diff --git "a/31350/metadata.json" "b/31350/metadata.json" new file mode 100644--- /dev/null +++ "b/31350/metadata.json" @@ -0,0 +1,36002 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "31350", + "quality_score": 0.8885, + "per_segment_quality_scores": [ + { + "start": 79.0, + "end": 79.0, + "probability": 0.0 + }, + { + "start": 86.9, + "end": 88.66, + "probability": 0.8693 + }, + { + "start": 91.8, + "end": 98.02, + "probability": 0.9514 + }, + { + "start": 98.76, + "end": 100.04, + "probability": 0.6515 + }, + { + "start": 101.58, + "end": 101.64, + "probability": 0.1348 + }, + { + "start": 116.56, + "end": 117.54, + "probability": 0.0134 + }, + { + "start": 118.98, + "end": 119.4, + "probability": 0.1157 + }, + { + "start": 127.66, + "end": 128.46, + "probability": 0.0962 + }, + { + "start": 129.82, + "end": 130.56, + "probability": 0.3615 + }, + { + "start": 139.18, + "end": 141.24, + "probability": 0.1007 + }, + { + "start": 141.78, + "end": 141.9, + "probability": 0.2617 + }, + { + "start": 149.72, + "end": 152.4, + "probability": 0.0121 + }, + { + "start": 223.0, + "end": 223.0, + "probability": 0.0 + }, + { + "start": 223.0, + "end": 223.0, + "probability": 0.0 + }, + { + "start": 223.0, + "end": 223.0, + "probability": 0.0 + }, + { + "start": 223.0, + "end": 223.0, + "probability": 0.0 + }, + { + "start": 223.0, + "end": 223.0, + "probability": 0.0 + }, + { + "start": 224.73, + "end": 227.54, + "probability": 0.0828 + }, + { + "start": 228.38, + "end": 230.43, + "probability": 0.152 + }, + { + "start": 230.82, + "end": 233.4, + "probability": 0.0489 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.22, + "end": 357.64, + "probability": 0.0681 + }, + { + "start": 358.12, + "end": 359.78, + "probability": 0.1252 + }, + { + "start": 360.96, + "end": 362.4, + "probability": 0.1232 + }, + { + "start": 363.56, + "end": 365.9, + "probability": 0.0346 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.0, + "end": 480.0, + "probability": 0.0 + }, + { + "start": 480.1, + "end": 480.94, + "probability": 0.0123 + }, + { + "start": 480.94, + "end": 480.94, + "probability": 0.0213 + }, + { + "start": 480.94, + "end": 480.94, + "probability": 0.0864 + }, + { + "start": 480.94, + "end": 481.04, + "probability": 0.1309 + }, + { + "start": 481.54, + "end": 483.26, + "probability": 0.7753 + }, + { + "start": 484.14, + "end": 487.4, + "probability": 0.9829 + }, + { + "start": 487.98, + "end": 489.04, + "probability": 0.823 + }, + { + "start": 491.48, + "end": 494.12, + "probability": 0.7997 + }, + { + "start": 495.36, + "end": 496.78, + "probability": 0.9325 + }, + { + "start": 497.26, + "end": 500.88, + "probability": 0.9906 + }, + { + "start": 501.94, + "end": 505.74, + "probability": 0.9841 + }, + { + "start": 505.74, + "end": 509.02, + "probability": 0.9818 + }, + { + "start": 510.08, + "end": 512.98, + "probability": 0.989 + }, + { + "start": 513.54, + "end": 515.92, + "probability": 0.8404 + }, + { + "start": 516.22, + "end": 520.88, + "probability": 0.9606 + }, + { + "start": 522.28, + "end": 525.88, + "probability": 0.9548 + }, + { + "start": 525.88, + "end": 529.24, + "probability": 0.9894 + }, + { + "start": 530.64, + "end": 535.7, + "probability": 0.9948 + }, + { + "start": 536.28, + "end": 538.2, + "probability": 0.413 + }, + { + "start": 539.3, + "end": 542.86, + "probability": 0.9814 + }, + { + "start": 543.52, + "end": 544.64, + "probability": 0.8267 + }, + { + "start": 545.18, + "end": 545.92, + "probability": 0.899 + }, + { + "start": 548.36, + "end": 549.08, + "probability": 0.9428 + }, + { + "start": 549.22, + "end": 552.68, + "probability": 0.948 + }, + { + "start": 552.76, + "end": 553.68, + "probability": 0.7987 + }, + { + "start": 555.38, + "end": 557.78, + "probability": 0.9841 + }, + { + "start": 558.46, + "end": 559.32, + "probability": 0.6766 + }, + { + "start": 560.12, + "end": 562.72, + "probability": 0.9203 + }, + { + "start": 563.78, + "end": 567.26, + "probability": 0.8278 + }, + { + "start": 567.9, + "end": 570.72, + "probability": 0.9319 + }, + { + "start": 571.34, + "end": 574.48, + "probability": 0.9748 + }, + { + "start": 574.48, + "end": 577.9, + "probability": 0.9983 + }, + { + "start": 578.94, + "end": 580.26, + "probability": 0.7996 + }, + { + "start": 581.92, + "end": 583.56, + "probability": 0.7445 + }, + { + "start": 584.12, + "end": 585.86, + "probability": 0.5354 + }, + { + "start": 586.58, + "end": 587.48, + "probability": 0.8354 + }, + { + "start": 587.8, + "end": 588.94, + "probability": 0.9297 + }, + { + "start": 589.2, + "end": 590.74, + "probability": 0.7795 + }, + { + "start": 591.81, + "end": 593.13, + "probability": 0.0524 + }, + { + "start": 594.04, + "end": 595.6, + "probability": 0.5585 + }, + { + "start": 596.5, + "end": 597.9, + "probability": 0.9601 + }, + { + "start": 598.58, + "end": 600.48, + "probability": 0.8338 + }, + { + "start": 601.5, + "end": 605.66, + "probability": 0.7788 + }, + { + "start": 606.42, + "end": 607.92, + "probability": 0.9416 + }, + { + "start": 608.54, + "end": 610.07, + "probability": 0.8296 + }, + { + "start": 611.24, + "end": 612.78, + "probability": 0.4342 + }, + { + "start": 613.34, + "end": 614.8, + "probability": 0.8605 + }, + { + "start": 615.46, + "end": 616.22, + "probability": 0.9079 + }, + { + "start": 617.06, + "end": 620.06, + "probability": 0.9487 + }, + { + "start": 621.04, + "end": 622.38, + "probability": 0.8947 + }, + { + "start": 622.96, + "end": 624.5, + "probability": 0.9414 + }, + { + "start": 626.76, + "end": 629.66, + "probability": 0.4808 + }, + { + "start": 631.2, + "end": 632.38, + "probability": 0.9627 + }, + { + "start": 632.98, + "end": 634.24, + "probability": 0.567 + }, + { + "start": 635.14, + "end": 640.22, + "probability": 0.5696 + }, + { + "start": 641.38, + "end": 644.48, + "probability": 0.9616 + }, + { + "start": 645.62, + "end": 647.58, + "probability": 0.8378 + }, + { + "start": 648.4, + "end": 649.94, + "probability": 0.8759 + }, + { + "start": 650.64, + "end": 654.16, + "probability": 0.9595 + }, + { + "start": 655.56, + "end": 657.68, + "probability": 0.9973 + }, + { + "start": 658.52, + "end": 661.72, + "probability": 0.9847 + }, + { + "start": 662.36, + "end": 665.25, + "probability": 0.854 + }, + { + "start": 667.68, + "end": 668.28, + "probability": 0.7631 + }, + { + "start": 669.02, + "end": 672.88, + "probability": 0.6891 + }, + { + "start": 673.56, + "end": 677.74, + "probability": 0.9863 + }, + { + "start": 678.3, + "end": 681.74, + "probability": 0.9705 + }, + { + "start": 681.9, + "end": 683.46, + "probability": 0.9325 + }, + { + "start": 684.26, + "end": 686.9, + "probability": 0.8735 + }, + { + "start": 687.92, + "end": 693.82, + "probability": 0.992 + }, + { + "start": 694.68, + "end": 698.08, + "probability": 0.9558 + }, + { + "start": 698.64, + "end": 699.6, + "probability": 0.4557 + }, + { + "start": 699.72, + "end": 702.98, + "probability": 0.6705 + }, + { + "start": 703.34, + "end": 705.46, + "probability": 0.9421 + }, + { + "start": 706.44, + "end": 709.14, + "probability": 0.9932 + }, + { + "start": 709.8, + "end": 711.01, + "probability": 0.9878 + }, + { + "start": 712.24, + "end": 713.02, + "probability": 0.9852 + }, + { + "start": 713.54, + "end": 714.36, + "probability": 0.8068 + }, + { + "start": 714.48, + "end": 715.0, + "probability": 0.9838 + }, + { + "start": 715.14, + "end": 715.62, + "probability": 0.8561 + }, + { + "start": 715.7, + "end": 716.34, + "probability": 0.8957 + }, + { + "start": 718.0, + "end": 721.7, + "probability": 0.9961 + }, + { + "start": 722.4, + "end": 727.54, + "probability": 0.9951 + }, + { + "start": 728.8, + "end": 732.24, + "probability": 0.9836 + }, + { + "start": 732.7, + "end": 733.78, + "probability": 0.9623 + }, + { + "start": 734.36, + "end": 738.56, + "probability": 0.9971 + }, + { + "start": 738.56, + "end": 743.98, + "probability": 0.9991 + }, + { + "start": 744.4, + "end": 745.12, + "probability": 0.8741 + }, + { + "start": 746.9, + "end": 751.38, + "probability": 0.9948 + }, + { + "start": 751.94, + "end": 753.76, + "probability": 0.8947 + }, + { + "start": 754.42, + "end": 758.24, + "probability": 0.8796 + }, + { + "start": 759.88, + "end": 761.5, + "probability": 0.9959 + }, + { + "start": 762.34, + "end": 763.48, + "probability": 0.9648 + }, + { + "start": 764.18, + "end": 769.42, + "probability": 0.9775 + }, + { + "start": 770.48, + "end": 774.22, + "probability": 0.9671 + }, + { + "start": 774.3, + "end": 775.24, + "probability": 0.8623 + }, + { + "start": 775.76, + "end": 776.52, + "probability": 0.8858 + }, + { + "start": 777.56, + "end": 779.06, + "probability": 0.8936 + }, + { + "start": 779.7, + "end": 783.52, + "probability": 0.9841 + }, + { + "start": 783.52, + "end": 787.18, + "probability": 0.9802 + }, + { + "start": 788.0, + "end": 793.0, + "probability": 0.9224 + }, + { + "start": 793.58, + "end": 796.44, + "probability": 0.9982 + }, + { + "start": 796.44, + "end": 800.02, + "probability": 0.9843 + }, + { + "start": 801.46, + "end": 805.3, + "probability": 0.9843 + }, + { + "start": 805.52, + "end": 807.54, + "probability": 0.7733 + }, + { + "start": 808.04, + "end": 809.58, + "probability": 0.7561 + }, + { + "start": 809.96, + "end": 810.84, + "probability": 0.751 + }, + { + "start": 810.98, + "end": 814.14, + "probability": 0.937 + }, + { + "start": 814.18, + "end": 814.88, + "probability": 0.9444 + }, + { + "start": 815.04, + "end": 816.24, + "probability": 0.8211 + }, + { + "start": 817.46, + "end": 819.74, + "probability": 0.9624 + }, + { + "start": 820.5, + "end": 826.34, + "probability": 0.9905 + }, + { + "start": 828.3, + "end": 833.86, + "probability": 0.998 + }, + { + "start": 834.24, + "end": 835.46, + "probability": 0.9413 + }, + { + "start": 836.2, + "end": 839.76, + "probability": 0.9296 + }, + { + "start": 840.4, + "end": 842.6, + "probability": 0.9901 + }, + { + "start": 844.0, + "end": 848.22, + "probability": 0.9925 + }, + { + "start": 848.66, + "end": 849.84, + "probability": 0.9307 + }, + { + "start": 850.42, + "end": 853.92, + "probability": 0.9556 + }, + { + "start": 854.24, + "end": 860.16, + "probability": 0.9451 + }, + { + "start": 862.04, + "end": 866.12, + "probability": 0.9912 + }, + { + "start": 867.68, + "end": 870.25, + "probability": 0.5631 + }, + { + "start": 871.54, + "end": 877.14, + "probability": 0.9728 + }, + { + "start": 878.3, + "end": 880.94, + "probability": 0.8925 + }, + { + "start": 882.12, + "end": 883.2, + "probability": 0.9043 + }, + { + "start": 884.16, + "end": 887.28, + "probability": 0.6856 + }, + { + "start": 888.08, + "end": 890.52, + "probability": 0.9809 + }, + { + "start": 891.54, + "end": 892.46, + "probability": 0.8249 + }, + { + "start": 893.0, + "end": 894.44, + "probability": 0.9277 + }, + { + "start": 895.04, + "end": 896.04, + "probability": 0.9409 + }, + { + "start": 896.7, + "end": 899.18, + "probability": 0.5911 + }, + { + "start": 900.56, + "end": 905.22, + "probability": 0.9538 + }, + { + "start": 906.1, + "end": 910.02, + "probability": 0.8545 + }, + { + "start": 910.98, + "end": 913.0, + "probability": 0.8519 + }, + { + "start": 914.06, + "end": 917.28, + "probability": 0.8065 + }, + { + "start": 918.1, + "end": 920.42, + "probability": 0.4135 + }, + { + "start": 921.02, + "end": 922.24, + "probability": 0.9742 + }, + { + "start": 923.74, + "end": 927.64, + "probability": 0.8065 + }, + { + "start": 928.44, + "end": 929.64, + "probability": 0.8408 + }, + { + "start": 930.5, + "end": 932.72, + "probability": 0.9919 + }, + { + "start": 933.54, + "end": 935.88, + "probability": 0.9919 + }, + { + "start": 937.64, + "end": 939.34, + "probability": 0.8119 + }, + { + "start": 939.92, + "end": 942.78, + "probability": 0.823 + }, + { + "start": 943.96, + "end": 945.13, + "probability": 0.8853 + }, + { + "start": 945.76, + "end": 946.86, + "probability": 0.7464 + }, + { + "start": 947.98, + "end": 949.38, + "probability": 0.743 + }, + { + "start": 950.0, + "end": 952.58, + "probability": 0.9685 + }, + { + "start": 953.9, + "end": 959.24, + "probability": 0.7902 + }, + { + "start": 960.9, + "end": 965.44, + "probability": 0.2675 + }, + { + "start": 966.58, + "end": 971.72, + "probability": 0.9131 + }, + { + "start": 972.86, + "end": 976.18, + "probability": 0.9309 + }, + { + "start": 978.54, + "end": 984.78, + "probability": 0.9882 + }, + { + "start": 985.38, + "end": 989.74, + "probability": 0.9658 + }, + { + "start": 991.12, + "end": 994.84, + "probability": 0.9767 + }, + { + "start": 995.62, + "end": 998.74, + "probability": 0.9972 + }, + { + "start": 999.94, + "end": 1001.42, + "probability": 0.9485 + }, + { + "start": 1002.22, + "end": 1003.56, + "probability": 0.9789 + }, + { + "start": 1004.82, + "end": 1005.52, + "probability": 0.9063 + }, + { + "start": 1006.46, + "end": 1011.52, + "probability": 0.9698 + }, + { + "start": 1012.62, + "end": 1014.42, + "probability": 0.9411 + }, + { + "start": 1015.08, + "end": 1017.6, + "probability": 0.6171 + }, + { + "start": 1018.76, + "end": 1022.3, + "probability": 0.9917 + }, + { + "start": 1023.38, + "end": 1026.58, + "probability": 0.9515 + }, + { + "start": 1028.18, + "end": 1032.46, + "probability": 0.9346 + }, + { + "start": 1033.04, + "end": 1035.9, + "probability": 0.9972 + }, + { + "start": 1036.8, + "end": 1042.88, + "probability": 0.8527 + }, + { + "start": 1043.72, + "end": 1050.86, + "probability": 0.9744 + }, + { + "start": 1052.08, + "end": 1058.0, + "probability": 0.9872 + }, + { + "start": 1059.14, + "end": 1064.16, + "probability": 0.9877 + }, + { + "start": 1064.8, + "end": 1065.96, + "probability": 0.8146 + }, + { + "start": 1066.76, + "end": 1068.66, + "probability": 0.8216 + }, + { + "start": 1069.4, + "end": 1073.72, + "probability": 0.9435 + }, + { + "start": 1075.18, + "end": 1075.6, + "probability": 0.4785 + }, + { + "start": 1075.86, + "end": 1080.68, + "probability": 0.9064 + }, + { + "start": 1081.24, + "end": 1084.42, + "probability": 0.9705 + }, + { + "start": 1085.6, + "end": 1090.28, + "probability": 0.9631 + }, + { + "start": 1091.7, + "end": 1095.82, + "probability": 0.639 + }, + { + "start": 1096.42, + "end": 1099.58, + "probability": 0.9906 + }, + { + "start": 1101.44, + "end": 1109.22, + "probability": 0.9705 + }, + { + "start": 1110.0, + "end": 1112.26, + "probability": 0.8446 + }, + { + "start": 1113.68, + "end": 1118.34, + "probability": 0.6861 + }, + { + "start": 1118.96, + "end": 1121.04, + "probability": 0.9419 + }, + { + "start": 1122.16, + "end": 1124.74, + "probability": 0.9386 + }, + { + "start": 1125.36, + "end": 1128.26, + "probability": 0.9709 + }, + { + "start": 1128.84, + "end": 1132.28, + "probability": 0.9395 + }, + { + "start": 1133.1, + "end": 1135.96, + "probability": 0.8059 + }, + { + "start": 1136.4, + "end": 1137.94, + "probability": 0.9627 + }, + { + "start": 1139.14, + "end": 1139.8, + "probability": 0.8815 + }, + { + "start": 1140.68, + "end": 1147.84, + "probability": 0.9423 + }, + { + "start": 1148.42, + "end": 1151.62, + "probability": 0.9612 + }, + { + "start": 1152.58, + "end": 1154.18, + "probability": 0.7242 + }, + { + "start": 1156.62, + "end": 1159.14, + "probability": 0.8041 + }, + { + "start": 1160.18, + "end": 1161.92, + "probability": 0.7378 + }, + { + "start": 1162.6, + "end": 1163.34, + "probability": 0.5075 + }, + { + "start": 1165.2, + "end": 1166.6, + "probability": 0.9821 + }, + { + "start": 1167.34, + "end": 1171.08, + "probability": 0.9651 + }, + { + "start": 1171.08, + "end": 1175.48, + "probability": 0.9882 + }, + { + "start": 1176.0, + "end": 1177.08, + "probability": 0.9387 + }, + { + "start": 1178.24, + "end": 1180.3, + "probability": 0.8351 + }, + { + "start": 1181.04, + "end": 1182.88, + "probability": 0.9634 + }, + { + "start": 1183.46, + "end": 1185.06, + "probability": 0.9822 + }, + { + "start": 1186.14, + "end": 1187.96, + "probability": 0.9815 + }, + { + "start": 1188.9, + "end": 1194.86, + "probability": 0.9385 + }, + { + "start": 1196.1, + "end": 1200.52, + "probability": 0.9846 + }, + { + "start": 1201.46, + "end": 1204.22, + "probability": 0.9185 + }, + { + "start": 1205.5, + "end": 1208.84, + "probability": 0.8449 + }, + { + "start": 1209.38, + "end": 1210.56, + "probability": 0.851 + }, + { + "start": 1211.3, + "end": 1215.8, + "probability": 0.9759 + }, + { + "start": 1216.36, + "end": 1217.66, + "probability": 0.8576 + }, + { + "start": 1218.76, + "end": 1220.46, + "probability": 0.7535 + }, + { + "start": 1221.12, + "end": 1222.54, + "probability": 0.7331 + }, + { + "start": 1223.42, + "end": 1226.4, + "probability": 0.967 + }, + { + "start": 1227.52, + "end": 1232.7, + "probability": 0.9794 + }, + { + "start": 1233.36, + "end": 1237.2, + "probability": 0.8921 + }, + { + "start": 1237.88, + "end": 1239.66, + "probability": 0.634 + }, + { + "start": 1240.72, + "end": 1244.08, + "probability": 0.9778 + }, + { + "start": 1244.88, + "end": 1247.22, + "probability": 0.9612 + }, + { + "start": 1249.08, + "end": 1252.38, + "probability": 0.9944 + }, + { + "start": 1252.38, + "end": 1255.76, + "probability": 0.991 + }, + { + "start": 1257.4, + "end": 1258.08, + "probability": 0.8701 + }, + { + "start": 1259.54, + "end": 1261.3, + "probability": 0.9508 + }, + { + "start": 1262.72, + "end": 1264.46, + "probability": 0.8278 + }, + { + "start": 1265.38, + "end": 1269.54, + "probability": 0.8086 + }, + { + "start": 1270.1, + "end": 1278.08, + "probability": 0.9806 + }, + { + "start": 1279.52, + "end": 1282.46, + "probability": 0.9453 + }, + { + "start": 1283.22, + "end": 1288.94, + "probability": 0.999 + }, + { + "start": 1290.1, + "end": 1293.54, + "probability": 0.5249 + }, + { + "start": 1294.22, + "end": 1296.78, + "probability": 0.9606 + }, + { + "start": 1298.0, + "end": 1299.4, + "probability": 0.9165 + }, + { + "start": 1300.26, + "end": 1301.2, + "probability": 0.7975 + }, + { + "start": 1302.2, + "end": 1304.3, + "probability": 0.9743 + }, + { + "start": 1305.62, + "end": 1307.82, + "probability": 0.8799 + }, + { + "start": 1308.4, + "end": 1312.32, + "probability": 0.8314 + }, + { + "start": 1312.96, + "end": 1314.4, + "probability": 0.9975 + }, + { + "start": 1314.96, + "end": 1317.74, + "probability": 0.9905 + }, + { + "start": 1318.86, + "end": 1322.06, + "probability": 0.918 + }, + { + "start": 1322.82, + "end": 1326.36, + "probability": 0.9831 + }, + { + "start": 1327.1, + "end": 1329.3, + "probability": 0.9785 + }, + { + "start": 1329.92, + "end": 1330.7, + "probability": 0.7788 + }, + { + "start": 1332.48, + "end": 1334.22, + "probability": 0.7357 + }, + { + "start": 1335.14, + "end": 1336.78, + "probability": 0.7376 + }, + { + "start": 1338.12, + "end": 1340.8, + "probability": 0.5057 + }, + { + "start": 1341.58, + "end": 1346.82, + "probability": 0.9327 + }, + { + "start": 1347.72, + "end": 1349.66, + "probability": 0.9532 + }, + { + "start": 1350.18, + "end": 1351.88, + "probability": 0.9956 + }, + { + "start": 1352.54, + "end": 1354.92, + "probability": 0.9838 + }, + { + "start": 1355.86, + "end": 1358.16, + "probability": 0.9909 + }, + { + "start": 1359.12, + "end": 1364.38, + "probability": 0.8687 + }, + { + "start": 1365.0, + "end": 1368.56, + "probability": 0.943 + }, + { + "start": 1369.6, + "end": 1373.34, + "probability": 0.9819 + }, + { + "start": 1374.54, + "end": 1376.14, + "probability": 0.5918 + }, + { + "start": 1376.82, + "end": 1377.36, + "probability": 0.9447 + }, + { + "start": 1378.44, + "end": 1384.48, + "probability": 0.7542 + }, + { + "start": 1385.52, + "end": 1387.5, + "probability": 0.991 + }, + { + "start": 1388.26, + "end": 1395.62, + "probability": 0.9816 + }, + { + "start": 1396.88, + "end": 1401.62, + "probability": 0.987 + }, + { + "start": 1402.7, + "end": 1406.66, + "probability": 0.9869 + }, + { + "start": 1407.34, + "end": 1408.64, + "probability": 0.9521 + }, + { + "start": 1409.56, + "end": 1412.06, + "probability": 0.7289 + }, + { + "start": 1412.64, + "end": 1414.3, + "probability": 0.9953 + }, + { + "start": 1415.26, + "end": 1418.2, + "probability": 0.9839 + }, + { + "start": 1418.84, + "end": 1419.9, + "probability": 0.5493 + }, + { + "start": 1421.52, + "end": 1426.66, + "probability": 0.9458 + }, + { + "start": 1427.42, + "end": 1429.72, + "probability": 0.828 + }, + { + "start": 1430.86, + "end": 1432.66, + "probability": 0.383 + }, + { + "start": 1433.24, + "end": 1435.58, + "probability": 0.6548 + }, + { + "start": 1436.56, + "end": 1441.68, + "probability": 0.9603 + }, + { + "start": 1442.84, + "end": 1446.5, + "probability": 0.9772 + }, + { + "start": 1447.04, + "end": 1450.64, + "probability": 0.9941 + }, + { + "start": 1451.88, + "end": 1454.88, + "probability": 0.9932 + }, + { + "start": 1455.66, + "end": 1459.34, + "probability": 0.9647 + }, + { + "start": 1460.3, + "end": 1466.56, + "probability": 0.9097 + }, + { + "start": 1467.42, + "end": 1468.76, + "probability": 0.9329 + }, + { + "start": 1469.66, + "end": 1470.54, + "probability": 0.9728 + }, + { + "start": 1471.86, + "end": 1475.08, + "probability": 0.8063 + }, + { + "start": 1475.64, + "end": 1477.9, + "probability": 0.9137 + }, + { + "start": 1478.9, + "end": 1483.38, + "probability": 0.9972 + }, + { + "start": 1484.44, + "end": 1486.28, + "probability": 0.9861 + }, + { + "start": 1487.08, + "end": 1492.66, + "probability": 0.9307 + }, + { + "start": 1493.52, + "end": 1496.8, + "probability": 0.9968 + }, + { + "start": 1496.8, + "end": 1501.14, + "probability": 0.9948 + }, + { + "start": 1502.72, + "end": 1504.72, + "probability": 0.8528 + }, + { + "start": 1505.34, + "end": 1506.76, + "probability": 0.9626 + }, + { + "start": 1507.98, + "end": 1508.62, + "probability": 0.8859 + }, + { + "start": 1510.08, + "end": 1516.72, + "probability": 0.9854 + }, + { + "start": 1517.82, + "end": 1518.96, + "probability": 0.939 + }, + { + "start": 1519.92, + "end": 1521.1, + "probability": 0.9186 + }, + { + "start": 1521.84, + "end": 1523.64, + "probability": 0.4886 + }, + { + "start": 1524.26, + "end": 1528.36, + "probability": 0.978 + }, + { + "start": 1529.16, + "end": 1533.6, + "probability": 0.9574 + }, + { + "start": 1535.0, + "end": 1538.68, + "probability": 0.974 + }, + { + "start": 1539.74, + "end": 1542.7, + "probability": 0.9877 + }, + { + "start": 1543.26, + "end": 1547.98, + "probability": 0.9978 + }, + { + "start": 1548.0, + "end": 1552.5, + "probability": 0.9988 + }, + { + "start": 1553.94, + "end": 1556.8, + "probability": 0.9583 + }, + { + "start": 1558.08, + "end": 1561.74, + "probability": 0.8974 + }, + { + "start": 1562.5, + "end": 1563.3, + "probability": 0.9607 + }, + { + "start": 1563.86, + "end": 1568.78, + "probability": 0.9622 + }, + { + "start": 1570.12, + "end": 1575.76, + "probability": 0.8374 + }, + { + "start": 1576.74, + "end": 1578.66, + "probability": 0.9912 + }, + { + "start": 1579.28, + "end": 1580.82, + "probability": 0.9795 + }, + { + "start": 1581.72, + "end": 1584.32, + "probability": 0.6795 + }, + { + "start": 1585.2, + "end": 1590.6, + "probability": 0.9741 + }, + { + "start": 1592.04, + "end": 1593.38, + "probability": 0.9641 + }, + { + "start": 1593.98, + "end": 1595.22, + "probability": 0.9755 + }, + { + "start": 1596.58, + "end": 1600.78, + "probability": 0.9749 + }, + { + "start": 1601.88, + "end": 1604.26, + "probability": 0.9233 + }, + { + "start": 1604.84, + "end": 1605.32, + "probability": 0.9632 + }, + { + "start": 1606.14, + "end": 1612.42, + "probability": 0.9808 + }, + { + "start": 1613.78, + "end": 1616.76, + "probability": 0.9242 + }, + { + "start": 1617.5, + "end": 1620.3, + "probability": 0.958 + }, + { + "start": 1621.28, + "end": 1625.16, + "probability": 0.9785 + }, + { + "start": 1626.36, + "end": 1628.08, + "probability": 0.8657 + }, + { + "start": 1629.12, + "end": 1630.5, + "probability": 0.8689 + }, + { + "start": 1631.16, + "end": 1632.44, + "probability": 0.8083 + }, + { + "start": 1633.12, + "end": 1638.34, + "probability": 0.959 + }, + { + "start": 1638.9, + "end": 1641.88, + "probability": 0.9959 + }, + { + "start": 1643.04, + "end": 1649.6, + "probability": 0.99 + }, + { + "start": 1650.56, + "end": 1651.26, + "probability": 0.8293 + }, + { + "start": 1652.16, + "end": 1656.46, + "probability": 0.9966 + }, + { + "start": 1657.5, + "end": 1659.68, + "probability": 0.7641 + }, + { + "start": 1660.4, + "end": 1662.46, + "probability": 0.9759 + }, + { + "start": 1663.6, + "end": 1668.54, + "probability": 0.9052 + }, + { + "start": 1669.1, + "end": 1672.1, + "probability": 0.8777 + }, + { + "start": 1673.46, + "end": 1679.34, + "probability": 0.9642 + }, + { + "start": 1680.2, + "end": 1681.5, + "probability": 0.717 + }, + { + "start": 1682.46, + "end": 1687.28, + "probability": 0.7775 + }, + { + "start": 1688.52, + "end": 1690.32, + "probability": 0.9921 + }, + { + "start": 1690.5, + "end": 1691.24, + "probability": 0.9585 + }, + { + "start": 1691.74, + "end": 1693.4, + "probability": 0.8888 + }, + { + "start": 1694.08, + "end": 1699.0, + "probability": 0.9826 + }, + { + "start": 1699.88, + "end": 1703.78, + "probability": 0.9915 + }, + { + "start": 1704.7, + "end": 1708.78, + "probability": 0.9674 + }, + { + "start": 1708.78, + "end": 1713.04, + "probability": 0.9983 + }, + { + "start": 1715.06, + "end": 1717.92, + "probability": 0.9543 + }, + { + "start": 1718.44, + "end": 1720.88, + "probability": 0.999 + }, + { + "start": 1721.64, + "end": 1725.06, + "probability": 0.9967 + }, + { + "start": 1725.66, + "end": 1728.26, + "probability": 0.972 + }, + { + "start": 1729.92, + "end": 1733.04, + "probability": 0.9976 + }, + { + "start": 1733.76, + "end": 1738.22, + "probability": 0.9934 + }, + { + "start": 1738.88, + "end": 1742.98, + "probability": 0.9773 + }, + { + "start": 1744.86, + "end": 1746.12, + "probability": 0.6158 + }, + { + "start": 1747.14, + "end": 1749.0, + "probability": 0.8726 + }, + { + "start": 1749.68, + "end": 1753.18, + "probability": 0.9542 + }, + { + "start": 1756.42, + "end": 1761.38, + "probability": 0.9953 + }, + { + "start": 1761.38, + "end": 1766.2, + "probability": 0.9511 + }, + { + "start": 1766.92, + "end": 1769.82, + "probability": 0.9525 + }, + { + "start": 1770.92, + "end": 1776.72, + "probability": 0.9956 + }, + { + "start": 1777.6, + "end": 1782.76, + "probability": 0.7714 + }, + { + "start": 1783.58, + "end": 1786.88, + "probability": 0.9932 + }, + { + "start": 1788.34, + "end": 1791.34, + "probability": 0.8867 + }, + { + "start": 1792.12, + "end": 1795.84, + "probability": 0.9816 + }, + { + "start": 1795.84, + "end": 1800.8, + "probability": 0.7342 + }, + { + "start": 1801.96, + "end": 1806.66, + "probability": 0.9878 + }, + { + "start": 1807.3, + "end": 1811.88, + "probability": 0.9727 + }, + { + "start": 1812.78, + "end": 1818.36, + "probability": 0.8772 + }, + { + "start": 1819.16, + "end": 1821.22, + "probability": 0.9024 + }, + { + "start": 1822.7, + "end": 1826.42, + "probability": 0.9826 + }, + { + "start": 1827.08, + "end": 1827.96, + "probability": 0.971 + }, + { + "start": 1828.54, + "end": 1831.66, + "probability": 0.5106 + }, + { + "start": 1831.66, + "end": 1834.98, + "probability": 0.9954 + }, + { + "start": 1835.5, + "end": 1836.62, + "probability": 0.6926 + }, + { + "start": 1837.38, + "end": 1838.16, + "probability": 0.9099 + }, + { + "start": 1840.72, + "end": 1841.7, + "probability": 0.7826 + }, + { + "start": 1842.56, + "end": 1843.58, + "probability": 0.988 + }, + { + "start": 1844.68, + "end": 1845.48, + "probability": 0.8683 + }, + { + "start": 1846.2, + "end": 1848.14, + "probability": 0.8661 + }, + { + "start": 1849.36, + "end": 1853.96, + "probability": 0.9554 + }, + { + "start": 1854.78, + "end": 1858.4, + "probability": 0.9739 + }, + { + "start": 1859.6, + "end": 1861.48, + "probability": 0.8978 + }, + { + "start": 1862.2, + "end": 1865.1, + "probability": 0.9672 + }, + { + "start": 1866.04, + "end": 1872.04, + "probability": 0.9546 + }, + { + "start": 1872.84, + "end": 1876.28, + "probability": 0.8548 + }, + { + "start": 1876.98, + "end": 1882.62, + "probability": 0.7854 + }, + { + "start": 1883.7, + "end": 1888.26, + "probability": 0.972 + }, + { + "start": 1888.94, + "end": 1891.9, + "probability": 0.7547 + }, + { + "start": 1892.6, + "end": 1893.58, + "probability": 0.8276 + }, + { + "start": 1894.2, + "end": 1897.34, + "probability": 0.8527 + }, + { + "start": 1897.96, + "end": 1900.92, + "probability": 0.9466 + }, + { + "start": 1901.76, + "end": 1903.06, + "probability": 0.8943 + }, + { + "start": 1903.64, + "end": 1906.34, + "probability": 0.7391 + }, + { + "start": 1907.6, + "end": 1912.6, + "probability": 0.8186 + }, + { + "start": 1913.14, + "end": 1916.8, + "probability": 0.9878 + }, + { + "start": 1917.78, + "end": 1921.04, + "probability": 0.9588 + }, + { + "start": 1921.96, + "end": 1926.68, + "probability": 0.9224 + }, + { + "start": 1927.58, + "end": 1930.84, + "probability": 0.9631 + }, + { + "start": 1931.84, + "end": 1932.86, + "probability": 0.6 + }, + { + "start": 1933.52, + "end": 1935.02, + "probability": 0.995 + }, + { + "start": 1936.26, + "end": 1939.42, + "probability": 0.8171 + }, + { + "start": 1942.4, + "end": 1944.48, + "probability": 0.9953 + }, + { + "start": 1945.18, + "end": 1947.4, + "probability": 0.9932 + }, + { + "start": 1947.58, + "end": 1949.12, + "probability": 0.9809 + }, + { + "start": 1949.3, + "end": 1949.96, + "probability": 0.9893 + }, + { + "start": 1951.58, + "end": 1952.52, + "probability": 0.0868 + }, + { + "start": 1962.96, + "end": 1964.36, + "probability": 0.0612 + }, + { + "start": 2006.0, + "end": 2007.3, + "probability": 0.7743 + }, + { + "start": 2008.76, + "end": 2011.34, + "probability": 0.9683 + }, + { + "start": 2012.54, + "end": 2016.1, + "probability": 0.9421 + }, + { + "start": 2018.02, + "end": 2018.92, + "probability": 0.873 + }, + { + "start": 2020.5, + "end": 2021.82, + "probability": 0.7039 + }, + { + "start": 2022.58, + "end": 2024.14, + "probability": 0.9408 + }, + { + "start": 2025.2, + "end": 2026.98, + "probability": 0.9091 + }, + { + "start": 2028.2, + "end": 2029.18, + "probability": 0.5653 + }, + { + "start": 2029.84, + "end": 2031.12, + "probability": 0.9572 + }, + { + "start": 2032.98, + "end": 2035.88, + "probability": 0.7887 + }, + { + "start": 2037.34, + "end": 2039.22, + "probability": 0.9865 + }, + { + "start": 2040.8, + "end": 2044.6, + "probability": 0.9814 + }, + { + "start": 2045.14, + "end": 2047.7, + "probability": 0.9882 + }, + { + "start": 2047.7, + "end": 2052.64, + "probability": 0.9938 + }, + { + "start": 2052.8, + "end": 2053.38, + "probability": 0.365 + }, + { + "start": 2055.66, + "end": 2056.82, + "probability": 0.7617 + }, + { + "start": 2060.5, + "end": 2061.38, + "probability": 0.755 + }, + { + "start": 2064.12, + "end": 2065.12, + "probability": 0.7618 + }, + { + "start": 2066.82, + "end": 2070.28, + "probability": 0.998 + }, + { + "start": 2073.26, + "end": 2074.94, + "probability": 0.9995 + }, + { + "start": 2076.56, + "end": 2078.8, + "probability": 0.9941 + }, + { + "start": 2080.18, + "end": 2084.38, + "probability": 0.9973 + }, + { + "start": 2085.36, + "end": 2086.56, + "probability": 0.8543 + }, + { + "start": 2087.6, + "end": 2089.18, + "probability": 0.9402 + }, + { + "start": 2091.76, + "end": 2095.66, + "probability": 0.9889 + }, + { + "start": 2097.22, + "end": 2099.72, + "probability": 0.9999 + }, + { + "start": 2101.9, + "end": 2103.36, + "probability": 0.9977 + }, + { + "start": 2104.94, + "end": 2106.96, + "probability": 0.9988 + }, + { + "start": 2111.38, + "end": 2112.72, + "probability": 0.8369 + }, + { + "start": 2114.0, + "end": 2119.62, + "probability": 0.9944 + }, + { + "start": 2121.66, + "end": 2123.2, + "probability": 0.9875 + }, + { + "start": 2124.68, + "end": 2132.68, + "probability": 0.9948 + }, + { + "start": 2136.32, + "end": 2136.92, + "probability": 0.8817 + }, + { + "start": 2136.98, + "end": 2146.74, + "probability": 0.9751 + }, + { + "start": 2148.52, + "end": 2149.36, + "probability": 0.919 + }, + { + "start": 2150.7, + "end": 2153.02, + "probability": 0.8665 + }, + { + "start": 2154.96, + "end": 2155.62, + "probability": 0.5235 + }, + { + "start": 2157.52, + "end": 2161.88, + "probability": 0.9979 + }, + { + "start": 2161.88, + "end": 2166.54, + "probability": 0.9979 + }, + { + "start": 2168.12, + "end": 2173.08, + "probability": 0.8499 + }, + { + "start": 2174.86, + "end": 2178.2, + "probability": 0.9983 + }, + { + "start": 2181.02, + "end": 2182.08, + "probability": 0.9883 + }, + { + "start": 2184.2, + "end": 2190.94, + "probability": 0.9375 + }, + { + "start": 2191.88, + "end": 2192.74, + "probability": 0.8747 + }, + { + "start": 2194.42, + "end": 2200.04, + "probability": 0.9329 + }, + { + "start": 2200.66, + "end": 2204.4, + "probability": 0.9959 + }, + { + "start": 2205.92, + "end": 2206.71, + "probability": 0.9941 + }, + { + "start": 2207.76, + "end": 2209.62, + "probability": 0.9893 + }, + { + "start": 2210.52, + "end": 2212.04, + "probability": 0.9476 + }, + { + "start": 2213.34, + "end": 2217.16, + "probability": 0.9959 + }, + { + "start": 2218.96, + "end": 2223.76, + "probability": 0.9926 + }, + { + "start": 2224.84, + "end": 2226.74, + "probability": 0.7905 + }, + { + "start": 2228.04, + "end": 2231.72, + "probability": 0.9932 + }, + { + "start": 2234.05, + "end": 2239.44, + "probability": 0.9889 + }, + { + "start": 2241.88, + "end": 2250.36, + "probability": 0.9677 + }, + { + "start": 2250.36, + "end": 2255.22, + "probability": 0.9852 + }, + { + "start": 2256.16, + "end": 2261.4, + "probability": 0.9923 + }, + { + "start": 2262.62, + "end": 2264.0, + "probability": 0.9601 + }, + { + "start": 2264.96, + "end": 2267.68, + "probability": 0.9778 + }, + { + "start": 2269.26, + "end": 2269.86, + "probability": 0.6844 + }, + { + "start": 2270.38, + "end": 2275.0, + "probability": 0.9801 + }, + { + "start": 2275.94, + "end": 2276.38, + "probability": 0.9258 + }, + { + "start": 2279.06, + "end": 2282.46, + "probability": 0.9978 + }, + { + "start": 2283.8, + "end": 2287.24, + "probability": 0.9948 + }, + { + "start": 2287.9, + "end": 2291.7, + "probability": 0.9849 + }, + { + "start": 2292.86, + "end": 2295.44, + "probability": 0.9791 + }, + { + "start": 2296.0, + "end": 2297.62, + "probability": 0.9751 + }, + { + "start": 2297.78, + "end": 2299.0, + "probability": 0.8306 + }, + { + "start": 2299.38, + "end": 2301.34, + "probability": 0.7275 + }, + { + "start": 2302.88, + "end": 2303.06, + "probability": 0.6857 + }, + { + "start": 2303.14, + "end": 2305.72, + "probability": 0.9775 + }, + { + "start": 2305.84, + "end": 2306.56, + "probability": 0.9623 + }, + { + "start": 2307.08, + "end": 2308.24, + "probability": 0.8309 + }, + { + "start": 2311.76, + "end": 2315.06, + "probability": 0.9974 + }, + { + "start": 2316.1, + "end": 2318.64, + "probability": 0.9979 + }, + { + "start": 2320.04, + "end": 2321.64, + "probability": 0.9935 + }, + { + "start": 2322.5, + "end": 2323.98, + "probability": 0.9628 + }, + { + "start": 2325.58, + "end": 2331.38, + "probability": 0.9694 + }, + { + "start": 2332.38, + "end": 2333.65, + "probability": 0.9863 + }, + { + "start": 2335.48, + "end": 2337.64, + "probability": 0.7493 + }, + { + "start": 2338.44, + "end": 2339.68, + "probability": 0.8595 + }, + { + "start": 2340.6, + "end": 2345.64, + "probability": 0.9927 + }, + { + "start": 2347.4, + "end": 2348.64, + "probability": 0.9751 + }, + { + "start": 2350.04, + "end": 2351.82, + "probability": 0.9887 + }, + { + "start": 2353.16, + "end": 2357.9, + "probability": 0.9978 + }, + { + "start": 2359.06, + "end": 2359.62, + "probability": 0.7322 + }, + { + "start": 2360.64, + "end": 2366.3, + "probability": 0.9615 + }, + { + "start": 2367.02, + "end": 2368.04, + "probability": 0.5175 + }, + { + "start": 2369.4, + "end": 2373.26, + "probability": 0.9884 + }, + { + "start": 2376.44, + "end": 2379.14, + "probability": 0.9956 + }, + { + "start": 2379.14, + "end": 2382.72, + "probability": 0.9953 + }, + { + "start": 2384.36, + "end": 2384.74, + "probability": 0.5235 + }, + { + "start": 2384.86, + "end": 2385.1, + "probability": 0.7912 + }, + { + "start": 2385.18, + "end": 2389.12, + "probability": 0.984 + }, + { + "start": 2389.12, + "end": 2394.08, + "probability": 0.9674 + }, + { + "start": 2395.38, + "end": 2397.84, + "probability": 0.8638 + }, + { + "start": 2398.7, + "end": 2402.02, + "probability": 0.9976 + }, + { + "start": 2402.7, + "end": 2403.5, + "probability": 0.988 + }, + { + "start": 2404.08, + "end": 2407.14, + "probability": 0.9988 + }, + { + "start": 2409.4, + "end": 2412.1, + "probability": 0.9912 + }, + { + "start": 2413.26, + "end": 2414.46, + "probability": 0.9595 + }, + { + "start": 2416.36, + "end": 2417.04, + "probability": 0.4755 + }, + { + "start": 2418.34, + "end": 2423.7, + "probability": 0.9926 + }, + { + "start": 2425.86, + "end": 2429.06, + "probability": 0.9614 + }, + { + "start": 2430.8, + "end": 2434.42, + "probability": 0.9927 + }, + { + "start": 2435.8, + "end": 2437.62, + "probability": 0.9979 + }, + { + "start": 2440.46, + "end": 2441.54, + "probability": 0.8902 + }, + { + "start": 2443.26, + "end": 2446.12, + "probability": 0.9968 + }, + { + "start": 2447.22, + "end": 2449.4, + "probability": 0.9956 + }, + { + "start": 2451.4, + "end": 2454.34, + "probability": 0.9058 + }, + { + "start": 2455.66, + "end": 2460.36, + "probability": 0.9972 + }, + { + "start": 2461.32, + "end": 2464.42, + "probability": 0.9945 + }, + { + "start": 2466.29, + "end": 2469.3, + "probability": 0.7277 + }, + { + "start": 2470.16, + "end": 2474.24, + "probability": 0.993 + }, + { + "start": 2474.84, + "end": 2479.04, + "probability": 0.997 + }, + { + "start": 2480.22, + "end": 2481.76, + "probability": 1.0 + }, + { + "start": 2484.38, + "end": 2487.92, + "probability": 0.9809 + }, + { + "start": 2489.52, + "end": 2490.22, + "probability": 0.6637 + }, + { + "start": 2491.38, + "end": 2491.9, + "probability": 0.7506 + }, + { + "start": 2494.0, + "end": 2496.74, + "probability": 0.9905 + }, + { + "start": 2499.06, + "end": 2505.1, + "probability": 0.9949 + }, + { + "start": 2506.46, + "end": 2507.58, + "probability": 0.7636 + }, + { + "start": 2508.22, + "end": 2508.81, + "probability": 0.7323 + }, + { + "start": 2511.08, + "end": 2511.14, + "probability": 0.8701 + }, + { + "start": 2512.84, + "end": 2513.82, + "probability": 0.8478 + }, + { + "start": 2515.36, + "end": 2516.86, + "probability": 0.9655 + }, + { + "start": 2518.38, + "end": 2524.86, + "probability": 0.9972 + }, + { + "start": 2525.8, + "end": 2528.04, + "probability": 0.9931 + }, + { + "start": 2529.36, + "end": 2531.46, + "probability": 0.9858 + }, + { + "start": 2532.76, + "end": 2537.44, + "probability": 0.9973 + }, + { + "start": 2537.54, + "end": 2540.46, + "probability": 0.9603 + }, + { + "start": 2541.38, + "end": 2544.02, + "probability": 0.9971 + }, + { + "start": 2544.5, + "end": 2548.82, + "probability": 0.9982 + }, + { + "start": 2551.46, + "end": 2553.12, + "probability": 0.6613 + }, + { + "start": 2554.04, + "end": 2559.62, + "probability": 0.9954 + }, + { + "start": 2561.66, + "end": 2562.58, + "probability": 0.5084 + }, + { + "start": 2563.74, + "end": 2565.68, + "probability": 0.9918 + }, + { + "start": 2567.56, + "end": 2568.54, + "probability": 0.7066 + }, + { + "start": 2569.82, + "end": 2570.48, + "probability": 0.5718 + }, + { + "start": 2571.06, + "end": 2574.6, + "probability": 0.9631 + }, + { + "start": 2576.78, + "end": 2580.24, + "probability": 0.9912 + }, + { + "start": 2581.94, + "end": 2586.86, + "probability": 0.9756 + }, + { + "start": 2588.08, + "end": 2590.36, + "probability": 0.84 + }, + { + "start": 2592.72, + "end": 2596.18, + "probability": 0.9825 + }, + { + "start": 2598.74, + "end": 2604.82, + "probability": 0.998 + }, + { + "start": 2604.82, + "end": 2611.42, + "probability": 0.9976 + }, + { + "start": 2614.52, + "end": 2617.6, + "probability": 0.9108 + }, + { + "start": 2617.94, + "end": 2619.76, + "probability": 0.752 + }, + { + "start": 2621.72, + "end": 2622.58, + "probability": 0.999 + }, + { + "start": 2623.84, + "end": 2626.86, + "probability": 0.9017 + }, + { + "start": 2628.84, + "end": 2630.24, + "probability": 0.8748 + }, + { + "start": 2632.84, + "end": 2634.5, + "probability": 0.8816 + }, + { + "start": 2636.02, + "end": 2636.78, + "probability": 0.9479 + }, + { + "start": 2638.98, + "end": 2639.56, + "probability": 0.7217 + }, + { + "start": 2641.48, + "end": 2642.32, + "probability": 0.8457 + }, + { + "start": 2643.96, + "end": 2646.02, + "probability": 0.9987 + }, + { + "start": 2648.0, + "end": 2656.5, + "probability": 0.9956 + }, + { + "start": 2656.66, + "end": 2657.64, + "probability": 0.7913 + }, + { + "start": 2657.78, + "end": 2658.52, + "probability": 0.7205 + }, + { + "start": 2659.38, + "end": 2660.62, + "probability": 0.9579 + }, + { + "start": 2662.38, + "end": 2666.12, + "probability": 0.9943 + }, + { + "start": 2666.94, + "end": 2670.48, + "probability": 0.9448 + }, + { + "start": 2671.04, + "end": 2673.69, + "probability": 0.3559 + }, + { + "start": 2674.68, + "end": 2679.64, + "probability": 0.998 + }, + { + "start": 2682.32, + "end": 2683.56, + "probability": 0.5991 + }, + { + "start": 2686.62, + "end": 2688.4, + "probability": 0.9883 + }, + { + "start": 2689.74, + "end": 2690.74, + "probability": 0.9128 + }, + { + "start": 2691.54, + "end": 2693.6, + "probability": 0.9764 + }, + { + "start": 2695.62, + "end": 2698.4, + "probability": 0.9989 + }, + { + "start": 2700.38, + "end": 2705.24, + "probability": 0.9915 + }, + { + "start": 2706.8, + "end": 2707.28, + "probability": 0.9781 + }, + { + "start": 2708.98, + "end": 2712.02, + "probability": 0.8936 + }, + { + "start": 2713.12, + "end": 2717.22, + "probability": 0.9944 + }, + { + "start": 2718.4, + "end": 2719.76, + "probability": 0.9809 + }, + { + "start": 2723.36, + "end": 2724.25, + "probability": 0.9971 + }, + { + "start": 2727.5, + "end": 2728.42, + "probability": 0.3832 + }, + { + "start": 2728.54, + "end": 2728.56, + "probability": 0.1423 + }, + { + "start": 2728.56, + "end": 2728.84, + "probability": 0.0403 + }, + { + "start": 2729.42, + "end": 2730.92, + "probability": 0.7707 + }, + { + "start": 2731.1, + "end": 2732.32, + "probability": 0.7275 + }, + { + "start": 2732.42, + "end": 2732.64, + "probability": 0.09 + }, + { + "start": 2732.64, + "end": 2736.5, + "probability": 0.2398 + }, + { + "start": 2736.8, + "end": 2737.52, + "probability": 0.3822 + }, + { + "start": 2739.14, + "end": 2741.15, + "probability": 0.7822 + }, + { + "start": 2743.74, + "end": 2744.54, + "probability": 0.9607 + }, + { + "start": 2747.2, + "end": 2749.44, + "probability": 0.9888 + }, + { + "start": 2751.3, + "end": 2756.6, + "probability": 0.9955 + }, + { + "start": 2759.1, + "end": 2760.32, + "probability": 0.9956 + }, + { + "start": 2762.56, + "end": 2765.52, + "probability": 0.9843 + }, + { + "start": 2766.6, + "end": 2769.68, + "probability": 0.9281 + }, + { + "start": 2771.18, + "end": 2775.38, + "probability": 0.9927 + }, + { + "start": 2777.56, + "end": 2778.94, + "probability": 0.9624 + }, + { + "start": 2781.0, + "end": 2781.92, + "probability": 0.9289 + }, + { + "start": 2782.92, + "end": 2786.0, + "probability": 0.893 + }, + { + "start": 2787.2, + "end": 2790.52, + "probability": 0.9976 + }, + { + "start": 2792.02, + "end": 2797.34, + "probability": 0.9995 + }, + { + "start": 2798.34, + "end": 2801.58, + "probability": 0.9821 + }, + { + "start": 2802.64, + "end": 2805.62, + "probability": 0.4451 + }, + { + "start": 2806.06, + "end": 2809.12, + "probability": 0.9258 + }, + { + "start": 2809.12, + "end": 2811.0, + "probability": 0.167 + }, + { + "start": 2811.02, + "end": 2812.24, + "probability": 0.6072 + }, + { + "start": 2812.36, + "end": 2812.92, + "probability": 0.6559 + }, + { + "start": 2813.2, + "end": 2813.44, + "probability": 0.5619 + }, + { + "start": 2813.44, + "end": 2815.46, + "probability": 0.9054 + }, + { + "start": 2815.64, + "end": 2818.34, + "probability": 0.9903 + }, + { + "start": 2819.79, + "end": 2828.14, + "probability": 0.9669 + }, + { + "start": 2830.48, + "end": 2834.14, + "probability": 0.7834 + }, + { + "start": 2836.82, + "end": 2841.64, + "probability": 0.9833 + }, + { + "start": 2842.84, + "end": 2848.26, + "probability": 0.9971 + }, + { + "start": 2849.44, + "end": 2854.22, + "probability": 0.9907 + }, + { + "start": 2854.22, + "end": 2859.38, + "probability": 0.9871 + }, + { + "start": 2860.46, + "end": 2863.16, + "probability": 0.8792 + }, + { + "start": 2864.7, + "end": 2868.14, + "probability": 0.9844 + }, + { + "start": 2870.9, + "end": 2872.38, + "probability": 0.993 + }, + { + "start": 2875.12, + "end": 2879.96, + "probability": 0.9885 + }, + { + "start": 2882.04, + "end": 2884.6, + "probability": 0.9894 + }, + { + "start": 2885.76, + "end": 2891.54, + "probability": 0.9697 + }, + { + "start": 2892.74, + "end": 2894.24, + "probability": 0.9838 + }, + { + "start": 2895.54, + "end": 2897.86, + "probability": 0.9977 + }, + { + "start": 2899.02, + "end": 2901.84, + "probability": 0.9277 + }, + { + "start": 2903.3, + "end": 2909.8, + "probability": 0.9788 + }, + { + "start": 2911.62, + "end": 2914.92, + "probability": 0.9172 + }, + { + "start": 2916.56, + "end": 2922.3, + "probability": 0.8304 + }, + { + "start": 2923.5, + "end": 2926.66, + "probability": 0.9946 + }, + { + "start": 2928.08, + "end": 2930.44, + "probability": 0.8576 + }, + { + "start": 2931.9, + "end": 2936.62, + "probability": 0.9916 + }, + { + "start": 2937.96, + "end": 2943.26, + "probability": 0.9453 + }, + { + "start": 2944.5, + "end": 2949.66, + "probability": 0.9979 + }, + { + "start": 2949.94, + "end": 2954.7, + "probability": 0.9987 + }, + { + "start": 2956.28, + "end": 2959.28, + "probability": 0.9978 + }, + { + "start": 2959.98, + "end": 2964.76, + "probability": 0.9971 + }, + { + "start": 2965.68, + "end": 2967.71, + "probability": 0.874 + }, + { + "start": 2968.64, + "end": 2969.54, + "probability": 0.8121 + }, + { + "start": 2969.66, + "end": 2970.68, + "probability": 0.9156 + }, + { + "start": 2971.56, + "end": 2972.6, + "probability": 0.6994 + }, + { + "start": 2973.68, + "end": 2975.26, + "probability": 0.8115 + }, + { + "start": 2976.44, + "end": 2982.14, + "probability": 0.9949 + }, + { + "start": 2983.42, + "end": 2989.16, + "probability": 0.9946 + }, + { + "start": 2990.08, + "end": 2991.16, + "probability": 0.7172 + }, + { + "start": 2992.56, + "end": 2993.67, + "probability": 0.9277 + }, + { + "start": 2995.22, + "end": 2996.52, + "probability": 0.9567 + }, + { + "start": 2999.08, + "end": 3000.96, + "probability": 0.9983 + }, + { + "start": 3001.1, + "end": 3006.9, + "probability": 0.9624 + }, + { + "start": 3008.76, + "end": 3009.78, + "probability": 0.8073 + }, + { + "start": 3011.18, + "end": 3015.76, + "probability": 0.9978 + }, + { + "start": 3016.03, + "end": 3021.98, + "probability": 0.9979 + }, + { + "start": 3023.52, + "end": 3025.24, + "probability": 0.9916 + }, + { + "start": 3027.86, + "end": 3031.22, + "probability": 0.9923 + }, + { + "start": 3033.1, + "end": 3038.18, + "probability": 0.9888 + }, + { + "start": 3038.82, + "end": 3039.1, + "probability": 0.7305 + }, + { + "start": 3040.7, + "end": 3044.64, + "probability": 0.943 + }, + { + "start": 3045.9, + "end": 3047.39, + "probability": 0.9961 + }, + { + "start": 3047.66, + "end": 3050.18, + "probability": 0.9983 + }, + { + "start": 3051.28, + "end": 3055.84, + "probability": 0.998 + }, + { + "start": 3056.6, + "end": 3058.36, + "probability": 0.0576 + }, + { + "start": 3058.52, + "end": 3065.92, + "probability": 0.9717 + }, + { + "start": 3066.16, + "end": 3067.96, + "probability": 0.9395 + }, + { + "start": 3068.22, + "end": 3071.56, + "probability": 0.8547 + }, + { + "start": 3071.76, + "end": 3072.94, + "probability": 0.7182 + }, + { + "start": 3074.6, + "end": 3077.47, + "probability": 0.9193 + }, + { + "start": 3078.0, + "end": 3080.08, + "probability": 0.9873 + }, + { + "start": 3080.4, + "end": 3085.56, + "probability": 0.9978 + }, + { + "start": 3086.5, + "end": 3088.86, + "probability": 0.9941 + }, + { + "start": 3090.08, + "end": 3090.7, + "probability": 0.9705 + }, + { + "start": 3092.24, + "end": 3095.46, + "probability": 0.5469 + }, + { + "start": 3095.46, + "end": 3098.02, + "probability": 0.9833 + }, + { + "start": 3099.06, + "end": 3101.22, + "probability": 0.9955 + }, + { + "start": 3102.68, + "end": 3108.46, + "probability": 0.9614 + }, + { + "start": 3110.22, + "end": 3112.64, + "probability": 0.9714 + }, + { + "start": 3112.68, + "end": 3113.78, + "probability": 0.8467 + }, + { + "start": 3113.84, + "end": 3114.48, + "probability": 0.7863 + }, + { + "start": 3114.72, + "end": 3114.98, + "probability": 0.6863 + }, + { + "start": 3115.04, + "end": 3115.58, + "probability": 0.9583 + }, + { + "start": 3119.24, + "end": 3121.64, + "probability": 0.9572 + }, + { + "start": 3123.3, + "end": 3126.74, + "probability": 0.9966 + }, + { + "start": 3128.42, + "end": 3132.2, + "probability": 0.9917 + }, + { + "start": 3132.2, + "end": 3136.6, + "probability": 0.9995 + }, + { + "start": 3137.88, + "end": 3139.98, + "probability": 0.787 + }, + { + "start": 3141.08, + "end": 3143.74, + "probability": 0.8817 + }, + { + "start": 3144.98, + "end": 3145.62, + "probability": 0.8125 + }, + { + "start": 3147.34, + "end": 3150.94, + "probability": 0.9907 + }, + { + "start": 3152.74, + "end": 3154.92, + "probability": 0.8553 + }, + { + "start": 3155.74, + "end": 3157.86, + "probability": 0.9756 + }, + { + "start": 3159.62, + "end": 3162.46, + "probability": 0.9246 + }, + { + "start": 3162.94, + "end": 3166.18, + "probability": 0.9905 + }, + { + "start": 3166.4, + "end": 3167.5, + "probability": 0.8118 + }, + { + "start": 3169.54, + "end": 3174.76, + "probability": 0.9981 + }, + { + "start": 3176.4, + "end": 3177.26, + "probability": 0.6242 + }, + { + "start": 3177.34, + "end": 3180.1, + "probability": 0.9932 + }, + { + "start": 3180.36, + "end": 3181.6, + "probability": 0.883 + }, + { + "start": 3182.28, + "end": 3184.8, + "probability": 0.9983 + }, + { + "start": 3184.8, + "end": 3189.84, + "probability": 0.9783 + }, + { + "start": 3190.58, + "end": 3192.34, + "probability": 0.6666 + }, + { + "start": 3192.4, + "end": 3193.68, + "probability": 0.8993 + }, + { + "start": 3194.16, + "end": 3197.54, + "probability": 0.9975 + }, + { + "start": 3198.68, + "end": 3199.04, + "probability": 0.9554 + }, + { + "start": 3199.18, + "end": 3205.6, + "probability": 0.979 + }, + { + "start": 3206.42, + "end": 3210.58, + "probability": 0.9948 + }, + { + "start": 3212.0, + "end": 3213.52, + "probability": 0.9919 + }, + { + "start": 3213.56, + "end": 3215.04, + "probability": 0.966 + }, + { + "start": 3215.32, + "end": 3216.92, + "probability": 0.904 + }, + { + "start": 3218.2, + "end": 3220.88, + "probability": 0.7258 + }, + { + "start": 3220.88, + "end": 3222.84, + "probability": 0.3548 + }, + { + "start": 3222.84, + "end": 3225.6, + "probability": 0.7555 + }, + { + "start": 3226.98, + "end": 3231.98, + "probability": 0.9961 + }, + { + "start": 3233.0, + "end": 3235.9, + "probability": 0.9973 + }, + { + "start": 3236.14, + "end": 3236.94, + "probability": 0.9722 + }, + { + "start": 3237.34, + "end": 3240.16, + "probability": 0.9827 + }, + { + "start": 3241.76, + "end": 3246.33, + "probability": 0.9974 + }, + { + "start": 3247.84, + "end": 3251.82, + "probability": 0.9855 + }, + { + "start": 3253.08, + "end": 3255.44, + "probability": 0.9969 + }, + { + "start": 3257.06, + "end": 3258.42, + "probability": 0.9618 + }, + { + "start": 3259.84, + "end": 3260.0, + "probability": 0.2705 + }, + { + "start": 3260.58, + "end": 3263.58, + "probability": 0.9943 + }, + { + "start": 3266.0, + "end": 3266.74, + "probability": 0.96 + }, + { + "start": 3266.98, + "end": 3270.7, + "probability": 0.9569 + }, + { + "start": 3270.8, + "end": 3272.0, + "probability": 0.7154 + }, + { + "start": 3272.84, + "end": 3274.34, + "probability": 0.7163 + }, + { + "start": 3275.56, + "end": 3280.62, + "probability": 0.9726 + }, + { + "start": 3280.68, + "end": 3281.66, + "probability": 0.9698 + }, + { + "start": 3281.78, + "end": 3282.82, + "probability": 0.8792 + }, + { + "start": 3283.4, + "end": 3286.9, + "probability": 0.9978 + }, + { + "start": 3287.66, + "end": 3288.04, + "probability": 0.5042 + }, + { + "start": 3288.04, + "end": 3290.24, + "probability": 0.9763 + }, + { + "start": 3290.6, + "end": 3293.54, + "probability": 0.9763 + }, + { + "start": 3294.0, + "end": 3294.6, + "probability": 0.8906 + }, + { + "start": 3294.74, + "end": 3296.1, + "probability": 0.9577 + }, + { + "start": 3296.2, + "end": 3296.9, + "probability": 0.8316 + }, + { + "start": 3297.24, + "end": 3306.96, + "probability": 0.9655 + }, + { + "start": 3307.18, + "end": 3309.6, + "probability": 0.9971 + }, + { + "start": 3310.5, + "end": 3311.18, + "probability": 0.8823 + }, + { + "start": 3312.88, + "end": 3314.83, + "probability": 0.8663 + }, + { + "start": 3314.96, + "end": 3315.78, + "probability": 0.9544 + }, + { + "start": 3315.86, + "end": 3317.24, + "probability": 0.9708 + }, + { + "start": 3317.98, + "end": 3319.76, + "probability": 0.9808 + }, + { + "start": 3319.86, + "end": 3322.1, + "probability": 0.9596 + }, + { + "start": 3322.74, + "end": 3324.44, + "probability": 0.6613 + }, + { + "start": 3326.36, + "end": 3327.15, + "probability": 0.7689 + }, + { + "start": 3329.02, + "end": 3331.44, + "probability": 0.7815 + }, + { + "start": 3332.72, + "end": 3338.12, + "probability": 0.9804 + }, + { + "start": 3338.3, + "end": 3339.2, + "probability": 0.8772 + }, + { + "start": 3339.8, + "end": 3340.7, + "probability": 0.017 + }, + { + "start": 3340.76, + "end": 3340.84, + "probability": 0.0546 + }, + { + "start": 3340.84, + "end": 3349.06, + "probability": 0.9978 + }, + { + "start": 3349.12, + "end": 3351.1, + "probability": 0.9512 + }, + { + "start": 3352.48, + "end": 3353.46, + "probability": 0.6667 + }, + { + "start": 3354.86, + "end": 3363.64, + "probability": 0.9971 + }, + { + "start": 3364.98, + "end": 3367.24, + "probability": 0.7603 + }, + { + "start": 3368.18, + "end": 3369.68, + "probability": 0.9546 + }, + { + "start": 3370.64, + "end": 3373.7, + "probability": 0.979 + }, + { + "start": 3374.94, + "end": 3379.98, + "probability": 0.995 + }, + { + "start": 3380.14, + "end": 3380.68, + "probability": 0.8789 + }, + { + "start": 3380.78, + "end": 3381.3, + "probability": 0.9641 + }, + { + "start": 3381.38, + "end": 3381.92, + "probability": 0.9298 + }, + { + "start": 3382.02, + "end": 3382.46, + "probability": 0.8757 + }, + { + "start": 3382.52, + "end": 3383.14, + "probability": 0.5449 + }, + { + "start": 3384.86, + "end": 3385.9, + "probability": 0.8397 + }, + { + "start": 3385.9, + "end": 3389.44, + "probability": 0.6655 + }, + { + "start": 3390.0, + "end": 3391.76, + "probability": 0.9727 + }, + { + "start": 3393.14, + "end": 3397.18, + "probability": 0.5869 + }, + { + "start": 3397.38, + "end": 3400.46, + "probability": 0.5962 + }, + { + "start": 3403.7, + "end": 3408.22, + "probability": 0.5307 + }, + { + "start": 3409.3, + "end": 3411.26, + "probability": 0.4752 + }, + { + "start": 3412.32, + "end": 3417.04, + "probability": 0.4406 + }, + { + "start": 3418.8, + "end": 3418.8, + "probability": 0.5016 + }, + { + "start": 3418.8, + "end": 3419.58, + "probability": 0.2832 + }, + { + "start": 3419.62, + "end": 3420.6, + "probability": 0.3245 + }, + { + "start": 3421.22, + "end": 3423.46, + "probability": 0.777 + }, + { + "start": 3423.66, + "end": 3428.08, + "probability": 0.7958 + }, + { + "start": 3428.34, + "end": 3431.42, + "probability": 0.2889 + }, + { + "start": 3431.84, + "end": 3433.48, + "probability": 0.2819 + }, + { + "start": 3433.64, + "end": 3434.42, + "probability": 0.5667 + }, + { + "start": 3436.1, + "end": 3437.26, + "probability": 0.9324 + }, + { + "start": 3438.67, + "end": 3442.54, + "probability": 0.6109 + }, + { + "start": 3443.51, + "end": 3446.72, + "probability": 0.7911 + }, + { + "start": 3447.02, + "end": 3449.6, + "probability": 0.512 + }, + { + "start": 3450.34, + "end": 3455.28, + "probability": 0.2547 + }, + { + "start": 3455.5, + "end": 3460.32, + "probability": 0.7108 + }, + { + "start": 3460.4, + "end": 3461.22, + "probability": 0.9818 + }, + { + "start": 3461.52, + "end": 3464.36, + "probability": 0.8082 + }, + { + "start": 3464.44, + "end": 3469.78, + "probability": 0.7511 + }, + { + "start": 3470.4, + "end": 3471.8, + "probability": 0.9184 + }, + { + "start": 3472.96, + "end": 3477.76, + "probability": 0.9863 + }, + { + "start": 3478.68, + "end": 3480.22, + "probability": 0.7558 + }, + { + "start": 3481.28, + "end": 3483.0, + "probability": 0.8625 + }, + { + "start": 3483.78, + "end": 3485.96, + "probability": 0.8736 + }, + { + "start": 3486.92, + "end": 3490.24, + "probability": 0.8639 + }, + { + "start": 3490.92, + "end": 3496.46, + "probability": 0.9974 + }, + { + "start": 3497.52, + "end": 3499.2, + "probability": 0.8966 + }, + { + "start": 3500.26, + "end": 3508.18, + "probability": 0.9349 + }, + { + "start": 3508.24, + "end": 3508.34, + "probability": 0.0015 + }, + { + "start": 3509.89, + "end": 3510.38, + "probability": 0.071 + }, + { + "start": 3510.38, + "end": 3511.0, + "probability": 0.0712 + }, + { + "start": 3511.7, + "end": 3516.26, + "probability": 0.9528 + }, + { + "start": 3517.16, + "end": 3520.96, + "probability": 0.9677 + }, + { + "start": 3521.78, + "end": 3527.27, + "probability": 0.969 + }, + { + "start": 3529.32, + "end": 3529.32, + "probability": 0.0605 + }, + { + "start": 3529.32, + "end": 3533.14, + "probability": 0.9465 + }, + { + "start": 3534.3, + "end": 3537.78, + "probability": 0.9827 + }, + { + "start": 3538.56, + "end": 3543.66, + "probability": 0.8772 + }, + { + "start": 3545.34, + "end": 3547.58, + "probability": 0.0113 + }, + { + "start": 3549.7, + "end": 3550.02, + "probability": 0.0641 + }, + { + "start": 3550.02, + "end": 3550.06, + "probability": 0.016 + }, + { + "start": 3550.06, + "end": 3552.18, + "probability": 0.9067 + }, + { + "start": 3552.36, + "end": 3555.66, + "probability": 0.9971 + }, + { + "start": 3556.56, + "end": 3560.64, + "probability": 0.99 + }, + { + "start": 3562.18, + "end": 3565.72, + "probability": 0.9901 + }, + { + "start": 3567.54, + "end": 3569.28, + "probability": 0.9116 + }, + { + "start": 3570.82, + "end": 3573.76, + "probability": 0.9591 + }, + { + "start": 3575.84, + "end": 3578.73, + "probability": 0.9501 + }, + { + "start": 3580.04, + "end": 3583.22, + "probability": 0.9669 + }, + { + "start": 3584.8, + "end": 