 8362.92, + "end": 8365.8, + "probability": 0.9875 + }, + { + "start": 8365.8, + "end": 8367.96, + "probability": 0.9902 + }, + { + "start": 8368.66, + "end": 8372.66, + "probability": 0.9974 + }, + { + "start": 8372.66, + "end": 8376.5, + "probability": 0.9976 + }, + { + "start": 8377.06, + "end": 8379.32, + "probability": 0.9053 + }, + { + "start": 8380.34, + "end": 8382.2, + "probability": 0.974 + }, + { + "start": 8383.44, + "end": 8386.54, + "probability": 0.999 + }, + { + "start": 8386.54, + "end": 8390.26, + "probability": 0.9924 + }, + { + "start": 8390.84, + "end": 8391.28, + "probability": 0.2487 + }, + { + "start": 8391.38, + "end": 8394.18, + "probability": 0.9858 + }, + { + "start": 8394.92, + "end": 8398.9, + "probability": 0.9879 + }, + { + "start": 8399.48, + "end": 8401.6, + "probability": 0.9501 + }, + { + "start": 8401.76, + "end": 8404.56, + "probability": 0.96 + }, + { + "start": 8405.32, + "end": 8407.84, + "probability": 0.937 + }, + { + "start": 8407.92, + "end": 8409.88, + "probability": 0.7672 + }, + { + "start": 8410.82, + "end": 8415.1, + "probability": 0.9718 + }, + { + "start": 8415.68, + "end": 8417.4, + "probability": 0.7481 + }, + { + "start": 8417.48, + "end": 8421.94, + "probability": 0.8853 + }, + { + "start": 8422.62, + "end": 8424.8, + "probability": 0.988 + }, + { + "start": 8424.96, + "end": 8425.08, + "probability": 0.3734 + }, + { + "start": 8425.14, + "end": 8428.3, + "probability": 0.8465 + }, + { + "start": 8429.18, + "end": 8432.93, + "probability": 0.9351 + }, + { + "start": 8434.36, + "end": 8438.78, + "probability": 0.9462 + }, + { + "start": 8439.3, + "end": 8442.2, + "probability": 0.9834 + }, + { + "start": 8443.2, + "end": 8445.06, + "probability": 0.6678 + }, + { + "start": 8445.88, + "end": 8449.22, + "probability": 0.7528 + }, + { + "start": 8461.22, + "end": 8463.08, + "probability": 0.7832 + }, + { + "start": 8472.08, + "end": 8473.54, + "probability": 0.5897 + }, + { + "start": 8474.54, + "end": 8477.62, + "probability": 0.9073 + }, + { + "start": 8478.8, + "end": 8480.68, + "probability": 0.9133 + }, + { + "start": 8481.72, + "end": 8482.42, + "probability": 0.5986 + }, + { + "start": 8483.34, + "end": 8485.86, + "probability": 0.9926 + }, + { + "start": 8486.74, + "end": 8490.66, + "probability": 0.9603 + }, + { + "start": 8490.66, + "end": 8495.02, + "probability": 0.9901 + }, + { + "start": 8495.48, + "end": 8503.98, + "probability": 0.9963 + }, + { + "start": 8504.5, + "end": 8506.68, + "probability": 0.9994 + }, + { + "start": 8507.58, + "end": 8507.98, + "probability": 0.9411 + }, + { + "start": 8509.02, + "end": 8510.0, + "probability": 0.9546 + }, + { + "start": 8511.44, + "end": 8514.56, + "probability": 0.9777 + }, + { + "start": 8515.24, + "end": 8518.92, + "probability": 0.897 + }, + { + "start": 8519.16, + "end": 8520.84, + "probability": 0.6475 + }, + { + "start": 8521.34, + "end": 8523.71, + "probability": 0.925 + }, + { + "start": 8524.2, + "end": 8525.76, + "probability": 0.9006 + }, + { + "start": 8526.34, + "end": 8527.14, + "probability": 0.9661 + }, + { + "start": 8528.36, + "end": 8530.7, + "probability": 0.8697 + }, + { + "start": 8531.28, + "end": 8532.22, + "probability": 0.9507 + }, + { + "start": 8533.24, + "end": 8538.58, + "probability": 0.9891 + }, + { + "start": 8539.1, + "end": 8544.02, + "probability": 0.9744 + }, + { + "start": 8544.72, + "end": 8551.5, + "probability": 0.9656 + }, + { + "start": 8552.12, + "end": 8555.6, + "probability": 0.9919 + }, + { + "start": 8556.22, + "end": 8556.28, + "probability": 0.0965 + }, + { + "start": 8556.28, + "end": 8559.22, + "probability": 0.849 + }, + { + "start": 8560.22, + "end": 8563.98, + "probability": 0.8612 + }, + { + "start": 8564.66, + "end": 8565.8, + "probability": 0.4074 + }, + { + "start": 8566.36, + "end": 8568.56, + "probability": 0.6876 + }, + { + "start": 8569.86, + "end": 8572.22, + "probability": 0.6799 + }, + { + "start": 8572.92, + "end": 8578.82, + "probability": 0.9919 + }, + { + "start": 8579.46, + "end": 8581.32, + "probability": 0.7725 + }, + { + "start": 8582.06, + "end": 8592.0, + "probability": 0.932 + }, + { + "start": 8592.96, + "end": 8593.84, + "probability": 0.6855 + }, + { + "start": 8594.52, + "end": 8597.44, + "probability": 0.9886 + }, + { + "start": 8598.52, + "end": 8598.52, + "probability": 0.0359 + }, + { + "start": 8598.52, + "end": 8600.33, + "probability": 0.8089 + }, + { + "start": 8601.56, + "end": 8607.52, + "probability": 0.9961 + }, + { + "start": 8607.74, + "end": 8609.66, + "probability": 0.9653 + }, + { + "start": 8609.68, + "end": 8610.74, + "probability": 0.6899 + }, + { + "start": 8611.78, + "end": 8620.16, + "probability": 0.891 + }, + { + "start": 8620.94, + "end": 8623.82, + "probability": 0.9966 + }, + { + "start": 8624.54, + "end": 8631.54, + "probability": 0.9976 + }, + { + "start": 8632.52, + "end": 8637.64, + "probability": 0.9851 + }, + { + "start": 8638.94, + "end": 8640.1, + "probability": 0.8747 + }, + { + "start": 8640.62, + "end": 8645.52, + "probability": 0.9989 + }, + { + "start": 8646.18, + "end": 8649.6, + "probability": 0.9787 + }, + { + "start": 8650.06, + "end": 8651.2, + "probability": 0.8067 + }, + { + "start": 8651.38, + "end": 8656.9, + "probability": 0.9995 + }, + { + "start": 8657.08, + "end": 8658.58, + "probability": 0.9727 + }, + { + "start": 8659.14, + "end": 8660.36, + "probability": 0.9731 + }, + { + "start": 8660.82, + "end": 8662.17, + "probability": 0.9563 + }, + { + "start": 8662.64, + "end": 8665.08, + "probability": 0.73 + }, + { + "start": 8665.66, + "end": 8669.24, + "probability": 0.8382 + }, + { + "start": 8670.26, + "end": 8671.54, + "probability": 0.596 + }, + { + "start": 8671.84, + "end": 8672.16, + "probability": 0.593 + }, + { + "start": 8672.18, + "end": 8673.94, + "probability": 0.8088 + }, + { + "start": 8674.46, + "end": 8675.22, + "probability": 0.5536 + }, + { + "start": 8675.42, + "end": 8678.62, + "probability": 0.9154 + }, + { + "start": 8678.82, + "end": 8681.26, + "probability": 0.7153 + }, + { + "start": 8681.26, + "end": 8682.72, + "probability": 0.5744 + }, + { + "start": 8682.72, + "end": 8683.71, + "probability": 0.9799 + }, + { + "start": 8684.08, + "end": 8684.08, + "probability": 0.06 + }, + { + "start": 8684.08, + "end": 8687.98, + "probability": 0.6412 + }, + { + "start": 8688.22, + "end": 8688.4, + "probability": 0.3064 + }, + { + "start": 8688.4, + "end": 8690.04, + "probability": 0.1129 + }, + { + "start": 8690.48, + "end": 8693.8, + "probability": 0.3016 + }, + { + "start": 8696.43, + "end": 8702.03, + "probability": 0.6695 + }, + { + "start": 8703.56, + "end": 8706.28, + "probability": 0.6878 + }, + { + "start": 8707.4, + "end": 8709.98, + "probability": 0.5507 + }, + { + "start": 8710.24, + "end": 8713.88, + "probability": 0.7087 + }, + { + "start": 8714.18, + "end": 8718.04, + "probability": 0.7033 + }, + { + "start": 8718.62, + "end": 8719.84, + "probability": 0.7886 + }, + { + "start": 8719.86, + "end": 8722.36, + "probability": 0.9204 + }, + { + "start": 8722.38, + "end": 8725.64, + "probability": 0.9816 + }, + { + "start": 8725.74, + "end": 8726.26, + "probability": 0.3717 + }, + { + "start": 8726.36, + "end": 8726.88, + "probability": 0.798 + }, + { + "start": 8727.4, + "end": 8729.54, + "probability": 0.943 + }, + { + "start": 8729.9, + "end": 8731.1, + "probability": 0.4934 + }, + { + "start": 8731.14, + "end": 8731.7, + "probability": 0.9819 + }, + { + "start": 8731.74, + "end": 8732.2, + "probability": 0.5288 + }, + { + "start": 8732.36, + "end": 8734.24, + "probability": 0.9929 + }, + { + "start": 8734.62, + "end": 8735.46, + "probability": 0.8676 + }, + { + "start": 8735.58, + "end": 8737.78, + "probability": 0.9111 + }, + { + "start": 8737.82, + "end": 8739.56, + "probability": 0.7663 + }, + { + "start": 8739.98, + "end": 8742.14, + "probability": 0.9504 + }, + { + "start": 8742.62, + "end": 8743.72, + "probability": 0.9175 + }, + { + "start": 8743.76, + "end": 8744.54, + "probability": 0.6884 + }, + { + "start": 8744.66, + "end": 8745.38, + "probability": 0.8574 + }, + { + "start": 8745.86, + "end": 8746.2, + "probability": 0.9493 + }, + { + "start": 8746.78, + "end": 8748.88, + "probability": 0.2693 + }, + { + "start": 8748.92, + "end": 8748.92, + "probability": 0.204 + }, + { + "start": 8749.16, + "end": 8750.66, + "probability": 0.7836 + }, + { + "start": 8751.72, + "end": 8752.8, + "probability": 0.8062 + }, + { + "start": 8753.84, + "end": 8754.48, + "probability": 0.9553 + }, + { + "start": 8754.58, + "end": 8755.2, + "probability": 0.9152 + }, + { + "start": 8755.26, + "end": 8755.88, + "probability": 0.8322 + }, + { + "start": 8756.34, + "end": 8757.25, + "probability": 0.4298 + }, + { + "start": 8757.5, + "end": 8759.74, + "probability": 0.4178 + }, + { + "start": 8759.96, + "end": 8762.16, + "probability": 0.933 + }, + { + "start": 8762.9, + "end": 8764.76, + "probability": 0.6582 + }, + { + "start": 8765.5, + "end": 8769.7, + "probability": 0.9611 + }, + { + "start": 8769.74, + "end": 8770.18, + "probability": 0.3666 + }, + { + "start": 8770.82, + "end": 8776.18, + "probability": 0.9226 + }, + { + "start": 8776.58, + "end": 8779.48, + "probability": 0.9856 + }, + { + "start": 8779.66, + "end": 8779.98, + "probability": 0.0364 + }, + { + "start": 8780.04, + "end": 8782.24, + "probability": 0.9132 + }, + { + "start": 8782.46, + "end": 8783.2, + "probability": 0.8655 + }, + { + "start": 8783.64, + "end": 8784.56, + "probability": 0.9153 + }, + { + "start": 8785.02, + "end": 8790.96, + "probability": 0.9024 + }, + { + "start": 8791.28, + "end": 8792.54, + "probability": 0.9106 + }, + { + "start": 8792.62, + "end": 8792.78, + "probability": 0.7505 + }, + { + "start": 8792.92, + "end": 8796.3, + "probability": 0.9834 + }, + { + "start": 8796.7, + "end": 8798.48, + "probability": 0.8613 + }, + { + "start": 8798.66, + "end": 8799.94, + "probability": 0.896 + }, + { + "start": 8800.28, + "end": 8803.48, + "probability": 0.9897 + }, + { + "start": 8803.72, + "end": 8805.76, + "probability": 0.978 + }, + { + "start": 8806.38, + "end": 8807.59, + "probability": 0.9941 + }, + { + "start": 8807.7, + "end": 8809.78, + "probability": 0.7524 + }, + { + "start": 8810.16, + "end": 8813.32, + "probability": 0.9593 + }, + { + "start": 8813.74, + "end": 8814.36, + "probability": 0.8647 + }, + { + "start": 8814.48, + "end": 8815.44, + "probability": 0.8864 + }, + { + "start": 8815.68, + "end": 8817.5, + "probability": 0.9587 + }, + { + "start": 8817.64, + "end": 8818.78, + "probability": 0.9352 + }, + { + "start": 8819.22, + "end": 8820.16, + "probability": 0.7212 + }, + { + "start": 8820.56, + "end": 8821.5, + "probability": 0.8218 + }, + { + "start": 8821.98, + "end": 8823.92, + "probability": 0.9647 + }, + { + "start": 8824.22, + "end": 8825.22, + "probability": 0.9893 + }, + { + "start": 8825.6, + "end": 8826.16, + "probability": 0.9712 + }, + { + "start": 8826.3, + "end": 8828.74, + "probability": 0.8914 + }, + { + "start": 8829.16, + "end": 8829.98, + "probability": 0.8271 + }, + { + "start": 8830.14, + "end": 8830.5, + "probability": 0.4746 + }, + { + "start": 8830.8, + "end": 8834.28, + "probability": 0.8297 + }, + { + "start": 8834.36, + "end": 8834.62, + "probability": 0.5867 + }, + { + "start": 8834.9, + "end": 8835.32, + "probability": 0.2575 + }, + { + "start": 8835.5, + "end": 8838.24, + "probability": 0.9953 + }, + { + "start": 8838.44, + "end": 8839.6, + "probability": 0.5329 + }, + { + "start": 8840.16, + "end": 8841.07, + "probability": 0.9893 + }, + { + "start": 8841.44, + "end": 8843.74, + "probability": 0.9956 + }, + { + "start": 8843.76, + "end": 8844.0, + "probability": 0.8687 + }, + { + "start": 8844.36, + "end": 8845.16, + "probability": 0.6992 + }, + { + "start": 8845.36, + "end": 8846.94, + "probability": 0.8758 + }, + { + "start": 8847.54, + "end": 8848.1, + "probability": 0.5807 + }, + { + "start": 8848.16, + "end": 8851.4, + "probability": 0.6973 + }, + { + "start": 8852.08, + "end": 8855.44, + "probability": 0.8488 + }, + { + "start": 8856.04, + "end": 8859.18, + "probability": 0.4874 + }, + { + "start": 8860.26, + "end": 8861.74, + "probability": 0.3368 + }, + { + "start": 8874.84, + "end": 8878.12, + "probability": 0.6066 + }, + { + "start": 8878.32, + "end": 8880.74, + "probability": 0.634 + }, + { + "start": 8881.26, + "end": 8882.24, + "probability": 0.1519 + }, + { + "start": 8883.26, + "end": 8886.88, + "probability": 0.1434 + }, + { + "start": 8888.5, + "end": 8889.1, + "probability": 0.1935 + }, + { + "start": 8889.1, + "end": 8891.21, + "probability": 0.9463 + }, + { + "start": 8892.94, + "end": 8894.92, + "probability": 0.0107 + }, + { + "start": 8895.22, + "end": 8895.62, + "probability": 0.0341 + }, + { + "start": 8896.2, + "end": 8897.72, + "probability": 0.0414 + }, + { + "start": 8898.08, + "end": 8903.6, + "probability": 0.0482 + }, + { + "start": 8904.12, + "end": 8906.1, + "probability": 0.2178 + }, + { + "start": 8913.5, + "end": 8914.98, + "probability": 0.0482 + }, + { + "start": 8917.67, + "end": 8922.28, + "probability": 0.4078 + }, + { + "start": 8922.28, + "end": 8923.36, + "probability": 0.3014 + }, + { + "start": 8923.86, + "end": 8925.78, + "probability": 0.0513 + }, + { + "start": 8930.26, + "end": 8934.78, + "probability": 0.0414 + }, + { + "start": 8936.25, + "end": 8938.26, + "probability": 0.0707 + }, + { + "start": 8938.26, + "end": 8940.28, + "probability": 0.2278 + }, + { + "start": 8942.84, + "end": 8942.98, + "probability": 0.2104 + }, + { + "start": 8942.98, + "end": 8943.14, + "probability": 0.1453 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.0, + "end": 8953.0, + "probability": 0.0 + }, + { + "start": 8953.2, + "end": 8953.2, + "probability": 0.1283 + }, + { + "start": 8953.2, + "end": 8953.6, + "probability": 0.1535 + }, + { + "start": 8953.6, + "end": 8957.26, + "probability": 0.6299 + }, + { + "start": 8958.3, + "end": 8958.54, + "probability": 0.4035 + }, + { + "start": 8959.14, + "end": 8959.24, + "probability": 0.0482 + }, + { + "start": 8960.36, + "end": 8964.16, + "probability": 0.9988 + }, + { + "start": 8964.16, + "end": 8967.74, + "probability": 0.9984 + }, + { + "start": 8969.04, + "end": 8969.4, + "probability": 0.4627 + }, + { + "start": 8969.62, + "end": 8973.76, + "probability": 0.9941 + }, + { + "start": 8974.3, + "end": 8974.4, + "probability": 0.9846 + }, + { + "start": 8975.62, + "end": 8977.68, + "probability": 0.7692 + }, + { + "start": 8978.56, + "end": 8985.2, + "probability": 0.991 + }, + { + "start": 8985.74, + "end": 8987.18, + "probability": 0.8609 + }, + { + "start": 8988.18, + "end": 8992.56, + "probability": 0.9409 + }, + { + "start": 8993.18, + "end": 8997.48, + "probability": 0.9807 + }, + { + "start": 8997.48, + "end": 9000.52, + "probability": 0.9934 + }, + { + "start": 9001.04, + "end": 9002.32, + "probability": 0.7903 + }, + { + "start": 9003.2, + "end": 9003.6, + "probability": 0.7568 + }, + { + "start": 9006.36, + "end": 9009.3, + "probability": 0.9961 + }, + { + "start": 9009.3, + "end": 9011.96, + "probability": 0.9361 + }, + { + "start": 9012.4, + "end": 9014.48, + "probability": 0.9927 + }, + { + "start": 9015.34, + "end": 9020.82, + "probability": 0.9801 + }, + { + "start": 9020.82, + "end": 9026.42, + "probability": 0.9874 + }, + { + "start": 9026.56, + "end": 9031.36, + "probability": 0.9968 + }, + { + "start": 9031.98, + "end": 9035.04, + "probability": 0.9976 + }, + { + "start": 9035.46, + "end": 9039.88, + "probability": 0.9969 + }, + { + "start": 9040.54, + "end": 9044.22, + "probability": 0.9971 + }, + { + "start": 9044.32, + "end": 9048.62, + "probability": 0.9831 + }, + { + "start": 9049.22, + "end": 9053.92, + "probability": 0.9867 + }, + { + "start": 9054.16, + "end": 9055.4, + "probability": 0.9601 + }, + { + "start": 9055.86, + "end": 9057.96, + "probability": 0.9992 + }, + { + "start": 9058.34, + "end": 9059.67, + "probability": 0.9598 + }, + { + "start": 9059.8, + "end": 9060.34, + "probability": 0.8329 + }, + { + "start": 9060.74, + "end": 9064.1, + "probability": 0.1553 + }, + { + "start": 9064.1, + "end": 9064.72, + "probability": 0.6332 + }, + { + "start": 9064.86, + "end": 9069.88, + "probability": 0.8101 + }, + { + "start": 9069.88, + "end": 9070.28, + "probability": 0.9354 + }, + { + "start": 9074.64, + "end": 9075.68, + "probability": 0.1437 + }, + { + "start": 9075.68, + "end": 9080.3, + "probability": 0.0064 + }, + { + "start": 9080.88, + "end": 9081.28, + "probability": 0.0188 + }, + { + "start": 9081.38, + "end": 9082.12, + "probability": 0.117 + }, + { + "start": 9082.12, + "end": 9083.54, + "probability": 0.0739 + }, + { + "start": 9083.66, + "end": 9084.78, + "probability": 0.5025 + }, + { + "start": 9085.08, + "end": 9085.08, + "probability": 0.0124 + }, + { + "start": 9085.08, + "end": 9086.0, + "probability": 0.0525 + }, + { + "start": 9089.46, + "end": 9089.9, + "probability": 0.0345 + }, + { + "start": 9089.9, + "end": 9090.56, + "probability": 0.0529 + }, + { + "start": 9091.26, + "end": 9091.86, + "probability": 0.6597 + }, + { + "start": 9092.08, + "end": 9092.2, + "probability": 0.7048 + }, + { + "start": 9092.26, + "end": 9095.08, + "probability": 0.9836 + }, + { + "start": 9095.42, + "end": 9098.97, + "probability": 0.9924 + }, + { + "start": 9099.52, + "end": 9101.64, + "probability": 0.992 + }, + { + "start": 9102.7, + "end": 9103.78, + "probability": 0.7839 + }, + { + "start": 9105.1, + "end": 9107.68, + "probability": 0.9876 + }, + { + "start": 9108.42, + "end": 9113.28, + "probability": 0.9924 + }, + { + "start": 9114.54, + "end": 9116.5, + "probability": 0.9669 + }, + { + "start": 9117.28, + "end": 9119.58, + "probability": 0.9799 + }, + { + "start": 9120.06, + "end": 9122.32, + "probability": 0.9657 + }, + { + "start": 9123.24, + "end": 9123.98, + "probability": 0.7562 + }, + { + "start": 9124.96, + "end": 9126.68, + "probability": 0.991 + }, + { + "start": 9127.4, + "end": 9128.82, + "probability": 0.8224 + }, + { + "start": 9129.46, + "end": 9132.28, + "probability": 0.6644 + }, + { + "start": 9133.08, + "end": 9134.46, + "probability": 0.961 + }, + { + "start": 9135.08, + "end": 9136.04, + "probability": 0.947 + }, + { + "start": 9136.66, + "end": 9139.98, + "probability": 0.9867 + }, + { + "start": 9140.54, + "end": 9141.16, + "probability": 0.8302 + }, + { + "start": 9141.86, + "end": 9144.36, + "probability": 0.9856 + }, + { + "start": 9144.48, + "end": 9145.82, + "probability": 0.9897 + }, + { + "start": 9146.78, + "end": 9150.8, + "probability": 0.9895 + }, + { + "start": 9152.19, + "end": 9153.92, + "probability": 0.9965 + }, + { + "start": 9155.03, + "end": 9157.38, + "probability": 0.7171 + }, + { + "start": 9158.0, + "end": 9163.72, + "probability": 0.8946 + }, + { + "start": 9164.28, + "end": 9165.4, + "probability": 0.95 + }, + { + "start": 9166.0, + "end": 9170.26, + "probability": 0.9684 + }, + { + "start": 9170.88, + "end": 9176.78, + "probability": 0.7571 + }, + { + "start": 9184.2, + "end": 9185.98, + "probability": 0.4999 + }, + { + "start": 9186.5, + "end": 9194.38, + "probability": 0.9877 + }, + { + "start": 9196.12, + "end": 9196.66, + "probability": 0.868 + }, + { + "start": 9198.08, + "end": 9201.74, + "probability": 0.9178 + }, + { + "start": 9203.38, + "end": 9205.26, + "probability": 0.9756 + }, + { + "start": 9205.9, + "end": 9208.8, + "probability": 0.9598 + }, + { + "start": 9209.16, + "end": 