3592.44, + "probability": 0.9432 + }, + { + "start": 3593.28, + "end": 3594.26, + "probability": 0.9977 + }, + { + "start": 3595.52, + "end": 3597.32, + "probability": 0.9987 + }, + { + "start": 3598.28, + "end": 3601.18, + "probability": 0.9712 + }, + { + "start": 3602.54, + "end": 3605.44, + "probability": 0.9426 + }, + { + "start": 3607.04, + "end": 3608.04, + "probability": 0.7492 + }, + { + "start": 3609.76, + "end": 3614.92, + "probability": 0.9956 + }, + { + "start": 3615.76, + "end": 3618.26, + "probability": 0.9951 + }, + { + "start": 3619.48, + "end": 3622.86, + "probability": 0.8888 + }, + { + "start": 3623.84, + "end": 3627.02, + "probability": 0.99 + }, + { + "start": 3627.94, + "end": 3634.94, + "probability": 0.9401 + }, + { + "start": 3635.9, + "end": 3637.62, + "probability": 0.9969 + }, + { + "start": 3638.36, + "end": 3641.42, + "probability": 0.9924 + }, + { + "start": 3642.36, + "end": 3644.34, + "probability": 0.7849 + }, + { + "start": 3645.56, + "end": 3648.84, + "probability": 0.9847 + }, + { + "start": 3650.32, + "end": 3652.5, + "probability": 0.9837 + }, + { + "start": 3654.6, + "end": 3660.86, + "probability": 0.9932 + }, + { + "start": 3661.32, + "end": 3662.04, + "probability": 0.0273 + }, + { + "start": 3662.16, + "end": 3666.68, + "probability": 0.7095 + }, + { + "start": 3666.68, + "end": 3671.64, + "probability": 0.4626 + }, + { + "start": 3672.0, + "end": 3678.12, + "probability": 0.9961 + }, + { + "start": 3679.36, + "end": 3683.72, + "probability": 0.9868 + }, + { + "start": 3684.22, + "end": 3688.74, + "probability": 0.9966 + }, + { + "start": 3689.46, + "end": 3693.56, + "probability": 0.2101 + }, + { + "start": 3693.84, + "end": 3695.02, + "probability": 0.1766 + }, + { + "start": 3695.12, + "end": 3696.56, + "probability": 0.7969 + }, + { + "start": 3696.56, + "end": 3701.56, + "probability": 0.9257 + }, + { + "start": 3702.56, + "end": 3712.54, + "probability": 0.9916 + }, + { + "start": 3713.86, + "end": 3720.44, + "probability": 0.9844 + }, + { + "start": 3722.48, + "end": 3728.02, + "probability": 0.9992 + }, + { + "start": 3728.54, + "end": 3729.12, + "probability": 0.1132 + }, + { + "start": 3729.46, + "end": 3735.8, + "probability": 0.9347 + }, + { + "start": 3737.8, + "end": 3743.7, + "probability": 0.9984 + }, + { + "start": 3745.04, + "end": 3745.32, + "probability": 0.1628 + }, + { + "start": 3745.32, + "end": 3745.32, + "probability": 0.1446 + }, + { + "start": 3745.32, + "end": 3747.12, + "probability": 0.7579 + }, + { + "start": 3748.08, + "end": 3751.98, + "probability": 0.961 + }, + { + "start": 3753.18, + "end": 3753.9, + "probability": 0.8337 + }, + { + "start": 3755.74, + "end": 3758.36, + "probability": 0.9153 + }, + { + "start": 3759.46, + "end": 3760.5, + "probability": 0.9572 + }, + { + "start": 3761.56, + "end": 3766.78, + "probability": 0.9978 + }, + { + "start": 3767.64, + "end": 3769.36, + "probability": 0.965 + }, + { + "start": 3770.63, + "end": 3770.7, + "probability": 0.1376 + }, + { + "start": 3770.78, + "end": 3770.88, + "probability": 0.0145 + }, + { + "start": 3770.88, + "end": 3773.3, + "probability": 0.8708 + }, + { + "start": 3775.4, + "end": 3776.56, + "probability": 0.9019 + }, + { + "start": 3779.34, + "end": 3783.66, + "probability": 0.9241 + }, + { + "start": 3786.08, + "end": 3790.04, + "probability": 0.9982 + }, + { + "start": 3790.3, + "end": 3794.3, + "probability": 0.9982 + }, + { + "start": 3794.6, + "end": 3795.36, + "probability": 0.113 + }, + { + "start": 3795.42, + "end": 3796.98, + "probability": 0.8466 + }, + { + "start": 3797.32, + "end": 3803.76, + "probability": 0.9717 + }, + { + "start": 3804.48, + "end": 3805.66, + "probability": 0.8165 + }, + { + "start": 3806.14, + "end": 3807.06, + "probability": 0.0632 + }, + { + "start": 3807.18, + "end": 3813.22, + "probability": 0.7581 + }, + { + "start": 3814.46, + "end": 3816.44, + "probability": 0.8828 + }, + { + "start": 3817.5, + "end": 3823.14, + "probability": 0.9979 + }, + { + "start": 3823.86, + "end": 3824.66, + "probability": 0.9403 + }, + { + "start": 3825.5, + "end": 3829.6, + "probability": 0.9989 + }, + { + "start": 3830.18, + "end": 3831.86, + "probability": 0.9691 + }, + { + "start": 3832.36, + "end": 3833.44, + "probability": 0.9907 + }, + { + "start": 3833.7, + "end": 3836.7, + "probability": 0.9567 + }, + { + "start": 3837.36, + "end": 3841.68, + "probability": 0.9704 + }, + { + "start": 3843.5, + "end": 3844.16, + "probability": 0.0565 + }, + { + "start": 3844.16, + "end": 3844.92, + "probability": 0.5938 + }, + { + "start": 3846.18, + "end": 3850.3, + "probability": 0.8158 + }, + { + "start": 3850.52, + "end": 3851.94, + "probability": 0.7293 + }, + { + "start": 3852.04, + "end": 3853.1, + "probability": 0.5118 + }, + { + "start": 3853.84, + "end": 3854.12, + "probability": 0.9712 + }, + { + "start": 3855.98, + "end": 3856.86, + "probability": 0.5847 + }, + { + "start": 3857.98, + "end": 3863.18, + "probability": 0.9903 + }, + { + "start": 3863.36, + "end": 3868.66, + "probability": 0.9893 + }, + { + "start": 3868.94, + "end": 3873.88, + "probability": 0.7877 + }, + { + "start": 3873.88, + "end": 3877.3, + "probability": 0.9849 + }, + { + "start": 3877.76, + "end": 3880.22, + "probability": 0.9083 + }, + { + "start": 3880.34, + "end": 3882.42, + "probability": 0.8378 + }, + { + "start": 3882.62, + "end": 3883.86, + "probability": 0.9651 + }, + { + "start": 3897.98, + "end": 3897.98, + "probability": 0.2103 + }, + { + "start": 3905.26, + "end": 3906.32, + "probability": 0.6023 + }, + { + "start": 3906.92, + "end": 3909.56, + "probability": 0.7024 + }, + { + "start": 3910.7, + "end": 3914.14, + "probability": 0.8332 + }, + { + "start": 3915.02, + "end": 3918.4, + "probability": 0.9802 + }, + { + "start": 3919.42, + "end": 3922.44, + "probability": 0.9136 + }, + { + "start": 3923.54, + "end": 3925.88, + "probability": 0.9927 + }, + { + "start": 3926.76, + "end": 3928.26, + "probability": 0.8395 + }, + { + "start": 3928.92, + "end": 3929.28, + "probability": 0.5994 + }, + { + "start": 3929.5, + "end": 3933.8, + "probability": 0.9473 + }, + { + "start": 3933.84, + "end": 3938.74, + "probability": 0.8411 + }, + { + "start": 3939.52, + "end": 3941.08, + "probability": 0.7816 + }, + { + "start": 3941.24, + "end": 3947.66, + "probability": 0.8993 + }, + { + "start": 3947.66, + "end": 3952.1, + "probability": 0.9997 + }, + { + "start": 3952.28, + "end": 3953.3, + "probability": 0.9285 + }, + { + "start": 3955.16, + "end": 3957.28, + "probability": 0.793 + }, + { + "start": 3958.96, + "end": 3961.96, + "probability": 0.9614 + }, + { + "start": 3964.0, + "end": 3966.24, + "probability": 0.9222 + }, + { + "start": 3968.28, + "end": 3972.46, + "probability": 0.8853 + }, + { + "start": 3974.0, + "end": 3977.72, + "probability": 0.8853 + }, + { + "start": 3979.0, + "end": 3981.16, + "probability": 0.8148 + }, + { + "start": 3981.86, + "end": 3986.4, + "probability": 0.9283 + }, + { + "start": 3987.84, + "end": 3991.26, + "probability": 0.9969 + }, + { + "start": 3991.3, + "end": 3992.25, + "probability": 0.8817 + }, + { + "start": 3994.08, + "end": 3995.62, + "probability": 0.9784 + }, + { + "start": 3995.72, + "end": 3997.42, + "probability": 0.9551 + }, + { + "start": 3998.66, + "end": 4002.1, + "probability": 0.9584 + }, + { + "start": 4003.84, + "end": 4008.62, + "probability": 0.9321 + }, + { + "start": 4008.86, + "end": 4014.64, + "probability": 0.9932 + }, + { + "start": 4014.64, + "end": 4021.22, + "probability": 0.9943 + }, + { + "start": 4021.42, + "end": 4022.22, + "probability": 0.5968 + }, + { + "start": 4022.44, + "end": 4023.54, + "probability": 0.9449 + }, + { + "start": 4024.96, + "end": 4027.6, + "probability": 0.9993 + }, + { + "start": 4027.8, + "end": 4030.6, + "probability": 0.9926 + }, + { + "start": 4031.62, + "end": 4036.82, + "probability": 0.9771 + }, + { + "start": 4037.18, + "end": 4038.7, + "probability": 0.6843 + }, + { + "start": 4038.92, + "end": 4040.98, + "probability": 0.9076 + }, + { + "start": 4041.2, + "end": 4046.8, + "probability": 0.9667 + }, + { + "start": 4049.28, + "end": 4053.7, + "probability": 0.9885 + }, + { + "start": 4054.14, + "end": 4055.12, + "probability": 0.6807 + }, + { + "start": 4055.3, + "end": 4058.42, + "probability": 0.9251 + }, + { + "start": 4058.66, + "end": 4059.78, + "probability": 0.9652 + }, + { + "start": 4060.2, + "end": 4063.72, + "probability": 0.9587 + }, + { + "start": 4063.94, + "end": 4064.94, + "probability": 0.8717 + }, + { + "start": 4065.66, + "end": 4072.76, + "probability": 0.9979 + }, + { + "start": 4074.0, + "end": 4078.74, + "probability": 0.6687 + }, + { + "start": 4079.88, + "end": 4082.02, + "probability": 0.5137 + }, + { + "start": 4082.84, + "end": 4085.5, + "probability": 0.8583 + }, + { + "start": 4085.76, + "end": 4088.7, + "probability": 0.9094 + }, + { + "start": 4088.78, + "end": 4089.38, + "probability": 0.777 + }, + { + "start": 4089.88, + "end": 4092.04, + "probability": 0.6421 + }, + { + "start": 4095.36, + "end": 4097.42, + "probability": 0.9888 + }, + { + "start": 4098.32, + "end": 4100.18, + "probability": 0.9616 + }, + { + "start": 4100.36, + "end": 4102.18, + "probability": 0.1674 + }, + { + "start": 4102.48, + "end": 4103.48, + "probability": 0.7068 + }, + { + "start": 4103.88, + "end": 4106.24, + "probability": 0.7862 + }, + { + "start": 4106.42, + "end": 4108.5, + "probability": 0.9298 + }, + { + "start": 4109.9, + "end": 4111.32, + "probability": 0.9136 + }, + { + "start": 4111.4, + "end": 4112.4, + "probability": 0.9791 + }, + { + "start": 4112.5, + "end": 4116.22, + "probability": 0.9929 + }, + { + "start": 4117.06, + "end": 4119.37, + "probability": 0.9954 + }, + { + "start": 4120.18, + "end": 4122.14, + "probability": 0.9116 + }, + { + "start": 4122.32, + "end": 4124.62, + "probability": 0.9816 + }, + { + "start": 4126.3, + "end": 4132.26, + "probability": 0.9833 + }, + { + "start": 4132.52, + "end": 4133.88, + "probability": 0.7434 + }, + { + "start": 4135.86, + "end": 4136.72, + "probability": 0.9123 + }, + { + "start": 4136.94, + "end": 4142.94, + "probability": 0.9355 + }, + { + "start": 4142.94, + "end": 4146.34, + "probability": 0.9972 + }, + { + "start": 4147.22, + "end": 4149.34, + "probability": 0.9267 + }, + { + "start": 4150.0, + "end": 4151.3, + "probability": 0.9827 + }, + { + "start": 4151.68, + "end": 4153.02, + "probability": 0.8799 + }, + { + "start": 4153.58, + "end": 4155.78, + "probability": 0.9218 + }, + { + "start": 4156.7, + "end": 4158.03, + "probability": 0.9735 + }, + { + "start": 4159.1, + "end": 4161.82, + "probability": 0.9929 + }, + { + "start": 4161.96, + "end": 4163.78, + "probability": 0.9961 + }, + { + "start": 4164.32, + "end": 4165.53, + "probability": 0.9959 + }, + { + "start": 4166.52, + "end": 4168.46, + "probability": 0.8182 + }, + { + "start": 4168.5, + "end": 4169.34, + "probability": 0.964 + }, + { + "start": 4169.44, + "end": 4170.54, + "probability": 0.9786 + }, + { + "start": 4170.6, + "end": 4173.8, + "probability": 0.996 + }, + { + "start": 4174.06, + "end": 4178.8, + "probability": 0.9937 + }, + { + "start": 4179.34, + "end": 4180.8, + "probability": 0.9697 + }, + { + "start": 4181.42, + "end": 4184.22, + "probability": 0.9197 + }, + { + "start": 4184.94, + "end": 4189.2, + "probability": 0.8541 + }, + { + "start": 4190.08, + "end": 4192.68, + "probability": 0.9757 + }, + { + "start": 4192.68, + "end": 4197.8, + "probability": 0.7923 + }, + { + "start": 4197.98, + "end": 4199.66, + "probability": 0.9023 + }, + { + "start": 4199.86, + "end": 4201.1, + "probability": 0.9655 + }, + { + "start": 4201.48, + "end": 4201.92, + "probability": 0.5092 + }, + { + "start": 4201.98, + "end": 4203.86, + "probability": 0.9668 + }, + { + "start": 4206.12, + "end": 4210.0, + "probability": 0.9899 + }, + { + "start": 4210.64, + "end": 4212.16, + "probability": 0.8486 + }, + { + "start": 4212.94, + "end": 4217.08, + "probability": 0.9917 + }, + { + "start": 4218.24, + "end": 4218.82, + "probability": 0.9287 + }, + { + "start": 4218.86, + "end": 4220.08, + "probability": 0.9752 + }, + { + "start": 4220.44, + "end": 4222.08, + "probability": 0.9204 + }, + { + "start": 4222.58, + "end": 4223.22, + "probability": 0.4138 + }, + { + "start": 4223.34, + "end": 4225.52, + "probability": 0.9219 + }, + { + "start": 4226.0, + "end": 4228.04, + "probability": 0.8486 + }, + { + "start": 4228.46, + "end": 4230.96, + "probability": 0.948 + }, + { + "start": 4231.26, + "end": 4235.32, + "probability": 0.9775 + }, + { + "start": 4235.48, + "end": 4236.28, + "probability": 0.751 + }, + { + "start": 4237.94, + "end": 4243.26, + "probability": 0.9971 + }, + { + "start": 4243.7, + "end": 4245.96, + "probability": 0.9128 + }, + { + "start": 4246.8, + "end": 4247.98, + "probability": 0.9067 + }, + { + "start": 4248.58, + "end": 4250.96, + "probability": 0.9739 + }, + { + "start": 4252.82, + "end": 4258.02, + "probability": 0.8892 + }, + { + "start": 4259.58, + "end": 4262.0, + "probability": 0.8596 + }, + { + "start": 4263.14, + "end": 4264.28, + "probability": 0.9181 + }, + { + "start": 4265.4, + "end": 4266.52, + "probability": 0.8433 + }, + { + "start": 4266.64, + "end": 4267.6, + "probability": 0.6657 + }, + { + "start": 4267.82, + "end": 4270.1, + "probability": 0.9487 + }, + { + "start": 4270.18, + "end": 4271.35, + "probability": 0.7612 + }, + { + "start": 4272.26, + "end": 4274.78, + "probability": 0.9971 + }, + { + "start": 4276.8, + "end": 4277.59, + "probability": 0.978 + }, + { + "start": 4278.66, + "end": 4279.96, + "probability": 0.6906 + }, + { + "start": 4280.96, + "end": 4282.66, + "probability": 0.932 + }, + { + "start": 4284.02, + "end": 4285.42, + "probability": 0.7804 + }, + { + "start": 4286.8, + "end": 4291.82, + "probability": 0.5245 + }, + { + "start": 4291.98, + "end": 4293.22, + "probability": 0.8199 + }, + { + "start": 4293.34, + "end": 4295.46, + "probability": 0.9478 + }, + { + "start": 4296.0, + "end": 4296.52, + "probability": 0.5964 + }, + { + "start": 4297.28, + "end": 4298.3, + "probability": 0.6058 + }, + { + "start": 4298.54, + "end": 4299.5, + "probability": 0.7075 + }, + { + "start": 4299.54, + "end": 4300.72, + "probability": 0.8904 + }, + { + "start": 4301.0, + "end": 4303.2, + "probability": 0.988 + }, + { + "start": 4303.26, + "end": 4307.6, + "probability": 0.98 + }, + { + "start": 4307.6, + "end": 4311.72, + "probability": 0.9686 + }, + { + "start": 4312.68, + "end": 4315.92, + "probability": 0.9951 + }, + { + "start": 4317.56, + "end": 4318.96, + "probability": 0.9858 + }, + { + "start": 4319.8, + "end": 4322.3, + "probability": 0.8049 + }, + { + "start": 4323.48, + "end": 4326.2, + "probability": 0.9967 + }, + { + "start": 4327.1, + "end": 4329.3, + "probability": 0.8473 + }, + { + "start": 4330.2, + "end": 4333.12, + "probability": 0.9933 + }, + { + "start": 4333.82, + "end": 4335.64, + "probability": 0.886 + }, + { + "start": 4335.96, + "end": 4337.49, + "probability": 0.9793 + }, + { + "start": 4338.12, + "end": 4339.38, + "probability": 0.9845 + }, + { + "start": 4339.66, + "end": 4344.94, + "probability": 0.8912 + }, + { + "start": 4345.9, + "end": 4348.22, + "probability": 0.9969 + }, + { + "start": 4348.86, + "end": 4353.08, + "probability": 0.981 + }, + { + "start": 4354.08, + "end": 4356.8, + "probability": 0.9961 + }, + { + "start": 4356.94, + "end": 4358.74, + "probability": 0.8933 + }, + { + "start": 4359.82, + "end": 4365.88, + "probability": 0.9658 + }, + { + "start": 4367.1, + "end": 4367.56, + "probability": 0.7167 + }, + { + "start": 4367.84, + "end": 4368.52, + "probability": 0.9886 + }, + { + "start": 4368.74, + "end": 4372.54, + "probability": 0.9844 + }, + { + "start": 4372.64, + "end": 4374.2, + "probability": 0.9578 + }, + { + "start": 4375.24, + "end": 4377.54, + "probability": 0.9914 + }, + { + "start": 4378.38, + "end": 4381.22, + "probability": 0.9716 + }, + { + "start": 4382.0, + "end": 4383.24, + "probability": 0.9805 + }, + { + "start": 4384.08, + "end": 4386.42, + "probability": 0.7936 + }, + { + "start": 4387.08, + "end": 4389.3, + "probability": 0.9327 + }, + { + "start": 4389.64, + "end": 4392.34, + "probability": 0.9883 + }, + { + "start": 4392.52, + "end": 4394.32, + "probability": 0.9483 + }, + { + "start": 4395.32, + "end": 4396.81, + "probability": 0.7109 + }, + { + "start": 4398.64, + "end": 4404.98, + "probability": 0.9346 + }, + { + "start": 4406.68, + "end": 4408.0, + "probability": 0.5221 + }, + { + "start": 4408.2, + "end": 4411.0, + "probability": 0.8608 + }, + { + "start": 4411.16, + "end": 4412.88, + "probability": 0.922 + }, + { + "start": 4413.94, + "end": 4416.96, + "probability": 0.9604 + }, + { + "start": 4417.18, + "end": 4419.56, + "probability": 0.692 + }, + { + "start": 4421.22, + "end": 4422.1, + "probability": 0.6768 + }, + { + "start": 4422.3, + "end": 4423.0, + "probability": 0.9374 + }, + { + "start": 4423.22, + "end": 4426.96, + "probability": 0.9259 + }, + { + "start": 4428.38, + "end": 4430.14, + "probability": 0.9912 + }, + { + "start": 4430.64, + "end": 4433.4, + "probability": 0.9619 + }, + { + "start": 4433.76, + "end": 4436.02, + "probability": 0.8335 + }, + { + "start": 4436.2, + "end": 4437.56, + "probability": 0.7745 + }, + { + "start": 4438.58, + "end": 4439.92, + "probability": 0.7039 + }, + { + "start": 4440.02, + "end": 4440.76, + "probability": 0.4843 + }, + { + "start": 4442.58, + "end": 4445.78, + "probability": 0.894 + }, + { + "start": 4447.48, + "end": 4451.02, + "probability": 0.9502 + }, + { + "start": 4452.32, + "end": 4455.08, + "probability": 0.9932 + }, + { + "start": 4455.44, + "end": 4460.34, + "probability": 0.9941 + }, + { + "start": 4461.76, + "end": 4464.88, + "probability": 0.9806 + }, + { + "start": 4465.62, + "end": 4470.56, + "probability": 0.9857 + }, + { + "start": 4470.62, + "end": 4471.6, + "probability": 0.2697 + }, + { + "start": 4473.42, + "end": 4477.18, + "probability": 0.9968 + }, + { + "start": 4478.34, + "end": 4487.86, + "probability": 0.9833 + }, + { + "start": 4493.08, + "end": 4494.82, + "probability": 0.9539 + }, + { + "start": 4495.86, + "end": 4501.02, + "probability": 0.9908 + }, + { + "start": 4501.54, + "end": 4503.84, + "probability": 0.9772 + }, + { + "start": 4504.78, + "end": 4507.34, + "probability": 0.9882 + }, + { + "start": 4507.34, + "end": 4511.04, + "probability": 0.9984 + }, + { + "start": 4511.86, + "end": 4516.32, + "probability": 0.9979 + }, + { + "start": 4516.66, + "end": 4518.12, + "probability": 0.957 + }, + { + "start": 4518.2, + "end": 4521.1, + "probability": 0.7239 + }, + { + "start": 4521.64, + "end": 4523.08, + "probability": 0.8831 + }, + { + "start": 4523.66, + "end": 4531.18, + "probability": 0.941 + }, + { + "start": 4531.54, + "end": 4533.46, + "probability": 0.9287 + }, + { + "start": 4533.86, + "end": 4539.26, + "probability": 0.9924 + }, + { + "start": 4540.2, + "end": 4541.82, + "probability": 0.4524 + }, + { + "start": 4542.5, + "end": 4543.96, + "probability": 0.9399 + }, + { + "start": 4545.16, + "end": 4549.62, + "probability": 0.9913 + }, + { + "start": 4552.18, + "end": 4553.92, + "probability": 0.8692 + }, + { + "start": 4556.76, + "end": 4561.42, + "probability": 0.9829 + }, + { + "start": 4562.98, + "end": 4564.04, + "probability": 0.8605 + }, + { + "start": 4565.7, + "end": 4566.5, + "probability": 0.8842 + }, + { + "start": 4568.86, + "end": 4570.14, + "probability": 0.4655 + }, + { + "start": 4570.74, + "end": 4573.22, + "probability": 0.9954 + }, + { + "start": 4575.28, + "end": 4579.98, + "probability": 0.965 + }, + { + "start": 4580.6, + "end": 4581.3, + "probability": 0.5157 + }, + { + "start": 4581.92, + "end": 4583.52, + "probability": 0.9264 + }, + { + "start": 4586.24, + "end": 4587.8, + "probability": 0.9762 + }, + { + "start": 4588.28, + "end": 4588.4, + "probability": 0.5236 + }, + { + "start": 4588.54, + "end": 4593.2, + "probability": 0.9636 + }, + { + "start": 4593.2, + "end": 4598.9, + "probability": 0.9727 + }, + { + "start": 4600.0, + "end": 4604.18, + "probability": 0.9315 + }, + { + "start": 4607.08, + "end": 4607.66, + "probability": 0.7978 + }, + { + "start": 4607.76, + "end": 4610.08, + "probability": 0.9894 + }, + { + "start": 4615.68, + "end": 4616.87, + "probability": 0.1666 + }, + { + "start": 4617.32, + "end": 4620.92, + "probability": 0.1599 + }, + { + "start": 4622.54, + "end": 4626.36, + "probability": 0.9835 + }, + { + "start": 4626.36, + "end": 4629.36, + "probability": 0.9965 + }, + { + "start": 4630.04, + "end": 4632.8, + "probability": 0.9941 + }, + { + "start": 4634.34, + "end": 4635.16, + "probability": 0.853 + }, + { + "start": 4635.78, + "end": 4638.26, + "probability": 0.6833 + }, + { + "start": 4638.94, + "end": 4639.68, + "probability": 0.8554 + }, + { + "start": 4639.78, + "end": 4640.8, + "probability": 0.8699 + }, + { + "start": 4641.04, + "end": 4645.44, + "probability": 0.9559 + }, + { + "start": 4646.22, + "end": 4650.98, + "probability": 0.9618 + }, + { + "start": 4651.52, + "end": 4653.61, + "probability": 0.9786 + }, + { + "start": 4654.4, + "end": 4659.96, + "probability": 0.9943 + }, + { + "start": 4660.04, + "end": 4661.87, + "probability": 0.9307 + }, + { + "start": 4662.7, + "end": 4663.7, + "probability": 0.8977 + }, + { + "start": 4665.58, + "end": 4666.76, + "probability": 0.9924 + }, + { + "start": 4667.7, + "end": 4673.66, + "probability": 0.9949 + }, + { + "start": 4673.66, + "end": 4677.98, + "probability": 0.9852 + }, + { + "start": 4678.34, + "end": 4680.06, + "probability": 0.8619 + }, + { + "start": 4681.54, + "end": 4682.6, + "probability": 0.9407 + }, + { + "start": 4684.42, + "end": 4686.2, + "probability": 0.9801 + }, + { + "start": 4686.76, + "end": 4689.04, + "probability": 0.728 + }, + { + "start": 4690.08, + "end": 4691.54, + "probability": 0.7776 + }, + { + "start": 4691.98, + "end": 4693.94, + "probability": 0.8991 + }, + { + "start": 4694.06, + "end": 4695.76, + "probability": 0.9256 + }, + { + "start": 4697.06, + "end": 4700.62, + "probability": 0.9954 + }, + { + "start": 4701.1, + "end": 4702.94, + "probability": 0.9216 + }, + { + "start": 4705.3, + "end": 4710.14, + "probability": 0.8727 + }, + { + "start": 4710.14, + "end": 4715.24, + "probability": 0.9897 + }, + { + "start": 4715.9, + "end": 4719.6, + "probability": 0.9456 + }, + { + "start": 4719.6, + "end": 4724.04, + "probability": 0.9494 + }, + { + "start": 4726.1, + "end": 4729.74, + "probability": 0.9843 + }, + { + "start": 4729.74, + "end": 4732.34, + "probability": 0.9696 + }, + { + "start": 4732.82, + "end": 4739.42, + "probability": 0.9053 + }, + { + "start": 4740.76, + "end": 4743.14, + "probability": 0.6547 + }, + { + "start": 4744.0, + "end": 4749.12, + "probability": 0.9585 + }, + { + "start": 4749.88, + "end": 4753.46, + "probability": 0.9575 + }, + { + "start": 4753.66, + "end": 4754.32, + "probability": 0.726 + }, + { + "start": 4754.66, + "end": 4755.58, + "probability": 0.4532 + }, + { + "start": 4757.78, + "end": 4760.08, + "probability": 0.9902 + }, + { + "start": 4760.08, + "end": 4763.88, + "probability": 0.985 + }, + { + "start": 4764.66, + "end": 4768.16, + "probability": 0.9707 + }, + { + "start": 4769.16, + "end": 4770.04, + "probability": 0.9731 + }, + { + "start": 4771.02, + "end": 4772.02, + "probability": 0.7446 + }, + { + "start": 4774.26, + "end": 4778.06, + "probability": 0.9884 + }, + { + "start": 4779.22, + "end": 4782.28, + "probability": 0.9458 + }, + { + "start": 4783.1, + "end": 4784.84, + "probability": 0.9593 + }, + { + "start": 4785.48, + "end": 4788.38, + "probability": 0.9932 + }, + { + "start": 4789.66, + "end": 4792.78, + "probability": 0.8405 + }, + { + "start": 4793.64, + "end": 4796.9, + "probability": 0.9739 + }, + { + "start": 4798.86, + "end": 4801.12, + "probability": 0.8151 + }, + { + "start": 4802.18, + "end": 4805.38, + "probability": 0.9897 + }, + { + "start": 4806.82, + "end": 4808.8, + "probability": 0.9186 + }, + { + "start": 4810.06, + "end": 4814.58, + "probability": 0.998 + }, + { + "start": 4816.54, + "end": 4818.22, + "probability": 0.9974 + }, + { + "start": 4818.3, + "end": 4819.1, + "probability": 0.7427 + }, + { + "start": 4819.22, + "end": 4820.34, + "probability": 0.6619 + }, + { + "start": 4820.48, + "end": 4820.86, + "probability": 0.4541 + }, + { + "start": 4823.44, + "end": 4824.84, + "probability": 0.7964 + }, + { + "start": 4825.42, + "end": 4826.68, + "probability": 0.9785 + }, + { + "start": 4827.24, + "end": 4830.98, + "probability": 0.9656 + }, + { + "start": 4831.3, + "end": 4832.46, + "probability": 0.7849 + }, + { + "start": 4832.52, + "end": 4835.78, + "probability": 0.8905 + }, + { + "start": 4836.98, + "end": 4841.78, + "probability": 0.9923 + }, + { + "start": 4843.7, + "end": 4846.06, + "probability": 0.975 + }, + { + "start": 4847.3, + "end": 4853.28, + "probability": 0.9877 + }, + { + "start": 4854.16, + "end": 4855.7, + "probability": 0.9309 + }, + { + "start": 4857.66, + "end": 4859.42, + "probability": 0.7414 + }, + { + "start": 4860.64, + "end": 4863.2, + "probability": 0.9532 + }, + { + "start": 4863.3, + "end": 4864.72, + "probability": 0.9909 + }, + { + "start": 4865.3, + "end": 4866.24, + "probability": 0.9827 + }, + { + "start": 4867.46, + "end": 4871.12, + "probability": 0.9846 + }, + { + "start": 4871.3, + "end": 4873.2, + "probability": 0.9553 + }, + { + "start": 4874.38, + "end": 4876.06, + "probability": 0.5222 + }, + { + "start": 4876.14, + "end": 4880.36, + "probability": 0.9915 + }, + { + "start": 4880.52, + "end": 4882.38, + "probability": 0.9877 + }, + { + "start": 4883.38, + "end": 4886.52, + "probability": 0.9889 + }, + { + "start": 4886.52, + "end": 4890.3, + "probability": 0.924 + }, + { + "start": 4891.02, + "end": 4892.32, + "probability": 0.7444 + }, + { + "start": 4892.82, + "end": 4898.28, + "probability": 0.9889 + }, + { + "start": 4901.26, + "end": 4902.62, + "probability": 0.9004 + }, + { + "start": 4903.76, + "end": 4909.44, + "probability": 0.9581 + }, + { + "start": 4912.66, + "end": 4915.48, + "probability": 0.8688 + }, + { + "start": 4916.0, + "end": 4920.34, + "probability": 0.9978 + }, + { + "start": 4923.18, + "end": 4924.76, + "probability": 0.8165 + }, + { + "start": 4925.9, + "end": 4927.18, + "probability": 0.9124 + }, + { + "start": 4928.24, + "end": 4929.42, + "probability": 0.9646 + }, + { + "start": 4930.12, + "end": 4934.62, + "probability": 0.9949 + }, + { + "start": 4934.96, + "end": 4938.68, + "probability": 0.9235 + }, + { + "start": 4940.6, + "end": 4945.64, + "probability": 0.8841 + }, + { + "start": 4945.64, + "end": 4950.04, + "probability": 0.9908 + }, + { + "start": 4953.56, + "end": 4956.68, + "probability": 0.9784 + }, + { + "start": 4956.82, + "end": 4959.2, + "probability": 0.969 + }, + { + "start": 4960.28, + "end": 4962.84, + "probability": 0.9317 + }, + { + "start": 4965.54, + "end": 4966.22, + "probability": 0.8477 + }, + { + "start": 4968.42, + "end": 4970.47, + "probability": 0.998 + }, + { + "start": 4971.24, + "end": 4975.68, + "probability": 0.8519 + }, + { + "start": 4977.92, + "end": 4980.36, + "probability": 0.6827 + }, + { + "start": 4980.5, + "end": 4981.46, + "probability": 0.7662 + }, + { + "start": 4981.48, + "end": 4982.84, + "probability": 0.9706 + }, + { + "start": 4983.04, + "end": 4983.5, + "probability": 0.6309 + }, + { + "start": 4983.62, + "end": 4984.06, + "probability": 0.5952 + }, + { + "start": 4986.02, + "end": 4989.18, + "probability": 0.9368 + }, + { + "start": 4989.78, + "end": 4990.42, + "probability": 0.9808 + }, + { + "start": 4991.36, + "end": 4992.98, + "probability": 0.9893 + }, + { + "start": 4993.86, + "end": 4995.5, + "probability": 0.9563 + }, + { + "start": 4996.38, + "end": 5000.56, + "probability": 0.9896 + }, + { + "start": 5002.46, + "end": 5004.68, + "probability": 0.5239 + }, + { + "start": 5004.78, + "end": 5007.56, + "probability": 0.9891 + }, + { + "start": 5008.62, + "end": 5008.82, + "probability": 0.808 + }, + { + "start": 5008.92, + "end": 5012.1, + "probability": 0.8882 + }, + { + "start": 5013.12, + "end": 5015.02, + "probability": 0.9922 + }, + { + "start": 5016.4, + "end": 5017.76, + "probability": 0.9552 + }, + { + "start": 5018.64, + "end": 5021.42, + "probability": 0.7958 + }, + { + "start": 5022.46, + "end": 5023.97, + "probability": 0.973 + }, + { + "start": 5026.0, + "end": 5028.2, + "probability": 0.8896 + }, + { + "start": 5028.42, + "end": 5031.44, + "probability": 0.9493 + }, + { + "start": 5033.58, + "end": 5037.15, + "probability": 0.9956 + }, + { + "start": 5037.2, + "end": 5038.3, + "probability": 0.8357 + }, + { + "start": 5038.38, + "end": 5038.76, + "probability": 0.3888 + }, + { + "start": 5038.86, + "end": 5039.28, + "probability": 0.5034 + }, + { + "start": 5039.38, + "end": 5039.56, + "probability": 0.266 + }, + { + "start": 5039.86, + "end": 5041.3, + "probability": 0.8389 + }, + { + "start": 5041.6, + "end": 5043.94, + "probability": 0.9005 + }, + { + "start": 5044.48, + "end": 5048.4, + "probability": 0.8092 + }, + { + "start": 5049.54, + "end": 5055.32, + "probability": 0.9651 + }, + { + "start": 5055.9, + "end": 5056.6, + "probability": 0.8952 + }, + { + "start": 5056.7, + "end": 5057.8, + "probability": 0.8207 + }, + { + "start": 5058.14, + "end": 5059.58, + "probability": 0.8804 + }, + { + "start": 5059.72, + "end": 5066.36, + "probability": 0.9825 + }, + { + "start": 5067.04, + "end": 5069.66, + "probability": 0.9958 + }, + { + "start": 5070.4, + "end": 5075.34, + "probability": 0.9889 + }, + { + "start": 5075.5, + "end": 5076.56, + "probability": 0.6082 + }, + { + "start": 5076.72, + "end": 5077.7, + "probability": 0.7632 + }, + { + "start": 5078.62, + "end": 5084.24, + "probability": 0.9971 + }, + { + "start": 5084.78, + "end": 5086.8, + "probability": 0.7117 + }, + { + "start": 5087.22, + "end": 5088.16, + "probability": 0.9707 + }, + { + "start": 5088.34, + "end": 5089.32, + "probability": 0.9862 + }, + { + "start": 5089.48, + "end": 5093.64, + "probability": 0.9716 + }, + { + "start": 5093.78, + "end": 5095.76, + "probability": 0.9518 + }, + { + "start": 5096.12, + "end": 5097.32, + "probability": 0.9953 + }, + { + "start": 5097.5, + "end": 5099.42, + "probability": 0.9641 + }, + { + "start": 5100.48, + "end": 5100.7, + "probability": 0.3923 + }, + { + "start": 5101.22, + "end": 5104.24, + "probability": 0.9575 + }, + { + "start": 5104.94, + "end": 5110.08, + "probability": 0.7947 + }, + { + "start": 5110.42, + "end": 5112.36, + "probability": 0.9834 + }, + { + "start": 5112.84, + "end": 5114.22, + "probability": 0.9897 + }, + { + "start": 5114.6, + "end": 5116.14, + "probability": 0.9663 + }, + { + "start": 5116.34, + "end": 5117.88, + "probability": 0.9248 + }, + { + "start": 5119.38, + "end": 5122.92, + "probability": 0.8091 + }, + { + "start": 5123.92, + "end": 5125.18, + "probability": 0.9042 + }, + { + "start": 5125.32, + "end": 5127.56, + "probability": 0.9202 + }, + { + "start": 5127.68, + "end": 5128.62, + "probability": 0.8907 + }, + { + "start": 5129.12, + "end": 5131.11, + "probability": 0.9669 + }, + { + "start": 5131.6, + "end": 5131.98, + "probability": 0.8867 + }, + { + "start": 5132.5, + "end": 5133.88, + "probability": 0.9672 + }, + { + "start": 5135.44, + "end": 5140.78, + "probability": 0.9424 + }, + { + "start": 5141.22, + "end": 5142.42, + "probability": 0.8633 + }, + { + "start": 5143.48, + "end": 5148.14, + "probability": 0.9908 + }, + { + "start": 5148.74, + "end": 5151.62, + "probability": 0.9956 + }, + { + "start": 5153.62, + "end": 5158.54, + "probability": 0.98 + }, + { + "start": 5158.78, + "end": 5161.46, + "probability": 0.9455 + }, + { + "start": 5162.74, + "end": 5170.26, + "probability": 0.8545 + }, + { + "start": 5170.98, + "end": 5174.06, + "probability": 0.8864 + }, + { + "start": 5175.26, + "end": 5180.56, + "probability": 0.9484 + }, + { + "start": 5180.68, + "end": 5183.92, + "probability": 0.9587 + }, + { + "start": 5185.54, + "end": 5186.26, + "probability": 0.855 + }, + { + "start": 5186.38, + "end": 5188.82, + "probability": 0.965 + }, + { + "start": 5189.06, + "end": 5191.58, + "probability": 0.9749 + }, + { + "start": 5191.94, + "end": 5194.18, + "probability": 0.959 + }, + { + "start": 5195.12, + "end": 5196.84, + "probability": 0.9897 + }, + { + "start": 5198.12, + "end": 5198.68, + "probability": 0.375 + }, + { + "start": 5199.5, + "end": 5202.24, + "probability": 0.8625 + }, + { + "start": 5205.74, + "end": 5208.4, + "probability": 0.9156 + }, + { + "start": 5211.04, + "end": 5213.28, + "probability": 0.8743 + }, + { + "start": 5213.42, + "end": 5217.84, + "probability": 0.9525 + }, + { + "start": 5218.72, + "end": 5220.54, + "probability": 0.9971 + }, + { + "start": 5222.1, + "end": 5222.74, + "probability": 0.9141 + }, + { + "start": 5223.32, + "end": 5226.5, + "probability": 0.9004 + }, + { + "start": 5226.72, + "end": 5226.9, + "probability": 0.8152 + }, + { + "start": 5227.5, + "end": 5230.62, + "probability": 0.9823 + }, + { + "start": 5230.62, + "end": 5230.72, + "probability": 0.6971 + }, + { + "start": 5230.9, + "end": 5233.72, + "probability": 0.9047 + }, + { + "start": 5235.38, + "end": 5239.88, + "probability": 0.9639 + }, + { + "start": 5239.88, + "end": 5242.1, + "probability": 0.9969 + }, + { + "start": 5242.24, + "end": 5243.04, + "probability": 0.6907 + }, + { + "start": 5243.2, + "end": 5243.44, + "probability": 0.839 + }, + { + "start": 5244.06, + "end": 5247.72, + "probability": 0.9889 + }, + { + "start": 5247.72, + "end": 5251.58, + "probability": 0.9603 + }, + { + "start": 5252.34, + "end": 5255.08, + "probability": 0.8987 + }, + { + "start": 5255.3, + "end": 5258.02, + "probability": 0.863 + }, + { + "start": 5258.5, + "end": 5259.18, + "probability": 0.9452 + }, + { + "start": 5260.24, + "end": 5262.1, + "probability": 0.9275 + }, + { + "start": 5262.84, + "end": 5263.94, + "probability": 0.6586 + }, + { + "start": 5264.32, + "end": 5264.82, + "probability": 0.8724 + }, + { + "start": 5265.92, + "end": 5268.2, + "probability": 0.7366 + }, + { + "start": 5268.3, + "end": 5270.08, + "probability": 0.8003 + }, + { + "start": 5270.58, + "end": 5271.48, + "probability": 0.9779 + }, + { + "start": 5271.5, + "end": 5278.56, + "probability": 0.9236 + }, + { + "start": 5278.62, + "end": 5281.84, + "probability": 0.9861 + }, + { + "start": 5281.86, + "end": 5282.16, + "probability": 0.7287 + }, + { + "start": 5282.22, + "end": 5284.26, + "probability": 0.9042 + }, + { + "start": 5284.46, + "end": 5286.86, + "probability": 0.992 + }, + { + "start": 5287.24, + "end": 5293.1, + "probability": 0.9726 + }, + { + "start": 5293.1, + "end": 5299.1, + "probability": 0.8938 + }, + { + "start": 5299.28, + "end": 5300.14, + "probability": 0.7369 + }, + { + "start": 5300.6, + "end": 5301.48, + "probability": 0.8522 + }, + { + "start": 5301.8, + "end": 5302.82, + "probability": 0.8345 + }, + { + "start": 5303.14, + "end": 5305.86, + "probability": 0.9626 + }, + { + "start": 5306.54, + "end": 5307.46, + "probability": 0.7243 + }, + { + "start": 5308.52, + "end": 5311.02, + "probability": 0.3256 + }, + { + "start": 5312.23, + "end": 5314.96, + "probability": 0.019 + }, + { + "start": 5315.96, + "end": 5322.58, + "probability": 0.045 + }, + { + "start": 5703.0, + "end": 5703.0, + "probability": 0.0 + }, + { + "start": 5709.05, + "end": 5713.08, + "probability": 0.1639 + }, + { + "start": 5714.74, + "end": 5714.88, + "probability": 0.105 + }, + { + "start": 5714.88, + "end": 5716.74, + "probability": 0.2454 + }, + { + "start": 5717.6, + "end": 5718.4, + "probability": 0.5169 + }, + { + "start": 5719.38, + "end": 5719.5, + "probability": 0.0928 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.1, + "end": 5827.42, + "probability": 0.4307 + }, + { + "start": 5829.58, + "end": 5834.26, + "probability": 0.8996 + }, + { + "start": 5834.94, + "end": 5837.54, + "probability": 0.8232 + }, + { + "start": 5838.44, + "end": 5840.5, + "probability": 0.9666 + }, + { + "start": 5841.36, + "end": 5842.8, + "probability": 0.9924 + }, + { + "start": 5843.5, + "end": 5844.7, + "probability": 0.994 + }, + { + "start": 5844.78, + "end": 5845.8, + "probability": 0.7836 + }, + { + "start": 5846.66, + "end": 5847.72, + "probability": 0.9395 + }, + { + "start": 5848.3, + "end": 5850.74, + "probability": 0.9873 + }, + { + "start": 5850.84, + "end": 5851.81, + "probability": 0.9678 + }, + { + "start": 5852.94, + "end": 5856.0, + "probability": 0.9114 + }, + { + "start": 5856.64, + "end": 5858.9, + "probability": 0.9716 + }, + { + "start": 5860.46, + "end": 5865.3, + "probability": 0.9909 + }, + { + "start": 5866.24, + "end": 5869.92, + "probability": 0.9952 + }, + { + "start": 5869.92, + "end": 5872.04, + "probability": 0.9406 + }, + { + "start": 5873.28, + "end": 5876.68, + "probability": 0.903 + }, + { + "start": 5876.86, + "end": 5877.7, + "probability": 0.7295 + }, + { + "start": 5877.8, + "end": 5881.76, + "probability": 0.9675 + }, + { + "start": 5881.82, + "end": 5882.82, + "probability": 0.7832 + }, + { + "start": 5883.44, + "end": 5884.12, + "probability": 0.889 + }, + { + "start": 5884.38, + "end": 5886.28, + "probability": 0.9941 + }, + { + "start": 5886.88, + "end": 5890.4, + "probability": 0.9971 + }, + { + "start": 5891.26, + "end": 5893.12, + "probability": 0.9109 + }, + { + "start": 5893.8, + "end": 5895.14, + "probability": 0.8958 + }, + { + "start": 5896.16, + "end": 5898.8, + "probability": 0.9882 + }, + { + "start": 5899.52, + "end": 5900.54, + "probability": 0.5674 + }, + { + "start": 5900.82, + "end": 5901.9, + "probability": 0.6722 + }, + { + "start": 5903.18, + "end": 5907.02, + "probability": 0.9978 + }, + { + "start": 5908.3, + "end": 5909.68, + "probability": 0.9609 + }, + { + "start": 5909.74, + "end": 5912.38, + "probability": 0.9764 + }, + { + "start": 5912.8, + "end": 5916.3, + "probability": 0.98 + }, + { + "start": 5917.48, + "end": 5922.78, + "probability": 0.9575 + }, + { + "start": 5923.56, + "end": 5925.34, + "probability": 0.7884 + }, + { + "start": 5926.68, + "end": 5928.8, + "probability": 0.9983 + }, + { + "start": 5929.74, + "end": 5933.96, + "probability": 0.9886 + }, + { + "start": 5934.86, + "end": 5937.34, + "probability": 0.9908 + }, + { + "start": 5938.4, + "end": 5940.4, + "probability": 0.9946 + }, + { + "start": 5941.48, + "end": 5944.5, + "probability": 0.9871 + }, + { + "start": 5945.5, + "end": 5949.36, + "probability": 0.9648 + }, + { + "start": 5949.82, + "end": 5951.52, + "probability": 0.9814 + }, + { + "start": 5951.96, + "end": 5953.44, + "probability": 0.8483 + }, + { + "start": 5954.14, + "end": 5954.72, + "probability": 0.9154 + }, + { + "start": 5955.92, + "end": 5958.16, + "probability": 0.9513 + }, + { + "start": 5959.04, + "end": 5959.8, + "probability": 0.8834 + }, + { + "start": 5960.76, + "end": 5964.98, + "probability": 0.9797 + }, + { + "start": 5966.28, + "end": 5968.12, + "probability": 0.7733 + }, + { + "start": 5968.84, + "end": 5970.98, + "probability": 0.9984 + }, + { + "start": 5971.98, + "end": 5975.24, + "probability": 0.4479 + }, + { + "start": 5975.88, + "end": 5976.44, + "probability": 0.4672 + }, + { + "start": 5977.14, + "end": 5978.68, + "probability": 0.6965 + }, + { + "start": 5978.86, + "end": 5979.44, + "probability": 0.3346 + }, + { + "start": 5979.44, + "end": 5981.42, + "probability": 0.9424 + }, + { + "start": 5982.64, + "end": 5986.16, + "probability": 0.8472 + }, + { + "start": 5987.1, + "end": 5990.78, + "probability": 0.9857 + }, + { + "start": 5991.94, + "end": 5996.68, + "probability": 0.9951 + }, + { + "start": 5997.06, + "end": 5998.6, + "probability": 0.7762 + }, + { + "start": 5998.64, + "end": 6000.86, + "probability": 0.9565 + }, + { + "start": 6001.24, + "end": 6004.04, + "probability": 0.813 + }, + { + "start": 6004.1, + "end": 6006.16, + "probability": 0.9346 + }, + { + "start": 6007.86, + "end": 6009.9, + "probability": 0.9255 + }, + { + "start": 6009.98, + "end": 6010.28, + "probability": 0.9714 + }, + { + "start": 6010.36, + "end": 6011.6, + "probability": 0.9931 + }, + { + "start": 6012.64, + "end": 6013.28, + "probability": 0.9432 + }, + { + "start": 6013.74, + "end": 6014.84, + "probability": 0.9709 + }, + { + "start": 6015.02, + "end": 6015.76, + "probability": 0.8987 + }, + { + "start": 6017.38, + "end": 6020.54, + "probability": 0.9908 + }, + { + "start": 6021.34, + "end": 6023.52, + "probability": 0.9944 + }, + { + "start": 6023.98, + "end": 6025.7, + "probability": 0.9767 + }, + { + "start": 6026.32, + "end": 6027.66, + "probability": 0.9737 + }, + { + "start": 6027.8, + "end": 6030.28, + "probability": 0.754 + }, + { + "start": 6030.8, + "end": 6032.46, + "probability": 0.9946 + }, + { + "start": 6032.58, + "end": 6033.48, + "probability": 0.9011 + }, + { + "start": 6034.92, + "end": 6036.08, + "probability": 0.8417 + }, + { + "start": 6037.16, + "end": 6041.48, + "probability": 0.9976 + }, + { + "start": 6042.66, + "end": 6045.14, + "probability": 0.9907 + }, + { + "start": 6045.54, + "end": 6046.84, + "probability": 0.9973 + }, + { + "start": 6047.74, + "end": 6050.36, + "probability": 0.9494 + }, + { + "start": 6052.12, + "end": 6059.96, + "probability": 0.9609 + }, + { + "start": 6062.6, + "end": 6064.62, + "probability": 0.9402 + }, + { + "start": 6065.7, + "end": 6069.12, + "probability": 0.6164 + }, + { + "start": 6069.8, + "end": 6071.18, + "probability": 0.9624 + }, + { + "start": 6072.32, + "end": 6072.82, + "probability": 0.8158 + }, + { + "start": 6073.68, + "end": 6075.44, + "probability": 0.9933 + }, + { + "start": 6077.5, + "end": 6077.78, + "probability": 0.4505 + }, + { + "start": 6077.9, + "end": 6079.36, + "probability": 0.7908 + }, + { + "start": 6080.98, + "end": 6085.66, + "probability": 0.754 + }, + { + "start": 6086.44, + "end": 6088.44, + "probability": 0.5742 + }, + { + "start": 6090.48, + "end": 6095.46, + "probability": 0.8608 + }, + { + "start": 6096.8, + "end": 6099.42, + "probability": 0.9649 + }, + { + "start": 6100.04, + "end": 6102.16, + "probability": 0.9116 + }, + { + "start": 6102.36, + "end": 6105.04, + "probability": 0.9486 + }, + { + "start": 6105.58, + "end": 6106.94, + "probability": 0.8354 + }, + { + "start": 6106.96, + "end": 6108.56, + "probability": 0.9673 + }, + { + "start": 6109.86, + "end": 6111.0, + "probability": 0.9128 + }, + { + "start": 6112.24, + "end": 6116.8, + "probability": 0.9941 + }, + { + "start": 6118.08, + "end": 6119.42, + "probability": 0.998 + }, + { + "start": 6121.42, + "end": 6124.14, + "probability": 0.978 + }, + { + "start": 6124.14, + "end": 6126.2, + "probability": 0.7757 + }, + { + "start": 6128.1, + "end": 6130.61, + "probability": 0.9214 + }, + { + "start": 6131.42, + "end": 6132.48, + "probability": 0.9694 + }, + { + "start": 6133.6, + "end": 6135.0, + "probability": 0.989 + }, + { + "start": 6135.14, + "end": 6136.7, + "probability": 0.9776 + }, + { + "start": 6136.86, + "end": 6139.08, + "probability": 0.5066 + }, + { + "start": 6140.1, + "end": 6141.46, + "probability": 0.7983 + }, + { + "start": 6141.6, + "end": 6142.16, + "probability": 0.8346 + }, + { + "start": 6142.92, + "end": 6144.68, + "probability": 0.9724 + }, + { + "start": 6144.78, + "end": 6146.38, + "probability": 0.9888 + }, + { + "start": 6147.28, + "end": 6150.8, + "probability": 0.9648 + }, + { + "start": 6151.32, + "end": 6155.48, + "probability": 0.9949 + }, + { + "start": 6156.5, + "end": 6157.18, + "probability": 0.7468 + }, + { + "start": 6157.26, + "end": 6158.58, + "probability": 0.9932 + }, + { + "start": 6159.18, + "end": 6160.88, + "probability": 0.9814 + }, + { + "start": 6161.86, + "end": 6166.74, + "probability": 0.9449 + }, + { + "start": 6167.22, + "end": 6169.94, + "probability": 0.9928 + }, + { + "start": 6170.0, + "end": 6171.62, + "probability": 0.9831 + }, + { + "start": 6173.2, + "end": 6175.1, + "probability": 0.991 + }, + { + "start": 6175.18, + "end": 6176.09, + "probability": 0.9333 + }, + { + "start": 6176.62, + "end": 6178.23, + "probability": 0.8882 + }, + { + "start": 6179.12, + "end": 6181.44, + "probability": 0.9619 + }, + { + "start": 6182.36, + "end": 6186.06, + "probability": 0.9608 + }, + { + "start": 6186.92, + "end": 6188.1, + "probability": 0.9985 + }, + { + "start": 6188.8, + "end": 6190.98, + "probability": 0.9526 + }, + { + "start": 6190.98, + "end": 6193.64, + "probability": 0.9875 + }, + { + "start": 6194.52, + "end": 6196.29, + "probability": 0.991 + }, + { + "start": 6197.24, + "end": 6199.4, + "probability": 0.9964 + }, + { + "start": 6199.4, + "end": 6202.6, + "probability": 0.9882 + }, + { + "start": 6202.7, + "end": 6203.88, + "probability": 0.9082 + }, + { + "start": 6204.0, + "end": 6206.22, + "probability": 0.7354 + }, + { + "start": 6206.72, + "end": 6207.92, + "probability": 0.9494 + }, + { + "start": 6208.66, + "end": 6210.14, + "probability": 0.9813 + }, + { + "start": 6210.28, + "end": 6210.72, + "probability": 0.6608 + }, + { + "start": 6211.12, + "end": 6212.86, + "probability": 0.9966 + }, + { + "start": 6213.44, + "end": 6215.5, + "probability": 0.9922 + }, + { + "start": 6216.1, + "end": 6218.08, + "probability": 0.781 + }, + { + "start": 6218.7, + "end": 6221.14, + "probability": 0.8413 + }, + { + "start": 6222.28, + "end": 6223.72, + "probability": 0.9397 + }, + { + "start": 6223.9, + "end": 6224.44, + "probability": 0.864 + }, + { + "start": 6224.5, + "end": 6226.04, + "probability": 0.8538 + }, + { + "start": 6227.32, + "end": 6232.14, + "probability": 0.9846 + }, + { + "start": 6232.14, + "end": 6237.82, + "probability": 0.9871 + }, + { + "start": 6238.5, + "end": 6239.96, + "probability": 0.125 + }, + { + "start": 6242.48, + "end": 6243.16, + "probability": 0.4365 + }, + { + "start": 6243.22, + "end": 6244.82, + "probability": 0.6342 + }, + { + "start": 6244.9, + "end": 6248.8, + "probability": 0.9941 + }, + { + "start": 6249.94, + "end": 6251.24, + "probability": 0.744 + }, + { + "start": 6254.26, + "end": 6263.16, + "probability": 0.998 + }, + { + "start": 6263.16, + "end": 6263.76, + "probability": 0.9785 + }, + { + "start": 6266.3, + "end": 6266.72, + "probability": 0.1016 + }, + { + "start": 6266.72, + "end": 6268.05, + "probability": 0.4837 + }, + { + "start": 6269.24, + "end": 6269.8, + "probability": 0.3022 + }, + { + "start": 6270.06, + "end": 6276.48, + "probability": 0.6678 + }, + { + "start": 6276.48, + "end": 6280.92, + "probability": 0.9923 + }, + { + "start": 6281.46, + "end": 6283.42, + "probability": 0.8179 + }, + { + "start": 6284.66, + "end": 6286.62, + "probability": 0.599 + }, + { + "start": 6286.76, + "end": 6287.32, + "probability": 0.4404 + }, + { + "start": 6287.42, + "end": 6288.34, + "probability": 0.5422 + }, + { + "start": 6288.34, + "end": 6289.88, + "probability": 0.8276 + }, + { + "start": 6290.02, + "end": 6295.04, + "probability": 0.7256 + }, + { + "start": 6295.14, + "end": 6295.14, + "probability": 0.1744 + }, + { + "start": 6295.66, + "end": 6302.58, + "probability": 0.9836 + }, + { + "start": 6302.96, + "end": 6303.6, + "probability": 0.3053 + }, + { + "start": 6304.2, + "end": 6305.16, + "probability": 0.3311 + }, + { + "start": 6305.18, + "end": 6306.88, + "probability": 0.5631 + }, + { + "start": 6307.02, + "end": 6310.68, + "probability": 0.6683 + }, + { + "start": 6310.8, + "end": 6313.06, + "probability": 0.6525 + }, + { + "start": 6314.47, + "end": 6318.7, + "probability": 0.5393 + }, + { + "start": 6320.44, + "end": 6323.18, + "probability": 0.9942 + }, + { + "start": 6323.88, + "end": 6326.88, + "probability": 0.9192 + }, + { + "start": 6327.58, + "end": 6329.58, + "probability": 0.9124 + }, + { + "start": 6330.04, + "end": 6333.68, + "probability": 0.9097 + }, + { + "start": 6334.26, + "end": 6336.52, + "probability": 0.9781 + }, + { + "start": 6336.88, + "end": 6342.22, + "probability": 0.9986 + }, + { + "start": 6342.78, + "end": 6343.54, + "probability": 0.5097 + }, + { + "start": 6344.2, + "end": 6345.78, + "probability": 0.9746 + }, + { + "start": 6346.38, + "end": 6348.04, + "probability": 0.863 + }, + { + "start": 6348.58, + "end": 6351.0, + "probability": 0.9935 + }, + { + "start": 6351.16, + "end": 6351.96, + "probability": 0.6985 + }, + { + "start": 6352.38, + "end": 6352.72, + "probability": 0.5812 + }, + { + "start": 6352.88, + "end": 6353.66, + "probability": 0.7256 + }, + { + "start": 6353.7, + "end": 6355.64, + "probability": 0.9761 + }, + { + "start": 6356.2, + "end": 6360.32, + "probability": 0.833 + }, + { + "start": 6360.32, + "end": 6362.48, + "probability": 0.9992 + }, + { + "start": 6362.68, + "end": 6363.1, + "probability": 0.7552 + }, + { + "start": 6363.34, + "end": 6364.43, + "probability": 0.6634 + }, + { + "start": 6364.6, + "end": 6366.12, + "probability": 0.8841 + }, + { + "start": 6366.12, + "end": 6369.78, + "probability": 0.9395 + }, + { + "start": 6369.86, + "end": 6371.6, + "probability": 0.979 + }, + { + "start": 6376.72, + "end": 6377.24, + "probability": 0.1489 + }, + { + "start": 6377.24, + "end": 6378.44, + "probability": 0.4424 + }, + { + "start": 6380.22, + "end": 6382.08, + "probability": 0.6494 + }, + { + "start": 6382.66, + "end": 6383.96, + "probability": 0.7642 + }, + { + "start": 6384.86, + "end": 6388.36, + "probability": 0.8496 + }, + { + "start": 6388.36, + "end": 6391.82, + "probability": 0.9346 + }, + { + "start": 6392.34, + "end": 6395.76, + "probability": 0.8482 + }, + { + "start": 6396.8, + "end": 6397.34, + "probability": 0.7286 + }, + { + "start": 6397.36, + "end": 6402.0, + "probability": 0.7238 + }, + { + "start": 6402.42, + "end": 6404.26, + "probability": 0.1693 + }, + { + "start": 6404.38, + "end": 6407.4, + "probability": 0.9204 + }, + { + "start": 6408.46, + "end": 6410.9, + "probability": 0.4527 + }, + { + "start": 6411.0, + "end": 6415.0, + "probability": 0.6044 + }, + { + "start": 6415.0, + "end": 6419.34, + "probability": 0.4467 + }, + { + "start": 6419.34, + "end": 6421.66, + "probability": 0.7794 + }, + { + "start": 6422.74, + "end": 6426.12, + "probability": 0.7125 + }, + { + "start": 6426.72, + "end": 6428.42, + "probability": 0.2798 + }, + { + "start": 6428.62, + "end": 6430.1, + "probability": 0.4512 + }, + { + "start": 6430.5, + "end": 6433.54, + "probability": 0.4688 + }, + { + "start": 6433.54, + "end": 6436.38, + "probability": 0.3745 + }, + { + "start": 6436.66, + "end": 6441.84, + "probability": 0.4457 + }, + { + "start": 6443.0, + "end": 6444.54, + "probability": 0.09 + }, + { + "start": 6446.01, + "end": 6446.36, + "probability": 0.037 + }, + { + "start": 6446.76, + "end": 6448.54, + "probability": 0.1231 + }, + { + "start": 6448.94, + "end": 6450.54, + "probability": 0.0254 + }, + { + "start": 6451.04, + "end": 6453.14, + "probability": 0.027 + }, + { + "start": 6453.26, + "end": 6454.86, + "probability": 0.0167 + }, + { + "start": 6455.0, + "end": 6461.48, + "probability": 0.1013 + }, + { + "start": 6462.38, + "end": 6463.84, + "probability": 0.0546 + }, + { + "start": 6466.06, + "end": 6467.35, + "probability": 0.3242 + }, + { + "start": 6468.02, + "end": 6468.02, + "probability": 0.0247 + }, + { + "start": 6468.02, + "end": 6468.74, + "probability": 0.0185 + }, + { + "start": 6469.36, + "end": 6471.48, + "probability": 0.0169 + }, + { + "start": 6471.48, + "end": 6473.82, + "probability": 0.1584 + }, + { + "start": 6474.04, + "end": 6474.42, + "probability": 0.0637 + }, + { + "start": 6474.44, + "end": 6474.98, + "probability": 0.0119 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.0, + "end": 6475.0, + "probability": 0.0 + }, + { + "start": 6475.44, + "end": 6476.22, + "probability": 0.1132 + }, + { + "start": 6476.22, + "end": 6480.1, + "probability": 0.7536 + }, + { + "start": 6480.62, + "end": 6482.42, + "probability": 0.4439 + }, + { + "start": 6482.94, + "end": 6486.4, + "probability": 0.6763 + }, + { + "start": 6486.6, + "end": 6492.48, + "probability": 0.4545 + }, + { + "start": 6492.94, + "end": 6495.34, + "probability": 0.2489 + }, + { + "start": 6495.98, + "end": 6497.74, + "probability": 0.7077 + }, + { + "start": 6497.78, + "end": 6500.72, + "probability": 0.9067 + }, + { + "start": 6503.06, + "end": 6506.04, + "probability": 0.1507 + }, + { + "start": 6506.2, + "end": 6506.26, + "probability": 0.0376 + }, + { + "start": 6506.26, + "end": 6507.79, + "probability": 0.5467 + }, + { + "start": 6514.2, + "end": 6518.44, + "probability": 0.5937 + }, + { + "start": 6519.32, + "end": 6520.22, + "probability": 0.4148 + }, + { + "start": 6520.22, + "end": 6520.28, + "probability": 0.4214 + }, + { + "start": 6520.5, + "end": 6520.92, + "probability": 0.2738 + }, + { + "start": 6522.24, + "end": 6524.22, + "probability": 0.0617 + }, + { + "start": 6525.52, + "end": 6529.0, + "probability": 0.4411 + }, + { + "start": 6529.0, + "end": 6532.16, + "probability": 0.5242 + }, + { + "start": 6532.38, + "end": 6533.4, + "probability": 0.3214 + }, + { + "start": 6533.54, + "end": 6534.9, + "probability": 0.4512 + }, + { + "start": 6535.6, + "end": 6538.54, + "probability": 0.9834 + }, + { + "start": 6539.88, + "end": 6542.18, + "probability": 0.2262 + }, + { + "start": 6542.78, + "end": 6543.58, + "probability": 0.083 + }, + { + "start": 6545.44, + "end": 6546.24, + "probability": 0.6443 + }, + { + "start": 6546.3, + "end": 6546.66, + "probability": 0.7255 + }, + { + "start": 6546.9, + "end": 6551.98, + "probability": 0.9733 + }, + { + "start": 6551.98, + "end": 6556.98, + "probability": 0.9949 + }, + { + "start": 6557.7, + "end": 6557.96, + "probability": 0.1234 + }, + { + "start": 6557.96, + "end": 6562.52, + "probability": 0.491 + }, + { + "start": 6562.52, + "end": 6565.24, + "probability": 0.905 + }, + { + "start": 6565.64, + "end": 6569.7, + "probability": 0.8698 + }, + { + "start": 6570.4, + "end": 6573.06, + "probability": 0.4732 + }, + { + "start": 6573.32, + "end": 6576.26, + "probability": 0.9135 + }, + { + "start": 6581.42, + "end": 6583.2, + "probability": 0.8003 + }, + { + "start": 6586.1, + "end": 6586.84, + "probability": 0.6761 + }, + { + "start": 6586.98, + "end": 6587.96, + "probability": 0.8369 + }, + { + "start": 6588.1, + "end": 6590.94, + "probability": 0.7404 + }, + { + "start": 6591.92, + "end": 6593.3, + "probability": 0.9101 + }, + { + "start": 6594.16, + "end": 6596.2, + "probability": 0.9529 + }, + { + "start": 6598.14, + "end": 6603.38, + "probability": 0.998 + }, + { + "start": 6605.18, + "end": 6606.22, + "probability": 0.7196 + }, + { + "start": 6607.14, + "end": 6609.82, + "probability": 0.9109 + }, + { + "start": 6612.18, + "end": 6616.46, + "probability": 0.9898 + }, + { + "start": 6616.66, + "end": 6616.98, + "probability": 0.6051 + }, + { + "start": 6617.08, + "end": 6618.26, + "probability": 0.9902 + }, + { + "start": 6618.32, + "end": 6621.58, + "probability": 0.9657 + }, + { + "start": 6622.28, + "end": 6624.06, + "probability": 0.9134 + }, + { + "start": 6624.18, + "end": 6625.7, + "probability": 0.5764 + }, + { + "start": 6626.4, + "end": 6627.42, + "probability": 0.8873 + }, + { + "start": 6630.16, + "end": 6631.24, + "probability": 0.7215 + }, + { + "start": 6632.18, + "end": 6634.06, + "probability": 0.9032 + }, + { + "start": 6637.38, + "end": 6640.54, + "probability": 0.7507 + }, + { + "start": 6642.78, + "end": 6644.74, + "probability": 0.6188 + }, + { + "start": 6645.5, + "end": 6646.22, + "probability": 0.1697 + }, + { + "start": 6646.76, + "end": 6648.16, + "probability": 0.6855 + }, + { + "start": 6649.12, + "end": 6652.86, + "probability": 0.9714 + }, + { + "start": 6655.86, + "end": 6661.56, + "probability": 0.9785 + }, + { + "start": 6661.64, + "end": 6664.36, + "probability": 0.9969 + }, + { + "start": 6666.52, + "end": 6667.71, + "probability": 0.9968 + }, + { + "start": 6670.2, + "end": 6671.68, + "probability": 0.9848 + }, + { + "start": 6672.4, + "end": 6675.16, + "probability": 0.9102 + }, + { + "start": 6676.56, + "end": 6677.58, + "probability": 0.9689 + }, + { + "start": 6679.2, + "end": 6682.08, + "probability": 0.9976 + }, + { + "start": 6682.08, + "end": 6686.18, + "probability": 0.9762 + }, + { + "start": 6687.76, + "end": 6688.78, + "probability": 0.666 + }, + { + "start": 6691.0, + "end": 6694.18, + "probability": 0.9875 + }, + { + "start": 6694.78, + "end": 6695.42, + "probability": 0.7307 + }, + { + "start": 6697.04, + "end": 6698.9, + "probability": 0.7257 + }, + { + "start": 6699.82, + "end": 6700.66, + "probability": 0.5933 + }, + { + "start": 6702.48, + "end": 6703.42, + "probability": 0.7372 + }, + { + "start": 6706.44, + "end": 6709.68, + "probability": 0.9089 + }, + { + "start": 6709.78, + "end": 6712.2, + "probability": 0.7314 + }, + { + "start": 6713.88, + "end": 6714.64, + "probability": 0.7881 + }, + { + "start": 6716.02, + "end": 6717.2, + "probability": 0.8726 + }, + { + "start": 6717.56, + "end": 6721.68, + "probability": 0.9568 + }, + { + "start": 6722.14, + "end": 6727.36, + "probability": 0.938 + }, + { + "start": 6727.64, + "end": 6730.4, + "probability": 0.821 + }, + { + "start": 6731.22, + "end": 6731.66, + "probability": 0.3085 + }, + { + "start": 6732.12, + "end": 6732.88, + "probability": 0.6653 + }, + { + "start": 6734.1, + "end": 6734.92, + "probability": 0.6112 + }, + { + "start": 6735.4, + "end": 6736.0, + "probability": 0.5131 + }, + { + "start": 6736.14, + "end": 6736.44, + "probability": 0.7354 + }, + { + "start": 6736.94, + "end": 6739.81, + "probability": 0.9333 + }, + { + "start": 6743.78, + "end": 6750.0, + "probability": 0.9555 + }, + { + "start": 6752.4, + "end": 6758.54, + "probability": 0.9933 + }, + { + "start": 6759.34, + "end": 6761.12, + "probability": 0.8487 + }, + { + "start": 6762.36, + "end": 6765.34, + "probability": 0.9246 + }, + { + "start": 6766.08, + "end": 6767.15, + "probability": 0.8927 + }, + { + "start": 6769.08, + "end": 6771.1, + "probability": 0.98 + }, + { + "start": 6771.22, + "end": 6772.02, + "probability": 0.7098 + }, + { + "start": 6772.18, + "end": 6773.14, + "probability": 0.8966 + }, + { + "start": 6775.0, + "end": 6775.7, + "probability": 0.8351 + }, + { + "start": 6776.66, + "end": 6777.22, + "probability": 0.9574 + }, + { + "start": 6779.08, + "end": 6781.52, + "probability": 0.7897 + }, + { + "start": 6783.42, + "end": 6783.82, + "probability": 0.7757 + }, + { + "start": 6783.88, + "end": 6784.58, + "probability": 0.4094 + }, + { + "start": 6784.6, + "end": 6786.98, + "probability": 0.9296 + }, + { + "start": 6787.2, + "end": 6788.1, + "probability": 0.8548 + }, + { + "start": 6788.4, + "end": 6790.92, + "probability": 0.8298 + }, + { + "start": 6791.22, + "end": 6791.72, + "probability": 0.2784 + }, + { + "start": 6791.74, + "end": 6792.56, + "probability": 0.9716 + }, + { + "start": 6792.98, + "end": 6794.5, + "probability": 0.8816 + }, + { + "start": 6794.56, + "end": 6794.86, + "probability": 0.6455 + }, + { + "start": 6795.22, + "end": 6795.68, + "probability": 0.7703 + }, + { + "start": 6796.08, + "end": 6796.64, + "probability": 0.9922 + }, + { + "start": 6798.02, + "end": 6799.64, + "probability": 0.5467 + }, + { + "start": 6800.9, + "end": 6803.24, + "probability": 0.6565 + }, + { + "start": 6804.4, + "end": 6805.32, + "probability": 0.8598 + }, + { + "start": 6805.84, + "end": 6808.72, + "probability": 0.9499 + }, + { + "start": 6808.88, + "end": 6810.44, + "probability": 0.9549 + }, + { + "start": 6814.88, + "end": 6818.7, + "probability": 0.9938 + }, + { + "start": 6819.5, + "end": 6821.22, + "probability": 0.6724 + }, + { + "start": 6821.76, + "end": 6822.77, + "probability": 0.9937 + }, + { + "start": 6823.7, + "end": 6827.2, + "probability": 0.6841 + }, + { + "start": 6829.22, + "end": 6829.52, + "probability": 0.6251 + }, + { + "start": 6830.92, + "end": 6832.12, + "probability": 0.7418 + }, + { + "start": 6832.72, + "end": 6834.18, + "probability": 0.688 + }, + { + "start": 6834.84, + "end": 6835.52, + "probability": 0.8737 + }, + { + "start": 6835.62, + "end": 6836.08, + "probability": 0.9834 + }, + { + "start": 6837.46, + "end": 6839.38, + "probability": 0.9002 + }, + { + "start": 6842.26, + "end": 6845.02, + "probability": 0.9226 + }, + { + "start": 6846.24, + "end": 6846.8, + "probability": 0.8517 + }, + { + "start": 6847.48, + "end": 6848.7, + "probability": 0.9839 + }, + { + "start": 6850.64, + "end": 6852.6, + "probability": 0.974 + }, + { + "start": 6853.52, + "end": 6856.02, + "probability": 0.9273 + }, + { + "start": 6857.04, + "end": 6857.92, + "probability": 0.7376 + }, + { + "start": 6858.62, + "end": 6859.22, + "probability": 0.9309 + }, + { + "start": 6860.98, + "end": 6863.32, + "probability": 0.998 + }, + { + "start": 6865.64, + "end": 6868.46, + "probability": 0.8766 + }, + { + "start": 6870.56, + "end": 6872.08, + "probability": 0.9039 + }, + { + "start": 6872.1, + "end": 6872.86, + "probability": 0.6615 + }, + { + "start": 6872.86, + "end": 6873.86, + "probability": 0.6693 + }, + { + "start": 6876.5, + "end": 6877.23, + "probability": 0.5028 + }, + { + "start": 6878.6, + "end": 6879.82, + "probability": 0.9495 + }, + { + "start": 6883.18, + "end": 6883.82, + "probability": 0.9839 + }, + { + "start": 6886.74, + "end": 6888.34, + "probability": 0.99 + }, + { + "start": 6891.34, + "end": 6896.64, + "probability": 0.9907 + }, + { + "start": 6898.16, + "end": 6900.0, + "probability": 0.9568 + }, + { + "start": 6901.2, + "end": 6903.26, + "probability": 0.9351 + }, + { + "start": 6903.92, + "end": 6905.84, + "probability": 0.9871 + }, + { + "start": 6907.38, + "end": 6909.2, + "probability": 0.7578 + }, + { + "start": 6909.94, + "end": 6910.56, + "probability": 0.6806 + }, + { + "start": 6911.14, + "end": 6911.69, + "probability": 0.5409 + }, + { + "start": 6912.22, + "end": 6914.16, + "probability": 0.8711 + }, + { + "start": 6915.2, + "end": 6916.1, + "probability": 0.9968 + }, + { + "start": 6917.04, + "end": 6917.98, + "probability": 0.7969 + }, + { + "start": 6918.72, + "end": 6920.16, + "probability": 0.9943 + }, + { + "start": 6921.88, + "end": 6925.06, + "probability": 0.988 + }, + { + "start": 6926.02, + "end": 6926.98, + "probability": 0.5684 + }, + { + "start": 6927.52, + "end": 6929.04, + "probability": 0.8192 + }, + { + "start": 6931.5, + "end": 6932.14, + "probability": 0.5157 + }, + { + "start": 6932.82, + "end": 6933.32, + "probability": 0.8574 + }, + { + "start": 6937.74, + "end": 6941.04, + "probability": 0.9798 + }, + { + "start": 6941.24, + "end": 6942.76, + "probability": 0.6811 + }, + { + "start": 6943.5, + "end": 6944.42, + "probability": 0.8621 + }, + { + "start": 6945.28, + "end": 6948.16, + "probability": 0.8992 + }, + { + "start": 6949.86, + "end": 6950.98, + "probability": 0.7456 + }, + { + "start": 6952.92, + "end": 6953.56, + "probability": 0.5557 + }, + { + "start": 6954.94, + "end": 6956.86, + "probability": 0.5414 + }, + { + "start": 6956.92, + "end": 6957.86, + "probability": 0.8812 + }, + { + "start": 6958.24, + "end": 6959.22, + "probability": 0.7744 + }, + { + "start": 6960.46, + "end": 6963.7, + "probability": 0.8608 + }, + { + "start": 6963.76, + "end": 6965.42, + "probability": 0.9741 + }, + { + "start": 6965.78, + "end": 6966.26, + "probability": 0.8843 + }, + { + "start": 6968.34, + "end": 6969.34, + "probability": 0.1449 + }, + { + "start": 6970.9, + "end": 6972.96, + "probability": 0.9978 + }, + { + "start": 6976.08, + "end": 6980.32, + "probability": 0.592 + }, + { + "start": 6982.8, + "end": 6983.66, + "probability": 0.8813 + }, + { + "start": 6983.84, + "end": 6984.88, + "probability": 0.948 + }, + { + "start": 6985.04, + "end": 6986.06, + "probability": 0.8617 + }, + { + "start": 6987.08, + "end": 6987.88, + "probability": 0.9325 + }, + { + "start": 6987.98, + "end": 6988.76, + "probability": 0.6482 + }, + { + "start": 6988.78, + "end": 6990.86, + "probability": 0.8063 + }, + { + "start": 6992.14, + "end": 6993.26, + "probability": 0.5265 + }, + { + "start": 6993.3, + "end": 6994.08, + "probability": 0.5836 + }, + { + "start": 6994.14, + "end": 6995.85, + "probability": 0.812 + }, + { + "start": 6997.24, + "end": 6999.22, + "probability": 0.6232 + }, + { + "start": 6999.7, + "end": 7004.26, + "probability": 0.9023 + }, + { + "start": 7004.56, + "end": 7004.64, + "probability": 0.7417 + }, + { + "start": 7004.7, + "end": 7005.88, + "probability": 0.9431 + }, + { + "start": 7005.96, + "end": 7007.28, + "probability": 0.3355 + }, + { + "start": 7008.1, + "end": 7008.48, + "probability": 0.0999 + }, + { + "start": 7008.88, + "end": 7009.12, + "probability": 0.3735 + }, + { + "start": 7009.24, + "end": 7010.02, + "probability": 0.5396 + }, + { + "start": 7010.1, + "end": 7012.06, + "probability": 0.7197 + }, + { + "start": 7012.16, + "end": 7012.16, + "probability": 0.0056 + }, + { + "start": 7012.16, + "end": 7012.78, + "probability": 0.3016 + }, + { + "start": 7012.86, + "end": 7013.52, + "probability": 0.6105 + }, + { + "start": 7013.86, + "end": 7017.61, + "probability": 0.9176 + }, + { + "start": 7020.28, + "end": 7023.62, + "probability": 0.6643 + }, + { + "start": 7024.6, + "end": 7025.78, + "probability": 0.8909 + }, + { + "start": 7026.12, + "end": 7027.36, + "probability": 0.7701 + }, + { + "start": 7027.74, + "end": 7028.82, + "probability": 0.9133 + }, + { + "start": 7029.94, + "end": 7031.96, + "probability": 0.821 + }, + { + "start": 7032.46, + "end": 7033.02, + "probability": 0.982 + }, + { + "start": 7036.64, + "end": 7038.22, + "probability": 0.9188 + }, + { + "start": 7040.54, + "end": 7043.14, + "probability": 0.9885 + }, + { + "start": 7043.84, + "end": 7044.98, + "probability": 0.9949 + }, + { + "start": 7046.78, + "end": 7047.18, + "probability": 0.6962 + }, + { + "start": 7048.1, + "end": 7048.6, + "probability": 0.8119 + }, + { + "start": 7049.16, + "end": 7050.68, + "probability": 0.6126 + }, + { + "start": 7052.2, + "end": 7056.76, + "probability": 0.7834 + }, + { + "start": 7057.2, + "end": 7057.82, + "probability": 0.9141 + }, + { + "start": 7059.96, + "end": 7060.61, + "probability": 0.2507 + }, + { + "start": 7061.32, + "end": 7061.84, + "probability": 0.2133 + }, + { + "start": 7062.3, + "end": 7064.14, + "probability": 0.4243 + }, + { + "start": 7064.56, + "end": 7065.22, + "probability": 0.5361 + }, + { + "start": 7065.38, + "end": 7065.64, + "probability": 0.2468 + }, + { + "start": 7065.88, + "end": 7068.4, + "probability": 0.647 + }, + { + "start": 7069.0, + "end": 7071.62, + "probability": 0.9534 + }, + { + "start": 7072.34, + "end": 7074.79, + "probability": 0.4698 + }, + { + "start": 7075.76, + "end": 7078.54, + "probability": 0.8452 + }, + { + "start": 7079.2, + "end": 7080.44, + "probability": 0.9665 + }, + { + "start": 7080.92, + "end": 7083.4, + "probability": 0.835 + }, + { + "start": 7085.06, + "end": 7086.12, + "probability": 0.9567 + }, + { + "start": 7087.36, + "end": 7090.6, + "probability": 0.9966 + }, + { + "start": 7090.8, + "end": 7094.9, + "probability": 0.7523 + }, + { + "start": 7095.82, + "end": 7098.06, + "probability": 0.7855 + }, + { + "start": 7098.56, + "end": 7099.85, + "probability": 0.8126 + }, + { + "start": 7100.52, + "end": 7103.72, + "probability": 0.7313 + }, + { + "start": 7103.82, + "end": 7108.14, + "probability": 0.7869 + }, + { + "start": 7108.36, + "end": 7109.58, + "probability": 0.8521 + }, + { + "start": 7109.7, + "end": 7110.58, + "probability": 0.7317 + }, + { + "start": 7111.72, + "end": 7112.18, + "probability": 0.8802 + }, + { + "start": 7112.98, + "end": 7114.24, + "probability": 0.9736 + }, + { + "start": 7114.86, + "end": 7116.98, + "probability": 0.7354 + }, + { + "start": 7117.5, + "end": 7119.98, + "probability": 0.9943 + }, + { + "start": 7120.1, + "end": 7123.98, + "probability": 0.98 + }, + { + "start": 7124.58, + "end": 7127.22, + "probability": 0.9189 + }, + { + "start": 7128.12, + "end": 7128.12, + "probability": 0.0183 + }, + { + "start": 7128.12, + "end": 7130.32, + "probability": 0.9724 + }, + { + "start": 7131.42, + "end": 7132.44, + "probability": 0.7891 + }, + { + "start": 7133.08, + "end": 7133.32, + "probability": 0.959 + }, + { + "start": 7134.32, + "end": 7135.0, + "probability": 0.5364 + }, + { + "start": 7135.76, + "end": 7136.42, + "probability": 0.8927 + }, + { + "start": 7137.04, + "end": 7137.5, + "probability": 0.6059 + }, + { + "start": 7139.42, + "end": 7142.64, + "probability": 0.6548 + }, + { + "start": 7142.94, + "end": 7144.74, + "probability": 0.8963 + }, + { + "start": 7144.82, + "end": 7145.38, + "probability": 0.624 + }, + { + "start": 7145.54, + "end": 7146.46, + "probability": 0.6555 + }, + { + "start": 7147.46, + "end": 7148.64, + "probability": 0.681 + }, + { + "start": 7151.66, + "end": 7152.46, + "probability": 0.03 + }, + { + "start": 7152.46, + "end": 7152.46, + "probability": 0.1628 + }, + { + "start": 7152.46, + "end": 7154.11, + "probability": 0.8982 + }, + { + "start": 7155.04, + "end": 7155.04, + "probability": 0.1684 + }, + { + "start": 7155.04, + "end": 7155.96, + "probability": 0.4855 + }, + { + "start": 7157.18, + "end": 7158.02, + "probability": 0.7184 + }, + { + "start": 7158.72, + "end": 7159.96, + "probability": 0.8153 + }, + { + "start": 7160.98, + "end": 7162.92, + "probability": 0.991 + }, + { + "start": 7163.08, + "end": 7164.82, + "probability": 0.7033 + }, + { + "start": 7165.86, + "end": 7168.02, + "probability": 0.7695 + }, + { + "start": 7168.12, + "end": 7171.62, + "probability": 0.6116 + }, + { + "start": 7171.96, + "end": 7174.72, + "probability": 0.9878 + }, + { + "start": 7175.64, + "end": 7177.8, + "probability": 0.9891 + }, + { + "start": 7179.5, + "end": 7181.77, + "probability": 0.8856 + }, + { + "start": 7182.16, + "end": 7185.72, + "probability": 0.7657 + }, + { + "start": 7186.56, + "end": 7187.6, + "probability": 0.998 + }, + { + "start": 7188.4, + "end": 7189.98, + "probability": 0.9482 + }, + { + "start": 7190.26, + "end": 7193.12, + "probability": 0.8936 + }, + { + "start": 7194.34, + "end": 7195.8, + "probability": 0.9197 + }, + { + "start": 7196.2, + "end": 7197.86, + "probability": 0.9941 + }, + { + "start": 7199.6, + "end": 7202.1, + "probability": 0.9962 + }, + { + "start": 7202.64, + "end": 7203.44, + "probability": 0.9432 + }, + { + "start": 7204.2, + "end": 7207.0, + "probability": 0.8785 + }, + { + "start": 7207.38, + "end": 7208.18, + "probability": 0.8079 + }, + { + "start": 7208.42, + "end": 7210.98, + "probability": 0.9871 + }, + { + "start": 7212.0, + "end": 7214.34, + "probability": 0.9946 + }, + { + "start": 7214.52, + "end": 7215.44, + "probability": 0.6636 + }, + { + "start": 7216.26, + "end": 7216.9, + "probability": 0.7332 + }, + { + "start": 7218.44, + "end": 7220.62, + "probability": 0.7264 + }, + { + "start": 7223.31, + "end": 7225.16, + "probability": 0.5678 + }, + { + "start": 7226.34, + "end": 7227.34, + "probability": 0.7998 + }, + { + "start": 7227.34, + "end": 7227.68, + "probability": 0.5133 + }, + { + "start": 7228.9, + "end": 7234.72, + "probability": 0.9901 + }, + { + "start": 7234.9, + "end": 7236.28, + "probability": 0.9755 + }, + { + "start": 7236.88, + "end": 7240.66, + "probability": 0.9893 + }, + { + "start": 7242.49, + "end": 7245.24, + "probability": 0.4726 + }, + { + "start": 7246.4, + "end": 7251.4, + "probability": 0.9635 + }, + { + "start": 7252.48, + "end": 7256.51, + "probability": 0.9561 + }, + { + "start": 7257.42, + "end": 7257.98, + "probability": 0.0862 + }, + { + "start": 7258.96, + "end": 7261.92, + "probability": 0.9037 + }, + { + "start": 7262.44, + "end": 7262.72, + "probability": 0.3269 + }, + { + "start": 7262.76, + "end": 7264.38, + "probability": 0.6807 + }, + { + "start": 7265.34, + "end": 7265.98, + "probability": 0.7948 + }, + { + "start": 7266.02, + "end": 7267.92, + "probability": 0.9598 + }, + { + "start": 7268.0, + "end": 7269.36, + "probability": 0.9639 + }, + { + "start": 7270.16, + "end": 7272.1, + "probability": 0.9893 + }, + { + "start": 7273.0, + "end": 7275.16, + "probability": 0.8783 + }, + { + "start": 7275.26, + "end": 7278.47, + "probability": 0.9569 + }, + { + "start": 7279.32, + "end": 7282.06, + "probability": 0.7751 + }, + { + "start": 7282.44, + "end": 7283.74, + "probability": 0.5727 + }, + { + "start": 7283.74, + "end": 7285.4, + "probability": 0.9253 + }, + { + "start": 7286.02, + "end": 7291.52, + "probability": 0.7729 + }, + { + "start": 7291.68, + "end": 7292.06, + "probability": 0.4275 + }, + { + "start": 7292.12, + "end": 7292.86, + "probability": 0.601 + }, + { + "start": 7293.08, + "end": 7293.78, + "probability": 0.626 + }, + { + "start": 7294.74, + "end": 7297.3, + "probability": 0.8987 + }, + { + "start": 7302.48, + "end": 7304.57, + "probability": 0.95 + }, + { + "start": 7309.16, + "end": 7311.68, + "probability": 0.7582 + }, + { + "start": 7312.94, + "end": 7319.38, + "probability": 0.9905 + }, + { + "start": 7320.16, + "end": 7323.7, + "probability": 0.9475 + }, + { + "start": 7324.24, + "end": 7325.38, + "probability": 0.9832 + }, + { + "start": 7326.54, + "end": 7329.28, + "probability": 0.6862 + }, + { + "start": 7329.94, + "end": 7330.7, + "probability": 0.8408 + }, + { + "start": 7331.28, + "end": 7336.24, + "probability": 0.9207 + }, + { + "start": 7336.42, + "end": 7340.82, + "probability": 0.9775 + }, + { + "start": 7341.52, + "end": 7345.72, + "probability": 0.9541 + }, + { + "start": 7346.4, + "end": 7348.84, + "probability": 0.9198 + }, + { + "start": 7349.14, + "end": 7352.82, + "probability": 0.988 + }, + { + "start": 7353.44, + "end": 7358.7, + "probability": 0.9951 + }, + { + "start": 7358.86, + "end": 7363.08, + "probability": 0.9653 + }, + { + "start": 7363.26, + "end": 7364.26, + "probability": 0.6711 + }, + { + "start": 7364.36, + "end": 7366.12, + "probability": 0.859 + }, + { + "start": 7366.5, + "end": 7371.02, + "probability": 0.978 + }, + { + "start": 7371.5, + "end": 7374.5, + "probability": 0.9905 + }, + { + "start": 7374.66, + "end": 7375.84, + "probability": 0.9323 + }, + { + "start": 7376.0, + "end": 7377.46, + "probability": 0.822 + }, + { + "start": 7377.86, + "end": 7378.68, + "probability": 0.5708 + }, + { + "start": 7378.82, + "end": 7381.0, + "probability": 0.8527 + }, + { + "start": 7381.04, + "end": 7383.32, + "probability": 0.9984 + }, + { + "start": 7383.52, + "end": 7389.7, + "probability": 0.9983 + }, + { + "start": 7390.88, + "end": 7393.8, + "probability": 0.7243 + }, + { + "start": 7394.6, + "end": 7400.16, + "probability": 0.9993 + }, + { + "start": 7400.16, + "end": 7407.7, + "probability": 0.983 + }, + { + "start": 7407.96, + "end": 7409.92, + "probability": 0.6571 + }, + { + "start": 7410.4, + "end": 7411.52, + "probability": 0.7346 + }, + { + "start": 7411.54, + "end": 7415.94, + "probability": 0.9455 + }, + { + "start": 7416.72, + "end": 7418.1, + "probability": 0.8712 + }, + { + "start": 7418.28, + "end": 7420.62, + "probability": 0.8677 + }, + { + "start": 7420.68, + "end": 7421.56, + "probability": 0.8722 + }, + { + "start": 7421.78, + "end": 7426.94, + "probability": 0.9503 + }, + { + "start": 7427.54, + "end": 7429.06, + "probability": 0.8716 + }, + { + "start": 7431.96, + "end": 7438.5, + "probability": 0.9858 + }, + { + "start": 7438.58, + "end": 7441.08, + "probability": 0.996 + }, + { + "start": 7441.26, + "end": 7446.9, + "probability": 0.9672 + }, + { + "start": 7447.42, + "end": 7449.54, + "probability": 0.9673 + }, + { + "start": 7449.7, + "end": 7454.58, + "probability": 0.9958 + }, + { + "start": 7454.6, + "end": 7458.46, + "probability": 0.9968 + }, + { + "start": 7458.68, + "end": 7461.36, + "probability": 0.527 + }, + { + "start": 7461.92, + "end": 7466.04, + "probability": 0.9768 + }, + { + "start": 7466.88, + "end": 7471.7, + "probability": 0.8597 + }, + { + "start": 7472.54, + "end": 7475.7, + "probability": 0.8921 + }, + { + "start": 7475.94, + "end": 7476.6, + "probability": 0.5054 + }, + { + "start": 7476.8, + "end": 7480.59, + "probability": 0.9758 + }, + { + "start": 7481.5, + "end": 7485.66, + "probability": 0.6225 + }, + { + "start": 7485.86, + "end": 7490.88, + "probability": 0.9958 + }, + { + "start": 7491.04, + "end": 7492.7, + "probability": 0.8504 + }, + { + "start": 7493.02, + "end": 7494.52, + "probability": 0.7299 + }, + { + "start": 7494.98, + "end": 7498.34, + "probability": 0.8623 + }, + { + "start": 7498.54, + "end": 7500.38, + "probability": 0.7917 + }, + { + "start": 7500.58, + "end": 7502.3, + "probability": 0.9946 + }, + { + "start": 7503.06, + "end": 7506.42, + "probability": 0.9917 + }, + { + "start": 7506.58, + "end": 7507.36, + "probability": 0.9698 + }, + { + "start": 7507.76, + "end": 7509.32, + "probability": 0.9894 + }, + { + "start": 7509.8, + "end": 7510.84, + "probability": 0.9426 + }, + { + "start": 7510.94, + "end": 7512.16, + "probability": 0.9199 + }, + { + "start": 7512.78, + "end": 7518.14, + "probability": 0.9053 + }, + { + "start": 7518.66, + "end": 7522.82, + "probability": 0.9878 + }, + { + "start": 7523.36, + "end": 7526.8, + "probability": 0.9827 + }, + { + "start": 7527.32, + "end": 7531.42, + "probability": 0.9784 + }, + { + "start": 7531.82, + "end": 7534.26, + "probability": 0.8719 + }, + { + "start": 7534.66, + "end": 7536.88, + "probability": 0.8781 + }, + { + "start": 7537.16, + "end": 7539.94, + "probability": 0.7914 + }, + { + "start": 7540.48, + "end": 7545.18, + "probability": 0.9763 + }, + { + "start": 7545.18, + "end": 7550.06, + "probability": 0.975 + }, + { + "start": 7550.56, + "end": 7552.36, + "probability": 0.9093 + }, + { + "start": 7552.62, + "end": 7554.02, + "probability": 0.622 + }, + { + "start": 7554.16, + "end": 7557.48, + "probability": 0.9871 + }, + { + "start": 7557.48, + "end": 7561.56, + "probability": 0.9918 + }, + { + "start": 7561.66, + "end": 7567.92, + "probability": 0.9964 + }, + { + "start": 7567.92, + "end": 7574.6, + "probability": 0.9948 + }, + { + "start": 7574.74, + "end": 7575.16, + "probability": 0.4087 + }, + { + "start": 7575.34, + "end": 7579.92, + "probability": 0.994 + }, + { + "start": 7580.4, + "end": 7583.0, + "probability": 0.9941 + }, + { + "start": 7583.18, + "end": 7588.62, + "probability": 0.5544 + }, + { + "start": 7589.32, + "end": 7595.7, + "probability": 0.9898 + }, + { + "start": 7595.7, + "end": 7600.84, + "probability": 0.9985 + }, + { + "start": 7601.24, + "end": 7602.34, + "probability": 0.969 + }, + { + "start": 7602.42, + "end": 7603.78, + "probability": 0.9634 + }, + { + "start": 7603.88, + "end": 7604.86, + "probability": 0.6267 + }, + { + "start": 7604.96, + "end": 7609.78, + "probability": 0.9575 + }, + { + "start": 7609.78, + "end": 7614.34, + "probability": 0.9352 + }, + { + "start": 7614.6, + "end": 7617.08, + "probability": 0.9736 + }, + { + "start": 7617.24, + "end": 7620.34, + "probability": 0.8916 + }, + { + "start": 7620.42, + "end": 7622.1, + "probability": 0.8037 + }, + { + "start": 7622.68, + "end": 7623.34, + "probability": 0.3572 + }, + { + "start": 7623.68, + "end": 7629.06, + "probability": 0.955 + }, + { + "start": 7629.06, + "end": 7634.12, + "probability": 0.9972 + }, + { + "start": 7634.72, + "end": 7638.8, + "probability": 0.7802 + }, + { + "start": 7639.42, + "end": 7642.64, + "probability": 0.9738 + }, + { + "start": 7643.42, + "end": 7644.2, + "probability": 0.703 + }, + { + "start": 7644.78, + "end": 7649.08, + "probability": 0.9282 + }, + { + "start": 7649.14, + "end": 7652.7, + "probability": 0.9762 + }, + { + "start": 7653.58, + "end": 7655.56, + "probability": 0.9425 + }, + { + "start": 7656.02, + "end": 7657.08, + "probability": 0.9918 + }, + { + "start": 7657.4, + "end": 7662.32, + "probability": 0.9946 + }, + { + "start": 7663.38, + "end": 7665.48, + "probability": 0.6875 + }, + { + "start": 7665.6, + "end": 7667.16, + "probability": 0.9421 + }, + { + "start": 7667.48, + "end": 7669.08, + "probability": 0.9404 + }, + { + "start": 7669.48, + "end": 7671.56, + "probability": 0.82 + }, + { + "start": 7672.58, + "end": 7675.34, + "probability": 0.9507 + }, + { + "start": 7675.72, + "end": 7679.72, + "probability": 0.9067 + }, + { + "start": 7679.72, + "end": 7683.88, + "probability": 0.9937 + }, + { + "start": 7684.2, + "end": 7688.64, + "probability": 0.9725 + }, + { + "start": 7689.18, + "end": 7690.7, + "probability": 0.6779 + }, + { + "start": 7690.78, + "end": 7695.28, + "probability": 0.9593 + }, + { + "start": 7695.46, + "end": 7700.06, + "probability": 0.856 + }, + { + "start": 7700.58, + "end": 7704.48, + "probability": 0.9883 + }, + { + "start": 7704.9, + "end": 7706.56, + "probability": 0.4439 + }, + { + "start": 7709.02, + "end": 7710.82, + "probability": 0.0801 + }, + { + "start": 7710.82, + "end": 7711.36, + "probability": 0.6729 + }, + { + "start": 7711.54, + "end": 7712.4, + "probability": 0.5822 + }, + { + "start": 7712.6, + "end": 7715.7, + "probability": 0.7777 + }, + { + "start": 7715.78, + "end": 7719.26, + "probability": 0.9603 + }, + { + "start": 7719.34, + "end": 7720.76, + "probability": 0.8318 + }, + { + "start": 7721.22, + "end": 7726.98, + "probability": 0.9804 + }, + { + "start": 7727.06, + "end": 7729.5, + "probability": 0.6849 + }, + { + "start": 7730.32, + "end": 7732.12, + "probability": 0.81 + }, + { + "start": 7732.22, + "end": 7737.92, + "probability": 0.9722 + }, + { + "start": 7738.0, + "end": 7739.43, + "probability": 0.6747 + }, + { + "start": 7740.2, + "end": 7744.92, + "probability": 0.9352 + }, + { + "start": 7746.71, + "end": 7755.54, + "probability": 0.9694 + }, + { + "start": 7756.1, + "end": 7761.44, + "probability": 0.9814 + }, + { + "start": 7761.76, + "end": 7766.7, + "probability": 0.9612 + }, + { + "start": 7767.42, + "end": 7772.8, + "probability": 0.9272 + }, + { + "start": 7773.38, + "end": 7774.14, + "probability": 0.5898 + }, + { + "start": 7775.58, + "end": 7775.9, + "probability": 0.7117 + }, + { + "start": 7777.32, + "end": 7779.72, + "probability": 0.8879 + }, + { + "start": 7780.42, + "end": 7781.62, + "probability": 0.9928 + }, + { + "start": 7782.36, + "end": 7783.9, + "probability": 0.5431 + }, + { + "start": 7784.02, + "end": 7789.7, + "probability": 0.8875 + }, + { + "start": 7790.44, + "end": 7791.4, + "probability": 0.4763 + }, + { + "start": 7792.16, + "end": 7799.1, + "probability": 0.968 + }, + { + "start": 7799.36, + "end": 7805.36, + "probability": 0.8846 + }, + { + "start": 7806.0, + "end": 7808.04, + "probability": 0.8306 + }, + { + "start": 7808.64, + "end": 7810.0, + "probability": 0.7414 + }, + { + "start": 7811.1, + "end": 7811.24, + "probability": 0.1526 + }, + { + "start": 7811.24, + "end": 7815.8, + "probability": 0.6131 + }, + { + "start": 7815.88, + "end": 7817.46, + "probability": 0.8539 + }, + { + "start": 7819.0, + "end": 7826.7, + "probability": 0.9829 + }, + { + "start": 7827.32, + "end": 7830.24, + "probability": 0.9918 + }, + { + "start": 7830.24, + "end": 7833.5, + "probability": 0.9824 + }, + { + "start": 7834.46, + "end": 7835.68, + "probability": 0.9073 + }, + { + "start": 7836.4, + "end": 7838.78, + "probability": 0.6779 + }, + { + "start": 7839.2, + "end": 7841.7, + "probability": 0.4952 + }, + { + "start": 7841.74, + "end": 7844.24, + "probability": 0.8002 + }, + { + "start": 7844.32, + "end": 7844.74, + "probability": 0.8571 + }, + { + "start": 7844.92, + "end": 7846.06, + "probability": 0.9829 + }, + { + "start": 7846.48, + "end": 7847.26, + "probability": 0.6286 + }, + { + "start": 7847.44, + "end": 7850.52, + "probability": 0.7969 + }, + { + "start": 7850.92, + "end": 7852.17, + "probability": 0.7523 + }, + { + "start": 7853.1, + "end": 7853.34, + "probability": 0.6007 + }, + { + "start": 7853.5, + "end": 7854.96, + "probability": 0.9683 + }, + { + "start": 7855.16, + "end": 7858.28, + "probability": 0.8536 + }, + { + "start": 7858.66, + "end": 7860.14, + "probability": 0.7746 + }, + { + "start": 7860.36, + "end": 7864.94, + "probability": 0.8288 + }, + { + "start": 7865.84, + "end": 7868.6, + "probability": 0.957 + }, + { + "start": 7871.84, + "end": 7874.7, + "probability": 0.8186 + }, + { + "start": 7874.88, + "end": 7877.5, + "probability": 0.5078 + }, + { + "start": 7878.2, + "end": 7881.66, + "probability": 0.942 + }, + { + "start": 7882.4, + "end": 7884.62, + "probability": 0.0169 + }, + { + "start": 7885.1, + "end": 7885.56, + "probability": 0.4788 + }, + { + "start": 7885.88, + "end": 7891.58, + "probability": 0.8295 + }, + { + "start": 7892.44, + "end": 7897.6, + "probability": 0.9892 + }, + { + "start": 7898.02, + "end": 7900.94, + "probability": 0.9941 + }, + { + "start": 7901.0, + "end": 7902.12, + "probability": 0.6931 + }, + { + "start": 7902.58, + "end": 7904.76, + "probability": 0.9384 + }, + { + "start": 7904.88, + "end": 7905.23, + "probability": 0.877 + }, + { + "start": 7905.98, + "end": 7906.6, + "probability": 0.8101 + }, + { + "start": 7907.26, + "end": 7912.2, + "probability": 0.9495 + }, + { + "start": 7912.28, + "end": 7914.14, + "probability": 0.9681 + }, + { + "start": 7914.8, + "end": 7916.33, + "probability": 0.9739 + }, + { + "start": 7916.86, + "end": 7919.18, + "probability": 0.9799 + }, + { + "start": 7919.68, + "end": 7919.76, + "probability": 0.0309 + }, + { + "start": 7919.9, + "end": 7923.32, + "probability": 0.9453 + }, + { + "start": 7923.72, + "end": 7925.2, + "probability": 0.9774 + }, + { + "start": 7925.24, + "end": 7926.74, + "probability": 0.4823 + }, + { + "start": 7926.74, + "end": 7930.02, + "probability": 0.6731 + }, + { + "start": 7930.56, + "end": 7933.68, + "probability": 0.831 + }, + { + "start": 7934.26, + "end": 7935.84, + "probability": 0.9785 + }, + { + "start": 7936.48, + "end": 7942.62, + "probability": 0.9883 + }, + { + "start": 7942.8, + "end": 7946.7, + "probability": 0.4935 + }, + { + "start": 7946.84, + "end": 7948.84, + "probability": 0.9985 + }, + { + "start": 7949.18, + "end": 7949.48, + "probability": 0.3758 + }, + { + "start": 7949.58, + "end": 7949.68, + "probability": 0.4591 + }, + { + "start": 7949.7, + "end": 7952.68, + "probability": 0.9824 + }, + { + "start": 7952.76, + "end": 7954.02, + "probability": 0.9461 + }, + { + "start": 7954.18, + "end": 7955.12, + "probability": 0.618 + }, + { + "start": 7955.12, + "end": 7955.24, + "probability": 0.3965 + }, + { + "start": 7955.38, + "end": 7957.84, + "probability": 0.7421 + }, + { + "start": 7958.56, + "end": 7964.9, + "probability": 0.9664 + }, + { + "start": 7965.54, + "end": 7967.18, + "probability": 0.8628 + }, + { + "start": 7968.28, + "end": 7971.3, + "probability": 0.7499 + }, + { + "start": 7971.48, + "end": 7976.64, + "probability": 0.9523 + }, + { + "start": 7977.3, + "end": 7979.92, + "probability": 0.5705 + }, + { + "start": 7980.52, + "end": 7984.9, + "probability": 0.786 + }, + { + "start": 7985.22, + "end": 7990.69, + "probability": 0.9874 + }, + { + "start": 7990.8, + "end": 7995.24, + "probability": 0.9985 + }, + { + "start": 7995.24, + "end": 7995.44, + "probability": 0.6668 + }, + { + "start": 7996.0, + "end": 7997.6, + "probability": 0.7597 + }, + { + "start": 7997.68, + "end": 8001.16, + "probability": 0.9429 + }, + { + "start": 8001.66, + "end": 8001.76, + "probability": 0.4217 + }, + { + "start": 8001.9, + "end": 8003.74, + "probability": 0.5829 + }, + { + "start": 8003.86, + "end": 8009.48, + "probability": 0.8188 + }, + { + "start": 8009.74, + "end": 8009.96, + "probability": 0.4031 + }, + { + "start": 8010.86, + "end": 8014.42, + "probability": 0.8375 + }, + { + "start": 8014.54, + "end": 8015.66, + "probability": 0.574 + }, + { + "start": 8016.02, + "end": 8020.14, + "probability": 0.9441 + }, + { + "start": 8021.42, + "end": 8022.36, + "probability": 0.858 + }, + { + "start": 8022.88, + "end": 8025.72, + "probability": 0.9033 + }, + { + "start": 8027.02, + "end": 8027.8, + "probability": 0.8812 + }, + { + "start": 8034.12, + "end": 8035.4, + "probability": 0.7017 + }, + { + "start": 8036.04, + "end": 8037.2, + "probability": 0.659 + }, + { + "start": 8039.36, + "end": 8042.32, + "probability": 0.8391 + }, + { + "start": 8043.66, + "end": 8046.7, + "probability": 0.9673 + }, + { + "start": 8048.44, + "end": 8052.1, + "probability": 0.9665 + }, + { + "start": 8053.86, + "end": 8057.52, + "probability": 0.9899 + }, + { + "start": 8058.16, + "end": 8058.78, + "probability": 0.6465 + }, + { + "start": 8059.28, + "end": 8062.82, + "probability": 0.8678 + }, + { + "start": 8064.44, + "end": 8065.46, + "probability": 0.5854 + }, + { + "start": 8066.74, + "end": 8068.96, + "probability": 0.9795 + }, + { + "start": 8069.9, + "end": 8075.62, + "probability": 0.996 + }, + { + "start": 8077.9, + "end": 8085.7, + "probability": 0.9966 + }, + { + "start": 8087.7, + "end": 8090.5, + "probability": 0.903 + }, + { + "start": 8092.18, + "end": 8093.1, + "probability": 0.7069 + }, + { + "start": 8094.42, + "end": 8095.6, + "probability": 0.9961 + }, + { + "start": 8097.14, + "end": 8097.8, + "probability": 0.8092 + }, + { + "start": 8097.92, + "end": 8101.68, + "probability": 0.8845 + }, + { + "start": 8102.18, + "end": 8104.46, + "probability": 0.9916 + }, + { + "start": 8106.44, + "end": 8108.42, + "probability": 0.9244 + }, + { + "start": 8109.02, + "end": 8109.92, + "probability": 0.6919 + }, + { + "start": 8111.7, + "end": 8118.06, + "probability": 0.9734 + }, + { + "start": 8120.94, + "end": 8123.86, + "probability": 0.9806 + }, + { + "start": 8125.46, + "end": 8131.64, + "probability": 0.9961 + }, + { + "start": 8134.5, + "end": 8138.42, + "probability": 0.9854 + }, + { + "start": 8139.04, + "end": 8139.72, + "probability": 0.6332 + }, + { + "start": 8142.62, + "end": 8143.96, + "probability": 0.7564 + }, + { + "start": 8144.18, + "end": 8146.34, + "probability": 0.9542 + }, + { + "start": 8146.78, + "end": 8153.22, + "probability": 0.9549 + }, + { + "start": 8153.54, + "end": 8154.28, + "probability": 0.6999 + }, + { + "start": 8155.66, + "end": 8156.6, + "probability": 0.7174 + }, + { + "start": 8158.1, + "end": 8162.38, + "probability": 0.7815 + }, + { + "start": 8163.06, + "end": 8166.4, + "probability": 0.9077 + }, + { + "start": 8167.16, + "end": 8171.28, + "probability": 0.9644 + }, + { + "start": 8171.36, + "end": 8172.16, + "probability": 0.8102 + }, + { + "start": 8172.26, + "end": 8173.14, + "probability": 0.5421 + }, + { + "start": 8173.64, + "end": 8174.7, + "probability": 0.6458 + }, + { + "start": 8174.78, + "end": 8175.44, + "probability": 0.9208 + }, + { + "start": 8175.66, + "end": 8177.14, + "probability": 0.9838 + }, + { + "start": 8177.82, + "end": 8180.78, + "probability": 0.9843 + }, + { + "start": 8181.14, + "end": 8184.3, + "probability": 0.9891 + }, + { + "start": 8184.44, + "end": 8189.28, + "probability": 0.8116 + }, + { + "start": 8189.46, + "end": 8190.4, + "probability": 0.9507 + }, + { + "start": 8191.38, + "end": 8195.64, + "probability": 0.9939 + }, + { + "start": 8196.98, + "end": 8205.94, + "probability": 0.9443 + }, + { + "start": 8207.74, + "end": 8209.34, + "probability": 0.7686 + }, + { + "start": 8210.34, + "end": 8211.52, + "probability": 0.6738 + }, + { + "start": 8212.9, + "end": 8216.76, + "probability": 0.9124 + }, + { + "start": 8219.2, + "end": 8220.82, + "probability": 0.814 + }, + { + "start": 8221.84, + "end": 8225.06, + "probability": 0.5866 + }, + { + "start": 8226.74, + "end": 8232.62, + "probability": 0.9735 + }, + { + "start": 8234.02, + "end": 8238.08, + "probability": 0.8608 + }, + { + "start": 8239.1, + "end": 8240.8, + "probability": 0.8671 + }, + { + "start": 8240.86, + "end": 8243.22, + "probability": 0.8132 + }, + { + "start": 8243.98, + "end": 8245.86, + "probability": 0.7777 + }, + { + "start": 8245.9, + "end": 8250.2, + "probability": 0.9828 + }, + { + "start": 8250.36, + "end": 8253.14, + "probability": 0.9943 + }, + { + "start": 8253.52, + "end": 8254.56, + "probability": 0.4909 + }, + { + "start": 8255.8, + "end": 8259.84, + "probability": 0.7159 + }, + { + "start": 8260.18, + "end": 8261.34, + "probability": 0.6543 + }, + { + "start": 8261.52, + "end": 8262.04, + "probability": 0.5894 + }, + { + "start": 8262.18, + "end": 8263.5, + "probability": 0.8538 + }, + { + "start": 8263.58, + "end": 8265.72, + "probability": 0.8472 + }, + { + "start": 8265.78, + "end": 8272.28, + "probability": 0.9579 + }, + { + "start": 8272.54, + "end": 8276.22, + "probability": 0.9489 + }, + { + "start": 8276.9, + "end": 8279.2, + "probability": 0.7762 + }, + { + "start": 8279.87, + "end": 8282.9, + "probability": 0.7053 + }, + { + "start": 8283.1, + "end": 8285.12, + "probability": 0.8853 + }, + { + "start": 8285.44, + "end": 8291.7, + "probability": 0.9773 + }, + { + "start": 8292.44, + "end": 8294.07, + "probability": 0.9341 + }, + { + "start": 8294.38, + "end": 8298.1, + "probability": 0.7121 + }, + { + "start": 8298.4, + "end": 8298.86, + "probability": 0.5876 + }, + { + "start": 8299.84, + "end": 8301.24, + "probability": 0.9805 + }, + { + "start": 8301.34, + "end": 8304.78, + "probability": 0.9824 + }, + { + "start": 8304.96, + "end": 8309.53, + "probability": 0.8867 + }, + { + "start": 8309.8, + "end": 8311.24, + "probability": 0.8779 + }, + { + "start": 8311.6, + "end": 8311.6, + "probability": 0.1976 + }, + { + "start": 8311.6, + "end": 8312.94, + "probability": 0.8477 + }, + { + "start": 8313.04, + "end": 8317.4, + "probability": 0.9765 + }, + { + "start": 8319.1, + "end": 8319.78, + "probability": 0.7771 + }, + { + "start": 8322.3, + "end": 8324.12, + "probability": 0.7362 + }, + { + "start": 8324.64, + "end": 8329.32, + "probability": 0.9438 + }, + { + "start": 8330.45, + "end": 8332.98, + "probability": 0.6391 + }, + { + "start": 8334.2, + "end": 8334.9, + "probability": 0.5249 + }, + { + "start": 8334.92, + "end": 8336.3, + "probability": 0.6955 + }, + { + "start": 8336.42, + "end": 8336.83, + "probability": 0.5327 + }, + { + "start": 8338.0, + "end": 8344.86, + "probability": 0.7336 + }, + { + "start": 8346.24, + "end": 8346.7, + "probability": 0.6981 + }, + { + "start": 8347.82, + "end": 8348.76, + "probability": 0.602 + }, + { + "start": 8348.92, + "end": 8349.76, + "probability": 0.7847 + }, + { + "start": 8349.94, + "end": 8352.24, + "probability": 0.9609 + }, + { + "start": 8352.58, + "end": 8353.44, + "probability": 0.3745 + }, + { + "start": 8353.48, + "end": 8355.12, + "probability": 0.6185 + }, + { + "start": 8355.76, + "end": 8358.32, + "probability": 0.9156 + }, + { + "start": 8358.9, + "end": 8359.82, + "probability": 0.9978 + }, + { + "start": 8360.96, + "end": 8363.92, + "probability": 0.6464 + }, + { + "start": 8368.2, + "end": 8370.38, + "probability": 0.6216 + }, + { + "start": 8371.56, + "end": 8374.56, + "probability": 0.9484 + }, + { + "start": 8375.96, + "end": 8376.92, + "probability": 0.9002 + }, + { + "start": 8377.44, + "end": 8379.01, + "probability": 0.9771 + }, + { + "start": 8379.22, + "end": 8381.4, + "probability": 0.8635 + }, + { + "start": 8382.3, + "end": 8384.8, + "probability": 0.991 + }, + { + "start": 8386.06, + "end": 8388.96, + "probability": 0.9609 + }, + { + "start": 8389.44, + "end": 8390.84, + "probability": 0.6729 + }, + { + "start": 8391.48, + "end": 8392.84, + "probability": 0.8732 + }, + { + "start": 8393.18, + "end": 8396.28, + "probability": 0.8651 + }, + { + "start": 8397.3, + "end": 8399.24, + "probability": 0.9437 + }, + { + "start": 8403.72, + "end": 8406.18, + "probability": 0.9813 + }, + { + "start": 8406.44, + "end": 8407.7, + "probability": 0.5075 + }, + { + "start": 8407.72, + "end": 8408.7, + "probability": 0.4776 + }, + { + "start": 8409.42, + "end": 8410.6, + "probability": 0.7417 + }, + { + "start": 8410.64, + "end": 8411.0, + "probability": 0.164 + }, + { + "start": 8411.08, + "end": 8413.3, + "probability": 0.9507 + }, + { + "start": 8413.98, + "end": 8418.36, + "probability": 0.9928 + }, + { + "start": 8420.1, + "end": 8424.36, + "probability": 0.9956 + }, + { + "start": 8424.78, + "end": 8427.54, + "probability": 0.5967 + }, + { + "start": 8427.54, + "end": 8427.76, + "probability": 0.6194 + }, + { + "start": 8427.88, + "end": 8429.49, + "probability": 0.8448 + }, + { + "start": 8429.6, + "end": 8432.82, + "probability": 0.9007 + }, + { + "start": 8434.08, + "end": 8434.24, + "probability": 0.2366 + }, + { + "start": 8434.24, + "end": 8434.24, + "probability": 0.0977 + }, + { + "start": 8434.24, + "end": 8434.24, + "probability": 0.0906 + }, + { + "start": 8434.24, + "end": 8435.18, + "probability": 0.5723 + }, + { + "start": 8435.18, + "end": 8438.3, + "probability": 0.9922 + }, + { + "start": 8438.9, + "end": 8439.04, + "probability": 0.4515 + }, + { + "start": 8439.18, + "end": 8441.96, + "probability": 0.9903 + }, + { + "start": 8442.7, + "end": 8443.16, + "probability": 0.4526 + }, + { + "start": 8443.36, + "end": 8447.58, + "probability": 0.9124 + }, + { + "start": 8448.56, + "end": 8450.46, + "probability": 0.489 + }, + { + "start": 8450.46, + "end": 8452.84, + "probability": 0.8878 + }, + { + "start": 8453.26, + "end": 8453.98, + "probability": 0.1073 + }, + { + "start": 8453.98, + "end": 8455.56, + "probability": 0.7335 + }, + { + "start": 8455.66, + "end": 8455.94, + "probability": 0.181 + }, + { + "start": 8456.2, + "end": 8456.27, + "probability": 0.244 + }, + { + "start": 8456.64, + "end": 8458.02, + "probability": 0.7792 + }, + { + "start": 8458.1, + "end": 8458.68, + "probability": 0.7556 + }, + { + "start": 8458.76, + "end": 8459.06, + "probability": 0.3355 + }, + { + "start": 8459.06, + "end": 8459.06, + "probability": 0.1668 + }, + { + "start": 8459.06, + "end": 8460.84, + "probability": 0.5649 + }, + { + "start": 8460.94, + "end": 8462.4, + "probability": 0.4992 + }, + { + "start": 8462.66, + "end": 8463.7, + "probability": 0.4576 + }, + { + "start": 8463.8, + "end": 8466.43, + "probability": 0.2026 + }, + { + "start": 8467.01, + "end": 8469.54, + "probability": 0.2068 + }, + { + "start": 8469.56, + "end": 8470.14, + "probability": 0.4827 + }, + { + "start": 8470.64, + "end": 8471.42, + "probability": 0.6479 + }, + { + "start": 8471.66, + "end": 8473.46, + "probability": 0.9224 + }, + { + "start": 8473.58, + "end": 8474.36, + "probability": 0.783 + }, + { + "start": 8474.66, + "end": 8477.62, + "probability": 0.5267 + }, + { + "start": 8477.66, + "end": 8478.22, + "probability": 0.6079 + }, + { + "start": 8478.22, + "end": 8478.7, + "probability": 0.3582 + }, + { + "start": 8479.02, + "end": 8481.78, + "probability": 0.9618 + }, + { + "start": 8482.46, + "end": 8486.24, + "probability": 0.9365 + }, + { + "start": 8486.88, + "end": 8488.34, + "probability": 0.9823 + }, + { + "start": 8489.35, + "end": 8495.66, + "probability": 0.9564 + }, + { + "start": 8495.74, + "end": 8499.62, + "probability": 0.9963 + }, + { + "start": 8500.38, + "end": 8500.84, + "probability": 0.4998 + }, + { + "start": 8502.74, + "end": 8505.64, + "probability": 0.9756 + }, + { + "start": 8506.88, + "end": 8510.5, + "probability": 0.855 + }, + { + "start": 8511.22, + "end": 8516.6, + "probability": 0.9883 + }, + { + "start": 8517.62, + "end": 8519.56, + "probability": 0.9469 + }, + { + "start": 8520.46, + "end": 8524.26, + "probability": 0.948 + }, + { + "start": 8524.44, + "end": 8529.56, + "probability": 0.868 + }, + { + "start": 8532.52, + "end": 8537.4, + "probability": 0.9918 + }, + { + "start": 8538.26, + "end": 8543.52, + "probability": 0.9725 + }, + { + "start": 8544.82, + "end": 8551.32, + "probability": 0.9842 + }, + { + "start": 8551.82, + "end": 8555.58, + "probability": 0.9658 + }, + { + "start": 8555.84, + "end": 8556.48, + "probability": 0.5421 + }, + { + "start": 8556.48, + "end": 8558.43, + "probability": 0.766 + }, + { + "start": 8559.14, + "end": 8562.04, + "probability": 0.5758 + }, + { + "start": 8562.14, + "end": 8564.2, + "probability": 0.9247 + }, + { + "start": 8565.4, + "end": 8569.02, + "probability": 0.9114 + }, + { + "start": 8569.02, + "end": 8575.14, + "probability": 0.8491 + }, + { + "start": 8575.66, + "end": 8578.68, + "probability": 0.9857 + }, + { + "start": 8579.18, + "end": 8580.0, + "probability": 0.4548 + }, + { + "start": 8580.44, + "end": 8582.74, + "probability": 0.4385 + }, + { + "start": 8582.98, + "end": 8583.54, + "probability": 0.8521 + }, + { + "start": 8583.74, + "end": 8584.68, + "probability": 0.8662 + }, + { + "start": 8584.74, + "end": 8586.06, + "probability": 0.7524 + }, + { + "start": 8587.92, + "end": 8591.46, + "probability": 0.7253 + }, + { + "start": 8592.42, + "end": 8596.16, + "probability": 0.9047 + }, + { + "start": 8597.14, + "end": 8601.51, + "probability": 0.9521 + }, + { + "start": 8602.14, + "end": 8603.31, + "probability": 0.8679 + }, + { + "start": 8603.52, + "end": 8606.92, + "probability": 0.9771 + }, + { + "start": 8607.32, + "end": 8608.58, + "probability": 0.9523 + }, + { + "start": 8608.94, + "end": 8609.32, + "probability": 0.8154 + }, + { + "start": 8609.38, + "end": 8610.88, + "probability": 0.853 + }, + { + "start": 8612.78, + "end": 8613.68, + "probability": 0.6665 + }, + { + "start": 8614.7, + "end": 8618.36, + "probability": 0.896 + }, + { + "start": 8619.72, + "end": 8620.86, + "probability": 0.9709 + }, + { + "start": 8622.16, + "end": 8623.2, + "probability": 0.9731 + }, + { + "start": 8623.58, + "end": 8624.28, + "probability": 0.9436 + }, + { + "start": 8625.08, + "end": 8625.58, + "probability": 0.916 + }, + { + "start": 8627.04, + "end": 8628.25, + "probability": 0.9949 + }, + { + "start": 8628.98, + "end": 8629.84, + "probability": 0.994 + }, + { + "start": 8630.52, + "end": 8637.0, + "probability": 0.7515 + }, + { + "start": 8637.24, + "end": 8637.99, + "probability": 0.6868 + }, + { + "start": 8638.3, + "end": 8639.1, + "probability": 0.9353 + }, + { + "start": 8639.2, + "end": 8640.06, + "probability": 0.8761 + }, + { + "start": 8640.1, + "end": 8641.4, + "probability": 0.8382 + }, + { + "start": 8642.02, + "end": 8643.46, + "probability": 0.6638 + }, + { + "start": 8643.56, + "end": 8647.22, + "probability": 0.9951 + }, + { + "start": 8648.28, + "end": 8650.08, + "probability": 0.9918 + }, + { + "start": 8651.63, + "end": 8653.04, + "probability": 0.0236 + }, + { + "start": 8653.6, + "end": 8654.2, + "probability": 0.6305 + }, + { + "start": 8654.3, + "end": 8658.3, + "probability": 0.8364 + }, + { + "start": 8658.3, + "end": 8658.8, + "probability": 0.4593 + }, + { + "start": 8658.8, + "end": 8659.22, + "probability": 0.1522 + }, + { + "start": 8659.22, + "end": 8660.04, + "probability": 0.2016 + }, + { + "start": 8660.22, + "end": 8662.88, + "probability": 0.9814 + }, + { + "start": 8663.08, + "end": 8664.95, + "probability": 0.3988 + }, + { + "start": 8665.38, + "end": 8673.66, + "probability": 0.983 + }, + { + "start": 8674.0, + "end": 8677.1, + "probability": 0.8395 + }, + { + "start": 8678.2, + "end": 8679.68, + "probability": 0.8183 + }, + { + "start": 8679.94, + "end": 8681.82, + "probability": 0.7903 + }, + { + "start": 8681.84, + "end": 8682.33, + "probability": 0.8176 + }, + { + "start": 8683.7, + "end": 8686.6, + "probability": 0.8479 + }, + { + "start": 8687.36, + "end": 8690.32, + "probability": 0.8851 + }, + { + "start": 8690.9, + "end": 8691.98, + "probability": 0.9339 + }, + { + "start": 8692.08, + "end": 8695.51, + "probability": 0.9883 + }, + { + "start": 8696.1, + "end": 8697.72, + "probability": 0.9619 + }, + { + "start": 8697.78, + "end": 8702.66, + "probability": 0.7474 + }, + { + "start": 8702.66, + "end": 8706.74, + "probability": 0.8708 + }, + { + "start": 8707.18, + "end": 8709.7, + "probability": 0.9596 + }, + { + "start": 8710.26, + "end": 8713.56, + "probability": 0.994 + }, + { + "start": 8714.34, + "end": 8718.54, + "probability": 0.6018 + }, + { + "start": 8719.18, + "end": 8722.32, + "probability": 0.7708 + }, + { + "start": 8723.12, + "end": 8728.6, + "probability": 0.7703 + }, + { + "start": 8728.82, + "end": 8730.62, + "probability": 0.8663 + }, + { + "start": 8740.32, + "end": 8741.24, + "probability": 0.6342 + }, + { + "start": 8741.48, + "end": 8741.5, + "probability": 0.2456 + }, + { + "start": 8741.5, + "end": 8746.82, + "probability": 0.937 + }, + { + "start": 8747.26, + "end": 8750.3, + "probability": 0.9927 + }, + { + "start": 8750.3, + "end": 8755.22, + "probability": 0.756 + }, + { + "start": 8755.74, + "end": 8756.02, + "probability": 0.4173 + }, + { + "start": 8756.12, + "end": 8756.78, + "probability": 0.7007 + }, + { + "start": 8756.88, + "end": 8759.18, + "probability": 0.896 + }, + { + "start": 8759.24, + "end": 8761.42, + "probability": 0.8876 + }, + { + "start": 8761.88, + "end": 8764.06, + "probability": 0.9688 + }, + { + "start": 8764.26, + "end": 8765.12, + "probability": 0.8931 + }, + { + "start": 8765.2, + "end": 8768.2, + "probability": 0.894 + }, + { + "start": 8768.46, + "end": 8769.12, + "probability": 0.9843 + }, + { + "start": 8770.76, + "end": 8772.4, + "probability": 0.9697 + }, + { + "start": 8772.7, + "end": 8775.16, + "probability": 0.7584 + }, + { + "start": 8775.24, + "end": 8776.9, + "probability": 0.7628 + }, + { + "start": 8777.28, + "end": 8779.4, + "probability": 0.7643 + }, + { + "start": 8779.98, + "end": 8781.91, + "probability": 0.9102 + }, + { + "start": 8782.6, + "end": 8783.96, + "probability": 0.8647 + }, + { + "start": 8784.06, + "end": 8784.82, + "probability": 0.9533 + }, + { + "start": 8784.98, + "end": 8786.32, + "probability": 0.8309 + }, + { + "start": 8786.6, + "end": 8789.24, + "probability": 0.96 + }, + { + "start": 8790.96, + "end": 8793.48, + "probability": 0.8843 + }, + { + "start": 8794.14, + "end": 8794.74, + "probability": 0.6425 + }, + { + "start": 8797.24, + "end": 8798.64, + "probability": 0.3678 + }, + { + "start": 8798.64, + "end": 8799.38, + "probability": 0.7057 + }, + { + "start": 8799.42, + "end": 8800.3, + "probability": 0.9219 + }, + { + "start": 8800.34, + "end": 8802.78, + "probability": 0.9831 + }, + { + "start": 8803.02, + "end": 8803.32, + "probability": 0.8647 + }, + { + "start": 8803.62, + "end": 8805.33, + "probability": 0.985 + }, + { + "start": 8806.66, + "end": 8807.84, + "probability": 0.8193 + }, + { + "start": 8808.18, + "end": 8808.5, + "probability": 0.0481 + }, + { + "start": 8808.58, + "end": 8809.2, + "probability": 0.6411 + }, + { + "start": 8809.32, + "end": 8811.46, + "probability": 0.5053 + }, + { + "start": 8811.62, + "end": 8811.88, + "probability": 0.6766 + }, + { + "start": 8812.12, + "end": 8814.84, + "probability": 0.9854 + }, + { + "start": 8814.84, + "end": 8819.54, + "probability": 0.9975 + }, + { + "start": 8819.58, + "end": 8821.06, + "probability": 0.9922 + }, + { + "start": 8822.16, + "end": 8824.08, + "probability": 0.9995 + }, + { + "start": 8824.26, + "end": 8825.14, + "probability": 0.1346 + }, + { + "start": 8826.1, + "end": 8827.7, + "probability": 0.8199 + }, + { + "start": 8827.86, + "end": 8830.52, + "probability": 0.8169 + }, + { + "start": 8831.44, + "end": 8833.78, + "probability": 0.9504 + }, + { + "start": 8833.84, + "end": 8836.26, + "probability": 0.8884 + }, + { + "start": 8837.34, + "end": 8839.38, + "probability": 0.7125 + }, + { + "start": 8839.38, + "end": 8843.64, + "probability": 0.6778 + }, + { + "start": 8844.26, + "end": 8846.92, + "probability": 0.9917 + }, + { + "start": 8847.22, + "end": 8849.78, + "probability": 0.8274 + }, + { + "start": 8850.72, + "end": 8851.36, + "probability": 0.8114 + }, + { + "start": 8851.46, + "end": 8857.54, + "probability": 0.9945 + }, + { + "start": 8857.84, + "end": 8860.22, + "probability": 0.8643 + }, + { + "start": 8860.54, + "end": 8861.8, + "probability": 0.9907 + }, + { + "start": 8862.18, + "end": 8866.68, + "probability": 0.8922 + }, + { + "start": 8866.68, + "end": 8871.02, + "probability": 0.9906 + }, + { + "start": 8871.3, + "end": 8872.88, + "probability": 0.8189 + }, + { + "start": 8873.38, + "end": 8873.62, + "probability": 0.6916 + }, + { + "start": 8873.7, + "end": 8874.33, + "probability": 0.9878 + }, + { + "start": 8874.66, + "end": 8875.28, + "probability": 0.8971 + }, + { + "start": 8875.66, + "end": 8876.54, + "probability": 0.8361 + }, + { + "start": 8876.64, + "end": 8879.24, + "probability": 0.9968 + }, + { + "start": 8880.68, + "end": 8883.34, + "probability": 0.5714 + }, + { + "start": 8884.18, + "end": 8884.64, + "probability": 0.772 + }, + { + "start": 8885.6, + "end": 8888.56, + "probability": 0.9457 + }, + { + "start": 8888.76, + "end": 8890.14, + "probability": 0.9827 + }, + { + "start": 8890.22, + "end": 8891.86, + "probability": 0.9601 + }, + { + "start": 8892.22, + "end": 8892.9, + "probability": 0.8484 + }, + { + "start": 8893.18, + "end": 8897.16, + "probability": 0.9609 + }, + { + "start": 8897.44, + "end": 8899.08, + "probability": 0.8471 + }, + { + "start": 8899.92, + "end": 8901.32, + "probability": 0.8419 + }, + { + "start": 8901.6, + "end": 8902.98, + "probability": 0.8664 + }, + { + "start": 8903.48, + "end": 8905.84, + "probability": 0.1406 + }, + { + "start": 8905.84, + "end": 8906.38, + "probability": 0.7023 + }, + { + "start": 8906.76, + "end": 8907.74, + "probability": 0.7847 + }, + { + "start": 8908.44, + "end": 8911.54, + "probability": 0.6112 + }, + { + "start": 8911.82, + "end": 8911.86, + "probability": 0.0542 + }, + { + "start": 8911.86, + "end": 8911.86, + "probability": 0.4976 + }, + { + "start": 8912.0, + "end": 8912.7, + "probability": 0.5494 + }, + { + "start": 8912.76, + "end": 8913.54, + "probability": 0.1952 + }, + { + "start": 8913.64, + "end": 8915.12, + "probability": 0.9035 + }, + { + "start": 8915.18, + "end": 8918.16, + "probability": 0.8971 + }, + { + "start": 8918.38, + "end": 8919.64, + "probability": 0.9043 + }, + { + "start": 8919.8, + "end": 8921.3, + "probability": 0.9679 + }, + { + "start": 8921.5, + "end": 8922.46, + "probability": 0.8193 + }, + { + "start": 8922.58, + "end": 8923.42, + "probability": 0.4031 + }, + { + "start": 8923.94, + "end": 8925.66, + "probability": 0.9568 + }, + { + "start": 8925.68, + "end": 8927.34, + "probability": 0.3667 + }, + { + "start": 8927.42, + "end": 8928.52, + "probability": 0.2704 + }, + { + "start": 8929.04, + "end": 8931.54, + "probability": 0.4603 + }, + { + "start": 8931.54, + "end": 8933.6, + "probability": 0.9162 + }, + { + "start": 8933.72, + "end": 8934.21, + "probability": 0.8835 + }, + { + "start": 8934.9, + "end": 8935.76, + "probability": 0.6358 + }, + { + "start": 8935.94, + "end": 8938.36, + "probability": 0.0444 + }, + { + "start": 8939.18, + "end": 8941.28, + "probability": 0.6137 + }, + { + "start": 8941.46, + "end": 8941.92, + "probability": 0.0044 + }, + { + "start": 8942.14, + "end": 8944.7, + "probability": 0.0786 + }, + { + "start": 8944.98, + "end": 8945.56, + "probability": 0.8302 + }, + { + "start": 8945.68, + "end": 8946.44, + "probability": 0.8069 + }, + { + "start": 8946.44, + "end": 8947.7, + "probability": 0.7675 + }, + { + "start": 8947.76, + "end": 8951.14, + "probability": 0.9391 + }, + { + "start": 8951.16, + "end": 8957.66, + "probability": 0.9936 + }, + { + "start": 8957.84, + "end": 8959.06, + "probability": 0.9034 + }, + { + "start": 8959.12, + "end": 8961.0, + "probability": 0.5259 + }, + { + "start": 8961.94, + "end": 8962.68, + "probability": 0.8523 + }, + { + "start": 8963.19, + "end": 8966.36, + "probability": 0.939 + }, + { + "start": 8966.36, + "end": 8970.86, + "probability": 0.8076 + }, + { + "start": 8970.96, + "end": 8975.46, + "probability": 0.9973 + }, + { + "start": 8976.72, + "end": 8979.34, + "probability": 0.5042 + }, + { + "start": 8979.42, + "end": 8980.5, + "probability": 0.3355 + }, + { + "start": 8980.64, + "end": 8982.88, + "probability": 0.1577 + }, + { + "start": 8982.88, + "end": 8983.28, + "probability": 0.0299 + }, + { + "start": 8983.28, + "end": 8983.44, + "probability": 0.144 + }, + { + "start": 8983.44, + "end": 8986.08, + "probability": 0.1915 + }, + { + "start": 8986.1, + "end": 8987.66, + "probability": 0.9824 + }, + { + "start": 8988.02, + "end": 8990.3, + "probability": 0.5721 + }, + { + "start": 8990.36, + "end": 8993.46, + "probability": 0.9203 + }, + { + "start": 8993.72, + "end": 8995.32, + "probability": 0.9336 + }, + { + "start": 8995.56, + "end": 8997.08, + "probability": 0.9863 + }, + { + "start": 8997.18, + "end": 8997.76, + "probability": 0.0167 + }, + { + "start": 8997.96, + "end": 8998.64, + "probability": 0.7763 + }, + { + "start": 8999.56, + "end": 9002.56, + "probability": 0.2214 + }, + { + "start": 9002.84, + "end": 9004.92, + "probability": 0.6052 + }, + { + "start": 9005.32, + "end": 9006.94, + "probability": 0.0554 + }, + { + "start": 9008.3, + "end": 9010.38, + "probability": 0.7778 + }, + { + "start": 9010.38, + "end": 9012.4, + "probability": 0.1809 + }, + { + "start": 9012.4, + "end": 9012.7, + "probability": 0.1078 + }, + { + "start": 9012.7, + "end": 9013.52, + "probability": 0.8137 + }, + { + "start": 9013.62, + "end": 9014.74, + "probability": 0.8422 + }, + { + "start": 9014.74, + "end": 9017.0, + "probability": 0.9932 + }, + { + "start": 9017.14, + "end": 9017.82, + "probability": 0.2237 + }, + { + "start": 9018.24, + "end": 9018.82, + "probability": 0.2782 + }, + { + "start": 9019.06, + "end": 9020.36, + "probability": 0.1081 + }, + { + "start": 9020.7, + "end": 9022.58, + "probability": 0.9422 + }, + { + "start": 9023.64, + "end": 9025.22, + "probability": 0.7745 + }, + { + "start": 9026.16, + "end": 9027.66, + "probability": 0.9539 + }, + { + "start": 9028.64, + "end": 9029.7, + "probability": 0.6149 + }, + { + "start": 9029.8, + "end": 9034.4, + "probability": 0.9076 + }, + { + "start": 9035.06, + "end": 9035.46, + "probability": 0.8634 + }, + { + "start": 9035.6, + "end": 9038.28, + "probability": 0.9973 + }, + { + "start": 9038.4, + "end": 9039.2, + "probability": 0.9419 + }, + { + "start": 9039.56, + "end": 9040.32, + "probability": 0.9193 + }, + { + "start": 9041.6, + "end": 9043.32, + "probability": 0.79 + }, + { + "start": 9043.46, + "end": 9046.44, + "probability": 0.9858 + }, + { + "start": 9046.94, + "end": 9047.82, + "probability": 0.6986 + }, + { + "start": 9048.46, + "end": 9049.98, + "probability": 0.8574 + }, + { + "start": 9050.5, + "end": 9051.6, + "probability": 0.9183 + }, + { + "start": 9051.74, + "end": 9056.12, + "probability": 0.9222 + }, + { + "start": 9056.38, + "end": 9060.68, + "probability": 0.9727 + }, + { + "start": 9061.08, + "end": 9063.66, + "probability": 0.9818 + }, + { + "start": 9064.06, + "end": 9064.52, + "probability": 0.9899 + }, + { + "start": 9065.9, + "end": 9067.36, + "probability": 0.5302 + }, + { + "start": 9067.5, + "end": 9071.52, + "probability": 0.9961 + }, + { + "start": 9071.8, + "end": 9072.24, + "probability": 0.8381 + }, + { + "start": 9072.3, + "end": 9074.1, + "probability": 0.9829 + }, + { + "start": 9074.18, + "end": 9075.02, + "probability": 0.8262 + }, + { + "start": 9075.32, + "end": 9078.69, + "probability": 0.9709 + }, + { + "start": 9079.78, + "end": 9079.78, + "probability": 0.0182 + }, + { + "start": 9079.78, + "end": 9082.33, + "probability": 0.984 + }, + { + "start": 9082.9, + "end": 9087.32, + "probability": 0.994 + }, + { + "start": 9087.5, + "end": 9088.38, + "probability": 0.3211 + }, + { + "start": 9088.58, + "end": 9091.64, + "probability": 0.9402 + }, + { + "start": 9091.8, + "end": 9095.8, + "probability": 0.8699 + }, + { + "start": 9096.58, + "end": 9098.24, + "probability": 0.9888 + }, + { + "start": 9098.76, + "end": 9101.1, + "probability": 0.9867 + }, + { + "start": 9101.18, + "end": 9102.54, + "probability": 0.9694 + }, + { + "start": 9102.72, + "end": 9106.28, + "probability": 0.9888 + }, + { + "start": 9107.52, + "end": 9108.28, + "probability": 0.7318 + }, + { + "start": 9109.04, + "end": 9110.64, + "probability": 0.8618 + }, + { + "start": 9112.04, + "end": 9113.12, + "probability": 0.9092 + }, + { + "start": 9113.26, + "end": 9119.54, + "probability": 0.9657 + }, + { + "start": 9120.78, + "end": 9123.24, + "probability": 0.9785 + }, + { + "start": 9123.38, + "end": 9124.04, + "probability": 0.9048 + }, + { + "start": 9124.18, + "end": 9126.94, + "probability": 0.8918 + }, + { + "start": 9127.06, + "end": 9128.68, + "probability": 0.9963 + }, + { + "start": 9130.5, + "end": 9136.12, + "probability": 0.9683 + }, + { + "start": 9136.12, + "end": 9138.26, + "probability": 0.8377 + }, + { + "start": 9139.08, + "end": 9142.6, + "probability": 0.7403 + }, + { + "start": 9143.06, + "end": 9146.06, + "probability": 0.9937 + }, + { + "start": 9146.44, + "end": 9148.12, + "probability": 0.8709 + }, + { + "start": 9148.88, + "end": 9152.64, + "probability": 0.9497 + }, + { + "start": 9152.76, + "end": 9154.52, + "probability": 0.4709 + }, + { + "start": 9154.82, + "end": 9156.1, + "probability": 0.6797 + }, + { + "start": 9157.42, + "end": 9160.46, + "probability": 0.9949 + }, + { + "start": 9161.04, + "end": 9162.22, + "probability": 0.792 + }, + { + "start": 9162.24, + "end": 9163.2, + "probability": 0.9001 + }, + { + "start": 9163.32, + "end": 9163.94, + "probability": 0.7733 + }, + { + "start": 9164.22, + "end": 9164.85, + "probability": 0.9139 + }, + { + "start": 9165.5, + "end": 9169.68, + "probability": 0.9449 + }, + { + "start": 9169.94, + "end": 9171.36, + "probability": 0.9871 + }, + { + "start": 9171.4, + "end": 9172.98, + "probability": 0.9207 + }, + { + "start": 9173.08, + "end": 9174.0, + "probability": 0.9209 + }, + { + "start": 9174.1, + "end": 