9212.96, + "probability": 0.8972 + }, + { + "start": 9213.6, + "end": 9217.06, + "probability": 0.9779 + }, + { + "start": 9217.7, + "end": 9218.62, + "probability": 0.9504 + }, + { + "start": 9219.06, + "end": 9220.09, + "probability": 0.9512 + }, + { + "start": 9220.42, + "end": 9223.74, + "probability": 0.9946 + }, + { + "start": 9223.74, + "end": 9227.54, + "probability": 0.8577 + }, + { + "start": 9228.39, + "end": 9231.04, + "probability": 0.9196 + }, + { + "start": 9231.54, + "end": 9234.3, + "probability": 0.9918 + }, + { + "start": 9234.36, + "end": 9234.98, + "probability": 0.9379 + }, + { + "start": 9235.02, + "end": 9235.88, + "probability": 0.7529 + }, + { + "start": 9236.18, + "end": 9238.29, + "probability": 0.9803 + }, + { + "start": 9239.8, + "end": 9243.36, + "probability": 0.9885 + }, + { + "start": 9243.84, + "end": 9244.8, + "probability": 0.426 + }, + { + "start": 9245.6, + "end": 9245.7, + "probability": 0.4139 + }, + { + "start": 9245.7, + "end": 9246.12, + "probability": 0.6663 + }, + { + "start": 9247.46, + "end": 9249.6, + "probability": 0.9922 + }, + { + "start": 9249.64, + "end": 9250.1, + "probability": 0.8634 + }, + { + "start": 9250.28, + "end": 9251.44, + "probability": 0.051 + }, + { + "start": 9251.44, + "end": 9251.92, + "probability": 0.1027 + }, + { + "start": 9252.06, + "end": 9252.4, + "probability": 0.8149 + }, + { + "start": 9252.56, + "end": 9256.85, + "probability": 0.9556 + }, + { + "start": 9257.3, + "end": 9259.64, + "probability": 0.9329 + }, + { + "start": 9260.1, + "end": 9260.9, + "probability": 0.5037 + }, + { + "start": 9261.08, + "end": 9264.98, + "probability": 0.9648 + }, + { + "start": 9266.64, + "end": 9269.18, + "probability": 0.9968 + }, + { + "start": 9269.8, + "end": 9271.76, + "probability": 0.9401 + }, + { + "start": 9272.79, + "end": 9275.8, + "probability": 0.967 + }, + { + "start": 9276.44, + "end": 9280.08, + "probability": 0.9839 + }, + { + "start": 9281.07, + "end": 9284.7, + "probability": 0.9891 + }, + { + "start": 9284.86, + "end": 9285.58, + "probability": 0.5208 + }, + { + "start": 9285.66, + "end": 9286.48, + "probability": 0.9847 + }, + { + "start": 9286.62, + "end": 9287.3, + "probability": 0.6995 + }, + { + "start": 9287.4, + "end": 9289.36, + "probability": 0.9296 + }, + { + "start": 9289.56, + "end": 9291.36, + "probability": 0.8427 + }, + { + "start": 9291.38, + "end": 9294.18, + "probability": 0.9742 + }, + { + "start": 9295.12, + "end": 9295.32, + "probability": 0.5886 + }, + { + "start": 9295.52, + "end": 9298.78, + "probability": 0.4493 + }, + { + "start": 9299.06, + "end": 9300.98, + "probability": 0.9819 + }, + { + "start": 9301.22, + "end": 9304.64, + "probability": 0.845 + }, + { + "start": 9305.32, + "end": 9307.06, + "probability": 0.5148 + }, + { + "start": 9307.62, + "end": 9310.26, + "probability": 0.7386 + }, + { + "start": 9312.72, + "end": 9315.72, + "probability": 0.843 + }, + { + "start": 9315.76, + "end": 9318.4, + "probability": 0.94 + }, + { + "start": 9320.02, + "end": 9322.54, + "probability": 0.8733 + }, + { + "start": 9323.34, + "end": 9324.4, + "probability": 0.9137 + }, + { + "start": 9334.73, + "end": 9336.88, + "probability": 0.7988 + }, + { + "start": 9336.98, + "end": 9336.98, + "probability": 0.1721 + }, + { + "start": 9336.98, + "end": 9337.24, + "probability": 0.5343 + }, + { + "start": 9337.88, + "end": 9338.46, + "probability": 0.8005 + }, + { + "start": 9338.6, + "end": 9339.26, + "probability": 0.9478 + }, + { + "start": 9341.22, + "end": 9342.58, + "probability": 0.8978 + }, + { + "start": 9342.62, + "end": 9342.62, + "probability": 0.8954 + }, + { + "start": 9342.98, + "end": 9343.76, + "probability": 0.3706 + }, + { + "start": 9345.52, + "end": 9346.16, + "probability": 0.8746 + }, + { + "start": 9346.28, + "end": 9349.54, + "probability": 0.7201 + }, + { + "start": 9349.9, + "end": 9349.9, + "probability": 0.1353 + }, + { + "start": 9349.9, + "end": 9352.4, + "probability": 0.2544 + }, + { + "start": 9352.48, + "end": 9353.04, + "probability": 0.5654 + }, + { + "start": 9353.24, + "end": 9354.4, + "probability": 0.9932 + }, + { + "start": 9354.52, + "end": 9355.54, + "probability": 0.9381 + }, + { + "start": 9356.34, + "end": 9357.54, + "probability": 0.909 + }, + { + "start": 9358.06, + "end": 9361.5, + "probability": 0.3626 + }, + { + "start": 9362.29, + "end": 9365.48, + "probability": 0.6928 + }, + { + "start": 9365.92, + "end": 9366.0, + "probability": 0.2817 + }, + { + "start": 9366.0, + "end": 9366.54, + "probability": 0.7377 + }, + { + "start": 9366.88, + "end": 9367.06, + "probability": 0.4416 + }, + { + "start": 9367.08, + "end": 9367.52, + "probability": 0.7161 + }, + { + "start": 9368.2, + "end": 9370.8, + "probability": 0.9963 + }, + { + "start": 9370.8, + "end": 9376.26, + "probability": 0.8937 + }, + { + "start": 9377.26, + "end": 9383.82, + "probability": 0.9862 + }, + { + "start": 9383.96, + "end": 9384.6, + "probability": 0.8169 + }, + { + "start": 9385.24, + "end": 9386.82, + "probability": 0.5375 + }, + { + "start": 9387.08, + "end": 9390.22, + "probability": 0.9974 + }, + { + "start": 9390.22, + "end": 9393.54, + "probability": 0.9979 + }, + { + "start": 9394.3, + "end": 9397.42, + "probability": 0.981 + }, + { + "start": 9397.5, + "end": 9399.32, + "probability": 0.9263 + }, + { + "start": 9399.86, + "end": 9401.48, + "probability": 0.9971 + }, + { + "start": 9401.98, + "end": 9405.38, + "probability": 0.9875 + }, + { + "start": 9405.86, + "end": 9407.56, + "probability": 0.9961 + }, + { + "start": 9408.12, + "end": 9411.26, + "probability": 0.9941 + }, + { + "start": 9411.32, + "end": 9411.8, + "probability": 0.7305 + }, + { + "start": 9412.62, + "end": 9413.64, + "probability": 0.6974 + }, + { + "start": 9413.76, + "end": 9414.16, + "probability": 0.8917 + }, + { + "start": 9414.26, + "end": 9418.06, + "probability": 0.7438 + }, + { + "start": 9418.78, + "end": 9419.98, + "probability": 0.2467 + }, + { + "start": 9420.04, + "end": 9420.74, + "probability": 0.1348 + }, + { + "start": 9421.18, + "end": 9421.62, + "probability": 0.8988 + }, + { + "start": 9422.04, + "end": 9422.72, + "probability": 0.6596 + }, + { + "start": 9423.0, + "end": 9425.26, + "probability": 0.9647 + }, + { + "start": 9426.58, + "end": 9427.82, + "probability": 0.7081 + }, + { + "start": 9429.3, + "end": 9429.52, + "probability": 0.777 + }, + { + "start": 9429.58, + "end": 9430.7, + "probability": 0.6784 + }, + { + "start": 9431.0, + "end": 9433.82, + "probability": 0.8548 + }, + { + "start": 9434.02, + "end": 9436.5, + "probability": 0.8067 + }, + { + "start": 9437.1, + "end": 9438.96, + "probability": 0.2062 + }, + { + "start": 9439.9, + "end": 9442.22, + "probability": 0.7091 + }, + { + "start": 9442.58, + "end": 9447.96, + "probability": 0.7531 + }, + { + "start": 9448.06, + "end": 9448.98, + "probability": 0.9747 + }, + { + "start": 9449.54, + "end": 9450.56, + "probability": 0.9116 + }, + { + "start": 9450.66, + "end": 9452.3, + "probability": 0.1344 + }, + { + "start": 9453.22, + "end": 9453.22, + "probability": 0.0754 + }, + { + "start": 9453.22, + "end": 9454.18, + "probability": 0.4021 + }, + { + "start": 9454.6, + "end": 9456.14, + "probability": 0.8771 + }, + { + "start": 9456.16, + "end": 9456.72, + "probability": 0.1474 + }, + { + "start": 9456.72, + "end": 9458.26, + "probability": 0.0519 + }, + { + "start": 9458.7, + "end": 9463.64, + "probability": 0.9279 + }, + { + "start": 9469.44, + "end": 9470.66, + "probability": 0.6211 + }, + { + "start": 9470.74, + "end": 9471.64, + "probability": 0.7975 + }, + { + "start": 9471.8, + "end": 9473.48, + "probability": 0.8671 + }, + { + "start": 9473.54, + "end": 9478.24, + "probability": 0.9469 + }, + { + "start": 9478.82, + "end": 9483.5, + "probability": 0.9917 + }, + { + "start": 9485.5, + "end": 9488.16, + "probability": 0.9914 + }, + { + "start": 9488.16, + "end": 9491.28, + "probability": 0.9935 + }, + { + "start": 9491.74, + "end": 9494.76, + "probability": 0.9909 + }, + { + "start": 9494.76, + "end": 9499.36, + "probability": 0.9394 + }, + { + "start": 9500.06, + "end": 9502.04, + "probability": 0.8617 + }, + { + "start": 9502.16, + "end": 9502.48, + "probability": 0.5439 + }, + { + "start": 9502.52, + "end": 9506.88, + "probability": 0.9669 + }, + { + "start": 9507.74, + "end": 9510.44, + "probability": 0.9924 + }, + { + "start": 9511.34, + "end": 9512.46, + "probability": 0.5771 + }, + { + "start": 9512.66, + "end": 9514.5, + "probability": 0.777 + }, + { + "start": 9514.62, + "end": 9515.54, + "probability": 0.8666 + }, + { + "start": 9516.32, + "end": 9518.56, + "probability": 0.9758 + }, + { + "start": 9518.56, + "end": 9521.52, + "probability": 0.9952 + }, + { + "start": 9522.04, + "end": 9525.06, + "probability": 0.9919 + }, + { + "start": 9525.06, + "end": 9528.74, + "probability": 0.9642 + }, + { + "start": 9529.18, + "end": 9532.66, + "probability": 0.9393 + }, + { + "start": 9533.18, + "end": 9536.76, + "probability": 0.9925 + }, + { + "start": 9537.3, + "end": 9540.2, + "probability": 0.9779 + }, + { + "start": 9540.2, + "end": 9543.72, + "probability": 0.9943 + }, + { + "start": 9544.08, + "end": 9546.18, + "probability": 0.8314 + }, + { + "start": 9546.24, + "end": 9549.44, + "probability": 0.9847 + }, + { + "start": 9549.44, + "end": 9553.64, + "probability": 0.9966 + }, + { + "start": 9554.02, + "end": 9555.18, + "probability": 0.9846 + }, + { + "start": 9558.26, + "end": 9558.76, + "probability": 0.6009 + }, + { + "start": 9558.88, + "end": 9561.92, + "probability": 0.9977 + }, + { + "start": 9561.92, + "end": 9565.84, + "probability": 0.9891 + }, + { + "start": 9566.04, + "end": 9567.5, + "probability": 0.9356 + }, + { + "start": 9567.98, + "end": 