9174.78, + "probability": 0.9557 + }, + { + "start": 9175.02, + "end": 9176.14, + "probability": 0.8962 + }, + { + "start": 9176.3, + "end": 9177.42, + "probability": 0.8547 + }, + { + "start": 9178.3, + "end": 9179.84, + "probability": 0.9866 + }, + { + "start": 9180.28, + "end": 9180.42, + "probability": 0.3177 + }, + { + "start": 9180.48, + "end": 9181.7, + "probability": 0.7928 + }, + { + "start": 9181.9, + "end": 9184.96, + "probability": 0.983 + }, + { + "start": 9185.36, + "end": 9186.12, + "probability": 0.7153 + }, + { + "start": 9186.18, + "end": 9187.28, + "probability": 0.8736 + }, + { + "start": 9187.52, + "end": 9188.4, + "probability": 0.9795 + }, + { + "start": 9188.54, + "end": 9188.86, + "probability": 0.3851 + }, + { + "start": 9190.0, + "end": 9190.73, + "probability": 0.8802 + }, + { + "start": 9191.24, + "end": 9192.98, + "probability": 0.9654 + }, + { + "start": 9192.98, + "end": 9195.92, + "probability": 0.984 + }, + { + "start": 9196.46, + "end": 9196.6, + "probability": 0.6917 + }, + { + "start": 9196.66, + "end": 9198.4, + "probability": 0.9976 + }, + { + "start": 9198.82, + "end": 9201.7, + "probability": 0.9958 + }, + { + "start": 9203.98, + "end": 9204.56, + "probability": 0.9146 + }, + { + "start": 9204.64, + "end": 9205.54, + "probability": 0.7526 + }, + { + "start": 9205.54, + "end": 9208.08, + "probability": 0.9951 + }, + { + "start": 9208.34, + "end": 9209.26, + "probability": 0.9351 + }, + { + "start": 9209.68, + "end": 9210.88, + "probability": 0.9827 + }, + { + "start": 9211.14, + "end": 9211.58, + "probability": 0.9631 + }, + { + "start": 9211.6, + "end": 9213.16, + "probability": 0.5661 + }, + { + "start": 9213.2, + "end": 9214.92, + "probability": 0.8987 + }, + { + "start": 9214.96, + "end": 9216.16, + "probability": 0.9214 + }, + { + "start": 9216.54, + "end": 9218.26, + "probability": 0.9789 + }, + { + "start": 9218.36, + "end": 9219.54, + "probability": 0.9113 + }, + { + "start": 9220.04, + "end": 9220.48, + "probability": 0.6285 + }, + { + "start": 9220.92, + "end": 9221.98, + "probability": 0.973 + }, + { + "start": 9222.4, + "end": 9223.12, + "probability": 0.9383 + }, + { + "start": 9223.48, + "end": 9228.5, + "probability": 0.9582 + }, + { + "start": 9228.62, + "end": 9228.76, + "probability": 0.5171 + }, + { + "start": 9229.14, + "end": 9231.12, + "probability": 0.8103 + }, + { + "start": 9231.22, + "end": 9232.16, + "probability": 0.6688 + }, + { + "start": 9232.48, + "end": 9235.5, + "probability": 0.9294 + }, + { + "start": 9235.66, + "end": 9237.19, + "probability": 0.9925 + }, + { + "start": 9237.58, + "end": 9241.16, + "probability": 0.9938 + }, + { + "start": 9241.24, + "end": 9242.94, + "probability": 0.9876 + }, + { + "start": 9243.18, + "end": 9244.18, + "probability": 0.9274 + }, + { + "start": 9244.32, + "end": 9245.56, + "probability": 0.9697 + }, + { + "start": 9245.56, + "end": 9245.6, + "probability": 0.6655 + }, + { + "start": 9245.6, + "end": 9245.96, + "probability": 0.1379 + }, + { + "start": 9246.02, + "end": 9246.24, + "probability": 0.601 + }, + { + "start": 9246.34, + "end": 9246.86, + "probability": 0.835 + }, + { + "start": 9246.94, + "end": 9247.7, + "probability": 0.88 + }, + { + "start": 9247.88, + "end": 9249.7, + "probability": 0.6222 + }, + { + "start": 9249.78, + "end": 9250.3, + "probability": 0.5286 + }, + { + "start": 9250.3, + "end": 9251.34, + "probability": 0.4146 + }, + { + "start": 9251.34, + "end": 9252.74, + "probability": 0.4938 + }, + { + "start": 9253.06, + "end": 9253.06, + "probability": 0.0813 + }, + { + "start": 9253.06, + "end": 9254.28, + "probability": 0.1104 + }, + { + "start": 9254.28, + "end": 9255.46, + "probability": 0.649 + }, + { + "start": 9255.46, + "end": 9256.12, + "probability": 0.8975 + }, + { + "start": 9256.32, + "end": 9256.72, + "probability": 0.7984 + }, + { + "start": 9256.76, + "end": 9257.52, + "probability": 0.7188 + }, + { + "start": 9257.58, + "end": 9257.58, + "probability": 0.403 + }, + { + "start": 9257.7, + "end": 9258.56, + "probability": 0.2018 + }, + { + "start": 9261.36, + "end": 9262.08, + "probability": 0.0014 + }, + { + "start": 9262.46, + "end": 9263.32, + "probability": 0.0121 + }, + { + "start": 9263.32, + "end": 9263.42, + "probability": 0.2639 + }, + { + "start": 9263.68, + "end": 9264.46, + "probability": 0.8381 + }, + { + "start": 9264.6, + "end": 9265.1, + "probability": 0.9341 + }, + { + "start": 9265.24, + "end": 9265.36, + "probability": 0.6816 + }, + { + "start": 9265.36, + "end": 9269.96, + "probability": 0.668 + }, + { + "start": 9269.96, + "end": 9271.72, + "probability": 0.9951 + }, + { + "start": 9272.0, + "end": 9272.96, + "probability": 0.1281 + }, + { + "start": 9272.96, + "end": 9273.0, + "probability": 0.15 + }, + { + "start": 9273.0, + "end": 9275.44, + "probability": 0.7224 + }, + { + "start": 9275.52, + "end": 9276.42, + "probability": 0.8315 + }, + { + "start": 9276.5, + "end": 9277.48, + "probability": 0.9961 + }, + { + "start": 9277.58, + "end": 9278.44, + "probability": 0.9305 + }, + { + "start": 9278.58, + "end": 9278.98, + "probability": 0.7604 + }, + { + "start": 9279.16, + "end": 9279.16, + "probability": 0.4018 + }, + { + "start": 9279.16, + "end": 9279.16, + "probability": 0.0851 + }, + { + "start": 9279.56, + "end": 9280.4, + "probability": 0.9429 + }, + { + "start": 9280.72, + "end": 9283.88, + "probability": 0.7848 + }, + { + "start": 9283.96, + "end": 9284.46, + "probability": 0.064 + }, + { + "start": 9284.46, + "end": 9286.64, + "probability": 0.9954 + }, + { + "start": 9287.82, + "end": 9291.26, + "probability": 0.8392 + }, + { + "start": 9291.56, + "end": 9295.54, + "probability": 0.9938 + }, + { + "start": 9295.54, + "end": 9299.46, + "probability": 0.9801 + }, + { + "start": 9299.56, + "end": 9301.06, + "probability": 0.9659 + }, + { + "start": 9301.12, + "end": 9301.86, + "probability": 0.9634 + }, + { + "start": 9301.88, + "end": 9302.32, + "probability": 0.8198 + }, + { + "start": 9302.52, + "end": 9304.86, + "probability": 0.3062 + }, + { + "start": 9304.86, + "end": 9306.1, + "probability": 0.9863 + }, + { + "start": 9306.24, + "end": 9307.08, + "probability": 0.703 + }, + { + "start": 9309.85, + "end": 9313.22, + "probability": 0.8452 + }, + { + "start": 9313.38, + "end": 9313.42, + "probability": 0.4057 + }, + { + "start": 9313.42, + "end": 9314.54, + "probability": 0.8032 + }, + { + "start": 9314.8, + "end": 9317.22, + "probability": 0.9707 + }, + { + "start": 9317.26, + "end": 9323.02, + "probability": 0.6797 + }, + { + "start": 9323.52, + "end": 9326.62, + "probability": 0.9048 + }, + { + "start": 9326.7, + "end": 9331.46, + "probability": 0.8941 + }, + { + "start": 9332.34, + "end": 9333.32, + "probability": 0.9261 + }, + { + "start": 9333.36, + "end": 9335.58, + "probability": 0.9951 + }, + { + "start": 9335.66, + "end": 9336.78, + "probability": 0.9419 + }, + { + "start": 9336.86, + "end": 9338.76, + "probability": 0.9691 + }, + { + "start": 9338.94, + "end": 9340.14, + "probability": 0.7767 + }, + { + "start": 9340.14, + "end": 9340.44, + "probability": 0.0644 + }, + { + "start": 9340.44, + "end": 9342.92, + "probability": 0.6139 + }, + { + "start": 9342.92, + "end": 9343.38, + "probability": 0.7555 + }, + { + "start": 9343.38, + "end": 9344.26, + "probability": 0.8332 + }, + { + "start": 9344.46, + "end": 9346.82, + "probability": 0.9176 + }, + { + "start": 9347.14, + "end": 9351.52, + "probability": 0.9883 + }, + { + "start": 9351.98, + "end": 9358.36, + "probability": 0.9485 + }, + { + "start": 9359.08, + "end": 9360.92, + "probability": 0.8831 + }, + { + "start": 9361.22, + "end": 9362.42, + "probability": 0.8494 + }, + { + "start": 9362.8, + "end": 9363.6, + "probability": 0.8139 + }, + { + "start": 9363.76, + "end": 9364.5, + "probability": 0.8776 + }, + { + "start": 9364.6, + "end": 9365.34, + "probability": 0.9032 + }, + { + "start": 9365.34, + "end": 9366.08, + "probability": 0.9676 + }, + { + "start": 9366.12, + "end": 9368.44, + "probability": 0.9945 + }, + { + "start": 9368.76, + "end": 9370.84, + "probability": 0.9994 + }, + { + "start": 9371.48, + "end": 9372.18, + "probability": 0.5779 + }, + { + "start": 9374.04, + "end": 9374.3, + "probability": 0.0654 + }, + { + "start": 9374.3, + "end": 9374.89, + "probability": 0.2722 + }, + { + "start": 9375.06, + "end": 9376.58, + "probability": 0.956 + }, + { + "start": 9377.14, + "end": 9378.02, + "probability": 0.9454 + }, + { + "start": 9378.86, + "end": 9381.2, + "probability": 0.1748 + }, + { + "start": 9381.66, + "end": 9384.41, + "probability": 0.622 + }, + { + "start": 9385.8, + "end": 9386.94, + "probability": 0.0567 + }, + { + "start": 9386.94, + "end": 9387.1, + "probability": 0.0432 + }, + { + "start": 9387.1, + "end": 9387.1, + "probability": 0.0604 + }, + { + "start": 9387.1, + "end": 9387.67, + "probability": 0.7295 + }, + { + "start": 9388.86, + "end": 9390.4, + "probability": 0.956 + }, + { + "start": 9390.44, + "end": 9390.54, + "probability": 0.0697 + }, + { + "start": 9390.88, + "end": 9396.1, + "probability": 0.96 + }, + { + "start": 9396.68, + "end": 9400.66, + "probability": 0.9986 + }, + { + "start": 9400.94, + "end": 9401.1, + "probability": 0.2898 + }, + { + "start": 9401.1, + "end": 9401.82, + "probability": 0.7254 + }, + { + "start": 9401.96, + "end": 9402.42, + "probability": 0.0115 + }, + { + "start": 9402.56, + "end": 9404.18, + "probability": 0.6416 + }, + { + "start": 9404.68, + "end": 9405.4, + "probability": 0.5761 + }, + { + "start": 9406.06, + "end": 9408.12, + "probability": 0.79 + }, + { + "start": 9408.2, + "end": 9410.59, + "probability": 0.56 + }, + { + "start": 9411.3, + "end": 9413.5, + "probability": 0.5813 + }, + { + "start": 9413.68, + "end": 9415.04, + "probability": 0.9559 + }, + { + "start": 9415.14, + "end": 9419.6, + "probability": 0.9931 + }, + { + "start": 9419.9, + "end": 9420.68, + "probability": 0.8028 + }, + { + "start": 9422.02, + "end": 9424.32, + "probability": 0.6602 + }, + { + "start": 9424.44, + "end": 9425.46, + "probability": 0.7465 + }, + { + "start": 9425.74, + "end": 9426.88, + "probability": 0.9268 + }, + { + "start": 9426.92, + "end": 9429.02, + "probability": 0.9969 + }, + { + "start": 9429.12, + "end": 9429.7, + "probability": 0.8395 + }, + { + "start": 9429.7, + "end": 9433.38, + "probability": 0.8651 + }, + { + "start": 9433.8, + "end": 9435.56, + "probability": 0.9395 + }, + { + "start": 9435.66, + "end": 9436.64, + "probability": 0.9951 + }, + { + "start": 9437.24, + "end": 9438.91, + "probability": 0.9272 + }, + { + "start": 9439.42, + "end": 9440.04, + "probability": 0.862 + }, + { + "start": 9440.28, + "end": 9443.06, + "probability": 0.822 + }, + { + "start": 9443.22, + "end": 9447.44, + "probability": 0.7846 + }, + { + "start": 9447.44, + "end": 9448.7, + "probability": 0.2671 + }, + { + "start": 9448.88, + "end": 9451.48, + "probability": 0.9553 + }, + { + "start": 9451.76, + "end": 9452.2, + "probability": 0.0748 + }, + { + "start": 9452.2, + "end": 9454.1, + "probability": 0.9148 + }, + { + "start": 9454.68, + "end": 9454.74, + "probability": 0.0583 + }, + { + "start": 9454.74, + "end": 9457.8, + "probability": 0.4734 + }, + { + "start": 9459.1, + "end": 9460.38, + "probability": 0.7626 + }, + { + "start": 9460.48, + "end": 9466.38, + "probability": 0.9707 + }, + { + "start": 9466.38, + "end": 9472.76, + "probability": 0.9557 + }, + { + "start": 9472.76, + "end": 9478.84, + "probability": 0.9979 + }, + { + "start": 9480.24, + "end": 9487.0, + "probability": 0.9935 + }, + { + "start": 9496.96, + "end": 9499.64, + "probability": 0.8451 + }, + { + "start": 9499.76, + "end": 9501.06, + "probability": 0.922 + }, + { + "start": 9512.82, + "end": 9518.18, + "probability": 0.6541 + }, + { + "start": 9518.98, + "end": 9520.04, + "probability": 0.7247 + }, + { + "start": 9521.72, + "end": 9526.46, + "probability": 0.9689 + }, + { + "start": 9527.36, + "end": 9527.76, + "probability": 0.5718 + }, + { + "start": 9529.88, + "end": 9532.12, + "probability": 0.0879 + }, + { + "start": 9534.86, + "end": 9536.52, + "probability": 0.1007 + }, + { + "start": 9538.46, + "end": 9538.46, + "probability": 0.1426 + }, + { + "start": 9538.48, + "end": 9538.48, + "probability": 0.2119 + }, + { + "start": 9538.48, + "end": 9538.48, + "probability": 0.1485 + }, + { + "start": 9538.48, + "end": 9539.38, + "probability": 0.3692 + }, + { + "start": 9539.64, + "end": 9540.6, + "probability": 0.5583 + }, + { + "start": 9540.82, + "end": 9544.98, + "probability": 0.7837 + }, + { + "start": 9546.56, + "end": 9547.7, + "probability": 0.6548 + }, + { + "start": 9547.82, + "end": 9549.02, + "probability": 0.7831 + }, + { + "start": 9549.14, + "end": 9550.82, + "probability": 0.8622 + }, + { + "start": 9552.82, + "end": 9555.86, + "probability": 0.7983 + }, + { + "start": 9555.86, + "end": 9559.54, + "probability": 0.9601 + }, + { + "start": 9560.92, + "end": 9564.08, + "probability": 0.748 + }, + { + "start": 9565.24, + "end": 9569.78, + "probability": 0.9195 + }, + { + "start": 9570.6, + "end": 9573.52, + "probability": 0.9817 + }, + { + "start": 9575.06, + "end": 9579.34, + "probability": 0.7819 + }, + { + "start": 9579.34, + "end": 9582.48, + "probability": 0.9948 + }, + { + "start": 9583.6, + "end": 9590.64, + "probability": 0.9928 + }, + { + "start": 9593.1, + "end": 9594.58, + "probability": 0.7534 + }, + { + "start": 9595.38, + "end": 9598.26, + "probability": 0.995 + }, + { + "start": 9599.1, + "end": 9605.2, + "probability": 0.9888 + }, + { + "start": 9607.24, + "end": 9608.6, + "probability": 0.648 + }, + { + "start": 9608.76, + "end": 9610.74, + "probability": 0.4798 + }, + { + "start": 9610.86, + "end": 9612.96, + "probability": 0.9351 + }, + { + "start": 9614.62, + "end": 9615.78, + "probability": 0.5085 + }, + { + "start": 9616.04, + "end": 9617.42, + "probability": 0.6847 + }, + { + "start": 9617.46, + "end": 9623.68, + "probability": 0.9502 + }, + { + "start": 9624.92, + "end": 9630.22, + "probability": 0.9153 + }, + { + "start": 9630.22, + "end": 9635.12, + "probability": 0.8949 + }, + { + "start": 9635.44, + "end": 9641.48, + "probability": 0.8242 + }, + { + "start": 9642.34, + "end": 9645.56, + "probability": 0.8906 + }, + { + "start": 9646.44, + "end": 9649.23, + "probability": 0.525 + }, + { + "start": 9651.86, + "end": 9655.04, + "probability": 0.8162 + }, + { + "start": 9656.58, + "end": 9658.92, + "probability": 0.9881 + }, + { + "start": 9658.98, + "end": 9662.58, + "probability": 0.3274 + }, + { + "start": 9662.92, + "end": 9668.1, + "probability": 0.7594 + }, + { + "start": 9668.16, + "end": 9671.16, + "probability": 0.9488 + }, + { + "start": 9671.82, + "end": 9673.1, + "probability": 0.9347 + }, + { + "start": 9673.9, + "end": 9679.56, + "probability": 0.8635 + }, + { + "start": 9680.02, + "end": 9682.28, + "probability": 0.7568 + }, + { + "start": 9682.46, + "end": 9687.52, + "probability": 0.7535 + }, + { + "start": 9690.9, + "end": 9692.44, + "probability": 0.7007 + }, + { + "start": 9692.96, + "end": 9695.52, + "probability": 0.8124 + }, + { + "start": 9696.92, + "end": 9703.12, + "probability": 0.9915 + }, + { + "start": 9705.7, + "end": 9710.66, + "probability": 0.9897 + }, + { + "start": 9710.82, + "end": 9711.22, + "probability": 0.8115 + }, + { + "start": 9711.5, + "end": 9712.02, + "probability": 0.6401 + }, + { + "start": 9713.98, + "end": 9715.82, + "probability": 0.8031 + }, + { + "start": 9716.72, + "end": 9719.74, + "probability": 0.9897 + }, + { + "start": 9719.86, + "end": 9723.02, + "probability": 0.8961 + }, + { + "start": 9724.56, + "end": 9728.98, + "probability": 0.9619 + }, + { + "start": 9728.98, + "end": 9736.06, + "probability": 0.6246 + }, + { + "start": 9737.86, + "end": 9741.92, + "probability": 0.9505 + }, + { + "start": 9744.02, + "end": 9745.32, + "probability": 0.7499 + }, + { + "start": 9745.7, + "end": 9746.02, + "probability": 0.2342 + }, + { + "start": 9746.06, + "end": 9747.62, + "probability": 0.6177 + }, + { + "start": 9747.68, + "end": 9750.72, + "probability": 0.6897 + }, + { + "start": 9750.84, + "end": 9755.54, + "probability": 0.9104 + }, + { + "start": 9756.5, + "end": 9761.2, + "probability": 0.9174 + }, + { + "start": 9761.2, + "end": 9766.3, + "probability": 0.9785 + }, + { + "start": 9767.44, + "end": 9771.1, + "probability": 0.9924 + }, + { + "start": 9773.98, + "end": 9774.54, + "probability": 0.3429 + }, + { + "start": 9774.7, + "end": 9779.2, + "probability": 0.9067 + }, + { + "start": 9780.14, + "end": 9781.22, + "probability": 0.7031 + }, + { + "start": 9781.46, + "end": 9783.82, + "probability": 0.4812 + }, + { + "start": 9784.18, + "end": 9785.62, + "probability": 0.6715 + }, + { + "start": 9785.68, + "end": 9791.64, + "probability": 0.9299 + }, + { + "start": 9792.18, + "end": 9795.34, + "probability": 0.5453 + }, + { + "start": 9795.56, + "end": 9800.12, + "probability": 0.8706 + }, + { + "start": 9800.54, + "end": 9804.24, + "probability": 0.7014 + }, + { + "start": 9804.7, + "end": 9806.0, + "probability": 0.7665 + }, + { + "start": 9807.76, + "end": 9809.62, + "probability": 0.8844 + }, + { + "start": 9809.74, + "end": 9813.72, + "probability": 0.9884 + }, + { + "start": 9815.88, + "end": 9817.92, + "probability": 0.852 + }, + { + "start": 9818.46, + "end": 9819.78, + "probability": 0.9061 + }, + { + "start": 9820.6, + "end": 9823.96, + "probability": 0.9666 + }, + { + "start": 9825.08, + "end": 9826.9, + "probability": 0.9938 + }, + { + "start": 9827.24, + "end": 9829.34, + "probability": 0.9067 + }, + { + "start": 9830.96, + "end": 9835.28, + "probability": 0.992 + }, + { + "start": 9835.28, + "end": 9840.26, + "probability": 0.8684 + }, + { + "start": 9840.4, + "end": 9842.02, + "probability": 0.9371 + }, + { + "start": 9842.42, + "end": 9843.86, + "probability": 0.9955 + }, + { + "start": 9844.54, + "end": 9850.32, + "probability": 0.9601 + }, + { + "start": 9851.02, + "end": 9851.04, + "probability": 0.0391 + }, + { + "start": 9851.04, + "end": 9851.56, + "probability": 0.4078 + }, + { + "start": 9851.7, + "end": 9852.46, + "probability": 0.8138 + }, + { + "start": 9852.76, + "end": 9855.18, + "probability": 0.9935 + }, + { + "start": 9855.72, + "end": 9856.84, + "probability": 0.9532 + }, + { + "start": 9857.12, + "end": 9859.22, + "probability": 0.896 + }, + { + "start": 9859.72, + "end": 9860.62, + "probability": 0.5579 + }, + { + "start": 9860.84, + "end": 9862.53, + "probability": 0.9129 + }, + { + "start": 9863.1, + "end": 9864.6, + "probability": 0.9807 + }, + { + "start": 9864.94, + "end": 9867.86, + "probability": 0.9861 + }, + { + "start": 9867.86, + "end": 9871.18, + "probability": 0.978 + }, + { + "start": 9875.08, + "end": 9879.06, + "probability": 0.6756 + }, + { + "start": 9880.08, + "end": 9883.6, + "probability": 0.9746 + }, + { + "start": 9884.3, + "end": 9888.42, + "probability": 0.9775 + }, + { + "start": 9888.98, + "end": 9891.42, + "probability": 0.8861 + }, + { + "start": 9892.14, + "end": 9897.52, + "probability": 0.9601 + }, + { + "start": 9898.6, + "end": 9902.66, + "probability": 0.8253 + }, + { + "start": 9903.18, + "end": 9906.08, + "probability": 0.6266 + }, + { + "start": 9906.74, + "end": 9907.06, + "probability": 0.2169 + }, + { + "start": 9907.14, + "end": 9909.58, + "probability": 0.6451 + }, + { + "start": 9909.62, + "end": 9910.77, + "probability": 0.5025 + }, + { + "start": 9911.04, + "end": 9914.18, + "probability": 0.8521 + }, + { + "start": 9914.74, + "end": 9917.88, + "probability": 0.9423 + }, + { + "start": 9917.94, + "end": 9919.0, + "probability": 0.4976 + }, + { + "start": 9919.0, + "end": 9921.24, + "probability": 0.8472 + }, + { + "start": 9922.08, + "end": 9922.52, + "probability": 0.5356 + }, + { + "start": 9922.67, + "end": 9926.34, + "probability": 0.8505 + }, + { + "start": 9926.72, + "end": 9927.26, + "probability": 0.9113 + }, + { + "start": 9927.38, + "end": 9930.62, + "probability": 0.9341 + }, + { + "start": 9930.96, + "end": 9934.63, + "probability": 0.3699 + }, + { + "start": 9935.9, + "end": 9939.28, + "probability": 0.9832 + }, + { + "start": 9939.64, + "end": 9942.12, + "probability": 0.9746 + }, + { + "start": 9942.56, + "end": 9942.9, + "probability": 0.6097 + }, + { + "start": 9943.04, + "end": 9944.14, + "probability": 0.9785 + }, + { + "start": 9944.52, + "end": 9948.52, + "probability": 0.9281 + }, + { + "start": 9948.58, + "end": 9952.5, + "probability": 0.972 + }, + { + "start": 9952.92, + "end": 9956.37, + "probability": 0.9641 + }, + { + "start": 9956.52, + "end": 9957.76, + "probability": 0.9936 + }, + { + "start": 9958.46, + "end": 9959.1, + "probability": 0.5157 + }, + { + "start": 9959.26, + "end": 9960.56, + "probability": 0.854 + }, + { + "start": 9960.62, + "end": 9961.38, + "probability": 0.4548 + }, + { + "start": 9961.48, + "end": 9962.18, + "probability": 0.5986 + }, + { + "start": 9964.78, + "end": 9969.06, + "probability": 0.2449 + }, + { + "start": 9969.36, + "end": 9970.12, + "probability": 0.5451 + }, + { + "start": 9970.48, + "end": 9972.7, + "probability": 0.9292 + }, + { + "start": 9972.84, + "end": 9973.8, + "probability": 0.6674 + }, + { + "start": 9974.34, + "end": 9980.26, + "probability": 0.3189 + }, + { + "start": 9980.32, + "end": 9981.23, + "probability": 0.8993 + }, + { + "start": 9981.76, + "end": 9981.86, + "probability": 0.5404 + }, + { + "start": 9983.5, + "end": 9984.98, + "probability": 0.9045 + }, + { + "start": 9985.14, + "end": 9988.16, + "probability": 0.7738 + }, + { + "start": 9988.22, + "end": 9989.26, + "probability": 0.8836 + }, + { + "start": 9989.38, + "end": 9991.06, + "probability": 0.5822 + }, + { + "start": 9992.14, + "end": 9993.56, + "probability": 0.992 + }, + { + "start": 9993.72, + "end": 9996.06, + "probability": 0.7659 + }, + { + "start": 9996.16, + "end": 9996.68, + "probability": 0.9883 + }, + { + "start": 9997.8, + "end": 10000.0, + "probability": 0.9792 + }, + { + "start": 10002.28, + "end": 10006.46, + "probability": 0.7242 + }, + { + "start": 10007.14, + "end": 10009.52, + "probability": 0.8879 + }, + { + "start": 10009.84, + "end": 10011.86, + "probability": 0.979 + }, + { + "start": 10012.28, + "end": 10012.66, + "probability": 0.1484 + }, + { + "start": 10012.66, + "end": 10013.26, + "probability": 0.2038 + }, + { + "start": 10013.26, + "end": 10014.8, + "probability": 0.1311 + }, + { + "start": 10015.02, + "end": 10015.56, + "probability": 0.8726 + }, + { + "start": 10016.52, + "end": 10019.54, + "probability": 0.288 + }, + { + "start": 10020.56, + "end": 10020.74, + "probability": 0.0005 + }, + { + "start": 10021.66, + "end": 10021.72, + "probability": 0.0456 + }, + { + "start": 10021.72, + "end": 10023.56, + "probability": 0.195 + }, + { + "start": 10023.56, + "end": 10024.8, + "probability": 0.6918 + }, + { + "start": 10024.92, + "end": 10026.14, + "probability": 0.9868 + }, + { + "start": 10026.28, + "end": 10027.06, + "probability": 0.7263 + }, + { + "start": 10027.34, + "end": 10027.6, + "probability": 0.3074 + }, + { + "start": 10027.6, + "end": 10028.02, + "probability": 0.2593 + }, + { + "start": 10028.16, + "end": 10028.92, + "probability": 0.8041 + }, + { + "start": 10029.18, + "end": 10034.36, + "probability": 0.5403 + }, + { + "start": 10034.52, + "end": 10035.78, + "probability": 0.7618 + }, + { + "start": 10036.24, + "end": 10037.66, + "probability": 0.7005 + }, + { + "start": 10037.9, + "end": 10041.35, + "probability": 0.563 + }, + { + "start": 10041.58, + "end": 10042.0, + "probability": 0.7852 + }, + { + "start": 10042.3, + "end": 10045.56, + "probability": 0.9927 + }, + { + "start": 10045.66, + "end": 10048.84, + "probability": 0.9966 + }, + { + "start": 10049.36, + "end": 10050.42, + "probability": 0.9036 + }, + { + "start": 10050.58, + "end": 10051.58, + "probability": 0.0729 + }, + { + "start": 10051.92, + "end": 10057.3, + "probability": 0.699 + }, + { + "start": 10057.38, + "end": 10058.22, + "probability": 0.8622 + }, + { + "start": 10058.3, + "end": 10059.6, + "probability": 0.4787 + }, + { + "start": 10060.36, + "end": 10064.98, + "probability": 0.7121 + }, + { + "start": 10065.06, + "end": 10066.88, + "probability": 0.7182 + }, + { + "start": 10067.06, + "end": 10067.9, + "probability": 0.9031 + }, + { + "start": 10067.98, + "end": 10068.52, + "probability": 0.4413 + }, + { + "start": 10069.65, + "end": 10071.03, + "probability": 0.0932 + }, + { + "start": 10071.24, + "end": 10073.44, + "probability": 0.6064 + }, + { + "start": 10073.46, + "end": 10075.0, + "probability": 0.7075 + }, + { + "start": 10075.64, + "end": 10076.02, + "probability": 0.4931 + }, + { + "start": 10076.04, + "end": 10076.32, + "probability": 0.6151 + }, + { + "start": 10076.36, + "end": 10077.91, + "probability": 0.3771 + }, + { + "start": 10078.22, + "end": 10078.76, + "probability": 0.937 + }, + { + "start": 10078.94, + "end": 10085.06, + "probability": 0.983 + }, + { + "start": 10085.62, + "end": 10088.5, + "probability": 0.4217 + }, + { + "start": 10088.54, + "end": 10090.84, + "probability": 0.791 + }, + { + "start": 10091.46, + "end": 10091.94, + "probability": 0.4221 + }, + { + "start": 10092.26, + "end": 10097.12, + "probability": 0.3852 + }, + { + "start": 10097.92, + "end": 10102.64, + "probability": 0.9629 + }, + { + "start": 10102.64, + "end": 10104.52, + "probability": 0.6034 + }, + { + "start": 10104.52, + "end": 10106.07, + "probability": 0.5965 + }, + { + "start": 10107.14, + "end": 10108.38, + "probability": 0.888 + }, + { + "start": 10109.02, + "end": 10116.06, + "probability": 0.6725 + }, + { + "start": 10116.78, + "end": 10119.0, + "probability": 0.544 + }, + { + "start": 10119.54, + "end": 10120.76, + "probability": 0.5646 + }, + { + "start": 10120.98, + "end": 10123.28, + "probability": 0.6987 + }, + { + "start": 10124.08, + "end": 10124.08, + "probability": 0.0274 + }, + { + "start": 10124.08, + "end": 10131.64, + "probability": 0.624 + }, + { + "start": 10132.08, + "end": 10132.58, + "probability": 0.4549 + }, + { + "start": 10132.66, + "end": 10135.48, + "probability": 0.8697 + }, + { + "start": 10135.48, + "end": 10138.9, + "probability": 0.7513 + }, + { + "start": 10139.72, + "end": 10140.5, + "probability": 0.979 + }, + { + "start": 10142.08, + "end": 10144.74, + "probability": 0.5568 + }, + { + "start": 10144.74, + "end": 10147.28, + "probability": 0.9429 + }, + { + "start": 10147.38, + "end": 10153.26, + "probability": 0.7984 + }, + { + "start": 10153.68, + "end": 10154.5, + "probability": 0.1877 + }, + { + "start": 10154.58, + "end": 10157.54, + "probability": 0.7705 + }, + { + "start": 10159.14, + "end": 10159.84, + "probability": 0.657 + }, + { + "start": 10159.9, + "end": 10162.32, + "probability": 0.9283 + }, + { + "start": 10162.5, + "end": 10165.58, + "probability": 0.89 + }, + { + "start": 10168.84, + "end": 10168.84, + "probability": 0.0137 + }, + { + "start": 10168.84, + "end": 10173.64, + "probability": 0.9819 + }, + { + "start": 10173.64, + "end": 10179.56, + "probability": 0.7282 + }, + { + "start": 10179.84, + "end": 10180.94, + "probability": 0.6641 + }, + { + "start": 10181.98, + "end": 10185.6, + "probability": 0.8057 + }, + { + "start": 10185.64, + "end": 10186.38, + "probability": 0.6715 + }, + { + "start": 10186.88, + "end": 10190.88, + "probability": 0.887 + }, + { + "start": 10191.24, + "end": 10194.74, + "probability": 0.8388 + }, + { + "start": 10195.84, + "end": 10195.9, + "probability": 0.1453 + }, + { + "start": 10195.9, + "end": 10196.18, + "probability": 0.3652 + }, + { + "start": 10196.3, + "end": 10199.5, + "probability": 0.8769 + }, + { + "start": 10200.1, + "end": 10200.56, + "probability": 0.9185 + }, + { + "start": 10201.3, + "end": 10204.76, + "probability": 0.8343 + }, + { + "start": 10205.72, + "end": 10208.12, + "probability": 0.4313 + }, + { + "start": 10208.2, + "end": 10208.52, + "probability": 0.0461 + }, + { + "start": 10208.62, + "end": 10209.92, + "probability": 0.8841 + }, + { + "start": 10209.96, + "end": 10210.48, + "probability": 0.7524 + }, + { + "start": 10210.54, + "end": 10211.48, + "probability": 0.5406 + }, + { + "start": 10212.38, + "end": 10213.66, + "probability": 0.9934 + }, + { + "start": 10214.36, + "end": 10215.86, + "probability": 0.3073 + }, + { + "start": 10215.94, + "end": 10216.02, + "probability": 0.1985 + }, + { + "start": 10216.02, + "end": 10218.1, + "probability": 0.5767 + }, + { + "start": 10218.18, + "end": 10221.17, + "probability": 0.6545 + }, + { + "start": 10221.63, + "end": 10228.9, + "probability": 0.3506 + }, + { + "start": 10229.28, + "end": 10229.3, + "probability": 0.1987 + }, + { + "start": 10229.54, + "end": 10230.8, + "probability": 0.7021 + }, + { + "start": 10232.24, + "end": 10236.48, + "probability": 0.9589 + }, + { + "start": 10237.42, + "end": 10240.72, + "probability": 0.9097 + }, + { + "start": 10241.52, + "end": 10242.92, + "probability": 0.9829 + }, + { + "start": 10243.7, + "end": 10245.88, + "probability": 0.9855 + }, + { + "start": 10246.82, + "end": 10249.52, + "probability": 0.7168 + }, + { + "start": 10250.14, + "end": 10252.9, + "probability": 0.8983 + }, + { + "start": 10253.94, + "end": 10256.0, + "probability": 0.9443 + }, + { + "start": 10256.38, + "end": 10260.06, + "probability": 0.9714 + }, + { + "start": 10260.22, + "end": 10264.32, + "probability": 0.4597 + }, + { + "start": 10265.34, + "end": 10267.84, + "probability": 0.9098 + }, + { + "start": 10268.82, + "end": 10272.28, + "probability": 0.6812 + }, + { + "start": 10272.7, + "end": 10277.5, + "probability": 0.9072 + }, + { + "start": 10278.02, + "end": 10282.0, + "probability": 0.9929 + }, + { + "start": 10282.22, + "end": 10282.74, + "probability": 0.6377 + }, + { + "start": 10282.78, + "end": 10283.92, + "probability": 0.7927 + }, + { + "start": 10284.38, + "end": 10286.84, + "probability": 0.8672 + }, + { + "start": 10287.38, + "end": 10292.7, + "probability": 0.8828 + }, + { + "start": 10294.28, + "end": 10297.42, + "probability": 0.9224 + }, + { + "start": 10298.66, + "end": 10299.52, + "probability": 0.7478 + }, + { + "start": 10300.36, + "end": 10303.16, + "probability": 0.7508 + }, + { + "start": 10303.36, + "end": 10304.75, + "probability": 0.5411 + }, + { + "start": 10305.5, + "end": 10308.0, + "probability": 0.9175 + }, + { + "start": 10309.0, + "end": 10312.26, + "probability": 0.8495 + }, + { + "start": 10312.84, + "end": 10319.4, + "probability": 0.9868 + }, + { + "start": 10320.46, + "end": 10326.32, + "probability": 0.879 + }, + { + "start": 10326.32, + "end": 10329.44, + "probability": 0.8977 + }, + { + "start": 10330.5, + "end": 10331.98, + "probability": 0.8094 + }, + { + "start": 10332.66, + "end": 10339.04, + "probability": 0.572 + }, + { + "start": 10339.42, + "end": 10342.14, + "probability": 0.9831 + }, + { + "start": 10342.78, + "end": 10344.22, + "probability": 0.7423 + }, + { + "start": 10346.16, + "end": 10351.16, + "probability": 0.9194 + }, + { + "start": 10352.86, + "end": 10355.36, + "probability": 0.6242 + }, + { + "start": 10359.52, + "end": 10360.84, + "probability": 0.7948 + }, + { + "start": 10360.94, + "end": 10361.8, + "probability": 0.4763 + }, + { + "start": 10362.02, + "end": 10364.96, + "probability": 0.9425 + }, + { + "start": 10364.96, + "end": 10367.83, + "probability": 0.9098 + }, + { + "start": 10368.42, + "end": 10370.1, + "probability": 0.2474 + }, + { + "start": 10370.34, + "end": 10373.12, + "probability": 0.5131 + }, + { + "start": 10373.3, + "end": 10374.44, + "probability": 0.8132 + }, + { + "start": 10375.16, + "end": 10376.88, + "probability": 0.7671 + }, + { + "start": 10377.12, + "end": 10380.14, + "probability": 0.8437 + }, + { + "start": 10380.78, + "end": 10383.8, + "probability": 0.873 + }, + { + "start": 10384.8, + "end": 10387.26, + "probability": 0.9485 + }, + { + "start": 10415.8, + "end": 10418.82, + "probability": 0.7595 + }, + { + "start": 10421.96, + "end": 10422.52, + "probability": 0.9784 + }, + { + "start": 10424.4, + "end": 10427.86, + "probability": 0.5574 + }, + { + "start": 10428.1, + "end": 10429.72, + "probability": 0.9688 + }, + { + "start": 10430.76, + "end": 10432.7, + "probability": 0.9712 + }, + { + "start": 10433.88, + "end": 10441.08, + "probability": 0.9805 + }, + { + "start": 10442.44, + "end": 10446.14, + "probability": 0.9976 + }, + { + "start": 10447.36, + "end": 10451.7, + "probability": 0.9354 + }, + { + "start": 10452.52, + "end": 10454.96, + "probability": 0.9835 + }, + { + "start": 10456.14, + "end": 10461.42, + "probability": 0.9969 + }, + { + "start": 10461.42, + "end": 10469.32, + "probability": 0.9996 + }, + { + "start": 10470.5, + "end": 10473.28, + "probability": 0.9989 + }, + { + "start": 10473.8, + "end": 10479.84, + "probability": 0.9938 + }, + { + "start": 10481.82, + "end": 10489.26, + "probability": 0.9974 + }, + { + "start": 10490.18, + "end": 10493.88, + "probability": 0.9855 + }, + { + "start": 10495.22, + "end": 10500.58, + "probability": 0.9514 + }, + { + "start": 10501.34, + "end": 10506.28, + "probability": 0.9611 + }, + { + "start": 10507.32, + "end": 10508.94, + "probability": 0.9546 + }, + { + "start": 10509.1, + "end": 10510.32, + "probability": 0.8004 + }, + { + "start": 10510.36, + "end": 10515.88, + "probability": 0.8826 + }, + { + "start": 10517.34, + "end": 10517.88, + "probability": 0.5152 + }, + { + "start": 10518.5, + "end": 10519.02, + "probability": 0.0058 + }, + { + "start": 10519.5, + "end": 10520.2, + "probability": 0.5282 + }, + { + "start": 10520.24, + "end": 10521.24, + "probability": 0.5267 + }, + { + "start": 10521.48, + "end": 10523.06, + "probability": 0.9899 + }, + { + "start": 10523.32, + "end": 10524.3, + "probability": 0.5621 + }, + { + "start": 10524.42, + "end": 10524.98, + "probability": 0.6005 + }, + { + "start": 10524.98, + "end": 10526.95, + "probability": 0.1437 + }, + { + "start": 10528.76, + "end": 10531.42, + "probability": 0.7593 + }, + { + "start": 10531.52, + "end": 10532.32, + "probability": 0.0358 + }, + { + "start": 10532.36, + "end": 10534.94, + "probability": 0.1432 + }, + { + "start": 10535.36, + "end": 10535.36, + "probability": 0.61 + }, + { + "start": 10535.36, + "end": 10537.72, + "probability": 0.7915 + }, + { + "start": 10537.76, + "end": 10540.44, + "probability": 0.8234 + }, + { + "start": 10540.9, + "end": 10541.62, + "probability": 0.7526 + }, + { + "start": 10543.02, + "end": 10543.7, + "probability": 0.9207 + }, + { + "start": 10543.84, + "end": 10545.28, + "probability": 0.7968 + }, + { + "start": 10545.42, + "end": 10547.23, + "probability": 0.9653 + }, + { + "start": 10547.42, + "end": 10550.68, + "probability": 0.7222 + }, + { + "start": 10550.7, + "end": 10551.62, + "probability": 0.6124 + }, + { + "start": 10551.7, + "end": 10552.61, + "probability": 0.9375 + }, + { + "start": 10553.12, + "end": 10554.89, + "probability": 0.8409 + }, + { + "start": 10555.26, + "end": 10556.82, + "probability": 0.5291 + }, + { + "start": 10557.14, + "end": 10559.31, + "probability": 0.7772 + }, + { + "start": 10559.96, + "end": 10564.34, + "probability": 0.7599 + }, + { + "start": 10564.8, + "end": 10566.62, + "probability": 0.9146 + }, + { + "start": 10567.1, + "end": 10568.34, + "probability": 0.9595 + }, + { + "start": 10568.42, + "end": 10570.62, + "probability": 0.962 + }, + { + "start": 10570.64, + "end": 10574.04, + "probability": 0.9557 + }, + { + "start": 10574.06, + "end": 10578.9, + "probability": 0.9606 + }, + { + "start": 10579.31, + "end": 10585.18, + "probability": 0.9091 + }, + { + "start": 10585.66, + "end": 10586.82, + "probability": 0.8325 + }, + { + "start": 10587.46, + "end": 10590.64, + "probability": 0.9568 + }, + { + "start": 10591.3, + "end": 10597.12, + "probability": 0.9888 + }, + { + "start": 10598.22, + "end": 10599.5, + "probability": 0.7245 + }, + { + "start": 10599.64, + "end": 10601.62, + "probability": 0.8326 + }, + { + "start": 10601.9, + "end": 10607.74, + "probability": 0.9659 + }, + { + "start": 10608.3, + "end": 10610.72, + "probability": 0.8958 + }, + { + "start": 10610.78, + "end": 10615.82, + "probability": 0.799 + }, + { + "start": 10616.66, + "end": 10617.92, + "probability": 0.9209 + }, + { + "start": 10618.12, + "end": 10619.03, + "probability": 0.4254 + }, + { + "start": 10619.52, + "end": 10620.74, + "probability": 0.6603 + }, + { + "start": 10620.96, + "end": 10623.16, + "probability": 0.986 + }, + { + "start": 10623.34, + "end": 10628.96, + "probability": 0.8418 + }, + { + "start": 10629.36, + "end": 10632.0, + "probability": 0.8743 + }, + { + "start": 10633.4, + "end": 10636.52, + "probability": 0.8667 + }, + { + "start": 10636.56, + "end": 10638.6, + "probability": 0.4964 + }, + { + "start": 10639.32, + "end": 10640.22, + "probability": 0.6885 + }, + { + "start": 10640.32, + "end": 10641.8, + "probability": 0.9302 + }, + { + "start": 10641.82, + "end": 10642.14, + "probability": 0.5797 + }, + { + "start": 10642.6, + "end": 10644.2, + "probability": 0.7934 + }, + { + "start": 10644.7, + "end": 10650.77, + "probability": 0.8054 + }, + { + "start": 10651.02, + "end": 10654.26, + "probability": 0.9709 + }, + { + "start": 10654.5, + "end": 10655.82, + "probability": 0.2627 + }, + { + "start": 10655.94, + "end": 10655.94, + "probability": 0.1891 + }, + { + "start": 10655.94, + "end": 10660.8, + "probability": 0.9639 + }, + { + "start": 10661.12, + "end": 10664.54, + "probability": 0.9763 + }, + { + "start": 10664.72, + "end": 10667.3, + "probability": 0.7041 + }, + { + "start": 10667.52, + "end": 10667.88, + "probability": 0.5865 + }, + { + "start": 10667.88, + "end": 10669.9, + "probability": 0.755 + }, + { + "start": 10670.44, + "end": 10675.06, + "probability": 0.9685 + }, + { + "start": 10675.12, + "end": 10676.16, + "probability": 0.8445 + }, + { + "start": 10676.74, + "end": 10678.12, + "probability": 0.8923 + }, + { + "start": 10678.3, + "end": 10678.96, + "probability": 0.894 + }, + { + "start": 10679.04, + "end": 10680.72, + "probability": 0.9939 + }, + { + "start": 10681.12, + "end": 10683.16, + "probability": 0.9568 + }, + { + "start": 10683.28, + "end": 10684.26, + "probability": 0.8821 + }, + { + "start": 10685.3, + "end": 10688.94, + "probability": 0.6535 + }, + { + "start": 10690.72, + "end": 10692.14, + "probability": 0.9033 + }, + { + "start": 10692.24, + "end": 10692.72, + "probability": 0.7172 + }, + { + "start": 10693.08, + "end": 10699.48, + "probability": 0.8955 + }, + { + "start": 10700.18, + "end": 10703.44, + "probability": 0.8391 + }, + { + "start": 10704.94, + "end": 10708.22, + "probability": 0.4744 + }, + { + "start": 10709.28, + "end": 10715.32, + "probability": 0.9541 + }, + { + "start": 10715.32, + "end": 10720.5, + "probability": 0.9717 + }, + { + "start": 10720.9, + "end": 10726.54, + "probability": 0.7211 + }, + { + "start": 10727.42, + "end": 10729.98, + "probability": 0.9651 + }, + { + "start": 10730.5, + "end": 10734.02, + "probability": 0.986 + }, + { + "start": 10734.78, + "end": 10739.64, + "probability": 0.9508 + }, + { + "start": 10740.64, + "end": 10743.16, + "probability": 0.9741 + }, + { + "start": 10743.46, + "end": 10744.76, + "probability": 0.9933 + }, + { + "start": 10745.44, + "end": 10749.52, + "probability": 0.9932 + }, + { + "start": 10750.24, + "end": 10754.64, + "probability": 0.8044 + }, + { + "start": 10754.9, + "end": 10755.88, + "probability": 0.9722 + }, + { + "start": 10756.98, + "end": 10758.24, + "probability": 0.905 + }, + { + "start": 10758.32, + "end": 10759.4, + "probability": 0.8727 + }, + { + "start": 10759.44, + "end": 10763.28, + "probability": 0.6965 + }, + { + "start": 10764.26, + "end": 10770.58, + "probability": 0.496 + }, + { + "start": 10770.76, + "end": 10775.04, + "probability": 0.679 + }, + { + "start": 10775.28, + "end": 10777.44, + "probability": 0.9419 + }, + { + "start": 10778.06, + "end": 10779.14, + "probability": 0.786 + }, + { + "start": 10780.06, + "end": 10782.08, + "probability": 0.9994 + }, + { + "start": 10782.7, + "end": 10783.24, + "probability": 0.789 + }, + { + "start": 10783.46, + "end": 10784.0, + "probability": 0.9607 + }, + { + "start": 10785.04, + "end": 10787.34, + "probability": 0.966 + }, + { + "start": 10788.42, + "end": 10790.26, + "probability": 0.9681 + }, + { + "start": 10794.28, + "end": 10794.84, + "probability": 0.1177 + }, + { + "start": 10794.84, + "end": 10797.16, + "probability": 0.9627 + }, + { + "start": 10797.26, + "end": 10799.78, + "probability": 0.7563 + }, + { + "start": 10800.36, + "end": 10805.35, + "probability": 0.93 + }, + { + "start": 10806.26, + "end": 10808.24, + "probability": 0.7383 + }, + { + "start": 10808.8, + "end": 10813.24, + "probability": 0.6688 + }, + { + "start": 10814.58, + "end": 10817.14, + "probability": 0.0785 + }, + { + "start": 10817.14, + "end": 10817.14, + "probability": 0.0204 + }, + { + "start": 10817.14, + "end": 10818.82, + "probability": 0.4604 + }, + { + "start": 10819.18, + "end": 10820.92, + "probability": 0.3943 + }, + { + "start": 10821.28, + "end": 10822.93, + "probability": 0.6624 + }, + { + "start": 10823.86, + "end": 10825.4, + "probability": 0.813 + }, + { + "start": 10826.02, + "end": 10827.45, + "probability": 0.9748 + }, + { + "start": 10829.66, + "end": 10832.44, + "probability": 0.5954 + }, + { + "start": 10833.34, + "end": 10833.7, + "probability": 0.121 + }, + { + "start": 10835.26, + "end": 10836.58, + "probability": 0.2653 + }, + { + "start": 10836.62, + "end": 10839.9, + "probability": 0.372 + }, + { + "start": 10843.76, + "end": 10845.94, + "probability": 0.4903 + }, + { + "start": 10846.94, + "end": 10850.04, + "probability": 0.7139 + }, + { + "start": 10850.08, + "end": 10855.88, + "probability": 0.9404 + }, + { + "start": 10856.08, + "end": 10857.82, + "probability": 0.8463 + }, + { + "start": 10858.48, + "end": 10864.6, + "probability": 0.973 + }, + { + "start": 10865.26, + "end": 10869.22, + "probability": 0.9321 + }, + { + "start": 10869.5, + "end": 10870.34, + "probability": 0.8962 + }, + { + "start": 10871.56, + "end": 10874.2, + "probability": 0.9305 + }, + { + "start": 10874.8, + "end": 10875.76, + "probability": 0.0954 + }, + { + "start": 10876.92, + "end": 10878.24, + "probability": 0.7526 + }, + { + "start": 10878.94, + "end": 10878.94, + "probability": 0.2297 + }, + { + "start": 10879.34, + "end": 10880.8, + "probability": 0.1605 + }, + { + "start": 10881.24, + "end": 10885.38, + "probability": 0.1 + }, + { + "start": 10886.38, + "end": 10886.87, + "probability": 0.054 + }, + { + "start": 10887.52, + "end": 10891.46, + "probability": 0.9835 + }, + { + "start": 10891.58, + "end": 10894.64, + "probability": 0.743 + }, + { + "start": 10895.04, + "end": 10896.32, + "probability": 0.7493 + }, + { + "start": 10896.5, + "end": 10902.0, + "probability": 0.8997 + }, + { + "start": 10902.14, + "end": 10905.0, + "probability": 0.9491 + }, + { + "start": 10908.49, + "end": 10914.72, + "probability": 0.9983 + }, + { + "start": 10915.54, + "end": 10918.06, + "probability": 0.8222 + }, + { + "start": 10918.74, + "end": 10922.58, + "probability": 0.8936 + }, + { + "start": 10925.1, + "end": 10932.44, + "probability": 0.8841 + }, + { + "start": 10933.24, + "end": 10934.32, + "probability": 0.7844 + }, + { + "start": 10934.42, + "end": 10939.22, + "probability": 0.9927 + }, + { + "start": 10939.22, + "end": 10944.58, + "probability": 0.9583 + }, + { + "start": 10945.62, + "end": 10946.12, + "probability": 0.6619 + }, + { + "start": 10946.28, + "end": 10952.12, + "probability": 0.9676 + }, + { + "start": 10952.12, + "end": 10956.96, + "probability": 0.9766 + }, + { + "start": 10957.54, + "end": 10960.68, + "probability": 0.6639 + }, + { + "start": 10961.46, + "end": 10963.66, + "probability": 0.957 + }, + { + "start": 10963.9, + "end": 10965.54, + "probability": 0.6838 + }, + { + "start": 10966.02, + "end": 10968.5, + "probability": 0.9271 + }, + { + "start": 10969.16, + "end": 10969.68, + "probability": 0.7709 + }, + { + "start": 10973.42, + "end": 10976.22, + "probability": 0.9466 + }, + { + "start": 10977.16, + "end": 10980.68, + "probability": 0.8603 + }, + { + "start": 10981.3, + "end": 10986.18, + "probability": 0.998 + }, + { + "start": 10986.18, + "end": 10990.86, + "probability": 0.9991 + }, + { + "start": 10991.48, + "end": 10994.8, + "probability": 0.998 + }, + { + "start": 10995.56, + "end": 10997.26, + "probability": 0.8794 + }, + { + "start": 10998.1, + "end": 10999.92, + "probability": 0.9829 + }, + { + "start": 11000.08, + "end": 11001.34, + "probability": 0.9624 + }, + { + "start": 11001.56, + "end": 11002.16, + "probability": 0.9091 + }, + { + "start": 11002.88, + "end": 11007.82, + "probability": 0.9692 + }, + { + "start": 11008.84, + "end": 11010.34, + "probability": 0.9696 + }, + { + "start": 11011.06, + "end": 11012.38, + "probability": 0.7399 + }, + { + "start": 11013.26, + "end": 11017.48, + "probability": 0.9956 + }, + { + "start": 11017.7, + "end": 11022.98, + "probability": 0.9398 + }, + { + "start": 11024.02, + "end": 11030.36, + "probability": 0.988 + }, + { + "start": 11031.32, + "end": 11032.18, + "probability": 0.5701 + }, + { + "start": 11032.8, + "end": 11036.3, + "probability": 0.4649 + }, + { + "start": 11036.56, + "end": 11038.92, + "probability": 0.4537 + }, + { + "start": 11039.16, + "end": 11040.6, + "probability": 0.4824 + }, + { + "start": 11042.22, + "end": 11043.02, + "probability": 0.4562 + }, + { + "start": 11043.02, + "end": 11046.52, + "probability": 0.1725 + }, + { + "start": 11046.74, + "end": 11046.74, + "probability": 0.0062 + }, + { + "start": 11046.74, + "end": 11046.78, + "probability": 0.2987 + }, + { + "start": 11046.78, + "end": 11050.48, + "probability": 0.6128 + }, + { + "start": 11051.76, + "end": 11051.76, + "probability": 0.1313 + }, + { + "start": 11051.76, + "end": 11056.66, + "probability": 0.6548 + }, + { + "start": 11057.36, + "end": 11058.2, + "probability": 0.5208 + }, + { + "start": 11059.16, + "end": 11061.54, + "probability": 0.4651 + }, + { + "start": 11061.74, + "end": 11064.1, + "probability": 0.7878 + }, + { + "start": 11064.1, + "end": 11066.68, + "probability": 0.3472 + }, + { + "start": 11067.14, + "end": 11068.8, + "probability": 0.707 + }, + { + "start": 11069.14, + "end": 11072.04, + "probability": 0.0722 + }, + { + "start": 11072.3, + "end": 11073.6, + "probability": 0.4276 + }, + { + "start": 11074.14, + "end": 11075.92, + "probability": 0.0965 + }, + { + "start": 11077.0, + "end": 11080.3, + "probability": 0.0574 + }, + { + "start": 11080.3, + "end": 11081.98, + "probability": 0.3171 + }, + { + "start": 11082.2, + "end": 11083.52, + "probability": 0.4435 + }, + { + "start": 11083.66, + "end": 11086.44, + "probability": 0.5548 + }, + { + "start": 11086.56, + "end": 11087.52, + "probability": 0.847 + }, + { + "start": 11087.7, + "end": 11088.26, + "probability": 0.8502 + }, + { + "start": 11089.04, + "end": 11090.18, + "probability": 0.1808 + }, + { + "start": 11090.92, + "end": 11091.92, + "probability": 0.4611 + }, + { + "start": 11092.2, + "end": 11096.2, + "probability": 0.5748 + }, + { + "start": 11097.72, + "end": 11098.48, + "probability": 0.4087 + }, + { + "start": 11099.06, + "end": 11100.26, + "probability": 0.6132 + }, + { + "start": 11100.44, + "end": 11104.48, + "probability": 0.0722 + }, + { + "start": 11104.56, + "end": 11109.5, + "probability": 0.1641 + }, + { + "start": 11109.5, + "end": 11113.76, + "probability": 0.8904 + }, + { + "start": 11114.2, + "end": 11114.5, + "probability": 0.1069 + }, + { + "start": 11114.9, + "end": 11114.9, + "probability": 0.2803 + }, + { + "start": 11115.02, + "end": 11117.24, + "probability": 0.4592 + }, + { + "start": 11117.68, + "end": 11118.1, + "probability": 0.1158 + }, + { + "start": 11118.28, + "end": 11119.96, + "probability": 0.0398 + }, + { + "start": 11120.08, + "end": 11121.04, + "probability": 0.5897 + }, + { + "start": 11121.04, + "end": 11122.12, + "probability": 0.3049 + }, + { + "start": 11122.86, + "end": 11125.5, + "probability": 0.657 + }, + { + "start": 11125.58, + "end": 11130.16, + "probability": 0.9056 + }, + { + "start": 11130.52, + "end": 11131.08, + "probability": 0.7089 + }, + { + "start": 11132.72, + "end": 11134.8, + "probability": 0.0077 + }, + { + "start": 11135.08, + "end": 11135.42, + "probability": 0.3566 + }, + { + "start": 11135.42, + "end": 11136.26, + "probability": 0.2578 + }, + { + "start": 11136.56, + "end": 11139.92, + "probability": 0.0426 + }, + { + "start": 11139.92, + "end": 11139.92, + "probability": 0.0414 + }, + { + "start": 11139.92, + "end": 11139.92, + "probability": 0.0211 + }, + { + "start": 11139.92, + "end": 11139.98, + "probability": 0.0631 + }, + { + "start": 11139.98, + "end": 11140.8, + "probability": 0.1751 + }, + { + "start": 11141.08, + "end": 11141.8, + "probability": 0.0212 + }, + { + "start": 11141.98, + "end": 11142.28, + "probability": 0.2667 + }, + { + "start": 11142.28, + "end": 11142.63, + "probability": 0.0931 + }, + { + "start": 11143.7, + "end": 11145.58, + "probability": 0.1576 + }, + { + "start": 11145.58, + "end": 11145.66, + "probability": 0.0087 + }, + { + "start": 11147.18, + "end": 11147.2, + "probability": 0.064 + }, + { + "start": 11147.2, + "end": 11147.2, + "probability": 0.3141 + }, + { + "start": 11147.2, + "end": 11147.2, + "probability": 0.1155 + }, + { + "start": 11147.2, + "end": 11147.2, + "probability": 0.0526 + }, + { + "start": 11147.2, + "end": 11148.74, + "probability": 0.4879 + }, + { + "start": 11148.82, + "end": 11150.86, + "probability": 0.7661 + }, + { + "start": 11151.42, + "end": 11152.8, + "probability": 0.9689 + }, + { + "start": 11152.94, + "end": 11156.62, + "probability": 0.8772 + }, + { + "start": 11156.74, + "end": 11157.12, + "probability": 0.0572 + }, + { + "start": 11157.28, + "end": 11160.22, + "probability": 0.6692 + }, + { + "start": 11160.82, + "end": 11161.94, + "probability": 0.7676 + }, + { + "start": 11162.06, + "end": 11163.62, + "probability": 0.9958 + }, + { + "start": 11164.18, + "end": 11165.6, + "probability": 0.3824 + }, + { + "start": 11165.84, + "end": 11170.04, + "probability": 0.8412 + }, + { + "start": 11171.22, + "end": 11180.54, + "probability": 0.8064 + }, + { + "start": 11181.9, + "end": 11186.62, + "probability": 0.7716 + }, + { + "start": 11187.48, + "end": 11191.0, + "probability": 0.9956 + }, + { + "start": 11191.0, + "end": 11194.46, + "probability": 0.9084 + }, + { + "start": 11195.46, + "end": 11197.8, + "probability": 0.9982 + }, + { + "start": 11198.58, + "end": 11201.78, + "probability": 0.7833 + }, + { + "start": 11202.62, + "end": 11206.46, + "probability": 0.9295 + }, + { + "start": 11207.12, + "end": 11211.98, + "probability": 0.9886 + }, + { + "start": 11213.18, + "end": 11218.9, + "probability": 0.9625 + }, + { + "start": 11219.06, + "end": 11220.88, + "probability": 0.9368 + }, + { + "start": 11221.58, + "end": 11222.64, + "probability": 0.2844 + }, + { + "start": 11222.98, + "end": 11223.68, + "probability": 0.8299 + }, + { + "start": 11225.95, + "end": 11227.18, + "probability": 0.233 + }, + { + "start": 11227.26, + "end": 11232.62, + "probability": 0.8693 + }, + { + "start": 11233.36, + "end": 11235.72, + "probability": 0.4326 + }, + { + "start": 11237.0, + "end": 11237.42, + "probability": 0.1784 + }, + { + "start": 11237.42, + "end": 11237.42, + "probability": 0.2305 + }, + { + "start": 11237.42, + "end": 11239.22, + "probability": 0.322 + }, + { + "start": 11239.22, + "end": 11240.51, + "probability": 0.664 + }, + { + "start": 11240.94, + "end": 11242.54, + "probability": 0.2817 + }, + { + "start": 11242.88, + "end": 11245.86, + "probability": 0.0706 + }, + { + "start": 11245.86, + "end": 11245.86, + "probability": 0.0232 + }, + { + "start": 11245.86, + "end": 11248.32, + "probability": 0.553 + }, + { + "start": 11248.74, + "end": 11250.26, + "probability": 0.4416 + }, + { + "start": 11250.54, + "end": 11255.5, + "probability": 0.2109 + }, + { + "start": 11256.37, + "end": 11258.0, + "probability": 0.7713 + }, + { + "start": 11258.28, + "end": 11258.48, + "probability": 0.1568 + }, + { + "start": 11258.62, + "end": 11258.72, + "probability": 0.0218 + }, + { + "start": 11258.72, + "end": 11258.72, + "probability": 0.0642 + }, + { + "start": 11258.72, + "end": 11259.6, + "probability": 0.4665 + }, + { + "start": 11259.6, + "end": 11259.6, + "probability": 0.4263 + }, + { + "start": 11259.9, + "end": 11260.96, + "probability": 0.778 + }, + { + "start": 11261.04, + "end": 11263.1, + "probability": 0.5679 + }, + { + "start": 11263.12, + "end": 11263.76, + "probability": 0.047 + }, + { + "start": 11263.76, + "end": 11264.78, + "probability": 0.6346 + }, + { + "start": 11264.8, + "end": 11266.26, + "probability": 0.8975 + }, + { + "start": 11267.28, + "end": 11268.38, + "probability": 0.4899 + }, + { + "start": 11270.96, + "end": 11273.92, + "probability": 0.9834 + }, + { + "start": 11274.68, + "end": 11276.3, + "probability": 0.8864 + }, + { + "start": 11276.36, + "end": 11280.8, + "probability": 0.8799 + }, + { + "start": 11281.72, + "end": 11284.94, + "probability": 0.9387 + }, + { + "start": 11285.52, + "end": 11290.6, + "probability": 0.9906 + }, + { + "start": 11290.74, + "end": 11292.12, + "probability": 0.9812 + }, + { + "start": 11293.4, + "end": 11296.1, + "probability": 0.9949 + }, + { + "start": 11296.1, + "end": 11300.66, + "probability": 0.9987 + }, + { + "start": 11301.14, + "end": 11302.32, + "probability": 0.9368 + }, + { + "start": 11302.68, + "end": 11303.66, + "probability": 0.6215 + }, + { + "start": 11304.3, + "end": 11308.8, + "probability": 0.7601 + }, + { + "start": 11308.88, + "end": 11310.54, + "probability": 0.6015 + }, + { + "start": 11310.94, + "end": 11313.66, + "probability": 0.902 + }, + { + "start": 11314.08, + "end": 11315.98, + "probability": 0.8398 + }, + { + "start": 11316.4, + "end": 11318.88, + "probability": 0.8833 + }, + { + "start": 11319.0, + "end": 11321.58, + "probability": 0.9684 + }, + { + "start": 11322.1, + "end": 11323.08, + "probability": 0.7493 + }, + { + "start": 11323.38, + "end": 11324.68, + "probability": 0.874 + }, + { + "start": 11325.32, + "end": 11328.46, + "probability": 0.9023 + }, + { + "start": 11328.98, + "end": 11329.85, + "probability": 0.0164 + }, + { + "start": 11330.5, + "end": 11333.58, + "probability": 0.9667 + }, + { + "start": 11333.72, + "end": 11335.66, + "probability": 0.8097 + }, + { + "start": 11336.74, + "end": 11341.28, + "probability": 0.9636 + }, + { + "start": 11341.52, + "end": 11342.2, + "probability": 0.8121 + }, + { + "start": 11343.28, + "end": 11344.76, + "probability": 0.8723 + }, + { + "start": 11344.98, + "end": 11348.88, + "probability": 0.981 + }, + { + "start": 11348.88, + "end": 11353.58, + "probability": 0.9812 + }, + { + "start": 11353.7, + "end": 11357.42, + "probability": 0.9889 + }, + { + "start": 11357.94, + "end": 11358.74, + "probability": 0.6906 + }, + { + "start": 11359.46, + "end": 11361.68, + "probability": 0.9014 + }, + { + "start": 11362.93, + "end": 11366.46, + "probability": 0.9281 + }, + { + "start": 11369.78, + "end": 11371.9, + "probability": 0.85 + }, + { + "start": 11381.86, + "end": 11385.2, + "probability": 0.5218 + }, + { + "start": 11387.32, + "end": 11388.74, + "probability": 0.685 + }, + { + "start": 11389.62, + "end": 11396.18, + "probability": 0.6105 + }, + { + "start": 11396.56, + "end": 11396.56, + "probability": 0.4569 + }, + { + "start": 11397.06, + "end": 11404.02, + "probability": 0.9663 + }, + { + "start": 11404.18, + "end": 11409.38, + "probability": 0.9243 + }, + { + "start": 11409.96, + "end": 11412.2, + "probability": 0.9966 + }, + { + "start": 11412.78, + "end": 11414.48, + "probability": 0.0826 + }, + { + "start": 11415.0, + "end": 11417.26, + "probability": 0.0725 + }, + { + "start": 11417.44, + "end": 11419.04, + "probability": 0.3872 + }, + { + "start": 11419.44, + "end": 11427.1, + "probability": 0.9619 + }, + { + "start": 11427.24, + "end": 11427.52, + "probability": 0.4532 + }, + { + "start": 11428.04, + "end": 11429.6, + "probability": 0.8803 + }, + { + "start": 11430.18, + "end": 11437.48, + "probability": 0.9071 + }, + { + "start": 11437.48, + "end": 11440.02, + "probability": 0.9895 + }, + { + "start": 11440.28, + "end": 11443.28, + "probability": 0.6912 + }, + { + "start": 11443.84, + "end": 11445.58, + "probability": 0.9956 + }, + { + "start": 11445.64, + "end": 11451.64, + "probability": 0.9932 + }, + { + "start": 11452.1, + "end": 11453.92, + "probability": 0.6076 + }, + { + "start": 11455.14, + "end": 11459.64, + "probability": 0.9899 + }, + { + "start": 11460.22, + "end": 11461.45, + "probability": 0.783 + }, + { + "start": 11462.88, + "end": 11463.69, + "probability": 0.9932 + }, + { + "start": 11464.62, + "end": 11467.14, + "probability": 0.9963 + }, + { + "start": 11467.82, + "end": 11470.04, + "probability": 0.9466 + }, + { + "start": 11470.48, + "end": 11471.92, + "probability": 0.9561 + }, + { + "start": 11472.04, + "end": 11473.22, + "probability": 0.9932 + }, + { + "start": 11474.28, + "end": 11477.28, + "probability": 0.9791 + }, + { + "start": 11478.24, + "end": 11480.24, + "probability": 0.9941 + }, + { + "start": 11480.82, + "end": 11482.0, + "probability": 0.5838 + }, + { + "start": 11482.02, + "end": 11487.3, + "probability": 0.9775 + }, + { + "start": 11487.88, + "end": 11491.32, + "probability": 0.999 + }, + { + "start": 11491.76, + "end": 11496.44, + "probability": 0.9946 + }, + { + "start": 11496.6, + "end": 11497.62, + "probability": 0.9688 + }, + { + "start": 11497.76, + "end": 11500.2, + "probability": 0.781 + }, + { + "start": 11500.82, + "end": 11506.19, + "probability": 0.894 + }, + { + "start": 11506.84, + "end": 11507.9, + "probability": 0.9562 + }, + { + "start": 11508.34, + "end": 11510.52, + "probability": 0.9884 + }, + { + "start": 11510.86, + "end": 11513.84, + "probability": 0.9982 + }, + { + "start": 11513.98, + "end": 11514.14, + "probability": 0.4537 + }, + { + "start": 11514.24, + "end": 11518.38, + "probability": 0.9928 + }, + { + "start": 11519.0, + "end": 11520.34, + "probability": 0.8973 + }, + { + "start": 11521.18, + "end": 11523.34, + "probability": 0.9182 + }, + { + "start": 11523.86, + "end": 11525.23, + "probability": 0.9712 + }, + { + "start": 11526.0, + "end": 11527.1, + "probability": 0.7157 + }, + { + "start": 11527.24, + "end": 11529.58, + "probability": 0.7015 + }, + { + "start": 11529.72, + "end": 11531.24, + "probability": 0.8077 + }, + { + "start": 11531.32, + "end": 11531.88, + "probability": 0.8241 + }, + { + "start": 11531.94, + "end": 11535.08, + "probability": 0.9849 + }, + { + "start": 11535.16, + "end": 11538.26, + "probability": 0.9355 + }, + { + "start": 11538.34, + "end": 11542.4, + "probability": 0.9767 + }, + { + "start": 11542.82, + "end": 11544.34, + "probability": 0.8761 + }, + { + "start": 11544.46, + "end": 11547.9, + "probability": 0.9865 + }, + { + "start": 11548.12, + "end": 11549.44, + "probability": 0.9805 + }, + { + "start": 11549.5, + "end": 11550.64, + "probability": 0.9182 + }, + { + "start": 11551.04, + "end": 11551.78, + "probability": 0.7404 + }, + { + "start": 11551.98, + "end": 11552.54, + "probability": 0.7937 + }, + { + "start": 11552.62, + "end": 11554.9, + "probability": 0.9867 + }, + { + "start": 11555.06, + "end": 11556.94, + "probability": 0.8643 + }, + { + "start": 11557.1, + "end": 11558.24, + "probability": 0.7097 + }, + { + "start": 11558.86, + "end": 11562.06, + "probability": 0.9599 + }, + { + "start": 11562.16, + "end": 11564.84, + "probability": 0.93 + }, + { + "start": 11565.3, + "end": 11567.4, + "probability": 0.9985 + }, + { + "start": 11567.44, + "end": 11569.54, + "probability": 0.9958 + }, + { + "start": 11570.76, + "end": 11573.02, + "probability": 0.998 + }, + { + "start": 11574.14, + "end": 11575.22, + "probability": 0.9683 + }, + { + "start": 11575.56, + "end": 11580.24, + "probability": 0.9937 + }, + { + "start": 11580.88, + "end": 11581.88, + "probability": 0.7407 + }, + { + "start": 11582.88, + "end": 11584.3, + "probability": 0.9362 + }, + { + "start": 11584.54, + "end": 11585.52, + "probability": 0.9434 + }, + { + "start": 11585.6, + "end": 11586.48, + "probability": 0.7788 + }, + { + "start": 11586.64, + "end": 11588.12, + "probability": 0.8643 + }, + { + "start": 11588.18, + "end": 11591.94, + "probability": 0.9651 + }, + { + "start": 11593.3, + "end": 11597.1, + "probability": 0.9991 + }, + { + "start": 11597.48, + "end": 11598.14, + "probability": 0.558 + }, + { + "start": 11598.24, + "end": 11602.24, + "probability": 0.9839 + }, + { + "start": 11603.24, + "end": 11604.94, + "probability": 0.9932 + }, + { + "start": 11605.2, + "end": 11607.78, + "probability": 0.9946 + }, + { + "start": 11608.66, + "end": 11612.46, + "probability": 0.9934 + }, + { + "start": 11612.56, + "end": 11615.7, + "probability": 0.993 + }, + { + "start": 11615.78, + "end": 11619.16, + "probability": 0.9879 + }, + { + "start": 11619.28, + "end": 11620.12, + "probability": 0.912 + }, + { + "start": 11620.4, + "end": 11621.14, + "probability": 0.9422 + }, + { + "start": 11621.32, + "end": 11626.64, + "probability": 0.9491 + }, + { + "start": 11627.08, + "end": 11629.24, + "probability": 0.9966 + }, + { + "start": 11629.54, + "end": 11632.84, + "probability": 0.8926 + }, + { + "start": 11632.92, + "end": 11635.62, + "probability": 0.9873 + }, + { + "start": 11635.78, + "end": 11640.54, + "probability": 0.9902 + }, + { + "start": 11640.62, + "end": 11643.34, + "probability": 0.9238 + }, + { + "start": 11643.82, + "end": 11647.46, + "probability": 0.979 + }, + { + "start": 11647.74, + "end": 11649.54, + "probability": 0.9434 + }, + { + "start": 11649.62, + "end": 11650.28, + "probability": 0.8982 + }, + { + "start": 11650.34, + "end": 11650.82, + "probability": 0.6562 + }, + { + "start": 11650.94, + "end": 11651.66, + "probability": 0.9484 + }, + { + "start": 11651.82, + "end": 11652.52, + "probability": 0.8713 + }, + { + "start": 11652.72, + "end": 11654.9, + "probability": 0.9609 + }, + { + "start": 11655.4, + "end": 11656.9, + "probability": 0.547 + }, + { + "start": 11657.08, + "end": 11658.28, + "probability": 0.7433 + }, + { + "start": 11658.28, + "end": 11659.86, + "probability": 0.9193 + }, + { + "start": 11660.64, + "end": 11662.08, + "probability": 0.8811 + }, + { + "start": 11662.58, + "end": 11663.1, + "probability": 0.9029 + }, + { + "start": 11663.16, + "end": 11664.56, + "probability": 0.7257 + }, + { + "start": 11665.04, + "end": 11665.62, + "probability": 0.6297 + }, + { + "start": 11665.66, + "end": 11666.76, + "probability": 0.8847 + }, + { + "start": 11681.36, + "end": 11682.8, + "probability": 0.7052 + }, + { + "start": 11683.64, + "end": 11685.0, + "probability": 0.684 + }, + { + "start": 11686.46, + "end": 11689.9, + "probability": 0.8116 + }, + { + "start": 11690.02, + "end": 11692.57, + "probability": 0.8856 + }, + { + "start": 11693.56, + "end": 11696.56, + "probability": 0.9668 + }, + { + "start": 11696.6, + "end": 11697.94, + "probability": 0.859 + }, + { + "start": 11698.04, + "end": 11704.9, + "probability": 0.9668 + }, + { + "start": 11704.96, + "end": 11712.52, + "probability": 0.7647 + }, + { + "start": 11713.82, + "end": 11716.62, + "probability": 0.9834 + }, + { + "start": 11716.96, + "end": 11720.28, + "probability": 0.9487 + }, + { + "start": 11720.38, + "end": 11722.4, + "probability": 0.8566 + }, + { + "start": 11723.12, + "end": 11729.5, + "probability": 0.9948 + }, + { + "start": 11729.54, + "end": 11729.66, + "probability": 0.1909 + }, + { + "start": 11729.68, + "end": 11729.8, + "probability": 0.9056 + }, + { + "start": 11729.82, + "end": 11730.82, + "probability": 0.8928 + }, + { + "start": 11730.92, + "end": 11733.56, + "probability": 0.9549 + }, + { + "start": 11734.52, + "end": 11735.02, + "probability": 0.742 + }, + { + "start": 11735.1, + "end": 11741.06, + "probability": 0.9487 + }, + { + "start": 11741.82, + "end": 11743.9, + "probability": 0.9377 + }, + { + "start": 11744.38, + "end": 11746.62, + "probability": 0.9934 + }, + { + "start": 11746.74, + "end": 11747.84, + "probability": 0.9132 + }, + { + "start": 11747.9, + "end": 11749.9, + "probability": 0.9904 + }, + { + "start": 11750.54, + "end": 11751.84, + "probability": 0.9702 + }, + { + "start": 11753.08, + "end": 11755.18, + "probability": 0.5435 + }, + { + "start": 11756.28, + "end": 11757.02, + "probability": 0.206 + }, + { + "start": 11757.96, + "end": 11758.96, + "probability": 0.0074 + }, + { + "start": 11760.98, + "end": 11763.18, + "probability": 0.9803 + }, + { + "start": 11763.5, + "end": 11766.04, + "probability": 0.9796 + }, + { + "start": 11766.06, + "end": 11768.36, + "probability": 0.9051 + }, + { + "start": 11768.52, + "end": 11769.74, + "probability": 0.5674 + }, + { + "start": 11770.3, + "end": 11771.52, + "probability": 0.7003 + }, + { + "start": 11771.6, + "end": 11775.42, + "probability": 0.9548 + }, + { + "start": 11775.52, + "end": 11776.82, + "probability": 0.6174 + }, + { + "start": 11777.42, + "end": 11778.86, + "probability": 0.9951 + }, + { + "start": 11778.98, + "end": 11783.9, + "probability": 0.9932 + }, + { + "start": 11784.14, + "end": 11787.9, + "probability": 0.9965 + }, + { + "start": 11787.96, + "end": 11792.14, + "probability": 0.9738 + }, + { + "start": 11792.5, + "end": 11793.4, + "probability": 0.5449 + }, + { + "start": 11793.46, + "end": 11794.62, + "probability": 0.9835 + }, + { + "start": 11795.04, + "end": 11796.16, + "probability": 0.9646 + }, + { + "start": 11797.54, + "end": 11802.96, + "probability": 0.9938 + }, + { + "start": 11803.12, + "end": 11804.06, + "probability": 0.5365 + }, + { + "start": 11804.58, + "end": 11808.14, + "probability": 0.9807 + }, + { + "start": 11808.86, + "end": 11811.17, + "probability": 0.998 + }, + { + "start": 11811.94, + "end": 11815.22, + "probability": 0.9971 + }, + { + "start": 11815.22, + "end": 11818.84, + "probability": 0.9951 + }, + { + "start": 11819.62, + "end": 11822.14, + "probability": 0.9993 + }, + { + "start": 11822.14, + "end": 11824.98, + "probability": 0.9995 + }, + { + "start": 11825.5, + "end": 11826.76, + "probability": 0.9788 + }, + { + "start": 11826.82, + "end": 11828.28, + "probability": 0.9864 + }, + { + "start": 11828.46, + "end": 11830.22, + "probability": 0.9912 + }, + { + "start": 11830.9, + "end": 11835.2, + "probability": 0.9986 + }, + { + "start": 11835.38, + "end": 11836.76, + "probability": 0.8859 + }, + { + "start": 11836.9, + "end": 11837.08, + "probability": 0.8714 + }, + { + "start": 11837.18, + "end": 11838.5, + "probability": 0.9505 + }, + { + "start": 11838.82, + "end": 11841.64, + "probability": 0.8916 + }, + { + "start": 11841.94, + "end": 11846.52, + "probability": 0.9917 + }, + { + "start": 11846.52, + "end": 11851.16, + "probability": 0.9995 + }, + { + "start": 11851.88, + "end": 11854.8, + "probability": 0.9997 + }, + { + "start": 11854.8, + "end": 11860.34, + "probability": 0.9219 + }, + { + "start": 11860.86, + "end": 11865.02, + "probability": 0.9927 + }, + { + "start": 11867.0, + "end": 11868.84, + "probability": 0.8762 + }, + { + "start": 11870.14, + "end": 11872.8, + "probability": 0.999 + }, + { + "start": 11874.1, + "end": 11877.24, + "probability": 0.8227 + }, + { + "start": 11878.12, + "end": 11881.7, + "probability": 0.9979 + }, + { + "start": 11881.7, + "end": 11884.3, + "probability": 0.9985 + }, + { + "start": 11885.56, + "end": 11886.48, + "probability": 0.4568 + }, + { + "start": 11887.28, + "end": 11887.66, + "probability": 0.8894 + }, + { + "start": 11887.74, + "end": 11890.6, + "probability": 0.9925 + }, + { + "start": 11890.7, + "end": 11891.2, + "probability": 0.4184 + }, + { + "start": 11891.26, + "end": 11892.28, + "probability": 0.5087 + }, + { + "start": 11892.28, + "end": 11892.28, + "probability": 0.285 + }, + { + "start": 11892.36, + "end": 11893.36, + "probability": 0.6004 + }, + { + "start": 11893.4, + "end": 11896.81, + "probability": 0.8801 + }, + { + "start": 11898.28, + "end": 11901.66, + "probability": 0.4073 + }, + { + "start": 11901.66, + "end": 11905.22, + "probability": 0.9897 + }, + { + "start": 11905.4, + "end": 11907.26, + "probability": 0.6275 + }, + { + "start": 11907.32, + "end": 11908.72, + "probability": 0.9268 + }, + { + "start": 11909.32, + "end": 11910.04, + "probability": 0.8614 + }, + { + "start": 11910.18, + "end": 11912.28, + "probability": 0.7542 + }, + { + "start": 11912.46, + "end": 11915.72, + "probability": 0.9805 + }, + { + "start": 11916.78, + "end": 11919.68, + "probability": 0.9692 + }, + { + "start": 11921.7, + "end": 11923.62, + "probability": 0.9591 + }, + { + "start": 11923.78, + "end": 11927.36, + "probability": 0.9669 + }, + { + "start": 11927.44, + "end": 11928.54, + "probability": 0.7087 + }, + { + "start": 11929.12, + "end": 11931.7, + "probability": 0.9667 + }, + { + "start": 11932.12, + "end": 11937.42, + "probability": 0.9912 + }, + { + "start": 11937.5, + "end": 11937.7, + "probability": 0.7212 + }, + { + "start": 11938.36, + "end": 11939.64, + "probability": 0.816 + }, + { + "start": 11939.74, + "end": 11942.24, + "probability": 0.8498 + }, + { + "start": 11961.36, + "end": 11963.48, + "probability": 0.6468 + }, + { + "start": 11965.3, + "end": 11968.6, + "probability": 0.9515 + }, + { + "start": 11969.34, + "end": 11971.32, + "probability": 0.8673 + }, + { + "start": 11972.28, + "end": 11973.63, + "probability": 0.9603 + }, + { + "start": 11974.42, + "end": 11976.02, + "probability": 0.859 + }, + { + "start": 11977.16, + "end": 11983.2, + "probability": 0.9943 + }, + { + "start": 11983.42, + "end": 11984.5, + "probability": 0.8428 + }, + { + "start": 11986.36, + "end": 11989.36, + "probability": 0.9883 + }, + { + "start": 11993.1, + "end": 11996.82, + "probability": 0.3234 + }, + { + "start": 11997.72, + "end": 11998.88, + "probability": 0.7862 + }, + { + "start": 12000.0, + "end": 12002.9, + "probability": 0.8976 + }, + { + "start": 12004.26, + "end": 12007.64, + "probability": 0.4999 + }, + { + "start": 12007.82, + "end": 12009.74, + "probability": 0.8204 + }, + { + "start": 12010.62, + "end": 12012.04, + "probability": 0.4511 + }, + { + "start": 12013.02, + "end": 12015.16, + "probability": 0.9243 + }, + { + "start": 12015.16, + "end": 12021.04, + "probability": 0.9897 + }, + { + "start": 12022.3, + "end": 12025.26, + "probability": 0.9804 + }, + { + "start": 12025.64, + "end": 12026.42, + "probability": 0.9672 + }, + { + "start": 12026.48, + "end": 12027.36, + "probability": 0.9901 + }, + { + "start": 12027.78, + "end": 12028.96, + "probability": 0.9826 + }, + { + "start": 12029.28, + "end": 12030.62, + "probability": 0.8934 + }, + { + "start": 12031.12, + "end": 12033.24, + "probability": 0.9656 + }, + { + "start": 12034.18, + "end": 12037.04, + "probability": 0.513 + }, + { + "start": 12037.74, + "end": 12038.4, + "probability": 0.4259 + }, + { + "start": 12038.44, + "end": 12042.02, + "probability": 0.8631 + }, + { + "start": 12042.04, + "end": 12042.64, + "probability": 0.8809 + }, + { + "start": 12042.7, + "end": 12046.09, + "probability": 0.7852 + }, + { + "start": 12046.58, + "end": 12047.77, + "probability": 0.9277 + }, + { + "start": 12048.4, + "end": 12049.89, + "probability": 0.8927 + }, + { + "start": 12050.28, + "end": 12051.46, + "probability": 0.9247 + }, + { + "start": 12051.58, + "end": 12057.26, + "probability": 0.9778 + }, + { + "start": 12058.5, + "end": 12059.78, + "probability": 0.7595 + }, + { + "start": 12060.5, + "end": 12068.4, + "probability": 0.9043 + }, + { + "start": 12069.5, + "end": 12071.14, + "probability": 0.9377 + }, + { + "start": 12071.66, + "end": 12073.06, + "probability": 0.8833 + }, + { + "start": 12074.08, + "end": 12076.52, + "probability": 0.8044 + }, + { + "start": 12077.38, + "end": 12079.62, + "probability": 0.4703 + }, + { + "start": 12081.22, + "end": 12085.02, + "probability": 0.671 + }, + { + "start": 12085.14, + "end": 12089.42, + "probability": 0.9541 + }, + { + "start": 12089.7, + "end": 12090.76, + "probability": 0.806 + }, + { + "start": 12091.9, + "end": 12094.48, + "probability": 0.9429 + }, + { + "start": 12096.48, + "end": 12100.7, + "probability": 0.8005 + }, + { + "start": 12101.36, + "end": 12101.38, + "probability": 0.0974 + }, + { + "start": 12101.38, + "end": 12106.62, + "probability": 0.944 + }, + { + "start": 12107.74, + "end": 12110.42, + "probability": 0.7179 + }, + { + "start": 12111.1, + "end": 12114.14, + "probability": 0.9505 + }, + { + "start": 12115.16, + "end": 12117.06, + "probability": 0.8429 + }, + { + "start": 12117.86, + "end": 12119.82, + "probability": 0.8464 + }, + { + "start": 12120.58, + "end": 12123.82, + "probability": 0.8746 + }, + { + "start": 12124.42, + "end": 12126.2, + "probability": 0.9521 + }, + { + "start": 12126.82, + "end": 12132.44, + "probability": 0.9302 + }, + { + "start": 12133.44, + "end": 12135.48, + "probability": 0.8836 + }, + { + "start": 12136.24, + "end": 12139.18, + "probability": 0.9275 + }, + { + "start": 12139.34, + "end": 12141.02, + "probability": 0.9717 + }, + { + "start": 12142.22, + "end": 12145.96, + "probability": 0.8515 + }, + { + "start": 12147.0, + "end": 12149.28, + "probability": 0.8603 + }, + { + "start": 12150.66, + "end": 12153.84, + "probability": 0.809 + }, + { + "start": 12154.84, + "end": 12157.62, + "probability": 0.9939 + }, + { + "start": 12158.58, + "end": 12160.98, + "probability": 0.8148 + }, + { + "start": 12161.9, + "end": 12163.38, + "probability": 0.8385 + }, + { + "start": 12163.82, + "end": 12168.02, + "probability": 0.9649 + }, + { + "start": 12168.8, + "end": 12172.86, + "probability": 0.9912 + }, + { + "start": 12174.35, + "end": 12179.06, + "probability": 0.8761 + }, + { + "start": 12182.08, + "end": 12187.48, + "probability": 0.8651 + }, + { + "start": 12187.48, + "end": 12192.16, + "probability": 0.9946 + }, + { + "start": 12194.1, + "end": 12195.66, + "probability": 0.7217 + }, + { + "start": 12196.38, + "end": 12199.8, + "probability": 0.9902 + }, + { + "start": 12200.32, + "end": 12202.18, + "probability": 0.8712 + }, + { + "start": 12203.2, + "end": 12204.25, + "probability": 0.8564 + }, + { + "start": 12205.28, + "end": 12208.42, + "probability": 0.8425 + }, + { + "start": 12210.16, + "end": 12213.14, + "probability": 0.825 + }, + { + "start": 12214.06, + "end": 12215.11, + "probability": 0.9434 + }, + { + "start": 12216.02, + "end": 12219.16, + "probability": 0.7933 + }, + { + "start": 12219.4, + "end": 12227.38, + "probability": 0.9167 + }, + { + "start": 12227.86, + "end": 12231.26, + "probability": 0.8525 + }, + { + "start": 12232.04, + "end": 12235.16, + "probability": 0.9917 + }, + { + "start": 12235.84, + "end": 12238.96, + "probability": 0.9772 + }, + { + "start": 12239.44, + "end": 12242.73, + "probability": 0.9404 + }, + { + "start": 12243.6, + "end": 12245.28, + "probability": 0.9243 + }, + { + "start": 12245.74, + "end": 12248.14, + "probability": 0.8989 + }, + { + "start": 12248.24, + "end": 12250.04, + "probability": 0.7523 + }, + { + "start": 12250.54, + "end": 12254.14, + "probability": 0.8241 + }, + { + "start": 12254.32, + "end": 12255.84, + "probability": 0.8843 + }, + { + "start": 12255.84, + "end": 12256.24, + "probability": 0.8796 + }, + { + "start": 12256.64, + "end": 12257.94, + "probability": 0.7743 + }, + { + "start": 12258.1, + "end": 12260.14, + "probability": 0.9687 + }, + { + "start": 12260.7, + "end": 12262.28, + "probability": 0.916 + }, + { + "start": 12271.18, + "end": 12272.96, + "probability": 0.9697 + }, + { + "start": 12273.04, + "end": 12273.24, + "probability": 0.6482 + }, + { + "start": 12273.58, + "end": 12273.68, + "probability": 0.938 + }, + { + "start": 12277.92, + "end": 12278.48, + "probability": 0.4963 + }, + { + "start": 12278.52, + "end": 12281.18, + "probability": 0.7938 + }, + { + "start": 12281.94, + "end": 12282.8, + "probability": 0.6522 + }, + { + "start": 12284.76, + "end": 12285.38, + "probability": 0.8513 + }, + { + "start": 12286.7, + "end": 12287.46, + "probability": 0.8307 + }, + { + "start": 12287.46, + "end": 12293.14, + "probability": 0.8766 + }, + { + "start": 12294.3, + "end": 12295.06, + "probability": 0.9646 + }, + { + "start": 12295.38, + "end": 12298.22, + "probability": 0.8784 + }, + { + "start": 12298.68, + "end": 12300.36, + "probability": 0.4986 + }, + { + "start": 12301.7, + "end": 12304.6, + "probability": 0.9272 + }, + { + "start": 12306.7, + "end": 12308.26, + "probability": 0.446 + }, + { + "start": 12308.7, + "end": 12314.46, + "probability": 0.8532 + }, + { + "start": 12314.98, + "end": 12318.26, + "probability": 0.8748 + }, + { + "start": 12319.09, + "end": 12323.72, + "probability": 0.9663 + }, + { + "start": 12324.32, + "end": 12327.8, + "probability": 0.897 + }, + { + "start": 12328.44, + "end": 12332.72, + "probability": 0.9214 + }, + { + "start": 12333.2, + "end": 12338.12, + "probability": 0.8919 + }, + { + "start": 12338.64, + "end": 12341.98, + "probability": 0.8718 + }, + { + "start": 12342.26, + "end": 12344.96, + "probability": 0.9118 + }, + { + "start": 12345.88, + "end": 12346.96, + "probability": 0.7711 + }, + { + "start": 12347.6, + "end": 12351.18, + "probability": 0.9946 + }, + { + "start": 12351.52, + "end": 12352.46, + "probability": 0.9537 + }, + { + "start": 12352.74, + "end": 12353.44, + "probability": 0.8733 + }, + { + "start": 12353.84, + "end": 12354.46, + "probability": 0.7694 + }, + { + "start": 12354.62, + "end": 12357.72, + "probability": 0.9409 + }, + { + "start": 12358.64, + "end": 12360.46, + "probability": 0.9618 + }, + { + "start": 12360.7, + "end": 12361.5, + "probability": 0.9719 + }, + { + "start": 12361.56, + "end": 12364.26, + "probability": 0.7167 + }, + { + "start": 12364.26, + "end": 12368.26, + "probability": 0.9403 + }, + { + "start": 12368.64, + "end": 12369.24, + "probability": 0.7819 + }, + { + "start": 12369.58, + "end": 12371.6, + "probability": 0.9371 + }, + { + "start": 12371.6, + "end": 12372.74, + "probability": 0.8835 + }, + { + "start": 12372.74, + "end": 12373.5, + "probability": 0.5624 + }, + { + "start": 12373.96, + "end": 12376.82, + "probability": 0.9855 + }, + { + "start": 12379.4, + "end": 12382.52, + "probability": 0.6666 + }, + { + "start": 12382.9, + "end": 12383.8, + "probability": 0.4998 + }, + { + "start": 12384.0, + "end": 12384.56, + "probability": 0.8937 + }, + { + "start": 12384.62, + "end": 12387.22, + "probability": 0.6823 + }, + { + "start": 12387.4, + "end": 12389.06, + "probability": 0.6887 + }, + { + "start": 12389.14, + "end": 12395.26, + "probability": 0.9387 + }, + { + "start": 12396.94, + "end": 12399.3, + "probability": 0.8863 + }, + { + "start": 12400.4, + "end": 12401.98, + "probability": 0.4453 + }, + { + "start": 12402.22, + "end": 12403.66, + "probability": 0.7005 + }, + { + "start": 12403.92, + "end": 12405.9, + "probability": 0.9237 + }, + { + "start": 12406.16, + "end": 12407.14, + "probability": 0.7573 + }, + { + "start": 12407.84, + "end": 12407.96, + "probability": 0.441 + }, + { + "start": 12408.02, + "end": 12409.92, + "probability": 0.452 + }, + { + "start": 12410.3, + "end": 12414.04, + "probability": 0.8844 + }, + { + "start": 12414.48, + "end": 12415.48, + "probability": 0.8938 + }, + { + "start": 12415.52, + "end": 12416.82, + "probability": 0.9484 + }, + { + "start": 12417.62, + "end": 12419.18, + "probability": 0.8096 + }, + { + "start": 12420.92, + "end": 12424.86, + "probability": 0.9916 + }, + { + "start": 12424.86, + "end": 12428.9, + "probability": 0.9886 + }, + { + "start": 12429.06, + "end": 12430.44, + "probability": 0.7339 + }, + { + "start": 12430.7, + "end": 12432.48, + "probability": 0.5497 + }, + { + "start": 12432.58, + "end": 12435.02, + "probability": 0.6978 + }, + { + "start": 12435.3, + "end": 12436.56, + "probability": 0.9797 + }, + { + "start": 12437.96, + "end": 12439.22, + "probability": 0.9423 + }, + { + "start": 12439.54, + "end": 12445.3, + "probability": 0.8581 + }, + { + "start": 12446.06, + "end": 12448.96, + "probability": 0.6657 + }, + { + "start": 12449.04, + "end": 12454.07, + "probability": 0.9949 + }, + { + "start": 12454.62, + "end": 12455.36, + "probability": 0.7771 + }, + { + "start": 12455.44, + "end": 12457.42, + "probability": 0.9832 + }, + { + "start": 12458.36, + "end": 12459.17, + "probability": 0.9176 + }, + { + "start": 12459.86, + "end": 12461.5, + "probability": 0.7235 + }, + { + "start": 12461.98, + "end": 12465.38, + "probability": 0.83 + }, + { + "start": 12465.56, + "end": 12467.76, + "probability": 0.934 + }, + { + "start": 12468.06, + "end": 12470.48, + "probability": 0.9569 + }, + { + "start": 12470.6, + "end": 12474.84, + "probability": 0.7412 + }, + { + "start": 12474.92, + "end": 12476.5, + "probability": 0.6935 + }, + { + "start": 12476.68, + "end": 12478.32, + "probability": 0.4457 + }, + { + "start": 12478.96, + "end": 12480.3, + "probability": 0.8774 + }, + { + "start": 12480.54, + "end": 12484.01, + "probability": 0.8799 + }, + { + "start": 12484.36, + "end": 12485.56, + "probability": 0.4834 + }, + { + "start": 12485.98, + "end": 12486.96, + "probability": 0.7692 + }, + { + "start": 12487.32, + "end": 12490.22, + "probability": 0.6404 + }, + { + "start": 12491.02, + "end": 12494.2, + "probability": 0.9215 + }, + { + "start": 12494.4, + "end": 12495.92, + "probability": 0.9008 + }, + { + "start": 12496.88, + "end": 12497.86, + "probability": 0.7709 + }, + { + "start": 12500.75, + "end": 12503.3, + "probability": 0.9021 + }, + { + "start": 12503.9, + "end": 12506.12, + "probability": 0.613 + }, + { + "start": 12506.96, + "end": 12508.74, + "probability": 0.6949 + }, + { + "start": 12508.9, + "end": 12511.22, + "probability": 0.7564 + }, + { + "start": 12511.7, + "end": 12512.5, + "probability": 0.5422 + }, + { + "start": 12512.66, + "end": 12513.5, + "probability": 0.8089 + }, + { + "start": 12513.62, + "end": 12517.0, + "probability": 0.7627 + }, + { + "start": 12517.4, + "end": 12520.12, + "probability": 0.9746 + }, + { + "start": 12520.12, + "end": 12522.16, + "probability": 0.8241 + }, + { + "start": 12522.24, + "end": 12525.39, + "probability": 0.9421 + }, + { + "start": 12525.72, + "end": 12530.14, + "probability": 0.6985 + }, + { + "start": 12530.18, + "end": 12531.72, + "probability": 0.867 + }, + { + "start": 12531.88, + "end": 12532.14, + "probability": 0.4419 + }, + { + "start": 12532.46, + "end": 12534.55, + "probability": 0.737 + }, + { + "start": 12534.86, + "end": 12535.68, + "probability": 0.8446 + }, + { + "start": 12535.76, + "end": 12536.86, + "probability": 0.7285 + }, + { + "start": 12536.88, + "end": 12537.84, + "probability": 0.8125 + }, + { + "start": 12538.91, + "end": 12544.72, + "probability": 0.7155 + }, + { + "start": 12544.72, + "end": 12545.9, + "probability": 0.9153 + }, + { + "start": 12546.24, + "end": 12547.32, + "probability": 0.3372 + }, + { + "start": 12547.54, + "end": 12550.24, + "probability": 0.8152 + }, + { + "start": 12550.56, + "end": 12554.2, + "probability": 0.9247 + }, + { + "start": 12554.5, + "end": 12559.08, + "probability": 0.7652 + }, + { + "start": 12559.12, + "end": 12561.1, + "probability": 0.6687 + }, + { + "start": 12561.22, + "end": 12563.54, + "probability": 0.9759 + }, + { + "start": 12564.02, + "end": 12565.0, + "probability": 0.4632 + }, + { + "start": 12565.88, + "end": 12567.6, + "probability": 0.9431 + }, + { + "start": 12568.08, + "end": 12569.08, + "probability": 0.7852 + }, + { + "start": 12569.22, + "end": 12570.7, + "probability": 0.7535 + }, + { + "start": 12570.8, + "end": 12571.76, + "probability": 0.732 + }, + { + "start": 12572.46, + "end": 12573.04, + "probability": 0.266 + }, + { + "start": 12573.62, + "end": 12574.86, + "probability": 0.2267 + }, + { + "start": 12574.86, + "end": 12579.08, + "probability": 0.5665 + }, + { + "start": 12579.08, + "end": 12579.46, + "probability": 0.4515 + }, + { + "start": 12579.68, + "end": 12581.56, + "probability": 0.8117 + }, + { + "start": 12581.7, + "end": 12584.08, + "probability": 0.9973 + }, + { + "start": 12584.18, + "end": 12584.67, + "probability": 0.4777 + }, + { + "start": 12586.0, + "end": 12587.06, + "probability": 0.7966 + }, + { + "start": 12587.1, + "end": 12589.94, + "probability": 0.778 + }, + { + "start": 12590.32, + "end": 12594.36, + "probability": 0.967 + }, + { + "start": 12594.78, + "end": 12595.86, + "probability": 0.9909 + }, + { + "start": 12596.22, + "end": 12597.28, + "probability": 0.815 + }, + { + "start": 12597.94, + "end": 12600.62, + "probability": 0.7898 + }, + { + "start": 12600.74, + "end": 12602.54, + "probability": 0.8289 + }, + { + "start": 12602.56, + "end": 12603.02, + "probability": 0.356 + }, + { + "start": 12603.08, + "end": 12603.92, + "probability": 0.3096 + }, + { + "start": 12605.28, + "end": 12607.64, + "probability": 0.7987 + }, + { + "start": 12608.92, + "end": 12610.66, + "probability": 0.7736 + }, + { + "start": 12620.82, + "end": 12622.86, + "probability": 0.8024 + }, + { + "start": 12623.5, + "end": 12625.26, + "probability": 0.8581 + }, + { + "start": 12632.14, + "end": 12633.63, + "probability": 0.2876 + }, + { + "start": 12634.62, + "end": 12636.78, + "probability": 0.8797 + }, + { + "start": 12636.78, + "end": 12639.38, + "probability": 0.9987 + }, + { + "start": 12640.06, + "end": 12640.76, + "probability": 0.9882 + }, + { + "start": 12641.92, + "end": 12642.77, + "probability": 0.9795 + }, + { + "start": 12643.34, + "end": 12645.48, + "probability": 0.9904 + }, + { + "start": 12646.68, + "end": 12648.8, + "probability": 0.9992 + }, + { + "start": 12649.58, + "end": 12654.04, + "probability": 0.9899 + }, + { + "start": 12654.74, + "end": 12656.18, + "probability": 0.8192 + }, + { + "start": 12657.34, + "end": 12660.06, + "probability": 0.9486 + }, + { + "start": 12660.8, + "end": 12660.8, + "probability": 0.2389 + }, + { + "start": 12661.78, + "end": 12663.9, + "probability": 0.7809 + }, + { + "start": 12664.24, + "end": 12665.4, + "probability": 0.9788 + }, + { + "start": 12665.5, + "end": 12666.38, + "probability": 0.8927 + }, + { + "start": 12666.48, + "end": 12667.32, + "probability": 0.6633 + }, + { + "start": 12667.98, + "end": 12668.74, + "probability": 0.9365 + }, + { + "start": 12670.94, + "end": 12671.88, + "probability": 0.4992 + }, + { + "start": 12672.18, + "end": 12672.6, + "probability": 0.6409 + }, + { + "start": 12672.74, + "end": 12674.66, + "probability": 0.9091 + }, + { + "start": 12674.82, + "end": 12675.68, + "probability": 0.739 + }, + { + "start": 12676.54, + "end": 12678.39, + "probability": 0.9264 + }, + { + "start": 12680.06, + "end": 12682.68, + "probability": 0.9696 + }, + { + "start": 12682.78, + "end": 12684.89, + "probability": 0.9946 + }, + { + "start": 12685.72, + "end": 12687.46, + "probability": 0.9525 + }, + { + "start": 12687.64, + "end": 12688.64, + "probability": 0.9094 + }, + { + "start": 12688.7, + "end": 12690.48, + "probability": 0.9635 + }, + { + "start": 12690.94, + "end": 12693.4, + "probability": 0.9273 + }, + { + "start": 12693.4, + "end": 12696.12, + "probability": 0.8606 + }, + { + "start": 12696.64, + "end": 12698.16, + "probability": 0.9724 + }, + { + "start": 12698.16, + "end": 12700.7, + "probability": 0.9893 + }, + { + "start": 12701.88, + "end": 12702.92, + "probability": 0.7991 + }, + { + "start": 12703.06, + "end": 12704.02, + "probability": 0.734 + }, + { + "start": 12704.1, + "end": 12706.22, + "probability": 0.7423 + }, + { + "start": 12706.22, + "end": 12707.04, + "probability": 0.9383 + }, + { + "start": 12707.14, + "end": 12708.0, + "probability": 0.7284 + }, + { + "start": 12708.02, + "end": 12711.84, + "probability": 0.9543 + }, + { + "start": 12711.94, + "end": 12713.52, + "probability": 0.9762 + }, + { + "start": 12714.48, + "end": 12716.43, + "probability": 0.7471 + }, + { + "start": 12717.32, + "end": 12717.92, + "probability": 0.4932 + }, + { + "start": 12717.92, + "end": 12719.94, + "probability": 0.8703 + }, + { + "start": 12720.06, + "end": 12721.2, + "probability": 0.932 + }, + { + "start": 12721.84, + "end": 12724.2, + "probability": 0.9756 + }, + { + "start": 12725.48, + "end": 12727.88, + "probability": 0.6693 + }, + { + "start": 12728.82, + "end": 12729.86, + "probability": 0.9766 + }, + { + "start": 12730.48, + "end": 12731.18, + "probability": 0.8042 + }, + { + "start": 12732.36, + "end": 12733.77, + "probability": 0.716 + }, + { + "start": 12735.18, + "end": 12737.44, + "probability": 0.9868 + }, + { + "start": 12737.44, + "end": 12741.18, + "probability": 0.9819 + }, + { + "start": 12741.94, + "end": 12744.7, + "probability": 0.9958 + }, + { + "start": 12744.76, + "end": 12747.92, + "probability": 0.7967 + }, + { + "start": 12748.4, + "end": 12749.04, + "probability": 0.8109 + }, + { + "start": 12749.8, + "end": 12754.54, + "probability": 0.9447 + }, + { + "start": 12755.38, + "end": 12756.87, + "probability": 0.9719 + }, + { + "start": 12757.24, + "end": 12758.66, + "probability": 0.9316 + }, + { + "start": 12759.58, + "end": 12760.0, + "probability": 0.7539 + }, + { + "start": 12760.12, + "end": 12760.76, + "probability": 0.6827 + }, + { + "start": 12761.26, + "end": 12764.74, + "probability": 0.6615 + }, + { + "start": 12766.06, + "end": 12769.7, + "probability": 0.9758 + }, + { + "start": 12770.62, + "end": 12772.58, + "probability": 0.9922 + }, + { + "start": 12772.58, + "end": 12774.68, + "probability": 0.9753 + }, + { + "start": 12775.62, + "end": 12776.92, + "probability": 0.9141 + }, + { + "start": 12777.32, + "end": 12778.4, + "probability": 0.991 + }, + { + "start": 12780.18, + "end": 12781.71, + "probability": 0.9028 + }, + { + "start": 12782.78, + "end": 12787.0, + "probability": 0.978 + }, + { + "start": 12787.12, + "end": 12787.28, + "probability": 0.9246 + }, + { + "start": 12788.06, + "end": 12789.0, + "probability": 0.7432 + }, + { + "start": 12789.28, + "end": 12791.2, + "probability": 0.955 + }, + { + "start": 12792.04, + "end": 12796.64, + "probability": 0.9769 + }, + { + "start": 12796.94, + "end": 12797.96, + "probability": 0.9641 + }, + { + "start": 12798.38, + "end": 12802.0, + "probability": 0.9924 + }, + { + "start": 12802.0, + "end": 12805.26, + "probability": 0.999 + }, + { + "start": 12805.94, + "end": 12809.7, + "probability": 0.9773 + }, + { + "start": 12810.24, + "end": 12813.32, + "probability": 0.9836 + }, + { + "start": 12814.18, + "end": 12817.54, + "probability": 0.9946 + }, + { + "start": 12818.56, + "end": 12823.36, + "probability": 0.9677 + }, + { + "start": 12824.36, + "end": 12826.46, + "probability": 0.9443 + }, + { + "start": 12827.94, + "end": 12828.46, + "probability": 0.7868 + }, + { + "start": 12828.56, + "end": 12830.06, + "probability": 0.8706 + }, + { + "start": 12830.12, + "end": 12830.62, + "probability": 0.8043 + }, + { + "start": 12830.74, + "end": 12831.1, + "probability": 0.7424 + }, + { + "start": 12831.1, + "end": 12832.18, + "probability": 0.262 + }, + { + "start": 12833.64, + "end": 12834.94, + "probability": 0.971 + }, + { + "start": 12834.98, + "end": 12836.62, + "probability": 0.6924 + }, + { + "start": 12836.7, + "end": 12839.8, + "probability": 0.8524 + }, + { + "start": 12840.0, + "end": 12841.18, + "probability": 0.916 + }, + { + "start": 12841.34, + "end": 12842.2, + "probability": 0.7283 + }, + { + "start": 12842.26, + "end": 12842.94, + "probability": 0.7292 + }, + { + "start": 12842.96, + "end": 12844.32, + "probability": 0.9233 + }, + { + "start": 12844.96, + "end": 12849.78, + "probability": 0.8057 + }, + { + "start": 12849.78, + "end": 12854.68, + "probability": 0.9883 + }, + { + "start": 12855.74, + "end": 12858.0, + "probability": 0.5166 + }, + { + "start": 12858.62, + "end": 12860.8, + "probability": 0.8905 + }, + { + "start": 12861.16, + "end": 12861.84, + "probability": 0.0059 + }, + { + "start": 12862.36, + "end": 12862.42, + "probability": 0.877 + }, + { + "start": 12862.48, + "end": 12863.74, + "probability": 0.7061 + }, + { + "start": 12864.5, + "end": 12865.0, + "probability": 0.7661 + }, + { + "start": 12868.0, + "end": 12868.1, + "probability": 0.0334 + }, + { + "start": 12868.1, + "end": 12868.48, + "probability": 0.4739 + }, + { + "start": 12868.96, + "end": 12869.38, + "probability": 0.5781 + }, + { + "start": 12869.92, + "end": 12871.16, + "probability": 0.5478 + }, + { + "start": 12871.98, + "end": 12872.6, + "probability": 0.5203 + }, + { + "start": 12872.76, + "end": 12873.25, + "probability": 0.5005 + }, + { + "start": 12873.38, + "end": 12874.7, + "probability": 0.4522 + }, + { + "start": 12874.7, + "end": 12874.84, + "probability": 0.2299 + }, + { + "start": 12875.14, + "end": 12875.72, + "probability": 0.4744 + }, + { + "start": 12875.96, + "end": 12876.82, + "probability": 0.5176 + }, + { + "start": 12880.05, + "end": 12880.84, + "probability": 0.4519 + }, + { + "start": 12880.84, + "end": 12880.84, + "probability": 0.0291 + }, + { + "start": 12880.84, + "end": 12881.7, + "probability": 0.4221 + }, + { + "start": 12882.8, + "end": 12882.8, + "probability": 0.0154 + }, + { + "start": 12882.8, + "end": 12883.48, + "probability": 0.6323 + }, + { + "start": 12883.58, + "end": 12885.3, + "probability": 0.6989 + }, + { + "start": 12886.32, + "end": 12886.74, + "probability": 0.4923 + }, + { + "start": 12886.82, + "end": 12887.72, + "probability": 0.7598 + }, + { + "start": 12888.14, + "end": 12888.56, + "probability": 0.0855 + }, + { + "start": 12888.6, + "end": 12891.44, + "probability": 0.5714 + }, + { + "start": 12891.72, + "end": 12894.28, + "probability": 0.9867 + }, + { + "start": 12894.78, + "end": 12897.8, + "probability": 0.7373 + }, + { + "start": 12898.02, + "end": 12899.93, + "probability": 0.926 + }, + { + "start": 12900.4, + "end": 12902.75, + "probability": 0.5249 + }, + { + "start": 12904.64, + "end": 12906.3, + "probability": 0.9023 + }, + { + "start": 12906.8, + "end": 12910.58, + "probability": 0.8727 + }, + { + "start": 12911.12, + "end": 12911.68, + "probability": 0.9132 + }, + { + "start": 12911.96, + "end": 12914.54, + "probability": 0.7996 + }, + { + "start": 12915.62, + "end": 12919.26, + "probability": 0.9482 + }, + { + "start": 12919.82, + "end": 12923.18, + "probability": 0.9785 + }, + { + "start": 12923.82, + "end": 12926.38, + "probability": 0.8918 + }, + { + "start": 12926.66, + "end": 12929.2, + "probability": 0.8508 + }, + { + "start": 12929.46, + "end": 12934.3, + "probability": 0.9023 + }, + { + "start": 12935.48, + "end": 12937.1, + "probability": 0.6279 + }, + { + "start": 12937.46, + "end": 12937.82, + "probability": 0.0178 + }, + { + "start": 12937.82, + "end": 12937.82, + "probability": 0.4959 + }, + { + "start": 12937.94, + "end": 12938.48, + "probability": 0.7457 + }, + { + "start": 12938.48, + "end": 12938.54, + "probability": 0.0553 + }, + { + "start": 12938.54, + "end": 12941.22, + "probability": 0.8504 + }, + { + "start": 12946.36, + "end": 12949.26, + "probability": 0.8955 + }, + { + "start": 12949.82, + "end": 12951.78, + "probability": 0.9722 + }, + { + "start": 12961.92, + "end": 12966.42, + "probability": 0.4572 + }, + { + "start": 12968.32, + "end": 12973.92, + "probability": 0.9548 + }, + { + "start": 12974.66, + "end": 12982.44, + "probability": 0.894 + }, + { + "start": 12982.46, + "end": 12982.46, + "probability": 0.0015 + }, + { + "start": 12982.98, + "end": 12985.52, + "probability": 0.6211 + }, + { + "start": 12986.68, + "end": 12990.22, + "probability": 0.8459 + }, + { + "start": 12990.9, + "end": 12998.76, + "probability": 0.9868 + }, + { + "start": 12998.96, + "end": 12999.32, + "probability": 0.7884 + }, + { + "start": 13000.42, + "end": 13002.22, + "probability": 0.6967 + }, + { + "start": 13003.92, + "end": 13005.86, + "probability": 0.6367 + }, + { + "start": 13006.58, + "end": 13007.88, + "probability": 0.8828 + }, + { + "start": 13008.0, + "end": 13012.38, + "probability": 0.6404 + }, + { + "start": 13012.94, + "end": 13015.88, + "probability": 0.8545 + }, + { + "start": 13017.14, + "end": 13021.18, + "probability": 0.9829 + }, + { + "start": 13021.68, + "end": 13024.56, + "probability": 0.9889 + }, + { + "start": 13025.34, + "end": 13025.66, + "probability": 0.4369 + }, + { + "start": 13025.82, + "end": 13026.32, + "probability": 0.4587 + }, + { + "start": 13026.5, + "end": 13029.54, + "probability": 0.9146 + }, + { + "start": 13030.32, + "end": 13033.16, + "probability": 0.9614 + }, + { + "start": 13033.94, + "end": 13036.64, + "probability": 0.9964 + }, + { + "start": 13036.95, + "end": 13040.62, + "probability": 0.98 + }, + { + "start": 13042.76, + "end": 13045.14, + "probability": 0.864 + }, + { + "start": 13045.22, + "end": 13048.02, + "probability": 0.928 + }, + { + "start": 13048.88, + "end": 13050.28, + "probability": 0.9062 + }, + { + "start": 13050.98, + "end": 13054.46, + "probability": 0.9331 + }, + { + "start": 13054.46, + "end": 13058.78, + "probability": 0.8505 + }, + { + "start": 13059.9, + "end": 13062.52, + "probability": 0.8887 + }, + { + "start": 13063.38, + "end": 13067.0, + "probability": 0.9838 + }, + { + "start": 13067.54, + "end": 13073.06, + "probability": 0.9701 + }, + { + "start": 13073.98, + "end": 13076.22, + "probability": 0.9969 + }, + { + "start": 13076.75, + "end": 13077.1, + "probability": 0.9722 + }, + { + "start": 13077.1, + "end": 13082.08, + "probability": 0.9352 + }, + { + "start": 13082.66, + "end": 13082.96, + "probability": 0.1367 + }, + { + "start": 13083.12, + "end": 13083.42, + "probability": 0.8362 + }, + { + "start": 13084.36, + "end": 13087.48, + "probability": 0.9973 + }, + { + "start": 13087.48, + "end": 13091.24, + "probability": 0.978 + }, + { + "start": 13091.86, + "end": 13096.22, + "probability": 0.9538 + }, + { + "start": 13096.84, + "end": 13099.28, + "probability": 0.9588 + }, + { + "start": 13099.68, + "end": 13104.18, + "probability": 0.9668 + }, + { + "start": 13104.4, + "end": 13105.24, + "probability": 0.7943 + }, + { + "start": 13105.74, + "end": 13108.9, + "probability": 0.9093 + }, + { + "start": 13109.5, + "end": 13110.76, + "probability": 0.9285 + }, + { + "start": 13111.62, + "end": 13113.46, + "probability": 0.5309 + }, + { + "start": 13113.6, + "end": 13116.22, + "probability": 0.9951 + }, + { + "start": 13116.72, + "end": 13117.94, + "probability": 0.9075 + }, + { + "start": 13118.5, + "end": 13123.76, + "probability": 0.9857 + }, + { + "start": 13124.46, + "end": 13125.2, + "probability": 0.7344 + }, + { + "start": 13125.58, + "end": 13127.74, + "probability": 0.9504 + }, + { + "start": 13128.3, + "end": 13129.18, + "probability": 0.998 + }, + { + "start": 13129.98, + "end": 13132.66, + "probability": 0.9761 + }, + { + "start": 13132.76, + "end": 13132.98, + "probability": 0.6809 + }, + { + "start": 13133.36, + "end": 13134.44, + "probability": 0.8031 + }, + { + "start": 13134.96, + "end": 13136.82, + "probability": 0.9736 + }, + { + "start": 13137.0, + "end": 13138.54, + "probability": 0.9512 + }, + { + "start": 13139.5, + "end": 13142.26, + "probability": 0.8322 + }, + { + "start": 13158.16, + "end": 13161.5, + "probability": 0.6776 + }, + { + "start": 13162.48, + "end": 13165.58, + "probability": 0.9836 + }, + { + "start": 13165.58, + "end": 13170.84, + "probability": 0.8928 + }, + { + "start": 13171.06, + "end": 13176.32, + "probability": 0.9926 + }, + { + "start": 13177.14, + "end": 13177.88, + "probability": 0.8958 + }, + { + "start": 13178.66, + "end": 13179.11, + "probability": 0.314 + }, + { + "start": 13180.32, + "end": 13185.98, + "probability": 0.974 + }, + { + "start": 13186.28, + "end": 13187.82, + "probability": 0.7671 + }, + { + "start": 13188.41, + "end": 13191.38, + "probability": 0.9888 + }, + { + "start": 13191.5, + "end": 13193.12, + "probability": 0.9941 + }, + { + "start": 13193.82, + "end": 13195.22, + "probability": 0.9738 + }, + { + "start": 13195.42, + "end": 13196.6, + "probability": 0.7751 + }, + { + "start": 13196.66, + "end": 13199.58, + "probability": 0.9861 + }, + { + "start": 13200.08, + "end": 13201.06, + "probability": 0.9097 + }, + { + "start": 13201.52, + "end": 13205.8, + "probability": 0.9407 + }, + { + "start": 13206.02, + "end": 13207.9, + "probability": 0.8607 + }, + { + "start": 13208.0, + "end": 13209.99, + "probability": 0.8895 + }, + { + "start": 13210.36, + "end": 13214.7, + "probability": 0.9213 + }, + { + "start": 13215.38, + "end": 13216.5, + "probability": 0.7509 + }, + { + "start": 13216.9, + "end": 13217.5, + "probability": 0.7488 + }, + { + "start": 13217.58, + "end": 13219.46, + "probability": 0.9823 + }, + { + "start": 13219.9, + "end": 13225.02, + "probability": 0.9771 + }, + { + "start": 13225.56, + "end": 13227.56, + "probability": 0.8992 + }, + { + "start": 13227.9, + "end": 13229.46, + "probability": 0.98 + }, + { + "start": 13229.9, + "end": 13233.68, + "probability": 0.9568 + }, + { + "start": 13233.96, + "end": 13237.42, + "probability": 0.7668 + }, + { + "start": 13237.6, + "end": 13241.02, + "probability": 0.8027 + }, + { + "start": 13241.06, + "end": 13244.3, + "probability": 0.9858 + }, + { + "start": 13244.3, + "end": 13248.2, + "probability": 0.8584 + }, + { + "start": 13248.6, + "end": 13253.1, + "probability": 0.9985 + }, + { + "start": 13253.1, + "end": 13256.34, + "probability": 0.9967 + }, + { + "start": 13256.86, + "end": 13262.9, + "probability": 0.9668 + }, + { + "start": 13263.86, + "end": 13266.66, + "probability": 0.9958 + }, + { + "start": 13267.2, + "end": 13269.04, + "probability": 0.9847 + }, + { + "start": 13269.5, + "end": 13274.14, + "probability": 0.996 + }, + { + "start": 13274.5, + "end": 13274.98, + "probability": 0.7601 + }, + { + "start": 13275.12, + "end": 13276.54, + "probability": 0.9302 + }, + { + "start": 13277.4, + "end": 13280.86, + "probability": 0.9889 + }, + { + "start": 13281.06, + "end": 13281.85, + "probability": 0.5604 + }, + { + "start": 13282.34, + "end": 13284.26, + "probability": 0.9849 + }, + { + "start": 13284.6, + "end": 13287.36, + "probability": 0.9373 + }, + { + "start": 13287.98, + "end": 13294.3, + "probability": 0.9602 + }, + { + "start": 13294.68, + "end": 13296.22, + "probability": 0.9268 + }, + { + "start": 13296.32, + "end": 13298.58, + "probability": 0.9926 + }, + { + "start": 13298.58, + "end": 13301.2, + "probability": 0.8628 + }, + { + "start": 13301.3, + "end": 13301.98, + "probability": 0.6074 + }, + { + "start": 13302.18, + "end": 13303.62, + "probability": 0.9177 + }, + { + "start": 13304.72, + "end": 13307.24, + "probability": 0.9979 + }, + { + "start": 13307.94, + "end": 13310.74, + "probability": 0.7235 + }, + { + "start": 13310.86, + "end": 13314.18, + "probability": 0.979 + }, + { + "start": 13314.82, + "end": 13317.32, + "probability": 0.7866 + }, + { + "start": 13317.94, + "end": 13321.88, + "probability": 0.946 + }, + { + "start": 13321.98, + "end": 13324.24, + "probability": 0.7646 + }, + { + "start": 13325.16, + "end": 13326.78, + "probability": 0.9421 + }, + { + "start": 13327.02, + "end": 13327.88, + "probability": 0.5054 + }, + { + "start": 13328.06, + "end": 13329.32, + "probability": 0.7452 + }, + { + "start": 13329.64, + "end": 13333.96, + "probability": 0.9308 + }, + { + "start": 13334.92, + "end": 13335.62, + "probability": 0.5168 + }, + { + "start": 13335.62, + "end": 13340.48, + "probability": 0.746 + }, + { + "start": 13340.88, + "end": 13342.8, + "probability": 0.919 + }, + { + "start": 13343.0, + "end": 13343.68, + "probability": 0.1555 + }, + { + "start": 13344.34, + "end": 13345.58, + "probability": 0.7194 + }, + { + "start": 13345.62, + "end": 13347.48, + "probability": 0.7793 + }, + { + "start": 13347.86, + "end": 13349.42, + "probability": 0.7673 + }, + { + "start": 13349.48, + "end": 13355.96, + "probability": 0.9911 + }, + { + "start": 13357.4, + "end": 13363.84, + "probability": 0.9823 + }, + { + "start": 13364.22, + "end": 13369.4, + "probability": 0.9956 + }, + { + "start": 13369.4, + "end": 13375.66, + "probability": 0.9148 + }, + { + "start": 13375.72, + "end": 13378.16, + "probability": 0.8997 + }, + { + "start": 13378.46, + "end": 13381.54, + "probability": 0.9907 + }, + { + "start": 13381.84, + "end": 13382.58, + "probability": 0.7386 + }, + { + "start": 13382.58, + "end": 13386.32, + "probability": 0.9873 + }, + { + "start": 13386.44, + "end": 13387.02, + "probability": 0.9636 + }, + { + "start": 13387.8, + "end": 13389.46, + "probability": 0.261 + }, + { + "start": 13391.02, + "end": 13396.4, + "probability": 0.9785 + }, + { + "start": 13396.9, + "end": 13397.54, + "probability": 0.5865 + }, + { + "start": 13397.72, + "end": 13400.54, + "probability": 0.9916 + }, + { + "start": 13401.7, + "end": 13405.68, + "probability": 0.7988 + }, + { + "start": 13406.06, + "end": 13406.9, + "probability": 0.9395 + }, + { + "start": 13407.14, + "end": 13407.66, + "probability": 0.8613 + }, + { + "start": 13407.84, + "end": 13409.54, + "probability": 0.9914 + }, + { + "start": 13410.06, + "end": 13413.46, + "probability": 0.9778 + }, + { + "start": 13414.58, + "end": 13416.8, + "probability": 0.6686 + }, + { + "start": 13417.58, + "end": 13419.88, + "probability": 0.7312 + }, + { + "start": 13420.86, + "end": 13424.12, + "probability": 0.9929 + }, + { + "start": 13433.04, + "end": 13435.48, + "probability": 0.9744 + }, + { + "start": 13435.86, + "end": 13436.8, + "probability": 0.9396 + }, + { + "start": 13437.56, + "end": 13442.12, + "probability": 0.1066 + }, + { + "start": 13444.0, + "end": 13444.84, + "probability": 0.48 + }, + { + "start": 13446.42, + "end": 13448.88, + "probability": 0.1158 + }, + { + "start": 13448.88, + "end": 13449.78, + "probability": 0.1115 + }, + { + "start": 13450.38, + "end": 13450.66, + "probability": 0.1046 + }, + { + "start": 13450.84, + "end": 13454.74, + "probability": 0.2262 + }, + { + "start": 13454.86, + "end": 13455.98, + "probability": 0.0831 + }, + { + "start": 13456.14, + "end": 13459.16, + "probability": 0.8055 + }, + { + "start": 13459.54, + "end": 13460.68, + "probability": 0.6845 + }, + { + "start": 13460.78, + "end": 13463.65, + "probability": 0.7507 + }, + { + "start": 13464.48, + "end": 13466.56, + "probability": 0.7992 + }, + { + "start": 13466.6, + "end": 13467.74, + "probability": 0.8584 + }, + { + "start": 13467.86, + "end": 13469.6, + "probability": 0.9965 + }, + { + "start": 13471.2, + "end": 13475.16, + "probability": 0.8883 + }, + { + "start": 13476.58, + "end": 13479.38, + "probability": 0.6938 + }, + { + "start": 13480.94, + "end": 13482.3, + "probability": 0.6555 + }, + { + "start": 13483.0, + "end": 13484.66, + "probability": 0.9795 + }, + { + "start": 13484.86, + "end": 13488.52, + "probability": 0.9729 + }, + { + "start": 13488.52, + "end": 13491.58, + "probability": 0.8736 + }, + { + "start": 13492.12, + "end": 13494.73, + "probability": 0.984 + }, + { + "start": 13495.52, + "end": 13497.54, + "probability": 0.9558 + }, + { + "start": 13498.02, + "end": 13498.96, + "probability": 0.7461 + }, + { + "start": 13499.42, + "end": 13503.32, + "probability": 0.9717 + }, + { + "start": 13503.32, + "end": 13506.88, + "probability": 0.9931 + }, + { + "start": 13508.02, + "end": 13509.1, + "probability": 0.6648 + }, + { + "start": 13509.43, + "end": 13514.39, + "probability": 0.7073 + }, + { + "start": 13514.92, + "end": 13519.12, + "probability": 0.9943 + }, + { + "start": 13519.68, + "end": 13520.9, + "probability": 0.8195 + }, + { + "start": 13521.46, + "end": 13525.0, + "probability": 0.9445 + }, + { + "start": 13525.68, + "end": 13526.82, + "probability": 0.9411 + }, + { + "start": 13527.24, + "end": 13529.38, + "probability": 0.9353 + }, + { + "start": 13530.58, + "end": 13535.58, + "probability": 0.9843 + }, + { + "start": 13536.06, + "end": 13540.94, + "probability": 0.9941 + }, + { + "start": 13541.62, + "end": 13545.46, + "probability": 0.9653 + }, + { + "start": 13546.18, + "end": 13549.12, + "probability": 0.9876 + }, + { + "start": 13550.48, + "end": 13553.72, + "probability": 0.7809 + }, + { + "start": 13555.06, + "end": 13559.68, + "probability": 0.9737 + }, + { + "start": 13559.88, + "end": 13562.3, + "probability": 0.9949 + }, + { + "start": 13562.66, + "end": 13564.22, + "probability": 0.9873 + }, + { + "start": 13565.52, + "end": 13567.9, + "probability": 0.9832 + }, + { + "start": 13568.88, + "end": 13571.74, + "probability": 0.9849 + }, + { + "start": 13572.34, + "end": 13574.86, + "probability": 0.7976 + }, + { + "start": 13575.68, + "end": 13578.04, + "probability": 0.9142 + }, + { + "start": 13578.64, + "end": 13582.88, + "probability": 0.9966 + }, + { + "start": 13583.92, + "end": 13585.34, + "probability": 0.9903 + }, + { + "start": 13586.3, + "end": 13588.24, + "probability": 0.9819 + }, + { + "start": 13590.62, + "end": 13592.98, + "probability": 0.9944 + }, + { + "start": 13592.98, + "end": 13595.84, + "probability": 0.998 + }, + { + "start": 13596.22, + "end": 13598.3, + "probability": 0.9954 + }, + { + "start": 13598.98, + "end": 13599.28, + "probability": 0.578 + }, + { + "start": 13599.42, + "end": 13599.88, + "probability": 0.933 + }, + { + "start": 13599.9, + "end": 13607.34, + "probability": 0.9955 + }, + { + "start": 13608.02, + "end": 13608.02, + "probability": 0.2675 + }, + { + "start": 13608.02, + "end": 13611.84, + "probability": 0.9923 + }, + { + "start": 13612.02, + "end": 13614.06, + "probability": 0.9797 + }, + { + "start": 13614.38, + "end": 13617.72, + "probability": 0.9762 + }, + { + "start": 13617.96, + "end": 13622.2, + "probability": 0.9931 + }, + { + "start": 13623.0, + "end": 13624.06, + "probability": 0.3497 + }, + { + "start": 13625.06, + "end": 13628.74, + "probability": 0.9829 + }, + { + "start": 13629.26, + "end": 13633.02, + "probability": 0.9525 + }, + { + "start": 13633.4, + "end": 13636.36, + "probability": 0.9895 + }, + { + "start": 13636.36, + "end": 13642.16, + "probability": 0.982 + }, + { + "start": 13642.52, + "end": 13646.24, + "probability": 0.9766 + }, + { + "start": 13647.18, + "end": 13652.34, + "probability": 0.9891 + }, + { + "start": 13653.4, + "end": 13657.3, + "probability": 0.984 + }, + { + "start": 13657.6, + "end": 13660.5, + "probability": 0.8283 + }, + { + "start": 13661.18, + "end": 13661.34, + "probability": 0.4515 + }, + { + "start": 13661.48, + "end": 13664.5, + "probability": 0.9946 + }, + { + "start": 13664.84, + "end": 13668.16, + "probability": 0.8861 + }, + { + "start": 13668.38, + "end": 13669.48, + "probability": 0.3672 + }, + { + "start": 13669.9, + "end": 13670.5, + "probability": 0.2586 + }, + { + "start": 13670.56, + "end": 13672.9, + "probability": 0.9953 + }, + { + "start": 13673.36, + "end": 13676.82, + "probability": 0.827 + }, + { + "start": 13677.4, + "end": 13678.08, + "probability": 0.6087 + }, + { + "start": 13678.14, + "end": 13678.48, + "probability": 0.8687 + }, + { + "start": 13678.54, + "end": 13684.06, + "probability": 0.8652 + }, + { + "start": 13684.06, + "end": 13687.64, + "probability": 0.9994 + }, + { + "start": 13687.86, + "end": 13692.78, + "probability": 0.9958 + }, + { + "start": 13694.52, + "end": 13696.24, + "probability": 0.6875 + }, + { + "start": 13696.78, + "end": 13698.44, + "probability": 0.9575 + }, + { + "start": 13698.76, + "end": 13700.44, + "probability": 0.9925 + }, + { + "start": 13700.52, + "end": 13702.02, + "probability": 0.9984 + }, + { + "start": 13702.38, + "end": 13706.56, + "probability": 0.9828 + }, + { + "start": 13706.9, + "end": 13709.6, + "probability": 0.9972 + }, + { + "start": 13709.86, + "end": 13712.94, + "probability": 0.9896 + }, + { + "start": 13713.67, + "end": 13720.26, + "probability": 0.9301 + }, + { + "start": 13721.16, + "end": 13723.28, + "probability": 0.9411 + }, + { + "start": 13724.16, + "end": 13725.88, + "probability": 0.7925 + }, + { + "start": 13726.06, + "end": 13729.04, + "probability": 0.809 + }, + { + "start": 13739.92, + "end": 13741.2, + "probability": 0.39 + }, + { + "start": 13742.84, + "end": 13743.44, + "probability": 0.1404 + }, + { + "start": 13744.12, + "end": 13746.94, + "probability": 0.6717 + }, + { + "start": 13747.74, + "end": 13748.04, + "probability": 0.7045 + }, + { + "start": 13750.32, + "end": 13753.88, + "probability": 0.5037 + }, + { + "start": 13754.52, + "end": 13759.84, + "probability": 0.5656 + }, + { + "start": 13761.52, + "end": 13763.66, + "probability": 0.2478 + }, + { + "start": 13763.72, + "end": 13764.2, + "probability": 0.36 + }, + { + "start": 13765.18, + "end": 13767.08, + "probability": 0.8599 + }, + { + "start": 13767.96, + "end": 13776.72, + "probability": 0.9828 + }, + { + "start": 13778.72, + "end": 13783.94, + "probability": 0.6713 + }, + { + "start": 13785.04, + "end": 13789.16, + "probability": 0.9353 + }, + { + "start": 13790.48, + "end": 13795.3, + "probability": 0.8381 + }, + { + "start": 13795.3, + "end": 13802.86, + "probability": 0.8759 + }, + { + "start": 13803.56, + "end": 13806.8, + "probability": 0.9275 + }, + { + "start": 13807.82, + "end": 13814.3, + "probability": 0.916 + }, + { + "start": 13814.66, + "end": 13815.28, + "probability": 0.7327 + }, + { + "start": 13816.26, + "end": 13821.34, + "probability": 0.833 + }, + { + "start": 13821.58, + "end": 13822.08, + "probability": 0.8007 + }, + { + "start": 13822.24, + "end": 13823.04, + "probability": 0.6327 + }, + { + "start": 13823.22, + "end": 13824.18, + "probability": 0.7639 + }, + { + "start": 13825.31, + "end": 13827.76, + "probability": 0.9652 + }, + { + "start": 13828.86, + "end": 13832.26, + "probability": 0.4788 + }, + { + "start": 13832.3, + "end": 13833.1, + "probability": 0.3884 + }, + { + "start": 13833.64, + "end": 13834.49, + "probability": 0.5328 + }, + { + "start": 13835.52, + "end": 13836.92, + "probability": 0.9371 + }, + { + "start": 13837.98, + "end": 13840.0, + "probability": 0.9846 + }, + { + "start": 13840.98, + "end": 13844.64, + "probability": 0.7102 + }, + { + "start": 13846.76, + "end": 13851.26, + "probability": 0.9723 + }, + { + "start": 13851.64, + "end": 13863.5, + "probability": 0.9855 + }, + { + "start": 13864.82, + "end": 13867.44, + "probability": 0.999 + }, + { + "start": 13867.96, + "end": 13869.16, + "probability": 0.813 + }, + { + "start": 13869.46, + "end": 13877.38, + "probability": 0.9731 + }, + { + "start": 13878.24, + "end": 13879.08, + "probability": 0.9993 + }, + { + "start": 13880.92, + "end": 13881.72, + "probability": 0.374 + }, + { + "start": 13882.48, + "end": 13885.48, + "probability": 0.782 + }, + { + "start": 13886.2, + "end": 13889.7, + "probability": 0.9036 + }, + { + "start": 13890.44, + "end": 13895.48, + "probability": 0.7347 + }, + { + "start": 13896.24, + "end": 13899.42, + "probability": 0.0782 + }, + { + "start": 13899.88, + "end": 13900.84, + "probability": 0.4399 + }, + { + "start": 13901.18, + "end": 13901.62, + "probability": 0.0271 + }, + { + "start": 13903.44, + "end": 13904.48, + "probability": 0.2493 + }, + { + "start": 13904.48, + "end": 13908.46, + "probability": 0.6052 + }, + { + "start": 13910.66, + "end": 13912.9, + "probability": 0.0607 + }, + { + "start": 13914.3, + "end": 13914.5, + "probability": 0.0439 + }, + { + "start": 13914.5, + "end": 13918.98, + "probability": 0.6812 + }, + { + "start": 13919.36, + "end": 13923.36, + "probability": 0.5177 + }, + { + "start": 13923.44, + "end": 13923.58, + "probability": 0.3857 + }, + { + "start": 13924.02, + "end": 13925.44, + "probability": 0.6002 + }, + { + "start": 13925.62, + "end": 13928.87, + "probability": 0.8915 + }, + { + "start": 13929.5, + "end": 13933.48, + "probability": 0.7559 + }, + { + "start": 13933.48, + "end": 13939.22, + "probability": 0.7469 + }, + { + "start": 13939.58, + "end": 13940.07, + "probability": 0.7963 + }, + { + "start": 13940.48, + "end": 13941.9, + "probability": 0.6735 + }, + { + "start": 13942.32, + "end": 13943.78, + "probability": 0.7808 + }, + { + "start": 13943.98, + "end": 13946.28, + "probability": 0.4152 + }, + { + "start": 13946.36, + "end": 13947.82, + "probability": 0.9241 + }, + { + "start": 13948.04, + "end": 13952.26, + "probability": 0.5161 + }, + { + "start": 13952.5, + "end": 13955.16, + "probability": 0.7988 + }, + { + "start": 13955.3, + "end": 13962.56, + "probability": 0.5182 + }, + { + "start": 13963.04, + "end": 13964.1, + "probability": 0.7005 + }, + { + "start": 13964.1, + "end": 13972.56, + "probability": 0.9312 + }, + { + "start": 13972.84, + "end": 13975.32, + "probability": 0.5772 + }, + { + "start": 13975.4, + "end": 13978.48, + "probability": 0.7253 + }, + { + "start": 13978.62, + "end": 13980.36, + "probability": 0.7091 + }, + { + "start": 13981.16, + "end": 13986.6, + "probability": 0.9372 + }, + { + "start": 13986.6, + "end": 13991.86, + "probability": 0.6125 + }, + { + "start": 13991.92, + "end": 13992.22, + "probability": 0.405 + }, + { + "start": 13995.12, + "end": 13997.68, + "probability": 0.7845 + }, + { + "start": 13998.06, + "end": 14000.54, + "probability": 0.9595 + }, + { + "start": 14001.92, + "end": 14003.92, + "probability": 0.8239 + }, + { + "start": 14005.66, + "end": 14008.78, + "probability": 0.9641 + }, + { + "start": 14009.06, + "end": 14011.8, + "probability": 0.8512 + }, + { + "start": 14013.62, + "end": 14014.24, + "probability": 