9570.62, + "probability": 0.993 + }, + { + "start": 9570.7, + "end": 9571.9, + "probability": 0.9629 + }, + { + "start": 9572.32, + "end": 9573.96, + "probability": 0.9909 + }, + { + "start": 9575.0, + "end": 9576.42, + "probability": 0.8 + }, + { + "start": 9576.52, + "end": 9578.48, + "probability": 0.7918 + }, + { + "start": 9579.12, + "end": 9582.06, + "probability": 0.9858 + }, + { + "start": 9582.52, + "end": 9585.86, + "probability": 0.9958 + }, + { + "start": 9586.32, + "end": 9587.56, + "probability": 0.9885 + }, + { + "start": 9588.16, + "end": 9590.22, + "probability": 0.9964 + }, + { + "start": 9590.32, + "end": 9592.22, + "probability": 0.4443 + }, + { + "start": 9592.22, + "end": 9592.62, + "probability": 0.216 + }, + { + "start": 9592.62, + "end": 9593.42, + "probability": 0.2737 + }, + { + "start": 9593.46, + "end": 9594.02, + "probability": 0.9299 + }, + { + "start": 9594.24, + "end": 9595.82, + "probability": 0.3015 + }, + { + "start": 9596.6, + "end": 9596.84, + "probability": 0.1726 + }, + { + "start": 9596.84, + "end": 9596.84, + "probability": 0.3055 + }, + { + "start": 9596.84, + "end": 9597.18, + "probability": 0.5051 + }, + { + "start": 9597.18, + "end": 9597.26, + "probability": 0.4443 + }, + { + "start": 9597.26, + "end": 9597.26, + "probability": 0.0787 + }, + { + "start": 9597.26, + "end": 9597.32, + "probability": 0.0805 + }, + { + "start": 9597.32, + "end": 9597.54, + "probability": 0.2569 + }, + { + "start": 9598.2, + "end": 9598.92, + "probability": 0.5914 + }, + { + "start": 9598.94, + "end": 9601.14, + "probability": 0.8064 + }, + { + "start": 9601.18, + "end": 9602.32, + "probability": 0.8971 + }, + { + "start": 9603.12, + "end": 9608.56, + "probability": 0.9723 + }, + { + "start": 9608.86, + "end": 9610.08, + "probability": 0.26 + }, + { + "start": 9611.22, + "end": 9612.7, + "probability": 0.2177 + }, + { + "start": 9613.04, + "end": 9615.99, + "probability": 0.8339 + }, + { + "start": 9616.68, + "end": 9623.02, + "probability": 0.6574 + }, + { + "start": 9623.5, + "end": 9629.46, + "probability": 0.7209 + }, + { + "start": 9629.82, + "end": 9631.2, + "probability": 0.4186 + }, + { + "start": 9631.26, + "end": 9634.34, + "probability": 0.9751 + }, + { + "start": 9634.34, + "end": 9640.62, + "probability": 0.1566 + }, + { + "start": 9640.98, + "end": 9643.78, + "probability": 0.869 + }, + { + "start": 9644.0, + "end": 9646.94, + "probability": 0.8578 + }, + { + "start": 9647.04, + "end": 9650.06, + "probability": 0.899 + }, + { + "start": 9650.6, + "end": 9651.78, + "probability": 0.8672 + }, + { + "start": 9651.92, + "end": 9655.66, + "probability": 0.7503 + }, + { + "start": 9655.66, + "end": 9657.2, + "probability": 0.7222 + }, + { + "start": 9657.3, + "end": 9661.98, + "probability": 0.9803 + }, + { + "start": 9662.38, + "end": 9664.48, + "probability": 0.7588 + }, + { + "start": 9664.74, + "end": 9664.84, + "probability": 0.212 + }, + { + "start": 9664.84, + "end": 9668.64, + "probability": 0.9418 + }, + { + "start": 9669.58, + "end": 9671.84, + "probability": 0.9069 + }, + { + "start": 9672.0, + "end": 9673.26, + "probability": 0.9067 + }, + { + "start": 9673.4, + "end": 9677.96, + "probability": 0.9936 + }, + { + "start": 9678.42, + "end": 9679.42, + "probability": 0.7395 + }, + { + "start": 9679.64, + "end": 9683.02, + "probability": 0.9961 + }, + { + "start": 9683.08, + "end": 9683.8, + "probability": 0.634 + }, + { + "start": 9684.12, + "end": 9685.16, + "probability": 0.4096 + }, + { + "start": 9685.24, + "end": 9685.6, + "probability": 0.7654 + }, + { + "start": 9685.7, + "end": 9687.22, + "probability": 0.7357 + }, + { + "start": 9687.36, + "end": 9691.6, + "probability": 0.9455 + }, + { + "start": 9691.78, + "end": 9692.38, + "probability": 0.5943 + }, + { + "start": 9692.52, + "end": 9693.4, + "probability": 0.5741 + }, + { + "start": 9693.94, + "end": 9694.74, + "probability": 0.534 + }, + { + "start": 9695.14, + "end": 9696.59, + "probability": 0.6326 + }, + { + "start": 9696.76, + "end": 9696.98, + "probability": 0.325 + }, + { + "start": 9696.98, + "end": 9697.32, + "probability": 0.2504 + }, + { + "start": 9697.34, + "end": 9699.14, + "probability": 0.4067 + }, + { + "start": 9699.14, + "end": 9701.04, + "probability": 0.5739 + }, + { + "start": 9701.14, + "end": 9701.72, + "probability": 0.3874 + }, + { + "start": 9701.78, + "end": 9703.76, + "probability": 0.8509 + }, + { + "start": 9704.36, + "end": 9707.34, + "probability": 0.9967 + }, + { + "start": 9707.4, + "end": 9708.0, + "probability": 0.0257 + }, + { + "start": 9708.0, + "end": 9711.7, + "probability": 0.9906 + }, + { + "start": 9711.9, + "end": 9711.9, + "probability": 0.015 + }, + { + "start": 9711.9, + "end": 9715.38, + "probability": 0.6932 + }, + { + "start": 9716.76, + "end": 9716.98, + "probability": 0.0004 + }, + { + "start": 9719.22, + "end": 9719.38, + "probability": 0.0239 + }, + { + "start": 9719.38, + "end": 9720.47, + "probability": 0.7627 + }, + { + "start": 9721.1, + "end": 9725.25, + "probability": 0.8095 + }, + { + "start": 9725.54, + "end": 9728.14, + "probability": 0.9951 + }, + { + "start": 9728.58, + "end": 9729.58, + "probability": 0.9026 + }, + { + "start": 9729.66, + "end": 9737.96, + "probability": 0.0492 + }, + { + "start": 9738.14, + "end": 9738.78, + "probability": 0.1933 + }, + { + "start": 9738.78, + "end": 9738.78, + "probability": 0.3464 + }, + { + "start": 9738.78, + "end": 9739.64, + "probability": 0.457 + }, + { + "start": 9739.83, + "end": 9741.12, + "probability": 0.4229 + }, + { + "start": 9742.02, + "end": 9745.21, + "probability": 0.0423 + }, + { + "start": 9745.78, + "end": 9745.78, + "probability": 0.0261 + }, + { + "start": 9747.86, + "end": 9748.62, + "probability": 0.0796 + }, + { + "start": 9748.62, + "end": 9749.12, + "probability": 0.017 + }, + { + "start": 9749.12, + "end": 9749.98, + "probability": 0.1228 + }, + { + "start": 9750.06, + "end": 9750.4, + "probability": 0.2734 + }, + { + "start": 9750.48, + "end": 9751.0, + "probability": 0.335 + }, + { + "start": 9751.18, + "end": 9751.52, + "probability": 0.2956 + }, + { + "start": 9753.48, + "end": 9755.16, + "probability": 0.0659 + }, + { + "start": 9760.92, + "end": 9762.44, + "probability": 0.118 + }, + { + "start": 9763.96, + "end": 9765.14, + "probability": 0.0244 + }, + { + "start": 9767.56, + "end": 9769.9, + "probability": 0.0374 + }, + { + "start": 9769.9, + "end": 9769.9, + "probability": 0.0437 + }, + { + "start": 9769.9, + "end": 9770.32, + "probability": 0.1038 + }, + { + "start": 9770.32, + "end": 9773.25, + "probability": 0.1548 + }, + { + "start": 9774.76, + "end": 9780.96, + "probability": 0.0885 + }, + { + "start": 9780.96, + "end": 9780.96, + "probability": 0.2888 + }, + { + "start": 9781.04, + "end": 9785.17, + "probability": 0.0232 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9790.0, + "end": 9790.0, + "probability": 0.0 + }, + { + "start": 9792.74, + "end": 9794.06, + "probability": 0.2099 + }, + { + "start": 9794.44, + "end": 9800.49, + "probability": 0.1818 + }, + { + "start": 9801.28, + "end": 9801.28, + "probability": 0.5084 + }, + { + "start": 9801.28, + "end": 9801.28, + "probability": 0.0609 + }, + { + "start": 9801.28, + "end": 9801.28, + "probability": 0.1362 + }, + { + "start": 9801.28, + "end": 9803.12, + "probability": 0.4228 + }, + { + "start": 9803.98, + "end": 9805.04, + "probability": 0.1409 + }, + { + "start": 9805.14, + "end": 9805.14, + "probability": 0.1898 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.0, + "probability": 0.0 + }, + { + "start": 9910.0, + "end": 9910.24, + "probability": 0.0625 + }, + { + "start": 9910.24, + "end": 9910.7, + "probability": 0.1834 + }, + { + "start": 9910.7, + "end": 9911.62, + "probability": 0.387 + }, + { + "start": 9911.72, + "end": 9913.08, + "probability": 0.4784 + }, + { + "start": 9913.12, + "end": 9913.62, + "probability": 0.6438 + }, + { + "start": 9913.62, + "end": 9914.92, + "probability": 0.7607 + }, + { + "start": 9915.4, + "end": 9916.84, + "probability": 0.273 + }, + { + "start": 9919.4, + "end": 9921.3, + "probability": 0.3358 + }, + { + "start": 9922.62, + "end": 9925.18, + "probability": 0.1803 + }, + { + "start": 9925.56, + "end": 9928.36, + "probability": 0.03 + }, + { + "start": 9929.52, + "end": 9929.98, + "probability": 0.3812 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.0, + "end": 10035.0, + "probability": 0.0 + }, + { + "start": 10035.78, + "end": 10037.14, + "probability": 0.2496 + }, + { + "start": 10037.22, + "end": 10040.38, + "probability": 0.7007 + }, + { + "start": 10040.38, + "end": 10043.5, + "probability": 0.9947 + }, + { + "start": 10043.92, + "end": 10048.94, + "probability": 0.9967 + }, + { + "start": 10049.48, + "end": 10050.28, + "probability": 0.5967 + }, + { + "start": 10050.46, + "end": 10052.3, + "probability": 0.8437 + }, + { + "start": 10052.44, + "end": 10052.96, + "probability": 0.2859 + }, + { + "start": 10053.14, + "end": 10053.68, + "probability": 0.6038 + }, + { + "start": 10054.02, + "end": 10059.12, + "probability": 0.7976 + }, + { + "start": 10068.84, + "end": 10073.1, + "probability": 0.5823 + }, + { + "start": 10073.82, + "end": 10075.98, + "probability": 0.8706 + }, + { + "start": 10076.94, + "end": 10081.54, + "probability": 0.7419 + }, + { + "start": 10081.78, + "end": 10083.36, + "probability": 0.9765 + }, + { + "start": 10083.94, + "end": 10085.24, + "probability": 0.9758 + }, + { + "start": 10086.66, + "end": 10086.96, + "probability": 0.1818 + }, + { + "start": 10086.96, + "end": 10086.96, + "probability": 0.4991 + }, + { + "start": 10086.96, + "end": 10089.48, + "probability": 0.6027 + }, + { + "start": 10090.04, + "end": 10090.92, + "probability": 0.9802 + }, + { + "start": 10091.16, + "end": 10092.52, + "probability": 0.9026 + }, + { + "start": 10092.76, + "end": 10094.7, + "probability": 0.8998 + }, + { + "start": 10095.92, + "end": 10097.84, + "probability": 0.929 + }, + { + "start": 10098.96, + "end": 10101.86, + "probability": 0.9978 + }, + { + "start": 10102.42, + "end": 10104.46, + "probability": 0.9849 + }, + { + "start": 10104.86, + "end": 10108.32, + "probability": 0.9946 + }, + { + "start": 10108.42, + "end": 10111.4, + "probability": 0.8585 + }, + { + "start": 10111.94, + "end": 10114.2, + "probability": 0.8734 + }, + { + "start": 10114.88, + "end": 10117.08, + "probability": 0.7598 + }, + { + "start": 10117.24, + "end": 10120.3, + "probability": 0.7061 + }, + { + "start": 10120.92, + "end": 10121.96, + "probability": 0.9078 + }, + { + "start": 10122.6, + "end": 10125.72, + "probability": 0.9258 + }, + { + "start": 10126.06, + "end": 10127.66, + "probability": 0.9185 + }, + { + "start": 10127.76, + "end": 10129.84, + "probability": 0.6455 + }, + { + "start": 10130.42, + "end": 10131.44, + "probability": 0.6596 + }, + { + "start": 10131.46, + "end": 10133.1, + "probability": 0.6948 + }, + { + "start": 10133.44, + "end": 10133.58, + "probability": 0.4834 + }, + { + "start": 10133.6, + "end": 10134.54, + "probability": 0.2836 + }, + { + "start": 10134.6, + "end": 10137.69, + "probability": 0.7092 + }, + { + "start": 10138.16, + "end": 10140.09, + "probability": 0.928 + }, + { + "start": 10140.4, + "end": 10141.69, + "probability": 0.968 + }, + { + "start": 10142.78, + "end": 10146.52, + "probability": 0.733 + }, + { + "start": 10146.93, + "end": 10151.64, + "probability": 0.6755 + }, + { + "start": 10151.8, + "end": 10154.12, + "probability": 0.9419 + }, + { + "start": 10154.58, + "end": 10158.33, + "probability": 0.9082 + }, + { + "start": 10159.26, + "end": 10161.22, + "probability": 0.9675 + }, + { + "start": 10161.94, + "end": 10167.28, + "probability": 0.9615 + }, + { + "start": 10167.36, + "end": 10168.58, + "probability": 0.497 + }, + { + "start": 10168.74, + "end": 10172.86, + "probability": 0.5798 + }, + { + "start": 10173.02, + "end": 10173.9, + "probability": 0.8149 + }, + { + "start": 10174.1, + "end": 10176.7, + "probability": 0.7861 + }, + { + "start": 10176.78, + "end": 10179.2, + "probability": 0.9692 + }, + { + "start": 10179.64, + "end": 10185.7, + "probability": 0.7729 + }, + { + "start": 10186.1, + "end": 10187.6, + "probability": 0.814 + }, + { + "start": 10187.66, + "end": 10189.88, + "probability": 0.5322 + }, + { + "start": 10190.12, + "end": 10190.32, + "probability": 0.1666 + }, + { + "start": 10190.62, + "end": 10192.06, + "probability": 0.9614 + }, + { + "start": 10193.12, + "end": 10194.64, + "probability": 0.8857 + }, + { + "start": 10195.24, + "end": 10199.3, + "probability": 0.7069 + }, + { + "start": 10200.9, + "end": 10203.16, + "probability": 0.9788 + }, + { + "start": 10203.28, + "end": 10204.94, + "probability": 0.5644 + }, + { + "start": 10205.07, + "end": 10206.34, + "probability": 0.848 + }, + { + "start": 10206.52, + "end": 10207.45, + "probability": 0.8444 + }, + { + "start": 10207.6, + "end": 10212.85, + "probability": 0.7085 + }, + { + "start": 10213.02, + "end": 10214.62, + "probability": 0.2991 + }, + { + "start": 10215.16, + "end": 10215.24, + "probability": 0.532 + }, + { + "start": 10215.46, + "end": 10215.46, + "probability": 0.257 + }, + { + "start": 10215.46, + "end": 10216.7, + "probability": 0.147 + }, + { + "start": 10216.8, + "end": 10217.62, + "probability": 0.4742 + }, + { + "start": 10217.68, + "end": 10220.62, + "probability": 0.8326 + }, + { + "start": 10220.7, + "end": 10221.2, + "probability": 0.5184 + }, + { + "start": 10221.5, + "end": 10222.12, + "probability": 0.8667 + }, + { + "start": 10222.44, + "end": 10224.12, + "probability": 0.5026 + }, + { + "start": 10224.22, + "end": 10224.62, + "probability": 0.5343 + }, + { + "start": 10224.66, + "end": 10226.38, + "probability": 0.6417 + }, + { + "start": 10226.38, + "end": 10226.45, + "probability": 0.0824 + }, + { + "start": 10226.54, + "end": 10227.78, + "probability": 0.3335 + }, + { + "start": 10227.8, + "end": 10230.54, + "probability": 0.0515 + }, + { + "start": 10230.58, + "end": 10231.54, + "probability": 0.1637 + }, + { + "start": 10231.78, + "end": 10231.84, + "probability": 0.0526 + }, + { + "start": 10231.84, + "end": 10232.42, + "probability": 0.1134 + }, + { + "start": 10232.42, + "end": 10233.97, + "probability": 0.5453 + }, + { + "start": 10234.04, + "end": 10235.04, + "probability": 0.7985 + }, + { + "start": 10235.38, + "end": 10236.46, + "probability": 0.9336 + }, + { + "start": 10236.86, + "end": 10238.14, + "probability": 0.0315 + }, + { + "start": 10238.14, + "end": 10241.66, + "probability": 0.5038 + }, + { + "start": 10242.66, + "end": 10243.66, + "probability": 0.5651 + }, + { + "start": 10245.58, + "end": 10247.56, + "probability": 0.6685 + }, + { + "start": 10248.81, + "end": 10251.14, + "probability": 0.7424 + }, + { + "start": 10251.24, + "end": 10251.98, + "probability": 0.6555 + }, + { + "start": 10252.0, + "end": 10252.76, + "probability": 0.7139 + }, + { + "start": 10253.14, + "end": 10253.68, + "probability": 0.1182 + }, + { + "start": 10254.56, + "end": 10258.98, + "probability": 0.4814 + }, + { + "start": 10260.06, + "end": 10262.72, + "probability": 0.5892 + }, + { + "start": 10262.8, + "end": 10263.44, + "probability": 0.3247 + }, + { + "start": 10263.6, + "end": 10264.84, + "probability": 0.6452 + }, + { + "start": 10265.88, + "end": 10267.14, + "probability": 0.668 + }, + { + "start": 10267.34, + "end": 10270.34, + "probability": 0.7962 + }, + { + "start": 10270.86, + "end": 10273.38, + "probability": 0.2913 + }, + { + "start": 10275.7, + "end": 10277.3, + "probability": 0.3322 + }, + { + "start": 10277.3, + "end": 10279.26, + "probability": 0.2713 + }, + { + "start": 10279.32, + "end": 10279.94, + "probability": 0.7825 + }, + { + "start": 10279.94, + "end": 10281.18, + "probability": 0.3338 + }, + { + "start": 10281.36, + "end": 10282.16, + "probability": 0.9012 + }, + { + "start": 10286.33, + "end": 10287.11, + "probability": 0.419 + }, + { + "start": 10287.43, + "end": 10287.73, + "probability": 0.0152 + }, + { + "start": 10288.98, + "end": 10293.41, + "probability": 0.7545 + }, + { + "start": 10295.91, + "end": 10296.79, + "probability": 0.2976 + }, + { + "start": 10297.96, + "end": 10303.59, + "probability": 0.4457 + }, + { + "start": 10303.67, + "end": 10305.11, + "probability": 0.4388 + }, + { + "start": 10305.44, + "end": 10309.43, + "probability": 0.9932 + }, + { + "start": 10309.75, + "end": 10314.75, + "probability": 0.8826 + }, + { + "start": 10315.49, + "end": 10317.37, + "probability": 0.7593 + }, + { + "start": 10317.91, + "end": 10319.8, + "probability": 0.8241 + }, + { + "start": 10320.23, + "end": 10321.51, + "probability": 0.7852 + }, + { + "start": 10322.1, + "end": 10324.81, + "probability": 0.7267 + }, + { + "start": 10325.59, + "end": 10325.85, + "probability": 0.7746 + }, + { + "start": 10325.85, + "end": 10326.45, + "probability": 0.4109 + }, + { + "start": 10326.45, + "end": 10327.43, + "probability": 0.8055 + }, + { + "start": 10327.59, + "end": 10330.9, + "probability": 0.8859 + }, + { + "start": 10331.65, + "end": 10332.67, + "probability": 0.6539 + }, + { + "start": 10332.81, + "end": 10333.93, + "probability": 0.8032 + }, + { + "start": 10334.07, + "end": 10334.49, + "probability": 0.7021 + }, + { + "start": 10334.51, + "end": 10335.05, + "probability": 0.6378 + }, + { + "start": 10335.13, + "end": 10337.95, + "probability": 0.8293 + }, + { + "start": 10338.17, + "end": 10338.73, + "probability": 0.873 + }, + { + "start": 10339.07, + "end": 10339.57, + "probability": 0.6836 + }, + { + "start": 10339.57, + "end": 10339.64, + "probability": 0.0654 + }, + { + "start": 10340.41, + "end": 10341.97, + "probability": 0.6254 + }, + { + "start": 10341.97, + "end": 10344.07, + "probability": 0.643 + }, + { + "start": 10345.31, + "end": 10347.69, + "probability": 0.8601 + }, + { + "start": 10347.71, + "end": 10349.53, + "probability": 0.098 + }, + { + "start": 10349.63, + "end": 10350.71, + "probability": 0.0921 + }, + { + "start": 10351.45, + "end": 10352.59, + "probability": 0.412 + }, + { + "start": 10353.41, + "end": 10355.95, + "probability": 0.7313 + }, + { + "start": 10356.01, + "end": 10356.89, + "probability": 0.8512 + }, + { + "start": 10356.97, + "end": 10359.41, + "probability": 0.2904 + }, + { + "start": 10359.58, + "end": 10359.87, + "probability": 0.5722 + }, + { + "start": 10359.87, + "end": 10360.31, + "probability": 0.79 + }, + { + "start": 10360.39, + "end": 10360.93, + "probability": 0.604 + }, + { + "start": 10361.35, + "end": 10361.37, + "probability": 0.4191 + }, + { + "start": 10361.99, + "end": 10364.87, + "probability": 0.5153 + }, + { + "start": 10365.07, + "end": 10368.49, + "probability": 0.6479 + }, + { + "start": 10368.89, + "end": 10372.23, + "probability": 0.9698 + }, + { + "start": 10372.31, + "end": 10372.81, + "probability": 0.7858 + }, + { + "start": 10374.09, + "end": 10376.39, + "probability": 0.0535 + }, + { + "start": 10377.51, + "end": 10380.41, + "probability": 0.0458 + }, + { + "start": 10382.4, + "end": 10385.21, + "probability": 0.4408 + }, + { + "start": 10385.21, + "end": 10385.21, + "probability": 0.3804 + }, + { + "start": 10385.21, + "end": 10389.82, + "probability": 0.9329 + }, + { + "start": 10390.75, + "end": 10394.57, + "probability": 0.959 + }, + { + "start": 10395.17, + "end": 10398.47, + "probability": 0.7757 + }, + { + "start": 10399.95, + "end": 10400.61, + "probability": 0.3294 + }, + { + "start": 10406.31, + "end": 10412.83, + "probability": 0.1551 + }, + { + "start": 10412.83, + "end": 10413.71, + "probability": 0.2379 + }, + { + "start": 10417.73, + "end": 10424.15, + "probability": 0.0312 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.0 + }, + { + "start": 10490.32, + "end": 10491.68, + "probability": 0.084 + }, + { + "start": 10492.72, + "end": 10493.98, + "probability": 0.0352 + }, + { + "start": 10495.66, + "end": 10496.8, + "probability": 0.1197 + }, + { + "start": 10496.98, + "end": 10497.72, + "probability": 0.2116 + }, + { + "start": 10499.83, + "end": 10503.2, + "probability": 0.1024 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.1, + "end": 10605.12, + "probability": 0.0158 + }, + { + "start": 10605.12, + "end": 10605.12, + "probability": 0.1274 + }, + { + "start": 10605.12, + "end": 10605.12, + "probability": 0.0424 + }, + { + "start": 10605.12, + "end": 10605.12, + "probability": 0.1166 + }, + { + "start": 10605.12, + "end": 10605.12, + "probability": 0.0374 + }, + { + "start": 10605.12, + "end": 10605.12, + "probability": 0.0197 + }, + { + "start": 10605.12, + "end": 10605.12, + "probability": 0.0734 + }, + { + "start": 10605.12, + "end": 10605.9, + "probability": 0.083 + }, + { + "start": 10606.48, + "end": 10611.98, + "probability": 0.7 + }, + { + "start": 10613.18, + "end": 10614.26, + "probability": 0.9412 + }, + { + "start": 10615.26, + "end": 10616.67, + "probability": 0.9226 + }, + { + "start": 10617.16, + "end": 10617.38, + "probability": 0.2721 + }, + { + "start": 10617.46, + "end": 10625.84, + "probability": 0.8153 + }, + { + "start": 10626.9, + "end": 10631.18, + "probability": 0.9331 + }, + { + "start": 10631.92, + "end": 10633.52, + "probability": 0.9162 + }, + { + "start": 10635.12, + "end": 10637.94, + "probability": 0.9847 + }, + { + "start": 10638.36, + "end": 10641.08, + "probability": 0.9102 + }, + { + "start": 10641.74, + "end": 10645.94, + "probability": 0.8764 + }, + { + "start": 10646.1, + "end": 10647.66, + "probability": 0.9119 + }, + { + "start": 10648.16, + "end": 10651.84, + "probability": 0.9951 + }, + { + "start": 10652.62, + "end": 10653.6, + "probability": 0.7326 + }, + { + "start": 10653.64, + "end": 10655.34, + "probability": 0.9915 + }, + { + "start": 10656.46, + "end": 10658.74, + "probability": 0.739 + }, + { + "start": 10658.8, + "end": 10659.58, + "probability": 0.9893 + }, + { + "start": 10659.64, + "end": 10660.0, + "probability": 0.4902 + }, + { + "start": 10660.34, + "end": 10660.58, + "probability": 0.3543 + }, + { + "start": 10660.58, + "end": 10660.58, + "probability": 0.2496 + }, + { + "start": 10660.58, + "end": 10661.06, + "probability": 0.3514 + }, + { + "start": 10661.06, + "end": 10661.54, + "probability": 0.45 + }, + { + "start": 10661.54, + "end": 10662.38, + "probability": 0.3977 + }, + { + "start": 10662.52, + "end": 10663.54, + "probability": 0.9669 + }, + { + "start": 10664.02, + "end": 10665.36, + "probability": 0.5812 + }, + { + "start": 10665.56, + "end": 10666.22, + "probability": 0.528 + }, + { + "start": 10666.78, + "end": 10667.2, + "probability": 0.4345 + }, + { + "start": 10667.22, + "end": 10668.96, + "probability": 0.8337 + }, + { + "start": 10668.96, + "end": 10673.78, + "probability": 0.7342 + }, + { + "start": 10674.96, + "end": 10675.76, + "probability": 0.8776 + }, + { + "start": 10676.72, + "end": 10678.12, + "probability": 0.993 + }, + { + "start": 10678.42, + "end": 10681.22, + "probability": 0.704 + }, + { + "start": 10681.42, + "end": 10684.78, + "probability": 0.7786 + }, + { + "start": 10685.46, + "end": 10688.04, + "probability": 0.9301 + }, + { + "start": 10688.3, + "end": 10690.46, + "probability": 0.991 + }, + { + "start": 10690.9, + "end": 10691.3, + "probability": 0.6893 + }, + { + "start": 10691.74, + "end": 10696.94, + "probability": 0.7156 + }, + { + "start": 10697.06, + "end": 10702.54, + "probability": 0.9354 + }, + { + "start": 10702.64, + "end": 10703.9, + "probability": 0.8298 + }, + { + "start": 10704.0, + "end": 10705.22, + "probability": 0.8614 + }, + { + "start": 10706.16, + "end": 10708.5, + "probability": 0.8164 + }, + { + "start": 10726.76, + "end": 10730.48, + "probability": 0.9124 + }, + { + "start": 10730.7, + "end": 10732.9, + "probability": 0.2049 + }, + { + "start": 10733.72, + "end": 10737.14, + "probability": 0.9738 + }, + { + "start": 10737.46, + "end": 10740.44, + "probability": 0.9346 + }, + { + "start": 10740.5, + "end": 10741.08, + "probability": 0.8235 + }, + { + "start": 10743.51, + "end": 10745.96, + "probability": 0.8462 + }, + { + "start": 10746.68, + "end": 10749.3, + "probability": 0.8241 + }, + { + "start": 10750.38, + "end": 10753.74, + "probability": 0.9709 + }, + { + "start": 10754.36, + "end": 10757.26, + "probability": 0.9822 + }, + { + "start": 10758.4, + "end": 10762.42, + "probability": 0.9866 + }, + { + "start": 10762.76, + "end": 10767.24, + "probability": 0.9872 + }, + { + "start": 10767.88, + "end": 10768.54, + "probability": 0.7615 + }, + { + "start": 10769.78, + "end": 10774.44, + "probability": 0.9907 + }, + { + "start": 10774.76, + "end": 10779.04, + "probability": 0.9985 + }, + { + "start": 10780.36, + "end": 10781.92, + "probability": 0.7329 + }, + { + "start": 10782.26, + "end": 10785.84, + "probability": 0.9803 + }, + { + "start": 10786.84, + "end": 10789.72, + "probability": 0.9769 + }, + { + "start": 10789.9, + "end": 10793.54, + "probability": 0.8366 + }, + { + "start": 10793.98, + "end": 10796.14, + "probability": 0.8527 + }, + { + "start": 10796.66, + "end": 10801.22, + "probability": 0.9954 + }, + { + "start": 10801.92, + "end": 10802.86, + "probability": 0.517 + }, + { + "start": 10803.2, + "end": 10806.86, + "probability": 0.9374 + }, + { + "start": 10807.38, + "end": 10809.28, + "probability": 0.8051 + }, + { + "start": 10809.68, + "end": 10813.2, + "probability": 0.9803 + }, + { + "start": 10813.7, + "end": 10817.16, + "probability": 0.9708 + }, + { + "start": 10818.42, + "end": 10822.88, + "probability": 0.9971 + }, + { + "start": 10824.32, + "end": 10826.9, + "probability": 0.9749 + }, + { + "start": 10827.78, + "end": 10829.6, + "probability": 0.998 + }, + { + "start": 10830.24, + "end": 10836.08, + "probability": 0.998 + }, + { + "start": 10836.3, + "end": 10838.16, + "probability": 0.9976 + }, + { + "start": 10838.9, + "end": 10841.65, + "probability": 0.9529 + }, + { + "start": 10842.46, + "end": 10846.62, + "probability": 0.8385 + }, + { + "start": 10847.44, + "end": 10849.08, + "probability": 0.8889 + }, + { + "start": 10849.72, + "end": 10852.48, + "probability": 0.8068 + }, + { + "start": 10852.66, + "end": 10854.98, + "probability": 0.9576 + }, + { + "start": 10855.88, + "end": 10856.5, + "probability": 0.6896 + }, + { + "start": 10856.98, + "end": 10859.16, + "probability": 0.9966 + }, + { + "start": 10859.72, + "end": 10861.14, + "probability": 0.8418 + }, + { + "start": 10861.64, + "end": 10863.94, + "probability": 0.8084 + }, + { + "start": 10864.22, + "end": 10864.32, + "probability": 0.476 + }, + { + "start": 10864.82, + "end": 10867.48, + "probability": 0.9963 + }, + { + "start": 10867.86, + "end": 10872.98, + "probability": 0.9866 + }, + { + "start": 10873.38, + "end": 10874.02, + "probability": 0.8046 + }, + { + "start": 10874.34, + "end": 10877.32, + "probability": 0.834 + }, + { + "start": 10877.72, + "end": 10880.82, + "probability": 0.96 + }, + { + "start": 10881.52, + "end": 10885.86, + "probability": 0.9896 + }, + { + "start": 10885.92, + "end": 10889.26, + "probability": 0.9851 + }, + { + "start": 10889.54, + "end": 10890.6, + "probability": 0.9207 + }, + { + "start": 10891.12, + "end": 10896.94, + "probability": 0.9879 + }, + { + "start": 10897.48, + "end": 10903.26, + "probability": 0.9944 + }, + { + "start": 10903.36, + "end": 10904.82, + "probability": 0.8769 + }, + { + "start": 10905.72, + "end": 10908.88, + "probability": 0.9985 + }, + { + "start": 10910.08, + "end": 10911.72, + "probability": 0.8189 + }, + { + "start": 10912.36, + "end": 10917.26, + "probability": 0.9585 + }, + { + "start": 10917.8, + "end": 10924.32, + "probability": 0.9657 + }, + { + "start": 10924.8, + "end": 10927.0, + "probability": 0.9988 + }, + { + "start": 10927.68, + "end": 10930.56, + "probability": 0.9916 + }, + { + "start": 10931.16, + "end": 10932.42, + "probability": 0.7759 + }, + { + "start": 10932.58, + "end": 10935.54, + "probability": 0.9858 + }, + { + "start": 10936.1, + "end": 10940.38, + "probability": 0.9224 + }, + { + "start": 10941.0, + "end": 10946.32, + "probability": 0.9448 + }, + { + "start": 10947.32, + "end": 10952.68, + "probability": 0.7674 + }, + { + "start": 10954.18, + "end": 10956.7, + "probability": 0.9536 + }, + { + "start": 10957.44, + "end": 10958.54, + "probability": 0.6306 + }, + { + "start": 10959.08, + "end": 10961.42, + "probability": 0.9862 + }, + { + "start": 10961.82, + "end": 10964.0, + "probability": 0.9868 + }, + { + "start": 10965.46, + "end": 10967.8, + "probability": 0.9977 + }, + { + "start": 10968.62, + "end": 10970.58, + "probability": 0.9189 + }, + { + "start": 10970.92, + "end": 10973.58, + "probability": 0.9518 + }, + { + "start": 10974.18, + "end": 10975.82, + "probability": 0.6488 + }, + { + "start": 10976.16, + "end": 10979.9, + "probability": 0.9834 + }, + { + "start": 10979.94, + "end": 10980.38, + "probability": 0.3662 + }, + { + "start": 10980.48, + "end": 10983.16, + "probability": 0.8974 + }, + { + "start": 10983.66, + "end": 10984.14, + "probability": 0.5047 + }, + { + "start": 10984.16, + "end": 10985.42, + "probability": 0.791 + }, + { + "start": 10986.14, + "end": 10990.62, + "probability": 0.9077 + }, + { + "start": 10991.0, + "end": 10992.66, + "probability": 0.8065 + }, + { + "start": 10992.66, + "end": 10995.22, + "probability": 