0.8162 + }, + { + "start": 14015.16, + "end": 14018.12, + "probability": 0.8897 + }, + { + "start": 14018.6, + "end": 14022.3, + "probability": 0.9587 + }, + { + "start": 14022.34, + "end": 14023.8, + "probability": 0.7864 + }, + { + "start": 14024.48, + "end": 14025.78, + "probability": 0.9764 + }, + { + "start": 14035.92, + "end": 14036.6, + "probability": 0.7168 + }, + { + "start": 14037.8, + "end": 14038.06, + "probability": 0.5796 + }, + { + "start": 14043.5, + "end": 14045.34, + "probability": 0.6626 + }, + { + "start": 14046.82, + "end": 14049.64, + "probability": 0.658 + }, + { + "start": 14056.52, + "end": 14059.26, + "probability": 0.8411 + }, + { + "start": 14059.26, + "end": 14064.0, + "probability": 0.991 + }, + { + "start": 14064.7, + "end": 14066.72, + "probability": 0.9769 + }, + { + "start": 14067.86, + "end": 14071.54, + "probability": 0.9921 + }, + { + "start": 14071.62, + "end": 14075.56, + "probability": 0.9976 + }, + { + "start": 14075.56, + "end": 14078.91, + "probability": 0.9868 + }, + { + "start": 14080.12, + "end": 14081.02, + "probability": 0.7831 + }, + { + "start": 14082.42, + "end": 14085.22, + "probability": 0.9922 + }, + { + "start": 14085.3, + "end": 14090.24, + "probability": 0.9313 + }, + { + "start": 14091.14, + "end": 14093.08, + "probability": 0.9043 + }, + { + "start": 14093.2, + "end": 14097.44, + "probability": 0.8433 + }, + { + "start": 14098.4, + "end": 14104.02, + "probability": 0.9824 + }, + { + "start": 14104.7, + "end": 14106.78, + "probability": 0.8348 + }, + { + "start": 14107.32, + "end": 14107.82, + "probability": 0.7974 + }, + { + "start": 14107.9, + "end": 14111.3, + "probability": 0.9778 + }, + { + "start": 14111.32, + "end": 14115.42, + "probability": 0.998 + }, + { + "start": 14116.2, + "end": 14117.1, + "probability": 0.7909 + }, + { + "start": 14117.52, + "end": 14118.14, + "probability": 0.7141 + }, + { + "start": 14118.3, + "end": 14122.62, + "probability": 0.9945 + }, + { + "start": 14123.26, + "end": 14126.06, + "probability": 0.882 + }, + { + "start": 14126.12, + "end": 14127.62, + "probability": 0.9397 + }, + { + "start": 14128.18, + "end": 14130.36, + "probability": 0.9946 + }, + { + "start": 14130.56, + "end": 14135.28, + "probability": 0.9907 + }, + { + "start": 14135.46, + "end": 14139.44, + "probability": 0.9837 + }, + { + "start": 14140.48, + "end": 14143.58, + "probability": 0.9888 + }, + { + "start": 14143.58, + "end": 14146.98, + "probability": 0.8558 + }, + { + "start": 14147.6, + "end": 14148.2, + "probability": 0.6691 + }, + { + "start": 14148.84, + "end": 14151.66, + "probability": 0.8559 + }, + { + "start": 14152.32, + "end": 14155.98, + "probability": 0.9834 + }, + { + "start": 14155.98, + "end": 14160.72, + "probability": 0.999 + }, + { + "start": 14160.78, + "end": 14163.08, + "probability": 0.9562 + }, + { + "start": 14163.58, + "end": 14166.28, + "probability": 0.9969 + }, + { + "start": 14167.9, + "end": 14168.28, + "probability": 0.054 + }, + { + "start": 14169.7, + "end": 14169.78, + "probability": 0.1521 + }, + { + "start": 14172.26, + "end": 14175.44, + "probability": 0.0498 + }, + { + "start": 14176.62, + "end": 14178.58, + "probability": 0.0365 + }, + { + "start": 14180.14, + "end": 14181.12, + "probability": 0.1947 + }, + { + "start": 14181.12, + "end": 14181.33, + "probability": 0.3329 + }, + { + "start": 14182.08, + "end": 14183.04, + "probability": 0.6473 + }, + { + "start": 14183.2, + "end": 14186.52, + "probability": 0.9883 + }, + { + "start": 14187.7, + "end": 14189.52, + "probability": 0.7029 + }, + { + "start": 14190.24, + "end": 14192.42, + "probability": 0.0544 + }, + { + "start": 14192.56, + "end": 14193.84, + "probability": 0.0579 + }, + { + "start": 14194.98, + "end": 14198.4, + "probability": 0.9771 + }, + { + "start": 14199.38, + "end": 14201.9, + "probability": 0.9185 + }, + { + "start": 14202.02, + "end": 14206.66, + "probability": 0.9971 + }, + { + "start": 14206.66, + "end": 14209.96, + "probability": 0.9976 + }, + { + "start": 14210.06, + "end": 14210.6, + "probability": 0.2201 + }, + { + "start": 14210.8, + "end": 14213.24, + "probability": 0.8706 + }, + { + "start": 14214.96, + "end": 14214.96, + "probability": 0.2317 + }, + { + "start": 14214.96, + "end": 14218.18, + "probability": 0.8371 + }, + { + "start": 14218.34, + "end": 14221.7, + "probability": 0.9995 + }, + { + "start": 14221.82, + "end": 14226.2, + "probability": 0.9985 + }, + { + "start": 14226.66, + "end": 14229.12, + "probability": 0.7216 + }, + { + "start": 14229.12, + "end": 14230.94, + "probability": 0.3404 + }, + { + "start": 14230.98, + "end": 14232.42, + "probability": 0.1119 + }, + { + "start": 14233.54, + "end": 14233.92, + "probability": 0.0376 + }, + { + "start": 14233.92, + "end": 14234.34, + "probability": 0.2293 + }, + { + "start": 14234.88, + "end": 14238.3, + "probability": 0.4107 + }, + { + "start": 14238.68, + "end": 14240.34, + "probability": 0.2969 + }, + { + "start": 14240.34, + "end": 14240.78, + "probability": 0.1721 + }, + { + "start": 14240.78, + "end": 14244.32, + "probability": 0.9061 + }, + { + "start": 14244.32, + "end": 14250.68, + "probability": 0.9061 + }, + { + "start": 14251.34, + "end": 14252.11, + "probability": 0.9818 + }, + { + "start": 14252.92, + "end": 14254.2, + "probability": 0.9774 + }, + { + "start": 14254.88, + "end": 14261.3, + "probability": 0.9975 + }, + { + "start": 14262.04, + "end": 14265.14, + "probability": 0.9954 + }, + { + "start": 14265.2, + "end": 14266.1, + "probability": 0.0804 + }, + { + "start": 14266.1, + "end": 14269.42, + "probability": 0.8998 + }, + { + "start": 14269.86, + "end": 14274.4, + "probability": 0.9958 + }, + { + "start": 14274.64, + "end": 14278.88, + "probability": 0.9946 + }, + { + "start": 14279.5, + "end": 14280.56, + "probability": 0.0187 + }, + { + "start": 14280.56, + "end": 14285.38, + "probability": 0.6442 + }, + { + "start": 14285.44, + "end": 14287.46, + "probability": 0.0511 + }, + { + "start": 14287.96, + "end": 14289.0, + "probability": 0.8066 + }, + { + "start": 14289.36, + "end": 14292.62, + "probability": 0.5021 + }, + { + "start": 14292.76, + "end": 14294.82, + "probability": 0.7012 + }, + { + "start": 14295.52, + "end": 14296.92, + "probability": 0.0386 + }, + { + "start": 14297.24, + "end": 14302.14, + "probability": 0.0512 + }, + { + "start": 14307.2, + "end": 14310.56, + "probability": 0.0482 + }, + { + "start": 14310.56, + "end": 14310.56, + "probability": 0.0596 + }, + { + "start": 14310.56, + "end": 14310.56, + "probability": 0.0337 + }, + { + "start": 14310.56, + "end": 14310.98, + "probability": 0.0748 + }, + { + "start": 14311.14, + "end": 14314.14, + "probability": 0.3065 + }, + { + "start": 14314.14, + "end": 14317.24, + "probability": 0.986 + }, + { + "start": 14317.72, + "end": 14320.08, + "probability": 0.9806 + }, + { + "start": 14320.38, + "end": 14320.73, + "probability": 0.1961 + }, + { + "start": 14322.12, + "end": 14323.58, + "probability": 0.8499 + }, + { + "start": 14324.24, + "end": 14328.42, + "probability": 0.9847 + }, + { + "start": 14328.42, + "end": 14331.78, + "probability": 0.9719 + }, + { + "start": 14332.46, + "end": 14332.48, + "probability": 0.0787 + }, + { + "start": 14332.48, + "end": 14335.64, + "probability": 0.7822 + }, + { + "start": 14336.2, + "end": 14338.62, + "probability": 0.5387 + }, + { + "start": 14338.62, + "end": 14341.22, + "probability": 0.2374 + }, + { + "start": 14341.42, + "end": 14342.58, + "probability": 0.5962 + }, + { + "start": 14342.6, + "end": 14343.86, + "probability": 0.1226 + }, + { + "start": 14343.86, + "end": 14345.42, + "probability": 0.2481 + }, + { + "start": 14345.74, + "end": 14348.46, + "probability": 0.2756 + }, + { + "start": 14348.62, + "end": 14349.86, + "probability": 0.1081 + }, + { + "start": 14349.92, + "end": 14351.13, + "probability": 0.1735 + }, + { + "start": 14352.2, + "end": 14353.84, + "probability": 0.2108 + }, + { + "start": 14355.22, + "end": 14355.68, + "probability": 0.2188 + }, + { + "start": 14356.1, + "end": 14359.78, + "probability": 0.1783 + }, + { + "start": 14361.04, + "end": 14362.34, + "probability": 0.0235 + }, + { + "start": 14362.66, + "end": 14364.3, + "probability": 0.1163 + }, + { + "start": 14364.3, + "end": 14365.74, + "probability": 0.1009 + }, + { + "start": 14366.04, + "end": 14368.48, + "probability": 0.0378 + }, + { + "start": 14370.06, + "end": 14371.48, + "probability": 0.1426 + }, + { + "start": 14372.0, + "end": 14373.42, + "probability": 0.0096 + }, + { + "start": 14373.42, + "end": 14375.08, + "probability": 0.0722 + }, + { + "start": 14375.24, + "end": 14378.68, + "probability": 0.2986 + }, + { + "start": 14378.68, + "end": 14379.5, + "probability": 0.0352 + }, + { + "start": 14379.5, + "end": 14380.1, + "probability": 0.1309 + }, + { + "start": 14380.1, + "end": 14382.12, + "probability": 0.0523 + }, + { + "start": 14382.42, + "end": 14382.94, + "probability": 0.644 + }, + { + "start": 14382.94, + "end": 14382.98, + "probability": 0.083 + }, + { + "start": 14383.0, + "end": 14383.0, + "probability": 0.0 + }, + { + "start": 14383.0, + "end": 14383.0, + "probability": 0.0 + }, + { + "start": 14383.0, + "end": 14383.0, + "probability": 0.0 + }, + { + "start": 14383.0, + "end": 14383.0, + "probability": 0.0 + }, + { + "start": 14383.58, + "end": 14383.8, + "probability": 0.118 + }, + { + "start": 14383.88, + "end": 14384.36, + "probability": 0.4747 + }, + { + "start": 14384.8, + "end": 14386.14, + "probability": 0.7835 + }, + { + "start": 14386.22, + "end": 14386.96, + "probability": 0.4192 + }, + { + "start": 14387.18, + "end": 14389.08, + "probability": 0.4274 + }, + { + "start": 14389.08, + "end": 14389.72, + "probability": 0.1047 + }, + { + "start": 14389.82, + "end": 14389.9, + "probability": 0.1171 + }, + { + "start": 14389.9, + "end": 14392.14, + "probability": 0.1697 + }, + { + "start": 14392.3, + "end": 14394.07, + "probability": 0.0419 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.0, + "end": 14503.0, + "probability": 0.0 + }, + { + "start": 14503.9, + "end": 14505.14, + "probability": 0.0913 + }, + { + "start": 14505.66, + "end": 14507.4, + "probability": 0.9839 + }, + { + "start": 14508.06, + "end": 14508.22, + "probability": 0.0082 + }, + { + "start": 14508.22, + "end": 14509.06, + "probability": 0.4565 + }, + { + "start": 14509.4, + "end": 14510.62, + "probability": 0.2689 + }, + { + "start": 14511.46, + "end": 14514.56, + "probability": 0.7998 + }, + { + "start": 14514.56, + "end": 14516.18, + "probability": 0.2294 + }, + { + "start": 14516.36, + "end": 14517.1, + "probability": 0.5339 + }, + { + "start": 14517.14, + "end": 14518.88, + "probability": 0.8949 + }, + { + "start": 14519.22, + "end": 14522.18, + "probability": 0.7052 + }, + { + "start": 14522.3, + "end": 14523.8, + "probability": 0.3024 + }, + { + "start": 14524.26, + "end": 14527.84, + "probability": 0.9907 + }, + { + "start": 14527.84, + "end": 14532.56, + "probability": 0.9945 + }, + { + "start": 14532.96, + "end": 14535.42, + "probability": 0.9983 + }, + { + "start": 14535.92, + "end": 14539.46, + "probability": 0.9629 + }, + { + "start": 14539.66, + "end": 14541.76, + "probability": 0.9966 + }, + { + "start": 14542.54, + "end": 14547.2, + "probability": 0.8597 + }, + { + "start": 14547.2, + "end": 14551.8, + "probability": 0.9941 + }, + { + "start": 14552.04, + "end": 14553.52, + "probability": 0.9971 + }, + { + "start": 14554.14, + "end": 14556.64, + "probability": 0.9857 + }, + { + "start": 14556.9, + "end": 14565.04, + "probability": 0.9725 + }, + { + "start": 14566.52, + "end": 14568.44, + "probability": 0.9483 + }, + { + "start": 14568.96, + "end": 14569.56, + "probability": 0.6227 + }, + { + "start": 14570.5, + "end": 14570.86, + "probability": 0.3477 + }, + { + "start": 14571.06, + "end": 14575.08, + "probability": 0.9865 + }, + { + "start": 14575.08, + "end": 14578.12, + "probability": 0.9633 + }, + { + "start": 14578.28, + "end": 14581.38, + "probability": 0.5184 + }, + { + "start": 14581.38, + "end": 14582.34, + "probability": 0.3048 + }, + { + "start": 14582.44, + "end": 14583.74, + "probability": 0.2377 + }, + { + "start": 14583.74, + "end": 14584.54, + "probability": 0.2636 + }, + { + "start": 14586.04, + "end": 14588.84, + "probability": 0.2901 + }, + { + "start": 14590.08, + "end": 14593.22, + "probability": 0.2938 + }, + { + "start": 14593.52, + "end": 14594.26, + "probability": 0.2107 + }, + { + "start": 14594.34, + "end": 14594.34, + "probability": 0.3468 + }, + { + "start": 14594.34, + "end": 14594.41, + "probability": 0.0056 + }, + { + "start": 14594.42, + "end": 14594.54, + "probability": 0.1355 + }, + { + "start": 14594.7, + "end": 14595.78, + "probability": 0.2284 + }, + { + "start": 14597.18, + "end": 14598.18, + "probability": 0.1568 + }, + { + "start": 14598.18, + "end": 14600.99, + "probability": 0.5086 + }, + { + "start": 14601.42, + "end": 14601.76, + "probability": 0.1668 + }, + { + "start": 14601.94, + "end": 14605.36, + "probability": 0.8193 + }, + { + "start": 14605.48, + "end": 14606.54, + "probability": 0.4705 + }, + { + "start": 14606.62, + "end": 14607.06, + "probability": 0.857 + }, + { + "start": 14607.4, + "end": 14609.98, + "probability": 0.7293 + }, + { + "start": 14610.18, + "end": 14611.62, + "probability": 0.6307 + }, + { + "start": 14611.64, + "end": 14612.52, + "probability": 0.7784 + }, + { + "start": 14612.88, + "end": 14614.16, + "probability": 0.9696 + }, + { + "start": 14614.32, + "end": 14615.32, + "probability": 0.7113 + }, + { + "start": 14615.7, + "end": 14619.28, + "probability": 0.807 + }, + { + "start": 14619.5, + "end": 14623.14, + "probability": 0.6516 + }, + { + "start": 14624.18, + "end": 14626.18, + "probability": 0.6999 + }, + { + "start": 14626.18, + "end": 14626.18, + "probability": 0.3463 + }, + { + "start": 14626.18, + "end": 14627.1, + "probability": 0.4819 + }, + { + "start": 14628.55, + "end": 14631.5, + "probability": 0.8415 + }, + { + "start": 14631.5, + "end": 14631.64, + "probability": 0.0648 + }, + { + "start": 14631.64, + "end": 14632.06, + "probability": 0.6185 + }, + { + "start": 14634.18, + "end": 14634.74, + "probability": 0.6606 + }, + { + "start": 14634.74, + "end": 14636.04, + "probability": 0.244 + }, + { + "start": 14637.18, + "end": 14639.62, + "probability": 0.5468 + }, + { + "start": 14639.62, + "end": 14642.4, + "probability": 0.2689 + }, + { + "start": 14642.4, + "end": 14642.48, + "probability": 0.2034 + }, + { + "start": 14643.4, + "end": 14643.72, + "probability": 0.1889 + }, + { + "start": 14643.72, + "end": 14643.72, + "probability": 0.0847 + }, + { + "start": 14643.72, + "end": 14643.72, + "probability": 0.0972 + }, + { + "start": 14643.72, + "end": 14643.72, + "probability": 0.0794 + }, + { + "start": 14643.72, + "end": 14643.72, + "probability": 0.1273 + }, + { + "start": 14643.72, + "end": 14646.84, + "probability": 0.2989 + }, + { + "start": 14647.06, + "end": 14647.55, + "probability": 0.683 + }, + { + "start": 14649.36, + "end": 14650.56, + "probability": 0.4011 + }, + { + "start": 14651.06, + "end": 14655.02, + "probability": 0.9194 + }, + { + "start": 14655.04, + "end": 14657.88, + "probability": 0.9424 + }, + { + "start": 14658.14, + "end": 14659.96, + "probability": 0.8489 + }, + { + "start": 14660.3, + "end": 14665.32, + "probability": 0.8691 + }, + { + "start": 14665.84, + "end": 14666.59, + "probability": 0.0615 + }, + { + "start": 14667.6, + "end": 14671.5, + "probability": 0.9208 + }, + { + "start": 14671.88, + "end": 14675.54, + "probability": 0.6206 + }, + { + "start": 14675.98, + "end": 14679.74, + "probability": 0.9827 + }, + { + "start": 14679.74, + "end": 14685.52, + "probability": 0.9952 + }, + { + "start": 14687.12, + "end": 14687.12, + "probability": 0.0238 + }, + { + "start": 14687.12, + "end": 14691.22, + "probability": 0.9976 + }, + { + "start": 14691.94, + "end": 14698.1, + "probability": 0.9815 + }, + { + "start": 14698.1, + "end": 14705.18, + "probability": 0.9078 + }, + { + "start": 14705.44, + "end": 14707.56, + "probability": 0.9966 + }, + { + "start": 14708.82, + "end": 14709.22, + "probability": 0.1275 + }, + { + "start": 14709.22, + "end": 14710.96, + "probability": 0.9949 + }, + { + "start": 14711.12, + "end": 14715.76, + "probability": 0.8376 + }, + { + "start": 14716.0, + "end": 14716.82, + "probability": 0.5072 + }, + { + "start": 14716.9, + "end": 14718.68, + "probability": 0.9877 + }, + { + "start": 14719.18, + "end": 14723.44, + "probability": 0.9844 + }, + { + "start": 14723.44, + "end": 14726.38, + "probability": 0.8076 + }, + { + "start": 14726.78, + "end": 14731.5, + "probability": 0.9755 + }, + { + "start": 14731.5, + "end": 14735.5, + "probability": 0.9982 + }, + { + "start": 14736.06, + "end": 14736.6, + "probability": 0.3724 + }, + { + "start": 14737.46, + "end": 14743.92, + "probability": 0.9606 + }, + { + "start": 14744.1, + "end": 14748.72, + "probability": 0.9964 + }, + { + "start": 14749.42, + "end": 14752.13, + "probability": 0.9979 + }, + { + "start": 14752.84, + "end": 14759.14, + "probability": 0.9547 + }, + { + "start": 14759.5, + "end": 14761.46, + "probability": 0.8763 + }, + { + "start": 14761.64, + "end": 14763.32, + "probability": 0.9955 + }, + { + "start": 14763.62, + "end": 14767.06, + "probability": 0.9943 + }, + { + "start": 14767.48, + "end": 14770.02, + "probability": 0.9932 + }, + { + "start": 14770.4, + "end": 14773.86, + "probability": 0.9961 + }, + { + "start": 14774.78, + "end": 14776.09, + "probability": 0.9985 + }, + { + "start": 14777.34, + "end": 14780.66, + "probability": 0.9874 + }, + { + "start": 14780.7, + "end": 14781.1, + "probability": 0.0158 + }, + { + "start": 14781.4, + "end": 14785.64, + "probability": 0.9817 + }, + { + "start": 14785.64, + "end": 14789.64, + "probability": 0.9814 + }, + { + "start": 14789.88, + "end": 14790.86, + "probability": 0.665 + }, + { + "start": 14791.5, + "end": 14797.1, + "probability": 0.9739 + }, + { + "start": 14797.56, + "end": 14804.06, + "probability": 0.9801 + }, + { + "start": 14805.32, + "end": 14806.3, + "probability": 0.0086 + }, + { + "start": 14806.3, + "end": 14812.2, + "probability": 0.9902 + }, + { + "start": 14812.51, + "end": 14818.04, + "probability": 0.9377 + }, + { + "start": 14818.56, + "end": 14820.8, + "probability": 0.706 + }, + { + "start": 14821.16, + "end": 14826.28, + "probability": 0.998 + }, + { + "start": 14826.74, + "end": 14829.44, + "probability": 0.9904 + }, + { + "start": 14830.2, + "end": 14835.3, + "probability": 0.7141 + }, + { + "start": 14835.44, + "end": 14838.64, + "probability": 0.8141 + }, + { + "start": 14838.94, + "end": 14844.56, + "probability": 0.9741 + }, + { + "start": 14845.32, + "end": 14845.46, + "probability": 0.0221 + }, + { + "start": 14845.46, + "end": 14848.62, + "probability": 0.8612 + }, + { + "start": 14848.84, + "end": 14855.04, + "probability": 0.9687 + }, + { + "start": 14855.04, + "end": 14861.08, + "probability": 0.9382 + }, + { + "start": 14861.8, + "end": 14864.96, + "probability": 0.998 + }, + { + "start": 14864.96, + "end": 14869.88, + "probability": 0.994 + }, + { + "start": 14870.12, + "end": 14876.01, + "probability": 0.9979 + }, + { + "start": 14877.2, + "end": 14879.48, + "probability": 0.8997 + }, + { + "start": 14879.78, + "end": 14883.54, + "probability": 0.9976 + }, + { + "start": 14883.54, + "end": 14886.74, + "probability": 0.9979 + }, + { + "start": 14887.42, + "end": 14891.98, + "probability": 0.9971 + }, + { + "start": 14892.62, + "end": 14895.44, + "probability": 0.9401 + }, + { + "start": 14895.84, + "end": 14897.07, + "probability": 0.7048 + }, + { + "start": 14904.0, + "end": 14905.86, + "probability": 0.532 + }, + { + "start": 14906.48, + "end": 14910.4, + "probability": 0.9839 + }, + { + "start": 14911.12, + "end": 14911.34, + "probability": 0.0226 + }, + { + "start": 14915.4, + "end": 14922.06, + "probability": 0.0439 + }, + { + "start": 14923.36, + "end": 14925.4, + "probability": 0.9735 + }, + { + "start": 14926.5, + "end": 14930.84, + "probability": 0.9956 + }, + { + "start": 14931.2, + "end": 14933.4, + "probability": 0.9917 + }, + { + "start": 14933.62, + "end": 14934.2, + "probability": 0.7419 + }, + { + "start": 14934.46, + "end": 14935.88, + "probability": 0.6444 + }, + { + "start": 14935.98, + "end": 14938.88, + "probability": 0.8377 + }, + { + "start": 14939.04, + "end": 14941.12, + "probability": 0.9507 + }, + { + "start": 14941.58, + "end": 14947.1, + "probability": 0.9933 + }, + { + "start": 14947.72, + "end": 14952.68, + "probability": 0.9798 + }, + { + "start": 14953.46, + "end": 14960.14, + "probability": 0.1922 + }, + { + "start": 14960.14, + "end": 14962.7, + "probability": 0.605 + }, + { + "start": 14962.82, + "end": 14965.08, + "probability": 0.6757 + }, + { + "start": 14965.64, + "end": 14966.18, + "probability": 0.7426 + }, + { + "start": 14966.77, + "end": 14970.98, + "probability": 0.9935 + }, + { + "start": 14971.0, + "end": 14972.24, + "probability": 0.7329 + }, + { + "start": 14972.88, + "end": 14976.26, + "probability": 0.9976 + }, + { + "start": 14976.26, + "end": 14980.2, + "probability": 0.992 + }, + { + "start": 14980.86, + "end": 14982.18, + "probability": 0.9943 + }, + { + "start": 14982.4, + "end": 14984.27, + "probability": 0.0804 + }, + { + "start": 14986.7, + "end": 14987.12, + "probability": 0.0042 + }, + { + "start": 14987.12, + "end": 14988.88, + "probability": 0.177 + }, + { + "start": 14989.12, + "end": 14991.86, + "probability": 0.1682 + }, + { + "start": 14991.92, + "end": 14992.26, + "probability": 0.1254 + }, + { + "start": 14992.26, + "end": 14996.3, + "probability": 0.038 + }, + { + "start": 14996.88, + "end": 14996.88, + "probability": 0.1164 + }, + { + "start": 14996.88, + "end": 14996.88, + "probability": 0.0738 + }, + { + "start": 14996.88, + "end": 14996.88, + "probability": 0.0546 + }, + { + "start": 14996.88, + "end": 14996.88, + "probability": 0.1409 + }, + { + "start": 14996.88, + "end": 14998.24, + "probability": 0.2674 + }, + { + "start": 14998.24, + "end": 15000.88, + "probability": 0.5495 + }, + { + "start": 15015.34, + "end": 15015.66, + "probability": 0.0052 + }, + { + "start": 15015.8, + "end": 15017.06, + "probability": 0.2086 + }, + { + "start": 15017.14, + "end": 15017.14, + "probability": 0.3245 + }, + { + "start": 15017.22, + "end": 15017.22, + "probability": 0.2835 + }, + { + "start": 15017.22, + "end": 15017.22, + "probability": 0.3038 + }, + { + "start": 15017.58, + "end": 15023.26, + "probability": 0.9421 + }, + { + "start": 15023.58, + "end": 15025.76, + "probability": 0.7729 + }, + { + "start": 15026.02, + "end": 15029.65, + "probability": 0.0453 + }, + { + "start": 15031.36, + "end": 15034.02, + "probability": 0.5723 + }, + { + "start": 15034.02, + "end": 15034.02, + "probability": 0.6667 + }, + { + "start": 15034.1, + "end": 15035.06, + "probability": 0.6228 + }, + { + "start": 15035.2, + "end": 15035.74, + "probability": 0.4404 + }, + { + "start": 15035.8, + "end": 15036.86, + "probability": 0.343 + }, + { + "start": 15036.88, + "end": 15041.56, + "probability": 0.8809 + }, + { + "start": 15041.86, + "end": 15044.32, + "probability": 0.8241 + }, + { + "start": 15045.4, + "end": 15052.64, + "probability": 0.9944 + }, + { + "start": 15053.64, + "end": 15056.6, + "probability": 0.9771 + }, + { + "start": 15057.12, + "end": 15061.72, + "probability": 0.9953 + }, + { + "start": 15062.16, + "end": 15062.82, + "probability": 0.7372 + }, + { + "start": 15062.98, + "end": 15066.36, + "probability": 0.9512 + }, + { + "start": 15066.44, + "end": 15067.14, + "probability": 0.4308 + }, + { + "start": 15067.98, + "end": 15071.32, + "probability": 0.9949 + }, + { + "start": 15071.76, + "end": 15075.56, + "probability": 0.9963 + }, + { + "start": 15076.24, + "end": 15079.14, + "probability": 0.9826 + }, + { + "start": 15079.14, + "end": 15082.38, + "probability": 0.998 + }, + { + "start": 15083.72, + "end": 15087.66, + "probability": 0.8609 + }, + { + "start": 15087.66, + "end": 15091.66, + "probability": 0.9854 + }, + { + "start": 15092.68, + "end": 15095.68, + "probability": 0.9975 + }, + { + "start": 15095.68, + "end": 15099.74, + "probability": 0.9517 + }, + { + "start": 15100.22, + "end": 15102.0, + "probability": 0.9069 + }, + { + "start": 15102.74, + "end": 15106.84, + "probability": 0.9921 + }, + { + "start": 15107.52, + "end": 15112.94, + "probability": 0.9818 + }, + { + "start": 15114.92, + "end": 15115.62, + "probability": 0.6545 + }, + { + "start": 15116.2, + "end": 15116.92, + "probability": 0.6406 + }, + { + "start": 15117.04, + "end": 15118.62, + "probability": 0.9151 + }, + { + "start": 15118.86, + "end": 15124.08, + "probability": 0.8631 + }, + { + "start": 15124.16, + "end": 15125.16, + "probability": 0.9858 + }, + { + "start": 15128.3, + "end": 15129.92, + "probability": 0.872 + }, + { + "start": 15130.3, + "end": 15135.2, + "probability": 0.7224 + }, + { + "start": 15135.38, + "end": 15136.96, + "probability": 0.9469 + }, + { + "start": 15137.12, + "end": 15138.47, + "probability": 0.9202 + }, + { + "start": 15139.12, + "end": 15144.08, + "probability": 0.627 + }, + { + "start": 15144.2, + "end": 15146.76, + "probability": 0.8182 + }, + { + "start": 15147.24, + "end": 15147.58, + "probability": 0.3267 + }, + { + "start": 15147.86, + "end": 15149.44, + "probability": 0.8872 + }, + { + "start": 15149.54, + "end": 15151.22, + "probability": 0.8707 + }, + { + "start": 15151.56, + "end": 15152.24, + "probability": 0.5415 + }, + { + "start": 15152.3, + "end": 15154.12, + "probability": 0.8737 + }, + { + "start": 15154.6, + "end": 15157.42, + "probability": 0.9896 + }, + { + "start": 15171.32, + "end": 15171.78, + "probability": 0.0472 + }, + { + "start": 15181.22, + "end": 15182.0, + "probability": 0.6739 + }, + { + "start": 15190.6, + "end": 15193.32, + "probability": 0.6755 + }, + { + "start": 15193.76, + "end": 15195.14, + "probability": 0.4453 + }, + { + "start": 15195.72, + "end": 15197.72, + "probability": 0.8877 + }, + { + "start": 15198.26, + "end": 15204.02, + "probability": 0.8965 + }, + { + "start": 15204.44, + "end": 15205.3, + "probability": 0.6715 + }, + { + "start": 15205.6, + "end": 15206.8, + "probability": 0.9844 + }, + { + "start": 15207.92, + "end": 15209.28, + "probability": 0.9611 + }, + { + "start": 15209.7, + "end": 15210.93, + "probability": 0.7147 + }, + { + "start": 15211.5, + "end": 15214.94, + "probability": 0.9777 + }, + { + "start": 15216.06, + "end": 15217.1, + "probability": 0.9664 + }, + { + "start": 15217.1, + "end": 15219.04, + "probability": 0.9448 + }, + { + "start": 15219.34, + "end": 15220.91, + "probability": 0.9409 + }, + { + "start": 15221.84, + "end": 15227.24, + "probability": 0.9563 + }, + { + "start": 15227.9, + "end": 15231.52, + "probability": 0.9834 + }, + { + "start": 15232.4, + "end": 15236.68, + "probability": 0.9463 + }, + { + "start": 15237.42, + "end": 15238.84, + "probability": 0.9962 + }, + { + "start": 15238.92, + "end": 15239.96, + "probability": 0.9546 + }, + { + "start": 15240.36, + "end": 15242.16, + "probability": 0.9573 + }, + { + "start": 15243.12, + "end": 15243.42, + "probability": 0.359 + }, + { + "start": 15243.54, + "end": 15245.76, + "probability": 0.803 + }, + { + "start": 15245.94, + "end": 15246.74, + "probability": 0.7903 + }, + { + "start": 15247.14, + "end": 15248.34, + "probability": 0.9655 + }, + { + "start": 15249.06, + "end": 15252.14, + "probability": 0.9354 + }, + { + "start": 15252.94, + "end": 15256.64, + "probability": 0.9884 + }, + { + "start": 15257.6, + "end": 15262.02, + "probability": 0.9805 + }, + { + "start": 15262.38, + "end": 15267.1, + "probability": 0.9915 + }, + { + "start": 15268.02, + "end": 15269.52, + "probability": 0.9632 + }, + { + "start": 15269.84, + "end": 15271.52, + "probability": 0.6936 + }, + { + "start": 15271.68, + "end": 15272.9, + "probability": 0.7507 + }, + { + "start": 15273.4, + "end": 15274.38, + "probability": 0.697 + }, + { + "start": 15274.86, + "end": 15276.24, + "probability": 0.8977 + }, + { + "start": 15276.4, + "end": 15277.42, + "probability": 0.7585 + }, + { + "start": 15277.56, + "end": 15279.02, + "probability": 0.9634 + }, + { + "start": 15279.48, + "end": 15280.84, + "probability": 0.7786 + }, + { + "start": 15280.96, + "end": 15281.12, + "probability": 0.6626 + }, + { + "start": 15281.24, + "end": 15282.26, + "probability": 0.9575 + }, + { + "start": 15283.8, + "end": 15285.76, + "probability": 0.6482 + }, + { + "start": 15286.28, + "end": 15287.78, + "probability": 0.9969 + }, + { + "start": 15287.9, + "end": 15291.76, + "probability": 0.9696 + }, + { + "start": 15291.76, + "end": 15296.74, + "probability": 0.8933 + }, + { + "start": 15297.54, + "end": 15301.08, + "probability": 0.9146 + }, + { + "start": 15302.16, + "end": 15306.68, + "probability": 0.6195 + }, + { + "start": 15306.68, + "end": 15309.88, + "probability": 0.9888 + }, + { + "start": 15310.66, + "end": 15313.6, + "probability": 0.6981 + }, + { + "start": 15314.62, + "end": 15316.24, + "probability": 0.6439 + }, + { + "start": 15316.9, + "end": 15318.68, + "probability": 0.8667 + }, + { + "start": 15318.74, + "end": 15319.72, + "probability": 0.7398 + }, + { + "start": 15320.0, + "end": 15322.13, + "probability": 0.9075 + }, + { + "start": 15322.28, + "end": 15323.4, + "probability": 0.8716 + }, + { + "start": 15323.72, + "end": 15327.64, + "probability": 0.9465 + }, + { + "start": 15327.64, + "end": 15331.74, + "probability": 0.9943 + }, + { + "start": 15332.58, + "end": 15336.32, + "probability": 0.9388 + }, + { + "start": 15336.72, + "end": 15338.92, + "probability": 0.9976 + }, + { + "start": 15341.08, + "end": 15342.2, + "probability": 0.7012 + }, + { + "start": 15342.2, + "end": 15344.6, + "probability": 0.9927 + }, + { + "start": 15344.9, + "end": 15349.46, + "probability": 0.9797 + }, + { + "start": 15349.58, + "end": 15350.76, + "probability": 0.8622 + }, + { + "start": 15350.84, + "end": 15353.26, + "probability": 0.75 + }, + { + "start": 15354.16, + "end": 15357.42, + "probability": 0.9808 + }, + { + "start": 15358.0, + "end": 15360.98, + "probability": 0.9969 + }, + { + "start": 15361.98, + "end": 15364.02, + "probability": 0.9937 + }, + { + "start": 15364.1, + "end": 15366.62, + "probability": 0.7527 + }, + { + "start": 15367.7, + "end": 15370.48, + "probability": 0.8339 + }, + { + "start": 15370.48, + "end": 15373.86, + "probability": 0.9954 + }, + { + "start": 15374.28, + "end": 15380.66, + "probability": 0.9968 + }, + { + "start": 15381.96, + "end": 15385.16, + "probability": 0.9756 + }, + { + "start": 15385.7, + "end": 15390.36, + "probability": 0.9831 + }, + { + "start": 15391.38, + "end": 15394.84, + "probability": 0.9811 + }, + { + "start": 15395.1, + "end": 15396.7, + "probability": 0.9271 + }, + { + "start": 15396.86, + "end": 15397.92, + "probability": 0.8787 + }, + { + "start": 15398.38, + "end": 15400.02, + "probability": 0.9885 + }, + { + "start": 15400.54, + "end": 15403.26, + "probability": 0.9165 + }, + { + "start": 15404.0, + "end": 15408.14, + "probability": 0.8901 + }, + { + "start": 15408.98, + "end": 15409.5, + "probability": 0.7519 + }, + { + "start": 15409.72, + "end": 15415.18, + "probability": 0.9574 + }, + { + "start": 15415.18, + "end": 15419.06, + "probability": 0.9949 + }, + { + "start": 15420.0, + "end": 15423.38, + "probability": 0.9972 + }, + { + "start": 15424.46, + "end": 15425.46, + "probability": 0.7259 + }, + { + "start": 15425.52, + "end": 15428.22, + "probability": 0.9528 + }, + { + "start": 15428.7, + "end": 15430.28, + "probability": 0.8637 + }, + { + "start": 15431.26, + "end": 15434.74, + "probability": 0.9697 + }, + { + "start": 15436.3, + "end": 15437.12, + "probability": 0.8214 + }, + { + "start": 15438.6, + "end": 15440.28, + "probability": 0.9602 + }, + { + "start": 15440.58, + "end": 15441.26, + "probability": 0.7138 + }, + { + "start": 15441.44, + "end": 15442.18, + "probability": 0.3131 + }, + { + "start": 15442.2, + "end": 15443.58, + "probability": 0.7284 + }, + { + "start": 15444.0, + "end": 15445.98, + "probability": 0.7879 + }, + { + "start": 15445.98, + "end": 15449.14, + "probability": 0.9928 + }, + { + "start": 15449.28, + "end": 15450.92, + "probability": 0.8752 + }, + { + "start": 15451.46, + "end": 15451.76, + "probability": 0.8643 + }, + { + "start": 15451.8, + "end": 15452.7, + "probability": 0.959 + }, + { + "start": 15453.18, + "end": 15456.08, + "probability": 0.8332 + }, + { + "start": 15456.4, + "end": 15458.66, + "probability": 0.9908 + }, + { + "start": 15459.2, + "end": 15459.78, + "probability": 0.4204 + }, + { + "start": 15459.84, + "end": 15462.98, + "probability": 0.9829 + }, + { + "start": 15463.78, + "end": 15465.32, + "probability": 0.8219 + }, + { + "start": 15465.6, + "end": 15466.28, + "probability": 0.6157 + }, + { + "start": 15466.3, + "end": 15467.02, + "probability": 0.7956 + }, + { + "start": 15467.7, + "end": 15471.21, + "probability": 0.753 + }, + { + "start": 15471.52, + "end": 15476.14, + "probability": 0.1173 + }, + { + "start": 15482.86, + "end": 15484.12, + "probability": 0.8276 + }, + { + "start": 15490.86, + "end": 15494.3, + "probability": 0.523 + }, + { + "start": 15494.48, + "end": 15494.9, + "probability": 0.3559 + }, + { + "start": 15494.9, + "end": 15497.86, + "probability": 0.897 + }, + { + "start": 15497.86, + "end": 15502.44, + "probability": 0.921 + }, + { + "start": 15502.54, + "end": 15503.92, + "probability": 0.93 + }, + { + "start": 15504.86, + "end": 15504.86, + "probability": 0.0002 + }, + { + "start": 15505.74, + "end": 15506.1, + "probability": 0.8027 + }, + { + "start": 15506.1, + "end": 15508.0, + "probability": 0.9426 + }, + { + "start": 15508.16, + "end": 15509.6, + "probability": 0.942 + }, + { + "start": 15510.44, + "end": 15511.3, + "probability": 0.8904 + }, + { + "start": 15511.58, + "end": 15512.98, + "probability": 0.9526 + }, + { + "start": 15513.12, + "end": 15515.22, + "probability": 0.9727 + }, + { + "start": 15516.26, + "end": 15521.08, + "probability": 0.7142 + }, + { + "start": 15521.16, + "end": 15522.08, + "probability": 0.626 + }, + { + "start": 15524.26, + "end": 15524.98, + "probability": 0.5927 + }, + { + "start": 15525.24, + "end": 15525.96, + "probability": 0.5645 + }, + { + "start": 15526.02, + "end": 15526.72, + "probability": 0.6156 + }, + { + "start": 15527.6, + "end": 15533.06, + "probability": 0.007 + }, + { + "start": 15537.32, + "end": 15538.8, + "probability": 0.3935 + }, + { + "start": 15544.18, + "end": 15547.94, + "probability": 0.5166 + }, + { + "start": 15548.56, + "end": 15550.72, + "probability": 0.9214 + }, + { + "start": 15552.12, + "end": 15556.86, + "probability": 0.9219 + }, + { + "start": 15556.86, + "end": 15560.1, + "probability": 0.8469 + }, + { + "start": 15560.18, + "end": 15562.14, + "probability": 0.1953 + }, + { + "start": 15562.54, + "end": 15563.16, + "probability": 0.5747 + }, + { + "start": 15563.24, + "end": 15563.7, + "probability": 0.6244 + }, + { + "start": 15563.88, + "end": 15565.34, + "probability": 0.5605 + }, + { + "start": 15574.48, + "end": 15575.58, + "probability": 0.0614 + }, + { + "start": 15575.58, + "end": 15577.58, + "probability": 0.4401 + }, + { + "start": 15581.02, + "end": 15586.1, + "probability": 0.5463 + }, + { + "start": 15586.56, + "end": 15590.3, + "probability": 0.7845 + }, + { + "start": 15591.36, + "end": 15593.86, + "probability": 0.7574 + }, + { + "start": 15594.54, + "end": 15595.44, + "probability": 0.2244 + }, + { + "start": 15596.12, + "end": 15596.7, + "probability": 0.5256 + }, + { + "start": 15596.8, + "end": 15597.42, + "probability": 0.3067 + }, + { + "start": 15597.54, + "end": 15598.6, + "probability": 0.5057 + }, + { + "start": 15601.56, + "end": 15603.92, + "probability": 0.02 + }, + { + "start": 15606.36, + "end": 15607.06, + "probability": 0.229 + }, + { + "start": 15609.76, + "end": 15610.36, + "probability": 0.2282 + }, + { + "start": 15610.4, + "end": 15611.68, + "probability": 0.211 + }, + { + "start": 15613.1, + "end": 15614.86, + "probability": 0.3426 + }, + { + "start": 15615.5, + "end": 15617.36, + "probability": 0.4916 + }, + { + "start": 15617.48, + "end": 15619.1, + "probability": 0.8975 + }, + { + "start": 15619.86, + "end": 15622.14, + "probability": 0.9971 + }, + { + "start": 15622.26, + "end": 15623.4, + "probability": 0.7498 + }, + { + "start": 15623.4, + "end": 15624.2, + "probability": 0.7317 + }, + { + "start": 15624.64, + "end": 15625.2, + "probability": 0.5536 + }, + { + "start": 15625.3, + "end": 15625.8, + "probability": 0.6326 + }, + { + "start": 15626.08, + "end": 15626.6, + "probability": 0.339 + }, + { + "start": 15631.42, + "end": 15631.88, + "probability": 0.2107 + }, + { + "start": 15634.6, + "end": 15641.98, + "probability": 0.0232 + }, + { + "start": 15642.12, + "end": 15644.26, + "probability": 0.1004 + }, + { + "start": 15644.88, + "end": 15647.18, + "probability": 0.5869 + }, + { + "start": 15647.62, + "end": 15649.55, + "probability": 0.9746 + }, + { + "start": 15650.82, + "end": 15655.78, + "probability": 0.8936 + }, + { + "start": 15655.78, + "end": 15661.58, + "probability": 0.9933 + }, + { + "start": 15661.72, + "end": 15662.63, + "probability": 0.5737 + }, + { + "start": 15663.44, + "end": 15666.08, + "probability": 0.5075 + }, + { + "start": 15666.08, + "end": 15666.92, + "probability": 0.324 + }, + { + "start": 15667.14, + "end": 15668.2, + "probability": 0.752 + }, + { + "start": 15668.88, + "end": 15669.6, + "probability": 0.622 + }, + { + "start": 15669.64, + "end": 15671.9, + "probability": 0.5293 + }, + { + "start": 15672.2, + "end": 15672.7, + "probability": 0.0446 + }, + { + "start": 15672.8, + "end": 15673.72, + "probability": 0.4728 + }, + { + "start": 15677.66, + "end": 15680.0, + "probability": 0.2326 + }, + { + "start": 15684.56, + "end": 15689.02, + "probability": 0.0401 + }, + { + "start": 15689.02, + "end": 15694.38, + "probability": 0.3499 + }, + { + "start": 15695.16, + "end": 15697.92, + "probability": 0.7843 + }, + { + "start": 15698.0, + "end": 15700.68, + "probability": 0.9349 + }, + { + "start": 15702.6, + "end": 15704.72, + "probability": 0.9731 + }, + { + "start": 15705.14, + "end": 15705.86, + "probability": 0.8742 + }, + { + "start": 15706.18, + "end": 15706.6, + "probability": 0.7991 + }, + { + "start": 15706.6, + "end": 15709.26, + "probability": 0.8708 + }, + { + "start": 15709.46, + "end": 15709.58, + "probability": 0.0052 + }, + { + "start": 15709.82, + "end": 15710.12, + "probability": 0.0307 + }, + { + "start": 15710.46, + "end": 15713.96, + "probability": 0.9144 + }, + { + "start": 15714.1, + "end": 15714.38, + "probability": 0.708 + }, + { + "start": 15715.3, + "end": 15718.12, + "probability": 0.6201 + }, + { + "start": 15718.24, + "end": 15719.62, + "probability": 0.7754 + }, + { + "start": 15719.7, + "end": 15721.0, + "probability": 0.882 + }, + { + "start": 15721.26, + "end": 15722.24, + "probability": 0.6813 + }, + { + "start": 15725.79, + "end": 15729.88, + "probability": 0.984 + }, + { + "start": 15730.64, + "end": 15736.42, + "probability": 0.9099 + }, + { + "start": 15738.04, + "end": 15740.04, + "probability": 0.6711 + }, + { + "start": 15740.96, + "end": 15748.14, + "probability": 0.9907 + }, + { + "start": 15748.14, + "end": 15754.1, + "probability": 0.8065 + }, + { + "start": 15754.66, + "end": 15757.96, + "probability": 0.9907 + }, + { + "start": 15758.22, + "end": 15761.92, + "probability": 0.7815 + }, + { + "start": 15762.2, + "end": 15765.58, + "probability": 0.8643 + }, + { + "start": 15765.64, + "end": 15766.92, + "probability": 0.6951 + }, + { + "start": 15766.96, + "end": 15768.6, + "probability": 0.9193 + }, + { + "start": 15768.8, + "end": 15770.5, + "probability": 0.6963 + }, + { + "start": 15770.56, + "end": 15771.46, + "probability": 0.8101 + }, + { + "start": 15772.04, + "end": 15774.59, + "probability": 0.9624 + }, + { + "start": 15775.08, + "end": 15776.44, + "probability": 0.637 + }, + { + "start": 15776.66, + "end": 15778.32, + "probability": 0.7508 + }, + { + "start": 15778.52, + "end": 15780.84, + "probability": 0.9783 + }, + { + "start": 15781.26, + "end": 15781.86, + "probability": 0.5082 + }, + { + "start": 15781.98, + "end": 15785.74, + "probability": 0.9532 + }, + { + "start": 15785.8, + "end": 15787.47, + "probability": 0.7923 + }, + { + "start": 15788.16, + "end": 15788.16, + "probability": 0.1031 + }, + { + "start": 15788.16, + "end": 15789.16, + "probability": 0.2669 + }, + { + "start": 15789.16, + "end": 15790.02, + "probability": 0.2593 + }, + { + "start": 15790.76, + "end": 15791.94, + "probability": 0.8286 + }, + { + "start": 15792.08, + "end": 15793.28, + "probability": 0.8374 + }, + { + "start": 15793.46, + "end": 15793.6, + "probability": 0.0695 + }, + { + "start": 15793.66, + "end": 15794.98, + "probability": 0.7423 + }, + { + "start": 15795.14, + "end": 15796.6, + "probability": 0.4151 + }, + { + "start": 15796.64, + "end": 15797.0, + "probability": 0.0674 + }, + { + "start": 15797.24, + "end": 15797.96, + "probability": 0.061 + }, + { + "start": 15797.96, + "end": 15798.42, + "probability": 0.3116 + }, + { + "start": 15798.42, + "end": 15798.76, + "probability": 0.4824 + }, + { + "start": 15798.76, + "end": 15802.52, + "probability": 0.7681 + }, + { + "start": 15802.64, + "end": 15808.98, + "probability": 0.7901 + }, + { + "start": 15809.4, + "end": 15810.98, + "probability": 0.9673 + }, + { + "start": 15811.1, + "end": 15813.88, + "probability": 0.9936 + }, + { + "start": 15814.06, + "end": 15815.68, + "probability": 0.9601 + }, + { + "start": 15816.06, + "end": 15820.6, + "probability": 0.9118 + }, + { + "start": 15820.6, + "end": 15822.31, + "probability": 0.8512 + }, + { + "start": 15822.72, + "end": 15822.74, + "probability": 0.3423 + }, + { + "start": 15822.88, + "end": 15825.88, + "probability": 0.9883 + }, + { + "start": 15826.16, + "end": 15830.28, + "probability": 0.946 + }, + { + "start": 15830.36, + "end": 15836.82, + "probability": 0.8241 + }, + { + "start": 15837.0, + "end": 15837.6, + "probability": 0.7259 + }, + { + "start": 15837.62, + "end": 15838.34, + "probability": 0.7111 + }, + { + "start": 15840.02, + "end": 15840.76, + "probability": 0.92 + }, + { + "start": 15840.94, + "end": 15842.74, + "probability": 0.6453 + }, + { + "start": 15842.78, + "end": 15844.08, + "probability": 0.9521 + }, + { + "start": 15844.3, + "end": 15844.56, + "probability": 0.7257 + }, + { + "start": 15844.56, + "end": 15845.08, + "probability": 0.9578 + }, + { + "start": 15845.34, + "end": 15847.28, + "probability": 0.9445 + }, + { + "start": 15847.28, + "end": 15848.7, + "probability": 0.993 + }, + { + "start": 15848.7, + "end": 15848.7, + "probability": 0.5208 + }, + { + "start": 15848.7, + "end": 15849.02, + "probability": 0.4547 + }, + { + "start": 15849.16, + "end": 15850.8, + "probability": 0.8586 + }, + { + "start": 15851.22, + "end": 15852.48, + "probability": 0.9312 + }, + { + "start": 15852.52, + "end": 15852.8, + "probability": 0.9246 + }, + { + "start": 15852.96, + "end": 15854.26, + "probability": 0.8585 + }, + { + "start": 15854.26, + "end": 15857.96, + "probability": 0.9959 + }, + { + "start": 15858.32, + "end": 15859.56, + "probability": 0.8007 + }, + { + "start": 15859.98, + "end": 15860.14, + "probability": 0.161 + }, + { + "start": 15860.14, + "end": 15862.74, + "probability": 0.9723 + }, + { + "start": 15863.02, + "end": 15863.12, + "probability": 0.6042 + }, + { + "start": 15863.12, + "end": 15865.88, + "probability": 0.4848 + }, + { + "start": 15866.82, + "end": 15872.26, + "probability": 0.8743 + }, + { + "start": 15876.08, + "end": 15879.82, + "probability": 0.5014 + }, + { + "start": 15879.9, + "end": 15881.96, + "probability": 0.1112 + }, + { + "start": 15882.3, + "end": 15883.52, + "probability": 0.631 + }, + { + "start": 15883.72, + "end": 15887.48, + "probability": 0.95 + }, + { + "start": 15887.54, + "end": 15888.2, + "probability": 0.2959 + }, + { + "start": 15888.48, + "end": 15891.5, + "probability": 0.9682 + }, + { + "start": 15891.66, + "end": 15892.34, + "probability": 0.6529 + }, + { + "start": 15895.9, + "end": 15896.34, + "probability": 0.1114 + }, + { + "start": 15904.15, + "end": 15905.4, + "probability": 0.0297 + }, + { + "start": 15906.3, + "end": 15910.28, + "probability": 0.9048 + }, + { + "start": 15910.62, + "end": 15911.22, + "probability": 0.1789 + }, + { + "start": 15911.22, + "end": 15912.27, + "probability": 0.4196 + }, + { + "start": 15912.68, + "end": 15914.12, + "probability": 0.6157 + }, + { + "start": 15914.56, + "end": 15915.15, + "probability": 0.0354 + }, + { + "start": 15915.4, + "end": 15915.4, + "probability": 0.4814 + }, + { + "start": 15916.36, + "end": 15918.84, + "probability": 0.7701 + }, + { + "start": 15919.0, + "end": 15919.58, + "probability": 0.1708 + }, + { + "start": 15919.64, + "end": 15922.6, + "probability": 0.9663 + }, + { + "start": 15922.92, + "end": 15925.34, + "probability": 0.1039 + }, + { + "start": 15925.68, + "end": 15926.74, + "probability": 0.0349 + }, + { + "start": 15926.98, + "end": 15928.36, + "probability": 0.2726 + }, + { + "start": 15928.58, + "end": 15930.76, + "probability": 0.2864 + }, + { + "start": 15930.88, + "end": 15936.08, + "probability": 0.9866 + }, + { + "start": 15937.3, + "end": 15937.36, + "probability": 0.4344 + }, + { + "start": 15938.11, + "end": 15940.72, + "probability": 0.7274 + }, + { + "start": 15940.8, + "end": 15941.62, + "probability": 0.9034 + }, + { + "start": 15941.86, + "end": 15943.61, + "probability": 0.3508 + }, + { + "start": 15944.02, + "end": 15946.4, + "probability": 0.4304 + }, + { + "start": 15946.4, + "end": 15947.3, + "probability": 0.8342 + }, + { + "start": 15947.48, + "end": 15948.08, + "probability": 0.6985 + }, + { + "start": 15948.08, + "end": 15950.22, + "probability": 0.4485 + }, + { + "start": 15950.82, + "end": 15951.64, + "probability": 0.5832 + }, + { + "start": 15951.7, + "end": 15956.84, + "probability": 0.7668 + }, + { + "start": 15959.46, + "end": 15964.36, + "probability": 0.799 + }, + { + "start": 15965.56, + "end": 15969.12, + "probability": 0.9879 + }, + { + "start": 15969.34, + "end": 15970.88, + "probability": 0.8362 + }, + { + "start": 15971.0, + "end": 15971.4, + "probability": 0.9583 + }, + { + "start": 15971.56, + "end": 15974.6, + "probability": 0.9509 + }, + { + "start": 15975.66, + "end": 15978.02, + "probability": 0.943 + }, + { + "start": 15978.02, + "end": 15980.68, + "probability": 0.9944 + }, + { + "start": 15981.86, + "end": 15987.42, + "probability": 0.9139 + }, + { + "start": 15987.58, + "end": 15993.5, + "probability": 0.8695 + }, + { + "start": 15993.54, + "end": 15994.34, + "probability": 0.7655 + }, + { + "start": 15994.42, + "end": 15995.32, + "probability": 0.8927 + }, + { + "start": 15995.4, + "end": 15997.08, + "probability": 0.79 + }, + { + "start": 15997.68, + "end": 16005.38, + "probability": 0.9817 + }, + { + "start": 16005.48, + "end": 16006.42, + "probability": 0.8805 + }, + { + "start": 16008.08, + "end": 16012.56, + "probability": 0.9875 + }, + { + "start": 16012.56, + "end": 16016.46, + "probability": 0.9947 + }, + { + "start": 16017.38, + "end": 16023.88, + "probability": 0.992 + }, + { + "start": 16025.28, + "end": 16028.0, + "probability": 0.9956 + }, + { + "start": 16028.38, + "end": 16031.64, + "probability": 0.996 + }, + { + "start": 16031.64, + "end": 16035.78, + "probability": 0.9526 + }, + { + "start": 16035.96, + "end": 16039.44, + "probability": 0.9938 + }, + { + "start": 16040.64, + "end": 16049.02, + "probability": 0.9986 + }, + { + "start": 16050.22, + "end": 16051.38, + "probability": 0.9461 + }, + { + "start": 16051.96, + "end": 16054.02, + "probability": 0.992 + }, + { + "start": 16054.68, + "end": 16058.44, + "probability": 0.9872 + }, + { + "start": 16058.56, + "end": 16058.76, + "probability": 0.6747 + }, + { + "start": 16060.22, + "end": 16063.14, + "probability": 0.7458 + }, + { + "start": 16063.48, + "end": 16064.1, + "probability": 0.6746 + }, + { + "start": 16064.16, + "end": 16064.62, + "probability": 0.9183 + }, + { + "start": 16064.68, + "end": 16067.06, + "probability": 0.7467 + }, + { + "start": 16068.02, + "end": 16069.88, + "probability": 0.8534 + }, + { + "start": 16072.72, + "end": 16073.42, + "probability": 0.2262 + }, + { + "start": 16073.96, + "end": 16077.78, + "probability": 0.8157 + }, + { + "start": 16090.02, + "end": 16092.9, + "probability": 0.8342 + }, + { + "start": 16093.58, + "end": 16095.96, + "probability": 0.7839 + }, + { + "start": 16097.88, + "end": 16101.96, + "probability": 0.9943 + }, + { + "start": 16102.0, + "end": 16104.34, + "probability": 0.9915 + }, + { + "start": 16106.06, + "end": 16108.9, + "probability": 0.9427 + }, + { + "start": 16109.7, + "end": 16114.38, + "probability": 0.7989 + }, + { + "start": 16114.54, + "end": 16117.92, + "probability": 0.9307 + }, + { + "start": 16118.76, + "end": 16121.54, + "probability": 0.9381 + }, + { + "start": 16122.04, + "end": 16126.78, + "probability": 0.8826 + }, + { + "start": 16127.84, + "end": 16129.02, + "probability": 0.9876 + }, + { + "start": 16129.1, + "end": 16130.31, + "probability": 0.9749 + }, + { + "start": 16130.96, + "end": 16133.88, + "probability": 0.8005 + }, + { + "start": 16134.02, + "end": 16135.66, + "probability": 0.8115 + }, + { + "start": 16136.56, + "end": 16137.56, + "probability": 0.9788 + }, + { + "start": 16138.68, + "end": 16141.88, + "probability": 0.9681 + }, + { + "start": 16141.98, + "end": 16146.52, + "probability": 0.826 + }, + { + "start": 16146.56, + "end": 16150.96, + "probability": 0.9866 + }, + { + "start": 16151.56, + "end": 16154.52, + "probability": 0.9849 + }, + { + "start": 16154.78, + "end": 16156.36, + "probability": 0.7818 + }, + { + "start": 16156.6, + "end": 16157.44, + "probability": 0.637 + }, + { + "start": 16157.44, + "end": 16159.3, + "probability": 0.3172 + }, + { + "start": 16160.4, + "end": 16160.4, + "probability": 0.0823 + }, + { + "start": 16160.4, + "end": 16160.58, + "probability": 0.0478 + }, + { + "start": 16160.58, + "end": 16161.72, + "probability": 0.5179 + }, + { + "start": 16162.26, + "end": 16164.72, + "probability": 0.9821 + }, + { + "start": 16164.76, + "end": 16166.88, + "probability": 0.9556 + }, + { + "start": 16167.02, + "end": 16168.56, + "probability": 0.9956 + }, + { + "start": 16169.44, + "end": 16171.2, + "probability": 0.9928 + }, + { + "start": 16171.82, + "end": 16175.82, + "probability": 0.7162 + }, + { + "start": 16176.22, + "end": 16178.06, + "probability": 0.9925 + }, + { + "start": 16178.06, + "end": 16181.4, + "probability": 0.9631 + }, + { + "start": 16183.0, + "end": 16186.12, + "probability": 0.9949 + }, + { + "start": 16186.12, + "end": 16191.04, + "probability": 0.9909 + }, + { + "start": 16191.22, + "end": 16193.2, + "probability": 0.998 + }, + { + "start": 16193.34, + "end": 16195.38, + "probability": 0.9982 + }, + { + "start": 16195.84, + "end": 16196.8, + "probability": 0.8657 + }, + { + "start": 16196.88, + "end": 16197.28, + "probability": 0.6969 + }, + { + "start": 16197.34, + "end": 16199.9, + "probability": 0.9923 + }, + { + "start": 16200.54, + "end": 16202.06, + "probability": 0.7818 + }, + { + "start": 16202.16, + "end": 16205.2, + "probability": 0.9988 + }, + { + "start": 16205.2, + "end": 16209.38, + "probability": 0.9988 + }, + { + "start": 16209.46, + "end": 16213.6, + "probability": 0.9079 + }, + { + "start": 16214.04, + "end": 16216.7, + "probability": 0.461 + }, + { + "start": 16217.0, + "end": 16218.08, + "probability": 0.8327 + }, + { + "start": 16218.24, + "end": 16221.84, + "probability": 0.9896 + }, + { + "start": 16222.64, + "end": 16227.74, + "probability": 0.9831 + }, + { + "start": 16228.08, + "end": 16230.84, + "probability": 0.9697 + }, + { + "start": 16230.9, + "end": 16232.88, + "probability": 0.9974 + }, + { + "start": 16232.88, + "end": 16236.18, + "probability": 0.9644 + }, + { + "start": 16236.26, + "end": 16236.48, + "probability": 0.7845 + }, + { + "start": 16236.54, + "end": 16237.2, + "probability": 0.884 + }, + { + "start": 16237.4, + "end": 16239.48, + "probability": 0.7642 + }, + { + "start": 16239.48, + "end": 16241.54, + "probability": 0.9766 + }, + { + "start": 16241.68, + "end": 16242.46, + "probability": 0.8878 + }, + { + "start": 16242.54, + "end": 16244.6, + "probability": 0.8592 + }, + { + "start": 16244.7, + "end": 16248.1, + "probability": 0.9943 + }, + { + "start": 16248.3, + "end": 16253.54, + "probability": 0.9966 + }, + { + "start": 16253.58, + "end": 16254.34, + "probability": 0.5811 + }, + { + "start": 16254.76, + "end": 16258.02, + "probability": 0.9744 + }, + { + "start": 16258.38, + "end": 16261.24, + "probability": 0.9622 + }, + { + "start": 16261.92, + "end": 16265.02, + "probability": 0.833 + }, + { + "start": 16265.34, + "end": 16267.16, + "probability": 0.955 + }, + { + "start": 16267.44, + "end": 16269.66, + "probability": 0.9729 + }, + { + "start": 16269.66, + "end": 16271.96, + "probability": 0.8644 + }, + { + "start": 16272.06, + "end": 16273.66, + "probability": 0.8821 + }, + { + "start": 16273.9, + "end": 16275.49, + "probability": 0.8982 + }, + { + "start": 16276.26, + "end": 16276.77, + "probability": 0.5563 + }, + { + "start": 16277.64, + "end": 16278.76, + "probability": 0.9973 + }, + { + "start": 16279.18, + "end": 16284.2, + "probability": 0.9764 + }, + { + "start": 16284.52, + "end": 16287.4, + "probability": 0.9897 + }, + { + "start": 16287.84, + "end": 16289.74, + "probability": 0.867 + }, + { + "start": 16289.74, + "end": 16290.12, + "probability": 0.6039 + }, + { + "start": 16290.12, + "end": 16290.14, + "probability": 0.2655 + }, + { + "start": 16290.14, + "end": 16292.86, + "probability": 0.7276 + }, + { + "start": 16292.92, + "end": 16296.32, + "probability": 0.8984 + }, + { + "start": 16296.6, + "end": 16296.82, + "probability": 0.7848 + }, + { + "start": 16297.1, + "end": 16297.72, + "probability": 0.8383 + }, + { + "start": 16298.3, + "end": 16299.96, + "probability": 0.9496 + }, + { + "start": 16300.08, + "end": 16300.48, + "probability": 0.5893 + }, + { + "start": 16300.8, + "end": 16302.46, + "probability": 0.5269 + }, + { + "start": 16302.86, + "end": 16304.84, + "probability": 0.8016 + }, + { + "start": 16309.48, + "end": 16314.46, + "probability": 0.4211 + }, + { + "start": 16314.52, + "end": 16316.86, + "probability": 0.6282 + }, + { + "start": 16317.62, + "end": 16319.78, + "probability": 0.9648 + }, + { + "start": 16321.9, + "end": 16325.28, + "probability": 0.9832 + }, + { + "start": 16326.48, + "end": 16328.16, + "probability": 0.9901 + }, + { + "start": 16328.9, + "end": 16332.0, + "probability": 0.9915 + }, + { + "start": 16333.72, + "end": 16338.36, + "probability": 0.9862 + }, + { + "start": 16338.6, + "end": 16343.38, + "probability": 0.97 + }, + { + "start": 16344.18, + "end": 16348.2, + "probability": 0.9922 + }, + { + "start": 16348.94, + "end": 16351.08, + "probability": 0.971 + }, + { + "start": 16351.76, + "end": 16354.86, + "probability": 0.9946 + }, + { + "start": 16354.86, + "end": 16358.86, + "probability": 0.8796 + }, + { + "start": 16359.56, + "end": 16361.8, + "probability": 0.7612 + }, + { + "start": 16362.22, + "end": 16366.26, + "probability": 0.9592 + }, + { + "start": 16366.86, + "end": 16372.86, + "probability": 0.9126 + }, + { + "start": 16372.96, + "end": 16374.14, + "probability": 0.8993 + }, + { + "start": 16374.76, + "end": 16376.28, + "probability": 0.9783 + }, + { + "start": 16376.8, + "end": 16379.96, + "probability": 0.9546 + }, + { + "start": 16380.04, + "end": 16381.04, + "probability": 0.9772 + }, + { + "start": 16381.12, + "end": 16382.52, + "probability": 0.9187 + }, + { + "start": 16383.1, + "end": 16386.76, + "probability": 0.922 + }, + { + "start": 16386.9, + "end": 16387.44, + "probability": 0.3617 + }, + { + "start": 16388.18, + "end": 16392.12, + "probability": 0.9572 + }, + { + "start": 16392.58, + "end": 16394.16, + "probability": 0.8661 + }, + { + "start": 16395.02, + "end": 16398.78, + "probability": 0.9896 + }, + { + "start": 16399.46, + "end": 16402.42, + "probability": 0.9797 + }, + { + "start": 16402.42, + "end": 16405.98, + "probability": 0.802 + }, + { + "start": 16406.58, + "end": 16409.74, + "probability": 0.9968 + }, + { + "start": 16410.58, + "end": 16410.88, + "probability": 0.764 + }, + { + "start": 16411.88, + "end": 16412.48, + "probability": 0.7677 + }, + { + "start": 16413.36, + "end": 16415.4, + "probability": 0.9752 + }, + { + "start": 16415.78, + "end": 16418.27, + "probability": 0.1412 + }, + { + "start": 16418.78, + "end": 16419.56, + "probability": 0.6553 + }, + { + "start": 16419.92, + "end": 16421.3, + "probability": 0.2079 + }, + { + "start": 16421.82, + "end": 16425.26, + "probability": 0.3174 + }, + { + "start": 16429.2, + "end": 16430.4, + "probability": 0.3907 + }, + { + "start": 16430.64, + "end": 16435.19, + "probability": 0.7417 + }, + { + "start": 16437.04, + "end": 16439.03, + "probability": 0.6897 + }, + { + "start": 16440.34, + "end": 16440.98, + "probability": 0.8149 + }, + { + "start": 16441.22, + "end": 16441.86, + "probability": 0.6929 + }, + { + "start": 16442.32, + "end": 16444.78, + "probability": 0.6702 + }, + { + "start": 16445.38, + "end": 16450.08, + "probability": 0.8823 + }, + { + "start": 16450.1, + "end": 16454.62, + "probability": 0.9932 + }, + { + "start": 16456.6, + "end": 16457.48, + "probability": 0.669 + }, + { + "start": 16457.8, + "end": 16462.38, + "probability": 0.9926 + }, + { + "start": 16464.0, + "end": 16464.82, + "probability": 0.4957 + }, + { + "start": 16464.82, + "end": 16464.82, + "probability": 0.7652 + }, + { + "start": 16464.94, + "end": 16468.66, + "probability": 0.8481 + }, + { + "start": 16468.74, + "end": 16469.62, + "probability": 0.8508 + }, + { + "start": 16469.94, + "end": 16471.2, + "probability": 0.8686 + }, + { + "start": 16471.42, + "end": 16474.44, + "probability": 0.9387 + }, + { + "start": 16475.0, + "end": 16478.98, + "probability": 0.7954 + }, + { + "start": 16479.7, + "end": 16483.54, + "probability": 0.6133 + }, + { + "start": 16484.76, + "end": 16486.88, + "probability": 0.7841 + }, + { + "start": 16487.64, + "end": 16491.38, + "probability": 0.9552 + }, + { + "start": 16491.38, + "end": 16496.78, + "probability": 0.8805 + }, + { + "start": 16497.1, + "end": 16501.18, + "probability": 0.9943 + }, + { + "start": 16501.4, + "end": 16503.98, + "probability": 0.9219 + }, + { + "start": 16505.12, + "end": 16507.82, + "probability": 0.9672 + }, + { + "start": 16508.66, + "end": 16516.34, + "probability": 0.9873 + }, + { + "start": 16517.32, + "end": 16525.88, + "probability": 0.992 + }, + { + "start": 16525.88, + "end": 16531.3, + "probability": 0.999 + }, + { + "start": 16531.3, + "end": 16536.54, + "probability": 0.9987 + }, + { + "start": 16537.2, + "end": 16538.82, + "probability": 0.9029 + }, + { + "start": 16539.3, + "end": 16542.24, + "probability": 0.995 + }, + { + "start": 16543.02, + "end": 16546.0, + "probability": 0.8579 + }, + { + "start": 16546.62, + "end": 16547.32, + "probability": 0.781 + }, + { + "start": 16548.74, + "end": 16551.72, + "probability": 0.7217 + }, + { + "start": 16551.82, + "end": 16551.82, + "probability": 0.5362 + }, + { + "start": 16551.82, + "end": 16558.64, + "probability": 0.7961 + }, + { + "start": 16558.7, + "end": 16565.54, + "probability": 0.8862 + }, + { + "start": 16565.74, + "end": 16565.74, + "probability": 0.0581 + }, + { + "start": 16565.74, + "end": 16571.36, + "probability": 0.854 + }, + { + "start": 16572.42, + "end": 16574.09, + "probability": 0.9946 + }, + { + "start": 16574.7, + "end": 16581.22, + "probability": 0.9153 + }, + { + "start": 16581.86, + "end": 16582.86, + "probability": 0.7308 + }, + { + "start": 16583.84, + "end": 16584.46, + "probability": 0.5526 + }, + { + "start": 16585.34, + "end": 16589.78, + "probability": 0.9444 + }, + { + "start": 16590.52, + "end": 16595.02, + "probability": 0.9528 + }, + { + "start": 16595.08, + "end": 16596.86, + "probability": 0.9537 + }, + { + "start": 16597.64, + "end": 16600.26, + "probability": 0.9304 + }, + { + "start": 16600.74, + "end": 16603.08, + "probability": 0.998 + }, + { + "start": 16603.08, + "end": 16606.68, + "probability": 0.937 + }, + { + "start": 16607.06, + "end": 16614.74, + "probability": 0.9445 + }, + { + "start": 16615.32, + "end": 16619.14, + "probability": 0.9744 + }, + { + "start": 16619.72, + "end": 16621.04, + "probability": 0.8374 + }, + { + "start": 16621.76, + "end": 16624.97, + "probability": 0.9783 + }, + { + "start": 16625.8, + "end": 16628.12, + "probability": 0.9976 + }, + { + "start": 16628.42, + "end": 16631.8, + "probability": 0.9082 + }, + { + "start": 16632.62, + "end": 16636.98, + "probability": 0.9972 + }, + { + "start": 16637.54, + "end": 16639.78, + "probability": 0.9917 + }, + { + "start": 16640.54, + "end": 16644.3, + "probability": 0.8198 + }, + { + "start": 16644.3, + "end": 16648.6, + "probability": 0.9966 + }, + { + "start": 16649.3, + "end": 16651.94, + "probability": 0.9958 + }, + { + "start": 16651.94, + "end": 16653.23, + "probability": 0.988 + }, + { + "start": 16653.6, + "end": 16659.68, + "probability": 0.9986 + }, + { + "start": 16659.68, + "end": 16666.8, + "probability": 0.9843 + }, + { + "start": 16668.0, + "end": 16670.04, + "probability": 0.8853 + }, + { + "start": 16670.74, + "end": 16672.54, + "probability": 0.9559 + }, + { + "start": 16673.28, + "end": 16674.1, + "probability": 0.2629 + }, + { + "start": 16675.08, + "end": 16679.72, + "probability": 0.9953 + }, + { + "start": 16680.38, + "end": 16681.14, + "probability": 0.0331 + }, + { + "start": 16681.5, + "end": 16683.31, + "probability": 0.7933 + }, + { + "start": 16683.82, + "end": 16685.14, + "probability": 0.9421 + }, + { + "start": 16685.58, + "end": 16690.36, + "probability": 0.9482 + }, + { + "start": 16691.66, + "end": 16692.66, + "probability": 0.8657 + }, + { + "start": 16693.24, + "end": 16695.34, + "probability": 0.8945 + }, + { + "start": 16695.76, + "end": 16696.88, + "probability": 0.836 + }, + { + "start": 16696.9, + "end": 16698.24, + "probability": 0.9149 + }, + { + "start": 16699.0, + "end": 16706.66, + "probability": 0.9845 + }, + { + "start": 16707.26, + "end": 16709.92, + "probability": 0.9981 + }, + { + "start": 16710.38, + "end": 16711.16, + "probability": 0.9759 + }, + { + "start": 16711.86, + "end": 16712.84, + "probability": 0.9409 + }, + { + "start": 16713.24, + "end": 16715.08, + "probability": 0.9478 + }, + { + "start": 16715.68, + "end": 16718.52, + "probability": 0.9021 + }, + { + "start": 16719.12, + "end": 16720.52, + "probability": 0.9526 + }, + { + "start": 16721.06, + "end": 16724.06, + "probability": 0.9287 + }, + { + "start": 16725.4, + "end": 16731.96, + "probability": 0.9868 + }, + { + "start": 16732.4, + "end": 16733.81, + "probability": 0.9803 + }, + { + "start": 16734.54, + "end": 16736.52, + "probability": 0.7337 + }, + { + "start": 16736.64, + "end": 16736.88, + "probability": 0.7628 + }, + { + "start": 16737.5, + "end": 16738.22, + "probability": 0.7273 + }, + { + "start": 16738.44, + "end": 16739.36, + "probability": 0.8518 + }, + { + "start": 16739.44, + "end": 16741.6, + "probability": 0.9261 + }, + { + "start": 16743.16, + "end": 16744.39, + "probability": 0.7441 + }, + { + "start": 16745.18, + "end": 16746.4, + "probability": 0.7007 + }, + { + "start": 16746.5, + "end": 16747.04, + "probability": 0.7511 + }, + { + "start": 16747.22, + "end": 16747.84, + "probability": 0.5272 + }, + { + "start": 16748.1, + "end": 16749.02, + "probability": 0.8637 + }, + { + "start": 16750.08, + "end": 16751.58, + "probability": 0.79 + }, + { + "start": 16762.12, + "end": 16765.14, + "probability": 0.8703 + }, + { + "start": 16765.26, + "end": 16767.2, + "probability": 0.9941 + }, + { + "start": 16767.3, + "end": 16770.96, + "probability": 0.9525 + }, + { + "start": 16772.0, + "end": 16777.4, + "probability": 0.9922 + }, + { + "start": 16777.5, + "end": 16778.1, + "probability": 0.8489 + }, + { + "start": 16778.84, + "end": 16780.46, + "probability": 0.4151 + }, + { + "start": 16780.58, + "end": 16784.03, + "probability": 0.9814 + }, + { + "start": 16784.78, + "end": 16786.49, + "probability": 0.8963 + }, + { + "start": 16787.22, + "end": 16789.46, + "probability": 0.8288 + }, + { + "start": 16790.26, + "end": 16793.56, + "probability": 0.8892 + }, + { + "start": 16793.56, + "end": 16797.94, + "probability": 0.9567 + }, + { + "start": 16798.5, + "end": 16805.26, + "probability": 0.8853 + }, + { + "start": 16806.26, + "end": 16808.68, + "probability": 0.9586 + }, + { + "start": 16808.88, + "end": 16814.1, + "probability": 0.9849 + }, + { + "start": 16814.42, + "end": 16821.14, + "probability": 0.945 + }, + { + "start": 16821.62, + "end": 16826.28, + "probability": 0.9625 + }, + { + "start": 16826.56, + "end": 16830.0, + "probability": 0.9548 + }, + { + "start": 16830.3, + "end": 16835.84, + "probability": 0.9626 + }, + { + "start": 16836.4, + "end": 16842.36, + "probability": 0.9907 + }, + { + "start": 16842.78, + "end": 16843.38, + "probability": 0.5332 + }, + { + "start": 16843.6, + "end": 16846.1, + "probability": 0.7225 + }, + { + "start": 16846.76, + "end": 16847.38, + "probability": 0.7994 + }, + { + "start": 16848.1, + "end": 16853.65, + "probability": 0.9719 + }, + { + "start": 16853.88, + "end": 16857.34, + "probability": 0.9019 + }, + { + "start": 16857.86, + "end": 16860.86, + "probability": 0.764 + }, + { + "start": 16861.14, + "end": 16862.22, + "probability": 0.8648 + }, + { + "start": 16862.22, + "end": 16865.8, + "probability": 0.9884 + }, + { + "start": 16866.56, + "end": 16870.8, + "probability": 0.9941 + }, + { + "start": 16874.9, + "end": 16875.36, + "probability": 0.3858 + }, + { + "start": 16876.18, + "end": 16877.42, + "probability": 0.8676 + }, + { + "start": 16880.63, + "end": 16884.05, + "probability": 0.4398 + }, + { + "start": 16884.7, + "end": 16886.13, + "probability": 0.6921 + }, + { + "start": 16889.98, + "end": 16893.38, + "probability": 0.769 + }, + { + "start": 16893.52, + "end": 16895.62, + "probability": 0.0029 + }, + { + "start": 16897.9, + "end": 16898.6, + "probability": 0.1148 + }, + { + "start": 16898.6, + "end": 16901.38, + "probability": 0.2189 + }, + { + "start": 16901.82, + "end": 16903.08, + "probability": 0.7825 + }, + { + "start": 16903.16, + "end": 16906.51, + "probability": 0.9594 + }, + { + "start": 16907.34, + "end": 16909.04, + "probability": 0.6976 + }, + { + "start": 16909.36, + "end": 16911.3, + "probability": 0.9515 + }, + { + "start": 16911.4, + "end": 16913.2, + "probability": 0.972 + }, + { + "start": 16913.28, + "end": 16913.68, + "probability": 0.7173 + }, + { + "start": 16914.26, + "end": 16914.88, + "probability": 0.861 + }, + { + "start": 16915.56, + "end": 16916.86, + "probability": 0.9689 + }, + { + "start": 16917.0, + "end": 16918.32, + "probability": 0.9912 + }, + { + "start": 16918.44, + "end": 16919.74, + "probability": 0.7677 + }, + { + "start": 16920.46, + "end": 16921.1, + "probability": 0.7298 + }, + { + "start": 16921.48, + "end": 16923.82, + "probability": 0.7693 + }, + { + "start": 16924.82, + "end": 16927.16, + "probability": 0.6341 + }, + { + "start": 16927.6, + "end": 16928.74, + "probability": 0.8325 + }, + { + "start": 16929.66, + "end": 16931.4, + "probability": 0.9287 + }, + { + "start": 16932.6, + "end": 16934.28, + "probability": 0.8933 + }, + { + "start": 16954.48, + "end": 16954.88, + "probability": 0.4121 + }, + { + "start": 16954.88, + "end": 16957.84, + "probability": 0.6484 + }, + { + "start": 16958.9, + "end": 16964.0, + "probability": 0.9921 + }, + { + "start": 16964.0, + "end": 16969.08, + "probability": 0.9977 + }, + { + "start": 16970.02, + "end": 16970.64, + "probability": 0.916 + }, + { + "start": 16971.46, + "end": 16974.66, + "probability": 0.919 + }, + { + "start": 16974.92, + "end": 16979.9, + "probability": 0.9722 + }, + { + "start": 16980.04, + "end": 16983.02, + "probability": 0.9904 + }, + { + "start": 16984.0, + "end": 16985.12, + "probability": 0.8478 + }, + { + "start": 16985.64, + "end": 16987.98, + "probability": 0.9674 + }, + { + "start": 16988.54, + "end": 16991.24, + "probability": 0.991 + }, + { + "start": 16992.36, + "end": 16992.36, + "probability": 0.0519 + }, + { + "start": 16992.58, + "end": 16993.82, + "probability": 0.9521 + }, + { + "start": 16993.94, + "end": 16996.82, + "probability": 0.9413 + }, + { + "start": 16997.76, + "end": 17003.7, + "probability": 0.9851 + }, + { + "start": 17004.36, + "end": 17005.74, + "probability": 0.9277 + }, + { + "start": 17006.32, + "end": 17008.66, + "probability": 0.0228 + }, + { + "start": 17008.66, + "end": 17012.4, + "probability": 0.8686 + }, + { + "start": 17012.7, + "end": 17013.44, + "probability": 0.6238 + }, + { + "start": 17014.42, + "end": 17019.28, + "probability": 0.967 + }, + { + "start": 17019.28, + "end": 17021.98, + "probability": 0.9794 + }, + { + "start": 17022.86, + "end": 17026.78, + "probability": 0.9941 + }, + { + "start": 17027.0, + "end": 17028.14, + "probability": 0.8556 + }, + { + "start": 17028.44, + "end": 17031.6, + "probability": 0.8985 + }, + { + "start": 17032.28, + "end": 17032.54, + "probability": 0.5301 + }, + { + "start": 17032.66, + "end": 17033.56, + "probability": 0.8307 + }, + { + "start": 17033.78, + "end": 17035.76, + "probability": 0.8794 + }, + { + "start": 17035.86, + "end": 17039.0, + "probability": 0.9753 + }, + { + "start": 17040.12, + "end": 17043.75, + "probability": 0.9841 + }, + { + "start": 17043.84, + "end": 17045.44, + "probability": 0.9956 + }, + { + "start": 17046.02, + "end": 17048.04, + "probability": 0.9819 + }, + { + "start": 17048.84, + "end": 17052.18, + "probability": 0.9863 + }, + { + "start": 17052.72, + "end": 17054.04, + "probability": 0.9567 + }, + { + "start": 17054.4, + "end": 17055.36, + "probability": 0.9132 + }, + { + "start": 17055.66, + "end": 17056.72, + "probability": 0.9121 + }, + { + "start": 17058.55, + "end": 17060.02, + "probability": 0.9341 + }, + { + "start": 17060.02, + "end": 17060.68, + "probability": 0.9243 + }, + { + "start": 17060.74, + "end": 17062.6, + "probability": 0.9648 + }, + { + "start": 17062.82, + "end": 17064.66, + "probability": 0.9935 + }, + { + "start": 17065.44, + "end": 17066.94, + "probability": 0.9944 + }, + { + "start": 17068.1, + "end": 17073.86, + "probability": 0.9849 + }, + { + "start": 17074.2, + "end": 17075.18, + "probability": 0.834 + }, + { + "start": 17075.26, + "end": 17076.04, + "probability": 0.6872 + }, + { + "start": 17076.12, + "end": 17077.9, + "probability": 0.6007 + }, + { + "start": 17077.9, + "end": 17078.7, + "probability": 0.7479 + }, + { + "start": 17082.2, + "end": 17085.68, + "probability": 0.9891 + }, + { + "start": 17085.74, + "end": 17089.08, + "probability": 0.9955 + }, + { + "start": 17089.58, + "end": 17090.43, + "probability": 0.7773 + }, + { + "start": 17091.08, + "end": 17093.44, + "probability": 0.8703 + }, + { + "start": 17093.58, + "end": 17095.76, + "probability": 0.9596 + }, + { + "start": 17095.96, + "end": 17100.84, + "probability": 0.871 + }, + { + "start": 17101.92, + "end": 17102.34, + "probability": 0.0068 + }, + { + "start": 17103.46, + "end": 17108.28, + "probability": 0.915 + }, + { + "start": 17108.28, + "end": 17113.3, + "probability": 0.9754 + }, + { + "start": 17113.38, + "end": 17114.1, + "probability": 0.8604 + }, + { + "start": 17114.48, + "end": 17117.84, + "probability": 0.7546 + }, + { + "start": 17118.32, + "end": 17119.16, + "probability": 0.82 + }, + { + "start": 17119.22, + "end": 17119.58, + "probability": 0.6589 + }, + { + "start": 17120.04, + "end": 17127.62, + "probability": 0.9081 + }, + { + "start": 17128.12, + "end": 17132.58, + "probability": 0.9449 + }, + { + "start": 17133.12, + "end": 17136.28, + "probability": 0.7517 + }, + { + "start": 17136.36, + "end": 17137.52, + "probability": 0.7956 + }, + { + "start": 17138.14, + "end": 17141.32, + "probability": 0.9941 + }, + { + "start": 17141.32, + "end": 17144.32, + "probability": 0.9956 + }, + { + "start": 17144.42, + "end": 17149.04, + "probability": 0.9925 + }, + { + "start": 17149.88, + "end": 17152.66, + "probability": 0.9965 + }, + { + "start": 17153.72, + "end": 17159.92, + "probability": 0.8854 + }, + { + "start": 17161.14, + "end": 17163.48, + "probability": 0.9937 + }, + { + "start": 17164.04, + "end": 17165.24, + "probability": 0.8888 + }, + { + "start": 17165.64, + "end": 17170.4, + "probability": 0.9855 + }, + { + "start": 17170.7, + "end": 17174.32, + "probability": 0.9934 + }, + { + "start": 17174.86, + "end": 17179.9, + "probability": 0.9903 + }, + { + "start": 17180.5, + "end": 17182.54, + "probability": 0.9529 + }, + { + "start": 17182.98, + "end": 17185.46, + "probability": 0.4491 + }, + { + "start": 17186.58, + "end": 17187.64, + "probability": 0.1511 + }, + { + "start": 17188.88, + "end": 17197.9, + "probability": 0.982 + }, + { + "start": 17199.14, + "end": 17199.7, + "probability": 0.7129 + }, + { + "start": 17200.22, + "end": 17201.58, + "probability": 0.8752 + }, + { + "start": 17203.2, + "end": 17205.68, + "probability": 0.9623 + }, + { + "start": 17206.8, + "end": 17207.88, + "probability": 0.7075 + }, + { + "start": 17208.74, + "end": 17210.0, + "probability": 0.9312 + }, + { + "start": 17220.58, + "end": 17221.96, + "probability": 0.8912 + }, + { + "start": 17221.96, + "end": 17223.14, + "probability": 0.998 + }, + { + "start": 17223.22, + "end": 17225.78, + "probability": 0.9653 + }, + { + "start": 17226.24, + "end": 17227.27, + "probability": 0.9797 + }, + { + "start": 17228.9, + "end": 17229.52, + "probability": 0.7901 + }, + { + "start": 17233.86, + "end": 17242.85, + "probability": 0.9035 + }, + { + "start": 17243.73, + "end": 17251.24, + "probability": 0.7114 + }, + { + "start": 17252.44, + "end": 17254.24, + "probability": 0.9985 + }, + { + "start": 17256.63, + "end": 17261.57, + "probability": 0.8939 + }, + { + "start": 17263.1, + "end": 17265.06, + "probability": 0.882 + }, + { + "start": 17265.38, + "end": 17266.48, + "probability": 0.9873 + }, + { + "start": 17267.36, + "end": 17275.52, + "probability": 0.9708 + }, + { + "start": 17275.68, + "end": 17276.7, + "probability": 0.7895 + }, + { + "start": 17277.28, + "end": 17278.78, + "probability": 0.4003 + }, + { + "start": 17279.36, + "end": 17281.64, + "probability": 0.8559 + }, + { + "start": 17283.52, + "end": 17291.28, + "probability": 0.964 + }, + { + "start": 17291.46, + "end": 17292.18, + "probability": 0.5948 + }, + { + "start": 17292.3, + "end": 17292.82, + "probability": 0.3536 + }, + { + "start": 17294.5, + "end": 17298.84, + "probability": 0.998 + }, + { + "start": 17299.9, + "end": 17302.82, + "probability": 0.8398 + }, + { + "start": 17303.12, + "end": 17308.34, + "probability": 0.9916 + }, + { + "start": 17308.74, + "end": 17310.69, + "probability": 0.6308 + }, + { + "start": 17311.22, + "end": 17314.0, + "probability": 0.7135 + }, + { + "start": 17314.08, + "end": 17317.56, + "probability": 0.9853 + }, + { + "start": 17318.08, + "end": 17324.82, + "probability": 0.9871 + }, + { + "start": 17325.6, + "end": 17327.84, + "probability": 0.8232 + }, + { + "start": 17328.86, + "end": 17330.56, + "probability": 0.8201 + }, + { + "start": 17331.04, + "end": 17336.78, + "probability": 0.9309 + }, + { + "start": 17337.06, + "end": 17337.58, + "probability": 0.8331 + }, + { + "start": 17338.62, + "end": 17339.7, + "probability": 0.6308 + }, + { + "start": 17340.7, + "end": 17346.18, + "probability": 0.9291 + }, + { + "start": 17346.18, + "end": 17350.76, + "probability": 0.9378 + }, + { + "start": 17351.92, + "end": 17352.12, + "probability": 0.5767 + }, + { + "start": 17352.64, + "end": 17354.82, + "probability": 0.5 + }, + { + "start": 17355.64, + "end": 17359.26, + "probability": 0.9187 + }, + { + "start": 17359.28, + "end": 17365.84, + "probability": 0.8928 + }, + { + "start": 17366.34, + "end": 17367.24, + "probability": 0.5697 + }, + { + "start": 17368.0, + "end": 17369.82, + "probability": 0.8139 + }, + { + "start": 17369.92, + "end": 17372.37, + "probability": 0.9946 + }, + { + "start": 17373.84, + "end": 17376.36, + "probability": 0.9381 + }, + { + "start": 17377.88, + "end": 17379.8, + "probability": 0.9741 + }, + { + "start": 17380.34, + "end": 17381.21, + "probability": 0.5588 + }, + { + "start": 17381.58, + "end": 17383.62, + "probability": 0.8693 + }, + { + "start": 17384.36, + "end": 17384.9, + "probability": 0.5888 + }, + { + "start": 17386.1, + "end": 17388.48, + "probability": 0.9785 + }, + { + "start": 17389.32, + "end": 17389.83, + "probability": 0.8516 + }, + { + "start": 17390.54, + "end": 17393.56, + "probability": 0.9036 + }, + { + "start": 17394.52, + "end": 17396.66, + "probability": 0.9159 + }, + { + "start": 17397.26, + "end": 17399.06, + "probability": 0.9203 + }, + { + "start": 17399.12, + "end": 17400.46, + "probability": 0.9924 + }, + { + "start": 17400.62, + "end": 17403.08, + "probability": 0.8163 + }, + { + "start": 17403.82, + "end": 17406.06, + "probability": 0.91 + }, + { + "start": 17406.22, + "end": 17407.34, + "probability": 0.9044 + }, + { + "start": 17407.42, + "end": 17408.16, + "probability": 0.8071 + }, + { + "start": 17408.22, + "end": 17409.2, + "probability": 0.9458 + }, + { + "start": 17409.4, + "end": 17410.42, + "probability": 0.9844 + }, + { + "start": 17410.54, + "end": 17412.26, + "probability": 0.8839 + }, + { + "start": 17412.28, + "end": 17413.56, + "probability": 0.9099 + }, + { + "start": 17413.94, + "end": 17416.24, + "probability": 0.9412 + }, + { + "start": 17416.82, + "end": 17418.1, + "probability": 0.7907 + }, + { + "start": 17418.8, + "end": 17420.3, + "probability": 0.9287 + }, + { + "start": 17422.02, + "end": 17423.58, + "probability": 0.6719 + }, + { + "start": 17424.06, + "end": 17426.1, + "probability": 0.9834 + }, + { + "start": 17426.14, + "end": 17430.3, + "probability": 0.9968 + }, + { + "start": 17431.04, + "end": 17432.68, + "probability": 0.9956 + }, + { + "start": 17432.94, + "end": 17435.4, + "probability": 0.9416 + }, + { + "start": 17435.88, + "end": 17439.16, + "probability": 0.9775 + }, + { + "start": 17439.26, + "end": 17440.28, + "probability": 0.8585 + }, + { + "start": 17441.96, + "end": 17443.46, + "probability": 0.9097 + }, + { + "start": 17443.6, + "end": 17445.7, + "probability": 0.7522 + }, + { + "start": 17446.14, + "end": 17447.66, + "probability": 0.9789 + }, + { + "start": 17448.1, + "end": 17448.86, + "probability": 0.5843 + }, + { + "start": 17449.4, + "end": 17450.44, + "probability": 0.9785 + }, + { + "start": 17450.5, + "end": 17451.38, + "probability": 0.9844 + }, + { + "start": 17451.44, + "end": 17452.4, + "probability": 0.9951 + }, + { + "start": 17452.5, + "end": 17453.36, + "probability": 0.9692 + }, + { + "start": 17453.4, + "end": 17454.36, + "probability": 0.9944 + }, + { + "start": 17454.38, + "end": 17455.02, + "probability": 0.8315 + }, + { + "start": 17456.4, + "end": 17461.16, + "probability": 0.9576 + }, + { + "start": 17461.22, + "end": 17464.52, + "probability": 0.98 + }, + { + "start": 17464.72, + "end": 17465.51, + "probability": 0.7112 + }, + { + "start": 17466.02, + "end": 17467.54, + "probability": 0.9526 + }, + { + "start": 17467.66, + "end": 17470.36, + "probability": 0.9893 + }, + { + "start": 17470.64, + "end": 17471.38, + "probability": 0.6659 + }, + { + "start": 17471.54, + "end": 17472.72, + "probability": 0.731 + }, + { + "start": 17472.86, + "end": 17473.5, + "probability": 0.9097 + }, + { + "start": 17473.84, + "end": 17478.16, + "probability": 0.927 + }, + { + "start": 17478.82, + "end": 17483.28, + "probability": 0.9894 + }, + { + "start": 17483.46, + "end": 17487.74, + "probability": 0.9908 + }, + { + "start": 17488.26, + "end": 17490.96, + "probability": 0.9411 + }, + { + "start": 17491.38, + "end": 17495.88, + "probability": 0.9829 + }, + { + "start": 17496.16, + "end": 17500.96, + "probability": 0.9647 + }, + { + "start": 17500.96, + "end": 17504.92, + "probability": 0.9967 + }, + { + "start": 17504.98, + "end": 17505.38, + "probability": 0.7187 + }, + { + "start": 17505.76, + "end": 17506.3, + "probability": 0.7489 + }, + { + "start": 17507.24, + "end": 17508.8, + "probability": 0.8393 + }, + { + "start": 17509.28, + "end": 17510.8, + "probability": 0.8724 + }, + { + "start": 17511.66, + "end": 17513.2, + "probability": 0.9557 + }, + { + "start": 17514.58, + "end": 17516.48, + "probability": 0.9956 + }, + { + "start": 17518.78, + "end": 17520.44, + "probability": 0.789 + }, + { + "start": 17522.8, + "end": 17524.28, + "probability": 0.9899 + }, + { + "start": 17526.88, + "end": 17528.38, + "probability": 0.6752 + }, + { + "start": 17530.98, + "end": 17532.52, + "probability": 0.9839 + }, + { + "start": 17535.32, + "end": 17536.86, + "probability": 0.9952 + }, + { + "start": 17538.9, + "end": 17540.98, + "probability": 0.9947 + }, + { + "start": 17543.06, + "end": 17544.94, + "probability": 0.9939 + }, + { + "start": 17548.08, + "end": 17549.9, + "probability": 0.9906 + }, + { + "start": 17551.02, + "end": 17552.66, + "probability": 0.7056 + }, + { + "start": 17553.54, + "end": 17555.3, + "probability": 0.8289 + }, + { + "start": 17556.32, + "end": 17558.26, + "probability": 0.7196 + }, + { + "start": 17558.42, + "end": 17563.24, + "probability": 0.9855 + }, + { + "start": 17564.96, + "end": 17568.4, + "probability": 0.9287 + }, + { + "start": 17593.54, + "end": 17595.56, + "probability": 0.6992 + }, + { + "start": 17598.78, + "end": 17601.6, + "probability": 0.9922 + }, + { + "start": 17602.2, + "end": 17605.04, + "probability": 0.998 + }, + { + "start": 17605.18, + "end": 17606.38, + "probability": 0.9021 + }, + { + "start": 17607.36, + "end": 17607.9, + "probability": 0.0495 + }, + { + "start": 17607.9, + "end": 17608.92, + "probability": 0.4103 + }, + { + "start": 17610.58, + "end": 17613.66, + "probability": 0.2297 + }, + { + "start": 17613.66, + "end": 17615.68, + "probability": 0.9946 + }, + { + "start": 17616.42, + "end": 17618.1, + "probability": 0.9916 + }, + { + "start": 17621.1, + "end": 17623.84, + "probability": 0.6985 + }, + { + "start": 17624.62, + "end": 17626.38, + "probability": 0.9932 + }, + { + "start": 17627.76, + "end": 17628.74, + "probability": 0.6124 + }, + { + "start": 17629.84, + "end": 17633.28, + "probability": 0.9181 + }, + { + "start": 17637.3, + "end": 17637.4, + "probability": 0.1052 + }, + { + "start": 17637.4, + "end": 17638.56, + "probability": 0.636 + }, + { + "start": 17638.7, + "end": 17639.72, + "probability": 0.707 + }, + { + "start": 17640.14, + "end": 17643.42, + "probability": 0.099 + }, + { + "start": 17643.42, + "end": 17644.32, + "probability": 0.192 + }, + { + "start": 17644.36, + "end": 17646.14, + "probability": 0.8282 + }, + { + "start": 17646.18, + "end": 17647.08, + "probability": 0.6006 + }, + { + "start": 17647.1, + "end": 17647.7, + "probability": 0.4618 + }, + { + "start": 17647.8, + "end": 17649.32, + "probability": 0.7866 + }, + { + "start": 17649.38, + "end": 17654.3, + "probability": 0.9521 + }, + { + "start": 17655.36, + "end": 17656.08, + "probability": 0.7492 + }, + { + "start": 17656.33, + "end": 17657.3, + "probability": 0.3987 + }, + { + "start": 17657.62, + "end": 17661.56, + "probability": 0.8765 + }, + { + "start": 17661.56, + "end": 17663.8, + "probability": 0.5288 + }, + { + "start": 17664.48, + "end": 17667.52, + "probability": 0.6838 + }, + { + "start": 17667.54, + "end": 17670.82, + "probability": 0.9294 + }, + { + "start": 17670.88, + "end": 17672.02, + "probability": 0.9886 + }, + { + "start": 17672.36, + "end": 17674.1, + "probability": 0.8903 + }, + { + "start": 17674.18, + "end": 17678.16, + "probability": 0.9798 + }, + { + "start": 17678.92, + "end": 17681.24, + "probability": 0.6959 + }, + { + "start": 17681.4, + "end": 17682.56, + "probability": 0.7961 + }, + { + "start": 17682.64, + "end": 17683.58, + "probability": 0.7035 + }, + { + "start": 17683.92, + "end": 17689.99, + "probability": 0.7793 + }, + { + "start": 17694.22, + "end": 17694.54, + "probability": 0.186 + }, + { + "start": 17695.48, + "end": 17697.86, + "probability": 0.0508 + }, + { + "start": 17698.48, + "end": 17698.48, + "probability": 0.0056 + }, + { + "start": 17698.48, + "end": 17698.48, + "probability": 0.0262 + }, + { + "start": 17698.48, + "end": 17698.48, + "probability": 0.0754 + }, + { + "start": 17698.48, + "end": 17699.4, + "probability": 0.7169 + }, + { + "start": 17699.52, + "end": 17700.58, + "probability": 0.7905 + }, + { + "start": 17700.74, + "end": 17704.22, + "probability": 0.5425 + }, + { + "start": 17705.24, + "end": 17706.36, + "probability": 0.8001 + }, + { + "start": 17706.58, + "end": 17707.6, + "probability": 0.6197 + }, + { + "start": 17708.3, + "end": 17709.98, + "probability": 0.9515 + }, + { + "start": 17710.78, + "end": 17712.24, + "probability": 0.8338 + }, + { + "start": 17712.42, + "end": 17719.02, + "probability": 0.9847 + }, + { + "start": 17719.8, + "end": 17720.92, + "probability": 0.9079 + }, + { + "start": 17721.84, + "end": 17723.78, + "probability": 0.948 + }, + { + "start": 17724.06, + "end": 17726.58, + "probability": 0.9917 + }, + { + "start": 17727.44, + "end": 17731.6, + "probability": 0.9942 + }, + { + "start": 17731.6, + "end": 17735.8, + "probability": 0.8306 + }, + { + "start": 17738.2, + "end": 17744.26, + "probability": 0.9902 + }, + { + "start": 17744.36, + "end": 17745.78, + "probability": 0.9014 + }, + { + "start": 17748.12, + "end": 17748.44, + "probability": 0.3536 + }, + { + "start": 17748.72, + "end": 17750.58, + "probability": 0.7428 + }, + { + "start": 17751.06, + "end": 17752.68, + "probability": 0.6743 + }, + { + "start": 17752.82, + "end": 17753.74, + "probability": 0.9342 + }, + { + "start": 17754.92, + "end": 17757.76, + "probability": 0.9933 + }, + { + "start": 17759.06, + "end": 17761.56, + "probability": 0.9874 + }, + { + "start": 17761.72, + "end": 17762.4, + "probability": 0.7926 + }, + { + "start": 17762.42, + "end": 17763.3, + "probability": 0.9661 + }, + { + "start": 17763.46, + "end": 17765.88, + "probability": 0.9954 + }, + { + "start": 17766.68, + "end": 17770.18, + "probability": 0.9916 + }, + { + "start": 17771.38, + "end": 17775.52, + "probability": 0.8662 + }, + { + "start": 17776.22, + "end": 17777.76, + "probability": 0.8598 + }, + { + "start": 17778.74, + "end": 17785.08, + "probability": 0.9644 + }, + { + "start": 17785.08, + "end": 17789.58, + "probability": 0.9697 + }, + { + "start": 17790.78, + "end": 17795.42, + "probability": 0.9788 + }, + { + "start": 17796.76, + "end": 17800.94, + "probability": 0.708 + }, + { + "start": 17801.6, + "end": 17802.96, + "probability": 0.9058 + }, + { + "start": 17803.26, + "end": 17805.26, + "probability": 0.371 + }, + { + "start": 17805.84, + "end": 17807.3, + "probability": 0.9304 + }, + { + "start": 17807.38, + "end": 17808.48, + "probability": 0.5458 + }, + { + "start": 17808.58, + "end": 17809.46, + "probability": 0.9206 + }, + { + "start": 17809.5, + "end": 17814.12, + "probability": 0.8322 + }, + { + "start": 17814.72, + "end": 17817.32, + "probability": 0.7664 + }, + { + "start": 17817.46, + "end": 17820.86, + "probability": 0.8432 + }, + { + "start": 17821.98, + "end": 17826.96, + "probability": 0.9814 + }, + { + "start": 17826.96, + "end": 17829.7, + "probability": 0.9435 + }, + { + "start": 17829.84, + "end": 17835.26, + "probability": 0.9933 + }, + { + "start": 17835.98, + "end": 17838.51, + "probability": 0.9358 + }, + { + "start": 17839.3, + "end": 17845.22, + "probability": 0.9885 + }, + { + "start": 17846.4, + "end": 17852.04, + "probability": 0.9556 + }, + { + "start": 17853.54, + "end": 17857.82, + "probability": 0.9909 + }, + { + "start": 17857.92, + "end": 17862.47, + "probability": 0.9868 + }, + { + "start": 17863.68, + "end": 17865.68, + "probability": 0.9868 + }, + { + "start": 17866.08, + "end": 17867.64, + "probability": 0.9724 + }, + { + "start": 17867.94, + "end": 17873.78, + "probability": 0.9945 + }, + { + "start": 17874.4, + "end": 17878.62, + "probability": 0.964 + }, + { + "start": 17878.82, + "end": 17882.5, + "probability": 0.9971 + }, + { + "start": 17882.98, + "end": 17888.28, + "probability": 0.9285 + }, + { + "start": 17888.44, + "end": 17889.4, + "probability": 0.9951 + }, + { + "start": 17889.86, + "end": 17890.68, + "probability": 0.9922 + }, + { + "start": 17891.26, + "end": 17892.54, + "probability": 0.9696 + }, + { + "start": 17892.84, + "end": 17897.76, + "probability": 0.9952 + }, + { + "start": 17898.92, + "end": 17900.71, + "probability": 0.9893 + }, + { + "start": 17900.84, + "end": 17905.78, + "probability": 0.9801 + }, + { + "start": 17905.86, + "end": 17906.04, + "probability": 0.6807 + }, + { + "start": 17907.36, + "end": 17908.48, + "probability": 0.6266 + }, + { + "start": 17908.68, + "end": 17909.96, + "probability": 0.8574 + }, + { + "start": 17910.8, + "end": 17911.66, + "probability": 0.8399 + }, + { + "start": 17911.8, + "end": 17917.42, + "probability": 0.682 + }, + { + "start": 17917.42, + "end": 17922.34, + "probability": 0.7162 + }, + { + "start": 17923.12, + "end": 17925.36, + "probability": 0.3182 + }, + { + "start": 17925.4, + "end": 17925.94, + "probability": 0.4397 + }, + { + "start": 17926.08, + "end": 17927.98, + "probability": 0.9042 + }, + { + "start": 17931.6, + "end": 17933.78, + "probability": 0.0262 + }, + { + "start": 17934.32, + "end": 17935.86, + "probability": 0.0102 + }, + { + "start": 17949.24, + "end": 17949.96, + "probability": 0.0695 + }, + { + "start": 17949.96, + "end": 17954.32, + "probability": 0.8247 + }, + { + "start": 17954.8, + "end": 17955.78, + "probability": 0.5511 + }, + { + "start": 17955.88, + "end": 17960.46, + "probability": 0.821 + }, + { + "start": 17961.04, + "end": 17961.56, + "probability": 0.7558 + }, + { + "start": 17962.3, + "end": 17962.4, + "probability": 0.2888 + }, + { + "start": 17964.0, + "end": 17965.34, + "probability": 0.4894 + }, + { + "start": 17969.5, + "end": 17973.84, + "probability": 0.655 + }, + { + "start": 17974.74, + "end": 17975.44, + "probability": 0.6286 + }, + { + "start": 17975.54, + "end": 17978.14, + "probability": 0.8385 + }, + { + "start": 17994.06, + "end": 17994.9, + "probability": 0.3283 + }, + { + "start": 17994.9, + "end": 17995.8, + "probability": 0.649 + }, + { + "start": 17996.06, + "end": 17998.82, + "probability": 0.7155 + }, + { + "start": 17999.32, + "end": 18000.74, + "probability": 0.4302 + }, + { + "start": 18000.88, + "end": 18007.56, + "probability": 0.9854 + }, + { + "start": 18007.72, + "end": 18009.74, + "probability": 0.8761 + }, + { + "start": 18009.96, + "end": 18013.4, + "probability": 0.9139 + }, + { + "start": 18013.4, + "end": 18018.98, + "probability": 0.9957 + }, + { + "start": 18019.12, + "end": 18019.97, + "probability": 0.8056 + }, + { + "start": 18020.88, + "end": 18024.08, + "probability": 0.9846 + }, + { + "start": 18024.86, + "end": 18028.82, + "probability": 0.9987 + }, + { + "start": 18028.82, + "end": 18032.72, + "probability": 0.9997 + }, + { + "start": 18034.68, + "end": 18035.42, + "probability": 0.6971 + }, + { + "start": 18035.54, + "end": 18036.32, + "probability": 0.6674 + }, + { + "start": 18036.52, + "end": 18041.62, + "probability": 0.9963 + }, + { + "start": 18042.64, + "end": 18043.52, + "probability": 0.9885 + }, + { + "start": 18044.2, + "end": 18047.92, + "probability": 0.918 + }, + { + "start": 18047.92, + "end": 18050.74, + "probability": 0.9813 + }, + { + "start": 18050.88, + "end": 18051.4, + "probability": 0.837 + }, + { + "start": 18052.16, + "end": 18055.2, + "probability": 0.959 + }, + { + "start": 18057.0, + "end": 18057.76, + "probability": 0.8765 + }, + { + "start": 18057.94, + "end": 18058.12, + "probability": 0.4709 + }, + { + "start": 18059.44, + "end": 18059.86, + "probability": 0.5132 + }, + { + "start": 18059.92, + "end": 18063.8, + "probability": 0.9734 + }, + { + "start": 18063.8, + "end": 18068.86, + "probability": 0.978 + }, + { + "start": 18068.86, + "end": 18074.88, + "probability": 0.8606 + }, + { + "start": 18075.1, + "end": 18076.48, + "probability": 0.9888 + }, + { + "start": 18077.16, + "end": 18081.14, + "probability": 0.976 + }, + { + "start": 18081.42, + "end": 18089.62, + "probability": 0.9613 + }, + { + "start": 18089.62, + "end": 18095.9, + "probability": 0.9775 + }, + { + "start": 18097.34, + "end": 18097.9, + "probability": 0.066 + }, + { + "start": 18097.9, + "end": 18101.96, + "probability": 0.9862 + }, + { + "start": 18101.96, + "end": 18106.28, + "probability": 0.7455 + }, + { + "start": 18107.42, + "end": 18109.6, + "probability": 0.8446 + }, + { + "start": 18109.68, + "end": 18111.9, + "probability": 0.9421 + }, + { + "start": 18111.9, + "end": 18115.06, + "probability": 0.9892 + }, + { + "start": 18115.6, + "end": 18118.72, + "probability": 0.9953 + }, + { + "start": 18118.96, + "end": 18122.96, + "probability": 0.995 + }, + { + "start": 18123.56, + "end": 18128.22, + "probability": 0.9734 + }, + { + "start": 18130.28, + "end": 18130.78, + "probability": 0.7304 + }, + { + "start": 18130.94, + "end": 18133.96, + "probability": 0.9886 + }, + { + "start": 18133.96, + "end": 18136.24, + "probability": 0.9177 + }, + { + "start": 18138.38, + "end": 18141.62, + "probability": 0.998 + }, + { + "start": 18141.62, + "end": 18146.46, + "probability": 0.9505 + }, + { + "start": 18146.56, + "end": 18147.12, + "probability": 0.6381 + }, + { + "start": 18147.24, + "end": 18148.28, + "probability": 0.6575 + }, + { + "start": 18148.78, + "end": 18152.16, + "probability": 0.978 + }, + { + "start": 18152.36, + "end": 18153.58, + "probability": 0.8342 + }, + { + "start": 18154.18, + "end": 18154.82, + "probability": 0.6268 + }, + { + "start": 18155.03, + "end": 18159.24, + "probability": 0.9894 + }, + { + "start": 18159.24, + "end": 18162.78, + "probability": 0.9836 + }, + { + "start": 18162.78, + "end": 18165.52, + "probability": 0.9885 + }, + { + "start": 18166.4, + "end": 18169.6, + "probability": 0.9839 + }, + { + "start": 18169.74, + "end": 18172.2, + "probability": 0.9974 + }, + { + "start": 18172.72, + "end": 18177.26, + "probability": 0.9856 + }, + { + "start": 18178.08, + "end": 18180.9, + "probability": 0.9963 + }, + { + "start": 18180.9, + "end": 18184.92, + "probability": 0.9984 + }, + { + "start": 18185.1, + "end": 18190.18, + "probability": 0.985 + }, + { + "start": 18190.18, + "end": 18192.96, + "probability": 0.9799 + }, + { + "start": 18193.62, + "end": 18195.52, + "probability": 0.6729 + }, + { + "start": 18197.44, + "end": 18200.2, + "probability": 0.9915 + }, + { + "start": 18200.94, + "end": 18202.46, + "probability": 0.9985 + }, + { + "start": 18203.5, + "end": 18207.58, + "probability": 0.9979 + }, + { + "start": 18207.76, + "end": 18211.82, + "probability": 0.9961 + }, + { + "start": 18211.94, + "end": 18215.14, + "probability": 0.9991 + }, + { + "start": 18215.14, + "end": 18217.6, + "probability": 0.9835 + }, + { + "start": 18217.66, + "end": 18219.16, + "probability": 0.9197 + }, + { + "start": 18219.22, + "end": 18221.78, + "probability": 0.9012 + }, + { + "start": 18222.04, + "end": 18225.6, + "probability": 0.7178 + }, + { + "start": 18226.36, + "end": 18227.18, + "probability": 0.958 + }, + { + "start": 18228.62, + "end": 18233.18, + "probability": 0.993 + }, + { + "start": 18233.66, + "end": 18237.46, + "probability": 0.9908 + }, + { + "start": 18238.4, + "end": 18241.44, + "probability": 0.9429 + }, + { + "start": 18242.1, + "end": 18243.42, + "probability": 0.6753 + }, + { + "start": 18244.38, + "end": 18247.08, + "probability": 0.7555 + }, + { + "start": 18258.2, + "end": 18260.86, + "probability": 0.7163 + }, + { + "start": 18263.62, + "end": 18266.68, + "probability": 0.9274 + }, + { + "start": 18266.74, + "end": 18268.48, + "probability": 0.8157 + }, + { + "start": 18269.62, + "end": 18273.42, + "probability": 0.9935 + }, + { + "start": 18273.98, + "end": 18276.44, + "probability": 0.8817 + }, + { + "start": 18277.08, + "end": 18277.8, + "probability": 0.4281 + }, + { + "start": 18278.48, + "end": 18279.34, + "probability": 0.9736 + }, + { + "start": 18280.18, + "end": 18282.18, + "probability": 0.9885 + }, + { + "start": 18282.86, + "end": 18285.26, + "probability": 0.9946 + }, + { + "start": 18287.58, + "end": 18288.64, + "probability": 0.9719 + }, + { + "start": 18288.74, + "end": 18289.64, + "probability": 0.9873 + }, + { + "start": 18291.83, + "end": 18292.88, + "probability": 0.142 + }, + { + "start": 18292.88, + "end": 18292.88, + "probability": 0.0998 + }, + { + "start": 18292.88, + "end": 18296.48, + "probability": 0.8474 + }, + { + "start": 18296.7, + "end": 18297.6, + "probability": 0.7214 + }, + { + "start": 18298.42, + "end": 18302.42, + "probability": 0.9734 + }, + { + "start": 18302.52, + "end": 18306.06, + "probability": 0.9637 + }, + { + "start": 18306.44, + "end": 18309.9, + "probability": 0.9958 + }, + { + "start": 18310.72, + "end": 18314.34, + "probability": 0.9966 + }, + { + "start": 18315.44, + "end": 18315.86, + "probability": 0.5199 + }, + { + "start": 18315.9, + "end": 18317.62, + "probability": 0.8518 + }, + { + "start": 18318.08, + "end": 18320.16, + "probability": 0.7987 + }, + { + "start": 18320.58, + "end": 18322.08, + "probability": 0.9396 + }, + { + "start": 18322.36, + "end": 18323.24, + "probability": 0.9365 + }, + { + "start": 18324.32, + "end": 18326.24, + "probability": 0.9722 + }, + { + "start": 18326.44, + "end": 18329.58, + "probability": 0.7952 + }, + { + "start": 18330.3, + "end": 18334.1, + "probability": 0.8237 + }, + { + "start": 18334.72, + "end": 18339.84, + "probability": 0.926 + }, + { + "start": 18339.92, + "end": 18340.96, + "probability": 0.9984 + }, + { + "start": 18341.82, + "end": 18347.34, + "probability": 0.973 + }, + { + "start": 18347.46, + "end": 18349.52, + "probability": 0.997 + }, + { + "start": 18349.88, + "end": 18353.12, + "probability": 0.9973 + }, + { + "start": 18353.94, + "end": 18357.84, + "probability": 0.9824 + }, + { + "start": 18357.84, + "end": 18361.72, + "probability": 0.9983 + }, + { + "start": 18362.38, + "end": 18367.76, + "probability": 0.959 + }, + { + "start": 18367.94, + "end": 18368.86, + "probability": 0.8684 + }, + { + "start": 18369.32, + "end": 18372.5, + "probability": 0.9763 + }, + { + "start": 18373.14, + "end": 18374.14, + "probability": 0.8982 + }, + { + "start": 18376.25, + "end": 18381.6, + "probability": 0.9632 + }, + { + "start": 18381.92, + "end": 18384.08, + "probability": 0.9985 + }, + { + "start": 18384.08, + "end": 18387.08, + "probability": 0.996 + }, + { + "start": 18387.76, + "end": 18392.6, + "probability": 0.9964 + }, + { + "start": 18393.12, + "end": 18396.1, + "probability": 0.9915 + }, + { + "start": 18396.1, + "end": 18399.4, + "probability": 0.9947 + }, + { + "start": 18399.7, + "end": 18400.34, + "probability": 0.7648 + }, + { + "start": 18403.56, + "end": 18404.3, + "probability": 0.5387 + }, + { + "start": 18404.3, + "end": 18405.22, + "probability": 0.481 + }, + { + "start": 18408.42, + "end": 18408.94, + "probability": 0.0407 + }, + { + "start": 18409.22, + "end": 18410.7, + "probability": 0.8465 + }, + { + "start": 18429.12, + "end": 18429.48, + "probability": 0.7986 + }, + { + "start": 18429.8, + "end": 18430.8, + "probability": 0.7568 + }, + { + "start": 18431.86, + "end": 18436.2, + "probability": 0.9714 + }, + { + "start": 18437.08, + "end": 18444.34, + "probability": 0.9972 + }, + { + "start": 18444.58, + "end": 18449.82, + "probability": 0.9711 + }, + { + "start": 18450.66, + "end": 18455.94, + "probability": 0.991 + }, + { + "start": 18456.0, + "end": 18458.54, + "probability": 0.9725 + }, + { + "start": 18458.92, + "end": 18459.44, + "probability": 0.2183 + }, + { + "start": 18459.44, + "end": 18460.52, + "probability": 0.8766 + }, + { + "start": 18460.62, + "end": 18462.54, + "probability": 0.7491 + }, + { + "start": 18462.96, + "end": 18464.7, + "probability": 0.6946 + }, + { + "start": 18465.22, + "end": 18469.28, + "probability": 0.6345 + }, + { + "start": 18470.0, + "end": 18472.44, + "probability": 0.933 + }, + { + "start": 18473.0, + "end": 18476.5, + "probability": 0.9716 + }, + { + "start": 18476.5, + "end": 18480.04, + "probability": 0.9585 + }, + { + "start": 18480.36, + "end": 18481.42, + "probability": 0.9786 + }, + { + "start": 18481.58, + "end": 18482.5, + "probability": 0.8783 + }, + { + "start": 18482.68, + "end": 18484.19, + "probability": 0.7881 + }, + { + "start": 18484.32, + "end": 18489.16, + "probability": 0.5606 + }, + { + "start": 18489.34, + "end": 18489.9, + "probability": 0.5529 + }, + { + "start": 18489.98, + "end": 18492.18, + "probability": 0.9542 + }, + { + "start": 18492.52, + "end": 18494.82, + "probability": 0.8367 + }, + { + "start": 18495.22, + "end": 18500.54, + "probability": 0.9988 + }, + { + "start": 18500.54, + "end": 18506.76, + "probability": 0.9927 + }, + { + "start": 18507.2, + "end": 18511.04, + "probability": 0.7535 + }, + { + "start": 18511.26, + "end": 18512.98, + "probability": 0.631 + }, + { + "start": 18513.22, + "end": 18519.26, + "probability": 0.938 + }, + { + "start": 18519.88, + "end": 18525.5, + "probability": 0.9802 + }, + { + "start": 18525.62, + "end": 18526.4, + "probability": 0.968 + }, + { + "start": 18526.52, + "end": 18527.54, + "probability": 0.9185 + }, + { + "start": 18528.16, + "end": 18532.68, + "probability": 0.986 + }, + { + "start": 18532.68, + "end": 18535.4, + "probability": 0.999 + }, + { + "start": 18536.02, + "end": 18539.26, + "probability": 0.8446 + }, + { + "start": 18539.42, + "end": 18539.6, + "probability": 0.7093 + }, + { + "start": 18540.2, + "end": 18542.44, + "probability": 0.9702 + }, + { + "start": 18543.22, + "end": 18544.89, + "probability": 0.7454 + }, + { + "start": 18545.74, + "end": 18546.56, + "probability": 0.5232 + }, + { + "start": 18547.1, + "end": 18547.94, + "probability": 0.8125 + }, + { + "start": 18549.84, + "end": 18550.68, + "probability": 0.9722 + }, + { + "start": 18553.34, + "end": 18553.86, + "probability": 0.3096 + }, + { + "start": 18553.9, + "end": 18554.88, + "probability": 0.8857 + }, + { + "start": 18555.44, + "end": 18556.6, + "probability": 0.8891 + }, + { + "start": 18557.9, + "end": 18560.92, + "probability": 0.5003 + }, + { + "start": 18590.02, + "end": 18593.3, + "probability": 0.6744 + }, + { + "start": 18594.46, + "end": 18596.7, + "probability": 0.9871 + }, + { + "start": 18596.94, + "end": 18598.24, + "probability": 0.9304 + }, + { + "start": 18598.36, + "end": 18600.95, + "probability": 0.9981 + }, + { + "start": 18602.04, + "end": 18604.78, + "probability": 0.8531 + }, + { + "start": 18605.7, + "end": 18613.12, + "probability": 0.9784 + }, + { + "start": 18613.12, + "end": 18617.68, + "probability": 0.9932 + }, + { + "start": 18617.88, + "end": 18618.7, + "probability": 0.8358 + }, + { + "start": 18619.94, + "end": 18627.48, + "probability": 0.9933 + }, + { + "start": 18627.84, + "end": 18630.56, + "probability": 0.9659 + }, + { + "start": 18630.68, + "end": 18632.16, + "probability": 0.9395 + }, + { + "start": 18632.96, + "end": 18636.7, + "probability": 0.9421 + }, + { + "start": 18637.7, + "end": 18642.86, + "probability": 0.9873 + }, + { + "start": 18643.16, + "end": 18645.42, + "probability": 0.9864 + }, + { + "start": 18645.86, + "end": 18649.44, + "probability": 0.9718 + }, + { + "start": 18650.76, + "end": 18654.32, + "probability": 0.9774 + }, + { + "start": 18655.66, + "end": 18660.6, + "probability": 0.9319 + }, + { + "start": 18661.22, + "end": 18663.5, + "probability": 0.9966 + }, + { + "start": 18664.38, + "end": 18669.2, + "probability": 0.9963 + }, + { + "start": 18669.59, + "end": 18674.02, + "probability": 0.9995 + }, + { + "start": 18675.36, + "end": 18678.86, + "probability": 0.6934 + }, + { + "start": 18678.98, + "end": 18680.6, + "probability": 0.8988 + }, + { + "start": 18680.66, + "end": 18681.52, + "probability": 0.8195 + }, + { + "start": 18681.92, + "end": 18684.61, + "probability": 0.9509 + }, + { + "start": 18685.5, + "end": 18686.86, + "probability": 0.95 + }, + { + "start": 18687.46, + "end": 18692.46, + "probability": 0.9912 + }, + { + "start": 18693.06, + "end": 18696.92, + "probability": 0.9946 + }, + { + "start": 18698.72, + "end": 18702.54, + "probability": 0.9872 + }, + { + "start": 18702.54, + "end": 18705.16, + "probability": 0.9844 + }, + { + "start": 18706.08, + "end": 18709.9, + "probability": 0.8354 + }, + { + "start": 18710.88, + "end": 18712.06, + "probability": 0.9119 + }, + { + "start": 18712.6, + "end": 18718.88, + "probability": 0.9738 + }, + { + "start": 18719.42, + "end": 18720.6, + "probability": 0.9562 + }, + { + "start": 18721.88, + "end": 18724.97, + "probability": 0.9426 + }, + { + "start": 18726.2, + "end": 18728.1, + "probability": 0.9907 + }, + { + "start": 18728.38, + "end": 18730.12, + "probability": 0.9894 + }, + { + "start": 18730.84, + "end": 18732.9, + "probability": 0.9484 + }, + { + "start": 18733.44, + "end": 18735.44, + "probability": 0.9779 + }, + { + "start": 18736.58, + "end": 18739.32, + "probability": 0.985 + }, + { + "start": 18740.1, + "end": 18743.28, + "probability": 0.7709 + }, + { + "start": 18743.86, + "end": 18748.06, + "probability": 0.9382 + }, + { + "start": 18748.46, + "end": 18750.58, + "probability": 0.975 + }, + { + "start": 18750.98, + "end": 18752.4, + "probability": 0.9736 + }, + { + "start": 18753.38, + "end": 18753.86, + "probability": 0.5773 + }, + { + "start": 18753.88, + "end": 18757.28, + "probability": 0.9644 + }, + { + "start": 18757.28, + "end": 18761.34, + "probability": 0.9702 + }, + { + "start": 18762.28, + "end": 18763.2, + "probability": 0.8002 + }, + { + "start": 18764.14, + "end": 18764.62, + "probability": 0.7128 + }, + { + "start": 18765.14, + "end": 18768.82, + "probability": 0.9553 + }, + { + "start": 18769.18, + "end": 18770.34, + "probability": 0.9578 + }, + { + "start": 18770.9, + "end": 18774.3, + "probability": 0.8786 + }, + { + "start": 18774.82, + "end": 18780.28, + "probability": 0.9883 + }, + { + "start": 18780.36, + "end": 18781.86, + "probability": 0.9572 + }, + { + "start": 18782.16, + "end": 18782.56, + "probability": 0.7775 + }, + { + "start": 18782.8, + "end": 18783.0, + "probability": 0.8131 + }, + { + "start": 18783.2, + "end": 18784.0, + "probability": 0.5221 + }, + { + "start": 18785.12, + "end": 18787.68, + "probability": 0.7478 + }, + { + "start": 18787.8, + "end": 18789.28, + "probability": 0.9566 + }, + { + "start": 18789.36, + "end": 18789.78, + "probability": 0.988 + }, + { + "start": 18790.32, + "end": 18790.78, + "probability": 0.9833 + }, + { + "start": 18791.26, + "end": 18792.32, + "probability": 0.9881 + }, + { + "start": 18792.5, + "end": 18794.68, + "probability": 0.9094 + }, + { + "start": 18794.78, + "end": 18796.16, + "probability": 0.9888 + }, + { + "start": 18797.3, + "end": 18799.56, + "probability": 0.498 + }, + { + "start": 18800.18, + "end": 18802.56, + "probability": 0.9863 + }, + { + "start": 18803.56, + "end": 18809.24, + "probability": 0.9868 + }, + { + "start": 18809.62, + "end": 18814.04, + "probability": 0.9756 + }, + { + "start": 18814.46, + "end": 18815.02, + "probability": 0.9657 + }, + { + "start": 18815.2, + "end": 18816.76, + "probability": 0.9888 + }, + { + "start": 18816.98, + "end": 18818.56, + "probability": 0.656 + }, + { + "start": 18818.56, + "end": 18818.76, + "probability": 0.1275 + }, + { + "start": 18818.76, + "end": 18819.66, + "probability": 0.5349 + }, + { + "start": 18819.86, + "end": 18820.42, + "probability": 0.6856 + }, + { + "start": 18821.14, + "end": 18825.3, + "probability": 0.9962 + }, + { + "start": 18825.94, + "end": 18828.34, + "probability": 0.9135 + }, + { + "start": 18829.42, + "end": 18830.72, + "probability": 0.6907 + }, + { + "start": 18831.1, + "end": 18834.36, + "probability": 0.99 + }, + { + "start": 18834.76, + "end": 18837.16, + "probability": 0.9639 + }, + { + "start": 18837.36, + "end": 18838.52, + "probability": 0.9741 + }, + { + "start": 18838.6, + "end": 18839.08, + "probability": 0.8956 + }, + { + "start": 18839.3, + "end": 18840.98, + "probability": 0.8695 + }, + { + "start": 18841.42, + "end": 18843.48, + "probability": 0.928 + }, + { + "start": 18844.32, + "end": 18844.8, + "probability": 0.3009 + }, + { + "start": 18845.0, + "end": 18847.36, + "probability": 0.8095 + }, + { + "start": 18849.7, + "end": 18850.54, + "probability": 0.8219 + }, + { + "start": 18851.86, + "end": 18854.14, + "probability": 0.7753 + }, + { + "start": 18866.48, + "end": 18866.7, + "probability": 0.6362 + }, + { + "start": 18866.84, + "end": 18866.84, + "probability": 0.4717 + }, + { + "start": 18866.9, + "end": 18869.1, + "probability": 0.7571 + }, + { + "start": 18870.08, + "end": 18873.0, + "probability": 0.9797 + }, + { + "start": 18874.26, + "end": 18880.46, + "probability": 0.8484 + }, + { + "start": 18880.6, + "end": 18881.6, + "probability": 0.9093 + }, + { + "start": 18882.14, + "end": 18883.56, + "probability": 0.9074 + }, + { + "start": 18884.2, + "end": 18888.44, + "probability": 0.798 + }, + { + "start": 18889.12, + "end": 18890.36, + "probability": 0.8301 + }, + { + "start": 18890.54, + "end": 18892.48, + "probability": 0.9849 + }, + { + "start": 18892.48, + "end": 18894.38, + "probability": 0.6922 + }, + { + "start": 18894.42, + "end": 18900.16, + "probability": 0.9941 + }, + { + "start": 18900.2, + "end": 18900.6, + "probability": 0.4251 + }, + { + "start": 18900.6, + "end": 18903.76, + "probability": 0.954 + }, + { + "start": 18903.94, + "end": 18906.08, + "probability": 0.7139 + }, + { + "start": 18906.14, + "end": 18906.7, + "probability": 0.2445 + }, + { + "start": 18906.78, + "end": 18908.64, + "probability": 0.7001 + }, + { + "start": 18909.52, + "end": 18911.98, + "probability": 0.8353 + }, + { + "start": 18912.12, + "end": 18914.02, + "probability": 0.7362 + }, + { + "start": 18914.68, + "end": 18916.52, + "probability": 0.9831 + }, + { + "start": 18916.76, + "end": 18918.9, + "probability": 0.7141 + }, + { + "start": 18919.29, + "end": 18923.42, + "probability": 0.9012 + }, + { + "start": 18923.52, + "end": 18924.58, + "probability": 0.9117 + }, + { + "start": 18925.54, + "end": 18927.68, + "probability": 0.9674 + }, + { + "start": 18927.74, + "end": 18930.78, + "probability": 0.6424 + }, + { + "start": 18931.68, + "end": 18933.82, + "probability": 0.7876 + }, + { + "start": 18934.34, + "end": 18936.56, + "probability": 0.6849 + }, + { + "start": 18936.68, + "end": 18940.24, + "probability": 0.9795 + }, + { + "start": 18940.24, + "end": 18945.44, + "probability": 0.9746 + }, + { + "start": 18946.22, + "end": 18947.18, + "probability": 0.7584 + }, + { + "start": 18947.26, + "end": 18948.48, + "probability": 0.6089 + }, + { + "start": 18948.58, + "end": 18949.68, + "probability": 0.8041 + }, + { + "start": 18950.36, + "end": 18952.98, + "probability": 0.8525 + }, + { + "start": 18953.82, + "end": 18956.86, + "probability": 0.887 + }, + { + "start": 18957.38, + "end": 18958.71, + "probability": 0.9316 + }, + { + "start": 18959.06, + "end": 18961.12, + "probability": 0.7368 + }, + { + "start": 18961.83, + "end": 18966.48, + "probability": 0.9624 + }, + { + "start": 18967.12, + "end": 18968.96, + "probability": 0.9714 + }, + { + "start": 18969.1, + "end": 18972.76, + "probability": 0.9643 + }, + { + "start": 18972.9, + "end": 18974.4, + "probability": 0.9355 + }, + { + "start": 18974.56, + "end": 18978.68, + "probability": 0.9271 + }, + { + "start": 18979.58, + "end": 18980.78, + "probability": 0.888 + }, + { + "start": 18980.86, + "end": 18985.6, + "probability": 0.7849 + }, + { + "start": 18986.1, + "end": 18990.66, + "probability": 0.9933 + }, + { + "start": 18991.32, + "end": 18994.06, + "probability": 0.9926 + }, + { + "start": 18994.6, + "end": 18999.56, + "probability": 0.9984 + }, + { + "start": 18999.98, + "end": 19003.14, + "probability": 0.9854 + }, + { + "start": 19003.9, + "end": 19004.14, + "probability": 0.7563 + }, + { + "start": 19004.18, + "end": 19005.53, + "probability": 0.9811 + }, + { + "start": 19005.88, + "end": 19011.24, + "probability": 0.8893 + }, + { + "start": 19011.8, + "end": 19013.28, + "probability": 0.9963 + }, + { + "start": 19013.92, + "end": 19014.48, + "probability": 0.8083 + }, + { + "start": 19014.56, + "end": 19016.58, + "probability": 0.9574 + }, + { + "start": 19017.0, + "end": 19021.62, + "probability": 0.993 + }, + { + "start": 19022.24, + "end": 19024.38, + "probability": 0.9953 + }, + { + "start": 19024.74, + "end": 19026.16, + "probability": 0.9801 + }, + { + "start": 19026.94, + "end": 19028.36, + "probability": 0.2992 + }, + { + "start": 19028.48, + "end": 19029.82, + "probability": 0.6776 + }, + { + "start": 19029.9, + "end": 19034.32, + "probability": 0.8808 + }, + { + "start": 19035.58, + "end": 19037.38, + "probability": 0.8375 + }, + { + "start": 19038.4, + "end": 19039.64, + "probability": 0.7443 + }, + { + "start": 19040.3, + "end": 19040.6, + "probability": 0.532 + }, + { + "start": 19041.86, + "end": 19043.46, + "probability": 0.9454 + }, + { + "start": 19043.68, + "end": 19044.02, + "probability": 0.8842 + }, + { + "start": 19046.28, + "end": 19051.3, + "probability": 0.8685 + }, + { + "start": 19051.3, + "end": 19054.28, + "probability": 0.991 + }, + { + "start": 19054.82, + "end": 19058.96, + "probability": 0.982 + }, + { + "start": 19059.1, + "end": 19061.8, + "probability": 0.9954 + }, + { + "start": 19062.6, + "end": 19063.08, + "probability": 0.4745 + }, + { + "start": 19063.12, + "end": 19065.72, + "probability": 0.997 + }, + { + "start": 19065.96, + "end": 19068.88, + "probability": 0.9985 + }, + { + "start": 19069.46, + "end": 19071.28, + "probability": 0.8883 + }, + { + "start": 19071.5, + "end": 19074.72, + "probability": 0.978 + }, + { + "start": 19075.32, + "end": 19076.94, + "probability": 0.9697 + }, + { + "start": 19077.26, + "end": 19079.61, + "probability": 0.8142 + }, + { + "start": 19080.58, + "end": 19082.44, + "probability": 0.8219 + }, + { + "start": 19082.44, + "end": 19082.74, + "probability": 0.5255 + }, + { + "start": 19082.78, + "end": 19088.34, + "probability": 0.8828 + }, + { + "start": 19088.38, + "end": 19089.36, + "probability": 0.88 + }, + { + "start": 19089.82, + "end": 19091.44, + "probability": 0.4673 + }, + { + "start": 19091.74, + "end": 19095.68, + "probability": 0.8931 + }, + { + "start": 19095.94, + "end": 19097.76, + "probability": 0.6276 + }, + { + "start": 19097.9, + "end": 19098.12, + "probability": 0.8625 + }, + { + "start": 19098.34, + "end": 19100.14, + "probability": 0.9854 + }, + { + "start": 19100.46, + "end": 19103.96, + "probability": 0.9236 + }, + { + "start": 19103.98, + "end": 19104.44, + "probability": 0.8539 + }, + { + "start": 19105.18, + "end": 19105.96, + "probability": 0.3238 + }, + { + "start": 19105.96, + "end": 19105.96, + "probability": 0.6295 + }, + { + "start": 19106.2, + "end": 19109.64, + "probability": 0.7988 + }, + { + "start": 19109.88, + "end": 19112.28, + "probability": 0.7494 + }, + { + "start": 19113.74, + "end": 19117.62, + "probability": 0.9594 + }, + { + "start": 19117.64, + "end": 19121.18, + "probability": 0.4468 + }, + { + "start": 19121.32, + "end": 19124.38, + "probability": 0.6395 + }, + { + "start": 19124.42, + "end": 19124.76, + "probability": 0.6425 + }, + { + "start": 19124.82, + "end": 19125.3, + "probability": 0.6284 + }, + { + "start": 19137.72, + "end": 19138.12, + "probability": 0.2049 + }, + { + "start": 19148.1, + "end": 19151.98, + "probability": 0.4373 + }, + { + "start": 19151.98, + "end": 19152.98, + "probability": 0.1368 + }, + { + "start": 19152.98, + "end": 19156.92, + "probability": 0.1954 + }, + { + "start": 19157.16, + "end": 19157.82, + "probability": 0.0109 + }, + { + "start": 19159.9, + "end": 19161.0, + "probability": 0.0353 + }, + { + "start": 19161.7, + "end": 19164.82, + "probability": 0.0593 + }, + { + "start": 19165.46, + "end": 19170.2, + "probability": 0.0876 + }, + { + "start": 19178.68, + "end": 19179.54, + "probability": 0.0107 + }, + { + "start": 19179.8, + "end": 19183.14, + "probability": 0.156 + }, + { + "start": 19191.76, + "end": 19192.8, + "probability": 0.0818 + }, + { + "start": 19193.51, + "end": 19197.6, + "probability": 0.5591 + }, + { + "start": 19198.32, + "end": 19199.32, + "probability": 0.3049 + }, + { + "start": 19201.67, + "end": 19205.32, + "probability": 0.0244 + }, + { + "start": 19205.64, + "end": 19207.52, + "probability": 0.0479 + }, + { + "start": 19208.72, + "end": 19209.4, + "probability": 0.2706 + }, + { + "start": 19209.4, + "end": 19209.44, + "probability": 0.1033 + }, + { + "start": 19209.48, + "end": 19209.86, + "probability": 0.0677 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19210.0, + "end": 19210.0, + "probability": 0.0 + }, + { + "start": 19211.53, + "end": 19212.84, + "probability": 0.6798 + }, + { + "start": 19214.64, + "end": 