0.996 + }, + { + "start": 10995.7, + "end": 10998.8, + "probability": 0.9755 + }, + { + "start": 11000.1, + "end": 11002.64, + "probability": 0.7475 + }, + { + "start": 11003.38, + "end": 11005.88, + "probability": 0.9838 + }, + { + "start": 11005.96, + "end": 11007.62, + "probability": 0.8245 + }, + { + "start": 11007.72, + "end": 11010.62, + "probability": 0.9927 + }, + { + "start": 11010.76, + "end": 11012.64, + "probability": 0.821 + }, + { + "start": 11012.78, + "end": 11014.18, + "probability": 0.7325 + }, + { + "start": 11014.28, + "end": 11016.28, + "probability": 0.8985 + }, + { + "start": 11017.44, + "end": 11018.68, + "probability": 0.8467 + }, + { + "start": 11019.16, + "end": 11020.15, + "probability": 0.9812 + }, + { + "start": 11021.52, + "end": 11024.24, + "probability": 0.9963 + }, + { + "start": 11024.38, + "end": 11025.26, + "probability": 0.8152 + }, + { + "start": 11025.9, + "end": 11026.64, + "probability": 0.9171 + }, + { + "start": 11026.76, + "end": 11027.48, + "probability": 0.9928 + }, + { + "start": 11028.1, + "end": 11031.26, + "probability": 0.9856 + }, + { + "start": 11031.74, + "end": 11036.38, + "probability": 0.7467 + }, + { + "start": 11037.64, + "end": 11043.32, + "probability": 0.8438 + }, + { + "start": 11043.36, + "end": 11045.32, + "probability": 0.7632 + }, + { + "start": 11045.8, + "end": 11049.16, + "probability": 0.9723 + }, + { + "start": 11049.74, + "end": 11054.92, + "probability": 0.9952 + }, + { + "start": 11055.06, + "end": 11056.18, + "probability": 0.9005 + }, + { + "start": 11056.68, + "end": 11057.72, + "probability": 0.8533 + }, + { + "start": 11058.46, + "end": 11059.98, + "probability": 0.1179 + }, + { + "start": 11061.06, + "end": 11067.94, + "probability": 0.999 + }, + { + "start": 11068.44, + "end": 11070.32, + "probability": 0.9722 + }, + { + "start": 11071.94, + "end": 11072.96, + "probability": 0.9707 + }, + { + "start": 11073.1, + "end": 11076.0, + "probability": 0.8332 + }, + { + "start": 11076.0, + "end": 11078.78, + "probability": 0.848 + }, + { + "start": 11079.34, + "end": 11083.78, + "probability": 0.9966 + }, + { + "start": 11084.66, + "end": 11086.24, + "probability": 0.9775 + }, + { + "start": 11086.98, + "end": 11091.22, + "probability": 0.9888 + }, + { + "start": 11091.68, + "end": 11092.78, + "probability": 0.9966 + }, + { + "start": 11093.72, + "end": 11098.08, + "probability": 0.9939 + }, + { + "start": 11098.74, + "end": 11101.28, + "probability": 0.9619 + }, + { + "start": 11101.84, + "end": 11103.7, + "probability": 0.8972 + }, + { + "start": 11105.62, + "end": 11107.78, + "probability": 0.7806 + }, + { + "start": 11107.96, + "end": 11110.56, + "probability": 0.8158 + }, + { + "start": 11110.62, + "end": 11111.56, + "probability": 0.7839 + }, + { + "start": 11111.76, + "end": 11114.68, + "probability": 0.7912 + }, + { + "start": 11115.36, + "end": 11123.24, + "probability": 0.9212 + }, + { + "start": 11124.84, + "end": 11129.34, + "probability": 0.979 + }, + { + "start": 11129.5, + "end": 11130.52, + "probability": 0.7935 + }, + { + "start": 11130.84, + "end": 11132.34, + "probability": 0.9663 + }, + { + "start": 11132.46, + "end": 11133.1, + "probability": 0.9235 + }, + { + "start": 11133.9, + "end": 11138.2, + "probability": 0.8642 + }, + { + "start": 11138.56, + "end": 11139.54, + "probability": 0.8359 + }, + { + "start": 11139.86, + "end": 11143.8, + "probability": 0.9892 + }, + { + "start": 11144.14, + "end": 11147.8, + "probability": 0.943 + }, + { + "start": 11148.1, + "end": 11149.64, + "probability": 0.9961 + }, + { + "start": 11150.26, + "end": 11151.18, + "probability": 0.7481 + }, + { + "start": 11151.56, + "end": 11152.1, + "probability": 0.9628 + }, + { + "start": 11152.3, + "end": 11153.3, + "probability": 0.7974 + }, + { + "start": 11153.44, + "end": 11154.96, + "probability": 0.9908 + }, + { + "start": 11155.52, + "end": 11162.0, + "probability": 0.9663 + }, + { + "start": 11162.72, + "end": 11168.24, + "probability": 0.9652 + }, + { + "start": 11169.04, + "end": 11170.74, + "probability": 0.9661 + }, + { + "start": 11171.42, + "end": 11173.5, + "probability": 0.9977 + }, + { + "start": 11174.0, + "end": 11177.02, + "probability": 0.6835 + }, + { + "start": 11177.52, + "end": 11180.82, + "probability": 0.9928 + }, + { + "start": 11181.4, + "end": 11182.0, + "probability": 0.9051 + }, + { + "start": 11183.64, + "end": 11186.66, + "probability": 0.918 + }, + { + "start": 11187.06, + "end": 11191.64, + "probability": 0.9831 + }, + { + "start": 11192.49, + "end": 11193.68, + "probability": 0.9823 + }, + { + "start": 11196.24, + "end": 11198.18, + "probability": 0.9228 + }, + { + "start": 11198.64, + "end": 11203.98, + "probability": 0.9915 + }, + { + "start": 11204.36, + "end": 11206.04, + "probability": 0.925 + }, + { + "start": 11206.22, + "end": 11207.58, + "probability": 0.8519 + }, + { + "start": 11208.18, + "end": 11209.82, + "probability": 0.8196 + }, + { + "start": 11210.04, + "end": 11211.3, + "probability": 0.9617 + }, + { + "start": 11212.24, + "end": 11216.3, + "probability": 0.8644 + }, + { + "start": 11216.78, + "end": 11217.54, + "probability": 0.5752 + }, + { + "start": 11217.88, + "end": 11218.92, + "probability": 0.9794 + }, + { + "start": 11219.2, + "end": 11220.0, + "probability": 0.9028 + }, + { + "start": 11220.28, + "end": 11221.56, + "probability": 0.9749 + }, + { + "start": 11222.54, + "end": 11228.8, + "probability": 0.9976 + }, + { + "start": 11229.32, + "end": 11232.56, + "probability": 0.9982 + }, + { + "start": 11232.56, + "end": 11236.76, + "probability": 0.9849 + }, + { + "start": 11237.88, + "end": 11240.66, + "probability": 0.9748 + }, + { + "start": 11241.14, + "end": 11242.7, + "probability": 0.9768 + }, + { + "start": 11242.78, + "end": 11245.04, + "probability": 0.9965 + }, + { + "start": 11245.1, + "end": 11246.88, + "probability": 0.9548 + }, + { + "start": 11247.48, + "end": 11251.34, + "probability": 0.9346 + }, + { + "start": 11251.34, + "end": 11256.94, + "probability": 0.9774 + }, + { + "start": 11258.32, + "end": 11261.16, + "probability": 0.9507 + }, + { + "start": 11261.5, + "end": 11265.64, + "probability": 0.9956 + }, + { + "start": 11266.22, + "end": 11269.1, + "probability": 0.9576 + }, + { + "start": 11269.34, + "end": 11271.6, + "probability": 0.9971 + }, + { + "start": 11271.88, + "end": 11277.82, + "probability": 0.9976 + }, + { + "start": 11278.46, + "end": 11279.18, + "probability": 0.7605 + }, + { + "start": 11279.96, + "end": 11281.18, + "probability": 0.7297 + }, + { + "start": 11281.58, + "end": 11286.6, + "probability": 0.9706 + }, + { + "start": 11286.68, + "end": 11287.18, + "probability": 0.8489 + }, + { + "start": 11320.38, + "end": 11320.59, + "probability": 0.6008 + }, + { + "start": 11320.86, + "end": 11321.91, + "probability": 0.6031 + }, + { + "start": 11324.54, + "end": 11328.18, + "probability": 0.8114 + }, + { + "start": 11330.64, + "end": 11333.52, + "probability": 0.9625 + }, + { + "start": 11335.76, + "end": 11336.5, + "probability": 0.1598 + }, + { + "start": 11337.68, + "end": 11338.24, + "probability": 0.8123 + }, + { + "start": 11338.32, + "end": 11339.04, + "probability": 0.3446 + }, + { + "start": 11339.34, + "end": 11345.12, + "probability": 0.9969 + }, + { + "start": 11345.24, + "end": 11346.28, + "probability": 0.3619 + }, + { + "start": 11346.5, + "end": 11348.15, + "probability": 0.868 + }, + { + "start": 11349.46, + "end": 11351.9, + "probability": 0.8905 + }, + { + "start": 11351.94, + "end": 11353.38, + "probability": 0.9132 + }, + { + "start": 11353.5, + "end": 11354.5, + "probability": 0.2215 + }, + { + "start": 11355.22, + "end": 11356.7, + "probability": 0.8022 + }, + { + "start": 11358.18, + "end": 11359.07, + "probability": 0.5239 + }, + { + "start": 11359.66, + "end": 11360.1, + "probability": 0.141 + }, + { + "start": 11360.24, + "end": 11361.78, + "probability": 0.8105 + }, + { + "start": 11362.62, + "end": 11364.1, + "probability": 0.9033 + }, + { + "start": 11366.64, + "end": 11368.64, + "probability": 0.3029 + }, + { + "start": 11368.64, + "end": 11370.56, + "probability": 0.5068 + }, + { + "start": 11371.62, + "end": 11373.22, + "probability": 0.7338 + }, + { + "start": 11374.02, + "end": 11382.56, + "probability": 0.9474 + }, + { + "start": 11384.06, + "end": 11386.58, + "probability": 0.6065 + }, + { + "start": 11386.58, + "end": 11388.76, + "probability": 0.1195 + }, + { + "start": 11389.04, + "end": 11389.94, + "probability": 0.078 + }, + { + "start": 11389.94, + "end": 11394.86, + "probability": 0.2355 + }, + { + "start": 11395.6, + "end": 11398.78, + "probability": 0.3608 + }, + { + "start": 11399.88, + "end": 11403.38, + "probability": 0.2298 + }, + { + "start": 11403.7, + "end": 11406.28, + "probability": 0.3376 + }, + { + "start": 11406.74, + "end": 11409.0, + "probability": 0.4474 + }, + { + "start": 11409.3, + "end": 11411.2, + "probability": 0.23 + }, + { + "start": 11411.44, + "end": 11412.28, + "probability": 0.9262 + }, + { + "start": 11412.44, + "end": 11414.52, + "probability": 0.5111 + }, + { + "start": 11414.52, + "end": 11418.34, + "probability": 0.799 + }, + { + "start": 11418.44, + "end": 11420.26, + "probability": 0.8683 + }, + { + "start": 11420.36, + "end": 11420.8, + "probability": 0.8589 + }, + { + "start": 11420.82, + "end": 11421.68, + "probability": 0.7634 + }, + { + "start": 11421.74, + "end": 11423.18, + "probability": 0.7451 + }, + { + "start": 11423.26, + "end": 11424.38, + "probability": 0.5448 + }, + { + "start": 11424.58, + "end": 11424.68, + "probability": 0.4975 + }, + { + "start": 11425.22, + "end": 11425.48, + "probability": 0.3932 + }, + { + "start": 11425.58, + "end": 11427.38, + "probability": 