19216.76, + "probability": 0.5844 + }, + { + "start": 19216.88, + "end": 19217.3, + "probability": 0.7306 + }, + { + "start": 19217.42, + "end": 19221.16, + "probability": 0.9442 + }, + { + "start": 19222.0, + "end": 19226.34, + "probability": 0.8153 + }, + { + "start": 19226.34, + "end": 19229.2, + "probability": 0.955 + }, + { + "start": 19229.54, + "end": 19231.0, + "probability": 0.9572 + }, + { + "start": 19232.08, + "end": 19236.3, + "probability": 0.9881 + }, + { + "start": 19236.38, + "end": 19237.78, + "probability": 0.9092 + }, + { + "start": 19238.22, + "end": 19244.38, + "probability": 0.9971 + }, + { + "start": 19245.96, + "end": 19246.38, + "probability": 0.4822 + }, + { + "start": 19246.48, + "end": 19253.4, + "probability": 0.8618 + }, + { + "start": 19253.54, + "end": 19257.04, + "probability": 0.9971 + }, + { + "start": 19257.04, + "end": 19259.58, + "probability": 0.9897 + }, + { + "start": 19259.68, + "end": 19263.84, + "probability": 0.4521 + }, + { + "start": 19264.82, + "end": 19268.88, + "probability": 0.9948 + }, + { + "start": 19269.02, + "end": 19270.32, + "probability": 0.8347 + }, + { + "start": 19270.32, + "end": 19271.28, + "probability": 0.973 + }, + { + "start": 19271.92, + "end": 19277.02, + "probability": 0.9977 + }, + { + "start": 19277.02, + "end": 19282.46, + "probability": 0.7705 + }, + { + "start": 19282.7, + "end": 19289.44, + "probability": 0.9892 + }, + { + "start": 19290.62, + "end": 19296.84, + "probability": 0.7246 + }, + { + "start": 19297.52, + "end": 19299.58, + "probability": 0.9222 + }, + { + "start": 19299.58, + "end": 19302.6, + "probability": 0.9204 + }, + { + "start": 19302.66, + "end": 19305.94, + "probability": 0.9932 + }, + { + "start": 19305.94, + "end": 19310.36, + "probability": 0.9856 + }, + { + "start": 19311.12, + "end": 19315.13, + "probability": 0.996 + }, + { + "start": 19316.12, + "end": 19322.84, + "probability": 0.804 + }, + { + "start": 19323.5, + "end": 19328.25, + "probability": 0.9689 + }, + { + "start": 19329.14, + "end": 19332.32, + "probability": 0.9836 + }, + { + "start": 19334.22, + "end": 19334.5, + "probability": 0.7644 + }, + { + "start": 19337.1, + "end": 19339.98, + "probability": 0.8897 + }, + { + "start": 19339.98, + "end": 19343.42, + "probability": 0.9974 + }, + { + "start": 19343.76, + "end": 19347.96, + "probability": 0.736 + }, + { + "start": 19348.14, + "end": 19349.66, + "probability": 0.6988 + }, + { + "start": 19349.78, + "end": 19351.04, + "probability": 0.8905 + }, + { + "start": 19351.2, + "end": 19352.22, + "probability": 0.9276 + }, + { + "start": 19353.81, + "end": 19357.04, + "probability": 0.9651 + }, + { + "start": 19357.42, + "end": 19361.34, + "probability": 0.9678 + }, + { + "start": 19364.0, + "end": 19369.48, + "probability": 0.9744 + }, + { + "start": 19369.72, + "end": 19378.04, + "probability": 0.7313 + }, + { + "start": 19384.99, + "end": 19391.08, + "probability": 0.9966 + }, + { + "start": 19391.18, + "end": 19398.5, + "probability": 0.9555 + }, + { + "start": 19398.68, + "end": 19402.14, + "probability": 0.7544 + }, + { + "start": 19402.78, + "end": 19404.22, + "probability": 0.9907 + }, + { + "start": 19405.16, + "end": 19409.23, + "probability": 0.9946 + }, + { + "start": 19411.48, + "end": 19417.42, + "probability": 0.9307 + }, + { + "start": 19418.46, + "end": 19422.34, + "probability": 0.9966 + }, + { + "start": 19422.94, + "end": 19423.04, + "probability": 0.004 + }, + { + "start": 19423.52, + "end": 19425.84, + "probability": 0.9573 + }, + { + "start": 19427.7, + "end": 19430.42, + "probability": 0.7802 + }, + { + "start": 19430.54, + "end": 19433.98, + "probability": 0.7994 + }, + { + "start": 19434.08, + "end": 19436.0, + "probability": 0.8945 + }, + { + "start": 19437.22, + "end": 19437.38, + "probability": 0.3312 + }, + { + "start": 19437.5, + "end": 19441.26, + "probability": 0.9895 + }, + { + "start": 19441.38, + "end": 19445.06, + "probability": 0.9934 + }, + { + "start": 19445.7, + "end": 19445.84, + "probability": 0.0465 + }, + { + "start": 19445.98, + "end": 19448.46, + "probability": 0.9933 + }, + { + "start": 19448.46, + "end": 19451.42, + "probability": 0.9611 + }, + { + "start": 19451.92, + "end": 19458.08, + "probability": 0.9976 + }, + { + "start": 19459.48, + "end": 19462.1, + "probability": 0.9421 + }, + { + "start": 19463.36, + "end": 19464.99, + "probability": 0.9966 + }, + { + "start": 19465.66, + "end": 19468.68, + "probability": 0.9708 + }, + { + "start": 19469.6, + "end": 19472.5, + "probability": 0.9001 + }, + { + "start": 19473.46, + "end": 19476.22, + "probability": 0.9785 + }, + { + "start": 19476.9, + "end": 19478.8, + "probability": 0.9961 + }, + { + "start": 19479.22, + "end": 19484.12, + "probability": 0.97 + }, + { + "start": 19484.22, + "end": 19484.7, + "probability": 0.8375 + }, + { + "start": 19484.8, + "end": 19485.77, + "probability": 0.9692 + }, + { + "start": 19486.76, + "end": 19489.0, + "probability": 0.7819 + }, + { + "start": 19489.18, + "end": 19489.18, + "probability": 0.0577 + }, + { + "start": 19489.18, + "end": 19489.18, + "probability": 0.2184 + }, + { + "start": 19489.18, + "end": 19490.72, + "probability": 0.8693 + }, + { + "start": 19491.28, + "end": 19492.78, + "probability": 0.9766 + }, + { + "start": 19493.02, + "end": 19495.56, + "probability": 0.9989 + }, + { + "start": 19496.58, + "end": 19501.16, + "probability": 0.9741 + }, + { + "start": 19501.24, + "end": 19503.28, + "probability": 0.8936 + }, + { + "start": 19503.36, + "end": 19508.46, + "probability": 0.9877 + }, + { + "start": 19508.5, + "end": 19509.82, + "probability": 0.9119 + }, + { + "start": 19510.24, + "end": 19511.36, + "probability": 0.943 + }, + { + "start": 19511.7, + "end": 19513.84, + "probability": 0.9716 + }, + { + "start": 19514.06, + "end": 19514.48, + "probability": 0.8903 + }, + { + "start": 19515.14, + "end": 19516.44, + "probability": 0.6763 + }, + { + "start": 19516.5, + "end": 19517.2, + "probability": 0.9302 + }, + { + "start": 19517.82, + "end": 19519.8, + "probability": 0.7224 + }, + { + "start": 19521.58, + "end": 19522.44, + "probability": 0.7352 + }, + { + "start": 19522.56, + "end": 19524.04, + "probability": 0.9358 + }, + { + "start": 19534.66, + "end": 19535.12, + "probability": 0.2891 + }, + { + "start": 19535.12, + "end": 19536.16, + "probability": 0.5798 + }, + { + "start": 19536.28, + "end": 19537.06, + "probability": 0.7547 + }, + { + "start": 19537.12, + "end": 19538.18, + "probability": 0.7659 + }, + { + "start": 19538.38, + "end": 19540.46, + "probability": 0.9894 + }, + { + "start": 19540.66, + "end": 19542.38, + "probability": 0.9584 + }, + { + "start": 19542.76, + "end": 19544.02, + "probability": 0.8934 + }, + { + "start": 19544.06, + "end": 19545.22, + "probability": 0.9574 + }, + { + "start": 19545.56, + "end": 19547.48, + "probability": 0.9955 + }, + { + "start": 19547.92, + "end": 19548.9, + "probability": 0.8711 + }, + { + "start": 19549.04, + "end": 19550.0, + "probability": 0.9682 + }, + { + "start": 19550.06, + "end": 19554.52, + "probability": 0.9848 + }, + { + "start": 19555.04, + "end": 19557.12, + "probability": 0.9893 + }, + { + "start": 19557.12, + "end": 19560.86, + "probability": 0.986 + }, + { + "start": 19561.34, + "end": 19562.72, + "probability": 0.9646 + }, + { + "start": 19562.84, + "end": 19563.56, + "probability": 0.8965 + }, + { + "start": 19563.64, + "end": 19564.66, + "probability": 0.9903 + }, + { + "start": 19564.98, + "end": 19566.2, + "probability": 0.6283 + }, + { + "start": 19566.78, + "end": 19567.92, + "probability": 0.9307 + }, + { + "start": 19568.54, + "end": 19572.24, + "probability": 0.9849 + }, + { + "start": 19572.56, + "end": 19574.42, + "probability": 0.9797 + }, + { + "start": 19574.9, + "end": 19578.9, + "probability": 0.9729 + }, + { + "start": 19579.22, + "end": 19582.24, + "probability": 0.9954 + }, + { + "start": 19582.46, + "end": 19585.16, + "probability": 0.9819 + }, + { + "start": 19585.92, + "end": 19588.38, + "probability": 0.8688 + }, + { + "start": 19588.54, + "end": 19589.26, + "probability": 0.8984 + }, + { + "start": 19589.38, + "end": 19590.46, + "probability": 0.8943 + }, + { + "start": 19590.78, + "end": 19593.54, + "probability": 0.7729 + }, + { + "start": 19593.54, + "end": 19596.24, + "probability": 0.999 + }, + { + "start": 19596.44, + "end": 19600.75, + "probability": 0.8054 + }, + { + "start": 19601.24, + "end": 19602.0, + "probability": 0.7902 + }, + { + "start": 19602.06, + "end": 19603.24, + "probability": 0.8047 + }, + { + "start": 19603.48, + "end": 19606.04, + "probability": 0.9429 + }, + { + "start": 19606.56, + "end": 19608.24, + "probability": 0.9467 + }, + { + "start": 19609.0, + "end": 19611.5, + "probability": 0.772 + }, + { + "start": 19611.6, + "end": 19613.86, + "probability": 0.9986 + }, + { + "start": 19614.4, + "end": 19618.34, + "probability": 0.9945 + }, + { + "start": 19618.9, + "end": 19621.86, + "probability": 0.9711 + }, + { + "start": 19622.22, + "end": 19622.96, + "probability": 0.7003 + }, + { + "start": 19623.06, + "end": 19623.8, + "probability": 0.4027 + }, + { + "start": 19623.98, + "end": 19625.52, + "probability": 0.7994 + }, + { + "start": 19625.58, + "end": 19626.3, + "probability": 0.5756 + }, + { + "start": 19626.68, + "end": 19629.44, + "probability": 0.9863 + }, + { + "start": 19629.52, + "end": 19631.0, + "probability": 0.8573 + }, + { + "start": 19631.4, + "end": 19632.82, + "probability": 0.7655 + }, + { + "start": 19632.9, + "end": 19633.38, + "probability": 0.6896 + }, + { + "start": 19633.62, + "end": 19634.44, + "probability": 0.6511 + }, + { + "start": 19634.72, + "end": 19636.92, + "probability": 0.9908 + }, + { + "start": 19637.12, + "end": 19639.02, + "probability": 0.855 + }, + { + "start": 19639.32, + "end": 19640.56, + "probability": 0.8433 + }, + { + "start": 19640.9, + "end": 19643.46, + "probability": 0.9795 + }, + { + "start": 19644.06, + "end": 19649.44, + "probability": 0.9938 + }, + { + "start": 19650.2, + "end": 19656.6, + "probability": 0.9798 + }, + { + "start": 19657.04, + "end": 19658.12, + "probability": 0.8296 + }, + { + "start": 19658.24, + "end": 19659.0, + "probability": 0.9194 + }, + { + "start": 19659.14, + "end": 19660.06, + "probability": 0.7257 + }, + { + "start": 19660.38, + "end": 19661.3, + "probability": 0.5797 + }, + { + "start": 19661.34, + "end": 19661.68, + "probability": 0.4794 + }, + { + "start": 19661.84, + "end": 19662.95, + "probability": 0.9712 + }, + { + "start": 19663.38, + "end": 19667.64, + "probability": 0.9954 + }, + { + "start": 19668.1, + "end": 19669.34, + "probability": 0.9806 + }, + { + "start": 19669.38, + "end": 19670.76, + "probability": 0.9861 + }, + { + "start": 19671.12, + "end": 19672.63, + "probability": 0.9916 + }, + { + "start": 19672.92, + "end": 19675.0, + "probability": 0.97 + }, + { + "start": 19675.38, + "end": 19675.78, + "probability": 0.7264 + }, + { + "start": 19676.3, + "end": 19678.9, + "probability": 0.9107 + }, + { + "start": 19679.48, + "end": 19683.14, + "probability": 0.9565 + }, + { + "start": 19683.44, + "end": 19684.3, + "probability": 0.9806 + }, + { + "start": 19684.46, + "end": 19686.26, + "probability": 0.9102 + }, + { + "start": 19686.98, + "end": 19690.74, + "probability": 0.8019 + }, + { + "start": 19691.3, + "end": 19694.94, + "probability": 0.9548 + }, + { + "start": 19695.44, + "end": 19697.94, + "probability": 0.9808 + }, + { + "start": 19698.2, + "end": 19698.82, + "probability": 0.4725 + }, + { + "start": 19699.28, + "end": 19701.76, + "probability": 0.9877 + }, + { + "start": 19701.78, + "end": 19703.02, + "probability": 0.852 + }, + { + "start": 19703.4, + "end": 19704.04, + "probability": 0.4267 + }, + { + "start": 19704.29, + "end": 19707.4, + "probability": 0.9403 + }, + { + "start": 19707.68, + "end": 19708.84, + "probability": 0.9648 + }, + { + "start": 19709.14, + "end": 19710.5, + "probability": 0.903 + }, + { + "start": 19710.54, + "end": 19711.58, + "probability": 0.9475 + }, + { + "start": 19711.72, + "end": 19712.94, + "probability": 0.796 + }, + { + "start": 19713.28, + "end": 19716.22, + "probability": 0.99 + }, + { + "start": 19716.72, + "end": 19719.58, + "probability": 0.9797 + }, + { + "start": 19720.32, + "end": 19725.14, + "probability": 0.965 + }, + { + "start": 19725.96, + "end": 19727.88, + "probability": 0.5203 + }, + { + "start": 19728.12, + "end": 19730.23, + "probability": 0.6178 + }, + { + "start": 19730.52, + "end": 19733.36, + "probability": 0.7726 + }, + { + "start": 19733.9, + "end": 19738.32, + "probability": 0.7116 + }, + { + "start": 19738.48, + "end": 19739.38, + "probability": 0.9309 + }, + { + "start": 19739.48, + "end": 19741.94, + "probability": 0.9942 + }, + { + "start": 19742.02, + "end": 19742.58, + "probability": 0.6977 + }, + { + "start": 19743.08, + "end": 19745.38, + "probability": 0.9933 + }, + { + "start": 19745.44, + "end": 19749.76, + "probability": 0.9865 + }, + { + "start": 19749.76, + "end": 19753.94, + "probability": 0.9954 + }, + { + "start": 19754.1, + "end": 19755.12, + "probability": 0.5007 + }, + { + "start": 19755.42, + "end": 19756.54, + "probability": 0.8777 + }, + { + "start": 19756.66, + "end": 19758.32, + "probability": 0.9868 + }, + { + "start": 19758.32, + "end": 19759.08, + "probability": 0.5438 + }, + { + "start": 19759.2, + "end": 19761.92, + "probability": 0.7831 + }, + { + "start": 19762.59, + "end": 19768.5, + "probability": 0.9074 + }, + { + "start": 19768.5, + "end": 19771.62, + "probability": 0.9957 + }, + { + "start": 19771.7, + "end": 19775.84, + "probability": 0.9203 + }, + { + "start": 19775.92, + "end": 19777.24, + "probability": 0.9658 + }, + { + "start": 19777.42, + "end": 19778.68, + "probability": 0.8942 + }, + { + "start": 19779.1, + "end": 19780.36, + "probability": 0.8903 + }, + { + "start": 19780.7, + "end": 19784.24, + "probability": 0.9757 + }, + { + "start": 19784.66, + "end": 19786.16, + "probability": 0.985 + }, + { + "start": 19786.22, + "end": 19786.54, + "probability": 0.5064 + }, + { + "start": 19786.58, + "end": 19788.38, + "probability": 0.7073 + }, + { + "start": 19788.58, + "end": 19790.6, + "probability": 0.9595 + }, + { + "start": 19790.98, + "end": 19791.44, + "probability": 0.9221 + }, + { + "start": 19807.96, + "end": 19810.21, + "probability": 0.5117 + }, + { + "start": 19813.37, + "end": 19817.68, + "probability": 0.927 + }, + { + "start": 19819.1, + "end": 19820.04, + "probability": 0.7723 + }, + { + "start": 19820.68, + "end": 19822.56, + "probability": 0.8784 + }, + { + "start": 19823.64, + "end": 19828.22, + "probability": 0.9473 + }, + { + "start": 19829.4, + "end": 19830.6, + "probability": 0.6929 + }, + { + "start": 19830.92, + "end": 19832.08, + "probability": 0.7284 + }, + { + "start": 19832.1, + "end": 19834.42, + "probability": 0.9897 + }, + { + "start": 19834.5, + "end": 19836.2, + "probability": 0.9973 + }, + { + "start": 19836.5, + "end": 19838.06, + "probability": 0.9544 + }, + { + "start": 19838.58, + "end": 19839.03, + "probability": 0.9215 + }, + { + "start": 19840.32, + "end": 19841.56, + "probability": 0.8599 + }, + { + "start": 19842.4, + "end": 19843.56, + "probability": 0.7824 + }, + { + "start": 19844.44, + "end": 19847.88, + "probability": 0.5317 + }, + { + "start": 19848.16, + "end": 19851.51, + "probability": 0.9245 + }, + { + "start": 19852.24, + "end": 19856.48, + "probability": 0.876 + }, + { + "start": 19857.04, + "end": 19858.04, + "probability": 0.8062 + }, + { + "start": 19858.44, + "end": 19859.68, + "probability": 0.9866 + }, + { + "start": 19860.14, + "end": 19866.64, + "probability": 0.9902 + }, + { + "start": 19867.44, + "end": 19869.02, + "probability": 0.2638 + }, + { + "start": 19869.92, + "end": 19875.02, + "probability": 0.9897 + }, + { + "start": 19876.18, + "end": 19880.16, + "probability": 0.9362 + }, + { + "start": 19880.72, + "end": 19881.95, + "probability": 0.9688 + }, + { + "start": 19882.74, + "end": 19884.46, + "probability": 0.6074 + }, + { + "start": 19885.44, + "end": 19887.42, + "probability": 0.7218 + }, + { + "start": 19887.54, + "end": 19888.54, + "probability": 0.6408 + }, + { + "start": 19889.36, + "end": 19890.6, + "probability": 0.5675 + }, + { + "start": 19890.94, + "end": 19892.18, + "probability": 0.8374 + }, + { + "start": 19892.24, + "end": 19896.18, + "probability": 0.9941 + }, + { + "start": 19896.24, + "end": 19897.5, + "probability": 0.9693 + }, + { + "start": 19898.34, + "end": 19903.08, + "probability": 0.9652 + }, + { + "start": 19903.22, + "end": 19904.34, + "probability": 0.9175 + }, + { + "start": 19905.1, + "end": 19909.16, + "probability": 0.9656 + }, + { + "start": 19909.16, + "end": 19912.4, + "probability": 0.8162 + }, + { + "start": 19913.06, + "end": 19913.58, + "probability": 0.2753 + }, + { + "start": 19914.16, + "end": 19917.54, + "probability": 0.9595 + }, + { + "start": 19918.32, + "end": 19920.38, + "probability": 0.9761 + }, + { + "start": 19921.16, + "end": 19921.82, + "probability": 0.908 + }, + { + "start": 19922.46, + "end": 19924.4, + "probability": 0.9867 + }, + { + "start": 19924.92, + "end": 19926.92, + "probability": 0.9949 + }, + { + "start": 19927.12, + "end": 19927.9, + "probability": 0.7268 + }, + { + "start": 19927.98, + "end": 19929.94, + "probability": 0.6741 + }, + { + "start": 19930.02, + "end": 19932.42, + "probability": 0.9624 + }, + { + "start": 19932.62, + "end": 19936.56, + "probability": 0.6699 + }, + { + "start": 19936.56, + "end": 19938.62, + "probability": 0.7371 + }, + { + "start": 19939.26, + "end": 19940.22, + "probability": 0.9003 + }, + { + "start": 19940.62, + "end": 19941.2, + "probability": 0.7139 + }, + { + "start": 19941.26, + "end": 19941.5, + "probability": 0.7182 + }, + { + "start": 19941.56, + "end": 19941.77, + "probability": 0.5342 + }, + { + "start": 19942.52, + "end": 19945.9, + "probability": 0.4179 + }, + { + "start": 19946.14, + "end": 19946.48, + "probability": 0.6657 + }, + { + "start": 19946.54, + "end": 19946.94, + "probability": 0.6984 + }, + { + "start": 19949.24, + "end": 19950.18, + "probability": 0.739 + }, + { + "start": 19950.26, + "end": 19950.68, + "probability": 0.7013 + }, + { + "start": 19958.54, + "end": 19962.27, + "probability": 0.9028 + }, + { + "start": 19963.54, + "end": 19968.82, + "probability": 0.4372 + }, + { + "start": 19969.52, + "end": 19971.7, + "probability": 0.9911 + }, + { + "start": 19972.12, + "end": 19975.02, + "probability": 0.9727 + }, + { + "start": 19975.24, + "end": 19979.56, + "probability": 0.9714 + }, + { + "start": 19979.66, + "end": 19980.28, + "probability": 0.8502 + }, + { + "start": 19980.34, + "end": 19981.3, + "probability": 0.8959 + }, + { + "start": 19981.36, + "end": 19983.28, + "probability": 0.8265 + }, + { + "start": 19983.66, + "end": 19984.8, + "probability": 0.8454 + }, + { + "start": 19984.9, + "end": 19985.82, + "probability": 0.8081 + }, + { + "start": 19986.98, + "end": 19988.04, + "probability": 0.7704 + }, + { + "start": 19989.92, + "end": 19991.32, + "probability": 0.9766 + }, + { + "start": 19991.44, + "end": 19993.12, + "probability": 0.8005 + }, + { + "start": 19993.28, + "end": 19993.74, + "probability": 0.58 + }, + { + "start": 19994.08, + "end": 19994.78, + "probability": 0.4755 + }, + { + "start": 19994.8, + "end": 19995.46, + "probability": 0.7696 + }, + { + "start": 19995.52, + "end": 19996.18, + "probability": 0.5865 + }, + { + "start": 19996.88, + "end": 19998.7, + "probability": 0.9561 + }, + { + "start": 19999.1, + "end": 20001.74, + "probability": 0.6639 + }, + { + "start": 20002.4, + "end": 20004.18, + "probability": 0.7329 + }, + { + "start": 20004.2, + "end": 20008.44, + "probability": 0.9316 + }, + { + "start": 20008.62, + "end": 20009.02, + "probability": 0.5429 + }, + { + "start": 20009.36, + "end": 20013.36, + "probability": 0.958 + }, + { + "start": 20013.66, + "end": 20013.86, + "probability": 0.9118 + }, + { + "start": 20013.98, + "end": 20014.26, + "probability": 0.4281 + }, + { + "start": 20014.76, + "end": 20016.04, + "probability": 0.8401 + }, + { + "start": 20016.44, + "end": 20018.28, + "probability": 0.9545 + }, + { + "start": 20018.62, + "end": 20019.52, + "probability": 0.9834 + }, + { + "start": 20019.86, + "end": 20020.89, + "probability": 0.9873 + }, + { + "start": 20021.58, + "end": 20023.76, + "probability": 0.9783 + }, + { + "start": 20023.8, + "end": 20024.24, + "probability": 0.7171 + }, + { + "start": 20024.58, + "end": 20026.5, + "probability": 0.5266 + }, + { + "start": 20026.64, + "end": 20028.16, + "probability": 0.8381 + }, + { + "start": 20029.1, + "end": 20029.6, + "probability": 0.3046 + }, + { + "start": 20029.66, + "end": 20031.48, + "probability": 0.9225 + }, + { + "start": 20033.9, + "end": 20034.56, + "probability": 0.7409 + }, + { + "start": 20047.74, + "end": 20048.2, + "probability": 0.6893 + }, + { + "start": 20049.58, + "end": 20051.66, + "probability": 0.7239 + }, + { + "start": 20052.18, + "end": 20059.92, + "probability": 0.8949 + }, + { + "start": 20060.56, + "end": 20061.36, + "probability": 0.5964 + }, + { + "start": 20061.58, + "end": 20064.04, + "probability": 0.9687 + }, + { + "start": 20064.26, + "end": 20067.3, + "probability": 0.9742 + }, + { + "start": 20067.3, + "end": 20070.58, + "probability": 0.9459 + }, + { + "start": 20071.48, + "end": 20074.76, + "probability": 0.9585 + }, + { + "start": 20074.84, + "end": 20076.56, + "probability": 0.8365 + }, + { + "start": 20076.62, + "end": 20081.4, + "probability": 0.9952 + }, + { + "start": 20081.66, + "end": 20082.38, + "probability": 0.833 + }, + { + "start": 20082.68, + "end": 20084.66, + "probability": 0.5549 + }, + { + "start": 20084.8, + "end": 20090.17, + "probability": 0.7243 + }, + { + "start": 20090.62, + "end": 20095.34, + "probability": 0.9342 + }, + { + "start": 20095.42, + "end": 20099.72, + "probability": 0.9683 + }, + { + "start": 20099.94, + "end": 20102.8, + "probability": 0.7101 + }, + { + "start": 20102.8, + "end": 20105.6, + "probability": 0.8074 + }, + { + "start": 20106.4, + "end": 20108.36, + "probability": 0.9389 + }, + { + "start": 20108.46, + "end": 20109.69, + "probability": 0.9937 + }, + { + "start": 20110.1, + "end": 20111.7, + "probability": 0.5087 + }, + { + "start": 20112.48, + "end": 20115.16, + "probability": 0.9566 + }, + { + "start": 20115.2, + "end": 20117.1, + "probability": 0.9844 + }, + { + "start": 20117.16, + "end": 20118.48, + "probability": 0.9268 + }, + { + "start": 20119.38, + "end": 20122.78, + "probability": 0.866 + }, + { + "start": 20123.4, + "end": 20129.96, + "probability": 0.8565 + }, + { + "start": 20130.2, + "end": 20132.12, + "probability": 0.8543 + }, + { + "start": 20132.68, + "end": 20133.58, + "probability": 0.0993 + }, + { + "start": 20134.06, + "end": 20136.5, + "probability": 0.9911 + }, + { + "start": 20137.0, + "end": 20138.46, + "probability": 0.3986 + }, + { + "start": 20138.98, + "end": 20143.0, + "probability": 0.9707 + }, + { + "start": 20143.6, + "end": 20144.68, + "probability": 0.5393 + }, + { + "start": 20144.86, + "end": 20147.16, + "probability": 0.7723 + }, + { + "start": 20148.0, + "end": 20150.62, + "probability": 0.9874 + }, + { + "start": 20151.67, + "end": 20157.62, + "probability": 0.8425 + }, + { + "start": 20158.32, + "end": 20161.11, + "probability": 0.4671 + }, + { + "start": 20161.48, + "end": 20163.88, + "probability": 0.9639 + }, + { + "start": 20163.94, + "end": 20165.72, + "probability": 0.9894 + }, + { + "start": 20166.02, + "end": 20166.2, + "probability": 0.4697 + }, + { + "start": 20166.34, + "end": 20170.18, + "probability": 0.9146 + }, + { + "start": 20170.36, + "end": 20171.92, + "probability": 0.9067 + }, + { + "start": 20171.92, + "end": 20174.98, + "probability": 0.97 + }, + { + "start": 20175.42, + "end": 20177.75, + "probability": 0.9629 + }, + { + "start": 20178.28, + "end": 20179.7, + "probability": 0.9576 + }, + { + "start": 20180.58, + "end": 20182.02, + "probability": 0.9902 + }, + { + "start": 20182.8, + "end": 20183.66, + "probability": 0.7234 + }, + { + "start": 20183.72, + "end": 20184.58, + "probability": 0.9802 + }, + { + "start": 20184.96, + "end": 20186.56, + "probability": 0.9801 + }, + { + "start": 20186.86, + "end": 20189.5, + "probability": 0.7288 + }, + { + "start": 20190.02, + "end": 20193.96, + "probability": 0.9836 + }, + { + "start": 20194.54, + "end": 20195.88, + "probability": 0.9131 + }, + { + "start": 20196.88, + "end": 20199.26, + "probability": 0.9922 + }, + { + "start": 20199.68, + "end": 20201.9, + "probability": 0.9073 + }, + { + "start": 20202.26, + "end": 20203.44, + "probability": 0.9836 + }, + { + "start": 20203.84, + "end": 20205.28, + "probability": 0.7347 + }, + { + "start": 20206.23, + "end": 20209.42, + "probability": 0.8297 + }, + { + "start": 20209.7, + "end": 20210.3, + "probability": 0.5724 + }, + { + "start": 20210.56, + "end": 20212.42, + "probability": 0.573 + }, + { + "start": 20213.04, + "end": 20215.72, + "probability": 0.6346 + }, + { + "start": 20218.48, + "end": 20222.8, + "probability": 0.9469 + }, + { + "start": 20222.8, + "end": 20227.63, + "probability": 0.9944 + }, + { + "start": 20228.38, + "end": 20230.86, + "probability": 0.9963 + }, + { + "start": 20231.16, + "end": 20232.46, + "probability": 0.7655 + }, + { + "start": 20232.78, + "end": 20237.03, + "probability": 0.8494 + }, + { + "start": 20238.6, + "end": 20239.52, + "probability": 0.5852 + }, + { + "start": 20240.96, + "end": 20244.0, + "probability": 0.8557 + }, + { + "start": 20244.3, + "end": 20251.12, + "probability": 0.9753 + }, + { + "start": 20251.12, + "end": 20256.44, + "probability": 0.7839 + }, + { + "start": 20256.78, + "end": 20260.96, + "probability": 0.5496 + }, + { + "start": 20261.46, + "end": 20263.62, + "probability": 0.8807 + }, + { + "start": 20263.72, + "end": 20266.3, + "probability": 0.7462 + }, + { + "start": 20266.4, + "end": 20268.64, + "probability": 0.9306 + }, + { + "start": 20269.0, + "end": 20275.24, + "probability": 0.9672 + }, + { + "start": 20275.3, + "end": 20278.28, + "probability": 0.9839 + }, + { + "start": 20278.46, + "end": 20278.98, + "probability": 0.3284 + }, + { + "start": 20279.14, + "end": 20280.64, + "probability": 0.35 + }, + { + "start": 20281.32, + "end": 20282.02, + "probability": 0.425 + }, + { + "start": 20282.02, + "end": 20283.3, + "probability": 0.7051 + }, + { + "start": 20283.4, + "end": 20285.64, + "probability": 0.6811 + }, + { + "start": 20285.64, + "end": 20285.96, + "probability": 0.9158 + }, + { + "start": 20297.28, + "end": 20299.36, + "probability": 0.6474 + }, + { + "start": 20301.26, + "end": 20304.76, + "probability": 0.9898 + }, + { + "start": 20305.02, + "end": 20308.64, + "probability": 0.8182 + }, + { + "start": 20308.84, + "end": 20311.9, + "probability": 0.8826 + }, + { + "start": 20312.06, + "end": 20313.34, + "probability": 0.9974 + }, + { + "start": 20313.96, + "end": 20319.72, + "probability": 0.9891 + }, + { + "start": 20320.22, + "end": 20323.54, + "probability": 0.808 + }, + { + "start": 20323.68, + "end": 20324.1, + "probability": 0.4841 + }, + { + "start": 20324.18, + "end": 20326.38, + "probability": 0.7104 + }, + { + "start": 20326.48, + "end": 20326.92, + "probability": 0.7484 + }, + { + "start": 20327.58, + "end": 20330.14, + "probability": 0.7253 + }, + { + "start": 20331.1, + "end": 20338.4, + "probability": 0.9651 + }, + { + "start": 20338.52, + "end": 20338.68, + "probability": 0.0379 + }, + { + "start": 20338.68, + "end": 20339.36, + "probability": 0.3918 + }, + { + "start": 20341.08, + "end": 20344.12, + "probability": 0.8641 + }, + { + "start": 20345.1, + "end": 20347.62, + "probability": 0.9014 + }, + { + "start": 20347.7, + "end": 20349.2, + "probability": 0.9746 + }, + { + "start": 20349.7, + "end": 20352.65, + "probability": 0.994 + }, + { + "start": 20353.24, + "end": 20354.04, + "probability": 0.7815 + }, + { + "start": 20354.12, + "end": 20357.0, + "probability": 0.8885 + }, + { + "start": 20357.42, + "end": 20361.82, + "probability": 0.9076 + }, + { + "start": 20361.98, + "end": 20365.64, + "probability": 0.8452 + }, + { + "start": 20367.56, + "end": 20369.06, + "probability": 0.0338 + }, + { + "start": 20370.26, + "end": 20372.34, + "probability": 0.8255 + }, + { + "start": 20372.4, + "end": 20375.3, + "probability": 0.8732 + }, + { + "start": 20376.58, + "end": 20381.24, + "probability": 0.9204 + }, + { + "start": 20381.42, + "end": 20385.1, + "probability": 0.9914 + }, + { + "start": 20385.58, + "end": 20387.7, + "probability": 0.7412 + }, + { + "start": 20387.9, + "end": 20390.26, + "probability": 0.996 + }, + { + "start": 20390.26, + "end": 20393.12, + "probability": 0.9365 + }, + { + "start": 20394.44, + "end": 20395.24, + "probability": 0.4911 + }, + { + "start": 20395.44, + "end": 20397.24, + "probability": 0.7522 + }, + { + "start": 20397.44, + "end": 20398.8, + "probability": 0.9749 + }, + { + "start": 20398.92, + "end": 20402.86, + "probability": 0.4849 + }, + { + "start": 20403.7, + "end": 20403.72, + "probability": 0.6588 + }, + { + "start": 20403.72, + "end": 20407.94, + "probability": 0.9848 + }, + { + "start": 20408.02, + "end": 20411.34, + "probability": 0.9491 + }, + { + "start": 20412.38, + "end": 20413.6, + "probability": 0.667 + }, + { + "start": 20414.44, + "end": 20418.0, + "probability": 0.9878 + }, + { + "start": 20418.0, + "end": 20422.54, + "probability": 0.9912 + }, + { + "start": 20423.14, + "end": 20424.56, + "probability": 0.6861 + }, + { + "start": 20425.26, + "end": 20428.22, + "probability": 0.9554 + }, + { + "start": 20428.36, + "end": 20429.14, + "probability": 0.1032 + }, + { + "start": 20430.02, + "end": 20431.86, + "probability": 0.9628 + }, + { + "start": 20432.02, + "end": 20432.38, + "probability": 0.8318 + }, + { + "start": 20432.48, + "end": 20433.58, + "probability": 0.941 + }, + { + "start": 20433.68, + "end": 20437.52, + "probability": 0.968 + }, + { + "start": 20437.96, + "end": 20440.56, + "probability": 0.6562 + }, + { + "start": 20442.74, + "end": 20445.88, + "probability": 0.9074 + }, + { + "start": 20445.96, + "end": 20450.0, + "probability": 0.9549 + }, + { + "start": 20450.48, + "end": 20452.04, + "probability": 0.9746 + }, + { + "start": 20452.14, + "end": 20453.28, + "probability": 0.9668 + }, + { + "start": 20453.68, + "end": 20457.64, + "probability": 0.9262 + }, + { + "start": 20458.54, + "end": 20464.32, + "probability": 0.989 + }, + { + "start": 20464.32, + "end": 20470.74, + "probability": 0.9695 + }, + { + "start": 20470.96, + "end": 20473.44, + "probability": 0.7772 + }, + { + "start": 20474.1, + "end": 20477.84, + "probability": 0.9968 + }, + { + "start": 20478.52, + "end": 20480.98, + "probability": 0.9697 + }, + { + "start": 20481.5, + "end": 20483.72, + "probability": 0.9873 + }, + { + "start": 20484.16, + "end": 20487.88, + "probability": 0.9852 + }, + { + "start": 20488.24, + "end": 20490.22, + "probability": 0.9819 + }, + { + "start": 20490.58, + "end": 20490.9, + "probability": 0.784 + }, + { + "start": 20491.06, + "end": 20493.24, + "probability": 0.8531 + }, + { + "start": 20493.4, + "end": 20495.5, + "probability": 0.8898 + }, + { + "start": 20495.54, + "end": 20495.64, + "probability": 0.7524 + }, + { + "start": 20504.08, + "end": 20505.2, + "probability": 0.6965 + }, + { + "start": 20506.04, + "end": 20506.7, + "probability": 0.8425 + }, + { + "start": 20508.08, + "end": 20510.52, + "probability": 0.8282 + }, + { + "start": 20511.24, + "end": 20512.1, + "probability": 0.7881 + }, + { + "start": 20513.38, + "end": 20514.12, + "probability": 0.9263 + }, + { + "start": 20514.22, + "end": 20516.82, + "probability": 0.9487 + }, + { + "start": 20516.9, + "end": 20520.4, + "probability": 0.8114 + }, + { + "start": 20520.98, + "end": 20525.12, + "probability": 0.9944 + }, + { + "start": 20525.12, + "end": 20529.06, + "probability": 0.9641 + }, + { + "start": 20529.4, + "end": 20531.02, + "probability": 0.9132 + }, + { + "start": 20532.44, + "end": 20535.17, + "probability": 0.4944 + }, + { + "start": 20535.92, + "end": 20539.8, + "probability": 0.9944 + }, + { + "start": 20540.36, + "end": 20541.78, + "probability": 0.9177 + }, + { + "start": 20542.58, + "end": 20548.56, + "probability": 0.9553 + }, + { + "start": 20549.28, + "end": 20550.97, + "probability": 0.9656 + }, + { + "start": 20551.48, + "end": 20552.1, + "probability": 0.4621 + }, + { + "start": 20552.58, + "end": 20557.42, + "probability": 0.9331 + }, + { + "start": 20557.8, + "end": 20560.2, + "probability": 0.9055 + }, + { + "start": 20560.82, + "end": 20562.68, + "probability": 0.884 + }, + { + "start": 20562.94, + "end": 20564.84, + "probability": 0.9617 + }, + { + "start": 20565.22, + "end": 20569.66, + "probability": 0.9908 + }, + { + "start": 20570.4, + "end": 20571.2, + "probability": 0.9767 + }, + { + "start": 20572.3, + "end": 20575.0, + "probability": 0.8464 + }, + { + "start": 20575.14, + "end": 20579.16, + "probability": 0.9927 + }, + { + "start": 20579.16, + "end": 20582.52, + "probability": 0.995 + }, + { + "start": 20583.44, + "end": 20584.7, + "probability": 0.9968 + }, + { + "start": 20585.28, + "end": 20586.52, + "probability": 0.8252 + }, + { + "start": 20587.52, + "end": 20590.56, + "probability": 0.9172 + }, + { + "start": 20591.28, + "end": 20594.64, + "probability": 0.9711 + }, + { + "start": 20594.96, + "end": 20599.74, + "probability": 0.9817 + }, + { + "start": 20600.84, + "end": 20601.54, + "probability": 0.601 + }, + { + "start": 20602.04, + "end": 20605.7, + "probability": 0.9845 + }, + { + "start": 20606.18, + "end": 20607.8, + "probability": 0.9672 + }, + { + "start": 20607.94, + "end": 20610.51, + "probability": 0.9927 + }, + { + "start": 20610.78, + "end": 20613.34, + "probability": 0.9943 + }, + { + "start": 20613.34, + "end": 20616.7, + "probability": 0.8896 + }, + { + "start": 20617.78, + "end": 20618.76, + "probability": 0.4307 + }, + { + "start": 20619.58, + "end": 20620.28, + "probability": 0.9552 + }, + { + "start": 20620.62, + "end": 20624.12, + "probability": 0.8902 + }, + { + "start": 20624.62, + "end": 20628.86, + "probability": 0.8777 + }, + { + "start": 20629.36, + "end": 20632.84, + "probability": 0.9559 + }, + { + "start": 20634.28, + "end": 20636.78, + "probability": 0.978 + }, + { + "start": 20637.58, + "end": 20640.52, + "probability": 0.9284 + }, + { + "start": 20640.74, + "end": 20644.62, + "probability": 0.8768 + }, + { + "start": 20645.04, + "end": 20646.36, + "probability": 0.9797 + }, + { + "start": 20647.72, + "end": 20648.46, + "probability": 0.9646 + }, + { + "start": 20649.14, + "end": 20651.26, + "probability": 0.7144 + }, + { + "start": 20652.44, + "end": 20652.98, + "probability": 0.9236 + }, + { + "start": 20653.36, + "end": 20654.06, + "probability": 0.9893 + }, + { + "start": 20655.28, + "end": 20657.64, + "probability": 0.6954 + }, + { + "start": 20657.92, + "end": 20659.59, + "probability": 0.9331 + }, + { + "start": 20661.24, + "end": 20663.26, + "probability": 0.9792 + }, + { + "start": 20663.8, + "end": 20664.32, + "probability": 0.5648 + }, + { + "start": 20664.52, + "end": 20666.48, + "probability": 0.9069 + }, + { + "start": 20667.22, + "end": 20668.0, + "probability": 0.9814 + }, + { + "start": 20668.36, + "end": 20669.18, + "probability": 0.9912 + }, + { + "start": 20669.54, + "end": 20670.44, + "probability": 0.6219 + }, + { + "start": 20670.62, + "end": 20672.52, + "probability": 0.5055 + }, + { + "start": 20672.54, + "end": 20673.27, + "probability": 0.8375 + }, + { + "start": 20674.24, + "end": 20677.14, + "probability": 0.9391 + }, + { + "start": 20677.58, + "end": 20679.1, + "probability": 0.9777 + }, + { + "start": 20679.4, + "end": 20680.42, + "probability": 0.7372 + }, + { + "start": 20680.68, + "end": 20685.38, + "probability": 0.7363 + }, + { + "start": 20685.9, + "end": 20690.14, + "probability": 0.7962 + }, + { + "start": 20690.44, + "end": 20692.16, + "probability": 0.7406 + }, + { + "start": 20692.54, + "end": 20694.6, + "probability": 0.9843 + }, + { + "start": 20695.04, + "end": 20698.74, + "probability": 0.8761 + }, + { + "start": 20699.02, + "end": 20699.88, + "probability": 0.2101 + }, + { + "start": 20699.88, + "end": 20700.48, + "probability": 0.4911 + }, + { + "start": 20700.84, + "end": 20703.54, + "probability": 0.8192 + }, + { + "start": 20704.44, + "end": 20705.6, + "probability": 0.7084 + }, + { + "start": 20707.52, + "end": 20709.49, + "probability": 0.7853 + }, + { + "start": 20709.74, + "end": 20710.3, + "probability": 0.6871 + }, + { + "start": 20710.88, + "end": 20718.78, + "probability": 0.9579 + }, + { + "start": 20719.26, + "end": 20723.06, + "probability": 0.9711 + }, + { + "start": 20724.58, + "end": 20725.16, + "probability": 0.4433 + }, + { + "start": 20725.16, + "end": 20726.16, + "probability": 0.8501 + }, + { + "start": 20726.92, + "end": 20727.6, + "probability": 0.191 + }, + { + "start": 20728.18, + "end": 20729.58, + "probability": 0.8353 + }, + { + "start": 20729.7, + "end": 20729.96, + "probability": 0.3651 + }, + { + "start": 20729.96, + "end": 20731.54, + "probability": 0.808 + }, + { + "start": 20732.22, + "end": 20736.94, + "probability": 0.7693 + }, + { + "start": 20737.0, + "end": 20737.1, + "probability": 0.8334 + }, + { + "start": 20742.16, + "end": 20742.24, + "probability": 0.269 + }, + { + "start": 20758.46, + "end": 20760.86, + "probability": 0.613 + }, + { + "start": 20761.88, + "end": 20764.14, + "probability": 0.9973 + }, + { + "start": 20765.52, + "end": 20767.14, + "probability": 0.6827 + }, + { + "start": 20767.54, + "end": 20770.24, + "probability": 0.9976 + }, + { + "start": 20770.24, + "end": 20774.28, + "probability": 0.9845 + }, + { + "start": 20777.94, + "end": 20782.94, + "probability": 0.9915 + }, + { + "start": 20783.66, + "end": 20785.32, + "probability": 0.9867 + }, + { + "start": 20786.06, + "end": 20789.9, + "probability": 0.9465 + }, + { + "start": 20792.48, + "end": 20796.1, + "probability": 0.947 + }, + { + "start": 20797.36, + "end": 20799.72, + "probability": 0.9961 + }, + { + "start": 20801.94, + "end": 20804.32, + "probability": 0.6657 + }, + { + "start": 20804.96, + "end": 20806.0, + "probability": 0.7639 + }, + { + "start": 20806.08, + "end": 20810.94, + "probability": 0.9937 + }, + { + "start": 20812.28, + "end": 20812.28, + "probability": 0.0246 + }, + { + "start": 20812.3, + "end": 20814.14, + "probability": 0.9912 + }, + { + "start": 20815.3, + "end": 20818.6, + "probability": 0.8105 + }, + { + "start": 20818.6, + "end": 20818.7, + "probability": 0.0331 + }, + { + "start": 20818.7, + "end": 20818.76, + "probability": 0.4498 + }, + { + "start": 20818.78, + "end": 20818.9, + "probability": 0.1875 + }, + { + "start": 20818.9, + "end": 20820.58, + "probability": 0.7694 + }, + { + "start": 20821.06, + "end": 20823.96, + "probability": 0.9856 + }, + { + "start": 20824.7, + "end": 20824.74, + "probability": 0.1612 + }, + { + "start": 20824.74, + "end": 20824.74, + "probability": 0.3608 + }, + { + "start": 20824.74, + "end": 20829.6, + "probability": 0.6633 + }, + { + "start": 20829.74, + "end": 20830.54, + "probability": 0.7982 + }, + { + "start": 20830.62, + "end": 20831.64, + "probability": 0.7263 + }, + { + "start": 20831.64, + "end": 20834.08, + "probability": 0.475 + }, + { + "start": 20834.3, + "end": 20836.06, + "probability": 0.6066 + }, + { + "start": 20836.24, + "end": 20836.8, + "probability": 0.0741 + }, + { + "start": 20836.8, + "end": 20837.01, + "probability": 0.287 + }, + { + "start": 20837.38, + "end": 20837.84, + "probability": 0.0254 + }, + { + "start": 20837.94, + "end": 20839.44, + "probability": 0.6222 + }, + { + "start": 20839.6, + "end": 20841.32, + "probability": 0.9949 + }, + { + "start": 20841.48, + "end": 20842.56, + "probability": 0.8364 + }, + { + "start": 20842.68, + "end": 20843.38, + "probability": 0.4484 + }, + { + "start": 20843.56, + "end": 20847.42, + "probability": 0.8196 + }, + { + "start": 20848.06, + "end": 20855.06, + "probability": 0.8039 + }, + { + "start": 20856.94, + "end": 20859.46, + "probability": 0.045 + }, + { + "start": 20859.6, + "end": 20859.74, + "probability": 0.1337 + }, + { + "start": 20859.86, + "end": 20860.98, + "probability": 0.9182 + }, + { + "start": 20862.84, + "end": 20866.52, + "probability": 0.9773 + }, + { + "start": 20867.12, + "end": 20870.36, + "probability": 0.9429 + }, + { + "start": 20870.36, + "end": 20871.36, + "probability": 0.4963 + }, + { + "start": 20872.56, + "end": 20876.86, + "probability": 0.9065 + }, + { + "start": 20877.2, + "end": 20880.24, + "probability": 0.9921 + }, + { + "start": 20881.22, + "end": 20881.92, + "probability": 0.1966 + }, + { + "start": 20882.04, + "end": 20886.11, + "probability": 0.8801 + }, + { + "start": 20886.4, + "end": 20892.34, + "probability": 0.7275 + }, + { + "start": 20892.64, + "end": 20895.84, + "probability": 0.9581 + }, + { + "start": 20896.16, + "end": 20897.36, + "probability": 0.8751 + }, + { + "start": 20898.9, + "end": 20900.78, + "probability": 0.6645 + }, + { + "start": 20900.78, + "end": 20902.42, + "probability": 0.1166 + }, + { + "start": 20903.72, + "end": 20905.88, + "probability": 0.249 + }, + { + "start": 20905.88, + "end": 20908.02, + "probability": 0.7013 + }, + { + "start": 20908.86, + "end": 20911.74, + "probability": 0.9957 + }, + { + "start": 20912.9, + "end": 20915.04, + "probability": 0.8295 + }, + { + "start": 20915.84, + "end": 20918.24, + "probability": 0.9797 + }, + { + "start": 20919.54, + "end": 20920.94, + "probability": 0.9615 + }, + { + "start": 20921.06, + "end": 20922.62, + "probability": 0.995 + }, + { + "start": 20922.78, + "end": 20922.98, + "probability": 0.4534 + }, + { + "start": 20924.5, + "end": 20925.7, + "probability": 0.8374 + }, + { + "start": 20926.8, + "end": 20927.42, + "probability": 0.9734 + }, + { + "start": 20929.34, + "end": 20932.48, + "probability": 0.7794 + }, + { + "start": 20935.94, + "end": 20938.8, + "probability": 0.7406 + }, + { + "start": 20940.96, + "end": 20943.3, + "probability": 0.9702 + }, + { + "start": 20944.0, + "end": 20944.82, + "probability": 0.9848 + }, + { + "start": 20946.22, + "end": 20948.4, + "probability": 0.8895 + }, + { + "start": 20948.56, + "end": 20949.5, + "probability": 0.7982 + }, + { + "start": 20950.76, + "end": 20957.2, + "probability": 0.9914 + }, + { + "start": 20957.68, + "end": 20958.56, + "probability": 0.3373 + }, + { + "start": 20958.56, + "end": 20960.42, + "probability": 0.3976 + }, + { + "start": 20960.64, + "end": 20963.12, + "probability": 0.9564 + }, + { + "start": 20963.12, + "end": 20963.12, + "probability": 0.1619 + }, + { + "start": 20963.18, + "end": 20970.3, + "probability": 0.8563 + }, + { + "start": 20970.5, + "end": 20972.9, + "probability": 0.7405 + }, + { + "start": 20973.3, + "end": 20976.82, + "probability": 0.9801 + }, + { + "start": 20976.9, + "end": 20978.14, + "probability": 0.6352 + }, + { + "start": 20979.88, + "end": 20981.04, + "probability": 0.9409 + }, + { + "start": 20982.36, + "end": 20986.8, + "probability": 0.8533 + }, + { + "start": 20987.7, + "end": 20989.56, + "probability": 0.9902 + }, + { + "start": 20990.02, + "end": 20994.46, + "probability": 0.9908 + }, + { + "start": 20994.92, + "end": 20997.58, + "probability": 0.9976 + }, + { + "start": 20997.96, + "end": 21000.26, + "probability": 0.9622 + }, + { + "start": 21001.74, + "end": 21002.04, + "probability": 0.0503 + }, + { + "start": 21002.04, + "end": 21004.82, + "probability": 0.7976 + }, + { + "start": 21005.08, + "end": 21005.34, + "probability": 0.0983 + }, + { + "start": 21005.74, + "end": 21007.9, + "probability": 0.973 + }, + { + "start": 21008.3, + "end": 21009.6, + "probability": 0.4319 + }, + { + "start": 21009.92, + "end": 21011.7, + "probability": 0.9927 + }, + { + "start": 21011.98, + "end": 21013.94, + "probability": 0.5877 + }, + { + "start": 21014.0, + "end": 21016.97, + "probability": 0.9969 + }, + { + "start": 21017.22, + "end": 21018.4, + "probability": 0.5262 + }, + { + "start": 21018.56, + "end": 21020.14, + "probability": 0.9331 + }, + { + "start": 21020.86, + "end": 21025.21, + "probability": 0.9824 + }, + { + "start": 21025.68, + "end": 21026.62, + "probability": 0.0523 + }, + { + "start": 21026.78, + "end": 21029.44, + "probability": 0.8594 + }, + { + "start": 21031.94, + "end": 21038.64, + "probability": 0.9519 + }, + { + "start": 21040.08, + "end": 21041.2, + "probability": 0.9595 + }, + { + "start": 21041.7, + "end": 21046.02, + "probability": 0.9905 + }, + { + "start": 21047.71, + "end": 21051.56, + "probability": 0.7708 + }, + { + "start": 21052.34, + "end": 21054.7, + "probability": 0.9084 + }, + { + "start": 21054.88, + "end": 21058.32, + "probability": 0.9737 + }, + { + "start": 21058.32, + "end": 21062.04, + "probability": 0.9895 + }, + { + "start": 21062.66, + "end": 21064.18, + "probability": 0.9794 + }, + { + "start": 21064.24, + "end": 21066.12, + "probability": 0.9607 + }, + { + "start": 21066.18, + "end": 21069.62, + "probability": 0.6709 + }, + { + "start": 21069.62, + "end": 21074.04, + "probability": 0.8652 + }, + { + "start": 21074.04, + "end": 21075.8, + "probability": 0.9032 + }, + { + "start": 21075.8, + "end": 21078.7, + "probability": 0.7973 + }, + { + "start": 21079.52, + "end": 21083.84, + "probability": 0.9785 + }, + { + "start": 21084.4, + "end": 21084.4, + "probability": 0.0439 + }, + { + "start": 21084.4, + "end": 21087.98, + "probability": 0.8153 + }, + { + "start": 21088.0, + "end": 21090.36, + "probability": 0.5289 + }, + { + "start": 21090.56, + "end": 21094.0, + "probability": 0.9905 + }, + { + "start": 21094.44, + "end": 21095.64, + "probability": 0.6509 + }, + { + "start": 21095.82, + "end": 21096.52, + "probability": 0.6475 + }, + { + "start": 21096.61, + "end": 21096.68, + "probability": 0.041 + }, + { + "start": 21096.68, + "end": 21096.76, + "probability": 0.1811 + }, + { + "start": 21096.76, + "end": 21097.6, + "probability": 0.4076 + }, + { + "start": 21097.84, + "end": 21097.98, + "probability": 0.4798 + }, + { + "start": 21098.14, + "end": 21100.12, + "probability": 0.307 + }, + { + "start": 21100.14, + "end": 21102.82, + "probability": 0.3941 + }, + { + "start": 21102.99, + "end": 21103.54, + "probability": 0.154 + }, + { + "start": 21103.58, + "end": 21108.34, + "probability": 0.6848 + }, + { + "start": 21111.62, + "end": 21116.16, + "probability": 0.9772 + }, + { + "start": 21116.2, + "end": 21118.68, + "probability": 0.8921 + }, + { + "start": 21119.78, + "end": 21120.72, + "probability": 0.998 + }, + { + "start": 21120.8, + "end": 21121.85, + "probability": 0.9604 + }, + { + "start": 21121.96, + "end": 21128.22, + "probability": 0.9697 + }, + { + "start": 21128.36, + "end": 21128.36, + "probability": 0.0123 + }, + { + "start": 21128.36, + "end": 21129.13, + "probability": 0.8123 + }, + { + "start": 21130.02, + "end": 21130.68, + "probability": 0.1508 + }, + { + "start": 21130.68, + "end": 21131.54, + "probability": 0.7515 + }, + { + "start": 21132.12, + "end": 21134.3, + "probability": 0.6591 + }, + { + "start": 21134.4, + "end": 21135.08, + "probability": 0.2811 + }, + { + "start": 21135.24, + "end": 21136.56, + "probability": 0.1688 + }, + { + "start": 21137.4, + "end": 21138.54, + "probability": 0.2321 + }, + { + "start": 21138.56, + "end": 21139.5, + "probability": 0.4278 + }, + { + "start": 21139.68, + "end": 21141.96, + "probability": 0.9969 + }, + { + "start": 21142.06, + "end": 21143.64, + "probability": 0.9774 + }, + { + "start": 21144.2, + "end": 21144.84, + "probability": 0.7924 + }, + { + "start": 21145.08, + "end": 21147.06, + "probability": 0.9862 + }, + { + "start": 21147.98, + "end": 21148.64, + "probability": 0.967 + }, + { + "start": 21149.42, + "end": 21151.98, + "probability": 0.9982 + }, + { + "start": 21152.62, + "end": 21153.02, + "probability": 0.6586 + }, + { + "start": 21153.16, + "end": 21156.94, + "probability": 0.8945 + }, + { + "start": 21157.24, + "end": 21159.2, + "probability": 0.9871 + }, + { + "start": 21159.58, + "end": 21160.48, + "probability": 0.4416 + }, + { + "start": 21160.7, + "end": 21161.62, + "probability": 0.4702 + }, + { + "start": 21162.0, + "end": 21162.56, + "probability": 0.4928 + }, + { + "start": 21162.96, + "end": 21164.41, + "probability": 0.7012 + }, + { + "start": 21164.6, + "end": 21165.12, + "probability": 0.2788 + }, + { + "start": 21165.12, + "end": 21167.62, + "probability": 0.9769 + }, + { + "start": 21167.62, + "end": 21171.88, + "probability": 0.9684 + }, + { + "start": 21171.92, + "end": 21173.03, + "probability": 0.5392 + }, + { + "start": 21173.4, + "end": 21174.66, + "probability": 0.6293 + }, + { + "start": 21174.82, + "end": 21175.42, + "probability": 0.6432 + }, + { + "start": 21175.54, + "end": 21178.24, + "probability": 0.5132 + }, + { + "start": 21178.24, + "end": 21179.02, + "probability": 0.1271 + }, + { + "start": 21179.08, + "end": 21181.06, + "probability": 0.8167 + }, + { + "start": 21182.62, + "end": 21183.02, + "probability": 0.0639 + }, + { + "start": 21183.02, + "end": 21184.62, + "probability": 0.5848 + }, + { + "start": 21184.82, + "end": 21187.09, + "probability": 0.9159 + }, + { + "start": 21188.24, + "end": 21189.98, + "probability": 0.9761 + }, + { + "start": 21190.04, + "end": 21191.14, + "probability": 0.9924 + }, + { + "start": 21191.38, + "end": 21194.06, + "probability": 0.9692 + }, + { + "start": 21194.68, + "end": 21196.96, + "probability": 0.9677 + }, + { + "start": 21197.6, + "end": 21199.84, + "probability": 0.9923 + }, + { + "start": 21200.06, + "end": 21202.48, + "probability": 0.9961 + }, + { + "start": 21202.64, + "end": 21203.78, + "probability": 0.8027 + }, + { + "start": 21204.6, + "end": 21205.86, + "probability": 0.6754 + }, + { + "start": 21207.78, + "end": 21210.76, + "probability": 0.9711 + }, + { + "start": 21211.42, + "end": 21214.42, + "probability": 0.9902 + }, + { + "start": 21214.5, + "end": 21216.54, + "probability": 0.9865 + }, + { + "start": 21216.7, + "end": 21217.8, + "probability": 0.931 + }, + { + "start": 21217.88, + "end": 21219.0, + "probability": 0.9717 + }, + { + "start": 21219.04, + "end": 21220.34, + "probability": 0.9713 + }, + { + "start": 21220.9, + "end": 21224.6, + "probability": 0.8868 + }, + { + "start": 21225.12, + "end": 21226.04, + "probability": 0.8932 + }, + { + "start": 21226.42, + "end": 21226.98, + "probability": 0.9382 + }, + { + "start": 21227.38, + "end": 21230.86, + "probability": 0.9789 + }, + { + "start": 21232.44, + "end": 21232.64, + "probability": 0.1081 + }, + { + "start": 21233.04, + "end": 21233.68, + "probability": 0.2526 + }, + { + "start": 21233.96, + "end": 21235.6, + "probability": 0.8627 + }, + { + "start": 21235.72, + "end": 21237.94, + "probability": 0.9022 + }, + { + "start": 21238.72, + "end": 21239.92, + "probability": 0.7932 + }, + { + "start": 21240.52, + "end": 21241.43, + "probability": 0.9538 + }, + { + "start": 21242.52, + "end": 21244.6, + "probability": 0.9247 + }, + { + "start": 21246.06, + "end": 21249.27, + "probability": 0.9878 + }, + { + "start": 21249.62, + "end": 21251.5, + "probability": 0.5852 + }, + { + "start": 21252.12, + "end": 21253.18, + "probability": 0.9307 + }, + { + "start": 21254.14, + "end": 21256.74, + "probability": 0.9966 + }, + { + "start": 21257.2, + "end": 21258.2, + "probability": 0.9479 + }, + { + "start": 21258.58, + "end": 21261.76, + "probability": 0.9782 + }, + { + "start": 21262.74, + "end": 21264.08, + "probability": 0.1848 + }, + { + "start": 21264.08, + "end": 21267.28, + "probability": 0.1683 + }, + { + "start": 21267.46, + "end": 21269.56, + "probability": 0.5416 + }, + { + "start": 21270.82, + "end": 21276.16, + "probability": 0.2306 + }, + { + "start": 21285.48, + "end": 21290.08, + "probability": 0.2072 + }, + { + "start": 21303.56, + "end": 21305.14, + "probability": 0.0068 + }, + { + "start": 21306.36, + "end": 21306.68, + "probability": 0.0421 + }, + { + "start": 21306.68, + "end": 21307.24, + "probability": 0.2534 + }, + { + "start": 21316.77, + "end": 21319.4, + "probability": 0.1185 + }, + { + "start": 21319.4, + "end": 21319.4, + "probability": 0.1629 + }, + { + "start": 21319.4, + "end": 21320.12, + "probability": 0.2154 + }, + { + "start": 21320.18, + "end": 21322.54, + "probability": 0.0709 + }, + { + "start": 21322.6, + "end": 21323.06, + "probability": 0.0826 + }, + { + "start": 21324.9, + "end": 21328.14, + "probability": 0.0771 + }, + { + "start": 21328.14, + "end": 21329.82, + "probability": 0.0786 + }, + { + "start": 21329.82, + "end": 21331.56, + "probability": 0.0799 + }, + { + "start": 21331.72, + "end": 21332.84, + "probability": 0.1075 + }, + { + "start": 21332.84, + "end": 21333.34, + "probability": 0.1632 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.0, + "end": 21334.0, + "probability": 0.0 + }, + { + "start": 21334.36, + "end": 21334.36, + "probability": 0.2004 + }, + { + "start": 21334.36, + "end": 21334.36, + "probability": 0.0572 + }, + { + "start": 21334.36, + "end": 21336.47, + "probability": 0.632 + }, + { + "start": 21337.18, + "end": 21339.9, + "probability": 0.7949 + }, + { + "start": 21340.36, + "end": 21341.56, + "probability": 0.9679 + }, + { + "start": 21341.6, + "end": 21342.04, + "probability": 0.6141 + }, + { + "start": 21342.13, + "end": 21346.1, + "probability": 0.9482 + }, + { + "start": 21346.46, + "end": 21349.68, + "probability": 0.9217 + }, + { + "start": 21350.06, + "end": 21355.52, + "probability": 0.9893 + }, + { + "start": 21356.06, + "end": 21356.08, + "probability": 0.039 + }, + { + "start": 21356.08, + "end": 21359.27, + "probability": 0.592 + }, + { + "start": 21359.66, + "end": 21360.94, + "probability": 0.7723 + }, + { + "start": 21361.16, + "end": 21362.46, + "probability": 0.9288 + }, + { + "start": 21362.76, + "end": 21365.46, + "probability": 0.9832 + }, + { + "start": 21365.84, + "end": 21368.08, + "probability": 0.9989 + }, + { + "start": 21368.48, + "end": 21373.52, + "probability": 0.9922 + }, + { + "start": 21374.94, + "end": 21377.02, + "probability": 0.8938 + }, + { + "start": 21377.26, + "end": 21379.56, + "probability": 0.7969 + }, + { + "start": 21379.94, + "end": 21382.6, + "probability": 0.9873 + }, + { + "start": 21383.24, + "end": 21385.72, + "probability": 0.8169 + }, + { + "start": 21386.28, + "end": 21387.94, + "probability": 0.5135 + }, + { + "start": 21388.08, + "end": 21391.3, + "probability": 0.9233 + }, + { + "start": 21391.3, + "end": 21395.02, + "probability": 0.6413 + }, + { + "start": 21395.14, + "end": 21397.16, + "probability": 0.5431 + }, + { + "start": 21398.12, + "end": 21398.6, + "probability": 0.7414 + }, + { + "start": 21398.68, + "end": 21399.24, + "probability": 0.6533 + }, + { + "start": 21399.32, + "end": 21400.02, + "probability": 0.9373 + }, + { + "start": 21401.88, + "end": 21404.68, + "probability": 0.0462 + }, + { + "start": 21407.55, + "end": 21408.12, + "probability": 0.0349 + }, + { + "start": 21419.62, + "end": 21421.06, + "probability": 0.0948 + }, + { + "start": 21422.1, + "end": 21422.9, + "probability": 0.0141 + }, + { + "start": 21425.44, + "end": 21431.04, + "probability": 0.1191 + }, + { + "start": 21431.04, + "end": 21432.22, + "probability": 0.1391 + }, + { + "start": 21432.26, + "end": 21435.14, + "probability": 0.0874 + }, + { + "start": 21436.38, + "end": 21437.8, + "probability": 0.0081 + }, + { + "start": 21439.92, + "end": 21440.48, + "probability": 0.1658 + }, + { + "start": 21459.78, + "end": 21462.48, + "probability": 0.0576 + }, + { + "start": 21462.48, + "end": 21462.48, + "probability": 0.0659 + }, + { + "start": 21462.48, + "end": 21463.65, + "probability": 0.0195 + }, + { + "start": 21464.4, + "end": 21464.98, + "probability": 0.0508 + }, + { + "start": 21464.98, + "end": 21468.22, + "probability": 0.1201 + }, + { + "start": 21468.86, + "end": 21469.38, + "probability": 0.2974 + }, + { + "start": 21469.44, + "end": 21469.72, + "probability": 0.437 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.0, + "end": 21476.0, + "probability": 0.0 + }, + { + "start": 21476.18, + "end": 21477.8, + "probability": 0.2936 + }, + { + "start": 21477.88, + "end": 21479.17, + "probability": 0.8126 + }, + { + "start": 21479.62, + "end": 21481.48, + "probability": 0.9402 + }, + { + "start": 21481.6, + "end": 21482.66, + "probability": 0.5784 + }, + { + "start": 21482.76, + "end": 21483.14, + "probability": 0.4407 + }, + { + "start": 21483.6, + "end": 21484.76, + "probability": 0.5529 + }, + { + "start": 21484.8, + "end": 21487.16, + "probability": 0.8779 + }, + { + "start": 21487.16, + "end": 21488.82, + "probability": 0.7146 + }, + { + "start": 21489.16, + "end": 21493.48, + "probability": 0.9274 + }, + { + "start": 21494.02, + "end": 21494.98, + "probability": 0.8891 + }, + { + "start": 21495.12, + "end": 21501.36, + "probability": 0.9945 + }, + { + "start": 21501.78, + "end": 21505.82, + "probability": 0.9233 + }, + { + "start": 21506.46, + "end": 21509.96, + "probability": 0.9976 + }, + { + "start": 21510.54, + "end": 21514.54, + "probability": 0.9992 + }, + { + "start": 21514.62, + "end": 21515.06, + "probability": 0.7343 + }, + { + "start": 21515.34, + "end": 21517.68, + "probability": 0.5228 + }, + { + "start": 21518.12, + "end": 21519.4, + "probability": 0.7303 + }, + { + "start": 21519.48, + "end": 21520.56, + "probability": 0.6973 + }, + { + "start": 21521.16, + "end": 21521.48, + "probability": 0.8429 + }, + { + "start": 21522.2, + "end": 21523.02, + "probability": 0.6918 + }, + { + "start": 21523.36, + "end": 21523.68, + "probability": 0.8346 + }, + { + "start": 21529.8, + "end": 21530.6, + "probability": 0.6362 + }, + { + "start": 21532.0, + "end": 21532.92, + "probability": 0.6885 + }, + { + "start": 21534.1, + "end": 21537.14, + "probability": 0.8778 + }, + { + "start": 21537.5, + "end": 21538.28, + "probability": 0.8339 + }, + { + "start": 21538.9, + "end": 21541.46, + "probability": 0.9118 + }, + { + "start": 21541.96, + "end": 21544.1, + "probability": 0.7424 + }, + { + "start": 21544.64, + "end": 21544.86, + "probability": 0.7014 + }, + { + "start": 21545.52, + "end": 21547.39, + "probability": 0.716 + }, + { + "start": 21547.72, + "end": 21548.0, + "probability": 0.0045 + } + ], + "segments_count": 7197, + "words_count": 36346, + "avg_words_per_segment": 5.0502, + "avg_segment_duration": 2.169, + "avg_words_per_minute": 100.7926, + "plenum_id": "31350", + "duration": 21636.12, + "title": null, + "plenum_date": "2013-10-14" +} \ No newline at end of file