0.953 + }, + { + "start": 11427.38, + "end": 11429.54, + "probability": 0.8835 + }, + { + "start": 11429.9, + "end": 11433.0, + "probability": 0.8672 + }, + { + "start": 11433.78, + "end": 11436.02, + "probability": 0.9716 + }, + { + "start": 11436.54, + "end": 11437.06, + "probability": 0.6457 + }, + { + "start": 11437.68, + "end": 11442.94, + "probability": 0.9945 + }, + { + "start": 11443.42, + "end": 11444.34, + "probability": 0.9036 + }, + { + "start": 11444.48, + "end": 11447.82, + "probability": 0.8554 + }, + { + "start": 11448.34, + "end": 11451.16, + "probability": 0.9395 + }, + { + "start": 11451.32, + "end": 11452.58, + "probability": 0.9089 + }, + { + "start": 11452.96, + "end": 11453.48, + "probability": 0.5634 + }, + { + "start": 11453.72, + "end": 11454.24, + "probability": 0.9675 + }, + { + "start": 11454.86, + "end": 11458.3, + "probability": 0.9478 + }, + { + "start": 11458.3, + "end": 11462.72, + "probability": 0.9552 + }, + { + "start": 11462.78, + "end": 11463.4, + "probability": 0.6681 + }, + { + "start": 11463.96, + "end": 11466.14, + "probability": 0.9633 + }, + { + "start": 11466.6, + "end": 11467.2, + "probability": 0.8818 + }, + { + "start": 11467.2, + "end": 11472.02, + "probability": 0.7956 + }, + { + "start": 11472.5, + "end": 11473.98, + "probability": 0.8662 + }, + { + "start": 11474.14, + "end": 11474.92, + "probability": 0.4017 + }, + { + "start": 11475.26, + "end": 11475.76, + "probability": 0.6183 + }, + { + "start": 11476.14, + "end": 11478.56, + "probability": 0.9853 + }, + { + "start": 11478.56, + "end": 11481.84, + "probability": 0.9838 + }, + { + "start": 11481.96, + "end": 11486.01, + "probability": 0.9606 + }, + { + "start": 11486.14, + "end": 11487.72, + "probability": 0.7967 + }, + { + "start": 11488.16, + "end": 11489.88, + "probability": 0.6048 + }, + { + "start": 11490.44, + "end": 11493.18, + "probability": 0.685 + }, + { + "start": 11493.6, + "end": 11496.48, + "probability": 0.9696 + }, + { + "start": 11496.96, + "end": 11497.44, + "probability": 0.5959 + }, + { + "start": 11497.48, + "end": 11502.02, + "probability": 0.9258 + }, + { + "start": 11502.58, + "end": 11504.64, + "probability": 0.9882 + }, + { + "start": 11506.08, + "end": 11506.8, + "probability": 0.7599 + }, + { + "start": 11507.42, + "end": 11513.72, + "probability": 0.9259 + }, + { + "start": 11513.9, + "end": 11515.22, + "probability": 0.6191 + }, + { + "start": 11517.94, + "end": 11518.66, + "probability": 0.8931 + }, + { + "start": 11520.44, + "end": 11523.36, + "probability": 0.575 + }, + { + "start": 11524.44, + "end": 11527.78, + "probability": 0.6635 + }, + { + "start": 11528.98, + "end": 11531.96, + "probability": 0.9122 + }, + { + "start": 11532.54, + "end": 11538.58, + "probability": 0.8999 + }, + { + "start": 11539.06, + "end": 11542.3, + "probability": 0.853 + }, + { + "start": 11542.3, + "end": 11545.74, + "probability": 0.9432 + }, + { + "start": 11546.06, + "end": 11546.74, + "probability": 0.8032 + }, + { + "start": 11546.76, + "end": 11547.38, + "probability": 0.5709 + }, + { + "start": 11547.7, + "end": 11548.6, + "probability": 0.9897 + }, + { + "start": 11548.86, + "end": 11550.4, + "probability": 0.9729 + }, + { + "start": 11552.82, + "end": 11554.4, + "probability": 0.8035 + }, + { + "start": 11554.76, + "end": 11556.46, + "probability": 0.9788 + }, + { + "start": 11556.84, + "end": 11558.58, + "probability": 0.8726 + }, + { + "start": 11559.14, + "end": 11560.76, + "probability": 0.972 + }, + { + "start": 11560.98, + "end": 11564.6, + "probability": 0.8671 + }, + { + "start": 11564.7, + "end": 11564.9, + "probability": 0.7786 + }, + { + "start": 11565.0, + "end": 11565.76, + "probability": 0.4132 + }, + { + "start": 11566.32, + "end": 11567.42, + "probability": 0.5176 + }, + { + "start": 11567.88, + "end": 11568.72, + "probability": 0.6504 + }, + { + "start": 11568.8, + "end": 11573.15, + "probability": 0.9448 + }, + { + "start": 11574.96, + "end": 11576.76, + "probability": 0.8489 + }, + { + "start": 11576.84, + "end": 11577.64, + "probability": 0.5275 + }, + { + "start": 11577.8, + "end": 11579.62, + "probability": 0.5527 + }, + { + "start": 11580.28, + "end": 11582.28, + "probability": 0.9404 + }, + { + "start": 11586.02, + "end": 11587.22, + "probability": 0.8856 + }, + { + "start": 11587.24, + "end": 11588.24, + "probability": 0.9912 + }, + { + "start": 11588.38, + "end": 11588.8, + "probability": 0.7311 + }, + { + "start": 11588.92, + "end": 11589.3, + "probability": 0.8149 + }, + { + "start": 11589.32, + "end": 11589.76, + "probability": 0.4894 + }, + { + "start": 11589.98, + "end": 11590.44, + "probability": 0.4781 + }, + { + "start": 11590.54, + "end": 11591.6, + "probability": 0.8164 + }, + { + "start": 11592.69, + "end": 11595.08, + "probability": 0.9359 + }, + { + "start": 11595.46, + "end": 11598.98, + "probability": 0.9793 + }, + { + "start": 11599.1, + "end": 11601.8, + "probability": 0.6851 + }, + { + "start": 11601.94, + "end": 11604.02, + "probability": 0.6719 + }, + { + "start": 11604.04, + "end": 11604.91, + "probability": 0.9194 + }, + { + "start": 11605.38, + "end": 11605.68, + "probability": 0.2074 + }, + { + "start": 11605.78, + "end": 11606.22, + "probability": 0.7496 + }, + { + "start": 11606.34, + "end": 11609.74, + "probability": 0.9715 + }, + { + "start": 11609.78, + "end": 11610.36, + "probability": 0.9622 + }, + { + "start": 11610.62, + "end": 11611.96, + "probability": 0.6623 + }, + { + "start": 11611.96, + "end": 11612.63, + "probability": 0.34 + }, + { + "start": 11613.7, + "end": 11617.18, + "probability": 0.6098 + }, + { + "start": 11618.64, + "end": 11622.04, + "probability": 0.9657 + }, + { + "start": 11623.81, + "end": 11627.06, + "probability": 0.4598 + }, + { + "start": 11627.3, + "end": 11628.38, + "probability": 0.8619 + }, + { + "start": 11628.5, + "end": 11629.48, + "probability": 0.8923 + }, + { + "start": 11629.56, + "end": 11630.84, + "probability": 0.8577 + }, + { + "start": 11630.9, + "end": 11631.28, + "probability": 0.6347 + }, + { + "start": 11631.38, + "end": 11638.8, + "probability": 0.9837 + }, + { + "start": 11639.24, + "end": 11641.82, + "probability": 0.9331 + }, + { + "start": 11642.16, + "end": 11648.52, + "probability": 0.9959 + }, + { + "start": 11649.12, + "end": 11649.38, + "probability": 0.504 + }, + { + "start": 11649.64, + "end": 11650.92, + "probability": 0.795 + }, + { + "start": 11650.92, + "end": 11650.92, + "probability": 0.0336 + }, + { + "start": 11650.92, + "end": 11652.0, + "probability": 0.8831 + }, + { + "start": 11652.0, + "end": 11652.9, + "probability": 0.9094 + }, + { + "start": 11653.32, + "end": 11656.44, + "probability": 0.9805 + }, + { + "start": 11656.92, + "end": 11659.2, + "probability": 0.9763 + }, + { + "start": 11659.62, + "end": 11661.12, + "probability": 0.9404 + }, + { + "start": 11661.52, + "end": 11661.82, + "probability": 0.881 + }, + { + "start": 11661.92, + "end": 11665.68, + "probability": 0.9993 + }, + { + "start": 11666.3, + "end": 11669.54, + "probability": 0.9132 + }, + { + "start": 11669.9, + "end": 11673.66, + "probability": 0.9934 + }, + { + "start": 11674.0, + "end": 11680.52, + "probability": 0.8916 + }, + { + "start": 11681.12, + "end": 11685.5, + "probability": 0.9995 + }, + { + "start": 11686.26, + "end": 11690.6, + "probability": 0.9974 + }, + { + "start": 11691.08, + "end": 11692.94, + "probability": 0.6465 + }, + { + "start": 11693.44, + "end": 11698.28, + "probability": 0.9919 + }, + { + "start": 11699.12, + "end": 11701.94, + "probability": 0.9755 + }, + { + "start": 11702.5, + "end": 11707.9, + "probability": 0.7879 + }, + { + "start": 11708.54, + "end": 11711.52, + "probability": 0.7733 + }, + { + "start": 11712.08, + "end": 11713.66, + "probability": 0.7424 + }, + { + "start": 11713.74, + "end": 11715.28, + "probability": 0.9058 + }, + { + "start": 11715.54, + "end": 11716.16, + "probability": 0.8845 + }, + { + "start": 11716.38, + "end": 11717.46, + "probability": 0.6937 + }, + { + "start": 11717.7, + "end": 11720.78, + "probability": 0.9736 + }, + { + "start": 11720.84, + "end": 11722.44, + "probability": 0.8177 + }, + { + "start": 11722.48, + "end": 11724.06, + "probability": 0.6322 + }, + { + "start": 11724.6, + "end": 11725.76, + "probability": 0.1311 + }, + { + "start": 11727.02, + "end": 11727.62, + "probability": 0.1894 + }, + { + "start": 11727.76, + "end": 11729.06, + "probability": 0.7245 + }, + { + "start": 11729.18, + "end": 11732.82, + "probability": 0.9385 + }, + { + "start": 11733.44, + "end": 11737.24, + "probability": 0.3821 + }, + { + "start": 11738.16, + "end": 11739.16, + "probability": 0.3317 + }, + { + "start": 11746.72, + "end": 11757.44, + "probability": 0.571 + }, + { + "start": 11758.08, + "end": 11759.66, + "probability": 0.2327 + }, + { + "start": 11760.58, + "end": 11762.92, + "probability": 0.0664 + }, + { + "start": 11763.84, + "end": 11763.84, + "probability": 0.1563 + }, + { + "start": 11764.62, + "end": 11765.42, + "probability": 0.3737 + }, + { + "start": 11765.52, + "end": 11766.81, + "probability": 0.9391 + }, + { + "start": 11767.96, + "end": 11769.64, + "probability": 0.59 + }, + { + "start": 11772.32, + "end": 11773.04, + "probability": 0.666 + }, + { + "start": 11773.98, + "end": 11774.96, + "probability": 0.0022 + }, + { + "start": 11786.24, + "end": 11788.72, + "probability": 0.0657 + }, + { + "start": 11788.84, + "end": 11789.7, + "probability": 0.1499 + } + ], + "segments_count": 4356, + "words_count": 21551, + "avg_words_per_segment": 4.9474, + "avg_segment_duration": 1.9164, + "avg_words_per_minute": 109.6623, + "plenum_id": "134197", + "duration": 11791.29, + "title": null, + "plenum_date": "2025-01-01" +} \ No newline at end of file